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Attachment I. -Derivation of Selected Analytical 
Solutions 

Aquifer of infinite width and height with finite-width and finite-height solute source 
Aquifer of finite width and height with finite-width and finite-height solute source 

Aquifer of infinite width and height with continuous point source 
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AQUIFER OF INFINITE WIDTH AND HEIGHT 
WITH FINITE-WIDTH AND FINITE-HEIGHT 

SOLUTE SOURCE 
The following is a step-by-step derivation of the analytical solution for solute 

transport in an aquifer of infinite length, width, and height containing a solute source 
of finite width and finite height (patch source) in a steady flow field (eq. 121 in the text). 

The governing three-dimensional solute-transport equation is 

a2C a2C ac ~=D,$+DyB+Dzaz 
Y 

~V-pC. 

Boundary and initial conditions are 

C=C,, x=0 and Y,< y<Y, 
and Z, < z < Z, 

C=O, x=0 and y<Y, or y>Y, 
and z<Z, or z>Z, 

c (w, y, z, t)=O 

c (x, +J, z, t>=o 

. c (x, y, +m, t>=o 

c (x, y, z, o>=o 

where 
V is the velocity in x-direction, 
Y,, is the y-coordinate of the lower limit of solute source, 
Y, is the y-coordinate of the upper limit of solute source, 
Z,, is the z-coordinate of the lower limit of solute source, and 
Z, is the z-coordinate of the upper limit of solute source. 

(Al.l) 

(A1.2a) 

(A1.2b) 

(A1.3) 

(A1.4) 

(A1.5) 

(A1.6) 

STEP 1: 
To solve equation Al.1 for the patch source, first solve the partial differential 

equation for solute transport in an aquifer with an instantaneous point source at the 
inflow end (at x=0). The governing equations are identical, but the boundary condition 
at x=0 (eq. A1.2) is rewritten as 

C (0, y, z, t)=C, 6(y-y’) S(z-z’) W-t’) at x=0, 

where 
6 ( > is the dirac delta function, 
y’ and z’ are the coordinates of the point source, and 
t’ is time at which the instantaneous point source starts and ends. 

STEP 2: 
A variable transformation is applied to remove the advective and solut’e-decay 

terms, where 

[ 

2 

c=Cexp -g+g+kt . 
x x I 

(A1.7) 
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The resulting transformed solute-transport equation and boundary and initial 
conditions are 

ac -$=D,$+D e+D,$ 
Yaf 

c (0, y, z, t>=C, exp g+M 6(y-y’) S(z-z’) S(t-t’) [ 1 x (A1.8) 

c (a, y, z, t>=o (A1.9) 

c (x, +w, z, t>=o (Al. 10) 

c (x, y, *cQ, t>=o (Al.ll) 

c (x, y, z, o>=o (Al. 12) 

STEP 3: 
The x-derivative term is removed by applying the Fourier sine transform, defined by 

Churchill (1972, p. 401-402) as 

with inverse 

S [F(x)]=F(Ix)=/~F(x) sin (ax) dx 
0 

(Al. 13) 

S-l [F(a)I=F(x)=% jrF(u) sin (ax) da (Al. 14) 

and with an operational property 

s d2F(x> [ 1 - = -a2F +olF(O), 
dxz 

(Al. 15) 

where F(0) is the function evaluated at x=0. The transformed equation and boundary 
and initial conditions are 

$+a2 D,c-D &--D,$-a D,C, exp g+kt @y-y’) S(z-z’) 8(t-t’)=O 
YaY [ 1 (Al. 16) 

x 

i! (a, +J, z, t>=o (Al. 17) 

?a (a, y, km, t)=O (Al. 18) 

c (a, y, z, o>=o. (Al. 19) 

