United States

Department of the Interior
Geologic al Survey
Washington

Geological Investigations
Naval Potrolenas Reserve No. 4
Alaska

Prelisainary Report No. 25
THE STRATIGRAPHY AND STRUCTURE OF THE OKPIRRURAK AMD KIRUKMAGTAK RIVER AREAS, ALASKA

United Statee
 \checkmark Deparitment of the Interiore
 4.S. Geological Suxrvey
 Waghington

Goological. Investigations Naval Petroloum Resexve No. 4

Alaska

Preliminazy Regoxt No. 25
THE STRATICRAPMI AND STRUCMTRE OF THE
OKPJKFURAK AND KDRUKPAGTAK RTVER APEAS, AJASKA

By
Willitan W 。 Patton_{y} Je,
and
Io Lo Tailleus

Noveraber 1949
Page
Introduction 2
Topography 1
Geology 2
Stratigraphy 2
Wississippian Rocks 2
Lisburne Linestone 2
Upper Triassic Rocks 4
Shublik Formation 4
Iover Cretaceous 5
Killik Group 5
Aucelle Unit 6
Shale Unit 7
Torok Unit (Probable Kjllik Croup) 8
Lover Part of Nanushuk Group 10
Tuktu Sandstone Unit 10
Igneous Rocks 10
Structure 11
Inverpretatione 13
killik Group Rocks 13
Killik Group - Namshuk Group Contact 14
Significant Petroleun Featuxes 14
Suramary 15
ILIUSSTRATJONS
Plate 1. Preliminaxy Geologic Map of the Okpikruxak and Kiruktagiak Rivers Area, Alaska
Plate 2. Composite Columar Section of Pre-Cretacecus Rocks in the Olspikrurak and Kiruktagiak Fivers Area, Alaska
Plate 3. Composite and Correlated Columar Sections of Cretaceous Rocks in the Okpikrurak and Kiruktagiak Rivers Area, Alaska. (Separate)

PREJTMTNAFY REPORT OI THE STRATIORASHY AND STRUCTIRE
O THE
OKPIKRURAK AND KIRUKRAGIAK RIVER ARIEAS, ALASKA
By
Wiluiam W. Patton, Jros
and
To Lo Tailleur

INTRODUCTYON

Mavy Oll. Unit Party No. 4, during the sumer field seeson of 1949, examined the surface geology of the aras of the Oppikruxak and Kirultagiak Rivers. The party consisted of six mens two geologisis, two field assistants, a weasel mechanic, and a cook. Threo weasel.s tyere used for transporation in the field.

The aree covered is bounded on the west by the Okpikrurak River, on the east by the Chandler River, and on the south by the north front of the Brooks Range. Tuktu Bluff on the Chandler River and its westwaxl extension forms the northern boundary. The area is drained by the Chandler, Kirmktagiak, Ayiyak, Okoknilaga, and Okpilmurak Rivers.

The objective of this sumarer's work was the geologic mapping and stratigraphic study of the rocks that crop out, in this area. All outcrops were visited and tho grolocy way plottech on vertical and tei-metrogon oblique aerial photographs. Altitudes were established by an altineter tzaverse.

Parts of this area had been investigated previonsly by members of the Niavy 0il Unit. During the sunmer of 1945 George Cryc, E. Jo Vebber, and Ram Stolaneson visited outcrops along the Chandier and Kiruhtagiek Rjvers and in the vicinity of Gastze Nountaino

In the same year L_{0} A. Waxner and C. Ho Kirschnor examined outcrops 2long the Okpiccurak River in conjunction with their survey of the Killisk and Colville Rivers. R. Ise Detteman included detailed stretimpaphic studies of cut banks near the confluence of the Kiruktagiak and Chandler Rivers in his geological mapping of the lower Ghandler dueing the sumer of 1948.

TOPOGPAPHY

The Okpikrurak-Kimuktagiak River area lies wholly within the southern foothills section of the Arctic Foothills Province. The area can be divided into three physiographic belts that extend eastwest across the area.
 fev 1.0 midiges adjacent to the scerp. The belt is underlain by the finere grained, nonresistant nembors af the Torok unt g_{2} and outerops apo lindited to cut banks.

To the south is a bolt, five to ten miles vide, of long, east-trending, mubble-covered, hogback ridges, flat-topped bluffs; scall, ircugulayly shapod suttes and lonobs; and two mosslve mestlatce symutink moutitaine, Castle tountain and Lortress Mowntain. These features are topographte expressions of the infolded coarse clastic facies of the Forok witt, and of mnfic imeous intrusives and Triasuio chores. Tho best outcrops in the Olpilmurek-Kimutagial: Rivor area are in this belt which is referred to below as the Castle fountain-Fortress llountain infoldod belto
A. Gravel pedinent of Late Tertiary or Pletsiocene age lies betwoen the Infolded belt and the north front of the Brooks Fange. Bedrock outcrops are linited to the valleys of incised rivers and a 5 mull dissected arei south of Fortress Lountain.

