
(200) Ga3 New Jersey 1978 v. 2

Water Resources Data for New Jersey

Volume 2. Delaware River Basin and Tributaries to Delaware Bay

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NJ-78-2
WATER YEAR 1978

Prepared in cooperation with the New Jersey Department of Environmental Protection and with other agencies

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI). This report contains both the inch-pound and SI unit equivalents in the station manuscript descriptions.

Multiply inch-pound units	Ву	To obtain SI units
	Length	
inches (in)	2.54x10 ¹	millimeters (mm)
feet (ft)	2.54x10 ⁻² 3.048x10 ⁻¹	meters (m) meters (m)
miles (mi)	1.609x10°	kilometers (km)
	Area	
acres	4.047x10 ³ 4.047x10 ⁻¹	square meters (m ²) square hectometers (hm ²)
	4.047x10 ⁻³	square kilometers (km²)
square miles (mi ²)	2.590x10°	square kilometers (km²)
	Volume	
gallons (gal)	3.785x10°	liters (L)
	3.785x10° 3.785x10 ⁻³	cubic decimeters (dm³) cubic meters (m³)
million gallons	3.785×10^3	cubic meters (m ³)
cubic feet (ft³)	3.785×10^{-3} 2.832×10^{1}	cubic hectometers (hm ³ -) cubic decimeters (dm ³)
	2.832x10 ⁻²	cubic meters (m ³)
cfs-days	2.447×10^{3}	cubic meters (m ³)
acre-feet (acre-ft)	2.447x10 ⁻³ 1.233x10 ³	cubic hectometers (hm³) cubic meters (m³)
	1.233x10 ⁻³	cubic hectometers (hm³)
	1.233x10 ⁻⁶	cubic kilometers (km³)
	Flow	
cubic feet per second (ft ³ /s)	2.832x10 ¹	liters per second (L/s)
	2.832x10 ¹ 2.832x10 ⁻²	cubic decimeters per second (dm³/s) cubic meters per second (m³/s)
gallons per minute (gal/min)	6.309x10 ⁻²	liters per second (L/s)
	6.309x10 ⁻² 6.309x10 ⁻⁵	cubic decimeters per second (dm³/s)
million gallons per day	4.381×10^{1}	cubic meters per second (m ³ /s) cubic decimeters per second (dm ³ /s)
	4.381x10 ⁻²	cubic meters per second (m³/s)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

UNITED STATES DEPARTMENT OF THE INTERIOR

CECIL D. ANDRUS, Secretary

GEOLOGICAL SURVEY

H. William Menard, Director

Prepared in cooperation with

New Jersey Department of Environmental Protection
Division of Water Resources
Division of Fish, Game and Shell Fisheries
New Jersey Department of Agriculture
Delaware River Basin Commission
Corps of Engineers, U.S. Army
U.S. Environmental Protection Agency
North Jersey District Water Supply Commission
Passaic Valley Water Commission
County of Bergen
County of Camden
County of Morris
County of Somerset
Township of West Windsor

For additional information write to
District Chief, Water Resources Division
U.S. Geological Survey
P. O. Box 1238
Room 436, Federal Building
Trenton, New Jersey 08607

the second

PREFACE

This report was prepared by the U.S. Geological Survey in cooperation with the State of New Jersey and with other agencies by personnel of the New Jersey district of the Water Resources Division under the supervision of H. Meisler, District Chief, and J. E. Biesecker, Regional Hydrologist, Northeastern Region.

This report is one of a series issued State by State under the general direction of J. S. Cragwall, Jr., Chief Hydrologist, and G. W. Whetstone, Assistant Chief Hydrologist for Scientific Publications and Data Management.

Data for New Jersey are in two volumes as follows:

Volume 1. Atlantic Slope Basins, Hudson River to Cape May Volume 2. Delaware River Basin and Tributaries to Delaware Bay

BIBLIOGRAPHIC DATA	1. Report No.	2.		3. Recipient'	s Accession No.
SHEET	USGS/WRD/HD-79/034			5. Report Da	
4. Title and Subtitle					
	ta for New Jersey, Water Year e River Basin and Tributaries		laware Bay	June 19	979
7. Author(s)				8. Performing No. USG	g Organization Rept. S-WDR-NJ-77-2
9. Performing Organization	Name and Address	1		10. Project/	Task/Work Unit No.
	rvey, Water Resources Division 436 Eederal Building	on		11. Contract/	Grant No.
Trencon, new octoe					
	rvey, Water Resources Division 436 Federal Building	on		Oct. 1, Sept. 30	
	ation with the New Jersey Dep	partmen	t of Environ	mental Pr	otection and
with other agencies 16. Abstracts Water 1	s. resources data for the 1978 v		or for Non	Torgon oo	neist of
This volume of the summaries for 4 states for 17 gaging states for 8 observation of 19 low-flow partial sites, not part of miscellaneous measures System operated by in New Jersey.	nd reservoirs; and water level report contains discharge relations; stage and contents follows, 80 partial-record flow wells. Also included are 27 lerecord stations. Additional the systematic data collections. These data represents. Geological Survey and of the systematic data collections.	ecords or 16 la station crest-al water ion progent that	for 22 gaginakes and resums, and 51 wastage partiated at a were gram, and and part of the	ng station servoirs; vells; and al-record collected re publish ne Nationa	s; tide water quality water levels stations and at various ed as 1 Water Data
	t Analysis. 17a. Descriptors				
Gaging stations, La	ologic data, *Surface water, akes, Reservoirs, Chemical an ter levels, Water analyses.				
176, Identifiers/Open-Ended	Terms				
17c. COSATI Field/Group					
	No restriction on distribut:	Lon.	19. Security Cla Report)	iss (This	21. No. of Pages
This report may be			UNCLAS	SIFIED	308
National Technical	Information Service		20. Security Cla Page	iss (This	22. Price

CONTENTS

				Page
List of Record List of	surfactions ground ition teion edgment ggic cor eam ord eam ord eam ord eam ord eations data a data of cations data a data of cations ettion of cations ettion of cations ettion of cations ettion e	ce-water stations, in downstream order, for which records are published d-water stations, by county, for which records are published	ey	III VI VII 1 1 1 2 2 2 10 10 10 11 11 11 12
		ILLUSTRATIONS		
Figure	1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	Monthly streamflow at key gaging stations	Jersey. ersey. Jersey.	10 21 22 23 24 25 26 27 28 29 30 31 32 33
		TABLES		
Table	1. Fa	factors for conversion of chemical constituents in milligrams per liter	to	
1016		milliequivalents per liter		6
		parts per million		6
	4. Wa	later-supply paper numbers, surface-water quality records, water years 1 later-supply paper numbers, ground-water level records, water year 1935-	945-70.	15 18

[Letter after station name designates type of data: (d) discharge, (c) chemical, (b) biological, (m) microbiological (e) elevation, gage height or contents, (t) water temperature, (s) sediment]

	Page
MAURICE RIVER BASIN	
Scotland Run near Franklinville (cm)	34
Maurice River at Norma (dcms)	35
Muddy Run near Norma (cm)	37
Maurice River near Millville (cm)	38
Maurice River at Sharp Street, at Millville (cms)	40
Manantico Creek near Millville (d)	42
Manantico Creek near Port Elizabeth (cm)	43
manumuskin niver near manumuskin (cm).	45
Cohansey River at Seeley (dcms)	47
Cohansey River at outlet of Sunset Lake, at Bridgeton (cms).	50
Cohansey River at Bridgeton (cms)	53
DELAMADE DIVED DACIN	
Delaware River at Port Jervis, NY (dt)	55
Neversink River at Godeffroy, NY (d)	58
Delaware River at Montague (dcm)	59
Big Flat Brook at Tuttles Corner (cms)	62
Flat Brook at Wallpack Center (cm)	64
Flat Brook at Flatbrookville (dcm)	66
Delaware River near Delaware Water Gap, PA (d)	69
Delaware River at Portland, PA (cm)	70 72
Faulins All at Blairstown (dcm). Yards Creek near Blairstown (d).	75
Paulins Kill at mouth, at Columbia (cm).	76
Pelaware River near Richmond, PA (cm)	78
Pequest River at Townsbury (d)	80
Pequest River at Pequest (dcms)	81
Beaver Brook near Belvidere (cms)	85
Pequest River at Belvidere (cm)	87
Delaware River at Belvidere (d)	89
Delaware River at Easton, PA (d)	90
Delaware River at Northampton Street, at Easton, PA (cm)	91
Lehigh River at Bethlehem, PA (d)	93
Pohatcong Creek at Carpentersville (cm)	94
Musconetcong River at outlet of Lake Hopatcong (cm)	95
Musconetcong River at Lockwood (cm)	97 99
Musconetcong River at Stephens State Park (cm)	100
Musconetcong River at Hampton (cm)	
Musconetcong River near Bloomsbury (dcms).	
Musconetcong River at Riegelsville (cms)	107
Delaware River at Riegelsville (cm)	110
Hakihokake Creek at Milford (cms)	112
Harihokake Creek near Frenchtown (cms)	115
Delaware River at Frenchtown (cm)	117
Nishisakawick Creek at Frenchtown (cm)	119
Delaware and Raritan Canal at Kingston (d)	
Lockatong Creek near Raven Rock (cms)	
Wickecheoke Creek at Locktown (cm).	
Wickecheoke Greek at Stockton (cm).	
Alexauken Creek near Lambertville (cms)	
Delaware River at Lambertville (cm)	
Swan Creek at Lambertville (cm)	
Moores Creek near Lambertville (cm)	135
Moores Creek near Titusville (cm)	
Delaware River at Washington Crossing (cm)	137
Delaware River at Trenton (dtcsbm)	
Assunpink Creek near Clarksville (d)	
Shipetaukin Creek at Bakersville (cm).	160
Shabakunk Creek near Lawrenceville (cm)	161
Assunpink Creek at Trenton (dcms)	162
Assumpink Creek at Peace Street, at Trenton (cms)	165
Delaware River at Marine Terminal, at Trenton (e)	167
Crosswicks Creek at Hockamik Road, near Cookstown (cm)	168
Crosswicks Creek at Extonville (dcms)	169
Crosswicks Creek near Groveville (cms)	172
Doctors Creek at Allentown (cm)	173
Doctors Creek at Rt. 130, near Yardville (cms)	174
Blacks Creek at Bordentown (cms)	175 176
Assiscunk Creek at Columbus (cm).	177
Assiscunk Creek near Burlington (cms).	179
Delaware River at Burlington (e)	181
South Branch Panacana Crooks	
Gum Spring at Fourmile (cm)	182
South Branch Rancocas Creek at Retreat (cm)	183

DELAMADE DAUED BACAN Continued	Page
DELAWARE RIVER BASINContinued South Branch Rancocas Creek at Vincentown (cm)	185
Southwest Branch Rancocas Creek at Eavrestown (cms)	187
South Branch Rancocas Creek at Hainesport (cms)	189
North Branch Rancocas Creek at Browns Mills (cm)	192
Greenwood Branch:	
Pole Bridge Branch near Buckingham (cm)	194
Pole Bridge Branch near Browns Mills (cm)	195
McDonalds Branch in Lebanon State Forest (dtcsm)	196
Bisphams Mill Creek near Presidential Lakes (cm)	204
North Branch Rancocas Creek at Pemberton (dcms).	207
North Branch Rancocas Creek at Ewanville (cm)	210
North Branch Rancocas Creek at Pine Street, at Mount Holly (cms)	
Rancocas Creek at Centerton (cms)	
Mill Creek near Willingboro (d)	216
Delaware River at Palmyra (e)	217
Pennsauken Creek:	
North Branch Pennsauken Creek near Moorestown (cms)	218
South Branch Pennsauken Creek at Cherry Hill (dcms)	220
Cooper River at Norcross Road, at Lindenwold (cm)	223
Cooper River at Kirkwood (cms)	225
Cooper River at Lawnside (cms)	230
Cooper River at Haddonfield (dcms)	233
Cooper River at Camden (cms)	235
Copper niver at Camben (cms). Big Timber Creek:	233
South Branch Big Timber Creek at Blackwood (cm)	237
North Branch Big Timber Creek at Berlin Road, at Clementon (cm)	239
North Branch Big Timber Creek at Glendora (cms)	241
Almonesson Creek at Runnemede (cms)	243
Schuylkill River at Philadelphia, PA (d)	245
Mantua Creek at Pitman (cm)	247
Monongahela Brook at Wenonah (cm)	249
Mantua Creek at Mantua (cms)	251
Raccoon Creek near Mullica Hill (cms)	
Raccoon Creek near Swedesboro (dcms)Oldmans Creek at Porches Mill (cms)	
Oldmans treek at Forenes mill (cms). Delaware River at Delaware Memorial Bridge, at Wilmington, DE (etc).	
Salem River at Woodstown (dems)	261
Salem River at Courses Landing (cms)	264
Alloway Creek at inlet of Alloway Lake near Alloway (cm)	266
Reservoirs in Delaware River basin (e).	
Diversions and withdrawals in Delaware River basin	
GROUND WATER STATIONS, BY COUNTY, FOR WHICH RECORDS ARE PUBLISHED	
GROUND-WATER LEVEL RECORDS	
Burlington County	284
Camden County	285
Cumberland County	
Gloucester County	
Hunterdon County	
Salem County.	
Warren County	287
QUALITY OF GROUND-WATER RECORDS Cape May County	288
cape may county.	
Gloucester County.	
Calam Cauthu	203

INTRODUCTION

Water resources data for the 1978 water year for New Jersey consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This volume of the report contains discharge records for 22 gaging stations; tide summaries for 4 stations; stage and contents for 16 lakes and reservoirs; water quality for 17 gaging stations, 80 partial-record stations, and 51 wells; and water levels for 8 observation wells. Also included are data for 27 crest-stage partial-record stations and 19 low-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in New Jersey.

Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled, "Surface Water Supply of the United States." Through water year 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled, "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled "Ground-Water Levels in the United States." Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from Branch of Distribution, U.S. Geological Survey, 1200 South Eads Street, Arlington, VA 22202.

For water years 1961 through 1974, streamflow data were released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1974 were similarly released either in separate reports or in conjunction with streamflow records.

Beginning with the 1975 water year, water data for streamflow, water quality, and ground water are published as an offical Survey report on a State-boundary basis. These offical Survey reports carry an identification number consisting of the two letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume of the report is identified as "U.S. Geological Survey Water-Data Report NJ-78-2."

For archiving and general distribution, the reports for water years 1971-74 are also identified as water-data reports. These water-data reports are for sale, in paper copy or in microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the district chief at the address given on the back of the title page or by telephone (609) 989-2162.

COOPERATION

This report was prepared by the U.S. Geological Survey under cooperative agreement with the following organizations:

New Jersey Department of Environmental Protection, Daniel J. O'Hern, commissioner.
Division of Water Resources, Arnold Schiffman, director.
Division of Fish, Game and Shell Fisheries, Russell A. Cookingham, director.
New Jersey Department of Agriculture, Phillip Alampi, secretary.
Division of Rural Resources, Richard D. Chumney, director.
Delaware River Basin Commission, Gerald M. Hansler, executive director.
North Jersey District Water Supply Commission, Dean C. Noll, chief engineer.
Passaic Valley Water Commission, W.E. Inhoffer, general superintendent and chief engineer.
County of Bergen, V.J. Nunno, director of Public Works and E.R. Ranuska, county engineer.
County of Camden, Joseph T. Patermo, director of Camden County Planning Board.
County of Morris, James Plante, chairman of Morris County Municipal Utilities Authority.
County of Somerset, Thomas E. Decker, county engineer, and Thomas Harris, administrative engineer.
Township of West Windsor, Larry Ellery, chairman of Environmental Commission.

Assistance in the form of funds was given by the Corps of Engineers, U.S. Army, in collecting records for 36 surface water stations, for the collection of sediment records at two stream-sampling stations, and for the collection of ground-water quality records from 50 wells in the Wharton State Forest, and by the U.S. Environmental Protection Agency for the collection of chemical analyses at four stream-sampling stations. In addition, several stations were operated fully or partially from funds appropriated directly to the Geological Survey. Assistance was also furnished by the National Weather Service and the National Ocean Survey.

Basic water-quality data collected at many sampling stations on the main stem of the Delaware River and estuary--an interstate stream--included in this report were collected in cooperation with the following additional agencies:

City of Philadelphia Water Department, Carmen Guarino, commissioner. Pennsylvania Department of Environmental Resources, Maurice K. Goddard, secretary. Delaware Geological Survey, Robert R. Jordan, State geologist. Delaware River Master, Francis P. Schaefer.

The following organizations aided in collecting records:

Municipalities of Atlantic City, Jersey City, Newark and New Brunswick; American Cyanamid Co.; Elizabethtown Water Co.; Hackensack Water Co.; Johns-Manville Products Corp.; and Monmouth Consolidated Water Co.

Organizations that supplied data are acknowledged in station descriptions.

ACKNOWLEDGMENTS

New Jersey District personnel who contributed significantly to the collection and preparation of the data in this report were: A.A. Vickers, R.D. Schopp, G.R. Kish, E.W. Moshinsky, F.L. Schaefer, E.A. Pustay, S.J. Perry and C.L. Bellante.

HYDROLOGIC CONDITIONS

Streamflow during the 1978 water year was well above normal throughout New Jersey. Flooding occurred in northeastern and central New Jersey during November 8-10 and 19, new peak stages or discharges were recorded. Flooding also occurred during January and the beginning of September.

Monthly and annual discharge is compared with medians at three representative gaging stations in figures 3 and 4. The streamflow stations chosen for illustration were South Branch Raritan River near High Bridge and Great Egg Harbor River at Folsom, which reflect runoff conditions in the northern and southern parts of the State, respectively, and Delaware River at Trenton in which there is widespread interest.

Ground-water aquifers under water table conditions generally exhibited water levels slightly above average during the year. In the more heavily stressed artesian aquifers, a continued downward trend was noted in some wells. However, the seasonal lows this year in the heavily pumped Magothy-Raritan Formation were about 2 to 6 ft (.6 to 1.8 m) higher than the comparable period in the 1977 water year.

Streamflow at South Branch Raritan River near High Bridge for the year averaged 162 ft3/s Streamilow at South Branch Raritan River near High Bridge for the year averaged 162 ft 3 /s (4.59 m 3 /s), 135 percent of normal. The average flow for Great Egg Harbor River at Folsom was 111 ft 3 /s (3.14 m 3 /s), 128 percent of normal. The observed annual mean discharge on the Delaware River at Trenton was 16,560 ft 3 /s (469.0 m 3 /s), 141 percent of normal. The natural flow at Trenton (adjusted for diversion and storage upstream) was 151 percent of normal for the year.

Storage in the 13 major water-supply reservoirs in New Jersey increased from 45.4 billion gallons (60 percent of usable capacity) on October 1 to 56.5 billion gallons (75 percent of usable capacity) on September 30. Storage in Wanaque Reservoir increased from 16.4 billion gallons (59 percent of usable capacity) on October 1 to 19.3 billion gallons (69 percent of usable capacity) on September 30. Pumped storage in Round Valley Reservoir on September 30 was 52.5 billion gallons (96 percent of capacity), an increase of 0.9 billion gallons during the year. vear.

NOTICE

During water year 1978, revisions were made in the terminology used to define 134 of the water-quality parameter codes that have been used by the Geological Survey in its publication of water-quality data and in its WATSTORE data system. These revisions were made to achieve consistency in terminology and to conform to a joint USGS-EPA agreement on terminology. They do not represent a change in the way the codes have been used in the past or in the association of specific code numbers with identified analytical procedures.

Use of the new terminology began with data for the 1978 water year, and therefore, it first appears in this publication. Definitions on which the terminology is based are included in the "Definitions" section of this report, and a table showing both old and new terminology is attached as a appendix to the report.

DEFINITION OF TERMS

Terms related to streamflow, water-quality and other hydrologic data, as used in this report, and defined below. See also the table for converting Inch-pound Units to Metric Units on the inside of the back cover.

 $\frac{\text{Acre-foot}}{\text{foot}}$ (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Adenosine triphosphate (ATP) is the primary energy donor in cellular life process. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measure of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Aquifer codes and geologic names:

The following list shows the aquifer codes and geologic names of the formations in which the sampled wells are finished. The aquifer codes also appear in the column "Geologic Unit" in the ground-water quality tables:

112CPMY , CAPE MAY FORMATION UNDIFFERENTIATED
112ERNS , CAPE MAY FORMATION, ESTURINE SAND FACIES
112PLCC , PLEISTOCENE-COHANSEY SAND UNDIFFERENTIATED
121CNSY , COHANSEY SAND
121CKKD , COHANSEY SAND-KIRKWOOD FORMATION
122KRKDU, KIRKWOOD FORMATION, UPPER SAND
122KRKDU, KIRKWOOD FORMATION, UPPER SAND

122KRKD , KIRKWOOD FORMATION 122KRKDL, KIRKWOOD FORMATION, LOWER SAND

124MQVC, MANASQUAN-VINCENTOWN FORMATION, UNDIFFERENTIATED 124PNPN , PINEY POINT FORMATION 125HRRS , HORNERSTOWN SAND

21 1MLRW , MOUNT LAUREL SAND-WENONAH FORMATION

211EGLS , ENGLISHTOWN FORMATION

211MGRR, MAGGTHY-RARITAN FORMATIONS 2110DBG, RARITAN FORMATION, OLD BRIDGE SAND MEMBER 211FRNG, RARITAN FORMATION, FARRINGTON SAND MEMBER 217FTMC, POTOMAC GROUP

 $\frac{\text{Artesian}}{\text{the top}}$ means confined and is used to describe a well in which the water level stands above the top of the aquifer, tapped by the well. A flowing artesian well is one in which the water level is above land surface.

<u>Bacteria</u> are microscopic unicellular organisms, typically spherical, rod-like, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, other perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as all the organisms which produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35°C \pm 1.0°C on M-Endo medium (nutrient medium for bacteria growth). Their concentrations are expressed as number of colonies per 100 ml of sample.

Fecal coliform bacteria are bacteria that are present in the intestine or feces of warmblooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours when incubated at $44.5^{\circ}\mathrm{C}$ \pm 0.2°C on M-FC medium (nutrient medium for bacteria growth). Their concentrations are expressed as number of colonies per 100 ml of sample.

Fecal streptococcal bacteria are bacteria found also in the intestine of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at $35\,^\circ\text{C}$ ± 1.0°C on KF streptococcus medium (nutrient medium for bacteria growth). Their concentrations are expressed as number of colonies per 100 ml of sample.

 $\frac{\text{Bedload}}{\text{streambed by rolling, sliding, and making brief excursions into the flow a few diameters above}$ the bed.

Bed material is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

 $\frac{\text{Biochemical oxygen demand}}{\text{milligrams per liter, used for}} \text{ (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, used for the decomposition of organic matter by microganisms, such as }$

Biomass is the amount of living matter present at any given time, expressed as the weight per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500 °C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m^2) and periphyton and benthic organisms in grams per square meter (g/m^2) .

 $\underline{\text{Dry mass}}$ refers to the mass of residue present after drying in an oven at 60°C for zooplankton and 105°C for periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry mass values are expressed in the same units as ash mass.

Wet mass is the mass of living matter plus contained water.

Bottom material: See Bed material.

 $\underline{\text{Cells/volume}} \text{ refers to the number of cells of any organism which is counted by using a } \\ \text{microscope and grid or counting cell. } \\ \text{Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).}$

 $\underline{\text{Cfs-day}}$ is the volume of water represented by flow of 1 cubic foot per second for 24 hours. It is $\underline{\text{equivalent}}$ to 86,400 cubic feet, approximately 1.9835 acre-feet, about 646,000 gallons or 2.447 cubic meters.

Chemical oxygen demand (COD) indicates the quantity of oxidizable compounds in water and varies with water composition(s), temperature, period of contact, and other factors.

<u>Chlorophyll</u> refers to the green pigments of plants. Chlorophyll \underline{a} and \underline{b} are the two most common pigments in plants.

 $\frac{\text{Color unit}}{\text{color platinate ion.}} \text{ is produced by one milligram per liter of platinum in the form of the chloroplatinate ion.} \\ \text{Color is expressed in units of the platinum-cobalt scale.}$

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuing record station is a specified site which meets one or all conditions listed:

- When chemical samples are collected daily or monthly for 10 or more months during the water year.
- 2. When water temperature records include observations taken once or more times daily.
- When sediment discharge records include those periods for which sediment loads are computed and are considered to be representative of the runoff for the water year.

 $\underline{\text{Control}}$ designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, and artificial structure, or a uniform cross section over a long reach of the channel.

Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

Cubic foot per second (cfs) is the rate of discharge representing a volume 1 cubic foot passing a given point during 1 second, and is equivalent to 7.48 gallons per second or 448.8 gallons per minute.

Depth of well:

Total depth of well is the maximum depth in feet below land surface datum (1sd) at which the well was originally finished. This depth may be slightly deeper than "depth to the bottom of sample interval" because many wells have a "tailpiece" or short length of casing installed below the well screen.

Total depth of hole is the total depth in feet below land surface datum to which the hole was drilled, regardless of the finished depth of the well.

Depth to the top of water-bearing zone is the depth in feet, based on the best available information which indicates the top of the water-bearing zone that is furnishing water to the well.

Depth to the top of sample interval is the uppermost point in a fully cased well at which water can enter the well. In bedded sediments this is usually the uppermost part of the screened interval. In some wells the top of the well screen is installed inside and a few feet above the bottom of the casing. Under these conditions the bottom of the casing is considered to be the top of the sample interval.

Depth to the bottom of sample interval is the lowermost point in a fully cased well at which water can enter the well.

 $\underline{\text{Discharge}}$ is the volume of water (or more broadly, volume of fluid plus suspended sediment), that passes a given point within a given period of time.

 $\underline{\text{Mean discharge}}$ (Mean) is the arithmetic mean of individual daily mean discharge during a specific period.

Instantaneous discharge is the discharge at a particular instant of time.

 $\frac{Dissolved}{filter}$ that material in a representative water sample which passes through a 0.45 μm membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

 $\underline{\text{Diversity index}}$ is a numerical expression of evenness of aquatic organisms. The formula for diversity index is:

$$\overline{d} = -\sum_{i=1}^{8} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

Where n, is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Diversity index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

 $\frac{\text{Drainage area}}{\text{enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.}$

 $\frac{\text{Drainage basin}}{\text{consists of a surface stream or body of impounded surface water together with all tributary surface stream and bodies of impounded surface water.}$

Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

Gaging station is a particular site on a stream, canal, lake, or reservoir where systematic observations of gage height or discharge are obtained. When used in connection with a discharge record, the term is applied only to those gaging stations where a continuous record of discharge is obtained.

 $\underline{\text{Hardness}}$ of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate (CaCO₃).

High tide is the maximum height reached by each rising tide.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

Instantaneous flow rate is the flow rate at which water is removed from the well. Used with pump or flow period prior to sampling (see below) so that the exact volume of water pumped prior to sampling can be determined.

Land-surface datum is a datum plane that is approximately at the land surface at the well.

Low tide is the minimum height reached by each falling tide.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Methylene blue active substance (MBAS) is a measure of apparent detergents. This determination depends on the formation of a blue color when methylene blue dye reacts with synethetic detergent compounds.

 $\frac{\text{Micrograms per gram}}{\text{micrograms) of the element sorbed per unit mass (gram) of sediment.}}$

 $\frac{\text{Micrograms per liter}}{\text{constituents in solution as weight (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.}$

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represents the weight of solute per unit volume of water. Milligrams or micrograms per liter may be converted to milliequivalents (one thousandth of a gram-equivalent weight of a constituent) per liter by multiplying by the factors in table 1. Concentration of suspended sediment also is expressed in mg/L, and is based on the weight of sediment per liter of water-sediment mixture. Sediment concentrations may be converted to parts per million by using the factors in table 2.

National Geodetic Vertical Datum of 1929 (NGVD), is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

Organism is any living entity, such as an insect, phytoplankter, or zooplankter.

Organism count/area refers to the number of organism collected and enumerated in a sample and adjusted to the number per area habitat, usually square meters (m^2), acres, or hectares. Periphyton benthic organisms, and macrophytes are expressed in these terms.

 $\frac{\texttt{Organism count/volume}}{\texttt{and adjusted to the number per sample volume, usually}} \text{ milliters (mL) or liters (L).} \\ \texttt{Numbers of planktonic organisms can be expressed in these terms.}$

 $\underline{\text{Total organism count}}$ is the total number of organisms collected and enumerated in any particular sample.

 $\frac{Partial-record\ station}{partially\ over\ a\ period\ of\ years\ for\ use\ in\ hydrologic\ analyses.}$

Particle size is the diameter, in millimeters (mm), of suspended sediment or bed material determined either by sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in active water (the river water at the time and point of sampling).

Particle-size classification used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size	(mm)	Method of analysis
Clay Silt		- 0.004	Sedimentation. Sedimentation.
Sand		- 2.0	Sedimentation or sieve.
Gravel	2.0	- 64.0	Sieve.

Table 1.--Factors for conversion of chemical constituents in milligrams per liter to milliequivalents per liter:

Multi-		Multi-
ply by	Ion	ply by
0.11119	Indide (I^{-1})	0.00788
	Iron (Fe ⁺³)*	.05372
.01456	Lead (Pb ⁺²)*	.00965
.01639		.14411
.01251		.08226
.04990	Manganese (Mn ⁺²)*.	.03640
.03333	Nickel (Ni+2)*	.03406
.02821	Nitrate (NO ₃ ⁻¹)	.01613
. 11539	Nitrite (NO, 1)	.02174
.03394	Phosphate (PO, 3).	.03159
.03148	Potassium (K+4)	.02557
.03844	Sodium (Na ⁺¹),	.04350
.05264	Strontium (Sr ⁺²)*.	.02283
.99209	Sulfate (SO, 2)	.02082
.05880	Zinc (Zn ⁺²)*	.03060
	0.11119 .05544 .01456 .01639 .01251 .04990 .03333 .02821 .11539 .03394 .03148 .03844 .05264	Dly by Ion O.11119

^{*}Constituent reported in micrograms per liter; multiply by factor and divide results by 1,000.

Table 2.--Factors for conversion of sediment concentration in milligrams per liter to parts per million†

(All values calculated to three significant figures)

Range of concen-		Range of concen-		Range of concen-		Range of concen-	
tration	Di-	tration	Di-	tration	Di-	tration	Di
in 1000	vide	in 1000	vide	in 1000	vide	in 1000	vide
MG/L	by	MG/L	by	MG/L	by	MG/L	by
	. 34.						
0 - 8	1.00	201-217	1.13	411-424	1.26	619-634	1.39
8.05- 24	1.01	218-232	1.14	427-440	1.27	636-650	1.40
24.2 - 40	1.02	234-248	1.15	443-457	1.28	652-666	1.41
40.5 - 56	1.03	250-264	1.16	460-473	1.29	668-682	1.42
56.5 - 72	1.04	266-280	1.17	476-489	1.30	684-698	1.43
72.5 - 88	1.05	282-297	1.18	492-506	1.31	700-715	1.44
88.5 -104	1.06	299-313	1.19	508-522	1.32	717-730	1.45
105 -120	1.07	315-329	1.20	524-538	1.33	732-747	1.46
121 -136	1.08	331-345	1.21	540-554	1.34	749-762	1.47
137 -152	1.09	347-361	1.22	556-570	1.35	765-780	1.48
153 -169	1.10	363-378	1.23	572-585	1.36	782-796	1.49
170 -185	1.11	380-393	1.24	587-602	1.37	798-810	1.50
186 -200	1.12	395-409	1.25	604-617	1.38		

 $^{^{\}dagger}\textsc{Based}$ on water density of 1.000 G/ML and a specific gravity of sediment of 2.65.

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

Percent composition is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass or volume.

 $\frac{\text{Periphyton}}{\text{primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton is a useful indicator of water quality.}$

Pesticides are chemical compounds used to control the growth of undesireable plants and animals. Major categories of pesticides includes insecticides, miticides, fungicides, herbicides, and rodenticides. Since the first application of DDT as an insecticide in the early 1930's there have been almost 60,000 pesticide formulations registered, each containing at least one of the approximately 800 different basic pesticide compounds. The United States annually produces about 1 billion pounds of these compounds. Although efforts are being made to substitute many of the chlorinated hydrocarbon pesticides with more specific, fast-acting, and easily degradable compounds, chlorinated hydrocarbon pesticides are still commonly used in many areas of the country.

Picocurie (PCI, pCi) is one trillionth (1×10^{-12}) of the amount radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 $\times 10^{10}$ radioactive disintegration per second. A picocurie yields 2.22 dpm (disintegrations per minute).

 $\underline{\underline{Plankton}}$ is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

Phytoplankton is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substance. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae.

Blue-green algae are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

<u>Diatoms</u> are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter of sample.

 $\frac{\text{Green algae}}{\text{plants.}} \text{ have chlorophyll pigments similar in color to those of higher green plants.} \\ \text{Some forms produce algal mats or floating "moss" in lakes.} \\ \text{Their concentrations are expressed as number of cells per milliliter of sample.} \\$

 $\label{eq:coplankton} \frac{Zooplankton}{Looplankton} is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column, and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.$

Polychlorinated biphenyls (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time [mg $C/m^2/time$ for periphyton and macrophytes and mg $C/m^2/time$] for phytoplankton are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity that the oxygen light and dark bottle method, and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time $[mg\ 0_2/m^2/time\ for\ periphyton\ and\ macrophytes\ and\ mg\ 0_2/m^3/time]$ for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Pump or flow rate prior to sampling is used in conjunction with the instantaneous flow rate so that the exact volume of water pumped prior to sampling can be determined.

Radioisotopes are isotope forms of an element that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight, but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus. For example: Ordinary chlorine is a mixture of isotopes having atomic weights 35 and 37, with the natural mixture having an atomic weight of 35.453.

Radioisotopes that are determined in this report are natural uranium in $\mu g/L$ (micrograms per liter), radium as radium-226 in PCI/L, (pCi/L, picocuries per liter), gross beta in PCI/L, and gross alpha radiation as micrograms of uranium equivalent per liter ($\mu g/L$). Gross alpha and beta radioactivity associated with the fine grained (silt and clay sized) sediments in the samples are also determined.

River mile as used herein, is the distance above the mouth of Delaware Bay, measured along the center line of the navigation channel or the main stem of the Delaware River. River mile data were furnished by the Delaware River Basin Commission.

Runoff in inches (IN, in) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Sediment is solid material that originates mostly from disintegrated rocks and is transformed by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

Supended sediment is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sample zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

Suspended-sediment discharge (tons) is the rate at which dry weight of sediment passes a section of a stream or is the quantity of sediment, as measured by dry weight, or by volume, that is discharged in a given time. It is computed by multiplying discharge times mg/L times 0.0027.

 $\underline{ \text{Suspended-sediment load}} \ \text{is quantity of suspended sediment passing a section in a specified period.}$

 $\frac{\text{Total sediment discharge}}{\text{and the bed-load discharge.}} \text{ (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge.} \text{ It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time.}$

 $\frac{\text{Mean concentration}}{\text{section during a }24-\text{hour day.}}$ is the time-weighted concentration of suspended sediment passing a stream

 $\frac{\text{Solute}}{\text{local is}}$ is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current and is expressed in micromhos per centimeter at 25°C. Because the specific conductance is related to the number and specific chemical types of ions in solution, it can be used for approximating the dissolved-solids content in the water. Commonly, the amount of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos per cm at 25°C). This relation is not constant from stream to stream or from well to well, and it may even vary in the same source with changes in the composition of the water.

 $\frac{Stage-discharge\ relation}{\text{in a channel, expressed}}\ \ \text{is the relation between gage height and the amount of water}$

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff." Streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physcial surface upon which an organism lived.

 $\frac{\text{Natural substrates}}{\text{such as a rock}} \text{ refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lived.}$

 $\frac{\text{Artificial substrate}}{\text{zation of organisms.}} \text{ is a device which is purposely placed in a stream or lake for colonization of organisms.}$ The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multi-plate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection.

Surface area of a lake is that area outlined on the latest U.S.G.S. topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered.

All areas shown are those for the stage when the planimetered map was made.

Surficial bed material is that part (0.1 to 0.2 ft) of the bed material that is sampled using $\overline{\text{U.S.}}$ Series Bed-Material Samplers.

Suspended, recoverable the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 µm membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent.

Suspended, total the total amount of a given constituent in the part of a representaive water-suspended sediment sample that is retained on a 0.45 μm membrane filter. This term is used only when the analystical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) $\underline{\text{dissolved}}$ and (2) $\underline{\text{total}}$ concentrations of the constituent.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organism have in common. For example, the taxonomy of a particular mayfly, Hexagenia limbata is the following:

 Kingdom
 Animal

 Phylum
 Arthropoda

 Class
 Insecta

 Order
 Ephemeroptera

 Family
 Ephemeridae

 Genus
 Hexageria

 Species
 Hexageria limbata

 $\frac{\text{Time-weighted average}}{\text{concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.$

Thermograph is a thermometer that continuously and automatically records, on a chart, the water temperatures of a stream. "Temperature recorder" is the term used to indicate the location of the thermograph or a digital mechanism that automatically records water temperature on paper tape.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136.

Tons per day is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour day.

Total, recoverable the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

 $\frac{\text{Total}}{\text{sample}} \text{ the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample.)$

Recoverable from bottom material the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Total in bottom material the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

 $\frac{\text{Total load}}{\text{mass or volume}}$, that is dissolved in a specific amount of water (discharge) during a given time. It is computed by multiplying the total discharge, times the mg/L of the constituent, times the factor 0.0027, times the number of days.

Unique well number is a hyphenated, 6-digit identification number which is assigned to all New Jersey wells in the Ground Water Site Inventory (GWSI) System. This numbering system was developed in 1978 to simplify identification of wells. The first two digits are a code for the county in which the well is located, and the last four digits are a sequence number. These unique well numbers are being used now in the ground-water level manuscripts and on the corresponding location maps in these reports.

 $\frac{\text{Weighted average is used in this report to indicate discharge-weighted average.} \text{ It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.$

 $\underline{\mathtt{WDR}}$ is used as an abbreviation for "Water-Data Report" in the summary REVISIONS paragraph to refer to previously published State annual basic-data reports. Prior to 1976, WRD was used, which was the abbreviation for "Water-Resources Data."

 $\frac{\text{WSP}}{\text{VSP}}$ is used as an abbreviation for "Water-Supply Paper" in reference to previously published reports.

DOWNSTREAM ORDER AND STATION NUMBER

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two main-stream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of triburtaries. The rank of any tributary on which a station is situated with respect to the stream to which it is immediately tributary is indicated by an indention in a list of stations in front of the report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

As an added means of identification, each hydrologic station and partial-record station has been assigned a station number. These are in the same downstream order used in this report. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station such as 01463500, which appears just to the left of the station name, includes the 2-digit part number "01" plus the 6-digit downstream order number "463500."

NUMBERING SYSTEM FOR WELLS AND MISCELLANEOUS SITES

Miscellaneous downstream order station numbers are not assigned to wells and miscellaneous sites where only random water-quality samples or discharge measurements are taken.

The wells and miscellaneous site numbering system of the U.S. Geological Survey is based on the grid system of latitude and longitude. The system privides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, the next 7 digits denote degrees, minutes, and seconds of longitude, and the last 2 digits is a sequential number for wells within a 1-second grid. In the event that the latitude-longitude coordinates for a well and a miscellaneous site are the same, assign sequential number "01", "02", etc. as one would for wells. See figure 1 below.

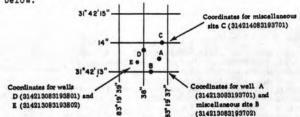


Figure 1. System for numbering wells and miscellaneous sites (latitude and longitude)

SPECIAL NETWORKS AND PROGRAMS

Some of the stations for which data are published in this report are included in special networks and programs. These stations are identified by their title, set in parentheses, under the station name.

Hydrologic bench-mark station is one that provides hydrologic data for a basin in which the hydrologic regimen will likely be governed solely by natural conditions. Data collected at a bench-mark station may be used to separate effects of natural from manmade changes in other basins which have been developed and in which the physiography, climate, and geology are similar to those in the undeveloped bench-mark basin.

National stream-quality accounting network (NASQAN) is a data collection network designed by the U.S. Geological Survey to meet many of the information demands of agencies or groups involved in national or regional water-quality planning and management. Both accounting and broadscale monitoring objectives have been incorporated into the network design. Areal configuration of the network is based on river-basin accounting units (identified by 8-digit hydrologic-unit numbers) designated by the Office of Water Data Coordination in consultation with the Water Resources Council. Primary objectives of the network are (1) to depict areal variability of streamflow and water-quality conditions nationwide on a year-by-year basis and (2) to detect and assess long-term changes in streamflow and stream quality.

Pesticide program is a network of regularly sampled water-quality stations where samples are collected to determine the concentration and distribution of pesticides in stream where potential contamination could result from the application of the commonly used insecticides and herbicides. Operation of the network is a Federal interagency activity.

 $\frac{\text{Radiochemical program}}{\text{samples are collected to be}} \text{ is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes.}$ The streams that are sampled represent major drainage basins in the conterminous United States.

EXPLANATION OF STAGE AND WATER-DISCHARGE RECORDS

Collection and computation of Data

The base data collected at gaging stations consist of records of stage and measurements of discharge of streams or canals, and stage, surface area, and contents of lakes or reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records, and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of stage are obtained from either direct readings on a nonrecording gage or from a water-stage recorder that gives either a continuous graph of the fluctuations or a tape punched at selected time intervals. Measurements of discharge are made with a current meter, using the general methods adopted by the Geological Survey. These methods are decribed in standard text-books, in Water-Supply Paper 888, and in U.S. Geological Survey Techniques of Water Resources Investigations, book 3, chapter A6.

For stream-gaging stations, rating tables giving the discharge for any stage are prepared from stage-discharge relation curves. If extensions to the rating curves are necessary to express discharge greater than measured, they are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements, computation of flow over dams or weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharge are computed from the daily figures. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is computed by the shifting-control method, in which correction factors based on individual discharge measurements and notes by engineers and observers are used in applying the gage heights to the rating tables. If the stage-discharge relation for a station is temporarily changed by the presence of aquatic growth or debris on the control, the daily mean discharge is computed by what is basically the shifting-control method.

At some stream-gaging stations the stage-discharge relation is affected by backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in determining discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in determining discharge.

At some northern stream-gaging stations the stage-discharge relation is affected by ice in the winter, and it becomes impossible to compute the discharge in the usual manner. Discharge for periods of ice effect is computed on the basis of the gage-height record and occasional winter discharge measurements, consideration being given to the available information on temperature and precipitation, notes by gage observers and hydrologists, and comparable records of discharge for other stations in the same or nearby basins.

For a lake or reservoir station, capacity tables giving the contents for any stage are prepared from stage-area relation curves defined by surveys. The application of the stage to the capacity table gives the contents, from which the daily, monthly, or yearly change in contents is computed. Discharge over spillways is computed from a stage-discharge relation curve defined by discharge measurements.

If the stage-capacity curve is subject to changes because of deposition of sediment in the reservoir, periodic resurveys of the reservoir are necessary to define new stage-capacity curves. During the period between reservoir surveys the computed contents may be increasingly in error due to the gradual accumulation of sediment.

For some gaging stations there are periods when no gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods the daily discharge are estimated on the basis of recorded range in stage, adjoining good record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise daily contents may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information.

The data in this report generally comprise a description of the station and tabulations of daily and monthly figures. For gaging stations on streams or canals a table showing the daily discharge and monthly and yearly discharge is given. For gaging stations on lakes and reservoirs a monthly summary table of stage and contents or a table showing the daily contents is given. Tables of daily mean gage height are included for some streamflow stations and for some reservoir stations. Records are published for the water year, which begins on October 1 and ends on September 30.

The description of the gaging station gives the location, drainage area, period of record, notations of revisions of previously published records, type and history of gages, general remarks, average discharge, and extremes of discharge or contents. The location for the gaging station and the drainage area are obtained from the most accurate maps available. River mileage, given under "LOCATION" for some stations, is that determined and used by the Corps of Engineers or other agencies. Periods for which there are published records for the present stations or for stations generally equivalent to the present one are given under "PERIOD OF RECORD."

Previously published streamflow records of some stations have been found to be in error on the basis of data or information later obtained. Revisions of such records are usually published along with the current records in one of the annual or compilation reports. In order to make it easier to find such revised records, a paragraph headed "REVISED RECORDS" has been added to the description of all stations for which revised records have been published. Listed therein are all the reports in which revisions have been published, each followed by the water years for which figures are revised in that report. In listing the water years only one number is given; for instance, 1965 stands for the water year October 1, 1964, to September 30, 1965. If no daily, monthly, or annual figures of discharge are affected by the revision, the fact is brought out by notations after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in

which the revised figure was first published is given. It should be noted that for all stations for which cubic feet per square mile and runoff in inches are published, a revision of the drainage area necessitates corresponding revision of all figures based on the drainage area. Revised figures of cubic feet per second per square mile and runoff in inches resulting from a revision of the drainage area only are usually not published in the annual series of reports.

The type of gage currently in use; the datum of the present gage referred to National Geodetic Vertical Datum; and a condensed history of the types, locations, and datums of previous gages used during the period of record are given under "GAGE." National Geodetic Vertical Datum is explained in "DEFINITION OF TERMS."

Information pertaining to the accuracy of the discharge records and to conditions which affect the natural flow of the gaging station is given under "REMARKS."

The average discharge for the number of years indicated is given under "AVERAGE DISCHARGE"; it is not given for stations having fewer than 5 complete years of record or for stations where changes in water development during the period of record cause the figure to have little significance. In addition, the median of yearly mean discharges is given for stream-gaging stations having 10 or more complete years of record if the median differs from the average by more than 10 percent. Under "EXTREMES" are given first the extremes for current year, second, the extremes for the period of record, and last information available outside the period of record. Unless otherwise qualified, the maximum discharge (or contents) is the instantaneous maximum corresponding to the crest-stage obtained by use of a water-stage recorder (graphic or digital), a crest-stage gage, or a nonrecording gage read at the time of the crest. If the maximum gage height did not occur on the same day as the maximum discharge (or contents), it is given separately. Similarly, the minimum is the instantaneous minimum unless otherwise qualified. For some stations peak discharges are listed with EXTREMES FOR THE CURRENT YEAR; if they are, all independent peaks, including the maximum for the year, above the selected base with the time of occurrence and corresponding gage heights are published in tabular format. The base discharge, which is given in the table heading, is selected so that an average of about three peaks a year will be presented. Peak discharges are not published for any canals, ditches, drains, or for any stream for which the peaks are subject to substantial control by man. Time of day is expressed in 24-hour local standard time; for example, 12:30 a.m. is 0030, 1:30 p.m. is 1330. The minimums for these stations are published in a separate paragraph following the table of peaks.

Skeleton rating tables are published, immediately following EXTREMES, for stream-gaging stations where they serve a useful purpose and the dates of applicability can be easily identified.

The daily table for stream-gaging stations gives the mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also may be expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN"), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion, if the drainage area includes large noncontributing areas, or if the average annual rainfall over the drainage basin is usually less than 20 inches. In the yearly summary below the monthly summary, the figures shown are the appropriate daily discharges for the calendar and water years.

Footnotes to the table of daily discharge are introduced by word "NOTE." Footnotes are used to indicate periods for which the discharge is computed or estimated by special methods because of no gage-height record, backwater from various sources, or other unusual conditions. Periods of no gage-height record are indicated if the period is continuous for a month or more or includes the maximum discharge for the year. Periods of backwater from an unusual source, of indefinite stage-relation, or of any other unusual condition at the gage site are indicated only if they are a month or more in length and the accuracy of the records is affected. Days on which the stage-discharge relation is affected by ice are not indicated. The methods used in computing discharge for various unusual conditions have been explained in preceding paragraphs.

For most gaging stations on lakes and reservoirs the data presented comprise a description of the station and a monthly summary table of stage and contents. For some reservoirs a table showing daily contents or stage is given. A skeleton table of capacity at given stages is published for all reservoirs for which records are published on a daily basis, but is not published for reservoirs for which only monthly data are given.

Data collected at partial-record stations follow the information for continuous record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. Occasionally, a series of discharge measurements are made within a short time period to investigate the seepage gains or losses along a reach of a stream or to determine the low-flow characteristics of an area. Such measurements are also given in special tables following the tables of partial-record stations.

Accuracy of field data and computed results

The accuracy of streamflow data depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements, and (2) the accuracy of observations of stage, measurements of discharge, and interpretation of records.

The station description under "REMARKS" states the degree of accuracy of the records. "Excellent" means that about 95 percent of the daily discharges are within 5 percent; "good" within 10 percent; and "fair" within 15 percent. "Poor" means that daily discharges have less than "fair" accuracy.

Figures of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 cfs; to tenths between 1.0 and 10 cfs; to whole numbers between 10 and 1,000 cfs; and to 3 significant figures above 1,000 cfs. The number of significant figures used is based solely on the magnitude of the figure. The same rounding rules apply to discharge figures listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless if is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Publications

Each volume of the 1960 series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States" contains a listing of the numbers of all water-supply papers in which records of surface-water data were published for the area covered by the individual volumes. Each volume also contains a list of water-supply papers that give detailed information on major floods for the area. A new series of water-supply papers containing surface-water record for the 5-year period October 1, 1965 to September 30, 1970, also will include lists of annual and special reports published as water-supply papers.

Records through September 1950 for the area covered by this report have been compiled and published in Water-Supply Paper 1302; records for October 1950 to September 1960 have been compiled and published in Water-Supply Paper 1722; records for October 1960 to September 1965 have been compiled and published in Water-Supply Paper 1902; records for October 1965 to September 1970 have been compiled and published in Water-Supply Paper 2102. These reports contain summaries of monthly and annual discharge and month-end storage for all previously published records, as well as some records not contained in the annual series of water-supply papers. All records were reexamined and revised where warranted. Estimates of discharge were made to fill short gaps whenever practical. The yearly summary table for each gaging station lists the numbers of the water-supply papers in which daily records were published for that station.

Special reports on major floods or droughts or of other hydrologic studies for the area have been issued in publications other than water-supply papers. Information relative to these reports may be obtained from the district office.

Other data available

Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating tables is on file in the district office. Also most gaging-station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the district office.

Records of stage or discharge collected by agencies other than the Geological Survey

Records of stage or discharge not published by the Geological Survey were collected in New Jersey at 30 sites during the water years October 1960 to current year by the following agencies: records at 4 sites were collected by the North Jersey District Water Supply Commission; at 14 sites by Passaic County, at 1 sites by the National Weather Service; at 3 sites by the National Ocean Survey; at 3 sites by the Corps of Engineers, and 5 sites by Delaware River Joint Toll Bridge Commission. The National Water Data Exchange, Water Resources Division, U.S. Geological Survey, National Center, Reston, VA 22092, maintain an index of such sites. Information on records available at specific sites can be obtained upon request.

EXPLANATION OF WATER-QUALITY RECORDS

Collection and examination of data

Water samples for analyses usually are collected at or near gaging stations. The discharge records at these stations are used in conjunction with the computations of the chemical constituents and sediment loads.

The data in this report include a description of the sampling station and tabulations of the samples analyzed. The description of the sampling station gives the location, drainage area, periods of record for the various water-quality data, extremes of the pertinent data, and general remarks, in a format similar to that used for streamflow gaging stations. For ground-water sampling stations, no descriptive statements are given. However, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of ground water.

Water-quality information is presented for chemical, biological, and microbiological quality, water temperature, and fluvial sediment. Chemical quality includes concentrations characteristic of individual dissolved constituents and certain properties such as hardness, specific conductance, and pH. The biological information includes qualitative and quantitative analyses of plankton, bottom organisms, and particulate inorganic and amorphous matter present. Microbiological information includes quantitative identifications of certain bacteriological indicator organisms. Water-temperature data represent once-daily observations except for stations where a continuous temperature recorder (thermograph) furnishes information from which daily minimums and maximums are obtained, or else where a water-quality noncontinuous-digital monitor furnishes hourly temperature readings that provide daily maximum, minimum, and mean temperature data summaries. Fluvial-sediment information is given for suspended-sediment discharges and concentrations and for particle-size distribution of suspended sediment.

Prior to the 1968 water year, data for chemical constituents and concentrations of suspended sediment were reported in parts per million (ppm) and water temperatures were reported in degrees Fahreheit (°F). In October 1967, the U.S. Geological Survey began reporting data for chemical constituents and concentrations of suspended sediment in milligrams per liter (mg/L) and water temperatures in degrees Celsius (°C). In waters with a density of 1.000 g/ml (grams per

milliliter), parts per million and milligrams per liter can be considered equal. In waters with a density greater than 1.000 g/ml, values in parts per million should be multiplied by the density to convert to milligrams per liter (see Table 2). Temperatures reported in degrees Celsius may be converted to degrees Fahrenheit by using Table 3 below.

In October 1968, the Geological Survey began reporting many of the chemical constituents as well as the minor elements in micrograms per liter instead of milligrams per liter. (See "Definitions of Terms," and table for converting Inch-pound Units to Metric Units, inside back cover).

Table 3.--Degrees Celsius (°C) to degrees Fahrenheit (°F)* (Temperature reported to nearest $0.5\,^{\circ}\text{C}$)

°C	°F	°C	°F	°C	°F	°C	°F	°C	°F
0.0	32	10.0	50	20.0	68	30.0	86	40.0	104
0.5	33	10.5	51	20.5	69	30.5	87	40.5	105
1.0	34	11.0	52	21.0	70	31.0	88	41.0	106
1.5	35	11.5	53	21.5	71	31.5	89	41.5	107
2.0	36	12.0	54	22.0	72	32.0	90	42.0	108
2.5	36	12.5	54	22.5	72	32.5	90	42.5	108
3.0	37	13.0	55	23.0	73	33.0	91	43.0	109
3.5	38	13.5	56	23.5	74	33.5	92	43.5	110
4.0	39	14.0	57	24.0	75	34.0	93	44.0	111
4.5	40	14.5	58	24.5	76	34.5	94	44.5	112
5.0	41	15.0	59	25.0	77	35.0	95	45.0	113
5.5	42	15.5	60	25.5	78	35.5	96	45.5	114
6.0	43	16.0	61	26.0	79	36.0	97	46.0	115
6.5	44	16.5	62	26.5	80	36.5	98	46.5	116
7.0	45	17.0	63	27.0	81	37.0	99	47.0	117
7.5	45	17.5	63	27.5	81	37.5	99	47.5	117
8.0	46	18.0	64	28.0	82	38.0	100	48.0	118
8.5	47	18.5	65	28.5	83	38.5	101	48.5	119
9.0	48	19.0	66	29.0	84	39.0	102	49.0	120
9.5	49	19.5	67	29.5	85	39.5	103	49.5	121

*C = 5/9 (°F - 32) or °F = 9/5 (°C) + 32.

Solutes

Most methods for collecting and analyzing water samples to determine the kinds and concentrations of solutes are described by Brown, Skougstad, and Fishman. The method for determining elemental constituents by emission spectrographic techniques is described by Barnett and Mallory. Analysis of pesticides, herbicides, and organic substances in water are described by Goerlitz and Brown. The collection and analysis of aquatic, biological and microbiological samples are described by Greeson and others.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may very widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through many vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the possible case where an apparent inconsistency exists between the reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory. Field determination of carbonate and bicarbonate was initiated in September 1976.

The daily chemical quality data in this report generally represent equal-volume composites for 2-to 30-day periods; the composite periods are selected on the basis of specific conductance of the daily samples and fluctuation of water discharge.

For chemical-quality stations equipped with noncontinuous-digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the U.S. Geological Survey district office (for address see Page IV).

Ground-water normally does not change significantly during short periods of time; infrequent sampling and analysis of ground water adequately defines ground-water quality at a given site. Water samples from wells are collected after prepumping the well and are analyzed individually.

Water temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for surface-water stations. For daily stations, the water temperatures are taken at about the same time each day when sample is collected. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges. Influential factors, field measurement, and data representation of temperature are described by Stevens, Ficke and Smoot.

At stations where continuously recording thermographs are present, the records consist of maximum and minimum continuous-digital water quality monitor which provide hourly readings, the records consist of daily maximum, minimum, and mean temperature data summaries.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross-section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the sub-divided day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the sub-divided day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of the quantitites of suspended sediment, records of the periodic measurements of the particle-size distribution of the suspended sediment are included.

Remark codes for water-quality data

PRINTE	D REMARK	PRINTED OUT PUT	REMARK
E	ESTIMATED VALUE	<	ACTUAL VALUE IS KNOWN TO BE LESS THAN THE VALUE SHOWN
>	ACTUAL VALUE IS KNOWN TO BE GREATER THAN THE VALUE SHOWN	ND	MATERIAL SPECIFICALLY ANALYZED FOR BUT NOT DETECTED
K	RESULTS BASED ON COLONY COUNT OUTSIDE THE ACCEPTABLE RANGE (NON-IDEAL COLONY COUNT)		

Publications

Table 4 below, shows the annual series of water-supply papers that give information on quality of surface waters in New Jersey.

Table 4.--Water-supply paper (WSP) numbers, water years, 1945-70

Year	WSP	Year	WSP	Year	WSP
1945	1030	1954	1350	1963	1947
1946	1050	1955	1400	1964	1954
1947	1102	1956	1450	1965	1961
1948	1132	1957	1520	1966	1991
1949	1162	1958	1571	1967	2011
1950	1186	1959	1641	1968	2091
1951	1197	1960	1741	1969	2141
1952	1250	1961	1881	1970	2151
1953	1290	1962	1941	27.17	- 1

Water-quality criteria

The Federal Water Pollution Control Act Amendments of 1972 (P.L. 92-500) stipulated that water-quality criteria were to be developed to assure the integrity of ground and surface waters of the United States. Criteria were set for various types of water use.

These criteria indicate limiting values of various parameters in water to provide adequate protection of water users, essential aquatic life, and consumers of such aquatic life.

Chemical constituents in bottom sediments (BTM) are reported as weight of constituent per weight of sediment. These limiting values are based not on health effects, but rather on the potential hazard which might be caused if these sediments were suspended into the water phase.

WATER QUALITY CRITERIA

Ponematan nama	Limiting	110 4 4 -	llee	Basis for
Parameter name	value	Units	Use	selection
	General In	organics		
				- 10 TO
Alkalinity, Total (as CACO ₃) Antimony	20 * 50	mg/L µg/L	2 5	A C
Antimony, BTM	500	μg/g	5	C
Arsenic	50	µg/L	4,6	A,B,C
Arsenic, BTM	100 200	μg/L μg/g	3	A C
Barium	1000	µg/L	4,6	A,B,C
Barium, BTM	2000	µg/g	5 2a	C A,C
Beryllium	11 100	μg/L μg/L	3	A
2.11.50.001 5.000	1100	µg/L	2b	A
Beryllium, BTM Boron	200 750	μg/g μg/L	5	C
BOTOII	1000	μg/L	5	Ĉ
Cadmium	0.4	µg/L	1a	A
	1.2	μg/L μg/L	1 b 2a	A A
	5.0	µg/L	8	A
	10	µg/L	4,6	A,B,C
Cadmium, BTM	12 20	μg/L μg/g	2B 5	A C
Chloride	250	mg/L	6A	D
Chromium, total	50	µg/L	4,6	A,B,C
Chromium, BTM	100 200	μg/L μg/g	2 5	A C
Color	15 col	or units	6a	D
Copper	75 col	or units μg/L	4,6a	A A,C,D
Copper, BTM	2000	μg/g	5	C, C, D
Cyanide	5	µg/L	2,8	A
Cyanide, BTM	20 100	μg/L μg/g	5 5 7	C
Fecal coliform, MF	200†	col/100 mL	7	Å
Fecal coliform, MPN	200†	col/100 mL	7	A
Iron	300 1000	μg/L μg/L	4,6a 2	A, D A
Lead, dissolved	50	µg/L	4,6	A,B,C
Lead, total	200 500	μg/L	5	C
Lead, BTM Manganese	50	μg/g μg/L	4,6a	A,D
Mercury	0.05	µg/L	2	A
	0.1	μg/L μg/L	8 4,6	A A,B,C
Mercury, BTM	20	μg/g	5	C
Nickel	100	µg/L	2,8	A,C
Nickel, BTM Nitrate (as N)	2000 10	μg/g mg/L	4,6	A,B,C
Nitrite (as N)	1	mg/L	4	A,C
Oxygen, dissolved pH	5* 6.5-8.5	mg/L	2 6a,8	A A,C,D
pii.	6.5-9.0		2	A
	5.0-9.0	S	4	A
Selenium Selenium, BTM	10	μg/L μg/g	4,6	A,B,C
Silver	50	µg/L	4,6	A,B,C
Silver, BTM	1000	µg/g	5	C
Solids, total dissolved Sulfate	500 250	mg/L mg/L	6a 6a	D
Zinc	5000	µg/L	4,6a	A,C,D
Zinc, BTM	5000	μg/g	5	C
	Organ	nics		
Aldrin-dieldrin	0.00	3 mg/L	2	A
Aldrin	0.01	mg/L	958252,8	C
Aldrin, BTM Chlordane	20	μg/kg μg/L	8	C A
	0.01	μg/L	2	A,C
Chlordane, BTM	20	μg/kg	5	C
DDT**	0.00	l μg/L μg/L	9	C
DDT, BTM	20	µg/kg	9 5 2,8	A,C C A C C C C
Demeton Dieldrin	0.1		2,8	A
Dieldrin, BTM	0.01	μg/L μg/kg	9	Č ,
	-	3	ballon, a later	

WATER QUALITY CRITERIA

Parameter name	Limiting value	Units	Use	Basis for selection
Endosul fan	0.001	µg/L	8	A
	0.003	µg/L	2	A
	0.01	µg/L	9	C
Endrin	0.004	µg/L	2,8	A
	0.01	µg/L	9	С
	0.2	ug/L	4,6	В
Endrin, BTM	20	µg/kg	5	С
Guthion	0.01	µg/L	2,8	A
Heptachlor	0.001	µg/L	2,8	A
	0.01	µg/L	5	С
Heptachlor, BTM	20	µg/kg	5	С
Heptachlor epoxide	0.01	µg/L	9 5 8	C
Heptachlor epoxide, BTM	20	µg/kg	5	С
Lindane	0.004	µg/L		A
	0.01	µg/L	2	A,C
Programme and the second secon	4	µg/L	4,6	A,B
Lindane, BTM	20	µg/kg	5	C
Malathion	0.1	µg/L	2,8	A,C
Malathion, BTM	20	µg/kg	5	Č
MBAS (foaming agents)	0.5	mg/L	6a	D
Methoxychlor	0.03	µg/L	2,8	A,C
	100	µg/L	4,6	A , B
Methoxychlor, BTM	20	µg/kg	5	C
Mirex	0.001	µg/L	2,8	A
A4 5 5 244	.01	µg/L	9	C
Mirex, BTM	20	µg/kg	5	C
Parathion	0.04	µg/L	2,8	A,C
Parathion, BTM	20 0.001	μg/kg	5 2,8	C A
PCB		µg/L	2,0	C
DCD DTM	0.1	µg/L	9	c
PCB, BTM Phenols	1.0	μg/kg	4	A
rnenois	5.0	µg/L	5	Č
Toxaphene	0.005	μg/L μg/L	2,8	A
Toxaphene	1.0	µg/L	9	Č
	5.0	µg/L	4,6	A,B
Toxaphene, BTM	20	μg/kg	5	c, b
Silvex	10	µg/L	4,6	A,B,C
Silvex, BTM	20	μg/kg	7,0	c c
2, 4-D	100	µg/L	4,6	A,B,C
2, 4-D, BTM	20	µg/kg	5	C C
2, 1-2, 2	2.9	48, 48		
	Radiochem	icals		
Radium 226	5	pCi/L	4,6	B,C
Stronticum 90	5 8	pCi/L	4,6	B,C
Tritium	20,000	pCi/L	4,6	B, C

- * Minimum recommended value
- † Log mean, based on not less than five samples ** Including metabolites (DDD and DDE)

Water Use and/or for the Protection of:

- Sensitive salmonoid species in soft water Sensitive salmonoid species in hard water Freshwater aquatic life Freshwater aquatic life in soft water Freshwater aquatic life in hard water 1a.
- 1b.
- 2a.
- 2b. Crop irrigation
- 3.
- Domestic water supply source
 Recommended limits have not been established; limit set to arbitrarily flag no more than
 the upper 15 to 20 percent of values nationwide. 5.
- 6. Potable drinking water, based on health effects Potable drinking water, based on aesthetic considerations 6a.
- Primary contact 7.
- Marine aquatic life
- Minimum non-zero concentration reported by the U.S. Geological Survey Central Water Quality Laboratories system. 9.

Basis for Selection

- A. Maximum levels recommended by: Quality Criteria for Water, 1976, U.S. Environmental
- Protection Agency.

 Maximum contaminant level established by: National Interim Primary Drinking Water Regulations 1976, U.S. Environmental Protection Agency.

 Suggested limiting value, U.S. Geological Survey, Quality of Water Branch.

 Maximum contaminant level recommended for the Proposed Secondary Drinking Water Regulations, U.S. Environmental Protection Agency.

EXPLANATION OF GROUND-WATER LEVEL RECORDS

Collection of the data

Only ground-water level data from a basic network of observation wells are published herein. This basic network contains observation wells so located that the most significant data are obtained from the fewest wells in the most important aquifers.

Each well is identified by means of (1) a 15-digit number that is based on latitude and longitude (see figure 1) and (2) a local name and a unique well number that are provided for local needs.

Measurements are made in many types of wells, under varying conditions of access and at different temperatures, hence, neither the method of measurement nor the equipment can be standardized. At each observation well, however, the equipment and techniques used are those that will ensure that measurements at each well are consistent.

Water-level measurements in this report are given in feet with reference to land-surface datum (LSD, lsd). Mean sea level, now designated as NGVD, is the datum plane on which the national network of precise levels is based; land-surface datum is a datum plane is that approximately at land surface at each well. If known, the altitude of the land-surface datum above NGVD is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (eom).

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given only to a tenth of a foot or a larger unit.

Publications

Table 5 below, shows the series of water-supply papers that give ground-water data for New Jersey, 1935 to 1974. No water level data were published in 1975. Beginning in 1976, ground-water level data for New Jersey have been published in these annual water data reports.

Table	5 Water-supply	paper	(WSP)	numbers.	water	vears.	1935-74

Year	WSP	Year	WSP	Year	WSP
1935	777	1944	1016	1953	1265
1936	817	1945	1023	1954	1321
1937	840	1946	1071	1955	1404
1938	845	1947	1096	1956-57	1537
1939	866	1948	1126	1958-62	1782
1940	906	1949	1156	1963-67	1977
1941	936	1950	1165	1968-72	2140
1942	986	1951	1191	1973-74	2164
1943	986	1952	1221		

SELECTED REFERENCES

- Anderson, P. W., 1970, Occurrence and distribution of trace elements in New Jersey streams; New Jersey Division of Water Policy and Supply, Water Resources Circular 24, 24 p.
- Anderson, P.W., and Faust, S. D., 1973 Characteristics of water quality and streamflow, Passaic River basin above Little Falls, New Jersey: U.S. Geological Survey Water-Supply Paper 2026, 80 p.
- 1974, Water-quality and streamflow characteristics, Raritan River basin, New Jersey: U.S. Geological Survey Water Resources Investigations, 1474, 82 p.
- Anderson, P. W., and George, J. R., 1966, Water-quality characteristics of New Jersey streams: U.S. Geological Survey Water-Supply Paper 1819-G, 48 p.
- Barnett, P. R., and Mallory, Jr., E. C., 1971, Determination of minor elements in water by emission spectroscopy: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, Chapter A2, 31 p.
- Carter, R. W., and Davidian, Jacob, 1968, General procedure for gaging streams: U.S. Geological Survey Techniques Water-Resources Investigations, Book 3, Chapter A6, 13 p.
- Corbett, D. M., and others, 1943, Stream-gaging procedure, a manual describing methods and practices of the Geological Survey: U.S. Geological Survey Water-Supply Paper 888, 245 p.
- Goerlitz, D. F., and Brown, Eugene, 1972, Methods for analysis of organic substances in water:
 U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A3,
 40 p.
- Greeson, P. E., Ehlke, T. A., Irwin, G. A., Lium, B. W., and Slack, K. V., 1977, Methods for collection and analysis of aquatic biological and microbiological samples: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A4, 332 p.

- Guy, H. P., 1969, Laboratory theory and methods for sediment analysis: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter C1, 58 p.
- ____1970, Fluvial sediment concepts: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C1, 55 p.
- Guy, H. P., and Norman, V. W., 1970, Field methods for measurement of fluvial sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C2, 59 p.
- Hem, J. D., 1970, Study and interpretation of the chemical characteristics of natural water, 2d ed.: U.S. Geological Survey Water-Supply Paper 1473, 363 p.
- Langbein, W. B., and Iseri, K. T., 1960, General introduction of hydrologic definitions: U.S. Geological Survey Water-Supply Paper 1541-A, 29 p.
- Laskowski, S. L., 1970, Statistical summaries of New Jersey streamflow records: New Jersey Division of Water Policy and Supply, Water Resources Circular 23, 264 p.
- Lohman, S. W., and other, 1972, Definitions of selected ground-water terms-revisions and conceptual refinements: U.S. Geological Survey Water-Supply Paper 1988, 21 p.
- Mansue, L. J., and Anderson, P. W., 1974, Effect of landuse and retention practices on sediment yields in the Stony Brook basin, New Jersey: U.S. Geological Survey Water-Supply Paper 1798-L.
- McCall, J. E., and Lendo, A. C., 1970, A modified streamflow data program for New Jersey: U.S. Geological Survey Open-File Report, 46 p.
- Porterfield, George, 1972, Computations of fluvial-sediment discharge: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C3, 66 p.
- Schornick, J. C., and Ram, N. M., 1978, Nitrification in four acidic streams in southern New Jersey: U.S. Geological Survey Water-Resources Investigations, 77-121, 51 p.
- Schopp, R. D., and Gillespie, B. D., 1979, Selected streamflow data for the Delaware River basin: U.S. Geological Survey Open-File Report 79-347, 16 p.
- Schopp, R. D., and Velnich, A. J., 1979, Flood of November 8-10, 1977 in Northeastern and Central New Jersey: U.S. Geological Survey Open-File Report, 32 p.
- Seaber, P. R., 1963, Chloride concentrations of water from wells in the Atlantic Coastal Plain of New Jersey, 1923-61: New Jersey Division of Water Policy and Supply, Special Report 22, 250 p.
- Skougstad, N. W., Fishman, M. J., Friedman, L. C., Erdmann, D. E., and Duncan, S. S., 1978, Methods for analysis of inorganic substances in water and fluvial sediments: U.S. Geological Survey Open-File Report, 78-679, 1005 p.
- Stankowski, S. J., 1972, Floods of August and September 1971 in New Jersey: New Jersey Division of Water Resources, Special Report 37, 329 p.
- Stankowski, S. J., and Velnich, A. J., 1974, A summary of peak stages and discharges for the flood of August 1973 in New Jersey: U.S. Geological Survey Open-File Report, 12 p.
- Stankowski, S. J., 1974, Magnitude and frequency of floods in New Jersey with effects of urbanization: New Jersey Department of Environmental Protection, Division of Water Resources, Special Report 38, 46 p.
- Stankowski, S. J., Schopp, R. D., and Velnich, A. J., 1975, Flood of July 21, 1975 in Mercer County, New Jersey: U.S. Geological Survey Water-Resources Investigations, 51-75, 52 p.
- Stevens, Jr., Herbert H., Ficke, John F., and Smoot, George F., 1975, Water temperature-influential factors, field measurement, and data representation: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 1, Chapter D1, 65 p.
- U.S. Environmental Protection Agency, 1976, Quality criteria for water: U.S. Environmental Protection Agency report EPA 44019-76-023, 501 p.
- U.S. Environmental Protection Agency, 1976, National Interim Primary Drinking Water Regulations: U.S. Environmental Protection Agency report EPA 570/9-76-003, 159 p.
- U.S. Geological Survey, 1970, Surface water supply of the United States 1961-65, Part 1. North Atlantic Slope basins, Volume 2. Basins from New York to Delaware: U.S. Geological Survey Water-Supply Paper 1902, 924 p.
- _____1977, Ground-water levels in the United States, Northeastern States: U.S. Geological Survey Water-Supply Paper 2164, 126 p.
- Vecchioli, John, and Miller, E. G., 1973, Water Resources of the New Jersey part of the Ramapo River basin: U.S. Geological Survey Water-Supply Paper 1974, 77 p.
- Velnich, A.J., and Laskowski, S.L., 1979, Technique for estimating depth of 100-year flood in New Jersey: U.S. Geological Survey Open-File Report 79-419, 17 p.
- Vickers, A. A., and McCall, J. E., 1968, Surface water supply of New Jersey, Streamflow records 1961-65: New Jersey Division of Water Policy and Supply, Special Report 31, 351 p., (most recent volume).

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

Thirty-four manuals by the U.S. Geological Survey have been published to date in the series on techniques describing procedures for planning and executing specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) is on surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. The reports listed below are for sale by the U.S. Geological Survey, Branch of Distribution, 1200 South Eads Street, Arlington, VA 22202 (authorized agent of the Superintendent of Documents, Government Printing Office. Prices are effective October 1978 but are subject to change. but are subject to change.

- NOTE: When ordering any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations".
- Water temperature-influential factors, field measurement, and data presentation, by H. H. Stevens Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages. \$1.60.
- Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W.W.Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages. 1-D2.

- unstable constituents, by W.W.Wood: USGS-TWRI Book 1, Chapter DZ. 1970. 24 pages.
 \$0.85

 2-D1. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy,
 G. P. Eaton, and D. R. Mabey: USGS-TWRI Book 2, Chapter Dl. 1974. 116 pages. \$1.90.

 2-E1. Application of borehole geophysics to water-resources investigations, by W. S. Keys and
 L. M. MacCary: USGS-TWRI Book 2, Chapter El. 1971. 126 pages. \$1.75.

 3-A1. General field and office procedures for indirect discharge measurements, by M. A. Benson
 and Tate Dalrymple: USGS-TWRI Book 3, Chapter Al. 1967. 30 pages. \$1.00.

 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A.
 Benson: USGS-TWRI Book 3, Chapter A2. 1967. 12 pages. \$0.35.

 3-A3. Measurement of peak discharge at oulverts by indirect methods, by G. L. Bodhaine: USGSTWRI Book 3, Chapter A3. 1968. 60 pages. \$0.40.

 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H. F.
 Matthai: USGS-TWRI Book 3, Chapter A4. 1967. 44 pages. \$1.00.

 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGSTWRI Book 3, Chapter A5. 1967. 29 pages. \$0.35.

 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS-TWRI
 Book 3, Chapter A6, 1968, 13 pages. \$1.00.

 3-A7. Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS-TWRI
 Book 3, Chapter A1. 1968. 28 pages. \$1.25.

 3-A1. Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGSTWRI Book 3, Chapter A1. 1969. 65 pages. \$1.25.

 3-A1. Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGSTWRI Book 3, Chapter A1. 1969. 70 pages. \$1.25.

 3-A1. Pluorometric procedures for dye tracting, by J. F. Wilson Jr.: USGS-TWRI Book 3,
 Chapter B1. 1971. 26 pages. \$0.35. Not currently available.

 3-A1. Autifer-test design, observation, and data analysis, by R. W. Stallman: USGS-TWRI Book
 3, Chapter B1. 1971. 26 pages. \$0.70.

 3-B2. Introduction to ground-wate \$2.50.
 \$-C1. Fluvial sediment concepts, by H. P. Guy: USGS--INKI BOOK 3, Chapter C2. 1970. 59 pages. \$2.50.

 \$-C2. Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS--TWRI Book 3, Chapter C2, 1970. 59 pages. \$2.50.

 \$-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages. \$2.10.

 4-A1. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4 Chapter A1. 1968.

- Some statistical total and the statistical t 4-B1.

- 4-B1. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972, 18 pages. \$0.65.

 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages. \$0.75.

 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages. \$0.65.

 4-D1. Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS--TWRI Book 4, Chapter D1. 1970. 17 pages. \$1.10.

 5-A1. Methods for collection and analysis of water samples for dissolved minerals and gases, by Eugene Brown, M. W. Skougstad, and M. J. Fishman: USGS--TWRI Book 5, Chapter A1. 1970. 160 pages. \$2.40.

 5-A2. Determination of minor elments in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages. \$0.80.

 5-A3. Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown: USGS--TWRI Book 5, Chapter A3. 1972. 40 pages. \$0.90.

 5-A4.* Methods for collection and analysis of aquatic biological and microbiological samples, edited by P.E. Greeson, T.A. Ehlke, G.A. Irwin, B.W. Lium, and K.V. Slack: USGS--TWRI Book 5, Chapter A4. 1977. 332 pages. \$20.00.

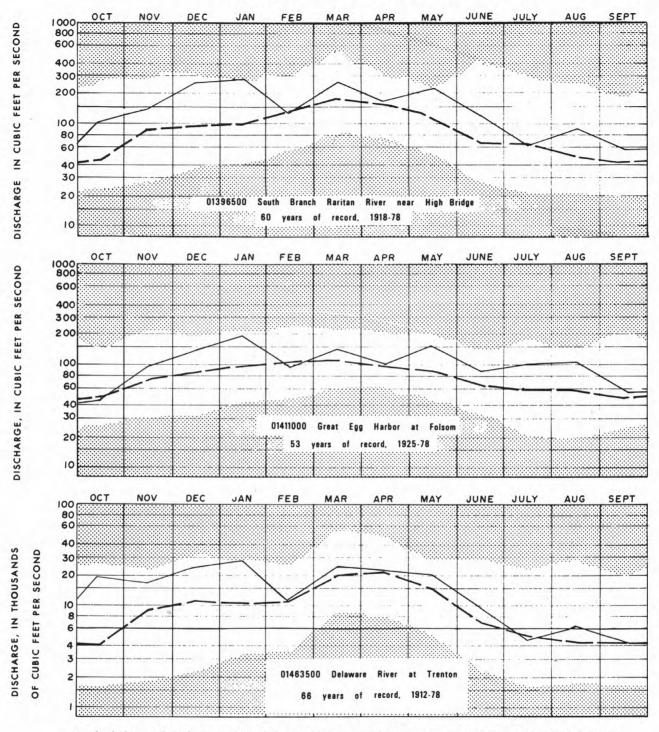
 5-A5.* Methods for determination of radioactive substances in water and fluvial sediments, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages. \$16.00.

 5-C1. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter C1. 1909. 58 pages.

- 95 pages. \$16.00.

 Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5,

 Chapter C1. 1969. 58 pages. \$2.10.

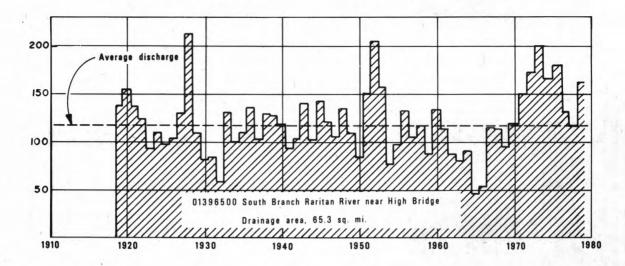

 Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages. \$2.30.

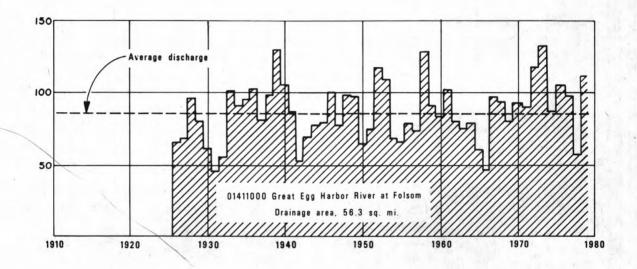
 Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS--TWRI Book 8, Chapter A1. 1968. 23 pages. \$0.70.

 Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages. \$1.10.
- 8-A1.

*These publications are available ONLY from Superintendent of Documents, Government Printing Office, Washington, D.C. 20402. They are in looseleaf format and are subscription items.

Additional supplements will be issued to subscribers at no extra cost. Checks should be made payable to Superintendent of Documents. Requester should emphasize to Superintendent of Documents that this is a subscription item.




Unshaded area.-- Indicates range between highest and lowest mean recorded for the month prior to 1978 water year.

Dashed line -- Indicates normal (median of the monthly means) for the standard reference period 1941-70.

Solid line.-- Indicates observed monthly mean flow for the 1978 water year.

FIGURE 2 ... MONTHLY STREAMFLOW AT KEY GAGING STATIONS



FIGURE 3 .-- ANNUAL MEAN DISCHARGE AT KEY GAGING STATIONS

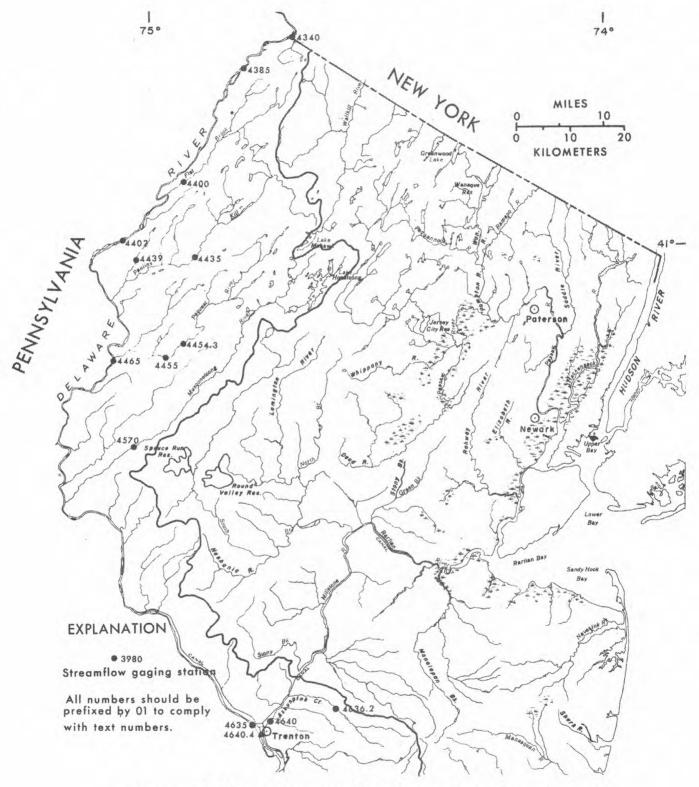


Figure 4.-- Map showing location of gaging stations

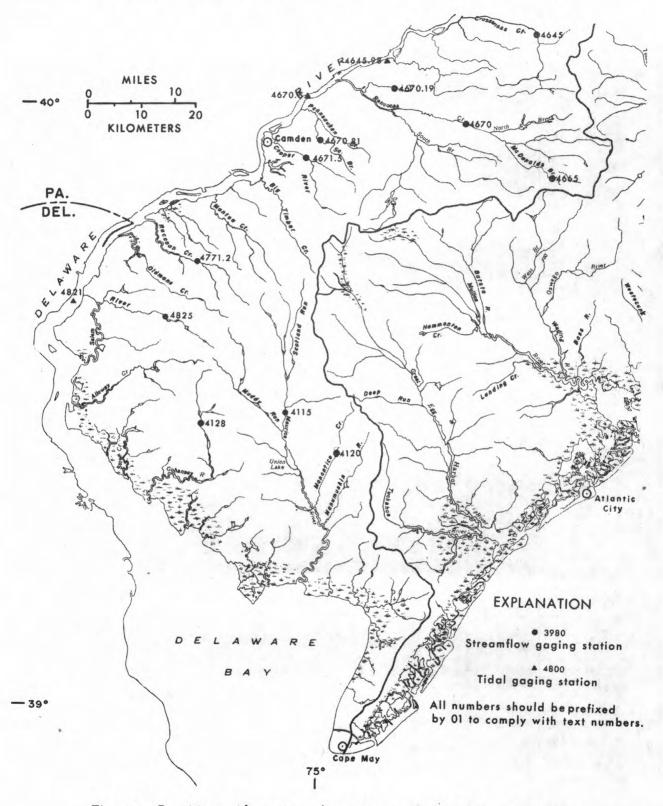


Figure 5.-- Map showing location of gaging stations

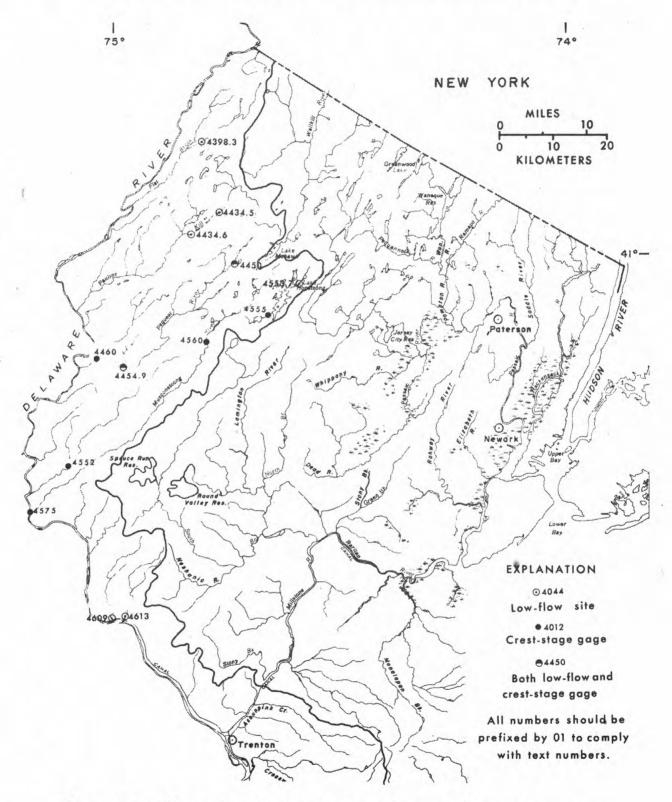


Figure 6.-- Map showing location of partial-record stations

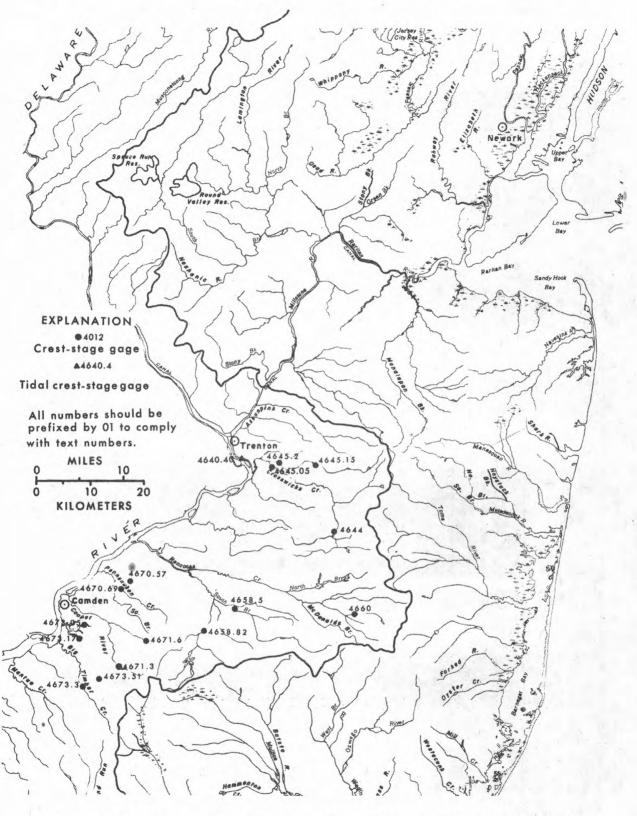


Figure 7.-- Map showing location of partial-record stations

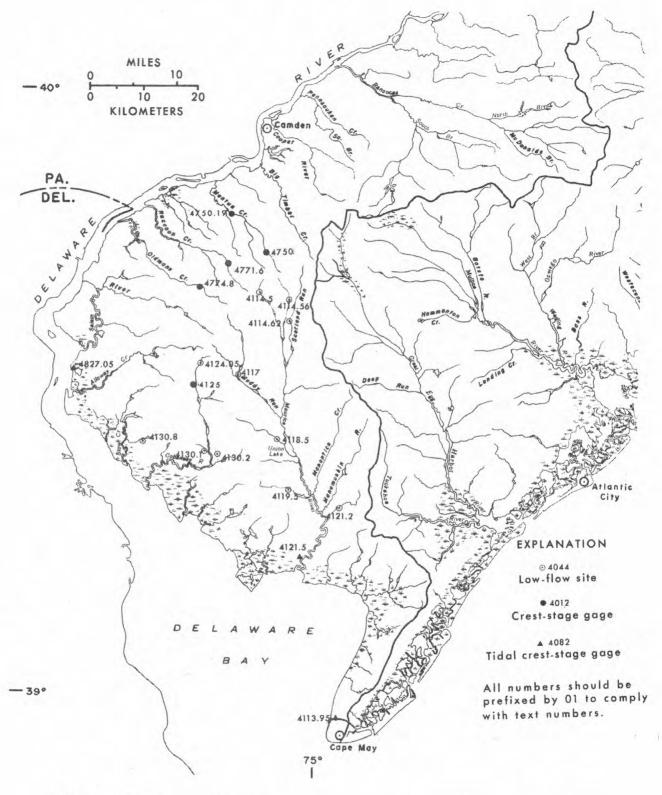


Figure 8.-- Map showing location of partial-record stations

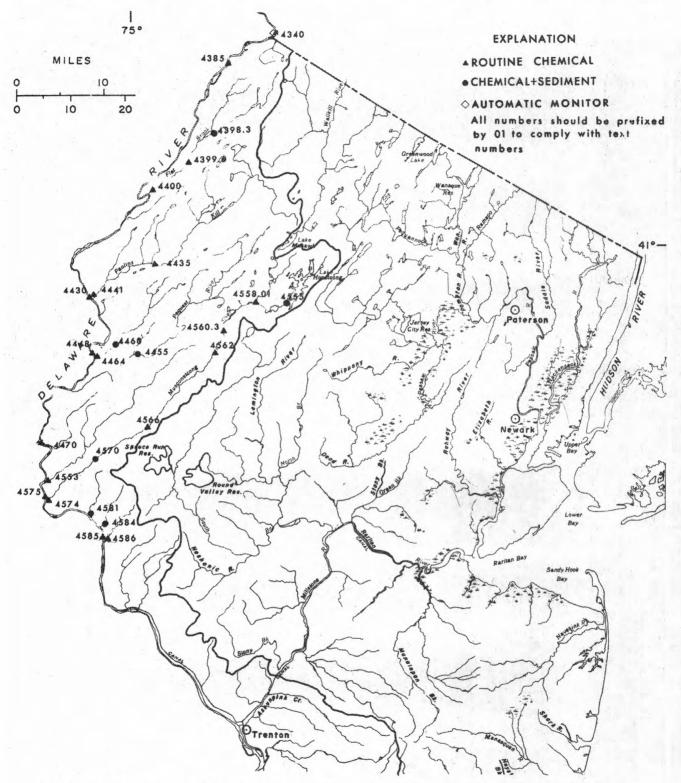


Figure 9.-- Map showing location of surface-water quality stations

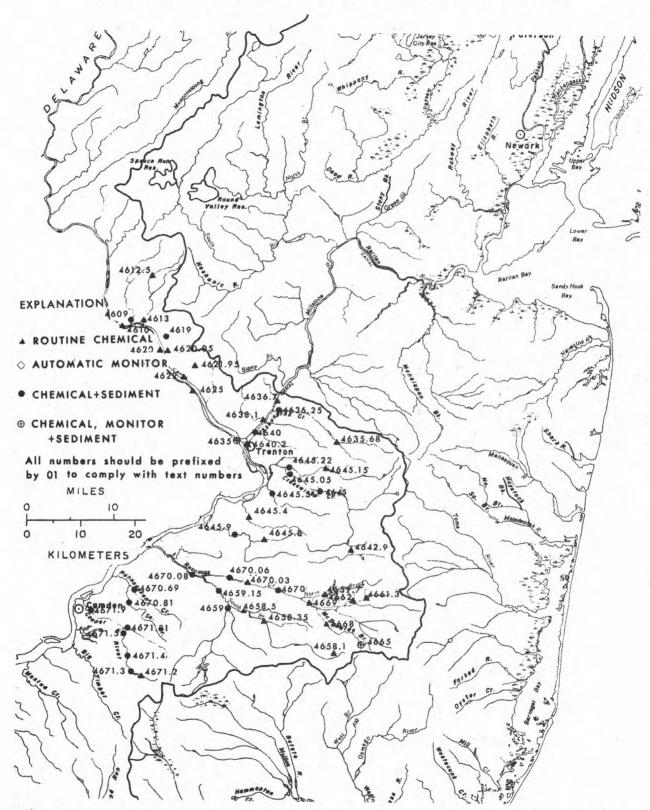


Figure 10.-- Map showing location of surface-water quality stations

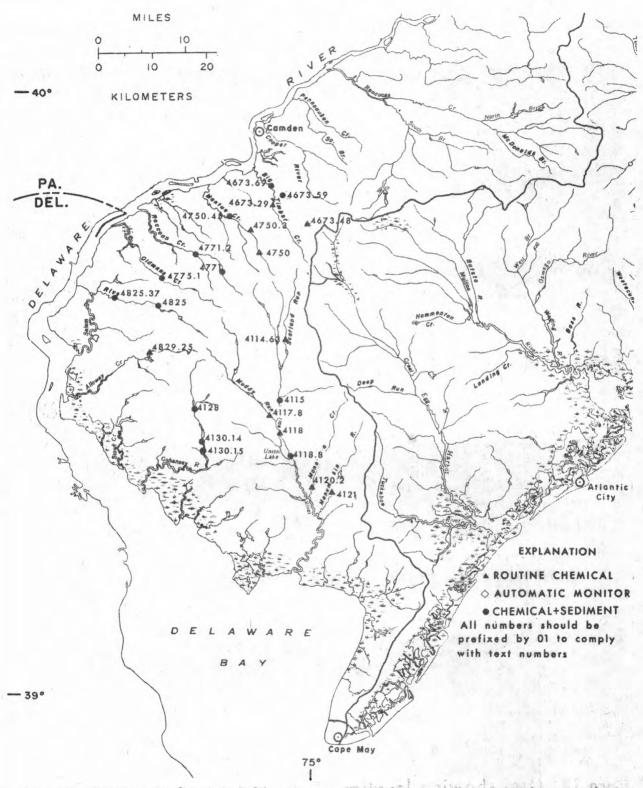


Figure 11.--Map showing location of surface-water quality stations

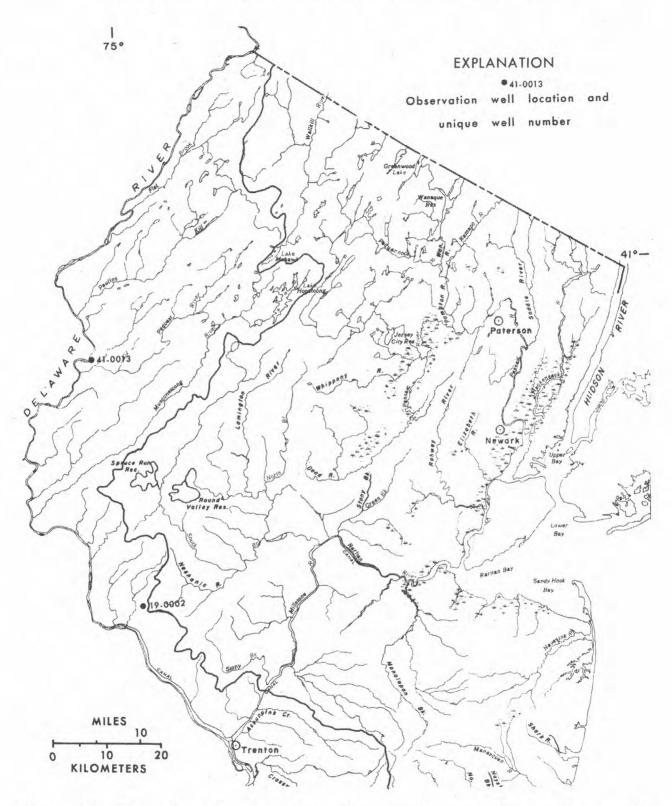


Figure 12.-- Map showing location of ground-water observation wells

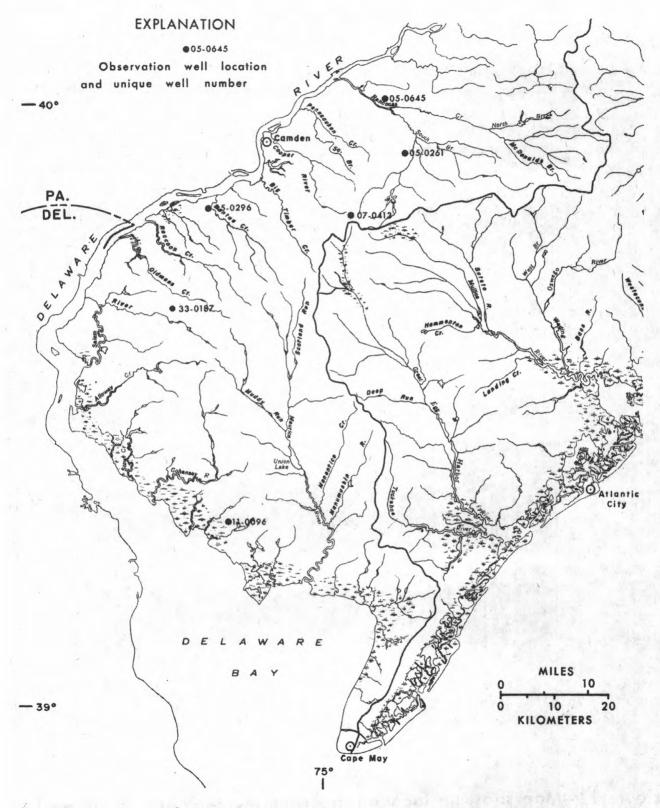


Figure 13.--Map showing location of ground-water observation wells

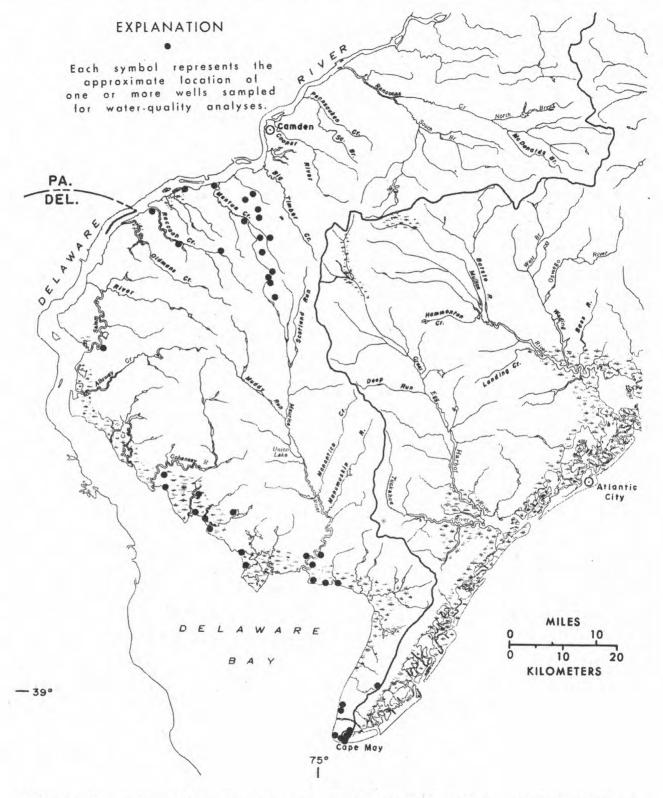


Figure 14.-- Map showing location of ground-water quality stations

01411463 SCOTLAND RUN NEAR FRANKLINVILLE, NJ

LOCATION.--Lat 39°35'43", long 75°03'51", Gloucester County, Hydrologic Unit 02040206, at bridge on State Route 47, 1.1 mi (1.8 km) east of Porchtown, 1.1 mi (1.8 km) upstream of Malaga Lake, and 1.5 mi (2.4 km) southeast of Franklinville.

DRAINAGE AREA . -- 16.4 mi2 (42.5 km2).

PERIOD OF RECORD. -- CHEMICAL ANALYSES: Water years 1975 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

1										
		WATER QU	ALITY DAT	A, WATER	YEAR OCTO	BER 1977	TO SEPTEM	BER 1978		
	- · · · · · · · · · · · · · · · · · · ·	SPE- CIFIC CON- DUCT- ANCE	РН	TEMPER-	TUR- BID-	OXYGEN, DIS-	DEMAND, BIO- CHEM- ICAL,	COLI- FORM, FECAL, EC	STREP- TOCOCCI	HARD- NESS (MG/L
100	TIME	(MICRO-		ATURE	ITY	SOLVED	5 DAY	BROTH	FECAL	AS
DATE		MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	(MG/L)	(WBN)	(MPN)	CACO3)
DEC										
13	1010	80	4.5	2.5	1	12.8		<2	<2	19
FEB 28	0945	55	4.6	4.0	1	12.7	.7	8	7	12
APR	0945	33	4.0	4.0		12.7	• '			
18	1015	57	4.9	12.5	3	10.8	1.0	2	5	12
MAY	0030	52						230	<2	10
23 JUN	0930	52	4.8	20.0	1	8.6	1.6	230	12	10
08	1005	47	4.8	21.0	2	7.2	1.4	130	33	10
						,				SOLIDS,
		MAGNE-		POTAS-					CHLD-	RESIDUE
	CALCIUM	SIUM,	SODIUM,	SIUM,	BICAR-		ALKA-	SULFATE	RIDE,	AT 180
	DIS-	DIS-	DIS-	DIS-	BONATE	CAR-	LINITY	DIS-	DIS-	DEG. C
	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	(MG/L AS	BONATE (MG/L	(MG/L	SOLVED (MG/L	SOLVED	SOLVED
DATE	AS CA)	AS MG)	AS NA)	AS K)	HC03)	AS CO3)	CACO3)	AS 504)	AS CL)	(MG/L)
DEC 13	3.4	2.5	3.1	1.5	0	0	0	16	5.8	62
FEB	3.4	2.5	3.1	1.5	U	0	U	10	3.0	0.2
28	2.2	1.5	2.8	1.2	0	0	0	9.4	2 5.5	37
APR 18	2.4	1.5	2.8	1.3	2	0	2	11	7.2	44
MAY	2.4	1.5	2.8	1.3	- 4	U	- 4	11	/	1000
23	1.6	1.5	2.9	1.1	1	0	1	9.8	5.5	47
JUN	1.8	1.3	2.6	1.0	* 1	0	1	8.6	5.1	42
00	1.0	1.3	2.0	1.0		U		0.0	5.1	ALL PROPERTY AND
	SOLIDS, RESIDUE	NITRO-	NITRO-	NITRO-	NITRO-	NITRO- GEN, AM-			PHOS-	
	AT 105	GEN,	GEN,	GEN,	GEN,	MONIA +	NITRO-	PHOS-	PHORUS,	CARBON,
	DEG. C.	NITRATE	NITRITE	AMMONIA	ORGANIC	ORGANIC	GEN.	PHORUS.	ORTHO.	DRGANIC
	SUS-	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	PENDED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DATE	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS C)
DEC			-							
13	4	1.3	.00	.01	.30	. 31	1.6	.01	.00	12
FEB)
28 APR	1	1.3	.00	.01	,03	.04	1.3	.00	.00	5.2
18	4	.60	.00	.01	.29	.30	.90	.00	.00	4.4
MAY						2.		1		
23 JUN	17	.42	.01	.02	.49	.51	.94	.01	.00	6,5
08	0	.47	.00	.02	.35	.37	.84	.01	.00	5.4

01411500 MAURICE RIVER AT NORMA, NJ

LOCATION.--Lat 39°29'42", long 75°04'38", Salem County, Hydrologic Unit 02040206, on right bank just upstream from Almond Road Bridge at Norma, and 0.8 mi (1.3 km) downstream from Blackwater Branch.

DRAINAGE AREA . -- 113 mi2 (293 km2).

PERIOD OF RECORD .--

WATER DISCHARGE: Water years 1932 to current year. Monthly discharge only for December 1933, published in WSP

CHEMICAL ANALYSES: Water years 1923, 1953, 1960-62, 1966 to current year. SEDIMENT ANALYSES: Water years 1965-68, July to September 1978.

PERIOD OF DAILY RECORD. --

WATER DISCHARGE: July 1932 to current year.
WATER TEMPERATURES: October 1966 to January 1968.
SUSPENDED-SEDIMENT DISCHARGE: February 1965 to January 1968.

REVISED DISCHARGE RECORDS. -- WSP 1382: 1933.

GAGE.--Water-stage recorder. Concrete control since Dec. 27, 1937. Datum of gage is 46.94 ft (14.307 m) National Geodetic Vertical Datum of 1929.

REMARKS. -- Discharge records good. Occasional regulation by ponds above station.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

AVERAGE DISCHARGE .- 46 years, 168 ft3/s (4.758 m3/s), 20.19 in/yr (513 mm/yr).

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 380 ft 3/s (10.8 m3/s) and maximum (*):

Date		Time	Discha (ft³/s)	arge (m³/s)	Gage H	leight (m)	Date		Time	Discha (ft ³ /s)		Gage H	leight (m)
Dec. Jan.	23	0700 1600	459 564	13.0	3.62 3.81	1.103	Mar. May	29 26	0200 2400	546 662	15.5 18.7	3.78 3.97	1.152
Jan.	29	0100	*831 387	23.5	4.23	1.289	July	4	1200	546	15.5	3.78	1.152

Minimum discharge, 46 ft 3 /s (1.30 m 3 /s) Oct. 8, gage height, 2.42 ft (7.376 m).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 7,360 ft³/s (208 m³/s) Sept. 2, 1940 (gage height, 8.72 ft or 2.658 m) from rating curve extended above 3,000 ft³/s (85 m³/s); minimum daily, 23 ft³/s (0.65 m³/s) Sept. 8, 1964, July 2, Sept. 7, 11-13, 1966.

		DISCHARG	E, IN	CUBIC FEET	PER SECO ME	ND, WATER AN VALUES	YEAR OC	TOBER 1977	TO SEPTEM	IBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1	58	69	205	231	376	169	353	171	265	154	138	155
2	56	70	210	225	335	172	318	163	250	142	162	184
3	54	74	207	205	306	173	293	114	200	190	205	185
4	52	82	206	200	285	177	276	186	151	466	216	164
5	50	77	205	199	266	176	218	217	171	415	283	140
6	49	74	223	194	256	172	217	208	179	394	323	124
7	48	150	215	191	248	167	240	204	178	356	353	113
8	47	285	196	192	246	164	248	202	191	297	335	105
9	70	278	192	247	243	163	244	263	192	214	274	101
10	93	262	160	258	239	179	234	316	188	158	232	95
11	96	275	191	200	232	237	222	318	183	167	227	93
12	100	254	173	350	227	256	211	321	174	167	204	91
13	91	217	162	344	224	290	204	303	171	166	192	91
14	82	182	163	382	223	328	199	287	169	160	182	90
15	78	156	207	378	221	360	194	275	158	157	170	89
16	72	142	213	366	218	366	188	272	152	162	159	89
17	79	152	219	361	215	385	184	301	148	200	132	89
18	79	158	253	437	212	376	182	295	147	183	100	89
19	76	151	337	471	208	348	203	289	144	168	117	103
20	73	148	354	528	202	326	226	283	140	156	108	113
21	69	145	391	517	194	310	234	271	133	147	103	110
22	66	141	450	456	192	300	235	233	197	145	105	104
23	64	165	409	398	189	229	230	219	206	135	109	107
24	63	172	367	350	187	269	222	321	222	124	103	102
25	61	167	334	343	183	262	214	450	209	99	100	97
26 27 28 29 30 31	63 77 81 79 75 71	182 184 180 177 178	309 280 254 231 220 231	452 623 788 760 567 445	171 145 162	274 353 460 497 402 392	203 194 191 185 177	614 516 410 309 293 282	181 167 160 160 164	92 97 102 105 107 114	98 98 102 104 103 113	91 87 85 82 80
TOTAL MEAN MAX MIN CFSM IN.	2172 70.1 100 47 .62	4947 165 285 69 1.46 1.63	7767 251 450 160 2.22 2.56	11658 376 788 191 3.33 3.84	6405 229 376 145 2.03 2.11	8732 282 497 163 2.50 2.87	6739 225 353 177 1.99 2.22	8906 287 614 114 2.54 2.93	5350 178 265 133 1.58 1.76	5739 185 466 92 1.64 1.89	5250 169 353 98 1.50 1.73	3248 108 185 80 . 96 1.07
	1977 TOTAL 1978 TOTAL		MEAN MEAN	106 MAX 211 MAX			1 .94	IN 12.69 IN 25.32				

01411500 MAURICE RIVER AT NORMA, NJ -- Continued

	S.	STREAM- FLOW,	SPE- CIFIC CON- DUCT-			TUR-	OXYGEN,	OXYGEN DEMAND, BID- CHEM-	COLI- FORM, FECAL.	STREP-	HARD- NESS
	TIME	INSTAN- TANEOUS	ANCE (MICRO-	PH	TEMPER-	BID-	DIS- SOLVED	ICAL, 5 DAY	BROTH	FECAL	(MG/L
DATE	1146	(CFS)	MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	(MG/L)	(MPN)	(MPN)	CACO3)
DEC											
08	1010	196	89	5.1	2.0	2	13.1	.6	49	33	21
FEB		440								7	7
28 APR	1100	162	81	5.6	3.5	3	11.9	1.2	7	20.	
25	1100	215	76	5.9	14.0	1	9.6	1.1	13	5	17
23	1245	219	70	5.9	19.0	2	7.5	1.0	79	14	16
JUN 14	1345	169	79	6.1	19.5	2	7.7	1.7	220	>2400	17
JUL	1035	404	25						240	>2400	16
20 AUG	1035	156	75	6.2	22.0	2	6.4	1.0			
31	1050	115	79	6.1	22.5	1	7.0	2.8	17	920	17
										SOLIDS,	SOLIDS,
		MAGNE-		POTAS-					CHLO-	RESIDUE	RESIDUE
	CALCIUM	SIUM,	SODIUM,	SIUM,	BICAR-		ALKA-	SULFATE	RIDE,	AT 180	AT 105
	SOLVED	DIS- SOLVED	DIS- SOLVED	DIS- SOLVED	BONATE (MG/L	CAR- BONATE	LINITY (MG/L	DIS-	SOLVED	DEG. C	DEG. C,
	(MG/L	(MG/L	(MG/L	(MG/L	AS	(MG/L	AS	(MG/L	(MG/L	SOLVED	PENDED
DATE	AS CA)	AS MG)	AS NA)	AS K)	HCO3)	AS CO3)	CACO3)	AS 504)	AS CL)	(MG/L)	(MG/L)
DEC											
08	4.4	2.5	6.7	1.6	7	0	6	19	7.9	75	4
FEB					11					•	2
28 APR	1.7	.7	2.4	.7	5	0	4	8.2	2.8	32	2
25	3.6	1.9	6.0	1.7	5	0	4	14	8.7	64	1
23	3.1	1.9	6.1	1.6	6	0	5	13	9.5	60	6
JUN 14				2.0	7	0	6	13	8.3	82	4
JUL	3.7	1.9	6.8								
20 AUG	3.2	1.9	6.0	2.0	9	0	7	9.2	8.3	76	0
31	3.4	2.0	6.4	2.0	10	0	8	8.0	8.9	36	6
				4							
		SEDI-	NITRO-	NITRO-	NITRO-	NITRO-	GEN, AM-			PHDS-	
	SEDI-	DIS-	GEN.	GEN,	GEN,	GEN,	MONIA +	NITRO-	PHOS-	PHORUS,	CARBON,
	MENT,	CHARGE,	NITRATE	NITRITE	AINONIA	ORGANIC	ORGANIC	GEN,	PHORUS,	ORTHO.	DRGANIC
	sus-	SUS-	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
1111	PENDED	PENDED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DATE	(MG/L)	(T/DAY)	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS C)
DEC									100		5 - 2 2
08 FEB	•		1.1	.00	.03	.36	.39	1.5	.02	.00	9.1
28			.33	.00	.02	.22	.24	.57	.00	.00	5.2
APR 25			1.0	.00	.04	.39	.43	1.4	.02	.00	6.2
YAP											
23 JUN	••		.78	.01	.06	.71	.77	1.6	.04	.01	5.9
14 JUL			1.2	.01	.09	.67	.76	2.0	.07	.03	10
20 AUG	6	2.5			.10	.30	.40	1.5		••	7.0
31	6	1.9			.37	1.9	2.3	3.8		••	7.8

01411780 MUDDY RUN NEAR NORMA, NJ

LOCATION.--Lat 39°28'13", long 75°05'36", Salem County, Hydrologic Unit 02040206, at bridge on Lebanon Road, 1.0 mi (1.6 km) upstream from mouth, 1.6 mi (2.6 km) southeast of Rainbow Lake, and 1.6 mi (2.6 km) south of Norma. DRAINAGE AREA. -- 56.5 mi2 (146.3 km2).

PERIOD OF RECORD.--CHEMICAL ANALYSES: Water years 1975 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

		JATER QU	ALITY DAT	A, WATER	YEAR OCTO	BER 1977	TO SEPTE	BER 1978		
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	DXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
DEC										
08	1110	101	6.4	1.5	3	13.2	.5	49	23	39
FEB 28 APR	1200	106	6.3	3.5	2	11.4	1.8	11	23	32
25	1230	100	6.4	16.0	3	10.2	1.4	170	220	29
23 JUN	1130	87	6.7	20.5	2	8.4	1.4	49	8	28
15	1030	97	6.8	18.5	2	6.7	1.5	110	79	31
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
DEC										
08 FEB	10	3.5	4.7	2.6	7	0	6	18	9.3	85
28	6.9	3.6	4.5	2.1	9	0	7	14	11	49
APR 25	6.3	3.3	4.5	2.0	11	0	9	17	10	71
23	6.0	3.2	4.3	2.0	9	0	7	11	9.1	76
JUN 15	7.2	3.2	4.7	2.2	15	0	12	11	9.3	82
	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED	NITRO- GEN, NITRATE TOTAL (MG/L	NITRO- GEN, NITRITE TOTAL (MG/L	NITRO- GEN, AMMONIA TOTAL (MG/L	NITRO- GEN, ORGANIC TOTAL (MG/L	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L	NITRO- GEN, TOTAL (MG/L	PHOS- PHORUS, TOTAL (MG/L	PHOS- PHORUS, ORTHO. TOTAL	CARBON, ORGANIC TOTAL (MG/L
DATE	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS C)
DEC										
08 FEB	5	1.8	.01	.04	.52	.56	2.4	.03	.01	12
28	2	3,1	.01	.04	.44	.48	3.6	.02	.00	2.6
APR 25	23	1.6	.01	.04	.42	.46	2.1	.02	.00	9.7
MAY 23	1	1.1	.01	.06	.71	.77	1.9	.05	.01	9.2
JUN										
15	2	1.3	.01	.07	.53	.60	1.9	.06	.01	6.9

01411800 MAURICE RIVER NEAR MILLVILLE, NJ

LOCATION.--Lat 39°26'52", long 75°04'22", Cumberland County, Hydrologic Unit 02040206, at bridge on Sherman Avenue, 1.3 mi (2.1 km) downstream of Muddy Run, 3.5 mi (5.6 km) north of Union Lake dam at Millville, and 4.0 mi (6.4 km) southwest of Vineland.

DRAINAGE AREA .-- 193 mi2 (500 km2).

PERIOD OF RECORD. -- CHEMICAL ANALYSES: Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

		-									
	7	WA	TER QUALITY	DATA,	JATER YEAR	OCTOBER	1977 TO	SEPTEMBER	1978		
		SPE-					OXYGEN				
		CIFIC					DEMAND,	, COLI-		*	
		CON-					BIO-	FORM,		HARD-	CALCIUM
		DUCT-			TUR-	OXYGEN,		FECAL,	STREP-	NESS	DIS-
		ANCE	PH	TEMPER-		DIS-	ICAL,	EC	TOCOCCI	(MG/L	SOLVED
	TIME	(MICRO-		ATURE	ITY	SOLVED		BROTH	FECAL	AS	(MG/L
PATE		MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	(MG/L)	(MPN)	(MPN)	CACO3)	AS CA)
C											- 1
)8 CB	1200	97	6.1	2.0	2	12.4		0 33	8	24	5.0
28	1240	100	6.4	3.0	2	13.0	1.7	7 2	. 7	22	4.7
PR							1				
25 AY	1330	92	6.5	16.0	2	10.0	1.4	4 2	5	20	4.3
24	1015	72	6.2	17.0	15	6.6	4.0	0 1600	>2400	14	3.1
UN 14	1220	97	6.4	19.0	2	7.9	1.7	7 170	540	21	4.6
. ****	1220	9,	0.4	19.0		/.9	1.	170	340	21	4.0
											SOLIDS,
	MAGNE-		POTAS-						CHLO-	SILICA,	
	SIUM,	SODIUM,	SIUM,	BICAR-		ALKA-	SULFIDE	E SULFATE	RIDE,	DIS-	AT 180
2 :	DIS-	DIS-	DIS-	BONATE	CAR-	LINITY	DIS-	DIS-	DIS-	SOLVED	
	SOLVED	SOLVED	SOLVED	(MG/L	BONATE	(MG/L	SOLVE		SOLVED	(MG/L	DIS-
	(MG/L	(MG/L	(MG/L	AS	(MG/L	AS .	(MG/L		(MG/L	AS	SOLVED
DATE	AS MG)	AS NA)	AS K)	HCO3)	AS CO3)	CACO3)	AS S)	AS SO4)	AS CL)	S102)	(MG/L)
c											
08 EB	2.8	8.1	2.1	7	0	6	• • •	- 18	9.6	••	86
28	2.6	7.2	2.1	9	0	7		- 12	12		59
PR											•••
25 AY	2.2	6.8	2.0	10	0	8		- 14	11	N.A.	29
24	1.6	5.8	1.9	10	0	8		0 10	7.3	2.3	51
UN 14	2.3	8.0	2.2	13	0	11		- 12	10		74
		2									
		IDS,					ITRO-				
							EN, AM-	NITRO- P		HOS- DRUS. CA	RBON.
							NIA + N				GANIC .
											OTAL
											MG/L
0											S C)
DF	c										
	8	0	1.4	.00	.27	.43	.70	2.1	.03	.00	10
FE		•	2.4		26	20		2.2	0.3		4.0
AP	8	. 2	2.6	.01	. 36	.29	.65	3.3	.03	.00	4.0
2	5	2	1.3	.01	.24	.38	.62	1.9	.03	.01	6.1
M A	4	44	.82	.02	.32	.88	1.2	2.0	.20	.05	7.4
			700		10000						
JU	4	6	1.3	.01	.39	.53	.92	2.2	.09	.04	9.5

01411800 MAURICE RIVER NEAR MILLVILLE, NJ--Continued

		ALUM-			CHRO-		MERCURY		
		INUM, DIS-	ARSENIC	BORON, DIS-	HEXA-	IRON, DIS-	TOTAL RECOV-	SELE- NIUM,	
	TIME	SOLVED (UG/L	TOTAL (UG/L	SOLVED (UG/L	DIS.	SOLVED (UG/L	ERABLE (UG/L	TOTAL (UG/L	PHENOLS
DATE		AS AL)	AS AS)	AS B)	AS CR)	AS FE)	AS HG)	AS SE)	(UG/L)
MAY									V .
24	1015	150	190	50	0	480	<.5	0	9

01411880 MAURICE RIVER AT SHARP STREET AT MILLVILLE, NJ

LOCATION.--Lat 39°24'01", long 75°03'15", Cumberland County, Hydrologic Unit 02040206, at bridge on Sharp Street in Millville, 200 ft (61 m) downstream from Union Lake dam.

DRAINAGE AREA . -- 218 mi2 (565 km2).

PERIOD OF RECORD.-WATER DISCHARGE: Water years 1973 to current year.
CHEMICAL ANALYSES: Water years 1975 to current year.
SEDIMENT ANALYSES: July and August 1978.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		SPE- CIFIC CON- DUCT- ANCE	РН	TEMPER-	TUR- BID-	OXYGEN, DIS-	OXYGEN DEMAND, BID- CHEM- ICAL,	COLI- FORM, FECAL, EC	STREP-	HARD- NESS (MG/L	CALCIUM DIS- SOLVED
DATE	TIME	(MICRO- MHOS)	(UNITS)	ATURE (DEG C)	ITY (JTU)	SOLVED (MG/L)	5 DAY (MG/L)	BROTH (MPN)	FECAL (MPN)	CACO3)	(MG/L AS CA)
DEC	4430								40	22	
13 FEB	1130	92	6.2	2.5	2	12.0		33	49	23	4.6
28 APR	1345	90	6.0	3.0	2	12.7	1.3			22	4.6
27	0815	87	6.5	12.5	3	10.6	2.0	<2	<2	20	4.7
MAY 24	1245	75	6.5	19.0	2	9.2	1.4	8	41	18	3.5
JUN 13	1200	81	6.8	22.5	2	8.9	2.1	17	7	17	3.6
JUL 20	1145	80	6.8	24.5	2	7.5	1.9	220	31	17	3.3
AUG											
31	1215	87	6.7	25.0	1	7.3	1.4	6	220	19	3.9
	MAGNE-	*-	POTAS-						CHLO-	SILICA,	SOLIDS, RESIDUE
	SIUM, DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L	BICAR- BONATE (MG/L AS	CAR- BONATE (MG/L	ALKA- LINITY (MG/L AS	SULFIDE DIS- SOLVED (MG/L	SULFATE DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L AS	AT 180 DEG. C DIS- SOLVED
DATE	AS MG)	AS NA)	AS K)	HC03)	AS CO3)	CACO3)	AS S)	AS 504)	AS CL)	8102)	(MG/L)
DEC		,									
13 FEB	2.7	6.6	2.2	7	0	6		17	9.1		60
28	2.5	6.5	2.0	7	0	6		11	9.1		66
APR 27	2.1	6.5	2.0	7	0	6		13	11		60
MAY 24 JUN	2.2	6.0	1.9	9	0	7	.0	11	7.9	2.5	53
13	2.0	6.4	2.2	9	0	7		11	9.2		82
20	2.1	6.4	1.9	12	0	10		8.2	9.4		71
AUG 31	2.2	7.3	2.4	17	0	14		7.7	11		36
		1.5	3								
					-/			17.			
	SOLIDS, RESIDUE		NITRO-	NITRO-	NITRO-	NITRO-	MITRO- GEN, AM-	1.		PHOS-	
	AT 105	SEDI-	GEN,	GEN,	GEN,	GEN,	MONIA +	NITRO-	PHOS-	PHORUS,	CARBON,
	DEG. C.	MENT,	NITRATE	NITRITE	AMMONIA	DRGANIC	ORGANIC	GEN, TOTAL	PHORUS,	ORTHO.	DRGANIC
DATE	PENDED (4G/L)	PENDED (MG/L)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L	(MG/L AS P)	(MG/L AS P)	(MG/L AS C)
	(40/0)	(MG/D)	AS NJ	NO N	NO N	NS N)	NO NI	43 47	NO 77	NO 17	ND C7
13	4		1.3	.01	.24	.38	.62	1.9	.02	.02	11
FEB 28	1		2.7	.01	.25	.85	1.1	3.8	.02	.01	3.5
APR 27	1		1.4	.01	.13	.59	.72	2.1	.15	.01	7.3
MAY				1							
24 JUN	7		.93	.01	.13	.46	.59	1.5	.03	.01	8.1
13 JUL	9		.99	.01	.20	.71	.91	1.9	.06	.03	7.0
20 AUG	. 8	8			.10	.70	.80	1.8	•	••	6.0
31	4	5			.49	1.4	1.9	2.9	-		11

41

01411880 MAURICE RIVER AT SHARP STREET AT MILLVILLE, NJ--Continued

					CHRO-				
		ALUM-			MIUM,		MERCURY		
		INUM,		BORON,	HEXA-	IRDN,	TOTAL	SELE-	
		DIS-	ARSENIC	DIS-	VALENT,	DIS-	RECOV-	NIUM,	
		SOLVED	TOTAL	SOLVED	DIS.	SOLVED	ERABLE	TOTAL	PHENOLS
	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE		AS AL)	AS AS)	AS B)	AS CR)	AS FE)	AS HG)	AS SE)	(UG/L)
MAY									
24	1245	130	150	70	0	150	<.5	0	0

01412000 MANANTICO CREEK NEAR MILLVILLE, NJ

LOCATION.--Lat 39°25'12", long 74°58'00", Cumberland County, Hydrologic Unit 02040206, on right bank at upstream side of Mays Landing Road (Route 552), 0.9 mi (1.4 km) downstream of Manantico Lake, 4.0 mi (6.4 km) northeast of Millville, and 7.0 mi (11.3 km) upstream from mouth.

DRAINAGE AREA .-- 22.3 mi2 (57.8 km2).

PERIOD OF RECORD. --

WATER DISCHARGE: June 1931 to September 1957, October 1977 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 36.63 ft (11.165 m) National Geodetic Vertical Datum of 1929.

REMARKS .-- Records good .

AVERAGE DISCHARGE.--27 years (1931-57, 1978), 37.7 ft 3/s (1.068 m3/s), 2,296 in/yr (583 mm/yr).

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 125 ft3/s (3.54 m3/s) and maximum (#):

Date		Time	Dischar (ft³/s) (Gage H	eight (m)	Date		Time	Discha (ft ³ /s)		Gage H	eight (m)
Jan.	18	2315	152	4.30	2.75	0.838	Mar.	27	1945	148	4.19	2.71	0.826
	21	1215	137	3.88	2.60	0.792	May	10	1630	149	4.22	2.72	0.829
	27	0145	137	3.88	2.60	0.792	May	25	0715	183	5.18	3.01	0.917
	12	1330	143	4.05	2.66	0.811	July	4	1615	*255	7.22	3.58	1.091

Minimum daily discharge, 8.8 ft3/s (0.25 m3/s) Oct. 7.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,050 ft³/s (29.7 m³/s) Aug. 20, 1939 (gage height, 6.21 ft or 1.893 m) from rating curve extended above 300 ft³/s (8.5 m³/s); minimum, 1.4 ft³/s (0.040 m³/s) Aug. 16-18, 1936.

		DISCHARG	E, IN	CUBIC FEET	PER SECON	D, WATER Y	EAR OCTO	BER 1977	TO SEPTEM	BER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1 2 3 4 5	11 10 9.8 9.4 9.2	16 15 15 16 16	53 44 38 36	40 39 38 37 36	44 42 41 40 39	36 35 35 36 33	49 46 44 45	44 42 39 39 54	46 44 49 68 59	53 52 73 233 165	60 76 89 74 68	63 60 46 38 34
6 7 8 9	9.0 8.8 12 18 20	15 36 98 84 57	39 40 37 36 32	36 36 37 45 53	39 40 39 39	32 31 31 31 40	44 53 54 47 43	65 56 44 76 133	53 47 46 51 47	83 58 50 44 42	76 104 84 64 55	31 28 26 25 24
11 12 13 14 15	25 20	45 37 29 26 25	32 31 29 31 42	40 41 39 85 96	38 38 37 38 38	104 141 113 81 75	41 39 39 37 37	110 72 56 60 69	40 39 39 46 44	39 37 35 33 32	57 54 49 45 42	23 22 21 21 21
16 17 18 19 20	13 12 11	24 26 28 28 26	49 41 44 78 75	65 53 117 130 105	37 37 37 37 37 36	69 63 61 56 51	36 36 36 45 63	65 73 66 57 52	40 36 34 33 32	34 49 53 38 33	38 36 33 33 32	21 20 21 23 25
21 22 23 24 25	10 9.8 9.6 9.2	24 24 29 36 36	69 72 58 49 44	132 102 70 56 57	36 36 36 36 35	47 46 44 41 39	58 51 46 44 42	50 44 42 88 167	33 46 47 40 37	30 28 25 26 28	30 28 27 26 25	26 25 23 23 22
26 27 28 29 30 31	14 14 14	37 37 34 32 31	38 36 35 34 37	106 125 83 60 54 48	36 36 36	50 121 123 80 62 53	41 39 40 41 40	104 72 61 56 51	35 42 46 44 35	28 28 28 28 26 30	25 24 25 25 25 25	22 21 20 20 20
TOT MEA MAX MIN CFS IN.	N 13.1 25 8.8	982 32.7 98 15 1.47	1365 44.0 78 29 1.97 2.28	2061 66.5 132 36 2.98 3.44	1062 37.9 44 35 1.70	1860 60.0 141 31 2.69 3.10	1321 44.0 63 36 1.97 2.20	2056 66.3 167 39 2.97 3.43	1298 43.3 68 32 1.94 2.17	1541 49.7 233 25 2.23 2.57	1461 47.1 104 24 2.11 2.44	815 27.2 63 20 1.22 1.36
	YR 1977 TOTA YR 1978 TOTA		MEA MEA	N - N 44.5	MAX - MAX 233	MIN - MIN 8.	CFSM CFSM	2.00	IN - IN 27.07			

01412020 MANANTICO CREEK NEAR PORT ELIZABETH, NJ LOCATION.--Lat 39°21'10", long 75°00'06", Cumberland County, Hydrologic Unit 02040206, at bridge on State Route 55, 1.4 mi (2.3 km) upstream from mouth, 2.0 mi (3.2 km) southeast of Millville, and 2.7 mi (4.3 km) northwest of Port Elizabeth.

DRAINAGE AREA. -- 37.9 mi2 (98.2 km2).

PERIOD OF RECORD.--CHEMICAL ANALYSES: Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			"ALLEN	30401	11 0414,	HALLER	LEAN				GF 16 HOEK	1770				
	TIME (SPE- CIFIC CON- DUCT- ANCE MICRO-	РН	A	MPER- Ture	TUR- BID- ITY	D	GEN,	XYGEN EMAND, BIO- CHEM- ICAL, DAY	FOI FEG BR	C TO	TREP- COCCI ECAL	HARD- NESS (MG/L AS	OI:	CIUM S- LVED G/L	MAGNE- SIUM, DIS- SOLVED (MG/L
DATE		(HOS)	(UNITS) (D	EG C)	(JTU)	(M	G/L) (MG/L)	(MI	PN) (MPN)	CACD3)	AS	CA)	AS MG)
OCT																
13	0910	550	6.	1	12.0	7		8.6	1.7		240	70	56		6.2	9.9
DEC					190							420				
13 FEB	1230	171	6.	3	1.0	30		12.8			49	130	29		4.9	4.0
23	1010	104	5.	7	1.0	10	1	12.0	.9		13	17	23		5.1	2.6
APR															6.6	2
13 MAY	1010	86	5.	8	15.5	3		9.7	1.6		13	<2	21		5.0	2.1
25	1015	70	5.	7	17.0	2		8.0	1.8		1600	540	19		4.3	1.9
JUN																
13	1020	76	6.	0	20.5	4		7.2	2.2		540	>2400	19		4.3	2.0
													SOLI		SOLIDS	
		POT				20.40					CHLO-	SILICA			RESIDU	
	SODIUM,	DI		CAR-	CAR-	LINI		SULFID DIS-	E SULFA		RIDE, DIS-	DIS- SOLVE	D DEG	. C	AT 105 DEG. C	
	SOLVED	SOL		MG/L	BONATE			SOLVE			SOLVED			S-	SUS-	
	(MG/L	(MG		AS	(MG/L	AS		(MG/L			(MG/L	AS		VED	PENDED	
DATE	AS NA) AS	K) H	CD3)	AS CO3) CAC	03)	AS S)	AS SC)4)	AS CL)	\$102)	(MG	/L)	(MG/L)
OCT																
13	74		4.8	7		0	6	-	- 25	5	140	-	•	295	. 1	8
DEC 13	19		2.8	9		0	7	-	- 18		32	-		99	4	8
FEB				-		•	,									
23	7.	7	2.3	6		0	5	-	- 14	1	12	-	-	73	2	2
APR 13	4.0		2.7	3		0	2		- 13		8.0			76		8
MAY	7.		2.1	,		U	-		- 13	,	0.0			, 0		,
25	3.5	5	2.3	5		0	4		0 13	3	6.7	4.	4	52	1	1
JUN 13	3.6		2.5	5		0	4	-	- 12	,	7.9			65	1	4
13			2.3	3		•	•		- 12					0.5	•	•
						NIT	RO-	NITRO							CARBON	
	NITRO-			ITRO-	NITRO	- GEN,	AM-	GEN, NH	4			PHOS-			DRGANI	Ċ
	GEN,	GE		GEN,	GEN,	MONI		+ DRG.			PHOS-	PHORUS			TOT. I	
	NITRATE	NITR TOT		AINOM	ORGANI			TOT IN			PHORUS,	TOTAL			BOTTO	
	(MG/L	(MG		MG/L	TOTAL (MG/L			BOT MA			TOTAL (MG/L	(MG/L			(G/KG	
DATE	AS N)	AS		S N)	AS N)			AS N)	AS N		AS P)	AS P)			AS C)	
DCT																
13	. 80)	.00	.04	.3	9	.43	380	1.	2	.05	.0	1	4.9		6
DEC																
13 FEB	1.3		.01	.25	.5	6	. 81		- 2.	. 1	.10	.0	0	9.3	- 7	-
23	2.1		.00	.20	.5	9	.79	-	- 2.	,	.07	.0	1	5.6		
APR																
13	1.8		.00	.01	. 2	0	.21		- 2.	.0	.01	.0	0	4.0	-	-
MAI 25	1.2		.01	.05	.5	3	.58		- 1.	. 8	.05	.0	1	8.0		-
JUN																
13	.98	3	.01	.05	.5	7	.62	-	- 1.	6	.06	.0	1	6.3	-	-

01412020 MANANTICO CREEK NEAR PORT ELIZABETH, NJ -- Continued

	1											
		ALUM- INUM, DIS- SOLVED	ARSENIC TOTAL IN BOT- TOM MA- TERIAL	BORON, DIS- SOLVED	CADMIUM RECOV. FM BOT- TOM MA- TERIAL	CHRO- MIUM, RECOV. FM BOT- TOM MA-	CHRO- MIUM, HEXA- VALENT, DIS.	COBALT, TOTAL RECOV- ERABLE	COBALT, RECOV. FM BOT- TOM MA- TERIAL	COPPER, TOTAL RECOV- ERABLE	COPPER, RECOV. FM BOT- TOM MA- TERIAL	IRON, DIS- SOLVED
	TIME	(UG/L	(UG/G	(UG/L	(UG/G	TERIAL	(UG/L	(UG/L	(UG/G	(UG/L	(UG/G	(UG/L
DATE		AS AL)	AS AS)	AS B)	AS CD)	(UG/G)	AS CR)	AS CO)	AS CO)	AS CU)	AS CU)	AS FE)
OCT												
13	0910		4		<10	10			<10		<10	
25	1015	220		60			0	2		10		280
2000							v	-		10		200

	RECOV.	RECOV.	MANGA- NESE,	MANGA- NESE,	MERCURY RECOV.	NICKEL.	NICKEL, RECOV.	ZINC.	ZINC, RECOV.	-	PCB.	NAPH-
Y.	FM BOT-	FM BOT-	TOTAL	RECOV.	FM BOT-	TOTAL	FM BOT-	TOTAL	FM BOT-		TOTAL	LENES,
	TOM MA-	-AM MCT	RECOV-	FM BOT-	TOM MA-	RECOV-	TOM MA-	RECOV-	TOM MA-		IN BOT-	POLY-
	TERIAL	TERIAL	ERABLE	TOM MA-	TERIAL	ERABLE	TERIAL	ERABLE	TERIAL	PHENOLS	TOM MA-	CHLOR.
	(UG/G	(UG/G	(UG/L	TERIAL	(UG/L	(UG/L	(UG/G	(UG/L	(UG/G	FHENOUS	TERIAL	TOTAL
DATE	AS FE)	AS PB)	AS MN)	(UG/G)	AS HG)	AS NI)	AS NI)	AS ZN)	AS ZN)	(UG/L)	(UG/KG)	(UG/L)
	1177		1									A SHALL SHALL
OCT												
13	980	<10		10	.0		<10		0		0	.00
MAY												
25	••		40			15		30	7-	4		
												7
		CHLOR-				DI-			HEPTA-	HEPTA-	1	TOXA-
	ALDRIN.	DANE.	DDD.	DDE,	DDT.	ELDRIN.		ENDRIN.	CHLOR.	CHLOR	LINDANE	PHENE.
	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL		TOTAL	TOTAL	EPOXIDE	TOTAL	TOTAL
	IN BOT-	IN BOT-	IN BOT-	IN BOT-	IN BOT-	IN BOT-	ENDO-	IN BOT-	IN BOT-	TOT. IN	IN BOT-	IN BOT-
	TOM MA-	TOM MA-	TOM MA-	TOM MA-	TOM MA-	-AM MOT	SULFAN,	TOM MA-	TOM MA-	BOTTOM	TOM MA-	TOM MA-
	TERIAL	TERIAL	TERIAL	TERIAL	TERIAL	TERIAL	TOTAL	TERIAL	TERIAL	MATL.	TERIAL	TERIAL
DATE	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/L)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)
OCT												
13	.0	0	.0	.0	.0	.0	.00	.0	.0	.0	.0	0
MAY 25					1						200	100
25												••

45 MAURICE RIVER BASIN 01412100 MANUMUSKIN RIVER NEAR MANUMUSKIN, NJ

LOCATION.--Lat 39°20'57", long 74°57'31", Cumberland County, Hydrologic Unit 02040206, at bridge on light-duty road, 1.1 mi (1.8 km) north of Manumuskin, 2.9 mi (4.7 km) northeast of Port Elizabeth, and 5.0 mi (8.0 km) upstream from mouth.

DRAINAGE AREA. -- 32.1 mi2 (83.1 km2).

PERIOD OF RECORD.--CHEMICAL ANALYSES: Water years 1975 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME (M	PE- IFIC ON- UCT- NCE ICRO- HOS) (PH (UNITS)	TEMPER- ATURE (DEG C)	8	ID- TY S	YGEN, DIS- OLVED	DXYC DEMA BIC CHE ICA 5 DA	AND, D- EM- AL, AY	COLI- FORM, FECAL, EC BROTH (MPN)	STF TOCO FEC	EP- N CCI (ARD- ESS MG/L AS ACO3)	SO (M	CIUM S- LV&D : G/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
ост	1000	47	4.3	11.5		1	8.9		.4	46		5	6		1.4	.7
DEC																
15 FEB	1010	66	4.1	5.5		2	11.0		.6	33		70	7		1.3	.9
23 APR	1110	49	4.2	2.0		2	13.2		.4	<2		6	5		1.0	.7
	1145	54	4.2	14.0		1	9.0		. 9	23		2	5		1.0	.5
23	1250	46	4.1	18.0		2	7.7		1.2	23		4	4		.8	.5
JUN 06	1055	45	4.2	17.5		2	6.4		1.2	33		8	4		.7	.5
71111		9.7				-										
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SOLVE (MG/L	BONA BONA CMG	TE CAR /L BONA S (MG	TE /L	ALKA- LINITY (MG/L AS CACU3)	SULFI DIS- SOLV (MG/ AS S	ED L	SULFAT DIS- SOLVE (MG/L AS SO4	DIS D SOL (4G	VED	SILICA, DIS- SOLVED (MG/L AS SIO2)	AT 1	0UE 80 . C S= VED	SOLIDS RESIDU AT 105 DEG. C SUS- PENDED (MG/L	
	NO 1117	AD N		3, H3 C	03,	CACOS	43 6	,	AG 554	, ,,	,	01027	(.,	(
13 DEC	3.0		.7	0	0	0			9.	2	4.3			31		3
15 FEB	2.5	3.	. 0	0	0	0			13	- 4	4.2			35	- 9	0
23	2.3		6 .	0	0	0			7.	4	4.1			33	1.0	0
APR 13	2.4		.7	0	0	0			6.	7	4.4			30	3	2
MAY 23	2.2		.5	0	0	0		.0	7.	9	5.5	6.2		32		9
JUN 06			4	0	0	0			7.		4.4			46		5
					•				•	•	•••					
DATE	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	GEN,	GE AMMO	N, GE NIA ORGA AL TOT /L (MG	NIC AL /L	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, N	N AT KG	NITRO GEN, TOTAL (MG/L AS N)	SCH9	US, AL /L	PHOS- PHORUS, ORTHU. TOTAL (MG/L AS P)	CARBO DRGAN TOTA (MG/ AS (AL /L	CARBON DRGANIC TOT. IS BOTTO MAT. (G/KG AS C)	C N
OCT																
13	.05		00	.01	.12	.13	1200		.1	8	.00	.00		7.4	4.	5
15	.04		00	.01	.24	.25			. 2	9	.01	.01		7.2	-	
23	.10		00	.00	.24	.24			. 3	4	.01	.00		5.1	-	•
APR 13	.01		00	.01	. 25	.26			.2	7	.00	.00		7.0	-	
MAY 23	.02		00	.01	.24	.25			.2	7	.01	.00		9.0		•
JUN 06	.03		00	.01	. 29	.30			.3	3	.01	.00	. 4	6.0		
111777777					A King	1707					300	1000				

01412100 MANUMUSKIN RIVER NEAR MANUMUSKIN, NJ--Continued

										1				
			ALUM- INUM, DIS-	ARSENIC TOTAL IN BOT- TOM MA-	BORON,		FM B	OV. M	HRO- IUM, ECOV.	CHRO- MIUM, HEXA-	COBALT,	COBALT, RECOV. FM BDT-	COPPER,	FM BOT-
			SOLVED		DIS-	RECOV			BOT-	VALENT,	RECOV-	TOM MA-	RECOV-	
		TIME		TERIAL	SOLVED				M MA-	DIS.	ERABLE	TERIAL	ERABLE	
	DATE	TIME	(UG/L	(UG/G	(UG/L	(UG/L			ERIAL	(UG/L	(UG/L	(UG/G	(UG/L	(UG/G
	DATE		AS AL)	AS AS)	AS B)	AS CD) AS	(0)	UG/G)	AS CR)	AS CO)	AS CO)	AS CU)	AS CU)
0	CT			4.7										
	13	1000		0		-	-	<10	10			<10		<10
M	AY	- 1			9						I HE WAY			
	23	1250	300		50		0			. 0	0		0	7
					. 1									
.1			1	Sec. 100								11000	4	
	3. 7		IRO					MERCURY		MICK		ZIN		
		10, 10	REC				ESE,	RECOV.					ov.	
		IRON						FM BOT-						
		DIS						TOM MA-						
		SOLV					M MA-	TERIAL			IAL ERAF			NOLS
	0.450	(UG/					ERIAL	(UG/L	(UG/					4.
	DATE	AS F	E) AS	FE) AS	PB) AS	MN) (UG/G)	AS HG)	AS N	NI) AS	NI) AS 2	IN) AS	ZN) (U	G/L)
	OCT													
	13			860	<10		0	.0			<10		0	
	23	. 5	40		\	20				6		20		2

01412800 COHANSEY RIVER AT SEELEY, NJ

LOCATION.--Lat 39°28'21", long 75°15'21", Cumberland County, Hydrologic Unit 02040206, on right bank just downstream from bridge on Silver Lake Road, 0.6 mi (1.0 km) south of Seeley, 2.6 mi (4.2 km) east of Shiloh, 4.1 mi (6.6 km) north of Bridgeton, and 22.5 mi (36.2 km) upstream from mouth.

