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PREFACE 

The series of manuals on techniques describes procedures for planning and executing 
specialized work in water-resources investigations. The material is grouped under 
major subject headings called books and further subdivided into sections and chapters; 
section B of book 3 is on ground-water techniques. 

The unit of publication, the chapter, is limited to a narrow field of subject matter. This 
format permits flexibility in revision and publication as the need arises. Chapter 3B6 
deals with the principle of superposition and its applications in ground-water hydraulics. 

Provisional drafts of chapters are distributed to field offices of the U.S. Geological 
Survey for their use. These drafts are subject to revision because of experience in use 
or because of advancement in knowledge, techniques, or equipment. After the 
technique described in a chapter is sufficiently developed, the chapter is published and 
is for sale from U.S. Geological Survey, Books and Open-File Reports Section, Federal 
Center, Box 25425, Denver, CO 80225. 

Reference to trade names, commercial products, manufacturers, or distributors in 
this manual constitutes neither endorsement by the Geological Survey nor recommen- 
dation for use. 
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THE PRINCIPLE OF SUPERPOSITION AND ITS 
APPLICATION IN GROUND-WATER HYDRAULICS 

By Thomas E. Reilly, 0. Lehn Franke, and Gordon D. Bennett 

Abstract 
The principle of superposition, a powerful mathematical 

technique for analyzing certain types of complex problems 
in many areas of science and technology, has important 
applications in ground-water hydraulics and modeling of 
ground-water systems. The principle of superposition 
states that problem solutions can be added together to ob- 
tain composite solutions. This principle applies to linear 
systems governed by linear differential equations. 

This report introduces the principle of superposition as it 
applies to ground-water hydrology and provides back- 
ground information, discussion, illustrative problems with 
solutions, and problems to be solved by the reader. 

Introduction 
The principle of superposition in physics is a 

simple concept that has numerous applications 
in ground-water hydraulics and modeling1 of 
ground-water systems. The theory of superposi- 

‘The word “model” is used in several different ways in 
this report and in ground-water hydrology. A general deti- 
nition of model is a representation of some or all of the 
properties of a system. Developing a “conceptual model” of 
the ground-water system is the first and critical step in any 
study, particularly studies involving mathematical- 
numerical modeling. In this context, a conceptual model is 
a clear, qualitative, physical picture of how the natural 
system operates. A “mathematical model” represents the 
system under study through mathematical equations and 
procedures. The differential equations that describe a phys- 
ical process (for example, ground-water flow and solute 
transport) in approximate terms are a mathematical model 
of that process. The solution to these differential equations 
in a specific problem frequently requires numerical proce- 
dures (algorithms), although many simpler mathematical 
models can be solved analytically. Thus, the process of 
“modeling” usually implies developing either a conceptual 
model, a mathematical model, or a mathematical- 
numerical model of the sytem or problem under study. The 
context will suggest which meaning of “model” is intended. 

tion, which states that the solutions to individ- 
ual parts of a problem can be added to solve 
composite problems, is explained in most books 
on advanced calculus or differential equations. 
Several texts on ground water provide some 
discussion of this topic as well; Bear (1979) 
gives perhaps the most comprehensive treat- 
ment that is readily available. Yet, many 
ground-water hydrologists who do not have a 
strong background in mathematics do not un- 
derstand the concept of superposition or its ap- 
plication to ground-water problems, despite the 
fact that they often use this principle, perhaps 
unknowingly, in the analysis of pumping 
tests2. 

Purpose and scope 
The purpose of this report is to introduce the 

principle of superposition to hydrologists by 
providing background information, discussion, 
and four problems to be solved by the reader. 
(Solutions are included.) 

The discussion and problems in this report 
are directed toward the analysis and computer 
simulation of flow patterns within ground- 
water systems through superposition. It is 
hoped that after serious study of this document, 
the reader will be prepared for practical appli- 
cation of this concept. 

2The first step in analyzing a pumping test is to convert 
absolute head measurements to drawdowns, which repre- 
sent changes in head superposed on the ground-water sys- 
tem in response to the pumping stress. This step is required 
because the analytical solutions to linear well hydraulic 
problems are expressed in terms of head changes-that is, 
these solutions use superposition. 

1 
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The method of images, which is an important 
application of superposition in ground-water 
hydraulics, is not discussed in this report but is 
discussed in some detail by Walton (1970, 
p. 157-167). 
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Linear Systems and 
Linear Equations 

Superposition applies to linear problems or 
linear systems. A simple diagrammatic repre- 
sentation of a system with its input (or stress 
acting upon it) and its output (or response) is 
shown in figure 1. Simply stated, in a linear 
system, doubling a given stress (input) will 
double the response, halving the stress (input) 
will halve the response, and so on. For example, 
a vertical spring fixed firmly at its upper end 
represents a close approximation to a linear 
physical system. If we attach a l-pound weight 
(the stress) to the lower end of the spring (the 
system), the spring will elongate or displace 
some distance equal to x. (This constitutes the 
system response.) If we remove the l-pound 
weight and substitute a 3-pound weight, the 
response will be 3x, and so on. 

Linear systems are described by linear math- 
ematical equations. The previous example re- 

Figure 1 .-Diagrammatic representation of a system and its 
associated stress and response. 

lating spring elongation to applied weight is 
described by the simple linear algebraic equa- 
tion 

F=-Kx , 

where 
F= the force (weight) acting at the end of the 

spring, 
x=the elongation of the spring (a length), 

and 
K=a constant (the spring constant), which is 

a property of the spring. 
The flow of ground water is defined in the 

general case by partial differential equations. 
The solution to a ground-water problem entails 
solving the governing partial differential equa- 
tion and satisfying the boundary and initial 
conditions that define the particular problem. 
(A detailed discussion of boundary and initial 
conditions is given in Franke and others, in 
press, and a discussion of the solution of differ- 
ential equations and the role of boundary con- 
ditions is given in appendix 1.) Some of the 
differential equations that describe ground- 
water flow are linear, and some are nonlinear. 
Because superposition applies to linear sys- 
tems that are described by linear equations, the 
concept of the linearity (or nonlinearity) of a 
differential equation is important. This topic is 
briefly reviewed in appendix 2. 

Definition of Superposition 
The principle of superposition means that for 

linear systems, the solution to a problem in- 
volving multiple inputs (or stresses) is equal to 
the sum of the solutions to a set of simpler indi- 
vidual problems that form the composite prob- 
lem. For example, suppose we want to know the 
shape of the sound wave generated by two 
sound waves interfering with each other. This 
shape can be determined by algebraically 
adding the two simple waves together, as in 
figure 2, where the darker wave is the result- 
ant wave. Thus, the shape of a composite sound 
wave can be calculated from only the shape of 
each component wave. This procedure is valid 
because the properties of the waves in figure 2 
are governed by linear differential equations. 
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A. Waves in phase (z= x +y) 

B. Waves partly out of phase 

C. Waves out of phase 

EXPLANATION 

~ Simple sound wave 

- Resultant wave 

Figure 2.-Superposition of simple sound waves. (Modified 
from Jeans, 1966.) 

