
(4200) Ga 3 Vew York 1976 V. 2

Water Resources Data for New York Water Year 1976

Volume 2. Long Island

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NY-76-2

Prepared in cooperation with the State of New York and with other agencies

CALENDAR FOR WATER YEAR 1976

1975

OCTOBER NOVEMBER DECEMBER

S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
	1 9 7 6	
JANUARY	FEBRUARY	MARCH
S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
APRIL	MAY	JUNE
S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
JULY	AUGUST	SEPTEMBER
S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Water Resources Data for New York Water Year 1976

Volume 2. Long Island

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NY-76-2

Prepared in cooperation with the State of New York and with other agencies

UNITED STATES DEPARTMENT OF THE INTERIOR

CECIL D. ANDRUS, Secretary

GEOLOGICAL SURVEY

V. E. McKelvey, Director

For information on the water program in New York write to
District Chief, Water Resources Division
U.S. Geological Survey
U.S. Post Office and Courthouse
P.O. Box 1350
Albany, New York 12201

or

For information on the water program in Long Island write to
Hydrologist-in-Charge, Long Island Program
Water Resources Division
U.S. Geological Survey
5 Aerial Way
Syosset, New York 11791

PREFACE

This report was prepared by personnel of the New York district of the Water Resources Division of the U.S. Geological Survey under the supervision of R. J. Dingman, District Chief, and J. T. Callahan, Regional Hydrologist, Northeastern Region. It was done in cooperation with the State of New York and with other agencies.

This report is one of a series issued by State. General direction for the series is by J. S. Cragwall, Jr., Chief Hydrologist, U.S. Geological Survey, and G. W. Whetstone, Assistant Chief Hydrologist for Scientific Publications and Data Management.

Data for New York are in two volumes as follows:

Volume 1. New York excluding Long Island

Volume 2. Long Island

BIBLIOGRAPHIC DATA SHEET 1. Report No. USGS/WRD/HD-77/022	2.	3. Recipient's Accession No.
4. Title and Subtitle	5. Report Date May 1977	
Water Resources Data for New York, Water Year 1976 Volume 2. Long Island		6.
7. Author(s)		8. Performing Organization Rept. No. USCS-WDR-NY-76-2
9. Performing Organization Name and Address		10. Project/Task/Work Unit No.
U.S. Geological Survey, Water Resources Divi	sion	
U.S. Post Office and Courthouse		11. Contract/Grant No.
P.O. Box 1350		
Albany, New York 12201		
12. Sponsoring Organization Name and Address		13. Type of Report & Period
U.S. Geological Survey, Water Resources Division		Annual - Oct. 1,1975
U.S. Post Office and Courthouse		to Sept. 30, 1976
P.O. Box 1350		14.
Albany, New York 12201		

15. Supplementary Notes

Prepared in cooperation with the State of New York and with other agencies.

16. Abstracts

Water resources data for the 1976 water year for New York consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; water quality of precipitation; and water levels and water quality of ground water. This report (Volume 2) contains discharge records for 17 gaging stations; water quality for 17 gaging stations, 3 partial-record stations, 292 wells, and 3 precipitation stations; and water levels for 103 observation wells. Also included are 88 low-flow partial-record stations. Additional water data were collected at various sites, not involved in the systematic data collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System collected by the U.S. Geological Survey in cooperation with State, Federal, and other agencies in New York.

17. Key Words and Document Analysis. 17a. Descriptors

*New York, *Hydrologic data, *Surface waters, *Groundwater, *Water quality, Flow rates, Gaging stations, Chemical analysis, Sediments, Water temperature, Water levels, Water analysis

17b. Identifiers/Open-Ended Terms
Sampling sites

17c. COSATI Field/Group

18. Availability Statement No restriction on distribution. This report may be purchased from:	19. Security Class (This Report) UNCLASSIFIED	21. No. of Pages 186
National Technical Information Service Springfield, VA 22161	20. Security Class (This Page UNCLASSIFIED	22. Price

CONTENTS

		Page
Preface		III
	ing stations, in downstream order, for which records are published	VI
	n	1
		2
	ents	3
	conditions	3
		4
	of terms	11
	order and station numbers	11
_	ystem for wells	12
	works and programs	
•	of stage and water-discharge records	12
	n and computation of data	12
	of field data and computed results	15
	a available	15
Explanation	of water-quality records	15
Collectio	n and examination of data	15
Water ana	lysislysis	16
Water tem	peratures	16
Sediment.	-	16
Explanation	of ground-water level records	17
	n of data	17
	s on techniques of water-resources investigations	18
	ion records	33
	t partial-record stations and miscellaneous sites	85
	partial-record stations	85
		94
	samples collected at miscellaneous sites	97
	samples collected at precipitation-quality stations	222
	r records	100
	ter level records	100
	f ground-water records	133
Index		178
	ILLUSTRATIONS	
Figure 1.	System for numbering wells	11
2.	, , ,	20
3.	,	21
4.	Hydrograph, water-table well N 8959 at East Meadow	22
5.	Monthly fluctuations in dissolved chloride concentration of two repre-	
	sentative water-table wells on Long Island	23
6A.	Map showing location of surface-water data collection stations in	
	Kings, Queens, and Nassau Counties	24
6B.		
	half of Suffolk County	25
6C.		
	half of Suffolk County	26
7A.		
// •		27
7 D	Queens, and Nassau Counties	21
7B.		20
7.0	half of Suffolk County	28
7C.	1	00
	half of Suffolk County	29
8A.	Map showing location of quality of ground-water data collection	
	stations in Kings, Queens, and Nassau Counties	30
8B.	Map showing location of quality of ground-water data collection	
	stations in west half of Suffolk County	31
8C.		
	stations in east half of Suffolk County	32
	TABLE	
		inside
Table 1.		inside of back

[Letter after station name designates type of data: (d) discharge, (e) contents and/or elevation, (c) chemical, (b) biological, (m) microbiological, (t) water temperature, (s) sediment]

	Page
STREAMS ON LONG ISLAND	
Glen Cove Creek at Glen Cove (dct)	33
Mill Neck Creek at Mill Neck (dct)	35
Cold Spring Brook at Cold Spring Harbor (dct)	37
Nissequogue River near Smithtown (dct)	39
Peconic River at Riverhead (dcbts)	41
Carmans River at Yaphank (dct)	53
Swan River at East Patchogue (dct)	56
Patchogue River at Patchogue (dct)	58
Lake Ronkonkoma Inlet at Lake Ronkonkoma (ct)	60
Connetquot River near Oakdale (dct)	61
Champlin Creek at Islip (ct)	64
Penataquit Creek at Bay Shore (dct)	65
Sampawams Creek at Babylon (dct)	67
Carlls River at Babylon (dct)	69
Santapogue Creek at Lindenhurst (ct)	71
Massapequa Creek at Massapequa (dct)	72
Bellmore Creek at Bellmore (dct)	75
East Meadow Brook at Freeport (dct)	78
Pines Brook at Malverne (dct)	81
Valley Stream at Valley Stream (dct)	83

WATER RESOURCES DATA FOR NEW YORK, 1976 Volume 2.--Long Island

INTRODUCTION

Water resources data for the 1976 water year for New York consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; water quality of precipitation; and water levels and water quality of ground water. This report (Volume 2) contains discharge records for 17 gaging stations; water quality for 17 gaging stations, 3 partial-record stations, 292 wells, and 3 precipitation stations; and water levels for 103 observation wells. Also included are 88 low-flow partial-record stations. Additional water data were collected at various sites, not involved in the systematic data collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System collected by the U.S. Geological Survey in cooperation with State, Federal, and other agencies in New York.

Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States." Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled "Ground-Water Levels in the United States." Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from Branch of Distribution, U.S. Geological Survey, 604 South Pickett Street, Alexandria, VA 22304.

For water years 1961 through 1974, streamflow data were released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1974 were similarly released in separate reports. Beginning with the 1975 water year, water data for streamflow, water quality, and ground water are published as an official Survey report on a State-boundary basis. These official Survey reports carry an indentification number consisting of the two letter State abbreviation, the last two digits of the water year, and the volume number. For example, this report (Volume 2) is identified as "U.S. Geological Survey Water-Data Report NY-76-2." (Volume 1.--New York excluding Long Island, is identified as "U.S. Geological Survey Water-Data Report NY-76-1.") Water-Data reports are for sale by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

COOPERATION

The U.S. Geological Survey and organizations of the State of New York and other agencies have had cooperative agreements for the systematic collection of water records since 1900. Organizations that assisted in collecting data (included in Volumes 1 and 2, water year 1976) through cooperative agreement with the Survey are:

New York State Department of Environmental Conservation, Peter A. A. Berle, commissioner. New York State Department of Transportation, R. T. Schuler, commissioner. New York State Education Department, Ewald B. Nyquist, commissioner. Power Authority of the State of New York, J. A. Fitzpatrick, chairman; G. T. Berry, chief engineer. Board of Hudson River-Black River Regulating District, Robert Forrest, chief engineer. Central New York State Parks Commission, Samuel Perry, regional director. Oswegatchie River-Cranberry Reservoir Commission, Maynard R. Miller, chairman. County of Chautauqua, Planning Department, J. R. Luensman, director. County of Cortland, Planning Department, T. Zollendeck, director. County of Dutchess, W. H. Bartles, county executive. County of Monroe, Water Authority, T. C. McTighe, Jr., chairman. County of Nassau, Department of Public Works, H. J. Plock, Jr., commissioner. County of Onondaga, Department of Public Works, J. T. Hennigan, commissioner. County of Onondaga, Water Authority Commission, S. E. Pomeroy, chairman. County of Orange, Department of Public Works, L. J. Cascino, commissioner. County of Putnam, Board of Supervisors, J. Percacciolo, Jr., chairman.
County of Suffolk, Department of Environmental Control, J. M. Flynn, commissioner. County of Suffolk, Water Authority, W. C. Hazlitt, chairman. County of Ulster, County Legislature, P. Savage, chairman. County of Westchester, Department of Public Works, Frank Bohander, commissioner. City of Albany, Department of Water and Water Supply, D. F. Bruno, commissioner. City of Auburn, B. L. Clifford, city manager. City of New York, Board of Water Supply, Martin Hauptman, chief engineer. City of New York, Department of Water Resources, Charles Samowitz, commissioner; Abraham Groopman, chief engineer. City of Rochester, E. C. Freedman, city manager. Town of Brighton, R. D. Wiles, supervisor. Town of Clarkston, G. S. Gerber, supervisor. ther year, and the minute medera Roy element Town of Warwick, C. B. Rowe, supervisor. Village of Nyack, Board of Water Commissioners, Leonard Cooke, chairman. Delaware River Basin Commission, J. F. Wright, executive director.

Assistance in the form of funds for collecting records at gaging stations published in this report was also given by the U.S. Army Corps of Engineers, the Soil Conservation Service, the Environmental Protection Agency, and the St. Lawrence Seaway Development Corp.

The following organizations aided in collecting records:

Municipalities of Batavia, Canadaigua, Cortland, Harrison, Jamestown, Lancaster, Mamaroneck, Oneida, Plattsburgh, Rochester, Rome, Rye, Syracuse, Tarrytown, and Yonkers; Cornell University; Central Hudson Gas and Electric Corp.; Indian River Co.; New York State Electric and Gas Corp.; Niagara Mohawk Power Corp.; Rochester Gas and Electric Corp.; Orange and Rockland Utilities, Inc.; and Power Authority of the State of New York.

ACKNOWLEDGMENT

Preparation of the Long Island volume of the New York Water Resources Data Report was supervised by Anthony Spinello. Others who contributed significantly were James Carcaci, James Nakao, Brian Katz, Gregory Terlecki, and Joan Bachmann.

HYDROLOGIC CONDITIONS

As the water year began, streamflow at the index station, Massapequa Creek at Massapequa, was above average during October and continued to be excessive (in the upper 25 percent of record) through January. Streamflow for the remainder of the water year was in the normal range except for June and July when, due to below normal precipitation, monthly mean discharge decreased substantially and was in the deficient (in the lower 25 percent of record) range.

Heavy precipitation from Hurricane Belle and associated storms in early August caused minor flooding throughout central and western Long Island. Streamflow at all of the gaging stations, except the three most easterly, reached maximum discharge for the water year during this period, and discharge at the index station increased from the deficient range of the two previous months to normal for the remainder of the year.

Generally, streamflow throughout Long Island was average during the water year, reaching maximum monthly mean discharge at most stations in March and April and minimum monthly mean discharge in October and September.

The chemical quality of surface waters and ground water showed no significant changes; but increased monitoring of selected shallow wells did indicate seasonal trends in the chemical quality of ground water.

Ground-water levels for the water year were average, reflecting the typical annual fluctuations of maximum water levels occurring in February and March and minimum water levels occurring in October and September. Hurricane Belle and associated storms caused a significant rise in water levels during August.

Hydrographs of daily discharge for two representative streams and of daily water levels for a representative well are shown in figures 2, 3, and 4 respectively. A comparison of monthly fluctuations in dissolved chloride concentration of a representative well in an urban sewered area and a representative well in a rural unsewered area is shown in figure 5.

DEFINITION OF TERMS

Terms related to streamflow, water quality, and other hydrologic data, as used in this report, are defined below. See also the table for converting English units to International System of units (SI) on the inside of the back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Algae are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

<u>Bacteria</u> are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as the organisms which produce colonies within 24 hours when incubated at 35°C \pm 1.0°C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal coliform bacteria are bacteria that are present in the intestines or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours when incubated at $44.5^{\circ}\text{C} \pm 0.2^{\circ}\text{C}$ on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

<u>Fecal streptococcal bacteria</u> are bacteria found also in intestines of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at $35^{\circ}\text{C} \pm 1.0^{\circ}\text{C}$ on M-enterrococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Bed material is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

<u>Biochemical oxygen demand</u> (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500°C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m^3) , and periphyton and benthic organisms in grams per square meter (g/m^2) .

 $\underline{\text{Dry mass}}$ refers to the mass of residue present after drying in an oven at 60°C for zooplankton and 105°C for periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry mass values are expressed in the same units as ash mass.

 $\underline{\text{Organic mass}}$ or volatile mass of the living substance is the difference between the dry mass and ash mass, and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

Bottom material: See Bed material.

<u>Cells/volume</u> refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

<u>Cfs-day</u> is the volume of water represented by flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, about 646,000 gallons or 2,447 cubic meters.

<u>Chemical oxygen demand</u> (COD) is a measure of the chemically oxidizable material in the water, and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with natural water color or with carbonaceous organic pollution from sewage or industrial wastes.

<u>Chlorophyll</u> refers to the green pigments of plants. Chlorophyll \underline{a} and \underline{b} are the two most common pigments in plants.

 $\underline{\text{Color unit}}$ is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

<u>Contents</u> is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

<u>Control</u> designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

<u>Cubic feet per second per square mile</u> (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

<u>Cubic foot per second</u> (FT 3 /s, ft 3 /s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

<u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment), that passes a given point within a given period of time.

 $\underline{\text{Mean discharge}}$ (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

Instantaneous discharge is the discharge at a particular instant of time.

<u>Dissolved</u> refers to the amount of substance present in true chemical solution. In practice, however, the term includes all forms of substance that will pass through a 0.45-micrometer membrane filter, and thus may include some very small (coloidal) suspended particles. Analyses are performed on filtered samples.

<u>Drainage area</u> of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontribution areas, within the area unless otherwise noted.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

<u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

 $\underline{\text{Hardness}}$ of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate (CaCO₂).

<u>Hydrologic unit</u> is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Methylene blue active substance (MBAS) is a measure of apparent detergents. This determination depends on the formation of a blue color when methylene blue dye reacts with synthetic detergent compounds.

Micrograms per gram $(\mu g/g)$ is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (gram) of sediment.

Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

 $\underline{\text{Milligrams per liter}}$ (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represent the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L, and is based on the mass of sediment per liter of water-sediment mixture.

Organism is any living entity, such as an insect, phytoplankter, or zooplankter.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meters (m^2) , acres, or hectares. Periphyton benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliters (mL) or liters (L). Numbers of planktonic organisms can be expressed in these terms.

 $\underline{\text{Total organism count}}$ is the total number of organisms collected and enumerated in any particular sample.

<u>Partial-record station</u> is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

<u>Particle-size</u> is the diameter, in millimeters (mm), of suspended sediment or bed material determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

<u>Particle-size classification</u> used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology.

The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay	0.00024 - 0.004	Sedimentation.
Silt	.004062	Sedimentation.
Sand	.062 - 2.0	Sedimentation or sieve.
Gravel	2.0 - 64.0	Sieve.

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

<u>Percent composition</u> is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass or volume.

<u>Pesticides</u> are chemical compounds used to control undesirable plants and animals. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. Insecticides and herbicides, which control insects and plants respectively, are the two categories reported.

<u>Picocurie</u> (PC, pCi) is one trillionth (1 x 10^{12}) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 10^{10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

 $\underline{\text{Plankton}}$ is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

<u>Phytoplankton</u> is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae.

<u>Blue-green algae</u> are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

<u>Diatoms</u> are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells/mL of sample.

<u>Green-algae</u> have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algal mats or floating "moss" in lakes. Their concentrations are expressed as number of cells/mL of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column, and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

<u>Polychlorinated biphenyls</u> (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

<u>Primary productivity</u> is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time [mg $C/(m^2 \cdot time)$ for periphyton and macrophytes and mg $C/(m^3 \cdot time)$] for phytoplankton are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method, and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time [mg $0_2/(m^2 \cdot time)$ for periphyton and macrophytes and mg $0_2/(m^3 \cdot time)$] for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Runoff in inches (IN., in.) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

<u>Suspended sediment</u> is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

<u>Suspended-sediment discharge</u> (tons/day) is the rate at which dry weight of sediment passes a section of a stream or is the quantity of sediment, as measured by dry weight or volume, that passes a section in a given time. It is computed by multiplying discharge times mg/L times 0.0027.

 $\underline{\text{Suspended-sediment load}}$ is the quantity of suspended sediment passing a section in a specified period.

Total sediment discharge (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time.

Mean concentration is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

<u>Solute</u> is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in micromhos per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

<u>Stage-discharge relation</u> is the relation between gage height (stage) and volume of water per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lived.

<u>Natural substrates</u> refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lived.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multi-plate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection.

<u>Surface area</u> of a lake is that area outlined on the latest U.S.G.S. topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made.

 $\underline{\text{Surficial bed material}}$ is that part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

<u>Suspended</u> (as used in tables of chemical analyses) refers to the amount (concentration) of the total concentration in a water-sediment mixture. The water-sediment mixture is associated with (or sorbed on) that material retained on a 0.45-micrometer filter.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, Hexagenia limbata is the following:

Kingdom....Animal
Phylum....Arthropoda
Class....Insecta
Order...Ephemeroptera
Family...Ephemeridae
Genus...Hexageria
Species.Hexagenia limbata

<u>Time-weighted average</u> is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136.

Tons per day is the quantity of substance in solution or suspension that passes a stream section during a 24-hour day.

 $\underline{\text{Total load}}$ (tons) is the total quantity of any individual constituent, as measured by dry mass or volume, that is dissolved in a specific amount of water (discharge) during a given time. It is computed by multiplying the total discharge, times the mg/L of the constituent, times the factor 0.0027, times the number of days.

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

WRD is used as an abbreviation for "Water Resources Data" in the REVISED RECORDS paragraph to refer to State annual basic-data reports published before 1976.

 $\underline{\mathtt{WSP}}$ is used as an abbreviation for "Water-Supply Paper" in references to previously published reports.

DOWNSTREAM ORDER AND STATION NUMBERS

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two main-stream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is situated with respect to the stream to which it is immediately tributary is indicated by an indention in a list of stations in the front of the report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

As an added means of identification, each hydrologic station, partial-record station, and miscellaneous site has been assigned a station number. These are in the same downstream order used in this report. In assigning station numbers, no distinction is made between partial-record stations, miscellaneous sites, and other stations; therefore, the station number for a partial-record station or a miscellaneous site indicates downstream-order position in a list made up of all types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station such as 01300500 includes the 2-digit part number "01" plus the 6-digit downstream order number "300500". (In a few instances where no gaps were left in the 8-digit numbering sequence it was necessary to add one or two digits for identification; hence, there are a few stations or miscellaneous sites with 9- or 10-digit numbers.) (If random water-quality samples are taken at a miscellaneous site where a 9- or a 10-digit downstream order identification number is used, that site is assigned a latitude-longitude number.)

NUMBERING SYSTEM FOR WELLS

The 8-digit downstream order station numbers are not assigned to wells. The well-numbering system of the U.S. Geological Survey is based on the grid system of latitude and longitude. The system provides the geographic location of the well and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, the next 7 digits denote degrees, minutes, and seconds of longitude, and the last 2 digits (assigned sequentially) identify the wells within a l-second grid. See figure 1 below.

A local well-numbering system is also used. It is a 2-part identifier, assigned by the New York State Department of Environmental Conservation, consisting of the abbreviation of county name and the serial number of the well within the county.

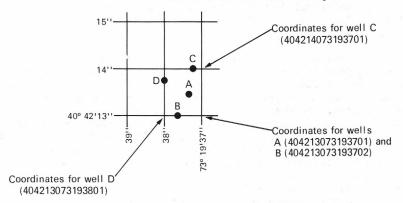


Figure 1. System for numbering wells (latitude and longitude)

SPECIAL NETWORKS AND PROGRAMS

Hydrologic bench-mark station is one that provides hydrologic data for a basin in which the hydrologic regimen will likely be governed solely by natural conditions. Data collected at a bench-mark station may be used to separate effects of natural from manmade changes in other basins which have been developed and in which the physiography, climate, and geology are similar to those in the undeveloped bench-mark basin.

National stream-quality accounting network (NASQAN) is a data collection network designed by the U.S. Geological Survey to meet many of the information demands of agencies or groups involved in national or regional water-quality planning and management. Both accounting and broad-scale monitoring objectives have been incorporated into the network design. Areal configuration of the network is based on river-basin accounting units (identified by 8-digit hydrologic-unit numbers) designated by the Office of Water Data Coordination in consulation with the Water Resources Council. Primary objectives of the network are (1) to depict areal variability of streamflow and water-quality conditions nationwide on a year-by-year basis and (2) to detect and assess long-term changes in streamflow and stream quality.

<u>Pesticide program</u> is a network of regularly sampled water-quality stations where samples are collected to determine the concentration and distribution of pesticides in streams where potential contamination could result from the application of the commonly used insecticides and herbicides. Operation of the network is a Federal interagency activity.

Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

EXPLANATION OF STAGE AND WATER-DISCHARGE RECORDS

Collection and Computation of Data

The base data collected at gaging stations consist of records of stage and measurements of discharge of streams or canals, and stage, surface area, and contents of lakes or reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records, and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of stage are obtained from either direct readings on a nonrecording gage or from a water-stage recorder that gives either a continuous graph of the fluctuations or a tape punched at selected time intervals. Measurements of discharge are made with a current meter, using the general methods adopted by the Geological Survey. These methods are described in standard textbooks, in Water-Supply Paper 888, and in U.S. Geological Survey Techniques of Water Resources Investigations, book 3, chapter A6.

For stream-gaging stations, rating tables giving the discharge for any stage are prepared from stage-discharge relation curves. If extensions to the rating curves are necessary to express discharge greater than measured, they are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements, computation of flow over dams or weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharges are computed from the daily figures. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is computed by the shifting-control method, in which correction factors based on individual discharge measurements and notes by engineers and observers are used in applying the gage heights to the rating tables. If the stage-discharge relation for a station is temporarily changed by the presence of aquatic growth or debris on the control, the daily mean discharge is computed by what is basically the shifting-control method.

At some stream-gaging stations the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the

base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

At some stream-gaging stations the stage-discharge relation is affected by ice in the winter, and it becomes impossible to compute the discharge in the usual manner. Discharge for periods of ice effect is computed on the basis of gage-height record and occasional winter discharge measurements. Consideration is given to the available information on temperature and precipitation, notes by gage observers and hydrologists, and comparable records of discharge for other stations in the same or nearby basins.

For a lake or reservoir station, capacity tables giving the contents for any stage are prepared from stage—area relation curves defined by surveys. The application of the stage to the capacity table gives the contents, from which the daily, monthly, or yearly change in contents is computed.

If the stage-capacity curve is subject to changes because of deposition of sediment in the reservoir, periodic resurveys of the reservoir are necessary to define new stage-capacity curves. During the period between reservoir surveys the computed contents may be increasingly in error due to the gradual accumulation of sediment.

For some gaging stations there are periods when no gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods the daily discharges are estimated on the basis of recorded range in stage, prior and subsequent records, discharge measurements, weather records, and comparison with records for other stations in the same or nearby basins. Likewise daily contents may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information.

The data in this report generally comprise a description of the station and tabulations of daily and monthly figures. For gaging stations on streams or canals a table showing the daily discharge and monthly and yearly discharge is given. For gaging stations on lakes and reservoirs a monthly summary table of stage and contents or a table showing the daily contents is given. Tables of daily mean gage heights are included for some streamflow stations and for some reservoir stations. Records are published for the water year, which begins on October 1 and ends on September 30.

The description of the gaging station gives the location, drainage area, period of record, notations of revisions of previously published records, type and history of gages, general remarks, average discharge, and extremes of discharge or contents. The location of the gaging station and the drainage area are obtained from the most accurate maps available. River mileage, given under "LOCATION" for some stations, is that determined and used by the Corps of Engineers or other agencies. Periods for which there are published records for the present station or for stations generally equivalent to the present one are given under "PERIOD OF RECORD."

Previously published streamflow records of some stations have been found to be in error on the basis of data or information later obtained. Revisions of such records are usually published along with the current records in one of the annual or compilation reports. In order to make it easier to find such revised records, a paragraph headed "REVISED RECORDS" has been added to the description of all stations for which revised records have been published. Listed therein are all the reports in which revisions have been published, each followed by the water years for which figures are revised in that report. In listing the water years only one number is given; for instance, 1965 stands for the water year October 1, 1964, to September 30, 1965. If no daily, monthly, or annual figures of discharge are affected by the revision, the fact is brought out by notations after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the revised figure was first published is given. It should be noted that for all stations for which cubic feet per second per square mile and runoff in inches are published, a revision of the drainage area necessitates corresponding revision of all figures based on the drainage area. Revised figures of cubic feet per second per square mile and runoff in inches resulting from a revision of the drainage area only are usually not published in the annual series of reports.

The type of gage currently in use, the datum of the present gage above mean sea level, and a condensed history of the types, locations, and datums of previous gages used during the period of record are given under "GAGE." In references to datum of gage, the phrase "mean sea level" denotes "Sea Level Datum of 1929" as used by the Topographic Division of the Geological Survey unless otherwise qualified.

Information pertaining to the accuracy of the discharge records and to conditions which affect the natural flow of the gaging station is given under "REMARKS." For reservoir stations information on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir is given under "REMARKS."

The average discharge for the number of years indicated is given under "AVERAGE DIS-CHARGE"; it is not given for stations having fewer than 5 complete years of record or for stations where changes in water development during the period of record cause the figure to have little significance. In addition, the median of yearly mean discharges is given for stream-gaging stations having 10 or more complete years of record if the median differs from the average by more than 10 percent. Under "EXTREMES" are given first, the extremes for the period of record, second, information available outside the period of record, and last, those for the current year. Unless otherwise qualified, the maximum discharge (or contents) is the instantaneous maximum corresponding to the crest stage obtained by use of a water-stage recorder (graphic or digital), a crest-stage gage, or a nonrecording gage read at the time of the crest. If the maximum gage height did not occur on the same day as the maximum discharge (or contents), it is given separately. Similarly, the minimum is the instantaneous minimum unless otherwise qualified. For some stations peak discharges are listed with "EXTREMES FOR THE CURRENT YEAR"; if they are, all independent peaks, including the maximum for the year, above the selected base with the time of occurrence and corresponding gage heights are published in tabular format. The base discharge, which is given in the table heading, is selected so that an average of about three peaks a year will be presented. Peak discharges are not published for any canals, ditches, drains, or for any stream for which the peaks are subject to substantial control by man. Time of day is expressed in 24-hour local standard time; for example, 12:30 a.m. is 0030, 1:30 p.m. is 1330. The minimums for these stations are published in a separate paragraph following the table of peaks.

The daily table for stream-gaging stations gives the mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also may be expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN."). Figures for cubic feet per second per square mile and run-off in inches are omitted if there is extensive regulation or diversion, if the drainage area includes large noncontributing areas, or if the average annual rainfall over the drainage basin is usually less than 20 inches. In the yearly summary below the monthly summary, the figures shown are the appropriate daily discharges for the calendar and water years.

Footnotes to the table of daily discharge are introduced by the word "NOTE." Footnotes are used to indicate periods for which the discharge is computed or estimated by special methods because of no gage-height record, backwater from various sources, or other unusual conditions. Periods of no gage-height record are indicated if the period is continuous for a month or more or includes the maximum discharge for the year. Periods of backwater from an unusual source, of indefinite stage-relation, or of any other unusual condition at the gage site are indicated only if they are a month or more in length and the accuracy of the records is affected. Days on which the stage-discharge relation is affected by ice are not indicated. The methods used in computing discharge for various unusual conditions have been explained in preceding paragraphs.

For most gaging stations on lakes and reservoirs the data presented comprise a description of the station and a monthly summary table of stage and contents. For some reservoirs a table showing daily contents or stage is given. A skeleton table of capacity at given stages is published for all reservoirs for which records are published on a daily basis, but is not published for reservoirs for which only monthly data are given.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is

a table of annual maximum stage and discharge at crest-stage stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. Occasionally, a series of discharge measurements are made within a short time period to investigate the seepage gains or losses along a reach of a stream or to determine the low-flow characteristics of an area. Such measurements are also given in special tables following the tables of partial-record stations.

Accuracy of Field Data and Computed Results

The accuracy of streamflow data depends primarily on (1) the stability of the stagedischarge relation or, if the control is unstable, the frequency of discharge measurements, and (2) the accuracy of observations of stage, measurements of discharge, and interpretations of records.

The station description under "REMARKS" states the degree of accuracy of the records. "Excellent" means that about 95 percent of the daily discharges are within 5 percent; "good," within 10 percent; and "fair," within 15 percent. "Poor" means that daily discharges have less than "fair" accuracy.

Figures of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 $\rm ft^3/s$; to tenths between 1.0 and 10 $\rm ft^3/s$; to whole numbers between 10 and 1,000 $\rm ft^3/s$; and to 3 significant figures above 1,000 $\rm ft^3/s$. The number of significant figures used is based solely on the magnitude of the figure. The same rounding rules apply to discharge figures listed for partial-record stations.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Data Available

Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating tables is on file in the district office. Also most gaging-station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the district office.

EXPLANATION OF WATER-QUALITY RECORDS

Collecton and Examination of Data

Where surface-water samples for analyses are collected at or near gaging stations, the quality-of-water records are given immediately following the discharge records at these stations.

The descriptive heading for water-quality records gives the period of record for all water-quality data; the period of daily record for parameters that are measured on a daily basis (specific conductance, pH, dissolved oxygen, water temperature, sediment discharge, etc.); extremes for the period of daily record; extremes for the current year; and general remarks.

The descriptive heading for precipitation-quality records gives period of record, description of equipment, and general remarks.

Water Analysis

Most methods for collecting and analyzing water samples are described in the U.S. Geological Survey Techniques of Water-Resources Investigations listed on a following page.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the district office.

Water Temperatures

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures and/or maximum and minimum temperatures for each day are published.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depthintegrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent

conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of the quantities of suspended sediment, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included.

EXPLANATION OF GROUND-WATER LEVEL RECORDS

Collection of Data

Only ground-water level data from a basic network of observation wells are published herein. This basis network contains observation wells so located that the most significant data are obtained from the fewest wells in the most important aquifers.

Each well is identified by means of (1) a 15-digit number that is based on latitude and longitude and (2) a local number that is provided for local needs. See figure 1.

Measurements are made in many types of wells, under varying conditions of access and at different temperatures, hence, neither the method of measurement nor the equipment can be standardized. At each observation well, however, the equipment and techniques used are those that will ensure that measurements at each well are consistent.

Water-level measurements in this report are given in feet with reference to mean sea level. Mean sea level is the datum plane on which the national network of precise levels is based; land-surface datum is a datum plane that is approximately at land surface at each well. If known, the altitude of the land-surface datum above mean sea level is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (eom).

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given only to a tenth of a foot.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

Thirty-three manuals by the U.S. Geological Survey have been published to date in the series on techniques describing procedures for planning and executing specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) is on surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. The reports listed below are for sale by the U.S. Geological Survey, Branch of Distribution, 604 South Pickett Street, Alexandria, VA 22304 (authorized agent of the Superintendent of Documents, Government Printing Office).

- NOTE: When ordering any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations."
- 1-D1. Water temperature-influential factors, field measurement, and data presentation, by H. H. Stevens Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975 65 p. \$1.60.
- 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages. S0.85.
- 2-D1. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS-TWRI Book 2, Chapter D1. 1974. 116 pages. \$1.90.
- 2-E1. Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS--TWRI Book 2, Chapter E1. 1971. 126 pages. \$1.75.
- 3-Al. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter Al. 1967. 30 pages. \$0.25.
- 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages. \$0.20.
- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages. \$0.40.
- 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 pages. \$1.00.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages. \$0.30.
- 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6, 1968. 13 pages. \$0.20.
- 3-A7. Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 pages. \$0.45.
- 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS-TWRI Book 3, Chapter A8, 1969. 65 pages. \$1.25.
- 3-All. Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS-TWRI Book 3, Chapter All. 1969. 22 pages. \$0.40.
- 3-Al2. Fluorometric procedures for dye tracing, by J. F. Wilson Jr.: USGS--TWRI Book 3, Chapter Al2. 1968. 31 pages. \$0.35. Not currently available.
- 3-B1. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter B1. 1971. 26 pages \$0.70.
- 3-B2. Introduction to ground-water hydraulics--a programed text for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2 1976. 172 pages. \$2.50.
- 3-C1. Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages. \$0.65.
- 3-C2. Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS--TWRI Book 3, Chapter C2, 1970. 59 pages \$0.70.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages. \$1.15.
- 4-Al. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter Al. 1968. 39 pages. \$0.30.
- 4-A2. Frequency curves, by H. C. Riggs: USGS-TWRI Book 4, Chapter A2. 1968. 15 pages. \$0.20.
- 4-B1. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972, 18 pages. \$0.65.
- 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages. \$0.75.
- 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages. \$0.75.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS -- Continued

- 4-D1. Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS-TWRI Book 4, Chapter D1. 1970. 17 pages. \$0.65.
- 5-A1. Methods for collection and analysis of water samples for dissolved minerals and gases, by Eugene Brown, M. W. Skougstad, and M. J. Fishman: USGS--TWRI Book 5, Chapter A1. 1970. 160 pages \$2.40.
- 5-A2. Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages. \$0.80.
- 5-A3. Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown: USGS--TWRI Book 5, Chapter A3. 1972. 40 pages. \$0.90.
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, by K. V. Slack, R. C. Averett, P. E. Greeson, and P. G. Lipscomb: USGS--TWRI Book 5, Chapter A4. 1973. 165 pages. \$1.95.
- 5-Cl. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter Cl. 1969. 58 pages. \$0.65.
- 7-C1. Finite-difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages. \$2.30.
- 8-Al. Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS--TWRI Book 8, Chapter Al. 1968. 23 pages. \$0.70.
- 8-B2. Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS-TWRI Book 8, Chapter B2. 1968. 15 pages. \$0.40.

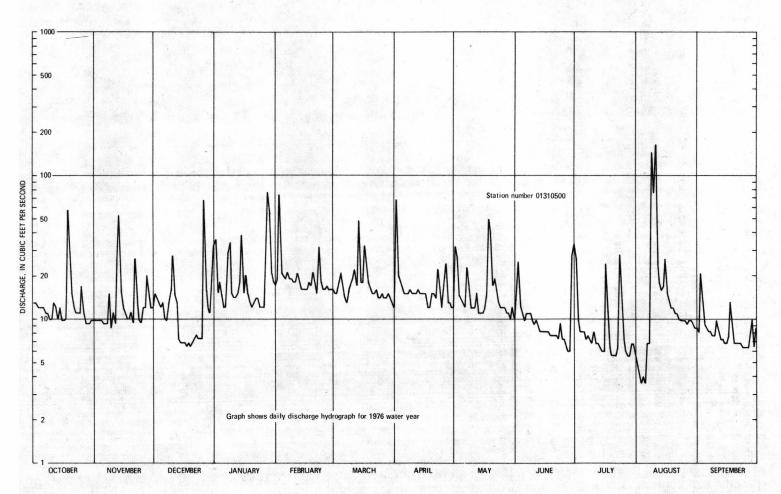


Figure 2.--Hydrograph of East Meadow Brook at Freeport.

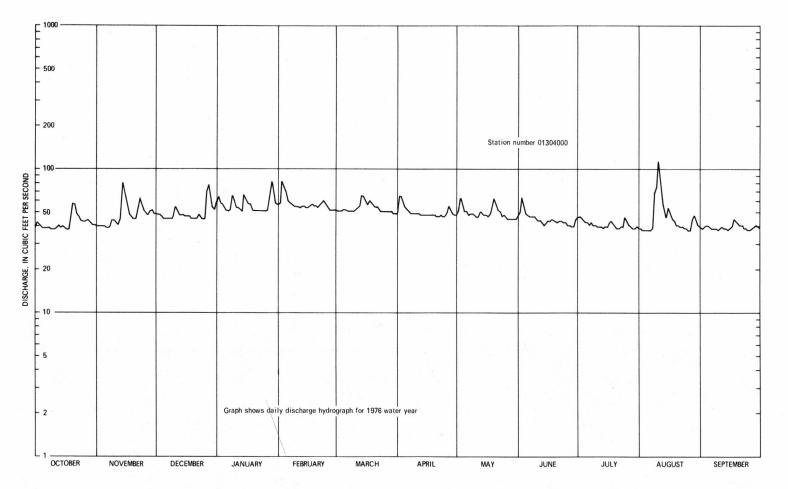


Figure 3.--Hydrograph of Nissequogue River near Smithtown.

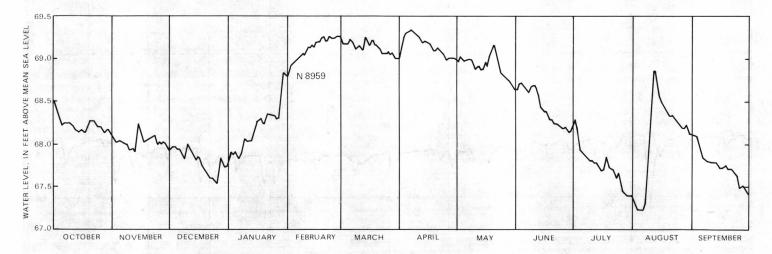


Figure 4.--Hydrograph of water-table well N8959 at East Meadow.

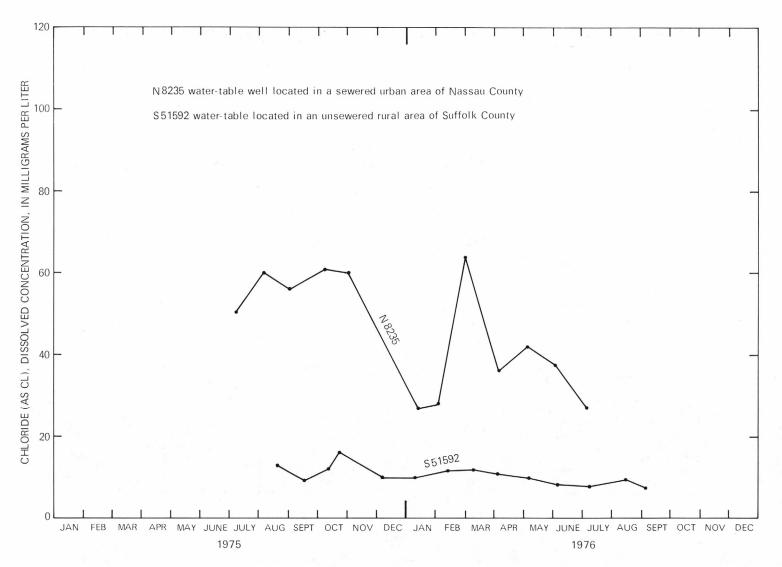


Figure 5.--Monthly fluctuations in dissolved chloride concentration of two representative water-table wells on Long Island.

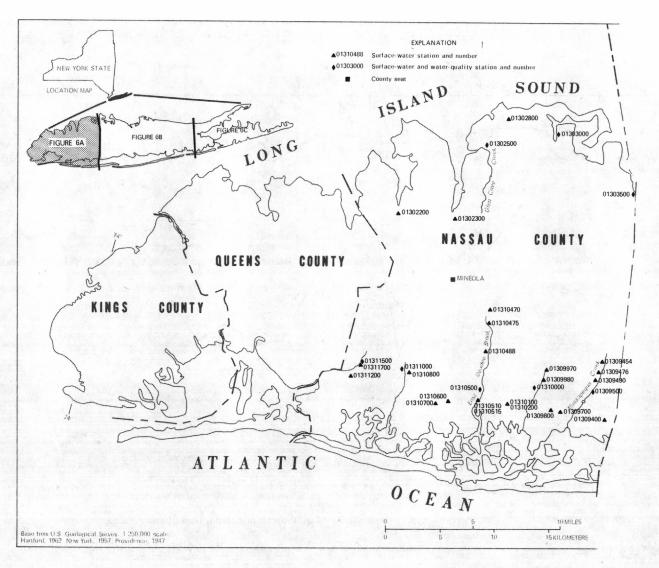


FIGURE 6A.-- LOCATION OF SURFACE-WATER DATA COLLECTION STATIONS

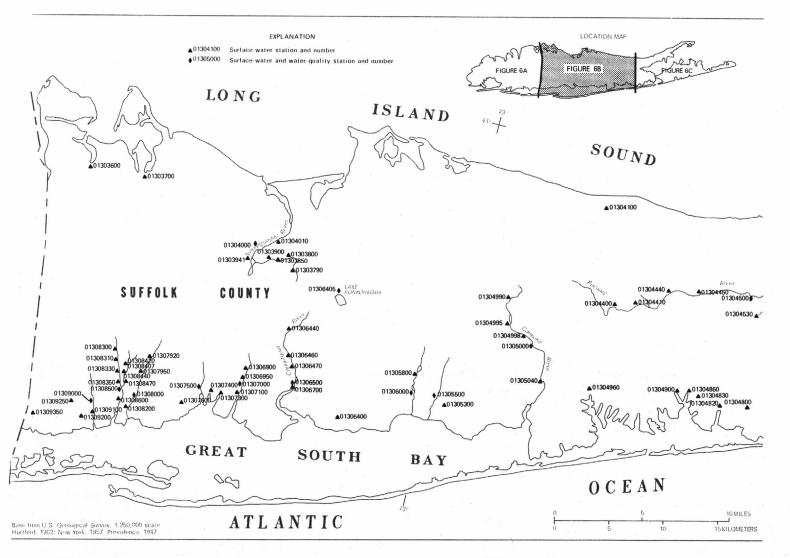


FIGURE 6B .-- LOCATION OF SURFACE-WATER DATA COLLECTION STATIONS

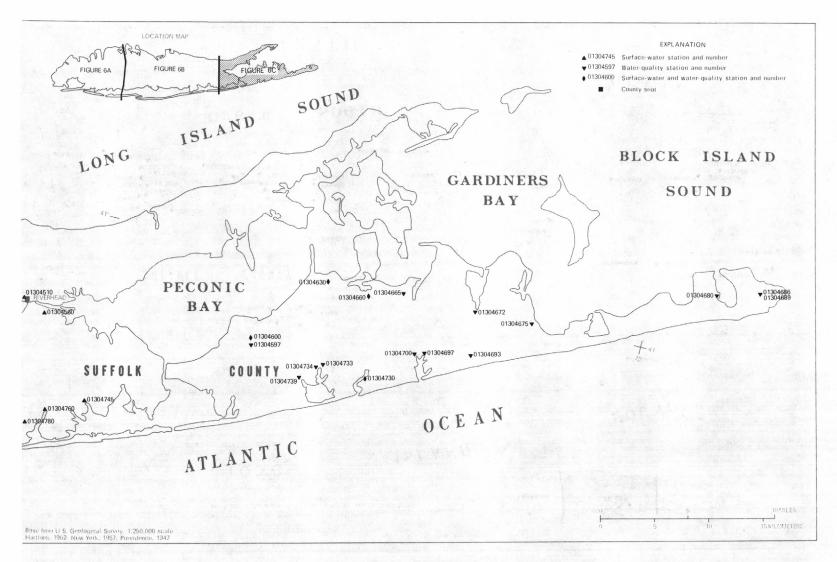


FIGURE 6C .-- LOCATION OF SURFACE-WATER DATA COLLECTION STATIONS

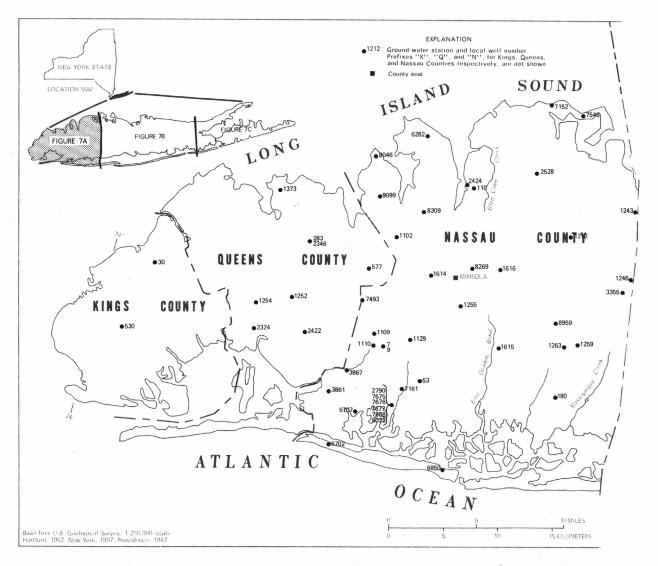


FIGURE 7A.-- LOCATION OF WATER-LEVEL DATA COLLECTION STATIONS

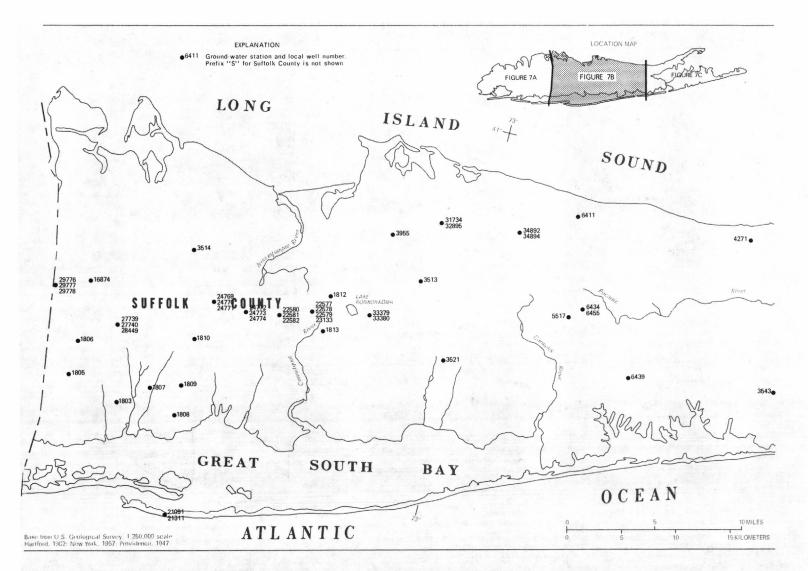


FIGURE 7B.-- LOCATION OF WATER-LEVEL DATA COLLECTION STATIONS

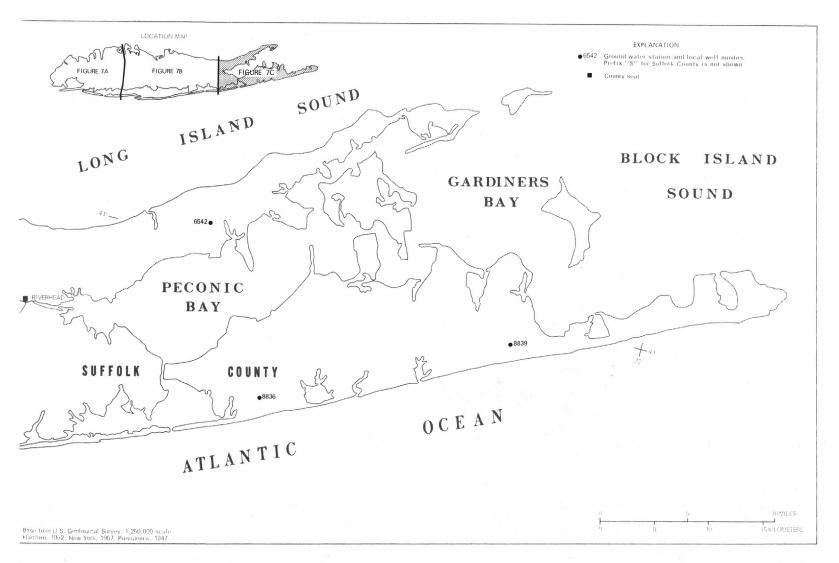


FIGURE 7C.-- LOCATION OF WATER-LEVEL DATA COLLECTION STATIONS

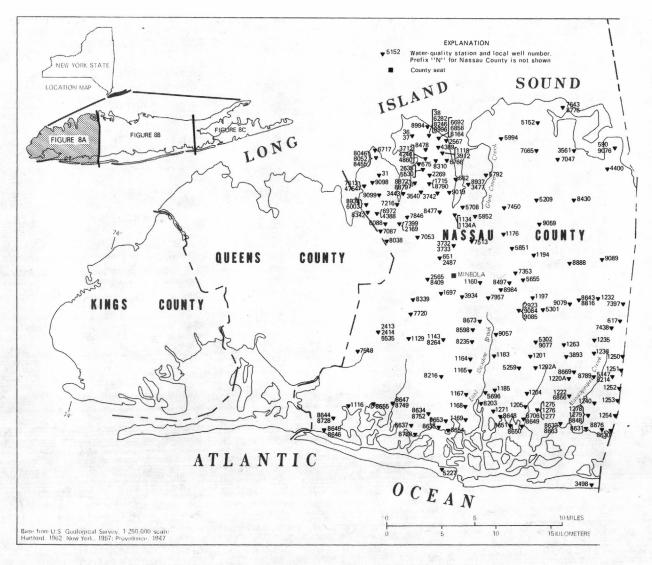


FIGURE 8A.-- LOCATION OF QUALITY OF GROUND-WATER DATA COLLECTION STATIONS

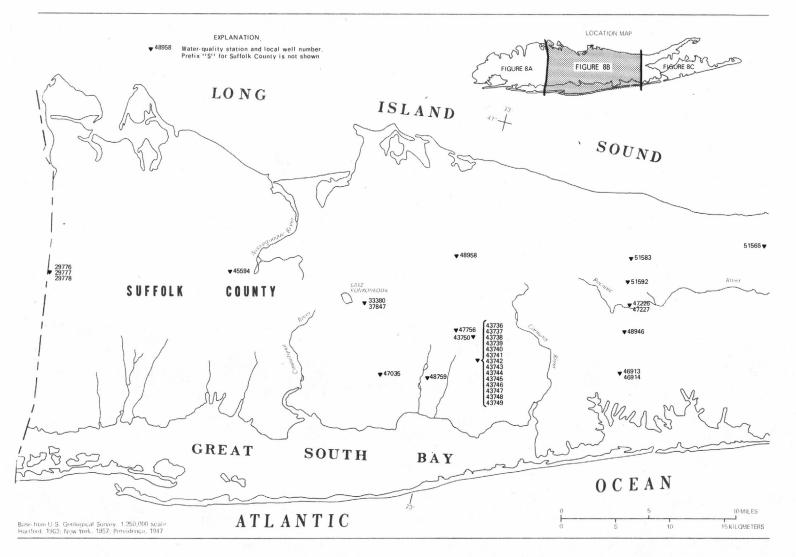


FIGURE 8B.-- LOCATION OF QUALITY OF GROUND-WATER DATA COLLECTION STATIONS

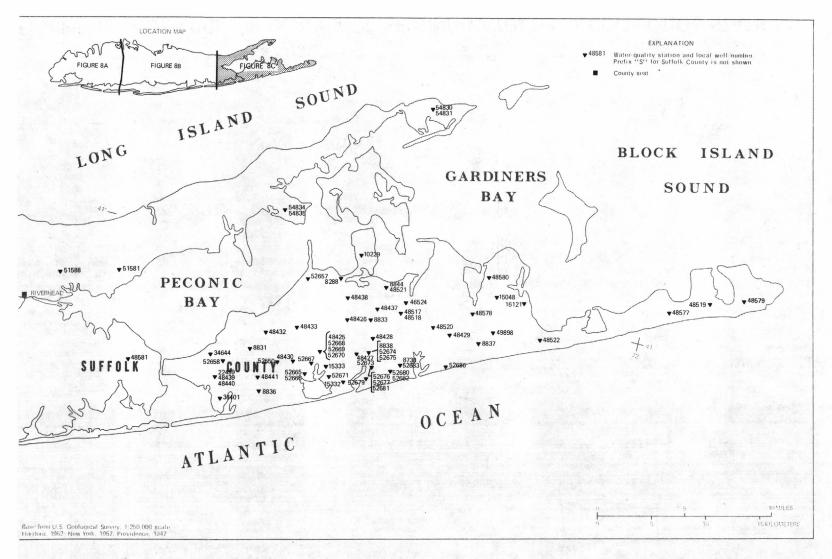


FIGURE 8C.-- LOCATION OF QUALITY OF GROUND-WATER DATA COLLECTION STATIONS

01302500 GLEN COVE CREEK AT GLEN COVE, NY

LOCATION.--Lat 40°51'48", long 73°38'05", Nassau County, Hydrologic Unit 02030201, on right bank just downstream from Glen Cove Road culvert, at 8- x 10-foot concrete culvert in Pratt Park, 1 block west of post office, Glen Cove. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 11 mi2 (28 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1938 to current year. Prior to October 1967, published as Cedar Swamp Creek.

REVISED RECORDS (WATER YEARS) .-- WSP 971: 1939-42.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 15.93 ft (4.855 m) above mean sea level, adjustment of 1912. Prior to September 10, 1957, at datum 0.6 ft (0.18 m) lower.

REMARKS.--Records good except those above 300 ft³/s (8.50 m³/s), which are fair.

AVERAGE DISCHARGE. -- 38 years, 6.88 ft^3/s (0.195 m^3/s).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,860 ft³/s (52.7 m³/s) Sept. 12, 1960, gage height, 7.12 ft (2.170 m), from rating curve extended above 220 ft³/s (6.23 m³/s); minimum, 2.1 ft³/s (0.059 m³/s) Oct. 15 1967; minimum gage height, 0.52 ft (0.158 m), Oct. 22, 1959, Oct. 15, 1967.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,090 ft 3 /s (30.9 m 3 /s) Aug. 9, gage height, 5.73 ft (1.747 m); minimum, 3.4 ft 3 /s (0.096 m 3 /s) May 10, gage height, 0.64 ft (0.195 m) (result of regulation).

		DISCHA	RGE, IN C	UBIC FEET	PER SECO	ND. WATER	YEAR OCT	OBER 1975	TO SEPTE	MBER 1976		
					ME.	AN VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	6.3	4.7	5.5	21	15	4.8	23	32	17	9.4	4.4	4.8
2	5.9	4.5	5.0	11	35	4.8	6.9	11	7.8	5.9	4.4	7.2
3	5.6	4.8	4.8	12	20	5.1	5.9	9.4	6.7	6.9	4.4	5.0
4	5.4	4.9	4.6	6.7	10	6.3	5.3	8.6	5.3	5.3	4.4	5.0
5	5.3	4.8	4.6	5.3	6.0	5.1	5.1	7.4	5.1	5.1	4.4	4.9
6	5.3	4.8	4.8	5.0	6.5	5.0	5.0	6.3	5.5	5.0	6.5	4.8
7	5.0	4.8	4.4	18	5.5	4.8	5.0	5.7	5.3	16	4.8	4.8
8	5.1	6.9	4.6	19	5.1	4.6	4.8	5.5	5.5	5.1	185	4.8
9	4.9	4.6	9.7	6.7	5.1	5.0	4.8	5.0	5.3	5.0	128	4.8
10	4.8	6.3	17	5.5	5,1	6.2	4.8	5.5	4.8	4.8	118	11
11	6.5	4.9	9.7	5.1	5.6	8.0	4.6	6.9	5.0	4.6	14	4.9
12	4.7	26	6.7	5.5	5.8	6.7	4.4	7.4	5.0	4.8	9.7	4.7
13	6.3	23	5.3	19	5.9	24	4.6	5.3	4.8	4.6	8.6	4.8
14	4.8	12	5.0	25	5.5	6.5	4.4	5.3	4.8	4.6	9.3	4.8
15	4.7	8.1	5.0	9.1	5.1	5.9	4.4	5.3	8.6	4.6	8.1	4.8
16	4.7	5.9	5.0	11	5.5	14	4.4	6.9	5.0	8.6	7.1	5.7
17	9.0	5.5	4.8	7.4	6.9	9.1	4.3	6.7	7.4	5.5	6.6	9.2
18	36	5.3	4.8	5.3	11	7.6	4.3	14	5.5	4.6	6.4	5.2
19	18	5.3	4.6	4.8	7.6	6.9	4.3	17	5.0	4.6	6.1	4.9
20	9.1	5.1	4.6	4.8	5.7	5.7	4.4	6.5	4.6	4.4	5.8	5.3
21	7.0	22	4.4	5.1	5.3	5.9	4.4	8.6	4.8	4.6	5.5	4.8
22	6.3	7.6	4.6	5.0	13	4.8	4.4	5.9	4.6	4.4	5.3	4.7
23	5.9	5.5	4.6	4.6	6.2	4.8	4.4	5.9	4.8	9.1	5.3	4.6
24	5.7	5.3	4.4	4.6	5.5	4.6	4.6	5.5	4.6	5.3	5.3	4.7
25	11	5.1	4.3	4.6	5.3	4.8	6.7	5.1	5.7	4.4	5.3	4.6
26	5.7	4.8	57	19	5.3	4.6	7.6	5.1	5.0	4.6	5.3	5.4
27	5.5	19	15	69	5.1	4.8	4.8	5.1	4.4	4.8	28	7.5
28	5.5	5.9	11	51	5.0	4.4	5.0	5.0	4.6	4.6	5.5	6.1
29	5.3	5.1	7.2	13	4.8	4.4	4.8	5.0	28	5.0	5.2	4.8
30	5.2	5.0	14	11		4.4	4.8	5.7	38	4.8	5.3	5.6
31	5.0		12	9.4		4.6		5.1		4.6	5.2	
TOTAL	225.5	237.5	259.0	403.5	233.4	198.2	166.2	239.7	228.5	175.6	627.2	164.2
MEAN	7.27	7.92	8.35	13.0	8.05	6.39	5.54	7.73	7.62	5.66	20.2	5.47
MAX	36	26	57	69	35	24	23	32	38	16	185	11
MIN	4.7	4.5	4.3	4.6	4.8	4.4	4.3	5.0	4.4	4.4	4.4	4.6

CAL YR 1975 TOTAL 3081.9 MEAN 8.44 MAX 105 MIN 3.7 WTR YR 1976 TOTAL 3158.5 MEAN 8.63 MAX 185 MIN 4.3

01302500 GLEN COVE CREEK AT GLEN COVE, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

DATE	TIME	INSTAN- TANEOUS DIS- CHARGE (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)
DEC	1530	4.6	2000	7.1	9.0	7.2	62	89	47	25	6.5	360
23 MAR								79	38	21	6.5	17
24 JUN	0945	4.6	273	6.9	10.0	10.8	95					
24 SEP	0800	4.6	250	6.3	14.0	9.8		95	57	6.8	19	15
23	1345	4.6	250	-	14.5	9.7	-	74	36	19	6.4	13
	DIS- SOLVED PO- TAS- SIUM (K)	BICAR- BONATE (HCO3)	CAR- BONATE (CO3)	ALKA- LINITY AS CACO3	DIS- SOLVED SULFATE (SO4)	DIS- SOLVED CHLO- RIDE (CL)	DIS- SOLVED FLUO- RIDE (F)	DIS- SOLVED SILICA (SIO2)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS)	TOTAL NITRATE (N)	DIS- SOLVED NITRATE	
DATE	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	
DEC 23	2.9	51	0	42	29	570	•1	14	1050	3.0	3.6	
24 JUN	2.7	50	0	41	26	27	.1	14	149	3.9	2.3	
24 SEP	2.4	46	0	38	24	19	.1	16	143	3.8	4.0	
23	1.9	46		38	28	20	.1	16	144	3.3	3.9	
	TOTAL NITRITE	DIS- SOLVED NITRITE	TOTAL AMMONIA NITRO- GEN	TOTAL ORGANIC NITRO- GEN	TOTAL KJEL- DAHL NITRO- GEN	TOTAL NITRO- GEN	TOTAL PHOS- PHORUS	TOTAL ORTHO PHOS- PHORUS	TOTAL IRON	TOTAL MAN- GANESE	METHY- LENE BLUE ACTIVE SUB-	
DATE	(N) (MG/L)	(N) (MG/L)	(N) (MG/L)	(N) (MG/L)	(N) (MG/L)	(N) (MG/L)	(P) (MG/L)	(P) (MG/L)	(FE) (UG/L)	(MN) (UG/L)	STANCE (MG/L)	
DEC												
23 MAR	.01	.02	.19	.33	•52	3.5	•05	.00	990	150	-1	
24 JUN	.01	.01	.18	.07	•25	4.2	.04	.01	730	160	-1	
SEP	.02	.01	.10	.18	.28	4.1	.04	.03	510	100	.1	
23	.01	.01	.11	.22	•33	3.6	.04	.01	600	90	.1	

01303000 MILL NECK CREEK AT MILL NECK, NY

LOCATION.--Lat 40°53'15", Long 73°33'51", Nassau County, Hydrologic Unit 02030201, on right bank at Beaver Dam, 30 ft (9 m) upstream from Feeks Lane (Cleft Road) bridge in Mill Neck, and 1.5 mi (2.4 km) southwest of Bayville. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 11.5 mi2 (29.8 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- January 1937 to current year.

REVISED RECORDS. -- WSP 1141: Drainage area.

GAGE.--Water-stage recorder and steel sheet-piling control. Datum of gage is 6.49 ft (1.978 m) above mean sea

REMARKS .-- Records good. Slight regulation by ponds above station.

AVERAGE DISCHARGE .-- 39 years, 9.09 ft 3/s (0.257 m3/s).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 137 ft³/s (3.88 m³/s) Sept. 12, 1960, from rating curve extended above 70 ft³/s (1.98 m³/s); maximum gage height, 4.85 ft (1.478 m) Sept. 21, 1938 (hurricane wave); minimum discharge, 0.09 ft³/s (0.003 m³/s) Dec. 11, 1941 (result of freezeup); minimum gage height, 0.14 ft (0.043 m) Sept. 8, 1939 (result of wind action).

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 32 ft 3/s (0.91 m3/s) and maximum (*):

		Discl	narge	Gage 1	neight				harge		height
Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Nov. 13	0200	33	0.93	0.74	0.22	Aug. 8	1400	92	2.61	1.30	0.40
Dec. 26	1430	36	1.02	0.78	0.24	Aug. 10	0100	*112	3.17	1.44	0.44
Jan. 28	0030	44	1.25	0.87	0.26						

Minimum discharge, 7.0 ft^3/s (0.20 m^3/s), July 12-14, Aug. 2-6, Sept. 7; minimum gage height, 0.28 ft (0.08 m) June 28, July 12-14, Aug. 2-6, Sept. 7.

DISCHARGE. IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

					ME	AN VALUES						
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	9.6	8.4	9.2	14	11	10	19	13	10	22	7.6	7.4
2	9.2	8.4	8.9	11	24	10	16	22	13	12	7.3	8.0
2	8.8	8.4	8.5	11	15	11	12	14	10	9.5	7.1	8.4
4	8.8	8.4	8.3	10	12	12	11	11	9.2	8.7	7.1	8.0
5	8.8	8.4	8.4	9.0	11	11	10	10	8.8	8.3	7.2	7.8
6	8.8	8.4	8.6	8.4	12	11	10	9.6	8.8	8.0	7.4	7.5
7	8.4	8.4	8.5	9.7	11	10	10	9.6	9.2	9.2	8.2	. 7.3
8	8.4	9.6	8.8	17	10	10	10	9.2	9.2	9.7	54	7.3
9	8.8	9.2	9.8	12	10	10	9.6	9.2	8.8	8.5	36	7.3
10	9.2	9.6	16	9.4	10	12	9.6	9.2	8.8	8.0	64	8.7
11	9.6	9.2	12	9.1	11	12	9.6	8.8	8.8	7.7	23	9.3
12	9.6	12	9.8	9.6	11	12	9.2	10	8.0	7.5	13	8.1
13	9.2	27	9.1	9.6	11	19	9.6	9.6	8.0	7.3	11	7.7
14	10	16	9.2	17	11	15	9.6	9.6	8.0	7.2	9.8	7.7
15	9.6	11	9.1	12	10	12	9.6	9.2	9.2	7.4	9.2	7.7
16	8.8	9.2	9.0	11	11	13	9.6	9.6	9.2	8.3	8.7	7.9
17	8.8	8.8	8.7	10	12	16	9.6	11	9.2	9.6	8.1	9.8
18	22	8.6	8.4	8.8	12	12	9.6	12	9.6	8.4	8.0	8.8
19	20	8.6	8.1	8.1	14	11	9.6	17	8.8	7.8	7.7	8.2
20	17	8.7	8.3	8.6	12	10	9.2	13	8.8	7.6	7.7	8.0
21	12	12	8.8	9.6	11	. 11	9.2	11	8.8	7.5	7.7	8.0
22	10	15	9.8	9.6	13	10	9.6	10	8.4	7.6	7.7	7.9
23	9.2	11	9.2	8.9	13	10	9.2	9.6	8.4	8.1	7.6	7.7
24	9.2	9.2	8.6	9.2	11	10	8.8	9.2	8.4	9.7	7.4	7.4
25	11	9.0	8.5	9.0	11	10	10	9.2	8.0	8.1	7.3	7.6
26	11	8.8	23	11	11	10	13	8.8	8.4	7.5	. 7.4	8.0
27	9.6	12	20	26	11	10	11	8.8	8.0	7.4	17	8.8
28	10	12	12	32	10	10	10	8.8	8.0	7.4	14	9.1
29	9.2	9.8	10	17	10	10	10	8.8	14	7.6	9.8	8.3
30	8.4	9.3	9.7	13		10	9.6	9.6	18	8.1	7.8	8.2
31	8.4		14	11		10		9.6		8.0	7.4	
TOTAL	321.4	314.4	320.3	371.6	342	350	312.8	330.0	281.8	269.7	413.2	241.9
MEAN	10.4	10.5	10.3	12.0	11.8	11.3	10.4	10.6	9.39	8.70	13.3	8.06
MAX	22	27	23	32	24	19	19	22	18	22	64	9.8
MIN	8.4	8.4	8.1	8.1	10	10	8.8	8.8	8.0	7.2	7.1	7.3

MEAN 10.2 MIN 7.1 WTR YR 1976 TOTAL 3869.1 MEAN 10.6 MAX 64

01303000 MILL NECK CREEK AT MILL NECK, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

DATE	TIME	INSTAN- TANEOUS DIS- CHARGE (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION	HARD- NESS (CA,MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)
OCT. 29	1430	9.2	135	8.9	15.0	8.9	87	46	19	12	4.0
NOV. 26	1400	8.8	120	6.5	6.0	11.6	93	51	27	14	3.9
DEC. 23	1445	9.2	168	8.0	.0	8.5	58	46	23	11	4.5
FEB. 05	1030	11	171	7.8	3.0	12.0	88	38	18	9.5	3.5
24 MAR.	1500	ii	157	7.0	5.0	12.2	95	40	21	10	3.7
24 APR.	1100	10	250	7.1	9.0	13.0	112	51	31	12	5.1
27	1330	11	155	7.9	10.0	12.8	113	46	16	11	4.5
27 JUNE	0845	8.8	140	8.5	17.0	9.6	99	39	16	9.5	3.6
24	0830	8.4	147	7.1	25.0	10.8		52	17	4.2	10
JULY 28 SEP.	0915	7.4	143	7.7	24.5	7.2		44	10	10	4.6
23	0900 1300	7.3 7.7	149 154	8.9	20.5 18.0	9.7	=	44	12 17	9.5	4.6
DATE	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	CAR- BONATE (CU3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
OCT.							1				
29 NOV.	8.8	1.8	34	0	28	15	15	•0	9.4	86	.67
26	9.3	1.6	29	0	24	19	18	•0	9.8	95	1.1
23 FEB.	10	1.7	28	0	23	17	16	.1	10	92	1.8
24	14	1.3	24	0	20 19	18 17	23	.1	9.2	98 88	1.5
MAR. 24	23	1.8	24	0	20	22	39	.1	9.2	128	1.5
APR. 27	10	1.4	36	0	30	16	15	.1	6.5	86	.85
MAY 27	9.9	1.1	28	0	23	15	14	•1	8.3	78	.48
JUNE 24	10	1.5	42	0	34	14	12	.1	11	86	.21
JULY 28	10	1.5	41	0	34	20	14	.1	8.6	90	.09
SEP. 08	10	1.3	39	0	32	20	14	.1	6.8	88	.35
23	9.6	1.3	30		25	21	14	.1	7.0	83	.34
DATE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
ост.	35.0		1.3								
29	.64	.03	.02	.01	•47	1.2	.04	.01	540	60	.0
26 DEC.	1.1	•02	.03	•20	•60	1.7	•05	.01	550	20	• 0
23 FEB.	1.7	•01	.02	.07	•29	2.1	.03	.00	310	20	• 0
24	1.6	.01	.05	.04	•28 •40	1.8	.05	.01	370 540	60 30	.0
MAR. 24	.85	.01	.01	.67	•36	1.9	.03	.01	520	50	• 0
APR. 27	.85	.02	.03	.00	•58	1.5	.04	.01	450	50	.0
MAY 27	.48	.02	.02	.07	.73	1.2	.04	.02	770	70	•1
JUNE 24	.46	.01	.02	.08	.75	.97	.07	.01	840	100	.0
JULY 28	.12	.01	.01	.06	1.3	1.4	.09	.03	660	90	•1
SEP. 08	.36	.02	.02	.04	.38	.75	.06	.03	390	40	.0
23	.38	.02	.02	.03	•70	1.1	.06	.01	460	40	.0

01303500 COLD SPRING BROOK AT COLD SPRING HARBOR, NY

LOCATION.--Lat 40°51'26", long 73°27'50", Nassau County, Hydrologic Unit 02030201, on left bank 270 ft (82 m) upstream from State Highway 25A, at Cold Spring Harbor State Fish Hatchery, and 1.0 mi (1.6 km) southwest of village of Cold Spring Harbor. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 7.3 mi2 (19 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1950 to current year.

GAGE. -- Water-stage recorder and concrete control. Datum of gage is 5.38 ft (1.640 m) above mean sea level.

REMARKS.--Records good. Flow occasionally regulated at outlet of pond 40 ft (12 m) above station. Diversion from this pond by New York State Fish Hatchery bypasses station.

AVERAGE DISCHARGE.--26 years, 2.45 ft³/s (0.0694 m³/s) (unadjusted).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 108 ft³/s (3.06 m³/s) Sept. 11, 1954, gage height, 1.33 ft (0.405 m) (backwater from aquatic vegetation), from rating curve extended above 28 ft³/s (0.79 m³/s); maximum gage height, 5.34 ft (1.628 m) Aug. 31, 1954 (backwater from high tide), from high-water mark; minimum discharge, 0.20 ft³/s (0.006 m³/s) Jan. 24-27, 1967, gage height, 0.07 ft (0.021 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 39 ft 3 /s (1.10 m 3 /s) Aug. 10, gage height, 0.92 ft (0.280 m); maximum gage height, 2.57 ft (0.783 m) Aug. 9 (backwater from high tide); minimum discharge, 1.1 ft 3 /s (0.031 m 3 /s) Nov. 8-10, gage height, 0.16 ft (0.049 m) (result of regulation).

					ME	AN VALUES						
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.1	2.5	3.1	4.6	3.2	2.5	5.3	3.2	3.7	4.4	3.2	3.2
2	2.9	2.4	3.0	4.1	7.6	2.6	5.3	5.3	3.9	4.2	3.2	3.3
3	3.0	2.3	2.8	3.6	5.0	2.7	3.9	4.7	3.7	3.9	3.0	3.2
4	2.9	2.3	2.7	3.6	3.7	3.0	3.2	3.4	3.4	3.9	2.7	3.0
5	3.0	2.3	2.5	3.1	3,2	3.0	3.0	3.0	3.4	3.9	2.3	3.0
6	3.0	2.6	2.5	3.0	3.4	3.0	3.0	3.0	3.2	3.7	2.1	3.2
7	3.0	5.2	2.5	3.0	3.2	3.0	3.0	3.0	3.4	3.2	2.7	3.2
8	2.9	4.3	2.5	5.2	3.2	3.0	3.0	3.0	3.2	2.7	7.6	3.4
9	3.0	1.2	3.0	4.3	3.0	3.0	2.7	3.0	3.0	2.7	14	3.2
10	2.8	1.4	3.9	3.8	3.0	3.4	2.7	3.2	3.0	3.4	16	2.1
11	3.1	1.8	3.7	3.7	3.0	3.2	2.7	2.6	3.0	3.2	6.2	2.1
12	3.2	2.7	3.3	3.5	3.0	3.0	2.7	2.5	3.0	3.2	4.4	2.5
13	3.2	7.4	3.0	3.3	2.5	4.7	2.5	2.5	3.0	3.2	3.6	2.7
14	3.2	5.1	3.0	6.4	2.5	3.9	2.7	2.5	3.0	3.4	3.7	3.0
15	3.0	3.5	3.0	4.7	2.7	3.2	2.7	2.5	3.0	3.2	3.9	2.9
16	2.8	2.9	3.0	3.9	2.7	3.2	2.7	2.7	2.5	2.5	3.7	2.8
17	2.8	2.7	2.9	3.9	3.4	3.9	2.7	2.7	2.7	1.7	3.5	3.2
18	3.9	2.5	2.9	3.2	5.0	3.2	2.7	3.0	3.0	1.9	3.4	3.1
19	4.8	2.7	2.8	3.0	3.4	3.2	2.7	5.0	3.0	1.9	3.2	3.0
20	4.4	2.9	2.8	2.9	3.2	3.4	2.5	4.4	3.0	2.1	3.1	2.9
21	3.4	3.4	3.0	3.1	3.0	4.2	2.5	3.9	3.0	2.5	3.0	3.0
22	2.8	4.2	3.2	3.3	3.4	3.4	2.7	3.7	3.4	2.5	3.2	2.8
23	2.6	3.5	3.1	2.9	3.4	3.0	2.7	3.4	3.7	3.0	3.2	2.6
24	2.1	3.0	2.8	2.8	3.0	3.0	3.0	3.4	3.7	4.2	3.2	2.5
25	2.5	2.9	2.7	3.0	2.7	2.7	3.4	3.2	3.4	3.7	3.1	2.5
26	2.9	2.7	6.8	3.2	2.7	2.7	3.7	3.2	3.9	3.0	3.0	2.5
27	2.7	3.5	6.3	9.1	2.7	2.7	3.4	3.2	3.7	2.7	3.2	3.0
28	2.8	3.7	4.0	13	2.7	2.7	3.0	3.0	3.0	2.7	3.7	3.2
29	2.7	3.2	3.4	5.3	2.5	2.7	3.0	3.0	3.4	2.7	3.7	3.2
30	2.6	2.9	3.2	3.9		2.7	2.7	3.4	4.2	3.0	3.3	3.1
31	2.3		4.1	3.2		2.7		3.7		3.0	3.2	
TOTAL	93.4	93.7	101.5	129.6	96.0	96.6	91.8	102.3	98.5	95.3	131.3	87.4
MEAN	3.01	3.12	3.27	4.18	3.31	3.12	3.06	3.30	3.28	3.07	4.24	2.91
MAX	4.8	7.4	6.8	13	7.6	4.7	5.3	5.3	4.2	4.4	16	3.4
MĬN	2.1	1.2	2.5	2.8	2.5	2.5	2.5	2.5	2.5	1.7	2.1	2.1
1	1.69	2.59	1.83	2.26	1.78	1.44	1.61	1.74	1.45	2.57	2.16	1.43

CAL YR 1975 TOTAL 1223.9 MEAN 3.35 /1.70 MAX 10 MIN 1.2 WTR YR 1976 TOTAL 1217.4 MEAN 3.33 /1.88 MAX 16 MIN 1.2

[/] INDICATED ADJUSTMENT, IN CUBIC FEET PER SECOND, FOR DIVERSION THROUGH FISH HATCHERY.

01303500 COLD SPRING BROOK AT COLD SPRING HARBOR, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

			SPE-								DIS-
		INSTAN-	CIFIC CON-				PER-		NON- CAR-	DIS- SOLVED	SOLVED MAG-
		TANEOUS	DUCT-			DIS-	CENT	HARD-	BONATE	CAL-	NE-
	TIME	DIS- CHARGE	ANCE (MICRO-	РН	TEMPER-	SOLVED	SATUR- ATION	NESS (CA+MG)	HARD- NESS	CIUM (CA)	SIUM (MG)
DATE	.00	(CFS)	MHOS)	(UNITS)	(DEG C)	(MG/L)	41101	(MG/L)	(MG/L)	(MG/L)	(MG/L)
DEC											
23 MAR	1215	3.1	47	6.1	2.0	8.4	60	15	1	3.0	1.7
24 JUN	1200	3.0	98	6.7	9.0	12.0	103	18	5	4.7	1.6
24 SEP	0930	3.7	69	5.2	23.5	8.6		20	5	1.8	3.8
24	1345	2.5	82	7.1	17.0	8.4	-	16	0	3.7	1.6
		DIS-								DIS-	
		SOLVED					nIS-	DIS-		SOLVED	
	DIS-	P0-			ALKA-	DIS-	SOLVED	SOLVED	DIS-	SOLIDS	
	SOLVED	TAS-	BICAR-	CAR-	LINITY	SOLVED	CHLO-	FLU0-	SOLVED	(SUM OF	TOTAL
	SODIUM	SIUM	BONATE	BONATE	AS	SULFATE	RIDE	RIDE	SILICA	CONSTI-	NITRATE
DATE	(NA)	(K)	(HC03)	(CO3)	CAC03	(\$04)	(CL)	(F)	(\$102)	TUENTS)	(N)
DATE	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)
DEC											
23 MAR	5.9	.8	16	0	13	4.1	9.0	.1	6.5	43	.93
24 JUN	9.7	.8	16	0	13	5.6	14	.0	6.1	54	.87
24 SEP	6.8	.8	19	0	16	5.7	7.7	•1	5.3	44	.44
24	6.0	.8	19	0	16	3.3	9.0	.1	7.5	43	.38
					TOTAL					10.00	METHY-
				TOTAL	KJEL-			TOTAL			LENE
	DIS-		DIS-	AMMUNIA	DAHL	TOTAL	TOTAL	ORTHO		TOTAL	BLUE
	SOLVED	TOTAL	SOLVED	NITRO-	NITRO-	NITRO-	PHOS-	PH05-	TOTAL	MAN-	ACTIVE
	NITRATE	NITRITE	NITRITE	GEN	GEN	GEN	PHORUS	PHORUS	IRON	GANESE	SUB-
DATE	(N) (MG/L)	(N) (MG/L)	(N) (MG/L)	(N) (MG/L)	(N) (MG/L)	(N) (MG/L)	(P) (MG/L)	(P) (MG/L)	(FE) (UG/L)	(MN) (UG/L)	STANCE (MG/L)
07.1		1	(110) [(1107)	(1107)	(110) 2)	11107 67	(110) 27	1007 27	100, 2,	1
DEC	7.45	4.1	18 18 1	64 1 25	100	4 v Mala			al Prince Lake	The state of	
23	.91	.00	.01	.05	.21	1.1	.03	.00	1500	50	.0
MAR 24	.85	.01	.01	.02	.27	1.2	.03	.01	800	20	.0
JUN	•03	.01	•01	.02	•21		.03	•01	800	20	
24 SEP	.49	.01	.01	.05	•28	.73	.03	.01	530	20	•0
24											

01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY

LOCATION.--Lat 40°50'58", long 73°13'29", Suffolk County, Hydrologic Unit 02030201, on left bank 0.5 mi (0.8 km) downstream from Blydenburgh Pond, 1.0 mi (1.6 km) southwest of Smithtown, and 1.5 mi (2.4 km) southwest of village of Smithtown Branch. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 27 mi2 (70 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1943 to current year.

REVISED RECORDS. -- WSP 1141: Drainage area.

GAGE. -- Water-stage recorder and concrete control. Datum of gage is 9.59 ft (2.923 m) above mean sea level.

REMARKS.--Records good. Occasional regulation caused by cleaning of fish screens and trash racks at outlets of Blydenburgh Pond on main stream and ponds on tributaries above station.

