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Table 7.-Measured solute concentrations in monitoring 
wells downgradient from the waste-disposal site in 
sample problem 8b 

well locations shown in fig. 111 

we11 location 
(x and y 

coordinates), 
in feet 

0, 200 

0, 250 

0, 300 

0, 350 

0, 400 

0, 450 

0, 500 

0, 550 

0, 600 

0, 650 

0, 700 

Measured solute Calculated value 
concentration, in of 0, in feet 

milligrams per liter (from eq. 71) 

2 70.9 

12 67.2 

65 64.2 

310 65.3 

725 62.3 

1,000 __ 

760 67.5 

290 63.6 

82 67.1 

9 65.2 

1 67.3 

problems 8a and 8b required 24 s of CPU time on a 
Prime model 9955 Mod II. 

Three-Dimensional Solute 
Transport 

Several analytical solutions are available for the 
three-dimensional form of the solute-transport equa- 
tion (eq. 9), including those presented in Cleary and 
Ungs (1978), Huyakorn and others (1987), Code11 and 
others (1982>, Sagar (1982), and Hunt (1978). These 
solutions are particularly useful, as they can simulate 
transport of contaminants from sources in relatively 
thick aquifers when both vertical and horizontal 
spread of the solute is of interest. In addition to a 
solution modified from Cleary and Ungs (1978, p. 
24-25), two solutions were derived by the author for 
this report. Detailed derivations of these solutions are 
presented in attachment 1. 

In the first solution presented, the aquifer is 
assumed to be of infinite extent along all three coor- 
dinate axes. Fluid is injected into the aquifer through 
a point source at a constant rate and solute concentra- 
tion (C,). It is further assumed that the rate of 
injection is low and does not disturb the predomi- 
nantly uniform flow field. In the remaining solutions 
presented in this section, the aquifer is assumed to be 
semi-infinite in length and to have a solute source 
located along the inflow boundary. The semi-infinite 
aquifer can be either finite in both width and height, 
extending from y=O to y=W and from z=O (the base 

of the aquifer) to z=H, or infinite in width and height. 
A diagram of an idealized three-dimensional aquifer of 
semi-infinite length and finite width and height is 
presented in figure 18. 

The solute source, referred to as a “patch” source 
(Cleary and Ungs, 1978), is of finite width and height 
and extends from y=Y, to y=Y, and from z=Z, to 
z=Z, at x=0 (fig. 18). The concentration within the 
patch is uniform and is equal to C,, except along the 
boundary of the patch source, where it is equal to 0.5 
C,. Elsewhere along the inflow boundary, the concen- 
tration is 0. Combinations of patch sources could be 
used to simulate odd-shaped concentration distribu- 
tions or multiple sources through the principle of 
superposition. First-order solute decay, adsorption, 
and ion exchange can also be simulated. A solution for 
a “gaussian source” of finite height along the boundary 
is given in Huyakorn and others (1987). 

Three computer programs, POINT3, PATCHF, 
and PATCHI, were developed to calculate concentra- 
tions in these systems as a function of distance and 
elapsed time. They are described in this section. 

Aquifer of infinite extent with 
continuous point source 

Governing equation 

The analytical solution for a continuous point source 
has been derived by first solving the solute-transport 
equation for an instantaneous point source and then 
integrating the solution over time. The three- 
dimensional solute-transport equation for an instan- 
taneous point source is given by 

.6(x-X,)6(y-Y,)6(z-Z,)6(t -tr>. (99) 

Boundary conditions: 

c aC,() 
‘ax ’ 

X”_foO 

c aC,() 
‘ay ’ y==- 

c CL, 
‘az ’ 

z= +m f 

where 
V =velocity in x-direction, 
Q =fluid injection rate, 
dt =infinitesimal time interval, 

S( > =dirac delta function, 

(101) 

(102) 
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Figure 15.-Normalized concentrations in relation to distance for the waste-disposal site in sample problem 8a and 
fitted gaussian distribution. 

X,,Y,,Z, =coordinates of point source, and 
t’ =time at which instantaneous point source 

activates (assumed t,o be 0). 

Initial Condition: 

C=O, -w<x<a~, -w<y<a~, --cc,<z<w at t’=O (103) 

Assumptions: 

1. Fluid is of constant density and viscosity. 
2. Solute may be subject to first-order chemical trans- 

formation (for a conservative solute, X=0>. 
3. Flow is in x-direction only, and velocity is constant. 

This presumes that the fluid injection rate is small 

and that the spread of solute due to radially diverg- 
ing flow paths is negligible. 

4. The coefficients of longitudinal dispersion (D,) and 
transverse dispersion (D,, D,), from equation 7, 
are constant. 

Analytical solution 

Hunt (1978, p. 76) presented a solution for a point 
source with a conservative solute. A solution for the 
instantaneous point source with solute decay was 
derived by the author using exponential Fourier 
transforms (detailed derivation in attachment 1) and 
can be expressed as 
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A - -- 
Sample Problem 8a -- Solute transport in.s semi-infinite 
aquifer of infinite width with a continuous gaussian source 
Model Data: V-4.0 ft/d, DX-150.0 ft**2/d, DY-30.0 ft**2/d 

us-130 ft, YC-450 ft. co-1000.0 mg/L 
--cw 

33 37 1104 1 
MG/L FT/D FT**2/D PER DAY FEET DAYS 

1000.0 4.00 150.0 30.0 0.0 
450.0 130.0 

0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 
400.0 450.0 500.0 550.0 600.0 650.0 700.0 750.0 
800.0 850.0 900.0 950.0 1000.0 1050.0 1100.0 1150.0 

1200.0 1250.0 1300.0 1350.0 1400.0 1450.0 1500.0 1550.0 
1600.0 

0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 
200.0 225.0 250.0 275.0 300.0 325.0 350.0 375.0 
400.0 425.0 450.0 475.0 500.0 525.0 550.0 575.0 
600.0 625.0 650.0 675.0 700.0 725.0 750.0 775.0 
800.0 825.0 850.0 875.0 900.0 
300.0 
250.0 250.0 0.1 

Sam 
7 

le Problem 80 -- Solute transport in a semi-infinite 
aqua er of infinite width with a continuous aussion source 
ModeL Data: V-4.0 ft/d, DX-150.0 ftxx2/d, O%-30.0 ftxx>!/d 

1250 I 
WS-130 ft, YC-450 ft, CO-1000.0 mg/L 

-- 
NORMdLIZED COkENTRATIdN AT TIME'- 300.0dYS ' 
CONTOUR INTERVAL - O.lC/Co 

250 

0 ' I I I 1 I I --I 
0 250 500 750 1000 1250 1500 1750 

DISTANCE ALONG X-AXIS, IN FEET 

Figure 16.-(A) Sample input data set, and (B) normalized concentration contours generated by the program 
GAUSS for a conservative solute in an aquifer of infinite width having a gaussian concentration distribution 
(a=150 feet) at the inflow boundary at 300 days (sample problem 8a). 
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A 
I 