A more formal definition of superposition is 
that, if Yi and Y2 are two solutions to a linear 
differential equation with linear boundary con- 
ditions, then CiY,+C&Ys is also a solution, 
where Ci and C2 are constants. 

Application of 
Superposition to a 

Simple Hydrologic System 
Just as the amplitudes of two simple waves 

were added together in figure 2 to obtain the 
amplitude of the composite wave, two different 
potentiometric distributions resulting from two 
separate stresses in a confined aquifer can be 
added together to obtain the potentiometric 
distribution resulting from the sum of the two 
stresses, For example, the one-dimensional 
aquifer system shown in figure 3 is bounded by 
a river on one side and a canal on the other. 

In example a, (fig. 3B), the river stage is at 
datum and the canal stage is 200 ft above 
datum; in example b, the river stage is 50 ft 
above datum and the canal stage is at datum. If 
the head distribution in the aquifer is known 
from field measurements or numerical calcula- 
tions for examples a and b, then the head distri- 
bution in example c, where the river stage is at 
50 ft and the canal at 200 ft, can be obtained by 
adding the heads in examples a and b. 

If the heads in examples a and b can be super- 
posed (added together) to give a solution for 
example c, then the sum of the gradients (the 
slope of the line describing the head) in exam- 
ples a and b should also give the gradient in 
example c. In example a, the gradient is 0.100, 
and in example b it is -0.025; the gradient in 
example c is the difference, 0.075. The gradient 
sign convention as used here is arbitrary; the 
point is that the gradients in examples a and b 
are of opposite sign. 

Finally, if the gradients can be superposed, 
so can the flows. Thus, if the flow (Q) from the 
canal to the aquifer is 4 units in example a and 
is - 1 unit in example b, then the flow in exam- 
ple c will be their sum, 3 units. 

This simple demonstration illustrates an im- 
portant point in superposition. When we think 
of superposition in relation to ground-water 
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0 
river 

1000 

DISTANCE, IN FEET 

2000 
canal 

L E! 200 W - 

z 
-. :: 150 - 
1L loo - Qfrom canal to river 
z = - 1 unit 
z 50 
D 9 0 I 
CL 0 1000 2ooa 

river canal 
DISTANCE, IN FEET 

(C) 
200 - 

Q from canal to river 

=cla+Qb =4-l 

-- .= 3 units O--- --- 

0 1000 2000 

river canal 
DISTANCE, IN FEET 

B 

Figure 3.-Superposition of heads and flows in a one-dimensional example: A, Confined aquifer 
bounded by a river and a canal. 6, Plots of head distribution under three conditions: (a) with river 
stage at datum (0 ft) and canal stage at 200 ft, (b) with river stage at 50 ft and canal stage at 
datum (0 ft), and (c) addition of heads in (a) and (b) to obtain head distribution with river stage 
at 50 ft and canal stage at 200 ft. 
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problems, we generally think of adding heads. 
The preceding discussion indicates, however, 
that not only heads, but also gradients and 
flows, are additive. 

Application of Darcy’s law, which describes 
the flow through the cross section in figure 3, 
helps to explain mathematically the additive 
process as described above. Darcy’s law states 

where 
Q=quantity of water discharged through the 

cross section (ft3/s), 
K=hydraulic conductivity (ft/s), 
A=cross-sectional area (ft2), 
x=distance from the river (ft), and 
h=hydraulic head (ft). 
Darcy’s law is the governing differential 

equation for the system of figure 3. For exam- 
ple a (fig. 3B), let Q, represent the flow through 
the aquifer and h,(x) (or simply h,) represent 
the solution to the differential equation (the 
hydraulic head), and, for example b, let Qb and 
hb(x) (or simply h,.,) represent the corresponding 
flow and head. 

We define the sum of the head distributions 
for the two examples as h,(x); that is, 

h,(x)=h,(x)+h,(x) . (2) 

Applying Darcy’s law to example a yields 

Q,=-KA!!$ , 

and to example b, 

Q,,-KA!!!&) . 

Adding equations 3a and 3b gives 

Qa+Qb= -KA% -KA% . 

(34 

(3b) 

(3c) 

However, the sum of the two derivatives may 
be written as the derivative of the sum. Thus, 

dh, dh,, d(h,+h,) 
dx+t= 

dh, 
dx =dx * 

Substituting this into equation 3c gives 

Qa+Qb= -KAY . @a) 

Equation 4a, like equations 3a and 3b, is a 
statement of Darcy’s law. It tells us that h,(x), 
the head distribution defined by h,(x)+h,,(x), 
must satisfy Darcy’s law, provided h,(x) and 
hb(x) satisfy it individually. Equation 4a also 
shows that the flow corresponding to the com- 
bined head distribution is Qa+Qb, the sum of 
the flows corresponding to the individual head 
distributions. That is, 

Qa+Qb=Qc 3 (4b) 

where Q, is the flow for the combined case. 
Thus, when superposition is used, flows as well 
as heads must be added. 

Mathematical 
Demonstration of 

Superposition Concept 
In ground-water problems involving a linear 

governing equation (such as two-dimensional 
confined flow), the effects of individual changes 
(or stresses) can be evaluated without consider- 
ing the other concurrent stresses on the system. 
To demonstrate this, consider a system gov- 
erned by the following partial differential 
equation, which describes nonequilibrium flow 
in two dimensions under confined conditions: 

$(T.$)+-+‘T$)+W=S$ . 6% 

In equation 5, 
T,=transmissivity in the x direction (L2iT), 
T,=transmissivity in the y direction (L2/T), 
W=source or sink term (L/T), 
S=storage coefficient (unitless), 

and the coordinate directions, x and y, are 
aligned with the principal directions of aquifer 
transmissivity. Now suppose that a particular 
set of inputs or stresses, which is designated 
Wi, prevails in the aquifer (in general, Wi is a 
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function of position and time). A certain distri- 
bution of head in space and time, hi(x,y,t) (or, 
for brevity, simply hi), is observed in response 
to these stresses. This head distribution must 
be such that when it is substituted into equa- 
tion 5 together with the stress function, Wi, the 
equation is satisfied. That is, it must be true 
that 

Now suppose the stresses are changed, so 
that corresponding to the function Wi in equa- 
tion 6a there is a new function, AW, which 
gives the change or difference in the stress from 
Wi. The new stress function is then W,+AW, 
and corresponding to this new stress pattern 
there is a new head pattern, h,+Ah, where Ah 
represents the difference in head, from hi, that 
is observed in response to the change in stress 
AW. Like hi and Wi, Ah and AW are, in gen- 
eral, functions of x, y, and t. 

