

Preliminary Report No. 22
PRELIMINARY REPORT ON THE STRATIGRAPHY AND STRUCTURE OF THE TITALUK ANTICLINE IN THE VICINITY OF MAYBE CREEK, ALASKA
(200)

N22 aga
no. 22

United States
 Department of the Interior U.S. geological Survey
 Washington

Geological Investigations Naval? Petroleum Reserve No. 4

Alaska

Preliminary Report No. 22
PRELIMINARY REPORT ON THE STRATIGRAPHY AMD STRUCTURE OF THE TITALUK ANTICLINE IN THE VICINITY OF MAYBE CREEK, ALASKA

By
W. P. Brosgé and Io N. Mover

CONESNTS

Page
Introduction 1
Stratigraphy 2
Zone 3
Zone F 5
Thickness and distribution of sandstones 6
Structure 8
Roservoix possibilitias 9

ILHUSTRATRONS

Flgure 1. Geologic and structure contour map of the ares of

Figure 2. Stretigraphic sections and column of Upper

PRELTITNARY REPORT ON THB STRATIGRAPHY AND STRUCTURE OR THE TITALUK ANTICLINE
IN THE VICTIITI OF HAYBE CRESK, ALASKA

> By

INTRODUCTION

In $191.9 \mathrm{U} . \mathrm{S}_{0}$ Geological. Survey Party No. 1. was assigned to map the Titaluk anticline between the Meade River and the head of Haybe Creek. The party's purpose was to define areas of closure along the exis of the anticline, by structure contours where possible. Eaxlier field work and photographic studies of the Titaluk anticiine $1 /$ had proven closure on the Maybe Creek dome and had show probable closure on another structural high just east of the Ikpikpuk River. Party No. 2. spent the sumuer of 2949 in detailed mapping of structures from the Maybe Creek dome to the Ikpikpuk River and in hasty examination of the few outcrops about δ miles west of the Ikpikpuk. The The party was compjised of two geologisis, two field assistants, a cook, and a mechanic, transported by three weasels and a weasel trailer. Weasels were used not only to move from camp to cano, but also for daily travel in the field, almost to the exclusion of travel by foot. The party left Umiat on June 5 and returned there, with weasels, on August 29.

The area mapped comprises about 175 square miles between parailels $69^{\circ} 15^{\prime} \mathrm{N}$. and $69^{\circ} 30^{\prime} \mathrm{N}$. and mexidians $153^{\circ} 10^{\prime} \mathrm{W}$. and $154^{\circ} 50^{\prime} \mathrm{F}^{\circ}$. It lies about 250 miles south of Point Barrow and 60 miles west of Uriat. Brom Umiat the area is easily accessible by weasel along a route that follows the Barrow Trail to the big bend 30 miles west of Umiat and thence along the divides around the head of Prince Creek and Maybe Greek. The distance from Umiat to the Ikpikpuk River along this overland route is 90 miles. Within the area all points can be reached by weasel travel along the ridge crests or across the heads of minor streans, but di the intrenched lower courses of the south-flowing streans and the waters of Maybe Creek and the Ikpikpuk Tliver during late spring flood are virtually impassable to weasels.

Oxbow lakes on the floodplains of Maybe Greek and the Ikpikpuk River, and a milewlong lake about 4 miles north of the Titeluk anticline axis
 planes. The latter lake should also furnish a perennial water supply.

Exposures of rock in place are rare in this area, but the outcrops of most of the sandstones are identified by fairly conspicuous bedding traces marked by sandstone rubble, steep slopes, and the dominance of bmush, berries, or moss over grass. For structure contouring, and for the three-point solution of dip and strike problems, the altitudes of sandstone units were measured by plane table and stadia methods, and the thicknesses of the sandstone units and of the intervening stratigraphic intervals were determined by stadia traverse. All altitudes were controlled by a net of fourth-order triangulation and trigonometric levels based on the altitude 672 feet above sea level determined by Ray and Fischer / / in 1946 for their Caim number 9 on the Laybe Creek domo.

In parts of the area all stadta points were inapped on the plane table, but for the most part only triangulation and traverse stations were so mapped. A17 points were identified and marked in the field on verthical. aerial photographs; the scale of each photograph wes computed from tho distances between mapped points. The maximum deviation iron the nomal scale of $1: 20,000$ mas 3 percent.

