
 

The 100-year flood is to be estimated for locations without streamflow gages using basin 
characteristics at those locations.  A regression equation is first developed relating the 100-year 
flood to several basin characteristics at sites which have a streamflow gage.  Each characteristic 
used is known to influence the magnitude of the 100-year flood, has already been used in 
adjoining states, and so will be included in the equation regardless of whether it is significant for 
any individual data set.  Values for the basin characteristics at each ungaged site are then input to 
the multiple regression equation to produce the 100-year flood estimate for that site. 

Residuals from a simple linear regression of concentration versus streamflow show a consistent 
pattern of seasonal variation.  To make better predictions of concentration from streamflow, 
additional explanatory variables are added to the regression equation, modeling the pattern seen 
in the data. 

As an exploratory tool in understanding possible causative factors of groundwater 
contamination, data on numerous potential explanatory variables are collected.  Each variable is 
plausible as an influence on nitrate concentrations in the shallowest aquifer.  Stepwise or similar 
procedures are performed to select the "most important" variables, and the subsequent 
regression equation is then used to predict concentrations   The analyst does not realize that this 
regression model is calibrated, but not verified. 
 

Multiple linear regression (MLR) is the extension of simple linear regression (SLR) to the case of 
multiple explanatory variables.  The goal of this relationship is to explain as much as possible of 
the variation observed in the response (y) variable, leaving as little variation as possible to 
unexplained "noise".  In this chapter methods for developing a good multiple regression model 
are explained, as are the common pitfalls such as multi-collinearity and relying on R2.  The 
mathematics of multiple regression, best handled by matrix notation, will not be extensively 
covered here.  See Draper and Smith (1981) or Montgomery and Peck (1982) for this. 

Chapter 11
Multiple Linear Regression
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11.1   Why Use MLR? 
 
When are multiple explanatory variables required?  The most common situation is when 
scientific knowledge and experience tells us they are likely to be useful.  For example, average 
runoff from a variety of mountainous basins is likely to be a function both of average rainfall 
and of altitude;  average dissolved solids yields are likely to be a function of average rainfall, 
percent of basin in certain rock types, and perhaps basin population.  Concentrations of 
contaminants in shallow groundwater are likely to be functions of both source terms (application 
rates of fertilizers or pesticides) and subsurface conditions (soil permeability, depth to 
groundwater, etc.). 

The use of MLR might also be indicated by the residuals from a simple linear SLR.  Residuals 
may indicate there is a temporal trend (suggesting time as an additional explanatory variable), a 
spatial trend (suggesting spatial coordinates as explanatory variables), or seasonality (suggesting 
variables which indicate which season the data point was collected in).  Analysis of a residuals 
plot may also show that patterns of residuals occur as a function of some categorical grouping 
representing a  special condition such as:  on the rising limb of a hydrograph, at cultivating time, 
during or after frontal storms, in wells with PVC casing, measurements taken before 10:00 a.m., 
etc.  These special cases will only be revealed by plotting residuals versus a variety of variables -- 
in a scatterplot if the variable is continuous, in grouped boxplots if the variable is categorical.  
Seeing these relationships should lead to definition of an appropriate explanatory variable and its 
inclusion in the model if it significantly improves the fit. 
 

11.2   MLR Model 

The MLR model will be denoted: 
 y = β0 + β1 x1 + β2 x2 + .... + βk xk + ε 
where y is the response variable 
 β0 is the intercept 
 β1 is the slope coefficient for the first explanatory variable 
 β2 is the slope coefficient for the second explanatory variable 
 βk is the slope coefficient for the kth explanatory variable, and 
 ε is the remaining unexplained noise in the data (the error). 

To simplify notation the subscript i, referring to the i=1,2,..,n observations, has been omitted 
from the above.  There are k explanatory variables, some of which may be related or correlated 
to each other (such as the previous 5-day's rainfall and the the previous 1-day rainfall).  It is 
therefore best to avoid calling these "independent" variables.  They may or may not be 
independent of each other.  Calling them explanatory variables describes their purpose:  to 
explain the variation in the response variable.   
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11.3   Hypothesis Tests for Multiple Regression 

11.3.1   Nested F Tests 
The single most important hypothesis test for MLR is the F test for comparing any two nested 
models.  Let model "s" be the "simpler" MLR model 
 ys = β0 + β1 x1 + β2 x2 + .... + βk xk + εs . 
It has k+1 parameters including the intercept, with degrees of freedom (dfs) of n−(k+1).  Again, 
the degrees of freedom equals the number of observation minus the number of parameters 
estimated, as in SLR.  Its sum of squared errors is SSEs. 

Let model "c" be the more complex regression model  
 yc = β0 + β1 x1 + β2 x2 + .... + βk xk + βk+1 xk+1 + .... + βm xm + εc . 
It has m+1 parameters and residual degrees of freedom (dfc) of n−(m+1).  Its sum of squared 
errors is SSEc. 

The test of interest is whether the more complex model provides a sufficiently better 
explanation of the variation in y than does the simpler model.  In other words, do the extra 
explanatory variables xk+1 to xm add any new explanatory power to the equation?  The models 
are "nested" because all of the k explanatory variables in the simpler model are also present in 
the complex model, and thus the simpler model is nested within the more complex model.  The 
null hypothesis is 
 H0:  βk+1 = βk+2 = ... = βm = 0   versus the alternative 
 H1:  at least one of these m−k coefficients is not equal to zero. 

If the slope coefficients for the additional explanatory variables are all not significantly different 
from zero, the variables are not adding any explanatory power in comparison to the cost of 
adding them to the model.  This cost is measured by the loss in the degrees of freedom = m−k, 
the number of additional variables in the more complex equation. 

The test statistic is 

 F = 
(SSEs - SSEc ) / (dfs - dfc)

(SSEc / dfc)   where (dfs − dfc) = m−k. 

If F exceeds the tabulated value of the F distribution with (dfs − dfc) and dfc degrees of 
freedom for the selected α (say α=0.05), then H0 is rejected.  Rejection indicates that the more 
complex model should be chosen in preference to the simpler model.  If F is small, the 
additional variables are adding little to the model, and the simpler model would be chosen over 
the more complex. 
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Note that rejection of H0 does not mean that all of the K+1 to m variables have coefficients 
significantly different from zero.  It merely states that some of the coefficients in the more 
complex model are significant, making that model better than the  simpler model tested.  Other 
simpler models having different subsets of variables may need to be compared to the more 
complex model before choosing it as the "best". 
 
11.3.2   Overall F Test 
There are two special cases of the nested F test.  The first is of limited use, and is called the 
overall F test. In this case, the simpler model is 
 ys = β0 + εs , where β0 =  y . 
The rules for a nested F test still apply:  the dfs = n−1 and SSEs equals (n−1) times the sample 
variance of y.  Many computer packages give the results of this F-test.  It is not very useful 
because it tests only whether the complex regression equation is better than no regression at all.  
Of much greater interest is which of several regression models is best. 
 
