

Techniques of Water-Resources Investigations of the United States Geological Survey

Chapter A5

A <u>MOD</u>ULAR <u>FINITE-ELEMENT MODEL (MODFE)</u> FOR AREAL AND AXISYMMETRIC GROUND-WATER-FLOW PROBLEMS, PART 3: DESIGN PHILOSOPHY AND PROGRAMMING DETAILS

By Lynn J. Torak

Book 6 MODELING TECHNIQUES

Subroutine DATI	N	Linear Versions
Variab	le	Definition
ALPH((ר	α term for head-dependent (Cauchy-type) boundary [length/time].
HB		Head on specified-head boundary [length].
IPBC		Indicator variable to suppress printout of initial Cauchy-type boundary data.
IPH		Indicator variable to suppress printout of initial aquifer heads.
IPHB		Indicator variable to suppress printout of initial specified-head boundaries.
IPHR		Indicator variable to suppress printout of initial source-bed heads.
IPND		Indicator variable to suppress printout of node numbers for each element.
IPQW		Indicator variable to suppress printout of initial point sources and sinks.
IPXY		Indicator variable to suppress printout of x-y coordinates.
NDC		Index for vector containing node numbers.
NLHS		Number of specified-head nodes that are located at the end of the head vector.
QBND((J)	q _B term for specified-flux boundary [length ² /time].
QWEL		Strength of point source or sink [length ³ /time].
WF		Weighting factor for specified-head-boundary nodes, equals 2/3 for transient simulations and 1 for steady state.

Subroutines DATOUT and EXTRAP

Variables that are contained in these subroutines have been defined in previous sections that give definitions of program variables in the general-storage vector G, in Fortran COMMON statements, and in other subroutines.

Subroutine FMCO

Variable	Definition
ALF	α term for head-dependent (Cauchy-type) boundary [length/time].
ANG	Rotation angle θ of equation (20) in Cooley (1992), to transform global Cartesian coordinates to local coordinates.
AREA	Twice the area of element e, $2\Delta^{e}$,[length ²].
BJ,BK,BL	Differences in nodal-coordinates used for coordinate functions N ^e , y direction.
СА	Scaling factor for coefficients (= .5).
СВ	Scaling factor for coefficients (= SCALE \times SCALE/6).
CJ,CK,C1	Differences in nodal coordinate used for coordinate functions N_{i}^{e} , x direction.
CS	Cosine of θ .
DIST	Length of element side on head-dependent (Cauchy- type) or specified-flux boundary.
ICA,ICB,ICC	Index to the storage location in <u>A</u> of capacitance term for nodes of NA, NB, and NC, respectively.
IEL	Element number.
IW	Length of storage in <u>A</u> allocated to each node.
IZ	Zone counter.
IZN	Vector containing zone numbers for each element.
KNT	Index for vector IZN, counter for elements.

Subroutine FMCO (continued)

Variable	Definition
кz	Zone number.
Μ	Index to the storage location in <u>A</u> of capacitance term for node NA.
Mł	Index for JPT.
MBM1	Number of storage locations in JPT that is allocated for each node.
NA,NB,NC	Node numbers identifying an element.
NE	Index to node numbers for combined-element input.
NDC	Index for node numbers.
NDID(I)	Node numbers for each element, I=1,4.
ND	Number of elements in zone KZ.
NT	Index for locating nodes in an element.
NTE	Element index.
QB	q _B term or specified-flux boundary [length ² /time].
QD	Unit rate of areally distributed flow [length/time].
RJ,RK,RL	Factors used in formulating coefficients for Cartesian or radial coordinate.
R(1), R(2), R(3)	Factors used to convert from Cartesian to radial coordinate system.
SN	Sine of 0.
STR	Storage coefficient [dimensionless], specific yield [dimensionless], or specific storage [length ⁻¹].

