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PREFACE 

The series of manuals on techniques describes procedures for planning and executing specialized work in 
water-resources investigations. The material is grouped under major subject headings called “Books” and 
further subdivided into sections and chapters. Section A of Book 6 is on ground-water modeling. 

The unit of publication, the chapter, is limited to a narrow field of subject matters. This format allows 
flexibility in revision and publication as the need arises. Chapters 6A3,6A4, and 6A5 are on the use of a 
particular transient finite-element numerical method for two-dimensional ground-water flow problems. 
These Chapters (6A3,6A4, and 6A5) correspond to reports prepared on the finite-element model given the 
acronym MODE and designated as parts 1,2, and 3, respectively. Part 1 is on “model description and 
user’s manual,” part 2 is on “derivation of finite-element equations and comparisons with analytical 
solutions,” and part 3 is on “design philosophy and programming details.” Parts 1 and 3 have been released 
as Open-File Reports (see References, Torak (1992 a, b)) pending publication as Chapters 6A3 and 6A5 
respectively. 

Any use of trade, product, or firm names is for descriptive purposes only and does not imply 
endorsement by the U.S. Government. 
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A MODULAR FINITE-ELEMENT MODEL (MODFE) FOR AREAL AND 
AXISYMMETRIC GROUND-WATER FLOW PROBLEMS, 

PART 2: DERIVATION OF FINITE-ELEMENT EQUATIONS AND 
COMPARISONS WITH ANALYTICAL SOLUTIONS 

By Richard L. Cooley 

ABSTRACT 

MODFE, a modular finite-element model for simulating steady- or 
unsteady-state, area1 or axisymmetric flow of ground water in a hetero- 
geneous anisotropic aquifer is documented in a three-part series of reports. 
In this report, part 2, the finite-element equations are derived by minimiz- 
ing a functional of the difference between the true and approximate hydrau- 
lic head, which produces equations that are equivalent to those obtained by 
either classical variational or Galerkin techniques. Spatial finite 
elements are triangular with linear basis functions, and temporal finite 
elements are one dimensional with linear basis functions. Physical 
processes that can be represented by the model include (1) confined flow, 
unconfined flow (using the Dupuit approximation), or a combination of both; 
(2) leakage through either rigid or elastic confining units; (3) specified 
recharge or discharge at points, along lines, or areally; (4) flow across 
specified-flow, specified-head, or head-dependent boundaries; (5) decrease 
of aquifer thickness to zero under extreme water-table decline and increase 
of aquifer thickness from zero as the water table rises; and (6) head- 
dependent fluxes from springs, drainage wells, leakage across riverbeds or 
confining units combined with aquifer dewatering, and evapotranspiration. 

The matrix equations produced by the finite-element method are solved 
by the direct symmetric-Doolittle method or the iterative modified 
incomplete-Cholesky conjugate-gradient method. The direct method can be 
efficient for small- to medium-sized problems (less than about 500 nodes), 
and the iterative method is generally more efficient for larger-sized 
problems. Comparison of finite-element solutions with analytical solutions 
for five example problems demonstrates that the finite-element model can 
yield accurate solutions to ground-water flow problems. 

INTRODUCTION 

This report is the second part of a three-part series of reports (parts 
1 and 3 are by Torak, 1992a and 1992b) that document the computer program 
MODFE (modular finite-element model), which simulates steady- or unsteady- 
state, area1 or axisymmetric flow of ground water in a heterogeneous, 
anisotropic aquifer. The model incorporates a variety of physical processes 
necessary to simulate ground-water flow in the complicated settings that 
often characterize actual field problems. Flow may be confined, unconfined 
(using the Dupuit assumption), or a combination of both; known recharge and 
discharge may be distributed areally, along lines such as specified-flow 
boundaries, or at point sources and sinks such as pumping wells; and head- 
dependent leakage may be distributed areally, such as through confining 
units or wide riverbeds, or along lines such as narrow riverbeds. Confining 
units may be rigid or may have elastic storage capacity. Special nonlinear, 
head-dependent source and sink functions allow simulation of springs, drain- 
age wells, rivers or confining units combined with aquifer dewatering, and 
evapotranspiration. 
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The material in the three reports has evolved over the past 10 years 
from material presented by the authors in the courses entitled "Finite- 
Element Modeling of Ground-Water Flow" held at the U.S. Geological Survey 
National Training Center in Denver, Colorado. These reports formalize the 
course material and incorporate valuable suggestions and comments from 
attendees of the courses. 

Features that appear to be new, at least to published finite-element 
programs for ground-water flow, include (1) the method of deriving the 
finite-element equations from a functional of the difference between the 
true and approximate solutions, (2) the method of approximating the vari- 
ability of transmissivity over an element so that the coefficient matrix 
does not have to be reassembled element by element each time the saturated 
thickness changes, (3) the method of treating decreases of aquifer thickness 
to zero under conditions of extreme water-table decline and increases of 
aquifer thickness from zero as the water-table rises, (4) the finite-element 
in time method for deriving (a) the finite-element equations for unconfined 
flow and (b) the functions for nonlinear, head-dependent sources and sinks, 
and (5) the method for incorporating transient leakage from confining units. 