11.3.3   Partial F Tests 
The second special case of nested F tests is the partial F test, which is called a Type III test by 
SAS.  Here the complex model has only 1 additional explanatory variable over the simpler 
model, so that m=k+1.  The partial F test evaluates whether the mth variable adds any new 
explanatory power to the equation, and so ought to be in the regression model, given that all the 
other variables are already present.  Note that the F statistics on a coefficient will change 
depending on what other variables are in the model.  Thus the simple question "does variable m 
belong in the model?" cannot be answered.  What can be answered is whether m belongs in the 
model in the presence of the other variables. 

With only one additional explanatory variable, the partial F test is identical in results to a t-test 
on the coefficient for that variable.  In fact,  t2 = F, where both are the statistics computed for 
the same coefficient for the partial test.  Some computer packages report the F statistic, and 
some the t-test, but the p-values for the two tests are identical.  The partial t-test can be easily 
performed by comparing the t statistic for the slope coefficient to a students t-distribution with 
n−(m+1) degrees of freedom.  H0 is rejected if |t|> t1−(α/2).  For a two-sided test with  
α = 0.05 and sample sizes n of 20 or more, the critical value of t is |t|≅ 2.  Larger t-statistics (in 
absolute value) for a slope coefficient indicate significance.  Squaring this, the critical partial F 
value is near 4. 
 
Partial tests guide the evaluation of which variables to include in a regression model, but are not 
sufficient for every decision.  If every |t|>2 for each coefficient, then it is clear that every 
explanatory variable is accounting for a significant amount of variation, and all should be 
present.  When one or more of the coefficients has a |t|<2, however, some of the variables 
should be removed from the equation, but the t values are not a certain guide as to which 
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ones to remove.  These partial t or F tests are precisely the tests used to make automatic 
decisions for removal or inclusion in "stepwise" procedures:  forward, backward, and stepwise 
multiple regression.  These procedures do not guarantee that some "best" model is obtained, as 
discussed later.  Better procedures are available for doing so. 
 
 
11.4   Confidence Intervals 

Confidence intervals can be computed for the regression slope coefficients βk, and for the mean 
response ŷ  at a given value for all explanatory variables.  Prediction intervals can be similarly 
computed around an individual estimate of y.  These are entirely analogous to the SLR situation, 
but require matrix manipulations for computation.  A brief discussion of them follows.  More 
complete treatment can be found in many statistics textbooks, such as Montgomery and Peck 
(1982), Draper and Smith (1981), and Walpole and Myers (1985), among others. 

11.4.1   Variance-Covariance Matrix 
In MLR, the values of the k explanatory variables for each of the n observations, along with a 
vector of 1s for the intercept term, can be combined into a matrix X: 

 X = 







1 x11 x21 . . x1k
1 x12 x22 . . x2k
. . . . . .
. . . . . .
1 xn1 xn2 . . xnk

  

X is used in MLR to compute the variance-covariance matrix  σ2 • (X'X)−1 , 
where (X'X)−1 is the "X prime X inverse" matrix.  Elements of (X'X)−1 for three explanatory 
variables are as follows: 
 

 (X'X)−1   =   







C00 C01 C02 C03

C10 C11 C12 C13

C20 C21 C22 C23

C30 C31 C32 C33

  [11.1] 

 

When multiplied by the error variance σ2 (estimated by the variance of the residuals, s2), the 
diagonal elements of the matrix C00 through C33 become the variances of the regression 
coefficients, while the off-diagonal elements become the covariances between the coefficients.  
Both (X'X)−1 and s2 can be output from MLR software. 

11.4.2   Confidence Intervals for Slope Coefficients 
Interval estimates for the regression coefficients β0 through βk are often printed by MLR 
software.  If not, the statistics necessary to compute them are.  As with SLR it must be assumed 
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that the residuals are normally distributed with variance σ2.  A  
100•(1−α)% confidence interval on βj is 
 b̂ j − t (α/2, n−p) s2 Cjj   ≤  βj  ≤  b̂ j + t (α/2, n−p) s2 Cjj  [11.2] 

where Cjj is the diagonal element of (X'X)−1 corresponding to the jth explanatory variable.  
Often printed is the standard error of the regression coefficient: 
 se (b̂ j) = s2 Cjj . [11.3] 

Note that Cjj is a function of the other explanatory variables as well as the jth.  Therefore the 
interval estimate, like b̂ j and its partial test, will change as explanatory variables are added to or 
deleted from the model. 

11.4.3   Confidence Intervals for the Mean Response 
A 100•(1−α)% confidence interval for the expected mean response µ(y0) for a given point in 
multidimensional space x0 is symmetric around the regression estimate ŷ 0.  These intervals also 
require the assumption of normality of residuals. 
 ˆ y 

0
− t

(α / 2,n− p)
s2 x

0
'(X ' X )−1 x

0
≤ µ(y0) ≤  ˆ y 

0
+ t

(α / 2, n− p )
s2 x

0
'(X ' X)−1 x

0
 [11.4] 

The variance of the mean is the term under the square root sign.  It changes with x0, increasing 
as x0 moves away from the multidimensional center of the data.  In fact, the term x0'(X'X)−1x0 
is the leverage statistic hi, expressing the distance that x0 is from the center of the data. 

11.4.4   Prediction Intervals for an Individual y 
A 100•(1−α)% prediction interval for a single response y0, given a point in multidimensional 
space x0, is symmetric around the regression estimate ŷ 0.  It requires the assumption of 
normality of residuals. 
ˆ y 

0
− t

(α / 2,n− p)
s2 1+ x

0
'(X ' X)−1 x

0
≤ y0 ≤  ˆ y 

0
+ t

(α / 2, n− p )
s2 1+ x

0
'(X ' X)−1 x

0
 [11.5] 

 

11.5   Regression Diagnostics 
 
As was the case with SLR, it is important to use graphical tools to diagnose deficiencies in MLR.  
The following residuals plots are very important:  normal probability plots of residuals, residuals 
versus predicted (to identify curvature or heteroscedasticity), residuals versus time sequence or 
location (to identify trends), and residuals versus any candidate explanatory variables not in the 
model (to identify variables, or appropriate transformations of them, which may be used to 
improve the model fit). 
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11.5.1   Partial Residual Plots 
As with SLR, curvature in a plot of residuals versus an explanatory variable included in the 
model indicates that a transformation of that explanatory variable is required.  Their relationship 
should be linear.  To see this relation, however, residuals should not be plotted directly against 
explanatory variables; the other explanatory variables will influence these plots.  For example, 
curvature in the relationship between e and x1 may show up in the plot of e versus x2, 
erroneously indicating that a transformation of x2 is required.  To avoid such effects, partial 
residuals plots (also called adjusted variable plots) should be constructed. 