DRAINAGE AREA . -- 28.0 mi2 (72.5 km2).

PERIOD OF RECORD.-WATER DISCHARGE: October 1977 to September 1978.
CHEMICAL ANALYSES: Water years 1975 to current year.
SEDIMENT ANALYSES: July to September 1978.

GAGE.--Water-stage recorder. Altitude of gage is 27 ft (8.2 m), from topographic map.

REMARKS .-- Discharge records good. Flow diverted above gage during summer months for irrigation.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 250 ft3/s (7.08 m3/s) and maximum (#):

Date		Time	Discha (ft³/s)		Gage H	eight (m)	Date		Time	Discha (ft3/s)		Gage H	leight (m)
Jan. Jan.	18 25	0700 2245	723 *1170	20.5 33.1	5.88 6.28	1.792 1.914	Mar. May	11 24	2100 1715	418 455	11.8	5.48 5.67	1.670

Minimum daily discharge, 14 ft3/s (0.40 m3/s) Oct. 1-4.

		DISCHARGE	, IN	CUBIC FEET	PER SECO	ND, WATER AN VALUES	YEAR OCT	OBER 1977	TO SEPTE	MBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1 2 3 4 5	14 14 14 14 15	17 17 21 26 21	66 50 33 28 31	44 35 33 31 31	34 34 34 33 30	31 30 32 32 28	30 28 28 31 31	28 29 28 35 53	33 32 32 31 32	25 24 76 166 63	58 67 58 38 65	89 78 30 25 24
6 7 8 9	16 16 40 66 32	20 101 145 68 38	39 32 28 32 28	32 33 35 99 65	34 35 34 34 33	29 29 30 32 53	29 34 32 31 31	38 32 32 81 66	32 32 34 33 31	35 31 30 28 28	45 40 33 30 30	24 24 24 21
11 12 13 14 15	25 21 20 24 26	32 28 26 25 26	25 24 26 35 75	34 35 40 143 85	33 31 32 34 33	188 232 130 87 81	30 30 30 33 30	42 33 32 59 53	28 28 34 31 29	30 27 26 27 28	29 29 27 27 27	21 23 24 22 22
16 17 18 19 20	21 24 21 19 18	26 42 42 31 27	51 35 77 132 59	45 52 430 95 62	32 33 33 31 31	57 53 46 43 46	27 28 30 46 48	51 57 47 39 35	29 29 29 29	32 38 31 29 27	26 26 25 24 23	23 21 21 27 26
21 22 23 24 25	17 17 16 14 16	26 28 51 43 33	67 61 41 36 36	67 50 39 37 150	32 31 30 30 31	39 40 36 35 33	38 33 30 30	32 31 31 220 121	30 73 51 33 28	26 25 21 21 23	23 25 24 23 23	24 24 26 23 22
26 27 28 29 30 31	18 29 23 19 17	46 33 29 28 31	34 32 32 30 32 57	553 109 52 39 37 35	31 32 31	58 104 75 38 32 31	30 31 31 30 28	50 41 37 37 36 34	28 36 33 28 27	23 22 30 29 24 30	24 23 26 27 26 32	22 22 23 22 22
TOTAL MEAN MAX MIN CFSM	662 21.4 66 14 .76	37.6 145 17	1364 44.0 132 24 1.57 1.81	2627 84.7 553 31 3.03 3.49	906 32.4 35 30 1.16 1.20	1810 58.4 232 28 2.09 2.40	948 31.6 48 27 1.13 1.26	1540 49.7 220 28 1.78 2.05	984 32.8 73 27 1.17 1.31	1075 34.7 166 21 1.24 1.43	1003 32.4 67 23 1.16 1.33	823 27.4 89 21 .98 1.09
CAL YR WTR YR	1977 TOTAL 1978 TOTAL	14869	MEAN MEAN	- M	AX - AX 553	MIN - MIN 14	CFSM CFSM	- I	N - N 19.75			

01412800 COHANSEY RIVER AT SEELEY, NJ -- Continued

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	DXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACD3)	CALCIUM DIS- SOLVED (MG/L AS CA)
ост												
12 DEC	0930	22	224	6.6	13.5	4	8.4	1.1	5	170	51	10
06 FEB	1030	39	201	6.5	7.5	20	10.8	1.4	540	33	51	10
15 APR	0930	33	218	6.4	2.5	7	12.2	.6	17	49	60	12
18	1145	30	227	6.9	11.5	4	13.0	2.1	49	25	55	11
22	0930	31	200	6.9	17.5	4	9,1	2.6	49	23	54	11
JUN 08	1130	34	215	6.6	21.0	2	7.3	2.2	130	79	58	12
JUL 25	1100	24	237	6.8	22.0	0	6.6	2.0	540	1600	60	12
AUG 30	1030	26	233	6.6	22.5	0	6.8	1.6	100	330	55	11
SEP 28	1125	22	233	6.9	16.5		8.7	1.4			60	12
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS+ SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
12	6,. 3	15	5.3	13	0	11		24	31			132
06	6.2	12	4.5	15	0	12		24	24			135
FE8 15	7.2	13	3.4	. 6	0	5		26	27			137
APR 18	6.7	13	3.9	15	0	12		24	27			144
MAY 22	6.5	13	3.2	20	0	16		23	26			134
JUN 08	6.7	13	4.3	18	0	15		21	27			127
JUL 25	7.2	16	4.1	22	. 0	18		19	32			161
AUG 30	6.8	16	4.7	17	0	14		20	32			156
SEP 28	7.3	16	4.6	20	0	16	.0	21	33		5.7	131
	1 10		7				•					
DATE	SOLIOS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TUTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO. TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 12	7			4.0	.01	.07	.44	.51	4.5	.05	.01	7.1
DEC 06	17			3.4	.03	.18	.45	.63	4.0	.11	.05	8.1
FEB 15	2										100	.8
APR 18	5			4.4					4.9	.04	.00	4.0
MAY	9				.03	.12	.42	.54				
22 JUN				3.7	.06	.19	.70	.89	4.7	.10	.03	9.0
JUL	0			4.1	.05	.09	.72	.81	4.9	.08	.03	6.0
25 AUG	7	6	.39								•	5.6
30 SEP	10	5	.35			<.10		<.40	Land T	•	3 10 2	2.4
28		4	.24			<.10			100			2.5

01412800 COHANSEY RIVER AT SEELEY, NJ--Continued

				BERYL-	CHRO-		MANGA-					
		ALUM-		LIUM,	MIUM,	COPPER,	NESE,	MERCURY	NICKEL,		ZINC,	
		INUM,		TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL	
		DIS-	ARSENIC	RECOV-	RECOV-	RECOV-	RECOV-	RECOV-	RECOV-	NIUM,	RECOV-	
		SOLVED	TOTAL	ERABLE	ERABLE	ERABLE	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	PHENOLS
	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE		AS AL)	AS AS)	AS BE)	AS CR)	AS CU)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
SEP												
28	1125	50	1	0	<10	3	70	<.5	8	0	20	0

01413014 COHANSEY RIVER AT OUTLET OF SUNSET LAKE AT BRIDGETON, NJ

LOCATION.--Lat 39°26'44", long 75°14'16", Cumberland County, Hydrologic Unit 02040206, at bridge on Park Drive in Bridgeton, at central outlet of Sunset Lake, and 20.7 mi (32.3 km) upstream from mouth.

DRAINAGE AREA. -- 45.7 mi2 (118.4 km2).

PERIOD OF RECORD.--CHEMICAL ANALYSES: Water years 1975 to current year. SEDIMENT ANALYSES: July to September 1978.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
OCT	1045	190	6.6		7			4	23	48	9.4	5.9
12 DEC				13.5		9.8	2.4					
06 FEB	1135	214	6.5	9.0	40	3.5	2.0	8	34	56	12	6.4
15 APR	1045	188	6.4	2.5	8	11.5	.6	2	<2	51	10	6.4
18	1245	188	6.4	17.0	15	7.1	2.2	<2	2	48	10	5.6
22 JUN	1100	161	7.3	21.0	4	9.2	4.3	22	2	46	9.1	5.6
08	1210	181	6.7	22.5	6	8.2	3.1	240	130	49	10	5.8
25 AUG	1155	183	6.4	24.0	5	2.8	2.9	33	920	53	11	6.1
30 SEP	1130	196	7.0	23.5	1	4.2	2.7	170	350	51	10	6.3
26	1330	185	6.4	17.5		2.9	3.5	49	33	53	11	6.2
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SULVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE DIS- SOLVED (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLD- RIDE, DIS- SOLVED (MG/L AS CL)	FI.UO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)
OCT												
12 DEC	13	4.2	17	0	14		21	24			96	6
06 FEB	13	3.8	64	0	52		17	23		-	123	28
15 APR	11	3.4	10	0	8		23	22		-	125	0
18	12	3.5	31	0	25		20	22	-		107	10
22 JUN	9.2	3.7	17	0	14	.0	19	19		5.0	109	0
08	10	4.1	17	0	14		18	21			106	0
25 AUG	11	3.8	44	0	36		11	21			105	12
30 SEP	12	4.0	37	0	30		17	26			132	0
26	12	3.6	53	0	43		5.7	22	.1	. 11	108	

01413014 COHANSEY RIVER AT OUTLET OF SUNSET LAKE AT BRIDGETON, NJ--Continued

DATE	SEDI- MENT, SUS- PENDED (MG/L)	NI T	ITRO- GEN, TRATE OTAL MG/L S N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	E AMI	ITRO- GEN, MONIA DTAL MG/L S N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO GEN, NH + DRG. TOT IN BOT MA (MG/K AS N)	N T T	ITRO- GEN, OTAG MG/L S N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHO PHOR ORI TOI (MC	HO.	CARBON, ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC TOT. IN BOTTOM MAT. (G/KG AS C)
12			2.9	.01		.07	.64	.71	170		3.6	.06		.01	6.0	.6
06			.63	.01		.97	.43	1.4	-	-	2.0	.07		.00	10	
FEB 15										-					1.2	
APR 18			1.2	.01		.38	.39	.77			2.0	.02		.00	7.1	
MAY 22			2.8	.04		.07	.78	.85			3.7	.10		.02	4.1	
JUN 08			3.2	.03		.05	.76	.81			4.0	.12		.02	6.5	
JUL	9															
25 AUG						.10	.30	.40		-	1.4				8.1	-
30 SEP	9					<.10		<.40		-					5,3	
26	28			•		.80		-		•					6.2	7
	DATE		TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	IN TON	SENIC DTAL BOT- MA- ERIAL JG/G S AS)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIU RECOV FM BOT TOM MA TERIA (UG/G AS CD	. 4: 18 - 10 - 10 - 11	HRO- IUM, ECOV. BOT- MA- ERIAG JG/G)	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)		AL OV- BLE /L	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	
	OCT 12		1045			0			<1	0	32				<10	
	MAY 22		1100	30			40	0	_			0		0		
	D	ATE	COPP TOT REC ERA (UG AS	ER, RE AL FM OV- TOM BLE TE /L (U	PER, COV. BOT- MA- RIAL G/G CU)	IRON DIS SOLI (UG.	VED FER	OV. RECOT- FM EMA- TOM IAL TER	OV. NOT- T MA- R HAL E	ANGA- ESE, OTAL ECOV- RABLE UG/L S MN)	MANINESI REC FM B IOM IER (UG	E, RECOV. FM EOT- TOMMA- TER	COV.	NICKE TOTA RECO ERAN (UG.	AL DV- BLE /L	
	oc	Т														
	1 MA	2			<10			370	<10			10	.0			
		2		4			50	**		140			-		11	
	D	ATE	NICK REC FM B TOM TER (UG AS	OV. ZI OT- TO MA- RE IAL EH	NC, TAL COV- ABLE G/L ZN)	ZING RECO FM BI TOM I TER (UG.	DV. DT- MA- IAL PHEN /G	IN E	AL LOT-	APH- THA- ENES, POLY- HLOR. OTAL UG/L)	ALDR TOT IN B TOM TER	IN, DAM AL TOTO OT- IN E MA- TOM IAL TEE	TAL BOT- MA- RIAL	DDI TOTA IN BO TOM !	AL DT- MA- IAL	
		2		<10			0		0	.00		•0	0		1.0	
	MA 2	Y 2			20			3								

52

COHANSEY RIVER BASIN

01413014 COHANSEY RIVER AT OUTLET OF SUNSET LAKE AT BRIDGETON, NJ--Continued

			DI-			HEPTA-	HEPTA-		TOXA-
	DDE,	DDT,	ELDRIN,		ENDRIN,	CHLOR,	CHLOR	LINDANE	PHENE,
	TOTAL	TOTAL	TOTAL		TOTAL	TOPAL	EPOXIDE	TOTAL	TOTAL
	IN BOT-	IN BOT-	IN BOT-	ENDO-	IN BOT-	IN BOT-	TOT. IN	IN BOT-	IN BOT-
	TOM MA-	TOM MA-	TOM MA-	SULFAN,	TOM MA-	TOM MA-	MOTTES	TOM MA-	TOM MA-
	TERIAL	TERIAL	TERIAL	TOTAL	TERIAL	TERIAL	MATL.	TERIAL	TERIAL
DATE	(UG/KG)	(UG/KG)	(UG/KG)	(UG/L)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)
OCT									
12	.9	1.4	.0	.00	.0	.0	.0	.0	0
MAY									
22									••

01413015 COHANSEY RIVER AT BRIDGETON, NJ

LOCATION.--Lat 39°25'54", long 75°14'11", Cumberland County, Hydrologic Unit 02040206, at bridge on Washington Street in Bridgeton, 1.3 mi (2.1 km) downstream from Sunset Lake, and 18.6 mi (29.9 km) upstream from mouth.

DRAINAGE AREA .-- 47.3 mi2 (122.5 km2).

PERIOD OF RECORD.-CHEMICAL ANALYSES: Water years 1975 to current year.
SEDIMENT ANALYSES: July to September 1978.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
OCT											- 22	- 22
12 DEC	1135	2750	6.7	14.0	20	5.4	7.1	2	27	280	25	53
06 FEB	1225	218	6.6	8.5	15	7.3	2.3	350	63	51	10	6.3
15 APR	1200	211	6.5	4.0	10	9.8	. 8	49	33	50	10	6.1
27	0635	243	6.9	11.5	9	8.5	3.7	240	240	51	10	6.2
22 JUN	1215	287	6.8	21.0	15	6.7	5.7	130	170	51	9.3	6.7
14 JUL	1010	190	6.7	19.5	5	7.7	2.8	920	540	52	11	5.9
25 AUG	1240	235	6.9	25.0	8	4.4	4.0	790	1700	53	10	6.8
30 SEP	1225	258	6.7	25.0	1	4.2	2.5	3500	790	53	10	6.7
26	1105	243	6.8	18.0		6.1	2.2	920	1600	55	10	7.3
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)
OCT												
12 DEC	360	20	45	0	37		110	370			1510	3
06 FEB	20	4.4	28	0	23		25	30			144	21
15 APR	16	3.5	26	0	21		26	23			116	3
27 MAY	20		27	0	22		25	35			138	14
	20	3.4	21	U	22		-					
22	24	4.0	27	0	22		24	43			160	15
22 JUN 14								43 20			160 118	26
22 JUN 14 JUL 25	24	4.0	27	0	22		24					
22 JUN 14 JUL	24 13	4.0 3.6	27 27	0	22 22		24 20	20			118	26

01413015 COHANSEY RIVER AT BRIDGETON, NJ -- Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

CARBON, ORGANIC TOT. IN BOTTOM MAT. (G/KG AS C)

	SEDI- MENT, N SUS- PENDED	TOTAL (MG/L	NITRO- GEN, NITRITE TOTAL (MG/L	NITRO- GEN, AMMONIA TOTAL (MG/L	NITRO GEN ORGANI TOTAL (MG/)	O- GE , MO IC OR L T	ITRO- N,AM- NIA + GANIC OTAL MG/L	NITRO- GEN,NH4 + DRG. TOT IN BOT MAI (MG/KG	NITRO- GEN, TOTAL (MG/L	PHOS- PHORUS, TOTAL (MG/L	PHOS- PHORUS ORTHO TOTAL (MG/L	. CARBON, . ORGANIC TOTAL
DATE	(MG/L)	AS N)	AS N)	AS N)	AS N) A	S N)	AS N)	AS N)	AS P)	AS P)	AS C)
12		1.8	.02	.53	1.:	1	1.6	1200	3.4	.34	.1	3 8.0
06		2.4	.02	.36		45	.81		3.2	.10		0 8.7
FEB 15									1			- 2.6
APR		0.0										
27 MAY		2.9	.02	.20		74	.94		3.8	.31		
22 JUN	•	2.3	.05	.41	1.	2	1.6		3.9	.27	.0	8 5.0
14 JUL		2.9	.02	.24	•	96	1.2		4.1	.14	.0	1 5.4
25 AUG	49			.10		30	.40		2.4		1. 15	- 7.5
30	26			.40		00	.40		2.4			- 5.3
26	29			.30								- 3.8
			ALUM- INUM, DIS- SOLVED	ARSENIC TOTAL	TOTAL IN BOT TOM MA	L L T	ERYL- IUM, OTAL ECOV- RABLE	RECOV. FM BOT- TOM MA- TERIAL	CHRO- MIUM, TOTAL RECOV- ERABLE	CHRO- MIUM, RECOV. FM BOT- TOM MA-	TOM MA	- COPPER, - TOTAL - RECOV-
	DATE	TIME	(UG/L AS AL)	(UG/L	UG/C	G (UG/L	(UG/G AS CD)	(UG/L AS CR)	TERIAL	(UG/G	(UG/L
			NO NU	AS AS)	AS AS	5) A.	S BE)	AS (U)	AS CR)	(UG/G)	AS CO) AS CU)
	12 SEP	1135				1		<10		20	<1	0
	26	1105	40	2		••	0		20	••		- 12
	DATE	COPPE RECO FM BO TOM M TERI (UG/ AS C	V. RECO T- FM BO A- TOM I AL TER: G (UG)	DV. REGOT- FM I MA- TOM IAL TEI /G (U	COV. R BOT- 1 MA- R RIAL E	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MAN NES REC FM B TOM TER (UG	E, MERC OV. TOT OT- REC MA- ERA IAL (UG	URY REC AL FM E OV- TOM BLE TEE /L (UC	BOT- TO MA- RE RIAL ER G/L (U	KEL, R TAL FM COV- TO ABLE T	CKEL, ECOV. BOT- M MA- ERIAL UG/G S NI)
	ocr											
	12 SEP		10	90	40			0		.0	117.07	<10
	26	•				110			<.5		8	
		SELE NIUM TOTA (UG/	L ERAL	C, REG AL FM I DV- TOM BLE TEI		HENDLS	PC TOT IN B TOM TER	AL LEN OT- PO MA- CHL	A- ALDE ES, TO LY- IN E OR. TOM	RIN, DA FAL TO BOT- IN MA- TOM	TAL T BOT- IN MA- TO	DDD, OTAL BDT- M MA- ERIAL
	DATE	AS S				(UG/L)	(UG/					G/KG)
	OCT 12				20			57	.00	.0	0	15
	SEP 26		0	50		0						
	DATE	DDE TOTA IN BO TOM M TERI (UG/K	T- IN BO A- TOM A AL TER	T, ELDI AL TO: DT- IN I MA- TOM IAL TEI	TAL BOT- E MA- SI RIAL 1	ENDO- JLFAN, TOTAL (UG/L)	ENDR TOT IN B TOM TER (UG/	IN, CHL AL TOT OT- IN 8 MA- TOM IAL TER	DR, CHI AL EPO) DI- TOT, MA- BOT IAL MA	CIDE TO IN IN PTOM TOM ATL. TE	DANE POTAL TO MA- TO RIAL T	OXA- HENE, OTAL BOT- M MA- ERIAL G/KG)
	ocr											
	12 SEP	. 9	.4	2.8	1.1	.00		.0	.0	.0	.0	0
	26											

.

DELAWARE RIVER BASIN

01434000 DELAWARE RIVER AT PORT JERVIS, NY

LOCATION.--Lat 41°22'14", long 74°41'52", Pike County, PA, Hydrologic Unit 02040104, on right bank 250 ft (76 m) downstream from bridge on U.S. Highways 6 and 209 at Port Jervis, 1.2 mi (1.9 km) upstream from Neversink River, and 6.5 mi (10.5 km) downstream from Mongaup River. Water-quality sampling site at discharge station.

DRAINAGE AREA .-- 3,076 mi2 (7,967 km2).

PERIOD OF RECORD.-WATER DISCHARGE: October 1904 to current year.
CHEMICAL ANALYSES: Water years 1958-59, 1964 to 1976.
SUSPENDED-SEDIMENT DISCHARGE: Water years 1957 to 1960, 1970 to 1976.

PERIOD OF DAILY RECORD.-WATER DISCHARGE: October 1904 to current year.
SPECIFIC CONDUCTANCE: January 1973 to September 1973.
WATER TEMPERATURES: February 1957 to September 1960, January to September 1973, June 1974 to current year.
SUSPENDED-SEDIMENT DISCHARGE: February 1957 to September 1960; March 1970 to June 1976.

REVISED DISCHARGE RECORDS. -- WSP 756: Drainage area. WSP 1031: 1905-36. WRD-NY 1971: 1970.

GAGE.--Water-stage recorder. Temperature recorder since January 1973. Datum of gage is 415.35 ft (126.599 m)
National Geodetic Vertical Datum of 1929. October 1904 to August 13, 1928, nonrecording gage at bridge 250 ft
(76.2 m) upstream at present datum. Operated by U.S. Weather Bureau prior to June 20, 1914.

REMARKS.--Discharge records good. Flow regulated by Lake Wallenpaupack and by Toronto, Cliff Lake, and Swinging Bridge Reservoir (see Delaware River Basin, reservoirs in) and smaller reservoirs. Large diurnal fluctuations at medium and low flows caused by powerplants on tributary streams. Subsequent to September 1954, entire flow from 371 mi² (961 km²) of drainage area controlled by Pepacton Reservoir, and subsequent to October 1963, entire flow from 454 mi² (1.176 km²) of drainage area controlled by Cannonsville Reservoir (see Delaware River Basin, reservoirs in). part of flow these reservoirs diverted for city of New York municipal supply. Remainder of flow (except for conservation releases and spill) impounded for release during period of low-flow in the lower Delaware River Basin, as directed by the Delaware River Master. New York State Water-quality Surveillance Network station 14 0010.

EXTREMES FOR CURRENT YEAR.-WATER DISCHARGE: Maximum discharge, 62,400 ft³/s (1,770 m³/s) Jan. 9, gage height, 12.44 ft (3.792 m); minimum discharge, 664 ft³/s (18.8 m³/s) Sept. 26, gage height, 1.64 ft (0.500 m); minimum daily, 995 ft³/s (28.2 m³/s) Sept. 26.
WATER TEMPERATURES: Maximum recorded, 28.5°C July 24; minimum, 0.0°C on many days during winter months.

EXTREMES FOR PERIOD OF DAILY RECORD.—
WATER DISCHARGE: Maximum discharge, 233,000 ft³/s (6,600 m³/s) Aug. 19, 1955, (gage height, 23.91 ft or 7.288 m, from floodmark in gage house), from rating curve extended above 89,000 ft³/s (2,520 m³/s) on basis of slope-area measurement of peak flow; minimum observed, 175 ft³/s (4.96 m³/s) Sept. 23, 1908, gage height, 0.6 ft (0.18 m).
WATER TEMPERATURES: Maximum, 29.5°C July 19, 1959, Aug. 3, 1975; minimum (1957-60, 73, 75-78), 0.0°C on many days during winter months.
SEDIMENT CONCENTRATIONS: Maximum daily, 760 mg/L June 29, 1973; minimum daily mean, less than 1 mg/L on many days. SUS PENDED—SEDIMENT DISCHARGE: Maximum daily 187,000 tons (170,000 tonnes) June 29, 1973; minimum daily, 1 ton (0.9 tonnes) Aug. 29, 1957.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge known, 205,000 ft³/s (5,810 m³/s) Oct. 10, 1903, (gage height, 23.1 ft or 7.04 m, reported by National Weather Service), from rating curve extended above 70,000 ft³/s (1,980 m³/s) by velocity-area studies; maximum stage known, 25.5 ft (7.77 m) Mar. 8, 1904 (ice jam).

DELAWARE RIVER BASIN

01434000 DELAWARE RIVER AT PORT JERVIS, NY--Continued

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES

						M	EAN VALUE	5					
	DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
	1	5940	4050	8500	5220	10800	2600	19500	3090	3900	1340	1780	1450
		15000	3730	16400	5150	9100	2500	24700	2700	3760	1270	1350	1420
	3	13800	3760	16700	5390	8710	2500	23100	2380	3230	1250	1330	1350
	4	9750	3290	14600	4920	7610	2820	19000	2130	3480	1250	1650	1260
	5	7020	2890	12500	4700	6230	2110	18000	2480	3480	3970	1530	1370
	6	5870	3140	11200	4730	5910	2530	18300	3650	3590	3280	1910	1390
+	7	5770	3650	10100	4920	5150	3180	18100	3560	3340	2500	3580	1410
	8	4570	6270	8970	4350	6120	2400	20200	3310	3820	1880	3750	1410
	9	5020	10900	8090	35200	6270	2150	17900	3560	5980	1490	3280	1450
	10	12100	10400	7210	43500	5730	2290	15100	5940	5660	1590	5880	1540
	11	9620	15600	5700	27600	4920	2150	12900	5980	4350	1700	2320	1390
	12	7290	18100	4950	18800	4200	2000	14200	5120	3960	1690	1740	1590
	13	5870	14600	5120	14900	4170	2020	15100	4540	3950	1600	1580	1260
	14	5350	11600	6160	13000	4760	3180	14000	4140	4060	1470	2140	1410
	15	7170	9660	12600	11500	4510	5390	11500	6680	3820	1530	1750	1460
	16	10900	8300	17700	9620	4600	8840	9360	7690	3160	1470	1640	1480
	17	15800	7210	15400	7100	4510	8220	8500	10800	2530	1490	1310	1560
	18	29600	7410	13300	6450	3990	6870	7930	14600	5160	1670	1240	1720
	19	21800	6900	11900	6340	3210	5940	6340	17900	2530	1750	1270	2520
	20	22300	6160	10500	5420	3210	6490	6410	15500	2410	1680	1250	2170
	21	19700	5520	10100	5020	3760	7170	7650	13100	2250	2110	1230	1690
	22	15500	5150	11900	4860	3700	14600	7290	11400	2070	2020	1360	1670
	23	12800	4950	10400	4510	3850	18200	6230	9230	2420	1660	1460	1120
	24	10700	4570	8670	5700	3530	20700	5910	7970	2010	1520	1360	1030
	25	9230	4380	7730	6090	2890	16800	5290	9440	1520	1560	1540	1190
	26	7730	5020	10700	16000	2170	13500	4630	7930	1740	1380	1570	995
	27	7130	6340	9890	40400	2200	18100	4290	6230	1530	1420	1600	1310
	28	6270	5560	9010	27200	2800	30900	3990	5350	1760	1740	1480	1410
	29	5220	5020	7730	19200		26800	3670	4760	1520	1390	1600	1420
	30	4440	4920	6940	15000		24200	3400	4570	1420	1490	1690	1610
	31	4260		6490	12600		20800		4290		1810	1320	
	TOTAL	323520	209050	317160	395390	138610	287950	352490	210020	91410	53970	55490	44055
	MEAN	10440	6968	10230	12750	4950	9289	11750	6775	3047	1741	1790	1469
	MAX	29600	18100	17700	43500	10800	30900	24700	17900	5980	3970	3750	2520
	MIN	4260	2890	4950	4350	2170	2000	3400	2130	1420	1250	1230	995

CAL YR 1977 TOTAL 2382998 MEAN 6529 MAX 69100 MIN 800 WTR YR 1978 TOTAL 2479115 MEAN 6792 MAX 43500 MIN 995

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		ОСТОВЕ	R		NOVEMBE	R		DECEMBE	R		JANUAR	Y
1	15.5	15.0	15.0	10.0	9.0	9.5	4.0	3.5	4.0	.5	.0	.5 .5
2	15.5	14.0	15.0	10.5	9.5	10.0	4.5	4.0	4.0	•5	5	.5
3	14.5	13.5	14.0	11.5	10.0	11.0	5.0	4.5	4.5	.5	.5	.5
4	13.5	12.5	13.0	13.0	11.5	12.5	5.0	1.0	4.5	1.5	.5	.5
5	13.0	12.0	12.5	13.5	12.5	13.0	4.5	2.5	3.5	1.0	• 0	.5
6	13.0	12.5	12.5	13.5	13.0	13.0	3.0	2.5	2.5	1.0	.5	.5
7	13.0	12.0	12.5	13.0	12.0	13.0	2.5	1.5	2.0	1.0	•5	1.0
8	12.0	11.5	11.5	12.0	11.0	11.5	2.0	1.5	1.5	2.0	.5	1.0
9	12.0	11.5	11.5	11.5	11.0	11.5	2.0	1.0	1.5	2.5	.0	1.5
10	12.0	11.0	11.5	12.0	11.5	12.0	1.0	•5	.5	.5	.5	.5
11	12.0	11.5	11.5	12.0	10.0	11.0	.5	.0	.5	1.0	.5	.5 .5 .5
12	12.5	11.5	12.0	10.0	7.5	8.5	.5	.5	.5	1.0	.5	.5
13	12.0	11.5	11.5	8.0	6.5	7.5	•5	•5	.5	1.0	•5	•5
14	11.5	10.5	11.0	6.5	6.0	6.0	1.0	•5	1.0	.5	.5	.5
15	10.5	10.0	10.5	6.5	5.5	6.0	1.5	1.0	1.0	•5	.5	.5
16	10.0	9.5	10.0	8.0	6.5	7.5	2.0	1.0	1.5	.5	.5	.5 .5 .5
17	10.0	9.0	9.5	9.0	8.0	8.5	3.5	2.0	3.0	•5	.5	.5
18	9.0	8.0	8.5	9.0	8.0	8.5	3.5	2.5	3.0	5	.5	.5
19	9.5	8.5	9.0	8.0	6.5	7.5	3.0	2.5	2.5	.5	•5	.5
20	10.0	9.5	10.0	7.0	6.0	6.5	3.0	2.5	3.0	.5	.5	.5
21	10.5	10.0	10.5	6.5	6.0	6.5	3.5	3.0	3.0	.5	.5	.5
22	11.0	10.5	10.5	7.0	6.0	6.5	3.0	2.5	2.5	1.0	• 0	.5
23	11.0	10.0	10.5	6.5	6.0	6.0	2.5	2.0	2.5	1.0	•5	.5
24	10.0	9.0	9.5	7.0	6.0	6.5	2.5	2.0	2.0	.5	.5	.5
25	10.0	8.5	9.5	6.5	5.5	6.0	3.0	2.0	2.5	.5	.5	.5
26	10.5	10.0	10.0	6.0	4.5	5.0	2.5	.0	2.0	1.0	.5	.5 .5 .5
27	12.0	10.5	11.0	4.0	2.5	3.0	1.0	.5	.5	.5	.5	.5
28	13.0	12.0	12.5	2.5	2.0	2.5	.5	•5	.5	.5	•5	.5
29	12.5	11.5	12.0	3.0	5.0	2.5	.5	•5	.5	•5	.5	5
30	11.5	10.5	11.0	3.5	5.0	3.0	1.0	.5	.5	.5	.5	.5
31	10.5	9.5	10.0				1.0	•5	.5	.5	.5	.5
MONTH	15.5	8.0	11.5	13.5	2.0	8.0	5.0	.0	2.0	2.5	.0	.5

DELAWARE RIVER BASIN 57

01434000 DELAWARE RIVER AT PORT JERVIS, NY--Continued
TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	RY		MARC	н		APRI			MAY	
1	.5	.5	.5	1.5	•5	1.0	6.0	4.5	5.5	12.5	10.0	11.0
2	.5	.5	.5	1.5	.5	1.0	6.0	5.0	5.5	12.5	9.5	11.0
3	1.5	•5	.5	.5	.0	.5	5.0	3.5	4.0	14.0	10.0	12.0
5	.5	•5	•5	1.0	• 0	•5	4.0	3.0	3.5	13.5	10.5	12.0
5	1.0	• 0	•5	1.0	• 0	•5	4.5	4.0	4.0	11.5	10.0	10.5
6	.5	•5	.5	1.0	•5	.5	5.5	4.0	5.0	10.0	9.5	9.5
7	•5	• 0	.5	1.5	•5	1.0	6.0	4.5	5.5	11.0	9.5	10.0
8	•5	•5	.5	1.5	•5	1.0	6.0	5.0	5.5	12.0	10.0	11.0
10	.5	•5	.5	2.0	•5	1.0	5.5 6.5	4.5	5.0 5.5	14.0	11.5	12.5
							0.5	4.5	3.3	14.0	12.3	13.3
11	.5	• 0	•5	3.0	•5	2.0	7.5	6.0	6.5	15.0	12.0	13.5
12	1.0	•0	.5	3.0	2.0	2.5	8.5	7.0	7.5	15.5	13.5	14.5
14	1.0	.5	.5	2.5	1.5	2.0	8.5	7.5 7.0	8.0 7.5	14.5	14.0	14.0
15	1.0	.5	.5	2.0	1.0	1.5	7.0	6.5	6.5	13.0	12.0	12.5
16	1 0	-	-									
17	1.0	•5	1.0	2.0	•5	1.0	7.0 8.0	5.5	6.0	12.0	11.5	12.0
18	1.0	.5	1.0	2.0	•5	1.5	8.5	6.5	7.5	12.0	11.5	12.0
19	1.0	.0	.5	2.5	1.0	1.5	8.0	7.5	7.5	14.0	12.0	13.0
20	1.0	•5	•5	2.5	1.5	2.0	8.0	7.5	8.0	15.5	14.0	14.5
21	1.0	.5	.5	3.5	2.0	3.0	8.0	7.0	7.5	16.5	15.5	16.0
22	1.0	.0	.5	3.5	1.5	2.5	9.0	6.5	8.0	16.0	15.0	15.5
23	1.0	.5	.5	3.5	1.5	2.5	10.0	7.5	9.0	16.0	14.5	15.5
24 25	1.0	•5	.5	4.0	3.0	3.5	11.5	8.5	10.0	15.5	15.0	15.5
23	1.5	•5	1.0	3.5	2.5	3.0	11.0	9.0	10.0	16.0	14.5	15.0
26	1.5	.5	1.0	2.5	2.0	2.0	12.5	10.5	11.5	18.0	15.0	16.5
27	1.0	•5	.5	3.0	2.0	2.5	11.5	9.0	11.5	20.0	17.0	18.5
28 29	1.5	.5	1.0	3.5	2.5	3.0	13.0	10.5	11.5	21.0	19.0	20.0
30				4.5	3.0	4.0	13.5 13.5	11.0	12.5	22.5	20.0	21.0
31				5.0	3.5	4.5	13.5	11.0	12.5	22.0	20.5	21.5
MONTH	1.5	.0	.5									
		••	••	5.0	•0	5.0	13.5	3.0	7.5	22.5	9.5	14.0
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEME	FR
			2012	100								
1 2	22.5	20.5	21.5	24.5	21.5	23.0	20.5	19.0	20.0	22.5	20.0	21.0
3	22.0	20.0	20.5	22.5	21.0 19.5	22.5	23.0	20.0	21.5	22.5	20.0	21.5
4	21.0	19.0	20.0	19.5	18.5	19.0	24.5	23.5	24.0	23.0	21.0	22.0
5	20.0	18.0	19.0	20.5	18.0	19.0	24.0	22.0	23.0	23.0	20.5	22.0
6	20.0	17.5	19.0	22.0	18.5	20.5	24.5	22.5	23.5	23.5	21.0	22 0
7	19.0	17.5	18.0	23.5	20.5	22.0	24.0	22.5	23.5	23.5	22.5	22.0
8	18.5	17.5	18.0	25.5	22.5	24.0	23.5	22.0	22.5	22.5	19.5	21.0
10	20.0	18.5	19.0	26.5	24.0	25.5	24.0	22.5	23.0	20.5	19.0	19.5
10	20.0	18.0	19.0	27.5	25.0	26.5	24.0	22.5	23.0	19.5	17.5	19.0
11	21.0	19.0	20.0	26.0	23.0	25.0	23.5	22.5	23.0	19.5	18.5	19.0
12 13	22.5	19.5	21.0	24.5	21.5	23.0	24.5	22.5	23.0	20.0	18.5	19.5
14	19.0	19.0 17.5	20.5	25.0 24.0	21.5	23.5	25.5	23.0	24.0	20.0	18.5	19.5
15	19.0	16.5	18.0	25.5	22.5	23.0	26.0 27.0	24.0	25.0 25.5	20.0 19.0	18.0	19.0 18.0
16	10.5											
16	19.5	17.0 17.5	18.5 18.0	25.0 25.0	23.5	24.5	27.0	25.0 25.0	26.0	18.5	17.5	18.0
18	21.0	17.0	19.0	25.5	23.0	24.5	27.0	25.0	26.0	19.0	17.5	18.5
19	22.5	19.5	21.0	26.0	23.0	24.5	27.0	24.0	25.5	18.0	17.0	17.5
20	24.0	21.0	55.0	27.0	24.0	25.0	26.5	25.0	25.5	18.5	17.0	18.0
21	24.5	21.5	22.5	26.0	24.0	25.5	26.0	23.5	25.0	20.5	18.0	19.0
22	25.0	21.5	23.0	27.0	25.0	26.0	26.0	23.0	24.5	20.5	19.0	19.5
23	24.5	21.5	23.0	28.0	25.0	27.0	24.5	22.5	24.0	20.0	18.0	19.0
24 25	24.5	21.0	23.0	28.5	26.5	27.5	24.5	22.5	24.0	19.5	17.5	18.5
						26.0	24.5	21.5	23.0	19.5	18.0	18.5
26 27	23.5	21.0	22.5	24.5	23.0	23.5	23.0	20.5	21.5	18.5	16.5	17.5
28	27.0	21.0	23.0	24.5	23.0	23.5	23.0	20.5	55.0	17.5	16.0	17.0
29	26.0	23.0	24.5	24.5	22.0	23.5	24.0	22.0	22.5	17.0 16.5	16.0	16.5
30	25.5	23.0	24.5	24.0	23.0	23.5	23.0	22.0	22.5	16.0	14.0	15.0
31				23.0	20.0	21.0	22.5	20.5	21.5			
MONTH	27.0	16.5	21.0	28.5	18.0	23.5	28.0	19.0	23.5	23.5	14.0	19.0

01437500 NEVERSINK RIVER AT GODEFFROY, NY

LOCATION.--Lat 41°26'28", long 74°36'07", Orange County, NY, Hydrologic Unit 02040104, on right bank just upstream from highway bridge on Graham Road, 0.5 mi (0.8 km) downstream from Basher Kill, 0.8 mi (1.3 km) southeast of Godeffroy, 1.7 mi (2.7 km) south of Cuddebackville, and 8.5 mi (13.7 km) upstream from mouth.

DRAINAGE AREA . -- 302 mi2 (782 km2).

TOTAL

WTR YR 1978 TOTAL

MEAN

MEAN 553

MIN MIN

PERTOD OF RECORD.

RIOD OF RECORD.--WATER DISCHARGE: August to October 1903, August 1909 to April 1914 (gage heights and discharge measurements, also twice daily figures of discharge for January 1911 to December 1912, which do not represent daily mean discharges because of diurnal fluctuation), and July 1937 to current year. August to October 1903, published as "Navesink River at Godeffrov. NY".

REVISED DISCHARGE RECORDS. -- WSP 821: Drainage area. WSP 1502: 1951(M). WDR-NJ-77-2: 1976.

GAGE.--Water-stage recorder. Datum of gage is 459.66 ft (140.104 m) National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Apr. 30, 1914, nonrecording gages at same site (August to October 1903 at datum 0.98 ft or 0.299 m higher).

REMARKS.--Discharge records good except those for winter periods, which are poor. Prior to 1949, diurnal fluctuation at low and medium flow caused by powerplant at Cuddebackville. Subsequent to June 1953, entire flow from 91.8 mi² (238 km²) of drainage area controlled by Neversink Reservoir (see Delaware River Basin, reservoirs in). Part of flow diverted for city of New York municipal supply. Remainder of flow (except for conservation releases and spill), impounded for release during periods of low-flow in the lower Delaware River basin, as directed by the

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 5,810 ft³/s (165 m³/s) Jan. 9, gage height, 7.69 ft (2.344 m); minimum, 86 ft³/s (2.44 m³/s) Sept. 30; minimum gage height, 2.80 ft (0.853 m) Aug. 30, 31.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 33,000 ft³/s (935 m³/s) Aug. 19, 1955 (gage height, 12.49 ft or 3.087 m), from rating curve extended above 11,000 ft³/s (312 m³/s) on basis of slope-area measurement of peak flow; practically no flow several times in July 1911.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978
MEAN VALUES DAY OCT NOV DEC JAN FER MAR APR MAY JUN JUL. AUG SEP 276 1060 473 123 678 431 862 2520 MOO 408 170 752 589 271 2360 639 461 540 1500 150 367 367 564 ------TOTAL 1330 600 3220 719 MEAN MAX MIN

01438500 DELAWARE RIVER AT MONTAGUE, NJ

LOCATION.--Lat 41°18'33", long 74°47'44", Sussex County, Hydrologic Unit 02040104, on right bank 0.4 mi (0.6 km) upstream from toll bridge at Montague, 0.8 mi (1.3 km) downstream from Sawkill Creek, and at mile 246.3 (396.3 km). Water-quality samples collected from toll bridge.

DRAINAGE AREA . -- 3,480 mi2 (9,013 km2).

PERIOD OF RECORD.-WATER DISCHARGE: March 1936 to September 1939 (gage heights only, published as "at Milford, PA"). October 1939 to current year. Monthly discharge only for some periods, published in WSP 1302.
CHEMICAL ANALYSES: Water years 1956-73, 1976 to current year.

PERIOD OF DAILY RECORD. -WATER DISCHARGE: October 1939 to current year.
WATER TEMPERATURES: October 1956 to September 1957.

GAGE.--Water-stage recorder. Datum of gage is 369.93 ft (112.755 m) National Geodetic Vertical Datum of 1929. Prior to Feb. 9, 1940, nonrecording gage on upstream side of left span of subsequently dismantled bridge at present site at datum 70 ft (21.3 m) lower.

REMARKS.—Discharge records excellent except those for February, which are good. Diurnal fluctuations at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lake Wallenpaupack and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, and Neversink Reservoirs (see Delaware River Basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs (see Delaware River Basin, diversions).

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

AVERAGE DISCHARGE. -- 39 years, 5,961 ft3/s (168.8 m3/s), unadjusted.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 68,100 ft³/s (1,929 m³/s) Jan. 10, gage height, 18.27 ft (5.569 m); minimum daily, 1,320 ft³/s (37.4 m³/s) Sept. 24.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 250,000 ft³/s (7,080 m³/s) Aug. 19, 1955 (gage height, 35.15 ft or 10.714 m), from rating curve extended above 90,000 ft³/s (2,550 m³/s) on basis of flood-routing study; minimum, 382 ft³/s (10.8 m³/s) Aug. 24, 1954, gage height, 3.83 ft (1.167 m); minimum daily, 412 ft³/s (11.7 m³/s) Aug. 23, 1954.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage during period 1903-78, 35.5 ft (10.82 m) Oct. 10, 1903, present datum, from floodmark.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES DAY OCT NOV DEC FEB APR MAY JUN JUL. AUG SEP JAN 1620 1740 1780 5230 1730 1480 28 6730 ---TOTAL. 3,513,20 MAX MIN

CAL YR 1977 TOTAL 2652260 MEAN 7266 MAX 76100 MIN 900 WTR YR 1978 TOTAL 2843610 MEAN 7791 MAX 52400 MIN 1320

01438500 DELAWARE RIVER AT MONTAGUE, NJ--Continued

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	- DUCT	- 0-		TEMPER- ATURE (DEG C)	TUR BID ITY (JTU	•	DXYGEN, DIS- SOLVED (MG/L)	OXYGE DEMAN BIO- CHEM ICAL 5 DAY (MG/I	ND,	COLI- FORM, FECAL, EC BROTH (MPN)	STR TOCO FEC	AL	HAR NES (MG AS CAC	S /L
OCT 13	1200	6050		63	7.5	10.0		1	7.2			80		7		20
NOV 15	1200	10500		58	7.3	6.0		1	12.5	1	1.0	20		11		19
16	1210	5150		72	7.8	1.0		2	12.2		1.0	230		8		22
4AR 30	1145	28700		49	7.0	5.0		5	13.1		1.0	130		33		15
APR 26	1200	5390		60	7.1	12.0		2	11.6	<:	1.0	110		33		19
17 JUL	1200	13300	2 2	54	7.1	13.0		6	10.3		1.0	170		350		17
20	1230	1560		74	8.5	24.5		0	7.8		1.0	330		6		23
09	1230	3810		70	7.2	23.0		5	8.4	1	1.0	80		13		21
SEP 25	1300	1090	1	10		18.0			••		1.0					27
DATE	CALCIUM DIS- SOLVEC (MG/L AS CA)	DIS- SOLVE	DIS- D SOLVE (MG/	M, SI DI D SOI L (MC	TAS- IUM, IS- VED S/L K)	ALKA- LINITY (MG/L AS CACO3)	SULFI DIS- SOLV (MG/ AS S	ED L	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLC RIDI DIS- SOLV (MG/ AS (VED	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILI DIS SOL (MG AS	VED	SOL	DUE 80 . C
JCT 13	6.0	1.:	1 3	. 2	.9			.0	10		2.8			2.5	*	38
NOV 15	5.6	1.	3 2	. 2	1.0				10		3.2					44
FEB 16	6.7	. 1.:	3 3	.3	.9				11		5.4					46
MAR 30	4.5	1.0	0 3	.1	.7				9.4		3.1					40
APR 26	5.6	1.	2 3	.0	1.0				10		3.1					46
17 JUL	5.0	1.	1 2	.9	.8				9.4	- 1	4.0					36
20 AUG	6.9	1.	4 3	. 8	1.1				9.1		4.5					48
09	6.1	1.	4 3	. 3	1.6				8.8		4.9					44
25	7.9	1.0	8 6	.5	1.1	16			13	. 1	7.6	.0		1.6		54
	RE A1 DE	T 105 EG. C, N: BUS- ENDED	NITRO- GEN, ITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)		N, G NIA ORG AL TO /L (M	EN,	NITE GEN, MONI ORGAN TOT (MG.	AM- A + NI NIC (ITRO- GEN, DTAL MG/L S N)	PHORU TOTA (MG/	- PHO S, OF L TO L (HOS- DRUS, RTHO. DTAL MG/L	ORG TO	BON, ANIC TAL G/L C)	
	CT	,46767	no 117	A3 H)	40	N, AS		40	.,					-		
	13 DV	5	.00	.00		.00	1.3	1	. 3	1.3		08	.04		7.7	
F	15 EB	5	.28	.00			1.1	1	.1	1.4		02	.01		15	0,
M	16 AR	5	••			••				•		••			2.0	
A	30 PR	18	.39	.00		.01	.15		.16	.55		03	.00		3.0	
M	26 AY	0	.22	.00		.00	.19		.19	.41		01	.00		4.3	
J	17 UL	18	.21	.01		.02	.40		.42	.64		04	.00		9.6	
A	20 UG	4	••			.10	.30		.40			••			4.3	
Si	09 EP	12			•	.10		1	.5						4.9	
	25		••												2.0	

01438500 DELAWARE RIVER AT MONTAGUE, NJ--Continued

		4.00				CHRO-		
		ALUM-			CADMIUM	MIUM,	COBALT,	COPPER,
		INUM,		BORON,	TOTAL	HEXA-	TOTAL	TOTAL
		DIS-	ARSENIC	DIS-	RECOV-	VALENT,	RECOV-	RECOV-
		SOLVED	TOTAL	SOLVED	ERABLE	DIS.	ERABLE	ERABLE
	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE		AS AL)	AS AS)	AS B)	AS CD)	AS CR)	AS CO)	AS CU)
OCT								
13	1200	70	3	30	0	0	. 0	33
			MANGA-					
		LEAD,	NESE,	MERCURY	NICKEL.		ZINC,	
	IRON,	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL	
	DIS-	RECOV-	RECOV-				RECOV-	
				RECOV-	RECOV-	NIUM,		DURNOLE
	SOLVED	ERABLE	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	PHENDLS
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
OCT								
13	40	9	40	<.5	4	. 0	20	4

DELAWARE RIVER BASIN

01439830 BIG FLAT BROOK AT TUTTLES CORNER, NJ

LOCATION.--Lat 41°12'00", long 74°48'56", Sussex County, Hydrologic Unit 02040104, at bridge on State Route 521 in Tuttles Corner, 0.7 mi (1.1 km) west of intersection of U.S. Route 206 with State Route 521, 1.2 mi (1.9 km) south of Layton, and 2.0 mi (3.2 km) upstream from Little Flat Brook.

DRAINAGE AREA. -- 28.3 mi2 (73.3 km2).

PERIOD OF RECORD.-WATER DISCHARGE: May to September 1978.
CHEMICAL ANALYSES: Water years 1964, 1976 to current year.
SEDIMENT ANALYSES: September 1978.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	SIREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACD3)	CALCIUM DIS- SOLVED (MG/L AS CA)
OCT												
13	1100		84	7.6	8.0	2	11.1	1.0	50	8	27	7.5
15 FEB	1115		60	7.1	2.5	1	13.8	1.0	20	2	22	5.7
16 MAR	1115		72	7.3	.5	1	13.4	2.0	<20	<2	27	7.0
30	1100		45	7.7	4.0	1	12.7	1.0	<20	23	22	7.2
26 MAY	1100		66	7.6	11.0	1	12.0	1.0	80	17	24	6.5
17 JUL	1115	268	46	7.0	10.0	2	7.3	1.0	20	350	19	5.2
20 AUG	1100	1.1	97	8.4	19.0	0	9.5	1.0	130	>2400	* 34	9.1
09 SEP	1130	20	83	7.5	19.5	1	9.2	2.0	50	920	28	7.7
25	1130	7.4	112		13.0		8.9	1.0			39	10
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)		SEDI- MENI, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)
OCT												27
13 NOV	2.1	3.2	.8	- 10.5	14	3.9			53	8	£.	
15 FEB	1.8	2.0	.7		13	3.7			50	. 4		
16 MAR	2.4	2.7	.7		13	4.2			48	4		
30 APR	1.0	2.0	.5		11	2.8			49	4		-
26 MAY	2.0	4.0	.7		12	3.6			48	0	-	-
17 JUL	1.4	2.4	.7		11	1.1			35	11	-	
20 AUG	2.8	3.7	.9		9.1	5.6			62	7		
09 SEP	2.2	3.4	1.0		9.3	4.7			53	. 0	-	•
25	3.4	4.4	- 8	27	11	6.4	- 0	4.5	64		12	.24

01439830 BIG FLAT BROOK AT TUTTLES CORNER, NJ--Continued

DATE	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	GEN,	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, NH4 + DRG. TOT IN BOT MAT (MG/KG AS N)	NITRD- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO. TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	ORGANIC TOT. IN BOTTOM MAT. (G/KG AS C)
OCT	.02	.00	.04	.29	.33	490	.35	.03	.01	8.1	1.4
NOV											
15 FEB		.00		.19	.19		.22	.01	.00	14	
16	•									1.8	
30	.06	.00	.00	.26	.26		.32	.01	.00	5.0	
26	.01	.00	.00	.13	.13		.14	.01	.00	5.9	
17 JUL	.04	.00	.01	.28	.29		.33	.01	.00	9.5	
20 AUG			.10	.70	.80					4.3	
09			<.10		1.2					4.8	
SEP 25						760				4.0	
	T IN TO	DTAL R BOT- FM M MA- TO ERIAL T	ECOV. M BOT- R M MA- FM ERIAL TO	IUM, RE ECDV. FM BOT- TOM M MA- TE	COV. RE BOT- FM MA- TOM CRIAL TE	COV. RE BOT- FM MA- TOM RIAL TE	COV. RE BOT- FM MA- TOM RIAL TE	COV. NE BOT- RE MA- FM RIAL TOM	SE, RECOV. FM BOT- TOM	COV. RE BOT- FM MA- TOM RIAL TE	KEL, ZINC, COV. RECOV. BOT- FM BOT- MA- TOM MA- RIAL TERIAL
DATE											G/G (UG/G NI) AS ZN)
СТ 13	1100	1	<10	10	<10	<10	820	20	180	.0	<10 20
EP 25	1130	0	<10	<10	<10		1900	<10	280	.0	<10 20
		·		110	110	110	1700	110	200		20
DATE	PCB, TOTAL IN BOI- TOM MA- TERIAL (UG/KG)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOI- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
ост											
13 SEP		.00	.0	0	.0	.0	.0		.0	.00	• 0
25	0		.0	0	.0	.1	.0	• 0	.0		• 0
DATE	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLUR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	PARA- THION, TUTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
13 SEP		.0	.0	.0						0	
25	.0	.0	.0	.0	.0	.0	.0	.0	• 0	0	.0

01439960 FLAT BROOK AT WALLPACK CENTER, NJ

LOCATION.--Lat 41°09'25", long 74°52'39", Sussex County, Hydrologic Unit 02040104, at bridge at Wallpack Center, 1.3 mi (2.1 km) southeast of Shapnack Island, 3.3 mi (5.3 km) downstream from Little Flat Brook, and 3.8 mi (6.1 km) northeast of Buck Bar.

DRAINAGE AREA. -- 51.3 mi2 (132.9 km2).

PERIOD OF RECORD. --CHEMICAL ANALYSES: Water years 1964, 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutirents were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER	QUALITY	DATA,	WATER	YEAR	OCTOBER	1977	CI	SEPTEMBER	1978	
SPE-							01	KYGEN		

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO-	PH	TEMPER-	TUR- BID- ITY	OXYGEN, DIS- SOLVED	DXYGEN DEMAND, BIO- CHEM- ICAG, 5 DAY	COLI- FORM, FECAL, EC BROTH	STREP- TOCOCCI FECAL	HARD- NESS (MG/L AS CACO3)
DATE		MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	(MG/L)	(MPN)	(MPN)	CACUSI
OCT										
13 NOV	1300	151	7.8	10.0	1	10.1		50	33	.58
15	1310	98	7.4	6.0	1		1.0	20	8	36
FEB										
16 MAR	1310	175			. 2					74
30	1300	69			1					25
APR										
26 MAY	1300	134	8.2	12.5	1	11.2	2.0	50	2	57
17	1310	71			2					29
JUN				•						
15	1145	119	7.7	14.0	1	10.5	1.0	<20	20	61
	4									
									SOLIDS,	SOLIOS,
		MAGNE-		POTAS-			CHLO-	SILICA,	RESIDUE	RESIDUE
	CALCIUM	SIUM,	SODIUM,	SIUM,	SULFIDE	SULFATE	RIDE,	DIS-	AT 180	AT 105
	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	SOLVED	DEG. C	DEG. C,
	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	SUS-
DATE	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	(MG/L AS K)	(MG/L AS S)	(MG/L AS SO4)	(MG/L AS CL)	SIO2)	SOLVED (MG/L)	PENDED (MG/L)
	MS CM)	AS MG)	NO NA)	MO NJ	A5 5)	A5 504)	MS CU)	3102)	(46/6)	(MG/U)
OCT	17	2.0								
13	17	3.8	4.3	.9		18	6.5		84	4
15	10	2.7	2.2	.8		15	4.2		65	4
FEB						142	- 1			700-
16 MAR	22	4.6	5.1	.7	•••	18	9.3		91	2
30	7.2	1.7	2.0	.5		12	3.2		50	13
APR									2.0	-
26 MAY	17	3.5	4.3	.8		16	6.6		94	0
17	8.4	2.0	2.3	.6	.0	12	2.3	3.9	50	12
JUN	18	2 0	4.2	.8					89	
15	18	3.8	4.2	. 8		15	7.3		89	1

DELAWARE RIVER BASIN 01439960 FLAT BROOK AT WALLPACK CENTER, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			ITRO- GEN,	NITRO- GEN,	NITRO- GEN,	MONIA	M -	rro-	PHOS-	PHOR		BON,	
	NITE	RATE NI	TRITE A	MMONIA	ORGANIC TOTAL	DRGAN	IC G	EN, Tal	PHORUS	ORT	HO. ORG	ANIC TAL	
DATÉ	(MC		(MG/L IS N)	(MG/L AS N)	(MG/L AS N)	(MG/		G/L N)	(MG/L AS P)	(MG AS		IG/L	
ocr													
13	•	.03	.00	.02	.21	•	23	.26	.01		.00	7.1	
15 FE8		.06	.00	.00	.36		36	.42	.01		.00	13	
16							2-					1.0	
MAR 30		.07	.00	.01	.10		11	.18	.01		.00	3.6	
APR 26		.05	.00	.00	.11		11	.16	.01		.00	7.6	
MAY 17		.06	.00	.01	.28		29	.35	.01		.01	11	
JUN													
15	•	.13	.00	.02	.25	•	27	.40	.01		.00	8.5	
					RO-					ANGA-			
	ALUM- INUM,	BORON	CADMI TOTA			BALT,	COPPER,	IRO		OTAL	NICKEL,	ZINC, TOTAL	
	DIS-	DIS-				ECOV-	RECOV-	DI		ECOV-	RECOV-		
	SOLVED	SOLVE				RABLE	ERABLE	SOL		RABLE	ERABLE		PHENOLS
	(UG/L	(UG/L				JG/L	(UG/L	(UG		UG/L	(UG/L	(UG/L	
	AS AL)	AS B)	AS C	D) AS	CR) AS	CO)	AS CU)	AS	FE) A	S MN)	AS NI)	AS ZN)	(UG/L)
1310	70	2	20	0	0	0	4		80	30	(20	. 1

DATE MAY 17...

01440000 FLAT BROOK NEAR FLATBROOKVILLE, NJ

LOCATION.--Lat 41°06'24", long 74°57'09", Sussex County, Hydrologic Unit 02040104, on right bank 1.0 mi (1.6 km) upstream from Flatbrookville, and 1.5 mi (2.4 km) upstream from mouth.

DRAINAGE AREA . -- 65.1 mi2 (168.6 km2).

PERIOD OF RECORD.-WATER DISCHARGE: July 1923 to current year.
CHEMICAL ANALYSES: Water years 1963 to current year.
SEDIMENT ANALYSES: Water years 1968, 1969, 1971-75.

REVISED DISCHARGE RECORDS.--WSP 781: Drainage area. WSP 1432: 1924(M), 1928(M), 1929, 1930(M), 1932, 1933(M), 1936, 1938(M), 1939-40, 1949(M), 1952-53(M).

GAGE.--Water-stage recorder. Concrete control since Aug. 19, 1929. Datum of gage is 347.73 ft (105.988 m) National Geodetic Vertical Datum of 1929. Prior to Jan. 6, 1926, nonrecording gage at same site and datum.

REMARKS .-- Discharge records poor. Flow occasionally regulated by ponds above station.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and

AVERAGE DISCHARGE. -- 55 years. 109 ft3/s (3.087 m3/s) 22.74 in/yr (578 mm/yr).

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 650 ft3/s (18.4 m3/s) and maximum (*):

Date		Time	Discharge (ft ³ /s) (m ³ /s)		Gage H	Gage Height (ft) (m) Dat		ate Time		Disch (ft3/s)		Gage Height (ft) (m)		
Jan. Jan. Mar.	9 26 24	1730 2200 0345	*2360 838 779	66.8 23.7 22.1	6.52 4.08 3.96	1.987 1.244 1.207	Mar. May	27 18	2300 0915	1380 724	39.1 20.5	5.06 3.85	1.542	

Minimum discharge, 11 ft3/s (0.312 m3/s) Sept. 29, gage height, 1.79 ft (0.546 m).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,560 ft³/s (271 m³/s) Aug. 19, 1955 (gage height, 12.58 ft or 3.834 m, from high-water mark in gage house) from rating curve extended above 2,000 ft³/s (56.6 m³/s) on basis of slope-area measurement of peak flow; minimum, 3.6 ft³/s (0.10 m³/s) Sept. 25, 26, 1964, Sept. 11, 1966.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			,		ME	AN VALUES				(5)		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	35 101 67 47 39	43 42 41 41 39	398 382 263 218 188	138 131 116 104 107	190 163 155 141 131	64 62 56 65 67	393 340 281 256 238	64 61 59 59 77	129 112 132 259 156	43 38 43 85 77	35 31 27 29 27	21 20 18 18
6 7 8 9	36 33 32 80 160	37 47 378 424 250	185 157 130 125 106	105 100 118 1400 916	125 136 133 133	66 64 58 51 54	212 220 204 172 155	111 96 86 148 205	119 106 207 234 201	56 45 41 37 36	30 51 88 60 42	15 14 14 16 16
11 12 13 14 15	92 69 60 60 163	316 246 185 149 136	90 92 98 127 399	486 323 264 247 218	136 106 99 98 93	54 57 71 163 473	144 145 133 123 110	141 113 104 134 488	140 119 124 123 99	33 32 30 29 32	32 31 35 31 27	16 15 14 13 14
16 17 18 19 20	136 123 115 99 145	120 110 165 131 110	339 245 213 200 173	180 170 172 155 146	93 87 84 82 76	335 249 202 181 216	106 101 98 96 132	383 536 675 527 376	85 77 76 118 104	32 33 35 31 28	24 24 22 19	15 16 16 36 29
21 22 23 24 25	117 92 79 68 60	100 102 97 100 91	300 443 279 227 296	148 134 126 122 143	89 94 94 87 69	263 552 616 692 561	135 111 97 89 82	291 234 196 245 365	81 76 65 57 52	26 25 25 25 25	19 18 17 16 16	22 19 24 23 20
26 27 28 29 30 31	56 57 52 55 43	200 196 144 125 128	360 232 193 165 155	567 715 445 312 245 207	67 64 62	462 994 1070 785 609 468	82 80 79 72 68	254 197 170 150 137 129	50 52 52 46 49	25 25 29 29 25 29	16 17 17 17 16 17	18 16 16 13 13
TOTAL MEAN MAX MIN CFSM IN.	2413 77.8 163 32 1.20 1.38	4293 143 424 37 2.20 2.45	6926 223 443 90 3.43 3.96	8760 283 1400 100 4.35 5.01	3018 108 190 62 1.66 1.72	9680 312 1070 51 4.79 5.53	4554 152 393 68 2.34 2.60	6811 220 675 59 3.38 3.89	3300 110 259 46 1.69 1.89	1104 35.6 85 25 .55	870 28.1 88 16 .43 .50	536 17.9 36 13 .28

CAL YR 1977 TOTAL 45049.3 WTR YR 1978 TOTAL 52265.0 MEAN 123 MIN 7.8 MIN 13 CFSM 1.89 CFSM 2.20 MAX 1400 MEAN 143

DELAWARE RIVER BASIN 01440000 FLAT BROOK NEAR FLATBROOKVILLE, NJ--Continued

					TEAN OCT	DEN IN	10 00, 10			
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	DXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT										
13 NOV	1330	60	143	7.8	10.0	1	9.2		70	27
15 FEB	1345	138	111	7.6	6.0	. 1	12.7		20	5
16	1350	103	168	8.0	2.0	1	14.3	3.0	20	8
MAR 30	1330	589	81	7.2	6.0	2	13.4	2.0	20	5
APR 26	1330	83	174	8.1	14.0	1	11.0	<1.0	80	2
MAY 17	1345	518	74	7.2	11.0	. 3	10.3	1.0	230	920
JUN 15	1310	98	115	8.3	16.0	1	11.4	2.0	20	79
JUL 20	1340	29	201	8.2	24.0	0	10.1	1.0	20	>2400
AUG 09	1350	53	142	8.5	23.0	1	10.8	2.0	20	350
DATE	HARD= NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	SULFIDE DIS- SOLVED (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
OCT										
13	53	15	3.7	4.0	,9	.0	18	5.8	3.5	78
15 FEB	48	14	3.2	3.0	.8		16	5.3		65
16	68	20	4.5	4.6	.7		18	8.3		95
30 APR	33	10	1.9	3.5	.6		12	3.8		60
26	74	22	4.6	5.8	.7		18	10		107
17 JUN	31	9.1	2.0	2.7	.7	.0	11	2.3	3.9	50
15 JUL	61	18	3.8	3.8	.8		15	6.8		92
20 AUG	88	25	6.3	5.6	1.0		16	9.5		126
09	62	18	4.2	4.0	1.1		13	7.3		79
									1	
DATE	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO. TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 13	9	.01	.00	.02	.16	.18	.19	.01	.00	8.2
NOV 15	0	.08	.00	.00	.59	.59	.67	.01	.00	12
FEB 16	4									2.7
MAR 30	0	.10	.00	.01	.17	.18	.28	.00	.00	4.3
APR 26	0	.08	.00	.02	.15	.17	.25	.00	.00	7.0
MAY 17	18	.07	.01	.01	.58	.59	.67	.02	.00	12
JUN 15	3	.06	.00	.01	.23	.24	.30	.01	.00	9.1
JUL 20	9			.10	.30	.40				7.9
AUG 09	o		=	<.10						6.4

01440000 FLAT BROOK NEAR FLATBROOKVILLE, NJ--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT								
13	1330	70	. 2	30	1	0	0	38
17	1345	50		2	0	0	0	3
			MANGA-					
		LEAD,	NESE,	MERCURY	NICKEL,		ZINC,	
	IRON,	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL	
	DIS-	RECOV-	RECOV-	RECOV-	RECOV-	NIUM,	RECOV-	
	SOLVED (UG/L	ERABLE (UG/L	ERABLE (UG/L	ERABLE	ERABLE	TOTAL	ERABLE	PHENOLS
DATE	AS FE)	AS PB)	AS MN)	AS HG)	(UG/L AS NI)	AS SE)	AS ZN)	(UG/L)
OCT								
13 MAY	60	16	10	<.5	8	0	10	0
17	80		40		0		20	1

01440200 DELAWARE RIVER BELOW TOCKS ISLAND DAMSITE, NEAR DELAWARE WATER GAP, PA

LOCATION.--Lat 41°00'42", long 75°05'09", Warren County, Hydrologic Unit 02040105, on left bank 40 ft (12 m) streamward from River Road, 1.0 mi (1.6 km) downstream from Tocks Island, 3.7 mi (6.0 km) northeast of Delaware Water Gap, PA, 4.0 mi (6.4 km) upstream from bridge on Interstate Highway 80, and at mile 216.1 (347.7 km).

DRAINAGE AREA. -- 3,850 mi2 (9,970 km2) approximately.

PERIOD OF RECORD. --

WATER DISCHARGE: May 1964 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 293.64 ft (89.501 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Discharge records fair. Diurnal fluctuation at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lake Wallenpaupack, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, and Neversink Reservoirs (see Delaware River Basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs (see Delaware River Basin, diversions).

AVERAGE DISCHARGE. -- 14 years, 6,592 ft3/s (186.7 m3/s), unadjusted.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 74,100 ft³/s (2,099 m³/s) Jan. 10, maximum gage height, 22.99 ft (7.007 m) Jan. 11, result of ice jam; minimum daily discharge, 1,430 ft³/s (40.5 m³/s) Sept. 27.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 103,000 ft 3 /s (2,920 m 3 /s) June 30, 1973, gage height, 23.82 ft (7.260 m); minimum daily, 580 ft 3 /s (16.4 m 3 /s) July 7, 8, 1965.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		DISCH	ANGE, IN	CODIC FEE	M.	EAN VALUES	S TEAR OC	TOBER 191	, TO SELLE	INDER 1910		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	8570	5860	8970	7700	14500	3400	27900	4300	6130	1960	2720	1750
2	12900	5580	19200	7000	12500	3200	30400	4000	5440	1780	2010	2040
3	19400	5400	21300	6600	11000	3100	31700	3600	5010	1850	1800	1960
3	13500	5370	18800	6200	9700	3400	26900	3200	4940	2070	1930	1760
5	10200	4550	15800	6000	7900	2900	23800	3500	4840	2840	2150	1690
6	8450	4450	14200	6100	7300	2800	24900	4800	4910	5470	2330	1910
7	7570	4840	13000	6300	6700	3800	23700	5200	4500	3710	2810	1780
8	7170	7850	11700	6000	7150	3400	24700	5010	5220	3040	5530	1800
9	6500	15100	10400	30700	7750	2800	22300	5120	7020	2240	4980	1850
10	11600	15400	9500	66100	7100	3000	18900	6980	8530	2040	3980	1780
			2 5/10			100	N. S. S.	725			7.77	
11	13900	15900	9130	46600	6300	3000	16300	8020	6450	2330	3380	2010
12	10400	24200	6320	33700	5750	2900	15900	6450	5440	2240	2690	1860
13	8410	19800	7350	23100	5200	2600	17700	6170	5470	2120	1880	2150
14	7530	15700	7450	18600	6100	4200	16800	7660	5440	1960	2100	1750
15	8490	13400	12500	17500	5600	8700	15000	11700	5360	2040	2630	2040
16	13100	11200	21500	15400	5600	11900	12500	14800	4740	1910	2270	2120
17	13300	9620	19800	11800	5600	14300	11100	17900	3920	2040	2150	1960
18	33400	9330	16700	11000	5200	12700	9960	22600	3200	2300	1780	2300
19	27600	9130	15100	9500	4500	11300	8650	24900	3130	2350	1710	3040
20	25800	8170	13500	8600	4000	9220	7980	22500	3550	2210	1680	3500
	23000		13300	2000					7.5		40.7	
21	25300	7350	13100	7200	4500	10200	9650	18100	3350	2440	1690	2780
22	20000	6820	15800	7000	4550	17900	9260	15300	3110	2840	1780	2380
23	16200	6640	14700	6900	4700	26800	8650	12700	3040	2300	1690	2180
24	13700	6250	12600	6800	4300	29300	7660	10700	3320	2120	1990	1490
25	12000	5900	10900	7100	4000	27000	7250	12100	2440	2220	1850	1460
26	10500	6360	13100	12000	3100	22800	6740	11400	2150	1830	2070	1730
27	9620	8650	12300	36000	2800	27200	5750	9420	2270	1830	1910	1430
28	8610	7690	12000	39000	3400	43900	5300	7610	2440	1960	2120	2300
29	7850	7070	10000	23000	3400	40200	5000	6630	2300	2100	2150	2720
30	6530	6780	8800	19000		35900	4700	5960	2040	1800	2270	2900
										2180	2120	2900
31	5930		9000	16000		31000		5960		2100	2120	
TOTAL	404030	280360	404520	524500	176800	424820	457050	304290	129700	72120	74150	62420
MEAN	13030	9345	13050	16920	6314	13700	15240	9816	4323	2326	2392	2081
MAX	33400	24200	21500	66100	14500	43900	31700	24900	8530	5470	5530	3500
MIN	5930	4450	6320	6000	2800	2600	4700	3200	2040	1780	1680	1430

CAL YR 1977 TOTAL 3045030 MEAN 8343 MAX 67500 MIN 1200 WTR YR 1978 TOTAL 3314760 MEAN 9082 MAX 66100 MIN 1430

01443000 DELAWARE RIVER AT PORTLAND, PA

LOCATION.--Lat 40°55'26", long 75°05'46", Northampton County, Hydrologic Unit 02040105, at walkbridge connecting Portland, PA and Columbia, NJ, and 0.5 mi (0.8 km) upstream of Paulins Kill.

DRAINAGE AREA .-- 4,165 mi2 (10,787 km2).

PERIOD OF RECORD. -- CHEMICAL ANALYSES: Water years 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER	QUALITY	DATA.	WATER	YEAR	OCTOBER	1977	TO	SEPTEMBER	1978
-------	---------	-------	-------	------	---------	------	----	-----------	------

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	DXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT										
11	1200	68	6.8	10.0	4	9.9	1.0	<20	240	22
NOV 28	1030	63	7.1	.0	1			170	11	23
FEB		0.5		••						
15	1200	75	7.1	1.0	2	13.8	2.0	220	2	26
MAR 29 APR	1200	54	7.1	6.0	10	11.6	2.0	310	49	15
25	1150	62	7.1	13.0	2	11.5	1.0	20	540	21
MAY 16	1200	60	7.0	11.5	3	10.3	2.0	230	180	20
JUL 24	1020	90	8.1	27.0	0	7.5		50	<2	26
AUG										
16	1330	87	8.8	27.0	0	8.0	1.0	<20	7	27
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	SULFIDE DIS- SOLVED (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIU2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)
	,,,,		,		,					
11	6.7	1.3	2.6	1.1		12	3.9		45	10
28 FEB	7.0	1.4	2.9	.9	1	11	4.3		42	3
15 MAR	7.8	1.5	3.4	.9	- ,	12	5.2		50	5
29 APR	4.3	1.0	2.5	.8		10	3.6		42	16
25	6.2	1.3	2.8	.8		12	6.0		45	0
16	6.0	1.2	3.0	.8	.0	11	4.2	3.8	40	11
24 AUG	8.0	1.5	3.5	1.0		10	5.6		52	9
16	8.1	1.6	4.0	1.1		9.4	4.1		60	0

DELAWARE RIVER BASIN 01443000 DELAWARE RIVER AT PORTLAND, PA--Continued

	NIMBO	47.000			NITRO-				
	NITRO-	NITRO-	NITRO-	NITRO-	GEN, AM-			PHOS-	
	GEN,	GEN,	GEN,	GEN,	MONIA +	NITRO-	PHOS-	PHORUS,	CARBON,
	NITRATE	NITRITE	AMMONIA	DRGANIC	ORGANIC	GEN.	PHORUS,	ORTHO.	DRGANIC
	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	LATET	TOTAL	TOTAL
	(MG/L								
2020		(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DATE	AS N)	AS N)	AS P)	AS P)	AS C)				
ocr									
11	.27	.00	.02	.27	.29	.56	.03	.01	6.3
NOV		.00	.02	. 21	.29	. 30	.03	.01	0.3
			2.3					3.3	
28	.26	.00	.01	.18	.19	. 45	.02	.00	10
FEB									
15									1.0
MAR									7.7
29	.33	.00	.03	.85	.88	1.2	.03	.00	4.0
APR		.00	.03	.03	.00	1.2	.03	.,,	4.0
	0.0				14			4.6	
25	.22	.00	.01	.16	.17	.39	.01	.00	7.2
MAY									
16	.21	.01	.04	.34	.38	.60	.01	.00	6.3
JUL									
24			.10	.30	.40				
AUG			•••	.30	.40				
16			<.10						2.2

					CHRO-				MANGA-			
		ALUM-		CADMIUM	MIUM,	COBALT,	COPPER,		NESE,	NICKEL,	ZINC,	
		INUM,	BORON,	TOTAL	HEXA-	TOTAL	TOTAL	IRON,	TOTAL	TOTAL	TOTAL	
		DIS-	DIS-	RECOV-	VALENT,	RECOV-	RECOV-	DIS-	RECOV-	RECOV-	RECOV-	
		SOLVED	SOLVED	ERABLE	DIS.	ERABLE	ERABLE	SOLVED	ERABLE	ERABLE	ERABLE	PHENDLS
	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE		AS AL)	AS B)	AS CD)	AS CR)	AS CO)	AS CU)	AS FE)	AS MN)	AS NI)	AS ZN)	(UG/L)
MAY												
16	1200	40	10	0	0	0	40	80	70	4	30	0 ·

01443500 PAULINS KILL AT BLAIRSTOWN, NJ

LOCATION.--Lat 40°58'44", long 74°57'15", Warren County, Hydrologic Unit 02040105, on right bank 1,200 ft (370 m) upstream from bridge on State Highway 94 in Blairstown, 1,400 ft (430 m) upstream from Blairs Creek, and 10 mi (16 km) upstream from mouth.

DRAINAGE AREA . -- 126 mi2 (326 km2).

PERIOD OF RECORD.-WATER DISCHARGE: October 1921 to September 1976, October 1977 to September 1978.
CHEMICAL ANALYSES: Water years 1921, 1925, 1957-60, 1962-63, 1976 to current year.

REVISED DISCHARGE RECORDS .-- WSP 971: 1942. WSP 1382: 1952-53(M).

GAGE.--Water-stage recorder and concrete control (Aug. 1, 1931, to Aug. 3, 1941, concrete control at site 280 ft or 85 m, downstream). Datum of gage is 335.86 ft (102.370 m) National Geodetic Vertical Datum of 1929. Prior to May 24, 1922, nonrecording gage and May 24, 1922, to July 31, 1931, water-stage recorder, at site of former highway bridge 1,300 ft (400 m) downstream at different datum. Aug. 1, 1931 to July 28, 1939, water-stage recorder at site 100 ft (30 m) downstream at present datum.

REMARKS.--Discharge good. Diurnal fluctuation caused by powerplant above station and flow regulated slightly by Swartswood Lake. Water-quality samples collected at bridge 1,200 ft (370 m) downstream from gage at high flows.

COOPERATION. -- Field data (dissolved oxygen, water temperature, pH) and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

AVERAGE DISCHARGE.--56 years, (1922-76, 1978) 193 ft3/s (5.466 m3/s), 20.80 in/yr (528 mm/yr).

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 1,000 ft3/s (28.3 m3/s) and maximum (*):

			Discha		Gage H	eight				Disch		Gage H	leight
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Dec.	25	2245	1090	30.9	3.57	1.088	Mar.	23	0245	1260	35.7	4.09	1.247
Jan.	9	1800	*1770	50.1	5.28	1.609	Mar.	27	2400	1680	47.6	5.11	1.558
Jan.	27	0030	1430	40.5	4.57	1.393	May	19	0130	1230	34.8	3.97	1.210

Minimum discharge, 31 ft³/s (0.878 m³/s) Sept. 14, gage height, 1.54 ft (0.469 m).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,750 ft³/s (248 m³/s) Aug. 19, 1955, gage height, 11.12 ft (3.389 m) from high-water mark in gage house; minimum, about 2.8 ft³/s (0.08 m³/s) Nov. 1, 1922; minimum daily, 5 ft³/s (0.14 m³/s) Aug. 13, 14, 1930.

		DISCH	ARGE, IN	CUBIC FEET	PER SEC	OND, WATER	R YEAR OC	TOBER 197	7 TO SEPTI	EMBER 1978	3	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	109 172 152 124 99	91 92 90 87 93	626 627 471 396 359	294 278 251 227 230	340 307 288 257 234	119 113 112 119 109	599 504 423 397 381	117 113 108 106 127	247 221 212 283 239	73 66 71 118 113	62 50 46 51 58	60 54 46 43 38
6 7 8 9 10	93 89 82 153 260	88 103 363 459 350	350 312 264 248 216	218 211 236 1350 1170	219 216 259 235 213	110 109 105 102 104	349 354 339 298 268	150 143 129 196 208	202 192 287 334 303	94 79 73 68 63	61 217 317 249 173	36 35 37 45 42
11 12 13 14 15	199 162 142 134 228	371 316 275 237 218	202 186 183 235 625	787 548 435 416 378	197 195 194 194 181	103 111 145 273 921	257 268 249 227 208	177 158 150 188 326	235 203 195 187 161	59 56 54 52 80	129 150 187 144 112	40 39 40 33 35
16 17 18 19 20	227 213 195 186 240	203 203 280 241 209	652 492 443 424 388	330 309 305 286 251	171 171 166 163 147	839 538 423 377 458	196 187 189 186 227	343 616 1020 1140 874	143 130 123 146 154	72 64 58 54 50	90 77 69 62 57	37 39 45 120 125
21 22 23 24 25	217 190 168 146 133	194 200 201 206 194	529 775 545 457 754	277 299 255 228 259	156 142 140 135 133	575 1080 1210 1200 1040	234 207 184 169 164	580 442 369 442 684	136 151 132 113 97	49 47 44 42 42	51 48 46 43	87 74 72 62 55
26 27 28 29 30 31	124 121 110 104 96 94	323 343 276 250 257	913 549 436 374 338 316	904 1220 902 636 472 393	130 124 118 	892 1430 1500 1240 1030 776	157 148 139 132 126	504 397 345 304 278 252	88 87 85 78 80	42 49 51 48 54 64	40 42 47 45 43 51	48 42 41 38 37
TOTAL MEAN MAX MIN CFSM IN.	4762 154 260 82 1.22 1.41	6813 227 459 87 1.80 2.01	13685 441 913 183 3.50 4.04	14355 463 1350 211 3.68 4.24	5425 194 340 118 1.54 1.60	17263 557 1500 102 4.42 5.10	7766 259 599 126 2.06 2.29	10986 354 1140 106 2.81 3.24	5244 175 334 78 1.39	1949 62.9 118 42 .50	2860 92.3 317 40 .73 .84	1545 51.5 125 33 .41

CAL YR 1977 TOTAL - MEAN - MAX - MIN - CFSM - IN - WTR YR 1978 TOTAL 92653 MEAN 254 MAX 1500 MIN 33 CFSM 2.02 IN 27.35

DELAWARE RIVER BASIN 01443500 PAULINS KILL AT BLAIRSTOWN, NJ--Continued

		WATER GO	AUIII DAI	A, WAIER	IEAR OCIO	DEK 1977	13 366164	BEK 1970		
			SPE-					OXYGEN		
			CIFIC					DEMAND,	COLI-	
		STREAM-	CON- DUCT-			TUR-	DXYGEN,	BIO- CHEM-	FORM, FECAL,	STREP-
		INSTAN-	ANCE	PH	TEMPER-	BID-	DIS-	ICAL,	EC.	TOCOCCI
	TIME	TANEOUS	(MICRO-		ATURE	ITY	SOLVED	5 DAY	BROTH	FECAL
DATE	7	(CFS)	MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	(MG/L)	(MPN)	(MPN)
ocr										
11	1040	199	370	7.9	10.0	1	10.7	1.0	<20	540
NOV	1010	.,,	370	,.,	10.0		10.7	1.0	120	310
01	1030	93	349	8.5	8.0	1	6.9	1.0	50	240
FEB			2.3			2				
15 MAR	1045	189	350	8.1	1.0	2	14.0	2.0	330	13
29	1045	1260	207	7.8	6.5	4	11.1	1.0	80	33
APR	77.33		7.5					10.13		
25	1030	161	341	8.4	11.5	2	12.5	1.0	50	48
MAY 16	1045	303	.338		12.5		10.2	2.0	330	240
JUN	1045	303	.330	8.1	12.5	1	10.2	2.0	330	240
20	1250	157	361	8.2	20.5	1	8.2	1.0	130	240
JUL										
18	1030	€58	460	8.5	22.0	0	6.4	1.0	110	94
AUG 29	1015	46	415	8.1	21.5	1	6.2		330	33
.,	1015	40	413	0.1	21.5		0.2		330	33
										601 TD6
			MAGNE-		POTAS-			CHLO-	SILICA,	SOLIDS, RESIDUE
	HARD-	CALCIUM	Slum,	SODIUM,	SIUM,	SULFIDE	SULFATE	RIDE,	DIS-	AT 180
	NESS	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	SULVED	DEG. C
	(MG/L	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	DIS-
DATE	CACO3)	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	(MG/L AS K)	(MG/L AS S)	(MG/L AS SD4)	(MG/L AS CL)	AS S102)	SOLVED (MG/L)
	CACUST	AS CA)	AS MG)	AS NA)	AS K)	M3 3)	45 504)	MS CD)	3102)	(= 3 / 4)
OCT					200		22			
11	150	40	12	15	2.1		36	28		208
01	150	38	13	15	1.9		33	26		207
FEB										
15	150	36	14	13	1.4		28	25		193
MAR 29	77	20	6.6	10	1.2		17	18		124
APR		20	0.0	10	1.2		1,	10		124
25	150	37	14	13	1.3		25	27		170
MAY	450	20								405
16 JUN	150	39	13	14	1.3	.0	25	27	3.8	195
20	150	36	14	15	1.4		19	27		225
JUL										
18	170	42	16	17	1.7		23	31		273
AUG 29	180	44	18	17	2.1		25	31		262
	100	**		• •	2.1		23	31		202
	SOLIDS,					NITRO-				
	RESIDUE	NITRO-	NITRO-	NITRO-	NITRO-	GEN, AM-			PHOS-	
	AT 105	GEN,	GEN,	GEN,	GEN,	MONIA +	NITRO-	PHUS-	PHORUS,	CARBON,
	DEG. C.	NITRATE	NITRITE	AMMONIA	URGANIC	DRGANIC	GEN,	PHORUS,	ORTHO.	DRGANIC
	SUS-	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	DATOT
DATE	PENDED (MG/L)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L	(MG/L	(MG/L	(MG/L AS P)	(MG/L AS P)	(MG/L AS C)
DATE	(MO/L)	43 4)	AS A)	AS NJ	AS N)	AS N)	AS N)	AS F)	A3 F)	NS C)
DCT										
11	6	.53	.01	.03	.41	.44	.98	.06	.03	6.4
NOV		40					2.0			
01 FEB	,0	.42	.00	.01	.55	.56	.98	.03	.01	8.3
15	3									3.9
MAR										
29	12	.60	.01	.06	.63	.69	1.3	.03	.01	3.3
APR 25	2	.42	.01	.02	.25	.27	.70	.02	.00	6.3
MAY										
15 JUN	15	.44	.03	.16	.40	.56	1.0	.06	.01	7.9
20	5	.40	.01	.04	.59	.63	1.0	.05	.03	8.2
18	4			.10	.50	.60	1.6			5.4
AUG 29	4			<.10		1.1				4.6
			-	*****		1.1			15.5	4.0

01443500 PAULINS KILL AT BLAIRSTOWN, NJ--Continued

					CHRU-				MANGA-			
		ALUM-		CADMIUM	MIUM,	COBALT,	COPPER.		NESE.	NICKEL.	ZINC.	
		INUM,	BORON,	TOTAL	HEXA-	TOTAL	TOTAL	IRON,	TOTAL	TOTAL	TOTAL	
		DIS-	DIS-	RECOV-	VALENT,	RECOV-	RECOV-	DIS-	RECOV-	RECOV-	RECOV-	
		SOLVED	SOLVED	ERABLE	DIS.	ERABLE	ERABLE	SOLVED	ERABLE	ERABLE	ERABLE	PHENOLS
	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE		AS AL)	AS B)	AS CD)	AS CR)	AS CO)	AS CU)	AS FE)	AS MN)	AS NI)	AS ZN)	(UG/L)
MAY												
16	1045	20	0	0	0	0	2	70	70	0	20	

01443900 YARDS CREEK NEAR BLAIRSTOWN, NJ

LOCATION.--Lat 40°58'51", long 75°02'25", Warren County, Hydrologic Unit 02040105, on left bank 100 ft (30 m) upstream from bridge on Hainesburg-Mount Vernon Road, 2.2 mi (3.5 km) northeast of Hainesburg, 2.4 mi (3.9 km) upstream from mouth, and 4.2 mi (6.8 km) west of Blairstown.

DRAINAGE AREA .-- 7.16 mi2 (18.54 km2).

PERIOD OF RECORD. --

WATER DISCHARGE: October 1966 to current year.

REVISED DISCHARGE RECORDS .-- WDR-NJ-77-2: 1976.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 618 ft (188 m), from topographic map.

REMARKS.--Discharge records good. Complete regulation by the Jersey Central Power and Light Co., at Yards Creek Reservoir above station.

AVERAGE DISCHARGE.--12 years, 11.2 ft3/s (0.317 m3/s), unadjusted.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 175 ft 3 /s (4.96 m 3 /s) Jan. 10, gage height, 3.15 ft (0.960 m); minimum daily, 0.57 ft 3 /s (0.02 m 3 /s) Sept. 14.

DISCHARGE IN CHRIS EFFT DED SECOND HATER VEAD OCTORED 1077 TO SEPTEMBER 1078

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 340 ft³/s (9.63 m³/s) Feb. 24, 1977, gage height, 3.92 ft (1.195 m); no flow Sept. 12, 1971.

		DISCHA	RGE, IN C	UBIC FEET	PER SECO	OND, WATER CAN VALUES	YEAR OCT	OBER 1977	TO SEPTE	MBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1 2 3 4 5	3.7 3.1 2.1 1.9 1.6	2.2 4.3 4.5 4.5	37 46 48 42 42	24 20 24 25 22	34 31 35 51 69	3.3 3.5 3.5 3.5 5.1	20 18 19 24 28	2.3 2.4 2.4 2.0 2.7	26 20 14 12 11	3.1 2.0 2.6 2.8 2.1	1.4 1.1 1.0 1.4 1.3	1.5 1.3 1.3 1.1
6 7 8 9	1.7 1.6 1.6 7.6 4.0	4.0 6.6 8.4 8.4	45 45 42 27 4.3	21 21 26 75 135	60 65 44 34 25	3.2 3.3 3.3 3.3	30 30 20 18 18	2.7 2.4 2.2 4.9 3.2	11 10 4.0 4.1 3.3	2.1 2.0 2.1 3.6 5.1	1.2 2.7 2.4 1.1 .98	.94 .94 .87 1.1
11 12 13 14 15	3.1 2.7 2.3 4.0 5.6	16 16 15 13	4.3 5.1 4.5 12 27	116 86 54 5.1 4.3	20 19 16 16 18	3.5 3.5 4.1 15 27	20 18 12 13	3.0 2.7 3.0 12	3.0 2.7 3.5 2.8 2.6	4.9 4.0 3.6 4.0 4.7	1.2 1.3 1.3 1.0	.83 .87 .67 .57
16 17 18 19 20	3.5 3.1 2.8 3.4 2.9	13 15 16 15 13	41 39 39 34 31	5.8 4.5 4.7 6.0 3.8	18 18 17 16	25 23 22 20 20	12 11 11 9.0 7.0	16 36 50 143 58	4.7 5.1 2.5 2.3 4.7	4.1 4.3 4.0 3.8 3.6	.98 2.0 1.4 1.1	.77 .77 1.0 3.6 1.1
21 22 23 24 25	2.5 2.5 2.4 2.0 2.0	13 16 24 23 21	37 33 29 27 32	3.8 3.3 3.1 2.8	18 20 18 16 15	22 27 27 25 24	6.8 6.5 6.0 5.6	47 42 45 53 50	11 11 11 11 11	3.6 3.8 3.6 3.1 1.8	.98 .98 1.3 1.4	.87 1.2 1.2 .87 .73
26 27 28 29 30 31	2.1 2.1 2.1 2.2 2.0 1.7	26 21 21 24 24	26 29 31 41 26 25	42 28 31 27 29 28	13 11 3.8 	25 33 27 24 22 21	5.6 6.3 6.3 2.7 2.5	36 4.9 4.1 3.5 7.6 26	10 11 11 6.0 6.3	.87 1.2 1.5 1.3 1.3	1.4 1.8 1.4 1.4 2.0	1.3 1.5 1.6
TOTAL MEAN MAX MIN	85.9 2.77 7.6 1.6	420.2 14.0 26 2.2	951.2 30.7 48 4.3	897.2 28.9 135 2.8	736.8 26.3 69 3.8	475.6 15.3 33 3.2	404.9 13.5 30 2.5	680.0 21.9 143 2.0	248.6 8.29 26 2.3	92.27 2.98 5.1 .87	42.30 1.36 2.7 .98	33.41 1.11 3.6 .57

CAL YR 1977 TOTAL 5161.77 MEAN 14.1 MAX 225 MIN .49 WTR YR 1978 TOTAL 5068.38 MEAN 13.9 MAX 143 MIN .57

01444100 PAULINS KILL AT MOUTH AT COLUMBIA, NJ

LOCATION.--Lat 40°55'14", long 75°05'18", Warren County, Hydrologic Unit 02040206, at bridge on U.S. Route 46 in Columbia, 2.3 mi (3.7 km) southwest of Polkville, and 3.2 mi (5.2 km) southeast of Knowlton.

DRAINAGE AREA. -- 177 mi2 (458 km2).

PERIOD OF RECORD.-WATER DISCHARGE: November 1977 to September 1978.
CHEMICAL ANALYSES: Water years 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		STREAM- FLOW, INSTAN-	SPE- CIFIC CON- DUCT- ANCE	РН	TEMPER-	TUR- BID-	DXYGEN,	OXYGEN DEMAND, BIO- CHEM- ICAL,	COLI- FORM, FECAL, EC	STREP-
	TIME	TANEOUS	(MICRO-		ATURE	ITY	SOLVED	5 DAY	BROTH	FECAL
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	(MG/L)	(MPN)	(MPN)
OCT	79.									
11	1330		338	7.8	10.0	2	12.2		20	240
NOV										
01 FEB	1300		335	8.3	8.0	1	13.0	1.0	170	46
15	1310		326	7.9	1.5	. 2	13.7	3.0	80	8
MAR										
29	1310	E3000	197	7.9	7.5	5	10.2	<1.0	130	920
APR 25	1300		326	8.3	13.0	3	10.9	1.0	230	240
MAY	1300		3.0		13.0					
16	1330	670	304	7.8	12.0	1	10.4	2.0	1100	170
JUN 20	1100		341	8.0	21.0	1	8.3		330	350
JUL	1100	-	341	0.0	21.0	•	0.3		330	
18	1330		395	8.5	22.0	0	8.8	2.0	790	350
AUG 29	1140		395	8.1	21.5	1	8.3		1300	23
		- 120, 221,6	MAGNE-		POTAS-			CHLO-	SILICA,	SOLIDS, RESIDUE
	HARD- NESS (MG/L	CALCIUM DIS- SOLVED	SIUM, DIS- SOLVED	SODIUM, DIS- SOLVED	SIUM, DIS- SOLVED	SULFIDE DIS- SOLVED	SULFATE DIS- SOLVED	RIDE, DIS- SOLVED	SOLVED (MG/L	DEG. C
	AS	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	AS	SOLVED
DATE	CACO3)	AS CA)	AS MG)	AS NA)	AS K)	AS S)	AS S04)	AS CL)	\$102)	(MG/L)
OCT										
11	140	38	11	13	2.0	.0	37	24	5.7	195
NOV							V			196
O1	150	37	13	13	1.7	••	32	22		190
15	140	35	13	12	1.2		27	22		193
MAR	77	20	6.6	8.8			18	15		130
29 APR	"	20	0.0	8.8	1.1	•••	18	15		130
25	150	36	14	11	1.2		25	23		161
YAM										
16 JUN	130	35	11	12	1.3		25	22		173
20	150	36	14	12	1.3		19	22		202
JUL										
18 AUG	160	39	15	14	1.6		23	25		242
29	170	41	17	14	1.9		25	26		238
		2-		7			177			

01444100 PAULINS KILL AT MOUTH AT COLUMBIA, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO. TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
		y 4							
. 0	.51	.01	.02	.44	.46	.98	.06	.02	8.5
3	.46	.00	.01	.33	.34	.80	.03	.01	8.1
17	••								1.3
3	.60	.01	.04	.33	.37	.98	.03	.01	7.9
2	.46	.01	.03	.27	.30	.77	.02	.00	5.4
6	.44	.02	.11	.37	.48	.94	.04	.01	10
. 6	.52	.01	.09	.53	.62	1.2	.05	.02	10
0			.30		••				5.5
1			e 10		40				4.0
	RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L) 0 3 17 3 2 6	RESIDUE AT 105 DEG. C., SUS- PENDED (MG/L) 0 .51 3 .46 17 3 .60 2 .46 6 .44 6 .52 0	RESIDUE AT 105 GEN, GEN, GEN, GEN, GEN, GEN, GEN, GEN,	RESIDUE NITRO- NITRO- GEN, GEN, GEN, GEN, GEN, GEN, GEN, GEN,	RESIDUE NITRO- GEN, GEN, GEN, GEN, GEN, GEN, GEN, GEN,	RESIDUE NITRO- NITRO- GEN, AM- AT 105 GEN, GEN, GEN, GEN, GEN, GEN, AM- DEG. C., NITRATE NITRITE AMMONIA ORGANIC ORGANIC SUS- TOTAL TOTAL TOTAL TOTAL TOTAL PENDED (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L AS N)))) 0 .51 .01 .02 .44 .46 3 .46 .00 .01 .02 .44 .46 3 .46 .00 .01 .03 .33 .34 17 3 .60 .01 .04 .33 .37 2 .46 .01 .03 .27 .30 6 .44 .02 .11 .37 .48 6 .52 .01 .09 .53 .62 030	RESIDUE NITRO- AT 105 GEN, GEN, GEN, GEN, GEN, GEN, MONIA + NITRO-	RESIDUE NITRO- NITRO- GEN, GEN, GEN, GEN, GEN, MONIA + NITRO- GEN, MONIA + NITRO- GEN, GEN, GEN, GEN, MONIA + NITRO- PHOS- DEG. C., NITRATE NITRITE AMMONIA DRCANIC GEN, GEN, MONIA + TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL (MG/L (MG/	RESIDUE NITRO- NITRO- GEN, AGEN, GEN, AGEN, MONIA + NITRO- GEN, MONIA + NITRO- GEN, GEN, GEN, GEN, GEN, GEN, GEN, GEN,

						CHRO-		
		ALUM-			CADMIUM	4IU4,	COBALT,	COPPER,
		INUM.		BORON.	TOTAL	HEXA-	TOTAL	TOTAL
		DIS-	ARSENIC	DIS-	RECOV-	VALENT.	RECOV-	RECOV-
		SOLVED	TOTAL	SOLVED	ERABLE	DIS.	ERABLE	ERABLE
	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE		AS AL)				AS CR)	AS CO)	AS CU)
DATE		AS AL)	AS AS)	AS B)	AS CD)	AS CRI	AS CUI	MS CU)
OCT								
	1330	4.0					0	3
11	1330	10	1	50	0	0	U	,
			MANGA-					
		LEAD.	NESE.	MERCURY	NICKEL,		ZINC,	
	IRON.	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL	
	DIS-	RECOV-	RECOV-	RECOV-	RECOV-	NIUM.	RECOV-	
	0.0	WECO.	WECO.	WECO.	WECOA-	10 2 0 11 9	110001	

| NECUV- | NECUV- | NECUV- | NECUV- | NECUV- | NECUV- | NIUM, | NECUV- | NIUM, | NIUM- | NIUM-

01444800 DELAWARE RIVER NEAR RICHMOND, PA (BELVIDERE, NJ)

LOCATION.--Lat 40°49'44", long 75°05'06", Warren County, NJ, Hydrologic Unit 02040104, at bridge at Belvidere, 200 ft (61 m) upstream from Pequest River, and 4.1 mi (6.5 km) southwest of Buttzville.

DRAINAGE AREA. -- 4,380 mi2 (11,344 km2).

PERIOD OF RECORD. -- CHEMICAL ANALYSES: Water years 1964, 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1	WATER	QUALITY	DATA.	WATER	YEAR	OCTOBER	1977	TO	SEPTEMBER	19	7	8
--	-------	---------	-------	-------	------	---------	------	----	-----------	----	---	---

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	DXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACD3)
ост										
05 NOV	1145	70	7.3	14.0	2	10.4	••	170	34	23
28	1130	74	7.4	.5	15	13.9		130	8	30
FEB					2			140	14	27
01 MAR	1300	74	7.3	.5	2	14.3		140	14	2.
22 APR	1250	87	7.2	6.0	4	12.0	1.0	40	49	29
20	1020	78	7.2	10.0	2	11.7	1.0	20	49	26
10	1245	83	7.3	13.0	15	10.4	<1.0	490	26	31
24	1240	105	8.4	29.0	0	7.7		80	280	34
AUG 16	1000	218	8.9	27.5	0	7.3	1.0	20	5	34
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	SULFIDE DIS- SOLVED (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLD- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)
OCT										
05	6.9	1.5	2.8	1.0		12	3.7		46	5
28 FEB	8.8	1.9	-3.3	.9		12	4.4		50	2
01 MAR	7.9	1.7	3.3	.9		12	4.8	-	48	7
22 APR	8.3	1.9	4.5	1.1		13	8.3		62	12
20	7.8	1.7	3.7	.8		11	4.8		56	1
10 JUL	9.2	2.0	3.8	.8	.0	12	5.6	1.6	57	, 9
24 AUG	10	2.1	4.6	1.1		11	6.5		53	8
16	10	2.2	5.4	1.1		13	5.7		70	0

01444800 DELAWARE RIVER NEAR RICHMOND, PA (BELVIDERE, NJ) -- Continued

					NITRO-				
	NITRO-	NITRO-	NITRO-	NITRO-	GEN, AM-			PHOS-	
	GEN,	GEN,	GEN,	GEN,	MONIA +	NITRO-	PHOS-	PHORUS,	CARBON,
	NITRATE	NITRITE	AMMONIA	DRGANIC	DRGANIC	GEN.	PHORUS,	ORTHO.	DRGANIC
	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
01.00								AS P)	AS C)
DATE	AS N)	AS N)	AS P)	AS P)	AS C)				
OCT							7		
05	.26	.00	.01	.37	.38	.64	.02	.01	6.8
NOV				1000					
28	.28	.00	.00	.09	.09	.37	.02	.00	9.1
FEB									
01	.45	.00	.02	.17	.19	.64	.01	.00	1.6
MAR									
22	.43	.01	.02	.47	.49	.93	.03	.01	7.4
APR									
20	.32	.00	.00	.51	.51	.83	.02	.00	8.5
MAY									
10	.20	.01	.03	.45	.48	.69	.02	.00	7.2
JUL									
24			.10	.70	.80	1.8			
AUG									
16			<.10		.60				2.9

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS
MAY 10	1245	20	10	0	0	0	44	50	30	7	30	0

01445430 PEQUEST RIVER AT TOWNSBURY, NJ

LOCATION.--Lat 40°51'06", long 74°56'02", Warren County, Hydrologic Unit 02040105, on left upstream abutment of highway bridge in Townsbury and 2.1 mi (3.4 km) upstream from Furnace Brook.

DRAINAGE AREA .-- 92.5 mi2 (239.6 km2).

PERIOD OF RECORD. -- WATER DISCHARGE: June 1977 to current year.

GAGE .-- Water-stage recorder. Altitude of gage is 480 ft (146 m), from topographic map.

REMARKS. -- Discharge records fair.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 600 ft3/s (16.99 m3/s) and maximum (#):

			Discha	arge	Gage H	leight				Discha	arge	Gage H	leight
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Dec.	21	1800	690	19.5	3.25	0.991	Mar.	22	2215	642	18.2	3.17	0.966
Jan.	9	1315	990	28.0	3.75	1.143	Mar.	27	1800	696	19.7	3.26	0.994
Jan.	26	1715	*1030	29.2	3.81	1.161	May	19	0500	684	19.4	3.24	0.988
Mar.	15	2045	678	19.2	3.23	0.985	Aug.	8	0630	666	18.9	3.21	0.978

Minimum discharge, 25 ft 3 /s (0.71 m 3 /s) July 26, 27, gage height, 1.30 ft (0.396 m).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,030 ft³/s (29.2 m³/s) Jan. 26, 1978, gage height, 3.81 ft (1.161 m); minimum, 10 ft³/s (0.28 m³/s) Sept. 16, 1977, gage height, 1.11 ft (0.338 m).

		DISCHARGE	, IN	CUBIC FEET		, WATER VALUES	YEAR OCTO	BER 1977	TO SEPTEMB	ER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	37 89 83 68 61	58 60 60 58 57	410 350 318 278 250	215 212 206 199 168	260 240 200 180 168	88 86 84 82 80	346 330 326 294 278	89 85 83 83	193 172 174 245 205	52 48 54 80 80	49 44 36 38 45	51 45 41 38 37
6 7 8 9	54 38 35 89 130	56 70 180 199 172	290 243 195 180 150	168 165 172 780 500	180 180 170 165 162	79 78 77 77 76	250 246 236 218 194	117 112 105 150 145	169 152 186 177 155	68 57 52 49 45	48 281 550 359 242	37 35 36 48 42
11 12 13 14 15	103 80 59 51 128	186 152 130 113 103	120 125 130 180 400	350 310 280 260 240	160 158 155 150 148	76 80 110 200 560	182 188 175 162 150	121 110 105 243 290	137 122 122 118 108	41 37 34 34 51	163 166 152 134 111	38 38 40 36 35
16 17 18 19 20	110 100 90 95 120	96 103 152 127 111	350 300 290 298 286	220 210 210 200 160	145 140 135 130 125	475 314 310 298 378	141 145 155 160 180	246 363 475 595 490	96 92 89 87 89	78 61 51 42 37	94 83 74 66	37 40 42 125 120
21 22 23 24 25	110 90 80 75 72	101 108 137 142 125	460 480 406 354 450	170 190 180 160 495	120 115 110 105 100	455 575 595 585 500	180 160 150 140 130	422 350 290 374 490	85 125 108 89 78	35 33 30 28 27	56 51 48 44 42	78 61 57 51 45
26 27 28 29 30 31	71 71 66 60 58 57	240 195 180 165 175	430 390 300 240 210 210		95 92 90 	480 780 732 600 475 398	114 112 107 100 94	394 314 266 232 212 200	74 74 68 61 57	26 26 36 36 34 42	42 40 44 46 42 45	42 40 38 36 35
TOTAL MEAN MAX MIN CFSM IN.	2430 78.4 190 35 .85	127 240 56 1.37	9073 293 480 120 3.17 3.65	301	4178 149 260 90 1.61	9783 316 780 76 3.42 3.93	5643 188 346 94 2.03 2.27	7651 247 595 83 2.67 3.08	3707 124 245 57 1•34 1•49	1404 45.3 80 26 .49	3296 106 550 36 1.15 1.33	1444 48.1 125 35 .52 .58
CAL YR WTR YR			MEAN MEAN	169	MAX - MAX 780	MIN 2	CFS CFS	M - M 1.83	IN - IN 24.84			

01445500 PEQUEST RIVER AT PEQUEST, NJ

LOCATION.--Lat 40°49'43", long 74°58'45", Warren County, Hydrologic Unit 02040105, on right bank at Pequest, 100 ft (30 m) upstream from Lehigh and Hudson River Railway Bridge, and 300 ft (91 m) downstream from Furnace Brook.

DRAINAGE AREA . -- 108 mi2 (280 km2).

PERIOD OF RECORD.-WATER DISCHARGE: October 1921 to current year. Monthly discharge only for October 1921, published in WSP 1302.
CHEMICAL ANALYSES: Water years 1958 to current year.

REVISED DISCHARGE RECORDS. -- WSP 1902: 1940(M), 1945, 1955(M), 1957, 1959(M).

GAGE.--Water-stage recorder. Concrete control since Sept. 29, 1929. Datum of gage is 398.78 ft (121.548 m) National Geodetic Vertical Datum of 1929. Prior to June 22, 1926, nonrecording gage at site 10 ft (3 m) upstream at same datum.

REMARKS .-- Discharge records good except those for periods of no gage-height record, which are fair.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

AVERAGE DISCHARGE. -- 57 years, 153 ft 3/s (4.333 m3/s), 19.23 in/yr (488 mm/yr).

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 650 ft3/s (18.4 m3/s) and maximum (*):

Date		Time	Discha (ft3/s)		Gage H	leight (m)	Date		Time	Discha (ft3/s)		Gage H	leight (m)
Dec. Jan.	21	1915 1215	696 954	19.7 27.0	3.27 3.83	0.997	Mar. Mar.	22 27	2345 1815	760 1000	21.5	3.41 3.93	1.039
Jan. Mar.	26 15	1115 2130	*1030 805	29.2	3.98 3.51	1.213	May	19	0615	714	20.2	3.31	1.009

Minimum daily discharge, 45 ft3/s (1.27 m3/s) Sept. 6, 14, 30.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,810 ft³/s (51.3 m³/s) Mar. 14, 1936, gage height, 4.97 ft (1.515 m); minimum, 12 ft³/s (0.34 m³/s) Aug. 17-22, Dec. 10, 1965.

		DISCHA	RGE, IN	CUBIC FEET		ND, WATER AN VALUES	YEAR OCT	OBER 1977	TO SEPTE	MBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	61 107 105 92 83	74 75 75 74 71	448 357 323 291 284	248 248 228 208 202	330 301 266 228 218	116 112 112 109 105	489 431 385 361 345	119 114 112 112 131	234 211 224 298 252	77 72 80 107 103	76 64 66 70 76	60 56 50 49 47
6 7 8 9	80 63 58 158 142	71 88 231 224 187	323 273 228 208 178	202 196 221 805 521	234 221 231 224 208	105 105 105 101 101	323 319 301 280 255	147 139 131 184 172	211 196 228 218 193	90 82 75 72 69	200 400 430 300 200	45 46 60 58 50
11 12 13 14 15	116 98 77 92 153	202 169 147 131 121	153 158 167 252 507	439 385 353 319 305	193 193 184 184 172	101 112 145 305 687	238 248 228 208 196	150 134 129 291 345	172 155 155 150 137	66 62 61 59 75	200 190 170 140 120	50 52 47 45 47
16 17 18 19 20	124 124 112 124 147	114 124 178 153 137	385 334 326 334 319	273 266 270 255 202	165 165 160 160 150	624 431 357 349 426	187 178 175 184 228	298 418 579 633 530	124 119 116 112 114	98 87 77 69 65	105 92 86 80 72	50 52 150 147 105
21 22 23 24 25	129 107 96 94 90	116 130 150 160 140	489 521 431 376 466	228 248 221 208 323	145 139 134 134 131	512 705 714 700 615	221 199 175 164 155	457 381 323 422 543	112 150 131 112 101	61 61 56 54 52	66 62 58 56 56	92 78 73 67 61
26 27 28 29 30 31	90 92 83 75 74 72	180 190 200 190 218	466 357 334 287 266 252	897 656 610 535 448 376	126 121 114 	606 906 873 750 629 543	150 145 139 131 126	439 361 312 280 259 245	96 96 90 83 82	52 52 62 62 58 74	52 56 60 56 58 64	58 54 52 48 45
TOTAL MEAN MAX MIN CFSM IN.	3118 101 158 58 .94 1.07	4320 144 231 71 1.33 1.49	10093 326 521 153 3.02 3.48	10896 351 897 196 3.25 3.75	5231 187 330 114 1.73 1.80	12161 392 906 101 3.63 4.19	7164 239 489 126 2.21 2.47	8890 287 633 112 2.66 3.06	4672 156 298 82 1.44 1.61	2190 70.6 107 52 .65	3781 122 430 52 1.13 1.30	1894 63.1 150 45 .58

CAL YR 1977 TOTAL 59132 MEAN 162 WTR YR 1978 TOTAL 74410 MEAN 204 MIN 20 MIN 45 CFSM 1.50 CFSM 1.89 1160 MAX 906

NOTE .-- No gage-height record Aug. 1 to Sept. 20.

01445500 PEQUEST RIVER AT PEQUEST, NJ--Continued

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	DXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
				(,					
OCT										
05 NOV	1000	83	460	8.1	9.5	2	10.2	2.0	330	350
01	0950	69	522	8.2	9.0	1	12.2	1.0	130	33
FEB										
01	1030	357	390	8.1	1.0	3	13.3		80	46
MAR										
22	1030	673	283	7.9	4.5	10	10.3	2.0	490	240
APR										A STATE OF THE REAL PROPERTY.
20	1330	241	419	8.5	10.0	4	12.1	1.0	490	130
MAY									224	49
10 JUN	1030	175	401	8.5	13.5	. 1	11.2	2.0	330	49
19	1100	112	439	8.4	19.5	2	10.2		230	240
JUL	1100	112	439	0.4	19.5	2	10.2		230	240
13	1045	61	443	8.6	17.0	0	9.9	1.0	220	540
AUG		٠.	****	0.0		•				
03	1015	E66	460	8.2	19.0	2	8.4	2.0	790	>2400
SEP										
26	1000	58	500		12.5		10.4			

DATE	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFIDE DIS- SOLVED (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)
OCT									
05	200	47	21	12	2.0				46
01	240	56	25	13	1.9				42
01	210	51	20	10	1.4				32
MAR 22 APR	130	29	13	6.8	2.1			•-	25
20	200	46	21	10	1.4			-	32
10 JUN	210	46	22	10	1.3		••	.0	32
19 JUL	210	48	23	12	1.4	•		-	31
13 AUG	230	49	25	11	1.7	••	, ••		28
03 SEP	210	46	22	13	1.8				29
26	230	52	25	14	1.7	190	.0		37

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

01445500 PEQUEST RIVER AT PEQUEST, NJ--Continued

				SOLIDS,	SOLIDS,		SEDI-		
	CHLO-	FLUO-	SILICA,	RESIDUE	RESIDUE		MENT	NITRO-	NITRO-
	RIDE,	RIDE,	DIS-	AT 180	AT 105	SEDI-	DIS-	GEN,	GEN,
	DIS-	DIS-	SOLVED	DEG. C		MENT.	CHARGE,	NITRATE	NITRITE
					DEG. C.		SUS-	TOTAL	TOTAL
	SOLVED	SOLVED	(MG/L	DIS-	SUS-	SUS-			
	(MG/L	(MG/L	AS	SOLVED	PENDED	PENDED	PENDED	(MG/L	(MG/L
DATE	AS CL)	AS F)	SI02)	(MG/L)	(MG/L)	(MG/L)	(T/DAY)	AS N)	AS N)
ocr									
05	19			258	7			.60	.01
NOV									
01	28			291	2			.99	.01
FEB									
01	19			231	2			1.3	.01
MAR									
22	14			160	32			1.1	.01
APR	2.0				1.00				
20	19			235	8			.64	.01
MAY	• • •			233					
10	18		4.7	247	8			.80	.01
JUN	10		4.7	241				.00	.01
	21			070					0.4
19	21			279	5			1.1	.01
JUL									
13	19			297	0				
AUG	12.5			4					
03	22			303	0				
SEP									
26	22	. 1	8.1	302		3	.47	₩	
			NITRO-	NITRO-					CARBON,
	NITRO-	NITRO-	GEN, AM-	GEN, NH4			PHDS-		INDR-
	GEN,	GEN,	MONIA +	+ ORG.	NITRO-	PHOS-	PHORUS,	CARBON,	GANIC,
	AMMONIA	ORGANIC	DRGANIC	TOT IN	GEN,	PHORUS,	DRIHO.	ORGANIC	TOT IN
	TOTAL	TOTAL	TOTAL	BOT MAT	TOTAL	TOTAL	TOTAL	TOTAL	BOT MAT
	(MG/L	(MG/L	(MG/L	(MG/KG	(MG/L	(MG/L	CMG/L	(MG/L	(G/KG
DATE	AS N)	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS C)	AS C)
OCT			1.22					4.4	
05	.03	.69	.72		1.3	.06	.01	4.1	
01	.01	.52	.53		1.5	.05	.02	8.9	
FEB									
01	.02	.22	.24		1.5	.04	.01	2.4	
MAR						• • • •		-	
22	.13	.65	.78		1.9	.12	.05	7.7	
APR	•••	.00			,		.03		
20	.01	.63	.64		1.3	.09	.01	7.0	
MAY	.01	.03	.04		1.3	.09	.01	,.0	
	.03	40				- 00			
10	.03	.49	.52		1.3	.08	.02	6.4	
JUN					0.4				
19	.04	.39	.43		1.5	.33	.26	7.0	
JUL		751	-						
13	.10	.30	.40		1.4			6.1	
AUG									
03			1.5					4.6	
SEP									
26				800				5.4	2.7

01445500 PEQUEST RIVER AT PEQUEST, NJ--Continued

					ARSENI	C BERY		CA	DMIUM	CHRO-	CHRO-	CHRO-		COBALT,
			ALUM-		TOTAL	LIUM			ECOV.	4104.	MIUM.	MIUM,	COBALT,	RECOV.
			INUM,		IN BOT				BOT-	TOTAL	RECOV.	HEXA-	TOTAL	FM BOT-
			DIS-	ARSENIC	TOM MA				-AM MC	RECOV-	FM BOT-	VALENT.	RECOV-	TOM MA-
			SOLVED	TUTAL	TERIA				ERIAL	ERABLE	TOM MA-	DIS.	ERABLE	TERIAL
		TIME	(UG/L	(UG/L	(UG/G				UG/G	(UG/L	TERIAL	(UG/L	(UG/L	(UG/G
	STAC		AS AL)	AS AS)	AS AS				S CD)	AS CR)	(UG/G)	AS CR)	AS CO)	AS CO)
,	MIE		NO AU	MO MO)	NO NO	, AS BI	L) AS	6) 4	18 (0)	NO CKI	(06/6)	NO CKI	MO CUI	Mo CU)
	AY													
	-	1030	20		_	200		90				0	. 0	
	10	1030	20		_			90	•••			U	U	
			40			•			440					
•	26	1000	40	1		0	0		<10	20	<10	-		<10
		now Library	COPPER,		IRON,	LEAD			ANGA-		MERCURY		NICKEL,	
		COPPER,	RECOV.		RECOV				ESE,	MERCURY	RECOV.	NICKEL,	RECOV.	
		TOTAL	FM BOT-	IRON,	FM BOT	- FM BO	r- TO:	TAL R	ECOV.	TOTAL	FM BOT-	TOTAL	FM BOT-	SELE-
		RECOV-	-AM MOT	DIS-	TOM MA	- TOM MI	A- REC	COV- FM	BOT-	RECOV-	TOM MA-	RECOV-	TOM MA-	NIUM,
		ERABLE	TERIAL	SULVED	TERIA	L TERI	AL ER	ABLE TO	-AM MC	ERABLE	TERIAL	ERABLE	TERIAL	TOTAL
		(UG/L	(UG/G	(UG/L	(UG/G				TERIAL	(UG/L	(UG/L	(UG/L	(UG/G	(UG/L
	DATE	AS CU)	AS CU)	AS FE)	AS FE				(UG/G)	AS HG)	AS HG)	AS NI)	AS NI)	AS SE)
			10000				4					27		304 500
M												- "		
1	10	3		60		•	••	40				5		
	EP													
2	26	8	<10		460	0 :	10	30	360	<.5	.0	6	10	0
			ZINC.				СНІ	LOR-				DI-	01-	
		ZINC.	RECOV.		PCB,	ALDRI		NE.	DDD,	DDE,	DDT.	AZINON,		ENDRIN.
		TOTAL	FM BOT-		TOTAL	TOTAL			LATO	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
		RECOV-	TOM MA-		IN BOT				BOT-	IN BOT-	IN BOT-	IN BOT-	IN BOT-	IN BOT-
			TERIAL	DUCHOLO	TOM MA					FAM MCT	TOM MA-	TOM MA-	TOM MA-	TOM MA-
		ERABLE		PHENOLS					-AM MC					
		(UG/L	(UG/G		TERIA				TERIAL	FERIAL	TERIAL	TERIAL	TERIAL	TERIAL
•	PATE	AS ZN)	AS ZN)	(UG/L)	(UG/KG) (UG/K	a) (UG	/KG) (U	IG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)
MA	Y													
1	10	20		2	-	•			••					
SE	EP													
2	26	20	60	0		0	. 0	1	.0	.0	.0	.0	.0	.0
		*												
			HE	PTA- HE	TA-		MALA-	METH-	METH	IYL MET	HYL PAR	A- TO	A- T	I-
		ETHI		LOR. CHI			THION,	OXY-	PAR					ON.
		TOI		TAL EPO			TOTAL	CHLOR,			ON, TOT			
		IN		BOT- TOT			BOT-	TOT. IN						
		TOM					OM MA-	BOTTON			TOM TOM			
							TERIAL	MATL.						IAL
	DA	TE (UG/	KG) (UG	/KG) (UG	(KG) (U	G/KG) (JG/KG)	(UG/KG)	(UG/	(KG) (US/	KG) (UG/	KG) (UG/	(KG) (UG	KG)
	MAY									3 "				
	10													
	SEP										/			
	26		.0	.0	.0	.0	.0	.0)	.0	.0	.0	0	.0

01446000 BEAVER BROOK NEAR BELVIDERE, NJ

LOCATION.--Lat 40°50'40", long 75°02'48", Warren County, Hydrologic Unit 02040105, 2,000 ft (610 m) upstream from mouth, and 2.0 mi (3.2 km) east of Belvidere.

DRAINAGE AREA . -- 36.2 mi2 (93.8 km2).

PERIOD OF RECORD.--WATER DISCHARGE: Water years 1922-61, 1963 to current year. CHEMICAL ANALYSES: Water years 1923-25, 1958, 1976 to current year. SEDIMENT ANALYSES: September 1978.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	TIME	STREAM- FLOW, INSTAN- TANEOUS	SPE- CIFIC CON- DUCT- ANCE (MICRO-	РН	TEMPER-	TUR- BID- ITY	OXYGEN, DIS- SOLVED	DXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY	COLI- FORM, FECAL, EC BROTH	STREP- TOCOCCI FECAL	HARD- NESS (MG/L AS	CALCIUM DIS- SOLVED (MG/L
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	(MG/L)	(MPN)	(MPN)	CACO3)	AS CA)
OCT 05	1100		441	8.3	11.0	1	11.5		170	350	210	51
NOV												
01 FEB	1340	21	392	8.9	9.0	1	13.4	2.0	20	240	200	48
01 MAR	1130		355	7.5	1.0	2	13.2		<20	14	190	48
22	1140		250	7.8	5.0	7	12.3	2.0	70	240	110	26
APR 20	1215		372	8.4	10.0	2	12.3	2.0	310	170	180	43
MAY 10	1145		358	8.3	15.0	1	10.4	1.0	490	130	180	41
JUN 19	1245		400	8.5	21.5	2	8.8		2400	540	200	48
JUL 13	1200	11	493	8.7	19.0	0	11.3	1.0	1700	240	210	48
AUG 03	1130	12	420	8.3	21.0	1	9.0	1.0	490	170	200	48
SEP 26	1300	12	420		14.0		11.4				220	52
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SDLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SEDI- MENT, SUS- PENDED (MG/L)
ОСТ												
05 NOV	20	8.5	2.1			48	14			257	8	
01	19	8.3	1.7			40	15			241	0	
01 MAR	17	8.6	1.4			33	17			210	7	
22 APR	9.9	7.0	1.6			22	13			144	17	
20	18	8.0	1.2			30	15			205	7	
10	18	7.6	1.1			30	15			234	1	••
JUN 19	19	7.8	1.3			29	15			237	2	
13	21	7.5	1.5			31	16			264	10	
AUG 03	20	7.6	1.6			32	15			280	3	
SEP 26	22	8.5	1.5	180	.0	32	15	. 0	6.7	280		24

01446000 BEAVER BROOK NEAR BELVIDERE, NJ--Continued

DATE	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, NH4 + DRG. TOT IN BOT MAT (MG/KG AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO. TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	
OCT			0.0	.01	.44	.45		1.1	.03	.02	6.7		
05		.61	.00	.01		.43			•••				
NOV 01		.32	.00	00	.49	.49		.81	.01	.01	9.2		
FEB			•••										
01		1.7	.01	.01	.10	.11		1.8	.01	.00	.8		
MAR									.04	.01	4.7		
22		1.1	.01	.02	.50	.52		1.6	.04	.01	4.,		
APR		.78	.01	.00	.49	.49		1.3	.02	.00	8.6		
20		./0	.01	.00		• • • •							
10		.58	.01	.04	.26	.30		.89	.02	.00	8.3		
JUN										0.1	7.1		
19		.96	.01	.05	.48	.53		1.5	.03	.01	/.1		
JUL				.10	.30	.40		1.4			4.5	le	
13 AUG				.10	.30	.40							
03				.10	.80	.90		1.9			5.5		
SEP													
26	.81						1800				3.8	4.3	

S	EP 26		.0		.0		.0		.0	.0		.0		.0		.0		0		.0	
	DATE	CH TO IN TOM TE	PTA- LOR, TAL BOT- MA- RIAL /KG)	CH EPO TOT BO	PTA- LOR XIDE . IN TTOM ATL. /KG)	IN E	MA-	TH: TO: IN I TOM TEI	ION, OX TAL CH BOT- TOT MA- BO RIAL M	TH- LOR, IN TTOM ATL.	PA TH TOT BO	HYL RA- ION, . IN TTOM ATL. /KG)	TH TOT BO	THYL RI- ION, . IN TIOM ATL. /KG)	TH TO IN TOM TE	RA- ION, TAL BOT- MA- RIAL /KG)	PH TO IN TOM TE	XA- ENE, TAU BOT- MA- RIAL /KG)	TO IN TOM TE	RI- ION, TAL BOT- MA- RIAL /KG)	
SEP 26		0		0		.0		0	.0		.0		.0		.0		.0		.0		.0
DATE	(UG/	(L)	(UG/I	(G)	(UG/K	(G)	(UG/K	G)	(UG/KG)	(UG/	KG)	(UG/	KG)	(UG/	KG)	(UG/	KG)	(UG/	(KG)	(UG/	KG)
	PHENO	LS	TOTAL TOTAL TOM !	AL OT-	TOTAL TOTAL TOM NOTERI	T-	CHLO DANE TOTA IN BO TOM M TERI	L T-	DDD, TOTAL IN BOT- TOM MA- TERIAL	TOT IN B TOM TER	AL OT-	TOTAL TOM	AL DT- MA-	TOT:	ON, AL OT-	ELDR TOT IN B TOM TER	IN, AL OT- MA-	ENDE TOT IN E	AL OT-	ETHI TOI IN E	AL OT-
SEP 26	110	00		20		20	3	30	<.5		.0		5	- 3	<10		0		10		30
DATE	RECO FM BO TOM M TERI (UG/ AS F	IV.	TER	OV. OT- IAL	NESE TOTA RECO ERAE (UG/ AS M	C, AL OV- SLE	NESE RECO FM BO TOM M TERI (UG/	V. T- A- AL	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	REC FM B TOM TER (UG	OV. OT- MA- IAL	NICKI TOTA RECI ERAI (UG.	AL OV- BLE /L	FM BI TOM TER (UG	OV. OT- MA- IAL	SEL NIU TOT (UG AS	M, AL /L	ERA (UC		FM E	OV. OT- MA-
	IRON		LEAI	٠.	MANG	:A-	MANG	۵-		MERC	IIPV			NICK	FI.	,				ZIN	ıc.
SEP 26	130	0		40		1		0	0		<10		10		10		<10		4		<10
DATE	TIM	E	SOL!	LEO /L	TOTA (UG/ AS A	L	TOM M TERI (UG/ AS A	AL G	RECOV- ERABLE (UG/L AS BE)	TOM TER (UG AS	IAL /G	ERAI (UG.	BLE /L	TOM TER	MA-	TOM TER (UG AS	IAL /G	ERA (UC	CU)	(UC	IAL
			ALUI				ARSEN TOTA IN BO	L	BERYL- LIUM, TOTAL	CADM REC FM B	ov.	CHR	м,	CHR	м,	COBA REC FM B	ov.	COPE		COPE REC	ov.

01446400 PEQUEST RIVER AT BELVIDERE, NJ

87

LOCATION.--Lat 40°49'45", long 75°04'44", Warren County, Hydrologic Unit 02040105, at last highway bridge before mouth in Belvidere, and 0.3 mi (0.4 km) upstream from mouth.

DRAINAGE AREA . -- 158 mi2 (409 km2).

PERIOD OF RECORD. --

WATER DISCHARGE: Water years 1977 to current year.
CHEMICAL ANALYSES: Water years 1957, 1962, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	DXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT										
05 NOV	1315		447	8.5	12.0	2	10.8		230	240
01	1100		461	8.5	10.0	1	11.6	2.0	20	9
FEB 01	1345		380	8.2	1.5	4	14.0		140	22
MAR 22	1330		274	8.0	6.5	15	11.8	2.0	310	540
APR	1130		396	8.5	11.0	5	11.5	3.0	330	350
20 MAY										
10 JUN	1340		389	9.0	14.0	1	11.6	1.0	80	920
19 JUL	1345		420	8.9	22.0	2	11.8		130	130
13 AUG	1330	79	455	8.7	20.5	0	10.6	2.0	1300	350
03	1300	87	470	8.6	21.0	1	10.2	1.0	230	240
DATE	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	SULFIDE DIS- SOLVED (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
ост										
05 NOV	200	47	20	12	2.0	.0	49	19	8.1	257
01 FEB	220	52	23	10	1.7		40	19		264
01	200	50	19	10	1.5		32	18		222
MAR 22	120	28	12	7.3	1.9		24	13		163
APR 20	190	43	19	11	1.3		30	20		223
MAY 10	190	43	20	11	1.3	11.44	32	18	144	234
JUN 19	210	47	22	10	1.4		29	18		248
JUL				9.6				17		275
13 AUG	220	48	24		1.5		27			
03	210	48	22	11	1.7		29	19		296

01446400 PEQUEST RIVER AT BELVIDERE, NJ--Continued

WATED	OHAL TRY	DATE	WARED	VEAD	OCTORGO	1077	TO	SEDTEMBED	1978

	SOLIDS,									
		NTMOD-	NITTOO	HTTTO		NITRO-			Duoe-	
	RESIDUE	NITRO-	NITRO-	NITRO-	NITRO-	GEN, AM-			PHOS-	
	AT 105	GEN,	GEN,	GEN,	GEN,	MONIA +	NITRO-	PHOS-	PHORUS,	CARBON,
	DEG. C,	NITRATE	NITRITE	AMMONIA	ORGANIC	DRGANIC	GEN,	PHORUS,	ORTHO.	DRGANIC
	SUS-	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	PENDED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DATE	(MG/L)	AS N)	AS N)	AS P)	AS P)	AS C)				
OCT										
05	10	.91	.01	.02	.63	.65	1.6	.08	.04	5.4
NOV		• • • •	•••	• • •	•05			•••		
01	0	.69	.00	.01	.39	.40	1.1	.04	.01	8.5
FEB	-			• • •	,	•••				
01	11	1.1	.01	.01	.59	.60	1.7	.04	.00	3.5
MAR	**		.01	.01		.00	1.,	.04	.00	3.3
22	47	1.1	.01	.10	.59	.69	1.8	.10	.05	8.2
APR	4,		.01		. 39	.09	1.0	.10	.05	0.2
20	8	.89	.01	.01	.49	.50	1.4	.07	.01	9.3
MAY	•	.09	.01	.01	.49	.50	1.4	.07	.01	9.3
	7	42	01	0.3	4.0	40				
10	,	.62	.01	.03	.46	.49	1.1	.11	.05	9.1
JUN										
19	3	.87	.01	.02	.33	.35	1.2	.20	.16	7.9
JUL										
13	2			.10	.20	.30	1.3			4.7
AUG										
03	1			.10	.20	.30	1.3			8.1

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 05	1315	0	1	60	0	0	0	6
		LEAD,	MANGA- NESE,	MERCURY	NICKEL,		ZINC,	100

			MANGA-					
		LEAD.	NESE.	MERCURY	NICKEL.		ZINC.	
	IRON,	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL	
	DIS-	RECOV-	RECOV-	RECOV-	RECOV-	NIUM,	RECOV-	SHAP IN
	SOLVED	ERABLE	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	PHENOLS
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
OCT								
05	50	4	50	<.5	2	0	0	0

DELAWARE RIVER BASIN

0.1446500 DELAWARE RIVER AT BELVIDERE, NJ

LOCATION.--Lat 40°49'36", long 75°05'02", Warren County, Hydrologic Unit 02040105, on left bank at Belvidere, 800 ft (240 m) downstream from Pequest River, and at mile 197.7 (318.1 km).

DRAINAGE AREA. -- 4,535 mi2 (11,746 km2).

PERIOD OF RECORD. --

WATER DISCHARGE: October 1922 to current year.

REVISED DISCHARGE RECORDS. -- WSP 781: 1933(M). WSP 951: 1940-41, Drainage area. WSP 1432: 1923, 1924(M).

GAGE.--Water-stage recorder. Datum of gage is 226.43 ft (69.016 m) National Geodetic Vertical Datum of 1929. Prior to Jan. 1, 1929, nonrecording gage at site 200 ft (61 m) upstream at same datum.

REMARKS.--Discharge records excellent. Diurnal fluctuations at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lake Wallenpaupack, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, and Neversink Reservoirs (see Delaware River Basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs (see Delaware River Basin, diversions).

AVERAGE DISCHARGE. -- 56 years, 7,963 ft3/s (225.5 m3/s), unadjusted.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 80,500 ft³/s (2,280 m³/s) Jan. 10, gage height, 16.03 ft (4.886 m); minimum, 1,310 ft³/s (37.1 m³/s) Sept. 27, gage height, 2.88 ft (0.878 m).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 273,000 ft³/s (7,730 m³/s) Aug. 19, 1955 (gage height, 30.21 ft or 9.208 m, from high-water mark in gage house), from rating curve extended above 170,000 ft³/s (4,810 m³/s) on basis of flood-routing study; minimum, 609 ft³/s (17.2 m³/s) Sept. 28, 29, 1943, gage height, 2.11 ft (0.643 m).

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 10, 1903, reached a stage of 28.6 ft (8.72 m), from floodmark, discharge, 220,000 ft³/s (6,230 m³/s) from rating curve extended above 170,000 ft³/s (4,810 m³/s).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR MAY TIIN JIII. AUG SEP APR 5370 7740 4250 35700 7260 2310 14300 7780 1850 6810 3800 11100 10600 6810 13100 4440 2060 10200 2180 ------TOTAL 24100 MEAN MAX

CAL YR 1977 TOTAL 3597040 MEAN 9855 MAX 80000 MIN 1470 WTR YR 1978 TOTAL 3922900 MEAN 10750 MAX 73900 MIN 1590

01446700 DELAWARE RIVER AT EASTON, PA

LOCATION.--Lat 40°42'43", long 75°11'48", Northampton County, PA, Hydrologic Unit 02040105, on right bank 200 ft (61 m) upstream from city of Easton pumping station, and 1.2 mi (1.9 km) upstream from Bushkill Creek at Easton.

DRAINAGE AREA . -- 4.636 mi2 (12.007 km2).

PERIOD OF DAILY RECORD .--

ERIOD OF DAILY RECORD.-WATER DISCHARGE: October 1967 to November 1977 (discontinued).
SPECIFIC CONDUCTANCE: November 1967 to June 1978 (discontinued).
pH: November 1967 to June 1978 (discontinued).
WATER TEMPERATURES: October 1947 to September 1949, October 1957 to September 1958, October 1963 to September 1964, November 1967 to June 1978 (discontinued).
DISSOLVED OXYGEN: November 1967 to June 1978 (discontinued).

GAGE.--Water-stage recorder. Datum of gage is 157.84 ft (48.110 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Diurnal fluctuation at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lake Wallenpaupack, Cannonsville, Pepacton, Swinging Bridge, Toronto, Cliff Lake, and Neversink Reservoirs (see Delaware River basin, reservoirs in) and smaller reservoirs. Diversion from Cannonsville, Pepacton, and Neversink Reservoirs (see Delaware River basin, diversions).

AVERAGE DISCHARGE. -- 10 years (1968-77), 9,016 ft3/s (255.3 m3/s), unadjusted.

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period October to November, 39,100 ft³/s (1,110 m³/s) Oct. 18, gage height, 14.57 ft (4.441 m); minimum, 4,890 ft³/s (138 m³/s) Nov. 6, gage height, 5.48 ft (1.670 m).

EXTREMES FOR PERIOD OF DAILY RECORD.-WATER DISCHARGE: Maximum discharge, about 100,000 ft³/s (2,830 m³/s) Dec. 22, 1973; minimum, 1,640 ft³/s (46.4 m³/s) Aug. 16, 1971, gage height, 3.87 ft (1.180 m); minimum gage height, 3.68 ft (1.122 m) Jan. 31, Feb. 1, July 29, 1977.
SPECIFIC CONDUCTANCE: Maximum, 499 micromhos Nov. 26, 1970; minimum, 40 micromhos Apr. 6, 1970.
pH: Maximum, 9,8 May 16, 1970; minimum, 5.7 May 24, 1970.
WATER TEMPERATURES: Maximum, 30.0°C July 18, 1968, July 28-29, 1970; minimum, freezing point on many days during winter periods.
DISSOLVED OXYGEN: Maximum, 18.1 mg/L Jan. 21, 1975; minimum, 4.8 mg/L July 9, 1975.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	9870 10500 21000 15800 11700	6560 6190 5860 5930 5350											
6 7 8 9	9310 8100 7810 7230 10800	4990 5690 11100 17700 18900											
11 12 13 14 15	16300 12100 9740 8480 9660	18700 26400 23200 18800 15700											
16 17 18 19 20	13500 16000 31100 31700 28200	13600 12000 11600 11400 10300											
21 22 23 24 25	28600 23200 18900 15800 13500	9310 8740 8450 8230 7700											
26 27 28 29 30 31	11900 10600 9670 8830 7480 6750	9040 11000 10600 9630 9060											
TOTAL MEAN MAX MIN	444130 14330 31700 6750	341730 11390 26400 4990											

01447000 DELAWARE RIVER AT NORTHAMPTON STREET AT EASTON, PA

LOCATION.--Lat 40°41'30", long 75°12'15", Northampton County, Hydrologic Unit 02040105, at bridge on Northampton Street in Easton, 600 ft (182 m) upstream from Lehigh River, and 0.2 mi (0.3 km) downstream from U.S. Route 22 toll bridge in Easton.

DRAINAGE AREA .-- 4,717 mi2 (12,217 km2).