AVERAGE DISCHARGE. -- 33 years, 40.9 ft 3/s (1.158 m3/s).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 324 ft³/s (9.18 m³/s) Oct. 15, 1955, gage height, 1.96 ft (0.597 m), from rating curve extended above 130 ft³/s (3.68 m³/s); minimum discharge, 16 ft³/s (0.45 m³/s) June 5, 6, 1967; minimum gage height, 0.46 ft (0.140 m) Feb. 9, 1951; minimum daily, 19 ft³/s (0.54 m³/s) June 6, 1967.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 130 ft 3 /s (3.68 m 3 /s) Aug. 10, gage height, 1.25 ft (0.381 m); minimum, 37 ft 3 /s (1.05 m 3 /s) many days; minimum gage height, 0.63 ft (0.192 m) Aug 2-7.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1975	TO	SEPTEMBER	1976
					MEAN	VALUES						

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	42	40	48	65	58	51	65	52	51	47	39	39
2	41	40	48	58	82	51	65	63	63	45	38	40
3	40	40	47	57	75	51	58	57	55	44	38	41
4	39	40	45	55	71	52	55	51	49	43	38	41
5	39	39	45	52	60	52	52	51	48	43	38	40
6	39	39	45	51	58	51	51	48	47	41	38	39
7	39	40	45	52	57	51	49	49	47	43	39	39
8	38	44	45	66	55	51	49	49	47	41	70	39
9	38	44	47	60	55	51	49	48	45	41	76	38
10	38	43	54	54	54	52	49	47	44	40	113	39
11	39	41	51	54	54	54	49	47	44	40	75	40
12	40	45	48	52	55	55	48	51	43	40	58	39
13	39	80	48	51	55	66	48	49	41	39	51	39
14	40	70	48	66	54	65	48	48	43	40	47	38
15	39	58	47	61	54	60	48	48	44	40	54	39
16	38	52	47	58	55	57	48	47	44	43	49	40
17	. 38	48	47	57	57	61	48	49	45	44	45	45
18	49	47	45	52	55	58	48	57	44	41	44	44
19	58	45	45	51	55	57	48	63	43	40	41	43
50	57	45	45	51	54	55	47	55	43	39	41	41
21	49	54	45	51	55	55	47	52	44	39	40	41
22	47	63	48	51	58	52	48	51	44	40	40	39
23	44	57	47	51	60	51	47	47	43	40	39	39
24	43	51	45	51	58	-51	47	48	43	47	39	38
25	43	49	45	51	55	51	49	46	41	43	38	38
26	44	48	70	52	52	51	55	45	41	41	38	39
27	44	51	77	65	52	51	52	45	40	40	45	40
28	43	52	61	82	52	51	49	45	40	39	48	41
29	41	49	54	73	52	49	48	45	45	39	44	40
30	41	48	52	58		49	48	45	47	40	41	39
31	40		60	57		49		47		39	40	
TOTAL	1309	1462	1544	1765	1667	1661	1512	1545	1358	1281	1484	1197
MEAN	42.2	48.7	49.8	56.9	57.5	53.6	50.4	49.8	45.3	41.3	47.9	39.9
MAX	58	80	77	82	82	66	65	63	63	47	113	45
MIN	38	39	45	51	52	49	47	45	40	39	38	38

CAL YR 1975 TOTAL 16976 MEAN 46.5 MAX 81 MIN 34 WTR YR 1976 TOTAL 17785 MEAN 48.6 MAX 113 MIN 38

01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- February 1967 to current year.

DATE	TIME	INSTAN- TANEOUS DIS- CHARGE (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION	HARD- NESS (CA,MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVEI MAG- NE- SIUM (MG) (MG/L)
ост							La Filipi				
01 JAN	0900	42	100	6.8	16.0	4.8	10 900	25	10	6.5	2.1
06	1430	51	120	5.3	3.0	8.5	63	23	10	5.3	2.3
24 JUN	1400	51	98	6.8	11.0	12.2	110	19	5	5.0	1.7
24 SEP	1130	43	94	5.8	21.0	8.8		26	10	2.0	5.0
24	1145	48	100	6.8	15.0	9.3	(6	21	5	5.0	2.0
DATE	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K)	BICAR- BONATE (HCU3) (MG/L)	CAR- BONATE (CU3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F)	DIS- SOLVED SILICA (SIO2)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
01 JAN	8.4	1.2	18	0	15	7.9	13	.1	6.8	59	.81
06 MAR	12	1.2	16	0	13	7.4	19	.0	8.1	70	1.6
24 JUN	8.7	.9	18	0	15	6.5	13	.0	6.9	57	1.3
24 SEP	8.5	1.0	19	0	16	6.5	10	.1	7.1	55	1.2
24	8.2	1.0	19	0	16	6.2	12	•1	6.8	55	.99
DATE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
ост											
01 JAN	.90	.01	.01	.01	•55	1.0	.03	.01	200	90	• 0
06 MAR	1.5	.01	.02	.11	•24	1.8	•02	.00	250	90	•0
24 JUN	1.2	.01	.03	.03	•19	1.5	.02	.01	240	60	• 0
SEP 24	1.2	.02	.03	.05	•40	1.6	.03	.01	440	90	.0
24	.99	.01	.01	.03	.13	1.1	.03	.01	160	50	•0

01304500 PECONIC RIVER AT RIVERHEAD, NY

LOCATION.--Lat 40°54'49", long 72°41'14", Suffolk County, Hydrologic Unit 02030202, on right bank 200 ft (61 m) downstream from Long Island Lighting Co. dam, 0.4 mi (0.6 km) west of Riverhead, and 1.2 mi (1.9 km) upstream from outlet of Sweezy Pond. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 75 mi2 (194 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1942 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 6.54 ft (1.993 m) above mean sea level.

REMARKS. -- Records good. Flow regulated by ponds above station.

AVERAGE DISCHARGE.--34 years, 35.2 ft^3/s (0.997 m^3/s).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 140 ft 3 /s (3.96 m 3 /s) Apr. 14, 1953, gage height, 0.97 ft (0.296 m); minimum, 1.4 ft 3 /s (0.040 m 3 /s) Jan. 9, 1966, Jan. 31, 1967, Dec. 6, 1969, Jan. 27, 1972; minimum gage height, 0.10 ft (0.030 m) Jan. 31, 1967 (result of freezeup), Dec. 6, 1969, Jan. 27, 1972 (result of freezeup); minimum daily, 3.7 ft 3 /s (0.10 m 3 /s) Aug. 2, 1944.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 83 ft 3 /s (2.35 m 3 /s) Feb. 2, gage height, 0.76 ft (0.232 m); minimum, 2.1 ft 3 /s (0.059 m 3 /s) Jan. 5, gage height, 0.13 ft (0.040 m) (result of regulation); minimum daily, 27 ft 3 /s (0.76 m 3 /s) July 21-23, 29.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

		5100······			MEA	N VALUES						
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	45	31	47	59	68	59	65	48	42	37	40	40
2	43	30	48	60	81	58	70	57	47	37	44	41
2 3	39	31	52	60	73	58	68	60	45	35	44	42
4	38	31	52	61	75	58	65	57	41	34	41	43
5	37	29	52	49	79	58	64	53	38	32	39	43
6	36	29	51	62	79	57	64	50	37	32	37	40
7	35	28	49	57	77	55	62	49	38	31	36	38
8	34	30	47	63	75	54	62	49	38	30	38	37
9	33	33	47	62	72	53	60	50	38	30	48	35
10	32	35	51	61	70	54	57	49	39	30	53	36
11	32	35	51	59	70	55	51	48	40	30	56	37
12	33	35	48	60	69	55	46	47	38	31	54	37
13	32	53	47	59	68	60	45	45	36	30	52	40
14	32	57	47	63	67	60	45	43	36	28	52	43
15	32	55	47	62	66	58	45	43	36	28	56	48
16	31	53	45	62	68	58	45	42	36	28	56	51
17	29	56	45	62	67	63	47	43	35	29	63	50
18	32	53	45	60	66	60	47	47	30	28	66	46
19	37	51	45	60	66	58	47	50	28	28	54	42
20	41	50	43	59	63	59	46	49	32	28	39	39
21	39	51	43	58	61	62	46	47	34	27	37	37
22	36	57	43	59	63	61	47	47	35	27	38	35
23	35	54	43	56	66	59	47	47	33	27	42	34
24	33	52	43	56	65	57	49	46	32	32	45	32
25	34	52	42	56	64	56	51	45	32	31	48	31
26	34	51	48	54	62	55	54	44	32	29	47	31
27	34	52	56	59	62	54	51	.43	32	28	50	32
28	36	53	54	67	60	56	47	42	31	28	50	34
29	37	51	52	68	60	55	44	42	33	27	46	32
30	36	48	51	67		58	44	42	35	32	40	32
31	33		56	66		60		42		32	38	
TOTAL	1090	1326	1490	1866	1982	1783	1581	1466	1079	936	1449	1158
MEAN	35.2	44.2	48.1	60.2	68.3	57.5	52.7	47.3	36.0	30.2	46.7	38.6
MAX	45	57	56	68	81	63	70	60	47	37	66	51
MIN	29	28	42	49	60	53	44	42	28	27	36	31

CAL YR 1975 TOTAL 16598 MEAN 45.5 MAX 70 MIN 21 WTR YR 1976 TOTAL 17206 MEAN 47.0 MAX 81 MIN 27

01304500 PECONIC RIVER AT RIVERHEAD, NY -- Continued

(National Stream-Quality Accounting Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1966 to current year.

PERIOD OF DAILY RECORD. --SPECIFIC CONDUCTANCE: June 1975 to current year. WATER TEMPERATURES: June 1975 to current year.

INSTRUMENTATION .- - Water-quality monitor and temperature recorder since June 1975.

REMARKS.--In addition to the water-quality monitor record, samples were collected approximately once a month.

Specific conductance records unreliable or no record, due to malfunctions of the instrument, July 1 to Sept. 30, 1976. No water temperature record Jan. 19 to Feb. 26, Sept. 22-30. Unpublished records of daily specific conductance and water temperatures are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum recorded, 176 micromhos June 27, 1976; minimum recorded, 63 micromhos July 2, 1975.
WATER TEMPERATURES: Maximum, 29.0°C Aug. 2, 1975; minimum recorded, 0°C Dec. 20, 24, 1975, Jan. 5, 6, 1976.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum recorded, 176 micromhos June 27; minimum recorded, 68 micromhos June 29.
WATER TEMPERATURES: Maximum, 27.0°C June 24, July 9, Aug. 22, 23; minimum recorded, 0°C Dec. 20, 24, Jan. 5, 6.

			SPE- CIFIC					FECAL	STREP-		NON-	DIS-
		INSTAN- TANEOUS	CON-			TUR-	DIS-	COLI-	TOCOCCI	HARD-	CAR- BONATE	SOLVED CAL-
		DIS-	ANCE	PH	TEMPER-	BID-	SOLVED	(COL.	ONIES	NESS	HARD-	CIUM
	TIME	CHARGE	(MICRO-		ATURE	ITY	OXYGEN	PER	PER	(CA,MG)	NESS	(CA)
DATE	1	(CFS)	MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	100 ML)	100 ML)	(MG/L)	(MG/L)	(4G/L)
NOV												
04 DEC	1100	31	108	7.0	14.0	5	8.7	64	29	33	19	10
02	1030	48	65	6.9	7.0	2	8.0	230	1100	26	9	7.0
30	1045	51	120	5.2	3.0		8.1			55	10	5.2
06 FEB	1030	62	75	6.5	1.0	1	9.0	810	386	25	13	6.2
10	1130	70	90	5.9	2.5	1	12.6	<1	86	20	8	5.5
02	1115	58	92	6.3	8.0	2	11.4	25	B4	26	13	7.0
25 APR	1100	56	93	6.9	10.0		12.5	••	•	21	9	5.6
14	1030	45	108	6.6	10.0	1	12.1	25	85	24	12	6.2
11	1000	48	100	6.5	17.0	2	9.6	40	816	26	11	6.8
25 JUN	0915	45	90	6.2	17.5	S	9.4	95	35	28	13	7.3
29	1045	33	96	5.6	24.0	2	8.0	54	28	26	10	6.5
29 JUL	1200	33	96	5.6	24.2	••	8.0		1 to 1	24	8	5.8
27	1100	28	102	6.3	23.0	1	8.0	100	370	25	9	6.7
31 SEP	1200	38	98	6.9	20.0	2	8.4	400	87	55	6	5.3
16	1000	51	96	5.8	20.0		8.2			25	10	6.3
21	1130	37	100	5.2	21.0	. 1	8.8	150	28	27	9	7.0

01304500 PECONIC RIVER AT RIVERHEAD, NY--Continued

DATE	SUS- PENDED ARSENIC (AS) (UG/L)	TOTAL CAD- MIUM (CD) (UG/L)	DIS- SOLVED CAD- MIUM (CD) (UG/L)	TOTAL CHRO- MIUM (CR) (UG/L)	DIS- SOLVED CHRO- MIUM (CR) (UG/L)	TOTAL COBALT (CO) (UG/L)	DIS- SOLVED COBALT (CO) (UG/L)	TOTAL COPPER (CU) (UG/L)	DIS- SOLVED COPPER (CU) (UG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)
NOV	u u	1	1	0	0	1	1	0	0	640	350
04 DEC	U	1	1	U	. 0	1		·	·		
02											
30										370	
JAN											
06											
FEB										224	100
10	0	0	0	<10	<10	0	0	0	0	550	190
MAR											
02										3500	
25										3500	
APR											
14 MAY											
11	0	0	0	10	10	1	0	0	0	900	520
25											
JUN											
29	0	0	0	10	10	0	0	0	0	1000	560
29										980	
JUL											
27											
AUG											
31											
SEP										520	
16											
21											

				DIS-,				DIS-			
		DIS-	TOTAL	SOLVED		DIS-	TOTAL	SOLVED		DIS-	TOTAL
	TOTAL	SOLVED	MAN-	MAN-	TOTAL	SOLVED	SELE-	SELE-	TOTAL	SOLVED	ORGANIC
	LEAD	LEAD	GANESE	GANESE	MERCURY	MERCURY	NIUM	NIUM	ZINC	ZINC	CARBON
	(PH)	(PB)	(MN)	(MN)	(HG)	(HG)	(SE)	(SE)	(ZN)	(ZN)	(C)
DATE	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(MG/L)
DATE	(00/L/	(00/2/	100/1/	(00/L/	(00/1/	(00/L/	100727	100/2/	100/2/	100, 2,	11107 67
NOV											
04	4	4	70	50	<.5	<.5	0	0	0	0	4.8
DEC											
02											
30			60								
JAN											
06											
FER											
10	3		80	80	<.5	<.5	0		10	10	3.5
MAR								4 .			
02											
25			80								
APR											
14											
MAY											
11	6	3	90	80	<.5	<.5	0	0	10	0	4.0
25											
JUN											
29	7	2	100	60	<.5	<.5	0	0	4	1	5.5
29			80								
JUL											
27											
AUG											
31											
SEP											
16			30								
21											
AND EVEN E											

STREAMS ON LONG ISLAND 01304500 PECONIC RIVER AT RIVERHEAD, NY--Continued

	DIS-		DIS-							- W. S. T. S.	DIS-	DIS-
	SOLVED		SOLVED					DIS-	DIS-		SOLVED	SOLVED
	MAG-	DIS-	P0-			ALKA-	DIS-	SOLVED	SOLVED	DIS-	SOLIDS	SOLIDS
	NE-	SOLVED	TAS-	BICAR-	CAR-	LINITY	SOLVED	CHLO-	FLUO-	SOLVED	(RESI-	(SUM OF
	SIUM	SODIUM	SIUM	BONATE	BONATE	AS	SULFATE	RIDE	RIDE	SILICA	DUE AT	CONSTI-
	(MG)	(NA)	(K)	(HC03)	(CO3)	CACO3	(504)	(CL)	(F)	(5102)	180 C)	TUENTS)
DATE	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)						
NOV												
04	2.0	6.2	1.8	17	0	14	12	11	•1	7.8	73	59
DEC												
02	5.0	5.8	1.4	20	0	16	14	11	.0	7.5	67	59
30	2.3	7.0	1.7	15	0	12	11	12	.0	7.5	1,00	57
JAN	0.00			4.5				14				
06	2.4	6.2	1.4	15	0	12	12	11	.1	6.5	59	53
FEB			100					A 124 1				
10 MAR	1.5	6.4	1.2	14	0	11	12	12	•1	5.7	44	51
02	2.0	6.4	1.3	16	0	13	12	11	.2	3.2	53	51
25	1.8	6.2	1.3	15	0	12	13	9.9	.0	4.0		50
APR												
14	2.1	6.5	2.1	15	0	12	11	11	•1	4.9	68	51
MAY												1000
11	2.1	6.4	1.3	18	0	15	11	9.9	.1	4.4	51	51
25 JUN	2.3	6.2	1.3	18	0	15	13	11	• 0	5.2	63	55
29	2.4	6.6	1.0	20	0	16	11	11	.1	5.2	62	54
29	2.2	7.3	1.2	19	0	16	11	ii	.1	5.2		54
JUL	76.			•	14.54							
27	2.1	6.9	1.1	20	0	16	12	11	•1	2.3	61	52
AUG												
31	2.1	7.0	1.7	19	0	16	7.3	8.9	•1	6.8	78	49
SEP												
16	2.3	7.0	1.4	19	0	16	10	13	.1	2.4		52
21	2.2	7.3	1.7	21	0	17	10	11	•1	3.0	61	53

	TOTAL NITRATE	DIS- SOLVED NITRATE	TOTAL NITRITE	DIS- SOLVED NITRITE	TOTAL NITRITE PLUS NITRATE	TOTAL AMMONIA NITRO- GEN	TOTAL ORGANIC NITRO- GEN	TOTAL KJEL- DAHL NITRO- GEN	TOTAL NITRO- GEN	TOTAL PHOS- PHORUS	TOTAL ORTHO PHOS- PHORUS	TOTAL ARSENIC
DATE	(N) (MG/L)	(N) (MG/L)	(N) (MG/L)	(N) (MG/L)	(N) (MG/L)	(N) (MG/L)	(N) (MG/L)	(N) (MG/L)	(N) (MG/L)	(P) (MG/L)	(P) (MG/L)	(AS) (UG/L)
OAIL	1.0767	(MG/L)	(MO/L/	(MO/L)	(MO/L)	(MG/L/	(MG/L)	(MO/L)	(MG/L)	(MG/L)	(MO/L)	(OG/L)
NOV												
04					.33			.36	.69	.12	****	0
DEC												
02					.42			•50	.92	.12		The
30	.57	•55	.01	.01	•58	.55	.19	.41	.99	.09	.05	
06					.47			.37	.84	.08		
FEB												
10					.44			.41	.85	.08		0
MAR												
02					.24			•59	.83	.09		
25 APR	•50		.01	.01	•21	.02	.44	.46	.67	.09	.02	
14					.21			•50	.71	.09		**************************************
MAY								1				
11					.20			.53	.73	.13		0
25 JUN		-		-	.19		••	.68	.87	.15	-	N. N.
29					.13			.75	.88	.15		0
29	.12	2 K + 1	.01	.01	.13	.07	.58	.65	.78	.15	.04	
JUL												
27 AUG					.04	·	141 -	.45	.49	.10		
31 SEP					•55			.50	.72	.19		
16	.10	.10	.01	.01	.11	.07	.28	.35	.46	.08	.04	0.0144
21					.20			.43	.63	.11		

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

		остове	R		NOVEMBE	R		DECEMBE	R		JANUAR	Y
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
1	106	98	101	98	90	94	96	80	84	94	84	87
2	102	96	100	94	88	90	92	84	88	92	86	90
3	100	96 96	98 100	98 96	84	90 89	102	90	93 98	88 84	84	87 82
5	104	96	99	92	84 84	87	104 98	82	90	88	84	87
6	110	98	105	94	86	90	88	78	83	88	84	87
7 8	116 114	106	111 110	94 118	84 90	89 101	88 88	78 82	85 85	90 84	80 74	86 78
9	110	106	108	128	90	105	84	82	83	88	84	85
10	106	100	104	96	88	92	84	76	80	86	84	85
11 12	103 101	95 93	100 96	100	88 86	93	86 88	82 84	85 85	86 86	80	84 82
13	98	92	96	104	74	82	92	82	85	90	82	87
14 15	102	92 91	97 97	102 88	86 84	93 86	86 90	82 84	84 86	128 92	76 82	89 86
16	109	95	100	86	78	82	92	84	88	118	86	93
17	104	94	99	84	80	82	94	88	91	90	84	87
18 19	102 91	84 85	92 88	82 82	74 78	78 79	94 96	84 92	87 93	96 96	90	94 95
20	99	85	89	82	74	78	94	88	92	96	86	91
21	102 108	94 96	98 100	80 78	70 72	75 75	90 92	88 88	89 90	92 98	88 88	90 90
23	106	98	102	80	76	79	90	86	88	102	98	101
24 25	104	98 96	101	80	76	78 79	98	88	95	102	100	101
	107	97		82	78		106	98	102	102	96	95
26 27	107	99	102 101	82 86	80 72	81 80	106 108	88 90	96 99	102 128	88 88	103
28	104	100	102	84	78	80	102	96	99	98	86	91
29 30	104 100	96 96	102 98	84 92	80 88	83 86	102	98 90	99 95	104	96 92	100 94
31	102	94	98				90	84	86	94	90	92
MONTH	116	84	100	128	70	86	108	76	90	128	74	90
		FEBRUAR	Y		MARCH			APRIL			MAY	
DAY	MAX	FEBRUAR MIN	Y MEAN	MAX	MARCH MIN	MEAN	MAX	APRIL MIN	MEAN	MAX	MAY	MEAN
1	90	MIN 80	MEAN 85	90	MIN 86.	89	98	MIN 92	MEAN 95	100	MIN 90	94
1	90 98	MIN 80 76	MEAN 85 82	90 98	MIN 86. 90	89 93	98 98	MIN 92 90	MEAN 95 94	100 96	MIN 90 82	94 89
1 2 3	90	MIN 80	MEAN 85	90	MIN 86.	89	98 98 100	MIN 92 90 90	MEAN 95	100	MIN 90	94
1	90 98 88	MIN 80 76 86	MEAN 85 82 87	90 98 98	MIN 86. 90 94	89 93 95	98 98	MIN 92 90	MEAN 95 94 93	100 96 102	MIN 90 82 86	94 89 92
1 2 3 4 5	90 98 88 86 86	MIN 80 76 86 82 78	MEAN 85 82 87 84 82	90 98 98 100 98	MIN 86. 90 94 94 76	89 93 95 95 93	98 98 100 96 98	MIN 92 90 90 92 92	MEAN 95 94 93 93 95	100 96 102 98 104	MIN 90 82 86 90 86	94 89 92 93 93
1 · 2 · 3 · 4 · 5 · · ·	90 98 88 86 86	MIN 80 76 86 82 78 76 74	MEAN 85 82 87 84 82 76	90 98 98 100 98	MIN 86. 90 94 76 90	89 93 95 95 93 93	98 98 100 96 98	MIN 92 90 90 92 92 86 88	MEAN 95 94 93 93 95 92	100 96 102 98 104	90 82 86 90 86	94 89 92 93 93
1 2 3 4 5 6 7 8 9	90 98 88 86 86 78 78 76 78	MIN 80 76 86 82 78 76 74 72 72	MEAN 85 82 87 84 82 76 76 75	90 98 98 100 98 100 100 104 110	MIN 86. 90 94 76 90 92 94 100	89 93 95 95 93 93 96 98 103	98 98 100 96 98 96 96 100 102	MIN 92 90 90 92 92 86 88 92 92	MEAN 95 94 93 93 95 92 92 92 96	100 96 102 98 104 90 94 98 108	MIN 90 82 86 90 86 76 82 86 84	94 89 92 93 93 85 89 92
1 2 3 4 5 6 7 8 9	90 98 88 86 86 78 76 78	MIN 80 76 86 82 78 76 74 72 72	MEAN 85 82 87 84 82 76 75 76 90	90 98 98 100 98 100 100 104 110	MIN 86. 90 94 76 92 94 100 98	89 93 95 95 93 93 96 98 103	98 98 100 96 98 96 100 102 106	MIN 92 90 90 92 92 86 88 92 92	95 94 93 93 95 92 92 95 96	100 96 102 98 104 90 94 98 108	MIN 90 82 86 90 86 76 82 86 84	94 89 92 93 93 85 89 92
1 2 3 4 5 5 6 7 8 9 10 11	90 98 88 86 86 78 76 78 104	MIN 80 76 86 82 78 76 74 72 72 76	MEAN 85 82 87 84 82 76 76 75 76 90	90 98 98 100 98 100 100 104 110 112	MIN 86. 90 94 76 90 92 94 100 98	89 93 95 95 93 96 98 103 103	98 98 100 96 98 96 100 102 106	MIN 92 90 90 92 92 86 88 92 92 92	95 94 93 93 95 92 95 96 99	100 96 102 98 104 90 94 98 108 104	MIN 90 82 86 90 86 76 82 86 84 80	94 89 92 93 93 85 89 92 94 90
1 2 3 4 5 6 7 8 9 10	90 98 88 86 86 78 76 78 104 98 100	MIN 80 76 86 82 78 76 74 72 72 76	MEAN 85 82 87 84 82 76 76 76 90 96 98	90 98 98 98 100 98 100 104 110 112 110 112	MIN 86. 90 94 76 90 92 94 100 98 96 100	89 93 95 95 93 96 98 103 103	98 98 100 96 98 96 96 100 102 106	92 90 90 92 92 92 86 88 92 92 92 110	95 94 93 93 95 92 92 95 96 99	100 96 102 98 104 90 94 98 108 104	90 82 86 90 86 76 82 86 84 80 78	94 89 92 93 93 85 89 92 94 90 91 88
1 2 3 3 4 4 5 5 6 7 8 9 10 11 12	90 98 88 86 86 78 76 76 78 104	MIN 80 76 86 82 78 76 74 72 76	MEAN 85 82 87 84 82 76 75 76 90	90 98 98 100 98 100 100 104 110 112	MIN 86. 90 94 76 90 92 94 100 98	89 93 95 93 93 96 98 103 103	98 98 100 96 98 96 100 102 106	MIN 92 90 90 92 92 92 86 88 92 92 92	95 94 93 93 95 92 92 95 96 99	96 102 98 104 90 94 98 108 104	MIN 90 82 86 90 86 76 82 86 84 80	94 89 92 93 93 85 89 92 94 90
1 2 3 3 4 4 5 5 6 7 8 9 10 11 12 13 14	90 98 88 86 86 78 76 78 104 98 100 104 102	MIN 80 76 86 82 78 76 74 72 72 76 92 96 96	MEAN 85 82 87 84 82 76 75 75 76 90 96 98 99	90 98 98 98 100 100 104 110 112 110 112 108 106	86. 90 94 94 76 90 92 94 100 98 96 100 94 96 92	89 93 95 95 93 96 98 103 103 107 107 100 99	98 98 100 96 98 96 96 100 102 106 110 120 112 108	MIN 92 90 92 92 92 86 88 92 92 110 104 100 96	95 94 93 95 95 92 95 96 99 98 114 109	100 96 102 98 104 90 94 98 108 104 116 100 96 96 84	MIN 90 82 86 90 86 76 82 86 84 80 78 80 78	94 89 92 93 93 85 92 94 90 91 88 87 83
1 2 3 4 5 7 8 9 10 11 12 13 14 15	90 98 88 86 86 78 78 104 104 102 106	MIN 80 76 86 82 78 76 74 72 72 76 96 96 96 96 90 88 92	MEAN 85 82 87 84 82 76 76 76 90 96 98 99 104	90 98 98 98 100 100 104 110 112 110 112 108 106 102	MIN 86. 90 94 94 76 90 92 94 100 98 96 100 94 96 92	89 93 95 95 93 96 98 103 103 107 100 99 96	98 98 100 96 98 96 96 96 100 102 106 112 108 106	92 90 92 92 92 92 92 92 92 92 92 92 92 92 92	95 94 93 93 95 92 95 96 99 98 114 109 104 102	100 96 102 98 104 90 94 98 108 104 116 100 96 96 84	90 82 86 90 86 86 82 86 84 80 78 78 78	94 89 92 93 93 85 89 92 94 90 91 88 87 83 88 84 86
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	90 98 88 86 86 78 76 78 104 98 100 104 102 106	80 76 86 82 78 76 74 72 76 92 96 96 102 88 92 98	MEAN 85 82 87 84 82 76 76 76 90 96 98 99 104 98 98 103	90 98 98 100 98 100 104 110 112 110 112 108 106 102	86. 90 94 94 76 90 92 94 100 98 96 100 94 96 92	89 93 95 95 93 96 98 103 103 107 107 100 99 96	98 98 100 96 98 96 96 100 102 106 110 120 112 108 106	92 90 92 86 88 92 92 92 110 96 96 88	95 94 93 93 95 92 95 96 99 98 114 109 104 102	100 96 102 98 104 90 94 98 108 104 116 100 96 84 92 94	90 82 86 90 86 76 82 86 84 80 78 78 76 74	94 89 92 93 93 85 89 92 90 91 88 83 80 84 88
1 2 3 4 5 7 8 9 10 11 12 13 14 15	90 98 88 86 86 78 78 104 104 102 106	MIN 80 76 86 82 78 76 74 72 72 76 96 96 96 96 90 88 92	MEAN 85 82 87 84 82 76 76 76 90 96 98 99 104	90 98 98 98 100 100 104 110 112 110 112 108 106 102	MIN 86. 90 94 94 76 90 92 94 100 98 96 100 94 96 92	89 93 95 95 93 96 98 103 103 107 100 99 96	98 98 100 96 98 96 96 96 100 102 106 112 108 106	92 90 92 92 92 92 92 92 92 92 92 92 92 92 92	95 94 93 93 95 92 95 96 99 98 114 109 104 102	100 96 102 98 104 90 94 98 108 104 116 100 96 96 84	90 82 86 90 86 86 82 86 84 80 78 78 78	94 89 92 93 93 85 89 92 94 90 91 88 87 83 88 84 86
1 2 3 3 4 4 5 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	90 98 88 86 86 78 76 78 104 102 106 104 106 108	MIN 80 76 86 82 78 76 74 72 77 76 96 96 96 102 88 92 98 98 98	MEAN 85 82 87 84 82 76 76 75 76 90 96 98 99 104 98 103 102	90 98 98 100 98 100 104 110 112 110 112 108 106 102 110 102 102 96 98	MIN 86. 90 94 94 76 90 92 94 1000 98 96 1000 94 96 92 94 98 96 90	89 93 95 95 93 96 98 103 103 107 100 99 96	98 98 100 96 98 96 100 102 106 110 110 110 110 110 110 110 110 110	MIN 92 90 90 92 92 92 110 104 100 96 92 90 884 86	95 94 93 93 95 92 95 96 99 98 114 109 104 102	100 96 102 98 104 90 94 98 108 104 116 100 96 96 96 94 104 112 104	MIN 90 82 86 90 86 86 86 87 88 80 78 80 78 80 78 90 80 80 80 80 80 80 80 80 80 80 80 80 80	94 89 92 93 93 85 89 92 94 90 91 88 87 83 86 88 86 88 98
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	90 98 88 86 86 78 78 70 104 104 102 106 104 108 110	MIN 80 76 86 82 78 74 72 72 72 76 96 96 96 102 88 92 98	MEAN 85 82 87 84 82 76 76 75 76 90 96 98 99 104 98 103 102	90 98 98 100 98 100 104 110 112 110 112 108 106 102 102 102 102 96	86. 90 94 94 96 100 98 96 100 94 96 92 94 94 98 92 86	89 93 95 93 96 98 103 103 107 100 99 101 99 100 96	98 98 100 96 98 96 96 100 102 106 110 120 112 108 106	92 90 92 92 86 88 92 92 92 110 104 100 96 92 98 88 88	95 94 93 93 95 92 95 96 99 98 114 109 104 102	100 96 102 98 104 90 94 98 108 104 116 100 96 84 92 94 104 112	90 82 86 90 86 82 86 84 80 78 80 74 76 74 78 80 96 92	94 89 92 93 93 85 89 92 90 91 88 87 83 80 84 86 88 103 98
1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	90 98 88 86 86 78 78 104 104 102 106 104 108 110 108	MIN 80 76 86 82 78 76 74 72 72 76 96 96 102 88 92 98 98 98 100 96 98	MEAN 85 82 87 84 82 76 76 75 76 90 96 98 99 104 98 103 102 104 100 104 103	90 98 98 98 100 100 104 110 112 110 112 108 106 102 102 102 102 102 102 102 103 104 110 111	MIN 86. 90 94 94 76 90 92 94 1000 98 96 100 94 96 92 94 98 90 90 90 90 90	89 93 95 95 93 96 98 103 103 107 100 99 100 96 101 99 100 91	98 98 100 96 98 96 96 96 100 102 106 112 108 106 110 110 106 96 106	92 90 92 92 92 92 92 92 92 92 92 92 92 92 92	95 94 93 93 95 92 95 96 99 98 114 109 104 102 101 96 89 95	100 96 102 98 104 90 94 98 108 104 116 100 96 96 84 104 112 104 100 96 96	MIN 90 82 86 90 86 86 86 87 88 80 78 80 78 80 90 80 80 90 80 80 80 80 80 80 80 80 80 80 80 80 80	94 89 92 93 93 85 89 92 94 90 91 887 83 80 88 86 88 89 98 99 99 99 99 99 99 90 90 90 90 90 90 90
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	90 98 88 86 86 78 76 104 104 102 106 104 108 110 108 110 108 110 108	MIN 80 76 86 82 78 76 72 72 76 96 96 102 88 92 98 98 98 98	MEAN 85 82 87 84 82 76 75 76 90 96 98 99 104 98 103 102 104 100 104 103 98	90 98 98 100 98 100 104 110 112 110 112 108 106 102 102 102 96 98 100 112 110 112	MIN 86. 90 94 94 94 100 98 96 100 94 94 96 92 94 98 92 86 90 98 94 90	89 93 95 93 96 98 103 107 107 100 99 101 99 100 96 91	98 98 100 96 98 96 100 102 106 110 120 108 106 110 110 106 96 106	92 90 90 92 92 92 92 92 110 104 104 96 90 88 84 86 90 98	95 94 93 93 95 92 95 96 99 98 114 109 104 102 101 96 89 95 94 96 93 97	100 96 102 98 104 90 94 98 108 104 116 100 96 84 104 112 104 100 96 100 100	MIN 90 82 86 90 86 86 86 87 88 80 78 80 78 80 96 92 92 86 88 88 88	94 89 92 93 93 85 92 94 90 91 88 87 80 84 86 88 103 98 99 92 93
1 2 3 3 4 5 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 22 23 22 24 25 26	90 98 88 86 86 78 76 78 104 102 104 108 110 108 108 110 108 110 108 110 108 110 108 110 108 110 108 110 108 108	MIN 80 76 86 87 87 76 77 77 76 92 96 96 102 88 98 98 98 98 98 98 98 98 9	MEAN 85 82 87 842 87 76 76 76 90 96 98 99 104 98 103 102 104 100 104 103 98	90 98 98 98 100 100 104 110 112 110 112 108 106 102 102 102 102 102 102 102 103 104 106 107 107 108 109 109 109 109 109 109 109 109	MIN 86. 90 94 94 94 100 98 96 100 94 94 96 92 94 94 98 92 86 90 90 98 88	89 93 95 93 96 98 103 103 107 107 100 99 101 99 100 96 91 95 105 105	98 98 100 96 98 96 96 100 102 106 110 110 110 106 96 100 100 104 110 104 122	92 90 92 92 92 92 92 92 92 110 96 92 92 90 88 84 86 90 90 88 88 90 90 90 90 90 90 90 90 90 90 90 90 90	95 94 93 95 95 92 92 95 96 99 98 114 109 104 102 102 101 96 89 95 94 96 93 97 116	100 96 102 98 104 90 94 98 108 104 116 100 96 96 84 104 112 104 110 96 96 96 94	90 82 86 90 86 84 80 78 80 96 96 96 88 88 88 88 88 89 90	94 89 92 93 93 85 89 90 91 887 83 80 84 88 103 98 94 92 93 93 93 93 93 94 90 90 90 90 90 90 90 90 90 90
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	90 98 88 86 86 78 78 104 104 102 106 104 108 110 108 110 95 95 94	MIN 80 76 86 82 78 76 72 72 76 96 96 102 88 98 98 98 98 98 98 98 98 98	MEAN 85 82 87 84 82 76 76 75 76 90 96 98 99 104 98 103 102 104 100 104 103 98	90 98 98 98 100 100 104 110 112 110 108 106 102 102 102 102 102 102 103 104 110 108 108 108 108 109 109 109 109 109 109 109 109	MIN 86. 90 94 94 76 90 98 96 100 94 94 96 99 96 90 98 99 88 88 88	89 93 95 95 93 96 98 103 103 107 100 99 100 96 101 99 100 96 91	98 98 100 96 98 96 96 96 100 102 106 110 110 106 106 100 102 104 122 104 122 104 122 104 122	92 90 90 92 92 92 92 92 92 110 104 96 96 98 88 98 99 90 90 90 90 90 90 90 90 90 90 90 90	95 94 93 93 95 92 95 96 99 98 114 109 104 102 101 96 93 97 116	100 96 102 98 104 90 94 98 108 104 116 100 96 96 84 104 112 104 100 96 100 100	MIN 90 82 86 90 86 76 82 86 84 80 78 80 78 80 96 92 92 86 88 84 88 90 82 78	94 89 92 93 85 89 94 90 91 88 87 83 80 84 86 88 89 92 93 93 93 93 94 90 90 91 91 91 91 91 91 91 91 91 91
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	90 98 88 86 86 78 76 78 104 104 102 106 104 108 110 108 110 108 110 108 110 108 110 109 109 109 109 109 109 109	MIN 80 76 86 87 87 76 77 77 76 96 96 96 96 98 98 98 98 98 98 98 98 98 98	MEAN 85 82 87 842 87 76 76 76 90 96 98 99 104 98 103 102 104 100 104 103 98 99 91	90 98 98 98 100 100 104 110 112 108 106 102 102 102 102 102 102 102 102	MIN 86. 90 94 94 94 96 98 96 100 98 96 90 98 99 90 98 90 98 98 99 90 98 88	89 93 95 95 93 96 98 103 103 107 107 100 99 100 96 91 91 95 105 104 98	98 98 100 96 98 96 96 96 100 102 106 110 110 110 110 106 96 100 104 104 104 122 120 106 96	MIN 92 90 90 92 86 88 92 92 92 110 96 92 90 88 84 86 90 98 86 90 90 90 90 90 90 90 90 90 90 90 90 90	95 94 93 95 92 95 95 96 99 98 114 109 104 102 101 96 89 95 94 96 93 97 116	100 96 102 98 104 98 104 98 108 104 116 100 96 96 94 104 112 104 100 96 100 100	90 86 86 86 86 86 86 86 86 86 86 86 86 86	94 89 92 93 85 89 92 90 91 88 88 88 103 98 98 92 93 93 90 91 90 91 90 90 90 90 90 90 90 90 90 90
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	90 98 88 86 86 78 78 104 104 102 106 104 108 110 108 110 95 95 94	MIN 80 76 86 82 78 76 72 72 76 96 96 102 88 98 98 98 98 98 98 98 98 98	MEAN 85 82 87 84 82 76 76 75 76 90 96 98 99 104 98 103 102 104 100 104 103 98	90 98 98 98 100 100 104 110 112 110 108 106 102 102 102 102 102 102 103 104 110 108 108 108 108 109 109 109 109 109 109 109 109	MIN 86. 90 94 94 76 90 98 96 100 94 94 96 99 96 90 98 99 88 88 88	89 93 95 95 93 96 98 103 103 107 100 99 100 96 101 99 100 96 91	98 98 100 96 98 96 96 96 100 102 106 110 110 106 106 100 102 104 122 104 122 104 122 104 122	92 90 90 92 92 92 92 92 92 110 104 96 96 98 88 98 99 90 90 90 90 90 90 90 90 90 90 90 90	95 94 93 93 95 92 95 96 99 98 114 109 104 102 101 96 93 97 116	100 96 102 98 104 90 94 98 108 104 116 100 96 96 84 104 112 104 100 96 100 100	MIN 90 82 86 90 86 76 82 86 84 80 78 80 78 80 96 92 92 86 88 84 88 90 82 78	94 89 92 93 85 89 94 90 91 88 87 83 80 84 86 88 89 92 93 93 93 93 94 90 90 91 91 91 91 91 91 91 91 91 91
1 2 3 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	90 98 88 86 86 78 76 104 104 104 108 110 108 110 108 110 95 92 94 96	MIN 80 76 86 82 78 76 74 72 72 76 96 96 102 88 92 98 96 98 98 100 96 98 98 98 98	MEAN 85 82 87 84 82 76 76 75 76 90 96 98 99 104 98 103 102 102 104 100 104 103 98 93 90 91 91	90 98 98 98 100 98 100 104 110 112 110 112 108 102 102 102 102 102 102 102 103 104 110 105 106 107 108 108 109 109 109 109 109 109 109 109	MIN 86. 90 94 94 94 100 98 96 100 98 96 90 98 92 86 90 98 94 90 98 88 89 94 90 99 98	89 93 95 93 96 98 103 103 102 107 100 99 101 99 100 96 91 95 104 98 93 96 97 97	98 98 100 96 98 96 96 96 100 102 106 110 120 110 110 110 106 96 106 104 110 104 104 105 106 106 106	MIN 92 90 90 92 86 88 92 92 110 104 100 96 92 90 88 84 86 90 90 88 88 84 86	95 94 93 93 95 92 95 96 99 98 114 109 101 96 89 95 94 96 93 97 116	100 96 102 98 104 99 94 98 108 104 116 100 96 84 92 94 104 112 104 100 96 100 100 96 100 100 96 100 96 100 100 100 100 100 100 100 100 100 10	MIN 90 82 86 90 86 86 86 87 88 80 78 80 78 80 96 92 92 86 88 88 90 82 78 88	94 99 92 93 93 85 99 92 90 91 88 83 80 84 86 88 98 99 92 93 93 93 93 93 93 94 95 95 95 95 95 95 95 95 95 95 95 95 95

STREAMS ON LONG ISLAND 01304500 PECONIC RIVER AT RIVERHEAD, NY~-Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

		JUNE			JULY		AUGUST			SEPTEMB	ER
DAY	MAX	MIN	MEAN	MAX	MIN MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
1	1.06	86	93								
5	106	96	102								
3	112	90	101								
4	116	88	100 107								
5	152	92	107								
6	112	94	102								
6	118	102	107								
8	120	98	106								
9	140	100	107								
10	126	96	109								
11	106	90	96								
12	104	92	97								
12	108	94	101								
14	104	96	99								
15	126	90	100								
16	144	94	108								
17	148	96	118								
18	140	94	114								
19	148	94	116								
20	154	100	123								
21	164	98	119								
22	154	102	122								
23	146	96	118								
24 25	142	100	120								
25	144	94	116								
26	136	92	111								
26 27	176	92	122								
28	160	86	131								
28	128	68	98								
30 31	118	70	- 86								
31											
MONTH	176	68	108								
YEAR	176	68	95								

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

		OCTOBE	R		NOVEMBE	R		DECEMBE	R		JANUAR	Y
DAY	MAX	MIN	MEAN.	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
1	19.0	17.0	18.0	9.0	7.5	8.5	9.5	8.0	9.0	3.5	2.5	3.0
2	19.0	15.5	18.0	11.5	9.0	10.0	8.0	6.0	7.5	2.0	1.5	2.0
3	15.5	14.5	15.0	12.5	11.0	11.5	6.0	4.5	5.5	2.5	2.0	2.5
4	16.0	13.5	15.0	14.0	12.5	13.5	4.5	3.5	3.5	2.5	0.5	1.5
5	15.5	14.0	15.0	14.0	13.0	13.5	4.0	3.0	3.5	1.0	0.0	0.0
6	17.5	15.0	16.0	13.0	12.5	12.5	6.5	4.5	5.5	1.5	0.0	1.0
7	16.5	15.0	16.0	13.0	12.0	12.5	6.5	5.0	6.0	1.5	1.5	1.5
8	16.0	14.5	15.0	14.5	13.0	13.5	5.0	3.5	4.0	1.5	1.5	1.5
9 10	15.0 14.5	14.0	14.5	15.0 15.5	14.0	14.5 15.5	5.0 6.5	3.5 5.0	4.0 6.0	1.5	1.0	1.0
11	14.5	14.0	14.5	15.5	13.5	14.0	6.0	5.0	5.5	2.0	1.5	2.0
12	14.5	13.5	14.0	13.5	12.0	12.5	5.0	4.5	4.5	2.0	2.0	2.0
13	15.0	13.0	14.0	12.0	12.0	12.0	5.0	4.5	4.5	2.5	2.0	2.0
14	16.5	14.0	15.0	12.0	10.0	11.0	7.0	5.0	6.0	2.5	2.0	2.0
15	17.0	15.5	16.5	9.5	8.0	8.5	8.0	6.5	7.5	2.0	1.5	1.5
16	17.5	16.5	17.0	8.0	7.5	8.0	8.0	6.5	7.5	2.5	1.5	2.0
17	16.5	15.0	15.5	8.5	7.5	8.0	6.5	5.0	5.5	3.0	2.0	2.5
18	15.5	14.5	15.0	9.0	7.5	8.5	5.0	2.5	4.5	2.0	0.5	1.0
19	15.0	13.5	14.0	9.5	8.5	9.0	2.5	0.5	1.0			
20	13.5	13.0	13.0	10.0	8.5	9.5	1.5	0.0	1.0			
21	14.0	12.5	13.5	11.5	10.0	10.5	1.5	1.5	1.5			
22	15.0	13.5	14.0	11.5	9.0	10.0	1.5	0.5	1.0			
23	15.0	14.0	14.5	8.5	7.5	8.0	0.5	0.5	0.5			
24 25	15.5 16.0	14.0 15.0	14.5 15.5	7.5 6.5	6.0	7.0 6.5	2.0	1.0	0.5 1.5			
26	16.0	15.0	15.5 14.0	7.0	6.5	6.5	2.0	1.5	2.0			
27 28	15.0 13.5	13.5 12.5	13.0	8.0 7.5	6.5 7.0	7.0 7.5	3.0 2.5	1.5 2.0	2.5			
29	15.0	13.0	14.0	7.0	6.0	6.5	2.5	1.5	2.0			
30	14.5	10.5	13.0	8.0	6.5	7.0	2.5	2.0	2.5			
31	10.5	5.0	9.5				3.5	2.5	3.5			
MONTH	19.0	5.0	14.5	15.5	6.0	10.0	9.5	0.0	4.0	7		
		FEBRUAR	Y		MARCH			APRIL			MAY	
DAY	MAX	FEBRUAR MIN	Y MEAN	MAX	MARCH MIN	MEAN	MAX	APRIL MIN	MEAN	MAX	MAY Min	MEAN
	MAX				MIN			MIN	MEAN		MIN	
DAY 1 2		MIN	MEAN	MAX 10.5 10.0		MEAN 10.0 8.0	MAX 11.0 11.5			MAX 15.5 17.5		MEAN 15.0 15.5
1 2 3		MIN	MEAN	10.5 10.0 6.5	MIN 9.0	10.0	11.0	MIN 10.5	MEAN 10.5	15.5	MIN 14.0 14.0 16.0	15.0 15.5 17.0
1 2 3 4		MIN	MEAN	10.5 10.0 6.5 7.0	9.0 7.0 6.0	10.0 8.0 6.0 6.5	11.5 12.0 10.5	MIN 10.5 10.0 10.0 9.0	MEAN 10.5 11.0 11.0	15.5 17.5 18.0 16.0	MIN 14.0 14.0 16.0 14.5	15.0 15.5 17.0 15.0
1 2 3		MIN	MEAN	10.5 10.0 6.5	MIN 9.0 7.0 6.0	10.0 8.0 6.0	11.0 11.5 12.0	MIN 10.5 10.0 10.0	MEAN 10.5 11.0 11.0	15.5 17.5 18.0	MIN 14.0 14.0 16.0	15.0 15.5 17.0
1 2 3 4 5		MIN	MEAN	10.5 10.0 6.5 7.0 9.0	9.0 7.0 6.0	10.0 8.0 6.0 6.5	11.5 12.0 10.5	MIN 10.5 10.0 10.0 9.0	MEAN 10.5 11.0 11.0	15.5 17.5 18.0 16.0 16.0	MIN 14.0 14.0 16.0 14.5	15.0 15.5 17.0 15.0 15.0
1 2 3 4 5		MIN	MEAN	10.5 10.0 6.5 7.0 9.0 7.5	MIN 9.0 7.0 6.0 6.0 7.0 7.5 7.0	10.0 8.0 6.0 6.5 8.0	11.0 11.5 12.0 10.5 10.0	MIN 10.5 10.0 10.0 9.0 8.0 9.5 10.0	MEAN 10.5 11.0 11.0 10.0 9.5	15.5 17.5 18.0 16.0 16.0	MIN 14.0 14.0 16.0 14.5 13.5	15.0 15.5 17.0 15.0 15.0
1 2 3 4 5	===	MIN	MEAN	10.5 10.0 6.5 7.0 9.0 7.5 7.5	9.0 7.0 6.0 6.0 7.0 7.5 7.0	10.0 8.0 6.0 6.5 8.0 8.5 7.0 6.5	11.0 11.5 12.0 10.5 10.0	MIN 10.5 10.0 10.0 9.0 8.0 9.5 10.0	MEAN 10.5 11.0 11.0 10.0 9.5	15.5 17.5 18.0 16.0 16.0	MIN 14.0 14.0 16.0 14.5 13.5	15.0 15.5 17.0 15.0 15.0
1 2 3 4 5 6 7 8		MIN	MEAN	10.5 10.0 6.5 7.0 9.0 9.0 7.5 6.0	MIN 9.0 7.0 6.0 6.0 7.0 7.5 7.0 6.0 2.5	10.0 8.0 6.0 6.5 8.0 8.5 7.0 6.5 5.0	11.0 11.5 12.0 10.5 10.0	MIN 10.5 10.0 10.0 9.0 8.0 9.5 10.0 10.0 9.0	MEAN 10.5 11.0 11.0 10.0 9.5 10.5 11.5 11.0 9.5	15.5 17.5 18.0 16.0 16.0 17.0 16.5	MIN 14.0 14.0 16.0 14.5 13.5	15.0 15.5 17.0 15.0 15.0
1 2 3 4 5 6 7 8 9		MIN	MEAN	10.5 10.0 6.5 7.0 9.0 7.5 7.5 6.0 3.5	MIN 9.0 7.0 6.0 7.0 7.0 7.5 7.0 6.0 2.5 2.0	8.0 6.0 6.5 8.0 8.5 7.0 6.5 5.0	11.0 11.5 12.0 10.5 10.0 11.0 12.5 12.0 10.0	MIN 10.5 10.0 10.0 9.0 8.0 9.5 10.0 10.0 9.0 8.0	MEAN 10.5 11.0 11.0 9.5 10.5 11.5 11.0 9.5	15.5 17.5 18.0 16.0 16.0 17.0 16.5 17.5	MIN 14.0 14.0 16.0 16.5 13.5	15.0 15.5 17.0 15.0 15.0 16.0 16.5 15.5
1 2 3 4 5 6 7 8 9 10		MIN	MEAN	10.5 10.0 6.5 7.0 9.0 7.5 7.5 7.5 6.0 3.5	MIN 9.0 7.0 6.0 7.0 7.5 7.0 6.0 2.5 2.0	8.0 6.0 6.5 8.0 8.5 7.0 6.5 5.0 3.0	11.0 11.5 12.0 10.5 10.0 11.0 12.5 12.0 10.0	MIN 10.5 10.0 10.0 9.0 8.0 9.5 10.0 10.0 9.0 8.0	MEAN 10.5 11.0 11.0 10.0 9.5 11.5 11.5 9.5 10.0	15.5 17.5 18.0 16.0 16.0 17.0 16.5 17.5 18.5	MIN 14.0 14.0 16.0 16.5 13.5 14.5 16.0 14.5 15.0 15.5	15.0 15.5 17.0 15.0 15.0 16.0 16.5 15.5 16.0 17.0
1 2 3 4 5 6 7 8 9 10		MIN	MEAN	10.5 10.0 6.5 7.0 9.0 7.5 7.5 6.0 3.5	MIN 9.0 7.0 6.0 6.0 7.0 7.5 7.0 6.0 2.5 2.0 3.5 4.0	8.0 6.0 6.5 8.0 8.5 7.0 6.5 5.0 3.0	11.0 11.5 12.0 10.5 10.0 11.0 12.5 12.0 10.0	MIN 10.5 10.0 9.0 8.0 9.5 10.0 10.0 9.0 8.0	MEAN 10.5 11.0 11.0 10.0 9.5 10.5 11.5 11.0 9.5 10.7 10.0	15.5 17.5 18.0 16.0 16.0 17.0 16.5 17.5 18.5	MIN 14.0 14.0 16.0 16.5 13.5 14.5 16.0 14.5 15.0 15.5	15.0 15.5 17.0 15.0 15.0 16.0 16.5 15.5 17.0
1 2 3 4 5 6 7 8 9 10		MIN	MEAN	10.5 10.0 6.5 7.0 9.0 7.5 6.0 3.5	MIN 9.0 7.0 6.0 6.0 7.0 7.5 7.0 6.0 2.5 2.0 3.5 4.0 5.0	8.0 6.0 6.5 8.0 8.5 7.0 6.5 5.0 3.0	11.0 11.5 12.0 10.5 10.0 11.0 12.5 12.0 10.0 10.5	MIN 10.5 10.0 10.0 9.0 8.0 9.5 10.0 10.0 9.0 8.0	MEAN 10.5 11.0 10.0 9.5 10.5 11.0 9.5 11.0 9.5 11.0 9.5 9.5	15.5 17.5 18.0 16.0 16.0 17.0 16.5 17.5 18.5	MIN 14.0 14.0 14.5 13.5 14.5 15.0 15.5 16.5 17.0 16.0	15.0 15.5 17.0 15.0 15.0 16.0 16.5 15.5 16.0 17.0
1 2 3 4 5 6 7 8 9 10		MIN	MEAN	10.5 10.0 6.5 7.0 9.0 7.5 7.5 6.0 3.5	MIN 9.0 7.0 6.0 6.0 7.0 7.5 7.0 6.0 2.5 2.0 3.5 4.0	8.0 6.0 6.5 8.0 8.5 7.0 6.5 5.0 3.0	11.0 11.5 12.0 10.5 10.0 11.0 12.5 12.0 10.0	MIN 10.5 10.0 9.0 8.0 9.5 10.0 10.0 9.0 8.0	MEAN 10.5 11.0 11.0 10.0 9.5 10.5 11.5 11.0 9.5 10.7 10.0	15.5 17.5 18.0 16.0 16.0 17.0 16.5 17.5 18.5	MIN 14.0 14.0 16.0 16.5 13.5 14.5 16.0 14.5 15.0 15.5	15.0 15.5 17.0 15.0 15.0 16.0 16.5 15.5 17.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14		MIN	MEAN	10.5 10.0 6.5 7.0 9.0 7.5 6.0 3.5 6.5 7.0 7.0	MIN 9.0 6.0 6.0 6.0 7.0 7.5 7.0 6.0 2.5 2.0 3.5 4.0 4.5 6.0	10.0 8.0 6.0 6.5 8.0 8.5 7.0 6.5 5.0 3.0 5.0 4.5 6.0 6.5	11.0 11.5 12.0 10.5 10.0 11.0 12.5 12.0 10.0 10.5	MIN 10.5 10.0 10.0 9.0 8.0 9.5 10.0 10.0 9.0 8.0 7.5 5.0 9.0 11.0	MEAN 10.5 11.0 11.0 10.0 9.5 10.5 11.5 11.6 9.5 10.0 7.0 12.5	15.5 17.5 18.0 16.0 16.0 17.0 16.5 17.5 18.5 17.5 18.5 18.5	MIN 14.0 16.0 14.5 13.5 14.5 16.0 15.5 16.0 17.0	15.0 15.5 17.0 15.0 15.0 16.5 16.5 17.0 17.0 17.5 17.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14		MIN	MEAN	10.5 10.0 6.5 7.0 9.0 7.5 7.5 6.0 3.5 6.5 5.0 7.0	MIN 9.0 6.0 6.0 7.0 6.0 7.5 7.0 6.0 2.5 2.0 3.5 4.0	10.0 8.0 6.5 8.0 8.5 7.0 6.5 5.0 3.0	11.0 11.5 12.0 10.5 10.0 11.0 12.5 12.0 10.0 10.5	MIN 10.5 10.0 10.0 9.0 8.0 9.5 10.0 10.0 9.0 8.0 7.5 5.0 6.5	MEAN 10.5 11.0 11.0 10.0 9.5 10.5 11.5 11.0 9.5 11.5 11.0 12.5 13.0	15.5 17.5 18.0 16.0 16.0 17.0 16.5 17.5 18.5	MIN 14.0 14.0 14.5 13.5 14.5 16.0 15.5 16.5 17.0 16.0 17.0	15.0 15.5 17.0 15.0 15.0 16.0 16.5 15.5 16.0 17.0 17.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		MIN	MEAN	10.5 10.0 6.5 7.0 9.0 9.0 7.5 7.5 6.0 3.5 6.5 5.0 7.0 7.0	MIN 9.0 6.0 6.0 7.0 6.0 7.5 7.0 6.0 2.5 2.0 3.5 4.0 5.0 4.5	10.0 8.0 6.0 6.5 8.0 8.5 7.0 6.5 5.0 3.0 5.0 4.5 6.0 6.5	11.0 11.5 12.0 10.5 10.0 11.0 12.5 12.0 10.0 10.5 8.0 10.5 13.5	MIN 10.5 10.0 10.0 9.0 8.0 9.5 10.0 10.0 9.0 8.0 7.5 5.0 6.5 9.0 11.0	MEAN 10.5 11.0 11.0 10.0 9.5 10.5 11.5 11.6 9.5 10.0 7.0 12.5	15.5 17.5 18.0 16.0 16.0 17.0 16.5 17.5 18.5 17.5 18.5 21.5	MIN 14.0 14.0 16.0 14.5 13.5 16.0 14.5 15.0 17.0 18.0 17.5 17.0 18.0	15.0 15.5 17.0 15.0 16.0 16.5 15.5 17.0 17.0 17.5 17.5 19.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18		MIN	MEAN	10.5 10.0 6.5 7.0 9.0 9.0 7.5 7.5 6.0 3.5 6.5 5.0 7.0 7.5 7.0	9.0 6.0 6.0 7.0 6.0 7.0 7.5 7.0 6.0 2.5 2.0 3.5 4.0 5.0 4.5 2.0	10.0 8.0 6.0 6.5 8.0 8.5 7.0 6.5 5.0 3.0 4.5 6.0 6.5	11.0 11.5 12.0 10.5 10.0 11.0 12.5 12.0 10.0 10.5 8.0 10.5 13.5 14.0 18.0 20.0	MIN 10.5 10.0 10.0 9.0 8.0 9.5 10.0 9.5 10.0 9.5 11.0 12.5 13.0 11.0	MEAN 10.5 11.0 10.0 9.5 10.5 11.5 11.0 9.5 11.5 11.0 12.5 13.0 15.5 18.5 19.5	15.5 17.5 18.0 16.0 16.0 17.0 16.5 17.5 18.5 18.5 21.5	MIN 14.0 14.0 16.0 14.5 13.5 14.5 15.0 14.5 15.0 17.0 18.0 17.5 17.0 19.0 19.0	15.0 15.5 17.0 15.0 16.0 16.5 15.5 16.0 17.0 17.5 17.5 19.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		MIN	MEAN	10.5 10.0 6.5 7.0 9.0 7.5 7.5 6.0 3.5 6.5 7.0 7.0 7.5	MIN 9.0 6.0 6.0 6.0 7.0 7.5 7.0 6.0 2.5 2.0 3.5 4.0 4.5 6.0 4.5	10.0 8.0 6.0 6.5 8.0 8.5 7.0 6.5 5.0 3.0 5.0 6.5 6.0 6.5	11.0 11.5 12.0 10.5 10.0 11.0 12.5 12.0 10.0 10.5 8.0 10.0 13.0 13.5	MIN 10.5 10.0 10.0 9.0 8.0 9.5 10.0 10.0 9.0 8.0 7.5 5.0 6.5 9.0 11.0	MEAN 10.5 11.0 11.0 10.0 9.5 10.5 11.5 11.0 9.5 11.5 11.0 12.5 13.0 12.5 13.0	15.5 17.5 18.0 16.0 16.0 17.0 16.5 17.5 18.5 21.5 18.5 21.5 20.5	MIN 14.0 14.0 16.0 14.5 13.5 16.0 14.5 15.0 17.0 18.0 17.5 17.0 18.0	15.0 15.5 17.0 15.0 16.0 16.5 15.5 17.0 17.0 17.5 17.5 19.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21		MIN	MEAN	10.5 10.0 6.5 7.0 9.0 7.5 7.5 6.0 3.5 6.0 7.0 7.0 7.5 7.0 9.5	9.0 6.0 6.0 7.0 6.0 7.0 7.5 7.0 6.0 2.5 2.0 3.5 4.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	10.0 8.0 6.0 6.0 6.0 8.0 8.5 7.0 6.5 5.0 3.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	11.0 11.5 12.0 10.5 10.0 11.0 12.5 12.0 10.0 10.5 10.5 8.0 10.0 13.0 13.5 14.0 20.0 21.0	MIN 10.5 10.0 9.0 8.0 9.5 10.0 9.0 7.5 9.0 11.0 12.5 13.0 17.0 18.5	MEAN 10.5 11.0 10.0 9.5 11.5 11.0 9.5 11.5 11.0 9.5 11.5 11.0 12.5 13.0 15.5 18.5 18.5 19.5	15.5 17.5 18.0 16.0 16.0 17.0 16.5 17.5 18.5 17.5 18.5 21.5 20.5 19.5 20.0 19.0 19.0	MIN 14.0 14.0 16.0 16.0 14.5 13.5 14.5 15.5 16.0 17.0 17.0 18.0 17.5 17.0 19.0 13.5 12.5	15.0 15.5 17.0 15.0 16.0 16.5 16.5 17.0 17.5 19.5 19.0 18.0 18.0 19.5 16.0 17.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 21 22		MIN	MEAN	10.5 10.0 6.5 7.0 9.0 7.5 7.5 6.0 3.5 7.0 7.0 7.5 7.0 7.5 10.0	MIN 9.0 6.0 6.0 6.0 7.0 7.5 7.0 6.0 2.5 2.0 3.5 4.0 3.5 6.0 4.5 6.0 9.0 8.0	10.0 8.0 6.0 6.5 8.0 8.5 7.0 6.5 3.0 5.0 6.0 6.0 6.5 8.5 9.5 9.5	11.0 11.5 12.0 10.5 10.0 11.0 12.5 12.0 10.0 10.0 10.5 8.0 10.0 13.0 13.5 14.0 20.0 21.0	MIN 10.5 10.0 10.0 9.0 8.0 9.5 10.0 10.0 9.0 8.0 7.5 5.0 9.0 11.0 12.5 13.0 17.0 18.0	MEAN 10.5 11.0 11.0 10.0 9.5 10.5 11.5 11.0 9.5 11.5 11.0 12.5 13.0 12.5 13.0 12.5 13.0 12.5 13.0 12.5	15.5 17.5 18.0 16.0 16.0 18.0 17.0 16.5 17.5 18.5 18.5 21.5 20.5 19.5 20.0 19.0 14.5	MIN 14.0 14.0 14.0 16.0 14.5 13.5 16.0 15.5 16.0 17.0 18.0 17.5 17.0 19.0 13.5 12.5	15.0 15.5 17.0 15.0 16.0 16.5 15.5 16.0 17.0 17.0 17.5 19.5 19.0 18.0 19.5 16.0 13.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23		MIN	MEAN	10.5 10.0 6.5 7.0 9.0 9.0 7.5 7.5 6.0 3.5 6.5 5.0 7.0 7.0 7.5 7.0 9.5 9.0	MIN 9.0 6.0 7.0 6.0 7.0 6.0 7.5 7.0 6.0 2.5 2.0 3.5 4.0 5.0 1.0 3.5 7.0 8.0 7.5	10.0 8.0 6.0 6.5 8.5 7.0 5.0 3.0 4.5 6.0 6.5 5.5 5.5 8.5 9.5 8.5 9.5 8.5	11.0 11.5 12.0 10.5 10.0 11.0 12.5 12.0 10.0 10.5 10.5 8.0 10.0 13.0 13.5 14.0 18.0 20.0 21.0	MIN 10.5 10.0 10.0 9.0 8.0 9.5 10.0 9.0 8.0 7.5 5.0 6.5 9.0 11.0 12.5 13.0 17.0 18.0 18.0	MEAN 10.5 11.0 10.0 9.5 10.5 11.5 11.0 9.5 11.5 11.0 12.5 13.0 12.5 13.0 15.5 19.5 20.0	15.5 17.5 18.0 16.0 16.0 17.0 16.5 17.5 18.5 18.5 20.5 19.5 20.5 19.5 20.0 19.0 14.5	MIN 14.0 14.0 16.0 14.5 13.5 14.5 15.0 15.5 17.0 18.0 17.5 17.0 18.0 17.5 17.0 18.0	15.0 15.5 17.0 15.0 16.0 16.5 15.5 17.0 17.5 17.5 19.5 19.0 18.5 16.0 13.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 21 22		MIN	MEAN	10.5 10.0 6.5 7.0 9.0 7.5 7.5 6.0 3.5 7.0 7.0 7.5 7.0 7.5 10.0	MIN 9.0 6.0 6.0 6.0 7.0 7.5 7.0 6.0 2.5 2.0 3.5 4.0 3.5 6.0 4.5 6.0 9.0 8.0	10.0 8.0 6.0 6.5 8.0 8.5 7.0 6.5 3.0 5.0 6.0 6.0 6.5 8.5 9.5 9.5	11.0 11.5 12.0 10.5 10.0 11.0 12.5 12.0 10.0 10.0 10.5 8.0 10.0 13.0 13.5 14.0 20.0 21.0	MIN 10.5 10.0 10.0 9.0 8.0 9.5 10.0 10.0 9.0 8.0 7.5 5.0 9.0 11.0 12.5 13.0 17.0 18.0	MEAN 10.5 11.0 11.0 10.0 9.5 10.5 11.5 11.0 9.5 11.5 11.0 12.5 13.0 12.5 13.0 12.5 13.0 12.5 13.0 12.5	15.5 17.5 18.0 16.0 16.0 18.0 17.0 16.5 17.5 18.5 18.5 21.5 20.5 19.5 20.0 19.0 14.5	MIN 14.0 14.0 14.0 16.0 14.5 13.5 16.0 15.5 16.0 17.0 18.0 17.5 17.0 19.0 13.5 12.5	15.0 15.5 17.0 15.0 16.0 16.5 15.5 16.0 17.0 17.0 17.5 19.5 19.0 18.0 19.5 16.0 13.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24 25 26		MIN	MEAN	10.5 10.0 6.5 7.0 9.0 7.5 7.5 6.0 3.5 7.0 7.0 7.5 7.0 7.5 10.0 9.5 9.5	MIN 9.0 6.0 6.0 6.0 6.0 7.0 7.5 7.0 6.0 2.5 2.0 3.5 4.0 3.5 6.0 4.5 6.0 4.5 6.0 9.0 8.0 7.5 8.0 9.5	10.0 8.0 6.0 6.0 8.0 8.5 7.0 6.5 5.0 3.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	11.0 11.5 12.0 10.5 10.0 11.0 12.5 12.0 10.0 10.5 10.5 8.0 10.0 13.5 14.0 18.0 20.0 21.0 21.0	MIN 10.5 10.0 10.0 9.0 8.0 9.5 10.0 10.0 9.0 8.0 7.5 5.0 11.0 12.5 13.0 17.0 18.0 17.0 18.0 17.0 18.5 19.0 19.0	MEAN 10.5 11.0 11.0 10.0 9.5 10.5 11.5 11.5 11.5 12.5 13.0 12.5 13.0 12.5 13.0 12.5 13.0 14.5 14.5	15.5 17.5 18.0 16.0 16.0 16.0 17.0 16.5 17.5 18.5 21.5 20.5 19.5 20.5 19.5 20.0 14.5 17.5 18.5	MIN 14.0 16.0 14.0 16.0 14.5 13.5 16.0 15.5 16.0 17.0 18.0 17.5 17.0 19.0 13.5 12.5 14.0 15.5 16.5 16.5 16.5 17.5 16.5 17.5 17.5 16.6 17.5 17.5 17.5 17.5 18.0	15.0 15.5 17.0 15.0 16.0 16.5 16.5 17.0 17.0 17.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24 25 26 27		MIN	MEAN	10.5 10.0 6.5 7.0 9.0 9.0 7.5 7.5 6.0 3.5 7.0 7.0 7.0 7.5 7.0 9.5 9.0 10.5 10.0 10.5	MIN 9.0 6.0 6.0 7.0 6.0 6.0 7.5 7.0 6.0 2.5 2.0 3.5 4.0 5.0 4.5 6.0 4.5 6.0 9.0 8.0 7.5 8.0 7.5 8.0 10.0 11.0	10.0 8.0 6.0 6.0 6.5 8.0 8.5 7.0 6.5 5.0 3.0 5.0 6.0 6.5 8.5 6.0 6.5 8.5 9.5 8.5 9.5 8.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	11.0 11.5 12.0 10.5 10.0 11.0 12.5 12.0 10.0 10.5 10.5 8.0 10.0 13.0 13.0 13.0 21.0 21.0 21.0 21.0	MIN 10.5 10.0 10.0 9.0 8.0 9.5 10.0 10.0 9.0 8.0 7.5 5.0 6.5 9.0 11.0 12.5 13.0 18.0 17.0 18.5 19.0 11.0	MEAN 10.5 11.0 10.0 10.0 9.5 10.5 11.5 11.0 9.5 11.5 11.0 12.5 13.0 15.5 19.5 20.0 19.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18	15.5 17.5 18.0 16.0 16.0 16.0 17.0 16.5 17.5 18.5 18.5 21.5 20.5 19.5 20.0 19.0 14.5 17.5 18.5 21.5	MIN 14.0 14.0 16.0 14.5 13.5 16.5 15.5 16.5 17.0 18.0 17.5 17.0 18.0 17.5 17.0 19.0 19.0 19.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10	15.0 15.5 17.0 15.0 16.0 16.5 15.5 17.0 17.0 17.5 19.5 19.0 18.0 19.5 16.0 13.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24 5 26 27 28		MIN	MEAN	10.5 10.0 6.5 7.0 9.0 9.0 7.5 6.0 3.5 6.5 5.0 7.0 7.0 7.5 7.0 9.5 10.0 9.5 10.5	9.0 6.0 6.0 7.0 6.0 7.5 7.0 6.0 2.5 2.0 3.5 4.0 5.0 1.0 3.5 7.0 9.0 9.0 9.5 10.0 9.5	10.0 8.0 6.0 6.5 8.0 8.5 7.0 6.5 5.0 3.0 5.0 6.0 6.0 6.0 6.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8	11.0 11.5 12.0 10.5 10.0 11.0 12.5 12.0 10.0 10.5 10.5 10.0 13.0 20.0 21.0 21.0 21.0 21.0 21.0 21.0 21	MIN 10.5 10.0 9.0 8.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5 11.0 12.5 13.0 11.0 12.5 13.0 17.0 18.5 19.0 18.5 19.0 19.0	MEAN 10.5 11.0 10.0 10.0 9.5 11.5 11.0 9.5 11.5 11.0 15.5 12.5 13.0 15.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5	15.5 17.5 18.0 16.0 16.0 16.0 17.0 16.5 17.5 18.5 21.5 20.5 19.5 20.0 19.0 19.0 18.5 18.5	MIN 14.0 14.0 16.0 14.5 13.5 14.5 15.5 16.0 17.0 17.0 17.0 17.0 19.0 17.5 16.0 16.5 16.0 16.5 16.5 16.5 16.5 16.5	15.0 15.5 17.0 15.0 16.0 16.5 16.0 17.0 17.5 19.0 18.0 19.5 16.0 17.5 19.5 16.0 17.5 19.5 16.0 17.5 19.5 16.0 17.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24 25 26 27 28 29		MIN	MEAN	10.5 10.0 6.5 7.0 9.0 7.5 7.5 6.0 3.5 7.0 7.0 7.5 7.0 9.5 9.5 10.0 9.5 9.5 9.5	MIN 9.0 6.0 6.0 6.0 6.0 7.0 7.5 7.0 6.0 2.5 2.0 3.5 4.0 3.5 6.0 4.5 6.0 4.5 8.0 7.5 8.0 7.5 8.0 11.0 3.5	10.0 8.0 6.0 6.5 8.0 8.5 7.0 6.5 5.0 3.0 5.0 6.0 6.0 6.5 8.0 9.5 9.5 10.0 11.5 12.0 12.5	11.0 11.5 12.0 10.5 10.0 11.0 12.5 12.0 10.0 10.0 10.5 8.0 10.0 13.0 13.5 14.0 20.0 21.0 21.0 21.0 21.0 21.0 21.0 21	MIN 10.5 10.0 10.0 9.0 8.0 9.5 10.0 10.0 9.0 8.0 7.5 5.0 11.0 12.5 13.0 17.0 18.0 17.0 18.0 17.0 18.0 17.0 18.0 17.0 18.0	MEAN 10.5 11.0 11.0 10.0 9.5 10.5 11.5 11.0 9.5 11.5 11.0 12.5 13.0 12.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18	15.5 17.5 18.0 16.0 16.0 16.0 17.0 16.5 17.5 18.5 17.5 18.5 21.5 20.5 19.5 20.0 19.0 14.5 17.5 18.5 21.5	MIN 14.0 14.0 16.0 14.5 13.5 16.0 14.5 15.5 17.0 18.0 17.5 17.0 18.0 17.5 17.5 16.5 17.5 16.5 17.0 19.0 19.0 19.0 19.0 19.0	15.0 15.5 17.0 15.0 16.0 16.5 15.5 17.0 17.0 17.5 19.5 19.5 16.0 17.5 19.5 16.5 17.0 17.5 19.5 16.5 17.0 17.5 19.5 16.5 17.5 19.5 16.5 17.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 223 24 25 26 27 28 29 30		MIN	MEAN	10.5 10.0 6.5 7.0 9.0 9.0 7.5 7.5 6.0 3.5 6.5 5.0 7.0 7.0 7.5 7.0 9.5 9.5 9.5 10.0 9.5 10.5 10.5 10.5	MIN 9.0 6.0 6.0 7.0 6.0 6.0 7.5 7.0 6.0 2.5 2.0 3.5 4.0 5.0 4.5 6.0 4.5 6.0 9.0 11.0 9.0 11.5 10.5 11.0	10.0 8.0 6.0 6.5 8.0 8.5 7.0 6.5 3.0 5.0 6.0 6.5 6.0 6.5 8.5 9.5 8.5 9.5 8.0 9.5 12.0 12.5 11.5 12.0	11.0 11.5 12.0 10.5 10.0 11.0 12.5 12.0 10.0 10.0 10.5 8.0 10.0 13.0 13.0 13.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	MIN 10.5 10.0 10.0 9.0 8.0 9.5 10.0 9.0 8.0 7.5 5.0 6.5 11.0 12.5 13.0 18.0 18.0 17.0 18.5 19.0 11.0 10.0 10.0 10.0 10.0	MEAN 10.5 11.0 10.0 10.0 9.5 10.5 11.5 11.0 9.5 11.5 11.0 12.5 13.0 15.5 12.5 18.0 16.5 14.5 12.5 12.0 14.5	15.5 17.5 18.0 16.0 16.0 17.0 16.5 17.5 18.5 18.5 21.5 20.5 19.5 20.0 19.0 14.5 17.5 18.5 21.5	MIN 14.0 14.0 16.0 14.5 13.5 14.5 15.0 16.5 17.0 18.0 17.5 17.0 18.0 17.5 17.0 18.0 17.5 17.0 18.0 17.5 17.0 18.0 19.0 19.0	15.0 15.5 17.0 15.0 16.0 16.5 16.5 17.0 17.0 17.5 19.5 19.0 18.0 13.5 15.5 17.0 18.0 17.5 17.5 19.5 19.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24 25 26 27 28 29		MIN	MEAN	10.5 10.0 6.5 7.0 9.0 7.5 7.5 6.0 3.5 7.0 7.0 7.5 7.0 9.5 9.5 10.0 9.5 9.5 9.5	MIN 9.0 6.0 6.0 6.0 6.0 7.0 7.5 7.0 6.0 2.5 2.0 3.5 4.0 3.5 6.0 4.5 6.0 4.5 8.0 7.5 8.0 7.5 8.0 11.0 3.5	10.0 8.0 6.0 6.5 8.0 8.5 7.0 6.5 5.0 3.0 5.0 6.0 6.0 6.5 8.0 9.5 9.5 10.0 11.5 12.0 12.5	11.0 11.5 12.0 10.5 10.0 11.0 12.5 12.0 10.0 10.0 10.5 8.0 10.0 13.0 13.5 14.0 20.0 21.0 21.0 21.0 21.0 21.0 21.0 21	MIN 10.5 10.0 10.0 9.0 8.0 9.5 10.0 10.0 9.0 8.0 7.5 5.0 11.0 12.5 13.0 17.0 18.0 17.0 18.0 17.0 18.0 17.0 18.0 17.0 18.0	MEAN 10.5 11.0 11.0 10.0 9.5 10.5 11.5 11.0 9.5 11.5 11.0 12.5 13.0 12.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18	15.5 17.5 18.0 16.0 16.0 16.0 17.0 16.5 17.5 18.5 17.5 18.5 21.5 20.5 19.5 20.0 19.0 14.5 17.5 18.5 21.5	MIN 14.0 14.0 16.0 14.5 13.5 16.0 14.5 15.5 17.0 18.0 17.5 17.0 18.0 17.5 17.5 16.5 17.5 16.5 17.0 19.0 19.0 19.0 19.0 19.0	15.0 15.5 17.0 15.0 16.0 16.5 15.5 17.0 17.0 17.5 19.5 19.5 16.0 17.5 19.5 16.5 17.0 17.5 19.5 16.5 17.0 17.5 19.5 16.5 17.5 19.5 16.5 17.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19

01304500 PECONIC RIVER AT RIVERHEAD, NY--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

		JUNE			JULY			AUGUST			SEPTEM	BER
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	M.	AX MIN	MEAN
1	21.0	19.5	20.5	25.5	23.5	24.5	24.5	22.5	23.5	21	5 19.0	20.0
2	19.5	18.0	18.5	25.5	24.0	25.0	24.5	23.0	23.5	20	.5 19.0	20.0
3	19.5	17.5	18.5	25.0	23.5	24.0	24.5	22.5	23.5	20	.0 18.5	19.0
4	20.0	18.5	19.5	24.0	22.5	23.5	24.0	22.0	23.0	19		19.0
5	21.0	18.5	19.5	26.0	23.0	24.5	24.0	22.0	23.0	20		19.0
6	20.0	18.5	19.5	26.0	23.5	25.0	25.0	22.5	23.5	19	.5 18.0	18.5
7	20.0	17.5	19.0	25.5	24.0	24.5	24.5	23.5	24.0	19	.5 17.5	18.5
8	22.5	19.5	21.0	25.5	23.5	24.5	24.5	22.5	23.5	21		20.0
9	25.0	21.0	23.0	27.0	24.0	25.0	22.5	21.0	22.0	20	5 19.5	20.0
10	25.5	23.0	24.0	26.0	24.5	25.0	23.5	20.5	22.0	20		20.0
11	25.5	23.0	24.0	25.5	24.5	25.0	24.5	22.5	23.5	20	0 18.5	19.5
12	25.0	23.0	24.0	25.5	23.5	24.5	25.5	23.0	24.0	20	.0 18.5	19.0
13	23.0	21.0	22.0	23.5	21.5	22.5	26.0	23.5	24.5	21	.5 19.0	20.0
14	21.5	20.0	21.0	22.5	21.0	21.5	25.5	24.5	25.0	55	.0 20.0	21.0
15	22.0	19.5	20.5	24.0	21.0	22.5	25.5	24.5	25.0	21		21.0
16	24.5	21.0	22.5	23.0	22.0	22.5	24.5	23.5	24.0	21	0.05	20.5
17	23.5	22.0	23.0	25.0	21.5	23.0	24.0	22.5	23.0	21	.0 20.0	20.5
18	24.5	22.0	23.0	24.0	22.0	23.0	24.0	22.5	23.0	22	.0 20.5	21.5
19	24.5	23.5	24.0	24.5	22.0	23.5	22.5	21.5	22.0	22	.5 21.0	21.5
20	23.5	23.0	23.0	25.0	23.0	24.0	24.0	20.5	22.0	22	.5 - 21.0	21.5
21	24.0	22.5	23.0	24.0	23.0	23.5	25.0	21.0	23.0	21	.5 20.5	21.0
22	26.0	23.0	24.5	23.5	22.5	23.0	27.0	23.5	25.0			
23	26.5	24.0	25.5	23.0	22.5	22.5	27.0	24.5	25.5			
24	27.0	24.5	25.5	24.5	22.5	23.5	26.0	24.0	25.0			
25	26.0	24.5	25.5	24.5	23.0	23.5	25.5	23.0	24.0	-		
26	26.5	25.0	25.5	23.0	22.0	22.5	24.5	23.5	24.0			
27	26.5	24.5	25.5	23.5	21.5	22.5	24.5	22.5	23.5			
28	26.5	24.0	25.0	25.5	22.0	24.0	24.0	22.0	23.0			
29	25.5	24.0	24.5	24.5	22.5	23.5	26.0	23.5	24.5	and .		
30	24.5	24.0	24.0	23.5	22.5	23.0	24.0	21.0	22.0			
31				24.0	22.0	23.0	21.5	19.5	20.0			
MONTH	27.0	17.5	22.5	27.0	21.0	23.5	27.0	19.5	23.5	-		
YEAR	27.0	0.0	13.5									

SUSPENDED SEDIMENT DISCHARGE

				SUS- PENDED	SUS. SED.
		INSTAN-	SUS-	SEDI-	SIEVE
# P		TANEOUS	PENDED	MENT	DIAM.
		DIS-	SEDI-	DIS-	% FINER
	TIME	CHARGE	MENT	CHARGE	THAN
DATE	ITME	(CFS)	(MG/L)	(T/DAY)	.062 MM
DATE		(Crs)	(MG/L)	(I/DAT)	. UDZ MM
NOV , 19	75				
04	1100	31	75	6.3	3
DEC					
02	1030	48	4	.52	91
JAN , 19	76				
01	1030	59	7	1.1	64
FEB					
10	1130	70	4	.76	70
MAR					
02	1115	58	6	.94	73
APR					
14	1030	45	11	1.3	65
MAY					
11	1000	48	9	1.2	78
25	0915	45	9	1.1	78
JUN					
29	1045	33	25	5.5	80
JUL					
27	1100	28	24	1.8	89
AUG					
31	1200	38	4	.41	83
SEP					
21	1130	37	7	.70	88

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976 PHYTOPLANKTON

Date	Time	Organism	Count (cells/ml)	Percent of total	Date	Time	Organism	Count (cells/ml)	Percent of total
Nov. 4	1100	CHLOROPHYTA CHLOROPHYCEAE CHLOROCOCCALES			Dec. 2	1030	CHLOROPHYTA CHLOROPHYCEAE CHLOROCOCCALES		
		HYDRODICTYACEAE PEDIASTRUM	50	2			SCENEDESMACEAE SCENEDESMUS	240	12
		SCENEDESMACEAE SCENEDESMUS CHRYSOPHYTA	600	29			ZYGNEMATALES DESMIDIACEAE STAURASTRUM	59	3
		BACILLARIOPHYCEAE CENTRALES					CHRYSOPHYTA BACILLARIOPHYCEAE		
		COSCINODISCACEAE CYCLOTELLA	75	4			CENTRALES COSCINODISCACEAE		
		MELOSIRA PENNALES ACHNANTHACEAE	50	2			CYCLOTELLA MELOSIRA PENNALES	59 L	3
		ACHNANTHES	50	2			GOMPHONEMATACEAE	120	
		FRAGILARIA CEAE	75	4			GOMPHONEMA NAVI CULACEAE	120	6
		ASTERIONELLA FRAGILARIA	25 650	1 31			NAVICULA NITZSCHIACEAE	760	41
		GOMPHONEMATACEAE GOMPHONEMA	25	1			HANTZSCHIA NITZSCHIA	59 59	3 3
		NAVICULACEAE					CYANOPHYTA	33	3
		AMPHIPLEURA NITZSCHIACEAE	250	12			MYXOPHYCEAE CHROOCOCCALES		
		NITZSCHIA CYANOPHYTA	220	11			CHROOCOCCACEAE ANACYSTIS	470	25
		MYXOPHYCEAE OSCILLATORIALES					EUGLENOPHYTA CRYPTOPHYCEAE		
		OSCILLATORIACEAE	2.0				CRYPTOMONI DALES		
		LYNGBYA	L	0			CRYPTOMONODACEAE CRYPTOMONAS	59	3
		TOTAL	2,100				TOTAL	1,900	
Jan. 6	1030	CHLOROPHYTA			Feb. 10	1130	CHLOROPHYTA		
		CHLOROPHYCEAE CHLOROCOCCALES					CHLOROPHY CEAE CHLOROCOCCALES		
		HYDRODICTYACEAE PEDIASTRUM	L	0			OCCYSTACEAE ANKISTRODESMUS	19	5
		SCENEDESMACEAE SCENEDESMUS	23	3			CHRYSOPHYTA BACILLARIOPHYCEAE		
		CHRYSOPHYTA	23	3			CENTRALES		
		BACILLARIOPHYCEAE CENTRALES					CYCLOTELLA	19	5
		COSCINODISCACEAE CYCLOTELLA	6	1			PENNALES ACHNANTHACEAE		
		MELOSIRA PENNALES	L	0			ACHNANTHES EUNOTIACEAE	19	5
		ACHNANTHACEAE					EUNOTIA	19	5
		ACHNANTHES COCCONEIS	6 6	1 1			FRAGILARIACEAE FRAGILARIA	190	49
		EUNOTIACEAE EUNOTIA	12	2			SYNEDRA GOMPHONEMATACEAE	19	5
		FRAGILARIACEAE FRAGILARIA	76	11			GOMPHONEMA MERIDIONACEAE	9	2
		SYNEDRA	12	2			MERIDION	19	5
		GOMPHONEMATACEAE GOMPHONEMA	6	1			NAVI CULACEAE NAVI CULA	38	10
		MERIDIONACEAE MERIDION	L	0			NITZSCHIACEAE NITZSCHIA	19	5
		NAVICULACEAE NAVICULA	6	1			EUGLENOPHYTA EUGLENOPHYCEAE		
		NITZSCHIACEAE NITZSCHIA					EUGLENALES		
		SURIRELLACEAE	6	1			EUGLENACEAE EUGLENA	19	5
		SURIRELLA TABELLARIACEAE	6	1			TOTAL	380	
		TABELLARIA CYANOPHYTA	L	0					
		MYXOPHYCEAE							
		CHROOCOCCALES CHROOCOCCACEAE	10						
		ANACYSTIS GOMPHOSPHAERIA	18 64	2 9					
		OSCILLATORIALES NOSTOCACEAE							
		ANABAENA OSCILLATORIACEAE	35	5					
		OSCILLATORIA	440	61					
		TOTAL	720						
L - less	than	1%, may not have been	actually coun	ted.					

