WATER RESOURCES INVESTIGATIONS

by the U.S. GEOLOGICAL SURVEY in the

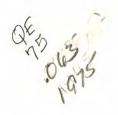
NORTHERN GREAT PLAINS COAL REGION of WYOMING, MONTANA, AND NORTH DAKOTA,

1975

Prepared by
UNITED STATES DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY

OPEN-FILE REPORT
MAY 1975

75 .063


1975

LIBRARY

JUL 7'75

Bureau of Reciamation

Denver, Colorado

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

WATER-RESOURCES INVESTIGATIONS OF THE
U.S. GEOLOGICAL SURVEY IN THE NORTHERN
GREAT PLAINS COAL REGION OF WYOMING, MONTANA, AND NORTH DAKOTA,
1975

By U.S. Geological Survey, Water Resources Division

Open-File Report

Denver, Colorado

May 1975

UNITED STATES DEPARTMENT OF THE INTERIOR

Rogers C. B. Morton, Secretary

GEOLOGICAL SURVEY

V. E. McKelvey, Director

CONTENTS

P	age
Introduction	7
Wyoming	10
Data-collection activities	12
Streamflow and reservoir stations	12
Crest-stage stations	16
Observation wells	18
Environmental Protection Agency water-quality	22
surveillance program	24
Geological Survey water-quality program	24
Geological Survey - Wyoming Department of Agriculture	26
cooperative program	26
Geological Survey - Wyoming Department of Environmental	20
Quality cooperative program	28
Suspended-sediment program	30
Water-resource appraisal projects	32
Water resources of Weston County, Wyoming	32
Measurement of water losses to the Madison Limestone	
and associated rocks from streams in northeastern	
Wyoming	32
Water resources of the Powder River structural basin	
in Wyoming in relation to energy development	33
Hydrology of Paleozoic rocks in the Powder River basin	
and adjacent areas, northeastern Wyoming	34
Availability of ground water from the Cretaceous and	
Tertiary aquifers of the Fort Union Coal Region	
(North Dakota, South Dakota, Montana, and Wyoming)	35
Hydrologic considerations in evaluating the reclamation	
potential of strip-mined lands in the Hanna Basin,	
Wyoming	35
Selected References	36
Montana	39
Data-collection programs	40
National Stream Quality Accounting Network water-quality	10
stations	40
Geological Survey water-quality stations	42
Environmental Protection Agency water-quality	72
surveillance stations	44
Bureau of Land Management water-quality stations	46
Suspended-sediment daily stations	48
Streamflow stations	50
	52
Crest-stage stations	
Interpretive studies	55
Availability of water from the Madison aquifer	55
Effects of mining and related activities on the	
shallow ground-water system	57
Site study to assess the ground-water problems that may	
affect restoration of mined lands	59
Yellowstone River temperature study	60

CONTENTS--continued

	Page
Data-col	llection activities
Sur	rface-water stations
	ound-water stations
Wat	ter-quality stations
Sec	diment stations
	mty ground-water studies 95
Sha	allow groumd-water study (Gascoyne lignite mine) 98
	drologic changes due to lignite mining in North Dakota
	Part 1 - Reconnaissance of strippable lignite deposits 100
	ailability of ground water from the Cretaceous and
7	Tertiary aquifers of the Fort Union coal region $\dots \dots 101$
Other, relate	ed investigations
	ILLUSTRATIONS
Figures 1-9.	Maps of northeastern Wyoming showing locations of:
1.	Streamflow and reservoir stations
2.	Crest-stage stations
3.	Numbers of observation wells, by county 17
4.	Environmental Protection Agency water-quality
_	surveillance stations
5.	Geological Survey water-quality stations 23
6.	Geological Survey - Wyoming Department of
	Agriculture cooperative program water-quality
7.	stations
7.	Geological Survey - Wyoming Department of
	Environmental Quality water-quality surveillance stations
8.	Suspended-sediment stations
9.	
10-17.	Water-resource appraisal projects
10-17.	National Stream Quality Accounting Network program
10.	water-quality stations
11.	Geological Survey program water-quality stations 43
12.	Environmental Protection Agency program water-
12.	quality surveillance stations
13.	Bureau of Land Management program water-quality
13.	stations
14.	Suspended-sediment daily stations
15.	Streamflow stations
16.	Crest-stage stations
17.	Ground-water interpretive-study areas
17.	ordered and the control of the state of the

ILLUSTRATIONS--continued

		Pa	ge
Figures	18-27.	Maps of western North Dakota showing locations of:	
	18.	Streamflow stations	18
	19.	River-stage stations	57
	20.	Reservoir and lake stations	58
	21.	Crest-stage stations	71
	22.	Map showing number of ground-water stations, by county	74
	23.	Water-quality stations	
	24.		
	25.	County ground-water studies	96
	26.		
	27.)2

Water Resources Investigations

of the

U.S. Geological Survey

in the

Northern Great Plains Coal Region of Wyoming, Montana, and North Dakota,

1975

INTRODUCTION

The Geological Survey's Water Resources Division has for many years maintained a program of water-resources investigations that includes the coal regions of Wyoming, Montana, and North Dakota. These programs have been supported by State and local agencies and by other agencies of the Federal government, largely to provide data for water-resources development projects, allocations of water, and to inventory of water resources for future planning.

The recent interest in coal has added new dimensions and greater intensity to the investigations. The work has expanded to include monitoring the environmental effects of coal mining and processing and to determine the availability of additional water supplies for coal-conversion plants and related demands.

New objectives are now reflected in the program. Much of the work is to assist the Bureau of Land Management in its responsibilities to minimize the possible detrimental effects of coal mining on the public resource lands. The Environmental Protection Agency also supports a significant part of the program. Their support is to assure that water-quality information is collected at key locations, with types of water-quality data and frequency of sampling needed by that agency in the discharge of its function. Relatively large increases in the program have been funded by direct appropriation to the Geological Survey.

This report describes the water-resources investigation program that is currently in operation. Locations of gaging stations and water-quality measuring sites, frequencies and parameters, and areas of ground-water studies are included in this report. Brief descriptions of coal-related studies by investigators who are headquartered outside the Northern Great Plains coal regions are also included. Such studies are research in topics related to coal extraction, water supply, and post-mining reclamation.

Additional information on the water-resources investigations program in each of the three states may be obtained from the following offices:

In Montana:

District Chief Telephone: (406) 442-9040

U.S. Geological Survey Ext. 3263

Water Resources Division

P.O. Box 1696

421 Federal Bldg., 316 N. Park

Helena, Montana 59601

In North Dakota:

District Chief Telephone: (701) 255-4011

U.S. Geological Survey Ext. 227

Water Resources Division

P.O. Box 778

Room 332, New Federal Building

Third Street and Rosser Avenue

Bismarck, North Dakota 58501

In Wyoming:

District Chief Telephone: (307) 778-2220

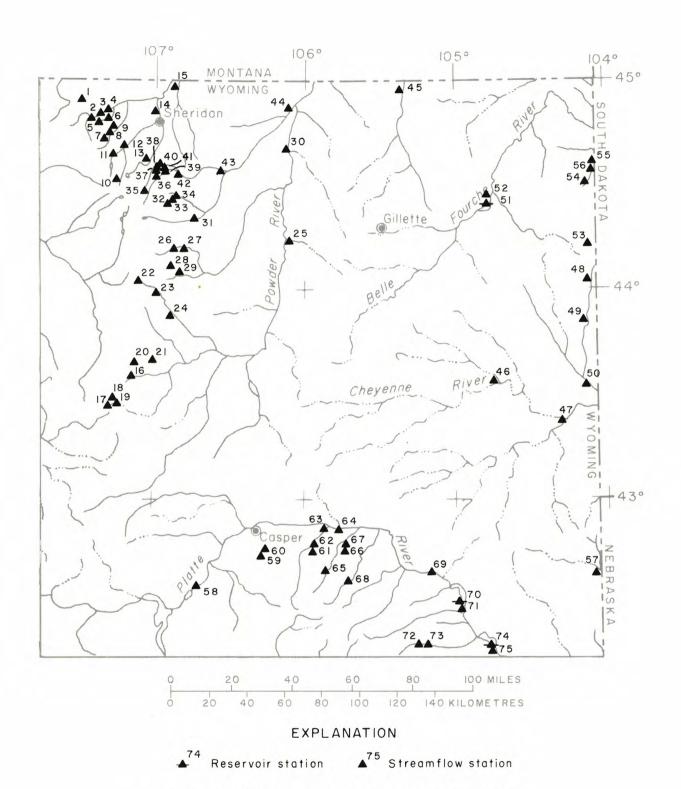
U.S. Geological Survey Ext. 2111

P.O. Box 2087

4015 Warren Avenue

Cheyenne, Wyoming 82001

The names, addresses, and telephone numbers of the principal investigator for the projects that are administered outside the above-listed offices follow the descriptions of those projects.


WYOMING

The U.S. Geological Survey currently has four data-collection activities and five water-resource appraisal projects active in the Northern Great Plains coal region of northeastern Wyoming (the Powder River structural basin).

The data-collection activities include: (1) streamflow measurements; (2) measurements of water levels in wells; (3) sampling and chemical analysis of water from streams and wells; and (4) sampling and sediment analysis of water from streams. This report contains lists of monitoring sites and maps showing the locations of the sites (figs. 1-8).

The water-resource appraisal projects include: (1) Water resources of Weston County, Wyoming; (2) Measurement of water losses to the Madison Limestone and associated rocks from streams in northeastern Wyoming; (3) Hydrology of Paleozoic rocks in the Powder River Basin and adjacent areas, northeastern Wyoming; (4) Water resources of the Powder River structural basin in Wyoming in relation to energy development; and (5) Availability of ground water from the Cretaceous and Tertiary aquifers of the Fort Union Coal Region. The objectives of these projects are described in the text, and the project locations are shown on figure 9. The streamflow measurement sites established for the study of water losses to the Madison Limestone are included in the list of "Streamflow and Reservoir Stations" (p. 11 and fig. 1).

A listing of selected reports by USGS authors is also included to give an indication of what has been done in the past.

 $\label{eq:figure_loss} \textbf{Figure} \ \ \textbf{I.-Streamflow} \ \ \textbf{and} \ \ \textbf{reservoir} \ \ \textbf{stations}.$

DATA-COLLECTION ACTIVITIES

Streamflow and Reservoir Stations

Map							Coop-
	Station	Station	-		Town-	_	er-
ber	number	name	Location	tion	ship	Range	ator <u>1</u> /
1	06289800	East Pass Creek near Parkman		4	57N	88W	028
2	06297480	Tongue River at Tongue Canyon Campground, near Dayton	SEZNEZNWZ	10	56N	87W	028
3	06297500	Highline ditch near Dayton	NEZNEZNEZ	11	56N	87W	WSE
4		Tongue River near Dayton	NEZNEZNEZ	11	56N	87W	WSE
5		Little Tongue River at Steam- boat Point, near Dayton	SW\2SE\2SE\2	21	56N	87W	028
6	06298490	Little Tongue River above South Fork Little Tongue River, near Dayton	SW\2SE\2SW\2	24	56N	87W	028
7	06299480	Wolf Creek below Alden Creek, near Wolf	SWZNWZNEZ	7	55N	86W	028
8	06299490	Wolf Creek above Red Canyon Creek, at Wolf	NE4SE4SW4	5	55N	86W	028
9	06299500	Wolf Creek at Wolf	NE\SW\NW\	4	55N	86W	WSE
10	06300500	East Fork Big Goose Creek near Big Horn	SE\SE\NW\Z	28	53N	86W	WSE
11	06301500	West Fork Big Goose Creek near Big Horn		35	54N	87W	WSE
12	06302000	Big Goose Creek near Sheridan	NWINE	35	55N	86W	WSE
13		Little Goose Creek in Canyon, near Big Horn	SEZSWZNEZ	1	53N	85W	WSE
14	06305500	Goose Creek below Sheridan	SE社SW社	15	56N	84W	WSE
15	06306250	Prairie Dog Creek near Acme	NE\SW\SW\	23	58N	83W	WSE
16		Middle Fork Powder River near Barnum	SEZSWZNEZ	26	42N	86W	WSE
17	06309260	Buffalo Creek above North Fork Buffalo Creek, near Arminto	SW4NW4NE4	20	40N	86W	028
18	06309270	North Fork Buffalo Creek near Arminto	SE\SE\NE\	17	40N	86W	028
19	06309280	Buffalo Creek below North Fork Buffalo Creek, near Arminto	NEZNWZSEZ	21	40N	86W	028
20	06309450	Beaver Creek below Bayer Creek, near Barnum	SE\SE\NW\	28	43N	85W	028
21	06309460	Beaver Creek above White Panther ditch, near Barnum	SE\SW\NW\	16	43N	84W	028
22	06311000	North Fork Powder River near Hazelton	NW\2SE\2NW\2	21	47N	85W	WSE
23	06311060	North Fork Powder River below Bull Creek, near Hazelton	NE\SE\SW\	25	47N	85W	028
24	06311400	North Fork Powder River below Pass Creek, near Mayoworth	NW\ne\set	36	46N	84W	WSE
25	06313700	Dead Horse Creek near Buffalo	SW\SE\	15	49N	77W	WSE
26	06313950	North Fork Crazy Woman Creek below Pole Creek, near Buffalo	NW\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	28	49N	83W	DEPD
27	06314000	North Fork Crazy Woman Creek near Buffalo	SW\2SW\2NE\2	27	49N	83W	DEPD

See footnote at end of list, p. 14

Streamflow and Reservoir Stations -- Continued

Мар							Coop-
num-	Station	Station		Sec-	Town-		er-
ber	number	name	Location	tion	ship	Range	ator 1/
28	06315480	Poison Creek below Tetley Spring, near Mayoworth	SEZNWZNWZ	32	48N	83W	028
29	06315490	Poison Creek near Mayoworth	SWINELSWI	3	47N	83W	028
30		Powder River at Arvada	NEZNWZ	21	54N	77W	WSE
31	06318500	Clear Creek near Buffalo	SEZSWZNWZ	6	50N	82W	DEPD
32	06319470	South Rock Creek at forest boundary, near Buffalo	SW\2SW\2SW\2	25	52N	84W	028
33	06319480	South Rock Creek above Red Canyon, near Buffalo	SW\2SW\2SE\2	25	52N	84W	028
34	06320000	Rock Creek near Buffalo	NW\NW\NW\	29	52N	83W	WSE
35		South Piney Creek at Willow Park	4	24	52N	85W	WSE
36	06321000	South Piney Creek near Story	NWINEINE	23	53N	84W	WSE
37		Mead-Coffeen ditch above fish hatchery, near Story	NE\SW\SW\	13	53N	84W	028
38	06321040	Mead-Coffeen ditch below fish hatchery, near Story	NE\SE\N\\	13	53N	84W	028
39	06321100	South Piney Creek below Mead- Coffeen ditch, near Story	SW\2SW\2SW\2	13	53N	84W	028
40	06321500	North Piney Creek near Story	NW\2 SW\2	12	53N	84W	DEPD
41	06321800	Spring Creek near Story	NEZSEZNWZ	13	53N	84W	028
42		Piney Creek at Kearny	NEZNEZSWZ	26	53N	83W	WSE
43	06323500	Piney Creek at Ucross	SWZ	18	53N	80W	DEPD
44		Clear Creek near Arvada	SEZ	36	57N	77W	DEPD
45	06324970	Little Powder River above Dry Creek, near Weston	NW\2SW\2	13	5 7N	71W	WSE
46	06376300	Black Thunder Creek near Hampshire	NW\2NW\2	31	42N	65W	WSE
47	06386000	Lance Creek at Spencer	4	14	39N	62W	WSE
48	06392900	Beaver Creek at Mallo Camp, near Four Corners	NEZNEZ	4	47N	60W	028
49	06392950	Stockade Beaver Creek near Newcastle	SW表SE表	19	45N	60W	028
50		Beaver Creek near Newcastle	NW =	18	41N	60W	USGS
51		Keyhole Reservoir near Moorcroft	NW\nw\	27	51N	66W	MRB
52	06427500	Belle Fourche River below Keyhole Reservoir	NE社SE社SE社	21	51N	66W	BRUM
53	06429500	Cold Spring Creek near Buckhorn	NW ¹ / ₄	9	48N	60W	028
54	06429900	Sand Creek at Ranch A, near Beulah	SW ¹ / ₄	18	52N	60W	028
55		Murray ditch at Wyoming-South Dakota State line	SW表SW表	7	7N	1E	WSE
56	06430500	Redwater Creek at Wyoming- South Dakota State line	NW\nW\n	18	7N	1E	WSE

See footnote at end of list, p. 14

Streamflow and Reservoir Stations -- Continued

Map		4					Coop-
num-	Station	Station		Sec-	Town-		er-
ber	number	name	Location	tion	ship	Range	ator <u>1</u> /
57	06454000	Niobrara River at Wyoming- Nebraska State line	SEZSWZ	15	31N	60W	
58	06642000	North Platte River at Alcova	NWZNEZNWZ	17	30N	82W	WSE
59	06645150	Smith Creek above Otter Creek, near Casper	SW\2 SE\2 NW\2	15	31N	78W	028
60	06645160	Smith Creek at Otter Creek, near Casper	NEZNWZSWZ	14	31N	78W	028
61	06646280	Little Deer Creek above East Cart Creek, near Glenrock	NW\{\N\\{\\$W\\{\}	28	32N	76W	028
62	06646300	Little Deer Creek below East Cart Creek, near Glenrock	NW\2NW\2NW\2	28	32N	76W	028
63	06646600	Deer Creek below Millar waste- way, at Glenrock	NW\2NW\2	4	33N	75W	WSE
64	06646800	North Platte River near Glenrock	NW\2NE\2	17	33N	74W	WSE
65	06647500	Box Elder Creek at Boxelder	Center	32	31N	75W	WSE
66	06647890	Little Box Elder Creek near Careyhurst	SE\SW\SE\	8	32N	74W	028
67	06647900	Little Box Elder Creek at Little Box Elder Cave, near Careyhurst	NE\SE\NW\	9	32N	74W	028
68	06649000	LaPrele Creek near Douglas	NW\SE\SW\	5	31N	73W	WSE
69	06652000	North Platte River at Orin	SWZSWZ	17	31N	69W	WSE
70	06652700	Glendo Reservoir near Glendo	SWINE	24	29N	68W	MRB
71	06652800	North Platte River below Glendo Reservoir	SW\2SW\2NW\2	30	29N	67W	WSE
72	06654510	Cottonwood Creek below Dagley Creek, near Binford	NW4SE4NE4	15	27N	7 OW	028
73	06654520	Cottonwood Creek below tunnel outlet, near Binford	SE\SW\SW\SW\S	14	27N	7 OW	028
74	06655500	Guernsey Reservoir near Guernsey	NEZNWZ	27	27N	66W	MRB
75	06656000	North Platte River below Guernsey Reservoir	SE\SE\	27	27N	66W	WSE

1/ Cooperators

WSE	Wyoming State Engineer
DEPD	Wyoming Department of Economic Planning and Development
USGS	U. S. Geological Survey
MRB	U.S. Geological Survey - Missouri River Basin Program
BRUM	U.S. Bureau of Reclamation - Upper Missouri Region
028	Wyoming State Engineer (sponsored by Old West Regional Commission)



Figure 2.—Crest-stage stations.

Crest-Stage Stations

The crest-stage stations listed below are maintained in cooperation with the Wyoming Highway Department.

Мар						
_	Station	Station		Sec-	Town-	
ber	number	name	Location		ship	Range
						0
1	06299900	Slater Creek near Monarch	SE社SW社	18	57N	84W
2	06312700	South Fork Powder River near Powder	SEZNWZ	3	35N	85W
		River				
3	06312795	Sanchez Creek above reservoir near	NEZNEZ	20	39N	86W
		Arminto				
4	06312800	Sanchez Creek near Arminto	NW社SE社	21	39N	86W
5		Bobcat Creek near Edgerton	NW & NW &	10	37N	77W
6		East Teapot Creek near Edgerton	SENE是	16	37N	78W
7		Coal Draw near Midwest	NE社SE社	8	40N	78W
8		Dugout Creek tributary near Midwest	NEZNWZ	14	40N	80W
9		Van Houten Draw near Buffalo	NE½	33	49N	77W
10		Powder River tributary near Buffalo	NE½NW½	9	52N	77W
11	06317050	Spotted Horse Creek tributary near	NW\2NE\2	28	55N	75W
		Spotted Horse				
12		Sand Creek near Buffalo	SW\NE\	29	50N	82W
13	06324800	Little Powder River tributary near	NE ¹ / ₄	36	52N	72W
	0.001.000	Gillette	2 m x 1		F 037	
14	06324900	Little Powder River tributary No. 2	NW½	6	52N	71W
1.5	06004010	near Gillette	a III	0.6	F 037	7111
15		Cow Creek tributary near Weston	SEZ	26	53N	71W
16		Porcupine Creek near Turnercrest	SW\ne\	11	42N	72W
17		Box Creek near Bill	SW\2SE\2	9	36N	70W
18		Pritchard Draw near Lance Creek	SW\2NE\2	8	37N	65W
19		Cottonwood Creek at Hat Creek	NE½	12	34N	63W
20		Turner Creek near Osage	SW\2SE\2	26	47N	64W
21	06388800	Blacktail Creek tributary near Newcastle	NEZNEZ	16	44N	61W
22	06/26105		NW\2SW\2	29	50N	71W
22	00420193	Donkey Creek tributary above reser- voir, near Gillette	NW43W4	29	JON	/ IW
23	06426200	Donkey Creek tributary near Gillette	SWINWI	29	50N	71W
24		Inyan Kara Creek near Upton	S ¹ / ₂	17	49N	63W
25		Barlow Creek near Devils Tower	NW\2SW\2	20	54N	65W
26		Belle Fourche River tributary No. 2	SW\2SW\2	3	54N	64W
20	00420100	near Hulett	DW-45W-4	3	3411	0411
27	06429300	Ogden Creek near Sundance	SW\2SW\2	30	52N	62W
28		Bear Springs Creek near Alcova	SE\SE\	30	30N	82W
29		Lawn Creek near Alcova	SW\2SW\2	8	29N	80W
30		Stinking Creek near Alcova	SE½NE½	30	30N	80W
31		Coal Creek near Goose Egg	SW\nw\	27	32N	81W
32		McKenzie Draw tributary near Casper	SW\NE\	12	36N	78W
33		East Fork Dry Creek tributary near	SW\2SW\2	26	33N	75W
		Casper				
34	06648780	Sage Creek tributary near Orpha	NEZNWZ	18	35N	73W
35		North Platte River tributary near	SWINE	5	31N	71W
		Douglas	7			
36	066 51800	Sand Creek near Orin	NEZSEZ	11	31N	70W
37	06652200	Shawnee Creek tributary near Orin	NW\2SW\2	2	31N	69W
38	06652400	Watson Draw near Lost Springs	SW\2SE\2	12	31N	68W
39	06655380	Fish Canyon near Guernsey	SEZNWZ	15	27N	66W

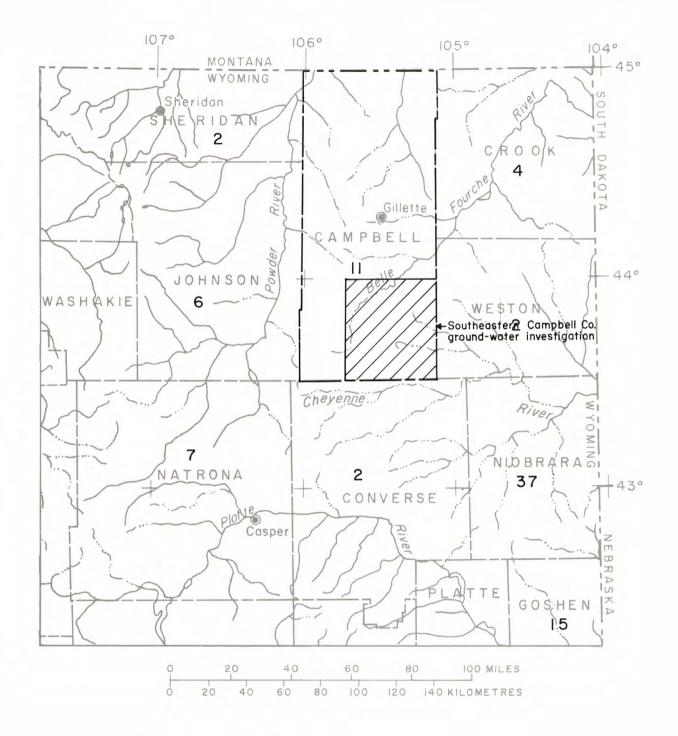


Figure 3.-Number of observation wells, by county.