PERIOD OF RECORD.--CHEMICAL ANALYSES: Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO-	PH	TEMPER-	TUR- BID- ITY	OXYGEN, DIS- SOLVED	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY	COLI- FORM, FECAL, EC BROTH	STREP- TOCOCCI FECAL
DATE	IIME	MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	(MG/L)	(MPN)	(MPN)
OCT									
26 NOV	1000	78	7.2	9.0	1	11.4	2.0	<20	17
28	1245	91	7.5	2.0	1	12.6		1100	110
FEB 27	1020	129			3				
APR 10	1015	68	7.2	7.5	3	11.9		<20	9
MAY 01	1020	110	8.0	13.0	2	11.0		20	. 2
JUN 14	1000	107	7.7	19.0	3	9.3	1.0	80	70
JUL 27	1030	185	8.5	25.0	1	6.9	1.0	1300	6
AUG 14	1115	204	8.0	24.5	1	8.4		790	40
	,,,,								
		G11 G7 (14	MAGNE-	CODIUM	POTAS-	SULFATE	CHLO- RIDE,	SOLIDS, RESIDUE AT 180	SOLIDS, RESIDUE AT 105
	HARD- NESS (MG/L	DIS- SOLVED	SIUM, DIS- SOLVED	SODIUM, DIS- SOLVED	SIUM, DIS- SOLVED	DIS- SOLVED	DIS- SOLVED	DEG. C	DEG. C.
DATE	AS CACO3)	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	(MG/L AS K)	(MG/L AS SD4)	(MG/L AS CL)	SOLVED (MG/L)	PENDED (MG/L)
OCT									
26 NOV	32	9.2	2.1	3.4	1.0	12	4.8	49	5
28	36	10	2.6	3.6	1.0	14	5.0	47	2
FE8 27	47	13	3.6	5.6	.9	17	8.2	73	7
APR 10	26	7.6	1.7	2.9	.8	10	4.0	46	0
MAY 01	45	. 13	3.0	4.8	1.0	16	7.6	70	0
JUN 14	54	14	4.6	6.4	1.4	19	8.3	99	8
JUL 27	58	16	4.5	6.0	1.4	19	7.1	91	3
AUG 14	65	17	5.4	7.8	1.5	19	11	98	8

01447000 DELAWARE RIVER AT NORTHAMPTON STREET AT EASTON, PA--Continued

					NITRO-				
	NITRO-	NITRO-	NITRO-	NITRO-	GEN, AM-			PHOS-	
the state of	GEN,	GEN,	GEN,	GEN,	MONIA +	NITRO-	PHOS-	PHORUS,	CARBON,
	NITRATE	NITRITE	AMMONIA	ORGANIC	ORGANIC	GEN,	PHORUS,	ORTHO.	DRGANIC
	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DATE	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS C)
ocr								14 V 1 +0	
26	.31	.01	.00	.27	.27	.59	.02	.01	6.1
	.31	.01	.00				• • •		
NOV						40		.00	16
28	.37	.01	.01	.10	.11	.49	.01	.00	10
FEB							100	The same of the sa	1000 12 2
27	.63	.02	.04	.06	.10	.75	.02	.01	2.8
APR									
10	.39	.00	.00	.31	.31	.70	.01	.00	7.4
MAY									
01	.29	.01	.01	.26	.27	.57	.01	.00	6.3
JUN	• • • • • • • • • • • • • • • • • • • •				• • • •				
14	.72	.04	.18	.33	.51	1.3	.09	.05	7.0
	.12	.04	.10		• 51	1.5		• • •	
JOL					20				7.4
27			.10	.20	.30	1.3	•	1 1 1 1 1	
AUG									
14			<.10						3.1

01453000 LEHIGH RIVER AT BETHLEHEM. PA

- LOCATION.--Lat 40°36'55", long 75°22'45", Lehigh County, PA, Hydrologic Unit 02040106, on left bank 1110 ft (34 m) upstream from New Street Bridge at Bethlehem, and 1,800 ft (549 m) upstream from Monocacy Creek. Records include
- DRAINAGE AREA.--1,279 mi² (3,313 km²) includes that of Monocacy Creek. At site used prior to Oct. 1, 1928, 1,229 mi² (3.183 km2).
- PERIOD OF RECORD. -WATER DISCHARGE: September 1902 to February 1905, April 1909 to current year. Monthly discharge only for some periods, published in WSP 1302. Published as "at South Bethlehem" prior to October 1913.
- REVISED RECORDS.--WSP 261: 1903-05. WSP 321: 1910-11. WSP 1051: Drainage area. WSP 1141: 1929-34(M). WSP 1302: 1914(M), 1916(M), 1918, 1921, 1927-28. WSP 1432: 1903, 1919(M), 1920-21, 1929, 1933.
- GAGE.--Water-stage recorder. Datum of gage is 210.94 ft (64.295 m) National Geodetic Vertical Datum of 1929. Prior to October 1928, nonrecording gage at New Street Bridge 120 ft (37 m) downstream at same datum. Oct. 1, 1928, to Sept. 30, 1962, water-stage recorder at site 4,250 ft (1,295 m) downstream at datum 2.49 ft (0.759 m) lower. Oct. 1, 1963 to Dec. 14, 1975, water-stage recorder at site 40 ft (12 m) downstream at same datum.
- REMARKS.--Records good. Flow regulated by Wild Creek Reservoir since January 1941, Penn Forest Reservoir since October 1958, Francis E. Walter Reservoir since February 1961, and Beltzville Lake since February 1971 (see Delaware River Basin, reserviors in).
- AVERAGE DISCHARGE.--71 years (1902-04, 1909-78), 2,339 ft³/s (66.24 m³/s), 24.83 in/yr (631 mm/yr), adjusted for diversion 1902-04, 1909-42 and, for recirculated water, October 1, 1959 to September 30, 1962.
- EXTREMES FOR CURRENT YEAR.--Maximum discharge, 33,600 ft³/s (952 m³/s) Jan. 26, gage height, 12.64 ft (3.853 m); minimum, 615 ft³/s (17.4 m³/s) Sept. 8, gage height, 1.35 ft (0.411 m).
- EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 92,000 ft $^3/s$ (2,610 m $^3/s$) May 23, 1942, (gage height, about 25.9 ft or 7.89 m, from floodmark, present site and datum), from rating curve extended above 48,000 ft $^3/s$ (1,360 m $^3/s$); minimum, 125 ft $^3/s$ (3.54 m $^3/s$) June 28, 1965, gage height, 0.94 ft (0.287 m).
- EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Feb. 28, 1902, reached a stage of 24.9 ft (7.59 m) from floodmark, present site and datum, discharge, about 88,000 ft³/s (2,490 m³/s).

		DISCH	ARGE, IN	CUBIC FEET	PER SEC	OND, WATER EAN VALUES	YEAR OC	TOBER 1977	TO SEPTE	MBER 1978	3	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2780	2600	7520	3760	6050	1410	9130	1850	3010	1080	1040	1220
2	3280	2520	8530	3560	4700	1400	6880	1780	2690	1040	1000	948
3	2320	2520	6940		4260	1410	6350	1750	2690	2200	811	948 826
4	1880	2580	5860		3580	1400	7800	1630	2820	2700	900	798 769
5	1610	2630	4950	3000	3110	1250	7680	1730	2730	2000	975	769
6	1510	2530	5220	2950	3090	1280	6910	1930	2520	1310 1190	1000	699 657 727 886 841
7	1450	3930	4580		2790	1270	5700	2000	2190	1190	1780	657
8 9 10	2360	10300	3950	3130	3070	1330	4970	2090	2610	1120	3760	727
9	4310	8480	3780	18200	2710	1280	4810	2690	3180	1080	2540	886
10	5580	7900	3470	10700	2520	1270	4330	2430	3160	1060	1910	841
11	4480	8730	3270	8920	2450	1280	3660	2170	2760	1000	2470	727 685
12	3980	7520	3150	9380	2450	1430	3520	2100	2430	930	3110	685
13	3620	6650	2960		2340	1930	3320	2070	2430	900	2960	671
14	2950 4740	5960	3520		2280	4240	3030	6540	2460	900	2190	643 798
15	4740	5420	6220	5500	2160	10100	2670	12600	2250	1140	1760	798
16	4960	4460	6820	5220	2000	7500	2500	9760	2070	1050	1550	855 826 812
17	11300	4160	5810		2020	4850	2450	12300	1750	1190	1350	826
18	8960	4210	6260	4610	1960	4280	2370	12200	1730	975	1270	812
19	10200	3660	7260		1930	4350	2450	12400	1760	885	1200	2320 2560
20	9040	3400	6010	3860	1760	5050	3090	10900	1640	825	1200	2560
21	9250	3220	9460	3300 2990	1780	5070 6880	3010	9480 8240	1700	- 797 755	1050 1010	1910 1680
22	8180	2970	12300	2990	1650	6880	2940	8240	1930	755	1010	1680
23 24	7180	2990	8440	2810	1650	7530	2710	7100	1640	699	948	1600
24	4970	2890	6830	2730	1630	7880	2600	5710	1390	671	798 769	1380 1040
25	4560	2780	7180	3290	1650	7060	2260	6680	1260	671	769	
26 27	4330 4280	4200	6960		1580	7680	2140	5700	1250	685	769 826	979 948 932 901 855
27	4280	4110	6340	14000	1510	18200	2140	4880	1340	671	826	948
28	3800	3780	5420		1380	16700	2120	4330	1250	800	1220	932
29	3300	3460	4860			11900	1980	3990	1170	685	1220	901
30	3000	3540	4350			13500	1880	3560	1120	670	1050	855
31	2800		3970	6690		12600		3280		1200	1220	
TOTAL	146960	134100	182190	199540	70060	173310	117400	165870	62930	32879	45656	31493
MEAN	4741	4470	5877		2502	5591	3913	5351	2098	1061	1473	1050
MAX	11300	10300	12300	20300	6050	18200	9130	12600	3180	2700	3760	2560
MIN	1450	2520	2960	2730	1380	1250	1880	1630	1120	670	769	643
CFSM	3.71	3.50	4.60	5.03	1.96	4.37	3.06	4.18	1.64	-83	1.15	2560 643 .82 .92
IN.	4.27	3.90	5.30	5.80	2.04	5.04	3.41	4.82	1.83	. 96	1.33	. 92

1150028 MEAN 3151 MAX 18100 MIN 545 MIN 643 CFSM 2.46 TOTAL. 1362388 MEAN MAX 20300 CFSM 2.92

01455300 POHATCONG CREEK AT CARPENTERSVILLE, NJ

LOCATION.--Lat 40°37'30", long 75°11'10", Warren County, Hydrologic Unit 02040105, at bridge on Carpentersville-Riegelsville Road in Carpentersville, and 2,000 ft (610 m) upstream from mouth.

DRAINAGE AREA .-- 57.1 mi2 (147.9 km2).

PERIOD OF RECORD.-WATER DISCHARGE: June to September 1978.
CHEMICAL ANALYSES: Water years 1959-62, 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of feoal coliform and feoal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		SPE-					DXYGEN	4.00	1 8
4		CIFIC					DEMAND,	COLI-	
	8	CON-					BID-	FORM,	
		DUCT-			TUR-	OXYGEN,	CHEM-	FECAL,	STREP-
		ANCE	PH	TEMPER-	BID-	DIS-	ICAL,	EC	TOCOCCI
2.56	TIME	(MICRO-		ATURE	ITY	SOLVED	5 DAY	BROTH	FECAL
DATE		MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	(MG/L)	(MPN)	(MPN)
NOV									
01	1440	295	8.1	8.0	1	13.4	<1.0	110	<2
JAN			•••				****	• • • •	
31	1300	269	7.7	1.5	10	13.8	2.0	140	7
MAR								100	
20	1245	213	7.7	6.0	15	11.6		50	240
APR			0.77						
18	1300	273	8.6	12.0	15	13.1	1.0	70	18
MAY									
09	1300	228	7.8	12.5	10	10.0	1.0	5400	1600
JUN									
13	1250	279	8.1	17.5	5	8.7	1.0	9200	>2400
									20.20.0
			- 31-252		30202			SOLIDS,	SOLIDS,
			MAGNE-		POTAS-		CHPO-	RESIDUE	RESIDUE
	HARD-	CALCIUM	SIUM,	SODIUM,	SIUM,	SULFATE	RIDE,	AT 180	AT 105
	NESS	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DEG. C	DEG. C.
	(MG/L	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	DIS-	sus-
	AS	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	SOLVED	PENDED
DATE	CACO3)	AS CA)	AS MG)	AS NA)	AS K)	AS 504)	AS CL)	(MG/L)	(MG/L)
NOV									
01	130	29	14	7.2	2.2	26	9.5	142	1
JAN									
31	140	33	13	8.1	2.0	28	13	160	26
20	85	20	8.4	7.5	2.8	22	11	131	22
APR									
18	120	28	13	6.4	1.8	27	12	177	7
MAY									
09	98	23	9.8	6.5	1.8	26	8.9	138	42
JUN									
13	120	29	12	6.4	2.1	26	9.0	186	25
	1								
	· ·				NITRO-				1
	NITRO-	NITRO-	NITRO-	NITRO-	GEN, AM-			PHOS-	
	GEN,	GEN,	GEN,	GEN,	MONIA +	NITRO-	PHOS-	PHORUS,	CARBON,
	NITRATE	NITRITE	AMMONIA	DRGANIC	ORGANIC	GEN,	PHORUS,	ORTHO.	DRGANIC
	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DATE	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS C)
NOV								- 0	
01	.99	.00	.00	.22	.22	1.2	.08	.07	7.1
JAN							7	15	
31	2.2	.01	.08	.16	.24	2.4	.06	.03	1.0
MAR		11222	-,-					2.5	
20	1.4	.01	.22	.50	.72	2.1	.13	.04	9.8
APR					7.7				
18	2.0	.02	.00	.21	.21	2.2	.06	.04	8.0
MAY									
09	1.8	.03	.10	.78	.88	2.7	.16	.06	8.4
JUN	1.					1.5.		- 1	NA
13	2.1	.02	.02	.52	.54	2.6	.12	.05	5.1

01455500 MUSCONETCONG RIVER AT OUTLET OF LAKE HOPATCONG, NJ

LOCATION.--Lat 40°55'00", long 74°39'55", Morris County, Hydrologic Unit 02040105, just upstream of bridge on Warren County Route 43 and 300 ft (91 m) downstream from Lake Hopatcong dam in Landing.

DRAINAGE AREA . -- 25.6 mi2 (66.3 km2).

.01

.05

PERIOD OF RECORD. --

WATER DISCHARGE: Water years 1928 to current year. CHEMICAL ANALYSES: Water years 1962, 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal colliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

SPE-OXYGEN CIFIC DEMAND, COLI-HARD-CALCIUM CON-BIO-FORM. DIS-SOLVED DUCT-TUR-OXYGEN, CHEM-FECAL, STREP-NESS EC BROTH ANCE PH TEMPER-BID-DIS-ICAL, TOCOCCI (MG/L TIME 5 DAY (MG/L) (MICRO-ATURE TTV SOLVED FECAL. AS (MG/L DATE (UNITS) (DEG C) (MPN) (MPN) CACO3) AS CA) MHOS) (JTU) (MG/L) DCT 1130 <2 14 229 7.7 11.0 3 5.2 1.0 50 JAN 13 30 ... 1045 215 7.2 . 5 1 9.0 20 17 50 21 . . . 1030 208 7.1 3.0 11.5 2.0 <20 22 49 13 APR 17... 1020 213 7.2 9.5 2 <20 <2 49 13 11.3 53 14 1045 218 7.6 13.0 3 <20 11 08... 10.3 JUN 1000 208 7.6 22.0 8.6 4.0 20 17 13

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	MAGNE-		POTAS-			CHLO-	SILICA.	SOLIDS, RESIDUE	SOLIDS, RESIDUE	NITRO-
	SIUM,	SODIUM,	SIUM,	SULFIDE	SULFATE	RIDE.	DIS-	AT 180	AT 105	GEN,
	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	SOLVED	DEG. C	DEG. C.	NITRATE
	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	SUS-	TOTAL
	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	AS	SOLVED	PENDED	(MG/L
DATE	AS MG)	AS NA)	AS K)	AS S)	AS SO4)	AS CL)	SI02)	(MG/L)	(MG/L)	AS N)
OCT										
27	4.1	17	1.3		16	34		147	16	.07
JAN	No.	15.74			120					
30	4.3	20	1.2		20	36		124	1	.21
MAR										
21	4.0	18	1.3		19	33		121	7	.28
APR										
17	4.1	18	1.1		18	36		142	2	.24
MAY										
08	4.4	20	1.1	.0	20	38	2.3	142	12	.08
JUN										
12	3.8	18	1.2		15	37		138	+ 10	.01
				NITRO-	NITRO-					CARBON,
	NITRO-	NITRO-	NITRO-	GEN, AM-	GEN, NH4			PHOS-		ORGANIC
	GEN,	GEN,	GEN,	MONIA +	+ ORG.	NITRO-	PHOS-	PHORUS,	CARBON,	TOT. IN
	NITRITE	AMMONIA	ORGANIC	ORGANIC	TOT IN	GEN,	PHORUS,	ORTHO.	ORGANIC	BOTTOM
	TOTAL	TOTAL	TOTAL	TOTAL	BOT MAT	TOTAL	TOTAL	TOTAL	TOTAL	MAT.
	(MG/L	(MG/L	(MG/L	(MG/L	(MG/KG	(MG/L	(MG/L	(MG/L	(MG/L	(G/KG
DATE	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS C)	AS C)
OCT										
27	.00	.04	.84	.88	450	.95	.03	.00	8.1	3.0
JAN				-			1 1 1 1 1 1 1			
30	.00	.01	.31	.32		.53	.01	.00	1.4	
MAR										
21	.01	.06	.23	.29		.58	.01	.00	6.3	
APR										
17	.00	.01	.32	.33		.57	.01	.00	6.7	
MAY										
08	.00	.01	.52	.53		.61	.02	.00	5.0	
JUN										

.04

01455500 MUSCONETCONG RIVER AT OUTLET OF LAKE HOPATCONG, NJ-Continued

												1 - 1
		ALUM-	ARSENIC		CADMIUM	CADMIUM RECOV.	CHRO-	CHRO-	COBALT,	COBALT, RECOV.	COPPER,	COPPER, RECOV.
		INUM,	IN BOT-	BORON,	TOTAL	FM BOT-	RECOV.	HEXA-	TOTAL	FM BOT-	TOTAL	FM BOT-
		DIS-	TOM MA-	DIS-	RECOV-	TOM MA-	FM BOT-	VALENT,	RECOV-	TOM MA-	RECOV-	TOM MA-
		SOLVED	TERIAL	SOLVED	ERABLE	TERIAL	TOM MA-	DIS.	ERABLE	TERIAL	ERABLE	TERIAL
	TIME	(UG/L	(UG/G	(UG/L	(UG/L	(UG/G	TERIAL	(UG/L	(UG/L	(UG/G	(UG/L	(UG/G
DATE		AS AL)	AS AS)	AS B)	AS CD)	AS CD)	(UG/G)	AS CR)	AS CO)	AS CO)	AS CU)	AS CU)
OCT												
27	1130		5			<10	<10			<10		<10
MAY												
08	1045	10		80	0			. 0	0		3	
												1121
,												
		IRON,		LEAD,	MANGA-	MANGA-	MERCURY		NICKEL,	V	ZINC,	
	4444	RECOV.	LEAD,	RECOV.	NESE,	NESE,	RECOV.	NICKEL,	RECOV.	ZINC,	RECOV.	
	IRON,	FM BOT-	TOTAL	FM BOT-	TOTAL	RECOV.	FM BOT-	TOTAL	FM BOT-	TOTAL	FM BOT-	
	DIS-	TOM MA-	RECOV-	TOM MA-	RECOV-	FM BOT-	TOM MA-	RECOV-	TOM MA-	RECOV-	TOM MA-	
	SOLVED	TERIAL	ERABLE	TERIAL	ERABLE	TOM MA-	TERIAL	ERABLE	TERIAL	ERABLE	TERIAL	PHENOLS
	(UG/L	(UG/G	(UG/L	(UG/G	(UG/L	TERIAL	(UG/L	(UG/L	(UG/G	(UG/L	(UG/G	
DATE	AS FE)	AS FE)	AS PB)	AS PB)	AS MN)	(UG/G)	AS HG)	AS NI)	AS NI)	AS ZN)	AS ZN)	(UG/L)
OCT												
27		1500		70		190	.0		12		30	
MAY												
08	60		. 0		.60			21		10		0
			CHLOR-						HEPTA-	HEPTA-		TOXA-
	ban	MODEN		222			DI-				LINDANE	PHENE.
	PCB,	ALDRIN,	DANE,	DDD,	DDE,	DDT,	ELDRIN,	ENDRIN,	CHLOR,	CHLOR		
	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	EPOXIDE	TOTAL	TOTAL
	IN BOT-	IN BOT-	IN BOT-	IN BOT-	TOT. IN	IN BOT-	IN BOT-					
	TOM MA-	TOM MA-	TOM MA-	TOM MA-	BOTTOM	TOM MA-	TOM MA-					
	TERIAL	TERIAL	TERIAL	TERIAL	TERIAL	TERIAL	TERIAL	TERIAL	TERIAL	MATL.	TERIAL	TERIAL
DATE	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)
OCT					-					100		
27	8	.0	0	.4	.0	.0	.0	.0	.0	.0	0	0
MAY											100	
08												

01455801 MUSCONETCONG RIVER AT LOCKWOOD, NJ

LOCATION.--Lat 40°55'10", long 74°44'07", Sussex County, Hydrologic Unit 02040105, at bridge in Lockwood, at boundary between Sussex County and Morris County, 0.2 mi (0.4 km) southeast of Cage Hill, 0.4 mi (0.7 km) south of Jefferson Lake, and 0.9 mi (1.4 km) downstream from Lubbers Run.

DRAINAGE AREA. -- 60.5 mi2 (156.7 km2).

PERIOD OF RECORD.--CHEMICAL ANALYSES: Water years 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

		HAMED OF	IALTEN DA	ma Walmen	VEAD OC	10050 1077	TO SERVE	WAFA 1070		
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	DXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACD3)
31	1200	314	8.4	9.5	1	11.4		9200	1600	98
JAN 30	1230	234	7.4	.0	2	8.2		1300	1600	69
MAR 21	1145	266	7.6	6.0	3	11.9	3.0	630	240	71
APR 17	1140	276	7.8					<20	5	78
MAY										
JUN	1155	288	8.1	13.0		10.6		16000	540	92
12	1120	268	7.8	22.0		8.7	4.0	2530	920	74
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	DIS- SOLVED (MG/L	SULFIDE DIS- SOLVEC (MG/L AS S)	DIS-	DIS- SOLVED (MG/L	AS	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)
OCT 31	25	8.6	19	2.0		21	36		170	. 0
JAN 30	19	5.3	20	1.2		. 19	37		114	1
MAR			199							
21 APR	18	6.4	21	1.6		20	41		154	9
17	20	6.9	20	1.5	••	21	42		178	1
08 JUN	23	8.4	22	1.5	. (24	41	3.7	176	23
12	19	6.5	18	1.2	-	15	36		167	13
		N, GI	EN, G	EN, G	TRO- GEN EN, MON			OS- PHO	OS- RUS, CARE	
	TOT			TAL TO	TAL TO	TAL TO	TAL TO		TAL TOT	
DA	TE AS									c)
ocr 31		.58	.17	.17	.36	.53	1.3	.23	.21	6.5
JAN		.38	.01	.24	.47		1.1	.11	.05	4.0
MAR 21		.52	.02	.30	.36	.66	1.2	.09	.05	5.8
		.23	.01	.29	.40	.69	.93	.10	.04	7.4
YAM 80 NUL		.31	.12	.39	1.1	1.5	1.9	.50	.14	4.9
		.36	.06	.20	.75	.95	1.4	.14	.06	7.6

01455801 MUSCONETCONG RIVER AT LOCKWOOD, NJ--Continued

								CHE	10-				
		ALL	1 M -			CADM	IUM	MIC		COBA	LT,	COPP	ER,
		INL	IM,	BORG	N.	TOT	AL .	HE)		TOT		TOT	AL
		D1	S-	DIS	5-	REC	ov-	VALE	ENT,	REC	-vo	REC	-VO
		SOI	VED	SOLV	ED	ERA	BLE	DI	s.	ERA	BLE	ERA	BLE
	TIM	E (U	/L	(UG/	'L	(UG	/L	(UC	16	(UG	/L	(UG	16
DATE		AS	AL)	AS E	3)	AS	CD)	AS	CR)	AS	CO)	AS	CU)
MAY													
08	115	5	20		50		0		0		0		13
						VGA-							
			LEA			SE,		KEL,		NC,			
		IRON,	TOT			LAL		TAL		TAL			
		DIS-		ov-		cov-		cov-		COV-		NOLS	
		SOLVED		BLE		ABLE		ABLE		ABLE G/L	PHE	MODS	
	TE	(UG/L AS FE)	(UG	PB)		MN)		G/L NI)		ZN)	/11	G/L)	
UA	LE	NO PE	AS	PO)	AS	MM)	AS	MT)	AS	411)	(0	9,0)	
MAY													
				-									

01456030 MUSCONETCONG RIVER AT STEPHENS STATE PARK, NJ

LOCATION.--Lat 40°52'24", long 74°48'23", Warren County, Hydrologic Unit 02040105, at bridge in Stephens State Park, 2.0 mi (3.2 km) northwest of outlet of Budd Lake, 2.4 mi (3.9 km) northwest of Drakestown, and 3.9 mi (6.3 km) upstream of Mine Brook.

DRAINAGE AREA. -- 72.5 mi2 (187.8 km2).

PERIOD OF RECORD.--CHEMICAL ANALYSES: Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

									200
	• /	SPE- CIFIC CON-					DEMAND, BIO-	COLI- FORM,	
	TIME	DUCT- ANCE (MICRO-	РН	TEMPER-	TUR- BID- ITY	OXYGEN, DIS- SOLVED	CHEM- ICAL, 5 DAY	FECAL, EC BROTH	STREP- TOCOCCI FECAL
DATE		MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	(MG/L)	(MPN)	(MPN)
OCT			1 2.40	180.70					
31 JAN	0950	296	7.9	10.0	1	12.8		<20	11
30	1330	214	7.4	.0	1	7.7		130	4
21 APR	1230	233	7.7	6.0	3	11.3	2.0	130	79
17 MAY	1300	240	9.1	11.5	2	14.6		50	2
08 JUN	1310	253	9.1	12.5	2	12.8		20	79
12	1245	260	8.1	22.5	1	9.2	2.0	50	350
			MAGNE-		POTAS-		CHLO-	SOLIDS, RESIDUE	SOLIOS, RESIDUE
	HARD-	CALCIUM	SIUM,	SODIUM,	SIUM,	SULFATE	RIDE,	AT 180	AT 105
	NESS	DIS-	DIS-	DIS-	DIS-	DIS- SOLVED	DIS- SOLVED	DEG. C	DEG. C,
	(MG/L AS	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	(MG/L	(MG/L	SOLVED	PENDED
DATE	CACO3)	AS CA)	AS MG)	AS NA)	AS K)	AS 504)	AS CL)	(MG/L)	(MG/L)
OCT					2002		4.0		
31 JAN	100	25	9.1	16	1.7	21	31	173	0
30 MAR	67	18	5.3	16	1.1	18	31	108	0
21 APR	65	16	6.2	17	1.3	18	33	126	8
17 MAY	77	19	7.1	15	1.2	19	32	154	1
08 JUN	90	22	8.6	16	1.2	20	32	59	8
12	76	19	7.0	15	1.0	14	30	158	. 11
		3.000			NITRO-			PHOS-	
	NITRO- GEN,	NITRO- GEN.	NITRO- GEN,	NITRO- GEN,	GEN, AM- MONIA +	NITRO-	PHOS-	PHORUS,	CARBON.
	NITRATE	NITRITE	AMMONIA	ORGANIC	ORGANIC	GEN,	PHORUS,	DRTHO.	DRGANIC
	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
DATE	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS P)	(MG/L AS P)	(MG/L AS C)
ocr									
31 JAN	.27	.01	.01	.29	.30	.58	.08	.04	5.8
30	.31	.01	.14	.14	.28	.60	.02	.01	13
21 APR	.42	.01	.11	.26	.37	.80	.04	.02	5.4
17 MAY	.20	.01	.04	.34	.38	.59	.02	.01	6.6
08 JUN	.25	.02	.04	.37	.41	.68	.07	.02	4.3
12	.22	.02	.02	. 41	.43	.67	.08	.04	7.2

01456200 MUSCONETCONG RIVER AT BEATYESTOWN, NJ

LOCATION.--Lat 40°48'48", long 74°50'32", Warren County, Hydrologic Unit 02040105, at bridge at Beatyestown, 1.6 mi (2.6 km) upstream of Hanes Brook, 2.1 mi (3.4 km) northeast of Stephensburg, and 3.5 mi (5.7 km) northeast of Scrappy Corner.

DRAINAGE AREA. -- 90.7 m12 (234.9 km2).

PERIOD OF RECORD. -- CHEMICAL ANALYSES: Water years 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, MATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		SPE- CIFIC CON-			TUR-	OXYGEN,	OXYGEN DEMAND, BIO- CHEM-	COLI- FORM, FECAL,	STREP-
		DUCT-	PH	TEMPER-	BID-	DIS-	ICAL,	EC.	TOCOCCI
	TIME	(MICRO-	PH	ATURE	ITY	SOLVED	5 DAY	BROTH	FECAL
DATE	IIME	MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	(MG/L)	(MPN)	(MPN)
ocr									
31	1130	383	7.9	11.0	0	10.6		<20	. 8
JAN									
30	1415	232	7.6	.5	2	11.2		130	4
21 APR	1340	257	8.3	8.0	3	12.8	1.0	<20	49
17	1350	272	9.2	12.0	2	13.2		<20	23
08	1400	294	8.9	12.0	3	10.7		50	9
JUN 12	1340	300	8.4	22.0	2	9.9	4.0	270	33
								SOLIDS,	SOLIDS, RESIDUE
	HARD-	CALCIUM	MAGNE- SIUM,	SODIUM,	POTAS- SIUM,	SULFATE	RIDE,	RESIDUE AT 180	AT 105
	NESS	DIS-	DIS-	DIS-	015-	DIS-	DIS-	DEG. C	DEG. C.
	(MG/L	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	DIS-	SUS-
	AS	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	SOLVED	PENDED
DATE	CACO3)	AS CA)	AS MG)	AS NA)	AS K)	AS SO4)	AS CL)	(MG/L)	(MG/L)
OCT						2			
31	170	37	19	8.8	1.8	17	15	203	0
JAN 30	77	20	6.5	16	1.2	19	30	123	6
MAR				-11					
21 APR	80	19	8.0	16	1.5	19	30	142	9
17	97	23	9.7	14	1.4	20	30	169	1
MAY 08	110	26	12	16	1.5	23	30	180	10
JUN 12	100	24	9.9	15	1.2	16	29	180	10
	1								
					NITRO-			PHOS-	
	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,	GEN, AM-	NITRO-	PHOS-	PHORUS,	CARBON.
	NITRATE	NITRITE	AMMONIA	DRGANIC	ORGANIC	GEN.	PHORUS.	ORTHO.	ORGANIC
	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DATE	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS C)
OCT						100			
31 JAN	1.9	.00	.00	.04	.04	1.9.	.01	.00	5.7
30	.52	.01	.18	.22	.40	.93	.06	.04	4.4
21 APR	.59	.02	.23	.38	.61	1.2	.10	.06	3.7
17	.41	.02	.24	.31	.55	.98	.12	.09	7.1
MAY 08	.71	.04	.28	.42	.70	1.5	.24	.18	3.2
JUN 12	.67	.03	.05	.46	.51	1.2	.17	.13	7.8
	100	1							

01456600 MUSCONETCONG RIVER AT HAMPTON, NJ

LOCATION. --Lat 40°42'42", long 74°58'06", Hunterdon County 02030105, at bridge on State Route 31 in Hampton, 0.7 mi (1.1 km) downstream of dam at pond in New Hampton, 2.6 mi (4.2 km) northwest of Mount Kipp, and 4.2 mi (6.8 km) north of Van Syckel.

DRAINAGE AREA .-- 122 mi2 (316 km2).

PERIOD OF RECORD. -- CHEMICAL ANALYSES: Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

		WATER QU	JALITY DAT	A, WATER	YEAR OCT	DBER 1977	TO SEPTEM	BER 1978		
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	DXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCUCCI FECAL (MPN)	HARD- NESS (MG/L AS CACD3
				(000 0)	(010)	(40,0)	(40/4)	(ara)	(men)	CHCOS
31 JAN	1035	325	8.1	7.5	1	9.6		130	34	13
31 MAR	1015	238	7.4	1.0	4	13.3	2.0	330	. 8	9
20 APR	1020	250	7.8	6.0	4	11.7	••	20	49	8
18	1010	272	8.6	11.0	2	13,2	1.0	<20	6	11
09 JUN	1015	249	7.8	12.0	4	9.9	<1.0	5400	920	9
13	1000	291	8.0	18.5	1	8.8	1.0	1100	>2400	11
	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	POTAS- SIUM, DIS- SOLVED (MG/L	SULFIDE DIS- SOLVED (MG/L	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L	SILICA, DIS- SOLVED (MG/L AS	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED	SOLIDS RESIDU AT 105 DEG. C SUS- PENDED
DATE	AS CA)	AS MG)	AS NA)	AS K)	AS S)	AS SO4)	AS CL)	SI02)	(MG/L)	(MG/L
DCT										
31 JAN	30	13	13	1.9		20	22		179	
31	24	8.4	14	1.3		19	26	••	132	
20 PR	19	8.9	13	1.6		18	25		149	
18	24	11	12	1.3		19	24		160	
09	23	10	11	1.4	.0	20	21	12	153	1
13	25	11	12	1.4		17	21		157	
						RO-				
DAT	NIT GE NITR TOT (MG	N, GE ATE NITR AL TOT /L (MG	N, GE ITE AMMO AL TOT /L (MG	N, GE NIA ORGA AL TOT /L (MG	N, MONI NIC ORGA AL TOT /L (MG	A + NIT NIC GE AL TOT /L (MG	N, PHORE	US, ORT AL TOT /L (MG	US, CARB HO. DRGA AL TOT /L (MG	NIC AL /L
ocr										
JAN					. 38	.38 1	. 8	.13	.11	5.3
MAR.				.09	.23	.32 1	.2			1.3
APR									.03	3.2
18. MAY					. 31	.33 1	.3	.05	.04	3.4
JUN				.11	.76	.87 2	.0	.13	.07 1	0
13.	1	.4	.02	.01	.52	.53 1	.9	12	.07	8.0

01456600 MUSCONETCONG RIVER AT HAMPTON, NJ--Continued

		ALUM- INUM, DIS- SOLVED	BORON, DIS- SOLVED	CADMIUM TOTAL RECOV- ERABLE	CHRO- MIUM, HEXA- VALENT, DIS.	COBALT, TOTAL RECOV- ERABLE	COPPER, TOTAL RECOV- ERABLE	IRON, DIS- SOLVED	MANGA- NESE, TOTAL RECOV- ERABLE	NICKEL, TOTAL RECOV- ERABLE	ZINC, TOTAL RECOV- ERABLE	PHENOLS
DATE	TIME	(UG/L AS AL)	(UG/L AS B)	(UG/L AS CD)	(UG/L AS CR)	(UG/L AS CO)	(UG/L AS CU)	(UG/L AS FE)	(UG/L AS MN)	(UG/L AS NI)	(UG/L AS ZN)	(UG/L)
MAY 09	1015	20	7	0	0	0	8	60	50	7	10	0

01457000 MUSCONETCONG RIVER NEAR BLOOMSBURY, NJ

LOCATION.--Lat 40°40'20", long 75°03'40", Warren County, Hydrologic Unit 02040105, on right bank just downstream from highway bridge, 1.5 mi (2.4 km) upstream from Bloomsbury, and 9.5 mi (15.3 km) upstream from mouth.

DRAINAGE AREA . -- 143 mi2 (370 km2).

PERIOD OF RECORD.-WATER DISCHARGE: July 1903 to March 1907, July 1921 to current year.

CHEMICAL ANALYSES: Water years 1963 to current year. SEDIMENT ANALYSES: Water years 1958, 1971-74.

REVISED DISCHARGE RECORDS.--WSP 521: Drainage area. WSP 1051: 1944-45. WSP 1382: 1904-06, 1922, 1923-29(M), 1931(M), 1933-34(M), 1936(M), 1940, 1942(M), 1944-45(M), 1951-52(M).

GAGE.--Water-stage recorder. Concrete control since Sept. 29, 1932. Datum of gage is 274.83 ft (83.768 m) National Geodetic Vertical Datum of 1929. July 1903 to Mar. 31, 1907, nonrecording gage at bridge 15 ft (4.6 m) upstream at different datum. July 26 to Sept. 12, 1921, nonrecording gage at bridge at present datum.

REMARKS.--Discharge records good except those for January and February, which are fair. Flow regulated by Lake Hopatcong (see Delaware River Basin, reservoirs in). Diurnal fluctuation caused by small powerplants above station.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

AVERAGE DISCHARGE. = -60 years (1903-06, 1921-78), 232 ft 3 /s (6.570 m 3 /s), unadjusted.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 1,000 ft3/s (28.3 m3/s) and maximum (#):

Date		Time	Discha (ft3/s)		Gage H (ft)	leight (m)	Date		Time	Discha (ft3/s)		Gage H	leight (m)
Dec.	14	2300	1030	29.2	3.60	1.097	Mar.	14	2015	1450	41.1	4.30	1.311
Dec.	21	1500	1050	29.7	3.64	1.109	Mar.	27	1645	1190	33.7	3.86	1.177
Jan.	9	Unknown	3700	105	6.56	1.999	May	14	2115	1070	30.3	3.67	1.119

Minimum discharge, 70 ft 3 /s (1.98 m 3 /s) Sept. 29, 30, gage height, 1.30 ft (0.396 m).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,960 ft³/s (197 m³/s) Oct. 10, 1903 (gage height, 8.00 ft or 2.438 m, from graph of gage readings, site and datum then in use) from rating curve extended above 1,800 ft³/s (51.0 m³/s) on basis of slope-area measurement at gage height, 6.95 ft (2.118 m); minimum, 8.1 ft³/s (0.23 m³/s) Aug. 2, 1955; minimum daily 27 ft³/s (0.76 m³/s) Sept. 8, 1966.

DISCURDED IN CURTO PER DER GROUND HATER VEAR OCTORER 1077 TO SEPTEMBER 1079

		DISCHA	RGE, IN	CUBIC FEET	PER SECO	OND, WATER	YEAR OCT	OBER 1977	TO SEPTE	MBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
- 1	93	135	739	298	450	189	577	195	396	125	137	117
2	122	175	655	290	410	184	519	187	357	122	125	103
3	120	163	569	273	380	183	483	184	416	139	110	96 91
4	103	166	525	251	350	180	460	181	492	171	122	91
5	93	163	509	244	330	178	451	198	404	165	147	87
6	86	160	569	255	320	178	420	215	338	145	210	87 84 94 112
7 8 9	88	244	504	280	310	168	416	214	311	132	470	84
8	81	474	454	1050	310	171	402	210	358	125	649	94
9	202	469	449	2800	300	168	366	303	323	120	387	112
10	238	388	425	1600	300	171	334	281	288	117	281	96
11	181	366	489	900	290	176	326	246	259 239	110	246 249	91 87 87 84 82
12	135	321	449	700	280	189	346	215	239	105	249	87
13	115	294	425	600	260	236	322	214	236	103	236	87
14	115	276	604	500	240	600	302	474	223	101	204	84
15	205	260	810	420	230	936	286	543	207	112	179	82
16	190	283	655	380	220	644	277	529	192	132	163	87 87
17	196	301	579	350	210	488	263	640	187	142	150	87
18	184	336	629	330	207	404	249	783	184	122	137	91
19	187	294	684	310	223	433	273	853	173	112	127	184
20	. 244	266	624	300	210	460	362	793	152	108	120	187
21	232	260	834	290	210	514	334	679	147	101	115	137
22	202	276	874	290	204	665	296	595	176	96	108	117
23	181	357	759	300	204	680	277	519	163	94	103	103 96
24	166	366	684	400	198	720	256	202	152	94	99	96
25	154	340	749	1100	195	655	246	705	147	89	96	89
26	149	484	719	1800	192	680	236	639	145	87	99	84 79 77 77
27	151	444	624	1400	192	1030	233	561	145	89	94	84
28	143	411	574	1000	189	1010	220	506	137	105	103	79
29	132	384	535	700		858	210	457	129	112	110	77
30 31	130	406	439	600		726	201	413	127	101	103	77
31	127		328	500		629		387		125	105	
TOTAL	4745	9262	18465	20511	7414	14503	9943	13121	7203	3601	5584	2977 99.2
MEAN	153	309	596	662	265	468	331	423	240	116	180	99.2
MAX	244	484	874	2800	450	1030	577	853	492	171	649	187
MIN	81	135	328	244	189	168	201	181	127	87	94	187 77
CAL VD	1077 mom		4 2112				4-1-1		7.7		6-	

CAL YR 1977 TOTAL 89770 WTR YR 1978 TOTAL 117329 MEAN 246 MEAN 321 MAX 2800 MTN 77

NOTE .-- No gage-height record Jan. 9 to Feb. 17.

01457000 MUSCONETCONG RIVER NEAR BLOOMSBURY, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATI	E	TIME	STRE FLO INST TANE (CF	AM- CO W, DU AN- AN OUS (MI	FIC N- CT- CE CRO-		TEMPER- ATURE (DEG C)	B	UR- ID- TY	SOL	EN, S- VED /L)	DEMA BIO CHE ICA 5 DA (MG/	ND,	FE E BR	CAL, COTH	TOC	REP- OCCI CAL PN)	
OCT						,												
31.		1135	125		326	8.7	8.5		1	1	1.4				210		49	
JAN 31.		1130	E500		249	7.6	1.5		3	1	3.2		1.0		330		8	
MAR 20.		1130	413		256	7.5	6.0		4		2.1				20		49	
APR																		
18.		1115	256		278	8.9	12.0		1	1	3.5		1.0		<20		6	
O9.	••	1130	346		269	8.1	12.0		4	1	0.7		1.0		790	1	920	
13. JUL	••	1115	239		289	8.1	18.5		2		9.2		2.0		1300		920	
13.		1030	101		340	8.4	17.5		0	- 1	0.1		2.0		310		94	
AUG 03.		1000	110		329	8.5	20.0		1		9.1		1.0		790		920	
SEP 20.		1000	198		298	8.0	15.5				9.5		2.0		330		240	
20.	••		.,,		230	0.0	13.3				,,,		2.0		330		240	
		HAR NES (MG	S	CALCIUM DIS- SOLVED	MAGNE- SIUM, DIS- SOLVED	SODIU DIS-	M, S:	TAS- IUM, IS- LVED	ALKA LINII	LA	SULF		SULFI DIS- SOLV	•	SULF			Jan H
	DATE	CAC		(MG/L AS CA)	(MG/L AS MG)	(MG/	L (M	G/L K)	CAC		(MG		(MG		(MG			
	ост							,	CACC	,,,	43		70 .	,				
	31 JAN	•	140	.31	14	12		1.8							2	1		
	31	•	100	26	9.5	13		1.4							1	9		
	20		95	22	9.7	12		1.7							2	0		
	18		110	25	12	11		1.4					1 1		2	0		
	MAY 09		110	26	12	11		1.5						. 0	2	1		
	JUN 13		110	26	11	11		1.5							1	8		
	JUL 13		150	32	17		.8	1.7			7					9		
	AUG															Ny .		
	SEP		140	31	16	11		2.0		••		-				8		
	20	•	120	28	12	12		1.7		92		.0			2	1		
						SOLID	s, soL	IDS.			SED	1-	*					
		RID		FLUO- RIDE,	SILICA, DIS-	RESID		IDUE	SED	T -	MEN		NITE			RO-		
		DIS		DIS-	SOLVED	DEG.	C DEG	. c.	MEN	Γ,	CHAR	GE,	NITR	ATE	NITE	ITE		
		(MG	/L	(MG/L	(MG/L	SOLV	ED PEN	DED	PENI	DED	PEN	DED	(MG	/L	CMG	/L		
	DATE	AS	Cr)	AS F)	8102)	(MG/	(L) (M	G/L)	(MG	/6)	(T/D	AY)	AS I	1)	AS	N)	*	
	OCT 31	2	1				85	0						. 2		.01		
:	JAN																	
	31		3				47	6						. 4		.01		
	20 APR		2		X.	1	48	13					1.	. 6		.02		
	18 MAY	. 2	4			1	69	2					1.	. 2		.01		
	09 JUN		0		6.4		61	20						. 4		.03		
	13 JUL	. 1	9			1	56	10					1.	. 5		.01		
	13 AUG	. 1	9			2	25	0							100			
	03	. 2	0			. 2	221	1										
	20	. 2	2	.1	11	1	89			26	14							

01457000 MUSCONETCONG RIVER NEAR BLOOMSBURY, NJ--Continued

	DATE	NITRO GEN, AMMONI TOTAL (MG/L AS N)	A DRG	EN, M	NITRO- EN, AM- ONIA + RGANIC TOTAL (MG/L AS N)	GEN + O TOT BOT (M		NITRO- GEN, TOTAL (MG/L AS N)	PHO TO:	OS- P RUS, TAL G/L	PHOS- HORUS, ORTHO. TOTAL (MG/L AS P)	ORG TO	BON, ANIC	TOT BOT	OR- NIC, IN MAT /KG
00	cr														
	31	. 0	00	.47	.47			1.7		.09	.04		4.7		
J	AN 31	.1	1	.17	.28			1.7		.05	.03		2.6	9	
M/	AR														
A	20 PR	.1	. 3	.40	.53			2.1		.07	.04		3.0		
M	18 AY	. (1	.27	.28			1.5		.04	.02		3.9		
	09	. ()5	.59	.64			2.0		.12	.05		7.1		
	UN 13	. ()1	.39	.40			1.9		.10	.06		7.6		
	JL 13	. 1		.30	.40			2.4					3.9		
A	13 UG			.30				2.4							
	03 EP	. 1	0	1.1	1.2			2.7					4.6		
	20	. 3	38			7	80						4.3		.5
DATE MAY 09 SEP 20	TIM 113 100 CHRC MIUM HEXA VALEN DIS (UGA AS C	00 00 00 00 00 00 00	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 10 40 OBALT, TOTAL RECOV- ERCABLE (UG/L AS CO)	ARSEN TOTA (UG// AS A: COBAL RECO TOM M TERI (AS C)	TO IN	ENIC TAL BOT- RIAL G/G AS)	BERYILLIUM TOTAL RECOU ERABI (UG/) AS BI COPPEI RECOU TOM M. TERII (AS CI	BG (1) BG (1) BG (1) BG (1) BG (1) BG (1) BG (1)	ORON, DIS- DLVED JG/L S B) 30 RON, DIS- DLVED JG/L S FE)	CADMIL TOTAL RECOV ERABL (UG/L AS CO IRON, RECOV FM BDI TOM MA FERIA (UG/C AS FF	IM RE FM FM (U) AS	MIUM COV. BOT- MA- RIAL G/G CD) <10 AD, TAL COV- ABLE G/L PB)	CHRC MIUM TOTA RECC ERAC (UG/AS C LEAC RECC FM BC TOM N TERI (UG/AS E	ILL IV- ILE IL IR) IO	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) 10 MANGA- NESE, RECOV- ERABLE RECOV- ERABLE AS MN)
MAY															
09 SEP		0	0			4		••	60		•	0			40
20				<	10	4	<:	10		170	00			20	40
	MANG NESE RECO FM BO IOM M TERI	OV. OT-	ERCURY TOTAL RECOV- ERABLE (UG/L	MERCUI RECO FM BO TOM M TERI	V. NIC T- TO A- RE AL ER	KEL, TAL COV- ABLE	NICKEI RECO FM BO TOM MA TERIA	/. r- se A- NI	CLE- IUM, DTAL	ZINC, TOTAL RECOV ERABL (UG/L	FM TOM E TE	NC, COV. BOT- MA- RIAL G/G	PHENO	ıLS	PCB, TOTAL IN BOT- TOM MA- TERIAL
DATE	(UG/		AS HG)	AS H		NI)	AS N		SE)	AS Z		ZN)	(UG/	L)	(UG/KG)
MAY										P					
09				0 19		4	10	•		1	.0			0	
SEP 20	3	340	<.5		. 0	8	<	10	0	3	0	20		1	43

01457000 MUSCONETCONG RIVER NEAR BLOOMSBURY, NJ--Continued

ALDRIN, DANE, DOD, DDE, DDT, AZINON, ELDRIN, ENDRIN, ETHION, CHLOR, TOTAL TERIAL TOTAL				CH	LOR-						n	1-	0	1-					HE	PTA-	
TOTAL IN BOT IN		ALO	DTN.			0	nn.	DDF		TO					END	DTN.	ETH	TON.			
IN BOT- IN BOT																					
TOM MA- TOM	•																				
TERIAL TOTAL T																					
DATE (UG/KG) (
MAY 09	DATE																				
09 SEP 20 0 2 1.2 .0 .2 .0 .9 .0 .0 .0 HEPTA- CHLOR LINDANE THION, OXY- EPOXIDE TOTAL TOTAL CHLOR, THION, THION, TJAL TOTAL TOTAL TOT, IN IN BOT- IN BOT- TOT. IN TOT. IN TOT. IN IN BOT- IN BOT- BOTTOM TOM MA- TOM MA- BOTTOM BOTTOM TOM TOM MA- MATL. TERIAL TERIAL MATL. MATL. TERIAL TERIAL TERIAL DATE (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) MAY 09	CHIE	(00	, ,,,	100	, 40,	100	, 40,	(OG/KG)	(0	9/10/	(00	, 40,	100	, 40)	(00	, ,,	(00	, 10,	(00	, ,,	
HEPTA-	MAY																				
HEPTA- CHLOR LINDANE THION, OXY- EPOXIDE TOTAL TOTAL CHLOR, THION, THION, TOTAL TOT. IN IN BOT- BOTTOM TOW MA- MATL. TERIAL TERIAL DATE (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) MAY O9	09																				
HEPTA- CHLOR LINDANE THION, OXY- EPOXIDE TOTAL TOTAL TOTAL TOTAL, CHLOR, THION, THION, TOTAL TOTAL TOT, IN IN BOT- BOTTOM TOM MA- BOTTOM BOTTOM BOTTOM MATL. TERIAL DATE (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) MAY O9																					
HEPTA- CHLOR LINDANE THION, OXY- EPOXIDE TOTAL TOTAL TOTAL TOTAL TOT, IN IN BOT- BOTTOM TOM MA- MATL. TERIAL DATE (UG/KG) (UG/KG) (UG/KG) (UG/KG) MAY O9 MALA- MATLA MATL	20		.0		2		1.2	.0		. 2		.0		. 9		.0		.0		.0	
CHLOR LINDANE THION, OXY- PARA- TRI- THION, PHENE, THION, EPOXIDE TOTAL TOTAL CHLOR, THION, TION, TOTAL TOTAL TOTAL TOTAL TOT. IN 10 BOT- IN B																					
CHLOR LINDARE THION, DXY- PARA- TRI- THION, PHENE, THION, EPOXIDE TOTAL TOTAL CHLOR, THION, TOTAL TOTA																					
CHLOR LINDANE THION, OXY- PARA- TRI- THION, PHENE, THION, EPOXIDE TOTAL TOTAL CHLOR, THION, THION, TOTAL TOTAL TOTAL TOTAL TOT. IN TOT. IN TOT. IN TOT. IN BOT- IN BOT- IN BOT- BOTTOM TOM MA- TOM MA- BOTTOM BOTTOM BOTTOM TOM MA- TO			HEP	TA-			MAL	A- ME	TH-	METH	YL	MET	HYL	PAR	A-	TOX	A-	TR	I-		
TOT, IN IN BOT- IN BOT- TOT, IN TOT, IN TOT, IN IN BOT- IN BOT- BOTTOM TOM MA- TOM MA- BOTTOM BOTTOM TOM MA- TOM MA- MATL. TERIAL TERIAL MATL. MATL. TERIAL TERIAL TERIAL DATE (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) MAY 09			CHL	OR	LIND	ANE			Y-	PAR	A-	TR	I			PHE	NE,	THI	ON,		
TOT. IN IN BOT- IN BOT- TOT. IN TOT. IN TOT. IN IN BOT- IN BOT- BOTTOM TOM MA- TOM MA- BOTTOM BOTTOM BOTTOM MA- TOM MA- MATL. TERIAL TERIAL MATL. MATL. TERIAL TERIAL TERIAL DATE (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) MAY 09			EPOX	IDE	TOT	AL	TOT	AL CH	LOR.	THI	ON.	THI	DN.	TOT	AL	TOT	AL	TOT	AL		
BOTTOM TOM MA- TOM MA- BOTTOM BOTTOM BOTTOM TOM MA- TOM MA- TOM MA- MATL. TERIAL TERIAL MATL. MATL. TERIAL TERIAL TERIAL DATE (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) MAY 09			TOT.	IN	IN B	OT-	IN B							IN B	OT-	IN B	OT-	IN B	OT-		
MATL. TERIAL TERIAL MATL. MATL. TERIAL TERIAL TERIAL TERIAL DATE (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) MAY O9			BOT	TOM	TOM	MA-	TOM					BOT	TOM	TOM	MA-	TOM	MA-	TOM	MA-		
DATE (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) MAY O9																		TER	IAL		
09	DA	TE	(UG/	KG)	(UG/	KG)										(UG/	KG)	(UG/	KG)		
09	MAY	,																1.4			
SEP																					
200 .0 .0 .0 .0 .0 .0 .0				.0		-0		.0	- 0		. 0		. 0		.0		0		.0		

01457400 MUSCONETCONG RIVER AT RIEGELSVILLE, NJ

LOCATION.--Lat 40°35'32", long 75°11'20", Warren County, Hydrologic Unit 02040105, at bridge on State Highway 13 in Riegelsville, 0.2 mi (0.4 km) north of Mount Joy, and 0.2 mi (0.3 km) upstream from mouth.

DRAINAGE AREA. -- 156 mi2 (404 km2).

PERIOD OF RECORD.-WATER DISCHARGE: Water years 1977 to current year.
CHEMICAL ANALYSES: Water years 1962, 1976 to current year.
SEDIMENT ANALYSES: September 1978.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	DXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
OCT												
31	1345	335	8.2		1		1.0			140	31	14
JAN												
31 MAR	1345	253	7.3	1.5	6	13.4	2.0	490	46	110	27	9.8
20 APR	1350	248	7.9	7.0	7	12.0		2	220	91	21	9.4
18	1345	286	8.8	12.0	2	12.2	<1.0	<20	<2	120	27	13
09 JUN	1345	282	8.2	13.0	5	10.3	1.0	1300	>2400	120	28	13
13 JUL	1345	292	8.1	18.5	2	8.5	2.0	3500	1600	120	27	12
27 AUG	1500	369	8.4	21.0	1	8.3	1.0	490	240	160	34	18
29 SEP	1330	335	8.2	20.5	0	8.7		3500	>2400	150	32	17
27	1300	355		14.0		10.0	<1.0			160	34	19
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFIDE DIS- SOLVED (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SEDI- MENT, SUS- PENDED (MG/L)
OCT 31	11	1.8				22	20			185	10	-
JAN	11	1.0	1.00	77		22	20			165	10	
31 MAR	13	1.4				21	24			146	18	
20 APR	12	1.9				20	21			142	18	
18	11	1.4				22	23			172	3	
09 JUN	10	1.5			.0	23	19		6.4	176	17	
13 JUL	10	1.5				21	19			163	14	
27 AUG	10	1.9				23	20			222	6	
29 SEP	10	1.8				22	18			273	5	
27	10	1.7	120	.0		25	18	.1	9.1	205		9

01457400 MUSCONETCONG RIVER AT RIEGELSVILLE, NJ--Continued

	NIT TO	EN, CRATE NIT	EN, TRITE A DTAL MG/L	NITRO- GEN, MMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA - ORGANIC TOTAL (MG/L AS N)	GEN, + + OR TOT BOT	G. NI IN G MAT TO	SEN, PHOTAL T	HOS- PHO DRUS, OR DTAL TO	RUS, RTHO. DTAL IG/L	CARB ORGA TOT (MG AS	ON, GA NIC TOT AL BOT	BON, OR- NIC, IN MAT /KG
ייט		N) AS	5 N)	AS NJ	AS N)	AS N)	AS	M) AC	, ", "	, NO	,		.,	
31		1.5	.01	.00	.25	.29	5		1.8	.08	.04		7.1	
JAN		1.2	.01	.07	.23	. 30	0		1.5	.05	.02		2.2	
MAR	-	1.5	.01	.12	.40	.5:			2.0	.09	.03		7.8	
APE														
MA		.74	.01	.00	.24	.2	4		.99	.03	.01		4.2	
JUN		1.2	.01	.01	.68	.6	9		1.9	.08	.02		5.9	
		1.5	.01	.01	.83	. 8	4		2.3	.09	.03		7.0	
21				.10	1.4	1.5			3.0				4.2	••
AUG 29				<.10		.8	0		1				2.3	
SEE				<.10		-	- 380	00					4.4	18
DATE MAY 09 SEP 27	TIME 1345 1300 COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	ALUM-INUM, DIS- SOLVEC (UG/L AS AL) 60 20 COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPE RECO FM BO TOM M TERI (UG/	L TEFL (UCS) AS 1 RR, RV. TT- IRC A- DI AL SOIL	AL LISTON TO THE PROPERTY OF T	RON, I	BORON, DIS- SOUVED (UG/L AS B) 10 LEAD, RECOV. M BOT- DIM MA- DIERIAL (UG/G AS PB)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD) MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	FM BOT FM BOT TERIA (UG/G AS CD	MIUM, TOTAL RECOV- L ERABLE (UG/L AS CR) MERCURY TOTAL RECOV- ERABLE L (UG/L	MERCE FM E TOM	MA- MA- MA- MA- MA- MA- MA- MA- MA- MA-	CHRO-MIUM, HEXA-VALENT, OIS. (UG/L) AS CR) NICKEL, TOTAL RECOV-ERABLE (UG/L) AS NI)	NICKEL, RECOV. TOM MA- TERIAL (UG/G
09			,		60			50	-				9	
SEP 27	<10	3	1	10		4600	40	30	25	0 <.5	5	.0	5	<10
DATE	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	TERI (UG/	IV. T- A- AL PHEN G	IN NOLS TO	BOT- IN MA- TO ERIAL	LDRIN, TOTAL N BOT- DM MA- TERIAL UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TUTAL IN BOT TOM MA TERIA	TOM MA-	TOTE	MA-	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL IN BOT- TOM MA- TERIAL
MAY 09	••	50			1									0.00
SEP 27	0	10		50	0	10	.0		1.	5 4.5		2.2	.0	2.6
		×			3		•					754	1.0	

01457400 MUSCONETCONG RIVER AT RIEGELSVILLE, NJ--Continued

			HEPTA-	HEPTA-		MALA-	METH-	TYHT'SP	METHYL	PARA-	TOXA-	TRI-
	ENDRIN,	ETHION,	CHLOR,	CHLOR	LINDANE	THION,	DXY-	PARA-	TRI-	THION,	PHENE,	THION,
	TOTAL	TOTAL	TOTAL	EPOXIDE	TOTAL	TOTAL	CHLOR,	THION,	THION,	TOTAL	TOTAL	TOTAL
	IN BOT-	IN BOT-	IN BOT-	TOT. IN	IN BOT-	IN BOT-	TOT. IN	TOT. IN	TOT. IN	IN BOT-	IN BOT-	IN BOT-
	TOM MA-	TOM MA-	TOM MA-	BOTTOM	TOM MA-	TOM MA-	BOTTOM	BOTTOM	BOTTOM	TOM MA-	TOM MA-	TOM MA-
	TERIAL	TERIAL	TERIAL	MATL.	TERIAL	TERIAL	MATL.	MATL.	MATL.	TERIAL	TERIAL	TERIAL
DATE	(UG/KG)											
MAY												
09												••
SEP												
27	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0	.0

01457500 DELAWARE RIVER AT RIEGELSVILLE, NJ

LOCATION.--Lat 40°35'36", long 75°11'17", Warren County, Hydrologic Unit 02040105, at suspension bridge in Rieglesville, and 600 ft (183 m) upstream from Musconetcong River.

DRAINAGE AREA. -- 6,328 mi2 (16,390 km2), includes that of Musconetcong River.

PERIOD OF RECORD.-WATER DISCHARGE: Water years 1906 to current year.
CHEMICAL ANALYSES: Water years 1969-74, 1976 to current year.

REMARKS.--Discharge records include flow of Musconetcong River. Water-quality records at periods of base flow probably are influenced by inflow from Musconetcong River.

COOPERATION. --Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal colliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

		SPE-					DXYGEN			
		CIFIC					DEMAND,	COLI-		
		CON-					BIO-	FORM,		HARD-
		DUCT-			TUR-	DXYGEN,	CHEM-	FECAL.	STREP-	NESS
		ANCE	РН	TEMPER-	BID-	DIS-	ICAL.	EC	TOCOCCI	(MG/L
	TIME	(MICRO-		ATURE	ITY	SOLVED	5 DAY	BROTH	FECAL	AS
DATE		MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	(MG/L)	(MPN)	(MPN)	CACD3)
		111111111111111111111111111111111111111				((00007
UCT										
26	1100	101	7.5	9.0	1	11.7	3.0	<20	350	39
NOV										
28	1330	122	7.3	4.0	2	14.0		330	110	48
FEB										
27	1145	184	7.7	2.5	3	13.3		170	17	69
APR										
10	1130	.88	7.4	9.0	3	8.4		<20	11	32
MAY										
01	1145	149	8.2	13.0	. 2	11.1		<20	2	63
JUN										
14	1145	165	7.6	19.5	2	8.7	2.0	490	130	78
JUL										
27	1330	262	8.5	25.5	1	7.9	1.0	220	<2	83
AUG										
14	1315	218	7.7	25.0	2	7.6		490	4	77
	,)		SOLIDS.	SOLIDS,
		MAGNE-		POTAS-			CHLO-	SILICA.	RESIDUE	RESIDUE
	CALCIUM	SIUM,	SODIUM,	SIUM,	SULFIDE	SULFATE	RIDE.	DIS-	AT 180	AT 105
	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	SOLVED	DEG. C	DEG. C.
	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	SUS-
	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	AS	SOLVED	PENDED
DATE	AS CA)	AS MG)	AS NA)	AS K)	AS S)	AS 504)	AS CL)	SIO2)	(MG/L)	(MG/L)
0410	AD CA	NO 1107	40 HA)	AS K)	NO 0)	AS 304)	NO CDI	3102)	(MG/LI)	(MG/L)
OCT										
26	11	2.9	4.4	1.2		16	5.8		53	5
NOV										
28	13	3.7	4.8	1.3		19	6.3		78	3
FEB										
27	18	5.8	8.0	1.4		28	11		97	5
APR										
10	8.9	2.3	3.6	.9		12	4.7		62	5
MAY										
01	17	5.0	7.1	1.3	.0	24	37	1.8	88	1
JUN					370					
14	19	7.3	7.5	1.4		24	8.7		140	2
JUL										
JUUL										
27	21	7.5	9.7	2.0		28	13		138	5
27 AUG						28			138	5
27	21 20	7.5 6.5	9.7	2.0		28	13		138	5

01457500 DELAWARE RIVER AT RIEGELSVILLE, NJ--Continued

	DATE	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO. TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
	OCT										
	26	.51	.01	.11	.36	.47	.99	.05	.03	7.3	
	28 FEB	.80	.01	.15	.14	.29	1.1	.04	.02	4.9	
	27 APR	.73	.02	.25	.24	.49	1.2	.08	.04	3.2	
	10	.46	.01	.08	.17	.25	.72	.03	.01	5.0	
	01 JUN	.60	.02	.21	.22	.43	1.1	.06	.03	7.0	
	14 JUL	1.1	.00	.01	.21	.22	1.3	.02	.01	6.5	
	27 AUG			.10	.50	.60	1.6			4.9	
	14			<.10		.40	1.6			3.6	
				CHRU-	CODALE	CORRER		MANGA- NESE,	NICKEL,	ZINC,	
		ALUM- INUM, DIS- SOLVED	BORON, DIS- SOLVED	MIUM, HEXA- VALENT, DIS.	TOTAL RECOV- ERABLE	TOTAL RECOV- ERABLE	IRON, DIS- SOLVED	TOTAL RECOV- ERABLE	TOTAL RECOV- ERABLE	TOTAL RECOV- ERABLE	PHENOLS
	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE		AS AL)	AS B)	AS CR)	AS CO)	AS CU)	AS FE)	AS MN)	AS NI)	AS ZN)	(UG/L)
MAY											
01	1145	30	9	0	1	5	50	50	6	20	3

01458100 HAKIHOKAKE CREEK AT MILFORD, NJ

LOCATION.--Lat 40°34'06", long 75°05'44", Hunterdon County, Hydrologic Unit 02040105, at bridge on Bridge Street at Milford, and 4,000 ft (1,220 m) upstream from mouth.

DRAINAGE AREA . -- 17.2 mi2 (44.5 km2).

PERIOD OF RECORD.-WATER DISCHARGE: Water years 1977 to current year.
CHEMICAL ANALYSES: Water years 1959-62, 1976 to current year.
SEDIMENT ANALYSES: September 1978.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

											ALCOHOL STATE OF THE STATE OF T	
	,	SPE- CIFIC CON- DUCT- ANCE	PH	TEMPER-	TUR- BID-	OXYGEN, DIS-	OXYGEN DEMAND, BIO- CHEM- ICAL,	COLI- FORM, FECAL, EC	STREP- TOCOCCI	HARD- NESS (MG/L	CALCIUM DIS- SOLVED	MAGNE- SIUM, DIS- SOLVED
DATE	TIME	(MICRO- MHOS)	(UNITS)	ATURE (DEG C)	(JTU)	SOLVED (MG/L)	5 DAY (MG/L)	BROTH (MPN)	FECAL (MPN)	AS CACO3)	(MG/L AS CA)	(MG/L AS MG)
OCT	41.2.2		*							100		
18 NOV	1010	270	7.8	6.5	0	11.0		40	540	110	28	8.6
02 FEB	1200	261	8.8	10.0	0	12.8	••	220	33	110	27	11
27 APR	1310	219	7.9	4.0	2	13.6		<2	<2	85	21	7.9
10	1300	182		13.0	1	12.2		<20	49	70	18	6.0
MAY 01	1320	192	9.2	14.0	1	12.0		50	8	90	24	7.3
JUN 14	1320	211	8.3	18.0	1	10.0	2.0	1800	920	47	14	2.8
JUL 13	1240	230	8.8	21.0	0	11.4	2.0	9200	1600	93	22	9.2
AUG 03	1200	241	9.1	23.5	1	12.2	1.0	2400	920	99	24	9.5
SEP 20	1240	215	8.0	18.0		9.6	<1.0	490	540	85	22	7.4
	SODIUM, DIS- SOLVED (MG/L	POTAS- SIUM, DIS- SOLVED (MG/L	ALKA- LINITY (MG/L AS	SULFIDE TOTAL (MG/L	SULFIDE DIS- SOLVED (MG/L	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L	SILICA, DIS- SOLVED (MG/L AS	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED	SEDI- MENT, SUS- PENDED
DATE	AS NA)	AS K)	CACO3)	AS S)	AS S)	AS SO4)	AS CL)	AS F)	SI02)	(MG/L)	(MG/L)	(MG/L)
18	10	2,1				31	15			167	1	
02 FEB	10	1.7		-7		33	10	, •••		165	2	
27 APR	8.9	1.2				27	13		-	118	1	
10	7.6	1.3				25	9.5		/	112	2	
01 JUN	7.4	1.2			.0	28	9.4		13	122	0	
14	5.2	1.4				15	5.5			84	9	•
13 AUG	7.2	1.5				23	8.8		••	161	3	-
03 SEP	7.4	1.7	••			23	9.1			157	2	- 11,70
20	9.0	1.6	57	.0		25	13	.1	13	150	Marine Comment	6

DELAWARE RIVER BASIN 01458100 HAKIHOKAKE CREEK AT MILFORD, NJ--Continued

	NITRO GEN, NITRAT TOTAL (MG/L	GE	N, ITE AN	GEN, MONIA TOTAL	NITRO GEN, ORGANI TOTAL (MG/L	- GEN, MONI C ORGA	ANIC T	NITRO- GEN, NH4 DRG. FOT IN BOT MAT (MG/KG	NITR GEN TOTA (MG/	L CM	RUS, TAL G/L	PHOS- HORUS, ORTHO. TOTAL (MG/L	CARBON, DRGANIC TOTAL (MG/L	CARBON, ORGANIC TOT. IN BOTTOM MAT. (G/KG
DATE	AS N)	AS	N)	AS N)	AS N)	AS	N)	AS N)	AS N) AS	P)	AS P)	AS C)	AS C)
OCT 18	1.9		.00	.00	.2	3	.23	720	2.	1	.03	.02	5.4	1.0
NOV				01		,	.14		1.	4	.02	.00	7.5	
FEB	1.3		.00	.01	.1						.02	.01	1.3	
27 APR	1.5		.00	.00	.0		.05	••	1.					
10	.9	5	•00	.04	.1	1	.15		1.		.01	.00	6.1	
01 JUN	.9	7	.01	.01	.1	6	.17		1.		.01	.00	6.7	••
14 JUL	.6	2	.01	.04	.3	1	.35			98	.04	.02	3.9	•••
13 AUG	-	•		.10	. 3	0	.40		1.	4	••		3.2	
03		-		.10	.5	0	.60		1.	6			3.1	
SEP 20		-		<.10		•							4.9	••
4														
			M,	RSENIC	ARSENI TOTAL IN BOT TOM MA	- TO:	TAL COV-	BORON, DIS-	CADMI TOTA	CUM RE	MIUM COV. BOT-	CHRO- MIUM, TOTAL RECOV- ERABLE	CHRO- MIUM, RECOV. FM BOT- TOM MA-	CHRO- MIUM, HEXA- VALENT, DIS.
	TIME	(UG	/L	(UG/L	(UG/G	(U	ABLE G/L	SOLVED (UG/L	(UG/	'L (U	G/G	(UG/L	TERIAL	(UG/L
DATE		AS	AL)	AS AS)	AS AS) AS	BE)	AS B)	AS (D) AS	CD)	AS CR)	(UG/G)	AS CR)
18 MAY	1010				4	2			4		<10		<10	-
01 SEP	1320		10			-		0		0				0
20	1240		40	1	•	•	0			••	••	<10	•••	
		OBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COBAL: RECO! FM BO: TOM M/ TERI/ (UG/C	V. COP T- TO A- RE AL ER G (U	PER, TAL F	OPPER, RECOV. M BOT- OM MA- TERIAL (UG/G AS CU)	IROI DIS SOLI (UG.	N, FM S- TOI VED TO	RON, ECOV. BOT- MA- ERIAL JG/G FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	TERI (UG/	DV. NE DT- TO MA- RE MAL ER VG (U	SE, N TAL R COV- FM ABLE TO G/L T	ANGA- ESE, ECOV. BOT- M MA- ERIAL UG/G)
		no co,	A3 C	, ,	co,	AS CU,	A0 1	E) M	, , ,	NO PO	AD E	B) NO	mm, (00/0/
00 1 MA	8		<:	10		<10			1300			(10		230
	1	. 0			11			30		0			10	
	0			••	2								20	
		ERCURY TOTAL RECOV- ERABLE (UG/L	TOM MA	NIC T- TO A- RE AL ER	KEL, TAL F COV- T ABLE G/L	M BOT- OM MA- TERIAL (UG/G	SELI NIU TOT/	E- TO M, RE AL ER /L (1	INC, OTAL CCOV- RABLE	ZINC, RECOV. FM BOT- IOM MA- TERIAL (UG/G	PHENC	TO IN IS TOM TE	TAL TO BOT- IN MA- TO RIAL T	DRIN, DTAL BOT- M MA- ERIAL
		AS HG)	AS H	, AS	NI)	AS NI)	AS S	DEJ AS	ZN)	AS ZN)	(UG/	ם) (טט	/KG) (U	G/KG)
MA	8 Y			.0		<10				10			0	.0
SE	11	••			5				10			0		
	0	<.5		-	9			0	20			0		

01458100 HAKIHOKAKE CREEK AT MILFORD, NJ--Continued

	CHLOR-				DI-		HEPTA-	HEPTA-		TOXA-
	DANE,	DDD,	DDE,	DDT,	ELDRIN,	ENDRIN,	CHLOR,	CHLOR	LINDANE	PHENE,
	TOTAL	TOTAL .	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	EPOXIDE	TOTAL	TOTAL
	IN BOT-	TOT. IN	IN BOT-	IN BOT-						
	TOM MA-	BOTTOM	TOM MA-	TOM MA-						
	TERIAL	MATL.	TERIAL	TERIAL						
DATE	(UG/KG)	(nevke)	(UG/KG)	(UG/KG)						
OCT										
18	0	.0	.0	.0	1.8	.0	.0	.0	.0	0
MAY										
01										
SEP										
20										••

01458400 HARIHOKAKE CREEK NEAR FRENCHTOWN, NJ

LOCATION.--Lat 40°32'53", long 75°04'09", Hunterdon County, Hydrologic Unit 02040105, at bridge on Frenchtown-Milford Road, 1,600 ft (490 m) upstream from mouth, and 1.5 mi (2.4 km) north of Frenchtown.

DRAINAGE AREA .-- 9.75 mi2 (25.25 km2).

PERIOD OF RECORD. --

01...

4.6

5.6

5.7

1.0

1.7

2.0

JUN 14...

JUL. 13...

AUG.

SEP

03...

CHEMICAL ANALYSES: Water years 1959-62, 1976 to current year. SEDIMENT ANALYSES: September 1978.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			MAIER G	OWDILL	DAIA,	WATER I	EAR OCT	JOEK 19	, 13	SEFIEMBER	1770			
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPE ATUR (DEG	R- I	TUR- BID- ITY JTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND BIO- CHEM- ICAL, 5 DAY (MG/L)), C(C TO	TREP- N COCCI (ECAL	ESS MG/L AS	ALCIUM DIS-	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
OCT 18	1115	224	7.5		.0	0	11.8			<20	220	80	24	4.8
NOV	1113	224	,.,		.0	v	11.0			~20	220	90		***
02 FEB	1245	186	8.0	10	0.0	1	5.5	d lo	-	<20	11	72	. 21	4.8
27 APR	1400	131	7.2	1	.0	2	14.4		-	80	17	47	14	2.8
10	1345	117		14	.0	2	11.5		-	<20	9	43	13	2.5
MAY 01	1415	118	9.2	15	.0	2	11.5		-	<20	8.	48	15	2.6
JUN 14	1410	128	7.9	19	.0	2	9.3	1.	.0	790	110	39	11	2.9
JUL 13	1320	139	7.8	21	. 5	0	8.2	2.	. 0	230	240	48	14	3.1
AUG 03	1330	150	7.3	23	.5	1	8.2	1.	0	790	920	51	15	3.4
SEP 20	1400	165	7.8	16	.5		9.3	1.	0	5400	920	64	19	4.1
DAT	SODI DIS- SOLV (MG.	UM, SI - DI ED SOL /L (MG	S- LIN VED (M	G/L	SULFIDE TOTAL (MG/L AS S)	SULFA DIS- SOLV (MG/ AS SO	TE RIC	DE, F S- LVED S G/L (LUD- RIDE, DIS- SOLVED (MG/L (S F)	SILICA, DIS- SOLVED (MG/L AS SID2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	RESIDU AT 105 DEG. C SUS- PENDED	SEDI- SEDI- MENT, SUS- PENDE	D
OCT			2012											
18.	••	8.4	2.5			30		13			148		2 -	-
02. FEB	••	7.7	2.2			25		11			109		3 -	-
27.		6.2	1.1			17	,	10			74		0 -	-
10.	:	5.2	1.3			18		5.5	••	-	69		1 -	-
MAI														

17

12

13

13

.0

5.9

7.0

7.1

9.8

.1

11

78

70

88

95

116

5

2

DATE 000

NITRO-

GEN, NITRATE TOTAL (MG/L AS N)

NITRO-

GEN, NITRITE TOTAL (MG/L AS N)

NITRO-

GEN, AMMONIA TOTAL (MG/L AS N)

NITRO-

GEN, ORGANIC TOTAL (MG/L AS N)

DELAWARE RIVER BASIN

01458400 HARIHOKAKE CREEK NEAR FRENCHTOWN, NJ -- Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

NITRU-

GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)

MITRO-GEN, TOTAL (MG/L AS N)

PHOS-PHORUS, TOTAL (MG/L AS P)

NITRO-GEN,AM-MONIA + ORGANIC TOTAL (MG/L AS N)

CARBON, ORGANIC TOT. IN BOTTOM MAT. (G/KG AS C)

PHOS-PHORUS, ORTHO. TOTAL (MG/L AS P)

CARBON, ORGANIC TOTAL (MG/L AS C)

	OCT													
	18		2.5	.00	.01	.41	.42 1	300	2.9	.03	.03		3.9	2.6
	NOV													
	02		.70	.00	.00	.14	.14		.84	.02	.01	6 0	9.0	
	FEB													
	27	. 1	1.0	.00	.00	.00	.00		1.0	.03	.01		1.0	
	APR													
	10		.55	.00	.00	.20	.20		.75	.02	.00		7.3	
	MAY													
	01		.11	.01	.00	.18	.18		.30	.01	.00		6.2	
	JUN													100
4	14		.35	.01	.04	.32	.36		.72	.04	.01		5.1	
	JUL													. 1 =
	13								••				4.1	
,	AUG													
	03				.10	.20	.30		1.3				7.2	••
	SEP													
	20	•			.15								3.8	
					ARSENIC	BERYL-	CADMIU			RO- COBA			COPPER,	IRON,
			ALUM-		TOTAL	LIUM,	RECOV	. MIUM	, MI	UM, REC	cov. co	PPER,	RECOV.	RECOV.
			INUM,		IN BOT-	TOTAL	FM BOT	- TOTAL	RE	COV. FM E	0T- T	OTAL	FM BOT-	FM BOT-
			DIS-	ARSENIC	TOM MA-	RECOV-	TOM MA	- RECO	- FM	BOT- TOM	MA- R	ECOV-	TOM MA-	TOM MA-
			SOLVED	TOTAL	TERIAL	ERABLE	TERIA	L ERABI	MCT 3	MA- TER	RIAL E	RABLE	TERIAL	TERIAL
		TIME	(UG/L	(UG/L	(UG/G	(UG/L	(UG/G	(UG/	L TE	RIAL CUC	3/G (UG/L	(UG/G	(UG/G
DAT	TE 31		AS AL)	AS AS)	AS AS)	AS BE)	AS CD) AS CI	(1)	G/G) AS	CO) A	S CU)	AS CU)	AS FE)
														100
OCT				**										
18.		1115			18		<1	0 .	••	<40	<10		<10	1500
SEP														
20.		1400	40	1		0	-	- <:	10		••	5		••
			1											
		EAD,	MANGA-	MANGA-		MERCURY		NICKE				INC,		
		ECOV.	NESE,	NESE,	MERCURY	RECOV.	NICKEL			ZI		ECOV.	1	PCB,
		BOT-	TOTAL	RECOV.	TOTAL	FM BOT-	TOTAL			LE- TOI		BOT-	1	TOTAL
		M MA-	RECOV-	FM BOT-		TOM MA-	RECOV					M MA-		IN BOT-
		ERIAL	ERABLE			TERIAL	ERABL					ERIAL	PHENOLS	TOM MA-
		UG/G	(UG/L	TERIAL		(UG/L	(UG/L			G/L (UC		UG/G		TERIAL
DAT	re a	S PB)	AS MN)	(UG/G)	AS HG)	AS HG)	AS NI) AS N	() AS	SE) AS	ZN) A	S ZN)	(UG/L)	(UG/KG)
												- 4		
OCT														
18.	• • •	<10		260		.0	•	- (10		••	10		0
SEP			20		<.5			9		0.	10		. 0	100
20.	• • •	••	20		٠,5			,	•	U.	10		U	
										.,,,				
										1				
			CH	LOR-				DI-		HEPTA-	HEPTA-		TOX	A-
		ALDR			DD. D	DE, DE			IDRIN,	CHLOR,	CHLOR	LIND		
		TOP				TAL TOT			TOTAL	TOTAL	EPOXIDE			
		IN 8				BOT- IN B			80T-	IN BOT-	TOT. IN			
		TOM				MA- TOM			-AP MC	TOM MA-	BOTTOM			
		TER							TERIAL	TERIAL	MATL.	TER		
	DATE	(UG/				/KG) (UG/			JG/KG)	(UG/KG)	(UG/KG)			
								,			,,	,		1000
	OCT											1		
	18		.0	0	.0	.0	.0	.0	.0	.0	.0		.0	0
	SEP						-	7.0						1 (82) (54)
	20													

01458500 DELAWARE RIVER AT FRENCHTOWN, NJ

LOCATION.--Lat 40°31'34", long 75°03'55", Hunterdon County, Hydrologic Unit 02040105, at bridge at Frenchtown, 1,000 ft (300 m) upstream from Nishisakawick Creek, and 3.4 mi (5.5 km) southeast of Milford.

DRAINAGE AREA. -- 6, 420 mi2 (16, 628 km2).

PERIOD OF RECORD. -- CHEMICAL ANALYSES: Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

		WATER QU	ALITY DAT	A, WATER	YEAR OCTO	BER 1977	TO SEPTEM	BER 1978		
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	DXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACD3)
OCT 26	1230	118	7.5	10.0	1	10.4	3.0	<20	220	47
NOV 28	1430	130	7.5	3.0	3	13.6	3.0	1700	130	57
FEB 28	1030	197	7.9	3.0	2	13.7	3.0	40	70	75
APR 11	1015	104	7.4	9.0	2	11.9	1.0	80	13	36
MAY 03	1140	173		15.0	2	11.6	1.0	20	2	70
JUL 25	0945	205	8.2	27.0	0	7.0	1.0	80	110	85
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	SULFIDE DIS- SOLVED (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)
OCT		2.2								
26 NOV	13	3.6	5.4	1.4		18	6.9		74	0
28 FEB	16	4.1	5.0	2.4		20	6.8		68	4
28 APR	19	6.6	8.0	1.5		26	12		115	2
11 MAY	9.5	2.9	4.0	1.0		14	6.2		60	7
03	19	5.4	7.6	1.4	.0	24	9.1	1.7	100	1
25	22	7.4	9.0	2.1		24	14		158	6
	NIT	RO- NIT	RO- NIT	RO- NIT	NIT	RO-		PHO	S-	
DA:	GE NITR TOT (MG	N, GE ATE NITR AL TOT /L (MG	N, GE ITE AMMO AL TOT /L (MG	N, GE NIA ORGA AL TOT /L (MG	N, MONI NIC ORGA AL TOT I/L (MG	A + NIT NIC GE AL TOT /L (MG	/L CMG	S- PHOR US, ORT AL TOT /L (MG	US, CARB HO. DRGA AL TOT /L (MG	NIC AL /L
OCT	ie ao	N) AS	N) AS	N) AS	N) AS	N) AS	N) AS	P) AS	P) AS	C)
NOV										8.4
FEB 28				.15	.14					9.3 3.2
APR 11				.09	.27					8.1
YAM O3.		.68	.03	.20	.37	.57 1	.3	.08	.06	7.4
JUL 25				.10	.30	.40 1	.4			5.4

01458500 DELAWARE RIVER AT FRENCHTOWN, NJ--Continued

13:17	s colunta		ALUM- INUM, DIS-	BORON, DIS-	CADMIUM TOTAL RECOV-	CHRO- MIUM, HEXA- VALENT,	COBALT, TOTAL RECOV-	COPPER, TOTAL RECOV-	IRON, DIS-	MANGA- NESE, TOTAL RECOV-	NICKEL, TOTAL RECOV-	ZINC, TOTAL RECOV-	
	DATE	TIME	(UG/L AS AL)	SOLVED (UG/L AS B)	(UG/L AS CD)	UG/L AS CR)	(UG/L AS CO)	(UG/L AS CU)	SOLVED (UG/L AS FE)	(UG/L AS MN)	ERABLE (UG/L AS NI)	(UG/L AS ZN)	PHENOLS (UG/L)
	MAY 03	1140	30	9	0	0	3	41	50	30	10	50	5

01458600 NISHISAKAWICK CREEK AT FRENCHTOWN, NJ
LOCATION.--Lat 40°31'27", long 75°03'42", Hunterdon County, Hydrologic Unit 02040105, at bridge on State Route 29 in Frenchtown, 700 ft (213 m) upstream from mouth.

DRAINAGE AREA .-- 11.0 mi2 (28.5 km2).

PERIOD OF RECORD. --

CHEMICAL ANALYSES: Water years 1959-62, 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

		WATER OL	JALITY DAT	A, WATER	YEAR OCT	DBER 1977	TO SEPTEM	BER 1978		
		SPE- CIFIC CON- DUCT-			TUR-	OXYGEN,	DXYGEN DEMAND, BIO- CHEM-	COLI- FORM, FECAL,	STREP-	HARD- NESS
		ANCE	PH	TEMPER-	BID-	DIS-	ICAL,	EC	TOCOCCI	(MG/L
DATE	TIME	(MICRO-	(UNITS)	(DEG C)	(JTU)	SOLVED (MG/L)	5 DAY (MG/L)	BROTH (MPN)	FECAL (MPN)	CACO3)
DATE		MINOS	(ONTID)	(DEG C)	(010)	(MG/D)	(MG/D)	(MEN)	(MFN)	CACOS
OCT	2.600	44.00								
04 NOV	1120	234	8.1	12.0	1	11.3		50	240	78
02	1330	190	9.4	11.0	1	12.3		490	33	67
FEB										
21 APR	1115	160	7.8	1.0	1	11.5	1.0	490	79	54
12	1110	148	8.6	12.0	1	12.6	2.0	20	2	47
MAY 02	1015	156		40.0				330	24	59
JUN	1015	130	8.1	10.0	1	10.1	2.0	330	24	59
21	1100	152	7.9	20.0	4	9.0	1.0	460	39	51
	CALCIUM DIS- SOLVED	MAGNE- SIUM, DIS- SOLVED	SODIUM, DIS- SOLVED	POTAS- SIUM, DIS- SOLVED	SULFIDE DIS- SOLVED	SULFATE DIS- SOLVED	CHLO- RIDE, DIS- SOLVED	SILICA, DIS- SOLVED (MG/L	SOLIDS, RESIDUE AT 180 DEG. C DIS-	SOLIDS, RESIDUE AT 105 DEG. C, SUS-
DATE	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	(MG/L AS K)	(MG/L AS S)	(MG/L AS SO4)	(MG/L AS CL)	AS SIO2)	SOLVED (MG/L)	PENDED (MG/L)
	AG CA,	40 HG)	NO 144,	NO N	A0 0)	NO 304)	No Cu)	3102)	(MG/U)	(40/0)
OCT				2.2		- 123			-	
04	20	6.7	14	2.6	.0	22	24	8.9	131	8
02	17	5.9	11	2.0		24	15		111	6
FE8 21	14	4.5	9.9	1.3		18	15	-	97	29
APR	14	4.5	7.7	1.3		10	15	5	91	29
12 MAY	12	4.1	7.7	1.5		18	9.6		100	0
02	16	4.6	8.8	1.3		18	10		93	1
JUN 21	13	4.4	8.3	1.9		15	9.8		103	6
	NIT		RO- NIT			RO-				
	GE! NITR	N, GE ATE NITR	N, GE	NIA ORGA	N, MONI	A + NIT	RO- PHOR	US, ORT	US, CARE	NIC
	(MG									
DA	TE AS									
OCT										
		. 4	.00	.00	.21	.21 1	.6	.03	.02	9.1
NOV 02		. 9	.01	.00	.30	.30 2	. 2	.01	.01	8.7
FEB			1333							
21 APR		. 9	.00	.00	.06	.06 3	.0	.03	.02	
12	2	. 2	.01	.00	.63	.63 2	.8	.01	.00	7.6
	1.	. 6	.02	.05	.30	.35 2	.0	.01	.00	6.7
JUN 21		. 8	.01	.03	.36	.39 2	.2	.04	.01	5.1
	2			5/1/2	1.2	10.5		37.5	7.35	1.1

01458600 NISHISAKAWICK CREEK AT FRENCHTOWN, NJ--Continued

						CHRO-		
		ALUM-			CADMIUM	MIUM,	COBALT,	COPPER,
		INUM,		BORON,	TOTAL	HEXA-	TOTAL	TOTAL
		DIS-	ARSENIC	DIS-	RECOV-	VALENT,	RECOV-	RECOV-
		SOLVED	TOTAL	SOLVED	ERABLE	DIS.	ERABLE	ERABLE
	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE		AS AL)	AS AS)	AS B)	AS CD)	AS CR)	AS CO)	AS CU)
			4 1 1					
OCT								1200
04	1120	20	1	30	0	0	. 0	3
			MANGA-					
		LEAD.	NESE.	MERCURY	NICKEL,		ZINC.	
	IRON,	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL	
	DIS-	RECOV-	RECOV-	RECOV-	RECOV-	NIUM.	RECOV-	
	SOLVED	ERABLE	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	PHENOLS
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	CHENOUS
DATE	AS FE)							(UG/L)
DATE	NO FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(00/11)
DCT								
04	50	. 0	10	4.5	1	0	. 0	6

01460500 DELAWARE AND RARITAN CANAL AT KINGSTON, NJ

LOCATION.--Lat 40°22'24", long 74°37'08", Middlesex County, Hydrologic Unit 02040105, on right bank at canal lock at Kingston, and 250 ft (76 m) upstream from new bridge on State Highway 27.

PERIOD OF RECORD. -- WATER DISCHARGE: March 1947 to current year.

GAGE.--Two water-stage recorders and concrete control. Datum of gage is 40.00 ft (12.192 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Discharge records fair. The canal diverts water from the Delaware River at Raven Rock and discharges into Raritan River at New Brunswick. Some water wasted to the Millstone River 500 ft (152 m) above station.

		DISCHARGE	, IN	CUBIC FEET		, WATER VALUES		BER 1977	TO SEPTE	4BER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL,	AUG	SEP
1 2 3 4 5	79 77 79 79 80	83 85 83 85 85	108 96 93 96 97	99 97 96	91 86 81 81	99 99 99 99	108 106 106 105 103	105 105 105 103 105	96 96 88 88 91	83 79 77 87 85	65 61 60 62 60	74 74 74 72 71
6 7 8 9	79 81 83 85 83	85 88 96 91 87	106 102 99 99	96 96 96	85 81 81 81 83	99 97 97 97	103 103 103 103 105	103 102 100 103 105	88 85 88 90 85	85 83 80 77 79	58 62 65 65 69	70 70 74 80 77
11 12 13 14 15	81 85 84 83 84	85 87 87 87 87	96 94 94 96 103	94 92 99	83 81 81 83 83	99 100 103 100 110	105 105 105 105 105	105 103 103 102 103	85 88 88 87 88	76 75 75 74 76	74 77 74 79 84	74 74 75 75 75
16 17 18 19 20	83 85 83 81 85	93 99 103 100 97	102 100 97 88 94	96 97 106	88 91 91 91	106 97 102 105 110	103 103 103 105 110	102 102 106 106 103	91 93 88 85 85	76 76 75 72 62	76 72 70 70 70	71 71 72 77 80
21 22 23 24 25	84 83 84 83 83	96 96 97 99	105 106 105 97 99	82 97 82	93 94 94 96 96	105 108 102 102 102	108 108 108 108 108	99 94 94 126 109	85 87 85 87 88	57 55 55 55 57	76 76 76 76 76	77 76 76 77 79
26 27 28 29 30 31	84 85 85 83 83	103 90 93 94 96	102 102 100 99 99	103 102 101 100	97 99 99 	102 111 103 105 106 106	106 106 106 106	104 99 94 91 87 88	88 90 88 84 83	58 57 58 59 62 66	76 76 76 88 81 76	77 75 74 71 71
TOTAL MEAN MAX MIN	2557 82.5 85 77		3072 99.1 108 88	96.4 150	2461 87.9 99 81	3166 102 111 97	3162 105 110 103	3156 102 126 87	2638 87.9 96 83	2191 70.7 87 55	2226 71.8 88 58	2233 74.4 80 70

CAL YR 1977 TOTAL 32438 WTR YR 1978 TOTAL 32605 MEAN 88.9 MEAN 89.3 MAX 108 MAX 150 MIN 71 MIN 55

01460900 LOCKATONG CREEK NEAR RAVEN ROCK, NJ

LOCATION.--Lat 40°24'28", long 75°00'52", Hunterdon County, Hydrologic Unit 02040105, at bridge on State Route 29, 300 ft (90 m) upstream from mouth, and 1.1 mi (1.8 km) east of Raven Rock.

DRAINAGE AREA .-- 23.3 mi2 (60.3 km2).

PERIOD OF RECORD.-WATER DISCHARGE: March to September 1978.
CHEMICAL ANALYSES: Water years 1956, 1959-62, 1976 to current year.
SEDIMENT ANALYSES: September 1978.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		SPE- CIFIC CON- DUCT-			TUR-	OXYGEN,	OXYGEN DEMAND, BIO- CHEM-	COLI- FORM, FECAL,	STREP-	HARD- NESS	CALCIUM DIS-
	2.50	ANCE	PH	TEMPER-	BID-	DIS-	ICAL,	EC	TOCOCCI	(MG/L	SOLVED
	TIME	(MICRO-		ATURE	ITY	SOLVED	5 DAY	BROTH	FECAL	AS	(MG/L
DATE		MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	(MG/L)	(MPN)	(MPN)	CACO3)	AS CA)
OCT											
04	1000	134	8.0	12.0	2	12.2		1700	79	43	11
NOV		-	-		-						
02	1200	152	7.9	12.0	1	10.2		240	330	57	14
FEB											
21	1010	161	7.4	1.0	2	12.7	<1.0	20	7	43	10
APR	4000	4.47			_						
12 MAY	1000	147	7.2	11.5	2	12.2	3.0	20	8	.2	10
02	1300	154	10.2	15.5	2	15.3	1.0	<20	6	50	13
JUN					-	13.3	1.0	~20			
21	0945	162	7.6	20.0	2	8.6	1.0	130	350	53	13
JUL											
13	1430	152	9.2	24.5	0	12.0	1.0	330	130	49	12
AUG											
03 SEP	1430	169	7.7	25.0	1	9.1	1.0	1300	540	50	12
21	1100	153	7.6	18.0		10.4	<1.0	1300	23	53	13
*****	1100	133	7.0	10.0		10.4	11.0	1300	2.3	33	1.3
						- Y					
			22255						Short and	SOLIDS,	SOLIDS,
	MAGNE-		POTAS-				CHLO-	FLUO-	SILICA,		RESIDUE
	SIUM, DIS-	SODIUM, DIS-	SIUM, DIS-	ALKA- LINITY	SULFIDE DIS-	SULFATE DIS-	RIDE, DIS-	RIDE, DIS-	DIS- SOLVED	DEG. C	AT 105 DEG. C.
	SOLVED	SOLVED	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	SUS-
	(MG/L	(MG/L	(MG/L	AS	(MG/L	(MG/L	(MG/L	(MG/L	AS	SOLVED	PENDED
DATE	AS MG)	AS NA)	AS K)	CACO3)	AS S)	AS SO4)	AS CL)	AS F)	SI02)	(MG/L)	(MG/L)
DCT		11.0							187.00	721	227 C
04	3.7	6.4	2.1		.0	21	8.0		3.8	78	6
NOV 02	5.3	11	2.1			25	9.9			92	7
FEB	3.3		2.1			25	9.9			. 72	,
21	4.4	9.0	1.9			26	13			98	0
APR											
12	4.2	7.8	2.0			26	8.6			98	7
MAY		- 450									30
02	4.3	9.7	1.7			26	9.0			87	0
JUN						24	10			119	10
	E 4	9 0	. 2 4								
21	5.1	9.0	2.4			24	10				10
21 JUL											
21	5.1 4.7	9.0 8.7	2.4			25	10			101	4
21 JUL 13											
21 JUL 13	4.7	8.7	2.5			25	10			101	4

01460900 LOCKATONG CREEK NEAR RAVEN ROCK, NJ--Continued

DA	TE	NITE GEI NITE TOTA (MG/ AS	N, ATE AL /L	NITR GEN NITRI TOTA (MG/ AS N	TE L L	NITE GEN AMMON TOTA (MG/ AS N	IIA LL LL	NITR GEN ORGAN TOTA (MG/ AS N	íc L L	NITE GEN, A MONIA ORGAN TOTA (MG/ AS	M- HIC L	GEN, + OR TOT BOT	G. IN MAT /KG	NIT GE TOT (MG AS	N, AL	PHO RCHG TOT (MG &AS	US, AL /L	PHOS PHORU ORTH TOTA (MG/ AS P	S, IO. L	CARBO ORGAN TOTA (MG/ AS (IIC L	CARB INO GAN TOT BOT (G/ AS	R- IC, IN MAT KG	
OCT			. 47		01		.05		26		31				.79		.02		01		.5			
NOV			.42		02		.08		31		39				.83		.04		01		.5			
FEB	i.																							
APR					00		.01		26		27						.02		01		.4			
MAY		1	. 7		01		.00	•	23		23			1	. 9		.00	•	00		.3			
02 JUN	• • •		.98	•	01	•	.03		30	,	33			1	. 3		.01	•	00	6	. 1			
21 JUL	•••	1	. 5		01		.02		36		38			1	. 9		.02		00	4	. 9			
						-	10		30		40			1	. 4	1					.0			
03							10		50		60			1	. 8						. 3			
SEP 21							30					120	0								••		.0	
DATE	т	IME	SOI (UC	JM- JM, IS- LVED G/L AL)	ARSE TOT (UG	AL /L	ARSE TOT IN B TOM TER (UG AS	AL OT- MA- IAL /G	DI		RE ER	MIUM TAL COV- ABLE IG/L CD)	FM TON	MIUM COV. BOT- MA- ERIAL JG/G CD)	FM TOM TE	RO- UM, COV. BOT- MA- RIAL G/G)	(UC	M,	ERA (UG	AL OV- BLE	COBA REC FM B TOM TER (UG AS	OV. OT- MA- IAL /G	COPPE TOTA RECO ERAE (UGA	AL OV- BLE /L
OCT								,		-,					, ,		.,,=							
04 SEP	1	000		30		1				40		0						0.		0				4
21	1	100						0						<10		10						<10		
DATE	FM TOM TE (U	PER, COV. BOT- MA- RIAL G/G CU)	SOI (UC	ON, IS+ LVED G/L FE)	IRO REC FM B TOM TER (UG	OV. OT- MA- IAL /G	LEA TOT REC ERA (UG	AL OV- BLE /L	TOM TER	OV. BOT- MA- RIAL	TO RE	INGA- SE, TAL COV- IABLE	FM TON	ANGA- ESE, ECOV. BOT- MA- ERIAL JG/G)	RE ER (U	CURY TAL COV- ABLE G/L HG)	TOM TER	OV.		AL OV- BLE /L	NICK REC FM B TOM TER (UG	OV. OT- MA- IAL /G	SELE NIUM TOTA (UG/	M, AL /L
ОСТ										,	,,,,											,,,,,		
04 SEP				90				6	4			40				<.5				5		••		0
21		<10			10	000				20				960				.0				20		
DATE	TO RE ER (U	NC, FAL COV- ABLE G/L ZN)	TOM TER	COV. BOT- MA-	PHEN		PC TOT IN B TOM TER (UG/	AL OT- MA-		MA-	TO TOM	LOR- NE, TAL BOT- MA- CRIAL	IN TOM TO	DDD, DTAL BOT- MA- CRIAL G/KG)	IN IOM IE	MA- RIAL	TOT IN E	MA- HAL	DI AZIN TOT IN B TOM TER (UG/	ON, AL OT- MA- IAL	DI ELDR TOT IN B TOM TER (UG/	IN, AL OT- MA- IAL	ENDRI TOTA IN BO TOM N TERI	AL OT- MA- IAL
OCT																								
SEP		20				4								•••						••				
21				50				1		• 0		0		.0		.0		.0		.0		.0		.0
DA	TE	ETHI TOT IN B TOM TER (UG/	AL OT- MA- IAL	HEPT CHLO TOTA IN BO TOM M TERI (UG/K	OR, LL OT- IA- IAL	HEPT CHLC EPOXI TOT. BOTI MAI	OR IDE IN IOM IL.	LINDA TOTA IN BO TOM M TERI (UG/K	L T- A- AL	MALI THIC TOTAL IN BO TOM I TER:	ON, AL OT- AA- IAL	TOT.	OR, IN	METH PAR THI TOT. BOI MA	A- ON, IN TOM	THI INT. ICE	IN TOM TL.	PARA THIC TOTA IN BO TOM N TERI	N, L T- IA-	TOX/ PHE! TOT/ IN BO TOM / TER!	AL DT- MA-	TR THI TOT IN B TOM TER (UG/	ON, AL OT- MA- IAL	
ОСТ																								
SEP	•••		••								••						••				••			
21	•••		.0		.0		.0		.0		.0		.0		.0		.0		.0		0		.0	

01461000 DELAWARE RIVER AT LUMBERVILLE, PA

LOCATION.--Lat 40°24'27", long 75°02'16", Bucks County, Hydrologic Unit 02040105, at pedestrian bridge at Lumberville, 1.4 mi (2.3 km) upstream of Lockatong Creek.

DRAINAGE AREA. -- 6,598 mi2 (17,089 km2).

PERIOD OF RECORD. -- CHEMICAL ANALYSES: Water years 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		SPE- CIFIC CON- DUCT-			TUR-	OXYGEN,	DXYGEN DEMAND, BIO- CHEM-	COLI- FORM, FECAL,	STREP-	HARD- NESS
		ANCE	PH	TEMPER-	BID-	DIS-	ICAL,	EC	TOCOCCI	(MG/L
	TIME	(MICRO-		ATURE	ITY	SOLVED	5 DAY	BROTH	FECAL	AS
DATE		MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	(MG/L)	(MPN)	(MPN)	CACD3)
OCT										
26	1320	108	7.6	9.5	1	10.1	2.0	<20	260	41
NOV 29	1000	137	7.4	2.0	2	15.0	2.0	330	350	51
FEB 28	0945	198	7.8	2.0	3	13.7	1.0	20	13	72
APR										,
MAY	1120	96	7.3	9.5	2	11.8	1.0	50	4	34
03	1010	171		14.5	2	11.0	2.0	20	<2	70
JUL 25	1130	217	8.4	27.0	0	7.1	1.0	20	130	89
AUG	1 *	***		-		7.9		50	7	95
21	0915	242	8.2	24.0	0	7.9	-	50		2.5
	*									
									SOLIDS,	SOLIDS,
		MAGNE-		POTAS-			CHLO-	SILICA,	RESIDUE	RESIDUE
	CALCIUM	SIUM,	SODIUM,	SIUM,	SULFIDE	SULFATE	RIDE,	DIS-	AT 180	AT 105
	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	SOLVED	DEG. C	DEG. C.
	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	SUS-
	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	AS	SOLVED	PENDED
DATE	AS CA)	AS MG)	AS NA)	AS K)	AS S)	AS 804)	AS CL)	8102)	(MG/L)	(MG/L)
OCT			1 10							. 0
26	11	3.2	4.7	1.2		17	6.2		62	
29	14	3.9	5.7	1.3		21	7.9		82	3
FEB 28	18	6.5	8.0	1.4		26	12		114	3
APR										
HAY	8.8	2.8	4.1	1.0	••	15	6.4	••	62	12
03	19	5.4	7.6	1.2	.0	24	9.1	1.4	101	1
JUL 25	23	7.6	9.2	2.1		25	13		144	. 8
AUG	24	8.4	12	2.1		32	14		153	
21	44	0.4	12	2.1	-	34		-		

DELAWARE RIVER BASIN 01461000 DELAWARE RIVER AT LUMBERVILLE, PA--Continued

DATE	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
OCT			4							
26 NOV	.58	.02	.11	.34	.45	1.1	.05	.03	8.1	
29 FEB	.89	.02	.13	.45	.58	1.5	.04	.02	12	
28 APR	1.1	.03	.32	.28	.60	1.7	.08	.06	4.6	
11	.54	.01	.09	.31	.40	.95	.04	.02	6.2	
03	.68	.04	.14	.35	.49	1.2	.06	.04	5.8	
25 AUG		••	.10	.30	.40	1.4			6.2	
21			<.10		1.1	2.4			5.1	

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)
MAY	1010	30	10	0	. 0	0	26	50	30	12	60	1

01461250 WICKECHEOKE CREEK AT LOCKTOWN, NJ

LOCATION.--Lat 40°29'09", long 74°58'15", Hunterdon County, Hydrologic Unit 02040105, at bridge on unnamed road in Locktown, 2.4 mi (3.9 km) upstream from Plum Brook, and 3.1 mi (5.0 km) northwest of Sergentsville.

DRAINAGE AREA .-- 9.24 mi2 (23.93 km2).

PERIOD OF RECORD. --

CHEMICAL ANALYSES: Water years 1977 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

			WATER QU	JALITY DA	TA, WATER	YEAR	OCTO	BER 1977	TO SEPTEM	BER 1978		
		7	SPE- CIFIC CON-						DXYGEN DEMAND, BIO-	COLI- FORM,	1	HARD-
		TIME	DUCT- ANCE (MICRO-	PH	TEMPER-	B I	UR- ID- TY	OXYGEN, DIS- SOLVED	CHEM- ICAL, 5 DAY	FECAL, EC BROTH		NESS (MG/L
D	ATE		MHOS)	(UNITS)	(DEG C	(J	TU)	(MG/L)	(MG/L)	(MPN)	(MPN)	CACD3)
	4	1300	5740	8.3	14.0)	2	18.0		80	46	140
0	2	1415	2670	7.9	10.0)	1	10.0		<20	2	100
	2	1245	1080	8.2	14.0)	4	11.8	1.0	50	2	58
	2	1130	338	9.2	14.0		2	12.6	2.0	<20	5	46
JU	N 1	1200	8000	7.6	23.0		2	7.8		460	>2400	170
					7			,,,,				
			MAGNE-		POTAS				CHLO-	SILICA,	SOLIDS, RESIDUE	SOLIDS, RESIDUE
		DIS- SOLVED	SIUM, DIS- SOLVED	SODIUM, DIS- SOLVED	DIS- SOLVE	DI	FIDE S- LVED	SULFATE DIS- SOLVED	RIDE, DIS- SOLVED	SOLVED (MG/L	DEG. C	DEG. C.
		(MG/L	(MG/L	(MG/L	(MG/L	(M	G/L	(MG/L	(MG/L	AS	SOLVED	PENDED
	ATE	AS CA)	AS MG)	AS NA)	AS K)	AS	8)	AS SO4)	AS CL)	SI02)	(MG/L)	(MG/L)
	14	29	16	1300	5.:	2		420	1600		3360	. 6
	2 R	22	12	540	4.:	2		170	710		1530	3
1	2	13	6.2	250	2.	3		100	340		740	3
	2	11	4.5	170	1.	7	.0	71	210	3.6	448	1
	IN 21	38	18	1400	5.	5		330	1900		3720	8
			- 15									
						TRO-	NIT	AM-		РНО		
		GE NITR TOT (MG	ATE NIT	RITE AMM	ONIA DR	GEN, GANIC DTAL MG/L	MONI ORGA TOT	NIC G	TRO- PHO EN, PHOR TAL TOT G/L (MG	US, ORT	HO. ORGA	NIC
	DA	TE AS				s N)	AS		N) AS			
	OCT 04		.26	.02	.03	.76		.79	1.1	.00	.00 1	3
	NOV 02		.02	.00	.01	.60		.61	.63	.02	.00	7.9
	APR 12		.41	.01	.00	.35		.35	.77	.01	.00	4.8
	MAY 02		.01	.00	.02	.43		.45	.46	.03	.01	4.8
	JUN 21	•••	.09	.01	.06	.70		.76	.86	.03	.00	4.7
										•		
					CHRO-			CODDED		MANGA-	NICKEL.	ZINC.

MIUM, HEXA-

VALENT, DIS.

(UG/L

AS CR)

0

COBALT,

TOTAL

RECOV-

(UG/L

AS CO)

ERABLE

COPPER,

TOTAL

RECOV-

ERABLE

(UG/L AS CU)

IRON,

DIS-

SOLVED

(UG/L AS FE)

120

CADMIUM

TOTAL

RECOV-

ERABLE

AS CD)

0

(UG/L

BORON,

DIS-

SOLVED

(UG/L

20

ALUM-

INUM,

DIS-

SOLVED (UG/L

TIME

DATE

02...

MAY

NICKEL,

TOTAL

RECOV-

ERABLE (UG/L

AS NI)

10

NESE,

TOTAL

RECOV-

ERABLE

(UG/L AS MN)

ZINC, TOTAL

RECOV-

ERABLE

(UG/L

AS ZN)

10

PHENOLS

(UG/L)

01461300 WICKECHEOKE CREEK AT STOCKTON, NJ

LOCATION.--Lat 40°24'41", long 74°59'13", Hunterdon County, Hydrologic Unit 02040105, at bridge on State Route 29 in Stockton, 900 ft (270 m) upstream from mouth.

DRAINAGE AREA. -- 26.5 mi2 (68.6 km2).

PERIOD OF RECORD.-WATER DISCHARGE: Water years 1977 to current year.
CHEMICAL ANALYSES: Water years 1959-63, 1976 to current year.

COOPERATION. --Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER	GOAPILI	DATA,	WATER	IEAR	OCTUBER	13//	IU	SELICHDEK	17/0	

	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO-	РН	TEMPER-	TUR- BID- ITY	OXYGEN, DIS- SOLVED	DXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY	COLI- FORM, FECAL, EC BROTH	STREP- TOCOCCI FECAL	HARD- NESS (MG/L AS
DATE		MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	(MG/L)	(MPN)	(MPN)	CACO3)
OCT										
04	1345	1040	9.2	14.0	0	9,3		170	79	85
NOV 02	1130	780	8.4	13.0	1	12.7		180	240	85
FEB	1130	, 00	0.4	13.0		12.,		100		
21	1320	907	7.9	1.0	1	13.7	<1.0	<20	8	65
APR 12	1345	403		16.0	1	10.6	1.0	50	4	43
MAY	1343	403		10.0		10.6	1.0		- V	
02	1400	605	9.6	17.5	1	12.7	2.0	50	14	63
JUN 21	1345	450	8.8	23.0	1	9.6	2.0	230	350	
JUL	1345	450	0.0	23.0		7.0	2.0	230	330	
25	1330	600	9.5	23.5	0	10.3	1.0	330	280	70
AUG		690	7.8	19.5	- 0	8.8		210	130	67
21	1030	690	7.8	19.5	U	0.8		210	130	. 07
	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	POTAS- SIUM, DIS- SOLVED (MG/L	SULFIDE DIS- SOLVED (MG/L	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED	SILICA, DIS- SOLVED (MG/L AS	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED
DATE	AS CA)	AS MG)	AS NA)	AS K)	AS S)	AS SO4)	AS CL)	SI02)	(MG/L)	(MG/L)
OCT										
04	20	8.6	170	3.8	.0	77	250	6.3	615	6
NOV		2.5								
02 FEB	20	8.4	120	3.4		61	170		431	3
21	15	6.7	160	2.2		73	200		485	6
APR										
12	10	4.4	60	2.2		42	76		228	0
MAY 02	16	5.6	95	2.0		56	130		296	1
JUN		3.0	,,,							
21		••				38	79		272	12
JUL 25	17	6.7	85	3.0		43	120		317	4
AUG	.,	0.7	0.5	3.0	177	43	120		311	
21	16	6.6	110	2.6		53	150		376	6

01461300 WICKECHEOKE CREEK AT STOCKTON, NJ--Continued

	NITRO- GEN, NITRATE TOTAL (MG/L	NITRO- GEN, NITRITE TOTAL (MG/L	NITRO- GEN, AMMONIA TOTAL (MG/L	NITRO- GEN, ORGANIC TOTAL (MG/L	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG	NITRO- GEN, TOTAL (MG/L	PHOS- PHORUS, TOTAL (MG/L	PHOS- PHORUS, ORTHO. TOTAL (MG/L	CARBON, ORGANIC TOTAL (MG/L
DATE	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS C)
OCT						1100	1.3	.11	.02	9.2
NOV	.73	.00	.00	.57	.57	1100			-	
02 FEB	1.1	.00	.00	.31	.31		1.4	.02	.01	8.0
21 APR	2.7	.01	.02	.35	.37		3.1	.04	.03	5.4
12 MAY	1.2	.01	.00	.40	.40		1.6	.01	.01	5.2
02 JUN	1.5	.02	.04	.35	.39		1.9	.02	.01	5.2
21	3.0	.01	.03	.40	.43		3.4	.06	.05	5.2
JUL 25 AUG			.10	.30	.40		1.5			7.0
21			<.10							3.6
		ALUM- INUM, DIS-	ARSENIC	ARSENIC TOTAL IN BOT- TOM MA-	BORON, DIS-	CADMIUM TOTAL RECOV-	CADMIUM RECOV. FM BOT- TOM MA-	CHRO- MIUM, RECOV. FM BOT-	CHRO- MIUM, HEXA- VALENT,	COBALT, TOTAL RECOV-
	TIME	SOLVED (UG/L	TOTAL (UG/L	TERIAL (UG/G	SOLVED (UG/L	ERABLE (UG/L	TERIAL (UG/G	TOM MA-	DIS.	ERABLE (UG/L
DATE	11,	AS AL)	AS AS)	AS AS)	AS B)	AS CD)	AS CD)	(UG/G)	AS CR)	AS CO)
OCT 04	1345	20	2	19	40	0	<10	40	0	1
DATE	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)
OCT	AB CO,	NB C07	A5 C0)	NO FE	AS FE)	AS FO	NO -01	AG HA,	(00,0)	40 1107
04	<10	5	<10	100	490	3	27	10	470	<.5
						10000			the setting	
	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/L	NICKEL, TOTAL RECOV- ERABLE (UG/L	RECOV. FM BOT- TOM MA- TERIAL (UG/G	SELE- NIUM, TOTAL (UG/L	ZINC, TOTAL RECOV- ERABLE (UG/L	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G	PHENOLS	PCB, TOTAL IN BOT- TOM MA- TERIAL	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL
DATE	AS HG)	AS NI)	AS NI)	AS SE)	AS ZN)	AS ZN)	(UG/L)	(UG/KG)	(UG/KG)	(UG/KG)
OCT 04	.0	5	<10	. 0	. 20	20	2	0	.0	. 0
1111						100				
1	TOT IN E TOM	TAL TO: BOT IN E	TAL TOT	MA- TOM	IN, ENDE	RIN, CHL TAL TOI BOT- IN 8 MA- TOM	OR, CHE	IN IN B	AL TOT	NE, OT- MA-
DA				KG) (UG/						
001		.0	.0	.0	.0	.0	.0	.0	.0	0
	3075		40.00			-	77.97	5.74		

01461900 ALEXAUKEN CREEK NEAR LAMBERTVILLE, NJ

LOCATION.--Lat 40°22'51", long 74°56'54", Hunterdon County, Hydrologic Unit 02040105, at bridge on State Route 29, 0.4 mi (0.6 km) upstream from mouth, and 1.1 mi (1.8 km) north of Lambertville.

DRAINAGE AREA .-- 14.9 mi2 (38.6 km2).

PERIOD OF RECORD. -WATER DISCHARGE: Water years 1959-63, 1977 to current year.
CHEMICAL ANALYSES: Water years 1959-63, 1976 to current year.
SEDIMENT ANALYSES: September 1978.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	DXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
5416		(0,0)	milos,	(04110)	(020 0)	(010)	(40/1)	(40,0)	(Mr W)	(,	CACOS	AG CA)
OCT				2.00	2.3		275.51		1			
18 NOV	1300		278	7.9	8.5	0	13.7		20	240	120	32
02	1045		280	7.5		2	16.3		<20	23	120	30
FEB												
21 MAR	1410		228	7.6	1.0	2	13.0	1.0	130	33	84	21
28	0950	610	142	7.2	6.5	10	10.9	<1.0	130	350	50	13
APR									1000			
24 MAY	1030	30	197	9.4	10.5	2	15.1		260	240	71	18
15	0950	80	158	7.5	11.5	2	9.9		9200	920	61	15
JUL						-						100
26.,.	1430		292	9.9	25.0	1	13.6	2.0	130	240	110	27
AUG 15	0945	5.6	260	8.0	22.5	2	9.8		50	220	110	28
SEP			-				,,,					
27	1500		295								120	30
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFIDE DIS- SOLVED (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)
18 NOV	10	20	3,3				41	37			213	1
02 FEB	11	12	2.6		•		50	15			155	3
21 MAR	7.7	10	1.6				40	17			143	0
28 APR	4.3	6.5	2.0				23	9.7			95	13
24 MAY	6.3	8.3	1.8				33	13		-	142	0
15 JUL	5.8	8.0	2.1		••	.0	27	8.8		13	116	3
26 AUG	9.6	11	2.8				50	20			180	4
15 SEP	9.5	11	2.7				44	14			189	0
27	12	11	2.4	63	.0	••	49	15	.1	9.2	180	

01461900 ALEXAUKEN CREEK NEAR LAMBERTVILLE, NJ--Continued

			W A	TER QU	ALITY D	ATA,	ATER	YEAR	OCTO	BER	1977	TO SE	PTEM	SER 19/	•				
	SED	T,	NITRO- GEN, NITRATE	GE	N, RITE AM	ITRO- GEN, MONIA	ORG		NIT GEN, MONI ORGA	AM- A + NIC	GEN, + OR TOT	IN	NITE	, PHO	HOS- DRUS,	PHOR PHOR ORI	HO. O	ARBON RGANI TOTAL	C
	SUS		TOTAL (MG/L	TOT		MG/L	TOT		TOT (MG		BOT	MAT KG	TOT!		4G/L	CMG	/L	(MG/L	
DATE	(MG		AS N)	AS		S N)	AS		AS		AS		AS I		5 P)	AS	P)	AS C)	1
OCT																			
18			1.2		.00	.00		.46		.46	120	00	1	.7	.03		.02	4.	. 8
NOV 02			.95		.01	.00		.21		.21			1	. 2	.02		.00	7.	, 9
PEB 21			2.5		.00	.02		.17		.19		••	2	. 7	.03	110	.02	1.	4
28			2.0		.01	.07		.34		.41		••	2	. 4	.05		.03	4.	. 1
APR 24			1.1		.01	.02		.31		.33		••	1	. 4	.02		.00	9.	. 2
MAY 15			1.5		.01	.05		.43		.48			2	.0	.07		.03	9.	. 8
26						.10		.30		.40			. 1	.4			••	4.	. 9
15						<.10				.40				••				3.	. 2
SEP 27		3				<.10						•••						4.	.0
				LUM-			BENIC		RYL-			CADM	T. 11 M	CADMIU		HRO-	CHRO		
			I	NUM, DIS-	ARSENI	IN	BOT-	TO	TAL COV-		RON,	TOT	AL	FM BOT	- T(TAL ECOV-	RECO FM BD	٧.	
		1	S	OLVED	TOTAL	TE	RIAL	ER	ABLE		LVED	ERA	BLE	TERIA		RABLE	TOM M		
D	ATE	TI		UG/L S AL)	AS AS		G/G AS)		G/L BE)		G/L B)	(UG AS		AS CD		JG/L B CR)	TERI (UG/		
00																			
MA		13				•	19							<11	0		<	10	
SE	5	09	50	60		•					50		0	-	•			••	
2	7	15	00	10		1			0					-		<10	+	•	
D	ATE	CHR MIU HEX VALE DI (UG AS	M, CO A- T NT, R S. E	BALT, OTAL ECOV- RABLE UG/L S CO)	COBALT RECOV FM BOT TOM MA TERIA (UG/G AS CO	- TO	PPER, TAL COV- ABLE IG/L	TOM TEI	PER, COV. BOT- MA- RIAL G/G CU)	80 (U	ON, IS- LVED G/L FE)	IRO REC FM B TOM TER (UG	OV. OT- MA- IAL	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	RE EF	ANGA- ESE, DTAL ECOV- RABLE JG/L MN)	MANG NESE RECO FM BO TOM M TERI	 A-	
oc	T																		
MA			••		<1	-			<10			1	500	<10)	••	2	70	
1 SE	5 P		0	0		•	5				70			-		30			
	7				-	•	18						••			0		-	
		MERC TOT REC	URY R	RCURY ECOV. BOT-	NICKEL TOTAL RECOV	, RE	KEL, COV. BOT-	SEI		TO	NC, TAL	ZING RECO	DV.		TO	CB, TAL BOT-	ALDRII TOTAL		
		ERA (UG		ERIAL UG/L	ERABL (UG/L	E TE	RIAL G/G	TO	PAL	ER	ABLE	TER	IAL	PHENOLS	TON	MA-	TOM M	4-	
D	ATE	AS		S HG)	AS NI		NI)		SE)		G/L ZN)	AS :		(UG/L)		RIAL (KG)	TERI		
oc 1	T 8			.0			<10						20	_		0		.0	
MA	Y																		
SE						6					20		••	1				-	
2	7		<.5			5			0		10			. ()			-	

01461900 ALEXAUKEN CREEK NEAR LAMBERTVILLE, NJ--Continued

	CHLOR-				DI-		HEPTA-	HEPTA-		TOXA-
	DANE,	DDD,	DDE,	DDT,	ELDRIN,	ENDRIN,	CHLOR,	CHLOR	LINDANE	PHENE,
	TOTAL	EPOXIDE	TOTAL	TOTAL						
	IN BOT-	TOT. IN	IN BOT-	IN BOT-						
	FOM MA-	TOM MA-	BOTTOM	TOM MA-	TOM MA-					
	TERIAL	MATL.	TERIAL	TERIAL						
DATE	(UG/KG)									
OCT										
18	0	.0	.0	.0	.0	.0	.0	.0	.0	0
MAY				•						
15										
SEP										
27										

01462000 DELAWARE RIVER AT LAMBERTVILLE, NJ

LOCATION.--Lat 40°21'53", long 74°56'57", Hunterdon County, Hydrologic Unit 02040105, at U.S. Route 202 bridge connecting Lambertville, NJ, and New Hope, PA, and 600 ft (183 m) upstream of Swan Creek.

DRAINAGE AREA. -- 6,680 mi2 (17,301 km2).

PERIOD OF RECORD.--CHEMICAL ANALYSES: Water years 1976 to current year.

COOPERATION. Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		SPE-					DXYGEN		
		CIFIC CON- DUCT- ANCE	PH	TEMPER-	TUR- BID-	OXYGEN, DIS-	DEMAND, BID- CHEM- ICAL,	COLI- FORM, FECAL, EC	STREP- TOCOCCI
	TIME	(MICRO-		ATURE	ITY	SOLVED	5 DAY	BROTH	FECAL
DATE		MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	(MG/L)	(MPN)	(MPN)
OCT		100							
26	1415	107	7.6	9.5	1	10.9	2.0	<20	240
29	1130	145	7.5	2.0	1	8.3	1.0	790	40
FEB 28	1145	193	8.0	3.0	2	11.8	1.0	230	. 8
APR 11	1250	98	7.2	10.0	2	11.8	1.0	140	5
MAY 03	1315	171		16.5	1	11.8	6.0	<20	<2
JUL									
26 AUG	1300	250	8.6	26.0	1	7.9	1.0	20	2
15	1100	202	7.8	25.0	4	7.3	1.0	170	5
								SOLIDS,	SOLIDS,
	HARD-	CALCIUM	MAGNE-	SODIUM,	POTAS- SIUM,	SULFATE	CHLO- RIDE,	RESIDUE AT 180	RESIDUE AT 105
	NESS	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DEG. C	DEG. C.
	(MG/L	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	DIS-	SUS-
DATE	CACO3)	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	(MG/L AS K)	AS SD4)	AS CL)	SOLVED (MG/L)	PENDED (MG/L)
						,			
OCT	43	12	3.2		1.3	16	6.1	64	0
26 NOV	**3	12	3.2	4.6	1.3	10	0.1	. 04	
29 FEB	49	13	3.9	7.3	1.3	21	9.7	86	7
28 APR	71	18	6.3	8.2	1.4	26	12	122	0
11	34	9.2	2.7	4.2	1.0	14	6.5	65	6
MAY 03	70	19	5.5	7.5	1.3	23	9.3	99	1
JUL 26	85	21	8.0	9.5	2.1	28	6.0	139	0
AUG 15	78	20	6.7	7.5	2.0	25	11	140	8
13	,,	20	0.7	/.5	2.0		•		
				2					
	NITRO-	NITRO-	NITRO-	NITRO-	NITRO-			PHOS-	
	GEN,	GEN,	GEN,	GEN,	GEN, AM-	NITRO-	PHOS-	PHORUS,	CARBON,
	NITRATE	NITRITE	AMMONIA	DRGANIC	DRGANIC	GEN,	PHORUS,	ORTHO.	DRGANIC
	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DATE	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS C)
OCT									
26 NOV	.58	.02	10	. 35	.45	1.1	.05	.03	7.4
29	.90	.02	.12	.53	.65	1.6	.03	.02	13
FEB 28	1.3	.03	.31	.24	.55	1.9	.08	.06	.8
APR 11	.54	.01	.08	.19	.27	.82	.03	.01	4.9
MAY	.66	.04	.10	.43	.53	1.2	.06	.03	4.0
JUL								1 1 3	
26 AUG	•••		.10	.30	.40	1.4		••	7.8
15	••		<.10	••	<.40	••			3.3

DELAWARE RIVER BASIN 133 01462005 SWAN CREEK AT LAMBERTVILLE, NJ

LOCATION.--Lat 40°21'51", long 74°56'41", Hunterdon County, Hydrologic Unit 02040105, at bridge in Lambertville 250 ft (76 m) upstream from Delaware-Raritan Canal, 350 ft (107 m) downstream from State Route 29, and 500 ft (152 m) upstream from mouth.

DRAINAGE AREA. -- 3.28 mi2 (8.50 km2).

.57

.01

.02

.52

.54

1.1

.04

-00

PERIOD OF RECORD. -- CHEMICAL ANALYSES: Water years 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

		WATER QU	ALITY DAT	A, WATER	YEAR OCT	OBER 1977	TO SEPTE	BER 1978		
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	DXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 18	1345	375	7.9	9.0	1	11.4		<20	920	110
NOV 02	1000	354	6.3	9.0	1	9.6		490	1600	140
FEB 23	1345	334	7.3	2.0	3	14.1	2.5	<20	17	90
MAR 28	1110	233	7.3	7.0	3	11.6	1.0	340	1600	73
APR 24	1130	198	8.1	10.5	9	11.6		3500	240	67
MAY 15	1100	161	7.3	13.0	2	9.8		2800	280	58
13	1100	101	7.3	13.0	2	9.0		2800	260	36
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	SULFIDE DIS- SOLVED (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)
OCT	20					4 82				
18 NOV	29	9.1	9.7	3.0		41	14		165	2
02 FEB	33	13	19	3.8		42	31		216	3
23 MAR	23	8.0	28	1.9		32	58	••	223	4
28 APR	19	6.2	14	2.5		27	33		148	1
24 MAY	17	5.9	10	1.8		32	17		138	8
15	14	5.7	10	1.8	.0	26	12	14	116	1
					NIT	reo-				
	NITE GEN NITE TOTA	TE NITE	N, GE ITE AMMO AL TOT	N, GE NIA ORGA AL TOT	AL TOT	A + NII NIC GE		US, ORT	US, CARB HO. DRGA AL TOT	NIC
DA	TE AS N									
ocr										
NOV		.0	.01	.01	.31	.32 2	2.3	.04	.01	5.1
02 FEB	1.	.5	.00	.00	.26	.26 1	.8	.04	.02	4.8
		.00	.01	.01	.33	.34	.35	.04	.01	1.9
	1.	.7	.00	.04	.56	.60 2	.3	.03	.01	3.7
		51	.00	.00	.24	.24	.75	.04	.01 1	0

134

DELAWARE RIVER BASIN

01462005 SWAN CREEK AT LAMBERTVILLE, NJ--Continued

		ALUM- INUM,	BORON,	CADMIUM TOTAL	CHRO- MIUM, HEXA-	COBALT,	COPPER,	IRON,	MANGA- NESE, TOTAL	NICKEL, TOTAL	ZINC, TOTAL	
DATE	TIME	SOLVED (UG/L AS AL)	SOLVED (UG/L AS B)	RECOV- ERABLE (UG/L AS CD)	VALENT, DIS. (UG/L AS CR)	RECOV- ERABLE (UG/L AS CO)	RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS FE)	RECOV- ERABLE (UG/L AS MN)	RECOV- ERABLE (UG/L AS NI)	RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)
MAY 15	1100	40	50	0	0	0	21	80	40	9	40	0

LOCATION.--Lat 40°20'39", long 74°53'11", Hunterdon County, Hydrologic Unit 02040105, at bridge 2.4 mi (3.9 km) north of Titusville, 2.5 mi (4.0 km) upstream of mouth, 2.7 mi (4.3 km) east of Goat Hill, and 3.3 mi (5.3 km) southeast of Lambertville.

01462195 MOORES CREEK NEAR LAMBERTVILLE, NJ

DRAINAGE AREA. -- 4.51 mi2 (11.68 km2).

PERIOD OF RECORD. -- CHEMICAL ANALYSES: Water years 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO-	PH	TEMPER-	TUR- BID- ITY	OXYGEN, DIS- SOLVED	DXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY	COLI- FORM, FECAL, EC BROTH	STREP- TOCOCCI FECAL
DATE		MHOS)	(UNITS)	(DEG C)	(JTU)	(ME/L)	(MG/L)	(MPN)	(MPN)
NOV									
02 FEB	1430	228	8.2	11.0	1	10,2		790	240
23 MAR	1020	184	7.2	1.0	1	13.7	1.2	70	. 49
28	1300	140	7.3	7.0	8	10.8	<1.0	7.0	13
APR 24	1250	172	8.1	10.5	2	12.4		490	8
MAY	1010								
15	1240	165	7.8	12.0	1	10.4	<1.0	9200	540
			MAGNE-		POTAS-		CHLO-	SOLIDS, RESIDUE	SOLIDS, RESIDUE
	HARD-	CALCIUM	SIUM,	SODIUM,	SIUM,	SULFATE	RIDE,	AT 180	AT 105
	NESS	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DEG. C	DEG. C.
	(MG/L	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	SOLVED	SUS- PENDED
DATE	CACO3)	AS CA)	AS MG)	AS NA)	AS K)	AS 504)	AS CL)	(MG/L)	(MG/L)
NOV									
02 FEB	85	20	8.6	12	2.4	36	16	142	6
23 MAR	67	15	7.1	9.4	1.4	28	12	128	0
28 APR	48	12	4.4	7.9	2.1	24	9.2	82	8
24	59	14	5.9	9.0	1.5	29	12	123	2
MAY 15	61	14	6.4	9.3	1.9	28	10	113	12
	33444		10000		NITRO-				
	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,	NITRO- GEN.	GEN, AM- MONIA +	NITRO-	PHOS-	PHOS- PHORUS,	CARBON,
	NITRATE	NITRITE	AMMONIA	DRGANIC	DRGANIC	GEN.	PHORUS,	ORTHO.	DRGANIC
	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DATE	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS C)
NOV		12.5						100	40.5
02 FEB	.36	.00	.00	.22	.22	.58	.01	.00	8.1
23 MAR	1.5	.00	.02	.16	.18	1.7	.02	.01	.6
28 APR	1.6	.01	.03	.50	.53	2.1	.03	.01	3.3
24	.60	.00	.00	.21	.21	.81	.02	.00	7.4
15	.89	.02	.04	.33	.37	1.3	.03	.01	10

01462200 MOORES CREEK NEAR TITUSVILLE, NJ

LOCATION.--Lat 40°19'26", long 74°55'02", Mercer County, Hydrologic Unit 02040105, at bridge on State Route 29, 400 ft (120 m) upstream from mouth, and 2.1 mi (3.4 km) northwest of Titusville.

DRAINAGE AREA . -- 10.2 mi2 (26.4 km2).

PERIOD OF RECORD. --CHEMICAL ANALYSES: Water years 1959-62, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		SPE-					DXYGEN		
		CIFIC					DEMAND,	COLI-	
		CON-					810-	FORM.	
		DUCT-			TUR-	OXYGEN,	CHEM-	FECAL,	STREP-
		ANCE	PH	TEMPER-	BID-	DIS-	ICAL,	EC	TOCOCCI
	TIME	(MICRO-		ATURE	ITY	SOLVED	5 DAY	BROTH	FECAL
DATE		MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	(MG/L)	(MPN)	(MPN)
NOV									
29	1300	192	7.4	1.0	2	6.1	1.0	1'10	130
MAR				1.0		0.1	1.0	110	130
28	1150	132	7.3	7.5	6	10.4	<1.0	70	49
APR	1130	132	,.,	7.5	0	10.4	41.0	10	47
24	1340	158	9.4	42.0					
	1340	158	9.4	13.0	4	13.4		230	<2
MAY									
15	1340	152	7.4	12.0	2	9.2		1400	540
								SOLIDS,	SOLIDS,
			MAGNE-		POTAS-		CHLO-	RESIDUE	RESIDUE
	HARD-	CALCIUM	SIUM.	SODIUM,	SIUM,	SULFATE	RIDE.	AT 180	AT 105
	NESS	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DEG. C	DEG. C.
	(MG/L	SOLVED							
			SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	DIS-	SUS-
	AS	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	SOLVED	PENDED
DATE	CACO3)	AS CA)	AS MG)	AS NA)	AS K)	AS SO4)	AS CL)	(MG/L)	(MG/L)
NOV									
29	72	18	6.6	10	2.1	32	11	129	8
MAR		10	0.0	10	2.1	32	11	129	
28	46	12	4.0	7.3					
APR	40	12	4.0	7.3	1.9	23	8.5	86	. 3
				-		4.5	1	0.15	750
24	56	14	5.0	8.2	1.6	28	9.7	111	1
MAY									
15	54	13	5.3	8.1	2.0	27	7.4	101	7
					NITRO-				all the said
	NITRO-	NITRO-	NITRO-	NITRO-	GEN, AM-			PHOS-	
	GEN,	GEN,	GEN,	GEN,	MONIA +	NITRO-	PHOS-	PHORUS.	CARBON.
	NITRATE	NITRITE	AMMONIA						
				DRGANIC	ORGANIC	GEN,	PHORUS,	ORTHO.	DRGANIC
	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DATE	AS N)	AS N)	AS P)	AS P)	AS C)				
NOV									
29	2.3	.00	.01	76	7.0		* **		
MAR	2.3	.00	.01	.75	.76	3.1	.01	.01	12
28	1.3	.00	.03	.53	.56	1.9	.04	.01	3.4
APR	100								1
24	.41	.00	.04	.29	.33	.74	.05	.00	9.1
MAY									
15	.83	.01	.09	.23	.32	1.2	.03	.01	12

01462500 DELAWARE RIVER AT WASHINGTON CROSSING, NJ

LOCATION.--Lat 40°17'20", long 74°52'08", Mercer County, Hydrologic Unit 02040105, at bridge at Washington Crossing, 1.4 mi (2.3 km) upstream of Jacobs Creek.

DRAINAGE AREA. -- 6,735 mi2 (17,444 km2).

PERIOD OF RECORD. --

CHEMICAL ANALYSES: Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	DXYGEN DEMAND, BID- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	TREP- COCCI FECAL (MPN)
OCT									
18 NOV	1440	122	7.1	8.0	1	12.5		50	280
29 FEB	1415	141	7.5	2.0	2	13.6	1.0	330	33
28 APR	1320	192	7.5	3.0	2	13.4	2.0	230	<2
11	1345	99	7.4	10.0	2	12.3	1.0	170	7
03 JUL	1410	169		16.5	1	12.8	5.0	<20	<2
26 AUG	0930	290	8.7	25.9	1	7.9	1.0	<20	48
15	1300	205	8.0	26.0	5	7.8	<1.0	330	5
	HARD- NESS	CALCIUM DIS-	MAGNE- SIUM, DIS-	SODIUM,	POTAS- SIUM,	SULFATE DIS-	CHLO- RIDE, DIS-	SOLIDS, RESIDUE AT 180	SOLIDS, RESIDUE AT 105
	(MG/L	SOLVED	SOLVED	DIS- SOLVED	SOLVED	SOLVED	SOLVED	DEG. C	DEG. C,
	AS	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	SOLVED	PENDED
DATE	CACO3)	AS CA)	AS MG)	AS NA)	AS K)	AS SO4)	AS CL)	(MG/L)	(MG/L)
OCT									
18	42	12	2.9	4.5	1.5	19	6.9	79	24
NOV							350		
29 FEB	49	13	3.9	6.7	1.3	21	8.7	85	9
28 APR	71	18	6.3	8.2	1.4	26	12	106	0
11	34	9.2	2.7	4.1	1.0	15	6.6	56	6
03	70	19	5.4	7.3	1.3	23	9.0	97	1
26 AUG	85	21	7.8	9.4	2.0	27	14	141	5
15	77	20	6.6	7.5	2.0	25	* 10	150	4
	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,	NITRO- GEN, AM- MONIA +	NITRO-	PHOS-	PHOS- PHORUS,	CARBON,
	NITRATE	NITRITE	AMMONIA TOTAL	ORGANIC TOTAL	ORGANIC	GEN, TOTAL	PHORUS,	ORTHO.	DRGANIC
	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DATE	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS C)
OCT									
18	.83	.01	.07	.64	.71	1.6	.10	.00	6.3
29 FEB	.94	.02	.14	.76	.90	1.9	.04	.02	10
28 APR	1.2	.03	.25	.23	.48	1.7	.07	.05	2.3
11	.39	.01	.07	.19	.26	.66	.03	.01	4.3
03 JUL	.71	.04	.05	.46	.51	1.3.	.05	.02	5.5
26 AUG			.10	.70	.80	1.8			10
15			.20	.20	.40	1.7			4.7

01463500 DELAWARE RIVER AT TRENTON, NJ (National stream quality accounting network, Pesticide program, and Radiochemical program station)

LOCATION. -- Lat 40°13'18", long 74°46'42", Mercer County, Hydrologic Unit 02040105, on left bank 450 ft (137 m) upstream from Calhoun Street Bridge at Trenton, 0.5 mi (0.8 km) upstream from Assunpink Creek, and at mile 134.5 (216.4 km).

DRAINAGE AREA. -- 6.780 m12 (17.560 km2).

PERIOD OF RECORD. -WATER DISCHARGE: February 1913 to current year. October 1912 to February 1913 monthly discharge only, published in WSP 1302. Gage-height records collected in this vicinity since 1904 are contained in reports of the National Weather Service.
CHEMICAL ANALYSES: Water years 1945 to current year.
SEDIMENT ANALYSES: Water years 1948 to current year.

PERIOD OF DAILY RECORD. --

WATER DISCHARGE: February 1913 to current year. SPECIFIC CONDUCTANCE: June 1968 to current year.

pH: June 1968 to current year.
WATER TEMPERATURES: October 1944 to current year.
DISSOLVED OXYGEN: October 1962 to current year.
SUSPENDED-SEDIMENT DISCHARGE: September 1949 to current year.

REVISED DISCHARGE RECORDS. -- WSP 951: Drainage area. WSP 1302: 1913-20. WSP 1382: 1924, 1928.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to Sept. 30, 1965, at datum 7.77 ft (2.368 m) higher. Feb. 24, 1913, to Oct. 2, 1928, nonrecording gage on downstream side of highway bridge at site 500 ft (152 m) downstream.

INSTRUMENTATION. -- Temperature recorder since October 1944, water-quality recorder since October 1962.

REMARKS.--Discharge records excellent. Diurnal fluctuations at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lakes Wallenpaupack and Hopatcong, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, Neversink, and Wild Creek Reservoirs (see Delaware River Basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs and to Delaware and Raritan Canal (see Delaware River Basin, diversions). Water diverted just above station by borough of Morrisville, PA, and city of Trenton for municipal supply (see Delaware River Basin, diversions). Missing continuous water-qualit records are the result of malfunction of sensor or sampling mechanism. Daily sediment data omitted from the 1977 Annual Report are included in this report. -quality

AVERAGE DISCHARGE. -- 66 years, 11,744 ft3/s (332.6 m3/s), unadjusted.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 50,000 ft3/s (1,420 m3/s) and maximum (*):

			Disch	arge	Gage H	eight
Date		Time	(ft3/s)	(m^3/s)	(ft)	(m)
Jan.	10	1700	*89500	2535	17.26	5.261
Jan.	27	2000	76300	2161	16.35	4.983
Mar.	28	1845	74300	2104	16.21	4.941

Minimum discharge, 3,040 ft³/s (86.1 m³/s) Sept. 28, 29, gage height, 8.02 ft (2.444 m). WATER TEMPERATURES: Maximum, 30.0°C July 23, 24.

SEDIMENT CONCENTRATIONS:

Water year 1977: Maximum daily mean, 923 mg/L Feb. 25, 1977; minimum daily mean, 1 mg/L December 22, 27, 1976 and April 20, 1977. Water year 1978: Maximum daily mean, 306 mg/L Jan. 10, 1978; minimum daily mean, 1 mg/L on several days in March and September 1978. SEDIMENT LOADS:

Water year 1977: Maximum daily, 119,000 tons (108,000 tonnes) March 15, 1977; minimum daily, 12 tons (11 tonnes) on numerous days during the year.
Water year 1978: Maximum daily, 66,500 tons (60,300 tonnes) Jan. 10, 1978; minimum daily, 9.2 tons (8.3 tonnes) on Sept. 14, 1978.

EXTREMES FOR PERIOD OF DAILY RECORD. --

XTREMES FOR PERIOD OF DAILY RECORD. -WATER DISCHARGE: Maximum discharge, 329,000 ft³/s (9.320 m³/s) Aug. 20, 1955 (elevation, 28.60 ft or 8.717 m, from
high-water mark in gage house) from rating curve extended above 230,000 ft³/s (6,510 m³/s); minimum, 1,180 ft³/s
(33.4 m³/s) Oct. 31, 1963, elevation, 7.26 ft (2.213 m). Flow in Delaware and Raritan Canal not included.

SPECIFIC CONDUCTANCE: Maximum, 400 micromhôs Jan. 24, 1959; minimum, 50 micromhos Mar. 19, 1945.
pH: Maximum, 10.2 July 5, 6, 1971, June 14, 15, 1974; minimum, 5.3 June 22, 1972.

WATER TEMPERATURES: Maximum, 34.0°C June 18, 1957; minimum 0.0°C on many days during winter months.

DISSOLVED OXYGEN: Maximum, 17.3 mg/L July 9, 1974; minimum, 4.0 mg/L Nov. 9, 1972.

