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Within each cell there is a point called a "node" at which head is 

to be calculated. Figure 2 illustrates, in two dimensions, two conventions 

for defining the configuration of cells with respect to the location of 

nodes--the block-centered formulation and the point-centered formulation. 

Both systems start by dividing the aquifer with two sets of parallel lines 

which are orthogonal. In the block-centered formulation, the blocks formed 

by the sets of parallel lines are the cells; the nodes are at the center 

of the cells. In the point-centered formulation, the nodes are at the 

intersection points of the sets of parallel lines, and cells are drawn 

around the nodes with faces halfway between nodes. In either case, spacing 

of nodes should be chosen so that the hydraulic properties of the system 

are, in fact, generally uniform over the extent of a cell. The finite-differ- 

ence equation developed in the following section holds for either formulation; 

however, only the block-centered formulation is presently used in the 

model. 

In equation (l), the head, h, is a function of time as well as space so 

that, in the finite-difference formulation, discretization of the continuous 

time domain is also required. 

Finite-Difference Equation 

Development of the ground-water flow equation in finite-difference form 

follows from the application of the continuity equation: the sum of all flows 

into and out of the cell must be equal to the rate of change in storage 

within the cell. Under the assumption that the density of ground water is 

constant, the continuity equation expressing the balance of flow for a cell is 

2-5 

(2) 



Block-Centered Grid System 

A ‘J 

Point-Centered Grid System 

Explanation 

0 Nodes 

Grid Lines 

- - - Cell Boundaries for Point 
Centered Formulation 

Cells Associated With 
Selected Nodes 

Figure 2.-Grids showing the difference between block-centered 
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where 

Qi is a flow rate into the cell (L3tW1); 

SS has been introduced as the notation for specific storage in the 

finite-difference formulation; its definition is equivalent to 

that of S, in equation (I)--i.e., it is the volume of water which 

can be injected per unit volume of aquifer material per unit change 

in head (L-l); 

AV is the volume of the cell (L3); and 

Ah is the change in head o er a time interval of length At. 

The term on the right hand 

taken into storage over a time 

Equation (2) is stated in terms 

side is equival'ent to the volume of water 

nterval At given a change in head of Ah. 

of inflow and storage gain. Outflow and loss 

are represented by defining outflow as negative inflow and loss as negative 

gain. 

Figure 3 depicts a cell i,j,k and six adjacent aquifer cells i-l,j,k; 

i+l,j,k; i,j-1,k; i,j+l,k; i,j,k-1; and i,j,k+l. To simplify the following 

development, flows are considered positive if they are entering cell i,j,k; 

and the negative sign usually incorporated in Darcy's law has been dropped from 

all terms. Following these conventions, flow into cell i,j,k in the row 

direction from cell i,j-l,k (figure 4), is given by Darcy's law as 

(hi ,j-1,k - hi,j,k) 
qi,j-l/Z,k = KRi ,j -1/2,kA CiA Vk------------------- 

Arj-1/2 
(3) 

where 

hi,j,k is the head at node i,j,k, and hi,j-l,k that at node i,j-1,k; 

qi,j-1/2,k is the volumetric fluid discharge through the face between 

cells i,j,k and i,j-l,k (L3tW1); 
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Figure 3.-Cell i,j,k and indices for the six adjacent cells. 
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Figure 4.-Flow into cell i,j,k from cell i,j-l,k. 
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KRi,j-1/2,k is the hydraulic conductivity along the row between nodes 

i,j,k and i,j-1,k (Lt'l); 

ACiAVk is the area of the cell faces normal to the row direction; and 

Arj-1/2 is the distance between nodes i,j,k and i,j-1,k (L). 