STRATIGRAPHY

Zones E, F, and G of the Opper Gretaceous part of the Nanushuk Group are exposed in the area north of Lazybe Creek. The section is about 800 fet thick. . Only mine 15 thologic units comprising about a third of the total thickness of beds underlying the area are well enough exposed to be identified and mapped. The rest of the section is almost entirely covered; its lithology is conjpctural and assumed to be shale. Eight of the mapped units are sandstones that make prominems bedding traces; the minth is the interval of shale and Jimestone concretions containing fossils of Faunal Zone 3 in Zone Fo There exposed, this unit is identilied by its fauna, but, because, like the rest of the shales, it crops out only in cut banks, only spot locations of Zone 3 can be mapped.

Ray and Pischer in 291,6 mapped the bedding traces of the sendstone units 'in the field and from aerial photos, and numbered the traces (1) to (8) Irom oldost to youngest. Few changes are made here in their mapping and correlation of the bedding traces, but the small isolated trace called by them number (1) is correlated with their trace number (3)。 Bocause the deletion of trace number (1) from their nomenclature does not affect the corxelation of the rest of their numbered traces, numbers (2) to (8) are used in this report as used by Ray and Fischer. In addition, an isolated trace above mumber (8) that was not mubered by Ray and Rischer is numbered. (9) in this report。

In some places the correlations shown by this report within the interval from trace (2) to trace (8) differ from those shown by Ray and Mischer. In the vicinity of lat. $69^{\circ} 20^{\prime} \mathrm{Nog}$ longo $154^{\circ} 26^{\circ} \mathrm{W}$, the correlations of both reports agree, and the traces of sandstone units (4) and (6), key units for correlation, are defined as those mapped in that ares.

Traces of the mapped sandstone units are discontirmous, because of breaiks in outcroy caused by racent erosion, and becouse in places the traces themselves are absent even where their horison is exposed by the present topography The lithology of most of the sandstones is too varlable to be used as a guide in correlating bedding tracos. Thererore, the sandstone units of separated sections were correlated by tracing out key units botween sections, or by projecting key unt ts across monrow gaps. Sandstones above and below the key units were correlated by matching sequences and thicknesses. The most difficult gaps to bridge are those formed by Anak Creek, Baby Creek, and Banshee Creek. Traces of sandstone (6) were correlated by projection across mak and. Baby Creeks naar their southern encis. Yest of, Baby Creek traces of sandstones $(6),(7)$, and (8) are
exposed fairly continuously north to the axdis of the anticline, and from there wore correlated with the isolated section east of Baby Creak and north of the axds by projection of trace (7) across the head of Baby Croek. Corralation of sections east of Banshee Greek with those to the west is based largely on the contimity of trace (7) along the lon divide on the north side of Banshee Greek, where the trace is manifested only as a line of scatiored alders on an Cusmbise grass-covered slopo. Irom Zaneiee Grcak westward to the Ikpikpuk River, key bedding traces can be followed contimously from section to section except for the area on Fry Creek north of the axis. There two isolated traces have beon correlated with the trace of unit (3) just south of the axis, but migit be elthar (2) or (4) o

Zone G

Rocks of Zone G are found over mosi of the area, but neither the upper nor the lower boundaries are shown on the map (fig. 1). The youngest beds preserved are those of sendstone unit (9) which crops out between Anak Creek and Baby Creek. There Zone G is at least 250 feet thick. The upper boundary of Zone G is cer bat my present about 10 whes nowthoast of the area mappod, where Stefansson I/has traced the Uriat sandstone of Zone H to the northern flank of the Wolf Creek anticicine, and an estimate of the thickness of Zone G may be made there. Stefansson estimated an interval of 1,650 feet between the Umiat sandstone and the top of a calcareous sandstone thet he tentatively correlated with the $350-$ foot basal sandstone of Zone G at Umiat. If this correlation is correct, the $1,650-\mathrm{f}^{\circ} 0$ ot interval at Wolf Greek is represented by an almost equal interval, 1,560 feet, at Umat, where the 10 west 400 feet of this interval is assigned to zone G. At Wolf creok Zone G probably includes an almost equal. thickness of pooriy exposed beds above the basel. sandstone. The supposed basal sandstone at Wolf. Creek is about 20 feet thick, so the total thickness of Zone G there is probably on the order of 400 to 500 reet.

