EFFECTS OF MANAGEMENT PRACTICES
ON GRASSLAND BIRDS:
CLAY-COLORED SPARROW

Grasslands Ecosystem Initiative
Northern Prairie Wildlife Research Center
U.S. Geological Survey
Jamestown, North Dakota 58401
This report is one in a series of literature syntheses on North American grassland birds. The need for these reports was identified by the Prairie Pothole Joint Venture (PPJV), a part of the North American Waterfowl Management Plan. The PPJV recently adopted a new goal, to stabilize or increase populations of declining grassland- and wetland-associated wildlife species in the Prairie Pothole Region. To further that objective, it is essential to understand the habitat needs of birds other than waterfowl, and how management practices affect their habitats. The focus of these reports is on management of breeding habitat, particularly in the northern Great Plains.

Suggested citation:

Species for which syntheses are available or are in preparation:

American Bittern
Mountain Plover
Marbled Godwit
Long-billed Curlew
Willet
Wilson’s Phalarope
Upland Sandpiper
Greater Prairie-Chicken
Lesser Prairie-Chicken
Northern Harrier
Swainson’s Hawk
Ferruginous Hawk
Short-eared Owl
Burrowing Owl
Horned Lark
Sedge Wren
Loggerhead Shrike
Sprague’s Pipit
Grasshopper Sparrow
Baird’s Sparrow
Henslow’s Sparrow
Le Conte’s Sparrow
Nelson’s Sharp-tailed Sparrow
Vesper Sparrow
Savannah Sparrow
Lark Sparrow
Field Sparrow
Clay-colored Sparrow
Chestnut-collared Longspur
McCown’s Longspur
Dickcissel
Lark Bunting
Bobolink
Eastern Meadowlark
Western Meadowlark
Brown-headed Cowbird
EFFECTS OF MANAGEMENT PRACTICES ON GRASSLAND BIRDS:

CLAY-COLORED SPARROW

Jill A. Dechant, Marriah L. Sondreal, Douglas H. Johnson, Lawrence D. Igl, Christopher M. Goldade, Melvin P. Nenneman, and Betty R. Euliss

Series Coordinator: Douglas H. Johnson
Series Assistant Coordinator: Lawrence D. Igl

Reviewers: Richard W. Knapton and Stephanie L. Jones

Range Map: Jeff T. Price

Cover Art: Christopher M. Goldade

Major Funding: Prairie Pothole Joint Venture, U.S. Fish and Wildlife Service
U.S. Geological Survey

Funding also provided by: U.S. Forest Service

Collaborators:

Louis B. Best, Iowa State University
Carl E. Bock, University of Colorado
Brenda C. Dale, Canadian Wildlife Service
Stephen K. Davis, Saskatchewan Wetland Conservation Corporation
James J. Dinsmore, Iowa State University
James K. Herkert, Illinois Endangered Species Protection Board
Fritz L. Knopf, Midcontinent Ecological Science Center
Rolf R. Koford, Iowa Cooperative Fish and Wildlife Research Unit
David R. C. Prescott, Alberta NAWMP Centre
Mark R. Ryan, University of Missouri
David W. Sample, Wisconsin Department of Natural Resources
David A. Swanson, Ohio Division of Wildlife
Peter D. Vickery, Massachusetts Audubon Society
John L. Zimmerman (retired), Kansas State University

February 1998
(revised January 2002)
ORGANIZATION AND FEATURES OF THIS SPECIES ACCOUNT

Information on the habitat requirements and effects of habitat management on grassland birds were summarized from information in more than 4,000 published and unpublished papers. A range map is provided to indicate the relative densities of the species in North America, based on Breeding Bird Survey (BBS) data. Although birds frequently are observed outside the breeding range indicated, the maps are intended to show areas where managers might concentrate their attention. It may be ineffectual to manage habitat at a site for a species that rarely occurs in an area. The species account begins with a brief capsule statement, which provides the fundamental components or keys to management for the species. A section on breeding range outlines the current breeding distribution of the species in North America, including areas that could not be mapped using BBS data. The suitable habitat section describes the breeding habitat and occasionally microhabitat characteristics of the species, especially those habitats that occur in the Great Plains. Details on habitat and microhabitat requirements often provide clues to how a species will respond to a particular management practice. A table near the end of the account complements the section on suitable habitat, and lists the specific habitat characteristics for the species by individual studies. A special section on prey habitat is included for those predatory species that have more specific prey requirements. The area requirements section provides details on territory and home range sizes, minimum area requirements, and the effects of patch size, edges, and other landscape and habitat features on abundance and productivity. It may be futile to manage a small block of suitable habitat for a species that has minimum area requirements that are larger than the area being managed. The Brown-headed Cowbird (Molothrus ater) is an obligate brood parasite of many grassland birds. The section on cowbird brood parasitism summarizes rates of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species’ nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species’ response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species’ breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management is posted at the Web site mentioned below.

This report has been downloaded from the Northern Prairie Wildlife Research Center World-Wide Web site, www.npwrc.usgs.gov/resource/literatr/grasbird/grasbird.htm. Please direct comments and suggestions to Douglas H. Johnson, Northern Prairie Wildlife Research Center, U.S. Geological Survey, 8711 37th Street SE, Jamestown, North Dakota 58401; telephone: 701-253-5539; fax: 701-253-5553; e-mail: Douglas_H_Johnson@usgs.gov.
CLAY-COLORED SPARROW
(Spizella pallida)

![Map of breeding distribution of Clay-colored Sparrow in the United States and southern Canada.](image)

Keys to management include providing shrubby grasslands and woody edges or thick, densely vegetated grasslands in shrubless areas.