Although the discussion is phrased in terms of flow into the central 

cell, it can be misleading to associate the subscript j-1/2 of equation (3) 

with a specific point between the nodes. Rather, the term KRi,j-1/2,k of 

equation (3) is the effective hydraulic conductivity for the entire region 

between the nodes, normally calculated as a harmonic mean in the sense 

described by, for example, Collins (1961). If this is done, equation (3) 

gives the exact flow, for a one-dimensional steady-state case, through a 

block of aquifer extending from node i,j-1,k to node i,j,k and having a 

cross sectional area ACiAvk. , 

Similar expressions can be written approximating the flow into the cell 

through the remaining five faces, i.e., for flow in the row direction through 

the face between cells i,j,k and i,j+l,k, 

(hi, j+l,k - hi,j,k) 
qi,j+1/2,k = KRi ,j+l/e,kACi AVk--------------"" 

Mj+1/2 
(4) 

while for the column direction, flow into the block through the forward face is 

(hi+l,j,k - hi,j,k) 
qi+1/2,j,k = KCi+1/2,j,k~jAVk------,f;;;;------ 

and flow into the block through the rear face is 

(hi-l,j,k - hi,j,k) 
9i-1/2,j,k = KCi -1/2,j ,kllrj AVk----------““-----. 

Ei -l/2 

(5) 

(6) 
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For the vertical direction, inflow through the bottom face is 

D 

(hi,j,k+l - hi,j,k) 
qi,j,k+l/Z = KVi ,j ,k+1/2 A rjA Ci -0---0-0-0-----o-o- 

A”k+l/Z 

while inflow through the upper face is given by 

(hi,j,k-1 - hi,j,k) 
qi ,j &-l/2 = KVi , j ,k-l/g rjACi------------------- l 

A Vk-1/2 

(7) 

(8) 

Each of equations (3)-(8) expresses inflow through a face of cell i,j,k in terms 

of heads, grid dimensions, and hydraulic conductivity. The notation can 

be simplified by combining grid dimensions and hydraulic conductivity into 

a single constant, the "hydraulic conductance" or, more simply, the "conduct- 

ance." For example, 

mi,j-1/2,k = KRi ,j-1/2,kACiAVk/Arj-1/2 (9) 

where 

mi,j.,1/2,k is the conductance in row i and layer k between nodes 

i,j-1,k and i,j,k (L2t-l). 

Conductance is thus the product of hydraulic conductivity and cross-sectional 

area of flow divided by the length of the flow path (in this case, the 

distance between the nodes.) 

l 
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Substituting conductance from equation (9) into equation (3) yields 

qi,j-l/Z,k = CRi,j-1/2,k(hi,j-1,k - hi,j,k)* (10) 

Similarly, equations (4)-(8) can be rewritten to yield 

qi,j+l/2,k = CRi,j+l/2,k(hi,j+l,k - hi,j,k) (11) 

qi-1/2,j,k = CCi-1/2,j,k(hi-l,j,k - hi,j,k) (12) 

qi+1/2,j,k = CCi+l/E,j,k(hi+l,j,k - hi,j,k) (13) 

qi,j,k-l/2 = cvi,j,k-1/2(hi,j,k-1 - hi,j,k) (14) 

qi,j,k+l/il = Cvi,j,ktl/2(hi,j,ktl - hi,j,k) (15) 

where the conductances are defined analogously to CRi,j-1/2,k in equation (9). 

Equations (lo)-(15) account for the flow into cell i,j,k from the six 

adjacent cells. To account for flows into the cell from features or pro- 

cesses external to the aquifer, such as streams, drains, area1 recharge, 

evapotranspiration or wells, additional terms are required. These flows 

may be dependent on the head in the receiving cell but independent of all 

other heads in the aquifer, or they may be entirely independent of head in 

the receiving cell. Flow from outside the aquifer may be represented by 

the expression 

ai,j,k,n = Pi,j,k,nhi,j,k t qi,j,k,n (16) 

where 

di j k n represents flow from the rlth external source into cell i,j,k 

(LW1): 

, , 

and pi,j,k,n and qi,j,k,n are constants ((L*t-1) and (Lst'l), 

respectively). 