The aree has a maximum reliof of approxinately $1 . g 400$ feet: the highest point is the top of Castle Mountain, at an alititude of 3,726 feet。

CHOTOCY

Stratigrapiy

The sedinentary rocks that crop out in the okpikruxak-Kjruktagiak River ares are the Mississippion Lisbume Iimestone, the upper Triassic Shublik formition, and the Lower Cretaccous killiik group and the Lower Cretaceous pert of the Nanushule group.

Aside from gathering lithologic and faunal data, a concerted erfort Wes rade to determine the thicknosses and stratigraphic relationships of these Itoboloric untis. The rigsuts of this work are get forth in the form of a composite stuatigraphic colum (plates 2 and 3). It should be emphasized. that, ercopt for the I,isburne Iinestone, all thicknesses eiven aro approximato. A large percentage of the rociss of the $K 511 i k$ group end Strublik formation are noncesistant and therefore not well exposed anywlene th the area. The complic tied structure throughout nost of the area nade reliable thickness mescurenents on many of the bether-exposec sections impossible.

The strutigraphic column presented is an assenblage of incomplete sections loeged at various localities. Cormelation between these sections was made on the basis of stmucture, gross lithologic features, maximumminimum thickness measureraents, and fossilis. In viev of the facies changes that occurs particularly in the killik erout, the colunn is not specinically applicable to any one locality.

Mississippian Rocks

Lisburne Linestone

The bulk of the Lisbume limestone is well-axposud iong the north

Iront of the Brooks Range. In the Okpikronab-kiruktagiak River area,
 of breached anticiines.

The most extensively exposed section is about I mila north of tha Range on the Kiruktagial: River and Monotis Creek, whese 370 feet of Lisbume is exposed srom the center of a breachod antictine to the base of the overaying Triassic shales (plate 2)。

The lover 250 feet of this section is predominately a nassive, gray~ buef, cxystalline, biociastic $3 i m a s t o n e$. Thjs sequence is capped by an 8 -foot bed of dark, bituminous or carbonaceots chers. On the basis of the Iithologic characteristics and a gcant faune, A. I. Bowshers ij balieves that this lower 250 feet can be tentatively cormelated with the Alepah membes of the Lisbume at Kansyut Lake which he described.

The upper 220 feet of this section consists of black, bituntnous (3), phosphatics cherty, and shaly limestones thet carmy a distinctive upper Mississippian fauna. No compesponding section has yet been recognised in the Brooks Range, although Bowsher $1 /$ meportb finding a iev phosphatic beds near the top of the Itisbume at Chandier Lake. Over mach of the Range, exosion may have strippod away these leas resistant beds. It is proposed on the basis of the distinct lithologic chanecteristics to call this unit the Kiruktagiak member of the Lisbume linestone. The strettigraphic position of this member with reference to the overlying Shublik formation and the underlying massive limestone (Alapah (?)) lead the miters to believe that it is younger than the Hapah menbox as describod by Bowsher.

The bottom 40 feet of the Kiruktagiak member is poorly exposed and conaists of graymblack phosphatic and bituminous (?) limostones anc shaly limestones. Black, dense, amoribombeasing csIcareots concretions as wuch as 3 feet in diameter occur Locsily. These beds overlis the 8 foot chert bed of the lower massive Alapreh member vi th no apparent discordance. The phosphatic zone is overiain by 275 feet of ciark, cherty, biturainous (?) Iinestone, shaly limestone, and shale. This is cappec by 5 to 6 fost of fossiliferous, pyritis, black shale. The contact with the overlying red and. green ahales of the Shublik fommation is not exposed but there is no apptrent discordance in dips between the two sections over the 30 -to 100 -foot covered. interval whith separstes thors.

A narrow belif of Iimestone Crosses the Kixuktagiak Valley at The Noteh where the Lisburne 1.8 exposed along the crest of an anticline. The exact stratigraphic sequence of the beds could not be deciphared because of stauctural complications, but seversl hoxizons of the Kimuktagiak mombes were recognized. Black phosphasic or bituminous (2) shales with hackig calcareous concretions were found to caxry the same well-preserved amala. amonite as occurred at the type locality. The shales appear to be overdain by dark, bituminous (?), cherty 2 inagtones.

Two narxow belts of Lisbume Limestone extend esstwwest between the East and Middle Foxiss of tine Okplkruzak River. They are marked by a sexies of sharp jagged ridges of black, bitwainous (?) cherts and limastones. Although there are no exposures betwean the East Fork of the okpikrurak ani the Okoknilaga Rivers, outcrops of similar rocks on the Okokrailaga Valley indicate that these belts are probably continuous acsoss the divide. the
fossils and lithology strongly suggest, thet these rocks belong to the Kimuktagiak member.