L - less than 1%, may not have been actually counted.

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

PHYTOPLANKTON

Date Ti	me	Organism	Count (cells/ml)	Percent of total	Date		Time	Organism	Count (cells/ml)	Percent of total
Mar. 2 11	CHLO	OPHYTA ROPHYCEAE OROCOCCALES			Apr.	14	1030	CHLOROPHYTA CHLOROPHYCEAE CHLOROCOCCALES		
	CHRYS	ENEDESMACEAE CENEDESMUS OPHYTA LLARIOPHYCEAE	190	5				SCENEDESMACEAE SCENEDESMUS CHRYSOPHYTA BACILLARIOPHYCEAE	L	0
	CEN	TRALES SCINODISCACEAE						CENTRALES COSCINODISCACEAE	440	
	PEN CY	ELOSIRA NALES MBELLACEAE	280	8				CYCLOTELLA MELOSIRA PENNALES	440 49	36 4
		YMBELLA NOTIACEAE	L	0				ACHNANTHACEAE ACHNANTHES	33	3
	E	UNOTIA	L	0				COCCONEIS	L	Ō
	F	AGILARIACEAE RAGILARIA	2,200	59				CYMBELLACEAE CYMBELLA	L	0
		MPHONEMATACEAE OMPHONEMA	L	0				EUNOTIACEAE EUNOTIA	L	0
		VICULACEAE AVICULA	660	18				FRAGILARIACEAE	16	1
		TZSCHIACEAE	660	10				ASTERIONELLA FRAGILARIA	530	43
		ITZSCHIA	94	3				SYNEDRA	16	1
		SOPHYCEAE						GOMPHONEMATACEAE		
		YSOMONADALES						GOMPHONEMA	16	1
		LLOMONADACEAE						MERIDINIACEAE		
		ALLOMONAS HROMONADACEAE	280	8				MERIDION NAVICULACEAE	L	0
		INOBRYON	L	0				NAVICULA PINNULARIA	82 L	7
	TOTAL		3,700					NITZSCHIACEAE		
								NITZSCHIA CHRYSOPHYCEAE CHRYSOMONADALES	33	3
								OCHROMONADACEAE DINOBRYON	16	1
								TOTAL	1,200	
May 11 10	CHLO CHL SC	OPHYTA ROPHYCEAE OROCOCCALES ENEDESMACEAE	_		May	25	1000	CHLOROPHYTA CHLOROPHYCEAE CHLOROCOCCALES SCENEDESMACEAE		
	VOL VO	CENEDESMUS VOCALES LVOCACEAE ANDORINA	1,800	41				SCENEDESMUS CHRYSOPHYTA BACILLARIOPHYCEAE CENTRALES	84	8
	CHRYS	OPHYTA						COSCINODISCACEAE	28	3
	CEN	LLARIOPHYCEAE TRALES						MELOSIRA PENNALES ACHNANTHACEAE	20	
	C	SCINODISCACEAF YCLOTELLA	140	3				COCCONEIS	28	3
		ELOSIRA NALES	110	3				FRAGILARIACEAE FRAGILARIA	700	69
		AGILARIACEAE						NAVICULACEAE		
		RAGILARIA	1,800	41				NAVICULA	110	11
		YNEDRA	28	1				NITZSCHIACEAE	56	6
		VICULACEAE AVICULA	280	6				NITZSCHIA	30	U
	NI	TZSCHIACEAE						TOTAL	1,000	
	CYANO	ITZSCHIA PHYTA	28	1						
	OSC	PHYCEAE ILLATORIALES CILLATORIACEAE								
		SCILLATORIA	110	3						
			4,400						72 1	

L - less than 1%, may not have been actually counted.

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

PHYTOPLANKTON

Date	Time	Organism	Count (cells/ml	Percent of total	Date	Time	Organism	Count (cells/ml)	Percent of total
June 29	1045	CHLOROPHYTA			July 27	1100	CHLOROPHYTA		
		CHLOROPHYCEAE			/		CHLOROPHYCEAE		
		CHLOROCOCCALES					CHLOROCOCCALES		
		HYDRODI CTYACEAE					OCCYSTACEAE		
		PEDIASTRUM	530	24			ANKISTRODESMUS	15	1
		OCCYSTACEAE					CHLORELLA	22	2
		ANKISTRODESMUS	L	0			OOCYSTIS	59	5
		OOCYSTIS	75	3			SELENASTRUM	7	1
		SCENEDESMACEAE					TREUBARIA	7	1
		SCENEDESMUS	660	29			SCENEDESMACEAE		
		VOLVOCALES					SCENEDESMUS	200	16
		CHLAMYDOMONADACEAE					TETRASPORALES		
		CHLAMY DOMONAS	170	7			COCCOMYXACEAE		
		VOLVOCACEAE					ELAKATOTHRIX	44	4
		EUDORINA	L	0			VOLVOCALES		
		CHRYSOPHYTA					CHLAMY DOMONADACE.	AE	
		BACILLARIOPHYCEAE					CHLAMYDOMONAS	170	14
		CENTRALES					VOLVOCACEAE		
		COSCINODISCACEAE					PANDORINA	210	17
		MELOSIRA	L	0			CHRYSOPHYTA		
		PENNALES					BACILLARIOPHYCEAE		
		FRAGILARIACEAE					CENTRALES		
		FRAGILARIA	110	5			COSCINODISCACEAE		
		GOMPHONEMATACEAE					MELOSIRA	L	0
		GOMPHONEMA	17	1			PENNALES		
		NAVICULACEAE					ACHNANTHACEAE		
		NAVICULA	42	2			ACHNANTHES	7	1
		NITZSCHIACEAE					FRAGILARIACEAE		
		NITZSCHIA	33	1			FRAGILARIA	270	22
		CHRYSOPHYCEAE					SYNEDRA	29	2
		CHRYSOMONADALES					GOMPHONEMATACEAE		
		OCHROMONADACEAE					GOMPHONEMA	15	1
		OCHROMONAS	L	0			NAVICULACEAE		
		CYANOPHYTA					NAVICULA	. 7	1
		MYXOPHYCEAE					NITZSCHIACEAE		
		CHROOCOCCALES					NITZSCHIA	29	2
		CHROOCOCCACEAE	1000000				CYANOPHYTA		
		ANACYSTIS	230	10			MYXOPHYCEAE		
		GOMPHOSPHAERIA	170	7			CHROOCOCCALES		
		EUGLENOPHYTA					CHROOCOCCACEAE	34	_
		EUGLENOPHYCEAE					ANACYSTIS	96	8
		EUGLENALES					EUGLENOPHYTA		
		EUGLENACEAE					EUGLENOPHYCEAE		
		TRACHELOMONAS	210	9			EUGLENALES		
		mom 4.4					EUGLENACEAE		
		TOTAL	2,300				EUGLENA	7	1 2
							TRACHELOMONAS	22	2
							TOTAL	1,200	

L - less than 1%, may not have been actually counted.

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

PHYTOPLANKTON

Date	Time	Organism	Count (cells/m1)	Percent of total	Date	Time	Organism	Count (cells/ml)	Percent of total
Aug. 31	1200	CHLOROPHYTA CHLOROPHYCEAE CHLOROCOCCALES HYDRODICTYACEAE			Sep. 2	1 1130	CHLOROPHYTA CHLOROPHYCEAE CHLOROCOCCALES OCCYSTACEAE		
		PEDIASTRUM OCCYSTACEAE	1,500	57			ANKISTRODESMUS OOCYSTIS	190 570	1 4
		ANKISTRODESMUS	L	0			SCENEDESMACEAE		
		TETRAEDRON SCENEDESMACEAE	L	0			CRUCIGENIA SCENEDESMUS	380 380	3 3
		SCENEDESMUS CHRYSOPHYTA BACILLARIOPHYCEAE CENTRALES COSCINODISCACEAE	310	12			CHRYSOPHYTA BACILLARIOPHYCEAE CENTRALES COSCINODISCACEAE CYCLOTELLA	7,400	58
		CYCLOTELLA	71	3			MELOSIRA	470	4
		MELOSIRA PENNALES	83	3			PENNALES DIATOMACEAE		
		FRAGILARIACEAE FRAGILARIA	71	3			DIATOMA FRAGILARIACEAE	380	3
		NAVICULACEAE					ASTERIONELLA	1,700	13
		NAVI CULA CYANOPHYTA	150	6			SYNEDRA NAVICULACEAE	190	1.
		MYXOPHYCEAE CHROOCOCCALES					NAVICULA NITZSCHIACEAE	470	4
		CHROOCOCCACEAE	100				NITZSCHIA EUGLENOPHYTA	280	2
		ANACYSTIS OSCILLATORIALES OSCILLATORIACEAE	120 240	9			EUGLENOPHYCEAE EUGLENALES EUGLENACEAE	74	
		OSCILLATORIA EUGLENOPHYTA	240	9			EUGLENACEAE	190	1
		EUGLENOPHYCEAE EUGLENALES					TRACHELOMONAS	190	1
		EUGLENACEAE TRACHELOMONAS	59	2			TOTAL	13,000	
		PYRRHOPHYTA DINOPHYCEAE PERIDINIALES PERIDINIACEAE							
		PERIDINIUM	L L	0					
		TOTAL	2,700						

L - less than 1%, may not have been actually counted.

01305000 CARMANS RIVER AT YAPHANK, NY

LOCATION.--Lat 40°49'49", long 72°54'24", Suffolk County, Hydrologic Unit 02030202, on left bank 50 ft (15 m) upstream from Long Island Railroad bridge, 0.2 mi (0.3 km) northeast of Yaphank Station, and 0.5 mi (0.8 km) southeast of Yaphank. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 71 mi2 (184 km2).

DAY

TOTAL

MEAN

MAX

MIN

23.3

25.7

OCT

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1942 to current year.

REVISED RECORDS. -- WSP 1141: Drainage area.

NOV

GAGE.--Water-stage recorder and concrete control. Datum of gage is 17.95 ft (5.471 m) above mean sea level. Prior to Feb. 2, 1967, at same site at datum 1.00 ft (0.30 m) higher.

REMARKS. -- Records good. Some regulation by two lakes above station.

AVERAGE DISCHARGE. -- 34 years, 23.1 ft 3 /s (0.654 m 3 /s).

DEC

JAN

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 83 ft 3 /s (2.35 m 3 /s) Sept 11, 1954, gage height, 1.25 ft (0.381 m), datum then in use; minimum, 2.8 ft 3 /s (0.079 m 3 /s) Feb. 24, 1967, gage height, 0.73 ft (0.223 m); minimum daily discharge, 6.2 ft 3 /s (0.18 m 3 /s) Feb. 28, Mar. 3, 1967, (result of temporary construction upstream).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976 MEAN VALUES

MAR

APR

MAY

JUN

JUL

25.5 30.8

26.5

AUG

SEP

25.6

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 62 ft 3 /s (1.76 m 3 /s) Nov. 13, gage height, 1.64 ft (0.500 m); minimum, 9.2 ft 3 /s (0.26 m 3 /s) Jan. 5, gage height, 0.95 ft (0.290 m) (result of freezeup).

FEB

25 27 33 .24 24 23 15 25 23

30.9

31.6

29.9

28.4

CAL YR 1975 TOTAL 9545 MEAN 26.2 MAX 45 MIN 21 WTR YR 1976 TOTAL 10148 MEAN 27.7 MAX 45 MIN 21

25.3

29.3

01305000 CARMANS RIVER AT YAPHANK, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

			SPE-	ALITT DA	The state of the	TEAN COTO					DIS-
		INSTAN- TANEOUS DIS-	CIFIC CON- DUCT- ANCE	РН	TEMPER-	DIS- SOLVED	PER- CENT SATUR-	HARD- NESS	NON- CAR- BONATE HARD-	DIS- SOLVED CAL- CIUM	SOLVED MAG- NE- SIUM
DATE	TIME	(CFS)	(MICRO- MHOS)	(UNITS)	(DEG C)	OXYGEN (MG/L)	ATION	(CA,MG) (MG/L)	NESS (MG/L)	(CA) (MG/L)	(MG/L)
ост											
28	1200	23	105	6.5	13.0	8.6	81	32	16	9.0	5.2
26 DEC	1030	25	100	7.0	7.0	10.8	88	31	15	8.3	2,5
30 FEB	1315	26	125	7.3	6.0	8.8	70	24	10	5.3	2.5
04	1030	34	104	6.5	4.0	11.7	88	27	12	7.0	2.3
25	1230	30	106	6.7		11.3	100	28	15	7.0	2.6
MAR 25	1300	31	107	7.2	11.5	13.7	124		-	-	
28	1000	28	102	6.5	12.5	11.4	106	29	13	7.0	2.7
28 JUN	1015	26	88	7.6	18.0	10.0	105	27	12	6.9	2.4
22	0915	30	97	6.7	21.0	6.7		25	8	6.5	2.1
JUL 27	0830	24	102	6.2	18.5	6.7		26	11	6.5	2.4
31 SEP	0900	29	102	6.5	16.0	8.6	-	29	14	6.9	2.9
21	0945	24	106	6.2	19.0	8.9		28	11	6.9	2.5
		D15-								015-	
	DIS-	SOLVED PO-			ALKA-	DIS-	DIS- SOLVED	DIS- SOLVED	DIS-	SOLVED	
	SOLVED	TAS- SIUM	BICAR- BONATE	CAR- BONATE	LINITY	SOLVED	CHLO- RIDE	FLUO- RIDE	SOLVED	(SUM OF CONSTI-	TOTAL NITRATE
	(NA)	(K)	(HCO3)	(CO3)	CACO3	(504)	(CL)	(F)	(SI02)	TUENTS)	(N)
DATE	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)
ост	7.3		19						12		.75
28	1.53	1.2		0	16	11	11	.0		66	
26 DEC	6.8	•9	20	0	16	13	13	•0	12	70	.90
30 FEB	7.5	1.0	16	. 0	13	9.8	14	•1	11	64	1.0
04	7.3	.9	18	0	15	14	12	.1	12	69	1.0
25 MAR	7.5	1.2	16	0	13	12	12	•1	11	63	.82
25 APR	7 T	7 To C	16	0	13	13	12	.0	11	10.4	.74
28	7.1	.9	19	0	16	10	10	.0	11	62	.83
28	7.1	.8	18	0	15	11	10	• 0	12	62	•66
22 JUL	7.0	.9	20	0	16	11	9.5	•1	12	62	.63
27 AUG	7.5	.8	19	0	16	12	11	.1	10	62	.61
31 SEP	7.8	.9	18	0	15	10	8.7	.1	9.9	59	•59
21	7.8	1.0	20	0	16	10	12	.1	9.6	63	•55

STREAMS ON LONG ISLAND
01305000 CARMANS RIVER AT YAPHANK--Continued

DATE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
0CT 28	.74	.01	.02	.02	•17	.93	.02	.01	37.0	100	.0
NOV 26	.90	.01	.01	.03	• 13	1.0	.02	.01	340	70	.0
DEC 30	1.1	.00	.01	.01	.13	1.1	.03	.00	300	7.0	.0
FEB	1.1	.00	•00	.00	•16	1.2	.04	.01	520	90	• 0
04 25	.46	.01	.01	.01	.16	.99	.02	.01	320	70	.0
MAR 25	.76	.01	.01	.01	.18	.93	.01	.01	360	70	.0
APR 28	.85	.01	.01	.01	.30	1.1	.03	.01	580	110	.0
YAM 28	.72	.01	.01	.04	•28	•95	.03	.01	520	70	.1
JUN 22	.64	.01	.01	.01	•25	.89	.02	.01	510	50	.0
JUL		.01	.01	•02	.23	.85	.04	.01	540	90	• 0
27 AUG	.57								500	90	• 0
31 SEP	.61	.01	.01	.01	•20	.80	•02	.02			
21	.69	.01	.01	.02	•25	.81	.03	.01	330	70	• 0

01305500 SWAN RIVER AT EAST PATCHOGUE, NY

LOCATION.--Lat 40°46'01", long 72°59'39", Suffolk County, Hydrologic Unit 02030202, on left bank 94 (29 m) downstream from Montauk Highway in East Patchogue, 200 ft (61 m) downstream from outlet of Swan Lake, and 1.2 mi (1.9 km) upstream from mouth. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 8.8 mi2 (23 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1946 to current year.

REVISED RECORDS .-- WSP 1622: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 2.84 ft (0.866 m) above mean sea level.

REMARKS.--Records fair, except those for June and July, which are poor. Flow regulated occasionally at outlet of Swan Lake.

AVERAGE DISCHARGE. -- 30 years, 12.4 ft3/s (0.351 m3/s).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $119 \text{ ft}^3/\text{s}$ (3.37 m³/s) Sept. 2, 1974, gage height, 1.79 ft (0.546 m), from rating curve extended above 18 ft³/s (0.51 m³/s); maximum gage height, 1.80 ft (0.549 m) Sept. 11, 1954 (backwater from debris); minimum discharge, 0.06 ft³/s (0.002 m³/s) Sept. 2, 1964, gage height, 0.02 ft (0.006 m); minimum daily, 4.3 ft³/s (0.12 m³/s) Oct. 13, 14, 1967.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 82 ft 3 /s (2.32 m 3 /s) Nov. 12, gage height, 1.42 ft (0.433 m), from rating curve extended above 18 ft 3 /s (0.51 m 3 /s); minimum 6.6 ft 3 /s (0.187 m 3 /s) Apr. 10, gage height, 0.41 ft (0.125 m) (result of regulation).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976 MEAN VALUES

DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	12	11	13	16	16	15	21	15	15	16	12	11
2	12	11	13	13	25	15	17	16	17	15	9.8	11
1 2 3	12	11	12	13	17	15	16	14	12	14	9.4	11
4	11	11	12	14	16	15	15	13	11	13	8.9	11
5	11	11	12	13	16	14	15	13	12	13	8.9	ii
6 7	11	11	12	13	16	14	15	13	12	12	8.9	11
7	11	11	12	15	16	14	15	13	12	14	8.9	10
8	11	12	12	18	16	14	15	13	12	12	18	10
9	11	12	12	14	15	14	14	13	12	10	20	10
10	11	12	15	14	15	14	13	13	12	9.4	51	ii
11	11	12	13	14	15	15	14	13	12	9.8	14	11
12	11	15	12	14	15	15	14	14	12	9.8	14	10
13	11	34	12	14	15	17	14	13	12	10	14	9.8
14	12	17	12	20	15	15	14	13	12	10	14	9.8
15	11	14	12	15	15	14	14	13	12	10	15	9.8
16	11	13	12	15	15	17	14	13	12	11	15	11
17	11	13	12	15	15	17	14	15	12	9.8	13	14
18	18	13	12	14	15	15	13	16	12	9.4	12	ii
19	16	13	12	14	15	15	13	16	12	8.9	12	ii
20	15	13	12	14		15	13		12	8.9	12	10
20	15	13	12	14	15	15	13	14	12	0.9	16	10
21	13	17	12	14	15	15	13	15	12	8.9	12	11
22	12	15	12	14	17	14	13	14	12	9.4	11	10
23	12	13	12	14	16	14.	13	14	11	8.9	11	10
24	12	13	12	14	15	14	13	13	11	16	11	10
25	12	13	12	14	15	14	13	13	11	16 9.8	11	9.8
26	12	12	21	16	15	14	14	13	11	9.4	11	9.8
27	12	13	16	18	15	14	13	13	12	8.9	16	10
28	11	13	13	21	15	15	13	13	12	8.9	13	11
29	11	12	13	16	15	14	13	13	16	9.4	13	10
30	11	12	13	15		14	13	13	16	10	13	11
31	11		15	15		14		12		9.4	11	
TOTAL	369	403	397	463	456	455	424	422	371	335.0	393.8	317.0
MEAN	11.9	13.4	12.8	14.9	15.7	14.7	14.1	13.6	12.4	10.8	12.7	10.6
MAX	18	34	21	21	25	17	21	16	17	16	21	14
MIN	11	11	12	13	15	14	13	12	ii	8.9	8.9	9.8
				1.0	13	**						the control of the control of

CAL YR 1975 TOTAL 4840.3 MEAN 13.3 MAX 34 MIN 8.5 WTR YR 1976 TOTAL 4805.8 MEAN 13.1 MAX 34 MIN 8.9

01305500 SWAN RIVER AT EAST PATCHOGUE, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	TIME	INSTAN- TANEOUS DIS- CHARGE (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)
01	1300	12	85	7.0	17.0	6.1		23	9	6.0	1.9	6.7
JAN 02	1100	13	57	6.5	3.0	10.0	74	20	7	4.3	2.3	7.1
MAR 22	1230	14	102	6.7	8.0	12.2	102	22	8	5.8	1.9	9.0
22	1045	12	90	7.4	20.0	10.6		17	2	5.0	1.2	8.0
22	0915	10	92	5.4	15.5	9.0						
DATE	DIS- SOLVED PO- TAS- SIUM (K)	BICAR- BONATE (HCO3) (MG/L)	CAR- BONATE (CO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)	DIS- SOLVED NITRATE (N) (MG/L)	
OCT 01	1.1	17	0	14	7.4	11	•1	10	56	.89	.84	
02 MAR	1.3	16	0	13	7.2	12	•2	. , 10	59	1.5	1.5	
22	1.4	18	0	15	8.3	13	•1	11	66	1.6	1.4	
22 SEP	1.2	19	0	16	7,0	9.0	•1	11	57	1.1	1.1	
22												

TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL ORGANIC NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
										100
.01	.01	.01	.19	• 20	1.1	.04	.01	240	40	• 0
						•		200	E 0	•
.01	.02	• 13	•15	• 28	1.8	.04	.01	200	50	• 0
. 01	0.1	0.4	23	20	1 0	.04	. 01	220	100	.0
	.01	• 00	• 23	•67	107		• • • •			• •
.03	.03	.03	.45	-48	1.6	.03	.01	280	70	.0
• • •	• • •		•	•		10.1				
										.0
	NITRITE (N) (MG/L) .01 .01 .01 .03	TOTAL SOLVED NITRITE NITRITE (N) (N) (MG/L) (MG/L) .01 .01 .01 .02 .01 .01 .03 .03	DIS- AMMONIA	DIS-	TOTAL SOLVED NITRO- NIT	TOTAL SOLVED NITRO- NIT	TOTAL SOLVED NITRO- NIT	TOTAL SOLVED NITRO- PHOS- PHORUS (N)	TOTAL SOLVED NITRO- NITRO- NITRO- NITRO- PHOS- PHORUS IRON (N) (N) (N) (N) (N) (N) (N) (P) (P) (FE) (MG/L)	TOTAL SOLVED NITRO- PHOS- PHOS- TOTAL MAN-GANESE (N) (N) (N) (N) (N) (N) (N) (P) (P) (FE) (MN) (MG/L) (MG/L

01306000 PATCHOGUE RIVER AT PATCHOGUE, NY

LOCATION.--Lat 40°45'56", long 73°01'16", Suffolk County, Hydrologic Unit 02030202, on left bank just downstream from Montauk Highway in Patchogue, and 1.0 mi (1.6 km) upstream from mouth. Water-quality sampling site at discharge station.

DRAINAGE AREA .-- About 13.5 mi2 (35.0 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1945 to September 1969, October 1973 to September 1976 (discontinued). Occasional low-flow measurements, water years 1970-73. Prior to October 1967, published as Patchogue Creek.

REVISED RECORDS .-- WSP 1141: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 0.50 ft (0.152 m) above mean sea level. Auxiliary water-stage recorder on right bank 254 ft (77 m) downstream from base gage, at same datum.

REMARKS. -- Records poor. Occasional regulation by powerplant above station.

AVERAGE DISCHARGE. -- 27 years (1946-69, 1974-76), 20.4 ft3/s (0.578 m3/s).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 83 ft 3 /s (2.35 m 3 /s) Oct. 16, 1955; minimum daily, 2.1 ft 3 /s (0.059 m 3 /s) Nov. 21, 1954.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 39 ft³/s (1.10 m³/s) Aug. 10; minimum daily, 14 ft³/s (0.40 m³/s) Oct. 17.

		DISCHARG	E, IN C	CUBIC FEET		ND. WATER	YEAR OCT	DBER 1975	TO SEPTEM	IBER 1976		
DAY	ост	NOV.	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	20	16	19	25	22	21	27	23	18	24	26	21
2	21	17	18	51	38	22	25	26	19	21	55	21
3	20	17	18	21	25	51	55	24	18	20	19	20
4	20	17	18	21	23	22	22	22	17	19	16	20
5	15	18	17	20	55	55	55	21	16	19	18	20
6	15	17	18	20	24	55	22	19	17	18	18	20
7	19	17	17	22	24	21	21	20	18	20	18	19
8	20	18	18	27	23	21	21	19	18	19	35	19
9	23	18	18	22	23	22	21	19	18	17	35	50
10	18	18	21	21	23	22	21	19	18	17	39	20
11	18	17	20	22	26	22	21	19	18	17	25	19
12	18	21	18	55	24	22	20	20	18	16	22	19
13	18	37	18	21	24	24	21	19	18	16	55	19
14	18	55	18	27	55	23	20	19	18	17	21	18
15	18	19	18	24	55	23	21	19	19	17	25	19
16	17	18	18	23	22	24	21	19	19	18	24	20
17	14	18	18	23	23	24	55	21	50	19	55	23
18	21	18	18	22	55	22	23	19	19	17	21	20
19	22	18	17	22	22	22	55	19	19	17	20	19
20	51	20	17	55	23	55	55	17	19	16	50	19
21	19	26	18	23	22	22	22	18	19	17	20	18
22	18	24	20	23	25	22	55	17	20	17	21	18
23	18	20	19	55	24	21	21	17	20	17	21	18
24	17	19	18	55	22	51	21	18	20	26	20	18
25	17	18	18	22	22	21	23	18	20	19	50	17
26	18	18	27	23	22	21	23	18	20	18	20	18
27	18	20	24	27	22	21	22	18	20	17	25	18
28	17	19	20	31	55	22	55	17	20	17	23	18
29	17	18	19	25	22	20	55	16	24	16	51	36
30	18	18	20	23		21	55	17	25	19	21	38
31	18		23	53		21		17		18	20	
TOTAL	571	581	588	712	680	677	657	594	572	565	702	612
MEAN	18.4	19.4	19.0	23.0	23.4	21.8	21.9	19.2	19.1	18.2	22.6	20.4
MAX	23	37	27	31	38	24	27	26	25	26	39	38
MIN	14	16	17	20	22	20	20	16	16	16	18	17

CAL YR 1975 TOTAL 7501 MEAN 20.6 MAX 41 MIN 14 WTR YR 1976 TOTAL 7511 MEAN 20.5 MAX 39 MIN 14

01306000 PATCHOGUE RIVER AT PATCHOGUE, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD, -- May 1966 to current year.

DATE OCT 01 JAN 02 MAR 22 JUN	TIME 1400 1200 1430	INSTAN- TANEOUS DIS- CHARGE (CFS) 20 21	SPE- CIFIC CON- DUCT- ANCE (MICPO- MHOS)	PH (UNITS) 7.0 7.0 6.7	TEMPER- ATURE (DEG C) 21.0 3.0 9.0	DIS- SOLVED OXYGEN (MG/L) 5.2 8.1	PER- CENT SATUR- ATION	HARD- NESS (CA,MG) (MG/L) 32 25	NON- CAR- BONATE HARD- NESS (MG/L)	DIS- SOLVED CAL- CIUM (CA) (MG/L) 8.1 5.7	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L) 2.9 2.6
SE.P	1200	20	130	6.8	22.0	7.8		25	7	6.5	5.5
55	1000	18	130	7.1	19.5	8.4		29	11	7.0	2.7
DATE	UIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	CAR- BUNATE (CU3) (MG/L)	ALKA- LINITY AS CACU3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RTDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
ост											
01	9.8	1.7	24	0	20	10	13	.1	6.6	69	1.1
02 02	11	1.9	20	U	16	8.8	16	• 2	9.3	72	1.6
22	12	2.1	23	U	19	11	16	.1	8.3	78	1.8
22 SEP	10	1.9	22	0	18	9.4	13	.1	7.6	67	1.2
22	11	1.8	22	U	18	10	15	.1	9.3	74	1.3
DATE	DIS- SOLVED NITHATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMUNIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
OCT	1 1	0.1				1 16	0.5	0.1	04.0	1.70	
01 JAN	1.1	.01	•01	•02	.31	1.4	• 05	.01	940	170	• 0
02	1.5	.02	.03	.34	• 44	2.0	.03	.00	350	110	• 0
22 JUN	1.5	.01	.01	.18	•62	2.4	.03	.01	420	160	•1
22 SEP	1.2	.03	.03	.18	•58	1.8	.04	.03	440	200	• 0
22	1.3	.03	.03	•09	•30	1.6	.03	•01	440	120	• 0

01306405 LAKE RONKONKOMA INLET AT LAKE RONKONKOMA, NY

WATER-QUALITY RECORDS

LOCATION.--Lat 40°49'57", long 73°07'34", Suffolk County, Hydrologic Unit 02030202, at inlet to Lake Ronkonkoma, 50 ft (15 m) downstream from Shore Road culvert, and 300 ft (91 m) downstream from Smithtown Boulevard culvert.

DRAINAGE AREA .-- Not available at time of publication.

PERIOD OF RECORD.--Water years 1966, 1971 to September 1976 (discontinued). Prior to October 1975, published as Lake Ronkonkoma at Lake Ronkonkoma.

REMARKS .-- Partial-record discharge data included in this report.

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICHO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)
0CT 01	1030	170	6.4	19.0	2.4		42	11	11	3.6	12
DEC	1030		0.4	.,,,							
30	1430	550	5.5	2.0	4.9	35	36	12	8.7	3.4	16
24 JUN	1500	116	6.9	10.0	12.2	108	23	10	5.7	5.2	11
24 SEP	1315	125	6.7	28.0	10.4		24	9	5.2	2.6	12
24	1030	140	7.1	19.0	8.4		28	1	6.9	2.5	13
DATE	DIS- SOLVED PO- TAS- SIUM (K)	HICAR- HONATE (HCO3) (MG/L)	CAK- BONATE (CO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL)	DIS- SOLVED FLUO- HIDE (F)	DIS- SOLVED SILICA (SIO2)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)	DIS- SOLVED NITRATE (N) (MG/L)
	(407)	((11072)	(((40,5)					
01 DEC	2.4	38	0	31	15	18	.2	11	94	.53	.36
30	2.3	29	0	24	16	24	•1	8.5	100	1.4	1.5
24 JUN	1.0	16	. 0	13	14	16	• 0	.3	60	.19	.18
24 SEP	1.7	18	0	15	13	17	.1	.4	61	.01	.06
24	1.8	. 32	0	26	10	18	.1	4.4	73	.06	

TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHUS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
.02	.01	.40	.86	1.4	.03	.01	1900	230	.1
						0.0	1400	1,10	.0
.01	.02	.50	.84	5.5	4	.00	1400	190	• •
.01	.01	.02	.42	.62	.04	.01	390	30	•0
.01	.01	.01	.93	.95	.04	.02	1200	70	.1
.01	.02	.20	.98	1.1	.06	.01	1700	140	.0
	.02 .01 .01	TOTAL SOLVED NITRITE (N) (N) (MG/L) (MG/L) .02 .01 .01 .02 .01 .01 .01 .01	OIS- AMMONIA SOLVED NITRO- SOLVED NITR	TOTAL SOLVED NITRO- NITRITE NITHITE GEN GEN (N) (N) (N) (N) (N) (MG/L) (MG/L) (MG/L) (MG/L) .02 .01 .40 .86 .01 .02 .50 .84 .01 .01 .02 .42 .01 .01 .01 .93	TOTAL SOLVED NITRO- NITRITE NITHITE GEN GEN GEN GEN GEN GEN GEN GEN GEN GE	TOTAL SOLVED NITRO- NITRO- NITRO- PHOS- NITRITE NITRITE GEN GEN GEN GEN PHORUS (N) (N) (N) (N) (N) (N) (N) (N) (P) (MG/L) (MG/L) (MG/L) (MG/L) (MG/L) (MG/L) .02 .01 .40 .86 1.4 .03 .01 .02 .50 .84 2.2 .04 .01 .01 .02 .42 .62 .04 .01 .01 .01 .02 .42 .62 .04	TOTAL MMONIA DAHL TOTAL ORTHO FOTAL SOLVED NITRO- NITRO- NITRO- PHOS- NITRITE NITHITE GEN GEN GEN PHORUS (N) (N) (N) (N) (N) (N) (N) (P) (P) (MG/L) (MG/L) (MG/L) (MG/L) (MG/L) (MG/L) .02 .01 .40 .86 1.4 .03 .01 .01 .02 .50 .84 2.2 .04 .00 .01 .01 .02 .42 .62 .04 .01 .01 .01 .02 .42 .62 .04 .01	TOTAL SOLVED NITRO- NITRO- NITRO- PHOS- PHORUS IRON (N) (N) (N) (N) (N) (N) (P) (P) (FE) (MG/L) (MG/	TOTAL SOLVED NITRO- NITRO- PHOS- PHOS- TOTAL MAN-

01306500 CONNETQUOT RIVER NEAR OAKDALE, NY

LOCATION.--Lat 40°44'51", long 73°09'03", Suffolk County, Hydrologic Unit 02030202, on left bank just downstream from bridge on State Highway 27, 1.0 mi (1.6 km) west of Oakdale. Water-quality sampling site at each discharge station.

DRAINAGE AREA. -- About 24 mi2 (62 km2).

WATER-DISCHARGE KECORDS

PERIOD OF RECORD. -- October 1943 to current year (monthly means estimated October 1974 to September 1975).

REVISED RECORDS. -- WSP 1141: Drainage area.

GAGE.--Base gage (01306499): Water-stage recorder and wooden stoplog control (temporarily removed). Datum of gage is 1.56 ft (0.475 m) above mean sea level.

Supplementary gage (01306495): Water-stage recorder with concrete control on left bank of secondary channel 0.25 mi (0.40 km) northeast of base gage at datum 4.74 ft (1.445 m) above mean sea level. Prior to Aug. 10, 1965, at datum 1.0 ft (0.30 m) higher.

REMARKS.--Records poor. Flow at both gages occasionally regulated by cleaning operations at outlets of ponds above stations. Discharge figures are those of combined flows in main and secondary channels.

AVERAGE DISCHARGE .-- 33 years, 38.0 ft 3/s (1.076 m3/s).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 263 ft 3 /s (7.45 m 3 /s) Oct. 16, 1955; minimum daily, 16 ft 3 /s (0.45 m 3 /s) Oct. 13, 1966.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 80 ft 3 /s (2.27 m 3 /s) Aug. 10; minimum daily 34 ft 3 /s (0.96 m 3 /s) Sept. 13-15.

DISCHARGE, IN	CUBIC FE	T PER	SECOND,	WATER	YEAR	OCTOBER	1975	TO	SEPTEMBER	1976
			MEAN	VALUES						

DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	38	38	43	49	50	47	47	42	43	39	38	39
2	37	38	43	48	59	47	47	45	46	37	36	39
2	37	38	43	47	54	47	46	47	44	37	36	40
4	37			48	53	47	45	46	43	37	36	39
5	37			47	52	47	45	44	42	38	35	38
6	37	38	43	. 46	51	47	45	44	42	37	35	38
7	37	38	43	46	51	47	45	44	42	38	36	37
8	37	39	43	50	50	47	44	44	42	37	50	39
9	37	38	43	49	50	47	44	43	41	37	60	40
10	37	37	46	49	49	47	44	43	41	37	80	42
11	37	37	45	49	50	48	43	43	41	38	50	42
12	37	37	44	47	49	48	43	44	41	37	45	40
13	37	53	43	46	49	51	43	43	41	37	42	34
14	37	51	43	49	49	51	43	43	41	35	40	34
15	37	47	43	48	49	49	43	43	41	35	45	34
16	37	46	43	47	49	49	43	44	41	36	43	35
17	37			47	49	49	43	44	41	37	41	37
18	46			47	49	48	43	44	41	36	40	37
19	45			47	49	48	43	45	41	36	39	36
20	43			47	49	47	43	45	41	36	38	35
21	42	45	43	47	49	47	43	45	41	35	37	35
22	34	4 4	43	47	50	47	43	45	39	36	38	35
23	39	. 46	42	45	49	46	43	43	40	36	39	35
24	39	49	42	49	49	46	43	43	40	39	40	35
25	39	49	41	47	48	46	43	43	41	37	39	35
26	39	49	5 47	47	48	46	44	43	44	36	38	35
27	39	4.5	5 51	51	48	45	42	43	43	36	42	36
28	39	49	5 48	57	47	46	42	43	44	36	42	36
29	39	4 43	3 46	53	47	45	41	43	49	36	41	35
30	39	43	3 46	51		45	41	43	45	37	40	36
31	39				,	45		43		36	39	
TOTAL	1196	1282	2 1364	1497	1445	1462	1307	1357	1262	1137	1300	1108
MEAN	38.6	42.	7 44.0	48.3	49.8	47.2	43.6	43.8	42.1	36.7	41.9	36.9
MAX	46			57	59	51	47	47	49	39	. 80	42
MIN	3				47	45	41	42	39	35	35	34

CAL YR 1975 TOTAL ---- MEAN 43 MAX -- MIN -- WTR YR 1976 TOTAL 15717 MEAN 42.9 MAX 80 MIN 34

01306500 CONNETQUOT RIVER NEAR OAKDALE, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- 01306499 (Base gage): May 1966 to current year.

DATE	TIME	INSTAN- TANEOUS DIS- CHARGE (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION	HARD- NESS (CA,MG) (MG/L)	NON- CAR BONATE HARD- NESS (MG/L)	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)
OCT 07	1300	19	80	7.1	16.0	8.2		26	11	6.7	2.3	5.3
JAN			A SHE SHE									
02	1430	21	80	6.9	5.0	7.6	59	19	6	3.9	2.3	7.3
MAR									A Park	344		S.E. LEBERT
22	1030	55	97	6.5	6.0	10.8	90	26	12	6.1	2.6	6.0
22	1315	25	80	7.1	22.0	9.8		19	3	4.5	1.9	5.0

DATE	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	CAR- BONATE (CO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)	DIS- SOLVED NITRATE (N) (MG/L)
0CT 07	.8	19	0	16	5.7	8.0	.0	11	54	.87	.97
JAN 02	.9	16	0	13	6.5	10	•1	9.7	53	•99	.99
22 JUN	1.2	17	0	14	6.6	9.0	•1	10	55	1.3	1.1
22	.9	20	0	16	5.8	6.3	•1	11	50	.91	.93

	TOTAL NITRITE (N)	DIS- SOLVED NITRITE (N)	TOTAL AMMONIA NITRO- GEN (N)	TOTAL ORGANIC NITRO- GEN (N)	TOTAL KJEL- DAHL NITRO- GEN (N)	TOTAL NITRO- GEN (N)	TOTAL PHOS- PHORUS (P)	TOTAL ORTHO PHOS- PHORUS (P)	TOTAL IRON (FE)	TOTAL MAN- GANESE (MN)	METHY- LENE BLUE ACTIVE SUB- STANCE
DATE	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(UG/L)	(UG/L)	(MG/L)
07 JAN	.01	.01	.01	.17	•18	1.1	.04	.01	210	30	.0
02	.01	.01	.07	.10	.17	1.2	.04	.01	280	30	.0
MAR 22 JUN	.00	.01	.04	.31	.35	1.7	.04	•01	240	60	.0
22	.02	.02	.07	.38	•45	1.4	.05	.02	380	50	.0

01306500 CONNETQUOT RIVER NEAR OAKDALE, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--01306495 (Supplementary gage): February 1967 to current year.

DATE	TIME	INSTAN- TANEOUS DIS- CHARGE (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)
OCT												
03	0930	19	75	6.3	11.0	8.5		26	11	6.5	2.4	5.5
JAN												
06 Mar	1000	24	48	6.4	3.0	10.7	79	21	6	4.2	2.5	6.1
22	1100	25	98	6.7	7.5	11.2	93	23	10	4.7	2.7	6.0
JUN												
22	1415	14	82	8.6	23.0	11.4		19	3	4.5	1.9	5.0
22	1200	7.5	81	7.0	16.0	9.8		21	4	4.5	2.3	5.7

	DIS- SOLVED PO- TAS- SIUM (K)	BICAR- BONATE (HCO3)	CAR- BONATE (CO3)	ALKA- LINITY AS CACO3	DIS- SOLVED SULFATE (SO4)	DIS- SOLVED CHLO- RIDE (CL)	DIS- SOLVED FLUO- RIDE (F)	DIS- SOLVED SILICA (SIO2)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS)	TOTAL NITRATE (N)	DIS- SOLVED NITRATE (N)
DATE	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)
OCT 03 JAN	.9	19	0	16	5.7	8.7	•1	11	55	.99	1.1
06	.9	18	0	15	5.4	8.5	.0	11	53	1.4	1.3
MAR 22 JUN	.8	16	0	13	6.6	8.7	•1	10	52	1.3	1.1
22 SEP	.9	20	0	16	5.1	6.4	.1	11	49	.97	.97
22	1.0	20	0	16	4.8	8.1	.1	11	52	.99	.98

DATE	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL ORGANIC NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
ост											
03 JAN	.01	.01	.01	•32	.33	1.3	.04	.01	230	40	• 0
06 MAR	.01	.01	.08	1.0	1.1	2.5	.04	.01	180	30	.0
22	.00	.01	.04	.13	•17	1.5	.03	.01	200	40	.0
22	.02	.03	.05	.30	.35	1.3	.05	.03	320	50	• 0
SEP 22	.01	.02	.06	.19	•25	1.3	.04	.01	250	30	.0

01307000 CHAMPLIN CREEK AT ISLIP, NY

WATER-QUALITY RECORDS

LOCATION.--Lat 40°44'13", long 73°12'08", Suffolk County, Hydrologic Unit 02030202, on right bank just upstream from Long Island Railroad bridge, 220 ft (67 m) downstream from Moffitt Boulevard, at Islip, and 1.8 mi (2.9 km) upstream from mouth.

DRAINAGE AREA. -- About 6.5 mi2 (16.5 km2).

PERIOD OF RECORD .-- Water years 1966 to current year.

REMARKS .-- Partial-record discharge data included in this report.

		INSTAN-	SPE- CIFIC CON-				PER-		NON- CAR-	DIS- SOLVED	DIS- SOLVED MAG-
		TANEOUS DIS-	DUCT-	РН	TEMPER-	DIS- SOLVED	CENT SATUR-	HARD- NESS	BONATE HARD-	CIUM	NE-
	TIME	CHARGE	(MICRO-		ATURE	OXYGEN	ATION	(CA,MG)	NESS	(CA)	(MG)
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	(MG/L)		(MG/L)	(MG/L)	(MG/L)	(MG/L)
JAN						50 6.8	100	0.7		The state of	1981
02 MAR	1330		163	6.2	9.0	5.6	48	35	15	8.3	2.7
25 JUN	1500	10	171	6.5	12.5	11.6	108	35	55	9.6	2.6
23 SEP	0815		155	6.3	14.0	7.2		31	15	8.3	2.5
22	1245		160	6.3	15.5	7.9		32	19	8.6	2.6
					3.11.102			44.3.48			
		387 (FE)	TO MUSE						- 200	0.16	
		DIS-					17.6	010	Thurst.	DIS- SOLVED	
	No.	SOLVED	12 Tyrous		177	121	DIS-	DIS-	0.0	SOLIUS	
	DIS-	P0-	1,7,0%]	1.71.71	ALKA-	DIS-	SOLVED	SOLVED FLUO-	SOLVED	(SUM OF	TOTAL
	SOLVED	TAS-	BICAR-	CAR-	LINITY	SOLVED	CHLO-			CONSTI-	NITRATE
	SODIUM	SIUM	BONATE	BONATE	AS	SULFATE	RIDE	RIDE	SILICA	TUENTS)	(N)
	(NA)	(K)	(HC03)	(CO3)	CAC03	(504)		(F)	(5102)		(MG/L)
DATE	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L/
JAN 02	15	2.2	20	0	16	18	20	.1	11	96	2.4
MAR								A bonder of			
25 JUN	14	2.1	15	0	12	19	19	.0	- 11	90	1.6
23 SEP	10	2.1	19	0	16	17	16	.1	11	84	1.7
22	14	2.1	16	0	13	18	19	.1	12	92	1.7
					TOTAL						METHY-
				TOTAL	KJEL-			TOTAL			LENE
	DIS-		DIS-	AMMONIA	DAHL	TOTAL	TOTAL	ORTHO		TOTAL	BLUE
	SOLVED	TOTAL	SOLVED	NITRO-	NITRO-	NITRO-	PHOS-	PHOS-	TOTAL	MAN-	ACTIVE
	NITRATE	NITRITE	NITRITE	GEN	GEN	GEN	PHURUS	PHORUS	IRON	GANESE	SUB-
	(N)	(N)	(N)	(N)	(N)	(N)	(P)	(P)	(FE)	(MN)	STANCE
DATE	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(UG/L)	(UG/L)	(MG/L)
JAN											
02	2.0	.01	.02	.89	1.1	3.5	.05	.00	470	480	.1
MAR	4.4				911					EP-LAND	
25 JUN	1:3	.01	.01	.64	.82	2.4	.03	.01	560	430	.1
23 SEP	1.8	.05	.05	.80	.88	2.6	.03	.01	410	460	•1 •1

01307500 PENTAQUIT CREEK AT BAY SHORE, NY

LOCATION.--Lat 40°43'37", long 73°14'41", Suffolk County, Hydrologic Unit 02030202, on right bank just upstream from Union Avenue in Bay Shore, and 4,500 ft (1,372 m) upstream from mouth. Water-quality sampling site at discharge station.

DRAINAGE AREA .-- About 5 mi2 (13 km2).

DAY

30

31

TOTAL

MEAN

MAX

5.0

5.0

181.9

5.87

6.9

219.3

7.31

OCT

NOV

DEC

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1945 to current year.

REVISED RECORDS (WATER YEARS). -- WSP 1141: Drainage area. WSP 1702: 1955(M), 1956, 1959(M).

GAGE .- - Water-stage recorder and concrete control. Datum of gage is 6.64 ft (2.024 m) above mean sea level.

REMARKS. -- Records fair except those for October, November and August, which are poor.

JAN

FEB

AVERAGE DISCHARGE. -- 31 years, 6.31 ft^3/s (0.179 m^3/s).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 71 ft³/s (2.01 m³/s) Oct. 7, 1972, gage height, 2.01 ft (0.613 m); maximum gage height, 2.31 ft (0.704 m) Oct. 16, 1955, from floodmarks, Sept. 13, 1971 (backwater from debris); minimum discharge, 0.90 ft³/s (0.026 m³/s) Dec. 6, 1975, gage height, 0.15 ft (0.046 m) (result of temporary construction upstream).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 34 ft 3 /s (0.96 m 3 /s) Aug. 9, gage height, 1.61 ft (0.491 m); minimum, 1.4 ft 3 /s (0.040 m 3 /s) Sept. 15, gage height, 0.36 ft (0.110 m) (result of regulation).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976 MEAN VALUES

MAR

APR

6.3

219.2

7.31 13

5.9

195.2

6.30

6.9

171.6

5.72

MAY

JUN

JUL

5.0

5.9

247.0

7.97

167.5

5.58 8.8

153.3

4.95

AUG

1	6.3	5.0	7.6	12	9.9	7.8	13	8.2	7.4	7.4	9.2	5.5	
2 3 4	5.7	5.0	6.9	8.4	15	7.8	8.2	8.2	8.2	4.8	5.0	6.9	
3	5.5	5.0	6.7	9.7	9.2	7.8	7.6	6.5	5.9	4.4	4.6	6.1	
4	5.5	4.8	6.7	8.2	9.0	8.0	7.6	6.5	5.7	4.2	4.6	5.5	
5	5.2	4.6	6.7	7.8	8.8	8.0	7.4	6.3	5.5	4.2	4.6	5.5	
6	5.7	4.4	6.7	7.8	8.8	7.6	7.1	6.1	5.5	4.1	4.4	5.5	
7	5.0	4.8	6.3	9.9	8.4	8.8	6.9	6.7	5.5	4.6	4.6	5.0	
8	5.0	5.7	6.3	12	8.4	9.7	7.1	6.3	5.5	4.2	19	5.0	
9	5.0	4.8	7.1	8.4	8.2	9.9	6.9	5.9	5.5	4.4	14	5.0	
10	4.8	4.8	9.0	8.0	8.2	10	7.1	5.9	5.5	4.2	23	5.7	
11	5.0	4.8	6.5	8.2	8.8	10	6.9	5.9	5.5	4.1	10	5.5	
12	4.6	8.0	6.1	8.4	8.2	9.0	6.9	6.7	5.5	4.1	8.2	5.0	
13	4.6	22	6.3	8.8	8.2	11	6.9	5.7	5.5	4.1	7.8	5.0	
14	5.5	12	6.3	12	8.0	7.6	6.9	5.7	5.2	4.1	7.8	5.5	
15	4.4	8.0	6.2	8.4	8.0	7.1	7.1	5.7	5.7	4.1	14	4.4	
16	4.4	7.6	6.3	9.7	8.0	9.9	7.1	5.9	5.5	8.4	9.0	5.9	
17	4.6	7.4	6.1	8.4	8.8	9.0	7.1	5.7	5.9	5.5	7.1	8.8	
18	14	6.9	6.1	7.8	8.2	7.6	7.1	6.5	5.5	4.6	6.7	5.0	
19	12	6.9	6.9	7.6	8.2	7.6	7.1	8.8	5.5	4.2	6.7	5.7	
20	8.0	6.9	6.3	7.6	8.2	6.5	7.1	6.3	5.5	4.2	6.1	5.7	
21	5.5	11	6.1	7.8	7.8	5.5	7.1	8.6	5.5	4.2	7.6	5.7	
22	6.3	10	6.3	7.8	9.9	8.8	6.9	6.3	5.5	4.8	6.7	5.2	
23	5.9	7.8	6.3	7.4	8.0	6.5	7.4	6.1	5.5	4.4	6.5	5.2	
24	5.5	7.4	5.9	7.4	7.8	7.4	7.1	5.7	5.5	11	6.3	5.7	
25	6.3	7.1	5.9	7.4	7.8	7.1	8.0	5.7	5.5	4.6	6.5	5.2	
26	5.7	6.9	14	9.4	7.8	6.9	8.0	5.5	5.2	4.4	6.3	5.0	
27	5.5	8.8	9.9	13	7.6	6.9	6.5	5.5	5.0	5.0	7.1	5.7	
28	5.2	7.1	7.8	12	7.6	5.9	6.5	5.5	4.8	4.6	6.3	5.9	
29	5.2	6.9	7.4	8.8	7.6	7.4	6.3	5.5	6.7	5.5	6.1	5.2	
				3.00				- • •	- • •				

7.99

11 5.5

CAL YR 1975 TOTAL 2782.4 WTR YR 1976 TOTAL 2549.2 MEAN 7.62 MEAN 6.97 MAX 28 MAX 23 MIN 3.3 MIN 4.1

8.0

8.0

276.5

8.92

7.4

248.4

8.57

15

11

221.7

7.15

5.9

01307500 PENATAQUIT CREEK AT BAY SHORE, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

DATE	TIME	INSTAN- TANEOUS DIS- CHARGE (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION	HARD- NESS (CA,MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)
JAN												
07 MAR	1045	7.6	332	6.3	8.0	7.6	64	55	32	16	3.7	36
23 JUN	1500	6.5	352	6.6	13.0	10.0	94	54	39	16	3.4	38
23 SEP	0930	5.5	350	6.7	16.0	7.8		50	34	14	3.7	40
22	1315	5.2	360	6.7	16.0	8.3		51	35	15	3.4	38

DATE	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	CAR- BONATE (CO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)	DIS- SOLVED NITRATE (N) (MG/L)
DATE	(MO/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MO/L)	(MO/L)	(MG/L)	(MG/L)	(MO/L)
JAN 07	3.0	28	0	23	21	62	•2	10	182	3.7	3.6
MAR 23	3.1	18	0	15	25	64	.0	10	178	2.8	2.1
JUN 23	3.1	20	0	16	21	64	•1	11	183	3.6	3.6
SEP 22	2.8	20	0	16	20	65	•1	11	180	3.3	3.2

DATE	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL ORGANIC NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
		The same			11107 27	(1101 21	11107 67		,00,2,		
JAN											
07	.01	.02	.89	.71	1.6	5.3	.04	.00	920	880	.1
MAR											
23	.02	.02	.62	.48	1.1	3.9	.02	.01	510	740	.1
JUN											
23	.05	.05	.38	.20	•58	4.2	.01	.01	400	440	.1
SEP											
22	.06	.06	.52	.41	.93	4.3	.03	.01	500	660	.1

01308000 SAMPAWAMS CREEK AT BABYLON, NY

LOCATION.--Lat 40°42'15", long 73°18'52", Suffolk County, Hydrologic Unit 02030202, on left bank at upstream side of John Street Bridge in Babylon, 180 ft (55 m) downstream from Long Island Railroad, and 0.6 mi (1.0 km) upstream from mouth. Water-quality sampling site at discharge station.

DRAINAGE AREA .-- About 23 mi2 (60 km).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1944 to current year (monthly means estimated December 1966 to November 1967).

REVISED RECORDS (WATER YEARS). -- WSP 1141: Drainage area: WSP 1702: 1955(M), 1956(M). WRD NY 1974: 1970(P).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 6.36 ft (1.939 m) above mean sea level. October 1944 to December 1966, water-stage recorder at site 100 ft (30 m) east and 0.34 ft (0.104 m) higher.

REMARKS.--Records fair except those from July to September, which are poor. Flow regulated slightly by pumping operations at railroad and occasionally by ponds above station. Indeterminate effect caused by ground-water pumpage for water-supply purposes at Smith Street substation 0.2 mi (0.3 km) northwest of gage. Prior to November 1950, slight diurnal fluctuation caused by power operations. Discharge was affected by dewatering activities connected with sewer construction.

AVERAGE DISCHARGE.--32 years, 9.55 ft^3/s (0.270 m^3/s).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 136 ft 3 /s (3.85 m 3 /s) Sept. 12, 1960, gage height, 2.11 ft (0.643 m), datum then in use; maximum gage height, 3.28 ft (1.000 m) Feb. 7, 1971; minimum discharge, 1.6 ft 3 /s (0.045 m 3 /s) June 28, 1963, gage height, 0.13 ft (0.040 m), datum then in use.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 55 ft³/s (1.56 m³/s) and maximum (*):

Date	Time	Discha (ft ³ /s)	arge (m³/s)	Gage (ft)	height (m)	Date	Time	Disch (ft ³ /s)	arge (m³/s)	Gage (ft)	height (m)
Nov. 13			1.73			Aug. 9	2345	*82	2.32	2.71	0.83

Minimum discharge, 1.5 ft 3 /s (0.042 m 3 /s), May 29, gage height, 0.12 ft (0.037 m).

		DISCHA	ROE, IN C	UBIC PEET	ME!	AN VALUES	TEAR OCT	JOEK 1773	10 327 12	ADER 1710		
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	22	3.2	9.5	16	12	10	20	17	9.1	7.6	11	7.9
ż	20	3.2	7.9	ii	25	10	12	17	10	5.8	6.1	11
3	15	4.5	7.2	12	14	10	11	15	7.2	5.5	5.2	8.7
4	8.7	3.2	6.1	11	13	10	9.8	15	5.1	5.2	5.2	8.7
5	9.1	3.5	6.5	10	13	10	10	14	4.8	5.2	5.2	7.9
6	9.1	2.9	6.5	9.8	13	10	12	14	4.8	4.8	5.2	7.6
7	16	3.5	6.1	15	12	11	11	14	6.1	5.5	5.2	6.8
8	13	2.7	6.8	18	12	10	12	14	5.8	4.8	34	6.5
9	14	2.4	7.9	12	12	11	14	15	5.1	5.5	32	6.5
10	14	3.8	11	11	12	11	15	15	5.1	5.2	35	7.9
11	7.9	3.5	7.9	11	13	12	15	15	5.1	5.2	15	7.2
12	7.9	8.3	7.2	11	12	11	14	17	4.8	5.2	12	6.5
13	7.9	22	6.5	12	12	17	14	16	5.1	5.5	11	6.5
14	16	8.7	6.8	16	11	12	15	16	5.1	4.5	11	6.1
15	13	6.5	7.9	12	11	11	16	15	5.8	4.5	19	6.5
16	12	5.5	7.6	12	11	17	16	15	5.8	9.5	12	6.5
17	12	5.8	7.2	12	12	14	16	17	5.8	5.8	10	9.5
18	23	5.8	7.6	10	12	12	17	18	5.5	5.2	9.8	7.9
19	21	5.1	7.2	9.8	11	11	15	23	5.5	4.8	9.1	7.6
20	24	5.8	7.9	11	11	11	14	14	5.5	4.5	9.1	7.6
21	20	14	8.7	11	10	12	15	19	5.5	4.5	8.7	7.6
22	15	8.7	8.3	10	13	11	16	14	5.1	5.2	8.3	6.8
23	14	7.2	7.9	9.5	11	11	15	12	5.1	4.8	8.3	5.8
24	14	7.2	6.8	9.5	11	11	11	12	5.5	12	7.9	6.1
25	8.7	6.5	6.1	9.1	11	10	14	12	5.8	5.8	7.9	5.8
26	6.1	6.5	24	12	11	10	18	12	5.5	5.5	7.9	6.1
27	6.8	8.3	12	18	11	9.8	16	10	5.5	5.2	9.1	6.8
28	6.5	7.6	9.5	19	10	9.8	13	9.1	5.5	5.2	9.1	7.2
29	6.5	6.5	8.7	14	10	9.8	10	1.7	6.8	6.1	8.7	5.8
30	6.8	6.5	9.8	12		10	12	2.9	24	5.8	7.9	6.8
31	4.8		13	11		10		3.2		5.5	7.9	
TOTAL	394.8	188.9	264.1	377.7	352	345.4	418.8	423.9	191.4	175.4	353.8	216.2
MEAN	12.7	6.30	8.52	12.2	12.1	11.1	14.0	13.7	6.38	5.66	11.4	7.21
MAX	24	22	24	19	25	17	20	23	24	12	35	_11
MIN	4.8	2.4	6.1	9.1	10	9.8	9.8	1.7	4.8	4.5	5.2	5.8

CAL YR 1975 TOTAL 5348.2 MEAN 14.7 MAX 30 MIN 2.4 WTR YR 1976 TOTAL 3702.4 MEAN 10.1 MAX 35 MIN 1.7

01308000 SAMPAWAMS CREEK AT BABYLON, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

DATE	TIME	INSTAN- TANEOUS DIS- CHARGE (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION	HARD- NESS (CA,MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED- MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)
JAN												
07	1115	11	218	6.3	6.0	7.4	59	44	21	12	3.5	18
23 JUN	1230	11	218	6.6	11.0	10.8	97	43	29	11	3.7	17
23 SEP	1015	5.1	240	6.4	21.0	7.9	-	42	26	12	2.9	20
22	1345	5.8	220	6.2	17.5	8.5		43	28	12	3.2	18

DATE	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	CAR- BONATE (CO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)	DIS- SOLVED NITRATE (N) (MG/L)	
JAN 07	3.3	29	0	24	26	25	•1	8.1	155	2.6	2.6	
23 JUN	3.2	17	0	14	25	25	.0	7.9	110	2.1	2.1	
23 SEP	3.6	20	0	16	27	23	•1	6.3	117	2.6	2.6	
55	3.1	18	0	15	25	24	•1	8.3	117	3.3	3.1	

DATE	TOTAL MITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL ORGANIC NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
JAN											
07	.01	•02	1.4	.00	•31	2.9	•02	.00	370	840	.1
23	.02	.02	1.1	.20	1.3	3.4	.02	.01	490	900	.1
23 SEP	.08	.08	1.0	.50	1.5	4.2	.02	•02	520	550	•1
22	.13	.06	.34	.31	.65	4.1	.02	.01	420	350	.1

01308500 CARLLS RIVER AT BABYLON, NY

LOCATION.--Lat 40°42'31", long 73°19'44", Suffolk County, Hydrologic Unit 02030202, on left bank in Babylon, 130 ft (40 m) downstream from outlet of Southards Pond and 0.9 mi (1.4 km) upstream from mouth. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 35 mi2 (91 km2).

WATER-DISHCARGE RECORDS

PERIOD OF RECORD .-- October 1944 to current year.

REVISED RECORDS (WATER YEARS).--WSP 1141: Drainage area. WDR NY-72-1: 1947(m), 1952(m), 1954(m), 1960-63(m).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 10.63 ft (3.240 m) above mean sea level.

REMARKS.--Records good. Occasional regulation at outlet of Southards Pond.

AVERAGE DISCHARGE. -- 32 years, 26.1 ft 3/s (0.739 m 3/s).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 193 ft^3/s (5.47 m^3/s) June 23, 1967, gage height, 1.99 ft (0.607 m); minimum, 0.05 ft^3/s (0.001 m^3/s) Sept. 4, 1963, July 6, 1966, Aug. 29, 1972 (result of regulation); minimum gage height, 0.03 ft (0.009 m), July 6, 1966, Aug. 29, 1972 (result of regulation); minimum daily discharge, 4.5 ft^3/s (0.13 m^3/s) July 6, 1966.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 177 ft 3 /s (5.01 m 3 /s), Aug. 10, gage height, 1.89 ft (0.576 m); minimum, 11 ft 3 /s (.31 m 3 /s), Aug. 5, 6, gage height, 0.48 ft (0.146 m).

		DISCHA	RGE. IN C	UBIC FEET		ND, WATER	YEAR OCT	OBER 1975	TO SEPTE	MBER 1976		
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	21	18	34	51	35	37	53	32	25	24	22	22
2	21	18	34	39	90	36	48	47	40	22	16	24
3	19	18	33	39	66	37	34	34	26	18	15	25
4	19	18	31	39	54	37	31	30	23	16	15	27
5	18	18	30	34	. 51	37	30	26	22	17	14	24
6	18	18	30	32	50	37	30	26	22	17	13	23
7	18	18	26	36	48	34	29	26	22	22	15	22
8	17	21	28	60	44	36	28	28	21	20	71	21
9	16	22	32	40	45	37	27	26	20	18	65	20
10	16	20	46	35	43	. 36	27	26	19	55	127	23
11	17	20	36	34	46	38	27	25	17	18	48	22
12	18	24	35	37	45	36	26	30	17	17	40	20
13	17	86	36	44	41	51	26	26	18	15	37	19
14	20	49	34	61	34	45	26	24	22	15	34	19
15	18	33	34	50	33	38	25	21	20	15	51	19
16	22	29	32	48	33	41	30	20	18	20	. 39	19
17	20	26	28	48	36	50	37	24	16	25	32	20
18	34	22	27	42	35	37	36	33	16	18	29	18
19	41	25	26	42	35	29	36	39	22	16	25	18
20	35	28	23	42	34	29	35	28	17	17	26	22
21	26	37	21	42	32	29	34	34	17	18	27	20
22	24	45	22	41	36	33	31	34	17	18	29	18
23	55	29	22	36	39	32	33	25	17	15	26	17
24	20	34	20	33	41	29	32	26	20	23	22	17
25	24	33	20	33	40	29	34	25	16	18	21	16
26	24	32	60	37	40	29	45	20	15	18	24	16
27	21	41	53	53	40	28	36	20	17	19	30	17
28	20	42	33	67	39	29	32	24	17	16	27	18
29	20	35	29	46	38	28	29	23	22	16	24	17
30	20	34	32	38		27	29	22	33	16	24	18
31	18		49	35		27		22		15	55	
TOTAL	664	893	996	1314	1243	1078	976	846	614	564	1010	601
MEAN	21.4	29.8	32.1	42.4	42.9	34.8	32.5	27.3	20.5	18.2	32.6	20.0
MAX	41	86	60	67	90	51	53	47	40	25	127	27

27

25

20

15

15

13

CAL YR 1975 TOTAL 10966.0 MEAN 30.0 MAX 121 MIN 9.4 WTR YR 1976 TOTAL 10799.0 MEAN 29.5 MAX 127 MIN 13

20

32

32

MIN

16

18

01308500 CARLLS RIVER AT BABYLON, NY--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

DATE	TIME	INSTAN- TANEOUS DIS- CHARGE (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION	HARD- NESS (CA,MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)
JAN 07	1330	32	255	6.5	3.0	9.9	73	44	19	12	3.5
MAR											
23 JUN	1200	32	258	6.9	7.5	10.6	88	48	26	13	3.7
23 SEP	1100	17	225	6.6	24.0	6.0	•	40	23	11	3.0
23	0845	17	240	-	16.0	9.2	-	40	25	11	3.0
	DIS-	DIS-	146.33	ron ar	ALKA-	DIS-	DIS- SOLVED	DIS- SOLVED	DIS-	DIS- SOLVED SOLIDS	
	SOLVED	TAS- SIUM	BICAR- BONATE	CAR- BONATE	LINITY	SOLVED	CHLO- RIDE	FLUO- RIDE	SOLVED	(SUM OF CONSTI-	NITRATE
DATE	(MG/L)	(K) (MG/L)	(MG/L)	(CO3) (MG/L)	CACO3 (MG/L)	(SO4) (MG/L)	(CL) (MG/L)	(F) (MG/L)	(SIO2) (MG/L)	(MG/L)	(N) (MG/L)
JAN											
07 MAR	55	3.3	31	0	25	26	30	.2	8.0	133	2.9
23 JUN	23	3.7	27	0	22	29	30	.0	7.4	138	3.4
23 SEP	20	3.4	20	0	16	28	25	.1	6.8	116	2.1
23	20	3.2	18		15	28	26	.1	6.0	118	2.6
	DIS-		DIS-	TOTAL	TOTAL KJEL- DAHL	TOTAL	TOTAL	TOTAL ORTHO		TOTAL	METHY- LENE BLUE
	SOL VED NITRATE	TOTAL	SOLVED	NITRO- GEN	NITRO- GEN	NITHO- GEN	PHOS- PHORUS	PHOS- PHORUS	TOTAL	MAN- GANESE	ACTIVE SUB-
DATE	(N) (MG/L)	(N) (MG/L)	(N) (MG/L)	(N) (MG/L)	(N) (MG/L)	(N) (MG/L)	(P) (MG/L)	(P) (MG/L)	(FE) (UG/L)	(MN) (UG/L)	STANCE (MG/L)
JAN											
07	2.8	.01	.01	1.6	1.9	4.8	.02	.00	370	930	.1
23	3.4	.01	.01	.60	2.0	5.4	.03	.01	390	780	•1
23 SEP	2.0	.09	.08	.88	1.3	3.5	.02	.01	490	560	•1
23	2.6	.05	.05	.69	•75	3.4	.02	.01	330	720	•1

01309000 SANTAPOGUE CREEK AT LINDENHURST, NY

WATER-QUALITY RECORDS

LOCATION.--Lat 40°41'30", long 73°21'20", Suffolk County, Hydrologic Unit 02030202, on left bank just upstream from East Hoffman Avenue bridge, 1.0 mi (1.6 km) east of Long Island Railroad station in Lindenhurst, and 1.5 mi (2.4 km) upstream from mouth.

DRAINAGE AREA. -- About 7 mi2 (18 km2).

PERIOD OF RECORD. -- Water years 1966 to current year.

REMARKS.--Partial-record discharge data included in this report.

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	TIME	INSTAN- TANEOUS DIS- CHARGE (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	H4 (2TINU)	TEMPER- ATURE (DEG C)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION	HARD- NESS (CA;MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)
JAN 07	1415		365	6.3	7.0	7.3	60	68	15	18	5.5
MAR 23 JUN	1100		435	6.9	10.0	10.9	96	74	9	19	6.4
23 SEP	1300		270	5.9	20.0	6.7		56	37	16	4.0
23	1000	1.4	310	·	14.0	6.8		61	33	17	4.6
DATE	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	CAR- BONATE (CO3) (MG/L)	ALKA- LINITY AS' CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
JAN											
07	30	5.6	64	0	53	35	42	.0	8.1	185	2.0
23 JUN	40	8.1	79	0	65	37	56	.0	7.2	555	5.1
23 SEP	30	4.3	24	0	20	35	28	•1	9.7	151	5.6
23	25	4.4	35		29	35	33	•1	10	157	2.4
	DIS- SOLVED NITRATE (N)	TOTAL NITRITE (N)	DIS- SOLVED NITRITE (N)	TOTAL AMMONIA NITRO- GEN (N)	TOTAL KJEL- DAHL NITRO- GEN (N)	TOTAL NITRO- GEN (N)	TOTAL PHOS- PHORUS (P)	TOTAL ORTHO PHOS- PHORUS (P)	TOTAL IRON (FE)	TOTAL MAN- GANESE (MN)	METHY- LENE BLUE ACTIVE SUB- STANCE
DATE	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(UG/L)	(UG/L)	(MG/L)
JAN 07 MAR	2.0	.01	•02	2.9	3.1	5.1	.04	.00	1600	2400	•1
23 JUN	2.1	.01	.04	1.3	4.3	6.4	.02	.01	640	3000	•1
23 SEP	2.7	.08	.08	1.3	1.7	4.4	.01	.01	480	2900	•2
23	2.3	.06	•05	1.6	1.9	4.4	.02	.01	500	1500	•2

01309500 MASSAPEQUA CREEK AT MASSAPEQUA, NY

LOCATION.--Lat 40°41'20", long 73°27'19", Nassau County, Hydrologic Unit 02030202, on left bank 350 ft (107 m) west of Garfield Street at Lake Shore Drive, Massapequa, 0.2 mi (0.3 km) north of Massapequa Park, and 3,000 ft (914 m) upstream from Clark Avenue Bridge and head of Massapequa Pond of Brooklyn water-supply system. Water-quality sampling site at discharge station.

DRAINAGE AREA . -- About 38 mi2 (98 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June to October 1903, December 1936 to current year (monthly means estimated December 1959 to February 1961). Published as Massatayun Creek at Massapequa, December 1936 to September 1941.

REVISED RECORDS (WATER YEARS). -- WSP 1411: Drainage area. WDR NY-70-1: 1966 to 69 (M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 18.31 ft (5.581 m) above mean sea level, adjustment of 1912. Prior to October 1903, non-recording gage at different datum. December 1936 to March 1961 at same site at datum 1.0 ft (0.30 m) higher.

REMARKS . - - Records good .

AVERAGE DISCHARGE. -- 39 years (1937-76), 11.3 ft3/s (0.320 m3/s).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 387 ft³/s (11.0 m³/s) July 20, 1961, gage height, 2.28 ft (0.695 m); minimum, 0.95 ft³/s (0.027 m³/s) Aug. 4, 1963, Nov. 2, 1965; minimum gage height, 0.32 ft (0.098 m), datum then in use, Aug. 1, 1954.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 110 ft 3/s (3.12 m3/s) and maximum (*):

		Disc	harge	Gage 1	height				Disch (ft ³ /s)	arge	Gage	height
Date	Time	(ft ³ /s)	(m^3/s)	(ft)	(m)	Date	•	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Nov. 13	0030	198	5.61	1.78	0.54	Apr.	1	1200	147	4.16		
Dec. 26	1430	169	4.79	1.70	0.52	Aug.	8	1100	221		1.84	
Feb. 2	0700	140	3.96	1.61	0.49	Aug.	10	0100	*258	7.31	1.93	0.59

Minimum discharge, 2.8 ft 3 /s (0.079 m 3 /s), Aug. 3, 4, 6, gage height, 0.65 ft (0.20 m).