SEDIMENT CONCENTRATIONS: Maximum daily, 1,720 mg/L Nov. 26, 1950; minimum daily, less than 0.5 mg/L Oct. 21, 1952
and Jan. 18. 1970.

and Jan. 18, 1970. SEDIMENT LOADS: Ma EDIMENT LOADS: Maximum daily, 1,087,000 tons (986,126 tonnes) Aug. 20, 1955; minimum daily, less than 0.5 ton (0.45 tonnes) Oct. 21, 1952.

EXTREMES OUTSIDE PERIOD OF RECORD. --Flood of Oct. 11, 1903, reached an elevation of about 28.5 ft (8.69 m) National Geodetic Vertical Datum of 1929, discharge estimated, 295,000 ft /s (8,350 m /s). Maximum elevation since 1903, 30.6 ft (9.33 m) National Geodetic Vertical Datum of 1929, Mar. 8, 1904, from floodmark (ice jam).

139 DELAWARE RIVER BASIN 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

1 14500 9710 23200 17200 26400 7000 45600 8760 14000 4830 4520 653						M	EAN VALUE	S					
2 13500 9330 29600 15200 23400 7230 39500 8280 13300 4450 4670 507 3 21100 9270 34600 13800 20300 7090 43000 7780 12200 4640 4410 430 4 20800 9450 32500 12400 18100 6850 39900 7330 12700 7830 3940 395 5 16100 9270 28100 12100 15800 6620 36400 7090 12100 7000 4110 362 6 12700 8730 27000 12200 13000 5860 33000 9020 10900 8390 10400 328 8 10200 21200 20800 12400 13700 6760 32000 9630 10800 6620 12700 342 9 11800 26700 18800 31100 13300 6950 32800 10700 12500 5770 13800 452 10 16200 28000 17200 79200 13500 6120 29600 11900 15500 4950 10400 419 11 21500 27300 15100 65800 12800 6120 29600 11900 15500 4950 10400 419 11 21500 27300 15100 65800 12800 6120 29600 11900 15500 4950 10400 419 11 21500 27300 15100 45800 12100 6530 23200 13000 12300 4370 9630 356 13 15600 32800 11400 45800 12100 6530 23200 13000 12300 4370 9630 356 13 15600 32800 11400 41000 11600 7530 23700 11700 11100 4330 12300 349 14 13200 27500 13400 35200 11000 11500 29000 14000 4260 8860 342 15 14600 23400 22900 28200 11300 30200 22200 30000 10700 4410 6900 336 16 17 24700 17800 33500 22100 10300 20000 15800 44900 9240 5270 5520 369 18 33000 17500 33000 20400 10500 22100 15800 44900 9240 5270 5520 369 18 33000 17500 33600 18400 10500 22100 15800 44900 9240 5270 5520 369 18 33000 17500 33600 18400 10500 22100 15800 44900 9240 5270 5520 369 19 44300 16700 33600 18400 10300 20200 15800 44900 9240 5270 5520 369 19 39200 15300 28700 17500 9190 21700 15800 44900 9240 5270 5520 369 19 39200 15300 28700 17500 9190 21700 15800 44900 9240 5270 5520 369 22 33900 12600 41500 14400 8550 28900 16300 31800 7780 4080 3760 648 22 33900 12600 41500 14400 8550 28900 16300 31800 7780 4080 3760 648 23 27900 13000 35100 13300 8390 39500 15800 44600 7090 4300 4190 793 24 23200 12900 28900 12500 8490 43700 13900 28900 6480 4320 3660 499 24 23200 12900 28900 12500 8490 43700 13900 28900 6480 3800 3760 6480 4220 3660 499 25 20100 12000 26000 17500 48300 67000 9910 16000 5520 3620 5150 389 30 12100 14900 18900 36900 58000 9910 16900 5230 3690 5190 329 30 12100 14900 18900	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
2 13500 9330 29600 15200 23400 7230 39500 8280 13300 4450 4450 4670 507 3 21100 9270 34600 13800 20300 7090 43000 7780 12200 4640 4410 433 4 20800 9450 32500 12400 18100 6850 39900 7780 12700 7830 3940 395 5 16100 9270 28100 12100 15800 6620 36400 7090 12100 7000 4110 362 6 12700 8730 27000 12300 14200 5860 33000 7380 11200 6120 4410 336 7 11000 11100 23500 12200 13000 5860 33000 9020 10900 8390 10400 329 8 10200 21200 20800 12400 13700 6760 32000 9630 10800 6620 12700 342 9 11800 26700 18800 31100 13300 6950 32800 10700 12500 5770 13800 452 10 16200 28000 17200 79200 13500 6120 29600 11900 15500 4950 10400 495 11 21500 27300 15100 65800 12800 6120 29600 11900 15500 4950 10400 495 12 18800 32000 14000 45800 12100 6530 23200 13000 12300 4370 9630 356 13 15600 32800 11400 41000 11600 7530 23200 13000 12300 4370 9630 356 13 15600 32800 11400 41000 11600 7530 23200 11700 11100 4330 12300 349 14 13200 27500 13400 35200 11000 11500 29600 11700 1100 4330 12300 349 15 14600 23400 22900 28200 11300 30200 22200 30000 10700 4410 6900 336 16 17400 20000 29900 28200 11300 30200 22200 30000 10700 4410 6900 336 17 24700 17800 33500 22100 10300 26000 17200 34900 9240 5270 5520 366 18 33000 17500 33600 18400 40500 22100 15800 44900 8180 5350 5030 369 18 33900 17500 33600 18400 10500 22100 15800 44900 8180 5350 5030 369 19 44300 16700 33600 18400 40500 22100 15800 44900 8180 5350 5030 369 19 44300 16700 33600 18400 40500 22100 15800 44900 8180 5350 5030 369 19 44300 16700 33600 18400 40500 22100 15800 44900 8180 5350 5030 369 22 33900 15300 28700 17500 9190 21700 15800 44600 7090 4300 4190 793 21 37800 14000 32400 47700 8880 23100 15800 7480 4450 3690 5350 3690 3560 339 22 33900 15000 27600 47700 8340 39500 15400 27600 7880 4450 3690 5350 3690 3560 339 23 27900 13000 27600 47700 8340 39500 15400 27600 7830 4450 3690 3560 339 24 23200 12900 28900 12500 6580 7700 11100 2300 5550 3690 3560 339 25 20100 12000 26000 17000 83400 3500 7200 7280 5510 3800 7780 4080 3760 6480 3800 3760 6480 3800 3760 6480 3800 3760 6480 3800 3760 6480 38	1	14500	9710	23200	17200	26400	7000	45600	8760	14000	4830	4520	6530
3	2	13500	9330	29600	15200	23400	7230	39500		13300			5070
5 16100 9270 28100 12100 15800 6620 36400 7090 12100 7000 4110 362 6 12700 8730 27000 12300 14200 6260 34300 7380 11200 6120 4410 336 7 11000 11100 23500 12200 13000 5860 33000 9630 10800 6620 12700 342 9 11800 26700 18800 31100 13300 6950 32800 10700 12500 5770 13800 452 10 16200 28000 17200 79200 13500 6120 29600 11900 15500 4950 10400 419 11 21500 27300 15100 65800 12800 6120 25700 12600 14700 4480 8650 373 12 18803 32000 11400 41000 11600 7530 23700				34600	13800	20300					4640	4410	4300
6 12700 8730 27000 12300 14200 6260 34300 7380 11200 6120 4410 3367 11000 11100 23500 12200 13000 5860 33000 9020 10900 8390 10400 3298 10200 21200 20800 12400 13700 6760 32000 9630 10800 6620 12700 342 91800 26700 18800 31100 13300 6950 32800 10700 12500 5770 13800 4520 10600 128000 17200 79200 13500 6120 29600 11900 15500 4950 10400 419 11 21500 27300 15100 65800 12800 6620 29600 11900 15500 4950 10400 419 11 21500 27300 15100 65800 12800 66120 29600 11900 15500 4950 10400 419 12 12 12 12 12 12 12 12 12 12 12 12 12					12400	18100	6850	39900	7330	12700	7830	3940	3900
7 11000 11100 23500 12200 13000 5860 33000 9020 10900 8390 10400 329 8 10200 21200 20800 12400 13700 6760 32000 9630 10800 6620 12700 342 9 11800 26700 18800 31100 13300 6950 32800 11900 15500 5770 13800 452 10 16200 28000 17200 79200 13500 6120 29600 11900 15500 4950 10400 419 11 21500 23000 14000 45800 1200 6530 23200 13000 12300 4370 9630 356 12 18800 32000 14000 45800 12100 6530 23200 13000 12300 4370 9630 356 13 15600 32800 114000 4500 41700 4100 41700 <td>5</td> <td>16100</td> <td>9270</td> <td>28100</td> <td>12100</td> <td>15800</td> <td>6620</td> <td>36400</td> <td>7090</td> <td>12100</td> <td>7000</td> <td>4110</td> <td>3620</td>	5	16100	9270	28100	12100	15800	6620	36400	7090	12100	7000	4110	3620
8 10200 21200 20800 12400 13700 6760 32000 9630 10800 5620 12700 342 9 11800 26700 18800 31100 13300 6950 32800 10700 12500 5770 13800 495 10 16200 28000 17200 79200 13500 6120 29600 11900 15500 5950 14950 10400 4520 11 21500 27300 15100 65800 12800 6120 25700 12600 14700 4480 8650 373 12 18800 32000 14400 45800 12100 6530 23200 13000 12300 4370 9630 356 13 15600 32800 114000 41600 7530 23200 11400 41300 41400 4260 8860 342 14 13200 27500 13400 35200 11000 11500 23900 14300 11400 4260 8860 342 15<													3360
9 11800 26700 18800 31100 13300 6950 22800 10700 12500 5770 13800 4520 10 16200 28000 17200 79200 13500 6120 29600 11900 15500 4950 10400 419 11 21500 27300 15100 65800 12800 6120 2700 12600 14700 4480 8650 373 12 18800 32000 14000 45800 12100 6530 23200 13000 12300 4370 9630 356 13 15600 32800 11400 41000 11600 7530 23700 11700 11100 4330 12300 349 14 13200 27500 13400 35200 11000 11500 23900 14300 11400 4260 8860 342 15 14600 23400 22900 28200 11300 30200 22200 30000 10700 4410 6900 336 16 17400 20000 29900 24800 10700 31600 19700 29100 10200 4600 6530 336 17 24700 17800 33500 22100 10300 26000 17200 34900 9240 5270 5520 369 18 33000 17500 33600 2400 10500 22100 15800 44900 8180 5350 5030 369 19 44300 16700 33600 18400 10300 20200 15800 44900 8180 5350 5030 369 20 39200 15300 28700 17500 9190 21700 15800 44600 7090 4300 4190 793 21 37800 14000 32400 14700 8080 23100 16200 37500 7430 4220 4040 753 22 33900 12600 41500 14400 8550 28900 16300 37800 44600 7090 4300 4190 793 21 37800 14000 32400 14700 8080 23100 16200 37500 7430 4220 4040 753 23 27900 13000 35100 13300 8390 39500 15400 27600 7280 4450 3600 499 24 23200 12900 28900 12500 8490 43700 13900 28900 6480 4220 3660 499 25 20100 12000 26200 14000 8600 44400 12700 29600 6480 3800 3760 604 26 17700 15000 27600 47700 8340 43700 13900 28900 6480 4220 3660 499 28 14900 17300 24300 69500 7280 57100 11100 22300 5350 3690 3560 339 28 14900 17300 24300 69500 7280 57100 11100 22300 5350 3690 3560 339 28 14900 17300 24300 69500 7280 57100 11100 22300 5350 3690 3560 339 30 12100 14900 18900 36900 58900 9350 15100 5310 3830 4520 3490 30 12100 14900 18900 36900 58900 9350 15100 5310 3830 4520 3490 31 10600 17400 30800 58900 9350 15100 5310 3830 4520 3490 31 10600 17400 30800 58900 9350 15100 5310 3830 4520 3490													3290
10													3420
11 21500 27300 15100 65800 12800 6120 25700 12600 14700 4480 8650 373 12 18800 32000 14000 45800 12100 6530 23200 13000 12300 4370 9630 356 13 15600 32800 11400 41000 11600 7530 23700 11700 11100 4330 12300 349 14 13200 27500 13400 35200 11000 11500 23900 14300 11400 4260 8860 342 15 14600 23400 22900 28200 11300 30200 22200 30000 10700 4410 4260 8860 342 16 17400 20000 29900 24800 10700 31600 19700 29100 10200 4600 6530 336 16 17400 20000 29900 24800 10700 31600 19700 29100 10200 4600 6530 336 690 18													4520
12 18800 32000 14000 45800 12100 6530 23200 13000 12300 4370 9630 356 13 15600 32800 11400 41000 11500 23700 11700 11100 4330 12300 349 14 13200 27500 13400 35200 11000 11500 23900 14300 11400 4260 8860 342 15 14600 23400 22900 28200 11300 30200 22200 30000 11700 4410 6900 336 16 17400 20000 29900 24800 10700 31600 19700 29100 10200 4600 6530 336 17 24700 17800 33500 22100 10300 26000 17200 34900 9240 5270 5520 369 18 33000 17500 33600 18400 10500 22100 15800 44900 8180 5350 5030 369 20 39200 1530	10	16200	28000	17200	79200	13500	6120	29600	11900	15500	4950	10400	4190
13 15600 32800 11400 41000 11600 7530 23700 11700 11100 4330 12300 349 14 13200 27500 13400 35200 11000 11500 23900 14300 11400 4260 8860 342 15 14600 23400 22900 28200 11300 30200 22200 30000 10700 4410 6900 336 16 17400 20000 29900 24800 10700 31600 19700 29100 10200 4600 6530 336 17 24700 17800 33500 22100 10300 26000 17200 34900 9240 5270 5520 369 18 33000 17500 33600 18400 10500 22100 15800 44900 8180 5350 5030 369 19 44300 16700 33600 18400 10300 20200 15800 44900 8180 5350 5030 369 20 3920													3730
14 13200 27500 13400 35200 11000 11500 23900 14300 11400 4260 8860 342 15 14600 23400 22900 28200 11300 30200 22200 30000 10700 4410 6900 336 16 17400 20000 29900 24800 10700 31600 19700 29100 10200 4600 6530 336 17 24700 17800 33500 22100 10300 26000 17200 34900 9240 5270 5520 369 18 33000 17500 33600 18400 10300 22000 15800 44900 8180 5350 5030 369 19 44300 16700 33600 18400 10300 20200 15300 46300 7380 4450 4520 495 20 39200 15300 28700 17500 9190 21700 158													3560
15 14600 23400 22900 28200 11300 30200 22200 30000 10700 4410 6900 336 16 17400 20000 29900 24800 10700 31600 19700 29100 10200 4600 6530 336 17 24700 17800 33500 22100 10300 26000 17200 34900 9240 5270 5520 369 18 33000 17500 33600 18400 10500 22100 15800 44900 8180 5350 5030 369 19 44300 16700 33600 18400 10300 20200 15800 44900 8180 5350 5030 369 20 39200 15300 28700 17500 9190 21700 15800 44600 7090 4300 4190 793 21 37800 14000 32400 14700 8080 23100 16200													
16 17400 20000 29900 24800 10700 31600 19700 29100 10200 4600 6530 336 17 24700 17800 33500 22100 10300 26000 17200 34900 9240 5270 5520 369 18 33000 17500 33000 20400 10500 22100 15800 44900 8180 5350 5030 369 19 44300 16700 33600 18400 10300 20200 15300 46300 7380 4450 4520 495 20 39200 15300 28700 17500 9190 21700 15800 44600 7090 4450 4520 495 21 37800 14000 32400 14700 8080 23100 16200 37500 7430 4220 4040 753 22 33900 12600 41500 14400 8550 28900 16300 </td <td></td>													
17	15	14000	23400	22900	28200	11300	30200	22200	30000	10700	4410	6900	3360
18 33000 17500 33000 20400 10500 22100 15800 44900 8180 5350 5030 369 19 44300 16700 33600 18400 10300 20200 15300 46300 7380 4450 4520 495 20 39200 15300 28700 17500 9190 21700 15800 44600 7090 4300 4450 495 21 37800 14000 32400 14700 8080 23100 16200 37500 7430 4220 4040 753 22 33900 12600 41500 14400 8550 28900 16300 31800 7780 4080 3760 604 23 27900 13000 35100 13300 8390 39500 15400 27600 7280 4450 3660 491 24 23200 12900 28900 12500 8490 43700 13900 28900 6480 4220 3660 491 25 20100													3360
19 44300 16700 33600 18400 10300 20200 15300 46300 7380 4450 4520 495 20 39200 15300 28700 17500 9190 21700 15800 44600 7090 4300 4490 793 21 37800 14000 32400 14700 8080 23100 16200 37500 7430 4220 4040 753 22 33900 12600 41500 14400 8550 28900 16300 31800 7780 4080 3760 604 23 27900 13000 35100 13300 8390 39500 15400 7780 4080 3760 604 24 23200 12900 28900 12500 8490 43700 13900 28900 6480 4220 3660 499 25 20100 12000 26200 14000 8600 44400 12700 29600													3690
20													3690
21 37800 14000 32400 14700 8080 23100 16200 37500 7430 4220 4040 753 22 33900 12600 41500 14400 8550 28900 16300 31800 7780 4080 3760 604 23 27900 13000 35100 13300 8390 39500 15400 27600 7280 4450 3690 531 24 23200 12900 28900 12500 8490 43700 13900 28900 6480 4220 3660 499 25 20100 12000 26200 14000 8600 44400 12700 29600 6480 3800 3490 426 26 17700 15000 27600 47700 8340 39500 12000 26500 5730 3620 3460 356 27 16000 16900 27300 69500 7280 57100 11100 22300 5350 3690 3560 339 28 14900 17300 24300 63400 6580 71200 10600 19100 5520 3620 5150 342 29 13300 15600 21700 48300 67000 9910 16900 5230 3690 5150 342 29 13300 15400 18900 36900 58900 9350 15100 5310 3830 4520 349 30 12100 14900 18900 36900 58900 9350 15100 5310 3830 4520 349 31 10600 17400 30800 58900 9350 15100 5310 3830 4520 349													4950
22 33900 12600 41500 14400 8550 28900 16300 31800 7780 4080 3760 604 23 27900 13000 35100 13300 8390 39500 15400 27600 7280 4450 3690 531 24 23200 12900 28900 12500 8490 43700 13900 28900 6480 4220 3660 499 25 20100 12000 26200 14000 8600 44400 12700 29600 6480 3800 3490 426 26 17700 15000 27600 47700 8340 39500 12000 26500 5730 3620 3460 356 27 16000 16900 27300 69500 7280 57100 11100 22300 5350 3690 3560 339 28 14900 17300 24300 63400 6580 71200 10600 19100 5520 3620 5150 342 29 13300 15600 21700 48300 67000 9910 16900 5230 3690 5150 342 29 13100 14900 18900 36900 58900 9350 15100 5310 3830 4520 349 31 10600 17400 30800 58900 9350 15100 5310 3830 4520 349 31 10600 17400 30800 53000 13900 3730 4370	20	39200	15300	28700	17500	9190	21700	15800	44600	7090	4300	4190	7930
23 27900 13000 35100 13300 8390 39500 15400 27600 7280 4450 3690 531 24 23200 12900 28900 12500 8490 43700 13900 28900 6480 4220 3660 499 25 20100 12000 26200 14000 8600 44400 12700 29600 6480 3800 3490 426 26 17700 15000 27600 47700 8340 39500 12000 26500 5730 3620 3460 356 27 16000 16900 27300 69500 7280 57100 11100 22300 5350 3690 3560 339 28 14900 17300 24300 63400 6580 71200 10600 19100 5520 3620 5150 342 29 13300 15600 21700 48300 67000 9910 16900 5230 3690 5190 329 30 12100 14900 18900 36900 58900 9350 15100 5310 3830 4520 349 31 10600 17400 30800 53000 13900 3730 4370													7530
24 23200 12900 28900 12500 8490 43700 13900 28900 6480 4220 3660 499 25 20100 12000 26200 14000 8600 44400 12700 29600 6480 3800 3490 426 26 17700 15000 27600 47700 8340 39500 12000 26500 5730 3620 3460 356 27 16000 16900 27300 69500 7280 57100 11100 22300 5350 3690 3560 339 28 14900 17300 24300 63400 6580 71200 10600 19100 5520 3620 5150 342 29 13300 15600 21700 48300 67000 9910 16900 5230 3690 5190 329 30 12100 14900 18900 36900 58900 9350 15100 5310 3830 4520 349 31 10600 <td< td=""><td>22</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6040</td></td<>	22												6040
25	23												5310
26 17700 15000 27600 47700 8340 39500 12000 26500 5730 3620 3460 3560 27 16000 16900 27300 69500 7280 57100 11100 22300 5350 3690 3560 339 28 14900 17300 24300 63400 6580 71200 10600 19100 5520 3620 5150 342 29 13300 15600 21700 48300 67000 9910 16900 5230 3690 5190 329 30 12100 14900 18900 36900 58900 9350 15100 5310 3830 4520 349 31 10600 17400 30800 53000 13900 3730 4370	24												4990
27 16000 16900 27300 69500 7280 57100 11100 22300 5350 3690 3560 3390 28 14900 17300 24300 63400 6580 71200 10600 19100 5520 3620 5150 342 29 13300 15600 21700 48300 67000 9910 16900 5230 3690 5190 329 30 12100 14900 18900 36900 58900 9350 15100 5310 3830 4520 349 31 10600 17400 30800 53000 13900 3730 4370		20100	12000	20200	14000	8600	44400	12700	29600	6480	3800	3490	4260
28												3460	3560
29 13300 15600 21700 48300 67000 9910 16900 5230 3690 5190 329 30 12100 14900 18900 36900 58900 9350 15100 5310 3830 4520 349 31 10600 17400 30800 53000 13900 3730 4370													3390
30 12100 14900 18900 36900 58900 9350 15100 5310 3830 4520 349 31 10600 17400 30800 53000 13900 3730 4370						6580							3420
31 10600 17400 30800 53000 13900 3730 4370													3290
	30												3490
MOTAL (40000 F40000 00000 00000 00000 00000 00000	31	10600		17400	30800		53000		13900		3730	4370	
	TOTAL	617700	517260	792100	902600	345800	776520	696060	638470	290080	149370	190380	128660
													4289
													7930
MIN 10200 8730 11400 12100 6580 5860 9350 7090 5230 3620 3460 329	MIN	10200	8730	11400	12100	6580	5860	9350	7090	5230	3620	3460	3290
CAL YR 1977 TOTAL 5195970 MEAN 14240 MAX 107000 MIN 2200													

WTR YR 1978 TOTAL 6045000 MEAN 16560 MAX 79200 MIN 3290

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
OCT										
21 NOV	1255	39150	88	7.2	11.0	6		10.9	1.2	290
28 DEC	1015	17600	139	7.7	5.0	5		12.0	1.4	140
19 JAN	1030	34000	116	7.2	4.0	1		12.8		K720
18 FEB	1310	20700	134	7.4	1.0	6		14.0	1.1	K55
17 MAR	1100	10400	159	7.2	2.0	3		13.4	1.6	180
23 APR	1215	40400	129	7.0	8.0	15		12.2	2.0	140
12 MAY	1010	22700	104		9.0	2		11.6	1.5	K18
02 JUN	1600	8230	159	9.4	14.5	2		15.2	3.9	КЗ
21 JUL	1200	7780	176	8.8	24.0		4.0	8.6	2.8	35
AUG	1020	4480	190	8.9	25.0		2.0	10.4	3.1	22
24	1245	3730	238	9.4	26.0		4.0	11.8	3.8	K5
31 SEP	0955	4370			••					
27	1150	3260	223	8.1	18.0		2.0	9.6	2.3	12

01463500 DELAWARE RIVER AT TRENTON, NJ--CONTINUED

		WALE	N QUALITI	DAIA, WA	IEN IENN C	CIOBER	911 10 35	FIEMBER (910	
	IOCOCCI			MAGNE-		POTAS-				CHLO-
	FECAL,	HARD-	CALCIUM	SIUM,	SODIUM,	SIUM,	BICAR-	ALKA-	SULFATE	RIDE,
	KF AGAR	NESS	DIS-	DIS-	DIS-	DIS-	BONATE	LINITY	DIS-	DIS-
	(COLS.	(MG/L	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	(MG/L	SOLVED	SOLVED
	PER	AS	(MG/L	(MG/L	(MG/L	(MG/L	AS	AS	(MG/L	(MG/L
DATE	100 ML)	CACO3)	AS CA)	AS MG)	AS NA)	AS K)	HCO3)	CACO3)	AS SO4)	AS CL)
DCT										
21	120	30	8.5	2.2	3.7	1.3	18	15	16	5.5
NOV 28	600	51	14				24	28		6.8
DEC	800	51	1.4	4.0	5.4	1.5	34	20	21	0.0
19	,	20	5.8	1.3	2.3	.6	29	24	10	4.1
JAN 18	550	48	13	3.8			26	21	17	9.1
FEB	550	***	13	3.8	6.2	1.1	26	21	17	9.1
17	66	58	15	5.1	7.5	1.2	37	30	22	12
MAR 23	450	41	11	3.3	6.0	1.4	26	21	17	8.4
APR										
12 MAY	<1	37	10	2.9	4.2	1.0	23	19	14	6.1
02	K1	67	_18	5.3	6.3	1.4	49	40	22	9.6
JUN 21	660	66	17	5.8	7.6	1.7		41	24	11
JUL										
AUG	•	75	19	6.8	8.3	1.9		53	24	12
24	130	96	24	8.7	10	2.2		60	29	13
31										
SEP 27	80	92	22	9.1	9.5	2.0		56	29	14
				***	,.,				1	(III)
			SOLIDS,	SOLIDS,	SOLIDS,		SEDI-	SED.		
	FLUO-	SILICA,	RESIDUE	RESIDUE	RESIDUE		MENT	SUSP.	NITRO-	NITRO-
	RIDE,	DIS-	AT 180	AT 105	AT 105	SEDI-	DIS-	SIEVE	GEN,	GEN,
	DIS-	SOLVED	DEG. C	DEG. C,	DEG. C.	MENT,	CHARGE,	DIAM.	NO2+NO3	AMMONIA
	SOLVED (MG/L	(MG/L	DIS- SOLVED	DIS- SOLVED	SUS- PENDED	SUS- PENDED	SUS- PENDED	% FINER THAN	TOTAL (MG/L	TOTAL (MG/L
DATE	AS F)	SI02)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(T/DAY)	.062 MM	AS N)	AS N)
					t					
OCT 21	.1	3.9	59		15	46	4860	62	.52	.05
NOV	- 15					, ,				
28 DEC	.0	2.6	77		8		•••		.89	.10
19	0	5.8	35		16				.92	.11
JAN 18	.0	5.0	80		12	12	671	77	.90	.11
FEB			84	100		8	225	100		.19
17 MAR	.0	5.1	84	100	6		225	100	1.1	•19
23 APR	.0	4.5	69		54	101	11000	62	.80	.11
12	.0	3.1	65		6	10	613	76	.62	.06
MAY			1							
02 JUN	.1	.8	100		. 0	4	89	100	.63	.01
21	.1	1.2	124		3	10	210	87	.88	.01
JUL 11	.1	3.1	131		2	7	85	100	.89	.00
AUG										
24	.1	3.2	163				000		.86	.00
31 SEP						22	260	95		••
27	.1	3.9	143		2	3	26	93	1.6	.06
0.5			100		1 7	-		4	1 1 1 1 1 1 1	

01463500 DELAWARE RIVER AT TRENTON, NJ--CONTINUED

			NITRO-				OCTOBER 1	911 TO SE	PIEMBER 1	978		
		NITRO- GEN, DRGANIC TOTAL (MG/L		NITRO- GEN, NH4 + ORG. SUSP. TOTAL (MG/L	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L	NITRO-	PHOS- PHORUS, TOTAL (MG/L	PHOS- PHORUS, DIS- SOLVED (MG/L	CARBON, ORGANIC TOTAL (MG/L	CARBON, ORGANIC DIS- SOLVED (MG/L	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L	
	DATE	AS N)	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS C)	AS C)	AS C)	
	OCT											
	21 NOV				.60		.05	.02	6.8	•••	••	
	28		••		.49		.06	.03		5.9	1.1	
	DEC 19				.20		.05	.03	7.6			
	JAN 18											
	FEB			••	.33		.06	.03	9.5			
	17	.34	.53	.31	.22	1.6	.06	.05		6.0	.6	4
	23 APR	.62	.73	.30	.43	1.5	.10	.02	3.9			
	12	.19	.25	.01	.24	.87	.03	.03	4.6			
	MAY 02	.34	.35	.10	.25	.98	.04					
	JUN							.03		7.3	.5	
	21 JUL	.59	.60	.26	.34	1.5	.06	.06	5.6		••	
	11	.54	.54	.28	.26	1.4	.08	.03	4,3			
	24	1.1	1.1	.74	.36	2.0	.17	.04		6.4		
	SEP							•				
	27	.24	.30	.00	.30	1.9	.10	.09	3.2	2.8	.4	
DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BARIUM, SUS- PENDED RECOV- ERABLE (UG/L AS BA)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)
NOV												
28	1015		•••	1	••		0					
FEB 17	1100	0	0	0	0	0	0	0	0	0	<10	<10
MAY 02	1600	2	1	1	0	0	0		0		10	8
AUG			4						0		<10	<6
24 SEP	1245	1	. 0	1	100	0	100	-	·			
27	1150	1		1	0	0	. 0				<10	<10
DATE	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COBALT, SUS- PENDED RECOV- ERABLE (UG/L AS CO)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)
NOV												
28 FEB										110		
17	.0	0	0	0	6	4	2	410		20	5	1
MAY 02	2	0	.0	0	6	2	4	140		30		0
AUG 24	4	3	1	2	8	5	3	1700	1700	30		
SEP												
27	0	1	0	1	15	7	8	80	40	40		••

01463500 DELAWARE RIVER AT TRENTON, NJ -- CONTINUED

			MANO	GA- MA	NGA-			MERCURY			SEI	LE-			SILVER,
		LEAD, DIS-	TOTA	AL S	US- NE	SE, 1	RCURY OTAL ECOV-	SUS- PENDED RECOV-	MERCURY DIS-	SELE-			SELE- NIUM, DIS-	SILVER, TOTAL RECOV-	SUS- PENDED RECOV-
		SOLVED	ERAB	BLE RE			RABLE	ERABLE	SOLVED	TOTAL			SOLVED	ERABLE	ERABLE
	DATE	(UG/L	(UG,				UG/L	(UG/L	(UG/L	(UG/L			(UG/L	(UG/L	(UG/L
	DATE	AS PB)	AS N	N) AS	MN) AS	MN) A	S HG)	AS HG)	AS HG)	AS SE) AS	SE)	AS SE)	AS AG)	AS AG)
1	VOV														
	28 FEB					30	<.5	.0	<.5	7.	•		0		
	17	4		40	0	40	<.5	.0	<.5		0	0	0	0	. 0
1	YAY			-									11.7	197	
	02 AUG			30	10	20	<.5	.0	<.5		0	0	0	.0	0.
	24		1	160	150	10	<.5	.0	<.5		0	0	0	0	. 0
	27			30	20	10						0		9	0
	4,			30	20	10	<.5	.0	<.5		1	Ų.	1	. 9	· ·
							4								
				7.T	NC,		ROSS	GROSS	GROSS	GROSS	CPI	oss (ROSS	RADIUM	
			ZINC		US-		LPHA,	ALPHA,	BETA,	BETA,			BETA,	226,	URANIUM
		SILVER,	TOTA			NC,	DIS-	SUSP.	DIS-	SUSP.			SUSP.	DIS-	DIS-
		SOLVED	RECO				UG/L	TOTAL (UG/L	SOLVED (PCI/L	(PCI/L			PCI/L	SOLVED, RADON	SOLVED, EXTRAC-
		(UG/L	(UG/	/L (U	G/L (U	G/L	AS	AS	AS	AS	AS	SR/	AS SR/	METHOD	TION
	DATE	AS AG)	AS 2	ZN) AS	ZN) AS	ZN)	(TAN-	U-NAT)	CS-137)	CS-137) YT.	-90)	(T-90)	(PCI/L)	(UG/L)
1	VOV														
	28 FEB					150				•	•				-
	17	0		50	20	30	<.9	<.4	2.1	<.	4	1.9	<.4	.12	.02
- 1	YAN	. 0		20	40								6- 1-		
-	02 AUG	0		20	10	10				-	• .				
	24	0		70	60	10	<1.0	.9	2.2	1.	1	2.1	1.0	.04	.25
,	3EP 27	, 0		20	10	10				· .					
					1717							1			
										Iv.					
											15.24				
										21 -11		No Section	1111	1 - 3 -	
								ATR			12.1		CHL		
				AROCLOR		PCB,		ZIN			DRIN,	Marine I	DAN		
				TOTAL 1254		IN BOT-	ATRA			IN	BOT-	CHLOR	- IN B	OT-	
			. 1	PCB	PCB,	TOM MA-					M MA-	DANE, TOTAL	TOM		DD,
	DA	TE	IME	SERIES (UG/L)	TOTAL (UG/L)	TERIAL (UG/KG)					ERIAL ((UG/L			(L)
	-			(00, 0,	(00, 0)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						a.			
	NOV				ND	N		ND	ND	ND	ND	NI	D .	ND	ND
	FEE		015		NO		111								
	17	1	100	.0				ND		ND		N	D	••	ND
	MAY		600		ND			ND		ND		N	D		ND
	AUG											- 1	Time.		ND
	24	1	245		ND	-				ND		N	121		
													1901		
			, p1		P,P'		P,1	D1	D	1-		DI-		1	
			00,		DDE,		DD		AZI	NON,		ELDRIN			RIN,
			TAL		TOTAL		TOT			TAL	01-	TOTAL IN BOT			TAL BOT-
			BOT-	DDE,	IN BOT-	DDT.	IN B			MA- E	LDRIN	TOM MA			MA-
		TE	RIAL	TOTAL	TERIAL	TOTAL	TER	IAL TOT	TAL TE	RIAL 1	LATO	TERIA			RIAL
	DA	TE (UG	/KG)	(UG/L)	(UG/KG)	(UG/L	(UG/	KG) (UG	(UG	/KG) (UG/L)	(UG/KG	, (06	(UG	/KG)
	NO	1										7	40 6 1		NO
	28	3	.9	ND	.9	N	D :	2.3	ND	ND	ND	N	D	ND	ND
	FE	7		ND		N	D		ND		ND	-	-	ND	
	MA	1							ND		ND		6.70	ND	LA
	AUG	2		ND	,	N			ND						
					1				NO		MD			ND	

DELAWARE RIVER BASIN 01463500 DELAWARE RIVER AT TRENTON, NJ--CONTINUED

				HEPTA-		HEPTA-				MALA-
		ETHION,		CHLOR,		CHLOR		LINDANE		THION,
*		TOTAL		TOTAL	HEPTA-	EPOXIDE		TOTAL		TOTAL
		IN BOT-	HEPTA-	IN BOT-	CHLOR	TOT. IN		IN BOT-	MALA-	IN BOT-
	ETHION,	TOM MA-	CHLOR,	TOM MA-	EPOXIDE	BOTTOM	LINDANE	TOM MA-	THION.	TOM MA-
	TOTAL	TERIAL	TOTAL	TERIAL	TOTAL	MATL.	TOTAL	TERIAL	TOTAL	TERIAL
DATE	(UG/L)	(UG/KG)	(UG/L)	(UG/KG)	(UG/L)	(UG/KG)	(UG/L)	(UG/KG)	(UG/L)	(UG/KG)
NOV										
28	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
FEB								1		
17	ND		ND		ND		ND		ND	
MAY										
02	ND		ND		ND		ND		ND	
AUG										
24	ND		ND		ND		ND		ND	
		METH-		METHYL		METHYL		PARA-	SIMA-	SIMA-
		OXY-		PARA-		TRI-		THION,	ZINE	ZINE IN
	METH-	CHLOR,	METHYL	THION,	METHYL	THION.		TOTAL	TOTAL	BOTTOM
	OXY-	TOT. IN	PARA-	TOT. IN	TRI-	TOT. IN	PARA-	IN BOT-	COUL-	MATERI-
	CHLOR,	BOTTOM	THION,	BOTTOM	THION.	BOTTOM	THION.	TOM MA-	SON	AL (UG/
	TOTAL	MATL.	TOTAL	MATL.	TOTAL	MATL.	TOTAL	TERIAL	COND.	KG DRY
DATE	(UG/L)	(UG/KG)	(UG/L)	(UG/KG)	(UG/L)	(UG/KG)	(UG/L)	(UG/KG)	(UG/L)	SOLIDS)
NOV	100									
28	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
FEB										
17	ND		ND		ND		ND		ND	
MAY										
02 AUG	ND		ND		ND		ND		ND	•
24	ND	••	ND		ND		ND			
		TOXA-		TRI-						
		PHENE,		THION,		2,4-D,		2,4,5-T		SILVEX,
		TOTAL		TOTAL		TOTAL		TOTAL		TOTAL
	TOX-	IN BOT-	TOTAL	IN BOT-		IN BOT-		IN BOT-		IN BOT-
	APHENE,	TOM MA-	TRI-	TOM MA-	2,4-D,	TOM MA-	2,4,5-T	TOM MA-	SILVEX,	TOM MA-
	TOTAL	TERIAL	THION	TERIAL	TOTAL	TERIAL	TOTAL	TERIAL	TOTAL	TERIAL
DATE	(UG/L)	(UG/KG)	(UG/L)	(UG/KG)	(UG/L)	(UG/KG)	(UG/L)	(UG/KG)	(UG/L)	(UG/KG)
NOV										
28	ND	ND	ND	ND	ND					ND
FEB	ND	NU	NU	ND	ND	. ND	ND	ND	ND	ND
17	ND		ND		ND.		ND		ND	
MAY	ND		ND		ND		ND		NU	-
02	ND		ND							
AUG	ND		ND							
24	ND		ND							
		-	AD	3.0						

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGIGICAL DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978
PERIPHYTON

	ength of exposure	Biomass	(g/m²)	Chlore		Chlo	prophyll b		Samp1	ing
Date	(days)	Dry weight	Ash we	eight	(mg/		(1	ng/m²)		meth	
Nov 2	46	.787	. 41	72	0.	.0		0.0		Polyeth	
Nov 2	46	.157	.01	79	0.	0		0.0		str	ip
•											
		PHYTOPLANKTON	ANALYS	ES, OCT	BER 19	77 TO J	JLY 197	8			
DATE		NOV	28,77	MAR	23,78	MAY	2,78	JUN	21.78	JUL	11.78
TIME			1015		215		600	1	200	1	020
TOTAL C	ELLS/ML		660		950		300	6	600	170	0000
DIVERSI	TY: DIVISION		1.4		0.0		0.7		1.1		1.3
	.CLASS		1.6		0.0		0.7		1.1		1.3
	ORDER		1.8		0.0		1.6		2.0		1.5
	FAMILY		3,3		2.2		3.0		2.8		2.6
	GENUS		3.5		2.2		3.2		3.0		3.5
		CELLS	PER-	CELLS	PER-	CELLS	PER-	CELLS	PER-	CELLS	PER-
DRGANI	SM	/ML	CENT	/ML	CENT	/ML	CENT	/ML	CENT	/ML	CENT
. CHLORO											
	OCOCCALES										
	ASTRACEAE							122		1 3 4 3 4	Phy
CDE			-		•		-	670	10	5100	3
	ODICTYACEAE								4		
PED			-		-		-			13000	7
	ACTINIACEAE					20				-2.	
GOL	RACTINIUM	63	10			72	2		-	40000	10
OOCY		0.3	10		•		•		••	18000	10
	ISTRODESMUS	8	1			*	0	190	3	4000	2
СНО			-			*	Ö	190		4000	:
	TYOSPHAERIUM									1400	1
	CHNERIELLA				-					2900	2
QUA										*	ō
	ENASTRUM		-				0		-	5400	3
SCEN	EDESMACEAE										
····ACT	INASTRUM							190	3	16000	9
CRU	CIGENIA	••			-					5800	3
SCE	NEDESMUS	16	2		•	110	2	2200#	33	18000	11
TET			-		-					1400	1
	SPORALES										
	ELLACEAE										
	AEROCYSTIS		-		-		•	1400#	21	1400	1
VOLVO											
	MYDOMONADACEAE						375				Sec. 1
	AMYDOMONAS OCACEAE		1			140	3	5. 4.0	17.	1800	1
GON					- 2.	-		SALA LAND	100	1400	THE L
ZYGNE			-		•		1 1	THE PARTY	-	1400	1
	IDIACEAE								100		
COS							1,1015	170	3	100	201.19
	NDYLOSIUM		-		_	*	0	170		F	100
	OCOCCALES			-	1		•	300 100		4	191
OOCY											
	EOACTINIUM									1400	1
				-	-	4-	100	1		1400	A

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

PHYTUPLANKTON ANALYSES, OCTOBER 1977 TO JULY 1978

PHIT	PLANKTUN	ANALIS	ES, UCT	JBER 19	11 10 30	PI 197	•		1	
DATE		28,77 1015		23,78 1215		2,78		21,78 1200		11,78 1020
	CELLS	PER-	CELLS	PER-	CELLS	PER-	CELLS	PER-	CELLS	PER-
DRGANISM	/ML	CENT	/ML	CENT	/ML	CENT	/ML	CENT	/ML	CENT
CHRYSOPHYTA						100				
.BACILLARIOPHYCEAE										
CENTRALES										
COSCINODISCACEAE										
CYCLOTELLA	32	5		-	1200#	27	480	7	9400	5
PENNALES										
ACHNANTHACEAE										
ACHNANTHES	63	10		-						
COCCONEIS	16	2	14	1						
CYMBELLACEAE		_		•						
CYMBELLA	32	5	190#	20	320	7	170	3		
DIATOMACEAE	-				320		2.0	-		
DIATOMA	24	4		-	89	2				
FRAGILARIACEAE					0.5	•				
ASTERIONELLA				-	72	2		-		-
FRAGILARIA		-				-	240	4		
HANNAEA		-			590	14		- 2		
SYNEDRA	16	2	290#	30	130	3	170	3		
GOMPHONEMATACEAE			230#	30	130	•		•		
GOMPHONEMA	40	6	120	13	*	0				
NAVICULACEAE	•••		120			•				
NAVICULA	87	13	300#	31	770#	18	170	3		-
NEIDIUM	24	4		-						-
PINNULARIA		-		-			*	0		-
NITZSCHIACEAE								•		
NITZSCHIA	55	8		-	410	10	96	1	2200	1
SURIRELLACEAE						•				-
SURIRELLA		-	41	4	140	3				-
.CHRYSOPHYCEAE										
CHRYSOMONADALES								1		
OCHROMONADACEAE										
DINOBRYON	16	2		-		-				-
CHANDOURMA COLUMN CORRES										
CYANOPHYTA (BLUE-GREEN ALGAE)										
.CYANOPHYCEAE										
CHROCCOCCALES										
CHROCCOCCAEAE										2
AGMENELLUM		-		•		-			12000	7
ANACYSTIS		-		-	210	5	480	7	52000#	30
HORMOGONALES										
OSCILLATORIACEAE										
OSCILLATORIA	160#	24						-		-
EUGLENOPHYTA (EUGLENOIDS)										
.EUGLENOPHYCEAE										
EUGLENALES										
EUGLENACEAE										
TRACHELOMONAS	16	2				-		-	*	0
										15

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% # - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		остов	ER		NOVEMBE	ER		DECEMB	ER		JANUA	RY
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
1	118	114	116	135	133	134	159	140				
2	122	118	119	139	135	137	157	148 138	152 150	136 135	133	134 133
4	125	122	124	141	137	139	136	121	126	135	130	133
5	114	112	117	143 143	140	141	120	116	118	139	133	137
100				143	141	142	119	115	116	139	135	137
6	119	114	116	145	142	143	133	118	125	148	137	141
8	125	119	121	157	139	145	131	128	129	142	141	142
9	132	124	128	157 140	138 124	143	129	126	127	140	133	136
10	132	128		124	115	131 118	129	126	127	135	117	126
11	. 25						134	120	130	127	97	102
12	125	123	124	115	110	111	133	128	131	101	100	100
13	119	118	118	113	96 95	108 96	131	128	130	105	104	105
14	155	118	120	98	95	96	142	127	133	114	108	110
15	124	122	123	104	97	101	140	125	130	127	117	132
16	124	120	122	109	103	106	125					
17	121	112	116	111	103	108	125	105 96	115	135 143	132	133
18	116	112	114	111	103	107	100	94	96	165	135	136 153
19 20	120	112		111	107	109	107	98	103	173	153	165
				111	106	108	114	108	111	170	158	162
21	115	113		112	107	110	113	100	108	140		
53	114	113	114	114	111	113	117	110	115	160	159	160 163
24	115	113	114	123	115	120	113	110	110	166	162	164
25	119	114	115 117	129	125	128	116	112	115	171	165	167
				136	131	132	125	118	155	198	171	182
26 27	122	119	120	136	130	133	128	123	127	168	128	147
28	125	125	125	139 139	133	138	127	122	125	159	155	139
29	127	125	126	139	137	136 138	129 140	134	126	121	116	118
30	127	126	127	150	144	147	141	137	137	117	113	115
31	134	126	129				143	138	141	120	117	118
MONTH	134	109	120	157	95	124	159	94	124	198	97	136
		FEBRUAR	Y		MARCH			APRIL			MAY	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN .
1	130	119	124							184	178	
è	132	126	129	195	192					175	153	181
3	139	127	133	199	193	196				167	160	163
4	141	134	137	213	197	205				184	180	182
5	142	135	139	221	199	208				204	186	193
6	146	139	143	217	202	209				555	205	214
7	151	145	148	215	506	210				225	211	550
8	156	147	149	555	212	218				207	185	193
10	151 149	149	150 146	218	196 199	206				187	181	184
			140	203	1,,,	201		-		107	110	103
11	147	146		224	204	213				183	161	176
12 13				230	219	219				160	150	155
14				224	205	219	128	120				
15							132	123				
14	0.10											
16 17										130	120	
18										143	127	133
19							147	127		128	115	123
50							166	151	160	118	101	110
21							173	168	170	107	102	106
23				138	128		174 176	155 150	170	113	107	110
24							177	150	171	143		131
25							183	180	182	146	128	137
26							187	173	182	145	141	144
27							183	175	178	145	130	141
28							193	180	187		140	146
29 30							197	188	194		140	148
31							196	186	191	151 161	143	150
MONTH												156
					1000	45.65			C. T. M.			

DELAWARE RIVER BASIN 147 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

JUNE			JULY			AUGUST			SEPTEME	BER			
DAY	MAX	MIN	MEAN		MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
1					192	185	189	245	235	239	268	213	230
2					210	195	203	254	242	248	261	207	227
3					218	140	197	245	231	238	249	212	229
4					300	160	215	236	225	232	231	207	551
5					308	256	270	239	229	236	227	167	808
6					273	231	244	242	230	237	233	201	550
7					236	177	213	231	174	210	236	855	232
8					181	171	174	207	175	196	234	217	227
9					181	173	178	209	187	200	214	191	200
10					189	184	186	191	185	188	236	193	207
11					195	187	193	192	186	190	229	211	219
12					217	202	210	217	192	200	236	226	230
13					216	207	212	203	182	190	230	219	225
14 -					214	207	209	205	184	195			
15					219	178	212	211	205	209			
16	149	142			555	215	218	220	212	216			
17					225	219	555	224	221	555			
18					242	195	213	234	230	233			
19					224	209	214	244	232	239			
50					553	212	217	243	240	241			
21	183	175			224	550	217	250	243	247			
55	179	173	175		215	204	210	251	246	249			
23	184	178	182		210	207	209	249	243	245			
24	187	184	185		214	206	209	246	234	242			
25	187	181	184		214	506	209	244	224	239			
26	183	174	180		223	216	220	245	223	235			
27	192	178	185		230	556	855	241	231	237	234	226	
28	209	193	201		236	221	231	241	173	215	243	231	236
29	210	196	206		249	234	244	242	556	235	244	233	239
30	205	202	203		254	248	251	243	238	241	256	244	250
31					252	234	245	238	227	235			
MONTH					308	140	215	254	173	225			

PH (UNITS), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		ОСТОВЕ	R		NOVEMBE	R		DECEMBE	R		JANUAR	Y
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
1	7.2	7.1	7.2	7.5	7.4	7.5	7.3	7.1	7.2	7.3	7.3	7.3
5	7.3	7.1	7.2	7.5	7.3	7.4	7.3	7.2	7.2	7.4	7.3	7.4
3	7.3	7.1	7.2	7.4	7.2	7.3	7.2	7.1	7.2	7.5	7.4	7.4
4	7.3	7.1	7.2	7.3	7.1	7.2	7.2	7.2	7.2	7.4	7.4	7.4
5	7.3	7.2	7.2	7.3	7.1	7.2	7.2	7.2	7.2	7.4	7.3	7.3
6	7.3	7.3	7.3	7.2	7.1	7.2	7.3	7.2	7.2	7.3	7.3	7.3
7	7.4	7.2	7.3	7.1	7.0	7.1	7.4	7.3	7.4	7.3	7.2	7.3
8	7.4	7.3	7.4	7.2	6.9	7.1	7.4	7.3	7.4	7.2	7.2	7.2
9	7.4	7.3	7.3	7.2	7.1	7.2	7.5	7.3	7.4	7.4	7.0	7.3
10	7.4	7.3		7.2	7.1	7.1	7.5	7.4	7.5	7.4	6.9	7.1
11	7.5	7.3	7.4	7.2	7.1	7.2	7.5	7.4	7.4	7.0	6.9	6.9
12	7.5	7.2	7.4	7.2	7.1	7.2	7.4	7.3	7.4	7.1	7.0	7.0
13	7.5	7.2	7.3	7.2	7.1	7.2	7.4	7.3	7.3	7.1	7.0	7.0
14	7.5	7.4	7.4	7.2	7.2	7.2	7.4	7.2	7.3	7.1	7.0	7.0
15	7.5	7.3	7.4	7.2	7.1	7.1	7.3	7.2	7.2	7.2	7.2	7.2
16	7.4	7.2	7.3	7.2	7.1	7.1	7.3	7.2	7.2	7.3	7.2	7.3
17	7.3	7.2	7.3	7.2	7.1	7.1	7.2	7.1	7.2	7.2	7.2	7.2
18	7.3	7.0	7.2	7.3	7.2	7.2	7.2	7.1	7.2	7.2	7.1	7.2
19	7.2	- 7.0		7.3	. 7.2	7.2	7.2	7.1	7.2	7.3	7.2	7.2
50				7.3	7.2	7.2	7.2	7.2	7.2	7.3	7.2	7.3
21	7.3	7.2		7.3	7.1	7.2	7.2	7.0	7.2	7.3	7.3	7.3
55	7.3	7.2	7.3	7.2	7.1	7.2	7.3	7.2	7.2	7.3	7.3	7.3
23	7.3	7.3	7.3	7.2	7.2	7.2	7.3	7.1	7.2	7.4	7.3	7.3
24	7.4	7.3	7.4	7.2	7.1	7.2	7.2	7.1	7.2	7.4	7.3	
25	7.4	7.4	7.4	7.2	7.2	7.2	7.3	7.1	7.2	7.3	7.1	7.3
26	7.4	7.4	7.4	7.3	7.2	7.2	7.4	7.3	7.4	7.3	6.9	7.0
27	7.3	7.3	7.3	7.3	7.2	7.3	7.4	7.3	7.4	7.4	7.0	
28	7.3	7.3	7.3	7.4	7.2	7.3	7.4	7.3	7.3	7.0		7.2
29	7.4	7.3	7.4	7.4	7.4	7.4	7.4	7.3	7.3		7.0	7.0
30	7.4	7.4	7.4	7.4	7.3	7.3	7.3	7.2	7.3	7.1	7.0	7.0
31	7.5	7.4	7.5	222			7.3	7.2	7.2	7.2	7.1	7.1
MONTH	7.5	7.0	7.3	7.5	6.9	7.2	7.5	7.0	7.3	7.5	6.9	7.2

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

PH (UNITS), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		FEBRUAR	٧		MARCH			APRIL			MAY	9
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		1								9.4	9.2	9.3
1 2	7.2	7.1	7.1	7.7	7.5					9.6	9.3	9.4
3	7.2	7.1	7.2	7.6	7.4	7.5				9.7	9.1	9.4
4	7.3	7.2	7.2	7.7	7.4	7.6	7.9	7.7		9.4	8.5	9.1
5	7.3	7.2	7.2	7.8	7.5	7.6				8.6	7.7	8.2
6	7.3	7.2	7.2	7.8	7.5	7.6				8.2	7.8	8.0
7	7.3	7.2	7.2	7.9	7.5	7.7				9.0	7.9	8.4
8	7.3	7.2	7.2	7.9	7.4	7.6				8.4	8.0	8.2
9	7.3	7.2	7.3	7.9	7.4	7.6				8.2	7.8	8.0
10	7.3	7.2	7.2	7.8	7.3	.7.5						•••
11	7.3	7.2		8.0	7.3	7.7				8.4	8.1	8.2
15				8.0	7.4	7.7				8.4	8.0	8.3
13				8.1	7.4	7.8	7.5	7.0				
15							7.0	6.8				
16										7.1	7.0	
17										6.8	6.8	6.8
18							7.2	6.8		6.8	6.7	6.7
50		*					7.1	6.9	7.0	6.7	6.6	6.7
									1	100		
21							7.2	7.1	7.2	6.7	6.6	6.7
53				8.0	7.6		8.0	7.5	7.6	6.7	6.6	6.7
24							8.3	7.7	7.8	6.7	6.6	6.6
25							8.0	7.9	8.0	7.1	6.7	6.8
26							8.5	8.1	8.3	6.9	6.8	6.8
27							9.1	8.6	8.8	7.3	6.9	7.0
28							9.3	8.8	9.0	7.1	7.0	7.1
29							8.8	8.4	8.6	7.5	7.2	7.2
30							9.0	8.5	8.7	7.6 8.1	7.3	7.4
31										••••		
MONTH										9.7	6.6	7.7
		JUNE			JULY			AUGUST			SEPTEM	BER
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
1				8.8	8.1	8.5	7.6	7.3	7.4	7.3	7.1	7.2
5				8.8	8.1	8.5	7.6	7.3	7.4	7.5	7.1	7.3
3				8.5	7.1	7.9	7.6	7.3	7.4	7.9	7.3	7.6
5				7.4	7.3	7.4	7.6	7.2	7.4	8.3	7.5	7.8
				,.,		7.0		1.5	1.3	0.5		0.1
6				8.1	7.6	7.8	7.5	7.2	7.4	8.7	7.8	8.3
7				8.1	7.7	7.9	7.3	7.1	7.2	8.5	8.0	8.2
8 9	7.2	7.0		8.2	7.7	7.9 8.1	7.3	7.1	7.2	8.1 7.8	7.4	7.8
10				8.5	7.9	8.2	7.4	7.2	7.3	8.2	7.5	7.7
11				8.6	8.0	8.3	7.4	7.3	7.3	8.3	7.5	7.8
13				9.0	8.5	8.6	7.3	7.2	7.3	8.4	7.6	8.0
14				8.9	8.0	8.6	7.4	7.3	7.3	8.4	7.8	8.2
15				8.2	7.6	7.9	7.7	7.3	7.5	8.1	7.8	8.0
		7.4			7.0		7.0					
16 17	7.6	7.4		8.2	7.8	7.9	7.8	7.3	7.5	8.2	7.7	7.9
18				8.0	7.6	7.8	8.5	7.8	8.1	8.2	7.7	7.9
19				8.4	7.9	8.1	8.6	8.1	8.4	7.8	7.6	7.7
50				8.9	8.2	8.5	8.7	8.2	8.5	7.6	7.5	7.5
21	8.3	7.4		9.0	8.5	8.5	8.8	8.2	8.5	7.5	7.4	7.4
55	8.4	7.5	7.9	9.0	8.3	8.7	8.9	8.3	8.7	7.4	7.4	7.4
23	8.5	7.6	8.1	9.0	8.1	8.6	9.0	8.5	8.7	7.6	7.4	7.5
25	8.7	7.7	8.3	9.0	7.9	8.5	8.8	8.4	8.6	7.7	7.5	7.6
						8.2	8.5		8.3	7.8		7.6
26	8.7	7.9	8.3	8.6	7.6	8.1	8.3	7.4	7.9	8.1	7.6	7.8
28	8.6	7.7	8.1	8.4	7.7	8.0	7.4	6.6	7.7	8.2	7.3	7.6
29	8.9	7.9	8.4	8.7	7.7	8.2	7.1	6.9	7.0	8.3	7.7	7.9
30	8.6	7.9	8.3	8.7	7.7	8.3	7.4	7.0	7.1	8.3	7.7	7.9
31				8.3	7.4	7.6	7.7	7.1	7.3			
MONTH				9.0	7.1	8.2	9.0	6.6	7.6	8.7	7.1	7.8

DELAWARE RIVER BASIN 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		ОСТОВ	ER		NOVEMBE	ER	* *	DECEMBE	R		JANUA	RY
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
. 1	18.0	17.0	17.5	12.0	11.5	11.5	6.0	5.0	5.5	3.0	2.5	2.5
5	19.0	17.5	18.5	12.5	12.0	12.0	6.0	5.5	6.0	2.5		2.5
3 4	17.5	16.0	17.0	13.5	12.5	13.0	6.0	5.5	5.5	2.0	1.5	2.0 *
5	16.5	15.0 14.0	16.0	14.5 15.5	13.5	14.0	5.5 5.5	5.0	5.5	5.0	1.0	1.5
6	16.5	14.0	15.5	15.0	14.5	14.5	5.0	4.5	5.0	3.5		3.0
7	17.5	15.0	16.0	14.5	13.5	14.0	4.5	3.5	4.0	3.5	3.0	3.5
. 8	16.0 15.5	14.5	15.0	13.5	13.0	13.5	3.5	3.0	3.0	4.5		4.0
10	15.0	14.5	15.0	13.5	13.0	13.0	2.0	1.5	1.5	3.5	3.5 0.5	1.5
11	15.0	13.0	14.5	13.0	11.5	12.0	1.5	1.0	1.5	1.0	0.5	
12	14.5	12.0	13.5	11.5	10.0	11.0	1.5	1.0	1.0	1.5	1.0	1.0
13	15.0	13.5	14.5	10.0	8.0	9.0	2.0	1.5	1.5	1.5		1.5
14	13.0	12.5	12.5	8.0	7.5	7.5	3.5	5.0	2.5			2.0
15	14.0	13.0	13.5	8.0	7.0	7.5	4.0	3.0	3.5	1.5	1.0	1.5
16	13.0	12.0	12.5	8.5	7.5	8.0	3.5	3.0	3.5	1.5	1.0	1.0
17	12.5	11.0	11.5	9.5	8.5	9.0	3.5	3.0	3.0	1.5	1.0	1.5
18 19	11.0	10.0	10.5	9.5	9.0	9.0	3.5	3.0	3.5	2.5	1.5	5.0
50				8.5	8.5	9.0 8.5	4.0	4.0	4.0	1.5	1.5	1.5
21	11.5	11.0		8.5	8.0	8.0	5.5	4.5	5.0	1.5	1.5	
55	11.5	10.5	11.0	8.5	8.0	8.5	5.0	4.0	4.5	5.0	1.5	1.5
23		11.0	11.0	8.0	8.0	8.0	4.0	4.0	4.0	2.0	1.5	1.5
24	11.5	10.5	11.0	8.5	8.0	8.5	4.5	4.0	4.0	2.0		2.0
25	11.5	10.5	11.0	8.5	8.0	8.0	5.0	4.5	4.5	2.0	5.0	5.0
26	11.5	11.0	11.5	8.0	6.5	7.5	4.5	3.0	4.0	3.0	1.5	2.0
27 28	12.5	11.5	12.0	6.5	6.0	6.0	3.0	2.0	2.5	1.5	0.5	1.0
29	14.0	13.0	13.5	6.0 5.0	5.5 4.5	5.5	1.5	1.5	2.0	1.0	0.5	1.0
30	14.0	12.5	13.0	5.0	4.5	5.0	2.5	1.0	1.5	1.5	1.0	1.0
31	12.5	11.5	12.5				3.0	2.5	3.0	5.0	1.5	2.0
MONTH	19.0	10.0	13.5	15.5	4.5	10.0	6.0	1.0	3.5	6.0	0.5	2.0
		FEBRUAR	RY		MARCH			APRIL			MAY	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
1	3.0	2.0	2.5							13.5	12.5	13.0
5	3.0	2.0	2.5	3.5	2.5					15.5	12.0	13.5
3	3.0	2.5	3.0	2.5	1.0	2.5				16.5	13.5	14.5
5	3.5	2.5	3.0 3.0	2.5	0.5	1.5	6.0	5.5		15.0 13.0	13.0	14.0
6	4.0	3.5	4.0	3.0	0.5	1.5				12.0	11.5	12.0
7	4.5	4.0	4.5	4.0	0.5	2.0				13.5	11.5	12.5
8	4.5	4.0	4.0	2.5	2.0	2.0				12.5	12.0	12.5
. 9	4.5	4.0	4.5	3.5	2.0	3.0				14.0	. 12.5	13.0
10	5.0	4.0	4.5	3.5	3.0	3.5	•••			14.0	13.0	13.5
11	4.5	4.0		6.0	2.5	4.5				16.0	13.5	14.5
12				7.0	4.5	5.5				16.0	14.5	15.0
14				7.0 5.5	4.5	5.5	11.0	9.5				
15							10.5	9.5				
16												
17										12.5	12.0	
18 19										12.5	12.5	12.5
50							10.0	9.0	9.5	14.0	12.5	13.0
21							10.0	9.5	10.0	16.0	14.5	15.0
55							10.5	9.5	10.0	16.0	15.0	15.5
23				7.0	6.0		11.0	10.0	10.5	16.5	15.5	16.0
24 25							11.0	10.5	11.0	16.0	14.5	15.5 15.0
26												
27							12.0	11.5	11.5	16.5	15.5	16.0
28					*		13.0	11.0	12.0	18.0	16.5	17.5
29							13.5	12.0	12.5	18.5	17.5	18.0
30 31							14.5	13.0	13.5	20.0	18.0	19.0
MONTH										23.0	11.5	15.0
			1									7.7

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		JUNE			JULY			AUGUST	r		SEPTEME	BER
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
1				25.5	22.5	24.0	23.0	22.5	22.5	24.0	23.0	23.5
2				24.0	55.0	23.0	23.5	22.0	23.0	24.5	22.0	23.5
3				22.5	20.0	21.5	25.0	23.0	24.0	25.0	22.5	23.5
4				20.0	19.0	19.5	25.0	24.0	24.5	25.0	22.5	23.5
5				55.0	18.5	20.5	24.5	23.5	24.0	25.5	21.5	23.5
6				24.0	20.5	22.0	25.5	23.5	24.5	26.5	22.5	24.5
. 7				24.0	21.5	22.5	25.0	24.0	24.5	26.0	23.5	24.5
8				25.5	22.5	23.5	25.5	24.0	24.5	24.0	20.0	22.5
9.	21.0	19.5		27.0	23.5	25.0	25.5	24.0	24.5	22.5	19.5	21.0
10				27.0	24.5	25.5	25.5	24.0	25.0	21.5	19.5	20.5
11				26.5	23.5	25.0	24.5	23.5	24.0	23.0	20.0	21.0
12				26.0	22.5	24.0	24.5	23.5	24.0	24.0	21.5	22.5
13				26.5	23.0	24.5	24.5	23.5	24.0	23.0	21.0	22.0
14				24.0	23.0	23.5	26.0	23.5	24.5	21.5	20.0	20.5
15				56.0	55.0	24.0	. 56.0	24.5	25.0	20.0	19.5	20.0
16	21.0	19.5		24.5	23.5	24.0	26.5	24.5	25.5	21.5	19.5	20.5
17				24.5	23.0	23.5	28.0	25.5	26.5	22.5	20.0	21.0
18				26.0	55.0	24.0	27.5	25.5	26.5	22.5	21.0	21.5
19				27.0	23.5	25.0	28.0	25.0	26.5	21.5	20.0	21.0
50				28.0	24.5	26.0	27.0	25.5	26.0	21.0	19.5	20.5
21	23.5	22.0		28.5	25.5	27.0	27.5	24.0	25.5	22.0	20.0	21.0
55	24.0	55.0	23.0	29.0	26.0	27.5	27.5	24.0	25.5	21.5	20.5	21.0
23	24.5	55.0	23.0	30.0	27.0	28.5	28.0	24.0	26.0	21.0	20.0	20.5
24	24.5	55.0	23.0	30.0	27.0	28.0	27.5	24.5	26.0	21.5	19.0	20.0
25	25.0	55.0	23.5	27.0	24.5	25.5	26.0	23.5	24.5	21.5	19.5	20.5
26	24.0	22.5	23.0	26.5	24.0	25.0	26.0	23.0	24.0	21.0	18.5	19.5
27	25.5	55.0	23.5	27.0	24.0	25.5	25.5	23.5	24.5	20.5	18.0	19.0
28	26.5	23.5	24.5	27.0	24.5	25.5	24.5	23.0	24.0	20.0	18.0	19.0
29	27.0	24.0	25.0	26.5	24.0	25.0	26.5	23.5	25.0	19.5	17.0	18.5
30	26.0	23.5	24.5	27.0	24.5	25.5	26.0	24.0	25.0	19.5	17.0	18.0
31				25.0	23.0	24.0	25.5	24.0	24.5			
MONTH				30.0	18.5	24.5	28.0	22.0	25.0	26.5	17.0	21.5

DISSOLVED OXYGEN (DO), MG/L, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

OCTOBER			NOVEMBER			DECEMBE	R		JANUAR	Y.		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
1	8.9	7.4	8.1	11.5	10.7	11.0	13.0	12.4	12.7	13.4	13.0	13.2
5	8.5	7.3	8.0	11.4	10.6	10.9	12.6	12.4	12.5	13.4	12.8	13.2
3	9.3	7.3	8.2	11.0	10.3	10.7	12.8	12.3	12.6	13.1	12.6	13.0
4	10.5	8.2	9.1	11.0	10.1	10.5	12.8	12.6	12.7	13.4	13.0	13.2
5	10.3	8.1	9.0	10.8	9.9	10.3	12.9	12.6	12.8	13.3	12.8	13.1
6	10.1	8.2	9.2	10.6	9.9	10.2	12.8	12.5	12.7	12.9	12.3	12.7
. 7	9.8	7.8	8.9	10.2	9.7	10.0	13.3	12.8	13.1	12.4	12.1	12.3
8	11.8	8.1	10.9	10.3	9.7	10.0	13.7	13.3	13.5	12.2	11.6	12.0
9	10.7	8.1	9.4	10.0	9.7	9.9	13.9	13.7	13.7	11.5	10.3	11.0
10	10.6	9.0		10.0	9.6	9.9	14.2	13.7	14.0	13.8	11.4	12.8
11	11.8	8.1	10.6	10.3	9.7	10.0	14.5	14.0	14.3	14.1	13.3	13.7
12	12.0	8.4	10.6	10.7	10.3	10.5	14.6	14.1	14.4	14.3	13.3	14.0
13	11.6	8.4	10.7	11.5	10.7	11.0	14.4	14.0	14.2	14.2	12.9	. 13.6
14	10.2	8.5	9.2	11.7	11.3	11.5	14.1	13.2	13.7	13.8	13.0	13.4
15	10.3	8.4	9.3	11.9	11.5	11.7	13.6	13.0	13.3	13.5	13.0	13.2
16	11.0	8.5	9.5	11.8	11.3.	11.6	13.8	13.0	13.4	13.6	13.0	13.4
17	11.6	8.1	9.8	11.4	10.8	11.1	13.9	13.0	13.5	13.6	12.7	13.3
18	11.5	8.1	10.3	11.1	10.7	10.9	13.6	12.8	13.3	12.7	12.2	12.4
19	10.8	8.1		11.3	10.8	11.0	13.4	12.8	13.1	12.4	12.0	12.2
50				11.7	11.1	11.4	13.3	12.9	13.1	12.1	11.7	11.9
21	11.8	8.9		11.5	11.0	11.3	12.9	12.1	12.5	11.8	11.5	11.7
55	11.4	10.6	10.9	11.3	10.9	11.1	13.1	12.0	12.4	11.8	11.2	11.6
23	11.1	10.7	10.9	11.4	11.0	11.2	12.8	12.4	12.6	11.6	11.4	11.5
24	11.3	10.7	11.0	11.5	11.1	11.2	13.0	12.5	12.8	11.4	11.0	11.3
25	11.3	10.9	11.1	11.8	11.3	11.5	12.6	12.2	12.4	10.8	10.3	10.5
26	11.1	10.7	10.9	11.7	11.3	11.4	13.0	12.4	12.7	12.2	11.0	11.6
27	11.0	10.2	10.6	12.4	11.7	12.1	14.1	13.0	13.5	13.0	12.2	12.5
28	10.6	10.1	10.4	12.7	12.4	12.5	14.8	13.8	14.2	13.3	12.8	13.0
29	10.6	10.1	10.3	12.9	12.6	12.8	14.4	13.9	14.2	13.8	13.0	13.4
30	10.9	10.2	10.5	13.1	12.8	13.0	14.3	13.7	14.0	13.5	13.0	13.3
31	11.2	10.1	10.7				13.7	13.2	13.5	14.1	12.9	13.6
MONTH	12.0	7.3	9.9	13.1	9.6	11.1	14.8	12.0	13.3	14.3	10.3	12.6

DELAWARE RIVER BASIN 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

DISSOLVED OXYGEN (DO), MG/L, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

FEBRUARY				MARCH			APRIL			MAY		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
1	13.1	12.3	12.6									
5	12.7	12.0	12.3	15.1	14.3					16.6	12.5	
3	12.3	11.7	12.0	14.8	13.9	14.3				16.6	10.6	
4	12.0	11.2	11.6	15.1	13.8	14.5	15.0	13.7		13.9	10.2	11.4
5	11.6	11.0	11.3	15.5	14.1	14.8				11.3	9.3	10.1
6	12.2	11.1	11.5	15.6	14.2	14.9				11.7	9.2	10.4
7	11.7	11.1	11.3	15.9	14.1	14.9				13.9	9.9	11.9
8	12.0	11.3	11.7	15.4	13.8	14.5				12.6	10.9	11.7
10	12.3	11.6	11.9	15.7	13.6	14.5				11.9	10.0	10.9
11	12.4	11.6		16.0	13.0	14.4				10.4	8.2	
12				16.0	12.9	14.2				10.0	8.4	
14				15.8	12.7	14.1	11.0	9.5				
15				13.6	12.1		11.9	9.8				
16 17										10.0	8.7	
18										9.8	8.5	9.1
19										9.8	8.9	9.3
50										9.2	8.4	8.9
21										9.2	8.3	8.5
55										8.7	8.2	8.4
23				11.6	9.6					8.7	8.4	8.5
24										8.7	7.9	8.3
25										10.9	7.9	8.6
26										8.9	8.4	8.6
27										11.3	8.2	8.8
28										8.7	7.8	8.1
29										9.5	7.7	8.0
30										9.1	7.5	7.7
31										10.5	7.2	8.2
MONTH										16.6	7.2	
		JUNE			JULY			AUGUST			SEPTEMB	ER
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		MIN						MIN			MIN	MEAN
1	MAX		MEAN	11.9	7.6	9.7	7.9	MIN 6.2	6.9	7.2	MIN 6.6	MEAN 6.9
		MIN			7.6 7.8	9.7 9.7	7.9 8.3	MIN 6.2 6.7			MIN 6.6 6.7	MEAN
1 2 3 4		MIN		11.9	7.6	9.7	7.9	MIN 6.2	6.9	7.2 8.1	MIN 6.6	MEAN 6.9 7.3
1 2 3	:::	MIN	===	11.9 11.5 9.1	7.6 7.8 7.2	9.7 9.7 8.0	7.9 8.3 8.2	MIN 6.2 6.7 6.6	6.9 7.4 7.4	7.2 8.1 8.7	MIN 6.6 6.7 6.8	MEAN 6.9 7.3 7.6
1 2 3 4 5	===	MIN		11.9 11.5 9.1 7.9 9.3	7.6 7.8 7.2 7.4 7.9	9.7 9.7 8.0 7.7 8.5	7.9 8.3 8.2 7.9 7.1	MIN 6.2 6.7 6.6 6.0 6.0	6.9 7.4 7.4 7.0 6.5	7.2 8.1 8.7 9.2	MIN 6.6 6.7 6.8 6.9 7.2	MEAN 6.9 7.3 7.6 7.9 8.2
1 2 3 4	===	MIN	==	11.9 11.5 9.1 7.9 9.3	7.6 7.8 7.2 7.4 7.9	9.7 9.7 8.0 7.7 8.5	7.9 8.3 8.2 7.9 7.1	MIN 6.2 6.7 6.6 6.0 6.0	6.9 7.4 7.4 7.0 6.5	7.2 8.1 8.7 9.2 9.7	MIN 6.6 6.7 6.8 6.9 7.2	MEAN 6.9 7.3 7.6 7.9 8.2 7.9
1 2 3 4 5	=======================================	MIN		11.9 11.5 9.1 7.9 9.3	7.6 7.8 7.2 7.4 7.9 8.0 8.2	9.7 9.7 8.0 7.7 8.5	7.9 8.3 8.2 7.9 7.1 7.1	MIN 6.2 6.7 6.6 6.0 6.0	6.9 7.4 7.4 7.0 6.5	7.2 8.1 8.7 9.2	MIN 6.6 6.7 6.8 6.9 7.2	MEAN 6.9 7.3 7.6 7.9 8.2
1 2 3 4 5 6 7 8	===	MIN	=======================================	11.9 11.5 9.1 7.9 9.3	7.6 7.8 7.2 7.4 7.9	9.7 9.7 8.0 7.7 8.5	7.9 8.3 8.2 7.9 7.1	MIN 6.2 6.7 6.6 6.0 6.0	6.9 7.4 7.4 7.0 6.5	7.2 8.1 8.7 9.2 9.7 9.2 8.4 6.9 8.3	MIN 6.6 6.7 6.8 6.9 7.2 7.0 6.3 6.1 6.2	MEAN 6.9 7.3 7.6 7.9 8.2 7.9 7.0 6.4 7.1
1 2 3 4 5		MIN	=======================================	11.9 11.5 9.1 7.9 9.3	7.6 7.8 7.2 7.4 7.9 8.0 8.2 8.0	9.7 9.7 8.0 7.7 8.5 9.0 8.8 8.8	7.9 8.3 8.2 7.9 7.1 7.1 6.4 6.7	MIN 6.2 6.7 6.6 6.0 6.0 5.9 5.8 6.0	6.9 7.4 7.4 7.0 6.5 6.5 6.2	7.2 8.1 8.7 9.2 9.7 9.2 8.4 6.9	MIN 6.6 6.7 6.8 6.9 7.2 7.0 6.3	MEAN 6.9 7.3 7.6 7.9 8.2 7.9 7.0 6.4
1 2 3 4 5 6 7 8	7.6	MIN		11.9 11.5 9.1 7.9 9.3 10.0 9.6 9.6 9.4	7.6 7.8 7.2 7.4 7.9 8.0 8.2 8.0 7.8 7.5	9.7 9.7 8.0 7.7 8.5 9.0 8.8 8.8 8.6 8.4	7.9 8.3 8.2 7.9 7.1 7.1 6.4 6.7 7.0	MIN 6.2 6.7 6.6 6.0 6.0 5.9 5.8 6.0 6.6	6.9 7.4 7.4 7.0 6.5 6.5 6.2 6.4 6.7 7.0	7.2 8.1 8.7 9.7 9.7 9.2 8.4 6.9 8.3	MIN 6.6 6.7 6.8 6.9 7.2 7.0 6.3 6.1 6.2	MEAN 6.9 7.3 7.6 7.9 8.2 7.9 7.0 6.4 7.1 7.8
1 2 3 4 5 6 7 8 9	7.6	MIN		11.9 11.5 9.1 7.9 9.3 10.0 9.6 9.4	7.6 7.8 7.2 7.4 7.9 8.0 8.2 8.0 7.8	9.7 9.7 8.0 7.7 8.5 9.0 8.8 8.8	7.9 8.3 8.2 7.9 7.1 7.1 6.4 6.7 7.0	MIN 6.2 6.7 6.6 6.0 6.0 5.9 5.8 6.0 6.6	6.9 7.4 7.0 6.5 6.5 6.2 6.4 6.7	7.2 8.1 8.7 9.2 9.7 9.2 8.4 6.9 8.3	MIN 6.6 6.7 6.8 6.9 7.2 7.0 6.3 6.1 6.2 6.9	MEAN 6.9 7.3 7.6 7.9 8.2 7.9 7.0 6.4 7.1 7.8 8.0 7.9
1 2 3 4 5 6 7 8 9 10	7.6	MIN		11.9 11.5 9.1 7.9 9.3 10.0 9.6 9.4 9.2	7.6 7.8 7.2 7.4 7.9 8.0 8.2 8.0 7.8 7.5	9.7 9.7 8.0 7.7 8.5 9.0 8.8 8.8 8.6 8.4	7.9 8.3 8.2 7.9 7.1 7.1 6.4 6.7 7.0 7.4	MIN 6.2 6.7 6.6 6.0 6.0 5.9 5.8 6.0 6.6 6.8 6.9	6.9 7.4 7.0 6.5 6.5 6.2 6.4 6.7 7.0	7.2 8.1 8.7 9.2 9.7 9.2 8.4 6.9 8.3 9.0	MIN 6.6 6.7 6.8 6.9 7.2 7.0 6.1 6.2 6.9	MEAN 6.9 7.3 7.6 7.9 8.2 7.9 7.0 6.4 7.1 7.8 8.0 7.9 8.2
1 2 3 4 5 6 7 8 9 10	7.6	MIN		11.9 11.5 9.1 7.9 9.3 10.0 9.6 9.6 9.4 9.2	7.6 7.8 7.2 7.4 7.9 8.0 8.0 7.8 7.5 7.7 9.8	9.7 9.7 8.0 7.7 8.5 9.0 8.8 8.6 8.4 9.2 10.0	7.9 8.3 8.2 7.9 7.1 7.1 6.4 6.7 7.0 7.4 7.6 7.3 7.4	MIN 6.2 6.6 6.0 6.0 5.9 5.8 6.6 6.8 6.9 6.8	6.9 7.4 7.4 7.0 6.5 6.2 6.4 6.7 7.0 7.2 7.1 7.5	7.2 8.1 8.7 9.2 9.7 9.2 8.4 6.9 9.0 9.3 9.7	MIN 6.6 6.7 6.8 6.9 7.0 6.1 6.9 6.9 6.9	MEAN 6.9 7.3 7.6 7.9 8.2 7.9 7.0 6.4 7.1 7.8 8.0 7.9 8.2
1 2 3 4 5 6 7 8 9 10	7.6	MIN		11.9 11.5 9.1 7.9 9.3 10.0 9.6 9.4 9.2	7.6 7.8 7.2 7.4 7.9 8.0 8.2 8.0 7.5 7.7	9.7 9.7 8.0 7.7 8.5 9.0 8.8 8.8 8.6 8.4	7.9 8.3 8.2 7.9 7.1 7.1 6.4 6.7 7.0 7.4	MIN 6.2 6.7 6.6 6.0 6.0 5.9 5.8 6.0 6.6 6.8 6.9	6.9 7.4 7.0 6.5 6.5 6.2 6.4 6.7 7.0	7.2 8.1 8.7 9.2 9.7 9.2 8.4 6.9 8.3 9.0	MIN 6.6 6.7 6.8 6.9 7.2 7.0 6.1 6.2 6.9	MEAN 6.9 7.3 7.6 7.9 8.2 7.9 7.0 6.4 7.1 7.8 8.0 7.9 8.2
1 2 3 4 5 6 7 8 9 10	7.6	MIN		11.9 11.5 9.1 7.9 9.3 10.0 9.6 9.6 9.4 9.2	7.6 7.8 7.2 7.4 7.9 8.0 8.0 7.8 7.5 7.7 7.9 8.4 7.6	9.7 9.7 8.0 7.7 8.5 9.0 8.8 8.6 8.4 9.2 10.0	7.9 8.3 8.2 7.9 7.1 7.1 6.4 6.7 7.0 7.4 7.6 7.3 7.4	MIN 6.2 6.6 6.0 6.0 5.9 5.8 6.6 6.8 6.9 6.8	6.9 7.4 7.4 7.0 6.5 6.2 6.4 6.7 7.0 7.2 7.1 7.5	7.2 8.1 8.7 9.2 9.7 9.2 8.4 6.9 9.0 9.3 9.7	MIN 6.6 6.7 6.8 6.9 7.0 6.1 6.9 6.9 6.9	MEAN 6.9 7.3 7.6 7.9 8.2 7.9 7.0 6.4 7.1 7.8 8.0 7.9 8.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	7.6	MIN		11.9 11.5 9.1 7.9 9.3 10.0 9.6 9.4 9.2 11.2 12.2 12.7 10.4 9.5	7.6 7.8 7.2 7.4 7.9 8.0 8.2 8.0 7.5 7.7 7.9 8.4 7.3	9.7 9.7 8.0 7.7 8.5 9.0 8.8 8.8 8.6 8.4 9.2 10.0 10.4 8.8 8.3	7.9 8.3 8.2 7.9 7.1 7.1 6.4 6.7 7.0 7.4 7.6 7.3 7.8 8.4	MIN 6.2 6.7 6.6 6.0 6.0 6.0 6.8 6.9 6.8 6.9	6.9 7.4 7.4 7.0 6.5 6.2 6.4 6.7 7.0 7.2 7.1 7.15 7.7	7.2 8.1 8.7 9.2 9.7 9.2 8.4 6.9 9.0	MIN 6.6 6.7 6.8 6.9 7.2 7.0 6.3 6.1 6.2 6.9 7.2 6.9 8.1 7.5	MEAN 6.9 7.36 7.9 8.2 7.9 7.04 7.1 7.8 8.0 7.9 8.2 8.6 8.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	7.6	5.8		11.9 11.5 9.1 7.9 9.3 10.0 9.6 9.4 9.2 11.2 12.2 12.7 10.4 9.5	7.6 7.8 7.2 7.4 7.9 8.0 8.0 7.8 7.5 7.7 7.9 8.4 7.6	9.7 9.7 8.0 7.7 8.5 9.0 8.8 8.8 8.6 8.4 9.2 10.0 10.4 8.8 8.3	7.9 8.3 8.2 7.9 7.1 7.1 6.4 6.7 7.0 7.4 7.6 7.3 7.4 7.8 8.4 9.4	MIN 6.2 6.6 6.0 6.0 6.0 6.0 6.0 6.8 6.8 6.9 6.8 7.1	6.9 7.4 7.4 7.0 6.5 6.2 6.4 6.7 7.0 7.2 7.1 7.5 7.7	7.2 8.1 8.7 9.7 9.7 9.2 8.4 6.9 9.0 9.3 9.3 9.2 8.5 8.9 8.7	MIN 6.6 6.7 6.8 6.9 7.2 7.0 6.3 6.1 6.2 6.9 7.2 6.9 7.2 7.3 7.3 7.2	MEAN 6.9 7.36 7.9 8.2 7.9 7.06.4 7.1 7.8 8.0 7.9 8.2 8.6 8.1 7.9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	7.6	MIN		11.9 11.5 9.1 7.9 9.3 10.0 9.6 9.4 9.2 11.2 12.2 12.7 10.4 9.5	7.6 7.8 7.2 7.4 7.9 8.0 8.0 7.5 7.7 7.9 8.4 7.3 7.5	9.7 9.7 8.0 7.7 8.5 9.0 8.8 8.8 8.6 8.4 9.2 10.0 10.4 8.3 8.3	7.9 8.3 8.2 7.9 7.1 7.1 6.4 6.7 7.0 7.4 7.6 7.3 7.4 8.4 9.4 12.0	MIN 6.2 6.6 6.0 6.0 5.9 5.8 6.0 6.8 6.8 6.9 7.1 7.1	6.9 7.4 7.4 7.0 6.5 6.2 6.4 6.7 7.0 7.1 7.15 7.7 7.6 8.0 9.3	7.2 8.1 8.7 9.2 9.7 9.2 8.4 6.9 8.3 9.0 9.2 8.5 8.9 8.9	MIN 6.6 6.7 6.8 6.9 7.0 6.3 6.1 6.9 6.9 6.9 7.2 6.9 6.9 7.3 7.4 7.3 7.4	MEAN 6.9 7.3 7.9 8.2 7.9 6.4 7.18 8.0 7.9 8.2 8.6 8.1 7.9 7.4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	7.6	5.8		11.9 11.5 9.1 7.9 9.3 10.0 9.6 9.4 9.2 11.2 12.2 12.7 10.4 9.5	7.6 7.8 7.2 7.4 7.9 8.0 8.2 8.0 8.2 8.0 7.5 7.7 7.9	9.7 9.7 8.0 7.7 8.5 9.0 8.8 8.8 8.6 8.4 9.2 10.0 10.4 8.8 8.3	7.9 8.3 8.2 7.9 7.1 7.1 6.4 6.7 7.0 7.4 7.6 7.3 7.4 7.8 8.4 9.4	MIN 6.2 6.6 6.0 6.0 6.0 6.0 6.8 6.9 6.8 6.9 7.1	6.9 7.4 7.4 7.0 6.5 6.2 6.4 6.7 7.0 7.2 7.1 7.5 7.7	7.2 8.1 8.7 9.7 9.7 9.2 8.4 6.9 9.0 9.3 9.3 9.2 8.5 8.9 8.7	MIN 6.6 6.7 6.8 6.9 7.2 7.0 6.3 6.1 6.2 6.9 7.2 6.9 7.2 7.3 7.3 7.2	MEAN 6.9 7.36 7.9 8.2 7.9 7.06.4 7.1 7.8 8.0 7.9 8.2 8.6 8.1 7.9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	7.6	MIN		11.9 11.5 9.1 7.9 9.3 10.0 9.6 9.6 9.4 9.2 11.2 12.2 12.7 10.4 9.5	7.6 7.8 7.2 7.4 7.9 8.0 8.2 8.0 8.2 8.0 7.5 7.7 7.9 8.4 7.6 7.3	9.7 9.7 8.0 7.7 8.5 9.0 8.8 8.8 8.6 8.4 9.2 10.0 10.4 8.8 8.3 8.5 8.5 8.5	7.9 8.3 8.2 7.9 7.1 7.1 6.4 6.7 7.0 7.4 7.6 7.3 7.4 7.8 8.4 9.4 12.0 12.6	MIN 6.2 6.6 6.0 6.0 6.0 6.0 6.8 6.9 7.1 7.1 7.1 7.4 7.3	6.9 7.4 7.4 7.0 6.5 6.2 6.4 6.7 7.0 7.2 7.1 7.5 7.7 7.6 8.0 9.3 9.9 9.3	7.2 8.1 8.7 9.7 9.7 9.2 8.4 6.9 9.3 9.0 9.2 8.5 8.9 8.7 7.6	MIN 6.6 6.7 6.8 6.9 7.2 7.0 6.3 6.1 6.2 6.9 7.2 6.9 8.1 7.5 7.4 7.3 7.2 7.1 6.9	MEAN 6.9 7.36 7.9 8.2 7.9 7.06.4 7.1 7.8 8.0 7.9 8.2 8.6 8.1 7.9 7.4 7.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 20 20 20 20 20 20 20 20 20 20 20	7.6	5.8		11.9 11.5 9.1 7.9 9.3 10.0 9.6 9.4 9.2 11.2 12.2 12.7 10.4 9.5	7.6 7.8 7.2 7.4 7.9 8.0 8.2 8.0 7.5 7.7 7.9 8.4 7.5 7.3 7.5 7.3	9.7 9.7 8.0 7.7 8.5 9.0 8.8 8.8 8.6 8.4 9.2 10.0 10.4 8.3 8.3	7.9 8.3 8.2 7.9 7.1 7.1 6.4 6.7 7.0 7.4 7.6 7.3 7.4 8.4 9.4 12.0	MIN 6.2 6.6 6.0 6.0 5.9 5.8 6.0 6.8 6.8 6.9 7.1 7.1	6.9 7.4 7.4 7.0 6.5 6.2 6.4 6.7 7.0 7.1 7.15 7.7 7.6 8.0 9.3	7.2 8.1 8.7 9.2 9.7 9.2 8.4 6.9 8.3 9.0 9.2 8.5 8.9 8.9	MIN 6.6 6.7 6.8 6.9 7.0 6.3 6.1 6.9 6.9 6.9 7.2 6.9 6.9 7.3 7.4 7.3 7.4	MEAN 6.9 7.3 7.9 8.2 7.9 6.4 7.1 8.0 7.9 8.2 8.0 8.1 8.1 7.9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 21 22 23 24 24 25 26 26 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	7.6 8.8 11.2 10.9 11.5	MIN		11.9 11.5 9.1 7.9 9.3 10.0 9.6 9.6 9.4 9.2 11.2 12.2 12.7 10.4 9.5 9.8 10.0	7.6 7.8 7.2 7.4 7.9 8.0 8.2 8.0 7.8 7.5 7.7 7.9 8.4 7.6 7.3	9.7 9.7 8.0 7.7 8.5 9.0 8.8 8.8 8.6 8.4 9.2 10.0 10.4 8.3 8.3 8.5 8.5 8.5 8.6	7.9 8.3 8.2 7.9 7.1 6.4 6.7 7.0 7.4 7.6 7.3 7.4 7.8 8.4 9.4 12.0 12.6 11.1	MIN 6.2 6.6 6.0 6.0 5.9 6.0 6.8 6.9 7.1 7.1 7.0 6.9 7.1 7.4 7.3	6.9 7.4 7.0 6.5 6.2 6.4 6.7 7.0 7.2 7.1 7.1 7.5 7.7 7.6 8.0 9.9 9.3 9.5 9.7	7.2 8.1 8.7 9.7 9.7 9.2 8.4 6.9 9.3 9.0 9.2 9.3 9.7 8.5 8.9 8.9 8.7 7.6	MIN 6.6.7 6.8 6.9 7.2 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	MEAN 6.9 7.0 6.4 7.1 7.8 8.0 7.9 8.6 8.0 8.1 8.1 7.4 7.2 7.0 6.9 7.4 7.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24	7.6 8.8 11.2 10.9 11.5 12.1	MIN	9.1 9.7 10.1	11.9 11.5 9.1 7.9 9.3 10.0 9.6 9.6 9.4 9.2 11.2 12.2 12.7 10.4 9.5 9.0 9.4 8.6 9.8 10.0	7.6 7.8 7.2 7.4 7.9 8.0 8.0 7.8 7.5 7.7 7.9 8.4 6.7 7.6 7.6 6.6 6.6	9.7 9.7 8.0 7.7 8.5 9.0 8.8 8.6 8.4 9.2 10.0 10.4 8.3 8.3 7.8 8.8 8.8	7.9 8.3 8.2 7.9 7.1 7.1 6.4 6.7 7.0 7.4 7.6 7.3 7.4 8.4 9.4 12.0 12.6 11.1	MIN 6.2 6.7 6.6 6.0 6.0 6.0 6.0 6.8 6.8 6.8 6.9 7.1 7.1 7.0 6.9 7.1 7.4 7.4 7.6 7.8	6.9 7.4 7.0 6.5 6.2 6.4 6.7 7.1 7.1 7.5 7.7 7.6 8.0 9.3 9.3 9.5 9.5 9.5 9.5	7.2 8.1 8.7 9.2 9.7 9.2 8.4 6.9 8.3 9.0 9.2 8.5 8.9 8.7 7.6 7.5	MIN 6.6 6.7 6.8 6.9 7.2 7.03 6.1 6.2 7.2 6.9 8.1 7.5 7.4 7.3 7.2 7.6 6.8 6.8 6.9 7.2	MEAN 6.9 7.0 6.4 7.1 8.0 7.9 8.2 8.6 8.1 7.9 8.6 8.1 7.9 7.2 7.0 6.9 7.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 21 22 23 24 24 25 26 26 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	7.6 8.8 11.2 10.9 11.5	MIN		11.9 11.5 9.1 7.9 9.3 10.0 9.6 9.6 9.4 9.2 11.2 12.2 12.7 10.4 9.5 9.8 10.0	7.6 7.8 7.2 7.4 7.9 8.0 8.2 8.0 7.8 7.5 7.7 7.9 8.4 7.6 7.3	9.7 9.7 8.0 7.7 8.5 9.0 8.8 8.8 8.6 8.4 9.2 10.0 10.4 8.3 8.3 8.5 8.5 8.5 8.6	7.9 8.3 8.2 7.9 7.1 6.4 6.7 7.0 7.4 7.6 7.3 7.4 7.8 8.4 9.4 12.0 12.6 11.1	MIN 6.2 6.6 6.0 6.0 5.9 6.0 6.8 6.9 7.1 7.1 7.0 6.9 7.1 7.4 7.3	6.9 7.4 7.0 6.5 6.2 6.4 6.7 7.0 7.2 7.1 7.1 7.5 7.7 7.6 8.0 9.9 9.3 9.5 9.7	7.2 8.1 8.7 9.7 9.7 9.2 8.4 6.9 9.3 9.0 9.2 9.3 9.7 8.5 8.9 8.9 8.7 7.6	MIN 6.6.7 6.8 6.9 7.2 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	MEAN 6.9 7.0 6.4 7.1 7.8 8.0 7.9 8.6 8.0 8.1 8.1 7.4 7.2 7.0 6.9 7.4 7.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 42 5 26	7.6 8.8 	MIN	9.1 9.7 10.4 9.6	11.9 11.5 9.1 7.9 9.3 10.0 9.6 9.6 9.4 9.2 11.2 12.2 12.7 10.4 9.5 9.0 9.4 8.6 9.8 10.0 11.3 11.1 10.3 9.8 8.1	7.6 7.8 7.2 7.4 7.9 8.0 7.8 7.5 7.7 7.9 8.4 7.6 7.6 6.6 6.0 6.0 6.0 7.8	9.7 9.7 8.0 7.7 8.5 9.0 8.8 8.6 8.4 9.2 10.0 10.4 8.3 8.3 7.8 8.3 7.8 8.8 8.6	7.9 8.3 8.2 7.9 7.1 7.1 6.4 6.7 7.4 7.6 7.3 7.4 7.8 8.4 9.4 12.6 11.1 11.6 11.2 11.8 11.4 8.7	MIN 6.2 6.7 6.6 6.0 6.0 6.0 6.0 6.0 6.8 6.9 7.1 7.1 7.0 6.9 7.1 7.4 7.3 7.4 7.6 7.9 7.8 6.5	6.9 7.4 7.0 6.5 6.2 6.4 6.7 7.1 7.1 7.5 7.7 7.6 8.0 9.3 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	7.2 8.1 8.7 9.2 9.7 9.2 8.4 6.9 8.3 9.0 9.2 9.3 9.7 9.7 8.5 8.9 8.7 7.6 7.6 7.6 7.8 8.0 8.0	MIN 6.6 6.7 6.8 6.9 7.2 7.03 6.1 6.2 7.03 6.9 7.2 7.1 6.9 6.8 6.8 6.9 7.2 7.4	MEAN 6.9 7.0 6.4 7.1 7.8 8.0 7.9 8.2 8.6 8.1 7.9 8.2 8.6 8.1 7.9 7.2 7.0 6.9 7.5 7.8
1 2 3 4 5 6 7 8 9 10 11 22 13 14 15 16 17 18 19 20 21 22 32 45 26 27	7.6 7.6 11.2 10.9 11.5 12.1 12.2	MIN 5.8 7.4 8.1 7.8 8.0 8.1 8.5 7.7	9.1 9.7 10.1 10.4 9.6 9.4	11.9 11.5 9.1 7.9 9.3 10.0 9.6 9.6 9.4 9.2 12.2 12.7 10.4 9.5 9.8 10.0 11.3 11.1 10.3 9.8 8.1	7.6 7.8 7.2 7.4 7.9 8.0 8.2 8.0 8.2 8.0 7.5 7.7 7.9 8.4 7.6 7.3 7.6 6.6 6.4 6.0 5.8 7.6 6.0 5.8 7.6 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	9.7 9.7 8.0 7.7 8.5 9.0 8.8 8.8 8.6 8.4 9.2 10.0 10.4 8.8 8.3 8.5 8.5 8.8 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	7.9 8.3 8.2 7.9 7.1 7.1 6.4 6.7 7.0 7.4 7.6 7.3 7.4 7.8 8.4 9.4 12.0 12.6 11.1 11.6 11.8 11.8 11.8	MIN 6.2 6.6 6.0 6.0 6.0 6.0 6.8 6.9 7.1 7.1 7.4 7.3 7.4 7.5 6.5 6.3 7.0	6.9 7.4 7.0 6.5 6.2 6.4 7.0 7.1 7.1 7.5 7.7 7.6 8.0 9.3 9.5 9.7 9.5 9.5 9.7 9.5 8.1 8.5	7.2 8.1 8.7 9.2 9.7 9.2 8.4 6.9 8.9 8.9 8.7 7.6 7.6 7.6 7.8 8.0	MIN 6.6.7 6.8 6.9 7.2 7.0 6.3 6.2 6.9 7.2 6.9 8.1 7.5 7.4 7.3 7.2 7.1 6.8 6.9 7.2 7.4 7.5	MEAN 6.9 7.36 7.9 8.2 7.9 7.04 7.1 7.8 8.0 7.9 8.2 8.6 8.1 7.9 7.4 7.2 7.0 6.9 7.5 7.8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24 5 26 7 28	7.6 7.6 8.8 11.2 10.9 11.5 12.1 12.2	MIN 5.8 7.4 8.1 7.8 8.0 8.1 8.5 8.5 7.7	9.1 9.7 10.4 9.6 9.2	11.9 11.5 9.1 7.9 9.3 10.0 9.6 9.6 9.4 9.2 11.2 12.2 12.7 10.4 9.5 9.0 9.4 8.6 9.8 10.0 11.3 11.1 10.3 9.8 8.1	7.6 7.8 7.2 7.4 7.9 8.0 8.0 7.5 7.7 7.9 8.4 6.6 7.3 7.5 7.3 7.4 7.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6	9.7 9.7 8.0 7.7 8.5 9.0 8.8 8.8 8.6 8.4 9.2 10.0 10.4 8.3 8.3 7.8 8.8 8.8	7.9 8.3 8.2 7.9 7.1 7.1 6.4 6.7 7.0 7.4 7.6 7.3 7.4 8.4 9.4 12.0 12.6 11.1 11.6 11.2 11.8 11.4 8.7	MIN 6.7 6.6 6.0 6.0 6.0 6.0 6.8 6.8 6.9 7.1 7.1 7.0 6.9 7.1 7.4 7.5 7.8 6.5 6.3 7.0 6.5	6.9 7.4 7.0 6.5 6.5 6.4 6.7 7.0 7.1 7.15 7.7 7.6 8.0 9.3 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	7.2 8.1 8.7 9.2 9.7 9.2 8.4 6.9 8.3 9.0 9.2 8.5 8.9 8.9 7.5 7.6 7.5 7.6 7.8 8.0 8.4	MIN 6.6.7 6.8 6.9 7.2 7.0 6.1 6.2 9 8.1 7.5 7.4 3.7 7.2 1 6.9 6.8 6.8 7.2 7.4 7.5 7.4 7.5 7.4 7.5 7.4 7.5 7.4 7.5 7.4 7.5 7.4 7.5 7.4 7.5 7.5 7.4 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	MEAN 6.93 7.69 8.2 7.90 6.4 7.18 8.0 7.92 8.6 8.1 7.94 7.2 7.0 6.9 7.55 7.8 8.10
1 2 3 4 5 6 7 8 9 1 0 1 1 2 1 3 4 1 5 1 6 1 7 1 8 1 9 2 0 2 2 3 4 5 2 5 2 6 7 8 2 9	7.6 7.6 8.8 11.2 10.9 11.5 12.1 12.2 11.4 11.2	MIN 5.8 7.4 8.1 7.8 8.0 8.5 7.7 7.7 7.7	9.1 9.7 10.1 10.4 9.6 9.4 9.2 8.9	11.9 11.5 9.1 7.9 9.3 10.0 9.6 9.6 9.4 9.2 11.2 12.2 12.7 10.4 9.5 9.0 9.4 8.6 9.8 10.0 11.3 11.1 10.3 9.8 8.1	7.6 7.8 7.2 7.4 8.0 7.8 8.0 7.8 7.7 7.9 8.4 7.6 7.3 7.3 7.2 7.4 6.6 6.0 6.1 6.3	9.7 9.7 8.0 7.7 8.5 9.0 8.8 8.6 8.4 9.2 10.0 10.4 8.3 8.3 7.8 8.8 8.4 9.2 8.8 8.6 9.2	7.9 8.3 8.2 7.9 7.1 7.1 6.4 6.7 7.4 7.6 7.3 7.4 7.8 8.4 9.4 12.6 11.1 11.6 11.2 11.8 11.4 8.7	MIN 6.2 6.7 6.6 6.0 6.0 6.0 6.0 6.0 6.0 6.8 6.9 7.1 7.0 6.9 7.1 7.4 7.3 7.4 7.8 6.5 6.5	6.9 7.4 7.0 6.5 6.2 6.4 6.7 7.1 7.5 7.7 7.6 8.0 9.3 9.5 9.5 9.5 7.5 8.1 8.5 7.1	7.2 8.1 8.7 9.2 9.7 9.8 8.4 6.9 8.3 9.0 9.2 9.3 9.7 9.7 7.6 7.5 7.4 7.1 7.8 8.0 8.4 9.0 9.0 9.0	MIN 6.6.7 6.8 6.9 7.2 7.03 6.1 6.2 7.03 6.9 7.2 7.1 6.9 6.8 6.9 7.2 7.1 6.9 6.8 6.9 7.2 7.4 7.5 7.5	MEAN 6.9 7.6 7.9 8.2 7.9 6.4 7.1 7.8 8.0 9.8 8.1 7.9 7.2 7.0 6.9 7.5 7.8 8.1 8.3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24 5 26 7 28	7.6 7.6 8.8 11.2 10.9 11.5 12.1 12.2	MIN 5.8 7.4 8.1 7.8 8.0 8.1 8.5 8.5 7.7	9.1 9.7 10.4 9.6 9.2	11.9 11.5 9.1 7.9 9.3 10.0 9.6 9.6 9.4 9.2 11.2 12.2 12.7 10.4 9.5 9.0 9.4 8.6 9.8 10.0 11.3 11.1 10.3 9.8 8.1	7.6 7.8 7.2 7.4 7.9 8.0 8.0 7.5 7.7 7.9 8.4 6.6 7.3 7.5 7.3 7.4 7.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6	9.7 9.7 8.0 7.7 8.5 9.0 8.8 8.8 8.6 8.4 9.2 10.0 10.4 8.3 8.3 7.8 8.8 8.8	7.9 8.3 8.2 7.9 7.1 7.1 6.4 6.7 7.0 7.4 7.6 7.3 7.4 8.4 9.4 12.0 12.6 11.1 11.6 11.2 11.8 11.4 8.7	MIN 6.7 6.6 6.0 6.0 6.0 6.0 6.8 6.8 6.9 7.1 7.1 7.0 6.9 7.1 7.4 7.5 7.8 6.5 6.3 7.0 6.5	6.9 7.4 7.0 6.5 6.5 6.4 6.7 7.0 7.1 7.15 7.7 7.6 8.0 9.3 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	7.2 8.1 8.7 9.2 9.7 9.2 8.4 6.9 8.3 9.0 9.2 8.5 8.9 8.9 7.5 7.6 7.5 7.6 7.8 8.0 8.4	MIN 6.6.7 6.8 6.9 7.2 7.0 6.1 6.2 9 8.1 7.5 7.4 3.7 7.2 1 6.9 6.8 6.8 7.2 7.4 7.5 7.4 7.5 7.4 7.5 7.4 7.5 7.4 7.5 7.4 7.5 7.4 7.5 7.4 7.5 7.5 7.4 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	MEAN 6.93 7.69 8.2 7.90 6.4 7.18 8.0 7.92 8.6 8.1 7.94 7.55 7.8 8.1 8.1 7.94 8.1 8.1 7.94 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1
1 2 3 4 5 6 7 8 9 10 11 23 14 15 16 7 18 19 20 21 22 3 24 5 26 7 28 9 30	8.8 	MIN 5.8 7.4 8.1 7.8 8.0 8.1 7.7 7.7 7.6 7.7	9.1 9.7 10.1 10.4 9.6 9.4 9.2 8.9	11.9 11.5 9.1 7.9 9.3 10.0 9.6 9.6 9.4 9.2 11.2 12.2 12.7 10.4 9.5 9.0 9.4 8.6 9.8 10.0 11.3 11.1 10.3 9.8 8.1	7.6 7.8 7.2 7.4 7.9 8.0 8.0 8.0 8.0 7.5 7.7 7.9 8.4 7.6 7.6 6.6 6.4 6.0 5.8 5.6 6.1 6.5	9.7 9.7 8.0 7.7 8.5 9.0 8.8 8.8 8.6 8.4 9.2 10.0 10.4 8.3 8.5 8.5 8.5 8.6 9.2 8.8 8.6 9.2 8.7 8.9 8.8 8.8	7.9 8.3 8.2 7.9 7.1 6.4 6.7 7.0 7.4 7.6 7.3 7.4 7.8 8.4 9.4 12.0 12.6 11.1 11.6 11.2 11.8 11.4 8.7	MIN 6.2 6.6 6.0 6.0 6.0 6.0 6.8 6.9 7.1 7.0 6.9 7.1 7.4 7.4 7.5 6.5 6.5	6.9 7.4 7.0 6.5 6.2 6.4 6.7 7.1 7.1 7.5 7.7 7.6 8.0 9.9 9.3 9.5 9.5 9.5 9.5 7.5 8.1 7.1 7.1	7.2 8.1 8.7 9.7 9.7 9.2 8.4 6.9 9.0 9.2 9.3 9.0 8.5 8.9 8.7 7.6 7.6 7.6 8.0 8.4 9.0 9.0 9.0 9.0	MIN 6.6.7 6.8 6.9 7.2 9 6.9 6.9 6.9 7.5 7.4 7.3 7.1 6.9 6.8 6.8 7.2 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	MEAN 6.337.697.88.297.98.86.88.197.427.557.588.808.3588.35

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

SUSPENDED-SEDIMENT DISCHARGE (TONS/DAY), WATER YEAR OCTOBER 1976 TO SEPTEMBER 1977

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
	,,,,,,	OCTOBER		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	NOVEMBER		1	DECEMBER	
	- 1222			1 1124		220	2229	1300	
1 2	6890 6440	14 15	262 263	19900 21900	10	564 613	6230 6120	4 2	65 37
3	6510	13	228	19800	10	535	5620	2	30
4	6830	13	252	17400	7	322	4760	2	27
5	7940	19	397	16400	- 5	217	4810	3	39
6	8150 6910	15 14	327	16100	4	173	4670	3 7	38
8	6420	17	261 300	14900 13900	4	160	4860 17200	110	5480
9	7400	18	371	13200	3	111	17400	67	3190
10	34300	56	6160	12700	3	102	15800	27	1160
11 12	50700 29500	70 32	10100 2550	11500	3 2	. 79	14000	22 18	830 597
13	21700	21	1210	10700	3	62 85	12400	14	432
14	18900	15	706	9990	3	81	8000	12	259
15	18100	10	447	9210	3	75	7700	10	208
16	16200	6	251	8890	3.	72	7950	8	172
17 18	13000 11500	4	127 107	8750 8490	6	132 182	8250 7600	6	200 123
19	10600	4	114	8030	8	173	6800	4	73
20	11200	6	180	7720	8	166	6300	3	51
21	14500	15	627	7330	8	158	6150	3	50
22	33000	53	5170	7290	8	164	4500	1	12
23	35500 25900	47 20	4620 1420	7090	8	158	5650 6550	. 2	31 35
25	22000	10	598	6940 6710	7	131 119	5000	2	27
26	23200	12	741	6370	6	103	4700	2	25
27	26200	13	903	5690	6	89	4400	i	12
28	23800	9	580	5560	5	75	3950	2	21
29 30	20400 .	9	480	5480	5	74	4700	5 4	63
31	18100	8	387 342	5670		67	4250 4350	4	47
TOTAL	558590		40481	324010		5191	231770		13488
		JANUARY		. 1	FEBRUARY			MARCH	
1	3350	4	36	2200	2	12	27900	74	5570
2	3600	3	29	3160	5	43	26000	57	4060
3	3700	3	30	3000	4	. 32	21600	33	1970
4	4200	3	34	2770	4	30	21400	28	1600
5	4900	6	79	2720	3	22	47700	238	33300
6	4450	6	72	2920	5	39	55900	211	32400
7 8	4000 3500	4	43	3520 3940	5 7	48	43700 33100	102 53	12100 4790
9	4050	5	55	4670	11	139	26900	28	2020
10	4250	5	57	4730	12	153	23900	21	1380
11	3300	4	36	4080	10	110	22800	19	1190
12	3900	4	42	4270	8	92	23000	21	1300
13	3650 4150	3 4	30 45	4850 5670	10	131 214	26400 72900	285 484	21900 96700
15	4750	5	64	5300	13	247	107000	406	119000
16	4150	4	45	5050	10	165	69800	171	33500
17	2950	3	24	5270	19	296	50100	80	10800
18	2500	3	20	5270	17	270 118	40000 33600	63	6890 3080
19 20	4450 4350	10	120 94	4970	8	128	28700	23	1750
21	4250	6	69	4150	. 11	138	24300	16	1030
22	4000	5	54	3970	17	204	31400	121	15200
23	3650 3750	4	39 40	4050	24 37	270 545	62900 50100	427 97	72100 13600
25	3550	3	29	32200	923	85900	38200	38	4010
26	4400	5	59	26100	321	23500	31100	21	1740
27	3650	4	39	24400	89	5810	26500	16	1180
28 29	3050 2950	3	25 24	27700	108	8090	23600 24100	12	789 890
30	2750	2	15			•••	28300	20	1500
31	2250	2	12				47700	60	7980
POTAL	116400		1398	210300		126820	1190600		515319

SUSPENDED-SEDIMENT DISCHARGE (TONS/DAY), WATER YEAR OCTOBER 1976 TO SEPTEMBER 1977

01463500 DELAWARE RIVER AT TRENTON, NJ--CONTINUED

APRIL	DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
2 45500 57 7120 14600 14 552 3760 4 40 1 4 562 3760 5 40 1 1 4 562 3760 5 40 1 1 4 562 3760 5 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			APRIL			MAY			JUNE	
2 45500 57 7120 14600 14 552 3760 4 40 1 4 562 3760 5 40 1 1 4 562 3760 5 40 1 1 4 562 3760 5 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		54200	07	12000	17100		252	2600		40
3 44700										
5 \$4700	3									
6 51700 43 6040 15000 16 251 3230 4 57 7 56100 29 5040 15000 16 257 3290 14 120 8 39400 20 2140 17700 11 503 3900 11 120 9 33100 15 1320 14900 19 363 4140 7 7 73 10 27800 13 958 14400 13 503 4820 11 147 11 24300 10 642 15500 6 299 8050 18 389 11 22100 10 622 15500 6 299 8050 18 389 11 22100 10 622 15500 6 299 8050 18 389 11 22100 10 622 15500 6 299 8050 18 389 11 22100 10 622 15500 6 299 8050 18 389 11 23100 12 637 14900 7 282 6200 12 236 15 17300 9 421 13700 7 282 6200 12 236 15 17300 9 421 13700 7 282 4230 12 136 16 15500 6 345 12400 6 201 4470 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8										
7 46100 20 2140 17200 11 507 3990 14 152 8 3440 20 12 140 17200 11 503 3990 14 152 152 8 3440 20 13 3 958 14400 13 503 3400 17 120 11 147 112 24700 13 958 14400 13 503 3400 17 120 11 147 112 24700 13 958 14400 13 503 4420 11 147 112 24700 12 12 12 12 12 12 12 12 12 12 12 12 12			61	9050	13900	5	196	3380	6	55
8 39400										
10 27800 13 958 14400 13 503 4220 11 147 11 24100 10 642 15500 9 371 7100 18 147 11 2 22100 10 622 15500 9 6 269 8050 18 189 13 20100 12 637 14900 7 226 6280 12 202 14 18800 10 493 14100 8 309 5050 26 345 15 17300 9 421 13700 7 262 4230 12 136 16 15800 8 345 12400 6 201 4270 6 64 17 13900 7 251 11600 7 201 430 430 6 71 18 11700 5 157 10500 5 144 3890 7 76 18 11700 5 157 10500 5 144 3890 7 76 18 11700 1 4 41 9800 6 159 144 3890 7 76 20 10700 1 41 9900 6 159 144 3890 7 76 21 10100 2 45 9380 6 159 3880 10 99 21 10100 2 45 9380 6 159 3880 10 99 21 10100 3 8 99 7400 6 120 4470 11 119 22 3 8400 3 8 99 7400 6 120 4470 112 159 23 8400 3 89 7400 6 120 4470 12 159 24 8550 4 87 6550 6 106 440 9 12 25 17000 20 961 6190 6 100 4300 7 87 26 2700 52 4180 5520 6 96 46 440 12 159 27 30000 41 3340 5560 6 92 4890 28 363 27 30000 41 3340 5560 6 92 4890 28 363 28 26100 21 1440 5160 8 115 450 400 12 140 27 30000 18 631 430 5560 6 92 4890 28 363 28 26100 21 1440 5160 8 115 450 140 12 17 29 20100 1 8 631 430 5560 6 92 4890 28 363 31 27										
11 24300 10 642 15500 9 371 7100 18 347 13 20100 12 677 1300 7 202 620 12 302 14 1800 10 493 14100 8 309 5050 12 305 15 17300 9 421 13700 7 262 4330 12 136 16 15800 8 345 12400 6 201 4470 6 64 17 13900 7 251 11600 7 203 4130 6 71 18 11700 5 157 10500 5 144 3890 7 76 18 11700 1 1 41 9800 5 144 3890 7 76 10 1000 1 1 41 9800 5 159 3880 10 99 21 10100 2 45 9380 6 159 3880 10 99 21 10100 2 45 9380 6 159 3880 10 99 21 10100 2 45 9380 6 152 4020 11 199 22 10100 2 45 9380 6 152 4020 11 199 24 8550 4 97 6550 6 106 4740 9 120 25 17000 20 961 5190 6 100 4300 12 140 26 27 3000 41 3340 5660 6 92 4890 28 163 28 26100 11 140 5500 6 100 4300 12 140 28 26100 2 1 140 5160 8 115 4360 12 4890 12 140 28 26100 2 1 140 5160 8 115 4360 12 4890 12 140 29 10100 12 140 5160 8 115 4360 12 4890 12 140 20 1017										
12 22100 10 622 15500 6 226 8050 18 389 13 20300 12 637 14900 7 282 6280 12 202 14 18800 10 493 14100 8 309 5050 26 345 15 17100 9 421 13710 7 262 4220 12 136 16 15800 8 345 12400 6 201 4270 6 6 44 17 13900 7 251 11600 7 201 4120 6 7 14 19 11000 3 192 9900 5 144 3820 8 86 10 19900 6 159 3850 10 99 21 10100 2 45 9900 6 159 3850 10 99 21 10100 2 45 9980 6 159 3850 10 99 21 10100 2 45 9980 6 146 4820 11 150 22 9140 3 85 8860 6 146 4820 12 150 23 8400 3 69 7400 6 120 4740 12 150 23 8400 3 69 7400 6 120 4740 12 150 24 8550 4 87 6550 6 106 4740 9 120 25 17000 20 961 6190 6 100 4330 7 87 26 29700 52 4180 5520 6 96 4300 7 87 27 30000 41 3340 5660 6 9 92 4890 28 363 30 20000 18 459 3960 5 5 1 4490 28 363 31										
13 20300 12 637 14900 7 282 6280 12 202 14 18100 10 493 14100 8 309 5050 26 345 15 17300 9 421 13700 7 262 4210 12 136 16 15800 8 345 12400 6 6 201 4270 6 6 64 17 13900 7 251 11600 7 203 4130 6 71 18 11700 5 157 10500 5 144 3800 7 7 76 18 11700 3 9 9800 5 144 3800 7 7 76 10 10700 1 41 9800 6 159 3850 10 99 21 10100 2 45 9380 6 159 3850 10 99 21 10100 2 45 9380 6 159 4020 11 119 22 1100 3 85 85 850 6 144 3800 12 11 119 23 140 3 85 85 850 6 6 144 440 12 11 119 24 8550 4 87 6550 6 100 4740 9 120 25 17000 20 961 6190 6 100 4740 9 120 27 30000 41 3340 5560 6 96 4200 17 87 27 30000 41 3340 5560 6 99 4890 28 363 28 26100 21 1480 5160 8 115 4560 19 237 29 23300 10 631 4340 7 80 4340 16 188 30 20000 8 459 3360 5 5 5 5 5 4340 24 282 29 23300 10 631 4340 7 80 4340 16 188 30 20000 8 8 459 3360 5 5 5 5 5 4340 24 282 29 23300 10 631 4340 7 80 4340 16 188 30 20000 8 8 459 3360 5 5 5 5 1 4340 24 282 29 23300 10 631 4340 7 80 4340 16 188 30 20000 8 8 459 3360 5 5 5 5 4340 24 282 29 23300 10 631 4340 7 80 4340 16 188 30 20000 8 8 459 3360 5 5 5 5 4340 24 282 29 23300 10 631 4340 7 80 4340 16 188 30 20000 8 8 459 3360 5 5 5 5 4340 24 282 20 3360 11 162 3380 54 499 300 30 30 5 5 15 29 23300 10 631 4340 7 80 4340 16 188 30 20000 8 8 459 3360 5 5 5 5 4340 24 282 20 3440 3 3 50 15 162 3380 54 499 300 30 5 15 115 20 3360 11 162 3380 54 499 300 30 5 15 115 20 3360 12 12 134 130 18 169 2640 15 109 20 3360 13 124 3350 17 156 2810 19 142 21 3790 20 205 4090 15 17 156 2810 19 142 21 3790 20 205 4090 15 17 156 2810 19 142 21 3790 20 205 4090 14 121 3410 16 15 173 2730 17 124 21 3790 20 205 4090 17 156 2810 19 142 21 3790 20 205 4090 14 131 177 156 2810 19 142 21 3790 20 205 4090 14 131 179 3700 17 124 21 3790 20 205 4090 19 177 156 2810 19 142 21 3790 20 205 4090 19 177 156 2810 19 19 142 21 4100 11 115 3320 10 6 4480 10 10 10 10 10 10 10 10 10 10 10 10 10										
15 17300 9 421 13700 7 262 4210 12 136 16 15800 8 345 12400 6 201 4270 6 644 17 13900 7 251 11400 5 201 4270 6 644 18 11700 5 5 151 10500 5 443 1300 7 7 76 19 10000 3 92 9800 5 144 1820 8 86 20 10700 1 41 9900 6 159 3850 10 99 21 10100 2 45 9380 6 159 3850 10 99 21 10100 2 2 45 9380 6 146 4480 11 150 22 3 8400 3 69 7400 6 120 4740 12 150 23 8400 3 69 7400 6 120 4740 12 159 24 8550 4 87 6550 6 106 4740 12 159 25 17000 20 961 6190 6 100 4300 7 87 26 29700 5 2 4180 5520 6 96 4300 12 140 27 30000 41 3340 5660 6 92 4890 28 363 28 26100 21 1400 5160 8 115 4500 19 237 29 23300 10 631 4340 7 80 4340 16 188 21 4230 22 1 43 340 7 8 55 5 5 1360 19 237 29 23300 10 631 4340 7 80 4340 16 188 31 2000 8 6 8916 349580 7206 133630 4445 TOTAL 795790 66916 349580 7206 133630 4445 29 3600 15 162 3380 54 498 1000 7 33 3 3760 11 199 3440 29 264 3100 12 140 4 3300 8 6 4300 33 378 3000 15 115 6 2960 7 57 57 3560 19 186 286 315 286 113 96 2 3 3860 14 121 3340 540 540 310 540 310 320 15 115 6 2960 7 57 57 3560 19 186 286 310 4445 20 3430 14 121 3340 16 189 31 16 286 31 19 18 19 18 19 18 19 18 19 18 19 18 19 19 18 18 19 18 19 18 18 19 18 19 18 19 18 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18										
16										
17 139900 7 251 11600 7 203 4130 6 71 18 11700 5 157 10500 5 144 3890 7 7 76 19 10800 3 92 9800 5 144 3820 8 86 20 10700 1 41 9800 6 159 3850 10 99 21 10100 2 45 9380 6 152 4020 11 119 22 9140 3 85 8960 6 146 4480 12 150 23 8400 3 69 7400 6 120 4780 12 158 24 850 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	15	17300	9	421	13700	7	262	4230	12	136
18 11700 5 157 10500 5 144 3890 7 76 19 10800 3 92 9800 5 144 3820 8 86 20 10700 1 41 9800 6 159 3850 10 99 21 10100 2 485 9800 6 159 3850 10 99 22 9140 3 85 8960 6 146 4480 12 150 23 8400 3 69 7400 6 120 4780 12 150 24 8550 4 87 6550 6 106 4740 9 120 25 17000 20 961 6190 6 100 4300 7 87 26 29700 52 4480 5920 6 96 4490 12 140 27 30000 41 3340 5660 6 92 4890 28 363 28 26100 21 1480 5160 8 115 4560 19 237 29 23300 10 631 4340 7 80 4340 16 188 30 20000 8 455 3960 5 5 51 4340 16 188 30 20000 8 455 3960 5 5 51 4340 24 222 TOTAL 795790 68916 349580 7206 133630 4445 ***DILY*** **AUGUST*** ***AUGUST***										
19 10800 3 92 9800 5 144 3820 8 86 20 10700 1 41 9800 6 159 3850 10 99 21 10100 2 45 9380 6 152 4020 11 119 22 9140 3 85 9800 6 152 4020 11 119 23 8400 3 69 7400 6 120 4790 12 158 24 8550 4 87 6550 6 106 4740 9 12 25 17700 20 961 6190 6 100 4300 7 87 26 23700 52 4180 5520 6 96 4300 12 27 3000 51 1340 5660 6 92 4890 22 149 28 26100 21 1480 5560 8 115 4560 19 237 29 23300 10 631 4340 7 80 4340 16 188 30 20000 8 459 3960 5 5 1 4340 24 282 31 3760 5 5 50 TOTAL 795790 68916 349580 7206 133630 4445 ***MUGUST*** ***AUGUST*** ***AUGUST** ***AUGUST*** ***AUGUST** ***A										
21 10100										
22 9140 3 85 9960 6 144 4480 12 150 23 8400 3 69 7400 6 120 4780 12 158 24 8550 4 87 6555 6 106 4740 9 120 25 17000 20 961 6190 6 100 4300 7 87 26 27 30000 41 3340 5560 6 92 4890 28 363 28 26100 21 1480 5160 8 115 4560 19 237 29 23300 10 631 4340 7 80 4340 16 188 30 20000 8 459 3960 5 51 4340 24 282 31	20	10700	1	41	9800	6	159	3850	10	99
23 8400 3 69 7400 6 120 4780 12 158 24 8550 4 87 6550 6 106 4740 9 120 25 17000 20 961 6190 6 100 4300 7 87 26 29700 52 4180 5920 6 96 4300 12 140 27 30000 41 3340 5660 6 92 4890 28 363 28 26100 21 1480 5160 8 115 4850 19 237 29 23300 10 631 4340 7 80 4340 16 188 30 20000 8 459 3960 5 51 4340 24 222 31 68916 349580 7206 133630 4445 **TOTAL** 795790 68916 349580 7206 133630 4445 **JULY** **AUGUST** **SEPTEMBER** 1 4230 21 243 3410 27 300 3320 6 5 7 33 3760 13 162 3300 7 6 53 33760 15 115 6 3 3 3 3 760 15 162 3300 3 410 2970 12 96 5 3 3 3 3 760 15 162 3300 3 410 2970 12 96 5 5 3 3 3 3 760 15 162 3300 3 3 378 3030 15 115 6 3 3 3 3 760 1 1 102 3 440 29 264 3170 7 6 60 4 3 560 8 8 81 4930 30 410 2970 12 96 5 3 300 7 7 60 4130 33 378 3030 15 115 6 3 360 14 121 3410 19 186 2640 15 109 14 121 3400 19 18 168 2640 15 109 14 121 3410 19 18 168 2640 15 109 14 121 3400 19 2216 3410 16 15 150 3140 19 142 9 4130 19 2216 3410 16 150 3140 18 152 10 4160 18 205 3960 15 164 2990 16 131 11 3 3990 12 122 24 440 15 150 3140 18 152 10 4160 18 205 3960 15 164 2990 16 131 11 3 3990 12 132 3200 7 6 5 3960 15 164 2990 16 131 124 3450 19 124 3450 19 124 3450 19 124 3950 17 156 2810 19 142 3950 12 132 320 7 6 6 5 3960 15 164 2990 16 131 124 3990 12 132 3200 7 6 5 3960 15 164 2990 16 131 124 3990 12 132 3200 7 6 5 3960 15 164 2990 16 131 124 3990 12 132 3200 7 6 5 3960 15 164 2990 16 131 124 3990 12 132 3200 7 6 5 3960 15 164 2990 16 131 124 3990 12 132 3200 7 6 5 3960 12 12 129 2550 9 9 30 30 30 30 30 30 30 30 30 30 30 30 30										
24 8550 4 87 6550 6 100 4300 7 87 25 17000 20 961 6190 6 100 4300 7 87 26 29700 52 4180 5920 6 96 4300 12 140 27 30000 41 3140 5660 6 96 12 4800 22 369 28 26100 21 140 3660 7 80 4500 16 16 188 30 20000 8 459 3960 5 51 4340 24 282 31 TOTAL 795790 68916 349580 7205 133630 4445 JULY										
25 17000 20 961 6190 6 100 4300 7 87 26 29700 52 4180 5920 6 96 4300 12 140 27 30000 41 3340 5660 6 92 4890 28 363 28 26100 21 1480 5160 8 115 4566 19 238 28 26100 21 1480 5160 8 115 4566 19 238 30 20000 8 44 949 9960 5 5 51 440 24 222 31 68916 349580 7206 133630 4445 JULY										
27 30000 41 3340 5660 6 92 4890 28 363 28 26100 21 1480 5160 8 115 4560 19 237 29 23300 10 631 4340 7 80 4340 16 188 30 20000 9 4559 3960 5 5 51 4340 24 282 31 3760 5 5 50 3760 5 5 50										
28 26100 21 1480 5160 8 115 4560 19 237 29 23300 10 631 4340 7 80 4340 16 188 30 20000 8 459 3960 5 51 4340 24 222 31 3760 5 50 TOTAL 795790 68916 349580 7205 133630 4445 JULY	26	29700	52	4180	5920	6	96	4300	12	140
29 23300 10 631 4340 7 80 4340 16 188 30 20000 8 459 3960 5 5 51 4340 24 2822 31 3760 5 5 51 4340 24 2822 31 3760 5 5 50										
30 20000 8 459 3960 5 51 4340 24 2827 TOTAL 795790 68916 349580 7206 133630 4445 JULY										
TOTAL 795790 68916 349580 7205 133630 4445										
1 4230 21 243 3410 27 300 3320 6 57 53 3 3760 11 109 3440 29 264 3170 7 60 40 40 40 40 40 40 40	31				3760	5	50			
1 4230 21 243 3410 27 300 3320 6 57 2 3960 15 162 3380 54 498 3060 7 53 3 3760 11 109 3440 29 264 3170 7 60 4 3560 8 81 4930 30 410 2970 12 96 5 3020 7 60 4130 33 378 3030 15 115 6 2960 7 57 3560 19 186 2670 13 96 7 3080 14 121 3410 18 168 2640 15 109 8 3560 13 124 3350 17 156 2810 19 142 9 4130 19 216 3410 16 150 3140 18 152 10 4160 18 205 3960 15 164 2990 16 131 11 3890 12 112 4410 15 173 2730 17 124 12 3790 20 205 4090 14 153 2730 17 124 12 3790 20 405 4090 14 153 2730 17 123 13 4560 46 589 3960 12 129 2520 8 54 15 4060 15 163 3560 13 121 29 2670 12 83 14 4560 46 589 3960 12 129 2520 8 54 15 4060 15 163 3560 13 121 29 2670 12 83 14 4560 46 589 3960 12 129 2520 8 54 15 4060 15 163 3560 13 121 2940 8 59 16 3850 7 7 71 3760 10 106 5280 59 903 20 3960 8 91 3320 7 67 5880 46 775 21 4970 14 189 3200 19 172 5320 26 376 22 4300 11 127 3530 12 112 8150 60 1720 23 4300 12 139 3720 4 40 1080 5280 59 903 20 3960 15 137 320 8 69 3420 19 173 38 3350 7 7 71 3760 10 106 5280 59 903 20 3960 15 13 132 3200 8 69 3420 19 173 38 3350 7 7 71 3760 10 106 5280 59 903 20 3960 11 127 3530 12 112 8150 60 1720 21 4970 14 189 3200 19 172 5320 26 376 22 4300 11 127 3530 12 112 8150 60 1720 23 4300 12 139 3720 4 40 10800 81 2460 24 3470 15 137 3320 5 49 9140 44 1100 25 2860 10 73 3600 10 94 9320 17 421 26 3170 9 81 3500 14 134 19700 107 8150 27 3020 8 62 3320 8 73 39600 154 16400 28 2670 5 39 3240 6 48 8 39000 85 9260 29 2440 6 37 2580 6 42 24500 44 3010 30 2580 7 50 2490 8 65 17700 266 1240 31 2990 8 65 2640 7 48	TOTAL	795790		68916	349580		7206	133630		4445
3 3760 11 109 3440 29 264 3170 7 60 4 3550 8 81 4930 30 410 2970 12 96 5 3020 7 60 4130 33 378 3030 15 115 6 2960 7 57 3560 19 186 2670 13 96 7 3080 14 121 3410 18 168 2640 15 109 8 3560 13 124 3350 17 155 2810 19 142 9 4130 19 216 3410 16 150 3140 18 152 10 4160 18 205 3960 15 164 2990 16 131 11 3890 12 132 4410 15 173 2730 17 124			JULY			AUGUST			SEPTEMBER	
3 3760 11 109 3440 29 264 3170 7 60 4 3550 8 81 4930 30 410 2970 12 96 5 3020 7 60 4130 33 378 3030 15 115 6 2960 7 57 3560 19 186 2670 13 96 7 3080 14 121 3410 18 168 2640 15 109 8 3560 13 124 3350 17 155 2810 19 142 9 4130 19 216 3410 16 150 3140 18 152 10 4160 18 205 3960 15 164 2990 16 131 11 3890 12 132 4410 15 173 2730 17 124	1	4230	21	243	3410	27	300	3320	6	57
\$ 3300	2	3960							7	
\$ 3300									12	
7 3080 14 121 3410 18 168 2640 15 109 8 3560 13 124 3350 17 156 2810 19 142 9 4130 19 216 3410 16 150 3140 18 152 10 4160 18 205 3960 15 164 2990 16 131 11 3890 12 132 4410 15 173 2730 17 124 12 3790 20 205 4090 14 153 2730 17 123 13 6950 219 4630 3660 13 129 2670 12 83 14 4560 46 589 3960 12 129 2670 12 83 14 4560 15 163 3560 13 121 2940 8 59 16 16 17 17 17 17 18 18 18 3350 11 115 3320 8 69 3420 19 17 318 3350 11 96 3560 10 97 4200 35 394 19 3630 7 7 71 3760 10 10 97 4200 35 394 19 3630 7 7 71 3760 10 106 5280 59 903 20 3960 8 91 3320 7 67 5880 46 775 21 4970 14 189 3200 19 172 5320 26 376 22 4300 11 127 3530 12 112 8150 60 1720 23 4300 12 139 3720 4 40 10800 81 2400 23 3760 24 3470 15 137 3320 5 49 9140 44 1100 25 2860 10 73 3600 10 1720 23 4300 12 139 3720 4 40 10800 81 2460 24 3470 15 137 3320 5 49 9140 44 1100 25 2860 10 73 3600 10 94 9320 17 421 26 3170 9 81 3350 12 112 8150 60 1720 23 4300 12 139 3720 4 40 10800 81 2460 24 3470 15 137 3320 5 49 9140 44 1100 25 2860 10 73 3600 10 94 9320 17 421 26 3170 9 81 3500 10 94 9320 17 421 26 3170 9 81 3500 10 94 9320 17 421 26 3170 9 81 3500 14 134 19700 107 8150 28 2670 5 39 3240 6 48 39000 85 9260 29 2440 6 37 2580 6 2320 8 73 39600 85 9260 29 2440 6 37 2580 6 2400 7 48 3000 85 9260 29 2440 6 37 2580 6 42 24500 44 3010 30 2580 7 50 2490 8 55 17700 26 1240 31 2990 8 65 2640 7 48 3000 85 9260 29 2440 6 37 2580 6 42 24500 44 3010 30 2580 7 50 2490 8 55 17700 26 1240 31 2990 8 65 2640 7 48 3000 85 9260 29 2440 6 37 2580 6 42 24500 44 3010 30 2580 7 50 2490 8 55 17700 26 1240 31 2990 8 65 2640 7 48 3000 85 9260 29 2440 6 37 2580 6 42 24500 44 3010 30 2580 7 50 2490 8 55 17700 26 1240 30 2580 7 50 2490 8 55 17700 26 1240 30 2580 7 50 2490 8 55 17700 26 1240 30 2580 7 50 2490 8 55 17700 26 1240 30 2580 7 50 2490 8 55 17700 26 1240 30 2580 7 50 2490 8 55 17700 26 1240 30 2580 7 50 2490 8 55 17700 26 1240 30 2580 7 50 2490 8 55 17700 26 1240 30 2580 7 50 2490 8 55 17700 26 1240 30 2580 7 50 2490 8 55 17700 26 1240 30 2580 7 50 2490 8 55 17700 26 1240 30 2580 7 50 2490 8										
7 3080 14 121 3410 18 168 2640 15 109 8 3560 13 124 3350 17 155 2810 19 142 9 4130 19 216 3410 16 150 3140 18 152 10 4160 18 205 3360 15 164 2990 16 131 11 3890 12 132 4410 15 173 2730 17 124 12 3790 20 205 4090 14 153 2730 17 123 13 6950 219 4630 3660 13 129 2670 12 83 14 4560 46 589 3960 12 129 2520 8 54 15 4060 15 163 3560 13 121 2940 8 59 16 3850 11 115 3320 8 69 3420 19 17 13 18 3350 11 96 3550 11 96 3560 10 97 4200 35 394 19 3630 7 7 71 3760 10 106 5280 59 903 20 3960 8 91 3320 7 67 5880 46 775 21 4970 14 189 3200 19 172 5320 26 376 22 4300 11 127 3530 12 112 8150 60 1720 23 4300 12 139 3720 4 40 10800 81 2460 24 3470 15 137 3320 5 49 9140 44 1100 25 2860 10 73 3600 10 94 9320 17 421 25 2860 10 775 24 400 15 137 3320 5 49 9140 44 1100 25 2860 10 73 33600 10 94 9320 17 421 26 3170 15 137 3320 5 49 9140 44 1100 25 2860 10 73 33600 10 94 9320 17 421 26 3170 9 81 3350 12 112 8150 60 1720 23 4300 12 139 3720 4 40 10800 81 2460 24 3470 15 137 3320 5 49 9140 44 1100 25 2860 10 73 3600 10 94 9320 17 421 26 3170 9 81 3500 14 134 19700 107 8150 28 2670 5 39 3240 6 48 39000 85 9260 29 2440 6 37 2590 8 73 39600 8 73 39600 8 73 39600 8 73 39600 8 73 39600 8 73 39600 8 73 39600 8 73 39600 8 73 39600 8 59 2600 29 2440 6 37 2590 8 65 2640 7 48 39000 85 9260 29 2440 6 37 2590 8 65 2640 7 48 39000 85 9260 29 2440 6 37 2590 8 65 2640 7 48 39000 85 9260 29 2440 6 37 2590 8 65 2640 7 48 39000 85 9260 29 2440 6 37 2590 8 65 2640 7 48 39000 85 9260 29 2440 6 37 2590 8 65 2640 7 48 39000 85 9260 29 2440 6 37 2590 8 65 2640 7 48 39000 85 9260 29 2440 6 37 2590 8 65 2640 7 48 39000 85 9260 29 2440 6 37 2590 8 65 2640 7 48 39000 85 9260 29 2440 6 37 2590 8 65 2640 7 48 39000 85 9260 29 2440 6 37 2590 8 65 2640 7 48 39000 85 9260 29 2440 6 37 2590 8 65 2640 7 48 39000 85 9260 29 2440 6 37 2590 8 65 2640 7 48 39000 85 9260 29 2440 6 37 2590 8 65 2640 7 48 39000 85 9260 29 2440 6 37 2590 8 65 2640 7 48 39000 85 9260 29 2440 6 37 2590 8 65 2640 7 48 39000 85 9260 29 2440 6 37 2590 8 65 2640 7 48 39000 85 9260 29 2440 6 37 2590 8 65 264	6	2960	7	57	3560	19	186	2670	13	96
9 4130 19 216 3410 16 150 3140 18 152 10 4160 18 205 3960 15 164 2990 16 131 11 3890 12 132 4410 15 173 2730 17 124 12 3790 20 205 4090 14 153 2730 17 124 13 6950 219 4630 3660 13 129 2670 12 83 14 4560 46 589 3960 12 129 2520 8 54 15 4060 15 163 3560 13 121 2940 8 59 16 3850 13 132 3200 7 63 2850 11 82 174 175 177 173 18 3350 11 19 173 18 3350 11 19 6 3560 10 97 4200 35 384 19 3630 7 7 71 3760 10 106 5280 59 903 20 3960 8 9 1 3320 7 667 5880 46 775 21 4970 14 189 3200 19 172 5320 26 376 22 4300 11 127 3530 12 112 8150 60 1720 23 4300 12 139 3720 4 40 10800 81 2460 24 3470 15 137 3320 5 49 9140 44 1100 25 2860 10 73 3600 10 73 3600 10 94 9320 17 4210 24 100 25 2860 10 73 3600 10 94 9320 17 4210 25 2860 10 73 3600 10 94 9320 17 4210 25 2860 10 73 3600 10 94 9320 17 4210 25 2860 10 73 3600 10 94 9320 17 421 26 3170 9 81 3500 14 134 19700 107 8150 26 3170 9 81 3500 14 134 19700 107 8150 26 3170 9 81 3500 14 134 19700 107 8150 26 3170 9 81 3500 14 134 19700 107 8150 27 3020 8 62 3320 8 73 39600 15 14 134 19700 107 8150 28 2670 5 39 3240 6 48 39000 85 9260 29 2440 6 37 2590 6 42 24500 44 3010 30 2580 7 50 2490 8 55 17700 26 1240 31 2990 8 65 2640 7 48	7	3080	14	121	3410					
10 4160 18 205 3960 15 164 2990 16 131 11 3890 12 132 4410 15 173 2730 17 124 12 3790 20 205 4090 14 153 2730 17 123 13 6950 219 4630 3660 13 129 2570 12 93 14 4560 46 589 3960 12 129 2520 8 54 15 4060 15 163 3560 13 121 2940 8 59 16 3850 13 132 3200 7 63 2850 11 82 17 4170 11 115 3320 8 69 3420 19 173 18 3350 11 96 3560 10 97 4200 35 394 19 3630 7 771 3760 10 106 5280 59 903 20 3960 8 91 3320 7 67 5880 46 775 21 4970 14 189 3200 19 172 5320 26 376 22 4300 11 127 3530 12 112 8150 60 1720 23 4300 12 139 3720 4 40 10800 81 2460 24 3470 15 137 3320 5 49 9140 44 1100 25 2860 10 73 3600 10 94 9320 17 421 26 3170 9 81 3500 10 94 9320 17 421 26 3170 9 81 3500 10 94 9320 17 421 26 3170 9 81 3500 10 94 9320 17 421 26 3170 9 81 3500 10 94 9320 17 421 26 3170 9 81 3500 10 94 9320 17 421 26 3170 9 81 3500 14 134 19700 107 8150 27 3020 8 62 3320 8 73 39600 15 15 160 28 2670 5 39 3240 6 48 39000 85 9260 29 2440 6 37 2580 6 42 24500 44 3010 30 2580 7 50 2490 8 55 17700 26 1240 31 2990 8 65 2640 7 48										
12 3790 20 205 4090 14 153 2730 17 123 13 6950 219 4630 3660 13 129 2670 12 83 14 4560 46 589 3960 12 129 2520 8 54 15 4060 15 163 3560 13 121 2940 8 59										
12 3790 20 205 4090 14 153 2730 17 123 13 6950 219 4630 3660 13 129 2670 12 83 14 4560 46 589 3960 12 129 2520 8 54 15 4060 15 163 3560 13 121 2940 8 59	11	3890	12	132	4410	15	173	2730	17	124
14 4560 46 589 3960 12 129 2520 8 54 15 4060 15 163 3560 13 121 2940 8 59 16 3850 13 132 3200 7 63 2850 11 82 17 4170 11 115 3320 8 69 3420 19 173 18 3350 11 96 3560 10 97 4200 35 394 19 3630 7 71 3760 10 106 5280 59 903 20 3960 8 91 3320 7 67 5880 46 775 21 4970 14 189 3200 19 172 5320 26 376 22 4300 11 127 3530 12 112 8150 60 1720 24 3470 15 137 3320 5 49 9140 44			20	205	4090	14	153			
15										
17 4170 11 115 3320 8 69 3420 19 173 18 3350 11 96 3560 10 97 4200 35 394 19 3630 7 71 3760 10 106 5280 59 903 20 3960 8 91 3320 7 67 5880 46 775 21 4970 14 189 3200 19 172 5320 26 376 22 4300 11 127 3530 12 112 8150 60 1720 23 4300 12 139 3720 4 40 10800 81 2460 24 3470 15 137 3320 5 49 9140 44 1100 25 2860 10 73 3600 10 94 9320 17 421 26 3170 9 81 3500 10 94 9320 17 421 26 3170 9 81 3500 14 134 19700 107 8150 27 3020 8 62 3320 8 73 39600 154 16400 28 2670 5 39 3240 6 48 39000 85 9260 29 2440 6 37 2580 6 42 24500 44 3010 30 2580 7 50 2490 8 55 17700 26 1240 31 2990 8 65 2640 7 48 TOTAL 115400 8601 108960 4648 248250 47918										
17 4170 11 115 3320 8 69 3420 19 173 18 3350 11 96 3560 10 97 4200 35 394 19 3630 7 71 3760 10 106 5280 59 903 20 3960 8 91 3320 7 67 5880 46 775 21 4970 14 189 3200 19 172 5320 26 376 22 4300 11 127 3530 12 112 8150 60 1720 23 4300 12 139 3720 4 40 10800 81 2460 24 3470 15 137 3320 5 49 9140 44 1100 25 2860 10 73 3600 10 94 9320 17 421 26 3170 9 81 3500 10 94 9320 17 421 26 3170 9 81 3500 10 94 9320 17 421 26 3170 9 81 3500 14 134 19700 107 8150 27 3020 8 62 3320 8 73 39600 154 16400 28 26 2670 5 39 3240 6 48 39000 85 9260 29 2440 6 37 2580 6 42 24500 44 3010 30 2580 7 50 2490 8 55 17700 26 1240 31 2990 8 65 2640 7 48 TOTAL 115400 8601 108960 4648 248250 47918	16	3850	13	132	3200	7	63	2850	11	82
18 3350 11 96 3560 10 97 4200 35 394 19 3630 7 71 3760 10 106 5280 59 903 20 3960 8 91 3320 7 67 5880 46 775 21 4970 14 189 3200 19 172 5320 26 376 22 4300 11 127 3530 12 112 8150 60 1720 23 4300 12 139 3720 4 40 10800 81 2460 24 3470 15 137 3320 5 49 9140 44 1100 25 2860 10 73 3600 10 94 9320 17 421 26 3170 9 81 3500 14 134 19700 107 8150 27 3020 8 62 3320 8 73 39600 154	17	4170	11	115	3320	8	69	3420	19	173
20 3960 8 91 3320 7 67 5880 46 775 21 4970 14 189 3200 19 172 5320 26 376 22 4300 11 127 3530 12 112 8150 60 1720 23 4300 12 139 3720 4 40 10800 81 2460 24 3470 15 137 3320 5 49 9140 44 1100 25 2860 10 73 3600 10 94 9320 17 421 26 3170 9 81 3500 14 134 19700 107 8150 27 3020 8 62 3320 8 73 39600 154 16400 28 2670 5 39 3240 6 48 39000 85 9260 29 2440 6 37 2580 6 42 24500 44 3010 30 2580 7 50 2490 8 55 17700 26 1240 31 2990 8 65 2640 7 48 TOTAL 115400 8601 108960 4648 248250 47918										
22 4300 11 127 3530 12 112 8150 60 1720 23 4300 12 139 3720 4 40 10800 81 2460 24 3470 15 137 3320 5 49 9140 44 1100 25 2860 10 73 3600 10 94 9320 17 421 26 3170 9 81 3500 14 134 19700 107 8150 27 3020 8 62 3320 8 73 39600 154 16400 28 2670 5 39 3240 6 48 39000 85 9260 29 2440 6 37 2580 6 42 24500 44 3010 30 2580 7 50 2490 8 55 17700 26 1240 31 2990 8 65 2640 7 48 TOTAL 115400 8601 108960 4648 248250 47918										
22 4300 11 127 3530 12 112 8150 60 1720 23 4300 12 139 3720 4 40 10800 81 2460 24 3470 15 137 3320 5 49 9140 44 1100 25 2860 10 73 3600 10 94 9320 17 421 26 3170 9 81 3500 14 134 19700 107 8150 27 3020 8 62 3320 8 73 39600 154 16400 28 2670 5 39 3240 6 48 39000 85 9260 29 2440 6 37 2580 6 42 24500 44 3010 30 2580 7 50 2490 8 55 17700 26 1240 31 2990 8 65 2640 7 48 TOTAL 115400 8601 108960 4648 248250 47918			14	199		19	172	5320	26	376
24 3470 15 137 3320 5 49 9140 44 1100 25 2860 10 73 3600 10 94 9320 17 421 26 3170 9 81 3500 14 134 19700 107 8150 27 3020 8 62 3320 8 73 39600 154 16400 28 2670 5 39 3240 6 48 39000 85 9260 29 2440 6 37 2580 6 42 24500 44 3010 30 2580 7 50 2490 8 55 17700 26 1240 31 2990 8 65 2640 7 48 TOTAL 115400 8601 108960 4648 248250 47918	22	4300	11	127	3530	12	112	8150	60	1720
25 2860 10 73 3600 10 94 9320 17 421 26 3170 9 81 3500 14 134 19700 107 8150 27 3020 8 62 3320 8 73 39600 154 16400 28 2670 5 39 3240 6 48 39000 85 9260 29 2440 6 37 2580 6 42 24500 44 3010 30 2580 7 50 2490 8 55 17700 26 1240 31 2990 8 65 2640 7 48 TOTAL 115400 8601 108960 4648 248250 47918	23	4300	12	139	3720	4				
26 3170 9 81 3500 14 134 19700 107 8150 27 3020 8 62 3320 8 73 39600 154 16400 28 2670 5 39 3240 6 48 39000 85 9260 29 2440 6 37 2580 6 42 24500 44 3010 30 2580 7 50 2490 8 55 17700 26 1240 31 2990 8 65 2640 7 48 TOTAL 115400 8601 108960 4648 248250 47918										
27 3020 8 62 3320 8 73 39600 154 16400 28 2670 5 39 3240 6 48 39000 85 9260 29 2440 6 37 2580 6 42 24500 44 3010 30 2580 7 50 2490 8 55 17700 26 1240 31 2990 8 65 2640 7 48 TOTAL 115400 8601 108960 4648 248250 47918			•	81	3500	14	134	19700	107	8150
28 2670 5 39 3240 6 48 39000 85 9260 29 2440 6 37 2580 6 42 24500 44 3010 30 2580 7 50 2490 8 55 17700 26 1240 31 2990 8 65 2640 7 48 TOTAL 115400 8601 108960 4648 248250 47918	27	3020	8	62	3320	8	73	39600	154	16400
30 2580 7 50 2490 8 55 17700 26 1240 31 2990 8 65 2640 7 48 TOTAL 115400 8601 108960 4648 248250 47918										
31 2990 8 65 2640 7 48 TOTAL 115400 8601 108960 4648 248250 47918										
YEAR 4383280 844431	TOTAL	115400		8601	108960		4648	248250		47918
	YEAR	4383280		844431						

01463500 DELAWARE RIVER AT TRENTON, NJ--CONTINUED

SUSPENDED-SEDIMENT DISCHARGE (TONS/DAY), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		OCTOBER			NOVEMBER	147		DECEMBER	
1 2 3 4 5	14500 13500 21100 20800 16100	17 20 38 31 19	662 725 2160 1750 837	9710 9330 9270 9450 9270	3 15 10 6 5	71 373 249 144	23200 29600 34600 32500 28100	25 66 84 29 13	1610 5320 7870 2570 970
6 7 8 9	12700 11000 10200 11800 16200	12 9 12 44	405 251 240 363 1950	8730 11100 21200 26700 28000	5 10 48 80 53	122 358 2770 5730 4020	27000 23500 20800 18800 17200	10 9 8 7 6	712 563 438 355 292
11 12 13 14 15	21500 18800 15600 13200 14600	33 21 12 12 11	1810 1060 523 413 420	27300 32000 32800 27500 23400	22 31 23 11 6	1610 2760 2080 789 367	15100 14000 11400 13400 22900	5 7 6 6 42	219 271 165 226 2560
16 17 18 19 20	17400 24700 33000 44300 39200	20 34 60 68 54	933 2290 5710 8280 5710	20000 17800 17500 16700 15300	5 6 6 7 5	270 273 300 298 191	29900 33500 33000 33600 28700	60 27 51 23 13	4750 2460 4700 2080 1040
21 22 23 24 25	37800 33900 27900 23200 20100	41 19 16 15	4190 1700 1210 932 531	14000 12600 13000 12900 12000	3 3 4 5	126 109 141 172 283	32400 41500 35100 28900 26200	35 22 12 14 16	3320 2460 1110 1090 1160
26 27 28 29 30 31	17700 16000 14900 13300 12100 10600	6 5 3 4 3	267 248 185 121 113 90	15000 16900 17300 15600 14900	21 23 11 5	877 1060 513 207 175	27600 27300 24300 21700 18900 17400	19 14 13 9 7	1400 1040 816 537 357 297
TOTAL	617700		46079	517260		26560	792100		52758
		JANUARY		7	FEBRUARY		1	MARCH	
1 2 3 4 5	17200 15200 13800 12400 12100	6 4 4 4	279 184 149 132 129	26400 23400 20300 18100 15800	10 9 9 8 8	707 569 494 399 342	7000 7230 7090 6850 6620	3 2 2 2 2 3	58 39 38 37 61
6 7 8 9	12300 12200 12400 31100 79200	5 6 3 46 306	179 219 108 5920 66500	14200 13000 13700 13300 13500	8 7 7 7 6	306 246 260 252 220	6260 5860 6760 6950 6120	19 7 2 2 1	321 105 37 38 20
11 12 13 14 15	65800 45800 41000 35200 28200	191 99 63 41 27	34800 13200 7000 3940 2030	12800 12100 11600 11000 11300	6 8 6 5	209 261 181 162 190	6120 6530 7530 11500 30200	2 1 3 7 170	28 25 54 286 14800
16 17 18 19 20	24800 22100 20400 18400 17500	19 15 12 9 6	1240 900 662 440 303	10700 10300 10500 10300 9190	7 6 5 4	204 165 135 112 93	31600 26000 22100 20200 21700	136 46 26 23 28	12000 3260 1560 1220 1630
21 22 23 24 25	14700 14400 13300 12500 14000	5 4 3 3 7	186 141 104 87 271	8080 8550 8390 8490 8600	3 3 2 2 2	66 69 48 46 55	23100 28900 39500 43700 44400	35 44 88 99 76	2190 3420 9560 11700 9140
26 27 28 29 30 31	47700 69500 63400 48300 36900 30800	204 231 124 108 39 13	32600 42900 21500 14200 3990	8340 7280 6580	2 2 3	47 39 47	39500 57100 71200 67000 58900	57 174 199 107 63 43	6090 27900 38100 19500 9960
TOTAL	902600		1120 255413	345800			53000 776520	43	6110 179287

SUSPENDED-SEDIMENT DISCHARGE (TONS/DAY), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

								100	
DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		APRIL			MAY			JUNE	
1	45600	30	3730	8760	3	71	14000	14	529
2	39500	26	2800	8280	4	82	13300	18	625
3	43000	25	2930	7780	2	52	12200	53	1720
5	39900 36400	24	2600 1950	7330 7090	3	40 56	12700 12100	88 41	3030 1340
6 7	34300 33000	16 15	1490 1350	7380 9020	4	62 97	11200	18	540 371
8	32000	19	1670	9630	5	138	10800	12	358
9	32800	17	1480	10700	7	211	12500	14	519
10	29600	14	1100	11900	9	298	15500	18	760
11	25700	11	757	12600	9	297	14700	19	773
12	23200	10	617 362	13000	12	397 313	12300	14	470 320
14	23900	7	448	14300	56	2790	11400	13	387
15	22200	8	471	30000	180	14700	10700	10	285
16	19700	6	345	29100	84	6590	10200	. 7	204
17 18	17200 15800	5	246 182	34900 44900	62 89	5860 10800	9240 8180	15 41	363 900
19	15300	6	259	46300	73	9020	7380	17	342
20	15800	11	490	44600	57	6830	7090	5	96
21	16200	9	412	37500	44	4510	7430	. 6	123
22	16300	5	226	31800	35	2990	7780	9	180
23	15400	4	166	27600	26	1940	7280	12 11	229
24 25	12700	3	118	28900 29600	34 36	2690 2850	6480 6480	10	200 178
26	12000	3	97	26500	27	1930	5730	11	164
27	11100	3	90	22300	20	1210	5350	13	183
28	10600	3	86	19100	15	768	5520	10	150
29 30	9910 9350	3	80 76	16900 15100	13	592 531	5230 5310	9	114 129
31				13900	12	439			
TOTAL	696060		26731	638470		79154	290080		15582
		JULY			AUGUST			SEPTEMBER	
. 1	4830	7	93	4520	6	79	6530	22	391
2	4450	7	80	4670	7	88	5070	13	182
3	4640	9 34	730	4410 3940	9	95	4300 3900	3 2	33 19
4 5	7830 7000	25	482	4110	10	107	3620	2	19
6	6120	12	195	4410	9	103	3360	3	26
7	8390	9	203	10400	181	5890	3290	2	14
8	6620	10	172	12700	97	2990 1640	3420 4520	7 9	68 112
10	5770 4950	7	132 98	13800 10400	38	1070	4190	12	138
11	4480	6	68	8650	31	732	3730	4	40
12	4370	6	66	9630	38	987	3560	2	19
13	4330	5	64	12300	80	2610	3490	1	11
14	4260 4410	5	54 48	8860 6900	55 26	1360 483	3420 3360	2	9.2 15
16	4600	5	62	6530	21	364	3360	3	29
17	5270	7	100	5520	17	253	3690	6	56
18	5350	8	115	5030	11	147	3690	4	40
19	4450 4300	7	79 77	4520 4190	8	93 72	4950 7930	7 21	99 460
20									
21 22	4220 4080	6 5	73 59	4040 3760	5	50 33	7530 6040	26 18	532 298
23	4450	5	60	3690	3	30	5310	13	187
24	4220	4	50	3660	5	49	4990	9	123
25	3800	4	41	3490	3	31	4260	6	67
26	3620	5	46	3460 3560	3 2	27 19	3560 3390	5	48 33
27 28	3690 3620	5	57 52	5150	42	624	3420	3	28
29	3690	* 5	50	5190	16	218	3290	3	27
30	3830	5	53	4520	5	64	3490	3	28
31	3730	6	60	4370	7	79			
TOTAL	149370		3630	190380		20480	128660		3150.2

01463568 ASSUNPINK CREEK AT CARSONS MILLS, NJ

LOCATION.--Lat 40°13'05", long 74°33'08", Mercer County, Hydrologic Unit 02040105, at bridge at Carsons Mills, 0.1 mi (0.2 km) upstream from New Sharon Branch, and 1.3 mi (2.0 km) northeast of Pages Corner.