OBSERVATION WELLS

	Well	Location		Well	Geologic	Frequency
Town-			Location	depth	source	of
ship	Range	Section	in section (feet) $\underline{1}/$		observation <u>2</u> /	
			CAMPBEI	L COUNTY		
44N	72S	22	SWŁSWŁ	189	124 WSTC	Q
50N	71W	20	SEZNEZNWZ		124 WSTC	M
50N	71W	21	NWINWINWI	125	125 FRUN	M
50N	7 1W	27	SW\ne\ne\	18	111 ALVL	M
50N	71W	27	NEZNEZNWZ	491	125 FRUN	C
50N	71W	27	SW\ne\nv\	2,651		C
50N	71W	27	SEZNEZNWZ	19	111 ALVL	M
50N	7 1W	33	SWINEINWI-1	173.5	125 FRUN	C
50N	7 1W	33	SW4NE4NW4-2	35	125 FRUN	М
50N	71W	33	SWINEINWI -3	25.5	111 ALVL	M
50N	72W	20	SE\SE\NE\	320	124 WSTC	BM
			CONVERS	E COUNTY		
32N	71W	31	NEZNEZNEZ	84	124 WDRV	SA
32N	74W	3	SE\SW\nW\n\	1,464	331 MDSN	C
			CROOK	COUNTY		
50N	68W	36	SEZNEZ	305	211 LNCE	BM
53N	6.5W	18	SWINEINWI	468	317 MNKT	M
53N	65W	18	SEZNWZNWZ-1	63	237 SPRF	Q
53N	65W	18	SEZNWZNWZ -2	1,341	337 PHSP	Q
			GOSHEN	COUNTY		
25N	62W	2	NWINWINWI	28	111 TRRC	BM
25N	63W	9	NW\SW\SW\	61	111 ALVL	BM
26N	62W	14	NEZNWZNWZ	39	111 ALVL	BM
26N	63W	32	SWZNEZSEZ	80	111 ALVL	BM
26N	64W	23	NE\SE\SW\	24	111 ALVL	BM
26N	64W	28	NW\2NW\2NW\2	29	111 ALVL	M
26N	64W	29	NEZSEZNEZ	43	111 ALVL	M
29N	60W	29	SEZNEZSWZ	178	122 ARKR	M
29N	61W	8	SW\2SE\2SW\2	137	122 ARKR	ВМ
29N	61W	26	SW\2SU\2NE\2	137	122 ARKR	BM
29N	64W	27	SW\2SW\2NW\2	87	122 ARKR	M
30N	60W	4	NEZNEZSEZ	150	122 ARKR	M
30N	60W	29	SWZNWZNWZ	117	122 ARKR	M
	61W	29	NEZNEZNEZ NEZNEZNEZ	180	122 ARKR 122 ARKR	M
30N	62W	33	NEZNEZNEZ NEZSWZSEZ	180	122 ARKR 122 ARKR	BM
30N	O Z W	33	NEZOWZ DEZ		122 ARKR	DII

See footnote at end of list, p. 20

	Well	Location		Well	Geologic	Frequency
Town- ship	Range	Locati in sect		depth (feet)	source 1/	of observation
0						2/
			JOHNSON	COUNTY		
42N	78W	14	NWISELSEL	99	211 LNCE	SA
43N	84W	4	SEZSEZNEZ	750	317 TSLP	I
48N	83W	5	SWZSEZ	1,115	374 FLTD	A
49N	83W	27	NEZNWZSEZ-1	1,636	311 MDSN	I
49N	83W	27	NEZNWZSEZ-2	1,507	311 MDSN	C
51N	83W	10	NW\ SW\ NE\	275	124 WSTC	SA
			NATRONA	COUNTY		
30N	85W	21	NW\1NE\1NW\2	27	122 ARKR	Q
31N	81W	18_	NWINEINE	55	111 ALVL	BM
33N	77W	3	SW\SE\NW\	20	111 ALVL	Q
33N	80W	4	NWZNWZNEZ	69	111 TRRC	BM
34N	W08	8	SW\2SW\2SW\2	26	111 TRRC	BM
35N	WO8	31	SE\SE\SE\	45	111 TRRC	BM
40N	78W	15	NW\ne\ne\	317	211 FXHL	Q
			NIOBRAR	A COUNTY		
31N	60W	9	SEZNWZ	130	122 ARKR	М
31N	6 OW	15	NE\SE\	110	122 ARKR	M
31N	61W	13	NE\SW\NE\	100	122 ARKR	M
31N	61W	16	NW\2NE\2SW\2		122 ARKR	M
31N	61W	29	NW\2NW\2	280	122 ARKR	M
31N	62W	4	NEZNWZNWZ	425	122 ARKR	M
31N	62W	15	NEZNEZNEZ	76	122 ARKR	M
32N	60W	8	SE\SW\		122 ARKR	M
32N	60W	29	SW\nW\	270	122 ARKR	M
32N	61W	10	NWINE	230	122 ARKR	M
32N	61W	16	SE\NW\	150	122 ARKR	M
32N	61W	33	SE\SW\Z	52	122 ARKR	M
32N	62W	12	SEZSWZSWZ	160	122 ARKR	M
32N	62W	20	NW\2NE\2	127	122 ARKR	M
32N	62W	20	SEZSEZNWZ	150	122 ARKR	M
32N	62W	32	NWZNWZNWZ	485	122 ARKR	C
32N	62W	34	SW\2 SW\2	28	122 ARKR	M
32N	62W	36	NW\2NE\2	60	122 ARKR	M
32N	63W	2	SW\2SW\2SW\2	200	122 ARKR	M
32N	63W	8	SWINEL -6	62	122 ARKR	M
32N	63W	26	NW\2NE\2SE\2	55	122 ARKR	M
32N	63W	33	NW\nw\nw\	205	122 ARKR	M
32N	64W	12	NE\SE\SE\		122 ARKR	M

See footnote at end of list, p. 20

	Well Location			Well	Geologic	Frequency
Town- ship	Range	Locati in sect		depth (feet)	source 1/	of observation <u>2</u> /
			NIOBRARA CO	OUNTYConti	inued	
32N	64W	18	SEZNWZ	112	122 ARKR	М
32N	64W	22	NWINE	100	122 ARKR	M
32N	64W	24	NEZSEZ-2	58	122 ARKR	M
32N	65W	1	NW\2 SW\2	108	122 ARKR	M
33N	61W	30	NW\2 SW\2	255	122 ARKR	M
33N	62W	29	NEZNWZSEZ	400	122 ARKR	M
33N	63W	17	SEZSWZ	156	122 ARKR	M
33N	63W	24	NWZNWZNWZ	245	122 ARKR	M
33N	64W	10	SEZNEZSEZ	110	122 ARKR	M
33N	64W	10	SEZSWZ		122 ARKR	M
33N	64W	32	SWZSWZ	105	122 ARKR	M
33N	64W	35	SEZNEZSEZ	140	122 ARKR	M
36N	62W	28	NWZNEZ	505	217 LKOT	C
40N	61W	21	NW\2NE\2NW\2	18	111 ALVL	M
			SHERI	DAN COUNTY		
53N	83W	7	SWZSEZNEZ	115	124 WSTC	Q
54N	81W	14	SW\nw\-2	121	124 WSTC	М
			WEST	ON COUNTY		
46N	61W	29	SWINEINWI	2,345	337 PHSP	BM
46N	63W	9	NW4 SE4	670	217 LKOT	M
			$\frac{1}{}$ Geol	ogic Source		
Code	Form	ation		Code	Formation	
111 ALVL		al Deposi	ts	217 LKOT	Lakota Format	
111 TRRC	Terrac	e Deposit	S	237 SPRF	Spearfish For	mation
122 ARKR		ee Format		317 MNKT	Minnekahta Li	mestone
124 WDRV	Wind R	iver Form	ation	317 TSLP	Tensleep Sand	stone
124 WSTC	Wasatc	h Formati	on	331 MDSN	Madison Forma	tion or Group
125 FRUN	Fort U	nion Form	ation	337 PHSP	Pahasapa Lime	stone
211 FXHL	Fox Hi	11s Sands	tone	374 FLTD	Flathead Quar	tzite or
211 LNCE	T	Formation			Sandstone	

 $[\]frac{2}{}$ Frequency of Observation

C - Continuous recorder

M - Monthly observation

BM - Bimonthly observation

Q - Quarterly observation

SA - Semiannual observation

A - Annual observation

I - Infrequent observation as required

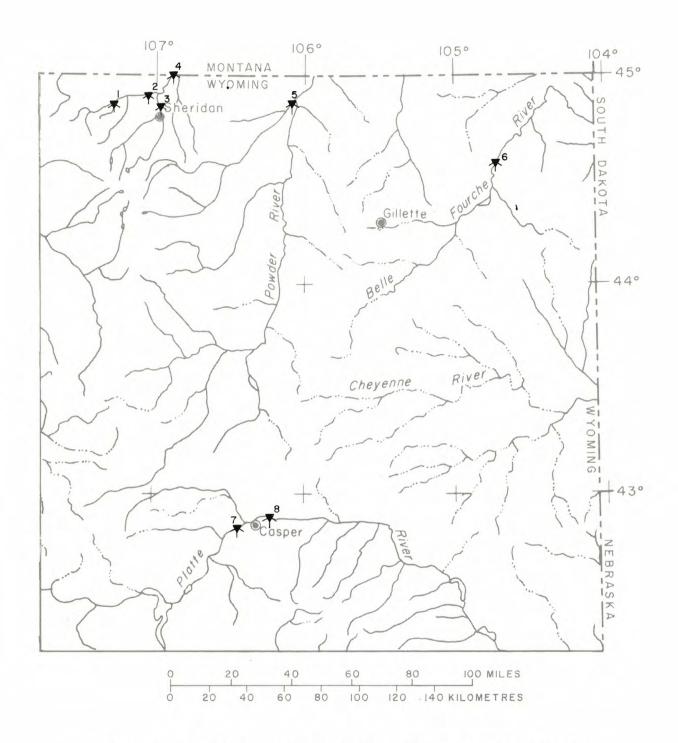


Figure 4.—Environmental Protection Agency water-quality surveillance stations.

Stations

Map	0.6-6-6			0	m	
num-	Station			sec-	Town.	•
ber	number	Name	Location	tion	ship	Range
1	06298000	Tongue River near Dayton 1, 2	NEZNEZNEZ	11	56N	87W
2	06299980	Tongue River at Monarch ³	NW\2 SW\2NW\2	20	57N	84W
3	06305500	Goose Creek below Sheridan 1, 2	SE社SW社	15	56N	84W
4	06306300	Tongue River at State line, near	NW & NE &	33	98	40E
		Decker, Mont. 1, 2				
5	06324000	Clear Creek near Arvada 1	SE ¹ / ₄	36	57N	77W
6	06427850	Belle Fourche River at Devils Tower 1, 2	NW\2SE\2SE\2	7	53N	6 5W
7	06644085	North Platte River at Mills 3	NW\2NE\2SE\2	7	33N	79W
8	06645000	North Platte River below Casper ¹ , ²	NW\1NW\2	4	33N	78W
,	Parameter	list for Stations 06208000 06305500	06306300	0632/	.000	06/27850

Parameter List for Stations 06298000, 06305500, 06306300, 06324000, 06427850

Monthly

Chemical - total ammonia, total nitrite plus nitrate, total kjeldahl nitrogen, biochemical oxygen demand.

Physical - specific conductance, pH.

Quarterly

Chemical - lead, copper, mercury, selenium, aluminum, zinc, boron.

Parameter List for Station 06299980

Monthly

Chemical - calcium, magnesium, sodium, potassium, silica, fluoride, bicarbonate, carbonate, chloride, sulfate, nitrite, nitrate, total phosphorous, dissolved solids, total kjeldahl nitrogen, total ammonia. Physical - specific conductance, pH, turbidity.

Quarterly

Chemical - lead, copper, mercury, selenium, aluminum, zinc, boron.

Parameter List for Stations 06644085, 06645000

Biweekly

Chemical - chemical oxygen demand, dissolved solids, total organic carbon. Physical - temperature, specific conductance, dissolved oxygen, turbidity. Biological - total coliform, fecal coliform.

Quarterly

Chemical - calcium, magnesium, sodium, potassium, silica, fluoride, bicarbonate, carbonate, chloride, sulfate, nitrite, nitrate, total phosphorous, dissolved solids, total kjeldahl nitrogen, total ammonia.

¹Additional data obtained through the Wyoming Department of Agriculture cooperative program.

²Additional data obtained through the Wyoming Department of Environmental Quality cooperative program.

³ Additional data obtained through the Geological Survey Water-Quality program.

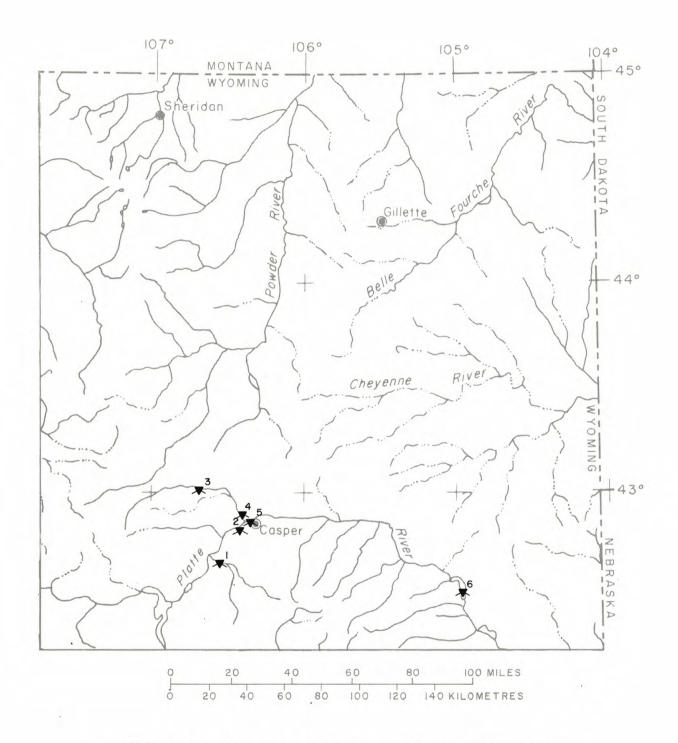


Figure 5.—Geological Survey water—quality stations.

Geological Survey Water-Quality Program (Missouri River Basin Program)

Stations

Station			Sec-	Town-	
number	Name	Location	tion	ship	Range
06643000	Bates Creek near Alcova	SE\SE\	1	31N	82W
06644085	North Platte River at Mills 1	NW\\\NE\\SE\\\	7	33N	79W
06644120	Middle Fork Casper Creek near Bucknum ²	NE ¹ / ₄	12	35N	82W
06644500	Casper Creek at Casper 2,3	NWINE	7	33N	79W
06644550	North Platte River at Casper 3	SE\SE\NW\	4	33N	79W
06652700	Glendo Reservoir near Glendo 4	SW\2NE\2	24	29N	68W
	06643000 06644085 06644120 06644500 06644550	number Name 06643000 Bates Creek near Alcova 06644085 North Platte River at Mills ¹ 06644120 Middle Fork Casper Creek near Bucknum ² 06644500 Casper Creek at Casper ² , ³ 06644550 North Platte River at Casper ³	number Name Location 06643000 Bates Creek near Alcova 06644085 North Platte River at Mills 1 NW\frac{1}{2}SE	number Name Location tion 06643000 Bates Creek near Alcova SE½SE½ 1 06644085 North Platte River at Mills¹ NW½NE½SE½ 7 06644120 Middle Fork Casper Creek near Bucknum² NE½ 12 06644500 Casper Creek at Casper²,³ NW½NE½ 7 06644550 North Platte River at Casper³ SE½SE½NW½ 4	number Name Location tion ship 06643000 Bates Creek near Alcova SE¼SE½ 1 31N 06644085 North Platte River at Mills¹ NW½NE½SE½ 7 33N 06644120 Middle Fork Casper Creek near Bucknum² NE½ 12 35N 06644500 Casper Creek at Casper²,³ NW½NE½ 7 33N 06644550 North Platte River at Casper³ SE½SE½NW½ 4 33N

Parameter List

Monthly

Physical - temperature, specific conductance, dissolved oxygen, pH.

¹Additional data obtained through the Environmental Protection Agency program.

²Samples collected annually for calcium, magnesium, sodium, potassium, fluoride, bicarbonate, carbonate, chloride, sulfate, nitrite, nitrate.

³ Samples collected weekly during irrigation season, monthly during remainder of year.

⁴ Sampled monthly (during ice-free months) for temperature, dissolved oxygen, total nitrite plus nitrate, total phosphorous, total ammonia, total dissolved solids.

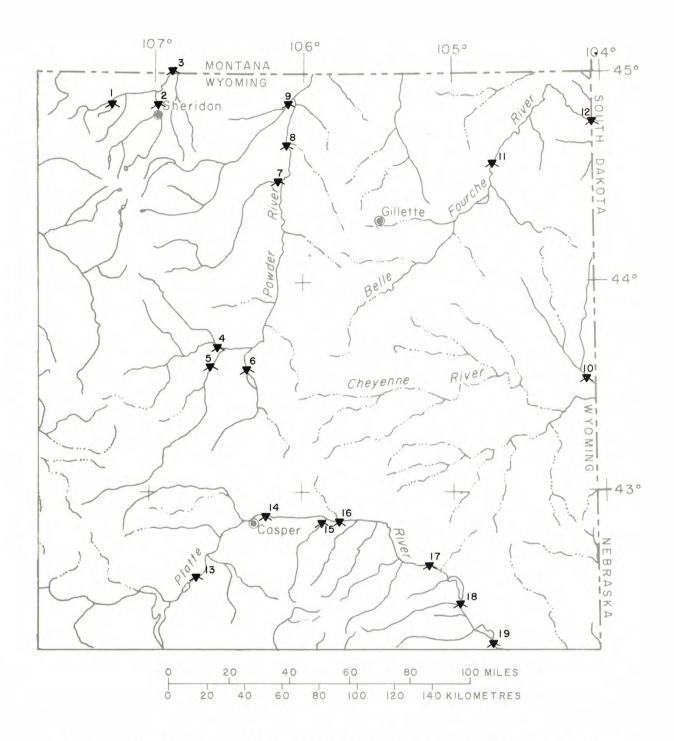


Figure 6.— Geological Survey—Wyoming Department of Agriculture cooperative program water-quality stations.

Stations

Map						
num-	Station			Sec-	Town-	
ber	number	Name	Location	tion	ship	Range
1	06298000	Tongue River near Dayton 1, 2	NEZNEZNEZ	11	56N	87W
2	06305500	Goose Creek below Sheridan ¹ , ²	SE表SW表	15	56N	84W
3	06306300	Tongue River at State line, near Decker, Mont. 1,2,3	NW\2NE\2	33	9S	40E
4	06312500	Powder River near Kaycee ²	NEZNWZSWZ	13	43N	81W
5	06313000	South Fork Powder River near Kaycee	NE\SE\	9	42N	81W
6	06313400	Salt Creek near Sussex	NEZNEZSEZ	8	42N	79W
7	06316400	Crazy Woman Creek at upper station, near Arvada	NW ¹ / ₄	18	52N	77W
8	06317000	Powder River at Arvada 1, 2	NEZNWZ	21	54N	77W
9	06324000	Clear Creek near Arvada ¹	SE½	36	57N	77W
10	06394000	Beaver Creek near Newcastle	NW1/4	18	41N	60W
11	06427850	Belle Fourche River at Devils Tower 1, 2	NW\se\se\se\	7	53N	65W
12	06428500	Belle Fourche River at Wyoming- South Dakota State line ^{2,3}	NEZNWZNWZ	18	9N	1E
13	06642000	North Platte River at Alcova ²	NW\ne\nv\	17	30N	82W
14	06645000	North Platte River below Casper 1, 2	NW\2NW\2	4	33N	78W
15	06646600	Deer Creek below Millar wasteway, at Glenrock ³	NW\2NW\2	4	33N	7 5W
16	06646800	North Platte River near Glenrock 3	NW\2NE\2	17	33N	74W
17	06652000	North Platte River at Orin 2	SW\2SW\2	17	31N	69W
18	06652800	North Platte River below Glendo Reservoir ²	SW\2SW\2NW\2	30	29N	67W
19	06656000	North Platte River below Guernsey Reservoir	SE\SE\	27	27N	66W

Parameter List

Monthly

Chemical - calcium, magnesium, sodium, potassium, sulfate, bicarbonate, carbonate, chloride, fluoride, nitrate, silica, and total phosphorus.