Numarous small exposurea of Lisbume limestone crop out thmoughout the Okpikrurak-Kimuktagiak Rives aroa. Pxactically ali,g however, have been reduced to rubble and not enough data could be gathered to cosrelate them with laom

> Uppe: Triassic Rocirs

Shublik Formation

Monsnesic pocke are widespread. South of the Castle Mountain-Fortiress Nountnin infouded bolt, but erposures are Jimited to discomected cut banks along the mafor strearas or to scattered rubble ridges and Low knobs in this belt of closs folding. Isolatod outcuops indicate anothor band of Triassic strets 1 to 3 miles north of Gaskle Fountain and Forbress ifountaino

Parts of the Iriassic section are exceilentiy exposed along the lifddle Work of the Okpiliturak River and also along Monotis Greek neeir the front of The Rance. A compositio neotion (Plate 2) established from those outorops represonts, es far as determinable, the minimum thickness of the Shublik formation in the okpicmurak-Kimukigiak River area. For descriptive purposas, the Shublik can be subdivided into two unjtits on the basis of gross lithology: tha) Dower unit of shalos, chas is, and minor coarser clasticss and the upper unit of interbedicd shaies and shitstones.

The lover 310 feet of this section is composed of severel varietios of shale. In stratigraphic order thoy are: 1; Basal, green, red, and daxk-
 shales with a zone of olive-drab iodded chert near the top, 80 feet thick. 3) Garbonaceous or bithminous shales; locally woody oil shales, calcaxeous paper shales, and minor fossiliferous linestone beds and Lenses, 80 feet thick The succeoding 750 fect of this lowes soction is cominentily a black, medium-bodded chext。 Oxxboneceous shale pertings and thin interbeds are abunciant. i 25 -toot esrbonaceous and lcarevos shale break ocevxs in the upper pert. Porty-itive foct above the base of this ehowt sequence ane two thin, porstatent it hestons beds that mank the first appoarance of psoutomomotise is 20-iour aono of interbedded, dark- to medium-zray, finely crystanine linestones, cherty limestones, and oil Bhajes cap this section.

Thiassic rocks are exposed in mumerous cut banks on the Middle Fork of the okpikrurak River - A complete sequence from the top of the Lisbume to basal Killik is partlyy exposec on the north Mank of an overtumed. anticline, $3 \frac{7}{2}$ railes south of the funotions of the Forkse Here, the maximum posstible thicloness for the triassio was computed to be 3,280 feet, of which the upper 450 feet is covered. Within this soquence, an outcrop of the Paudomonotis-bearing limestone zone lies 480 Ieet above the top of the Lisburne and 520 belon dark shales and silltstones of the upper unit. Thus, the thickess of the 20 mer oherty untt of the Shmblik formation is 2 imited to 1,000 feet.

Perts of this section are exposed farther south along the middle Fork. The seguence from older to younger is: (2) Black bedded cherts with minor carboneceous or biturinous limestone beds; only the uppermost part of this sequence is well exposed. (2) A zone of linestone sinjlar to the top beds described on Monotis Creek. (3) A 175 -foot thickness of Well-indurated, medium-gray to mediun-green, locally calcareous siltstones, shales, and sandstones which are not readily distinguishable from basal killik rocks. (4) A 250 -foot section of green to mediurs gray, sonewhet glassy, bedded cherts with a red shaly chert zone near the top.

Bighteen hundred feet of the upper unit of the Shublik is exposed on the linb of the anticline on the Widdle Foric. Mearly the saue thickness crops out along ohkonagoon Crees. In both places the sections consist of an alternating sexies of well-indurated, hackly, darlc, comanly purple or green shales; daxk gray, purple-banded siltstones; and, locaily, light gray to white, very Ane grained sandstones. In the basal part the rocks are coarser, darker, and contain scattered carbonaceous fragments. The siltstones generally have rippled badding surfaces and abundant scour casts. No fossilis were found in either section. Several outcrops of these beds elsewhere are darker red and green, probably because of rore intensive weathering. These rocks of the upper unit way be differentiated from younger rocks by theix greater degree of inducation, the lighter color, the cleamer character of the coarser facies and the scarcity of carbonaceous material.

Although the fossils collected from below the Pseudononotis-bearing limestone zone in the cherty unit have not yet been identilied, the streta. of this lower unit have been assigned, on the basis of the upper Triassic age of the Pseudononotis-bearing beds, to the Shublik fomation. The general stratigraphic relationships of the upper unit are not certain bocause, apparently, these shale-siltstones have a restricted occurrence as a result of pre-killik eroston. But in the localized area of exposure, no break in the depositional sequence from the lower to the upper units was recognized. Therefore, the upper shale-sfiltstone unit has been included with the lower cherty unit in the Shublik formation Later microfossil and laboxatory studies may furmish more conclusive evidence as to relationships of these beds.

Iower Cretaceous Rocks

Killik Group.