Sample Problem 8b -- Solute transport in a semi-infinite 
aquifer of infinite width with,a continuous gaussian source 
Model Data: V-4.0 ft/d, DX-150.0 ft**2/d, DY-30.0 ft**2/d 

ws-65 ft. YC-450 ft, co-1000.0 lug/L 
---- 

33 37 1 104 1 
MG/L FT/D FT**Z/D PER DAY FEET DAYS 

1000.0 4.00 150.0 30.0 0.0 
45070 

0.0 
400.0 
800.0 

1200.0 
1600.0 

0.0 
200.0 
400.0 
600.0 
800.0 
300.0 
250.0 

65.0 
50.0 

450.0 
850.0 

1250.0 

100.0 150.0 200.0 250.0 300.0 
500.0 550.0 600.0 650.0 700.0 
900.0 950.0 1000.0 1050.0 1100.0 

1300.0 1350.0 1400.0 1450.0 1500.0 

25.0 50.0 75.0 100.0 
225.0 250.0 275.0 300.0 
425.0 450.0 475 .O 500.0 
625.0 650.0 675.0 700.0 
825.0 850.0 875.0 900.0 

250.0 0.1 

350.0 
750.0 

1150.0 
1550.0 

125.0 150.0 175.0 
325.0 350.0 375.0 
525.0 550.0 575.0 
725.0 750.0 775.0 

B 

Sam 
7 

le Problem 8b -- Solute transport in a semi-infinite 
oqu~ er of infinite width with o continuous oussian source 
ModeL Data: V-4.0 ft/d, 0X-150.0 ftxx2/d, 0 -30.0 ftux2/d 3( 

WS-65 ft, YC-450 ft., CO-1000.0 mg/L 
1250 

I------ ' 

I I I I 
NORMALIZED CONCENTRATION AT TIME - 3OO.DRYS 
CONTOUR INTERVRL - O.lC/Co 

0 I I I 1 I I 

0 250 500 750 1000 1250 1500 1750 
DISTANCE ALONG X-AXIS, IN FEET 

Figure 17.-(A) Sample input data set, and (B) normalized concentration contours generated by the program 
GAUSS for a conservative solute in an aquifer of infinite width having a gaussian concentration distribution 
(a=65 feet) at the inflow boundary at 300 days (sample problem 8b). 
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Figure 18.-Plan view and vertical section of idealized three-dimensional transport in an aquifer of 
semi-infinite length and finite width and height. 
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l C(x,y,z,t)= c,Qdt exp p&fqg+A)(,-tY] 
8na 3/2 (t-t’) 3/2 ~D,D,D, 

‘exp 
(x-x,)2 (Y-Y,)2 @-ZJ2 

-4D,(t-t’)-QD,(t-t’)-4D,(t-t’) * (lo4) 1 
Equation 104 can be integrated with respect to time 

to yield a closed-form solution for the continuous 
solute source as 

C(x,y,z,t)= 

+exp[ z]erk[ s] ), 

where 

D,(y-Y,)‘+D,(z-ZJ2 l/2 
D 

Y DZ 1 

(105) 

When X=0, equation 105 reduces to a form similar to 
that presented in Hunt (1978, p. 77) for a continuous 
point source with a conservative solute. 

Comments: 

Equation 105 is valid only when y does not equal 
zero. Also, concentrations determined at locations 
close to the point source may exceed C, for certain 
combinations of values of Q, V, D,, D,, and D,. In 
general, this can occur when Q is large relative to 

n’D,D,. 

A solution that accounts for radial flow away from the 
point source would be more appropriate at large 
injection rates. 

Linear equilibrium adsorption and ion exchange can 
be simulated by dividing the coefficients Q, V, D,, D,, 
and D, by the retardation factor, R (eq. 15). Temporal 
variations in solute concentration can be simulated 
through the principle of superposition. 

Description of program POINT3 

The program POINT3 computes the analytical solu- 
tion to the three-dimensional solute-transport equa- 

tion for an aquifer of infinite extent with a continuous 
point source. It consists of a main program and the 
subroutine CNRML3. The functions of the main pro- 
gram and subroutine are outlined below; the program 
code listing is presented in attachment 2. 

The program also calls the subroutine EXERFC 
and the output subroutines TITLE, OFILE, PLOT3, 
and CNTOUR, which are common to most programs 
described in this report. These subroutines are 
described in detail later. 

Main program 

The main program reads and prints all input data 
needed to specify model variables. The required input 
data and the format used in preparing a data file are 
shown in table 8. 

The program next executes a set of four nested 
loops. The innermost loop calls subroutine CNRML3 
to calculate the concentration at all specified y- 
coordinate values for a particular x-coordinate value, 
z-coordinate value, and time. The second loop cycles 
through all x-coordinate values. The third loop cycles 
through all z-coordinate values and prints a table of 
concentration in relation to x and y for each z value. 
The outer loop cycles through all specified time val- 
ues. Model output can be plotted as a series of maps 
showing lines of equal solute concentration in a hori- 
zontal (x-y plane) cross section at each point along the 
z-axis. 

Subroutine CNRML3 

Subroutine CNRMLS calculates the normalized con- 
centration (C/C,> for a particular time value and 
distance using equation 105. A warning message is 
printed on the program output if the values of (x-X,), 
(y-Y,>, and (z-Z,> all equal to zero are passed to the 
subroutine. 

Sample problem 9 

In sample problem 9, a natural gradient tracer test 
was conducted by injecting a chloride solution into an 
aquifer. The solution was injected through three wells 
spaced 2 ft apart, laterally, each having a small 
screened interval centered about z=lO ft. A total of 
22.5 gallons (3 ft3) of solution was injected during a 
24-hour period. Other model variables are 

Aquifer porosity (n) =0.25 
Ground-water velocity (V,) =O.l ftld 
Longitudinal dispersivity ((YJ =0.60 ft 
Horizontal transverse dispersivity (tit,,) =0.03 ft 
Vertical transverse dispersivity (a,,> =0.006 ft 
Chloride concentration in injected 

solution =l,OOO mg/L 
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Table B.-Input data format for the program POINT3 

Data Variable 
set Columns Format name Descriution 

1 1 - 60 A60 TITLE Data to be printed in a title box on the first page of program output. 
Last line in data set must have an "=" in column 1. First four lines 
are also used as title for plot. ------------------------------------------------------------------------------------------------------~----- 

2 l- 4 14 Nx Number of x-coordinates at which solution will be evaluated. 

!i- 6 14 NY Number of y-coordinates at which solution will be evaluated. 

9-12 14 NZ Number of z-coordinates at which solution will be evaluated. 

13 - 16 14 NT Number of time values at which solution will be evaluated. 

17 - 20 14 IPLT Plot control variable. Contours of normalized concentration will be 
plotted if IPLT is greater than 0. 

3 1 - 10 A10 CUNITS Character variable used as label for units of concentration in program 
output. 

11 - 20 A10 VUNITS Units of ground-water velocity. 

21 - 30 A10 DUNITS Units of dispersion coefficient. 

31 - 40 A10 XUNITS Units of solute-decay coefficient. 

41 - 50 A10 LUNITS Units of length. 