Subroutine FMCO (continued)

Variable	Definition
TESJ,TESK,TESL	Nodal coefficient (1/3)S ^e Δ^{e} for aquifer storage.
TEQ	Nodal coefficient (1/3) $W^{e\Delta e}$ for areally distributed flow.
TFL(1),TFL(2),TFL(3)	$(T_{\overline{xx}}/4\Delta^e) \ \bar{b}_i \bar{b}_j + (T_{\overline{yy}}/4\Delta e) \ \bar{c}_i \bar{c}_j$ for transmissivity "link" between nodes i and j, i \neq j = j, k, l.
TMPA	Difference in x coordinates for nodes on head- dependent (Cauchy-type) or specified-flux boundary, the length L _{kl} /2 for node K on boundary, unrotated xcoordinate, and cetroidal radius r.
ТМРВ	Difference in y coordinates for nodes on head- dependent (Cauchy-type) or specified-flux boundary, the length L _{kl} /2 for node L on boundary, unrotated y coordinate.
VLC	Hydraulic conductance, R, for steady vertical leakage [length ⁻¹].
XL	Local x coordinate [length].
XNA,XNB,XNC	Local \overline{x} coordinates for nodes NA, NB, NC, respectively [length].
XTR	Transmissivity in the local \overline{x} direction [length ² /time].
YL	Local y coordinate [length].
YNA,YNB,YNC	Local y coordinates for NA, NB, NC, respectively [length].
YTR	Transmissivity in the local y direction [length ² /time].
Subroutine FMEQ	
В	Right side of finite-element matrix equations.

Subroutine FMEQ (continued)

Variable	Definition
DT	Time-step size [time].
IW	Length of storage in <u>A</u> allocated to each node.
MBM1	Index to pointer vector JPT; defines maximum amount of storage that is allocated to JPT for each node.
NC	Index to the storage location in <u>A</u> where the capacitance term is located for each node.
ND	Index to the storage location in <u>A</u> for the transmissivity terms of each node.
NME	Index to the location of the main diagonal of the upper-triangular matrix A stored in condensed- matrix form, for each node.
NP	Index to the pointer vector JPT.
NVL	Index to storage location in program vector A for steady-vertical-leakage term for each node.
TMPA,TMPB	Steady-vertical-leakage terms and coefficients for head-dependent (Cauchy-type) and specified-flux boundaries.

Subroutine HCALC

Variables that are contained in this subroutine have been defined in previous sections that give definitions of program variables in the general-storage vector G, in Fortran COMMON statements, and in other subroutines.

Subroutine MASBAL

DTM	The factor $1/(2/3)\Delta t$ for computing average volumetric rates from aquifer storage.
IW	Length of storage in <u>A</u> allocated to each node.

1

Subroutine MASBAL (continued)

Variable	Definition
MBM1	Maximum number of locations in JPT that is allocated for each node.
NC	Index to the storage location in <u>A</u> for capacitance (aquifer-storage) terms.
ND	Index to the storage location in <u>A</u> preceding the location where transmissivity terms are located, for each node.
NP	Index to the pointer vector JPT.
NVL	Index to storage location in <u>A</u> for the vertical- leakage coefficient.
TMPA	Temporary-storage variable that is used to compute nodal volumetric rates for aquifer storage, convective flow (involving transmissivity) and Cauchy-type boundaries.
TMPB	Temporary-storage variable that is used to compute nodal volumetic rates for steady vertical leakage and Cauchy-type boundaries.
Subroutine MASOUT	
ISTP	Number of the current time step.
Subroutine PRTOA	
L	Index for printing out values (VAL).
NO	The number of values that is printed out, such as NNDS.
NR	Number of rows of values.
VAL	The variable that is printed out in three columns, such as hydraulic head, H.

Subroutine PRTOB

Variable	Definition
L	Index for printing out values (VALA and VALB).
NO	The number of pairs of VALA and VALB that is printed out, such as NNDS.
NR	Number of rows of values.
VALA	The first of two values printed out by node in two columns per line, such as XG.
VALB	The second of two values printed out by node in two columns per line, such as YG.
Subroutine PRTCBV	
INS	Number of sides on a boundary-condition zone (linear or nonlinear).
INZ	Zone number for bondary condition.
J	Index to nodal flow rates for element sides.
JB	Index for beginning number of boundary nodes and flow rates in zone.
NBZ	Total number of boundary-condition zones.
NVLA	Node K on head-dependent (Cauchy-type) boundary (linear or nonlinear).
NVLB	Node L on head-dependent (Cauchy-type) boundary (linear or nonlinear).
NZ	Index for zone loop.
QNET	Net volumetric flow rate, positive for inflow, from head-dependent (Cauchy-type) boundary (linear or nonlinear) [length ³ /time].