The rocks of Lower Cretaceous age in northern Alaska have been assigned to the Killik group and to the lower part of the Namushuk group. To date, the stratigraphic studies of Lower Cretaceous rocks by the Navy $0: 1$ Unit have been confined largely to the Namushuk group. This group has been subdivided into formatione, members, and tongues and into tine-rock units (zones A, B, C, etc.). The Fillik, on the other hand, has never been satisfactorily subdivided in snailer mappable units.

As a result of their sumeeris work, the writers believe that the kilitk can be broken dom into three mappable units, at least, in the Orpikmuak-bimktagiak River area. Theso units ares the Aucella unit, the Siale unit, and the Torok unit. The classification is based on field studies alone. Subsequent laboratory studies of racro- and microfossils, heavy minerals and lithologic specimens may necessitate some modifications. Therefore it is not now feasible to assign formational or member status to these mits.

In 194.9, the zone A (Torok shales), formally part of the Killik group, Was assigned to the Manushuk group. Studies in the Olcpikrurak-Kiruktagiak River area this sumser indicate that it more logioally belongs in the Killik group The reasons for this change will be explained later.

Aucella Unit.

In the Okplaurak-Kiruktagial River area the Aucella unit crops ov.t south of the Castle Mountain- Pontress Hountain infolded belt and in several places on the flanks of the Castle Mountain syncline. The unit most cominonly crops out as long, lom, rubble ridiges but is best exposed in two cut banks on the Okpjkrurak River and one on a tributary of the Ktruktagiak River.

Tha cherecteristics which distinguish the Aucelle unit from the Shale and Torolc units are: (I) the abundance of Aucella crassicolie Keyseringg: (2) the cleaner, more quartzose character orthe sandstones; (3) the scarcity of carbonaceous matter above the basal sandstones and congloneratess (4) ripple and scour marks on the sandstones and siltstones; (5) iron-rich sandy livestone lenses and concretions which weather rusty brown; (6) the monotonous repetition of interbedded line-gratned sandetones, calcareous sandstones, siltstones, and sheles throughout most of the sequence. On aeriai photographs, ortcrops of this unit cannot readily be distinguished from the overlying Torok umit.

Ins a cut bank on the okoilaruxak Fiver a 2,000-foot section of the Avcella umit is chiefly a series of interbedded fing-grained, green, argillaceons sandstones, dark calcareous sandstones, and dark shajes (Rlate 3). The sandstonos aind calcareous sandstones make up about 60 percent of the section. Aucella occurs throughont. At the botton of this Bequence is 20 feet of coarse sandstone and chert-gramie conglomerate. A. 500- to 600-ioot covered interval separetes these beds fron Shubliks. cherts. Thus, provided there is no major Saultings the Aucelle unit here has a maximun thickness of 2,500 feet and a minimum thicicness of 2,000 Seet. Parts of the sarse section are exposed several railes to the south on the Middle Fork of the Okpikmurak where the maximum thickness was calculated to be 2,500 feet. Again the basal 500 feet are not exposed.

One wile south of Fortress Hountain, Shublik cher'ts are directly overlain by a 300-foot sequence of fine-greined, green and gray argillaceous sandstone with lenses of chert-pebble conglomerate and a 100-foot section of dark olay shale (plate 3). The conglonerate consists of angular to subangular chert rragments, rounded oil shale pebbles, and scatteced carbonized plant fragments in a fine-gratned sandy ratrix. Four specinens of Aucella were found in a conglomerate lens. This sequence is separated fros Shublik cherts by a corered interval of 30 feet. At munerous other places south of the Castle Mountain-Foxtrees Mountain infolded belt, these basal. sandstoneshave been infolded with Shublik shates and cherts. In addition to chert and oil. shale, several of the conglomerates contain pebbles of crinoidal limestone (Lisburne), green, fine- to medium-grained mafic igneous rock, and green quartzite. Four iniles south of Fortress Hountain, a zone of boulder conglonerate 20 feet thick rests directly on an irregular suxface of Shublik chert. Although the relationships there are partly obscured, no great angular discordance is apparent.

In a cut bank on a tributary of the kiruktagiak, about a mile north of The Notch, a 950 -foot section of the Aucelle unit is exposed (plate 3). In this series of Aucella-bearing green argillaceous sandstone, calcareous sandstones, shales and siltstones, the proportion of shate is considerably greater than in the Okpilcrurak section.

Based on the occurrence of Aucella crassicolis, the Aucella unit is assigned to Neocomian (Iower Lover Cretaceous).

Shale Unit.

The Shale unit crops out on the flanks of the Cestle Mountain and Fortress rountain synclines and in a band 3 to 4 ailes wide north of the Castle Mountain-Fortress Mountain infolded belt. Exposures are jinited to cut banks of which the inost extensive are along the Kiruktagiak and Chandler Rivers.

The unit is predousinantly dark clay and silt sheles. These shales cannot be readily distinguished from shales of the Torok unit or Aucella unit, but in the area studied it is a mappable unit because of its stratigraphic position between the underlying Aucella unit or Shublik formation and the overlying basal sandstones and conglonerates of the Torok unit.