51 - 60 A10 QUNITS Units of solution injection rate. 

61 - 70 A10 TUNITS Units of time. 

4 1 - 10 F10.0 CO Solute concentration in injected fluid. 

11 - 20 F10.0 VX Ground-water velocity in x-direction. 

21 - 30 F10.0 DX Longitudinal dispersion coefficient. 

31 - 40 F10.0 DY Transverse dispersion coefficient in y-direction. 

41 - 50 F10.0 DZ Transverse dispersion coefficient in z-direction. 

__-____I'_I_"9___"9Ip_____DK___________--------------------------------~---------------------------------- 
First-order solute-decay coefficient 

5 1 - 10 F10.0 XC X-coordinate of continuous point source. 

11 - 20 F10.0 YC Y-coordinate of continuous point source. 

21 - 30 F10.0 2c Z-coordinate of continuous point source. 

31 - 40 F10.0 QM Solution injection rate. 

41 - 50 F1O.O FOR Aquifer porosity. 

6 1 - 60 6FlO.O X(I) X-coordinates at which solution will be evaluated (eight values per 
line). 

----------------------------------------------------------------------------------------.-------------------- 
7 1 - 80 6FlO.O Y(I) Y-;y;zinates at which solution will be evaluated (eight values per 

______________-__-__--------------------------------------------------------------------~------------------- 
6 1 - 80 8FlO.O Z(I) Z-coordinates at which solution will be evaluated (eight values per 

line). ________________________________________------------------------------------------------~------------------- 
9 1 - 80 6FlO.O T(I) Time values at which solution will be evaluated (eight values per 

line). ________________________________________------------------------------------------------~------------------- 
110 1 - 10 F10.0 XSCLP Scaling factor by which x-coordinate values are divided to convert them 

to plotter inches. 

11 - 20 F1O.O YSCLP Scaling factor used to convert y-coordinates into plotter inches. 

21 - 30 F1O.O DELTA Co;t;wmpc,rTt for plot of nonaalised concentration (must be between 
. . 

'Data line is needed only if IPLT (in data set 2) is greater than 0. 
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Injection well coordinates (X,, Y,, Z,) 
Well 1 =(O, 98, 10) 
Well 2 =(O, 100, 10) 
Well 3 =(O, 102, 10). 

From these values, the terms obtained are 

Coefficient of longitudinal dispersion 
W =0.06 f&d 

Coefficient of horizontal transverse 
dispersion (DJ = 0.003 fta/d 

Coefficient of vertical transverse 
dispersion (D,) = 0.0006 f&d 

Injection rate per well (Q,) =l.O ft31d. 

Chloride concentrations are computed in the z=lO- 
ft plane at x=0 and at 2-ft intervals along the x-axis 
from x=20 ft to x=60 ft, and at 1-ft intervals along the 
y-axis from y=90 ft to y=llO ft, after an elapsed time 
of 400 days. The injection period was simulated using 
the principle of superposition by first calculating the 
concentrations resulting from a continuous point 
source after 400 days and then subtracting the con- 
centrations resulting from a continuous point source 
after 399 days. The effect of the multiple injection 
wells was simulated by summing the calculated con- 
centrations for each well. 

Rather than running the program POINT3 six 
times and then summing all the concentration values 
manually, it was easier to temporarily modify the 
main program by adding nine lines within the inner- 
most loop, as follows: 

DO 50 IY=l,NY 
YY=Y(IY)-YC 
CALL CNRML3(QM,POR,DK,T(IT),XX,YY,ZZ, 

DX,DY,DZ,VX,CN) 
CXY(IX,IY)=CO*CN 

YYl=YY +2.0 
YY2=YY-2.0 
CALL CNRML3(QM,POR,DK,T(IT),XX,YYl, 

ZZ,DX,DY,DZ,VX,CNl) 
CALL CNRML3(QM,POR,DK,T(IT),XX,YY2, 

ZZ,DX,DY,DZ,VX,CN2) 
Tl=T(IT)-1.0 
CALL CNRML3(QM,POR,DK,Tl,XX,YY,ZZ, 

DX,DY,DZ,VX,CN3) 
CALL CNRML3(QM,POR,DX,Tl,XX,YYl,ZZ, 

DX,DY,DZ,VX,CN4) 
CALL CNRML3(QM,POR,DK,Tl,XX,YY2,ZZ, 

DX,DY,DZ,VX,CN5) 
CXY (IX, IY) = CXY (IX, IY)+ CO* (CNl + CN2 

-CN3-CN4-CN5) 
50 CONTINUE 

The input data set for sample problem 9 is shown in 
figure 19A; a computer-generated contour plot of 
normalized concentrations (C/C,) in the x-y plane at 
z=lO ft are shown in figure 19B. Sample problem 9 
required 5 s of CPU time on a Prime model 9955 Mod 
II. 

Aquifer of finite width and height 
with finite-width and finite-height 

solute source 

Governing equation 

Three-dimensional solute-transport equation: 

g+D$+D a2c+D$-V~-kC (106) 
“af 

Boundary conditions: 

c=c,, x=0 and Y,<y<Y, 
and Z,<z<Z, 

(107a) 

c=o, x=0 and y<Y, or y>Y, 
and z<Z, or z>Z, 

(107b) 

c aC,o 
'ay 9 y=o (108) 

c a-(-J 
'ay 9 y=w (109) 

c aC,() 
faz 7 z=o (110) 

c aC,o 
faz 7 z=H (111) 

c aC,() 
'ax 7 x=ca (112) 

where 
V =velocity in x-direction, 

Y, =y-coordinate of lower limit of solute source, 
Y, =y-coordinate of upper limit of solute source, 
Z, =z-coordinate of lower limit of solute source, 
Z, =z-coordinate of upper limit of solute source at 

x=0, 
W =aquifer width, and 
H =aquifer height. 

Initial condition: 

C=O O<x< 00, O<y<W, and O<z< H at t=O (113) 

Assumptions: 

1. Fluid is of constant density and viscosity. 
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A 
I 

Sample Problem 9 -- Solute transport in an infinite aquifer 
with multiple point sources of finite duration 
Model Data: V-O.1 ft/d, DX-0.06 ft**2/d, DY-0.003 ft**2/d 

DZ-0.0006 ft**2/d, QM-1.0 ft**3/d, CO-1000.0 mg/L, n-O.25 
--- 

21 21 1 01 1 
MG/L FT/D FT**Z/D PER DAY FEET FT**3/D DAYS 

1000.0 0.1 0.06 0.003 0.0006 
0.0 100.0 10.0 1.00 0.25 

20.0 22.0 24.0 26.0 28.0 30.0 32.0 34.0 
36.0 38.0 40.0 42.0 44.0 46.0 48.0 50.0 
52.0 54.0 56.0 58.0 60.0 
90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 
98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 

106.0 107.0 108.0 109.0 110.0 
10.0 

400.0 
5.0 5.0 0.01 

Sample Problem 9 -- Solute transport in an infinite aquifer 
with muLtipLe point sources of finite duration 

Model Doto: v=O.l ft/d, 0X=0.06 ftHn2/d, DY=0.003 ftnx2/‘d 
OZ-0.0006 ftxn2/d, ON-l.0 ftnn3/d, CO=lOOO.O mg/L, n=O.25 

115 I I 1 I I I I 
NORMALIZED CONCENTRRTIONR;; ;+M; 1 ;';O;Fd;" 

CONTOUR INTERVAL - O.OlC/Co 

110 - 
E 
It 
z 

90 I I I I I I I 
20 25 

;;STANCE :LONG X-&S, IN +&ET 
50 55 60 

Figure 19.-(A) Sample input data set, and (B) normalized concentration contours generated by the program POINT3 for a 
natural gradient tracer test in an aquifer of infinite extent after 400 days in the z=lO-foot plane (sample problem 9). 
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2. 

a 3. 
4. 

