LEVEL II SCOUR ANALYSIS FOR BRIDGE 5 (STOCTH00360005) on TOWN HIGHWAY 36, crossing STONY BROOK, STOCKBRIDGE, VERMONT

Open-File Report 98-XXX

Prepared in cooperation with
VERMONT AGENCY OF TRANSPORTATION
and
FEDERAL HIGHWAY ADMINISTRATION

U.S. Department of the Interior U.S. Geological Survey

LEVEL II SCOUR ANALYSIS FOR BRIDGE 5 (STOCTH00360005) on TOWN HIGHWAY 36, crossing STONY BROOK, STOCKBRIDGE, VERMONT

By LORA K. STRIKER AND MATTHEW A. WEBER

U.S. Geological Survey Open-File Report 98-XXX

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Thomas J. Casadevall, Acting Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Branch of Information Services Open-File Reports Unit Box 25286 Denver, CO 80225-0286

CONTENTS

Conversion Factors, Abbreviations, and Vertical Datum	iv
Introduction and Summary of Results	1
Level II summary	7
Description of Bridge	
Description of the Geomorphic Setting.	8
Description of the Channel	8
Hydrology	
Calculated Discharges	
Description of the Water-Surface Profile Model (WSPRO) Analysis	
Cross-Sections Used in WSPRO Analysis	10
Data and Assumptions Used in WSPRO Model	
Bridge Hydraulics Summary Scour Analysis Summary	12
Special Conditions or Assumptions Made in Scour Analysis	
Scour Results	
Riprap Sizing	
Selected References	
Appendices:	
A. WSPRO input file	19
•	
B. WSPRO output file	
C. Bed-material particle-size distribution	
D. Historical data form	
E. Level I data form	
F. Scour computations	44
FIGURES	
1. Map showing location of study area on USGS 1:24,000 scale map	3
2. Map showing location of study area on Vermont Agency of Transportation town	
highway map	
3. Structure STOCTH00360005 viewed from upstream (July 9, 1996)	
4. Downstream channel viewed from structure STOCTH00360005 (July 9, 1996)	
5. Upstream channel viewed from structure STOCTH00360005 (April 12, 1995)	
6. Structure STOCTH00360005 viewed from downstream (April 12, 1995).	(
7. Water-surface profiles for the 100- and 500-year discharges at structure	
STOCTH00360005 on Town Highway 36, crossing Stony Brook, Stockbridge, Vermont.	15
8. Scour elevations for the 100- and 500-year discharges at structure	1,
STOCTH00360005 on Town Highway 36, crossing Stony Brook,	
Stockbridge, Vermont.	16
TABLES	
1. Remaining footing/pile depth at abutments for the 100-year discharge at structure	
STOCTH00360005 on Town Highway 36, crossing Stony Brook,	
Stockbridge, Vermont	17
2. Remaining footing/pile depth at abutments for the 500-year discharge at structure	1
STOCTH00360005 on Town Highway 36, crossing Stony Brook,	
Stockbridge, Vermont	17

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Slope	
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km
•	Area	•
square mile (mi ²)	2.590	square kilometer (km ²)
•	Volume	•
cubic foot (ft ³)	0.02832	cubic meter (m ³)
	Velocity and Flow	
foot per second (ft/s)	0.3048	meter per second (m/s)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m
cubic foot per second per square mile [(ft ³ /s)/mi ²]	0.01093	cubic meter per second per square kilometer [(m³/s)/km²]

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	Max	maximum
D_{50}	median diameter of bed material	MC	main channel
DS	downstream	RAB	right abutment
elev.	elevation	RABUT	face of right abutment
f/p	flood plain	RB	right bank
f/p ft ²	square feet	ROB	right overbank
ft/ft	feet per foot	RWW	right wingwall
FEMA	Federal Emergency Management Agency	TH	town highway
FHWA	Federal Highway Administration	UB	under bridge
JCT	junction	US	upstream
LAB	left abutment	USGS	United States Geological Survey
LABUT	face of left abutment	VTAOT	Vermont Agency of Transportation
LB	left bank	WSPRO	water-surface profile model
LOB	left overbank	yr	year

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 5 (STOCTH00360005) ON TOWN HIGHWAY 36, CROSSING STONY BROOK, STOCKBRIDGE, VERMONT

By Lora K. Striker and Matthew A. Weber

INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure STOCTH00360005 on Town Highway 36 crossing Stony Brook, Stockbridge, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D.

The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 23.0-mi² drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest on the left and right banks downstream and left bank upstream, while the right bank upstream is pasture with some shrubs and brush.

In the study area, Stony Brook has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 109 ft and an average bank height of 11 ft. The channel bed material is predominantly gravel with a median grain size (D_{50}) of 71.7 mm (0.235 ft). The geomorphic assessment at the time of the Level I site visit on April 12, 1995, and Level II site visit on July 9, 1996, indicated that the reach was stable.

The Town Highway 36 crossing of Stony Brook is a 50-ft-long, one-lane bridge consisting of one 48-foot steel-beam span (Vermont Agency of Transportation, written communication, March 23, 1995). The opening length of the structure parallel to the bridge face is 46.3 ft. The bridge is supported by a vertical, concrete abutment on the left and a vertical, concrete abutment with wingwalls on the right. The channel is skewed approximately 5 degrees to the opening while the opening-skew-to-roadway is 0 degrees.

A scour hole 2.0 ft deeper than the mean thalweg depth was observed during the Level I assessment along the left side of the channel at the downstream bridge face where the flow impacts a bedrock outcrop. Scour protection measures at the site included type-1 stone fill (less than 12 inches diameter) along the right bank upstream and at the upstream and downstream ends of the left abutment, type-2 stone fill (less than 36 inches diameter) at the upstream end of the upstream right wingwall, and type-3 stone fill (less than 48 inches diameter) at the downstream end of the downstream right wingwall. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows ranged from 2.0 to 3.2 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 9.7 to 22.2 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and Davis, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

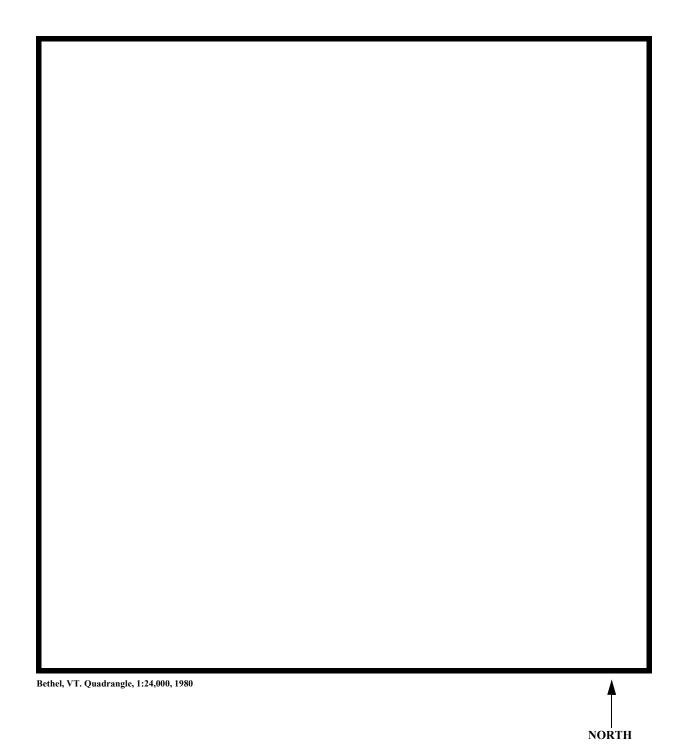
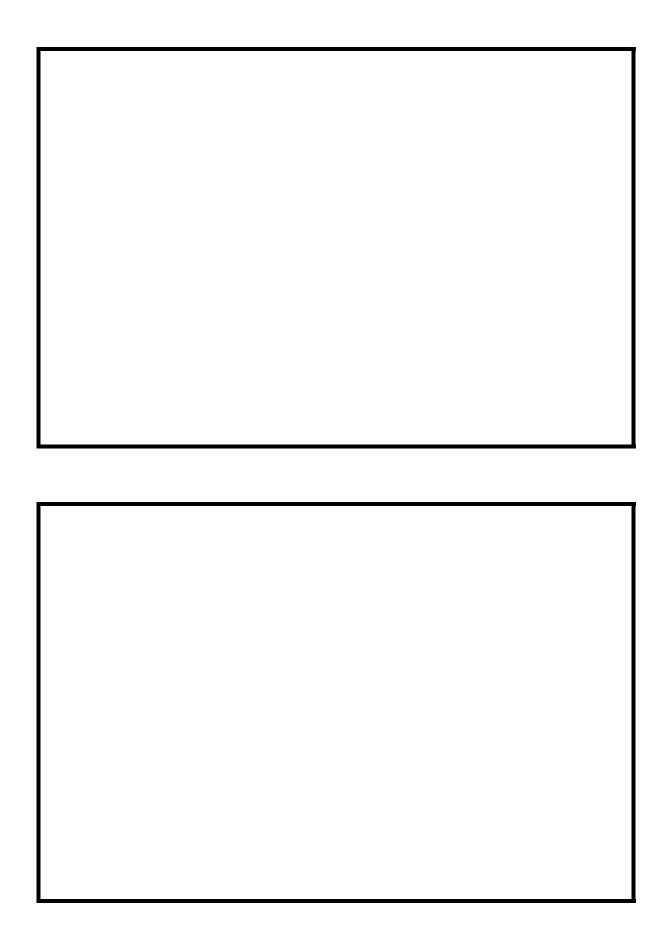



Figure 1. Location of study area on USGS 1:24,000 scale map.