For example, suppose a cell is receiving flow from two sources, recharge 

from a well and seepage through a riverbed. For the first source (n=l), 
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since the flow from the well is assumed to be independent of head, pi,j,k,l 

B iS zero and qi,j,k,l is the recharge rate for the well. In this case, 

ai,j,k,l = qi,j,k,l* (17) 

For the second source (n=2), the assumption is made that the stream- 

aquifer interconnection can be treated as a simple conductance, so that 

the seepage is proportional to the head difference between the river stage 

and the head in cell i,j,k (figure 5); thus we have 

ai,j,k,2 = aIVi,j,k,2(Ri,j,k - hi,j,k) (18) 

where Ri,j,k is the head in the river (L) and aIVi,j,k,2 is a conductance 

(L2tW1) controlling flow from the river into cell i,j,k. For example, in 

the situation shown schematically in figure 5, CRIV would be given as the 

D 

product of the vertical hydraulic conductivity of the riverbed material and the 

area of the streambed as it crosses the cell, divided by the thickness of the 

streambed material. Equation (18) can be rewritten as 

ai,j,k,2 = - mIVi,j,k,2hi,j,k + aIVi,j,k,2Ri,j,k* (19) 

The negative conductance term, -mIvi,j,k,z corresponds to pi,j,k,2 Of 

equation 16, while the term CRIVi,j,k,2Ri,j,k corresponds t0 qi,j,k,2. 

Similarly, all other external sources or stresses can be represented by an 

expression of the form of equation 16. In general, if there are N external 

sources or stresses affecting a single cell, the combined flow is expressed 

by 

N N N 
QSi,j,k = "ai ,j ,k,n = 

n=l 
cPi,j,k,n 

n=l 
hi,j,k + cqi,j,k,n* (20) 

n=l 

Defining Pi,j,k e and Qi,j,k by the eXpreSSiOnS 
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B 

D 

r4 
pi ,j,k = Epi,j,k,n and 

n=l 

N 
Qi,j,k = cqi,j,k,ns 

n=l 

the general external flow term for cell i,j,k is 

Q%,j,k = pi,j,khi,j,k + Qi,j,k* (21) 

Applying the continuity equation (2) to cell i,j,k, taking into account the 

flows from the six adjacent cells, as well as the external flow rate, QS, 

yields 

qi,j-1/2,k + qi,j+1/2,k + qi-1/2,j,k + qi+l/Z,j,k 

Ahi,j,k 
+ qi,j,k-l/2 + 9i ,j,k+1/2 + QSi,j,k = SSi,j,k--;;--4rjAciAvk 

(22) 

where 

Ahi,j,k 
------- is a finite-difference approximation for the derivative of head 
At 

with respect to time (Lt-I); 

ss i j k represents the specific storage of cell i,j,k (L-l); and , , 

At’jACiAVk is the volume of cell i,j,k (L3). 

Equations (10) through (15) and (21) may be substituted into equation (22) to 

give the finite-difference approximation for cell i,j,k as 

mi,j-1/2,k(hi,j-1,k - hi,j,k) + ai,j+l/2,k(hi,j+l,k - hi,j,k) 

t CCi-1/2,j,k(hi-l,j,k - hi,j,k) + CCi+l/P,j,k(hi+l,j,k - hi,j,k) 

+ cvi,j,k-1/2(hi,j,k-1 - hi,j,k) + ~i,j,k+l/2(hi,j,k+l - hi,j,k) 

+ pi,j,khi,j,k + Qi,j,k = SSi,j,k(ArjACiAVk)Ahi,j,k/At* 
(23) 
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The finite-difference approximation for the time derivative of head, 

Ahi,j,k 
------- must next be expressed in terms of specific heads and times. Figure 

At 

6 shows a hydrograph of head values at node i,j,k. Two values of time are 

shown on the horizontal axis: tm, which is the time at which the flow terms 

of equation (23) are evaluated; and tm-1, a time which precedes tm. The head 

values at node i,j,k associated with these times are designated by superscript 
m m-l 

as hi,j,k and hi,j,k, respectively. An approximation to the time derivative 

of head at time tm is obtained by dividing the head difference h;,j,k 
m-l 

- hi,j,k 

by the time interval tm-tm,1; that is, 

m m-l 

( 
bi,j,k 

)m ' 
hi,j,k - hi,j,k ------- --------------- 

At tm 
- tm-1 

Thus the hydrograph slope, or time derivative, is approximated using the 

change in head at the node over a time interval which precedes, and ends with, 

the time at which flow is evaluated. This is termed a backward-difference 

approach, in that Ah/ At is approximated over a time interval which extends 

backward in time from tm, the time at which the flow terms are calculated. 