DISCHARGE,	IN	CURIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1975	TO	SEPTEMBER	1976	

					100								
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1	10	8.1	10	25	18	13	49	16	12	7.2	3.4	5.8	
2	10	8.1	9.5	14	59	13	19	15	14	5.4	3.1	7.2	
3	9.5	8.1	9.0	17	21	13	18	10	7.7	4.9	2.8	9.0	
4	9.0	8.1	9.0	14	20	14	17	9.5	7.7	6.7	3.1	7.2	
5	9.0	7.7	8.6	13	19	14	16	9.0	7.2	5.4	3.4	6.7	
6	9.0	7.7	8.6	12	19	14	16	9.0	7.7	4.3	3.4	6.3	
7	8.6	7.7	8.6	21	18	12	15	11	7.7	9.1	3.1	6.3	
8	8.6	12	8.6	25	18	12	14	9.8	7.2	4.9	70	6.3	
9	8.6	8.1	10	14	16	12	12	8.6	6.7	4.6	36	5.8	
10	8.6	9.0	20	13	17	14	12	8.6	6.7	4.3	71	5.8	
11	11	8.1	11	13	19	16	12	8.6	6.3	4.3	15	5.8	
12	9.0	30	9.5	13	16	13	12	17	6.3	4.0	11	5.8	
13	8.6	54	9.0	15	16	31	13	9.0	5.8	4.0	10	5.8	
14	10	17	9.0	55	16	15	13	8.6	5.8	4.0	10	5.8	
15	9.0	13	9.0	13	16	14	13	8.6	5.8	4.0	15	5.4	
16	8.6	12	9.0	16	16	24	13	8.6	5.4	10	11	5.4	
17	8.1	11	8.6	14	18	17	12	12	5.8	4.6	9.5	5.8	
18	21	11	9.0	13	16	14	12	21	5.4	4.0	8.6	6.3	
19	18	11	8.6	14	17	14	11	24	5.8	3.4	8.1	5.8	
20	12	11	8.6	14	16	14	10	11	5.8	3.4	7.7	5.4	
21	10	19	8.6	13	14	14	12	15	5.8	3.1	7.2	5.4	
22	9.5	15	9.0	12	23	13	14	10	5.4	4.0	6.7	5.4	
23	9.5	12	8.6	11	16	13	13	9.5	4.9	5.3	6.3	4.9	
24	9.0	11	8.6	11	14	13	12	9.0	5.4	8.9	6.3	4.9	
25	14	11	8.6	11	14	13	14	8.6	5.4	4.0	6.3	4.6	
26	10	9.5	63	17	14	13	17	8.1	5.4	3.7	6.3	4.6	
27	9.0	16	20	29	14	12	11	7.7	4.9	3.4	7.2	4.6	
28	8.6	11	16	33	14	13	9.5	7.7	4.6	3.4	7.2	5.8	
29	8.6	9.5	13	19	13	12	9.5	7.2	7.6	4.0	6.7	5.4	
30	8.6	9.5	14	17		12	9.0	7.7	13	4.0	6.3	6.7	
31	8.1		23	16		12		7.2		3.4	6.3		
TOTAL	311.1	386.2	385.6	504	527	443	430.0	332.6	205.2	149.7	378.0	176.0	
MEAN	10.0	12.9	12.4	16.3	18.2	14.3	14.3	10.7	6.84	4.83	12.2	5.87	
MAX	21	54	63	33	59	31	49	24	14	10	71	9.0	
MIN	8.1	7.7	8.6	11	13	15.	9.0	7.2	4.6	3.1	2.8	4.6	
					10				7.00				

CAL YR 1975 TOTAL 4967.9 MEAN 13.6 MAX 110 MIN 6.7 WTR YR 1976 TOTAL 4228.4 MEAN 11.6 MAX 71 MIN 2.8

01309500 MASSAPEQUA CREEK AT MASSAPEQUA, NY--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

	TIME	INSTAN- TANEOUS DIS- CHARGE	SPE- CIFIC CON- DUCT- ANCE (MICRO-	РН	TEMPER-	DIS- SOLVED OXYGEN	PER- CENT SATUR- ATION	HARD- NESS (CA,MG)	NON- CAR- BONATE HARD- NESS	DIS- SOLVED CAL- CIUM (CA)	DIS- SOLVED MAG- NE- SIUM (MG)
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	(MG/L)		(MG/L)	(MG/L)	(MG/L)	(MG/L)
ОСТ											
02	1130	10	335	7.9	16.0	8.0		66	48	19	4.4
29	1030	8.6	330	6.2	15.0	8.8	86	68	57	20	4.5
NOV											
26	1215	9.5	320	6.2	12.0	8.6	79	76	49	24	4.0
DEC									2.5		
29	1345	13	330	5.7	8.5	11.5	96	59	35	17	4.0
FEB	1300	20	370	6.2	10.0	10.4	92	63	30	19	3.8
04	1530		370				125	65	35	19	4.2
25 MAR	1530	14	332	6.6	15.0	12.8	125	65	35	1,9	4.2
26	0915	13	338	6.5	11.0	12.5	112	70	41	21	4.3
APR	0713	15	330	0.5	11.0	10.5	***		**		
25-26								47	22	14	3.0
27	0900	11	300	6.4	11.5	12.2	111	59	31	14	5.8
MAY		• •	000	• • •		1	• • • •				
27	1100	7.7	325	6.6	20.5	11.2	123	66	36	20	3.8
JUN											,
23	1400	4.9	300	6.6	28.0	12.4		61	46	18	4.0
JUL											
28	1115	3.4	310	5.8	22.0	7.9		71	54	21	4.6
SEP								Marie			
08	1030	6.3	335	6.4	19.0	8.0		62	46	19	3.6
23	1100	4.9	340		16.0	8.3		67	52	20	4.2

DATE	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	CAR- BONATE (CO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
OCT											
02	26	5.9	22	0	18	44	29	.0	9.7	177	6.5
29	26	5.6	14	0	11	44	30	.0	9.5	174	7.8
26 DEC	26	5.2	34	0	28	48	31	.2	9.8	196	7.4
29 FEB	27	5.2	29	0	24	43	31	•1	9.5	181	6.9
04	35	5.0	40	O	33	43	46	.0	8.8	209	6.4
25 MAR	27	5.2	36	0	30	41	34	.1	8.5	190	7.4
26 APR	28	5.2	36	0	30	43	33	• 0	8.6	191	6.7
25-26	19	4.3	31		25	30	20	.1	6.1	132	4.2
27 MAY	25	5.7	34	0	28	41	29	. 0	8.6	175	6.5
27 JUN	26	5.2	36	0	30	42	30	.0	8.2	181	6.4
23	27	5.6	19	0	16	46	30	.0	8.3	180	7.0
28 SEP	26	5.3	21	0	17	46	29	.1	7.1	172	6.2
08	26 26	5.1 5.1	20 18	0	16 15	47 44	28 29	.0 .1	8.6 9.5	179 180	7.2 7.3

01309500 MASSAPEQUA CREEK AT MASSAPEQUA, NY--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

92	DIS- SOLVED NITRATE (N)	TOTAL NITRITE (N)	DIS- SOLVED NITRITE (N)	TOTAL AMMONIA NITRO- GEN (N)	TOTAL KJEL- DAHL NITRO- GEN (N)	TOTAL NITRO- GEN (N)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
DATE	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MO/L)	(MO/L/	100727	(00, 5,	11107 27
7.00											
02	6.3	.07	.08	2.4	2.7	9.3	.05	.01	600	2300	.2
								.01	350	1900	.5
29	6.1	.05	.04	2.0	3.4	11	.03	.01	350	1900	
NOV	7 0		.03	2 =	2.8	10	.03	.01	1400	1600	.2
26	7.0	.03	.03	2.5	2.0	10	.03	•01	1400	1000	
DEC						10	. 03	.00	420	1600	.2
29	6.8	.01	.03	2.7	3.3	10	.03	.00	420	1000	• •
FER											
04	6.4	.01	.01	2.6	3.0	9.4	.04	.01	490	1500	.2
25	7.4	.02	.02	1.6	3.2	11	.02	.01	350	1500	• 3
MAR											
26	6.8	.01	.02	2.5	- 2.5	9.2	.02	.01	430	1500	.2
APR				100	4						
25-26	4.6	.04	.05	1.9	2.6	6.8	.06	.01	330	920	.3
27	6.5	.02	.02	2.8	3.1	9.6	.02	.01	550	1200	.2
MAY	0.5		• • • •								
27	6.2	.07	.08	2.3	2.9	9.4	.03	.01	240	790	.3
JUN	0.2	.01	•00	2.5	2.7		•••			The state of the s	
		.28	.28	71	1.3	8.6	.03	.01	230	350	.2
23	6.9	.20	• 28	.71	1.3	0.0	• 03	•01	230	330	
JUL			7.7						100	370	.2
28	5.1	.13	.11	.60	1.0	7.3	.03	.01	180	310	• 6
SEP								93			
08	7.0	.25	.25	1.2	1.5	8.9	.04	.02	380	5500	.2
23	7.3	.12	.12	1.4	1.8	9.2	.03	.01	420	1600	.2

01310000 BELLMORE CREEK AT BELLMORE. NY

LOCATION.--Lat 40°40'43", long 73°30'58", Nassau County, Hydrologic Unit 02030202, on right bank 40 ft (12 m) east of intersection of Valentine Place and Mill Road, in Bellmore, 0.5 mi (0.8 km) north of Sunrise Highway, and 0.5 mi (0.8 km) northwest of Wantagh. Water-quality sampling site at each discharge station.

DRAINAGE AREA .-- About 17 mi2 (44 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June to October 1883 (fragmentary), July to October 1903, published in Professional Paper 44, September 1937 to current year. Prior to October 1957, published as Wantagh Stream at Wantagh. October 1957 to October 1967, published as Wantagh Stream at Bellmore.

GAGE.--Base gage (01309950): Water-stage recorder. Concrete control since July 24, 1974. Datum of gage is 15.00 ft (4.572 m) above mean sea level, adjustment of 1912. June to October 1883, determination of flow by various methods at different site and datum. July to October 1903, nonrecording gages on two channels near present site at different datum. Sept. 23, 1937, to Aug. 1, 1958, water-stage recorder with concrete control on right bank of present secondary channel about 1,000 ft (305 m) east at datum 1.88 ft (0.573 m) higher (used as supplementary

gage since Aug. 1, 1958).

Auxiliary gage: Since Aug. 1, 1958, water-stage recorder on right bank of main channel 500 ft (152 m) upstream at datum 15.00 ft (4.572 m) above mean sea level.

Supplementary gage (01309990): Water-stage recorder with concrete control on right bank of secondary channel about 1,000 ft (305 m) east of base gage at datum 16.88 ft (5.145 m) above mean sea level. Prior to July 28, 1965, at datum 2.00 ft (0.610 m) higher. From July 28, 1965 to Oct. 6, 1965, at datum 1.00 ft (0.305 m) higher.

REMARKS.--Records good. Prior to Nov. 4, 1955, flow at all stages regulated intermittently at outlet of Wantagh Reservoir, 1.0 mi (1.6 km) above station, and prior to November 1953 by Browning Pond, 0.5 mi (0.8 km) above station. Subsequent to Nov. 3, 1955, permanent diversion of a substantial portion of the flow through west branch of Bellmore Creek. Discharge figures given are those of combined flows in main and secondary channels. Discharge was affected by dewatering activities connected with sewer construction.

AVERAGE DISCHARGE.--39 years (1937-76), 10.6 ft^3/s (0.300 m^3/s).

EXTREMES FOR PERIOD OF RECORD (1903 AND SINCE 1937).--Maximum daily discharge, 162 ft³/s (4.59 m³/s) Sept. 12, 1960; maximum discharge prior to begininning of diversion in November 1955, 340 ft³/s (9.63 m³/s) June 1, 1952, adjusted to include flow bypassing station; maximum gage height, 4.57 ft (1.393 m) June 1, 1952; minimum daily discharge, 0.73 ft³/s (0.021 m³/s) July 3 (affected by pumpage).

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 70 ft³/s (1.98 m³/s) Aug. 10; minimum daily, 0.73 ft³/s (0.021 m3/s) July 3 (affected by pumpage).

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1975	TO	SEPTEMBER	1976
					MEAN	VALUES						

DAY	OCT	NOV	DEC	MAL	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	8.3	8.5	14	23	17	11	36	19	14	9.6	5.1	5.2
1 2 3 4	7.7	8.1	13	14	44	12	13	14	17	3.2	5.6	17
3	7.2	8.1	13	18	17	12	11	9.0	13	.73	3.7	7.2
4	7.2	7.2	14	14	16	13	11	8.1	13	1.4	2.9	5.6
5	6.9	7.5	14	14	15	13	11	7.4	12	9.4	3.1	5.6
6	6.9	6.8	12	13	16	12	11	7.4	12	8.9	3.1	5.3
7	7.1	6.8	12	22	15	11	10	7.2	12	8.2	3.4	5.3
8	6.8	10	13	24	15	11	10	6.8	11	6.2	38	5.2
9	6.8	7.1	15	13	14	12	10	6.1	12	4.7	37	5.0
10	7.1	12	19	7.0	14	13	10	6.1	12	1.3	70	5.4
11	8.5	12	12	8.2	16	14	9.8	6.3	10	1 • 4	13	4.8
12	7.4	30	9.6	9.1	14	12	9.2	14	7.2	7.3	11	4.5
13	6.8	35	8.5	13	14	25	9.4	6.5	7.1	5.6	10	4.6
14	7.4	20	7.6	19	13	12	8.8	6.5	10	3.9	12	5.0
15	6.8	18	8.1	11	13	12	8.8	6.5	10	3.7	15	5.3
16	6.5	18	8.4	14	14	19	9.2	6.8	10	6.5	8.8	5.5
17	6.8	20	8.3	12	15	13	9.0	7.2	9.1	1.9	8.1	7.1
18	23	18	8.4	10	14	12	8.3	18	8.1	1.2	9.2	5.9
19	15	16	8.2	10	15	12	8.3	16	4.7	6.2	7.5	5.6
20	9.8	16	7.4	11	13	12	7.9	8.3	4.8	5.7	6.6	5.3
21	8.6	22	7.5	11	12	12	7.5	12	10	6.1	6.4	5.6
22	8.3	16	6.9	11	19	11	11	7.5	8.3	4.9	6.1	5.4
23	8.1	13	6.0	10	13	10	9.0	7.2	9.2	5.4	5.8	5.7
24	7.5	14	7.5	11	13	10	7.7	11	11	4.2	5.3	5.4
25	14	15	8.2	10	13	11	11	13	10	1.4	4.9	5.6
26	8.1	14	40	16	13	10	13	11	4.5	7.1	5.4	5.5
27	7.7	20	14	30	13	11	12	10	3.1	5.7	6.9	6.9
28	7.7	16	12	27	12	10	11	8.0	6.9	5.2	5.9	6.8
29	7.7	13	12	16	12	10	10	4.8	13	5.9	4.8	5.8
30	7.7	14	16	16		10	10	5.9	17	4.8	4.4	7.4
31	7.7		20	15		10		11		3.7	4.7	
TOTAL	263.1	442.1	375.6	452.3	444	378	323.9	288.6	302.0	151.43	333.7	180.5
MEAN	8.49	14.7	12.1	14.6	15.3	12.2	10.8	9.31	10.1	4.88	10.8	6.02
MAX	23	35	40	30	44	25	36	19	17	9.6	70	17
MIN	6.5	6.8	6.0	7.0	12	10	7.5	4.8	3.1	.73	2.9	4.5

01310000 BELLMORE CREEK AT BELLMORE, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- 01309950 (Base gage): April 1966 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	TIME	INSTAN- TANEOUS DIS- CHARGE (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)
JAN 13	1130	5.8	655	6.5	5.0	9.2	72	13	8	2.8	1.5	4.5
MAR 26	1330	6.9	350	6.6	15.0	13.0	127	69	41	22	3.4	32
JUN 25	1015	8.9	320	6.4	18.5	18.5	tin light	63	50	19	3.7	30
SEP	1030	3.4	325		16.0	5.5		61	31	19	3.2	27

DATE	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	CAR- BONATE (CO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)	DIS- SOLVED NITRATE (N) (MG/L)
JAN											
13	7	6	0	5	1.2	6.3	.1	7.2	35	1.7	1.7
26 JUN	. 5.3	34	0	58	, 42	41	.0	8.5	203	7.4	7.3
25 SEP	. 4.9	15	0	12	47	32	.1	8.8	181	5.5	6.3
29	. 5.0	36		30	39	32	.1	6.6	168	5.5	4.1

		DIS-	TOTAL	TOTAL	TOTAL KJEL- DAHL	TOTAL	TOTAL	TOTAL		TOTAL	METHY- LENE BLUE
	TOTAL NITRITE (N)	SOLVED NITRITE (N)	NITRO- GEN (N)	NITRO- GEN (N)	NITRO- GEN	NITRO- GEN (N)	PHOS- PHORUS	PHOS- PHORUS	TOTAL IRON (FE)	MAN- GANESE (MN)	ACTIVE SUB- STANCE
DATE	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(UG/L)	(UG/L)	(MG/L)
JAN											
13 MAR	.01	.01	.01	.00	•01	1.7	.01	.01	20	10	•0
26	.06	.04	1.9	.10	2.0	9.5	.01	.01	260	1000	•5
25 SEP	.11	.13	1.9	.10	2.0	7.6	.01	.01	150	600	.2
29	.17	.14	.98	.42	1.4	7.1	.03	.01	250	210	.1

01310000 BELLMORE CREEK AT BELLMORE, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- 01309990 (Supplementary gage): April 1966 to current year.

DATE	TIME	INSTAN- TANEOUS DIS- CHARGE (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION	HARD- NESS (CA,MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)
JAN 05	1430	2.7	375	6.8	6.0	7.1	57	71	24	22	4.0	33
MAR 26	1400	3.5	354	6.9	19.0	14.2	152	72	35	23	3.6	30
JUN 25	1145	4.4	375	6.0	19.0	10.8		67	64	21	3.6	32
SEP 29	1145	2.4	390		15.0	9.1		68	53	22	3.2	30

	DIS- SOLVED PO-			ALKA-	DIS-	DIS- SOLVED	DIS- SOLVED	DIS-	DIS- SOLVED SOLIDS		DIS-
	TAS- SIUM (K)	BICAR- BONATE (HCO3)	CAR- BONATE	LINITY	SOLVED	CHLO- RIDE	FLUO- RIDE	SOLVED	(SUM OF CONSTI-	TOTAL NITRATE	SOLWED NITRATE
DATE	(MG/L)	(MG/L)	(CO3) (MG/L)	(MG/L)	(SO4) (MG/L)	(CL) (MG/L)	(F) (MG/L)	(SIO2) (MG/L)	TUENTS)	(N) (MG/L)	(N) (MG/L)
JAN											
05 MAR	5.9	58	0	48	42	39	•1	10	212	5.9	6.3
26 JUN	6.2	45	0	37	44	35	•1	9.4	186	7.6	2.9
25 SEP	7.4	4	0	3	55	32	.1	13	210	9.1	9.9
29	7.3	19		16	51	29	•1	11	205	11	9.3

DATE	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL ORGANIC NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
0											
JAN											
05	.01	.02	2.6	.30	2.9	8.8	.02	.00	290	1300	.2
MAR											
26	.02	.01	2.6	.30	2.9	11	.03	.01	310	880	.2
JUN											
25	.06	.07	3.5	.40	3.9	13	.01	.01	150	1300	•2
SEP											
29	.28	.23	2.0	.00	1.6	13	.02	.01	120	430	•2

01310500 EAST MEADOW BROOK AT FREEPORT, NY

LOCATION.--Lat 40°39'56", long 73"34'13", Nassau County, Hydrologic Unit 02030202, on right bank in Freeport, 24 ft (7 m) upstream from bridge on Hempstead-Babylon Turnpike and 400 ft (122 m) west of Meadowbrook Parkway. Water-quality sampling site at discharge station.

DRAINAGE AREA .-- About 31 mi2 (80 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1851 to December 1852, June to October 1883, September and October 1885 (fragmentary),
June to October 1903, published in Professional Paper 44, January 1937 to current year (monthly means estimated
November 1962 to December 1963).

REVISED RECORDS (WATER YEARS) .-- WRD NY 1972: 1967-71 (P).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 10.48 (3.194 m) above mean sea level, adjustment of 1912. Prior to October 1885, determinations of flow by various methods at different site and datum. June to October 1903, weir in swamp at head of Brooklyn waterworks supply pond. January 1937 to November 1962, water-stage recorder and concrete control at site 81 ft (25 m) east and at datum 0.44 ft (0.134 m) higher.

REMARKS . - - Records good .

AVERAGE DISCHARGE. -- 39 years (1937-76), 14.9 ft3/s (0.422 m3/s).

EXTREMES FOR PERIOD OF RECORD (1903 AND SINCE 1937).--Maximum discharge, 835 ft³/s (23.6 m³/s) Sept. 12, 1960, gage height, 4.38 ft (1.335 m), datum then in use, from rating curve extended above 280 ft³/s (7.93 m³/s) on basis of flow-through-culvert and contracted-opening measurement of peak flow; no flow Aug. 26, 1971.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 250 ft3/s (7.08 m3/s) and maximum (*):

			Disch		Gage h	eight
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Aug.	8	1500	323	9.15	2.18	0.664
Aug.	10	0245	*575	16.3	3.05	0.930

Minimum, 3.3 ft 3 /s (0.093 m 3 /s), Aug. 5, 6, gage height, 0.27 ft (0.082 m).

DISCHARG	E, IN	COBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1975	TO	SEPTEMBER	1976
					MEAN	VALUES						

DAY	-je	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1		9.8	15	36	19	15	68	32	16	26	4.7	8.2
2	1		9.8	14	15	73	. 15	20	27	25	9.8	4.0	21
3	1	2	9.8	13	18	21	17	18	15	12	8.2	3.6	12
4	1	2	9.8	12	15	20	21	17	14	11	8.2	4.0	9.3
5	1	2	9.3	13	12	19	17	15	13	9.8	8.2	3.6	8.7
6	1		9.3		12	21	14	15	12	11	7.3	6.8	8.2
7	1		9.3		28	19	13	15	23	11	7.7	6.8	8.2
8	1		15	13	34	19	16	16	16	11	7.3	148	7.7
9	1		8.7		15	18	18	15	12	9.8	6.8	76	7.7
10	1	0	11	28	14	18	19	15	12	9.3	8.2	164	9.8
11	1		9.3		14	21	22	15	12	9.8	6.8	25	8.2
12	1		26	13	15	18	17	16	15	8.7	6.8	18	7.3
13	1		53	7.3	18	16	48	15	11	8.2	6.4	16	7.3
14	1		15	6.8	38	16	18	15	11	8.2	6.0	17	6.8
15	1.130	9.8	12	6.8	15	16	18	15	11	8.2	6.0	26	6.8
16		9.8	11	6.8	20	16	32	15	12	8.2	24	15	7.7
17	1		10	6.4	15	18	23	12	15	8.2	9.8	13	13
18	5		10	6.8	13	17	18	12	50	7.7	6.4	12	7.7.
19	3		11	6.4	12	21	17	15	40	7.7	5.6	12	6.8
20	1	5	9.3	6.8	13	17	15	15	17	7.7	5.6	11	6.8
21	1		26	7.3	14	15	15	14	19	7.7	5.6	11	6.8
22	1		13	7.7	14	32	16	22	15	7.3	6.4	10	6.8
23	1		9.8		12	18	14	16	13	9.3	28	9.8	6.4
24	1		9.3		12	16	14	12	12	7.3	15	9.8	6.4
25	1	7	12	7.3	12	16	15	17	12	7.3	7.3	9.8	6.4
26	1		12	67	23	17	14	24	12	6.4	6.0	9.3	6.4
27		9.3	25	16	77	16	14	13	11	6.0	5.6	9.8	8.7
28		9.3	14	12	54	16	15	13	11	6.0	5.6	9.8	10
29		9.3	12	11	21	15	14	12	10	27	6.8	9.3	6.4
30		9.8	12	16	18		13	12	12	33	6.8	8.7	8.7
31	100	9.8		32	17		12		10		5.6	8.7	
TOTAL		7.1	413.5		646	584	549	514	507	325.8	279.8	692.5	252.2
MEAN	1	3.5	13.8		20.8	20.1	17.7	17.1	16.4	10.9	9.03	22.3	8.41
MAX		58	53	67	77	73	48	68	50	33	28	164	21
MIN		9.3	8.7	6.4	12	15	12	12	10	6.0	5.6	3.6	6.4

01310500 EAST MEADOW BROOK AT FREEPORT, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- April 1966 to current year.

DATE	TIME	INSTAN- TANEOUS DIS- CHARGE (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)
NOV											
03	1500	9.8	438	6.3	15.0	6.0	59	76	46	22	5.0
28	1030	14	322	6.3	11.0	6.4	57	60	37	18	3.6
DEC											
29	1430	11	630	6.0	6.5	8.5	71	63	31	18	4.5
FEB					_						1 0 0
04	1400	20	730	6.4	7.0	8.9	73	72	38	21	4.8
24	1130	16	435	6.4	8.0	10.8	88	68	37	20	4.5
MAR 26	1030	14	463		12.0	10 6	97	79	48	23	5.2
APR	1030	14	403	6.8	12.0	10.5	91	19	46	23	3.2
27	1030	13	340	6.7	11.0	10.2	92	56	26	16	3.8
MAY	1030	13	340	0.7	11.0	10.2	72	50	20	10	3.0
27	1300	11	450	6.9	17.0	8.5	88	77	45	23	4.8
JUN		7.7		-		- • •	-				. • =
25	1300	7.3	440	6.8	23.0	7.4		68	34	20	4.5
JUL											
28	1245	5.6	460	6.6	23.0	8.5		73	39	21	4.9
SEP											
08	1215	7.7	475	6.1	20.0	8.8		71	37	21	4.5
23	1130	6.4	470		17.0	8.8		68	36	20	4.5
	DIS-	DIS- SOLVED PO-			ALKA-	DIS-	DIS- SOLVED	DIS- SOLVED	DIS-	DIS- SOLVED SOLIDS	
DATE	SOLVED SODIUM (NA) (MG/L)	TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	CAR- BONATE (CU3) (MG/L)	LINITY AS CACO3 (MG/L)	SOLVED SULFATE (SO4)	CHLO- RIDE (CL) (MG/L)	FLUO- RIDE (F) (MG/L)	SOLVED SILICA (SIO2) (MG/L)	(SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
DATE	SODIUM	SIUM	BONATE	BONATE	AS	SOLVED SULFATE	RIDE	RIDE	SILICA	CONSTI-	NITRATE
NOV	SODIUM (NA) (MG/L)	SIUM (K) (MG/L)	BONATE (HCO3) (MG/L)	BONATE (CU3) (MG/L)	AS CACO3 (MG/L)	SOLVED SULFATE (SO4) (MG/L)	RIDE (CL) (MG/L)	RIDE (F) (MG/L)	SILICA (SIO2) (MG/L)	CONSTI- TUENTS) (MG/L)	NITRATE (N) (MG/L)
NOV 03	SODIUM (NA) (MG/L)	SIUM (K) (MG/L)	BONATE (HCO3) (MG/L)	BONATE (CU3) (MG/L)	AS CACO3 (MG/L)	SOLVED SULFATE (SO4) (MG/L)	RIDE (CL) (MG/L)	RIDE (F) (MG/L)	SILICA (SIO2) (MG/L)	CONSTI- TUENTS) (MG/L)	NITRATE (N) (MG/L)
NOV 03 28	SODIUM (NA) (MG/L)	SIUM (K) (MG/L)	BONATE (HCO3) (MG/L)	BONATE (CU3) (MG/L)	AS CACO3 (MG/L)	SOLVED SULFATE (SO4) (MG/L)	RIDE (CL) (MG/L)	RIDE (F) (MG/L)	SILICA (SIO2) (MG/L)	CONSTI- TUENTS) (MG/L)	NITRATE (N) (MG/L)
NOV 03 28 DEC	SODIUM (NA) (MG/L)	SIUM (K) (MG/L) 4.1 2.7	BONATE (HCO3) (MG/L) 36 28	BONATE (CÚ3) (MG/L)	AS CACO3 (MG/L) 30 23	SOLVED SULFATE (SO4) (MG/L) 37 28	RIDE (CL) (MG/L) 71 61	RIDE (F) (MG/L)	SILICA (SIO2) (MG/L) 7.5 5.6	TUENTS) (MG/L) 226 181	NITRATE (N) (MG/L) 3.3 2.8
NOV 03 28 DEC 29	SODIUM (NA) (MG/L)	SIUM (K) (MG/L)	BONATE (HCO3) (MG/L)	BONATE (CU3) (MG/L)	AS CACO3 (MG/L)	SOLVED SULFATE (SO4) (MG/L)	RIDE (CL) (MG/L)	RIDE (F) (MG/L)	SILICA (SIO2) (MG/L)	CONSTI- TUENTS) (MG/L)	NITRATE (N) (MG/L)
NOV 03 28 DEC 29 FEB	SODIUM (NA) (MG/L) 49 36	SIUM (K) (MG/L) 4.1 2.7	BONATE (HCO3) (MG/L) 36 28	BONATE (CU3) (MG/L) 0	AS CACO3 (MG/L) 30 23	SOLVED SULFATE (SO4) (MG/L) 37 28 32	RIDE (CL) (MG/L) 71 61	RIDE (F) (MG/L)	SILICA (SI02) (MG/L) 7.5 5.6	CONSTI- TUENTS) (MG/L) 226 181	NITRATE (N) (MG/L) 3.3 2.8
NOV 03 28 DEC 29 FEB 04	SODIUM (NA) (MG/L) 49 36 87	SIUM (K) (MG/L) 4.1 2.7 3.6	BONATE (HCO3) (MG/L) 36 28 40	BONATE (CU3) (MG/L)	AS CACO3 (MG/L) 30 23 33	SOLVED SULFATE (SO4) (MG/L) 37 28 32	RIDE (CL) (MG/L) 71 61 140	RIDE (F) (MG/L)	7.5 5.6 7.2	CONSTITUENTS) (MG/L) 226 181 330 394	NITRATE (N) (MG/L) 3.3 2.8 4.0
NOV 03 28 DEC 29 FEB 04	SODIUM (NA) (MG/L) 49 36	SIUM (K) (MG/L) 4.1 2.7	BONATE (HCO3) (MG/L) 36 28	BONATE (CU3) (MG/L) 0	AS CACO3 (MG/L) 30 23	SOLVED SULFATE (SO4) (MG/L) 37 28 32	RIDE (CL) (MG/L) 71 61	RIDE (F) (MG/L)	SILICA (SI02) (MG/L) 7.5 5.6	CONSTI- TUENTS) (MG/L) 226 181	NITRATE (N) (MG/L) 3.3 2.8
NOV 03 28 DEC 29 FEB 04 24	SODIUM (NA) (MG/L) 49 36 87 110 55	\$1UM (K) (MG/L) 4.1 2.7 3.6 3.7 4.4	BONATE (HCO3) (MG/L) 36 28 40 42 38	BONATE (CO3) (MG/L) 0 0	AS CACO3 (MG/L) 30 23 33 34 31	SOLVED SULFATE (SO4) (MG/L) 37 28 32 39 36	71 61 140 170 87	RIDE (F) (MG/L) .0 .0	SILICA (SIO2) (MG/L) 7.5 5.6 7.2 7.7	CONSTITUENTS) (MG/L) 226 181 330 394 243	NITRATE (N) (MG/L) 3.3 2.8 4.0 4.9
NOV 03 28 DEC 29 FEB 04	SODIUM (NA) (MG/L) 49 36 87	SIUM (K) (MG/L) 4.1 2.7 3.6	BONATE (HCO3) (MG/L) 36 28 40	BONATE (CU3) (MG/L)	AS CACO3 (MG/L) 30 23 33	SOLVED SULFATE (SO4) (MG/L) 37 28 32	RIDE (CL) (MG/L) 71 61 140	RIDE (F) (MG/L)	7.5 5.6 7.2	CONSTITUENTS) (MG/L) 226 181 330 394	NITRATE (N) (MG/L) 3.3 2.8 4.0
NOV 03 28 DEC 29 FEB 04 24 MAR 26	SODIUM (NA) (MG/L) 49 36 87 110 55	\$1UM (K) (MG/L) 4.1 2.7 3.6 3.7 4.4	BONATE (HCO3) (MG/L) 36 28 40 42 38	BONATE (CO3) (MG/L) 0 0	AS CACO3 (MG/L) 30 23 33 34 31	SOLVED SULFATE (SO4) (MG/L) 37 28 32 39 36	71 61 140 170 87	RIDE (F) (MG/L) .0 .0	SILICA (SIO2) (MG/L) 7.5 5.6 7.2 7.7	CONSTITUENTS) (MG/L) 226 181 330 394 243	NITRATE (N) (MG/L) 3.3 2.8 4.0 4.9
NOV 03 28 DEC 29 FEB 04 24 MAR 26 APR 27 MAY	SODIUM (NA) (MG/L) 49 36 87 110 55	\$1UM (K) (MG/L) 4.1 2.7 3.6 3.7 4.4 4.0	BONATE (HCO3) (MG/L) 36 28 40 42 38 38 36	BONATE (CG3) (MG/L)	AS CACO3 (MG/L) 30 23 33 34 31	SOLVED SULFATE (SO4) (MG/L) 37 28 32 39 36	RIDE (CL) (MG/L) 71 61 140 170 87 86	RIDE (F) (MG/L) .0 .0 .0 .0	SILICA (SIO2) (MG/L) 7.5 5.6 7.2 7.7 7.5 8.0 6.3	CONSTITUENTS) (MG/L) 226 181 330 394 243 251	NITRATE (N) (MG/L) 3.3 2.8 4.0 4.9 4.6 5.6 3.5
NOV 03 28 DEC 29 FEB 04 24 MAR 26 APR 27 MAY	SODIUM (NA) (MG/L) 49 36 87 110 55	\$1UM (K) (MG/L) 4.1 2.7 3.6 3.7 4.4	BONATE (HCO3) (MG/L) 36 28 40 42 38	BONATE (CO3) (MG/L) 0 0	AS CACO3 (MG/L) 30 23 33 34 31	SOLVED SULFATE (SO4) (MG/L) 37 28 32 39 36	RIDE (CL) (MG/L) 71 61 140 170 87	RIDE (F) (MG/L) .0 .0 .0	SILICA (SIO2) (MG/L) 7.5 5.6 7.2 7.7 7.5	CONSTITUENTS) (MG/L) 226 181 330 394 243 251	NITRATE (N) (MG/L) 3.3 2.8 4.0 4.9 4.6
NOV 03 28 DEC 29 FEB 04 24 MAR 26 APR 27 MAY 27 JUN	SODIUM (NA) (MG/L) 49 36 87 110 55 55 42	\$1UM (K) (MG/L) 4.1 2.7 3.6 3.7 4.4 4.0 3.7	BONATE (HCO3) (MG/L) 36 28 40 42 38 38 36 39	BONATE (C03) (MG/L)	AS CACO3 (MG/L) 30 23 33 34 31 31 30 32	SOLVED SULFATE (SO4) (MG/L) 37 28 32 39 36 41 28 38	RIDE (CL) (MG/L) 71 61 140 170 87 86 64	RIDE (F) (MG/L) .0 .0 .0 .1 .0	SILICA (SIO2) (MG/L) 7.5 5.6 7.2 7.7 7.5 8.0 6.3 7.4	CONSTITUENTS) (MG/L) 226 181 330 394 243 251 197 260	NITRATE (N) (MG/L) 3.3 2.8 4.0 4.9 4.6 5.6 3.5
NOV 03 28 DEC 29 FEB 04 24 MAR 26 APR 27 MAY 27 JUN 25	SODIUM (NA) (MG/L) 49 36 87 110 55	\$1UM (K) (MG/L) 4.1 2.7 3.6 3.7 4.4 4.0	BONATE (HCO3) (MG/L) 36 28 40 42 38 38 36	BONATE (CG3) (MG/L)	AS CACO3 (MG/L) 30 23 33 34 31 31	SOLVED SULFATE (SO4) (MG/L) 37 28 32 39 36 41 28	RIDE (CL) (MG/L) 71 61 140 170 87 86	RIDE (F) (MG/L) .0 .0 .0 .0	SILICA (SIO2) (MG/L) 7.5 5.6 7.2 7.7 7.5 8.0 6.3	CONSTITUENTS) (MG/L) 226 181 330 394 243 251	NITRATE (N) (MG/L) 3.3 2.8 4.0 4.9 4.6 5.6 3.5
NOV 03 28 DEC 29 FEB 04 MAR 26 APR 27 MAY 27 JUN 25 JUL	SODIUM (NA) (MG/L) 49 36 87 110 55 55 42 57	\$IUM (K) (MG/L) 4.1 2.7 3.6 3.7 4.4 4.0 3.7 4.0	BONATE (HCO3) (MG/L) 36 28 40 42 38 38 36 39 42	BONATE (CO3) (MG/L) 0 0 0 0	AS CACO3 (MG/L) 30 23 33 34 31 31 30 32	SOLVED SULFATE (SO4) (MG/L) 37 28 32 39 36 41 28 38 35	71 61 140 170 87 86 64 85	**RIDE (F) (MG/L) **O **O **O **O **O **O **O **O **O **	SILICA (S102) (MG/L) 7.5 5.6 7.2 7.7 7.5 8.0 6.3 7.4	CONSTITUENTS) (MG/L) 226 181 330 394 243 251 197 260 246	NITRATE (N) (MG/L) 3.3 2.8 4.0 4.9 4.6 5.6 3.5 4.7
NOV 03 28 DEC 29 FEB 04 24 MAR 26 APR 27 MAY 27 JUN 25 JUN 28	SODIUM (NA) (MG/L) 49 36 87 110 55 55 42	\$1UM (K) (MG/L) 4.1 2.7 3.6 3.7 4.4 4.0 3.7	BONATE (HCO3) (MG/L) 36 28 40 42 38 38 36 39	BONATE (C03) (MG/L)	AS CACO3 (MG/L) 30 23 33 34 31 31 30 32	SOLVED SULFATE (SO4) (MG/L) 37 28 32 39 36 41 28 38	RIDE (CL) (MG/L) 71 61 140 170 87 86 64	RIDE (F) (MG/L) .0 .0 .0 .1 .0	SILICA (SIO2) (MG/L) 7.5 5.6 7.2 7.7 7.5 8.0 6.3 7.4	CONSTITUENTS) (MG/L) 226 181 330 394 243 251 197 260	NITRATE (N) (MG/L) 3.3 2.8 4.0 4.9 4.6 5.6 3.5
NOV 03 28 DEC 29 FEB 04 44 MAR 26 APR 27 MAY 27 JUN 25 JUL 28 SEP	SODIUM (NA) (MG/L) 49 36 87 110 55 55 42 57 54	\$IUM (K) (MG/L) 4.1 2.7 3.6 3.7 4.4 4.0 3.7 4.0 4.1 3.5	BONATE (HCO3) (MG/L) 36 28 40 42 38 36 39 42 41	BONATE (CO3) (MG/L) 0 0 0 0 0	AS CACO3 (MG/L) 30 23 33 34 31 31 30 32 34	SOLVED SULFATE (SO4) (MG/L) 37 28 32 39 36 41 28 38 35	RIDE (CL) (MG/L) 71 61 140 170 87 86 64 85 82	RIDE (F) (MG/L) .0 .0 .0 .0 .1 .0 .0 .1	SILICA (SIO2) (MG/L) 7.5 5.6 7.2 7.7 7.5 8.0 6.3 7.4 6.3 5.0	CONSTITUENTS) (MG/L) 226 181 330 394 243 251 197 260 246 247	NITRATE (N) (MG/L) 3.3 2.8 4.0 4.9 4.6 5.6 3.5 4.7 4.1
NOV 03 28 DEC 29 FEB 04 4AR 26 APR 27 JUN 25 JUL 28 SEP 08	SODIUM (NA) (MG/L) 49 36 87 110 55 55 42 57 54 56 54	\$1UM (K) (MG/L) 4.1 2.7 3.6 3.7 4.4 4.0 3.7 4.0 4.1 3.5	BONATE (HCO3) (MG/L) 36 28 40 42 38 36 39 42 41 42	BONATE (C03) (MG/L) 0 0 0 0 0 0	AS CACO3 (MG/L) 30 23 33 34 31 31 30 32 34 34 34	SOLVED SULFATE (SO4) (MG/L) 37 28 32 39 36 41 28 38 35 35	RIDE (CL) (MG/L) 71 61 140 170 87 86 64 85 82 88	RIDE (F) (MG/L) .0 .0 .0 .0 .1 .0 .0 .1 .1 .1	SILICA (SIO2) (MG/L) 7.5 5.6 7.2 7.7 7.5 8.0 6.3 7.4 6.3 5.0	CONSTITUENTS) (MG/L) 226 181 330 394 243 251 197 260 246 247	NITRATE (N) (MG/L) 3.3 2.8 4.0 4.9 4.6 5.6 3.5 4.7 4.1 3.1
NOV 03 28 DEC 29 FEB 04 44 MAR 26 APR 27 MAY 27 JUN 25 JUL 28 SEP	SODIUM (NA) (MG/L) 49 36 87 110 55 55 42 57 54	\$IUM (K) (MG/L) 4.1 2.7 3.6 3.7 4.4 4.0 3.7 4.0 4.1 3.5	BONATE (HCO3) (MG/L) 36 28 40 42 38 36 39 42 41	BONATE (CO3) (MG/L) 0 0 0 0 0	AS CACO3 (MG/L) 30 23 33 34 31 31 30 32 34	SOLVED SULFATE (SO4) (MG/L) 37 28 32 39 36 41 28 38 35	RIDE (CL) (MG/L) 71 61 140 170 87 86 64 85 82	RIDE (F) (MG/L) .0 .0 .0 .0 .1 .0 .0 .1	SILICA (SIO2) (MG/L) 7.5 5.6 7.2 7.7 7.5 8.0 6.3 7.4 6.3 5.0	CONSTITUENTS) (MG/L) 226 181 330 394 243 251 197 260 246 247	NITRATE (N) (MG/L) 3.3 2.8 4.0 4.9 4.6 5.6 3.5 4.7 4.1

01310500 EAST MEADOW BROOK AT FREEPORT, NY--Continued

DATE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
NOV	- Year	100		-			.02	.01	270	350	•1
03	2.9	.05	.01	.38	.70	4.0			580	480	.1
28	2.8	.02	.03	.41	•88	3.7	.06	.01	300	400	
DEC							\-			620	.1
29	4.0	.02	.03	.93	1.2	5.2	.03	.00	490	020	• •
FEB											
04	3.1	.01	.76	.79	1.0	5.9	.03	.01	470	540	.1
24	2.2	.05	.01	.05	1.1	5.7	.03	.01	550	780	.1
MAR				0.00							
26	2.2	.11	.01	.79	.91	6.6	.01	.01	480	500	.1
APR	2.02	•••	•••	• • • •	• • • •						
	3.4	.07	.06	.66	1.3	4.9	.04	.01	390	380	.2
27	3.4	.01	.00	•00	1.0						
MAY		12	10	.61	1.2	6.0	.03	.01	380	310	.2
27	4.7	•12	.12	.01	1.6	0.0	•••				
JUN					7.0	4.0	.03	.01	450	230	.1
25	4.3	.12	.15	.28	.70	4.9	.03	.01	450		
JUL				3.48				.00	530	240	.2
28	3.0	.08	.08	.23	.83	4.0	.04	.00	530	240	100
SEP							11.6	•••		270	
08	4.2	.07	.08	.35	•53	4.7	.04	.02	5000	270	.1
23	3.9	.06	.06	.45	1.1	4.6	.04	.01	470	320	.1

01311000 PINES BROOK AT MALVERNE, NY

LOCATION.--Lat 40°39'59", long 73°39'35", Nassau County, on left bank 300 ft (91 m) downstream from Lakeview Avenue and southern boundary of Malverne. Water-quality sampling site at discharge station. DRAINAGE AREA.--About 10 mi 2 (26 km 2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --1851-52, 1856-57, 1885, 1894 (fragmentary in Professional Paper 44); December 1936 to current year (monthly means estimated March to September 1970).

REVISED RECORDS (WATER YEARS). --WSP 1432: 1937, 1940.

GAGE. --Water-stage recorder with steel plate V-notch weir and concrete controls. Datum of gage is 7.11 ft (2.167 m) above mean sea level, adjustment of 1912 (Nassau County bench mark). Prior to 1894, determinations of flow by various methods, at different sites and datums. December 1936 to Oct. 1, 1970, at site 200 ft (61 m) upstream and at datum 2.31 ft (0.704 m) higher. Oct. 1, 1970 to May 31, 1972, supplementary gage on secondary channel 10 ft (3 m) downstream at same datum.

REMARKS.--Records fair except those above 30 ft³/s (0.85 m³/s) and for period of no gage height record, July 7 to Sept. 30, which are poor. Prior to Feb. 20, 1956, flow occasionally regulated by Pines Pond. Indeterminate diversion from Pines Pond for emergency municipal water supply for City of New York, August 1953 to September 1954.

1954.

AVERAGE DISCHARGE.--39 years (1937-76), 4.08 ft³/s (0.116 m³/s).

EXTREMES FOR PERIOD OF RECORD (SINCE 1936).--Maximum discharge, 346 ft³/s (9.80 m³/s) Sept. 12, 1960, gage height, 4.51 ft (1.375 m), from rating curve extended above 95 ft³/s (2.69 m³/s) on basis of flow-through-culvert measurement of peak flow; no flow part of Sept. 12, 1963, and at times from 1964 to 1975.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 125 ft³/s (3.54 m³/s):

Date	Time	Disch (ft ³ /s)	marge (m³/s)	Gage hei	ight (m)	Dat	e	Time	Disc (ft ³ /s)	harge (m ³ /s)	Gage 1 (ft)	neight (m)
Nov. 12		157 240	4.45	3.90 1		Aug.	10	unknown	340	9.63	unl	known

Minimum daily discharge, 0.07 ft 3 /s (0.002 m 3 /s) Aug. 6, 7.

UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY

STATION		01	311000		AT MALVER						STREAM				Y ÜSGS	
LATITUD	E 403959	LONG	ITUDE 0	733935	DRAINAG	E AREA	1	0.00	DAT	UM	9.42	STATE	E 36	COUN.	TY 059	
		DISCHA	RGE, IN	CUBIC FEET	PER SECOND MEAN	, WATER VALUES	YEAR C	CTOBER	1975	TO SE	PTEMBER	1976				
DAY	001	NOV	DEC	JAN	FEB	MAR	APR	2 .	AAY	JUI	ν ,	JUL	Δ	UG	SEP	
1	.76	•54	.82	9.8	2.9	1.2	20	14		2.1	9	. 0		10	.19	
2	.76	.54	.76	1.2	20	1.2	2.0		.3	6.2		50		15	.50	
3	.64	.54	.70	3.0	1.7	1.2	1.4		9	.76		50		10	.25	
4	.64	•54	.70	1.2	1.7	1.6	1.3		.7	.70				09	.20	
5	•59	.44	.70	1.0	1.6	1.5	1.7		4	1.2		.5		08	.20	
6	.57	.49	.76	1.0	1.6	1.2	1.9	1.	2	1.3		.35		07	.20	
7	.54	.49	.76	9.9	1.5	1.2	2.1			1.3		44		07	.17	
8	.54	2.5	.76	8.1	1.5	1.2	1.5			1.4		35	45	•	.17	
9	.49	.54	2.0	1.2	1.4	1.2	1.5		0	1.3		31	10		.15	
10	.49	.91	8.1	1.1	1.5	1.5	1.6		94	1.1		50	50		.30	
11	.80	.59	.94	1.2	1.8	1.9	1.5		94	1.1		.30	2.	0	.20	
12	1.0	21	.76	1.2	1.4	1.2	1.5		0	.94		30		65	.15	
13	.70	14	.76	7.0	1.4	15	1.4		82	.94		25		40	.15	
14	.05	1.3	.76	6.8	1.4	2.2	1.3		82	. 94		20	- 3		.11	
15	.64	.94	.76	1.2	1.4	1.7	1.2		82	. 94		20	5:	5	.11	
16	.64	.82	.76	1.2	1.4	6.1	1.3		82	86	a .	.60		50	.15	
17	2.5	.76	.70	1.2	1.8	2.1	1.3			.57		.30		35	•40	
18	23	.76	.76	1.1	1.9	1.3	1.3			.40		20		30	.25	
19	8.4	.70	.70	1.1	2.3	1.3	1.2			.39		.17		25	.20	
20	1.2	.70	.70	1.1	1.4	1.3	1.2		0	40		15		25	.15	
21	.76	9.1	.70	1.7	1.2	1.3	1.2	6.	2	.39		.13		20	.15	
22	.70	1.4	.76	3.1	8.2	1.2	7.8			.39		15		20	•50	
23	.64	.82	.70	3.9	1.8	1.2	2.4			.39		70		20	.30	
24	.59	.82	.64	3.7	1.4	1.2	3.2			.38		25		19	.20	
25	2.2	.76	.64	3.6	1.4	1.6	5.2			. 35		.20		19	.15	
26	.70	.70	29	7.5	1.4	1.6	7.6		82	. 33		.15		19	•15	
27	.59	6.0	1.3	30	1.4	1.6	3.6		82	.30		10		24	.20	
28	.59	.88	1.0	11	1.3	1.9	3.6		88	.2		10		20	.17	
29	.59	.76	.94	1.7	1.3	2.2	3.9		88	10		15		20	.17	
30	.54	.70	5.2	1.5		2.6	3.2		1	25		.13		20	.17	
31	.54		5.6	1.4		5.0			94			10		19		
TOTAL	54.01	71.09	70.14	129.7	71.0	65.5	89.9	102.	70	62.7	2 30.	28	115.	51	6.36	
MEAN	1.74	2.37	2.26	4.18	2.45	2.11	3.00		31	2.09		98		73	.21	
MAX	23	21	29	30	20	15	20		16	2:		12	٠.	50	.50	
MIN	.47	.49	.64	1.0	1.2	1.2	1.2		82	• 5.		.10		07	.11	

01311000 PINES BROOK AT MALVERNE, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

WATER QUALITY DATA. WATER YEAR OCTOBER 1975 TO SEPTEMBER 197	WATER	QUAL TTY	DATA.	WATER	YEAR	OCTORER	1975	TO	SEPTEMBER	197
--	-------	----------	-------	-------	------	---------	------	----	-----------	-----

DATE	TIME	INSTAN- TANEOUS DIS- CHARGE (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)
DEC	1515	.94	330	6.4	7.0	7.5	61	91	50	26	6.3	22
29	1919	. 74	330	0.4		7.5		1454080		79.45		
29	0900	1.8	353	6.5	7.5	9.2	78	98	55	29	6.2	25
JUN			200		21.0	4 0		110	67	29	8.1	29
25	0800	.35	380	6.7	21.0	4.8		110		-,	•••	
SEP 29	0900	•17	380		13.0	8.0		75	33	21	5.4	17

DATE	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	CAR- BONATE (CO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)	DIS- SOLVED NITRATE (N) (MG/L)
DEC 29	.0	50	0	41	47	35	.0	9.3	187	3.7	3.7
MAR	••	30	v	7.	41	33	•••				
29	4.9	52	0	43	47	41	•1	9.0	196	2.6	1.8
25	4.9	47	0	39	51	43	.1	8.4	208	2.1	2.5
SEP 29	4.3	51		42	34	26	.1	5.2	143	1.3	1.2

DATE	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL ORGANIC NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
DEC									5 July 1			
29	.03	.04	.54	.30	.84	4.5	.04	.00	530	1300	.1	
MAR												
29	.03	.02	.38	.72	1.1	3.7	.01	.01	770	1200	.1	
JUN												
25	.13	.15	.46	.49	•95	3.2	.02	.01	260	1200	.1	
SEP											100	
29	.02	.02	.05	.43	.48	1.8	.05	.01	180	160	.1	

01311500 VALLEY STREAM AT VALLEY STREAM, NY

LOCATION.--Lat 40°39'49", long 73°42'18", Nassau County, Hydrologic Unit 02030202, on right bank 40 ft (12 m) upstream from West Valley Stream Boulevard, at Valley Stream. Water-quality sampling site at discharge station.

DRAINAGE AREA.--About 4.5 mi² (12 km²).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--1851-52, 1854, 1856-57, 1885, 1894 (fragmentary in Professional Paper 44), July 1954 to current year. Prior to October 1956, published as Watts Creek at Valley Stream.

REVISED RECORDS (WATER YEARS) .-- WRD NY 1971: 1962-63(M), 1966-69(M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 7.49 ft (2.283 m) above mean sea level. Prior to 1894, determinations of flow by various methods, at different sites and datums. July 1954 to July 16, 1964 at same site at datum 1.0 ft (0.30 m) higher.

REMARKS.--Records good except those above 50 ft 3 /s (1.42 m 3 /s), which are fair. Flow regulated occasionally by cleaning operations at outlet of Valley Stream Pond above station.

AVERAGE DISCHARGE. -- 22 years (1954-76), 2.86 ft3/s (0.081 m3/s).

EXTREMES FOR PERIOD OF RECORD (SINCE 1954).--Maximum discharge, 232 ft³/s (6.57 m³/s) Sept. 12, 1960, gage height, 5.50 ft (1.676 m), from floodmarks; no flow at times each year since 1963.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 165 ft³/s (4.67 m³/s) Aug. 10, gage height, 4.19 ft (1.277 m); no flow for all or part of many days during year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

					ME	AN VALUES	TEAN OO	00EN 1775	, 10 32112	INDEK IZZ		
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.29	0	.10	9.0	•69	.10	12	4.2	.26	2.8	0	0
2	.29	0	.07	.80	19	0	1.5	5.0	3.0	.22	0	.10
3	.14	0	.04	1.1	1.2	.04	.50	.47	.28	.01	0	.01
4	.14	0	.02	•59	•66	1.2	.37	.22	.13	9.9	0	0
5	.14	0	0	• 29	•59	.92	.49	.14	.05	1.6	0	0
6	.18	0	0	.23	•70	•59	.38	.18	0	.10	0	0
7	.18	0	0	3.5	•57	• 35	.40	4.3	.03	.08	0	0
8	.07	0	0	8.1	•51	• 35	.40	2.5	.01	.08	40	0
9	.04	0	0	.59	•50	.80	.39	.32	0	.04	17	0
10	0	0	4.1	.35	•50	1.4	•25	.18	0	0	38	.01
11	.04	0	•69	.42	•62	.69	•25	.17	0	0	.79	0
12	.07	7.3	.07	.42	• 65	.29	.03	.29	0	0	.24	0
13	.02	16	0	2.1	•56	11	.17	.30	0	0	.16	0
14	0	.92	0	8.5	.42	1.2	.40	.19	0	0	.08	0
15	0	.29	.02	69	.28	•58	.33	.16	0	0	2.1	0
16	0	.18	.04	1.1	•38	2.1	.30	.15	0	•20	.22	0
17	.02	.07	.02	.80	.69	1.7	•56	.17	.02	• 05	.01	.06
18	16	.07	0	.42	•92	.47	.29	4.9	0	0	0	0
19	3.5	.10	0	.35	.80	•55	.34	7.0	0	0	.02	0
20	1.4	.10	0	.29	•29	•52	.34	.70	0	0	.06	•11
21	.35	4.1	0	.23	•18	•48	.37	.83	0	0	0	.03
22	.35	1.7	0	.18	4.1	.35	3.1	.58	0	0	0	.11
23	.23	.14	0	.10	1.7	.29	1.8	.35	0	.20	0	0
24	.10	.02	0	.07	.59	.37	.27	.38	0	.35	.03	0
25	.50	0	0	.04	•59	• 45	.42	.24	0	0	0	0
26	.18	0	21	.02	.80	•54	.88	.23	0	0	0	0
27	.02	2.8	1.7	8.1	.80	•51	.30	.27	0	0	0	0
28	0	.59	.35	11	•42	.36	.11	.25	0	0	0	0
29	0	.07	.18	.92	.07	.07	0	.20	4.2	.02	0	0
30	0	.04	1.5	.59		•26	0	.12	12	.01	Ō	0
31	0		6.9	.42		• 40		.02		0	0	
TOTAL	24.25	34.49	36.80	61.31	39.78	28.93	26.94	35.01	19.98	15.66	98.71	.43
MEAN	.78	1.15	1.19	1.98	1.37	.93	.90	1.13	.67	•51	3.18	.014
MAX	16	16	21	11	19	11	12	7.0	12	9.9	40	.11
MIN	0	0	0	.02	•07	0	0	.02	0	0	0	0

CAL YR 1975 TOTAL 567.99 MEAN 1.56 MAX 40 MIN 0 WTR YR 1976 TOTAL 422.29 MEAN 1.15 MAX 40 MIN 0

01311500 VALLEY STREAM AT VALLEY STREAM, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1967 to current year.

			SPE-								DIS-
			CIFIC						NON-	DIS-	SOLVED
		INSTAN-	CON-				PER-		CAR-	SOLVED	MAG-
		TANEOUS	DUCT-			DIS-	CENT	HARD-	BONATE	CAL-	NE-
		DIS-	ANCE	PH	TEMPER-	SOLVED	SATUR-	NESS	HARD-	CIUM	SIUM
	TIME	CHARGE	(MICRO-		ATURE	OXYGEN	ATION	(CA+MG)	NESS	(CA)	(MG)
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	(MG/L)		(MG/L)	(MG/L)	(MG/L)	(MG/L)
MAR											
29	1030	.07	228	8.8	11.0	12.2	110	57	7	16	4.2
	1030		220	0.0	11.00	1-12	110			•	
		DIS-								DIS-	
		SOLVED					DIS-	DIS-		SOLVED	
	DIS-	P0-			ALKA-	DIS-	SOLVED	SOLVED	DIS-	SOLIDS	
	SOLVED	TAS-	BICAR-	CAR-	LINITY	SOLVED	CHLO-	FLU0-	SOLVED	(SUM OF	TOTAL
	SODIUM	SIUM	BONATE	BONATE	AS	SULFATE	RIDE	RIDE	SILICA	CONSTI-	NITRATE
	(NA)	(K)	(HC03)	(CO3)	CAC03	(504)	(CL)	(F)	(\$102)	TUENTS)	(N)
DATE	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)
MAR											
29	23	2.0	61	0	50	11	35	.1	•1	122	.01
		48.74									
					TOTAL						METHY-
				TOTAL	KJEL-			TOTAL			LENE
	DIS-		DIS-	AMMUNIA	DAHL	TOTAL	TOTAL	ORTHO		TOTAL	BLUE
	SOLVED	TOTAL	SOLVED	NITRO-	NITRO-	NITRO-	PHOS-	PHOS-	TOTAL	MAN-	ACTIVE
	NITRATE	NITRITE	NITRITE	GEN	GEN	GEN	PHORUS	PHORUS	IRON	GANESE	SUB-
	(N)	(N)	(N)	(N)	(N)	(N)	(P)	(P)	(FE)	(MN)	STANCE
DATE	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(UG/L)	(UG/L)	(MG/L)
MAR											
29	.02	.00	.02	.04	1.3	1.3	.09	.02	3300	670	.1
	• • •	-		NIP PRO							

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site a which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Low-flow partial-record stations

Measurements of streamflow in the area covered by this report made at low-flow partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, give a picture of the low-flow potentiality of the stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same, site. Where "Drainage area" column is blank, drainage area was not available at time of publication.

Station No.	Station name	Location	Drainage area (mi ²)	Period of record	Date	Measurements Discharge (ft³/s)
Station No.	Station name	Location	(m1-)	record	Date	(11-75)
		Streams on Long Island				
01302200	Whitney Lake Outlet at Manhasset, N.Y.	Lat 40°47'30", long 73°42'32", Nassau County, at bridge on Creek Road, at Manhasset, 0.25 mile (0.40 km) north- west of State Highway 25A.		1953-76	11-24-75 2-13-76 3-22-76 6-18-76 9-13-76	.86 1.8 1.4 .94
01302300	Roslyn Brook at Roslyn, N.Y.	Lat 40°47'55", long 73°38'51", Nassau County, at Roslyn, 200 ft (61 m) downstream from dam in Roslyn Park.		1953-76	10-16-75 2-13-76 3-22-76 6-16-76 9-13-76	.20 .15 .05 .13
01302800	Island Swamp Brook at Lattingtown, N.Y.	Lat 40°53'25", long 73°37'10", Nassau County, at bridge on Lattingtown Road, 0.3 mile (0.5 km) southwest of Lattingtown, and 1.5 miles (2.4 km) northwest of Locust Valley.		1953-76	10-15-75 2-12-76 6-16-76 9-13-76	.84 1.1 .66 1.0
01303600	Mill Creek near Huntington, N.Y.	Lat 40°52'56", long 73°25'17", Suffolk County, at culvert on Creek Road, 300 ft (91 m) west on New York Ave., 1 mile (2 km) northeast of Huntington.		1953-76	11-24-75 2-12-76 3-22-76 3-26-76 9-14-76	6.7 3.1 3.4 2.8 6.4
01303700	Stony Hollow Run at Centerport, N.Y.	Lat 40°53'05", long 73°21'41", Suffolk County, at culvert on State Highway 25A, 0.25 mile (0.40 km) east of Centerport, and 1.5 miles (2.4 km) southwest of Northport.		1953-76	11-24-75 2-12-76 3-22-76 9-14-76	1.0 1.5 .66 .75
01303790	Northeast Branch Nissequogue River near East Hauppauge, N.Y.	Lat 40°50'27", long 73°10'41", Suffolk County, at culvert on State Highway 347, 1.5 miles (2.4 km) northwest of East Hauppauge, and 4.0 miles (6.4 km) upstream from gaging station near Smithtown.		1972-76	5-27-76 9-14-76	.66
01303800	Northeast Branch Nissequogue River at Smithtown, N.Y.	Lat 40°51'05", long 73°11'15", Suffolk County, 300 ft (91 m) upstream from culvert on State Highway 111, 0.75 mile (1.21 km) southeast of Smith- town, and 3.0 miles (4.8 km) upstream from gaging station near Smithtown.		1948-49 1951-76	9-14-76	0,
01303850	Northeast Branch Nissequogue River near Hauppauge, N.Y.	Lat 40°50'43", long 73°11'50", Suffolk County, at culvert on Maple Avenue, 0.75 mile (1.21 km) south of Smithtown, and 2.5 miles (4.0 km) upstream from gaging station near Smithtown.		1972-76	5-27-76 9-14-76	2.4

Station No.	Station name	Location	Drainage area (mi²)	Period of record	Date	Measurements Discharge (ft³/s)
		Streams on Long Island				
01303900	Northeast Branch Nissequogue River near Smithtown, N.Y.	Lat 40°50'45", long 73°12'29", Suffolk County, 10 ft up- stream from culvert at Brooksite Drive, 0.75 mile (1.21 km) southwest of Smithtown, and 2.0 miles (3.2 km) upstream from gaging station near Smithtown.	•	1953-76	5-27-76 9-14-76	3.9 5.0
01303941	Nissequogue River near Hauppauge, N.Y.	Lat 40°50'30", long 73°13"43", Suffolk County, 30 ft (9 m) downstream from dam at New Mill Road, 2 miles (3 km) northwest of Hauppauge, and 0.5 mile (0.8 km) upstream from gaging station near Smithtown.		1972-76	5-27-76 9-14-76	8.3
01304010	Nissequogue River at Smithtown, N.Y.	Lat 40°51'48", long 73°12'05", Suffolk County, at culvert on Landing Ave., at Smithtown, and 1.5 miles (2.4 km) down- stream from gaging station near Smithtown.	en e	1974-76	5-27-76 9-14-76	38 45
01304100	Wading River at Wading River, N.Y.	Lat 40°57'20", long 72°51'19", Suffolk County, at pond outlet, 0.25 mile (0.40 km) west of Wading River.		1953-62 1964-76	2-18-76 3-26-76 6- 4-76	.92 .97 1.0
01304400	Peconic River at Manorville, N.Y.	Lat 40°52'38", long 72°49'42", Suffolk County, at bridge on Schultz Road, I mile (2 km) northwest of Manorville, and 8.5 miles (13.7 km) upstream from gaging station at Riverhead.		1953-62 1951-76	11-17-75 7-22-76	7.22.2
01304410	Peconic River near Manorville, N.Y.	Lat 40°53'02", long 72°48'26", Suffolk County, at culvert on Manor Road, 0.8 mile (1.5 km) north of Manorville, and 7.2 miles (11.6 km) upstream from gaging station at Riverhead.	 - - -	1973-76	11-17-75 7-22-76	13 3.0
01304440	Peconic River near Calverton, N.Y.	Lat 40°54'02", long 72°46'27", Suffolk County, at culvert on Connecticut Avenue, 1.7 miles (2.7 km) southwest of Calverton, and 4.8 (7.7 km) upstream from gaging station at Riverhead.		1973-76	11-17-75 7-22-76	22 4.8
01304450	Peconic River at Calverton, N.Y.	Lat 40°54'20", long 72°44'35", Suffolk County, at culvert on Edwards Avenue, 0.2 mile (0.3 km) south of Calverton, and 3.0 miles (4.8 km) up- stream from gaging station at Riverhead.		1971-76	11-17-75 7-22-76	33 9.1
01304510	Peconic River at Nugent Drive, at Riverhead, N.Y.	Lat 40°55'03", long 72°40'11", Suffolk County, at bridge on Nugent Drive, at Riverhead, and 1.4 miles (2.3 km) down- stream from gaging station at Riverhead.	77 (c) (-2 m) (-12) (c)	1976	7-22-76	30
01304530	Little River near Riverhead, N.Y.	Lat 40°53'52", long 72°40'30", Suffolk County, at Wildwood Lake outlet, 500 ft (152 m) east of Moriches-Riverhead Road, 1.5 miles (2.4 km) southwest of Riverhead.	2	1952-76	2-18-76 6- 1-76	4.8 4.9

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

Station No.	Station name	Location	Drainage area (mi²)	Period of record	Date	Measurements Discharge (ft ³ /s)
		Streams on Long Island	(
01304560	White Brook at Riverhead, N.Y.	Lat 40°54'40", long 72°38'37", Suffolk County, at culvert on State Highway 24, 1 mile 2 (km) southeast of River- head.	-	1953-69 1973-76	2-19-76 6- 1-76	4.1
01304600	Big Fresh Pond Outlet at North Sea, N.Y.	Lat 40°55'49", long 72°25'04", Suffolk County, at culvert on Noyack Road, at North Sea, 3.5 miles (5.6 km) northwest of Southampton.	- -	1951-69 1971-76	2-24-76 4-6-76 5-11-76 6-1-76	1.7 2.6 2.3 .97
01304630	Mill Creek at Noyack, N.Y.	Lat 40°59'35", long 72°21'00", Suffolk County, 50 ft (15 m) upstream from culvert on Noyack Road, 0.25 mile (0.40 km) west of Noyack.		1958-76	2-24-76 4- 6-76 5- 4-76 6- 1-76	.83 .79 .69
01304660	Ligonee Brook at Sag Harbor, N.Y.	Lat 40°59'21", long 72°18'12", Suffolk County, at culvert on Brick Kiln Road, 0.75 mile (1.21 km) southwest of Sag Harbor.		1953-69 1973-76	2-24-76 4- 6-76 5-11-76 6- 1-76	. 42 . 42 . 31 . 09
01304730	Poxabogue Pond Outlet at Sagaponack, N.Y.	Lat 40°55'48", long 72°17'16", Suffolk County, at culvert on Sagg St., at Sagaponack, and 1 mile (2 km) southeast of Bridgehampton.		1953-76	2-25-76 4- 7-76 5-11-76	3.0 4.4 3.1
01304745	Weesuck Creek at East Quogue, N.Y.	Lat 40°50'52", long 72°34'42", Suffolk County, at culvert on State Highway 27A, 0.5 mile (0.8 km) northeast of East Quogue.		1974-76	2-20-76 11-17-76	2.3
01304760	Quantuck Creek at Quogue, N.Y.	Lat 40°49'57", long 72°37'06", Suffolk County, at culvert on Old Meeting House Road, 1 mile (2 km) northwest of Quogue.		1953-69 1974-76	12-16-75 2-20-76 6- 4-76	2.8 1.5 2.0
01304780	Aspatuck Creek near Westhampton Beach, N.Y.	Lat 40°49'04", long 72°38'13", Suffolk County, at culvert on Brook Road, at West- hampton Beach.		1959-76	12-16-75 2-19-76 6- 8-76	1.9 1.8 1.4
01304800	Beaverdam Creek at Westhampton, N.Y.	Lat 40°49'23", long 72°39'42", Suffolk County, at culvert on Old Country Road, 100 ft (30 m) northwest of State Highway 27, and 1 mile (2 km) northwest of Westhampton.	-	1953-76	12-16-75 2-20-76 6- 8-76	1.4 3.5 1.6
01304820	Speonk River at Speonk, N.Y.	Lat 40°29'06", long 72°41'29", Suffolk County, at culvert on State Highway 27A, 0.75 mile (1.21 km) east of Speonk.	-	1974-76	2-20-76	1.2
01304830	East River at Eastport, N.Y.	Lat 40°49'24", long 72°43'02", Suffolk County, 15 ft (5 m) upstream from culvert on Long Island Railroad, 200 ft (60 m) south of State Highway 27, 0.5 mile (0.8 km) east of Eastport.		1953-69 1973-76	2-19-76 6- 8-76	1.1
01304860	Seatuck Creek at Eastport, N.Y.	Lat 40°49'30", long 72°43'43", Suffolk County, 15 ft (5 m) downstream from culvert on State Highway 27, at East- port.	<u></u>	1953-76	2-19-76 6- 8-76	6.9 2.8
01304900	Little Seatuck Creek at Eastport, N.Y.	Lat 40°49'12", long 72°44'23", Suffolk County, at culvert on Moriches Blvd., 0.75 mile (1.21 km) southwest of Eastport.		1955-69 1974-76	2-20-76 6- 8-76	4.8

Discharge measurements made at low-flow partial-record stations during water year 1976--Continued

			Drainage	Period		Measurements
Station No.	Station name	Location	area (mi²)	of record	Date	Discharge (ft ³ /s)
		Streams on Long Island				
01304960	Forge River at Moriches, N.Y.	Lat 40°48'22", long 72°50'00", Suffolk County, at culvert on State Highway 27, at Moriches.		1948-50 1952-76	2-19-76 6- 1-76	9.9 15
01304990	Carmans River at Middle Island, N.Y.	Lat 40°51'47", long 72°56'35", Suffolk County, at culvert on East Bartlett Road, 0.75 mile (1.21 km) south of Middle Island, and 3.0 miles (4.8 km) upstream from gaging station at Yaphank.		1947-76	5- 6-76 8- 5-76	2.6
01304995	Carmans River near Yaphank, N.Y.	Lat 40°50'29", long 72°56'13", Suffolk County, 25 ft down- stream from Mill Road, 1.2 miles (1.9 km) northwest of Yaphank, and 1.9 miles (3.1 km) upstream from gaging station at Yaphank.		1973-76	5- 6-76 8- 5-76	13 10
01304998	Carmans River, below Lower Lake, at Yaphank, N.Y.	Lat 40°50'07", long 72°55'01", Suffolk County, at culvert on Yaphank Avenue, at Yaphank, and 0.7 mile (1.1 km) upstream from gaging station at Yaphank.		1973-76	5'- 6-76 8- 5-76	21 20
01305040	Carmans River at South Haven, N.Y.	Lat 40°48'09", long 72°53'09", Suffolk County, 50 ft (15 m) upstream from culvert on State Highway 27, at South Haven, and 2.6 miles (4.2 km) downstream from gaging station at Yaphank.	ies de sau Significa		5- 6-76 8- 5-76	59 67
01305300	Mud Creek at East /Patchogue, N.Y.	Lat 40°45'47", long 72°58'59", Suffolk County, at culvert on South Country Road, at East Patchogue, 2 miles (3 km) east of Patchogue.	e e e e e e e e e e e e e e e e e e e	1947-69 1971-76	6- 8-76	4.1
01305800	Patchogue River near Patchogue, N.Y.	Lat 40°46'55", long 73°01'19", Suffolk County, at bridge on discontinued road, 300 ft (91 m) west of North Ocean Ave., and 1 mile (2 km) north of State Highway 27A and gaging station at Patchogue.		1945-50 1952-76	12-12-75 3- 4-76 6- 9-76	11 12 9.3
01306400	Green Creek at West Sayville, N.Y.	Lat 40°43'51", long 73°05'32", Suffolk County, 30 ft (9 m) 'upstream from State Highway 27A, at West Sayville.	- Erri Gerina B Germand Car	1953-76	12-12-75 6- 8-76	6.6 5.0
013064059/	Lake Ronkonkoma Inlet at Lake Ronkonkoma, N.Y.	Lat 40°49'57", long 73°07'34", Suffolk County, 300 ft (91 m) southeast of Smithtown Blvd., 0.2 mile (0.3 km) west of Lake Ronkonkoma.	1 7 8 11 10 10 10 10 10 10 10 10 10 10 10 10	1948-49 1953-54 1956-76	2-19-76 6- 4-76	1.0
01306440	Connetquot Brook at Central Islip, N.Y.	Lat 40°47'33", long 73°09'58", Suffolk County, at culvert on Veterans Memorial Highway, 2 miles (3 km) northeast of Central Islip, and 3.8 miles (6.1 km) upstream from gaging station 01306499.		1968 1971-76	11-12-75 4- 7-76 8-30-76	3.6 7.4 7.8
01306460	Connetquot Brook near Central Islip, N.Y.	Lat 40°46'18", long 73°09'31", Suffolk County, 20 ft (6 m) downstream from bridge on private road, and 1.8 miles (2.9 km) upstream from gaging station 01306499.		1968 1973-76	11-12-75 4- 7-76 8-30-76	24 28 24

c/ Water-quality data included in this report.

			Drainage area	Period of		Measurements Discharge*
Station No.	Station name	Location	(mi ²)	record	Date	(ft^3/s)
		Streams on Long Island				
01306470	Connetquot Brook near Oakdale, N.Y.	Lat 40°45'47", long 73°09'10", Suffolk County, 100 ft (30 m) downstream from fish hatchery, and 1.1 miles (1.8 km) up- stream from gaging station 01306499.	,	1968 1973-76	11-15-74 1-16-75 5-22-75 7-30-75 11-12-75 4- 7-76 8-30-76	23 32 39 28 25 34 28
01306700	Rattlesnake Brook near Oakdale, N.Y.	Lat 40°44'52", long 73°08'45", Suffolk County, 50 ft (15 m) downstream from State High- way 27, 1.5 miles (2.4 km) northwest of Oakdale.		1944-69 1971-76	12-12-75 6- 8-76	32 21
01306900	Champlin Creek at Beech Street, near Islip, N.Y.	Lat 40°45'03", long 73°12'05", Suffolk County, 75 ft (22 m) downstream from Beech Street, 1.3 miles (2.1 km) north of Islip, and 1 mile (2 km) upstream from gaging station at Islip.		1963 1967 1973 1975-76	12-15-76 3-25-76 5-25-76 8-31-76	.69 2.3 1.1 .20
01306950	Champlin Creek at Islip Boulevard, near Islip, N.Y.	Lat 40°44'36", long 73°12'06", Suffolk County, at Islip Boulevard, 1 mile (2 km) north of Islip, and 0.5 mile (0.8 km) upstream from gaging station at Islip.		1963-67 1973 1975-76	12-15-75 3-25-76 5-25-76 8-31-76	3.4 6.2 4.4 2.1
01307000 <u>c</u> /	Champlin Creek at Islip, N.Y.	Lat 40°44'13", long 73°12'08", Suffolk County, at Long Island Railroad bridge, 220 ft (67 m) downstream from Moffitt Boulevard, at Islip.		1948-69‡ 1970-76	12-15-75 3-25-76 5-25-76 8-31-76	6.1 10 7.4 4.7
01307100	Champlin Creek at Montauk Highway, at Islip, N.Y.	Lat 40°43'50", long 73°12'12", Suffolk County, at Montauk Highway, at Islip, and 0.45 mile (0.72 km) downstream from gaging station at Islip.		1963 1967 1973 1975-76	3-25-76 5-25-76 8-31-76	8.4 6.8 7.8
01307300	Pardees Ponds Outlet at Islip, N.Y.	Lat 40°43'40", long 73°13'16", Suffolk County, at culvert on State Highway 27A, at Islip.		1948-72 1974-76	12-12-75 6-10-76 9-15-76	2.5 2.7 2.9
01307400	Awixa Creek at Islip, N.Y.	Lat 40°43'39", long 73°13'51", Suffolk County, at culvert on State Highway 27A, 0.75 mile (1.21 km) west of Islip.		1948-76	12-11-75 6-10-76 9-15-76	1.6 1.2 .84
01307600	Cascade Lakes Outlet at Brightwaters, N.Y.	Lat 40°42'40", long 73°15'38", Suffolk County, at culvert on Montauk Highway, at Brightwaters.	<u></u> -	1958-76	12-12-75 3- 8-76 6-10-76	2.3 8.1 2.0
01307920	Sampawams Creek near Deer Park, N.Y.	Lat 40°44'27", long 73°18'24", Suffolk County, 30 ft (9 m) downstream from Bay Shore Road, and 2.5 miles (4.0 km) upstream from gaging station at Babylon.		1965-66 1973-76	12- 2-75 6- 9-76 9-15-76	2.0 1.2 2.0
01307950	Sampawams Creek near North Babylon, N.Y.	Lat 40°43'37", long 73°18'46", Suffolk County, 120 ft (37 m) downstream from Hunter Ave- nue, and 1.6 miles (2.6 km) upstream from gaging station at Babylon.		1967 1971-76	12- 2-75 6- 9-76 9-15-76	2.6 4.4 2.0
01308200	Sampawams Creek below Hawleys Lake, at Babylon, N.Y.	Lat 40°41'48", long 73°19'04", Suffolk County, at pond out- let, 200 ft (61 m) upstream from State Highway 27A, at Babylon, and 0.5 mile (0.8 km) downstream from gaging station at Babylon.		1953-67 1969-76	12- 2-75 3- 8-76 6- 9-76 9-15-76	12 9.3 8.5 5.6

Station No.	Station name	Location	Drainage area (mi ²)	Period of record	Date	Measurements Discharge (ft ³ /s)
		Streams on Long Island				
01308300	Carlls River at Wyandanch, N.Y.	Lat 40°44'25", long 73°20'39", Suffolk County, 50 ft (15 m) downstream from August Road, 1.0 mile (1.6 km) southeast of Wyandanch, and 2.4 miles (3.9 km) upstream from gaging station at Babylon.		1962 1973 1975-76	6-18-62 7-10-73 4-8-75 2-18-76 3-22-76 4-16-76 5-27-76 6-24-76 7-19-76 8-3-76 9-1-76	6.1 9.3 7.7 9.5 9.4 8.0 4.4 5.1 10
01308310	Carlls River near West Babylon, N.Y.	Lat 40°43'55", long 73°20'32", Suffolk County, 30 ft (9 m) downstream from Southern State Parkway, 1.5 miles (2.4 km) northeast of West Babylon, and 1.8 miles (2.9 km) upstream from gaging station at Babylon.		1962 1972 1975-76	6-18-62 11-9-71 2-22-72 4-8-75 10-15-75 2-18-76 3-22-76 4-16-76 5-27-76 6-24-76 7-19-76 8-3-76 9-1-76	8.7 3.3 9.8 7.9 11 7.9 13 12 11 9.8 6.2 8.2 6.5 7.3
01308330	Carlls River at West Babylon, N.Y.	Lat 40°43'18", long 73°20'12", Suffolk County, opposite Outlook Avenue, 1.3 miles (2.1 km) east of West Babylon, and 1.1 miles (1.8 km) upstream from gaging station at Babylon.		1975-76	4-8-75 10-15-75 2-18-76 3-22-76 4-16-76 5-27-76 6-24-76 7-19-76 8-3-76 9-1-76	6.4 3.1 6.8 6.2 5.4 5.0 3.8 4.2 1.6
01308350	Carlls River at North Babylon, N.Y.	Lat 40°42'50", long 73°19'53", Suffolk County, at culvert on State Highway 27, 0.4 mile (0.6 km) upstream from gaging station at Babylon.		1962 1975-76	6-18-62 4-8-75 10-15-75 2-18-76 3-22-76 4-16-76 5-27-76 6-24-76 7-19-76 8-3-76 9-1-76	4.1 4.9 6.5 9.0 8.4 7.5 8.5 5.3 6.4 5.7 6.6
01308407	Elda Lake Tribu- tary at North Babylon, N.Y.	Lat 40°43'52", long 73°19'50", Suffolk County, 25 ft (6 m) downstream from Sylvan Road, and 1.6 miles (2.6 km) up- stream from gaging station at Babylon.		1972 1975-76	11- 9-71 4- 8-75 10-15-75 2-18-76 3-22-76 4-16-76 5-27-76 6-24-76 7-19-76 8- 3-76 9- 1-76	.95 1.9 1.1 2.3 2.1 1.8 1.6 1.3 1.0
01308420	Elda Lake Tribu- tary Tributary at North Babylon, N.Y.	Lat 40°43'52", long 73°19'40", Suffolk County, 20 ft (6 m) downstream from Sylvan Road, and 1.6 miles (2.6 km) up- stream from gaging station at Babylon.		1962 1975-76	6-18-62 4-8-75 10-15-75 2-18-76 3-22-76 4-16-76 5-27-76 6-24-76 7-19-76 8-3-76 9-1-76	1.3 1.1 .15 2.0 1.6 1.1 .80 .48 .90 .39
01308440	Elda Lake Outlet at North Babylon, N.Y.	Lat 40°43'26", long 73°19'44", Suffolk County, 80 ft (24 m) downstream from Phelps Lane, and 1.1 miles (1.8 km) up- stream from gaging station at Babylon.		1972 1976	12- 4-72 2-18-76 3-22-76 4-16-76 5-27-76 6-24-76 7-19-76 8- 3-76 9- 1-76	3.8 7.1 20 6.2 4.0 4.7 2.6 1.7

						Measurements
1. 1.		w 4.	Drainage area	Period of		Discharge
Station No.	Station name	Location	(mi ²)	record	Date	(ft ³ /s)
01308470	Elda Lake Outlet	Streams on Long Island		1975-76	4- 8-75	18
01300470	at Sunrise High- way, at North Babylon, N.Y.	Lat 40°42'53", Lat 73°19'42", Suffolk County, at State Highway 27, 0.4 mile (.6 km) upstream from gaging station at Babylon.		19/3-/0	10-15-75 2-18-76 3-22-76 4-16-76 5-27-76 6-24-76 8- 3-76 9- 1-76	11 26 34 21 14 14 13
01308600	Carlls River at Park Avenue, Babylon, N.Y.	Lat 40°42'06", long 73°19'43", Suffolk County, at culvert on Park Avenue, at Babylon, and 0.5 mile (0.8 km) down- stream from gaging station at Babylon.		1968-76	10-15-75 2-18-76 3- 8-76 3- 22-76 4-16-76 5-27-76 6-24-76 7-19-76 8- 3-76 9- 1-76	18 37 33 35 32 23 24 28 29
01309000⊆/	Santapogue Creek at Lindenhurst, N.Y.	Lat 40°41'30", long 73°21'20", Suffolk County, at culvert on East Hoffman Avenue, 1 mile (2 km) east of Long Island Railroad station at Lindenhurst.		1947-69‡ 1970-76	12-11-75 3-15-76 9-22-76	3.0 3.1 1.4
01309100	Santapogue Creek at State High- way 27A, Linden- hurst, N.Y.	Lat 40°41'02", long 73°21'06", Suffolk County, at culvert on State Highway 27A, 0.5 mile (0.8 km) downstream from gaging station at Lindenhurst.		1953-69 1971-76	12-11-75 3-15-76	8.5
01309200	Neguntatogue Creek at Lindenhurst, N.Y.	Lat 40°40'47", long 73°21'40", Suffolk County, 20 ft (6 m) upstream from State Highway 27A, in Lindenhurst.		1948-50 1952-76	12-11-75 3- 9-76 6- 1-76 9-30-76	3.8 3.9 3.4 4.6
01309250	Strongs Creek at Lindenhurst, N.Y.	Lat 40°41'22", long 73°22'40", Suffolk County, 30 ft (9 m) upstream from State Highway 27A, at Lindenhurst.		1953-69 1971-76	12-11-75 3- 8-76 6- 1-76 9-30-76	1.3 1.1 .96 1.9
01309350	Amityville Creek at Amityville, N.Y.	Lat 40°40'13", long 73°24'51", Suffolk County, 100 ft (30 m) upstream from State Highway 27A, at Amityville.		1953-76	3- 8-76 6- 1-76 9-21-76	1.9 1.5 1.4
01309400	Carman Creek at Amityville, N.Y.	Lat 40°40'09", long 73°26'02", Nassau County, at bridge on State Highway 27A, 0.75 mile (1.21 km) west of Amityville.		1949 1953-69 1971-76	10-16-75 2-24-76 3- 8-76 6- 9-76	4.8 5.8 5.1 6.4
01309454	Massapequa Creek at South Farmingdale, N.Y.	Lat 40°42'55", long 73°27'00", Nassau County, 75 ft (23 m) upstream from Tomes Avenue, 0.2 mile (0.3 km) south of South Farmingdale, and 1.9 miles (3.1 km) upstream from gaging station at Massapequa.		1962-65 1973-76	11- 4-75 2-24-76 5-13-76 8- 4-76	.36 .56 .45
01309476	Massapequa Creek at Southern State Parkway, at South Farmingdale, N.Y.	Lat 40°42'21", long 73°27'05", Nassau County, 30 ft (9 m) upstream from culvert at Southern State Parkway, 0.8 mile (1.3 km) south of South Farmingdale, and 1.2 miles (1.9 km) upstream from gaging station at Massapequa.	-	1962-65 1973-76	11- 4-75 2-24-76 5-13-76 8- 4-76	3.4 6.6 4.5 .83
01309490	Massapequa Creek at North Massapequa, N.Y.	Lat 40°41'55", long 73°27'08", Nassau County, opposite Franklin Street, at North Massapequa, and 0.55 mile (0.88 km) upstream from gaging station at Massapequa.		1962 1964 1973-76	11- 4-75 2-24-76 5-13-76 8- 4-76	5.2 12 6.4 1.5

 $^{\ \ ^1}$ Operated as a continuous-record gaging station. $\underline{c}/$ Water-quality data included in this report.

