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Forested Wetlands of the Southeast: Review of Major Characteristics
and Role in Maintaining Water Quality
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School of Forest Resources
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Athens, Georgia 30602

Abstract

Forested wetlands occupying floodplains of major rivers in the Southeast are highly
productive and diverse ecological systems. The wetlands are produced and maintained
by fluvial processes and unique hydrologic regimes consisting of periodic flooding and
subsequent drydown. Fluctuations in soil chemistry and biology resulting from this flood-
ing and drydown provide a broad range of environmental conditions that are important
in determining the role of forested wetlands in maintaining and improving water quality.
The periodic shift between aerobic and anaerobic conditions in floodplain soils in response
to flooding facilitates the assimilation of nutrients and organic matter, hastens the degra-
dation of persistent pesticides, and decreases the bioavailability of heavy metals.

The conservation and management of forested
wetlands are critical concerns of State and Fed-
eral agencies responsible for the Nation’s natural
resources. Problems associated with the multiple
use of forested wetlands and maintenance of
environmental quality are complex, and the infor-
mation needed to assist in solving them is often
lacking or unavailable. The purpose of this report
is to review the pertinent available literature, and
to highlight the principal features of alluvial for-
ested wetlands and the role of these systems in
maintaining water quality.

Characteristics of Forested Wetlands

Bottomland hardwood forests, classified as for-
ested wetlands by Cowardin et al. (1979), occupy
floodplains of major river systems, particularly in
the southeastern United States (Fig. 1). These
highly productive and diverse systems (Conner

and Day 1976; Brown et al. 1979) represent
ecotonal zones between aquatic environments (i.e.,
rivers) and terrestrial uplands (Teskey and Hinck-
ley 1977a). Continuous interactions among the
bottomland hardwood forests, aquatic environ-
ments, and upland terrestrial areas occur through
exchanges of energy, nutrients, and species; con-
sequently these systems function as highly
integrated units (Wharton 1980).

Hydroperiod

The hydroperiod essentially controls bottomland
hardwood forests (Carter et al. 1979; Odum 1979a;
Gosselink et al. 1981). Periodic inundation or
overflow from rivers produces the functional
characteristics (flora, fauna, soils) shown by these
forested wetlands. Timing, frequency, intensity,
and duration of flooding influence the abiotic fac-
tors such as sediment, soils, nutrients, and oxygen
concentration; the abiotic factors in turn

1



Fig. 1. Alluvial forested wetlands of the southeastern
United States (adapted from Kuchler 1964).

determine the biotic responses such as species
composition and diversity and primary production
(Gosselink and Turner 1978; Wharton et al. 1982).
Forested wetlands are considered open systems by
virtue of the periodic inflow and outflow of sedi-
ments and organic matter (Klopatek 1975}.

Fluvial Processes

Floodplains are formed as a result of fluvial
processes associated with the erosional and deposi-
tional patterns of the associated rivers (Leopold
et al. 1964; Bedinger 1981). Floodplains are actu-
ally part of the stream channel during periods of
high flow (Wharton 1970). Lateral accretion or
migration of the meandering channel is the pri-
mary means of floodplain formation, exceeding the
contributions from overbank deposition (Wolman
and Leopold 1957). Most channels are formed dur-
ing high flow and modified at low flow (Keller
1977); major features of channel morphology are
formed during bank-full stages or floods that occur
at 1- to 2-year intervals (Wolman and Miller 1968).
Most floods occur during late winter and early
spring when floodplain forests are dormant. Flood-
plains are not uniformly flat, but are characterized
by elevational changes from the river to the
uplands that are correlated with flood frequency;
the areas of lowest elevation are the sites most fre-
quently flooded. Features of the floodplain formed

during its development by the river are natural
levees, oxbow lakes, sloughs, potholes, and low
ridges (Wharton et al. 1977). The amount of over-
bank deposition of sediments on floodplains is
highly variable and depends on the respective
hydroperiod and suspended sediment load.
Observed rates of vertical accretion range from a
few millimeters per year to more than a meter dur-
ing a single flood event (Brinson et al. 1981b).
Coarse sediments are generally deposited near or
on the natural levee bounding the channel and fine
sediments are deposited in areas farther from the
channel (Carlson and Runnels 1952; Harper 1938;
Jahns 1947). Deposition of sediment is not uniform
across the floodplain, but varies with differences
in flow patterns associated with irregularities on
the floodplain floor.

