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PREFACE 

The series of manuals on techniques describes procedures for planning 
and executing specialized work in water-resources investigatioas. The 
material is grouped under major headings called books and further sub- 
divided into sections and chapters; section A of Book 4 is on statistical 
analysis. 

The unit of publication, the chapter, is limited to a narrow field of 
subject matter. This format permits flexibility in revisio,n and publication 
as the need arises. 

Provisional drafts of chapters are distributed to field offices of the 
U.S. Geological Survey for their use. These drafts are subject to revision 
because of experience in use or because of advancement in knowledge, 
techniques, or equipment. After the technique described in a chapter is 
sufficiently developed, the chapter is published and is sold by the U.S. 
Geological Survey, 1200 South Eads Street, Arlington, VA 22202 (author- 
ized agent of Superintendent of Documents, Government Printing Office). 
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SOME STATISTICAL TOOLS IN HYDROLOGY 

By H. C. Riggs 

Abstract 

This chapter of “Techniques of Water-Resources 
Investigations” provides background material needed 
for understanding the statistical procedures most use- 
ful in hydrology; it furnishes detailed procedures, with 
examples, of regression analyses; it describes analysis 
of variance and covariance and discusses the char- 
acteristics of hydrologic data. 

Introduction 

As hydrologic analyses become more sophis- 
ticated, the proper design and interpretation 
of these analyses require a greater knowledge 
of statistical methods. In fact, two long-used 
hydrologic tools, the flood-frequency curve and 
the duration curve, require an understanding 
of the theory of statistics for proper evaluation. 
The more elaborate statistical methods are 
mathematical, but graphical methods are ex- 
tremely useful and adequately accurate for 
many purposes, if made with an understanding 
of the underlying assumptions and if properly 
interpreted. 

Until recent years most statistics texts em- 
phasized procedures applicable to normally 
distributed data because the assumption of 
normality is appropriate to many types of 
biological and agricultural dat.a. But much of 
the data used in hydrology either is not nor- 
mally distributed or does not have a prob- 
ability distribution at all. Most hydrologists 
learned statistics from texts or courses directed 
toward analysis of normally distributed data. 
Consequently some early hydrologic analyses 
were either incorrectly done or incorrectly 
interpreted. 

This chapter of “Techniques of Water- 
Resources Investigations” provides the back- 
ground material needed for understanding the 

statistical procedures most useful in hydrology. 
Although it starts with the basic concept of a 
distribution, many elementary details are 
omitted. The reader is assumed to have some 
familiarity with statistical terminology, com- 
putation procedures, and elementary prob- 
ability such as would be obtained from a class- 
room course in statistics for engineers or from 
the U.S. Geological Survey correspondence 
course “Elementary Statistics in Hydrology.” 

Although theory is emphasized in this chap- 
ter, the treatment is intuitive rather than 
rigorous. Many practical approaches to graph- 
ical regression are given, and the pitfalls as- 
sociated with computation of least-squares lines 
are located. The chapter concludes with a 
discussion of the statistical characteristics of 
hydrologic data. 

Distributions 

The concept of a population’ of objects 
having a distribution of sizes (or of some other 
characteristic) is basic to the statistical method. 
It is not possible to collect enough data to 
define a frequency distribution exactly, but the 
existence of a particular one can be proven to 
the desired degree of confidence by repeating 
an experiment many times. 

Kendall (1952, p. 23) reported the results of 
a dice-tossing experiment in which 12 dice were 
tossed simultanepusly and the number of sixes 
was recorded for each toss. The dice were 
tossed 4,096 times with the results shown in 
table 1. Also shown are the relative frequency 
computed from the experimental results and 
the theoretical relative frequency computed 
from the binomial distribution. The close agree- 
ment between the theoretical and experimental 

1 



2 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS 

frequencies indicates that the binomial distri- range, that the variable is continuous, not 
bution is applicable to this problem. discrete. 

80 
Table 1 .-Results of dice-tossing experiment 

[After KendaU (1952)1 
2 
I! 60 
e 

No. of 
sixes 

FE- 
quency 

Relative Theoretical 
frequency relative 

frequency 

0 -__- ________ 447 0. 109 0. 112 
l-_-----_---- 1,145 .280 .269 
2------------ 1; 181 .288 . 296 
3 ____________ ‘796 
4--------..--- 380 . 093 5--------_--- 115 mm” 
6 ____ - _______ 24 
7 and over.._-- 8 . 002 

. 194 . 197 
. 089 

. uxs . 029 

. 006 . 007 
. 001 

Total-- __ _ _ _ 4,096 1. 00 1. 00 

The binomial distribution is a discrete dis- 
tribution, that is, it can take values onlJ; at 
specific points along a scale. In the dice-tossing 
experiment, it is possible to obtain an integer 
number of sixes only; there is no such thing as 
5.5 or 3.2 sixes. 

More commonly, a variable may take any 
value along a scale. Such a variable and its 
distribution are known as continuous. A 
variable may be classified as continuous if it 
can take any value along a scale even though 
the limitations of measurement restrict the 
observations to discrete values. This condition 
exists with most natural phenomena. 

To aid in understanding a distribution, con- 
sider 1,000 tree-ring indices ranging in size from 
2 to 240. If these are grouped by six-unit in- 
crements of size, a histogram, or frequency 
distribution, is obtained (fig. 1). The irregu- 
larity of the profile of this distribution is due 
to the small (in a statistical sense) number of 
indices used in its preparation. The greater the 
number used, the smoother would be the profile 
of the frequency distribution. If the number of 
observations approaches infinity and the size 
increment approaches zero, the enveloping line 
of the frequency distribution will approach a 
smooth curve. Then if the ordinate values are 
divided by a number such that the area under 
the curve becomes one, the resulting curve is a 
probability density curve, or probability dis- 
tribution, such as figure 2. The process just 
described requires the additional assumption 
that the variable can take any value within the 

B 40 

E 
iii 20 
2 

WIDTH INDEX 

Figure 1 .-Histogram, or frequency distribution, of 1,000 
tree-ring indices. 

t r 

0 30 60 90 120 150 180 210 240 
WIDTH INDEX 

Figure P.-Probability density curve of 1,000 tree-ring 
indices. 

A theoretical probability distribution de- 
scribes the relation between size (or some other 
other characteristic) and probability. For this 
relation to be valid, the individuals must occur 
randomly or be drawn randomly. The size of 
any individual drawn should not depend on 
the size of any one previously drawn. Probabil- 
ity, in the concept of frequency distributions, 
is defined as relative frequency. The distribu- 
tion of the number of sixes obtained from re- 
peatsed tosses of 12 dice may be illustrated by 
plotting the theoretical relative frequencies of 
table 1. The relative frequencies of each of the 
6-unit increments in figure 1 could likewise be 
cotiputed. In the first of these examples, a 
probability is associated with each possible 
outcome. In the second, a probability is associ- 
ated with each increment of size; here the 
probability is of obtaining not a specific indi- 
vidual but any individual within the increment 
of size. This interpretation is required for con- 
tinuous distributiods because there is an infinite 
number of possible values and, thus, no proba- 
bility of occurrence of a particular individual. 
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Referring again to figure 2, probability is related 
to the continuous distribution in the following 
way: The area under the curve represents the 
sum of all probabilities and therefore must 
equal one. Because every item was used in 
defining the distribution for which the total 
area is one, then the probability that any item 
will fall in the distribution is one and the 
probability that an item will fall in any segment 
of the distribution is the ratio of the area of 
that segment to the total area. 

The distributions just described, both 
discrete and continuous, are called relative- 
frequency distributions, probability distribu- 
tions, or just distributions. However, the 
probability interpretation is valid only if the 
data used are random. :For example, the daily 
mean flow of a stream is closely related to the 
flows of previous days, so the distribution of 
daily means is not one to which the proba- 
bility intefpretation strictly applies. It is 
possible also to approximate a distribution 
which merely describes the sample. For instance, 
the distribution of grain sizes of a sample of 
a streambed is measured to characterize the 
material; there is no interest in the probability 
of obtaining a grain in a particular size range 
by additional sampling. Here the sample is 
not the individual grain but an aggregate of 
grains of various sizes. 

Only a few standard theoretical distributions 
are widely used. Sampling theory and inference 
are based largely on the normal distribution 
with which the reader is assumed to be familiar. 
Other theoretical distributions will be intro- 
duced in this and succeeding chapters as 
appropriate. 

Cumulative distributions 

Suppose we know the probability density 
curve (probability distribution) for a variable 
and are interested in the probability of a 
random event being greater than some par- 
ticular value E. This probability can be ob- 
tained by measuring or computing the propor- 
tion of the total area above the base value. 
For instance, the left curve of figure 3 shows an 
area under the curve to the right of E of 0.1, 
that is, P=O.l. Thus the probability of a 
random event exceeding E is 0.1. 

MAGNITUDE PROBABILITY OF 
EXCEEDANCE 

Figure 3.4’robability density curve (left) and its cumulative 
form (right). 

Another form of the probability curve can 
be prepared by cumulating the probabilities 
from one end of the curve and plotting each 
of these cumulated probablities against the 
magnitude of its appropriate event. The 
cumulation is usually done mathematically. 
The result is the right-hand curve of figure 3. 
Cumulative distributions are commonly plotted 
to a probability scale such that the theoretical 
curve is a straight line. Such a scale can be 
devised for any two-parameter distribution. 
Normal probability plotting paper is widely 
known and used. Gumbel plotting paper is 
used in many hydrologic frequency analyses. 
(Although the Gumbel extreme-value distribu- 
tion is a three-parameter distribution, one 
parameter, the skew, is constant for the form 
used and permits the construction of a scale 
which gives a straight-line plot). Both the 
normal and Gumbel probability plotting papers 
are available with either arithmetic or log- 
arithmic ordinate scales. Thus plotting papers 
for four distributions-normal, log-normal, 
Gumbel, and log-Gumbel-are available. 

When the probability density curve is cumu- 
lated from the right end, the probabilities of 
exceeding the various magnitudes are obtained. 
If cumulated from the left, probabilities of not 
sxceeding those magnitudes are obtained. The 
appropriate cumulative curve, commonly called 
e frequency curve in hydrology, depends on 
the desired use. 

The various theoretical cumulative distri- 
autions used in hydrology and methods of 
estimating their parameters from a sample of 
data are discussed ,in another chapter of this 
series. 
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Statistical inference 

We have 54 years of record on the Rappahsn- 
neck River of Virginia and might ask two ques- 
tions about the mean flow. First, what is the 
mean flow for the period of record? This is a 
unique value which can easily be computed. 
The second question, what is the mean flow of 
the stream?, cannot be answered definitely. We 
can only assume that the mean of the 56year 
sample is au estimate of the true (population) 
mean. In other words, we infer the population 
characteristics from those of a sample from that 
population. 

Statistical inference is based on the theory 
of sampling. From a population of known char- 
acteristics many samples are drawn (either 
actually or conceptually), and the relation of 
the sample characteristics to the population 
characteristics is defined. 

Sampling theory requires use of the concept 
of a probability distribution. Assume that the 
distribution of some random variable is normal 
with mean P, and standard deviation, U, as 
shown in figure 4. (The term “random,” as 

h 

Figure A.-Normal distribution. 

used here, means that the probability of drawing 
any one item of the population is the same as 
for any other.) 

Now suppose we take many samples of size 
N from this distribution, compute the mean of 
each of these samples, and compute the mean 
and variance of these sample means. The dis- 
tribution of the means of samples of size N is 
superposed on the original distribution in figure 
5. It can be shown that the distribution of 
the means is centered at cc and that the stan- 
dard deviation of the distribution of means is 
o/n. Therefore, the mean of the means of 

Distrlbutlon of means 

t 
P 

Figure 5.4istribution of means of samples from a norma. 
distribution. 

samples of size N is an unbiased estimate of I.C. 
Furthermore, the mean of one sample is an 
unbiased estimate of P. Consequently, we infer 
that the sample mean, x, is an estimate of the 
population mean. Obviously, if we used other 
samples we would obtain different estimates 
of the population mean. 

From a single sample, we can appraise the 
reliability of the estimate, x, of the population 
mean. The distribution of means of values 
drawn from a normal distribution is normal. 
Consequently, two-thirds of the values should 
fall within one standard deviation (a/FM 
on each side of the mean. However, we do not 
know Q so we have to substitute S for it (where 
S is the standard deviation compuied from the 
sample). The distribution of X having a 
standard deviation of S/fi is known as the 
Student’s t distribution, values of which are 
tabulated in statistics texts for various sizes 
of N. 

Suppose now that we have K samples of 
size N and have defined K different sampling 
distributions of the mean of size N. For each 
sampling distribution, we can define a mean 
and a range of reliability, and we are interested 
in whether such a range includes the true mean 
p. Considering the range as a random interval, 
we may state that the probability (P) that 
the random interval includes p is 1 --e, where e 
is the level of significance. Mathematically, for 
e==0.32, 

P[(y-&N)<p<(z+&N)]=l-e=O.68. 
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The interval in brackets is called a confidence 
interval and the extremes are called confidence 
limits. Note that the above relation holds only 
if we use u instead of S. If we use S, then 1 -e 
is a function of the sample size, and the 
appropriate probability statement is 

where Student’s t is 1.09 for 10 degrees of 
freedom, for example. The width of the con- 
fidence interval increases as the level of signifi- 
cance decreases. For example, the 95-percent 
confidence limits (e=0.05) are 

where 2.23 is from the t table for 10 degrees of 
freedom. 