The partial residual is 
 ej* = y − ŷ(j)  
where ŷ(j)  is the predicted value of y from a regression equation where xj is left out of the 
model.  All other candidate explanatory variables are present.  

This partial residual is then plotted versus an adjusted explanatory variable 
 xj* = x − x̂(j)  
where x̂(j)  is the xj predicted from a regression against all other explanatory variables.  So xj is 
treated as a response variable in order to compute its adjusted value.  The partial plot (ej* versus 
xj*) describes the relationship between y and the jth explanatory variable after all effects of the 
other explanatory variables have been removed.  Only the partial plot accurately indicates 
whether a transformation of xj is necessary. 
 
11.5.2   Leverage and Influence 
The regression diagnostics of Chapter 9 are much more important in MLR than in SLR.  It is 
very difficult when performing multiple regression to recognize points of high leverage or high 
influence from any set of plots.  This is because the explanatory variables are multidimensional.  
One observation may not be exceptional in terms of each of its explanatory variables taken one 
at a time, but viewed in combination it can be very exceptional.  Numerical diagnostics can 
accurately detect such anomalies. 
 
The leverage statistic hi = x0'(X'X)−1x0  expresses the distance of a given point x0 from the 
center of the sample observations (see also section 11.4.3).  It has two important uses in MLR.  
The first is the direct extension of its use in SLR -- to identify points unusual in value of the 
explanatory variables.  Such points warrant further checking as possible errors, or may indicate a 
poor model (transformation required, relationships not linear, etc.). 
 
The second use of hi is when making predictions.  The leverage value for a prediction should 
not exceed the largest hi in the original data set.  Otherwise an extrapolation beyond the 
envelope surrounding the original data is being attempted.  The regression model may not fit 
well in that region.  It is sometimes difficult to recognize that a given x0 for which a predicted ŷ  
is attempted is outside the boundaries of the original data.  This is because the point may not be 
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beyond the bounds of any of its individual explanatory variables.  Checking the leverage statistic 
guards against an extrapolation that is difficult to detect from a plot of the data. 

Example 1 
Variations in chemical concentrations within a steeply dipping aquifer are to be described by 
location and depth.  The data are concentrations (C) plus three coordinates:  distance east (DE), 
distance north (DN), and well depth (D).  Data were generated using C = 30 + 0.5 D + ε.  Any 
acceptable regression model should closely reproduce this true model, and should find C to be 
independent of DE and DN.  Three pairwise plots of explanatory variables (figure 11.1) do not 
reveal any "outliers" in the data set.  Yet compared to the critical leverage statistic hi=3p/n=0.6, 
and critical influence statistic DFFITS=2 p/n  =0.9, the 16th observation is found to be a 
point of high leverage and high influence (table 11.1).  In figure 11.2 the axes have been rotated, 
showing observation 16 to be lying outside the plane of occurrence of the rest of the data, even 
though its individual values for the three explanatory variables are not unusual. 
 

 Obs. # DE DN  D   C   hi  DFFITS 
 1 1 1 4.2122 30.9812 0.289433 -0.30866 
 2 2 1 8.0671 33.1540 0.160670 -0.01365 
 3 3 1 10.7503 37.1772 0.164776 0.63801 
 4 4 1 11.9187 35.3864 0.241083 -0.04715 
 5 1 2 11.2197 35.9388 0.170226 0.42264 
 6 2 2 12.3710 31.9702 0.086198 -0.51043 
 7 3 2 12.9976 34.9144 0.087354 -0.19810 
 8 4 2 15.0709 36.5436 0.165040 -0.19591 
 9 1 3 12.9886 38.3574 0.147528 0.53418 
 10 2 3 18.3469 39.8291 0.117550 0.45879 
 11 3 3 20.0328 40.0678 0.121758 0.28961 
 12 4 3 20.5083 37.4143 0.163195 -0.47616 
 13 1 4 17.6537 35.3238 0.165025 -0.59508 
 14 2 4 17.5484 34.7647 0.105025 -0.77690 
 15 3 4 23.7468 40.7207 0.151517 0.06278 
 16 4 4 13.1110 42.3420 0.805951 4.58558 
 17 1 5 20.5215 41.0219 0.243468 0.38314 
 18 2 5 23.6314 40.6483 0.165337 -0.08027 
 19 3 5 24.1979 42.8845 0.160233 0.17958 
 20 4 5 28.5071 43.7115 0.288632 0.09397 

Table 11.1   Data and diagnostics for Example 1  
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Figure 11.1   Scatterplot matrix for the 3 explanatory variables 

(obs. 16 is shown as a square) 

 
Figure 11.2   Rotated scatterplot showing the position of the high leverage point 

(obs. 16 is shown as a square) 
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The depth value for observation 16 was set as a "typographical error", and should be 23.111 
instead of 13.111.  What does this error and resulting high leverage point do to a regression of 
concentration versus the three explanatory variables?  From the t-ratios of table 11.2 it is seen 
that DN and perhaps DE appear to be significantly related to Conc, but that depth (D) is not.  
This is exactly opposite of what is known to be true. 

Conc = 28.9 + 0.991 DE + 1.60 DN + 0.091 D 
 
   n = 20 s = 2.14 R2 = 0.71 
Parameter Estimate Std.Err(β) t-ratio  p  
Intercept β0 28.909 1.582 18.28 0.000 
Slopes     βk 
DE 0.991 0.520 1.90 0.075 
DN 1.596 0.751 2.13 0.049 
D 0.091 0.186 0.49 0.632 

Table 11.2   Regression statistics for Example 1 
  

One outlier has had a severe detrimental effect on the regression coefficients and model 
structure.  Points of high leverage and influence should always be examined before accepting a 
regression model, to determine if they represent errors.  Suppose that the "typographical error" 
was detected and corrected.  Table 11.3 shows that the resulting regression relationship is 
drastically changed: 

C = 29.2 − 0.419 DE − 0.82 DN + 0.710 D 
 
   n = 20 s = 1.91 R2 = 0.77 
Parameter Estimate Std.Err(β) t-ratio  p  
Intercept β0 29.168 1.387 21.03 0.000 
Slopes     βk 
DE −0.419 0.833 −0.50 0.622 
DN −0.816 1.340 −0.61 0.551 
D 0.710 0.339 2.10 0.052 

Table 11.3   Regression statistics for the corrected Example 1 data 

Based on the t-statistics, DE and DN are not significantly related to C, while depth is related.  
The intercept of 29 is close to the true value of 30, and the slope for depth (0.7) is not far from 
the true value of 0.5.  For observation 16, hi = 0.19 and DFFITS = 0.48, both well below their 
critical values.  Thus no observations have undue influence on the regression equation.  Since 
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DE and DN do not appear to belong in the regression model, dropping them produces the 
equation of table 11.4, with values very close to the true values from which the data were 
generated.  Thus by using regression diagnostics to inspect observations deemed unusual, a poor 
regression model was turned into an acceptable one. 