Flora and Fauna

The flora and fauna of bottomland hardwood
forests are well adapted to the fluctuating hydro-
logic regime. The species composition, abundance,
and distribution of the forest vegetation vary
along a moisture gradient that is based on flood
frequency and duration and the physiological
response of each respective species to flooding and
saturated soil (Teskey and Hinckley 1977b;
Bedinger 1979a, 1979b; McKnight et al. 1981;
Huffman and Forsythe 1981). The more water
tolerant species, such as common baldcypress
(Taxodium distichum) and water tupelo (Nyssa
aquatica), are typical of areas having long
hydroperiods; areas less frequently and less heav-
ily flooded support mixed hardwood stands com-
posed of maple, Acer spp.; elm, Ulmus spp.; ash,
Fraxinus spp.; and oak, Quercus spp. (Cowardin
et al. 1979). Many species of fish and wildlife,
including endangered species (Williams and Dodd
1979), live in these wetland forests and depend on
them for survival (Hubbard 1977; Fredrickson
1979; Clark 1979; Wharton 1980; Wharton et al.
1981; Brinson et al. 1981b).

Valuable Functions

Forested wetlands have many valuable func-
tions, other than that of providing habitat for fish
and wildlife. They are particularly important in the
hydrologic relations of the watershed (Wharton
1970; Goodwin and Niering 1974; Mitsch et al.
1979b). Water is stored on the floodplain during



high flow, thereby reducing the detrimental effects
of floods, and later released during low-flow
periods. Forested wetlands also contribute to
groundwater recharge, particularly to the alluvial
aquifers of the floodplain. Perhaps the greatest
value of bottomland hardwood forests lies in their
function as a buffer and filter system between
man’s urban and agricultural developments and
the aquatic environment (Odum 1978). Concomi-
tantly, forested wetlands serve as greenbelts that
provide an effective hedge against overdevelop-
ment (Odum 1979b). They also provide forest
products (Johnson 1979; MacDonald et al. 1979;
Palmisano 1979; Langdon et al. 1981); areas for
recreation and education; and a unique environ-
ment for scientific research (Wharton 1970; Jahn
1979; Reimold and Hardisky 1979).

Loss of Bottomland Hardwoods

Unfortunately, much bottomland hardwood for-
est has been lost as a result of man’s activities,
and the little that remains is being lost at an
alarming rate (Turner et al. 1981; Table 1). Of the
originally estimated 127 million acres of wetlands
(including both inland and coastal systems) in the
United States (Shaw and Fredine 1956), only 70
million acres remained in the early 1970’s (Good-
win and Niering 1974). The Mississippi Alluvial
Valley, which represents the largest acreage of bot-
tomland hardwood forests in the United States,
originally contained 24 million acres of forested
wetlands; however, only 11.8 million acres
remained in 1937 and only 5.2 million acres in 1978
(MacDonald et al. 1979). Other surveys conducted
on different portions of the Mississippi Alluvial
Valley have shown similar losses (Holder 1971;
Yancy 1969; Frey and Dill 1971; Korte and
Fredrickson 1977; Sternitzke 1976; Forsythe and
Gard 1980). Only 3.9 million acres of bottomland
hardwood forests will remain in the Mississippi
Alluvial Valley in 1995 if land-use patterns remain
unchanged (MacDonald et al. 1979). Although
other forested wetland systems in the Southeast
have not been subjected to such intensive develop-
ment, habitat has nevertheless been lost (Whar-
ton 1970, 1977; Bayless and Smith 1964; Barstow
1971). Many of the remaining unaltered forested
wetlands have the potential for development, but
major land-use changes in the future will be more
difficult and expensive because the most desirable

Table 1. Area (in thousands of acres) of bottom-
land hardwood forest (oak-gum-cypress and
elm-ash-cottonwood categories) in southeastern
United States. Information determined from
U.S. Forest Service forest statistics (mostly
incomplete) from each State, 1940-1983.