Breeding range:
Clay-colored Sparrows breed from southern Northwest Territories south through eastern British Columbia and southwestern Ontario to western Wyoming and northern Nebraska, and east to southeastern Ontario (National Geographic Society 1987). (See figure for the relative densities of Clay-colored Sparrows in the United States and southern Canada, based on Breeding Bird Survey data.)

Suitable habitat:
Clay-colored Sparrows nest in residual vegetation on the ground or low (usually ≤50 cm high) in small trees and shrubs (Peabody 1899, Walkinshaw 1939, Smith and Smith 1966, Root 1968, Stewart 1975, Knapton 1978). In Manitoba, Clay-colored Sparrows preferred to nest in western snowberry (*Symphoricarpos occidentalis*), which provided better concealment and less light penetration than other shrub species (Knapton 1978). In southcentral Saskatchewan, high densities were found in grazed pastures with shrubs (Dale 1983); in southern Saskatchewan,
occurrence was negatively associated with distance from nest to shrub, and positively associated with narrow-leaved (<5 mm wide) grasses 10-30 cm high (SWCC 1997). In North Dakota, abundance of Clay-colored Sparrows was positively associated with density of low-growing shrubs and plant communities dominated by shrubs (western snowberry and silverberry [Elaeagnus commutata]) and introduced grasses (smooth brome [Bromus inermis], Kentucky bluegrass [Poa pratensis], and quackgrass [Agropyron repens]) (Schneider 1998). Abundance was negatively associated with plant communities dominated solely by shrubs, by native grass (Stipa, Bouteloua, Koeleria, and Schizachyrium), or by wet-meadow vegetation. Strongest vegetational predictor of the presence of Clay-colored Sparrows was increasing cover of low-growing shrubs. Clay-colored Sparrows in aspen parkland of Alberta were most abundant in habitats with >50% shrub cover (Prescott et al. 1995). In central Wisconsin, Clay-colored Sparrows occupied territories that contained more habitat features with high nest cover value than were generally available (Munson 1992).

Breeding territories are commonly placed adjacent to suitable foraging areas. Clay-colored Sparrows prefer to forage in open areas with sparse, short vegetation, such as cropland and pastures (Knapton 1978, Dale 1983, Knapton 1994). Clay-colored Sparrows will use both native and tame vegetation (Peabody 1899, Walkinshaw 1939, Rand 1948, Fox 1961, Salt 1966, Root 1968, Stewart 1975, Renken 1983, Arnold and Higgins 1986, Munson 1992, Knapton 1994, Prescott and Murphy 1996, Davis and Duncan 1999). In fields enrolled in the Conservation Reserve Program (CRP) in North Dakota, Clay-colored Sparrow abundance exhibited a positive association with alfalfa (Medicago sativa) and sweet clover (Melilotus spp.), which may substitute for brushy vegetation (Johnson and Schwartz 1993a). In Saskatchewan, Clay-colored Sparrows were more numerous in native grasslands invaded by tame grasses than in pure stands of native grasslands, and occurrence was positively associated with western snowberry (Dale 1992). In Saskatchewan, Clay-colored Sparrows preferred native pastures to tame pastures of crested wheatgrass (Agropyron cristatum) or brome (Bromus), possibly because native pastures had more shrubs (primarily western snowberry) >10 cm high (Anstey et al. 1995, Davis and Duncan 1999). In Alberta, frequency of occurrence was similar among native and tame pastures (Prescott and Murphy 1996). In native pasture, Clay-colored Sparrows used areas characterized by high cover diversity; in tame pasture, they used areas characterized by high herbaceous biomass, moderate height variability, and high forb:grass ratio (Prescott and Murphy 1996). In Manitoba, Clay-colored Sparrow abundance was positively correlated with tame vegetation and negatively correlated with native vegetation (Wilson and Belcher 1989). In North Dakota, abundance of Clay-colored Sparrows was positively associated with percent forb cover, visual obstruction (vegetation height/density), litter depth, and vegetation density (Schneider 1998). Abundance was negatively associated with percent clubmoss (Selaginella densa) cover. A table near the end of the account lists the specific habitat characteristics for Clay-colored Sparrows by study.

Area requirements:

Nesting territories are relatively small, about 0.1 to 0.5 ha (Fox 1961, Salt 1966, Root 1968). In Manitoba, Knapton (1979) reported smaller territories of about 0.04-0.1 ha. Territory size and arrangement in relation to other territories may depend upon shrub cover; Clay-colored Sparrows nesting in areas with less dense brush cover may require larger territories (Knapton 1979). Although little area was needed for nesting, Clay-colored Sparrows required foraging
areas outside of defended nest territories (Knapton 1979, 1994). In southern Saskatchewan, the occurrence of Clay-colored Sparrows was negatively associated with area (SWCC 1997).

