
200) 203 (exas 1978

Water Resources Data for Texas

Volume 3. Colorado River Basin, Lavaca River Basin, Guadalupe River Basin, Nueces River Basin, Rio Grande Basin, and Intervening Coastal Basins

u.s. geological survey water-data report tx-78-3
WATER YEAR 1978

Prepared in cooperation with the State of Texas and with other agencies

CALENDAR FOR WATER YEAR 1978

1977

OCTOBER NOVEMBER DECEMBER

16 17 18 19 20 21 22	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
	1 9 7 8	
JANUARY	FEBRUARY	MARCH
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	5 6 7 8 9 10 11 12 13 14 15 16 17 18
APRIL	MAY	JUNE
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	4 5 6 7 8 9 10
JULY	AUGUST	SEPTEMBER
S M T W T F S	S M T W T F S	S M T W T F S
2 3 4 5 6 7 8 9 10 11 12 13 14 15	13 14 15 16 17 18 19 20 21 22 23 24 25 26	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Water Resources Data for Texas

Volume 3. Colorado River Basin, Lavaca River Basin, Guadalupe River Basin, Nueces River Basin, Rio Grande Basin, and Intervening Coastal Basins

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT TX-78-3
WATER YEAR 1978

Prepared in cooperation with the State of Texas and with other agencies

UNITED STATES DEPARTMENT OF THE INTERIOR

CECIL D. ANDRUS, Secretary

GEOLOGICAL SURVEY

H. W. Menard, Director

For additional information write to District Chief, Water Resources Division 300 East 8th Street Austin, Texas 78701

Preface

This report was prepared by the U.S. Geological Survey in cooperation with the State of Texas and with other agencies by personnel of the Texas district of the Water Resources Division under the supervision of I. D. Yost, District Chief, and Alfred Clebsch, Jr., Regional Hydrologist, Central Region.

This report is one of a series issued by State under the general direction of J. S. Cragwall, Jr., Chief Hydrologist, and Phil Cohen, Assistant Chief Hydrologist for Scientific Publications and Data Management.

Data for Texas are in three volumes as follows:

- Volume 1. Arkansas River basin, Red River basin, Sabine River basin, Neches River basin, Trinity River basin, and intervening Coastal basins
- Volume 2. San Jacinto River basin, Brazos River basin, San Bernard River basin, and intervening Coastal basins
- Volume 3. Colorado River basin, Lavaca River basin, Guadalupe River basin, Nueces River basin, Rio Grande basin, and intervening Coastal basins

BIBLIOGRAPHIC DATA	1. Report No.	2.	3. Recipien	t's Accession No.
SHEET	USGS/WRD/HD-80/002	1		
4. Title and Subtitle	Data for Texas, Water Yea	- 1070 17-1	5. Report D	
		ober 1979		
Colorado River, Rio Grande basin	s River, 6.			
7. Author(s)			8. Performing No. USC	ng Organization Rept. GS-WDR-TX-78-3
9. Performing Organization N	Name and Address			/Task/Work Unit No.
U.S. Geological				
300 East Eight S Austin, TX 7870	treet	717131011	11. Contrac	t/Grant No.
12. Sponsoring Organization	Name and Address	199	13. Type of	Report & Period
	Survey, Water Resources I	ivision	Covered	Oct. 1, 1977
300 East Eight S		17101011		t. 30, 1978
Austin, TX 7870			14.	
15. Supplementary Notes			The second second	Particular de la Caracteria de la Caract
7	es a final particular			Control of the Control
Prepared in coop	eration with the State of	Texas and	with other agencie	28.
volumes, appropr volume consist o canals; and stag included are cre partial-record s data were collec program, and are pertinent statio that part of the and cooperating	er data for the 1978 water dately identified as to out of records of stage, discharge, contents, and water quest-stage and flood-hydrogetations, and low-flow parted at various sites, not a published as miscellaneous in bordering States are National Water Data System State and Federal agencies Analysis. 170. Descriptors	content by rearge, and we hality of large partial record part of the bus measurem realso includes in Texas.	iver basins. Data ater quality of states and reservoirs l-record stations, stations. Additionally and the systematic data ents. Records for uded. These data by the U.S. Geold	a in each treams and s. Also , reconnaissance ional water collection r a few represent ogical Survey
	gic data, *Surface water, s, Chemical analyses, Sec			
17b. Identifiers/Open-Ended	Terms			
				Mary Law 1
				The sale of the
17c. COSATI Field/Group				
18. Availability Statement	No restriction on distrib	oution.	. Security Class (This	21. No. of Pages
	be purchased from:		Report) UNCLASSIFIED	607
National T	Cechnical Information Serv	vice 20	Page UNCLASSIFIED	22. Price
FORM NTIS-35 (REV. 3-72)	d, VA 22161	DE DEDDONICE	DUNCLASSIFIED	USCOMM-DC 14952-P72