There are other ways in which bh/At could be approximated; for example, 

we could approximate it over a time interval which begins at the time of 

flow evaluation and extends to some later time; or over a time interval which 

is centered at the time of flow evaluation, extending both forward and backward 

from it. These alternatives, however, may cause numerical instability--that 

is, the growth or propagation of error during the calculation of heads at 

successive times in a simulation. 
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In an unstable situation, errors which enter the calculation for any reason 

at a particular time will increase at each succeeding time as the calculation 

progresses, until finally they completely dominate the result. By contrast, 

the backward-difference approach is always numerically stable--that is, 

errors introduced at any time diminish progressively at succeeding times. 

For this reason, the backward-difference approach is preferred even though it 

leads to large systems of equations which must be solved simultaneously for 

each time at which heads are to be computed. 

Equation (23) can be rewritten in backward-difference form by specifying 

flow terms at tm, the end of the time interval, and approximating the 

time derivative of head over the interval tm,I to tm; that is: 

cBi,j-1/2,k(h!l,j-1,k - hy,j,k) + CRi,j+I/2,k(hY,j+I,k 
m 

- hi,j,k) 

+ cvi,j,k-I/2(h!i,j,k-I - hF,j,k) + Qvi,j,k+I/2(hy,j,k+I - hy,j,k) 
m m-l 

+ pi,j,khT,j,k + %,j,k 
(hi,j,k - hi,j,k) 

= SSi ,j ,k ( Arj ACi Avk)------------------ 
tm - tm-1 

(24) 

Equation (24) is a backward-difference equation which can be used as the 

basis for a simulation of the partial differential equation of ground water 

flow, equation (1). Like the term Qi,j,k, the coefficients of the various 

head terms in equation (24) are all known, as is the head at the beginning 
m-l 

of the time step, hi,j,k. The seven heads at time tm, the end of the time 

step, are unknown; that is, they are part of the head distribution to be 

predicted. Thus equation (24) cannot be solved independently, since it 

represents a single equation in seven unknowns. However, an equation of 

this type can be written for each active cell in the mesh; and, since there 

is only one unknown head for each cell, we are left with a system of "n" 

equations in "n" unknowns. Such a system can be solved simultaneously. 
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The objective of transient simulation is generally to predict head 

distributions at successive times, given the initial head distribution, the 

boundary conditions, the hydraulic parameters and the external stresses. 

The initial-head distribution provides a value of hf,j,k at each point in 

the mesh ---that is, it provides the values of head at the beginning of the 

first of the discrete time steps into which the time axis is divided in the 

finite-difference process. The first step in the solution process is to 
2 

Calculate Values Of hi,j,k --that is, heads at time t2, which marks the end of 

the first time step. In equation (25), therefore, the head superscript m 

is taken as 2, while the superscript m-l, which appears in only one head 

term, is taken as 1. The equation therefore becomes 

CRi,j-I/2,k(hf j-I k - hi' j,k) + CRi,j+l/p,k(hf j+I k - hi' j k) 
Y Y ¶ Y , , , 

+CCi-1/2,j,k(hf-I j k - hf j k) +CCi+l/Z,j,k(ht+I j k - hi j k) 
Y Y Y Y Y , Y Y 

+ cvi,j,k-1/2(ht j k-I - hi' j k) + Cvi,j,k+l/E(hf j k+I - hi j k) 
, , Y Y , , , , 

+ pi,j,khf,j,k + Qi,j,k 
1 

= 55i,j,k 
(Arj ACi AVk)(h:,j,k - hi,j,k) 
-----L---------------~~~~~~~ 

t2 - t1 (25) 

where again the superscripts 1 and 2 refer to the time at which the heads 

are taken and should not be interpreted as exponents. 

2-19 



An equation of this form is written for every cell in the mesh in 

which head is free to vary with time (variable-head cells), and the system 

of equations is solved simultaneously for the heads at time t2. When these 

have been obtained, the process is repeated to obtain heads at time t3, the 

end of the second time step. To do this, equation (25) is reapplied, now 

using 2 as time subscript m-l and 3 as time subscript m. Again, a system 

of equations is formulated, where the unknowns are now the heads at time 

t3; and this set of equations is solved simultaneously to obtain the head 

distribution at time t3. This process is continued for as many time steps 

as necessary to cover the time range of interest. 