Practically everywhere the shales have been intricately folded and, therefore, thickness reasurements are difficult to obtain. On the Kiruktactak River, wast of Castle lfountain, however, a relatively uncomplicated section overlies Shublik cherts and shales and underlies basal Torok conglonerates and sandstones (P1ate 3). Here the unit roasured 1,750 feet in thickness and is composed of dark clay and silt shales with silty, surewhat septate, ellipsoidal concretions. Thin beds of fine-grained, green, argillaceous sandstones are scattered through the section; carbonaceous raterial and fossil wood axe abundant.

In the band of Shale unit north of the Castle Wountain-Fortress Hountain infolded belt, lenses and concretions of liny siltstone that veather bright yellowwred are common.

A fossil fish skeleton of the Aspidorhynchidae family was found in an exposure of Shale unit on Forok Creek.

Torok Unit (Probable Killik Group).
The bulk of the Killik group rocks have been assigned to the Torok wit. More study, however, may reveal that a further breakdom of this croat chickness is possitile. The rorok unit is exposed in the Castle Hountein-Fortress Mountain infolcied belt and just south of the Thaktu escarpment.

Briefly, the Torok unit consists of a thick series of darik shales, nil.tstones, greywackes \bar{y}, and Eraywacke conglouerates that were deposjited in a marfne erviroment. The oarse clastic facies are concentrated along the southern margin of tho Castle Mountain-Fortress Mountain inioldod belt, but grado ont into shales a short distiance to the north. There are also appreciable facios changes in an east-west direction. No roliable stratigraphic horizon comld be traced throughout the area. Fossils are scarce generally and nonexistent through much of the unit.

The only unbroken section of the borok unit is at Gastle Mountain. Pron the basal graymackes and conglonerates overlyjug the Shale unit to the top of the conglomerates wich cap Castle Mountain, the section is 3,460 feet thick (Plate 3)。

The basal graywackes and raywacke conglomerates at Castle Mountain were deposited on a scoured suriace of the Shale unt. The basal section is approximately 650 feet thick and consists of modiun-- to coarsemgrained, green graywackes with irregulas lenses of chemt-pebole and granule conglowerate. The section grades upward into shales. Carbomized plant fragnerts and oil shale pebbles are abundent. Trocerams ap. was present Locally.

In the Fortwess Mountain irea, the basal coarse clastic facies crops put on the Canoe Hills. Here the section consists of interbedded shales, graywackes, and graywacke conglonerates. In addition to chert these conRomerates contain cobbles and pebbles of rray, crystallines. bjoclastic lirestone, green diabese, green quertrit̂e, black biturinous Hmestone, and wood fragments. These are tisbedded in a highly argillaceous, poorly consolidated matrix which $10 c a l l y$ has shaly partings. At several horizons, laxge, subangular chunks of shales and silltstones are inbedded in the matrix.

[^0]To the west on Okols Crcek the basal coarse clastics arc evan more erratic. Angulas chunks of Greywacke, chert, and carbonized voon fregroates are scattered at randoa through an irregularly bedded silt, shalle, and grayvacke matrix.

Outcrops of the same horizon occur on the Okoknilage and ocoikmels Rivers. Lemuroceras was found at the latver locality.

In the Castle Lountain aroa, the basal conglomeratio section is overlain by a monotonous secuence, several thonsand feet thick, of dack silt and clay shales with some fine-graiks, green groywackes ant sill bstumes. Aucellina was found in these shales at soveral locatities on the Girulctagials River. This shale section is overlain by 900 feet of fine-gradined stayrackes with lenses of chert-gramie and chert-poblle conglomerate. These beds are well exposed on Casile Greek but apparently grade into shalles lather abruptly, as they were not recognized on the north side of Castla kountein.

At least 3,000 feet of dark shales separate these coarse clastics from those which cap Castle Uountain. The few thin beds of grayvacie and conglomexate scettered through these shales on the south sida of Castle Mountain are not present on the north sice.

On the southeast face of Castle Bountain the 3,000-foot sequence of shale is capped by 2,300 feet of coarse green graywacke and grayracku conglonerate. These conglonorates, lithe those belar, ace composed chiefly of subround chert pebbles in a graywacke ratrix. Carbonaceous natcer is abundant. Gray bioolastic Iinestone, black. bituminous limestore, green quartzite, and pinik, greissic granite petbles are comson in the upper 800 feet. No white vein quarts pebbles were found.

A 1,500 -foot section of the upper Torok unit was aiso measured three quarters of a roile to the north at the center of the Castle Bountain syncline. The upper part of this section ciffers little from the 1,300 foot section to the south. The lower part, hovever, is sssentially dark shale. When the two sections are correlated by the direct tracing of beds, it is apparent that the 10068800 feet of the corglomerate in the southem section grades into shale within three quarters of a mile (Plate 3).

