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at each node. If VPRM exceeds 0.09, it is as- 
sumed that the node represents a constant- 
head boundary condition and is treated as a 
fluid source or sink accordingly. At a con- 
stant-head node the difference in head be- 
tween the aquifer and the source bed is used 
to determine whether the node represents a 
fluid source or sink (for example, lines 
F2500-F2520). 

Subroutine CNCON 
This subroutine computes the change in 

concentration at each node and at each par- 
ticle for the given time increment. Equation 
39, which denotes the change in concentra- 
tion resulting from sources, divergence of 
velocity, and changes in saturated thickness, 
is solved on lines G350-G610. On the G520 
the value of the storage coefficient is checked 
to determine whether the aquifer is confined 
or unconfined. It assumes that if S<O.O05, 
then the aquifer is confined and ah/at= 0. 
If S10.005, the model assumes that @/at 
=ah/at. If this criterion is not appropriate 
to a particular aquifer system, then line 
G.520 should be modified accordingly. The 
change in concentration caused by hydro- 
dynamic dispersion is computed on lines 
G640-G770 as indicated by equations 37 and 
38. 

The nodal changes in concentration caused 
by convective transport are computed on 
lines G850-G940. The number of cells that 
are void of particles at the new time level 
are also counted in this set of statements on 
lines GBBO-G910, and then compared with 
the critical number of void cells (NZCRIT) 
to determine if particles should be regen- 
erated at initial positions before the next 
time level is started (lines G960-G1020). 

The new (time level k) concentrations at 
nodes are computed on the basis of the previ- 
ous concentration at time k- 1 and the 
change during k - 1 to k. The adjustment at 
nodes is accomplished on lines G1060-Gl180, 
while the concentration of particles is ad- 
justed on lines G1210-G1360. 

A mass balance for the solute is next corn. 
puted (lines G1400-G1730) at the end 01 
each time increment. In computing the mash 

)f solute withdrawn or leaking out of the 
aquifer at fluid sinks, the concentration at 
;he sink node is assumed to equal the nodal 
:oncentration computed at time level k - 1. 

Subroutine OUTPT 
This subroutine prints the results of the 

Row model calculations. When invoked, the 
subroutine prints (1) the new hydraulic 
head matrix (lines H190-H260), (2) a nu- 
meric map of head values (H300-H390), and 
(3) a drawdown map (H510-H710). This 
subroutine also computes a mass balance for 
the flow model and estimates its accuracy 
(H420-H820). A mass balance is performed 
both for cumulative volumes since the initial 
time and for flow rates during the present 
time step. The mass balance results are 
printed on lines H840-H930. 

Subroutine CHMOT 
This subroutine prints (1) maps of con- 

centration (lines 1250-1380)) (2) change in 
concentration from initial conditions (1440- 
1580), and (3) the results of the cumulative 
mass balance for the solute (1670-1860). 
The accuracy of the chemical mass balance is 
estimated on lines 1610-1660 using equations 
62 and 64. The former is not computed if 
there was no change in the total mass of 
solute stored in the aquifer. The latter is not 
computed if the initial concentrations were 
zero everywhere. Lines 1890-11140 serve to 
print the head and concentration data re- 
corded at observation wells. These data are 
recorded after each time step for a transient 
flow problem and after each particle move- 
ment for a steady-state flow problem. The 
data are printed after every 50 time incre- 
ments and at the end of the simulation 
period. 

Evaluation of Model 

Comparison wiih analytical solutions 

The accuracy of the numerical solution to 
the solute-transport equation can be evalu- 
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ated in part by analyzing relatively simple 
problems for which analytical solutions are 
available and then comparing the numerical 
calculations with the analytical solution. 
Figure 11 presents such a comparison for a 
problem of one-dimensional steady-state flow 
through a homogeneous isotropic porous 
medium. The analytical solution is obtained 
with the following equation presented by 
Bear (1972, p. 627) : 

C(x90 -co =Jerfc 
Cl--C, 2 

(-;gJ (68) 

where 
erfc is the complimentary error func- 

tion, and 
Q = l V is the specific discharge, LT -l. 