LEVEL II SUMMARY

ructure Number	STOCTH00360005	Stream	Stony B	rook	
unty Windso	Dr	— Road —	TH36	_ District _	4
	Descrip	otion of Bridg	je		
Bridge length	50 ft Bridge wi	18.0		<i>ax span length</i> t; Straight, right	48
Alignment of bi Abutment type	idge to road (on curve or s Vertical, concrete Yes	straight) Embankm	ent type	Sloping 04/12/95	,
Stone fill on abu	Type-1, at the u		ownstream e	nds of the left a	
Type-2, at the up	ostream end of the upstream nt wingwall.	n right wingwa	ll. Type-3, a	t the downstrear	n end of the
	ownstream wingwalls are co		y?	Yes Angle	_5
Debris accumu	lation on bridge at time of				of abanval
	04/12/95	Percent of o blocked not		Percent o block ed v	ertically
Level I	07/09/96	0			0
<i>Level II</i> unstable b	Moderate. The eyond 200 ft upstream.	e upstream banl	ks are heavil	y vegetated and	are
Potential f					
Doscriho anv fo	coutcrop on the left bank a atures near or at the hride lted in a 2.0 ft scour hole, 0	o that may affa			

Description of the Geomorphic Setting

General topo	graphy	The channel is located w	ithin a moderate relief valle	y with a narrow floo
plain.				
Geomorphi	c conditio	ns at bridge site: downstred	am (DS), upstream (US)	
Date of insp	pection	04/12/95		
DS left:	Modera	ately sloping overbank to na	rrow flood plain	
DS right:	Modera	ately sloping overbank		
US left:	Steep cl	hannel bank to an irregular o	overbank	
US right:	Steep c	hannel bank to a narrow floo	od plain	
		Description of	the Channel	
		109		11
Average to	op width	Gravel	Average depth	Gravel
Predominar	nt bed ma		 Bank material	Sinuous but stable
~ vith semi-al	luvial cha	nnel boundaries, local anab		
irregular po			rancining, random variation	iii widdii, and
irregular po	iiit aiiu iai	iciai bais.		0.4/1.0/0.5
Vacatativa a				04/12/95
Vegetative co				
DS left:	Trees a	and brush		
DS right:	Trees a	and brush		
US left:	Trees a	long the immediate banks w	with a pasture overbank	
US right:		Yes		
Do banks a	ıppear sta	ble? - 17 1101, u	escrive ivenion una type o	յ աչասաչ աս
date of obs	ervation.			
			The	assessment of
04/12/95 r Describe and downstream		flow conditions are influence	ced by a bedrock outcrop of observation.	n the left bank

Hydrology

Drainage area $\frac{23.0}{}$ mi ²	
Percentage of drainage area in physiographic p	rovinces: (approximate)
Physiographic province/section New England/Green Mountain	Percent of drainage area
Is drainage area considered rural or urban? None. urbanization:	Rural Describe any significant
Is there a USGS gage on the stream of interest? USGS gage description	<u>No</u>
USGS gage number	
Gage drainage area	- <u> </u>
Is there a lake/p	
4,260	d Discharges 5,750
<i>Q100</i> ft ³ /s The 1	Q500 ft ³ /s 00- and 500-year discharges are based on a
drainage area relationship.[(23.0/23 3)exp 0.67] wonumber 9 crosses Stony Brook downstream of this available from the VTAOT database (written com	with bridge number 9 in Stockbridge. Bridge s site and has flood frequency estimates
above bridge number 9 is 23.3 square miles. These	
several empirical methods (Benson, 1962; Johnson	n and Tasker, 1974; FHWA, 1983; Potter,
1957a&b Talbot, 1887) Each curve was extended	graphically to the 500-year event.

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTAOT	plans)	USGS survey		
Datum tie between USGS survey and VTAOT plans				
Description of reference marks used to determine USGS date		RM1 is a chiseled X on		
top of the curb at the downstream left corner of the bridge dec datum). RM2 is a chiseled X on top of the upstream end of the				
arbitrary survey datum).				

Cross-Sections Used in WSPRO Analysis

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXITX	-46	1	Exit section
FULLV	0	2	Downstream Full-valley section (Templated from EXITX)
BRIDG	0	1	Bridge section
RDWAY	9	1	Road Grade section
APPRO	64	1	Modelled Approach section (as surveyed)

For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analyses reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.045 to 0.055, and overbank "n" values ranged from 0.035 to 0.075.

Normal depth at the exit section (EXITX) was assumed as the starting water surface. This depth was computed by use of the slope-conveyance method outlined in the user's manual for WSPRO (Shearman, 1990). The slope used was 0.0064 ft/ft, which was estimated from points surveyed downstream of the bridge site on July 9, 1996.

The approach section (APPRO) was surveyed one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This location provides a consistent method for determining scour variables.

For the 500-year discharge, WSPRO assumes critical depth at the bridge section. A supercritical model was developed for this discharge. After analyzing both the supercritical and subcritical profiles, it was determined that the water surface profile does pass through critical depth within the bridge opening. Thus, the assumption of critical depth at the bridge is a satisfactory solution.

Bridge Hydraulics Summary

Average bridge embankment elevationft	
Average low steel elevation 496.4 ft	
100-year discharge $\frac{4,260}{\text{Mater-surface elevation in bridge opening}} ft^3/s$	
Road overtopping?No Discharge over road0	ft ³ /s
Area of flow in bridge opening 304 ft ² Average velocity in bridge opening 14.0 ft/s Maximum WSPRO tube velocity at bridge 18.3 ft/s	
Water-surface elevation at Approach section with bridge Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge 1.4 t	491.2
500-year discharge 5,750 ft ³ /s Water-surface elevation in bridge opening 489.4 ft Poad evertoning? No Discharge over road 0	2
Road overtopping?No Discharge over road0 Area of flow in bridge opening361ft^2 Average velocity in bridge opening15.9ft/s Maximum WSPRO tube velocity at bridge21.0/s	j ⁱ³ /s
Water-surface elevation at Approach section with bridge Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge 2.2 [t]	493.4
Incipient overtopping discharge ft ³ /s Water-surface elevation in bridge opening ft	
Area of flow in bridge opening ft ² Average velocity in bridge opening ft/s Maximum WSPRO tube velocity at bridge ft/s	
Water-surface elevation at Approach section with bridge Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge	

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

Contraction scour for the 100- and 500-year discharges was computed by use of the Laursen clear-water contraction scour equation (Richardson and Davis, 1995, p. 32, equation 20). At this site, the 100- and 500-year discharges resulted in free surface flow. The streambed armoring depths computed suggest that armoring will not limit the depth of contraction scour.

Abutment scour was computed by use of the Froehlich equation (Richardson and Davis, 1995, p. 48, equation 28). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Scour Results

Contraction scour:		500-yr discharge cour depths in feet)	Incipient overtopping discharge
Main channel			
Live-bed scour			
Clear-water scour	2.0	3.2	 -
Depth to armoring	35.5	57.3	
Left overbank			
Right overbank			
Local scour:			
Abutment scour	9.7	11.0	
Left abutment	18.9_	22.2-	
Right abutment			
Pier scour			
Pier 1			
Pier 2			
Pier 3			
	Riprap Sizing		
	100-yr discharge		Incipient overtopping discharge
		(D ₅₀ in feet)	S
Abutments:	2.9	3.3	
Left abutment	2.9	3.3	
Right abutment			
Piers:			
Pier 1			
Pier 2			
= *** =			

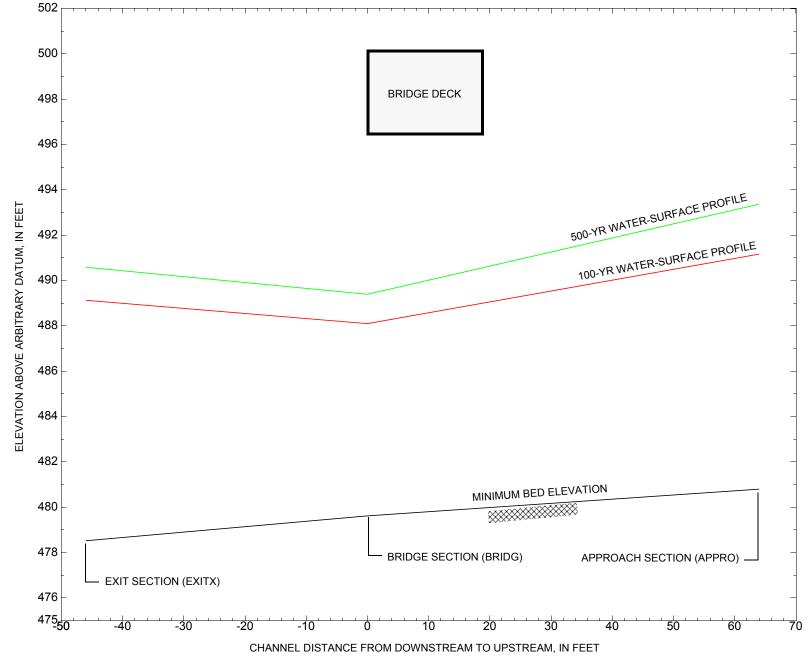


Figure 7. Water-surface profiles for the 100- and 500-yr discharges at structure STOCTH00360005 on Town Highway 36, crossing Stony Brook, Stockbridge, Vermont.