STEP 4: 
The y-derivative is removed by applying the exponential Fourier transform, defined 

by Churchill (1972, p. 384-385) as 

E [G(Y)I=G(~)=~+~G(~~ exp [-iPy1 dy --m 
(A1.20) 

with inverse 

E-l l&PII=G(y)=&/~ &p> exp [-ipyl dP cc 
and with an operational property 

(A1.21) 
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(A1.22) 

where i=V-1. The transformed equation and boundary and initial conditions are 

= 2= 

$+a2 D,F +p2DYG -DZ$-o D,C, exp 

I 

+m 
. eeipy @y-y’) S(z-z’) 6&-t’) dy=O 

-cc 
(A1.23) 

STEP 5: 

7 (a, p, +m, t>=o (A1.24) 

7 (a, p, z, o)=O. (A1.25) 

The exponential Fourier transform is applied again to remove the z-derivative. Also, 
by definition, the integral of a function multiplied by the dirac delta function (last term 
in eq. A1.23) is equal to the function evaluated at the coordinate of the point source; 
that is 

J F(x)S(x-x’)dx=F(x’). (A1.26) 

Thus, the transformed equation and initial condition are given by 

d: 2 

x+ a2D,+p2D,+y2D, g+Xt-ipy’-iyz’ 
I 
l qt-ty=o (A1.27) 

x 

STEP 6: 

F (cd, p, y, o>=o. (A1.28) 

The transformed ordinary differential equation is solved for z using an integrating 
factor; that is, given a differential equation of the form 

(A1.29) 

the solution is given by 

1 t 
W=po I 

p(t) 
t,~(~) h(7) dT+w,,p(t,j, (A1.30) 

where the integrating factor p(t) is given by 

p(t) = edJg(4dTl. 

Applied to equation A1.2’7, this yields 

(A1.31) 

z= aD,C, exp[-ipy’-iyz’] 
exp[o12DXt+132Dyt+r2D,t] CY~D,+P’D~+~‘D,+$+~ l T 6(7-t’) dr. (A1.32) 

x I r 

Integrating equation Al.32 and grouping like terms gives - -- Y 

E=olD,C, exp 
v2tt 
~+ht’-cy2D,(t-t’)-iPy’-l32Dy(t-t’)-i~z’--y2DZ(t-t’) . (A1.33) 

x 1 
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STEP r: 
The inverse Fourier sine transform (eq. A1.14) is applied to remove the ct term; that 

is 

(A1.34) 

From a table of inverse Fourier sine transforms given in Churchill (1972, p. 424, eq. 
D.1.26) 

Se’[a exp( -ati2)]=2a~~xp(~). 

Applied to equation A1.35, this yields 

E v2tt 
Z=C,exp 4D -+Xt’-ipy’-p2D,(t-t’)-iyz’--y2DZ(t-t’) 

x 1 
X -X2 

‘2(t-t’)dTD,(t-t’) exp 4D,(t-t’) * [ 1 

(A1.35) 

(A1.36) 

STEP 8: 
The inverse exponential Fourier transform (eq. A1.21) is applied to remove the p 

terms; that is 

COX V2t’ 
[- 

X2 

’ = 2(t-t’)vnD,(t-t’) exp 4D,+Xt’-4D,(t-t’) 
-iyz’-y2D,(t-t’) 1 

l E -1 

-ipy’-p2 D,(t-t’) 
11 

. (A1.37) 

Multiplying through by 2qrDv(t-t’) 
22/TD,(t-t’) 

and using the shift theorem (Churchill, 1972, p. 471, eq. C.1.5) given by 

E-1{exp[iapl@3)]=C(y+a) (A1.38) 

and equation C.1.20 from the table of inverse exponential Fourier transforms 
(Churchill, 1972, p. 472) given by 

EP1[2V& exp[-ap21]=exp -G , [ 1 y” 
yields 

(A1.39) 

cc cox 

-[ 

V2t’ X2 

4n(t-t’)2dD,D, exp 4D,+Xt’-4D,(t-t’) 
-iyd-y2D.(t_t.)] l exp[ -4&::T,J. (A1.40) 
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STEP 9: 

