United States

Departroent of the Intarios U.S. Geological Survey Pashington

Geologicel Investigations Naval. Petroleum Reserve NO_{0} is Alaska

Special Report No。 16
PETROLEUK POSSIBM,TTIES OF THE UNTAT AREA

United States
\checkmark Depurtnent of the Intertor
U.S. geological Survey
Washington
Geal.ogical. Investigations
Naver notroloum roserve 27o. is
Alagka

Special Report No. 16
PETROLETH: POSSTBTHTMIES OF THE METAT AREA

By
Samuel. Ao Keller

February 1950

CONEFNRS

Introduction
Stratigraphy 1
Test hells 2
Structure 3
Petroleum possibilities 4
Recommendations 5
Pago
ILLUSTRATION
Eigo 2 Structurewcontour map of Umiat anticlines Naval

In the vicinity of Umiat Mounteln where the best exposure occurs, 76 fect of the distinctive zone? black papes sheles is exposed. In intat Test lielt No. ? the blantr panor shate is 101 geat chict, and is underlain by 206 feot of additional sodiments which constitute the romainder of 400 foet of zono F_{0} The top of zane F (top of black paper shale) is horizon 7 (see ing. 4 of Report Ilo. 3).

Fones G and \mathbb{H} togethor are 2,670 feat thick. Dopending on whore the contact between them Is placed, zone G is betweon 800 and 1,300 feet thick in tho areas of Seabes Crook, Jwiat Hountaing, in tha uppar part of Umiat Test WoI工 No, 1, and in shot holes 12, 27, 13, 35 and 34 of geo physical lines $1-46$ and $2-4.6$. This section consists primneily of fine grained calcareous sandstones, shale, cosl and bentonite seams.

The remainder of the total section is composed of approxinately 1,370 to 1,870 feot of zone 14 sediments present on the filanks of the structure. Thase sediments are largoly bentonitic and tuxfaceous, eino to very fine-grainod sandetonos, tha 30 , and a ferr cool seams.

TEST UELIS

Three tosts have been made on the Wwiat structure in the past. Umiat Test Well No. 1 was drilled approximately 700 to 800 feet down the weat plungo of tho gtructure (soo $81 \mathrm{~g}, ~ 1$). Three hundred and esfty feet of zone G sediments comparable to that of the outcrop area constitute the top section of the wel1. The zone F section, including the black paper shales, bottons at a depth of 750 feet. The base of E is tentatively placed at 2,100 Peot. This 1,350 leot of section containe potential oil-bearing sands. Porostitios in these sands vary from 5-22 percent, permeabilitiles have a vide rango, and although generally low, recordings as high as 310 md . ware made on samplos ranging from depths of 1,736 feet to 1,782 feet. Thirteen huadsed feet of what is now believed to bo zome D sands and shale underlis the zone E section. 011 shows, oil oden, and ges are present throughout this section also. Porosity and permesbility values in theso sands in general approxdmats those above. Tho remainder of the woll to a depth of 6,000 foet is comprised largely of zene AC umdifferentisted shales.

Umist Test Mell No, 2 was dmilled on the south flank approximately 500 Reet higher structurally then Test WeI. Ho. 2. Elevon hundred foet of sone E soction constituto the uppor part of the woll. Oil shoms, ofl odos and gas were evident throughout a lnost the ontire section. Permeabilitios in the more fevorable sands vere consistently highor than those of Test libil No. 2, varying from Iess than 10 md . to 279 md . Porosities also ware highor. The sands were predominantly very fine to fine-grainod. No section
lithologically similar to the sand section underlying the zone E sequence in Test kell $\mathrm{No}_{0} 1$ is present in Test Mall No．2。．Thus it is entirely possible that no zone section is present in this test，with the posei－ bility of an erosional break to explain its absence。 However，inamuch as the first evidence of a zone $A=C$ type fossil（fragment of gemus Cleoniceras） occurs at 2,280 feet，it is conceivable that the 1,180 feet of shale section above the position of this fossil is sone D in ageo This possibility， however，is rather remote．The remainder of the well to a depth of 6，212 feet is almost entirely untavorable zone A－C undirferentiated sinless

Uniat Core Test No． 1 was drilled spproximotoly 150 Peet higher structureally than Test Woll $\mathrm{NO}_{2} \mathrm{Z}_{0}$ ．The entile section penetretod consistod of potential oil－boowing zone z sandis intarcalsted with shate snd ailtatone． Porosititos varied from 7 to 17 percent，perraeabilities 1 rom 10 to 465 ad． A small amount of a paraffin－base oil was produced for a short time。

STRUCTHE

The paramount feature of structural importance in the Gmiat area is the closed anticlina delineatod on Pigute 2 ．A minimum elosure of 700 feet has beon mapped on the anititine with the possitility that the closume may bo greater：The plunge of the structure to the east is approximately 6° but appears to be less at the western sxtremity．The anticline is asymetric due to the presence of a possible steep＂monocinml slexure＂a short diso
 by an 8 －rile ridge that extends from the vicinity of Umiat Test liell Ho． 1. to Umiat Mountain．Dips where meesured on the surface are from $60^{\circ}-90^{\circ}$ ； the alinement of structure traces near the west end of the ridge is suggeatlon
 vertscal bodaing is further indscated by tho fact that the structure traces of these baeal sone G sandstones form very nearly straight linea rogardiess of topography．

Several explanatlons of this steoply dipping zono have been presented． A sharp fold such as the one described could be associatod with faulting of some kind．The surface geology，which is basod in part on moasurements of sonal thicknesses，soomingly prohtbits any wajos largemgeale fault dlaplaor－ monto Small locul offacts forming a shear zono are very possibly prosont， but a total displecement of more than 400 feet is unlikelyo North of this zone of steep dips and poasible shearing，the angles of dip decrease rapldiy uithin very shore distances．

IJ Whittington，C．Wo personal commaieation Jan． 1950.