DRAINAGE AREA .-- 12.5 mi2 (32.4 km2).

PERIOD OF RECORD. -- CHEMICAL ANALYSES: Water years 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

				SP											_				
					FIC									COL					
				CO										FOR		1	2.5		RD-
					CT-					TUF		OXYGE			AL,		REP-	NE	
				AN			PH		PER-	BIC		DIS		EC			OCCI		G/L
		TI	ME		CRO-	44			URE	ITY		SOLV		BRO			CAL	A	
	DATE			MH	DS)	CUN	ITS)	(DE	G C)	(JT	"	(MG/	(6)	CMP	N)	(MI	PN)	CA	203)
•	E8																		
	01	14	30		112				1.5		5				20		170		31
	22	12	50		142		5.5		2.0		4	11	.7		<20		2		38
M	AY																		
	03	14	20		120		7.3		13.0		3	12	. 2		40		<2		38
														SOLI	DS.	SOL	IDS,		
				MA	GNE-			PO	TAS-			CHLO)-	RESI			IDUE	NI	TRO-
		CALC	IUM	S	TUM,	SOD	IUM,	S	IUM,	SULFA	STA	RIDE		AT 1	80	AT :	105	G	EN,
		DIS	•	D	IS-	DI	5-	D	IS-	DIS-		DIS-		DEG	. C	DEG	. c.	NIT	RATE
		SOL	VED	SO	LVED	SOL	VED	80	LVED	SOLV	ED	SOLV	ED	DI	S-	SUS	5-		TAL
		(MG	/L	CM	G/L	(M	G/L	(M	G/L	(MG/	L	(MG/	L	SOL	VED	PENI	DED	(M	G/L
	DATE	AS	CA)	AS	MG)	AS	NA)	AS	K)	AS SC	14)	AS C	(1)	(MG	/L)	(MC	G/L).	AS	N)
	63																		
	01	* 1	6.9	. 1.	3.3		6.4		2.5	22	,	14			65		11		.41
	22		7.9		4.4		7.0		2.4	26		14			84		5		1.5
	AY						,			•	•							140	
	03		8.2		4.3		4.0		1.8	28	3	10	i i		88		1		.99
		15																	
									NI	TRO-									
				TRO-		ITRO-		TRO-	GEN	, AM-						0S-		. 15	
	1 17:			EN,		GEN,		EN,		IA +		TRO-		05-		RUS,		BON,	
				RITE		MONIA	ORC	SANIC	ORG	ANIC	G	EN,	PHO	RUS,	OR	THO.	ORG	ANIC	
			TO	TAL	T	DTAL		TAL		TAL	TO	TAL	ro	TAL		TAL	TO	TAL	
				G/L		MG/L		IG/L	CM	G/L	(M	G/L	(M	G/L	(M	G/L	(M	G/L	
	D	ATE	AS	N)	A	S N)	AS	N)	AS	N)	AS	N)	AS	P)	AS	P)	AS	C)	
	FE	В																	
	0	1		.01		.05		.36		.41		.83		.05		.00		2.2	
		2		.00		.11		.31		.42		1.9		.04		.00		4.3	
	MA																		
	0	3		.01		.09		.34		.43		1.4		.04		.00		4.9	

01463620 ASSUNPINK CREEK NEAR CLARKSVILLE, NJ

LOCATION. --Lat 40°16'11", long 74°40'20", Mercer County, Hydrologic Unit 02040105, on left bank 200 ft (61 m) upstream from bridge on Quaker Bridge Road, 1.9 mi (3.1 km) south of Clarksville, 2.0 mi (3.2 km) upstream from Shipetaukin Creek, and 7.6 mi (12.2 km) upstream of mouth.

DRAINAGE AREA . -- 34.3 m12 (88.8 km2).

PERIOD OF RECORD. --

WATER DISCHARGE: Occasional low-flow measurements water years 1963-67. October 1972 to current year.

REVISED DISCHARGE RECORDS .-- WRD-NJ 1974: 1973(M). WDR-NJ-75-1: 1971(M).

GAGE. -- Water-stage recorder. Datum of gage is 49.28 ft (15.021 m) National Geodetic Vertical Datum of 1929.

REMARKS .-- Discharge records poor. Some regulation from dams and ponds upstream.

AVERAGE DISCHARGE. -- 6 years, 56.2 ft3/s (1.592 m3/s), 22.24 in/yr (565 mm/yr).

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 200 ft3/s (5.66 m3/s) and maximum (#):

Date		Time	Discha (ft³/s)		Gage H	leight (m)	Date		Time	Discha (ft³/s)		Gage H	eight (m)
Dec.	6 22	1245 0130	264 253	7.48 7.16	5.92 5.87	1.804	Mar.	15 12	0745 2045	323 233	9.15 6.60	6.22	1.896
Jan.	26	1915	#021	26.1	8.66	2.640							

Minimum daily discharge, 18 ft3/s (0.51 m3/s) July 30.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 1,050 ft 3 /s (29.7 m 3 /s) July 21, 1975, gage height, 9.36 ft (2.853 m), from crest-stage gage; minimum daily, 7.0 ft 3 /s (0.20 m 3 /s) July 31, 1977.

EXTREMES OUTSIDE PERIOD OF RECORD. --Flood of Aug. 28, 1971, reached a stage of 10.9 ft (3.32 m), discharge, 1,500 ft³/s (42.5 m³/s).

		DISCHA	RGE, IN	CUBIC FEET	PER SECO	ND, WATER AN VALUES	YEAR OCT	OBER 1977	TO SEPTE	4BER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1	50	34 33 32	127	81	148	38 38	100	34 33	80	34 31	26	67
2	46	33	134	78	128	38	80	33	68	31	26	77 78
3	40	32	112	76	101	37	70	31	60	35	26	78
	36	31	105	74	87	38	64	31	54	62	29	68
5	32	31	101	63	76	37	65	34	49	78	41	60
6 7 8	33 29 26	31 51	137	56	70 63 62	37 36	65	36 37	45	86	48	52 46
7	29	51	137	49	63	36	62	37	43	76 65	80	. 46
8.	26	89	124	57	62	35 35	61	37	45	65	94	43
9	29	119	107	81	61	35	58	44	45	57	80	51 52
10	38	168	93	92	58	35	56	52	43	50	68	52
11	39 38	131	90	111	55 53 50	37 43	52	55	39	43 38	77 197	50
12	36	107	84	111	53	43 58	51	54	35	38	187	40
13	35	107	80 80	93	50	112	49	50 51	31	33 30	163	43
15	38	74	92	100	49 47	267	43	58	31 29	34	151	50 46 43 38 36
16	20	64	103	94	he	240	41	64	28	211	127	25
17	39	61	108	88	45 46	201	39	69	27	36	96	311
18	49	60	127	131	44	185	38	72	25	34 36 35	75	32
19	50	59	185	178	44	173	40	75	25	33	60	34
20	51	59 59	170	187	43	168	48	78	25	33 31	50	35 34 32 34 35
21	50	59	197	173	42	151	52	74	26	29	43	35
22	50	61	221	128	41	136	53 51	63	32 34	27	37	35 32 31 29 28
23	49	64	194	100	40	120		58	34	26	33	31
24	45	66	167	86	39	108	50	75	32	24	29 26	29
25	42	70	151	84	38	96	47	134	30	23	26	28
26	40	88	133	476	38 38	98	44	159	29	24	24	26
27	39	98	111	606	38	160	42	157	31	22	23	26 24
28	40	92	100	283	38	160	39	146	34	23	43	. 24
29	40	77	94	203		143	37	120	38	22	69	24
30 31	38 37	75	87 82	178 163		130 116	36	104	37	21 22	70 67	22
TOTAL	1248	2181	3833		1644	3268	1577	2175	1150	1184	2165	1258
MEAN	40.3	72.7	124	4379 141	58.7	105	52.6	70.2	38.3	38.2	69.8	1254
MAX	51	168	221	606	148	267	100	159	80	86	197	78
MIN	26	31	80	49	38	35	36	31	25	21	23	22
CFSM	1.18	2.12	3.62	4.11	1.71	3.06	36 1.53	2.05	1.12	1.11	2.04	78 22 1.22
IN.	1.35	2.37	4.16	4.75	1.78	3.54	1.71	2.36	1.25	1.28	2.35	1.36

CAL YR 1977 TOTAL 14999.1 MEAN 41.1 MAX 221 MIN 7.0 CFSM 1.20 IN 16.27 WTR YR 1978 TOTAL 26058.0 MEAN 71.4 MAX 606 MIN 21 CFSM 2.08 IN 28.26

01463625 ASSUNPINK CREEK AT BAKERSVILLE, NJ

LOCATION.--Lat 40°16'06", long 74°42'07", Mercer County, Hydrologic Unit 02040105, at bridge on Basin Road in Bakersville, 1.4 mi (2.3 km) southeast of Franklin Corner, and 2.1 mi (3.4 km) upstream of mouth.

DRAINAGE AREA. -- 38.6 mi2 (100.0 km2).

PERIOD OF RECORD. -WATER DISCHARGE: Water years 1977 to current year.
CHEMICAL ANALYSES: Water years 1975 to current year.
SEDIMENT ANALYSES: July to September 1978.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	DXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
0930	160	110	6.7	13.5	40	8.0	3.1	2300	130
0945	140	106	5.9	1.0	8	13.5	1.1	350	130
1110	47	125	6.9	14.0	5	11.4	1.8	20	50
1130	165	87	6.5	16.0	25	8.5	3.8	16000	>2400
1400	17	122	7.1	23.5	2	8.1	1.7	130	1100
0945	29	118	6.8	22.0	2	6.7	1.7	130	49
1400	98	91	6.6	26.0	6	6.6	2.9	920	110
1330	17	129	6.8	16.0		9.9	2.7	23	33
	0930 0945 1110 1130 1400 0945	FLOW, INSTAN-TANEOUS (CFS) 0930 160 0945 140 1110 47 1130 165 1400 17 0945 29 1400 98	STREAM- FLOW, INSTAN- TIME TANEOUS (MICRO- MHOS) 0930 160 110 0945 140 106 1110 47 125 1130 165 87 1400 17 122 0945 29 118 1400 98 91	STREAM- FLOW, INSTAN- TIME TANEOUS (MICRO- (CFS) (MICRO- MHOS) (UNITS) 0930 160 110 6.7 0945 140 106 5.9 1110 47 125 6.9 1130 165 87 6.5 1400 17 122 7.1 0945 29 118 6.8 1400 98 91 6.6	STREAM- FLOW, INSTAN- TIME TANEOUS (MICRO- (CFS) MHOS) (UNITS) (DEG C) 0930 160 110 6.7 13.5 0945 140 106 5.9 1.0 1110 47 125 6.9 14.0 1130 165 87 6.5 16.0 1400 17 122 7.1 23.5 0945 29 118 6.8 22.0 1400 98 91 6.6 26.0	STREAM- FLOW, INSTAN- TIME TANEOUS (MICRO- (CFS) MHOS) (UNITS) (DEG C) 0930 160 110 6.7 13.5 40 0945 140 106 5.9 1.0 8 1110 47 125 6.9 14.0 5 1130 165 87 6.5 16.0 25 1400 17 122 7.1 23.5 2 0945 29 118 6.8 22.0 2 1400 98 91 6.6 26.0 6	STREAM	STREAM-	STREAM- COM- FLOW, DUCT- PH TEMPER- BID- DIS- ICAL, EC RMHOS CUNITS COEGO COEGO

	4.4		MAGNE-	- 1 .	POTAS-				
	HARD-	CALCIUM	SIUM,	SODIUM,	SIUM,	BICAR-		ALKA-	
	NESS	DIS-	DIS-	DIS-	DIS-	BONATE	CAR-	LINITY	SULFIDE
	(MG/L	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	BONATE	(MG/L	TOTAL
1 15	AS	(MG/L	(MG/L	(MG/L	(MG/L	AS	(MG/L	AS	(MG/L
DATE	CACO3)	AS CA)	AS MG)	AS NA)	AS K)	HCD3)	AS CO3)	CACO3)	AS S)
NOV									
10	35	7.8	3.8	4.8	4.4	13	. 0	11	V
FEB									
02	30	6.5	3.3	4.8	2.3	6	. 0	5	
APR		77		104			100	17215	
13	38	8.2	4.2	5.2	2.6	12	0	10	AS ASSESSED
MAY		4					12	11/1/11/11	
24	27	5.8	3.0	4.1	2.0	11	0	9	
JUN	1	(4)		1000	No.		-	1 /	159 1000
21	40	8.3	4.6	5.2	2.6	18	0	15	
JUL		A						44	
18	38	8.3	4.3	4.6	2.2	18	0	15	-
AUG	1		4.00				- /		
17	29	6.6	3.1	3.0	3.0	16	0	13	-
SEP							0		4
27	36	5.2	5.7	5.3	2.8	17	0	18	.0

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

01463625 ASSUNPINK CREEK AT BAKERSVILLE, NJ--Continued

DATE	SULFIDE DIS- SOLVED (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	AT 180	AT 105 DEG. C, SUS-	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)
NOV 10		22	11			101	36		
FEB. 02		22	9.3						
APR									
13 MAY		24	12	77			0		
24 JUN	.0	17	8.7		3.1	70			
21 JUL		17	12			93	8		
18 AUG		17	9.8			87	- 5	16	1.3
17 SEP		16	6.3			84	0	26	6.9
27		17	12	.1	2,3	85		14	.64
DATE	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGAN + TOTAL (MG/L AS N)	NITRO-	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO. TOTAL (MG/L AS P)	CARBON, DRGANIC TOTAL (MG/L AS C)
NOV 10	1.3	.01	.02	.81	.83	2.1	.17	.03	10
FEB 02									1.4
APR 13	1.7	.01	.00	.56	.56		.02	.00	5.3
MAY 24	.79	.02	.04	.44	.48	1.3	.17	.04	8.4
JUN		.01						.00	7.0
21 JUL	1.4		.03	.59	.62		.03		
18 AUG			.10	.30	.40	1.4			6.6
17 SEP			<,10		1.9				6.4
27			<.10	-					3.0
DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)
MAY 24	1130	110			80	0		0	0
SEP 27	1330	30	1	0			10		
		30	•						
D	TO RE ER (U	COV- D ABLE SO G/L (U	ON, TO IS- RE LVED ER G/L (U	TAL TO COV- RE ABLE EF G/L (U	DTAL T ECOV- R RABLE E JG/L (ECOV- N RABLE T UG/L (ELE- TO IUM, RE OTAL ER UG/L (U	IG/L	CNDLS
MA 2	Y 4	5	260	100		7		50	. 1
SE		2		70	<.5	6	0	20	0

01463670 SHIPETAUKIN CREEK AT BAKERSVILLE, NJ

LOCATION.--Lat 40°16'26", long 74°42'10", Mercer County, Hydrologic Unit 02040105, at bridge on State Route 546 in Bakersville, 0.4 mi (0.6 km) upstream from mouth, and 2.2 mi (3.5 km) southeast of Lawrenceville.

DRAINAGE AREA .-- 8.96 mi2 (23.21 km2).

PERIOD OF RECORD. -- CHEMICAL ANALYSES: Water years 1963, 1965, 1967, 1975 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
0.120				(500 0)		(1.07.07	(,			
NOV 10	0845	157	6.9	14.0	. 6	-6.8	2.0	200	<20	63
FEB 02	0845	198	6.9	1.0	6	13.4	.6	<200	<200	64
APR 13	0940	193	7.4	12.0	5	12.8	1.5	1700	920	64
MAY 24	0915	86	6.7	13.5	40	9.0	7.2	16000	>2400	26
JUN	4045							2400	>2400	68
21	1245	210	7.3	19.5	3	7.8	2.1	2400	>2400	08
										SOLIDS,
		MAGNE-		POTAS-					CHLO-	RESIDUE
	CALCIUM	SIUM,	SODIUM,	SIUM,	BICAR-		ALKA-	SULFATE	RIDE,	AT 180
	DIS-	DIS-	DIS-	DIS-	BONATE	CAR-	LINITY	DIS-	DIS-	DEG. C
	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	BONATE	(MG/L	SOLVED	SOLVED	DIS-
	(MG/L	(MG/L	(MG/L	(MG/L	AS	(MG/L	AS	(MG/L	(MG/L	SOLVED
DATE	AS CA)	AS MG)	AS NA)	AS K)	HCO3)	AS CO3)	CACD3)	AS SO4)	AS CL)	(MG/L)
NOV										
10	16	5.6	8.8	2.9	34	0	28	30	12	125
FEB										
02	15	6.4	10	1.8	34	0.	28	30	15	132
APR										
13	15	6.4	11	2.0	49	0	40	30	15	125
MAY							1		1 2 2	
24 JUN	5.9	2.7	4.8	1.5	21	0	17	14	5.5	68
21	16	6.9	11	2.2	54	0	44	25	15	147
	SOLIDS,					NITRO-		4.		
	RESIDUE	NITRO-	NITRO-	NITRO-	NITRO-	GEN, AM-			PHOS-	
	AT 105	GEN,	GEN,	GEN,	GEN,	MONIA +	NITRO-	PHOS-	PHORUS,	CARBON,
	DEG. C,	NITRATE	NITRITE	AMMONIA	ORGANIC	ORGANIC	GEN,	PHORUS,	ORTHO.	ORGANIC
	SUS-	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	PENDED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DATE	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS C)
NOV .			1							120
10	4	1.3	.01	.05	.44	.49	1.8	.08	.02	8.5
FEB	/		• • • •	• • • •		• • • •		-		
02	11									1.8
APR										
13	. 6	1.2	.01	.03	.58	.61	1.8	.03	.00	5.9
MAY 24	143	.68	.03	.09	1.6	1.7	2.4	.32	.07	4.3
JUN		- 11								
21	8	2.0	.03	1.12	.56	.68	2.7	.12	.08	7.2

01463810 SHABAKUNK CREEK NEAR LAWRENCEVILLE, NJ

LOCATION.--Lat 40°15'19", long 74°44'17", Mercer County, Hydrologic Unit 02040105, at bridge on Princeton Pike, 0.8 mi (1.3 km) downstream from West Branch, 2.0 mi (3.3 km) southwest of Franklin Corner, 2.2 mi (3.5 km) southwest of Bakersville, and 2.8 mi (4.5 km) south of Lawrenceville.

DRAINAGE AREA. -- 11.7 mi2 (30.3 km2).

PERIOD OF RECORD. -- CHEMICAL ANALYSES: Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

		LATER QU	ALITY DAT	A, WATER	YEAR OCTO	BER 1977	TO SEPTEM	BER 1978		
		SPE- CIFIC					DXYGEN DEMAND,	COLI-		
		CON-					BIO-	FORM,		HARD-
		DUCT-	= - ×	VE WALLEY OF STREET	TUR-	OXYGEN,	CHEM-	FECAL,	STREP-	NESS
		ANCE	PH	TEMPER-	BID-	DIS-	ICAL,	EC	TOCOCCI	(MG/L
DATE	TIME	(MICRO- MHOS)	(UNITS)	(DEG C)	(JTU)	SOLVED (MG/L)	5 DAY (MG/L)	BROTH (MPN)	FECAL (MPN)	CACD3)
									272718	100
NOV	1040	297	7.5		6	0.6	110	0200	220	400
10	1040	291	7.5	15.0		9.6	1.3	9200	220	120
02	1100	318	7.1	1.0	3	14.3	.6	1400	50	100
APR		333						7.5	-	
13 MAY	1230	281	8.3	16.0	3	17.0	2.6	33	<2	95
25 JUN	0845	234	7.3	14.0	6	9.4	2.8	16000	>2400	85
21	1500	337	7.9	23.0	1	12.2	1.5	16000	130	120
										SOLIDS,
		MAGNE-		POTAS-		-			CHLO-	RESIDUE
	CALCIUM DIS-	SIUM, DIS=	SODIUM, DIS-	SIUM, DIS-	BICAR- BONATE	CAR-	LINITY	SULFATE DIS-	RIDE, DIS-	AT 180 DEG. C
	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	BONATE	(MG/L	SOLVED	SOLVED	DIS-
	(MG/L	(MG/L	(MG/L	(MG/L	AS	(MG/L	AS	(MG/L	(MG/L	SOLVED
DATE	AS CA)	AS MG)	AS NA)	AS K)	HCO3)	AS CO3)	CACD3)	AS SO4)	AS CL)	(MG/L)
NOV										
10	32	9.1	16	3.6	79	0	65	52	19	216
FEB										
02 APR	27	8.7	19	2.6	67	0	55	45	26	195
13	25	8.0	16	2.6	68	0	56	42	21	176
25	24	6.2	10	2.5	59	0	48	40	12	141
JUN	34	8.6	16	3.2	87	0	71		22	202
21	34	0.0	16	3.2	87	0	/1	53	22	223
	SOLIDS, RESIDUE	NITRO-	NITRO-	NITRO-	NITRO-	NITRO- GEN, AM-			PHOS-	
	AT 105	GEN,	GEN,	GEN,	GEN,	MONIA +	NITRO-	PHOS-	PHORUS.	CARBON.
	DEG. C.	NITRATE	NITRITE	AMMONIA	ORGANIC	ORGANIC	GEN,	PHORUS,	ORTHO.	DRGANIC
	SUS-	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
2422	PENDED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DATE	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS C)
NOV										
10	2	1.8	.01	.09	.40	.49	2.3	.05	.02	12
FEB 02	7									
APR								75		1,0
13 MAY	1	1.1	.02	.00	.42	.42	1.5	.02	.01	7.2
25 JUN	12	1.4	.02	.09	.62	.71	2.1	.10	.03	3.9
21	9	1.2	.03	.03	.54	.57	1.8	.03	.01	4.0

01464000 ASSUNPINK CREEK AT TRENTON, NJ

LOCATION.--Lat 40°13'27", long 74°44'58", Mercer County, Hydrologic Unit 02040105, on left bank at Chambers Street Bridge in Trenton, and 1.5 mi (2.4 km) upstream from mouth.

DRAINAGE AREA .-- 89.4 mi2 (231.5 km2).

PERIOD OF RECORD.-WATER DISCHARGE: August 1923 to current year.
CHEMICAL ANALYSES: Water years 1972 to current year.
SEDIMENT ANALYSES: Water years 1971-75, 1977 to current year.

Datum of gage is 24.76 ft (7.547 m) National GAGE .-- Water-stage recorder. GE.--Water-stage recorder. Concrete control since July 10, 1932. Datum of gage is 24. Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Discharge records good. Records include water diverted from outside the basin since February 1954 for nunicipal supply which returns to Assunpink Creek through Ewing-Lawrence Sewerage Authority Treatment Plant, 2.4 mi (3.9 km) above station (records given herein). In addition there is an average inflow of about 2.0 ft³/s (0.057 m³/s) from industrial use of water that originates outside the basin. Some diversion for irrigation in headwater area during summer months.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

AVERAGE DISCHARGE. -- 55 years, 127 ft3/s (3.597 m3/s), unadjusted.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 900 ft3/s (25.5 m3/s) and maximum (#):

Date		Time	Discha (ft3/s)		Gage H	eight (m)	Date		Time	Discha (ft3/s)		Gage H	leight (m)
Nov.	8	0600	1110	31.4	6.47	1.972	Mar.	14	2045	1180	33.4	6.65	2.027
Dec.	1	0515	1140	32.3	6.53	1.990	Mar.	27	0330	1230	34.8	6.81	2.076
Dec.	18	1900	1210	34.3	6.75	2.057	May	24	1330	1820	51.5	8.31	2.533
Dec.	21	1330	1720	48.7	8.04	2.451	July	3	2115	1030	29.2	6.23	1.899
Jan.	9	0800	1250	35.4	6.86	2.091	Aug.	28	1045	1000	28.3	6.16	1.878
Jan.	26	1415	*2720	77.0	10.55	3.216						-	

Minimum discharge, 48 ft 3 /s (1.36 m 3 /s) July 31, gage height, 2.70 ft (0.823 m).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 5,450 ft3/s (154 m3/s) July 21, 1975, gage height, 14.61 ft (4.453 m), from high-water mark in gage house; minimum, 1.0 ft3/s (0.028 m3/s) Aug. 21, Oct. 22, 1931, gage height, 0.25 ft (0.076 m); minimum daily, 4.0 ft3/s (0.11 m3/s) July 21, Aug. 8, Sept. 2, 1929.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES DAY OCT NOV DEC JAN FEB APR MAY JUN JUL AUG SEP MAR 87 160 66 154 95 253 235 158 156 87 95 318 791 78 82 269 346 248 131 90 99 97 89 81 86 59 58 301 123 315 271 ------TOTAL 870 1030 963 MEAN MAX MIN 17.3 14.8 12.8 (†) 13.0 16.6 21.2 15.8 15.0 16.2 16.0 13.0 13.1

CAL YR 1977 TOTAL 49452 WTR YR 1978 TOTAL 75427 MEAN 135 MEAN 207 MAX 2070 MIN 52

[†] Inflow from outside the basin, 2.4 mi (3.9 km) upstream of station through plant of Ewing-Lawrence Sewerage Authority, in cubic feet per second.

DELAWARE RIVER BASIN 01464000 ASSUNPINK CREEK AT TRENTON, NJ--Continued

			SPE-						OXY	GEN			8		
	TIME	STREAM. FLOW, INSTAN. TANEOUS	DUCT	-	РН	TEMPER-	TUR- BID- ITY	OXYGEN, DIS- SOLVEI	, CH	IEM-	COLI- FORM, FECAL, EC BROTH	STREP- TOCOCCI FECAL	HARD- NESS (MG/L AS	CALC DIS SOL	VED
DATE	2000	(CFS)	MHOS		NITS)	(DEG C)	(JTU)	(MG/L			(MPN)	(MPN)	CACO3)		CA)
NOV 08	1130	921	1	40	7.1	13.0	40	9.0	6	5.6	>24000	1100	42	1	1
FEB 02	1210	287	1	95	6.8	2.0	9	14.	2	1.5	130	220	50	1	2
APR 13	1405	125	2	70	7.3	15.0	7	10.	2	4.1	70	2	65		6
MAY										200					
25 JUN	1100	643		42	6.9	15.0	15	8.5	5	3.6	9200	790	45		2
29	0830	74	3	50	7.1	23.0	8	5.0	6	7.8			73	1	9
18 AUG	1200	94	2	60	7.1	23.0	6	6.3	3	6.6	4900	400	61	. 1	5
16	1345	225	1	67	7.0	25.0	10	7.1	1	3.3	200	<200	42	1	0
-1	MAGNE-		POTA	s-							CHLO-	SILICA,	SOLIDS, RESIDUE		
	SIUM,	SODIUM,			CAR-		ALKA-	SULFIDE	E SUL		RIDE,	DIS-	AT 180	AT 1	
	DIS-	DIS-	DIS		STAN	CAR-	LINITY	DIS-			DIS-	SOLVED	DEG. C		
	SOLVED (MG/L	SOLVED (MG/L	SOLV (MG/		MG/L	BONATE	(MG/L	SOLVE			SOLVED	(MG/L	DIS-	SUS	
DATE	AS MG)	AS NA)			AS CO3)	AS CO3)	CACO3)	(MG/L AS S)			(MG/L AS CL)	AS SI02)	(MG/L)		(L)
					,	HD C037	CACOS	HO 0,				0.0.,	(,		
NOV	3.6	9.5		•								300			
08 FEB	3.0	9.5		. 9	26	0	21			21	15		96		56
02	4.8	13	2	.7	27	0	22			35	20		144		10
APR 13	6.1	20		.4	45	^	37			45	27		161		12
MAY	0.1	20	,	• •	45	0	3/	-		45	21		161		13
25 JUN	3.6	8.2	2	. 3	24	0	20	. ()	24	12	5.7	87		54
29	6.3	29	4	. 1	60	0	49			50	35		203		15
JUL 18	5.8	19	,	.6	52	0	43			35	21		158		0
AUG	5.0	1,9	3	.0	52	U	43			35	21	1.55	130		U
16	4.1	12	3	.4	29	0	24		•	24	15		119		23
4.															
			DI-						TRO-						
	SE			NITRO-	NITI				-MA,			PHO			
	ME		S- RGE, N	GEN, ITRATE	NITR				SANIC	NITRO GEN,	- PHOR			BON, ANIC	
	SUS			TOTAL	TOT				TAL	TOTAL	TOT			TAL	
		DED PE	NDED	(MG/L	(MG	L (MG			IG/L	(MG/L	(MG	/L (MG	/L (M	G/L	
DA	TE (M	5/L) (T/	DAY)	AS N)	AS I	I) AS	N) AS	N) AS	3 N)	AS N)	AS	P) AS	P) AS	C)	
NOV															
08	• • •			.84		.01	.11	1.2	1.3	2.2		.09	.09	9.6	
FEB 02										_				2.2	
APR															
MAY	•••	:		1.7		.03 1	. 4	.90	2.3	4.0		.46	.30	6.1	
25 JUN	•••			1.2		.03	.21	.73	.94	2.1		.26	.10	7.0	
29. JUL	•••			1.9		.22 1	.9	1.1	3.0	5.1		.54	.37	4.3	
18	• • •	16	4.1			1	.0	1.3	2.3	3.7				3.9	
16	•••	28 1	7			<	.10		<.40					7.9	

164

DELAWARE RIVER BASIN

01464000 ASSUNPINK CREEK AT TRENTON, NJ--Continued

		ALUM-			CHRO-		MERCURY		
		INUM,		BORON,	HEXA-	IRON,	TOTAL	SELE-	
		DIS-	ARSENIC	DIS-	VALENT,	DIS-	RECOV-	NIUM,	
		SOLVED	TOTAL	SOLVED	DIS.	SOLVED	ERABLE	TOTAL	PHENOLS
	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE		AS AL)	AS AS)	AS B)	AS CR)	AS FE)	AS HG)	AS SE)	(UG/L)
MAY									
25	1100	90	0	60	0	190	<.5	0	3

01464020 ASSUNPINK CREEK AT PEACE STREET AT TRENTON, NJ

LOCATION.--Lat 40°13'02", long 74°46'08", Mercer County, Hydrologic Unit 02040105, at bridge on Peace Street in Trenton, 900 ft (274 m) upstream from mouth, 0.3 mi (0.5 km) northwest of Trent House, and 0.7 mi (1.1 km) southeast of the Trenton Filtration Plant.

DRAINAGE AREA. -- 91.4 mi2 (236.7 km2).

PERIOD OF RECORD.-CHEMICAL ANALYSES: Water years 1976 to current year.
SEDIMENT ANALYSES: July to September 1978.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		SPE-					DXYGEN					
		CIFIC					DEMAND,	COLI-				
		CON-					BIO-	FORM,		HARD-	CALCIUM	
		DUCT-	2.5		TUR-	OXYGEN,	CHEM-	FECAL,	STREP-	NESS	DIS-	
		ANCE	PH	TEMPER-	BID-	DIS-	ICAL,	EC	TOCOCCI	(MG/L	SOLVED	
	TIME	(MICRO-		ATURE	ITY	SOLVED	5 DAY	BROTH	FECAL	AS	(MG/L	
DATE		MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	(MG/L)	(MPN)	(MPN)	CACO3)	AS CA)	
NOV												
28	1345	163	7.3	7.0	15	12.0	1.2	700	200	58	14	
FEB												
02	1315	200	6.8	2.0	10	13.4	2.4	20	17	53	13	
APR		100										
12 MAY	1415	270	7.5	14.0	8	10.6	5.7	>2400	>2400	64	16	
25	1245	147	6.9	15.5	15	9.1	4.4	E22000	>3300	45	12	
JUN	1243	147	0.9	15.5	15	9.1	4.4	622000	23300	45	12	
29	1015	338	7.2	23.5	4	6.5	8.4	7900	120	75	19	
JUL				77.77							No. of the	
18	1410	252	7.0	25.5	5	6.6	6.0	92000	800	64	16	
AUG												
09	1405	202	7.3	26.0	9	7.0	3.9	5400	500	54	13	
SEP			100				-				- 1	
27	1500	331	7.2	17.0		8.3	9.6	17000	2500	64	12	
	MAGNE- SIUM, DIS- SOLVED	SODIUM, DIS- SOLVED (MG/L	POTAS- SIUM, DIS- SOLVED (MG/L	BICAR- BONATE (MG/L AS	CAR- BONATE (MG/L	ALKA- LINITY (MG/L	SULFATE DIS- SOLVED	CHLO- RIDE, DIS- SOLVED	FLUO- RIDE, DIS- SOLVED	SILICA, DIS- SOLVED (MG/L	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED	
DATE	AS MG)	AS NA)	AS K)	HCO3)	AS CO3)	CACO3)	(MG/L AS SO4)	(MG/L AS CL)	(MG/L AS F)	AS S102)	(4G/L)	
		no m,	NO N	110037	AD COS,	CHCOS	AS 3047	43 (1)	40 ()	51027	(40,4)	
NOV												
28	5.6	11	3.3	34	0	28	33	18			125	
FEB	12.5	4.4										
02	5.0	13	2.7	27	0	22	33	20			126	
APR 12	5.9	19		35								
MAY	5.9	19	3.1	35	0	29	39.	28			156	
25	3.7	8.4	2.3	24	0	20	24	13			103	
JUN	3.,	0.4	2.3	24	U	20	24	13	-		103	
29	6.6	30	4.2	60	0	49	50	34			207	
JUL												
18	5.9	17	3.5	49	0	40	34	21			156	
AUG												
09	5.2	14	3.1	35	0	29	26	19			118	
SEP								124			4.6-	
27	8.2	27	4.4	65	0	52	40	32	. 2	7.0	190	

01464020 ASSUNPINK CREEK AT PEACE STREET AT TRENTON, NJ--Continued

	SOLIDS,			A			NITRO-				
	RESIDUE		NITRO-	NITRO-	NITRO-	NITRO-	GEN, AM-			PHDS-	3
	AT 105	SEDI-	GEN,	GEN,	GEN,	GEN,	MUNIA +	NITRO-	PHOS-	PHORUS,	CARBON,
	DEG. C.	MENT,	NITRATE	NITRITE	AMMONIA	ORGANIC	ORGANIC	GEN,	PHORUS,	DRIHO.	ORGANIC
	sus-	sus-	TOTAL	TOTAL	TUTAL	TOTAL	TOTAL	JATCT	TOTAL	TOTAL	JATCI
1	PENDED	PENDED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(4G/L
DATE	(MG/L)	(MG/L)	AS N)	AS N)	AS P)	AS P)	AS C)				
NOV											
28	10		1.5	.03	.86	.54	1.4	2.9	.22	.11	13
FEB											
02	8										3.4
APR											
12	6		1.8	.04	1.2	.80	2.0	3.8	. 37	.25	9.2
MAY											
25	36		1.3	.03	.30	1.0	1.3	2.6	.24	.09	4.1
JUN											
29	16		2.7	.26	1.7	.90	2.6	5.6	.40	.40	5.2
JUL											
18	8	12			.70	1.2	1.9	3.5			5.2
AUG											
09	20	23			.50	1.3	1.8	2.8			8.2
SEP											
27		9			2.0						2.7

01464040 DELAWARE RIVER AT MARINE TERMINAL, AT TRENTON, NJ

LOCATION.--Lat 40°11'21", long 74°45'22", Mercer County, Hydrologic Unit 02040201, on left bank at downstream end of wharf at Marine Terminal, Trenton, 1.6 mi (2.6 km) downstream from toll bridge on U.S. Highway 1, 2.0 mi (3.2 km) downstream from Assunpink Creek, and at river mile 131.80 (212.07 km).

DRAINAGE AREA .-- 6.870 mi2 (17.790 km2).

PERIOD OF DAILY RECORD. -TIDE ELEVATION: May 1964 to February 1978. March 1921 to June 1946 (at municipal pier, 1.5 mi or 2.4 km upstream), August 1951 to June 1954, September 1957 to April 1964, in files of Philadelphia District Corps of Engineers, gage operated by National Ocean Survey since March 1978.

SPECIFIC CONDUCTANCE: October 1972 to June 1976. WATER TEMPERATURES: October 1972 to June 1976

GAGE.--Water-stage recorder. Datum of gage is -12.90 ft (-3.932 m) National Geodetic Vertical Datum of 1929.

Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum of 1929 for publication. Some periods cannot be estimated and are noted by dash (--) lines.

REMARKS.--Records of tide elevations fair. Summaries for months with short periods of no gage-height record have been estimated with negligible or no loss of accuracy.

EXTREMES FOR CURRENT YEAR .--

TIDE ELEVATIONS: Maximum, 9.30 ft (2.835 m) Jan. 26; minimum, -3.87 ft (-1.180 m) Feb. 7, 23.

EXTREMES FOR PERIOD OF DAILY RECORD. -

TIDE ELEVATIONS: Maximum, 9.30 ft (2.835 m) Jan. 26, 1978; minimum, -7.00 ft (-2.134 m) Feb. 26, 1967.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum elevation known, 17.9 ft (5.46 m) Aug. 20, 1955, from high-water mark; minimum, -8.6 ft (-2.62 m) Dec. 31, 1962, at site 1.4 mi (2.2 km) downstream.

Summaries of tide elevations during current year are as follows:

TIDE ELEVATIONS, IN FEET, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
Maximum	Elevation	7.15	7.72		9.30	7.00								
high tide	Date	14	8		26	9								
Minimum	Elevation	-3.47	-3.84			-3.87								
low tide	Date	18	19			7,23								
Mean high	tide	5.78	5.80			5.53								
Mean water	level	1.99	2.02			1.48								
Mean low t	ide	-2.22	-2.14			-2.80								

NOTE .-- Missing or doubtful gage-height record Dec. 2 to Jan. 10, Jan. 18 to Feb. 1.

01464290 CROSSWICKS CREEK AT HOCKAMIK ROAD NEAR COOKSTOWN. NJ

LOCATION.--Lat 40°02'10", long 74°32'11", Burlington County, Hydrologic Unit 02040201, at bridge on Hockamik Road, 0.2 mi (0.3 km) downstream of Jumping Brook, 1.6 mi (2.6 km) southwest of Brindletown, and 2.8 mi (4.5 km) southeast of Cookstown.

DRAINAGE AREA .-- 19.5 mi2 (50.5 km2).

PERIOD OF RECORD. -- CHEMICAL ANALYSES: Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		SPE-					DXYGEN	COLI-		
		CIFIC					DEMAND,			
		CON-					-018	FORM,		HARD-
		DUCT-	200		TUR-	OXYGEN,	CHEM-	FECAL.	STREP-	NESS
		ANCE	PH	TEMPER-	BID-	-SIG	ICAL,	EC	TOCOCCI	(MG/L
	TIME	(MICRO-		ATURE	ITY	SOLVED	5 DAY	BROTH	FECAL	AS
DATE		MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	(MG/L)	(MPN)	(MPN)	CACO3)
NOV										
03	0915	116	6.5	15.5	6	5.4	3.8	33	130	26
FEB									1 1 3 7	
28	1245	137	6.7	4.0	-10	9.8	9.2	<20	<20	28
APR							,			
11	0910	110	6.7	12.0	7	7.3	4.9	17	540	25
MAY	0310	110	0.7	12.0	,	,.,	4.5	.,	340	
	0900	71	5.9	13.0	4	6.5	2.0	17	240	17
16 JUN										
26	0930	149	6.5	20.5	. 8	3.5		110	540	31
										SOLIDS,
		MAGNE-		POTAS-					CHLD-	RESIDUE
	CALCIUM	SIUM,	SODIUM,	SIUM,	BICAR-		ALKA-	SULFATE	RIDE,	AT 180
								DIS-	DIS-	DEG. C
	DIS-	DIS-	DIS-	DIS-	BONATE	CAR-	LINITY			
	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	BONATE	(MG/L	SOLVED	SOLVED	DIS-
	(MG/L	(MG/L	(MG/L	(MG/L	AS	(MG/L	AS	(MG/L	(MG/L	SOLVEO
DATE	AS CA)	AS MG)	AS NA)	AS K)	HC03)	AS C03)	CACD3)	AS SO4)	AS CL)	(MG/L)
NOV										
03	7.7	1.6	7.3	2.6	20	0	16	18	10	67
FEB					-			10.4		
28	8.2	1.8	8.0	2.5	30	0	25	19	10	81
APR				2.0	-				11-15-0-17-12	
11	7.3	1.6	7.0	2.1	22	0	18	17	9.5	66
MAY	,	1.0	,	2.1				,		17.10
16	4.7	1.2	4.5	1.5	9	0	7	14	6.7	59
JUN		1.2	4.5	1.5	,	U			0.7	
26	9.1	2.0	9.4	. 3.0	34	0	28	18	13	106
20	,	2.0	,	3.0	34	٧	211			
	SOLIDS,					NITRO-				
	RESIDUE	NITRO-	NITRO-	NITRO-	NITRO-	GEN, AM-			PHOS-	
	AT 105	GEN.	GEN,	GEN,	GEN.	MONIA +	NITRO-	PHOS-	PHORUS,	CARBON,
	DEG. C.	NITRATE	NITRITE	AMMONIA	ORGANIC	URGANIC	GEN,	PHORUS,	ORTHO.	DRGANIC
	SUS-	TOTAL	TOTAL	TOTAL	TOTAL		TOTAL	TOTAL	TOTAL	TOTAL
						TOTAL				(MG/L
	PENDED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	
DATE	(MG/L)	AS N)	AS N)	AS P)	AS P)	AS C)				
NOV										
03	12	.25	.05	2.5	.60	3.1	. 3.4	.53	.32	8.7
FEB				-		1				1000
28	8	.30	.03	2.4	.70	3.1	3.4	.74	.32	11
APR	0		.03							
11	16	.39	.05	1.6	.70	2.3	2.7	.55	.30	5.9
MAY	10		.03		. 70	***	~ • /	.00		
16	14	.31	.03	.66	.64	1.3	1.6	. 26	.15	7.1
JUN	14	.31	.03	.00	.04	1.5	1.0	.20	.13	
26	21		.10	3.3	.70	4.0	6.6	.65	.31	7.0
20	21		.10	3.3	. 70	4.0	0.0	.03	.31	,.0

01464500 CROSSWICKS CREEK AT EXTONVILLE, NJ

LOCATION.--Lat 40°08'15", long 74°36'02", Mercer County, Hydrologic Unit 02040201, on right bank upstream from highway bridge on Extorville, 0.5 mi (0.8 km) upstream from Pleasant Run, and 0.7 mi (1.1 km) downstream from Mercer-Monmouth County line.

DRAINAGE AREA .-- 83.6 mi2 (216.5 km2).

PERIOD OF RECORD.-WATER DISCHARGE: Water years 1940 to current year.
CHEMICAL ANALYSES: Water years 1965 to current year.
SEDIMENT ANALYSES: Water years 1965-73, 1977 to current year.

PERIOD OF DAILY RECORD. --

WATER DISCHARGE: August 1940 to October 1951, October 1952 to current year. WATER TEMPERATURES: October 1966 to June 1970.
SUSPENDED-SEDIMENT DISCHARGE: February 1965 to June 1970.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 24.94 ft (7.602 m) National Geodetic Vertical Datum of 1929.

REMARKS. -- Discharge records good. Flow regulated occasionally by lakes above station.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

AVERAGE DISCHARGE.--37 years (1940-51, 1952-78), 135 ft3/s (3.823 m3/s), 21.92 in/yr (557 mm/yr).

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 750 ft3/s (21.2 m3/s) and maximum (#):

			Discha	arge	Gage H	leight				Discha	arge	Gage H	leight
Date		Time	(ft3/s)	(m^3/s)	(ft)	(m)	Date		Time	(ft ³ /s)	(m^3/s)	(ft)	(m)
Nov.	8	1800	2620	74.2	11.17	3.405	Mar.	15	0100	1760	49.8	9.72	2.963
Dec.	12	0400	1010	28.6	7.85	2.393	Mar.	27	2100	974	27.6	7.73	2.356
Dec.	19	1700	920	26.1	7.55	2.301	May	25	0900 .	1320	37.4	8.81	2.685
Dec.	22	0700	900	25.5	7.48	2.280	July	4	2300	1100	31.2	8.16	2.487
Jan.	19	1000	1520	43.0	9.24	2.816	Sept.	1	1500	*4860	138	14.18	4.322
Jan.	26	1800	3590	102	12.56	3.828					N.E.W.		

Minimum discharge, 45 ft3/s (1.27 m3/s) Aug. 25, 26, 27, 28, gage height, 2.49 ft (0.759 m).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5.180 ft³/s (147 m³/s) Aug. 28, 1971, gage height, 13.93 ft (4.246 m); maximum gage height, 14.18 ft (4.322 m) Sept. 1, 1978; minimum discharge, 13.1 ft³/s (0.37 m³/s) Feb. 14, 1942 (result of freezeup); minimum daily, 16 ft³/s (0.45 m³/s) Aug. 30 to Sept. 3, Sept. 12, 1966.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1977	TO	SEPTEMBER	1978	
	MEAN VALUES												

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	81	90	562	197	172	110	150	88	114	77	110	2490
	77	88	806	169	148	105	134	83	103	64	105	2320
3	72	86	399	152	142	105	121	83	97	108	92	650
2 3 4	64	105	260	158	144	116	123	86	92	729	97	650 261
5	60	103	213	146	132	108	132	127	88	749	268	163
			-		100							
6	58	97	588	127	114	99	123	110	83	300	289	127
7	60	278	511	142	136	99	130	70	81	160	243	110
8	58	2010	292	160	163	99	132	101	108	116	172	110
8 9	150	1670	217	445	134	99	119	210	157	97	127	244
10	358	658	222	526	130	105	112	334	112	83	105	164
11	217	401	192	261	123	125	108	236	90	83	119	127
12	134	257	205	225	121	189	114	160	79	68	138	112
13	116	183	154	157	119	364	110	127	77	62	136	103
14	105	157	171	322	130	852	103	148	86	62	108	94
15	202	144	422	467	123	1530	97	224	72	94	90	90
						1550					115	
16	196	136	430	306	121	749	94	174	66	90	81	94 88
17	194	211	267	194	121	436	92	203	64	168	74	88
18	188	370	288	895	119	349	92	189	66	136	66	81
19	154	283	768	1260	116	322	121	163	68	101	60	169
20	168	189	566	472	114	358	231	132	125	86	56	142
21	146	161	529	351	116	279	182	114	83	74	54	105 58 92 88 81
22	116	152	772	299	110	274	144	101	134	66	51	58
23	101	299	388	231	110	233	123	90	132	62	49	92
24	02	460	262	213	105	183	110	90 395	125	56	47	88
25	92 86	306	214	248	108	157	103	1150	120	54	45	81
		1077	214	240	100	151	103	1150	120	0.5.0	100	
26	86	443	188	2570	114	191	99	586	135	54	47	77 70 70 66
27	123	538	155	1820	114	733	97	313	147	54	47	70
28	166	300 205	157	670	112	664	101	202	125	72	174	70
29	121	205	174	394		355	97	164	99	72	381	66
30 31	105	237	136	244		222	92	146	94	58 62	178	64
31	94		166	186		171		127		62	164	
TOTAL	3948	10617	10674	14007	3511	9781	3586	6436	3022	4117	3773	8510
MEAN	127	354	344	452	125	316	120	208	101	133	122	284
MAX	358	2010	806	2570	172	1530	231	1150	157	749	381	2490
MIN	58	86	136	127	105	1530 99	92	70	64	54	45	58
CFSM	1.52	4.23	4.12	5.41	1.50	3.78	1.44	2.49	1.21	1.59	1.46	3.40
IN.	1.76	4.72	4.75	6.23	1.56	4.35	1.60	2.86	1.34	1.83	1.68	3.40
IN.	1.76	4.72	4.75	0.23	1.50	4.35	1.60	2.80	1.34	1.83	1.08	3.79

CAL YR 1977 TOTAL 53148 WTR YR 1978 TOTAL 81982 MEAN 146 MEAN 225 MAX 2010 MAX 2570 MIN 23 MIN 45 CFSM 1.75 CFSM 2.69

01464500 CROSSWICKS CREEK AT EXTONVILLE, NJ--Continued

		STREAM-	SPE- CIFIC CON-					DEMAND, BIO-	CULI-		HARD-	CALCIUM
	TIME	FLOW, INSTAN- FANEOUS	DUCT- ANCE (MICRO-	РН	TEMPER-	TUR- BID- ITY	OXYGEN, DIS- SOLVED	CHEM- ICAL, 5 DAY	FECAL, EC BROTH	STREP- TOCOCCI FECAL	NESS (MG/L AS	DIS- SOLVED
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	(4G/L)	(MPN)	(MPN)	CACD3)	AS CA)
NOV 28 FEB	1225	293	80	7.1	4.5	8	11.4	1.2	330	230	34	10
28	1020	110	149	7.0	1.5	8	11.4	2.3	70	50	43	13
APR 12	1215	116	129	7.4	13.0	6	10.4	3.0	240	70	41	12
MAY 18	0930	188	117	6.7	14.0	15	8.2	3.3	220	920	41	12
JUN 28	1245	140	129	6.9	23.0	25	6.5	5.1	>2400	1600	40	12
JUL 26	1245	54	164	7.2	22.0	4	6.6	2.2	<200	1600	55	17
AUG 17	1245	77	142	7.1	24.5	16	6.0	2.9	<200	700	46	14
											SOLIOS,	SOLIDS,
	MAGNE-	, MUIGGS	POTAS- SIUM,	BICAR-		ALKA-	SULFIDE	SULFATE	CHLO- RIDE,	SILICA, DIS-	RESIDUE AC 180	RESIDUE AT 105
	DIS-	DIS-	DIS-	BONATE	CAR-	LINITY	DIS-	DIS-	DIS-	SOLVED	DEG. C	DEG. C,
	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	(MG/L	BONATE (MG/L	(MG/L AS	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	(MG/L AS	DIS-	SUS-
DATE	AS MG)	AS NA)	AS K)	HC03)	AS CO3)	CACOS	AS S)	AS 804)	AS CL)	S102)	(MG/L)	(MG/L)
NOV							*					
28 FEB	2.2	3.7	2.4	15	0	12		20	7.0		78	7
28 APR	2.6	6.3	2.4	32	0	26		22	11		94	2
12 MAY	2.6	5.5	2.6	29	0	24		24	11		97	15
18 JUN	2.6	4.8	2.3	18	0	15	.0	21	7.7	7.5	82	. 37
28 JUL	2.4	5.2	2.8	24	0	20		20	12		95	59
26 AUG	3.0	7.0	3.0	32	0	26		21	13		116	16
17	2.6	5.8	2.8	32	0	26		19	10		117	13
												4
		SED						RD-				
	SEC	MEN DIS					RO- GEN		RO- PHO	PHO PHOR		IN.
	ME	IT, CHAR	GE, NITE	ATE NITE	ITE AMMO	NIA DRGA	NIC URG	NIC GE	EN, PHOR	RUS, ORT	HO. DRGA	NIC
	805	S- SUS							TAL TOT			
DAS		3/L) (T/D							N) AS			
NOV							1					
PEB FEB				.68	.01	.15	.37		1.2	.26		.1
28		••		.83	.02	.78	.03	.81	1.7	.16	.09	3.6
12 4AY				.91	.03	.31	.36	.67	1.6	.19	.02	6.5
18. JUN		••		.70	.02	.17	.58	.75	1.5	.31	.10	9.2
28. JUL				.95	.05	.32	.78	1.1	2.1	.47	.14 1	2
26. AUG		12 1	.7	••		.10	.30	.40	1.7			2.4
17.		23 4	. 8			.30	.2	.5	2.6		1	1

171

01464500 CROSSWICKS CREEK AT EXTONVILLE, NJ--Continued

					CHRO-				MANGA-			
		ALUM-		CADMIUM	MIUM,	COBALT,	COPPER,		NESE,	NICKEL,	ZINC,	
		INUM,	BORON,	TOTAL	HEXA-	TOTAL	TOTAL	IRUN,	TOTAL	TOTAL	TOTAL	
		DIS-	DIS-	RECOV-	VALENT,	RECOV-	RECOV-	DIS-	RECOV-	RECOV-	RECOV-	
		SOLVED	SOLVED	ERABLE	DIS.	ERABLE	ERABLE	SOLVED	ERABLE	ERABLE	ERABLE	PHENOLS
	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE		AS AL)	AS B)	AS CD)	AS CR)	AS CO)	AS CU)	AS FE)	AS MN)	AS NI)	AS ZN)	(UG/L)
MAY												
18	0930	40	110	0	0	4	11	180	140	22	30	1

01464505 CROSSWICKS CREEK AT GROVEVILLE, NJ

LOCATION.--Lat 40°10'26", long 74°40'48", Mercer County, Hydrologic Unit 02040201, at bridge on U.S. Route 130 in Groveville, 0.3 mi (0.5 km) upstream from Doctors Creek, and 0.6 mi (1.0 km) southwest of Yardville.

DRAINAGE AREA .-- 94.5 mi2 (244.8 km2).

PERIOD OF RECORD. --

09 ...

WATER DISCHARGE: Water years 1967 to current year. CHEMICAL ANALYSES: Water years 1976 to current year. SEDIMENT ANALYSES: July and August 1978.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

				WATER	QUALIT	Y DAT	A, WATER	YEAR	OCTOB	ER 1977	ro se	PTEMBE	R 1978					
			COL	FIC N- CT-					OXYGE	N, CH	AND, D- EM-	COLI- FORM, FECAL		REP-	HARD NESS	DI	CIUM S- LVED	
		TIME	ANG	CRO-	РН	TEMP		ID- TY	SOLV		AL,	EC BROTH	TUC	CAL	(MG/		G/L	
. D	ATE	TIME			UNITS)	(DEG		TU)	(MG/			(MPN)		PN)	CACO		CA)	
NO	v																	
21	8	0920		79	6.8		4.5	15	11	.4	1.4	13	0	350		36	10	
FEI 2	3	1330		200	6.9		1.0	6	13	.0	2.5	<2	0	20		49	14	
API	R																	
MA	6 Y	1305		160	7.2	17	2.5	7	9	.6	4.8	4	9	130		40	11	
1	7	0850		156	6.7	1	3.0	10	9	.2	3.2	430	0	3500		43	12	
JUI	B	0845		147	6.8	2	1.5	45	6	.9	4.4	>240	0 >3	2400		39	11	
	6	0940		209	7.2	2:	2.5	6	6	. 4	2.2	130	0	540		53	15	
AU	9	1210		130	7.1	2	4.0	15	7	.2	2.1	110	0	1100		39	11	
												,						
			MAGNEL		PO	TAS-							CHLO-	SOLI		SOLIDS, RESIDUE		
			SIUM,		M, S	IUM,	BICAR-			ALKA-	SULF		RIDE,	AT 1		AT 105		
			DIS- SOLVED	DIS-		IS- LVED	BONATE (MG/L	BONA		LINITY (MG/L	DIS		DIS- SOLVED	DEG		DEG. C,		
			(MG/L	(MG/		G/L	AS	(MG		AS	(MG		(MG/L	SOL		PENDED		
	DATE	3	AS MG)	AS N		K)	HCO3)	AS C		CACO3)			AS CL)	(MG	/L)	(MG/L)		
	NOV																	
	28. FEB		2.6		. 2	2.7	12		0	10		2	8.0		79	12		
	APR	••	3.5	16		2.6	28		0	23	. 2	6	23		126	4		
	MAY	• •	3.1	9	.0	2.5	22		0	18	2	6	15		94	11		
	17. JUN	• •	3.2	13		2.3	17		0	14	2	3	21		111	37		
	28.	••	2.7	7	.0	3.1	22		. 0	18	. 2	2	14		104	.80		
	JUL 26.		3.7	15		3.1	29		0	24	. 2	4	25		131	14	E	
	AUG 09.		2.9	5	. 8	2.8	21		0	17	1	9	11		87	39		
										NITRO-								
				NITR	O- NI	TRO-	NITRO-	NIT	RO-	GEN, AM-				PHO				
			SEDI-	GEN		EN,	GEN,		IN,	MONIA +			PHOS-	PHOR		CARBON,		
			MENT, SUS-	NITRA TOTA		RITE	TOTAL	ORGA		ORGANIC	TOI		HORUS,	TOT		DRGANIC	1	
			PENDED			G/L	(MG/L	(MG		TOTAL (MG/L			(MG/L	(MG		(MG/L		
	DAT	3	(MG/L)			N)	AS N)	AS		AS N)	AS		AS P)	AS		AS C)		
	NOV																	
	28.	••			83	.01	.13		.47	.60	1	. 4	.15		.01	12		
	FEB 23.			1.	2	.01	.70		.50	1.2	- 1	.4	.18		.10	4.3	1	
	APR 06.			1.	2	.03	.24		.45	.69	1	.9	.14		.06	5.3	1	
	MAY		A :												.09	3.4		
	JUN				88	.02	.09		.65	.74		.6	.26					
	28. JUL				-	.06	.23		.87	1.1		2.3	.59		.19	8.4		
	26. AUG	••	16		••		.10		.30	.40	1	. 8				6.1		
	0.0		E 3				20			2 4						11		

.20

01464515 DOCTORS CREEK AT ALLENTOWN, NJ

LOCATION.--Lat 40°10'37", long 74°35'57", Monmouth County, Hydrologic Unit 02040201, at bridge on Breza Road in Allentown, and 0.8 mi (1.3 km) downstream from Conines Millpond dam.

DRAINAGE AREA .-- 17.2 mi2 (44.5 km2).

PERIOD OF RECORD.-WATER DISCHARGE: Water years 1967 to current year.
CHEMICAL ANALYSES: Water years 1976 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DAT		3411	CON CON DUC AND (MIC	IC T- E RO-	PH Units)	TEMPI ATUI (DEG	ER- RE	TUR- BID- ITY JTU)	OXYG DI SOL (MG	S- VED	OXYGI DEMAI BIO- CHEI ICAI 5 DAY (MG/I	M-	COLI- FORM, FECAL EC BROTH (MPN)	, S1 TOC	REP- COCCI CAL	HAR NES (MG AS	S /L	CALCI DIS- SOLV (MG/ AS C	ED L
NOV																			
29.	•• 1	1125		149	7.1		4.5	15	1	1.1		1.5		(2	<2		53	13	3
28.	•• (855		144	6.8		1.0	7	1	3.4		1.3		2	27		49	11	i-
12.	1	020		166	7.4	1	3.0	4	1	1.3	:	2.2	1	11	14		44	10)
MAY 17 Jun	1	145		144	7.0	1.	3.0	3		9.2		2.3	160	00	220		45	10)
28.	••	100		128	7.1	2	3.0	20		7.5		2.4	>240	00	79		39	9	.2
DATE	S C	AGNE- SIU4, DIS- DLVED IG/L S MG)	SODI DIS SOLV (MG	UM, ED S	POTAS- SIUM, DIS- SOLVED (MG/L	BICAL BONA (MG.	TE C	AR- NATE MG/L CO3)	ALK LINI (MG AS CAC	TY /L	SULF DIS- SOLV (MG,	VED	SULFAT DIS- SOLVE (MG/I	DI DI ED SC	LO- DE, S- DLVED	SILI DIS SOL (MG AS	VED	SOLIC RESID AT 16 DEG. OIS SOLV	OUE 30 . C S= (ED
NOV				,			,	,		05,		.,		.,		•••		,	
28.		5.1		6.7	4.0		37	0		30			30		13			1	04
FEB 28.		5.3		6.9	2.6		20	0		16			24		15				99
APR 12.		4.7		5.7	2.8		22	0		18			40		28				81
MAY 17.		4.9		6.0	2.3		27	0		22		.0	22		12		6.0		80
JUN 28.		4.0		4.3	2.6		27	0		22			16		13				83
	DATE	RES AT DEG SU PEN	IDS. IDUE 105 . C, S- DED G/L)	NITRO GEN, NITRAT TOTAL (MG/L AS NI	GE NIT	TRO- EN, RITE TAL G/L N)	NITROGEN, AMMONIA TOTAL (MG/L AS N)	A ORG	TRO- SEN, SANIC OTAL HG/L	NIT GEN, MONI ORGA TOI (MG	ANIC PAL	TO	TAL 3/L	PHOS- HORUS, TOTAL (MG/L AS P)	PHO OF TO	IOS- PRUS, RTHO. OTAL IG/L S P)	CARE ORGA TOT (MG	NIC AL	
	NOV 28		8	1.5		.03			30		2.1		3.6	36		.17		8.6	
	FEB 28		2	2.6		.02	1.8	a	.30	•	.72		3.3	.10		.02		2.3	
	APR 12		0	1.1		.02												7.6	
	MAY						. 3		.35		.71		1.8	.08		.03			
	17 JUN		12	• 7		.03	.79	•	.75	1	1.5		2.3	.16		.09		.0	
	28		29	- 4	17	.03	. 30	5	.61		.97	1	.5	. 23		.10	1	.0	
٠	TIME	IN D SO	UM- UM, IS- LVED G/L	BOROS DIS- SOLVE	RED ER	MIUM TAL COV-	CHRO- MIUM, HEXA- VALENT DIS. (UG/L	, RE	BALT, DTAL ECOV- RABLE	REC	PER, TAL COV- ABLE	50I	ON, IS- LVED G/L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L	NIC TO RI	CKEL, DTAL ECDV- RABLE		AL COV-	PHENOLS
DATE			AL)	AS B		CD)	AS CR		(CO)		CU)		FE)	AS MN		NI)		ZN)	(UG/L)
MAY 17	1145		30		7	0		0	0		2		120	100)	0		10	1

01464522 DOCTORS CREEK AT ROUTE 130 NEAR YARDVILLE, NJ

LOCATION.--Lat 40°10'31", long 74°40'33", Mercer County, Hydrologic Unit 02040201, at bridge on U.S. Route 130, 0.3 mi (0.5 km) upstream from mouth, 0.4 mi (0.7 km) northwest of Groveville, 0.6 mi (1.0 km) southwest of Yardville, and 2.5 mi (4.0 km) southwest of Haines Corner.

DRAINAGE AREA. -- 25.8 mi2 (66.8 km2).

PERIOD OF RECORD. --

CHEMICAL ANALYSES: Water years 1976 to current year. SEDIMENT ANALYSES: July and August 1978.

SPE-

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

OXYGEN

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

7		9	DUC	FIC N- CT- CE		PER- B	ID-	XYGEN, DIS-	IC	AND, D- EM- AL,	COLI- FORM, FECAL, EC	STR TOCO FEC	EP-	HARD- NESS (MG/I	, D.	LCIUM IS- DLVED
DATE		IME		CRO- OS) (UN	ITS) (DE			SOLVED (MG/L)	5 D		(MPN)	(MP		CACO		S CA)
NOV											11.					
28	. 1	015		144	7.1	4.5	2	12.1		1.0	<2		<2		52	12
FEB		220		205	4 =	2.0					~20		130		55	12
23 APR	• '	230		205	6.5	2.0	5	13.2		3.2	<20		130	,	, ,	14
12 MAY		900		175	7.1	11.0	3	10.4		4.9	>2400	>2	400	4	18	10
17	. 1	030		162	7.0	12.5	4	9.6		2.8	250		7		50	11
JUN 28	. 0	940		125	7.1	22.0	25	7.4		4.3	1600		350		10	9.3
JUL 26		045		200		21.0	4	7.4		2.9	<2		4		51	14
AUG				45							- 20		11.4			
09	. 1	100		160	7.1	23.5	6	7.5		2.4	350		70	•	18	11
			MAGNE-		POTAS-						C	LO-	SULID		RESIDU	
			SIUM,	SODIUM,	SIUM,	BICAR-		A	LKA-	SULF		DE,	AT 18		T 105	
			DIS-	DIS-	DIS-	BONATE	CAR-	LI	NITY	DIS	- D1	S-	DEG.	CI	DEG. C	,
			SOLVED	SOLVED	SOLVED		BONAT		MG/L	SOL		LVED	DIS		SUS-	
	DATE		(MG/L AS MG)	(MG/L	(MG/L AS K)	HCO3)	AS CO		AS ACU3)	AS S		G/L CL)	SOLV (MG/		(MG/L)
				1110								7.77	No. of Contract			e same
	VOV		E 4	6.9		20				21		13	1.00	00		3
	28 FEB	343	5.4	0.9	3.4	20		0	16	2.	,	13		00		•
	23		6.1	12	2.9	26		0	21	3)	23	1	21	1 1	6
	APR 12		5.6	8.7	3.0	21		0	17	2		14		99		0
	MAY				3.0									7		
	17 JUN		5.4	7.5	2.3	. 22		0	18	2	5	14	1	03	2	0
	28		4.1	4.5	2.7	24		0	20	1	7	11		85	8	0
	26		6.4	9.8	3.7	39		0	32	2	2	20	1	27		6
	AUG 09		5.0	7.0	3.2	27		0	22	2	0	15		90	1	2
			•••		***									1	17.6	
				NITRO-	NITRO-	NITRO-	NITR		ITRO- N,AM-				PHOS			
			SEDI-	GEN,	GEN.	GEN,	GEN		NIA +		RO- PI	10S-	PHORU		CARBON	
			MENT,	NITRATE					GANIC			DRUS,	ORTH		DRGANI	
			sus-	TOTAL	TOTAL	TOTAL	TOTA		OTAL	TOT		DTAL	TOTA		TOTAL	
	DATE		PENDED (MG/L)		(MG/L AS N)	(MG/L AS N)	AS N		MG/L S N)	(MG AS		MG/L S P)	AS P		(MG/L	
	NOV 28			2.0	.01	. 49		36	.85	2	. 9	.17		0.4	8.	3
	FEB		40.1		•••	• • • • • • • • • • • • • • • • • • • •		30		-	• **					
	23 APR	•		2.6	.04	. 95		45	1.4	4	.0	.23		13	9.	6
	12			1.7	.03	.77		33	1.1	2	.8	.20	3	12	7.	2
	MAY								.97			15		07	9.	4
	17 JUN			1.4	.03			49			.4	.15				
	28 JUL			• • • •				88	1.1		. 9	.39	11.	10	8.	
	26 AUG	•	6			1.2	1.	1	2.3	3	. 7	1.			9.	2
	09		13	44		.60	2.	1	2.7	3	. 7				6.	4

DELAWARE RIVER BASIN 175 01464531 BLACKS CREEK AT BORDENTOWN, NJ

LOCATION. -- Lat 40°08'14", long 74°42'42", Burlington County, Hydrologic Unit 02040201, at bridge on U.S. Route 130 in Bordentown, 1.0 mi (1.6 km) northeast of Fieldsboro, 1.3 mi (2.1 km) upstream of mouth, and 3.1 mi (4.9 km) southwest of Groveville.

DRAINAGE AREA .-- 14.5 mi2 (37.6 km2).

SPE-

PERIOD OF RECORD. --

CHEMICAL ANALYSES: Water years 1976 to current year. SEDIMENT ANALYSES: July and August 1978.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DXYGEN

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	rı	C C D A A	PE- IFIC ON- UCI- NCE ICRO- HOS)	PH (UNITS)	TEME ATU	PER-	TUR- BID- ITY JTU)	500	GEN, IS- LVED G/L)	CHI	AND, O- EM- AL, AY	COLI- FORM, FECAL EC BROTH (MPN)	TOC FE	REP- OCCI CAL PN)	HARI NESS (MG/ AS CACO	5 / L	CALCIU DIS- SOLVEI (MG/L AS CA	D
NOV												2.57					400	
08 FEB	10	30	107	6.7	1	13.5	65		7.6		4.9	1600	00	5400		33	8.0)
23 APR	09	30	264	6.9		1.0	9	1	14.0		7.5	<2	0	230		67	17	
06	11	45	203	7.2	1	11.0	10		9.2		5.3		2	2		57	14	
22 JUN	13	10	218	6.8	1	17.5	8		8.4		2.4	<2	0	E11		61	15	
27	13	10	139	6.9	1 2	20.0	40		8.0		5.8	>240	00 >	2400		41	10	
JUL 26	14	20	230	6.9	2	22.0	7		6.7		4.9		2 >	2400		62	16	
AUG 08	14	20	162	7.1	2	24.0	15		7.6		4.1	92	20	1600		46	11	
	DATE	MAGNE SIUM DIS- SOLVE (MG/L AS MG	, SODI	UM, S S- D VED SO S/L (M	TAS- IUM, IS- LVED IG/L K)	BICAR- BONATE (MG/L AS HCO3)	BON (M	R- ATE G/L CO3)	LIN (M	G/L	SULF DIS SOL (MG	VED	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOL	DUE 80 . C S- VED	SOLI RESI AT 1 DEG. SUS PEND (MG	05 C,	
	08	3.	2	3.1	7.0	1	7	0		14	1	8	9.4		65		82	
	EB 23	6.	0 1	9	4.1	3	7	0		30	3	6	33		168		7	
A	PR 06	5.	3 1	1	3.4	2	7	0		22	3	5	18		131		14	
M	AY 22	5.	7 1	.0	3.8	2	,	0		22	3	7	21		134		5	
	UN 27	3.	9	5.1	3.9	2	3	0		19	2	1	11		94		204	
J	UL 26	5.	3 1	4	4.6	4	9	0		40	3	0	20		145		14	
A	UG 08	4.	6	7.0	3.7	2	4	0		20	2	6	13		103		9	
					TRO-	NITRO		TRO-	GEN	TRO-				РНО				
	2002	SEDI- MENT, SUS- PENDE	NITA TOT (MG	AL TO	EN, RITE TAL G/L	GEN, AMMONI, TOTAL (MG/L	A ORG	EN, ANIC TAL G/L	ORG TO	IA + ANIC TAL G/L	TOT (MG	AL /L	PHOS- HORUS, TOTAL (MG/L	PHOR ORT TOT (MG	HO. AL	CARB ORGA TOT (MG	NIC AL	
	DATE	(MG/L) AS	N) AS	N)	AS N)	AS	N)	AS	N)	AS	N)	AS P)	AS	P)	AS	C)	
	08	-		.96	.02	.0	7	.74		.81	1	.8	.56		. 12		9.2	
	E8 23		- 1	.5	.01	1.0		1.6		2.6	4	. 1	.63		.14	1	1	
	PR 06	-	- 1	.1	.02	.60	5	.74		1.4	2	.5	.35		.09		7.6	
	AY 22	-	- 1	.9	.05	1.1		.70		1.8	3	.7	.50		. 38		7.9	
	UN 27	-	- 1	.2	.05	.20	5	.94		1.2	2	. 4	.94		.11	1	4	
	0L 26	1	2			1.0	1	1.6		2.6	4	. 0					5.4	
	UG 08	2	9			.50)	2.2		2.7	3	. 8					7.3	

01464540 CRAFTS CREEK AT HEDDING, NJ

LOCATION.--Lat 40°06'01", long 74°45'23", Burlington County, Hydrologic Unit 02040201, at bridge on Old York Road in Hedding, 1.6 mi (2.6 km) southeast of Roebling, and 2.2 mi (3.5 km) upstream from mouth.

DRAINAGE AREA .-- 10.6 mi2 (27.5 km2).

PERIOD OF RECORD. --CHEMICAL ANALYSES: Water years 1959-63, 1976 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

		WATER OL	ALITY DAT	A, WATER	YEAR OCTO	DRER 1977	TO SEPTE	BER 1978		
	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO-	РН	TEMPER-	TUR- BID- ITY	OXYGEN, DIS- SOLVED	DXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY	COLI- FORM, FECAL, EC BROTH	STREP- TOCOCCI FECAL	HARD- NESS (MG/L
DATE		MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	(MG/L)	(MPN)	(MPN)	CACD3)
NOV										
08 FEB	0910	108	6.9	13.5	25	8.2	5.1	16000	9200	33
23 APR	1030	418	6.5	.0	6	13.4	.9	79	8	72
11 MAY	1315	260	7.0	12.0	- 2	10.3	.9	49	17	63
22 JUN	1145	266	6.8	16.0	5	8.8	1.0	E2200	>920	68
26	1250	218	6.9	21.5	4	7.3		2400	5400	64
										SOLIDS,
	CALCIUM	MAGNE- SIUM,	SODIUM,	POTAS- SIUM,	BICAR-		ALKA-	SULFATE	CHLO-	RESIDUE AT 180
	DIS-	DIS-	DIS-	DIS-	BUNATE	CAR-	LINITY	DIS-	DIS-	DEG. C
	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	BONATE	(MG/L	SOLVED	SOLVED	DIS-
	(MG/L	(MG/L	(MG/L	(MG/L	AS	(MG/L	AS	(MG/L	(MG/L	SOLVED
DATE	AS CA)	AS MG)	AS NA)	AS K)	HCO3)	AS C03)	CACO3)	AS SO4)	AS CL)	(MG/L)
NOV										
08	6.8	3.8	4.6	6.8	18	0	15	17	12	77
FEB 23	15	8.4	42	3.7	12	0	10	44	82	232
APR				177.0			10	**	02	232
11 MAY	13	7.3	18	3.4	12	0	10	39	40	147
22	14	8.1	17	3.5	17	0	14	38	38	165
JUN 26	13	7.6	11	3.8	15	0	12	32	25	147
	•	7.0		3.0	15		12	32	25	14/
	SOLIDS, RESIDUE	NITRO-				NITRO-			English III	
	AT 105	GEN,	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,	GEN, AM-	NITRO-	DUOG-	PHOS-	******
	DEG. C.	NITRATE	NITRITE	AMMONIA	ORGANIC	ORGANIC	GEN.	PHOS-	PHORUS, ORTHO.	CARBON, DRGANIC
	SUS-	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	PENDED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DATE	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS C)
NOV										
08 FEB	47	.74	.02	.01	1.4	1.4	2.2	.30	.07	9.2
23 APR	1	1.9	.01	.23	.59	.82	2.7	.02	.00	1.8
11 MAY	0	2.2	.01	.01	.31	.32	2.5	.01	.01	4.1
22 JUN	1	2.1	.03	.19	.55	.74	2.8	.05	.01	4.0

.04

.01

01464580 ASSISCUNK CREEK AT COLUMBUS, NJ

LOCATION. -- Lat 40°03'25", long 74°43'27", Burlington County, Hydrologic Unit 02040201, at bridge on U.S. Route 206, 1.1 mi (1.8 km) south of Columbus, 1.2 mi (1.9 km) downstream of Annaricken Brook, and 2.1 mi (3.4 km) northwest of Jobstown.

DRAINAGE AREA. -- 8.28 mi2 (21.45 km2).

PERIOD OF RECORD. -- CHEMICAL ANALYSES: Water years 1958-63, 1976 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 SPE-DXYGEN CIFIC COLI-DEMAND. CON-BIO-FORM, HARD-DUCT-CHEM-TUR-OXYGEN. FECAL STREP-NESS ANCE PH TEMPER-TOCOCCI (MG/L BID-TCAL. EC DIS-TIME (MICRO-ATURE SOLVED 5 DAY BROTH FECAL ITY DATE (IINITS) MHOS (DEG C) (JTU) (MG/L) (MG/L) (MPN) (MPN) CACD3) NOV 1025 03. . . 167 6.5 15.0 6 7.4 1.1 9 240 54 JAN 26 ... 1300 37 6.3 2.0 30 12.6 1600 >2400 APR 1040 11 ... 156 6.9 10.5 7 10.8 2 350 42 1.1 MAY 1050 152 9.0 16 ... 6-4 11.0 5 1.2 540 540 48 26 . . . 1115 167 6.3 17.0 10 7.6 700 3500 56 SOLIDS. MAGNE-POTAS-RESIDUE CHLD-CALCIUM SIUM, SODIUM. SIUM. BICAR-ALKA-SULFATE RIDE, AT 180 DEG. C DIS-DIS-CAR-DIS-DIS-BONATE LINITY DIS-DIS-SOLVED SOLVED SOLVED SOLVED (MG/L BONATE (MG/L SOLVED SOLVED (MG/L (MG/L CMG/L (MG/L AS (MG/L AS (MG/L (MG/L SOLVED AS CA) HCO3) DATE AS MG) CACO3) AS NA) AS K) AS CL) AS CO3) AS 504) (MG/L) NOV 03... 14 4.7 4.5 4.5 13 0 46 12 123 11 TAN . 8 7 26 . . . 2.0 1.6 2.5 0 6 5 . 8 3.1 30 APR 11 ... 10 4.2 5.0 3.8 17 0 39 99 MAY 16 ... 12 4.4 4.9 3.6 12 0 10 38 9.9 109 JUN 13 26 ... 5.6 5.0 4.5 16 0 13 38 12 129 SOLIDS, NITRO-RESIDUE NITRO-NITRO-NITRO-NITRO-GEN, AM-PHOS-NITRO-AT 105 PHOS-PHORUS. CARBON. GEN. GEN. GEN. GEN. MONIA + DEG. C. NITRATE NITRITE AMMONIA ORGANIC ORGANIC DRGANIC GEN, PHORUS, ORTHO. SUS-TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL PENDED (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L DATE AS N) AS P) AS C) (MG/L) AS N) AS N) AS N) AS N) AS P) NOV 03... .46 .01 .04 .42 .46 .93 .09 .01 7.9 JAN . 25 26 ... 34 .01 .22 .69 .91 1.2 . 38 .13 4.9 APR .78 .02 11 ... 5 -00 .05 .18 .23 1.0 -07 4.8 1668 .01 .25 .40 1.3 .12 .07 12 .65 JUN 2678 .01 7.5 .12 .34 . 46 1.3 .12 .01

DATE OCT 31...

DELAWARE RIVER BASIN

01464580 ASSISCUNK CREEK AT COLUMBUS, NJ--Continued

				****		1077	TO	SEPTEMBER	1078	
WATER	QUALTTY	DATA.	WATER	YEAR	OCTOBER	1977	TO	SEPTEMBER	1978	

.0

				CHLC	R-			
		PCB,	ALDRIN	. DANE	, D	DD,	DDE,	DDT,
		TOTAL	TOTAL	TOTA	L TO	TAL	TOTAL	TOTAL
		IN BOT-	IN BOT	- IN BC	T- IN	-108	N BOT-	IN BOT-
		TOM MA-	TOM MA	- TOM M	A- TOM	MA- I	-AM MO	TOM MA-
	TIME	TERIAL	TERIA	L TERI	AL TE	RIAL	TERIAL	TERIAL
DATE		(UG/KG)	(UG/KG) (UG/K	G) (UG	/KG) (UG/KG)	(UG/KG)
OCT								
31	1015	0		0	3	1.9	.6	1.0
		I-		HEPTA-	HEPTA-		TO	XA-
	ELL	RIN, EN	DRIN,	CHLOR,	CHLOR	LINDA	NE PH	ENE,
	TO	TAL T	DTAL	TOTAL	EPOXIDE	TOTA	L TO	TAL
	IN	BOT- IN	BOT- I	N BOT-	TOT. IN	IN BO	T- IN	BOT-
	TOP	MA- TO	M MA- T	OM MA-	BOTTOM	M MO1	A- TOM	MA-
	TE	RIAL T	ERIAL	TERIAL	MATL.	TERI	AL TE	RIAL
DATE	E (UC	/KG) (U	G/KG) (UG/KG)	(UG/KG)	(UG/K	G) (UG	/KG)

.0

01464590 ASSISCUNK CREEK NEAR BURLINGTON, NJ

LOCATION.--Lat 40°04'19", long 74°47'57", Burlington County, Hydrologic Unit 02040201, at bridge on Old York Road, 1.4 mi (2.3 km) southwest of Bustleton, 2.8 mi (4.5 km) northeast of Deacons, 3.2 mi (5.1 km) east of Burlington, and 4.2 mi (6.8 km) upstream from mouth.

DRAINAGE AREA . -- 37.2 mi2 (96.4 km2).

PERIOD OF RECORD.--CHEMICAL ANALYSES: Water years 1976 to current year. SEDIMENT ANALYSES: July and August 1978.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		SPE- CIFIC					OXYGEN DEMAND,	COLI-			21.22
	TIME	CON- DUCT- ANCE (MICRO-	PH	TEMPER-	TUR- BID- ITY	DIS-	BIO- CHEM- ICAL, 5 DAY	FORM, FECAL, EC BROTH	STREP- TOCOCCI FECAL	HARD- NESS (MG/L AS	CALCIUM DIS- SOLVED (MG/L
DATE	IIME	MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	(MG/L)	(MPN)	(MPN)	CACO3)	AS CA)
NOV						0.16			244		
03 FEB	1110	167	6.7	14.0	4	8.2	.9	350	540	56	13
15 APR	0900	213	6.1	.0	3	11.8	.5	2	2	54	12
11 MAY	1150	163	7.1	11.5	3	12.0	.8	79	33	48	11
16 JUN	1220	136	6.5	12.5	7	9.0	2.8	3500	460	51	13
26 JUL	1200	159	6.7	21.0	10	6.3		2400	1300	53	12
24 AUG	1210	172	7.1	25.5	3	7.5	1.2	790	1300	57	13
09	0935	134	6.7	23.0	10	6.5	1.5			44	10
	MAGNE- SIUM, DIS-	SODIUM,	POTAS- SIUM, DIS-	BICAR- BONATE	CAR-	ALKA- LINITY	SULFIDE DIS-	SULFATE DIS-	CHLO- RIDE, DIS-	SILICA, DIS- SOLVED	SOLIDS, RESIDUE AT 180 DEG. C
	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	(MG/L AS	BONATE (MG/L	(MG/L	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	(MG/L	DIS- SOLVED
DATE	AS MG)	AS NA)	AS K)	HC03)	AS CO3)	CACO3)	AS S)	AS 504)	AS CL)	\$102)	(MG/L)
NOV 03	5.7	5.8	4.0	15	0	12		38	15		117
FEB 15	5.9	13	3.2	7	0	6		39	27		130
APR									100		
11 MAY	5.1	6.5	3.2	15	0	12	•	34	16		102
16 JUN	4.6	5.5	2.4	12	0	10	.0	30	11	11	93
26 JUL	5.6	5.3	3.7	17	0	14	••	32	13		129
24 AUG	5.9	6.0	4.2	23	0	19	••	28	15		117
09	4.5	4.5	3.4	18	0	15		24	10		97
	SOLIDS, RESIDUE		NITRO-	NITRO-	NITRO-	NITRO-	NITRO- GEN, AM-			PHOS-	
	AT 105 DEG. C, SUS- PENDED	SEDI- MENT, SUS- PENDED	GEN, NITRATE TOTAL (MG/L	GEN, NITRITE TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, ORGANIC TOTAL (MG/L	MONIA + ORGANIC TOTAL (MG/L	NITRO- GEN, TOTAL (MG/L	PHOS- PHORUS, TOTAL (MG/L	PHORUS, ORTHO. TOTAL (MG/L	CARBON, DRGANIC TOTAL (MG/L
DATE	(MG/L)	(MG/L)	AS N)	AS N)	AS P)	AS P)	AS C)				
O3	7		.59	.01	.01	.38	.39	.99	.06	.01	7.7
15 APR	6										.7
11 MAY	0		.89	.00	.00	.26	.26	1.2	04	.02	4.8
16 JUN	24		.64	.02	.14	.66	.80	1.5	.12	.06	8.3
26 JUL	11		.47	.09	.05	.51	.56	1.1	.12	.07	8.5
24 AUG	10	24			.20	2.1	2.3	3.3			11
09	14	26									13

01464590 ASSISCUNK CREEK NEAR BURLINGTON, NJ -- Continued

DAIE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS
OCT												
31	1040		••								••	••
16	1220	40	20	0	0	0	2	170	130	4	30	0
			CHLOR-				-10		HEPTA-	HEPTA-		TOXA-
	PCH,	ALDRIN,	TOTAL	TOTAL	DDE,	DDT,	ELDRIN,	ENDRIN,	CHLOR,	CHLOR	LINDANE	PHENE,
	IN BOT-	IN BOT-	IN BOT-	IN BOT-	IN BUT-	TOTAL IN BOT-	IN BOT-	IN BOT-	TOTAL IN BOT-	TOT. IN	IN BOT-	IN BOT-
	TOM MA-	TOM MA-	TOM MA-	TOM MA-	TOM MA-	TOM MA-	TOM MA-	-AM MCT	TOM MA-	BOTTOM	TOM MA-	TOM MA-
	TERIAL	TERIAL	TERIAL	TERTAL	TERIAL	TERIAL	TERIAL	PERIAL	TERIAL	MATL.	TERIAL	TERIAL
DATE	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)
OCT												
31	U	.0	3	6.8	5.0	5.0	. 8	.0	.0	.0	.0	0
16										\ 		

01464598 DELAWARE RIVER AT BURLINGTON, NJ

LOCATION.--Lat 40°04'42", long 74°52'28", Burlington County, Hydrologic Unit 02040201, on left bank at the intake canal of the Public Service Electric and Gas Company, 0.3 mi (0.5 km) downstream from Burlington-Bristol Bridge, 1.4 mi (2.3 km) downstream from Assiscunk Creek, and at river mile 117.40 (188.89 km).

DRAINAGE AREA. -- 7, 160 mi2 (18,540 km2).

PERIOD OF RECORD.-TIDE ELEVATIONS: July 1964 to current year. March 1921 to July 1926, January 1931 to November 1939, August 1951 to June 1954, July 1957 to June 1964, in files of Philadelphia District Corps of Engineers.

GAGE.--Water-stage recorder. Datum of gage is -12.90 ft (-3.932 m) National Geodetic Vertical Datum of 1929. Prior to May 20, 1971, water-stage recorder at site 0.8 mi (1.3 km) upstream at same datum. Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum of 1929 for publication.

REMARKS.--Records good. Summaries for months with short periods of no gage-height record have been estimated with negligible or no loss of accuracy unless otherwise noted. Some periods cannot be estimated and are noted by dash (--) lines.

EXTREMES FOR CURRENT YEAR. -- Maximum elevation, 8.47 ft (2.582 m) Jan. 26; minimum, -5.10 ft (-1.554 m) Dec. 10.

EXTREMES FOR PERIOD OF RECORD. -- Maximum elevation, 8.58 ft (2.615 m) June 30, 1973; minimum, -6.60 ft (-2.012 m) Feb. 26, 1967.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum elevation known, 10.8 ft (3.29 m) Aug. 20, 1955, from high-water mark at site 1.4 mi (2.3 km) upstream; minimum, -9.1 ft (-2.77 m) Dec. 31, 1962, at present site.

Summaries of tide elevations during current year are as follows:

TIDE ELEVATIONS, IN FEET, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Maximum	Elevation	6.65	7.17	7.60	8.47	5.59	7.35	7.09	6.79	6.30	6.39	6.43	6.36
high tide	Date	14	8	21	26	5	27	20	21	22	18	17	14
Minimum	Elevation	-3.62	-3.80	-5.10	-3.826	-4.74	-4.58	-3.00	-3.02	-3.37	-3.57	-3.42	-3.03
low tide	Date	18	19	10	4	7	7	16	2	14	11	21	13
Mean high t	ide	5.20	5.10	5.20			5.15	5.48	5.69	5.24	5.23	5.38	5.29
Mean water	level	1.68	1.70	1.74			1.60	1.82	2.01	1.36	1.50	1.07	1.66
Mean low ti	.de	-2.04	-2.03	-1.88			-1.99	-1.96	-1.80	-2.63	-2.50	-2.28	-2.24

NOTE. -- Missing or doubtful record on Jan. 6-18, Feb. 6 to Mar. 1.

01465810 GUM SPRING AT FOURMILE, NJ

LOCATION.--Lat 39°52'52", long 74°35'43", Burlington County, Hydrologic Unit 02040202, at bridge on unnamed road at Fourmile, 0.5 mi (0.8 km) south of Four Mile Circle, 0.7 mi (1.1 km) upstream from mouth, and 4.7 mi (7.6 km) southwest of Mount Misery.

DRAINAGE AREA .-- 0.65 mi2 (1.68 km2).

PERIOD OF RECORD. -- CHEMICAL ANALYSES: Water years 1977 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

D	ATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PI	AT	PER- B	ID-	YGEN, DIS- OLVED MG/L)	OXYG DEMA BID CHE ICA 5 DA (MG/	ND, CO - FO M- FE L, E	TOCO	BICA REP- BONA OCCI (MG CAL A PN) HCC	TE CAR I/L BONA IS (MG	TE /L
JA	N 5	1030	168	,	5.7	4.3	2	13.2		.9	<2	<2	12	0
			so	LIDS.	SOLIDS.					NITRO-				
				SIDUE	RESIDUE	NITRO-	NITRO	- NI	TRO-	GEN, AM-		PHOS-		
	2.1	ALK		180.	AT 105	GEN,	GEN		EN.	+ AINCH	NITRO-	PHORUS,	CARBON,	
		LINI	TY DI	EG. C	DEG. C.	NITRITE	AMMONI	A ORG	ANIC	DRGANIC	GEN,	ORTHO.	DRGANIC	
		· CMG		DIS-	sus-	TOTAL	TOTAL	TO	TAL	TOTAL	TOTAL	TOTAL	TOTAL	
		AS		OFAED	PENDED	(MG/L	(MG/L		G/L	(MG/L	(MG/L	(MG/L	(MG/L	
	DATE	CAC	(103)	MG/L)	(MG/L)	AS N)	AS N	AS	N)	AS N)	AS N)	AS P)	AS C)	
	JAN													
	05		10	92	3	.01		5	.32	.37	2.6	.00	12	

01465835 SOUTH BRANCH RANCOCAS CREEK AT RETREAT, NJ

LOCATION.--Lat 39°55'23", long 74°43'05", Burlington County, Hydrologic Unit 02040202, at bridge on light-duty road in Retreat, 40 ft (12.2 m) upstream of Friendship Creek, 1.2 mi (1.9 km) southwest of Buddtown, and 1.8 mi (2.9 km) northeast of Beaverville.

DRAINAGE AREA. -- 44.4 mi2 (115.0 km2).

PERIOD OF RECORD. -- CHEMICAL ANALYSES: Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR BID ITY (JTU	- s	YGEN, DIS- OLVED MG/L)	OXYGE DEMAN BIO- CHEM ICAL 5 DAY (MG/L	D, (COLI- FORM, FECAL, EC BROTH (MPN)	STR TOCO FEC (MP	EP- N CCI (ARD- IESS MG/L AS ACO3)	(MG	IUM - VED S	AGNE- SIUM, DIS- OLVED MG/L S MG9
OCT		425		30/3						Loren Control						
03	1025	96	4.0	16.5		4	7.2	1	. 1	17		350	12		2.7	1.3
09 JAN	1135	85	3.9	14.5		2	5.8	1	.7	240		23	13		3.2	1.2
30	1140	78	4.1	.0		3	13.4		.7	<2		5	8		2.0	. 8
22 MAY	1215	76	4.1	10.0		3	12.1	1	.4	4		<2	10		2.3	1.0
15 JUN	1330	69	4.2	14.5		2	8.6	1	. 9	140		12	11		2.6	1.0
22	0900	59	4.4	22.0		4	5.6	1	.7	350	>2	400	9		2.3	.9
DATE	SODIU DIS- SOLVE (MG/ E AS N	D SOL	UM, BICA S- BONA VED (MG	TE CAR	TE /L	ALKA- INITY (MG/L AS CACO3)	SULFI DIS- SOLV (MG/ AS S	VEO .	ULFATE DIS- SOLVEC (MG/L S SO4)	DIS-	E, VED	SILICA, DIS- SOLVED (MG/L AS SIO2)	AT 1	DUE 80 . C S- VED	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	
OCT O3	. 3	. 2	1.4	0	0	0			18		5.2			17	0	
09	. 3	.0	1.8	0	0	0			18	6	6.0			59	5	
JAN 30	. 2	.5	. 8	0	0	0			12	2	1.5			39	0	
MAR 22	. 2	. 4	1.3	0	0	0			14		3.7			42	7	
MAY 15	. 4	. 9	1.2	0	0	0		.0	14	3	8.8	3.3		44	3	
JUN 22	. 2	. 9	1.2	0	0	0			11	4	4.4			50	11	
DATE	NIIR GEN NITRA TOTA (MG/	FE NITR	N, GE ITE AMMO AL POT /L (MG	N, GE NIA ORGA AL TOT /L (MG	RO- GI N, MI NIC OI AL	NITRO- EN, AM- JNIA + RGANIC FOTAL (MG/L AS N)	NITE GEN, M + ORG TUT I BOT M (MG/AS M	IN IAT	NITRO- GEN, TOTAL (MG/L AS N)	PHOS PHORU TOTA (MG/	IS,	PHOS- PHORUS, ORTHO. TOTAL (MG/L AS P)	CARBO ORGAN TOTA (MG/	DN, NIC AL	CARBON, ORGANIC TOT. IN BOTTOM MAT. (G/KG AS C)	
DCT									200			2,250, 2, 20				
NOV			.00	.05	. 35	40	1100)	. 46		06	.01	10		6.4	
09 JAN			.00	.00	.40	.40			. 45		.06	.02		7.6		
30		15	.00	.00	.31	.31			. 46		.03	.01	10	0		
22		31	.00	.0i	.39	.40			.71		06	.01	9	9.0		
15 JUN		14	.00	.05	.66	.71			.85		.04	.02	10	0		
22		14	.01	.12	.74	.86			1.0		12	.06		8.1		

01465835 SOUTH BRANCH RANCOCAS CREEK AT RETREAT, NJ--Continued

			APS	ENTC		MILTHUAS	CH	en- c	-חמא		co	HALT.			nee	FR.		
		ALU								COB			COPP					
					DRON.												IRON.	
100																	DIS-	
		SOL	VED TE	CRIAL SO	DLVED	TERIAL	TOM	MA-	DIS.	ER	ABLE T	ERIAL	ERA	BLE	TER	LAL	SOLVE	D
	TIME					(UG/G	TE	RIAL (UG/L	(U					(UG	6/G	(UG/L	
DATE		AS	AL) AS	AS) AS	S B)	AS CD)	(U	G/G) A	S CR)	AS	CO) A	s co)	AS	CO)	AS	CO)	AS FE)
OCT																		
03	1025			2		<10		<10				<10				<10		-
MAY						,												
15	1330		300		40				0		0			8		••	60	0
			,															
	IRO	N,	LEAD,	MANGA-	MANG	A- MERC	CURY		NICKE	EL.		ZIN	c					
	REC	. VC	RECOV.	NESE,	NESE	, REC	cov.	NICKEL,			ZINC,					PCB		
				TOTAL	RECO	V. FM E	BUT-	TOTAL	FM BC)T-	TOTAL	FM B	DT-					
				RECOV-	FM BO	T- TOM	MA-	RECOV-	TOM M	A-	RECOV-	TOM	MA-					
														PHENOL	S			
DATE	AS	FE)	AS PB)	AS MN)	(UG/	G) AS	HG)	AS NI)	AS N	(1)	AS ZN)	AS :	ZN)	(UG/L)	(UG/K	G)	
DCT																		
03	. 5	000	20			0	.0			(10			0		-		0	
MAY																		
15	•			30				4			40				3	125		
					1 .													
					1													
DATE																		
UATE	(067	401	(UG/KG)	(OG/KG)	(UG/KI	a) (UG/	(6)	(OG/KG)	(06/8	(6)	(UG/KG)	(067)	16)	(UG/KG	,	COGIN	,,	
OCT																		
	•	.0	0	55	9.	.2 3	88	4.0		.0	.0		.0	· ·	0		0	
MAY																		
	DATE DCT O3 MAY 15 DATE DCT O3 MAY	DATE OCT 03 1025 MAY 15 1330 IRO REC FM B TOM TER OCT 03 5 MAY 15 ALOR TOI IN B TOM TER OATE (UG/ OCT O3 ALOR TOI OATE OATE OATE OATE	INU DI SOL TIME (UG DATE (UG AS OCT 03 1025 MAY 15 1330 IRON, RECOV. FM 801- TOM MA- TERIAL (UG/G DATE AS FE) OCT 03 5000 MAY 15 ALORIN, TOTAL IN 801- TOM MA- TERIAL OATE (UG/KG) OCT 03 0	ALUM- IT INUM, IN DIS- TOO SOLVED TE (UG/L (UG/L (UG/L AS AL) AS	INUM, IN BOT- BOUS DIST TOW MA- IN SOLVED TERIAL SINUME (UG/L (UG/G (UG/G (UG/L (UG/G (UG/L (UG/L (UG/	ALUM- TOTAL INUM, IN BOT- BORON, DIS- TOM MA- DIS- SOLVED TERIAL SOLVED (UG/L (UG/G (UG/L AS AL) AS AS) AS B) OCT 03 1025 2 MAY 15 1330 300 40 IRON, LEAD, MANGA- MANG RECOV. RECOV. NESE, NESE FM BOT- FM BOT- TOTAL RECO TOM MA- TOM MA- RECOV- FM BOT TERIAL TERIAL ERABLE TOM MA (UG/G (UG/G (UG/L TERI (UG/G (UG/G (UG/L TERI O3 5000 20 MAY 15 30 CHLOR- ALORIN, DANE, DDD, DDE TOTAL TOTAL TOTAL IN BOT- IN BOT- IN BOT- TOM MA- TERIAL TERIAL TERIAL TERIAL OCT 03 0 0 55 9.	ALUM TOTAL INUM, IN BOT BORON, FM BOT- DIS TOM MA DIS TOM MA SOLVED TERIAL SOLVED TERIAL (UG/L (UG/G (UG/L (UG/G AS AL) AS AS) AS B) AS CD) OCT 03 1025 2 <10 MAY 15 1330 300 40 IRON, LEAD, MANGA- MANGA- MERG RECOV. RECOV. NESE, NESE, RESE, RES, RES	ALUM- TOTAL INUM, IN BOT- BORON, FM BOT- RE DIS- TOM MA- DIS- TOM MA- PM SOLVED TERIAL SOLVED TERIAL TOM (UG/L (UG/G (UG/L (UG/G TE AS AL) AS AS) AS B) AS CD) (U OCT 03 1025 2 <10 MAY 15 1330 300 40 IRON, LEAD, MANGA- MANGA- MERCURY RECOV. RECOV. NESE, NESE, RECOV. FM BOT- FM BOT- TOTAL TOM MA- TERIAL TERIAL ERABLE TOM MA- TERIAL TERIAL ERABLE TOM MA- TERIAL TERIAL CUG/G (UG/L TERIAL (UG/C DATE AS FE) AS PB) AS MN) (UG/G) AS HG) OCT 03 5000 20 0 .0 MAY 15 30 CHLOR- ALORIN, DANE, DDD, DDE, DDT, TOTAL TOTAL TOTAL TOTAL IN BOT- IN BOT- IN BOT- IN BOT- TOM MA- TOM MA- TOM MA- TERIAL TERIAL TOM MA- TOM MA- TERIAL TERIAL TOM MA- TERIAL TERIAL TERIAL TERIAL TERIAL DATE (UG/KG) (UG/KG) (UG/KG) (UG/KG) OCT 03 0 0 55 9.2 38	ALUM- TOTAL INUM, IN BOT- BORON, FM BOT- RECOV. H DIS- TOM MA- DIS- TOM MA- FM BOT- VA SOLVED TERIAL SOLVED TERIAL TOM MA- TIME (UG/L (UG/G (UG/L (UG/G TERIAL TOM MA- AS AL) AS AS) AS B) AS CD) (UG/G) A OCT 03 1025 2 <10 <10 MAY 15 1330 300 40 IRON, LEAD, MANGA- MANGA- MERCURY RECOV. RECOV. NESE, NESE, RECOV. NICKEL, FM BOI- FM BOT- TOTAL TOTAL TOTAL TOTAL TOM MA- RECOV- TERIAL TERIAL ERABLE TOM MA- TERIAL ERABLE (UG/G (UG/G (UG/L TERIAL (UG/L (UG/L) DATE AS FE) AS PB) AS MN) (UG/G) AS HG) AS NI) OCT 03 5000 20 0 .0 MAY 15 30 4 CHLOR- ALORIN, DANE, DDD, DDE, DDT, ELDRIN, TOTAL TOTAL TOTAL TOTAL TOTAL IN BOT- IN BOT- IN BOT- IN BOT- IN BOT- IN BOT- TOM MA- TOM MA- TOM MA- TOM MA- TOM MA- TERIAL TERIAL TERIAL TERIAL TERIAL TERIAL TERIAL DATE (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) OCT 030 0 55 9.2 38 4.0	ALUM- TOTAL RECOV. MIUM, MIUM, MIUM, IN BOT- BORON, FM BOT- RECOV. HEXA-DIS- TOM MA- DIS- TOM MA- DIS- TOM MA- DIS- TOM MA- DIS- SOLVED TERIAL SOLVED TERIAL TOM MA- DIS. TIME (UG/L (UG/G (UG/L (UG/G TERIAL (UG/L AS AL) AS AS) AS B) AS CD) (UG/G) AS CR) DATE	ALUM- TOTAL RECOV. MIUM, MIUM, COB INUM, IN BOT- BORON, FM BOT- RECOV. MEXA- TO DIS- TOM MA- DIS- TOM MA- FM BOT- VALENT, RESOLVED TERIAL SOLVED TERIAL TOM MA- DIS. ER (UG/L (UG/G (UG/L (UG/G TERIAL (UG/G TERIAL TERIAL TERIAL TERIAL TOTAL	ALUMH TOTAL RECOV. MIUM, MIUM, COBALT, RINUM, IN BOT- BORON, FM BOT- RECOV. MEXA- TOTAL FM DIS- TOM MA- DIS- TOM MA- FM BOT- VALENT, RECOV- TO SOLVED TERIAL SOLVED TERIAL TOM MA- DIS. ERABLE TIME (UG/L (UG/G (UG/L) (UG/G TERIAL (UG/L (UG/G C) AS CR) AS CO) CO	ALUM- TOTAL INUM, IN BOT- BORON, FM BOT- RECOV. HEXA- TOTAL FM BOT- DIS- TOM MA- DIS- TOM MA- PM BOT- VALENT, RECOV- TOM MA- SOLVED TERIAL SOLVED TERIAL TOM MA- DIS. ERABLE TERIAL TOM MA- DIS. ERABLE TERIAL TOM MA- DIS- RABLE TOM MA- DIS- RABLE TERIAL TERIAL TERIAL ERABLE TOM MA- TERIAL RABLE TERIAL TERIAL TOM MA- TERIAL TOM MA- RECOV- FM BOT- TOM MA- TERIAL RABLE TERIAL TERIAL TOM MA- TERIAL TERIAL TOM MA- TOM M	ALUM- TOTAL RECOV. MIJUM, MIJUM, COBALT, RECOV. COPPLIANT CONTACT COPPLIANT CONTACT CO	ALUM- TOTAL RECOV. MIUM, MIUM, COBALT, RECOV. COPPER, INUM, IN BOT- BORON, FM BOT- RECOV. HEXA- TOTAL FM BOT- TOTAL FOR BOT- TOTAL FOR BOT- TOTAL FM BOT- TOTAL	ALUM- TOTAL RECOV. MIUM, MIUM, COBALT, RECOV. COPPER, RETOV. 11NM, IN BOT- BORON, FM BOT- RECOV. HEXA. TOTAL FM BOT- TOTAL T	ALUM - TOTAL INUM, IN BOT - BORON, FM BOT - RECOV. MEXA- TOTAL FM BOT - TOTAL FM BOT- DIS- TOM MA- DIS- TOM MA- PM BOT - RECOV. MEXA- TOTAL FM BOT- DIS- TOM MA- DIS- TOM MA- PM BOT - VALENT, RECOV- TOM MA- RECOV- TOM MA- SOLVED TERTAL SOLVED TERTAL TOM MA- DIS- TIME (UG/L (UG/G (UG/L (UG/G TERIAL (UG/L (UG/L (UG/G (UG/KG) (ALUM-

01465850 SOUTH BRANCH RANCOCAS CREEK AT VINCENTOWN, NJ

LOCATION.--Lat 39°56'22", long 74°45'50", Burlington County, Hydrologic Unit 02040202, at bridge on Lumberton-Vincentown Road at Vincentown, 2.9 mi (4.7 km) southeast of Lumbertown, and 3.1 mi (5.0 km) upstream from Southwest Branch.

DRAINAGE AREA. -- 53.3 mi2 (138.0 km2).

PERIOD OF RECORD. -WATER DISCHARGE: Water years 1961 to current year.
CHEMICAL ANALYSES: Water years 1925, 1959-62, 1975 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	TIME	STREAM- FLOW, INSTAN- TANEOUS	SPE- CIFIC CON- DUCT- ANCE (MICRO-	PH	TEMPER-	TUR- BID- ITY	OXYGEN, DIS- SOLVED	DXYGEN DEMAND, BID- CHEM- ICAL, 5 DAY	COLI- FORM, FECAL, EC BROTH	STREP- TOCOCCI FECAL	HARD- NESS (MG/L AS
DATE	11.10	(CFS)	MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	(MG/L)	(MPN)	(MPN)	CACD3)
OCT 12	1200	75	104	5.0	13.0	3	8.4	1.4	1600	920	29
09 JAN	1235	600	77	4.8	14.5	3	6.5	2.8	350	240	22
30	1225	247	68	4.4	.0	3	13.3	1.2	13	140	14
23	0910	171	71	5.1	9.0	2	10.0	1.2	40	140	18
15 JUN	1155	180	71	5.5	14.0	3	8.0	2.0	16000	490	21
26	1200	69	58	5.8	21.5	5	6.3		490	490	16
		MAGNE-		POTAS-						сньо-	SILICA,
	DIS- SOLVED	SIUM, DIS- SOLVED	SODIUM, DIS- SOLVED	SIUM, DIS- SOLVED	BICAR- BONATE (MG/L	CAR- BONATE	LINITY (MG/L	SULFIDE DIS- SOLVED	SULFATE DIS- SOLVED	RIDE, DIS- SOLVED	DIS- SOLVED (MG/L
DATE	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	(MG/L AS K)	AS HCO3)	(MG/L AS CO3)	AS CACD3)	(MG/L AS S)	(MG/L AS SO4)	(MG/L AS CL)	AS SIO2)
OCT											
12 NOV	8.3	2.1	4.3	1.9	2	0	2	.0	27	7.1	8.1
09 JAN	5.7	1.9	3.0	2.6	1	0	1		20	6.3	
30	4.3	.9	2.8	1.0	0	0	0		13	5.5	
23	4.9	1.5	3.1	1.5	2	0	2		18	5.9	
15 JUN	5.9	1.6	3.3	1.6	2	0	2		18	5.5	
26	4.4	1.1	3,2	1.2	4	0	3		10	6.1	
	SOLIOS, RESIDUE AT 180	SOLIDS, RESIDUE AT 105	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,	NITRO-	NITRO- GEN, AM- MONIA +	NITRO-	PHUS-	PHOS- PHORUS,	CARBON,
	DEG. C DIS- SOLVED	DEG. C, SUS- PENDED	NITRATE TOTAL (MG/L	NITRITE TOTAL (MG/L	TOTAL (MG/L	DRGANIC TOTAL (MG/L	ORGANIC TOTAL (MG/L	GEN, TOTAL (MG/L	PHORUS, TOTAL (MG/L	TOTAL (MG/L	TOTAL (MG/L
DATE	(MG/L)	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS C)
12	78	10	.35	.00	.00	.41	.41	.76	.05	.01	5.8
09	76	4	.26	.01	.00	.70	.70	.97	.15	.10	17
JAN 30	37	4	.28	.00	.05	.23	.28	.56	.03	.01	17
23	50	2	.42	.01	.04	.48	.52	.95	.05	.02	18
15 JUN	61	7	.26	.01	.11	.68	.79	1.1	.10	.05	11
26	58	9	.00	.01	.15	.53	.68	.69	.18	.11	4.9

01465850 SOUTH BRANCH RANCOCAS CREEK AT VINCENTOWN, NJ -- Continued

						CHRO-		
		ALUM-			CADMIUM	MIUM,	COBALT,	COPPER,
		INUM,		BORON,	TOTAL	HEXA-	TOTAL	TOTAL
		DIS-	ARSENIC	DIS-	RECOV-	VALENT,	RECOV-	RECOV-
		SOLVED	TOTAL	SOLVED	ERABLE	DIS.	ERABLE	ERABLE
	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE		AS AL)	AS AS)	AS B)	AS CD)	AS CR)	AS CO)	AS CU)
DCT								
12	1200	470	3	50	0	0	0	32
			MANGA-					4.
		LEAD.	NESE,	MERCURY	NICKEL,		ZINC,	
	IRON,	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL	
	DIS-	RECOV-	RECOV-	RECOV-	RECOV-	NIUM,	RECOV-	
	SOLVED	ERABLE	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	PHENOLS
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
DCT								
12	280	10	30	<.5	6	0	40	0

01465900 SOUTHWEST BRANCH RANCOCAS CREEK AT EAYRESTOWN, NJ

LOCATION.--Lat 39°56'49", long 74°47'58", Burlington County, Hydrologic Unit 02040202, at bridge on East Bella Bridge Road in Eayrestown, 0.3 mi (0.5 km) upstream from mouth, and 2.7 mi (4.3 km) west of Vincentown.

DRAINAGE AREA. -- 76.0 mi2 (196.8 km2).

PERIOD OF RECORD.--CHEMICAL ANALYSES: Water years 1925, 1959-61, 1975 to current year. SEDIMENT ANALYSES: July and August 1978.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BID- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TUCDCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
OCT											
12	1110	146	6.4	13.0	4	8.4	1.5	3500	790	43	13
NOV		2.0	212	20.0	2	0.5	2.0				
09	1330	94	. 5.7	14.5	2	6.8	3.1	1300	230	33	10
JAN				10		10.5	2			20	
12	1300	106	6.3	.0	8	13.3	. 8	80	23	36	11
MAR					14				40	20	
23	1020	101	6.3	8.5	6	10.2	1.3	8	49	32	10
MAY										27	
17	0920	110	6.6	13.0	7	9.2	2.4	>2400	>2400	37	11
JUN					-			000	>0400	35	11
27	1345	118	6.8	22.0	7	6.3	2.4	920	>2400	35	11
JOL		400			_			4.00	>2400	32	10
20	1250	108	6.7	24.0	5	6.4	1.6	1600	>2400	32	10
AUG					121				700		10
17	0930	100	6.7	24.5	5	5.7	2.5	1400	790	33	10

DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/U AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)
ост										
12 NOV	2.6	6.2	2.8	12	0	10	34	8.4	86	10
09 JAN	2.0	3.4	3.3	5	0	4	26	7.1	89	16
12 MAR	2.1	4.9	1.8	7	0	6	22	8.2	73	7
23 MAY	1.8	4.8	2.2	10	0	8	23	8.6	70	5
17 JUN	2.3	4.4	2.3	12	0	10	24	6.9	84	10
27 JUL	1.9	5.7	2.6	21	0	17	17	7.8	63	21
20 AUG	1.7	5.3	2.3	16	0	13	17	7.8	86	18
17	1.9	4.3	2.4	20	0	16	17	7.1	113	14

01465900 SOUTHWEST BRANCH RANCOCAS CREEK AT EAYRESTOWN, NJ--Continued

		NITRO-	NITRO-	NITRO-	NITRO-	NITRO- GEN, AM-			PHOS-	
	SEDI-	GEN,	GEN,	GEN,	GEN,	MONIA +	NITRO-	PHOS-	PHORUS,	CARBON,
	MENT,	NITRATE	NITRITE	AMMONIA	ORGANIC	ORGANIC	GEN,	PHORUS,	ORTHO.	DRGANIC
	SUS-	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	JATOT
	PENDED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DATE	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS C)
				Care Inst						
OCT										
12		.48	.02	.18	. 44	.62	1.1	.23	.16	5.3
NOV										
09		.19	.00	.03	.62	.65	.84	.19	.06	16
JAN										
12		.54	.01	.30	.34	.64	1.2	.13	.03	8.5
MAR										
23		.42	.02	.25	.46	.71	1.2	.17	.06	8.9
MAY										
17		.42	.02	.20	.68	.88	1.3	.22	.12	8.5
JUN										
27		.89	.05	.20	.67	.87	1.8	.43	.31	11
JUL										
20	8			.30	.80	1.1	2.1			6.3
AUG										
17	14			.30	1.2	1.5				19

01465915 SOUTH BRANCH RANCOCAS CREEK AT HAINESPORT, NJ

180 DELAWARE RIVER BASIN

LOCATION.--Lat 39°58'44", long 74°49'28", Burlington County, Hydrologic Unit 02040202, at bridge on State Route 38 in Hainesport, 0.4 mi (0.6 km) west of intersection of State Route 38 with Hainesport Road, 1.8 mi (2.9 km) west of intersection of State Route 38 with State Route 541, and 2.0 mi (3.2 km) downstream of Masons Creek.

DRAINAGE AREA. -- 156 m12 (404 km2).

PERIOD OF RECORD. -CHEMICAL ANALYSES: Water years 1975 to current year.
SEDIMENT ANALYSES: July and September 1978.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	DXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACD3)
oct										
03	0915	134	6.7	17.5	7	5.3	1.9	220	350	38
09 JAN	1430	87	5.7	14.5	7	5.7	3.5	2400	2800	28
12	1005	101	6.1	.0	7	12.8	.9	130	4	32
MAR 23	1245	100	6.0	10.0	6	9.5	1.2	79	49	29
MAY 10	1110	101	6.3	15.0	10	7.9	3.9	240	1600	32
JUN 27	1230	102	6.6	22.0	9	5.2	2.7	1400	1300	28
20	1130	94	6.4	23.5	5	5.0	1.8	1800	2400	28
08	1155	82	6.0	25.0	6	5.4	2.1	1800	130	25
S€P 26	1245	119	6.5	17.0		7.2	3.2	5400	220	34
	CALCIUM DIS- SOLVED	MAGNE- SIUM, DIS- SOLVED	SODIUM, DIS- SOLVED	POTAS- SIUM, DIS- SOLVED	BICAR- BONATE (MG/L	CAR- BONATE	ALKA- LINITY (MG/L	SULFIDE TOTAL	SULFIDE DIS- SOLVED	SULFATE DIS- SOLVED
DATE	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	(MG/L AS K)	HCO3)	AS CO3)	AS CACD3)	(MG/L AS S)	(MG/L AS S)	(MG/L AS SO4)
OCT										
03	. 11	2.6	6.2	3.0	12	. 0	10		.0	26
09 JAN	7.8	2.0	3.0	3.5	6	0	5			22
12 MAR	9.1	2.2	4.5	1.8	5	0	4			23
23	8.0	2.1	4.3	2.3	9	0	7			22
10 JUN	9.6	2.0	4.1	2.0	10	. 0	8		.0	23
27 JUL	8.1	1.9	5.8	2.1	12	. 0	10			17
20	8.2	1.8	4.5	2.2	11	0	9			17
08 SEP	7.3	1.6	3.4	2.2	9	0	7			17
26	9.8	2.4	7.0	2.5	16	0	12	.0		20

01465915 SOUTH BRANCH RANCOCAS CREEK AT HAINESPORT, NJ -- Continued

				SOLIDS,	SOLIDS,				
	CHLO-	FLUO-	SILICA,	RESIDUE	RESIDUE		NITRO-	NITRO-	NITRO-
	RIDE,	RIDE,	DIS-	AT 180	AT 105	SEDI-	GEN,	GEN,	GEN,
	DIS-	DIS-	SOLVED	DEG. C	DEG. C.	MENT,	NITRATE	NITRITE	AMMONIA
	SOLVED	SOLVED	(MG/L	DIS-	SUS-	SUS-	TOTAL	TOTAL	TOTAL
	(MG/L	(MG/L	AS	SOLVED	PENDED	PENDED	(MG/L	(MG/L	(MG/L
DATE	AS CL)	AS F)	\$102)	(MG/L)	(MG/L)	(MG/L)	AS N)	AS N)	AS N)
					- 12-1				
OCT									
03	9.5		9.1	93	9		.52	.01	.20
NOV									
09	6.6			82	14		.28	.01	.02
JAN									
12	8.4			71	6		.63	.01	.21
MAR									
23	7.9	/		70	6		.53	.01	.17
MAY									
10	7.6		4.6	81	35		.43	.01	.19
JUN									
27	8.3			81	33		.57	.02	21
JUL									
20	7.6			80	. 19	20	/		.30
AUG				14	3 17	7.7			14
08	5.8			78	12	24			.30
SEP	71								
26	10	.1	7.6	86		20			.30
				-		-			. 10
		NITRO-	NITRO-					CARBON,	CARBON,
	NITRO-	GEN, AM-	GEN, NH4			PHOS-		INOR-	ORGANIC
	GEN.	MONIA +	+ ORG.	NITRO-	PHOS-	PHORUS,	CARBON,	GANIC.	TOT. IN
	ORGANIC	ORGANIC	TOT IN	GEN.	PHORUS,	ORTHO.	ORGANIC	TOT IN	BOTTOM
	TOTAL	TOTAL	BOT MAT	TOTAL	TOTAL	TOTAL	TOTAL	BOT MAT	MAT.
	(MG/L	(MG/L	(MG/KG	(MG/L	(MG/L	(MG/L	(MG/L	(G/KG	(G/KG
DATE	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS C)	AS C)	AS C)
			AU 117	AD 1.7	AU 17	70 ()	, no c,	,,	
OCT	1								
03	.37	.57	2400	1.1	.35	.02	11		8.8
NOV									
09	.75	.77		1.1	.24	.13	19		
JAN	-			2					
12	.46	.67		1.3	.10	.05	7.8		
MAR	• • •	• • •			• • • •	•••			A
23	.56	.73		1.3	.14	.05	7.8		. (· ·
MAY	• • • •	• . •			• • • •	•••			
10	1.0	1.2		1.6	. 26	.09	6.3		
JUN				100000000000000000000000000000000000000			1312		
27	.55	.76		1.4	.33	.20	9.2	751 10.	A 100
JUL		.,,				.20			
20	1.2	1.5		2.5			7.2		300.20
AUG							2	550	
08	.90	1.2					18		
SEP	.,,								
26			1000	-03	d 3		7.4	8.0	

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

01465915 SOUTH BRANCH RANCOCAS CREEK AT HAINESPORT, NJ -- Continued

		maran de	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		TOAK OCIO	Jour Toll	10 00010	IDEN ISTO		
				ARSENIC	BERYL-			CADMIUM	CHRO-	CHRO-
		ALUM-		TOTAL	LIUM,		CADMIUM	RECOV.	MIUM,	MIUM,
		INUM,		IN BOT-	TOTAL	BORON,	TOTAL	FM BOT-	TOTAL	RECOV.
		DIS-	ARSENIC	TOM MA-	RECOV-	DIS-	RECOV-	TOM MA-	RECOV-	FM BOT-
		SOLVED	TOTAL	TERIAL	ERABLE	SOLVED	ERABLE	TERIAL	ERABLE	TOM MA-
	TIME	(UG/L	(UG/L	(UG/G	(UG/L	(UG/L	(UG/L	(UG/G	(UG/L	TERIAL
DATE		AS AL)	AS AS)	AS AS)	AS BE)	AS B)	AS CD)	AS CD)	AS CR)	(UG/G)
СТ										
03	0915	40	2	22		0	0	<10		<10
AY								,.,		
10	1110	140				40	0			
SEP .										
26	1245	60	1	0	0			<10	10	10
	CHRO-		COBALT,		COPPER,		IRON,		LEAD,	MANGA-
	MIUM,	COBALT,	RECOV.	COPPER,	RECOV.		RECOV.	LEAD,	RECOV.	NESE,
	HEXA-	TOTAL	FM BOT-	TOTAL	FM BOT-	IRON,	FM BOT-	TOTAL	FM BOT-	TOTAL
	VALENT,	RECOV-	TOM MA-	RECOV-	TOM MA-	DIS-	TOM MA-	RECOV-	TOM MA-	RECOV-
	DIS.	ERABLE	TERIAL	ERABLE	TERIAL	SOLVED	TERIAL	ERABLE	TERIAL	ERABLE
	(UG/L	(UG/L	(UG/G.	(UG/L	(UG/G	(UG/L	(UG/G	(UG/L	(UG/G	(UG/L
DATE	AS CR)	AS CO)	AS CO)	AS CU)	AS CU)	AS FE)	AS FE)	AS PB)	AS PB)	AS MN)
CT									- 1	4.00
03	0	0	<10	15	<10	90	5000	7	20	90
10	0	2		8		180				60
EP	0	-				100		-		00
26			<10	6	<10		17000		20	60
	MANGA-		MERCURY		NICKEL,			ZINC,		
	NESE,	MERCURY	RECOV.	NICKEL,	RECOV.		ZINC,	RECOV.		PCB,
	RECOV.	TOTAL	FM BOT-	TOTAL	FM BOT-	SELE-	TOTAL	FM BOT-		TOTAL
	FM BOT-	RECOV-	TOM MA-	RECOV-	TOM MA-	NIUM,	RECOV-	TOM MA-		IN BOT-
	TOM MA-	ERABLE	TERIAL	ERABLE	TERIAL	TOTAL	ERABLE	TERIAL	PHENOLS	TOM MA-
	TERIAL	(UG/L	(UG/L	(UG/L	(UG/G	(UG/L	(UG/L	(UG/G		TERIAL
DATE	(UG/G)	AS HG)	AS HG)	AS NI)	AS NI)	AS SE)	AS ZN)	AS ZN)	(UG/L)	(UG/KG)
СТ										
03	35	<.5	.0	4	<10	0	30	60	2	0
YAY										
10				6			30		1	
26	20	<.5	.0	7	<10	0	30	70	0	5
	7.0020	CHLOR-				DI-	DI-		Santra	HEPTA-
	ALDRIN,	DANE,	DDD,	DDE,	DDT,	AZINON,	ELDRIN,	ENDRIN,	ETHION,	CHLOR,
	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	IN BOT-	IN BOT-	IN BOT-	IN BOT-	IN BOT-	IN BOT-	IN BOT-	IN BOT-	IN BOT-	IN BOT-
	TOM MA-	TOM MA-	TOM MA-	TOM MA-	TOM MA-	TOM MA-	TOM MA-	TOM MA-	TOM MA-	TOM MA-
DATE	TERIAL (UG/KG)	TERIAL (UG/KG)	TERIAL (UG/KG)	TERIAL (UG/KG)	TERIAL (UG/KG)	TERIAL (UG/KG)	(UG/KG)	TERIAL (UG/KG)	TERIAL (UG/KG)	TERIAL (UG/KG)
	(00, 10,	(00,00	(00,,	(00,,	(00/110/	(00, 00)	(00, 110)	(001110)		
OCT 03	.0	7	6.1	4.0	8.6		.3	.0		.0
YAN										
10 SEP									-	
26	.0	6	6.4	2.6	2.2	.0	3.1	.0	.0	.0
		TA-	MAL				HYL PAR			I -
	CHL			ON, DXY						ON,
	EPOX						ON, TOT			
	TOT.									
		TOM TOM					TOM TOM			
DA	TE (UG/									KG)
	,,,,,	110	,,			, , , , , ,			1000	A Defe
001		.0	0						0	
MAY			.0	-				77	· ·	
SEP		•						•	0	
20		.0	.0	. 0	.0	.0	.0	.0	U	.0

01465970 NORTH BRANCH RANCOCAS CREEK AT BROWNS MILLS, NJ

LOCATION.--Lat 39°58'04", long 74°34'48", Burlington County, Hydrologic Unit 02040202, at bridge on Lakehurst Road at outflow of Mirror Lake in Browns Mills, 1.5 mi (2.4 km) north of Browns Mills Junction, and 2.0 mi (3.2 km) northwest of outflow of Country Lake.

DRAINAGE AREA .-- 19.5 mi2 (50.5 km2).

PERIOD OF RECORD. --CHEMICAL ANALYSES: Water years 1975 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	0	PE- IFIC ON- UCT- NCE ICRO-		MPER-	TUR- BID- ITY		YGEN, DIS- DLVED	BI CH	O- EM- AL,	COLI- FORM, FECAL, EC BROTH	TOC	REP-	HARD- NESS (MG/L	DI	LVED	MAGNE- SIUM, DIS- SOLVED (MG/L
DATE	.м	HOS) (U	NITS) (D	EG C)	(JTU)	(1	4G/L)	(MG		(MPN)			CACD3)	AS	CA)	AS MG)
OCT																
03 NDV	1315	52	4.4	18.5	4		8.6		.7	. 8		22 .	12		3.3	1.0
10 JAN	1200	54	4.0	15.0	0		8.8		1.8	540		130	12		3.3	.8
	0840	48	4.5	1.0	5		13.6		.2	11		33	7		1.7	.6
22	0915	47	4.6	4.0	2		12.1		1.0	<2		5	7		1.8	.7
MAY 17	1330	45	4.6	14.0	3		10.4		1.1	130		79	9		2.1	.8
JUN 22	1330	41	5.4	22.5	3		6.7		1.5	920		130	9		2.0	.9
																-
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SOLVED (MG/L	BICAR- BONATE	CAR- BONATE (MG/L AS COS	LIN (M	KA- ITY IG/L IS	SULF DIS SOL (MG AS	VED	SULFAT DIS- SOLVE (MG/L AS SO4	DIS D SOL	E, VED	SILICA DIS- SOLVEI (MG/L AS SIO2)	AT 1	BO C S- VED	SOLIDS RESIDU AT 105 DEG. C SUS- PENDED (MG/L	
OCT																
03	2.6	1.0	0		0	0		.0	7.	5	5.7	5.	9	36		0
10 JAN	2.3	.9	0		0	0	1		10		4.5			39		5
30	2.3	.6	0		0	0			9.	1	4.3	-		29		0
22	2.4	1.0	0		0	0			9.	6	3.9			34		1
17	2.6	1.0	- 0		0	0		.0	9.	1	3.1	2.	3	30		4
JUN 22	2.8	1.0	3		0	2			6.	4	4.0			42		2
	NITRO- GEN, NITRATE TOTAL (MG/L	GEN,	GEN,	GEN,	GEN MON IC ORG	TRO- I,AM- IIA + GANIC TAL	GEN, + OR TOT BOT	G. IN	NITRO GEN, TOTAL (MG/L	RCHS	US,	PHOS- PHORUS ORTHO TOTAL (MG/L		NIC	CARBON DRGANI TOT. I BOTTO MAT. (G/KG	C N M
DATE	AS N)	AS N)	AS N)	AS N)		N)	AS		AS N)			AS P)	AS		AS C)	
OCT 03	.01	.00	.00		10	.10	42	0	.1	1	.02	.0	0 1	0	1.	7.
10	.00	.00	.00		16	.46			.4	6	.03	.0	1	9.3		•
30	.10	.00	.01	.:	27	.28			.3	8	.01	.0	0	7.1		. 4
22	.18	.00	.09	4	12	.51			.6	9	.02	.0	0	5.9		-
MAY 17 JUN	.07	.00	.01	. 3	36	.37			. 4	4	.02	.0	1 1	0		
22	.09	.01	.11	. 5	55	.66			.7	6	.05	.0	2	7.5	U.Sal	• 11

01465970 NORTH BRANCH RANCOCAS CREEK AT BROWNS MILLS, NJ--Continued

	TOT IN 8 TOM	AL TOT	AL TOT	OT- IN B	IN, ENDR	IN, CHU	DR, CHE COS DI- TOT. BOT- TOT. BOT- BOT	IDE TOT	AL TOT	NE, AL
03 MAY 17	.0	8	<10		30		3	82	.0	
OCT			<10		20			92		
DATE	MERCURY RECOV. FM BOT- IOM MA- IERIAL (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
03 MAY 17	<10	5 9	<10	260 220	4000	13	20	50 50	0	<.5
DATE	COBALT, RECOV. FM BOT- TOM MA- 1TRIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY FOTAL RECOV- ERABLE (UG/L AS HG)
OCT 03 MAY 17	1315 1330	190 170	0	1	0 30	0	<10	<10	0	0
DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC FOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- IDM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CHRD- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)

.0

.0 .0

.0

01466130 POLE BRIDGE BRANCH NEAR BUCKINGHAM, NJ

LOCATION.--Lat 39°56'43", long 74°28'52", Ocean County, Hydrologic Unit 02040202, at bridge on unnamed road, 0.6 mi (1.0 km) downstream from Deer Park Branch, 2.0 mi (3.2 km) northwest of Buckingham, and 5.5 mi (8.8 km) west of Whiting.