Years
State 1940 1950 1960 1970 1980
Va. 968 936 713
N.C. 2,573 3,199 2,678
S.C. 2,279 2,104 2,668 2,233
Ga. 4,421 3,200 3,500
Fla. 6,515 5,461 4,055 3,900
Ala. 2,691 2,374 2,639
Miss. 3,388 3,756 3,636 3,512
La. 6,602 6,507 5,498
Tex. 3,698 2,352 2,574
Ark. 4,455 3,063 2,835
Mo. 1,363 838
Tenn, 922 698 778
Ky. 503 1,038

land has already been converted (Klopatek et al.
1979; Clawson 1979).

Most land lost from the bottomland hardwood
forests in the Southeast has been diverted to
agricultural use, particularly for soybean produc-
tion (Holder 1971; Korte and Fredrickson 1977;
MacDonald et al. 1979); other activities that have
been responsible for substantial losses are chan-
nel alteration (dredging, canalization, and channeli-
zation), mining, bank and shore construction, and
water impoundment (Darnell et al. 1976; Brinson
et al. 19815). Conversion of forested wetlands to
agricultural and other uses has been primarily the
result of federally funded channel and drainage
programs that have reduced the threat of flood-
ing and allowed encroachment onto the floodplains
{Wharton 1970; Holder 1971; Choate 1972; Matt-
son 1975; Bragg and Tatschl 1977; Best et al. 1978;
Fredrickson 1979; Shabman 1980).

Forested Wetlands and Water Quality

Appurtenant to the direct loss of forested wet-
lands through conversion to agricultural lands is



the problem of maintaining water quality of adja-
cent aquatic systems. Agricultural lands are major
contributors of nonpoint source pollutants such as
sediments, fertilizers (nutrients), pesticides, salts,
organic and inorganic materials, and pathogens
(Thronson 1978). The climatological and soil
conditions in the Southeast, particularly in the
Mississippi Alluvial Valley, are conducive to
extensive transport of sediments and agricultural
chemicals into the aquatic environment (Schmitt
and Winger 1980). This susceptibility to sediment
transport, the large amounts of floodplain area in
cultivation, the additional clearing of bottomland
hardwoods for agricultural purposes, and the
proliferation of newly registered pesticides tend to
indicate that degradation of water quality by
agricultural chemicals may become more pro-
nounced in the Southeast in the future.

The environmental fates of agricultural
chemicals depend on land-use practices, climate,
geographic area, and chemical properties of the
compounds. These factors in turn influence the
interrelated processes of application, transport,
attenuation, and accumulation of pesticides
(Schmitt and Winger 1980). Purification processes
or sink mechanisms in aquatic systems involve
pathways that are common to all systems and
generally consist of chemical transformations such
as oxidation, hydrolysis, and photochemical con-
version; biological transformations by microbes,
plants, and animals; and physical processes such
as solubilization, agglomeration, and sedimenta-
tion (Kearney et al. 1969; Benoit 1971; Schlesinger
1979). These same purification processes can be
expected to function in forested wetland
ecosystems; however, the unique characteristics
of fluctuating hydroperiod and periodic drydown,
coupled with the accompanying changes in oxy-
gen content in the soil, add dimensions to nutri-
ent cycling and pollutant removal and degradation
in floodplain swamps that are not present in
upland soils (Yoshida 1975; Leonard et al. 1976).

Wetland soils and sediments degrade or inacti-
vate, or reduce adverse impacts from con-
taminants such as plant nutrients, toxic metals,
and pesticides that drain into aquatic environ-
ments (Gambrell and Patrick 1978). The soil
characteristics of forested wetlands depend on the
hydrologic regime and inputs of organic and inor-
ganic material from upstream and within the flood-
plain (Brown et al. 1979). Floodplain soils typically
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Fig. 2. Characteristics of flooded and nonflooded soils
of alluvial forested wetlands (Eh = redox potential).

have high silt and clay concentrations, which are
contributed through overbank deposition of fine
materials (Patrick 1981). The organic content of
the soil is high, 10-20%, as a result of extensive
leaf and litter contributed by the vegetation and
slow decomposition rates, particularly during flood
periods (Brown et al. 1979). During these inunda-
tions, only a thin layer of soil contains oxygen, the
underlying areas being devoid of it; during periods
of drydown, however, the upper strata of the soil
are aerated and organic materials are oxidized
(Fig. 2). The switching from anaerobic to aerobic
conditions in the soil during the sequence of flood-
ing and drydown plays an important role in
processing and assimilating nutrients, organic
matter, and pollutants in forested wetlands
(Wharton and Brinson 1979).