The confidence interval described in the 
probability statement is a random interval, 
not a specific one. The probability statement 
(for e=0.05) means that 95 percent of a large 
number of intervals similarly obtained would 
include the true mean. This probability statement 
cannot be extended to one specific interval 
because a specific interval either contains the 
true mean or it does not and the probability 
is either one or zero. The true mean is not a 
variable, it is unique. 

But we are interested in making a probability 
statement about one specific interval. We may 
say that the probability of our obtaining a 
random interval which includes the true mean 
is 0.95, or that we have 95-percent confidence 
that the interval obtained includes the true 
mean. Ordinarily in hydrologic reports it is 
only necessary to state the computed confi- 
dence interval and its level, not to interpret 
the meaning. See Mood (1950, p. 221-222) for 
a precise statement of the interpretation of a 
confidence interval. 

Using the above theory, from a random 
sample, we can compute an estimate of the 
population mean and a measure of its relia- 
bility. This is an example of statistical inference. 

Returning to the sampling theory, consider 
the distribution of variances of samples of size 
h from a normal distribution. This distribu- 
tion is not centered around a2 but is to the left 
of it, as shown by the upper graph of figure 6. 
Therefore S2 is known as a biased estimator of 

6’. It can be made unbiased by multiplying it 
by N/(N-1) as shown in the lower sketch of 
figure 6. The standard deviation of the sampling 
distribution of S2(h/N- 1) can also be 
computed. 

L 
9 s2 U’ 

S’fN/N-1 ) 
u2 

Figure 6.-Distribution of variances of samples. 

A further use of inference is in testing hypoth- 
eses. One example will be given. Suppose we set 
up the null hypothesis, H,, that the mean of a 
population is zero; that is, we hypothesize that 
there is no difference statistically between the 
mean and zero. This null hypothesis is written 

H,:p=O. 

We draw a sample from this population and 
compute the statistics of the sampling distribu- 
tion of the mean. We need some estimate of the 
hypothetical sampling distribution of means, 
and so we define it as normal with mean zero 
and standard deviation equal to S/dTV as com- 
puted from the sample (fig. 7). 

Now if x (as computed from the sample) lies 
within one standard deviation of zero, we would 
conclude that there is no basis for doubting 
the hypothesis. If, on the other hand, x were 
two or three standard deviations away from 
zero, we would conclude that it is unlikely that 
the mean of the population is zero. For this 
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- I I 
X 

0 

Figure 7.-Hypothetical sampling distribution of means. 

latter condition the probability is small of 
obtaining an x of such size from a population 
having a mean of zero. Therefore, we would 
reject the hypothesis and would state that the 
result was significant at a certain probability 
level, meaning that the results obtained differ 
significantly from the hypothesis. 

A common problem is the test of significance 
of a regression coefficient. The null hypothesis 
is again that the true value of the regression 
coefficient is zero, and the test may be made in 
the same way as before. However, the pro- 
cedure commonly used is somewhat different. 
The confidence limits about the theoretical 
value are computed. If the regression coefficient 
is b, its standard error Sa, and its population 
value 6, then the limits are found to be 

b--tSb<8<b+tSb. 

where t is the appropriate value for the chosen 
significance level and sample size. If the limits 
include zero, the hypothesis is accepted, that 
is, the regression coefficient is not significantly 
different from zero. If the limils are both on 
one side of zero, the hypothesis is rejected and 
the regression coefhcient is considered sig- 
nificantly different from zero, that is, it is 
considered meaningful. 

Many other tests of significance are available, 
but all parametric tests are based on the theory 
of sampling and follow the general procedure 
described above. A less powerful group of non- 
parametric tests may be used when the prob- 
ability distribution of the statistic is not known. 
(See Siegel, 1956.) 

Correlation and Regression 

The distinctions between correlation and 
regression must be recognized in order to apply 

and interpret either of the methods. These 
distinctions are very marked although they may 
seem of little importance because of the simi- 
larity of the computation procedures. Dixon 
and Massey Q957, p. 189) made the following 
distinction between the two: 

“A regression problem considers the fre- 
quency distribution of one variable when 
another is held fixed at each of several levels. A 
correlation problem considers the joint varia- 
tion of two measurements, neither of which is 
restricted by the experiment.” 

Correlation is a process by which the degree 
of association between samples of two variables 
is defined. The correlation coefficient is a 
mathematical definition of that association. 
It is, of course, possible to compute a correlation 
coefficient from any two sets of data. The 
mathematical definition of association implies 
no cause-and-effect relation nor even that the 
relation between the two variables results 
from a common cause. 

Correlation theory requires that the data be 
drawn randomly from a bivariate normal dis- 
tribution. However, McDonald (1957) reported 
that experimental sampling studies show the 
nonnormality effects, usually regarded as dis- 
turbing by statisticians, to be of inconsequential 
magnitude geophysically. A further require- 
ment of correlation is that both variables X 
and Y be without error due to measurement. 
Nothing can be measured without error, so the 
above requirement is one of degree. The 
question of the error allowable is subject to 
arbitrary decisions, particularly since the true 
error of the data is never known. 

The end product of the process of correlation 
is the correlation coefficient; it is not an equa- 
tion. The equations which describe Y as a 
function of X, and X as a function of Y, are 
regression equations, not correlation equations. 
Another way of stating the distinction between 
correlation and regression is that correlation 
measures the degree of association between two 
variables, whereas regression provides equations 
for estimating individual values of one variable 
from given values of the other. 

Reliability of correlation results depends on 
the number of items used to compute the 
correlation coefficient and the magnitude of the 
computed correlation coefficient. Confidence 
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limits are quite wide for samples of 30 items 
or less, unless the correlation coefficient is very 
large. For example, a chart shown by Bennett 
and Franklin (1954, p. 275) indicates that a 
correlation coefficient of +0.8 computed from 
a sample of 20 items would have a confidence 
belt extending from 0.6 to 0.9 for 95-percent 
probability. Because of this uncertainty, com- 
parison of two correlation coefficients differing 
only by a few hundredths cannot be meaning- 
fully interpreted. There also seems to be no 
justification for reporting correlation coefficients 
to more than two significant figures. 

If the data can reasonably be assumed to 
be drawn from a normal bivariate distribution, 
then both correlation and regression analyses 
are appropriate. It is under this assumption 
that most of the examples in statistics texts 
are analyzed. However, regression is also 
appropriate under certain other conditions 
when correlation is not. The only assumptions 
required for regression are: 
1. The deviations of the dependent variable 

about the regression line (for any fixed X) 
are nqrmally distributed, and the same 
variance exists throughout the range of 
definition. 

2. Values of the independent variable are 
known without error. The dependent vari- 
able is considered as an observation on a 
random variable, and the independent 
variable as some known constant as- 
sociated with this random variable. 

3. Observed values of the dependent variable 
are uncorrelated random events. 

4. Each of the variables is homogeneous; 
that is, all individual values of a variable 
measure the same thing. Data are consid- 
ered homogeneous if any subgroup towhich 
certain of these data may be logically as- 
signed has the same expected mean and 
variance as any other subgroup of the 
population. Neither variable need have a 
probability distribution in regression (but, 
of course, Y values corresponding to a 
fixed X are assumed to be normally dis- 
tributed). 

The end products of a regression analysis 
are two equations, Y=f(X) and X=f(Y) 
(usually only one is computed), because re- 

gression is directional. In contrast, correlation 
gives one index of the relation between variables. 

The regression equation gives the average 
amount of change in the dependent variable 
corresponding to a unit change in the independ- 
ent variable. Thus it gives more specific in- 
formation than correlation. The regression 
coefficient can be tested to determine whether 
it is significantly different from zero, and this 
test is identical to the test of significance of the 
correlation coefficient (providing the data are 
drawn from a bivariate normal distribution). 

The reliability of a regression is measured by 
the standard error, which is the standard devia- 
tion of the distribution (assumed normal) of 
residuals about the regression line (fig. 8 shows 
distribution of residuals). By definition, the 
standard error is the same throughout the range 
of X. This standard, error was called the 
standard error of estimate by Ezekiel (1950, 
p. 131). It is also referred to as the standard 
error of regression and as the standard deviation 
from regression. 

4 

. . . 
. l ‘.’ 
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Figure E.-Normal distribution of plotted points about the 
regression line. 

The standard error of a prediction from 
regression is made up of three parts: the error 
of the mean, the error of the slope of the line, 
and the standard error of estimate. All three 
may be expressed in terms of the standard error 
of estimate so that the standard error of a 
prediction (S,) is 

s,=s, 1+1+-,-Y 4 
(X-X)’ 

7% X(X-X)’ 
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where S, is standard error of estimate, n is 
number of items in the sample, and X is the 
independent variable. Thus the error of a 
prediction increases with distance from the 
mean (Snedecor, 1948, p. 120). 

Most analyses require use of multiple corre- 
lation or regression. A multiple correlation is 
evaluated by partial correlation coefficients and 
by an index of total correlation. A partial cor- 
relation coefficient is an index of the degree of 
association between one independent variable 
and the dependent variable after the effects of 
the other independent variables have been 
removed. 

In a multiple regression equation the regres- 
sion coefficients are called partial regression 
coefficients. Each shows the effect on Y of a 
unit change in the particular independent vari- 
able, the effects of the other independent vari- 
ables being held constant. 

If the independent variables in a regression 
analysis are related to each other, the partial 
regression coefficients will be of a different mag- 
nitude from the simple regression coefficients. 
(The independent variables in a regression 
usually are related to each other as well as to 
the dependent variable.) See the section on 
“Application of the Regression Method” for 
elaboration on this subject (p .19). 

The assumptions required for correlation are 
infrequently met in engineering problems and 
not generally met in hydrologic problems. 
Many of these problems to which the correla- 
tion method does not apply can be handled by 
the regression method because of the less re- 
strictive assumptions. Thus the regression 
method may be used for such relations as that 
of concrete strength to time of setting, where 
neither value is randomly selected and neither 
variable has a probability distribution. Ob- 
viously the range of such a relation is limited 
to the range of the data selected. 

Under the above conditions the correlation 
coefficient does not apply but, of course, can 
be computed from the relation 

r= Jl-we~sv)2, 

where r=correlation coefficient, &=standard 
error of estimate, and S,=standard deviation 
of the values of the dependent variable. From 
the above formula it can be seen that T depends 

on S,, which depends on the range of data 
selected for problems such as the concrete 
strength relation to time of setting. Therefore, 
if the variables used in a regression are not 
randomly sampled, the computed value of r 
changes with the range of the arbitrarily se- 
lected ,sample and is therefore meaningless. 
Empirical verification of this statement is 
given by the data plotted in figure 9. (These 
data were selected to demonstrate this principle; 
the relation is not hydrologically significant.) 
Using all the points, the relation is computed 
tobe 

log MAF=2.27+0.59 log DA; 

the standard error is 0.22 log unit and the 
computed correlation coefficient is 0.97. MAY 
is mean annual flood and DA is drainage area. 

lo21 
loo 10’ lo2 103 IO4 lo5 lo6 

DRAINAGE AREA, IN SQUARE MILES 

Figure 9.--Plot used in demonstrating the effect of sample 
range on computed correlation coefficient. Dashed line 
is the relation for 14 drainage areas ranging from 40 to 
2,000 square miles. 

If only the 14 points for drainage areas 
ranging from 40 to 2,000 square miles (fig. 9) 

are used, the relation is 

log MAF=2.31$0.57 log DA. 

This relation has a standard error of 0.23 log 
unit (almost the same as the previous standard 
error), but the computed correlation coefficient 
is 0.83, much lower than that obtained by 
using samples from a greater range. Obviously 
such variability in the correlation coefficient 
would render it unsuitable as a measure of the 
degree of relation for this type of application. 
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This manual emphasizes regression over 
correlation, not only because correlation is 
commonly inapplicable to particular hydrologic 
data but because regression provides quantita- 
tive answers to specific problems. In general, 
regression is preferred over correlation for 
hydrologic problems even when the data are 
suitable for a correlation analysis. Uses of 
regression analysis are : 

1. To estimate individual values of the de- 
pendent variable corresponding to selected 
values of the independent variables. 

2. To determine the amount of change in the 
dependent variable associated with a unit 
change in an independent variable. 

3. To determine whether certain variables 
(which do not have probability distribu- 
tions) are related to a dependent variable. 

4. To improve estimates of the parameters 
defining the probability distribution of the 
dependent variable. 

Correlation is most useful in theoretical 
studies and in time-series analysis. 

Serial correlation 

It has been pointed out that for a probability 
distribution to be valid the individuals must 
occur randomly or be drawn randomly. Hydro- 
logic data such as daily stream discharges form 
a time series, that is, a sequence of values 
arranged in order of occurrence. The character- 
istics and analysis of hydrologic time series 
have been described by Dawdy and Matalas 
(1964). A common characteristic of a time 
series is the existence of a nonrandom element 
which produces a dependence between observa- 
tions k units apart. This dependence is called 
serial correlation, and its degree is measured 
by the serial correlation coefficient. 