Physical - temperature, specific conductance, and pH.

¹Additional data obtained through the Environmental Protection Agency program.
²Additional data obtained through the Geological Survey - Wyoming Department of Environmental Quality cooperative program.

³ Samples collected daily for specific conductance and water temperature.

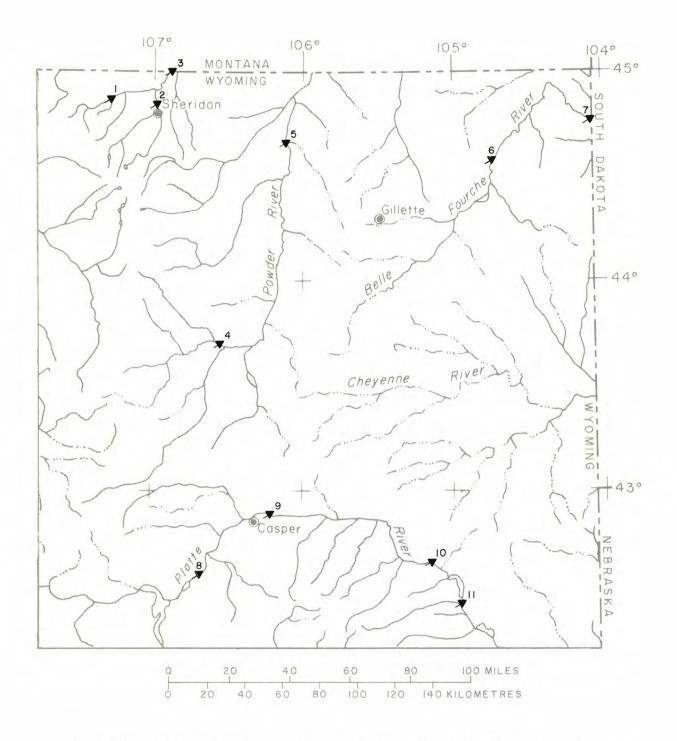


Figure 7.- Geological Survey-Wyoming Department of Environmental Quality water-quality surveillance stations.

Geological Survey - Wyoming Department of Environmental Quality Cooperative Program

Stations

Map						
num-	Station			Sec-	Town-	
ber	number	Name	Location	tion	ship	Range
1	06298000	Tongue River near Dayton 1, 2	NEZNEZNEZ	11	56N	87W
_						
2	06305500	Goose Creek below Sheridan 1,2	SE表SW表	15	56N	84W
3	06306300	Tongue River at State line, near Decker, Mont. 1, 2	NW\2NE\2	33	9S	40E
4	06312500	Powder River near Kaycee ²	NEZNWZSWZ	13	43N	81W
5	06317000	Powder River at Arvada ^{2,3}	NE\NW\	21	54N	77W
6	06427850	Belle Fourche River at Devils Tower 1, 2	NW\SE\SE\SE\	7	53N	65W
7	06428500	Belle Fourche River at Wyoming- South Dakota State line ² , ³	NEZNWZNWZ	18	9N	1E
8	06642000	North Platte River at Alcova ²	NW\ne\nw\	17	30N	82W
9	06645000	North Platte River below Casper 1, 2	NW\2NW\2	4	33N	78W
10	06652000	North Platte River at Orin ²	SW\2SW\2	17	31N	69W
11	06652800	North Platte River below Glendo	SW\2SW\2NW\2	30	29N	67W
		Reservoir ²				

Parameter List

Monthly

Physical - temperature, dissolved oxygen, turbidity.

Biological - fecal coliform.

¹Additional data obtained through the Environmental Protection Agency program.
²Additional data obtained through the Geological Survey - Wyoming Department of Agriculture cooperative program.

³ Sampling at this site is quarterly instead of monthly.

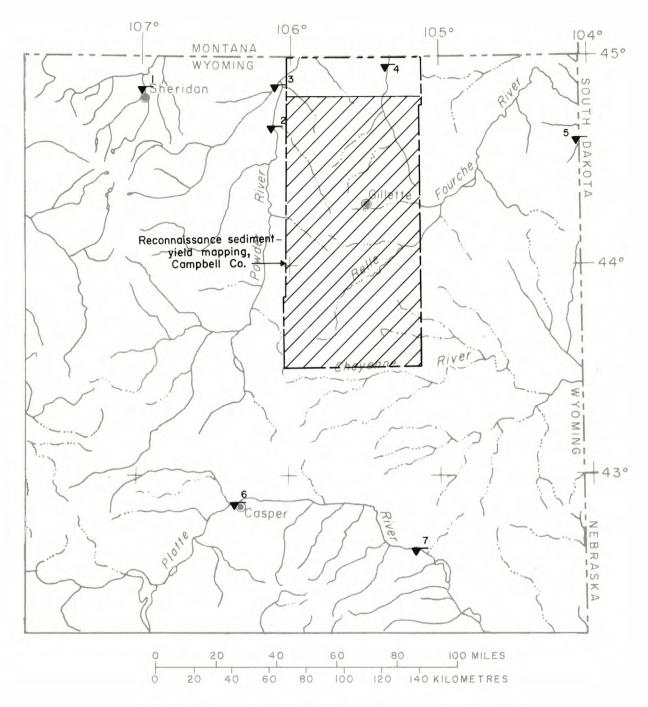


Figure 8.—Suspended-sediment stations.

Suspended-Sediment Program

Stations

Мар	Chatian			Coo	m	
num- ber	Station number	Name	Location		Town- ship	Range
1	06305500	Goose Creek below Sheridan (U.S. Geological Survey-Wyoming State Engineer cooperative program, monthly samples)	SE\sw\	15	56N	84W
2	06317000	Powder River at Arvada (U.S. Geological Survey Program, daily samples)	NE½NW½	21	54N	77W
3	06324000	Clear Creek near Arvada (U.S. Geological Survey program, daily samples)	SE½	36	57N	77W
4	06324970	Little Powder River above Dry Creek, near Weston (U.S. Geological Survey-Wyoming State Engineer cooperative program, monthly samples)	NW\f2SW\f2	13	57N	71W
5	06430500	Redwater Creek at Wyoming-South Dakota State line (U.S. Geological Survey-Wyoming State Engineer cooperative program, monthly samples)	NW\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	18	7N	1E
6	06644550	North Platte River at Casper (U.S. Geological Survey-Wyoming State Engineer cooperative program, monthly samples)	SE\SE\NW\	4	33N	7 9W
7	06652000	North Platte River at Orin (U.S. Geological Survey-Wyoming State Engineer cooperative program, monthly samples)	SW\2SW\2	17	31N	69W

Parameter List

Daily stations:

Physical - Daily suspended sediment and temperature, bed material 3 times per year.

Monthly stations:

Physical - Monthly suspended sediment and temperature, bed material 3 times per year.

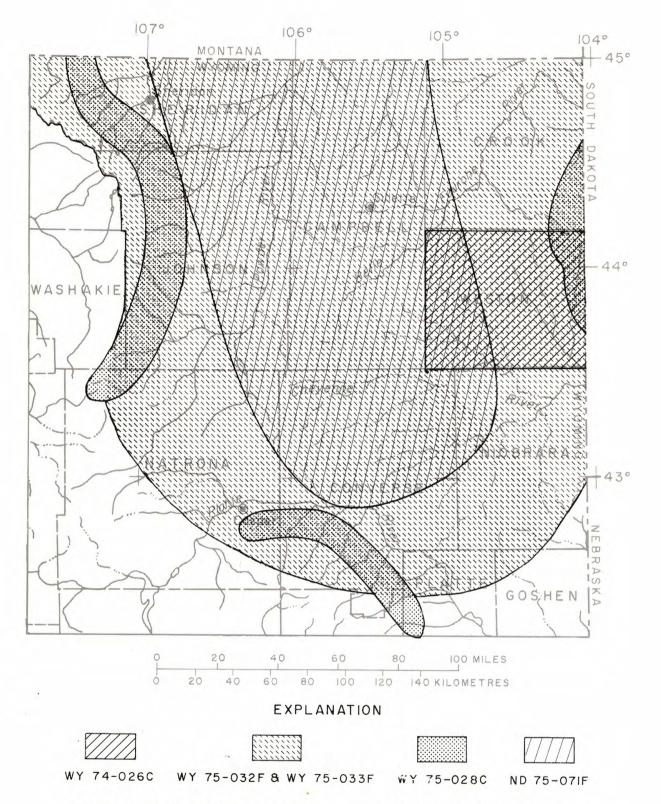


Figure 9.—Location of water-resource appraisal projects. 31

WATER-RESOURCES APPRAISAL PROJECTS Water Resources of Weston County, Wyoming (Project WY 74-026C)

Funds: Wyoming State Engineer and U.S. Geological Survey

The objectives of the project are to determine occurrence, availability, and chemical quality of water in the county. Because formations exposed in Weston County occur at depth to the west in the Powder River Basin, the data obtained during the course of this project will have large transfer value to other areas.

A basic-data report that will be the final product of the study will include isopach maps, structure-contour maps, and maps or other graphic portrayals of potentiometric surfaces in principal aquifers and sand-shale ratios. Tables will include water-well data and chemical quality of water.

The location of this project is shown in figure 9.

Measurement of water losses to the Madison Limestone and associated rocks from streams in northeastern Wyoming (Project WY 75-028C)

Funds: Wyoming State Engineer (sponsored by Old West Regional Commission)

A study is being made of water losses from streams that cross outcrops of the Madison Limestone and associated rocks around the perimeter of the Powder River Basin. The project is designed to provide data for evaluating recharge to the Madison Limestone. Stream-gaging stations have been established at 32 locations in the Bighorn Mountains, Black Hills, and the northern end of the Laramie Mountains. These stations are included in the list of "Streamflow and Reservoir Stations" (Cooperator 028) and are shown in figure 1. Five existing gaging stations were incorporated into the project. A reconnaissance of the geologic and hydrologic conditions of perennial streams crossing Madison outcrops dictated the location of the gaging stations. In addition, three sets of streamflow measurements will be made each year on 30 additional streams at sites above and below the outcrop of the Madison and associated rocks.

The project is primarily a basic-data collection project, the objectives of which are: (1) Determination of magnitude and distribution of losses to the Madison by streams that cross the outcrop areas; (2) determination of precipitation, runoff, infiltration relations in outcrop areas; and (3) establishment of baseline streamflow conditions prior to possible increased development of water supplies from the Madison Limestone.

The location of this project (three areas) is shown in figure 9.

Water Resources of the Powder River structural basin in Wyoming in relation to energy development (Project WY 75-032F)

Funds: U.S. Geological Survey, with basic-data support funds from U.S. Bureau of Land Management

The objectives of the project are twofold. The first phase will be to determine the adequacy of existing data to describe water availability and assess impact of development, and to identify subjects that should be studied by the District. The findings of the first phase will be used to identify thrusts for the second phase. The study area is nearly the same as that of project WY 75-033F, but will not include rocks of Paleozoic age, as they are being studied in project WY 75-033F.

Approaches that will be examined in the first phase of the project include quantifying geophysical logs as a means of construction of transmissivity maps. Surface geophysical studies will be made to determine their applications to water-resource investigations. The recharge-discharge relationships will be examined to define the movement of water, hence, impact of development.

Potentiometric maps of aquifers of Lower Cretaceous and Jurassic age will be prepared in a small area by use of drill-stem tests and other data. The aquifers themselves are of only minor importance but the knowledge of possible vertical movement of water is necessary to modeling of more important aquifers.

Emphasis in quality of water will be on sampling for trace elements to determine existing levels and monitor for possible change, biologic assay to note change in quality-of-surface water that may be too subtle for other methods to detect, and isotopic ratios and carbon-14 dating to determine the relative age and movement of water.

The study of possible impact of mining will be continued at the Wyodak plant, a program started with Northern Great Plains Resources program funds. The effects of reclamation on shallow ground water is still a concern and, in the first phase of the study, an area near Sheridan, Wyoming will be evaluated as to its suitability for additional study.

Because alluvial aquifers are of local importance to agriculture, they will be studied by use of aquifer tests, auger drilling, and surface electrical and gravimetric geophysical methods.

Deterministic and (or) stochastic models will be used to determine the availability of surface water, evaluate the impacts of energy development in the Powder River Basin, and provide input for the long-term quality-of-water monitoring network.

Infiltration and evaporation can be studied by use of rainfall-runoff data previously collected and study of pan evaporation at existing weather stations. To obtain better nonseasonal data, a reconnaissance will be made of some of the 10- to 20-acre internal drainage basins to determine the feasibility of using mass balance techniques to better define evaporation and (or) infiltration.

In the first phase of the project, the feasibility of making intense surveys of sediment-related activities in relatively small drainage areas for the purpose of transferring the data and methods similar to, but not as intensively studied, drainages will be investigated.

The location of this project is shown in figure 9.

Hydrology of Paleozoic rocks in the Powder River Basin and adjacent areas, northeastern Wyoming

(Project WY 75-033F)

Funds: U.S. Geological Survey

An investigation of the hydrology of the Paleozoic rocks in the Powder River Basin in Wyoming is underway to evaluate the Paleozoic rocks as a potential source of large quantities of water for energy development, primarily coal development and attendant conversions to both gaseous and liquid forms of energy and the generation of electric power. The principal effort will concentrate on the Madison Limestone, but both the underlying and overlying rock strata, mostly carbonate or sandstone, will be included.

The thickness of the Paleozoic rocks ranges from about 2,600 feet in the northern part of the project area to about 200 feet in the southern part. Paleozoic rocks crop out along the perimeter of the basin but underlie the central part of the basin at depths exceeding 10,000 feet below land surface.

The project area consists of about 25,000 square miles in the approximate northeast quarter of Wyoming, and includes the Powder River structural basin and the associated uplifts and mountain ranges on the perimeter of the basin such as the Black Hills and Hartville uplifts on the east and southeast and the Laramie Mountains and Bighorn Mountains on the south and west.

The project is designed to derive a conceptual model of the Madison Limestone as an aquifer and the relation of the Madison to the aquifers in the associated formations of Paleozoic age. Geologic parameters to be determined include distribution, thickness, and physical properties of the rock strata and the processes that developed the present distribution of aquifer parameters. Hydrologic-parameter determinations will include the potentiometric surfaces, chemical quality of the water, and the intrarelation of the Paleozoic aquifers to determine how and to what extent the Paleozoic rocks act as a single aquifer system. The effects of increased water development from the aquifer system will be evaluated.

Approaches will include borehole and surface geophysical surveys to evaluate and correlate physical properties of the aquifer system to water-yielding properties; streamflow analysis to evaluate recharge and underground flow regime; natural tracers to determine rate and direction of underground flow; water-temperature differences with depth to evaluate vertical movement of water; and digital simulation models will aid in interpreting the aquifer system and predict responses to future stresses on the aquifer system.

The location of this project is shown in figure 9.

Availability of Ground Water from the Cretaceous and Tertiary
Aquifers of the Fort Union Coal Region

(Project ND 75-071F)

Funds: U.S. Geological Survey

This investigation is a compilation of existing data from South Dakota, North Dakota, Montana, and Wyoming of the Tertiary rocks and aquifers overlying the Pierre Shale. The objectives of the investigation are: (1) to determine the location, extent, and nature of the aquifers and confining beds; (2) to evaluate the occurrence and movement of ground water, including the sources of recharge and discharge; and (3) to determine the chemical quality of the ground water. This project is being done by the North Dakota District, Water Resources Division, USGS, headquartered in Bismarck, North Dakota.

The location of this project is shown in figure 9.

Hydrologic Considerations in Evaluating the Reclamation Potential of Strip-mined Lands in the Hanna Basin, Wyoming

Funds: U.S. Bureau of Land Management

This study by the U.S. Bureau of Reclamation and the U.S. Geological Survey is to provide data and their interpretations that are necessary to guide land restoration after strip mining. The Bureau of Reclamation is providing drilling and coring services and analyses of soils and rock.

The Geological Survey is providing an assessment of the water resources of the site. Rainfall-rumoff relationships are being determined, and the transmissivity and the storage coefficient of shallow ground water in the vicinity of the site are being measured. Samples of surface and subsurface water are being analyzed for chemical quality, and sediment-level characteristics of local streams are being determined.

The location of the site is shown on figure 8.

See, also, page 106 for a description of additional studies of the soils-vegetation-erosion relationships.

SELECTED REFERENCES

- Babcock, H. M., and Morris, D. A., 1953, Ground water in the vicinity of Edgerton, Wyoming: U.S. Geol. Survey open-file rept., 9 p., 1 fig.
- Boner, F. C., Lowry, M. E., Lines, G. C., and Powell, J. E., ____, Progress report on measurement of water losses to the Madison Limestone from streams in northeastern Wyoming: U.S. Geol. Survey open-file rept. (in preparation, 1975).
- Crist, M. A., and Lowry, M. E., 1972, Ground-water resources of Natrona County, Wyoming: U.S. Geol. Survey Water-Supply Paper 1897, 92 p.
- Culler, R. C., Hadley, R. F., and Schumm, S. A., 1961, Hydrology of the upper Cheyenne River basin -- Part A. Hydrology of stock-water reservoirs in upper Cheyenne River basin, by R. C. Culler; Part B. Sediment sources and drainage-basin characteristics in upper Cheyenne River basin, by R. F. Hadley and S. A. Schumm: U.S. Geol. Survey Water-Supply Paper 1531, 198 p.
- Frickel, D. G., and Shown, L. M., 1974, Annual streamflow in northeastern Wyoming and southeastern Montana: U.S. Geol. Survey Miscellaneous Investigations Map I-847-B, 1 sheet.
- Hodson, W. G., 1971a, Logs of wells in Campbell County: Wyoming State Engineer, Wyoming Water Planning Program Report no. 8, 210 p.
- 1971b, Chemical analyses of ground water in the Powder River basin and adjacent areas, northeastern Wyoming: Wyoming Dept. Economic Planning and Development report, 20 p.
- _____1974, Records of water wells, springs, oil- and gas-test holes, and chemical analyses of water for the Madison Limestone and equivalent rocks in the Powder River basin and adjacent areas, northeastern Wyoming: Wyoming State Engineer report, 27 p.
- Hodson, W. G., Pearl, R. H., and Druse, S. A., 1974, Water resources of the Powder River basin and adjacent areas, northeastern Wyoming: U.S. Geol. Survey Hydrologic Investigations Atlas HA-465, 4 sheets.
- King, N. J., 1974, Occurrence of ground water in the Gillette area, Campbell County, Wyoming: U.S. Geol. Survey Miscellaneous Investigations Map I-848-E, 1 sheet.
- Littleton, R. L., 1950, Ground-water conditions in the vicinity of Gillette, Wyoming, with a section on the quality of ground water, by H. A. Swenson: U.S. Geol. Survey Circ. 76, 43 p.
- Lowry, M. E., 1973, Hydrology of the uppermost Cretaceous and lowermost Paleocene rocks in the Hilight oil field, Campbell County, Wyoming: U.S. Geol. Survey open-file rept., 60 p, 5 pl.

- Lowry, M. E., and Cummings, T. R., 1966, Ground-water resources of Sheridan County, Wyoming: U.S. Geol. Survey Water-Supply Paper 1807, 73 p.
- Rennick, K. B., 1966, Floods of May June, 1965, in east-central Wyoming: U.S. Geol. Survey open-file rept., 22 p.
- Ringen, B. H., 1973, Records of ground-water levels in Wyoming, 1940-1971: Wyoming State Engineer, Wyoming Water Planning Program Report no. 13, 479 p.
- _____ 1974, Ground-water levels in Wyoming, 1972-1973: Wyoming State Engineer, Wyoming Water Planning Program Report no. 13, suppl. no. 1, 158 p.
- Swenson, F. A., Hodson, W. G., Miller, W. R., and Visher, F. N., ____,
 Water in the Madison Group, Powder River, Wyoming and Montana: U.S.
 Geol. Survey Miscellaneous Investigations Map (in preparation, 1975).
- U.S. Geological Survey, Water resources data for Wyoming -- Part 1, Surface water records; Part 2, Water quality records, 1965-1972 (published annually): U.S. Geol. Survey open-file reports. (For information about records prior to 1965, contact nearest USGS office.)
- Warner, D. A., 1946, Geology and ground-water resources of the Ranchester area, Wyoming: U.S. Geol. Survey open-file rept., 11 p.
- Whitcomb, H. A., 1960, Investigation of declining artesian pressures in the vicinity of Osage, Weston County, Wyoming: U.S. Geol. Survey open-file rept., 11 p., 1 fig.
- _____1963, Decreasing yields of flowing wells in the vicinity of Newcastle, Weston County, Wyoming: U.S. Geol. Survey open-file rept., 22 p., 1 fig.
- _____1965, Ground-water resources and geology of Niobrara County,
 Wyoming, with a section on Chemical quality of the ground water, by
 T. R. Cummings: U.S. Geol. Survey Water-Supply Paper 1788, 97 p.
- Whitcomb, H. A., Cummings, T. R., and McCollough, R. A., 1966, Ground-water resources and geology of northern and central Johnson County, Wyoming: U.S. Geol. Survey Water-Supply Paper 1806, 99 p.
- Whitcomb, H. A., and Gordon, E. D., 1964, Availability of ground water at Devils Tower National Monument, Wyoming: U.S. Geol. Survey open-file rept., 61 p., 7 figs.
- Whitcomb, H. A., and Morris, D. A., 1964, Ground-water resources and geology of northern and western Crook County, Wyoming, with a section on The Chemical quality of the ground water, by R. H. Langford: U.S. Geol. Survey Water-Supply Paper 1698, 92 p.

- Whitcomb, H. A., Morris, D. A., Gordon, E. D., and Robinove, C. J., 1958, Occurrence of ground water in the eastern Powder River basin and western Black Hills, northeastern Wyoming, in Powder River basin: Wyoming Geol. Assoc. Guidebook, 13th Ann. Field Conf., p. 245-260.
- Williams, C. C., 1948, Water-supply possibilities from wells at Newcastle, Wyoming: U.S. Geol. Survey open-file rept., 19 p.

MONTANA

The Northern Great Plains coal region of eastern Montana has become an area of intense interest for coal companies, utilities, State and Federal agencies, universities, landowners, and environmental groups. The possibility of large-scale mining of coal for energy or hydrocarbons has caused concern about the environmental effects on the region and has resulted in many studies to resolve the myriad of environmental questions and problems. This report presents the water data-collection program and interpretive hydrologic investigations that are being conducted by the U.S. Geological Survey.