Flooding also alters the microbial components
of the soil; aerobes are replaced by facultative
anaerobes, which in turn are superseded by



anaerobes. These successive changes follow or are
accompanied by reductions in oxygen concentra-
tion and oxidation-reduction (redox) potential, and
general convergence of both acid and alkaline soils
toward pH 7 (Ponnamperuma 1972; Yoshida 1975;
Gambrell and Patrick 1978). Redox potential is
generally in the range of 400 to 700 mV in aerobic
soils, and —250 to 300 mV in waterlogged soils
(Patrick 1978).

Nutrient Uptake in Forested Wetlands

One of the most important values of forested
wetlands lies in their ability to improve water
quality by filtering or removing nutrients and pol-
lutants from the water (Goodwin and Niering
1974; Wharton 1970; Karr and Schlosser 1978;
Carter et al. 1979; Kadlec and Kadlec 1979; Kibby
1979; Odum 1979a; Lowrance et al. 1984). The
broad floodplains, protracted periods of inunda-
tion, and large capacity for water storage provide
coastal plain streams of the southeastern United
States and lower Mississippi Valley with high
nutrient exchange potentials (Brinson et al. 1983).
Wetland systems are complex, having many stor-
age compartments with different uptake and
release mechanisms (Howard-Williams 1985). For-
ested wetlands, like wetlands in general, tend to
be nutrient sinks (Kitchens et al. 1975), storing
nutrients during spring and early summer and
releasing them in late summer and fall (Kibby
1979). Most of the nutrients deposited on the flood-
plain during inundation are inorganic, and those
released are in the form of organic matter such as
leaf litter. Nitrogen and phosphorus concentra-
tions are significantly reduced in water flowing
through forested wetlands during periods of over-
flow (Kitchens et al. 1975; Mitsch et al. 1979a; van
der Valk et al. 1979; Brinson et al. 1981a), thereby
reducing the total amounts of these nutrients
available to downstream areas. Deposited sedi-
ments in seasonally flooded wetlands provide a
more permanent nutrient storage than vegetative
uptake because most annual vegetative uptake is
returned in the form of easily leached and decom-
posable litter (Johnston et al. 1984).

The fate of nitrogen in wetland soil varies with
the hydrologic regime. Nitrate deposited during
inundation or formed through nitrification
processes is removed from the soil by vegetation
for growth during periods of drydown. In flooded

soils, nitrate nitrogen diffuses downward from the
water column and the thin aerobic (oxidized) layer
into the anaerobic layer (reduced), where faculta-
tive anaerobes denitrify it to nitrous oxide and
molecular nitrogen. Ammonium nitrogen in the
water phase or oxidized layer of soil undergoes
nitrification to nitrate. Ammonia derived from
organic nitrogen in the anaerobic layer diffuses
upward to the oxidized layer, where it is nitrified.
The denitrification of nitrogen in flooded soils is
an important means of removing excess nitrogen
and improving water quality (Engler and Patrick
1974; Engler et al. 1976; Patrick and Reddy 1976;
Gambrell and Patrick 1978; Terry and Tate 1980;
Reddy and Patrick 1984).

Forested wetlands tend to be sinks for phospho-
rus because no mechanisms are available for
release except to downstream areas, and little par-
ticulate matter containing phosphorus is exported
from a swamp during flooding (Brinson 1977;
Mitsch et al. 1979a; Yarbro 1983). Phosphorus
entering the floodplain by way of overflow rapidly
enters the sediments, where it becomes available
for plant uptake. Most of the phosphorus is tied
up in the sediment and vegetation. Cycling from
vegetation occurs primarily when litter falls back
to the sediments, decomposes, and is taken up by
roots (Brinson et al. 1980). Phosphorus and nitro-
gen in litter deposited in the fall are not released
until after the trees begin growing in the spring;
thus wetlands tend to conserve nutrients even
during flooding and while trees are dormant
(Brinson 1977).