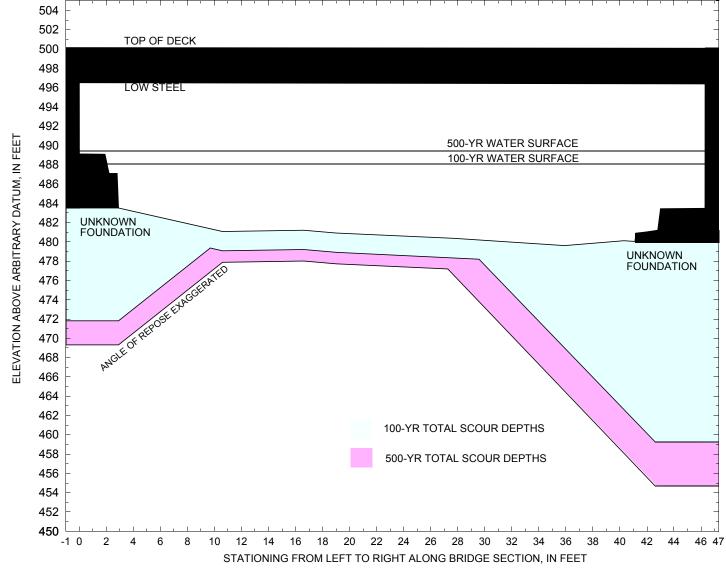


Figure 8. Scour elevations for the 100-yr and 500-yr discharges at structure STOCTH00360005 on Town Highway 36, crossing Stony Brook, Stockbridge, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure STOCTH00360005 on Town Highway 36, crossing Stony Brook, Stockbridge, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing/pile elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				100-yr.	discharge is 4,260) cubic-feet per sec	cond				
Left abutment	0.0		496.5		483.5	2.0	9.7		11.7	471.8	
Right abutment	46.3		496.4		480.0	2.0	18.9		20.9	459.1	

^{1.} Measured along the face of the most constricting side of the bridge.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure STOCTH00360005 on Town Highway 36, crossing Stony Brook, Stockbridge, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing/pile elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
500-yr. discharge is 5,750 cubic-feet per second											
Left abutment	0.0		496.5		483.5	3.2	11.0		14.2	469.3	
Right abutment	46.3		496.4		480.0	3.2	22.2		25.4	454.6	

^{1.}Measured along the face of the most constricting side of the bridge.

^{2.} Arbitrary datum for this study.

^{2.} Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Benson, M. A., 1962, Factors Influencing the Occurrence of Floods in a Humid Region of Diverse Terrain: U.S. Geological Survey Water-Supply Paper 1580-B, 64 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158.
- Federal Highway Administration, 1993, Stream Stability and Scour at Highway Bridges: Participant Workbook: Federal Highway Administration Report FHWA-HI-91-011.
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C.,1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency: U.S. Geological Survey, Bulletin 17B of the Hydrology Subcommittee, 190 p.
- Johnson, C.G. and Tasker, G.D.,1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Department of Transportation, 1993, Stream stability and scour at highway bridges, Participant Workbook: Federal Highway Administration Publication FHWA HI-91-011.
- U.S. Geological Survey, 1980, Bethel, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Scale 1:24,000.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

```
U.S. Geological Survey WSPRO Input File stoc005.wsp
T1
T2
        Hydraulic analysis for structure STOCTHTH00360005 Date: 30-DEC-97
Т3
        TH 36 CROSSING STONY BROOK, 0.3 MILES TO JCT WITH VT 107, LKS
*
         6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3
ιT3
0
          4260.0
                  5750.0
SK
          0.0064 0.0064
*
XS
    EXITX
          -46
         -184.7, 500.63
                        -164.9, 497.31
                                        -151.4, 497.12
GR
                                                      -121.1, 499.28
                                                      -21.5, 491.43
GR
          -97.8, 498.87
                        -45.7, 496.26
                                       -36.3, 494.26
            0.0, 484.21
GR
                         20.2, 480.79
                                        24.1, 480.13
                                                        26.1, 479.05
           29.5, 478.52
                                        49.9, 480.42
GR
                         33.5, 479.01
                                                        53.4, 480.85
                                         96.3, 492.92
GR
           60.4, 481.94
                         66.4, 485.74
                                                      124.3, 493.66
GR
          137.6, 501.56 155.6, 502.86 167.9, 508.06
*
          0.075 0.055
Ν
                                0.055
SA
                 -45.7
                            96.3
*
XS
    FULLV
             0 * * * 0.0171
*
                         XSSKEW
*
           SRD
                  LSEL
BR
    BRIDG
            0 496.44
                           0.0
                        0.2, 489.11
            0.0, 496.51
GR
                                         1.9, 489.08
                                                        2.2, 487.10
                                       10.6, 481.08
            2.8, 487.10
                                                      16.6, 481.21
GR
                          2.9, 483.52
                       27.7, 480.37
GR
           19.0, 480.92
                                        35.9, 479.62
                                                       40.3, 480.12
           41.1, 480.04 41.2, 480.91
                                        42.0, 481.04
                                                       42.8, 481.21
GR
GR
           43.0, 483.44 45.5, 483.48
                                       46.3, 496.38
                                                        0.0, 496.51
        BRTYPE BRWDTH
                         WWANGL
                                   CTWWW
                23.2 * * 35.1 13.9
CD
          1
Ν
          0.045
*
*
*
            SRD
                 EMBWID IPAVE
XR
           9
                 18.0 2
GR
         -261.8, 506.80 -216.2, 502.96 -156.8, 501.18 -75.6, 500.55
GR
            0.0, 500.14 47.4, 500.08 136.5, 501.48
*
*
AS
    APPRO 64
         -103.5, 506.16
                         -81.7, 504.48
                                        -48.7, 499.71
                                                       -22.2, 494.46
GR
                                                        20.0, 482.32
GR
           -3.9, 492.68
                          0.0, 488.53
                                          8.0, 483.52
                         35.6, 481.49
                                         43.3, 481.22
GR
           23.2, 482.07
                                                        49.1, 480.80
           53.5, 481.65
                          54.9, 482.15
                                         63.0, 486.13
                                                        74.5, 491.10
GR
GR
           86.8, 491.13
                         134.9, 497.42
                                         149.4, 500.29
                                                      189.1, 501.17
GR
          211.6, 506.03 224.9, 509.43
          0.065 0.055
                                0.040
                                            0.035
N
SA
           -3.9
                           74.5 149.4
*
HP 1 BRIDG 488.10 1 488.10
HP 2 BRIDG 488.10 * * 4260
HP 1 APPRO 491.17 1 491.17
HP 2 APPRO 491.17 * * 4260
*
HP 1 BRIDG 489.40 1 489.40
HP 2 BRIDG 489.40 * * 5750
HP 1 APPRO 493.37 1 493.37
HP 2 APPRO 493.37 * * 5750
```

APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

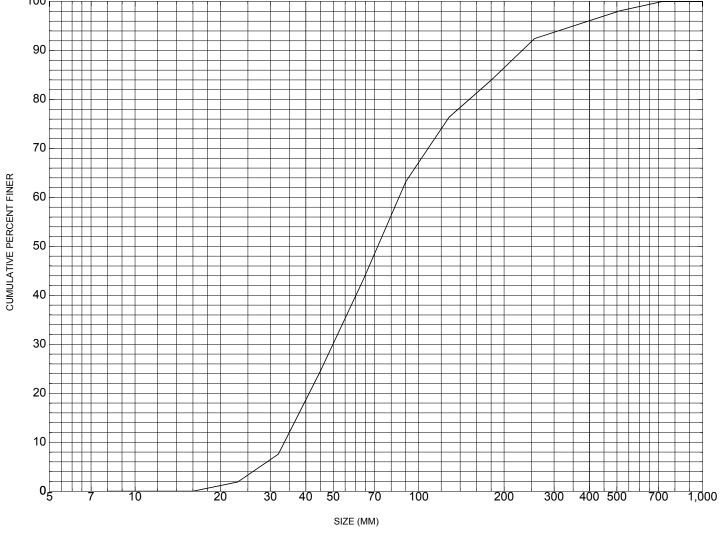
U.S. Geological Survey WSPRO Input File stoc005.wsp Hydraulic analysis for structure STOCTHTH00360005 Date: 30-DEC-97 TH 36 CROSSING STONY BROOK, 0.3 MILES TO JCT WITH VT 107, *** RUN DATE & TIME: 01-05-98 09:16 CROSS-SECTION PROPERTIES: ISEQ = 3; SECID = BRIDG; SRD = K TOPW WETP ALPH WSEL SA# AREA LEW REW OCR 304. 31124. 44. 56. 4540. 488.10 304. 31124. 44. 56. 1.00 4540. HP 2 BRIDG 488.10 * * 4260 VELOCITY DISTRIBUTION: ISEQ = 3; SECID = BRIDG; SRD = REW AREA K Q VEL 45.8 303.6 31124. 4260. 14.03 WSEL LEW 488.10 2.0 9.2 11.1 13.0 14.9 13.1 13.4 12.9 13.0 16.20 15.87 16.47 16.43 X STA. 16.7 35.8 A(I) V(I) 5.94 16.7 18.6 20.4 22.2 23.8 13.0 12.9 13.0 12.6 12.8 16.35 16.50 16.41 16.94 16.70 X STA. A(I) V(T) 27.2 28.9 30.4 31.9 9 12.7 12.4 12.3 12.1 1 16.81 17.24 17.34 17.60 X STA. 12.9 A(T) V(T) 16.54 X STA. A(T) V(I) CROSS-SECTION PROPERTIES: ISEQ = 5; SECID = APPRO; SRD = K TOPW WETP ALPH WSEL SA# AREA LEW REW OCR 2 566. 55710. 77. 82. 8712. 3 1. 4. 13. 13. 1. 567. 55714. 90. 94. 1.00 8082. VELOCITY DISTRIBUTION: ISEQ = 5; SECID = APPRO; SRD = LEW REW AREA K Q VEL -2.5 87.1 566.8 55714. 4260. 7.52 WSEL 491.17 10.0 13.3 16.3 19.2 26.3 25.1 24.8 23.7 8.09 8.48 8.58 8.97 X STA. 10.0 60.1 A(I) V(I) 3.54 24.6 27.1 29.7 32.2 X STA. 21.9 23.4 24.5 23.7 9.09 8.70 9.00 24.7 A(I) V(I) 8.63 8.89 23.7 X STA. 39.6 41.9 23.3 22.9 9.14 9.30 34.7 37.2 44.3 46.5 22.7 9.37 23.5 A(I) V(I) 9.00 9.08 5 48.7 51.0 53.3 56.0 22.3 23.3 22.7 24.9 77.2 9.54 9.14 9.40 8.56 2.76 X STA. 46.5 A(T)

V(T)

WSPRO OUTPUT FILE (continued)

		Hydra TH 36	ulic a	analys SING S	sis fo	strı BROOK,	oture		HTH00:	360005	Da		D-DEC-97 LKS
		SS-SEC	TION 1	PROPE	RTIES:	ISEÇ	2 = 3	; SEC	ID = I	BRIDG;	SRD	=.	0.
	WS	EL SA	#	AREA	3956	K	TOPW	WETP 60. 60.	ALPI	н І	EW	REW	QCR 5764.
	489.	40	_	361.	395	53.	46.	60.	1.0	0	0.	46.	5764.
	VEL	OCITY	DISTR	IBUTIO	ON: IS	SEQ =	3;	SECID =	= BRII	DG; S	SRD =		0.
		WSEL 489.40]	LEW 0.2	REW 45.9	AI 361	REA	K 39563.	5′	Q 750.	VEL 15.92		
	STA. A(I)		0.2	10 0	9.7	1/ 0	11.5	15.0	13.3	15 0	15.1	14 7	16.9
	V(I)			5.76	1	14.6 19.46		15.0 19.19	-	19.22		19.58	
			16.9		18.7		20.5		22.2		23.8		25.5
	A(I) V(I)			15.2		14.9 19.25		14.6 19.65	:	14.6		14.8	
			25.5		27.2		28.8		30.4		31.9		33.4
	A(I) V(I)		-	14.7		14.9 19.29		14.3 20.15		14.5		20.05	
Х	STA.		33.4		34.9		36.3		37.7		39.2		45.9
	A(I) V(I)		:	20.43	:	20.58		13.8 20.78	:	21.01		5.82	
	CRO	SS-SEC	TION 1	PROPE	RTIES:	ISEÇ) = 5	; SEC	ID = A	APPRO;	SRD	=	64.
	WS	EL SA	#	AREA		K	TOPW	WETP	ALPI	н і	LEW	REW	QCR
			2	738.	851	28. 39.	78.	7. 84. 30.					12837.
	493.	37	3	47. 787.	23° 875	78. 14.	29. 115.	30. 121.	1.0	5 -1	11.	104.	336. 11389.
	VEL	OCITY	DISTR	IBUTIO	ON: IS	SEQ =	5;	SECID =	= APPI	RO; S	SRD =	•	54.
		WSEL 493.37	-13	LEW 1.0	REW 103.9	AI 786	REA	K 87544.	5′	Q 750.	VEL 7.31		
X	STA. A(I) V(I)		-11.0	84.9	9.3	35.0 8.22	12.7	34.3 8.37	16.0	32.9 8.73	19.1	32.3 8.90	22.0
Х	STA. A(I) V(I)		22.0	33.5 8.58	24.9	31.7 9.07	27.7	33.1 8.69	30.6	31.9	33.3	32.3 8.91	36.0
	STA. A(I) V(I)		36.0	32.0 8.99	38.7	32.2 8.92	41.4	31.7	44.0	31.3 9.18	46.5	31.1 9.26	49.0
	STA. A(I) V(I)		49.0	31.5 9.13	51.6	32.0 8.98	54.3	36.1 7.96	57.7	42.1 6.82	62.6	104.9 2.74	103.9

WSPRO OUTPUT FILE (continued)


U.S. Geological Survey WSPRO Input File stoc005.wsp Hydraulic analysis for structure STOCTHTH00360005 Date: 30-DEC-97 TH 36 CROSSING STONY BROOK, 0.3 MILES TO JCT WITH VT 107, *** RUN DATE & TIME: 01-05-98 09:16 HF XSID:CODE SRDL LEW AREA VHD EGL CRWS WSEL SRD FLEN REW K ALPH HO ERR FR# VEL -15. 593. 0.80 ***** 489.93 486.23 81. 53248. 1.00 ***** ****** 0.51 4260. 489.13 -46. ***** 46. -13. 543. 0.96 0.33 490.33 ****** 4260. 489
0. 46. 78. 47258. 1.00 0.08 0.00 0.57 7.84
<><<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>> FULLV:FV 64. -1. 462. 1.32 0.59 491.10 ****** 4260. 489 4. 64. 71. 41538. 1.00 0.18 0.00 0.64 9.21 <<<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>> AS 64. 64. 64. <><<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>> XSID:CODE SRDL AREA VHD T.F.W WSEL K ALPH SRD FLEN REW HO ERR FR# VEL 2. 304. 3.06 0.50 491.16 487.81 46. 31137. 1.00 0.73 0.00 0.94 4260. 488.10 BRIDG:BR 46. 14.03 0. 46. C P/A LSEL BLEN XLAB XRAB TYPE PPCD FLOW 1. **** 1. 1.000 ****** 496.44 ***** ***** Q WSEL XSID: CODE SRD FLEN HE VHD EGI. ERR 9. <<<<EMBANKMENT IS NOT OVERTOPPED>>>> RDWAY:RG AREA VHD XSID:CODE SRDL T.EW HF EGT. CRWS 0 WSEL SRD FLEN REW K ALPH HO ERR FR# VEL -2. 567. 0.88 0.46 492.05 487.94 87. 55753. 1.00 0.43 0.01 0.53 41. 4260. 491.17 APPRO:AS 64. 44. 7.51 KQ M(G) M(K) XLKQ XRKQ OTEL 0.371 0.114 49267. 11. 55. <><<END OF BRIDGE COMPUTATIONS>>>> FIRST USER DEFINED TABLE. XSID: CODE SRD EXITX:XS -46. -15. 81. 4260. 53248. 593. 7.18 489.13 -13. 78. 4260. 47258. 543. 7.84 489.38 BRIDG:BR 0. 2. 46. 4260. 31137. 304. 14.03 488.10 9.****** RDWAY:RG 0.******* 2.00****** APPRO:AS 64. -2. 87. 4260. 55753. 567. 7.51 491.17 XSID:CODE XLKQ XRKQ KO 55. 49267. APPRO:AS 11. SECOND USER DEFINED TABLE. XSID: CODE CRWS FR# YMTN YMAX HF HO VHD WSEL EGL 508.06************ 0.80 489.93 489.13 0.51 478.52 EXITX:XS 486.23 508 85 0 33 0 08 FIII.I.V · FV 0 57 479 31 0 96 490 33 489 38 487.81 0.94 479.62 496.51 0.50 0.73 3.06 491.16 488.10 BRIDG: BR APPRO:AS 487.94 0.53 480.80 509.43 0.46 0.43 0.88 492.05 491.17

