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PREFACE 

The series of manuals on techniques describes procedures for plan- 
ning and executing specialized work in water-resources investigations. The 
material is grouped under major headings called books and further sub- 
divided into sections and chapters; section C of Book ‘7 is on computer 
programs. 

“Finite-difference model for aquifer simulation in two dimensions 
with results of numerical experiments” supersedes the report published in 
1970 entitled, “A digital model for aquifer evaluation” by G. F. Pinder as 
Chapter Cl of Book 7. The new Chapter Cl represents a significant im- 
provement in the computational capability to solve the flow equations and 
has greater flexibility in the hydrologic situations that can be simulated. 

III 
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FINITE-DIFFERENCE MODEL FOR AQUIFER SIMULATION IN 
TWO DIMENSIONS WITH RESULTS OF 

NUMERICAL EXPERIMENTS 

By P. C. Trescott, G. F. Pinder, and S. P. Larson 

Abstract 
The model will simulate ground-water flow in an 

artesian aquifer, a water-table aquifer, or a com- 
bined artesian and water-table aquifer. The aquifer 
may be heterogen,eous and anisotropic and have ir- 
regular boundaries. The source term in the flow equa- 
tion may include well discharge, constant recharge, 
leakage from confining beds in which the effects of 
storage are considered, and wapotranspiration as 
a linear function of depth to watex. 

The theoretical development includes presentation 

0 

of the appropriate flow equations and derivation of 
the finite-difference approximations (written for a 
variable grid). The documentation emphasizes the 
numerical techniques that can be used for solving the 
simultaneous equations and describes the results of 
numerical experiments using these techniques. Of 
the three numerical techniques available in the model, 
the strongly implicit procedure, in general, requires 
less computer time and has fewer numerical diffi- 
culties than do the iterative alternating direction im- 
plicit procedure and line successive overrclaxation 
(which includes a two-dimensional correction pro- 
cedure to accelerate convergence). 

The documentation includes a flow chart, program 
listing, an example simulation, and sections on de- 
signing an aquifer model and requirements for data 
input. It illustrates how model results can be pre- 
sented on the line printer and pen plotters with a 
program that utilizes the graphical display software 
available from the Geological Survey Computer 
Center Division. In addition the model includes op- 
tions for reading input data from a disk and writing 
intermediate results on a disk. 

Introduction 
The finite-difference aquifer model docu- 

mented in this report is designed to simulate 
in two dimensions the response of an aquifer 
to an imposed stress. The aquifer may be 

artesian, water table, or a combination of 
artesian and water table ; it may be hetero- 
geneous and anisotropic and have irregular 
boundaries. The model permits leakage from 
confining beds in which the effects of storage 
are considered, constant recharge, evapo- 
transpiration as a linear function of depth 
to water, and well discharge. Although it was 
not designed for cross-sectional problems, the 
model has been used with some success for 
this type of simulation. 

The aquifer simulator has evolved from 
Pinder’s (1970) original model and modifica- 
tions by Pinder (1969) and Trescott (1973). 
The model documented by Trescott (1973) 
incorporates several features described by 
Prickett and Lonnquist (1971) and has been 
applied to a variety of aquifer simulation 
problems by various users. The model de- 
scribed in this report is basically the same as 
the 1973 version but includes minor modifi- 
cations to the logic and data input. In addi- 
tion, the user may choose an equation solving 
scheme from among the alternating direction 
implicit procedure, line successive overrelax- 
ation, and the strongly implicit procedure. 
The program is arranged so that other tech- 
niques for solving simultaneous equations can 
be coded and substituted for the iterative 
techniques included with the model. 

The documentation is intended to be re;G 
sonably self contained, but it assumes that 
the user has an elementary knowledge of the 
physics of ground-water flow, finite-differ- 
ence methods of solving partial differential 

1 



2 T+HNIQUES OF WATER-RESOURCES INVESTIGATIONS 

equations, matrix lgebra, and the FOR- 
TRAN IV language. B 

Theoretical Development 

Ground-watgr flow equation 
The partial differential equation of ground- 

water flow in a confined aquifer in two di- 
mensions may be written as 

in which 

W(x, y, t) is the volumetric flux of re- 

T,,, T,,, T,,, T&, are the components of 

charge or withdrawal per 

the transmissivity tensor 

unit surface area of the 

yt-1) ; 
h is hydraulic head (L) ; 

aquifer (Libl). 

S is /the storage coefficient 
(dimensionless) ; 

The reader is referred to Pinder and Brede- 
hoeft (1968) for development and discussion 
of equation 1. In the simulation modcel, equa- 
tion 1 is simplified by assuming that the 
Cartesian coordinate axes x and y are alined 
with the principal components of the trans- 
missivity tensor, T,,iand T,,, giving 

In water-table aquifers, transmissivity is a 
function of head. Assuming that the coordi- 
nate axes are co-linear with the principal 
components of the hydraulic conductivity 
tensor, the flow equation may be expressed as 
(Bredehoeft and Pinder, 1970) 

in which 

K,,, ,K,, are the principal components of 
the hydraulic conductivity 
tensor (U-l) ; 

s, is the specific yield of the aqui- 
fer (dimensionless) ; 

h is the saturated thickness of the 
aquifer (~5). 

Finite-difference approximations 
In order to solve equation 2 or 3 for a 

Utilizing a block-centered, finite-difference 

heterogeneous aquifer with irregular boun- 

grid in which variable grid spacing is per- 

daries, one approach is to subdivide the re- 
gion into rectangular blocks in which the 

mitted (fig. 1), equation 2 may be approxi- 

aquifer properties are assumed to be uni- 
form. The continuous derivatives in equa- 
tions 2 and 3 are replaced by finite-difference 

mated as 

approximations for the derivatives at a point 
(the node at the center of the block). The 
result is N equations in N unknowns (head 
values at the nodes) where N is the number 
of blocks representing the aquifer. 

-- 

i-l 

I 

-- 

i+l 

bXJ -I 
B I 

0 a 

I 
D I l 

D E F 
0 0 0 

I I H 
0 0 0 

j-l I j I jtl 

FIGURE l.--Index scheme for finite-difference grid and 
coefficients of finite-difference equation written for 
node (i, j). 

c 



FINITE-DIFFERENCE MODEL FOR AQUIFER SIMULATION 3 

+~[(Tu~)i+~,j-~u~)*-,,,3 

="s (h,j,k- h,j,k-1) + Wi,j,k (4) 

in which 

AX] is the space increment in the x direc- 

tion for column j as shown in fig- 
ure 1 (;L); 

Ayi is in the space increment in the y 
direction for row i as shown in fig- 
ure 1 (G) ; 

At is the time increment (t) ; 
i is the index in the y dimension ; 
j is the index in the x dimension ; 
k is the time index. 

Equation 4 may be approximated again as 

T 
(kj+l,k-ki.k) I[ _ T (&r- ki-I,k) =o(i,j+%) 

AX1+ ?4 
IE (i,j-%) 

AXi.-% II Tuu (i+%.j) (h+~,j,k--h.j,k) I[ _ T (hij,k--hi-1,j.k) 

AYi+. uu +-%A 
AYi-l/ 

=g(h,j,k- hi,j,k-1) + wi,j,k 

in which 

T,, (i,j+j/,) #is the transmissivity between 
node (i,j) and node (i,j+ 1) ; 

Ax i+‘h is the distance between node 
(i,j) and node (i,j+ 1). 

Equation 5 is written implicitly, that is, the 
head values on the IefLhand side are at the 
new (k) time level. Following a convention 
similar to that introduced by Stone (1968), 
the notation in equation 6 may be simplified 
by writing 

Fi,j(h,j+l,k- h,j,k) -D&j (h,j,k- hi,j--l,k) 

+Hi,j(h+l,j,k- k,j,k) -Bi,j (h,j,k-hi-l,j,k) 

in which 

TV, [t.jl Ayi--1+ Tyy[i-l.jl Ayi 1 (7a) 
Bi,j= 

4% 
The term in brackets is the harmonic mean of 

T ffu Iid Tuu [i-l.il 

ay, &hi--~ 

It represents the ratio TV,+ 5/z,/Ayi-s in 
equation 5. 

l Similarly, 

(5) 

2Tiom[i.j] Tm [i.j--11 

T .m~t,j] AXj-l+ Tmz~i,j-l]AXj 1 
Di,i = 

AXj 
; Ub) 

[ 

2Tm[i,jl Tm [t,j+ll 

Tscrnri,jlAX~+1+ Tm [i.j+l]AXj 1 
F,j= 

AXj 
; (7c) 

[ 

2Tuu~i+l.j] Tuu [i.jl 

Tuu[i,jl AY4+1 + Tuu[t+l,jlAY,i 1 
H4.j = 

AY+ 
. (7d) 

Use of the harmonic mean (1) insures con- 
tinuity across cell boundaries at steady state 
if a variable grid is used, and (2) makes the 
appropriate coefficients zero at no-flow 
boundaries. 