Sewage Assimilation

Assimilation by wetlands of organic wastes and
nutrients typical of sewage effluents has been
evaluated primarily in nonalluvial wetlands, such
as hardwood swamps in Florida (Boyt et al. 1976),
cypress wetlands in Florida (Odum et al. 1977), and
freshwater marshes in Louisiana (Turner et al.
1976), Wisconsin (Spangler et al. 1976), and Florida
(Steward and Ornes 1975). One exception was the
assessment of the nutrient-assimilation capacity
of an alluvial swamp in North Carolina by Brin-
son et al. (1981a). Evaluation of weekly additions
of nitrate, ammonium, phosphate, and secondar-
ily treated sewage effluent to separate chambers
installed on the floodplain floor showed that
nitrate disappeared rapidly (probably through



denitrification pathways) and did not accumulate
in the subsurface water. On the other hand, ammo-
nium accumulated in the surface water and, after
a lag, also in the sediment; however, these accumu-
lations were depleted during summer drydown,
probably through nitrification-denitrification
pathways. Nitrogen and ammonium are readily
converted to N, gas through these pathways
{Engler and Patrick 1974; Gambrell et al. 1975).
Bartlett et al. (1979) found that biological denitrifi-
cation in wetland soil reduced 90% of supplemen-
tal nitrate to nitrous oxide and nitrogen gas. Phos-
phorus has no similar escape mechanism (Prentki
et al. 1978), and Brinson et al. (1981a) found that
phosphate accumulated in the sediments and leaf
litter. The only permanent removal of phosphorus
may be through plant harvest or periodic flushing
(Sloey et al. 1978); however, Hill and Sawhney
(1981) showed that the mobility of phosphorus and
its transport to the groundwater increased under
anaerobic conditions.

The potential for forested wetlands to assimilate
nutrients seems high, largely because of their
cyclic inundation and drydown periods; however,
management options for any specific wetland
depend on its hydrologic regime (Sloey et al. 1978).
In addition, the effects of long-term application of
wastewaters to wetlands are unknown; possibly
wetlands are degraded as a result of the accumu-
lation of toxic metals and excessive nutrient
loading.

Pesticides in Forested Wetlands

Pesticides entering aquatic environments from
farms are particularly important to water quality,
since they may be acutely toxic to aquatic organ-
isms (Bingham 1969; Ferguson 1967; Young and
Nicholson 1951) or may persist for extended
periods in sublethal concentrations and elicit
chronic response or bioaccumulate in the biota
(Ferguson et al. 1967; Willis et al. 1976; Cotton and
Herring 1974). Recognition that toxic substances
can enter ecological cycles (Woodwell 1967) and
produce undesirable environmental consequences
(Keith 1966; Nicholson 1969) has increased concern
and interest in the environmental fate of toxic
materials such as pesticides (Paris et al. 1975). The
roles of forested wetlands in the distribution,
degradation, and cycling of toxic material are
largely unknown, but wetlands may have signifi-

cant potential for decreasing toxic materials trans-
ported through a river system, due to the unique
features attributable to their periodic inundation
and drydown.

Pesticides are transported from agricultural
land to aquatic environments through overland
flow in solution, either as particulated pesticide
crystals or as amorphous material bound to eroded
soil particles or solubilized in humic material
(Leonard et al. 1976). Pesticides in solution may
also be adsorbed to associated suspended sediment
during runoff {Pionke and Chesters 1973). Most
contaminants in water are adsorbed to particulate
matter, which tends to sink and accumulate in the
bottom material (Edwards 1977). The association
of pesticides with sediment is related to particle
size and organic content of the sediment (Richard-
son and Epstein 1971; Sharom et al. 1980).
Consequently, the amount of pesticide passing
over or settling on the floodplain during overflow
is directly correlated with the amount and type of
suspended organic and inorganic material in the
water, topographic relief, and water velocity

_ (Ragsdale and Shure 1973; Brisbin et al. 1974).