PURPOSEANDSCOPE 

The purpose of this second part of the three-part series of reports is 
to derive the finite-element equations for the physical processes contained 
in the finite-element model. A knowledge of the physics of ground-water 
flow, as explained by Bear (1979), for example, is assumed. The differen- 
tial equations that describe the physics of the flow processes are stated 
and the situations under which they apply are briefly explained, but the 
equations are not derived here. Basic differential and integral calculus 
and the symbolic representation of systems of equations using matrix algebra 
are used extensively. 

This report is organized as follows. First, the basic differential 
equatCon and boundary conditions for unsteady-state flow in a confined 
aquifer are stated and the finite-element equations for this system are 
derived in Cartesian coordinates. Next, the finite-element equations are 
extended to include unconfined or combined confined and unconfined flow; 
decreases of aquifer thickness to zero and increases from zero; the non- 
linear, head-dependent source and sink functions; and transient leakage from 
confining units. Following this, finite-element equations are derived in 
axisymmetric cylindrical coordinates and in steady-state form for either 
area1 or axisymmetric problems. Finally, tw'o matrix solution procedures are 
presented: a direct factorization method and an iterative, generalized 
conjugate-gradient procedure combined with approximate factorization.. 

Symbols used are defined where they first appear and in a special 
notation section at the end of the report. This should minimize confusion 
over use of similar symbols in different contexts. 
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FIJYITE-ELEMENT FORMSJIATION IN CARTESIAN COORDINATES 

GOVEBNING FLOW EQUATION AND BOUNDABY CONDITIONS 

Ground-water flow in an aquifer where there are no discontinuities in 
transmissivity is assumed to be governed by the two-dimensional, unsteady- 
state flow equation (Bear, 1979, p. 103-116) 

+ R(H-h) + W + P = SE, (1) 

where 
(XSY) = Cartesian coordinate directions [length], 

t - time [time], 
h(x,y,t) = hydraulic head in the aquifer [length], 
H(x,y, t) = hydraulic head at the distal side of a confining 

unit [length], 

Txxhy,t) Txy(x,y,t> = 1 symmetric transmissivity tensor written in matrix 

Tyx(x,y,t) Tyy(x,y,t) form [ length2/time , I 

R(x,y,t) = hydraulic conductance (vertical hydraulic 
conductivity divided by thickness) of a 

confining unit [time -1 1, 
S(x,y,t) = storage coefficient [0], 
W(x,y,t) = unit area1 recharge or discharge rate 

[length/time] (positive for recharge), and 

P(x,y,t) = ji16p-aj)6(Y-bj)Qj(t) = designation using Dirac 

delta functions for p point sources or sinks, 
each of strength Q. [lengths/time] (positive 

J 
for injection) and located at x = a! and 
y = bj. J 

Equation (1) is subject to the following boundary and initial 
conditions: 

1. At a discontinuity in transmissivity within the aquifer, hydraulic head 
and the component of flow normal to the discontinuity are unchanged as the 
discontinuity is crossed (Bear, 1979, p. 100-102). Thus, at a discontinuity 
in transmissivity between transmissivity zones a and b (figure 1), 

and 
h 

I a 
=hb 

I 

qnla = qnlb' 

(2) 

(3) 

where l 

I 

and l a I 
b indicate evaluation just within the a and b sides of the 

discontinuity, respectively, and q,(x,y,t) is the normal component of flow 

(specific discharge times aquifer thickness). 
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Figure 1. A hypothetical aquifer that has a discontinuity in transmissivity 
between zones a and b. 

2. The normal component of flow across a boundary of the aquifer is given 
by the sum of specified and head-dependent f:Low components (Bear, 1979, 
p. 117-120). Thus, on this type of boundary 

qn = qB + a HB-h , 
I I 

(4) 

where 
qB(x,y,t) = specified flow (specific discharge times aquifer thickness) 

normal to the boundary [length2/time] (positive for 
inflow), 

a(x,y,t> = a parameter that approaches infinity for a specified-head 
(Dirichlet) condition, is zero for a specified flow 
(Neumann) condition, and j:s finite and positive for a 
general or mixed (Cauchy) condition [length/time], and 

HD(x,y,t) = specified head at the boundary [length]. 

Note that although equation (4) is usually used to specify external boundary 
conditions (see Bear, 1979, p. 116-123, for examples), it may also be used 
to specify internal sources and sinks such as rivers (which are idealized as 
lines) or springs (which are idealized as points). 

3. The hydraulic head is known everywhere at the initial instant of time, or 

where 
h-H 

0’ 
(5) 

Ho(x,Y) = the initial head [length]. 

For convenience in subsequent discussions, specified flow (a = 0 in 
equation (4)) and Cauchy (0 < a < 00 in equation 4)) boundary conditions are 
referred to as Cauchy-type boundary conditions, because the former is simply 
a special case of the latter. Specified-head boundary conditions are 
treated separately from Cauchy-type boundary conditions. 
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The finite-element method is used to solve equations (1) through (5). 
The basic concept underlying the finite-element method is that a complex 
flow region or domain may be subdivided into a network of subregions or 
elements, each having a simple shape (figure 2a). Each of these elements is 
then assumed to be small enough that at any instant of time the true solu- 
tion, h, of equations (1) through (5) may be approximated within the 

h 
element by a simple function, h. These local functions are continuous 
across element boundaries to ensure that the approximate solution is 
spatially continuous. Presumably, as each element is reduced in size and 
the number of elements is increased, the approximate solution approaches the 
true solution. 