DRAINAGE AREA .-- 12.8 mi2 (33.2 km2).

PERIOD OF RECORD. -- CHEMICAL ANALYSES: Water years 1977 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BID- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TUCOCCI FECAL (MPN)	BICAR- BUNATE (MG/L AS HCO3)	CAR- BUNATE (MG/L AS CO3)
JAN											
05	1130	109	3.8	1.0	1	11.1	.3	<2	<2	0	0
DATE JAN	ALKA- LINITY (MG/L AS CACO3)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRD- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- HONGAN- ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHO. TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
05						-		100			
09	. 0	41	4	.04	.00	.01	.18	.19	.23	.00	10

01466200 POLE BRIDGE BRANCH NEAR BROWNS MILLS, NJ

LOCATION.--Lat 39°56'48", long 74°33'22", Burlington County, Hydrologic Unit 02040202, at bridge on unnamed road, 200 ft (61.0 m) downstream from outlet of Country Lake, 2.2 mi (3.5 km) southeast of Browns Mills, and 2.6 mi (4.2 km) east of Whitesbog.

DRAINAGE AREA. -- 24.9 mi2 (64.5 km2).

PERIOD OF RECORD. -- CHEMICAL ANALYSES: Water years 1977 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	DXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BID- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)
JAN											
05	1110	85	4.0	3.0	1	11.6	.5	8	<2	0	0
		SOLIDS,	SOLIDS,					NITRO-			
		RESIDUE	RESIDUE	NITRO-	NITRO-	NITRO-	NITRO-	GEN, AM-		PHOS-	
	ALKA-	AT 180	AT 105	GEN,	GEN,	GEN.	GEN,	MONIA +	NITRO-	PHORUS,	CARBON.
	LINITY	DEG. C	DEG. C.	NITRATE	NITRITE	AMMONIA	DRGANIC	DRGANIC	GEN,	ORTHO.	ORGANIC
	(MG/L	DIS-	SUS-	TUTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	AS	SOLVED	PENDED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DATE	CACO3)	(MG/L)	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)	AS P)	AS C)
JAN									٨		
05	0	39	3	.09	.00	.05	.33	.38	.47	.00	9.0

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ (Hydrologic bench-mark station)

LOCATION.--Lat 39°53'05", long 74°30'20", Burlington County, Hydrologic Unit 02040202, on right bank in Lebanon State Forest, 25 ft (7.6 m) upstream from Butterworth Road Bridge, 3.4 mi (5.5 km) upstream from confluence with Cooper Branch, and 7.0 mi (11.3 km) southeast of Browns Mills.

DRAINAGE AREA .-- 2.31 mi2 (5.98 km2).

PERTOD OF RECORD. --

WATER DISCHARGE: October 1953 to current year. Prior to October 1962, published as "McDonald Branch in Lebanon

State Forest".

CHEMICAL ANALYSES: Water years 1963 to current year.

SEDIMENT ANALYSES: Water years 1969-72, 1974 to current year.

PERIOD OF DAILY RECORD. --

WATER DISCHARGE: October 1953 to current year.
SPECIFIC COMDUCTANCE: October 1968 to current year.
WATER TEMPERATURES: October 1960 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 117.73 ft (35.884 m) National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

INSTRUMENTATION. -- Temperature recorder since October 1960, water-quality monitor since October 1968.

REMARKS.--Discharge records good. Gage-height record is collected above concrete control and discharge record, which includes leakage around control, is at site 785 ft (239 m) downstream. Missing continuous water-quality record are the result of malfunction of sensor or sampling mechanism.

AVERAGE DISCHARGE.--25 years, 2.32 ft3/s (0.066 m3/s), 13.64 in/yr (346 mm/yr).

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 7.0 ft3/s (0.198 m3/s) and maximum (#):

0330	*20	0.57	1.91	0.582
1230	10	0.40		0.543
	230			

Minimum discharge, 1.0 ft³/s (0.02 m³/s) Oct. 4-8, gage height, 1.05 ft (0.320 m).

SPECIFIC CONDUCTANCE: Maximum, 108 micromhos Dec. 2; minimum, 25 micromhos Sept. 14, 15.

WATER TEMPERATURES: Maximum, 21.0°C Aug. 13, 14; minimum, 0.0°C on several days during January.

EXTREMES FOR PERIOD OF DAILY RECORD .--WATER DISCHARGE: Maximum discharge, 35 ft³/s (0.991 m³/s) Aug. 25, 1968, gage height, 2.33 ft (0.710 m); minimum daily, 0.8 ft³/s (0.023 m³/s) July 6, 19, 1967.

SPECIFIC CONDUCTANCE: Maximum, 182 micromhos June 16, 1969; minimum, 21 micromhos Sept. 27, 1970, Sept. 1, 1975.

WATER TEMEPRATURES: Maximum, 22.0°C Aug. 1, 1970; minimum, 0.0°C on many days during winter months.

197

01466500 MC DONALDS BRANCH IN LEBANON STATE FOREST, NJ--CONTINUED

		DISCHAI	RGE, IN C	UBIC FEET	PER SECO	OND, WATER Y	EAR OCT	OBER 1977	TO SEPTEM	1BER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.1 1.1 1.1 1.1	1.2 1.2 1.3 1.3	4.1 4.7 3.9 3.2 3.3	3.1 3.2 3.1 3.0 2.8	4.1 3.9 3.6 3.6 3.6	3.0 2.8 2.8 2.8 2.8	3.6 3.6 3.5 3.3	2.7 2.6 2.6 2.6 2.8	3.5 3.3 3.6 4.3 3.6	2.2 2.2 3.6 11 7.0	2.2 2.2 2.2 2.3 2.8	3.2 3.3 2.8 2.5 2.3
6 7 8 9	1.1 1.1 1.1 1.3 1.3	1.3 2.6 6.8 8.4 4.7	3.9 4.1 3.6 3.3 3.2	2.6 2.6 2.7 3.3 3.3	3.5 3.5 3.5 3.5	2.8 2.8 2.8 2.8 2.7	3.3 3.5 3.3 3.2 3.2	2.7 2.6 2.6 3.5 3.5	3.3 3.2 3.3 3.3	4.7 3.8 3.3 3.1 3.0	2.7 3.0 2.5 2.2 2.1	2.2 2.2 2.1 2.1 2.0
11 12 13 14 15	1.2 1.2 1.2 1.2 1.3	3.6 3.1 2.8 2.7 2.4	3.2 3.2 3.2 4.3	3.2 2.7 2.6 3.5 4.1	3.5 3.5 3.3 3.3	2.8 3.1 3.3 4.9 7.5	3.1 3.1 3.1 3.1 3.0	3.5 3.1 3.0 3.2 3.2	3.0 2.8 2.8 2.8 2.7	2.8 2.7 2.5 2.5 2.7	2.3 3.5 5.4 4.1 3.1	2.0 2.0 2.0 1.9 2.0
16 17 18 19 20	1.3 1.4 1.3 1.3	2.3 2.6 2.7 2.5 2.5	3.8 3.5 3.6 4.9 5.1	3.3 3.1 6.5 5.8 4.3	3.3 3.3 3.3 3.3	6.3 5.1 4.5 4.5	2.8 2.8 3.3 3.6	3.2 3.3 3.1 3.0 2.8	2.6 2.6 2.7 3.0	2.7 3.2 3.0 2.7 2.6	2.7 2.4 2.2 2.1 2.0	2.0 1.9 1.9 1.9
21 22 23 24 25	1.3 1.3 1.2 1.2	2.4 2.3 3.0 3.0 3.2	5.4 5.6 4.7 3.9 3.6	4.3 4.3 3.9 3.5 3.8	3.1 3.2 3.3 3.2 3.2	4.3 4.3 3.6 3.5	3.3 3.2 3.1 3.0 2.8	2.7 2.6 2.5 7.3	2.8 3.6 3.2 2.8 2.6	2.3 2.2 2.2 2.1 2.1	2.0 1.9 1.9 1.8 1.8	1.8 1.8 1.8 1.8
26 27 28 29 30 31	1.2 1.3 1.3 1.3 1.3	4.5 4.3 3.8 3.1 3.0	3.6 3.3 3.1 2.8 2.8 3.1	10 8.9 5.8 4.9 4.3 3.6	3.2 3.1 3.0	3.9 6.8 6.5 5.1 4.3 3.8	2.7 2.8 2.8 2.7 2.7	8.1 6.0 5.4 4.9 4.5 3.6	2.5 2.6 2.5 2.4 2.3	2.0 2.1 2.0 2.0 2.0	1.8 1.8 6.0 4.7 3.2 3.0	1.8 1.8 1.7 1.7
TOTAL MEAN MAX MIN CFSM IN.	37.9 1.22 1.4 1.1 .53	89.9 3.00 8.4 1.2 1.30 1.45	117.2 3.78 5.6 2.8 1.64 1.89	126.1 4.07 10 2.6 1.76 2.03	95.2 3.40 4.1 3.0 1.47 1.53	124.5 4.02 7.5 2.7 1.74 2.00	93.6 3.12 3.6 2.7 1.35 1.51	123.2 3.97 16 2.5 1.72	89.5 2.98 4.3 2.3 1.29 1.44	94.3 3.04 11 2.0 1.32 1.52	83.9 2.71 6.0 1.8 1.17 1.35	61.9 2.06 3.3 1.7 .89 1.00
CAL Y	R 1977 TOTA	L 608.	51 MEAN	1.67 M	X . 8. 4	MIN .90	CFSM	.72 IN	9.80			

CAL YR 1977 TOTAL 608.51 MEAN 1.67 MAX 8.4 MIN .90 CFSM .72 IN 9.80 WTR YR 1978 TOTAL 1137.20 MEAN 3.12 MAX 16 MIN 1.1 CFSM 1.35 IN 18.31

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		S	PE-	1				OXYGEN	COLI	- co	-14
		C	IFIC	1				DEMAND,	FORM	, FO	RM,
			ON-					810-	TOTA	L, FE	CAL,
			UCT-	PH TE		TUR- 0	DIS-	CHEM-	(COLS		-MF
			ICRO-			ITY	SOLVED	5 DAY	PER		LS./
DATE						JTU)	(MG/L)	(MG/L)	100 M		ML)
OCT	1350										
17 NOV	1350	1.4					•••				-
29	1320	3.1	118	3.7	5.5	1	7.2	.2		22	K1
DEC											
15	1100	E4.3			3.5					••	
JAN 13	1245	3.2	121	3.6	2.0		8.0	.2		14	K1
MAR				•••			•••	•		100	
21	1430	4.3	62	3.9	6.0	2	7.8	.9		<1	<1
MAY	1245	2.6	40	2.0						80	
09	1245	3.6	62	3.9	10.0	1	4.8	.5		80	K4
06	1200	4.7	50	3.9	16.0	1	2.8	.5		76	12
SEP											
20	1435	1.9	28	4.5	15.0		3.0	.6		13	K1
	STREP.										
	TOCOCCI		HARD-				MAGI			POTAS-	
	KF AGAI		NESS,			CALCI			IUM,	SIUM,	
	(COLS.	(MG/L	NONCAR- BONATE	ACIDITY	ACIDITY (MG/L	DIS-				DIS-	
	PER	AS	(MG/L	(MG/L	AS	(MG/			G/L	(MG/L	
DATE	100 ML	CACO3)	CACO3)	AS H)	CACO3)				NA)	AS K)	
								- 1			
17											
NOV			_			1				37	
29	K1	1 12				3	. 4	.9	2.2	.2	
DEC											
15 JAN	-										
13		7 6	6			. 1	. 3	.6	2.0	. 3	
MAR										- (
21	. 23	2 4	4				. 8	. 4	1.5	.4	
MAY 09	25	5 5	5	. 3	15		.0	.5	1.9	.3	
JUL					13		• •	2 1 2 2 2 2	1.7		
06		. 3	3				.7	.3	1.4	.1	
SEP			4				100				
20	170	2	1				. 4	.3	1.8	.1	
										- 1.4	
							SOLI			SOLIDS,	
	BICAR-	ALKA-	SULFATE	RIDE,	FLUO- RIDE,	SILIC	A, RESII			RESIDUE	
	BONATE	LINITY	DIS-	DIS-	DIS-	SOLV				DEG. C,	
	(MG/L	(MG/L	SOLVED	SOLVED					IS-	SUS-	
	AS	AS	(MG/L	(MG/L	(MG/L	AS	SOL	VED SO	LVED F	PENDED	
DATE	HCO3)	CACD3)	AS SO4)	AS CL)	AS F)	8102) (MG	/L) (M	G/L)	(MG/L)	
OCT											
17										100	
NOV									53.2		
29	•	-	15	3.5	.0	3	. 4	45	59	<1	
DEC 15											
JAN					•				0 5	1187	
13		0 0	10	3.9	.1	3	. 4	31		7	
MAR										1.0	
21		0	10	2.9	/ .0	2	. 3	35		1	
MAY 09		0 0	16	8.2	.0	2	. 3	32		4	
JUL					••						
06		- 0	6.8	3.3	.1	. 2	. 4	35		0	
SEP 20		- 1	3.8	3.4	.0		.7	26			
20		1	3.8	5.4	. 0	, ,	• *	20	1000	311/2/11 1/3/	

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued

DATE		SEDI- MENT, SUS- PENDER (MG/L)	CHA SU D PE	EDI- ENT IS- ARGE, JS- ENDED (DAY)	NO2	TRO- EN, +NO3 TAL G/L N)	AMMO TO:	TRO- EN, DNIA TAL G/L N)	ORG TO	TRO- EN, ANIC TAL G/L N)	GEN MON ORG TO	TRD- ,AM- IA + ANIC TAL G/L N)	NIT GE TOT (MG.	N, AL /L	PHOR PHOR TOT (MG	AL /L	CARB DRGA TOT (MG AS	NIC AL /L	
ocr																			
17			1	.00															
29 DEC			0	.00		.01		.00		.83		.83		.84		.01		9.7	
15 JAN	•	(0									••							
13	•	(0	.00		.04										.00			
21						.04		.02		.22		.24	0	.28		.00		9.6	
MAY 09						.01		.00		.23		.23		.24		.01		7.0	
JUL 06			5	.06		.05		.02		1.7		1.7	1	.7		.00		4.3	
SEP 20			2	.01		.00										.00			
DATE DV 29 AY	TIM 132 124	E C	ALUM- INUM, POTAL RECOV- ERABLE (UG/L AS AL)	IN D SU (U AS	UM- UM, IS- LVED G/L AL) 550	TO (U	ENIC TAL G/L AS)	TO RE ER (U	IUM, TAL COV- ABLE G/L BA)	so (U	RON, IS- LVED G/L B)	TO RE ER (U	MIUM FAL COV- ABLE G/L CD)	TOT REC	RO- JM, FAL COV- ABLE G/L CR)	VALI VALI	RO- JM, KA- ENT, IS. G/L CR)	ERA (UG	OV-
DATE		UPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	TO RE ER	ON, TAL COV- ABLE IG/L FE)	SOL	S-	ERA (UG	AL OV-	NES TO: REC ER/	NGA- SE, FAL COV- ABLE S/L MN)	REC ER	CURY FAL COV- ABLE G/L HG)	NICKE TOTA RECO ERAS (UG/	L SLE	SEL NIU TOT (UG	M, AL /L	SILVI TOTA RECO ERAI (UG.	AL DV- BLE /L	
NOV		2		540		200				4.0						0		0	
29 MAY 09		3		240		320 210				10		<.5		0		.0		0	
DATE		ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	AL D SO (U	USS PHA, IS- LVED G/L S	TOT (UG	HA,		S- VED	BET	P.	SOL (PC		GROS BETA SUSF TOTA (PCI AS S	L /L	RAD 22 DI SOLV RAD MET (PCI	6, s- ed, on hod	URANI DIS SOLVE EXTRA TION (UGA	S- ED, AC- N	
NOV												2							
29 MAY		60		3.8		. 5		7.6		<.4		7.1	•	. 4		.42		.02	
09	•	30	1																

DELAWARE DIVER BACTN

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued

		-								
DATE NOV	TIME	CYANIDE TOTAL (MG/L AS CN)	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL (UG/L)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL (UG/L)
29	1320	.00	.0	0	.00	.00	.0	.0	3	.00
MAY 09	1245	.00								
		• • • •							3.0	
	DDD, TOTAL IN BOT-		DDE, TOTAL IN BOT-		DDT, TOTAL IN BOT-	DI-	DI-	DI- ELDRIN, TOTAL IN BOT-	ENDO-	¥
	TOM MA- TERIAL	DDE,	TOM MA-	DDT, TOTAL	TOM MA- TERIAL	AZINON, TOTAL	ELDRIN	TOM MA-	SULFAN, TOTAL	ENDRIN,
DATE	(UG/KG)	(UG/L)	(UG/KG)	(UG/L)	(UG/KG)	(UG/L)	(UG/L)	(UG/KG)	(UG/L)	(UG/L)
								3 - 5 - 5 - 5 - 5		
29 MAY	6.4	.00	2.1	.00	1.3	.00	.00	.0	.00	.00
09										
DATE	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE POTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOTAL (UG/L)
29	.0	.00	.00	.0	.00	.0	.00	.0	.00	.00
MAY						1				
09										
DA	THI TOI	TAL TO	TAL TO	ION, APHE	TOT IX- IN E INE, TOM	NE, PAL BOT- TO MA- T RIAL TH	ION TO		AL TOT	
	11,447, 1420									
MAY		.00	.00	.00	0	0	.00	.00	.00	.00
0.9										

201

DELAWARE RIVER BASIN

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		OCTOBE	R		NOVEMBE	R		DECEMBE	R		JANUAR	Y
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
1				11.5	10.5	11.0				2.0	2.0	2.0
3				12.0	11.5	11.5	7.5	7.0 6.5	7.0	2.5	1.5	5.0
4	14.5	13.0					7.0	6.0	6.5	2.0	1.5	1.5
5	14.0	12.5	13.0				6.5	6.0	6.5	2.5	2.0	2.0
6	13.5	12.5	13.0				6.5	4.5	6.0	3.0	2.5	2.5
7	13.0	12.0	12.5				5.0 4.0	3.0	4.0 3.5	3.5 4.5	3.0	3.0 4.0
9	13.0	12.5	13.0				4.0	3.0	3.5	5.0	3.0 1.5	4.5
10	13.0	12.0	12.5				3.5	2.5	3.0	2.5		
11	12.5	11.5	12.0				2.5	2.0	2.5	5.0	1.5	2.0
13	12.0	12.0	12.0				3.0	2.0	2.5	2.5	5.0	2.0
14	12.0	11.5	12.0				4.0	2.5	3.5	1.5	1.5	1.5
16	12.0	11.5					4.0	3.5	3.5	1.5	1.0	1.0
17							4.0	2.5	3.5	2.0	1.5	1.5
18							4.5	3.5	4.0	1.5	0.0	1.0
5(4.5 5.0	4.5	4.5	1.0	0.5	0.5
21							6.0	5.0	5.5	1.0	0.5	1.0
55							6.0	4.5	5.0	1.0	0.5	1.0
23							4.5	3.5	4.0	1.0	1.0	1.0
25							5.5	4.5	5.0	2.0	0.0	1.0
56							5.0	3.0	4.0	0.0	0.0	0.0
27	12.5	12.0					3.0 1.5	1.5	1.5	0.5	0.0	0.0
29	12.0	12.0	12.0				1.5	1.5	1.5	1.0	0.5	1.0
30 31	11.5	11.0	11.5				5.0	2.0	2.0	1.0	1.0	1.0
MONTH							7.5	1.5	4.0	5.0	0.0	1.5
							7.5	1.5	4.0	3.0	0.0	
		FEBRUAR	2 Y		MARC	н		APRIL			MAY	
DAY	MAX	FEBRUAR	MEAN	MAX	MARC MIN		MAX	APRII MIN	MEAN	MAX	MAY	MEAN
		MIN	MEAN		MIN	MEAN		MIN	MEAN		MIN	
DAY 1 2	MAX 1.0 1.0			MAX 3.0 3.0			MAX 10.0 10.0		9.0 10.0	9.5 10.0	MIN 9.5 9.0	9.5
1 2 3	1.0 1.0 1.0	MIN 1.0 1.0 0.5	1.0 1.0 1.0	3.0 3.0 3.0	MIN 3.0 2.5 2.5	3.0 3.0 3.0	10.0 10.0 9.0	MIN 8.0 9.5 8.0	9.0 10.0 8.5	9.5 10.0 10.0	MIN 9.5 9.0 9.0	9.5 9.5 9.5
1 2	1.0	MIN 1.0 1.0	MEAN 1.0 1.0	3.0	MIN 3.0 2.5	3.0 3.0	10.0	MIN 8.0 9.5	9.0 10.0	9.5 10.0	MIN 9.5 9.0	9.5
1 2 3 4	1.0 1.0 1.0	MIN 1.0 1.0 0.5	1.0 1.0 1.0 1.0	3.0 3.0 3.0 3.0	MIN 3.0 2.5 2.5 3.0	MEAN 3.0 3.0 3.0 3.0	10.0 10.0 9.0 8.5	MIN 8.0 9.5 8.0 7.5	9.0 10.0 8.5 8.0 9.0	9.5 10.0 10.0 9.5 9.5	MIN 9.5 9.0 9.0 9.5 9.0	9.5 9.5 9.5 9.5 9.0
1 2 3 4 5	1.0 1.0 1.0 1.0 1.0 1.0	MIN 1.0 1.0 0.5 1.0 0.5	MEAN 1.0 1.0 1.0 1.0 1.0	3.0 3.0 3.0 3.0 3.0 3.0	MIN 3.0 2.5 2.5 3.0 3.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0	10.0 10.0 9.0 8.5 10.0	MIN 8.0 9.5 8.0 7.5 8.5 8.5	MEAN 9.0 10.0 8.5 8.0 9.0 9.0	9.5 10.0 10.0 9.5 9.5 9.0	MIN 9.5 9.0 9.0 9.5 9.0	9.5 9.5 9.5 9.5 9.0 9.0
1 2 3 4 5	1.0 1.0 1.0 1.9 1.0	MIN 1.0 1.0 0.5 1.0 0.5 0.5	MEAN 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.0 3.0 3.0 3.0 3.0	MIN 3.0 2.5 2.5 3.0 3.0 3.0	3.0 3.0 3.0 3.0 3.0 3.0	10.0 10.0 9.0 8.5 10.0	MIN 8.0 9.5 8.0 7.5 8.5	9.0 10.0 8.5 8.0 9.0	9.5 10.0 10.0 9.5 9.5	MIN 9.5 9.0 9.0 9.5 9.0	9.5 9.5 9.5 9.5 9.0
1 2 3 4 5 6 7 8	1.0 1.0 1.0 1.0 1.0 1.0	MIN 1.0 1.0 0.5 1.0 0.5	MEAN 1.0 1.0 1.0 1.0 1.0	3.0 3.0 3.0 3.0 3.0 3.0 3.5 3.5	MIN 3.0 2.5 2.5 3.0 3.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0	10.0 10.0 9.0 8.5 10.0 9.0 9.0	MIN 8.0 9.5 8.0 7.5 8.5 8.5	MEAN 9.0 10.0 8.5 8.0 9.0 9.0	9.5 10.0 10.0 9.5 9.5 9.0 9.5 9.5	MIN 9.5 9.0 9.0 9.5 9.0 9.0 9.0	9.5 9.5 9.5 9.5 9.0 9.0 9.5
1 2 3 4 5 6 7 8 9 10	1.0 1.0 1.0 1.9 1.0 1.0 1.0 1.5 1.5	MIN 1.0 1.0 0.5 1.0 0.5 0.5 0.5 1.0 1.0 1.0	MEAN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	3.0 3.0 3.0 3.0 3.5 3.5 4.0 4.0	MIN 3.0 2.5 2.5 3.0 3.0 3.0 3.5 3.5 4.0	3.0 3.0 3.0 3.0 3.0 3.0 4.0	10.0 10.0 9.0 8.5 10.0 9.0 9.5 9.0	MIN 8.0 9.5 8.0 7.5 8.5 8.5 8.5 8.0 8.0	MEAN 9.0 10.0 8.5 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	9.5 10.0 10.0 9.5 9.5 9.5 9.5 10.5 11.0	9.5 9.0 9.0 9.5 9.0 9.0 9.0 9.5 10.5	9.5 9.5 9.5 9.5 9.0 9.0 9.5 9.5 10.0 11.0
1 2 3 4 5 6 7 8 9 10	1.0 1.0 1.0 1.9 1.0 1.0 1.0 1.5 1.5	MIN 1.0 1.0 0.5 1.0 0.5 0.5 0.5 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.0 3.0 3.0 3.0 3.0 3.5 3.5 4.0 4.0	MIN 3.0 2.5 3.0 3.0 3.0 3.5 3.5 4.0	MEAN 3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0	10.0 10.0 9.0 8.5 10.0 9.0 9.5 9.0 9.5 9.0	MIN 8.0 9.5 8.0 7.5 8.5 8.5 8.5 8.5 8.5 8.0 8.0	9.0 10.0 8.5 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	9.5 10.0 10.0 9.5 9.5 9.5 9.5 10.5 11.5	9.5 9.0 9.0 9.5 9.0 9.0 9.0 9.0 9.5 10.5	9.5 9.5 9.5 9.0 9.0 9.5 9.5 10.0 11.0
1 2 3 4 5 6 7 8 9 10	1.0 1.0 1.0 1.9 1.0 1.0 1.0 1.5 1.5	MIN 1.0 1.0 0.5 1.0 0.5 0.5 0.5 1.0 1.0 1.0	MEAN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	3.0 3.0 3.0 3.0 3.5 3.5 4.0 4.0	MIN 3.0 2.5 2.5 3.0 3.0 3.0 3.5 3.5 4.0	3.0 3.0 3.0 3.0 3.0 3.0 4.0	10.0 10.0 9.0 8.5 10.0 9.0 9.5 9.0	MIN 8.0 9.5 8.0 7.5 8.5 8.5 8.5 8.0 8.0	MEAN 9.0 10.0 8.5 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	9.5 10.0 10.0 9.5 9.5 9.5 9.5 10.5 11.0	9.5 9.0 9.0 9.5 9.0 9.0 9.0 9.5 10.5	9.5 9.5 9.5 9.0 9.0 9.5 9.5 10.0 11.0
1 2 3 4 5 6 7 8 9 10 11 12 13	1.0 1.0 1.0 1.9 1.0 1.0 1.0 1.5 1.5 1.5	MIN 1.0 1.0 0.5 1.0 0.5 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.0 3.0 3.0 3.0 3.5 3.5 4.0 4.0	MIN 3.0 2.5 3.0 3.0 3.0 3.5 4.0	MEAN 3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0	10.0 10.0 9.0 8.5 10.0 9.0 9.5 9.0 9.5 9.0	MIN 8.0 9.5 8.0 7.5 8.5 8.5 8.5 8.0 8.0	MEAN 9.0 10.0 8.5 8.0 9.0 9.0 9.0 9.0 9.0 9.0 8.5 9.0	9.5 10.0 10.0 9.5 9.5 9.5 10.5 11.5 11.5	9.5 9.0 9.5 9.0 9.0 9.0 9.0 9.5 10.5	9.5 9.5 9.5 9.0 9.0 9.5 9.5 10.0 11.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.0 1.0 1.0 1.9 1.0 1.0 1.5 1.5 1.5 1.5 1.5	MIN 1.0 1.0 0.5 1.0 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	MEAN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	3.0 3.0 3.0 3.0 3.5 3.5 3.5 4.0 4.0 4.5 4.5 4.5 3.0	MIN 3.0 2.5 2.5 3.0 3.0 3.0 3.5 4.0 3.5 4.0 3.5 2.5 2.5	MEAN 3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0	10.0 10.0 9.0 8.5 10.0 9.0 9.5 9.0 9.5 10.0 10.5 9.5	MIN 8.0 9.5 8.0 7.5 8.5 8.5 8.5 8.0 8.0 10.0 10.0 9.0	MEAN 9.0 10.0 8.5 8.0 9.0 9.0 9.0 9.0 9.0 9.5 10.5 10.0 9.5	9.5 10.0 10.0 9.5 9.5 9.5 10.5 11.0 11.5 12.0 12.0	MIN 9.5 9.0 9.0 9.0 9.0 9.0 9.5 10.5 11.5 12.0 11.5	9.5 9.5 9.5 9.5 9.0 9.0 9.5 9.5 10.0 11.0 11.5 12.0 12.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.0 1.0 1.0 1.9 1.0 1.0 1.0 1.5 1.5 1.5 1.5 1.5	MIN 1.0 1.0 0.5 1.0 0.5 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5	MEAN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	3.0 3.0 3.0 3.0 3.0 3.5 3.5 4.0 4.0 4.5 4.5 4.0 3.5 3.5 3.5	MIN 3.0 2.5 3.0 3.0 3.0 3.0 3.0 3.5 4.0 3.5 2.5 2.5	MEAN 3.0 3.0 3.0 3.0 3.0 3.5 4.0 4.0 4.0 4.0 3.5 2.5	10.0 10.0 9.0 8.5 10.0 9.0 9.5 9.0 9.5 9.0 10.5 10.5	MIN 8.0 9.5 8.0 7.5 8.5 8.5 8.5 8.0 8.0 10.0 10.0 10.0 10.0	9.0 10.0 8.5 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.5 10.5	9.5 10.0 10.0 9.5 9.5 9.5 10.5 11.5 11.5 12.0 12.0	MIN 9.5 9.0 9.0 9.0 9.0 9.0 9.5 10.5 11.5 12.0 11.5	9.5 9.5 9.5 9.0 9.0 9.5 9.5 10.0 11.0 11.5 12.0 12.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5 1.5 1.5 2.0 2.0 2.5 2.5	MIN 1.0 1.0 0.5 1.0 0.5 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.5 1.5 2.0 2.0	MEAN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	3.0 3.0 3.0 3.0 3.5 3.5 3.5 4.0 4.0 3.5 3.0 3.0 3.0 4.0	MIN 3.0 2.55 3.0 3.0 3.0 3.55 4.0 3.55 2.55 2.55 2.50	MEAN 3.0 3.0 3.0 3.0 3.0 3.5 4.0 4.0 4.0 4.0 3.5 2.5	10.0 10.0 9.0 8.5 10.0 9.0 9.5 9.0 9.5 10.0 10.5 9.5	MIN 8.0 9.5 8.0 7.5 8.5 8.5 8.0 8.5 8.0 10.0 10.0 10.0 8.5 8.5 8.5 8.0 8.5	9.0 10.0 8.5 8.0 9.0 9.0 9.0 9.0 9.5 10.5 10.5 10.5 8.5 8.5	9.5 10.0 10.0 9.5 9.5 9.5 10.5 11.0 11.5 12.0 12.0 12.0 12.5 13.0	MIN 9.5 9.0 9.5 9.0 9.0 9.0 9.0 10.5 11.5 11.5 11.5 11.5	9.5 9.5 9.5 9.5 9.5 9.5 11.0 11.5 12.0 12.0 11.5 12.0 12.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.0 1.0 1.0 1.9 1.0 1.0 1.5 1.5 1.5 1.5 2.0 2.0 2.5 2.5	MIN 1.0 1.0 0.5 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	MEAN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	3.0 3.0 3.0 3.0 3.5 3.5 3.5 4.0 4.0 4.5 4.5 3.5 3.0 4.0 4.5	MIN 3.0 2.5 3.0 3.0 3.0 3.5 4.0 3.5 4.0 3.5 2.5 2.5 2.5 3.0 4.0	MEAN 3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0	10.0 10.0 9.0 8.5 10.0 9.0 9.5 9.0 9.5 10.0 10.5 9.5 9.5	MIN 8.0 9.5 8.0 7.5 8.5 8.5 8.5 8.0 8.0 10.0 10.0 9.0 8.5 8.0 8.0 8.0 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	9.0 10.0 8.5 8.0 9.0 9.0 9.0 8.5 9.0 9.0 9.5 10.5 10.0 9.5	9.5 10.0 10.0 9.5 9.5 9.5 10.5 11.0 11.5 12.0 12.0 12.0 12.0 12.5 13.0	MIN 9.5 9.0 9.0 9.0 9.0 9.5 10.5 11.5 12.0 11.5 11.5 11.5 12.0 12.5	9.5 9.5 9.5 9.0 9.0 9.5 9.5 10.0 11.0 11.5 12.0 12.0 11.5 12.0 12.5 13.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 20 21	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5 1.5 1.5 2.0 2.0 2.5 2.5	MIN 1.0 1.0 0.5 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.5 2.0 2.0 2.0	MEAN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	3.0 3.0 3.0 3.0 3.5 3.5 3.5 4.0 4.0 3.5 3.0 4.0 3.0 3.0 4.0	MIN 3.05.55.00 3.00 3.05.55.00 3.00 3.05.55.00 3.00 3	MEAN 3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0	10.0 10.0 9.0 8.5 10.0 9.0 9.5 9.0 9.5 10.0 10.5 10.5 9.0 8.5 9.0	MIN 8.0 9.5 8.0 7.5 8.5 8.5 8.5 8.0 8.5 9.0 10.0 10.0 10.0 8.5 8.5 9.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	9.0 10.0 8.5 8.0 9.0 9.0 9.0 9.0 9.0 9.5 10.5 10.5 10.5 10.5 9.5	9.5 10.0 10.0 9.5 9.5 9.5 11.0 11.5 12.0 12.0 12.0 14.0	MIN 9.5 9.0 9.5 9.0 9.5 9.0 9.0 9.0 11.5 11.5 11.5 11.5 12.0 12.5	9.5 9.5 9.5 9.5 9.5 9.5 11.0 11.5 12.0 12.0 12.5 12.5 13.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5 1.5 2.0 2.0 2.5 2.5 2.5 2.5 2.5	MIN 1.0 1.0 0.5 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.5 2.0 2.0 2.0 2.0	MEAN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	3.0 3.0 3.0 3.0 3.5 3.5 3.5 4.0 4.0 4.5 4.5 3.5 3.0 4.0 4.5	MIN 3.05.50 0 3.05.50 0 3.05.50 0 3.05.50 0 3.05.50 0 4.05.55 0 6.55	MEAN 3.0 3.0 3.0 3.0 3.0 3.5 3.5 4.0 4.0 4.0 3.5 2.5 2.5 3.5 4.5 7.0	10.0 10.0 9.0 8.5 10.0 9.0 9.5 10.0 10.5 9.5 9.0 9.5	MIN 8.0 9.5 8.0 7.5 8.5 8.5 8.0 8.5 8.0 10.0 10.0 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	9.0 10.0 8.5 8.0 9.0 9.0 9.0 9.0 9.5 10.5 10.5 10.5 10.5 8.5 8.5 9.0	9.5 10.0 10.0 9.5 9.5 9.5 10.5 11.0 11.5 12.0 12.0 12.0 12.5 13.0 14.0	MIN 9.5 9.0 9.0 9.0 9.0 9.5 10.5 11.5 12.0 11.5 12.0 12.5 14.0 13.5 13.5	9.5 9.5 9.5 9.0 9.0 9.5 9.5 10.0 11.0 11.5 12.0 12.0 12.5 13.5 14.0 14.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5 1.5 1.5 2.0 2.5 2.5 2.5 2.5	MIN 1.0 1.0 0.5 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	MEAN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	3.0 3.0 3.0 3.0 3.5 3.5 3.5 4.0 4.0 3.5 3.0 4.0 3.0 3.0 4.0 4.5 4.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	MIN 3.05.55 3.00 3.05.55 4.0 5.05 3.00 3.05 5.50 4.0 5.05 5.50 4.0 5.50 6.05 7.5	MEAN 3.0 3.0 3.0 3.0 3.0 3.5 4.0 4.0 4.0 4.0 3.5 2.5 3.0 3.5 4.7 7.5	10.0 10.0 9.0 8.5 10.0 9.0 9.5 9.0 9.5 10.0 10.5 9.5 9.0 8.5 9.0 9.5 9.5 9.0	MIN 8.0 9.5 8.0 7.5 8.5 8.5 8.5 8.0 8.0 10.0 10.0 10.0 8.5 8.5 9.0 8.5 8.5 9.0 8.5 8.5	9.0 10.0 8.5 8.0 9.0 9.0 9.0 9.0 9.5 10.5 10.5 10.5 9.0 9.0 9.0 9.0 9.0 9.0	9.5 10.0 10.0 9.5 9.5 9.5 11.5 11.5 12.0 12.0 12.5 12.0 14.5 14.5 14.5	MIN 9.5 9.0 9.5 9.0 9.0 9.0 9.5 10.5 11.5 11.5 11.5 12.0 12.5 14.0 13.5 13.5 13.5	9.5 9.5 9.5 9.0 9.0 9.5 9.5 10.0 11.5 12.0 12.0 12.0 12.5 13.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5 1.5 2.0 2.0 2.5 2.5 2.5 2.5 2.5 2.5	MIN 1.0 1.0 0.5 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	MEAN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	3.0 3.0 3.0 3.0 3.5 3.5 3.5 4.0 4.0 4.5 4.5 4.5 3.0 3.0 3.0 3.0 6.5 7.5	MIN 3.0 5.5 3.0 3.0 3.0 3.0 3.0 3.5 4.0 3.5 2.5 2.5 2.5 2.5 2.5 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	MEAN 3.0 3.0 3.0 3.0 3.0 3.5 4.0 4.0 4.0 4.0 3.5 2.5 2.5 3.5 4.7 7.5	10.0 10.0 9.0 8.5 10.0 9.0 9.5 9.0 9.5 10.0 10.5 9.5 9.0 8.5 9.0 9.5 9.0	MIN 8.0 9.5 8.0 7.5 8.5 8.5 8.0 8.5 8.0 10.0 10.0 10.0 8.5 8.5 8.5 8.0 9.0 10.	9.0 10.0 8.5 8.0 9.0 9.0 9.0 9.0 9.5 10.5 10.5 10.5 10.5 8.5 8.5 9.0	9.5 10.0 10.0 9.5 9.5 9.5 10.5 11.0 11.5 12.0 12.0 12.0 14.5 14.0 14.5 14.0 15.0	MIN 9.5 9.0 9.5 9.0 9.5 9.0 9.0 10.5 11.5 11.5 11.5 12.0 12.5 14.0 13.5 13.5 15.0	9.5 9.5 9.5 9.5 9.0 9.0 9.5 9.5 10.0 11.0 11.5 12.0 12.0 12.5 13.5 14.0 14.0 14.5 15.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5 1.5 1.5 2.0 2.0 2.5 2.5 2.5 2.5 2.5 3.0	MIN 1.0 1.0 1.0 0.5 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	MEAN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	3.0 3.0 3.0 3.0 3.5 3.5 3.5 4.0 4.0 3.5 3.0 4.0 3.0 3.0 4.0 4.5 4.0 3.0 4.0 4.0 4.0 4.0 4.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	MIN 3.0 5.55 3.0 3.0 3.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	MEAN 3.0 3.0 3.0 3.0 3.0 3.5 4.0 4.0 4.0 4.0 3.5 2.5 3.0 3.5 4.5 6.0 7.5 7.0	10.0 10.0 9.0 8.5 10.0 9.0 9.5 9.0 9.5 10.0 10.5 9.5 9.0 8.5 9.0 9.5 9.5 9.0	MIN 8.0 9.5 8.0 7.5 8.5 8.5 8.5 8.0 8.0 10.0 10.0 10.0 8.5 8.5 9.0 8.5 8.5 9.0 8.5 8.5	9.0 10.0 8.5 8.0 9.0 9.0 9.0 9.0 9.5 10.5 10.5 10.5 9.0 9.0 9.0 9.0 9.0 9.0	9.5 10.0 10.0 9.5 9.5 9.5 11.5 11.5 12.0 12.0 12.5 12.0 14.5 14.5 14.5	MIN 9.5 9.0 9.5 9.0 9.0 9.0 9.5 10.5 11.5 11.5 11.5 12.0 12.5 14.0 13.5 13.5 13.5	9.5 9.5 9.5 9.0 9.0 9.5 9.5 10.0 11.0 12.0 12.0 12.0 12.5 13.5 14.0 14.0 14.0 14.5 15.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5 1.5 1.5 2.0 2.5 2.5 2.5 2.5 2.5 2.5 3.0 3.0	MIN 1.0 1.0 1.0 0.5 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	MEAN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	3.0 3.0 3.0 3.0 3.5 3.5 3.5 4.0 4.0 3.5 3.0 3.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 6.0 6.5 7.5 8.0 7.5 8.0 7.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	MIN 3.05.55.00 3.05.55.50 3.05.55.50 4.0 4.50.55.50 4.0 4.50.55.50 4.0 4.50.55.50 4.0 4.50.50 4.0 4.0 4.50.50 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.	MEAN 3.0 3.0 3.0 3.0 3.0 3.5 4.0 4.0 4.0 4.0 3.5 2.5 3.5 4.5 6.5 7.0 7.5 7.5 8.5	10.0 10.0 9.0 8.5 10.0 9.0 9.5 9.0 10.5 9.0 8.5 9.0 9.5 10.0 10.5 9.0 9.5 9.0 9.5	MIN 8.0 9.5 8.5 8.5 8.5 8.5 8.0 8.5 8.0 10.0 10.0 10.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	9.0 10.0 8.5 8.0 9.0 9.0 9.0 9.0 9.5 10.5 10.5 10.5 10.5 9.5 9.5 9.0 9.5 9.0 9.5 9.0	9.5 10.0 10.0 9.5 9.5 9.5 10.5 11.0 11.5 12.0 12.0 12.0 14.5 14.0 15.0 15.0 15.0	MIN 9.5 9.0 9.5 9.0 9.5 9.0 9.0 9.0 10.5 11.5 11.5 12.0 12.5 14.0 13.5 13.5 15.0 14.5	9.5 9.5 9.5 9.5 9.0 9.0 9.5 9.5 10.0 11.0 11.5 12.0 12.0 12.5 13.5 14.0 14.0 14.5 15.0 15.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 12 22 23 22 25 26 27 8 29	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5 1.5 1.5 2.0 2.5 2.5 2.5 2.5 2.5 2.5 3.0	MIN 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0	MEAN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	3.0 3.0 3.0 3.0 3.0 3.5 3.5 4.0 4.5 4.0 3.5 3.0 4.0 4.5 4.0 3.0 4.0 4.5 4.0 6.5 7.5 7.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	MIN 3.05.55 3.00 3.05.55 4.0 5.05.55 2.55 3.00 4.50 6.55 7.0 6.55 7.0 8.5	MEAN 3.0 3.0 3.0 3.0 3.5 4.0 4.0 4.0 4.0 3.5 2.5 3.0 3.5 4.5 6.0 7.5 7.5 8.5 9.0	10.0 10.0 9.0 8.5 10.0 9.0 9.5 9.0 9.5 10.0 10.5 10.5 9.5 9.0 9.5 9.5 9.0 9.5 9.5 9.0 9.5 9.0 9.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	MIN 8.0 9.5 8.0 7.55 8.5 8.5 8.0 8.0 10.0 10.0 10.0 8.5 8.5 8.0 8.0 9.0 10.0 10.0 8.5 8.5 8.5 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	9.0 10.0 8.5 8.0 9.0 9.0 9.0 9.0 9.5 10.5 10.5 9.5 8.5 8.5 9.0 9.0 9.5 8.5 9.0	9.5 10.0 10.0 9.5 9.5 9.5 11.5 11.5 12.0 12.0 12.5 12.0 14.5 14.5 14.5 14.5 15.0 15.0 15.0	MIN 9.5 9.0 9.0 9.5 9.0 9.0 9.5 10.5 11.5 12.0 11.5 12.5 14.0 13.5 13.5 13.5 15.0	9.5 9.5 9.5 9.5 9.0 9.0 9.5 9.5 11.0 11.5 12.0 12.0 12.5 13.5 14.0 14.0 14.5 15.0 15.0 15.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5 1.5 1.5 2.0 2.5 2.5 2.5 2.5 2.5 2.5 3.0 3.0	MIN 1.0 1.0 1.0 0.5 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	MEAN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	3.0 3.0 3.0 3.0 3.5 3.5 3.5 4.0 4.0 3.5 3.0 3.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 6.0 6.5 7.5 8.0 7.5 8.0 7.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	MIN 3.05.55.00 3.05.55.50 3.05.55.50 4.0 4.50.55.50 4.0 4.50.55.50 4.0 4.50.55.50 4.0 4.50.50 4.0 4.0 4.50.50 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.	MEAN 3.0 3.0 3.0 3.0 3.0 3.5 4.0 4.0 4.0 4.0 3.5 2.5 3.5 4.5 6.5 7.0 7.5 7.5 8.5	10.0 10.0 9.0 8.5 10.0 9.0 9.5 9.0 10.5 9.0 8.5 9.0 9.5 10.0 10.5 9.0 9.5 9.0 9.5	MIN 8.0 9.5 8.5 8.5 8.5 8.5 8.0 8.5 8.0 10.0 10.0 10.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	9.0 10.0 8.5 8.0 9.0 9.0 9.0 9.0 9.5 10.5 10.5 10.5 10.5 9.5 9.5 9.0 9.5 9.0 9.5 9.0	9.5 10.0 10.0 9.5 9.5 9.5 10.5 11.0 11.5 12.0 12.0 12.0 14.5 14.0 15.0 15.0 15.0	MIN 9.5 9.0 9.5 9.0 9.5 9.0 9.0 9.0 10.5 11.5 11.5 12.0 12.5 14.0 13.5 13.5 15.0 14.5	9.5 9.5 9.5 9.5 9.0 9.0 9.5 9.5 10.0 11.0 11.5 12.0 12.0 12.5 13.5 14.0 14.0 14.5 15.0 15.0

DELAWARE RIVER BASIN
01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		JUNE			JULY		3	AUGUST			SEPTEME	BER
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
1	17.5	16.5	17.0	17.5	16.5	16.5	17.5	17.0	17.5	19.5	18.5	19.0
5	17.5	16.5	17.0	16.5	16.0	16.0	17.5	17.5	17.5	18.5	18.0	18.0
3	17.5	17.0	17.0	17.0	16.0	16.0	18.0	17.5	17.5	18.0	17.0	17.5
4	17.5	16.5	17.0	17.0	16.0	16.5	18.5	18.0	18.0	18.0	17.0	17.5
5	16.0	15.5	16.0	16.5	15.5	16.0	19.0	18.5	18.5	16.5	16.0	16.5
6	16.0	15.0	15.5	16.5	16.0	16.5	19.0	19.0	19.0	16.5	16.0	16.0
7	16.0	15.5	15.5	17.5	16.0	17.0	50.0	19.0	19.5	17.5	16.5	16.5
8	16.5	16.0	16.5	18.0	16.5	17.5	50.0	19.5	19.5	16.5	16.0	16.5
9	18.0	16.5	17.0	18.5	17.5	18.0	50.0	19.0	19.5	16.5	15.0	16.0
10	17.0	16.0	16.5	18.5	18.0	18.5	19.0	18.5	19.0	15.5	15.0	15.0
11	16.5	16.0	16.5	19.0	18.0	18.5	19.5	18.5	19.0	16.0	15.0	15.5
12	16.5	16.0	16.5	18.0	16.5	17.0	20.5	19.5	50.0	16.0	15.5	16.0
13	16.5	16.0	16.0	17.5	16.0	16.5	21.0	20.0	20.5	16.0	15.0	15.5
14	16.0	15.0	15.5	16.5	16.0	16.0	21.0	20.0		15.0	14.0	14.5
15	15.0	14.0	14.5	16.5	16.0	16.5	20.5	19.5	50.0	14.5	14.0	14.5
16	14.5	14.0	14.5	16.5	16.5	16.5	20.0	18.5	19.5	15.0	14.0	14.5
17	14.0	14.0	14.0	17.5	17.0	17.0	19.0	18.5	19.0	15.5	14.5	14.5
18	15.0	14.0	14.5	18.0	17.0	17.5	19.0	18.0	18.5	15.0	14.5	15.0
19	16.0	15.0	15.5	18.0	17.5	18.0	18.5	17.5	18.0	15.0	14.5	15.0
50	16.5	16.0	16.0	18,5	18.0	18.0	18.5	16.5	17.5	15.0	14.5	14.5
21	16.5	16.0	16.5	18.5	18.0	18.5				15.0	14.0	14.5
55	17.5	16.5	17.0	19.0	18.0	18.5				15.0	14.5	14.5
23	17.0	16.5	17.0	19.0	18.5	19.0	18.0	17.0		15.5	14.0	14.5
24	16.5	16.5	16.5	19.5	18.5	19.0	18.0	16.5	17.0	14.5	13.5	14.0
25	17.0	16.0	16.5	18.5	18.0	18.5	16.5	16.5	16.5	14.5	13.5	13.5
26	16.5	16.0	16.0	18.5	17.5	18.0	17.0	16.0	16.5	14.0	12.5	13.5
27	17.0	16.0	16.5	18.5	17.5	18.0	16.5	16.0	16.0	13.5	12.5	12.5
28	18.0	17.0	17.5	18.0	18.0	18.0	20.0	16.0	18.5	13.5	12.5	12.5
29	18.5	17.0	17.5	18.0	17.0	17.5	20.5	19.5	50.0	13.0	12.0	12.0
30	18.0	17.0	17.5	18.5	17.0	17.5	50.0	19.5	19.5	13.0	11.5	12.0
31				17.0	17.0	17.0	19.5	19.0	19.5			
MONTH	18.5	14.0	16.0	19.5	15.5	17.5	21.0	16.0	18.5	19.5	11.5	15.0

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		ОСТОВЕ	R			NOVEMBE	R		DECEMBE	R		JANUAR	Y
DAY	MAX	MIN	MEAN		MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
1					41	37	39				91	90	91
5					38	33.	35	108	105	107	88	87	88
3					34	32	33	106	100	103	92	90	91
4	42	40						101	97	100	91	89	90
5	40	39	39					98	94	96	89	88	89
6	39	36	38					97	45	95	88	87	88
7	38	35	36					101	95	99	88	87	87
8	44	35	40					97	94	96	87	85	86
9	54	42	46					94	90	91	94	83	90
10	56	55	56					93	89	91	94	93	94
11	56	55	56					91	87	90	94	94	94
15	59	56	57					90	87		94	90	92
13	58	58	58								86	84	85
14	58	- 55	56							***	88	84	86
15	60	56	59					91	73		92	87	91
16	60	56						100	92	97	91	89	90
17								99	95	97	90	75	77
18								94	92	93	88	84	87
19								100	94	97	88	86	87
50								101	97	99	85	82	83
21								100	92	95	82	81	81
55								102	99	101	81	80	80
23								101	97	100	80	79	80
24								98	95	96	79	77	78.
25								. 96	92	95	82	75	77
26								96	95	96	81	70	79
27								94	91	93	78	58	65
85	41	38						91	90	91	72	66	70
59	41	41	41					91	90	90 .	72	71	72
30	41	41	41					90	89	90	72	71	72
31	41	41	41	23				91	89	90	72	71	72
MONTH								108	73	96	94	58	84

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		FEBRUAR	v		MARCH			APRIL			MAY	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
										60	56	59
1 2	73	72 71	72 72	67	66	67 66	66 65	63	65 64	60	54	58
3	73	71	72	66	64	65	65	62	64	58	56	58
4	73	70	72	66	65	65	63	59 59	61	60	57 59	58 61
5	74	70	73	66	65	65	62					
6	72	70	71	66	65	65	63	60	62	62	59 55	61 59
7	71 71	70 69	71 71	64	63	64	65 65	60 58	61 61	61 59	58	59
. 8	71	69	71	64	63	64	62	60	61	65	59	63
10	70	69	70	66	63	64	61	57	60	67	64	66
11	70	69	70	68	66	67	61	55	58	67	65	66
12	70	69	70	69	66	68	60	55	58	67	63	65
13	69	69	69	70	68	69 73	60	58 58	59 59	64	61	63
14 15	68	67 67	68 68	77 79	69 76	78	59	57	58	65	63	64
				7.	70	73	58	56	58	63	62	63
16 17	68 67	67 67	68 67	76 70	67	68	58	54	57	63	59	62
18	67	67	67	67	66	66	58	54	57	65	59	61
19	68	67	67 67	65 65	64	64	63	56 61	59 61	60 59	57 56	59 58
50	67	67	67	65	03	04	0.5					
21	67	67	67	64	62	63	63	59	62	58	55	57 56
55	67	67 67	67 67	64	63	63	65	62 59	64	57 55	53 52	53
23	67	67	67	64	62	63	62	58	61	68	53	60
25	67	66	66	64	63	64	61	58	60	68	61	65
26	67	66	66	75	63	66	61	57	60	61	56	58
27	67	66	66	78	73	75	61	60	60	57	55	56
28	67	66	67	78 74	74	76 72	61 61	57 57	60	55 53	52 51	54 52
30				71	66	68	61	56	59	52	51	52
31				67	64	66				51	49	51
MONTH	74	66	69	79	62	67	66	54	60	68	49	59
		JUNE			JULY			AUGUST			SEPTEME	BER
DAY	MAX	JUNE MIN	MEAN	MAX	JULY MIN	MEAN	MÄX	AUGUST MIN	MEAN	MAX	SEPTEME MIN	BER MEAN
		MIN			MIN			MIN	MEAN		MIN	MEAN
1 2	№AX 51 51		MEAN 51 51	MAX 46 45		MEAN 46 45	MÁX 37 37			MAX 44 44		MEAN 44
1 2 3	51 51 56	MIN 49 50 49	51 51 52	46 45 51	MIN 45 44 44	46 45 45	37 37 34	MIN 34 34 29	MEAN 36 36 31	44 44 44	MIN 44 42 41	MEAN 44 44 42
1 2 3 4	51 51 56 56	MIN 49 50 49 54	51 51 52 54	46 45 51 57	MIN 45 44 44 53	46 45 45 55	37 37 34 40	MIN 34 34 29 32	MEAN 36 36 31 35	44 44 41	MIN 44 42 41 40	MEAN 44 42 41
1 2 3 4 5	51 56 56 56	MIN 49 50 49 54 50	51 51 52 54 52	46 45 51 57 55	MIN 45 44 44 53 51	46 45 45 55 53	37 37 34 40 42	MIN 34 34 29 32 39	MEAN 36 36 31 35 40	44 44 41 40	MIN 44 42 41 40 38	MEAN 44 44 42 41 39
1 2 3 4 5	51 51 56 56 54	MIN 49 50 49 54 50	51 51 52 54 52	46 45 51 57 55	MIN 45 44 44 53 51	46 45 45 55 53	37 37 34 40 42	MIN 34 34 29 32 39	MEAN 36 36 31 35 40	44 44 41 40	MIN 44 42 41 40 38	MEAN 44 42 41 39
1 2 3 4 5 6 7 8	51 56 56 54 51 50 49	MIN 49 50 49 54 50 49 47 45	51 52 54 52 50 49 47	46 45 51 57 55	MIN 45 44 44 53 51	46 45 45 55 53	37 37 34 40 42	MIN 34 34 29 32 39	MEAN 36 36 31 35 40	44 44 41 40	MIN 44 42 41 40 38	MEAN 44 44 42 41 39 38 37
1 2 3 4 5 6 7 8	51 56 56 54 51 50 49 50	MIN 49 50 49 54 50 49 47 45 48	51 51 52 54 52 50 49 47 49	46 45 51 57 55 53 50 49 48	MIN 45 44 44 53 51 50 49 48 47	46 45 55 53 51 49 49	37 37 34 40 42 39 43 41 38	MIN 34 34 29 32 39 35 36 38 37	MEAN 36 36 31 35 40 37 39 40 38	44 44 41 40 39 39 37 36	MIN 44 42 41 40 38 37 37 36 36	MEAN 44 44 41 39 38 37 36
1 2 3 4 5 6 7 8	51 56 56 54 51 50 49	MIN 49 50 49 54 50 49 47 45	51 52 54 52 50 49 47	46 45 51 57 55 53 50 49	MIN 45 44 44 53 51 50 49 48	46 45 45 55 53 51 49	37 37 34 40 42 39 43	MIN 34 34 29 32 39 35 36 38	MEAN 36 36 31 35 40 37 39 40	44 44 41 40 39 39	MIN 44 42 41 40 38 37 37	MEAN 44 44 42 41 39 38 37
1 2 3 4 5 6 7 8 9 10	51 56 56 54 51 50 52 51	MIN 49 50 49 54 50 49 47 45 48 49	51 52 54 52 50 49 47 49 50	46 45 51 57 55 53 50 49 48 48	MIN 45 44 44 53 51 50 49 48 47 47	46 45 55 53 51 49 48 47	37 37 34 40 42 39 43 41 38 37	MIN 34 34 29 32 39 35 36 38 37	36 36 31 35 40 37 39 40 38 37	44 44 41 40 39 39 37 36 36	MIN 44 42 41 40 38 37 37 36 36 34	MEAN 444 42 41 39 38 37 36 35
1 2 3 4 5 6 7 8 9 10	51 56 56 54 51 50 49 50 52	MIN 49 50 49 54 50 47 45 48 49 48	51 52 54 52 54 52 54 52 54 52 54 52 54 52 54 52 54 55 54 55 55 55 55 55 55 55 55 55 55	46 45 51 57 55 53 50 49 48 48	MIN 45 44 44 53 51 50 49 48 47 47	46 45 55 53 51 49 49 48 47	37 34 40 42 39 43 41 38 37	MIN 34 34 39 39 35 38 37 34	MEAN 36 36 31 35 40 37 39 40 38 37 41	44 44 41 40 39 39 37 36 36	MIN 44 42 41 40 38 37 36 36 34 34	MEAN 44 42 41 39 38 37 36 35 35
1 2 3 4 5 6 7 8 9 10	51 56 56 54 51 50 52 51 51 51	MIN 49 50 49 54 50 49 47 45 48 49 48 49	51 51 52 54 52 54 52 50 49 47 49 50 50 50 50	46 45 51 57 55 53 50 49 48 48 47 45 44	MIN 45 44 53 51 50 49 48 47 47 45 45	46 45 55 53 51 49 49 48 47 46 45 44	37 34 40 42 39 43 41 38 37	MIN 34 34 39 32 39 35 36 38 37 34 37 43 43	36 36 31 35 40 37 39 40 38 37 41 47 44	44 44 41 40 39 37 36 36 36 34 31	MIN 44 42 41 40 38 37 37 36 34 31 26	MEAN 44 44 41 39 38 37 36 35 35 35 29 27
1 2 3 4 5 6 7 8 9 10	51 56 56 54 51 50 49 50 52 51 51	MIN 49 50 49 54 50 49 47 48 49 48	51 52 54 52 50 47 49 50 50 50 50	46 45 51 57 55 53 50 49 48 48 47	MIN 45 44 53 51 50 49 47 47 45 45	46 45 55 53 51 49 48 47 46 45	37 37 34 40 42 39 43 41 38 37 44 49	MIN 34 34 32 32 39 35 36 37 34 37 46	MEAN 36 36 31 35 40 37 39 40 38 37 41 47	44 44 41 40 39 39 37 36 36 36	MIN 44 42 41 40 38 37 37 36 36 34 31	MEAN 44 44 41 39 38 37 36 35 35
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	51 56 56 54 51 50 49 50 52 51 51 51 51	MIN 49 50 49 54 50 49 47 45 48 49 48 49 48	51 52 54 52 50 47 49 50 50 50 50 50 50	46 45 51 57 55 53 50 49 48 48 47 45 44	MIN 45 44 53 51 50 49 48 47 47 45 44 44	46 45 55 53 51 49 48 47 46 45 44 44	37 37 34 40 42 39 43 41 38 37 44 49 49 46	MIN 34 34 39 32 39 35 36 37 34 37 34 46 43 38	MEAN 36 36 31 35 40 37 39 40 38 37 41 47 44 40	44 44 41 40 39 37 36 36 36 36 31 31 26	MIN 44 41 40 38 37 36 36 34 31 26 25 25	MEAN 44 44 41 39 38 37 36 35 35 37 29 25
1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17	51 56 56 54 51 50 49 50 52 51 51 51 51 51	MIN 49 50 49 54 50 47 45 48 49 48 49 48 49	51 52 54 52 54 52 54 52 54 50 47 47 49 50 50 50 50 50 50 50 50 50 50 50 50 50	46 45 51 57 55 53 50 49 48 48 47 45 45 44 44	MIN 45 44 53 51 50 48 47 47 45 44 44 44	45 45 55 5 5 5 5 1 49 49 48 47 45 44 44 44 44	37 37 34 40 42 39 43 41 38 37 44 49 49 49 46 43 38 37	MIN 34 34 39 32 39 35 36 38 37 34 43 37 43 38	MEAN 36 36 31 35 40 37 39 40 38 37 41 47 47 44 40 37 35	44 44 41 40 39 37 36 36 36 34 31 26	MIN 44 42 41 40 38 37 37 36 36 34 31 26 25 26 31	MEAN 44 44 41 39 38 37 36 35 35 37 29 27 25
1 2 3 4 5 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18	51 56 56 56 54 51 50 52 51 51 51 51 51 51 51 51	MIN 49 50 49 54 50 49 47 48 48 48 49 48 49 48 49 48 49 48 49 47 47	51 52 54 52 50 47 49 50 50 50 50 50 50 50	46 45 51 57 55 53 50 49 48 48 47 45 45 44 44 44 46 45	MIN 45 44 53 51 50 49 47 47 45 44 44 44	45 45 55 53 51 49 48 47 46 44 44 44 44 44 45	37 34 40 42 39 43 41 38 37 49 49 49 49 49 49 45 38 37 35	MIN 34 34 39 32 39 35 36 37 34 37 34 37 33 38	MEAN 36 36 31 35 40 37 39 40 38 37 41 47 44 40 37 35 34	44 44 44 41 40 39 37 36 36 36 34 31 31 26	MIN 44 41 40 38 37 37 36 36 34 31 26 25 26 31 32	MEAN 44 44 41 39 38 37 36 35 35 35 35 35 35 37 25
1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17	51 56 56 54 51 50 49 50 52 51 51 51 51 51	MIN 49 50 49 54 50 47 45 48 49 48 49 48 49	51 52 54 52 54 52 54 52 54 50 47 47 49 50 50 50 50 50 50 50 50 50 50 50 50 50	46 45 51 57 55 53 50 49 48 48 47 45 45 44 44	MIN 45 44 53 51 50 48 47 47 45 44 44 44	45 45 55 5 5 5 5 1 49 49 48 47 45 44 44 44 44	37 37 34 40 42 39 43 41 38 37 44 49 49 49 46 43 38 37	MIN 34 34 39 32 39 35 36 38 37 34 43 37 43 38	MEAN 36 36 31 35 40 37 39 40 38 37 41 47 47 44 40 37 35	44 44 41 40 39 37 36 36 36 34 31 26	MIN 44 42 41 40 38 37 37 36 36 34 31 26 25 26 31	MEAN 44 44 41 39 38 37 36 35 35 37 29 25
1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	51 56 56 56 54 51 50 49 50 52 51 51 51 51 51 51 51 51 51 51 51 51 51	MIN 49 50 49 47 48 49 48 49 48 49 46 50	51 52 54 52 54 57 49 47 49 50 50 50 50 50 50 50 50 50 50 50 50 50	46 45 51 57 55 53 50 49 48 48 47 45 44 44 46 45 45	MIN 45 44 53 51 50 49 48 47 47 45 44 44 44 45 45 45 45 45	45 45 553 51 49 49 47 46 44 44 44 45 45 44	37 34 40 42 39 43 41 38 37 44 49 49 46 43 38 37 38	MIN 34 34 39 32 39 35 36 37 34 46 43 38 37 35 31 34	MEAN 36 36 31 35 40 37 39 40 38 37 41 47 44 40 37 35 34 32 34	44 44 44 41 40 39 37 36 36 36 34 31 31 26	MIN 44 41 40 38 37 37 36 34 31 26 25 26 31 32 33 33	MEAN 44 44 42 41 39 38 37 36 35 35 35 35 37 25 31 32 32 33 33
1 2 3 4 5 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	51 56 56 56 56 57 51 51 51 51 51 51 51 51 51 51 51 51 51	MIN 49 50 49 54 50 49 47 45 48 49 48 49 48 50 49 47 46 50	51 52 54 52 54 50 50 50 50 50 50 50 50 50 50 50 50 50	46 45 51 57 55 53 50 49 48 48 47 45 45 44 44 46 45 45 45	MIN 45 44 53 51 50 49 48 47 47 45 44 44 45 45 44 45 45 41	45 45 55 53 51 49 49 48 47 46 44 44 44 45 45 45 44 44 45 45 45 45 46 46 47 48 48 48 48 48 48 48 48 48 48 48 48 48	37 34 40 42 39 43 41 38 37 49 49 49 49 49 49 49 49 49 49 49 49 49	MIN 34 34 39 32 39 35 36 37 34 43 37 35 32 31 34	MEAN 36 36 31 35 40 37 39 40 38 37 41 47 44 40 37 35 34 32 34	44 44 41 40 39 39 37 36 36 36 36 31 31 26 32 33 33 34 34	MIN 44 42 41 40 38 37 37 36 34 31 26 25 26 31 32 33 33 32	MEAN 44 44 42 41 39 38 37 36 35 35 35 35 37 25 31 32 32 33 33
1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	51 56 56 56 54 51 50 49 50 52 51 51 51 51 51 51 51 51 51 51 51 51 51	MIN 49 50 49 54 50 49 47 45 48 48 49 48 49 45 50 49 55	51 52 54 52 54 50 50 50 50 50 50 50 50 50 50 50 50 50	46 45 51 57 55 53 50 49 48 48 47 45 44 44 46 45 45 45 45 45	MIN 45 44 44 53 51 50 49 48 47 47 45 45 44 42 44 45 43 42 41 41 41 41	46 45 553 51 49 49 48 47 46 44 44 45 44 45 44 45 44 45 44 45 46 47 48 48 48 48 48 48 48 48 48 48 48 48 48	37 37 34 40 42 39 43 41 38 37 44 49 49 46 43 38 37 35 34 34	MIN 34 34 29 32 39 35 36 38 37 34 43 443 38 37 35 32 31 34 33 3	MEAN 36 36 31 35 40 37 39 40 38 37 41 47 44 40 37 35 34	44 44 44 41 40 39 37 36 36 36 34 31 26 32 33 33 34 33	MIN 44 42 41 40 38 37 36 36 34 31 26 25 26 31 32 33 32 33 32	MEAN 44 44 41 39 38 37 36 37 36 37 36 37 38 38 38 38 38 38 38 38 38
1 2 3 4 5 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	51 56 56 56 56 57 51 51 51 51 51 51 51 51 51 51 51 51 51	MIN 49 50 49 54 50 49 47 45 48 49 48 49 48 50 49 47 46 50	51 52 54 52 54 50 50 50 50 50 50 50 50 50 50 50 50 50	46 45 51 57 55 53 50 49 48 48 47 45 45 44 44 46 45 45 45	MIN 45 44 53 51 50 49 48 47 47 45 44 44 45 45 44 45 45 41	45 45 55 53 51 49 49 48 47 46 44 44 44 45 45 45 44 44 45 45 45 45 46 46 47 48 48 48 48 48 48 48 48 48 48 48 48 48	37 34 40 42 39 43 41 38 37 49 49 49 49 49 49 49 49 49 49 49 49 49	MIN 34 34 39 32 39 35 36 37 34 43 37 35 32 31 34	MEAN 36 36 31 35 40 37 39 40 38 37 41 47 44 40 37 35 34 32 34	44 44 41 40 39 39 37 36 36 36 36 31 31 26 32 33 33 34 34	MIN 44 42 41 40 38 37 37 36 34 31 26 25 26 31 32 33 33 32	MEAN 44 44 42 41 39 38 37 36 35 35 35 35 37 25 31 32 32 33 33
1 2 3 3 4 4 5 5 6 6 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	51 56 56 56 54 51 50 49 50 51 51 51 51 51 51 51 51 51 51 51 51 51	MIN 49 50 49 54 50 49 47 45 48 49 48 49 45 50 49 55 54 49 48	51 52 54 52 54 50 50 50 50 50 50 50 50 50 50 50 50 50	46 45 51 57 55 53 50 49 48 48 47 45 45 44 44 46 45 45 45 45 45 45 45 45 45 45 45 45 45	MIN 45 44 53 51 50 49 48 47 47 45 44 44 45 43 42 41 39 38 36	45 45 55 53 51 49 48 47 46 44 44 44 45 44 44 45 44 44 45 44 44 45 46 47 48 48 48 48 48 48 48 48 48 48 48 48 48	37 37 34 40 42 39 43 41 38 37 44 49 49 49 46 43 35 36 37 35 34 34 34 34 33	MIN 34 34 39 32 39 35 36 38 37 34 43 46 43 38 37 35 32 31 31 31	MEAN 36 36 31 35 40 37 39 40 38 37 41 47 47 44 40 37 35 34 32 33 33	44 44 44 41 40 39 37 36 36 36 36 31 26 32 33 33 34 34 33 34 33	MIN 44 42 41 40 38 37 37 36 36 34 31 26 25 26 31 32 33 31 32 33 31 32	MEAN 44 44 41 39 38 37 36 35 35 32 32 32 33 33 33 34 33 31 32
1 2 3 4 5 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	51 56 56 56 54 51 50 49 52 51 51 51 51 51 51 51 51 51 51 51 51 51	MIN 49 50 49 54 50 49 47 45 48 49	51 52 52 54 50 50 50 50 50 50 50 50 50 50 50 50 50	46 45 51 57 55 53 50 49 48 48 47 45 45 45 45 45 45 45 45 45 45 45 45 45	MIN 45 44 53 51 50 49 48 47 47 45 44 44 45 45 45 45 46 47 47 45 46 47 47 48 48 48 48 48 48 48 48 48 48 48 48 48	45 45 553 51 49 49 49 47 46 44 44 44 45 44 44 45 43 41 40 38 37	37 37 34 40 42 39 43 41 38 37 44 49 49 46 43 38 37 35 34 34 34 34 34 33 33	MIN 34 34 39 32 39 35 36 37 34 37 34 43 38 37 35 31 31 31 31	MEAN 36 36 31 35 40 37 39 40 38 37 41 47 44 40 37 35 34 33 33 32 33	44 44 44 41 40 39 37 36 36 36 34 31 26 32 33 33 34 34 34 32 33	MIN 44 42 41 40 38 37 37 36 36 34 31 26 25 26 31 32 33 33 31 30 31 29 29	MEAN 44 44 41 39 38 37 36 35 35 35 32 31 32 33 33 33 34 33 31 31
1 2 3 3 4 5 5 6 6 7 8 9 10 11 12 2 13 14 15 15 16 17 18 19 20 21 22 23 24 25 26 27 28	51 56 56 56 54 51 50 49 50 51 51 51 51 51 51 51 51 51 51 51 51 51	MIN 49 50 49 54 50 49 47 45 48 49 48 49 48 49 48 49 48 49 48 49 48 49 48 49 47 47	51 52 54 50 50 50 50 50 50 50 50 50 50 50 50 50	46 45 51 57 55 53 50 49 48 48 47 45 44 44 44 45 45 45 45 45 47 48 49 49 49 49 49 49 49 49 49 49 49 49 49	MIN 45 44 44 53 51 50 49 48 47 45 44 44 45 43 42 44 45 43 39 38 36 36 36 35	45 45 55 55 51 49 48 47 46 44 44 44 45 44 44 45 44 44 45 45 44 46 47 48 48 48 48 48 48 48 48 48 48 48 48 48	37 37 34 40 42 39 43 41 38 37 44 49 49 49 46 43 33 34 34 34 34 35 37	MIN 34 34 39 32 39 35 36 38 37 43 46 43 38 37 35 32 31 31 31 31 32 31	MEAN 36 36 31 35 40 37 39 40 38 37 41 47 47 44 40 37 35 34 33 33 32 33 32	44 44 44 41 40 39 37 36 36 36 34 31 26 32 33 34 33 34 34 32 33	MIN 44 42 41 40 38 37 36 36 34 31 26 25 26 31 32 33 31 30 31 29 30	MEAN 44 44 41 39 38 37 36 35 35 35 31 32 31 31 31
1 2 3 3 4 5 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 0	51 56 56 56 57 50 50 50 50 50 50 50 50 50 50 50 50 50	MIN 49 50 49 54 50 49 47 45 48 49 48 48 49 48 48 49 48 48 49 48 48 49 48 48 49 48 48 49 48 48 48 48 48 48 48 48 48 48 48 48 48	51 52 52 54 50 50 50 50 50 50 50 50 50 50 50 50 50	46 45 51 57 55 50 49 48 48 47 45 44 44 44 45 45 45 45 45 45 45 45 45	MIN 45 44 44 53 51 50 49 48 47 47 45 45 44 42 44 45 43 42 44 45 43 42 44 45 43 42 43 43 42 44 45 43 43 42 44 45 43 43 42 44 45 43 43 42 44 45 45 43 43 42 44 45 45 43 43 42 44 45 45 43 43 42 44 45 45 43 43 44 45 45 43 43 44 45 45 43 43 44 45 45 45 46 47 47 48 48 48 48 48 48 48 48 48 48 48 48 48	45 45 553 519 49 47 46 44 44 44 45 44 44 45 44 44 45 46 47 48 47 48 48 48 48 48 48 48 48 48 48 48 48 48	37 37 34 40 42 39 43 41 38 37 44 49 49 46 43 33 34 34 34 34 34 34 34 34 34 37	MIN 34 34 29 32 39 35 36 38 37 34 43 38 37 35 32 31 34 31 32 31 48 44 44	MEAN 36 36 31 35 40 37 39 40 38 37 41 47 44 40 37 35 34 33 33 32 34 7 49 46	44 44 44 41 40 39 37 36 36 36 34 31 31 26 32 33 33 34 34 34 34 32 33 33 33 34 32 33 33 33 34 33 34 33 34 34 36 36 36 36 36 36 36 36 36 36 36 36 36	MIN 44 42 41 40 38 37 37 36 36 34 31 26 25 26 31 32 33 33 31 30 27 27	MEAN 44 441 39 38 37 36 35 35 32 31 32 31 31 31 32 39 29
1 2 3 3 4 4 5 5 6 6 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	51 56 56 56 57 51 51 51 51 51 51 51 51 51 51 51 51 51	MIN 49 50 49 54 50 49 47 45 48 49 48 48 49 48 48 48 49 48 48 48 49 48 48 48 49 48 48 48 49 48 48 48 49 48 48 48 48 48 48 48 48 48 48 48 48 48	51 51 52 54 50 50 50 50 50 50 50 50 50 50 50 50 50	46 45 51 57 55 53 50 49 48 48 47 45 45 44 44 46 45 45 45 47 48 49 40 39 39 38 37 36	MIN 45 44 53 51 50 49 48 47 47 45 44 44 45 45 41 39 38 36 36 36 35 35	45 45 55 5 5 5 5 5 19 49 48 47 46 44 44 44 45 44 44 45 44 44 45 46 47 48 48 48 48 48 48 48 48 48 48 48 48 48	37 37 34 40 42 39 43 41 38 37 44 49 49 49 46 43 38 37 35 34 34 34 33 33 33 33 33 35 59 51	MIN 34 34 39 32 39 35 36 38 37 34 43 37 43 46 43 38 37 35 32 31 31 32 31 48	MEAN 36 36 31 35 40 37 39 40 38 37 41 47 47 44 40 37 35 34 32 33 33 32 33 34 7 49	44 44 44 41 40 39 37 36 36 36 36 31 31 26 32 33 33 34 34 34 34 34 34 34 34 34 34 34	MIN 44 42 41 40 38 37 36 36 34 31 26 25 26 31 32 33 31 30 31 29 29 30 27	MEAN 44 44 41 39 38 37 36 35 35 32 32 32 33 33 33 34 33 31 32 31 31

01466800 BISPHAMS MILL CREEK NEAR PRESIDENTIAL LAKES, NJ

LOCATION.--Lat 39°55'25", long 74°35'31", Burlington County, Hydrologic Unit 02040202, at bridge on unnamed road, 1.2 mi (1.9 km) downstream of outflow of Presidential Lakes, 1.2 mi (1.9 km) northwest of Presidential Lakes, 1.8 mi (2.9 km) south of Browns Mills Junction, and 1.9 mi (3.1 km) northeast of Ong.

DRAINAGE AREA. -- 13.7 mi2 (35.5 km2).

PERIOD OF RECORD. --

CHEMICAL ANALYSES: Water years 1977 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BID- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)
JAN											
05	1010	78	4.0	3.0	. 1	12.0	. 3	11	2	0	0
		SOLIDS,	SOLIDS,					NITRO-			
		RESIDUE	RESIDUE	NITRO-	NITRO-	NITRO-	-CATIN	GEN, AM-		PHOS-	
	ALKA-	AT 180	AT 105	GEN,	GEN,	GEN,	GEN,	MONIA +	NITRO-	PHORUS,	CARBON,
	LINITY	DEG. C	DEG. C.	NITRATE	NITRITE	AMMONIA	ORGANIC	DRGANIC	GEN,	ORTHO.	DRGANIC
	(MG/L	DIS-	SUS-	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	AS	SOLVED	PENDED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DATE	CACO3)	(MG/L)	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)	AS P)	AS C)
JAN											
05	0	41	0	.03	.00	.01	.20	.21	.24	.00	9.5

01466900 GREENWOOD BRANCH AT NEW LISBON, NJ

LOCATION.--Lat 39°57'23", long 74°37'39", Burlington County, Hydrologic Unit 02040202, at bridge on Springfield Road in New Lisbon, 0.1 mi (0.2 km) south of intersection of Springfield Road and Penn Central Railroad, 0.6 mi (1.0 km) downstream of North Branch Rancocas Creek, and 1.8 mi (2.9 km) northeast of Magnolia.

DRAINAGE AREA .-- 80.7 mi2 (209.0 km2).

. . .

PERIOD OF RECORD. -- CHEMICAL ANALYSES: Water years 1953, 1957-58, 1966, 1968-69, 1972, 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATED	OHALTTV.	DATA	MATED	VEAD	DCTORES	1477	TO	SEPTEMBER	1979

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVE (MG/L)	ICA	ND, C	DLI- DRM, ECAL, EC ROTH MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
OCT 03	1220	57	4.1	16.5	3	8.4		.6	2	34	6	1.3
NOV 10	1105	72								9	8	2.0
JAN	77.4		3.7	14.5	0	6.6		1.5	240		. 7	
30	0940	67	4.1	.0	4	13.2	2	. 4	<2	4	5	1.0
22	1015	56	4.1	8.0	2	10.1		. 6	4	<2	4	.9
17	1120	56	4.1	13.0	3	8.6		1.3	240	110	5	1.3
JUN 22	1145	45	4.3	21.0	3	7.0)	1.2	540	920	4	.9
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS 4G)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CU3)	ALKA- LINITY (MG/L AS CACO3)	SULFI DIS- SULV (MG/ AS S	ED ST	FATE (S-)LVED (G/L (SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
03	.6	3.0	. 8	0	0	0		.0	9.2	5.2	4.8	28
10	.8	2.9	.7	0	0	0			13	5.1		42
JAN 30	.5	2.2	.4	0	0	0			8.6	4.2		29
MAR 22	.4	2.1	.7	0	0	0			9.1	3.5		33
MAY												
17 JUN	.5	2.7	.6	0	0	0		••	8.5	3.8		30
22	.5	2.4	.8	0	0	0		••	5.5	3.7	••	32
DI	RES AI DEG SU PEN	105 G . C. NIT S- TO DED (M	EN, G RATE NIT TAL TO G/L (M	EN, G RITE AMM TAL TO G/L (M	EN, COUNTAL ORGINAL TO	TRO- GE SEN, MO SANIC OR STAL I	ITRO- N,AM- NIA + GANIC OTAL MG/L S N)	NITRO- GEN, TOTAL (MG/L AS N)	PHO PHOR TOT (MG AS	S- PHO US, OR AL TO /L (M	THO. DRG TAL TO G/L (M	BDN, ANIC TAL G/L C)
oct							4.00					
NO		0	.07	.00	.02	.00	.02	.09		.02	.00	9.6
JA		3	.00	.00	.00	.75	.75	.75	3	.02	.01	10
3 (MAR	2	0	.04	.00	.00	.17	.17	.21		.01	.00	9.2
	2	1	.07	.00	.00	.20	.20	.27		.01	.00	7.6
17	7	7	.02	.01	.00	.46	.46	. 49		.02	.01	7.0
JUN 22	2	5	.07	.01	.06	.46	.52	.60		.04	.01	6.2

01466900 GREENWOOD BRANCH AT NEW LISBON, NJ--Continued

		ALUM-			CADMIUM	CHRO-	COBALT.	COPPER.
		INUM,		BORON,	TOTAL	HEXA-	TOTAL	TOTAL
		DIS-	ARSENIC	DIS-	RECOV-	VALENT,	RECOV-	RECOV-
		SOLVED	TOTAL	SOLVED	ERABLE	DIS.	ERABLE	ERABLE
	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE		AS AL)	AS AS)	AS B)	AS CD)	AS CR)	AS CO)	AS CU)
OCT								
03	1220	240	0	3	0	0	0	2
			1					12
						111		
			MANGA-					
		LEAD,	NESE,	MERCURY	NICKEL,		ZINC,	
. 14.	IRON,	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL	
	DIS-	RECOV-	RECOV-	RECOV-	RECOV-	NIUM,	RECOV-	
	SOLVED	ERABLE	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	PHENOLS
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	* 213
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(ne\r)
OCT								
03	250	5	40	<.5	1	0	20	2

01467000 NORTH BRANCH RANCOCAS CREEK AT PEMBERTON, NJ

LOCATION.--Lat 39°58'10", long 74°41'05", Burlington County, Hydrologic Unit 02040202, on right bank at downstream side of highway bridge at Pemberton, 12 mi (19 km) upstream from confluence with South Branch.

DRAINAGE AREA. -- 111 mi2 (287 km2).

PERIOD OF RECORD.-WATER DISCHARGE: September 1921 to current year.
CHEMICAL ANALYSES: Water years 1923-24, 1958, 1962-69, 1975 to current year.
SEDIMENT ANALYSES: July to September 1978.

REVISED DISCHARGE RECORDS .-- WSP 1302: 1922-23. WSP 1382: 1933.

GAGE.--Water-stage recorder above concrete dams. Datum of gage is 31.19 ft (9.507 m) National Geodetic Vertical Datum of 1929. Prior to June 9, 1923, nonrecording gage and June 9, 1923 to Aug. 9, 1951, water-stage recorder at site 600 ft (183 m) downstream at datum 6.54 ft (1.993 m) lower.

REMARKS.--Discharge records good except those for periods when the gate was open, which are fair. Flow regulated occasionally by operation of gate in dam and by ponds above station.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

AVERAGE DISCHARGE. -- 57 years, 171 ft3/s (4.843 m3/s), 20.92 in/yr (531 mm/yr).

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 600 ft3/s (17.0 m3/s) and maximum (#):

Date		Time	Discha (ft³/s)		Gage H	leight (m)	Date		Time	Discha (ft³/s)	arge (m³/s)	Gage H	leight (m)
Nov.	9	1545	929	26.3	2.90	0.884	Mar.	27	1415	649	18.4	2.50	0.762
Dec. Jan.	19	0015 0645	642 881	18.2	2.49	0.759	May July	26	0015 1015	846 635	24.0 18.0	2.78	0.847
Jan.	27	0530	*1110	31.4	3.14	0.957	Aug.	29	2015	860	24.4	2.65	0.808
Mar.	16	0015	656	18.6	2.51	0.765	Sept.	1	2400	712	20.2	2.42	0.738

Minimum daily discharge, 80 ft3/s (2.27 m3/s) Oct. 6, 8.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,730 ft³/s (49.0 m³/s) Aug. 31, 1939, gage height, 4.23 ft (1.289 m), from high-water mark at former site, present datum; minimum daily, 9.0 ft³/s (0.25 m³/s) Sept. 29, 1932.

		DISCHA	RGE, IN	CUBIC FEET	PER SECO	ND, WATER AN VALUES	YEAR OCT	OBER 1977	TO SEPTE	4BER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1	118	131	461	320	363	155	320	159	313	127	165	641
2	131	122	559	274	327	155	300	155	267	114	160	689
3	110	131	559	267	293	150	280	145	236	180	191	533
4	94	150	415	248	274	155	254	145	242	552	205	355
5	83	140	560	236	254	155	242	159	242	600	280	285
6 7 8 9	80 83 80 110 191	131 307 727 901 789	531 481 397 348 313	224 224 242 404 397	242 236 230 218 202	145 140 136 136 150	242 213 224 224 218	180 185 170 236 320	230 230 236 236 218	467 397 313 254 218	370 355 385 581 600	245 250 335 240 220
11	196	600	293	307	185	170	213	293	196	170	600	200
12	196	524	274	274	191	202	202	224	175	155	580	180
13	218	390	254	280	185	341	196	191	159	127	540	170
14	267	327	261	454	191	510	191	213	155	131	502	165
15	280	287	377	467	202	580	191	267	140	140	425	160
16	236	248	404	390	191	621	175	287	127	155	375	160
17	207	248	377	355	185	566	164	377	118	196	320	150
18	180	327	426	713	180	489	180	370	140	207	285	140
19	165	377	600	839	180	467	280	293	159	202	255	180
20	155	334	573	691	175	433	196	248	159	175	210	200
21	130	274	594	524	170	411	230	213	145	155	180	190
22	130	242	621	454	164	397	254	191	159	145	157	180
23	101	261	531	440	164	370	242	175	196	140	152	170
24	114	384	447	426	159	334	236	390	191	127	139	160
25	118	363	418	489	159	313	224	761	164	114	113	150
26 27 28 29 30 31	140 114 122 122 114 122	433 489 474 363 404	355 313 280 254 242 274	839 1060 761 552 433 397	159 159 155 	418 628 573 467 390 363	207 180 180 191 175	810 663 552 474 397 327	155 150 155 145 131	114 110 118 118 105	126 107 415 791 755 617	140 130 120 113 112
TOTAL	4507	10878	12792	13981	5793	10520	6624	9570	5569	6240	10936	6963
MEAN	145	363	413	451	207	339	221	309	186	201	353	232
MAX	280	901	621	1060	363	628	320	810	313	600	791	689
MIN	80	122	242	224	155	136	164	145	118	105	107	112
CFSM	1.31	3.27	3.72	4.06	1.87	3.05	1.99	2.78	1.68	1.81	3.18	2.09
IN.	1.51	3.65	4.29	4.69	1.94	3.53	2.22	3.21	1.87	2.09	3.67	2.33

901

NOTE. -- Gate open Aug. 3 to Sept. 29.

01467000 NORTH BRANCH RANCOCAS CREEK AT PEMBERTON, NJ -- Continued

DATE	TIME	SIREAM- FLOW, INSTAN- IANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	DXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACD3)	CALCIUM DIS- SOUVED (MG/L AS CA)
03	1145	110	57	4.2	18.0	4	8.0	.9	11	79	9	2.1
10	1010	768	65	4.1	14.5	4	7.3	1.8	240	70	13	3.6
JAN 30	1040	418	62						8	17	7	1.7
MAR				4.2	.0	3	13.4	. 4				
22 MAY	1120	397	56	4.2	8.0	3	10.8	.7	5	12	7	1.7
11 JUN	1020	300	52	4.4	13.5	2	9.6	2.6	79	33	9	2.1
26	0930	159	43	4.6	20.0	5	7.4		79	240	6	1.4
JUL 24	0830	127	41	4.6	25.0	3	6.3	1.1	79	>2400	6	1.5
10	1135	105	40	4.4	24.5	3	6.4	1.5	330	920	6	1.7
DATE	MAGNE- SIUM, DIS- SOLVEO (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)
03	.9	3.0	1.0	0	0	0	11	5.0	30	0		
NOV 10	.9	2.7	1.0	0	0	0	13	5.4	50	6		
JAN	.6	2.3	.5	0	0	0	9.9	4.6	34	0	-	144
MAR								7		11/3		
22 MAY	.6	2.5	.9	. 0	0	0	10	3.8	42	2		7
11 JUN	.8	2.7	.9	0	0	0	11	4.5	37	7		
26 JUL	.7	2.6	.7	0	0	0	6.1	4.5	41	6	-	
24 AUG	6	2.4	.8	0	0	0	6.1	4.2	35	9	14	4.8
10	.5	2.4	.8		0		6.9	4.1	39	10	19	5.4
	NIT!	EN, GE RATE NITE	RRO- NIT EN, GE RITE AMMO FAL TOT	N, GE NIA ORGA AL TOT	RO- GEN, N, MONI NIC DRGA AL TOT	AM- GEN IA + + O ANIC TOT IAL BOT	IN G	EN, PHO	DS- PHOE RUS, OR'	OS- RUS, CARB PHO. DRGA FAL TOT	NIC BOT	INIC IN TOM
DAT									P) AS			
OCT 03.		.14	.00	.03	.16	.19 4	90	.33	.03	.00	9.2	4.2
NOV 10.		.04	.00	.00	.52	.52		.56	.04	.01 1	6	
JAN 30.		.08	.00	.00	.28	.28		.36	.01		6.2	
MAR 22.		.12	.00	.03	.25	.28		.40	.02	.00	8.1	
MAY 11. JUN		.04	.01	.01	.30	.31		.36	.02	.01	5.9	
26. JUL	••	.00	.01	.09	.50	.59		.60	.05	.02	5.2	-
24.										1	4	* 25
AUG 10.										1	8	

01467000 NORTH BRANCH RANCOCAS CREEK AT PEMBERTON, NJ--Continued

DATE	TIME	ARSENIC FOTAL IN BOT- FOM MA- TERIAL (UG/G AS AS)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/L AS HG)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)
				100,0,	nb 00,	no co,		40 .07	(00,0)			
03	1145	2	<10	10	<10	990	9000	1200	100	.0	<10	1140
	РСВ,	ALDRIN,	CHLOR-	DDD,	DDE,	DDT,	DI- ELORIN,	ENDRIN,	HEPTA- CHLOR,	HEPTA- CHLOR	LINDANE	TOXA- PHENE,
	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	EPOXIDE	TOTAL	TOTAL
	IN BOT-	IN BOT-	IN BOT-	IN BOT-	IN BOT-	IN BOT-	IN BOT-	IN BOT-	IN BUT-	TOT. IN	IN BOT-	IN BOT-
	TOM MA-	FOM MA-	TOM MA-	TOM MA-	TOM MA-	TOM MA-	TOM MA-	FOM MA-	TOM MA-	BOTTOM	TOM MA-	TOM MA-
	TERIAL	TERIAL	TERIAL	TERIAL	TERIAL	TERIAL	TERIAL	TERIAL	TERIAL	MATL.	TERIAL	TERIAL
DATE	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)
OCT												
03	16	.0	32	13	2.4	18	1.1	.0	.0	.0	.0	0

01467003 NORTH BRANCH RANCOCAS CREEK AT EWANVILLE, NJ

LOCATION.--Lat 39°58'55", long 74°44'11", Burlington County, Hydrologic Unit 02040202, at bridge on U.S. Route 206 in Ewanville, 0.2 mi (0.3 km) upstream from Powells Run, 0.7 mi (1.1 km) east of Smithville, and 0.8 mi (1.3 km) north of intersection of U.S. Route 206 with State Route 38.

DRAINAGE AREA . -- 126 mi2 (326 km2).

PERIOD OF RECORD.--CHEMICAL ANALYSES: Water years 1975 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	TIM		SPE- CIFIC CON- DUCT- ANCE MICRO-	РН		PER-	TU BI IT	D-	OXYGI DIS	5-	DXYG DEMA BID .CHE ICA 5 DA	ND,	COUI- FORM, FECAL EC BROTH	TOC	REP- OCCI	HARD NESS (MG/		CALCIU DIS- SOLVE	D
DATE			MHOS)	(UNIT	(DE	G C)	(JT	U)	(MG	(L)	(MG/	(J)	(MPN)	CM	PN)	CACO	3)	AS CA	1)
OCT																			
12	132	5	82	5.	9	14.0		4		9.2		2.1	11	0	49		17	4.	9
10 JAN	091	0	62	4	.6	14.5		5		7.2		.0	24	0	79		13	3.	4
30	131	5	59	4	. 7	.0		3	1	3.5		• 8	2	0	20		12	3.	5
22	132	0	61	5	0	8.5		4.	1	1.0		1.4		2	13		13	3.	5
11 JUN	132	0	68	5	.5	14.5		2	10	0.6		3.1	17	0	130		15	4.	1
26	131	5	59	5	.7	20.0		4		7.8		••	23	0	170		12	3.	3
	MAGN			POTA											LO-	SILIC	Α,	SOLIDS	JE
	DIS		DIS-	DIS			CAR	-	LINI		SULF		SULFAT	E BI	DE, S-	DIS-	ED	AT 180	
	SOLV		OLVED	SOLVE		G/L	BONA		(MG	/L		VED	SOLVE		LVED	(MG/	L	DIS-	
DATE	AS M		(MG/L AS NA)	AS K		AS ()3)	AS C		CAC	03)	(MG		AS SU4		G/L	SIO2)	SOLVE (MG/L	
001									,										
12	1	. 2	6.7	1	. 2	5		0		4		.0	18		7.0	5	. 4	5	2
10	. 1	. 1	3.5	1.	. 2	0		0		0			15		6.1	- 24 4 7	••	6	2
30		. 8	3.3		. 8	1		0		1			12		11	10/90		4	12
22	. 1	.0	3.8	1	. 3	2		0		2			14		6.8			. 5	50
11 JUN	. 1	.1	5.0	1	1	4		0		3			15		7.0		••	. 5	57
26		. 9	4.4	1	.0	5		0		4			10		7.2			5	52
		SOLID		TRO-	NITRO-		TRO-				TRO-					105-			
		AT 10		EN,	GEN,		EN,		TRO-		AM-	NI	TRO-	PHOS-			CAR	BON,	
		DEG.			ITRITE		AINO	ORG	ANIC	ORG	ANIC			HORUS,				ANIC	
	-	SUS-		TAL IG/L	TOTAL (MG/L		TAL G/L		TAL G/L		TAL G/L			TOTAL (MG/L		TAL IG/L		TAL G/L	
	DATE	(MG/		N)	AS N)		N)		N)		N)			AS P)		P)		C)	
c	ст	43																	
	12		31	.12	.00		.10		.29		.39		.51	.06		.03		7.1	
	10		10	.06	.00		.02		.63		.65		.71	.08		.04		12	
	30		0	.14	.00		.10		.28		.38		.52	.03		.01		6.8	
	22		8	.20	.00		.16		.29		.45		.65	.03		.01		8.3	
	11		6	.17	.00		.09		.29		.38		.55	.06		.01		6.0	
	26		2	.00	.03		.17		.47		.64		.67	.09		.05		7.2	

01467003 NORTH BRANCH RANCOCAS CREEK AT EWANVILLE, NJ--Continued

						CHRO-		4
		ALUM-			CADMIUM	MIUM,	COBALT,	COPPER,
		INUM,		BORON.	TOTAL	HEXA-	TOTAL	TOTAL
		DIS-	ARSENIC	DIS-	RECOV-	VALENT.	RECOV-	RECOV-
		SOLVED	TOTAL	SOLVED	ERABLE	DIS.	ERABLE	ERABLE
	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE		AS AL)	AS AS)	AS B)	AS CD)	AS CR)	AS CO)	AS CU)
OCT								
12	1325	140	2	50	0	0	0	35
			MANGA-					
		LEAD,	NESE,	MERCURY	NICKEL,		ZINC,	
	IRON,	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL	
	DIS-	RECOV-	RECOV-	RECOV-	RECOV-	NIUM,	RECOV-	
	SOLVED	ERABLE	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	PHENOLS
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
OCT								
12	270	12	40	<.5	6	0	70	0

01467006 NORTH BRANCH RANCOCAS CREEK AT PINE STREET AT MOUNT HOLLY, NJ

LOCATION. -- Lat 39°59'22", long 74°47'06", Burlington County, Hydrologic Unit 02040202, at bridge on Pine Street in Mount Holly, 0.1 mi (0.2 km) north of Saint Andrews Cemetery in Mount Holly, and 0.3 mi (0.5 km) downstream from Hill Dam.

DRAINAGE AREA. -- 134 mi2 (347 km2).

PERIOD OF RECORD.--CHEMICAL ANALYSES: Water years 1975 to current year. SEDIMENT ANALYSES: July and August 1978.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BID- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
DCT											
12 NOV	0950	89	6.1	12.5	5	9.6	1.4	170	50	19	5.3
10 JAN	0815	61	5.1	14.5	0	7.8	2.1	330	490	15	3.9
12 MAR	1145	79	5.5	.0	4	13.8	1.9	170	23	18	4.8
23	1140	71	5.2	8.5	3	11.2	1.6	25	17	13	3.5
MAY 10	1340	77	5.9	14.0	10	10.2	3.6	>2400	1600	19	5.5
JUN 27	1115	79	6.1	21.0	4	8.0	2.5	920	540	15	4.1
JUL 24	1020	66	6.2	25.5	3	6.8	1.5	130	79	13	3.7
10	0950	75	5.8	24.0	5	7.3	2.4	240	170	14	4.0
											SOLIDS,
	MAGNE- SIUM, DIS-	SODIUM, DIS-	POTAS- SIUM, DIS-	BICAR- BUNATE	CAR-	ALKA- LINITY	SULFIDE DIS-	SULFATE DIS-	CHLO- RIDE, DIS-	SILICA, DIS- SOLVED	RESIDUE AT 180 DEG. C
DATE	SOLVED (MG/L AS MG)	SOLVED (MG/L AS NA)	SOLVED (MG/L AS K)	(MG/L AS HCO3)	MG/L AS CO3)	(MG/L AS CACD3)	SOLVED (MG/L AS S)	SOLVED (4G/L AS SO4)	SOLVED (MG/L AS CL)	(MG/L AS SIO2)	DIS- SOLVED (MG/L)
	AS TG)	AS NA)	40 67	HC03)	No Cusi	CACOS	MB 3)	AS 304)	AG CU)	3102)	(MG/G)
12	1.3	7.1	1.4	5	0	4	.0	19	9.5	6.2	60
10 JAN	1.2	4.2	1.5	1	0	1		16	6.7		64
12 MAR	1.4	6.0	1.1	2	0	2	••	16	8.5	••	58
23	1.1	5.5	1.2	2	0	2		15	8.4	••	48
10 JUN	1.3	5.0	1.3	5	0	4	.0	17	8.0	4.4	60
27 JUL	1.1	7.1	1.3	6	0	5	••	13	10	•	108
24 AUG	.9	4.8	1.4	4	0	3		11	7.0	••	54
10	1.0	6.5	1.4	5	0	4		13	10		66

DELAWARE RIVER BASIN 213
01467006 NORTH BRANCH RANCOCAS CREEK AT PINE STREET AT MOUNT HOLLY, NJ--Continued

	SOLIDS.						WITRD-				
	RESIDUE		NITRO-	NITRO-	NITRO-	NITRO-	GEN, AM-			PHOS-	
	AT 105	SEDI-	GEN,	GEN,	GEN,	GEN,	MUNIA +	NITRO-	PHOS-	PHORUS,	CARBON,
	DEG. C.	MENT,	NITRATE	NITRITE	AMMONIA	ORGANIC	ORGANIC	GEN,	PHORUS,	ORTHO.	DRGANIC
	sus-	sus-	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	JATCT	TOTAL	TOTAL	TOTAL
	PENDED	PENDED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DATE	(MG/L)	(MG/L)	AS N)	AS N)	AS P)	AS P)	AS C)				
DCT					+						
12	12		.15	.00	.16	.40	.56	.71	.09	.04	6.9
NOV				1.00							
10	16		.07	.00	.04	.62	.66	.73	.12	.02	7.2
JAN											
12	7		.30	.00	.13	.38	.51	.81	.05	.01	8.1
MAR											
23	2		.23	.00	.10	.39	.49	.72	.04	.00	6.4
MAY											
10	49		.21	.00	.11	.84	.95	1.2	.26	.04	5.8
JUN							A.				
27	22		.27	.01	.25	.16	. 41	.69	.14	.07	10
JUL											
24	12	15			.40	.00	.40	1.4			13
AUG											
10	4	19			.30	1.2	1.5				9.7

						CHRD-			
		ALUM-			CADMIUM	MIUM,	COBALT,	COPPER,	
		INUM,		BORON,	TOTAL	HEXA-	TOTAL	TOTAL	
		DIS-	ARSENIC	DIS-	RECOV-	VALENT,	RECOV-	RECOV-	
		SOLVED	TOTAL	SOLVED	ERABLE	DIS.	ERABLE	ERABLE	
	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE		AS AL)	AS AS)	AS B)	AS CD)	AS CR)	AS CO)	AS CU)	
OCT	0050	420				•	0	35	
12	0950	130	2	50	0	0		35	
MAY						•	2	44.	
10	1340	160		60		0	2	11	
			MANGA-						
		LEAD,	NESE,	MERCURY	NICKEL,		ZINC,		
	IRON,	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL		
	DIS-	RECOV-	RECOV-	RECOV-	RECOV-	NIUM,	RECOV-		
	SOLVED	ERABLE	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	PHENDLS	
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L		
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)	
200									
DCT	400		40		5	0	60	0	
12	180	14	40	<.5	9	U	00	U	
MAY	400				9		70	1	
10	190		60		9		70		

01467008 RANCOCAS CREEK AT CENTERTON, NJ

LOCATION.--Lat 39°59'47", long 74°52'05", Burlington County, Hydrologic Unit 02040202, at bridge on Interstate Route 295 at Centerton, and 0.4 mi (0.6 km) downstream from confluence of North and South Branches.

DRAINAGE AREA. -- 312 mi2 (808 km2).

PERIOD OF RECORD.-CHEMICAL ANALYSES: Water years 1975 to current year.
SEDIMENT ANALYSES: July to September 1978.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

												4953 C. T.
		SPE- CIFIC CON- DUCT- ANCE	РН	TEMPER-	TUR- BID-	OXYGEN, DIS-	OXYGEN DEMAND, BIO- CHEM- ICAL,	COLI- FORM, FECAL, EC	STREP- TOCOCCI	HARD- NESS (MG/L	CALCIUM DIS- SOLVED	MAGNE- SIUM, DIS- SOLVED
DATE	TIME	(MICRO-	(UNITS)	(DEG C)	(JTU)	SOLVED (MG/L)	5 DAY (MG/L)	(MPN)	FECAL (MPN)	CACD3)	(MG/L AS CA)	(MG/L AS MG)
0		411007	(0.113)	(060 0)	(010)	(MG/L)	(MG/L)	(MEN)	(MEN)	CACUST	AS CAJ	AS MGJ
OCT												
12 NOV	0820	132	6.3	13.0	8	7.2	1.3	2800	2200	35	10	2.5
08 JAN	1410	101	6.3	14.0	30	6.7	3.9	>24000	2400	30	8.4	2.2
12 MAR	0815	112	6.3	.0	7	13.0	1.7	540	33	34	10	2.3
23	1400	97	5.8	10.0	5	9.6	1.3	110	49			-
18 JUN	1230	100	6.4	15.0	6	7.8	2.1	170	350	28	7.7	2.1
29 JUL	1100	118	6.6	24.5	8	5.0	3,9	1600	280	26	7.5	1.8
20 AUG	1000	103.	6.3	24.0	. 7	4.4	2.2	1400	>24000	24	6.7	1.8
08 SEP	0940	85	6.1	24.5	10	4.7	2.7	1300	2200	24	6.7	1.7
26	1000	115	6.5	16.5		7.9	2.9	230	110	30	8.3	2.3
										1 :		
31AD	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFIDE DIS- SOLVED (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
OCT 12	7.0	3.2	10	0	8	1 10 1	.0	28	10		7.2	81
NOV							••					
08 JAN	4.3	4.0	12	0	10			20	8.3			63
12 MAR	6.3	1.9	6	0	5			23	9.8	••		76
23 MAY	6.0		7	0	. 6	-		20	8.4	••		62
18 JUN	5.7	1.8	10	0	8		.0	21	8.4	-	5.2	78
29 JUL	8.3	2.1						19	12			99
20 AUG	7.2	2.1	10	0	8			17	10			84
08 SEP	4.3	2.3	9	0	7			17	6.9			69
26	7.5	2.3	. 11	0	16	.0		19	11	.1	7.1	83

DELAWARE RIVER BASIN 01467008 RANCOCAS CREEK AT CENTERTON, NJ -- Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	SOLIDS, RESIDUE AT 105 DEG. C,	SEDI- MENT,	NITRO- GEN, NITRATE	NITRO- GEN, NITRITE	NITRO- GEN, AMMONIA	NITRO- GEN, ORGANIC	NITRD- GEN, AM- MONIA + ORGANIC	NITRO- GEN,	PHOS- PHORUS,	PHOS- PHDRUS, ORTHO.	CARBON, DRGANIC
	SUS-	sus-	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	PENDED	PENDED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DATE	(MG/L)	(MG/L)	AS N)	AS N)	AS P)	AS P)	AS C)				
JCT											
12	21		.50	.01	.16	.73	.89	1.4	. 27	.08	7.2
NOV											
08	45		.33	.01	.02	1.1	1.1	1.4	.14	.08	
JAN											2.3
12	8		.55	.01	.31	.29	.60	1.2	.12	.02	9.0
MAR			4-								
23	16		.47	.01	. 26	.53	.79	1.3	.16	.04	7.5
18	15		.43	.01	.23	.53	.76	1.2	.20	.09	5.6
JUN	15		. 43	.01	. 23	. 33	. / 5	1.2	.20	.03	3.0
29	49		.59	.01	.22	1.1	1.3	1.9	.34	.16	8.9
JUL	• •		•••	•••		***			• • • •	• • • •	
20	33	32			.40	1.9	2.3	3.3			7.4
AUG											
08	23	30			.50	2.8	3.3				15
SEP										100	
26		31	.59	.01	.30	2.3	2.6	3.2	.35	.18	8.0
			ALUM-		BERYL- LIUM,		CADMIUM	CHRO-	CHRO-	COBALT,	
			INUM,		TOTAL	BORON,	TOTAL	TOTAL	HEXA-	TOTAL	
			DIS-	ARSENIC	RECOV-	DIS-	RECOV-	RECOV-	VALENT,	RECOV-	
		TIME	SOLVED (UG/L	TOTAL (UG/L	ERABLE	SOLVED	ERABLE	ERABLE (UG/L	OIS.	CUG/L	
	DATE	TIME	AS AL)	AS AS)	(UG/L AS BE)	(UG/L AS B)	(UG/L AS CD)	AS CR)	AS CR)	AS CO)	
	0415		40 407	45 AU,	NO 067	40 07	A3 C07	AS CRI	NO CKY	40 607	
	OCT										
	12	0820	80	3	••	30	0		0	0	
	18 SEP	1230	90			7	0		0	2	
	26	1000	50	2	0			10	••		
					MANGA-		Strong -		22.12.4		
		COPPER,		LEAD,	NESE,	MERCURY	NICKEL,		ZINC,		
		TOTAL	IRON,	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL		
		RECOV- ERABLE	DIS-	RECOV- ERABLE	RECOV- ERABLE	RECOV- ERABLE	RECOV- ERABLE	NIUM,	RECOV- ERABLE	PHENOLS	
		(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	FUENUES	
	DATE	AS CU)	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)	
	0.7.0			,	no,	AG		40 001		(00,0)	
	OCT										
	12	37	170	14	80	<.5	11	0	40	0	
	MAY										

<.5

<.5

01467019 MILL CREEK NEAR WILLINGBORO, NJ

LOCATION.--Lat 40°01'53", long 74°51'14", Burlington County, Hydrologic Unit 02040202, on left upstream wingwalll of bridge on Springside Avenue, 2.2 mi (3.5 km) upstream from South Branch Mill Creek, 0.2 mi (0.3 km) east of Willingboro, and 4.6 mi (7.4 km) upstream from mouth.

DRAINAGE AREA . -- 4.12 mi2 (10.7 km2).

PERIOD OF RECORD. -WATER DISCHARGE: October 1975 to September 1978.
CHEMICAL ANALYSES: Water year 1976 to 1977.
SEDIMENT ANALYSES: Water year 1976 to 1977.

GAGE. -- Water-stage recorder. Datum of gage is 21.65 ft (6.598 m) National Geodetic Vertical Datum of 1929.

REMARKS. -- Discharge records fair. Site was sampled as part of an urban runoff project.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 125 ft3/s (3.54 m3/s) and maximum (*):

			Dischar	rge	Gage H	leight				Discha	arge	Gage H	leight
Date		Time	(ft^3/s)	(m³/s)	(ft)	(m)	Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Nov.	8	0500	212	6.00	7.69	2.344	May	24	1130	218	6.17	7.74	2.359
Dec.	1	0600	162	4.59	7.22	2.201	June	19	2015	202	5.72	7.60	2.316
Dec.	21	1200	155	4.39	7.15	2.179	July	3	2230	272	7.70	8.15	2.484
Jan.	9	0800	130	3.68	6.87	2.094	Aug.	7	0315	262	7.42	8.08	2.463
Jan.	18	0345	189	5.35	7.49	2.283	Aug.	11	1800	350	9.91	8.68	2.646
Jan.	26	0745	440	12.5	9.20	2.804	Aug.	31	2245	*492	13.9	9.46	2.883
Mar	14	1045	154	4 36	7 14	2 176		-					

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

Minimum discharge, 1.7 ft3/s (0.048 m3/s) July 24, 27, gage height, 2.88 ft (0.878 m).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 492 ft³/s (13.9 m³/s) Aug. 31, 1978, gage height, 9.46 ft (2.883 m); minimum daily, 0.18 ft³/s (0.005 m³/s) July 28, 29, 1977.

		DISCHA	NOE, IN C	ODIC PEET	ME ME	AN VALUES	IEAR OCI	ODER 1911	TO SEFTE	MDER 1910		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.5 2.8 2.5 2.4 2.3	3.6 3.8 5.1 6.1 4.6	68 8.4 6.2 5.5 27	4.9 4.0 3.7 3.5 3.6	4.1 3.8 3.5 3.3 3.1	3.1 3.0 3.4 3.8	3.9 3.4 3.3 3.8 5.0	2.4 2.4 2.3 2.8 4.8	2.5 2.3 2.3 2.3 2.2	2.4 2.2 58 52 5.0	5.8 3.2 17 7.4 31	91 6.3 4.3 3.8 3.3
6 7 8 9	2.5 2.4 2.3 26 6.8	4.3 88 99 8.5 6.6	19 6.0 4.9 6.4 5.1	4.2 5.6 9.1 62 8.6	3.3 3.6 3.6 3.6 3.5	3.6 4.1 3.8 3.6 4.0	3.6 4.7 3.6 3.2 3.0	3.3 3.0 3.0 29	2.1 2.3 2.8 2.6 2.1	3.5 2.9 2.6 2.5 2.5	8.1 73 4.5 3.4 3.6	3.2 2.9 2.8 2.9 2.6
11 12 13 14 15	3.6 3.2 2.8 4.0 20	6.0 5.0 4.7 4.4 4.4	5.3 5.3 4.8 19	7.0 5.0 4.6 39 9.0	3.4 3.3 3.2 3.6 3.5	10 27 29 52 24	3.2 3.4 3.0 2.8 2.7	3.8 3.2 3.2 27 6.2	2.0 1.9 2.3 2.0 1.9	2.5 2.2 2.1 5.5 8.8	90 27 7.1 4.2 3.5	2.6 2.7 2.9 2.6 2.6
16 17 18 19 20	4.8 5.6 3.9 3.5 5.8	4.3 16 13 5.6 4.9	6.4 5.4 67 28 7.5	5.0 4.8 83 10 6.0	3.4 3.3 3.5 3.4 3.3	9.3 12 9.3 10 6.8	2.7 2.7 2.7 7.8	9.3 8.1 8.7 4.3 3.3	1.8 1.9 1.9 52	6.2 11 3.6 2.6 2.3	3.2 2.9 2.7 2.5 2.5	2.6 2.5 2.5 2.7 2.6
21 22 23 24 25	4.1 3.5 3.2 3.1 3.1	4.8 5.3 37 8.7 6.7	65 9.3 6.0 5.4 7.8	5.0 4.3 4.0 3.8 38	3.2 3.2 3.2 3.2	6.4 6.0 4.9 4.5	4.6 3.5 3.1 3.0 2.9	2.9 2.5 2.3 91 9.7	11 33 4.0 2.9 2.5	2.1 2.0 1.9 1.8 1.8	2.4 2.4 2.3 2.3 2.3	2.5 2.5 2.6 2.5 2.4
26 27 28 29 30 31	3.9 6.6 4.8 3.9 3.8 3.6	6.7 5.7 6.0	5.2 4.2 3.7 3.6 3.6	189 66 35 18 5.0 4.5	3.7 3.6 3.4	22 57 8.1 5.3 4.4 4.1	2.7 2.7 2.7 2.5 2.4	4.7 3.8 3.6 3.4 3.1 2.7	2.8 5.8 2.7 4.3 4.1	1.8 1.8 3.3 2.0 1.8 5.5	2.3 2.3 24 4.2 3.0	2.3 2.4 2.4 2.4 2.3
TOTAL MEAN MAX MIN CFSM IN.	153.3 4.95 26 2.3 1.20 1.38	437.8 14.6 99 3.6 3.54 3.95	448.4 14.5 68 3.6 3.52 4.05	655.2 21.1 189 3.5 5.12 5.91	96.1 3.43 4.1 3.1 .83 .87	351.5 11.3 57 3.0 2.74 3.17	108.6 3.62 10 2.4 .88 .98	268.9 8.67 91 2.3 2.10 2.43	183.3 6.11 52 1.8 1.48 1.65	206.2 6.65 58 1.8 1.61 1.86	440.1 14.2 90 2.3 3.45 3.97	173.7 5.79 91 2.3 1.41 1.57

CAL YR 1977 TOTAL 2167.04 WTR YR 1978 TOTAL 3523.10 CFSM 1.44 3523.10

01467060 DELAWARE RIVER AT PALMYRA, NJ

LOCATION.--Lat 40°01'05", long 75°02'16", Philadelphia County, PA, Hydrologic Unit 02040202, on right bank opposite Palmyra, 0.5 mi (0.8 km) upstream from Tacony-Palmyra Bridge, 3.5 mi (5.6 km) downstream from Rancocas Creek, and at river mile 107.45 (172.89 km).

DRAINAGE AREA. -- 7,850 mi2 (20,330 km2).

PERIOD OF RECORD. --

TIDE ELEVATIONS: December 1962 to current year. Tidal volumes published from December 1962 to September 1970.

GAGE.--Water-stage recorder. Datum of gage is -10.00 ft (-3.048 m) National Geodetic Vertical Datum of 1929. Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum of 1929 for publication.

REMARKS.--Records good. Summaries for months with short periods of no gage-height record have been estimated with negligible or no loss of accuracy unless otherwise noted. Some periods cannot be estimated and are noted by dash (--) lines.

EXTREMES FOR CURRENT YEAR.--Maximum elevation, 7.74 ft (2.359 m) Jan. 26; minimum recorded, -5.10 ft (-1.554 m) Dec. 10.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 8.11 ft (2.472 m) June 30, 1973; minimum, -8.6 ft (-2.6 m) Dec. 31, 1962.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum elevation known since 1899, 8.9 ft (2.7 m) Aug. 24, 1933, from profile furnished by Corps of Engineers, U.S. Army.

Summaries of tide elevations during current year are as follows:

	TIDE	ELEVATIONS,	IN F	EET, WA	TER YEAR	OCTOBER	1977	TO	SEPTEMBER	1978	
--	------	-------------	------	---------	----------	---------	------	----	-----------	------	--

		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Maximum	Elevation	6.24	a6.7	7.22	7.74	5.80	6.88	a6.7	6.11	5.82	5.93	a.61	6.01
high tide	Date	14	a8	21	26	8	27	a28	21	21	18	a 17	14
Minimum	Elevation	-3.24		a-5.1	-3.28	-3.30	-3.30	-3.14	-2.60	-3.03	-3.07		-2.67
low tide	Date	18		10	11	23	7	2	11	15	24	21	13
Mean high t	ide	4.73		4.73	4.42	4.37	4.63		5.16		4.75		4.87
Mean water	level	1.53		1.6	1.29	1.20	1.46		1.86		1.44		1.66
Mean low ti	de	-1.95		-1.7	-2.11	-2.24	-1.91		-1.75	4-	-2.26		-1.93

a- Estimated by comparison with Delaware River at Burlington, NJ (sta 01464598) and Delaware River at Delaware Memorial Bridge, Wilmington, DE (sta 01482100). NOTE.--Missing or doubtful record on Nov. 1 to Dec. 2, 7-14, Apr. 5 to May 4, June 2-15, Aug. 1 to Sept. 5.

01467069 NORTH BRANCH PENNSAUKEN CREEK NEAR MOORESTOWN, NJ

LOCATION. --Let 39°57'07", long 74°58'10", Burlington County, Hydrologic Unit 02040202, at bridge on Kings Highway, 200 ft (61 m) downstream from outlet of Strawbridge Lake, 0.6 mi (1.0 km) northwest of Moorestown Mall, 0.8 mi (1.3 km) southeast of Lenola, and 1.8 mi (2.9 km) southwest of Moorestown.

DRAINAGE AREA. -- 12.8 m12 (33.2 km2).

PERIOD OF RECORD. -WATER DISCHARGE: Water year 1978.
CHEMICAL ANALYSES: Water years 1976 to current year.
SEDIMENT ANALYSES: July and August 1978.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
ост												
04	0915	4.4	316	7.1	15.0	6	6.5	2.9	170	240	90	25
NOV			1									
30 FER	0915	41	231	6.6	5.0	15		1.9	17	110	79	22
16	0945	21	606	6.6	2.0	20	11.0	1.6	<20	<20	88	24
APR	0000							2 0		350	80	21
05 MAY	0930	29	317	6.5	11.5	20	8.6	2.0	14	350		21
08	0920	18	314	6.5	13.0	10	9.4	3.1	49	11	81	22
JUN	0900	3.5	310	6.8	24.0	3	6.6	5.7	2400	>2400	80	21
21 Jul	0400	3.3	/310	0.8	24.0	3	0.0	5.7	2400	22400		
19	1015	3.6	310	6.7	24.5	3	6.8	4.7	1300	49	79	21
AUG 15	0905	18	221	6.5	25.0	7	5.2	1.8	490	140	66	18
	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	PUTAS- SIUM, DIS- SOLVED (MG/L	BICAR- BONATE (MG/L AS	CAR- BONATE (MG/L	ALKA- LINITY (MG/L AS	SULFIDE DIS- SOLVED (MG/L	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L	SILICA, DIS- SOLVED (MG/L AS	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED
DATE	AS MG)	AS NA)	AS K)	HCO3)	AS CU3)	CACO3)	AS S)	AS SO4)	AS CL)	8102)	(MG/L)	(MG/L)
OCT												
04 NOV	6.6	15	7.0	23	0	19	.0	72	27	14	183	33
30	5.8	13	4.3	16	0	13		58	23		146	13
FEB									400	- 20	313	13
16 APR	6.8	75	4.5	27	0	22		67	120		113	
05	6.6	20	4.0	17	0	14		70	39		205	19
MAY 08	6.4	20	4.5	17	0	14		63	36		195	13
JUN	0,4	20	4,5				-					
21	6.7	18	5.6	22	0	1.8		64	35		204	2
JUL 19	6.5	17	5.9	22	0	18		63	29		121	1
AUG												23
15	5.0	10	4.8	20	0	16		44	17		157	23

01467069 NORTH BRANCH PENNSAUKEN CREEK NEAR MOORESTOWN, NJ -- Continued

						CHRD-		
		ALUM-			CADMIUM	MIUM,	COSALT,	COPPER,
		INUM,		BORON,	TOTAL	HEXA-	TOTAL	TOTAL
		DIS-	ARSENIC	DIS-	RECOV-	VALENT,	RECOV-	RECOV-
		SOLVED	TOTAL	SOLVED	ERABLE	DIS.	ERABLE	ERABLE
	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE		AS AL)	AS AS)	AS B)	AS CD)	AS CR)	AS CO)	AS CU)
ост								
04	0915	20	3	30	0	0	5	13
			MANGA-					
		LEAD,	NESE,	MERCURY	NICKEL,		ZINC,	
	IRON.	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL	
	DIS-	RECOV-	RECOV-	RECOV-	RECOV-	NIUM,	RECOV-	
	SOLVED	ERABLE	ERABLE	ERABLE'	ERABLE	TOTAL	ERABLE	PHENOLS
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
OCT								
04	20	6	220	<.5	22	0	30	5

01467081 SOUTH BRANCH PENNSAUKEN CREEK AT CHERRY HILL, NJ

LOCATION.--Lat 39°56'30", long 75°00'05", Camden County, Hydrologic Unit 02040202, on left bank on downstream wingwall of bridge on Mill Road in Cherry Hill, 1.1 mi (1.8 km) south of Maple Shade and 3.8 mi (6.1 km) upstream from confluence with the North Branch.

DRAINAGE AREA .-- 9.16 mi2 (23.72 km2).

PERIOD OF RECORD. -WATER DISCHARGE: October 1967 to September 1976, October 1977 to September 1978.

CHEMICAL ANALYSES: November 1975 to current year.
SEDIMENT ANALYSES: Water years 1970-73, July to September 1978.

GAGE .-- Water-stage recorder. Datum of gage is 8.12 ft (2.475 m) National Geodetic Vertical Datum of 1929.

REMARKS . -- Discharge records fair .

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

AVERAGE DISCHARGE.--10 years, (1968-76, 1978) 18.8 ft3/s (0.532 m3/s), 27.86 in/yr (708 mm/yr).

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 300 ft3/s (8.50 m3/s) and maximum (*);

			Discha	arge	Gage H	leight				Disch	arge	Gage H	leight
Date		Time	(ft3/s)	(m3/s)	(ft)	(m)	Date		Time	(ft3/s)	(m^3/s)	(ft)	(m)
Nov.	8	0200	487	13.8	8.47	2.582	July	3	2045	390	11.0	7.13	2.173
Jan.	9	1015	396	11.2	7.09	2.161	Aug.	5	2315	492	13.9	7.86	2.396
Jan.	18	0530	362	10.3	6.79	2.070	Aug.	12	2230	383	10.8	6.98	2.128
Jan.	26	1115	645	18.3	8.90	2.713	Aug.	28	1400	*868	24.6	10.19	3.106
Mav	24	0915	478	13.5	7.84	2.390	-						

Minimum discharge, 5.4 ft3/s (0.153 m3/s) July 24, gage height, 1.71 ft (0.521 m).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 868 ft³/s (24.6 m³/s) Aug. 28, 1978, gage height, 10.19 ft (3.106 m); maximum gage height, 11.34 ft (3.456 m) Aug. 28, 1971; minimum, 2.6 ft³/s (0.073 m³/s) Oct. 6, 9, 10, 11, 1970, gage height, 1.71 ft (0.521 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

					ME	AN VALUES					Man.	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	7.8 7.4 7.0 6.4 5.9	6.9 7.1 16 12 8.3	145 29 18 15 24	17 17 15 14 14	13 12 12 11 11	11 9.9 10 11 10	12 11 11 11 14	8.8 9.0 9.0 12	10 9.7 9.2 9.5	6.6 6.4 105 80 11	23 8.0 45 31 244	107 35 14 12 12
6 7 8 9	5.9 4.9 4.9 58	8.6 211 282 26 19	79 22 22 16 13	15 17 25 224 22	11 12 12 12 13	10 9.9 9.7 11 16	11 14 13 10	9.7 9.2 11 94 25	9.5 9.2 16 16 9.0	9.0 8.2 7.4 7.4	159 130 17 13 83	11 11 10 10 14
11 12 13 14 15	10 9.0 15 27 20	15 11 10 9.0 8.5	12 13 30 64 40	15 13 19 118 27	13 12 13 13 13	35 39 35 65 38	11 12 12 8.6 9.2	13 11 10 116 26	10 8.0 13 8.6 8.4	7.4 7.4 6.6 10	56 125 90 20 14	49 86 107 30 16
16 17 18 19 20	15 14 11 10 9.0	35 40 14 9.0 8.3	18 115 100 30 120	17 28 192 25 20	13 13 12 12 12	30 34 24 22 18	9.0 9.0 9.7 42 33	35 36 37 16 13	8.6 8.2 8.6 13 7.8	7.4 10 7.6 7.0 6.4	13 12 11 10 9.7	14 11 12 14 13
21 22 23 24 25	8.0 7.4 7.6 7.4	11 79 35 23 18	141 29 21 19 29	18 16 15 15	11 11 11 11 11	16 17 14 13	13 11 10 9.9 9.5	11 11 10 272 34	20 20 9.5 8.4 7.4	6.2 6.4 6.2 6.0 6.2	9.7 9.7 9.4 9.2 9.2	12 11 10 10
26 27 28 29 30 31	30 20 10 7.8 7.1 6.9	94 22 16 15 26	19 15 14 14 15 24	422 30 18 15 14	13 12 11	71 144 24 16 13 12	9.2 9.4 9.2 8.8 9.0	17 14 13 13 11	7.0 10 7.0 12 10	6.6 7.2 12 6.2 5.9	9.2 8.8 410 77 15 123	10 11 11 10 10
TOTAL MEAN MAX MIN CFSM IN.	385.4 12.4 58 4.9 1.35 1.56	1095.7 36.5 282 6.9 3.99 4.45	1265 40.8 145 12 4.45 5.14	1540 49.7 422 13 5.43 6.25	338 12.1 13 11 1.32 1.37	799.5 25.8 144 9.7 2.82 3.25	371.5 12.4 42 8.6 1.35 1.51	934.7 30.2 272 8.8 3.30 3.80	316.6 10.6 20 7.0 1.16 1.29	436.1 14.1 105 5.9 1.54 1.77	1803.9 58.2 410 8.0 6.35 7.33	693 23.1 107 10 2.52 2.81
CAL YR WTR YR			MEAN MEAN		MAX - MAX 422	MIN - MIN 4.9	CFSM CFSM	2.98 I	N - N 40.52			

01467081 SOUTH BRANCH PENNSAUKEN CREEK AT CHERRY HILL, NJ--Continued

		TIME	STREA FLOW INSTA TANEO	M- C: , D: N- A: US (M.	PE- IFIC ON- UCT- NCE ICRO-	PH	TEMPER-	TUR- BID- ITY	s	YGEN, DIS- OLVEO	DXYGE DEMAN BIO- CHEM ICAL 5 DAY	D, CI FI - FI	DLI- DRM, ECAL, EC	STREP- TOCOCCI FECAL	HARD- NESS (MG/L AS	DI SO	CIUM (S-)LVED (G/L
DAT	€		(CFS) MI	HOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	(MG/L) (MPN)	(MPN)	CACD3) AS	CA)
OCT 04.		1025	3.	•	337	7.4	14.5		5	5.8	7	.0	3500	350	8	5	23
NOV																	
SO.		1010	23		232	7.1	7.0	,	.5	10.6	4	.0	2400	330	7	3	20
16.	••	1100	12		531	7.1	3.0	1	5	11.6	7	. 2	2300	<200	9	4	25
O5.	••	1050	15		309	7.2	13.0	1	5	9.0	5	. 0	920	>2400	. 8	0	21
JUN	••	1040	8.	8	325	7.0	13.0		9	8.0	5	. 2	2400	540	8	5	23
21.		1005	7.	2	356	7.1	21.0		5	5.2	8	.1	13000	130	7	8	20
19.		1130	6.	6	355	7.0	22.5		5	5.8	7	.6	35000	4900	8	3	22
AUG																	
15.	••	1020	14		293	6.8	22.5		3	6.3	2	.0	1100	7900	8	5	23
DAT		MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVEM (MG/MAS NA	M, S D St L (1	DTAS- SIUM, DIS- DLVED MG/L S K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3	S	LFIDE IS- OLVED MG/L S S)	SULFA DIS- SOLV (MG/	TE RI DI ED SC L (/	ILO- IDE, IS- DLVED IG/L IS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS RESIDU AT 180 DEG. DIS- SOLVE (MG/L	E RES	IDS, SIDUE 105 C. US- IDED
OCT																	
NOV	••	6.6	21		9.0	81	0	6	6	.0	51		24	15	18	2	14
30.		5.6	14		4.3	34	0	2	8		50		20		13	5	22
FEB 16.		7.6	60		6.5	54	0	4	4		58		94		27	8	14
APR 05.		6.8	19		5.7	41	0	3	14		55		30		20	0	17
MAY 08.		6.8	20		7.0	59	0	4	8		55		25		19	3	17
JUN 21.		6.8	21		6.8	70	0	5	7		54		26		20	2	17
JUL 19.		6.9	21		11	63	0		2		59		24		21	1	14
AUG 15.		6.6	15		5.8	49	0	4	0		54		20		20	8	20
		SEO MEN SUS PEN	r, c	SEDI- MENT DIS- HARGE, SUS- PENDED	NITR GEN NITRA TOTA (MG/	TE NITE	N, GE	EN, DNIA DR TAL I	GEN, GANIC OTAL	NIT GEN, MONI ORGA TOT	A + NIC	NITRO- GEN, TOTAL (MG/L	PHOS PHORU TOTA (MG/	IS, DRI	HO. DR	RBON, GANIC DTAL MG/L	
	DATE	(MG	(10)	T/DAY)	AS N) AS	N) AS	N) A	S N)	AS	N)	AS N)	AS E	P) AS	P) A	s c)	
	O4				1.	0	.10	2.8	.80	3	.6	4.7	100	.65	.19	6.9	
	30 FEB	•	••		1.	5	.03	.73	.77	1	.5	3.0		. 41	.01	.8.2	
	16 APR	•	••													7.3	
	05				2.	2	.05	1.3	1.0	. 2	. 3	4.5		.54	.08	6.1	
	08				2.	5	.11	2.9	.50	3	.4	6.0		.76	.21	7.3	
	JUN 21				2.	3	.25	.5	.60	4	.1	6.6		.91	.46	7.9	
	JUL 19		30	.53												6.4	
	15		20	.76			'	.1	.40	1	. 5	3.5			••	5.8	

01467081 SOUTH BRANCH PENNSAUKEN CREEK AT CHERRY HILL, NJ--Continued

						CHRO-		
		ALUM-			CADMIUM	MIUM,	COBALT,	COPPER,
	11 1 1168	INUM.		BORON.	TOTAL	HEXA-	TOTAL	TOTAL
		DIS-	ARSENIC	DIS-	RECOV-	VALENT,	RECOV-	RECOV-
		SULVED	TOTAL	SOLVED	ERABLE	DIS.	ERABLE	ERABLE
	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE		AS AL)	AS AS)	AS B)	AS CD)	AS CR)	AS CO)	AS CU)
OCT			1					
04	1025	30	0	240	0	. 0	2	150
			MANGA-					
		LEAD,	NESE.	MERCURY	NICKEL.		ZINC.	
	TRON,	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL	
	DIS-	RECOV-	RECOV-	RECOV-	RECOV-	NIUM,	RECOV-	
	SOLVED	ERABLE	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	PHENDLS
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
OCT								
04	20	5	120	<.5	6	0	40	4

01467120 COOPER RIVER AT NORCROSS ROAD AT LINDENWOLD, NJ

LOCATION.--Lat 39°49'43", long 74°58'55", Camden County, Hydrologic Unit 02040202, at bridge on Norcross Road in Lindehwold, 50 ft (15 m) downstream from outflow of Linden Lake, 1.1 mi (1.8 km) southwest of Gibbstown, and 1.7 mi (2.8 km) south of Glendale.

DRAINAGE AREA. -- 1.13 mi2 (2.93 km2).

PERIOD OF RECORD. -- CHEMICAL ANALYSES: Water years 1976 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		DUC	TIC N- CT- CE		MPER-	TUR- BID-	OXYGE:	BI BI	GEN AND, D- EM-	COLI- FORM, FECAL,	TOC	REP-	HARD- NESS (MG/L	CALCIUM DIS- SOLVED
DATE	TIM		CRO- OS) (UN		TURE EG C)	(UTL)	SOLVE (MG/I		AY (L)	GROTH (MPN)		CAL PN)	CACD3)	(MG/L AS CA)
ост														
12 NOV	120	0	94	7.2	13,5	5	9.	. 8	1.1	49		21	27	8.8
07	111	٥	80	7.2	15.0	8	9.	0	2.9	920		240	25	8.1
23	111	5	89	6.8	1.0	3	10.	5	. 3	2		<2	21	6.4
29	120	0	73	6.8	12.0	10	10.	4	2.2	170		17	17	5.2
02	113	0	79	7.5	14.5	6	9.	.7		33		<2	21	6.6
JUN 07	113	5	77	7.2	22.5	4	8.	6	3.0	350		220	22	6.7
									3.0	330		***	•	
		MAGNE-		POTAS							HLO-	SILIC		IDS,
		SIUM,	SODIUM,	Slum	, BICAR			ALKA-	SULF	ATE R	IDE,	DIS-	AT	180
		DIS-	DIS- SOLVED	SOLVE	BONATE			INITY	DIS		IS-	SOLV		G. C
		(MG/L	(MG/L	(MG/L	D (MG/I		G/L	(MG/L	SOL (MG		MG/L	(MG/		LVED
DA	re	AS MG)	AS NA)		нсоз:		C03)	CACD3)	AS S		S CL)	\$102		G/L)
OCT														
NOV	• • •	1.3	5.0	2.	1 :	12	0	10	1	7	7.7	4	. 7	69
07.		1.2	4.0	2.	2 .	18	0	15	- 1	2	7.,3			53
FEB 23.		1.2	6.7	1.	4	13	0	11	1	2	10			47
MAR										•				
MAY		1.0	5.3	1.	4	10	0	8	1	4	8.9			61
02.		1.1	5.4	1.	3 :	12	0	10	1:	2	7.8			58
JUN 07.		1.2	4.9	1.	1 .	15	0	12		7.6	9.5			55
		SOLIDS, RESIDUE	NITRO-	NITRO	- NITRO	- NT	TRO- G	NITRO-				PHOS		
		AT 105	GEN,	GEN,	GEN			+ ALVO	NIT	RO- P	HOS-	PHORU		BON,
		DEG. C.	NITRATE	NITRIT	E AMMONI	A ORG	ANIC C	RGANIC	GE	N, PH	ORUS,	ORTH	O. ORG	ANIC
		SUS-	TOTAL (MG/L	TOTAL (MG/L	TOTAL (MG/I		TAL G/L	TOTAL (MG/L	TOT:		MG/L	TOTA		TAL G/L
DAT		(MG/L)	AS N)	AS N)	AS N		N)	AS N)	AS		S P)	AS P		C)
OCT														
12.	• • •	8	.00	.0:	1 .0	14	.44	.48		.49	.02		01	9.0
07.		8	.02	.00		1	.26	.27		. 29	.05		01	7.9
FEB 23.		2	23	.00		24	.10	.34		.57	.02		01	3.2
MAR 29.		9	.10	.00) -()2	.20	.22		. 32	.03		00	11
MAY 02.		1	.00	.00		2	.26	.28	-	. 28	.03		01	6.3
JUN														12.7
07.		0	.02	.00	. (14	.60	.64		.66	.05		01	9.2

01467120 COOPER RIVER AT NORCROSS ROAD AT LINDENWOLD, NJ--Continued

		ALUM-			CADMIUM	CHRO-	COBALT,	COPPER.
				Donan				
		INUM,	V	BORON,	TOTAL	HEXA-	TOTAL	TOTAL
		DIS-	ARSENIC	DIS-	RECOV-	VALENT,	RECOV-	RECOV-
		SOLVED	TOTAL	SOLVED	ERABLE	DIS.	ERABLE	ERABLE
	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE	1	AS AL)	AS AS)	AS B)	AS CD)	AS CR)	AS CO)	AS CU)
ост							A	
12	1200	0	1	0	0	0	1	1
			MANGA-					
		LEAD,	NESE.	MERCURY	NICKEL,		ZINC,	
	IRON,	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL	
	DIS-	RECOV-	RECOV-	RECOV-	RECUV-	NIUM,	RECOV-	
	SOLVED	ERABLE	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	PHENOLS
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	40.40
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
DATE	AD FE	NO PD)	AD MN	AS NG)	WO MI)	NO SEJ	AS ZN)	(00/0)
OCT						,		
12	140	2	20	.5	5	0	20	<0

01467130 COOPER RIVER AT KIRKWOOD, NJ

LOCATION.--Lat 39°50'11", long 75°00'06", Camden County, Hydrologic Unit 02040202, at outlet of Kirkwood Lake in Kirkwood, 100 ft (30 m) east of tracks of Pennsylvania-Reading Seashore Lines, and 1.0 mi (1.6 km) north of Laurel Springs.

DRAINAGE AREA. -- 5.14 mi2 (13.31 km2).