WSPRO OUTPUT FILE (continued)

U.S. Geological Survey WSPRO Input File stoc005.wsp Hydraulic analysis for structure STOCTHTH00360005 Date: 30-DEC-97 TH 36 CROSSING STONY BROOK, 0.3 MILES TO JCT WITH VT 107, *** RUN DATE & TIME: 01-05-98 09:16 XSID:CODE SRDL SRD FLEN AREA VHD HF K ALPH HO EGL ERR LEW CRWS K ALPH REW FR# VEL -19. 740. 0.94 ***** 491.53 487.41 87. 71845. 1.00 ***** ****** 0.52 5750. 490.59 -46. ***** 46. -17. 684. 1.10 0.33 491.94 ****** 5750. 490 0. 46. 84. 64562. 1.00 0.08 0.00 0.57 8.41 <>>> THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>> FULLV:FV AS 64. -2. 567. 1.61 0.59 492.77 ****** 5750. 491.17 64. 64. 87. 55681. 1.00 0.25 0.00 0.71 10.15
<<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>> ===285 CRITICAL WATER-SURFACE ELEVATION A _ S _ S _ U _ M _ E _ D !!!!!!

SECID "BRIDG" Q,CRWS = 5750. 489.40 <><<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>> XSID:CODE AREA VHD HF CRWS SRDL EGL WSEL LEW ERR НО K ALPH VEL SRD FLEN REW FR# 361. 3.94 **** 493.34 489.40 BRIDG.BR 46 0. 5750 489 40 46. 46. 39563. 1.00 **** ***** 0. 1.00 15.92 TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB 1. **** 1. 1.000 ****** 496.44 ***** ****** XSID: CODE SRD FLEN HF VHD EGL ERR 0 WSEL 9. <<<<EMBANKMENT IS NOT OVERTOPPED>>>> RDWAY:RG LEW XSID:CODE SRDL SRD FLEN нг AREA VHD EGT. CRWS 0 WSEL REW K ALPH HO ERR FR# VEL APPRO:AS 787. 0.87 0.42 494.25 489.15 41. -11. 5750. 493.37 44. 104. 87616. 1.05 0.49 0.01 0.50 KQ XLKQ XRKQ OTEL M(G) M(K) 0.489 0.171 72533. 10. 56. 493.18 <><<END OF BRIDGE COMPUTATIONS>>>> FIRST USER DEFINED TABLE. XSID: CODE SRD LEW REW Q K AREA VEI. 5750. 71845. 7.77 490.59 EXITX:XS -46. -19. 87. 740. 64562. FULLV:FV 0. -17. 84. 5750. 684. 8.41 490.84 46. 0. BRIDG:BR 0. 5750. 39563. 361. 15.92 489.40 9.******* 0.****** 2.00****** RDWAY:RG 64. -11. 104. 5750. 87616. 787. 7.30 493.37 APPRO: AS XSID: CODE XLKQ XRKQ KO 72533. APPRO:AS 10. 56. SECOND USER DEFINED TABLE. XSID: CODE CRWS FR# YMTN YMAX HF HO VHD WSEL EGI. 508.06********* 0.94 491.53 490.59 EXITX:XS 487.41 0.52 478.52 FIII,I,V.FV ****** 508.85 0.33 0.08 1.10 491.94 490.84 0.57 479.31 BRIDG:BR 489.40 1.00 479.62 496.51********* 3.94 493.34 489.40 506.80*************** RDWAY:RG ********** 500.08 APPRO: AS 489.15 0.50 480.80 509.43 0.42 0.49 0.87 494.25 493.37 ER

APPENDIX C: **BED-MATERIAL PARTICLE-SIZE DISTRIBUTION**

Appendix C. Bed material particle-size distribution for a pebble count in the channel approach of structure STOCTH00360005, in Stockbridge, Vermont.

APPENDIX D: HISTORICAL DATA FORM

Structure Number STOCTH00360005

General Location Descriptive

Data collected by (First Initial, Full last name) E. BOEHMLER

Date (MM/DD/YY) __03 / _23 / _95

Highway District Number (I - 2; nn) 04

Town (FIPS place code; I - 4; nnnnn) 70375

Waterway (1 - 6) STONY BROOK

Route Number TH036

Topographic Map Bethel

Latitude (I - 16; nnnn.n) 43457

County (FIPS county code; I - 3; nnn) ____027

Mile marker (*I* - 11; nnn.nnn) <u>000000</u>

Hydrologic Unit Code: 01080105

Longitude (*i* - 17; *nnnnn.n*) 72424

Select Federal Inventory Codes

FHWA Structure Number (1 - 8) __10141900051419

Maintenance responsibility (I - 21; nn) 03 Maximum span length (I - 48; nnnn) 0048

Year built (1 - 27; YYYY) 1992 Structure length (1 - 49; nnnnnn) 000050

Average daily traffic, ADT (I - 29; nnnnnn) 000200 Deck Width (I - 52; nn.n) 180

Year of ADT (*I* - 30; YY) __91 __ Channel & Protection (*I* - 61; n) __7

Opening skew to Roadway (*I* - 34; nn) 00 Waterway adequacy (*I* - 71; n) 8

Operational status (I - 41; X) A Underwater Inspection Frequency (I - 92B; XYY) N

Structure type (I - 43; nnn) 302 Year Reconstructed (I - 106) 0000

Approach span structure type (I - 44; nnn) 000 Clear span (nnn.n ft) -

Number of spans (*I* - 45; nnn) 001 Vertical clearance from streambed (nnn.n ft) 015.0

Number of approach spans (*I - 46; nnnn*) <u>0000</u> Waterway of full opening (*nnn.n ft*²) _____

Comments:

The structural inspection report of 7/14/94 indicates the structure is a single span, steel stringer type bridge with a concrete deck. The abutment walls and wingwalls are concrete and only have minor shrinkage cracks reported. The footings of both abutments are exposed with some undermining noted on the right abutment. The left abutment is doweled or sealed into bedrock, which outcrops at the base of the left abutment footing. The waterway is noted as proceeding straight through the crossing. The streambed consists of stone and gravel. The report mentions that some past undermining below the right abutment footing was corrected with some free poured concrete and steel railroad rails (Continued, page 31).

	Brid	ge Hydr	ologic Da	ata					
Is there hydrologic data available? N if No, type ctrl-n h VTAOT Drainage area (mi²):									
Terrain character:									
Stream character & type: _									
Otana a sala a al sas ata si al									
Streambed material: -					O -				
Discharge Data (cfs): Q _{2.33}									
Record flood date (MM / DD / YY)									
Estimated Discharge (cfs):									
Ice conditions (Heavy, Moderate, L									
The stage increases to maximum highwater elevation (Rapidly, Not rapidly):									
The stream response is (Flashy,	Not flashy):								
Describe any significant site costage: -	nditions up	stream or	downstrea	m that ma	ay influence	the stream's			
olage									
Watershed storage area (in perc	ent): <u></u> %								
The watershed storage area is:			neadwaters; 2	2- uniformly	distributed; 3	3-immediatly upstream			
	oi th	e site)							
Water Surface Elevation Estima	ates for Exi	istina Struc	cture:						
	1	1				1			
Peak discharge frequency	Q _{2.33}	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀				
Water surface elevation (ft))	-	-	-	-	-				
Velocity (ft / sec)	-	-	-	-	-				
						J			
Long term stream bed changes	: -								
Is the roadway overtopped below the Q ₁₀₀ ? (Yes, No, Unknown):U Frequency:									
Relief Elevation (ft): Discharge over roadway at Q ₁₀₀ (ft ³ / sec):									
Are there other structures nearby? (Yes, No, Unknown): If No or Unknown, type ctrl-n os									
Upstream distance (miles): Town: Year Built:									
Highway No. : -									
Clear span (ft): Clear H	eight (#): _	<u>-</u> F	full Waterw	/ay (ft²): <u>-</u>					

Downstream distance (miles): -			
Highway No. : <u>-</u>	Structure No. : -	Structure Type:	
Clear span (ft): - Clear Heigh	ht (#): <u>-</u> Fu	ll Waterway (ft²):	
Comments: Some of the gravel below the downst this, the report does not mention any accumulation at this bridge site.		-	
	USGS Waters	hed Data	
Watershed Hydrographic Data			
Drainage area (DA) 22.96 mi ² Watershed storage (ST) 0			mi ²
Bridge site elevation 700 Main channel length 9.02		vater elevation <u>2625</u> ft	
10% channel length elevation _ Main channel slope (S)140.43		85% channel length elevation	ft
Watershed Precipitation Data			
Average site precipitation	in Avera	ge headwater precipitation	in
Maximum 2yr-24hr precipitation e	event (124,2)	in	
Average seasonal snowfall (Sn)	<u>-</u> ft		

Bridge Plan Data
Are plans available? N
Reference Point (MSL, Arbitrary, Other): Datum (NAD27, NAD83, Other): Foundation Type: _4 (1-Spreadfooting; 2-Pile; 3- Gravity; 4-Unknown) If 1: Footing Thickness Footing bottom elevation: If 2: Pile Type: (1-Wood; 2-Steel or metal; 3-Concrete) Approximate pile driven length: If 3: Footing bottom elevation: Is boring information available? _N If no, type ctrl-n bi
Comments: There are no bridge plans available.