Equation 6 is also used to approximate 
equation 3 by replacing S with Sy and defin- 
ing the transmissivities in equations 7a 
through 7d as a function of the head from the 
preceding iteration. As an example, 

Tinci,jJ =K,,~,i,j,bt~~ 

in which n is the iteration index. 
The notation may be simplified further by 

omitting subscripts not including a “ + 1” or 
“-1” (except where necessary for clarity) 
and by following the convention that un- 
known terms are placed on the left-hand side 
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I 

of the equations. 4 quation 6 may be rear- 
ranged and expressed as 

Bh-,+Dh,-,+&+Fh,+,+Hhi+l=Q (8) 
in which I 

E=- (B+D+k+H+ 

Q= -$hx-,+iW. 

Souice term 
The source term I/V(x,y,t) can incl.ude well 

discharge, transientlleakage from a confining 
bed, recharge from ‘precipitation and evapo- 
transpiration. In the model the source term 
is computed as I 

Wj,j,k = 
Qw Wkl 

Axj Ay.i 
- qre Ii.j.kl - h,k + qet [i,j,k] 

in which 
12, Ci,j,LJ is the well discharge (Dt-I) ; 
‘&[i,j,k] is the recharge flux per Unit area 

(;Lt-1) ; 
il’i,j,k is the flux per unit area from a 

confining layer (Lt-I) ; 
(I,~ [i,i’,,C1 is the evapotranspiration flux 

per unit area (Lt-I). 

Leakage 

Leakage from a confining layer or stream- 
bed in which storage is considered may be 
approxim.ated by 

Ki'j h )I) ’ + ---$ b,j,o - k,j,o) (9 1 

(K: jt/mi,jS,[ij,) is dimensionless time; 
see Bredehoeft and 
Pinder (1970) for a 
discussion Iof leak- 
age versus dimen- 
sionless tim’e ; 

t is the elapsed time of 
I the pumping period 

(t) * 

in which 

ki,i,O 

L,j,O 

1 

1 is the hydraulic head 
in the aquifer at the 
start of the pumping 

I period (&) ; 
I is the hydraulic head 

Kij > 

mi,j 

ss[i.jl 

I on the other side of 
the confining bed 
(L) ; 

/ is the hydraulic con- 
ductivity of the con- 
fining bed (L/t) ; 

is the thickness of the 
confining bed (L) ; 

, is the specific storage 
in the confining lay- 
er (L-l) ; 

-- 
Equa.tion 9 is modified from Bredehoeft and 
Pinder (119’70, p. 887) ; note that it is the sum 
of two terms ; the first term on the right- 0 
hand side of equation 9 considers transient 
effects ; the second term is steady leakage due 
to the initial gradient across the confining 
bed. (See fig. 2.) Figure 2 illustrates the 
head distribution in the confining layer at 
any given point in the aquifer system at two 
different times in each of two successive 
pumping periods. (The succession of head 
values in the aquifer is shown by ht,j,l, . . . 
hi,j,4.) The solid line represents the head dis- 
tribution at the beginning of the pumping 
period ; the gradient ( ( hi,i,o - hd,j,o) /mi,j) ap- 
pears, in ,the second term of equation 9. The 
hatchmred line represents the head distribu- 
tion in the confining bed after stressing the 
pumped aquifer and is a summation of the 
initial head distribution and the change in 
head distribution due to the stresses on the 
aquifer. The factor TL in figure 2 represents 
the part of the first term in equation 9 inde- 
pendent of head (that is, the transient leak- 
age coefficient). 

In figure 2a the confining bed is assumed to 
have significant storage, pumping has low- 

c 



FINITE-DIFFERENCE MODEL FOR AQUIFER SIMULATION 5 

0 ered the head to Iz~,~,~ and the net (or total) tablished. (See fig. 2b.) Then if the stress on 
gradient is for some dimensionless time <0.5. the aquifer is changed by turning off pump- 
After transient effects have dissipated, a uni- ing wells and starting recharge wells, the 
form gradient across the confining bed is es- initial head distribution in the confining bed 

t- 

6,,,,0 
/By/////////// 

h -- 

A 
h f,l,O 

a. b. 

C. d. 

q’,,j,k = TL th ,,j,O-h,,,,k) + 
K’,,j A 
,I(hi,j,O-hi,j,O) 

, 

EXPLANATION 

Initial head in confining bed 
m Head in confining bed after stressing 

the aquifer 

FIGURE 2.-In the first pumping period, (a) illustrates the head distribution in the confining bed at one time 
when transient leakage effects are significant; (b) illustrates a time after transient effects have dissipated: In 
the second pumping period, (c) is analogous to (a) and (d) is analogous to (b). 
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for the new conditions is shown in figure 2c 
and is equal to the Anal distribution for the 
first pumping period! The net head distribu- 
tion in figure 2c is agected by storage in the 
confining bed and isifor some dimensionless 
time <0.5 (in the second pumping period). 
After storage effects have dissipated, the net 
gradient is shown in figure 2d. 

For a simulation of several pumping peri- 
ods, the program assumes that transient leak- 
age effects from previous pumping periods 
have dissipated. This is accomplished at the 
start of each pumping period by initializing 
hi,i,O to the head at the end of the previous 
pumping period and/ setting t (and thereby 
dimensionless time) ’ to zero (note that the 
parameter storing the cumulative simulation 
time is not affected) 1 The assumption is rea- 
sonable if dimensio less P time for previous 
pumping periods is at least 0.5 (Bredehoeft 
and Pinder, 1970, fig. 4) and can be checked 
by noting the value of dimensionless time 
printed in the outputifor the end of the previ- 
ous pumping period. If the assumption is not 
valid, the code will need to be modified to in- 
clude transient effects for one or more previ- 
ous pumping periods. 

hili,ol 

I a. 
I 
I -- 

4 

Z I 

In the model, equation 9 is used until di- 
mensi~onless time reaches 3 x 10 --3 ; otherwise, 
the equation 

!fi,j,kfb (hi,0 - hi,j,k) 

is used. Equation 10 is computationally more 
efficielnt for dimensionless times greater than 
about 3 x :LO-3. 

The transient parts of equations 9 and 10 
are based on the analytic solutions for the 
flux from a confining layer resulting from an 
instantaneous stepwise change in head in the 
aquifer. The factor of l/3 appearing in di- 
mensionless time is included in order to 
approximate the transient flux resulting from 
the actual drawdown in the aquifer. In effect 
the transient flux is approximated by apply- 
ing a step change in head equal to the draw- 
down from the start of the pumping period 
at l/:3 of the elapsed time in the pumping 
period. (See fig. 3.) 

The results of several numerical experi- 
ments indicate that it would be better to use 

b. 

solution 

TIMIE SINCE PUMPING STARTED, 
IN THE CURRENT PUMPING PERIOD 

FIGURE 3.-The total diawdown at the elapsed time, t, in the pumping period (a) is applied at t/3 in equations 
, 9 and 10 to approximate 9’,.,,r, the transient part of Q’w,~ (b). 

c 



FINITE-DIFFERENCE MODEL FOR AQUIFER SIMULATION 7 

j¶ = 0.021 

Hantush’s solution 

1 o-3 10-Z 
K’t/m2Ss 

10-l 

FIGURE 4.-Comparison of analytic solution and numerical results using factors of 2 and 3 in the transient 
leakage approximation. 

a factor of l/3 rather than the factor of l/2 
used in the approximation by Bredehoeft and 
Pinder (1970). In figure 4 are plotted nu- 
merical results and Hantush’s (1960) ana- 
lytic solution for p= 0.021 (p = 0.25 r [K’S,/ 
TS]U and r is the radial distance from the 
center of the pumping well). The drawdown 
values using a factor of l/3 are below but 
very close to the analytic curve after the first 
few time steps. The results using a factor of 
l/2 are close to the analytic solution but are 
about twice as far above the analytic curve 
as the factor of l/3 results are below the 
curve. In figure 5 are plotted the percent 
difference between the volume of leakage 

computed numerically and the volume deter- 
mined analytically. Two sets of data are 
shown: a 16step simulation between dimen- 
sionless times of lo+ and 5.8x10-* and an 
11-step simulation between dimensionless 
times of 5.8~10-~ and 4.4X 10-l. Based on 
those experiments, if 4 or 5 time steps are 
simulated before the period of interest, the 
volume of leakage and the drawdown com- 
puted numerically using a factor l/3 in equa- 
tions 9 and 10 are close to the analytic solution. 