The Torok unit is a3.so errosed in a belt: 3 to 4 miles wide, thet critende east-west across the northern part of the area. The best outcrops are 2long the Chandler River where, in $19 L 8$, R. Lo Deltiernan masured a sequonce $4 g 260$ feet thick between the underlying Shale unit, and the rverlying Tuktu sendstone (1 ate 3) . The 500 ferto of green to gray graywacke and chert-gramule conglomerate et the base of this section is belicved to be correlative with the baad coarge clastios of the Torok unit at Castle Lountain. Several species of Lemuroceras and one Beudanticeres were found in these beds on the Chander Miver by the writer'so Between these graywackes and the Raktu sandstones is about 3,000 feet of clay and silt shate with lenses and concretions of dark stlty imestone.

The presence of Lemuroceras. Beudenticeres, and Aucelune in the Tocok indicates an age of Albian (uppen loner Gretaceous).

Lower Part of Namushuk Group.
Tuktu Sandstome Unit.
The Tuiktu sendstone orops out along the northern boundary of the Okpikrurak - Kirultagiak River axea. As this unit has been studied in detail by several partios in the past, it was given onyy a cursory examination In 1949. On the Chandler River Detterman found it to be 1,040 feet of a. fine- to mediun-greined, argillaceous, locally fossiliterous, green sandstone. A few pebbles of white vein quarts appear in the upper half, and noar the top are a namsom lens of quarts and chert pebble conglomerate, coal, and several beds of yellow-red sandstone.

The Tuktu sandstone overlios the Torok unit. Everywhere a covered interval of Irom 50 yards to a half mile separates the two units. Near the contact the sandstones dip from 10° to 20° to the north, but the crenulated Torok shales dip on the average of 30° to 50° to the north. This discrepancy may indicate an angular unconforimity or may have resulted fros the relative competency of the sandstones and shaies.

Ignaous Rocks

The only igneous rock found in the Okpiknucak-kimutagiak area is fine-grained. With the exception of two large nasses at Horseshoe Hountain ard on the west side of the Kiruktagiaik Hiver 7 riles south of Horseshoe Mountain, the rock generally ocourg as small scattered outcrops within the areas of Shublik exposures. Wany exposures are swall, pluglike bodies elongatsd parallel to the strike of the host strata. In several places, these separated exposures are alined, which probably indicates discontimous intrusion along linear zomes of weakness parallel to the regional trends. In numerous other places, sill-1ike relationships wese were evident in the outcrop and areal plan: thin layers of the igneous rock alternate with thin beds of chert; tabular bodies, 20 to 50 feet thick and up to onemalf mile longs parallel the strike of the country rock. The thicker masses, with the exception of Forseshoe dountain, show sireilar elongation in the direction of regional trend.

No mi.croscopic stuay of this season' a collection has been i2ade, but previous work has shom the rock to have a gabbrombasalt composition. Negascopically, the rock has a fino- to modiun-grainod, even texture and is dark green. Jinor variations in texture and color were noted over the area, but there were no great differences in composition. Local changes in appearance are probably due to assirilation of country rock.

The outcrops of the igneous rock are deeply weatherod becsuse the feldspar breaks dom readily, but they stand in slight relief because the rock as a whole resists erosion. The altoration of the foldspars to calcite and the subsequent leaching of the calcite comeonly produce a porcus texture。

The effect of the intmusive rock upon its host was generally slight, particulaxly in the cherts, shales, and sardstones. At The Notch, a tabulas body 350 feet thick was intrudec along the contact of Lisburne linestone and Shublik chert. The limestone near the contact has been recrystallized, sillcified, and impregnated with veinlets of calcite。

The rocks appear to be intrusive everywhore except at Horseshoe Hountain, where sone fine-grained and anygdaloidal textures are suggestive of extrusion. Thin-section studies are necessary before conclusions as to the relationships at Horseshoe Mountain can be made.

Nowhere was it established that the igneous rock is intrusive into Ktllik or younger strata. Pebbles and cobbles of mafic ignecus rocks are present in the basal conglonerates of the Aucella and Torok units. on the evidence now available, the age of the intrusive activity would fall betweon post-Shublik and pre-Lower Gretaceous.

Structure

Orogenic inovements assoct ted with doformation of the east-trending Brooks Range are renlected in the Okpikrurak-kiruktagiak River section of the foothills region by a complex series of folds, generally peralleling the strike of the rountain front. In contrast to the thrusting prevalent in the front of the Range, compressional stresses were hare relieved nore by folding than by fanltingo The folding diminishes northward from the Range. A regional dip to the north prevails.

Beiween the front of the Brooks Range and the Castle Mountain-Fortress Lountain infolded belt, pre-Torok strata have been compressed into a myriad of short, sharp, overtwred folds. The outcrop pattern resulting from this close folding is well-developed south of Fortress Mountain (Plate I).

Several larger folds are exposed along the Kiruktaciak River and between the Kiddle and Best Forks of the Olpikmaka. They could not be related across the interstream areas because of cover. The smaller folds appear to be secondary on these larger stmuctures.