				Cross	-sectio	nal Dat	a				
Is cross-section	onal data	a availab	le? <u>N</u>	If no, t	ype ctrl-n >	xs					
Source (FEMA											
Comments: 7	There is n	o cross-s	ection in	formatio	n availab	ole.					
Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low chord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low chord to bed	-	-	-	-	-	-	-	-	-	-	-
Otation	l	l	1		1		1	l	1	1	
Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low chord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low chord to bed	-	-	-	-	-	-	-	-	-	-	-
Source (FEMA	A, VTAOT,	Other)? _	-								
Comments: 7	There is n	o cross-s	ection in	formatio	n availab	ole.					
	I	ı		1		1		I			ı
Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low chord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low chord to bed	-	-	-	-	-	-	-	-	-	-	-
											l
Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low chord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low chord to bed	-	-		-	-	-	-	-	-	-	-

APPENDIX E:

LEVEL I DATA FORM

Structure Number STOCTH00360005

Qa/Qc Check by: **RB** Date: 10/04/96

Computerized by: RB Date: 10/04/96

LKS Date: <u>1</u>2/29/97 Reviewd by:

	A.	General	Location	Descr	iptive
--	----	---------	----------	--------------	--------

. Data collected by (First Initial, Full last name) M. WEBER	Date (MM/DD/YY) 04	1 /	12	/ 19 95
--	--------------------	-----	----	----------------

Mile marker 00000 2. Highway District Number 04 County Windsor (027)

Town Stockbridge (70375)

Waterway (1 - 6) Stony Brook

Road Name -Hydrologic Unit Code: 01080105

Route Number TH036 3. Descriptive comments:

The bridge is located 0.3 miles from the junction with VT 107.

B. Bridge Deck Observations

- RBDS 6 4. Surface cover... LBUS_6___ RBUS 4 LBDS 6 (2b us,ds,lb,rb: 1- Urban; 2- Suburban; 3- Row crops; 4- Pasture; 5- Shrub- and brushland; 6- Forest; 7- Wetland)
- 5. Ambient water surface... US 2 UB 2 DS 1 (1- pool; 2- riffle)
- 6. Bridge structure type 1 (1- single span; 2- multiple span; 3- single arch; 4- multiple arch; 5- cylindrical culvert; 6- box culvert; or 7- other)
- 7. Bridge length ____ (feet)

Span length 48 (feet) Bridge width 18 (feet)

Road approach to bridge:

8. LB **0** RB **2** (**0** even, **1**- lower, **2**- higher)

9. LB 2 RB 2 (1- Paved, 2- Not paved)

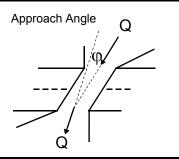
10. Embankment slope (run / rise in feet / foot): US left -- US right --

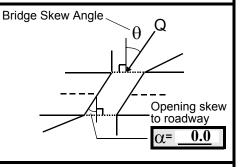
	Pr	otection	40 [1.4 Coverity	
	11.Type	12.Cond.	13.Erosion	14.Severity	
LBUS	1	1	0		
RBUS	2	1	2	1	
RBDS	3	1	0	0	
LBDS	1	1	0	_0	

Bank protection types: **0**- none; **1**- < 12 inches; **2-** < 36 inches; **3-** < 48 inches;

4- < 60 inches; 5- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped;


3- eroded; 4- failed


Erosion: 0 - none: 1- channel erosion: 2road wash; 3- both; 4- other

Erosion Severity: **0** - none: **1**- slight: **2**- moderate: 3- severe

Channel approach to bridge (BF):

15. Angle of approach: 10 16. Bridge skew: 5

17. Channel impact zone 1:

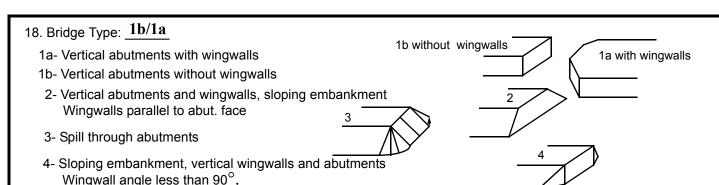
Exist? $\underline{\mathbf{Y}}$ (Y or N)

Where? LB (LB, RB)

Severity 1

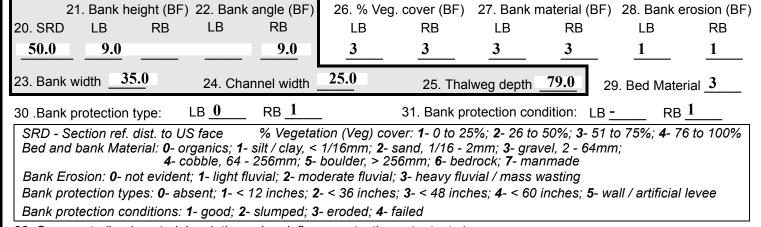
Range? 5 feet UB (US, UB, DS) to 20 feet DS

Channel impact zone 2:


Exist? \mathbf{N} (Y or N)

Where? _-__ (LB, RB)

Severity -


Range? _____ feet ___ (US, UB, DS) to ____ feet ___

Impact Severity: 0- none to very slight; 1- Slight; 2- Moderate; 3- Severe

- 19. Bridge Deck Comments (surface cover variations, measured bridge and span lengths, bridge type variations, approach overflow width, etc.)
- 7. Bridge dimension values are from the VT AOT files. Measured bridge length is 59.5 ft, span length is 46.5 ft, and the bridge width is 18 ft.
- 4. The US and DS left bank surface cover is forest. The forest is partially cleared. Along the DS left bank many of the trees are young. The DS right bank is also forested. There are two dirt roads within the 2 bridge lengths of the DS right bank. The US right bank is pasture with some shrubs and brush.
- 5. The DS water surface is pooled to about 75 ft DS and is riffled further DS.
- 17. Impact zone 1 is a bedrock outcrop under the bridge. There is a severe channel bend to the left beginning about 100 ft DS. There is a low area on the outside of the bend which will be submerged at high flows.
- 11. Road approach protection on the US left bank is type 1 and type 2.
- 18. The level II bridge type is 1b on the left abutment and 1a on the right abutment.

C. Upstream Channel Assessment

- 32. Comments (bank material variation, minor inflows, protection extent, etc.):
- 27. Bank material is gravel, sand, cobble and boulder.
- 28. Bed material is gravel, cobble, boulder and sand.
- 30. The right bank protection is mainly natural streambed material placed by man. Near the bridge are some larger boulders and blocks of concrete. The right bank protection goes from 0 ft US to approximately 175 ft US. On the left bank US there is natural protection from bedrock and boulders to 200 ft US, then there is a gravel side bar. There is a large bedrock exposure at 225 ft US where the channel makes a severe right turn.