Next multiply through by :2:(iI::; and apply the inverse exponential Fourier 

transform (eq. A1.21) to remov& t L e y terms; that is 

Gx V2t’ X2 
C= 

[ 
(Y-Y’)2 

8a 3/2 (t-t') 5/2 d\/D,D,D, exp 4n,+“t’-4D,(t-t’)-4D,(t-t’) 1 

.E-l 22/7rD,(t-t’)exp -iyz’-y’D,(t-t’) 
11 

. (A1.41) 

Applying the shift theorem and inverse transform (eqs. Al.38 and A1.39) yields 

cox V2t' X2 

‘=857 3n(t-t’)5fi ~D,D,D, 
(Y-Y’)2 (z-zyZ 

4n,+“t’-4D,(t-t’)-4D,(t-t’) -4D,(t-t’) 1 ’ 
(A1.42) 

STEP 10: 
The transformed variable is converted back from c to C by multiplying both sides of 

equation Al.42 by 

[ 
vx v2t 

ew 2D,-4D,-it I 

(see eq. A1.7) to yield the analytical solution to the solute-transport equation for an 
instantaneous point source 

C’& 3/z 
CC? vyt-t’) 

(t-t’)5’2 dD,D,DZeXP 4D, 
-X(t-t’)+Vx- x2 

2D, 4D,(t- t’) 

(Y-YY (z-zy 
-4D,(t-t’) -4D,(t-t’) 1 ’ (A1.43) 

STEP 11: 
The equation for an instantaneous line source of finite length along the y-axis is 

derived by integrating equation Al.43 from y’=Y, to y’=Y,; that is 

c= COX 
8~~~ (t-t’)5n ~D,D,DzeXP I 

(A1.44) 

The integral in equation Al.44 can be found in a table of integrals by Abramowitz and 
Stegun (1964, p. 303, eq. 7.4.32) given as 

-(ax2+2bx+c) dx=l zexp ] 2J [b]*erf(vax+$==)+C, (A1.45) 

where erf(x) is the error function, and C is an arbitrary constant. Letting 

f x=y’, -q=4D,(t-t’), a=!, b=y, and c=--, 

the integral in equation Al.44 can be simplified to 
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- 
I=d~q erf(Y2-y)-erf(Yl--y) 

2 r VI 6 I 
(A1.46) 

where erfc is the complementary error function, l- erf(x); thus, the analytical solution 
for an instantaneous line source is given by 

(-+ cox - -A(t-t’)+E- x2 (z-zy2 
8T(t-t’)2VD,D,eXP 2D, 4D,(t-t’)-4D,(t-t’) 1 

(A1.48) 

STEP 12: 
The z’ terms in equation Al.44 are integrated similarly from z’=Z, to z’=Z, to 

obtain the solution for an instantaneous patch source using equation A1.4’7; that is 

c= Ax . [ V2(t-t’) 
8dTD.Jt-t’r exp - 4D, 

-A@-t’) +-- z”D”, 4D~~-tf,l*ierfc[2~~~~t~~ 

(A1.49) 

STEP 13: 
To derive a solution for a continuous patch source, integrate equation Al.49 from 

t’=O to t’=t. To simplify the integration, let T=(t-t’) and dT=-dt’; that is 

C= 

l { erfc[z]-erfc[$$]}di. (A1.50) 

Equation Al.50 is identical to equation 121a in the text. The integral in the solution 
could not easily be simplified further and must be evaluated numerically. 
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AQUIFER OF FINITE WIDTH AND HEIGHT 
WITH FINITE-WIDTH AND FINITE-HEIGHT 

SOLUTE SOURCE 

The following is a step-by-step derivation of the analytical solution for solute 
transport in an aquifer of infinite length and finite width and height containing a solute 
source of finite width and finite height (patch source) in a steady flow field (eq. 114 in 
the text). 
The governing three-dimensional solute-transport equation is 