First-order serial correlation is the depend- 
ence between observations adjacent in time; 
the kth order is the dependence between 
observations k units apart. A plot of the serial 
correlation coefficient against order is a correlo- 
gram (Dawdy and Matalas, 1964). 

To determine the serial correlation, the time 
series is related to itself offset k units. For 
example, the time series in the first column 
below is related to itself shifted one observation 
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to obtain the first-order serial correlation 
coefficient. 

21 - 
22 Xl 
z3 2% 
. . 
. . 
. . 
. . 
%I x,-l 

Computational details are the same as for the 
relation between two variables and are given 
in the section on “Simple Linear Regression.” 

A test of significance of a first-order serial 
correlation coefficient is given by Dawdy and 
Matalas (1964). 

Regression Methods 

The previous section described regression 
in general terms and concluded with some uses 
of regression. This section describes the compu- 
tation and interpretation of regressionequations, 
both analytical and graphical, and some char- 
acteristics of the regression method. 

Regression models 

We begin a regression problem with a de- 
pendent variable which we want to predict 
from one or more independent variables. The 
independent variables are values or character- 
istics which seem to be physically related to the 
dependent variable. Next we need a model 
which describes the way in which the inde- 
pendent variables are related to the dependent 
variable. The model should be in accord with 
known physical principles, but its exact form 
may be dictated by the data used. 

Using a dependent variable, Y, and inde- 
pendent variables, X and 2, the equations and 
graphs of some more common regression models 
are shown in figure 10. Joint relations, those 
which include a variable which is the product 
of two other variables, have been discussed in 
detail by Ezekiel and Fox (1959). The product 
of two variables is called an interaction term. 
Combinations of the models shown in figure 
10 can be used to describe more complicated 
relations, and the equations can be readily 
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Y 

Y=o+bX+cZ 

‘\ 
g@ 

I. 
Y 

Y=o+bX+cZ+dXz 

X X 

Figure 1 O.-Equations and graphs of some common regression 
models. 

extended to include additional independent 
variables. 

Having selected a suitable model, the coef- 
ficients in that model equation are computed 
from sample data by the method of least 
squares as described subsequently. 

Note that although two of the graphs in 
figure 10 are curved, all of the model equations 
are in linear form. This linearity of the model 
equation is a requirement for direct least- 
squares solution. Linearity can sometimes be 
attained by transforming the variables. 

Transformations 

There are two principal reasons for trans- 
forming data before analysis: (1) to obtain a 
linear regression model, and (2) to achieve equal 
variance about the regression line throughout 
the range. 

We have seen from figure 10 that certain 
two-variable regressions may be linearized 
without transforming the variables. The method 

is known as polynomial regression in which 
additional variables in successively higher 
powers of the independent variable are added 
to the model. But suppose we know or postulate 
that a relation should be of the form 

Y=aXb. 

By taking logarithms of both sides of the equa- 
tion the resulting linear equation is obtained: 

log Y=log a+b log X, 

in which log a and b are constants which can be 
computed by a least-squares analysis using the 
variables log Y and log X. Likewise the relation 

Y=abx 

can be transformed to 

log Y= log a+X log b, 

where log a and log b are the constants and 
log Y and X are the variables. Other transforma- 
tions are sometimes used, but the logarithmic 
transformation is by far the most common. 

The second reason for transforming data, 
and the more important. one, is to achieve 
equal variance about the regression line. One 
of the assumptions basic to the regression 
method is that the distribution of errors about 
the regression line is normal and constant 
throughout the range (fig. 8). Again a log 
transformation is often used. For example, 
the graph on the left of figure 11 (from U.S. 
Geological Survey, 1949, p. 488) shows in- 
creasing scatter of points with increasing 
rainfall. But when the variables are plotted 
on the log chart (right graph, fig. ll), the 
scatter of points is almost uniform throughout 
the range. Thus, if it had been desired to 
carry the analysis beyond the graphical pres- 
entation, a transformation of the variables 
should have been made. (Ordinarily the vari- 
ables would be reversed on the chart if a 
regression were to be made because runoff is 
the dependent variable.) 

Other reasons for transforming data are to 
introduce additivity to the model and to 
achieve normality. The use of transformations 
is discussed by Acton (1959, p. 219223).’ 
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Figure 11 .-Data from U.S. Geological Survey (1949, p. 
488) plotted on natural and log scales showing the 
achievement of equal variance about the regression line 
by use of the log transformation. 

Only the log transformation has been used 
in the above examples because it is by far 
the most common and useful. Other trans- 
formations such as the square root may be 
appropriate for certain data. 

Table I.-Data and computations for example of two- 
variable regression 

Year “mc)ff ’ F$$p(ll XY X’ 

102% _ _ _. _ _ _ _. _ _ 
1929- _ _ _ - _ - _ _ _ _ _ - 
mo~.~~...~..... 
1031- _ _ _ -_______ _ 
1032--..-.-.-..- 
1933. - _ _ _- - _. _ _ _ - 
1934- - _ _ _ _ - _ _ _ _ _ - 
1933----.-....... 
1936 ___- _ _______- 
lQ37--.-.-....... 
1938- _ _ _ _. - _ - _ _ _ - 
1939 ____ _ ______ _- 
1940. _ - _ -_ - _ _ _ _ _ - 
1941---.....--. 
lw2 -___ _ _____.__ 
lQ43.--.-..-.-... 
1944- - - _ _ - _ ___ _ _ _ 
1046 ---- _--__ ____ 

- -- - - z --_-_________.. _ 
Mean ________ ____ 

1,790 1,301 192.042 139,291 197,373 
99.94 loo. 03 

1 Annual runoff in percent of mean (Bum 
2 Annual rahfall ln percent of mean (at 3 

ing River near Nile, Wash.). 
urnping Lake, Wash.). 

Simple linear regression 
Computation of a regression equation using 

the model Y=a+bX is demonstrated using the 
data given in table 2. That table also shows 
computations of means, cross products, and 
squares. The individual cross products and 
squares need not be recorded; the sum of cross 
products, or squares, can be cumulated on a 
desk calculator. Such calculations are ordinarily 
checked by repeating the operation. The coeffi- 
cients a and b in the regression equation, and 
the standard error of estimate are computed as 
shown below. 

b= 
xxY-=Nxy 

xx2 cEx>2 
_CXY-Nfi-, 

-- 
N 

Cx2-NF 

192,042- (1,801)(1,799) 

b= 
(lZ)2 =1.325. 

189,291-* 

Regression coefficient 

a=F-bx=99.94-(1.325)(100.06)=-32.6. 

Then 
Intercept 

Y=a+bX=-32.6+1.32X, 
or 

Y=F+b(X-z)=99.94+(1.325)(X-100.06), 

Y=-32.6+1.32X. 

Equation of least-squares line 

xx2 (C-v’ -___ 189,291- (1,8O1)2 

Sz,= 
N 18 

N-l = 17 

=534.76. Variance of X 

-jTy” czy)” -- 197,373- (l,7W2 

s,- 
N 18 

N-1 = 17 

=1,033.71. Variance of Y 

s, .z=N& [SE-b’s:]=~[l,O33.71 

s, ..=lO.O. Standard error of estimate of Y 

Correlation coefficient 

The regression coefficient can be tested for 
significance as follows (Bennett and Franklin, 
1954, p. 228): 

g&i!L 100.8 
~(z2)-189,291-(1,801)2/18= ‘*01’ 

Testing the hypothesis that /3=0, 

t _ ~b--8~1~325---0= 12 fj 
” 2 

Sb 0.105 * 
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From a table of t, tla, o.01=2.92; therefore b is 
significantly different from zero. The 99-percent 
confidence limits for /3 are 

1.325-2.92(0.105)<8<1.325+2.92(0.105) 

or 
1.02 <a<1.63 

The locus of the regression equation and the 
data used are shown in figure 12. 

II II II 1 . If 1 

80 

. 

. 

I I I I I 
60 80 100 120 140 160 

ANNUAL PRECIPITATION AT BUMPING LAKE, 
IN PERCENT OF MEAN (X) 

Figure lI.-f’lot of data from table 2 showing computed 
regression line. 

Another example showing the detailed com- 
putation of a regression equation is given by 
Ezekiel and Fox (1959, p. 57-63). 

Multiple linear regression 
The regression constants in a multiple linear 

regression model are computed from normal 
equations. For two independent variables the 
normal equations are 

where the symbol 8, represents the mean of the 
ith variable, X, represents a particular value of 
the ith variable, and xi represents (X,-x*), the 
deviation from the mean of that variable. It is 

simpler to compute the squares and cross prod- 
ucts of the variables in terms of X and then 
convert the results in terms of z than to begin 
with deviations from the mean. The conversion 
equations are 

and 

where the last term in each equation is called 
the correction item and N is the number of 
items in the sample. In this notation X, is the 
dependent variable. 

For three independent variables the normal 
equations are 

and 

where the symbols are the same as before. 
The method of computation is best described 

by use of an example. The model, the data, and 
the preliminary computations are shown in 
table 3. Note that the logs of the original values 
are the variables being related. The need for 
this transformation was indicated by a pre- 
liminary graphical analysis. Only the culmula- 
tive sums of cross products and squares are 
taken from the calculating machine and re- 
corded in table 3; individual values arle not 
needed. Calculations are carried to five figures 
behind the decimal point when the variables 
are logarithms because the converted sums may 
be small relative to the numbers being: sub- 
tracted from each other. The correction items 
shown in table 3 are obtained from the last term 
in the appropriate conversion equation. For 
X,X,, the appropriate equation is 

C(ZA) =C(X,X,) - N-%-% 

and the correction item of table 3 is NZ-% 
Subtracting the correction item from Z(&XS) 

gives Z ( rZr3), which is the corrected sum in 
table 3. This and the other corrected sums are 

0 



SOME STATISTICAL TOOLS IN HYDROLOGY 13 

- 
- 
- 
-. 
-. 
-. 
-. 
-. 

I 
- 
- 
- 
- 
- 

- 

- 
- 

- 



14 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS 

then substituted in the normal equations. The 
computation of regression coe&ients is shown 
below with the explanation following. 

Normal equations (see Ezekiel, 1950, p. 198): 
I C(s”)bz +C(~225)b2 +c(sdb4=c(wd 
II C(z222)b2 + C(G% +C(~2dh=C(w2) 
III C(aaP2 fC(23%:4)& + C(d>h=C(ad 
I 10.20183b2 + 6.38133b3 + 0.62554bd=11.74691 
I’ -bp -0.62550833 -0.061316br=-1.15145 
II 6.38133bs) + 6.9063233 - 0.069528,=6.57458 

(-0.625508) I -6.38133bz - 3.99157bs - 0.39128br= -7.34779 
c2 2.91475b3 - 0.460806,= -0.77321 
II’ 1 -b;i +0.158092b,=0.26527 
III 0.62554b2 - 0.06952ba + 0.33512b,=1.16244 

(-0.061316) I -0.6255432 - 0.391283, - 0.0383664= -0.72027 
(0.158092) x2 0.4608Obs - O.O7285br= -0.12224 

c2 0.223913,=0.31993 
b,= 1.42883 

II’ -b,+ (0.158092) (1.42883) =0.26527 
b3= -0.03938 

I’ -b,-(0.625508)(-0.03938)-(0.061316)( 1.42883)=-1.15145 
-b2+0.02463-0.08761=-1.15145 

bz= 1.08847 
III (0.62454)(1.08847)-(0.06952)(-0.03938)+(0.33512)(1.42883)=1.16244 

1.16245X.16244 Check 

The above computation utilizes the Doolittle 
method, a simplified method of solving simulta- 
neous equations having a certain symmetry. 
The normal equations are on the first three 
lines. Next is the first normal equation with 
converted sums from table 3 substituted in it. 
Line 5 is obtained by dividing the equation next 
above by its coefficient of b2 with the sign 
changed. Line 6 is the second normal equation, 
with converted sums from table 3 substituted 
in it. Line 7 is obtained by multiplying the 
equation of line 4 by the coefficient of b, in 
line 5. Line 8 is obtained by subtracting line 7 
from line 6. Line 9 is line 8 divided by the 
coefficient of b3 with the sign changed. Line 10 
is the third normal equation. Line 11 is line 4 
multiplied by the coefficient of b, on line 5 with 
the sign changed. Line 12 is line 8 multiplied 
by the coefficient of b, on line 9 with the sign 
changed. Line 13 is the sum of lines 10, 11, and 
12. Lines 14-18 complete the computations of 
the regression coefficients. Lines 20 and 21 are 
used to check the results. Only the third normal 
equation provides a complete check. 

The regression constant is obtained from 

a=~-b2&-bbs~3-b,~, 
a=1.53888-(1.08847)(1.80814) 

- (-0.03938)(2.54489)-((1.42883)(1.89078) 
a= -3.03061 

Substituting the computed coustauts in the 
regression model gives 

log Qzo= -3.03+ 1.09 log Q2 

-0.04 log 11+1.4;3 log s. 

By taking antilogs this becomes 

Q20=o.ooo93Q2’~ogA-o~01S1~13. 