33. Point/Side bar present? Y (Y or N. if N type ctrl-n pb)34. Mid-bar distance: 150 35. Mid-bar width: 35
36. Point bar extent: 20 feet US (US, UB) to 200 feet US (US, UB, DS) positioned 0 %LB to 40 %RB 37. Material: 3
37. Material: 38. Point or side bar comments (Circle Point or Side; Note additional bars, material variation, status, etc.):
The bar material is gravel, sand, and cobble with boulders and bedrock at the US end. There is some brushy
vegetation on the bar.
39. Is a cut-bank present? N (Y or if N type ctrl-n cb) 40. Where? - (LB or RB)
41. Mid-bank distance: 42. Cut bank extent: feet (US, UB) to feet (US, UB, DS) 43. Bank damage: (1- eroded and/or creep; 2- slip failure; 3- block failure)
44. Cut bank comments (eg. additional cut banks, protection condition, etc.):
There are no cut-banks upstream at this site.
45. Is channel scour present? N (Y or if N type ctrl-n cs) 46. Mid-scour distance:
47. Scour dimensions: Length <u>—</u> Width <u>—</u> Depth : <u>—</u> Position <u>—</u> %LB to <u>—</u> %RB 48. Scour comments (eg. additional scour areas, local scouring process, etc.):
There is some channel scour 250 ft US at the base of the bedrock outcrop.
1
49. Are there major confluences? N (Y or if N type ctrl-n mc) 50. How many?
51. Confluence 1: Distance 52. Enters on (LB or RB) 53. Type (1- perennial; 2- ephemeral)
Confluence 2: Distance Enters on (LB or RB) Type (1- perennial; 2- ephemeral)
54. Confluence comments (eg. confluence name):
There are no major confluences upstream at this site.
D. Under Bridge Channel Assessment
55. Channel restraint (BF)? LB 2 (1- natural bank; 2- abutment; 3- artificial levee)
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF)
LB RB LB RB LB RB LB RB
47.0 1.5 2 7 7 -
58. Bank width (BF) 59. Channel width 60. Thalweg depth 63. Bed Material
Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2- sand, 1/16 - 2mm; 3- gravel, 2 - 64mm; 4- cobble, 64 - 256mm;
5- boulder, > 256mm; 6- bedrock; 7- manmade
Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting
64. Comments (bank material variation, minor inflows, protection extent, etc.): ${f 3}$
63. The bed material is gravel, cobble, and boulder with bedrock exposed on the left side of the channel.
1

65. Debris and Ice Is there debris accumulation? ____ (Y or N) 66. Where? N ___ (1- Upstream; 2- At bridge; 3- Both) 68. Capture Efficiency 2____ (1- Low; 2- Moderate; 3- High) 67. Debris Potential ____ (1- Low; 2- Moderate; 3- High)

69. Is there evidence of ice build-up? 1 (Y or N)

Ice Blockage Potential N (1-Low; 2- Moderate; 3- High)

70. Debris and Ice Comments:

The debris potential is moderate since the reach beyond 200 ft US is laterally unstable. Capture efficiency is low since the bridge will barely constrict bank full flow.

<u>Abutments</u>	71. Attack ∠(BF)	72. Slope ∠ (Qmax)	73. Toe loc. (BF)	74. Scour Condition	75. Scour depth	76.Exposure depth	77. Material	78. Length
LABUT		-	90	0	2	0	6	90.0
RABUT	1	-	90			2	3	45.5

Toe Location (Loc.): 0- even, 1- set back, 2- protrudes Pushed: LB or RB

Scour cond.: 0- not evident; 1- evident (comment); 2- footing exposed; 3-undermined footing; 4- piling exposed;

5- settled; 6- failed

Materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

79. Abutment comments (eg. undermined penetration, unusual scour processes, debris, etc.):

3

The left abutment footing was poured directly on the exposed bedrock. The left abutment footing is actually two footings, the bottom footing is 4 ft high on top of the bedrock then set back 1 ft on top of this footing is another 2 ft high footing. The right abutment footing is exposed along its entire length. The footing is 2 ft thick. Below the right footing is a free poured subfooting of concrete and railroad track which is also exposed up to an additional 1 ft. Maximum exposure is at the DS end of the right abutment where it is also undermined by a maximum penetration of 3 ft. Vertical undermined distance is minimal, thus 1 ft is the subfooting thickness. During high flows, the water forms an eddy upon exiting the channel under the bridge along the

80. Winawalls:

Exist?	Material?	Scour Condition?	Scour depth?	Exposure depth?	81. Angle?	Length?
USLWW: right		abut		ment	45.5	
USRWW:					1.5	
DSLWW: $\overline{\mathbf{N}}$				-	18.0	
DSRWW: _		-		Y	18.5	

USLWW **USRWW** Wingwall length Wingwall angle **DSRWW** DSLWW

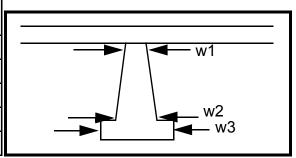
Wingwall materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

82. Bank / Bridge Protection:

Location	USLWW	USRWW	LABUT	RABUT	LB	RB	DSLWW	DSRWW
Туре	1	2	-	Y	0	-	1	1
Condition	2	N	-	1	3	-	2	4
Extent	0	-	-	3	-	2	1	0

Bank / Bridge protection types: **0**- absent; **1**- < 12 inches; **2**- < 36 inches; **3**- < 48 inches; **4**- < 60 inches; **5**- wall / artificial levee

Bank / Bridge protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed


Protection extent: 1- entire base length: 2- US end: 3- DS end: 4- other

83. Wingwall and protection comments (eg. undermined penetration, unusual scour processes, etc.):

Piers:

84. Are there piers? <u>3</u> (*Y or if N type ctrl-n pr*)

					,	
85.						
Pier no.	width (w) feet			elev	ation (e) f	eet
	w1	w2	w3	e@w1	e@w2	e@w3
Pier 1	-			-	35.0	17.0
Pier 2	-			-	45.0	16.5
Pier 3	-	-	-	-	-	-
Pier 4	-	-	-	-	-	-

1	2	3	4
1	wall, 2	sub-	ment.
3	ft of	foot-	At
80.	the	ingis	the
At	foot-	visi-	junc-
the	ingis	ble	tion
DS	expo	at	of
end	sed	the	the
-	-	-	-
of	and	junc-	DS
the	the	tion	right
US	free	with	wing
right	pour	the	wall
wing	ed	abut	and
	1 3 80. At the DS end - of the US	1 wall, 2 3 ft of 80. the At foot- the ing is DS expo end sed of and the the US free	1 wall, 2 sub- 3 ft of foot- 80. the ing is At foot- visi- the ing is ble DS expo at end sed the of and junc- the the tion US free with right pour the

LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFP

1- Solid pier, 2- column, 3- bent

1- Wood; 2- concrete; 3- metal; 4- stone

1- Round; 2- Square; 3- Pointed

Y- yes; N- no

LB or RB

0- none; 1- laterals; 2- diagonals; 3- both

0- not evident; 1- evident (comment);

2- footing exposed; 3- piling exposed; 4- undermined footing; 5- settled; 6- failed

99. Pier comments (eg. undermined penetration, protection and protection extent, unusual scour processes, etc.): the right abutment, 3 ft of the footing is exposed, 1 ft of which is the free poured subfooting which is also undermined with a maximum of 3 ft penetration. The vertical extent of the undermining is minimal. 82. The US and DS ends of the left abutment are protected with type 1 and type 2 rip rap and its base length is set on bedrock. Some type 3 protection is at the extreme DS end of the DS right wingwall. N E. Downstream Channel Assessment 100. Bank height (BF) % Veg. cover (BF) Bank material (BF) Bank erosion (BF) Bank angle (BF) LB RB RB SRD LB RB LB LB RB LB RB Channel width -Bank width (BF) Thalweg depth -Bed Material -Bank protection type (Qmax): Bank protection condition: LB -RB -LB <u>-</u>___ RB <u>-</u> % Vegetation (Veg) cover: 1- 0 to 25%; 2- 26 to 50%; 3- 51 to 75%; 4- 76 to 100% SRD - Section ref. dist. to US face Bed and bank Material: 0- organics: 1- silt / clay, < 1/16mm; 2- sand, 1/16 - 2mm; 3- gravel, 2 - 64mm; 4- cobble, 64 - 256mm; 5- boulder, > 256mm; 6- bedrock; 7- manmade Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting Bank protection types: 0- absent; 1- < 12 inches; 2- < 36 inches; 3- < 48 inches; 4- < 60 inches; 5- wall / artificial levee Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed Comments (eg. bank material variation, minor inflows, protection extent, etc.): 101. <u>Is a drop structure present?</u> - (Y or N, if N type ctrl-n ds) 102. Distance: -103. Drop: <u>-</u> feet 104. Structure material: ____ (1- steel sheet pile; 2- wood pile; 3- concrete; 4- other) 105. Drop structure comments (eg. downstream scour depth):

106. Point/Side bar present? (Y or N. if N type ctrl-n pb)Mid-bar distance: Mid-bar width:
Point bar extent: feet (US, UB, DS) to feet (US, UB, DS) positioned %LB to %RB Material:
Point or side bar comments (Circle Point or Side; note additional bars, material variation, status, etc.):
-
-
-
Is a cut-bank present? Th (Y or if N type ctrl-n cb) Where? ere (LB or RB) Mid-bank distance: are
Cut bank extent: <u>no</u> feet <u>pie</u> (US, UB, DS) to <u>rs.</u> feet (US, UB, DS)
Bank damage: (1- eroded and/or creep; 2- slip failure; 3- block failure) Cut bank comments (eg. additional cut banks, protection condition, etc.):
, , ,
Is channel scour present? (Y or if N type ctrl-n cs) Mid-scour distance:
Scour dimensions: Length Width 3 Depth: 3 Positioned 3 %LB to 3 %RB
Scour comments (eg. additional scour areas, local scouring process, etc.): 3
1
3
Are there major confluences? 0 (Y or if N type ctrl-n mc) How many?
Confluence 1: Distance Enters on The (LB or RB) Type righ (1- perennial; 2- ephemeral)
Confluence 2: Distance t and Enters on left (LB or RB) Type ban (1- perennial; 2- ephemeral)
Confluence comments (eg. confluence name):
k material is gravel, sand, cobble and boulder. Some areas on the left bank have exposed bedrock. The bed material is gravel, cobble, boulder, and sand with some bedrock exposures. Some natural boulder protection
material is gravel, coubie, boulder, and sand with some bedrock exposures. Some natural boulder protection
F. Geomorphic Channel Assessment
107. Stage of reach evolution is 1- Constructed
2 - Stable 3 - Aggraded
4 - Degraded 5 - Laterally unstable
6 - Vertically and laterally unstable

108. Evolution comments (Channel evolution not considering bridge effects; See HEC-20, Figure 1 for geomorphic descriptors): on the right bank DS. The left bank heavy fluvial erosion begins at 100 ft DS.						