Station No.	Station name		Drainage area	Period of record	Data	Measurements Discharge
Station No.	Station name	Location	(mi ²)	recora	Date	(ft ³ /s)
01309700	Seaford Creek at Seaford, N.Y.	Streams on Long Island Lat 40°40'00", long 73°28'57", Nassau County, at bridge on State Highway 27A, in Seaford.		1953-76	10-16-75 3- 9-76 6- 9-76 9-21-76	1.0 1.4 3.6 .45
01309800	Seamans Creek at Seaford, N.Y.	Lat 40°39'56", long 73°29'37", Nassau County, at culvert on State Highway 27A, 0.2 mile (0.3 km) west of Seaford.		1953-67 1971-76	10-16-75 2-24-76 9-21-76	2.5 8.6 3.8
01309970	Bellmore Creek Tributary near North Wantagh, N.Y.	Lat 40°41'52", long 73°30'33", Nassau County, at culvert on Duck Pond Drive North, 0.3 mile (0.5 km) north of North Wantagh, and 1.2 miles (1.9 km) upstream from gaging station 01309990.		1973-76	11- 5-75 4- 5-76	.70 1.5
01309980	Bellmore Creek Tributary at North Wantagh, N.Y.	Lat 40°41'20", long 73°30'37", Nassau County, at culvert on Beltagh Avenue, at North Wantagh, and 0.6 mile (1.0 km) upstream from gaging station 01309990.		1973-76	11- 5-75 4- 5-76	1.4 2.6
01310100	Newbridge Creek at Merrick, N.Y.	Lat 40°39'42", long 73°32'02", Nassau County, downstream from bridge on Merrick Road in Merrick.		1963-76	10-16-76 1-12-76 3- 9-76 6- 9-76	.32 .88 .67
01310200	Cedar Swamp Creek at Merrick, N.Y.	Lat 40°39'39", long 73°32'24", Nassau County, at bridge on State Highway 27A, in Merrick, 2.5 miles (4.0 km) east of Freeport.		1953-62 1965-76	1-13-76 3- 9-76 6- 9-76 9-14-76	9.0 6.9 5.0 3.6
01310470	East Meadow Brook near Westbury, N.Y.	Lat 40°44'01", long 73°35'06", Nassau County, 50 ft (15 m) downstream from culvert on Meadowbrook State Parkway, 1.0 mile (1.6 km) south of Westbury, and 4.8 miles (7.7 km) upstream from gage at Freeport.		1973-76	12- 2-75 4- 5-76 9-14-76	.60 .56 .54
01310475	East Meadow Brook at Uniondale, N.Y.	Lat 40°43'17", long 73°35'00", Nassau County, at bridge on Hempstead Turnpike, 0.9 mile (1.4 km) northeast of Union- dale, and 3.9 miles (6.3 km) upstream from gage at Freeport.		1973-76	12- 2-75 4- 5-76 9-14-76	2.3 5.5 1.9
01310488	East Meadow Brook at East Meadow, N.Y.	Lat 40°41'56", long 73°34'37", Nassau County, 300 ft (91 m) west of Luddington Road, 1.4 miles (2.3 km) southwest of East Meadow, and 2.3 miles (3.7 km) upstream from gage at Freeport.		1973-76	12- 2-75 4- 5-76 9-14-76	13 6.3 3.7
01310510	East Branch Freeport Creek at Freeport, N.Y.	Lat 40°39'32", long 73°34'01", Nassau County, 50 ft (15 m) downstream from culvert at Sunrise Highway, and 0.5 mile (0.8 km) downstream from gaging station 01310500.		1975-76	12- 2-75 3- 9-76 4- 5-76 9-13-76	7.9 7.8 9.8 4.7
01310515	Freeport Creeka/ at Freeport, N.Y.	Lat 40°39'28", long 73°34'22", Nassau County, 20 ft (6 m) upstream from culvert at Sunrise Highway, and 0.5 mile (0.8 km) downstream from gaging station 01310500.		1975-76	12- 2-75 3- 9-76 4- 5-76 9-13-76	8.4 14 8.3 3.5
01310600 .	Millburn Creek at Baldwin, N.Y.	Lat 40°39'04", long 73°36'13", Nassau County, 50 ft (15 m) downstream from bridge on State Highway 27A, 0.5 mile (0.8 km) east of Baldwin.	-	1953-76	10-16-75 1-13-76 3- 9-76 6- 9-76 9-13-76	7.2 13 8.7 5.5 6.3

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

			Desimon	Period		Measurements
Station No.	Station name	Location	Drainage area (mi²)	of record	Date	Discharge (ft ³ /s)
		Streams on Long Island				
01310700	Parsonage Creek at Baldwin, N.Y.	Lat 40°38'48", long 73°36'59", Nassau County, 20 ft (6 m) downstream from bridge on Foxhurst Road, at Baldwin.		1953-69 1971-76	10-16-75 1-13-76 3- 9-76	2.4 2.9 3.2
01310800	South Pond Outlet at Rockville Centre, N.Y.	Lat 40°40'00", long 73°39'08", Nassau County, at bridge on Lakeview Ave., 0.75 mile (1.21 km) north of Rockville Centre.		1953-76	12- 8-75 6- 9-76 9-13-76	.28 .63 .10
01311200	Motts Creek at Valley Stream, N.Y.	Lat 40°39'01", long 73°42'45", Nassau County, 50 ft (15 m) downstream from bridge on Rosedale Road, 1 mile (2 km) southwest of Valley Stream.		1954-76	10-16-75 1-20-76 3-10-76 6- 9-76 9-16-76	.78 .88 .58 .02
01311700	Valley Stream, below West Branch, at Valley Stream, N.Y.	Lat 40°39'47", long 73°42'21", Nassau County, 200 ft (61 m) downstream from West Branch, 500 ft (152 m) downstream from bridge on West Valley Stream Blvd., at village park in Valley Stream, and 500 ft (152 m) downstream from gaging station.		1953-76	10-16-75 3-10-76	0 2.0

Samples are collected at sites other than gaging stations and partial-record stations to give better areal coverage in a river basin. Such sites are referred to as miscellaneous sites.

DATE TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION	HARD- NESS (CA:MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)
	01304597	- BIG FR	ESH POND	OUTLET NE	AR NORTH	SEA NY (L	AT 40 55 3	37 LONG 01	72 24 56)	
APR , 1976 07 1000	108	6.5	11.0	11.3	101	16	5	3.5	1.8	11
	0130460	0 - BIG F	RESH POND	OUTLET AT	NORTH S	EA NY (LA	r 40 55 49	LONG 072	25 04)	
APR • 1976 07 1030	108	6.5	12.5	10.7	100	18	8	3.6	2.2	12
		01304630	- MILL CR	EEK AT NO	YACK NY (LAT 40 59	35 LONG	72 21 00)		
APR , 1976 07 1130	69	6.6	10.5	11.2	100	13	3	2.6	1.6	6.7
	0130	4660 - LI	GONEE BRO	OK AT SAG	HARBOR N	Y (LAT 40	59 21 LON	NG 072 18	12)	
APR + 1976 07 1215	82	6.7	14.5	10.0	97	16	5	3.5	1.8	8.3
	01304665	- LITTLE	NORTHWEST	CREEK NE	AR SAG HA	RBOR NY (AT 40 59	47 LONG	72 15 57)	
APR • 1976 07••• 1345	140	6.1	13.0	9.1	86	16	6	2.5	2.4	18
	0130467	2 - TANBA	RK CREEK	AT THREEM	ILE HARBO	R NY (LAT	40 59 44	LONG 072	11 06)	
APR + 1976 06 1245	92	6.2	12.5	9.1	85	12	1	2.7	1.3	11
	01304675	- FRESH	POND TRIB	UTARY AT F	BARNES HO	LE NY (LA	T 40 59 51	LONG 072	2 07 22)	
APR , 1976 06 1200	95	4.8	12.5	8.7	81	11	10	1.5	1.7	9.8
	01304680 -	LAKE MON	TAUK TRIB	UTARY NEAF	R DITCH P	LAINS NY	(LAT 41 03	3 23 LONG	071 55 53)
APR • 1976 06 1100	134	6.4	12.0	12.3	114	25	14	4.5	3.4	13
	01304686 -	OYSTER P	OND TRIBU	TARY NEAR	MONTAUK	POINT NY	(LAT 41 03	3 54 LONG	071 53 14)
APR • 1976 06 0930	122	5.0	7.0	12.7	104	14	12	1.9	2.2	14
0	1304689 - 0	YSTER PON	D TRIBUTA	RY #2 NEAF	MONTAUK	POINT NY	(LAT 41 (3 58 LONG	071 53 0	(6)
APR • 1976 06 1000	168	6.2	8.0	11.5	96	25	20	4.0	3.7	20
	0130469	3 - ноок	POND TRIB	UTARY AT E	EASTHAMPT	ON NY (LA	F 40 57 34	LONG 072	2 10 42)	
APR , 1976 06 1430	255	6.4	15.0	8.3	81	48	26	13	3.8	19
	01304697 -	GEORGICA	POND TRI	BUTARY #2	AT MIDHA	MPTON NY	(LAT 40 57	7 10 LONG	072 13 48	1)
APR • 1976 06 1515	322	5.9	13.0	9.4	88	12	5	2.5	1.3	53
	01304700	- GEORGIC	A POND TR	IBUTARY AT	T MIDHAMP	TON NY (L/	AT 40 57 ()1 LONG 07	72 14 20)	
APR • 1976 06 1600	65	5.7	11.0	9.9	89	9	5	1.6	1.3	7.0

ANALYSES OF SAMPLES COLLECTED AT MISCELLANEOUS SITES--CONTINUED

DATE	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	CAR- BONATE (CO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)
		01304597	- BIG FRE	SH POND O	UTLET NE	AR NORTH S	EA NY (LA	T 40 55	37 LONG 07	2 24 56)	
APR , 19	76	14	0	11	10	17	• 0	.5	52	210	220
		01304600	- BIG FR	ESH POND	OUTLET AT	T NORTH SE	A NY (LAT	40 55 4	9 LONG 072	25 04)	
APR , 19 07	76 1.6	12	0	10	10	20	• 0	1.2	57	260	280
		0 1	1304630 -	MILL CRE	EK AT NO	YACK NY (L	AT 40 59	35 LONG	072 21 00)		
APR , 19 07	76 .8	12	0	10	7.0	9.9	• 0	7.9	42	70	10
		013046	60 - LIG	ONEE BROO	K AT SAG	HARBOR NY	(LAT 40	59 21 LO	NG 072 18	12)	
APR , 19 07	76 .8	14	0	11	9.6	13	.0	1.5	45	490	30
		01304665 -	LITTLE N	ORTHWEST	CREEK NE	AR SAG HAR	BOR NY (L	AT 40 59	47 LONG 0	72 15 57)	
APR , 19 07	76	12	0	10	10	29	• 0	10	79	290	20
		01304672	- TANBAR	CREEK A	T THREEM	ILE HARBOR	NY (LAT	40 59 44	LONG 072	11 06)	
APR + 19	76 •9	14	0	11	6.9	17	• 0	9.6	56	400	90
		01304675 -	FRESH P	OND TRIBU	TARY AT E	BARNES HOL	E NY (LAT	40 59 5	1 LONG 072	07 22)	
APR , 19	76 1.2	1	0	1	10	17	. 0	8.3	50	770	190
	. 0	1304680 - L	AKE MONT	AUK TRIBU	TARY NEAR	DITCH PL	AINS NY (LAT 41 0	3 23 LONG	071 55 53)
APR • 19	76 1•9	14	0	11	18	22	•1	3.4	73	660	70
	0	1304686 - 0	YSTER PO	ND TRIBUT	ARY NEAR	MONTAUK P	OINT NY (I	LAT 41 0	3 54 LONG	071 53 14)
APR , 19	76 .8	2	0	2	9.8	25	•1	2.4	57	300	30
	013	04689 - OYS	TER POND	TRIBUTAR	Y #2 NEAF	MONTAUK	POINT NY	(LAT 41	3 58 LONG	071 53 0	6)
APR , 19	1.0	6	0	5	16	35	•1	8.1	91	600	80
		01304693	- ноок Р	OND TRIBU	TARY AT E	ASTHAMPTO	N NY (LAT	40 57 3	LONG 072	10, 42)	
APR , 19	76 3 . 7	27	0	22	20	28	•0	9.6	110	420	140
	0	1304697 - 6	EORGICA F	OND TRIB	UTARY #2	AT MIDHAM	PTON NY (_AT 40 5	7 10 LONG (072 13 48)
APR , 19	,5	8	0	7	8.8	86	• 0	7.8	164	140	20
	(01304700 -	GEORGICA	POND TRIE	BUTARY AT	MIDHAMPT	ON NY (LAT	r 40 57 (1 LONG 072	2 14 20)	
APR , 197	.6	5	0	4	5.9	11	• 0	6.8	37	110	20

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION	HARD- NESS (CA,MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)
		01204720	204420	GUE POND O		C.C.BONA		. 40 EE 4	9 1 0 10 07	2 17 141	
		01304730	- PUXABU	GUE PUND O	OILEI AI	SAGAPUNAC	K NT TLA	1 40 55 4	S LUNG UT	2 17 107	
APR , 19	76										
06	1630	233	6.5	13.0	13.5	127	68	53	19	5.0	13
	0	1304733 -	HAYGROUN	D COVE TRI	BUTARY #2	AT HAYGE	ROUND NY	(LAT 40 5	5 25 LONG	072 20 08	3)
APR , 19	76										
07	0915	329	6.0	10.0	9.8	87	120	110	34	8.2	15
		01304734	- HAYGROU	ND COVE TE	RIBUTARY A	T WATER	AILL NY (I	LAT 40 55	15 LONG	072 20 261	
APR . 19	76										
07	0845	230	5.8	9.0	10.0	86	69	60	19	5.3	9.6
		01	304739 -	MILL CREEK	AT WATER	MILL NY	(LAT 40 !	54 34 LON	G 072 21	25)	
APR , 19	174										
05	1430	225	7.0	10.0	12.0	106	86	68	25	5.6	9.2
	DIS- SOLVED					DIS-	DIS-		DIS- SOLVED		100 mg/s
	TAS- SIUM	BICAR- BONATE	CAR- BONATE	ALKA- LINITY AS	SOLVED SULFATE	SOLVED CHLO- RIDE	SOLVED FLUO- RIDE (F)	SOLVED SILICA (SIO2)	SOLIDS (SUM OF CONSTI- TUENTS)	TOTAL IRON (FE)	TOTAL MAN- GANESE (MN)
DATE	(K) (MG/L)	(MG/L)	(CO3) (MG/L)	(MG/L)	(SO4) (MG/L)	(CL) (MG/L)	(MG/L)	(MG/L)	(MG/L)	(UG/L)	(UG/L)
		01304730	- POXABO	GUE POND (DUTLET AT	SAGAPONA	CK NY (LA	T 40 55 4	8 LONG 07	2 17 16)	
APR , 19	3.4	18	0	15	39	24	.0	7.9	120	440	30
	0	1304733 -	HAYGROUN	D COVE THE	BUTARY #8	AT HAYG	ROUND NY	(LAT 40 5	5 25 LONG	072 20 0	8)
APR , 19	4.3	15	0	12	77	24	.0	7.5	174	80	80
		01304734	- HAYGROU	ND COVE TH	RIBUTARY	AT WATER	MILL NY (LAT 40 55	15 LONG	072 20 26)
APR , 19	976 4.1	11	0	9	42	20	.0	7.5	113	80	50
		0.1	304730		AT WATER			54 34 LON	G 072 21	25)	
1			304/39 -	MILL CKEE	AI WAIE	MILL NI	(LAI 40	34 34 20.			

CHEMICAL QUALITY OF PRECIPITATION

LONG ISLAND

AT EAST MEADOW, NY

LOCATION.--Lat 40°44'36", long 73°35'10", Nassau County, at the New York State Department of Environmental Conservation Air Quality Station on roof of trailer at Merrick Avenue, Eisenhower Park, East Meadow.

PERIOD OF RECORD. -- Water years: August 1976 to current year (monthly composite).

EQUIPMENT.--The sample collector is a straight-sided polyethelene funnel, approximately 6.0 in (0.15 m) in diameter, which drains into a 2-litre teflon receiving bottle. The receiving bottle is enclosed in an insulated box which is heated during the cold weather season to aid in full collection of snow. The opening for the collector is approximately 12 ft (4 m) above ground level.

REMARKS.--Inches of precipitation is that recorded by the U.S. Geological Survey for the period of sampling.

WATER-QUALITY DATA, AUGUST TO SEPTEMBER 1976

PERIOD OF COLLECTION	INCHES OF PRECIPI- TATION	CAL- CIUM (CA) (MG/L)	MAGNE- SIUM (MG) (MG/L)	SODIUM (NA) (MG/L)	POTAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	SULFATE (SO4) (MG/L)	CHLO- RIDE (CL) (MG/L)
76/08/02 TO 76/08/10 76/09/01 TO 76/10/01	7.23 2.32	.86 2.00	.23	.47	19.00	13.00	.70 5.40	1.69
PERIOD OF COLLECTION	FLUO- RIDE (F) (MG/L)	NIT- RITE+ NIT- RATE AS N (MG/L)	AMMONIA AS N (MG/L)	PHOS- PHORUS (P) (MG/L)	SPE- CIFIC CON- DUCTANCE (MICRO- MHOS)	PH (UNITS)	ACIDITY AS H (MG/L)	LEAD (PB) (UG/L)
76/08/02 TO 76/08/10 76/09/01 TO 76/10/01	:1	.147 3.800	.476 3.470	.032	12 70	5.90 4.70	.0747	17 46

LONG ISLAND

AT MINEOLA, NY

LOCATION.--Lat 40°44'17", long 73°38'17", Nassau County, at National Weather Service Station Mineola 1W on roof of U.S. Geological Survey office, at 1505 Kellum Place, in Mineola.

PERIOD OF RECORD. -- Water years: 1966 to August 1976 (discontinued) (monthly composite).

EQUIPMENT.--The sample collector is a straight-sided glass funnel, approximately 5.0 in (0.13 m) in diameter, which drains into a 4-litre glass receiving bottle. A glass wool filter is used to prevent large particles of debris from entering the receiving bottle. The receiving bottle is enclosed in an insulated box which is heated during the cold weather season to aid in full collection of snow. The opening for the collector is approximately 25 ft (8 m) above ground level.

REMARKS.--Inches of precipitation is that recorded by the U.S. Geological Survey for the period of sampling.

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

PERIOD OF COLLECTION	INCHES OF PRECIPI- TATION	CAL- CIUM (CA) (MG/L)	MAGNE- SIUM (MG) (MG/L)	SODIUM (NA) (MG/L)	POTAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	SULFATE (SO4) (MG/L)	CHLO- RIDE (CL) (MG/L)
75/10/01 TO 75/11/03 75/11/03 TO 75/12/01 75/12/01 TO 76/01/02 76/01/02 TO 76/02/02 76/02/02 TO 76/03/01 76/03/01 TO 76/04/01 76/04/01 TO 76/04/30 76/04/30 TO 76/06/01	3.60 4.15 4.51 6.69 1.42 2.98 1.48 4.04	1.15 .75 2.19 1.40 3.80	.43 .37 .58 .54 1.00	1.07 1.00 1.67 1.50 1.40	.08 .07 .08 .12 	.0 .0 .0 .0 15.0	3.43 .40 2.80 3.50 6.70 6.20 5.40 4.20	2.07 1.85 3.80 3.00 5.65 3.70 1.70 1.58
76/06/01 TO 76/07/01 76/07/01 TO 76/08/02 76/08/02 TO 76/08/10	2.23 1.92 7.94	1.71 1.89 .18	.64 .78 .13	.42 .23 .38	.09 .06 .01	.0 .0 .0	5.80 8.80 1.30	.72 .60 1.45
PERIOD OF COLLECTION	FLUO- RIDE (F) (MG/L)	NIT- RITE+ NIT- RATE AS N (MG/L)	AMMONIA AS N (MG/L)	PHOS- PHORUS (P) (MG/L)	SPE- CIFIC CON- DUCTANCE (MICRO- MHOS)	PH (UNITS)	ACIDITY AS H (MG/L)	LEAD (PB) (UG/L)
75/10/01 TO 75/11/03 75/11/03 TO 75/12/01 75/12/01 TO 76/01/02 76/01/02 TO 76/02/02 76/02/02 TO 76/03/01 76/03/01 TO 76/04/01 76/04/01 TO 76/04/30 76/04/30 TO 76/06/01	.1 .1 .0 .0 .1 .1	8.200 8.584 .000 1.598 1.700 .900 1.000	1.200 .971 .090 .615 1.450 .870 1.000 .596	.014 .020 .006 .009 .050 .040	236 104 102 52 67 43 40 26	3.30 2.90 2.60 4.40 6.12 6.60 7.10 5.85	.120 .113 	82 100 60 69 120 65 140 81
76/06/01 TO 76/07/01 76/07/01 TO 76/08/02 76/08/02 TO 76/08/10	.0 .0 .0	.950 1.270 .151	.492 .504 .015	.012 .011 .010	47 65 12	4.32 4.10 3.80	.143 .152 .161	150 200 31

CHEMICAL QUALITY OF PRECIPITATION

LONG ISLAND

AT UPTON, NY

LOCATION.--Lat $40^{\circ}52'16"$, long $72^{\circ}53'20"$, Suffolk County, at the Brookhaven National Laboratory weather tower, about 0.6 mi (1.0 km) north of main entrance, at Upton.

PERIOD OF RECORD.--Water years: 1965 to 1973, 1975 to current year (monthly composite).

EQUIPMENT.--The sample collector is a straight-sided glass funnel, approximately 6.5 (0.17 m) in diameter, which drains into a polyethylene receiving bottle. A fritted glass disk is used as a filter between the collector and the receiving bottle and is replaced at the end of each collection period. The receiving bottle is enclosed in an insulated box which is heated during the cold weather season to aid in full collection of snow. The opening for the collector is approximately 4 ft (1.2 m) above ground level and is protected by a windshield.

REMARKS.--Inches of precipitation is that recorded by Brookhaven National Laboratory for the period of sampling.

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

PERIOD OF COLLECTION	INCHES OF PRECIPI- TATION	CAL- CIUM (CA) (MG/L)	MAGNE- SIUM (MG) (MG/L)	SODIUM (NA) (MG/L)	POTAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	SULFATE (SO4) (MG/L)	CHLO- RIDE (CL) (MG/L)
75/09/29 TO 75/10/31 75/10/31 TO 75/12/01 75/12/01 TO 75/12/30 75/12/30 TO 76/02/03 76/02/03 TO 76/03/01 76/03/01 TO 76/04/02 76/04/02 TO 76/05/03	3.61 5.89 3.98 9.05 1.44 4.79 2.08	.25 .14 .18 .19 .56 .37	.17 .15 .26 .17 .27 .19	1.06 1.00 2.00 .90 1.30 1.68 1.30	.21 .08 .09 .07 .10	.0 .0 .0 .0	1.83 .10 1.60 1.70 2.30 2.10 4.10	2.00 2.20 3.90 1.60 2.00 2.20 2.10
76/05/03 TO 76/06/03 76/06/03 TO 76/07/01 76/07/01 TO 76/08/02 76/08/02 TO 76/09/02 76/09/02 TO 76/10/04	3.89 1.97 4.69 7.20 3.27	.23 .33 .19 .24	.10 .13 .03 .59	.53 .52 .11 4.40 .65	.12 .12 .01 .18	.0	3.30 4.40 3.30 1.30	1.11 1.09 .38 8.04 1.21
PERIOD OF COLLECTION	FLUO- RIDE (F) (MG/L)	NIT- RITE+ NIT- RATE AS N (MG/L)	AMMONIA AS N (MG/L)	PHOS- PHORUS (P) (MG/L)	SPE- CIFIC CON- DUCTANCE (MICRO- MHOS)	PH (UNITS)	ACIDITY AS H (MG/L)	LEAD (PB) (UG/L)
75/09/29 TO 75/10/31 75/10/31 TO 75/12/01 75/12/01 TO 75/12/30 75/12/30 TO 76/02/03 76/02/03 TO 76/03/01 76/03/01 TO 76/04/02 76/04/02 TO 76/05/03	.1 .1 .1 .0 .1	.214 .253 .337 .297 1.000 .770 .720	.102 .128 .055 .060 .307 .234	.011 .001 .004 .004 .010	21 20 28 22 43 27 45	4.52 4.49 4.35 4.30 3.45 4.49 4.01	.096 .081 .081 .091 .191 .100	22 32 45 17 26 17 35
76/05/03 TO 76/06/03 76/06/03 TO 76/07/01 76/07/01 TO 76/08/02 76/08/02 TO 76/09/02 76/09/02 TO 76/10/04	.0 .0 .0	.712 .629 .665 .401	.231 .226 .196 .195 .130	.008 .008 .004 .010	39 54 60 65 35	4.20 4.02 4.13 3.20 4.20	.139 .180 .172 .178	46 44 34 33 77

KINGS COUNTY

404149073571201. Local number, K 30. LOCATION.--Lat 40°41'49", long 73°57'12", Hydrologic Unit 02030201, at Park and Nostrand Avenues, Williamsburg. Owner: Detecto Scales, Inc.

Owner: Detecto Scales, Inc.

AQUIFER.--Upper Glacial.

WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 8 in (0.20 m), depth 56 ft (17 m), screen assumed

at bottom.

DATUM.--Land-surface datum is 17.8 ft (5.4 m) above mean sea level. Measuring point: Top of coupling, 5.93 ft

(1.81 m) below land-surface datum.

PERIOD OF RECORD. -- June 1935 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 4.81 ft (1.47 m) above mean sea level, Dec. 19, 1974; lowest measured, 29.75 ft (9.07 m) below mean sea level, Nov. 8, 1941.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 7	4. 69	DEC 16	4. 78	MAR 23	4. 54	JUN 28	4. 52	JUL 9	5. 78		

433818073581001. Local number, K 530.
LOCATION.--Lat 43°38'18", long 73°58'10", Hydrologic Unit 02030202, at 912 Cortelyou Road, Flatbush.
Owner: J. Morea.
AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 18 in (0.46 m), depth 145 ft (44 m), screened 95 to 145 ft (29 to 44 m).
DATUM.--Land-surface datum is 40.1 ft (12.2 m) above mean sea level. Measuring point: Top of 1.25 in (0.03 m) nipple, 7.21 ft (2.20 m) below land-surface datum.
PERIOD OF RECORD.--June 1946 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.99 ft (2.74 m) above mean sea level, Oct. 7, 1975; lowest measured, 5.89 ft (1.80 m) below mean sea level, June 24, 1947.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
OCT 7	8. 99	DEC 17	8. 66	MAR 23	8. 38	JUN 29	8. 25	SEP 22	8. 21		

NASSAU COUNTY

404043073413001. Local number, N 7.
LOCATION.--Lat 40°40'43", long 73°41'30", Hydrologic Unit 02030202, at Corona Avenue and Remsen Street, Valley Stream. Owner: Long Island State Park Commission.

AQUIFER.--Lloyd.
WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 10 in (0.25 m), depth 911 ft (278 m), screened 851 tc 911 ft (259 to 278 m).
DATUM.--Land-surface datum is 20.8 ft (6.3 m) above mean sea level. Measuring point: Top of reducer, 2.16 ft

DATUM.--Land-surface datum is 20.8 rt (0.5 m) above mean sea level. Reastling point. 100 of the control of the

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL										
OCT 22	-1. 13	DEC 18	-5. 20	JAN 22	-4. 24	MAR 17	-3. 85	JUN 28	-5. 14	SEP 20	-4. 86

404048073412501. Local number, N 9.
LOCATION.--Lat 40°40'48", long 73°41'25", Hydrologic Unit 02030202, at Corona Avenue and Remsen Street, Valley Stream. Owner: Long Island State Park Commission.

Stream. Owner: Long Island State Park Commission.

AQUIFER.--Magothy.

WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 6 in (0.15 m) to 4 in (0.10 m), depth 138 ft (42)

m), screened 98 to 138 ft (30 to 42 m).
DATUM.--Land-surface datum is 23.2 ft (7.07 m) above mean sea level. Measuring point: Top of casing, 1.48 ft

(0.45 m) above land-surface datum.

PERIOD OF RECORD.--July 1936 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 23.57 ft (7.18 m) above mean sea level, Sept. 3, 1938; lowest measured, 9.96 ft (3.03 m) above mean sea level, Dec. 19, 1974.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 18	13. 14	MAR 17	14. 52	JUN 28	11. 39	SEP 20	11. 38				

403930073382901. Local number, N 53.
LOCATION.--Lat 40°39'30", long 73°38'29", Hydrologic Unit 02030202, at Maple and Morris Avenues, Rockville Center.
Owner: Village of Rockville Center.
AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 8 in (0.20 m), depth 45 ft (14 m), screen

assumed at bottom.

DATUM.--Land-surface datum is 26.2 ft (8.0 m) above mean sea level. Measuring point: Top of casing, 5.13 ft

(1.56 m) below land-surface datum.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for August 1934 to September 1975 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 16.49 ft (5.03 m) above mean sea level, Apr. 15, 1939; lowest measured, 7.85 ft (2.39 m) above mean sea level, Aug. 30, 1966.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER	DATE	WATER	DATE	WATER
OCT 22	12. 62	DEC 18	12. 12	FEB 23	13. 19	APR 22	12. 79	JUN 22	11. 98	AUG 23	11. 91
NOV 21	12. 33	JAN 21	12. 70	MAR 23	12. 99	MAY 24	12. 59	JUL 22	11. 50	SEP 23	11. 22

404931073382002. Local number, N 110-2. LOCATION.--Lat 40°49'31", long 73°38'20", Hydrologic Unit 02030201, at Scudders Lane and Motts Cove Road, Glenwood Landing. Owner: Jericho Water District.

AQUIFER.--Lloyd.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 16 in (0.41 m), depth 519 ft (158 m), screened

445 to 515 ft (136 to 157 m).
DATUM.--Land-surface datum is 57.3 ft (17.5 m) above mean sea level. Measuring point: Top of 4 in (0.10 m) nipple,

DATUM.--Land-surface datum is 57.3 ft (17.5 m) above mean sea level. Measuring point: Top of 4 in (0.10 m) nipple, 0.50 ft (0.15 m) above land-surface datum.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for 1946-48, 1952, 1955, 1961, 1965, 1970-75, are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 27.99 ft (8.53 m) above mean sea level, Dec. 15, 1970; lowest measured, 7.30 ft (2.22 m) above mean sea level, July 22, 1971.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL											
OCT 22	14. 40	DEC 18	16. 95	FEB 23	19. 42	APR 23	18. 46	JUN 22	16. 09	AUG 23	15. 30	
NOV 24	15. 61	JAN 20	18. 83	MAR 24	19. 00	MAY 24	17. 68	JUL 22	14. 84	SEP 23	15. 30	

404029073294201. Local number, N 180. LOCATION.--Lat 40°40'29", long 73°29'42", Hydrologic Unit 02030202, at Sunrise Highway and Seamans Neck Road, Seaford. Owner: City of New York. AQUIFER.--Magothy.
WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 4 in (0.10 m) to 6 in (0.15 m), depth 762 ft (232 m),

screen assumed at bottom.

DATUM.--Land-surface datum is 15.3 ft (4.7 m) above mean sea level. Measuring point: Top of coupling, 14.30 ft

DATUM. --Land-surface datum is 13.5 it (4.7 m) above mean sea level. Measuring point. 100 of 3-1-1-10, 1.1 (4.36 m) above land-surface datum.

PERIOD OF RECORD. --October 1945 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 21.08 ft (6.43 m) above mean sea level, June 6, 1952; lowest measured, 12.80 ft (3.90 m) above mean sea level, July 15, 1966.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 7	16. 69	DEC 18	16. 36	MAR 16	17. 15	JUN 28	12. 11	SEP 20	15. 00		

404609073421602. Local number, N 1102-2. LOCATION.--Lat 40°46'09", long 73°42'16", Hydrologic Unit 02030201, at Long Island Expressway and Community Drive, Lake Success. Owner: Nassau County Department of Public Works. AQUIFER.--Upper Glacial.

AQUITER. --Upper Glacial.

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 4 in (0.10 m), depth 166 ft (51 m), screened
161 to 166 ft (49 to 51 m).

DATUM. --Land-surface datum is 184.0 ft (56 m) above mean sea level. Measuring point: Top of coupling, 0.32 ft
(0.10 m) below land-surface datum.

PERIOD OF RECORD. --April 1939 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 59.12 ft (18.02 m) above mean sea level, May 25, 1953;

lowest measured, 29.08 ft (8.86 m) above mean sea level, Oct. 1, 1969.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 7	35. 02	DEC 18	34. 68	MAR 17	35. 57	JUN 24	36. 06	SEP 22	35. 50		

404112073421002. Local number, N 1109-2. LOCATION.--Lat 40°41'12", long 73°42'10", Hydrologic Unit 02030202, at Dutch Broadway and Fletcher Avenue, Elmont. Owner: Nassau County Department of Public Works. AQUIFER.--Upper Glacial.

AQUIFER. --Upper Glacial.
WELL CHARACTERISTICS. --Driven observation water-table well, diameter 1.25 in (0.03 m), depth 43 ft (13 m), screen assumed at bottom.

DATUM.--Land-surface datum is 42.6 ft (13.0 m) above mean sea level. Measuring point: Top of casing, 0.10 ft (0.03 m) below land-surface datum.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for April 1939 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 30.04 ft (9.16 m) above mean sea level, Apr. 21, 1939; lowest measured, 9.98 ft (3.04 m) above mean sea level, Dec. 26, 1974.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER	DATE	WATER LEVEL								
NOV 5	13. 11	DEC 29	13. 12	FEB 25	14. 01	APR 22	13. 75	JUN 21	12. 80	AUG 25	12. 35
25	13. 10	JAN 29	13. 18	MAR 29	14. 01	MAY 26	13. 57	JUL 26	11. 87	SEP 27	11. 87

404039073420001. Local number, N 1110.
LOCATION.--Lat 40°40'39", long 73°42'00", Hydrologic Unit 02030202, at Henry Street, near Southern State Parkway, North Valley Stream. Owner: Nassau County Department of Public Works.
AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Driven observation water-table well, diameter 1.25 in (0.03 m), depth 27 ft (8 m), screened

25 to 27 ft (7.6 to 8.2 m).
DATUM.--Land-surface datum is 30.9 ft (9.4 m) above mean sea level. Measuring point: Top of casing, 0.05 ft

(0.02 m) below land-surface datum.

(REMARKS.--Water-quality records for 1966 and 1968 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--April 1939 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 21.05 ft (6.42 m) above mean sea level, Apr. 21, 1939; lowest measured, 7.39 ft (2.25 m) above mean sea level, Dec. 19, 1974.

DATE	WATER LEVEL	DATE	WATER LEVEL								
DEC 18	10. 44	DEC 29	13. 12 G	MAR 17	11. 35	JUN 28	8. 56	SEP 20	8. 75		

G MEASUREMENT BY ANOTHER AGENCY

GROUND-WATER LEVELS

NASSAU COUNTY -- Continued

404124073394802. Local number, N 1129-2.
LOCATION.--Lat 40°41'24", long 73°39'48", Hydrologic Unit 02030202, at Hawthorne Street and Euclid Avenue, West Hempstead. Owner: Nassau County Department of Public Works.

Hempsteau. Owner: Nassau county bepartment of runte norms.
AQUIFER: -Upper Glacial.
WELL CHARACTERISTICS. --Driven observation water-table well, diameter 1.25 in (0.03 m), depth 43.5 ft (13.3 m), screen assumed at bottom.
DATUM.--Land-surface datum is 50.5 ft (15.4 m) above mean sea level. Measuring point: Top of casing, 0.30 ft

DATUM.--Land-surface datum is 50.5 ft (15.4 m) above mean sea level. Measuring point: Top of casing, 0.30 ft (0.09 m) below land-surface datum.

REMARKS.--Water-quality records for 1966, 1968, 1975, are available in files of Long Island Sub-district office; those for 1976 are published elsewhere in this report.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for August 1937 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 33.79 ft (10.30 m) above mean sea level, Sept. 28, 1939; lowest measured, 21.85 ft (6.66 m) above mean sea level, Sept. 20, 1966.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER .	DATE	WATER LEVEL
NOV 5	26. 10	DEC 29	25. 97	FEB 25	27. 12	APR 22	26. 88	JUN 22	26. 46	AUG 25	26. 47
	26. 12	JAN 29	26. 66	MAR 29	27. 09	MAY 26	26. 77	JUL 26	25. 74	SEP 27	25. 44

404820073312101. Local number, N 1212.
LOCATION.--Lat 40°48'20", long 73°31'21", Hydrologic Unit 02030202, at Jericho Turnpike and Eileen Way, Locust Grove. Owner: Nassau County Department of Public Works.

Grove. Owner: Nassau County Department of Public Works.
AQUIFER.--Magothy.
WELL CHARACTERISTICS.--Driven observation artesian well, diameter 4 in (0.10 m), depth 185 ft (64 m), screened 181 to 185 ft (55 to 64 m).

DATUM.--Land-surface datum is 228.2 ft (69.6 m) above mean sea level. Measuring point: Top of recorder shelf, 0.54

DATUM.--Land-surface datum is 228.2 it (69.6 m) above mean sea level. Measuring point: lop of feeded shelf ft (0.16 m) below land-surface datum.

PERIOD OF RECORD.--January 1945 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 89.74 ft (27.35 m) above mean sea level, Oct. 6, Dec. 7, 1953; lowest measured, 73.00 ft (22.25 m) above mean sea level, Apr. 25, 1967.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 1	86. 58	DEC 17	87. 32	MAR 16	88. 86	JUN 28	89. 28	SEP 20	89. 63		

405027073272505. Local number, N 1243-5.
LOCATION.--Lat 40°50'27", long 73°27'25", Hydrologic Unit 02030201, at Stillwell and Harbor Roads, Cold Spring.
Owner: Nassau County Department of Public Works. Owner: Nassau County Department of Public Works.

AQUIFER.--Upper Glacial.

WELL CHARACTERISTICS.--Driven observation water-table well, diameter 1.25 in (0.03 m), depth 28 ft (9 m), screen

assumed at bottom.

DATUM.--Land-surface datum is 63.1 ft (19.2 m) above mean sea level. Measuring point: Top of casing, 0.10 ft (0.03

DATUM. --Land-surface datum is 05.1 ft (19.2 m) above mean sea level. Measuring point. Top of casing, 0.20 m) below land-surface datum.

REMARKS.--Water-quality records for 1960 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for November 1939 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 61.95 ft (18.88 m) above mean sea level, Apr. 29, 1975; lowest measured, 48.03 ft (14.64 m) above mean sea level, Feb. 24, 1967.

DATE	WATER LEVEL										
0CT 3	56. 88	DEC 29	57. 60	FEB 25	57. 79	APR 22	57. 73	JUN 21	57. 72	AUG 24	58. 30
NOV 25	56. 98	JAN 29	58. 65	MAR 29	57. 71	MAY 25	58. 02	JUL 26	57. 53	SEP 27	57. 31

404/04073264201. Local number, N 1246.
LOCATION.--Lat 40°47'04", long 73°26'42", Hydrologic Unit 02030202, at Round Swamp and Old Country Roads,
Plainview. Owner: Nassau County Department of Public Works.

WELL CHARACTERISTICS .-- Drilled observation water-table well, diameter 4 in (0.10 m), depth 125 ft (38 m), screen assumed at bottom.

Assumed at bottom.

DATUM.--Land-surface datum is 184.9 ft (56.4 m) above mean sea level. Measuring point: Top of coupling, 0.08 ft (0.02 m) above land-surface datum.

REMARKS.--Water-quality records for 1971 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--May 1940 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 83.55 ft (25.47 m) above mean sea level, Nov. 2, Dec. 26, 1961; lowest measured, 68.29 ft (20.81 m) above mean sea level, Apr. 25, 1967.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 1	80. 36	DEC 17	81. 00	MAR 16	82. 38	JUN 28	82. 08	SEP 22	81. 85		

404341073371403. Local number, N 1255-3.
LOCATION.--Lat 40°43'41", long 73°37'14", Hydrologic Unit 02030202, at Clinton Road and Saint James Street, Garden City. Owner: Nassau County Department of Public Works.
AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Driven observation water-table well, diameter 1.25 in (0.03 m), depth 35 ft (11 m), screen

assumed at bottom.

DATUM.--Land-surface datum is 79.0 ft (24.1 m) above mean sea level. Measuring point: Top of casing, 0.04 ft (0.01

DATUM.--Land-surface datum is 79.0 rt (24.1 m) above mean sea level. Measuring point: lop of casing, 0.07 ft (0.01 m) above land-surface datum.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for May 1913 to November 1918, June 1936 to September 1975, are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 65.59 ft (19.99 m) above mean sea level, Apr. 15, 1939; lowest measured, 47.48 ft (14.47 m) above mean sea level, Feb. 24, 1967.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER	DATE	WATER	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL
OCT 29	54. 00	DEC 23	54. 27	FEB 24	55. 58	APR 27	55. 74	JUN 21	54. 40	AUG 24	54. 06
NOV 25	54. 13	JAN 28	54. 79	MAR 24	55. 86	MAY 25	55. 77	JUL 26	53. 58	SEP 27	53. 33

404317073290904. Local number, N 1259-4.
LOCATION.--Lat 40°45'17", long 73°29'09", Hydrologic Unit 02030202, at Hicksville Road and Mary Lane, Plainedge.
Owner: U.S. Geological Survey.
AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Driven observation water-table well, diameter 1.25 in (0.03 m), depth 41 ft (12 m), screen

assumed at bottom.

DATUM.--Land-surface datum is 78.4 ft (23.9 m) above mean sea level. Measuring point: Top of casing, 0.32 ft

(0,10 m) below land-surface datum.

PERIOD OF RECORD.--January 1909 to April 1910, January 1912 to December 1916, February 1930 to December 1935, March

1937 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 56.99 ft (17.37 m) above mean sea level, June 23, 1952; lowest measured, 45.61 ft (13.90 m) above mean sea level, Aug. 25, 1966.

DATE	WATER	DATE	WATER LEVEL								
OCT 28	53. 26	DEC 23	53. 28	FEB 26	54. 79	APR 27	54. 40	JUN 21	53. 47	AUG 24	52. 54
NOV 25	53. 36	JAN 27	54. 30	MAR 24	54. 69	MAY 25	54. 03	JUL 26	52. 10	SEP 27	51. 94

404302073295705. Local number, N 1263-5.
LOCATION.--Lat 40°43'02", long 73°29'57", Hydrologic Unit 02030202, at Wantagh Avenue and Miller Place, Levittown.
Owner: Nassau County Department of Public Works.

AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Driven observation water-table well, diameter 1.25 in (0.03 m), depth 29 ft (9 m), screen assumed at bottom.

DATUM.--Land-surface datum is 65.0 ft (19.8 m) above mean sea level. Measuring point: Top of casing, 0.50 ft

DATUM.--Land-surface datum is 65.0 ft (19.8 m) above mean sea level. Measuring point. Top of easile, vise to (0.15 m) above land-surface datum.

REMARKS.--Water-quality records for 1968, 1970, 1974-75, are available in files of Long Island Sub-district office; those for 1976 are published elsewhere in this report.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for June 1936 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 63.05 ft (19.22 m) above mean sea level, June 29, 1948; lowest measured, 44.01 ft (13.41 m) above mean sea level, Aug. 25, 1966.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29	51. 34	DEC 23	52. 11	FEB 24	53. 43	APR 27	53. 02	JUN 21	52. 41	AUG 24	51. 18
NOV 25	51. 82	JAN 28	53. 39	MAR 24	53. 23	MAY 25	52. 70	JUL 26	50. 71	SEP 27	50. 50

404446073392904. Local number, N 1614-4. LOCATION.--Lat 40°44'46", long 73°39'29", Hydrologic Unit 02030202, at Herricks Road and Sally Place, Mineola. Owner: Nassau County Department of Public Works. AQUIFER.--Upper Glacial.

WELL CHARACTERISTICS. -- Driven observation water-table well, diameter 1.25 in (0.03 m), depth 53 ft (16 m), screen assumed at bottom.

DATUM.--Land-surface datum is 101.0 ft (30.8 m) above mean sea level. Measuring point: Top of casing, 0.20 ft

(0.06 m) below land-surface datum.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for January 1933 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 72.48 ft (22.09 m) above mean sea level, May 31, 1949; lowest measured, 48.42 ft (14.76 m) above mean sea level, Dec. 21, 1970.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL										
OCT 29	55. 81	JAN 28	55. 77	MAR 24	56. 57	MAY 25	56. 30	JUL 26	55. 69	AUG 24	56. 44
NOV 25	55. 62	FEB 24	56. 55	APR 27	56. 45	JUN 21	55. 77	28	55. 05	SEP 27	55. 76

404210073340702. Local number, N 1615-2.
LOCATION.--Lat 40°42'10", long 73°34'07", Hydrologic Unit 02030202, at Merrick and Van Buren Avenues, East Meadow.
Owner: Nassau County Department of Public Works.
AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Driven observation water-table well, diameter 1.25 in (0.03 m), depth 32 ft (10 m), screen

assumed at bottom.

assumed at bottom.

DATUM.--Land-surface datum is 61.0 ft (18.6 m) above mean sea level. Measuring point: Top of casing, 0.13 ft (0.04 m) below land-surface datum.

REMARKS.--Water-quality records for 1966-67, 1969, 1972, are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for March 1913 to December 1915, June 1932 to September 1975, are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 47.17 ft (14.38 m) above mean sea level, Mar. 28, 1939; lowest measured, 37.88 ft (11.55 m) above mean sea level, Aug. 25, 1966.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29	42. 72	DEC 23	42. 54	FEB 24	43. 67	APR 27	43. 24	JUN 21	42. 53	AUG 24-	42. 30
NOV 25	42. 59	JAN 28	43. 25	MAR 24	43. 55	MAY 25	42. 95	JUL 26	41. 49	SEP 27	41. 62

106

404554073351502. Local number, N 1616-2. LOCATION.--Lat 40%5'54", long 73%35'15", Hydrologic Unit 02030202, at Post Avenue and Argyle Road, Westbury. Owner: Nassau County Department of Public Works.

Owner: Nassau County Department of Public Works.

AQUIFER.--Magothy.

WELL CHARACTERISTICS.--Driven observation water-table well, diameter 2 in (0.05 m), depth 68 ft (21 m), screened

WELL CHARACTERISTICS.--Prive observation water-table well, diameter 2 in (0.03 m), depends it (21 m), between 65 to 68 ft (20 to 21 m).

DATUM.--Land-surface datum is 122.4 ft (37.3 m) above mean sea level. Measuring point: Top of casing, 0.32 ft (0.10 m) below land-surface datum.

REMARKS.--Water-quality records for 1969 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--March 1913 to December 1915, June 1932 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 85.42 ft (26.04 m) above mean sea level, June 1, 1939; lowest measured, 68.28 ft (20.81 m) above mean sea level, Feb. 28, 1967.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	LEVEL
OCT 29	78. 59	JAN 28	79. 21	APR 27	80. 65	MAY 25	80. 80	JUL 26	80. 51	AUG 24	80. 88
NOV 25	78. 77	FEB 24	79. 92	28	80. 63	JUN 21	80. 43	28	80. 53	SEP 27	79. 72

404935073384901. Local number, N 2424. LOCATION.--Lat 40°49'35", long 73°38'49", Hydrologic Unit 02030201, at Long Island Lighting Company plant on Glenwood Road, Glenwood Landing. Owner: Long Island Lighting Company.

AOUI FER. -- Lloyd.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 12 in (0.03 m), depth 461 ft (141 m), screened 427 to 459 ft (130 to 140 m).

DATUM.--Land-surface datum is 20.0 ft (6.1 m) above mean sea level. Measuring point: Top of casing, 1.80 ft (0.55 m) above land-surface datum.

m) above land-surrace datum.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for February 1952 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 20.89 ft (6.37 m) above mean sea level, Mar. 14, 1961; lowest measured, 9.00 ft (2.74 m) above mean sea level, Dec. 16, 1964.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR UCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL
OCT 22	13. 89	DEC 18	16. 15	FEB 19	18. 62	APR 23	17. 74	JUN 22	15. 42	AUG 23	14. 69
NOV 23	14. 82	JAN 18	18. 29	MAR 22	18. 40	MAY 24	17. 09	JUL 22	14. 45	SEP 23	15. 04

405101073343401. Local number, N 2528.
LOCATION.--Lat 40°51'01", long 73°34'34", Hydrologic Unit 02030201, at Chicken Valley and Wolver Hollow Roads,
Upper Brookville. Owner: Nassau County Department of Public Works.

AQUIFER. -- Magothy.
WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 6 in (0.15 m) to 4 in (0.10 m), depth 282 ft (86

m), slotted 278 to 282 ft (85 to 86 m).

DATUM.--Land-surface datum is 92.5 ft (28.2 m) above mean sea level. Measuring point: Top of nipple, 0.77 ft (0.23

m) above land-surrace datum is 22.5 ft (28.2 m) above mean sea level. Measuring point: lop of hippie, 0.77 ft m) above land-surface datum.

REMARKS.--Water-quality records for 1972 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--December 1947 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 79.92 ft (24.36 m) above mean sea level, July 25, 1957; lowest measured, 59.12 ft (18.02 m) above mean sea level, Feb. 24, 1967.

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 1	70. 36	DEC 17	70. 41	MAR 16	72. 17	JUN 25	72. 14	SEP 20	71. 56		

403805073395301. Local number, N 2790.
LOCATION.--Lat 40°38'05", long 73°39'53", Hydrologic Unit 02030202, at Sewage Treatment Plant, Bay Park. Owner:
Nassau County Department of Public Works.

AQUIFER.--Magothy.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in (0.15 m), depth 560 ft (171 m), screened ball characteristics.—Brilled observation artesian well, diameter 6 in (0.15 m), depth 500 ft (171 m), screened 538 to 560 ft (164 to 171 m).

DATUM.--Land-surface datum is 9.7 ft (3.0 m) above mean sea level. Measuring point: Base of recorder shelf, 5.60 ft (1.71 m) above land-surface datum.

REMARKS.--Water-quality records for 1964-66, 1968, 1971-74, are available in files of Long Island Sub-district

REMARKS.--Water-quality records for 1500 to, 1500, 1500, 1500, office.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for July 1960 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.82 ft (1.16 m) above mean sea level, Jan. 31, 1976; lowest measured, 1.00 ft (0.30 m) above mean sea level, July 31, 1974.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL										
OCT 31	3. 59	DEC 31	3. 67	FEB 29	3. 78	APR 30	3. 12	JUN 30	1. 96	AUG 31	1. 95
NOV 30	3. 52	JAN 31	3. 82	MAR 31	3. 67	MAY 31	3. 08	JUL 31	1. 91	SEP 30	2. 68

404619073270602. Local number, N 3355.
LOCATION.--Lat 40°46'19", long 73°27'06", Hydrologic Unit 02030202, at Round Swamp Road, 0.7 mi (1.1 km) south of Old Country Road, Plainview. Owner: U.S. Geological Survey.

Aquifer.--Lloyd.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 8 in (0.20 m) to 4 in (0.10 m), depth 1,090 ft (332 m), screened 1,070 to 1,090 ft (326 to 332 m).
DATUM.--Land-surface datum is 183.3 ft (55.9 m) above mean sea level. Measuring point: Top of casing, 0.76 ft

(0.23 m) below land-surface datum.

REMARKS.--Water-quality records for 1951 are available in files of Long Island Sub-district office.

PERTOD OF RECORD.--August 1951 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 36.52 ft (11.13 m) above mean sea level, Apr. 9, 1957;

lowest measured, 23.18 ft (7.07 m) above mean sea level, Apr. 11, 1972.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 1	32. 65	DEC 18	32. 35	JAN 22	31. 80	MAR 16	33. 40	JUN 28	33. 25	SEP 22	32. 17

403751073440201. Local number, N 3861. LOCATION.--Lat 40°37'51", long 73°44'02", Hydrologic Unit 02030202, at Water Pollution Control Plant, Arlington Place, Cedarhurst. Owner: Village of Cedarhurst. AQUIFER.--Magothy.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in (0.15 m), depth 530 ft (162 m), screened 520 to 530 ft (158 to 162 m).

DATUM.--Land-surface datum is 7.0 ft (2.1 m) above mean sea level. Measuring point: Top of casing, 2.37 ft (0.72 m) above land-surface datum.

REMARKS.--Water-quality records for 1952-53, 1956, 1959, 1970, 1974, are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for April 1952 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.88 ft (1.18 m) below mean sea level, Oct. 22, 1975; lowest measured, 7.17 ft (2.18 m) below mean sea level, July 29, 1971.

DATE	WATER LEVEL	DATE	WATER								
OCT 21	-3. 80	DEC 18	-4. 01	FEB 20	-3. 84	APR 22	-4. 91	JUN 22	-5. 37	AUG 22	-5. 23
NOV 20	-3. 95	JAN 18	-3. 95	MAR 23	-4. 21	MAY 23	-4. 48	JUL 21	-5. 71	SEP 22	-5. 03

403911073432001. Local number, N 3867.
LOCATION.--Lat 40°39'11", long 73°43'20", Hydrologic Unit 02030202, at Green Acres Sewage Treatment Plant, Brook Road, Valley Stream. Owner: Town of Hempstead.
AQUIFER.--Magothy.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in (0.15 m), depth 517 ft (158 m), screened

506 to 511 ft (154 to 156 m).

DATUM.-Land-surface datum is 9.0 ft (2.7 m) above mean sea level. Measuring point: Top of casing, 0.24 ft (0.07 m) above land-surface datum.

mj above land-surrace datum.
REMARKS.--Water-quality records for 1971 are available in files of Long Island Sub-district office.
PERIOD OF RECORD.--October 1975 to current year. Unpublished records for December 1952 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.20 ft (1.28 m) above mean sea level, Apr. 2, 1970; lowest measured, 0.88 ft (0.27 m) below mean sea level, July 22, 1976.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL										
OCT 22	2. 92	DEC 18	3. 03	FEB 23	3. 06	APR 22	0. 98	JUN 22	0. 12	AUG 23	-0. 67
NOV 21	3. 15	JAN 20	2. 97	MAR 23	2. 83	MAY 24	2. 01	JUL 22	-0. 88	SEP 23	0. 78

405125073420701. Local number, N 6282.
LOCATION.--Lat 40°51'25", long 73°42'07", Hydrologic Unit 02030201, at Sands Point Park and Preserve, Middle Neck Road, Sands Point. Owner: U.S. Geological Survey.
AQUIFER.--Jameco.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in (0.15 m), depth 396 ft (121 m), screened 384 to 394 ft (117 to 120 m).
DATUM.--Land-surface datum is 99.0 ft (30.2 m) above mean sea level. Measuring point: Top of flange, 3.22 ft (0.98 m) above land-surface datum.
REMARKS.--Water-quality records for 1976 are published elsewhere in this report.
PERIOD OF RECORD,--October 1975 to current year. Unpublished records for December 1960 to September 1975 are available in files of Long Island Sub-district office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.58 ft (3.22 m) above mean sea level, Apr. 25, 1962; lowest measured, 0.71 ft (0.22 m) above mean sea level, July 30, 1971. 1962; lowest measured, 0.71 ft (0.22 m) above mean sea level, July 30, 1971.

WATER LEVEL. IN FEET ABOVE MEAN SEA LEVEL. WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL										
OCT 23	8. 43	DEC 19	8. 68	FEB 24	9. 35	APR 23	6. 19	JUN 23	-2. 14	AUG 24	-5. 72
NOV 24	8. 86	JAN 22	9. 21	MAR 24	9. 61	MAY 25	9. 06	JUL 23	-3. 18	SEP 24	5. 52

403517073430702. Local number, N 6702.
LOCATION.--Lat 40°35'17", long 73°43'07", Hydrologic Unit 02030202, at Richard and Park Streets, Atlantic Beach.
Owner: Long Island Water Company.
AQUIFER.--Magothy.

WELL CHARACTERISTICS .-- Drilled observation artesian well, diameter 4 in (0.10 m), depth 677 ft (206 m), screen assumed at bottom.

assumed at bottom.

DATUM.--Land-surface datum is 10.0 ft (3.0 m) above mean sea level. Measuring point: Top of coupling, 2.04 ft (0.62 m) above land-surface datum.

REMARKS.--Water-quality records for 1960 and 1970 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for August 1959 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.20 ft (0.98 m) below mean sea level, Nov. 12, 1968;

lowest measured, 6.58 ft (2.01 m) below mean sea level, Nov. 30, 1972.

DATE	WATER LEVEL										
OCT 21	-4. 40	DEC 18	-4. 19	FEB 22	-4. 89	APR 25	-4. 50	JUN 21	-5. 69	AUG 22	-4. 87
NOV 23	-4. 73	JAN 21	-4. 36	MAR 24	-5. 00	MAY 25	-4. 60		-5. 75	SEP 23	-4. 89

GROUND-WATER LEVELS

NASSAU COUNTY -- Continued

403713073415902. Local number, N 6707.
LOCATION.--Lat 40°37'13", long 73°41'59", Hydrologic Unit 02030202, at end of Woodmere Boulevard, at the town dock, Woodsburgh. Owner: Nassau County Department of Public Works.
AQUIFER.--Magothy.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 4 in (0.10 m), depth 503 ft (153 m), screened

494 to 503 ft (151 to 153 m).

DATUM,--Land-surface datum is 5.0 ft (1.5 m) above mean sea level. Measuring point: Top of coupling, 2.08 ft (0.63 m) above land-surface datum.

(0.03 m) above land-surrace datum.
REMARKS.--Water-quality records for 1960, 1964, 1970-71, are available in files of Long Island Sub-district office.
PERIOD OF RECORD,--October 1975 to current year. Unpublished records for October 1959 to September 1975 are available in files of Long Island Sub-district office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.18 ft (0.97 m) above mean sea level, Mar. 3, 1968;

lowest measured, 0.11 ft (0.03 m) below mean sea level, Aug. 8, 1974.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
OCT 8	2. 86	DEC 10	3. 16	FEB 9	2. 78	APR 9	2. 61	JUN 9	1. 83	AUG 11	1. 52
NOV 9	2. 47	JAN 6	2. 69	MAR 11	2. 93	MAY 9	2. 14	JUL 11	1. 62	SEP 9	1. 21

403533073353202. Local number, N 6850.
LOCATION.--Lat 40°35'33", long 73°35'32", Hydrologic Unit 02030202, at Lido Boulevard, 1.5 mi (2.4 km) west of Loop Parkway, Lido Beach. Owner: U.S. Geological Survey.
AQUIFER.--Magothy.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in (0.15 m), depth 913 ft (278 m), screened

899 to 910 ft (274 to 277 m).
DATUM.--Land-surface datum is 7.1 ft (2.2 m) above mean sea level. Measuring point: Top of coupling, 2.07 ft

(0.63 m) above land-surface datum.

REMARKS.--Water-quality records for 1960 and 1975 are available in files of Long Island Su -district office.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for 1960-75 are available in files of Long

Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.42 ft (1.96 m) above mean sea level, Feb. 29, 1968; lowest measured, 6.07 ft (1.85 m) below mean sea level, Dec. 30, 1972.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	LEVEL
OCT 22	5. 64	DEC 18	6. 09	FEB 22	6. 02	APR 24	5. 41	JUN 21	4. 50	AUG 22	5. 22
NOV 21	5. 71	JAN 18	5. 42	MAR 24	5. 22	MAY 25	5. 62	JUL 21	4. 29	SEP 22	5. 10

405432073345001. Local number, N 7152. LOCATION.--Lat 40°54'32", long 73°34'50", Hydrologic Unit 02030201, at Oak Neck Beach, Bayville. Owner: Town of Oyster Bay.

AQUIFER.--Lloyd. WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in (0.15 m), depth 367 ft (112 m), screened WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 6 in (0.15 m), depth 307 it (112 m), 361 to 367 ft (110 to 112 m).

DATUM. -- Land-surface datum is 15.0 ft (4.6 m) above mean sea level. Measuring point: Top of nipple, 3.13 ft (0.95 m) above land-surface datum.

REMARKS. -- Water-quality records for 1970 are available in files of Long Island Sub-district office.

PERIOD OF RECORD. -- October 1975 to current year. Unpublished records for September 1961 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 13.47 ft (4.11 m) above mean sea level, Feb. 29, 1968; lowest measured, 0.49 ft (0.15 m) below mean sea level, July 24, 1974.

DATE	WATER LEVEL	DATE	WATER								
OCT 22	10. 78	DEC 18	9. 05	FEB 22	9. 02	APR 23	8. 36	JUN 23	6. 09	AUG 23	3. 88
NOV 24	8. 30	JAN 20	11. 02	MAR 23	8. 40	MAY 26	8. 94	JUL 23	4. 57	SEP 23	10. 06

403856073392601. Local number, N 7161.
LOCATION.--Lat 40°38'56", long 73°39'26", Hydrologic Unit 02030202, at Village Dump, at end of Riverside Road, Rockville Centre. Owner: Village of Rockville Centre.

AQUIFER.--Magothy.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in (0.15 m), depth 666 ft (203 m), screened WELL CHARACTERISTICS.-Drilled Observation artesian well, diameter of in (0.15 m), depth ood it (200 m), Section 611 to 666 ft (201 to 203 m).

DATUM:--Land-surface datum is 7.0 ft (2.1 m) above mean sea level. Measuring point: Top of base of recorder shelf, 2.78 ft (0.85 m) above land-surface datum.

REMARKS:--Water-quality records 1964-67 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for 1961-75 are available in files of Long

Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.88 ft (2.10 m) above mean sea level, Mar. 26, 1973; lowest measured, 0.11 ft (0.03 m) below mean sea level, July 23, 1974.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
OCT 22	5. 40	DEC 18	5. 48	FEB 23	5. 49	APR 22	4. 02	JUN 22	2. 10	AUG 23	1. 58
NOV 20	5. 19	JAN 20	6. 16	MAR 23	5. 35	MAY 24	4. 36	JUL 22	1. 95	SEP 23	3. 95

404237073433701. Local number, N 7493.
LOCATION.--Lat 40°42'37", long 73°43'37", Hydrologic Unit 02030202, at Hempstead Turnpike and Cross Island Parkway,
Elmont. Owner: Nassau County Department of Public Works.

AQUIFER.--Magothy.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 4 in (0.10 m), depth 353 ft (108 m), screened

348 to 353 ft (106 to 108 m).
DATUM.--Land-surface datum is 77.0 ft (23.5 m) above mean sea level. Measuring point: Top of flange, 0.59 ft

DATUM.--Land-surface datum is 77.0 ft (23.5 m) above mean sea level. Measuring point. The of langs, 0.03 (0.18 m) above land-surface datum.

REMARKS.--Water-quality records for 1964, 1967, 1972, are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for 1964-75 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 12.29 ft (3.75 m) above mean sea level, Jan. 14, 1968; lowest measured, 5.36 ft (1.63 m) above mean sea level, Sept. 26, 1972.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL										
OCT 22	8. 06	DEC 18	9. 07	FEB 23	9. 45	APR 22	9. 43	JUN 22	8. 82	AUG 23	7. 99
NOV 21	8. 75	JAN 20	9. 34	MAR 23	9. 63	MAY 24	9. 40	JUL 22	8. 18	SEP 23	7. 79

405418073323801. Local number, N 7546. LOCATION.--Lat 40°54'18", long 73°32'38", Hydrologic Unit 02030201, at West Harbor Drive and Ludlum Avenue, Bayville. Owner: Nassau County Department of Public Works. AQUIFER.--Lloyd.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in (0.15 m), depth 364 ft (111 m), screened 359 to 364 ft (109 to 111 m). DATUM.--Land-surface datum is 12.0 ft (3.7 m) above mean sea level. Measuring point: Top of casing, 1.87 ft (0.57 m) above land-surface datum.

m) above read-surface datum.

PERIOD OF RECORD, --October 1975 to current year. Unpublished records for 1964-75 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD, --Highest water level measured, 11.85 ft (3.61 m) above mean sea level, Dec. 23, 1968; lowest measured, 4.65 ft (1.42 m) above mean sea level, Aug. 26, 1972.

DATE	WATER LEVEL	DATE	WATER								
OCT 23			10. 61	FEB 21	10. 00	APR 29	10. 13	JUN 22	8. 58	AUG 23	8. 19
NOV 24	10.06	JAN 21	10.46	MAR 23	9. 63	MAY 25	9. 80	JUL 22	8. 33	SEP 22	10. 58

403805073395303. Local number, N 7675.
LOCATION.--Lat 40°38'05", long 73°39'53", Hydrologic Unit 02030202, at Bay Park Sewage Treatment Plant, Bay Park.
Owner: Nassau County Department of Public Works.
AQUIFER.--Upper Glacial.

WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 4 in (0.10 m), depth 35 ft (11 m), screened 28 to 34 ft (9 to 10 m).

DATUM.--Land-surface datum is 7.0 ft (2.1 m) above mean sea level. Measuring point: Top of casing, 1.95 ft (0.59 m) above level-surface.

DATUM.--Land-surface datum is 7.0 ft (2.1 m) above mean sea level. Measuring point: 100 of casing, 1.93 ft (0.39 m) above land-surface datum.

REMARKS.--Water-quality records for 1965 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for 1966-75 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.55 ft (1.08 m) above mean sea level, Sept. 28, 1975; lowest measured, 0.80 ft (0.24 m) above mean sea level, Nov. 30, 1976.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 8	2. 38	DEC 10	2. 60	FEB 9	2. 26	APR 9	2. 13	JUN 9	1. 88	AUG 10	2. 77
NOV 9	2. 07	JAN 8	2. 63	MAR 11	2. 52	MAY 9	1. 75	JUL 11		SEP 9	1. 45

403805073395304. Local number, N 7676.
LOCATION.--Lat 40°38'05", long 73°39'53", Hydrologic Unit 02030202, at Bay Park Sewage Treatment Plant, Bay Park.
Owner: Nassau County Department of Public Works.

LOCATION.--Lat 40°38'05", long 73°39'55", Hydrologic Unit 0200020, d. ...
Owner: Nassau County Department of Public Works.
AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Driven observation water-table well, diameter 4 in (0.10 m), depth 10 ft (3 m), screened 7 to 10 ft (2.1 to 3.0 m).
DATUM.--Land-surface datum is 7.0 ft (2.1 m) above mean sea level. Measuring point: Top of casing, 2.33 ft (0.71 m) above land-surface datum.
REMARKS.--Water-quality records for 1965 are available in files of Long Island Sub-district office.
PERIOD OF RECORD.--October 1975 to current year. Unpublished records for 1966-75 are available in files of Long Island Sub-district office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.31 ft (1.01 m) above mean sea level, Aug. 11, 1976; lowest measured, 2.07 ft (0.63 m) below mean sea level, Apr. 9, 1976.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL
OCT 9	2. 12	DEC 1	2. 49	FEB 9	2. 19	APR 9	2. 07	JUN 10	1. 67	AUG 11	3. 31
NOV 10	1. 93	JAN 9	2. 63	MAR 11	2. 33	MAY 10	1. 54	JUL 12	1. 78	SEP 10	1. 38

403805073395503. Local number, N 7677.
LOCATION.--Lat 40°38'05", long 73°39'55", Hydrologic Unit 02030202, at Bay Park Sewage Treatment Plant, Bay Park.
Owner: Nassau County Department of Public Works.
AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 4 in (0.10 m), depth 89 ft (27 m), screened
84 to 89 ft (26 to 27 m).
DATUM.--Land-surface datum is 7.0 ft (2.1 m) above mean sea level. Measuring point: Top of casing, 1.66 ft (0.51
m) above land-surface datum

m) above land-surface datum.

REMARKS.--Water-quality records for 1965 and 1973 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for 1966-75 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.17 ft (0.97 m) above mean sea level, June 8, 1975; lowest measured, 0.93 ft (0.28 m) above mean sea level, Aug. 8, 1974.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 8	2. 58	DEC 10	2. 86	FEB 8	2. 59	APR 9	2. 40	JUN 9	2. 09	AUG 10	2. 66
NOV 9	2. 28	JAN 8	2. 76	MAR 11	2. 75	MAY 9	2. 00	JUL 11	2. 09	SEP 9	1. 62

403803073395306. Local number, N 7888.
LOCATION.--Lat 40°38'03", long 73°39'53", Hydrologic Unit 02030202, at Bay Park Sewage Treatment Plant, Bay Park.
Owner: Nassau County Department of Public Works.
AQUIFER.--Magothy.

WELL CHARACTERISTICS .-- Drilled observation artesian well, diameter 3 in (0.08 m), depth 327 ft (100 m), screened

307 to 317 ft (94 to 97 m).

DATUM.--Land-surface datum is 7.0 ft (2.1 m) above mean sea level. Measuring point: Top of casing, 2.26 ft (0.69

m) above land-surface datum.

REMARKS.--Water-quality records for 1965-70, 1972-73, are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for 1966-75 are available in files of Long

Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.75 ft (1.14 m) above mean sea level, Apr. 3, 1974; lowest measured, 1.57 ft (0.48 m) above mean sea level, Aug. 8, 1974.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE		WATER	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT	8	3. 52	DEC 10	3. 95	FEB 8	3. 80	APR 9	3. 57	JUN 9	2. 70	AUG 10	3. 02
NOV		3. 39	JAN 8	3. 82	MAR 11	3. 92	MAY 9	3. 03	JUL 12	2. 30	SEP 9	2. 16

403804073395201. Local number, N 8022.
LOCATION.--Lat 40°38'04", long 73°39'52", Hydrologic Unit 02030202, at Bay Park Sewage Treatment Plant, Bay Park.
Owner: Nassau County Department of Public Works.

Owner: Nassau County Department or Public works.
AQUIFER.--Magothy.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in (0.15 m), depth 490 ft (149 m), screened
420 to 480 ft (128 to 146 m).
DATUM.--Land-surface datum is 7.0 ft (2.1 m) above mean sea level. Measuring point: Top of casing, 3.10 ft
(0.94 m) above land-surface datum.
REMARKS.--Water-quality records for 1972-74 are available in files of Long Island Sub-district office.
PERIOD OF RECORD.--October 1975 to current year. Unpublished records for 1966-75 are available in files of Long

Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.63 ft (1.11 m) above mean sea level, Mar. 11, 1976; lowest measured, 0.71 ft (0.22 m) below mean sea level, Jan. 18, 1974.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 8	3. 47	DEC 10	3. 95	FEB 8	3. 83	APR 8	3. 60	JUN 9	2. 57	AUG 10	2. 90
NOV 8	3. 52	JAN 8	3. 82	MAR 11	3. 89	MAY 9	2. 96	JUL 11	2. 19	SEP 9	1. 98

404947073450301. Local number, N 8046.
LOCATION.--Lat 40°49'47", long 73°45'03", Hydrologic Unit 02030201, at Pond and Kings Point Roads, Kings Point.
Owner: Nassau County Department of Public Works.

-Jameco. WELL CHARACTERISTICS.--Driven observation artesian well, diameter 4 in (0.10 m), depth 189 ft (58 m), screened 184

to 189 ft (56 to 58 m).

DATUM.--Land-surface datum is 8.0 ft (2.4 m) above mean sea level. Measuring point: Top of casing, 3.66 ft (1.12 m) above land-surface datum.

above land-surface datum.

REMARKS.--Water-quality records for 1966 are available in files of Long Island Su -district office; those for 1976 are published elsewhere in this report.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for May 1966 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.92 ft (1.50 m) above mean sea level, Feb. 9, 1970; lowest measured, 1.37 ft (0.42 m) above mean sea level, Jan. 25, 1972.

DATE	WATER LEVEL										
OCT 22	5. 69	DEC 18	4. 50	FEB 22	4. 53	APR 22	3. 88	JUN 22	2. 69	AUG 23	2, 53
NOV 24	4. 85	JAN 20	4. 43	MAR 23	4. 17	MAY 24	4. 06	JUL 22	2. 40	SEP 23	3, 23

GROUND-WATER LEVELS

NASSAU COUNTY--Continued

404537073370102. Local number, N 8269-2.
LOCATION.--Lat 40°45'37", long 73°37'01", Hydrologic Unit 02030202, at Hillside Avenue and Bacon Road, Old Westbury.
Owner: Nassau County Department of Public Works.
AQUIFER.-Magothy.
WELL CHARACTERISTICS.--Driven observation water-table well, diameter 4 in (0.10 m), depth 86 ft (26 m), screened 81

to 86 ft (25 to 26 m).
DATUM.--Land-surface datum is 111.5 ft (34.0 m) above mean sea level. Measuring point: Top of coupling, 0.15 ft

(0.05 m) below land-surface datum.

REMARKS.--Prior to April 1976 well was in upper glacial aquifer, depth 63.7 ft (19.4 m). Replaced well N 1256,

April 1967.

April 1967.

ERIOD OF RECORD.--October 1975 to current year. Unpublished records for June 1936 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 80.97 ft (24.68 m) above mean sea level, May 20, 1939; lowest measured, 60.97 ft (18.58 m) above mean sea level, Oct. 24, 1968.

WATER LEVEL. IN FEET ABOVE MEAN SEA LEVEL. WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
OCT 29 NOV 25 DEC 23	69. 30 69. 56 69. 78	JAN 28 FEB 24	70. 65 71. 06	MAR 24 31	71. 25 71. 58	MAY 26 JUN 21	72. 17 71. 69	JUN 29 JUL 26	71. 02 70. 50	AUG 24 SEP 27	70. 52 70. 12

404742073410301. Local number, N 8309.
LOCATION.--Lat 40°47'42", long 73°41'03", Hydrologic Unit 02030201, at Northern Boulevard and Manhasset Woods Road,
Munsey Park. Owner: Nassau County Department of Public Works.

AQUIFER. -- Magothy.
WELL CHARACTERISTICS. -- Drilled observation water-table well, diameter 4 in (0.10 m), depth 199 ft (61 m), screened

194 to 199 ft (59 to 61 m).

DATUM.--Land-surface datum is 143.0 ft (43.6 m) above mean sea level. Measuring point: Top of pipe, 0.10 ft (0.03 m) below land-surface datum.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for March 1967 to September 1975 are avail-

able in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD, --Highest water level measured, 42.21 ft (12.87 m) above mean sea level, May 25, 1976; lowest measured, 33.53 ft (10.22 m) above mean sea level, Sept. 23, 1968.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

WATER DATE LEVEL	DATE LEV	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 5 39. 57 25 39. 89 DEC 29 40. 31	JAN 29 41. FEB 25 41.	41. 76 42. 15	MAY 25 JUN 21	42. 21 41. 71	JUL 26 AUG 25	41. 27 40. 66	AUG 30 SEP 27	40. 48 40. 86

404404073305701. Local number, N 8959.
LOCATION.--Lat 40°44'04", long 73°30'57", Hydrologic Unit 02030202, at Meadowbrook Hospital Sewage Treatment Plant,
East Meadow. Owner: Nassau County Department of Public Works.
AQUIFER.-Upper Glacial.
WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 21 in (0.53 m), depth 49 ft (15 m), screened
41 to 46 ft (12 to 14 m).
DATUM.--Land-surface datum is 100.3 ft (30.6 m) above mean sea level. Measuring point: Top of reducer, 2.87 ft
(0.87 m) above land-surface datum.

(0.87 m) above land-surrace datum.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for May 1973 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 69.58 ft (21.21 m) above mean sea level, July 26, 1973; lowest measured, 65.36 ft (19.92 m) above mean sea level, Dec. 18, 1974.

DATE	WATER LEVEL										
OCT 21	68. 24	DEC 18	67. 73	FEB 20	69. 22	APR 22	69. 05	JUN 24	68. 14	AUG 24	68. 20
NOV 21	68. 04	JAN 19	68. 21	MAR 22	69. 06	MAY 24	68. 77	JUL 23	67. 53	SEP 23	67. 59

GROUND-WATER LEVELS

NASSAU COUNTY -- Continued

404758073440602. Local number, N 9099. LOCATION.--Lat 40°47'58", long 73°44'06", Hydrologic Unit 02030201, at Middle Neck Road and Preston Road, Great Neck. Owner: Nassau County Department of Public Works. AQUIFER.--Upper Glacial.

WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 4 in (0.10 m), depth 71 ft (22 m), screened 66 to 71 ft (20 to 22 m).

DATUM.--Land-surface datum is 59.6 ft (18.2 m) above mean sea level. Measuring point: Top of coupling, 0.10 ft

DATUM.--Land-surface datum is 59.6 ft (18.2 m) above mean sea level. Measuring point: lop of coupling, 0.10 it (0.03 m) below land-surface datum.

REMARKS.--Well N 9099 replaces N 1479. Prior to April 1976, water levels were measured in N 1479. Water-quality records for 1976 are published elsewhere in this report.

PERIOD OF RECORD.--April 1976 to current year. Unpublished records for September 1944 to December 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 27.32 ft (8.33 m) above mean sea level, June 15, 1949; lowest measured, 15.07 ft (4.59 m) above mean sea level, Dec. 19, 1966.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 5	21. 77	DEC 29	22. 53	FEB 25	23. 24	APR 22	23. 45	JUN 28	23. 50	AUG 25	23. 48
25	22. 11	JAN 29	22. 94	APR 15	23. 37	MAY 25	23. 62	JUL 26	23. 82	SEP 27	23. 36

OUEENS COUNTY

404451073475001. Local number, Q 283. LOCATION.--Lat 40°44'51", long 73°47'50", Hydrologic Unit 02030201, at Underhill Avenue and 171st Street, Flushing. Owner: City of New York, Department of Water Supply, Gas and Electricity.

Flushing. Owner: City of New York, Department or water Supply, Gas and Electrical AQUIFER. --Lloyd.

AQUIFER. --Lloyd.

WELL CHARACTERISTICS. --Drilled unused artesian well, diameter 26 in (0.66 m), depth 409 ft (125 m), screened 309 to 352 ft (94 to 107 m), 367 to 409 ft (122 to 125 m).

DATUM. --Land-surface datum is 27.0 ft (8.23 m) above mean sea level. Measuring point: Top of iron plate, 0.37 ft (0.11 m) above land-surface datum.

PERIOD OF RECORD. --June 1946 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 5.48 ft (1.67 m) above mean sea level, Apr. 7, 1955; lowest measured, 15.78 ft (4.81 m) below mean sea level, Aug. 5, 1971.

WATER LEVEL. IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL
OCT 6	-11.89	DEC 15	-3. 07	JAN 23	-1. 66	MAR 25	-17. 53	SEP 14	-27. 40	SEP 24	-13. 22

404418073434101. Local number, Q 577.
LOCATION.--Lat 40°44'18", long 73°43'41", Hydrologic Unit 02030201, at Hillside Avenue and Cross Island Parkway,
Bellrose. Owner: State of New York.

AQUIFER.--Lloyd. WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 12 in (0.30 m), depth 644 ft (196 m), screen assumed at bottom.

DATUM,--Land-surface datum is 112.5 ft (34.3 m) above mean sea level. Measuring point: Top of casing, 2.05 ft (0.62

m) above land-surface datum.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for February 1946 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 6.10 ft (1.86 m) above mean sea level, Feb. 23, 1976; lowest measured, 13.60 ft (4.15 m) below mean sea level, Aug. 1, 1968.

DATE	WATER LEVEL										
OCT 21	-6. 31	DEC 18	3. 29	FEB 23	6. 10	APR 22	-2. 19	JUN 21	-5. 17	AUG 23	-6. 39
	1. 94	JAN 20	4. 78	MAR 23	0. 29	MAY 24	-2. 90	JUL 22	-7. 02	SEP 22	-7. 28

GROUND-WATER LEVELS 115 QUEENS COUNTY -- Continued

404157073480102. Local number, Q 1252.
LOCATION.--Lat 40°41'57", long 73°48'01", Hydrologic Unit 02030202, at Liberty Avenue and 157th Street, Jamaica.
Owner: U.S. Geological Survey.
AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Driven observation water-table well, diameter 1.25 in (0.03 m), depth 60 ft (18 m), screened
58 to 60 ft (17.7 to 18.3 m).
DATUM.--Land-surface datum is 31.2 ft (9.5 m) above mean sea level. Measuring point: Top of coupling, 0.31 ft
ft (0.00 m) above land-surface datum.

DATUM.--Land-surface datum is 31.2 rt (9.5 m) above mean sea level. Measuring point. Top of courting, 0.1-2 ft (0.9 m) above land-surface datum.