Solute may be subject to first-order chemical trans- 
formation (for a conservative solute, X=0). 
Flow is in x-direction only, and velocity is constant. 
The coefficients of longitudinal dispersion (D,) and 
transverse dispersion (D,, D,), from equation 7, 
are constant. 

Analytical solution 

The solution to equation 106 was first derived by 
Cleary and Ungs (19’78, p. 24-25). A modified form of 
the equation (derived in detail by the author in attach- 
ment 1) can be given as 

m cc 

w,Y,w=Co~ ~h-rl,o,P, cm (54 cos (qy) 
m=O n=O 

l { exp pF]*erfc[ s] 

(114) 

where 

m=O, and n=O 
m=O, and n>O 
m>O, and n=O 
m>O, and n>O 

1 
;J,-z, 

H 
O,= 

[sin ({Z,)-sin (&)I 
m7r 

i 

Y,--Yl 
Pn= W 

[sin (qY,)-sin (7jYJl 

m=O 

m>O 

n=O 

n>O 

t=m7r/H m=0,1,2,3. . . 

q=n7rlW n=0,1,2,3. . . 

P=~V”+4D,(rlZD,+5”D,+X). 

Comments: 

The terms in the infinite series in equation 114 tend 

0 
to oscillate, and the double series converges slowly for 
small values of x and time. Therefore, many terms 
may be needed to ensure convergence. A good initial 
estimate is 200 terms for each series. 

The solution can yield results with either D,, D,, or 
h=O. Linear equilibrium adsorption and ion exchange 
can be simulated by dividing the coefficients D,, D,, 
D,, and V by the retardation factor, R (eq. 15). 
Temporal variations in solute concentration and odd- 
shaped source configurations can be simulated 
through the principle of superposition. 

Description of program PATCHF 

The program PATCHF computes the analytical 
solution to the three-dimensional solute-transport 
equation for an aquifer of finite width and height with 
a finite-width and finite-height solute source at the 
inflow boundary. It consists of a main program and 
subroutine CNRMLF. The functions of the main pro- 
gram and subroutine are outlined below; the program 
code listing is presented in attachment 2. 

The program also calls the subroutine EXERFC 
and output subroutines TITLE, OFILE, PLOT3D, 
and CNTOUR, which are common to most programs 
described in this report. These subroutines are 
described in detail later. 

Main program 

The main program reads and prints all input data 
needed to specify model variables. The required input 
data and the format used in preparing a data file are 
shown in table 9. 

The program next executes a set of four nested 
loops. The innermost loop calls subroutine CNRMLF 
to calculate the concentration at all specified y- 
coordinate values for a particular x-coordinate value, 
z-coordinate value, and time. The second loop cycles 
through all x-coordinate values. The third loop cycles 
through all z-coordinate values and prints a table of 
concentration in relation to x and y for each z value. 
The outer loop cycles through all specified time val- 
ues. Model output can be plotted as a series of maps 
showing lines of equal solute concentration in the 
horizontal (x-y) plane at each point along the z-axis. 

Subroutine CNRMLF 

Subroutine CNRMLF calculates the normalized 
concentration (C/C,> for a particular time value and 
distance using equation 114. The maximum number of 
terms in the infinite series summation is specified by 
the user. Because terms in the series tend to oscillate, 
a subtotal of the last 10 terms is kept, and when the 
subtotal is less than a convergence criterion set at 
1 x lo-“, the series summation is halted. If the series 
does not converge after the specified maximum num- 
ber of terms are taken, a warning message is printed 
on the program output. 
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Table 9.-Input data format for the program PATCHF 

Data Variable 
set Columns Format name Descrintion 

1 1 - 60 A60 TITLE Data to be printed in a title box on the first page of program output. 
Last line in data set must have an "=- in column 1. First four lines 
are also used a5 title for plot. 

------------------_--------------------------------------------------------------------~-------------------- 
2 l- 4 14 Nx Number of x-coordinates at which solution will be evaluated. 

S- 6 I4 NY Number of y-coordinates at which solution will be evaluated. 

Q-12 14 NZ Number of s-coordinates at which solution will be evaluated. 

13 - 16 14 NT Number of time values at which solution will be eva:Luated. 

17 - 20 14 NMAX Maximum number of terms to be used in inner loop of the infinite series 
sumnation. 

21 - 24 14 MAX Maximum number of terms to be used in outer loop of the infinite series 
sumnation. 

25 - 26 14 IPLT Plot control variable. Contours of normalized concentration will be 
plotted if IPLT is greater than 0. 

------------------__--------------------------------------------------------------------~------------------- 
3 1 - 10 A10 CUNITS Character variable used as label for units of concentration in program 

output. 

11 - 20 A10 VUNITS Units of ground-water velocity. 

21 - 30 A10 DUNITS Units of dispersion coefficient. 

31 - 40 A10 XUNITS Units of solute-decay coefficient. 

41 - 50 A10 LUNITS Unit5 of length. 

51 - 60 A10 TUNITS Units of time. 
------------------__--------------------------------------------------------------------~------------------- 

4 1 - 10 F1O.O co Solute concentration at inflow boundary. 

11 - 20 F1O.O VX Ground-water velocity in x-direction. 

21 - 30 F1O.O DX Longitudinal dispersion coefficient. 

31 - 40 F10.0 DY Transverse dispersion coefficient in y-direction. 

41 - 50 F10.0 DZ Transverse dispersion coefficient in s-direction. 

51 - 60 F1O.O DK First-order solute-decay coefficient. 
________________________________________-----------------------------------------------~-------------------- 

5 1 - 10 F1O.O W Aquifer width (aquifer extends from y - 0 to y = W). 

11 - 20 F1O.O H Aquifer thickness (aquifer extends from s = 0 to s := El. 

21 - 30 F1O.O Yl Y-coordinate of lower limit of patch solute source. 

31 - 40 F10.0 Y2 Y-coordinate of upper limit of patch solute source. 

41 - 50 F10.0 Zl Z-coordinate of lower limit of patch solute source. 

51 - 60 F1O.O 22 Z-coordinate of upper limit of patch solute source. 
____________________--------------------------------- _______________-_-----------------~-------------------- 

6 1 - 60 6FlO.O X(f) X-coordinates at which solution will be evaluated (eight values per 
line). 