Bear (1972, p. 627) shows that equation 68 
is subject to the following initial conditions : 

so, - w<x<o, c=co 
O&x<+ co, c=c1 

s 
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and to the following boundary conditions : 

t>o, x= rtoo, $/ax=0 
x=+co, c=ct 
x=-cc, c=co. 

The general computer program presented 
in this report was modified in three simple 
ways for application to a problem equivalent 
to the one for which the analytical solution 
was derived. First, the program’s arrays 
were redimensioned to 3 by 50 rather than 
20 by 20. The aquifer (or column of porous 
medium) was thus represented by a l-by-48 
array of nodes. A grid spacing of 10 ft (3.05 
m) was used. Second, the flow velocity was 
specified as a constant value, rather than be- 
ing computed implicitly on the basis of 
‘hydraulic gradients and hydraulic conduc- 
tivity. Third, the first (upstream) node of 
the aquifer was specified as a constant-con- 
centration boundary, so that the concentra- 
tion at node (2,2) was always equal to Co of 

aL=lo feet 
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Figure 11 .-Comparison between analytical and numerical solutions for 
dispersion in one-dimensional, steady-state flow. c 
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equation 68. In the analysis of one-dimen- 
sional test problems, it was assumed that 
porosity equals 0.35, velocity equals 3.0X lO-4 
ft/s (9.lXlO-5 m/s), and time equals 10.0 
days. 

As shown in figure 11, comparisons be- 
tween the analytical and numerical solutions 
were made for two different values of dis- 
persivity. For the higher dispersion there 
was essentially an exact agreement between 
the two curves. In the case of low dispersion, 
there is a very small difference at some nodes 
between the concentrations computed analyt- 
ically and those computed numerically. This 
difference is caused primarily by the error in 
computing the concentration at a node as the 
arithmetic average of the concentrations of 
all particles located in that cell. This is not 
considered to be a serious problem since this 
error is not cumulative. Also note in the case 
of low dispersion that the grid spacing (10 
ft or 3.05 m) was coarse relative to the 
width of the breakthrough curve between 
concentrations of 0.05 and 0.95. Neverthe- 
less, the numerical model still accurately 
computed the shape and position of the front. 

In computing the numerical solutions 
shown in figure 11 the program was executed 
using nine particles per cell and with 
CELDIS= 0.50 (7 in equations 54-55). The 
IO-day simulation required 52 time incre- 
ments and used about 40 seconds of cpu on 
a Honeywell SO/68 computer. 

An analytical solution is also available for 
the problem of plane radial flow in which a 
well continuously injects a tracer at constant 
rate q,,, and constant concentration C,. Bear 
(1972, p. 638) indicates that the following 
equation is appropriate for this problem (al- 
though there are some limitations discussed 
by Bear) : 

x=&c{ ;!?!& ) 
co 2 

(69) 

where 

G 

r 

Qw z-s vf.; 
2mb 

is the radial distance from 
the center of the well, 
L; and 

T= (2Gt) s is the average radius of the 
body of injected water, 
L. 

Again, the general computer program had 
;o be somewhat modified to permit a suit- 
able comparison to be made between the 
analytical solution and the numerical model. 
3ne change involved the direct calculation of 
velocity at any point based on its distance 
from the well using the following equation : 

JL!!L. 
27rr& 

(70) 

The other significant change was made in 
subroutine GENPT to allow the initial place- 
ment of 16 particles per cell, rather than the 
present maximum of 9. In the analysis of 
test problems for radial flow, it was assumed 
that porosity equals 0.35, the injection rate 
(a,,,) equals 1.0 ft3/s (0.028 m?/s) , saturated 
thickness equals 10.0 ft (3.05 m) , and longi- 
tudinal dispersivity equals 10.0 ft (3.05 m) . 