In 1967, there were 33 surface-water and 8 water-quality data-collection stations in the coal region of the lower Yellowstone and Missouri Rivers. In October 1974, there were 39 surface-water and 47 water-quality stations in the region for collection of streamflow, chemical-quality, sediment, and temperature data. These stations are located on all types of streams from the mainstem Yellowstone and Missouri Rivers to small ephemeral and intermittent streams that drain proposed mine areas. Types of data collected at these stations differ according to the needs of the agencies requesting the information.

Ground-water investigations are being conducted to determine the areal hydrology of the Madison Group and associated Paleozoic rocks and the areal and site hydrology of shallow aquifers in the Fort Union Formation, including the coal beds. Available data, mostly from oil tests, indicate that the Madison may yield water suitable for use in energy development in the Northern Great Plains coal region. The Madison study is directed toward developing a plan for a comprehensive investigation to begin in the near future, using oil-well logs and geophysical data but progressively supplementing this information with data from new test wells.

At the present time (spring 1975) most of the fieldwork in the shallow ground-water study has been a partial data inventory of wells and springs and construction of a few wells for water sampling, aquifer testing, and water-level measurements. These data and data from future test wells will be used to construct models of the shallow hydrologic system and to attempt to predict the effects of (1) mining and (2) restoration of mined lands on the ground-water system. Considerable effort has been made to coordinate this study with the work of other agencies and groups.

A computer model is being constructed to determine the effect on stream temperature of selected increases in withdrawal rates, and thus reduced flow, of the Yellowstone River from Billings to Sidney, Montana.

Subsequent sections of this report list the parameters measured in the data-collection program and show the location of stations (figs. 10-16). Most water-quality stations are separated according to Federal agency program under which the Geological Survey collects the data; suspended-sediment and surface-water stations are presented according to data type. Background and objectives for each of the four interpretive studies, with a map showing location of areas (fig. 17), are also included.

The planning and financial support for the data collection and interpretive studies are shared by the U.S. Geological Survey and the following State of Montana and Federal agencies: Montana Department of Natural Resources and Conservation, Montana Bureau of Mines and Geology, Montana Department of Highways, Montana State University, Montana Department of Intergovernmental Relations, U.S. Bureau of Reclamation, U.S. Army Corps of Engineers, U.S. Bureau of Land Management, and Environmental Protection Agency.

DATA-COLLECTION PROGRAMS

National Stream Quality Accounting Network Water-Quality Stations

The National Stream Quality Accounting Network was designed to meet the needs of agencies or groups involved in water-quality planning and management on a national or regional scale. Loads of major inorganic chemical constituents and dissolved solids are calculated from daily records of specific conductance and streamflow. Periodic analyses are made for inorganic constituents and suspended sediment. Nutrients, organic constituents, bacterial content, and minor inorganic elements will be measured periodically to provide information on concentration ranges and variability. The information obtained for each accounting unit in the network will provide a balanced nationwide base of water-quality data.

Stations

Map number	Station number	Name	Location	Section	Town- ship	Range
1	06130500	Musselshell River at Mosby	NWZNWZ	11	14N	30E
2	06132000	Missouri River below Fort Peck Dam	NW ¹ / ₄	6	26N	42E
3	06174500	Milk River at Nashua	NEZNEZ	1	27N	41E
4 5	06185500	Missouri River near Culbertson	SEZNWZ	3	27N	56E
5	06214500	Yellowstone River at Billings ¹	NEZNEZ	34	18	26E
6	06294700	Bighorn River at Bighorn	NENEZ	33	5N	34E
7	06308500	Tongue River at Miles City	SEŁ	23	7 N	47E
8	06326500	Powder River near Locate	NW\SW\	14	8 N	51E
9	06329500	Yellowstone River near Sidney ^{2,3}		9	22N	59E

Parameter List

Daily

Physical - Temperature, specific conductance.

Monthly

Chemical - Bicarbonate, carbonate, calcium, magnesium, fluoride, sodium, potassium, dissolved solids, silica, chloride, sulfate, total phosphorous, total nitrate-nitrite, total Kjeldahl nitrogen.

Physical - Turbidity, pH, dissolved oxygen, suspended sediment.

Biological - Fecal coliform, fecal streptococci, phytoplankton.

Quarterly

Chemical - Total organic carbon, total and dissolved metals (arsenic, cadmium, chromium, calcium, copper, iron, lead, manganese, mercury, selenium, zinc).

Biological - Periphyton, chlorophyll.

¹Samples collected periodically for radiochemical analysis.
²Samples collected periodically for pesticide analysis.
³Station is also part of Environmental Protection Agency program.

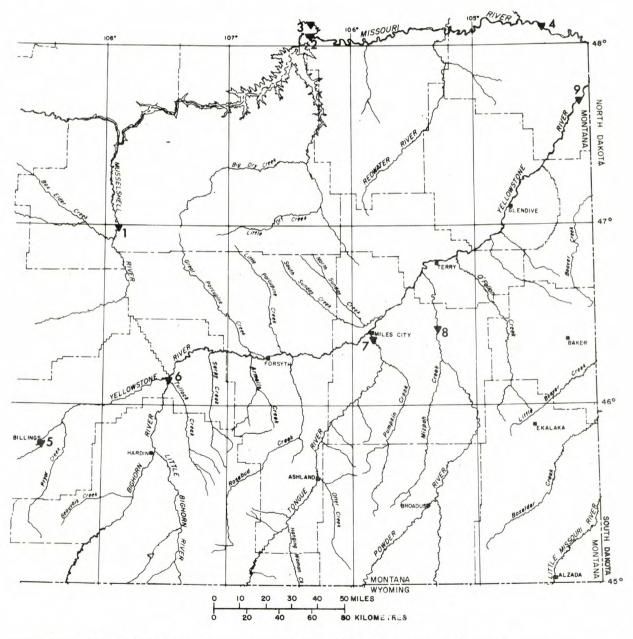


Figure 10. -- National Stream Quality Accounting Network program water-quality stations.

Geological Survey Water-Quality Stations

Stations

Map number	Station number	Name	Location	Section	Town- ship	Range
1	06177500	Redwater River at Circle1	SW\SW\	11	19N	48E
2	06217750	Fly Creek at Pompeys Pillar ²	NW\SE\	23	3N	30E
2	06287000	Bighorn River near St. Xavier ²	NW\2NE\2	16	65	31E
4	06290500	Little Bighorn River below Pass Creek near Wyola ²	W\2SW\2	35	7 S	35E
5	06294000	Little Bighorn River near Hardin ²	NEZNEZ	19	18	34E
6	06294980	East Fork Armells Creek near Colstrip	SE\SW\SW\SW\S	28	3N	41E
7	06294991	West Fork Armells Creek near Forsyth	SW\2SW\2NW\2	21	4N	40E
8	06294995	Armells Creek near Forsyth ¹	SEZNWZNEZ	26	6N	39E
9	06295250	Rosebud Creek near Colstrip	SE\SW\NE\	8	1S	42E
10	06295400	Rosebud Creek above Pony Creek near Colstrip	NE\SE\SE\	29	2N	43E
11	06295500	Rosebud Creek near Rosebud	SWINEISWI	12	4N	42E
12	06296003	Rosebud Creek at mouth, near Rosebud ¹	SWINWINE	21	6N	42E
13	06296120	Yellowstone River near Miles City ^{2,3}	SE\\$SW\\$. 31	8N	47E
14	06307830	Tongue River below Branden- berg Bridge, near Ashland ¹	NE\SW\nw\	6	1N	45E
15	06324500	Powder River at Moorhead ¹	NW社	8	9S	48E

Parameter List

Monthly

Chemical - Calcium, magnesium, sodium, potassium, silica, fluoride, iron, bicarbonate, carbonate, chloride, sulfate, alkalinity, total nitratenitrite, total phosphorous, dissolved solids, boron, total Kjeldahl nitrogen, total ammonia, biochemical oxygen demand.

Physical - Temperature, specific conductance, dissolved oxygen, pH, suspended sediment.

Quarterly

Chemical - Total metals (arsenic, beryllium, cadmium, chromium, copper,
iron, lead, lithium, manganese, mercury, molybdenum, nickel, selenium,
vanadium).

Annua1

Chemical - Dissolved metals (aluminum, arsenic, beryllium, cadmium, chromium, copper, lead, mercury, manganese, nickel, zinc).

¹Samples collected annually for radiochemical and spectrographic analyses.

²Samples collected daily for temperature and specific conductance only; samples collected monthly for common constituents only.

³Additonal data obtained through the Environmental Protection Agency program.

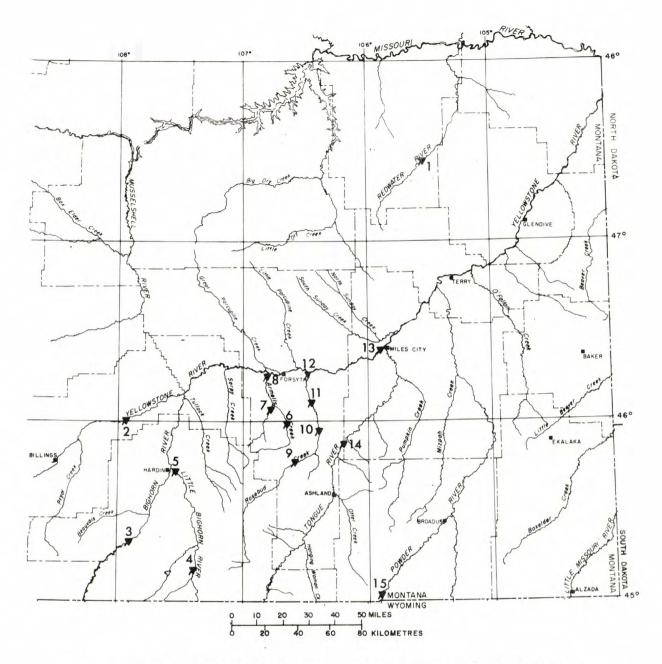


Figure 11 .-- Geological Survey program water-quality stations.

Environmental Protection Agency Water-Quality Surveillance Stations

Stations

Map number	Station number	Name	Location	Section	Town- ship	Range
1 2		Yellowstone River at Laurel Yellowstone River at Huntley	SW\SW\SW\ N\SW\	24	2S 2N	24E 27E
3	06296120	Yellowstone River near Miles City ¹	SE\SW\	31	8N	47E
4	06329500	Yellowstone River near Sidney ²	SW\ne\subsetsW\	9	22N	59E

Parameter List

Biweekly

Chèmical - Dissolved solids, chemical oxygen demand, total Kjeldahl nitrogen, total ammonia, total organic carbon, total phosphorous, total nitrate, total nitrate-nitrite.

Physical - Suspended sediment, turbidity, temperature, specific conductance, pH, dissolved oxygen.

Biological - Total coliform, fecal coliform.

Monthly

Chemical - Biochemical oxygen demand.

Quarterly

Chemical - Bicarbonate, carbonate, calcium, magnesium, potassium, silica, sodium, sulfate, chloride.

The Environmental Protection Agency, under the Northern Great Plains Resource Program, is funding for 1 year ending in April 1975 a water-quality data-collection program. The program consists of monthly samples for common constituents and nutrients, quarterly samples for total metals, and annual samples for dissolved metals at the following stations:

5	06294840	Yellowstone River at Myers	SW\SW\SE\	21	6N	35E
6	06295000	Yellowstone River at Forsyth	SE\NE\NE\	22	6N	40E
7	06307610	Tongue River below Hanging	SW\SE\SE\	1	65	42E
		Woman Creek, near Birney				
8	06326530	Yellowstone River near Terry	SE社SW社	10	12N	51E

Collection of samples for additional parameters at seven other continuing surfacewater sites within the energy area is funded by this program.

¹Additional data obtained through the Geological Survey program.

²Additional data obtained through the National Stream Quality Accounting Network program.

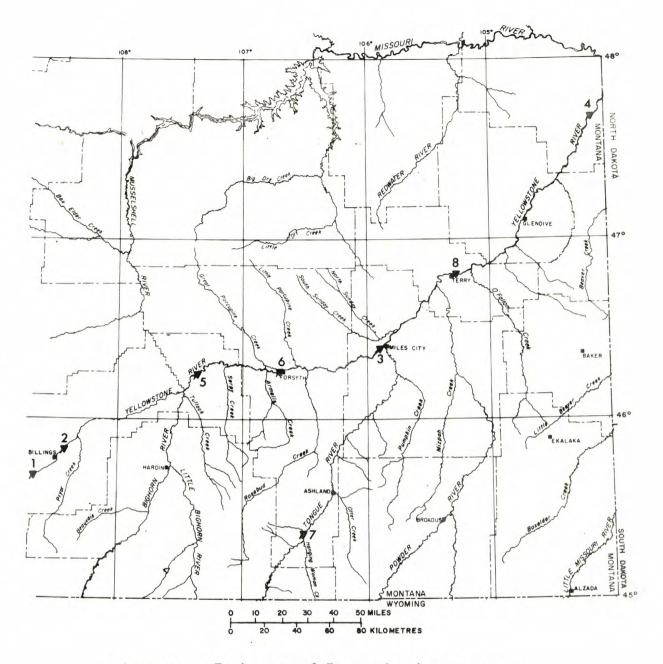


Figure 12 .--Environmental Protection Agency program water-quality surveillance stations.

Bureau of Land Management Water-Quality Stations

Stations

Map number	Station number	Name	Location	Section	Town- ship	Range
1	06294940	Sarpy Creek near Hysham ¹	SE\SE\	30	6N	37E
2	06295350	Greenleaf Creek near Colstrip	NWZNWZNWZ	29	1N	43E
2 3	06306300	Tongue River at State Line, near Decker ²	NWNE	33	98	40E
4	06306800	Deer Creek near Decker	NW\SW\SW\	10	9S	41E
5	06307510	Fourmile Creek near Birney	NEZNWZNEZ	28	7S	41E
	0000,020	Tournate order near briney	112 41111 4112 4		, 0	722
6	06307530	Bull Creek near Birney	NE\SW\NW\	28	6S	42E
7	06307600	Hanging Woman Creek near	N%NW%SE%	19	6S	43E
		Birney				.02
8	06307615	Cook Creek near Birney	SWINEINWI	25	5S	42E
9	06307670	Bear Creek at Otter	N⅓		7S	45E
10	06307730	Threemile Creek near Ashland	NW\SE\SE\	2	45	45E
10	00307730	THE COMPLETE OF COR HEAT PROHITAING	11(11-4011-4011-4	3	40	436
11	06307740	Otter Creek at Ashland ¹	NEWNEWSEW	11	38	44E
12	06307810	Beaver Creek near Ashland	NW\SE\NE\		1N	44E
13	06307830	Tongue River below Branden-	NE & SW & NW &	6	1N	45E
13	00307030	berg Bridge, near Ashland ²	NE 45 W4NW4	0 .	III	436
14	06307840	Liscom Creek near Ashland	SE\nw\nw\	27	2N	45E
15	06307890	Foster Creek near Volborg	NE\SE\NW\	12	3 N	46E
					J = 1	

Parameter List

Monthly

Chemical - Calcium, magnesium, sodium, potassium, silica, fluoride, iron, bicarbonate, carbonate, chloride, sulfate, alkalinity, total nitrate-nitrite, total phosphorous, dissolved solids, boron, total Kjeldahl nitrogen, total ammonia, biochemical oxygen demand.

Physical - Temperature, specific conductance, dissolved oxygen, pH, suspended sediment.

Quarterly

Chemical - Total metals (arsenic, beryllium, cadmium, chromium, copper,
iron, lead, lithium, manganese, mercury, molybdenum, nickel, selenium,
vanadium).

Annua1

Chemical - Dissolved metals (aluminum, arsenic, beryllium, cadmium, chromium, copper, lead, mercury, manganese, nickel, zinc).

¹ Samples collected annually for radiochemical and spectrographic analyses.
² Continuous monitoring of temperature, pH, specific conductance, and dissolved oxygen only.

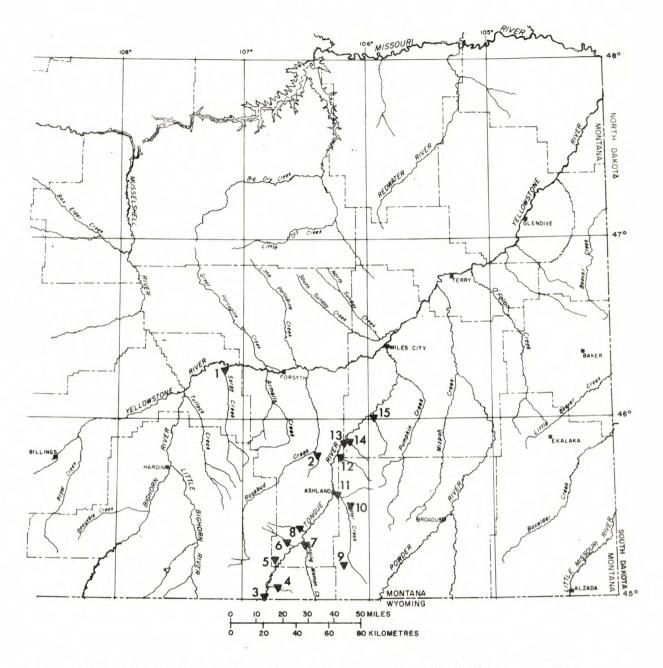


Figure 13.--Bureau of Land Management program water-quality stations.

Suspended-Sediment Daily Stations

Stations

Map number	Station number	Name	Location	Section	Town- ship	Range
1	06115200	Missouri River near Landusky	NW\ne\	31	22N	24E
		(U.S. Geological Survey-U.S. Army Corps of Engineers cooperative program)				
2	06185500	Missouri River near Culbertson	SE LNW L	3	27N	56E
		(U.S. Geological Survey-U.S. Army Corps of Engineers cooperative program)				
3	06294000	Little Bighorn River near Hardin	NEZNEZ	19	18	34E
		(U.S. Geological Survey program)	·.			
4	06307830	Tongue River below Branden- berg Bridge, near Ashland	NE\SW\nw\	6	1N	45E
		(U.S. Geological Survey program))			
5	06324500	Powder River at Moorhead	NW ¹ / ₄	8	98	48E
		(U.S. Geological Survey program))			
6	06326500	Powder River near Locate	NW\2SW\2	14	8N	51E
		(U.S. Geological Survey program))			
7	06329500	Yellowstone River near Sidney	SW\ne\sw\	9	22N	59E
		(U.S. Geological Survey-U.S. Army Corps of Engineers cooperative program)				

Parameter List

Daily

Physical - Suspended sediment, temperature.

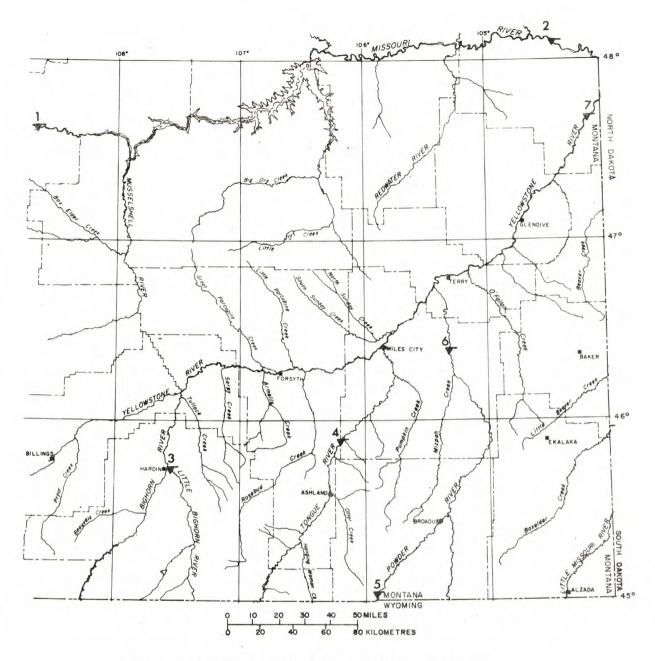


Figure 14.--Suspended-sediment daily stations.