Subroutine PRTCBV (continued)

Variable	Definition
SMQI	Sum of volumetric inflow rates from head-dependent (Cauchy-type) boundary (linear or nonlinear) [length ³ /time].
SMQO	Sum of volumetric outflow rates from head-dependent (Cauchy-type) boundary (linear or nonlinear) [length ³ /time].
SMVI	Sum of inflow volumes from head-dependent (Cauchy-type) boundary (linear or nonlinear) [length ³].
SMVO	Sum of outflow volumes from head-dependent (Cauchy-type) boundary (linear or nonlinear) [length ³].
VALA	Nodal volumetric flow rate from head-dependent (Cauchy-type) boundary at node NVLA [length ^{3/} time].
VALB	Nodal volumetric flow rate from head-dependent (Cauchy-type) boundary at node NVLB [length ^{3/} time].
VNET	Net volume of water, positive for accumulation, derived from head-dependent (Cauchy-type) boundaries [length ³].
	Transient Leakage
Subroutine CBADEQ	
L	Index to main diagonal and right side of matrix equation.
NME	Index to main diagonal of reduced matrix, A, stored in condensed-matrix form
Subroutine CBADWT	

Variables that are contained in this subroutine have been defined in previous sections that give definitions of program variables in the general-storage vector G, in Fortran COMMON statements, and in other subroutines.

Subroutine CBCHG

Variable	Definition
HRJ	Value of new source-layer head [length].
HR(J)	Average source-layer head [length].
J	Node number where source-layer head is changed.
WF	Galerkin-weighting factor (=2/3) used to compute average source-layer head.
Subroutine CBFMCO	
L	Zone number where transient leakage is simulated.
NA,NB,NC	Node numbers in an element.
NBE	Beginning (lowest) element number in zone L.
NDC	Index to <u>ND</u> for locating nodes in element.
NE	Counter used in computing transient leakage coefficients from combined-element input.
NEND	Ending (highest) element number in zone L.
NO	Number of elements contained in zone L.
NTE	Index to <u>AR</u> for element area.
NVL	Index to storage location in program vector A for hydraulic conductance term, C _{Ri} of equation (205) in Cooley (1992).
SPST	Specific storage [length ⁻¹] of confining bed in zone L
TESA	Effective specific storage $S_s' e^{\Delta e}$ for element e.
TEVC	Effective vertical hydraulic conductivity
	$(1/3)K_{zz}\Delta^{e}$ for element e.
VCON	Vertical hydraulic conductivity [length/time] of confining bed in zone L.

1

Subroutine CBFMEQ

Variable	Definition
DTD	Dimensionless time step $\Delta t_{n+1} \gamma_i$.
L	Index for storing main-diagonal and right-side coefficients for transient leakage, by node.
NQ	Index to transient-leakage, five terms per node.
NT	Counter for number of terms used to approximate either M_1 (NT = 3) or M_2 (NT = 2).
QOM1	The transient-leakage flow from the previous time step, given by P _{hi,n} of equation (199) in Cooley (1992).
QOM2	The transient-lekage flow from the previous time step, given by $P_{Hi,n}$ in equation (200) in Cooley (1992).
SM1	$M_1(\Delta t_D)$, given by equation (188) in Cooley (1992).
TMPA	(1) Exponent - $\alpha_m \Delta t_D$ used to compute M ₁ .
	(2) Exponent $-\beta_m \Delta t_D$ used to compute M ₂ .
XP	(1) The term exp (- $\alpha_m \Delta t_D$) used for approximating M1.
Subroutine CBHRXT	(2) The term exp (- $\beta_m \Delta t_D$) used for approximating M_2 .
DHR	Change in source-layer head, H _{i,n+1} - H _{i,n} [length], for next time step.
HR	Source-layer head, H _{i,n+1} [length], at end of time step.
TMPA	Factor (= 1/3) for computing value of source-layer head at end of time step.

Subroutine CBINIT

Variables that are contained in this subroutine have been defined in previous sections that give definitions of program variables in the general-storage vector G, in Fortran COMMON statements, and in other subroutines.