Because the system is still governed by equa- 
tion 5, the new head distribution and the new 
stress function must also satisfy this equation; 
that is, it must be true that 

a(h,+Ah) 
ay 

+W,+AW=S 
a(h,+Ah) 

at . (6b) 

Again, by the principle that the derivative of a 
sum is equal to the sum of the individual 
derivatives, equation 6b can be written 

+W,+AW=Sz+S$$ . (7) 

Subtracting equation 6a from equation 7 gives 

--$X+h)+$(Ty$j$)+AW=S+i . (8) 

Thus Ah(x,y,t), the function describing the 
change in head caused by the stress change, 
AW, must itself satisfy the governing differen- 

tial equation of flow when it is substituted into 
that equation together with AW. It follows that 
(1) the governing differential equation can be 
solved only for the head changes, Ah, corre- 
sponding to the stress changes, AW, (2) head 
changes, Ah (drawdowns), can be used to solve 
for aquifer parameters such as T, and TyI and 
(3) in general, individual solutions to a linear 
partial differential equation can be added to 
provide new solutions corresponding to a com- 
bined stress. 

Boundary Conditions, 
Stresses, and Initial 

Conditions in Models that 
Use Superposition 

In using superposition to solve ground-water 
flow problems, we are dealing in terms of 
changes in head (drawdown) and changes in 
flow rather than absolute values of head and 
flow. The natural hydrologic boundaries 
(namely, constant head, constant flow, and 
leakage boundaries) and the initial conditions 
must be represented in models (either concep- 
tual, analytical, analog, or numerical) in terms 
of changes rather than the actual values ob- 
served in the flow system. The key to proper 
definition of boundary and initial conditions 
when using superposition in the simulation of 
ground-water problems is to keep in mind that 
the model is solving for changes in heads 
(drawdowns) and flows. Thus, defining the 
boundary conditions in a model simulation that 
uses superposition means representing the 
change in head or flow that will occur at these 
boundaries. 

In ground-water models that use superposi- 
tion, boundary conditions are usually repre- 
sented in the following manner (see Franke 
and others, in press, for further discussion of 
boundary conditions): 

Constant-head and specified-head bound- 
aries are represented as zero potential 
boundaries, corresponding to zero drawdown or 
head change. If the absolute value of head does 
not change at these boundaries in the natural 
system, the superposition model represents 
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- 

this boundary as having zero drawdown or 
buildup of head. If, on the other hand, the pur- 
pose of the simulation is to determine the effect 
on the ground-water system of a change in ab- 
solute head at one of these boundaries, then the 
absolute value of this change in head, Ah (dif- 
ference between two absolute heads), becomes 
the new value of constant head in the superpo- 
sition model, and the other constant-head and 
specified-head boundaries that remain un- 
changed are represented as zero-head potential 
boundaries. 

Constant-flux boundaries are represented by 
zero change in flow-that is, as zero-flux 
boundaries in a superposition model-because 
the assumption that flow across these 
boundaries remains constant implies that 
change in flow is zero. For example, when we 
evaluate the response of an aquifer to a pump- 
ing well through superposition, we often as- 
sume that natural recharge does not change 
and thus represent the boundary at which 
recharge occurs as a no-flow boundary. If, on 
the other hand, we wish to simulate the effect 
on the ground-water system of a change in flux 
at one of these boundaries, then the value of 
this change in flux becomes the new value of 
constant flux at this boundary in the superposi- 
tion model, and we again represent the other 
constant-flux boundaries that remain un- 
changed as no-flow boundaries. 

Leakage across a confining unit from a 
constant-head source (mixed boundary condi- 
tion) is represented in superposition by main- 
taining the source at zero drawdown, or zero 
change in head. As a result, the flow through 
the confining unit in the superposition model 
represents the change in flow through the unit 
in the natural system due to the stress. 

These concepts related to definition of 
boundary conditions in superposition models 
will be further clarified in a series of examples. 
A ground-water system with its associated 
physical boundaries is depicted in both plan 
view and cross section in figure 4. The values 
for area1 recharge and lateral inflow to the 
aquifer from the northern bedrock hills repre- 
sent best estimates based on a water budget, a 
measured potentiometric surface in the aquifer, 
and an estimate of aquifer transmissivity. A 
model of this system based on absolute heads 

would use the following six boundary condi- 
tions: (1) a constant head equal to 400 ft along 
the western lateral boundary (reservoir) of the 
aquifer; (2) a constant flux of 3 ft3/s distributed 
along the northern lateral aquifer boundary; 
(3) specified heads along the eastern lateral 
aquifer boundary corresponding to the river 
stages in figure 4A; (4) a stream surface or no- 
flow boundary along the southern impervious 
bedrock hills; (5) a stream surface or no-flow 
boundary on the bottom of the aquifer; and (6) a 
constant areally distributed flux of 2 ft/yr on 
the top surface of the aquifer. In the following 
examples, a hypothetical modeling problem for 
the system depicted in figure 4 is presented and 
is followed by the definition of the boundary 
conditions in a model that simulates the prob- 
lem through superposition. 
Example 1: We wish to investigate the effect of 

a pumping well on the system. In a superpo- 
sition model, both the western lateral 
boundary (reservoir) and the eastern lateral 
boundary (river) are represented as constant- 
head boundaries of zero potential. All other 
boundaries are no flow. 

Example 2: We wish to investigate the effect 
on the system of raising the stage of the 
reservoir from 400 ft to 450 ft. In a superposi- 
tion model, the western lateral boundary 
(reservoir) is represented as a constant po- 
tential of 50 ft and the eastern lateral 
boundary (river) as a constant potential of 
zero, and all other boundaries are no flow. 

Example 3: The lateral inflow to the aquifer 
from the northern bedrock hills is uncertain. 
We wish to investigate the effect on the sys- 
tem of increasing this lateral inflow from 
3 ft3/s to 4 ft3/s. In a superposition model, this 
northern boundary is represented as a 
constant-flux boundary with areally dis- 
tributed inflow totaling 1 ft3/s, the western 
boundary (reservoir) and eastern boundary 
(river) are constant head with zero potential, 
and all other boundaries are no flow. 

Example 4: We wish to investigate the effect 
on the system of changing the stage (and 
slope) of the river surface along the eastern 
boundary of the aquifer. The new values of 
stage at selected points are (a) 220 ft, (b) 240 
ft, (c) 260 ft, (d) 280 ft, and (e) 300 ft. In a 
superposition model investigating these 
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Confined aquifer 

A. PLAN VIEW 

Areally distributed recharge equals Z.Oft/Yr 

I 

B. CROSS SECTION 

Impermeable bedrock I 

Figure 4.-Plan view and cross section of a hypothetical aquifer and associated boundaries. 

changes in stage, the eastern river boundary 
is a specified-head boundary with potentials 
of 20 ft at point a, 15 ft at b, 10 fi at c, 5 R at 
d, and 0 ft at e. The western boundary (reser- 

voir) has a constant potential of zero, and all 
other boundaries are no flow. 
Each of these examples considers a single 

change in the definition of some aspect of the 
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system boundaries or the stress acting on the 
system. The total effect on the system of some 
combination of these individual changes (or 
other changes) may be obtained by adding, al- 
gebraically, the response of the system 
(changes in h ea d s and flows in the various 
parts of the system) to the individual changes. 
Note that we can investigate not only increases 
but also decreases in reservoir stage, river 
stage, lateral inflow, or area1 recharge as well 
as artificial recharge. We must, however, keep 
track of the reference values of the variables 
because it is the changes in these values that 
we are defining and investigating. 