Boundary and initial conditions are 

c (0, Y, z, t>=c,, for Y,<y<Y, 
Z,<Z<Z, 

c (0, y, z, t>=o, for y<Y1 or y>Y, 
z<Z, or z>Z, 

c 3Lf-J 
yay 9 y=o, y=w 

c aC,() 
yaz 7 z=O, z=H 

c aC,o 
fax ) 

x=co 

c (5 y, z, O)=O, 

(A1.51) 

(A1.52) 

(A1.53) 

(A1.54) 

(A1.55) 

(A1.56) 

where 
V is the velocity in x-direction, 
Y1 is the y-coordinate of the lower limit of solute source, 
YZ is the y-coordinate of the upper limit of solute source, 
Z1 is the z-coordinate of the lower limit of solute source, 
Z, is the z-coordinate of the upper limit of solute source, 
W is the aquifer width, and 
H is the aquifer height. 

STEP 1: 
To solve equation Al.51 for the patch source, a variable transformation is applied to 

remove the advective and solute-decay terms, where 

[ 

2 

c=C exp -g+g+Lt . 
x x I 

(A1.57) 

The resulting transformed solute-transport equation and boundary and initial 
conditions are 

ac -D e+D.$+,$ 
ii- “ax2 
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(A1.58) 

(Al.59) 

(A1.60) 

c ac=, 
'ax 7 x=cn (A1.61) 

c (x, y, 2, O)=O. (A1.62) 

STEP 2: 
The x-derivative term is removed by applying the Fourier sine transform as defined by 
Churchill (1972, p. 401-402); that is 

S [F(x)]=F(o)= 
5 
mF(x) sin (ox) dx 
0 

(A1.63) 

with inverse 

S-l[~C’(a)l=F(~)= G f@(a) sin (CYX) do (A1.64) 

and with an operational property 

s d2F(x) [ 1 dx2 
= -02F+aF(0), (A1.65) 

where F(0) is the function evaluated at x=0. The transformed equation and boundary 
and initial conditions are 

ac 
z+02D,E-D fi-Dz$-~D, c (0, y, z, t)=O 

Yaf 

aC0 E, ey- y=o, y=w 

(A1.66) 

(A1.67) 

c 5%=(-j 

7 az z=O, z=H (A1.68) 

c b, y, z, o>=o, (A1.69) 

where c (0, y, z, t) is the patch source boundary condition specified in equation Al.53 

STEP 3: 
The y-derivative is removed by applying the finite Fourier cosine transform as 

defined by Churchill (1972, p. 354-356); that is 

F,[G(y)]=&)=jWG(y) cos 
0 

(A1.70) 
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with inverse 

F,-‘[G(n)l=G(y)= 

and with an operational property 

(A1.71) 

Fc[~]=(-lY~ 1 ,=w-g 1 yE,-$. (A1.72) 

The transformed equation and boundary and initial conditions are 
= 

a2z 
~+012D~~+q2D~~-D~~--DxlwC (0, Y, z, t) COS (qy) dy=O (A1.73) 

0 

5 ?z-0 
‘az ’ z=O, z=H (A1.74) 

7 (a, n, z, O)=O. (A1.75) 

where q =E. 

STEP4: 
The finite Fourier cosine transform is applied again to remove the z-derivative. Note 

that when equation Al.58 is used to define the patch source boundary term, the 
integral in equation Al.73 has a nonzero value only over the interval from Y, t,o Y2 and 
from Z, to Z,. Thus, the transformed equation and initial condition are given by 
- 

& 
dti(UZD.+92D,+52D=~-~D~~~ exp[~+ht]*/~~/~~ cos(qy) cos(lz)dy dz=O W.76) 

Z (a, n, m, O)=O, (Al.77) 

where S=F. 