Nest success may be higher in larger, contiguous grassland areas. In Minnesota tallgrass prairie, nest depredation and Brown-headed Cowbird (Molothrus ater) brood parasitism decreased farther from woody edges, and nest depredation rates were lower on large (130-486 ha) than on small (16-32 ha) grasslands (Johnson and Temple 1990). The probability of encountering Clay-colored Sparrows was highest on small fragments near a forest edge; however, nest productivity was highest for nests far from a forest edge and 1 yr postburn (Johnson and Temple 1986).

Brown-headed Cowbird brood parasitism:

Clay-colored Sparrow nests are frequently parasitized by Brown-headed Cowbirds (Friedmann and Kiff 1985). Parasitism rates vary from 5% of 793 nests (M. Winter and D. H. Johnson, unpublished data) to 39% of 33 nests (Stewart 1975). Refer to Table 1 in Shaffer et al. (2003) for rates of cowbird brood parasitism. Clay-colored Sparrows may be multiply-parasitized (Peabody 1899, Knapton 1978, SWCC 1997) and may abandon parasitized nests (Fox 1961, Hill and Sealy 1994). Parasitism almost always results in lower Clay-colored Sparrow productivity (Fox 1961, Salt 1966, Root 1968, Knapton 1978, Buech 1982, Romig and Crawford 1995). In North Dakota, parasitized nests had significantly lower mean clutch size and mean fledging rate, and were significantly closer to the nearest perch site, than unparasitized nests (Romig and Crawford 1995). No nest located >52 m from a perch was parasitized. Mean height of nest above ground was not significantly different. In Saskatchewan, parasitized nests had less concealment cover than unparasitized nests (S. K. Davis, Saskatchewan Wetland Conservation Corporation, Regina, Saskatchewan, unpublished data).

Breeding-season phenology and site fidelity:

Clay-colored Sparrows breed from about late April to mid-August, and depart for the wintering grounds during August-October (Salt 1966, Root 1968, Knapton 1978, Stewart 1975, Janssen 1987). Second broods may be attempted, especially when breeding begins early. During one breeding season in Manitoba, pairs that successfully raised young in the first attempt did not renest (Knapton 1978). However, in the following year, more nests were initiated prior to 23 May, and 11 pairs attempted a second brood. In Minnesota, one male produced a second clutch with a second female after the clutch from the first mated female was depredated (M. Winter and D. H. Johnson, unpublished data).

In Manitoba, site fidelity was exhibited in both males and females (Knapton 1978). Return rates for males ranged from a low of 62% of 28 birds to a high of 85% of 33 birds over three years and two study sites. Return rates for females ranged from a low of 14% of 5 birds to a high of 29% of 5 birds. Of 52 Clay-colored Sparrows banded in Minnesota, one male and two females returned the year following banding (M. Winter and D. H. Johnson, unpublished data). Klimkiewicz and Futcher (1987) reported that a bird banded in North Dakota was recaptured 5 yr later in the same location where it was originally banded.

Species’ response to management:

Intense fires which burn off shrubs have a negative short-term effect on Clay-colored Sparrows (Halvorsen and Anderson 1983, Huber and Steuter 1984, Madden 1996, Johnson 1997). In Saskatchewan, breeding densities in burned areas 3 yr postfire were one-third the
densities in unburned areas (Pylypec 1991). In South Dakota, the species avoided burned areas, preferring denser vegetation in a lightly-grazed, unburned area (Huber and Steuter 1984).

Madden (1996) found that Clay-colored Sparrows in North Dakota mixed-grass responded negatively to fire, and were most abundant in areas unburned in >80 yr, compared to areas burned 0.5-8 yr ago. Clay-colored Sparrow numbers increased with the number of years since the most recent burn, suggesting that moderate and long fire return intervals would be most beneficial (Madden 1996, Johnson 1997, Madden et al. 1999). Burned areas which retained shrubs were used immediately after burning (Johnson 1997). In Wisconsin, however, burning of residual cover caused a 94% decline in Clay-colored Sparrow density after spring burning, even though no differences in shrub density were noted between burned and unburned areas (Halvorsen and Anderson 1983).

Although Clay-colored Sparrows will utilize hayland, it does not appear to be preferred habitat (Kantrud 1981, Anstey et al. 1995, Dale 1992, Prescott et al. 1995, Dale et al. 1997). In Alberta, Manitoba, and Saskatchewan, however, Clay-colored Sparrows occurred more frequently on grasslands enrolled in the Permanent Cover Program (PCP) that were hayed than on grazed PCP fields (McMaster and Davis 1998). PCP was a Canadian program that paid farmers to seed highly erodible land to perennial cover; it differed from CRP in that haying and grazing were allowed annually in PCP. In Saskatchewan, Dale (1993) found that Clay-colored Sparrows used alfalfa as a nesting substrate in place of shrubs. Clay-colored Sparrows in Alberta preferred deferred hayland (mowed after 15 July) to hayland mowed earlier in the growing season, although use of idle habitats was higher than use of either hayland type (Prescott et al. 1995). In North Dakota, Clay-colored Sparrows were marginally more abundant in the year after mowing in idled portions of CRP fields than in mowed portions (Horn and Koford 2000). In southern Saskatchewan hayfields, number of pairs was not affected by amount of cropland or wetland within 1.6 km of study areas (McMaster et al. 1999).