A) 
m 

Y 

1 

k 

1 

W 

Figure 2. (a) Hypothetical aquifer of figure 1 subdivided into spatial 
finite elements, and (b) variation of hydraulic head with time subdivided 
into time elements. 

The time domain of the true solution is similarly subdivided into 
elements (figure 2b), each bounded by two points in time at which local 
approximate functions are linked to form a piecewise continuous function of 
time. First the spatial functions are developed, then the time functions 
are superimposed. 

In the present report, spatial element shapes ,are assumed to be 

triangles (figure 2a) and head, h, is assumed to vary linearly within each 
element. Element corners are called nodes. Because three points define a 
plane, the three nodes of each triangular element are used to define the 
linear function. 
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At any point within typical element e (figure 2a) having nodes k, 1, 
and m, the approximate solution may be written as 

;I = Ae + Bex + 'Cey, (6) 

where constants A e, Be, and Ce can be found from the simultaneous equations 
that must be satisfied at the nodes: 

itk = Ae + Bexk + Ceyk, 

ii1 = Ae + Bexl + Ceyl, 

ii, = Ae + Bexm + Ceym, 

(7) 

Solution of equations (7) for Ae, Be, and Ce, substitution of the results 
into equation (6), and rearrangement yields the final equation (Segerlind, 
1976, p. 28-30) 

ii = ;IkN; + ;IIN; + ;I Ne m m' (8) 

where 

hi = h[xi,yi,t], i = k,l,m, 

(9) 

NF = a: + byx + cyy /2Ae, i = k,l,m, 
1 

and the NT are called basis (or coordinate) functions. In equations (9), 

a: = xlym - xm4'19 

b;=Yl - Y,* 

c; = xm - X1' 

a; = XmYk - xky, ? 

b; = Y, - Yk’ 

cy = Xk - xm, 
e a 
m = XkYl - x1Yk’ 

b;=Yk - Yl’ 

e 
C =x -x m 1 k' 

and 

2Ae = x 
'rn 

- xl m - yk]* 

(10) 

(11) 

If nodes k, 1, and m are numbered counter-clockwise around element e, 

then Ae is the area of element e. Otherwise, Ae is the negative of the 
area. Following the counter-clockwise numbering convention is critical to 
maintain the proper signs of quantities in the finite-element equations to 
be developed. 
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'n 'n+l 
TIME 

t’=t-t, 

AtIl+l=tIl+l-tIl 
tr(Fn,n+ l)=time 

at time level r 

Figure 3. 
and CJ 

Finite-element discretization of time using basis functions on 
n+l (after Zienkiewicz, 1971, p. 337). 

Useful properties of the NF are given by Wang and Anderson (1982, 
p. 120) as: 

1. NY is 1 at node i and 0 at the other two nodes. 

2. Nt varies linearly with distance along any side. 

3. NY is 0 along the side opposite node i. 

4. NY is l/3 at the centroid of the triangular element. 

Another easily verified, useful property is that NE + NY + Ni = 1 at any 
point (x,y) in element e. 

An approximate solution over time is developed by using the same 
finite-element concepts used to derive the approximate solution in space 
(Zienkiewicz, 1971, p. 335-337). Finite elements in time are chosen to be 
one-dimensional, and basis functions u are chosen to be linear with a time 
node at each end of each element (figure 2b). If times at two time nodes 
are designated as tn and tn+l, and the length tn+l - tn of a time element is 

h 

Atn+l (figure 3), then hydraulic head h can be written for each space node i 

within each time element as 

;li=iinu +iin+lun+l' (12) 2 n 8 
where the basis functions are given by 

u n= 

=t' 
on+1 Atn+l' 

(13) 

h h 

t’ - t-t n' andhir=hitr , r=n, n+l. 
I I 1 

The basis functions an and an+l 

satisfy the first three properties listed for NT previously, modified 

accordingly for the one-dimensional nature of the time element. 
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Combination of equations (8) and (12) :yields the final approximate 
solution 

c7 +;in+lon+lN;, i,n n , 1 
i = k,l,m. (14) 

h 

Nodal hydraulic heads in equation (14) are calculated so that h approximates 
the true solution, as described in the following section. 

DERIVATION OF FINITE-ELEMEIW EQUATIONS 

Assume that there are N nodes in the f:Low domain, and that we wish to 
solve for values of hydraulic head at all N nodes. The necessary equations 
are generated by the approximate solution of equations (1) through (5), 
which is commonly derived using either weighted residual methods (Zien- 
kiewicz, 1971, chap. 3; Norrie and devries, 1973, chaps. 2 and 5; Pinder and 
Gray, 1977, chap. 3) or classical variational methods (Zienkiewicz, 1971, 
chaps. 3, 15, and 16; Remson and others, 1971, chap. 7; Norrie and devries, 
1973, chaps. 3-6, 9, 10). In weighted residual methods, solution over space 
is generally carried out separately from solution over time. To derive the 
necessary equations, the approximate solution given by equation (8) is 
substituted into equation (1) to form a residual, which is then multiplied 
by each member of a set of N weighting functions and integrated over the 
flow domain. The resulting set of N equations is then manipulated using the 
boundary conditions (equations (2) and (4)) to yield a set of N ordinary 
differential equations in time, which are usually solved with finite- 
difference methods. A commonly used weighted residual method is the 
Galerkin method, where the weighting functions are the basis functions 

Ni, each of which is the union of all elemental basis functions Ni. A 

Galerkin in time method was given by Zienkiewicz (1971, p. 335-336) as an 
alternative to the finite-difference solution over time. 