STEP 5: 
The transformed ordinary differential equation is solved for 5 using an integrating 

factor (see eqs. Al.29 to A1.31); that is 

;= ~ WoL, 
exp[a2D,t+-02D,t+ 

V2 02D,+n2Dy+12Dz+z+h 
I 

l T d7, (A1.78) 
x 

where 

I, = zz II yzcos(qy) cos((z> dy dz. 
Zl y, 

Integrating equation Al.78 over time gives 

‘. (A1.79) 
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STEP 6: 
The inverse Fourier sine transform (eq. A1.64) is applied to remove the cx term; that 

is 

c=c I o zy 
a 

az ; q2D, I C2D,+ V2 X 
DX D, 4D,2+D, 

r CY exp[-o12D,tl _ ._ 
-exp[-~2D,t-~2DZtlS-’ 

a2 I q2D, I 12D,+ V2 +1_ -- 
D, D, 4DX2 D, 

(A1.80) 

The first inverse transform can be evaluated using equation D.1.16 in the table of 
inverse Fourier sine transforms in Churchill (1972, p. 474), where 

s-1 -!?- [ 1 02+b2 
=exp(-bx). (A1.81) 

Unfortunately, the second inverse transform cannot be found in the tables. Instead, it 
can be determined by performing the integration as defined in equation A1.64, where 

(A1.82) 

The integral in equation Al.82 is given in Gradshteyn and Ryzhik (1980, p. 497, eq. 
3.954); that is 

2sinh(xb)+exp[-xb]er { - 2~,I-e”P~xb~e~b~~+~]}, (A1.83) bda-- 

where sinh(xb) is the hyperbolic sine. When written in terms of the complementary 
error function, erfc, the inverse Fourier sine transform can be written as 

S-‘[ Uexo~~~21]=$xp[ab2]{ exp[-xblerfc[ b+i-&] 

-exp[xblerfc[ b\/a+&]}. (A1.84) 

Letting a=D,t and b= %+F+$+a)1’2, equation Al.80 can be evaluated as 
x x x 

(A1.85) 

where p=[V2+4D,(h+q2Dy+&2DZ)]YZ. The second term in equation Al.85 can be 
rewritten using the identity erfc (-x)=2-erfc(x> to cancel the first term, yielding 
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5=C,+exp E+Xt exp [ “1 ][ [~]erfi2[~]+exp[$+-fJ$I$}. (AU%) 

STEP 7: 
The inverse finite Fourier cosine transform (eq. A1.71) is applied to remove the n 

terms; that is 

Integrals involving n in the term I, are also evaluated at this point to give 

e=c (Y,-Yl) zz 

iI 2w I z, 

[ 

2 

l cos(qy)exp $+ht 
x 

(A1.87) 

where 

STEP 8: 
Apply the inverse finite Fourier cosine transform to remove the m terms; that is 

cc+ [ (yz;yJ] [ ‘zf-p]exP[~+At]{exp[~]erfc[~] 

+exp[~]~~~[~]}+~~(~)~~‘qy2~~sin’qy1’]COS rlY 

l exp[E+ht]{exp[e]erfc[$$]+exp[$--]erf+$$]] 

sin(5Z2)-sin(<Zi) 
rnn 1 cos(@> 

l exp[~+ht][exp[~]erfc[~]+exp[$]erfe[$$]} 

+2C,-$ Ill=1 [ 
sin(gZ2>-sin(<ZJ 1 a . m sin(qY,)-sin(qYi) 1 

.exp,~+*t]~ex~~~]e~~~~]+eXP,~e~~r~~ (A1.89) 

where u=(V~+~XD,)~‘~ 

and E=[V~+~D,(X+~~D,)I’~. 
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STEP 9: 
Multiply both sides of equation Al.90 by 

[ 

2 

exp g-$-At 
x x 1 

to convert the transformed variable c back to C (see eq. Al.53 which yields 

(A1.90) 