____________________-------------------------------------------------------~-------------------- 
7 1 - 60 6FlO.O Y(I) Y-coordinates at which solution will be evaluated (eight values per 

line). 
_________________-_------------------------------- ____________________------------------~------------------- 

6 1 - 60 6FlO.O Z(I) Z-coordinates at which solution will be evaluated (eight values per 
line). 

______-__-_--------------------------------- ____________________------------------------~------------------- 
Q 1 - 60 6FlO.O T(I) TimGn;lues at which solution will be evaluated (eight values per 

. 
____________________------------------------------------------------------ _________-----_--_---------------- 
110 1 - 10 F10.0 XSCLP Scaling factor by which x-coordinate values are divided to convert them 

to plotter inches. 

11 - 20 F10.0 YSCLP Scaling factor used to convert y-coordinates into plotter inches. 

21 - 30 F10.0 DELTA Contour increment for plot of normalized concentration (must be between 
0.0 and 1.0). 

'Data line is needed only if IPLT (in data set 21 is greater than 0. 
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Sample problem 10 $L,,$+D e+D,$-V$$hC (115) 
“ati 

In sample problem 10, migration of chloride ion 
from a landfill, created by filling in a gravel pit 
excavated in a valley-fill aquifer, is simulated. Model 
variables are 

Boundary conditions: 

c=c,, x=0 and Y,<y<Y, 
and Z,<z<Z, (116a) 

Aquifer width (W) 
Aquifer height (H) 
Y-coordinate of lower limit of 

source (Y J 
Y-coordinate of upper limit of 

source (YJ 
Z-coordinate of lower limit of 

source (Z,) 
Z-coordinate of upper limit of 

source (Z,) 
Source concentration (C,) 
Ground-water velocity (V) 
Dispersion in x-direction (D,) 
Dispersion in y-direction (D,) 
Dispersion in z-direction (D,) 

=3,000 ft 
=lOO ft 

=400 ft 

=2,000 ft 

=50 ft 

= 100 ft 
=l,OOO mg/L 
=l ft/d 
=200 ft’ld 
=60 ft’/d 
=lO ft’ld. 

Concentrations are calculated at 150-ft intervals 
along the x-axis for 3,900 ft, and at lOO-ft intervals 
along the y-axis for 3,000 ft. Chloride concentration 
distributions after 3,000 days for z-coordinates of 50 
and 75 ft (z=O is at the base of the aquifer) are 
simulated. 

The input data set for sample problem 10 is shown in 
figure 20A; computer-generated contour plots of nor- 
malized concentration (C/C,) in x-y planes defined by 
the two z-coordinates are shown in figure 20B. The 
plot of concentrations along the centerline of the 
plume (at z=75 ft) can be compared with figure 13B to 
show the effect of vertical dispersion on both the 
shape of the chloride plume and simulated concentra- 
tions. This demonstrates the type of errors that can be 
introduced by using a two-dimensional solution when a 
three-dimensional solution is required. 

Program output for sample problem 10 is presented 
in attachment 4. The sample problem required 7 min 
and 50 s of CPU time on a Prime model 9955 Mod II. 

Aquifer of infinite width and hei ht 
with finite-width and finite-heig Ii t 

solute source 

Governing equation 

Three-dimensional solute-transport equation: 

c=o, x=0 and y<Y, or y>Y, 
and z<Z, or z>Z, (116b) 

c aC,o 
‘dy ’ 

y=*cc (117) 

c a() 
‘dz ’ 

z= kcc (118) 

c aC,o 
‘ax ’ 

x=co (119) 

where 
V =velocity in x-direction, 

Y, =y-coordinate of lower limit of solute source, 
Y, =y-coordinate of upper limit of solute source, 
Z, =z-coordinate of lower limit of solute source, and 
Z, =z-coordinate of upper limit of solute source at 

x=0. 

Initial condition: 

C=O, O<x<m, --oo<y<+m, and --oo<z<+m at t=O (120) 

Assumptions : 

1. Fluid is of constant density and viscosity. 
2. Solute may be subject to first-order chemical trans- 

formation (for a conservative solute, X=0>. 
3. Flow is in x-direction only, and velocity is constant. 
4. The coefficients of longitudinal dispersion (D,) and 

transverse dispersion (D,, D,), from equation ‘7, 
are constant. 

Analytical solution 

Sagar (1982, p. 49) presents a solution to the anal- 
ogous problem of vertical leaching of a conservative 
solute from a patch source in the x-y plane. The 
following analytical solution was derived by the author 
using Fourier transforms (detailed derivation pre- 
sented in attachment 1) for a patch source in the y-z 
plane with solute subject to decay: 
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C(x,y,z,t)= 
C, x exp g [ 1 x WTD, 

l {erfc[s]-erfc[$$]} 
l [erfc[$$]-erfc[$$]]dT. (121a) 

where T is a dummy variable of integration for the 
time integral. 

To improve the accuracy of the numerical integra- 
tion, a variable substitution can be made where 7=Z4, 
yielding 

m,Y,z,t)= 

C, x exp g [ 1 x 
2-\/43x 

l j--$exp[ -(g++-&] 

l [erfc[$$j=]-erfc[~]]dZ. (121b) 

Comments: 

The integral in equation 121b cannot be simplified 
further and must be evaluated numerically. A Gauss- 
Legendre numerical integration technique was used in 
the computer program written to evaluate the analyt- 
ical solution and is described later. Round-off errors 
may still occur when evaluating the solution for very 
small values of x at late times. 

Linear equilibrium adsorption and ion exchange can 
be simulated by dividing the coefficients D,, D,, D,, 
and V by the retardation factor, R (eq. 15). Temporal 
variations in solute concentration and odd-shaped 
source configurations can be simulated through the 
principle of superposition. A solution where the patch 
source is located in the x-y plane at z=O and velocity is 
in the x-direction can be found in Sagar (1982, p. 51). 

Description of program PATCHI 

The program PATCH1 computes the analytical 
solution to the three-dimensional solute-transport 
equation for an aquifer of infinite width and height 
with a finite-width and finite-height solute source at 
the inflow boundary. It consists of a main program and 
the subroutine CNRMLI. The functions of the main 
program and the subroutine are outlined below; the 
program code listing is presented in attachment 2. 

The program also calls subroutines EXERFC and 
GLQPTS and the output subroutines TITLE, OFILE, 
and PLOT3D, which are common to most programs 
described in this report. These subroutines are 
described in detail later. 

Main program 

The main program reads and prints all input data 
needed to specify model variables. The required input 
data and the format used in preparing a data file are 
shown in table 10. 

The program next executes a set of four nested 
loops. The innermost loop calls subroutine CNRMLI 
to calculate the concentration at all specified y- 
coordinate values for a particular x-coordinate value, 
z-coordinate value, and time. The second loop cycles 
through all x-coordinate values. The third loop cycles 
through all z-coordinate values and prints a table of 
concentration in relation to x and y for each z value. 
The outer loop cycles through all specified time val- 
ues. Model output can also be plotted as a series of 
maps showing lines of equal solute concentration in 
the horizontal (x-y) plane at each point along the 
z-axis. 