PERIOD OF RECORD.-WATER DISCHARGE: Water years 1964 to current year.
CHEMICAL ANALYSES: Water years 1964, 1967, 1976 to current year.
SEDIMENT ANALYSES: July and August 1978.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	TIME	STREAM- FLOW, INSTAN- TANEOUS	SPE- CIFIC CON- DUCT- ANCE (MICRO-	РН	TEMPER-	TUR- BID- lty	OXYGEN, DIS- SOLVED	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY	COLI- FORM, FECAL, EC BROTH	STREP- TOCOCCI FECAL
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	(MG/L)	(MPN)	(MAN)
OCT										
12 NOV	1255		304	7.6	14.5	7	11.3	12	240	130
07	1150	49	305	7.1	15.5	10	8.2	9.0	>2400	>2400
FEB										
23	1210	8.6	313	7.6	3.0	7	10.9	15	<2	10
MAR										
29	1245	13	183	7.1	12.0	10	9.6	5.7	22	70
MAY							-			
02	1310	4.0	356	7.2	15.5	6	9.9	11	70	34
JUN										
07	1250	4.9	302	8.1	23.0	4	11.6	25	212	540
JUL										
20	1045	4.4	313	7.4	26.5	5	8.4	3.6	32	350
AUG										
30	1100		289	6.9	26.0	1	6.3	5.4	240	79

			MAGNE-		POTAS-				
	HARD-	CALCIUM	SIUM,	SODIUM,	SIU4,	BICAR-		ALKA-	SULFIDE
	NESS	DIS-	DIS-	DIS-	DIS-	BUNATE	CAR-	LINITY	DIS-
	(MG/L	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	BONATE	(MG/I	SOLVED
	AS	(MG/L	(MG/L	(MG/L	(MG/L	AS	(MG/L	AS	(MG/L
DATE	CACO3)	AS CA)	AS MG)	AS NA)	AS K)	HCD3)	AS CU3)	CACO3)	A5 S)
ocr									
12	45	14	2.5	22	7.0	51	0	42	
NOV								100	
07	46	14	2.6	23	7.2		0		
FEB									
23	46	14	2.7	26	6.2	81	0	66	
MAR									
29	36	11	2.1	13	3.0	39	0	32	
MAY									
02	54	17	2.7	27	10	63	0	52	.0
JUN									100
07	49	15	2.9	25	6.5	56	0	46	
JUL									
20	49	15	2.7	22	6.2	71	0	58	
AUG									
30	46	14	2.7	19	6.1	51	0	42	

DELAWARE RIVER BASIN 01467130 COOPER RIVER AT KIRKWOOD, NJ--Continued

DA	SULFA DIS- SOLV (MG/	DIS-	DIS- SOLVE ED (MG/L L AS	AT 180	C DEG.	00 SEC	NDED	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)		GEN	TE L
		.,		(, , , , , , ,	.,		,,,,,,,			
007		44	6.	3 14	8	14		/	.22		05
NOV	20	43		. 12		16			.11	-1	01
FEB								10			
MAR.		41	•	- 14	10	10	••	••	.33	• '	01
MAY	21	22	•	- 10	4	27			.28	•	01
20	26	49	4.	9 16	1	9	••	••	.09		02
07	21	46		- 16	3	. 8			.25		10
20	16	38		- 15	55	21	92	1.1			
AUG	21	37		12		17	18				
				**		• *					
	NITR GEN AMMON TUTA (MG/	, GEN IA ORGAN L TOTA L (MG/	MONIA IC ORGANI L TOTAL L (MG/L)	GEN, NH + + ORG. C TOT IN BOT MA	NITE GEN T TOTA	L TO	RUS, TAL	PHOS- DRTHO, DRTHO. TOTAL (MG/L	CARBON, ORGANIC TOTAL (MG/L)	MAT.	IC IN OM G
DA	TE AS N) AS N) AS N)	AS N	AS N) AS	6)	AS P)	AS C)	AS C)
OCT 12 NOV	6.	8 2.	5 9.3	340	9.	6	.27	.02	8.6	2	.0
07	9.	4 3.	6 13		- 13		.39	.15	8.4		
FEB 23		3 4.	7 13		- 13		. 36	.16	15		
MAR 29	2.	7 1.	0 3.7		- 4.	0	.08	.08	17	-	
MAY 02					- 14		.30	.04			103
JUN				4		3.1	10				
07. JUL				•	- 12		.40	.04		7 10	
AUG	6.	3 2.	7 9.0		- 9.	1			5.4		•
30	6.	2 .	60 6.8		•			-	12	- 100	•
DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	1	RSENIC TOTAL N BOT- COM MA- TERIAL (UG/G AS AS)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	FM TOM	DOV. PORTAL TO	MIUM, RECOV. I M BOT- V DM MA- TERIAL	CHRD- MIUM, HEXA- ALENT, DIS. (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)
OCT											
12 MAY	1255	. 0	0	4	220	0		<10	<10	0	1
02	1310	50			240				••	0	
	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G	COPPER, TOTAL RECOV- ERABLE (UG/L	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G	DIS- SOLVED (UG/L	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G	LEAD, TOTAL RECOV- ERABLE (UG/L	REI FM TOM TEI	COV.	NESE, TOTAL P RECOV- F ERABLE TO (UG/L	MANGA- NESE, RECOV. M BOT- DM MA- TERIAL	MERCURY TOTAL RECOV- ERABLE (UG/L
DATE	AS CO)	AS CU)	AS CU)	AS FE)	AS FE)	AS PB)	AS	P8)	AS MN)	(UG/G)	AS HG)
OCT 12	<10	8	<10	20	2500	14		20	90	10	.5
02				280		••					

01467130 COOPER RIVER AT KIRKWOOD, NJ--Continued

DATE	MERCURY RECOV. FM BOT- IOM MA- IERIAL (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	FM BOT- TOM MA- TERIAL (UG/G	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	TERIAL (UG/G	PHENOLS	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOI- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT										
12	. 6	9	<10	0	30	20	1	9	.5	8
MAY								No. U.S.		/420
02										
					1-			PTA-	TOX	
	DO									NE,
	TOT IN B								TAL TOT	
	TOM								MA- TOM	
										IAL
DAT	1.11							/KG) (UG		
OCT										
12.	•••	3.7	1.3	1.8	.8	.0	.0	.0	•0	0
02.							••			

01467140 COOPER RIVER AT LAWNSIDE, NJ

LOCATION.--Lat 39°52'14", long 75°00'59", Camden County, Hydrologic Unit 02040202, at bridge on Woodcrest Road in Lawnside, 0.2 mi (0.3 km) upstream from the New Jersey Turnpike, and 1.7 mi (2.7 km) upstream from Tindale Run.

DRAINAGE AREA .-- 12.8 mi2 (33.2 km2).

PERIOD OF RECORD. --CHEMICAL ANALYSES: Water years 1964-65, 1976 to current year. SEDIMENT ANALYSES: July and August 1978.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIJ- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
OCT 12	1400	340	7.2	17.0	15	9.8	20	1700	130	60	18
NOV	1400	340	1.2	17.0	13	7.0	20	1700	130	00	
07 FEB	1245	119	6.8	15.0	35		10	>24000	16000	31	8.5
23 MAR	1310	320	7.2	5.5	15	9.6	23	20	3500	55	16
29	1400	247	7.4	14.5	15	8.2	>9.0	33	350	52	15
11 JUN	1110	220	6.8	16.5	15	6.8	16	>2400	540	45	13
27 JUL	1145	259	6.9	23.0	70	3.2	12	9200	490	48	14
20 AUG	1230	334	7.1	25.0	10	2.7	8.2	9200	3500	55	16
30	1245	288	6.8	24.5	1	4.6	8.4	3500	<2	55	16
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS (AA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE DIS- SOLVED (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
OCT 12	3.7	24	9.2	76	0	40		33	36	12	173
NOV						62	•0				
07 FEB	2.3	7.1	4.0	17		14	••	23	10		61
23 MAR	3.7	24	6.9	83	0	68		32	33	776 36.00	168
29	3.5	16	5.3	51	0	42	••	37	23	••	155
11 JUN	3.0	14	4.7	48	0	39	•••	28	19	•	123
27 JUL	3.1	17	6.1	98	0	80	•	25	26	-	141
20 AUG	3.6	22	8.5	90	0	74	••	25	31	•	166
30	3.6	19	8.0	61	0	50		28	28		122

01467140 COOPER RIVER AT LAWNSIDE, NJ -- Continued

	SOLIDS, RESIDUE		NITRO-	NITRO-	NITRO-	NITRO-	-CATIN			PHOS-	
	AT 105	SEDI-	GEN,	GEN,	GEN,	GEN.	MONIA +	NITRO-	PHOS-	PHORUS,	CARBON,
	DEG. C.	MENT,	NITRATE	NITRITE	AMMONIA		DRGANIC	GEN,	PHORUS.	ORTHO.	DRGANIC
	SUS-	SUS-				ORGANIC	TOTAL	JATCT		TOTAL	TOTAL
			TOTAL	TOTAL	TOTAL	TOTAL			TOTAL		
	PENDED	PENDED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DATE	(MG/L)	(MG/L)	AS N)	AS N)	AS P)	AS P)	AS C)				
DCT											
12	21		1.3	.19	8.2	2.8	11	13	2.0	.98	6.3
NOV			7.5							• • • •	
07	49		.43	.02	.36	1.0	1.4	1.9	.57	.19	9.2
FEB										100	
23	24		.38	.03	8.0	6.0	14	14	1.7	.28	21
MAR											
29	35		.96	.04	4.1	.00	4.1	5.1	1.5	.39	21
MAY											
11	29		.76	.10	4.5	2.8	7.3	8.2	1.4	.66	9.1
JUN .											
27			.31	.12	5.6	6.4	12	12	1.6	.93	9.0
JUL											
20	29	29			8.7	1.8	10	11			8.5
AUG											
30	40	34			5.5	.90	6.4	7.5			11

						22			
					CADATUA	CHRD-	COBALT	COPPER.	
		ALUM-		10/20/20	CADMIUM	MIUM,	COBALT,		
		INUM,		BORON,	TOTAL	HEXA-	TOTAL	TOTAL	
		DIS-	ARSENIC	DIS-	RECOV-	VALENT,	RECOV-	RECOV-	
		SOLVED	TOTAL	SOLVED	ERABLE	015.	ERABLE	ERABLE	
	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(IIG/L	(UG/L	
DATE		AS AL)	AS AS)	AS B)	AS CD)	AS CR)	AS CO)	AS CU)	
ocr									
12	1400	U	3	210	0	0	0	40	
			MANGA-						
		LEAD.	NESE,	MERCURY	NICKEL.		ZINC.		
	IRON,	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL		
	DIS-	RECOV-	RECUV-	RECOV-	RECOV-	NIUM,	RECOV-		
	SOLVED	ERABLE	ERABLE	ERABLE	ERABLE	TOTAG	ERABLE	PHENOLS	
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L		
DATE				AS HG)		AS SE)	AS ZN)	(UG/L)	
DATE	AS FE)	AS PA)	AS MN)	AS HG)	AS NI)	45 56)	45 ZN)	(00/11)	
DCT									
12	400	13	100	<.5	12	0	40	2	

01467150 COOPER RIVER AT HADDONFIELD, NJ

LOCATION.--Lat 39°54'11", long 75°01'19", Camden County, Hydrologic Unit 02040202, on right bank of Wallworth Lake in Pennypacker Park, 200 ft (61 m) upstream from bridge on State Highway 41 (Kings Highway) in Haddonfield, 0.6 mi (1.0 km) upstream from North Branch Cooper River, and 7.7 mi (12.4 km) upstream from mouth.

DRAINAGE AREA . -- 17.4 mi2 (45.1 km2).

PERIOD OF RECORD. -WATER DISCHARGE: Water years 1964 to current year.
CHEMICAL ANALYSES: Water years 1968 to current year.
SEDIMENT ANALYSES: Water years 1968-73, July to September 1978.

PERIOD OF DAILY RECORD .--

WATER DISCHARGE: October 1963 to current year.
WATER TEMPERATURES: March to September 1969.
SUSPENDED-SEDIMENT DISCHARGE: March 1968 to May 1970.

REVISED DISCHARGE RECORDS .-- WRD-NJ 1969: 1967(M).

GAGE .-- Water-stage recorder above concrete dam. Datum of gage is 9.29 ft (2.832 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Discharge records good. Occasional regulation at low flow from Kirkwood Lake, other small lakes and wastewater treatment plants.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

AVERAGE DISCHARGE. -- 15 years, 35.0 ft3/s (0.992 m3/s), 27.32 in/yr (694 mm/yr).

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 500 ft3/s (14.2 m3/s) and maximum (*):

Disch		arge	Gage H	leight				Disch	arge	Gage Height			
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Nov.	8	0345	863	24.4	3.20	0.975	Aug.	5	1915	558	15.8	2.73	0.832
Jan.	18	0445	629	17.8	2.85	0.869	Aug.	28	1045	*1190	33.7	3.60	1.097
Jan.	26	0830	1130	32.0	3.53	1.076							

Minimum discharge, 9.5 ft3/s (0.269 m3/s) Aug. 29, gage height, 1.32 ft (0.402 m).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 3,300 ft 3 /s (93.5 m 3 /s) Aug. 28, 1971, gage height, 5.46 ft (1.664 m); minimum, 0.8 ft 3 /s (0.023 m 3 /s) Nov. 13, 1972, gage height, 1.07 ft (0.326 m) regulation from unknown source; minimum daily, 1.2 ft 3 /s (0.034 m 3 /s) June 27, 1964.

		DISCHARG	E, IN	CUBIC FEET		ND, WATER AN VALUES	YEAR OCTO	OBER 1977	TO SEPTE	MBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	17 18 17 16 16	18 18 27 25 22	274 47 34 29 83	34 34 31 27 27	27 26 25 24 23	24 24 25 26 24	34 31 31 34 36	27 26 26 32 47	27 26 26 27 39	18 16 148 193 34	50 27 58 47 193	54 27 24 23 22
6 7 8 9	15 16 15 134 43	18 354 491 47 37	95 34 27 37 29	29 31 41 365 54	26 25 26 25 26	24 24 24 26 45	32 41 34 31 31	32 29 27 188 66	29 27 41 34 25	25 23 21 21 21 23	104 95 31 26 27	22 22 22 22 22 20
11 12 13 14 15	23 19 21 39 45	32 26 25 24 23	24 24 25 87 148	32 27 36 259 66	24 24 24 26 25	83 70 109 91	31 36 31 27 27	36 34 31 134 91	23 23 25 23 21	24 21 19 24 37	32 79 32 26 27	22 62 134 26 27
16 17 18 19 20	25 27 25 21 21	23 87 47 32 26	39 31 259 216 47	34 50 391 66 43	25 25 25 25 25 25	66 70 50 45 43	27 27 29 83 83	100 79 104 43 36	20 21 22 23 22	23 34 26 22 19	31 26 20 18 18	27 27 21 29 23
21 22 23 24 25	18 18 17 17	26 32 143 43 39	221 75 39 34 45	43 34 32 29 225	25 ⁻ 24 23 24 26	39 39 34 32 31	37 31 29 29 39	32 31 31 407 121	37 41 25 21 19	18 18 18 18	18 18 18 19 20	21 20 21 20 21
26 27 28 29 30 31	25 50 27 24 20 19	165 39 31 34 45	32 27 27 26 27 45	743 109 43 36 31 31	27 26 27 	130 255 75 41 36 34	32 32 31 27 26	43 34 32 34 32 29	19 26 21 19 21	18 18 26 19 17 41	16 16 533 45 34 70	18 21 22 21 20
TOTAL MEAN MAX MIN CFSM IN.	825 26.6 134 15 1.53 1.76	1999 66.6 491 18 3.83 4.27	2187 70.5 274 24 4.05 4.68	3033 97.8 743 27 5.62 6.48	703 25.1 27 23 1.44 1.50	1722 55.5 255 24 3.19 3.68	1049 35.0 83 26 2.01 2.24	2014 65.0 407 26 3.74 4.31	773 25.8 41 19 1.48 1.65	1000 32.3 193 16 1.86 2.14	1774 57.2 533 16 3.29 3.79	861 28.7 134 18 1.65 1.84

CFSM 2.00 CFSM 2.83

IN 38.35

DELAWARE RIVER BASIN
01467150 COOPER RIVER AT HADDONFIELD, NJ--Continued

DATE	TIME	STREAM FLOW, INSTAN TANEOU (CFS)	DUCT-	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	DXYGEN, DIS- SDLVED (MG/L)	DEMAND, BIG- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TUCDCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
04	1245	15	35	7.7	15.5	20	6.4	6.3	490	350	63	18
NOV												
30	1210	39	226			20	11.1	7.7	2400	490	60	17
16 APR	1230	23	48.	7.1	2.5	30	11.5	13	1300	540	60	17
05 MAY	1310	34	216	7.3	14.0	20	8.2	9.3	130	790	56	15
08	1330	24	29	7.1	14.0	9	7.4	7.2	>2400	1600	56	16
JUN 21	1235	18	332	7.4	24.0	3	6.3	12	2400	33	60	17
JUL 24	1100	16	326	7.4	26.5	8	6.1	11	130	490	63	18
AUG												
15	1300	26	300	7.1	26.5	8	6.3	5.0	490	1300	61	17
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVED (MG/L AS NA	SOLVED (MG/L	BICAR- BONATE	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE DIS- SOLVED (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLU- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIU2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENOED (MG/L)
OCT 04	4.5	25	9.2	77	0	63		34	37	14	180	31
NOV						150	.0		- 64	- 4.4		166
30 FEB	4.3	17	5.0	51	0	42		33	22	••	133	27
16 APR	4.3	55	6.4	63	0	52	••	35	82		234	13
05	4.4	20	6.2	63	0	52		34	29		161	21
MAY 08	4.0	21	6.8	67	0	55		31	32		156	18
JUN 21	4.3	23	8.1	81	0	66		29	35		181	24
JUL 24	4.3	23	8.2	78	0	64		26	33		162	29
AUG 15	4.5	20	7.0						27		167	33
15	4.5	20	7.0	/1	O	58		27	21		157	33
DA	ME SU: PE	NT, CHAS- SUNDED PE	IS- GARGE, NII IS- CO	ERATE NIT		IN, GE INIA DRGA IAL TUT	RO- GEN, N, MONI NIC ORGA AL TOI /L (MG	1 + AI G D10.	TRO- PHOEN, PHOF TAL TUT G/L (MO	RUS, ORI	HO. ORGANIAL TOTAL	NIC PAL S/L
OCT												
04				1.2	.18 7	.4 5	.6 13	1	4 1	.2	.27	8.5
NOV				.78	.06 3	.5	.80 4	.3	5.1	.78	.39	9.1
FEB 16											1	0
APR 05				.80					8.3	.86	.09	4.3
MAY												
JUN			••	.78			.8 10		1	.77	.32	8.2
21 JUL	•••			.33	.10 7	.1 2	.3 9	. 4	9.8	.70	.16	8.1
	•••	39	1.7	••	6	.3 1	.2 7	.5	8.5		1	7
		36	2.5		4	. 4	.90 5	. 3	5.5			9.2

01467150 COOPER RIVER AT HADDONFIELD, NJ--Continued

		ALUM-			CADMIUM	CHRO-	COBALT,	COPPER,
		INUM, DIS-	ARSENIC	BORON, DIS-	TOTAL RECOV-	VALENT,	RECOV-	TOTAL RECOV-
		SOLVED	TOTAL	SOLVED	ERABLE	DIS.	ERABLE	ERABLE
	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE	11	AS AL)	AS AS)	AS B)	AS CO)	AS CR)	AS CO)	AS CU)
OCT								
04	1245	10	5	230	. 0	. 0	1	18
			MANGA-					
		LEAD,	NESE,	MERCURY	NICKEL,		ZINC,	
	IRON,	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL	
	DIS-	RECOV-	RECOV-	RECOV-	RECOV-	NIUM,	RECOV-	
	SOLVED	ERABLE	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	PHENOLS
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
OCT								
04	190	13	90	<.5	8	0	30	6

01467181 NORTH BRANCH COOPER RIVER AT ERLTON, NJ

LOCATION.--Lat 39°54'31", long 75°01'32", Camden County, Hydrologic Unit 02040202, at bridge on Cooper River Drive in Erlton, 600 ft (183 m) upstream from mouth, 2.3 mi (3.7 km) south of Cherry Hill Mall, and 1.2 mi (1.9 km) southeast of Garden State Park.

DRAINAGE AREA. -- 11.1 mi2 (28.7 km2).

PERIOD OF RECORD.-CHEMICAL ANALYSES: Water years 1976 to current year.
SEDIMENT ANALYSES: July and August 1978.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH*	TEMPER- ATURE (DEG C)	TUR- BIO- ITY (JTU)	DXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
ост											
04	1140	394	7.4	15.5	6	6.9		540	14	78	22
30 FEB	1120	233	7.1	7.5	15	10.6	3.1	14	23	71	20
16	1145	392	7.5	3.0	2	11.8	9.0	<20	79	71	19
APR 05	1155	275	7.3	14.5	15	9.0	5.2	50	540	63	17
MAY 08	1150	276	7.1	12.0	10	8.4	8.0	>2400	350	71	20
JUN 21	1115	346	7.2	20.0	8	6.2	14	1100	33	76	21
JUL 19	1245	331	7.1	23.0	10	5.2	>8.9	330	490	69	19
AUG 15	1205	308	6.9	23.5	7	5.5	5.1	170	490	73	20
	MAGNE- SIUM, DIS- SOLVED	SODIUM, DIS- SOLVED	POTAS- SIUM, DIS- SOLVED	BICAR- BONATE (MG/L	CAR- BONATE	ALKA- LINITY (MG/L	SULFIDE DIS- SOLVED	SULFATE DIS- SOLVED	CHLO- RIDE, DIS- SOLVED	SILICA, DIS- SOLVED (MG/L	SOLIDS, RESIDUE AT 180 DEG. C DIS-
DATE	(MG/L AS MG)	(MG/L AS NA)	(MG/L AS K)	AS HCO3)	(MG/L AS CO3)	AS CACO3)	(MG/L AS S)	(MG/L AS SD4)	(MG/L AS CL)	AS SIO2)	SOLVED (MG/L)
DCT						c.icos,					********
04	5.6	26	15	93	0	76	.0	50	31	20	209
30 FEB	5.1	12	5.2	41	0	34		+4	19		134
16 APR	5.6	32	12	70	0	57		46	50		205
05	5.1	16	9.0	50	0	41		46	25		173
08	5.2	17	6.1	51	0	42	.0	44	25	16	166
JUN 21	5.7	24	8.1	78	0	64		50	31		204
JUL 19	5.3	22	9.0	72	0	59		43	26		195
AUG 15	5.6	18	6.6	51	0	42		44	24		223

01467181 NORTH BRANCH COOPER RIVER AT ERLTON, NJ -- Continued

DATE	SULIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SEDI- MENT, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, PHO TOTAL TO (MG/L (M	PHOS- OS- PHORUS, RUS, ORTHO. TAL TOTAL G/L (MG/L P) AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 04	*23		.70	.19	5.6	6.4	12	13	1.5 1.1	7.8
30	21		1.1	.04	1.2	.70	1.9	3.0	.46 .25	10
FES	34									13
APR 05	15		1.2	.04	2.8	.80	3.6	4.8	.78 .38	4.3
MAY										5,3
08	20		1.0	.09	2.8	1.2	4.0	5.1	***	
21 JUL	21		.92	.18	4.4	2.5	6.9	8.0	1.2 .56	8.4
19	21	70					••			7.0
15	22	26			3.4	.70	4.1	5.6		7.0
	oca	TE	I TIME (UG/L C	SENIC OTAL S	ORON, TO DIS- RE SOLVED ER	MIUM 4II DTAL HE: CCOV- VALI RABLE D:	RO- UM, COBALT, KA- TOTAL ENT, RECOV- IS. ERABLE G/L (UG/L CR) AS CO)	TOTAL RECOV- ERABLE (UG/L AS CU)	
	MAY		1150	30						
			1150	30		20		0 0	19	1
			RON, T	EAD, NOTAL T	OTAL T	OTAL TO		ZINC, TOTAL		
		S	OLVED E	RABLE E	RABLE E	RABLE ER	GABLE TO	TAL ERABLE G/L (UG/L	PHENOLS	
			S FE) A	S PB) A	S MN) A	S HG) AS	NI) AS	SE) AS ZN)	(UG/L)	
	DCT 04		170	13	130	<.5	44	0 30	2	

01467190 COOPER RIVER AT CAMDEN, NJ

LOCATION.--Lat 39°55'35", long 75°05'03", Camden County, Hydrologic Unit 02040202, at bridge on U.S. Routes 130 and 30 in Camden, 3.4 mi (5.5 km) upstream from mouth, 3.5 mi (5.6 km) northwest of Haddonfield, and 3.7 mi (6.0 km) downstream from North Branch Cooper River.

DRAINAGE AREA. -- 35.2 mi2 (91.2 km2).

PERIOD OF RECORD. --

CHEMICAL ANALYSES: Water years 1970-71, 1976 to current year. SEDIMENT ANALYSES: July And August 1978.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM OIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
ост												
06	1000	329	7.8	16.0	20	3.8	7.7	920	240	68	19	4.9
30 FEB	1325	288	7.2	5.0	15	9.3	7.5	>2400	1600	78	22	5.6
22 APR	0945	428	6.9	2.0	15	7.4	11	700	490	70	19	5.5
06	0930	332	7.3	11.5	30	5.0	2.8	21	15	63	17	5.0
MAY 22	0930	238	6.9	19.5	20	5.4	4.4	E180	49	58	16	4.4
JUN 21	1415	333	7.7	25.0	9	10.4	9.6	790	350	68	19	5.1
24	1230	323	7.9	26.5	5	5.6	8.0	2400	20	70	20	4.9
AUG 29	1230	124	6.4	23.0	80	2.6	5.6	>24000	9200	30	8.4	2.3
	SODIUM, DIS- SOLVED	POTAS- SIUM, DIS- SOLVED	BICAR- BONATE (MG/L	CAR- BONATE	ALKA- LINITY (MG/L	SULFIDE DIS- SOLVED	SULFATE DIS- SOLVED	CHLO- RIDE, DIS- SOLVED	SILICA, DIS- SOLVED (MG/L	SOLIDS, RESIDUE AT 180 DEG. C	SOLIDS, RESIDUE AT 105 DEG. C, SUS-	SEDI- MENT, SUS-
DATE	(MG/L AS NA)	(MG/L AS K)	AS HCO3)	(MG/L AS CO3)	AS CACO3)	(MG/L AS S)	(MG/L AS SO4)	(MG/L AS CL)	AS SI02)	SOLVED (MG/L)	PENDED (MG/L)	(MG/L)
ост												
06	21	7.6	8	0	7	.0	39	24	13	165	26	
NOV 30	18	5.5	68	0	56		40	23		161	23	
FEB 22	36	8.2	81	0	66		42	57		210	9	
APR 06	20	6.5	59	0	48		40	28		161	38	
MAY 22	15	4.3	54	U	44		32	21		138	18	
JUN 21	22	7.1	85	0	70		35	31		188	15	
24	23	8.0	83	0	68		30	30		179	29	47
AUG 29	5.5	3.9	12	. 0	10		20	5.8		71	78	119

01467190 COOPER RIVER AT CAMDEN, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	NIT GE NITR	N,	ITRO- GEN, TRITE	NITR GEN	, G	TRO- EN, ANIC	NIT GEN, MONI ORGA	AM- A +	NIT GEN, + OR TOT	NH4 G.	NIT		PHO	US,	PHOR PHOR ORT	us, HO.	CARB	NIC	CARB DRGA TOT. BOT	NIC IN TOM
	ror	AL 1	JATOT	TOTA	L TO	TAL	TOT	AL	BOT	MAT	TOF		101		TOT		TOT		MA	
0.485	(MG		MG/L	(MG/		G/L N)	(MG		(MG	/KG	(MG		(MG		(MG		(MG		(G/	
DATE	AS	•	13 11)	AG 14	, 40	,	40													
DCT			10	6.		1.6	9	.1	48	0	8	. 8		. 35		.10		8.4		2.9
06	•	.61	.10	0.	3	1.0		••	40	•										
30		.93	.05	4.	3	.60	4	.9			5	. 9		.80		.20		9.8		
FEB 22		.69	.03	6.	3	3.6	9	.9			11		1	. 2		.22	1	2		
APR								. 1			7	. 0		.46		.18		9.2		
06	•	.85	.06	4.	. 0	1.5		• 1												
22		.54	.07	3.	. 3	.90	4	. 2			4	. 8		.44		.19		6.2		
JUN 21		.48	.13	6.	2	2.9	9	. 1			9	.7		.26		.08		8.3		
JUL											-							5		
24 AUG	•			4.	.6	2.2		. 8			′	. 8		7.7						
29				1.	. 4	2.0	- 3	.4			4	. 4						6.1		
																	7			
							ENIC						MIUM		RO-		RO-	-		
				UM-			TAL BOT-	80	RON,	CADM			COV.		UM, COV.		UM,		TAL	
			C	IS-	ARSENIC	TOM	MA-	D	IS-	REC	-VO	TOM	MA-	FM I	BOT-	VAL	ENT,	RE	cov-	
		TIM		IG/L	TOTAL (UG/L		RIAL G/G		LVED G/L	ERA (UG			RIAL G/G		MA- RIAL		IS. G/L		ABLE G/L	
	DATE			AL)	AS AS)		AS)		8)	AS			CD)		G/G)		CR)		CO)	
	ост																			
	06	100	0	0	1		4		200		0		<10		<10		0		0	
		RECO		PER,	RECOV.				ON,	LEA	0		AD, COV.		NGA-		NGA-	450	CURY	
		FM 80'	r- TC	TAL	FM BOT-	IR	ON,		BOT-	TOT	AL	FM	BOT-	TO	TAL	RE	CDV.	ro	TAL	
		TERI		COV-	TOM MA-		IS-		MA- RIAL	REC			MA-		COV-		MA-		COV-	
		(UG/		G/L	(UG/G		G/L		G/G	(UG			G/G		G/L		RIAL		G/L	
	DATE	AS C) AS	(Cn)	AS CU)	AS	FE)	AS	FE)	AS	PB)	AS	PB)	AS	MN)	(U	G/G)	AS	HG)	
	OCT																	-		
	06	<	10	9	20		150		1700		12		50		90		60		<.5	
																		-		
		RECO		KEL.	NICKEL, RECOV.			2.1	NC.	REC				P	CB.	ALD	RIN,		LOR-	
		FM BO	r- TC	TAL	FM BOT-		LE-	TO	TAL	FM B	or-			TO	TAL	TO	TAL	TO	TAL	
		TOM M		COV-	TOM MA-		UM, TAL		COV-	TOM		Due	NO. C		BOT-		BUT-		MA-	
		(UG/I		G/L	(UG/G		G/L		G/L	(UG		PHE	NOLS		MA-		RIAL		RIAL	
	DATE	AS H	S) AS	NI)	AS NI)	AS	SE)	AS	ZN)	AS	ZN)	(U	G/L)	(UG	/KG)	(UG	/KG)	(UG	/KG)	
	ocr																			
	06	- 1	. 0	8	<10		0		0		50		0		30		.0		33	
			DDD,	DDE		DT,	ELDR		ENDR	TN.	HEP		HEP		LIND	ANE	TOX	NE,		
			TOTAL	TOTA	L TO	TAL	TOT	AL	TOT	AL	TOT	AL	EPOX	IDE	TOT	AL .	TOT	AL		
			BOT-	IN BO		MA-	IN B		IN 8		IN B		TOT.		IN B		IN B			
			TERIAL	TERI	AL TE	RIAL		IAL	TER			IAL		TL.	TER			IAL		
	DA	TE (JG/KG)	(UG/K		/KG)	(UG/		(UG/		(UG/		(UG/		(UG/	KG)	(UG/	KG)		
	ocr																			
	. 06		8.2	1	. 9	.6		1.6		.0		.0		.0		.0		0		

01467329 SOUTH BRANCH BIG TIMBER CREEK AT BLACKWOOD, NJ

DELAWARE RIVER BASIN 237

LOCATION.--Lat 39°48'05", long 75°04'27", Gloucester County, Hydrologic Unit 02040202, at bridge on Blackwood-Clementon Road at Blackwood, 1,000 ft (305 m) upstream from Bull Run, and 2.0 mi (3.2 km) northeast of Fairview.

DRAINAGE AREA .-- 19.1 mi2 (49.5 km2).

PERIOD OF RECORD. -- CHEMICAL ANALYSES: Water years 1976 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		WA	TER GUAL.	LTY DATA,	WATER TI	SAR UCTU	HER 19	77 13	SEPTEMBE	R 197H			
DATE	TIME (M	PE- IFIC ON- UCT- NCE ICRO- HOS) (U		EMPER- ATURE DEG C)	TUR- (BID- ITY (JTU)	DXYGEN, DIS- SOLVED (MG/L)	OXYGE DEMAN BIO- CHEM ICAL 5 DAY (MG/L	D, C	EC T	STREP- OCOCCI FECAL	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
OCT													
17	1100	141	7.3	10.5	2	9.4	2	.6	5	220	21	6.3	1.3
09 FEB	1030	112	7.1	15.0	15	7.3	2	. 8	1600	170	38	11	2.6
15	1100	140	7.5	1.5	5	12.4	2	. 9	<20	2	39	11	2.8
MAR 30 MAY	1200	131	7.5	13.0	7	10.2	1	.8	13	79	36	10	2.6
10 JUN	0850	105	6.8	8.5	20	14.5	3	. 3	1600	1600	46	13	3.2
22	1030	118	7.2	22.5	2	6.0	2	.5	>2400	1600	34	9.5	2.5
		POTAS-							сньо-	SILICA	SOLID, RESID		
	SODIUM, OIS- SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L	BICAR- BONATE (MG/L AS	CAR- BUNATE (MG/L		DIS	VED	ULFATE DIS- SOLVED (MG/L	RIDE, DIS-	SOLVEI SOLVEI	AT 18	O AT 10 C DEG.	C,
DATE	AS NA)	AS K)	HCO3)	AS CO3) CACO			s so4)			(MG/		(L)
17	9.6	3.6	45	5	0 3	17	.0	16	8.0	5 4.3	3	57	9
09	5.5	3.0	24		0 2	20		18	8.	9		78	21
15	9.0	2.4	27		0 2	22		17	14			84	9
30	6.5	2.5	27		0 2	2		15	9.	3		83	17
MAY 10	. 14	4.5	24	i 0	0 2	0	.0		-				50
22	6.6	2.6	29)	0 2	4		12	11			80	12
	NITRO- GEN, NITRATE TOTAL	NITRO- GEN, NITRITE TOTAL	NITRO- GEN, AMMONIA TOTAL	GEN, ORGANI TOTAL	MUNIA C DRGANI TOTAL	+ + OP	NH4 G. In Maj	NITRD- GEN, GEN,	PHORUS	TOTAL	ORGAN TOTA	IC BOT1	IN IN IOM
DATE	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)				(MG/L AS N)	(MG/L AS P)	(MG/L AS P)	(MG/		
OCT													
17		.01	.05				0	.74				.1 56	
09 FEB		.01	.15	.4.	3 .5	8		.99	.23	.12			
15						•			•		2	• 0	
30	1.3	.02	.21	.3	7 .5	8		1.9	.16	.04	5	. 8	
10 JUN	07	.08	2.4	1.7	4.1			4.3	.55	.12	15		
22	1.1	.06	.20	.69	5 .8	5		2.1	.25	.13	5	.7	

01467329 SOUTH BRANCH BIG TIMBER CREEK AT BLACKWOOD, NJ--Continued

				ARSENIC			CADMIUM	CHRO-	CHRD-	
		ALUM-		TOTAL		CADMIUM	RECOV.	MIUM,	MIUM,	COBALT,
		INUM,		IN BOT-	BORON,	TOTAL	FM BOT-	RECOV.	HEXA-	TOTAL
		DIS-	ADCCUTO	TOM MA-		RECOV-		FM BOT-	VALENT,	RECOV-
			ARSENIC		DIS-		TOM MA-			
		SOLVED	TOTAL	TERIAL	SOLVED	ERABLE	TERIAL	TOM MA-	DIS.	ERABLE
	TIME	(UG/L	(UG/L	(UG/G	(UG/L	(UG/L	(UG/G	TERIAL	(UG/L	(UG/L
DATE		AS AL)	AS AS)	AS AS)	AS B)	AS CD)	AS CD)	(UG/G)	AS CR)	AS CO)
OCT									- 17	4 .
17	1100	220	1	9	40	0	<10	<10	0	0
MAY										
10	0850	200				0			0	2
	COBALT,		COPPER,		IRON,		LEAD,	MANGA-	MANGA-	1
	RECOV.	COPPER,	RECOV.	4	RECOV.		RECOV.	NESE,	NESE.	MERCURY
				TOON		LEAD,			RECOV.	TOTAL
	FM BOT-	TOTAL	FM BOT-	IRON,	FM BOT-	TOTAL	FM BOT-	TOTAL		
	TOM MA-	RECOV-	TOM MA-	DIS-	TOM MA-	RECOV-	-AM MCT	RECOV-	FM BOT-	RECOV-
	TERIAL,	ERABLE.	TERIAL	SOLVED	TERIAL	ERABLE	TERIAL	ERABLE	TOM MA-	ERABLE
	(UG/G	(UG/L	(UG/G	(UG/L	(UG/G	(UG/L	(UG/G	(UG/L	TERIAL	(UG/L
DATE	AS CO)	AS CU)	AS CU)	AS FE)	AS FE)	AS PB)	AS PB)	AS MN)	(UG/G)	AS HG)
OCT	1	4.5					1 390	- 1	1000	
17	<10	35	20	1000	8700	17	140	30	80	<.5
MAY										0.00
10		49					7	100	•	
							4			
	MERCURY		NICKEL.			ZINC.				CHLOR-
	RECOV.	NICKEL.	RECOV.		ZINC,	RECOV.		PCB.	ALDRIN,	DANE.
	FM BOT-			0010					TOTAL	TOTAL
		TOTAL	FM BOT-	SELE-	TOTAL	FM BOT-		TOTAL		
	-AM MOT	RECOV-	TOM MA-	NIUM,	RECOV-	TOM MA-		IN 80T-	IN BOT-	IN BOT-
	TERIAL	ERABLE	TERLAL	TOTAL	ERABLE	TERIAL	PHENDLS	-AM MOT	TOM MA-	TOM MA-
	(UG/L	(UG/L	(UG/G	(UG/L	(UG/L	(UG/G		TERIAL	TERIAL	TERIAL
DATE	AS HG)	AS NI)	AS NI)	AS SE)	18 ZN)	AS ZN)	(UG/L)	(UG/KG)	(UG/KG)	(UG/KG)
OCT										
17	.3	9	<10	0	50	160	0	45	.0	0
MAY					50		•	4.5%	•	
10		10	7500		120		65			
		10			120	4	05			
				DI	-	HEE	TA- HE	TA-		(A-
	DD	D, DL	E, DE	T, ELDE	RIN, ENDE	RIN, CHI	OR, CHI	OR LINE	ANE PHE	ENE,
	TOT	AL TOI	TOT TOT	AL TOT	TAL TO	TAL TO	CAG EPO	CIDE TOT	AL TO	LAL
	IN B							IN IN E	OT- IN	BOT-
	TOM							MOT MOT	MA- TOM	MA
										RIAL
DA	TE (UG/					(KG) (UG		(KG) (UG		
				The state of the s		1		-		
OCT					a Urtini			A Section of		
#17	9	1 4	19 1	8	7.0	.0	.0	.0	.0	0
MAY										100
10										

01467348 NORTH BRANCH BIG TIMBER CREEK AT BERLIN ROAD AT CLEMENTON. NJ

LOCATION. --Lat 39°48'19", long 74°59'21", Camden County, Hydrologic Unit 02040202, at bridge on Berlin Road in Clementon, 0.1 mi (0.1 km) downstream from outflow of Clementon Lake, and 1.3 mi (2.1 km) northwest of Sharps Corner.

DRAINAGE AREA . -- 2.97 mi2 (7.69 km2).

PERIOD OF RECORD. -- CHEMICAL ANALYSES: Water years 1975 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

			TER QUALLT	Y DATA,	NATER YEA	R OCTOR			EPTEMBER	1978		
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGE DIS BOLV (MG/	N, CH - IC ED 5 D	AND, D= EM= AL,	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACD3)	CALCIU DIS- SOLVE (MG/L AS CA
12	1110	72	7.0	14.5	9	10	.1	1.1	130	23	51	14
07	1020	65	7.0	16.0			. 8	2.6	350	540	18	4.
FEB		3.8							433	79		
23	0945	83	6.3	2.5	2	1 13	.1	. 6	4			
29	1100	80	6.9	11.0		11	.0	1.8	220	260	19	4.0
02 JUN	1000	108	6.5	12.5		10	. 2	2.4	253	70	26	7.
07	1030	84	7.1	23.0	1		.5	2.4	49	240	20	5.0
	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	POTAS- SIUM, DIS- SOLVED (MG/L	BICAR- BONATE (MG/L AS	CAR- BONATE (MG/L	ALKA LINIT (MG/	Y DI	FIDE S- LVED G/L	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L	SILICA, DIS- SOLVED (MG/L AS	SOLIDS, RESIDUE AT 180 DEG. O DIS- SOLVE
DATE	AS MG)	AS NA)	AS K)	HCO3)	AS C03)	CACC	3) AS	S)	AS 504)	AS CL)	SI02)	(MG/L
12	3.8	12	4.8	9	(7	.0	21	15	7.7	110
07	1.8	3.6	2.1	10			8		13	5.9		36
7EB 23				7			6		15	6.9		52
MAR 29	1.8	5.0	1.7	11			9		15	7.8		51
YAY	2.0	7.0	2.2	15			12		20	11		76
02	47.50											
07	1.9	4.5	1.8	12	()	10	•	12	6.8		50
	RES AT DEG SU	105 C. NIT	GEN, G TRATE NIT DTAL TO	EN, CRITE AMA	GEN, MONIA OF OTAL 1	GEN, GENIC	NITRO- GEN,AM- MONIA + ORGANIC TOTAL	TO	EN, PH	HOS- PHO DRUS, OF DTAL TO	TAL TO	RBON, GANIC DTAL
D						MG/L	(MG/L AS N)					AG/G S C)
oc	T 2	21	1.3	.09	.65	.65	1.3		2.7	.31	.13	6.4
NO	7	10	.15	.01	.04	.07	.11		.27	.04	.01	9.8
FE	В	3									.00	1.7
MA	3 R	4	.95	.01	.13	.20	.33		.79	.02	.00	5.6
MA		1	.22	.01	.09	.30	.39		.62	.04	.00	6.9
JU		2	.28	.01	.08	.47	.55		.84	.05	.01	8.5
	2355	7	7/3/	75/1					133	9	-5.50	1173

*01467348 NORTH BRANCH BIG TIMBER CREEK AT BERLIN ROAD AT CLEMENTON, NJ -- Continued

						CHRO-		The Party Co.
		ALUM-			CADMIUM	MIUM,	CUBALT,	COPPER,
		INUM,		BORON,	TOTAL	HEXA-	TOTAL	TOTAL
		DIS-	ARSENIC	DIS-	RECOV-	VALENT,	RECOV-	RECOV-
		SOLVED	TOTAL	SOLVED	ERABLE	DIS.	ERABLE	ERABLE
	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE		AS AL)	AS AS)	AS B)	AS CD)	AS CR)	AS CO)	AS CU)
OCT								
12	1110	20	3	30	0	0	0	36
			MANGA-					
		LEAD,	NESE,	MERCURY	NICKEL,		ZINC,	
	IRON,	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL	
	DIS-	RECOV-	RECOV-	RECOV-	RECOV-	NIUM,	RECOV-	
	SOLVED	ERABLE	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	PHENOLS
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
OCT								
12	140	8	80	<.5	5	0	30	1

01467359 NORTH BRANCH BIG TIMBER CREEK AT GLENDORA, NJ

LOCATION.--Lat 39°50'04", long 75°04'02", Camden County, Hydrologic Unit 02040202, at bridge on State Route 168 in Glendora, 0.5 mi (0.8 km) downstream from Otter Brook, 1.0 mi (1.6 km) southeast of Clements Bridge, and 1.6 mi (2.6 km) north of Mechanicsville.

DRAINAGE AREA. -- 18.8 mi2 (48.7 km2).

PERIOD OF RECORD. --.
CHEMICAL ANALYSES: Water years 1976 to current year.
SEDIMENT ANALYSES: July and August 1978.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TUCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
OCT 17	0935	212	6.9	9.5	2	5.6	6.9	80	2200	41	12
NOV	0935	212	0.9	9.5	2	5.6	6.9	80	2200	41	12
09 FEB	0930	141	7.0	15.0	15	4.4	4.8	1300	200	44	13
15	0945	237	7.1	.5	10	9.4	3,3	<20	2	53	16
30	1015	174	7.3	9.0	15	8.2	6.1	920	920	46	14
MAY 09	0930	126	6.8	14.0	35	6.7	7.2	5400	9200	29	8.9
JUN 22	0915	159	6.8	21.0	10	4.4	6.6	2400	2400	40	12
24	0915	220	6.9	26.0	5	1.2	4.8	490	790	52	16
AUG 29	1030	179	6.6	24.0	10	2.4	4.0	3500	5400	44	13
DATE	MAGNE- SIU4, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BUNATE (MG/L/ AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE DIS- SOLVED (MG/L AS S)	SULFATE DIS+ SOLVED (MG/L AS SU4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
ост											
17 NOV	2.6	6.6	2.8	45	0	37	.0	16	9.3	6.0	77
09 FEB	2.7	8.2	3.6	. 17	0	14		25	10		95
15	3.2	20	4.2	59	0	48		28	24		133
30	2.6	11	3.7	46	0	38		24	12		110
09	1.7	8.6	2.8	32	0	26		16	8.3		79
22 JUL	2.4	10	4.1	39	0	32		21	12		103
24 AUG	2.9	14	4.6	68	0	56		19	16		126
29	2.8	10	3.8	39	0	32		22	11		83

01467359 NORTH BRANCH BIG TIMBER CREEK AT GLENDORA, NJ--Continued

DATE	RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SEDI- MENT, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	CRTINGENAMONAMONAMONAMONAMONAMONAMONAMONAMONAMO	NITRO- GEN, TOFAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO. TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
DCT											
17	5		1.2	.03	.09	.33	.42	1.6	.15	.08	7.1
09	22	••	+51	.04	.59	.61	1.2	1.8	.48	.28	15
TEB 15	11								••	••	7.0
30	25		.87	.05	1.3	.60	1.9	2.8	.55	.33	9.5
09 JUN	38		.60	.06	1.0	.90	1.8	2.5	,51	.17	11
22 JUL	32		.75	.18	1.0	.80	1.8	2.7	.67	.46	4.8
24 AUG	17	12			2.0	1.4	3.4	4.4			10
29	21	103			.80	2.2	3.0	4.0			4.6

						CHRO-		
		ALUM-			CADMIUM	MIUM,	COBALT,	COPPER,
		INUM.		BORON,	TOTAL	HEXA-	TOTAL	TOTAL
		DIS-	ARSENIC	DIS-	RECOV-	VALENT.	RECOV-	RECOV-
		SOLVED	TOTAL	SOLVED	ERABLE	DIS.	ERABLE	ERABLE
	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE		AS AL)	AS AS)	AS B)	AS CD)	AS CR)	AS CO)	AS CU)
OCT								
17	0935	30	1	40	0	0	0	37
								-
,								
			MANGA-					
		LEAD,	NESE,	MERCURY	NICKEL,		ZINC,	
	IRON,	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL	
	DIS-	RECOV-	RECOV-	RECOV-	RECOV-	NIUM,	RECOV-	
	SOLVED	ERABLE	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	PHENOLS
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
OCT								
17	120	17	20	<.5	9	0	10	0

01467369 ALMONESSON CREEK AT RUNNEMEDE, NJ

LOCATION.--Lat 39°50'44", long 75°05'43", Gloucester County, Hydrologic Unit 02040202, at bridge on State Route 42 in Runnemede, 200 ft (61 m) upstream from mouth, 0.7 mi (1.1 km) south of State Route 42 overpass and NJ Turnpike, and 0.7 mi (1.1 km) northwest of Clements Bridge.

DRAINAGE AREA .-- 3.79 mi2 (9.82 km2).

PERIOD OF RECORD.-CHEMICAL ANALYSES: Water years 1975 to current year.
SEDIMENT ANALYSES: July and August 1978.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BIO- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	DXYGEN DEMAND, BIJ- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACD3)	CALCIUM DIS- SOLVED (MG/L AS CA)
OCT											
12 NOV	0945	193	7.2	13.5	3	4.0	3.5	1300	1600	19	4.6
07	0920	201	7.1	15.5	10	5.3	3.5	9200	5400	51	14
FEB 22	1145	245	7.2	.5	10	10.4	5.1	33	11	53	15
MAR 29	0930	181	7.0	11.0	20	8.0	4.5	230	80	44	12
MAY											
11 JUN	0900	155	6.7	14.5	15	6.0	5.9	9200	280	40	11
07	0900	205	6.9	20.0	8	5.3	5.6	. 630	3500	54	15
JUL 20	0900	212	6.8	24.0	6	4.2	5.3	1300	24000	54	14
AUG 30	0915	185	6.7	25.0	1	1.1	2.9	2400	2400	49	14
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE DIS- SOLVED (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
ост							4				
12 NOV	1.8	4.8	2.0	37	0	30	.0	13	6.5	2.0	42
07 FEB	3.9	14	4.2	41	0	34		34	16		101
22 MAP	3.7	20	4.2	59	0	48		26	24	36	129
29	3.3	12	3.5	32	0	26	••	24	17		114
11 JUN	3.1	10	3.0	32	0	26	.0	19	14	5.5	94
07 JUL	4.1	14	4.4	46	0	38		22	19		121
20 AUG	4.5	13	4.4	49	0	40		18	19		133
30	3.4	11	4.3	46	0	38		19	14		120

01467369 ALMONESSON CREEK AT RUNNEMEDE, NJ--Continued

SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SEDI- MENT, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TATAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO. TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
8		.17	.00	.04	.27	.31	.48	.02	.00	6.1	
18		.87	.06	1.5	.80	2.3	3.2	.33	.11	8.3	
							2.0				
11		1.5	.03	2.8	.80	3.6	5.1	.49	.12	8.0	
40					70		20	20	04	9 3	
49		.97	.03	1.1	.70	1.0	2.0				
40		1.1	.05	.91	. 79	1.7	2.8	.40	.14	7.0	
			•••		•						
9		1.2	.13	1.3	1.0	2.3	3.6	. 36	.14	5.6	
										100	
35	30			.60	1.5	2.1	3.1			7.4	
										1200	
30	28			1.4	.10	1.5		- 40		7.1	
	RESIOUE AT 105 DEG. C, SUS- PENDED (MG/L) 8 18 11	RESIDUE AT 105 SEDI- DEG. C, MENT, SUS- PENDED PENDED (MG/L) (MG/L) 8 18 11 49 40 9 35 30	RESIDUE AT 105 SEDI- GEN, DEG. C, MENT, NITRATE SUS- TOTAL (MG/L) (MG/L) AS N) 817 1887 11 1.5 4997 40 1.1 9 1.2 35 30	RESIDUE AT 105 SEDI- GEN, GEN, GEN, DEG. C, MENT, NITRATE NITRITE SUS- TOTAL TOTAL (MG/L) AS N) RESIDUE (MG/L) AS	RESIDUE AT 105 SEDI- GEN, GEN, GEN, GEN, GEN, MITRO- GEN, GEN, GEN, GEN, MITRO- GEN, GEN, MITRATE NITRITE AMMONIA TOTAL TOTAL TOTAL (MG/L) AS N) 817 .00 .04 1887 .06 1.5 11 1.5 .03 2.8 4997 .03 1.1 40 1.1 .05 .91 9 1.2 .13 1.3 35 3060	RESIDUE AT 105 SEDI- GEN, GEN, GEN, GEN, GEN, GEN, GEN, GEN,	RESIDUE AT 105 SEDI- GEN, GEN, GEN, GEN, GEN, MONIA P. DEG. C., MENT, NITRTE NITRITE AMMONIA ORGANIC ORGANIC ORGANIC (MG/L) (MG	RESIDUE AT 105 SEDI- GEN, GEN, GEN, GEN, MONIA + NITRO- DEG. C, MENT, NITRATE NITRITE AMMONIA ORGANIC GEN, GEN, GEN, GEN, GEN, MONIA + NITRO- DEG. C, MENT, NITRATE NITRITE AMMONIA ORGANIC GEN, TOTAL MS //	RESIDUE AT 105 SEDI- GEN, GEN, GEN, GEN, GEN, GEN, GEN, GEN,	RESIDUE AT 105 SEDI- GEN, GEN, GEN, GEN, GEN, MONIA + NITRO- PHOS- PHORUS, DEG. C, MENT, NITRITE NITRITE AMMONIA ORGANIC ORGANIC GEN, PHORUS, DRITHOL TOTAL	RESIDUE NITRO- NITRO- GEN, GEN, GEN, GEN, GEN, GEN, GEN, GEN,

						-		
						CHRO-		
		ALUM-			CADMIUM	WIUM,	COBALT,	COPPER,
		INUM,		BORON,	TOTAL	HEXA-	TOTAL	TOTAL
		DIS-	ARSENIC	DIS-	RECOV-	VALENT,	RECOV-	RECOV-
		SULVED	TOTAL	SOLVED	ERABLE	DIS.	ERABLE	ERABLE
	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE		AS AL)	AS AS)	AS B)	AS CD)	AS CR)	AS CO)	AS CU)
OCT								
12	0945	50	2	150	0	0	0	36
MAY								
11	0900	20		9		0	3	10
			MANGA-					
		LEAD,	NESE,	MERCURY	NICKEL,		ZINC,	
-	IRON,	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL	
	DIS-	RECOV-	RECOV-	RECOV-	RECOV-	NIUM,	RECOV-	
	SOLVED	ERABLE	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	PHENOLS
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS N1)	AS SE)	AS ZN)	(UG/L)
OCT								
12	90	10	20	<.5	. 7	0	20	. 0
MAY		7.6					100	
11	70		100		2		30	0
			-					

01474500 SCHUYLKILL RIVER AT PHILADELPHIA, PA

LOCATION.--Lat 39°58'00", long 75°11'20", Philadelphia, PA, Hydrologic Unit 02040203, on right bank 150 ft (46 m) upstream from Fairmount Dam, 1,500 ft (457 m) upstream from Spring Garden Street Bridge, in Philadelphia, and 8.7 mi (14.0 km) upstream from mouth.

DRAINAGE AREA .-- 1.893 mi2 (4.903 km2).

PERIOD OF DAILY RECORD. -

WATER DISCHARGE: September 1931 to current year. Records for January 1898 to December 1912, published in WSP 35, 48, 65, 82, 97, 125, 166, 202, 241, 261, 281, 301, 381, have been found to be unreliable and should not be used. SPECIFIC CONDUCTANCE: October 1963 to current year.

pH: January 1968 to current year. WATER TEMPERATURES: October 1945 to current year. DISSOLVED OXYGEN: January 1966 to current year.

REVISED RECORDS.--WSP 756: Drainage area. WSP 1302: 1936(M). WSP 1432: 1945. See also PERIOD OF RECORD.

GAGE.--Water-stage recorder and concrete control. Water-quality recorder located at Belmont raw-water pumping station on west side of river near Columbia Bridge. Datum of gage is 5.74 ft (1.750 m) National Geodetic Vertical Datum of 1929. Prior to Nov. 25, 1956, water-stage recorder at site on right bank just upstream from Fairmount Dam at same datum. Nov. 26, 1956 to Oct. 6, 1966, water-stage recorder at site on left bank 40 ft (12 m) upstream from Fairmount Dam at same datum.

REMARKS.--Records good. Some regulation by reservoirs above station. Records of daily discharge do not include diversion above station by city of Philadelphia for municipal water supply. Refer to U.S. Geological Survey Water Resources Data Report PA-78-1 for water-quality data.

AVERAGE DISCHARGE.--47 years, 2,950 ft3/s (83.54 m3/s), 21.16 in/yr (537 mm/yr), adjusted for diversion.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 18,000 ft3/s (510 m3/s) and maximum (#):

Date		Time	Discha (ft ³ /s)		Gage H	eight (m)	Date		Time	Discharge (ft 3/s)		Gage H	leight (m)
Nov.	8	0945	27600	782	9.52	2.902	Jan.	26	1745	*64000	1810	12.33	3.758
Dec.	1	1300	19600	555	8.70	2.652	Mar.	14	2400	26800	759	9.44	2.877
Dec.	18	2200	35100	994	10.21	3.112	Mar.	27	1615	44600	1260	10.98	3.347
Dec.	21	1645	26900	762	9.45	2.880	May	15	1245	18900	535	8.62	2.627
Jan.	9	1600	28300	801	9.59	2.923	May	18	0730	19000	538	8.63	2.630

Minimum discharge, 517 ft3/s (14.6 m3/s) July 25, gage height, 5.87 ft (1.789 m).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 103,000 ft³/s (2,920 m³/s) June 23, 1972, gage height, 14.65 ft (4.465 m); no flow over dam at times; minimum daily, 0.6 ft³/s (0.02 m³/s) Sept. 2, 1966.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 4, 1896, reached a stage of 17.0 ft (5.18 m), discharge, 135,000 ft³/s (3,820 m³/s), from rating curve extended above 46,000 ft³/s (1,300 m³/s). Flood of Mar. 1, 1902, reached a stage of 14.8 ft (4.511 m), discharge, 98,000 ft³/s (2,780 m³/s).

DELAWARE RIVER BASIN

01474500 SCHUYLKILL RIVER AT PHILADELPHIA, PA--Continued

		DISCH	ARGE, IN	CUBIC FEET	PER SECO	OND, WATER	YEAR OC	TOBER 1977	TO SEPTE	EMBER 197	8	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1120	1300	13500	3920	6790	1690	8330	1730	3110	914	1850	2520
2	1150	1260	12500	3660	5950	1630	7020	1650	2760	914	1420	2110
2 3 4	1900	1250	8660	3340	4630	1640	5920	1570	2470	3260	1140	1310
	1520	1530	6710	2890	3850	1520	5430	1570	3210	9530	1010	1070
5	1250	1850	5640	2770	3400	1370	5720	1850	2950	3690	1210	977
6	1100	1630	7630	2750	3350	1420	5020	1980	2290	2110	1460	852
7 8	1030	7410	6510	2700	3220 3540	1410	4600	1890	2290	1530	3470	792 706
8	1000	21600	5020	2840	3540	1440	4390	1730	2380	1280	5190	706
9	1600	12500	4390	19200	3170	1440	3880	2950	2710	1170	6530	763 763
10	3540	8090	3920	18700	2860	1430	3470	4130	2760	1070	3910	763
11	3920	8560	3280	10400	2660	1540	3370	2520	2470	1170	3310 3630 8580	706 734
12	2720	8960	2890	7720	2600	2190	3370 3470	2020	1980	1070	3630	734
13	2110	6670	2790	6240	2520	4070	3160	1850	2330	883	8580	914 852
14	1880	5240	3260	9280	2540	10800	2800	6440	2380	852	3210	852
15	3240	4280	9400	7020	2420	23800	2610	17400	1940	914	2110	763
16	4810	3700	7470	4960	2230	20000	2380	12700	1610	1730	1690	852 852 822
17	7460	3430	6030	4360	2160	11400	2290	14300	1530 1530	1890	1420	852
18 .	8610	4870	14800	8830	2120	8480	2200	16300	1530	1460	1210	822
19	6240	3630	20700	6950	2090	7840	2560	11700	1420	1100	1040	822
20	5320	2870	12300	4930	1940	10600	5250	9110	1310	914	946	1100
21	4210	2510	19100	4400	1830	10200	4660	7210	1380	822	883	1210
22	3410	2440	17800	4180	1870	12200	3420	5890	2520	734	792	946
23 24	2900	4040	12600	3570	1770	10600	2850	4910	1980	651	734	883
24	2490	4220	9610	3200	1730	9700	2560	9480	1530	625	706	1010 852
25	2180	3260	8990	6080	1800	8690	2470	12700	1310	625	651	
26	1970	9460	9180	46400	1870	10600	2290	7170	1170	678	678	734 706
27 28	2140	6410	6700	36400	1850	39000	2200	5400	1210	792	763	706
28	2060	4720	5730	14700	1680	28400	2110	4700	1210	1380	5310	678
29	1750	4100	4970	10700		17800	1940	4190	1100	852	3580	651
30	1530	4460	4550	8310		12800	1810	3810	977	734	2330	598
31	1400		4230	7530		10100		3420		977	1570	
TOTAL	87560	156250	260860	278930	78440	285800	110180	184270	59817	46321	72333	28548
MEAN	2825	5208	8415	8998	2801	9219	3673	5944	1994	1494	2333	952
MAX	8610	21600	20700	46400	6790	39000	8330	17400	3210	9530	8580	2520
MIN	1000	1250	2790	2700	1680	1370	1810	1570	977	625	651	598
(†)	266	262	275	283	288	280	261	271	292	304	300	259 1211
MEAN ‡	3091	5470	8690	9281	3089	9499	3934	6215	2286	1798	2633	1211
CFSM#	1.63	2.89	4.59	4.90	1.63	5.02	2.08	3.28	1.21	. 95	1.39	.64
IN‡	1.88	3.22	5.65	5.65	1.70	5.79	2.32	3.79	1.35	1.10	1.60	.71
CAL YR				EAN 3209		300 MIN	315 ME	AN\$ 3500	CFSM‡ 1	.85 IN‡	25.10	
WTR YR	1978 TOT	AL 164	9309 MI	EAN 4519	MAX 46	400 MIN	598 ME	AN # 4797	CFSM‡ 2	. 23 INT	34.41	

[†] Diversion, equivalent in cubic feet per second, for municipal water supply, furnished by City of Philadelphia. ‡ Adjusted for diversion.

01475000 MANTUA CREEK AT PITMAN, NJ

LOCATION.--Lat 39°44'14", long 75°06'53", Gloucester County, Hydrologic Unit 02040202 at bridge on Delsea Drive in Pitman, 0.9 mi (1.5 km) east of Pitman, and 2.0 mi (3.2 km) upstream from Porch Branch.

DRAINAGE AREA. -- 6.05 mi2 (15.67 km2).

PERIOD OF RECORD. -WATER DISCHARGE: Water years 1940 to current year.
CHEMICAL ANALYSES: Water years 1958-59, 1962, 1975 to current year.

COOPERATION. -- Analyse's of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

LI- RM, CAL, STREP- C TOCOCCI OTH FECAL PN) (MPN)	HARD- CALCIUM NESS DIS- (MG/L SOLVED AS (MG/L CACO3) AS CA)
4 70	33 7.6
920 >2400	25 5.8
5 13	36 8.2
49 79	30 7.0
220 350	57 15
1600 920	31 6.8
LO- SILICA, DE, DIS- S- SOLVED LVED (MG/L G/L AS CL) SIO2)	SOLIDS, SOLIDS, RESIDUE AT 180 AT 105 DEG. C DEG. C, OIS-SOLVED PENDED (MG/L)
7.5	63 9
6.7	63 17
10	75 4
6.3	70 11
21 13	152 31
8.8	75 0
	RM, CAL, STREP-C TOCOCCI OTH FECAL (MPN) 4 70 920 >2400 5 13 49 79 220 350 1600 920 LO- SILICA, DIS-SOLVED (MG/L AS CL) 7.5 6.7 10 6.3 21 13

01475000 MANTUA CREEK AT PITMAN, NJ--Continued

					NITRO-	NITRO-					CARBON,
	NITRO-	NITRO	- NITRO-	NITRO-	GEN, AM-	GEN, NH4			PHOS-		DRGANIC
	GEN.	GEN,		GEN,	MONIA +	+ ORG.	NITRO-	PHOS-	PHORUS,	CARBON.	TOT. IN
	NITRATE									DRGANIC	BOTTOM
					ORGANIC	TOT IN	GEN.	PHORUS,	ORTHO.		
	TOTAL	TOTAL		TOTAL	TOTAL	BOT MAT	TOTAL	TOTAL	TOTAL	TOTAL	MAT.
	(MG/L	(MG/L		(MG/L	(MG/L	(MG/KG	(MG/L	(MG/L	(MG/L	(MG/L	(G/KG
DATE	AS N)	AS N)	AS N)	AS N)	AS N).	AS N)	AS N)	AS P)	AS P)	AS C)	AS C)
DCT											
17	.94	.0	1 .07	.26	.33	870	1.3	.02	.01	8.0	7.9
MOV								1 22.1			
09	.71	.0	1 .01	.59	.60		1.3	.05	.01		
FEB											
15										1.0	
MAR											
30	1.5	.0	1 .03	.32	.35		1.9	.03	.01	4.4	
MAY		-			• • •				- 177		
10	1.3	.0	5 .18	.55	.73		2.0	.28	.00	6.3	
JUN	1.3	. 0	.10	. 33	./3		2.0	.20	.00	0.5	
22	.94	.0	1 .03	.47	.50		1.5	.02	.01	6.3	
22	.,,				.50		1.5	.02	.01	0.3	-
1									- 4		
- 1											
				05 11 70							
				SENIC						PER,	
				UTAL						COV.	
											DN,
											IS-
						MOT JAIR	MA- D	IS. TE	RIAL TE		PAED
				UG/G (U	IG/L (U	G/G TE	RIAL (U	G/L (U	G/G (U	G/G (U	IG/L
. /2	DATE		AS AL) A	S AS) AS	B) AS	CD) (U-	G/G) AS	CR) AS	CO) AS	CU) AS	FE)
0	CT										
	17	1235		10		<10	<10		<10	20	
	AY			17.7						7	1 - Y
	10	1050	30		50			0			1500
			1		777						(70)
6											
											. 7
		IRON,	LEAD,	MANGA-	MERCURY	NICKEL,	ZINC,			CHLOR-	
		RECOV	. RECOV.	NESE,	RECOV.	RECOV.	RECOV.	PCB.	ALDRIN,	DANE,	
		FM BOT	- FM BOT-	RECOV.	FM BOT-	FM BOT-	FM BOT-	TOTAL	TOTAL	TOTAL	
		TUM MA	- TOM MA-		TOM MA-	TOM MA-	TOM MA-	IN BOT-	IN BOT-	IN BOT-	
		TERIA			TERIAL	TERIAL	TERIAL	TOM MA-	TOM MA-	TOM MA-	
		(UG/G		TERIAL	(UG/L	(UG/G	(UG/G	TERIAL	TERIAL	TERIAL	
	DATE	AS FE			AS HG)	AS NI)	AS ZN)	(UG/KG)	(UG/KG)	(UG/KG)	
	5		,	(00,0)	no 113)	42 141)	40 54)	(30,49)	(00,10)	(00/10)	
	OCT										
	17	240	0 970	60	.0	<10	. 70	29	.0	58	
	MAY	- 40	-,0	- 0	• •	-10	, ,	•		-	
	10	-									4 10
					-		7.		1 11 1		
								2 1 2 3			
				1	DI-		HEPTA-	HEPTA-		TOXA-	
		DDD,	DDE,	DDT,	ELDRIN,	ENDRIN,	CHLOR,	CHLOR	LINDANE	PHENE,	
		TOTAL		TOTAL	TOTAL	TOTAL	TOTAL	EPOXIDE	TOTAL	TOTAL	
		IN BOL			IN BOT-	IN BOT-	IN BOT-	TOT. IN	IN BOT-	IN BOT-	
		TOM MA			TOM MA-	TOM MA-	TOM MA-	MOTTON	TOM MA-	TOM MA-	
		TERIA	L TERIAL	TERIAL	TERIAL	TERIAL	TERIAL	MATL.	TERIAL	TERIAL	
	DATE	(UG/KG) (UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	
					-		111111111111111111111111111111111111111	The state of the		The second	
	OCT										
	17	17	7.7	16	2.1	.0	.0	.6	.0	0	
	MAY	•						•	10 - 11	1 2 2	
	10	-									1
											W 1 - 1 -

01475030 MONONGAHELA BROOK AT WENONAH, NJ

LOCATION.--Lat 39°47'09", long 75°08'24", Gloucester County, Hydrologic Unit 02040202, at bridge on Glassboro Road in Wenonah, 0.6 mi (1.0 km) southeast of Wenonah Municipal Building, 0.8 mi (1.3 km) upstream from mouth, and 1.3 mi (2.1 km) north of Sewell.

DRAINAGE AREA. -- 3.11 mi2 (8.05 km2).

PERIOD OF RECORD.--CHEMICAL ANALYSES: Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	DXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BID- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
OCT											
18	0940	206	6.7	9.0	5	10.0	1.5	280	9	54	16
09 FEB	1230	255	6.0	15.5	15	8.2	8.7	>2400	>2400	68	18
15 MAR	1245	274	6.9	3.5	15	10.4	>8.6	<2	4	66	15
28	1400	225	6.6	12.5	25	9.0	7.6	540	920	60	16
10 JUN	1215	215	6.2	15.5	3	7.6	5.3	350	920	31	7.2
22	1245	215	6.5	17.5	7	6.5	1.0	>2400	540	49	12
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE DIS- SOLVED (MG/L AS S)	SULFATE OIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SULVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SID2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
OCT											
18 NOV	3.4	15	3.4	11	0	9	.0	30	16	10	121
09 FEB	5.5	10	8.4	9	0	7	••	69	19		158
15	6.9	17	6.1	34	0	28		28	38		169
28 MAY	4.9	13	6.0	17	0	14		43	25		130
10	3.1	3.4	1.9	12	0	10		17	7.1		67
22	4.7	13	5.5	15	0	12		31	31		141

01475030 MONONGAHELA BROOK AT WENONAH, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

1	SOLIDS,		1			NITRO-				
	RESIDUE	NITRO-	NITRO-	NITRO-	NITRO-	GEN, AM-			PHOS-	
	AT 105	GEN,	GEN,	GEN,	GEN,	MONIA +	NITRO-	PHOS-	PHORUS,	CARBON,
	DEG. C.	NITRATE	NITRITE	AMMONIA	ORGANIC	ORGANIC	GEN.	PHORUS,	ORTHO.	DRGANIC
	sus-	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	PENDED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DATE	(MG/L)	AS N)	AS N)	AS P)	AS P)	AS C)				
OCT										
18	13	.87	.01	.11	.35	.46	1.3	.14	.06	9.0
NOV	-	• • •			•••	•			• • •	
09	50	1.9	.05	.55	.65	1.2	3.1	.23	.01	12
FEB			•••	• • • •	•••		•••			
15	0									1.9
MAR	-									1,000
28	22	1.9	.07	.43	.77	1.2	3.2	.13	.00	6.7
MAY		,	.0,	• 43	• • • •	1.2	3.2			•••
10	4	1.2	.01	.01	.37	.38	1.6	.02	.00	
JUN	•	1.2	.01	.01	.37	. 30	1.0	.02	.00	
22	26	1.8	.04	.40	.70	1.1	2.9	.30	.02	4.2
22	20	1.0	.04	.40	. 70	1.1	2.9	.30	.02	7.2
							CHRD-			
			ALUM-			CADMIUM	MIUM,	CUBALT,	COPPER,	
			INUM,		BORON,	TOTAL	HEXA-	TOTAL	TOTAL	
			DIS-	ARSENIC	DIS-	RECOV-	VALENT,	RECOV-	RECDY-	
			SOLVED	TOTAL	SOLVED	ERABLE	DIS.	ERABLE	ERABLE	
		TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
	DATE		AS AL)	AS AS)	AS B)	AS CD)	AS CR)	AS CO)	AS CU)	
	200									
	OCT			_					2	
	18	0940	50	2	60	0	0	2	2	
				MANGA-						
			LEAD		HEDGURY	HICKEL		ZINC,		
		*****	LEAD,	NESE,	MERCURY	NICKEL,				
		IRON,	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL		
		DIS-	RECOV-	RECOV-	RECOV-	RECOV-	NIUM,	RECOV-	DUENOLO	
		SOLVED	ERABLE	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	PHENOLS	
		CUG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L		
	DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)	
	DCT					\				
	18	500	7	80	<.5	14	0	20	0	

01475045 MANTUA CREEK AT MANTUA, NJ

LOCATION.--Lat 39°47'42", long 75°10'21", Gloucester County, Hydrologic Unit 02040202, at bridge on State Route 45 in Mantua, 0.9 mi (1.4 km) downstream from Chestnut Branch, 1.3 mi (2.1 km) east of Gates of Heaven Memorial Park, and 2.4 mi (3.9 km) northwest of Barnsboro.

DRAINAGE AREA. -- 41.5 mi2 (107.5 km2).

PERIOD OF RECORD. --

CHEMICAL ANALYSES: Water years 1975 to current year. SEDIMENT ANALYSES: July and August 1978.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
OCT								20.4	2.2		44	14
18 DEC	1140	221	7.5	9.0	5	7.3	11.0	2.1	33	27	47	12
01 FEB	1000	119	6.9	7.5	30		10.5	2.7	1700	>2400	41	12
02 MAR	1230	181	7.2	.5	7		12.3	3.9	16000	170	49	14
28	1245	150	7.3	12.5	25		10.0	2.7	1300	790	44	13
MAY 10	1330	137	7.0	16.5	15		7.6	2.3	2400	350	45	13
JUN 27	0945	152	7.0	21.5	22		4.4	4.6	16000	16000	43	12
25 AUG	1230	220	7.0	23.0	5		5.4	2.3	790	16000	56	16
14	1315	190	7.0	24.5	1		5.9	2.9	490	2400	38	8.2
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE DIS- SOLVED (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS= PENDED (MG/L)
OCT									22	15	123	14
18 DEC	4.2	9.5	5.2	44	0	36	.0	34				
01 FEB	2.6	6.8	3.3	22	0	18		23	8.0		71	58
02 MAR	3.5	12	2.8	37	0	30		30	16		112	9
28 MAY	2.9	9.1	3.2	22	0	18		27	12		87	44
10 JUN	3.1	6.8	2.6	24	0	20		25	9.1		96	34
27 JUL	3.1	11	2.9	37	0	30		19	15		98	43
25 AUG	3.8	16	3.5	49	0	40		24	18		126	28
14	4.2	12	3.2	49	0	40		20	14		134	0

DELAWARE RIVER BASIN 01475045 MANTUA CREEK AT MANTUA, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

CARBON, ORGANIC TOT. IN BOTTOM MAT. (G/KG AS C)

7.3

DATE	SEOI- MENT, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE IOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,NH4 + DRG. TOT IN BOT MAT (MG/KG AS N)	NITRO- GEN, TOTAU (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO. TOTAL (MG/L AS P)	CARBON, ORGANIC FOTAL (MG/L AS C)
ОСТ	(
18		1.5	.02	.61	.28	.89	1100	2.4	.10	.01	8.2
DEC 01	••	.84	.02	.08	.25	.33		1.2	.32	.09	11
FEB 02											1.6
MAR									24	.03	7.8
28	••	1.1	.02	.13	.79	.92	•	2.0	.21		
10 JUN		.84	.02	.14	.49	.63		1.5	.22	.06	9.2
27		.59	.02	.12	.75	.87		1.5	.20	.04	8.6
JUL 25	27			.10	1.4	1.5		2.5		••	7.6
AUG 14	25			<.10		.80				-	4.8
	DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BDT- IOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)
	OCT										
	18	1140	70	3	13	10	0	<10	<10	0	5
	DATE	COBALT, RECOV. FM BOT- IOM MA- IERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM HA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BDT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)
	OCT 18	<10	2	<10	1300	2900	2	<10	110	40	<.5
	DATE	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TEKIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOUS	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDKIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
	OCT										
	18	.1	27	<10	0	70	30	0	24	.0	46
	0.4	IN E	TAL TOT BOT- IN E MA- TOM RIAL TER	TAL TOT BOT- IN E MA- TOM RIAL TER	TAL TOTAL TOM NA- TOM RIAL TER	PAL TO BOT- IN MA- TOM RIAL TE	RIN, CHI TAL TOI BOT- IN E MA- TOM	GOR, CHI TAL EPO: BOT- TOT MA- BO RIAL M	XIDE TO . IN IN TTOM TOM ATL. TE	DANE PHI FAL TO BOT- IN MA- TOM RIAL TE	KA- ENE, FAL BOT- MA- RIAL /KG)
	16		14 1	18	2.5	4.7	.0	.0	.0	.0	0

01477100 RACCOON CREEK NEAR MULLICA HILL, NJ

LOCATION.--Lat 39°42'31", long 75°12'05", Gloucester County, Hydrologic Unit 02040202, at bridge on Cedar Grove-Richwood Grove Road, 0.6 mi (1.0 km) upstream from Miery Run, 1.0 mi (1.6 km) downstream from outflow of Ewan Lake, 2.5 mi (4.0 km) southeast of Mullica Hill, and 4.0 mi (6.4 km) southwest of Pitman.

DRAINAGE AREA .-- 10.1 mi2 (26.2 km2).

PERIOD OF RECORD. -CHEMICAL ANALYSES: Water years 1953-59, 1959-63, 1975 to current year.
SEDIMENT ANALYSES: July and August 1978.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BID- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (4PN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
OCT											
13	1050	174	7.6	13.0	1	9.7	.4	<2	79	55	15
02 FEB	1335	155	7.2	15.0	1	8.4	1.8	22	240	63	18
02	1110	128	6.9	2.0	4	12.6	.3	17	130	42	11
MAR 28	1140	117	6.6	10.0	10	11.0	1.3	33	350	41	11
MAY 04	1315	153	7.4	14.5	4	10.2	2.5	79	79		
JUN '	1140	130	7.0	21.0	2	8.3	. 8	540	79	46	12
JUL 25	0930	142	7.9	25.0	0	6.2	.5	79	1600	52	14
AUG 14	1145	139	6.8	24.0	3	7.1	1.0	33	240	46	12
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE DIS- SOLVED (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	STLICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
OCT		2.0									404
13	4.2	3.8	3.7	20	0	16	.0	31	9.5	6.4	104
02 FEB	4.3	3.2	3.7	29	0	24		30	9.4		97
02 MAR	3.6	2.8	2.6	10	0	. 8	••	29	8.5		98
28	3.3	2.9	3.2	9	0	7		28	7.1		67
04 JUN				20	0	16		30	9.7	••	
06 JUL	3.9	3.1	2.9	13	0	11	••	27	9.0		82
25 AUG	4.1	3.3	2.9	20	0	16		23	9.1		101
14	3.8	3.0	3.0	17	0	14		24	8.2		118

01477100 RACCOON CREEK NEAR MULLICA HILL, NJ--Continued

	SOLI	DS.								N	-CAIL				100 110	
	RESI				NITRO-	NI	TRO-	NITRO-	NITR	0- GE	EN, AM-				PHOS-	A PERMIT
	AT 1		SEDI	-	GEN,	G	EN,	GEN,	GEN	. MC	NIA +	NITRO		08-	PHORUS,	CARBON,
	DEG.		MENT		NITRATE	NIT	RITE	AMMONIA	ORGAN	IC OF	RGANIC	GEN,		RUS,	ORTHO.	DRGANIC
	SUS		SUS-		TOTAL	TO	TAL	TOTAL	TOTA	L 1	LATOT	TOTAL		TAL	TOTAL	TOTAL
	PEND		PEND		(MG/L		G/L	(MG/L	(MG/	L (MG/L	(MG/L		G/L	(MG/L	(MG/L
DATE		/6)	(MG/		AS N)		N)	AS N)	AS N) 1	AS N)	AS N)	AS	P)	AS P)	AS C)
OCT																
13		4			1.1		.01	.04		29	.33	1.4		.03	.01	6.7
NOV	•	11/20			-			3.00								
02		0			.99		.01	.00		32	.32	1.3		.03	.00	8.1
FEB																
02		8										-	-			2.0
MAR															143	
28	. 711	5			2.0		.01	.13		48	.61	2.6		.04	.01	5.6
MAY															TOUR ST.	
04	. 3711	22			1.8		.01	.10		65	.75	2.6		.03	.01	12
JUN							The second							.03	.00	5.9
06	• () "	9			1.6		.01	.06		33	.39	2.0	No. Inch	.03	.00	3.7
JUL																4.1
25	•	2		3				.10	•	30	.40	1.6				4
AUG											.40	1.5				4.1
14	•	6		28				<1.0			. 40	1.5	2			1-1/2
											CHR	n-				
					AL	UM-				CADMIU			BALT.	COPE	FD	
						UM,		. 80	RON,	TOTAL			COTAL	TOT		
						IS-	ARSE		IS-	RECOV			ECOV-		ov-	
						LVED	TOT		LVEO	ERABL			RABLE		BLE	
				TI		G/L	(UC		G/L	(UG/L			UG/L	(UG		
		DAT	E			AL)			B)	AS CO			S CO)		CU)	
											,	,	,	40	,	
		OCT														
		13.		105	50	80		3	30		0	0	0		31	
		MAY									11-6					
		04.		131	15					-						
					2.2			GA-								
						AD,	NES			ICKEL			INC,			
				IRO		TAL	roi		TAL	TOTAL			COTAL			
				DIS		COV-			cov-	RECOV			ECOV-		100	
				SOL		ABLE			ABLE	ERABL			RABLE	PHEN	065	
		DAT		(UG		G/L	(00		G/L	(UG/L			UG/L			
		DAT	E	AS E	EJ AS	PB)	AS	MN) AS	HG)	AS NI) AS :) A	S ZN)	(00	\r)	
		OCT														
		13.		1	140	8		40	<.5		4	0	10		0	
		MAY	-		9.0						7 64					
		0.4						and the same								

01477120 RACCOON CREEK NEAR SWEDESBORO, NJ

LOCATION.--Lat 39°44'28", long 75°15'33", Gloucester County, Hydrologic Unit 02040202, on right bank 25 ft (8 m) downstream from county bridge No. 5-F-3 on Harrisonville-Gibbstown Road, 1.8 mi (2.9 km) west of Mullica Hill, and 2.8 mi (4.5 km) east of Swedesboro.

DRAINAGE AREA .-- 29.9 mi2 (77.4 km2).

PERIOD OF RECORD.-WATER DISCHARGE: Water years 1966 to current year.
CHEMCIAL ANALYSES: Water years 1965 to current year.
SEDIMENT ANALYSES: Water years 1966-69, 1971-73, July to September 1978.

PERIOD OF DATLY RECORD. -

WATER DISCHARGE: May 1966 to current year.
WATER TEMPERATURES: May 1966 to September 1973.
SUSPENDED-SEDIMENT DISCHARGE: June 1966 to September 1969.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to July 28, 1969, at datum 7.96 ft (2.426 m) higher. July 28, 1969 to Sept. 30, 1969, at datum 5.96 ft (1.817 m) higher.

REMARKS. -- Discharge records fair.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

AVERAGE DISCHARGE.--12 years, 48.3 ft3/s (1.214 m3/s), 19.48 in/yr (495 mm/yr).

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 300 ft3/s (8.50 m3/s) and maximum (*):

220		Discha	arge	Gage H	leight				Disch	arge	Gage He	eight	
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date		Time	(ft3/s)	(m^3/s)	(ft)	(m)
Nov.	8	0545	552	15.6	12.09	3.685	Jan.	9	-	800	22.7	Unkno	wn
Dec.	18	2315	443	12.5	11.54	3.517	Jan.	18	-	900	25.5	Unkno	own
Mar.	27	1500	344	9.74	10.72	3 267	.lan	26	Ilnknown	*1520	43.0	14.62	4.456

Minimum daily discharge, 14 ft3/s (0.396 m3/s) several days in October and September.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,530 ft³/s (100 m³/s) Aug. 10, 1967, elevation, 17.44 ft (5.316 m), present datum; minimum daily, 2.9 ft³/s (0.082 m³/s) July 14, Aug. 27, 28, Sept. 10, 1966.

		DISCHARG	GE, IN	CUBIC FEET	PER SECONI	, WATER	YEAR OCT	OBER 1977	TO SEPTEM	IBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	16 17 15 15 14	15 16 19 23 19	150 55 35 30 47	52 43 38 32 30	48 46 44 41 39	33 32 33 34 32	51 53 48 47 47	26 23 23 25 48	32 29 28 31 31	16 16 94 172 53	41 29 38 33 120	33 26 22 20 19
6 7 8 9	14 14 14 49 37	18 159 348 61 37	61 35 28 33 29	33 35 50 380 100	44 55 42 42 44	32 30 30 32 41	50 53 44 39 38	39 35 33 153 115	31 27 30 28 24	38 32 29 27 29	91 70 52 34 51	18 18 18 18
11 12 13 14 15	20 17 15 17 20	31 26 25 24 23	25 24 25 50 139	50 37 45 200 100	42 39 38 40 38	123 192 149 149 139	38 39 36 34 33	55 44 39 72 62	23 22 23 22 20	57 32 27 28 30	54 38 34 31 28	17 16 18 17 17
16 17 18 19 20	17 23 18 16 16	23 57 47 29 26	52 37 186 225 72	62 100 510 150 95	37 37 37 36 35	80 80 77 74 66	33 33 33 56 79	70 98 77 56 47	19 20 21 21 19	28 32 30 26 23	26 25 24 23 23	17 16 16 23 20
21 22 23 24 25	15 15 14 14 14	24 25 53 41 33	162 84 50 43 59	85 65 50 42 200	34 34 33 32 33	57 56 50 46 42	52 42 38 35 34	41 35 33 127 91	21 34 24 20 19	22 21 21 20 20	23 23 24 23 25	18 17 17 16 16
26 27 28 29 30 31	15 20 19 17 16	66 35 29 28 34	47 39 33 31 30 60	800 170 80 60 56 51	36 36 33 	101 277 117 70 57 53	32 33 33 31 29	53 45 43 41 37 34	18 32 26 20 18	19 19 20 20 19 26	23 20 23 22 24 28	14 14 14 14 14
TOTAL MEAN MAX MIN CFSM IN.	558 18.0 49 14 .60	1394 46.5 348 15 1.56	1976 63.7 225 24 2.13 2.46	3801 123 800 30 4.11 4.73	1095 39.1 55 32 1.31 1.36	2384 76.9 277 30 2.57 2.97	1243 41.4 79 29 1.39 1.55	1720 55.5 153 23 1.86 2.14	733 24.4 34 18 .82 .91	1046 33.7 172 16 1.13 1.30	1123 36.2 120 20 1.21 1.40	540 18.0 33 14 .60 .67

CFSM CFSM .94 CFSM 1.62 IN 12.74 MIN 8.5 CAL YR 1977 TOTAL 10238.0 WTR YR 1978 TOTAL 17613.0 MEAN 28.0 MEAN 48.3 MAX 348 MAX 800

01477120 RACCOON CREEK NEAR SWEDESBORO, NJ--Continued

			WATER QU	ALITY DAT	A, WATER	YEAR OCTO	BER 1977	TO SEPTEM	BER 1978			
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE. (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SULVED (MG/L AS CA)
OCT	0940	17	217	7.6	12.0		0.7		220	220	71	22
13	0940	1,	217	7.6	12.0	5	9.7	.6	220	220	71	22
29 FEB	0945	26	138	7.0	4.5	6		.5	920	540	69	21
02	1000	46	159	7.1	1.5	6	13.6	.4	1600	49	52	14
MAR 28	0940	116	126	6.7	8.5	15	11.0	1.5	49	240	44	13
YAM 03	1220	23	177						80	20	77	25
JUN	1330			7.6	16.5	5	11.2					
06 JUL	1000	32	164	7.2	18.0	6	8.6	1.5	790	170	61	18
25 AUG	1040	21	180	7.2	21.5	2	6.5	.9	330	490	68	21
14	0945	32	171	6.9	22.5	2	8.0	1.1	230	490	61	19
SEP 27	1135	14	195	7.1	13.5		10.0	.7	330	230	71	21
7.102.00												1
									1			6.14
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CU3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE DIS- SOLVED (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SID2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
OCT .	5.2	2.2					4					
13 NOV	3.8	5.7	3.9	41	0	34	.0	29	12		11	127
29 FEB	4.0	5.2	3.6	41	0	34	••	38	11			120
02	4.2	4.8	3.1	23	0	19		29	.11			98
MAR 28	2.8	3.2	3.3	9	0	7		29	7.1	-		78
MAY 03	3.6	6.0	2.8	24	0	20		29	10			108
JUN												
06	3.9	4.6	3.2	32	0	26		29	1,1	73. 55		102
25 AUG	3.8	4.6	3.6	39	0	32		22	11	••		112
14 SEP	3.8	4.4	3.3	34	0	28		24	10	-		128
27	4.5	6.3	3.6	44	0	35		24	14	.1	10	120
DATE	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + DRGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO. TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 13	24				0.4	^-		22				
NOV		-		1.3	.01	.04	.18	.22	1.5	.07	.01	5.6
29 FEB	8			1.6	.01	.12	.47	.59	2.2	.07	.04	13
02 MAR	11									V		1.2
28	22			1.6	.01	.13	.58	.71	2.3	.13	.03	6.3
MAY 03	2			1.6	.01	.01	.23	.24	1.8	.08	.05	5.7
JUN 06	17			1.4	.02	.09	.44	.53	1.9	.15	.06	6.1
JUL 25												
AUG	6	11	.62			.10	.30	.40	1.6	- 111 200	- 1	6.3
SEP	1	22	1.9			<1.0		1.1	2.2			4.2
27		8	.30			.30	••	•••		••		2.6

01477120 RACCOON CREEK NEAR SWEDESBORO, NJ--Continued

					CHRO-		
	ALUM-			CADMIUM	MIUM,	COBALT,	COPPER,
	INUM,		BORON.	TOTAL	HEXA-	TOTAL	TOTAL
	DIS-	ARSENIC	DIS-	RECOV-	VALENT.	RECOV-	RECOV-
	SOLVED					ERABLE	ERABLE
TIME							(UG/L
	AS AL)	AS AS)	AS B)	AS CD)	AS CR)	AS CO)	AS CU)
0940	30	2	40	0	0	0	34
		MANGA-					
	LEAD.		MEDCHOV	NICKET.		TTNC.	
TRON.					SELF-		
							PHENOLS
							FRENODS
							(UG/L)
NO FE	AS PD)	AS MN)	AS HG)	AS MI)	45 SEJ	NO LN)	(00/6)
70	9	60	<.5	6	0	10	0
	IRON, DIS- SOLVED (UG/L AS FE)	INUM, DIS- SOLVED TIME (UG/L AS AL) 0940 30 LEAD, IRON, TOTAL DIS- RECOV- SOLVED ERBBLE (UG/L AS FE) AS PB)	INUM, DIS- SOLVED TOTAL TIME (UG/L (UG/L AS AL) AS AS) 0940 30 2 MANGA- MESE, IRON, TOTAL TOTAL DIS- SOLVED ERABLE ERABLE (UG/L (UG/L (UG/L AS PE) AS PB) AS MN)	NUM,	INUM, DIS- ARSENIC DIS- ARSENIC DIS- RECOV- REC	ALUM- INUM, DIS- SOLVED TOTAL OP40 AS AL) AS AL) AS AS MANGA- LEAD, DIS- RECOV- SOLVED TOTAL MANGA- LEAD, DIS- RECOV- SOLVED MANGA- DIS- RECOV- RECO	ALUM- INUM, DIS- SOLVED TOTAL AS AL) MANGA- LEAD, DIS- BECOV- MEXA- TOTAL AS AL) MANGA- LEAD, DIS- BECOV- SOLVED MANGA- LEAD, DIS- BECOV- BECOV- SOLVED ERABLE UGGL UGGL UGGL UGGL UGGL UGGL UGGL UG

01477510 OLDMANS CREEK AT PORCHES MILL, NJ

LOCATION.--Lat 39°41'57", long 75°20'01", Salem County, Hydrologic Unit 02040206, at bridge on Kings Highway in Porches Mill, 150 ft (46 m) downstream of tributary from outflow of lake at Porches Mill, 1.0 mi (1.6 km) north of Seven Stars, and 2.1 mi (3.3 km) southeast of Auburn.

DRAINAGE AREA. -- 21.0 mi2 (54.4 km2).

PERIOD OF RECORD. --

CHEMICAL ANALYSES: Water years 1975 to current year. SEDIMENT ANALYSES: July and August 1978.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		SPE- CIFIC CON- DUCT-			TUR-	OXYGEN,	OXYGEN DEMAND, BID- CHEM-	COLI- FORM, FECAL,	STREP-	HARD-	CALCIUM DIS-
	TIME	ANCE (MICRO-	РН	TEMPER-	BID-	SOLVED	ICAL, 5 DAY	BROTH	TOCOCCI FECAL	(MG/L AS	SOLVED (MG/L
DATE		MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	(MG/L)	(MPN)	(MPN)	CACD3)	AS CA)
OCT		5									
13	1200	237	7.6	12.0	4	9.5	. 8	130	1600	86	26
02 FEB	1245	220	7.6	15.0	1	8.5	. 8	79	110	90	27
01	1400	155	7.0	1.0	35	12.6	. 8	130	170	57	16
MAR 22	1345	152	7.4	12.5	9	10.2	2.5	<20	1600	59	17
MAY 04	1200	181	7.5	14.0	. 5	10.6	3.0	240	33		
JUN 06	1300	182	7.4	21.5	3	8.4	1.5	490	79	70	20
JUL 18	1250	212	7.2	23.0	2	6.0	1.2	90	270	73	21
AUG 10	1250	182	7.0	24.0	4	6.6	2.1	790	1300	66	19
10	1230	102	7.0	24.0	,	0.0	2.1	790	1300	00	.,
	MAGNE- SIUM,	SODIUM,	PUTAS- SIUM,	BICAR-		ALKA-	SULFIDE	SULFATE	CHLO-	SILICA, DIS-	SOLIDS, RESIDUE AT 180
	DIS-	DIS-	DIS-	BONATE	CAR-	LINITY	DIS-	DIS-	DIS-	SOLVED	DEG. C
	SOLVED	SOLVED	SOLVED	(MG/L	BONATE	(MG/L	SOLVED	SOLVED	SOLVED	(MG/L	DIS-
DATE	(MG/L AS MG)	(MG/L AS NA)	(MG/L AS K)	HCU3)	AS CO3)	CACO3)	(MG/L AS S)	(MG/L AS SO4)	(MG/L AS CL)	AS (SIO2)	SOLVED (MG/L)
OCT										4.8	
13 NOV	5.2	4.6	4.1	50	0	41	.0	30	15	12	143
02 FEB	5.4	4.3	4.2	61	0	50		33	16	••	141
01 MAR	4.1	3.4	3.0	20	0	16		29	11	•	88
22 MAY	3.9	3.4	3.3	22	0	18		29	9.7		97
04 JUN				32	0	26		30	14		
06	4.9	3.6	3.0	34	0	28		28	13		123
18	4.9	3.8	3.6		0			26	13		136
10	4.4	3.4	3.7	39	0	32		24	12		124

01477510 OLDMANS CREEK AT PORCHES MILL, NJ--Continued

DATE	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SEDI- MENT, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	CRTINGEN, AY- GEN, AY- GEN, AY- AINOM TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO. TOTAL (MG/L AS P)	CARBON, DRGANIC TOTAL (MG/L AS C)
DCT											
13	5		1.3	.01	.06	.34	.40	1.7	.04	.02	8.3
02 FEB	0		1.2	.01	.01	.29	.30	1.5	.07	.04	9.0
01 MAR	108		2.8	.01	.08	.84	.92	3.7	.32	.04	6.8
22 MAY	13		2.4	.01	.08	. 35	.43	2.8	.09	.01	3.9
04 JUN	18		2.1	.01	.07	.53	.60	2.7	.06	.01	11
06 JUL	8		1.8	.02	.06	.50	.56	2.4	.11	.04	5.0
18 AUG	0	15			.10	.30	.40	1.9			4.3
10	4	31			. 30	1.2	1.5	2.9			22
							Сн	٠. • م-			

						CHRU-		
		ALUM-			CADMIUM		COBALT.	COPPER,
				BORON.				TOTAL
			ARSENTO					RECOV-
								ERABLE
	TIME							(UG/L
DATE		AS AL)	AS AS)	AS B)	AS CD)	AS CR)	AS CO)	AS CU)
OCT								
13	1200	50	2	30	0	0	0	38
			MANGA-					
		LEAD,	NESE,	MERCURY	NICKEL.		ZINC,	
	IKON,	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL	
	DIS-	RECUV-	RECOV-	RECOV-	RECOV-	NIUM,	RECOV-	
	SOLVED	ERABLE	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	PHENOLS
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
OCT								
13	60	17	60	<.5	10	0	20	2
	DATE OCT	IKON, DIS- SOLVED (UG/L DATE AS FE)	OATE AS AL) UCT 13 1200 50 IRON, TUTAL DIS- SOLVED RECUV- SOLVED (UG/L UATE AS FE) AS PB) UCT	INUM, DIS- ARSENIC SOLVED TOTAL (UG/L AS AL) AS AS)	INUM, DIS- DIS- SOLVED TOTAL SOLVED OCT 13 1200 50 2 30 MANGA- NESE, MERCURY TOTAL TOTAL TOTAL DIS- RECUV- RECOV- RE	NUM,	INUM,	ALUM-

01482100 DELAWARE RIVER AT DELAWARE MEMORIAL BRIDGE, AT WILMINGTON, DE

LOCATION.--Lat 39°41'21", long 75°31'19", New Castle County, Hydrologic Unit 02040205, on pier of right tower of downstream bridge of dual bridges at Wilmington, 2.0 mi (3.2 km) downstream from Christina River and at river mile 68.70 (110.54 km).

DRAINAGE AREA. -- 11,030 mi2 (28,570 km2).

PERIOD OF DAILY RECORD.-TIDE ELEVATIONS: July 1967 to current year. Tidal volumes published from July 1967 to September 1973.
SPECIFIC CONDUCTANCE: October 1963 to current year.
pH: January 1968 to current year.
WATER TEMPERATURES: October 1956 to current year.
DISSOLVED OXYGEN: November 1962 to current year.

GAGE.--Water-stage recorder and water-quality monitor. Datum of gage is -10.00 ft (-3.048 m) National Geodetic Vertical Datum of 1929. Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum 1929 for publication.

REMARKS.--Records of tide elevations good. Refer to U.S. Geological Survey Water Resources Data Report PA-78-1 for water-quality data.

EXTREMES FOR CURRENT YEAR.-TIDE ELEVATIONS: Maximum, 6.20 ft (1.890 m) Dec. 21; minimum, -4.78 ft (-1.457 m) Jan. 11.

EXTREMES FOR PERIOD OF RECORD.-TIDE ELEVATIONS: Maximum, 7.45 ft (2.271 m) Dec. 2, 1974; minimum, -5.86 ft (-1.786 m) Apr. 4, 1975.
SPECIFIC CONDUCTANCE: Maximum, 12,700 micromhos Nov. 13, 1966; minimum, 100 micromhos on many days.
pH: Maximum, 9.3 Nov. 10, 11, 13, 1970; minimum, 4.2 Nov. 6, 1969.
WATER TEMPERATURES: Maximum, 31.0°C Aug. 9, 1968; minimum, 0.0°C on many days during winter months.
DISSOLVED OXYGEN: Maximum, 13.5 mg/L Dec. 29, 1969; minimum, 0.0 mg/L on many days during summer months.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum elevation known, 8.4 ft (2.56 m) Nov. 23, 1950, furnished by Corps of Engineers, U.S. Army; minimum, -9.1 ft (-2.77 m) Dec. 31, 1962.

Summaries of tide elevations during current year are as follows:

TIDE	ELEVATIONS,	IN	FEET.	WATER	YEAR	OCTOBER	1977	TO	SEPTEMBER	1978

		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Maximum	Elevation	5.92	5.86	6.20	5.76	5.30	5.61	5.96	5.42	5.38	5.42	5.43	5.52
high tide	Date	14	8	21	8	8	27	28	24	22	17	16	13
Minimum	Elevation	-3.54	-3.30	-4.76	-4.78	-4.19	-3.57	-3.18	-2.33	-2.71	-2.36	-2.55	-2.12
low tide	Date	17	19	10	11	7	7	2	23	14	24	20	17
Mean high t	ide	3.96	3.99	3.89	3.49	3.77	3.79	4.20	4.45	4.17	4.22	4.29	4.34
Mean water	level	1.25	1.23	1.16	0.73	0.96	1.07	1.31	1.54	1.17	1.36	1.45	1.67
Mean low ti	lde	-1.57	-1.59	-1.66	-2.11	-1.97	-1.75	-1.69	-1.48	-1.91	-1.60	-1.50	-1.28

NOTE .-- No gage-height record Nov. 20 to Dec. 2, Dec. 10 to June 28.

01482500 SALEM RIVER AT WOODSTOWN, NJ

LOCATION.--Lat 39°38'36", long 75°19'52", Salem County, Hydrologic Unit 02040206, on right end of Memorial Lake Dam at Woodstown, 0.2 mi (0.3 km) upstream from small brook, and 0.3 mi (0.5 km) downstream from Pennsylvania-Reading Seashore Lines bridge.

DRAINAGE AREA . -- 14.6 mi2 (37.8 km2).

PERIOD OF RECORD .--

WATER DISCHARGE: March to September 1940, December 1941 to current year. Prior to October 1952, published as "Salem Creek at Woodstown".

CHEMICAL ANALYSES: Water years 1973 to current year. SEDIMENT ANALYSES: July to September 1978.

REVISED DISCHARGE RECORDS. -- WSP 1432: 1951(M). WSP 1702: 1959.

GAGE.--Water-stage recorder above concrete dam. Datum of gage is 19.49 ft (5.941 m) National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1977 at datum 10.00 ft (3.048 m) higher.

REMARKS .-- Discharge records fair .

COOPERATION . -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

AVERAGE DISCHARGE.--36 years (1942-78), 19.1 ft3/s (0.541 m3/s), 17.77 yr (451 mm/yr).

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 350 ft3/s (9.91 m3/s) and maximum (*):

			Dischar	rge	Gage H	eight				Disch	arge	Gage H	eight
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Nov.	8	0400	739	20.9	12.26	3.737	Jan.	18	0300	760	21.5	12.28	3.743
Dec.	18	1700	527	14.9	12.04	3.670	Jan.	26	0600 .	*1110	31.4	12.60	3.840
Jan.	9	0500	544	15.4	12.06	3.676							

Minimum discharge, 2.9 ft3/s (0.08 m3/s) June 20, 21.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 22,000 ft³/s (623 m³/s) Sept. 1, 1940 (gage height, 17.98 ft or 5.480 m, present datum, from floodmark in gage house) from rating curve extended above 220 ft³/s (6.23 m³/s) on basis of slope-area measurement of peak flow at site 0.5 mi (0.8 km) downstream; no flow for short periods during many years just after waste gate was closed and water was below spillway.

DISCHARGE. IN CURIC FEET PER SECOND. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		DISCHA	RGE, IN C	OBIC FEET		AN VALUES	IEAR OCI	OBER 1977	TO SEPIE	MBER 1976		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	6.4 6.4 6.4 6.4	7.4 6.4 9.6 20	127 38 22 18 29	25 20 18 16 16	16 16 14 14 13	13 13 13 13	20 18 18 20 20	11 11 9.6 11 29	9.6 9.6 11 9.6	8.5 8.5 50 104 29	9.6 9.6 14 41	22 11 6.4 6.4 7.4
6 7 8 9	7.4 7.4 7.4 25 32	9.6 122 303 41 22	47 22 16 22 18	16 18 27 274 44	16 16 16 16 16	11 11 11 13 16	18 22 20 18 16	22 16 16 99 50	9.6 8.5 9.6 9.6 7.4	16 13 11 9.6	25 16 11 12 13	7.4 8.5 7.4 7.4 6.4
11 12 13 14 15	13 8.5 7.4 8.5	16 13 11 9.6 9.6	13 11 13 41 113	22 18 22 155 57	14 14 14 16 14	122 127 85 85 69	16 18 16 14 13	25 18 16 47 41	7.4 7.4 7.4 7.4 7.4	18 11 8.5 7.4 9.6	33 15 11 10 8.5	5.4 5.4 4.5 4.5
16 17 18 19 20	11 13 11 9.6 8.5	9.6 54 38 20 14	35 25 222 127 47	27 47 388 61 41	14 14 13 13	44 47 54 44 35	13 13 13 22 47	38 57 47 35 29	7.4 7.4 6.4 4.5 3.7	9.6 11 11 8.5 8.5	7.0 6.4 6.4 6.4	5.4 4.5 4.5 11
21 22 23 24 25	8.5 7.4 6.4 7.4 7.4	13 14 50 32 22	118 50 29 25 32	41 29 22 20 326	13 13 11 11	27 27 22 20 18	27 18 14 14	27 18 16 90 61	3.7 8.5 14 11 8.5	8.5 8.5 8.5 7.4 7.4	6.4 6.4 6.4 5.4	8.5 7.4 7.4 7.4 7.4
26 27 28 29 30 31	9.6 14 14 9.6 8.5 8.5	61 25 18 16 25	25 18 16 14 16 29	648 69 35 25 20 18	14 14 13 	85 198 61 32 25 20	13 13 13 13 13	27 18 16 16 14	7.4 11 16 14 13	6.4 6.4 7.4 7.4 6.4 8.5	5.4 5.4 7.4 7.4 7.4	6.4 7.4 7.4 7.4 7.4
TOTAL MEAN MAX MIN CFSM IN.	314.0 10.1 32 6.4 .69	1024.8 34.2 303 6.4 2.34 2.61	1378 44.5 222 11 3.05 3.51	2565 82.7 648 16 5.66 6.54	392 14.0 16 11 .96	1374 44.3 198 11 3.03 3.50	527 17.6 47 13 1.21 1.34	943.6 30.4 99 9.6 2.08 2.40	269.0 8.97 16 3.7 .61	446.5 14.4 104 6.4 .99 1.14	343.7 11.1 41 5.4 .76 .88	226.0 7.53 22 4.5 .52 .58

CAL YR 1977 TOTAL 5577.4 WTR YR 1978 TOTAL 9803.6 MEAN 15.3 MAX 303 MAX 648 CFSM 1.05 IN 14.21 MEAN 26.9

01482500 SALEM RIVER AT WOODSTOWN, NJ--Continued

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
ост												
05 NOV	1140	6.4	250	8.0	17.0	5	9.6	4.2	20	240	92	21
FEB	1045	7.4	228	7.4	14.5	3	9.0	4.7	110	240	84	18
01 MAR	1200	14	163	7.3	2.5	15	13.0	1.2	33	49	58	13
22 MAY	1110	29	177	7.3	11.0	30	10.5	3.5	17	920	61	14
03 JUN	1145	9.6	205	7.7	16.0	7	10.2		23	2	85	20
05 JUL	1120	9.6	211	7.5	24.0	7	8.0	4.4	170	49	78	17
18 AUG	0930	11	212	7.3	24.5	. 3	5.7	3.0	20	210	77	17
10	0945	8.5	208	7.4	27.5	2	7.0	5.8	20	13	70	15
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE DIS- SOLVED (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)
OCT 05	9.5	7.0	6.4	56	0	46	.2	30	17	.4	130	2
NOV 02	9.6	6.6	6.6	44	0	36		41	19		127	24
FEB 01	6.1	4.5	3.2	17	0	14		29	12		92	16
MAR 22	6.4	5.3	4.2	22	0	18		32	13		106	47
MAY 03	8.4	6.0	3.0	24	0	20	.0	40	15	4.8	133	12
JUN 05	8.7	6.0	4.3	37	0	30		35	17		135	27
JUL 18	8.5	5.7	4.8		0			31	15	78.44	161	4
AUG 10	7.8	5.0	5.1	44	0	36		27	16		171	4
				\$ 1 mg		1						
DATE	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,NH4 + DRG. IDT IN BDT MAT (MG/KG AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO. TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 05			.53	.06	.25	1.1	1.3	650	1.9	.11	.01	6.3
NDV 02			.95	.03	.13	.84	.97		2.0	.10	.01	6.5
FEB 01			3.1	.01	.21	.43	.64		3.7	.07	.01	1.6
MAR 22			2.7	.03	.44	.86	1.3		4.0	.17	.05	6.1
MAY 03			2.4	.03	.09	.75	.84		3.2	.11	.01	6.2
JUN 05			2.2	.06	.14	.75	1.1	6 - 3	3.4	.12	.01	5.4
JUL 18	21	.62	2.2	.00						.12	.01	
AUG 10	21	.48			.30	1.2	1.5		2.0			5.2 4.1
	•••			-	.30	1.2	1.3	-				1997

01482500 SALEM RIVER AT WOODSTOWN, NJ--Continued

		WATER OL	JALITY DAT	A, WATER	YEAR OCTO	BER 1977	TO SEPTEM	BER 1978		
		ALUM-		ARSENIC		CADMIUM	CADMIUM RECOV.	CHRO-	CHRO-	COBALT,
		INUM,		IN BOT-	BORON.	TOTAL	FM BOI-	RECOV.	HEXA-	TOTAL
		DIS-	ARSENIC	TOM MA-	DIS-	RECOV-	TOM MA-	FM BOT-	VALENT,	RECOV-
		SOLVED	TOTAL	TERIAL	SOLVED	ERABLE	TERIAL	TOM MA-	DIS.	ERABLE
	TIME	(UG/L	(UG/L	(UG/G	(UG/L	(UG/L	(UG/G	TERIAL	(UG/L	(UG/L
DATE		AS AL)	AS AS)	AS AS)	AS B)	AS CD)	AS CD)	(UG/G)	AS CR)	AS CO)
OCT										
05	1140	0	1	2	80	0	<10	<10	0	0
MAY										
03	1145	20			10				0	0
	COBALT,		COPPER,		IRON,		LEAD,	MANGA-	MANGA-	
	RECOV.	COPPER,	RECOV.		RECOV.	LEAD,	RECOV.	NESE,	NESE,	MERCURY
	FM BOT-	TOTAL	FM BOT-	IRON,	FM BOT-	TOTAL	FM BOT-	TOTAL	RECOV.	TOTAL
	-AM MOT	RECOV-	TOM MA-	DIS-	TOM MA-	RECOV-	-AM MCT	RECOV-	FM BOT-	RECOV-
	TERIAL	ERABLE	TERIAL	SOLVED	TERIAL	ERABLE	TERIAL	ERABLE	TOM MA-	ERABLE
	(UG/G	(UG/L	(UG/G	(UG/L	(UG/G	(UG/L	(UG/G	(UG/L	TERIAL	(UG/L
DATE	AS CO)	AS CU)	AS CU)	AS FE)	AS FE)	AS PB)	AS PB)	AS MN)	(UG/G)	AS HG)
OCT										
05	<10	5	<10	10	1700	2	15	60	10	<.5
MAY										
03		3		250				100		-
	MERCURY		NICKEL,			ZINC,				CHLOR-
	RECOV.	NICKEL,	RECOV.		ZINC,	RECOV.		PCB,	ALDRIN,	DANE,
	FM BOT-	TOTAL	FM BOT-	SELE-	TOTAL	FM BOT-		TOTAL	TOTAL	TOTAL
	TOM MA-	RECOV-	TOM MA-	NIUM,	RECOV-	TOM MA-		IN BOT-	IN BOT-	IN BOT-
	TERIAL	ERABLE	TERIAL	TOTAL	ERABLE	TERIAL	PHENOLS	TOM MA-	TOM MA-	TOM MA-
DATE	(UG/L AS HG)	(UG/L AS NI)	(UG/G AS NI)	(UG/L AS SE)	(UG/L AS ZN)	(UG/G AS ZN)	(UG/L)	TERIAL (UG/KG)	TERIAL (UG/KG)	TERIAL (UG/KG)
	,				AG 2,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	, , , , , , , ,
OCT 05	.0	4	<10	0	20	30	3	78	.0	0
MAY	.0	,	(10	U	20	30	3	7.6	.0	v
03		5			20		0			
	0.0	D, DD	E, DD1	DI ELDR			OR, CHL	OR LIND	TOX	NE,
	TOT									
	IN B									
	TOM							TOM TOM		777
			IAL TER							TAL
DA	TE (UG/									
OCT										
		.0	.0	.0	.0	.0	.0	.0	.0	0
MAY		. 0	• 0		.0	.0	. 0	.0	.0	U

01482537 SALEM RIVER AT COURSES LANDING, NJ

LOCATION.--Lat 39°39'38", long 75°24'34", Salem County, Hydrologic Unit 02040206, at bridge on Pointers-Auburn Road at Courses Landing, 1.6 mi (2.6 km) north of Halltown, 2.0 mi (3.2 km) northeast of Slapes Corner, and 2.1 mi (3.4 km) downstream of Major Run.

DRAINAGE AREA. -- 35.8 mi2 (92.7 km2).

PERIOD OF RECORD. -CHEMICAL ANALYSES: Water years 1975 to current year.
SEDIMENT ANALYSES: July and August 1978.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BID- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TUCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
OCT											
05	1310	299	7.7	15.0	1	5.4	3.2	>24000	920	110	32
02	1145	298	7.4	14.5	20	6.0	3.2	350	920	95	27
FEB 01	1300	202	7.1	1.0	10	10.4	1.1	2200	490	69	19
MAR 22	1220	196	7.7	10.5	35	8.2	5.8	50	>2400	67	18
MAY		1,00		10.5	33	0.2	3.0	30	72400	•	
04 JUN	1000	245	7.2	15.5	20	8.0	8.3	110	15		
05	1230	238	7.4	22.0	10	8.0	6.7	460	130	83	. 22
JUL 18	1055	244	7.1	22.0	9	3.2	3.2	1100	23	83	23
AUG 10	1120	238	7.2	26.0	10	4.9	6.4	1400	490	75	20
	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	POTAS- SIUM, DIS- SULVED (MG/L	BICAR- BONATE (MG/L AS	CAR- BONATE (MG/L	ALKA- LINITY (MG/L AS	SULFIDE DIS- SOLVED (MG/L	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L	SILICA, DIS- SOLVED (MG/L AS	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED
DATE	AS MG)	AS NA)	AS K)	HCO3)	AS C03)	CACO3)	AS S)	AS SO4)	AS CL)	SI02)	(MG/L)
OCT O5	6.5	16	5.2	90	0	74	.0	25	20	9.5	159
02 FEB	6.7	16	6.6	82	0	67		31	25		179
01	5.2	7.7	3.5	37	0	30		30	14	••	108
MAR 22	5,3	8.0	4.3	44	0	36		31	14		117
MAY 04				51	0	42		34	21	10	
JUN 05	6.7	10	4.4	55	0	45		31	19		152
JUL 18	6.3	10	4.6		0			27	18		169
AUG 10	6.0	9.5	5.3	61	0	50		24	18		172
				•				-			170

DELAWARE RIVER BASIN 01482537 SALEM RIVER AT COURSES LANDING, NJ--Continued

DATE	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SEDI- MENT, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRU- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRD- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO. TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
DCT											
05 NOV	31		1.6	.08	.50	.80	1.3	3.0	.33	.08	7.1
02 FEB	46		1.3	.06	.78	1.0	1.8	3.2	.38	.16	12
01 MAR	12		2.8	.02	.39	.49	.88	3.7	.15	.07	2.8
22 MAY	55		2.4	.03	.61	.79	1.4	3.8	.28	.02	6.4
04 JUN	47		2.2	.04	.09	.32	.41	2.6	.30	.07	9.8
05 JUL	30		2.0	.09	.17	1.2	1.4	3.5	.34	.09	6.0
18 AUG	14	36			.30	.50	.80	2.5			7.5
10	22	53			.30	1.5	1.8	3.1			6.5

		ALUM- INUM,		BORON,	CADMIUM TOTAL	CHRO- MIUM, HEXA-	COBALT, TOTAL	COPPER, TOTAL
		DIS-	ARSENIC	DIS-	RECOV-	VALENT,	RECOV-	RECOV-
		SOLVED	TOTAL	SOLVED	ERABLE	DIS.	ERABLE	ERABLE
DAME	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE		AS AL)	AS AS)	AS B)	AS CD)	AS CR)	AS CO)	AS CU)
UCT								
05	1310	0	1	110	0	0	0	6
MAY			•	110	v	U		
04	1000							
			MANGA-					
		LEAD,	NESE,	MERCURY	NICKEL,		ZINC,	
	IRON,	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL	
	DIS-	RECOV-	RECOV-	RECOV-	RECOV-	NIUM,	RECOV-	
	SOLVED	ERABLE	ERABLE	ERAGLE	ERABLE	TOTAL	ERABLE	PHENOLS
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
OCT								
05	20	2	150	<.5	5	0	20	5
MAY	-	-			,	•	20	,
0.4			3.50	100,000	1000			

01482925 ALLOWAY CREEK AT INLET OF ALLOWAY LAKE NEAR ALLOWAY, NJ

LOCATION.--Lat 39°34'39", long 75°20'47", Salem County, Hydrologic Unit 02040206, at bridge on Alloway-Woodstown Road, 1.4 mi (2.3 km) northeast of Alloway, 1.4 mi (2.3 km) northwest of outflow of Sycamore Lake, 1.7 mi (2.7 km) upstream from outflow of Alloway Lake, and 2.5 mi (4.0 km) southeast of Porterstown.

DRAINAGE AREA .-- 19.4 mi2 (50.2 km2).

PERIOD OF RECORD. --

05...

14

.03

.10

.64

.74

3.3

.06

.03

5.8

CHEMICAL ANALYSES: Water years 1975 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 SPE-OXYGEN CIFIC DEMAND, COLI-CALCIUM CUN-HARD-BIJ-FORM. DUCT-FECAL, STREP-NESS DIS-TUR-OXYGEN, CHEM-SOLVED ANCE PH TEMPER-BID-DIS-ICAL, EC TOCOCCI (MG/L TIME (MICRO-BROTH ATURE ITY SOLVED 5 DAY FECAL AS (MG/L DATE MHOS) (UNITS) (DEG C) (MG/L) (MG/L) (MPN) (MPN) CACO3) AS CA OCT 05... 1010 198 7.4 13.5 790 170 69 12 . 8 NOV 0945 63 02... 6.7 12.0 1100 490 11 4.8 1.6 FEB 1045 01 ... 126 5.9 . 0 10 10.6 . 2 20 270 37 7.2 22 ... 0930 121 6.3 7.5 4 9.7 2.3 20 33 39 7.4 MAY 03... 1000 12.0 160 9.2 140 20 58 11 JUN 05... 0945 157 6.7 18.0 55 790 130 10 6.3 1.2 SOLIDS, MAGNE-POTAS-CHLO-SILICA, RESIDUE SIUM, SODIUM, SIUM. BICAR-ALKA-SULFIDE SULFATE RIDE. AT 180 DIS-DIS-DIS-DIS-BONATE CAR-LINITY SOLVED DEG. C DIS-DIS-DIS-SOLVED SOLVED SOLVED SOLVED SOLVED (MG/L BONATE (MG/L SOLVED (MG/L DIS-(MG/L (MG/L AS (MG/L SOLVED (MG/L AS (MG/L AS (MG/L (MG/L DATE AS MG) AS NA) AS K) HCO3) AS CO3) CACO3 AS S) 504) AS CL) SI02) (MG/L) OCT 05 ... 9.4 5.7 4.3 23 0 22 17 5.1 105 19 . 2 NOV 02... 8.7 4.7 0 29 19 110 FFR 4.7 01 ... 3.5 9.2 80 3.1 0 23 6 5 MAR 22 ... 4.9 3.7 3.6 n 5 25 9.6 59 03... 7.3 5.1 3.0 13 0 94 11 25 14 JUN 05... 7.2 4.8 3.8 17 0 14 24 15 108 SOLIDS NITRO-NITRO-NITRO-RESIDUE NITRO-NITRO-GEN, AM-PHOS-AT 105 GEN, GEN. GEN. NITRO-PHOS-PHORUS, CARBON, GEN. MONIA + DEG. C, NITRATE NITRITE AMMONIA ORGANIC ORGANIC GEN, PHORUS, ORTHO. DRGANIC SUS-TOTAL (MG/L TOTAL TOTAL TOTAL. TOTAL TOTAL TOTAL TOTAL TOTAL PENDED (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L DATE (MG/L) AS N) AS N) AS N) AS N) AS N) AS P) AS P) AS C) OCT 05 ... 3 3.0 .01 .03 .30 .33 3.3 .06 .03 5.9 NOV 02... .02 .01 . 44 2.0 .03 .01 8.4 FEB 01... .40 .00 .03 .02 .24 .27 -67 .07 1.4 MAR 3 22 . . . 2.2 .02 -06 .54 .60 2.8 .04 .01 4.4 03... 0 3.0 .01 .01 .38 .39 3.4 .02 .00 4.7 JUN

DELAWARE RIVER BASIN

01482925 ALLOWAY CREEK AT INLET OF ALLOWAY LAKE NEAR ALLOWAY, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

TE	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	GEN,	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	GEN,	MONIA	+ NITRO L GEN, L TOTAL L (MG/L	PHORUS TOTAL (MG/L	, ORTHO. TOTAL (MG/L	CARBON, ORGANIC TOTAL (MG/L AS C)
			.95	.05	1.8	.90	2.	7 3.7		0 .02	8.9
			1.2	.01	.54	.44		98 2.2	2 .0	8 .01	9.0
											1.9
			.89	.01	.94	.46	1.	4 2.3	3 .1	6 .02	6.0
			.67			.57	1.	5 2.2	2 .1	7 .01	10
			.67		1.1	.80	1.	9 2.6	5 .1	1 .02	8.5
	16	.16									8.2
	10	.49	-		.60	.50	1.	1			9.5
	DC	ATE	TIME (OLVED T	SENIC OTAL S UG/L (ORON, 1 DIS- R OLVED E	DMIUM DTAL ECOV- RABLE UG/L S CO)	CHRD- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)	COBALT, COTAL TOTAL RECOV- ERABLE (UG/L AS CO)	OPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	
	D	S	PON, T DIS- R DLVED E	COTAL TECOV- RECOV- REABLE E	OTAL I ECUV- R RABLE E UG/L (OTAL I ECOV- R RABLE E	CKEL, OTAL ECOV- RABLE UG/L S NI)	SELE- NIUM, POTAL (UG/L AS SE)	(UG/L	HENDLS (UG/L)	

50

RESERVOIRS IN DELAWARE RIVER BASIN

01416900 PEPACTON RESERVOIR.--Lat 42°04'38", long 74°58'04", Delaware County, NY, Hydrologic Unit 02040102, near release chamber at Downsville Dam on East Branch Delaware River, and 1.6 mi (2.6 km) east of Downsville, NY. DRAINAGE AREA, 371 mi² (961 km²). PERIOD OF RECORD, September 1954 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Board of Water Supply, City of

New York).

Reservoir is formed by an earthfill rockfaced dam; storage began Sept. 15, 1954. Usable capacity 140,190 mil gal (530.6 hm³) between minimum operating level, elevation, 1,152.0 ft (351.13 m) and crest of spillway, elevation, 1,280.0 ft (390.14 m). Capacity: at crest of spillway 149,700 mil gal (566.6 hm³); at minimum operating level, 9,609 mil gal (36.37 hm³); at still of diversion tunnel, elevation, 1,143.0 ft (348.39 m), 6,098 mil gal (23.08 hm³); in dead storage below release outlet, elevation, 1,126.50 ft (343.357 m), 1,898 mil gal (7.184 hm³). Figures given herein represent total contents. Reservoir impounds water for diversion through East Delaware Tunnel to Rondout Reservoir on Rondout Creek, in Hudson River basin (see Delaware River Basin, diversions), for water supply to City of New York; for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master; and for conservation release. No diversion prior to Jan. 6, 1955. Records furnished by Board of Water Supply and Department of Water Resources, City of New York.

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 152,866 mil gal (578.6 hm³) Jan. 10, elevation, 1,281.65 ft (390.647 m); minimum observed, 112,368 mil gal (425.3 hm³) Sept. 30, elevation, 1,258.05 ft

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 154,027 mil gal (583.0 hm³) Apr. 5, 1960, elevation, 1,282.27 ft (390.836 m); minimum observed (after first filling), 9,575 mil gal (36.24 hm³) Dec. 26, 1964, elevation, 1,151.92 ft (351.105 m).

01424997 CANNONSVILLE RESERVOIR.--Lat 42°03'46", long 75°22'29", Delaware County, NY, Hydrologic Unit 02040101, in emergency gate tower at Cannonsville Dam on West Branch Delaware River, and 1.8 mi (2.9 km) southeast of Stilesville, NY. DRAINAGE AREA, 454 mi² (1,176 km²). PERIOD OF RECORD, October 1963 to current year. REVISED RECORDS, WRD-NY 1972: 1966. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Board of Water Supply, City of New York).

Reservoir is formed by an earthfill rockfaced dam; storage began Sept. 30, 1963, usable capacity 95,706 mil gal (362.2 hm³) between minimum operating level, elevation, 1,040.0 ft (316.99 m) and crest of spillway, elevation, 1,150.0 ft (350.52 m). Capacity, at crest of spillway, 98,618 mil gal (373.3 hm³); at minimum operating level, 2,912 mil gal (11.02 hm³); at mouth of inlet channel to diversion tunnel, elevation, 1,035.0 ft (315.47 m), 1,892 mil gal (7.161 hm³); in dead storage below release outlet elevation, 1,020.5 ft (311.05 m), 328 mil gal (1.241 hm³). Figures given herein represent total contents. Impounded water is diverted for New York City water supply via West Delaware Tunnel to Rondout Reservoir in Hudson River basin (see Delaware River Basin, diversion); is released in Delaware River for downstream low flow augmentation as directed by Delaware River Master; and is released for conservation flow in the Delaware River. No diversion prior to Jan. 29. 1964. Records furnished by Board of Water Supply, City of New York.

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 105,362 mil gal (398.8 hm³) Jan. 10, elevation, 1,154.19 ft (351.797 m); minimum observed, 69,071 mil gal (261.4 hm³) Sept. 30, elevation, 1,129.07 ft (344.141 m).

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 108,116 mil gal (409.2 hm³) Mar. 15, 1977,

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 108,116 mil gal (409.2 hm³) Mar. 15, 1977, elevation, 1,155.85 ft (352.303 m); minimum observed (after first filling), 11,901 mil gal (45.05 hm³) Nov. 7, 1968, elevation, 1,066.24 ft (324.990 m).

01428900 PROMPTON RESERVOIR.--Lat 41°35'18", long 75°19'39", Wayne County, PA, Hydrologic Unit 02040103, at dam on West Branch Lackawaxen River, 0.3 mi (0.5 km) north of Prompton, 0.4 mi (0.6 km) upstream from highway bridge and 0.5 mi (0.8 km) upstream from Van Auken Creek. DRAINAGE AREA, 59.6 mi² (154 km²). PERIOD OF RECORD, December 1960 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).

of 1929 (levels by Corps of Engineers).

Reservoir formed by an earth and rockfill dam with ungaged bedrock spillway at elevation 1,205.00 ft (367.284 m); storage began July 1960. Capacity at elevation 1,205.00 ft (367.284 m) is 51,700 acre-ft (63.7 hm³). Ordinary minimum (conservation) pool elevation, 1,125.00 ft (342.900 m) capacity, 3,420 acre-ft (4.22 hm²). Reservoir is used for flood control and recreation. Figures given herein represent total contents. Regulation is accomplished by discharge through an ungated tunnel. Records furnished by Corps of Engineers.

EXTREMES FOR CURRENT YEAR: Maximum contents, 5,330 acre-ft (6.57 hm²) Mar. 28, elevation, 1,131.20 ft (344.79 m); minimum, 3,420 acre-ft (4.22 hm³) July 2, 3, 9-31, elevation, 1,125.00 ft (342.900 m).

EXTREMES FOR FERIOD OF RECORD: Maximum contents, 8,170 acre-ft (10.1 hm²) June 29, 1973, elevation, 1,138.40 ft (346.984 m); minimum (after first filling), 2,920 acre-ft (3.60 hm²) Sept. 27, 1964, elevation, 1,123.20 ft (342.351 m).

01429400 GENERAL EDGAR JADWIN RESERVOIR.--Lat 41°36'44", long 75°15,55", Wayne County, PA, Hydrologic Unit 02040103, at dam on Dyberry Creek, 0.45 mi (0.72 km) upstream from unnamed tributary, 2.4 mi (3.9 km) north of Honesdale, and 2.9 mi (4.7 km) upstream from mouth. DRAINAGE AREA, 64.5 mi² (167.1 km²). PERIOD OF RECORD, October 1959 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of

Honesdale, and 2.9 mi (4.7 km) upstream from mouth. DRAINAGE AREA, 04.5 mi* (107.1 km*). FERIOU UF RELORD, October 1959 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).

Reservoir formed by an earth and rockfill dam with ungated, concrete spillway at elevation, 1,053.00 ft (320.954 m); storage began in October 1959. Capacity at elevation 1,053.00 ft (320.954 m) is 24,500 acre-ft (30.2 hm*). Reservoir is used for flood control. Figures given herein represent total contents. Regulation is accomplished by discharge through an ungated tunnel. Records furnished by Corps of Engineers.

EXTREMES FOR CURRENT YEAR: Maximum contents, 2,360 acre-ft (2.91 hm*) Jan. 27, elevation, 1,002.28 ft

(305.495 m); no storage many times.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 6,520 acre-ft (8.04 hm³) June 19, 1973, elevation 1,017.40 ft (310,104 m); no storage many times.

01431700 LAKE WALLENPAUPACK.--Lat 41°27'35", long 75°11'10", Wayne County, PA, Hydrologic Unit 02040103, at dam on Wallenpaupack Creek at Wilsonville, 1.2 mi (1.9 km) south of Hawley and 1.5 mi (2.4 km) upstream from mouth. DRAINAGE AREA, 228 mi² (591 km²). PERIOD OF RECORD, January 1926 to current year. GAGE, vertical staff. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Pennsylvania Power and Light Co.).

Reservoir formed by concrete gravity-type and earthfill dam with concrete spillway at elevation 1,176.00 ft (358.445 m) in two sections. Spillway equipped with roller gate, 14 ft high (4.267 m) on each section. Storage began Nov. 3, 1925; water in reservoir first reached minimum pool elevation in January 1926. Total capacity at elevation 1,190.00 ft (362.712 m), top of gates, is 209,300 acre-ft (258 hm²) of which 157,800 acre-ft (195 hm²) is controlled storage above elevation 1,160.00 ft (353.568 m), minimum pool. Reservoir is used for generation of hydrolelectric power. Figures given herein represent usable contents. Records furnished by Pennsylvania Power and Light Co.

Power and Light Co.

EXTREMES FOR CURRENT YEAR: Maximum contents, 139,360 acre-ft (171.8 hm³) May 30, June 5, elevation,
1,186.80 ft (361.737 m); minimum, 60,240 acre-ft (74.3 hm³) Mar. 14, elevation, 1,172.20 ft (357.287 m).

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 178,200 acre-ft (220 hm³) Aug. 19-21, 1955, elevation,
1,193.45 ft (363.764 m); minimum (after first filling), 12,280 acre-ft (15.1 hm³) Mar. 28, 1958, elevation,
1,162.60 ft (354.360 m).

RESERVOIR IN DELAWARE RIVER BASIN -- Continued

01433000 SWINGING BRIDGE RESERVOIR.—Lat 41°34'25", long 74°47'00", Sullivan County, NY, Hydrologic Unit 02040104, at dam on Mongaup River, and 1.8 mi (2.9 km) northwest of Fowlersville, NY. DRAINAGE AREA, 118 mi² (306 km²) excluding Cliff Lake, Lebanon Lake, and Toronto Reservoir. PERIOD OF RECORD, January 1930 to current year. REVISED RECORDS, WSP 1552: 1951-54. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Orange and Rockland Utilities, Inc.). All capacity figures given herein are based on zero storage at minimum operating pool level, 1,010 ft (308 m).

Reservoir is formed by an earthfill dam; storage began Jan. 19, 1930. Usable capacity, 1,436.6 mil ft³ (40.7 hm³) between elevations 1,010.0 ft (307.85 m), minimum operating pool, and 1,071.2 ft (326.50 m), top of flashboards. Capacity below elevation 1,010.0 ft (307.85 m), minimum operating pool, about 212.7 mil ft³ (6.02 km³). Reservoir is used for storage of water for power. Figures given herein represent contents above 1,010.0 ft (307.85 m). Water is received from Cliff Lake, Lebanon Lake, and Toronto Reservoir. Records furnished by Orange and Rockland Utilities, Inc.

EXTREMES FOR CURRENT YEAR: Maximum contents, 1,403.7 mil ft³ (39.8 km³) May 19, elevation, 1,070.4 ft (326.26 m); minimum, 645.4 mil ft³ (18.3 m³) Mar. 13, elevation, 1,048.3 ft (319.52 m).

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 1,461.6 mil ft³ (41.4 km³) Mar. 14, 1977, elevation, 1,071.8 ft (326.68 m); minimum (after first filling), 141.4 mil ft³ (4.00 km³) Dec. 2, 1938, elevation, 987.5 ft (300.99 m).

01433100 TORONTO RESERVOIR.--Lat 41°37'15", long 74°49'55", Sullivan County, NY, Hydrologic Unit 02040104, at dam on Black Lake Creek, and 2.5 mi (4.0 km) southeast of village of Black Lake, NY. DRAINAGE AREA, 23.2 mi² (60.1 km²). PERIOD OF RECORD, January 1926 to current year. REVISED RECORDS, WSP 1552: 1951-54. WSP 1702: 1959(M). Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Orange and Rockland Utilities, Inc.). All capacity figures given herein are based on zero storage at minimum operating pool level, 1,165.0 ft (355.09 m).

Reservoir is formed by an earthfill dam completed July 24, 1926; storage began Jan. 13, 1926. Usable capacity, 1,098.2 mil ft³ (31.1 hm³) between elevations 1,165.0 ft (355.09 m), minimum operating pool, and operating pool, about 26.8 mil ft³ (0.759 hm³). Reservoir is used for storage of water for power. Figures given herein represent contents above 1,165.0 ft (355.09 m). Records furnished by Orange and Rockland Utilities, Inc.

EXTREMES FOR CURRENT YEAR: Maximum contents observed. 885.9 mil ft³ (25.1 hm³) Feb. 6. elevation. 1,213.6 ft

Utilities, Inc.

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 885.9 mil ft³ (25.1 hm³) Feb. 6, elevation, 1,213.6 ft (369.91 m); minimum observed, 74.4 mil ft³ (2.11 hm³) Aug. 2, elevation, 1,175.5 ft (358.29 m).

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 1,171.2 mil ft³ (33.2 hm³) July 20, 1945, elevation, 1,222.0 ft (372.47 m). minimum observed (after first filling), 26.8 mil ft³ (0.759 hm³) Nov. 15, 1928, elevation, 1,144.5 ft (348.84 m).

01433200 CLIFF LAKE.—Lat 41°35'00", long 74°47'40", Sullivan County, NY, Hydrologic Unit 02040104, at dam on Black Lake Creek, and 2.5 mi (4.0 km) northwest of Fowlersville, NY. DRAINAGE AREA, 6.46 mi² (16.7 km²) excluding area above Toronto Reservoir. PERIOD OF RECORD, January 1939 to current year. REVISED RECORDS, WSP 1552: 1951-54. WRD-NY 1975: 1974(m). Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Orange and Rockland Utilities, Inc.). All capacity figures given herein are based on zero storage at minimum operating pool level, 1,043.3 ft (318.0 m).

Reservoir is formed by a concrete gravity-type dam; storage began Jan. 6, 1939. Usable capacity, 136.06 mil ft³ (3.85 hm³) between elevations 1,043.3 ft (318.00 m), minimum operating pool, and 1,072.0 ft (326.75 m), top of permanent flashboards. Capacity below elevation 1,043.3 ft (318.00 m), minimum operating pool, about 6.54 mil ft³ (0.185 hm³). Reservoir is used for storage of water for power. Water is received from Toronto and Lebanon Lake reservoirs and is discharged through a tunnel into Swinging Bridge Reservoir. Figures given herein represent contents above 1,043.3 ft (318.00 m). Records furnished by Orange and Rockland Utilities, Inc.

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 138.6 mil ft³ (3.93 hm³) Mar. 31, elevation, 1,072.3 ft (326.84 m); minimum observed, 73.5 mil ft³ (2.08 hm³) Feb. 15, elevation, 1,063.4 ft (324.12 m).

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 145.44 mil ft³ (4.12 hm²) July 30, 31, 1945, elevation, 1,073.1 ft (327.08 m); minimum observed (after first filling), about 6.54 mil ft³ (0.185 hm²)

Mar. 16, 1963, elevation, 1,038.0 ft (316.38 m).

01435900 NEVERSINK RESERVOIR.--Lat 40°49'40", long 74°38'21", Sullivan County, NY, Hydrologic Unit 02040104, at a gate-house at Neversink Dam on Neversink River, and 2 mi (3 km) southwest of Neversink, NY. DRAINAGE AREA, 91.8 mi² (238 km²). PERIOD OF RECORD, June 1953 to current year. GAGE, nonrecording gage read daily at 0900. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Board of Water Supply, City of New York). Reservoir is formed by an earthfill rockfaced dam; storage began June 2, 1953. Usable capacity 34,941 mil gal (132.25 hm²) between minimum operating level, elevation, 1,319.0 ft (402 m) and crest of spillway, elevation, 1,440.0 ft (438.9 m). Capacity at crest of spillway, 37,146 mil gal (140.6 hm²); at minimum operating level, 2,205 mil gal (8.35 hm²); dead storage below diversion sill and outlet sill at elevation 1,314.0 ft (400.5 m), 1,680 mil gal (6.36 hm²). Figures given herein represent total contents. Reservoir impounds water for diversion through Neversink-Grahamsville Tunnel to Rondout Reservoir on Rondout Creek, in Hudson River Pasin. for water supply of City of New York (see Pelaware River Rasin. diversions); for release Hudson River basin, for water supply of City of New York (see Delaware River Basin, diversions); for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master; and for conservation release. No diversion prior to Dec. 3, 1953. Records furnished by Board of Water Supply, and

Department of Water Resources, City of New York.

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 37,514 mil gal (142.0 hm³) May 18, 19, elevation, 1,440.74 ft (439.138 m); minimum observed, 16,504 mil gal (62.47 hm³) Sept. 30, elevation, 1,388.38 ft (423, 178 m).

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 37,978 mil gal (143.7 hm²) Apr. 25, 1961, elevation, 1,441.67 ft (439.421 m); minimum observed (after first filling), 1,985 mil gal (7.513 hm²) Nov. 25, 1964, elevation, 1,316.98 ft (401.415 m).

01447780 FRANCIS E. WALTER RESERVOIR (formerly published as Bear Creek Reservoir).--Lat 41°06'45", long 75°43'15", Luzerne County, PA, Hydrologic Unit 02040106, at dam on Lehigh River, 2,200 ft (670 m) downstream from Bear Creek and 5 mi (8 km) northwest of White Haven. DRAINAGE AREA, 289 mi² (749 km²). PERIOD OF RECORD, February 1961 to current year. GAGE, was (levels by Corps of Engineers). GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929

(levels by Corps of Engineers).

Reservoir formed by an earthfill embankment covered with a rock shell, with concrete spillway at elevation 1,450.0 ft (441.96 m); storage began Feb. 17, 1961; water in reservoir first reached conservation pool elevation in June 1961. Total capacity at elevation 1,450.0 ft (441.96 m) is 110,700 acre-ft (136 hm³) of which 108,700 acre-ft (134 hm³) is controlled storage above elevation 1,300.0 ft or 396.24 m (conservation pool). Dead storage is 2,000 acre-ft (2.47 hm³). Reservoir is used for flood control and recreation. Figures given herein represent total contents. Flow regulated by three gates and low flow by-pass system. Records furnished

by Corps of Engineers.

EXTREMES FOR CURRENT YEAR: Maximum contents, 22,470 acre-ft (27.7 hm²) Mar. 29, elevation, 1,371.75 ft (418.109 m); minimum, 1,390 acre-ft (1.71 hm³) Dec. 4, elevation, 1,293.70 ft (394.320 m).

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 42,600 acre-ft (52.5 hm²) June 26, 1972, elevation, 1,398.20 ft (426.171 m); minimum (after establishment of conservation pool), 1,390 acre-ft (1.71 hm³) Dec. 4, 1977, elevation, 1,293.70 ft (394.320 m).

RESERVOIRS IN DELAWARE RIVER BASIN -- Continued

01449400 PENN FOREST RESERVOIR.—Lat 40°55'45", long 75°33'45", Carbon County, PA, Hydrologic Unit 02040106, at dam on Wild Creek near Hatchery, PA, 0.7 mi (1.1 km) upstream from Hatchery, 2.6 mi (4.2 km) upstream from Wild Creek Dam, 4.4 mi (7.1 km) upstream from mouth, and 10 mi (16 km) northeast of Palmerton. DRAINAGE AREA, 16.5 mi² (42.7 km²). PERIOD OF RECORD, October 1958 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by city of Bethlehem).

Reservoir formed by an earthfill dam, with ungated concrete spillway at elevation 1,000.00 ft (304,800 m); storage began in October 1958. Capacity at elevation 1,000.00 ft (304.800 m) is 19,980 aere-ft (24.6 km³).

Reservoir is used for municipal water supply. Figures given herein represent total contents. Regulation is done by valves on pipe through dam. Records furnished by city of Bethlehem. Figures given herein include diversion, since October 1969, from Tunkhannock Creek basin into Wild Creek basin.

EXTREMES FOR CURRENT YEAR: Maximum contents, 20,520 acre-ft (25.3 hm³) Mar. 28, elevation, 1,000.92 ft (305.080 m); minimum, 14,890 acre-ft (18.4 km³) Oct. 1, elevation, 988.05 ft (301.158 m).

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 20,520 acre-ft (25.3 hm³) Mar. 28, 1978, elevation, 1,000.92 ft (305.080 m); minimum, 176 acre-ft (0.217 hm³) Oct. 6, 1965, elevation, 902.40 ft (275.052 m).

01449700 WILD CREEK RESERVOIR.--Lat 40°53'50", long 75°33'50", Carbon County, PA, Hydrologic Unit 02040106, at dam on Wild Creek near Hatchery, PA, 1.6 mi (2.6 km) upstream from mouth, 2.4 mi (3.9 km) south of Hatchery, and 7.5 mi (12 km) northeast of Palmerton. DRAINAGE AREA, 22.2 mi² (57.5 km²). PERIOD OF RECORD, January 1941 to current year. Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by city of

Reservoir formed by earthfill dam, with concrete ungated spillway at elevation 820.00 ft (249.936 m); storage began January 27, 1941; water in reservoir first reached minimum pool elevation in February 1941. Total capacity at elevation 820.00 ft (249.936 m) is 12,500 acre-ft (15.4 hm³) of which 12,000 acre-ft (15 hm³) is controlled storage. Reservoir is used for municipal water supply. Figures given herein represent usable

controlled storage. Reservoir is used for municipal water supply. Figures given herein represent usable contents. Regulation is accomplished by valves on pipe through dam. Records furnished by city of Bethlehem. Since October 1969 the basin upstream has received diversion from Tunkhannock Creek basin.

EXTREMES FOR CURRENT YEAR: Maximum contents, 12,350 acre-ft (15.2 hm³) Mar. 28, elevation, 821.18 ft (250.296 m); minimum, 11,540 acre-ft (14.2 hm³) Sept. 30, elevation, 818.02 ft (249.332 m).

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 12,880 acre-ft (15.9 hm³) May 23, 1942, elevation, 822.93 ft (250.829 m); minimum (after first filling), 2,680 acre-ft (3.30 hm²) Nov. 15, 1966, elevation, 774.10 ft (235.946 m).