The application of the method of character- 
istics, which was written for two-dimen- 
sional Cartesian coordinates, to a problem 
involving radially symmetric divergent flow 
represents a severe test of the model. Never- 
theless, it can be seen in figure 12 that there 
is good agreement between the analytical and 
numerical solutions after both relatively 
short and long times. However, the presence 
of some numerical dispersion is evident, par- 
ticularly for the longer time. The numerical 
dispersion is introduced in part during the 
regeneration of particles after the number of 
cells void of particles has exceeded the criti- 
cal number. The geometry of initial particle 
placement minimized this problem in cells 
that lay in the same row or column of the 
grid as the injection well. The circles in fig- 
ure 12, which indicate concentration values 
computed at these nodes, agree closely with 
the analytical solution. The greatest errors 
occur at nodes on radii from the injection 
well that are neither parallel to nor 45” from 
the main axes of the grid. These results in- 
dicate that this Cartesian coordinate model 
is not best suited for application to purely 
radial flow problems. However, if radially 
divergent flow is limited to areas of several 
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Figure 12.-Comparison between analytical and numerical solutions for dispersion in plane radial steady-state flow. 

rows and columns within a more uniform 
regional flow field, the model will accurately 
compute concentration distributions. To ap- 
ply the method of characteristics to a prob- 
lem of plane radial flow, it would be best to 
rewrite the program in a system of radial 
coordinates, which should improve the ac- 
curacy for those problems to the same order 
shown in figure 11 for the analysis of one- 
dimensional flow. 

Mass balance tests 

The accuracy and precision of the numeri- 
cal solution can also be partly evaluated by 
computing the magnitude of the error in the 
mass balance. The mass balance error will 
depend on the nature of the problem and will 
vary from one time step to the next. During 
the development of the program, the model 
was applied to a variety of hypothetical 
solute-transport problems to assure its flexi- 

bility, transferability, and accuracy under a 
wide range of conditions. To illustrate the 
range in mass balance errors that might be 
expected and some of the factors that affect 
it, several of these problems are presented 
here. 

lest problem l-spreading of a tracer slug 

The first test described here was designed 
to evaluate the accuracy of simulating the 
processes of convective transport and disper- 
sion independent of the effects of chemical 
sources. Thus, a slug of tracer was initially 
placed in four cells of a grid whose boundary 
conditions generated a steady-state flow field 
that was moderately divergent in some places 
and moderately convergent in other places, 
as illustrated in figure 13. The aquifer was 
assumed to be homogeneous and isotropic. 
Because flow was assumed to be in steady 
state, the storage coefficient was set equal to 
0.0. The parameters used to define problem c 
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EXPLANATION 

m No-flow boundary 

Constant- head boundary 

1+‘+1 
Initial concentration (Co) equals 

100: elsewhere Co=0 

-9O- Computed potenticmetric altitude. 
Contour interval 2.0 feet 
(0.61 meter) 

AX= 900 feet (274 meters) 

Au= 900 feet (274 meters) 

Figure 13.-Grid, boundary conditions, and flow field for test problem 1. 

1 are listed in table 2. The slug of known 
mass was then allowed to spread down- 
gradient for a period of 2.0 years. 

Table P.-Model parameters for test problem 1 

Aquifer properties Numerical Darametera 

Kz0.006 ft/s Ax=!?00 ft 
(1.6xlO-3 m/s) (274 m) 

bz20.0 ft Ay=SOO ft 
(6.1 m) (274 m) 

szo.0 CELDISz0.49 
ez0.30 NPTPND=S 

ar/aL=0.30 

The model first computed a steady-state 
head distribution, shown in figure 13, and 
velocity field. The model required 12 time 
increments (or particle movements) to simu- 
late a 2.0-year period. The model was run to 
simulate conditions of no dispersion (aL = 0.0 
ft) as well as moderate dispersion (aL = 100 
ft or 30.6 m). The mass balance error com- 
puted using equation 64 is shown in figure 