Lightly to moderately grazed grasslands are often used, but shrub cover may be a more important factor in determining habitat suitability than grazing regime (Owens and Myres 1973, Kantrud 1981, Kantrud and Kologiski 1982, Dale 1984, Bock et al. 1993, Anstey et al. 1995, Saab et al. 1995). Heavy grazing is detrimental, possibly because ground and/or shrub cover are reduced (Kantrud 1981, Kantrud and Kologiski 1982, Dale 1983). In North Dakota, Clay-colored Sparrows were common in several grazing treatments as well as in idle grasslands, but were consistently most abundant in areas with western snowberry (Messmer 1990). The grazing treatments were short-duration, twice-over, and season-long. Short-duration grazing involves a system of pastures rotated through a grazing schedule of about 1 wk grazed and 1 mo ungrazed, repeated throughout the season. Twice-over rotation involves grazing a number of pastures twice per season, with about a 2 mo rest in between grazing. Season-long grazing involves leaving a herd on the same pasture all growing season. In Saskatchewan, Clay-colored Sparrows were more frequent in native pasture than tame pasture with less shrub cover (Anstey et al. 1995). In Alberta grazed lands, Clay-colored Sparrows were most abundant on continuously grazed (season-long) parkland (a habitat which contained patches of shrub cover) (Prescott et al. 1995). They were more abundant in deferred tame pasture than in season-long or deferred mixed-grass pasture, and were uncommon in season-long tame pasture.

North Dakota, use of idle areas decreased after mowing and as western snowberry cover decreased (Messmer 1990). In southern and southcentral North Dakota grasslands planted to dense nesting cover (DNC), Clay-colored Sparrows used tall, dense grass and forb cover in shrubless areas (Renken 1983, Renken and Dinsmore 1987, Johnson and Schwartz 1993a). Clay-colored Sparrow density was significantly higher in idle grassland than in DNC or grazed areas (Renken 1983). Koford (1999) found that Clay-colored Sparrows were more abundant in Waterfowl Production Areas (tracts of grassland and wetland managed by the U. S. Fish and Wildlife Service to provide nesting and brood-rearing habitat for waterfowl) than in CRP fields in North Dakota and Minnesota. Waterfowl Production Areas contained more western snowberry and sweet clover that was used for nesting than did CRP fields. In eastcentral Saskatchewan, the species occurred with almost equal frequency in idle, native grassland as in DNC (Hartley 1994). Within the same general geographical area (and with two overlapping study sites), Clay-colored Sparrows were more common in DNC and planted cover of creeping red fescue (*Festuca rubra*) and Kentucky bluegrass fields than in fallow fields (Dale 1993). In another Saskatchewan study, Clay-colored Sparrows preferred idle native grasslands invaded by tame grasses over native grasslands and hayland (Dale 1992). In Manitoba, no difference in productivity or abundance of Clay-colored Sparrows was detected between idle DNC, tame DNC, and idle grasslands; the species was found in the taller and denser DNC plots (Dhol et al. 1994). In another Manitoba study, however, Clay-colored Sparrows were more productive in native grassland than in tame grassland, woodland, or hayland; another study found Clay-colored Sparrows were more common in native grassland than in tame DNC, native DNC, or tame hayland (Jones 1994). In Alberta, Clay-colored Sparrows were absent from tame DNC <2 yr old; abundance increased until DNC reached 5 yr old, then average abundance decreased (Prescott and Murphy 1999). Clay-colored Sparrows were more abundant in tame DNC than in native DNC (Prescott et al. 1995).

In Manitoba, Clay-colored Sparrows were more common in DNC or native grassland than in cropland (Hartley 1994). In Alberta, Manitoba, and Saskatchewan, Clay-colored Sparrows were more common in PCP fields than in cropland (McMaster and Davis 1998). In Saskatchewan, Clay-colored Sparrows were more abundant in DNC than in cropland on organic, conventional, or minimum-tillage farmland (Shutler et al. 2000). Presence of Clay-colored Sparrows was negatively related to number of wetlands within 2.8 km2 of point counts. Clay-colored Sparrows were observed in wetlands or wetland margins within all farmland types and within DNC.

Cropland rarely is used for nesting (Salt 1966, Johnson and Schwartz 1993b, Knapton 1994, Anstey et al. 1995), but may provide sparser, shorter vegetation suitable for foraging (Dale 1983, Knapton 1994). Shrubs retained along field edges are often used for nesting (Owens and Myres 1973, Dale 1983). In eastcentral Saskatchewan, Clay-colored Sparrows were frequently detected in wheat fields (Hartley 1994), whereas in parkland, Clay-colored Sparrows were not present in cropland (Prescott and Murphy 1999). In Alberta, Salt (1966) often observed them in cultivated fields after young fledged, and Owens and Myres (1973) detected Clay-colored Sparrows more frequently along a roadside route through cultivated land than along a route with more native grassland.

In a Texas study examining the effects on avian density of discing, spraying of 2,4,5-T about 14 yr prior to the study, and construction of brush shelters, grassland sparrows, as a group, were more abundant in the treated than untreated areas; effects on particular species, such as
Clay-colored Sparrow, composing the group of grassland sparrows, were not examined (Gruver and Guthery 1986).