The classical variational method involves use of a variational princi- 
pie, which is an integral that, when minimized over the flow domain, yields 
equations (1) and (4). Because this variational principal is equivalent to 
the flow problem, the approximate solution may be substituted into it, and 
the integral may be minimized with respect to each nodal value of hydraulic 
head to yield the required finite-element equations. Variational and 
Galerkin finite-element methods applied to equations (1) through (5) yield 
the same set of finite-element equations when the same approximate solution 
(for example, equation (8)) is used. 

Error-funcdond justification for the finite-element equations 

Another method that is closely related to the classical variational 
method is to fit the approximate solution to the true solution using an 

h 
integral functionall of the error, e = h-h. In this author's opinion, 
derivation of the finite-element equations with this method is easier and 
provides more direct insight into the nature of the solution in terms of its 
error than the other methods. 

,. I . 
'A functional is a function of a function. The integral is a function of the error e = h-h, and e is 

regarded as a function of the values of h 
i ,n+l 

; hence, the integral is a functional. 
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To be useful, the functional, termed I(l), must be defined such that (1) I(L) 2 0, h 
with equality occurring only if e = 0, (2) the true solution, 

h, can be eliminated from the final finite-element equations, and (3) I(z) 
measures total (or integrated) error over the entire flow domain. The only 
error functional that satisfies these requirements and produces the same 
equations as produced by the Galerkin and classical variational methods is 

I(i) = g I "n+l 

0 

A 
T &+T & 

ax I YY ay 

+ I," d+W, (15) 

where the sum over e indicates the sum over all elements, the double 

integral over Ae indicates integration over spatial element e, and the 

contour integral over Ct indicates integration over the side (if any) of 

element e that is part of a boundary where a Cauchy-type boundary condition 
applies. For equation (15) to be valid, the matrix of transmissivities must 
be symmetric and positive definite, and R, S, and a must be greater than or 
equal to zero. The requirement for the transmissivities guarantees that the 

h 
sum of terms involving transmissivities is positive (or zero if e = 0) 
because this sum is a positive-definite quadratic form (see Hohn, 1964, 
p. 336, 338). Note that for ground-water flow problems, all of these 
requirements are satisfied. 

The approximate solution is fitted to the true solution by minimizing 

I(l) with respect to the approximate solution, which leads to an error 
distribution in which the error at any point (x,y,t) is as small as possible 

as measured by I(c). Because functional I(l) includes terms involving the 
error and its spatial and temporal derivatives, the minimization process 
minimizes the combination of the error and its derivatives. Magnitudes of 
T xx (etc.>, R, S, and a indicate which types of terms are more heavily 

weighted, and thus have more influence on the solution, for any given 
problem. For example, if terms involving the error directly were heavily 
weighted (that is, R and (or) a were large) compared to the other terms, 
then the average (integrated) error should be small, but if terms involving 
derivatives were heavily weighted, then the average error might be large if 
large errors were required to make the average derivatives of the error 
small. This latter situation could arise if space or time elements were too 
large or were poorly configured. 

Minimization of equation (15) is accomplished by taking its derivative 

with respect to each value of hi n+l, i i 1,2,.** ,N, and setting each result 
, 

to zero. Equation (15) does not also have to be minimized with respect to , 
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it i n because an equation for time level n was created by minimizing equation 

(1;) with respect to h i n+l for the previous time element. For the initial 
, h 

time element, hi (, is the known initial condition so that equation (15) is 
, 

not minimized with respect to it. It can be readily verified that the 
result of minimization is 

a1 aC1 i,n+l 
= -2qq 11 [ g[Txx~+TxygJ +$[Tyx& 

Ae 

+T ae 
YY ay I 

+ N;lZ; + dxdy 

-I- = 0, i == 1,2,*-•,N, (16) 

where summation over e i indicates summation over all elements sharing node 

i, termed a patch of elements by Wang and Anderson (1982, p. 12) (figure 4). 

Terms for all other elements over the flow domain drop out because hi n+l 
, 

does not appear in the approximate solutions in these elements. 

Figure 4. A typical patch of elements sharing node i. 
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Equation (16) can be separated into two parts, one written in terms of 
h 

approximate solution h and the other written in terms of the true solution 
h. Thus, 

Atn+l 

-F I {ll[ i 0 
an+l NY 

he 

&+T 
YX ax 

yy E]]dxdy - /?z;[qR + -(HR-h~]d+t' = 0. (17) 

9 
L 

Note that, to make each part of equation (17) complete, several terms were 
added to one part of the equation and subtracted from the other part. In 
appendix A the sum of the terms involving the true solution is shown to 
equal zero, so that equation (17) becomes 

Fi I;:,:: [ 11 [N$!$ - R[H-h] - W - P) + $[Txx i + TX,, $1 

Ae 

yy $]]dxdy - lCNe[qB + obR-i]]dC]dt' = 0, i = 1,2,***,N. 

Equation (18) represents the required set of finite-element equations. 
Performing the indicated integrations yields the final set of operational 
equations. However, before the integrations can be accomplished, the 
specific space and time dependencies of the various terms in the integrals 
must be specified, and two desirable simplifications are made. 