In the infolded belt, the Torok and Shale units have been warped into a broad synciine. Attitudes on the upper beds of the Torok unit, which occur at the top of Castle Wountain, are gentle and regulas. Attitudes on older Torok strata west of Castie Hountain, however, show greater deformation, even across the center of the major syrcline. In the area surrounding Castie sountain, soase basal Torok beds have bean overturned and faulted. As there is no apparent major angular break within the Torok sequence, folding rast have been progressive and, also, conterporaneous With deposition.

The generat east trend of the large synciline is interwupted at several localities along the infolded belt. In each cases the western segmezt has been digplaced northward ralative to the segment east of the break in contirmity. Over a distance of 15 miles, the cumalative effect of these offsets has been to displace the major symclinal axis at the Okpikmuak River 4 to 5 miles north of its position at Cestle Hountain. Sevoral rajor streans cross the infolded belt along Lines that mark these offacts. Projections of the lines or zones that terninate the Fortreas Mountain segment coincide with zones of north-south structures in the closemfolded bolt south of Fortress Mountain. The above evidence suggests that north-south zones of strong disturbances are present.

Tro rajor faults are associated with the Casille Mountain of the infolded belt. South of Cestle Mounteing the staike of basal Torok strate. is diacordant with the Triassic-aretaceous contact. This discordance can be traced from the pedinent gravel cover near the headwaters of Torok Creek westward to the lower reaches of Castle Greek and may be contimous to the Kiruktagiak-Ayiyak divicio. South of Fortress Mountain, Torok directly orerlies Shublik with no apparent discordance. South of Fortress Mountain, Tonak congloneratos directly overilie Aucella and Shublik beds. Here, howevex, the unconformity beneath the Tonok conglonerates at the weat and northeast ends of Fortress bountain is thought to account for the rissing beds. As evidence is inconclusive, it is possible that these beds have been faulted out.

A narxor band of Triassic underlying the Torok and. Shale units is exponed on the north limb of the rajor byncline in the Castle and Fortress Mountain segments. These cherta have been thrust against southoojipping Torok and Shale units to the morth. Apparently, the fanlt does not extend to the Chandlex River on the east nor to Fortress Creek on the พest.

The Iowland between the infolded mountains and the Tuktu escarpment is largely underlain by deformed strata of the ghale umit that were brought up on the crest of a broad anticlinoriura. Gremulations and drag folds, broken by minor faults, in the incompetent shales have variable intensity and orientation. In general, their orientation is parailel to the regional east tronds, with south dips steeper south of the axial trace and noxth dips steoper north of the axial trace.

That the large anticline has appreciable asymetry is shown by the narrower exposure width of the shale ungt north of the fold axis. Although the beds are badly crenulated, overwall dips on the noxth flank are between 35° and 45°, and those on the north Xlank are between 40° and 55°. Either fold intensity dirinishes rapidly north of this anticline or else an angular unconfomaty exists under the luktu unit, because, over a mile distance, dips decrease frors 40° in the Torok to a prevailing 10° in the Tulctu。

Killitk Group Rocks
The characteristics of the sediments of the Torok and Shale units indicate that they ware deposited during a period of active earth novements.

The graywackes and graywacke conglonerates of the Torok are a heterogeneous accumlation of poorly sorted and slightily rounded, resistant and nomesistant rocks and minerals of several varieties. Their nature suggests that at the tine of deposition a nearby rising land mass was being repidiy eroded and the detritus was being dumped into an actively sinking marine basin.

As already pointed out, the sedinents in the Shale unit and in the lower part of the Torok unit are rore deforved then those above. These rocks must have been subjected to active cosepressional stresses even during deposition.

Under these conditions of sedinentation, it might be expected that munerous small unconformities would develop. Several such breaks were observed in the Okpikrurak-Kirulktagiak area. North of Fortiress Mountain, conglomerates of the Torok unit crop out very close to Shublik cherts. Apparently some of the Shale unit has been eroded away. On the west side of Fortress Hountain, conglomerates of the Torok lie unconforrably on dark sheleso A sinilar situation exists west of Castle kountain. None of these unconformities could be traced very far.

No outcrops of the Shale unit or Sorok unit were found south of the Castle jountain-Fontress kountain infolded belt. The concentration of coarse clastics along the southem margin of the infolded belt and the abrupt vedge out of these clastic rembers into shale proves that the sounce area and shoreline, during the tine of deposition, were very close. It is doubtul that these marine sedinents ever existed as for south as the Brooks lange. The Castle lountain-Fortress Mountain infold may mark the location of a rapidny sinking ofnghore marine trough during upper Lower Cretaceous tima. The infold, as itt is now known, was in the process of formation during the tine of deposition of Torok and Shale unit sediments.

The occurrence of Aucella umit strata a mile north of the Brooks Range indicates that the source for these sedinents lay at loast as far south as the present range.