In a Saskatchewan study that examined whether the abundance of grassland birds differed between roadsides and trailsides, abundance of Clay-colored Sparrows was not significantly different along trailsides than along roadsides (Sutter et al. 2000). Roads were defined as traveling surfaces with adjacent drainage ditches planted to smooth brome and ending with a fence 11-18 m from the traveling surface. Trails were defined as a single pair of wheel ruts visually indistinct from surrounding habitat in terms of plant structure and composition. Habitat along roads and trails were parcels of lightly to moderately grazed native prairie >256 ha.

Management Recommendations:

Maintain dense grasslands with tall forbs and abundant litter. In areas without woody vegetation, planted cover such as Conservation Reserve Program fields or dense nesting cover can provide suitable nesting habitat (Renken and Dinsmore 1987, Berkey et al. 1993, Johnson and Schwartz 1993a, Johnson 1997).

Discourage conversion of brush land to cropland, since croplands are not preferred breeding habitat (Salt 1966; Root 1968; Johnson and Schwartz 1993a,b). Brushy edges around cropland should be promoted and retained, as they are used for nesting (Owens and Myres 1973, Dale 1983).

Woodland edges, wooded riparian areas, and other linear woody habitats such as windbreaks and shelterbelts can provide breeding habitat (Maher 1974, Faanes 1983). Succession following disturbances, such as logging, can be beneficial to Clay-colored Sparrows (Root 1968).

Do not implement grazing or burning regimes which frequently eliminate shrub and/or ground cover (Dale 1983, Halvorsen and Anderson 1983, Madden 1996, Johnson 1997). In mesic mixed-grass prairie, conduct prescribed burns at moderate to long (5-10 yr) fire return intervals (Madden 1996, Johnson 1997, Madden et al. 1999). Shorter fire return intervals can frequently reduce woody vegetation and litter, resulting in decreased Clay-colored Sparrow density or avoidance of burned habitats altogether (Huber and Steuter 1984, Pylypec 1991, Berkey et al. 1993).

In North Dakota, Clay-colored Sparrow density increased with number of years since most recent burn, and remained high in areas where recent fire had not damaged shrubs (Madden 1996, Johnson 1997). In Wisconsin, burning of residual cover caused a 94% decline in Clay-colored Sparrow density after spring burning, even though no differences in shrub density were noted between burned and control plots (Halvorsen and Anderson 1983).
In Saskatchewan, Clay-colored Sparrows preferred idle grasslands to haylands mowed either annually or periodically (about every 3-8 yr) (Dale et al. 1997). Although Clay-colored Sparrows tend to avoid haylands in North Dakota, mowing can be used to halt long-term succession (Kantrud 1981, Berkey et al. 1993).

Clay-colored Sparrows exhibit ambiguous responses to grazing, but appear to be affected more by shrub coverage than by grazing regime (Bock et al. 1993). In North Dakota, Clay-colored Sparrows were common in variety of grazing treatments, including short-duration, seasonlong, idle, and twice-over rotation, but were most abundant in areas with greater shrub cover (Messmer 1990).

Table. Clay-colored Sparrow habitat characteristics.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Location(s)</th>
<th>Habitat(s) Studied*</th>
<th>Species-specific Habitat Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anstey et al. 1995</td>
<td>Saskatchewan</td>
<td>Cropland, mixed-grass pasture, tame hayland, tame pasture</td>
<td>Were more frequent in native pasture with shrubs >10 cm tall than in tame pasture; favored lightly or heavily grazed pastures more than moderately grazed; abundance was positively associated with broad-leaved grasses ≤10 cm tall and with shrubs 20-100 cm tall; abundance was negatively associated with distance to nearest shrub</td>
</tr>
<tr>
<td>Arnold and Higgins 1986</td>
<td>North Dakota</td>
<td>Mixed-grass hayland, mixed-grass pasture</td>
<td>Were more abundant in shrubby areas containing many tall western snowberry (Symphoricarpos occidentalis; mean height 44.7 cm) and silverberry (Eleagnus commutata; 74.8 cm) shrubs than in areas with few shrubs</td>
</tr>
<tr>
<td>Dale 1983, 1984</td>
<td>Saskatchewan</td>
<td>Idle mixed-grass, mixed-grass pasture</td>
<td>Were more abundant in grazed than ungrazed areas; percent shrub cover in occupied areas far exceeded that of unoccupied areas; used areas had high values for litter depth, grass coverage, and forb height; preferred shrubs in or near areas of sparser cover for foraging</td>
</tr>
<tr>
<td>Dale 1993</td>
<td>Saskatchewan</td>
<td>Dense nesting cover (DNC; idle tame), idle, low nesting cover: idle tame</td>
<td>Were more common in DNC planted to tall wheatgrass (Agropyron elongatum), intermediate wheatgrass (Agropyron intermedium), alfalfa (Medicago sativa), and sweet clover (Melilotus) and in planted cover of creeping red fescue (Festuca rubra) and Kentucky bluegrass (Poa pratensis) than in fallow fields</td>
</tr>
<tr>
<td>Dale et al. 1997</td>
<td>Saskatchewan</td>
<td>Idle mixed-grass, idle tame, tame hayland</td>
<td>Occurred in higher numbers on idle mixed-grass prairie than on annually or less frequently mowed tame hayland</td>
</tr>
<tr>
<td>Davis and Duncan 1999</td>
<td>Saskatchewan</td>
<td>Mixed-grass pasture, tame pasture</td>
<td>Were more frequent in native pasture than in tame pasture, which had fewer shrubs than native pasture; occurrence was</td>
</tr>
</tbody>
</table>

positively associated with western snowberry and negatively associated with crested wheatgrass \((\textit{Agropyron cristatum})\), clubmoss \((\textit{Selaginella densa})\), vegetation height, and cover of bare ground