Stresses are represented in superposition 
models through the same logic as the represen- 
tation of boundaries-that only changes in 
stress are represented. Suppose, for example, 
we wish to simulate only the effect of an addi- 
tional pumping well on a ground-water system 
that is already heavily stressed. The discharge 
of water from this pumping well represents the 
change in stress on the system that will be sim- 
ulated, and drawdowns in response to only this 
pumping are determined by the model through 
superposition. 

These same concepts apply to a pumping-test 
analysis wherein the natural system may have 
many stresses acting on it, but we are inter- 
ested only in the effect of the test well. An early 
step in the test analysis is to calculate draw- 
downs at all observation points as a function of 
time. These measured drawdowns may 

’ undergo a series of corrections to account for 
temporal trends in ground-water levels in the 
area during the pumping test, barometric ef- 
fects, tidal effects, and so on. The purpose of 
these corrections is to obtain, finally, draw- 
down data that reflect only the effect of pump- 
ing at the test well. 

In a model that uses superposition, the initial 
potential distribution is normally taken as zero 
throughout the system, thus representing zero 
head change or drawdown. The stresses repre- 
sented in the model would then be any changes 
in stress under consideration from the time rep- 
resented by the initial conditon. When compar- 
ing drawdowns calculated by a model through 
superposition with field-measured drawdowns, 
we must remember that the calculated draw- 
downs reflect only the changes in stress repre- 

sented in the model. The field-measured draw- 
downs, however, may include changes in head 
resulting from stresses that were affecting the 
system before the initial time represented in 
the model. Thus, the drawdowns calculated by 
the model will be comparable to the actual 
drawdowns only if the natural system was in 
equilibrium at the initial time represented by 
the model. (See Franke and others, in press, for 
further discussion of initial conditions.) 

The preceding discussion assumes that the 
reference head in all models that use superposi- 
tion is a zero change in head (zero drawdown), 
and this is almost always true. However, be- 
cause the principle of superposition states that 
any solutions to linear differential equations 
can be added to obtain new solutions, a refer- 
ence head of zero drawdown is not a require- 
ment-it is simply the most straightforward 
approach. 

Problem 1 
A square confined aquifer with a uniform 

transmissivity of 1.55 x 10e2 ft2/s is shown in 
figure 5. The aquifer is bounded by two imper- 
meable rock walls and two surface-water bod- 
ies laterally and by assumed impermeable 
boundaries above and below. The surface-water 
bodies are a river and a reservoir whose stages 
remain constant (figs. 5A, 5B). Thus, a constant 
head is exerted by the surface-water bodies at 
their contact surfaces with the aquifer. The 
natural head distribution with the river stage 
at zero altitude and the reservoir at 200 ft was 
calculated by a finite-difference model; the re- 
sulting head distribution is an approximate so- 
lution to the ground-water flow equation (eq. 5) 
and is shown in figure 5C. 

A pumping rate of 3.1 ft3/s was then simu- 
lated for the well shown in figures 5A and 5B, 
and the resulting drawdown at equilibrium 
was calculated by superposition (eq. 8). Be- 
cause superposition was used, the aquifer- 
boundary conditions on the surface of contact 
with the river and reservoir were defined as a 
zero change in head (Ah=O), which corresponds 
to a constant drawdown of zero. The calculated 
steady-state drawdowns, Ah, in response to the 
pumping well are plotted in figure 5D. 
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Impermeable bedrock Impermeable bedrock 

Confined aquifel 

Figure 5.-Aquifer system under study and head distribution in response to stress: A, Cross-sectional view 
of aquifer system and boundaries; 8, Plan view of aquifer. 

From the heads (h) under prestress condi- 
tions as shown in figure 5C and the trans- 
missivity of the aquifer, the initial flow of 

From the changes in head (Ah) due to pumping, 
as shown in figure 5D, and the aquifer trans- 
missivity, the changes in boundary flows due to 

water from the reservoir to the aquifer and pumping can be calculated. These flows are cal- 
from the aquifer to the river can be calculated. culated to be as follows: 
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Figure 5.-Aquifer system under study and head distribution in response to stress: C, Head distribution 
before pumping; D, Drawdowns and changes in flow due to pumping. 
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Figure 5C 
(initial 
state): 

Initial flow from 
reservoir to 
aquifer 

Initial flow from 
aquifer to river 

=3.1 ftals 

=3.1 f@/s 

Figure 5D Change in flow =2.0 fP/s 
(pumping from reservoir to 
response): aquifer 

Change in flow =l.l RVS 
from river to 
aquifer 

It is important to recognize that although we 
may seem to be calculating flows into the aqui- 
fer in figure 5D, these flows actually represent 
the changes from the initial flow pattern due to 
the pumping. The sum of these changes in flow 
must equal the pumpage from the well. 

We now wish to determine the actual head 
distribution and flows in the aquifer as the well 
is pumped. We could obtain the solution to this 
problem by simulating simultaneously both 
the prestress system and the pumping well in 
an additional model run, but we can also obtain 
the solution by superposition-that is, by 
adding the heads and flows in figure 5C to 
those in figure 5D. 

Exercise 
Add the heads and flows from figures 5C and 

5D and enter the results on worksheet 1. Then 
contour the head values to decide whether the 
results are physically reasonable. Answers are 
given in appendix 3. 

Discussion 
The flows calculated in the preceding exer- 

cise reflect an important point regarding the 
source of water to the pumping well. The super- 
position model and the resultant change in 
boundary flows (fig. 5D) indicate the quantities 
of water derived from each boundary but do not 
indicate the direction in which the water is 
flowing in the natural system. The calculated 
flows in the exercise indicate that the 2 ft3/s 
derived from the reservoir is actually increased 
inflow to the aquifer system, whereas the 
change of 1.1 ft3/s at the river boundary actu- 
ally represents reduced outflow from the aqui- 
fer to the river. 

Application of 
Superposition in a 

Well Problem 
An example of adding (superimposing) solu- 

tions is the calculation of the drawdown that 
occurs at a given point in a confined aquifer in 
response to a sudden change in pumping rate at 
a well, as shown in figure 6. If the well begins 
pumping 1.0 ft3/s at time to and the rate is in- 
creased to 1.25 ft3/s at time ti, the total draw- 
down at any time can be calculated by superpo- 
sition. Because pumpage before to was zero, the 
initial conditions of the system are zero draw- 
down everywhere. Figure 6A shows the draw- 
down (or change in heads) caused by steady 
pumpage of 1.0 ft3/s starting at to. Figure 6B 
shows the drawdown caused by pumpage of 
0.25 ft3/s starting at time ti. The total draw- 
down at some point in the aquifer due to the 
discharge of the well at 1.0 ft3/s beginning at to, 
followed by a stepwise increase in pumping 
rate to 1.25 ft3/s at ti, is calculated by adding 
the drawdowns from figures 6A and 6B. Note 
that the pumping rate of the well is defined in 
figure 6C by adding (or superimposing) the 
pumping rates from 6A and 6B. Thus, we are 
adding system stresses (pumping rates) as well 
as system responses (drawdowns). The solution 
to the problem, as obtained by superposition, is 
shown in figure 6C. 