Conc  =  29.0 + 0.511 D 
 
   n = 20 s = 1.83 R2 = 0.77 
Parameter Estimate Std.Err(β) t-ratio  p  
Intercept β0 29.036 1.198 24.23 0.000 
Slope     D 0.511 0.067 7.65 0.000 

Table 11.4   Final regression model for the corrected Example 1 data 
 

11.5.3   Multi-Collinearity 
It is very important that practitioners of MLR understand the causes and consequences of multi-
collinearity, and can diagnose its presence.  Multi-collinearity is the condition where at least one 
explanatory variable is closely related to one or more other explanatory variables.  It results in 
several undesirable consequences for the regression equation, including: 

1) Equations acceptable in terms of overall F-tests may have slope coefficients with 
magnitudes which are unrealistically large, and whose partial F or t-tests are found to 
be insignificant. 

2)  Coefficients may be unrealistic in sign (a negative slope for a regression of streamflow 
vs. precipitation, (etc).  Usually this occurs when two variables describing 
approximately the same thing are counter-balancing each other in the equation, 
having opposite signs. 

3)  Slope coefficients are unstable.   A small change in one or a few data values could 
cause a large change in the coefficients. 

4)  Automatic procedures such as stepwise, forwards and backwards methods produce 
different models judged to be "best". 

Concern over multi-collinearity should be strongest when the purpose is to make inferences 
about coefficients.  Concern can be somewhat less when only predictions are of interest, 
provided that these predictions are for cases within the observed range of the x data. 

An excellent diagnostic for measuring multi-collinearity is the variance inflation factor (VIF) 
presented by Marquardt (1970).  For variable j the VIF is 
 VIFj = 1/(1−Rj2) [11.6] 

where Rj2 is the R2 from a regression of the jth explanatory variable on all of the other 
explanatory variables -- the equation used for adjustment of xj in partial plots.  The ideal is VIFj 
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≅ 1, corresponding to Rj2 ≅ 0.  Serious problems are indicated when  

VIFj > 10  (Rj2  > 0.9).  A useful interpretation of VIF is that multi-collinearity "inflates" the 
width of the confidence interval for the jth regression coefficient by the amount 
  VIFj  compared to what it would be with a perfectly independent set of explanatory 
variables. 

11.5.3.1   Solutions for multi-collinearity 
There are four options for working with a regression equation having one or more high VIF 
values. 

1) Center the data.  A simple solution which works in some specific cases is to center the 
data.  Multi-collinearity can arise when some of the explanatory variables are functions of 
other explanatory variables, such as for a polynomial regression of y against x and x2.  When 
x is always of one sign, there may be a strong relationship between it and its square.  
Centering redefines the explanatory variables by subtracting a constant from the original 
variable, and then recomputing the derived variables.  This constant should be one which 
produces about as many positive values as negative values, such as the mean or median.  
When all of the derived explanatory variables are recomputed as functions (squares, 
products, etc.) of these centered variables, their multi-collinearity will be reduced. 

 Centering is a mathematical solution to a mathematical problem.  It will not reduce multi-
collinearity between two variables which are not mathematically derived one from another.  
It is particularly useful when the original explanatory variable has been defined with respect 
to some arbitrary datum (time, distance, temperature) and is easily fixed by resetting the 
datum to roughly the middle of the data.  In some cases the multi-collinearity can be so 
severe that the numerical methods used by the statistical software fail to perform the 
necessary matrix computations correctly.  Such numerical problems occur frequently when 
doing trend surface analysis (e.g., fitting a high order polynomial of distances north of the 
equator and west of Greenwich) or trend analysis (e.g., values are a polynomial of years).  
This will be demonstrated in Example 2. 

2) Eliminate variables.  In some cases prior judgment suggests the use of several different 
variables which describe related but not identical attributes.  Examples of this might be:  air 
temperature and dew point temperature, the maximum 1-hour rainfall, and the maximum 2-
hour rainfall, river basin population and area in urban land use, basin area forested and basin 
area above 6,000 feet elevation, and so on.  Such variables may be strongly related as shown 
by their VIFs, and one of them must eliminated on judgmental grounds, or on the basis of 
comparisons of models fit with one eliminated versus the other eliminated, in order to lower 
the VIF. 
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3) Collect additional data.  Multi-collinearity can sometimes be solved with only a few 
additional but strategically selected observations.  Suppose some attributes of river basins are 
being studied, and small basins tend to be heavily forested while large basins tend to be less 
heavily forested.  Discerning the relative importance of size versus the importance of forest 
cover will prove to be difficult.  Strong multi-collinearity will result from including both 
variables in the regression equation.  To solve this and allow the effects of each variable to 
be judged separately, collect additional samples from a few small less forested basins and a 
few large but heavily-forested basins. This produces a much more reliable model.  Similar 
problems arise in ground-water quality studies, where rural wells are shallow and urban wells 
are deeper.  Depth and population density may show strong multi-collinearity, requiring 
some shallow urban and deeper rural wells to be sampled. 

4) Perform ridge regression.  Ridge regression was proposed by Hoerl and Kenard (1970).  
Montgomery and Peck (1982) give a good brief discussion of it.  It is based on the idea that 
the variance of the slope estimates can be greatly reduced by introducing some bias into 
them.  It is a controversial but useful method in multiple regression. 

Example 2 -- centering 
The natural log of concentration of some contaminant in a shallow groundwater plume is to be 
related to distance east and distance north of a city.  The city was arbitrarily chosen as a 
geographic datum.  The data are presented in table 11.5. 

Since the square of distance east (DESQ) must be strongly related to DE, and similarly DNSQ 
and DN, and DE•DN with both DE and DN, multi-collinearity between these variables will be 
detected by their VIFs.  Using the rule that any VIF above 10 indicates a strong dependence 
between variables, table 11.6 shows that all variables have high VIFs.  Therefore all of the slope 
coefficients are unstable, and no conclusions can be drawn from the value of 10.5 for DE, or 
15.1 for DN, etc.  This cannot be considered a good regression model, even though the R2  is 
large. 