Subroutine CNRMLI 

Subroutine CNRMLI calculates the normalized con- 
centration (C/C,,) for a particular time value and 
distance. The integral in equation 121b is evaluated 
through a Gauss-Legendre numerical integration 
technique. The normalized roots of the Legendre 
polynomial and the corresponding weighting coeffi- 
cients are passed by subroutine GLQPTS and scaled in 
the subroutine to account for the non-normalized 
limits of integration (from 0 to t1’4 rather than from - 1 
to +1>. 

The number of terms summed in the numerical 
integration (equivalent to the order of the polynomial) 
is specified by the user. Roots of the Legendre poly- 
nomial of order 4, 20, 60, 104, and 256 are provided in 
data file GLQ.PTS. In general, the more terms used in 
the integration, the more accurate the approximation; 
however, this must be weighed against the corre- 
sponding increase in computational effort and time. 
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Table IO.-input data format for the program PATCHI 

Data ValZiflble 
set c01usms Format name Description 

1 1 - 80 A80 TITLE Data to be printed in a title box on the first page of program output. 
Last line in data set must have an "a* in column 1. First four lines 
are also used as titles for plot. 

-----------------------------------------------------------------------------------------~------------------ 
2 l- 4 14 Nx Number of x-coordinates at which solution will be evaluated. 

5- 8 14 NY Number of y-coordinates at which solution will be evaluated. 

9-12 14 NZ Number of a-coordinates at which solution will be evaluated. 

13 - 18 14 NT Number of time values at which solution will be evaluated. 

17 - 20 I4 NM4x Number of terms to be used in nmerical integration technique (must be 
equal to 4, 20, 80, 104, or 258). 

21 - 24 14 IPLT Plot control variable. Contours of normalized concentration will be 
plotted if IPLT is greater than 0. 

-----------------------------------------------------------------------------------------~------------------ 
3 1 - 10 A10 CUNITS Character variable used as label for units of concentration in program 

output. 

11 - 20 Al0 VUNITS Units of ground-water velocity. 

21 - 30 Al0 DUXITS Units of dispersion coefficient. 

31 - 40 Al0 KUNITS Units of solute-decay coefficient. 

41- 50 A10 LUNITS Units of length. 

51 - 80 A10 TUNITS Units of time. 
-----------------------------------------------------------------------------------------.------------------- 

4 1 - 10 F1O.O co Solute concentration at inflow boundary. 

11 - 20 F1O.O vx Ground-water velocity in x-direction. 

21 - 30 F1O.O DX Longitudinal dispersion coefficient. 

31 - 40 F10.0 DY Transverse dispersion coefficient in y-direction. 

41 - 50 F10.0 DZ Transverse dispersion coefficient in z-direction. 

51 - 80 P10.0 DK First-order solute-decay coefficient. ________________________________________-------------------------------------------------~------------------ 
5 1 - 10 F1O.O Yl Y-coordinate of lower limit of finite width and height. solute source. 

11 - 20 P10.0 Y2 Y-coordinate of upper limit of finite width and height solute source. 

21- 30 F1O.O Zl Z-coordinate of lower limit of finite width and height solute source. 

31 - 40 F10.0 22 Z-coordinate of upper limit of finite width and height solute source. ________________________________________--------------------------------------------------.------------------ 
8 1 - 80 8FlO.O X(I) X-coordinates at which solution will be evaluated (eight values per 

line). _-__________________---------------------------------------------------------------------~--------------.---- 
7 1 - 80 8FlO.O Y(I) Y-coordinates at which solution will be evaluated (ei&tt values per 1 

line). ________________________________________-------------------------------------------------~--------------~--- 
8 1 - 80 8FlO.O Z(I) Z-coordinates at which solution will be evaluated (eight values per 

line). ________________________________________-------------------------------------------------,------------------- 
9 1 - 80 9PlO.O T(I) Time values at which solution will be evaluated (eight values per 

line). ________________________________________-------------------------------------------------~------------- ----- 
110 1 - 10 F10.0 XSCLP Scaling factor by which to divide x-coordinate values are divided to 

convert them to plotter inches. 

11 - 20 F1O.O YSCLP Scaling factor used to convert y-coordinates into plotter inches. 

21 - 30 F1O.O DELTA Contour increment for plot of normalized concentration Gnust be between 
0.0 and 1.0). 

'Data line is needed only if IPLT (in data set 2) is greater than 0. 
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Additional discussions of the numerical integration 
technique are presented in a later section describing 
subroutine GLQPTS. 

Sample problem 11 

In sample problem 11, a contaminant plume contain- 
ing “Sr (strontium-90) from a deep radioactive-waste 
storage facility migrates through a thick, confined 
aquifer. Model variables are 

Source width (W,) =1,200 ft 
Source height (H,) = 300 ft 
Y-coordinate of lower limit of source (YJ = 900 ft 
Y-coordinate of upper limit of source (YJ =2,100 ft 
Z-coordinate of lower limit of source (Z,) =1,350 ft 
Z-coordinate of upper limit of source (Z,) =1,650 ft 
Ground-water velocity (V) =l ft/d 
Longitudinal dispersivity (a,) = 100 ft 
Transverse dispersivity (at) = 2oft 
Source concentration (C,) =lOO mg/L 
Half-life of “Sr =28 years. 

From these values, the terms obtained are 

Coefficient of longitudinal 
dispersion (D,) =lOO ft2/d 

Coefficients of transverse 
dispersion (DY and D,) = 20 ft21d 

First-order solute-decay 
coefficient (A) =6.78x lop5 per day. 

Concentrations are calculated at 150-ft intervals 
along the x-axis for 3,900 ft, and at lOO-ft intervals 
along the y-axis for 2,600 ft. The “Sr concentration 
distribution after 10 years (3,652.5 days) for z- 
coordinates of 1,650, 1,700, and 1,750 ft (z=O at the 
base of the aquifer and z=1,650 at the top of the 
storage facility) is simulated. 

The input data set for sample problem 11 is shown in 
figure 21A; computer-generated contour plots of the 
normalized concentration (C/C,,) in x-y planes defined 
by the three z-coordinates are shown in figure 21B. 
Program output for this sample problem is presented 
in attachment 4. Sample problem 11 required 3 min 20 
s of CPU time on a Prime model 9955 Mod II. 

Description of Subroutines 

The subroutines described in this section are com- 
mon to most of the programs developed to evaluate 
the analytical solutions. Subroutines EXERFC and 
GLQPTS are used in evaluating terms in the analyti- 
cal solutions, OFILE and TITLE are used in program 

input and output, and PLOTlD, PLOTBD, PLOT3D, 
and CNTOUR are used to graphically display pro- 
gram results. Subroutine listings are presented in 
attachment 3. 