Streamflow Stations

Map number	Station number	Name	Location	Section	Town- ship	Range
1 2	06115200 06127500	Missouri River near Landusky Musselshell River at Musselshell	NW\NE\ S\SW\	31 20	22N 9N	24E 29E
3 4 5	06130500 06131000 06131500	Musselshell River at Mosby Big Dry Creek near Van Norman Fort Peck Lake at Fort Peck	NW\NW\ NW\SE\NW\	11 3 14	14N 18N 26N	30E 42E 41E
6	06132000	Missouri River below Fort Peck Dam	NW₹	6	26N	42E
7 8 9 10	06174500 06177000 06177500 06185500	Milk River at Nashua Missouri River near Wolf Point Redwater River at Circle Missouri River near Culbertson	NEŁNEŁ SWŁNWŁ SWŁSWŁ SEŁNWŁ	1 28 11 3	27N 27N 19N 27N	41E 48E 48E 56E
11 12 13 14 15	06214500 06216000 06217750 06286400 06237000	Yellowstone River at Billings Pryor Creek at Pryor Fly Creek at Pompeys Pillar Bighorn Lake near St. Xavier Bighorn River near St. Xavier	NEŻNEŻ NEŻNWŻNEŻ NWŻSEŻ SWŻSEŻ NWŻNEŻ	34 5 23 18 16	1N 5S 3N 6S 6S	26E 26E 30E 31E 31E
16 17	06288200 06289000	Beauvais Creek near St. Xavier Little Bighorn River at State Line, near Wyola	West line SW\2NW\2	15 36	4S 9S	30E 33E
18	06290500	Little Bighorn River below Pass Creek, near Wyola	₩\$SW\\$	35	75	35E
19	06294000	Little Bighorn River near	NE氧NE氧	19	18	34E
20	06294690	Tullock Creek near Bighorn	NE \text{NE \text{\text{\text{NE}}}	19	4N	35E
21 22 23 24 25	06294700 06294940 06294995 06295250 06296003	Bighorn River at Bighorn Sarpy Creek near Hysham Armells Creek near Forsyth Rosebud Creek near Colstrip Rosebud Creek at mouth near Rosebud	NEŻNEŻ SEŻSEŻ SEŻNWŻNEŻ SEŻSWŻNEŻ SWŻNWŻNEŻ	33 30 26 3 21	5N 6N 6N 1S 6N	34E 37E 39E 42E 42E
26	06306250	Prairie Dog Creek near Acme, Wyo.	NE\SW\SW\	23	58N	83W
27	06306300	Tongue River at State Line, near Decker	NW\2NE\2	33	98	40E
28	06307500	Tongue River at Tongue River Dam, near Decker	NE \	13	88	40E
29	06307600	Hanging Woman Creek near Birney	N\2NW\2SE\2	19	6S	43E
30	06307740	Otter Creek at Ashland	NE\1NE\2SE\2	11	38	44E
31	06307830	Tongue River below Branden- berg Bridge, near Ashland	NE\SW\nw\	6	1N	45E
32 33 34	06308400 06308500 06309000	Pumpkin Creek near Miles City Tongue River at Miles City Yellowstone River at Miles City	SEŁNWŁSWŁ SEŁ SWŁNWŁ	35 23 28	6N 7N 8N	48E 47E 47E
35	06309075	Sunday Creek near Miles City	NW\sw\sw\sw\	3	8N	47E
36 37 38 39	06324500 06326300 06326500 06329500	Powder River at Moorhead Mizpah Creek near Mizpah Powder River near Locate Yellowstone River near Sidney	NW\\\ NW\\\NE\\\SW\\\\ NW\\\SW\\\\\\\\\\\\\\\\\\\\\\\	8 24 14 9	9S 6N 8N 22N	48E 51E 51E 59E

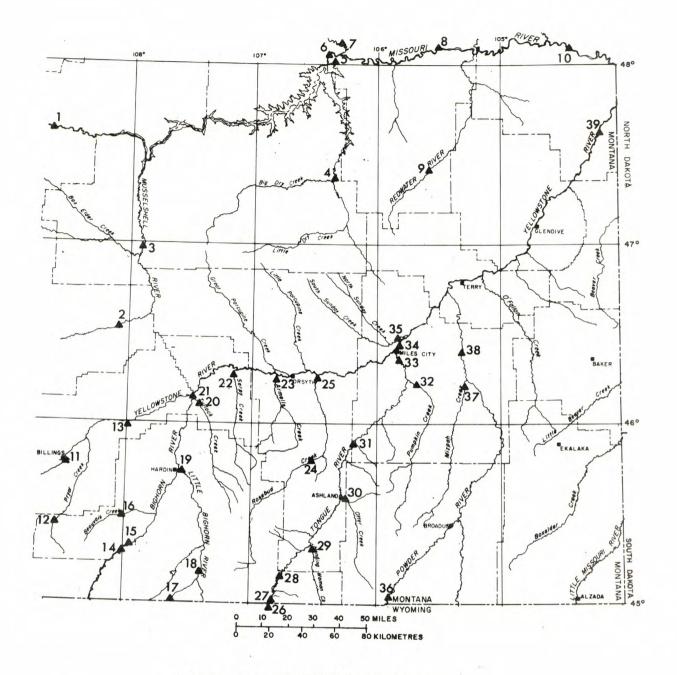


Figure 15.--Streamflow stations.

Crest-Stage Stations

The crest-stage stations listed below are maintained in cooperation with the Montana Department of Highways.

the non	tana Department of highways.			Town-	
Map		Location	Section	ship	Range
number	Name				
1	Fish Creek near Musselshell	NW\SW\	9	8N	29E
2	Musselshell River tributary near Musselshell	SW2	30	9N	28E
3	Butts Coulee near Melstone	Center E	9	10N	31E
4	Gorman Coulee near Cat Creek	SWŁSWŁ	31	15N	29E
5	Home Creek near Sumatra	SEŁNWŁ	7	10N	33E
6	Bair Coulee near Mosby	NENEZ	23	15N	32E
7	Second Creek tributary No. 2 near Jordan	NE	25	17N	38E
8	Russian Coulee near Jordan	SW\NE\	11	18N	39E
9	Thompson Creek tributary near Cohagen	NW\SW\	19	14N	42E
10	Spring Creek tributary near Van Norman	NW\ne\	12	17N	42E
11	Timber Creek tributary near Van Norman	SENEŁ	24	19N	43E
12	McGuire Creek tributary near Van Norman	NE ZSEZ	2	21N	43E
13	East Fork Sand Creek near Vida	NW₺	31	24N	48E
14	Cow Creek tributary near Vida	SE ₂	36	23N	48E
15	East Fork Duck Creek near Brockway	W	31	17N	47E
16				0111	515
16	West Fork Sullivan Creek near Richey	SW\SW\	31	21N	51E
17	Wolf Creek tributary near Vida	SE½	15	25N	48E
18	Missouri River tributary No. 6 near Wolf Point	NW\nw\	32	27N	48E
19	North Fork East Redwater River	SEŁNEŁ	36	25N	51E
	tributary near Richey				
20	Missouri River tributary No. 3 near Culbertson	Center	. 8	27N	56E
21	Little Bighorn River tributary near Wyola	SE\nw\	14	88	35E
22	Long Otter Creek near Lodgegrass	NW\SE\	28	45	35E
23	Andresen Coulee near Custer	W2	30	4N	34E
24	Tullock Creek tributary near Hardin	NW2NW2	33	1N	36E
25	Sarpy Creek tributary near Colstrip	SWZSWZ	16	2N	37E
23	barpy creek tributary hear constrip	5N45N4	10	211	376
26	Buckingham Coulee near Myers	SW4	25	6N	35E
27	Unknown Creek near Bighorn	SE社	12	5N	34E
28	Armells Creek tributary near Colstrip	SE社SE社	26	4N	40E
29	Rosebud Creek tributary near Busby	NE社	13	38	39E
30	Spring Creek near Decker	SE ^½	33	85	40E
31	Leaf Rock Creek near Kirby	Center	35	78	39E
32	Canyon Creek near Birney	SW\	11	7S	41E
33	Tie Creek near Birney	SW\SE\	22.	45	42E
34	Cow Creek near Fort Howes Ranger	SW\NW\	30	6\$	46E
35	Station near Otter Brian Creek near Ashland	SW\SW\	11	58	45E
36	Spring Creek near Ashland	NW½	27	3\$	44E
37	Walking Horse Creek near Ashland	NW ¹ / ₄	3	35	44E
38		Center	34	25	43E
39	Stebbins Creek near Ashland Stebbins Creek at mouth, near Ashland	NW\2	27	25	44E
40	Jack Creek near Volborg	NW4 NE4NW4	26	4N	44E 47E
40	Jack Offer Hear volborg	MEZNWZ	20	+14	4/E

Crest-Stage Stations (cont'd)

Map number	Name	Location	Section	Town- ship	Range
41 42 43 44 45	Sixmile Creek tributary near Epsie Basin Creek tributary near Volborg Deer Creek tributary near Volborg LaGrange Creek near Volborg Middle Fork Froze to Death Creek tributary near Ingomar	SWŁSWŁ NWŁ SWŁSWŁ NEŁNWŁ NEŁ	36 31 4 18 35	3S 2N 3N 4N 10N	48E 49E 50E 50E 34E
46 47 48 49 50	Anderson Creek at Vananda Short Creek near Forsyth Snell Creek near Hathaway Reservation Creek near Miles City North Fork Sunday Creek tributary at Rock Springs	SEZNEŻ NWŻ NWŻ SEŻNEŻ SEŻ	6 12 7 9 1	7N 6N 6N 7N 12N	38E 40E 45E 46E 43E
51 52	Dry House Creek near Angela North Fork Sunday Creek tributary No. 2 near Angela	SE½SW½ NE½	22 4	11N 9N	44E 45E
53 54 55	Tree Coulee near Kinsey Deep Creek near Kinsey Ash Creek near Locate	NE戈NW눅 SE戈SE戈 Nঠ	10 1 17	9N 9N 7N	47E 48E 50E
56 57 58 59 60	Badger Creek at Biddle Sand Creek near Broadus Cut Coulee near Mizpah Meyers Creek near Locate Locate Creek tributary near Locate	NW\SE\ SE\ NE\SW\ SE\ SW\SE\ SW\SE\	4 5 36 1 23	9S 5S 5N 7N 8N	52E 51E 52E 51E 52E
61	East Fork Little Powder River tributary near Hammond	NW4SE4	22	6S	54E
62 63 64 65	Powder River tributary near Powderville Cherry Creek tributary near Terry O'Fallon Creek near Ismay O'Fallon Creek tributary near Ismay	NE\NE\ NE\SW\ East line SE\	25 25 30 29	1N 13N 8N 8N	53E 50E 56E 56E
66 67	Spring Creek tributary near Fallon Yellowstone River tributary No. 4 near Fallon	NEZNEZ SWZ	13 23	12N 13N	53E 52E
68	Yellowstone River tributary No. 5 near Marsh	SW ¹ / ₄	21	14N	54E
69 70	Timber Fork Creek tributary near Lindsay Thirteenmile Creek tributary near Bloomfield	SW\SW\SE\SE\SE\SE\SE\SE\SE\SE\SE\SE\SE\SE\SE\	36 9	17N 19N	51E 54E
71 72 73 74	Fox Creek tributary near Lambert First Hay Creek near Sidney Griffith Creek tributary near Glendive Yellowstone River tributary No. 6 near Glendive	NW\SW\ SE\ NE\\NW\ NW\\SE\	24 16 35 8	22N 24N 16N 16N	55E 58E 56E 56E
75	Alkali Creek tributary near Sidney	SW\ne\	7	20N	60E
76 77	Krug Creek tributary No. 2 near Wibaux South Fork Horse Creek tributary near Wibaux	NW\\N\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6 11	14N 12N	59E 58E
78 79	Pennel Creek near Baker Deep Creek near Baker	South line	36	9N 6N	59E 59E
80	Lame Jones Creek tributary near Willard	SE\SE\	11	5N	57E
81 32	Wolf Creek near Hammond North Creek near Alzada	SE\ SE\NW\	5 7	8S 9S	57E 59E

Crest-Stage Stations (cont'd)

Map number	Name		Location	Section	Town- ship	Range
83	Little Missouri River tributary near Albion		SW2NW2	21	73	61E
84	Box Elder Creek tributary near Albion		SE社	19	58	59E
84	Coal Creek near Mill Iron		NW\SW\	26	2N	59E
36	North Fork Coal Bank Creek near Mill Iron	• •	SW ₂	12	2N	61E
87	Soda Creek tributary near Webster		NE社	23	3N	61E

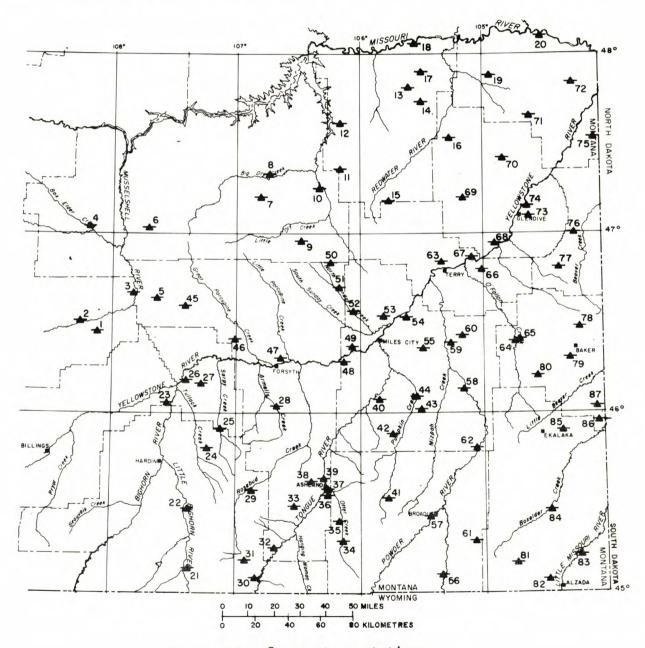


Figure 16.--Crest-stage stations.

INTERPRETIVE STUDIES

Availability of Water from the Madison Aquifer

Scattered and incomplete data indicate that the Madison aquifer (carbon-ates of the Madison Group and associated Paleozoic rocks) may yield as much as 2,200 gallons per minute (140 litres per second) to wells. However, the existing data are inadequate to predict the quantity and quality of water the aquifer will yield and the effects of development on the system.

The purpose of this study is to evaluate existing data and techniques and develop a plan for a comprehensive investigation of the Madison. The following approach is planned:

- I. Evaluate the existing conceptual model.
 - A. List the constraints of the model and the possible consequences if the system is stressed.
 - B. Determine the reliability of the constraints by comparing different types of data and placing various hypothetical stresses on the system.
 - C. Refine and modify the model to fit the available data.
- II. Evaluate selected techniques that may be useful hydrologic tools in a comprehensive study of the Madison aquifer.
 - A. Examine surface geophysical methods as to their application in extending point data in space and relative costs and manpower needs. The main emphasis will be on seismic methods.
 - B. Examine borehole geophysical methods as to types and uses. Mainly, determine which set of logs give optimum information.
 - C. Determine the possible relation between structure, geologic history, and various geohydrologic parameters.
 - D. Examine sedimentary petrology as a tool to relate porosity and permeability to the hydrologic system, to determine the factors that control permeability, and to determine the parameters that define the flow system.
 - E. Examine the use of geochemical techniques to describe the aquifer system and to develop a geochemical model.
- III. Combine the conceptual model with the most promising techniques and plan a comprehensive study of the Madison aquifer.
 - A. Select test-hole locations, outline the geohydrologic tests to be made and, concurrently, prepare test-drilling specifications and a drilling contract.

- B. Specify additional field and interpretive work necessary to extrapolate point data and further refine the conceptual model.
- C. Outline continuing studies necessary to define the system and to predict water quality, quantity, and consequences of development.

Cooperating agency: Old West Regional Commission
Montana Bureau of Mines and Geology

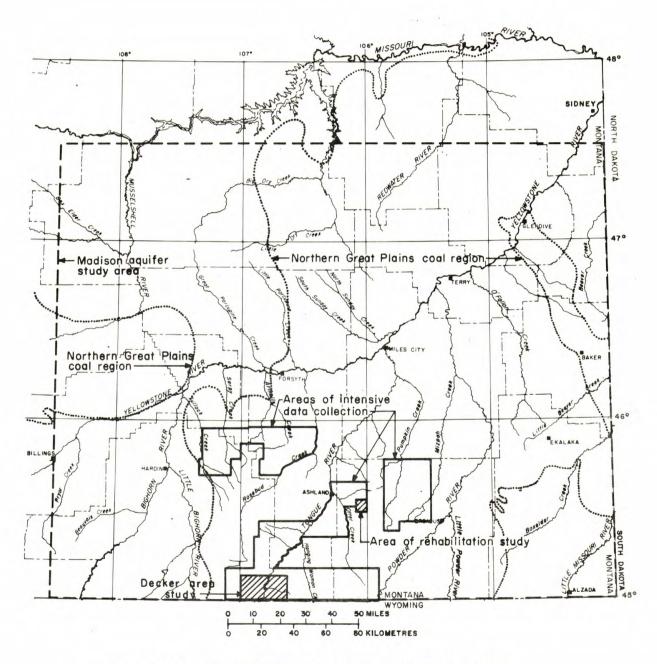


Figure 17 .-- Ground-water interpretive-study areas.

Effects of Mining and Related Activities on the Shallow Ground-Water System

Strip mining and the related aspects of coal development can be expected to cause ground-water levels and ground-water quality to change near the area of development in the shallow aquifers in eastern Montana. The shallow aquifers are principally alluvium along stream valleys and relatively thin discontinuous sandstone and coal beds separated by shale overlying the Pierre Shale of Late Cretaceous age. Ground-water supplies are fairly evenly distributed, but small in amount, and are developed mostly for domestic and stock use. Data, data interpretation, and prediction of the effects of mining and related activities on the shallow ground-water system are needed by the public, industry, and government to aid in the wise development of the coal and water resources.

Areas underlain by the best quality coal in greatest amounts are of immediate importance to leasing for mining; these areas coincide with the areas shown on figure 17 for intensive data collection. The overall study area, whose boundaries may require adjustment in the future, is in general bounded on the north by the Yellowstone River, on the east by the Powder and Little Powder Rivers, on the south by Wyoming, and on the west by the Bighorn and Little Bighorn Rivers.

The objectives of this study are several:

- 1. Define the regional hydrologic system of the aquifers above the Pierre Shale, including the interrelations between the most extensive aquifers, hydrologic characteristics, extent and boundaries of aquifers, water-quality variations, aquifer recharge and discharge, and streamflow. Definition of the system will initially be in areas planned for intensive data collection, followed by definition for the overall study area.
- 2. Obtain a detailed quantitative understanding of the flow system in relatively small areas of 10-20 square miles (26-52 square kilometres) in terms of ground-water recharge, movement, discharge, boundaries, and aquifer parameters. This information will form a conceptual model that will be the basis for predictive models.
- 3. Develop and test predictive models to assess the effects of several different levels of energy development and mining plans on regional and small-area flow systems.
- 4. Develop water-quality models to predict the rate and direction of leachate migration from spoil banks.
- 5. Utilize the predictive models to evaluate and improve the data-collection program.

Cooperating agencies:

- 1. U.S. Bureau of Land Management
- 2. Montana Bureau of Mines and Geology
- 3. Montana Department of Natural Resources and Conservation

Grants under consideration or in effect with:

- 1. Montana Bureau of Mines and Geology--selected test drilling and aquifer testing.
- 2. Montana Department of Intergovernmental Relations—development of format and software systems to make data collected by State agencies compatible with U.S. Geological Survey and STORET computer systems.
- 3. Montana State University--geochemistry, mineralogy, microorganisms, and chemical reactions that occur in spoils and aquifers.

Site Study to Assess the Ground-Water Problems That May Affect Restoration of Mined Lands

Problems of mined-land reclamation and possible solutions must be known before areas underlain by Federally owned coal will be recommended for leasing. These problems range from what type of surface treatment is best to what will be the effect of surface mining on the water resources.

The principal objective of the study is to provide the data and interpretations necessary to predict the potential water-resources problems related to mining and rehabilitation and to suggest alternative solutions to the problems. Concurrently, a monitoring system is needed to define baseline conditions and to document changes in ground-water flow and quality caused by mining and rehabilitation (see fig. 17).

The study will utilize the contributions of the following groups:

- 1. U.S. Bureau of Land Management -- land classification.
- 2. U.S. Bureau of Reclamation -- drill and core test holes, make physiochemical analyses of cores, perform leaching experiments, and perform engineering and soils tests.
- 3. U.S. Geological Survey obtain geophysical logs of test holes and correlate with cores, determine hydrologic characteristics of aquifer, install recorders for monitoring water levels, collect water samples for chemical analysis, collect related surface—water and sedimentation data, analyze all data and determine potential problems, and develop alternatives for management of the resource.

See page 104 for a description of work on this same tract having to do with erosion potential, soils, vegetation identification, and sediment-source mapping.

Yellowstone River Temperature Study

The purpose of the study is to determine the effect of possible reduction in streamflow on the temperature of the Yellowstone River from Billings to Sidney. A computer model of the energy budget for the stream system is being developed to predict temperature changes in the river as a result of preselected withdrawal rates at any point within the reach. The lack of detailed meteorological data (such as solar radiation) has necessitated the use of closed ponds to estimate equilibrium temperatures. Pond data are being collected at three sites near the river. River temperatures are being collected at the following sites:

Мар	number	(fig.15)	Name
	11		Yellowstone River at Billings
	21		Bighorn River at Bighorn
	33		Tongue River at Miles City
	34	7	Yellowstone River at Miles City
	38		Powder River near Locate
	39		Yellowstone River near Sidney

NORTH DAKOTA

The work done by the Water Resources Division in North Dakota is listed in the following pages by sequential project identification number. Some of the projects (ND-001, 002, 003, and 004) are primarily concerned with data collection. Others (ND-018 and ensuing numbers) involve interpretation in addition to data collection. The results of all projects are made available to the public in various forms of publication.

Most of the work is done in cooperation with or at the funded request of other agencies as listed in the project descriptions in the following pages. Some work is funded entirely by the Geological Survey.

DATA-COLLECTION ACTIVITIES SURFACE-WATER STATIONS

ND-001

Objectives

(A) To collect surface-water data sufficient to satisfy needs for current-purpose uses, such as (1) assessment of water resources, (2) operation of reservoirs or industries, (3) forecasting, (4) disposal of wastes and pollution controls, (5) discharge data to accompany water-quality measurements, (6) compact and legal requirements, and (7) research or analytical studies. (B) To collect data necessary for analytical studies to define for any location the statistical properties of, and trends in, the occurrence of water in streams, lakes, estuaries, etc., for use in planning and design.

Cooperators

Agency name	Abbreviation ¹
North Dakota State Water Commission Oliver County U.S. Army Corps of Engineers - Omaha District U.S. Army Corps of Engineers - St. Paul District U.S. Bureau of Land Management	SWC OC CE-O CE-S BLM
U.S. Bureau of Sport Fisheries and Wildlife U.S. Dept. of the Interior - Missouri River Basin	FWL
Program	MRB
U.S. Dept. of State - Waterways Treaty Program	WWT
U.S. Geological Survey - Federal Program U.S. Geological Survey - National Water Quality	FED
Accounting Network	NASQAN

Reports

Data are published in the annual series "Water Resources Data for North Dakota, Part I - Surface-Water Records."

¹Abbreviations used for cooperators in the following summary of activities.

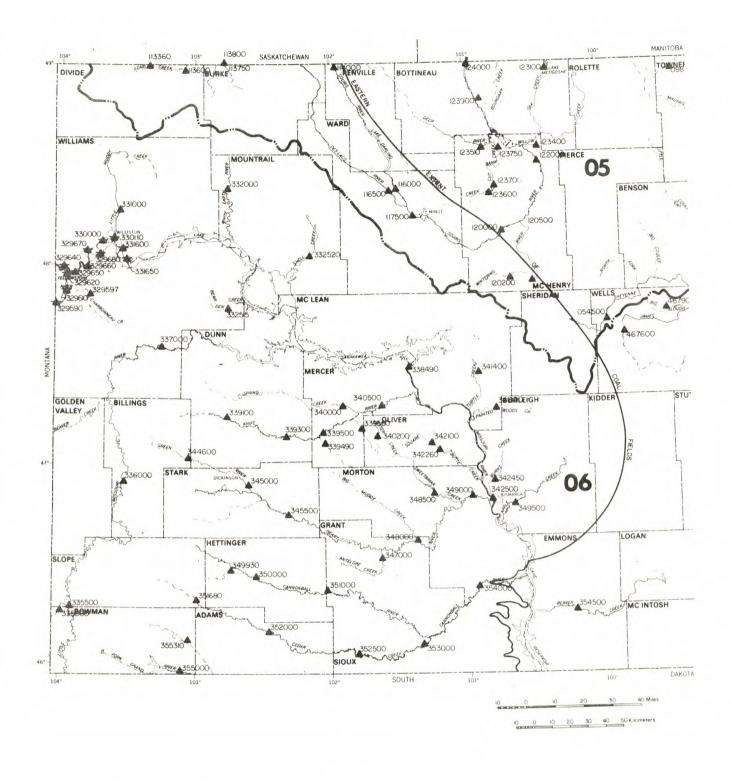


Figure 18.--Locations of streamflow stations.