It is important to note that the set of finite-difference equations is 

reformulated at each time step; that is, at each step there is a new system 

of simultaneous equations to be solved. The heads at the end of the time 

step make up the unknowns for which this system must be solved; the heads at 

the beginning of the step are among the known terms in the equations. The 

solution process is repeated at each time step yielding a new array of heads 

for the end of the step. 

Iteration 

The model described in this report utilizes iterative methods to obtain 

the solution to the system of finite-difference equations for each time step. 

In these methods, the calculation of head values for the end of a given time 

step is started by arbitrarily assigning a trial value, or estimate, for the 

head at each node at the end of that step. A procedure of calculation is 

then initiated which alters these estimated values, producing a new set of 

head values which are in closer agreement with the system of equations. 

These new, or interim, head values then take the place of the initially 

assumed heads, and the procedure of calculation is repeated, producing 
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a third set of head values. This procedure is repeated successively, at each 

stage producing a new set of interim heads which more nearly satisfies the 

system of equations. Each repetition of the calculation is termed an 

"iteration." Ultimately, as the interim heads approach values which would 

exactly satisfy the set of equations, the changes produced by succeeding 

stages of calculation become very small. This behaviour is utilized in 

determining when to stop iteration, as discussed in a subsequent paragraph. 

Thus, during the calculations for a time step, arrays of interim head 

values are generated in succession, each array containing one interim head 

value for each active node in the mesh. In figure 7, these arrays are 

represented as three-dimensional lattices, each identified by an array symbol, 

li, bearing two superscripts. The first superscript indicates the time step 

for which the heads in the array are calculated, while the second indicates 

the number, or level, of the iteration which produced the head array. Thus 

Tim,* represents the array of values computed in the first iteration for the 

end of step m; Tim,* would represent the array of values computed in the 

second iteration; and so on. T he head values which were initially assumed for 

the end of time step m, to begi n the process of iteration, appear in the 

array designated l?',o. In the example of figure 7, a total of n iterations is 

equation (24)--i.e., they are used in the term hi,j,k on the right side of 

equation ime step m. Recause they 

represent which computations have 

(24)-- in the calculation of heads for t 

heads for the preceding time step, for 
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required to achieve closure for the heads at the end of time step m; thus the 

array of final head values for the time step is designated fim~n. Figure 7 

also shows the array of final head values for the end of the preceding time 

step Tim-1~~ (where again it is assumed that n iterations were required for 

closure). The head values in this array appear in the storage term of 
m-l 
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Figure 7.4terative calculation of a head distribution. 
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already been completed, they appear as predetermined constants in the equation 

for time step m; thus they retain the same value in each iteration of the 

time step. Similarly, the final values of head for time step m are used as 

constants in the storage term during calculations for time step m+l. 

Ideally, one would like to specify that iteration stop when the 

calculated heads are suitably close to the exact solution. However, because 

the actual solution is unknown, an indirect method of specifying when to 

stop iterating must be used. The method most commonly employed is to 

specify that the changes in computed heads occuring from one iteration 

level to the next must be less than a certain quantity, termed the "closure 

criterion" or "convergence criterion," which is specified by the user. 

After each iteration, absolute values of computed head change in that 

iteration are examined for all nodes in the mesh. The largest of these 

absolute head change values is compared with the closure criterion. If 

this largest value exceeds the closure criterion, iteration continues; if 

it is less than the closure criterion, iteration is said to have "closed" 

or "converged," and the process is terminated for that time step. Normally, 

this method of determining when to stop iteration is adequate. Note that 

the closure 'criterion refers to change in computed head, and that values of 

head are not themselves necessarily calculated to a level of accuracy 

comparable to the closure criterion. As a rule of thumb, it is wise to use 

a value of closure criterion that is an order of magnitude smaller than the 

level of accuracy desired in the head results. 

The program described herein also incorporates a maximum permissible 

number of iterations per time step. If closure is not achieved within this 

maximum number of iterations, the iterative process will be terminated and a 
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corresponding message printed in the output. The closure criterion is 

designated HCLOSE in the model input, while the maximum number of iterations 

per time step is designated MXITER. 