Advantages of 
Superposition 

The principal advantages of using superposi- 
tion in ground-water studies may be summa- 
rized as follows: 

1. The effects of a specified stress on the sys- 
tem can be evaluated even if other stresses act- 
ing on the system are unknown. For example, 
the drawdown caused by a pumping well can be 
calculated even if the recharge rate, the actual 
heads, the gradients, or even the pumping rates 
of other wells in the aquifer are unknown. 

2. The effects of a change in stress on the 
system can be evaluated even if the original 
equilibrium conditions or some subsequent pe- 
riod of equilibrium conditions resulting from a 
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Worksheet 1 .-Grid for calculation of new head distribution and flow rates 

Add change in head, figure 5D, to initial head, figure 5C, to obtain value for each node. 
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long-acting constant stress are unknown. 
Defining a problem in terms of changes allows 
the initial conditions to be represented simply 
by zero drawdown everywhere. In other words, 
employing superposition as part of the model- 
ing strategy avoids the problem of defining ini- 
tial conditions (see Franke and others, in press, 
on initial conditions). 

3. The effect of one stress on the system can 
be isolated from the effects of all other stresses 
on the system. For example, the sources of 
water to a pumping well can be determined 
directly by superposition, as demonstrated in 
problem 1 of this report. 

4. Through superposition, information (pa- 
rameter identification) on the natural flow sys- 
tem can be obtained through model calibration, 
even when predevelopment heads and flows in 
the system are unknown. After the aquifer 
parameters and boundary conditions of the 

!z E 

- 
Q out 

13 

Q out = Qoutc + Qouto = 

flow system have been reasonably well estab- 
lished and incorporated in a flow model 
through superposition, the model can be used to 
reconstruct an approximate representation of 
the predevelopment flow system by calculating 
absolute heads3. Such a reconstruction may be 

3Absolute head is water-level elevation above a reference 
datum, usually mean sea level. Drawdown is the head dif- 
ference between two water-level surfaces and is thus inde- 
pendent of the elevation datum. It has already been empha- 
sired that superposition uses drawdowns (or changes in 
head). When we solve a problem by superposition, it is 
simplest to conceive of the ground-water system as having 
zero drawdown (or zero change in head) everywhere at the 
start of the problem. The introduction of a stress will cause 
drawdowns (changes in head) relative to this zero-change 
water-level surface. To determine absolute heads in the 
ground-water system after application of the stress, the 
drawdowns are added to the absolute system heads, as in 
problem 1. 
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Figure 6.--Superposition of well solutions: A, Initial pumpage starting at t,, and its resulting drawdown, sl, at t2; B, 
Change in pumpage from the initial rate starting at 1, and its resulting drawdown, s2, at t2; C, Total pumpage 
starting at initial rate and increasing at t,, and its resulting drawdown, s1 +s2, at f as obtained by superposition. 

of considerable aid in understanding the hy- 
draulics of the aquifer system and the effects of 
subsequent historical development. 

5. Taking into account the effects of prevail- 
ing water-level trends in an aquifer system 
during analysis of aquifer-test data (trend cor- 

rection) is a particular case of advantage 3 that 
deserves special mention. For example, if the 
aquifer system has a declining trend owing to 
other stresses on the system, the effects of the 
pumping can be superimposed on this declining 
trend. Determination of the aquifer parameters 
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Figure 7.-Cross section of confined aquifer with one-dimensional flow into stream, as described 
in problem 2. 

is based only on the drawdown caused by the 
pumping test, and the effects of the background 
trend are removed by subtraction. 

Common themes in the preceding list are 
that superposition enables us to simplify com- 
plex problems and to obtain useful results de- 
spite a lack of certain information describing 
the ground-water system and the stresses act- 
ing on it. Through the use of superposition, the 
problem can be formulated in simpler terms, 
which saves effort and reduces data require- 
ments. Thus, if the technique is applicable, it 
may be advantageous to use superposition in 
solving many specific problems. 

Constraints on the 
Use of Superposition 

As emphasized in the previous discussion, 
the most important constraints in the use of 
superposition in ground-water problems are 
that the governing differential equation and 
boundary conditions must be linear. This 
means that the governing differential equation 
cannot contain terms such as h(Wax), (&/a~)~, 
or h2. (See appendix 2.) In general (disregard- 
ing complicated boundary and source or sink 
terms), flow in confined aquifers is described 
by linear differential equations, and flow in un- 

confined aquifers by nonlinear differential 
equations. 

For the system to yield a linear response to 
stress, not only the governing differential 
equation, but also the boundary conditions, 
must be linear. Usually, boundaries that are 
fixed in space and known as part of the problem 
definition are characterized by linear boundary 
conditions. Examples of nonlinear boundary 
conditions in a ground-water system are a 
steady-state water table whose position must 
be calculated as part of the problem solution, a 
water table whose position is known initially 
but changes as a function of time, a moving 
freshwater-saltwater interface, and a stream 
that changes in length during the course of a 
transient stress. 

Problem 2 
A confined aquifer is bounded on one side by 

a fully penetrating stream and on the other 
side by an impermeable boundary (fig. 7). Its 
thickness (b) is 30 ft, and its hydraulic conduc- 
tivity (K) is 125 ft/d. The distance between the 
stream and the impermeable boundary is 
14,000 ft. The aquifer and the stream extend a 
great distance perpendicular to the cross sec- 
tion in figure 7; thus, flow in this system ap- 
proximates one-dimensional flow. 
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Worksheet 2.-Table for calculation of head values using Jacob’s formula 

From data given in question A of problem 2, and in figure 7, calculate the following constants for use in subsequent calculations: * 

(1) T=Kb= ft2/d 

W (2) - = ft-’ 
T 

(3) a= ft 

(4) - s? = 
Kb 

(dimensionless) 
Refer to question 8. 

Fill in the table: 

Exercise 
Question A 

Assume that natural recharge is areally uni- 
form at a constant rate of 0.00184 fVd. The 
analytical solution for the head in this one- 
dimensional problem (a confined aquifer with 
a uniform recharge rate, known as Jacob’s for- 
mula) is 

(9) 

where 
h=head (ft> measured above the stream 

level as datum (that is, the water level 
in the stream is assumed to be at zero 
elevation), 

W=recharge rate (ft/d), 

a= width of profile from stream to imperme- 
able boundary (ft), 

T= transmissivity (ft2/d) (T equals hydraulic 
conductivity, K, times aquifer thick- 
ness, b), and 

x=distance from constant-head stream (ft). 
Assuming a one-dimensional flow system, cal- 
culate the head every 2,000 ft by Jacob’s for- 
mula. Use worksheet 2 for the calculations and 
enter the answers on worksheet 3. Calculate 
the total ground-water flow entering the 
stream per foot of stream perpendicular to the 
cross section and enter this value in the last 
column of worksheet 3. 