Mathematical subroutines 

Subroutines EXERFC and GLQPTS 

Subroutine EXERFC is called to evaluate the prod- 
uct of an exponential and complementary error func- 
tion (exp[x]* erfc[y]), where the error function, erf(y), 
is defined as 

(122) 

and the complementary error function, erfc(y), is 
defined as 

erfc(y)=l.O-erf(y). (123) 

Often, the values of x and y are such that erfc(y) is 
very small (less than lx lo-l2 for y=5), whereas 
exp(x) is very large. To accurately calculate the prod- 
uct of the two functions, a high degree of accuracy is 
needed in the calculation of erfc(y). Subroutine 
EXERFC uses a rational Chebyshev approximation 
(Cody, 1969), accurate to between 10 and 13 signifi- 
cant figures, to calculate erf(y) or erfc(y). The two 
variables x and y are passed to the subroutine. To 
calculate only erfc(y), the routine EXERFC can be 
called with the value of x set to zero. 

For absolute values of y less than 0.469, the rational 
Chebyshev approximation is given by 

erf(y)= yr P&p/r Qlip, (124) 
i=O i=O 

where Pl and Ql are the coefficients of the rational 
approximation given by Cody (1969) for n=5. For 
negative values of y, the symmetry condition that 
erf(-y)= -erf(y) (Abramowitz and Stegun, 1964) is 
used. Erfc(y) is then given by equation 123. 

For absolute values of y between 0.469 and 4.0, a 
rational approximation for erfc(y) is used, given by 

(125) 
i=O i=O 

where P2 and Q2 are the coefficients given by Cody 
(1969) for n=8. For negative values of y, the identity 
that erfc(-y)=2-erfc(y) is used. 

For absolute values of y greater than 4.0, a second 
rational approximation for erfc(y) is used, given by 
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where P3 and Q3 are coefficients given by Cody (1969) 
for n=5. When a product of exp(x) and erfc(y) is 
calculated, the arguments for the exponential in equa- 
tions 125 and 126 are changed to (x-f). 

Subroutine GLQPTS is called to numerically evalu- 
ate the time integral found in several of the analytical 
solutions. The Gauss integration formula used is given 
by Abramowitz and Stegun (1964) as 

n 

(127) 

where 
zi =roots of Legendre polynomial for a particular 

value of n, and 
wi =corresponding weighting functions. 
Positive roots of the Legendre polynomials for n=4, 

20, 60, 104, and 256 and their weighting functions, as 
given in Cleary and Ungs (1978), have been tabulated 
and are read from a data file called GLQ.PTS. Sub- 
routine GLQPTS calculates the negative roots and 
their weighting coefficients. These values are passed 
to the other subroutines through an array in common. 
A listing of file GLQ.PTS is presented in attachment 
3. 

As stated earlier, the accuracy of the numerical 
integration is increased if the user selects a larger 
value for n. However, computational effort is also 
increased. Checks can be made to determine whether 
a smaller value for n produces reasonable results by 
comparing the solution for a particular n with that 
obtained using the next higher value. Roots and 
weighting coefficients for additional values of n can be 
found in Abramowitz and Stegun (1964, p. 916-919). 

.The subroutine is set up to read data file GLQ.PTS 
on logical unit 77 on the Prime system. For systems 
other than Prime, this routine should be modified to 
include the correct system-dependent file opening 
statements. Also, file-naming conventions for the par- 
ticular system must be observed, and the data file 
renamed appropriately. 

Input/Output subroutines 

Subroutines OFILE and TITLE 

Subroutine OFILE is used to open disk files for 
program input and output on the Prime computer 
system. It assigns logical unit 15 to the input data file 
and logical unit 16 to the file for program output. The 
user is queried at the terminal (logical unit 1) for the 
name of the appropriate disk files, and any file name 
up to 50 characters in length can be entered. For 

output to be sent directly to the terminal, the user 
should type an asterisk (*) in column 1 when asked for 
the output file name. 

For systems other than the Prime, this routine 
should be modified to include the correct system- 
dependent file opening statements. Also, the logical 
units (1, 15, and 16) should be changed if they are not 
appropriate for the particular system. 

Subroutine TITLE is called by all programs to print 
a title box on the first page of model output. Titles are 
supplied as the first lines of the input data set. Titles 
are automatically centered, and the routine closes the 
title box when it encounters an equal sign (=> in 
column 1 of a data line. The routine also prints the 
date and time the program execution began. The first 
four title lines are used as titles for plots. 

Subroutine TITLE calls the Prime-supplied func- 
tions TIME$A and DATE$A found in the library 
VAPPLB. For non-Prime systems, these calls should 
be modified or, if similar functions are not available, 
deleted. 

Graphics subroutines 
Four subroutines, PLOTlD, PLOT2D, PLOT3D, 

and CNTOUR, were developed to graphically display 
selected output from the programs described in this 
report. These subroutines contain calls for DISSPLA 
graphics software (Integrated Software Systems Cor- 
poration, 1981>, and the DISSPLA library must be 
loaded when compiling the programs. Users who do 
not have access to DISSPLA software can easily 
modify the DISSPLA software calls to those appro- 
priate to their own graphics software. 

Subroutines PLOTlD, PLOTBD, and PLOT3D con- 
tain a call to COMPRS, which creates a META file 
that can be output, at a later time, to a wide variety of 
plotter devices through the DISSPLA postprocessor. 
This call can be replaced with a call to directly 
nominate a plotter device (such as a graphics terminal) 
so that plots can be drawn as the programs execute. 
The user should consult the DISSPLA users manual 
(Integrated Software Systems Corporation, 1981) for 
more information. 

Subroutines PLOT1 D, PLOTZD, PLOT3D, and 
CNTOUR 

Subroutine PLOTlD is called by the programs 
FINITE and SEMINF to create plots of the normal- 
ized concentration C/C, in relation to distance for each 
of the time values specified in the input data. An 
example of typical plotter output is shown in figure 
4B. DISSPLA software calls are used to draw the 
axes and to plot the data points. The height of the plot 
is 12.5 in. The width is controlled by the difference 
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between the minimum and maximum x-coordinate 
value and by the scale factor XSCLP specified in data 
set 4 (tables 1, 2). If no plotter is available, the user 
can either specify a value of 0 for IPLT in data set 2 
(tables 1, 2) or delete the call to PLOTlD in the main 
programs of FINITE and SEMINF. 

Subroutine PLOTZD is called by the programs 
POINTB, STRIPF, STRIPI, and GAUSS to initialize 
a plot of lines of equal normalized concentration (C/C,) 
in the x-y plane for each of the specified time values. 
A typical example is shown in figure 13B. 

The size of each subplot depends on the difference 
between the maximum and minimum x- and y- 
coordinate values and the plot scaling factors XSCLP 
and YSCLP specified by the user in data set 9 (tables 
3-5). The overall length of the plot is determined by 
the number of time values specified. The contour 
increment DELTA (a value between 0.0 and 1.0) is 
specified by the user in data set 9. 

Subroutine PLOTBD defines the plot and subplot 
sizes, draws and labels the axes, and then calls sub- 
routine CNTOUR, which draws and labels the con- 
tours. If no plotter is available, IPLT in data set 2 
(tables 3-6) can be set to 0, or the call to PLOTBD in 
the main programs STRIPF, STRIPI, and GAUSS 
can be deleted. 