The initial estimates of head for the end of time step m, in array Tihs" 

of figure 7, could be assigned arbitrarily, or they could be chosen according 

to a number of different conventions. Theoretically, the iterative process 

would eventually converge to the same result regardless of the choice of 

initial head values, although the work required would be much greater for 

some choices than for others. In the model described in this report, the 

heads computed for the end of each time step are used as the initial trial 

values of head for the end of the succeeding time step. Thus in figure 7, 

the array Tim-l~n contains the final estimates of head, obtained after n 

iterations, for the end of time step m-l. When the calculations for step m-l 

are complete, these same values of head are transferred to the array wso, 

and used as the initial estimates, or trial values, for the heads at the end 

of time step m. Head values for the end of the first time step in the 

simulation are assumed initially to be equal to the heads specified by the 

user for the beginning of the simulation. 

Discussions of the mathematical basis of various iterative methods may 

be found in many standard references, including Peaceman (1977), Crichlow 

(1977) and Remson, Hornberger and Molz (1971). It is suggested that the 

reader review one of these discussions, both to clarify general concepts ? 

and to provide an introduction to such topics as the use of matrix notation, 

the role of iteration parameters, and the influence of various factors on 

rate of convergence. In particular, such a review is recommended prior to 

reading Chapters 12 and 13 of this report. 

c 
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An iterative procedure yields only an approximation to the solution of 

the system of finite-difference equations for each time step; the accuracy 

of this approximation.depends upon several factors, including the closure 

criterion which is employed. However, it is important to note that even if 

exact solutions to the set of finite-difference equations were obtained at 

each step, these exact solutions would themselves be only an approximation 

to the solution of the differential equation of flow (equation (1)). The 

discrepancy between the head, hy,j,k, given by the solution to the system of 

difference equations for a given node and time, and the head h(Xi,yj,Zk,tm) 

which would be given by the formal solution of the differential equation 

for the corresponding point and time, is termed the truncation error. In 

general, this error tends to become greater as the mesh spacing and time-step 

length are increased. Finally, it must be recognized that even if a formal 

solution of the differential equation could be obtained, it would normally 

be only an approximation to conditions in the field, in that hydraulic 

conductivity and specific storage are seldom known with accuracy, and 

uncertainties with regard to hydrologic boundaries are generally present. 

Formulation of Equations for Solution 

The model described in this report presently incorporates two diffe nt 
@i 

options for iterative solution of the set of finite-difference equations, 

and is organized so that alternative schemes of solution may be added without 

disruption of the program structure. Whatever scheme of solution is employed, 

it is convenient to rearrange equation (24) so that all terms containing 

heads at the end of the current time step are grouped on the left-hand side 

of the equation, and all terms that are independent of head at the end of 

the current time step are on the right-hand side. The resulting equation is 
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m m 
Cvi , j ,k-1/2hi, j ,k-1 t CCi-1/2,j,khy-l,j,k + CRi,j-1/2,khi,j-1,k 

+ (-CVi,j,k-l/2 - CCi-1/2,j,k - CRi,j-1/2,k - CRi,j+l/2,k 

- CCi+l/2,j,k - Cvi , j ,k+1/2 + HCOFi,j,k)hY,j,k t CRi,j+l/2,kh!l,j+l ,k 

(26) + CCi+l/2,j,kh~+l.,j,k 
m 

+ CVi,j,k+l/2hi,j,k+l = RHSi,j,k 

where 

HCOF. ~,j,k = 'i,j,k - SCli 

RHSi,j,k = - %,j,k - SC1 

,j ,k/(tm - tm,1); 

,i ,j ,khy;: ,k/(tm - tm,1) ; and 

SCli,j,k = SSi,j,kArjACiAVk. 