14 for both conditions. In these tests the 
error averages 1.9 percent and is always 
within a range of +8 percent. Much of the 
error is related to the calculation of nodal 
concentrations based on the arithmetic mean 
of particle concentrations in each cell. When 
a particle moves across a cell boundary, its 
area of influence shifts entirely from the first 
node to the second. Thus, depending on the 
local density of points and local concentra- 
tion gradients, the use of an arithmetic mean 
to compute nodal concentrations may give 
too much weight to some particles and too 
little weight to others. The use of a weighted 
mean, in which the weighting factor is a 
function of the distance between a node and 
a particle, reduced the error to some degree. 
But the improvement in precision was small 
compared with the increase in computational 
requirements, so this algorithm was not in- 
cluded in the general program. Because the 
error caused by using an arithmetic mean is 
not cumulative, it is not considered a serious 
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Figure 14.-Mass balance errors for test problem 1. 

EXPLANATION 

m 
No-f low boundary 

m Constant -head boundary 

8 Injection well 

@ Withdrawal well 

-9O- Computed potentiometric altitude. 
Contour interval 2.0 feet 
(0.61 meter) 

A X= 900 feet (274 meters) 

L\y= 900 feet (274 meters) 

Figure lli.-Grid, boundary conditions, and flow field for test problem 2. 
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problem. Furthermore, figure 14 shows that 
the error decreases for a higher dispersivity 
because dispersion smooths out sharp 
fronts and minimizes strong concentration 
gradients. 

Test problem 2-effects of wells 

The second problem was designed to eval- 
uate the application of the model to prob- 
lems in which the flow field is strongly in- 
fluenced by wells. The grid and boundary 
conditions used to define this problem are 
illustrated in figure 1.5. The problem con- 
sists of one injection well and one with- 
drawal well, whose effects are superimposed 
on a regional flow field controlled by two 
constant-head boundaries. The parameters 
for problem 2 are defmed in table 3. The 
aquifer was also assumed to be homogeneous 
and isotropic. The model simulated a period 
of 2.4 years and assumed steady-state t-low. 

The model required 18 time increments 
(or particle movements) to simulate a 2.4- 
year period of solute transport. Problem 2 
was also evaluated for conditions of no dis- 
persion (,,=O.O ft) as well as moderate dis- 
persion (at= 100 ft or 30.5 m) . The mass bal- 
ance error was computed using equation 62 
and is shown in figure 16 for both conditions. 
The average of the 36 values shown in figure 
16 is -0.06 percent ; the error always falls 
within the range of 2-8 percent. It can be 

Table 3.-Model parameters for test problems 2 and 3 

Aquifer properties 
and stresses Numerical parameters 

Kz0.005 ft/s Ax=900 ft 
(1.5x1O-s m/s) (274 m) 

bz20.0 ft Ay =QOO ft 
(6.1 m) (274 m) 

s=o.o CELDIS ~0.50 
ez0.30 NPTPNDz9 

ar/aL=0.30 
c’=lOO.O 
CGO.0 
qwz1.0 fV/s 

(0.028 ma/s) 

seen that in this case the errors are essen- 
tially coincident for almost 1 year, after 
which the error appears to be dependent on 
the magnitude of dispersion. However, the 
model output showed that when aL= 100 ft 
(30.5 m) , the leading edge of the break- 
through curve (or chemical front) reaches 
the constant-head sink just prior to 1.0 year. 
When aL= 0.0 ft, the leading edge of the 
breakthrough curve still had not entered the 
constant-head sink after 2.4 years. Because 
the two curves in figure 16 are essentially 
coincident prior to 1.0 year, it thus appears 
that the divergence of the two curves is not 
caused directly by the difference in disper- 
sivity. Rather, it is related to the difference 
in arrival times at the hydraulic sinks and is 
a direct effect of the manner in which con- 

TIME, IN YEARS 

Figure 16.-Mass balance errors for test problem 2. 
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centrations are computed at sink nodes and 
(or) the method of estimating the mass of 
solute removed from the aquifer at sink 
nodes during each time increment. 