Integral approximations 

The first simplification involves the integrals of SLJfi/at, R(H-h), and 

o(H&. These integrals do not involve spatial derivatives of h and can be 

shown to contribute positive terms to the diagonal and off-diagonal elements 
of the final coefficient matrix for the approximate solution (Segerlind, 
1976, p. 216). In contrast, the integrals involving spatial derivatives 
contribute nonpositive off-diagonal terms and positive diagonal terms such 
that the sum of absolute values of the off-diagonal terms equals the 
diagonal term if all internal angles of the triangular elements are less 
than or equal to 90" (Narasimhan and others, 1978, p. 866). When specified- 
head boundary conditions are introduced, the coefficient matrix resulting 

11 
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from the spatial derivative terms is a type of M-matrix known as a Stieltjes 
matrix (Varga, 1962, p. SS), which is ideal for the iterative matrix 
solution technique introduced further on. In addition, a Stieltjes final 
coefficient matrix can be shown to guarantele a nonoscillatory solution to 
equation (18) when combined with proper restrictions in time-element size 
(Briggs and Dixon, 1968). Addition of positive off-diagonal terms to the 
matrix can destroy the Stieltjes matrix property, so that it is desirable to 

replace the integrals of S&/at, R(H-h), and o(HB-i) with integrals that 

contribute only positive diagonal terms. This replacement also simplifies 
the resulting finite-element equations so that their solution requires less 
computer time and storage than if the matrices resulting from the original 
integrals were used. 

In structural dynamics problems, replacement of the so-called 
consistent mass matrix (the matrix resulting from an integral involving 

second derivatives of time that is analogous to the integral of Sa&at> with 
a diagonal approximation of the mass matrix has been reported to yield 
degraded results (Zienkiewicz, 1971, p, 326). Similar degraded solutions 
were reported when a diagonal approximation was used for advection-dominated 
advection-diffusion problems (Gresho and others, 1976). However, Narasimhan 
and others (1978, p. 863-864) argue that a diagonal approximation enhances 

the numerical performance when applied to the integral of S&/at, and that 
retaining the nondiagonal form can lead to numerical difficulties. In 
addition, Wilson and others (1979) obtained good correspondence between 
analytical and finite-element solutions of equation (1) for several 
different test problems by using the same diagonal approximation, linear 
basis functions, and triangular spatial elements as used here. The author 
is aware of no study indicating degraded solutions when the diagonal 
approximation is applied to equations (1) through (5) using triangular 
spatial elements and linear basis functions, and the author's own numerical 
experiments have not revealed any significant degradation either. Finally, 
the author's analysis indicates that the method used here yields consistent 
mass balance over each patch of elements. 

The method can be demonstrated for one integral, and results for the 
other two are similar. The diagonal approximation is 

A h 
SNe ah i at dxdy =: 

dh. 
SN; $ dxdy. (19) 

The quadratic function NTai/at is replaced by the linear function Nydhi/dt, 

which, for constant S over the element (which is adopted for the present 
report) makes the approximation equivalent to the second-order correct 
trapezoidal rule (McCracken and Dorn, 1964, p. 161-166). 

Rotation of coordinate axes 

The second simplification, which is not an approximation, involves 
rotating the x and y coordinate axes locally, within each element, to axes 
x and y that coincide with the principal directions of the transmissivity 
tensor (figure 5) (Zienkiewicz and others, 1966). In the rotated coordinate 
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r Stratification 

in the 

in the 

Figure 5. Rotation from global (x,y) to local (x,9) coordinates in 
element e having node numbers k, 1, and m. 

system, the only nonzero components of the local transmissivity tensor are 
the diagonal (principal) components, 
obtained by using the rotation equations 

Txx and Try. Coordinates x and y are 

g= x cos I9 e + y sin Be, 

9 = -x sin Be + y cos Be, 
(20) 

where 0 e is the angle of rotation of the axes, measured counter-clockwise, 
in element e (see figure 5). By replacing coordinates x and y and the 
original transmissivity tensor with rotated coordinates x and y and the 
diagonal transmissivity tensor, equation (18) can be transformed to become 

where the bars over the variables indicate evaluation using x and y and 
equations like equation (19) were used to modify the appropriate integrals. 

Evaluation of spatial integrals 

To reduce notational complexity, the space and time integrations in 
equation (21) are performed in two separate steps. To perform the space 
integrations, it is assumed that S, R, and W are constant in each spatial 
element, and that Txx and T-- 

YY 
are linearly variable in each element as given 

by relationships analogous to equation (8). That is, 

and 

TYV = T?- tie + T!- fie + T% tie, 
YYk k YYl 1 YYm m 

(22) 

(23) 
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e where T-- xxk' etc., are values of transmissivity at nodes k, etc., in 

element e. It is further assumed that qB and a are constant along any 

Cauchy-type boundary side of each element. The integration is performed for 
typical element e bounded by nodes k, 1, and m using the general formulas 
(Segerlind, 1976, p. 45) 

and 
q de J -&.i- 

(p+q+l)! Lkl' (25) 

where Lll is the length of the element side between nodes k and 1. Thus, by 
h 

writing h using equation (8) and substituting the appropriate expressions 

for $, &/ax, and $/ay, i = k,l,m, the spatial integrals in equation 

(21) are evaluated for i = k (for example) as 
h h 

dhk - - 
fi; S dt dxdy = 3 dhk 

lCseAe dt' (26) 

j'= 

(27) 