During periods of flooding, large quantities of sedi-
ment are sometimes deposited on the floodplain
(Brinson et al. 19815), thereby improving water
quality by reducing the loads of sediment and
associated contaminants in streams (Wharton
1970; Richardson and Epstein 1971). For example,
Asmussen et al. (1977) found that 70% of the pes-
ticide and 94% of the sediment in runoff were
removed during overflow through a vegetated
waterway.

The effectiveness of sediments as sorbents is
influenced by the amount of organic material pres-
ent; organic sediments tend to adsorb many
pesticides more strongly than mineral sediments
(Pionke and Chesters 1973). Humic and fulvic
acids in soil and water are important carriers of
some pesticides and have the potential for promot-
ing biological and nonbiological degradation of
many pesticides (Khan 1980; Liu et al. 1983). Silt
and clays are generally better sorbents than are
sand fractions (Karickhoff et al. 1979). In general,
cationic pesticides are adsorbed onto clay and
organic colloids by ion exchange, acidic pesticides
are weakly adsorbed to particulate matter, and
basic pesticides are physically adsorbed to neutral
soil; nonionic pesticide attachments depend on the
physical chemistry of the respective compounds



Table 2. Percent degradation of organochlorine insecticides in soils under aerobic and anaerobic con-
ditions and anaerobic conditions amended with organic matter.

Condition
Compound Anaerobic plus
and time (weeks) Aerobic Anaerobic organic matter Reference
DDT
520 95 Edwards 1964
72 20 Edwards 1966
7 65 90 Farmer et al. 1974
5 23 50 97 Ko and Lockwood 1968
7 71 95 Spencer et al. 1974
12 15 83 99 Guenzi and Beard 1968
22 30 5 86 Guenzi et al. 1971
Aldrin
156 95 Edwards 964
52 74 Edwards 1966
6 95 Hill and McCarty 1967
Dieldrin
416 95 Edwards 1964
52 25 Edwards 1966
7 6 Hill and McCarty 1967
20 20 30 18 Guenzi et al. 1971
Endrin
22 23 42 56 Guenzi et al. 1971
Lindane
338 95 Edwards 1964
52 40 Edwards 1966
22 46 70 T2 Guenzi et al. 1971
9 95 Raghu and McCrae 1966
2 0 63 Yoshida and Castro 1970
2 80 Hill and McCarty 1967
Heptachlor
182 95 Edwards 1964
52 55 Edwards 1966
22 56 88 95 Guenzi et al. 1971
38 Hill and McCarty 1967
Toxaphene
6 0 98 Parr and Smith 1976

(Weber 1972). Desorption of pesticides from sedi-
ment is slow or does not occur, and adsorption of
pesticides by sediment can reduce concentrations
in aquatic biota (through competition for the pes-
ticide), enhance degradation rates, and reduce
bioactivity (Pionke and Chesters 1973).
Organochlorines are persistent in the environ-
ment and present more serious residue problems
than do other pesticides, because they are nonpo-
lar (immobile) and resist chemical and biological
degradation under normal conditions (Fries 1972;
Pionke and Chesters 1973). However, Hill and

McCarty (1967) have shown that many pesticides
degrade more quickly under biologically active
anaerobic conditions than under aerobic condi-
tions. Persistence of organochlorines is generally
considered to be longer under aerobic than under
anaerobic soil conditions (Table 2). Flooding soils
may be an effective means of reducing certain
organochlorines such as DDT (Kearney et al. 1969;
Fries 1972; Farmer et al. 1974). In aerobic soils,
DDT is relatively stable and only slowly converted
to the less toxic metabolite DDD (Guenzi and
Beard 1967, 1968; Castro and Yoshida 1971;



Spencer et al. 1974). The conversion of DDT to
DDD appears to be a reductive dechlorination
process that is inhibited by oxygen (Fries 1972).

Not all organochlorine pesticides are degraded
faster under anaerobic than under aerobic condi-
tions. For example, Guenzi et al. (1971) reported
that degradation of DDD and dieldrin was slower
under anaerobic conditions, and Castro and
Yoshida (1971) found that aldrin was more persis-
tent in flooded (anaerobic) soil than in upland soil
(chlordane and dieldrin were persistent under both
soil conditions).