DATA-COLLECTION ACTIVITIES

Streamflow Stations

Station ² number	Station name	Cooperator
Part 5 113600 114000 116000 116500 117500 120200	Long C.nr Noonan Souris R. nr Sherwood Souris R. nr Foxholm Des Lacs R. at Foxholm Souris R. at Minot Wintering R. nr Bergen	WWT WWT SWC, FWL SWC SWC MRB
Part 6 329597 331000 332000 332515 332520	Charbonneau C. nr Charbonneau L. Muddy C. bl Cow C. nr Williston White Earth R. nr White Earth Bear Den C. nr Mandaree Shell C. nr Parshall	SWC SWC SWC FED SWC
335000 335500 336000 337000 338490	L. Beaver C. nr Marmarth L. Missouri R. at Marmarth L. Missouri R. at Medora L. Missouri R. nr Watford City Missouri R. at Garrison Dam	CE-O, SWC CE-O, SWC CE-O CE-O, FED CE-O
339100 339300 339490 339500 339560	Knife R. at Manning Knife R. at Marshall Elm C. nr Golden Valley Knife R. nr Golden Valley Brush C. nr Beulah	SWC SWC SWC FED BLM
340000 340200 340500 341400 341800	Spring C. at Zap W. Br. Otter C. nr Beulah Knife R. at Hazen Turtle C. nr Turtle Lake Painted Woods C. nr Wilton	SWC SWC, CE-O MRB MRB
342100 342260 342450 342500 344600	Square Butte C. trib. #2 nr Center Square Butte C. bl. Center Burnt C. nr Bismarck Missouri R. at Bismarck Green R. nr New Hradec	OC OC SWC FED, CE-O SWC
345000 345500 347000 348000 348500	Green R. nr Gladstone Heart R. nr Richardton Antelope C. nr Carson Heart R. nr Lark Sweetbriar C. nr Judson	SWC SWC SWC CE-O SWC, CE-O

²The station numbers used in this report are abbreviated station numbers. The complete number includes the part number. Part 5 is the Hudson Bay and Upper Mississippi River basins and Part 6 is the Missouri River basin.

Streamflow Stations, Cont.

Station number	Station name	Cooperator
Part 6, Co 349000 349500 349930 350000 351000	Meart R. nr Mandan Apple C. nr Menoken Coal Bank C. nr Havelock Cannonball R. nr Regent Cannonball R. bl Bentley	SWC, CE-O SWC BLM CE-O SWC
351680	White Butte Fk. Cedar C. nr Scranton	SWC
352000	Cedar C. nr Haynes	SWC
352500	Cedar C. nr Pretty Rock	SWC
353000	Cedar C. nr Raleigh	SWC
354000	Cannonball R. at Breien	FED, CE-O
35 5000	N. Fk. Grand R. at Haley	SWC
355310	Buffalo C. Trib. nr Gascoyne	BLM

River-Stage Stations

Cooperator

U.S. Army Corps of Engineers.

Station number	Station name	Frequency
Part 6		
185600	Missouri R. No. 4 nr Nohly	Seasonal, March-October
185650	Missouri R. No. 5 nr Nohly	Do.
329590	Yellowstone R. No. 1 nr Fairview	Do.
329610	Yellowstone R. No. 2 nr Cartwright	Do.
329620	Yellowstone R. No. 3 nr Buford	Do.
329640	Missouri R. No. 5A at Buford	Do.
329650	Missouri R. No. 6 at Buford	Do.
329660	Missouri R. No. 7 nr Trenton	Do.
329680	Missouri R. No. 8 nr Trenton	Do.
330000	Missouri R. nr Williston	Continuous
330110	Missouri R. No. 9 at Williston	Seasonal, March-October
331600	Missouri R. No. 10 nr Williston	Do.
331650	Missouri R. No. 11 nr Williston	Do.
339000	Missouri R. bl. Garrison Dam	Continuous
340700	Missouri R. nr Stanton	Do.
340900	Missouri R. nr Hensler	Do.
341000	Missouri R. at Washburn	Do.
342020	Missouri R. at Price	Do.
349070	Missouri R. bl Mandan	Do.
349700	Missouri R. nr Schmidt	Do.

Reservoir and Lake Stations

Station number	Station name	Cooperator
Part 5 113750 115500	E. Br. Short C. Res. nr Columbus Lk. Darling nr Foxholm	WWT SWC-FWL
Part 6 343500 348490	E. A. Patterson Lk. nr Dickinson Sweetbriar Res. nr Judson	MRB SWC

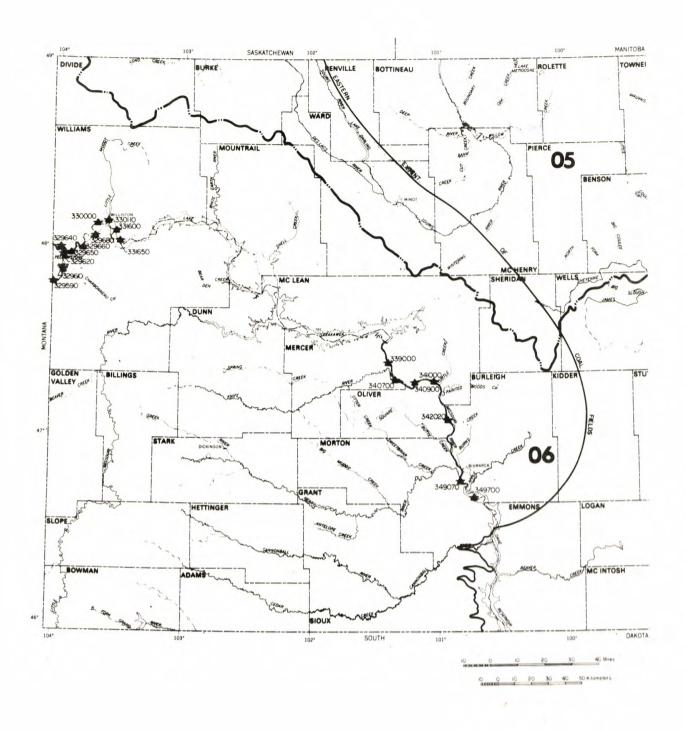


Figure 19.--Locations of river-stage stations.

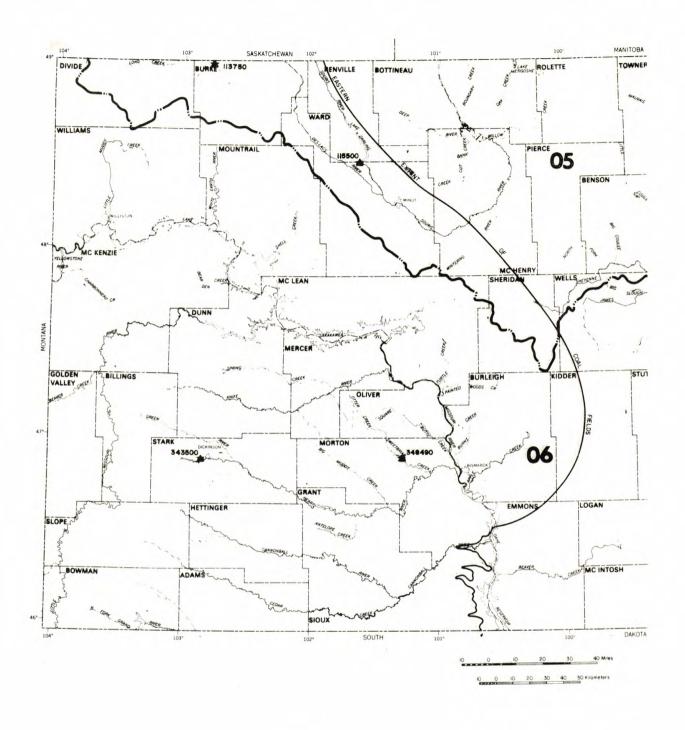


Figure 20.-- Locations of reservoir and lake stations.

Crest-Stage Stations

Cooperator

North Dakota State Highway Department.

Station name
Long Creek tributary No. 2 near Crosby Long Creek tributary near Crosby Souris River tributary near Burlington Des Lacs River tributary near Donnybrook Fuller Coulee at Foxholm
Souris River tributary No. 2 near Burlington Painted Woods Creek tributary near Williston Painted Woods Creek near Williston Painted Woods Creek tributary No. 2 nr Williston Sand Creek at Williston
White Earth River tributary near Tioga White Earth River tributary near White Earth Deep Creek near Bowman Sheep Creek tributary near Medora Sheep Creek tributary No. 2 near Medora
Little Missouri River tributary near Medora Jules Creek near Medora Little Missouri River tributary nr Watford City Spring Creek near Watford City East Branch Douglas Creek tributary nr Garrison
Snake Creek tributary near Garrison West Branch Otter Creek near Beulah Otter Creek near Hannover Square Butte Creek at Center Square Butte Creek tributary near Center
Square Butte Creek tributary No. 3 near Center Heart River tributary near South Heart Heart River tributary near Dickinson
Antelope Creek near Dickinson Antelope Creek tributary near New England Antelope Creek tributary (Site No. 2) near New England Government Creek near Richardton Wilson Creek near Glen Ullin

Crest-Stage Stations, Continued

Station number	Station name
	**
3472 3516.5 3516.8 3536 3537	Hailstone Creek near Blue Grass Middle Fork Cedar Creek near Buffalo Springs White Butte Fork Cedar Creek near Scranton Louise Creek tributary near Brisbane Louise Creek tributary near Lark
3538 3539 3548.85 3549 3549.85	Louise Creek tributary No. 2 near Lark Louise Creek above Flasher North Fork Grand River tributary near Bowman Spring Creek near Bowman Alkali Creek near Bowman
3549.5 355 2	Spring Creek tributary near Bowman Buffalo Creek tributary near Buffalo Springs

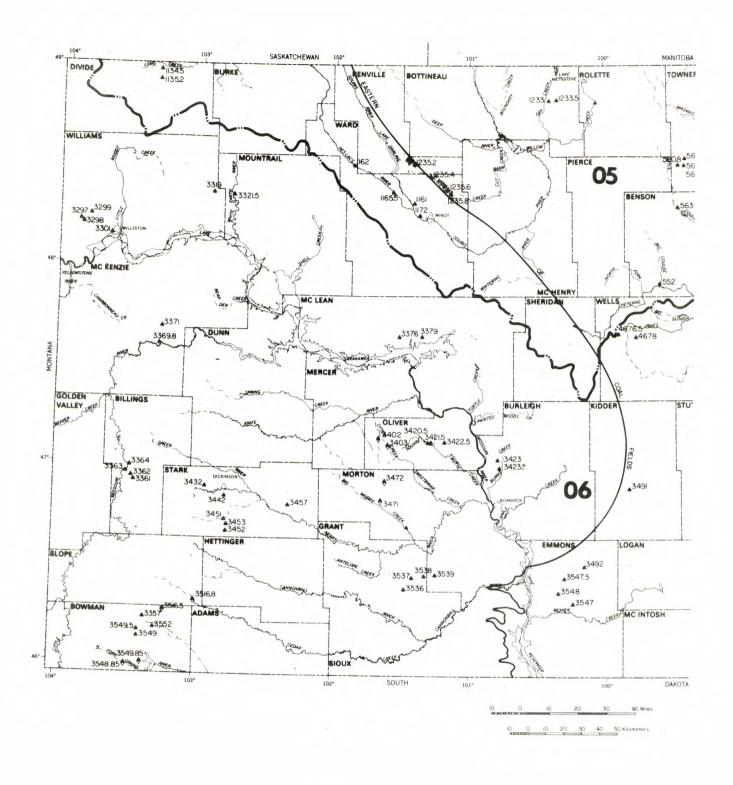


Figure 21.--Locations of crest-stage stations.

GROUND-WATER STATIONS

ND-002

Objectives

(A) To collect water-level data sufficient to provide a minimum long-term data base so that the general response of the hydrologic system to natural climatic variations and induced stresses is known and potential problems can be defined early enough to allow proper planning and management. (B) To provide a data base against which the short-term records acquired in areal studies can be analyzed. This analysis must (1) provide an assessment of the ground-water resource, (2) allow prediction of future conditions, (3) detect and define pollution and supply problems, and (4) provide the data base necessary for management of the resource.

Cooperators

North Dakota State Water Commission and U.S. Army Corps of Engineers, Omaha District.

Reports

Selected data are published at 5-year intervals in U.S. Geological Survey Water-Supply Papers. Open-file data available from the U.S. Geological Survey, Bismarck, ND.

Ground-Water Stations

County	Total recorders	Weekly	<u>Monthly</u>	Quarterly	<u>Annual</u>	Total
Adams Bowman Burke Burleigh Divide	4 1 3		7	7 1	9 11 6 5 8	9 22 7 27 9
Grant Hettinger McLean Mercer Morton	4	1	7 1	2 1 3 9	21 5 22 3 1	23 6 36 12 3
Mountrail Oliver Renville Sioux Stark			1	1 1 2 3	11 3 .9 11 9	12 4 10 13 12
Ward Williams	3 3		12	9	20 11	32 37
Totals	18	1	40	50	165	274

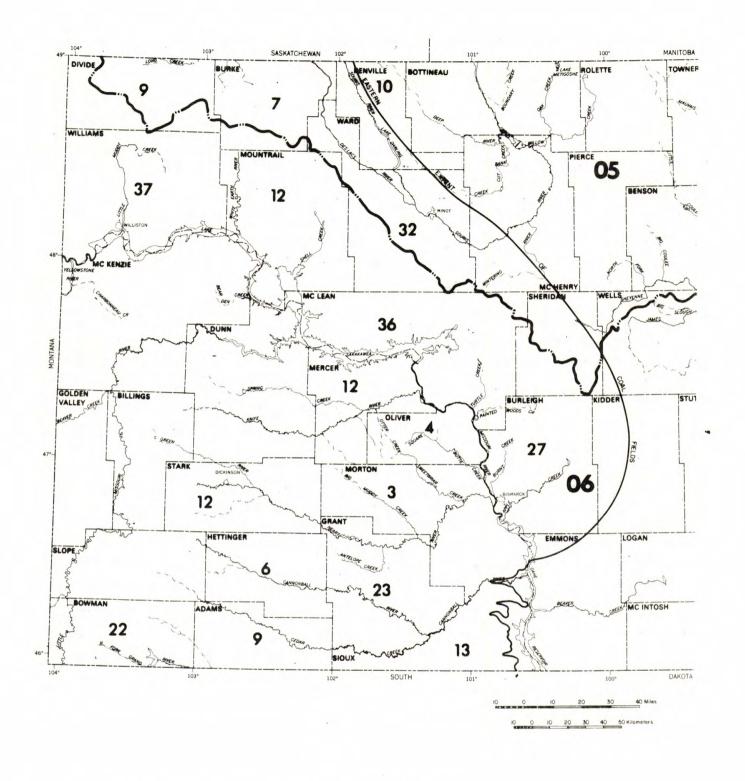


Figure 22.--Number of ground-water stations, by county.

WATER-QUALITY STATIONS

ND-003

Objectives

To provide a national bank of water-quality data for broad Federal planning and action programs and to provide data for Federal management of interstate and international waters.

Cooperators

U.S. Bureau of Land Management, U.S. Army Corps of Engineers, Environmental Protection Agency, and North Dakota State Water Commission.

Reports

Data are published in the annual series, "Water Resources Data for North Dakota, Part 2 - Water-Quality Records" and in the Water-Supply Paper series "Quality of Surface Waters of the United States" (parts 5 and 6).

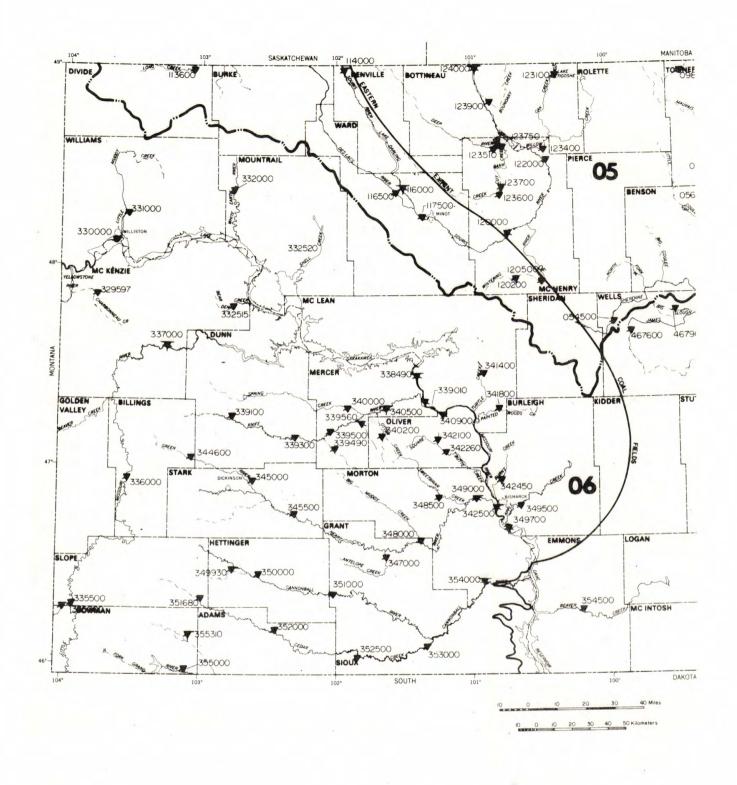


Figure 23.--Locations of water-quality stations.

Environmental Protection Agency

(National Water-Quality Surveillance System)

Station number	Station name				
05114000	Souris R. nr Sherwood, N.D., NW4SE4NE4 sec. 33, T. 164 N., R. 87 W.				
06342500	Missouri R. at Bismarck, N.D., $SE_4^1NW_4^1SE_4^1$ sec. 31, T. 139 N., R. 80 W.				
06349700	Missouri R. nr Schmidt, N.D., SW_4 NE $\frac{1}{4}$ sec. 26, T. 137 N., R. 80 W.				

Sampling Schedule and Parameters

Field Measurements (Biweekly)

00010 ³ 00400 31501	рН	00095 00300 31616	Specific conductance Dissolved oxygen Fecal coliform
	Lab Measurem (Biweekly		
00340 00070 70300 70299 00625	Chemical oxygen demand Turbidity Residue, dis. 180°C Residue, susp. 110°C Nitrogen, TOT KJD	00610 00630 00665 00680	Nitrogen NH TOT Nitrate + Nitrite, TOT Phosphorus, TOT Organic carbon, TOT
	(Quarterl	у)	
00915	Calcium, dis.	00445	Carbonate

Calcium, dis.	00445	Carbonate
Magnesium, dis.	00400	Bicarbonate
Sodium, dis.	00945	Sulfate, dis.
Potassium, dis.	00955	Silica, dis.
Chloride, dis.		
	Magnesium, dis. Sodium, dis. Potassium, dis.	Magnesium, dis. 00400 Sodium, dis. 00945 Potassium, dis. 00955

In addition the following samples are sent to EPA's Lab in Denver.

06342500 & 06349700: monthly metals (total)

05114000 : Quarterly metals (total) & seasonal pesticides

³U.S. Geological Survey parameter code.

Environmental Protection Agency (Baseline Water-Quality Data)

Station number	Station name
06330000	Missouri R. nr Williston, N.D., sec. 6, T. 153 N., R. 101 W.
06338490	Missouri R. at Garrison Dam, N.D., $S\frac{1}{2}$ sec. 31, T. 147 N., R. 84 W.
06340000	Spring C. at Zap, N.D., SW4 sec. 14, T. 144 N., R. 89 W.
06340500	Knife R. at Hazen, N.D., SE ¹ 4 sec. 18, T. 144 N., R. 86 W.