Question B 
Suppose the only fluid source is high 

recharge at the impermeable boundary of the 
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l Worksheet 3.-Table of absolute head values (h) and values of change in head due to specified stress (Ah) calculated in . 
problem 2 

I I 
I 

Question 
I 

Condition 2,000 
Distance from boundary, in feet (x) Totaj flow 

4,000 6,000 6,000 10,000 12,000 14,000 entse;rag;he 
1 

A Original 
steady-state 
profile with 

natural 
recharge(h) 

0 

B Head build-up 
with 

artificial 
recharge 
at 14,000 

I ft(AW ft(AW I 

0 

C Absolute 
heads with 
recharge at 

14,000 ft 
and natural 
recharge(h) 

0 

D 

E 

Absolute 
heads with 
withdrawal 
at 14,000 ft 
and natural 
recharge(h) 

Absolute 
heads with 
three times 
the original 
steady-state 
recharge(h) 

0 

0 

cross section (x= 14,000 ft) at a constant rate of 
6.4 (ft3/dMt. No other recharge occurs along the 
cross section. The head distribution resulting 
from this point source4 of recharge can be calcu- 
lated from Darcy’s law: 

where 
K=hydraulic conductivity @t/d), 
A=cross-sectional area of a 1-R width of 

aquifer (b x 1 ft=b ft2), and 
b = aquifer thickness (ft). 

Rearranging the above equation to solve for h 
gives 

*is is a point source in cross section. It actually repre- 
sents a line source in the physical system. 

Q s dh=-+ . (11) 

Integrating, 

gives 

Qx h+C1=-E+C2 (13) 

or 

Q h=-=x+C . 

1 
1 

From the boundary condition that head is zero 
at x=0, that is, at the stream, we see that the 
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value of C must be zero, and the solution sim- 
plifies to 

Q h=-=x . (15) 

Calculate the head that occurs at every 
2,000-ft interval in response to artificial 
recharge near the impermeable boundary. Use 
the above formula, substituting the recharge 
for Q as -6.4 (ft3/d)/ft, and enter the answers on 
worksheet 3. Calculate the flow that the artifi- 
cial recharge will contribute to the stream and 
enter it in the last column of worksheet 3. 

From the two independent solutions given in 
A and B, the theory of superposition can be 
used to calculate more complex head and flow 
distributions. 

Question C 
Calculate the absolute heads that would 

occur in the system if the natural recharge rate 
were 0.00184 ft/d everywhere and an addi- 
tional recharge of 6.4 (ft3/d)/ft were added at 
the impermeable boundary. Calculate the total 
flow entering the stream. Enter the answers on 
worksheet 3. 

Question D 
Calculate the absolute heads and the flow to 

the stream that would occur if, instead of a 
recharge of 6.4 (ft3/d)/ft at the impermeable 
boundary, the same amount were withdrawn 
from the system at this location. 

Question E 
What would the absolute heads and the flow 

to the stream be in the natural system if the 
natural recharge rate were tripled? 

Plot the calculated head values for questions 
A through D on worksheet 4. 

Discussion 
With reference to the last column in work- 

sheet 3, it is obvious that flow rates, as well as 
heads, are superimposed (added and sub- 
tracted). In this simple steady-state problem 
this observation seems almost trivial, but in 
more complex problems it is often overlooked or 
confused. 

The results for question D (uniform recharge 
with a withdrawal of water at the boundary) 
deserve additional comment. Clearly, every 
quantity of water withdrawn at the imperme- 
able boundary results in a corresponding loss of 
outflow to the stream. In other words, the arti- 
ficial withdrawal causes a reduced natural out- 
flow of ground water. A ground-water divide is 
located at approximately x=10,000 ft (h=27.1 
ft), but the withdrawal at x= 14,000 ft causes a 
decline in head through the entire system from 
the impermeable boundary to the stream. 
These head declines are numerically equal, but 
opposite in sign, to the head values calculated 
in question B. These numerical results illus- 
trate two distinct concepts that are often 
confused-the area of diversion of a stress and 
the area of influence caused by the stress. In 
problem D, the area of diversion extends from 
the divide at x=10,000 ft to the location of the 
stress at x=14,000 ft; this is the area from 
which all flow is diverted to the source of stress. 
In contrast, the area of influence-that is, the 
area within which the stress causes a water- 
level change-extends all the way to the oppo- 
site boundary of the system (the stream). If the 
stress were increased, the area of diversion 
would increase until it reached the stream, and 
ground water would then flow directly from the 
stream toward the source of stress. The effect of 
the stress, which had initially been only to de- 
crease the discharge of ground water to the 
stream, would now capture the entire original 
ground-water flow to the stream and cause in- 
duced infiltration of water from the stream to 
the aquifer. The concepts of area of influence, 
area of diversion, reduction in natural dis- 
charge, and induced recharge are discussed 
more thoroughly by Brown (1963). 

Application of 
Superposition to 

Nonlinear Systems 
The preceding sections have emphasized that 

superposition applies only to linear systems 
governed by linear differential equations. In 
practice, however, because of the power and 
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Worksheet 4.-Graph of absolute head values (h) and values of change in head due to specified stress (Ah) at 2,000-R 
intervals from stream, as calculated in problem 2 

60 

” 

0 2,000 4,000 6,000 6,000 10,000 12,000 14,000 

DISTANCE FROM STREAM BOUNDARY (IN FEET) 

convenience of superposition, the principle is 
sometimes applied to mildly nonlinear systems 
if it can be shown that the resulting error will 
be acceptably small. For example, if the prob- 
lem concerns an unconfined aquifer, we might 
consider using superposition if the regional 
drawdown in the aquifer is small relative to the 

full saturated thickness of the aquifer (as a rule 
of thumb, 10 percent or less). As another exam- 
ple, if the change in position of a freshwater- 
saltwater interface in a given problem is small 
relative to the dimensions of the aquifer sys- 

1 
tem, superposition can be used as an approxi- 
mation. However, if a new distribution of stress 
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is introduced that causes appreciable move- 
ment of the interface, the response of the same 
system could become highly nonlinear. 

No set rule can determine whether applica- 
tion of superposition will provide acceptable 
answers in a given instance; each problem 
must be judged individually. Usually, prelimi- 
nary numerical results for the specific problem 
under study are needed to make this judgment. 
These preliminary numerical results should in- 
clude cases in which the maximum stress under 
consideration is applied to the model. This 
analysis of the “extreme case” is a useful and 
time-honored procedure in scientific and engi- 
neering investigations. 

Summary and 
Concluding Remarks 

The discussion, problems, and references 
given in this report are designed to give the 
reader a foundation in the theory of superposi- 
tion and its application to ground-water prob- 
lems. Superposition embodies the concept that 
problem solutions can be added together to ob- 
tain new solutions, provided the system under 
consideration is linear (that is, governed by lin- 
ear differential equations and boundary condi- 
tions). 