Subroutine CBTQC

Variable	Definition
DTM	1/(2/3) Δ t _{n+1} used for coefficient formulation.
NQ	Index to transient-leakage terms CBTQ, five terms per node.
DTD	Dimensionless time step, $\Delta t_{D_{-}}$
ХР	The term exp (- $\alpha_m \Delta t_D$).
ТМРА	(1) The exponent $-\alpha_m \Delta t_D$.
	(2) $\begin{pmatrix} h_{i,n+1} & h_{i,n} \end{pmatrix} / \Delta t_D$, multiplies M ₁ for computing transient-leakage term $I_{mi, n+1}$.
CBTQ	Part of transient-leakage flux from head changes during current time step [length/time].
ТМРА	(1) Volumetric rate of accumulation of water in aquifer storage [length ³ /time].
	(2) Volumetric flow rate along a transmissivity "link" between nodes i and j on an element side [length ³ /time] $i \neq j = k, l, m$.
ТМРВ	Volumetric flow rate from steady and transient leakage from a confining bed [length ³ /time].
VLQI	Total volumetric rate of recharge from confining bed to aquifer caused by steady and transient leakage [length ³ /time].
VLQO	Total volumetric rate of discharge from confining bed to aquifer caused by steady and transient leakage [length ³ /time].

Subroutine MBWTCB

Variables that are contained in this subroutine have been defined in previous sections that give definitions of program variables in the general-storage vector G. in Fortran COMMON statements, and in other subroutines (the "WT" and "CB" subroutines and in subroutines MBALCB and MBALWT).

	Subroutine									
Main program variable	CBADEQ	CBADWT	CBCHG	CBFMCO	CBFMEQ	CBHRXT	CBINIT	CBTQC	MBALCB	MBWTCB
DT					DT		_	DT	DT	DT
G					_		G			
G(IAA)	A	A		A	A				A	Α
G(IACA)				AC	AC					
G(IALFA)				ALF	ALF			ALF		
G(IARA)	_	_		AR				-	DIK	DIK
G(IBA)	В	В						в	В	
G(IBCA)				BC	BC					
G(IBTA)				BTA	BTA					
G(ICHA)	СН	СН			Сн				CH	CH
G(ICKA)									CFDK	CFDK
G(ICLA)									CFDL	CFDL
G(ICTQA)					CBTQ			CBTQ		
G(ICQA)	CBQ	CBQ			CBQ				CBQ	CBQ
G(IDHA)		DH								DH
G(IDHRA)			DHR		DHR	DHR				
G(IGMA)	GMA	GMA		GMA	GMA			GMA	GMA	GMA
G(IHA)									H	н
G(IHBA)								DHB	DHB	DHB
G(IHKA)									HK	нк
G(IHLA)									HL	HL.
G(IHRA)			HR			HR			HR	HR
G(IJPA)									JPT	JPT
G(IKA)									KQB	KQB
G(ILA)									LQB	LQB
G(INA)	IN	IN			IN			IN	IN	IN
G(INDA)				ND						
G(IQA)									Q	Q
G(ISYA)										ASY
G(ITKA)										THK
G(ITPA)										TOP
G(IYGA)				WVCN					R	R
IACA							IACA			
IALFA							IALFA			
IBCA							IBCA			
IBTA							IBTA			
ICHA							ICHA			
ICQA							ICQA			
ICTQA							ICTQA			
IDHRA							IDHRA			
IGMA							IGMA			
ISTP			ISTP							
NCBZ				NCBZ			NCBZ			
TIME			TIME							

Table 19.-Variable names by subroutine for transient leakage

Changing Time-Step Size, Stresses, and Boundary Conditions

Subroutine COCHG

Variable	Definition
AREA	One-third the element area, (1/3) Δ^{e} [length ²].
DQ	Difference in volumetric flow rate [length ³ /time] between old and new areally distributed flows.
HB	New value for specified head.
L	Zone number where changes to areally distributed flows are made.
M1	Length of storage needed for element areas in <u>AR</u> .
M2	Length of storage needed for node numbers in <u>ND</u> .
Ν	The number of stresses or controlling heads for boundary conditions that are changed; represents either nodes, element sides, or zones.
QNEW	(1) New value of point source or sink [length ³ /time] at boundary J.
	(2) New value of unit areally distributed flow rate [length ³ /time].
QOLD	(1) Old value of point source or sink at node J [length ³ /time].
	(2) Old value of unit areally distributed flow rate [length/time].
	(3) Old value of specified-flux part of Cauchy-type boundary, q _B [length ² /time] or q _B / α [length] if $\alpha \neq 0$.

.