The supposed basal sandstone of Zone G at Wolf Greek has not been correlated with any of the aandstones in the Waybe Creek area. At Umiat the base of Zone \mathbb{C} is dram at the base of this semdatone and te the topp of the 200 feet of Zone F black paper shales that include Faunal Zone 3 . In the Maybe Creek area the Zone \mathbb{F} shales could be identified only by the presence of Zone 3 fossils. These fossils were found only east of Baby Greek where sandstone unit (6) was the rirat trace-iaking undi above the founal zone. However; the measured thickness from this aandstone down to the faunal zone (240 to 370 feet) includes sendstone units (3), (4), and (5) where they crop out about 4 miles went of Baby Creek. Thus, any one of the sandstiones (3), (4), (5.), or (6) may be considered the sandstono inmediatoly overiying the shales that contain Founal zone 3o For this reason, the lower boundary of zone G, although certainly present, has not been shown on the geologic map (fig, 1). Because it is a contimuous mappable unit, sandstone (6), used by Rey and Fischer ह/f as the approximate base of Zone G, is probabily the best choice. Sandstones below it will be cieseribed With Zone F .

[^0](9)) isoiated ohtorops of twit; and severna. thick onal heris urderlain by bentorite. The rest of the sechion is coversd, but i.s interpseted from th
 as mostly clay shales containing Fery thin and aiscontimons corl beds.

Sandstone (6) is 12 to 55 feat of yoz an to lightegrey, fine- to a 3ivs-grained sand, well cementod by calciua curbonatio. About 30 peroenter
 comors, and a Sew planc fragnot ts wors found. Jast of Anak Greek tho sendatorne cortains more Seldspar Eragments, and the drains are more angular. Fiest of Anak Cresk there is a?most everynhare at the base a gray, very fino sandotona to si3tstone that contrins sadtored oblate black chert pabbles about i inch

 Threstone showinz cone-17n-cono Ethuctures qwo milies farther dom Kaybe Creak the 1 inestone and fossiliferous silitstone is exposed about 200 feet below sandistone (6).

Sandstons (7) is 10 to 58 foet thick and is typionl3y yellow ox 3ight Bray to balt-and-popper-colored, medium- to conurse-grained and conglomeratic, Black chert grains make mo to 50 pencent of the Fock. Ironstone is abundant. Ethe cong tomerates who not formith the of the unit, but are present Iocally tharoughort the area. On the trace about 2 mitle southwest of the hoad of Honshee Creek the 3 oat rock gredes laterally within 500 feet from nedium-gratned through coerse-gratned sandstone
 northwest of the mouth of Anak Greek the Iloat greden upsard from fine to coanse sandstons thet contains gronules and pebblas. The conglomerate pebbles are cominomy subrotuly prolets, and frome quarter to a hate incul In cianeter, but may be as moch as 2 inches tin cllametor Nost pebbles are black chert, the rest quaruz. The sandstones and probably most of the conglomerates are well-cenentod by calctua cavibotasto, but east of Anek

Jut benanth the trace of whigetong (7) thert is con... Sub-bituminous

 Greol cosl shows only as chtipe ta the matl. West of Beashee Greoic no coal. mess iound. Carbonised plont fragments and chips and alabs of eillicfifled mood Qree comon throughout the area.

Sandstorie (8) is lignt frey to anit-and-popper colored, calcareours and contring 30 to 50 por cent bleck ohert grains. Grain $81 . z 0$ renges from fine

 a bexi of submbtturtmong coa? fin foet thick 3 ham Just boien the thace. Tmo ant a balf miles nonthaset of the bend of Eanshee Greek 32 feet of coel and ben-
 coals diseppoar latorally in 200 foot.

of Baby Greok. Here it conajsts of about 13 feot of 31 ght tan to grays very fine- to medivy-grainad probably fuf laceors sandstone with carbonizod plant
 of the haad of Baby Groek 12 feet of granule conglomerate ovarlein by 9 faet of yellow tuff in arposed 43 feet above sendstone (8). Tho conglowesete gradas Iateraliy into sandstons and the trace dieappears in a querter of a mila.