PERIOD OF RECORD.--October 1940 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 13.92 ft (4.24 m) above mean sea level, Nov. 2, 1948; lowest measured, 2.81 ft (0.86 m) below mean sea level, Feb. 9, 1971.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WA'TER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
OCT 6	2. 64	DEC 15	3. 09	MAR 25	4. 05	JUL 1	3. 65	JUL 9	3. 75	JUL 15	3.53	

404113073501101. Local number, Q 1254. LOCATION.--Lat 40°41'13", long 73°50'11", Hydrologic Unit 02030202, at 108th Street and 101st Avenue, Woodhaven.

LOCATION.--Lat 40°41'13", long 73°50'11", Hydrologic Unit 02030202, at 108th Street and 101st Avenue, woodnaven.
Owner: New York City.
AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Driven observation water-table well, diameter 1.5 in (0.04 m), depth 65 ft (20 m), screened 63 to 65 ft (19 to 20 m).
DATUM.--Land-surface datum is 56.0 ft (17.1 m) above mean sea level. Measuring point: Top of coupling, 10.46 ft (3.19 m) below land-surface datum.
PERIOD OF RECORD.--October 1975 to current year. Unpublished records for October 1940 to December 1954, January 1956 to December 1957, March 1959 to September 1975, are available in files of Long Island Sub-district office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.34 ft (1.63 m) above mean sea level, Feb. 25, 1976; lowest measured, 11.29 ft (3.44 m) below mean sea level, Sept. 2, 1966.

WATER LEVEL. IN FEET AROVE MEAN SEA LEVEL. WATER YEAR OCTORER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 5	4. 44	DEC 29	4. 27	FEB 25	5. 34	APR 22	4. 89	JUN 28	4. 79	AUG 25	4. 50
25	4. 45	JAN 29	4. 73	MAR 29	5. 04	MAY 26	4. 98	JUL 26	4. 55	SEP 27	4. 81

404656073503701. Local number, Q 1373.
LOCATION.--Lat 40°46'56", long 73°50'37", Hydrologic Unit 02030201, at 127th Street and 20th Avenue, College Point.
Owner: Kleinert Rubber Company.
AQUIFER. -Lloyd.
WELL CHARACTERISTICS.-Drilled observation artesian well, diameter 6 in (0.15 m), depth 262 ft (80 m), screened 194

to 206 ft (59 to 63 m).

DATUM, -Land-surface datum is 50.0 ft (15.2 m) above mean sea level. Measuring point: Top of recorder shelf, 0.76 ft (0.23 m) below land-surface datum.

PERIOD OF RECORD. -October 1975 to current year. Unpublished records for 1947-48, 1950, 1952-53, 1962, 1968-73, are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.12 ft (1.87 m) above mean sea level, Jan. 10, 1973; lowest measured, 2.80 ft (0.85 m) below mean sea level, Feb. 7, 1962.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL										
OCT 21	5. 70	DEC 17	4. 91	FEB 20	4. 93	APR 21	4. 73	JUN 20	4. 41	AUG 22	4. 37
NOV 19	5. 02	JAN 18	4. 84	MAR 22	4. 78	MAY 23	4. 57	JUL 21	4. 24	SEP 22	4. 32

403957073495002. Local number, Q 2324.
LOCATION.--Lat 40°39'57", long 73°49'50", Hydrologic Unit 02030202, at North Conduit Avenue and 114th Street,
South Ozone Park. Owner: New York Racing Association, Inc.
AQUIFER. --Upper Glacial.
WELL CHARACTERISTICS.--Driven observation water-table well, diameter 2.5 in (0.06 m), depth 91 ft (28 m), screen assumed at bottom.

DATUM.--Land-surface datum is 22.0 ft (6.7 m) above mean sea level. Measuring point: Top of coupling at land-surface datum.

REMARKS.--Water-quality records for 1970 are available in files of Long Island Sub-district office.
PERIOD OF RECORD.--March 1959 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.34 ft (1.02 m) above mean sea level, Oct. 6, 1975; lowest measured, 3.40 ft (1.04 m) below mean sea level, May 25, 1959.

DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT /	2 24	DEC 15	2 74	MAR 25	2.62	JUL 1	2. 48	SEP 24	2. 51		

QUEENS COUNTY -- Continued

404451073475002. Local number, Q 2346.
LOCATION.--Lat 40°44'51", long 73°47'50", Hydrologic Unit 02030201, at Underhill Avenue and Fresh Meadow Lane,
Flushing. Owner: New York City.

AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Driven observation well, diameter 1.25 in (0.03 m), depth 17.0 ft (5.2 m), screen assumed at

DATUM .-- Land-surface datum is 29.0 ft (8.8 m) above mean sea level. Measuring point: Top of casing, 0.98 ft

O.30 m) above land-surface datum is 29.0 ft (8.8 m) above mean sea level. Measuring point: lop of casing, 0.98 ft (0.50 m) above land-surface datum.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for August 1960 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 21.99 ft (6.70 m) above mean sea level, Apr. 26, 1961; lowest measured, 11.32 ft (3.45 m) above mean sea level, Aug. 25, 1976.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
NOV 5 25	16. 93 17. 05	DEC 29 JAN 29	17. 18 18. 10	FEB 25 MAR 29	17. 68 17. 49	APR 22 MAY 26	17. 38 17. 06	JUN 22 SEP 14	16. 80 16. 20	SEP 27	16. 50

404025073463801. Local number, Q2422.
LOCATION.--Lat 40°40'25", long 73°46'38", Hydrologic Unit 02030202, at New York Boulevard and 132nd Avenue, Jamaica. Owner: Jamaica Water Supply Company.
AQUIFER.--Magothy.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 8 in (0.20 m), depth 370 ft (113 m), screened 342

to 362 ft (104 to 110 m).

DATUM.--Land-surface datum is 21.0 ft (6.4 m) above mean sea level. Measuring point: Top of nipple, 1.21 ft (0.37)

m) above land-surface datum.

REMARKS.--Water-quality records for 1970 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for 1964-75 are available in files of Long

Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.80 ft (0.24 m) below mean sea level, Dec. 13, 1971; lowest measured, 5.50 ft (1.68 m) below mean sea level, Aug. 31, 1970.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
OCT 21	-2. 03	DEC 18	-1. 73	FEB 23	-1. 69	APR 22	-1. 93	JUN 21	-2. 56	AUG 23	-2. 35
NOV 21	-1. 75	JAN 20	-1. 90	MAR 23	-1. 97	MAY 24	-2. 17	JUL 22	-2. 83	SEP 22	-2. 37

SUFFOLK COUNTY

404213073204001. Local number, S 1803. LOCATION.--Lat 40°42'13", long 73°20'40", Hydrologic Unit 02030202, at Little East Neck Road and State Highway 109, Babylon. Owner: New York State Department of Transportation. AQUIFER: -- Upper Glacial.

WELL CHARACTERISTICS.--Driven observation water-table well, diameter 1.25 in (0.03 m), depth 19 ft (6 m), screened 16 to 19 ft (5 to 6 m).

DATUM.--Land-surface datum is 22.0 ft (6.7 m) above mean sea level. Measuring point: Top of casing, 0.49 ft (0.15)

m) above land-surface datum.

MeRiod September 1932, June 1936 to September 1975, are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.19 ft (5.54 m) above mean sea level, Apr. 22, 1913; lowest measured, 13.06 ft (3.98 m) above mean sea level, July 26, 1976.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29	16. 38	JAN 28	17. 35	MAR 24	14. 04	APR 27	14. 28	JUN 21	15. 20	AUG 24	15. 76
NOV 25 DEC 23	16. 89	FEB 24	17. 00	31	13. 20	MAY 25	14. 90	JUL 26	13. 06	SEP 27	15. 97

117

SUFFOLK COUNTY -- Continued

404301073240904. Local number, S 1805-4.
LOCATION.--Lat 40°43'01", long 73°24'09", Hydrologic Unit 02030202, at State Highway 109 and Albany Road, Maywood.
Owner: New York State Department of Transportation.
AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Driven observation water-table well, diameter 2 in (0.05 m), depth 33 ft (10 m), screen

assumed at bottom.

DATUM.--Land-surface datum is 57.0 ft (17.4 m) above mean sea level. Measuring point: Top of casing, 1.22 ft

(0.37 m) above land-surface datum is 57.0 ft (17.4 m) above mean sea level. Measuring point. Top of casing, 1.22 ft (0.37 m) above land-surface datum.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for October 1912 to November 1914, February 1932 to September 1975, are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 57.57 ft (17.55 m) above mean sea level, Feb. 14, 1976; lowest measured, 35.79 ft (10.91 m) above mean sea level, Dec. 28, 1966.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 4 29 NOV 15	42. 42 G 41. 80 42. 16 G	NOV 25 DEC 6	42. 19 42. 12 G	DEC 23 JAN 17	41. 94 43. 22 G	FEB 14 MAR 20	44. 15 G 43. 96 G	APR 24 MAY 22	43. 49 43. 04 G	JUN 19 AUG 7	42: 45 G 41: 38 G

404442073240501. Local number, S 1806.
LOCATION.--Lat 40°44'42, long 73°24'05", Hydrologic Unit 02030202, at Conklin Street and Wellwood Avenue,
Pinelawn. Owner: Suffolk County Department of Public Works.
AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Driven observation water-table well, diameter 1.25 in (0.03 m), depth 44 ft (13 m), screened
41 to 44 ft (12 to 13 m).
DATUM.--Land-surface datum is 86.0 ft (26.2 m) above mean sea level. Measuring point: Top of casing, 0.12 ft

DATUM.--Land-surface datum is 86.0 ft (20.2 m) above mean sea level. Measuring point: 10p of casing, 0.12 ft (0.04 m) above land-surface datum.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for October 1912 to November 1914, May 1932 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 61.68 ft (18.80 m) above mean sea level, Apr. 29, 1939; lowest measured, 46.97 ft (14.32 m) above mean sea level, Jan. 25, 1967.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER								
OCT 4	55. 92 G	DEC 6	55. 67 G	FEB 14	57. 56 G	APR 24	58. 18 G	JUN 19	56. 32 G	AUG 7	56. 34
29	55. 21	23	55. 93	24	57. 87	27	57. 54	21	56. 66	24	56. 10
NOV 15	55. 30 G	JAN 17	56. 22 G	MAR 20	57. 81 G	MAY 22	57. 80 G	JUL 26	55. 82	SEP 27	55. 63
25	55. 34	28	56. 85	24	57. 72	25	57. 24	28	55. 93		

404319073184605. Local number, S 1807-5.
LOCATION.--Lat 40°43'19", long 73°18'46", Hydrologic Unit 02030202, at Higbie Lane and Martin Drive, West Islip.
Owner: Town of Islip.
AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Driven observation water-table well, diameter 1.25 in (0.03 m), depth 21 ft (6 m), screen

assumed at bottom. FUM.--Land-surface datum is 23.0 ft (7.0 m) above mean sea level. Measuring point: Top of casing, 1.21 ft (0.37 DATUM. -

m) above land-surface datum is 25.0 ft (7.0 m) above mean sea level. Measuring point. Top of casing, 1.21 to m) above land-surface datum.

REMARKS.--Water-quality records for 1972-73 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for October 1912 to Nobember 1914, August 1932 to June 1935, June 1936 to September 1975, are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 23.06 ft (7.03 m) above mean sea level, Sept. 30, 1938; lowest measured, 17.27 ft (5.26 m) above mean sea level, July 23, 1966.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29 NOV 25 DEC 23	18. 88 20. 53 20. 73	JAN 28 FEB 24	22. 79 21. 22	MAR 24 APR 27	21. 26 21. 32	MAY 25 28	21. 39 20. 97	JUL 6 26	20. 23 19. 26	AUG 24 SEP 27	20. 54 20. 43

G MEASUREMENT BY ANOTHER AGENCY

404221073164805. Local number, S 1808-5. LOCATION.--Lat 40°42'21", long 73°16'48", Hydrologic Unit 02030202, at Manor and Bardolier Lanes, West Islip. Owner: Town of Islip. AQUIFER.--Upper Glacial. WELL CHARACTERISTICS.--Driven observation water-table well, diameter 1.25 in (0.03 m), depth 11 ft (3 m), screen

assumed at bottom. DATUM.--Land-surface datum is 13.0 ft (4.0 m) above mean sea level. Measuring point: Top of casing, 0.32 ft (0.10 m) above land-surface datum.

m) above rand-state datum.

PERIOD OF RECORD, --October 1975 to current year. Unpublished records for October 1912 to November 1914, August 1932 to September 1975, are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 12.29 ft (3.75 m) above mean sea level, Feb. 23, 1949; lowest measured, 6.08 ft (1.85 m) above mean sea level, Aug. 27, 1974.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29	9. 70	DEC 23	10. 06	FEB 24	11. 05	APR 27	10. 35	JUN 21	9. 72	AUG 24	10. 22
NOV 25	10. 32	JAN 28	10. 91	MAR 24	10. 45	MAY 25	10. 15	JUL 26	9. 49	SEP 27	9. 77

404351073164903. Local number, S 1809-3.
LOCATION.--Lat 40°43'51", long 73°16'49", Hydrologic Unit 02030202, at Manor Lane and Muncey Road, Bay Shore.
Owner: Town of Islip.
AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Driven observation water-table well, diameter 1.25 in (0.03 m), depth 29 ft (9 m), screened 26 to 29 ft (8 to 9 m).
DATUM.--Land-surface datum is 42.0 ft (12.8 m) above mean sea level. Measuring point: Top of casing, 0.40 ft (0.12 m) above land-surface datum.
PERIOD OF RECORD.--October 1975 to current year. Unpublished records for October 1912 to November 1914, August 1932 to September 1975, are available in files of Long Island Sub-district office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 32.40 ft (9.88 m) above mean sea level, Apr. 8, 1939; lowest measured, 25.00 ft (7.62 m) above mean sea level, Nov. 2, 1932.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL
OCT 29	27. 62	DEC 23	28. 25	FEB 24	30. 06	APR 27	29. 66	JUN 21	28. 73	AUG 24	28. 38
NOV 25	28. 23	JAN 28	29. 82	MAR 24	30. 00	MAY 25	29. 46	JUL 26	27. 95	SEP 27	27. 75

404614073164403. Local number, S 1810-3.
LOCATION.--Lat 40°46'14", long 73°16'44", Hydrologic Unit 02030202, at Gardiner and Pine Aire Drives, Pine Aire.
Owner: U.S. Geological Survey.
AQUIFER:--Upper Glacial.
WELL CHARACTERISTICS.--Augered observation water-table well, diameter 2 in (0.05 m), depth 55 ft (17 m), screened
52 to 55 ft (16 to 17 m).
DATUM.--Land-surface datum is 90.1 ft (27.5 m) above mean sea level. Measuring point: Top of coupling, 0.10 ft
(0.03 m) below land-surface datum.
PERIOD OF RECORD.--October 1912 to November 1914, August 1932 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 56.19 ft (17.13 m) above mean sea level, Apr. 29, 1939;
lowest measured, 43.30 ft (13.20 m) above mean sea level, Feb. 27, 1967.

DATE	WATER LEVEL	DATE	WATER LEVEL								
NOV 26 DEC 23	51. 07 51. 01	JAN 28 FEB 24	51. 63 52. 47	MAR 24 APR 27	52. 65 52. 50	MAY 25 JUN 21	52. 38 52. 02	JUL 26 AUG 24	51. 57 51. 92	SEP 27	51. 25

119 GROUND-WATER LEVELS SUFFOLK COUNTY -- Continued

404959073084902. Local number, S 1812-2. LOCATION.-Lat 40°49'59", long 73°08'49", Hydrologic Unit 02030202, at Smithtown Boulevard and Nichols Road, Ronkonkoma. Owner: U.S. Geological Survey. AQUIFER:--Upper Glacial.

WELL CHARACTERISTICS.--Driven observation water-table well, diameter 1.25 in (0.03 m), depth 44 ft (13 m), screen

DATUM.--Land-surface datum is 69.9 ft (21.3 m) above mean sea level. Measuring point: Top of casing, at land-surface datum.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for April 1937 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 51.08 ft (15.57 m) above mean sea level, May 6, 1939; lowest measured, 40.09 ft (12.22 m) above mean sea level, Feb. 27. 1967.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31	46. 12	DEC 31	46. 60	FEB 27	47. 68	APR 23	48. 25	JUN 25	47. 45	AUG 24	47. 08
NOV 25	46. 61	JAN 29	47. 24	MAR 30	47. 97	MAY 18	48. 07	JUL 28	46. 97	SEP 27	46. 50

404813073084102. Local number, S 1813-2.
LOCATION.--Lat 40°48'13", long 73°08'41", Hydrologic Unit 02030202, at Johnson Avenue and Terry Road, Ronkonkoma.
Owner: U.S. Geological Survey.
AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Driven observation water-table well, diameter 2 in (0.05 m), depth 52.5 ft (16.0 m), screened
50 to 52 ft (15 to 16 m).
DATUM.--Land-surface datum is 58.2 ft (17.7 m) above mean sea level. Measuring point: Top of coupling, at land-

PERIOD OF RECORD, --October 1975 to current year. Unpublished records for November 1939 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 40.99 ft (12.49 m) above mean sea level, June 25, 1973; lowest measured, 56.46 ft (11.11 m) above mean sea level, Jan. 25, 1951.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25 NOV 25	39. 21 39. 37	DEC 31 JAN 29	39. 41 39. 74	FEB 27 MAR 30	40. 08 40. 17	APR 22 SEP 9	40. 05 39. 45	SEP 14	39. 24	SEP 27	39. 09

405146073031801. Local number, S 3513.
LOCATION.--Lat 40°51'46", long 73°03'18", Hydrologic Unit 02030202, at State Highway 25 and High View Drive, Selden. Owner: New York Department of Transportation.

AQUIFER. - Upper Glacial.
WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 8 in (0.20 m), depth 65 ft (20 m), screened 63 to 65 ft (19 to 20 m).
DATUM.--Land-surface datum is 101.0 ft (30.8 m) above mean sea level. Measuring point: Top of reducer, 0.21 ft

(0.06 m) above land-surface datum.
PERIOD OF RECORD. -- April 1942 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 67.63 ft (20.61 m) above mean sea level, Mar. 5, 1962; lowest measured, 56.06 ft (17.09 m) above mean sea level, Mar. 1. 1967.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29	64. 58	JAN 5	64. 67	FEB 27	65. 74	APR 29	66. 29	JUN 25	66. 06	AUG 25	65. 50
NOV 25	64. 64	29	65. 12	MAR 31	66. 16	MAY 19	66. 39	JUL 28	65. 59	SEP 29	65. 13

405031073181201. Local number, S 3514.
LOCATION.--Lat 40°50'31", long 73°18'12", Hydrologic Unit 02030202, at State Highway 25 and Wilshire Drive, Commack.
Owner: Heatherwood Shopping Center.
AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Dug observation water-table well, diameter 30 in (0.76 m), depth 98 ft (30 m), screen assumed

at bottom.

DATUM.--Land-surface datum is 153.6 ft (46.8 m) above mean sea level. Measuring point: Top of 2 in (0.05 m) coupling, 0.10 ft (0.03 m) below land-surface datum.

PERIOD OF RECORD.--May 1942 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 73.75 ft (22.48 m) above mean sea level, Apr. 28, 1976; lowest measured, 64.23 ft (19.58 m) above mean sea level, Mar. 18, 26, 1951.

WATER DATE LEVEL	DATE LEVEL	WATER DATE LEVEL	WATER DATE LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31 73.16	DEC 31 73.11	FEB 27 73.36	APR 28 73.75	JUN 28	73. 52	AUG 24	73. 59
NOV 25 73.18	JAN 29 73.28	MAR 30 73.60	MAY 19 73.71	JUL 28	73. 16	SEP 27	73. 13

404812073004101. Local number, S 3521.
LOCATION.--Lat 40°48'12", long 73°00'41", Hydrologic Unit 02030202, at Medford Avenue, near Cedar Avenue, Medford.
Owner: Town of Brookhaven.
AQUIFER.-Upper Glacial.
WELL CHARACTERISTICS.--Driven observation water-table well, diameter 2 in (0.05 m), depth 50 ft (15 m), screen

assumed at bottom. DATUM. -- Land-surface datum is 72.0 ft (21.9 m) above mean sea level. Measuring point: Top of casing, 0.57 ft

(0.17 m) above land-surface datum.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for January 1907 to July 1909, April 1942 to September 1975, are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 39.97 ft (12.18 m) above mean sea level, June 25, 1958; lowest measured, 35.38 ft (10.78 m) above mean sea level, Oct. 30, 1968.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL										
OCT 31	37. 24	DEC 31	37. 26	FEB 26	38. 43	APR 29	38. 07	JUN 25	37. 67	AUG 25	37. 60
NOV 25	37. 30	JAN 29	37. 90	MAR 31	38. 20	MAY 19	37. 99	JUL 28	37. 36	SEP 29	37. 32

405037072390301. Local number, S 3543. LOCATION.--Lat 40°50'37", long 72°39'03", Hydrologic Unit 02030202, at 01d Riverhead Road and main entrance to Suffolk County Airport, Westhampton. Owner: City of New York. AQUIFER.--Upper Glacial.

WELL CHARACTERISTICS. -- Driven observation water-table well, diameter 2 in (0.05 m), depth 58 ft (18 m), screened 56 to 58 ft (17 to 18 m).

TO 58 rt (17 to 18 m).
DATUM.--Land-surface datum is 64.4 ft (19.6 m) above mean sea level. Measuring point: Top of casing, 0.40 ft
(0.12 m) above land-surface datum.
PERIOD OF RECORD.--March 1907 to December 1909, April 1942 to April 1943, January 1947 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 21.46 ft (6.54 m) above mean sea level, June 24, 1958; lowest measured, 15.03 ft (4.58 m) above mean sea level, Jan. 26, 1967.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
OCT 22 NOV 3	18. 67 18. 70	JAN 6	18. 22 18. 46	FEB 26 APR 2	19. 00 19. 35	APR 29 MAY 20	19. 26 19. 20	JUN 25 JUL 29	18. 95 18. 65	AUG 25 SEP 29	18. 55 18. 47
26	18. 47										

405343073055004. Local number, S 3955-4.
LOCATION.--Lat 40°53'43", long 73°05'50", Hydrologic Unit 02030201, at Pond Path and Mark Tree Roads, Setauket.
Owner: U.S. Geological Survey.
AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Augered water-table observation well, diameter 2 in (0.05 m), depth 82 ft (25 m), screened
80 to 82 ft (24 to 25 m).
DATUM.--Land-surface datum is 122.8 ft (37.4 m) above mean sea level. Measuring point: Top of coupling, 0.04 ft

DATUM. --Land-surface datum is 122.8 rt (37.4 m) above mean sea level. Measuring point: 100 of Coupling, 0.04 it (0.01 m) below land-surface datum.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for September 1944 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 59.19 ft (18.04 m) above mean sea level, Oct. 29, 1958; lowest measured, 48.01 ft (14.63 m) above mean sea level, Mar. 31, 1967.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29	56. 79	JAN 5	56. 55	FEB 27	56. 72	APR 28	57. 56	JUN 25	57. 83	AUG 25	57. 56
NOV 25	56. 79		56. 64	MAR 30	57. 16	MAY 18	57. 75	JUL 28	57. 60	SEP 29	57. 31

405743072425701. Local number, S 4271.
LOCATION.--Lat 40°57'43", long 72°42'57", Hydrologic Unit 02030202, at Long Island Research Farm, Sound Avenue, Riverhead. Owner: U.S. Geological Survey.
AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 4 in (0.10 m), depth 105 ft (32 m), screened 100 to 105 ft (30 to 32 m).
DATUM.--Land-surface datum is 100.3 ft (30.6 m) above mean sea level. Measuring point: Top of coupling, 1.14 ft (0.35 m) above land-surface datum.
PERIOD OF RECORD.--August 1945 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 13.07 ft (3.98 m) above mean sea level, July 23, 30, 1973; lowest measured, 8.16 ft (2.49 m) above mean sea level, Sept. 5, 1966.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 6 13 19	10. 88 G 10. 92 G 10. 90 G	DEC 8 15 22	11. 13 G 11. 15 G 11. 16 G	FEB 8 16 22	11.54 G 11.58 G 11.61 G	APR 12 18 26	11. 99 G 12. 01 G 12. 01 G	JUN 13 21 27	11. 91 G 11. 81 G 11. 57 G	AUG 8 16 22	11. 12 G 11. 23 G 11. 26 G
27 NOV 3	10. 90 G 10. 98 G 11. 00 G	29 JAN 5	11. 18 G 11. 22 G 11. 24 G	MAR 1 7 15	11. 69 G 11. 70 G 11. 79 G	MAY 2 10	12. 02 G 12. 04 G 12. 05 G	JUL 5	11. 52 G 11. 48 G 11. 37 G	30 SEP 5 13	11. 24 G 11. 23 G 11. 27 G
17 24 DEC 1	11. 03 G 11. 04 G 11. 10 G	19 25 FEB 2	11. 28 G 11. 27 G 11. 45 G	21 29 APR 4	11.88 G 11.90 G 11.93 G	24 30 JUN 2	12. 03 G 12. 03 G 11. 99 G	25 AUG 2	11. 34 G 11. 15 G	19 27	11. 28 G 11. 23 G

405149072532201. Local number, S 5517.
LOCATION.--Lat 40°51'49", long 72°53'22", Hydrologic Unit 02030202, at Upton Road and Princeton Avenue, Upton.
Owner: Brookhaven National Laboratory.

Owner: Brookhaven National Laboratory.

AQUIFER: --Upper Glacial.

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 4 in (0.10 m), depth 91 ft (28 m), screened 85 to 91 ft (26 to 28 m).

DATUM. --Land-surface datum is 115.0 ft (35.1 m) above mean sea level. Measuring point: Top of casing, 0.04 ft

Only my above land-surface datum is 15.0 rt (35.1 m) above mean sea level. Measuring point: Top of casing, 0.04 ft (0.01 m) above land-surface datum.

PERIOD OF RECORD.--April 1948 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 46.93 ft (14.30 m) above mean sea level, June 25, 1958; lowest measured, 33.34 ft (10.16 m) above mean sea level, Mar. 1, 1967.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
0CT 15 NOV 3 26		JAN 5 29	39. 39 40. 25	FEB 27 APR 2		APR 29 MAY 20	41. 26 41. 42	JUN 25 JUL 29	40. 91 40. 24	AUG 25 SEP 29	40. 57 40. 08

40565072541801. Local number, S 6411.
LOCATION.--Lat 40°56'50", long 72°54'18", Hydrologic Unit 02030202, at State Highway 25 and Randall Road, Shoreham.
Owner: Brookhaven National Laboratory.
AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 4 in (0.10 m), depth 149 ft (45 m), screened 143 to 149 ft (44 to 45 m).
DATUM.--Land-surface datum is 138.4 ft (42.2 m) above mean sea level. Measuring point: Top of casing, 1.73 ft

DATUM.--Land-surface datum is 138.4 ft (42.2 m) above mean sea level. Measuring point: Top of casing, 1.75 ft (0.53 m) above land-surface datum.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for November 1948 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 34.01 ft (10.37 m) above mean sea level, Oct. 29, 1958; lowest measured, 25.15 ft (7.67 m) above mean sea level, Dec. 28, 1966.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

	TER VEL DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 6 31. NOV 3 31. 26 31.	33 2	5 31. 13 9 31. 23	FEB 27 APR 2	31. 33 31. 43	APR 29 MAY 20	31. 50 31. 63	JUN 25 JUL 29	31. 78 31. 75		31. 75 31. 67

G MEASUREMENT BY ANOTHER AGENCY

405223072523401. Local number, S 6434.
LOCATION.--Lat 40°52'23", long 72°52'34", Hydrologic Unit 02030202, at 10th Street and 4th Avenue, Upton.
Owner: Brookhaven National Laboratory.
AQUIFER.--Lloyd.
WELL CHAPACTEDIES

WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 10 in (0.25 m), depth 1,395 ft (425 m), screened WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 10 in (0.25 m), depth 1,395 ft (425 m), screened 1,312 to 1,392 ft (400 to 424 m).

DATUM.--Land-surface datum is 85.0 ft (25.9 m) above mean sea level. Measuring point: Top of 2 in (0.05 m) nipple, 2.21 ft (0.67 m) above land-surface datum.

REMARKS.--Water-quality records for 1949 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--August 1949 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 35.20 ft (10.73 m) above mean sea level, July 29, 1958; lowest measured, 28.74 ft (8.76 m) above mean sea level, Mar. 1, 1967.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 15	32. 92	JAN 5	32. 56	JAN 23	33. 01	APR 13	33. 45	JUN 29	33. 31	SEP 27	33. 06

404936072483501. Local number, S 6439.
LOCATION.--Lat 40°49'36", long 72°48'35", Hydrologic Unit 02030202, at Jerusalem Hollow Road and Chichester Avenue,
Manorville. Owner: Town of Brookhaven.

AQUIFER. -- Upper Glacial.
WELL CHARACTERISTICS. -- Drilled observation water-table well, diameter 1.25 in (0.03 m), depth 42 ft (13 m), screen assumed at bottom.

DATUM.--Land-surface datum is 54.8 ft (16.7 m) above mean sea level. Measuring point: Top of casing, 1.21 ft

(0.37 m) above land-surface datum.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for January 1949 to September 1975 are

available in files of Long Island Sub-district office.
EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 28.21 ft (8.60 m) above mean sea level, June 28, 1973; lowest measured, 21.64 ft (6.60 m) above mean sea level, Feb. 23, 1951.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 14	25. 30	JAN 6	24. 82	FEB 26	25. 81	APR 29	26. 29 26. 26	JUN 25 JUL 29	25. 99 25. 58	AUG 25 SEP 29	25. 45 25. 14
NOV 3	25. 11 24. 92	29	25. 26	APR 2	26. 32	MAY 20	26. 26	JUL 27	23. 36	3EF 27	20. 14

405223072523402. Local number, S 6455. LOCATION.--Lat 40°52'23", long 73°52'34", Hydrologic Unit 02030202, at 10th Street and 4th Avenue, Upton. Owner: Brookhaven National Laboratory. AQUIFER.--Magothy.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 4 in (0.10 m), depth 962 ft (293 m), screened 952 to 962 ft (290 to 293 m).

DATUM. -Land-surface datum is 84.6 ft (25.8 m) above mean sea level. Measuring point: Top of casing, 0.16 ft

O.05 m) below land-surface datum is 64.0 ft (25.0 m) above mean sea level. Reasuring point. Top of casing, 0.12 (0.05 m) below land-surface datum.

PERIOD OF RECORD.--July 1949 to June 1952, January 1954 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 41.78 ft (12.73 m) above mean sea level, June 25, 1958; lowest measured, 33.82 ft (10.31 m) above mean sea level, Dec. 27, 1966, Mar. 1, 1967.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 15	38. 64	JAN 5	39. 12	APR 13	39. 91	JUN 29	39. 23	SEP 27	38. 70		

410100072292501. Local number, S 6542. LOCATION.--Lat 41°01'00", long 72°29'25", Hydrologic Unit 02030202, at Depot Lane, 0.4 mi (0.6 km) north of State Highway 25, Cutchogue. Owner: Cutchogue Fire Department.

AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Drilled fire-protection water-table well, diameter 6 in (0.15 m), depth 36 ft (11 m), screen

WELL CHARACIERISTICS. --Diffice fire-protection water-table well, diameter to in (0.10 m), commended at bottom.

DATUM.--Land-surface datum is 24.4 ft (7.4 m) above mean sea level. Measuring point: Bottom outside edge of hose connection, 1.79 ft (0.55 m) above land-surface datum.

PERIOD OF RECORD.--July 1949 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.27 ft (2.52 m) above mean sea level, May 29, 1958; lowest measured, 2.66 ft (0.81 m) above mean sea level, Aug. 31, 1966.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 9 JAN 9	4. 95 4. 79	FEB 27 APR 2	6. 89 6. 73	APR 29	6. 53	JUN 25	5. 68	AUG 25	5. 10	SEP 29	5. 01

405309072233101. Local number, S 8836. LOCATION.--Lat 40°55'09", long 72°23'31", Hydrologic Unit 02030202, at Nugent Street and Windmill Lane, Southampton. Owner: Southampton Fire Department. AQUIFER.--Upper Glacial.

WELL CHARACTERISTICS.--Drilled fire-protection water-table well, diameter 8 in (0.20 m), depth 37 ft (11 m), screen assumed at bottom.

assumed at bottom,
DATUM.--Land-surface datum is 17.4 ft (5.30 m) above mean sea level. Measuring point: Top of casing, 1.47 ft (0.45 m) above land-surface datum.
REMARKS.--Water-quality records for 1974-75 are available in files of Long Island Sub-district office; those for 197 are published elsewhere in this report.
PERIOD OF RECORD.--July 1950 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.08 ft (2.77 m) above mean sea level, Mar. 29, 1973; lowest measured, 4.93 ft (1.50 m) above mean sea level, Aug. 30, 1968.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 14 JAN 6	6. 92 6. 03	MAR 18 APR 5	7. 66 7. 63	MAY 20 JUN 25	7. 13 6. 82	JUL 29	6. 48	AUG 25	6. 87	SEP 29	6. 87

405840072082301. Local number, S 8839.
LOCATION.--Lat 40°58'40", long 72°08'23", Hydrologic Unit 02030202, at Windmill Lane and State Highway 27,
Amagansett. Owner: D. Toler.
AQUIFER.--Upper Glacial.

WELL CHARACTERISTICS. -- Driven observation water-table well, diameter 1.25 in (0.03 m), depth 37 ft (11 m), screen assumed at bottom.

DATUM. --Land-surface datum is 39.1 ft (11.9 m) above mean sea level. Measuring point: Top of casing, 0.87 ft

DATUM.--Land-surface datum is 39.1 ft (11.9 m) above mean sea level. Measuring point: Top of casing, 0.07 ft (0.27 m) above land-surface datum.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for August 1950 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.88 ft (3.01 m) above mean sea level, Sept. 23, 1971; lowest measured, 6.10 ft (1.86 m) above mean sea level, Oct. 27, 1966.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 19 NOV 3 28	8. 33 8. 11 8. 17	JAN 6 29	8. 31 8. 47	FEB 26 APR 2	8. 92 8. 89	APR 29 MAY 20	8. 67 8. 52	JUN 25 JUL 29	8. 19 7. 76	AUG 25 SEP 29	7. 80 7. 64

404747073241501. Local number, S 16874.
LOCATION.--Lat 40°47'47", long 73°24'15", Hydrologic Unit 02030202, at Old Country Road and New York Avenue,
Huntington. Owner: Town of Huntington.
AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Driven observation water-table well, diameter 1.25 in (0.03 m), depth 82 ft (25 m), screen

assumed at bottom.

DATUM.--Land-surface datum is 141.2 ft (43.0 m) above mean sea level. Measuring point: Top of casing, 0.04 ft

DATUM.--Land-surface datum is 141.2 ft (43.0 m) above mean sea level. Measuring point: Top of casing, 0.04 ft (0.01 m) below land-surface datum.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for July 1958 to May 1959, August 1971 to September 1975, are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 78.34 ft (23.87 m) above mean sea level, July 16, 1958; lowest measured, 66.95 ft (20.40 m) above mean sea level, Oct. 20, 1971.

DATE	WATER LEVEL										
OCT 31	73. 78	DEC 30	73. 77	FEB 27	75. 25	APR 28	75. 66	JUN 28	75. 23	AUG 24	75. 11
NOV 25	73. 68	JAN 29	74. 16	MAR 30	75. 66	MAY 19	75. 68	JUL 28	74. 90	SEP 30	74. 75

403727073154602. Local number, S 21091.
LOCATION.--Lat 40°37'27", long 73°15'46", Hydrologic Unit 02030202, at Robert Moses State Park, Fire Island.
Owner: Long Island State Park Commission.
AQUIFER: --Lloyd.
WELL CLARACTERISE OF CO.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in (0.15 m), depth 1,921 ft (586 m), screened 1,918 to 1,921 ft (585 to 586 m).

DATUM.--Land-surface datum is 10.0 ft (3.0 m) above mean sea level. Measuring point: Top of flange, 13.68 ft

DATUM.--Land-surface datum is 10.0 ft (3.0 m) above mean sea level. Measuring point: 10p of france, 13.00 ft (4.17 m) above land-surface datum.

REMARKS.--Water-quality records for 1965 and 1972 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for June 1962 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 20.74 ft (6.32 m) above mean sea level, Dec. 22, 1975; lowest measured, 15.13 ft (4.61 m) above mean sea level, June 2, 1972.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER
OCT 23	19. 62	DEC 22	20. 86	FEB 23	20. 43	APR 25	21. 21	JUN 23	20. 35	AUG 24	20. 03
NOV 24	20. 49	JAN 22	20. 19	MAR 25	20. 39	MAY 25	20. 93	JUL 25	20. 31	SEP 25	20. 09

403727073154601. Local number, S 21311.
LOCATION.--Lat 40°37'27", long 73°15'46", Hydrologic Unit 02030202, at Robert Moses State Park, Fire Island.
Owner: Long Island State Park Commission.
AQUIFER.--Magothy.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in (0.15 m), depth 721 ft (220 m), screened
711 to 721 ft (217 to 220 m).
DATUM.--Land-surface datum is 10.0 ft (3.0 m) above mean sea level. Measuring point: Top of casing, 20.01 ft (6.10
m) above land-surface datum.
REMARKS.--Water-quality records for 1965 are available in files of Long Island Sub-district office.
PERIOD OF RECORD.--October 1975 to current year. Unpublished records for June 1962 to September 1975 are avail-

REMARKS. -- water quality records for loss and a second for June 1962 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 12.22 ft (3.72 m) above mean sea level, Mar. 1, 1968; lowest measured, 7.62 ft (2.32 m) above mean sea level, Feb. 29, 1972.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 23	10. 90	DEC 22	11. 82	FEB 24	10. 77	APR 25	11. 45	JUN 23	10. 09	AUG 24	10. 64
NOV 24	11. 70	JAN 22	10. 72	MAR 25	10. 75	MAY 25	11. 29	JUL 25	10. 36	SEP 26	10. 89

404902073094001. Local number, S 22577.
LOCATION.--Lat 40°49'02", long 73°09'40", Hydrologic Unit 02030202, at Vanderbilt Parkway, near Nicoll Road, Hauppauge. Owner: U.S. Geological Survey.
AQUIFER.--Magothy.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 4 in (0.10 m), depth 736 ft (224 m), screened 724 to 734 ft (221 to 224 m).
DATUM.--Land-surface datum is 60.0 ft (18.3 m) above mean sea level. Measuring point: Top of coupling, 2.63 ft (0.80 m) above land-surface datum.

DATUM. --Land-surface datum is 00.0 ft (18.5 m) above mean sea level. Measuring point: lop of coupling, 2.05 ft (0.80 m) above land-surface datum.

REMARKS.--Water-quality records for 1964 are available in files of Long Island Sub-district office.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for August 1964 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 43.07 ft (13.13 m) above mean sea level, July 3, 1973; lowest measured, 36.19 ft (11.03 m) above mean sea level, Mar. 2, 1967.

DATE	WATER LEVEL	DATE	WATER									
DEC 23	41. 30	MAY 19	42. 38	JUN 28	42. 28	JUL 28	41. 08	AUG 24	41. 12	SEP 28	40. 90	

GROUND-WATER LEVELS

SUFFOLK COUNTY -- Continued

404902073094002. Local number, S 22578.
LOCATION.--Lat 40°49'02", long 73°09'40", Hydrologic Unit 02030202, at Vanderbilt Parkway, near Nicoll Road, Hauppauge. Owner;: U.S. Geological Survey.
AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 4 in (0.10 m), depth 402 ft (123 m), screened 392 to 402 ft (119 to 123 m).
DATUM.--Land-surface datum is 60.1 ft (18.3 m) above mean sea level. Measuring point: Top of 2 in (0.05 m) coupling, 2.79 ft (0.85 m) above land-surface datum.
REMARKS.--Water-quality records for 1964 and 1971 are available in files of Long Island Sub-district office.
PERIOD OF RECORD.--October 1975 to current year. Unpublished records for August 1964 to September 1975 are in files of Long Island Sub-district office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 43.17 ft (13.16 m) above mean sea level, July 3, 1973; lowest measured, 36.35 ft (11.08 m) above mean sea level, Mar. 1, 1967.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
DEC 23 MAR 18	41. 53 42. 64	MAY 19	42. 21	JUN 28	42. 43	JUL 28	41. 14	AUG 24	41. 29	SEP 28	41. 12	

404902073094003. Local number, S 22579.
LOCATION.--Lat 40°49'02", long 73°09'40", Hydrologic Unit 02030202, at Vanderbilt Parkway, near Nicoll Road, Hauppauge. Owner: U.S. Geological Survey.
AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 4 in (0.10 m), depth 210 ft (64 m), screened 200 to 220 ft (61 to 64 m).
DATUM.--Land-surface datum is 60.1 ft (18.3 m) above mean sea level. Measuring point: Top of 2 in (0.05 m) coupling, 2.50 ft (0.76 m) above land-surface datum.
REMARKS.--Water-quality records for 1964 and 1971 are available in files of Long Island Sub-district office.

coupling, 2.50 ft (0.76 m) above land-surface datum.

REMARKS.--Water-quality records for 1964 and 1971 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for August 1964 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 43.21 ft (13.17 m) above mean sea level, July 3, 1973; lowest measured, 36.40 ft (11.09 m) above mean sea level, Mar. 1, 1967.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 23 MAR 18	41. 54 42. 64	MAY 19	42. 24	JUN 28	42. 41	JUL 28	41. 22	AUG 24	41. 30	SEP 28	41. 14

404828073114002. Local number, S 22580.
LOCATION.--Lat 40°48'28", long 73°11'40", Hydrologic Unit 02030202, at Long Island Expressway Service Road and Vanderbilt Parkway, Central Islip. Owner: U.S. Geological Survey.

AQUIFER.-Magothy.
WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 4 in (0.10 m), depth 450 ft (137 m), screened

440 to 450 ft (134 to 137 m).
DATUM.--Land-surface datum is 123.0 ft (37.5 m) above mean sea level. Measuring point: Top of coupling, 4.30 ft

DATUM.--Land-surface datum is 125.0 rt (57.5 m) above mean sea level. Measuring point: 100 of coupling, 7.55 ft. (1.31 m) above land-surface datum.

REMARKS.--Water-quality records for 1972 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for May 1964 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 40.98 ft (12.49 m) above mean sea level, July 3, 1973; lowest measured, 34.01 ft (10.37 m) above mean sea level, Jan. 27, 1967.

DATE	WATER LEVEL										
DEC 23	38. 96	MAY 19	39. 98	JUN 28	39. 99	JUL 28	38. 78	AUG 24	38. 66	SEP 28	38. 74

GROUND-WATER LEVELS

SUFFOLK COUNTY -- Continued

404828073114003. Local number, S 22581.
LOCATION.--Lat 40°48'28", long 73°11'40", Hydrologic Unit 02030202, at Long Island Expressway Service Road and Vanderbilt Parkway, Central Islip. Owner: U.S. Geological Survey.

Vanderbilt Parkway, Central Islip. Owner: U.S. Geological Survey.
AQUIFER.--Magothy.
WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 4 in (0.10 m), depth 450 ft (137 m), screened 440 to 450 ft (134 to 137 m).

DATUM.--Land-surface datum is 123.2 ft (37.6 m) above mean sea level. Measuring point: Top of coupling, 4.08 ft (1.24 m) above land-surface datum.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for August 1964 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 42.27 ft (12.88 m) above mean sea level, July 3, 1973; lowest measured, 34.21 ft (10.43 m) above mean sea level, Jan. 27, 1967.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 23 MAR 18	39. 89 40. 30	MAY 19	40. 94	JUN 28	39. 82	JUL 28	39. 90	AUG 24	39. 72	SEP 28	39. 77

404828073114004. Local number, S 22582.
LOCATION.--Lat 40°48'28", long 73°11'40", Hydrologic Unit 02030202, at Long Island Expressway Service Road and Vanderbilt Parkway, Central Islip. Owner: U.S. Geological Survey.
AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in (0.05 m), depth 115 ft (35 m), screened 105 to 115 ft (32 to 35 m).
DATUM.--Land-surface datum is 123.7 ft (37.7 m) above mean sea level. Measuring point: Top of casing, 3.01 ft (0.92 m) above land-surface datum.
PERIOD OF RECORD.--October 1975 to current year. Unpublished records for August 1964 to September 1975 are available in files of Long Island Sub-district office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 43.21 ft (13.17 m) above mean sea level, July 3, 1973; lowest measured, 34.74 ft (10.59 m) above mean sea level, Jan. 27, 1967.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 23 MAR 18	40. 53 41. 39	MAY 19	41. 59	JUN 28	40. 89	JUL 20	40. 67	AUG 24	40. 76	SEP 28	40. 51

404902073094004. Local number, S 23133.
LOCATION.--Lat 40°49'02", long 73°09'40", Hydrologic Unit 02030202, at Vanderbilt Parkway, near Nicoll Road,
Hauppauge. Owner: U.S. Geological Survey.
AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Driven observation water-table well, diameter 2 in (0.05 m), depth 29 ft (9 m), screened 26

to 29 ft (8 to 9 m). DATUM.--Land-surface datum is 60.3 ft (18.4 m) above mean sea level. Measuring point: Top of casing, 0.59 ft

DATUM. --Land-surface datum is ou.s. It [18.4 m] above mean sea level. Reasoning points for a common (0.18 m) above land-surface datum.

REMARKS. --Water-quality records for 1964 are available in files of Long Island Sub-district office.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for August 1964 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 43.65 ft (13.30 m) above mean sea level, Apr. 30, 1973; lowest measured, 35.66 ft (10.87 m) above mean sea level, Nov. 30, 1966.

DATE	WATER	DATE	WATER	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER
DEC 23 MAR 18	41. 63 43. 02	MAY 17	42. 26	JUN 28	41. 52	JUL 29	41. 29	AUG 24	41. 42	SEP 28	41. 20

404819073160301. Local number, S 24769.
LOCATION.--Lat 40°48'19", long 73°16'03", Hydrologic Unit 02030202, at Vanderbilt Parkway and Wicks Road, Brentwood.
Owner: U.S. Geological Survey.
AQUIFER.-Magothy.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 4 in (0.10 m), depth 810 ft (247 m), screened

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 4 in (0.10 m), depth 810 ft (247 m), screened 800 to 810 ft (244 to 247 m).

DATUM.--Land-surface datum is 139.0 ft (42.4 m) above mean sea level. Measuring point: Top of casing, 1.98 ft (0.60 m) above land-surface datum.

REMARKS.--Water-quality records for 1965 and 1972 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for August 1965 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 53.36 ft (16.26 m) above mean sea level, May 19, 1976; lowest measured, 45.31 ft (13.81 m) above mean sea level, Mar. 7, 1966.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976-

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 23 MAR 19	52. 22 53. 16	MAY 19	53. 38	JUN 28	52. 08	JUL 28	52. 29	AUG 24	52. 05	SEP 28	52. 72

404819073160304. Local number, S 24770. LOCATION.--Lat 40°48'19", long 73°16'03", Hydrologic Unit 02030202, at Vanderbilt Parkway and Wicks Road, Brentwood. Owner: U.S. Geological Survey. AQUIFER: --Upper Glacial.

WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 4 in (0.10 m), depth 434 ft (132 m), screened 424 to 434 ft (129 to 132 m).

DATUM.--Land-surface datum is 139.0 ft (42.4 m) above mean sea level. Measuring point: Top of casing, 2.01 ft (0.01 m) above land-surface datum.

(0.01 m) above land-surface datum.

REMARKS,--Water-quality records for 1965 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for August 1965 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 53.93 ft (16.44 m) above mean sea level, July 3, 1973; lowest measured, 45.66 ft (13.92 m) above mean sea level, Mar. 7, 1966.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	
DEC 23 MAR 19	52. 74 53. 64	MAY 19	53. 92	JUN 28	52. 76	JUL 28	52. 92	AUG 24	52. 74	SEP 28	53. 06	

404820073160303. Local number, S 24771.
LOCATION.--Lat 40°48'20", long 73°16'03", Hydrologic Unit 02030202, at Vanderbilt Parkway and Wicks Road, Brentwood. Owner: U.S. Geological Survey.
AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 4 in (0.10 m), depth 127 ft (39 m), screened 117 to 127 ft (36 to 39 m).
DATUM.--Land-surface datum is 139.0 ft (42.4 m) above mean sea level. Measuring point: Top of casing, 1.86 ft (0.57 m) above land-surface datum.
REMARKS,--Water-quality records for 1964-65 and 1972 are available in files of Long Island Sub-district office.
PERIOD OF RECORD.--August 1965 to current year. Unpublished records for August 1965 to September 1975 are available in files of Long Island Sub-district office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 58.94 ft (17.96 m) above mean sea level, Oct. 2, 1973; lowest measured, 43.50 ft (13.26 m) above mean sea level, Nov. 30, 1966.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
OCT 31	55. 82 55. 82	JAN 6	55. 65 55. 77	FEB 27	55. 80 56. 11	APR 29	56. 45 56. 54	JUN 28	56. 66 56. 51	AUG 24 SEP 28	56. 60 56. 25	

404818073135802. Local number, 24772.
LOCATION.--Lat 40°48'18", long 73°13'58", Hydrologic Unit 02030202, at Long Island Motor Parkway and Highland Road,
Brentwood. Owner: U.S. Geological Survey.

AQUIFER . - - Mago thy .

WELL CHARACTERISITCS.--Drilled observation artesian well, diameter 4 in (0.10 m), depth 838 ft (255 m), screened 828 to 838 ft (252 to 255 m).

DATUM.--Land-surface datum is 117.0 ft (35.7 m) above mean sea level. Measuring point: Top of casing, 3.37 ft

(1.03 m) above land-surface datum.

(1.03 m) above land-surrace datum.

REMARKS.--Water-quality records for 1965 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for March 1966 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 45.39 ft (13.83 m) above mean sea level, July 3, 1973; lowest measured, 38.80 ft (11.83 m) above mean sea level, Mar. 7, 1966.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER	DATE	WATER	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER
DEC 23 MAR 18	43. 55 44. 43	MAY 19	44. 61	JUN 28	43. 73	JUL 28	43. 34	AUG 24	43. 39	SEP 28	43. 80

404818073135904. Local number, S 24773.
LOCATION.--Lat 40°48'18", long 73°13'59", Hydrologic Unit 02030202, at Long Island Motor Parkway and Highland Road,
Brentwood. Owner: U.S. Geological Survey.

Brentwood. Owner: U.S. Geological Survey.

AQUIFER. --Magothy.

WELL CHARACTERISTICS. --Drilled water-table observation well, diameter 4 in (0.10 m), depth 423 ft (129 m), screened 412 to 423 ft (126 to 129 m).

DATUM. --Land-surface datum is 118.0 ft (36.0 m) above mean sea level. Measuring point: Top of casing, 2.35 ft (0.72 m) above land-surface datum.

REMARKS. --Water-quality records for 1965 are available in files of Long Island Sub-district office.

PERIOD OF RECORD. --March 1966 to current year. Unpublished records for March 1966 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 47.31 ft (14.42 m) above mean sea level, July 3, 1973; lowest measured, 40.05 ft (12.21 m) above mean sea level, Mar. 7, 1966.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER	DATE	WATER LEVEL								
DEC 23 MAR 18	45. 21 46. 09	MAY 19	46. 32	JUN 28	45. 79	JUL 28	45. 32	AUG 24	45. 38	SEP 28	45. 47

404818073135906. Local number, S 24774.

LOCATION.--Lat 40°48'18", long 73°13'59", Hydrologic Unit 02030202, at Long Island Motor Parkway and Highland Road, Brentwood. Owner: U.S. Geological Survey.

AQUIFER.--Upper Glacial.

WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 4 in (0.10 m), depth 110 ft (34 m), screened

100 to 110 ft (30 to 36 m).

DATUM.--Land-surface datum is 118.0 ft (36.0 m) above mean sea level. Measuring point: Top of casing, 2.32 ft

DATUM.--Land-surface datum is 118.0 ft (36.0 m) above mean sea level. Measuring point. Log of colors, (0.71 m) above land-surface datum.

REMARKS.--Water-quality records for 1965 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--March 1966 to current year. Unpublished records for March 1966 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 49.18 ft (14.99 m) above mean sea level, July 3, 1973; lowest measured, 41.35 ft (12.60 m) above mean sea level, Mar. 7, 1966.

DATE	WATER	DATE	WATER LEVEL	DATE	WATER	DATE	HATER LEVEL	DATE	WATER	DATÉ	WATER LEVEL
DEC 23 MAR 18	46. 81 47. 73	MAY 19	47. 95	JUN 28	47. 66	JUL 28	47. 30	AUG 24	47. 27	SEP 28	46. 86

GROUND-WATER LEVELS

SHFFOLK COUNTY -- Continued

404603073214803. Local number, S 27739.
LOCATION.--Lat 40°46'03", long 73°21'48", Hydrologic Unit 02030202, at Landscape Drive, near Seamans Road, Wyandanch.
Owner: U.S. Geological Survey.
AQUIFER: --Magothy.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 4 in (0.10 m), depth 850 ft (259 m), screened

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 4 in (0.10 m), depth 850 ft (259 m), screened 840 to 850 ft (256 to 259 m).

DATUM.--Land-surface datum is 139.0 ft (42.4 m) above mean sea level. Measuring point: Top of casing, 2.37 ft (0.72 m) above land-surface datum.

REMARKS.--Water-quality records for 1966 and 1974 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--May 1966 to current year. Unpublished records for May 1966 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 60.85 ft (18.55 m) above mean sea level, May 19, 1976; lowest measured, 50.85 ft (15.50 m) above mean sea level, Feb. 15, 1967.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 31 MAR 22	59. 99 60. 63	MAY 19	60. 85	JUN 28	58. 32	JUL 28	58. 80	AUG 24	58. 50	SEP 30	59. 43

404603073214804. Local number, S 27740. LOCATION.--Lat 40°46'03", long 73°21'48", Hydrologic Unit 02030202, at Landscape Drive, near Seamans Road, Wyandanch. Owner: U.S. Geological Survey. AQUIFER.--Magothy. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 4 in (0.10 m), depth 429 ft (131 m), screened

419 to 429 ft (128 to 131 m), scree 419 to 429 ft (128 to 131 m).

DATUM.--Land-surface datum is 139.0 ft (42.4 m) above mean sea level. Measuring point: Top of casing, 2.85 ft (0.87 m) above land-surface datum.

(0.87 m) above land-surface datum.

REMARKS.--Water-quality records for 1966 and 1974 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for July 1966 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 60.07 ft (18.31 m) above mean sea level, Dec. 31, 1975; lowest measured, 51.08 ft (15.57 m) above mean sea level, Feb. 15, 1967.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER									
DEC 31	60. 07	MAY 19	61. 00	JUN 28	59. 12	JUL 28	59. 26	AUG 24	59. 12	SEP 30	59. 55	

404603073214804. Local number, S 28449. LOCATION.--Lat 40°46'03", long 73°21'48", Hydrologic Unit 02030202, at Landscape Drive, near Seamans Road, Wyandanch. Owner: U.S. Geological Survey.

Wyandanch. Owner: U.S. Geological Survey.

AQUIFER. --Upper Glacial.

WELL CHARACTERISTICS.--Driven observation water-table well, diameter 2 in (0.05 m), depth 98 ft (30 m), screened 95 to 98 ft (29 to 30 m).

DATUM.--Land-surface datum is 140.0 ft (42.7 m) above mean sea level. Measuring point: Top of casing, 1.18 ft (0.36 m) above land-surface datum.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for May 1967 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 61.62 ft (18.78 m) above mean sea level, Mar. 22, 1976; lowest measured, 51.78 ft (15.78 m) above mean sea level, June 29, 1967.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 31 MAR 22	60. 45 61. 62	MAY 19	61. 58	JUN 28	60. 96	JUL 28	60. 54	AUG 24	60. 54	SEP 30	60. 32

404703073264201. Local number, S 29776.
LOCATION.--Lat 40°47°03", long 73°26'42", Hydrologic Unit 02030202, at Round Swamp Road, near Long Island Expressway,
Melville. Owner: U.S. Geological Survey.

AQUIFER. - - Magothy.

AQUIFER. -- Magothy.

WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 4 in (0.10 m), depth 720 ft (219 m), screened 710 to 720 ft (216 to 219 m).

DATUM. -- Land-surface datum is 193.0 ft (58.8 m) above mean sea level. Measuring point: Top of casing, 2.44 ft (0.74 m) above land-surface datum.

(U.74 m) above land-surrace datum.

REMARKS.--Water-quality records for 1974 are available in files of Long Island Sub-district office; those for 1976 are published elsewhere in this report.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for May 1967 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 81.91 ft (24.97 m) above mean sea level, Sept. 30, 1976; lowest measured, 67.64 ft (20.62 m) above mean sea level, June 27, 1967.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL
DEC 30 MAR 19	80. 40 81. 08	MAY 19	81. 40	JUN 28	80. 87	JUL 28	80. 88	AUG 24	80. 62	SEP 30	81. 91

404703073264202. Local number, S 29777.
LOCATION.--Lat 40°47'03", long 73°26'42", Hydrologic Unit 02030202, at Round Swamp Road, near Long Island Expressway,
Melville. Owner: U.S. Geological Survey.

AQUIFER.--Magothy.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 4 in (0.10 m), depth 397 ft (121 m), screened 387 to 397 ft (118 to 121 m).
DATUM.--Land-surface datum is 193.0 ft (58.8 m) above mean sea level. Measuring point: Top of casing, 1.80 ft

DATUM.--Land-surface datum is 193.0 ft (58.8 m) above mean sea level. Measuring point: Top of casing, 1.80 ft (0.55 m) above land-surface datum.

REMARKS.--Water-quality records for 1967 and 1974 are available in files of Long Island Sub-district office; those for 1976 are published elsewhere in this report.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for May 1967 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 81.50 ft (24.84 m) above mean sea level, May 19, 1976; lowest measured, 67.90 ft (20.70 m) above mean sea level, May 1, 1967.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	
DEC 30 MAR 19	80. 59 81. 24	MAY 19	81. 50	JUN 28	81. 22	JUL 28	81. 06	AUG 24	80. 76	SEP 30	81. 10	

404703073264205. Local number, S 29778, LOCATION.--Lat 40°47'03", long 73°26'42", Hydrologic Unit 02030202, at Round Swamp Road, near Long Island Expressway, Melville. Owner: U.S. Geological Survey.

MeIVIILE. OWNET: U.S. Geological Survey.
AQUIFER.-Magothy.
WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 4 in (0.10 m), depth 168 ft (51 m), screened 158 to 168 ft (48 to 51 m).

DATUM.--Land-surface datum is 193.0 ft (58.8 m) above mean sea level. Measuring point: Top of casing, 2.17 ft (0.66 m) above land-surface datum.

(0.06 m) above land-surrace datum.

REMARKS.--Water-quality records for 1967, 1972, 1974-75, are available in files of Long Island Sub-district office; those for 1976 are published elsewhere in this report.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for May 1967 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 82.08 ft (25.02 m) above mean sea level, May 19, 1976; lowest measured, 68.27 ft (20.81 m) above mean sea level, June 27, 1967.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
DEC 30 MAR 30	81. 15 81. 99	MAY 19	82. 08	JUN 28	81. 82	JUL 28	81. 65	AUG 24	81. 53	SEP 30	81. 56

405455073025802. Local number, S 31734.
LOCATION.--Lat 40°54'55", long 73°02'58", Hydrologic Unit 02030202, at Jayne Boulevard, 0.7 mi (1.1 km) south of State Highway 347, Terryville. Owner: Suffolk County Water Authority.

AQUIFER . - - Lloyd. WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in (0.15 m), depth 1,095 ft (334 m), screened

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in (0.15 m), depth 1,095 ft (334 m), screened 1,090 ft (326 to 332 m).

DATUM.--Land-surface datum is 165.0 ft (50.3 m) above mean sea level. Measuring point: Top of 1.25 in (0.03 m) hole in reducer, 1.74 ft (0.53 m) above land-surface datum.

REMARKS.--Water-quality records for 1972 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for December 1970 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 43.13 ft (13.15 m) above mean sea level, Oct. 26, 1976; lowest measured, 37.41 ft (11.40 m) above mean sea level, Mar. 20, 1972.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 15 JAN 5	41. 81 41. 68	FEB 19 MAR 17	42. 12 42. 44	MAY 15 JUN 22	42. 55 41. 78	JUL 29	41. 21	AUG 25	41. 37	SEP 29	42. 04

405452073025702. Local number, S 32895.
LOCATION.--Lat 40°54'52", long 73°02'57", Hydrologic Unit 02030202, at Jayne Boulevard, 0.7 mi (1.1 km) south of State Highway 347, Terryville. Owner: Suffolk County Water Authority.

AQUIFER.--Magothy.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 4 in (0.10 m), depth 845 ft (258 m), screened 840 to 845 ft (256 to 258 m).

DATUM.--Land-surface datum is 165.0 ft (50.3 m) above mean sea level. Measuring point: Top of coupling, 1.92 ft

(0.58 m) above land-surface datum. PERIOD OF RECORD, --October 1975 to current year. Unpublished records for March 1970 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD, --Highest water level measured, 44.62 ft (13.60 m) above mean sea level, Jan. 5, 1976; lowest measured, 38.88 ft (11.85 m) above mean sea level, July 26, 1971.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 15 JAN 5	43. 67 44. 62	FEB 19 MAR 17	43. 89 43. 92	MAY 19 JUN 25	44. 27 43. 90	JUL 29	43. 14	AUG 25	43. 37	SEP 28	43. 86

404932073055901. Local number, S 33379.
LOCATION.--Lat 40°49'32", long 73°05'59", Hydrologic Unit 02030202, at Duncun Avenue and Portion Road, Lake Ronkonkoma. Owner: Suffolk County Water Authority.

Lake Ronkonkoma. Owner: Suffolk County Water Authority.

AQUIFER.--Lloyd.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 4 in (0.10 m), depth 1,305 ft (398 m), screened 1,290 to 1,300 ft (393 to 396 m).

DATUM.--Land-surface datum is 134.0 ft (40.8 m) above mean sea level. Measuring point: Top of casing, 2.34 ft (0.71 m) above land-surface datum.

REMARKS.--Water-quality records for 1968 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for October 1968 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 38.95 ft (11.87 m) above mean sea level, Oct. 30, 1973; lowest measured, 34.13 ft (10.40 m) above mean sea level, Oct. 11, 1968.

DATE	WATER LEVEL										
OCT 24	37. 93	DEC 19	38. 08	FEB 25	38. 31	APR 26	38. 96	JUN 24	38. 57	AUG 25	38. 10
NOV 24	38. 10	JAN 22	38. 46	MAR 25	38. 70	MAY 26	38. 79	JUL 26	38. 01	SEP 27	38. 11

404932073055902. Local number, S 33380. LOCATION.--Lat 40°49'32", long 73°05'59", Hydrologic Unit 02030202, at Duncun Avenue and Portion Road, Lake Ronkonkoma. Owner: Suffolk County Water Authority.

AQUIFER.--Magothy.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 4 in (0.10 m), depth 850 ft (259 m), screened
840 to 850 ft (256 to 259 m).
DATUM.--Land-surface datum is 133.5 ft (40.7 m) above mean sea level. Measuring point: Top of casing, 2.13 ft
(0.65 m) above land-surface datum.
REMARKS.--Water-quality records for 1968 are available in files of Long Island Sub-district office; those for 1976
are published elsewhere in this report.
PERTOD OF RECORD,--October 1975 to current year. Unpublished records for October 1968 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 51.85 ft (15.80 m) above mean sea level, July 26, 1973;
lowest measured, 45.20 ft (13.78 m) above mean sea level, May 1, 1969. AOUI FE'R . - - Magothy .

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL										
OCT 24	49. 43	DEC 19	49. 38	FEB 25	50. 10	APR 26	50. 63	JUN 24	50. 05	AUG 25	49. 72
NOV 24	49. 66	JAN 22	49. 75	MAR 25	50. 51	MAY 26	50. 48	JUL 26	49. 76	SEP 27	49. 65

405517072574902. Local number, S 34892.
LOCATION.--Lat 40°55'17", long 72°57'49", Hydrologic Unit 02030202, at Radio Avenue, 1.3 mi (2.1 km) south of State Highway 25A, Rocky Point. Owner: Suffolk County Water Authority.
AQUIFER.--Upper Glacial.
WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 6 in (0.15 m), depth 138 ft (42 m), screened 124 to 138 ft (38 to 42 m).
DATUM.--Land-surface datum is 122.5 ft (37.3 m) above mean sea level. Measuring point: Top of casing, 0.68 ft (0.21 m) above land-surface datum.
PERIOD OF RECORD.--October 1975 to current year. Unpublished records for July 1970 to September 1975 are available in files of Long Island Sub-district office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 49.25 ft (15.01 m) above mean sea level, July 9, 1973; lowest measured, 42.17 ft (12.85 m) above mean sea level, Mar. 21, 1972.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 3 JAN 5	47. 78 47. 44	MAR 17 MAY 19	48. 54 49. 14	JUN 25	49. 05	JUL 29	48. 74	AUG 25	48. 56	SEP 25	48. 32

405517072574903. Local number, S 34894.
LOCATION.--Lat 40°55'17", long 72°57'49", Hydrologic Unit 02030202, at Radio Avenue, 1.3 mi (2.1 km) south of State Highway 25A, Rocky Point. Owner: Suffolk County Water Authority.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 12 in (0.30 m), depth 745 ft (227 m), screened 698 to 745 ft (213 to 227 m).

DATUM.--Land-surface datum is 124.0 ft (37.8 m) above mean sea level. Measuring point: Top of 2 in (0.05 m) nipple, 3.82 ft (1.16 m) above land-surface datum.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for March 1970 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 46.92 ft (14.30 m) above mean sea level, July 9, 1973; lowest measured, 40.56 ft (12.36 m) above mean sea level, Mar. 15, 1972.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
NOV 3 JAN 5	45. 58 45. 36	MAR 17 MAY 19	46. 32 46. 82	JUN 25	46. 57	JUL 29	46. 27	AUG 25	46. 14	SEP 29	46. 05

133

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

NASSAU COUNTY

						MAG	SAU COUNT						
s	TATION	NUMBER		LOCAL IDENT- I- FIER		GEU- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
	04856073	3443401	,	N 31		112JMC0	75-12-18	236	590	6.4	11.0	140	86
				N 36		112JMC0	76-01-05	220	233	6.7	11.0	98	26
	05110073			N 37			76-01-05	140	305	6.3	10.0	120	58
	05113073							422	185	7.2	11.0		
	0513207			N 38			75-11-25		130	6.4	11.0	45	19
4	05308073	3300001	,	N 590		11261610	75-12-30	165	150	0.4	11.00		-
	0445307	3365001		N 617		211mGTY	75-10-08	180	170	4.9	12.0	41	37
	0445207			N 651		211MGTY	76-04-19	348	235	6.2		68	48
	0453407					211LLYD	75-11-24	364	390	8.6	12.0		
	0494007			N 662				290	85	6.0	14.0		
	0495607			N 675		211LLYD	75-11-20		320	5.9	15.5	110	90
.4	0371607	3423101		N 1116		1126LCL0	76-07-22	18	320	3.7	13.3		
4	0504807	3404301		N 1118		112GLCLU	76-05-17	82	215	5.9	11.0	85	57
•	DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BUNATE (HCO3) (MG/L)		DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
							49	18	140	•1	18	301	1.4
	5-12-18	31	14	45	2.2	60		31	10	.1	19	150	1.1
	5-01-05	21	11	8.6	2.9	88					22	179	5.6
76	5-01-05	23	14	12	2.6	70		42	19	• 1		177	
75	5-11-25								11				.01
79	5-12-30	10	4.8	7.2	1.0	31	25	15	10	• 1	18	87	2.3
					2 4		3	30	14	1	6.7	86	2.3
	5-10-08	7.7	5.2	7.9	3.9	4		30		• 1	15	167	15
76	5-04-19	13	8.7	17	1.5	25		20	17	• 0		107	.02
79	5-11-24								110				
75	5-11-20								9.5				.15
76	5-07-22	35	5.3	14	3.0	23	19	60	30	.1	5.0	186	4.9
7 (6-05-17	16	11	15	2.1	34	28	39	12	.0	17	170	9.6
						TOTAL							METHY-
		DIS-	*****	DIS-	TOTAL	KJEL- DAHL NITRO-	TOTAL NITRO-	TOTAL PHOS-	ORTHO PHOS-	TOTAL	DIS- SOLVED	TOTAL MAN-	BLUE ACTIVE
	DATE	SOLVED	TOTAL	SOLVED	NITRO-			PHORUS	PHORUS	IRON	IRON	GANESE	SUB-
	OF	NITHATE	NITRITE	NITRITE	GEN	GEN	GEN			(FE)	(FE)	(MN)	STANCE
	SAMPLE	(N)	(N) (MG/L)	(N) (MG/L)	(N) (MG/L)	(N) (MG/L)	(N) (MG/L)	(P) (MG/L)	(P) (MG/L)	(UG/L)	(UG/L)	(UG/L)	(MG/L)
		(MG/L)	(MG/L)	(MG/L)	(MG/L/	(MG/L)	(=0/L)	(MO/L)	(110) 2)	100727	(00/2/		
7	5-12-18	.74	.01	.01	.00	.03	1.4	.04	.01	70		0	.1
	6-01-05	.69	.03	.01	.01			.05	.01	440		250	.0
	6-01-05	2.3	.00	.00	.01			.03	.01	50		0	.1
	5-11-25		.00		.02	.15		.54	.04				.0
	5-12-30	1.3	.00	.00	.01			.03	.01	230		0	.0
,				.,,									
7	5-10-08	1.9	.00	.00	.00	.07		.12	.02			100	• 0
	6-04-19	14	.00	.01	.02	.00		.01	.00			10	• 2
	5-11-24		.00		.22			.01	.01				.0
	5-11-20		.00		.01			.03					.0
	6-07-22	4.9	.01	.01	.33			.02	.01	240	140	170	.1
	6-05-17	9.3	.01	.01	.05			.03		390	310	70	.1
					0.500								

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976 NASSAU COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
40412307	3394802		N 1129		112GLCLU 112GLCLU 112GLCLU 112GLCLU 112GLCLU	75-11-03 75-12-02 76-01-15	44 44 44 44	265 295 277 220 230	5.6 5.5 5.8 5.3	15.0 15.5 14.0 14.0	92 87 91 90 81	84 79 83 80 75
					112GLCLU	76-03-01 76-04-06 76-05-03 76-06-02 76-07-14	44 44 44 44	210 219 210 200 232	5.6 5.4 5.5 5.5 5.3	14.0 13.0 15.0 14.0 14.5	85 80 78 81 81	78 74 72 69 68
40475807 40474807			N 1134 N 1134A		112GLCLU 112GLCLU	76-08-03 76-08-30 76-04-13 76-04-13	44 44 33 23	235 233 335 330	5.3 5.7 7.1 6.3	13.0 13.0 14.0	89 94 	75 80
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
75-10-09 75-11-03 75-12-02 76-01-15 76-02-04	30 30 30 29 26	4.1 2.9 3.9 4.2 4.0	5.9 6.3 5.8 5.6 5.5	3.1 3.2 2.8 2.7 2.6	9 10 10 12 8	7 8 8 10 7	67 65 65 62 63	13 11 13 12 13	.0 .0 .0 .1	8.6 9.3 9.2 8.9	158 131 156 152 148	5.0 5.0 4.5 4.8 4.8
76-03-01 76-04-06 76-05-03 76-06-02 76-07-14	27 25 24 25 26	4.2 4.3 4.3 4.6 4.0	6.1 6.1 6.1 5.7 6.0	2.7 2.7 2.6 2.7 2.9	8 8 7 15	6	61 63 59 61 59	9.6 9.7 11	.1 .0 .0 .0	8.8 9.0 8.6 9.0 9.3	144 128 136 143 149	4.3 3.8 3.8 4.0 4.9
76-08-03 76-08-30 76-04-13 76-04-13	29 30 	4.1 4.7 	6.5	2.6	18 47 	15 14 	62 65	9.7 14 31 39	.0 .1 	9.2 9.5 	149 161 	5.0 4.6 7.9 3.9
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
75-10-09 75-11-03 75-12-02 76-01-15 76-02-04	5.0 4.8 4.7 4.9	.01 .01 .01	.00 .01 .01 .01	.00 .00 .01 .00	.10 .08 .11 .13	5.1 4.6 4.9	.01 .01 .02 .01	.00 .00 .00	560 1600 480 650 450	460 400 220 190	50 40 0 40 40	.0 .1 .1 .1
76-03-01 76-04-06 76-05-03 76-06-02 76-07-14	4.2 3.9 4.0 3.8 4.8	.00 .01 .01 .01	.01 .01 .01	.02 .01 .04 .02	.08 .13 .05 .10	3.9 3.9 4.1	.02 .01 .01 .01	.01 .00 .01 .01	<400 3500 670 330 670	220 290 290 180 330	40 50 40 30 40	.1 .0 .1 .1
76-08-03 76-08-30 76-04-13 76-04-13	3.8 4.5 	.01 .01 .01	.01 .01	.01 .01 .03	.00 .13 .15	4.7 8.1	.01 .01 .01	.01 .00 .00	660 520 	410 420 	40 40 	.1 .1 .1

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976 NASSAU COUNTY--Continued

					NASSAU	COUNTY CO	ontinued					
STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA;MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
40414407	3373902	-	N 1143		112GLCLU 112GLCLU 112GLCLU	75-10-09 75-11-03 75-12-02 76-01-14 76-02-09	38 38 38 38 38	365 350 365 350 318	5.6 5.6 5.7 5.9 5.6	14.5 15.0 15.0 14.0	110 110 120 110 110	98 97 110 100 99
					112GLCLU 112GLCLU	76-03-01 76-04-06 76-05-05 76-06-02 76-07-14	38 38 38 38 38	330 320 280 262 295	6.8 5.6 6.2 5.7 5.6	13.0 13.0 12.5 12.5 14.0	120 110 90 100 93	100 95 73 94 77
						76-08-03 76-08-30	38 38	295 280	5.6 6.0	13.0 13.5	100 94	86 80
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
75-10-09 75-11-03 75-12-02 76-01-14 76-02-09	35 38 39 36 35	5.9 4.0 5.9 6.0 6.0	13 13 12 12 12	4.2 4.5 4.0 4.3 4.1	17 18 20 18 16	16 15	89 83 91 87 90	22 15 15 15 15	.1 .0 .1 .0	8.1 8.4 8.6 8.5 8.8	209 210 221 208 179	6.8 7.7 7.9 7.0 7.2
76-03-01 76-04-06 76-05-05 76-06-02 76-07-14	39 35 29 33 30	5.7 5.5 4.2 4.6 4.4	13 14 15 14	4.2 4.2 4.0 3.7 3.4	24 18 20 9 19	15 16 7	86 84 68 68 70	15 21 19 18 20	.0 .1 .0	8.2 8.6 7.6 7.6 7.3	213 213 187 183 183	7.0 6.9 6.6 7.0 5.8
76-08-03 76-08-30	33 30	4.3 4.6	14 13	2.9	17 17		69 71	17	• 0 • 1	7.1 7.2	182 183	5.9 6.4
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
75-10-09 75-11-03 75-12-02 76-01-14 76-02-09	5.2 7.8 7.7 6.6	.01 .01 .01 .02	.01 .01 .01	.00 .00 .01 .03	.04 .10 .14 .05	7.8 8.0 7.1	.01 .01 .01 .01	.00 .01 .00 .01	930 1400 1100 1100 880	1000 1000 790 470	20 30 10 10	.1 .1 .1
76-03-01 76-04-06 76-05-05 76-06-02 76-07-14	6.4 6.9 6.7 6.5 5.3	.01 .01 .01	.01 .02 .01 .01	.03 .03 .00 .01	.08 .00	7.0 6.6 7.2	.02 .01 .01 .01	.01 .00 .00 .01	19000 2300 790 2100 700	1400 960 460 390 550	80 10 10 10	.1 .1 .1 .1
76-08-03 76-08-30	5.9 6.4	.01 .01	.01	.01 .01			•01 •01	.01	630 610	550 560	0 10	:1

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

NASSAU COUNTY--Continued

40434207336	62601		N 1160		112GLCLU	75-12-11 76-01-16 76-02-10 76-03-11 76-04-08	31 31 31 31 31 31	145 120 95 65 80	6.0 6.1 5.9 6.1 6.7	15.0 14.0 14.0 10.5 15.0	20 19 12 12 14	3 2 0 0
					112GLCLU 112GLCLU 112GLCLU 112GLCLU	76-03-11 76-04-08					14	0
					112GLCLU		31	00				
					112GLCLU	76-05-10			6.8	11.0	13 19	0
						74-04-07	31 31	80 90	6.1	15.0 14.0	19	2
					112GLCLU	76-07-15	31	144	6.0	14.5	26	10
						76-08-02	31	120	6.0	13.0	29	12
					112GLCLU	76-09-01	31	148	6.3	14.5	30	14
OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
75-11-12	6.5	.8	15	1.2	20	16	10	19	.1	4.6	74	1.1
75-12-11	5.3	1.3	13	1.0	20	16	11	8.4	.0	4.7	60	1.2
76-01-16	3.2	1.0	12	.9	20	16	8.4	7.3	.1	4.5	53 55	1.2
76-02-10 76-03-11	3.5	1.2	12	.8	18 18	15 15	10	8.3	.1	4.6	62	1.3
						20					- 66	1.8
76-04-08	3.4	1.1	15	.9	20	16 18	10 11	11	.0	4.7	72	1.6
76-05-10 76-06-07	5.1	1.5	14	1.0	21		13	11	.0	4.9	68	1.7
76-08-07	5.3 6.5	2.3	14	1.4	19		15	16	.0	5.0	76	1.3
76-08-02	8.4	2.0	12	1.0	21		12	16	.1	5.0	73	.92
76-09-01	8.8	2.0	12	1.1	20	16	13	16	.0	5.0	72	1.2
	DIS- SOLVED	TOTAL NITRITE	DIS- SOLVED NITRITE	TOTAL AMMONIA NITRO- GEN		TOTAL NITRO- GEN	TOTAL PHOS- PHORUS	TOTAL ORTHO PHOS- PHORUS	TOTAL IRON	DIS- SOLVED IRON	TOTAL MAN- GANESE	METHY- LENE BLUE ACTIVE SUB-
SAMPLE	(N) (MG/L)	(N) (MG/L)	(N) (MG/L)	(N) (MG/L)	(N) (MG/L)	(N) (MG/L)	(P) (MG/L)	(P) (MG/L)	(FE) (UG/L)	(FE) (UG/L)	(MN) (UG/L)	STANCE (MG/L)
75-11-12	1.6	.01	.01	.01	.14	1.2	.02	.01	570	130	70	.0
75-12-11	1.2	.01	.01	.01	.07	1.3	.02	.01	1400	250	50	.0
76-01-16	1.3	.01	.01	.03			•05	.01	470	270	50 50	.0
76-02-10 76-03-11	1.3	.02	.02	.04			.01	.01	540 520	330 320	60	.0
											60	
76-04-08	5.2	.01	.01	.02	.10		.01	.01	750 1300	360 330	60	:0
76-05-10	2.6	.01	.01	.00	.00		.01	.00	710	290	30	.0
76-06-07 76-07-15	1.6	.01	.01	.01	.13		.01	.00	700	330	50	.0
76-08-02	1.3	.01	.01	.01			.01	.01	390	280	40	.0
76-09-01	.91	.01	.·01	.03			.01	.01	760	480	20	.0

QUALITY OF GROUND WATER

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
404112073	3353302		N 1164		112GLCLU 112GLCLU 112GLCLU 112GLCLU 112GLCLU	75-11-03 75-12-01 76-01-13	40 40 40 40	390 305 298 330 280	5.5 5.7 6.0 5.5	14.5 14.0 13.0 13.5 13.0	86 78 91 83 85	72 62 75 66 70
					112GLCLU 112GLCLU 112GLCLU 112GLCLU 112GLCLU	76-04-05 76-05-03	40 40 40 40	295 310 95 315 330	5.8 5.5 5.6 5.6 5.9	15.0 12.8 17.0 13.0 15.0	88 85 82 92 79	73 70 67 74 48
						76-08-03 76-08-30	40 40	360 275	5.6 5.6	14.0 13.0	69 47	54 33
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
75-10-06 75-11-03 75-12-01 76-01-13 76-02-04	28 26 30 27 28	3.9 3.1 3.8 3.7 3.7	26 24 19 18 17	4.9 4.5 3.8 4.1 3.9	17 19 19 20 18	14 16 16 16	44 48 47 45	59 35 34 31 32	.0 .1 .0 .1	7.6 7.6 7.7 7.7 8.1	205 184 180 175 162	5.8 5.6 5.7 6.4 6.9
76-03-01 76-04-05 76-05-03 76-06-01 76-07-15	29 28 27 30 26	3.8 3.6 3.5 4.2 3.4	19 19 20 23 26	4.0 4.3 4.8 4.8	18 18 18 22 38	15 18	47 46 45 49 56	35 33 32 45 29	.1 .0 .0 .0	8.1 8.2 8.1 8.5 8.1	169 178 179 202 200	6.3 6.7 6.8 6.4 6.6
76-08-03 76-08-30	23 15	2.8	38 30	4.9 4.1	18 17		39 38	56 33	• 0	7.5 7.3	211 171	6.9 7.5
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
75-10-06 75-11-03 75-12-01 76-01-13 76-02-04	5.3 5.9 5.7 6.4 2.5	.00 .01 .01 .01	.00 .01 .01 .01	.01 .01 .02	•04 •11 •11	5.6 5.8 6.5	.01 .01 .03	.00 .01 .00 .01	120 250 140 170 110	100 60 90 70	20 0 0	.1 .1 .1
76-03-01 76-04-05 76-05-03 76-06-01 76-07-15	3.2 6.2 6.8 6.1 6.2	.00 .00 .01 .01	.01 .01 .00 .00	.00 .00 .04 .02	.08 .15	6.8 7.0	.01 .01 .01	.00 .01 .01 .01	100 130 300 90 700	30 50 60 60 450	0 10 10 0 10	.1 .1 .2 .1
76-08-03 76-08-30	7.0 7.5	.01 .01	.01	.01 .01	•13 •13		•01	.01	140 140	90 80	0	:1