Subroutine COCHG (continued)

TMPA	Total change to areally distributed inflows [length ³ /time].
ТМРВ	Total change to areally distributed outflows [length ³ /time].
WF	Weighting factor used to compute average head change at specified-head boundaries.
Subroutine NXTPD	
Variable	Definition
NSTEPS	Counter equal to the number of time steps in the new stress period if either time-step sizes or the number of time steps change from the previous stress period.
NTMP	Time-step indicator; the number of time steps in the initial stress period and, either the number of time steps in the new stress period, or zero, if previous values are used.

Table 20.—Variable names by subroutine for changing time-step size, stresses, and boundary conditions

	Subro	Subroutine			
Main program variable	COCHG	NXTPD			
G(IALA)	ALFH				
G(IARA)	AR				
G(ICKA)	CFDK				
G(ICLA)	CFDL				
G(IDTA)		DELT			
G(IHA)	H				
G(IHBA)	DHB				
G(IHKA)	HK				
G(IHLA)	HL				
G(IHRA)	HR				
G(IKA)	KQB				
G(ILA)	LQB				
G(INA)	IN				
G(INDA)	ND				
G(IQA)	Q				
G(IQBA)	QBND				
ISTP	ISTP				
JPER		JPER			
TIME	TIME				

1

Nonlinear Versions

Water-table (unconfined) conditions

Variable	Definition
C1,C2,C3	Galerkin weighting factors.
DHP	Predicted value of the total head change over the time step.
НО	Aquifer head at the beginning of the time step.
HP	Predicted aquifer head at the end of the time step.
ТНКІ	Temporary-storage term for aquifer thickness at node I.
THKL	Temporary storage term for aquifer thickness at node L.
ТНКР	Negative aquifer thickness predicted to occur at a dry node.
ТМРА	(1) Temporary-storage term for capcitance coefficient $(1/(2/3)\Delta t_{n+1}) C$ of matrix equation (4).
	(2) Transmissivity term in \tilde{G}_{ij} of matrix equation (4).
ТМРВ	Transmissivity terms in $(\tilde{\underline{G}}^*, \underline{\overline{G}}^*, \underline{\overline{G}^*, \underline{\overline{G}}^*, \underline{\overline{G}}^*, \underline{\overline{G}^$
Subroutine FMEPWP	side of matrix equation (4).
тнкі	Aquifer thickness for node I.
THKL	Aquifer thickness for node L.
TMPA	Transmissivity term given by equation (77) in Cooley (1992).
ТМРВ	Transmissivity term, predictor equation (3) right side.

Subroutine HCALWT

Variables that are contained in this subroutine have been defined in previous sections that give definitions of program variables in the general-storage vector G, in Fortran COMMON statements, and in other subroutines.

Subroutine MBALWT

Variable	Definition
A(NC)	Effective storage coefficient resulting from integrations of equations (93) and (94) in Cooley (1992) for conversion between confined and unconfined conditions.
С	Galerkin-weighting factor for transmissivity formulation, equal to 1/16.
DHC	Total head change over the time step [length].
НО	Aquifer head, $\stackrel{\wedge}{h}_{i,n}$ [length], at beginning of time step.
НС	Aquifer head, $\hat{h}_{i,n+1}$ [length], at end of time step.
THET	Estimate of conversion point, θ_i , of equation (96) in Cooley (1992).
TMPA	(1) Volumetric rate of accumulation of water from aquifer storage [length ³ /time].
	(2) Transmissivity terms \overline{G} \overline{h} + (\overline{G} - \overline{G}) δ [length ³ /time] equation (83) in Cooley (1992).
	(3) Volumetric-flow rates from Cauchy-type
	boundaries; first represents $(1/2)(\alpha L)_{kl}(h_{Bk}-\overline{h}_k)$,
	then (1/2)($\overline{q}_{B}L$)ij + (1/2)(αL) _{kl} (h _{Bk} - \overline{h}_{k}),