When superposition is used to solve ground- 
water problems, we deal in terms of changes in 
head (drawdowns) and changes in flows rather 
than absolute values of heads and flows. These 
changes are usually calculated from initial con- 
ditions of zero change in head everywhere (zero 
drawdown). When superposition is used in a 
boundary-value problem (which includes all 
problems in ground-water flow), it is customary 
to set constant-head boundaries to zero (repre- 
senting zero change in head) and to represent 
specified-flux boundaries as impermeable or 
no-flow boundaries (zero change in flow). 

Walter J. Karplus, in his book “Analog Sim- 
ulation” (1958, p. 751, concisely explains the 

superposition theorem as follows: “In linear 
systems the response due to a number of excit- 
ations may be found by adding algebraically. . . 
the response due to each excitation taken sep- 
arately, while the other excitations are reduced 
to zero.” In terms of ground-water concepts, 
this statement means that calculated changes 
in head can then be added to other head distri- 
butions to construct solutions corresponding to 
combined stresses and (or) boundary condi- 
tions. 

Superposition also allows investigation of 
the effects of stresses on the ground-water sys- 
tem in isolation from other acting stresses and 
permits us to obtain results even when we lack 
certain information describing the ground- 
water system and the stresses acting on it. 
Through superposition, many problems can be 
formulated in simpler terms to save effort and 
reduce data requirements. Thus, if the tech- 
nique is applicable, there are many compelling 
reasons for using superposition in the simula- 
tion of ground-water systems. 
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Appendix 1: Discussion of 
the Solution of Differential 
Equations and the Role of 

Boundary Conditions 
The solution of a differential equation de- 

scribing ground-water flow provides a distribu- 
tion of hydraulic head over the entire domain of 
the problem. For simple problems, this distri- 
bution of hydraulic head can be expressed for- 
mally by a statement giving head as a function 
of the independent variables. For one inde- 
pendent space variable, we may express this 
statement in general mathematical notation as 

h=f(x) . (1) 

This function, f(x), when substituted into the 
differential equation, must satisfy the equa- 
tion-that is, the equation must be a true state- 
ment. The function f(x) usually contains arbi- 
trary constants and is called the general 
solution of the differential equation. 

The solution must also satisfy the boundary 
conditions (and initial conditions for time- 
dependent problems) that have been specified 
for the flow region. To satisfy the boundary con- 
ditions, the arbitrary constants in the general 
solution must be defined, resulting in a more 
specific function, f,,(x), which is called the par- 
ticular solution to the differential equation. 
Thus, a particular solution of a differential 
equation is the solution that solves the particu- 
lar problem under consideration, and the gen- 
eral solution of a differential equation is the set 
of all solutions. The following example from 
Bennett (1976, p. 34-44) helps develop these 
concepts by using the differential form of 
Darcy’s law as the governing differential equa- 
tion in a specific problem. 

An idealized aquifer system (fig. 8) consists 
of a confined aquifer of thickness b which is 
completely cut by a stream. Water seeps from 
the stream into the aquifer. The stream level is 
at elevation ho above the head datum, which is 
an arbitrarily chosen level surface. The direc- 
tion at right angles to the stream axis is de- 
noted as the x direction, and x equals 0 at the 
edge of the stream. We assume that the system 

Datum r-x 
t 

X=0 

A 

h 

Slope = - * 
B 

Figure 8.-Example of solutions to a differential equation: A, 
Idealized aquifer system; B, Two of the family of curves 
solving the general differential equation for the idealized 
aquifer system. (Modified from Bennett, 1976.) 

is in steady state, so that no changes occur with 
time. Along a reach of the stream having 
length w, the total rate of seepage from the 
stream (in ft3/s, for example) is denoted as 2Q. 
Because only half of this seepage occurs 
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a 
through the right bank of the stream, the 
amount entering the part of the aquifer shown 
in our sketch is Q. This seepage moves away 
from the stream as a steady flow in the x direc- 
tion. The resulting distribution of hydraulic 
head within the aquifer is indicated by the 
dashed line marked “potentiometric surface.” 
This surface, sometimes also referred to as the 
“piezometric surface,” actually traces the static 
water levels in wells or pipes tapping the aqui- 
fer at various points. The differential equation 
applicable to this problem is obtained by apply- 
ing Darcy’s law to the flow, Q, across the cross- 
sectional area, bw, and may be written 

dh Q -= -- 
dx KA ’ (2) 

where K is the hydraulic conductivity of the 
aquifer and A is the cross-sectional area per- 
pendicular to the direction of flow; for this prob- 
lem, A is equal to bw. 

Integration of the previous equation gives 
the general solution, f(x), as simply 

Q h=C-,,, , 

where C is an arbitrary constant. Two particu- 
lar solutions from the family of general solu- 
tions are shown in figure 8B, one in which the 
arbitrary constant equals zero (eq. a) and one in 
which the arbitrary constant equals ho (eq. b). 
The differential equation (Darcy’s law) states 
that if head is plotted with respect to distance, 
the slope of the plot will be constant-that is, 
the graph will be a straight line. Both of the 
lines in figure 8B are solutions to the differen- 
tial equation. Each is a straight line having a 
slope equal to 

Q -- 
KA’ 

The intercept of equation a on the h axis is h=O, 
whereas the intercept of equation b on the h 
axis is h=h,. These intercepts give the values 
of h at x=0 and thus provide the reference 
points from which changes in h are measured. 

The particular solution for the ground-water 
system depicted in figure 8 is obtained when 
the boundary conditions are considered. In this 
problem, the head in the stream, which is rep- 
resented at x=0, is designated as the constant 
ho. Thus, the line in figure 8B that has an h 
axis intercept of ho is the particular solution to 
the problem as posed. Therefore, the particular 
solution, f,(x), of the governing differential 
equation in this problem is 

Q h=h,-K-AX . 

This solution satisfies the boundary condition 
at x=0. 

An accurate description of boundary condi- 
tions in obtaining a particular solution to any 
ground-water problem is of critical importance. 
In multidimensional problems, boundaries are 
just as important as in the example above, al- 
though their effect on the solution may not al- 
ways be as obvious. Assuming incorrect or in- 
appropriate boundary conditions for a 
modeling study must inevitably generate an 
incorrect particular solution to the problem. 

In summary, a particular solution to a differ- 
ential equation is a function that satisfies the 
differential equation and its boundary condi- 
tions. In numerical models that simulate the 
differential equation by a set of simultaneous 
algebraic equations, the concepts are 
analogous, although the solution is not a con- 
tinuous function. 
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Appendix 2: Recognition 
of Linear and Nonlinear 

Differential Equations 
The purpose of this appendix is twofold: first, 

to enable the reader to determine whether a 
differential equation is linear, and second, to 
review some fundamental concepts relating to 
differential equations, particularly those used 
in ground-water hydraulics. 