308 Statistical Methods in Water Resources 

 Obs. #  C  ln(C)  DE DN DESQ DNSQ DE•DN 
 1 14 2.63906 17 48 289 2304 816 
 2 88 4.47734 19 48 361 2304 912 
 3 249 5.51745 21 48 441 2304 1008 
 4 14 2.63906 23 48 529 2304 1104 
 5 29 3.36730 17 49 289 2401 833 
 6 147 4.99043 19 49 361 2401 931 
 7 195 5.27300 21 49 441 2401 1029 
 8 28 3.33220 23 49 529 2401 1127 
 9 21 3.04452 17 50 289 2500 850 
 10 276 5.62040 19 50 361 2500 950 
 11 219 5.38907 21 50 441 2500 1050 
 12 40 3.68888 23 50 529 2500 1150 
 13 22 3.09104 17 51 289 2601 867 
 14 234 5.45532 19 51 361 2601 969 
 15 203 5.31320 21 51 441 2601 1071 
 16 35 3.55535 23 51 529 2601 1173 
 17 15 2.70805 17 52 289 2704 884 
 18 115 4.74493 19 52 361 2704 988 
 19 180 5.19296 21 52 441 2704 1092 
 20 16 2.77259 23 52 529 2704 1196 

Table 11.5   Data for Example 2  

DE and DN are centered by subtracting their medians.  Following this, the three derived 
variables DESQ, DNSQ and DEDN are recomputed, and the regression rerun.  Table 11.7 give 
the results, showing that all multi-collinearity is completely removed.  The coefficients for DE 
and DN are now more reasonable in size, while the coefficients for the derived variables are 
exactly the same.  The t-statistics for DE and DN have changed because their uncentered values 
were unstable and t-tests unreliable.  Note that the s and R2 are also unchanged.  In fact, this is 
exactly the same model as the uncentered equation, but only in a different and centered 
coordinate system. 
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ln(C) = − 479  + 10.5 DE  + 15.1 DN  − 0.264 DESQ  − 0.151 DNSQ  + 0.0014 DEDN 
 

   n = 20 s = 0.27 R2 = 0.96 
Parameter Estimate Std.Err(β) t-ratio  p  VIF 
Intercept β0 −479.03 91.66 −5.23 0.000 
Slopes    βk 
DE 10.55 1.12 9.40 0.000 1751.0 
DN 15.14 3.60 4.20 0.001 7223.9 
DESQ −0.26 0.015 −17.63 0.000 501.0 
DNSQ −0.15 0.04 −4.23 0.001 7143.9 
DEDN 0.001 0.02 0.07 0.943 1331.0 

Table 11.6   Regression statistics and VIFs for Example 2 

 
ln(C) = 5.76 + 0.048 DE + 0.019 DN − 0.264 DESQ − 0.151 DNSQ  + 0.001 DNDE   
 
   n = 20 s = 0.27 R2 = 0.96 
Parameter Estimate Std.Err(β) t-ratio  p  VIF 
Intercept β0 5.76 0.120 48.15 0.000 
Slopes    βk 
DE 0.048 0.027 1.80 0.094 1.0 
DN 0.019 0.042 0.44 0.668 1.0 
DESQ −0.264 0.015 −17.63 0.000 1.0 
DNSQ −0.151 0.036 −4.23 0.001 1.0 
DEDN 0.001 0.019 0.07 0.943 1.0 

Table 11.7   Regression statistics and VIFs for centered Example 2 data 
 
 
11.6   Choosing the Best MLR Model 
 
One of the major issues in multiple regression is the appropriate approach to variable selection.  
The benefit of adding additional variables to a multiple regression model is to account for or 
explain more of the variance of the response variable.  The cost of adding additional variables is 
that the degrees of freedom decreases, making it more difficult to find significance in hypothesis 
tests and increasing the width of confidence intervals.  A good model will explain as much of the 
variance of y as possible with a small number of explanatory variables. 

The first step is to consider only explanatory variables which ought to have some effect on the 
dependent variable.  There must be plausible theory behind why a variable might be expected to 
influence the magnitude of y.  Simply minimizing the SSE or maximizing R2 are not sufficient 
criteria.  In fact, any explanatory variable will reduce the SSE and increase the R2 by some small 
amount, even those irrelevant to the situation (or even random numbers!).  The benefit of 
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adding these unrelated variables, however, is small compared to the cost of a degree of freedom.  
Therefore the choice of whether to add a variable is based on a "cost-benefit analysis", and 
variables enter the model only if they make a significant improvement in the model.  There are 
at least two types of approaches for evaluating whether a new variable sufficiently improves the 
model.  The first approach uses partial F or t-tests, and when automated is often called a 
"stepwise" procedure.  The second approach uses some overall measure of model quality.  The 
latter has many advantages. 

11.6.1   Stepwise Procedures 
 Stepwise procedures are automated model selection methods in which the computer algorithm 
determines which model is preferred.  There are three versions, usually called forwards, 
backwards, and stepwise.  These procedures use a sequence of partial F or t-tests to evaluate the 
significance of a variable.  The three versions do not always agree on a "best" model, especially 
when multi-collinearity is present.  They also do not evaluate all possible models, and so cannot 
guarantee that the "best" model is even tested.  They were developed prior to modern computer 
technology, taking shortcuts to avoid running all possible regression equations for comparison.  
Such shortcuts are no longer necessary. 

Forward selection starts with only an intercept and adds variables to the equation one at a time.  
Once in, each variable stays in the model.  All variables not in the model are evaluated with 
partial F or t statistics in comparison to the existing model.  The variable with the highest 
significant partial F or t statistic is included, and the process repeats until either all available 
variables are included or no new variables are significant.  One drawback to this method is that 
the resulting model may have coefficients which are not significantly different from zero;  they 
must only be significant when they enter.  A second drawback is that two variables which each 
individually provide little explanation of y may never enter, but together the variables would 
explain a great deal.  Forward selection is unable to capitalize on this situation. 

Backward elimination starts with all explanatory variables in the model and eliminates the one 
with the lowest partial-F statistic (lowest |t|).  It stops when all remaining variables are 
significant.  The backwards algorithm does ensure that the final model has only significant 
variables, but does not ensure a "best" model because it also cannot consider the combined 
significance of groups of variables. 

Stepwise regression combines the ideas of forward and backward.  It alternates between adding 
and removing variables, checking significance of individual variables within and outside the 
model.  Variables significant when entering the model will be eliminated if later they test as 
insignificant.  Even so, stepwise does not test all possible regression models. 
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Example 3:   
Haan (1977) attempted to relate the mean annual runoff of several streams (ROFF) with 9 other 
variables:  the precipitation falling at the gage (PCIP), the drainage area of the basin (AREA), the 
average slope of the basin (SLOPE), the length of the drainage basin (LEN), the perimeter of 
the basin (PERIM), the diameter of the largest circle which could be inscribed within the 
drainage basin (DI), the "shape factor" of the basin (Rs), the stream frequency -- the ratio of the 
number of streams in the basin to the basin area (FREQ), and the relief ratio for the basin (Rr).  
The data are found in Appendix C14.  Haan chose to select a 3-variable model (using PCIP, 
PERIM and Rr) based on a levelling off of the incremental increase in R2 as more variables were 
added to the equation (see figure 11.3). 

What models would be selected if the stepwise or overall methods are applied to this data?  If a 
forwards routine is performed, no single variables are found significant at  
α = 0.05, so an intercept-only model is declared "best".   Relaxing the entry criteria to a larger α, 
AREA is first entered into the equation.  Then Rr, PCIP, and PERIM are entered in that order.  
Note that AREA has relatively low significance once the other three variables are added to the 
model (Model 4). 