The entire system of equations of the form of (26), wh 

equation for each variable-head cell in the mesh, may be wr 

form as 

CA1 {h) = (9) 

(LVl) 

(LWl) 

(L2) 

ich includes one 

itten in matrix 

where [A] is a matrix of the coefficients of head, from the 

(27) 

left side of 

equation (26), for all active nodes in the mesh; {h) is a vector of head values 

at the end of time step m for all nodes in the mesh; and {q) is a vector of 

the constant terms, RHS, for all nodes of the mesh. The model described in 

this report assembles the vector {q) and the terms that comprise [A] through 

a series of subroutines, or "modules". The vector {q) and the terms 

comprising [A] are then transferred to modules which actually solve 

the matrix equations for the vector Ih) . 
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Types of Model Cell and Simulation of Boundaries 

In practice, it is generally unnecessary to formulate an equation of 

the form of (24) for every cell in a model mesh, as the status of certain 

cells is specified in advance in order to simulate the boundary conditions 

of the problem. In the model described in this report, cells of this type 

are grouped into two categories-- "constant-head" cells and "inactive" (or 

"no-flow") cells. Constant-head cells are those for which the head is 

specified in advance, and is held at this specified value through all time 

steps of the simulation. Inactive or no-flow cells are those for which no 

flow into or out of the cell is permitted, in any time step of the simula- 

tion. The remaining cells of the mesh, termed “variable-head" cells in 

this report, are characterized by heads which are unspecified and free to 

vary with time. An equation of the form of (24) must be formulated for each 

variable-head cell in the mesh, and the resulting system of equations must 

be solved simultaneously for each time step in the simulation. 

Constant-head and no flow cells are used in the model described herein 

to represent conditions along various hydrologic boundaries. For example, 

figure 8 shows the map of an aquifer boundary superimposed on an array of 

cells generated for the model. The aquifer is of irregular shape, whereas 

the model array is always rectangular in outline; no-flow cells have there- 

fore been used to delete the portion of the array beyond the aquifer boundary. 

The figure also shows constant-head cells along one section of the boundary; 

these may be used, for example, where the aquifer is in direct contact with 

major surface water features. Other boundary conditions, such as areas of 

constant inflow or areas where inflow varies with head, can be simulated 

through the use of external source terms or through a combination of no-flow 

cells and external source terms. 
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Explanation 

- Aquifer Boundary 

-- - Model Impermeable Boundary 

tal Inactive Cell 

........ ........ ........ cl :i:i:;:f:;:i:;:i Constant-Head Cell ........ ....... 

Variable-Head Cell 

Figure 8.-Discretized aquifer showing boundaries and cell 
designations. 
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Conceptual Aspects of Vertical Discretization 

The model described in this document handles discretization of space 

in the horizontal direction by reading the number of rows, the number of 

columns and the width of each row and column (that is, the width of the 

cells in the direction transverse to the row or column). Discretization of 

space in the vertical direction is handled in the model by specifying the 

number of layers to be used, and by specifying hydraulic parameters which 

contain or embody the layer thickness. This approach is followed in preference 

to explicit reading of layer thickness in order to accomodate two different 

ways of viewing vertical discretization. 

At one extreme, vertical discretization can be visualized simply as an 

extension of area1 discretization--a more or less arbitrary process of 

dividing the flow system into segments along the vertical, governed in part 

by the vertical resolution desired in the results. At the opposite extreme, 

vertical discretization can be viewed as an effort to represent individual 

aquifers or permeable zones by individual layers of the model. Figure 9-a 

shows a typical geohydrologic sequence which has been discretized according 

to both interpretations --in 9-b according to the first viewpoint, and in 9-c 

according to the second. The first viewpoint leads to rigid superposition 

of an orthogonal three-dimensional mesh on the geohydrologic system; while 

there may be a general correspondence between geohydrologic layers and 

model layers, no attempt is made to make the mesh conform to stratigraphic 

irregulaties. Under the second viewpoint, model layer thickness' is con- 

sidered variable, to simulate the varying thickness of geohydrologic units; 

B 

this leads, in effect, to a deformed mesh. 
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Grid Layer 1 

Grid Layer 2 

Grid Layer 3 

Grid Layer 1 

Grid Layer 2 

Grid Layer 3 

....... ........ .: ....... ........... ....... ’ ........ _: .. .:. .......... .*:.: .. -‘- : **, . Coarse.‘.’ : * . . r\ ..... .... . 