Evapotranspiration 

Evapotranspiration as a linear function of 
depth below the land surface is computed as 

(11) 



8 

50 
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/9 = 0.021 

10-d 1 o-3 1 o-2 

K’t/Ssm2 
1 o-1 100 

FIGURE 5.-Percent difference between the volume of leakage computed with the model approximation and 
Hantush’s analytical results. 

in which 

&et is the maximum evapotranspiration 
rate (U-l) ; 

ET, is the depth below land surface at 
which evapotranspiration ceases 
WI ; 

Gi,j is the elevation of the land surface 
W) * 

This relationship (illustrated in fig. 6) is 
’ treated implicitly by separating the equation 

into two terms 1 : one term is included with 
the E coefficient on the left-hand side of 
equation 8 ; the other is a known term in- 
cluded in Q on the right-hand side of equa- 
tion 8. 

ponentially with depth), but it may be more 
difficult to treat these relationships numeri- 
cally. The easiest approach is to make evapo- 
transpiration an explicit function of the head 
at the previous iteration, but this may cause 
oscillations and difficulties with convergence. 
Normally, the oscillations may be dampened 
by making evapotranspiration a function of 
the head for the two previous iterations. A 
more sophisticated approach is to use the 
Newton-Raphson method, which is a rapidly 
converging iterative technique for treating 
systems of non-linear equations. (See, for 
example, Carnahan, Luther, and Wilkes, 
1969, p. 319329.) 

Other functions for evapotranspiration Computation of head at the radius 
can be defined (for example, decreasing ex- of a pumping well 

1 Some of the methods for implicit treatment of evapotranspira- 
tion. storage. and leakage have been adapted from Prick&t and 
Lonnsuist (1971). 

The hydraulic head computed for a well 
node represents an average hydraulic head 
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O- 
Gi,j Gi,j-ET, 

DEPTH BELOW LAND SURFACE 

FIGURE 6.-Evapotranspiration decreases linearly from 
Qet where the water table is at land surface to zero 
where the water table is less than or equal to 
GL,-ET.. 

Qw[i, j, k]/4 

hi,j,k 
0 

-AX- 

a 

computed for the block and is not the head in 
a well. An option to compute the head and 
drawdown at a well is included in the model. 
This computation uses the radius, re, of a 
hypothetical well for which the average value 
of head for the cell applies. An approximat- 
ing equation is then used to make the extra- 
polation from re to the radius of a real well. 

The radius re can be computed as (Prickett, 
1967) 

re = rJ4.81 (12) 
in which r1 =Axj= Ay, (fig. 7). Equation 12 
assumes steady flow, no source term other 
than well discharge in the well block, and that 
the area around the well is isotropic and 
homogeneous. The derivation of equation 12 
can be seen with reference to figure ‘7 in 
which the four nodes adjacent to node i,j are 
assumed to have head values equal to the 
value at node i - 1, j. In figure ‘7a one-quarter 
of the discharge to the well node i,j is com- 
puted by the model as 

\/hi,i,k 

b 

3 FIGURE 7.-Flow from cell (i--l,/? to cell (Q)(a) and equivalent radial flow to well (i,n with radius r,(b). 
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Q urli.Lkl ah 
4 

= Ax~T~,~--- (13) 
AY 

ters indicate that this 0 

in which 
Ah = hc-l,j,k- hi,j,k ; 
Ti,j= Tm[i,jl = Tg,[i,jl* 

The equivalent discharge for radial flow to 
the well is given by the Thiem (1906) equa- 
tion expressed as (see fig. 7b) 

Q ~1 ti,ikl T 77 i,j hh 
- =-- (14) 

4 2 In (r&,)’ 
Equating the discharges in equations 13 and 
14 gives equation 12. 

The Thiem equation is commonly used to 
extrapolate from the average hydraulic head 
for the cell at radius re to the head, h,, at the 
desired well radius, rw (Prickett and Lonn- 
quist, 1971; Akbar, Arnold, and Harvey, 
1974) and is written in the form 

Qw~~.j.kI 
L = hi,j.k - 2nTj,j In (rehw) . (15) 

Equation 15 assumes that: (1) flow is within 
a square well block and can be described by a 
steady-state equation with no source term 
except for the well discharge, (2) the aquifer 
is isotropic and homogeneous in the well 
block, (3) only one well is in the block and it 
fully penetrates the aquifer, (4) flow is lami- 
nar, and (5) well loss is negligible. 

In an unconfined aquifer, the analogous 
equation is 

I 
H,= V &J [ Likl Htjk --- , 3 J-G, 

In (r&-d (16) 

in which 

Hi,j,k= hi,i,k - BOTTOM (1,J) is the satu- 
rated thickness of the 
aquifer at radius re 
(L) ; 

HW is the saturated thick- 
ness of the aquifer at 
the well (L) ; 

K4.j =Krnri.j, =Kgyli.jl ; 
BOTTOM (1,J) =elevation of the bot- 

tom of the aquifer 
(The uppercase let- 

parameter is identical 
to that used in the 
model.) 

When the saturated thickness computed with 
equation 16 is negative, the message, ‘X,Y 
WELL IS DRY’ is generated. This situation 
has no effect on the computations, but should 
stimulate, careful consideration of the value 
of results for subsequent time steps in the 
simulation. 

The conditions when the Thiem equation 
or equation 16 will be accurate can be com- 
puted. Table 1 was prepared to give a few 
examples of the head values computed by the 
model with the Thiem equation for a well 
with a radius of 1.25 feet in an infinite leaky 
artesian aquifer and in an infinite nonleaky 
artesian aquifer. The analytic solutions for 
these conditions are included for comparison. 
A variable grid was used in the model but 
the dimensions of the well block were Ax = Ay 

= 1,000 feet. For conditions which depart sig- 
nificantly from the assumptions given above 
(for example, a well in a rectangular block 
with anisotropic transmissivity or a well in 
a large block that has a significant amount of 
leakage) the results using equations 15 and 
16 should be checked with a more rigorous 
analysis. Additional drawdown due to the 
effects of partial penetration and well loss can 
be computed separately or added to the code 
as needed. 

Table l.-Comparison of drawdowns computed with 
equation 15 and the analytic values 

Aquifer 
Time 
BbP 

Dimen- 
sion- 
less 

time 

Drawdown 

Approxi- 
mation Analytic 

Nonleaky 
artesian _____ 

Leaky 
srteman ---_- 

TtP.9 
3 41.1 42.7 

14 
::70:::: 

68.3 68.1 Iww;, 

i O:E8 E:! 
62.1 
67.3 

Combined artesian-water-table 
simulation 

Simulation of an aquifer that is partly con- 
fined and elsewhere has a free surface re- 
quires special computations for the trans- 
missivity, storage coefficient, and leakage 

c 
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term. The following paragraphs describe the 
computations required. Some of the methods 
of coding these procedures have been adapted 
from Prickett and Lonnquist (1971). 

Transmissivity 

The transmissivity is computed as the satu- 
rated thickness of the aquifer times the hy- 
draulic conductivity. This computation re- 
quires that the elevations of the top and bot- 
tom of the aquifer be specified. Where the 
aquifer crops out, the top of the aquifer is 
assigned a fictitious value greater than or 
equal to the elevation of the land surface. 

Storage 

The storage term requires special treat- 
ment at nodes where a conversion from ar- 
tesian to water-table conditions, or vice versa, 
occurs during a time step. The program first 
checks for a change at a node during the last 
iteration. If there has been a change from 
artesian to water-table conditions, the stor- 
age term is 

in which 

SUBS = ( &i,~-l - TOP (I,J) 1 

(&,j-Sy[i.jl 1 lAt ; 

TOP (1,J) =elevation of the top of the 
aquifer. 

The purpose of SUBS is to correctly appor- 
tion the storage coefficient and specific yield 
according to the relationship in figure 8a. 

For a change from water-table to artesian 
conditions, the storage term is 

g thy,,,,- hr,j,k--l) -SUBS 

in which 

SUBS= (hi,j,k-cTOP(I,J) 1 (Sy[i.j~ 
- L!&,~) /At. 

SUBS subtra& the storage coefficient and 
adds the specific yield for the distance B illus- 
trated in figure 8b. 