Forwards Model 1 Model 2 Model 3 Model 4 
AREA β 0.43 0.81 0.83 −0.62 
 t 1.77 4.36 4.97 −1.68 
 

Rr β  0.013 0.011 0.009 
 t  3.95 3.49 4.89 
 

PCIP β   0.26 0.54 
 t   1.91 5.05 
 

PERIM β    1.02 
 t    4.09 

The backwards model begins with all variables in the model.  It checks all partial t or F statistics, 
throwing away the variable which is least significant.  Here the least significant single variable is 
AREA.  So while forwards made AREA the first variable to bring in, backwards discarded 
AREA first of all!  Then other variables were also removed, resulting in a model with Rr, PCIP, 
PERIM, DI and FREQ remaining in the model.  Multi-collinearity between measures of 
drainage basin size, as well as between other variables, has produced models from backwards 
and forwards procedures which are quite different from each other.  The slope coefficient for 
DI is also negative, suggesting that runoff decreases as basin size increases.  Obviously DI is 
counteracting another size variable in the model (PERIM) whose coefficient is large. 
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Figure 11.3   Magnitude of σ2, R2, Cp and F as a function of the number of explanatory 

variables, for the best k explanatory variable model. 
 

Stepwise first enters AREA, Rr, PCIP and PERIM.  At that point, the t-value for AREA drops 
from near 5 to −1.6, so AREA is dropped from the model.  DI and FREQ are then entered, so 
that stepwise results in the same 5-variable model as did backwards. 
 
Stepwise Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 
AREA β 0.43 0.81 0.83 −0.62 
 t 1.77 4.36 4.97 −1.68 
 
Rr β  0.013 0.011 0.009 0.010 0.010 0.011 
 t  3.95 3.49 4.89 5.19 5.02 6.40 
 
PCIP β   0.260 0.539 0.430 0.495 0.516 
 t   1.91 5.05 4.62 5.39 6.71 
 
PERIM β    1.021 0.617 0.770 0.878 
 t    4.09 8.24 6.98 8.38 
 
DI β      −1.18 −1.30 
 t      −1.75 −2.32 
 
FREQ β       0.36 
 t       2.14 
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11.6.2   Overall Measures of Quality.  
Three newer statistics can be used to evaluate each of the 2k regressions equations possible from 
k candidate explanatory variables.  These are Mallow's Cp, the PRESS statistic, and the adjusted 
R2. 

variance in y as possible (minimize bias) by including all relevant variables, and to minimize the 

coefficients small.  The Cp statistic is 

 Cp = p + 
(n-p) • (sp2 - σ̂ 2)

^   [11.7] 

where n is the number of observations, p is the number of coefficients (number of explanatory 
variables plus 1), sp2 ^ 2

k
possible models.  The best model is the one with the lowest Cp value.  When several models 
have nearly equal Cp values, they may be compared in terms of reasonableness, multi-
collinearity, importance of high influence points, and cost in order to select the model with the 
best overall properties. 

The second overall measure is the PRESS statistic.  PRESS was defined in Chapter 9 as the sum 
of the squared prediction errors e(i).  By minimizing PRESS, the model with the least error in 
the prediction of future observations is selected.  PRESS and Cp generally agree as to which 
model is "best", even though their criteria for selection are not identical. 

A third overall measure is the adjusted R2 (R2a).  This is an R2 value adjusted for the number of 
explanatory variables (or equivalently, the degrees of freedom) in the model.  The model with 
the highest R2a is identical to the one with the smallest standard error (s) or its square, the mean 
squared error (MSE).  To see this, in Chapter 9 R2 was defined as a function of the total (SSy) 
and error (SSE) sum of squares for the regression model: 
 R2 = 1 − ( SSE / SSy ) [11.8] 
 
The weakness of R2 is that it must increase, and the SSE decrease, when any additional variable 
is added to the regression.  This happens no matter how little explanatory power that variable 
has.  R2a is adjusted to offset the loss in degrees of freedom by including as a weight the ratio of 
total to error degrees of freedom: 

 R2a =  1 − 
(n-1)
(n-p)  

SSE 
SSy

  =  1 − 
MSE 

 (SSy/(n-1))  [11.9] 

 

variance of the resulting estimates (minimize the standard error) by keeping the number of 

Mallow's Cp, is designed to achieve a good compromise between the desire to explain as much 

σ  2

best estimate of the true error, which is usually taken to be the minimum MSE among the 2  
 is the mean square error (MSE) of this p coefficient model, and σ  is the 
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As (SSy/(n−1)) is constant for a given data set, R2a increases as MSE decreases.  Either 
maximize R2a or minimize MSE as an overall measure of quality.  However, when p is 
considerably smaller than n, R2a is a less sensitive measure than either PRESS or Cp.  PRESS 
has the additional advantage of being a validation criteria. 

Overall methods use the computer to perform large computations (such as Cp and PRESS for 
many models), letting the scientist judge which model to use.  This allows flexibility in choosing 
between models.  For example, two "best" models may be nearly identical in terms of their Cp, 
R2a and/or PRESS statistics, yet one involves variables that are much less expensive to measure 
than the other.  The less expensive model can be selected with confidence.  In contrast, stepwise 
procedures ask the computer to judge which model is best.  Their combination of inflexible 
criteria and inability to test all models often results in the selection of something much less than 
the best model. 

Example 3, continued 
Instead of the stepwise procedures run on Haan's data, models are evaluated using the overall 
statistics Cp and PRESS.  Smaller values of Cp and PRESS are associated with better models.  
Computing PRESS and Cp for the 29 = 512 possible regression models can be done with 
modern statistical software.  A list of these statistics for the two best k-variable models, where 
best is defined as the highest R2, is given in table 11.8. 

Based on Cp, the best model would be the 5 variable model having PCIP, PERIM, DI, FREQ 
and Rr as explanatory variables -- the same model as selected by stepwise and forwards.   
Remember that there is no guarantee that stepwise procedures regularly select the lowest Cp or 
PRESS models.  The advantage of using an overall statistic like Cp is that options are given to 
the scientist to select what is best.  If the modest multi-collinearity (VIF=5.1) between PERIM 
and DI is of concern, with its resultant negative slope for DI, the model with the next lowest Cp 
that does not contain both these variables (a four-variable model with Cp= 3.6) could be 
selected.  If the scientist decided AREA must be in the model, the lowest CP model containing 
AREA (the same four-variable model) could be selected.  Cp and PRESS allow model choice to 
be based on multiple criteria such as prediction quality (PRESS), low VIF, cost, etc.. 
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 X: Variable is in the model 
                                           S   P 
                                       P A L   E     F 
                                       C R O L R     R 
 # of             .                    I E P E I D R E R 
 Vars   R-sq   PRESS   C-p   Max VIF   P A E N M I s Q r 
 