Subroutine PLOTSD is called by the programs 
POINT3, PATCHF, and PATCH1 to initialize a plot 
of lines of equal normalized concentration (C/C,,) in the 
x-y plane for each of the z-coordinates and time values 
specified in the input data. An example of plotter 
output from this subroutine is shown in figure 20B. 

The size of each subplot depends on the difference 
between the maximum and minimum x- and y- 
coordinates and the plot scaling factors XSCLP and 
YSCLP specified by the user in data set 10 (tables 
8-10). The overall length of the plot is determined by 
the number of z-values specified. Separate plots are 
drawn for each specified time value. The contour 
increment DELTA (a value between 0.0 and 1.0) can 
also be specified by the user, in data set 10. 

Subroutine PLOT3D defines the plot and subplot 
sizes, draws and labels the axes, and then calls sub- 
routine CNTOUR, which draws and labels the con- 
tours. If no plotter is available, IPLT in data set 2 
(tables S-10) can be set to zero, or the call to PLOT3D 
in the main programs of POINT3, PATCHF, and 
PATCH1 can be deleted. 

Subroutine CNTOUR is called to produce simplified 
plots of lines of equal normalized concentration (C/C,,) 
in the x-y plane for each of the time values or 
z-coordinates specified in the input data. Although 
there are many software packages that contour grid- 
ded data, such as concentration in relation to x and y, 
some of these require the grid to be equally spaced 

and others, such as that contained in DISSPLA, can 
interpolate scattered data onto regular grids, but at 
the cost of considerable computational effort and time. 

The subroutine first creates a rectangular grid 
based on the x- and y-coordinates supplied in the input 
data. Each rectangular block in the grid is then 
subdivided into two triangles defined by a diagonal 
drawn across the block. Next, contour segments are 
drawn by connecting points of equal concentration 
determined by linear interpolation along the axes of 
each triangular element. 

The number of contours drawn is determined by the 
difference between the maximum and minimum nor- 
malized concentration values and the contour incre- 
ment, DELTA. The subroutine uses a relatively com- 
plex algorithm to connect the contour segments 
defining a contour line and to determine whether a 
contour line has exited the grid or formed a closed 
loop. Contour lines are labeled after all NUM contour 
segments are drawn. NUM is set. to 40 in the code, but 
this can be changed by the user. The routine requires 
three work arrays--PC, YPC, and IFL,4G-to 
store contouring data. IFLAG must be dimensioned to 
twice the number of rectangular blocks. XPC and 
YPC are dimensioned by 50 in the subroutine and in 
common block PDAT in the main programs. This 
number must be changed if the user increases the 
value of NUM to greater than 50. 

Running the programs 
Array dimensions 

Dimensions of arrays used by the programs are set 
by a PARAMETER statement, as follows: 

PARAMETER (MAXX=lOO, MAXY=50, MAXZ 
=30, MAXT=20, MAXXY=5000, MAXXYZ=:lOOOO, 

MAXRT= 1000) 
where 

MAXX =maximum number of x-coordinates, 
MAXY =maximum number of y-coordinates, 
MAXZ =maximum number of z-coordinates, 
MAXT =maximum number of time values, 

MAXXY =product of MAXX ;md MAXY, 
MAXXYB = twice MAXXY, and 

MAXRT =maximum number of roots used in series 
summation in program FINITE. 

The user can modify the PARAMETER statement to 
increase or decrease these limits. 

Compiling and loading 

The following describes the procedure for compiling 
and running the programson the Prime system. For 
convenience, the user should first create a single file 
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called SUBS.F77 that contains the following subrou- 
tines: EXERFC, GLQPTS, OFILE, TITLE, 
PLOTlD, PLOTZD, PLOT3D, AND CNTOUR. The 
user should then type 

Fi’7 PROGRAM.F77 -BIG -SILENT 
F77 SUBSF77 -BIG -SILENT 
SEG -LOAD 
LOAD PROGRAM 
LOAD SUBS 
LIBRARY DISSPLA 
LIBRARY VAPPLB 
LI 
SAVE 
QUIT 

where PROGRAM indicates the name of the main 
program (for example, STRIPF or GAUSS). After the 
message “LOAD COMPLETE” is received at the 
terminal, the user can run the program by typing 

SEG PROGRAM 

The following message will appear 

“TYPE IN INPUT FILE NAME” 

The user can respond with the name of the file 
containing the data set (see description of subroutine 
OFILE). The following will then appear: 

“TYPE IN OUTPUT FILE NAME” 

The user can respond with the name of the output file 
name or an asterisk (*> to cause output to come to the 
terminal. 

These programs can be run on other computer 
systems, although some device-dependent subroutine 
calls may have to be modified. These statements are 
identified in the previous section. 

Summary 

The physical, chemical, and biological processes 
that govern transport of solutes in ground water can 
be described quantitatively by the advective- 
dispersive solute-transport equation. Analytical solu- 
tions, which are exact mathematical solutions for this 
partial differential equation, have been derived for 
many combinations of aquifer geometry, solute-source 
configurations, and boundary and initial conditions. 
These solutions can be used to mathematically model 
the movement of solutes in homogeneous aquifers 
having simple flow systems in which the chemical and 
biological processes can be described by linear rela- 
tions. 

This report presents analytical solutions for solute 
transport in one-, two-, and three-dimensional sys- 
tems having uniform flow. The solutions were com- 
piled from those published in various journals and 
reports or were derived by the author. The solutions 
for one-dimensional solute transport are for (1) a 
finite-length system with a first-type boundary condi- 
tion at the inflow end, (2) a finite-length system with 
a third-type boundary condition at the inflow end, (3) 
a semi-infinite system with a first-type boundary 
condition at the inflow end, and (4) a semi-infinite 
system with a third-type boundary condition at the 
inflow end. Solutions for the finite-length system 
assume a second-type boundary condition at the out- 
flow end. 

Solutions for two-dimensional solute transport were 
presented for (1) an aquifer of infinite area1 extent 
with a continuous point source at which fluid is 
injected at a constant rate and concentration, (2) a 
semi-infinite aquifer of finite width with a strip source 
along the inflow boundary, (3) a semi-infinite aquifer 
of infinite width with a strip source along the inflow 
boundary, and (4) a semi-infinite aquifer of infinite 
width with a solute source having a gaussian concen- 
tration distribution. Solutions for three-dimensional 
solute transport were presented for (1) an aquifer of 
infinite extent with a continuous point source, (2) a 
semi-infinite aquifer of finite height and width with a 
patch source along the inflow boundary, and (3) a 
semi-infinite aquifer of infinite width and height with 
a patch source along the inflow boundary. All the 
solutions presented can account for first-order solute 
decay due to chemical or biological processes and 
linear equilibrium adsorption. 

A set of computer programs was written to evaluate 
these solutions and to produce tables and graphs of 
solute concentration as a function of time and distance 
from the solute source. Documentation of these pro- 
grams includes instruction on their use, description of 
input data format, sample problems, and sample data 
sets. Source codes for the programs and output for the 
sample problems are presented in attachments to the 
report. 
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