QUALITY OF GROUND WATER

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
40403607	3352602		N 1165		112GLCLU 112GLCLU 112GLCLU	75-10-07 75-11-03 75-12-02 76-01-13 76-02-04	42 42 42 42 42	390 370 375 394 310	5.6 5.5 6.0 5.7	15.0 15.0 15.0 15.0 13.0	92 91 100 88 85	76 72 83 72 69
					112GLCLU 112GLCLU 112GLCLU	76-03-01 76-04-05 76-05-03 76-06-01 76-07-15	42 42 42 42 42	320 330 320 300 315	5.7 5.5 5.7 5.5 6.0	13.0 14.0 17.0 12.0 13.0	88 90 91 89 83	74 76 78 73 60
						76-08-03 76-08-30	42 42	305 285	5.6 5.5	14.5 13.5	86 83	69 68
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
75-10-07 75-11-03 75-12-02 76-01-13 76-02-04	30 29 33 28 27	4.2 4.5 4.3 4.5 4.2	27 26 24 24 24	5.2 5.0 4.7 4.8 4.9	20 23 21 20 19	16 19 17 16 16	56 55 57 56 57	44 39 39 36 36	.0 .0 .0 .1	11 12 13 13	224 218 215 213 212	3.7 7.7 8.7 8.3 9.3
76-03-01 76-04-05 76-05-03 76-06-01 76-07-15	28 29 29 29 27	4.5 4.2 4.5 4.0 3.8	24 24 24 24 24	4.7 4.9 4.7 4.9 4.3	18 17 16 19 28	15 14 13 16 23	56 56 55 57 59	34 35 33 32 27	.1 .0 .0 .1	13 13 12 13 13	191 175 208 208 201	8.2 .27 9.0 7.9 7.0
76-08-03 76-08-30	28 26	3.8	21 19	4.2 4.0	20 18	16 15	58 61	26 24	•0	13 13	193 187	6.5
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
75-10-07 75-11-03 75-12-02 76-01-13 76-02-04	8.4 8.1 6.6 8.3 8.2	.01 .01 .01	.00 .01 .02 .01	.03 .01 .01 .03	.22 .07 .11 .06	3.9 7.8 8.8 8.4 9.4	.01 .01 .01 .02	.00 .01 .00 .01	130 510 160 130 160	220 80 60 100	50 70 30 30 50	.0 .2 .1 .1
76-03-01 76-04-05 76-05-03 76-06-01 76-07-15	4.0 .11 8.5 7.9 6.5	.01 .00 .01 .01	.01 .01 .01	.00 .00 .03 .01	.18 .28 .18 .13	•55 9•2	.01 .02 .01	.01 .00 .01 .01	130 130 1200 80 550	50 80 210 60 310	20 40 50 20 50	.1 .1 .1 .2
76-08-03 76-08-30	6.5	.01	.01	.01	.00		.01	.01	110 150	90 120	20	•1 •1

QUALITY OF GROUND WATER

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
40392607	3351504		N 1167		112GLCLU		25 25 25 25 25	330 275 285 217 155	5.3 5.5 6.0 5.8	16.0 16.0 15.5 15.0 13.0	110 86 89 65 63	89 70 72 51 52
					112GLCLU 112GLCLU 112GLCLU	76-03-01 76-04-05 76-05-03 76-06-01 76-07-15	25 25 25 25 25	195 210 200 250 270	5.8 5.7 6.0 5.7 5.7	13.0 13.0 17.5 14.0 15.0	64 74 68 95 90	53 62 52 76 74
						76-08-03 76-08-30	25 25	242 230	5.7 5.6	14.5 15.0	81 78	66 63
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
75-10-07 75-11-03 75-12-02 76-01-13 76-02-04	34 28 29 21 20	5.1 4.0 4.0 3.1 3.2	8.6 8.4 6.9 7.0	2.0 1.8 1.6 1.5	21 20 20 17 14	17 16 16 14	58 53 53 44 44	34 17 24 11 10	.0 .0 .0	6.6 6.7 6.6 6.5	176 142 148 111 111	3.4 3.0 2.6 2.9 3.0
76-03-01 76-04-05 76-05-03 76-06-01 76-07-15	22 24 22 32 29	2.3 3.3 3.1 3.7 4.3	7.8 8.9 11 11	1.6 1.6 1.7 1.9	14 14 19 23 20	11 11 16 19 16	39 39 36 43 51	15 21 22 34 26	•1 •0 •0 •0	6.3 6.5 6.4 7.0 6.6	112 126 127 156 156	3.6 3.6 3.3 3.1 3.3
76-08-03 76-08-30	27 25	3.2 3.8	9.4 8.8	1.7	18 18	15 15	49 47	20 17	•1 •1	6.5	144 140	4.4
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
75-10-07 75-11-03 75-12-02 76-01-13 76-02-04	3.5 2.8 2.5 2.0 2.6	.01 .01 .02 .01	.01 .01 .03 .01	.00 .01 .02 .01	.11 .16 .07 .12	3.5 3.2 2.7 3.0 3.1	.01 .01 .01 .02	.00 .02 .00 .01	240 450 360 200 180	270 240 150 110	1500 790 1200 270 190	.0 .1 .0 .0
76-03-01 76-04-05 76-05-03 76-06-01 76-07-15	2.4 3.3 3.4 2.7 3.7	.00 .00 .01 .02	.01 .00 .01 .02	.00 .01 .04 .01	.10 .15 .15 .18	3.5	.01 .01 .01 .01	.01 .00 .01 .01	150 140 250 150 220	90 100 190 150 190	190 150 20 320 1700	.1 .1 .2 .1
76-08-03 76-08-30	4.0 4.7	.01 .01	.01 .01	.01 .01	.08 .15		.02	.01	240 230	210 190	1400 940	•1 •1

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976 NASSAU COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
40384907	3350801		N 1168		112GLCLU 112GLCLU 112GLCLU	75-10-07 75-11-03 75-12-02 76-01-13 76-02-04	28 28 28 28 28	275 305 297 300 260	5.7 5.8 6.1 5.9	15.0 15.5 14.0 10.5 11.0	72 70 78 68 61	54 53 60 51 38
					112GLCLU 112GLCLU 112GLCLU	76-03-01 76-04-05 76-05-03 76-06-01 76-07-15	28 28 28 28 28	255 249 230 230 252	5.8 5.9 5.8 5.9 5.8	12.0 12.0 17.0 13.5 14.0	66 60 62 70 70	48 44 42 51 52
40380707	3350201		N 1169		112GLCLU	76-08-03 76-08-30 76-04-16	28 28 24	245 240 8000	5.7 5.7 6.9	14.0 14.5 13.0	69 71 1300	51 54 1200
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
75-10-07 75-11-03 75-12-02 76-01-13 76-02-04	22 23 24 20 18	4.1 3.0 4.4 4.3 4.0	14 16 17 20 20	3.8 4.0 3.6 3.7 3.7	55	18 17 18 16 23	38 37 38 37 40	36 39 44 41 39	.0 .1 .1 .1	7.7 9.2 9.4 9.1 9.4	141 148 158 152 154	1.5 1.6 1.2 1.6 1.6
76-03-01 76-04-05 76-05-03 76-06-01 76-07-15	20 18 19 22 20	3.8° 3.7 3.5 3.7 4.8	21 21 19 18 17	3.6 3.6 3.4 3.4	22 20 24 24 21	18 16 20 20 17	40 44 45 47 50	37 31 27 28 26	.1 .0 .0 .0	9.4 9.5 9.3 9.7 9.6	150 147 146 151 149	1.6 1.7 1.7 1.7 1.8
76-08-03 76-08-30 76-04-16	21 21 90	4.0 4.5 250	16 15 1800	3.2 3.1 64	22 21 98		49 50 460	26 26 3300	.1 .1 .3	9.6 9.7 15	147 148 6050	1.8 1.8 .01
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
75-10-07 75-11-03 75-12-02 76-01-13 76-02-04	1.1 1.4 1.4 1.6 1.3	.00 .01 .01 .02	.00 .01 .01 .02	.00 .00 .01 .03	.01 .07	1.6 1.3 1.7	.01 .01 .03	.00 .01 .00 .01	230 480 1200 360 340	360 300 150 160	20 20 30 10	.0
76-03-01 76-04-05 76-05-03 76-06-01 76-07-15	.87 1.4 1.7 1.7	.00 .00 .01 .01	.01 .00 .01 .00	.00 .00 .02 .01	.20 .20	1.9 1.9 1.9	.01 .01 .01	.00 .00 .00 .00	230 240 570 160 210	120 170 310 150 180	0 10 0 0	.0 .0 .0 .1
76-08-03 76-08-30 76-04-16	1.7 1.8 .01	.01 .02	.01 .01	.01 .01	. 15	2.0	.03 .01 .30	.05 .01 .14	200 220 19000	160 180 19000	0 10 240	.0

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

					NASSAU (COUNTY-CO	nemaca					
STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
40473607	3353101		N 1176		112GLCLU 112GLCLU 112GLCLU 112GLCLU 112GLCLU	76-01-21 76-03-12 76-04-09	198 198 198 198 198	50 50 30 30 15	6.0 5.5 5.8 5.8 6.1	11.0 10.0 10.5 10.5 15.5	11 17 7 7	0 5 0 0
40413707	3340701		N 1183		112GLCLU 112GLCLU 112GLCLU 112GLCLU 112GLCLU	76-08-02 76-09-01 75-10-08	198 198 198 33 33	53 39 38 355 385	6.0 5.7 6.2 5.6 5.5	12.0 11.5 12.0 17.0 17.0	6 8 8 61 67	0 0 0 46 48
					112GLCLU 112GLCLU 112GLCLU 112GLCLU 112GLCLU	76-01-14 76-02-09 76-03-01	33 33 33 33 33	335 360 325 300 322	5.7 5.6 5.6 5.8 5.8	16.5 15.0 14.0 14.0	59 58 61 71 52	39 41 45 53 26
					112GLCLU 112GLCLU 112GLCLU 112GLCLU 112GLCLU	76-06-02 76-07-14 76-08-03	33 33 33 33 33	335 308 387 390 310	5.8 5.9 5.8 5.8 6.2	11.0 11.0 12.0 12.5 13.5	51 66 77 81 74	20 32 40 42 28
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
75-10-23 76-01-21 76-03-12 76-04-09 76-05-11	3.5 5.5 1.5 1.5	.5 .8 .8	3.8 3.3 3.4 3.4 3.4	.7 .7 .8 .6	13 15 8 10	11 12 7 8 8	1.1 1.1 .4 .7	7.9 4.7 4.6 3.9	• 0 • 0 • 1 • 0 • 0	8.3 8.4 8.7 8.4 8.5	39 39 30 32 30	1.6 1.4 1.4 1.4
76-07-13 76-08-02 76-09-01 75-10-08 75-11-04	1.5 2.0 1.7 18 20	.6 .8 .8 3.9 4.2	3.8 3.4 3.5 24 27	.9 .7 .9 7.8 7.4	16 16 16 18 23	13 13 13 15	.6 .0 2.1 38 42	8.3 2.6 3.3 31 30	.0 .1 .0 .0	8.9 8.9 8.8 8.0	38 32 35 188 210	1.3 1.3 1.3 12
75-12-02 76-01-14 76-02-09 76-03-01 76-04-06	19 18 19 23 16	2.8 3.1 3.3 3.2 3.0	23 27 27 24 30	5.4 5.9 5.3 4.8 4.9	24 21 20 22 32	20 17 16 18 26	45 51 50 44 39	26 27 27 24 39	.0 .0 .0 .1	10 9.2 8.6 8.4 7.9	184 205 168 180 186	9.2 12 12 8.8 6.7
76-05-05 76-06-02 76-07-14 76-08-03 76-08-30	16 20 24 26 23	2.8 3.8 4.2 4.0 4.1	26 25 30 31 31	6.4 5.5 5.3 4.9 6.0		31 34 38 39 46	37 37 41 43 43	31 29 34 34 33	•1 •0 •1 •0	7.1 7.1 8.8 9.6	189 192 219 225 228	8.8 11 9.7 11
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)		TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
75-10-23 76-01-21 76-03-12 76-04-09 76-05-11	1.5 1.4 1.3 1.4 1.2	.00 .01 .01 .00	.01 .01 .01 .01	.00 .00 .00 .01	.00 .00	1.4 1.4 1.5	.07 .06 .01 .01	.01 .00 .01	15000 6100 320 690 420	650 230 470 260	320 70 20 20 30	.0 .0 .0 .0
76-07-13 76-08-02 76-09-01 75-10-08 75-11-04	1.3 1.3 1.2 11	.00 .01 .01 .03	.01 .01 .02 .06	.01 .05 4.5 4.0	.03	1.3	.01 .02 .01	.00 .01 .01 .00	300 440 530 130 460	160 280 370 280	10 20 30 590 580	.0 .0 .0 .1
75-12-02 76-01-14 76-02-09 76-03-01 76-04-06	9.1 12 4.1 8.6 6.9	.02 .04 .04 .04	.03 .03 .05 .04	2.2 4.2 3.8 3.7 3.7	3.5 4.8 3.7 3.5 3.7	13 17 16 12 10	.01 .01 .01 .02	.00 .01 .01 .01	970 180 140 90 150	480 70 110 40 80	500 570 610 490 410	.1 .2 .1 .1
76-05-05 76-06-02 76-07-14 76-08-03 76-08-30	10 10 11 11	.03 .02 .01 .02	.03 .02 .02 .02	6.8 6.9 4.0 4.9 5.7	5.6 7.1 4.5 4.1 4.7	14 18 14 15	.01 .01 .02 .04	.00 .00 .01 .01	70 140 230 160 200		410 410 540 670 790	.2

QUALITY OF GROUND WATER

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
403956073			N 1185		112GLCLU 112GLCLU		17 17 17 100 100	450 445 500 438 365	5.8 5.4 5.7 5.5 5.8	10.5 13.0 16.0 13.0 11.0	84 90 67 120 120	64 68 35 88 95
					112GLCLU 112GLCLU	76-01-21 76-02-18 76-03-15 76-04-08 76-05-10	100 100 100 100 100	460 370 455 435 350	5.8 5.4 5.7 5.8 5.7	9.5 10.0 12.0 10.0 12.0	120 120 120 120 120	90 92 98 92 87
40445407	3323901		N 1197		112GLCLU 112GLCLU 112GLCLU	76-06-07 76-07-08 76-08-12 76-09-07 76-01-30	100 100 100 100	360 340 365 335 310	5.7 5.7 5.8 5.9 4.5	13.0 13.0 12.0 12.0 13.0	110 140 96 95 65	86 110 62 65 60
					112GLCLU	76-03-19 76-06-22 76-09-15	69 69 69	335 338 360	5.1 5.2 5.3	14.0 13.0 13.0	67 67 65	62 53 57
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
76-03-17 76-06-29 76-09-20 75-11-12 75-12-15	25 28 21 32 33	5.3 4.8 3.5 9.2 9.5	40 47 41 33 34	8.7 10 12 3.6 3.4	25 26 39 36 32	21 21 32 30 26	51 54 59 20 21	30 33 27 100 100	•1 •1 •1 •0	18 19 18 12 12	190 328 201 238 235	27 2.1 1.7
76-01-21 76-02-18 76-03-15 76-04-08 76-05-10	30 31 33 32 30	10 9.5 9.5 9.6 9.8	34 35 37 37 35	3.8 3.6 3.9 3.7 3.6		26 25 24 28 28	18 18 20 20 18	110 110 110 110 97	.1 .0 .0	12 12 13 12 12	245 246 247 253 233	2.2 2.4 2.3 2.4 2.3
76-06-07 76-07-08 76-08-12 76-09-07 76-01-30	29 8.4 27 27 22	9.8 29 7.0 6.8 2.5	33 32 27 26 30	3.5 3.5 3.1 2.8 7.4	38 42	31 34 30	21 21 22 21 56	99 85 72 70 22	.0 .1 .0 .0	13 13 12 12 14	237 224 201 194 157	3.2 2.5 2.3 2.5
76-03-19 76-06-22 76-09-15	51 55 55	3.0 2.9 3.0	31 31 33	6.9 7.8 7.4		14	57 55 59	23 23 28	•1 •1 •1	14 15 15	160 236 172	14
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHURUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
76-03-17 76-06-29 76-09-20 75-11-12 75-12-15	2.3	.01 .05	.00 .01	3.0 .01 .01	.14	5.5	.03	.01	300 170 430 1100 1600	50 90 130 700 1100	760 710 820 40 40	.0
76-01-21 76-02-18 76-03-15 76-04-08 76-05-10	2.3 2.4 1.2 2.3 2.1	.01 .01 .01	.00 .01 .00 .00	.02 .01 .04 .03	.23 .09 .15	2.6 2.4 2.6	.02 .01 .01	.01 .00 .00 .01	1600 1200 1900 1900 1800	1100 990 1200 1400 1500	50 60 40 30 50	.8 .0 .1 .0
76-06-07 76-07-08 76-08-12 76-09-07 76-01-30	2.4 2.6 1.9 1.8	.07 .01 .01	.01 .01 .01	.04 .03 .07	.18 .18	2.7 2.5 2.6	.01 .02 .02 .04	.00 .01 .01	1800 1700 2300 2100 700	1900 1600 2200 1900 360	30 60 60 50 560	.1 .1 .0 .1
76-03-19 76-06-22 76-09-15	16	.01	.01	.02	.00	14	.02	•01	720 670 570	390 400 470	580 630 600	.1

143

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA;MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
404200073	315101		1201		112GLCLU 112GLCLU 112GLCLU	75-10-08 75-11-03 75-12-02 76-01-14	29 29 29 29 29	75 75 50 50 30	6.3 6.3 5.9 5.7	17.0 14.5 15.0 15.5 15.0	5 6 8 13	0 0 0 0
					112GLCLU 112GLCLU 112GLCLU 112GLCLU	76-02-09 76-03-01 76-04-06 76-05-04 76-06-02 76-07-14	29 29 29 29 29	50 85 170 185 156	6.5 6.1 6.3 5.9	15.5 15.0 15.0 14.0 12.5	16 32 62 47 16	3 20 54 36 2
404130073	314003	N	N 1202A		112GLCLU 112GLCLU 112GLCLU	76-08-11 76-09-07 76-01-08 76-03-17 76-06-29	29 29 15 15	185 138 390 250 260	6.1 6.4 5.9 5.9 5.7	12.0 12.0 13.0 12.0 15.5	15 7 59 61 50	0 0 33 32 18
404014073	312801	,	1204		112GLCLU 112GLCLU 112GLCLU	76-09-13 76-01-08 76-03-17 76-06-29 76-09-13	15 29 29 29 29	240 312 212 225 290	5.9 5.7 5.7 5.7 6.0	17.5 12.0 11.0 12.0 13.5	67 68 74 68	13 49 51 56 47
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
75-10-08 75-11-03 75-12-02 76-01-14 76-02-09	1.4 1.9 2.0 2.0	.4 .1 .3 .7	9.5 8.8 6.8 3.3 2.3	1.0 1.4 1.0 1.0	20 23 24 16 14	16 19 20 13	9.2 4.2 1.8 2.2 3.2	1.5 1.3 1.3 1.3	.0 .1 .0 .1	2.1 11 2.7 2.8	35 32 39 23 26	.24 .07 .37 .37
76-03-01 76-04-06 76-05-04 76-06-02 76-07-14	4.5 8.5 17 13 4.4	1.2 2.5 4.8 3.6 1.3	2.1 3.0 6.6 17 21	1.0 1.5 2.1 2.7 2.2	16 14 10 14 18	13 11 8 11 15	4.1 4.3 2.4 5.0 8.8	2.9 17 45 50 32	.1 .0 .0 .0	2.9 3.0 2.9 2.9 2.4	29 49 88 104 83	.61 .46 .82 .62
76-08-11 76-09-07 76-01-08 76-03-17 76-06-29	4.3 2.0 19 19 16	1.1 .5 2.8 3.3 2.4	27 22 24 28 29	2.0 1.4 5.3 5.4 5.5	19 29 32 36 39	16 24 26 30 32	13 18 46 55 51	35 9.1 24 26 22	.0 .0 .0	2.4 2.2 10 11 10	96 72 147 166 180	.43 .72 5.4
76-09-13 76-01-08 76-03-17 76-06-29 76-09-13	22 17 17 19 18	3.0 6.0 6.2 6.4 5.7	41 18 18 17	9.3 2.2 2.3 2.2 2.3	66 22 21 22 26	54 18 17 18 21	80 34 34 40 42	30 22 22 20 19	.0 .1 .1 .0	11 19 20 20 19	230 139 130 171 138	7.8

QUALITY OF GROUND WATER

DATE OF SAMPLE	DIS- SOLVED NITRATE (N)	TOTAL NITRITE (N)	DIS- SOLVED NITRITE (N)	TOTAL AMMONIA NITRO- GEN (N)	TOTAL KJEL- DAHL NITRO- GEN (N)	TOTAL NITRO- GEN (N)	TOTAL PHOS- PHORUS (P)	TOTAL ORTHO PHOS- PHORUS (P)	TOTAL IRON (FE)	DIS- SOLVED IRON (FE)	TOTAL MAN- GANESE (MN)	METHY- LENE BLUE ACTIVE SUB- STANCE
	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(UG/L)	(UG/L)	(UG/L)	(MG/L)
	1					21	.01	.00	350		20	0
75-10-08	.27	.01	.00	.00	.06	.31		.01	930	750	20	.0
75-11-03	.10	.01	.01	.00	.00	.08	.01		1600	590	10	.0
75-12-02	.60	.01	.01	.03	.13	.51	.01	.01	370	200	0	.0
76-01-14	.38	.02	.01	.03	.03	.42	.02	.01	230	110	0	.0
76-02-09	.56	•02	.02	.04	.06	.63	.02	.01	230	110		
					1.5	74	.01	.00	190	120	10	.0
76-03-01	.59	.00	.01	.01	.15	.76		.00	310	180	0	.0
76-04-06	.50	.00	.00	.00	. 05	.51	.01	.00	150	100	10	.0
76-05-04	.59	.01	.00	.15	.10	.93	.01		220	110	10	.1
76-06-02	.57	.01	.01	.01	.10	.73	.01	.01	150	110	0	.0
76-07-14	.50	.00	.00	.01	.28	.66	.05	.01	150	110		
74 00 11	20	.01	.01	.02	.10	.54	.01	.01	330	150	10	.0
76-08-11	.35			.02	.03	.77	.01	.00	580	500	0	.1
76-09-07	.42	.02	.01	.02	.03				1200		90	
76-01-08			===						470	210	810	
76-03-17					1.9	7.3	.02	.01	1000	770	650	.1
76-06-29	5.4	.01	.00	1.9	1.9	1.3	•02	•••		Hill I		
76-09-13									1000	820	700	5,0
76-01-08									160		110	
76-01-08									110	20	140	
76-06-29	7.9	.02		.26	.23	8.0	50.	.01	100	80	130	.4
76-09-13									230	100	130	
10-09-13												

QUALITY OF GROUND WATER 145
WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

					NASSAU	COUNTY C	ontinued					
STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA,MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
404127073			N 1205		112GLCLU 112GLCLU 112GLCLU	76-03-17 76-06-29 76-09-13 76-01-08 76-03-15	28 28 28 35 35	470 455 640 487 390	6.3 6.1 6.5 5.0 5.5	12.5 13.5 18.0 13.5 13.0	85 82 94 62 66	22 31 39 51 48
404025073	3290401		N 1222		112GLCLU 112GLCLU 112GLCLU	76-06-25 76-09-10 76-01-08 76-03-15 76-06-25	35 35 28 28 28	345 510 390 390 320	5.6 5.8 5.7 5.9 5.9	14.0 14.0 13.0 11.0 14.5	72 74 65 85 81	62 42 31 52 44
40454207	3282901		N 1232		112GLCLU 112GLCLU 112GLCLU	76-09-10 76-01-30 76-03-22 76-06-23 76-09-15	28 57 57 57 57	355 180 138 165 185	6.1 4.7 5.4 4.5 5.4	16.0 12.5 13.5 14.0 12.5	61 31 22 34 26	25 28 18 25 16
40433907	3280901		N 1235		112GLCLU	76-01-08 76-03-17 76-06-29 76-09-10	30 30 30 30	215 180 210 285	5.9 6.0 5.8 5.9	13.5 11.0 12.0 13.0	38 46 64 57	27 41 51 44
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
76-03-17 76-06-29 76-09-13 76-01-08 76-03-15	24 24 28 20 21	6.0 5.4 5.8 3.0 3.2	58 60 60 34 37	4.3 5.0 8.6 7.6	76 63 67 14 22	62 52 55 11 18	62 58 61 82 73	81 90 98 30 35	.0 .0 .2	22 23 24 17 13	295 297 315 202 201	.05
76-06-25 76-09-10 76-01-08 76-03-15 76-06-25	23 24 21 28 27	3.5 3.4 3.1 3.7 3.2	38 41 30 29 30	8.3 8.8 6.8 8.0 6.5	12 39 42 40 45	10 32 34 33 37	79 78 48 61 56	31 34 32 36 36	.1 .0 .0 .0	14 14 6.6 7.2 6.8	252 223 168 193 213	6.7
76-09-10 76-01-30 76-03-22 76-06-23 76-09-15	21 11 7.0 11 8.2	2.1 .9 1.0 1.7 1.4	29 17 15 21 17	5.8 4.0 3.3 4.1 3.3	4	10	41 14 19 20 19	28 34 21 23 18	.0 .0 .0 .1	6.5 3.9 4.3 4.7 4.8	155 87 73 126 78	7.6
76-01-08 76-03-17 76-06-29 76-09-10	14 15 21 19	.8 2.0 2.9 2.4	14 13 16 19	4.1 3.5 4.3 4.4	16 16	5 13	25 25 39 51	19 17 19 20	.1 .1 .1	4.8 4.7 6.0 6.3	89 83 158 131	9.1 METHY-
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	LENE BLUE ACTIVE SUB- STANCE (MG/L)
76-03-17 76-06-29 76-09-13 76-01-08 76-03-15	.06	•00	•00	3.1	3.4		.04	.02	560 650 1100 110	540 590 600 	2400 2300 3200 350 1700	.2
76-06-25 76-09-10 76-01-08 76-03-15 76-06-25	11	.02	.03 .01	5.4			•01 •01	.01 .01	150 140 230 140 240	100 110 100 170	1400 1700 520 890 880	.2
76-09-10 76-01-30 76-03-22 76-06-23 76-09-15	7.7	.00	.00	.03	.00	7.6		.01	190 1800 2800 1200 400	160 200 230 260 240	800 110 80 110 80	 -1
76-01-08 76-03-17 76-06-29 76-09-10	9,3	.02	.00	.04	.00	9.1	.02	.01	440 360 650 740	200 490	40 30 40 30	.2

QUALITY OF GROUND WATER WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA,MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
40430107			N 1236 N 1240			76-06-25	40 40 40 29 29	230 220 320 455 370	7.6 5.3 5.6 6.3 6.2	13.0 13.0 12.5 13.0 11.0	66 72 76 110 99	62 57 43 29 29
40431007	3261001		N 1250		112GLCLU 112GLCLU 112GLCLU	76-06-25 76-09-10 75-10-08 75-11-04 75-12-03	29 29 34 34 34	865 420 280 265 295	6.0 6.4 5.3 5.6 5.6	13.0 14.0 17.0 17.0 15.0	170 82 45 46 55	120 8 23 25 34
					112GLCLU 112GLCLU 112GLCLU	76-01-07 76-02-05 76-03-02 76-04-07 76-05-04	34 34 34 34 34	355 300 300 295 260	5.5 5.6 6.0 5.8 6.3	13.5 12.0 11.5 11.0 12.0	56 57 53 45 44	36 37 35 25 24
					112GLCLU 112GLCLU	76-06-03 76-07-02 76-08-11 76-09-08	34 34 34 34	233 235 280 325	5.5 5.7 5.6 5.7	13.0 14.0 14.0 15.0	43 54 63 64	25 37 45 48
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SOUTUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
76-03-17 76-06-25 76-09-10 76-01-08 76-03-15	20 23 24 35 33	4.0 3.5 3.9 5.0 4.1	14 16 17 35 34	4.0 4.7 4.0 2.7 2.5	6 18 40 96 86	5 15 33 79 71	39 43 56 59 58	17 17 19 28 30	.0 .0 .1 .1	14 13 13 23 21	115 179 158 235 225	11
76-06-25 76-09-10 75-10-08 75-11-04 75-12-03	48 26 14 15 18	12 4.2 2.5 2.0 2.4	100 38 18 18	3.8 1.9 6.7 6.9 6.3	62 90 27 25 26	51 74 22 21 21	44 42 37 33 29	210 33 19 22 28	.0 .1 .0 .0	15 18 8.1 8.5 9.1	476 208 135 142 152	3.6 4.0 55 7.1
76-01-07 76-02-05 76-03-02 76-04-07 76-05-04	18 18 17 14	2.7 2.9 2.6 2.4 2.3	20 24 25 27 25	7.1 7.4 7.3 6.1 5.9	24 24 22 24 25	20	27 30 30 33 32	39 42 38 31 22	.1 .0 .1 .0	9.5 9.1 8.3 8.1 8.1	168 180 177 177 166	8.2 7.9 8.9 9.8
76-06-03 76-07-02 76-08-11 76-09-08	13 17 20 21	2.5 2.7 3.1 2.9	22 20 18 19	6.0 6.2 5.6 5.4	22 20 21 20		35 37 39 43	20 16 23 25	.0 .1 .0	8.6 8.7 9.0 9.0	158 161 164 145	9.5 9.5 9.5 9.0
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
76-03-17 76-06-25 76-09-10 76-01-08 76-03-15	11 	.04	.04	.08	•40	11 =	•01 	.01	16000 12000 8300 530 320	300 1500 860 	300 340 370 1100 1400	
76-06-25 76-09-10 75-10-08 75-11-04 75-12-03	3.8 5.2 6.3	.02 .01 .01	.02 .00 .01	2.1 2.3 2.7	2.1 2.3 2.7	4.9 6.1 57 9.8	.01 .01 .01	.01 .00 .01	420 510 560 1400 3800	310 380 1100 780	1000 880 1300 1400	.2 .1 .1 .1
76-01-07 76-02-05 76-03-02 76-04-07 76-05-04	7.3 7.8 8.5 9.8	.00 .00 .00 .01	.01 .00 .01 .01	3.5 3.8 3.8 3.6 3.3	3.5 3.4 3.7 3.1 2.9	12 11 13 13	.01 .02 .02 .01	.01 .00 .00 .01	450 290 370 280 430	230 230 340 230 410	180 1600 1500 1100 1100	.1 .2 .2 .2
76-06-03 76-07-02 76-08-11 76-09-08	9.0 9.7 8.0 2.2	.02 .02 .01	.02 .02 .01	3.2 3.0 2.7 2.5	3.6 2.1 2.6 2.3	13 12 12 11	.01 .01 .01	.00 .01 .01	270 330 320 390	240 220 300 260	1100 1200 2900 1500	.2 .2 .2

QUALITY OF GROUND WATER
WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

STATION 40423907	NUMBER 73255201		LOCAL IDENT- I- FIER N 1251		112GLCLU 112GLCLU 112GLCLU 112GLCLU 112GLCLU 112GLCLU 112GLCLU 112GLCLU	DATE OF SAMPLE 75-10-08 75-11-04 75-12-03 76-02-13 76-03-02 76-04-07 76-05-04 76-06-03 76-07-02	TOTAL DEPTH OF WELL (FT) 19 19 19 19 19 19	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS) 325 245 224 215 182 200 269 200 188 115	PH (UNITS) 5.4 5.8 6.1 5.8 5.7 5.9 6.0 5.7 5.9	TEMPER- ATURE (DEG C) 17.5 17.5 16.0 13.5 12.0 11.0 11.0 11.0	HARD- NESS (CA+MG) (MG/L) 45 28 39 36 36 42 35 59 64	NON- CAR- BONATE HARD- NESS (MG/L) 18 6 16 18 18 19 0 14 24
						76-08-11 76-09-08	19 19	245 270	5.8 5.8	16.5 17.0	60 54	26 21
								v				
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
75-10-08 75-11-04 75-12-03 76-01-07 76-02-13	15 10 13 12 11	1.8 .7 1.5 1.5 2.0	28 24 20	2.4 2.1 1.9 2.2 2.1	33 27 28 22 22	27 22 23 18 18	50 40 41 39 39	30 13 10 8.9	.0 .0 .0 .1	9.8 9.6 9.3 9.2	171 138 137 120 125	2.2 4.6 4.8 3.6 4.4
76-03-02 76-04-07 76-05-04 76-06-03 76-07-02	13 11 18 20 16	2.2 1.9 3.3 3.3	22 39 21 19 20	2.4 2.3 1.6 2.1 2.1	,27 44 54 48 44	22 36 44 39 36	38 55 29 29 26	11 17 10 15 8.2	•0 •0 •0 •1	9.2 9.6 9.6 11	131 174 139 140 125	4.6 3.6 5.3 4.3
76-08-11 76-09-08	19 18	3.0 2.2	26 22	2.8 3.7	41 40	34 33	40 47	17 13	.0	12 12	152 153	4.5 5.6
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS= PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
75-10-08 75-11-04 75-12-03 76-01-07 76-02-13	2.2 4.6 4.9 3.6 4.4	.01 .01 .01 .00	.01 .01 .01 .00	.04 .02 .03 .03	.31 .24 .17 .23	2.5 4.8 5.0 3.8 4.6	.01 .01	.00 .01 .01 .01	330 860 2500 150 140	400 230 30 60	320 100 110 10 50	.0 .1 .1 .1
76-03-02 76-04-07 76-05-04 76-06-03 76-07-02	4.5 3.7 4.5 3.8 4.1	.01 .00 .01	.01 .01 .01 .01	.14 .01 .03 .01	.15 .20 .23 .23	4.8 3.8 5.5 4.5 3.7	.03 .01 .01 .01	.01 .00 .01 .00	210 180 370 190 320	40 90 50 80 170	30 10 10 7 10	.1 .1 .1 .1
76-08-11 76-09-08	3.5 2.5	•01 •01	.01 .01	.03	.23 .05	4.7 5.7	.01	.01 .01	220 420	170 170	20 70	;1

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976 NASSAU COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
40413307	3253901		N 1252		112GLCLU 112GLCLU 112GLCLU	75-10-08 75-11-04 75-12-03 76-01-07 76-02-05	24 24 24 24 24	330 315 292 275 285	6.9 6.1 6.9 6.8 6.7	16.0 17.0 15.0 13.0 11.5	73 74 70 58 71	29 27 23 20 49
					112GLCLU 112GLCLU 112GLCLU	76-03-02 76-04-07 76-05-04 76-06-03 76-07-02	24 24 24 24 24	265 210 160 120 155	6.9 7.2 7.1 6.8 7.0	11.0 11.0 11.5 13.0 14.0	65 41 31 32 21	41 10 0 0
					112GLCLU 112GLCLU	76-08-11 76-09-08	24 24	182 175	6.8	15.0 17.0	39 38	0
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG)- (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
75-10-08 75-11-04 75-12-03 76-01-07 76-02-05	21 23 22 18	5.0 3.9 3.7 3.2 4.0	24 22 18 15	5.5 5.4 4.2 3.7 3.8	54 57 58 46 27	44 47 48 38 22	39 34 31 26 19	23 25 19 19	.1 .0 .1 .1	3.8 4.2 4.1 3.7 3.4	177 172 150 123 148	6.0 5.8 4.6 2.5 2.1
76-03-02 76-04-07 76-05-04 76-06-03 76-07-02	20 13 10 10 7.6	3.7 2.1 1.5 1.6	19 22 20 23 20	4.3 3.7 3.1 3.4 3.4	29 38 40 46 52	24 31 33 38 43	18 35 29 24 18	52 23 11 17 11	.1 .0 .0	3.6 3.8 3.7 4.1 4.5	142 123 99 109 94	1.4 .22 .06 .73 .63
76-08-11 76-09-08	12	2.1	17	3.0 2.6	49 48	40 39	9.0	17 12	.0	4.7	96 83	1.9
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
75-10-08 75-11-04 75-12-03 76-01-07 76-02-05	6.6 5.8 4.3 2.5 2.0	.01 .01 .01	.01 .01 .01	1.8 1.6 1.5	2.0 1.9 1.8 1.5	8.0 7.7 6.4 4.0 3.8	.01 .01 .02	.01 .01 .00 .01	1800 790 590 550 600	660 500 480 470	190 190 180 20 280	.1 .2 .1 .1
76-03-02 76-04-07 76-05-04 76-06-03 76-07-02	1.4 .27 .05 .54	.00 .01 .00 .01	.01 .01 .01	1.4 1.2 1.2 1.2 1.1	1.5 3.4 1.3 1.5	2.9 3.6 1.4 2.2 2.2	.02 .33 .01 .02	.01 .01 .01 .00	540 8600 780 780 1100	490 260 670 570 800	340 330 210 240 260	.1 .2 .1 .1
76-08-11 76-09-08	1.3	.01	.01 .01	.86		3.0	.02	.01	1300 1000	980 940	350 340	:1

QUALITY OF GROUND WATER

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA,MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
404059073	3254101		N 1253		112GLCLU 112GLCLU 112GLCLU 112GLCLU 112GLCLU	75-11-04 75-12-03 76-01-07	29 29 29 29 29	525 575 765 790 580	6.4 6.5 6.7 6.2 6.5	13.0 14.0 13.0 12.5 12.0	73 74 80 79 68	0 0 0 0
					112GLCLU 112GLCLU 112GLCLU 112GLCLU 112GLCLU	76-04-07 76-05-04 76-06-03	29 29 29 29	610 590 560 525 435	6.4 6.5 6.5 6.5 6.6	11.0 11.0 11.0 12.0 13.0	65 66 69 57 52	0 0 0 0
					112GLCLU 112GLCLU		29	338 440	6.5	14.0	58 84	0
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SULVED SUDIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
75-10-08 75-11-04 75-12-03 76-01-07 76-02-05	21 22 25 25 21	4.9 4.7 4.3 4.1 3.7	62 70 84 92 90	5.1 5.6 7.4 9.3 8.1	151 154 156 184 167	124 126 128 151 137	24 24 24 24 27	69 85 130 120 110	.0 .0 .1 .0	11 12 11 10	271 299 363 375 352	.01 .00 .01 .05
76-03-02 76-04-07 76-05-04 76-06-03 76-07-02	20 20 21 17 16	3.6 3.8 4.1 3.6 3.0	83 72 65 64 60	7.4 7.3 7.7 11 8.1	150 164 159 113 159	123 135 130 93 130	28 29 27 25 34	120 84 78 92 49	.2 .0 .0 .0	11 10 10 9.3	347 307 291 278 260	.04 .01 .00 .22
76-08-11 76-09-08	17 25	3.8 5.3	25 25	6.7 7.1	116 125	95 103	32 32	40 45	• 0	10 12	197 222	2.6
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITKO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
75-10-08 75-11-04 75-12-03 76-01-07 76-02-05	.01 .02 .01	.00 .01 .01 .00	.00 .01 .01	4.8 6.1 11 12 11	4.5 6.6 10 13 11	4.5 6.6 10 13	.01 .01 .02 .02	.00 .00 .01 .01	160 160 120 280 150	100 80 140 80	7100 7100 7100 670 5300	.3 .5 .4 .5
76-03-02 76-04-07 76-05-04 76-06-03 76-07-02	.04 .00 .04 .16	.01 .01 .01	.01 .01 .01	8.0 9.5 10 18 5.2	9.0 6.9 11 17 35	9.1 6.9 11 17 35	.02 .01 .02 .01	.01 .00 .01 .01	130 180 70 110 160	50 90 40 70 90	5600 4900 4300 6500 6200	.3 .5 .5 .3
76-08-11 76-09-08	2.1	•01	.01 .01	12 11	11 11	11 14	•01	.01	220 100	100 100	16000 11000	.1

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
40401507	3252701		N 1254		112GLCLU 112GLCLU 112GLCLU 112GLCLU 112GLCLU	75-11-04 75-12-03 76-01-07	29 29 29 29 29	380 375 310 320 270	6.5 5.8 6.7 6.4	13.0 14.5 13.0 12.0 11.0	81 76 68 72 60	40 35 40 45 37
					112GLCLU 112GLCLU 112GLCLU 112GLCLU 112GLCLU	76-04-07 76-05-04	29 29 29 29 29	255 308 325 288 285	6.5 6.5 5.9	11.0 10.0 11.0 11.5 12.0	58 76 78 81 76	35 51 55 51 46
40430207	3295705		N 1263		112GLCLU	76-09-08 76-01-08	29 29 33 33 33	315 390 460 310 280	5.9 6.0 4.5 4.7	14.5 14.5 14.0 12.5 13.5	84 89 41 47 47	49 60 39 47 45
40385907 40393507 40393507 40393507	3303401 3303402		N 1271 N 1275 N 1276 N 1277		112GLCLU 112GLCLU 112GLCLU	76-09-13 76-04-16 76-04-15 76-04-15 76-04-15	33 14 13 36 67	375 267 192 210 625	4.8 6.3 6.3 5.5 6.8	15.5 11.5 11.0 11.0	47 67 65 47 92	36 24 52 42 12
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
75-10-08 75-11-04 75-12-03 76-01-07 76-02-05	24 23 21 23 18	5.0 4.6 3.7 3.5 3.7	25 22 23 21 20	6.2 5.8 3.2 3.2 2.5	50 51 34 33 28	41 42 28 27 23	47 48 39 38 35	33 30 37 34 34	.0 .1 .1	8.6 8.9 11 11 11	212 191 174 175 165	8.5 5.3 4.6 5.8 6.4
76-03-02 76-04-07 76-05-04 76-06-03 76-07-02	17 22 24 25 23	3.7 5.1 4.3 4.5 4.5	18 21 27 25 30	2.7 5.6 4.5 3.6 3.8	28 30 28 36 37	23 25 23 30 30	32 53 62 58 60	31 33 32 32 32	.1 .0 .0 .0	10 11 7.6 8.2 8.6	150 194 206 187 197	5.2 4.8 7.2 4.7 4.0
76-08-11 76-09-08 76-01-08 76-03-17 76-06-29	26 27 13 15 15	4.7 5.2 2.1 2.3 2.4	27 28 31 31 30	4.2 5.8 6.3 6.2 7.0	43 35 2 0 3	0 2	60 86 39 40 49	34 35 29 28 27	.0 .0 .5 .4	9.5 11 15 16 16	202 227 137 140 210	5.3 3.6
76-09-13 76-04-16 76-04-15 76-04-15 76-04-15	15 20 15 15 24	2.3 4.1 6.6 2.3 7.8	31 22 20 16 86	6.8 4.1 9.0 7.2 3.5	13 52 15 6 97	43 12 5	55 40 25 	29 33 13 	.3 .0 .0	16 11 12 	162 160 145 361	.07 9.0 6.5
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHUS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
75-10-08 75-11-04 75-12-03 76-01-07 76-02-05	8.6 5.3 4.2 5.6 6.0	.01 .01 .01 .01	.01 .01 .03 .01	5.4 4.5 2.2 2.5 2.0	5.6 4.7 2.4 2.4 1.9	14 10 7.0 8.2 8.3	.01 .08 .03	.00 .00 .05 .01	1200 470 400 320 400	210 270 100 360	3500 3100 3100 410 3900	.2
76-03-02 76-04-07 76-05-04 76-06-03 76-07-02	4.8 6.3 7.0 2.9 4.1	.01 .01 .01	.01 .01 .01 .01	2.2 1.6 2.5 1.9 1.6	2.8 1.8 2.4 2.2 2.2	8.0 6.6 9.6 6.9 6.2	.01 .01 .01	.00 .01 .00 .01	210 380 300 360 370	160 200 150 190 240	3700 3500 1500 1500 1700	.2
76-08-11 76-09-08 76-01-08 76-03-17 76-06-29	3.4 2.5 	.01 .01 	.01 .01 .03	2.1	1.7		.01 .01 .01	.01 .01 	1100 400 250 220 230	250 240 90 150	3200 2100 820 950 1200	.2
76-09-13 76-04-16 76-04-15 76-04-15 76-04-15	.08 8.4 2.7	.01 .01 .01	.01 .01 .01	1.2 .01 .02	.08	1.8 9.1 6.6	.06 .01 .01	.00 .00 .00	380 3400 3900 810 1800	200 250 240 370 1600	1200 2300 70 270 680	 .3 .1 .1

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

NASSAU COUNTY--Continued

					NASSAU	COUNTY Co	ntinued					
STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
40394807 40394807 40435907 40490807 40464807	3272802 3383201 3410901		N 1278 N 1279 N 1697 N 1715 N 2169		112GLCLU 112GLCLU 211MGTY 211LLYD 211MGTY	76-04-15 76-04-15 76-01-14 75-11-25 76-04-20	14 45 528 480 239	359 65 41 61 110	6.3 5.8 5.5 6.1 6.8	11.0 11.0 13.0 12.0	77 17 15 31	44 12 3 6
40491607 40412407 40412407 40454607	3420901 3420902		N 2269 N 2413 N 2414 N 2487		211MGTY 211MGTY 112GLCLU 211MGTY 211MGTY	76-05-03 76-04-20 76-04-20 76-04-20 76-08-19	231 514 89 343 343	142 84 230 335 345	6.9 5.8 5.7 6.1	11.5 12.0 12.0 12.0 14.5	73 22 71 110 110	0 17 61 72 70
40443407 40512607 40494307 40440907 40481807	3404501 3415201 3335201		N 2565 N 2567 N 2635 N 2923 N 3443		211MGTY 112GLCLU 211LLYD 211MGTY 211LLYD	76-04-19 76-06-04 75-11-19 76-05-26 75-10-21	410 105 165 122 471	250 125 135 145 220	6.0 6.5 6.8 5.4 6.5	11.0 13.0 12.0 13.0	80 42 75	61 29 20
40492507 40363207 40483307 40523107 40502007	3255201 3414601 3323006		N 3477 N 3498 N 3540 N 3561 N 3712		211MGTY 112GLCLU 112GLCLU	76-05-12 75-10-02 76-04-19 75-10-01 76-05-06	9.0 335 207 120 46	85 50 270 80 600	6.0 7.4 6.5 6.9 6.3	11.5 14.0 12.0 14.0 14.5	2 96 27 160	0 39 13 47
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SULVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
76-04-15 76-04-15 76-01-14 75-11-25 76-04-20	4.0 3.7 7.0	5.4 1.8 1.3 3.3	34 4.5 4.4 4.1	2.9 .8 .3 .8	40 6 14 30	33 5 11 25	26 17 4.5 3.7	65 8.8 5.5 4.8	.0 .0 .2 .1	7.2 11 11 16	214 54 39 58	6.6 .02 .18 .80 .47
76-05-03 76-04-20 76-04-20 76-04-20 76-08-19	22 4.1 20 21 21	4.5 2.8 5.1 13	11 4.7 13 20 21	1.2 .8 3.9 1.8 1.6	106 6 12 42 44	10	3.4 20 46 20 19	4.6 6.4 16 21 19	.1 .0 .0 .0	13 11 14 19 20	112 53 154 225 216	.00 .04 6.8 21
76-04-19 76-06-04 75-11-19 76-05-26 75-10-21	17 11 16	9.2 3.5 8.4	9.0 8.8	1.4	24 16 67	20 13 55	18 21 20	17 6.7 4.1 12 11	.0 .0 .2	7.2	168 91 127	.38 .00 2.7 3.7
76-05-12 75-10-02 76-04-19 75-10-01 76-05-06	.5 17 7.2 17	.2 13 2.2 29	6.1 11 5.3	4.3 2.3 .9 5.2	16 70 17 140	57	6.2 33 6.4 140	7.0 4.8 13 8.2	•1 •1 •1	7.0 23 13 17	37 162 60 465	3.4 .00 4.0 2.1 1.6
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
76-04-15 76-04-15 76-01-14 75-11-25 76-04-20	7.1 .03 .22 .78	.04 .01 .01 .01	.04 .01 .01	.37 .18 .01 .01	.40 .28 .00 .04	7.0 .31 .19 .85	.01 .02 <.03 .01	.00 .00 .01 .01	220 3500 200 40	3000 	8000 70 10 0	.1 .0 .0 .0
76-05-03 76-04-20 76-04-20 76-04-20 76-08-19	.00 .03 6.8 20	.03 .00 .00 .01	.01 .00 .00 .00	.09 .01 .04 .01	.10 .00 .03 .00	.11 .04 6.8 21	.11 .01 .01 .01	.09 .01 .01 .01	240 320 50 460 130	240 10 90 70	180 10 20 0	.0 .1 .2
76-04-19 76-06-04 75-11-19 76-05-26 75-10-21	4.1 2.2	.01 .01 .01	.01 .00 .00	.01 .01 .46 .09	.00 .08 1.2 .00	1.2	.01 .07 .77 .01	.01 .03 .05 .00	130 160 30	100	10 20 10	.2 .0 .0
76-05-12 75-10-02 76-04-19 75-10-01 76-05-06	3.5 1.9	.01 .00 .00 .00	.00 .00 .00	.02 .01 .00 .00	.13 .07 .13 .12	.07 4.1 2.2	.02 .08 .02 .01	.01 .01 .01	2100 60 110 17000	4100	10 10 20 520	.0 .0 .1 .0

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
404621073 404628073 404842073 404228073 405044073	3383101 3404401 3293401	N N N	3733 3742 3893		211MGTY 211MGTY 112GLCLU 211MGTY 112GLCLU	76-04-19 76-04-19 76-04-20 75-10-21 75-11-25	355 455 265 150 105	130 15 245 180 290	6.1 6.2 6.6 5.2 5.8	12.0 12.0 11.5 14.0 14.0	44 12 35	32 0 26
404403073 405020073 404652073 405100073 405221073	3414301 3440101 3405801	N N N N N N N N N N N N N N N N N N N	4244 4388 4389		211MGTY 112GRDR 211MGTY 211MGTY 211MGTY	76-01-14 76-05-06 75-12-18 76-01-05 75-10-01	422 145 145 228 302	149 125 220 217 87	5.3 6.9 6.5 6.4 7.2	14.0 12.5 11.0 11.0	65 42 93 93 32	42 0 37 57 3
404807073 405011073 404214073 405325073 404941073	3414701 3262201 3351401		4860 5147 5152		112GLCLU 112GLCLU 211MGTY 112GLCLU 211MGTY	76-06-04 75-11-25 75-10-01 75-11-25 75-11-25	86 93 219 360 300	700 260 195 84 185	6.7 6.3 4.8 6.4 6.2	13.0 12.0 11.5 10.0 12.0	110 44 39 67	61 44 15 40
40353207 40412007 40442807 40424607 40494207	3322501 3315201 3314301	P P P	5259 5301 5302		211LLYD 211MGTY 211MGTY 211MGTY 211LLYD	75-10-15 75-10-21 75-10-20 75-10-20 76-05-25	1265 317 382 489 382	65 175 112 20 96	5.4 3.4 5.8 5.1 6.2	20.0 12.0 15.0 12.0 12.5	2 33 20 3	0 0 9 0
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
76-04-19 76-04-19 76-04-20 75-10-21 75-11-25	9.0 2.3 10	5.2 1.5 2.5	8.1 4.9 12	2.2	14 16 11	13	19 3.2 21	9.4 5.3 13 12 18	.0 .0 .0	14 10 9.2	92 41 96	3.2 1.1 8.7 7.0
76-01-14 76-05-06 75-12-18 76-01-05 75-10-01	15 11 19 21 8.1	6.7 3.6 11 9.8 2.9	10 9.4 7.5 7.5 5.8	2.4 4.2 1.5 1.6 1.1	28 55 68 44 35	45 56 36	27 4.7 26 40 2.5	13 10 15 9.8 7.3	.9 .1 .2 .0	11 11 18 21 19	119 82 137 143 69	4.8 .09 2.7 4.5 1.4
76-06-04 75-11-25 75-10-01 75-11-25 75-11-25	29 11 10 16	8.7 4.0 3.5 6.5	9.3 15 6.8 9.7	1.4 1.1 .9 1.1	57 0 30 32	47 0 25	38 26 4.0 23	130 22 33 12 22	.0 .1 .0	19 10 18 23	171 101 85 123	3.1 3.8 .01 3.2 2.0
75-10-15 75-10-21 75-10-20 75-10-20 76-05-25	.5 7.8 5.7 .9	3.2 1.4 .2	33 10 13 2.5	2.9 1.0 .6	63 14	52 11 5	29 39 .6 1.4	8.3 13 11 3.3	.0 .1 .3 .0	8.1 8.0 7.5 6.6	105 113 76 19	.01 .03 6.4 .17 .28
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)		GEN (N)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
76-04-19 76-04-19 76-04-20 75-10-21 75-11-25	4.4 1.2 	.00 .00 .01 .00	.00	.01 .01 .01	.09	1.2 8.8 7.2	1.6 .97 .01 .04	.05 .03 .01 .01	50 50 80	10 20 	180	.0 .1 .1 .0
76-01-14 76-05-06 75-12-18 76-01-05 75-10-01	4.4 .07 1.3 2.3 1.1	.01 .01 .01 .00	.01 .01 .01 .00	1.4 .01 .01	1.6	1.7 2.7 4 4.5	3.6 .20 .04 .05	.03 .02 .03 .01	20000 30 40		20 270 0 0 20	.0 .0 .0
76-06-04 75-11-25 75-10-01 75-11-25 75-11-25	3.5 .00 3.3 1.4	.01 .01 .00 .02	.01 .03 .01	.02 .02 .00	0 .00	3.8 4 .05 5 3.3	.06 .04 .03 .03	.01	60 2600 40	=	0 90 0 0	.0
75-10-15 75-10-21 75-10-20 75-10-20 76-05-25	.02 .04 6.5 .17	.00 .00 .00 .00	.01 .00 .00	.01 .05 .06	.10	8 .21 0 6.9 9 .56	.05 .01	.00	900 60 160	Ξ	20	•0

STATION N	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA,MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
4046170734 4045410733 4039460733 4048240733 4050140733	333501 341601 380601		5655 5696 5708		211MGTY 211MGTY 211MGTY 112GLCLU 211MGTY	76-04-20 76-03-05 76-04-19 76-05-06 76-01-14	390 260 523 243 300	105 104 31 195 175	6.2 5.3 5.0 6.4 6.0	12.0 11.0 13.0 12.5 12.0	23 1 71	19 0 39
4047030733 4048080733 4052110733 4047110734 4046390734	374601 371801 445502		5852 5994 6003		211mGTY 211mGTY 211mGTY 112UPGC 112GLCLU	76-01-14 76-04-30 75-12-18 75-10-01 76-04-29	177 487 226 94 103	37 62 142 234 190	6.1 6.0 6.4 6.6 7.2	8.0 11.5 12.0 14.0 13.0	43 19 48 	38 7 28
405125073 405123073 405006073 405022073 405119073	412401 450401 404601	h h	6692 6717 6766		112JMCO 112GRDR 112UPGC 112GLCLU 112JMCO	76-08-31 75-12-04 75-10-01 76-05-26 75-12-04	396 320 128 144 356	165 140 1200 285 135	7.3 7.1 7.5 5.6 6.8	12.5 16.0 14.0 13.0	=======================================	=======================================
4040410733 4047060733 4051540733 4046250734 404607073	440001 332701 405701	6 6 6	6972 7047 7053		211MGTY 112GLCLU 211MGTY 211MGTY 211MGTY	75-10-02 76-04-14 75-12-30 76-04-29 75-10-01	626 126 264 286 203	25 475 150 148 215	5.9 5.8 6.1 6.0 6.5	13.0 14.0 11.0 13.0 15.0	59 	42
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
76-04-20 76-03-05 76-04-19 76-05-06 76-01-14	6.5	1.7 .3 	8.8 2.9 	.6 .3 	5 8 40	 4 7 33	1.5 2.8 	5.3 12 3.2 17 130	•1 •0 •1	7.9 6.7 9.3	54 20 355	2.1 6.0 .01 7.7 7.9
76-01-14 76-04-30 75-12-18 75-10-01 76-04-29	9.0 5.0 11	5.0 1.5 5.0	11 4.6 7.1 	1.4 .5 1.2	6 14 25	11	20 1.9 18	15 5.3 11 11 8.3	.0 .0 .1	8.9 8.2 16	94 40 96 	4.8 2.4 3.8 5.9
76-08-31 75-12-04 75-10-01 76-05-26 75-12-04	=======================================	=======================================	=======================================	=======================================	=======================================		=	3.7 4.1 300 14 3.5	=	=======================================	=	.03 .01 .00 7.5 .00
75-10-02 76-04-14 75-12-30 76-04-29 75-10-01	13	6.5	5.1	1.0	5 21 		33	4.0 50 6.7 10 15	.0	13	19 97 	.00 12 2.4 .72 2.9
DATE OF SAMPL	NITRA	ED TOT TE NITR (N	ITE NITRI	ED NIT	TAL KJ DNIA DA TRO- NI EN G	TRO- NI EN G N) (N) (F	ORUS PHO	THO DS- TO DRUS IF P) (F	RON GAN	AL BL IN- ACT IESE SL IN) STA	HY- ENE LUE TIVE JB- ANCE 6/L)
76-04- 76-03- 76-04- 76-05- 76-01-	05 2. 19 .	7 0 0	.00 .01	01 00 01	.01 .02 .00 .01	.13 .05 .03	2.4 6.1 .06 7.7	.01 .01 .88 .01	.01 .00 .04 .01	70 290 250	10 0 940	.0 .1 .0 .1
76-01- 76-04- 75-12- 75-10- 76-04-	30 1. 18 3.	4 3 	.02 .	01 01 01 	.00 .08 .01 .00	.03	4.8 2.4 3.8 6.1 .37	.02 .01 .01 .01	.01 .01 .01 .01	30 50 80	0 0 0 	.0 .0 .1 .1
76-08- 75-12- 75-10- 76-05- 75-12-	·04 ·01 ·26	==	.01 .01 .01 .01		.05 .01 .00 .02	.05 .00 .06 .10	.09 .02 .07 7.6	.10 .01 .09 .02	.01 .01 .08 .01	=======================================	=======================================	.0 .0 .1 .2
75-10- 76-04- 75-12- 76-04- 75-10-	·14 ·30 1.	8	.01	01	.01 .03 .02 .00	.03	.19 2 2.4 .78 3.0	.26 .01 .04 .01	.01 .00 .01 .00	170 50	0 0 	.1 .0 .1

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA,MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
40474507 40455507 40454407	3341101		N 7216 N 7353 N 7397		211MGTY 112GLCLU 112GLCLU	75-11-25 76-03-05 75-10-23 75-11-12 75-12-11	117 391 102 102	85 64 80 90 100	6.3 5.9 5.4 5.3 5.4	14.0 11.0 17.8 12.0 10.5	14 21 16 24	9 16 12 19
					112GLCLU 112GLCLU 112GLCLU	76-01-16 76-02-10 76-03-12 76-04-08 76-05-10	102 102 102 102 102	75 55 50 60 50	5.3 5.5 5.6 5.4 5.3	10.5 11.0 7.0 10.0 12.0	64 16 16 15 20	60 11 11 12 10
40465207	3422601		N 7399		112GLCLU 112GLCLU 112GLCLU	76-06-08 76-07-08 76-08-02 76-09-01 76-04-14	102 102 102 102 200	50 60 95 87 175	5.4 5.5 5.7 5.6 6.6	12.0 13.0 12.0 13.0	16 20 21 20	10 10 10
40442607 40485507 40465207 40401007	3360001 3372802		N 7438 N 7450 N 7513 N 7548			75-10-08 76-06-21 76-09-15 76-03-16 76-04-21	555 134 134 475 516	135 175 41 55	4.8 6.2 6.5 5.7 6.0	13.0 13.0 13.0 12.0 14.0	6 53 49 8 14	3 37 33 0 1
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
75-11-25 76-03-05 75-10-23 75-11-12 75-12-11	3.5 5.4 3.9 5.4	1.2 1.9 1.5 2.6	5.7 5.1 5.2 5.5	.5 1.0 1.1	6 6 5 6	5 4	1.0 .8 .5	5.4 7.5 12 10 9.6	.1 .0 .0	9.7 5.5 5.4 5.6	42 48 46 50	1.3 3.0 3.1 3.3 3.3
76-01-16 76-02-10 76-03-12 76-04-08 76-05-10	3.0 2.5 2.3 3.8	2.3 2.1 2.3 2.3 2.5	5.0 4.9 5.3 5.5 5.3	1.0 .8 .9 .9	5 6 6 4 12	5 5 3	.6 .7 1.0 .4	10 10 11 9.9 8.6	.2 .0 .1 .0	5.3 5.3 5.5 5.4 5.4	67 44 48 46 51	3.6 3.8 3.7
76-06-08 76-07-08 76-08-02 76-09-01 76-04-14	2.6 3.5 3.6 3.4	2.3 2.8 2.9 2.8	5.3 5.9 6.0 5.8	1.1 1.1 1.1	15 14 13 12	11 11	1.2 1.1 .0 2.7	8.2 12 10 10 7.6	.0 .1 .0	5.5 5.7 5.9 5.7	49 59 58 58	3.7 4.3 4.9 4.5
75-10-08 76-06-21 76-09-15 76-03-16 76-04-21	1.9 13 12 2.0 2.8	.2 5.0 4.7 .8 1.8	2.4 5.7 6.4 3.8 3.8	1.2 1.0 .4	19 20 16	16 16 13	3.1 19 18 .7	4.9 8.4 8.0 4.0 4.1	.0 .1 .1 .0	6.5 12 12 7.8	21 103 73 29 42	1.8 .00
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
75-11-25 76-03-05 75-10-23 75-11-12 75-12-11	2.3 3.1 3.3 3.4	.00 .00 .00 .01	.00 .00 .01	.00 .02 .10 .07	.36	3.1 3.5 3.5	.02 .01 .01 .02	.00 .00 .01 .01	30 2300 4800 3200	1000 830	0 60 80 60	.0 .0 .0
76-01-16 76-02-10 76-03-12 76-04-08 76-05-10	4.0 2.9 3.6 3.8 3.9	.01 .02 .01 .01	.01 .06 .01 .01	.01 .12 .07 .05	•12 •13 •15	3.4 3.7 4.0	.02 .02 .01 .01	.01 .00 .01	1100 1800 1300 970 2300	860 1200 890 640 960	40 60 40 40 60	.0 .0 .0
76-06-08 76-07-08 76-08-02 76-09-01 76-04-14	3.4 4.3 4.8 4.5	.01 .00 .01 .01	.01 .01 .01	.08 .05 .04 .09	.00 .15	4.3 5.1 4.6	.01 .02 .01 .01	.01 .00 .01 .01	1700 950 760 1400	930 790 810 960	40 40 40 50	.0 .1 .1 .1
75-10-08 76-06-21 76-09-15 76-03-16 76-04-21	6.3 1.7	.04 .01 .01	.00 .01 .00 .00	.00 .06 .01	.11	1.9	.03 .03 .01	.01 .00 .00	600 1700 1300 50 240	1600 1100 200	200 160 10	.0 .1

155

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
40481407 40542407 40520407 40423607 40471107	3340001 3345401 3395401		N 7613 N 7643 N 7665 N 7720 N 7846		211MGTY 211MGTY	75-10-10 76-04-30	235 218 370 511 129	251 445 145 56 80	6.9 5.2 6.5 5.7 6.8	18.0 13.0 12.0 12.0 11.5	93 45 16	76 28 8
40442007 40454507 40494707 40494707 40512707	3425501 3450301 3450201		N 7957 N 8038 N 8046 N 8052 N 8164			75-12-12 76-04-20 75-10-16 75-10-16 76-05-27	523 295 189 94 110	66 225 238 305 205	5.9 6.4 6.5 6.5	13.0 12.5 13.0 15.5 12.5	 	10
40391007 40414507 40400007	3261801		N 8203 N 8214 N 8216		112GLCLU 211MGTY 211MGTY	76-04-22 75-10-02 76-04-30	66 686 665	200 20 37	6.2 5.3 5.1	11.0 15.0 14.0	62 4 6	7 1 3
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
75-10-01 75-12-12 75-10-10 76-04-30 76-04-20	19 11 4.0	11 4.2 1.5	44 6.3 4.5	3.6	20 20 10,	16 16 8	43 16 1.5	5.8 47 8.7 4.3 8.8	•2 •1 •0	14 14 8.4	280 85 35	.30 20 3.1 2.5 1.6
75-12-12 76-04-20 75-10-16 75-10-16 76-05-27	5.5 	2.0	6.8	-8	15 	12	1.1	11 12 12 	.2 	9.0	65 	5.5 2.7 2.2 5.7 3.3
76-04-22 75-10-02 76-04-30	19 1.4 2.0	3.6 •1 •3	16 2.2 3.2	2.3 .2 1.5	68 3 4	56 2 3	33 2.5 2.2	9.3 4.2 3.7	.0 .1 .0	11 6.6 6.8	129 19 22	.00 .00 .01
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
75-10-01 75-12-12 75-10-10 76-04-30 76-04-20	20 3.1 1.3	.01 .01 .00 .00	.01 .00 .01	.00 .01 .00 .04	.13 .04 .01 .03	3.1 2.5	.01 .03 .03 .01	.00 .03 .01 .01	60 30 60	=	10	.0
75-12-12 76-04-20 75-10-16 75-10-16 76-05-27	4.9	.01 .01 .00 .00	.01 	.01 .00 .00 .00	.00 .03 .08 .17	2.7 2.3 5.9	.01 .05 .06	.01 .01 .01 .01	60	=	-0 	.1 .0 .1 .1
76-04-22 75-10-02 76-04-30	.00	.01 .00 .01	.01 .00	.06 .00	.33 .10 .05	.10	.02 .58 .01	.01 .01	1900 660 280	1500	80 0 0	.0

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LUGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA,MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
40420307	3354603	0, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1	N 8235		112GLCLU 112GLCLU 112GLCLU	75-10-09 75-11-03 75-12-01 76-01-13 76-02-04	53 53 53 53 53	445 427 396 320 250	5.8 5.7 6.1 5.8	17.0 16.0 15.5 14.0 12.0	110 93 98 82 69	80 58 60 52 46
					112GLCLU 112GLCLU 112GLCLU	76-03-01 76-04-05 76-05-05 76-06-01 76-07-06	53 53 53 53 53	265 290 305 255 255	5.8 5.6 5.9 5.8 5.7	12.0 12.0 13.0 14.0 15.5	75 78 81 65 74	50 49 56 47 29
40512107			N 8246 N 8264		112GLCLU 112GLCLU 112JMC0 112JMC0 211MGTY	76-08-03 76-08-30 76-04-20 76-08-31 76-04-19	53 53 350 350 515	330 380 165 170 35	5.8 5.7 6.9 6.8 5.3	16.0 16.0 13.0 13.0	86 87 2	56 57 0
40502007 40432007 40465007 40442007	3401201		N 8310 N 8339 N 8342 N 8409		112GLCLU 211MGTY 211LLYD 211MGTY	76-06-02 76-04-21 76-03-16 76-04-19	118 363 434 405	340 135 138 299	3.6 5.8 6.5 6.0	11.0 13.0 11.0 12.0	37 56 93	31 10 74
DATE OF SAMPLE	DIS SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
75-10-09 75-11-03 75-12-01 76-01-13 76-02-04	33 31 31 25 21	6.4 3.8 5.0 4.7 4.1	33 40 34 20 20	3.7 3.6 2.5 2.1 2.1	35 43 46 36 29	29 35 38 30 24	44 46 45 34 36	61 60 46 27 28	.0 .1 .0 .0	7.1 6.5 6.5 6.4 6.9	241 248 219 169 162	9.8 7.9 6.5 7.8 6.7
76-03-01 76-04-05 76-05-05 76-06-01 76-07-06	23 24 25 20 23	4.3 4.4 4.5 3.7 4.0	41 25 25 25 25 30	2.9 2.4 2.5 4.6 5.1	31 36 31 22 55	25 30 25 18 45	35 37 37 35 53	64 36 42 38 27	.0 .0 .1 .0	7.2 7.4 6.9 12	203 178 177 178 227	5.3 5.4 4.7 6.4
76-08-03 76-09-30 76-04-20 76-08-31 76-04-19	25 25 	5.8 6.0 	31 38 	2.5	37 37 6	30 30 5	37 43 4.8	54 68 6.2 6.3 4.2	:1 :1 :-	6.9	201 224 24	4.6 3.9 .25 .28
76-06-02 76-04-21 76-03-16 76-04-19	8.0 13 23	4.2 5.8 8.7	8.0 4.6	1.I .8 2.4	8 56 24	46	9.2 6.8 32	35 12 6.2 16	-0 -1 -0	14 12 16	86 78 195	17 5.8 1.6 16
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
75-10-09 75-11-03 75-12-01 76-01-13 76-02-04	8.0 8.1 5.8 7.2 6.7	.01 .00 .01 .00	.00 .01 .01 .01	.00 .00 .02 .00	.24 .11 .12 .12	7.9	.01 .01 .01 .01	.00 .01 .00 .01	220 610 1000 360 200	190 200 70 60	20 0 0	.1 .2 .1 .1
76-03-01 76-04-05 76-05-05 76-06-01 76-07-06	2.3 5.5 4.3 6.4	.00 .00 .01 .01	.01 .01 .01	.00 .00 .02 .01 3.1	•13 •13	5.5	.02 .01 .01 .03	.01 .00 .00 .01	200 160 150 580 910	70 100 90 200 270	10 10 0 10 4000	.1 .1 .1 .1
76-08-03 76-08-30 76-04-20 76-08-31 76-04-19	4.5 3.5 	.01 .00 .00	.01 .01 	.01 .01 .00 .02	.13 .33	4.0 .58 .34	.02 .02 .02 .04	.01 .01 .02	250 320 350	160 140 	 0	.1 .0 .0
76-06-02 76-04-21 76-03-16 76-04-19	5.8 1.0 16	.01 .00 .01	.01 .00 .01	.11 .00 .05	.18	6.0	.09 .01 .01	.01 .01	190 60 110	20	0 10 0	.2 .1 .0

157 QUALITY OF GROUND WATER WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

			WATER QUA	ALITY DAT		YEAR OCTO		TO SEPTEM	BER 1976			
					NASSAU (COUNTY Co	ntinued	SPE-				
STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
40500907			N 8430 N 8455		211MGTY 211MGTY 112GLCLU	76-06-21 76-09-20 76-09-20 75-10-16	145 145 145 237	60 96 3150	6.4 6.8 6.9	13.0 16.0 13.0	21 24 740	5 6 690
40475207			N 8477		211LLYD	76-05-03	710	30	6.3	17.0		
40504107 40451907 40423907	3342901		N 8478 N 8497 N 8598		112GLCLU	76-04-29 76-03-05 75-10-06 75-11-03 75-12-01	156 544 45 45 45	150 40 310 310 325	7.1 5.9 5.5 5.4 5.6	12.5 11.5 16.5 15.5 15.0	8 74 62 72	3 60 46 57
					112GLCLU 112GLCLU 112GLCLU	76-01-13 76-02-04 76-03-01 76-04-06 76-05-03	45 45 45 45 45	335 250 270 272 265	5.3 5.7 5.7 5.8	14.0 14.0 14.0 13.5 17.0	62 64 47 59 59	48 52 34 45
40392207	3253502		N 8630		112GLCLU 112GLCLU 112GLCLU	76-06-01 76-07-15 76-08-03 76-08-30 76-04-15	45 45 45 45 19	260 320 280 263 18000	5.9 5.8 5.6 5.7 6.5	14.0 14.5 15.5 14.0 11.0	76 66 64 68 4100	49 48 49 53 4000
40391407	3270701		N 8631		112GLCLU	76-07-20	19	2100	6.7	14.0	680	160
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
76-06-21 76-09-20	5.8	1.7	5.6	.8	20	16	8.2	5.8	•1	17	59	1.1
76-09-20 75-10-16 76-05-03	150	1.8	6.5 330	7.8 	61 	17 50 	130	920 4.1	•1	16 16	1670 	.01
76-04-29 76-03-05 75-10-06 75-11-03 75-12-01	2.0 23 21 23	.7 3.9 2.3 3.6	3.8 25 26 26	.5 5.1 4.9 4.5	6 17 20 19	5 14 16 16	.7 36 37 38	3.8 5.1 43 40 41	•1 •0 •0	8.6 11 11 11	29 184 181 187	.00 1.4 6.6 6.4 7.4
76-01-13 76-02-04 76-03-01 76-04-06 76-05-03	19 19 13 18	3.5 4.0 3.6 3.5 3.5	25 24 24 24 24	4.7 4.4 4.3 4.5 4.4	17 14 16 17 18	14 11 13 14 15	35 38 36 36 33	36 35 34 35 34	.1 .2 .0 .0	11 11 11 11	174 153 150 168 167	7.0 7.3 6.2 6.3 6.5
76-06-01 76-07-15 76-08-03 76-08-30 76-04-15	23 20 20 20 20	4.6 4.0 3.5 4.3 830	23 26 24 21 6800	2.3 5.1 4.4 7.7 270	34 22 19 18 106	28 18 16 15 87	37 36 36 41 1900	33 41 35 31 13000	.0 .1 .1 .1	7.2 12 11 11 4.6	164 185 171 168 23100	3.9 5.8 6.3 5.7
76-07-20	240	20	190	17	640	525	290	190	•2	20	1300	.05
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
76-06-21 76-09-20 76-09-20 75-10-16 76-05-03	.93	.01	<.01 <.01 	.01 .00 	.03 .00 .12	.13	.03 .04 .09	.00	1800 14000	120	10 20 1700	.0 .0 .1
76-04-29 76-03-05 75-10-06	1.1	.03 .01	.01 .01	.10 .01	.20 .06	.21 1.5 6.8	.11 .01	.09	150 510	==	0 20	.0 .0 .1
75-11-03 75-12-01	6.5 6.8	.01	.01	.00	.06	6.5 7.5	.01 .01	.01	680 410	210 200 90	30 10	:1 :1
76-01-13 76-02-04 76-03-01 76-04-06 76-05-03	7.0 2.3 3.7 6.2 6.7	.00 .01 .00	.01 .02 .00 .01	.00 .00 .02 .05	.06 .11 .15	7.4 6.3 6.5	.02 .01 .02 .01	.01 .01 .00	450 310 580 1100 210	120 70 180 110	10 10 10 0	:1 :1 :1
76-06-01 76-07-15 76-08-03 76-08-30 76-04-15	3.9 6.5 6.3 5.2	.01 .01 .01	.01 .01 .01	.01 .03 .01 .01	.13	6.0 6.4	.01 .02 .02	.01 .00 .01 .01	270 1100 330 260 10000	210 690 140 140 9700	0 20 0 10 190	.1 .1 .1

76-07-20

.01

.02

.78

.1

280

.02

.08

16000

15000

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA;MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
403903073 403802073 403724073 403712073 404530073	3371901 3362701 3381401		No. of the second		112GLCLU 112GLCLU 112GLCLU 112GLCLU 211MGTY	76-04-22 76-04-23	39 29 29 33 467	16000 620 1500 4100 45	7.4 6.9 6.9 6.4 5.5	11.0 12.0 12.0 11.0 12.0	4300 310 180 730 14	4200 67 110 470 _ 11
403637073 403553073 403553073 403758073 403845073	3433101 3433102 3394001		N 8644 N 8645 N 8646 N 8647 N 8648		112GLCLU	76-07-22 76-07-22	24 90 22 24 28	270 340 312 1330 575	6.0 6.6 6.8 5.8 7.1	12.0 12.0 12.0 12.0 13.0	51 100 94 250 250	18 67 56 230 69
403855073			N 8649		112GLCLU 112GLCLU 112GLCLU	76-03-17 76-04-16 76-06-29 76-09-13 76-05-14	30 30 30 30 30 29	1750 1550 1100 880 1420	6.5 6.7 6.7 6.6 6.9	14.0 14.5 14.0 14.5	240 200 160 100 380	38 13 7 30 140
40381207 40375307 40371807 40374907	3322401 3360701 3354701		N 8651 N 8653 N 8654 N 8655		112GLCLU 112GLCLU	76-04-16 76-04-22 76-04-22 76-04-30	30 24 24 29	360 225 400 360	6.3 4.9 6.2 6.8	12.5 12.5 14.0 11.0	64 61 18 57	0 61 0 39
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SUDIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BUNATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SU4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
76-04-15 76-04-22 76-04-23 76-04-23 75-10-20	280 86 66 110 4.5	880 24 2.8 110	7000 240 44 800 4.4	280 20 2.1 54	142 301 75 310 4	247	1900 45 1.3 610	13000 420 150 1200 6.3	.2 .3 .1 .1	7.9 30 36 12 6.9	23400 1010 340 3090 32	.01 .00 .00 .01
76-05-14 76-07-22 76-07-22 76-04-30 76-04-16	14 29 21 25 92	3.8 6.6 10 46 5.7	41 16 21 230 31	.3 2.5 5.6 9.8 3.5	40 40 46 22 224	33 38	63 6.5 55 23 48	27 75 23 480 57	.1 .1 .0 .3	4.8 30 7.0 9.4 13	182 193 191 844 363	1.9 .03 6.0 .00
76-03-17 76-04-16 76-06-29 76-09-13 76-05-14	54 47 36 21 66	26 21 18 12 52	250 240 180 110 330	8.5 15 14 8.9 24	248 233 192 88 287	191 157 72	22 23 35 40 140	470 400 280 170 540	.2 .2 .2 .3 .4	23 21 20 20 33	977 884 679 426 1330	.00
76-04-16 76-04-22 76-04-22 76-04-30	18 17 2.6 10	4.7 4.6 2.8 7.8	23 13 75 34	5.3 2.7 5.4 3.0	103 0 106 22	0 87	58 64 41 52	24 19 47 23	.0 .1 .1	7.7 12 24 7.4	193 143 251 208	.11 2.1 .00 .02
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SULVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
76-04-15 76-04-22 76-04-23 76-04-23 75-10-20	.00 .01 .00 .01 1.4	.05 .00 .01 .02	.01 .00 .01 .01	.73 .72 .36 3.7	2.1 .80 5.6	5.6	.42 .55 .12 .02	.09 .19 .05 .01	7600 580 650 52000 20	2100 430 490 40000	300 10 70 1500	.1 .2 .0 .2 .0
76-05-14 76-07-22 76-07-22 76-04-30 76-04-16	1.8 .03 5.7 .00 .01	.01 .00 .01 .01	.01 .01 .01 .01	.06 .33 .18 1.8	.40 .33 2.0	6.3 2.0	.01 .11 .03 .04	.01 .01 .01 .01	860 7900 2000 10000 2000	800 7000 510 10000 1800	1600 340 410 260 30	.0 .0 .1 .1
76-03-17 76-04-16 76-06-29 76-09-13 76-05-14	.01	.01 .02 	.01	5.0 7.2 4.2	8.1 9.3 5.4	8.1 9.3 5.4	.03 .01 	.00 .01 .10	1300 1900 740 670 2500	1100 1400 610 530 900	130 110 70 40 160	1.0
76-04-16 76-04-22 76-04-22 76-04-30	.10 2.1 .02	.00 .00 .00	.00 .01 .01	1.9 .02 .44 .93	.93	.93	.01 .11 .02	.01 .01 .03	780 800 1300 60000	670 410 690 60000	7800 390 20 970	.3 .1 .1

QUALITY OF GROUND WATER

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
40414407	3285201		N 8669		112GLCLU 112GLCLU 112GLCLU 112GLCLU 112GLCLU	75-11-03 75-12-03 76-01-14	35 35 35 35 35	310 325 332 320 265	5.7 5.8 5.9 5.9 5.8	17.0 16.0 14.0 13.0	64 67 72 59 63	41 36 41 31 39
					112GLCLU 112GLCLU 112GLCLU 112GLCLU	76-04-06 76-05-04 76-06-02	35 35 35 35 35	290 332 310 290 258	5.9 6.0 5.9 5.7 5.6	13.0 14.0 13.5 14.0 14.0	63 64 62 70 61	36 35 36 42 43
					112GLCLU 112GLCLU		35 35	260 250	5.7 5.8	14.0 17.0	54 50	38 34
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
75-10-08 75-11-03 75-12-03 76-01-14 76-02-05	21 23 23 18 20	2.9 2.4 3.5 3.4 3.2	26 26 25 24 17	4.8 4.6 4.2 4.3 4.5	28 38 38 34 29	23 31 31 28 24	41 37 39 34 32	35 33 33 29 26	•0 •1 •0 •0	5.9 6.7 7.1 6.8 7.2	174 176 178 164 157	5.6 5.7 5.4 6.7 7.1
76-03-02 76-04-06 76-05-04 76-06-02 76-07-02	19 20 19 22 20	3.7 3.4 3.5 3.7 2.8	25 32 31 28 30	4.6 4.8 4.9 5.0 5.7	32 35 32 34 22	26 29 26 28 18	35 36 36 37 42	32 45 42 38 28	.1 .0 .0 .0	7.0 6.9 6.8 7.7 8.9	159 193 189 190 181	6.3 7.2 7.1 7.3
76-08-11 76-09-07	17 16	2.9	20 18	4.8 5.3	20 19	16 16	43 41	18 14	•0	8.4 8.1	149	6.1 7.2
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
75-10-08 75-11-03 75-12-03 76-01-14 76-02-05	5.3 5.4 5.3 6.2 7.0	.01 .01 .01	.01 .01 .01	1.6 1.5 1.6 1.6 2.0	1.8 1.8 1.8 2.0 1.8	7.4 7.5 7.2 8.7 8.9	.01 .01 .01	.00 .00 .00	1200 1400 4600 670 490	720 640 230 230	670 490 570 530 690	.1 .1 .1
76-03-02 76-04-06 76-05-04 76-06-02 76-07-02	3.8 6.2 6.8 7.1 7.3	.01 .01 .01	.01 .01 .01	1.9 1.7 1.9 1.6 1.9	2.3 2.0 2.2 2.1 1.9	8.6 8.3 9.4 9.2 9.2	.01 .01 .01	.01 .00 .00 .01	450 570 980 480 470	220 450 200 140 250	640 650 640 450 820	.1 .1 .2 .2
76-08-11 76-09-07	5.7 3.2	•01	•01	1.8	1.7	7 • 8 9 • 4	•02	.01	420 2900	180 250	720 710	:1