Leakage 

To treat leakage more realistically if parts 
of an artesian aquifer change to water-table 
conditions, the maximum head difference 
across the confining bed is limited to h,,j,,, 
-TOP (1,J). 

Two examples illustrate the calculation of 
leakage in conversion simulations. In figure 
9a the head at the start of the pumping peri- 
od, hi,i,o is below the water-table head, h,,,,, 
but above the top of the aquifer; the current 
pumping level is below the top of the aquifer. 
The applicable equation is 

,. & - 1 1. / /.k/ / / / / f /./. / ./. TOP A.‘/. r’ / / i 1 J ./ / / 1 / / 1 1 / 

& bilk 9 7 

Aquifer 
- hi,i, k-1 

a. b. 

FIGURE 8.--Storage adjustment is applied to distance A in conversion from artesian to water-table conditions 

D 
(a) and to distance B in conversion from water-table to artesian conditions (b). 
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A 
V 
- hiiO I 1 

FIGURE O.-Two of the possible situations in which leakage is restricted in artesian-water-table simulations. 

“91 
+ TL t&,0 -TOP(I,J)). 

For this situation q’c,j,k appears on the right- 
hand side of the difference equation and is 
treated explicitly. Only if both hi,j,o and h;,j,k 
are above the top of the aquifer is the leakage 
term treated implicitly by including TL in the 
E coefficient. This is accomplished in the code 
by setting U = 1. 

In the second example (fig. 9b), both hi,j,o 
and h;,j,l, are below the top of the aquifer and 
the equation for leakage reduces to 

K! . 
@i, j,k = - ,I’;&,,-TOP(I,J) 1. 

If leakage across a subjacent confining bed 
is significant, it will be necessary to add a 
second leakage term. The flux described by 
this term will not be restricted where water- 
table conditions occur. 

Test Problems 
In a subsequent section the computational 

work required for solution of four test prob- 
lems by the numerical techniques available in 
the model is analyzed. It is appropriate, how- 
ever, to introduce the test problems here be- 
cause they are used in the discussion of itera- 
tion parameters in the section on numerical 

techniques. The problems are for steady-state 
conditions since the resulting set of simul- 
taneous equations are more difficult to solve 
than are the set of equations for transient 
problems which generally involve smaller 
head changes. 0 

For each of these problems a closure cri- 
terion was chosen to decide when a solution 
is obtained to the set of finite-difference equa- 
tions. (See Remson, Hornberger, and Molz, 
19’71, p. 185-186.) Normally, in this model, 
a solution is assumed if: 

Max 1 hn-hn-l 1 5 E 

where E is an arbitrary closure criterion (L) . 
For the purpose of the numerical compari- 
sons given later in this documentation, the 
absolute value of the maximum residual (de 
fined by equation 28) is used to compare 
methods. 

The first problem is a square aquifer with 
uniform properties and grid spacing (fig. 
10). The finite-different grid is 20 x 20, but 
only 18 rows and columns are inside the aqui- 
fer because the model requires that the first 
and last rows and columns be outside the 
aquifer boundaries. Two discharging wells 
and one recharge well are the stress on the 
system ; boundaries are no flux except for 
part of one side which is a constant-head 

c 
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0 PROBLEM CHARACTERISTICS 

Transmlsstvlty: Txx = Tyy = 0.1 ft ‘/s (0.009m ‘/s) 
Grad spacing:nx =ay = 5000 ft (1500m) 
Dlmenslons of gnd. 18x18 

I 
T- 0 W 20 

15- 

EXPLANATION OF SYMBOLS 

& Constant head boundary, elevation 0 ft (0 m) 

m No-flow boundary 

w Dlschargmg well at 2 ft “/s (0.06 m ‘/s) 

R Recharging well at 2 ft “/s (0.06 m 3/s) 

-5~ Lme of equal drawdown 
Interval 5 ft. (15 m) 

FIGURE lO.-Characteristics of test problem 1. 

boundary. A closure criterion of 0.001 foot 
(0.0003 metre) was used. 

Konikow (1974) designed the second prob- 
lem in his analysis of ground-water pollution 
at the Rocky Mountain Arsenal northeast of 
Denver, Cdo. It is included as one of the 
test problems because it is typical of many 
field problems and because there is some diffi- 
culty in obtaining a steady-state solution with 
the alternating-direction implicit procedure. 
The transmissivity distribution is shown in 
figure 11; note the extensive areas where the 
transmissivity is zero because the surficial 
deposits are unsaturated. The finite-differ- 
ence grid representing this aquifer is 25 x38 
with square blocks 1,000 feet (300 metres) 
on a side. The model has constantchead 
boundaries at the South Platte River and 
where the aquifer extends beyond the limits 
of the model; elsewhere no-flux boundaries 
are employed. Although this is a water-table 
aquifer, it is assumed for problem 2 that 

transmissivity is independent of head. The 
model includes 49 irrigation wells and re- 
charge from canals and irrigation. In figure 
11 the observed water-table configuration is 
shown, and it is used as the initial surface for 
the simulation; the computed water table is 
generally within a few feet of the observed. 
For this problem the closure criterion is 0.001 
foot (0.0003 metre). 

The third problem is a cross-section with 
three horizontal layers and other character- 
istics shown ,in figure 12. Transmissivity 
equals hydraulic conductivity for this prob- 
lem because it is conceived as a slice one unit 
wide. The values for transmissivity are arbi- 
trary. Note in particular that the horizontal 
conductivity is 100 times the vertical conduc- 
tivity in all layers and that the middle layer 
acts as a confining layer between the upper 
and lower layers. The coefficients Bi,j and 
Hi,,, however, are 100 times greater than the 
horizontal coefficients Di,j and Fi,j because of 
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39055 

TRANSMISSIVITY IN FEETZ/DAY 
EXPLANATION 

no 0 5000 10,000 Feet 

0 0 - 1000 0 ldoo 2ooo 3000 Metres 

1000 - 10,000 

10,000 - 20,000 

More than 20,000 

-~‘so, Water-table contour shows 
altitude of water table. 

Contour interval 10 ft (3m) 
Datum IS mean sea level. 

FIGURE Il.-Transmissivity and observed water-table configuration for test problem 2 (fieldwork and model design 
by Konikow, 1975). 

the grid spacing used. For this problem, the 
closure criterion is 0.0001 feet (0.00003 
metre) . 

In the third problem the upper boundary 
(the water table) is fixed as a constant-head 
boundary. It could also be treated as a no-flow 
boundary which would effectively confine the 
system. This model was not designed specifi- 
cally for simulation of cross sections, and 
consequently it does not have provision for 
a moving boundary. Rather than modifying 
this one-phase model for a moving-boundary 
problem, it would be better to design a model 
specifically for this purpose. The two-phase 
model described by Freeze (1971) is a good 
example. 

The fourth problem is to consider the 
water-table case of the second problem. The 
only difference from problem 2 is that trans- 
missivity is dependent upon (1) head in the 
aquifer, (2) aquifer base elevation, and (3) 
hydraulic conductivity of the aquifer. 

Numerical Solution 

In Pinder (1969) and Trescott (1973) the 
iterative, alternating-direction implicit pro- 
cedure (ADI) was the only option available 
for numerical solution. For many field prob- 
lems AD1 is convergent and competitive, in 
terms of the computational work required, 



FINITE-DIFFERENCE MODEL FOR AQUIFER SIMULATION 
PROBLEM CHARACTERISTICS 

Transmtsslwty Txx = 100 Tyy 
Grad spacmg AX = lOOOft (300117) 

ay = 10 ft (3m) 

METRES 
0 1500 3000 4500 6000 

1 Tyy = 10 ft (0.9m2/s) 

0 0 

0 6000 12000 18000 

FEET 

EXPLANATION 

L Constant head boundary I$?%?%’ No-flow boundary 

130- 135-- Equlpotentlal lines Vetilcal exaggeratm 83 1 

FIGURE It.-Characteristics of test problem 3. 

with other iterative techniques available. It 
may be difficult, however, to obtain a solution 
for some problems with AD1 (for example, 
steady-state simulations involving extremely 
variable coefficients). Consequently, it is con- 
venient to have available other numerical 
techniques that may be more suited than AD1 
to particular problems. The three numerical 
methods available with this model are ADI, 
the strongly implicit procedure (SIP), and 
line successive overrelaxation (LSOR) . 

The following sections outline the compu- 
tational algorithms for the three numerical 
methods. More details are given in the discus- 
sion on SIP, because that method is more 
complex. 