<table>
<thead>
<tr>
<th>Study</th>
<th>Location</th>
<th>Habitat Description</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dhol et al. 1994</td>
<td>Manitoba</td>
<td>DNC (idle seeded-native, idle tame, idle mixed-grass)</td>
<td>Were equally abundant and productive in mixed-grass prairie as in tame DNC (tall wheatgrass, intermediate wheatgrass, slender wheatgrass ((\textit{Agropyron caninum})), and alfalfa), and native DNC (western wheatgrass ((\textit{Pascopyrum smithii})), thick-spike wheatgrass ((\textit{Agropyron dasystachyum})), slender wheatgrass, streambank wheatgrass ((\textit{Agropyron riparium})), green needlegrass ((\textit{Stipa viridula})), big bluestem ((\textit{Andropogon gerardii})), switchgrass ((\textit{Panicum virgatum})), and purple prairie clover ((\textit{Dalea purpurea}))); appeared to prefer the taller and denser DNC plots</td>
</tr>
<tr>
<td>Faanes 1983</td>
<td>North Dakota</td>
<td>Idle mixed-grass, mixed-grass pasture, woodland</td>
<td>Used wooded draws; highest densities occurred in areas where western snowberry predominated</td>
</tr>
<tr>
<td>Fox 1961</td>
<td>Saskatchewan</td>
<td>Idle mixed-grass</td>
<td>Of 9 nests, 7 were in western snowberry, 1 in grass, and 1 on ground under grass clump</td>
</tr>
<tr>
<td>Halvorsen and Anderson 1983</td>
<td>Wisconsin</td>
<td>Burned tame, idle tame</td>
<td>Immediately after spring burning, average density declined by 94%</td>
</tr>
<tr>
<td>Hartley 1994</td>
<td>Saskatchewan</td>
<td>Cropland, DNC (idle seeded-native, idle seeded-native/tame, idle tame, idle tame hayland, idle tame hayland), idle mixed-grass</td>
<td>Were more common in DNC and idle native grassland than in wheat fields</td>
</tr>
<tr>
<td>Horn and Koford</td>
<td>North Dakota</td>
<td>CRP (idle tame, tame)</td>
<td>Were marginally more abundant in the year after mowing in</td>
</tr>
<tr>
<td>Year</td>
<td>Location</td>
<td>Habitat/Management</td>
<td>Observations</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------</td>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td>hayland)</td>
<td>idled portions of CRP fields than in mowed portions</td>
</tr>
<tr>
<td>Huber and Steuter 1984</td>
<td>South Dakota</td>
<td>Burned mixed-grass pasture, mixed-grass pasture</td>
<td>Preferred dense vegetation of unburned areas; preferred lightly grazed pasture to spring-burned pasture</td>
</tr>
<tr>
<td>Johnson and Schwartz 1993a,b</td>
<td>Minnesota, Montana, North Dakota, South Dakota</td>
<td>Conservation Reserve Program (CRP; idle seeded-native, idle tame), cropland</td>
<td>Were common in CRP; positively associated with legumes; not detected in cropland</td>
</tr>
<tr>
<td>Johnson 1997</td>
<td>North Dakota</td>
<td>Burned mixed-grass, burned tame, idle mixed-grass</td>
<td>Density increased with number of years postburn; were common in burned areas where thickets were not affected by fires</td>
</tr>
<tr>
<td>Jones 1994</td>
<td>Manitoba</td>
<td>Cropland, DNC (idle seeded-native, idle tame), idle mixed-grass, idle tame, tame hayland, woodland</td>
<td>Were more productive and common in native grassland than in hayland, tame grassland, or woodland</td>
</tr>
<tr>
<td>Kantrud 1981</td>
<td>North Dakota</td>
<td>Mixed-grass hayland, mixed-grass pasture</td>
<td>Densities were similar on moderately and lightly grazed plots; avoided mowed areas</td>
</tr>
<tr>
<td>Kantrud and Kologiski 1982</td>
<td>Colorado, Montana, Nebraska North Dakota, South Dakota, Wyoming</td>
<td>Mixed-grass pasture, shortgrass pasture, shrubsteppe</td>
<td>Preferred lightly grazed areas with typic boroll soils, mean vegetation height of 30 cm, and 5% bare ground</td>
</tr>
<tr>
<td>Knapton 1978, 1994</td>
<td>Manitoba</td>
<td>Idle mixed-grass</td>
<td>Used low shrubs on the northern prairies; in mixed-grass, used western snowberry most often</td>
</tr>
<tr>
<td>Koford 1999</td>
<td>Minnesota,</td>
<td>CRP (idle tame),</td>
<td>Were more more abundant in WPA than in CRP; preferred</td>
</tr>
<tr>
<td>Area</td>
<td>Species</td>
<td>Characteristics</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>North Dakota</td>
<td>Waterfowl Production Area (burned, hayland, idle native, idle native/tame, idle seeded-native, idle tame)</td>
<td>Waterfowl Production Areas that contained western snowberry (Symphoricarpos occidentalis) shrubs or sweet clover</td>
<td></td>
</tr>
<tr>
<td>North Dakota</td>
<td>Burned mixed-grass, burned tame, idle mixed-grass, idle tame</td>
<td>Used areas with high shrub cover, high visual obstruction (average height of leaf canopy), high vegetation density (number of vegetation contacts), and low grass cover; average vegetation characteristics in used areas were 30.1% shrub cover, 20.8 cm visual obstruction, 21.7 vegetation contacts, and 33.6% grass cover; shrub cover best predicted occurrence of species; were most abundant in grasslands burned >80 yr ago, compared to grasslands burned 0.5-8 yr ago</td>