The mathematical notation dfdx represents 
the derivative of f with respect to x. This 
derivative can be written (d/dx)(f), which em- 
phasizes the concept that an operator d/dx (sig- 
nifying differentiation) operates on the vari- 
able f. 

A differential equation is an equation that 
involves at least one derivative of an unknown 
function. Examples are 

g=tan x , (la) 

$=x2+2x+3 , (lb) 

and 

df -=eX . 
dx 

When an equation involves one or more 
derivatives with respect to a particular vari- 
able, that variable is called an independent 
variable. If the derivative of a variable occurs, 
that variable is called a dependent variable. In 
the examples above, x is the independent vari- 
able and f is the dependent variable. 

The use of ordinary derivatives, such as df/ 
dx, implies that there is only one independent 
variable, in this case x. The notation af/ax, how- 
ever, represents the partial derivative off with 
respect to x. The use of partial derivatives im- 
plies that the problem contains more than one 
independent variable. 

is of degree 3 because the equation is cubic with 
respect to the highest ordered derivative, d2f/ 
dx2. Equation 2 is of degree 1. Note that both 
the order and degree of a differential equation 
refer only to the highest ordered derivative. 

A differential equation is linear if each term 
of the differential equation is either linear in 
all dependent variables and their various 
derivatives or contains no dependent variables. 
Otherwise, the equation is nonlinear. 

Note that the linearity of a differential equa- 
tion relates to how the dependent variable oc- 
curs in the equation and has nothing to do with 
the independent variables. Both equations 2 
and 3 are nonlinear. In equation 2, the terms 
x (d3f/dx3), x2 (d2f/dx2), and fare all linear in f. 
The term 4a(df/dxj4 is nonlinear in f, however, 
because it is raised to the fourth power; there- 
fore, the equation must be nonlinear. Every lin- 
ear equation is of the first degree, but not every 
equation of the first degree is linear. Equation 
2 is of the first degree because the term x(d3f/ 
dx3) is of the first degree, but we have just seen 
that it is nonlinear. 

Ordinary differential equations contain only The equations of ground-water flow are 
ordinary derivatives. The three examples second-order partial differential equations and 
above are all ordinary differential equations are usually written in terms of head (h) as the 
with the dependent variable f and the inde- dependent variable or in terms of a head differ- 
pendent variable x. Partial differential equa- ence (Ah), which is equivalent to a drawdown 

tions contain partial derivatives with respect to 
more than one independent variable. 

The order of a differential equation is the 
order of the highest derivative appearing in the 
equation. 

For example, 

xd3f I n2d2f+4a df 4 
dx3 dx2 ( > 

z +f=0 (2) 

is an equation of order 3, or a third-order equa- 
tion. 

The degree of an ordinary differential equa- 
tion is the algebraic degree of the highest or- 
dered derivative in the equation. For example, 
the equation 

x(d$)3+(gr+sin f=O (3) 
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6s). The independent variables are space coordi- 
nates (x, y, and z) and time (t). In general, we 
can write 

h=f(x,y,z,t) , (4) 

which means that the dependent variable h is a 
function of the independent variables of space 
and time. Nonlinear terms in ground-water 
equations might have the form h2, h(&/ax), 
(&/a~)~, and so on. 

Examples of linear ground-water flow equa- 
tions are 

a2h I a2ho 
ax2 ay2 ’ 

K a%+K 
‘ax2 

i!t!!,() 
yay2 ’ 

d2h W -= -- 
&$ T’ 

(5) 

(6) 

and 

T a2h+T 
xax2 

!?!f!!+W& 
yay2 at * (8) 

In these equations K, T, and W are parameters 
and designate hydraulic conductivity, trans- 
missivity, and area1 recharge rate, respec- 
tively. 

An example of a nonlinear equation is 

because it is nonlinear in h. This equation 
describes approximately the transient two- 
dimensional flow of ground water in a water- 
table aquifer, incorporating the Dupuit as- 
sumptions concerning unconfined flow, and is 
known as the Boussinesq equation. 



SUPERPOSITION AND ITS APPLICATION IN GROUND-WATER HYDRAULICS 25 

Appendix 3: Completed 
Worksheets 

Completed worksheet 1 .-Grid for calculation of new head distribution and flow rates 

Add change in head, figure 5D, to initial head, figure 5C, to obtain value for each node. 

BEDROCK 
200 171 ~43 117 95 -75 57 42 27 14 -0 

?4 ,57 4: s7 j4 0 

40 

i 

36 

.36 % 
?6 !3 

.25 13 

?4 13 
f.5 

0 

,O 

0 

0 

0 

0 

0 

pO 

a0 

Q Out 

BEDROCK 

Or” = Qinc + Qln~ = cl out = Qoutc + QO”p) = 
3.1 0% + 2.0 fP/s = 5.1 Ws 3.1 w/s + (- 1.1) w/s = 2.0 031s 
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Completed worksheet 2.-Table for calculation of head values using Jacob’s formula 

From data given in question A of problem 2, and in figure 7, calculate the following constants for use in subsequent calculations: 

(1) T=Kb= 125 ftld x 30 ft = 3750 ft2/d 

w (2) - = 
T 

.00184 ftld = 4.9 x 10-r 
3750 ftZld ft-’ 

(3) a= 14,000 ft 

(4) 
Q 

- Kb = 

-(-6.4ft31dlft) = , 7 x ,o-3 
3750 ft’ld ’ (dimensionless) 

Refer to question 6. 

Fill in the table: 
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-I) Completed worksheet 3.-Table of absolute head values (h) and values of change in head due to specified stress (Ah) calculated 
in problem 2 

Distance from boundar Y, il Total flow 
entse;rag$he 

I feet (: 

10,000 
Question 

I 
Condition 

8,000 2,000 

12.7 

3.4 

16.1 

9.3 

38.1 

8,000 

39.2 

13.6 

52.8 

25.6 

117.6 

4,000 

23.5 

6.8 

30.3 

16.7 

70.5 

20.4 

67.4 

26.6 

48.0 

23.8 

71.8 

24.2 

A Original 
steady-state 
profile with 

natural 
recharge(h) 

I 
I 

32.3 25.76ft3/d 44.1 

B Head build-up 
with 

artificial 
recharge 
at 14,000 
ft(Ah) 

10.2 17.0 6.4 ft2/d 

C Absolute 
heads with 
recharge at 

14,000 ft 
and natural 
recharge(h) 

42.5 61.1 32.18 ft2/d 

Absolute 
heads with 
withdrawal 
at 14,000 ft 
and natural 
recharge(h) 

D 

0 

E 

22.1 27.1 19.36 ft2/d 

Absolute 
heads with 
three times 
the original 
steady-state 
recharge(h) 

96.9 132.3 77.28 ft21d 
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Completed worksheet 4.-Graph of absolute head values (h) and values of change in head due to specified stress (Ah) 
at 2,000-R intervals from stream, as calculated in problem 2 

SYMBOL QUESTION 

60 

20 
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