(a) Aquifer Cross Section 

(b) Aquifer Cross Section With 
Rectilinear Grid Superimposed 

Cell Contains Material 
from Three Stratigraphic 

Units. All Faces Are 
Rectangles 

-la 
Cell Contains Material 

from Only One Stratigraphic 
Unit. Faces Are Not Rectangles 

(c) Aquifer Cross Section With 
Deformed Grid Superimposed 

Figure 9.-Schemes of vertical discretization. 
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Each of these methods of viewing the vertical discretization process 

has advantages, and each presents difficulties. The model equations are 

based on the assumption that hydraulic properties are uniform within indivi- 

dual cells, or at least that meaningful average or integrated parameters 

can be specified for each cell; these conditions are more likely to be met 

when model layers conform to geohydrologic units as in figure 9-c. More- 

B 

over, greater accuracy can be expected if model layers correspond to inter- 

vals within which vertical head loss is negligible, and this is also more 

likely under the configuration of 9-c. On the other hand, the deformed 

mesh of 9-c fails to conform to many of the assumptions upon which the 

model equations are based; for example, individual cells may no longer have 

rectangular faces, and the major axes of hydraulic conductivity may not be 

aligned with the model axis. Some error is always introduced by these 

l 
departures from assumed conditions. 

In practice many vertical discretization schemes turn out to be a com- 

bination of the viewpoints illustrated in figures 9-b and 9-c. For example, 

even where layer boundaries conform to geohydrologic contacts, it may be 

necessary to use more than one layer to simulate a single geohydrologic 

unit, simply to achieve the resolution required in the results. Figure 10 

shows a system consisting of two sand units separated by a clay; the units 

are of uniform thickness, and each could be represented by a single layer 

without deformation of the mesh. However, flow is neither fully horizontal 

nor fully vertical in any of the layers; if information on the direction of 

flow within each unit is required, several layers must be used to represent 

each unit. Similarly, figure 11 shows a sand-clay system in which pumpage 

from the sands is sustained partially by vertical flow of water released 

from storage in the clay. If the objective of analysis is to determine the 

pattern of storage release in the clay, several model layers would be 
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Sand 

Clay 

Sand 

Figure lO.-Possible pattern of flow in a cross section consisting 
of two high conductivity units separated by a low 
conductivity unit. 
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Layer 

Sand 

Clay 

Sand 

Figure Il.-A cross section in which a low conductivity unit is 
represented by six model layers. 
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required to represent that unit, as shown in the figure. On the other 

hand, figure 12 shows a sand-clay system in which storage release occurs 

only in the sands, flow in the sand is essentially horizontal, and flow in 

the clay is essentially vertical. In this case a single model layer may be 

used to represent each sand, while the clay may be represented simply by 

the vertical conductance between layers. This approach to vertical discre- 

tization.has sometimes been termed the "quasi three-dimensional" approach. 

The approaches to vertical discretization described above all lead to 

a set of equations of the form of (26), which must be solved simutaneously at 

each time step. The differences among these approaches arise in the way 

the various conductances and storage terms are formulated and, in general, 

in the number of equations to be solved, the resolution of the results, and 

the accuracy of the results. l The model described in this document is 

capable of implementing any of these approaches to vertical discretization 

in that, as noted above, the thickness of individual layers (hvk of 

figure 1 and equation (24)) is never read explicitly by the program; rather, 

this thickness is embedded in various hydraulic coefficients specified by 

the user. For example, in confined layers transmissivity, which is the 

product of hydraulic conductivity and layer thickness, is specified; and 

storage coefficient, the product of specific storage and layer thickness, 

is also used. For an unconfined layer, aquifer bottom elevation and 

hydraulic conductivity are input for each cell. Saturated thickness is 

calculated as head minus bottom elevation, and transmissivity is then 

calculated as hydraulic conductivity times saturated thickness. Thus, 

layer thickness can vary from cell to cell depending on bottom elevation 

and head. Chapter 5, which describes the Block Centered Flow Package, 

contains a discussion of the formulation of conductance and storage terms 

corresponding to the various ways of conceptualizing the vertical discretization. 
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Heads in This Layer Are Not Calculated. Resistance to Flow in This Layer Is Included 
in the Conductance Terms Between Layers 1 & 2. Clay 

Figure 12.-A cross section in which a low conductivity unit is 
represented by the conductance between model 
layers. 
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