Zone 3

Zone F ia identified in the asea by the diagnostic Paumal Zone 3 foseils. Inoseranus 7abjeting, Scaphites apo, Borissiakoceras op., and Hatinpceras sp. were found in four cut-bank oxposures locatod on Fi, wee 1. The fosails at the two gites neat the head of Baby Croek, and probably those on Anmic Greek, were about 240 Ioot below aandstone (6). The Lossile on Maybe Creek were about 370 feet belon sandstone (6); this $370 \sim 200 t$ interval wes deternined by stereocomparator measuxemonts controllod by known elevations on Baby Creok and Haybe Creek. The intervals above the Sossils, where messured, are largely covered, but all cut-bank oxposures of rocks in those intervala in that part of the area shon thon to be 3 halo. On "roybe Grock and Anok Crook the zhathos ario black end fiseile and contain a Lew lonses of coul about I foot long and from a quariar to inir un ixuib tinicis. is ine two exposures eit beby Creek there is 1.ttle black shale and the rocks renge from dark-gray chfppy clay shale trorough 2ilty shale to thin-bedded nodular eiltstone. Ali exposures show interbeds of yollon bentonito loss than 2 iucioo thiciry and one bed at the fossil site on the tributary to Beby Crook is 78 Inches thick.

IAmegtone coneretions or their fragmentg sre common in a 13 shaie exposures. The limestone is dark, dense, and very fine grained, and woathors yellowo In the nonfossiliferous exposurea the 1 imestone is in rectangular ixagments with much conc-ist-cono structuxe or in disc-ahepad concrotsons a foot thick and 2 os more feot in diemeter beroken by a polygonel networts of calcite-ililiod joints. Whare fossils wore found, the coneretions ore loss fractured, and bedding para.1101 to that of the shole is traced by concentric ridges on their outor surfaces and by color banding on fresh surpaces. The long axes of concretions and fossils ile in the bodding planes. Fossiliforous concretions ranged through an interval of 27 feet on kaybe Greek and probably through 40 feet on Beby Creek. At each of the othos sitos oniy two fossiliforous cozcretions mero found.

West of Benshoe Greak sandstone units $(2),(3),(4)$, and (5) are presont Whth an inteaval of about 460 iost below the hese of sandstome (6) Although no Zone 3 fossils were found In the intervel betmoen any of these sandstonesp one or more of the sendetones probably correlate with part of the 26,0 sto $370-$ foot shalo section bolow gandstone (6) just to the east. Traces of sandstonee (4) and (5) are ahown on the map to disappear just wast of the mouth of Baby creots, and the trace of Guntstorn (3) af anppoars fust south of Koy Creel. It is assumed thet sandstone (2) is not present in the eastern sections ofther.

The estimatod location of Faunal Zone 3 hss been shom on the geologic map (Riguxe 2) by a dottod line, and on the stratigraphic sections (Figure 2) by a dashed lize. If it is projectod westmard et the 240 foot stratigraphic distance below sandstone (6) that mas measured at the westermost fossi2 sitos faunal Zone 3 falls within the 100 foot intorvel betweon sandstozes (3) and (4)。

Westmard projection of the Paunal zone st. this level fmplias the interpretation that the zone is roughly on horlzon, and that the greater interval betwean sama-tono(6) and the Cossilo on Maybs Cpoot ropresents an eastrase thickenting of the ovenlying shates. Another possible interpiotation is that the faumal. zone is at Lesst 120 zoet thicie; its top about $2 \angle 0$ seat, and its botton about 370 fest holow sandstone (6). Projected at these levela the faunsl zone sorite fnclute sandstono (3) and the directly on sandstono (2). The lowes boundary of Zone F is not shown on the map. At Jmiat Zone F is about 400 feet thick, has a middle sandstone at the base of the bleck shale, and overlies a congloneratic semastone (Aytyals) at the top of zone \mathbb{E}. Depending on the projectod position and thickness assumod Ror Paunal Zons 3, sandatone (2) sight be either tho sandstone underlying zone F or a widdle sandstone at the base of tho faumal zone. Because the 135 feet of rocks exposed below sandstone (2) includes much coal and bontonite, thia sandstone is probably part of Zone E.