For additional details on the theory behind 
the methods and rigorous analysis of conver- 
gence rates, see for example, Varga (1962) 
and Remson, Hornberger, and Molz (1971). 
The methods are presented in order of 
increasing complexity. In general, the more 
complex methods converge more rapidly and 
are applicable to more types of problems than 
the simpler methods such as LSOR. For clari- 

15 

ty, the numerical treatment of the source 
term is left to other sections. 

Line successive overrelaxation 
Line successive overrelaxation (LSOR) 

improves head values one row (or column) 
at a time. Whether the solution is oriented 
along rows or columns is generally immateri- 
al for isotropic problems but has a signifi- 
cant af%ct on the convergence rate in aniso- 
tropic problems. The solution should be 
oriented in the direction of the larger coeffi- 
cients, either &,! and H4,, or & and Fi,j 
(Breitenbach, Thurnau, and van Poollen, 
1969, p. 159). Differences in the magnitude of 
the coefficients may result from anisotropic 
transmissivity or from a large difference in 
grid spacing between the x and y directions. 
In problem 3 the largest transmissivity is in 
the horizontal direction in each layer, but the 
small grid spacing in the vertical direction 
makes the coefficients & and Hi,,r* & and 
Fi,+ 

With the solution oriented along rows, an 
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intermediate value is computed by the line 
Gauss-Seidel iteration formula, 

Dh~~-l+Eh++Fh~+l=Qx,j=1,2, . . .,N, (17a) 

in which 

h+ is the intermediate head value at node 
(a ; 

N, is the number of nodes in a row. 
Equation 17a can be expressed in matrix 
form as 

=- 
A,h+ = &. (17b) 

In order to reduce rounding errors, equa- 
tion 17b is put in residual form. (See Wein- 

h= Ho 

row 1 

I 

E, F, 
D, Es F, 

D, Es 0 
0 E, F, 

D, Es F, 
D, E, 

0 

- 

0 

E, F, 
D, E, -F, 

D, Es 
- 

i!LO 
av 7( 

I 
hl 

t h4 
L b 

stein, Stone, and Kwan, 1969, p. 283, and 
Breitenbach, Thurnau, and van Poollen, 1969, 
p. 159.) This is accomplished by adding and 
subtracting &%-l to the right-hand side of 
equation 17b giving 

A,~+=~,+Ax~n-l-Ax~~-l. (I7c) 
Rearrange equat,ion 17~ to read 

A=,@ =&n--1 (17d) 

in which 
~+=~+.-~w; 

Equation 17d is the LSOR residual formula- 
tion and expanded has the following form for 
a 3x3 problem (fig. 13) : 

hz 
0 

h5 
0 

h 
0 

h6 
0 

b 

h=Ho9 

FIGURE 13.-Hypothetical problem with 9 interior 
nodes. 

Boundary conditions are not included in this 
equation because they are treated in the 
model without adding or subtracting terms 
to iy’. 

The first row is solved by the Thomas al- 
gorithm for simultaneous equations with a 
tridiagonal coefficient matrix. The Thomas 
algorithm is given in many references. (For 
example, see Pinder and Bredehoeft, 1968; 
von Rosenberg, 1969 ; Remson, Hornberger, 
and Molz, 1971.) It is outlined below for 
equation 17 using notation from the program 
code (The coefficients D,.E,F, and the known 
term p-l have been subscripted with [i,j] 
for clarity). BE, is an intermediate 
coefficient. 

Recognizing that 

D,, = K,N,= 0, 
an intermediate vector C? is computed by for- 
ward substitution as 

W = ELI-Di,j(BEj-d, 
BE, = F<,j,/ W 
Gj = (Rn-lii,jl - Di,j (G,-1) ) /W. c 
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0 The values of $ for row i are then computed 
by backward substitution as 

4n approximate equation for J is 
3’z~yz--1+E’i(~i+~‘i(~i+l 

=R’i,i=1,2,. . .,N, (18) 

n which where 

since 

The head values for row 1 are then com- 
puted by the equation 

h;l=h;;l+cotfj,j=l,. . .,Na I I 
If o is 1, the solution is by the line Gauss- 

Seidel formula, but convergence is slow in 
general. The convergence rate is improved 
significantly by “overrelaxation” with l<~ 
< 2. Discussion of the acceleration parameter 
is deferred until after the following section 
on two-dimensional correction. 

Two-dimensional correction to LSOR 

In certain problems, the rate of conver- 
gence of LSOR can be improved by applying 
a one-dimensional correction (1DC) proce- 
dure introduced by Watts (1971) or the ex- 
tended two-dimensional correction (2DC) 
method described by Aziz and Settari (1972). 
These methods remove the components of 
certain eigenvectors in the LSOR iteration 
matrix from the solution vector. If the eigen- 
values associated with these eigenvectors 
dominate the problem, particularly those in- 
cluding anisotropy, the convergence rate is 
greatly improved. 

The 2DC method is applied after one or 
more LSOR iterations. The corrected head 
values are used as an improved starting point 
for the next iteration and the process is re- 
peated until convergence is achieved. 

The two-dimensional correction for the 
head at (i,j) is defined as 

h;;,k= htj,,+ai+ij, i= 1,. . .,N, 
j= 1,. . .,N, 

in which 

h;“,;.k is the corrected head at iteration n; 
ffi is the correction for row i ; h 
A is the correction for column j. 
N, is the number of nodes in a column. 

H’t = - 8Hs,j ; 
j 

An approximate equation for ,? is 
D’j~i--1+E’g~~+F~j~~$1=:R’i,j =1,2,. . .,N, 

(19) 
in which 

D’j= - ZDc,j; 
21 

E’j=X(D,,~+Fc,t+S.~ ; 
i At 

Equations 18 and 19 are derived with the 
following equations 

flR;;=O, i=1,2,. . .,N, 

,and 

i$lRy;=O, j=:l,2,. . .,N, 

which force the sum of residuals for each row 
and each column to zero when the vector Em* 
is substituted into equation 8. Aziz and Set- 
tari (1972) give the exact equations for z 
and g but point out that equations 18 and 19 
are good approximations and, in practice, are 
easier to solve. For example, equation 19, 
which used alone is Watts’ 1DC method, is 
written ‘in matrix form as 
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for the problem in figure 13. Equation 18 has 
an analogous form and both are easily solved 
by the Thomas algorithm. 

Note that Cu and 2 in the model are zero for 
those rows and columns in which one or more_ 
constant-head nodes are located. If Cu and fi 
were not zero it would not be possible to 
maintain a constant value at the appropriate 
nodes. As Watts (1973) points out, therefore, 
the pro’cedure is most useful in simulations 
dominated by no-flow boundaries. For those 
simulations in which 2DC is useful, it is gen- 
erally better to apply the corrections after 
several rather than after each LSOR iterac 
tion. After experimenting with a few prob- 
lems, we have found it practical to apply 2DC 
after every 5 LSOR iterations. 

LSOR acceleration parameter 

The optimum value of o for maximum rate 
of convergence lies between 1 and 2 and is 
commonly between 1.6 and 1.9. If only one 
or two runs will be made on a problem, it is 
probably best to choose an o based on experi- 
ence. If. many runs will be made, it will be 
worthwhile to use an o close to the optimum 
value. For simple problems O,Bt can be com- 
put,ed as explained, for example, by Remson, 
Hornberger, and Molz (19’71, p. 188-199) us- 
ing the equation 

2 

w= I++p(G) 
(20) 

in which 

p(G) is the spectral radius (dominant eigen- 
value) of the Gauss-Seidel iteration matrix. 
For typical field problems it is possible to use 
equation 20 to estimate uopt in an iterative 
process if 2DC is not used. In the first simu- 
lation of the problem, set o= 1.0 and allow at 
least 100 iterations. In applying this method 

to problems 1, 2, and 3 it took 25 iterations 
to arrive at mOpt for problem 2, but about 100 
iterations to obtain WOpt for problem 1 and 3. 
Obviously this method may involve a lot of 
computational effort to obtain w,,~~. More effi- 
cient methods using equation 20 have been 
devised to update o during the iteration proc- 
ess. For example, Breitenbach, Thurnau, and 
van Poollen (1969) use a modified form of 
Varga’s (1962) “power method,” Carre’s 
(1961) method is described by Remson, 
Hornberger, and Molz (1971, p. 199-203)) 
and Cooley (1974) has a simple method for 
improving o for transient problems. 