    1   22.2   47.3   64.2      ---      X 
    1   21.6   49.3   64.7      ---            X 
    2   69.6   20.6   21.6      1.4      X             X 
    2   68.1   24.7   23.0      1.4            X       X 
    3   90.5   10.0    3.9      1.5    X       X       X 
    3   80.7   19.3   13.2      1.2    X   X   X 
    4   93.2    8.0    3.4      3.9    X       X X     X 
    4   93.0    7.7    3.6     19.5    X X     X       X 
    5   95.9    6.9    2.9      5.1    X       X X   X X 
    5   94.7    7.2    4.0     21.6    X X X   X       X 
    6   96.2    6.3    4.6     19.6    X       X X X X X 
    6   96.1   10.0    4.7      8.2    X   X   X X   X X 
    7   96.6    7.5    6.2     21.1    X   X   X X X X X 
    7   96.6    6.4    6.2    127.9    X X     X X X X X 
    8   96.8   53.7    8.0     23.4    X   X X X X X X X 
    8   96.7   10.2    8.1    200.8    X X X   X X X X X 
    9   96.8   59.7   10.0    227.5    X X X X X X X X X 

Table 11.8   Statistics for several multiple regression models of Haan's data 

 

11.7   Summary of Model Selection Criteria 
 
Rules for selection of linear regression models are summarized in the 5 steps below: 

1) Should y be transformed?  To decide whether to transform the y variable, plot residuals 
versus predicted values for the untransformed data.  Compare this to a residuals plot for the best 
transformed model, looking for three things: 
 1)  constant variance across the range of ŷ , 
 2)  normality of residuals, and 
 3)  a linear pattern, not curvature. 
The statistics R2, SSE, Cp, and PRESS are not appropriate for comparison of models having 
different units of y. 
 
2) Should x (or several x's) be transformed?  Transformation of an x variable should be 
made using partial plots.  Check for the same three patterns of constant variance, normality and 
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linearity.  Considerable help can be obtained from statistics such as R2 (maximize it), or SSE or 
PRESS (minimize it).  Many transformations can be rapidly checked with such statistics, but a 
residuals plot should always be inspected prior to making any final decision.  

3) Which of several models, each with the same y and with the same number of 
explanatory variables, is preferable?  Use of R2, SSE, or PRESS is appropriate here, but back 
it up with a residuals plot. 
 
4) Which of several nested models, each with the same y, is preferable?  Use the partial F 
test between any pair of nested models to find which is best.  One may also select the model 
based on minimum Cp or minimum PRESS. 
 
5) Which of several models is preferable when each uses the same y variable but are not 
necessarily nested?  Cp or PRESS must be used in this situation. 
 
 
11.8   Analysis of Covariance 
 
Often there are factors which influence the dependent variable which are not appropriately 
expressed as a continuous variable.  Examples of such grouped or qualitative variables include 
location (stations, aquifers, positions in a cross section), or time (day & night; winter & summer; 
before & after some event such as a flood, a drought, operation of a sewage treatment plant or 
reservoir).  These factors are perfectly valid explanatory variables in a multiple regression 
context.  They can be incorporated by the use of binary or "dummy" variables, essentially 
blending regression and analysis of variance into an analysis of covariance. 
 
11.8.1   Use of One Binary Variable  
To the simple one-variable regression model   
 Y = β0 +β1 X +ε  [11.10] 
(again with subscripts i assumed), an additional factor is believed to have an important influence 
on Y for any given value of X.  Perhaps this factor is a seasonal one:  cold season versus warm 
season -- where some precise definition exists to classify all observations as either cold or warm.  
A second variable, a binary variable Z, is added to the equation where 

  Zi  = 


  0 if i is from cold season

  1 if i is from warm season
  

to produce the model    
 Y = β0 +β1 X +β2 Z +ε.   [11.11] 
 
When the slope coefficient β2 is significant, model 11.11 would be prefered to the SLR model 
11.10.  This also says that the relationship between Y and X is affected by season. 
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Consider  H0: β2 = 0  versus  H1: β2 ≠ 0.  The null hypothesis is tested using a student's t-test 
with (n−3) degrees of freedom.  There are (n−3) because there are 3 betas being estimated.  If 
the partial |t|≥ tα/2, H0 is rejected, inferring that there are two models: 
  Ŷ  = b0 + b1 X   for the cold season (Z  = 0), and 
  Ŷ  = b0 + b1 X  + b2  for the warm season (Z  = 1), or 
   = (b0 +b2) + b1 X . 
Therefore the regression lines differ for the two seasons.   Both seasons have the same slope, 
but different intercepts, and will plot as two parallel lines (figure 11.4). 

Y

X

Summer
Winter

 
Figure 11.4   Regression lines for data differing in intercept between two seasons 

 
Suppose that the relationship between X and Y for the two seasons is suspected not only to 
differ in intercept, but in slope as well.  Such a model is written as: 
 Y  = β0 + β1X  +  β2 Z + β3 Z X  + ε  [11.12]  
or Y  = (β0 + β2 Z ) + (β1 + β3 Z ) • X  + ε  

The intercept equals β0 for the cold season and β0 +β2 for the warm season;  the slope equals 
β1 for the cold season and β1 + β3 for the warm season.  This model is referred to as an 
"interaction model" because of the use of the explanatory variable Z X , the interaction 
(product) of the original predictor X  and the binary variable Z . 
 
To determine whether the simple regression model with no Z  terms can be improved upon by 
model 11.12, the following hypotheses are tested: 
 H0 :  β2 = β3 = 0  versus  H1 :  β2 and/or β3 ≠ 0. 
 

A nested F statistic is computed   F = 
(SSEs - SSEc ) / (dfs - dfc)

(SSEc / dfc)   

where s refers to the simpler (no Z terms) model, and c refers to the more complex model.  For 
the two nested models 11.10 and 11.12 this becomes  
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 F = 
(SSE11.10 - SSE11.12) / 2

MSE11.12
  

where MSE11.12 = SSE11.12 /(n−4), rejecting H0 if F > Fα,2, n−4 . 
 
If H0 is rejected, model 11.12 should also be compared to model 11.11 (the shift in intercept 
only model) to determine whether there is a change in slope in addition to the change in 
intercept, or whether the rejection of model 11.10 in favor of 11.12 was due only to a shift in 
intercept.  The null hypothesis H0': β3 = 0 is compared to H1': β3 ≠ 0 using the test statistic 
  

 F = 
(SSE11.11 - SSE11.12) / 1

MSE11.12
    

rejecting H0' if F > Fα,1, n−4 . 
 
Assuming H0 and H0' are both rejected, the model can be expressed as the two separate 
equations (see figure 11.5): 
 Ŷ   = b0 + b1 X   cold season 
 Ŷ   = (b0 + b2) + (b1 + b3) X  warm season 
Furthermore, the coefficient values in these two equations will be exactly those computed if the 
two regressions were estimated by separating the data, and computing two separate regression 
equations.  By using analysis of covariance, however, the significance of the difference between 
those two equations has been established. 
 