The standard error of estimate, S, is cornpIlLed 
as follows 

where N is the number of items in the sample 
and M is the number of lost degrees of freedom 
(one degree of freedom is lost for each constant 

0 
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in a regression equation). Substituting, 

14.31084-(1.08847)(11.74691)- 
S2= (-0.03938)(6.57458)-(1.42883)(1.16244), 

40-4 

s2=0.00341, 
S=O.O584 

=standard error in log units. 

The standard error of a regression having a 
logarithmic dependent variable is a constant 
percentage of the curve value throughout the 
range of Y rather than a constant magnitude 
in terms of the untransformed variable, as in 
the example of table 2. 

To compute the standard error in percent 
look up the antilogs of 1 +S and 1 -S. These 
antilogs are ratios to 10, from which the per- 
centage deviation is obvious. Consider the 
standard error of 0.0584 log unit, computed 
above: 

1+&‘=1.0584 Antilog 11.4, 
and 

l-S=O.9416 Antilog 8.75. 

The percentage errors are 

and 
100(11.4-10)/10=+14 percent, 

lOO(lO-8.75)/10= - 12.5 percent. 

The computation can be made very rapidly on 
a log-log slide rule. 

A correlation coefficient is not computed for 
this problem because (1) the purpose of the 
problem is to get an estimating equation and 
(2) the data used cannot be considered as 
drawn from a multivariate normal distribution; 
therefore correlation is not appropriate and a 
computed correlation coefficient would have 
little meaning. 

The standard error of estimate of this re- 
gression is a measure of its reliability and can 
be used to estimate the reliability of predictions 
made from the regression equation as described 
in the section on “Correlation and Regression.” 
But the question may arise as to whether we 
might get as good a result using fewer variables, 
or whether each of the independent variables is 
related to the dependent variable. We could 
answer the first question by recomputing re- 
gression equations and standard errors using 
fewer variables, but to answer the second we 

need a test of significance of each regression 
coefficient. To make this significance test the 
regression needs to be computed somewhat 
differently, as described in the next section. 

Regression computation using 
“c” multipliers 

In this method the normal equations are 
expressed in terms of “c” multipliers rather 
than regression coefficients. The method affords 
two advantages, (1) significance tests of the 
regression coefficients are simply made, and (2) 
the regression equations for different dependent 
variables can be obtained from the same “c” 
multipliers. The method has been described by 
Ezekiel and Fox (1959, p. 499-503), Fisher 
(1950, p. 156-166), and Bennett and Franklin 
(1954, p. 248-255). The normal equations are 

cmc<z;> +c23mwk) +ca(~z~) = 1, 

cz2Ccwd +c2.3c(4> +‘24cbJ3~4) =o, 

and 

From the above equations czz, c23, and czr may 
be obtained. The additional elements needed, 
csa, ca3, c34 and c~, c43, cu, are obtained by solving 
similar equations with the right-hand sides re- 
placed by 0, 1, 0 and 0, 0, 1, respectively. 

The regression coefficients may then be eval- 
uated by the equations 

where X1 is the dependent variable. 
To test the regression coefficients for signifi- 

cance, first compute the variance, S2, of the 
observations X, about the regression surface. 
This variance is the square of the standard 
error of estimate and is obtained by the same 
formula used in the previous computation, that 
is, 

1 
C(~‘>-bzC(zlz2)--2C(5122) 

p., - - b,C(wr) 1 
N-M 
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Then 

and 

variance of ba=S2(caz), 
variance of b3= S2(cB), 

variance of b,=S2(cH), 

and the standard errors are the square roots of 
the\variances. 

The confidence interval for &, a population 
regression coefhcient, at a probability level a, 
may be expressed as 

- 

ba--tnr-rSJc22<82<ba+tN-4SJC22, 
where t,+, is from the t distribution with N-4 
degrees of freedom at the selected LY level. 

The regression coefficient, bz, is signihcantly 
different from zero if the confidence limits do 
not include zero. 

The regression computation using “c” multi- 
pliers and the data of table 3 are given below. 
Solutions of the normal equations follow the 
same pattern as previously described. Solving 
for b, b, and ~24: 

I Cb2b2 + C(za23>ea3 + Cb~~h~~=l 
11 Cbdc22 + CWb3 + Cbw4)e24=0 

111 ~(%~4)c22 + cbb~4h2 + ch2)c24=o 

I 10.2018& + 6.38133~~ + 0.62554c2,=1 
I’ -cpl -0.625508e2, -0.061316c24=-0.0980216 

(-0.625508) :’ 

6.38133~~ + 6.90632c2, - 0.06952&,=0 
-6.38133~~2 - 3.99157c2, - 0.39128ca4=-0.625508 

Ca 2.91475cs3 - 0.46080~~~= -0.625508 
II’ -e3 +0.158092~,=0.214601 
III 0.62554~~ - 0.06952e2:+ 0.33512e24=0 

(-0.061316) I - O.O3836q,=-0.061316 
(0.158092) x2 - 0.07285&=-0.098888 

Ca 0.22391c2,= -0.160204 
ear= -0.71548 

II’ -c,,+O.158092(-0.71548)=0.214601 
= -0.32771 

I’ -I&- (0.625508)(-0.327~)-(0.061316)(-0.71548)=-0.0980216 
-c2a+0.204985+0.043870=-0.0980216 

&=0.34688 
III (0.62554)(0.34688)-(0.06952)(-0.32771)+(0.33512)(-0.71548)=0 

ago Check (to five places) 
Solving for &, c~, and car: 

I C(sEa2h2 + C(zaza>c33 + cb2~4h=o 

11 C(a22a)ca2 + CWh3 + CCw4h4=1 

111 Cb25h2 + Cbmh3 + C(z43s4=0 

I 10.20183~~ + 6.38133~~ + 0.62554c,=O 
I’ -62 -0.625508~~ -0*061316c~4=0 

(-0.625508) : 
6.38133~2 + 6.90632ca3 - 0.06952ca=1 

-6.38133~~ - 3.99157& - 0.39128c;u=O 
c2 2.91475c, - 0.46080e34= 1 
II’ --en +0.158092e34= -0.343082 
III .62554ca - .06952cx, + 0.33512cti=0 

(-0.061316) I - O.O3836ca=O 
(0.158092) x2 ‘- 0.07‘i!85Ca4=0.158092 

c3 0.22391c,=O.158092 
c,,=O.70605 

II’ -ec33+0.158092(0.70605)= -0.343082 
c33=0.45470 
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I’ -~32-(0.625508)(0.45470)-(0.061316)(0.70605)=0 
-c32-0.28442-0.04329=0 

~32=-0.32771 
111(0.62554)(-0.32771)-(0.06952)(0.45470)+(0.33512)(0.70605)=0 

o=o Check (to five places) 
Solving for Cam, c~, and c44: 

I c(%‘)c42 + ~(~2:zq)cJ3 + ~(~~&~~=o 
11 ~(%~3)%2 + c(s2)h3 + ~(5+44=0 

III C(ao%2 + C(5dc43 + cwc44=1 
I 10.20183~~~ + 6.38133~~~ + 0.62554c14=0 
I’ -c42 -0.625508~~~ -0.061316c44=0 

(-0.625508) I' 
6.38133~~ + 6.90632cd3 - O.O6952c,,=O 

-6.38133~~ - 3.99157cy - 0.39128cd4=0 
c2 2.91475cd3 - 0.46080~~~=0 
II' -c43 +O.l58092c4,=0 
III 0.62554~~~ - 0.06952ca + 0.33512cd4=1 

(-0.061316) I - 0.03836c4,=0 
(0.158092) x2 - 0.07285c14=0 

c3 0.22391C&=l 
c,,=4.46608 

II’ -c,,+O.158092(4.46608)=0 
c4,=0.70605 

I’ -~42-(0.625508)(0.70605)-(0.061316)(4.46608)=0 
-cd,-0.44164-0.27384=0 

~42=-0.71548 
III (0.62554)(-0.71548)-(0.069j2)(0.70605)+(0.33512)(4.46608)=1 

1.00003~1 Check 
Computing b coefficients and checking against those previously computed: 

b2=C22~(%%) +c23c(%x3) +c24~(%4), 
=(0.34688)(11.74691)+(-0.32771)(6.57458)+(-0.71548)(1.16244), 

b2= 1.08851 (1.08847 from previous computation ; check). 
~3=%2T;7(wh) +c33c(w3) +c34c(515), 

=(-0.32771)(11.74691)+(0.45470)(6.57458)+(0.70605)(1.16244), 
b3= -0.03938 (- 0.03938 from previous computation; check). 
h=G2(mw2) +c43c(w3) +~,,cb,~4,>, 

=(-0.71548)(11.74691)+(0.70605)(6.57458)+(4.46608)(1.16244), 
b*= 1.42885 (1.42883 from previous computation; check). 

The coefficient a would be computed as described previously. 
Computation of standard errors of b coefficients (Bennett and Franklin, 1954, p. 249) : 

&.234=0.0584 from previous computation. 
~~,=&.23&i=0.0584~~=(0.0584)(0.589), 

=0.0344 Standard error of b2. 
&,=&.23&=0.0584~0~=(0.0584)(0.6743) 

=0.0394 Standard error of b,. 
S~4=&.~34JC44=0.0584J1~=(0.0584)(2.113), 

=0.1234 Standard error of b,. 
Computation of confidence intervals of @ coefficients (Bennett and Franklin, 1954, p. 250) : 

t3 B. ,,.==2.03 (Dixon and Massey, 1957, table A-5, p. 384) 
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The table presented by Dixon and Massey for infinite degrees of freedom the t and normal 
(1957, table A-5, p. 384) gives values for one- distributions are the same. In the normal 
half of the distribution. For W-percent limits distribution, 1.96a on each side of the mean 
there would be 0.025 in each tail, and the value includes 95 percent of the items. In table A-5, 
is taken in the column headed tO.g,S. Notice that 1.96 is listed under t0.915. 

The confidence limits are: 
b- &3.0.95) c&2> <A<b+ (b3.85) (&> 

1.08851- (2.03) (0.0344)</32<1.08851 + (2.03) (0.0344) 
1.0187<~~<1.1583 

-0.03938-(2.03)(0.0394)<~~<-0.03938+(2.03)(0.0394) 
-0.1194<~,<+0.0406 

1.42885-(2.03)(0.1234)<~,<1.42885+(2.03)(0.1234) 
1.1783<Bd<1.6793 

fi is considered the true slope. Therefore the 
confidence limits give the range within which 
@ lies with g&percent probability. In this ex- 
ample the limits of & include zero. This indi- 
cates that & is not significantly different from 
zero at %-percent level and that the parameter 
A should be eliminated from the regression. 

Regressions having various numbers of 
independent variables 

Examples have been given of computations 
for regressions having one and three inde- 
pendent variables, and the normal equations 
for a regression of two independent variables 
have also been given. The method of solution 
involving two variables is similar to that for 
three independent variables, but is much 
shorter. 

Normal equations for regressions of four or 
more independent variables have been given 
by Ezekiel and Fox (1959, p. 181-183). Because 
computation of such regressions on a desk 
calculator is very time consuming, digital com- 
puters are being used. 

Use OF digital computers 

Programs for regression computations are 
available for most computers, and regressions 
of more than two independent variables should 
ordinarily be made by digital computer rather 
than on a desk calculator. Simple regressions 
and regressions of two independent variables 
may be made quite rapidly on a desk calcu- 

lator; use of a desk calculator for computations 
of these sizes may be advantageous. 

Regression programs for digital computers 
vary but usually require listing of the data in 
floating decimal notation. These values are 
then punched on cards which are entered in 
the computer. Results are printed by the com- 
puter. A wide variety of options as to output 
is available. Detailed instructions for prepara- 
tion of data and instructions to the computer 
should be obtained for the particular computer 
and program to be used. 

Although no knowledge of regression analysis 
is necessary for preparing data for a computer 
program, some experience is needed to appraise 
the results. Opportunities for errors to be intro- 
duced into the process exist in the listing of 
the data and in its transferral to cards. 

Questionable results may also be obtained if 
too few significant figures are carried through 
the computations. Only a person who has made 
regression computations the hard way can ade- 
quately judge whether the results of a regres- 
sion analysis by digital computer (or any other 
method) are correct. The availability of digital 
computers has permitted ready computation 
of regressions using many variables, which has 
sometimes led to substitution of the computer 
for the analyst’s brain. The problem should be 
solved by the analyst; the computer does the 
arithmetic. 

Application of the regression method 

An analytical problem to be solved by 
regression involves (1) selection of factors which 
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are expected to influence the dependent variable, 
(2) describing these factors quantitatively, (3) 
selecting the regression model, (4) computing 
the regression equation, the standard error of 
estimate, and the significance of the regression 
coefhcients, and (5) evaluating the results. 

Selection of the appropriate factors should 
not be a statistical problem, but statistical 
concepts must enter into the process. If the 
analyst merely wants to know the relation of 
annual precipitation to annual runoff, he can 
proceed directly to selection of a model. But if 
his problem is to make the best possible estimate 
of runoff, he will include other factors, some 
of which may be related to each other as well 
as to runoff. The problem of determining if 
certain factors are related to the dependent 
variable requires careful selection of indices 
describing these factors quantitatively. These 
indices should accurately reflect the effects, and 
no two should describe the same thing. It is a 
characteristic of regression that if a factor is 
related to a dependent variable and this factor 
is entered in the regression model twice (as 
two different variables), the effect on the 
dependent variable will be divided equally 
between the two. Thus, if the total effect is 
small, the result of dividing it in two parts 
may be to produce nonsignificance in each 
of the parts. Likewise, several closely related 
variables may compute as nonsignificant, 
whereas one properly selected index would 
show a real effect. Thus, the independent 
variables should be selected with considerable 
care; the shotgun approach should not be used. 