Equation Al.90 represents a final form of the analytical soltuion for the patch source. 
It can also be written in a form similar to that of Cleary and Ungs (1978, p. 24-25) and 
equation 114 in the text; that is 

c=coF, y,L,,o,P, cos(t;z> codqy) 
m=On=O . 

where m=O, and n=O 
m=O, and n>O 
m>O, and n=O 
m>O, and n>O 

i 

z2-Zl 
om= H 

m=O 

[ 
[sin (CZJ-sin (5Zi) 

rnT 1 m>O 

(A1.91) 

{ 

y2-y, 

P,= w 
n=O 

[ 
sin (qY,)-sin (-oYJ 

n7F 1 r-00 
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AQUIFER OF INFINITE WIDTH AND HEIGHT 
WITH CONTINUOUS POINT SOURCIE 

The following is a step-by-step derivation of the analytical solution for solute 
transport in an aquifer of infinite length, width, and height containing a continuous 
point solute source injecting solute with a concentration C, at a rate Q in a steady flow 
field (eq. 105 in the text). 
The governing three-dimensional solute-transport equation is 

ac 
-g=D$+D dzc+D,~-V~-hC+;;_c,G(,_x3g(y-Y,)G(zz,). Qdt 

"a3 
(A1.92) 

Boundary and initial conditions are 

c aC,() 
'ax 3 x=+m 

c aC,() 
yay f y="co 

c aC,o 
'a2 9 z= *co 

c 6% y, z, o>=o 

(A1.93) 

(A1.94) 

(A1.95) 

(A1.96) 

where 
V is the velocity in x-direction, 

Qdt C, is the mass of solute injected into aquifer over the time period dt, 
n is the aquifer porosity, 

X,,Y,,Z, are the coordinates of the point source, and 
6( > is the dirac delta function. 

STEP 1: 
To solve equation Al.91 for the continuous point source, first solve the partial 

differential equation for solute transport in an aquifer with an instantaneous point 
source. The governing equation is rewritten as 

ac 
dt=D,~+Dy~+D~~-V~-he+~C,6(x-X,)606(z-Z,)~(t-t~), (A1.97) Qdt 

f 

where t’ is time at which the instantaneous point source starts and ends. Boundary 
conditions remain the same. 

STEP 2: 
A variable transformation is applied to remove the advective and solute-decay 

terms, where 

E 2 

c=C exp -g+g+M . 
x x 1 (A1.98) 

The resulting transformed solute-transport equation and boundary and initial 
conditions are 
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ac -=D,$+D ~+Dz~+~C, exp 
at Yaf [ 

-g+g+,t 
x x 1 

*6(x-X&y-Y,)S(z-Z&&-t’) (A1.99) 

c dc,() 
'ax f x=+co 

c ac=, 
)ay 7 y=+m 

c ac=, 
yaz 9 z= &co 

(Al. 100) 

(Al. 101) 

(Al. 102) 

STEP 3: 

c (x, Y, z, O)=O (Al. 103) 

The x-derivative term is removed by applying the exponential Fourier transform as 
defined by Churchill (1972, p. 384385); that is 

E[F(x)]=F(a)= +mF(x)exp[-iax]dx 
I --m 

(Al. 104) 

with inverse 

1 +m- 
E-‘[F(or)l=F(x)=2;; -_F(a)exp[icux]dcy 

I 

and with an operational property 

E @‘F(x) [ 1 dx2 
= - 2F(a) 9 

(Al. 105) 

(Al. 106) 

where i=d-1. The y- and z-derivatives can be removed similarly yielding the 
transformed equation and initial condition 

S(x-X&y-Y,)S(z-Z,)S(t-t’)dx dy dz=O (Al. 107) 

7 (a, p, y, O)=O. (Al. 108) 

By definition, the integral of a function multiplied by the dirac delta function (last term 
in eq. A1.107) is equal to the function evaluated at the coordinate of the point source. 
Thus, the transformed equation is given by 
= 