(28) 

(29) 



aq * aiae h 
l hk + ax hl + j$ hm d;dy 1 

+ (q~L]km + ~]km[H13k-hk]]' 

(30) 

(31) 

(32) 

where Se, Re, and We are the constant values of S, R, and W in element e; 

(33) 

(34) 

6: and c:, i = k,l,m, are defined by equations (10) and evaluated using x 

and i; P, is the number of point sources and sinks in element e; fie 

is the basis function for node k evaluated at point ; and Lkl and h 

are lengths of element sides between nodes k and 1 and between nodes k and 
m, respectively, on a Cauchy-type boundary. If a side is not on a Cauchy- 
type boundary, then L for that side is set to zero. 
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The term PE represents the total amount of pumping that is allocated to 

node k in element e. If a well is located at node k (where a! = xk and 
J 

bj = yk so that $ aj,bj 
I 1 

- l), then the pumping rate Q. can be allocated to 
J 

one element so that when summed over all elements in the patch, the total 
rate is still Q.. 

J 
For other points in element e, the rate allocated to node 

k is less than the total rate Q. because tie a' b! 
J I 1 k J'J 

< 1 for "j f xk and (or) 

6j # yk. However, parts of Qj are also allocated to the other two nodes of 

the element so that, because tie + $ + fire = 1, the sum of the rates k m 

allocated to the three nodes is Q., as required. 
3 

By using equations (26) through (34), the spatial integrals for element 
e in equation (21) can be written as 

-I$jqB + +-lBk-'k]lde 

where 

Gc = 3 'SeAeV 

%k = 3 'ReAe + :[bL]kl + p]km]' 

(35) 

(36) 

(37) 

g;k = 
T?- _ 
x d;b; + 

4Ae 4Ae 
(38) 
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(39) 

(40) 

A small alteration in the integral formulations given by equations (30) 
and (31) is useful for computations and in developments further on. Because 

fiE+Ny+fiz=l, the terms 

and 

are both equal to zero and can be added into the terms 

and 

in equations (30) and (31), respectively. The resulting modifications of 
equations (30) and (31) are 

and 

IS a$ h 
ax Txx ij$ d;;d$ = TE, 

Ae 4Ae 

af, - - T?- 
TYr ay dxdy = -yy 

4Ae 

1 
I3 

(41) 

I (42) 

which indicates that 
(43) 

The revised formulation, which was used by Narasimhan and others (1978, 

p. 875), saves both computer time and storage requirements because gEk never 

need be expl:citly computed using equation (38). An added advantage over 
the original formulation is that equations (41) and 42) generate less round- 
off error than equations (30) and (31) when solving the simultaneous systems 
of equations developed further on. 
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Substitution of equation (35) into equation (21) written for node k 
yields 

(44) 

must apply to all N nodes of the finite-element mesh. These N 
be written in matrix form as 

Equation (44) 
equations can 

Atn+l 

s 
an+l 

0 

where 
4-p+ (46) 

and doubly underscored letters indicate matrices and singly underscored 
letters indicate vectors. ,Entries of the matrices and vectors are defined 
as follows: 

C 
g. 

u= o1 t 

cTj, i = j 
(47) 

, i f j' 

v - ij 
t 

F, v~j s i - j 

0 ,iPj' 
(48) 

G ij - g g"., 
i 'J 

(49) 

Hi + $WeAe + P; + ;y,(qBL]ij, + $y,(&L)ij,HBi 1 , (50) 

where the sum over j' indicates the sum over the two nodes that are adjacent 
to node i in an element. 

Specified-head boundaries were not con,sidered in the preceding 
development. If node k was designated as a specified-head node, then 
equation (44) would be replaced by 

[>;[h, - H,ld,. = 0, (51) 

and this equation would replace equation k ,in matrix equation (45). Note 
that setting hk equal to HBk is formally equivalent to letting a -t m at node 

k in equation (44). 
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Example of equation assembly 

A simple finite-element mesh shown in figure 6 is used to demonstrate 
how the terms of equation (45) are assembled. Matrices g and 4, and vector 
B, are assembled separately, then these are used to obtain the final system 
of equations. 

Assembly is based on the patch of elements concept, where contributions 
to any equation i (that is, row i of 2, 2, or B) come from all elements 
sharing node i. By using this concept, g can be assembled to yield: 
(Note : In the following equations all zero entries are left blank.) 

1 2 3 4 5 

1 

2 

g-3 

4 

5 

$'A1 

1 
SlAl+S2A2+S3A3 

1 

1 
$S3A3 

5 

1 

qn = flow normal to an element boundary 

qg = specified flow normal to an element boundary 

a = proportionality parameter for a Cauchy-type boundary condition 

HB = specified head at a boundary 

h = hydraulic head 

Q1 = volumetric recharge from a well at node 4 

Figure 6. Example of three elements and five nodes for demonstrating 
assembly of finite-element equations. 
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Matrix 9 can be thought of as the sum of three matrices, a matrix composed 

of the ge ij (i # j) terms, a matrix composed of the 3 'ReAe terms, and a matrix 

1 composed of the ? CYL .., terms. 
I 1 1J 

These matrices are defined as 2, g, and a,, 

respectively, where, from equations (37) and (48), 5 + g = 2. 
shown in figure 6, 