Another consideration in selection of var- 
iables is to avoid having a variable, or a part 
thereof, .on both sides of the equation. Such a 
condition may be acceptable for certain prob- 
lems, but the results must be evaluated 
carefully. A spurious relation may result, or 
the relation may be correct but its reliability 
difficult to assess. Benson (1965) described 
ways in which spurious relations may be built 
into a regression. 

The user of the regression method should 
understand the effect of related independent 
variables on the computed regression coeffi- 
cients. If the independent variables are entirely 
unrelated, the simple regression coefficients 
and the corresponding partial regression co- 

efficients would be the same. However, such 
conditions rarely occur in nature. The multiple 
regression method provides a way of separating 
the total effect of the independent variables 
into the effect of each independent variable 
and an unexplained effect. Consider the simple 
regression 

Y=a+blXiferror, (1) 

where Y also is affected by another variable, 
X2, which is related to X1. The regression using 
X1 and Xz will be 

Y=a’+b;X1+b2Xzferror, (2) 

where b; #b,. If X1 and X, are the only variables 
affecting Y (and the effects are linear), then 
equation 2 completely describes Y, and b; 
and bB are the true values of the regression 
coefficients (except for sampling errors). If 
Xl and X, are positively correlated with each 
other and with Y, consider the effect on the 
magnitude of bl. For each value of X1 in 
equation 1, Y will appear to be more closely 
related than it actually is because X, increases 
with X1 and its influence on Y is real though 
unmeasured. Therefore the regression coefficient 
bl is larger than its true value bl. 

Similar changes in b, and b2 would occur if 
another factor, related to X1 and X, and Y, 
were included in the regression. These changes 
in the magnitudes of the regression coeffi- 
cients due to addition or deletion of a variable 
are characteristic of regression. They are some- 
times interpreted as indicating that partial 
regression coefficients have no physical meaning. 
Such interpretations are not necessarily correct. 
If the variables used in the regression are 
selected on physical principles and the effects 
of each of the variables is appreciable, then the 
partial regression coefficients should be in 
accord with physical principles. In fact, it is 
good practice to compare the sign and the 
general magnitude of each partial regression 
coefficient with that expected. Benson (1962, 
p. 52-55) made a thorough comparison of 
this kind. 

The regression coefficients of certain var- 
iables may change sign when another related 
variable is added to or deleted from the re- 
gression. This effect may result because (1) the 
variable is not a good index of the physical 
feature represented, (2) the effect of the var- 
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iable is small relative to the sampling error, 
(3) the variable is so highly correlated with 
one or more other vsxiables in the regression 
that the real effect is divided among them and 
no one variable shows a significant effect, 
and (4) the range of the variable sampled may 
be too small to define .a significant effect. 

A regression equation does not imply a 
cause-and-effect relation between the inde- 
pendent variables and the dependent variable. 
Both may be influenced by some other factor 
not readily measured. However, there should 
be some physical tie between the variables if 
the results can be considered meaningful. 

Selection of a regression model usually begins 
with a graphical analysis. A model which 
plots as a straight line is commonly used unless 
there is strong evidence to the contrary. 

If the sample data exist near an asymptote 
or near a maximum or minimum point on the 
curve, a simple model may be inadequate to 
describe the relation and a more sophisticated 
one may not be justified unless many data 
are available. An example showing the char- 
acteristics of three common models when 
applied to data defined near zero is given in 
figure 13. Physical considerations suggest that 
neither b nor Q, should be less than zero and 
that the line should be curved. The zero 
limitation can be obtained by using the var- 
iables log b and log Q, and thus making the 
curve asymptotic to zero on both axes. The 
addition of a term (log Q7)2 will provide the 
necessary curvature. The regression equation 
using these three variables is the top one on 
figure 13. It is not a good fit to the data. 

Next, assume that it is not necessary that 
the curve be asymptotic to Q,=O. Then a semi- 
log model using the variables log b, Q,, and Q”, 
would be appropriate. But the equation based 
on this model reaches a maximum too soon and 
is a very poor fit. As a last resort assume a 
simple model with the variables b, Q,, and Q”,. 
This equation is a good fit to the data, largely 
because of the locations of the data. An addi- 
tional point of b=O at Q,=lO or more would 
have brought the curve below b=O at Q,= 7. 
The curve shown on figure 13 reaches a mini- 
mum at Q7=7 and increases beyond. 

The mechanics of computing the regression 
equation, the standard error, and the tests of 

7r 
logb=0.50-1.49 logQ,-0.40(logQ,)* 

6- 

5- 

log b =0.30+0.12 Q,--0.06 0,’ 

I I I I I I I I , 
0 1 2 3 4 5 6 7 8 9 10 

Q, 
Figure 13.-Equations and graphs of three models based on 

the plotted data. 

significance have been described. One important 
task remains, that of evaluating the results. 
First, the analyst should recognize that the 
regression equation developed, even though it 
is a good fit to the data, is not necessarily 
correct if extrapolated. For example, the curve 
corresponding to the bottom equation of figure 
13 is a good fit to the seven points but increases 
directly with Q, for values of Q, greater than 7. 
On the other hand, the dashed curve of figure 13 
fits the lower five points but becomes asymptotic 
to zero as Q, increases. Available information 
does not indicate which extrapolation is more 
nearly correct. 

The signs of all significant regression coeffi- 
cients should be in accord with physical 
principles. The regression is not necessarily 
incorrect if they are not; the nonconformity 
may be due to interrelations among the inde- 
pendent variables. Such a regression is useful 
for estimating values of the dependent variables 
from known values of the independent variables, 
and the reliability of the results, if within the 
debed range of the regression, can be com- 
puted. 

The more difhcult problem of determining 
whether a particular variable is related to the 
dependent variable may not have a definite 
answer. Even though a regression coefficient 
is statistically significant, there is a small 
probability that this result occurred by chance. 
Other samples could produce conflicting results. 
On the other hand, if many regressions produce 
nonsignificant coefficients of a particular vari- 
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able, all coefficients having the same sign, then 
we would conclude that the effect of that vari- 
able was real but, of course, small. 

A distinction should be made between statis- 
tical significance and practical significance. The 
regression coefficient of a variable may test 
highly significant, and yet the effect of that 
variable on the dependent variable may be 
negligible. 

Uses and interpretations of regression analy- 
ses in hydrology have been discussed by Riggs 
(1960) and Amorocho and Hart (1964). 

Graphical regression 

The assumptions required of graphical re- 
gression are the same as those required for 
analytical regression. The results of a graphical 
regression can be expressed mathematically if 
no restrictions are added to the graphical 
analysis, and the standard error can be 
estimated. 

Graphical regression is less restrictive than 
analytical regression in that the model need 
not be completely specified in advance. In 
fact, f an analytical model cannot be selected 
on a physical basis, it is conventional to prepare 
a preliminary graphical regression which will 
indicate an appropriate model. For example, 
consider the four data plots of figure 14. The 
first (upper left of fig. 14) indicates use of the 
model 

Y=a+bX. 
The second (upper right) requires 

Y=a+ bX+ blX2, 

where the direction of curvature determines 
the sign of bl. The third plot (lower left) indi- 
cates the need for a transformation unless the 
divergence can be explained by an additional 
variable. The fourth plot (lower right) shows 
no relation between Y and X, and, if only a 
two-variable relation is being considered, no 
further analysis would be made. A relation, 
however, between Y and X in the fourth plot 
may be obscured by the effect of another 
variable Z which has not been included. This 
aspect is discussed on page 23. 

The preparation of simple linear relations 
between two variables is well known. The re- 
gression line is not necessarily the same line as 

I I 

. : : . 
. 

X X 

Figure 14.-F our possible outcomes of plotting Y against X. 

one would draw through the plotted points. 
There are two regression lines, one for Y=j(X), 
and another for X=j(Y) (fig. 15). The struc- 
tural line, which balances the plotted points in 
both directions, has a slope approximately mid- 
way between the two regression lines. The 
differences in slope among the three lines depend 
on the degree of correlation of the variables. 
For perfect correlation all three lines have the 
same slope. Regardless of the correlation, both 
regression lines pass through the mean; the 
structural line may or may not pass through 
the mean. 

To approximate the regression Y=j(X), 
(I) group the points by small increments of X, 

I I I I I I 

. 

Y- 

. 
I I I I I I 

X 

Figure 15.-Plot showing the two regression lines and the 
structural line. 
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(2) estimate the mean of each group in the Y 
direction, and (3) draw a line which averages 
these means. The procedure can be understood 
by referring to figure 15 and remembering that 
the distribution of points about the regression 
line in the Y direction is assumed to be the same 
throughout the range. Obviously that assump- 
tion cannot be true for a small number of 
points, but it is the condition which we try to 
approximate. The regression line of Y=f(X) 
will have a flatter slope than that of a line drawn 
to balance the points in both Y and X 
directions. 

The standard error of estimate of a graphical 
regression cau be estimated readily. Remem- 
bering (1) that the standard error of estimate 
is the standard deviation of plotted points 
about the regression line, (2) that two-thirds 
of the points should be within one standard 
deviation on each side of the mean of a normal 
distribution, and (3) that a regression line 
theoretically passes through the mean value 
of Y corresponding to any value of X, then 
two lines, parallel to the regression line and 
one standard deviation above and below (in 
the Y direction), should encompass two-thirds 
of the plotted points. In practice it is simpler 
to draw the lines so as to exclude one-sixth 
of the points above and be‘ow, and then use 
the average of these two deviations from the 
mean as the estimated standard error of esti- 
mate. The procedure is illustrated in figure 16 
for a log relation. The standard error can be 
described in log units but more common y is 
expressed in percent. This value is readily 
obtained by using div’ders to lay off one 
standard error above and below a cycle separa- 
tion if the relat’on is plotted on log paper. 
The percentages are measured from one, as 
shown in figure 16. 

“1 2 4 8 
X 

Figure 16.--Method of estimating the standard error of a 
graphical regression. 

line, the graphically computed standard error 
will underestimate the computed standard 
error when a few plotted points are far from 
the line but the majority are close. ln any 
caee the graphically determined standard error 
is only an approximation but is adequate for 
many problems. 

The correlation coefficient may also be esti- 
mated from a graphical regression by the 
relation 

T= Jm, 

For regressions on arithmetic plots, the 
standard error will be in the same units as Y 
and can be read from the plot. 

The reliability of the graphically determ ned 
standard error is influenced by two factors 
having opposite effects. If the graphical-regres- 
sion line has a steeper slope than the least- 
squares regression line, the graphical standard 
error will be la ger than the computed standard 
error. If we now assume that the graphical 
line of relation is the same as the least-squares 

where S, is the graphically determined stand- 
ard error and Sd is the standard deviation of 
the Y variables about their mean determined 
in the same manner as the standard error. 
Obviously, the correlation coefficient should be 
estimated only for relations between variables 
which can reasonably be assumed to be drawn 
from a bivariate normal distribution. 

Graphical multiple regression 

There are two general methods of graphical 
multiple regression. The method of deviations 
is based on the model 
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Y=a+b,X,+b&+ . . . b,X,,, 

or a similar one allowing for curvilinearity. 
This method is probably the simplest and 
most useful one available. 

The coaxial method of graphical multiple 
regression, used for runoff-precipitation rela- 
tions, is a more flexible method than the method 
of deviations in that it allows both for inter- 
actions and curvilinearity. However, these 
advantages are obtained at the expense of 
much additional work and at the loss of a simple 
method of evaluating the reliability of the 
result. Linsley and others (1949, p. 659-655) 
described the procedure in detail. Unless stated 
otherwise, the descriptions of graphical multiple 
regression in this section refer to the method of 
deviations. 

The purpose of multiple regression is to 
determine how a dependent variable changes 
with changes in two or more independent 
variables. This problem cannot be solved by 

X, 

considering one independent variable at a time 
because the independent variables are usually 
correlated to some extent with each other. 
This statement can be verified by analyzing 
the following synthetic data: 

NO. 
l..~--~~~~~~~~~ too 

Xl X2 
100 25 

2 ___________ -__ 250 150 160 
3 - - - _ _ _ _ - _ _ - - - - 300 50 30 
4-------------- 100 30 110 
5----- ________ - 200 100 150 
6~~.-~~~~~~~~~~ 200 20 20 
7...~_____~..__~ 50 50 700 

Assume that the logarithms of the variables 
are linearly related. This relation calls for 
plotting on log paper. First make a graphic 
comparison between Y and X, by plotting the 
appropriate data (see plot 1, fig. 17). (In 
statistical work the dependent variable is 
usually plotted on the ordinate scale.) Also 
plot Y against X2 (plot 2, fig. 17). These plots 
indicate that Y cannot be estimated reliably 
from either parameter. 