Because of the asymatric nature of the fold, the crestal exis (highest points of the fold) and the axial plane of the structure do not coincide. The crestal. plane may be very nearly vertical in attitude. The exial plane, which divides the fold as symmetrically as possible, would coincide closely with the zong of vertical dips, would dip southward, and thus could be expected to migrate southward with increasing deptho The axis delineatei on rigure I represents the crestel. axiso

PERROLEUM POSSIBIITTIES

In discussing the petroleum possibilities of the area, existing well. conditions should be analyzed. Uniat Test hell. No. I was drialed down the west plunge on the south flank of the structure。 Although oil shows occurred in favorablemappearing zone E and zone D sanda, no oil was produced. Uwiat Test 1 ell 110 . 2 was dittrod on the soulh Nanic near the eastern plunge soo feet higher structurally than Test Will No. 1 , and although the corresponding zone E sands contained oil shors, no production wos forthconding from this test either. Umiat Core Test No. 1 was dxilled 150 feet higher structurally than Test vell No. 2o it paraffin-base oil was produced for a shori time from a sand at 250 feet (below collar) o This sand would correspond to the favorable cand at Umiat Test Nell No. $2(1,300$ feet below collar) and that at Uniat Test Kell. 170. 2 (375 feet belon collar) o As this test is structurally the highest of the three, it is possible that the ofl produced. represents merely the marginal oil of the reservoiro If this concept is valid, another test nywhere on the south flank belon the 1,000 -foot contour (figure 1) would have very littile chance of encountering a producing horizon in the zone E sectiono Owing to the fact that the favorable sands vary in porosity and permeability ovor the area (an indication that the control of the 011 accumalation may be partily of a stratigraphic nature) the previously statod concopt may not be valid. However, it is worth consideration, and if juctged. valid, a test on the structural high would become an attractive pleyo

As has been previously stated, a 2,300-10ot section of zone D oillebearing sends and shale in Umiat Test lien. No. 1 may either have medged out or been truncated entirely in the arezo. Unfor bunately, data concerning a zone D truncation is inconclusive at this time. Should further detailing be done in the area to delimit the nature of such a wedging or truncation, then the sone D sands on the flanks may be found at a favorable location for a test.

Although the presence of a fault large enough to produce trap conditions on the north flank is considared unlikely by the writer, it cannot be ruled. out entixely。 If such a fault is present, a test on the north flank would be justiried.

RECOLKAENDATTONS

Tro limitations have apperentiy been imposed on the dstiling of the prow sed tost: (1) that the favoreble zone \mathbb{E} sands be encountered below the zone permafrost (1,000 foet); and (2) that the top of tho zone E sand section bs countered at a depth not exoceding 1.s 400 feet. The second limitation has won imposed bocause of the depth 1 timitations of the available rig (2,500 feet) . Ijure I indifcatos that the only aroas whore both those conditfons doflaitely dist are on the south flank and on the east and west plunges of tho structures test of tho zone I sands in any of thepe areas is not justifleà et this We. The efrst 1 Initation is imposed on the assumption that the permafrost wild act as a detorrent to production should ofll be oncountared. This umption is not nocessarily valid, and in any caso, dolimiting of any oflaring horizon is considerod to be of primary intorest. In view of the two successful test wells and one core test proviously dwillod on the Jufat Wuctare, it is not considered probable that a large struaturally controllod wol of ofl is present in the Umiat area. Howovor, if it is dosired to explore warlouely untested possibilities of the Uniat anticiine by moans of an inpenaive cable tool hole, then the following recommendations are made:

1. That a tost be located on the crestal exls approxdmatsly midmay Wreon shot point 37 and Beorpam Greok along a lino running botwoen shot point 37 W a point halemay between shot points 9 and 10 . Such a test should encountor W Pavorable horizon of the core test 200 to 200 feet higher atructurally than Whe core tost. On the basis of topographio and structural maps of the area, Ye oll-bearing zone E sand in Uniat Core Test No, 1 would be encountered at a Stal dopth of approxinstoly 400 feot. Imperneable sones of shele and sfltw tone are judged to bo sueficient in the unexposed part of the zone \mathbb{E} sodimonts Wect es an offoctive cap to the ofl which may undorlie it. Diseegarding anl ohar conalderations, rintil a test is put dom on the crestal high of the Pructure, no final evaluation of the ofl possibilitios of the anticitine can ascertained.
2. Although a test of the north flank may be justified, it is oxtremely Wastionable whether a location can bo chosen to onable the available rig to Wantrate the entira Lavoroble zono B and section. Dresining in the immediate Molnity of the zone of stoep dips and possible shearing with the lemitations Hosed by the available xig worid be extremely harardous if a tost of the wa E sediments is of primary interest. In effect, a test put dom in this 4yhodip zone might coacelvably penetrato nothing more interesting than sevoral Wadred foot of steoply dipplig zone G section.