~+(azD,+~“D,+~zDJ~-~Coexp sipYc--iyZc S(t-t’)=O (A1.109) 
x 1 

STEP 4: 
The transformed ordinary differential equation is solved for c using an integrating 

factor (see eqs. Al.29 to A1.31); that is 
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vx,. 
3 -irwX,-2D -ipY,-iyZ, c= exp(u2D,t+p2Dyt+y2Dztl 

1 a’D,+ p2D, 

2 

+y2Dz+&+h l 6(7-t’)dT. 
x 1 (Al. 110) 

Integrating equation Al.110 and grouping like terms gives 

z=&dtC exp 
n ’ 

!T+ht’-i~X -‘Xc 
4Dx 

c ~-~2D,(t-t’)-ij3Y,-P2D,(t-t’)-iyZ, 
x 

-y2D,(t-t’) . 
I 

STEP 5: 

(Al.111) 

The inverse exponential Fourier transform (eq. A1.105) is applied three times to 
remove the OL, j3, and y terms; that is 

-iaX,-a2D,(t-t’) 11 
l E -ipY,-p2D,(t-t’) 

Multiplying through by 

(Al. 112) 

2+D,(t-t’)*2~/7rDy(t-t’)*2~~Dz(t-t’) 
87~ 3B (t-t’>= vD,D,D, 

and using the shift theorem (Churchill, 1972, p. 471, eq. C.1.5) given by 

E-‘{exp[iacu]F(a)]=F(x+a) (Al. 113) 

and equation C.1.20 from the table of inverse exponential Fourier transforms 
(Churchill, 1972, p. 472) given by 

E-‘{2dzexp[ -a(o)2]}=exp[ -3, (Al. 114) 

yields 

Qdt Co V%’ 
C=8n~3n(t-t’)3/2~D,D,D, ex 

, vx, (=-x,>2 
z+ht - 

(Y-Y,>2 (z-z,)2 
2D, 4D,(t-t’)-4D,(t-t’)-4D,(t-t’) 

1.115) 

STEP 6: 
The transformed variable is converted back from c to C by multiplying both sides of 

equation Al.115 by 

[ 
vx v2t 

w 2~,-4~,-- At 1 
(see eq. A1.98) to yield the analytical soltuion to the solute-transport equation for an 
instantaneous point source (similar to eq. 104 in the text); that is 
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Qdt Co 
C=8nr3’2(t- t’)3’2~D,D,D,exp 

-h(t+)+VwL) (x-&)2 _ (Y-YJ2 
2Dx -4D,(t-t’) 4D,(t-t’) 

(Al. 116) 

STEP 7: 
To derive a solution for a continuous point source, integrate equation Al.116 from 

t’=O to t’=t. To simplify the integration, let T=(t-t’) and dT=-dt’: 

co Q exp ,, 
C= I 8n~3’2~D,D,D, t 

(X-X >2 (y-Y j2 (z-Z I2 c-c-c 
~D,T ~D,T ~D,T 

(A1.117) 

The integral in equation Al.117 can be evaluated by first reversing the limits of 
integration and then using an indefinite integral given in a table by Cho (1971, eq. 
2.9.5), where 

/)3%xp[ -$b%]rh=~{ [ ] [$ -1 [ ] [$ -11. W.118) exp -2ab erfc --bv’t +exp 2ab erfc ---+bt/t 

[ 1 l/2 

Letting y= (x-x,)z+~(y-Y,)2+~(z-zc~2 
Y z 

and P=(V2+4D,X)1’2, 

the integral can be rewritten as 

I=?[ exp[ -g-erfc[ s] +exp[ g-erfc[ s]}. (Al. 119) 

Substituting in equation Al.117 yields the final closed form of the analytical solution for 
a continuous point source (similar to eq. 105 in the text); that is 

C= (Al. 120) 

At steady state, the solution is given by 

(Al. 121) 
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