Sampling Schedule and Parameters

Field Measurements (Monthly)

00010	Temperature	00400	рН	
00095	Specific conductance	00300	Oxygen,	dis.

Lab Measurements (Monthly)

00915	Calcium, dis.	00940	Chloride, dis.
00925	Magnesium, dis.	00955	Silica, dis.
00930	Sodium, dis.	70299	Residue, susp. 110°C
00935	Potassium, dis.	00625	Nitrogen, TOT KJD
00445	Carbonate		Phosphorus, TOT.
00440	Bicarbonate	00610	Nitrogen NH4, TOT.
00945	Sulfate, dis.		Nitrate + Nitrite, Tot.
		00310	Biochemical Oxygen Demand

(Quarterly)

Dissolved	Total		Dissolved	Total	
01106	01105	Aluminum	01049	01051	Lead
01020	01022	Boron	01090	01092	Zinc
01040	01042	Copper	01145	01147	Selenium
00950	00951	Fluoride	71890	71900	Mercury

Nelson Lake Study

(Located Upstream from 06342260)

Eight sites--four on the lake, Ash pond, two tributaries, and one downstream--were selected for sampling and analysis for trace-element composition of aqueous effluents from coal-fired powerplants to surface waters. Two suites of samples were collected in May and September 1974. Analysis consisted of the following:

Parameters

Dissolved	Total _		Dissolved	Total	
01106 01005 01010 01015 01020 01025 01030 01035 01040 01120 01025 01046 01049 01130	01105 01007 01012 01017 01022 01027 01034 01037 01042 01122 01127 01045 01051 01031	Aluminum Barium Beryllium Bismuth Boron Cadmium Chromium Cobalt Copper Gallium Germanium Iron Lead Lithium	01060 01065 01075 01080 01100 01150 01085 01090 01160 09511 80020 01000 00950 71890	01062 01067 01077 01082 01102 01152 01087 01092 01162 01002 00951 71900	Molybdenum Nickel Silver Strontium Tin Titanium Vanadium Zinc Zirconium Radium Uranium Arsenic Fluoride Mercury
01056	01055	Manganese	01145	01147	Selenium

U.S. Geological Survey

(Benchmark Stations)

Station	
number	

Station name

06332515 Bear Den C. nr Mandaree, N.D., NW4 sec. 30, T. 150 N., R. 94 W.

Sampling Schedule and Parameters

Field Measurements (Monthly)

00095	Specific conductance	31501	Total	coliform
00010	Temperature, °C	31616	Fecal	coliform
00400	рН	31679	Fecal	streptococci
00300	Discoluted ovusen			-

Lab Measurements (Monthly)

00955	Silica, dis.	00950	Fluoride, dis.
00915	Calcium, dis.		Dissolved solids
00925	Magnesium, dis.		
00930	Sodium, dis.		
00935	Potassium, dis.	00900	Total hardness
00440	Bicarbonate	00630	Nitrate + Nitrite as N, total
00445	Carbonate	00665	Phosphorus as P, total
	Sulfate, dis.	80154	Suspended sediment
00940	Chloride, dis.		concentration

(Semi-Annual)

01045	Iron, TOT	01077	Silver, TOT
01002	Arsenic, TOT	01092	Zinc, TOT
	Cadmium, TOT	00/20	Cyanide
01034	Chromium, TOT	01007	Barium, TOT
01042	Copper, TOT	01147	Selenium, TOT
01051	Lead, TOT	01055	Manganese, TOT
71900	Mercury, TOT		,

U.S. Geological Survey (Benchmark Stations), Continued

Lab Measurements, Continued

Pesticides of Whole Water (Annual)

39360	DDD		39350	Chlordane
39365	DDE			Parathion
39330	Aldrin		39600	Methyl Parathion
39370	DDT			Malathion
39380	Dieldrin		39570	Diazinon
39390	Endrin		39730	2, 4-D
39410	Heptachlor		39740	2, 4, 5-T
39420	Heptachlor, E	Epox.	39760	Silvex
39340	Lindane			2

Pesticides of Bed Materials (Annual)

39363 DDD 39368 DDE 39333 Aldrin 39373 DDT 39383 Dieldrin	39413 39423 39343	Endrin Heptachlor Heptachlor, Lindane Chlordane	Epox.
---	-------------------------	---	-------

Radiochemical (Whole-Water) (Annual)

80030	Gross Alpha, dis.	80060	Gross Beta, susp.
80050	Gross Beta, dis.	09511	Radium
80040	Gross Alpha, susp.	-	Uranium

U.S. Geological Survey

(Missouri River Basin)

Station number	Station name
06338490¹	Missouri R. at Garrison Dam, N.D., $S\frac{1}{2}$ sec. 31, T. 147 N., R. 84 W.
06339010 ²	Missouri R. ab. Stanton, N.D., $E^{1/2}$ sec. 22, T. 145 N., R. 84 W.
06340900 ²	Missouri R. nr Hensler, N.D., SW¼ sec. 22, T. 144 N., R. 83 W.
06341800	Painted Woods C. nr Wilton, N.D.
¹ Daily temp	erature and specific conductance.

²Continuous temperature recorder only.

00400

рН 00010 Temperature

Sampling Schedule and Parameters

Field Measurements (Monthly)

5 Magnesium, dis.
5 Potassium, dis.
5 Silica, dis.
0 Sodium, dis.
5 Sulfate, dis.
0 Turbidity (JTU)
6 Phosphorus, dis.
l Nitrate + Nitrite, dis.

00095 Specific conductance

(Semi-annually)

Aluminum, dis.		01056	Manganese, dis.
Arsenic, dis.	7	71890	Mercury, dis.
Barium, dis.		01065	Nickel, dis.
Chromium, dis.		01080	Strontium, dis.
Cobalt, dis.		01090	Zinc, dis.
Copper, dis.		01025	Cadmium, dis.
Cyanide		01145	Selenium, dis.
Iron, dis.		01060	Molybdenum, dis.
Lead, dis.		01085	Vanadium, dis.
Lithium, dis.	00		
	Arsenic, dis. Barium, dis. Chromium, dis. Cobalt, dis. Copper, dis. Cyanide Iron, dis. Lead, dis.	Arsenic, dis. Barium, dis. Chromium, dis. Cobalt, dis. Copper, dis. Cyanide Iron, dis. Lead, dis. Lithium, dis.	Arsenic, dis. 71890 Barium, dis. 01065 Chromium, dis. 01080 Cobalt, dis. 01090 Copper, dis. 01025 Cyanide 01145 Iron, dis. 01060 Lead, dis. 01085 Lithium, dis.

82

U.S. Geological Survey

(National Water Quality Accounting Network)

Station number Station name

06337000¹,² Lt. Missouri R. nr Watford City, N.D., NW¼SE¼SE¼ sec. 35, T T. 148 N., R. 99 W.

06338490² Missouri R. at Garrison Dam, N.D., $S\frac{1}{2}$ sec. 31, T. 147 N., R. 84 W.

06340500 2 Knife R. at Hazen, N.D., SE $\frac{1}{4}$ sec. 18, T. 144 N., R. 86 W.

06354000² Cannonball R. at Breien, N.D., sec. 36, T. 134 N., R. 82 W.

¹National Pesticide Network stations include quarterly determination of pesticides from whole-water sample and semi-annual determination of pesticides from bed material.

Sampling Schedule and Parameters

Field Measurements (Monthly)

00010	Temperature	31616	Coliform, fecal
00095	Conductivity		Streptococci, fecal
00400	На		

Lab Measurements (Monthly)

00955	Silica, dis.	00070	m 1 1 1 1 1
		00070	Turbidity, JTU
	Calcium, dis.	00950	Fluoride, dis.
00925		00665	Phosphorus, total
00930		00630	Nitrate + nitrite as N, Tot.
	Potassium, dis.	00625	Total Kjeldahl as N
	Bicarbonate	00680	Organic carbon, Tot.
	Carbonate		Phytoplankton, (3-codominants
00945			genera) (Total count)
00940	Chloride, dis.	80154	Suspended sediments
	Dissolved solids at 180°C	70331	Suspended sediments, sieve
00900	Total hardness as CaCO3		diameter, % finer than
00902	Non-carbonate hardness		0.062 mm.

²Daily collected sample for temperature and specific conductance.

U.S. Geological Survey (National Water Quality Accounting Network), Continued

Lab Measurements (Quarterly)

Dissolved	Total		Dissolved	Total	
01002	01000	Arsenic	01051	01049	Lead
01027	01025	Cadmium	01055	01056	Manganese
01034	01030	Chromium	71900	71890	Mercury
01037	01035	Cobalt	01147	01145	Selenium
01042	01040	Copper	01092	01090	Zinc
01045	01046	Iron			

Periphyton (3-codominants genera, Biomass-dry and ash weights)

32228 Chlorophyll a, periphyton 32226 Chlorophyll b, periphyton

North Dakota State Water Commission

Station number Station name

- 05113600 Long C. nr Noonan, N. D. NE¼ sec. 1, T. 163 N., R. 96 W.
- 05114000 Souris R. nr Sherwood, N. D. NW4SE4NE4 sec. 33, T. 164 N., R. 87 W.
- 05120500 Wintering R. nr Karlsruhe, N. D. on line between secs. 10 & 11, T. 154 N., R. 77 W.
- 06335000 Lt. Beaver C. nr Marmarth, N. D. NE $\frac{1}{4}$ sec. 7, T. 132 N., R. 106 W.
- 06339300 Knife R. at Marshall, N. D. NW4 sec. 10, T. 142 N., R. 82 W.
- 063425001 Missouri R. at Bismarck, N. D. SE%NW%SE% sec. 31, T. 139 N., R. 80 W.
- 06349500 Apple C. nr Menoken, N. D. NW4NE4 sec. 9, T. 138 N., R. 79 W.
- 063497001 Missouri R. nr Schmidt, N. D. SW4NE4 sec. 26, T. 137 N., R. 80 W.

Sampling Schedule and Parameters

Field Measurements (Monthly)

00400 pH 00095 Specific conductance 00010 Temperature

Lab Measurements (Monthly)

00440) Bicarbonate	00935	Potassium, dis.
01020	Boron, dis.	00955	Silica, dis.
00915	Calcium, dis.	00930	Sodium, dis.
00445	Carbonate	00945	Sulfate, dis.
00940	Chloride, dis.	00660	Phosphate, dis.
70300	Residue, dis. 180°C	71851	Nitrate, dis.
00950	Fluoride, dis.	01046	Iron, dis.
00925	Magnesium, dis.	01056	Manganese, dis.

¹Continuous temperature recorder only.

North Dakota State Water Commission

(Specific Conductance Network)

Station number

Station name

- 05116500 Des Lacs R. at Foxholm, N. D. NW4NE4NW4 sec. 2, T. 156 N., R. 85 W.
- 05117500 Souris R. ab. Minot, N. D. NW\(\) NW\(\) SE\(\) sec. 17, T. 155 N., R. 83 W.
- 05120200 Wintering R. nr Bergen, N. D. on west line of sec. 4, T. 151 N., R. 78 W.
- 06329597 Charbonneau C. nr Charbonneau, N. D. SW1 sec. 31, T. 151 N., R. 102 W.
- 06331000 Lt. Muddy C. bl. Cow C. nr Williston, N. D.
- 06332000 White Earth R. at White Earth, N. D.
- 06332520 Shell C. nr Parshall, N. D. SE'ANE' sec. 29, T. 153 N., R. 89 W.
- 06335500 Lt. Missouri R. at Marmarth, N. D. SW1 sec. 30, T. 133 N., R. 105 W.
- 06336000 Lt. Missouri R. at Medora, N. D. NE' sec. 27, T. 140 N., R. 102 W.
- 06339100 Knife R. at Manning, N. D. SE%NW% sec. 6, T. 143 N., R. 95 W.
- 06339490 Elm C. nr Golden Valley, N. D. SE'ANW' sec. 23, T. 142 N., R. 90 W.
- 06339500 Knife R. nr Golden Valley, N. D. SE' sec. 34, T. 143 N., R. 90 W.
- 06340200 W. B. Otter C. nr Beulah, N. D. NW4NW4SW4 sec. 12, T. 142 N., R. 87 W.
- 06341400 Turtle C. nr Turtle Lake, N. D. N. line of sec. 19, T. 146 N., R. 80 W.
- 06342100 Square Butte C. Tr. 2 nr Center, N. D. NE'4NE'4 sec. 24, T. 142 N., R. 84 W.
- 06342260 Square Butte C. bl. Center, N. D. SE% sec. 4, T. 141 N., R. 83 W.

North Dakota State Water Commission (Specific Conductance Network),

Continued

Station number

Station name

- 06342450 Burnt C. nr Bismarck, N. D. SW4NW4SW4 sec. 29, T. 140 N., R. 80 W.
- 06344600 Green R. nr New Hradec, N. D. on line between sec. 13 & 14, T. 141 N., R. 98 W.
- 06345000 Green R. nr Gladstone, N. D. SW4 sec. 36, T. 140 N., R. 95 W.
- 06345500 Heart R. nr Richardton, N. D. NE4 sec. 29, T. 138 N., R. 92 W.
- 06347000 Antelope C. nr Carson, N. D. NW4NE4 sec. 8, T. 135 N., R. 87 W.
- 06348000 Heart R. nr Lark, N. D. NW4NW4SW4 sec. 9, T. 136 N., R. 85 W.
- 06348500 Sweetbriar C. nr Judson, N. D. SW4 sec. 14, T. 139 N., R. 84 W.
- 06349000¹ Heart R. nr Mandan, N. D. NW4NE4 sec. 25, T. 139 N., R. 82 W.
- 06350000 Cannonball R. at Regent, N. D. NE'4NE'4 sec. 13, T. 134 N., R. 95 W.
- 06351000 Cannonball R. bl. Bentley, N. D. SW4SW4 sec. 6, T. 133 N., R. 90 W.
- 06351680 White Butte F. Cedar C. nr Scranton, N. D. NW4 sec. 21, T. 133 N., R. 98 W.
- 06352000 Cedar C. nr Haynes, N. D. W½ sec. 20, T. 131 N., R. 94 W.
- 06352500 Cedar C. nr Pretty Rock, N. D. S½ sec. 33, T. 130 N., R. 89 W.
- 06353000 Cedar C. nr Raleigh, N. D. NE4SE4 sec. 8, T. 130 N., R. 85 W.

[&]quot;Daily" temperature and conductance.

North Dakota State Water Commission (Specific Conductance Network), Continued

Sampling Schedule and Parameters

Field Measurements (Monthly)

00010 Temperature

00095 Specific conductance

Lab Measurements (semi-annually)

00440	Bicarbonate	00935 Potassium, dis.
01020	Boron, dis.	00955 Silica, dis.
00915	Calcium, dis.	00930 Sodium, dis.
00940	Chloride, dis.	00945 Sulfate, dis.
00445	Carbonate, dis.	00660 Phosphate, dis.
70300	Residue, dis. 180°C	71851 Nitrate, dis.
00950	Fluoride, dis.	01046 Iron, dis.
00925	Magnesium, dis.	01056 Manganese, dis.

U.S. Army Corps of Engineers - St. Paul

Station number

Station name

05116000 Souris R.nr Foxholm, N.D., SW4SE4 sec. 34, T. 157 N., R. 84 W.

Sampling Schedule and Parameters

Field Measurements (Monthly)

00010	Temperature	00300	Dissolved oxygen
	Conductivity, field	31616	Fecal coliform
00400	pH, field	31501	Total coliform

Lab Measurements (Monthly)

00440	Bicarbonate	00945	Sulfate, dis.
00915	Calcium, dis.	00310	Biochemical Oxygen Demand
00940	Chloride, dis.	00340	Chemical Oxygen Demand
70301	Dissolved solids	00070	Turbidity
00950	Fluoride, dis.	08000	Color
00900	Hardness	00608	Ammonium as N
01046	Iron, dis.	00625	Nitrogen, TOT. KJD
00925	Magnesium, dis.	00671	Phosphorus, dis.
01056	Manganese, dis.	00665	Phosphorus, total
00631	Nitrate + Nitrite, dis.	38260	Detergents (MBAS)
00660	Ortho Phosphate, dis.		Phytoplankton (3-codominant
00935	Potassium, dis.		genera) (Total count)
00955	Silica, dis.	80154	Concentration, susp. sed.
00930	Sodium, dis.	80155	Discharge, susp. sed.

Semi-annually suspended sediment and bed material are analyzed for particle size.

U.S. Army Corps of Engineers - St. Paul, Continued (Quarterly)

	Periphyton (3-codominant	01037	Cobalt, total
	genera, Biomass-dry and	01042	Copper, total
	ash weights)	00720	Cyanide, total
	Macronivertebrates (Iden-	01045	Iron, total
	tification, Diversity	01051	Lead, total
	Index, Biomass-wet	01132	Lithium, total
	weights)	01055	Manganese, total
00680	Organic carbon, total	71900	Mercury, total
00300	Dissolved oxygen	01062	Molybdenum, total
01105	Aluminum, total	01067	Nickel, total
01002	Arsenic, total	01147	Selenium, total
01007	Barium, total	01077	Silver, total
01012	Beryllium, total	01082	Strontium, total
01022	Boron, total	01087	Vanadium, total
01027	Cadmium, total	01092	Zinc, total
01034	Chromium, total		

Annually bed material is analyzed for minor elements as listed above.

Pesticides of Whole Water (Semi-annual)

39360	DDD		39350	Chlordane
39365	DDE		39540	Parathion
39330	Aldrin		39600	Methyl Parathion
39370	DDT		39530	Malathion
39380	Dieldrin		39570	Diazinon
39390	Endrin		39730	2, 4-D
39410	Heptachlor		39740	2, 4, 5-T
39420	Heptachlor,	Epox.	39760	Silvex
39340	Lindane			

Pesticides of Bed Materials (Annual)

39363	DDD		39351	Chlordane
39368	DDE		39541	Parathion
39333	Aldrin		39601	Methyl Parathion
39373	DDT		39531	Malathion
39383	Dieldrin		39771	Diazinon
39393	Endrin		39731	2, 4-D
39413	Heptachlor		39741	2, 4, 5-T
39423	Heptachlor,	Epox.	39761	Silvex
39343	Lindane			

U.S. Bureau of Land Management

Station number	Station name
06349930	Coal Bank C.nr Havelock, N.D., NW_4SW_4 sec. 34, T. 135 N., R. 96 W.
06355310	Buffalo C.trib. nr Gascoyne, N.D., SE¼NE¾ sec. 3, T. 130 N., R. 99 W.
06339560	Brush C. nr Beulah, N.D., NW4SW4NW4 sec. 25, T. 143 N., R. 88 W.

Sampling Schedule and Parameters

Field Measurements (Monthly)

00300	DO	00095	Conductance
00400	рН	00400	Bicarbonate
00010	Temp.	00445	Carbonate

Lab Measurements (Monthly)

00915	Calcium, dis.	01020	Boron, dis.
00925	.Magnesium, dis.	70300	Dissolved solids
00930	Sodium, dis.	00625	KGN, total
00935	Potassium, dis.	00610	NH _A , total
00955	Silica, dis.	00310	вод
00940	Chloride, dis.	00070	Turbidity
00945	Sulfate, dis.	00681	Organic Carbon, dis.
00631	Nitrate-Nitrite, total	00689	Organic Carbon, susp.
00665	Phosphate, total		

(Quarterly)

Dissolved	Total		Dissolved	Total	
01000 01010 01025 01030 01040 01049	01002 01012 01027 01034 01042 01051 01045	Arsenic Beryllium Cadmium Chromium Cooper Lead Iron	01056 71890 01060 01066 01145 01085 01106	01055 71900 01062 01067 01147 01087 01105	Manganese Mercury Molybdenum Nickel Selenium Vanadium Aluminum
01130	01132	Lithium	01090	01092	Zinc

U.S. Bureau of Land Management, Continued

Annual (Low Flow)

80030	Gross Alpha, dis.
80050	Gross Beta, dis.
80040	Gross Alpha, susp.
80060	Gross Beta, susp.
09511	Radium
	Uranium, flourmetric

SEDIMENT STATIONS

ND-004

Objectives

To provide a national bank of sediment data for use in broad Federal and State planning and action programs and to provide data for Federal management of interstate and international waters.

Cooperators

State International Commission, U.S. Army Corps of Engineers, and U.S. Bureau of Land Management.

Reports

Data are published in the annual series, "Water Resources Data for North Dakota, Part 2 - Water-Quality Records" and in the Water-Supply Paper series "Quality of Surface Waters of the United States" (parts 5 and 6).

Sediment Stations

Station number	Station name	Cooperator
Part 5 114000 116000	Souris R.nr Sherwood Souris R.nr Foxholm	WWT CE-S
Part 6 332515	Bear Den Creek near Mandaree (hydrologic benchmark station)	FED
337000 338490 339560 340500	Little Missouri R.nr Watford City Missouri R. at Garrison Dam Brush Creek near Beulah Knife R.at Hazen	NASQAN, CE-O NASQAN BLM NASQAN
342500 349000 349930 354000	Missouri R.at Bismarck Heart R.at Mandan Coal Bank Creek nr Havelock	CE-O CE-O BLM
355310	Cannonball R.at Breien Buffalo Creek trib. nr Gascoyne	NASQAN, CE-O BLM

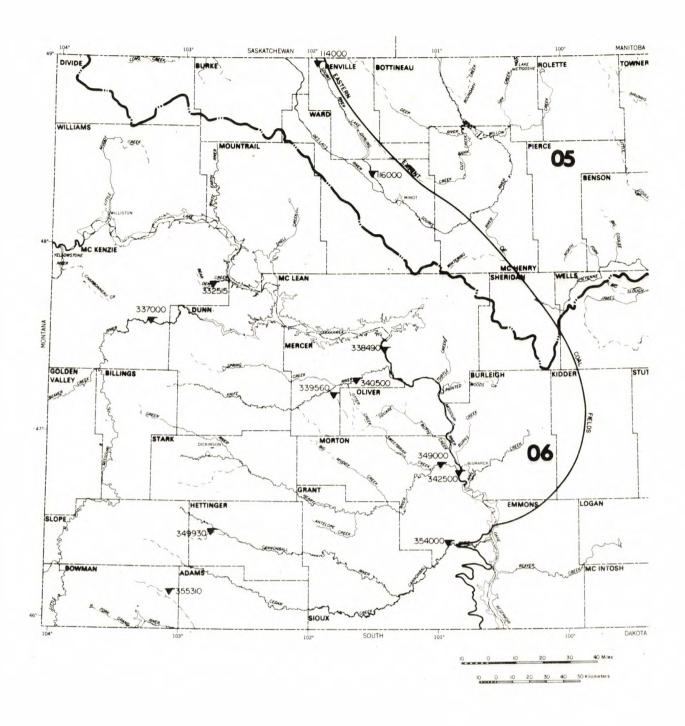


Figure 24.--Locations of sediment stations.

COUNTY GROUND-WATER STUDIES

ND-018-069

County ground-water studies are underway or have been completed in nearly all of the counties within the Fort Union coal region. The studies are made in cooperation with the North Dakota State Water Commission, North Dakota Geological Survey, the counties, and Federal agencies having responsibility for administrating any public lands that may be included in the counties. These agencies are primarily the U.S. Forest Service and the U.S. Park Service.

The purpose of the studies is to determine the quantity and quality of ground water available for domestic, municipal, industrial, and irrigation uses. The specific objectives of each project are to: (1) determine the location, extent, and nature of the major aquifers and confining beds, (2) evaluate the occurrence and movement of ground water, including the sources of recharge and discharge, (3) estimate the quantities of water stored in the aquifers, (4) estimate the potential yields of wells tapping the major aquifers, and (5) determine the chemical quality of ground water.

The results of each study are published in three reports, (1) geology, (2) ground-water basic data, and (3) ground-water resources.

The following counties and projects have been completed or are in progress.

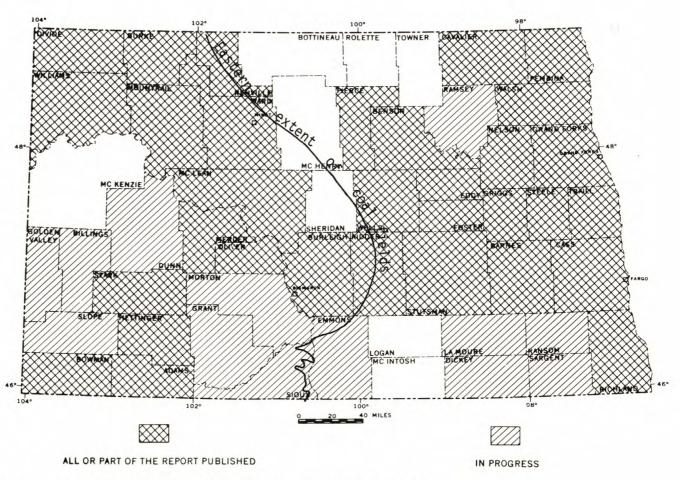


Figure 25.--Locations of county ground-water studies.