Test problem 3-effects of user options 
In addition to the input options that con- 

trol the form or frequency of the output, 
there are two execution parameters that 
must be specified by the user and influence 
the accuracy, precision, and efficiency (or 
computational cost) of the solution to a par- 
ticular problem. These execution parameters 
are the initial number of particles per node 
(NPTPND) and the maximum fraction of 
the grid dimensions that particles are al- 
lowed to move (7 in equations 54-55 or 
CELDIS in the program). The third test 
problem was designed to allow an evaluation 
of both of these parameters. As illustrated 

in figure 17, this problem consists of one 
withdrawal well located in a regional flow 
field that is controlled by two constant-head 
boundaries. The contamination sources are 
three central nodes along the upgradient 
constant-head boundary. The model param- 
eters for test problem 3 are the same as for 
test problem 2, as listed in table 3. However, 
f’or test problem 3 solutions were obtained 
using a range in values for CELDIS and 
NPTPND. 

The solution to this problem was found to 
be sensitive to the density of tracer particles 
used in the simulation. Figure 18 shows how 
the error in the mass balance varied with 
time for cases of NPTPND equal to 4, 5, 8, 
and 9. Table 4 lists the execution time and 
the mean and standard deviation of the mass 
balance error for each case. These data clear- 
ly indicate that the accuracy and precision 

EXPLANATION 

m No-flow boundary 

@ Withdrawal well 

-w.O- Computed potantiometric altitude. 
Contour interval 2.5 feet 
(0.75 meter) 

A X= SO0 feet (274 meters) 

Ay = SW feet (274 meters) 

Figure 17.-Grid, boundary conditions, and flow field for test problem 3. 
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EXPLANATION 
- NPTPNO: 4 
O------o NPTPND: 5 
A-- -A NPTPND- 8 
O.......O NPTPND’ 9 

0.0 0.5 1.0 1.5 2.0 2.5 

TIME, IN YEARS 

Figure 18.-Effect of NPTPND on mass balance error for test problem 3; CELDkk0.50 in all cases. 

Table 4.-Effect of NPTPND on accuracy, precision, 
and efficiency of solution to test problem 3 

NPTPND CDU-SH2Xld8 1 

Mass balance error 
(percent) 

Stalldard 
Mean deviation 

4 ____-___ 12.8 1.49 5.33 
5 -------- 14.0 .90 2.29 
8 ________ 17.9 .48 1.53 
9 -------- 19.2 .26 .69 

1 The program was executed on a Honeywell 60/66 computer: 
CELDIS = 0.M). 

of the solution are directly proportional to 
particle density, while the efficiency of the 
solution is inversely related to NPTPND. In 
other words, a better solution will cost more. 
It is important to note that the oscillations 
or scatter shown in figure 18 decrease with 
time and that there is essentially no differ- 
ence among the solutions and among the 
mass balance errors for times greater than 
about 1.6 years. 

Next the effect of CELDIS (or 7) was 
evaluated for test problem 3 by setting 
NPTPND =S and running the model with 

several possible values of CELDIS. Figure 
19 shows how the error in the mass balance 
varied with time for cases of CELDIS equal 
to 0.25, 0.50, 0.75, and 1.00. Table 5 lists the 

Table B.-Effect of CELDIS on accuracy, precision, 
and efficiency of solution to test problem 3 

Masa bdance error 
(percent) 

Standard 
CELDIS CPU-nda 1 Mean derfrtion 

0.25 _________ 34.6 1.50 ii.99 
.50 --------- 19.2 .26 .69 
.75 ------___ 14.4 .56 .69 