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976 NASSAU COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
40430907 40395507 40363707 40375907 40380207	3311401 3431102 3394002		N 8673 N 8706 N 8728 N 8749 N 8752		211MGTY 112GLCLU 112GLCLU	76-07-26 76-04-16 76-05-14 76-04-30 76-04-22	33 375 85 64 117	525 50 50 2150 40	6.8 6.9 6.4 5.7 6.0	13.5 13.0 12.5 11.5 13.0	130 11 19 450 8	81 0 0 450
40542707 40364207 40415207	3374701		N 8776 N 8788 N 8789		112GLCLU 112GLCLU 112GLCLU	75-12-12 76-04-23 75-10-08 75-11-04 75-12-03	459 41 30 30 30	31 7500 350 410 425	6.5 6.7 5.9 5.9 6.7	13.0 13.0 15.0 14.5 13.5	10 1800 74 85 80	0 1400 34 46 39
					112GLCLU 112GLCLU 112GLCLU	76-01-07 76-02-05 76-03-02 76-04-06 76-05-04	30 30 30 30 30	445 370 360 361 360	6.0 6.2 6.1 6.0 6.0	13.0 12.0 15.5 11.0 12.0	71 75 74 75 74	33 36 35 32 27
					112GLCLU	76-06-02 76-07-02 76-08-11 76-08-30	30 30 30 30	340 330 385 373	5.8 5.8 5.8 5.7	12.5 13.0 13.0 13.0	76 71 76 79	26 38 29 36
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
76-07-26 76-04-16 76-05-14 76-04-30 76-04-22	43 1.0 5.6 43 2.5	5.2 2.0 1.3 84	40 2.8 4.7 510 3.2	6.2 .5 1.7 13	58 16 28 0	48 13 23 0	47 •2 4•1 110 6•0	90 4.1 4.3 1000 4.2	.1 .0 .1 .0	12 1.5 19 8.5 8.4	286 28 57 1800 35	.58 .01 .00 .00
75-12-12 76-04-23 75-10-08 75-11-04 75-12-03	2.5 240 23 27 26	1.0 300 4.0 4.2 3.6	3.4 2300 31 31 31	.7 100 6.2 6.3 5.8	17 477 49 47 50	14 391 40 39 41	1.2 1000 51 51 47	3.8 3900 31 30 29	.1 .0 .0	11 39 10 11	34 8120 221 241 231	.28 .00 12 12 13
76-01-07 76-02-05 76-03-02 76-04-06 76-05-04	22 23 23 23 23	4.0 4.2 4.0 4.2 3.9	28 28 28 29 30	6.4 5.5 5.2 5.1 5.1	47 47 48 52 57	39 43	49 53 50 52 53	29 29 27 29 29	.1 .2 .0	10 9.8 9.8 10	229 225 180 222 227	13 12 17 5.2 9.8
76-06-02 76-07-02 76-08-11 76-08-30	23 21 23 24	4.4 4.4 4.4	31 30 32 32	4.9 2.3 4.9 5.0	60 40 57 52	33 47	52 40 55 51	30 32 31 30	.0 .1 .0 .1	12 6.7 13	231 172 215 228	9.7 3.7 9.9 10
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
76-07-26 76-04-16 76-05-14 76-04-30 76-04-22	.55 .00 .02 .00	.06 .00 .05 .01	.05 .01 .02 .01	.02 .01 .15 .24	.00 .98	01 1.0 .41	1.7 .01 .38 .08	.02 .01 .01	19000 10000 46000 38000 7200	11000 7600 2000 28000 3800	350 160 610 530 60	.0 .1 .0 .1
75-12-12 76-04-23 75-10-08 75-11-04 75-12-03	.31 .00 9.1 13	.01 .01 .05 .08	.01 .04 .08	2.0 6.1 5.8 5.7	.25 3.4 6.4 5.9 5.8	3.4 18 18 19	.05 1.3 .01 .01	.01 .01 .00 .00	110 9600 780 840 6500	9300 250 540	0 120 5400 5100 5200	.0 .4 .2 .2
76-01-07 76-02-05 76-03-02 76-04-06 76-05-04	13 11 9.5 9.9 9.8	.05 .01 .00 .01	.01 .01	5.7 5.0 4.4 4.4 3.9	6.6 8.7 4.6 4.4 4.1	20 21 22 9.6 14	.05 .01 .02 .01	.01 .00 .00 .01	3000 3000 680 920 440	300 170 190	570 4800 4500 4600 4700	.2 .2 .3
76-06-02 76-07-02 76-08-11 76-08-30	10 3.6 5.3 9.6	.01 .01 .01	.00	3.9 .02 3.7 3.9	4.1 .46 3.6 3.7	14 4.2 14 14	.02 .01 .03	.01 .01 .01	5000 550 630 520	320 230	10 7100	.7 .1 .5 .5

161

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
	73412501 73294902 73270402		N 8790 N 8816 N 8848			76-04-20 75-10-20 76-01-06 76-03-15 76-06-25	443 500 25 25 25	70 60 265 210 375	6.6 5.3 6.9 6.5 6.1	12.5 11.0 9.0 8.0 13.0	9 61 81 60	5 19 35 25
40390307	73285002		N 8863		112GLCLU 112GLCLU 211MGTY	76-09-10 75-12-29 76-03-15 76-04-15 76-06-25	25 171 171 171 171	138 20 10 38	6.6 6.8 5.9 5.8 6.0	16.0 13.0 12.0 12.0 12.5	31 8 5 5	0 0 0 0
40392507 40473007 40485307	73423101		N 8876 N 8877 N 8879		112GLCLU	76-09-10 76-04-15 75-11-20 75-11-19	171 35 76 53	35 7000 130 95	6.3 5.9 6.5 6.4	12.0 10.0 12.0 13.0	1000	990
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
76-04-20 75-10-20 76-01-06 76-03-15 76-06-25	2.8 19 26 19	.5 3.4 3.8 3.0	6.3 13 11 11	.3 2.9 2.0 3.9	5 52 56 42	4 43 46 34	.8 52 53 75	4.4 7.2 11 11 8.8	•0	7.0 11 11 12	40 138 145 154	1.2 3.0 .01
76-09-10 75-12-29 76-03-15 76-04-15 76-06-25	10 1.8 1.0 .6	1.4 .9 .7 .8	5.6 2.7 2.4 2.8 2.8	1.2 .5 .4 .4	39 14 6 14 16	32 11 5 11 13	25 •5 3•4 2•9 5•0	4.9 3.1 3.8 3.9 3.3	•1 •0 •0 •0	9.7 6.5 7.8 7.7 8.0	77 23 24 27 31	.00
76-09-10 76-04-15 75-11-20 75-11-19	100	190	2.7 1700	70.4	14 51	11 42 	1.8 450	3.1 3100 8.2 5.1	•1 •0 	7.8 7.1 	26 5640 	.04 .01
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
76-04-20 75-10-20 76-01-06 76-03-15 76-06-25	2.8	.00	.00	.01 .00 4.5	.08 .61 	1.3	.01 .01 	.01 .01 	40 320 110 140	 50 90	3800 2600 8500	.0 .0 .3
76-09-10 75-12-29 76-03-15 76-04-15 76-06-25	.00	.01	.01	.04	.05	 -06 -06	.01	.00	340 340 2200 1600 1500	90 1900 1200 1500	2900 40 20 20 20	 -0 -1
76-09-10 76-04-15 75-11-20 75-11-19	.03	.02	.01	1.3	2.0	2.1 .01 .34	.04 .03 .12	.00 .01	1500 5200	1500 1100	2300	.6

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA,MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
404702073	3305601		N 8888		112GLCLU 112GLCLU 112GLCLU	75-10-23 75-12-11 76-01-20 76-02-18 76-03-15	112 112 112 112	350 380 290 310 297	5.8 5.6 5.9 5.4 5.5	14.5 12.0 11.0 10.0 11.0	94 94 83 71 71	79 81 74 60 63
					112GLCLU 112GLCLU 112GLCLU	76-04-08 76-05-10 76-06-07 76-07-14 76-08-12	112 112 112 112 112	285 230 245 300 302	5.7 5.5 5.8 5.7 5.6	12.0 13.0 13.0 13.0 13.0	69 69 69 67	57 59 55 53 54
40472307 40494107 40445307	3384501		N 8933 N 8937 N 8984		112JMC0 211MGTY 112GLCLU	76-09-07 76-05-12 76-04-12 76-01-28 76-03-19	112 148 164 48 48	300 160 90 260 267	5.7 6.1 6.4 5.7 5.7	14.0 14.5 9.0 13.5 13.5	71 42 46	58 19 26
40515307 40512807 40485307	3420101		N 8994 N 8996 N 9019		112GLCLU 112GLCLU 112JMC0 112JMC0 211LLYD	76-06-22 76-09-13 75-11-19 76-08-31 75-11-24	48 48 308 387 411	160 340 235 245 83	5.8 6.1 9.0 6.9 7.1	14.0 13.0 12.0 13.5 11.0	29 67 	11 49
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
75-10-23 75-12-11 76-01-20 76-02-18 76-03-15	27 28 25 21 21	6.5 5.8 5.0 4.6 4.5	21 23 23 23 23	8.2 7.8 7.6 6.7 6.9	19 16 11 14	16 13 9 11 8	58 61 53 52 52	37 34 32 29 28	.0 .1 .2 .1	16 16 15 15 15	227 227 177 203 192	9.7 9.9 9.6 10 8.5
76-04-08 76-05-10 76-06-07 76-07-14 76-08-12	20 20 20 20 20	4.6 4.7 4.6 4.1 4.2	23 22 23 23 23	6.4 6.4 6.8 6.4	14 13 17 17	11 11 14 14 13	50 49 50 49 48	27 24 23 27 27	.0 .1 .0 .0	15 14 15 15 15	192 184 186 187 175	9.1 8.2 8.0 8.2 8.2
76-09-07 76-05-12 76-04-12 76-01-28 76-03-19	21 12 13	2.8 3.2	23 27 26	6.3 4.9 4.9	28	23	45 27 23	28 6.5 8.5 29 24	.0 .1 .0	15 7.7 8.4	182 126 115	9.3 .13 3.7
76-06-22 76-09-13 75-11-19 76-08-31 75-11-24	8.5 18	1.9	21 24 	3.0			26 18	17 54 12 17 30	:1 :1 :1	7.1 7.3 	110 146 	3.8 .01 .00 .03
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)		TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
75-10-23 75-12-11 76-01-20 76-02-18 76-03-15	10 9.7 <2.4 10 8.2	.03 .02 .01 .01	.04 .02 .01 .01	.03 .01 .02 .04	•14 •06	10 9.7 10	.01 .04 .02 .02	.07 .01 .01 .01	2300 8300 1500 1100 690	330 150 200 150	1700 1300 960 870 690	.1 .1 .1 .1
76-04-08 76-05-10 76-06-07 76-07-14 76-08-12	8.8 8.3 7.9 7.5 5.3	.01 .04 .01	.01 .01 .04 .02	.06 .03 .09 .04	.00	8.2 8.2 8.2	.01 .01 .01 .01	.00 .01 .00 .00	2200 1200		700 650 560 580 650	.1 .1 .1 .1
76-09-07 76-05-12 76-04-12 76-01-28 76-03-19	7.2	.02 .01 .01	.02	.05 .03	.10	3.7	.05 .03 .01	.00 .01 .01		1800	570 440 490	.1 .0 .0
76-06-22 76-09-13 75-11-19 76-08-31 75-11-24	Ξ	.01 .00 .01	.01 	.21 .01 .03	.00	.03	.09	.01 .01 .05	4400	4400	260 280 	.0 .1 .0 .0

					MASSAG	COUNTILLE	mernaea					
STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
40424207			N 9057		112GLCLU	76-01-28 76-03-19 76-06-22 76-09-13 76-06-23	47 47 47 47 175	370 390 335 440 665	5.5 5.5 5.6 5.7 5.7	14.0 13.5 14.0 13.0 12.0	83 86 86 86 150	72 72 69 68 140
40530707 40424007			N 9076 N 9077		112GLCLU 112GLCLU 112GLCLU	76-09-20 75-12-30 76-01-29 76-03-19 76-06-22	175 200 52 52 52	440 168 320 335 298	6.2 6.3 5.1 5.3 5.3	15.0 10.0 13.5 13.0 14.0	140 55 60 66 65	120 29 52 56 52
40450407	73302002		N 9079		112GLCLU 112GLCLU 112GLCLU	76-09-13 76-01-30 76-03-19 76-06-22 76-09-15	52 70 70 70 70	380 170 190 235 265	5.8 5.1 5.3 5.3	13.0 13.5 14.5 13.0 15.5	65 52 62 58 66	50 45 54 45 52
40435707 40441507 40474007 40482807	73330801 73285701		N 9084 N 9085 N 9089 N 9098		112GLCLU 112GLCLU 112GLCLU	76-04-28 76-04-28 76-06-23 76-09-15 76-05-17	143 94 178 178 72	179 420 187 250 475	5.5 5.5 5.2 5.9 7.2	12.0 13.0 14.0 13.0 14.0	49 140 50 55 230	41 130 35 37 100
40475707	3440401		N 9099		1126LCLU	76-05-17	71	305	6.2	14.5	150	110
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SULVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- HIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
76-01-28 76-03-19 76-06-22 76-09-13 76-06-23	25 26 26 26 26 37	5.0 5.0 5.0 5.0	26 27 27 27 27	6.6 6.4 6.6 6.7 3.8	14 16 20 21 18	11 13 16 17 15	54 57 55 56 41	28 29 28 27 180	.1 .0 .1 .0	12 13 13 13	164 172 242 172 394	16
76-09-20 75-12-30 76-01-29 76-03-19 76-06-22	34 13 20 21 21	13 5.5 2.5 3.2 3.0	68 8.6 31 32 30	3.7 1.2 5.9 5.8 6.2	17 32 10 12	8 10	40 25 43 43	180 12 37 38 36	.1 .0 .0	11 18 12 12 12	368 107 156 161 205	2.2
76-09-13 76-01-30 76-03-19 76-06-22 76-09-15	21 16 19 18 20	3.0 3.0 3.5 3.2 3.8	30 7.9 8.0 8.7	5.8 3.6 3.9 4.0 4.3	18 9 9 16	13	43 24 28 37 35	36 14 12 9.6	.0 .0 .1	12 8.8 9.0 9.4 9.3	160 82 88 121 106	6.3
76-04-28 76-04-28 76-06-23 76-09-15 76-05-17	13 39 12 13 43	4.0 9.3 4.9 5.4 29	15 25 15 17 32	1.4 9.8 1.9 1.9	10 12 18 21 152	10 15 17 125	5.7 76 .6 .0	19 23 15 16 68	.0 .1 .1	8.8 13 8.1 8.2 25	125 294 139 74 365	13 21 16 7.7
76-05-17	32	16	9.8	3.3	46	38	61	29	. 0.	23	236	8.8
DATE OF Sample	DIS- SOLVED NITRATE (N) (MG/L)	FOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITHO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
76-01-28 76-03-19 76-06-22 76-09-13 76-06-23	16	.04	.06	2.2	2.2	18	.02	.01	450 2000 1500 840 6600	270 350 910 440 6500	1400 1400 1400 1400 70	.2
76-09-20 75-12-30 76-01-29 76-03-19 76-06-22	1.7	.01	.00	.05	1.1	2.3	.02	.01	9500 640 7600 5600 4800	9600	100 200 1200 1000 990	.1
76-09-13 76-01-30 76-03-19 76-06-22 76-09-15	5.1	.01	.01	.05	.00	6.3	.02	.01	11000 980 4800 2600 1300	550 290 280 980 500	970 350 360 340 400	 -1
76-04-28 76-04-28 76-06-23 76-09-15 76-05-17	12 21 16 7.8	.02 .12 .01	.02 .00 .01	.07	2.4 1.8 .00	15 23 16	.33 .75 .03	.05 .04 .03	1700 2300 2100 2500 1400	30 70 1900 1800 40	110 140 750 530 20	.0
76-05-17	8.8	.03	.03	.04	.00	8.8	.02	.01	440	90	90	.1

QUALITY OF GROUND WATER WATER QUALITY DATA, WATER YEAR 1975 TO SEPTEMBER 1976 SUFFOLK COUNTY

STATION NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	TOTAL NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)
404825072580001	6 43734	FERT. WELL		11301011	75-10-17	53	.52	.00	.04	.68	1.2
404825072580001	3 43136	PERI. WELL			76-04-02	53	1.0	.00	.12	.43	1.4
					76-06-10	53	1.4	.01	.14	.73	2.1
404826072581101	C 42727	FERT. WELL	# 2		75-10-16	51	1.6	.00	.00	.01	1.6
404826072561101	3 43/3/	TERT. WELL			76-04-05	51	.13	.00	.09	.15	.28
				112GLCLU	76-06-11	51	2.0	.01	.01	.08	2.1
404818072575301	S 43738	FERT. WELL	# 3	112GLCLU	75-10-16	56	2.8	.00	.00	.04	2.8
				112GLCLU	76-06-11	56	2.7	.01	.00	.15	2.9
404816072580601	5 43739	FERT. WELL	# 4	112GLCLU	75-10-17	50	5.6	.00	.03	1.0	6.6
				112GLCLU	76-04-02	50	1.9	.00	.01	1.1	3.0
				112GLCLU	76-06-10	50	2.9	.01	.10	1.0	3.9
404815072581401	5 43740	FERT. WELL	# 5	112GLCLU	75-10-16	59	.86	.00	.00	.09	.95
				112GLCLU	76-06-11	59	.52	.00	.04	.13	.65
404832072580201	5 43741	FERT. WELL	# 6	112GLCLU	75-10-17	53	.75	.00	.00	.33	1.1
				112GLCLU	76-04-02	53	.11	.00	.20	.55	.66
				112GLCLU	76-06-10	53	.44	.01	.04	.58	1.0
404830072575401	5 43742	FERT. WELL	# 7		.75-10-17	53	•50	.01	.00	1.5	2.0
					76-04-05	53	.41	.00	.04	1.3	1.7
				112GLCLU	76-06-11	53	.02	01	.20	1.7	1.7

		TOTAL
	TOTAL	ORTHO
DATE	PHOS-	PHOS-
OF	PHORUS	PHORUS
SAMPLE	(P)	(P)
	(MG/L)	(MG/L)
75-10-17	.62	.01
76-04-02	.11	.01
76-06-10	.18	.00
75-10-16	.01	.01
76-04-05	•02	.01
76-06-11	.03	.00
75-10-16	.01	.01
76-06-11	.02	.00
75-10-17	.24	.01
76-04-02	.24	.01
76-06-10	.14	.09
75-10-16	.01	.01
76-06-11	.01	.00
75-10-17	.13	.01
76-04-02	.16	.05
76-06-10	.09	.01
75-10-17	•15	.01
76-04-05	.20	.01
76-06-11	.10	.00

QUALITY OF GROUND WATER

SUFFOLK COUNTY--Continued

	LOCAL		TOTAL			TOTAL	TOTAL KJEL- DAHL	TOTAL
	IDENT-	GEO- DATE	DEPTH	TOTAL	TOTAL	NITRO-	NITRO-	NITRO-
	I-	LOGIC OF	OF	NITRATE	NITRITE	GEN	GEN	GEN
STATION NUMBER	FIER	UNIT SAMPLE	WELL	(N)	(N)	(N)	(N)	(N)
STATION NOMBER	1 22	01121 DAM EE	(FT)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)
404830072580801	S 43743 FERT. WELL # 8	112GLCLU 75-10-17	51	3.0	.00	.00	.63	3.6
		112GLCLU 76-04-02	51	1.8	.00	.00	.45	2.3
		112GLCLU 76-06-10	51	1.6	.00	.04	.75	2.4
404829072581701	S 43744 FERT. WELL # 9	112GLCLU 75-10-16	46	.45	.00	.00	.11	.56
		112GLCLU 76-04-05	46	.17	.00	.03	.13	.30
		112GLCLU 76-06-11	46	•66	.01	.02	.08	.75
404812072575701	S 43745 FERT. WELL #10	112GLCLU 75-10-17	53	2.6	.00	.04	.60	3.2
		112GLCLU 76-04-05	53	1.1	.00	.04	.43	1.5
		112GLCLU 76-06-10	53	1.8	.00	.09	.53	2.3
404806072575201	S 43746 FERT. WELL #11	112GLCLU 75-10-17	46	1.0	.00	•02	.54	1.5
		112GLCLU 76-04-02	46	.07	.00	.12	.73	.80
		112GLCLU 76-06-10	46	1.1	.00	.04	.83	1.9
404756072575001	S 43747 FERT. WELL #12	112GLCLU 76-06-11	49	1.6	.00	.00	.10	1.7
404751072575501	5 43748 FERT. WELL #13	112GLCLU 75-10-17	43	2.5	.00	.05	1.1	3.6
		112GLCLU 76-04-02	43	.67	.00	.04	1.3	2.0
		112GLCLU 76-06-10	43	3.7	.01	.04	1.2	4.9
404802072575601	S 43749 FERT. WELL #14	112GLCLU 75-10-16	52	4.5	.00	.00	.32	4.8
		112GLCLU 76-06-11	52	1.7	.00	.17	.18	1.9
404917072583901	S 43750 FERT. WELL #15	112GLCLU 75-10-16	48	3.3	.00	.00	.11	3.4

DATE PHONS- PHON	
DATE PHOS PHOSON PHOSON PHORUS PHORUS PHORUS PHORUS PHORUS PHORUS PHORUS PHORUS PHORUS PHOSON PHORUS PHOSON PHORUS PHOSON PHORUS PHOSON	
OF PHORUS PHOPUS (P) (P) (P) (7) (M6/L) (M6/L) 75-10-17 .71 .0 76-04-02 .27 .0 75-10-16 .25 .0 75-10-16 .02 .0	
SAMPLE (P) (P) (MG/L) (MG/L) 75-10-17 .71 .0 76-04-02 .27 .0 75-10-16 .25 .0 75-10-16 .02 .0	
SAMPLE (P) (P) (MG/L) (MG/L) 75-10-17 .71 .0 76-04-02 .27 .0 75-10-16 .25 .0 75-10-16 .02 .0	S
75-10-17 .71 .0 76-04-02 .27 .0 76-06-10 .25 .0 75-10-16 .02 .0	
76-04-02)
76-06-10 .25 .0 75-10-16 .02 .0	1
75-10-16 .02 .0	1
	0
76-04-05 -01 -0	1
10 01 00	1
76-06-11 .02 .0	0
75-10-17 .09 .0	1
76-04-05 .04 .0	1
76-06-10 .05 .0	0
75-10-17 •11 •0	7
76-04-02 .21 .0	4
76-06-10 .14 .0	h
76-06-11 .02 .0	1
75-10-17 .29 .0	8
76-04-02 •21 •0	9
76-06-10 .23 .0	1
75-10-16 .03 .0	1
76-06-11 .02 .0	1
75-10-16 .02 .0	1

QUALITY OF GROUND WATER

SUFFOLK COUNTY -- Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LUGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
40492007	3150901		S 45594		11261 CLU	76-03-18	80	137	5.8	10.5		
40590607			5 46524			76-04-07	17	300	5.7	10.0	27	27
40492007			5 46913			75-10-10	19	40	6.2	16.5	6	0
10172001	- 10 1002					75-11-06	19	63	6.1	15.0	11	0
						75-12-05	19	28	6.4	14.0	13	0
					112GLCLU	76-01-09	19	80	5.3	2.0	14	0
						76-02-12	19	110	6.4	3.0	10	0
					112GLCLU	76-03-05	19	170	6.9	4.0	14	0
					112GLCLU	76-04-02	19	95	6.8	5.5	7	0
					112GLCLU	76-05-07	19	215	6.5	9.0	24	6
					112GI CI II	76-06-04	19	50	6.4	13.0	11	0
						76-07-09	19	213	6.2	18.0	33	13
						76-08-06	19	49	6.4	19.0	12	0
						76-09-02	19	52	6.4	20.0	14	0
		DIS-		DIS-							DIS-	
	DIS-	SOLVED		SOLVED				DIS-	DIS-		SOLVED	
	SOLVED	MAG-	DIS-	P0-		ALKA-	DIS-	SOLVED	SOLVED	DIS-	SOLIDS	DIS-
DATE	CAL-	NE-	SOLVED	TAS-	BICAR-	LINITY	SOLVED	CHLO-	FLU0-	SOLVED	(SUM OF	SOLVED
OF	CIUM	SIUM	SODIUM	SIUM	BONATE	AS	SULFATE	RIDE	RIDE	SILICA	CONSTI-	NITRATE
SAMPLE	(CA)	(MG)	(NA)	(K)	(HC03)	CACO3	(504)	(CL)	(F)	(5102)	TUENTS)	(N)
	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)
76-03-18			5.0	1.2		15	31	6.0				1.1
76-04-07	5.7	3.2	41	.1	1	1	5.8	79	.0	4.5	140	.15
75-10-10	2.0	.2	4.9	1.3	19	16	1.8	3.2	.0	2.2	26 38	
75-11-06	4.0	• 2	7.0	1.8	19	16	2.7	9.6	• 0	2.0	22	.26
75-12-05	4.0	.7	1.6	1.3	19	16	1.6	1.4	•1	1.4	~~	
76-01-09	4.7	.5	14	.8	18	15	4.0	16	•1	•7	50	.07
76-02-12	3.0	•5	18	.5	20	16	4.1	20	•1	.9	57 94	.12
76-03-05	4.0	1.0	28	1.0	29	24	4.9	39	•1	1.1	52	.16
76-04-02	5.2	. 4	16	.6	20	16	3.7	17 50	.0	1.1	110	.71
76-05-07	6.5	1.8	31	1.3	21	17	4.1	50	•0	1.9	110	
76-06-04	2.9	.9	9.2	.8	21	17	5.8	5.2	.0			.96
76-07-09	1.6	7.0	31	1.8	24	20	8.9	42	•1	3.2	112 35	.79
76-08-06 76-09-02	3.7	.7	3.7	1.3	18	15 15	10	1.1	•1	2.2	29	.49
	4.1	1.0	3.0	1.5	18							

	DIS-		DIS-	TOTAL
DATE	SOLVED	TOTAL	SOLVEO	MAN-
OF	NITRITE	IRON	IRON	GANESE
SAMPLE	(N)	(FE)	(FE)	(MN)
	(MG/L)	(UG/L)	(UG/L)	(UG/L)
76-03-18	.00	600		20
76-04-07		40		70
75-10-10	.01	120		0
75-11-06	.00	140	10	10
75-12-05	.01	440	40	10
76-01-09	.00		60	
76-02-12	.01	150	30	10
76-03-05	.01	150	20	10
76-04-02	.01	190	70	0
76-05-07	.01	70	30	0
76-06-04	.00	140	30	0
76-07-09	.01	90	60	20
76-08-06	.01	130	90	0
76-09-02	.01	130	70	10

QUALITY OF GROUND WATER

SUFFOLK COUNTY -- Continued

STATION	NUMBER		LOCAL IDENT- I- FIEH		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
404917072	2484501		S 46914		112GLCLU 112GLCLU 112GLCLU 112GLCLU 112GLCLU	75-11-06 75-12-05 76-01-09	33 33 33 33 33	226 150 27 25 305	5.6 5.7 5.4 5.1 6.6	18.0 17.0 14.0 10.0 7.0	37 28 8 9 10	30 19 5 0 6
					112GLCLU 112GLCLU 112GLCLU 112GLCLU 112GLCLU	76-04-02 76-05-07	33 33 33 33	300 900 265 310 240	5.8 5.8 6.2 5.8 6.2	7.0 6.5 7.0 8.5 14.0	39 63 11 14 7	36 57 3 0
40461707	3035501		S 47035		112GLCLU	76-08-06 76-09-02 76-04-29	33 33 508	180 148 43	6.2 6.1 6.2	14.0 16.0	6 5 12	0 5 0
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
75-10-10 75-11-06 75-12-05 76-01-09 76-02-12	11 10 2.3 3.0 3.0	2.2 .8 .5 .3	27 20 3.1 2.1 1.6	2.3 1.8 .9 .7	8 11 4 15	7 9 3 12 3	4.2 6.7 4.6 4.4 3.5	59 33 3.7 2.1 4.2	•0 •1 •1 •1	3.7 3.8 2.4 2.1 1.7	116 85 20 23 18	=======================================
76-03-05 76-04-02 76-05-07 76-06-04 76-07-09	12 18 2.8 3.5	2.3 4.4 .9 1.2 1.5	39 160 48 61 42	2.4 4.2 1.4 1.9	4 7 9 18 18	3 6 7 15 15	1.9 2.6 9.8 11 14	88 300 74 97 50	•1 •0 •0 •0	1.9 2.0 1.9	150 496 144 122	Ē
76-08-06 76-09-02 76-04-29	1.8 1.2 3.0	.3 .5 1.0	32 26 3.4	1.1 1.1 .3	19 0 15	16 0 12	10 17 2.9	35 28 3.6	•1 •1 •1	2.7 2.9 13	95 80 35	
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	FOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
75-10-10 75-11-06 75-12-05 76-01-09 76-02-12	.66 .67 .12 .09	 	.01 .00 .01 .00	=======================================	=======================================	==	=======================================	=	120 240 120 90 110	190 10 30 20	0 10 0 0 10	=======================================
76-03-05 76-04-02 76-05-07 76-06-04 76-07-09	.12 .37 .16 .32	==	.01 .00 .01 .00	=======================================	==		=======================================	=======================================	210 360 110 200 70	40 30 30 20 50	0 20 10 0	=======================================
76-08-06 76-09-02 76-04-29	.65 .72 .04	.00	.01 .00 .00	.03	.23			.02	280 130 40	90 80	10 0 10	

QUALITY OF GROUND WATER

SUFFOLK COUNTY--Continued

STATION	NUMBER	Tre-	LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA,MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
40524007	2491402		5 47226		112GLCLU	75-10-10	27	115	6.5	11.0	29	0
					112GLCLU	75-11-06	27	105	6.2	13.0	42	1
					112GLCLU	75-12-05	27	95	6.5	12.0	33	0
					112GLCLU	76-01-09	27	112	5.7	10.0	33	0
					112GLCLU	76-02-12	27	115	6.6	10.0	30	0
						76-03-05	27	110	6.5	11.0	32	2
						76-04-02	27	120	6.5	9.3	30	0
						76-05-07	27	117	6.5	9.5	30	0
						76-06-04	27	85	7.6	10.0	28	0
					112GLCLU	76-07-09	27	122	6.4	10.0	29	0
						76-08-06	27	116	6.5	10.5	27	0
					112GLCLU	76-09-02	27	120	6.7	10.0	31	0
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	UIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	DIS- SOLVED NITRATE (N) (MG/L)
75-10-10	9.1	1.4	4.4	.4	. 36	30	3.7	9.0	.0	11	57	.00
75-11-06	12	2.8	3.8	.4		40	4.0	5.7	.2	14	68	.01
75-12-05	9.9	2.0		.5		34	4.6	8.0	.0	11	72	.00
76-01-09	11	1.4		.6	41	34	3.0	8.2	.0	11	72	.02
76-02-12	9.5	1.6	4.1	. 4	38	31	1.5	8.3	•0	11	67	.01
76-03-05	10	1.7		. 6		30	3.2	8.8	.1	11	69	.00
76-04-02	9.2	1.6		.4	40	33	3.3	7.7	.0	11	68	.01
76-05-07	8.9	1.8		.3		31	.8	7.5	.0	11	66	•17
76-06-04	8.4	1.6		.3		. 29	1.2	5.2	.0	11	60	.01
76-07-09	9.0	1.6	4.2	.5	39	32	2.9	8.8	.0	11	69	.00
76-08-06	8.6	1.4	4.0	.5	40	33	2.7	6.9	.1	11	66	.06

	DIS-		DIS-	TOTAL
DATE	SOLVED	TOTAL	SOLVED	MAN-
OF	NITRITE	IRON	IRON	GANESE
SAMPLE	(N)	(FE)	(FE)	(MN)
	(MG/L)	(UG/L)	(UG/L)	(UG/L)
75-10-10	.01	11000		210
75-11-06	.00	720	580	210
75-12-05	.01	10000	11000	210
76-01-09	.00	12000	12000	30
76-02-12	•02	12000	12000	230
76-03-05	.01	11000	11000	210
76-04-02	.00	11000	11000	210
76-05-07	.00	12000	12000	220
76-06-04	.00	11000	11000	190
76-07-09	.00	13000	12000	210
76-08-06	.00	11000	11000	220
76-09-02	.01	11000	11000	180

			WAILK QUE	CLIII DAI		COUNTYC		IO SEFIEM	BER 1970			
STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
40524007	2491401		S 47227		112GLCLU 112GLCLU 112GLCLU 112GLCLU 112GLCLU	75-11-06 75-12-05 76-01-09	103 103 103 103 103	93 80 74 90 90	7.2 7.0 6.8 6.1 7.4	11.0 11.0 11.0 10.0 9.0	40 11 42 39 37	0 5 1 0 1
					112GLCLU 112GLCLU	76-04-02 76-05-07	103 103 103 103 103	80 94 89 65 95	7.4 7.5 7.5 6.9 7.1	10.0 9.5 9.3 11.0 15.0	37 37 34 33 33	1 2 1 0 0
40492207 40560607 40574007	2202701		S 47756 S 48425 S 48426		112GLCLU 112GLCLU	76-08-06 76-09-02 76-04-29 76-04-07 76-04-06	103 103 69 41 121	84 92 86 360 150	7.5 7.2 5.5 5.7 6.5	13.0 12.0 11.0 10.5 11.0	33 32 20 150 46	0 0 13 120 28
40561807 40570407 40580707 40550107 40560607	2165901 2121001 2215501		S 48427 S 48428 S 48429 S 48430 S 48432		112GLCLU 112GLCLU	76-04-06 76-04-07 76-04-06 76-04-06 76-04-05	52 71 62 39 63	275 61 370 58 74	5.7 6.0 6.1 6.7 6.3	12.0 11.0 11.5 12.0 11.0	74 11 150 10 14	69 0 120 6 3
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
75-10-10 75-11-06 75-12-05 76-01-09 76-02-12	12 3.1 12 12 11	2.4 .8 3.0 2.3 2.3	3.8 8.0 3.7 3.6 3.4	.3 1.2 .4 .4	48 7 50 48 44	39 6 41 39 36	2.6 11 3.2 4.1 4.3	5.2 10 4.8 4.7 5.3	.0 .0 .3 .1	14 6.5 14 14	64 46 67 65 63	
76-03-05 76-04-02 76-05-07 76-06-04 76-07-09	11 11 10 9.4	2.3 2.2 2.2 2.3 2.0	3.8 3.6 3.3 3.3 3.5	.4 .2 .1 .3	44 42 40 40	36 34 33 33 34	5.1 4.8 7.3 5.1 5.0	5.6 5.1 5.5 2.4 5.8	.1 .1 .1	14 14 14	65 62 63 	E
76-08-06 76-09-02 76-04-29 76-04-07 76-04-06	10 10 4.0 47 12	1.9 1.8 2.5 7.0 3.8	3.5 3.4 6.8 7.3 7.4	.3 .4 .5 2.8	41 43 9 26 22	34 35 7 21 18	4.8 5.6 4.7 90 21	4.0 3.1 13 22 12	.1 .0 .0	15 15 7.8 7.9 16	60 61 44 197 84	.35
76-04-06 76-04-07 76-04-06 76-04-06 76-04-05	1.5 47 1.2 2.9	4.7 1.8 6.7 1.6 1.7	14 5.7 8.4 6.7 7.0	5.8 .6 .8 .9	6 19 28 4 14	5 16 23 3 11	42 4.6 100 16 6.4	19 8.8 14 11	.0 .0 .0	7.6 7.5 7.5 8.5	121 40 198 47 45	=
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
75-10-10 75-11-06 75-12-05 76-01-09 76-02-12	.00 .44 .00 .01	=======================================	.01 .00 .01 .00	=======================================	=======================================	=======================================	:- :- :-	=======================================	740 2700 690 700 740	180 590 580 580	200 40 200 20 200	E
76-03-05 76-04-02 76-05-07 76-06-04 76-07-09	.01 .01 .11 .01	=======================================	.01 .01 .00	=======================================	=======================================	=======================================	=======================================	=======================================	680 640 630 630 530	600 550 510 590 <460	190 190 200 180 180	=
76-08-06 76-09-02 76-04-29 76-04-07 76-04-06	.01 .00 .16	.00	.00 .01 .01	.03	•10	 -45 	.01	.01	740 600 3500 240 510	480 580 	200 160 20 30 10	.0
76-04-06 76-04-07 76-04-06 76-04-06 76-04-05	=======================================	=======================================	=======================================		- =		=======================================	=======================================	230 300 480 190 380	=======================================	10 20 10 0	=======================================

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

SUFFOLK COUNTY--Continued

									PE-				
STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTA DEPT OF WEL (FT	L C	IFIC ON- UCT- NCE ICRO-	PH UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
405644072 405831072 405844072 405325072	171201 191601	14.	S 48433 5 48437 5 48438 5 48439		112GLCLU 112GLCLU	76-04-0 76-04-0 76-04-0 76-01-2 76-04-0	7 69 5 78 9 51		61 63 104 117 148	6.0 6.2 5.9 6.0 6.2	11.0 10.5 10.0 13.0 13.0	10 12 22 22 22 28	1 3 10 8 16
405325072 405349072 405838072	234801		S 48440 S 48441 S 48517		112GLCLU 112GLCLU	76-01-29 76-04-09 76-01-29 76-04-09 76-04-09	5 102 9 61 5 61		78 81 292 320 64	6.7 6.7 5.9 6.0	11.5 12.0 12.0 12.0 11.0	17 17 100 110	4 5 96 99
405650072 410243071 405818072 405940072 405858072	560101 132101 164701		S 48518 S 48519 S 48520 S 48521 S 48522		112GLCLU 112GLCLU	76-04-00 76-04-00 76-04-00 76-04-00 76-04-00	8 82 7 59 6 75		86 225 190 67 112	5.7 6.6 5.6 6.3 6.5	12.0 11.5 11.0 11.0	15 48 43 12	5 17 29 0
4101490719 4059280729 4103160719 4100240729 4053080729	110401 535501 103201		\$ 48577 \$ 48578 \$ 48579 \$ 48580 \$ 48581		112GLCLU 112GLCLU 112GLCLU	76-04-00 76-04-00 76-04-00 76-04-00 76-01-29	6 32 8 66 6 46		132 270 235 84 70	6.7 5.5 5.8 5.3 6.1	11.0 12.0 12.0 12.0 10.5	14 29 36 14	1 9 17 8 2
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SULVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)		SULFA (SO4	- SC ED CH TE RI	IDE	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
76-04-05 76-04-07 76-04-05 76-01-29 76-04-05	2.0 2.5 5.2 6.0 7.5	1.3 1.4 2.3 1.6 2.2	5.2 5.9 8.3 12	.6 .5 .9 .7	12 11 15 16	12 13	5 2 9 3 11	.8 .1 .4	7.9 7.4 11 18 25	.0 .0 .0 .1	8.8 12 11 7.4	38 40 55 70	1.1
76-01-29 76-04-05 76-01-29 76-04-05 76-04-06	4.0 3.8 30 31 2.5	1.8 1.8 7.0 7.2 1.3	6.7 6.7 10 11 6.1	.4 .4 .7 .8	16 14 10 10	11	6 8 8 8 8 8		10 9.1 19 19 7.9	.2 .1 .0 .0	14 14 9.0 9.4	54 49 183 166 41	.37 4.8
76-04-06 76-04-08 76-04-07 76-04-06 76-04-08	3.1 9.7 8.8 2.5 2.6	1.8 5.8 5.0 1.3 1.8	8.3 21 12 6.3	1.2 2.7 5.1 .6	12 38 16 14	31	1 11 3 7 1 5	•0 •4 •0 •4	14 29 20 7.7	.0 .1 .0 .0	7.9 21 12 12 9.3	51 119 78 42 62	65-01 H
76-04-07 76-04-06 76-04-08 76-04-06 76-01-29	2.8 8.0 7.0 1.5 4.0	1.7 2.1 4.6 2.6	17 40 26 9.6 8.1	1.2 3.4 2.5 .6	16 24 24 8 14	13 20 20 7	13 15	.6 .5 .7	22 52 37 14 10	.0 .0 .1 .0	12 12 12 10 8.1	69 142 116 51 46	 .06
DATE OF SAMPLE	DIS- SOLVE NITRATE (N) (MG/L	ED TOTA TE NITRI (N)	TE NITRI	VED NIT	TAL KJ DNIA DA TRO- NI EN G	TRO- NI EN G	TRO- SEN	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	(FE) GANE	I- ACT ISE SU I) STA	NE UE I VE B- NCE
76-04-0 76-04-0 76-04-0 76-01-2 76-04-0	07 05 29 1.1	<u>.</u>	.00		.00	•00	1.1	.03	• 0	- 4 - 16 1 2	80	40 20 20 20 20 20	 •0
76-01-2 76-04-0 76-01-2 76-04-0 76-04-0	5.05 5.05	-	.00 .	01	.01 .01	•04 •03 ==	•41 4•8 ———————————————————————————————————	.02	.01	- 5 I 5	40 30 40 30 90	10 0 20 0	-0 -1
76-04-0 76-04-0 76-04-0 76-04-0 76-04-0	08 07 06						=	=======================================		- 2	60 80 90 10 70	10 20 70 10 20	
76-04-0 76-04-0 76-04-0 76-04-0 76-01-2)6)8 	 		 00	'		.06		.01	- 7 - 25 - 3		90 40 30 20 20	 •

SUFFOLK COUNTY--Continued

					OULION	0001111	oncinaca					
STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
40464107 40512107			S 48759 S 48946		112GLCLU 112GLCLU	76-04-29 75-10-10 75-11-06 75-12-05 76-01-09	33 41 41 41 41	230 190 185 155 85	5.7 5.7 5.6 6.2 6.2	12.0 15.0 11.6 11.0 5.0	51 51 10 54 10	38 42 4 39 0
					1126LCLU 1126LCLU	76-02-12 76-03-05 76-04-02 76-05-07 76-06-04	41 41 41 41	110 200 40 165 175	6.5 6.5 6.6 6.1 5.8	8.0 10.0 10.5 11.0 10.5	36 61 10 65 64	16 46 0 52 50
40525907 40584607			S 48958 S 49898		112GLCLU 112GLCLU 112GLCLU	76-07-09 76-08-13 76-09-02 76-04-29 76-04-07	41 41 41 81 64	180 178 98 180 255	6.0 5.9 6.5 6.0 5.7	11.0 12.0 13.0 10.5 11.0	84 53 27 46 12	69 39 14 33 1
40571607 40572207			S 51566 S 51581			76-05-27 76-05-28	87 43	558 480	6.0 5.9	11.0	290 230	280 280
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVEN SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
76-04-29 75-10-10 75-11-06 75-12-05 76-01-09	16 12 2.1 14 3.3	2.8 5.2 1.2 4.5	18 12 6.4 7.0 7.8	2.9 3.1 .8 4.2 1.4	16 11 8 18	13 9 7 15 12	20 16 7.9 9.2 4.8	13 24 9.0 17 9.6	.0 .0 .0	7.2 10 5.7 5.6	146 107 39 84 37	12
76-02-12 76-03-05 76-04-02 76-05-07 76-06-04	9.0 16 2.7 18 17	3.4 5.0 .9 4.8 5.3	13 10 2.6 8.1 8.3	3.4 3.5 1.3 3.3 3.3	25 18 15 16 18	12	21 37 4.9 40 45	19 18 2.1 16 15	•1 •1 •1 •0	3.3 6.5 1.8 7.7	92 119 25 122	1.8
76-07-09 76-08-13 76-09-02 76-04-29 76-04-07	5.6 15 7.2 11 3.5	17 3.7 2.3 4.5	9.6 5.0 2.7 12 37	3.8 2.8 3.1 .9	18 17 16 16	14 13	42 37 18 8.6 3.1	14 10 3.4 17 62	.1 .0 .1 .0	8.8 6.8 4.4 11 4.5	132 98 54 99 119	9.4
76-05-27 76-05-28	90 72	17 12	12 10	3.5 4.8	15 15		210 170	39 30	•0	=	Ξ	16 12
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITHO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
76-04-29 75-10-10 75-11-06 75-12-05 76-01-09	13 4.2 .20 1.8 .24	.03	.01 .01 .00 .16	.19	-05	=	•01 	•01 	420 5400 12000 5800 860	900 5800 50	40 20 110 590 10	-1
76-02-12 76-03-05 76-04-02 76-05-07 76-06-04	1.2 2.5 .33 3.3 3.2	.03	.03 .01 .01 .01	.56 	•77 	==	-22	•01	3000 2900 590 1800 630	2600 2800 90 1600 360	780 1800 280 15000 730	-0
76-07-09 76-08-13 76-09-02 76-04-29 76-04-07	5.0 2.1 .42 5.9	.01	.01 .01 .01	.03	• 05	9.5	•01	.01	1300 470 3000 950 1200	500 200 3000	670 320 840 10 70	== == ==
76-05-27 76-05-28	14 7.4	.01	.01	.01	•00		.01	.00	970 2000	180 290	40 50	.2

172			WATER QUA	ALITY DAT	A, WATER	OF GROUN YEAR OCTO	BER 1975	то ѕертем	BER 1976			
STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
40550007	2495201	75 52() 5.8) 5.81 5.41	S 51583		115ercrn		49 49 49 49	80 85 80 65	5.8 6.2 7.0 5.7	13.0 11.0 11.0 10.0	16 26 17 15 13	8 0 4 10 5
					112GLCLU 112GLCLU 112GLCLU	76-05-07 76-06-04 76-07-09 76-08-13 76-09-03	49 49 49 49	40 40 40 62 58	5.8 5.7 5.7 5.7 6.0	10.0 10.0 9.5 10.0 10.0	13 12 8 10 10	5 1 0 0 0
405634072380501 405349072494101			S 51588 S 51592		112GLCLU 112GLCLU 112GLCLU	76-05-28 75-10-10 75-12-05 76-01-09 76-02-12	58 39 39 39 39	465 85 95 100 45	5.9 6.0 5.8 5.5 5.6	11.0 14.0 11.5 11.3 11.5	240 20 15 15 22	230 15 6 8 19
					112GLCLU 112GLCLU	76-03-08 76-04-02 76-05-07 76-06-04 76-07-09	39 39 39 39	75 65 55 50 55	6.9 5.6 5.8 5.7 5.6	11.0 10.5 10.0 11.0 11.0	12 12 14 13 13	9 8 6 2 3
						76-08-13 76-09-03	39	74 71	5.4 5.5	11.0	11 10	5
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SUDIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
75-10-10 75-11-06 75-12-05 76-03-08 76-04-02	3.2 9.0 2.8 2.0 1.6	1.9 .9 2.5 2.5 2.2	6.4 4.4 6.6 9.4 6.7	.8 .6 .8 .7	9 37 16 6 10	13	8.7 2.6 7.6 7.0 8.3	9.8 8.5 9.9 17 9.8	.0 .0 .1 .1	6.4 11 5.9 6.5 6.5	43 65 45 49 43	
76-05-07 76-06-04 76-07-09 76-08-13 76-09-03	1.9 1.5 1.7 1.3 1.2	2.1 2.1 1.0 1.7 1.6	6.2 6.1 6.8 6.4 6.1	.6 .9 .7	10 14 14 16 15	11 11 13	7.8 8.3 8.2 9.0 8.5	9.7 6.4 6.2 7.1 5.4	.0 .0 .0	6.4 6.5 6.4 6.5	40 39 39 41 38	
76-05-28 75-10-10 75-12-05 76-01-09 76-02-12	74 6.0 3.7 4.8 6.5	13 1.1 1.5 .7 1.4	8.3 7.8 8.0 8.0	4.1 1.1 1.2 1.1	16 6 12 8 4	5 10 7	160 9.8 12 11 12	25 12 10 10	.0 .0 .1 .0	6.5 6.5 6.5	49 51 48 52	13
76-03-08 76-04-02 76-05-07 76-06-04 76-07-09	3.0 2.7 3.1 3.0 1.1	1.2 1.3 1.4 1.4 2.5	8.2 7.9 7.4 7.5 8.1	.7 .9 .9 .9	4 5 9 14 12	7 11	10 11 9.4 12 10	12 11 9.9 8.4 8.0	.0 .0 .1 .0	6.5 6.7 6.7	45 46 45 46	
76-08-13 76-09-03	2.6	1.2	7.4 7.2	1.0	12 13		11 11	9.6 7.7	•0	6.8	47 46	
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
75-10-10 75-11-06 75-12-05 76-03-08 76-04-02	.29 .01 .16 .13 .27	.	.01 .00 .01 .01	=	*		=	=	3600 11000 4300 740 990	10000 700 310 220	50 220 60 40 60	in the second se
76-05-07 76-06-04 76-07-09 76-08-13 76-09-03	.11 .18 .10 .12		.01 .00 .01 .01		=		E		210 1400 2000 2000 250	160 140 80 190 170	20 30 30 50 30	
76-05-28 75-10-10 75-12-05 76-01-09 76-02-12	.42 .38 .51	•01 	.01 .01 .01 .00	.11	.38	Ξ	•15 	•01 	2000 450 1900 230 450	1700 200 80 100	280 20 20 0 10	
76-03-08 76-04-02 76-05-07 76-06-04 76-07-09	.38 .53 .45 .46	: :	.01 .00 .01 .00	=		Ξ	=		250 920 260 270 220	50 100 100 50 130	10 20 130 10 20	į
76-08-13 76-09-03	.44	= =	.01 .01	Ξ	=		=	==	140 120	60 90	20 20	

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO MHOS)	- PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
405448072	224701		S 52650		112GLCLU	76-04-19	38	10	5 5.4	11.0		
405912072			S 52657		112GLCLU			10		13.0	23	0
405411072			5 52658		112GLCLU	76-04-05	50	8			19	6
405437072	211101		5 52665		112GLCLU			26				
405434072	204001		S 52666		112GLCLU	76-04-05	40	20	0 5.9	11.0	59	47
405510072	203701		5 52667		112GLCLU			35				
405544072			S 52668		112GLCLU			45			200	190
405554072			5 52669		112GLCLU			40			140	130
405535072 405443072			S 52670 S 52671		112GLCLU			32				
405603072			5 52673		112GLCLU	76-04-20	53	36	0 5.2	10.0	120	110
405624072			5 52674		112GLCLU			27				
											015-	
	DIS-	DIS- SOLVED		DIS- SOLVED				DIS-	DIS-		SOLVED	
	SOLVED	MAG-	DIS-	P0-		ALKA-	DIS-	SOLVE		DIS-	SOLIDS	
DATE	CAL-	NE-	SOLVED	TAS-	BICAR-	LINITY				SOLVED	(SUM OF	TOTAL
OF	CIUM	SIUM	SODIUM	SIUM	BONATE	AS	SULFATE		RIDE	SILICA	CONSTI-	NITRATE
SAMPLE	(CA)	(MG)	(NA)	(K)	(HC03)	CAC03	(504)	(CL)	(F)	(\$102)	TUENTS)	(N)
	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L	(MG/L) (MG/L	(MG/L)	(MG/L)	(MG/L)
76-04-19								-				.30
76-04-07	4.4	3.0	9.4	.7	28	23	6.1		•		62	
76-04-05	3.1	2.8	7.3	.3	16				•		50	
76-04-19												.01
76-04-05	18	3.3	9.1	2.8	14	11	35	19	•	4.4	99	
76-04-19								-				3.6
76-04-19	64	10	8.3	4.3	10			22				11
76-04-07	42	7.6	11	12	8			24	•			
76-04-19									-			14
76-04-19										· 14		1.7
76-04-20 76-04-20	37	6.0	17	5.3	12	10		28			241	19
75-04-20												
						TAL					MF	тнү-
				TO		EL-		1	OTAL			ENE
	DIS	-	01		ONIA DA		TAL T		RTHO	TO	TAL BI	LUE
DATE												TIVE
OF	NITRA	TE NIT	RITE NITH	RITE G	EN G	EN (JB-
SAMPL			N) (1					(P)				ANCE
	(MG/	L) (M	G/L) (M	6/L) (M	G/L) (M	G/L) (1	4G/L) (MG/L) (MG/L) (UG/L) (U	G/L) (M	G/L)
76-04-			.00		.24	.38	.68	.02	.01			. 0
76-04-										11000	40	
76-04-										1700	10	.0
76-04- 76-04-			.00		.36	-48	•49	-01	.01	560	20	
76-04-	-19		.01		.03	•00	3.6	.01	.01			.1
76-04-		_	.01	.01	.03		11	.01	.01	610	10	.1
76-04-										910	530	
76-04-			.01		.05	•03	14	.01	.01			.2
76-04-	-19		.02		.04	.08	1.8	.01	.01			•1
76-04-	-20 18		.01	.01	.04	•00	19	.01	.01	880	40	.2
76-04-			.05		.04		10	.01	.01			•1

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

SUFFOLK COUNTY--Continued

					DOLLOUK	COUNTY	oncinaca					
STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
40561007 40554907 40553507 40550307 40553407	2164501 2164401 2165001		S 52675 S 52676 S 52677 S 52679 S 52680		112GLCLU 112GLCLU 112GLCLU	76-04-20 76-04-19 76-04-20 76-04-06 76-04-19	45 44 45 43 48	330 440 360 250 450	5.2 5.4 6.0 5.8 5.9	11.0 11.0 11.0 12.0 11.0	120 74 200	99 53 190
40553807 40555207 40560007 40563207 41085707	2153001 2150001 2115601		S 52681 S 52682 S 52683 S 52686 S 54830		112GLCLU 112GLCLU 112GLCLU	76-04-19 76-04-19 76-04-06 76-04-06 76-05-27	46 46 43 45	235 460 300 230 750	5.2 5.4 5.5 6.0 5.5	11.0 11.0 12.0 11.0	100 68 560	91 58 550
41085707 41021507 41021507	2244102		S 54831 S 54834 S 54835		112GLCLU	76-05-27 76-05-27 76-05-27	10 24 24	885 287 330	5.6 6.0 6.0	10.0 10.0 10.0	640 250 260	620 240 230
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
76-04-20 76-04-19 76-04-20 76-04-06 76-04-19	34 23 65	8.2 4.1	14 12 11	1.4 5.1 7.6	26	20 21	69 38 120	28 24 37	.0	18 5.9 6.8	196 125 318	7.1 10 3.0
76-04-19 76-04-19 76-04-06 76-04-06 76-05-27	30 18 160	6.2 5.5 39	8.9 13 34	9.8 2.6 6.6	12	10	58 31 430	21 26 99	 •0 •0	7.3 7.5 9.2	147 110 847	12 16 18
76-05-27 76-05-27 76-05-27	190 72 78	39 18 15	30 11 11	3.3 4.0 2.0	23	19	470 120 140	100 36 33	.0 .0	9.3 9.8 8.2	944 384 382	21 23 20
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)		GEN (N)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
76-04-20 76-04-19 76-04-20 76-04-06 76-04-19	2.6	.01 .01 .01	.01	.03 .03 .04	.05	3.2	.01 .01 .04	.01 .01 .01	3000 1300 3900		110 10 30	•1 •1 •1
76-04-19 76-04-19 76-04-06 76-04-06 76-05-27		.01 .00 		.06	.00	12 16	.01 .01 	.01 .01 	1500 340 980		20 10	.1 .1
76-05-27 76-05-27 76-05-27	21 23 18	.01 .01	.01	.01 .02	.70	22	.05 .02 .01	.01 .01 .00	260 90 140	30	190 320 30	.5

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

SUFFOLK COUNTY -- Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA,MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
40593807 40560907 40550707 40575607 40530907	72143101 72244401 72173501		S 8288 S 8738 S 8831 S 8833 S 8836		112GLCLU 112GLCLU 112GLCLU	76-04-07 76-04-19 76-04-07 76-04-07 76-04-05	59 45 23 12 35	84 65 140 40 147	6.4 5.4 6.1 6.8 6.0	12.0 12.0 13.0 9.0 14.0	16 12 4 47	 0 1 19
40575607 40562807 40594807 41005807 41003407	72164701 72172101 72190301		S 8837 S 8838 S 8844 S 10229 S 15048		112GLCLU 112GLCLU 112GLCLU	76-04-06 76-04-06 76-04-07 76-04-19 76-04-06	33 46 86 45	425 180 65 100 80	6.4 5.6 7.4 5.8 5.7	11.0 12.0 12.0 12.0 12.0	61 53 17 19	29 48 3 2 5
40543807 40551107 41003307 40531507 40470307	72193501 72075501 72263201		S 15332 S 15333 S 16121 S 22499 S 29776		112GLCLU	76-04-07 76-04-20 76-04-06 76-04-05 76-05-21	45 48 45 49 720	425 250 113 270 40	5.7 5.9 6.0 5.4 6.0	11.0 12.0 11.0 14.0 12.0	160 97 23 91 7	150 82 11 51 0
40470307	73264203		S 29777		211MGTY	76-05-24	720	45	6.0	12.0	6	0
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
76-04-07 76-04-19 76-04-07 76-04-07 76-04-05	1.5 .8	1.8 1.9 .6 2.4	7.7 5.0	.7 .8 .2 2.0	15 14 4 35	12 11 3 29	7.6 .9 3.6	12 13 7.4 17	• 0 • 0 • 0 • 0	8.1 .5 7.4	55 41 20 89	3.8
76-04-06 76-04-06 76-04-07 76-04-19 76-04-06	20 16 4.0 6.0 1.7	2.8 3.1 1.6 1.0	45 7.7 6.4 14 9.3	6.9 7.3 .4 .3 .6	40 6 17 21 8	33 5 14 17 7	20 32 4.0 12 6.3	77 15 9.0 13	.0 .0 .1 .0	6.5 8.6 18 7.9 8.6	198 93 52 65 46	.11
76-04-07 76-04-20 76-04-06 76-04-05 76-05-21	51 31 4.3 23 2.1	8.9 4.8 2.9 8.1	11 7.7 13 18 2.3	4.8 3.6 2.1 .6	12 19 14 48 14	10 16 11 39 11	110 64 13 13 2•1	27 19 20 33 3•2	.0 .1 .0 .0	7.3 6.2 11 6.4 6.5	226 167 73 126 24	 -01
76-05-24	1.8	.3	3.3	.4	18	15	1.1	3.1	•0	5.9	28	.62
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)	TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUR- STANCE (MG/L)
76-04-07 76-04-19 76-04-07 76-04-07 76-04-05		•01		.03	.08	3.9	.01	.01	240 24000 950 160	=	10 120 20 10	.1
76-04-06 76-04-06 76-04-07 76-04-19 76-04-06	.09	.00	.01	.02	.08	 •19	.01	.00	1400 100 1400 300 1200	E	130 10 10 0 20	
76-04-07 76-04-20 76-04-06 76-04-05 76-05-21	4.8 -04		.01		.05		.11	.09	360 1600 690 350 360	 190	40 10 10 20 10	 -1
76-05-24	.63	.01	.01	.01	•00	.63	.01	.01	430	40	320	.0

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976 SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TOTAL DEPTH OF WELL (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (CA,MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)
404703073	3264205		S 29778		211MGTY 211MGTY 211MGTY 211MGTY 211MGTY	75-11-11 75-12-16 76-01-16 76-02-10 76-03-12	168 168 168 168	235 270 250 250 230	6.1 6.3 5.7 5.5 6.1	13.2 11.0 11.0 12.0 10.5	84 87 94 95 86	64 61 76 61 71
					211MGTY 211MGTY 211MGTY 211MGTY 211MGTY	76-04-09 76-05-11 76-06-08 76-07-13 76-08-02	168 168 168 168	230 205 215 280 250	5.9 5.8 5.9 5.7 5.9	10.0 14.0 11.0 12.0	79 86 90 98 98	66 71 73 83 82
404932073 405421073 405221073 404932073	2271202 2255401		S 33380 S 34644 S 36401 S 37847		112GLCLU	76-09-01 76-05-20 76-04-05 76-04-05 76-04-29	168 855 65 56 349	250 25 104 68 75	6.1 6.0 5.7 5.3 6.3	12.0 11.0 11.0 12.0	88 9 29 11 18	73 0 12 0 1
DATE OF SAMPLE	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- HONATE (HCO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NITRATE (N) (MG/L)
75-11-11 75-12-16 76-01-16 76-02-10 76-03-12	17 15 13 15 13	10 12 15 14 13	6.9 7.5 7.2 7.6 7.3	1.8 2.0 2.0 1.8 1.9	24 31 22 41 18	20 25 18 34 15	2.5 4.1 4.4 4.1 3.3	15 14 15 14 15	.1 .0 .1 .1	7.0 7.3 7.2 7.1 7.3	139 161 168 172 136	50
76-04-09 76-05-11 76-06-08 76-07-13 76-08-02	12 13 13 16 16	12 13 14 14	7.4 7.4 7.1 7.6 7.1	1.8 1.8 1.8 2.1	16 18 21 18	13 15 17 15 16	2.3 .8 1.8 2.7 1.3	14 13 11 16 12	.0 .0 .0	7.2 7.3 7.5 7.5 7.4	69 158 151 172 166	55 ==
76-09-01 76-05-20 76-04-05 76-04-05 76-04-29	14 1.9 5.5 1.6 4.0	13 1.1 3.7 1.8 1.9	6.6 3.4 8.5 9.1 5.6	1.8 .3 .7 .3	18 21 14	15 17 11	3.5 2.4 14 5.9 2.4	12 3.4 13 14 6.3	.0 .0 .1 .0	7.5 12 17 8.1 17	143 34 73 48 54	21 -04 1.2
DATE OF SAMPLE	DIS- SOLVED NITRATE (N) (MG/L)	TOTAL NITRITE (N) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)		TOTAL NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	TOTAL ORTHO PHOS- PHORUS (P) (MG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
75-11-11 75-12-16 76-01-16 76-02-10 76-03-12	15 19 21 20 15	.03	.01 .01 .01	.05	.21	:	.03	.01	100 250 220 1000 120	30 30 30 30 50	40 50 40 60 50	.2
76-04-09 76-05-11 76-06-08 76-07-13 76-08-02	.95 21 19 22 22	.03	.05 .07 .00 .01	.01	.05	55	.01	.01	80 120 470 70 140	20 30 30	40 50 40 40	
76-09-01 76-05-20 76-04-05 76-04-05 76-04-29	17 •03 ———————————————————————————————————	.01 .00 	.01 .00 	.02	• 0 5	.09	.01 .02 	.01 .01 	2900 1300	230	40 20 30 10	.2

MINOR ELEMENT ANALYSES OF GROUND WATER WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

		LOCAL DENT-	GEO- LOGIC	TOTAL DEPTH OF	DATE	TOTAL ARSENIC	TOTAL CAD-		TOTAL CHRO-	TOTAL COBALT	TOTAL
STATION NUMBER		FIER	UNIT	WELL (FT)	SAMPLE	(AS) (UG/L)	(CD)		(CR) (UG/L)	(CO) (UG/L)	(CU) (UG/L)
404123073394802		1129	112GLCLU	44	76-06-02	0		0	10	1	10
404123073394802	N	1143	112GLCLU	38	76-06-02			ĭ	<10	ō	10
	N	1160	112GLCLU	31	76-01-16			ō	<10	ŏ	0
404342073362601 404036073352602	2	1165	112GLCLU	42	76-05-03	ĭ		ĭ	10	ž	ŏ
		1168	112GLCLU	28	76-05-03	0		ô	<10	2	ő
403849073350801	·N	1100	TIZGLULU	20	10-03-03			v			
404736073353101	N	1176	112GLCLU	198	75-10-23	0		1	10	3	150
		5.500.5	112GLCLU	198	76-01-21	1		1	<10	0	100
			112GLCLU	198	76-03-12	1		0	0	0	20
404657073332201	N	1194	112GLCLU	100	75-12-15	0		1	<10	2	10
404454073323901	N	1197	112GLCLU	69	76-01-30	0		1	10	0	10
404200073315101	N	1201	112GLCLU	29	76-05-04	0		0	10	1	0
404542073282901	N	1232	112GLCLU	57	76-01-30	1		1	10	2	10
404239073255201	N	1251	112GLCLU	19	76-05-04	0		0	20	1	0
404855073360001	N	7450	112GLCLU	134	76-06-21	0		1	<10	2	10
404203073354603	N	8235	112GLCLU	53	76-05-05	0		0	<10	0	10
405009073314501	N	8430	211MGTY	145	76-06-21	0		1	<10	0	130
404239073355502	N	8598	112GLCLU	45	76-05-03	0		1	10	2	0
404144073285201	N	8669	112GLCLU	35	76-05-04	0		0	<10	1	0
404702073305601	N	8888	112GLCLU	112	75-10-23	0		8	10	11	50
404453073344702	N	8984	112GLCLU	48	76-01-28	0		1	<10	1	40
			112GLCLU	48	76-03-19		By A.	-			
404832073333203	N	9059	211MGTY	175	76-06-23	4		0	10	2	10
404504073302002	N	9079	112GLCLU	70	76-01-30	0		1	10	1	0
404357073331701	N	9084	112GLCLU	143	76-04-28 E			15	10	4	100
404415073330801	N	9085	112GLCLU	94	76-04-28 E	3C 20		7	20	3	50
404740073285701	N	9089	112GLCLU	178	76-06-23	0		0	10	9	0

		TOTAL	
DATE	TOTAL	SELE-	TOTAL
0F	LEAD	NIUM	ZINC
SAMPLE	(PB)	(SE)	(ZN)
	(UG/L)	(UG/L)	(UG/L)
76-06-02	3	0	40
76-06-02	10	2	70
76-01-16	6	0	10
76-05-03	5	0	1000
76-05-03	6	0	500
75-10-23	100	0	320
76-01-21	41	0	170
76-03-12	3	0	120
75-12-15	8	0	100
76-01-30	8	0	20
76-05-04	2	0	290
76-01-30	9	0	110
76-05-04	4	0	330
76-06-21	6	0	130
76-05-05	9	0	40
76-06-21	9	0	20
76-05-03	25	0	1800
76-05-04	0	0	30
75-10-23	11	0	910
76-01-28	17	0	1000
76-03-19			220
76-06-23	1	0	30
76-01-30	7	0	20
76-04-28	330	0	440
76-04-28	450	0	860
76-06-23		0	9.0

Geological unit (aquifer): 112GLCLU - Upper glacial aquifer, Pleistocene age. 211MGTY - Magothy aquifer, Upper Cretaceous age.

Note: See tables of Quality of Ground Water for additional analyses.

B Additional analyses in Radiochemical analyses of ground water. C Additional analyses in Pesticide analyses of ground water.

RADIOCHEMICAL ANALYSES OF GROUND WATER

WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

STATION	NUMBER		LOCAL IDENT- I- FIER	1811 1832 1881	GEO- LOGIC UNIT	TOTAL DEPTH OF WELL (FT)	DATE OF SAMPLE	PENDED GROSS ALPHA AS U-NAT. (UG/L)	PENDED GROSS BETA AS CS-137 (PC/L)	PENDED GROSS BETA AS SR90 /Y90 (PC/L)	
404357073 404415073		((\$500)	N 9084 N 9085		112GLCLU	143 94	76-04-28 76-04-28		3.1	2.5 2.3	

Geological unit (aquifer): 112GLCLU - Upper glacial aquifer, Pleistocene age.

A Additional analyses in Minor Element analyses of ground water. C Additional analyses in Pesticide analyses of ground water.

Note: See tables of Quality of Ground Water for additional analyses.

PESTICIDE ANALYSES OF GROUND WATER

WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

				MAILK	IEAR OCTOB	LK ISIS						
STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	TOTAL DEPTH OF WELL (FT)	DATE OF SAMPLE	TOTAL ALDRIN (UG/L)	TOTAL CHLOR- DANE (UG/L)	TOTAL DDD (UG/L)	TOTAL DDE (UG/L)	TOTAL DDT (UG/L)
40435707 40441507			N 9084 N 9085		112GLCLU	143 94	76-04-28 76-04-28		.0	.00	.00	.00
									2100 a			
	8.											
DATE OF SAMPLE	TOTAL DI- AZINON (UG/L)	TOTAL DI- ELDRIN (UG/L)		TOTAL ETHION (UG/L)		TOTAL HEPTA- CHLOR EPOXIDE (UG/L)	TOTAL	TOTAL MALA- THION (UG/L)	TOTAL METHYL PARA- THION (UG/L)	TOTAL METHYL TRI- THION (UG/L)	TOTAL PARA- THION (UG/L)	TOTAL PCB (UG/L)
76-04-28 76-04-28	.00	.01				.00			.00	.00	.00	.0

DATE OF SAMPLE	TOTAL TOX- APHENE (UG/L)	TOTAL TRI- THION (UG/L)	TOTAL 2,4-D (UG/L)	TOTAL 2,4,5-T (UG/L)	TOTAL SILVEX (UG/L)
76-04-28	0	.00	.00	.00	.00
76-04-28	0	.00	.00	.00	.00

Geological unit (aquifer): 112GLCLU - Upper glacial aquifer, Pleistocene age.

A Additional analyses in Minor Element analyses of ground water. B Additional analyses in Radiochemical analyses of ground water.

Note: See tables of Quality of Ground Water for additional analyses.

	IND	EX	
	- N		
	Page		Page
Accuracy of field data and computed results	15	East Patchogue, Swan River at	56-57 87
AcknowledgmentsAcre-foot, definition of	3 4	East River, at Eastport Elda Lake Outlet, at North Babylon	90
Algae, definition of	4	at Sunrise Highway, at North Babylon	91
Algal growth, definition of	4	Elda Lake Tributary, at North Babylon	90
Amityville Creek, at Amityville	91	Tributary, at North Babylon	90
Analyses of samples collected at, miscellaneous	94-96	English-Metric (International System) units conversion factorsinside of ba	ck cover
Precipitation stations	97-99	Explanation of, ground-water level records	17
Aquifer, definition of	4	surface-water records	12
Artesian, definition of	4	water-quality records	15
Aspatuck Creek, near Westhampton Beach	87	Tongo Divon of Monichos	88
Awixa Creek, at Islip	89	Forge River, at Moriches	78-80
Babylon, Carlls River at	69-70	Freeport Creek, at Freeport	92
Sampawams Creek at	67-68	East Branch, at Freeport	92
Bacteria, definition of	4	West Branch, at Freeport	92
Bay Shore, Pentaquit Creek at	65-66 87	Gage height, definition of	6
Bed material, definition of	4	Gaging station, definition of	6
Bellmore Creek, at Bellmore	75-77	Gaging station records	33-84
Tributary, at North Wantagh	92	Gaging stations, list of, in downstream order	VI
near North Wantagh	92	Glen Cove Creek, at Glen Cove	33-34
Big Fresh Pond Outlet, at North Sea Biochemical oxygen demand, definition of	87	Green Creek, at West SayvilleGround water, level data	88 100-132
Biomass, definition of	4		133-178
Carlls River, at Babylon	69-70	Hardness, definition of	6
at North Babylonat Park Avenue, Babylon	90 91	Hydrograph, East Meadow Brook at Freeport Nissequogue River near Smithtown	20 21
at West Babylon	90	Well N8959 at East Meadow	22
at Wyandanch	90	Hydrologic bench mark station, definition of	12
near West Babylon	90	Hydrologic conditions	3
Carman Creek, at Amityville	91	Hydrologic unit, definition of	6
Carmans River, at Middle Island	88	International System (SI) unitsinside of ba	ck cover
at South Havenat Yaphank	53-55	Introduction	1
below Lower Lake, at Yaphank	88	Island Swamp Brook, at Lattingtown	85
near Yaphank	88	Islip, Champlin Creek at	64, 89
Cascade Lakes Outlet, at Brightwaters Cedar Swamp Creek, at Merrick	89 92	Vince County ground-water levels in	100
Cells/volume, definition of	5	Kings County, ground-water levels in	201.101
Cfs-day, definition of	5	Lake Ronkonkoma Inlet, at Lake Ronkonkoma	60, 88
Champlin Creek, at Beech Street, near Islip	89	Land-surface datum, definition of	17
at Islip	64, 89 89	Ligonee Brook, at Sag Harbor	71, 91
at Islip Boulevard, near Islip	89	Little River, near Riverhead	86
Chemical oxygen demand, definition of	5	Little Seatuck Creek, at Eastport	87
Chloride concentration, monthly fluctuations		Location of data collection stations (maps)	24-32
(illustration)	23 5	Low-flow partial-record stations	85-93
Chlorophyll, definition of	37-38	Malverne, Pines Brook at	81-82
Color unit, definition of	5	Massapequa Creek, at Massapequa	72-74
Computation, accuracy of results	15	at North Massapequa	91
Connetquot Brook, at Central Islip	88	at South Farmingdale	91
near Central Islipnear Oakdale	88 89	at Southern State Parkway, at South Farming-dale	91
Connetquot River, near Oakdale	61-63	Mean sea level, definition of	17
Contents	v	Metamorphic stage, definition of	6
Contents, definition of	5	Methylene blue active substance, definition of.	6
Control, definition of	5	Micrograms per gram, definition of Micrograms per liter, definition of	6
Cooperation	2	Mill Creek, at Noyack	87
Cubic feet per second, definition of	5	near Huntington	85
Definition of towns		Mill Neck Creek, at Mill Neck	35-36
Definition of terms Discharge, definition of	4 5	Millburn Creek, at Baldwin	92
Dissolved, definition of	6	Minor element analyses, ground water	177
Downstream order and station numbers	11	Motts Creek, at Valley Stream	93
Drainage area, definition of	6	Mud Creek, at East Patchogue	88
Drainage basin, definition of	6	Nassau County, ground-water levels in	100-114
East Meadow Brook, at East Meadow	92	quality of ground-water in	133-163
at Freeport	78-80	National stream-quality accounting network	
at Uniondale	92	station	42-52
near Westbury	92	definition of	12

	Page		Page
Neguntatogue Creek, at Lindenhurst	91	Rattlesnake Brook, near Oakdale	89
Newbride Creek, at Merrick	92	Riverhead, Peconic River at	41-52
Nissequogue River, at Smithtown	86	Roslyn Brook, at Roslyn	85
near Hauppauge	86	Runoff in inches, definition of	8
near Smithtown	39-40	Kunozi zn znonos, uozinioska vitti titti titti	
Northeast branch, at Smithtown	85	Sampawams Creek, at Babylon	67-68
	85	below Hawleys Lake, at Babylon	89
near East Hauppauge	2.2		89
near Hauppauge	85	near Deer Park	89
near Smithtown	86	near North Babylon	
Numbering system for wells	11	Santapogue Creek, at Lindenhurst at State Highway 27A, Lindenhurst	71, 91 91
Oakdale, Connetquot River near	61-63	Seaford Creek, at Seaford	92
Organism, definition of	6	Seamans Creek, at Seaford	92
Organism count/area, definition of	6	Seatuck Creek, at Eastport	87
Organism count/volume, definition of	6	Sediment, definition of	8
Value stance the second of the second	- Sulvania	Smithtown, Nissequogue River near	39-40
Pardees Ponds Outlet, at Islip	89	South Pond Outlet, at Rockville Centre	93
Parsonage Creek, at Baldwin	93	Special networks and programs	12
Partial-record station, definition of	7	Specific conductance, definition of	9
			87
Particle-size, definition of	7	Speonk River, at Speonk	9
Particle-size classification, definition of		Stage-discharge relation, definition of	85
Patchogue River, at Patchogue	58-59	Stony Hollow Run, at Centerport	03
near Patchogue	88	Streamflow, definition of	
Peconic River, at Calverton	86	Strongs Creek, at Lindenhurst	91
at Manorville	86	Substrate, definition of	9
at Nugent Drive, at Riverhead	86	Suffolk County, ground-water levels in	116-132
at Riverhead	41-52	quality of ground-water in	164-176
near Calverton	86	Surface area, definition of	9
near Manorville	86	Surface-water records	33-96
Pentaquit Creek, at Bay Shore	65-66	Surficial bed material, definition of	9
Percent composition, definition of	7	Suspended, definition of	9
Pesticide analyses, ground water	178	Swan River, at East Patchogue	56-57
Pesticide program, definition of	12	The state of the s	2017 15 10
Pesticides, definition of	7	Taxonomy, definition of	9
Picocurie, definition of	7	Time-weighted average, definition of	9
Pines Brook, at Malverne	81-82	Tons per acre-foot, definition of	10
Plankton, definition of	7	Tons per day, definition of	10
	8	Total load, definition of	10
Polychlorinated biphenyls, definition of	The second secon	local load, definition of	111
Poxabogue Pond Outlet, at Sagaponack	87	Wall Carrer Wall-m Carrer	07.04
Precipitation, quality of, at East Meadow	97	Valley Stream, at Valley Stream	83-84
at Mineola	98	below West Branch, at Valley Stream	93
at Upton	99		
Preface	III	Wading River, at Wading River	86
Primary productivity, definition of	8	Water-quality miscellaneous sites	94-96
Publications on techniques of water-resources		Weesuck Creek, at East Quogue	87
investigations	18	Weighted average, definition of	10
		White Brook, at Riverhead	8.7
Quantuck Creek, at Quogue	87	Whitney Lake Outlet, at Manhasset	85
Queens County, ground-water levels in		WRD, definition of	10
A TOTAL STATE OF THE STATE OF T		WSP, definition of	10
Radiochemical analyses, ground water	178		
Radiochemical program, definition of	12	Yaphank, Carmans River at	53-55

FACTORS FOR CONVERTING ENGLISH UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the English units published herein to the International System of Units (SI). Subsequent reports will contain both the English and SI unit equivalents in the station manuscript descriptions until such time that all data will be published in SI units.

Multiply English units	Ву	To obtain SI units
	Length	
inches (in) feet (ft) miles (mi)	2.54x10 ¹ 2.54x10 ² 3.048x10 ¹ 1.609x10 ⁰	millimeters (mm) meters (m) meters (m) kilometers (km)
	Area	
acres	4.047x10 ³ 4.047x10 ⁻¹ 4.047x10 ⁻¹ 4.047x10 ⁻³	square meters (m ²) *hectares (ha) square hectometers (hm ²) square kilometers (km ²)
square miles (mi ²)	2.590x10°	square kilometers (km²)
	Volume	
gallons (gal)	3.785x10° 3.785x10° 3.785x10°	**liters (l) cubic decimeters (dm³) cubic meters (m³)
million gallons (10 ⁶ gal)	3.785×10^{3} 3.785×10^{3}	cubic meters (m³) cubic hectometers (hm³)
cubic feet (ft³)	2.832x10 ¹	cubic decimeters (dm³)
cfs-days [(ft³/s) · d]	2.832×10^{-2} 2.447×10^{-3}	cubic meters (m ³) cubic meters (m ³)
acre-feet (acre-ft)	2.447x10 ⁻³ 1.233x10 ⁻³ 1.233x10 ⁻³ 1.233x10 ⁻⁶	cubic hectometers (hm³) cubic meters (m³) cubic hectometers (hm³) cubic kilometers (km³)
	Flow	
cubic feet per second (ft ³ /s)	2.832x10 ¹ 2.832x10 ¹ 2.832x10 ²	liters per second (1/s) cubic decimeters per second (dm ³ /s) cubic meters per second (m ³ /s)
gallons per minute (gal/min)	6.309x10 ⁻² 6.309x10 ⁻²	liters per second (1/s) cubic decimeters per second (dm³/s)
million gallons per day (mgal/d)	6.309x10 ⁻⁵ 4.381x10 ⁻¹ 4.381x10 ⁻²	cubic meters per second (m³/s) cubic decimeters per second (dm³/s) cubic meters per second (m³/s)
	Mass	
tons (short)	9.072x10 ⁻¹	tonnes (t)

^{*}The unit hectare is approved for use with the International System (SI) for a limited time. See NBS Special Bulletin 330, p.15, 1972 edition.

**The unit liter is accepted for use with the International System (SI). See NBS Special Bulletin 330, p. 13, 1972 edition.

U.S. DEPARTMENT OF THE INTERIOR Geological Survey 5 Aerial Way Syosset NY 11791

POSTAGE AND FEES PAID U.S. DEPARTMENT OF THE INTERIOR INT 413

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300