Sandatons (2) is mostily gray to salt-and-pepper, fine-to mediuz-graimed, wh Ch 8.3 much as 50 per cont of black chert grains. host rocks are noncalcarsous, and yome quite friable. By its traces the sandstone may bo divided into two mombers, the upper one preaent only in an area on the anticlinal axcis at about long. $156034{ }^{\circ} \mathrm{W} / \mathrm{h}$, the lower one absent in past of thet area. The tracs of the lower member has conspicuors bare patchos of lightogray, loose sand and clay. Locally sandstones near the baso of the unit are cross-bedded and ripple-marked. On Kay Greok the lower momber includas a. $10-\mathrm{Foot}$ conglomerate of chert, quartz ${ }_{9}$ and quertaito pobbles from a guarter of an inch to 2 inches in sias, ins a matriz of msdiumagrainod, friable sandstone. The conglonarate is aresent for only about 400 feet $2.20 n g$ the outcrop, and containes tongues or lenses of sand = stione. Imediatcly abovs is 5 to 10 feet of red celcareous sandstone with abundant remains of Telling sp.

Sandetone (3) is gray, mediun-greined, and calcareous, with ebout 30 porcent of black chert grains. Three traces are mapped for this sendstono in the area about 2 miles past of the bend of Kay Creelt. Elsernere only one, probebly the upper trace, can be followed.

The Iithology and thicimess of sandstone (4) change sharply going northWest across its outcrop area. South and east of Kay Creek this sandstone is from 35 to 94 foet thitk, genome 212 ebout 60 peet. The rock is derkmerey, esaneto medium-grained, highly caleareous, with about 10 per cent of dark grains, and contaizs a fem wood fragmsats. Excopt for an upper 5 or 10 foet of very Exlnblo thin-bedded anydstone, it is dense and massive, in bede up to 3 Reetb th! els, and $1 . t$ forms tho highest and stoopest tracos in the area. North and west of Ray Creek gandstoze (4) is only 10 to 38 feet thick, gray to yellow, thinmbedned, and $20 c a 11 y$ has torrential cross-bodding. Scattared cosi Iragmonts and an 18-inch bed of bentonite are just E.bomt the sandstone at one place.

Sandstone (5) makos st Erace only wivuit a mites nortin of the mouth of Banshee Crook, and again about 3 miles northwest of the mouth. There it is Bsey, fine-greineä and celcareous and contains a few bisck chert pobbles inke the basal part of sandstone (6).

Thickness and distribution of candatones
For structure contouring, the stratigraphic intervals between locally
mapped units and the bsao of eandstono (6) had to be estinated over the whole area. For each gandatone unit, and for oach interval between sandetones isopaohs based on noasurad sections mere dram in the simplest pattorn that flt the date. The changes in thiomeases shown by the isopech maps are shom 2 er the stratilgraphic sections of Pigure 2. In thege sections sandstones (2), (3), and (4) are abruptly ended, and sendstone (5) is absent. The terminetion of the sandstones is basod on the sssumption that where tho horizon of a aamdotored L.s prosent, but there is no sendstone trace, thore is no longor sand at that horison. There is no direct evicence to support this assumption. However, some systematic contro. of the disappearance of traces is indicated by the fact that mappod pointe of the disappearance of any one trace can be connectod by fairly stiraight lines of continuous trend. Bach of these Iines is the boundary betweon an area in which the trace of a sendstons is present and an ares of no tracs of thet sandstone, and is interpreted as a 11 ne separsitiag gand and shale facties and as the zeso isopech of the sand.

Isopache and facies boundaclea of two sandstonos are parallel to the trend of present struatures. Sandstone (2) is exposed on ly around the staructurel high just aast of the Ikpitpuk. A zero isopach is 2 milos southwest of the Titaluk anticline axis; the 11ne of maximum thicknegs (about 60 feot) is along the oxi.s. North of the axis the sand thins again to lass then 20 feet. Sandstone (6) is mapped for almost the full length of the area. A 1 iro of ainimut thickness (ebout 20 feet) is paraIlel to and \& to 5 miles southwest of the TLtaluk anticlime axis. Best of Baby Gresk the thickness reaches a. maximue of sbout 40 feot on the axis and then dininishes northeastwayd to about 30 ?eet. The northera factes boundary of the sendstone crosses the axds near Baby Creek; mest of thore it is about ? miles south of, and roughly parallel to the axis.