For the mesh 

1 

2 

G=3 = 

1 

- [g:2+g:3] 

1 
g21 

1 
g31 

2 3 4 

1 1 
812 813 

- g21+g23 
I 11 12 2 

g23+g23 g24 

2 2 
+g23+g24 1 

12 1 2 3 
g32+g32 - I g31+g;2+g;2 g34+g34 

+g;4+&+& 1 

2 g43+&1 2 
I 

2 
g42 - g42+g:3 

+g23+g45 3 1 

3 
854 

I 

5 

3 
g35 

3 
845 

- (g:3+g:4) 

, 

a 

4 
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and 

2 3 4 

1 
. 11 - aL 13 2 

5 

1 
- aL 53 2 II - 

Finally, _ the B vector, which contains all terms that do not multiply i 

di/dt, is 

1 

2 

B=? 

L 

I: 

$R'AIHl + $WIA1 + ; .IqBL]12 + $('B' j13 + :[aL] 

+ R2A2] H2 + +'A' + W2A2] + $[qBL]21 

13HB1 

or 

+ R2A2 + R3A3]H3 + $WIA1 + W2A2+ W3A3] + $[[qBL]31 + (qBL)35e 

+ :[(aL)31 + kL35)lHB3 

+ R3A3 I I + 3 W2A2 + W3A3 1 + Q, 

h h 
and vectors dh/dt and h are 

I 

1 
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The final set of equations corresponding to equation (45) can be written 

- B2 dt' 1 
df, 3 '33 -d-t-- + *31it1 + ~~~~~ + *33i3 + A34i4+ A35i5 - B3 

= 0 

d;l 4 '44 dt + ~~~~~ + A43h3 + A4Lhi4 + A45i5 - B4 dt' 1 
1 dt' = 0 

+ Alli + A12h2 + A13h3 - Bl dt' = 0 1 

= 0 

Atn+l h I I u n+l '55 dt dh5 + A53;3 + A54;L4 
+ A55 

;I -B5dt'=0 
5 

0 1 
where terms involving zero coefficients were omitted and an entry A.. is 
A = G.. + R.. + a... iJ 

ij 1J 1J 1J 
There are no specified-head nodes in figure 6. If node 2 (for example) 

is designated as a specified-head node, then the second equation above is 

replaced by [2i[h2 - H,,],,' = 0 and h2 is replaced by HB2 in the 

remaining equations, i = 1,3,4, and 5, so that the terms Ai2HB2 are regarded 

as knowns. To accomplish this, (1) all entries in row 2 and column 2 of 
matrices G, C, R, and Q are set to zero except for entry (2,2) in matrix g, 
which is zet=to=unity,=(2) row 2 in ; is set to HB2, and (3) all other rows 

i = 1,3,4, and 5 in B have A i2 H B2 subtracted from them. 

Evaluation of the integral 

Time integration of equation (45) is performed using a formula that is 
analogous to equation (25): 

Atn+l I bn)' bn+l)q dt' == (p$Yi,! "n+l' 
0 

(52) 

The simplest solution of equation (45) is obtained when coefficient matrices 
C and A and known vector B are constant in time. In this case, term by term 
Integration of equation (45) yields 
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*?l+1 I di. C ii dt 1 an+ldt' = Cii 

0 

da 
n+;l da,+l 

i,n dt i,n+l dt - an+ldt' 
1 

1 h 
I 

h 
=- 

2'ii hi,n+l - hi,n ' 1 

Atn+l 
A..;1 u 1~ j n+l dt' = A.. +;, 

1J i,nan i,n+lOn+l 1 an+ldt' 
0 

= At,1 A ij + ihi.,,) 

Atn+l I Atn+l 

Bian+l dt' = Bi 
I 

a,ldt = $Atn+lBi. 

0 0 

Therefore, equation (45) is evaluated as 

1 = Atn+lB. (56) 

(53) 

(54) 

(55) 

Solution of equation (56) produces round-off errors, which can be 
reduced by solving for a change in head between time levels rather than for 

h 
the actual head values, hi n+l. By defining S as 2/3 of the total head 

, 
change between two time levels and substituting this into equation (56), a 
convenient equation for solution results. Thus, by defining 

6- ; in+1 
f 

- i 1 -n ' (57) 

$n+l = 4s + 5, and equation (56) can be written in the form 

C 1 h = (2/3)Atn+l + L 6 = ! - @?n’ (58) 

Further reduction of round-off error is obtained by writing the diagonal 

terms of g using equation (43) so that &, can be written in terms of head 

differences of the form of equations (41) and (42). 

Equations (57) and (58) are used to solve for head vectors in+1 at all 

time levels successively, starting with n = 0 at which ho is the known 

initial condition. First, equation (58) is solved for 6 using one of the 
matrix solution routines discussed further on, and second, equation (57) is h 
solved for h,+l, which becomes 5, for the next time level. 
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The finite-element in time method given by equation (56) is equivalent 
to the weighted finite-difference in time method, 

- + At 1 = Atn++ (59) 

with weighting factor 0 equal to 2/3. The weighted finite-difference in 
time method is unconditionally stable for &l/2 (Smith, 1965, p. 23-24), but 
Briggs and Dixon's (1968) criterion shows that use of B<l can cause 
oscillatory solutions if At n+l is too large. Bettencourt and others (1981) 

reported very good accuracy and only slight oscillations in a solution 
obtained with the finite-element in time method (0 = 2/3). In contrast, 
their solution to the same problem obtained with the well-known Crank- 
Nicolson method (0 = l/2) (Crank and Nicolson, 1947) exhibited large 
oscillations with little, if any, improvement in overall accuracy over the 
finite-element in time method. Numerical experiments conducted by the 
author also show that solutions are accurate and exhibit minimal oscillatory 
behavior if the sizes of time elements are not too large (which is problem 
dependent). 