1.00 --------- 12.1 .25 1.48 

1 The program was executed on * Honeywell 60/68 computer; 
NPTPND=Q. 

execution time and the mean and standard 
deviation of the mass balance error for each 
case. These data indicate that the relation- 
ship between CELDIS and the mass balance 
error is not as simple and straightforward 
as for NPTPND. It is apparent that the re- 
sults for 0.50, 0.75, and 1.00 are similar, and 
of these, the results for ‘CELDIS= 0.60 ap 
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Figure lg.-Effect of CELDIS on mass balance error for test problem 3; NPTPNDz9 in all cases. 

pear to be the best. However, when CELDIS 
was reduced to 0.25, the error oscillated 
strongly for about 1.5 years before apparent- 
ly converging to a small error within the 
range of the other curves. This oscillation 
occurred because the maximum distance a 
particle could move (25 percent of the grid 
dimensions) was less than the spacing be- 
tween particles (33 percent of the grid di- 
mensions for NPTPND =9). Thus, convec- 
tive transport across the boundaries of cells 
could not be adequately represented for any 
single time step in those parts of the grid 
where the concentration was changing sig- 
nificantly with time. But over two successive 
time increments the error would average out 
to a minimum. As the contaminated area in- 
creases in size over time, the error in com- 
puted concentrations at cells near the front 
(that is, in areas of steep concentration 
gradient) becomes an increasingly smaller 
percentage of the total mass of solute present 
in the aquifer. Hence, the mass balance error 
generally tends to approach a minimal range 
with time for these types of problems. 

The effects of NPTPND and CELDIS on 
the mass balance error are problem depend- 
ent. In problems for which CELDIS is not 

the limiting stability criterion, varying 
CELDIS will have no effect on the solution. 
Because of the possible tradeoff between ac- 
curacy and efficiency, it is recommended 
in general that the model user specify 
NPTPND as 4 or 5 and CELDIS as 0.75 to 
1.0 for runs made during the early stages of 
model calibration when frequent runs are 
made and maximum efficiency is desired. For 
final runs when maximum accuracy is de- 
sired, set NPTPND equal to 9 and CELDIS 
equal to 0.50. 

Possible program modifications 

The program presented here represents a 
basic and general solute-transport model. 
Some program modifications may be desir- 
able or even necessary to allow the model 
to be applied efficiently to a particular field 
problem. Some changes might require only 
minor adjustments, while others might in- 
volve major rewriting of the program. The 
purpose of this section is to discuss some of 
the modifications that might commonly be 
considered, and that might be incorporated 
into the present basic model, rather than us- 
ing an entirely different solution technique. c 
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Coordinate system and boundary conditions 

After the finite-difference grid is designed, 
the first program modification that should be 
made is to modify the array dimensions for 
the specific grid used. This will permit the 
most efficient use of computer storage. The 
array sizes should be set equal to NX, NY, 
and NPMAX, which are specified on Input 
Card 2. The maximum number of particles, 
NPMAX, may be computed from the follow- 
ing equation : 
NPMAX= (NX-2) (NY-2) (NPTPND) 

where 
+ (N,) (NPTPND) +250 (71) 

N, is the number of nodes that repre- 
sent fluid sources, either at wells 
or at constant-head cells. 

The values of NX and NY should be substi- 
tuted for the 20-by-20 arrays contained 
in COMMON statements PRMK, HEDA, 
HEDB, CHMA, CHMC, and DIFUS, and in 
DIMENSION statements on lines C170, 
G200, H140, and 1160. The value of NPMAX 

0 
should replace 3200 in the PART array in 
all the CHMA COMMON statements. 

Although this program is designed for ap- 
plication to two-dimensional area1 flow prob- 
lems, it can be applied directly to two-di- 
mensional cross sections. In this case the x- 
coordinate would replace the y-coordinate. 
Then the user would have to assume and 
specify unit width (THCK array) for Ay 
and substitute hydraulic conductivity for 
transmissivity in data set 3 of attachment‘ 
III. If the problem ,involves transient flow, 
then specific storage (S’,) should be substi- 
tuted for the storage coefficient. Also, if re- 
charge or discharge is to be specified through 
the RECH array (data set 5)) values should 
be divided by the thickness of the layer (Ax) 

to reduce the dimensionality of the stress 
rate to (T-l) rather than (LT-I) as indi- 
cated in the documentation. In applying the 
cross-sectional model to a field problem it is 
important that conditions meet the inherent 
assumption that there exist no significant 
components of flow into or out of the plane 
of the section. Because this assumption 
would probably be impossible to meet in the 

vicinity of a pumping well, the use of the 
REC array (data set 2) should usually be 
limited to representing special or known-flux 
boundary conditions. 