Project number	Counties	Reports published
ND-018 ¹ ND-028 ¹ ND-032 ¹ ND-034 ¹ ND-041 ¹ ND-044 ¹ ND-045 ¹ ND-046 ND-059	Kidder Burleigh Divide Ward and Renville Williams Burke and Mountrail McLean Mercer and Oliver Hettinger and Stark Dunn	Parts 1, 2, and 3 Parts 1, 2, and 3 Parts 1, 2, and 3 Parts 2 and 3 Parts 1, 2, and 3 Parts 2 None
ND-060 ND-061 ND-063 ND-069	Emmons Grant and Sioux Morton Billings, Golden Valley, and Slope	None None None None

¹Completed, others are in progress.

SHALLOW GROUND-WATER STUDY (GASCOYNE LIGNITE MINE) ND-040

This investigation is a study of the shallow aquifers and water quality at the Gascoyne lignite mine in Bowman County, North Dakota, to determine the effects of lignite mining upon the shallow ground-water aquifers. Twenty-three test holes ranging in depth from 75 to 450 feet have been drilled, and water samples have been collected for chemical analysis. The test wells are currently being monitored. Water samples have been collected from the mine lakes and the stream draining the mine area.

Cooperators

Northern Great Plains Resources Group and the U.S. Bureau of Land Management.

Reports

"Shallow Ground Water in Selected Areas in the Fort Union Coal Region,"
U.S. Geological Survey open-file report 74-371, 72 p.

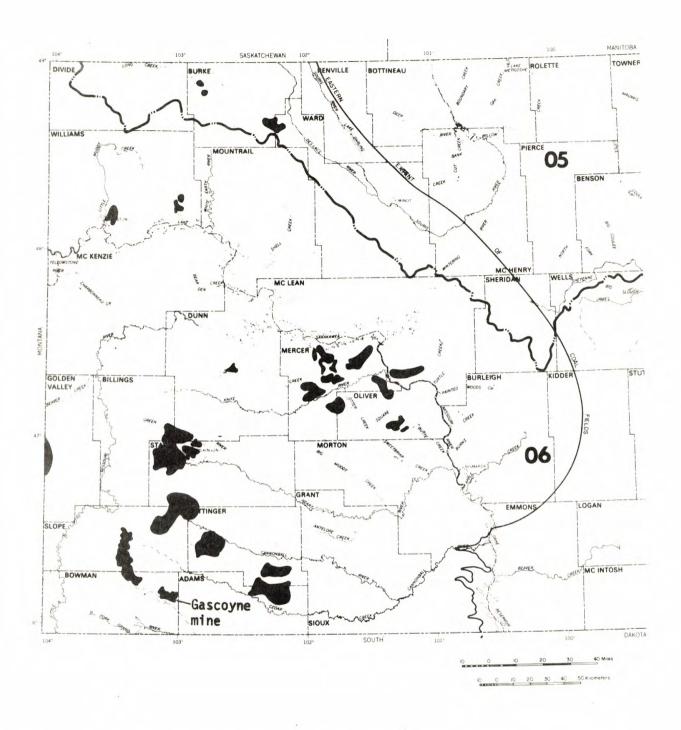


Figure 26.--Locations of major strippable lignite deposits and Gascoyne mine.

HYDROLOGIC CHANGES DUE TO LIGNITE MINING IN NORTH DAKOTA PART 1 - RECONNAISSANCE OF STRIPPABLE LIGNITE DEPOSITS ND-070

The objectives are to define for each strippable lignite deposit (as identified on the accompanying map) the following: (1) A summary of local geologic conditions, (2) description of the local ground-water flow system, (3) flow characteristics of streams, (4) chemical quality of water from streams, lakes, and aquifers, (5) stream sediment loads, and (6) recommendations for more intensive hydrologic studies in probable problem areas.

The project is funded by the U.S. Geological Survey.

AVAILABILITY OF GROUND WATER FROM THE CRETACEOUS AND TERTIARY AQUIFERS OF THE FORT UNION COAL REGION

ND-071

This investigation is a compilation of existing data from South Dakota, North Dakota, Montana, and Wyoming of the Tertiary rocks and aquifers overlying the Pierre Shale. The objectives of the investigation are: (1) to determine the location, extent, and nature of the aquifers and confining beds, (2) to evaluate the occurrence and movement of ground water, including the sources of recharge and discharge, and (3) to determine the chemical quality of the ground water.

The project is funded by the U.S. Geological Survey.

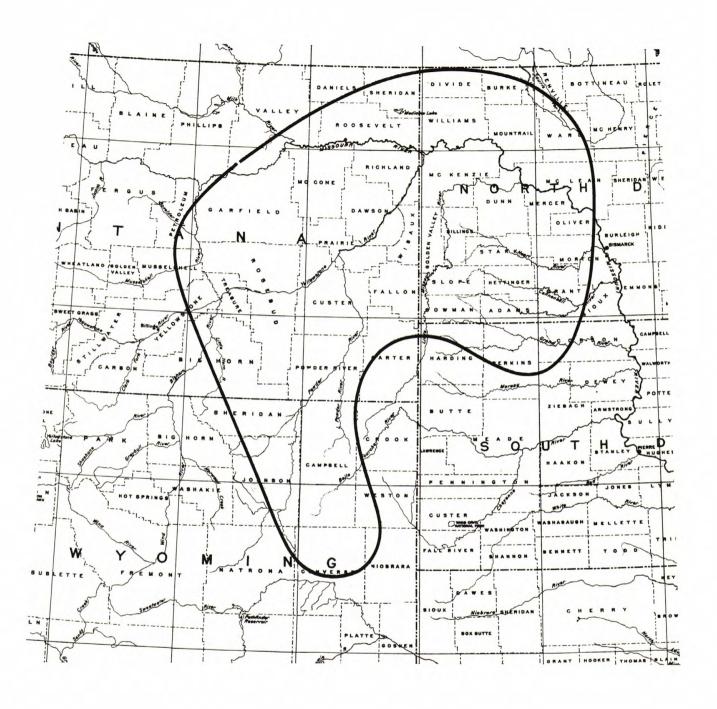


Figure 27 .--Location of study area for ND-071.

Deep Ground Water (Madison Limestone)

A plan of study is being prepared for a quantitative investigation of the Madison Limestone aquifer system and associated deep ground water beneath northeastern Wyoming, northwestern South Dakota, and southeastern Montana. Funds to develop the plan of study are provided by the Old West Regional Commission.

The quantitative investigations will include drilling and hydraulic testing. These activities will be expensive due to the relatively great depths involved. In order to minimize costs, geophysical data are being obtained and analyzed in an effort to gain some understanding of fracture and secondary permeability patterns in advance of drilling. Current efforts also include the construction of a digital model of the system to test relative sensitivities of the model components and to also guide data collection.

The plan of study is to be completed by summer 1975 and will be published.

Complementary parts of the investigation are described on pages 32 and 55 of this report.

Additional information may be obtained from:

Regional Hydrologist, Central Region Telephone: (303) 234-3661 U.S. Geological Survey

Water Resources Division

Building 25, Denver Federal Center

Lakewood, Colorado 80225

MONTANA

Otter Creek EMRIA Study Site near Ashland, Montana

(Project CR75-104FI)

Funds: U.S. Geological Survey and

Bureau of Land Management

The Public Lands Hydrology Program is conducting studies on the 1,920-acre Otter Creek EMRIA Study Site near Ashland, Montana (see figure 17) to provide data for evaluating the reclamation potential of that area after surface mining for coal.

A map showing annual source-area sediment yields is being prepared and the relations of sediment yield to percent bare soil and average watershed slope will be described. Estimates will be made of the amount of sediment contributed by the study-site area to Otter Creek.

Estimates of peak flows with recurrence intervals of 2, 5, 10, 25, and 50 years were made for various ephemeral streams on and near the study site using channel width and depth measurements. The curves used for flow estimates were based on records from crest-stage gages in southeastern Montana. Several channel cross-sections downstream from the strippable coal deposits were surveyed and monumented. These will be resurveyed periodically when the area is mined, thus monitoring the effects of mining and subsequent rehabilitation on channel erosion and deposition.

A map of the vegetation-soil units on the site was prepared from aerial photographs and on site observations. Vegetation, mulch, and rock cover and percent bare soil were measured in each unit. Internal-water stress in the woody plants present was also measured.

Soil samples to the depth of active rooting were obtained in each vegetation-soil unit. The depth of rooting was used along with moisture-retention forces and bulk density of the soil to estimate the average annual soil-moisture storage under normal precipitation conditions. The weight of roots, the electrical conductivity, pH and relative erodibility were measured for each soil sample in the laboratory. Progress is being made in methods for estimating the moisture-retention capacity, the infiltration rate, and the bulk density of the disturbed soils after mining and regrading. These data will be useful in selecting suitable vegetation species for seeding the overburden topped with available soil and in determination of whether or not furrowing, pitting or terracing will be needed to enhance vegetation establishment and to minimize runoff and erosion.

Additional information on this study may be obtained from Richard F. Hadley, Lakewood, Colorado, Telephone No. (303) 234-4175.

Occurrence of Ground Water and Effects of Surface Mining of Coal on Shallow Aquifers in the Decker Area,

Big Horn County, Montana

(Project CR74-093F)

Funds: U.S. Geological Survey

A study near Decker of general conditions of ground-water occurrence in shallow sandstone and coal aquifers in the Wasatch and Fort Union Formations is nearing completion. The study encompasses an area of about 150 square miles and extends about 9 miles on either side of the north-flowing Tongue River (see Figure 17). The area includes one active surface coal mine and two proposed surface mines. Objectives of the study are:

- A. To complete a data inventory of existing wells and springs.
- B. To establish baseline conditions from which to appraise changes in ground-water flow patterns and water quality as a result of mining and rehabilitation activities.
- C. To show areas of ground-water recharge and discharge and direction of ground-water movement.
- D. To show effects of geologic structure (faulting and fracturing) in ground-water movement.
- E. To assess the hydrologic effects of mining to date.
- F. To predict the probable hydrologic effects of mining at the two proposed mine sites.

Additional information on this study may be obtained from Richard F. Hadley, Lakewood, Colorado, Telephone No. (303) 234-4175.

Wyoming

Hanna Basin EMRIA Site

(Project CR75-104FI)

Funds: U.S. Geological Survey and

Bureau of Land Management

The Public Lands Hydrology Program is conducting studies in cooperation with the Bureau of Land Management on the 2,240-acre Hanna Basin EMRIA Study Site near Seminoe Reservoir in Wyoming (106°47'30" long., 42° lat.). This investigation is to provide data for evaluating the reclamation potential of lands that will be disturbed by surface mining for coal.

A map showing present annual source-area sediment yields was prepared and the relations of sediment-yield estimates to amount of bare soil and average land slope were developed. Estimates of the amount of sediment contributed from the study site to Seminoe Reservoir were also made. In addition, estimates of sediment yield that may occur from presumed overburden areas were made for three periods:
(1) during mining, (2) during a 5-year rehabilitation period after the overburden has been graded to slopes less than 3:1 and seeded to perennial grasses, and (3) after the 5-year rehabilitation period. The conditions at a nearby surface mine where some rehabilitation work has been done was used as a basis for the conditions of the overburden during the above-mentioned periods.

A map of the vegetation-soil units on the site was prepared from aerial photographs and on-site observations. Vegetation, mulch, and rock cover and percent bare soil were measured in each unit. Internal-water stress in the woody plants present was also measured.

Soil samples to the depth of active rooting were obtained in each vegetation-soil unit. The depth of rooting was used along with moisture-retention forces and bulk density of the soil to estimate the average annual soil-moisture storage under normal precipitation conditions. The weight of roots, the electrical conductivity, pH and relative erodibility were measured for each soil sample in the laboratory. Progress is being made in methods for estimating the moisture-retention capacity, the infiltration rate, and the bulk density of the disturbed soils after mining and regrading. These data will be useful in selecting suitable vegetation species for seeding the overburden topped with available soil and in determination of whether or not furrowing, pitting or terracing will be needed to enhance vegetation establishment and to minimize runoff and erosion.

Observations of reclamation practices will continue during the mining and post-mining period and compared with the baseline data collected during the first year of studies.

Sediment Yield Estimates

(Project CR75-104FI)

Funds: U.S. Geological Survey and

Bureau of Land Management

The disturbance of land that will accompany the surface mining of coal in Campbell County, Wyoming will undoubtedly change the erosion and sediment yield patterns locally in the vicinity of mines. There are few suspended-sediment stations in this area (see Figure 8) and, therefore, little baseline information from which to assess possible changes. Using information gathered at small stock reservoirs of sediment deposition and observations of drainage basins characteristics a reconnaissance sediment-yield map is being made of the part of Campbell County shown on figure 8.

Simulation of rainfall on mining areas

(Project CR74-092FI)

Funds: U.S. Geological Survey and

Bureau of Land Management

During 1974 simulated rainfall was applied to revegetated spoils piles and nearby undisturbed natural ground at two mines in Wyoming. These were the Pacific Power and Light mine at Glenrock and the Bighorn mine near Sheridan. Runoff and erosion from the areas was compared and related to mean slope, percentage of clay in the top 10 cm, and amount of vegetation.

Occurrence of Ground Water in

Southeastern Campbell County, Wyoming

(Project CR74-093F)

Funds: U.S. Geological Survey

A study of general conditions of ground-water occurrence in shallow sandstone and coal aquifers in the Wasatch and Fort Union Formations in southeastern Campbell County is about 20 percent completed. The study, which encompasses an area of about 1,000 square miles, (figure 3) includes no active surface coal mines. The area does include several proposed mines, however, and should include a number of active mines in the next decade. Objectives of the study are:

- A. To complete a data inventory of existing wells and springs.
- B. To establish baseline conditions from which to appraise

- changes in ground-water flow patterns and water quality as a result of mining and rehabilitation activities.
- C. To show areas of ground-water recharge and discharge and direction of ground-water movement.
- D. To show any existing areal patterns of water quality.
- E. To predict the probable hydrologic effects of mining at proposed mine sites.

Additional information on this study may be obtained from Richard F. Hadley, Lakewood, Colorado, Telephone No. (303) 234-4175.

RESEARCH ACTIVITIES, WATER RESOURCES DIVISION, GEOLOGICAL SURVEY

AS DIRECTLY RELATED TO COAL AND OIL-SHALE MINING AND PROCESSING

Microbial controls on leaching

A grant to Montana State University is in effect to study the release of inorganic solutes in coal spoils as a result of microbial processes. Studies are being made of the microbial growth inhibiting or prompting properties of earth materials and the influence of micro-organisms on the breakdown and dissolution of earth materials.

Kenneth Temple, Department of Microbiology, Montana State University Bozeman, Montana
Telephone: FTS (406) 587-4511 ask Oper. for 994-2901

Background geochemistry of Western energy resource areas

This project represents the aqueous phase of a total broad-brush geochemical background study. The work currently is on trace elements in the Northern Great Plains Region and will be extended to other areas of the Rocky Mountain Region by end of Fiscal '76. A standardized analytical schedule for water and sediment is being devised for recommendation to quality-of-water programs related to coal and oil-shale mining and processing.

Gerald L. Feder, Lakewood, Colorado Telephone: FTS (303) 234-2404

(In association with Jon Connor, Lakewood, Colorado

Telephone: FTS (303) 234-3715)

Geochemistry interactions between coal and water

The reasons for sulfate loss when ground water moves through a coal seam will involve laboratory leaching experiments to investigate sulfate adsorption by coal. Current work is in the analysis of water samples collected from the Fort Union Formation for dissolved gases.

Donald W. Fisher, Reston, Virginia Telephone: FTS (703) 860-6951

Borehole geophysics

This project is funded to develop hardware and data interpretation techniques, including computer programs, for downhole logging. A focused density tool has recently been developed, and work is under way on a computer program to determine the mineralogy, porosity, fluid, and strength characteristics for coal by geophysical methods. Future plans for geophysical logging will be in wells located near Gillette, Wyoming, that are completed in the Madison Limestone.

Scott Keys, Lakewood, Colorado Telephone: FTS (303) 234-2617

Organic solutes in water

The development of new analytical methods which classify, characterize, and extract organic solutes dissolved in water has been developed. The methodology will be applied to surface and ground water in Western coal and oil-shale regions to quantify the dissolved organic material in advance of coal or oil-shale mining or processing. Research is also under way to characterize organics in bed sediments. The work will ultimately focus on waste management of organic residuals generated by retorting oil shale.

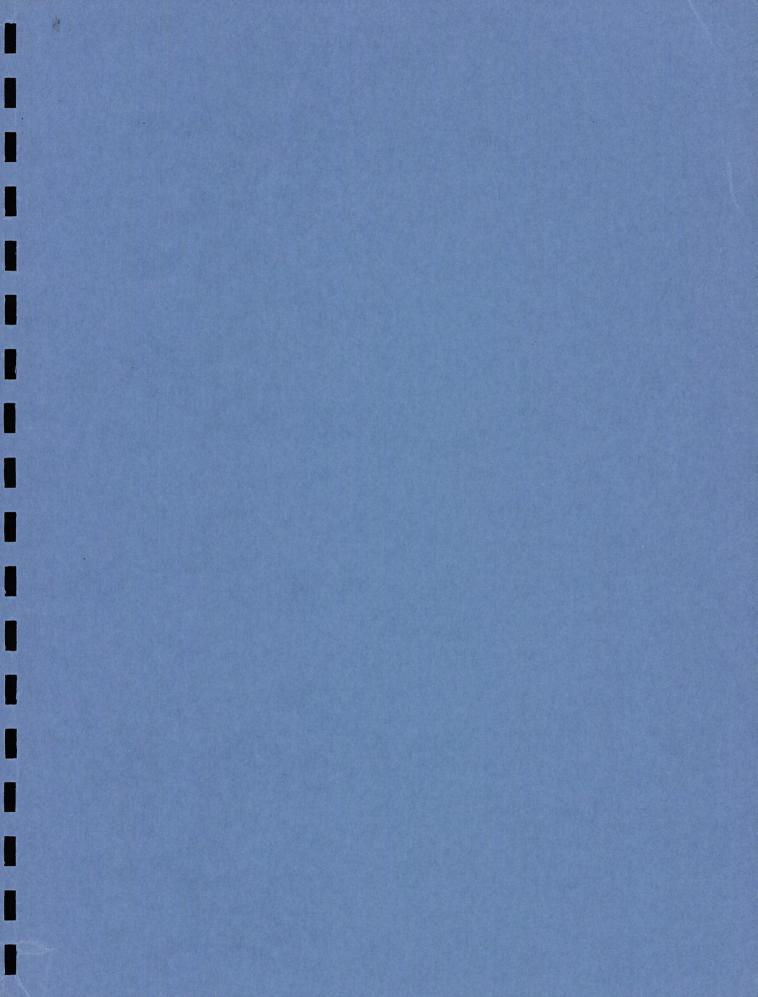
Jerry A. Leenheer, Lakewood, Colorado Telephone: FTS (303) 234-2404

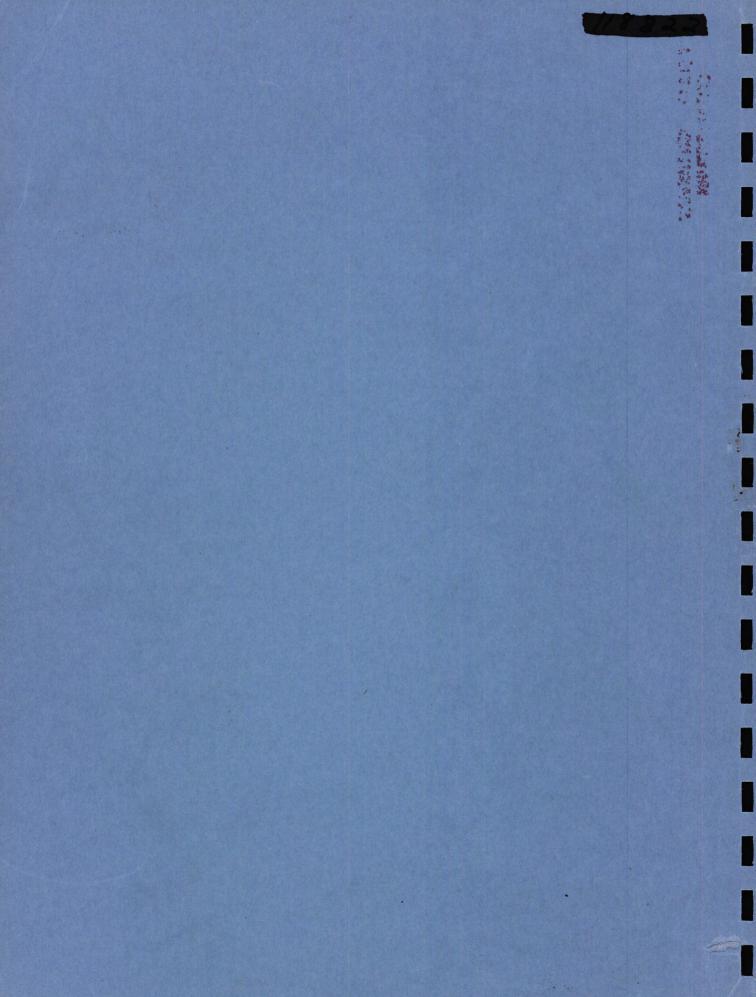
Residual-discharge modeling

A residual-discharge model is being developed for high BTU coal gasification, coal strip mines, and coal-fired steam generating plants planned for the Yampa River basin in Colorado. Planned research will concern modification of residual discharges by changing coal input quality and plant technology. The impact of residual discharges will be assessed by ecological modeling.

Nicholas C. Matalas, Reston, Virginia Telephone: FTS (703) 860-6927

River bed forms as related to coal development


Beginning in Fiscal '76, a study will be made of sediment sources, sediment movement, and changes in river channels which occur before and after intensive coal development. The study will deal primarily with the Powder River area in Wyoming and Montana.


Robert H. Meade, Lakewood, Colorado Telephone: FTS (303) 234-2320

Well drilling

Studies are being made and equipment developed to improve drilling, sampling, and testing techniques for wells in coal beds. The studies include design of packers, methods of QW sampling, and methods of head testing, with emphasis on wells to be completed in multiple aquifers. The work thus far has been in Montana and in Fiscal '76 will be expanded to Wyoming.

Eugene Shuter, Lakewood, Colorado Telephone: FTS (303) 234-2615