109. G. Plan View Sketch							
point bar pb cut-bank cb scour hole	debris	flow Q cross-section ++++++ ambient channel —	stone wall				

APPENDIX F: SCOUR COMPUTATIONS

SCOUR COMPUTATIONS

Structure Number: STOCTH00360005 Town: STOCKBRIDGE Road Number: TH 36 County: WINDSOR

Stream: STONY BROOK

Initials LKS Date: 01/05/98 Checked: RLB

Analysis of contraction scour, live-bed or clear water?

Critical Velocity of Bed Material (converted to English units) $Vc=11.21*y1^0.1667*D50^0.33$ with Ss=2.65 (Richardson and Davis, 1995, p. 28, eq. 16)

Approach Section Characteristic	100 yr	500 yr	other Q
Total discharge, cfs Main Channel Area, ft2 Left overbank area, ft2 Right overbank area, ft2 Top width main channel, ft Top width L overbank, ft Top width R overbank, ft D50 of channel, ft D50 left overbank, ft	4260 566 0 1 77 0 13 0.2352	5750 736 4 47 77 8 29 0.2352	0 0 0 0 0 0 0 0 0 0 . 2352
y1, average depth, MC, ft y1, average depth, LOB, ft y1, average depth, ROB, ft	7.4 ERR 0.1	9.6 0.5 1.6	ERR ERR ERR
Total conveyance, approach Conveyance, main channel Conveyance, LOB Conveyance, ROB Percent discrepancy, conveyance Qm, discharge, MC, cfs Ql, discharge, LOB, cfs Qr, discharge, ROB, cfs	55714 55710 0 4 0.0000 4259.7 0.0 0.3	88329 85904 48 2378 -0.0011 5592.1 3.1 154.8	0 0 0 0 ERR ERR ERR ERR
Vm, mean velocity MC, ft/s Vl, mean velocity, LOB, ft/s Vr, mean velocity, ROB, ft/s Vc-m, crit. velocity, MC, ft/s Vc-l, crit. velocity, LOB, ft/s Vc-r, crit. velocity, ROB, ft/s	7.5 ERR 0.3 9.6 ERR ERR	7.6 0.8 3.3 10.1 ERR ERR	ERR ERR ERR N/A ERR ERR
Results			
Live-bed(1) or Clear-Water(0) Contr Main Channel Left Overbank Right Overbank	action Sco 0 N/A N/A	our? 0 N/A N/A	N/A N/A N/A

Clear Water Contraction Scour in MAIN CHANNEL

 $y2 = (Q2^2/(131*Dm^(2/3)*W2^2))^(3/7) \qquad \text{Converted to English Units } ys=y2-y_bridge \\ \text{(Richardson and Davis, 1995, p. 32, eq. 20, 20a)}$

Bridge Section	Q100	Q500	Other Q
(Q) total discharge, cfs	4260	5750	0
(Q) discharge thru bridge, cfs	4260	5750	0
Main channel conveyance	31124	39563	0
Total conveyance	31124	39563	0
Q2, bridge MC discharge,cfs	4260	5750	ERR
Main channel area, ft2	304	361	0
Main channel width (normal), ft	43.8	45.7	0.0
Cum. width of piers in MC, ft	0.0	0.0	0.0
W, adjusted width, ft	43.8	45.7	0
y_bridge (avg. depth at br.), ft	6.93	7.90	ERR
Dm, median (1.25*D50), ft	0.294	0.294	0.294
y2, depth in contraction,ft	8.88	11.07	ERR
ys, scour depth (y2-ybridge), ft	1.95	3.17	N/A

Armoring
Dc=[(1.94*V^2)/(5.75*log(12.27*y/D90))^2]/[0.03*(165-62.4)]
Depth to Armoring=3*(1/Pc-1)
(Federal Highway Administration, 1993)

Downstream bridge face property Q, discharge thru bridge MC, cfs Main channel area (DS), ft2 Main channel width (normal), ft Cum. width of piers, ft	100-yr 4260 303.6 43.8 0.0	500-yr 5750 361.2 45.7	Other Q N/A 0 0.0 0.0
Adj. main channel width, ft D90, ft	43.8	45.7 0.7586	0.0
D95, ft Dc, critical grain size, ft	1.1415 0.8934	1.1415	0.0000 ERR
Pc, Decimal percent coarser than Dc	0.070	0.054	0.000
Depth to armoring, ft	35.45	57.32	ERR

Abutment Scour

Froehlich's Abutment Scour

Ys/Y1 = 2.27*K1*K2*(a'/Y1)^0.43*Fr1^0.61+1

(Richardson and Davis, 1995, p. 48, eq. 28)

	Left Abutment			Right Abutment		
Characteristic	100 yr Q 5	500 yr Q (Other Q 1	00 yr Q 5	00 yr Q O	ther Q
(Qt), total discharge, cfs	4260	5750	0	4260	5750	0
a', abut.length blocking flow, ft	4.5	11.2	0	41.3	58	0
Ae, area of blocked flow ft2	21.64	46.84	0	177.62	285.21	0
Qe, discharge blocked abut.,cfs	76.68	158.62	0	1132.77	1794	0
(If using Qtotal overbank to obta	in Ve, le	ave Qe bl	ank and e	nter Ve a	nd Fr man	ually)
Ve, (Qe/Ae), ft/s	3.54	3.39	ERR	6.38	6.29	ERR
ya, depth of f/p flow, ft	4.81	4.18	ERR	4.30	4.92	ERR
Coeff., K1, for abut. type (1.0, K1	verti.; 0	.82, vert 1	i. w/ win 1	gwall; 0. 0.82	55, spill 0.82	thru) 0.82
Angle (theta) of embankment (<90	if abut.	points DS	; >90 if	abut. poi	nts US)	
theta	90	90	90	90	90	90
K2	1.00	1.00	1.00	1.00	1.00	1.00
Fr, froude number f/p flow	0.285	0.292	ERR	0.542	0.500	ERR
ys, scour depth, ft	9.74	11.02	N/A	18.87	22.24	N/A
HIRE equation (a'/ya > 25) ys = 4*Fr^0.33*y1*K/0.55 (Richardson and Davis, 1995, p. 49,	eq. 29)					
a'(abut length blocked, ft)	4.5	11.2	0	41.3	58	0
y1 (depth f/p flow, ft)	4.81	4.18	ERR	4.30	4.92	ERR
a'/y1	0.94	2.68	ERR	9.60	11.79	ERR
Skew correction (p. 49, fig. 16)	1.00	1.00	1.00	1.00	1.00	1.00
Froude no. f/p flow Ys w/ corr. factor K1/0.55:	0.28	0.29	N/A	0.54	0.50	N/A
vertical	ERR	ERR	ERR	ERR	ERR	ERR
vertical w/ ww's	ERR	ERR	ERR	ERR	ERR	ERR

spill-through ERR ERR ERR ERR ERR ERR

Abutment riprap Sizing

Isbash Relationship

 $D50=y*K*Fr^2/(Ss-1)$ and $D50=y*K*(Fr^2)^0.14/(Ss-1)$

(Richardson and Davis, 1995, p112, eq. 81,82)

Characteristic	Q100	Q500	Other Q	Q100	Q500	Other Q
Fr, Froude Number	0.94	1	0	0.94	1	0
y, depth of flow in bridge, ft	6.93	7.90	0.00	6.93	7.90	0.00
Median Stone Diameter for riprap	at: left	abutment		right	abutment,	ft
Fr<=0.8 (vertical abut.)	ERR	ERR	0.00	ERR	ERR	0.00
Fr>0.8 (vertical abut.)	2.85	3.30	ERR	2.85	3.30	ERR