 900 Soot belon the black paper ghate, mould bo sibout 1,200 feot bolow the con-

 Crous dons mappod by Ray and stemhor L.
 botwoen noxth- and south- Plowh stroan follows fastly alosely slong the onttelung axis. Us the stmuctural high zast of Daby Grevic che sandatones hage

 section ie expeaed, but Ehots smeluies asndetonss. Tue main divide thove is dirgetty elnys the natlatine ads, and tha mighest torographte potat of the

 sapistone unito plue or winus whatx asticatod strait grephise distance froes

 inciopondont of cormelstion hsesuse they are besed ou points aill on the same trico.

The cospelation of tro teolatad kemoes on Ryy Graek moan the anticlena asis is in doubt. Phese thonces are mappaid as thoas of samaistone (3), butt argut be of sancistones (2) ar (4) 80 contorm Ettricuitas an tho asts there
 lounl cate of exptrand pluage of the anawoling bath aot. the gmount of alogund on ofthes of the tho suructural. Wighs.
 contoxes there mush be dahed. The highast yapped sutithules of gandstone (6) are ahowa by 10 -fteot contoura on wie diayoe Girobly dome and on the highor
 fortury accous Raby Groek cad zecoses the anthollund ants. DYloss atips of this sard-
 foct contorw minst el.050 satat of hesty Cresk.

In the ares of noetrard plimee on the high eapt of tha Mkpikpuk it If peralble to Sollon key bsda alnost contlavowaly, so that the shepe, if not the alevetion of the strizetuae relative so asatorz aroas cannot be in doubt. The two molid $50-$ Loot contours ti tho sop git the hi ghe are drapm from elopstione of eardetone (2), and the sollid 50 w and 20 - foct contoung of the western olosure frol samdstone (4). It is beckuge a contimous sequence of sendstonas

I/ Ray, R. G., and Pischer, i. A., op. Git.
$(2),(3),(4),(5)$, and (6) osn be traced through this asea and southward tomard haybe Creek that sondstone (6), the contoured surface, is defined at
 preserved on the high and its position must be projected. The interval from the base of sandetone (4) to the bace of sendatione (6) variea by only about 40 feet (about 20\%) in areas where both crop out, and the minimum value has been used in projecting sandetone (6) over the structural high.

Earlier maps of the arsa $1 / 2 /$ have shom the axis of the Titoluk anticlfne as intersecting the Ikpikpulk one helf to one mile north of the location shown on figure 1. No traces were found north of those shown along the exis here, and the traces mapnod do doptno an axte as shown. It toment posefblo, homever, that the axis dram weat of the high is that of a small fold on the flonk of the main fold, Jike the one plunging southmest 4 milles southeast of the high. The mato axis nay have a more northerly bearing weat of the high, and contours that close around the minor fold may fail to close around the anticiling, If the structuxe contours ciose normally around the axie mapped at the Ikpikpuk, the abount of closure is at least 370 feet. If the axis shom Is only a winor fold axis, the amount of closure is at least 50 feet.

RESERVOIR POSSIBILTTLES

laboratosy detarminations of porosity and porneabilitity of the oight samdstone units heve not been rade. Aill the sendstonos are calosreous, and most specimens of thair woothred flant wore ostimated in tha fiedd to havo modium porosity. Loaally some rocks, such ss the conglomerate and intertongued sandgtome in unts (2), are hichity porowe. The gonietones of umits (1) have pery low parosity south of Kay Creek, whese they are dask and msssive, but heve ereater porosity to the north whore they are yellow and thin-bedded. The ohange is faefes along the hoxizon of Unit (4), from shale in the southeast through low porosity sarudstone to mediuv porosity sendstone in the northwest,
 of the anticitne.

2/Ray, R. G., and Fischer, H. A., op, oit.
2/ Fischer, i.. A., Interprotation from sorial photozraphs of geologtc shantumes of the cenkral Golville River Ares, Alasic, Ceological Investigations Hava 1 Petroleum Resorve Ho. A. Remort No. 30, 2949.

[^0]: If Stefansson, Karl, Thurrell, R, ए.? J., and Zumberge, J. H., Stratigraphy and structure of the Wolf Creek anticline, Alaska, Geological. Investigetions, Naval Petroleun Reserve No. L, Report No. 13, 1948.

 2/ Rav. R. Q.. and Fischer. W. A.. on cit.