The program can also be applied directly 
and simply to one-dimensional problems. In 
this case one of the dimensions (NX or NY) 
should be reduced to a value of 3, of which 
the outer two are used to represent the no- 
flow boundaries around the one-dimensional 
row or column. 

The most complex type of change would 
involve rewriting the program for applica- 
tion to other than a two-dimensional rectan- 
gular grid. One possibility includes problems 
of flow to or from wells in which radial 
symmetry can be assumed. This would allow 
variables to be expressed in terms of r-z co- 
ordinates. Another possibility is to simulate 
three-dimensional flow in x-y-x coordinates. 
A three-dimensional finite-difference flow 
model is available (Trescott, 1975) and would 
be compatible with the method-of-character- 
istics solution to the solute-transport equa- 
tion. 

It is sometimes convenient to separately 
associate certain parts of the grid or certain 
boundary conditions with corresponding field 
conditions or hydrologic units. The analysis 
of flow patterns and water-quality changes 
may then be aided by performing separate 
mass balances (or budgets) for each char- 
acteristic type of node. The nodal types 
or zones can be conveniently identified 
through the NODEID array. Then the mass 
balance routines in subroutines CNCON and 
(or) OUTPT would have to be modified to 
tally fluxes separately for each NODEID ; for 
an example, see Konikow (1977). Similarly, 
if a coupled stream-aquifer system is being 
considered, a separate subroutine may be 
added to route streamflow downstream and 
progressively account for ground-water 
gains and losses and for tributary inflow or 
diversions. An example of such a modifica- 
tion is discussed by Konikow and Bredehoeft 
(1974). 

For certain types of problems it may be 
desirable to be able to specify a constant- 
concentration boundary condition. The pro- 
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gram could be modified to allow this by using 
a predetermined value or range in values of 
NODEID to identify this type of boundary. 
Then a statement could be added between 
lines G1090 and GllOO to reset the concen- 
tration at the node equal to the constant con- 
centration where this condition is specified. 
The value of the constant concentration can 
be stored in the CNRECH array. Note that 
the mass balance \calculation as presently 
written will not account for the mass of 
solute added or removed at a constant-con- 
centration boundary. 

between the solutions to the flow and solute- a 

Basic equations 
The basic equations that are solved by this 

model were derived under a number of limit- 
ing assumptions. Some of these assumptions 
can be overcome through modificai;ions of the 
basic equations and corresponding changes 
in the program. 

The program assumes that molecular dif- 
fusion is negligible. But if it is necessary to 
consider the process of molecular diffusion in 
a particular problem, the coefficient of hy- 
drodynamic dispersion (O+) can be redefined 
as the sum of the coefficient, of mechanical 
dispersion, which is defined by the right side 
of equation 5, and a coefficient of molecular 
diffusion. The consequent program modifica- 
tion would have to be made only in sub- 
routine VELO (lines E1280-E1680). 

The solute-transport equation can also be 
modified to include the effects of first-order 
chemical reactions, as was done by Robert- 
son (1974). The reaction term could be in- 
cluded in the right side of equation 39. The 
corresponding program modification would 
be required in subroutine CNCON. 

In certain problems the range in concen- 
trations may be so great that the dependence 
of fluid properties, such as density and vis- 
cosity, on the concentration may have to be 
considered because of the dependence of fluid 
flow on variations in fluid properties. In this 
case the flow equation (eq 1) would have to 
be rewritten in terms of fluid pressure, 
rather than hydraulic head, such as equation 
16 of Bredehoeft and Pinder (1973, p. 197). 
Then the program can be modified to iterate 

- transport equations if the change in fluid 
properties at any node exceeds some criterion 
during one time increment. 