Figure 14 illustrates the rate of conver- 
gence of LSOR and LSOR+ 2DC for test 
problems 1, 2, and 3 using different accelera- 
tion parameters chosen by trial and error. 
The values exceeding 100 iterations for prob- 
lem 1 were estimated by using a plot, which 
is nearly a straight line, of the absolute value 
of the log of the maximum residual (defined 
by equation 28) versus the number of itera- 
tions. This plot was extrapolated to the value 
of maximum residual that corresponded 
roughly to the closure criterion chosen for 
the problem. The same procedure was used 
on problem 3 for values exceeding 200 
iterations. 

For problem 1 the optimum acceleration 
parameter is 1.87 for LSOR. Two-dimension- 
al correction significantly improves the con- 
vergence rate of LSOR for this problem with 
an optimum acceleration parameter of 1.7. In 
problem 2, 2DC had no effect on the rate of 
convergence of LSOR because of the numer- 
ous constant-head nodes in the problem. Con- 
sequently, the optimum acceleration parame- 
ter is 1.6 with or without the application of 
2DC. In problem 3, with LSOR oriented 
across the bedding, Wopt is 1.88 for LSOR and 
about 1.70 for LSOR + 2DC. Note in problems 
1 and 3 that finding Wept for LSOR is more 
critical than with LSOR+ 2DC. LSOR is 
poorly suited for problem 4 because too many 
nodes drop out in the iteration process if 
1<0<2. Satisfactory results for problem 4 
at the expense of slow convergence are ob- 
tained if 0 = 0.5 (See fig. 23.) 
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Alternating-direction implicit 
procedure 

Peaceman and Rachford (1955) described 
the iterative, alternating-direction implicit 
procedure for solution of a steady-state (La- 
place) equation in two space dimensions. This 
procedure, however, is equally applicable to 
transient problems where it has the advant- 
age of allowing larger time steps than can be 
used with non-iterative ADI. (Non-iterative 
AD1 was used by Pinder and Bredehoeft, 
1968.) In the AD1 technique, two sets of 
matrix equations are solved each iteration. 
The equations for row,s in which head values 
along rows are computed implicitly and those 
along columns are obtained from the previ- 
ous column computations are defined as 

Dh;I;h + E,.h”- % + Fh-f” 
=Q,,j=1,2,. . .,N, (21a) 

in which 

E,= - (D+F+;t+Mr) ; 

FIGURE 14.-Number of iterations required for solution by LSOR and LSOR + 2DC using different acceleration 
parameters. 

Qr= -Bhy~"_-,' + (B+H-A&)h"+' 

-f&n-'- shx-l+ W; 
‘+l At 

M1 is the iteration parameter ; 
1 is the iteration parameter index. 

In matrix form equation 21.a is 
~Jp-% = QT. @lb) 