Organophosphate insecticides, although gener-
ally less persistent than the organochlorines
(Pionke and Chesters 1973), also degrade rapidly
under anaerobic conditions (Lichtenstein and
Schulz 1964). Siddaramappa et al. (1973) showed
that microbes degrade parathion in flooded soils,
and Wahid et al. (1980) demonstrated that 56% of
the parathion applied to flooded soil was degraded
after only 5 s and 88% after 30 min. Diazinon per-
sisted for 15 days in flooded soil that had been
previously exposed to it (Sethunathan 1972).

Most herbicides are relatively short-lived and
generally do not present long-lasting environmen-
tal problems (Frank 1972). Helling (1976) showed
that many denitroaniline herbicides were lost more
quickly from reduced soils (flooded) than from
more oxidized soils, but Camper et al. (1980)
reported that compounds such as profluralin and
trifluralin were degraded at about equal rates
under all conditions; and Thomas and Holt (1980)
found that molinate (carbamate herbicide) was
degraded faster under aerobic than under flooded
(anaerobic) conditions. They noted also that, once
the flooded soil dried, molinate degraded at the
same rate as in nonflooded soil.

Under anaerobic conditions, persistent pesti-
cides are believed to be degraded by facultative
and obligate anaerobes inhabiting the soil (Fries
1972; Leonard et al. 1976). Evidence that microbes
are important in the degradation of the organo-
chlorine insecticides stems from the general lag
period between the time of application and the
time when significant rates of degradation occur
(Hague and Freed 1974), and from the absence of
degradation in sterilized soils (MacRae et al. 1967).
The lag is considered to be the time required for
the microbial populations to increase in abundance
or for suitable enzymes to be inducted. In addition,
the need for organic matter as an energy source

in the degradation of pesticides supports the other
evidence that microbes play an important role (Ko
and Lockwood 1968; Guenzi and Beard 1968;
Guenzi et al. 1971; Farmer et al. 1974).
Microbes seemingly degrade many chemicals
without depending on them for energy or
nutrients. The microorganisms can grow on
another substrate such as organic matter while
performing the transformation enzymatically by
cometabolism (Alexander 1981). Soil microorgan-
isms use many classes of pesticides as a sole or
partial source of energy (Leonard et al. 1976).
Microbes, for example, effectively degrade herbi-
cides by using the carbon of the compounds for
an energy source (Audus 1960); however, many of
the organochlorine insecticides are cometabolized
{and thus are not used as an energy source).
Factors other than the absence of oxygen may
be involved in anaerobic degradation. Wahid and
Sethunathan (1979) indicated that the reduced
components from flooded soil (such as H,S) may
be partly responsible for the breakdown of some
pesticides. In addition, Fe** and Mn** formed
under anaerobic conditions may complex and
stabilize negatively charged and acidic organic
pesticides (Pionke and Chesters 1973). Lowering
of the redox potential may also be an important
consideration. For example, Willis et al. (1974)
found that trifluralin did not begin to degrade until
the redox potential was between 150 and 50 mV,
and Guenzi et al. (1971) wrote that the amount of
some pesticides was reduced substantially when
the redox potential was reduced to about 250 mV.
Similarly, Parr and Smith (1976) detected no
degradation of toxaphene in an aerobic environ-
ment, whereas under anaerobic conditions it was
degraded microbially when the redox potential
ranged between 0 and —100 mV. However, the
influence of oxidation-reduction conditions on
degradation rates of pesticides is compound
specific (Gambrell et al. 1984a, 19845).
Fluctuations between aerobic and anaerobic con-
ditions typically shown by alluvial forested wet-
lands provide a broad range of physical, chemical,
and biological conditions conducive to pesticide
degradation. Degradation that is inhibited or
retarded under either aerobic or anaerobic condi-
tions may resume when the opposite condition
occurs. Diazinon, for example, is hydrolized
microbially in both aerobic and anaerobic environ-
ments, but at a faster rate anaerobically, and



hydrolysis products accumulated under flooded
conditions are readily mineralized in unflooded soil
(Sethunathan 1972). Similarly, dechlorination of
toxaphene begins under anaerobic conditions, and
the less chlorinated products are further degraded
when the environment becomes aerobic (Clark and
Matsumura 1979).