01449790 BELTZVILLE LAKE.--Lat 40°50'56", long 75°38'19", Carbon County, PA, Hydrologic Unit 02040106, at dam on Pohopoco Creek, 0.45 mi (0.72 km) upstream from gaging station on Pohopoco Creek, 0.55 mi (0.88 km) upstream from Sawmill Run and 2.3 mi (3.7 km) northeast of Parryville. DRAINAGE AREA, 96.3 mi² (249.4 km²). PERIOD OF RECORD, February 1971 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).

Reservoir formed by an earth and rockfill dam with ungated, partially lined spillway at elevation 651.00 ft (198.425 m); storage began Feb. 8, 1971. Capacity at elevation 651.00 ft (198.425 m) is 68,300 acre-ft (84.2 hm²). Ordinary minimum (conservation) pool elevation, 628.00 ft (191.414 m), capacity, 41,250 acre-ft (50.9 hm³). Dead storage is 1,390 acre-ft (1.71 hr²). Reservoir is used for recreation, flood control, low flow augmentation and water supply. Figures given herein represent total contents. Regulation is accomplished by a multi-level water-quality outlet system and two flood-control gates. Records furnished by Corps of Engineers. Engineers.

EXTREMES FOR CURRENT YEAR: Maximum contents 48,630 acre-ft (60.0 hm³) Mar. 31, elevation, 635.30 ft (193.639 m); minimum, 37,210 acre-ft (45.9 hm³) Feb. 21-25, elevation, 623.60 ft (190.073 m).

EXTREMES FOR PERIOD OF RECORD: Maximum contents 49,730 acre-ft (61.3 hm³) Jan. 29, 1976, elevation, 636.30 ft (193.944 m); minimum, 136 acre-ft (0.168 hm³) Feb. 8, 1971, elevation, 516.20 ft (157.338 m).

01455400 LAKE HOPATCONG.--Lat 40°55'00", long 74°39'50", Morris County, Hydrologic Unit 02040105, in gatehouse of Lake Hopatcong Dam on Musconetcong River at Landing. DRAINAGE AREA, 25.6 mi² (66.3 km²). PERIOD OF RECORD, February 1887 to current year. Monthend contents only prior to October 1950, published in WSP 1302. GAGE, water-stage recorder. Prior to June 24, 1928, daily readings obtained by measuring from high-water mark to water surface converted to gage height, present datum. Datum of gage is 914.57 ft (278.761 m).

Lake is formed by concrete spillway and earthfill dam completed about 1828. Crest of spillway was lowered 0.11 ft (0.034 m) in 1925. Usable capacity, 7,459,000,000 gal (28.23 hm²) between (gage height -2.6 ft or -0.792 m, sills of gates and 9.00 ft or 2.743 m, crest of spillway). Flow regulated by four gates (3 by 5 ft or 0.914 by 1.524 m), also by one 24-inch (0.610 m) pipe with gate valve to recreation fountain 250 ft (76.2 m) downstream from dam. Dead storage, about 8,117,000,000 gal (30.72 hm²). Figures given herein represent usable capacity. Lake used for recreation.

EXTREMES FOR CURRENT YEAR: Maximum contents, 8,100,000,000 gal (30.66 hm²) May 18, gage height, 9.77 ft (2.978 m); minimum contents, 5,319,000,000 gal (20.13 hm²) Dec. 31, gage height, 6.34 ft (1.932 m).

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 8,532,000,000 gal (32.29 hm²) June 24, 1972, gage height, 10.27 ft (3.130 m); minimum, 1,525,000,000 gal (5.77 hm²) Dec. 29, 1960, gage height, 0.65 ft (0.198 m).

01469200 STILL CREEK RESERVOIR.--Lat 40°51'25", long 75°59'30". Schuylkill County, PA, Hydrologic Unit 02040106, at dam on Still Creek, 1 mi (1.6 km) upstream from mouth and 2.3 mi (3.7 km) north of Hometown, PA. DRAINAGE AREA, 8.5 mi² (22.0 km²). PERIOD OF RECORD, January 1933 to current year. Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Panther Valley Water Co.).

Reservoir formed by earth fill dam, with ungated concrete spillway at elevation 1,182.00 ft (360.274 m); storage began in February 1933. Capacity at elevation, 1,182.00 ft (360.274 m) is 8,290 acre-ft (10.2 hm²). Reservoir is used for municipal water supply. Figures given herein represent total contents. Regulation is accomplished by valves on pipe through dam. Records furnished by Panther Valley Water Co.

EXTREMES FOR CURRENT YEAR: Maximum contents, 8,460 acre-ft (10.4 hm²) Mar. 27, elevation, 1,182.56 ft (360.444 m); minimum, 7,310 acre-ft (9.01 hm²) Sept. 30, elevation, 1,178.58 ft (359.231 m).

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 8,570 acre-ft (10.6 hm²) Oct. 15, 1955, elevation, 1,182.92 ft (360.554 m), but may have been greater during 1950 and 1951 water years; minimum (after initial filling), 588 acre-ft (0.725 hm²) Dec. 8, 1944, elevation, 1,136.70 ft (346.466 m).

01472200 GREEN LANE RESERVOIR.--Lat 40°20'30", long 75°28'45", Montgomery County, PA, Hydrologic Unit 02040203, at dam on Perkiomen Creek at Green Lane, PA, 0.4 mi (0.6 km) west of Green Lane and 2.1 mi (3.4 km) upstream from Unami Creek. DRAINAGE AREA, 70.9 mi² (183.6 km²). PERIOD OF RECORD, December 1956 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Philadelphia

water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Philadelphia Suburban Water Co.).

Reservoir formed by concrete, gravity-type dam, with ungated spillway at elevation 286.00 ft (87.173 m); storage began December 21, 1956. Capacity at spillway level, elevation 286.00 ft (87.173 m), 13,430 acre-ft (16.6 hm³). Reservoir is used for municipal water supply. Figures given herein represent total contents. Regulation is accomplished by valves on pipe through dam. Records furnished by Philadelphia Suburban Water Co. EXTREMES FOR CURRENT YEAR: Maximum contents, 14,870 acre-ft (18.3 hm³) Jan. 25, elevation, 287.62 ft (87.667 m); minimum, 10,940 acre-ft (13.5 hm³) Oct. 19, elevation, 282.85 ft (86.216 m). EXTREMES FOR PERIOD OF RECORD: Maximum contents, 17,030 acre-ft (21.0 hm³) June 23, 1972, elevation, 290.05 ft (88.407 m); minimum (after first filling), 1,270 acre-ft (1.57 hm³) Aug. 25, 1957, elevation, 251.60 ft (76.688 m).

RESERVOIRS IN DELAWARE RIVER BASIN--Continued

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

Date	Elevation (feet)	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	Elevation		Change in contents (equivalent in ft3/s)	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft3/s)
	01416900 1	PEPACTON RES	ERVOIR ‡	01424997 CA	NNONSVILLE F	ESERVIOR ‡	01428900 F	PROMPTON RE	SERVOIR †
Sept. 30 Oct. 31 Nov. 30 Dec. 31	1,263.67 1,279.24 1,280.15 1,280.09	121,384 148,402 150,076 149,966	+1,350 +86.3 -5.49	1,136.85 1,150.80 1,151.36 1,151.19	79,435 99,905 100,807 100,533	+1,020 +46.5 -13.7	1,128.74 1,125.67 1,125.87 1,125.58	4,540 3,610 3,660 3,580	-15.1 +.8 -1.3
CAL YR 19	77 -	-	+108	-	-	+8.44	-	-	0
Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	1,280.45 1,278.36 1,280.63 1,279.75 1,279.72 1,277.10 1,271.24 1,265.14 1,257.75	150,632 146,791 150,966 149,339 149,284 144,504 134,143 123,805 111,898	+33.2 -212 +208 -83.9 -2.74 -247 -517 -516 -614	1,151.68 1,150.50 1,152.43 1,150.85 1,150.85 1,147.35 1,137.30 1,136.05 1,128.60	101,322 99,422 102,529 99,985 99,663 94,587 80,056 78,329 68,473	+39.4 -105 +155 -131 -16.1 -262 -725 -86.2 -508	1,126.66 1,125.63 1,129.82 1,125.80 1,125.90 1,125.05 1,125.25 1,125.35	3,880 3,600 4,880 3,640 3,670 3,430 3,570 3,520	+4.9 -5.0 +20.8 -20.8 -4.5 -4.0 +1.5
WTR YR 19	78 -	-	-40.2	-	-	-46.5	-	-	-1.4
Date	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft3/s)	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft3/s)	Elevation	Contents (million cu ft)	Change in contents (equivalent in ft3/s)
01429400	GENERAL ED	GAR JADWIN R	ESERVOIR †	01431700	LAKE WALLEN	PAUPACK †	01433000 SWIN	GING BRDIG	E RESERVOIR †
Sept. 30 Oct. 31 Nov. 30 Dec. 31	977.21 976.50 977.29 977.16	0 0 0	0 0	1,174.10 1,174.30 1,180.00 1,181.70	70,120 71,160 101,600 110,850	+16.9 +511.6 +150.4	1,067.2 1,067.5 1,067.0 1,063.2	1,276 1,218 1,268 1,124	-21.6 +19.3 -53.5
CAL YR 19	77 -		0	-	-	+12.0	1.41	54	-0.3
Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	977.81 975.90 984.26 976.38 976.97 975.37 975.96 976.18 974.68	0 0 213 0 0 0 0	+3.5 -3.6 0	1,182.60 1,174.20 1,181.80 1,182.70 1,186.70 1,184.80 1,181.90 1,180.80 1,178.90	115,800 70,640 111,400 116,350 138,790 128,080 111,950 105,920 95,660	+80.5 -813.1 +662.9 +83.2 +364.9 -180.0 -262.3 -98.1 -172.4	1,068.5 1,050.4 1,065.5 1,065.5 1,068.1 1,063.7 1,068.7 1,067.0	1,327 705 1,347 1,210 1,311 1,143 1,335 1,268 1,191	-75.6 -257 +240 -52.7 +37.6 -64.9 +71.7 -25.1
WTR YR 19	78 -		0	-	-	+35.3	-	-	-2.7
Date	Elevation (feet)	Contents (million cu ft)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)	Contents (million cu ft)	Change in contents (equivalent in ft3/s)	Elevation	Contents (million cu ft)	Change in contents (equivalent in ft3/s)
	01433100	TORONTO RES	ERVOIR †	01433200	CLIFF LAKE	RESERVOIR †	01435900	NEVERSINK	RESERVOIR ‡
Sept. 30 Oct. 31 Nov. 30 Dec. 31	1,195.2 1,202.9 1,197.0 1,204.2	404 590 445 624	+69.1 -55.8 +66.7	1,067.8 1,066.6 1,070.1 1,065.4	103 94.4 120 85.4	+10.1	1,392.86 1,417.44 1,422.84 1,430.10	17,928 26,981 29,244 32,446	+452 +117 +160
CAL YR 19	77 -	-	+13.1	-	-	3	-	-	+36.8
Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	1,212.8 1,206.0 1,187.4 1,188.4 1,190.4 1,184.4 1,175.6 1,176.1	862 671 252 270 306 202 75.5 81.3 94.9	+89.0 -78.9 -156 +6.8 +13.7 -40.3 -47.1 +2.2 +5.2	1,069.0 1,066.7 1,072.3 1,069.7 1,071.4 1,064.8 1,068.7 1,066.9 1,064.9	112 95. 139 117 131 82. 110 96. 83.	+16.2 -8.2 +5.2 4 -18.8 +10.2 -4.9	1,432.10 1,415.41 1,412,08 1,429.08 1,438.70 1,438.94 1,425.57 1,408.00 1,387.89	33,365 26,156 24,938 31,983 36,506 34,224 30,424 23,260 16,353	+45.9 -398 -60.8 +363 +226 -118 -190 -358 -356
WTR YR 19	78 -	-	-9.8		-	6	100		-6.68

RESERVOIRS IN DELAWARE RIVER BASIN -- Continued

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

Date		Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)		(acre-	Change in contents (equivalent in ft3/s)			Change in contents (equivalent in ft3/s)
	01	1447780 FRAI	NCIS E. WAL	TER LAKE ‡	01449400	PENN FOREST	RESERVOIR †	01449700	WILD CREEK	RESERVOIR †
Sept. Oct. Nov. Dec.	31 30	1,305.17	3,300 2,530 2,060 2,090	-12.5 -7.9 +.5	988.16 993.76 1,000.25 1,000.33	14,930 17,210 20,120 20,170	+37.1 +48.9 +.8	818.23 818.21 820.28 820.38	11,600 11,590 12,080 12,110	+.2 +8.2 +.5
CAL Y	1977	-	/ <u>-</u>	2	-	-	+.2	-	-	+.2
Jan. Feb. Mar. Apr. May June July Aug. Sept.	28 31 30 31 30 31 31	1,314.65 1,300.38 1,343.10 1,300.78 1,299.19 1,300.17 1,299.13 1,299.29 1,298.44	3,700 2,040 9,660 2,080 1,910 2,020 1,900 1,920 1,830	+26.2 -29.9 +123.9 -127.4 -2.8 +1.8 -2.0 +1.3	1,000.34 1,000.07 1,000.55 1,000.06 1,000.20 1,000.10 997.73 996.49 994.26	20,180 20,020 20,300 20,010 20,090 20,040 18,960 18,400 17,420	+.2 -2.9 +4.6 -4.9 +1.3 8 -17.6 -9.1	820.37 819.16 820.69 820.01 820.31 819.78 819.39 819.36 818.02	12,110 11,830 12,210 12,000 12,090 11,960 11,880 11,870 11,540	0 -5.0 +6.2 -3.5 +1.5 -2.2 -1.3
WTR Y	R 1978	3 -	-	-2.0	-	-	+3.4	-	-	1
Date		Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)	Gage Height (feet)	Contents (million gallons)	Change in contents (equivalent in ft3/s)	Elevation	(acre-	
	(1449790 BE	LTZVIŁLE L	AKE†	01455400	LAKE HOPAT	CONG †	01469200 \$	STILL CREEK	RESERVOIR †
Sept. Oct. Nov. Dec.		625.08 627.29 629.36 627.30	38,520 40,580 42,560 40,580	+33.5 +33.3 -32.2	8.51 9.07 8.37 6.34		+23.2 -29.9 -80.8	1,176.00 1,178.42 1,182.12 1,182.08	6,600 7,270 8,320 8,310	+10.9 +17.6 2
CAL Y	R 197	7 -	-	-1.9	-	-	-2.3	-	-	+.1
Apr. May	28 31 30 31 30 31 31	628.90 623.78 634.89 627.85 628.04 627.87 627.66 627.83 627.28	42,100 37,360 48,180 41,110 41,290 41,930 41,090 40,570	+24.7 -85.3 +176.0 -118.8 +2.9 -2.7 -3.3 +2.6 -8.7	7.45 7.34 9.19 9.17 9.49 9.04 8.89 8.94	6,192 6,104 7,619 7,602 7,872 7,493 7,368 7,409 7,252	+43.6 -4.9 +75.6 -19.5 -19.5 -6.2 +2.0 -8.1	1,182.17 1,182.00 1,182.38 1,182.02 1,182.08 1,181.75 1,181.25 1,180.17 1,178.58	8,340 8,290 8,400 8,290 8,310 8,210 8,070 7,750 7,310	+.5 9 +1.8 -1.8 +.3 -1.7 -2.3 -5.2 -7.4
WTR Y	R 1978	3 -	-	+2.8	-	-	+.8		16 3 -	+1.0

Date		Elevation (feet)	(1	onteni million	ts con	ge in tents valent ft ³ /s)
		01472200	Care Co		RESERVO	IR †
Sept.				12,680		-
Oct.				13,340		0.7
Nov.	30	286.82		14, 160	0 +1	3.8
Dec.	31	286.06		13,490	0 -1	0.9
CAL Y	P 1	077			*	+.2
CAL I		-		-		+.6
Jan.	31	286.15		13,560	0 +	1.1
Feb.	28	286.06		13,490	0 -	-1.3
Mar.	31	286.19		13,600		-1.8
	30	285.99		13,420		-3.0
	31	286.05		13,48		1.0
	30	285.95		13,39		1.5
July	31	286.00		13,43		+.7
Aug.	31	286.07		13,49		1.0
Sept.	30	285.65		13, 120		-6.2
WTR Y	R 1	978 -				+.6

t Elevation at 0900 hours on first day of following month.
t Elevation or gage height at 2400 hours.
a Observed.
e Estimated.
Elevation at 0900 hours.

DIVERSIONS AND WITHDRAWALS

WITHDRAWALS FROM THE DELAWARE RIVER BASIN

- 01415200 Diversion from Pepacton Reservoir, NY, on East Branch Delaware River to Rondout Reservoir on Rondout Creek, in Hudson River basin, for municipal supply of city of New York. No diversion prior to Jan. 6, 1955. Records furnished by Board of Water Supply and Department of Water Resources, city of New York. REVISIONS (Water Years).--WRD-NY 1972: 1970.
- 01423900 Diversion from Cannonsville Reservoir, NY, on West Branch Delaware River to Rondout Reservoir on Rondout Creek, in Hudson River basin, for municipal supply of city of New York. No diversion prior to Jan. 29, 1964. Records furnished by Board of Water Supply, city of New York.
- 01435800 Diversion from Neversink Reservoir, NY, on Neversink River to Rondout Reservoir on Rondout Creek, in Hudson River basin, for municipal supply of city of New York. No diversion prior to Dec. 3, 1953. Records furnished by Board of Water Supply and Department of Water Resources, city of New York.
- 01436520 Village of Woodbridge, NY, diverts water from East Pond Reservoir, tributary to Neversink River, for municipal supply outside of basin. Records furnished by Delaware River Basin Commission.
- 01437360 Diversion from Bear Swamp Reservoir, NY, tributary to Neversink River by the Otisville, New York State Training School for water supply outside of basin. Records furnished by Delaware River Basin Commission.
- 01447750 Diversion from Bear Creek, PA, tributary to Lehigh River, by Bear Creek Gas and Water Company for water supply outside of basin. Records furnished by Delaware River Basin Commission.
- 01448830 Diversion from Hazle Creek Watershed by Hazelton Joint Sewerage Authority for municipal water supply. Waste effluent from the municipal water system is released to the Susquehanna River. Records furnished by Delaware River Basin Commission.
- 01460500 Diversion by Delaware and Raritan Canal from Delaware River at Raven Rock, for municipal and industrial use. Water is discharged into the Raritan River at New Brunswick. Records of discharge are collected on the Delaware and Raritan Canal at Kingston, (see station 01460500).
- 01467480 Diversion from Mud Run, PA, tributary to Schuylkill River, by Mohonony Township Authority for Municipal use outside of basin. Records furnished by Delaware River Basin Commission.

WITHDRAWALS BY CITY OF NEW YORK
DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

Month	PEPACTON RESERVOIR	CANNONS VILLE RESERVOIR	NEVERSINK RESERVOIR
October	654	420	149
November	742	83.9	251
December	750	• 45	211
CAL YR 1977	650	209	251
January	571	0	406
February	440	0	528
February	749	. 45	307
April	746	0	190
May	574	270	131
June	635	211	284
July	751	311	228
August	747	.45	373
September	735	.45	352
WTR YR 1978	676	109	282

MISCELLANEOUS WITHDRAWALS FROM BASIN

	EAST POND RESERVOIR	BEAR SWAMP RESERVOIR	BEAR CREEK	HAZLE CREEK	DELAWARE & RARITAN CANAL	MUD RUN
October	.5	.3	0	3.9	82.5	.8
November	•5	. 3	0	3.9	91.9	.8
December	.5	• 3	0	3.9	99.0	.8
CAL YR 1977	.5	• 3	.5	3.9	88.9	.2
January	.5	.3	0	3.9	96.3	.8
February	.5	• 3	0	3.9	87.9	. 8
March	.5	• 3	0	3.9	102	. 8
April	.5	. 3	0	3.9	105	. 8
May	.5	• 3	0	3.9	102	. 8
June	.5	• 3	0	3.9	87.9	. 8
July	.5	.3	0	3.9	70.7	. 8
August	.5	. 3	0	3.9	71.8	. 8
September	.5	• 3	0	3.9	74.3	.8
WTR YR 1978	.5	• 3	0	3.9	89.3	.8

DIVERSIONS AND WITHDRAWALS -- Continued

DIVERSIONS WITHIN THE DELAWARE RIVER BASIN

- 01463480 Diversion from the Delaware River at the Morrisville Filtration Plant for municipal supply, by the Borough of Morrisville, PA. The water withdrawn at this site is returned to the basin after treatment, only slightly diminished by consumptive uses and losses in transmission. Records furnished by the Borough of Morrisville, PA.
- 01463500 Diversion from the Delaware River just above the Trenton gaging station for municipal supply by the city of Trenton, NJ. The water being withdrawn is returned to the basin after treatment only slightly diminished by consumptive uses and losses in transmission. Records furnished by the city of Trenton.
- 01467030 Diversion from the Delaware River at the Torresdale Intake for municipal supply, by the city of Philadelphia, PA. The water being withdrawn at this intake is returned to the basin after treatment only slightly diminished by consumptive uses and losses in transmission. Records furnished by the Delaware River Basin Commission.
- 01474500 Diversion from the Schuylkill River at the Belmont and Queen Lanes Intakes for municipal supply, by the city of Philadelphia, PA. The water being withdrawn at these intakes is returned after treatment within the Delaware River basin only slightly diminished by consumptive uses and losses in transmission. Records furnished by the Delaware River Basin Commission.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	WITHDRAWAL BOROUGH OF MORRISVILLE	WITHDRAWAL CITY OF TRENTON	WITHDRAWAL CITY OF PHILADELPHIA				
Month			SCHUYL BELMONT	KILL RIVER QUEEN LANE	DELAWARE RIVER TORRESDALE		
October	6.3 6.2 6.4	52.9 51.7 51.0	108 104 108	158 157 167	318 321 334		
CAL YR 1977	6.6	53.5	122	173	354		
January. February. March. April. May. June July. August. September.	6.4 7.4 7.5 7.3 7.7 7.7 7.8 7.6	51.6 52.0 49.7 48.7 56.1 53.7 54.8	111 112 110 101 108 119 122 122 109	171 175 170 160 163 172 181 177	338 352 341 340 327 366 375 382 357		
WTR YR 1978	7.0	51.8	111	167	346		

DIVERSIONS IMPORTED INTO BASIN

- 01367630 Water diverted from Morris Lake, tributary to the Wallkill River (Hudson River basin), by the Newton Water and Sewer Authority for municipal use. After use the water is released into the Paulins Kill (Delaware River basin). Records furnished by the Delaware River Basin Commission.
- 01578420 Water diverted from West Branch Octoraro Creek (Susquehanna River basin) at the McCray Plant of the Octoraro Water Co., for municipal use. After use the water is released into the Delaware River basin. Records furnished by the Delaware River Basin Commission.
- 01578450 Water diverted from Octoraro Lake (Susquehanna River basin) by Chester Water Authority for municipal use.
 After use the water is released into the Delaware River basin. Records furnished by the Delaware River Basin
 Commission.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

Month	MORRIS LAKE	осто	OCTORARO CREEK				
MOTION		OCTORARO WATER CO.	CHESTER WATER AUTHORITY				
October	1.7	2.3	42.2				
November	1.7	2.2	42.9				
December	1.7	2.2	35.0				
CAL YR 1977	1.5	2.1	45.6				
January	1.7	1.9	44.2				
February	1.7	2.2	46.9				
March	1.9	2.2	45.2				
April	1.9	2.5	43.3				
May	1.2	2.3	44.7				
June	1.2	2.0	44.2				
July	1.2	2.2	44.6				
August	1.4	2.2	49.5				
September	1.2	2.2	45.3				
WTR YR 1978	1.5	2.2	44.0				

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at partial-record stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. Discharge measurements made at miscellaneous sites for both low flow and high flow are given in a third table.

Low-flow partial-record stations

Measurements of streamflow in New Jersey made a low-flow partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will give a picture of the low-flow potentiality of a stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same, site.

	Discharge measurement	ts made at low-flow partial-record sta				
Station number	Station name	Location	Drainage area (mi²)	Period of record	Measur	Discharge (ft³/s)
		Maurice River basin				
01411450	Still Run at Aura, NJ	Lat 39°40'23", long 75°07'50", Gloucester County, at bridge on Aura-Glassboro Road, 0.4 mi (0.6 km) east of Aura, 1.0 mi (1.6 km) upstream of Silver Lake, and 2.6 mi (4.2 km) southeast of Glassboro.	3.21 (8.31 km ²)	1966, 1976-78	9-14-78	1.3
01411456	Little Ease Run near Clayton, NJ	Lat 39°39'32", Iong 75°04'04", Gloucester County, at bridge on Academy Road, 0.9 mi (1.4 km) west of Fries Mill, 1.3 mi (2.1 km east of Clayton, and 1.4 mi (2.3 km downstream from Beaverdam Branch.	9.77 (25.30 km²)	1966, 1976-78	9-13-78	1.8
01411462	Scotland Run at Franklinville, NJ	Lat 39°37'05", long 75°03'36", Gloucester County, at bridge on State Route 538, 0.9 mi (1.4 km) east of Franklinville, 2.7 mi (4.3 km) upstream of Malaga Lake, and 2.8 mi (4.5 km) southeast of Clayton.	14.8 (38.3 km²)	1976-78	9-1:3-78	17
01411700	Muddy Run at Centerton, NJ	Lat 39°31'28", long 75°10'09", Salem County, 180 ft (55 m) downstram of unnamed right bank tributary, 200 ft (60 m) downstream of birdge on New Jersey Routes 540 and 553 in Centerton, and 4.7 mi (7.6 km) south of Elmer.	37.7 (97.6 km ²)	1976-78	9-14-78	22
01411850	Mill Creek near Millville, NJ	Lat 39°25'33", long 75°05'11", Cumberland County, at bridge on dirt road, 1.2 mi (1.9 km) up- stream from mouth, 3.3 mi (5.3 km) northwest of Millville.	15.1 (39.1 km ²)	1973-78	9-13-78	9.8
01411950	Buckshutem Creek near Laurel Lake, NJ	Lat 39°20'51", long 75°03'47", Cumberland County, at bridge on State Route 555 (Dividing Creek Road), 1.3 mi (2.1 km) upstream of Gravelly Run, 1.8 mi (2.9 km) west of Laurel Lake, and 3.8 mi (5.2 km) southwest of Millville.	16.1 (41.7 km ²)	1976-78	9-13-78	2.4
01412120	Muskee Creek near Port Elizabeth, NJ	Lat 39°18'56", long 74°57'31", Cumberland County, at bridge on State Route 548, 1.3 mi (2.1 km) east of Port Elizabeth, 1.9 mi (3.1 km) upstream from mouth, and 2.8 mi (4.5 km) northeast of Mauricetown.	13.1 (33.9 km²)	1969, 1976-78	9-13-78	12
		Cohansey River basin				
01412405	Cohansey River near Beals Mill, NJ	Lat 39°31'29", long 75°15'59", Cumberland County, at bridge on Beals Mill Road, 1,300 ft (4,000 m) downstream of Beals Mill and Bostwick Lake, and 1.6 mi (3.0 km) west of	9.44 (24.4 km ²)	1976-78	9-14-78	4.6

Deerfield Street.

Discharge measurements made at low-flow partial-record stations during water year 1978--Continued

Station number	Station name	Location	Drainage area (mi²)	Period of record	Measure Date	ments Discharge (ft³/s)
		Cohansey River basinContinu	ed			
01413010	Barrett Run near Bridgeton, NJ	Lat 39°26'58", long 75°15'42", Cumberland County, at bridge on Mary Elmer Drive, 1,800 ft (550 m) upstream from Mary Elmer Lake, and 2.1 mi (3.4 km) north- west of the intersection of State Routes 49 and 77 in Bridget	7.02 (18.18 km²)	1966, 1976-78	9-14-78	3.0
01413020	Indian Fields Branch at Bridgeton, NJ	Lat 39°26'04", long 75°13'08", Cumberland County, at bridge on Manheim Avenue in Bridgeton, 1,300 ft (4,000 m) upstream of East Lake.	4.64 (12.02 km ²)	1976-78	9-14-78	6.8
		Stow Creek basin				
01413080	Raccoon Ditch at Davis Mill, NJ	Lat 39°25'26", long 75°22'01", Cumberland County, at bridge on County Highway 90 at Davis Mill, 2.8 mi (4.5 km) upstream from mouth and 4.3 mi (6.9 km) south- west of Shiloh.	3.19 (8.26 km ²)	1976-78	9-14-78	3.9
		Delaware River basin				
01439830	Big Flat Brook at Tuttles Corner, NJ	Lat 41°12'00", long 74°48'56", Sussex County, at bridge on State Route 521, 0.7 mi (1.1 km) west of its intersection with U.S. Route 206 at Tuttles Corner, 1.2 mi (1.9 km) south of Layton, and 2.0 mi (3.2 km) above Little Flat Brook.	29.4 (76.1 km²)	1964, 1970-1973, 1978	5-04-78 8-15-78	37 11
01443450	Paulins Kill near Newton, NJ	Lat 41°04'59", long 74°46'57", Sussex County, at bridge at inlet of Paulins Kill Lake, 2.4 mi (3.9 km) northwest of Newton.	69.0 (178.7 km ²)	1973-78	9-14-78	11
01443460	Paulins Kill at Paulins Kill, NJ	Lat 41°03'08", long 74°49'42", Sussex County, at bridge on Paulins Kill Lake Road, 300 ft (90 m) downstream from Paulins Kill Lake, 0.45 mi (0.72 km) southwest of Paulins Kill.	72.9 (188.8 km²)	1973-78	9-14-78	24
*01445000	Pequest River at Huntsville, NJ	Lat 40°58'49", long 74°46'38", Sussex Coutny, on right bank 20 ft (6 m) upstream from highway bridge in Huntsville, 0.4 mi (0.6 km) downstream from East Branch.	31.4 (81.33 km ²	1940-62‡, 1963-74, 1976-78	(a)	b1.8
*01445490	Furnace Brook at Oxford, NJ	Lat 40°48'15", long 74°59'42", Warren County, at bridge on State Route 31 in Oxford, 2.4 mi (3.9 km) above mouth, and 3.2 mi (5.1 km) north of Washington.	4.29 (11.11 km²)	1965-69, 1971-72, 1978	12-19-77	13
01455370	Weldon Brook at Hurdtown, NJ	Lat 40°58'10", long 74°35'56", Morris County, at bridge on Union Turnpike at Hurdtown, 500 ft (150 m) downstream from Lake Shawnee Dam.	8.10 (20.98 km ²)	1973-78	9-14-78	.14
01460900	Lockatong Creek near Raven Rock, NJ	Lat 40°24'28", long 75°00'52", Hunterdon County, at bridge on State Route 29, 1.1 mi (1.8 km) east of Raven Rock, and 300 ft (90 m) upstream from mouth.	23.3 (60.3 km ²)	1944, 1958-64, 1978	8-22-78	4.9
01461300	Wickecheoke Creek at Stockton, NJ	Lat 40°24'04", long 74°59'13", Hunterdon County, at bridge on State Route 29 at Stockton and 900 ft (270 m) about mouth.	26.5 (68.6 km ²)	1944, 1958-64, 1978	8-16-78	8.8

Also a crest-stage partial-record station.

Operated as a continuous-record gaging station.

Occurred during period June 20 to Oct. 15, 1978.

Minimum recorded during, year; computed from minimum gage reading and rating, discharge may have been lower at some time during year when gage was not operating.

Not previously published.

CREST-STAGE PARTIAL RECORD STATIONS

The following table contains annual maximum discharges for crest-stage stations. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Informamtion on some lower floods may have been obtained, and discharge measurements may have been made for purposes of establishing the stage-discharge relation, but these are not published herein. The years given in the period of record represent water years for which the annual maximum has been determined. The gage heights are heights on the upstream side of the bridge, above the dam or at the discontinued continuous-record gaging station unless otherwise noted.

ANNUAL MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS

Station	Station name	Location	Drainage	Period	Annual maximum		
No.		2000,000	area (mi²)	of record	Date	Gage height (feet)	Discharge (ft³/s)
		Cohansey River ba	sin			(1000)	,,,,,,
01412500	West Branch Cohansey River at Seeley, NJ	Lat 39°29'06", long 75°15'33" Cumberland County, on right bank 15 ft (4.6 m) upstream from county bridge, Highway 31, at Seeley, 450 ft (137 upstream from mouth and 4.1 (6.6 km) northwest of Bridg. Datum of gage is 42.23 ft (National Geodetic Vertical 1929.	(6.60 km ²) mi eton. 12.872 m)	952-67‡, 1968-78	1-25-78	5.57	327
		Delaware River ba	sin				
*01445000	Pequest River at Huntsville, NJ	Lat 40°58'49", long 74°46'38" Sussex County, on right bank, 20 ft (6.1 km) upstre: from highway bridge in Hunt: ville, and 0.4 mi (0.6 km) downstream from East Branch Datum of gage is 553.81 ft (168.801 m) National Geodet: Vertical Datum of 1929.	am 5-	940-62‡, 1963-78	1-26-78	3.75	272
*01445490	Furnace Brook at Oxford, NJ	Lat 40°48'15", long 74°59'42" Warren County, at bridge on State Route 31 in Oxford, 2.4 mi (3.9 km) upstream from mouth, and 3.2 mi (5.1 north of Washington. Datum gage is 468.14 ft (142.689') National Geodetic Vertical Datum of 1929.	(11.11 km ² km) of	1966-78	8-08-78	b2.70	100
*01446000	Beaver Brook near Belvidere, NJ	Lat 40°50'40", long 75°02'48, Warren County, on right bank, 2,000 ft (610 m) up- stream from mouth, and 2 mi (3 km) east of Belvidere. Datum of gage is 303.36 ft (92.464 m) National Geodetic Vertical Datum of 1929.	(93.8 km²)	922-61‡, 1963-78	1-27-78	3.40	355
01455200	Pohatcong Creek at New Village, NJ	Lat 40°42'57", long 75°04'20" Warren COunty, at bridge on Edison Road, 0.4 mi (0.6 km) southeast of New Village, and 4.3 mi (6.9 km upstream from Merrill Creek Datum of gage is 308.32 ft (93.976 m) National Geodetic Vertical Datum of 1929.	(86.5 km²)	960-69‡, 1972-78	3-14-78	5.12	976
01455500	Musconetcong River at outlet of Lake Hopatcong, NJ	Lat 40°55'00", long 74°39'55", Morris County, on left bank just upstream of highway bridge 300 ft (91 m) down- stream from Lake Hopatcong Dam in Landing. Datum of gage is 904.99 ft (275.841 National Geodetic Vertical Datum of 1929.	(66.3 km ²)	929-75‡, 1976-78	3-14-78	3.17	183
01456000	Musconetcong River <u>near</u> Hackettstown, NJ	Lat 40°53'10", long 74°48'00" Warren County, on right ('bank 75 ft (23 m) upstream from Saxton Falls Dam, 0.5 mi (0.8 km) upstream from Erie-Lackawanna Railway bridge, and 3.0 mi (4.8 km) northeast of Hackettstown. Datum of gage is 630.93 ft (192.307 m) National Geodet: Vertical Datum of 1929.	181.3 km²)	921-73‡, 1974-78	3-14-78	2.44	712

CREST-STAGE PARTIAL-RECORD STATIONS

ANNUAL MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS--Continued

Station	Station nema	Location	Desinos	Period	Anı	nual max	cimum
Station No.	Station name	Location	Drainage area (mi²)	of record	Date	Gage height	
		Delaware River basinCo	ntinued			(feet)	(ft ³ /s)
01457500	Delaware River at Riegelsville, NJ	Lat 40°35'36", long 75°11'17", Warren County, at suspen- (sion bridge at Riegels-ville, 600 ft (183 m) up-stream from Musconetcong River (flow of which is included in the records for this station since Oct. 1, 1931). Datum of gage is 125.12 ft (38.137 m) National Geodetic Vertical Datum of 1929.	16,390 km ²)	1906-71‡, 1972-78	1-10-78	19.62	94,400
01464400	Crosswicks Creek at New Egypt, NJ	Lat 40°04'03", long 74°31'57", Ocean County, at upstream side of bridge on State Route 528 in New Egypt, and 300 ft (91 m) downstream from Oakford Lake Dam. Datu of gage is 43.46 ft (13.247 National Geodetic Vertical Datum of 1929.	(97.1 km ²	1968-78	9-01-78	30.27	4,500
01464505	Crosswicks Creek at Groveville, NJ	Lat 40°10'26", long 74°40'48", Burlington County, at U.S. Highway 130 bridge, 0.3 mi (0.5 km) upstream from Doctors Creek, 0.5 mi (0.8 k northwest of Groveville, and 0.6 mi (1.0 km) southwest of Yardville. Datum of gage is -2.15 ft (-0.655 m) National Geodetic Vertical Datum of 1929.	(244.8 km ²	1968-78	9-01-78	b14.88	
01464515	Doctors Creek at Allentown, Nj	Lat 40°10'37", long 74°35'57", Monmouth County, at bridge on Breza Road in Allentown, and 0.8 mi (1.3 km) downstre from Conines Millpond dam. Datum of gage is National Geodetic Vertical Datum of 1929.	(44.6 km ²)	1968-78	1-26-78	b58.52	+
01464520	Doctors Creek at Groveville, NJ	Lat 40°10'21", long 74°39'33", Mercer County, at bridge (on Groveville-Allentown road at Groveville, 0.7 mi (1.1 km) southeast of Yard- ville, and 1.5 mi (2.4 km) upstream of mouth. Datum of gage is 14.23 ft (4.337 m) National Geodetic Vertical Datum of 1929.	65.53 km ²)	1968-78	1-26-78	b9.33	2,080
01465850	South Branch Rancocas Creek at Vincentown, NJ	Lat 39°56'22", long 74°45'50", Burlington County, on left bank 150 ft (46 m) down- stream from highway bridge on Lumberton-Vincentown road, 0.8 mi (1.3 km) west of Vincentown, 2.9 mi (4.7 k southeast of Lumberton, and 3.1 mi (5.0 km) upstream fro Southwest Branch. Datum of gage is 13.17 ft (4.014 m) National Geodetic Vertical Datum of 1929.	(138.0 km ²)	1962-75‡, 1976-78	8-28-78	7.98	1,320
01465882	Southwest Branch Rancocas Creek at Medford, NJ	bridge on State Route 70, 0.6 mi (1.0 km) northeast of Medford and 4.2 mi (6.8 k upstrem from mouth. Datum o gage is 20.72 ft (6.315 m) National Geodetic Vertical	124.1 km ² Revised) m)	1975-78	1-26-78	b7.13	4,400

CREST-STAGE PARTIAL-RECORD STATIONS

ANNUAL MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS--Continued

Station	Station name	Location	Drainage	Period	Anı	nual max	imum
No.		200201011	area (mi²)	of record	Date	Gage height (feet)	Discharge (ft³/s)
		Delaware River basinCont	inued			22.00	33,500
01466000	Middle Branch Mount Misery Brook in Lebanon State, Forest, NJ	Lat 39°55'00", long 74°30'30", Burlington County, in (7 Lebanon State Forest, 20 ft (6.1 m) upstream from bridge on North Branch Road, and 5.1 (8.2 km) southeast of Browns Mills. Datum of gage is 99.71 (30.392 m) National Geodetic Vertical Datum of 1929.	7.07 km ²)	952-65‡, 1967-78	1-26-78	2.05	19
01467057	Pompeston Creek at Cinnaminson, NJ	Lat 40°00'11", long 74°59'00", Burlington County, at U.S. Route 130 bridge, 0.7 mi (1.1 km) northwest of Cinna- minson, 1.7 mi (2.7 km) up- stream from mouth, and 2.1 mi (3.4 km) east of Palymra. Datum of gage is 11.36 ft (3.463 m) National Geodetic Vertical Datum of 1929.	5.75 (14.89 km ²	1975-78	1-26-78	b6.03	+
01467069	North Branch Pennsauken Creek near Moorestown, NJ	Lat 39°57'10", long 74°58'10", Burlington County, at bridge on Route 41 (Kings Highway) 1.7 mi (2.8 km) southwest of Moorestown. Datum of gage is 5.9 ft (1.80 m) National Geodetic Vertical Datum of 1929.	12.8 (33.2 km ²)	1975-78	8-28-78	7.44	1,720
*01467130	Cooper River at Kirkwood, NJ	Lat 39°50'11", long 75°00'06", Camden County, 5 ft (1.5 m) upstream from dam at Kirk- wood Lake in Kirkwood, and 1.0 mi (1.6 km) north of Laurel Springs. Datum of gage is 57.82 ft (17.624 m) National Geodetic Vertical Datum of 1929.	5.14 (13.3 km ²)	1964-78	1-26-78	1.82	210
*01467160	North Branch Cooper River near Marlton, NJ	Lat 39°53'20", long 74°58'08", Camden County, at bridge on blacktop road to Spring- dale, 2.5 mi (4.0 km) west of Marlton. Datum of gage is 36.36 ft (11.083 m) National Geodetic Vertical Datum of 1929.	5.33 (13.80 km ²	1964-78	3-22-77 9-01-78		d188 330
*01467305	Newton Creek at Collingswood, NJ	Lat 39°54'30", long 75°03'13", Camden County, at bridge on Park Avenue in Collingswood, 0.3 mi (0.5 km) east of Cuthbert Avenue. Datum of gage is 18.74 ft (5.712 m) National Geodetic Vertical Datum of 1929.	1.32 (3.42 km ²	1964-78)	7-09-64 7-11-65 9-01-78	3.62 3.69 6.40	d172 d176 307
01467317	South Branch Newton Creek at Haddon Heights, NJ	Lat 39°52'45", long 75°04'26", Camden County, at bridg on Haddon Heights Park in Haddon Heights, and 2.6 mi (4.2 km) south of Collingswood. Datum of gage is 23.34 ft (7.114 m) National Geodetic Vertical Datum of 1929.	.63 (1.63 km ²	1964-78)	9-01-78	4.62	295
*01467330	South Branch Big Timber Creek at Blackwood, NJ	Lat 39°48'17", long 75°03'13", Camden County, at bridge on Lower Landing Roaod in Black- wood, and 3.0 mi (4.8 km) upstream from mouth. Datum of gage is 8.41 ft (2.563 m) National Geodetic Vertical Datum of 1929.	19.1 (49.5 km²)	1964-78	1-26-78	b5.41	820
01467351	North Branch Big Timber Creek at Laurel Road at Laurel Springs, NJ	Lat 39°49'07", long 75°00'56", Camden County, at bridge on Laurel Road in Laurel Springs, and 2.5 mi (4.0 km) upstream from confluence with the South Branch. Datum of gage is 26.89 ft (8.196 m) National Geodetic Vertical Datum of 1929.		1976 - 78	5-24-78	1.72	+

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

CREST-STAGE PARTIAL-RECORD STATIONS

ANNUAL MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS--Continued

		The state of the s			Anı	nual max	imum
Station No.	Station name	Location	Drainage area (mi²)	Period of record	Date		Discharge (ft³/s)
		Delaware River basinCont	tinued				
01475000	Mantua Creek at Pitman, NJ	Lat 39°44'14", long 75°06'53", Gloucester County, on left (17 abutment of Wadsworth Dam, 0.9 mi (1.4 km) east of Pitman, and 2.0 mi (3.2 km) upstream from Porch Branch. Datum of gage is 68.51 ft			11-08-77	1.58	87
		(20.882 m) National Geodetic Vertical Datum of 1929.					
01475019	Mantua Creek at Salina, NJ	Lat 39°46'13", long 75°05'59", Gloucester County, at bridge on Salina-Sewell Road, 0.2 mi (0.3 km) downstream of Bees Branch, and 0.5 mi (0.8 km) west of Salina. Datum of gage is 11.67 ft (3.557 m) National Geodetic Vertical Datum of 1929.	14.2 (36.8 km ²)	1975-78	1-26-78	7.04	640
01477169	Raccoon Creek at Mullica Hill, NJ	Lat 39°44'10", long 75°13'30", Gloucester County, at bridge State Routes 45 and 77 in Mullica Hill, 1,200 ft (370 m) downstream of Mullica Hill Pond and 5.5 mi (8.8 km) west of Pitman.	15.6 (40.4 km ²)		1-26-78	b1.75	
01477480	Oldmans Creek near Harrisonville, NJ	Lat 39°41'40", long 75°18'38", Salem County, at bridge on Harrisonville Station Road, 2.4 mi (3.8 km) west of Harrisonville, and 2.8 mi (4.5 km) north of Woodstown. Datum of gage is 16.58 ft (5.054 m) National Geodetic	13.6 (35.2 km ²)	1975-78	1-26-78	6.51	800
		Vertical Datum of 1929.					

Also a low-flow partial-record station. Discharge not determined. Operated as a continuous-record gaging station. Estimated. Downstream side of bridge. Not previously published. Revised.

DISCHARGE MEASUREMENT AT MISCELLANEOUS SITES

Measurements of streamflow at points other than gaging stations are given in the following table. Those that are measurements of base flow are designated by an asterisk (*); measurements of peak flow by a dagger (†).

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1978

			Measured Drainage previousl	y
Stream	Tributary to	Location	area (water (mi²) years)	Date Discharge (ft³/s)
		Cohansey River basin		
01413022 Jackson Run	Indian Fields Branch	Lat 39°26'00", long 75°13'24", Cumberland County, 300 ft (91 m) downstream of Irving Avenue in Bridgeton, 300 ft (91 m) above mouth at East Lake.	1.76 1977 (4.56 km ²)	11-07-77@1050 5.6 11-07-77@1120 5.5 11-07-77@1335 3.3 11-07-77@1410 2.4
		Delaware River basin		
01444100 Paulins Kill	Delaware River	Lat 40°55'14", long 75°05'18", Warren County, at bridge on U.S. Route 46 at Columbia, 2.3 mi (3.7 km) southwest of Polkville, and 3.2 mi (5.2 km) southeast of Knowlton.	177 (458 km²)	11-08-77, 710 5-17-78 971 5-19-78 1550 8-17-78 *113
01446400 Pequest River	Delaware River	Lat 40°49'45", long 75°04'44", Warren County, at bridge on State Route 519, in Belvidere, 1400 ft (430 m) upstream of mouth.	158 1950,53, (409 km²) 1955,74, 1977	
01455900 Deer Park Pond Outlet	Musconetcong River	Lat 40°54'14", long 74°46'58", Warren County, at bridge on medium-duty road, 500 ft (150 m) upstream of mouth, 0.6 mi (1.0 km) downstream of Deer Park Pond, 1.3 mi (2.1 km) northeast of Saxton Falls, and 1.7 mi (2.7 km) southwest of Waterloo.	1.18 1977 (3.06 km ²)	11-07-77@1220 1.2 11-07-77@1400 1.3
01456060 Musconetcong River Tributary	Musconetcong River	Lat 40°51'03", long 74°49'25", Warren County, at bridge on Willow Grove Street above State Fish Hatchery, in Hackettstown, and 700 ft (210 m) upstream of mouth.	1.60 1977 (4.14 km²)	10-14-77 1.7 11-07-77@1100 8.2 11-07-77@1300 7.0
01456400 Musconetcong River Tributary No. 5	Musconetcong River	Lat 40°46'44", long 74°54'02", Hunterdon County, at bridge on on light-duty road at Penwell, 800 ft (240 m) above mouth, and 0.9 mi (1.5 km) souutheast of Port Murray.	1.89 1977 (4.90 km²)	10-14-77 1.3 11-07-77@1000 9.4 11-07-77@1520 13
01456890 Musconetcong River Tributary No. 4	Musconetcong River	Lat 40°40'53", long 75°03'01", Warren County, at bridge on Bloomsbury Road, 800 ft (240 m) upstream of mouth, 1.6 mi (2.6 km) northwest of West Portal, and 2.7 mi (4.3 km) northeast of Bloomsbury.	1.13 1977 (2.93 km²)	11-07-77 0.58 3-27-78 *2.4
01457400 Musconetcong River	Delaware River	Lat 40°35'32", long 75°11'20", Warren County, at bridge on State Highway 13 at Riegels- ville, 0.2 mi (0.4 km) north of Mount Joy, and 0.2 mi (0.3 km) upstream from mouth.	156 1940-55, (404 km²) 1973,77	3-27-78 1170 5-09-78 322
01460320 Delaware and Raritan Canal Feeder	Delaware and Raritan Canal	Lat 40°24'16", long 74°58'43", Hunterdon County, at bridge on Bridge Street at Stockton.	- 1944	8-16-78 182
01461280 Wickecheoke Creek Tributary	Wickecheoke Creek	Lat 40°26'51", long 74°57'30", Hunterdon County, at site 0.4 mi (0.6 km) upstream of Pine Hill Road, 0.5 mi (0.8 km) upstream of mouth, 0.8 mi (1.3 km) west of Sergeantsville, and 3.1 mi (5.0 km) north of Stockton.	1.04 1977 (2.69 km²)	11-07-77@0950 11 11-07-77@1050 24 11-07-77@1215 32

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

DISCHARGE MEASUREMENTS AT MISCELLANEOUS SITES

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1978--Continued

	,		Drainage	Measured	Meas	urements
Stream	Tributary to	Location	area (mi²)	(water years)	Date	Discharge (ft³/s)
		Delaware River basinContin	nued			
01463625 Assunpink Creek	Delaware River	Lat 40°16'06", long 74°42'07", Mercer County, at bridge on Basin Road, midway between U.S. Route 1 and Penn Central railroad tracks, 0.5 mi (0.8 km) southeast of Bakers- ville, and 1.4 mi (2.3 km) southeast of Franklin Corner.	38.6 (100.0 km²)	1977	1-27-78 3-27-78 5-09-78	571 196 52
01483010 Deep Run	Alloway Creek	Lat 39°32'33", long 75°21'18", Salem County, at bridge on Telegraph Road, 0.8 mi (1.3 km) upstream of Elk- inton Millpond, 1.3 mi (2.1 km) south of Alloway, and 2.5 mi (4.0 km) north- west of Pecks Corner.	5.30 (13.73 km ²	1977	11-07-77 11-08-77	18 34

Base flow. Peak flow. Not previously published.

The following table contains annual maximum stages for tidal crest-stage stations. The information is obtained from a crest-stage gage or a water-stage recorder located at each site. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. All stages are elevations above National Geodetic Vertical Datum of 1929 unless otherwise noted. Only the maximum stage is given. Information on some other high stages may have been obtained but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined.

ANNUAL MAXIMUM STAGES AT TIDAL CREST-STAGE PARTIAL-RECORD STATIONS

Station No.	Station name	Location	Period		maximum Elevation NGVD*
			record	Date	(feet)
01411395	Cape May Canal at North Cape May, NJ	Lat 38°58'02", long 74°57'25", Cape May County, on Cape May Canal on slip of Cape May, New Jersey to Lewes, Delaware, ferry, 0.5 mi (0.8 km) east of west end of Cape May Canal, and 0.8 mi (1.3 km) south of North Cape May.	1965-78	10-14-77	c6 . 54
01412150	Maurice River at Bivalve, NJ	Lat 39°13'42", long 75°02'12", Cumberland County, on right bank on bulkhead piling on the south side of Bivalve, and 1.3 mi (2.1 km) south of Port Norris.	1965-78	9-25-77 12-19-77	d6.61 5.97
01464040	Delaware River at Marine Terminal, Trenton, NJ		1921-46‡, 1951-54‡, 1957-78‡	1-26-78	c9.30
01482705	Delaware River at Oakwood Beach, NJ	Lat 39°33'18", long 75°31'11", Salem County, on left bank on bulkhead piling at Oakwood Beach, 1.3 mi (2.1 km) south of mouth of Salem River, 2.4 mi (3.9 km) east of Reedy Point, Delaware, and 3.0 mi (4.8 km) southwest of Salem.	1965-78	12-21-77	b7.66

National Geodetic Vertical Datum of 1929 (NGVD). Operated as a continuous-record gaging station. Revised.

[#]

Gage datum; not National Geodetic Vertical Datum of 1929 datum.
Furnished by National Ocean Survey, adjusted to National Geodetic Vertical Datum of 1929.
Adjusted to National Geodetic Vertical Datum of 1929. c

BURLINGTON COUNTY

395525074502501. Local I.D., Medford 5 Obs. Unique Well Number, 05-0261. LOCATION.--Lat 39°55'25", long 74°50'25", Hydrologic Unit 02040202, at Medford Public Shooting Grounds, Medford

Township.

Owner: U.S. Geological Survey.

AQUIFER.--Magothy-Raritan undifferentiated of Cretaceous Age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 750 ft (229 m), screened 740 to 750 ft (226 to 229 m).

DATUM.--Altitude of land-surface datum is 72.6 ft (22.13 m). Measuring point: Top edge of recorder shelf, 3.6 ft (1.10 m) above land-surface datum.

(1.10 m) above land-surface datum.

REMARKS.-
PERIOD OF RECORD.--January 1968 to March 1975 and March 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 94.46 ft (28.791 m) below land-surface datum, Mar. 1, 1968; lowest water level, 123.67 ft (37.695 m) below land-surface datum, Aug. 3, 1977.

EXTREMES FOR CURRENT YEAR.--Highest water level, 116.91 ft (35.634 m) below land-surface datum, Mar. 27; lowest water level, 121.48 ft (37.027 m) below land-surface datum, Aug. 2.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	121.27	120.10	118.97	118.18	117.61	117.49			118.35	120.24	121.39	121.19
10	120.94	119.66	119.08	117.84	117.38	117.17			118.77	120.31	121.07	121.29
15	120.59	119.69	118.72	117.71	117.42	117.19			119.10	120,60	120.88	121.21
20	120.44	119.68	118.58	117.53	117.41	117.31			119.36	120.89	120.82	121.18
25	120.45	119.25	118.23	117.44	117.38	117.35			119.74	121.14	121.00	121.05
EOM	120.28	119.29	118.27	117.59	117.55			118.01	120.00	121.39	121.14	121.09
MEAN	120.71	119.66	118.72	117.79	117.44	117.26		117.96	119.08	120.69	121.06	121.16
WTD VD	1078	MEAN 1	10 25	HTCH 11	6 OJI MAD	27	LOW	121 JI6 AUG	2			

NOTE. -- No record Mar. 31-May 25.

BURLINGTON COUNTY

400010074521601. Local I.D., Willingboro 2 Obs. Unique Well Number, 05-0645. LOCATION.--Lat 40°00'10", long 74°52'16", Hydrologic Unit 02040202, at Bridge Street and Tiffany Lane, Willingboro. Owner: Willingboro Municipal Utilities Authority.

AQUIFER.--Magothy-Raritan undifferentiated of Cretaceous Age.

WELL CHARACTERISTICS. -- Drilled artesian observation well, diameter 6 in (152 mm), depth 441 ft (134.4 m), screened 431 to 441 ft (131.4 to 134.4 m). DATUM.--Altitude of land-surface datum is 40.3 ft (12.28 m). Measuring point: Top edge of recorder shelf, 2.0 ft (0.61 m) below land-surface datum.

REMARKS. --

PERIOD OF RECORD. --March 1966 to March 1975 and March 1977 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 49.79 ft (15.176 m) below land-surface datum, June 21, 1967; lowest water level, 79.00 ft (24.079 m) below land-surface datum, July 29, 1977.

EXTREMES FOR CURRENT YEAR. --Highest water level, 67.39 ft (20.540 m) below land-surface datum, Mar. 10; lowest water level, 74.61 ft (22.741 m) below land-surface datum, July 28.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES

DAY	00	T NO	V DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	S	71.9	69.87	69.37	68.48	67.98	68.74	70.79	71.25	72.08		73.05
10		70.8			68.22	67.57	69.19	70.26	71.66	72.54		73.06
15		70.5			68.33	68.35	69.71	70.18	71.99	72.91		72.90
		70.3			68.34	68.76	69.52	70.19	72.39	72.79		72.30
20 25		70.2			68.30	68.76	70.08	70.42	72.12	73.67		71.56
EOM		70.1			68.42	68.65	70.30	70.67	72.32		73.55	71.75
MEAN		70.6	66 69.68	68.85	68.33	68.32	69.48	70.47	71.85	72.93	73.53	72.55
WTR Y	1978	MEAN	70.33	HIGH 6	7.57 MAR 1	0	LOW	74.41 JUL	. 28			

NOTE. -- No record Oct. 1-Nov. 3.

CAMDEN COUNTY

394922074563302. Local I.D., NJ WC Elm Tree Farm 3 Obs. Unique Well Number, 07-0413. LOCATION.--Lat 39°49'22", long 74°56'30", Hydrologic Unit 02040202, about 200 ft (60 m) northeast of Thomas Road and about 2 mi (3 km) northwest of Berlin. Owner: New Jersey Water Company.

AQUIFER. -- Magothy-Raritan undifferentiated of Cretaceous Age.
WELL CHARACTERISTICS. -- Drilled artesian observation well, diameter 6 in (152 mm), depth 717 ft (218.5 m), screened
706 to 717 ft (215.2 to 218.5 m).

DATUM. -- Altitude of land-surface datum is 148.7 ft (45.32 m). Measuring point: Top edge of recorder shelf, 0.6 ft (0.18 m) above land-surface datum.

REMARKS. --

PERIOD OF RECORD. --December 1963 to April 1975 and March 1977 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 174.21 ft (53.099 m) below land-surface datum, Feb. 6, 1964; lowest water level, 225.40 ft (68.702 m) below land-surface datum, Aug. 3-4. 1977.

EXTREMES FOR CURRENT YEAR. --Highest water level, 213.43 ft (65.053 m) below land-surface datum, Mar. 14; lowest water level, 220.53 ft (67.218 m) below land-surface datum, July 16-17.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	219.16	217.21	215.79	214.99	214.36	214.19	213.88	214.84	216.43	220.36		
10	218.59	216.70	215.61	214.49	214.18		213.89	215.14	217.05	220.17		
15	218.17	216.54	215.47	214.52	214.10	213.70	214.03	215.04	217.57	220.45		
20	217.79	216.39	215.29	214.43	214.10	213.91	214.11	215.07	218.09			
25	217.62	216.23	215.08	214.33	214.08	213.99	214.38	215.27	219.09			
EOM	217.35	216.06	215.06	214.18	214.19	213.88	214.41	215.83	219.76			
MEAN	218.25	216.59	215.43	214.53	214.16	213.96	214.09	215.17	217.74	220.30		
WTR YR	1978	MEAN 2	15.86	HIGH 21	3.57 MAR	14	LOW	220.53 JUL	17			

NOTE. -- No record July 18-Sept. 30.

CUMBERLAND COUNTY

391828075120902. Local I.D., Jones Island 2 Obs. Unique Well Number, 11-0096.
LOCATION.--Lat 39°18'29", long 75°12'08", Hydrologic Unit 02040206, about 1.7 mi (2.7 km) south of Cedarville at Jones Island, Lawrence Township.

Owner: Cumberland County.

AQUIFER.--Piney Point of Eocene Age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in (102 mm), depth 375 ft (114 m), screened 365 to 375 ft (111 to 114 m).

DATUM.--Altitude of land-surface datum is 10 ft (3.0 m). Measuring point: Top edge of recorder shelf, 1.9 ft (0.578 m) above land-surface datum.

REMARKS . --

PERIOD OF RECORD. -- March 1977 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level, 19.99 ft (6.093 m) below land-surface datum, Mar. 22, 1977; lowest water level, 24.85 ft (7.574 m) below land-surface datum Sept. 26, 1978. EXTREMES FOR CURRENT YEAR. --Highest water level, 21.75 ft (6.629 m) below land-surface datum, Oct. 14; lowest water level, 24.85 ft (7.574 m) below land-surface datum Sept. 26.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
5 10 15	22.31 22.21 22.07	22.42 22.12 22.34	22.68	22.70	22.94 22.75 22.87	23.06 22.80 23.06	23.17 23.23 23.37	23.21 23.38 23.25	23.56 23.76 23.90	23.85 23.94 24.00	24.26 24.22 24.28	24.45 24.56 24.52
20 25	22.23	22.54	22.26	22.46	22.88	23.28	23.04	23.44	23.80	24.11	24.27	24.60
EOM	22.38	22.47	22.60	22.92	23.01	23.20	23.25	23.50	23.90	24.17	24.41	24.78
MEAN	22.24	22.34	22.49	22.70	22.86	23.07	23.24	23.41	23.76	24.03	24.28	24.58
WTR YR	1978	MEAN	23.25	HIGH 21	. 98 OCT	14	LOW	24.79 SER	29			

GLOUCESTER COUNTY

394942075131701. Local I.D., Shell Chemical 5 Obs. Unique Well Number, 15-0296.
LOCATION.--Lat 39°49'42", long 75°13'17", Hydrologic Unit 02040202, near the intersection of Mantua Grove Road and Route 295, West Deptford Township.
Owner: Shell Chemical Company.
AQUIFER.--Magothy-Raritan undifferentiated of Cretaceous Age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 327 ft (99.7 m), screened 322 to 327 ft (98.1 to 99.7 m).
DATUM.--Altitude of land-surface datum is 20.8 ft (6.34 m). Measuring point: Top edge of recorder shelf, 2.9 ft (0.88 m) above land-surface datum.
REMARKS.--Water levels in this well are affected by nearby pumping.
PERIOD OF RECORD.--June 1062 to current year.

PERIOD OF RECORD.--June 1962 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 27.75 ft (8.458 m) below land-surface datum, Dec. 6, 1962; lowest water level, 40.63 ft (12.384 m) below land-surface datum, July 21, 1977.

EXTREMES FOR CURRENT YEAR.--Highest water level, 33.37 ft (10.017 m) below land-surface datum, May 30; lowest water level, 38.16 ft (11.631 m) below land-surface datum, July 25.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
.5	37.86	37.81	36.16		34.67	35.57	34.36	35.38	34.51	35.96	36.74	36.39
10	37.38	36.77	36.66	35.50	34.22	34.92	34.35	35.07	34.85	36.75	36.57	37.45 36.82
15	37.65	36.50		35.35	34.55	35.01	34.60	34.44	35.96	36.34		
20	37.48	36.67			34.46	34.90	34.20	34.89	36.39	36.94	36.86	36.42
25	37.67	36.15			34.76	34.83	34.52	34.64	36.51	37.81	37.37	36.91
EOM	37.31	36.34	35.55	34.83	34.93	34.80	35.06	34.05	36.68	36.89	36.65	36.42
MEAN	37.55	36.81	36.02	35.25	34.56	34.95	34.49	34.81	35.60	36.85	36.81	36.86
WTR YR	1978	MEAN	35.89	HIGH 33	. 68 MAY 29		LOW	37.86 OCT	5			Halva I

HUNTERDON COUNTY

402644074563601. Local I.D., Bird Obs. Unique Well Number, 19-0002. LOCATION.--Lat 40°26'44", long 74°56'36", Hydrologic Unit 02040105, at U.S. Post Office, Sergeantsville. Owner: Phillip Fleming.

AQUIFER.--Stockton Formation of Triassic Age.

WELL CHARACTERISTICS. -- Dug unused water - table well, diameter 36 in (914 mm), depth 21 ft (6.4 m), lined with stone. DATUM. -- Altitude of land-surface datum is 342 ft (104.2 m). Measuring point: Top edge of recorder shelf, 1.5 ft (0.46 m) above land-surface datum.

REMARKS. --

PERIOD OF RECORD.--June 1965 to July 1970 and May 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 6.91 ft (2.106 m) below land-surface datum, Mar. 28-29, 1978;
lowest water level, 16.40 ft (4.999 m) below land-surface datum, Nov. 9, 1965.

EXTREMES FOR CURRENT YEAR.--Highest water level, 6.91 ft (2.106 m) below land-surface datum, Mar. 28-29; lowest water

level, 15.51 ft (4.727 m) below land-surface datum, Aug. 28-29.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	13.90	15.15	10.94		11.47	14.62	10.30	14.17	12.07	13.16	14.30	13.99
10	13.69	10.26	11.79	10.87	13.06	14.81	11.92	13.66	13.31	14.13	13.87	13.45
15	13.15	11.75	12.26	11.05	13.82	10.58	12.90	12.75	13.99	14.98	14.46	14.01
20	13.04	12.69	10.05	11.00	14.16	9.71	13.31	8.38	14.44	13.58	15.03	14.06
25	13.94	12.90	8.84	11.83	14.42	8.71	13.21	8.18	14.73	14.62	15.39	14.02
EOM	14.74	12.20	11.09	9.23	14.50	7.83	13.75	9.93	14.81	15.16	15.28	14.85
MEAN	13.62	12.70	10.76	11.12	13.16	11.37	12.19	11.41	13.61	14.40	14.73	14.08
WTR YR	1978	MEAN	12.76	HIGH	6.97 MAR	28	LOW	15.50 AUG	28			ARRE I

SALEM COUNTY

394037075191501. Local I.D., Point Airy Obs. Unique Well Number, 33-0187.
LOCATION.--Lat 39°40'37", long 75°19'14", Hydrologic Unit 02040206, at intersection of Point Airy and Woodstown-Swedesboro Roads, 1 mi (1.61 km) north of Woodstown Boro boundary.
Owner: U.S. Geological Survey.

Owner: U.S. Geological Survey.

AQUIFER.--Magothy-Raritan undifferentiated of Cretaceous Age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 672 ft (204.8 m), screened

664 to 672 ft (202.4 to 204.8 m).

DATUM.--Altitude of land-surface datum is 73.0 ft (22.25 m). Measuring point: Top of 6 inch casing, 1.8 ft (0.55 m)

above land-surface datum.

REMARKS . --

REMARKS.-PERIOD OF RECORD.--February 1959 to August 1975 and March 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 78.55 ft (23.942 m) below land-surface datum, Mar. 6, 1959;
lowest water level, 100.52 ft (30.638 m) below land-surface datum, Aug. 6-7, 1977.

EXTREMES FOR CURRENT YEAR.--Highest water level, 96.00 ft (29.261 m) below land-surface datum, May 15; lowest water level, 99.28 ft (30.261 m) below land-surface datum, Oct. 7.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES

					112		•					
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	99.12 98.90 98.94 98.79 99.09 99.07	98.97 98.21 98.26 98.36 98.11 97.88	97.87 97.44 97.28 97.12	96.87 96.54 96.55 96.27	96.48 96.52 96.31 96.30	96.35 96.21 96.27 96.33 96.47 96.43	96.29 96.23 96.40 96.11 96.26 96.24	96.40 96.24 96.03 96.23 96.24 96.15	96.22 96.70 96.89 96.83 96.80 96.88	96.51 96.86 97.00 97.33 97.59 97.58	97.13 97.03 97.11 97.35 97.59 97.59	97.42 97.71 97.74 97.85 97.73 97.81
MEAN	98.97	98.37	97.47	96.74	96.47	96.32	96.29	96.26	96.68	97.12	97.28	97.70
WTR YR	1978	MEAN	97.14	HIGH	96.03 MAY 1	5	LOW	99.21 OCT	7			

WARREN COUNTY

405050075033201. Local I.D., Hoffmann LaRoche 4 Obs. Unique Well Number, 41-0013.
LOCATION.--Lat 40°50'50", long 75°03'32", Hydrologic Unit 02040105, 1 mi (1.6 km) northeast of Belvidere on Route 46.
Owner: Hoffmann LaRoche, Inc.
AQUIFER.--Glacial Till of Pleistocene Age.
WELL CHARACTERISTICS.--Drilled well, diameter 8 in (203 mm), depth 128 ft (39.0 m).
DATUM.--Altitude of land-surface datum is 290 ft (88.4 m). Measuring point: Top edge of recorder shelf, 2.2 ft
(0.67 m) above land-surface datum.
RFMARKS ---

REMARKS. -PERIOD OF RECORD. --1960 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 30.10 ft (9.174 m) below land-surface datum, July 5, 1972; lowest water level, 46.59 ft (14.201 m) below land-surface datum, Sept. 18, 1977. EXTREMES FOR CURRENT YEAR. --Highest water level, 36.30 ft (11.064 m) below land-surface datum, Apr. 6; lowest water level, 45.41 ft (13.841 m) below land-surface datum, Sept. 30.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
5	44.91	43.75	42.39	38.71	37.56	42.20	36.35				44.52	44.38
10	44.95	43.69				42.76					44.08	44.68
15	44.85	43.20	41.86	38.33		43.10					43.45	44.94
20	44.23	43.15				42.18					43.39	45.07
25	43.62	43.04				40.50		40.62			43.68	45.25
EOM	43.61	42.88				37.66					44.06	45.41
MEAN	44.44	43.33	41.17	38.70	39.25	41.62	36.67	40.70			43.88	44.87
WTR YR	1978	MEAN	42.02	HTGH	36 32 APR	6	LOW	45 41 SEP 3	0			

NOTE .-- No record Apr. 7-May 22 and May 27-Aug. 1.

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 CAPE MAY COUNTY

LOCAL								SPE- CIFIC CON-		CHLO- RIDE,
IDENT-	LAT-	LONG-		GEO-	DATE			DUCT-		DIS-
1-	I-	1-	SEQ.	LUGIC	OF		TEMPER-	ANCE	РН	SOLVED
FIER	TUDE	TUDE	NO.	UNIT	SAMPLE	TIME	ATURE	(MICRO-		(MG/L
							(DEG C)	MHOS)	(UNITS)	AS CL)
TRAFFIC CIRCLE OBS	38 56 16	074 58 00	00	112CPMY	78-03-17	1140	12.0			68
CAPE MAY CITY WD 1	38 56 43			121CNSY	78-07-20	1130	15.0	790	7.5	140
HARBESON-WALKER REF CO 2	38 56 43	074 57 55	01	121CNSY	78-07-20	1215	15.5	841	7.6	190
HARBESON-WALKER REF CO 1	38 56 45	5 074 58 03	01	121CKKD	78-07-20	1220	16.0	1340	8.2	260
CAPE MAY CITY WD 2	38 57 01	074 55 28	01	121CNSY	78-07-20	1100	15.0	382	7.5	41
CAPE MAY CITY WD 3	38 57 24	074 55 21	01	121CNSY	78-07-20	1115	15.5	321	7.6	19
LOWER THP WC 1	38 58 53	074 57 12	01	121CNSY	78-07-20	1515	15.0	249	8.0	13
LOWER THP WC 2	38 59 05	074 56 25	01	121CNSY	78-07-20	1450	15.0	235	7.9	13
WILDWOOD WD RID GRAND 38	39 01 35	074 53 52	01	122KRKD	78-08-17	0910	16.5	535	7.5	79
WILDWOOD WD RID GRAND 36	39 01 37	074 53 52	01	112CPMY	78-08-17	0900	13.5	207	6.6	23
WILDWOOD WD RIO GRAND 31	39 01 38	074 53 50	01	112ESRNS	78-08-17	0915	14.0	194	7.6	13
WILDWOOD WD RID GRAND 29	39 01 39	074 53 49	0.5	121CNSY	78-08-17	0920	14.5	161	7.5	10

LOCAL IDENT- 1- FIER	DATE OF SAMPLE	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD)	DEPTH OF HOLE, TOTAL (FEET)	DEPTH OF WELL, TOTAL (FEET)	DEPTH TO TOP OF WATER- BEARING ZONE (FT)	DEPTH TO BOT- FOM DF WATER- BEARING ZONE (FI)	DEPTH TO TOP OF SAMPLE INTER- VAL (FT)	DEPTH TO BOT- TOM OF SAMPLE INTER- VAL (FT)	PUMP OR FLOW PERIOD PRIOR TO SAM- PLING (MIN)	FLOW RATE, INSTAN- TANEOUS (GPM)
TRAFFIC CIRCLE DES	78-03-17	9.12		20			15	20		
CAPE MAY CITY WD 1	78-07-20	12.00		306	92		277	306	-	
HARBESON-WALKER REF CO 2	78-07-20	10.00	270	268	200		235	265		
HARBESUN-WALKER REF CO 1	78-07-20	10.00	385	327	296	327	296	321		
CAPE MAY CITY WD 2	78-07-20	12.00	322	282			174	282	120	700
CAPE MAY CITY WD 3	78-07-20	15.00		276			1-0-6	276	1440	750
LOWER THP WC 1	78-07-20	18.00	285	262	200		241	262	15	750
LOWER TAP WC 2	78-07-20	12.00		247			212	247	5	550
WILDWOOD WD RID GRAND 38	78-08-17	10.00	592	592			461	590	300	800
WILDWOOD WD RID GRAND 36	78-08-17	9.00	63	63			48	63	120	350
WILDWOOD WD RIO GRAND 31	78-08-17	10.00	141	135	92	139	108	135	240	250
WILDWOOD WD RIO GRAND 29	78-08-17	8.00	258	244			191	231	240	400

Geologic unit (aquifer):
112CPMY - Cape May Formation, Undifferentiated
112ESRNS - Cape May Formation, Estuarine Sand Facies
121CNSY - Cohansey Sand

121CKKD - Cohansey Sand-Kirkwood Formation, Undifferentiated 122KRKD - Kirkwood Formation

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 CUMBERLAND COUNTY

												SPE-		
1000												CIFIC		CHLO-
LOCAL								100	Sec. of			CDN-		RIDE,
IDENT-	L	AT-			ING	-		GEO-	DATE			DUCT-		DIS-
I-		I-			-		SEQ.	LOGIC	OF		TEMPER-	ANCE	РН	SOLVED
FIER	T	DDE		T	JDE		NO.	UNIT	SAMPLE	TIME	ATURE	(MICRO-		(MG/L
											(DEG C)	MHOS)	(UNITS)	AS CL)
MOORES BEACH FIRE DEPT	39	11	18	074	57	05	01	122KRKD	78-07-11	1100		177		2.9
THOMPSON BCH CIVIC ASSOC	39	11	33	074	59	29	01	122KRKD	78-07-11	1200		188		4.4
EAST POINT WATER ASSOC.	39	11	38	075	01	17	01	122KRKD	78-07-11	1400		185		2.0
LEONARD SANDERS	39	13	23	075	09	58	01	121CKKD	78-07-12	1230	14.5	132	6.7	2.8
HEISLERVILLE 1 OBS	39	13	50	075	00	20	01	112CPMY	78-06-07	1430	15.0		7.1	1.9
HEISLERVILLE 2 DBS	39	13	51	075	00	18	01	121CNSY	78-06-08	1030	14.5	187	6.5	25
NJDIA LEESBURG SP FARM 1	39	13	56	074	57	51	01	122KRKD	78-07-11	0940	15.0	174	7.4	3.1
PORT NORRIS OYSTER CO.	39	14	17	075	01	24	01	122KRKD	78-07-12	0930		149		2.8
FORTESQUE REALTY 4	39	14	20	075	10	23	02	122KRKD	78-07-12	1200	15.5	222	7.9	5.4
JOSEPH HETMANSKI	39	16	17	075	13	55	01	124PNPN	78-07-12	1500		975		220
M GANDYS BEACH	39	16	18	075	13	54	01	124PNPN	78-07-12	1340	15.5	2500	7.4	830
MONEY ISL MARINA 1	39	17	04	075			01	124PNPN	78-07-12	1430		680		75
BAY PT ROD & GUN CLUB 2	39	17	46	075	15	10	02	124PNPN	78-07-12	1615		740		79
JONES ISLAND #2	39	18	29	075	12	08	01	124PNPN	78-06-14	1115	15.0	224	7.5	3.6
JONES ISLAND #1	39	18	30	075			01	122KRKD	78-06-14	1330		194		2.6
SEA BREEZE TAVERN 2	39	19	26	075	19	21	01	124PNPN	78-07-13	1230		710.	8.0	67
DAVID HOLDING	39			075			01	121CNSY	78-07-13	1130		123	7.3	8.4
BACK NECK ROAD WELL	39	19	59	075			01	112PLCC	78-06-08	1240	14.0	10700	6.8	3600

LOCAL IDENT- I- FIER	DATE OF SAMPLE	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD)	DEPTH OF HOLE, TOTAL (FEET)	DEPTH OF WELL, TOTAL (FEET)	DEPTH TO 10P OF WATER- BEARING ZONE (FT)	DEPTH TO BOT- TOM OF WATER- BEARING ZONE (FT)	DEPTH TU TOP OF SAMPLE INTER- VAL (FT)	DEPIH TO BOT- TOM OF SAMPLE INTER- VAL (FI)	PUMP OR FLOW PERIUD PRIOR TO SAM- PLING (MIN)	FLOW RATE, INSTAN- TANEOUS (GPM)
MOORES BEACH FIRE DEPT	78-07-11	4.00	315	315	280		295	315		
THOMPSON BCH CIVIC ASSOC	78-07-11	5.00	310	310			290	305		
EAST POINT WATER ASSOC.	78-07-11	5.00	266	266			242	262		
LEONARD SANDERS	78-07-12	5.00		210						
HEISLERVILLE 1 OBS	78-06-07	6.00	45	41	30	43	36	41	150	2.0
HEISLERVILLE 2 OBS	78-06-08	6.00	145	135	120		125	135	165	3.0
NJDIA LEESBURG SP FARM 1	78-07-11	13.00	270	268	250		248	268	120	190
PORT NORRIS OYSTER CO.	78-07-12	6.00	275	235			215	235		
FORTESQUE REALTY 4	78-07-12	8.00		303			283	303	10	200
JOSEPH HETMANSKI	78-07-12	5.00		440						
M GANDYS BEACH	78-07-12	5.00		402			378	402	40	50
MONEY ISL MARINA 1	78-07-12	4.00		370			350	370		
BAY PT ROD & GUN CLUB 2	78-07-12	5.00	417	417	330		397	417		
JONES ISLAND #2	78-06-14	10.00		375			360	370	60	14
JONES ISLAND #1	78-06-14	10.00		171			166	171	100	2.0
SEA BREEZE TAVERN 2	78-07-13	4.00	354	354	260		281	354	10	20
DAVID HOLDING	78-07-13	8.00		160			120	160		
BACK NECK ROAD WELL	78-06-08	8.00		72			68	72	60	3.0

Geologic unit (aquifer):
112CPMY - Cape May Formation, Undifferentiated
112PLCC - Pleistocene-Cohansey Sand, Undifferentiated
121CNSY - Cohansey Sand

121CKKD - Cohansey Sand-Kirkwood Formation, Undifferentiat 122KRKD - Kirkwood Formation 124PNPN - Piney Point Formation

HEISLERVILLE 1 085 HEISLERVILLE 2 085

78-06-07 78-06-08

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 CUMBERLAND COUNTY--Continued

LOCAL IDENT- I- PIER	CAT- I- TUDE	LONG- I- TUDE	SEQ.	GEO- LOGIC UNIT	DATE OF SAMPLE	TIME	DEPTH TO BOT- TOM OF WATER- BEARING ZONE (FT)	DEPTH TO TOP OF WATER- BEARING ZONE (FT)	DEPTH OF WELL, TOTAL (FEET)	DEPTH TO BOT- TOM OF SAMPLE INTER- VAL (FT)
HEISLERVILLE 1 088 HEISLERVILLE 2 088	39 13 50 39 13 51	075 JO 2 075 00 1		112CPMY 121CNSY	78-06-07 78-06-08	1430 1030	43	30 120	135	41 135

LOCAL IDENT- I- FIER	DATE OF Sample	DEPTH TO TOP OF SAMPLE INTER- VAL (FT)	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD)	PUMP OR FLOW PERIOD PRIOR TO SAM- PLING (MIN)	DEPTH OF HOLE, TOTAL (FEET)	FLOW RATE, INSTAN- IANEOUS (GPM)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)
HEISLERVILLE 1 08S HEISLERVILLE 2 08S	78-06-07 78-06-08	36 125	6.00	150 165	45 145	2.0	187	7.1	15.0	50 20
LOCAL IDENT- I- FIER	DATE OF Sample	TUR- BID- ITY (JTU)	UXYGEN DEMAND, CHEM- ICAL (LOW LEVEL) (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM FUTAL RECOV- ERABLE (MG/L AS CA)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)
HEISLERVILLE 1 DBS HEISLERVILLE 2 DBS	78-06-07 78-06-08	10	6 9		1 19	17	16 17	4.6	4.0	6.3 6.9
	62									
LOCAL IDENT- I- FIER	DATE OF SAMPLE	SODIUM, DIS- SOLVED (MG/L AS NA)	SUDIUM PERCENT	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACD3)	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
HEISLERVILLE 1 DBS HEISLERVILLE 2 DBS	78-06-07 78-06-08	5.5	16 21		3.5	3.5 2.0	67 43	0	55 35	8.5 22
LOCAL IOENT- I- FIER	DAT OE Same	SOL	ATE RI - DI VED SO	S- RI LVED TO G/L (M	UO- RIC DE, DI TAL SOL G/L (MC	LVED (40	ICA, RESI S- AT : LVED DEC S/L D: S SOI	IDUE SUM 180 CONS G. C TUES IS- DS	NTS, SOI IS- (TO LVED PO	(OS, S= VED NS SR FT)

128 155 132 130

7 5

20 250

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 CUMBERLAND COUNTY--Continued

LOCAL IDENT- I- FIER HEISLERVILLE 1 08S HEISLERVILLE 2 08S		DATE OF SAMPLE 78-06-07 78-06-08	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) .01	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA FOTAL (MG/L AS N)	NITRO- GEN, DRGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N) .21	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS, TOTAL (MG/L AS P) .45
LOCAL IDENT- FIER HEISLERVILLE 1 00S HEISLERVILLE 2 08S		DATE OF SAMPLE 78-06-07 78-06-08	PHOS- PHORUS, ORTHO. TOTAL (MG/L AS P) .39	CARBON, ORGANIC TOTAL (MG/L AS C) 3.9 5.4	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) 1.0 2.0	ARSENIC TOTAL (UG/L AS AS)	CHRO- MIUM, FOTAL RECOV- ERABLE (UG/L AS CR) <10 <10	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRDN, TOTAL RECOV- ERABLE (UG/L AS FE) 5000 8700	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE) 3000 400
	LOCAL IDENT- I- FIER		DATE OF Sample	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	

2000 8300

140

70 140

<.5

10

78-06-07 78-06-08

HEISLERVILLE 1 OBS HEISLERVILLE 2 OBS

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 GLOUCESTER COUNTY

												SPE-		CHLO-	
												CIFIC CON-			
LOCAL														RIDE,	
IDENT-	L	AT-			DNG.	•		GEO-	DATE			DUCT-		DIS-	
I -		I-			-		SEQ.	LOGIC	OF	20.22	TEMPER-	ANCE	PH	SOLVED	
FIER	T	UDE		T	DE		NO.	UNIT	SAMPLE	TIME	ATURE	(MICRO-	1.	(MG/L	
											(DEG C)	MHOS)	(UNITS)	AS CL)	
CLAYTON BORO WD 3	39	39 1	12	075	05	22	01	211MGRR	78-08-24	1300	21.0	1190	8.0	140	
CLAYTON BORO WD 4	39	40 1	13	075	05	58	01	211MGRR	78-08-24	1320	20.5	940	7.9	93	
GLASSBORO WD 5	39	41 4	11	075	07	10	01	211MGRR	78-09-01	0905	19.0	670	8.2	55	
OWENS ILLINOIS 1	39	41 4	17	075	07	14	01	211MGRR	78-08-24	1415	19.5	790		63	
GLASSBORD BORD WD 3	39	42 0)5	075	07	53	01	211MGRR	78-09-01	0855	18.5	710	8.1	65	
PITMAN BORO WD P1	39	44 0)5	075	07	45	01	211MGRR	78-08-24	1500	17.0	510		37	
SO JERSEY WS CO 3	39	44 (8	075	13	30	02	211MGRR	78-08-25	0930	15.5	970		150	
SWEDESBORO BORO WD 2	39	44 3	88	075	18	33	01	211MGRR	78-09-01	1015	14.5	420	7.4	57	
WOODBURY CTY WD-SEWEL 2A	39	46 2	8	075	08	13	03	211MGRR	78-08-25	1300	15.5	380		24	
SEWELL WC 2	39	46 2	29	075	08	59	01	211MGRR	78-08-25	1035	15.0	400	••	28	
MANTUA WC 3	39	47 3	32	075	10	36	01	211MGRR	78-08-25	1100		420		. 37	
WENONAH BORO WD 1	39	47 4	13	075	09	02	01	211MGRR	78-08-25	1200				21	
PENNS GROVE WC-BRIDGPT 2	39	47 5	55	075	21	08	02	211MGRR	78-09-01	1050	14.0	190	6.9	14	
EI DUPONT REPAUNO 6	39	49 4	14	075	17	34	01	-211MGRR	78-09-01	1230	14.0	470	5.9	96	
EI DUPONT REPAUNO 5	39	49 4	15	075	17	17	01	211MGRR	78-09-01	1245	17.5	326	6.1	56	
WOODBURY WD RAILROAD 5	39	49 5	50	075	09	09	01	211MGRR	78-08-25	1315	14.5	355		46	
MOBIL DIL-GREENWICH 45	39	50 0	05	075	15	23	01	211MGRR	78-09-01	1415	15.5	2320	4.9	140	
MOBIL OIL-GREENWICH 47	39	50 3	36	075	15	01	01	211MGRR	78-09-01	1425	14.5	522	6.3	120	

*		ELEV.			DEPTH TO TOP	DEPTH	DEPTH TO TOP	DEPTH TO BOT-	PUMP OR FLOW		
10011		OF LAND	D C D MAI			TO BOT-				6104	
LOCAL		SURFACE	DEPTH	DEPTH	OF	POM OF	OF	TOM OF	PERIOD	FLOW	
IDENT-	DATE	DATUM	OF	OF	WATER-	WATER-	SAMPLE	SAMPLE	PRIOR	RATE,	
I-	OF	(FT.	HOLE,	WELL,	BEARING	BEARING	INTER-	INTER-	TO SAM-	INSTAN-	
FIER	SAMPLE	ABOVE	TOTAL	TOTAL	ZONE	ZONE	VAL	VAL	PLING	TANEOUS	
		NGVD)	(FEET)	(FEET)	(FT)	(FT)	(FT)	(FT)	(WIN)	(GPM)	
							- 72				
CLAYTON BORO WD 3	78-08-24	133.00	1010	800	740	802	746	800			
CLAYTON BORO WD 4	78-08-24	140.00	943	740	657	778	670	740			
GLASSBORO WD 5	78-09-01	138.00		660			600	657	1440	1000	
DWENS ILLINOIS 1	78-08-24	144.00	650	647	585	647	607	647			
GLASSBORO BORO WD 3	78-09-01	150.00		615	544		562	612	12	600	
PITMAN BORO WD P1	78-08-24	140.00	514	514	460		468	514			
SO JERSEY WS CO 3	78-08-25	35.00	270	268	225	266	234	265			
SWEDESBORO BORD WD 2	78-09-01	30.00	439	244	190	258	217	240	1440	350	
WOODBURY CTY WD-SEWEL 2A	78-08-25	21.00	313	303	236	309	240	304			
SEWELL WC 2	78-08-25	60.00	374	368	315	372	336	368			
MANTUA WC 3	78-08-25	10.00	335	268			230	265			
WENONAH BORO WD 1	78-08-25	80.00	321	320	265		286	320			
PENNS GROVE WC-BRIDGPT 2	78-09-01	20.00	127	88	60	84	65	85	10	95	
EI DUPONT REPAUNO 6	78-09-01	10.00		109			84	109	120	245	
EI DUPONT REPAUNO 5	78-09-01	10.00		99			81	99	10	150	
WOODBURY WD RAILROAD 5	78-08-25	35.00		457			405	457			
MOBIL OIL-GREENWICH 45	78-09-01	3.00		118			95	118			
MOBIL DIL-GREENWICH 47	78-09-01	20.00	247	245	217	242	220	240			
										1	

Geologic unit (aquifer): 211MGRR - Magothy-Raritan Formations, Undifferentiated

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

SALEM COUNTY

LOCAL IDENT- I- FIER	LAT- I- TUDE	LONG- I- TUDE	SEQ.	GEO- LOGIC UNIT	DATE OF Sample	TIME	DEPTH OF WELL, TOTAL (FEET)	DEPTH TO BOT- TOM OF SAMPLE INTER- VAL (FT)	DEPTH TO TOP OF SAMPLE INTER- VAL (FT)	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD)
SALEM 1 OBS	39 33 48	075 27 57	01	211MGRR	78-06-06	1330	709	709	699	3.00
LOCAL IDENT- I- FIER SALEM 1 OBS	DATE OF SAMPLE 78-06-06	PUMP OR FLOW PERIOD PRIOR TO SAM- PLING (MIN)	DEPTH OF HOLE, TOTAL (FEET)	FLOW RATE, INSTAN- TANEOUS (GPM)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS) 6.9	TEMPER- ATURE (DEG C) 16.0	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (JTU)	HARD- NESS (MG/L AS CACO3)
LOCAL IDENT- I- FIER	DATE OF SAMPLE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS-	SODIUM, DIS- SOLVED (MG/L AS NA)	SJDIUM Percent	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)
SALEM 1 OBS	78-06-06	420	160	35	1000	79	19	29	150	0

LUCAL IDENT- I- Fier	DATE OF Sample	ALKA- LINITY (MG/L AS CACO3)	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
SALEM 1 DBS	78-06-06	123	30	2.3	1900	.3	.3

SALEM 1 DBS	78-06-06	7.1	3910	3220	5.32
	2.5	\$102)	(MG/L)	(MG/L)	AC-FT)
FIER	SAMPLE	AS	SOLVED	SOLVED	PER
I-	OF	(MG/L	DIS-	DIS-	(TONS
IDENT-	DATE	SOLVED	DEG. C	TUENTS,	SOLVED
LOCAL		DIS-	AT 180	CONSTI-	DIS-
		SILICA,	RESIDUE	SUM OF	SOLIDS,
			SOLIDS,	SOLIDS,	

QUALITY OF GROUND WATER WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 SALEM COUNTY--Continued

	LOCAL IDENT- I- FIER	DATE OF Sample	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, DRGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS, TOTAL (MG/L AS P)
SALEM	1 085	78-06-06	.02	.00	.02	1.4	.20	1.6	1.6	7.2	.08
					5 4			1			
	LOCAL IDENT- I- FIER	DATE OF Sample	PHOS- PHORUS, ORTHO. TOTAL (MG/L AS P)	CARBON, URGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	ARSENIC TOTAL (UG/L AS AS)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CO)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
SALEM	1 OBS	78-06-06	.00	5.6	1.7	0	0	10	2	10	7500
					MANGA-	MANGA-					

LOCAL IDENT- I- FIER	DATE OF Sample	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
SALEM 1 OBS	78-06-06	7500	190	20	170	<.5	13	210

NEW TERMINOLOGY -- FIRST LINE OLD TERMINOLOGY -- SECOND LINE

CALCIUM, TOTAL RECOVERABLE (MG/L AS CA) CALCIUM, TOTAL (MG/L AS CA)

CESIUM, SUSPENDED TOTAL (UG/L AS CS)
CESIUM, SUSPENDED (UG/L AS CS)

MAGNESIUM, TOTAL RECOVERABLE (MG/L AS MG)
MAGNESIUM, TOTAL (MG/L AS MG)

MAGNESIUM, SUSPENDED RECOVERABLE (MG/L AS MG)
MAGNESIUM, SUSPENDED (MG/L AS MG)

SOLIDS, RESIDUE AT 110 DEG. C, SUSPENDED TOTAL (MG/L) SOLIDS, RESIDUE AT 110 DEG. C, SUSPENDED (MG/L)

NITROGEN, AMMONIA PLUS ORGANIC, TOTAL (MG/L AS N) NITROGEN, KJELDAHL, TOTAL (MG/L AS N)

NITROGEN, AMMONIA PLUS ORGANIC, SUSPENDED TOTAL (MG/L AS N) NITROGEN, KJELDAHL, SUSPENDED (MG/L AS N)

NITROGEN, AMMONIA PLUS ORGANIC, DISSOLVED (MG/L AS N) NITROGEN, KJELDAHL, DISSOLVED (MG/L AS N)

NITROGEN, AMMONIA PLUS ORGANIC, TOTAL IN BOTTOM MATERIAL, DRY WT (MG/KG AS N)
NITROGEN, KJELDAHL, TOTAL IN BOTTOM MATERIAL, DRY WT (MG/KG AS N)

ALUMINUM, TOTAL RECOVERABLE (UG/L AS AL) ALUMINUM, TOTAL (UG/L AS AL)

ALUMINUM, SUSPENDED RECOVERABLE (UG/L AS AL) ALUMINUM, SUSPENDED (UG/L AS AL)

ALUMINUM, RECOVERABLE FROM BOTTOM MATERIAL (UG/G AS AL) ALUMINUM, TOTAL IN BOTTOM MATERIAL (UG/G AS AL)

ANTIMONY, SUSPENDED TOTAL (UG/L AS SB) ANTIMONY, SUSPENDED (UG/L AS SB)

ARSENIC, SUSPENDED TOTAL (UG/L AS AS)
ARSENIC, SUSPENDED (UG/L AS AS)

BARIUM, TOTAL RECOVERABLE (UG/L AS BA) BARIUM, TOTAL (UG/L AS BA)

BARIUM, SUSPENDED RECOVERABLE (UG/L AS BA) BARIUM, SUSPENDED (UG/L AS BA)

BARIUM, RECOVERABLE FROM BOTTOM MATERIAL (UG/G AS BA) BARIUM, TOTAL IN BOTTOM MATERIAL (UG/G AS BA)

BERYLLIUM, TOTAL RECOVERABLE (UG/L AS BE) BERYLLIUM, TOTAL (UG/L AS BE)

BERYLLIUM, SUSPENDED RECOVERABLE (UG/L AS BE)
BERYLLIUM, SUSPENDED (UG/L AS BE)

BERYLLIUM, RECOVERABLE FROM BOTTOM MATERIAL (UG/G AS BE) BERYLLIUM, TOTAL IN BOTTOM MATERIAL (UG/G AS BE)

BISMUTH, SUSPENDED TOTAL (UG/L AS BI)
BISMUTH. SUSPENDED (UG/L AS BI)

BORON, TOTAL RECOVERABLE (UG/L AS B) BORON, TOTAL (UG/L AS B)

BORON, SUSPENDED RECOVERABLE (UG/L AS B) BORON, SUSPENDED (UG/L AS B)

BORON, RECOVERABLE FROM BOTTOM MATERIAL (UG/G AS B) BORON, TOTAL IN BOTTOM MATERIAL (UG/G AS B)

CADMIUM, TOTAL RECOVERABLE (UG/L AS CD) CADMIUM, TOTAL (UG/L AS CD)

CADMIUM, SUSPENDED RECOVERABLE (UG/L AS CD) CADMIUM, SUSPENDED (UG/L AS CD)

CADMIUM, RECOVERABLE FROM BOTTOM MATERIAL (UG/G AS CD) CADMIUM, TOTAL IN BOTTOM MATERIAL (UG/G AS CD)

CHROMIUM, TOTAL RECOVERABLE (UG/L AS CR) CHROMIUM, TOTAL (UG/L AS CR)

CHROMIUM, SUSPENDED RECOVERABLE (UG/L AS CR) CHROMIUM, SUSPENDED (UG/L AS CR)

NEW TERMINOLOGY -- FIRST LINE OLD TERMINOLOGY -- SECOND LINE

CHROMIUM, RECOVERABLE FROM BOTTOM MATERIAL (UG/G AS CR) CHROMIUM, TOTAL IN BOTTOM MATERIAL (UG/G AS CR) COBALT, TOTAL RECOVERABLE (UG/L AS CO) COBALT, TOTAL (UG/L AS CO) COBALT, SUSPENDED RECOVERABLE (UG/L AS CO) COBALT, SUSPENDED (UG/L AS CO) COBALT, RECOVERABLE FROM BOTTOM MATERIAL (UG/G AS CO) COBALT, TOTAL IN BOTTOM MATERIAL (UG/G AS CO) COPPER, TOTAL RECOVERABLE (UG/L AS CU) COPPER, TOTAL (UG/L AS CU) COPPER, SUSPENDED RECOVERABLE (UG/L AS CU) COPPER, SUSPENDED (UG/L AS CU) COPPER, RECOVERABLE FROM BOTTOM MATERIAL (UG/G AS CU) COPPER, TOTAL IN BOTTOM MATERIAL (UG/G AS CU) GALLIUM, SUSPENDED TOTAL (UG/L AS GA)
GALLIUM, SUSPENDED (UG/L AS GA) GERMANIUM, SUSPENDED TOTAL (UG/L AS GE)
GERMANIUM. SUSPENDED (UG/L AS GE) IRON, TOTAL, RECOVERABLE (UG/L AS FE) IRON, TOTAL (UG/L AS FE) IRON, SUSPENDED RECOVERABLE (UG/L AS FE) IRON, SUSPENDED (UG/L AS FE) IRON, RECOVERABLE FROM BOTTOM MATERIAL (UG/G AS FE) IRON, TOTAL IN BOTTOM MATERIAL (UG/G AS FE) LEAD, TOTAL RECOVERABLE (UG,L AS PB) LEAD, TOTAL (UG/L AS PB) LEAD, SUSPENDED RECOVERABLE (UG/L AS PB) LEAD, SUSPENDED (UG/L AS PB) LEAD, RECOVERABLE FROM BOTTOM MATERIAL (UG/G AS PB) LEAD, TOTAL IN BOTTOM MATERIAL (UG/G AS PB) LITHIUM, TOTAL RECOVERABLE (UG/L AS LI) LITHIUM, TOTAL (UG/L AS LI) LITHIUM, SUSPENDED RECOVERABLE (UG/L AS LI) LITHIUM, SUSPENDED (UG/L AS LI) MANGANESE, TOTAL RECOVERABLE (UG/L AS MN) MANGANESE, TOTAL (UG/L AS MN) MANGANESE, SUSPENDED RECOVERABLE (UG/L AS MN) MANGANESE, SUSPENDED (UG/L as MN) MANGANESE, RECOVERABLE FROM BOTTOM MATERIAL (UG/G AS MN) MANGANESE, TOTAL IN BOTTOM MATERIAL (UG/G AS MN) MERCURY, TOTAL RECOVERABLE (UG/L AS HG) MERCURY, TOTAL (UG/L AS HG) MERCURY, SUSPENDED RECOVERABLE (UG/L AS HG) MERCURY, SUSPENDED (UG/L AS HG) MERCURY, RECOVERABLE FROM BOTTOM MATERIAL (UG/G AS HG) MERCURY, TOTAL IN BOTTOM MATERIAL (UG/G AS HG)

MOLYBDENUM, TOTAL RECOVERABLE (UG/L AS MO) MOLYBDENUM, TOTAL (UG/L AS MO)

MOLYBDENUM, SUSPENDED RECOVERABLE (UG/L AS MO) MOLYBDENUM, SUSPENDED (UG/L AS MO)

MOLYBDENUM, RECOVERABLE FROM BOTTOM MATERIAL (UG/L AS MO) MOLYBDENUM, TOTAL IN BOTTOM MATERIAL (UG/L AS MO)

NICKEL, TOTAL RECOVERABLE (UG/L AS NI) NICKEL, TOTAL (UG/L AS NI)

NICKEL, SUSPENDED RECOVERABLE (UG/L AS NI) NICKEL, SUSPENDED (UG/L AS NI)

NEW TERMINOLOGY -- FIRST LINE OLD TERMINOLOGY -- SECOND LINE

NICKEL, RECOVERABLE FROM BOTTOM MATERIAL (UG/L AS NI) NICKEL, TOTAL IN BOTTOM MATERIAL (UG/L AS NI)

RUBIDIUM, SUSPENDED TOTAL (UG/L AS RB) RUBIDIUM, SUSPENDED (UG/L AS RB)

SELENIUM, SUSPENDED TOTAL (UG/L AS SE) SELENIUM, SUSPENDED (UG/L AS SE)

SILVER, TOTAL RECOVERABLE (UG/L AS AG) SILVER, TOTAL (UG/L AS AG)

SILVER, SUSPENDED RECOVERABLE (UG/L AS AG) SILVER, SUSPENDED (UG/L AS AG)

SILVER, RECOVERABLE FROM BOTTOM MATERIAL (UG/L AS AG) SILVER, TOTAL IN BOTTOM MATERIAL (UG/L AS AG)

STRONTIUM, TOTAL RECOVERABLE (UG/L AS SR) STRONTIUM, TOTAL (UG/L AS SR)

STRONTIUM, SUSPENDED RECOVERABLE (UG/L AS SR) STRONTIUM, SUSPENDED (UG/L AS SR)

STRONTIUM, RECOVERABLE FROM BOTTOM MATERIAL (UG/G AS SR) STRONTIUM, TOTAL IN BOTTOM MATERIAL (UG/G AS SR)

TIN, TOTAL RECOVERABLE (UG/L AS SN) TIN. TOTAL (UG/L AS SN)

TIN, SUSPENDED RECOVERABLE (UG/L AS SN) TIN, SUSPENDED (UG/L AS SN)

TITANIUM, SUSPENDED TOTAL (UG/L AS TI)
TITANIUM, SUSPENDED (UG/L AS TI)

VANADIUM, SUSPENDED TOTAL (UG/L AS V)
VANADIUM, SUSPENDED (UG/L AS V)

ZINC, TOTAL RECOVERABLE (UG/L AS ZN) ZINC, TOTAL (UG/L AS ZN)

ZINC, SUSPENDED RECOVERABLE (UG/L AS ZN) ZINC, SUSPENDED (UG/L AS ZN)

ZINC, RECOVERABLE FROM BOTTOM MATERIAL (UG/G AS ZN) ZINC, TOTAL IN BOTTOM MATERIAL (UG/G AS ZN)

ZIRCONIUM, SUSPENDED TOTAL (UG/L AS ZR) ZIRCONIUM, SUSPENDED (UG/L AS ZR)

ALPHA, SUSPENDED TOTAL (PCI/L) ALPHA, SUSPENDED (PCI/L)

ALPHA, SUSPENDED TOTAL, COUNTING ERROR (PCI/L) ALPHA, SUSPENDED, COUNTING ERROR (PCI/L)

GROSS ALPHA RADIOACTIVITY, SUSPENDED TOTAL (UG/L AS U NATURAL) GROSS ALPHA RADIOACTIVITY, SUSPENDED (UG/L AS U NATURAL)

GROSS ALPHA RADIOACTIVITY, SUSPENDED TOTAL (PCI/L AS U NATURAL)
GROSS ALPHA RADIOACTIVITY, SUSPENDED
(PCI/L AS U NATURAL)

GROSS ALPHA RADIOACTIVITY. SUSPENDED TOTAL (UG/G AS U NATURAL)
GROSS ALPHA RADIOACTIVITY, SUSPENDED
(UG/G AS U NATURAL)

GROSS ALPHA RADIOACTIVITY, SUSPENDED TOTAL (PCI/G AS U NATURAL)
GROSS ALPHA RADIOACTIVITY, SUSPENDED (PCI/G AS U NATURAL)

BETA, SUSPENDED TOTAL (PCI/L)
BETA, SUSPENDED (PCI/L)

BETA, SUSPENDED TOTAL, COUNTING ERROR (PCI/L)
BETA, SUSPENDED, COUNTING ERROR (PCI/L)

GROSS BETA RADIOACTIVITY, SUSPENDED TOTAL (PCI/L AS CS-137) GROSS BETA RADIOACTIVITY, SUSPENDED (PCI/L AS CS-137)

GROSS BETA RADIOACTIVITY, SUSPENDED TOTAL (PCI/G AS CS-137) GROSS BETA RADIOACTIVITY, SUSPENDED (PCI/G AS CS-137)

NEW TERMINOLOGY -- FIRST LINE OLD TERMINOLOGY -- SECOND LINE

GROSS BETA RADIOACTIVITY, SUSPENDED TOTAL (PCI/L AS SR/YT-90)
GROSS BETA RADIOACTIVITY, SUSPENDED (PCI/L AS SR/YT-90)

GROSS BETA RADIOACTIVITY, SUSPENDED TOTAL (PCI/G SR/YT-90) GROSS BETA RADIOACTIVITY, SUSPENDED (PCI/G AS SR/YT-90)

CALCIUM 45, SUSPENDED TOTAL (PCI/L)
CALCIUM 45, SUSPENDED (PCI/L)

CALCIUM 45, SUSPENDED TOTAL, COUNTING ERROR (PCI/L) CALCIUM 45, SUSPENDED, COUNTING ERROR (PCI/L)

CESIUM 134, SUSPENDED TOTAL (PCI/L)
CESIUM 134, SUSPENDED (PCI/L)

CESIUM 134, SUSPENDED TOTAL, COUNTING ERROR (PCI/L) CESIUM 134, SUSPENDED (PCI/L)

CESIUM 137, SUSPENDED TOTAL (PCI/L)
CESIUM 137, SUSPENDED (PCI/L)

CESIUM 137, SUSPENDED TOTAL, COUNTING ERROR (PCI/L) CESIUM 137, SUSPENDED, COUNTING ERROR (PCI/L)

IRON 59, SUSPENDED TOTAL (PCI/L)
IRON 59, SUSPENDED (PCI/L)

IRON 59, SUSPENDED TOTAL, COUNTING ERROR (PCI/L) IRON 59, SUSPENDED, COUNTING ERROR (PCI/L)

RADIUM 226, SUSPENDED TOTAL (PCI/L)
RADIUM 226, SUSPENDED (PCI/L)

RHODAMINE WT, SUSPENDED TOTAL (UG/L) RHODAMINE WT, SUSPENDED (UG/L)

SCANDIUM 46, SUSPENDED TOTAL (PCI/L) SCANDIUM 46, SUSPENDED (PCI/L)

SCANDIUM 46, SUSPENDED TOTAL, COUNTING ERROR (PCI/L) SCANDIUM 46, SUSPENDED, COUNTING ERROR (PCI/L)

SELENIUM 75, SUSPENDED TOTAL (PCI/L) SELENIUM 75, SUSPENDED (PCI/L)

SELENIUM 75, SUSPENDED TOTAL, COUNTING ERROR (PCI/L) SELENIUM 75, SUSPENDED, COUNTING ERROR (PCI/L)

SILVER 110, SUSPENDED TOTAL (PCI/L) SILVER 110, SUSPENDED (PCI/L)

SILVER 110, SUSPENDED TOTAL, COUNTING ERROR (PCI/L) SILVER 110, SUSPENDED, COUNTING ERROR (PCI/L)

STRONTIUM 90, SUSPENDED TOTAL (PCI/L) STRONTIUM 90, SUSPENDED (PCI/L)

STRONTIUM 90, SUSPENDED TOTAL, COUNTING ERROR (PCI/L) STRONTIUM 90, SUSPENDED, COUNTING ERROR (PCI/L)

SULFUR 35, SUSPENDED TOTAL (PCI/L) SULFUR 35, SUSPENDED (PCI/L)

SULFUR 35, SUSPENDED TOTAL, COUNTING ERROR (PCI/L) SULFUR 35, SUSPENDED, COUNTING ERROR (PCI/L)

TRITIUM, SUSPENDED TOTAL (PCI/L)
TRITIUM, SUSPENDED (PCI/L)

TRITIUM, SUSPENDED TOTAL (TRITIUM UNITS)
TRITIUM, SUSPENDED (TRITIUM UNITS)

TRITIUM, SUSPENDED TOTAL, COUNTING ERROR (PCI/L)
TRITIUM, SUSPENDED, COUNTING ERROR (PCI/L)

TRITIUM, SUSPENDED TOTAL, COUNTING ERROR (TRITIUM UNITS)
TRITIUM, SUSPENDED, COUNTING ERROR (TRITIUM UNITS)

URANIUM, NATURAL, SUSPENDED TOTAL (UG/L AS U NATURAL) URANIUM, NATURAL, SUSPENDED (UG/L AS U NATURAL)

CARBON, INORGANIC PLUS ORGANIC, SUSPENDED TOTAL (MG/L AS C) CARBON, INORGANIC PLUS ORGANIC, SUSPENDED (MG/L AS C)

NEW TERMINOLOGY -- FIRST LINE OLD TERMINOLOGY -- SECOND LINE

CARBON, ORGANIC, SUSPENDED TOTAL (MG/L AS C) CARBON, ORGANIC, SUSPENDED (MG/L AS C)

CARBON, INORGANIC, SUSPENDED TOTAL (MG/L AS C) CARBON, INORGANIC, SUSPENDED (MG/L AS C)

PCB, SUSPENDED TOTAL (UG/L)
PCB. SUSPENDED (UG/L)

AROCLOR, SUSPENDED TOTAL, 1248 PCB SERIES (UG/L) AROCLOR, SUSPENDED, 1248 PCB SERIES (UG/L)

AROCLOR, SUSPENDED TOTAL, 1254 PCB SERIES (UG/L) AROCLOR, SUSPENDED, 1254 PCB SERIES (UG/L)

AROCLOR, SUSPENDED TOTAL, 1260 PCB SERIES (UG/L) AROCLOR, SUSPENDED, 1260 PCB SERIES (UG/L)

ALDRIN, SUSPENDED TOTAL (UG/L) ALDRIN, SUSPENDED (UG/L)

CHLORDANE, SUSPENDED TOTAL (UG/L) CHLORDANE, SUSPENDED (UG/L)

DDD, SUSPENDED TOTAL (UG/L) DDD, SUSPENDED (UG/L)

DDE, SUSPENDED TOTAL (UG/L)
DDE, SUSPENDED (UG/L)

DDT, SUSPENDED TOTAL (UG/L)
DDT, SUSPENDED (UG/L)

DIAZINON, SUSPENDED TOTAL (UG/L) DIAZINON, SUSPENDED (UG/L)

DIELDRIN, SUSPENDED TOTAL (UG/L)
DIELDRIN, SUSPENDED (UG/L)

ENDRIN, SUSPENDED TOTAL (UG/L) ENDRIN, SUSPENDED (UG/L)

HEPTACHLOR, SUSPENDED TOTAL (UG/L) HEPTACHLOR, SUSPENDED (UG/L)

HEPTACHLOR EPOXIDE, SUSPENDED TOTAL (UG/L) HEPTACHLOR EPOXIDE, SUSPENDED (UG/L)

ISODRIN, SUSPENDED TOTAL (UG/L)
ISODRIN, SUSPENDED (UG/L)

LINDANE, SUSPENDED TOTAL (UG/L) LINDANE, SUSPENDED (UG/L)

MALATHION, SUSPENDED TOTAL (UG/L)
MALATHION, SUSPENDED (UG/L)

METHYL PARATHION, SUSPENDED TOTAL (UG/L) METHYL PARATHION, SUSPENDED (UG/L)

MIREX, SUSPENDED TOTAL (UG/L)
MIREX, SUSPENDED (UG/L)

PARATHION, SUSPENDED TOTAL (UG/L) PARATHION, SUSPENDED (UG/L)

TOXAPHENE, SUSPENDED TOTAL (UG/L)
TOXAPHENE, SUSPENDED (UG/L)

2,4-D, SUSPENDED TOTAL (UG/L) 2,4-D, SUSPENDED (UG/L)

2,4,5-T, SUSPENDED TOTAL (UG/L) 2,4,5-T, SUSPENDED (UG/L)

SILVEX, SUSPENDED TOTAL (UG/L) SILVEX, SUSPENDED (UG/L)

	PAGE		PAGE
Accuracy of field data and computed results	12	Collingswood, Newton Creek at	279
Acknowledgments	1	Color unit, definition of	3
Acre-foot, definition of	2	Columbia, Paulins Kill at Mouth at	76
Adenosine triphosphate, definition of	2	Columbus, Assiscunk Creek at	177
Alexauken Creek near Lambertville	129	Computations, accuracy of results	12
Algae, definition of	2	Contents, definition of	3
Algal growth potential (AGP), definition of	173	Continuing record station, definition of	4
Alloway, Alloway Creek at inlet of Alloway Lk nr.	173 266	Control structure, definition of	4
Almonesson Creek at Runnemede	243	Cookstown, Crosswicks Creek at Hockamik Road near	168
Aquifer code list	2	Cooper River at Camden	235
Aquifer, definition of	2	at Haddonfield	230
Artesian, definition of	3	at Kirkwood	225
Ash mass, definition of	3	at Lawnside	228
Assiscunk Creek at Columbus	177	at Norcross Road at Linenwold	223
near Burlington	179	North Branch at Erlton	233
Assunpink Creek at Bakersville	158	near Marlton	279
at Carsons Millsat Peace Street at Trenton	156 165	CooperationCourses Landing, Salem River at	264
at Trenton	162	Crafts Creek at Hedding	176
near Clarksville	157	Crest-stage partial-record stations	277
Aura, Still Run at	275	Crosswicks Creek at Extonville	169
		at Hockamik Road near Cookstown	168
Bacteria, definition of	3	at New Egypt	278
Bakersville, Assunpink Creek at	158	at Groveville172	2,278
Shipetaukin Creek at	160	Cubic feet per second per square mile, definition of	4
Barrett Run near Bridgeton	276	Cubic foot per second, definition of	285
Bear Creek, PA, diversions	275 273	Cumberland County, ground-water levels	289
Bear Swamp Reservoir, NY, diversions	273	Or a word and and and and and and and and and an	
Beattystown, Musconetcong River at	100	Davis Mills, Raccoon Ditch at	276
Beaver Brook near Belvidere		Definition of terms	2
Bed material, definition of	3	Delaware and Raritan Canal at Kingston	121
Bedload, definition of	3	Delaware Memorial Bridge, Wilmington, DE,	260
Beltzville Lake data		Delaware River at	260 89
Delaware River at	85 89	at Burlington	181
Pequest River at	87	at Delaware Memorial Bridge, Wilmington, DE	260
Bethlehem, PA, Lehigh River at	93	at Frenchtown	117
Big Flat Brook at Tuttles Corner		at Lambertville	132
Big Timber Creek, NB at Berlin Rd. at Clementon	239	at Lumberville	124
at Glendora	241	at Marine Terminal, Trenton	
North Branch at Laurel Rd. at Laurel Springs	279	at Montague	59
South Branch at Blackwood	237	at Northampton Street at Easton, PA	91
Biochemical oxygen demand, definition of	3	at Oakwood Beachat Palmyra	283 217
Biomass, definition of	204	at Port Jervis, NY	55
Bivalve, Maurice River at	283	at Portland	70
Blacks Creek at Bordentown	175	at Riegelsville110	
Blackwood, South Branch Big Timber Creek at	237	at Trenton	138
Blairstown, Paulins Kill at	72	at Washington Crossing	137
Yards Creek near	75	below Tocks Island Damsite, nr Delaware Water Gap.	69
Bloomsbury, Musconetcong River near	103 7	near Richmond, PA	78
Blue green algae, definition of	175	Delaware River basin, discharge measurements at miscellaneous sites	274
Bridgeton, Barrett Run near	277	Diversions	273
Cohansey River at	53	Reservoirs in,	268
Cohansey River at outlet of Sunset Lake at	50	Delaware Water Gap, PA, Delaware River below	
Indians Fields Branch at	276	Tocks Island Damsite, near	69
Browns Mills, North Branch Rancocas Creek at	192	Diatoms, definition of	7
Pole Bridge Branch near	195	Discharge, definition of	E 201
Buckingham, Pole Bridge Branch near Buckshutem Creek near Laurel Lakes	194 275	Discharge measurements at miscellaneous sites27: Dissolved, definition of	J, 201
Burlington, Assiscunk Creek near	179	Diversity index, definition of	4
Delaware River at	181	Doctors Creek at Allentown	173
Burlington County, ground-water levels	284	at Route 130 near Yardsville	174
		at Groveville	278
Camden County, ground-water levels	285	Downstream order and station numbers	10
Camponsville Reservoir data	235	Drainage area, definition of	4
Cannonsville Reservoir data	268 283	Drainage basin, definition of	3
Cape May County, ground-water quality	288	by mass, definition of	,
Carpentersville, Pohatcong Creek at	94	East Pond Reservoir, NY, diversions	273
Carsons Mills, Assunpink Creek at	156	Easton, PA, Delaware River at Northampton St. at	91
Cells/volume, definition of	3	Eayrestown, Southwest Branch Rancocas Creek at	187
Centerton, Muddy Run at	275	Erlton, North Branch Cooper River at	233
Rancocas Creek at	214	Ewanville, North Branch Rancocas Creek at	210
CFS-day, definition of	3	Ewing-Lawrence Sewerage Authority, diversions Explanation of ground-water level records	162 18
Cherry Hill, South Branch Pennsauken Creek at	220	Explanation of stage and water-discharge records	11
Chlorophyll, definition of	3	Explanation of water-quality records	13
Cinnaminson, Pompeston Creek at	279	Extonville, Crosswicks Creek at	169
Clarksville, Assunpink Creek near	157		
Clayton, Little Ease Run at	275	Fecal coliform bacteria, definition of	3
Clementon, North Branch Big Timber Creek	220	Fecal streptococcal bacteria, definition of	3
at Berlin Road at	239 269		
Cohansey River at Bridgeton	53		
at outlet of Sunset Lake at Bridgeton	50		
at Seeley	47		
near Beals Mills	275		
West Branch, at Seeley	277		
Cohansey River basin, discharge measurements at	281		
miscellaneous sites	11	Art and a second and	
Collection and examination of data	13		
	1.6		

INDEX

301

Plat Prock at Wallpack Center mace Flatbrowivelic. 66 Low tick, definition. 77 Panchinville, Sociand fun at. 78 Low tick, definition. 78 Low tick, definition. 78 Low tick, definition. 79 Low tick, definition. 70 Low tick, definition. 70 Low tick, definition. 71 Low tick, definition. 72 Low tick, definition. 73 Low tick, definition. 74 Low tick, definition. 75 Low tick, definition. 76 Low tick, definition. 77 Low tick, definition. 78 Low tick, definition. 79 Low tick, definition. 70 Low tick, definition. 71 Low tick, definition. 71 Low tick, definition. 72 Low tick, definition. 73 Low tick, definition. 74 Low tick, definition. 75 Low tick, definition. 76 Low tick, definition. 77 Low tick, definition. 78 Low tick, definition. 79 Low tick, definition. 70 Low Spring at Fourier. 71 Low tick, definition. 72 Low tick, definition. 73 Low tick, definition. 74 Low tick, definition. 75 Low tick, definition. 76 Low tick, definition. 77 Low tick, definition. 78 Low tick, definition. 79 Low tick, definition. 70 Low tick, definition. 71 Low tick, definition. 72 Low tick, definition. 73 Low tick, definition. 74 Low tick, definition. 75 Low tick, definition. 76 Low Spring at Fourier. 80 Low Spring at Fourier. 80 Low Spring at Fourier. 81 Low tick, definition. 81 Low tick, definition. 82 Low tick, definition. 83 Low tick, definition. 84 Low tick, definition. 85 Low tick, definition. 86 Low tick, definition. 86 Low tick, definition. 87 Low tick, definition. 87 Low tick, definition. 88 Low tick, definition. 88 Low tick, definition. 88 Low tick, definition. 89 Low tick, definition. 80 Low tick, definition. 81 Low tick, definition. 81 Low tick, definition. 81 Low tick, definition. 82 Low tick, definition. 83 Lo		PAGE		PAGE
mear Flatbrookville. 66 Low tide, definition. 72 Prinking vills, bootland han near	Flat Brook at Wallpack Center	64	Low-flow partial-record stations	275
Franchivalls, Socians Sun at	near Flatbrookville	66	Low tide, definition	5
Sociated Sun near 34 Manastico Creek near Fort Elizabyth. 1 34 Manastico Creek near Fort Elizabyth. 2 25 Mishiaskavick Creek at. 115 at Pilann. 2 25 Mishiaskavick Creek at. 2 2 2 2 2 2 2 2 2			Lumberville, Delaware River at	124
Freenthoun, Belaware River at. 117			Manantico Creek near Port Elizabeth	43
### ### ### ### ### ### ### ### ### ##	Frenchtown, Delaware River at	117	near Millville	42
Furnace Brook at Onford. 276 Gage height, definition of. 4 Manual Nature See at Hamsskin 26 Gaging station, definition of. 5 Gall conserved the brook bit interests 201 Glouester County ground-water levels 266 Glouester County ground-water levels 266 Green stage, definition of. 7 Gaging station, was station of the stage station of. 7 Gaging station, was station of the stage definition of the stage stage station of the stage definition of the stage stage stage definition of the stage stage stage stage stage stage definition of the stage st				
Sage height, definition of a manuscular freeh name Kommunication of 5 manuscular freeh name Kommunication of 6 manuscul				
Gaging station, definition of			Mantua, Mantua Creek at	251
Records			Manumuskin Creek near Manumuskin	
Glandora, North Branch Big Timber Creek at 241				
Second S	Glendora, North Branch Big Timber Creek at		at Norma	
Goleffory, NY, Neversink Hiver at. 56 McDonaids Branch in Lebason State Forest 199 Green aigae definition of . 27 Mean concentration, definition of . 5 Greenwood Branch at New Lisbon . 205 Greenwood . 205 G				
Green Lane Beservoir, PA. 270 Mean discharge, definition of directemond Fanch at New Lisbon. 205 Mean high or low tide, definition of directemond Fanch at New Lisbon. 205 Mean high or low tide, definition of 275 Crowveille, Crosswicks Creek at. 172,76 Methylene Park Common Crosswicks Creek at. 172,76 Methylene Park Common Creek at. 172,76 Methylene Park Common Creek at. 172,76 Methylene Park Common Creek at. 172,77 Methylene Plue active substance, definition of . 5 Methylene Plue Active substance, definition of . 6 Methylene Plue Active Substance Plue Plue Plue Plue Plue Plue Plue Plu	Godeffroy, NY, Neversink River at	58	McDonalds Branch in Lebanon State Forest	
Greenwood Branch at New Lisbon. 205 Mean high or low tide, definition of. 276 mound-water level records. 1284 Medford, Sh Branch Stancosa Greek at 277 Doctors Greek at. 278 Medford, Sh Branch Stancosa Greek at. 277 Methylene Slue active substance, definition of. 278 Methylene Slue active substance, definition of. 278 Methylene Slue active substance, definition of. 279 Methylene Slue active substance, definition of. 279 Millignams per gran, definition of. 270 Millignams per gran, de				8
Ground-water level records. 284 Methory of SW Branch Rancocas Creek at. 277 Methory of Sw Branch Rancocas Creek at. 172, 275 Methory of Sw Branch Rancocas Creek at. 172, 275 Methory of Sw Branch Rancocas Creek at. 172, 275 Methory of Sw Branch Rancocas Creek at. 172, 275 Methory of Sw Branch Rancocas Creek at. 172, 275 Methory of Sw Ranch Rancocas Creek at. 172, 275 Methory of Sw Ranch Rancocas Creek at. 172, 275 Methory of Sw Ranch Rancocas Creek at. 279 Militigram per liter, definition of . 277 Methory of Sw Ranch Rancocas Creek at. 279 Militigram per liter, definition of . 5 Methory of Sw Ranch Rancocas Creek at. 189 Militigram per liter, definition of . 5 Methory of Sw Ranch Rancocas Creek at. 189 Militigram per liter, definition of . 5 Methory Sw Ranch Rancocas Creek at. 189 Militigram per liter, definition of . 5 Methory Sw Ranch Rancocas Creek at. 189 Militigram per liter, definition of . 5 Methory Sw Ranch Rancocas Creek at. 189 Militigram per liter, definition of . 5 Methory Sw Ranch Rancocas Creek Ranch Rancocas Creek Ranch Ranch Rancocas Creek Rancoc				5
Douters Creek at			Medford, SW Branch Rancocas Creek at	278
Gum Spring at Fourmile				5
Hancketstown, Musconetcong River mear. 277 Mill Creek near Millwille 277 Mill Greek near Millwille 278 Mil				. 5
Haddon Heights, SB Newton Creek at	Hankettstorn Museumsteens Pives need	277		275
Haddonfield, Cooper River at. 230				
Hakihokake Greek at Milford.	Haddonfield, Cooper River at	230	Milligrams per liter, definition of	- 5
Hampton, Musconetoong River at.	Harinesport, South Branch Rancocas Creek at			
Hardness definition of 5 Maurice River near 3			Maurice River at Sharp Street at	40
Harrisonville, Oldamas Creek near 280			Maurice River near	38
Hazel Creek, PA, diversions 273 Montague, Delaware River at 55 High tide, definition of 4				240
High tide, definition of hispatong, lake. 270 Hinterfoot County, ground-water levels. 286 Hinterfoot County, Ground-water levels. 287 Highrologic conditions. 287 Hydrologic conditions. 297 Hydrologic conditions. 297 Hydrologic conditions. 297 Hydrologic conditions. 297 Hinterfoot County, Ground-water levels. 297 Instantaneous discharge, definition of 597 Instantaneous discharge, definition of 597 Introduction. 107 Jadwin, General Edgar, Reservoir, PA. 268 Kingston, Delaware and Raritan Canal at 121 Kirkwood, Cooper River at 1225,279 Lake Hopatong, Musconetcong River at outlet of 277 Lakes and reservoirs: 255,279 Lake Hopatong, Musconetcong River at outlet of 277 Lakes and reservoirs: 273 Lakes and reservoirs: 274 Lakes And reservoir NY, diversions. 273 Lakes And Reservoir, NY, diversions. 273 Lakes And Reservoir, NY, diversions. 273 Lakes And Reservoir, NY, diversions. 274 Lakes And Reservoir, NY, diversions. 275 Lakes And Reservoir, NY, diversions. 276 Lamber Robert Reservoir, NY, diversions. 277 Lakes And Reservoir, NY, diversions. 277 Lakes And Reservoir, NY, diversions. 273 Lakes And Reservoir, NY, diversions. 274 Lakes And Reservoir, NY, diversions. 275 Lakes And Reservoir, NY, diversions. 275 Lakes And Reservoir, NY, diversions. 276 Lamber Robert Reservoir, NY, diversions. 277 Lakes And Reservoir, NY, diversions. 278 Lakes And Reservoir, NY, diversions. 279 Lakes And Reservoir, NY, diversions. 270 Lamber Robert Reservoir, NY, diversions. 271 Lakes And Reservoir, NY, diversions. 273 Lakes And Reservoir, NY, diversions. 274 Lakes And Reservoir, NY, diversions. 275 Lave Lake, diversions. 274 Lave Lake, diversions. 275 L	Hazel Creek, PA, diversions	273	Montague, Delaware River at	59
Hopatoong, Lake. 270				
Hunterdon County, ground-water levels. 286 Morrisilacke, diversions. 277 Murdboun, Weldon Brook at			Moorestown, North Branch Pennsauken Creek near2	
Hurdtown, Weldon Brook at. 276	Hunterdon County, ground-water levels		Morris Lake, diversions	274
Hydrologic bench-mark station, definition of				
Hydrologic unit, definition of	Hydrologic bench-mark station, definition of			
Muddy Run near Norma				
Indian Fields Branch at Bridgeton. 276 Instantaneous discharge, definition of 5	mydrologic unit, delinition of	,		37
Introduction			at Centerton	275
Stiff Ceneral Edgar, Reservoir, PA 268 at Lockwood 39				
Stringston, Delaware and Raritan Canal at 121		060	at Hampton	
Kingston, Delaware and Raritan Canal at 121 Lake Hopatcong, Musconetcong River at outlet of 277 Lakes and reservoirs:	Jadwin, General Edgar, Reservoir, PA	208		
Lake Hopatoong, Musconetoong River at outlet of. 277 Lakes and reservoirs:			at Riegelsville	107
Lakes and reservoirs: Bear Swamp Reservoir, NY, diversions. Beltzville Lake	Kirkwood, Cooper River at	225, 279		107
Bear Swamp Reservoir, NY, diversions. 273		277	near Hackettstown	277
Beltzville Lake		273	Muskee Creek near Port Elizabeth	275
Califf Lake, NY. 269	Beltzville Lake	270	Neversink Reservoir NY	
East Pond Reservoir, NY, diversions. 273 New Lisbon, Greenwood Branch at 205 Green Lane Reservoir, PA. 270 Newton Creek at Collingswood. 275 Newton Creek at Collingswood. 275 Newton Creek at Collingswood. 275 South Branch, at Haddon Heights. 276 New First Reservoir, PA. 268 New Village, Pohatcong Creek at . 277 Nishisakawick Creek at Frenchtown. 115 Neversink Reservoir, NY. 269, 273 Norma, Maurice River at . 28 Norma, Maurice River at . 28 Norma Peparton Reservoir, PA. 270 Norma, Maurice River at . 28 North Cape May, Cape May Canal at . 28 Numbering system for wells and miscellaneous sites. 10 North Cape May, Cape May Canal at . 28 Numbering system for wells and miscellaneous sites. 10 North Cape May, Cape May Canal at . 28 Numbering system for vells and miscellaneous sites. 10 North Cape May, Cape May Canal at . 28 Numbering system for vells and miscellaneous sites. 10 North Cape May, Cape May Canal at . 28 Numbering system for vells and miscellaneous sites. 10 Numbering system for vel				58
Green Lane Reservoir, PA				
Jadwin, General Edgar, Reservoir, PA				279
Morris Lake, diversions.	Jadwin, General Edgar, Reservoir, PA			277
Pepacton Reservoir, NY	Morris Lake, diversions	274	Nishisakawick Creek at Frenchtown	119
Pepacton Reservoir, NY	Penn Forest Reservoir, PA		Norma, Maurice River at	35
Still Creek Reservoir, PA	Pepacton Reservoir, NY			
Swinging Bridge Reservoir, NY. 269 Oakwood Beach, Delaware River at 28: Toronto Reservoir, NY. 269 Octoraro Creek, PA, diversions 27: Wallenpaupack, Lake, PA. 268 Oldmans Creek at Porches Mill 25: Walter, Francis E., Reservoir, PA. 269 near Harrisonville. 28: Wild Creek Reservoir, PA. 270 Organic mass, definition of 28: Walter, Francis E., Reservoir, PA. 270 Organic mass, definition of 28: Wild Creek Reservoir, PA. 270 Organic mass, definition of 28: Walter, Francis E., Reservoir, PA. 270 Organic mass, definition of 28: Wild Creek Reservoir, PA. 270 Organic mass, definition of 28: Walter, Francis E., Reservoir, PA. 270 Organic mass, definition of 28: Wild Creek Reservoir, PA. 270 Organic mass, definition of 28: Walter, Francis E., Reservoir, PA. 270 Organic mass, definition of 28: Wild Creek Reservoir, PA. 270 Organic mass, definition of 28: Walter, Francis E., Reservoir, PA. 270 Organic mass, definition of 28: Wild Creek Reservoir at 28: Wild Creek Reservoir at 29: World Furnace Brook at 22: Laurel Springs, NB Big Timber Creek at 279 Definition 29: Laurel Springs, NB Big Timber Creek at 279 Definition 29: Laurel Springs, NB Big Timber Creek at 279 Definition 29: Laurel Springs, NB Big Timber Creek at 279 Definition 29: Laurel Springs, NB Big Timber Creek near 161 Tidal crest-stage 29: Lebanon State Forest, McDonalds Branch in 196 Mount Misery Brook, Middle Branch in 279 Particle size, definition of 28: Wild Creek Reservoir, PA. 270 Lockateong Creek near Raven Rock 223 at Mouth of Columbia 270 Lockateong Creek near Raven Rock 122,276 Pennsauken Creek, North Branch near Moorestown 218,277 Pennsauken Creek, North Branch near Moorestown 218,277			Numbering system for wells and miscellaneous sites	10
Toronto Reservoir, NY. 269 Octoraro Creek, PA, diversions 271 Wallenpaupack, Lake, PA. 268 Oldmans Creek at Porches Mill 256 Walter, Francis E., Reservoir, PA. 269 near Harrisonville. 286 Wild Creek Reservoir, PA. 270 Organic mass, definition of . 270 Lambertville, Alexauken Creek at 129 Other data available. 11 Delaware River at . 132 Oxford, Furnace Brook at 277 Moores Creek near . 135 Swan Creek at 133 Palmyra, Delaware River at . 217 Laurel Lake, Buckshutem Creek near . 275 Laurel Springs, NB Big Timber Creek at . 279 Lawneles Springs, NB Big Timber Creek at . 279 Lawnenceville, Shabakunk Creek near . 161 Lawnenceville, Shabakunk Creek near . 161 Mount Misery Brook, Middle Branch in . 196 Mount Misery Brook, Middle Branch in . 279 Lehigh River at Bethlehem, PA. 93 Little Ease Run near Clayton . 275 Lockatcong Creek at . 126 Lockwood, Musconetcong River at . 126 Lockwood, Musconetcong River at . 126 Lockwood, Musconetcong River at . 207 Penn Forest Reservoir, PA . 207 Pennsauken Creek, North Branch near Moorestown . 218,275			Oakwood Beach, Delaware River at	283
Walter, Francis E. Reservoir, PA. 269 near Harrisonville. 280 Wild Creek Reservoir, PA. 270 Organic mass, definition of 270 Lambertville, Alexauken Creek at 129 Other data available. 1276 Moores Creek near 132 Oxford, Furnace Brook at 276 Moores Creek near 133 Palmyra, Delaware River at 217 Laurel Lake, Buckshutem Creek near 275 Partial-record stations, crest-stage 277 Laurel Springs, NB Big Timber Creek at 279 Definition 278 Lawrenceville, Shabakunk Creek near 161 Tidal crest-stage. 287 Lebanon State Forest, McDonalds Branch in 196 Particle size, definition of 278 Lehigh River at Bethlehem, PA. 93 Paulins Kill at Blairstown 72 Little Ease Run near Clayton 275 Little Ease Run near Clayton 275 Lockatcong Creek near Raven Rock 122, 276 Lockbowd, Musconetcong River at 126 Lockwood, Musconetcong River at 97 Pennsauken Creek, North Branch near Moorestown 218, 275 Pennsauken Creek, North Branch near Moorestown 218, 275	Toronto Reservoir, NY	269	Octoraro Creek, PA, diversions	274
Wild Creek Reservoir, PA				
Delaware River at			Organic mass, definition of	3
Moores Creek near				
Laurel Lake, Buckshutem Creek near				
Lawrel Springs, NB Big Timber Creek at. 279 Lawnside, Cooper River at. 228 Lawnenceville, Shabakunk Creek near 161 Lebanon State Forest, McDonalds Branch in 196 Mount Misery Brook, Middle Branch, in 279 Lehigh River at Bethlehem, PA. 93 Lindenwold, Cooper River at Norcross Road at 223 Little Ease Run near Clayton. 275 Lockatcong Creek near Raven Rock 122,276 Lockotown, Mickecheoke Creek at. 126 Lockwood, Musconetcong River at. 276 Lockwood, Musconetcong River at. 277 Pennsauken Creek, North Branch near Moorestown. 218,277 Pennsauken Creek, North Branch near Moorestown. 218,277				
Lawrenceville, Shabakunk Creek near	Laurel Springs, NB Big Timber Creek at			
Lebanon State Forest, McDonalds Branch in 196 Mount Misery Brook, Middle Branch, in 279 Particle-size classification 72 Lehigh River at Bethlehem, PA 93 Paulins Kill at Blairstown 72 Lindenwold, Cooper River at Norcross Road at 223 at Mouth of Columbia 77 Little Ease Run near Clayton 275 Lockatcong Creek near Raven Rock 276 Lockotown, Wickecheoke Creek at	Lawnside, Cooper River at	228	Low-flow	
Mount Misery Brook, Middle Branch, in				28
Lindenwold, Cooper River at Norcross Road at 223 at Mouth of Columbia 77 Lockateong Creek near Raven Rock 122,276 at Newton 276 Lockateong Creek near Raven Rock 122,276 at Paulins Kill 200 Lockwood, Musconetcong River at 126 Pemberton, North Branch Rancocas Creek at 200 Penn Forest Reservoir, PA. 277 Pennsauken Creek, North Branch near Moorestown 218,279	Mount Misery Brook, Middle Branch, in	279	Particle-size classification	
Little Ease Run near Clayton			at Mouth of Columbia	
Locktown, Wickecheoke Creek at	Little Ease Run near Clayton	275	at Newton	276
Lockwood, Musconetcong River at				
Pennsauken Creek, North Branch near Moorestown218,279	Lockwood, Musconetcong River at		Penn Forest Reservoir, PA	270
			Pennsauken Creek, North Branch near Moorestown2 South Branch at Cherry Hill	

	PAGE
Pepacton Reservoir, NY	268
Pequest River at Belvidere	
at Pequest	276,277
at request	
Periphyton, definition of.	7
Periphyton, definition of. Philadelphia, PA, City of	Philadelphia,
diversions	274
Schuykill River at	245
Phytoplankton, definition Picocurie, definition of	of
Picocurie, definition of Pitman, Mantua Creek at	7 247
Diambeton definition of	7
Pohatcong Creek at Carpent at New Village Pole Bridge Branch near Br	ersville 94
at New Village	277
Pole Bridge Branch near Br	owns Mills 195
near buckingnam	
Polychlorinated biphenyls,	
Pompeston Creek at Cinnami	
Porches Mill, Oldmans Cree	k at 258 Creek near 43
Port Elizabeth, Manantico Muskee Creek near Port Jervis, NY, Delaware	275
Port Jervis. NY. Delaware	River at 55
Portland, PA, Delaware Riv	er at 70
Portland, PÅ, Delaware Riv Presidential Lakes, Bispha	ms Mill Creek near 204
Primary productivity, defi	nition of 7
Prompton Reservoir, PA	204,268
Publications, ground water	
Water quality Techniques of water-reso	urces investigations 15
recumiques of water-reso	ar cep investigations 20
Raccoon Creek near Mullica	Hill 253
near Swedesboro	255
Raccoon Ditch at Davis Mil	1 276
Radioisotopes, definition	of 7
Rancocas Creek at Centerto	n 214
North Branch, at Browns	Mills 192
at Pine Street at Moun	t Holly 207
South Branch, at Hainesp	ort
at Retreat	
	185,278
Southwest Branch, at Eay	restown
Raven Rock, Lockatong Cree	k near122,276
Remark codes for water-qua Reservoirs: See Lakes and	lity data
Retreat South Branch Ranc	ocas Creek at 183
Retreat, South Branch Ranc Richmond, Delaware River n	ear 78
Riegelsville. Delaware Kiv	er at110.278
Musconetcong River at	
River mile, definition of.	
Runnemede, Almonesson Cree	k at 243
Runoff in inches, definiti	on of 8
Salem County, ground-water	quality 273
Salem River at Courses Lan	ding
at Woodstown	
Salina, Mantua Creek at	
Salina, Mantua Creek at Schuylkill River at Philad Scotland Run at Franklinvi	elphia, PA 245
Scotland Run at Franklinvi	11e 275
near Franklinville	
Sediment, definition of	
Seeley, Cohansey River at. West Branch Cohansey Riv	er at
west Branch Conansey Riv	
Selected references Shabakunk Creek near Lawre	
Shipetaukin Creek at Baker	
Solute, definition of	
Solute, definition of Special networks and progr	ams 10
Specific conductance, deri	nition of
Stage-discharge relation,	definition of 8
Stephens State Park, Musco	
Still Creek Reservoir, PA.	270
Still Run at Aura	k at127,276
Streamflow, definition of.	8 at 121,210
Suspended sediment, defini	
Suspended-sediment, definition	
Suspended-sediment dischar	ge, definition of 8
Swan Creek at Lambertville	133
Swedesboro, Raccoon Creek	near 255
Swinging Bridge Reservoir,	NY, data 269
m	
Terms, definition of	

Thermograph, definition of	. 9
Tidal crest-stage station	
Timber Creek, South Branch, at Blackwood Titusville, Moores Creek near	
Tocks Island Damsite, Delaware River below, near	, ,,,,
Delaware Water Gap, PA	. 69
Tons per day, definition of	
Toronto Reservoir, NY	
Total, definition of	
Total coliform bacteria, definition of	
Total sediment discharge, definition of	. 8
Townsbury, Pequest River at	
Trenton, Assunpink Creek at	
Assunpink Creek at Peace Street at	
City of, diversions	
Delaware River at Marine Terminal at	
Tuttles Corner, Big Flat Brook at	62.276
Tuttes corner, significant second control to the co	,
Vincentown, South Branch Rancocas Creek at	185,278
Wallenpaupack, Lake, PA	268
Wallpack Center, Flat Brook at	64
Walter, Francis E., Reservoir, PA	. 269
Warren County, ground water	
Washington Crossing, Delaware River at	
Water temperature	
Weldon Brook at Hurdtown	
Wennonah, Monongahela Brook at	
Wet mass, definition of	
at Stockton	
Wild Creek Reservoir, PA	
Willingboro, Mill Creek near	
Wilmington, DE, Delaware River at Delaware	
Memorial Bridge	260
Woodstown, Salem River at	. 261
WDR, definition of	. 10
WSP, definition of	. 10
Yards Creek near Blairstown	. 75
Yardville, Doctors Creek at Route 130 near	
Tal dillia, Doctors of cen at house 130 fied	
Zooplankton, definition of	. 7
The second of th	

PAGE

CALENDAR FOR WATER YEAR 1978

1977

OCTOBER	NOVEMBER	DECEMBER
S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
	1 9 7 8	
JANUARY	FEBRUARY	MARCH
S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
	MAY	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
30 J U L Y	AUGUST	SEPTEMBER
	S M T W T F S	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

POSTAGE AND FEES PAID U.S. DEPARTMENT OF THE INTERIO INT 413

U.S. DEPARTMENT OF THE INTERIOR Geological Survey 402 East State Street –P.O. Box 1238 Trenton, NJ 08607

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300
SPECIAL 4TH CLASS BOOK RATE