To put equation 21b in residual form, add and 
subtract A&+-l to the right-hand side giving 

~~~*-~=a-~~~~-l+A=,~~-l (21c) 

Rearrange equation 21~ to read : 
A=,p-n =j&n-1 GW 

in which 
F”-‘/z=j+,L~n-1; 
&n-1=(&A=,+. 

Equation 21d is the AD1 row formula in re- 
sidual form. Its matrix form is the same as 
that for equation 17d and is solved for each 
row by the Thomas algorithm. To complete 
the first half of the AD1 iteration, Em-n is 
computed by 
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The equations in which head values along 
columns are considered implicitly and those 
along rows explicitly are written as : 
Bhin_l+E,h”+Hh~+I=&,,i=1,2,. . .,N, (22a) 

in which 

E,= - (B+H+;+il&) ; 

&,= -Dh;y;h + (D+F-M,)hn-‘h 

-Fhyy -;h,-,+ 74’. 

Equation 22a in matrix form is 
z,iP= &. Wb) 

By adding and subtracting ~&-~ to the 
right-hand side of equation 22b, it can be put 
in the residual form 

&+~,n-$4; WC) 
in which 

P =j+-j+M. 
j&n-M q&~&M. 

Equation 22~ is solved for each column by 
the Thomas algorithm, and the vector @ for 
each row is obtained by the equation 

j&j+%+f. 

A set of iteration parameters is computed 
by the equation 

M,=w, (B+D+F+H) 
in which ,,, ranges between a minimum de- 
fined by 

Min x2 1 
wmin= (over grid) 2p 

?+ 
TM/ [t.j~ (Ax,)’ ’ 
T,, [i,:~ (4-h) ’ 

2 

G 
1 (23a) 

u 1+ 
T z.n :z,j~ (W) ’ 
T uu to1 (Ax,)’ 

and a maximum given by 

%lax = I 
1 IT,,=T,,l; 
2 [T,,>>T,, or T,,>>T,,l. 

The set of parameters are spaced in a geo- 
metric sequence given by 

w+1=yw Wb) 

in which 

ln 
Y 

= In (%d%xia) 
I _ (23~) 
L-l 

L =the number of iteration parame- 
ters used. 

The iteration parameters starting with wmilr 
are cycled until convergence is achieved. 

Equation 23a is based on a von Neuman 
error analysis of the normalized flow equa- 
tions. (See, for example, Weinstein, Stone, 
and Kwan, 1969.) It will compute the opti- 
mum CO,in only for simple problems. For gen- 
eral problems %lin computed by equation 23a 
may or may not be close to the optimum %in 
for the problem. This is illustrated in figure 
15 in which the rate of reduction in the maxi- 
mum residual for arbitrarily chosen mini- 
mum parameters is compared with that for 
wnin computed with equation 23a. Ten param- 
eters were used in problems 1 and 2, and four 
parameters were used in problem 3. The lines 
on figure 15 are meant to show the general 
trend only. The convergence rate using the 
best qnir, in figure 15 is nearly the same as 
that computed with equation 23a for prob- 
lem 1, but there is a significant difference in 0 

rates for problems 2 and 3. (See figs. 21 and 
22. ) 

The other factor that may be critical in de- 
termining the rate of convergence using AD1 
is the number of parameters. In general, the 
number of parameters is chosen as 5 if %ml 
- wmm is about two orders of magnitude ; if 
wmax -timin is three or more orders of magni- 
tude, 7 or more parameters are chosen. 

For the test problems, the number of itera- 
tion parameters were varied from 4 to 10 
(fig. 16). The minimum parameter was cal- 
culated by equation 23a ; the maximum pa- 
rameter was 1 for problems 1 and 2 and was 
2 for problem 3. The number of parameters 
had a relatively small effect in determining 
the rate of convergence for problems 1 and 3. 
For problem 2, however, the computations do 
not converge using 4 or 5 parameters. Prob- 
lem 2 can be solved with AD1 using 6 to 10 
parameters with 10 parameters giving the 
most rapid convergence. AD1 did not give 
satisfactory solutions for problem 4 (an ex- 

c 
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cessive number of nodes always drop out of 
the solution) and, consequently, no results 
for problem 4 are shown in figure 16. 

steady state should be achieved within a 
reasonable number of time steps with rapid 
convergence at each time step. 

Strongly implicit procedure 

When difficulties occur with AD1 in steady- 
state simulations, rather than experimenting 
with the critical minimum parameter or the 
number of parameters, it may be worthwhile 
to make the simulation a transient problem. 
In effect, S/At is used as an additional itera- 
tion parameter. If the storage coefficient is 
not made too large or the time step too small, ) XL=& 

The set of equations (corresponding to 
equation 8) for the 3 x 3 problem in figure 13 
may be expressed in matrix form as 

(24) 

L 

Direct solution of equation 24 by Gaussian 
elimination usually requires more work and 

0 
computer storage than it,erative methods for 
problems of practical size because A’ decom- 
poses into a lower triangular matrix with 
non-zero elements from B to E in each row 
and an upper triangular matrix with non- 
zero elements from E to H in each row. All 
of these intermediate coefficients must be 
computed during Gaussian elimination, and 
the coefficients in the upper triangular ma- 
trix must be saved for backward substitution. 

To reduce the computation time and stor- 
age requirements of direct Gaussian elimina- 
tion, Stone (1968) developed an iterative 
method using approximate factorization. In 
this approach a modifying matrix B is added - 
to A’ formi’ng (A + B) so that equation 24 
becomes 

(A+B)K=Q+EE. (25) 

(A-) can be made close to x but can be 
factored in2 the product of a lower triangu- 
lar matrix L and an upper triangular matrix 
r, each of which has no more than three non- 
zero elements in each row, regardless of the 
size of N, and N,. Therefore, if the right- 
hand side of equation 25 is known, simple 

recursion formulas can be derived, resulting 
in a considerable savings in computer time 
and storage. This leads to the iteration 
scheme -- 

(A+B)Iz”=~+B@-~. (26) 
In order to transform equation 26 into a 
residual form, K&l is subtracted from both 
sides giving -- 

(A+B)k=&’ (27) 
in which 

P ,~n-~n-1. 
p-1 = Q- ~j&l. (2~) 

The iterative scheme defined by equation 26 
or 2’7 is closer to direct methods of solution 
(more implicit) than AD1 (hence the term 
strongly implicit procedure or SIP). The SIP 
algorithm requires (1) relationships among - 
the elements of z, g and (A + B) defined by 
rules of matrix multiplication for the 
equation 

,? v’= (AT), 
and (2) relationships among the elements of 
Kand (Ax). 

E and g have the following form for a 
general 3 x 3 problem (much of the notation 
is adapted from Remson, Hornberger, and 
Molz, 1971) ; 
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FIGURE 15.-Reduction in the maximum residual for problems 1 to 3 for selected w,$, used to compute the 
ADI parameters. 
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PROBLEM 1 
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FIGURE 16.-Number of iterations required for solution of the test problems with ADI using different numbers 
of parameters. 

The product ~?a= (AT) is 

(A+B)= 

Because of the boundary conditions, the ele- The relationships among the elements of z, 
ments of (AT) inside squares will be zero 

- 
g,and (A+B) are 

B 

for the 3x3 problem illustrated in figure 13. 



24 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS 

a =B (3W 

a&-l & (30b) 

P =fi (3Oc) 

y+“~~-1+p6,-1 =JG WW 

YS =@ We) 

l&V-l =@ Wf) 

Yrl =g wk) 
where the i and j subscripts refer to the loca- 
tion on the model grid, not in matrix (A-). 

In order to use equations 30a-30g as the 
basis of a numerical technique for solving 
equation 24 efhciently by eliminationLrela- 
tionships between the elements of A and - 
(A+B) must be defined. One possibility is to 
let the elzments_correspond exactly and ig- 
nore the C and G diagonal in (AT). Stone 
(1968)) however, found that this could not 
be used as the basis of a rapidly convergent 
iterative procedure. Instead, he defined a 
family of modified matrices starting with 30b 
and 30f. - 

Then the other elements of (A + B) can be 
defined as=equal to the corresponding ele; 
men+ in A plus a linear combination of C 
and G. For example 

in which $I and & are constants depending 
on the problem being solved. 

What aze appropriate linear cosbinations 
of C and G with the elements of A? If equa- 
tion 27 is written for node (i,j) , non-zero co- 
efficients appear not only for the unknowns 
in the original difference equation but also 
for qmlj+* and c+li--l. This is illustrated in 
figure 17. To minimize the effects of the terms 
introduced in forming the modified matrix 
equation, E@ for the node (i,j) is defined as 

~[~-lj+l-d~-l+r;+l -P)l 
+&$+*j-l-w(ty-l +q+,-ml (31) 

where the terms in parentheses are second- 
order correct approximations for &.l.i+l, and 
&+l,j-l, respectively. (See Remson, Horn- 
berger, and Molz, 1971, p. 226, for derivation 
of these approximations.) To consider these 
terms good approximations to &i-l,i+l and 

i-l X 

I B 

i+l z 

j-l 

A 0 X 

T j j+l 

FIGURE 17.-Coefficients of unknowns in equation 27. 

t D+l,j--l an iteration parameter, 0, is added. 
The value of o ranges between 0 and 1, and 
its computation is discussed at the end of this 
section. 

With the definition of E (31)) the iteration 0 
scheme (equation 27) becomes 

Bq-l+D~-l+~$+J’~+, +Hq+, 
+erq, i+,-“(~~~~~~+,-F)l+~~~+, j-, 
-4q-1+q+1 -P)] =R”-’ ’ (3% 

Collecting coefficients in equation 32 as- 
sociated with the nodal positions in the origi- 
nal difference equation gives the desired 
linear combinations of I? and 8 with the 
elements of x that define the remaining ele- - 
ments of (A+B) : 

i?=B--wi? @a) 

6=0-d (33b) 

Jii=E+k+c12 (33c) 

k=F-k W-W 

ii=H-d We) 

The coefficient 2 is obtained explicitly by 
combining equations 33a, 30a, and 30b as 

& &-lB 

l+osi-l’ @da) 

a 
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0 

Finally combining equation 33b and equa- 
tions 3Oc and 30f gives 

,A= V-ID 
1+07]j-1. 

Wb) 

Equations 34, 33 and 30 (in that order) 
are the first part of the SIP algorithm. 

Equation 28 written for node (i,j) is 
Rn-l=Q- (Bh;:;+Dh”-1 j-1 

+Eh”-l+Fhy-;+Hhy-;). 

As in the Thomas algorithm, the vector p is 
obtained by a process of forward and back- 
ward substitution. Combining equations 27 
and 29 gives 

~@=j+-l (35) 
Define an intermediate vector F by 

@kp. (36) 
Then equation 35 becomes 

~~=~?A~ (37) 
vn is first computed by forward substitution. 
This can be seen by writing equation 37 for 
node (i,j) : 

0 
aV;-, +/3V;~,+uVn=R”-’ 

or 
V”= (Rn-l-~V1_l-BV~_l)/Y. 

The vector F may then be computed by back- 
ward substitution. Equation 36 for node (i,j) 
is 

or 
P= V”-~~+, -‘1q+,. 

Stone (1968) recommends an alternating 
computational procedure. On odd iterations, 
the equations are ordered in a “normal” man- 
ner as shown in figure 13. On even iterations, 
the numbering scheme is changed to that il- 
lustrated in figure 18. This has the effect of 
making non-zero coefficients appear for the 
heads hi-1,j-1 and hi+l,j+l (the X’s in fig. 17) 
instead of hg-l,j+l and hi+l,j-l and signifi- 
cantly improves the convergence rate. Note 
that some of the recursion equations are 
modified by reordering the grid points in the 
“reverse” manner. The modifications re- 

3 

quired for the reverse algorithm are 

FIGURE 18.-Reverse numbering scheme for 3X 3 
problem. 

Y =E -yYr]i+l-PSj--1; 

vn = (R”-‘-aV;+, -P’;-, )/y; 