Time variability of B results if source-bed heads H, specified heads 

HB' area1 recharge W, or specified boundary flux qB change with time. A 

simple method of approximating this time dependence in the finite-element 
equations is to assume linear time variability during each time element so 
that during time-element n+l 

Bi = Bi,nOn + Bi n+lOn+l' , 
Thus, equation (55) is replaced with 

Atn+l I Atn+l 
Bian+ldt' = 

I 
B i,nan +B i,n+lOn+l)On+ldt' 

0 0 

= ;Atn+l Bi + 2B 
t 
n i,n+l = $Atn++, (61) 

where B i is a weighted average value of Bi over timespan Atn+l, defined by 

+ 2B 
1 i,n+l * 

Hence, time dependence of known heads and fluxes may be incorporated into 
equation (58) by replacing B with fi. 

Time variability of C, A, and B also results from processes such as 
unconfined flow, conversi%s=from confined to unconfined flow (and vice 
versa), nonlinearity of stream-aquifer interactions, and discharges from 
springs, drains, or evapotranspiration. These types of time variabilities 
are treated in the sections covering these topics. 

Mass-balance caldation 

A mass balance based on equation (56) is needed to allow hydrologic 
budget analysis of the model and to assess the accuracy of the matrix 
solution methods discussed further on. Total quantities of water moved 
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- 

a 

during the timespan Atn+l are computed according to equation (61) as the 

product of weighted average discharges and Atn+l. To compute these totals, 

the mass-balance equations are formulated in terms of weighted average 
discharges and weighted average head, defined as 

h- $iin + $n+l. (63) 

By employing equations (56), (62), and (63), along with the definitions of 
the quantities in these equations, the system of nodal mass-balance 
equations is written as 

- $g ReAe fi i ( i - hi]Atn+l - $g$eAeAtn+l - g;;Atn+l 

- .: X g:+. - hi]Atn+l - QBiAtn+l - $[[qBL)il, 
J=l ei 1J J 

i#j 

+ kLlij,[fiBi - hi]]Atn+l = 0, i i= 1,2,***,N, (64) 

where QBi = 0 unless node i is a specified-head node, in which case QBi is 

the volumetric discharge across the node (positive for inflow) obtained by 
direct solution of equation (64) for QBi. Bars over quantities in equation 

(64) indicate weighted averages over time. 

To obtain the total mass balance over the flow domain, equation (64) is 
summed over i. When this is done, it can be seen that 

because ge. = e so that ge 
13 gji ij kj - $1 + gyiki - iij] = 0. Thus, the 

components that should sum to give nearly zero are: 

1 
N h 

Total depletion or accretion of water in storage = 2 igl g SeAe 
i 

- hi n . 
9 1 

1 N 
Total leakage across confining units = 3 izl 5 R A Hi i e "[- - hi]Atn+l. 

1 
N 

Total area1 recharge or discharge = 3 izl g I?eAeAtn+l. 
i 
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N P 
Total water pumped into or out of wells = 31 F i)yAtn+l = - 

i 
j _ClQjA’n+l. 

N 
Total water crossing specified-head boundarjles = Xl QBiAtn+l. 

Total water crossing Cauchy-type boundaries 

= : ii1 ~,[(qBL]ij, + laL)ij, lil,i - ~i]]Atn+l. 

Average volumetric flow rates in time element n+l can be obtained by 
dividing the components by Atn+l, and running totals over time can be 

obtained by summing the components over all preceding time elements. The 
mass imbalance in time element n+l is obtained by summing the components, 
and a running mass imbalance is obtained by summing mass imbalances over all 
preceding time elements. 

EXTENSIONS OF THE BASIC EQUATIONS 

Unconfined flow 

When equation (1) is applied to area1 flow in an unconfined aquifer by 
using the Dupuit approximation (Bear, 1979, p. ill-114), transmissivities 
are functions of the current saturated thickness of the aquifer, as follows: 

T = Kb 
= "[h - zb], (65) 

where b is the saturated thickness h - z b of the aquifer, h is the elevation 

of the water table above some datum, zb is the elevation of the aquifer 

bottom referred to the same datum, and subscripts x and y were omitted from 
T and K for simplicity. Because b is head dependent and varies in time, 
equation (1) is nonlinear, with transmissivities that are head dependent and 
vary in time. 

Time variance of the transmissivities can be handled in the same manner 
as time variance of B.. 1 That is, the G.. coefficients, which contain the 

U 
transmissivities, can be written for time element n+l as 

G 
ij = 

G ij ,nan +G ij,n+lon+l' 

so that, by using the relationship A.. = G.. + IT.., equation (54) is 
replaced with 1J 1J 1J 

(66) 

rAt n+lh 

J A ij hj"n+l dt' 

0 
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