X* 
20 
I I I I II-,,, 

500 I 
1 111 

’ I I I I I I7%\ _a I - 500 

i-+-l 
Y 

Plot 7 

EXPLANATION 

6 
Item number 

Platte: point 

(150) 
Correspondmg value of X, 

Plotted point &usted for X2 
from plot 3 

Figure 17.-Example of graphical multiple regression. 
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Now determine the relation between Y and 
both of the other variables. The procedure is 
as follows: 
1. On figure 17, plot 1, write beside each point 

the corresponding value of &. It will be 
seen that the high values of X2 tend to be 
on one side of the group and the low 
values on the other. This condition is an 
indication that X, values are related to Y. 
Draw a straight line through the points 
in such a way that it represents roughly 
some constant value of X,. The line 
probably will not balance the plotted 
points. 

2. Plot deviations (also called residuals) of 
Y from the straight line of plot 1 against 
X2 as the abscissa on plot 3 (fig. 17). The 
deviations may be scaled from plot 1 or 
transferred by dividers. Because they are 
ratios, they should be measured above or 
below 1.00 on plot 3. 

3. Draw a straight line averaging the points on 
plot 3. . 

4. Measure the deviations of the points from 
the curve of plot 3 and replot them on 
plot 1. These deviations are measured 
from the straight line in plot 1 and define 
the relation between Y and X1 with the 
effect of X2 removed. Sometimes these 
replotted points are not randomly dis- 
tributed about the line, in which case the 
line should be redrawn and the whole 
process repeated. When a satisfactory 
balance is attained the regression is 
complete. The scatter of the adjusted 
points about the line of plot 1, is a measure 
of the error. The standard error of a 
graphical multiple regression may be 
approximated by using the adjusted 
points, as described in the section on 
“Graphical Regression.” The line on plot 
1 is the relation between Y and X1 for 
the X2 value at which the line of plot 3 
crosses the 1.0 line (X2=66). The relation 
of Y to X1 for any other value of X, will 
be a line parallel to the line of plot 1, at a 
position defined by the curve of plot 3 for 
the desired value of X,. 

The example used gave much better results 
than ordinarily would be expected in hydrologic 
analyses. The data were manufactured (1) to 

illustrate the procedure and (2) to point out 
that a good relation may not be recognized if 
only two variables at a time are studied. 

Graphical regressions involving more than 
two independent variables can be made. The 
residuals from each line are plotted against the 
next variable until all variables are used. Then 
the residuals from the last line are replotted 
from the first as described in step 4. In practical 
work it is usually difficult. to define the effects 
of more than t.hree independent variables, 
particularly when the influences of one or two 
of the variables are small, 

Linear regression should be used whenever 
the plotted points do not definitely define a 
curve and when no physical reason is known 
for expecting the relation to be curved. If a 
curve or curves are indicated by both of the 
above criteria, then curves should be used. 
Complicated curves require four or more points 
for definition. They should be avoided when 
only a relatively few points are available to 
define the relation. 

Graphical multiple regressions need not be 
made on logarithmic paper. Arithmetic plots 
can be handled as readily. Figure 18 relates 
summer runoff to spring water content of the 
snowpack and to summer precipitation. The 
graphical procedure is the same as in the first 
example, except that deviations are measured 
in the same units as the dependent variable 
and the deviation scale must have its center 
at zero with positive values above and negative 
values below. Obviously the mathematical 
model describing this relation would be different 
from one for a graphical relation developed on 
log paper. 

The plotting paper selected for a particular 
problem should be that on which the distribu- 
tion of the dependent variable for a fixed 
value of the independent variable is approxi- 
mately the same for all values of the inde- 
pendent variable. This criterion is more im- 
portant than that of attaining linearity. 

Graphical multiple regression when the 
independent variables are highly cor- 
related between themselves 

Figure 19 demonstrates a technique that is 
sometimes useful in graphical regression. Data 
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Figure 1 O.-Example of graphical multiple regression using arithmetic scales. 

are given in table 4. Curve 1 (fig. 19) is the The numerator of the fraction flagged to each 
relation between loo-year flood (Q& and plotted point is the mean annual discharge 
mean annual flood (Q2J for 17 stations. (Q.J of the stream. Because this discharge 
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MEAN ANNUAL FLOOD (Cl,,,), IN THOUSANDS OF CUBIC FEET PER SECOND 

Figure 19.-Graphical regression using highly correlated independent variables. Based on data given in table 4. 
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Table 4.-Data for graphical regression using highly correlated independent variables 
[From Riggs (195S)I 

River and location fo% 
(cfs) 

Mean 
annual 
flood 
MO 

Average 
discharge 

(cfs) 

1. Neosho-Iola, Kans- _ _-_ _r __ _ _ _ _ _ _ __ __ __ _ _ _ _ _ 105,000 28,300 1,680 
2. Big Blue-Rand01 h, Kans- __________________- 
3. Miami-Dayton, Ohio-- __- ______________ ___- _ 1% xiz 

350: 000 
zg’ !ii 

1,680 
2,260 

4. Savannah-Augusta, Ga- _ _- _____________ __ __- 112: 900 10,540 
5. West Branch Susquehanna-Williamsport, Pa- _ _ 260, 000 104, 100 8,910 
6. Susquehanna-Towanda, Pa--- - ____________ ___ 236,000 107,200 10,370 
7. Susquehanna-Harrisburg, Pa- _ _ _ __ _ _ _ _ __ _ _ _ _ _ 594,000 282,600 34,700 
8. Kanawha-Kanawha Falls, W. Va- _ - __ ________ 276,000 125,600 12,670 
9. Allegheny-Red House, N.Y _____ __ _ _ _ __ _ _ _ _ _ _ _ 

10. Iowa, Iowa City, Iowa ______ - _________________ 2 ;:x 
24,500 2,795 

228: 000 
13, 100 1,560 

11. Tennessee-Knoxville, Tenn- _______________ ___ 94,700 12,820 
12. French Broad-Asheville, N.C- ___________ __ ___ 45,500 17,500 2,112 
13. Des Moines-Keosaugua, Iowa- _ _ - ____________ 103,000 41, 100 5,351 
14. Connecticut-White River Junction, Vt _________ 122,000 53, 100 7, 190 
15. Cumberland-Nashville, Term- _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ 208,000 122,200 20, 400 
16. Hudson-Mechanicville, N.Y _ _ _ _-_ __ _ __ _ _ _ _ _ _ _ 89,300 42,500 7,430 
17. Ohio-Cincinnati, Ohio- _ _ _ _ _ __ -_ _ _ _ _ _- _ -_ _ _ _ _ 800,000 443,700 97,700 

increases with Q2.33 it is impossible to tell by 
inspection whether use of QaO will improve 
the relation. 

The following procedure may be used to 
define the effect, if any, of &an on the scatter 
of points about curve 1: 
1. Plot QaD against Q2.= (as abscissa) and draw 

the mean line (curve 2). 
2. Divide each QaO by its value from curve 2 

at the same value of Q2.33. These divisions 
are shown on the graph sheet for each 
plotted point (curve 1). They could have 
been obtained directly by measuring the 
deviations from curve 2 in percentage with 
dividers (only on log paper); in practice 
they would be obtained this way. 

3. Use the dividends obtained in step 2 as the 
third variable. 

4. Proceed with the graphical multiple regres- 
sion as described previously. 

The triangular symbols near curve 1 are the 
points adjusted, for the effect of Qao. The fact 
that they show less scatter than the original 
points indicates that estimates of Qloo are im- 
proved by using Q.. as an additional variable. 
It can be shown by computing the equation of 
the graphical relation that it is of the form 

log Qm=log a+& log Qm-6s log &a.. 

The introduction of the dividend is merely an 
expedient; it cancels out of the final relation. 

Choice OF graphical or analytical method 
for multiple regression 

A standard graphical method is particularly 
useful for exploratory work and for making 
preliminary estimates. The graphical method 
has the following advantages: 

1. It is rapid. 
2. It helps define the appropriate model. 
3. It points out the need for transformations, 

if any. 
4. It brings attention to extremely wild points 

if they exist in the data. (See the wild 
point in fig. 18.) 

Disadvantages of a graphical method are: 

1. Small effects of independent variables cannot 
be identified. 

2. The number of independent variables is 
limited to about three because of the cu- 
mulative effect of inaccuracies in plotting 
and in locating the lines. 

3. Tests of significance of the effects of individ- 
ual variables are not available. 

4. The resulting relation involving three or 
more variables is confusing to the user 
unless expressed mathematically or re- 
plotted in another form. 

An analytical method has the following 
advantages: 

1. For the model used, it gives the best estimate 
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of the equation constants, and of the 
standard error. 

2. It allows testing of the coefficients for sig- 
nificant difference from zero. 

3. Results can be presented in a clear, concise 
manner which most hydrologists can under 
stand. 

4. Results are unique for the model and sample 
used; different investigators would get the 
same results. 

Disadvantages of an analytical method are: 

1. Computation is time consuming, especially 
for several variables and complicated mod- 
els, use of computers reduces the actual 
computation time but requires consider- 
able time to prepare the data. 

2. The existence of wild points is masked as 
would be the existence of a group of points 
much different from the majority (unless 
departures of all points from the estimates 
are computed). 

3. The model selected may not be the appro- 
priate one. 

In general a graphical method should be used 
for exploratory work and the final conclusions 
should be based on a computed relation. 

Determining Equations of Graphical 

Relations 

Graphical analyses are often adequate for 
certain problems. The results may be reported 
by furnishing copies of the graphs, but interpre- 
tation of graphs in more than two variables is 
di5cult for someone not familiar with the pro- 
cedure. For instance, consider the three-variable 
relation of figure 18. What is the expected runoff 
corresponding to a water content of snow of 20 
inches and a precipitation at Three Creek of 10 
inches? It is 40,000 acre-feet from the left curve 
plus 14,000 from the right curve, a total of 
54,000 acre-feet. A better method of presenta- 
tion would be as a family of curves. Another 
way would be to write the equation of t,he graph- 
ical relation. The equation for the relation of 
figure 18 is 

R= -22+1.65+4,.4P 12<5<28 
4<P<ll. 

The limits of definition to the right of the equa- 
tion tell the reader that he applies the equation 
to values of S and P outside those limits at his 
own risk. 

Another advantage of defining the equations 
of graphical relations appears when it is desired 
to compare relations of the same type but 
developed from different data. For example, 
Riggs (1965) related base flow discharges of 
nine small streams to drainage area and per- 
centage of basin cleared. He made eight different 
relations, each based on measurements of the 
same streams but at different times. Interest was 
in the variability of the effect of the percentage 
of basin cleared; this variability was apparent 
when the equations of the relations were defined 
and the regression coefficients of the percentage 
of basin cleared were compared. 

Still another use for the equation of a graphi- 
cal relation is to reduce a relation to its simplest 
terms. This reduction is a desirable procedure 
if the graphical analysis uses compound vari- 
ables. The graphical regression of figure 20 is 
the result of an exploratory study of data for a 
basin in Western United States and indicates 
that MAF may be estimated quite reliably from 
drainage area and mean flow in cubic feet per 
second per square mile. Because drainage area 
is used twice, the actual effect of drainage area 
should be assessed. We begin by writing the 
equation of the relation (by a method described 
subsequently), which is 

log MAF= 1 .OO +log A+ 1.02 log g, 

where A is drainage area in square miles and 
g is mean flow in cubic feet per second per 
square mile. Let G be mean flow in cubic feet 
per second. Then 

?j=j/A. 

Substituting this for g in the first equation gives 

log MAF= l.OO+log A+1.02 log @A) 

= 1 .oo+log A+ I .02 log ;- 1.02 log A. 

Thus the net regression coefficient of log A is 
-0.02 which is negligible and, if eliminated 
from the relation, leaves 

log MAF= 1 .OO + 1.02 log ;, 
or 

MAF= 10?.02. 
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Figure IO.-Gmphical regression in which one variable is used twice. 

General methods 

All linear equations in two variables are of 
the form 

Y=a+bX, 

and this general form is the equation of a 
straight line on rectangular graph paper. The 
linear form on log paper is 

log Y=log a+b log x, 

which, when expressed in the original variables, 
is the power equation 

Y=aXb. 

A straight line on semilog paper has the linear 
form 

log Y=log a+bX, 

which reduces to the exponential equation, 

Y=a(lO)“. 

If b=c log k in the above equation, then 

Y=ak”. 

Occasionally, points plotted on log paper 

define a gentle curve rather than a straight line. 
The locus of the points can sometimes be made 
linear by adding or subtracting a constant from 
one of the variables. The relation would be of 
the form 

or 
log Y=log a+b log (x+c), 

To determine the equation of any linear two- 
variable relation, compute the slope of the line, 
13, as vertical distance divided by horizontal 
distance. These distances are always measured 
in arithmetic units even though the plot is on 
log paper (the b values are not transformed). 
The scale interval should be the same on both 
axes or an appropriate arithmetic adjustment 
made. The intercept, a, is usually read off the 
graph sheet on the ordinate scale at the appro- 
priate value of X. For the relation 

Y=a+bX, 

Y=a when X=0, 

and for the relation 

log Y=log a+b log X, 

Y=a when X=1. 
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If the graphical line cannot be conveniently 
extended to X= 1 or X=0, the coordinates of a 
point on the curve can be substituted in the 
equation and the intercept can be computed. 