Y

X

Summer
Winter

 
Figure 11.5   Regression lines differing in slope and intercept for data from two seasons 

 
11.8.2   Multiple Binary Variables 
In some cases, the factor of interest must be expressed as more than two categories:   
4 seasons, 12 months, 5 stations, 3 flow conditions (rising limb, falling limb, base flow), etc.  To 
illustrate, assume there are precise definitions of 3 flow conditions so that all discharge (Xi) and 
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concentration (Yi) pairs are classified as either rising, falling, or base flow.  Two binary variables 
are required to express these three categories -- there is always one less binary variable required 
than the number of categories. 
 

 Let Ri = 


  1 if i is a rising limb observation

  0 otherwise
  

 

 Let Di = 


  1 if i is falling limb observation

  0 otherwise
  

 
 so that  category value of R value of D  
 rising 1 0 
 falling 0 1 
 base flow 0 0 
 
The following model results: 
 Y = β0 + β1 X + β2 R + β3 D + ε [11.13] 

To test  H0: β2 = β3 = 0  versus  H1: β2 and/or β3 ≠ 0, F tests comparing simpler and more 
complex models are again performed.  To compare model 11.13 versus the SLR model 11.10 
with no rising or falling terms,  

 F = 
(SSE11.10 - SSE11.13) / 2

MSE11.13
  where MSE11.13 = SSE11.13 / (n−4),  

rejecting H0 if F > F2, n−4, α. 
 
To test for differences between each pair of categories: 
1. Is rising different from base flow?  This is tested using the t-statistic on the coefficient β2.  

If |t|>tα/2 on n−4 degrees of freedom, reject H0 where H0: β2 = 0. 
 
2. Is falling different from base flow?  This is tested using the t-statistic on the coefficient β3.  

If |t|>tα/2 with n−4 degrees of freedom, reject H0 where H0: β3 = 0. 
 
3. Is rising different from falling?  There are two ways to determine this.  

(a)  the standard error of the difference (b2−b3) must be known.  The null hypothesis is 
H0: (β2 − β3) = 0.  The estimated variance of b2−b3,  
 Var(b2−b3) = Var(b2) + Var(b3) − 2Cov(b2, b3)  
where Cov is the covariance between b2 and b3.  To determine these terms, the matrix 

(X'X)−1 and s2 (s2 is the mean square error) are required.  Then   
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 Var̂(b2)  = C22 • s2, Var̂(b3)  = C33 • s2,  and       Cov̂(b2,b3)  = C23 • s2 .   
The test statistic is  t = (b2−b3)/  Var (b2-b3)  .   If |t|>tα/2 with n−4 degrees of 
freedom, reject H0. 

 
(b)   The binary variables can be re-defined so that a direct contrast between rising and 
falling is possible.  This occurs when either is set as the (0,0) "default" case.  This will give 
answers identical to (a). 

 
Ever greater complexity can be added to these kinds of models, using multiple binary variables 
and interaction terms such as 
 Y = β0 + β1 X + β2 R + β3 D + β4 R X + β5 D X +ε. [11.14] 

The procedures for selecting models follow the pattern described above.  The significance of an 
individual β coefficient, given all the other βs, can be determined from the t statistic.  The 
comparison of two models, where the set of explanatory variables for one model is a subset of 
those used in the other model, is computed by a nested F test.  The determination of whether 
two coefficients in a given model differ significantly from each other is computed either by re-
defining the variables, or by using a t test after estimating the variance of the difference between 
the coefficients based on the elements of the (X'X)−1 matrix and s2. 
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Exercises 
11.1 In Appendix C15 are data from 42 small urban drainage basins located in several cities 

around the United States (Mustard et al., 1987).  The dependent variable is the log of the 
total nitrogen load for the basin -- the y transformation decision has already been made.  
There are eight possible explanatory variables to use for prediction purposes.  The 
definitions of all nine variables are as follows. 
 LOGTN  log total nitrogen load 
 LOGCA  log contributing area 
 LOGIMP  log impervious area 
 MMJTEMP  mean minimum January temperature 
 MSRAIN  mean seasonal rainfall 
 PRES   percentage of area residential 
 PNON   percentage of area non-urban 
 PCOMM  percentage of area commercial 
 PIND   percentage of area industrial 
 
Don't bother with transformations of the x variables either -- use these variables as they 
are.  Pay special attention to multi-collinearity.  Try one or more of the approaches 
described in this chapter to select the best model for predicting LOGTN from these 
explanatory variables. 

 
 
11.2  Analysis of Covariance.  The following 10 possible models describe the variation in 

sand-size particles (0.125 − 0.250 mm) in the Colorado River at Lees Ferry, AZ.  Select 
the best model from this set of 10 and interpret its meaning.  The basic model describes 
a quadratic relationship between concentration and discharge (X).  Do intercept and/or 
slope vary with the three seasons (summer S, winter W, or other)?  Use α = 0.05 for all 
hypothesis tests. 

 
Basic model  Y = β0 + β1 X + β2 X2 
 where Y = ln (concentration of suspended sands) 
   X = ln (discharge)  

 
 Month 
 Binary Variables 1 2 3 4 5 6 7 8 9 10 11 12 
 S 0 0 0 0 0 0 1 1 1 1 0 0 
 W 1 1 0 0 0 0 0 0 0 0 1 1 
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Model # Explanatory variables SSE df(error) 
 1 X,  X2  69.89 124 
 2 X, X2 , S 65.80 123 
 3 X, X2 , S, SX 65.18 122 
 4 X, X2 , S, SX, SX2  64.84 121 
 5 X, X2 , W 63.75 123 
 6  X, X2 , W, WX 63.53 122 
 7 X, X2 , W, WX, WX2  63.46  121 
 8 X, X2 , S, W 63.03 122 
 9 X, X2 , S, W, SX, WX 62.54 120 
 10 X, X2 , S, W, SX, WX, SX2 , WX2  61.45 118 
 
11.3 The Ogallala aquifer was investigated to determine relationships between uranium and 

other concentrations in its waters.  Construct a regression model to relate uranium to 
total dissolved solids and bicarbonate, using the data in Appendix C16.  What is the 
significance of these predictor variables?   

 
11.4 You are asked to estimate uranium concentrations in irrigation waters from the Ogallala 

aquifer for a local area.  Four supply wells pump waters with the characteristics given 
below.  The relative amounts of water pumped by each well are also given below.  Using 
this and the regression equation of Exercise 11.3, estimate the mean concentration of 
uranium in the water applied to this area. 

 Well # Relative volume of water used TDS Bicarbonate 
 1 2 500 ≤ 50% 
 2 1 900 ≤ 50% 
 3 1 400 > 50% 
 4 2 600 > 50% 