The flow equation can also be modified for 
a:pplication to unconfined aquifers in which 
the saturated thickness is a direct function 
of water-table elevation. This would require 
the inclusion of steps in subroutine ITERAT 
to correct the transmissivity for changes in 
saturated thickness. Such a feature is in- 
cluded in the two-dimensional flow model 
documented by Trescott, Pinder, and Larson 
(1976). 

Input and output 

The input and output formats have been 
designed for flexibility of use and general 
compatibility with the analysis of a variety 
of types of flow problems. If any of the for- 
mats are not suitable for use with a par- 
ticular problem, they should be modified ac- 
cordingly. All input formats are described 
in attachment III and contained in sub- 
routine PARLOD in the program. 

It has been assumed that several aquifer 
parameters are constant and uniform in 
space, such as storage coefficient, effective 
porosity, and dispersivity. If any of these are 
known to vary in space, they should be re- 
defined as two-dimensional arrays. Then 
statements to allow these arrays to be read 
into the program should be added to sub- 
routine PARLOD. Similarly, values of leak- 
ante and source concentrations (CNRECH) 
are only read in data set 7, where values can 
be associated only with a limited number of 
unique node identification codes. If the varia- 
tions of these parameters are known on a 
more detailed scale, then they too can be read 
as additional data sets by adding appropriate 
statements to subroutine PARLOD. For ex- 
ample, a typical sequence of statements for 
reading one data set is represented by lines 
B2650-B2750, where the initial water-table 
elevations (data set 8) are read. This se- 
quence of statements can then be replicated 
for reading in a different data set and in- 
serted into subroutine PARLOD: 

c 
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A labeled listing of the input data deck for 
test problem 3 is provided in attachment IV. 
This example illustrates the use of the data 
input formats specified in attachment III and 
shows that only a few data cards are re- 
quired by the model to simulate a relatively 
simple problem. This example will also allow 
the user to verify that his program deck and 
computer yield essentially the same results 
as obtained by the documented program. 
Thus, selected parts of the output for test 
problem 3 are included in attachment V. Not 
all of the printed output from test problem 
3 has been duplicated in attachment III. In- 
stead, it contains only a sufficient selection to 
illustrate the type and form of output pro- 
vided by the model, as well as to allow the 
user to compare his calculated values of cri- 
tical parameters, such as head, velocity, and 
concentration, with the values computed by 
the documented model. 

Conclusions 

The model presented in this report can 
simulate the two-dimensional transport and 
dispersion of a nonreactive solute in either 
steady-state or transient ground-water flow. 
The program is general and flexible in that 
it can be readily and directly applied to a 
wide range of types of problems, as defined 
by aquifer properties, boundary conditions, 
and stresses. However, some program modi- 
fications may be required for application to 
specialized problems or conditions not in- 
cluded in the general model. 

The accuracy of the numerical results can 
be evaluated by comparison with analytical 
solutions only for relatively simple and ideal- 
ized problems ; in these cases there was good 
agreement between the numerical and analy- 
tical results. Mass balance tests also help to 
evaluate the accuracy and precision of the 
model results. The error in the mass balance 
is generally less than 10 percent. The range 
in mass balance errors is commonly the 
greatest during the first few time incre- 
ments, but tends to decrease and stabilize 
with time. For some problems the accuracy 

and precision of the numerical results may 
be sensitive to the initial number of particles 
placed in each cell and to the size of the time 
increments, as determined by the stability 
criteria for the solute-transport equation. 
The results of several numerical experiments 
suggest that the accuracy and precision of 
the results are essentially independent of the 
magnitude of the dispersion coefficient, and 
comparable accuracies are attained for high, 
low, or zero dispersivities. 
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