As noted above there appaxently was a break in deposition and a period of wation following Aucella tine, Based on fossil evidence, the extent of this break would be fron Neocowian to Albian.

No such extensive break was noted between the Shale unit and the Torok unit. Winor unconfomities between these two units were observed in several places, but fron the base of the Shale unit to the top of the Torok the series is essentially contimous.

If further worls on rocks of the 1 cil11k group proves that the Aucella uit-Shale unit unconformity is widely persistent in the Arctic Foothilis Province, then the Xillitr group should be reclassi Fied to give the Aucella unit an independent formational status.

Kinlik Group-Namshuk Group Contact

The basal greywackes and conclomerates of the Torok unit at Castle Bountain have been correlated with the besal coarse clastics of the 4,160 -foot seotion which R. Lo Dotterman measured at Tuktu Bluffs below the Tuktur sandstone. The two sections could not be correlated direccily above the basal members.

White quarta pebbles occux in the upper hal.f of the Tuktu sandstone, but no quartz pebbles were found in any of the conglowerates at Castle kountatin. It is assumed, therefore, that the top beds of the Torok unit at Castle Mountain are older than the upper half of the Tulctu sandstone and are probably oldex than the entire Tuktu. If this reasoning is valid, it would appear thet the i, 4,60 laet of the Torok unit at Castle kountain has thinned to less than 5,000 feet 13 miles to the north. This is not surprising in view of the abrupt northward wedge out of the coarse clastics at Castle Mountajn. An unconformity at the base of the Tuistu sandstone unit would also account for the thimming.

In $19491 /$ the 4,160 teet of graywackes and shales that underite the Tuktu sandstones at Tuktu Bluffs wexe included in the Nanushuk group as Zone Ao In the sane report the graywackers graywacke conglonerates and shates in the lower part of the Torok unit in the Castle MountainFortress Mountain infolded belt were described as Killik group rocks, and typical of "flysch" depositm as contrasted to the Namakhk "molasse" type. Because the field studies in 1949 revealed that the shales and graymackes of the 4,360 foct section at Tuktu Bluff are correlative with typical "Iyssch"-type depositz, this section is distinct fron the "Rolasse"-type of the Namushuls group. Therefore this section should be included in the Killik group.

Significant Petrolema Features

1. Wuch of the dark, bitaninous(?) limestone in the Kirulctagiak nember of the Lisburne limestone has what is described as an "oil shaje" odor. It is particularly noticeable on a freshly broien suriace.
2. 011 shales are present in the lower cherty section of the Shublik formation. A $35-$ foot zone on Honotis Creek is the thickast section exposed.
3. Asphalitic matierial generaily associated with vein calcite is common as fracture-fillings in both the Shale and Torok units. On Fortress Mountain, a Torok conglomerate bed consistis of angular chex granules cerented by asphaltic raterial.
4. No good reservoir sandstones were recognized on field inspection. The cleanest sands appear to be those at the base of the Aucella unit.
[^1]
SURALARY

1. A 220 foot-section of dark, biturinous (?) cher ty Iimestone and shale overlies the Alapah member of the lisbume linsetone. This section diffors maxkedly from the Lisbuene limestone bolow and, Gherafore, is named the kimuktagiak member.
2. The upper Triassic Shublik formetion is 3,280 feet thick; the age of the lower 1,000 feat of cherts, and shalev is well established by fossils. The upper 2,280 feet of nonfossil Cferous shales and siltstones is exposed in only one place. It appears to overlie confomably the lower $I_{9} 000$ feet and "herefore has been tentatively assigned to the shublik formation.
3. In the area studied the Lower Cretaceous Killik group can be subdivided into three mappable units: the Aucella, the Shale, and the Toroko The Aucellis unit is about 2, 400 feat thick and consists of shale and of argillaceous sandstones and siltstones which differ in a faw respects from those in the overlying unitis. The fossil Aucell.a is commo the unit appears to be separated from the overlying Shale unit by an erosional break. The Shale unit is about $I_{2} 750$ feet thick and consists predominately of dark shales which do not diffor from the shales of the over- and underlying units. The unit is mappable becsuse of its stratignephic position. The torok unit is 8,460 feet thick at Castie Hountain and there consists of shales and of graynackes and conglomerates that wedge out northarard into shales. Thirteen miles to the north the Torols unit is not nose than 5,000 feet thick; except for 500 feet of graywackes and conglomereten at the base, it is composed chiefly of shale. There is no widespread unconformity betweon the Tarok and the shale unit.
4. The presence or absence of an unconformity at the base of the Tuktr sandstone cannot be established.

[^0]: 1/ The grayvackes are sandstone which contain, besides quartz, significant cunounts of angular and subangular fraprents of both non-resistant and resistant rocks and mineral s set in a dark, highly argillaceous, and oiten calcareous, matrix. They are typically poorly sorted.

[^1]: 1) Payne, N . Ge, Geology of the Arctic Slope of Alaska; oil and Cai Investigations Map 106; U. S. Geol. Survey, 1949.