Metals in Forested Wetlands

Wetland sediments—reduced sediments in
particular—are effective sinks for most metal con-
taminants. Most metals in soil solution are weakly
adsorbed to mineral or organic colloids through ion
exchange. The availability of some metals, as
influenced by oxidation intensity, depends on
several factors—e.g., metal precipitation in the
form of insoluble sulfides in the reducing environ-
ment, metal coprecipitation or adsorption with
hydrous oxides of iron and manganese in the
oxidizing environment, and complexation with
insoluble humic material (Gambrell and Patrick
1978). Radionuclides seemingly follow the same
mechanisms and pathways followed by metals
{(Boto and Patrick 1979; McHenry and Ritchie
1975). The formation of H,S under reducing
(anaerobic) conditions results in the formation of
insoluble metal sulfide precipitates, and thus limits
the mobility and bioavailability of certain metals
(Engler and Patrick 1975; Gambrell and Patrick
1978; Jackson 1978). During drydown and a shift
to oxidizing (nonflooded) conditions, however,
metal sulfides become considerably less stable and
may become more soluble (Engler and Patrick
1975; Gambrell and Patrick 1978). For example,
Reddy and Patrick (1977) found that cadmium
uptake by rice increased when the redox potential
increased from a strongly reduced condition (—200
mV) to a moderately oxidized condition (400 mV).

The ferrous (Fe**) and manganous (Mn™*+)
forms that predominate in reduced soils are solu-
ble and available to certain biota (e.g., some
Oligochaeta and Chironomidae); however, the fer-
ric (Fet*++) and manganic (Mn**+*) forms that
predominate under oxidized conditions are more
stable and therefore less available for uptake. The
stability of hydrous oxides of iron and manganese
decreases under reduced conditions, and adsorbed
or coprecipitated metals are released. However,
complexation with insoluble organics or formation
of sulfide precipitates tends to immobilize metals

released by the dissolution of the hydrous oxides
under flooded conditions (Gambrell and Patrick
1978).

Large amounts of organic matter in floodplain
soils can complex with metals and essentially
immobilize them. Hunt and Lee (1976) found that
98% of the heavy metals were removed during
overland flcw, primarily by the surface organic
layer; however, the oxidation of organic matter
tends to decrease the stability of associated
metals, and thus increases their bioavailability
(Gambrell and Patrick 1978). Miller et al. (1975)
found that sediments with highly organic
materials—particularly humic acids—complex
with mercury and release little elemental mercury.

Water passing through swamps tends to take up
high concentrations of organic material (on the order
of 100 ppm). Organic matter from the floodplain soil
and leaf leachates complexes with metals and thus
contributes to their mobilization and transport. Beck
et al. (1974) found that metals and organic matter
are flushed out of swamp systems in high concentra-
tions; however, the fate of the metals associated with
the organic matter in river systems is essentially
unknown. They probably are deposited downstream
or taken up by algae and vascular plants. Rodgers
et al. (1978} found that metals discharged from a fos-
sil fuel power plant into an ash basin system were
removed from water by adsorption to the sediments
and through uptake by the duckweed Lemna per
pusilla; concentrations of metals were about 10 times
higher in the duckweed and sediments than in the
water. Miller et al. (1975) determined that mercury
in water was rapidly and strongly adsorbed to sedi-
ments, and Jackson (1978) found that algal blooms
were effective in concentrating heavy metals that
were later released to the sediments when the algae
died and sank to the bottom. Although metals
removed from the water or sediment by plants may
become available for transfer along food chains
{Kadlec and Kadlec 1979; Kibby 1979), they tend to
be accumulated less by plants than by consumer
organisms (Guthrie and Cherry 1976).

Importance of the
Relation of Forested Wetlands
to Water Quality

The role of forested wetlands in improving water
quality through deposition of sediments, assimi-
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lation of nutrients and organic matter, degrada-
tion of pesticides, and storing of heavy metals
should surely be considered when evaluating the
functional values and benefits attributed to these
important resources. Management should strive
to maintain and retain the physical, chemical, and
biological characteristics of these systems that are
integral to their viable functioning. Many of these
characteristics would be protected if normal hydro-
logic regimes that allow periodic overflow of the
floodplain were preserved and maintained.
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