The standard equations given in analytic 
geometry texts are of little use in empirical 
analysis. More flexible mathematical expres- 
sions are needed, and ones that may be put in 
linear form are desirable because of ease in 
computing the equation. If a transformation 
cannot be found that will make the relation 
linear, then a model of the type 

Y=a+blX+bzXZ+bJF+ . . . +b,X”, 

or some portion of it, will fit most plotted 
smooth curves. If the curvature is only in one 
direction, the X2 term will introduce the needed 
curvature. For a curve having a point of inflec- 
tion, both the X2 and the x3 terms are needed. 
Terms having higher exponents are rarely used 
in empirical work. 

The above model is equally applicable where 
X is replaced by log X. A line curved in one 
direction on log paper is expressed by 

log Y=log z+bl log X+bz (log X)2. 

Reducing this to power form gives 
y=ax"'p Ioks,ax*l+‘l mgx* 

The general form of linear relations in 
several variables is 

Y=a+blXl+b2X2 . . . +b,X,,. 

Sometimes the regression coefficient for one 
variable changes with another variable. This is 
known as an interaction. In the model 

the last term is called a product interaction 
term. Its use provides a systematic change in 
slope. 

Curvilinear relations in several variables may 
be described by adding terms in powers of the 
independent variables. The equation of a curved 
line or of a multiple relation involving an inter- 
action is not easily computed. The advantage 
of recognizing the general form of equation 
which would represent a particular graphical 
relation lies in the need for a model if a least- 
square regression is to be computed. The 

definition of the equation of a graphical re- 
gression is limited to linear regressions. 

Definition of equations 

The methods for defining the equation of a 
graphical regression will be demonstrated by 
two examples. The procedures used in these 
examples can be adapted readily to other 
problems. The first example, shown in figure 
21, is a multiple linear regression by the method 
of residuals. The equation of this relation is 
obtained as follows. Consider first the relation 
between Y, and X, where Y, is the curve value 
from the left part of figure 21. This relation is 
of the form Y=a+bX, where a is the intercept 
at X1=0 and b is the slope of the line. For this 
example, 

Y,=5.4+0.86X,. 

The equation of the second line is obtained 
similarly and is 

Residual= -10+2.78X2. 

The residual (call it R) is the individual point 
value, Y, minus the value obtained from the 
first equation; that is, 

R=Y-Ye=-10+2.78X2. 

Substituting for Y, in the above equation gives 

Y- (5.4+0.86X,)= - 10+2.78X2 

from which the desired relation, 

Y=-4.6+0.86x,+2.78& 

is obtained. 
The second example (fig. 22) is a relatively 

simple coaxial graphical multiple regression 
adapted from one made by the Hydraulic 
Research Branch of the Bureau of Public 
Roads. This regression is linear, and the lines 
for S and P are systematically spaced and 
parallel. Under these conditions the equation 
of the graphical relation can be determined. 

The following facts are evident from a study 
of figure 22: 

1. Q10 is the dependent variable. 
2. A is t,he principal independent variable. 
3. Lines of equal P are linearly spaced on 

logarithmic paper and are parallel. 
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Figure 91 .-Multiple linear regression by the method of residuals. 

4. Lines of equal S are logarithmically spaced 
at twice the logarithmic scale of the paper 
and are parallel. 

To solve, separate the regression into two 
parts by introducing an intermediate variable 
Qad, (to an arbitrary scale) so that 

and 
Qw=f(A, P> 

Qau=.f(S, Q3. 

Consider the first relation. For a fixed P, the 
model would be 

QW=I(An, 

in which K is the intercept on the Qadf scale 
(at A=l) and n is the slope of the line. In this 
example, n=1.28, which is the ratio of the 
linear vertical to horizontal lengths. When 
P=2.20, the intercept K is 78. To obtain this 
intercept graphically requires a long curve 
extension. It is simpler to compute the intercept 
from some other value of A than one. For 

instance, for Qaa,=l,OOO, A=7.3. Then 

1,00O=K(7.3)‘~~~, from which K=78. 

Similarly, for Qadl= 10,000, A=445 and K=78. 
Introducing P as a variable makes it neces- 

sary to define the intercept K in terms of P 
(because the intercept is different for each 
value of P). The interval per tenth difference 
in P when projected on the Qad, scale is 1.36, 
that is, for each tenth increase in P, the inter- 
cept increases 1.36 times (the intercept is on a 
logarithmic scale). This increase can be meas- 
ured for individual intervals or computed from 
the total increase: For instance, for A= 10 : 

and 
QGa,=1,480 for P=1.2, 

Qad,= 17,000 for P=2.0. 

The increase for eight intervals is 17,000/ 
1,480=11.5, and (1.356)*=11.5. 

Then 



SOME STATISTICAL TOOLS IN HYDROLOGY 31 
600,000 ,( 

QlO A 

Figure Il.-Coaxial graphical multiple regression. 

in which 78 is the intercept at P=1.2, the 
increase in K per tenth is 1.36, and the factor 
lO(P-1.2) is the number of tenths above 1.2. 

Substituting the values of K and n gives, for 
the tist relation 

Qad~=78(1.36:)10~P-1~2~A1~28. (1) 

The second relation, 

Qw=.W, Q3 
is handled by considering again that Qaaj is the 
dependent variable. Neglecting S, the model 
would be 

Qm=KQfl;. 
The slope m is 1.78 by scaling. The intercept K 
is computed at S= 1, Qadj= lOO,dOO, and 
QlO= 19,000, as follows: 

or 
log lOO,OOO=log K+1.78 log 19,000, 

log K=5-7.60=-2.60=7.40-10, 

K=0.0025. 

The spacing of the lines in a vertical direction 
(parallel to the Qad, scale) is twice the paper 
scale. Therefore, the intercept K varies directly 
as S2, and the equation is 

Qadj=0.0025S2Q:~78. (2) 

Equating equations 1 and 2 gives 

0.0025S2Q;~7s=78(1.36)10’P-‘~2’A1~28, 

which, in logarithmic form, is 

log 0.0025+2 log S+1.78 log Qlo=log 78 

+lO(P-1.2) log 1.36+1.28 log A. 

Solving for Qlo gives 

log QIo=1.61+0.72 log A-l.12 log S+0.75P, 

which is the desired result. 

Other Tools 
Analysis OF variance 

Analysis of variance is a procedure by which 
the variation embodied in the data of the 
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sample may be resolved into component varia- 
tions due to independent factors. It is closely 
related to correlation but is applicable to 
problems where some of the factors can be 
described only by classes, not as numerical 
variates. 

The analysis depends on the additive 
characteristic of variances. Its purpose is to 
test whether several means are alike or not. 
The basic features of the process are (1) the 
measurement of variance among experimental 
data by the sum of the squared deviations of 
the observations from their mean, (2) the par- 
titioning of the total sum of squared deviations 
into independent parts, each part associated 
with some physical feature of the experiment, 
(3) the estimation of parameters in the distribu-. 
tions postulated to underlie the data, and (4) 
tests of significance regarding these parameters. 
Results of the test give the probability of there 
being a significant difference between the effects 
of a factor or factors at different levels. 

A very simple example of an analysis of 
variance concerns whether the mean runoffs 
for two periods of record at a gaging station 
are estimates of the same population mean. The 
annual runoffs are given below: 

Pedali 1 Period 8 
17.3 _________________ - 6.4 
21.9 _______ -__- ______ - 15.2 
13.6 __________________ 9.7 
10.8 _______________ -__ 4.4 
19.7 __-------- - -__--_- 9.9 
20.7s- ____________ -___ 11. 9 
16.3 _____ -_- ____ -__-__ 11.9 
16.2 ____ --- ___________ 15.4 
12.5 ______________ -___ 9.4 
11.3-- ----_-----_- --__ 7.0 
14.0- _____________ -___ 16.0 
16.5- _________________ 17.0 
15.3 _____ - ___-_-_____ - 11.2 
19.2 _____________ --___ 13.2 
13.0 ______ --_-___--___ 11.5 

238.3 170.1 

Computations are as follows: 

Grand total=T=238.3+170.1=408.4. 

Total number of items=N=30. 

Number of items in each period=n=15. 

7-/N= (408.4)2/30=5,559.7. 

Sum of squares of all individuals 

=~Y:,=6,067.3. 

(Sum of squares of sums)/n=C c/n 

=[(238.3)2+(170.1)2]/15=5,714.7. 

Between-periods sum of squares= C Tf/n 

- T2/N=5,714.7-5,559.7= 155.0. 

Within-periods sum of squares= CY,” 

-cTf/n=6,067.3-5,714.7=352.6. 

Total sum of squares=CYi- T2/N=6,067.3 

-5,559.7=507.6. 

The analysis of variance table is 

Source 
Sum of Degrees of Mean Average 
squares freedom square mean 

square 

Between 
periods _ _ _ 155. 0 1 

Within 
**155 fJ+n *; 

periods- _ _ 352. 6 28 12. 6 d 
Total--- 507. 6 29 -_-_-_ --------- 

**Statistical signillcanee above the 0.01 level. 

The degrees of freedom, D.F., are one less 
than the number of periods, p, for the between- 
periods sum of squares and N-l for the total. 
Thus the degrees of freedom associated with the 
within-periods source is N-p. Mean square is 
obtained by dividing the sum of squares by 
D.F. 

The last column in the analysis of variance 
table shows expected values of the mean 
squares. If the means for the periods are alike, 
the term nai would be zero. Estimates of the 
ratio [a2+na$a2 may be greater than one, 
because of chance or because there is a real 
difference. This ratio has the F distribution and 
can be tested statistically. The ratio in the 
above table is 155/12.6=12.3. The value of F 
for 1 and 28 degrees of freedom and a proba- 
bility of 0.01 is F~,2e,o.ol=7,6 from a table of 
F distribution. Because the sample ratio 
exceeds the tabular ratio, we conclude that 
there is a real difference between periods; that 
is, the probability is less than 0.01 that such 
a .differkce in means would have occurred by 
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chance if there were no real difference between 
periods. The double asterisk on the mean 
square for between periods (in the analysis-of- 
variance table) denotes statistical significance 
above the 0.01 level. 

Now consider a similar problem, to deter- 
mine whether mean annual precipitation at 
three stations is different. The data are given 
in the following table. 

Precipitation, in inches, at- 

Year site 1 Site 2 Site 3 

1945-------_-_--- 40. 6 48. 2 47. 5 
1946----.------_- 36. 1 40. 2 34 8 
1947- _ _ _ _ _ _ _ _ _ _ _ _ 37. 5 37. 8 42. 2 
1948--..~~~-~~~~~~ 52. 3 58. 2 59. 9 
1949------_----_- 42. 2 43. 3 51. 7 
1950-----~~-~~~~~ 40. 6 41. 4 42. 5 
1951--------_--_- 38. 3 42. 3 40. 5 
1952--__--_---.._- 45. 8 48. 2 47. 8 

-- ___ 
F- Sums------- 366. 9 

_ _ - _ - _ _ _ _ _ _ _ - _ - 
“if 

. 
7” 359. 45. 6 0 

45. 9 

From the data in the table we can make the 
following calculations : 

T= 1,059.c-I 
T=/N=46,807.8 
ZY72=47,784.0 

2T,2/n=46,885.4 

The analysis-of-variance table is 

Source 
Sum of 
squares 

Dw;- Mean 

freedom 
square 

Among sites------- 
Within sites ____ __ _ 

Total------- 

Fa,21=38.8/42.9<1; therefore there is no dii- 
ference statistically among the three means. 

A perusal of hydrologic literature will turn 
up very few applications of analysis of variance. 
Most analyses of variance are based on data 
from a designed experiment, and it is this ap- 
lication for which the best results are obtained. 
Hydrologic data are usually parts of a time 
series which may not be stationary. Thus the 
individual values may not be entirely inde- 
pendent as required for a valid analysis of 

variance. In the example comparing mean run- 
offs for two periods of record, it was concluded 
that a real difference existed between periods. 
But there is no physical reason to expect a 
change in this basin. The earlier period was 
one of high precipitation; the later period in- 
cluded the drought of the thirties. It is also 
possible that some of the annual runoffs were 
serially correlated. Thus the characteristics 
of the data tend to discredit the results of this 
particular application of the analysis of 
variance. 

In the last example, the precipitation at site 
2 is greater than that at site 1 for every year 
shown, yet the analysis of variance shows no 
difference in means. (An analysis of variance 
between site 1 and site 2, only, shows a dif- 
ference at a probability level of about 0.25.) 
The annual precipitations at8 a site may be 
independent, but the precipitations at the sev- 
eral sites for the same year are not. Therefore 
the requirements of the method are not, met, 
and the results must be accepted with 
reservation. 

The two examples given utilize a very simple 
statistical model. For more complicated prob- 
lems, several models may be considered. Selec- 
tion of the appropriate one is difficult for the 
“part-time” statistician. Many statistics texts 
treat analysis of variance in detail. See Bennett 
and Franklin (1954), Brownlee (1960), and 
Dixon and Massey (1957). In general, an 
analysis of variance made by someone not 
thoroughly familiar with the process should be 
reviewed by a statistician for suitability of the 
model and correctness of the interpretation. 