p =vn-SC+, -7#- - 

The iteration paramiteis are computed by 
equations given in Stone (1968 j. For vari- 
able transmissivity and grid spacing, Stone’s 
equation is 

in which 
EX = AXj/width of model 
6y = AyJength of model 

Equation 38 computes an arithmetic average 
Of Oman for the algorithm. 

The remaining iteration parameters are 
computed by 

l- q+1= (l-wmax)~~(~-~),z=O,l,. . .,L-1 

in which L is the number of parameters in a 
cycle. 

Stone (1968) recommends using a mini- 
mum of four parameters, each used twice in 
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succession, starting with the largest first. 
Weinstein, Stone, and Kwan (1969)) how- 
ever, indicate that it is not necessary to start 
with the largest parameter first or to repeat 
them. 

The results using different numbers and 
sequences of parameters for the three test 
problems are shown in figure 19. Except for 
the sequence 4, 3, 2, 1 in problem 1 the num- 
ber of iterations required for solution varies 
up to a maximum of 50 percent for the pa- 
rameter sequences tested. Several parameter 
sequences (for example, 1, 2, 3, 4, 5) give 
convergence near the maximum observed rate 
for all problems. This result suggests that 
conducting numerical experiments to deter- 
mine the best sequence of parameters for a 
particular problem is generally not justified. 

Weinstein, Stone, and Kwan (1969) have 
a slightly different definition of the maximum 
parameter (1 - wII1.= = AD1 minimum parame- 

PROBLEM 1 

- 
5 6 

~ 
7 8 91 

ter). Their definition of the maximum pa- 
rameter (which is the maximum over the 
model, not the arithmetic average of values 
computed for each node) was used in solving 
several test problems. In every case converg- 
ence was faster using equation 38 to com- 
pute the maximum parameter. 

Stone (1968) states that a more general 
form of equation 27 includes another itera- 
tion parameter, p’, to multiply the term En-l. 
His experience indicated, however, that 
values of p’ other than unity did not general- 
ly improve the method. In contrast, the use of 
/3’ other than unity has proven to be effective 
for some of the test problems. In fact, for 
the fourth problem, a value of p’ less than 
unity is required to obtain a reasonable solu- 
tion using SIP. Results for problem 4 are not 
shown in figure 19 because the best sequence 
of parameters (No. 3) for problem 2 was 
used in experimenting with the parameter p’. 

PROBLEM 2 

110 

18 

16 

8 r 
I 

Experiment Sequence 
of parameters 

1 1234 
2 4321 
3 12345 
4 54321 
5 123456 
6 654321 

i 
iii, 
3 4 5 6 7 

90 

80 

PROBLEM 3 

IIIIIlIIIl 

EXPERIMENT 

Experiment Sequence 
of parameters 

7 113355224466 
8 664422553311 
9 1234567 

10 7654321 
11 114477225588336699 
12 996633885522774411 

7 8 9 10 

FIGURE 19.4terations required for solution of the test problems by SIP using different numbers and sequences 
of parameters. 

c 
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Comparison of Numerical 
Results 

The rate of convergence using different 
numerical tech’niques for solving the test 
problems is compared in figures 20 to 23. The 
best results from the experiments with each 
iterative technique are used in the compari- 
sons. Two curves (except for fig. 23) are 
shown for SIP : one with the parameter ,R’= 1 
and the other with the best rate of converg- 
ence for p’#l. The sequence of w parameters 
is the same for both curves. Two curves are 
also shown for ADI: one in which the mini- 
mum parameter was calculated with equation 
23a (indicated by an asterisk in the figures) ; 
the other with the best minimum parameter 
shown on figure 15. 

In figures 20 to 23 the absolute value of the 
maximum residual for each iteration is plot- 
ted versus computation time where one unit 
of work is equal to the time required to com- 
plete one SIP iteration. Relative work per 
iteration is about 1 for ADI, 0.6 for LSOR, 
and 0.8 for LSOR+2DC. The maximum reb 
sidual for SIP and AD1 fluctuates from a 
maximum to a minimum over each cycle of 
parameters. For clarity, the curves connect 
the local minima for these two methods. Com- 
parisons in figures 20-23 should be made on 
the basis of the horizontal displacement of 
the curves, not on the basis of the termina- 
tion of the curves. This is similar to the type 
of comparisons made by Stone (1968). 

Figure 20 shows the results for problem 1 
(10 parameters for ADI, O= 1.87 for LSOR, 
o = 1.7 for LSOR + 2DC, parameter sequence, 
1,1,3,3 5 5 2 2 4 4 6 6 for SIP). Of the se- 99,99,,,, 
quence of p’ parameters tried, the minimum 
work required to reduce the residual is ob- 
tained with p’ = 1.4, but this is only moder- 
ately better than using p/=1.0. ADI con- 
verges as rapidly as SIP for the first cycles of 
iteration, but from that point on converges 
slower than the other iterative techniques. 
The two AD1 curves show about the same 
rate of convergence for this problem. Next 
to SIP, LSOR+ZDC is most attractive for 

D 
this problem. 

1 o-7 I I I I 

0 10 20 30 40 50 
COMPUTATIONAL WORK 

(Number of SIP Iterataons) 

FIGURE PO.-Computational work required by different 
iterative techniques for problem 1. 

The results for problem 2 are shown in 
figure 21 (10 parameters for ADI, O= 1.6 for 
LSOR and LSOR + 2DC, parameter sequence 
1,2,3,4,5 for SIP). SIP requires the least 
amount of work for this problem (using 
p’#l.O does not significantly reduce the work 
required). LSOR and AD1 using the best 
omi,, from figure 15 are competitive with SIP. 
AD1 using q,,in computed with equation 23a 
requires about twice as much computational 
work. LSOR and LSOR+2DC take the same 
number of LSOR iterations so that the extra 
work required for 2DC is wasted for this 
problem, 

In figure 22, the results using 4 parameters 
for ADI, the parameter sequence 1,2,3,4 for 
SIP, o= 1.88 for LSOR and w=1.70 for 
LSOR+2DC are plotted for problem 3. In 
this problem LSOR (with solution lines ori- 
ented along columns), AD1 with *in com- 
puted with equation 23a, and SIP with p’= 1 
are competitive. Convergence is significantly 
improved by adding 2DC to LSOR, choosing 
the best omin from figure 15 for AD1 and let- 
ting p’ = 1.5 with SIP. 
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\ 
I I 

10 I5 20 

COMP”TATlONAL WORK 
(Number Of SIP Iterations) 

FIGURE 21 .-Computational work required by different 
iterative techniques for problem 2. 

FIGURE 22.-Computational work required by different 
iterative techniques for problem 3. 

The results for problem 4 are shown in 
figures 23 and 24. The o iteration parameter 
sequence for SIP is 1,2,3,4,5, and the two- 
dimensional correction is applied every fifth 
iteratinn for LSOR+ 2DC. Konikow (oral 

u 10 20 30 40 50 

COMPUTATIONAL WORK 
(Number of SIP Iteratms) 

FIGURE 23.-Computational work required by dlfferent 
iterative techniques for problem 4. 
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FIGURE 24.-Number of iterations required for solu- 
tion of problem 4 by SIP using different values of P’. 
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commun., 1975) was unable to obtain a solu- 
tion to problem 4 using AD1 due to oscilla- 
tions that eliminated nodes that should have 
been in the solution. This problem occurred 
not only with AD1 but also with LSOR and 
LSOR+ 2DC with ~>0.6 and with SIP with 
p’~O.6. The oscillations are apparently 
caused in part by the nonlinearities of the 
water-table problem and the necessity to cal- 
culate transmissivity at the known iteration 
level. In a water-table simulation the trans- 
missivity is set to zero and nodes are dropped 
from the aquifer if the computed head is bet 
low the base of the aquifer. For problem 4, at 
least 3 nodes should be dropped with the 
initial conditions used. 

A solution to problem 4 in which 3 to 4 
nodes are dropped is obtained with LSOR 
and LSOR + 2DC when w= 0.5 at the expense 
of slow convergence. Clearly the most suit- 
able method for this problem is SIP with 
p’90.6 (fig. 23). In effect the use of p’<l for 
SIP and 0<1 for LSOR represents “under- 
relaxation” and has the effect of dampening 
oscillations of head from one iteration to the 
next. This reduces the tendency for incorrect 
delet,ion of nodes from the solution. 

Solution of problem 4 emphasizes the ad- 
vantage of the extra SIP iteration parameter. 
The optimum value of p’ inferred from figure 
24 is about 0.5. Note in figure 24 that an 
addit,ional node is dropped for p’=O.5 and 
0.6. However, the effect of this node on the 
remainder of the solution is negligible. For 
p’>O.6, either convergence was not obtained 
or excessive numbers of nodes were dropped 
for those cases that did converge. 

The numerical experiments included in this 
report support the general conclusions of 
Stone (1968) and Weinstein, Stone, and 
Kwan (1969) that SIP is a more powerful 
iterative technique than AD1 for most prob- 
lems. SIP is attractive, not only because of its 
relatively high convergence rates but be- 
cause it is generally not necessary to conduct 
numerical experiments to select a suitable 
sequence of parameters. SIP has the disad- 
vantage of requiring 3 additional N,X N, 

B arrays. 

For the first three problems examined here, 
AD1 is a slightly better technique than LSOR 
when “mill near the optimum is used. Al- 
though this result agrees with Bjordammen 
and Coats (1969) who concluded that AD1 
is superior to LSOR for the oil reservoir 
problems they investigated, it is deceptive 
because less work is required to obtain mopt 
for LSOR than is required to find the best 
umin for AD1 by trial and error. Furthermore, 
LSOR is clearly superior to AD1 in applica- 
tion to problem 4 where a solution was not 
possible with AD1 as used in this simulator. 

LSOR + 2DC seems to be particularly use- 
ful with problems dominated by no-flux boun- 
daries. The correction procedure can signifi- 
cantly improve the rate of convergence of 
LSOR even in problems such as problem 3 
where all pj are zero and non-zero (Y~ occur for 
the lower half of the model only. 

Considerations in Designing 
on Aquifer Model 

Boundary conditions 
An aquifer system is usually larger than 

the project area. Nevertheless the physical 
boundaries of the aquifer should be included 
in the model if it is feasible. Where it is im- 
practical to include one or more phy&al 
boundaries (for example, in an alluvial valley 
that may be several hundred miles long) the 
finite-difference grid can be expanded and 
the boundaries located far enough from the 
project area so that they will have negligible 
effect in the area of interest during the simu- 
lation period. The influence of an artificial 
boundary can be checked by comparing the 
results of two simulation runs using differ- 
ent artificial boundary conditions. 

Boundaries that can be treated by the 
model are of two types: constant head and 
constant flux. Constant-head boundaries are 
specified by assigning a negative storage co- 
efficient to the nodes that define the constant- 
head boundary. This indicates to the program 
that these nodes are to be skipped in the 
computations. 
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