Subroutine MBALWT (continue	(t
-----------------------------	----

Variable	Definition
	for $\alpha \neq 0$ or, (1/2)($\overline{q}_{B}L$)ij for $\alpha = 0$ and $q_{B} \neq 0$,
	of equation (64) in Cooley (I992) [length ³ /time].
ТМРВ	(1) Volumetric flow rate for confining-bed leakage (1/3) $R^{e}\Delta^{e}(H_{i} - \hat{h}_{i})$.
ТМРВ	(2) Volumetric-flow rates from Cauchy-type boundaries; first represents $(1/2)(\alpha L)_{kl}(h_{Bl}-h_{l})$, then $(1/2)(q_{B}L)_{ij} + (1/2)(\alpha L)_{kl}(h_{Bl}-h_{l})$, for $\alpha \neq 0$; or, $(1/2)(q_{B}L)_{ij}$ for $\alpha = 0$ and $q_{B} \neq 0$, of equation (64) in Cooley (1992).
Subroutine WTCCHK	
ISC	Indicator for unpredicted conversion or nonconversion of aquifer storage.
Subroutine WTFMCO	
SY	Specific yield for aquifer-property zone [dimensionless].
TESY	Capacitance coefficient c ^e of equation (36) in Cooley (1992).
Subroutine WTINIT	

Variables that are contained in this subroutine have been defined in previous sections that give definitions of program variables in the general-storage vector G, in Fortran COMMON statements, and in other subroutines.

Subroutine										
Main program variable	FMECWT	FMEPWT	HCALWT	MBALWT	WTCCHK	WTFMCO	WTINIT	CBTQC	MBALCB	MBWTCB
DT	DT	DT		DT						
G							G			
G(IAA)	A	A		A			-			
G(IARA)	AD	AD		DTK		AR				
G(IBA)	В	В	В		В					
G(ICKA)	CFDK	CFDK		CFDK						
G(ICLA)	CFDL	CFDL		CFDL						
G(IDHA)	DH		DH	DH	DH					
G(IHA)	н	н	н	н	H					
G(IHBA)		DHB		DHB						
G(IHKA)	HK	HK		HK						
G(IHLA)	KL	HL.		HL						
G(IHRA)	HR	HR		HR						
G(IJPA)	JPT	JPT							JPT	JPT
G(IKA)	KQB	KQB		KQB						
G(ILA)	LQB	LQB		LQB						
G(INA)	IN	IN	IN	IN	IN					
G(INDA)						ND				
G(IQA)	Q	Q		Q					0	Q
G(IQBA)				QBND						
G(ISYA)	ASY	ASY		ASY		ASY				ASY
G(ITKA)	тнк	ТНК		THK		THK				THK
G(ITPA)	TOP	TOP			TOP	TOP				TOP
G(IYGA)	DTK			R						
IDHA							IDHA			
ISC					ISC					
ISYA							ISYA			
ITKA							ITKA			
ITPA							ITPA			

Table 21.-Variable names by subroutine for water-table (unconfined) conditions

Head-dependent (Cauchy-type) flux and point sinks

Subroutine GNBAL	
Variable	Definition
CA,CB	Galerkin-weighting factors, equal to 1/3 and 2/3, respectively.
DHC	Total head change for time step; $\hat{h}_{i,n+1} - \hat{h}_{i,n}$ [length].
DHZ	Altitude difference, $\hat{\mathbf{h}}_{i,n}$ - \mathbf{z}_{ri} , for nonlinear Cauchy-
	type boundaries; $z_{pi} - \hat{h}_{i,n}$ for nonlinear point sinks [length].
DRZ	Altitude difference, $\hat{\mathbf{h}}_{ri}$ - \mathbf{z}_{ri} [length].
HC	Hydraulic head, $\hat{h}_{i,n+1}$ [length], at end of time step.
НО	Hydraulic head, $\stackrel{\Lambda}{\mathrm{h}}_{\mathrm{i},\mathrm{n}}$ [length], at beginning of time step.
HR	Controlling heads, HRK and HRL [length].
IP	Index to GC for nonlinear-point sinks.
NL	Boundary nodes, KR and LR.
PHC	Term (1 - ϕ_i) used for leakage expression in case 3.
TMPA	Head or altitude difference that multiplies coefficient C _{ri} for head-dependent (Cauchy-type) boundaries and C _{pi} for point sinks [length].
ТМРВ	Volumetric flow rate for head-dependent (Cauchy- type point sinks [length ³ /time].
ZPI	Controlling altitude, ZP [length], for point sinks
ZR	Controlling altitude, ZR [length], for head-dependent (Cauchy-type) boundaries.