Analysis of covariance 

The analysis of variance of the runoff data 
for two periods (see p. 32) indicated that the 
population means were probably different, yet 
other information, particularly precipit.ation 
records, leads to the opposite conclusion. The 
precipitation data can be incorporated in the 
analysis by using an analysis of covariance. 
This method includes concepts from analysis of 
variance and regression and is applicable where 
a variable represents a measurement for each 
individual as opposed to a variable which can 
only be separated into a few categories. 
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Two general conditions for which an analysis 
of covariance will produce conclusions different 
from an analysis of variance are shown in 
figure 23. In each condition, Y is the variable 
being analyzed and X is the independent varia- 
ble. Plot A of figure 23 shows means of Y for 
the two periods to be practically equal. For 
this condition an analysis of variance would 
show no significant difference between means. 
But a major change in the relation of Y to X 
occurred between periods 1 and 2, and it is this 
change that the analysis of covariance can 
identify. 

Y 

Plot A 

b\ 8% $&\o +\ _---- 

/lYT!!z --- Xl xt x2 
X 

Figure 23.- Two conditions for which analysis of covariance 
will produce conclusions different from those of analysis 
of variance. 

The analysis of covariance test is made on 
deviations from regression rather than on 
means. The test involves the sum of squares 
of deviations from a regression defined by all 
points plotted about their own period means 
and the sum of squares of deviations from an 
overall regression line (Dixon and Massey, 
1957, p. 210). In effect the test indicates 
whether the two periods are different when 
adjusted to the same X value. As previously 
stated, an analysis of variance of data of the 
condition of plot A, figure 23, would indicate 
no diReren& between periods because the 
means 7, and Fz are nearly alike. But analysis 
of covariance would show a significant differ- 
ence in Y values corresponding to the overall 
mean Ft. 

Plot B of figure 23 shows two periods having 
very different mean Y values but no real 
difference in the regressions of Y on X for the 
two periods. An analysis of variance would 
show a significant difference between means, 
but an analysis of covariance would show no 
significant difference in regressions for the two 

periods. The two results do not conflict. There 
is a difference in means for the two periods, 
but this difference is due to a difference in X 
values for those periods. 

Analysis of covariance requires t,hat slopes 
of the regression lines for the individual periods 
be virtually parallel. A test for parallelism has 
been described by Dixon and Massey (1957, 
p. 218). 

Table S.-Annual precipitation index and annual runoff, for 
example of analysis of covoriance 

Period 1 Period 2 
- 

Precipitation Runoff Precipitation Runoff 
index (X) W) index (X) 07 

27..-_-------- 
36m.-----_-_m 
26---------m- 
18- _ _ _ _ _ - _ - _ - 
27--e- _______ 
30-..-------_- 
25-------w--- 
28--------~_~ 

17.3 14------_--- 
21.9 26---------m 
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Tz=692; T,=408.4. 

Details of an analysis-of-covariance compu- 
tation are given below using (1) the same runoff 
data as in the previous section for !he analysis- 
of-variance example and (2) some assumed 
values of a precipitation index, all of which 
are listed in table 5 and plotted on figure 24. 
The plot indicates that there is no change in 

I o Period 1 

ANNUAL PRECIPITATION INDEX 

Figure 24.-Plot of data from table 5. 
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sion is obtained by subtraction. The data are 
shown in the following covariance table. 

Data Deviations 
-__-- 

source Degreg DegP2S MC!811 
of zzz 

freedom 
=u w of 

freedom 
Z( Y- 552 square 

Between 
UlWIlS-.. 1 235 191 155.0 1 5. 5 5. 5 

Within 
periods. _ 23 701 443.3 3526 27 72.3 2.7 

Total-. 29 936 634.3 507.6 28 77.8 __..... 

Sums of squares for within periods (in the first part of the table) are 
obtained by subtraction. Degrees of freedom for deviations from regres- 
sion, Z(Y-Y)s, for within periods and total are one less than for means. 

The test of significance compares F (the ratio 
of mean squares from the covariance table), to 
values of the distribution of F at the 5-percent 
and lo-percent levels. For this example they are 

and 

F=5.5/2.7=2.0, 

F 1.2,.0.05=4.2, 
I 

F 1.27.0.10=2.9. 

relation between periods and that the difference 
in runoff means between periods was due to 
differences in precipitation. For these data it 
would not be necessary to make a covariance 
analysis. However, if separate regressions were 
indicated by the plotted points, it might be 
desirable to make a covariance analysis in order 
to test whether the two regressions were signifi- 
cantly different statistically. 

The following computation illustrates the 
procedure : 

Total sum of products=CXuYtt- T,TJnk, 
where T, and T, are grand totals of X and Y, 
n is the number of items in each period, and k 
is the number of periods. 

Between-means sum of products 

=cT,,T, Jn- T,T,jnk, 

where T,, and TV, are column (period) totals. 
For this example, 

the total sum of products= (27) (17.3) 

+(36)(21.9)....+(23)(11.5) 

- (692) (408.4)/(15) (2) 

=10,054.7-9,420.5=634.3 

Between-means sum of products 

= (388) (328.3)/15-l- (304) (170.1)/15 

- (692)(408.4)/30=9,611.4 

-9,420.4=191.0 

Total sum of squares on X=xX’,, 

- T,2/N=l6,898- 15,962=936 

Between-periods sum of squares on X 

=cT$n-TT,2/N=l.6,197-15,962=235 

Sums of squares on Y are taken from the 
analysis-of-variance example. 

Deviations from regression are computed by 
the formula 

which, for totals, =507.6- (634.3)‘/936=507.6 
-429.8=77.8. 
For within periods, the deviations from regres- 
sion are 

352.6-(443.3)2/701=352.6-280.3=72.3, 
and the between-means deviation from regres- 

Because 2.0 is less than 2.9, the difference in 
periods is not significant at the lo-percent level 
when runoffs are adjusted for precipitation. 

See the article by Wilm (1943)) which includes 
a discussion by Davenport, for an application of 
covariance analysis to a hydrologic problem. 

Multivariate analysis 

Multiple regression on independent variables 
which are related among themselves sometimes 
produces inconsistent results from different sets 
of data. For example, the regression coefficient 
of an independent variable may range from 
positive to negative in different regressions and 
yet test statistically significant in each. Under 
these conditions, the conclusions regarding the 
effect of that variable on the dependent variable 
might be wrong if only one set of data was 
analyzed. The use of multivariate analysis has 
been proposed as a way out of this dilemma. 

Multivariate analysis is concerned with the 
relationship of sets of dependent variates and 
includes several different procedures, each in- 
tended to accomplish a different objective. 
Snyder (1962) investigated the use of multi- 
variate analysis in hydrology where the struc- 
ture of the solution was of primary interest. 
Kendall (1957) described the theory. 
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In its present (1965) state of development, 
multivariate analysis is- not a useful tool for 
defining cause-and-effect relationships in hy- 
drology; regression analysis is still the best 
method available. 

Characteristics OF Hydrologic Data 

Streamflow is a continuous process which 
varies with time, and thus streamflow data are 
said to form a time series. A plot of streamflow 
against time would show a pattern of variation 
recurring each year; that is, high flows tend to 
occur at particular times of the year and low 
flows at others in response to climatological 
characteristics which also vary seasonally. 

Because streamflows are not discrete values, 
we need to chop the hydrograph into pieces 
which we will consider as individual stream- 
flows. The particular pieces we use have certain 
characteristics which must be considered in 
analysis. The most common piece is the daily 
mean discharge. A daily mean discharge is 
related to the discharge of the previous day 
and lies within a range which depends on the 
time of year. In statistical terms, daily mean 
discharge is a serially correlated variable, that 
is, it is nonrandom. The daily mean discharges 
for a year are also not homogeneous; they are 
more likely to be larger at one time of the year 
than at another. Data are considered homo- 
geneous if any subgroup to which certain of 
these data may be logically assigned has the 
same expected mean and variance as any other 
subgroup of the population. 

Monthly mean discharges for different. calen- 
dar months are also serially correlated and 
nonhomogeneous. Annual mean discharges may 
be homogeneous values. They may or may not 
be serially correlated, depending on the amount 
of basin storage at the time that the hydrologic 
year begins. 

Instead of a streamflow variable made up of 
adjacent segments of a hydrograph, we may 
consider variables such as July mean, annual 
peak discharge, or annual minimum flow. These 
variables are made up of one individual from 
each year and thus are independent of the 
yearly cycle of streamflow. They are also inde- 
pendent of each other (with the possible ex- 

cept,ion of annual minimum flows which include 
effluent from ground-water recharge of a 
previous year). 

Precipitation, temperature, sediment dis- 
charge, water quality, transpiration, evapora- 
tion, and solar radiation vary throughout the 
year; indices describing them may be nonran- 
dom and nonhomogeneous. 

Obviously the distinction between random 
and nonrandom data and between homogeneous 
and nonhomogeneous data is not always clear 
cut. The analyst will have to determine whether 
the effects of possible moderate nonrandomness 
or nonhomogeneity will invalidate the conclu- 
sions of his particular analysis. It is important 
that the character of the data be considered 
in designing the analysis and in interpreting 
the results. 

So-far we have described variables that may 
be considered samples from a population if the 
individuals are homogeneous. If the individuals 
are also random, we can estimate the frequency 
distribution of the variable from the sample. 
Another type of variable used extensively in 
hydrology cannot be considered to have a 
probability distribution, or even to be drawn 
from a population as thought of in the usual 
sense. Basin characteristics such as drainage 
a,rea, slope, elevation, and vegetal index are in 
this category. (It is possible to conceive of 
certain physiographic parameters as random 
variables, but rarely can the available sample 
be considered randomly selected or represent- 
ative.) 

Time is sometimes used as a variable in 
regression. It has no distribution and is used 
only as a substitute for the real factor or 
factors (which are unknown or cannot be ex- 
pressed by indices) associated with changes in 
a dependent variable. 

Effects OF data characteristics on analysis 

We prepare a frequency distribution of daily 
mean discharges from several years of data; 
this is the duration curve. The individual 
values are nonrandom and nonhomogeneous. 
Therefore the duration curve cannot be con- 
sidered a frequency curve. The probability of 
exceeding a certain value on a particular future 
day depends both on the preceding value and 
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on the time of year. Thus, the duration curve 
is merely the distribution of daily means that 
has occurred. It can be considered an estimate 
of the distribution during a future period sev- 
eral years long. 

On the other hand, frequency curves of 
annual flood peaks can be interpreted as prob- 
ability curves because the individuals are 
unrelated and homogeneous. Most low-flow 
frequency curves can be similarly interpreted, 
but occasionally a serially correlated sample 
will be found. 

The effect of using nonhomogeneous data in 
a regression problem is shown by figure 25 in 
which is plotted 4 years of monthly mean dis- 
charge for each of the 12 calendar months for 
two stations, one in Turkey and one in Idaho. 
The relation looks fairly good, but there is 
actually no relation between the two streams 
for a particular calendar month. The apparent 
relation using all calendar months arises be- 
cause the yearly cycle of streamflow in Idaho 
resembles that in Turkey. Discharges in winter 
months are low and in spring snowmelt months 

0 are high. 
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Figure PS.-Spurious relation using nonhomogeneous data. 

Less extreme conditions are shown by rela- 
tions between monthly mean discharges from 
contiguous basins. For example, there is no 

relation between monthly mean discharges of 
Lake Fork above Moon Lake, Utah, and 
Duchesne River at Provo River Trail, Utah, 
for the calendar month of January; there is a 
fair relation for the calendar month of June 
(fig. 26). With few exceptions the relation be- 
tween monthly discharges from two adjacent 
drainage basins for a particular calendar month 
is not the same as the relation for a different 
calendar month. When monthly discharges for 
all calendar months are used together, the 
computed correlation coefficient will be too high 
and the computed standard error will be an 
average of the standard errors for the individual 
calendar-month relations. 

Outhers 

Many factors influence the flow of a stream ; 
some exert great influence at one time and none 
at another; most exert effects which are inter- 
related with effects of other factors. Only a 
few factors can be included in a regression used 
to estimate streamflow, and the effects of these 
factors are only approximated. Consequently 
there is a scatter of points about the regression 
hue and occasionally a wild point occurs (see 
fig. 18 for an example). Such wild points are 
called outliers in statistics, and statistical 
tests are available for use in determining 
whether or not a particular point should be 
rejected as not belonging to the group. It seems 
questionable whether outliers in hydrologic 
analyses should be rejected on the basis of a 
statistical test. Consider the wild point in figure 
18. If the precipitation had been about 7 inches 
instead of 3.4 inches, the point would not bc 
wild. It is possible that precipitation at the 
higher elevations in the Jarbidge River basin 
was much greater than at Three Creek. If it 
were, the same thing could happen again and 
more weight should have been given to that 
point in the analysis. However, if some of the 
data for that year are found to be unreliable 
we could reject the point. 

Acton (1959) devoted a short chapter to the 
rejection of unwanted data. He says, in part’, 
“But the plain truth is that physical scientists 
and engineers need not be encouraged to ignore 
obstinate outlying data-rather they need to 
be held in check”. 
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Figure 26.-Discharge relations for individual months, two Utah stations. 
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