<td></td>
</tr>
<tr>
<td>Saskatchewan</td>
<td>Cropland, idle mixed-grass, mixed-grass pasture, tame hayland, woodland</td>
<td>Inhabited coulees along rivers and wooded and brushy habitats</td>
<td></td>
</tr>
<tr>
<td>Alberta, Manitoba, Saskatchewan</td>
<td>Cropland, Permanent Cover Program (PCP; idle tame, tame hayland, tame pasture)</td>
<td>Were more common in PCP than in cropland; frequency of occurrence was higher in hayed PCP than in grazed PCP</td>
<td></td>
</tr>
<tr>
<td>Saskatchewan</td>
<td>Hayland, PCP (tame hayland)</td>
<td>Amount of cropland or wetland within 1.6 km of study areas did not affect number of indicated pairs</td>
<td></td>
</tr>
<tr>
<td>North Dakota</td>
<td>Idle mixed-grass/tame, mixed-grass/tame hayland, mixed-grass/tame pasture,</td>
<td>Were common on all grazing treatments, including short-duration, seasonlong, idle, and twice-over rotation; density increased on short-duration and decreased on all other systems; highest densities occurred on areas with abundant western</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Location</td>
<td>Habitat Type</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Munson 1992</td>
<td>Wisconsin</td>
<td>Idle</td>
<td>Preferred habitat with abundant nest cover, such as dense woody vegetation; avoided open grasslands</td>
</tr>
<tr>
<td>Owens and Myers 1973</td>
<td>Alberta</td>
<td>Cropland, idle mixed-grass, mixed-grass hayland, mixed-grass pasture</td>
<td>Occurred at all land-use types on roadside counts, but nested only on undisturbed and grazed plots; agricultural practices appeared to have no adverse affect on species; tolerated heavy and light grazing where shrubs remained</td>
</tr>
<tr>
<td>Peabody 1899</td>
<td>Minnesota</td>
<td>Idle tallgrass</td>
<td>Nested on the ground in residual vegetation or in small shrubs; used meadows and brushland</td>
</tr>
<tr>
<td>Prescott and Murphy 1996</td>
<td>Alberta</td>
<td>Mixed-grass pasture, tame pasture</td>
<td>Frequency of occurrence on tame and native pastures was similar; in native pastures, appeared in areas with high cover diversity, short grass, and grass moderate in uniform height; in tame pasture, appeared in areas with moderate to high amounts of herbaceous biomass, moderate to high variation in herbaceous height, and high proportion of forbs relative to grasses. Abundance was highest in native pasture with high cover diversity, and in tame pasture with high herbaceous biomass, moderate herbaceous height, and high forb:grass ratio</td>
</tr>
<tr>
<td>Prescott and Murphy 1999</td>
<td>Alberta</td>
<td>Cropland, DNC (idle seeded-native/tame)</td>
<td>Were present in tame DNC >2 yr old, abundance increased until DNC reached 5 yr old, then average abundance decreased; were absent from cropland</td>
</tr>
<tr>
<td>Prescott et al. 1995</td>
<td>Alberta</td>
<td>Cropland, DNC (idle seeded-native, idle tame), idle mixed-grass, idle parkland, idle tame, mixed-grass pasture, parkland</td>
<td>Were most abundant in brush/shrub habitats followed by tame DNC, continuously grazed native parkland, idle native parkland, deferred (grazed after 15 July) tame pasture, shelterbelts, idle mixed-grass, idle tame grassland, idle deciduous upland, delayed-cut hayfields (cut once per summer after 15 July), continuously grazed mixed-grass, deferred mixed-grass pasture,</td>
</tr>
<tr>
<td>Reference</td>
<td>Location</td>
<td>Habitat Type</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------</td>
<td>---------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Pylypec 1991</td>
<td>Saskatchewan</td>
<td>Burned mixed-grass, idle mixed-grass</td>
<td>Were one-third less abundant in burned areas 3 yr after burning than in unburned areas</td>
</tr>
<tr>
<td>Rand 1948</td>
<td>Alberta</td>
<td>Cropland, idle shortgrass, shortgrass pasture</td>
<td>Used shrubby areas, such as that provided by rose (Rosa) bushes</td>
</tr>
<tr>
<td>Renken 1983,</td>
<td>North Dakota</td>
<td>DNC (idle tame), idle mixed-grass, mixed-grass pasture</td>
<td>Occurred at higher densities in idle native grasslands than in native grazed or idle tame grasslands; used areas of slightly greater litter cover, deeper litter, and more shrub cover than unused areas; used tall, dense grasses and forbs, such as wormwood (Artemisia absinthium), in absence of shrubs; mean vegetation values for used areas were 63.5% grass cover, 28.7% forb cover, 99.6% litter cover, 10.6% shrub cover, 0.1% bare ground, 16 cm effective vegetation height (average height of leaf canopy), and 3.0 cm litter depth</td>
</tr>
<tr>
<td>Renken and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dinsmore 1987</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Root 1968</td>
<td>Rangewide</td>
<td>Idle, pasture</td>