Ι

Subroutine GNBLSS

Variable	Definition
HL	Aquifer head on final iteration, $\hat{h}_i^{\ell+1}$ [length].
HR	Controlling head, h _{ri} [length].
QR	Nodal volumetric flow rate [length ³ /time].
TMPA	Head or altitude difference that multiplies coefficient C _{ri} for head-dependent (Cauchy-type) boundaries and C _{pi} for point sink [length].
ТМРВ	Volumetric flow rate from head-dependent (Cauchy-type) boundaries and point sinks [length ³ /time].

Subroutine GNCHG

Variables that are contained in this subroutine have been defined in previous sections that give definitions of program variables in the general-storage vector G, in Fortran COMMON statements, and in subroutines GNBAL and GNBLSS.

Subroutine GNCORR

DHP	Predicted-aquifer head, $h_{i,n+1}$ [length].
Ν	Index to <u>A</u> for the main diagonal of nodes k and I on the nonlinear boundary.
TMPA	Head or altitude difference that multiplies C _{ri} for head-dependent (Cauchy-type) boundaries and C _{pi}
Subroutine GNFMCO	
CA	Factor for scaling lengths of boundary sides.
DIST	Length of boundary side.
GC	α term for nonlinear head-dependent (Cauchy-type boundary [length ² /time].

Subroutine GNFMCO (continued)

Variable	Definition
GCP	lpha term for nonlinear point sinks [length ² /time].
IPNC	Indicator variable to suppress printout of input for nonlinear head-dependent (Cauchy-type) boundaries.
IPNP	Indicator variable to suppress printout of input for nonlinear point sinks.
TMPA	Difference in x coordinates between nodes on boundary side.
ТМРВ	Difference in y coordinates between nodes on boundary side.
Subroutine GNINIT	
NBNC	Number of nonlinear, head-dependent (Cauchy- type) boundaries.
NLCZ	Number of zones for nonlinear head-dependent (Cauchy-type) boundaries.
NPNB	Number of nonlinear, head-dependent point sinks.

Subroutine GNINIT

Variables that are used in this subroutine have been defined previously as variables in the main program and in storage vector G.

Subroutine GNPRED

IP	Index for α term for nonlinear point sinks.
Ν	Index to main-diagonal location of reduced matrix stored in condensed-matrix form.
TMPA	Head or altitude difference that multiplies coefficient C _{ri} for head-dependent (Cauchy-type) boundaries and C _{pi} for point sinks [length].

Table 22. – Variable	names	bv	subroutine	for	nonlinear	head-dependent	(Cauchy-type)
		~,	hou	nda	rioc		(022011) ()po)
			500	nua	1163		

Main program variable	Subroutine									
	GNBAL	GNBLSS	GNCHG	GNCORR	GNFMCO	GNINIT	GNPRED			
DT	DT	DT								
G						G				
G(IAA)				A			A			
G(IARA)	VQK	VQK								
G(IBA)				В			В			
G(IDHA)	DH			DH						
G(IGCA)	GC	GC		GC	GC		GC			
G(IHA)	н	Н		н			H			
G(1HBA)	DHB									
G(IHRK)	HRK	HRK	HRK	HRK	HRK		HRK			
G(IHRL)	HRL	HRL	HRL	HRL	HRL		HRL			
G(IKPA)	KP	KP		KP	KP		KP			
G(IKRA)	KR	KR	KR	KR	KR		KR			
G(ILRA)	LR	LR	LR	LR	IR		IP			
G(INA)	IN	IN		IN			TN			
G(INSA)				•••	TNIS					
G(INZA)					TNI 7					
G(IXGA)	VOI	VOI			YG					
G(IYGA)	R	2			YG					
G(IZPA)	7P	70		70	70		70			
G(IZRK)	784	7PK		701	2F 701/		204			
C(17PL)	701	701		2KK 7DI	266		266			
	ZAL	4KL		4KL	ZKL	1004	ZKL			
						IGLA				
						IHRK				
						THKL				
						IKPA				
						IKRA				
						ILRA				
1178						INSA				
INLA			1070			INZA				
704			1216			1704				
704						IZPA				
701						IZRK				
	NONC	NONO		NONG		JZRL				
	NBNU	NBNU		NBNC	NBNC	NBNC	NBNC			
	NDND	1010		NEWE		NLCZ				
	NPNB	NPNB		NPNB	NPNB	NPNB	NPNB			
IME			TIME							