<td>Nested low to the ground in brushy and weedy, dry habitats such as pastures, parklands, hillsides, field edges, roads, swamps, woods, poplar-willow bluffs, burned over areas, forest openings, and brushy urban areas where shrubs such as western snowberry, silverberry, sumac (Rhus), rose, and willow (Salix)/aspen (Populus) persisted; preferred wild prairies to human inhabited areas; defended small nesting territories</td>
</tr>
<tr>
<td>Salt 1966</td>
<td>Alberta</td>
<td>Idle native, idle tame</td>
<td>Nested along roadways, in idle fields of wheatgrass (Agropyron) and smooth brome (Bromus inermis), and in brushy areas of rose and western snowberry; territories contained ≥1 clump of willow-aspen bush</td>
</tr>
<tr>
<td>Study</td>
<td>Location</td>
<td>Habitat Type</td>
<td>Observation</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Schneider 1998</td>
<td>North Dakota</td>
<td>Mixed-grass pasture, tame pasture, wet-meadow pasture</td>
<td>Abundance was positively associated with percent forb cover, visual obstruction (vegetation height/density), litter depth, vegetation density, and with density of low-growing shrubs and plant communities dominated by shrubs (western snowberry and silverberry) and introduced grasses (smooth brome, Kentucky bluegrass, and quackgrass (Agropyron repens)); abundance was negatively associated with percent clubmoss cover and with plant communities dominated solely by shrubs, by native grass ((Stipa, Bouteloua, Koeleria,) and (Schizachyrium)), or by wet-meadow vegetation; strongest vegetational predictor of the presence of Clay-colored Sparrows was increasing cover of low-growing shrubs</td>
</tr>
<tr>
<td>Shutler et al. 2000</td>
<td>Saskatchewan</td>
<td>Cropland, DNC (idle seeded-native, idle seeded-tame), wetland</td>
<td>Were more abundant in DNC than in cropland on organic, conventional, or minimum-tillage farmland; presence was negatively related to number of wetlands within 2.8 km² of point counts; were detected in wetlands or wetland margins within all farmland types and within DNC</td>
</tr>
<tr>
<td>Smith and Smith 1966</td>
<td>Saskatchewan</td>
<td>Mixed-grass pasture</td>
<td>Three nests were located 25 to 46 cm above the ground in western snowberry</td>
</tr>
<tr>
<td>Stewart 1975</td>
<td>North Dakota</td>
<td>Cropland, hayland, idle native, wetland, woodland</td>
<td>Preferred western snowberry thickets, but commonly occurred in other shrubby habitats; regularly occurred in brushy areas within woodlands, shelterbelts, wooded riparian valleys, wooded slopes, and woodland edges; used retired cropland and oldfields; benefitted from brushy successional areas created by human disturbance such as fire and timber cutting</td>
</tr>
<tr>
<td>Sutter et al. 2000</td>
<td>Saskatchewan</td>
<td>Mixed-grass pasture</td>
<td>Abundance in mixed-grass prairie was not significantly different along roadsides than along trailsides</td>
</tr>
<tr>
<td>SWCC 1997</td>
<td>Saskatchewan</td>
<td>Mixed-grass pasture</td>
<td>Occurrence was negatively associated with distance from nest to shrub</td>
</tr>
<tr>
<td>Study</td>
<td>Location</td>
<td>Habitat Type</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Walkinshaw 1939</td>
<td>Michigan</td>
<td>Idle tallgrass</td>
<td>Nested in brushy prairie, usually on hillsides; occurred in areas burned a few years previous</td>
</tr>
<tr>
<td>Wilson and Belcher 1989</td>
<td>Manitoba</td>
<td>Idle mixed-grass, idle tame</td>
<td>Abundance was positively correlated with introduced vegetation including brome (Bromus), Kentucky bluegrass, and leafy spurge (Euphorbia esula) and negatively correlated with shorter native vegetation</td>
</tr>
</tbody>
</table>

*In an effort to standardize terminology among studies, various descriptors were used to denote the management or type of habitat. “Idle” used as a modifier (e.g., idle tallgrass) denotes undisturbed or unmanaged (e.g., not burned, mowed, or grazed) areas. “Idle” by itself denotes unmanaged areas in which the plant species were not mentioned. Examples of “idle” habitats include weedy or fallow areas (e.g., oldfields), fencerows, grassed waterways, terraces, ditches, and road rights-of-way. “Tame” denotes introduced plant species (e.g., smooth brome [*Bromus inermis*]) that are not native to North American prairies. “Hayland” refers to any habitat that was mowed, regardless of whether the resulting cut vegetation was removed. “Burned” includes habitats that were burned intentionally or accidentally or those burned by natural forces (e.g., lightning). In situations where there are two or more descriptors (e.g., idle tame hayland), the first descriptor modifies the following descriptors. For example, idle tame hayland is habitat that is usually mowed annually but happened to be undisturbed during the year of the study.*
LITERATURE CITED