CONTENTS

	Page
List of gaging stations, in downstream order, for which records	
are published	V
Introduction	1
Cooperation	2
Hydrologic conditions	- 3
Definition of terms	ē
	16
Downstream order and station number	17
Special networks and programs	
Explanation of stage and water-discharge records	18
Collection and computation of data	18
Accuracy of field data and computed results	22
Other data available	23
Records of discharge collected by agencies other than the	
Geological Survey	23
Explanation of surface-water quality records	23
Collection and examination of data	23
Water analysis	23
Water temperature	24
	25
Sediment	
Publications of techniques of water-resources investigations	26
Gaging-station records	29
Low-flow investigations	582
Discharge at partial-record stations and miscellaneous sites	586
Low-flow partial-record stations	586
Crest-stage partial-record stations	589
Discharge measurements at miscellaneous sites	591
Index	593
ILLUSTRATION	
Eigure 1. Comparison of discharge at four laws town security and the section at the section of t	
Figure 1. Comparison of discharge at four long-term representative gaging stations during the 1978 water year with median discharge for the period	
1941-70	28

	Page
WESTERN GULF OF MEXICO BASINS	
COLORADO RIVER BASIN	
Colorado River:	
Lake J. B. Thomas near Vincent	29
Bull Creek near Ira	31
Colorado River below Bull Creek near Ira	32
Bluff Creek near Ira	33
Bluff Creek at mouth near Ira	34
Colorado River near Ira	35
Deep Creek near Dunn	39
Colorado River near Cuthbert	41
Colorado River at Colorado City	45
Morgan Creek:	
Lake Colorado City near Colorado City	49
Champion Creek:	
Champion Creek Reservoir near Colorado City	51
Beals Creek above Big Spring	53
Beals Creek near Westbrook	56
Colorado River above Silver	61
E. V. Spence Reservoir near Robert Lee	68
Colorado River at Robert Lee	79
Oak Creek:	
Oak Creek Reservoir near Blackwell	80
Colorado River at Ballinger	82
Elm Creek at Ballinger	89
South Concho River (head of Concho River):	
South Concho Irrigation Co.'s canal at Christoval	93
South Concho River at Christoval	94
Middle Concho River above Tankersley	95
Spring Creek above Tankersley	96
Dove Creek at Knickerbocker	97
Twin Buttes Reservoir near San Angelo	98
South Concho River:	
Pecan Creek near San Angelo	100
Tom Green County Water Control and Improvement District No. 1 near	
San Angelo	101
Lake Nasworthy near San Angelo	102
South Concho River:	
North Concho River at Sterling City	104
North Concho River near Carlsbad	105
O. C. Fisher Lake at San Angelo	106
North Concho River at San Angelo	108
Concho River at San Angelo	109
Concho River near Veribest	110
Concho River at Paint Rock	111

	Page
WESTERN GULF OF MEXICO BASINSContinued	
COLORADO RIVER BASINContinued	
Colorado River near Stacy	118
Colorado River at Winchell	123
Pecan Bayou:	
Lake Clyde near Clyde	125
Pecan Bayou near Cross Cut	127
Jim Ned Creek near Coleman	128
Hords Creek:	
Hords Creek Lake near Valera	129
Hords Creek near Valera	131
Lake Brownwood:	
Brown County Water Improvement District No. 1 canal near Brownwood	132
Lake Brownwood near Brownwood	133
Pecan Bayou at Brownwood	135
Pecan Bayou near Mullin	136
San Saba River:	
Noyes Canal at Menard	140
San Saba River at Menard	141
Brady Creek near Eden	142
Brady Creek Reservoir near Brady	143
Brady Creek at Brady	145
San Saba River at San Saba	146
Colorado River near San Saba	147
Lake Buchanan near Burnet	156
Colorado River:	
Llano River near Junction	157
Llano River near Mason	158
Beaver Creek near Mason	159
Llano River at Llano	160
Sandy Creek near Kingsland	161
Pedernales River near Johnson City	162
Lake Travis near Austin	164
Colorado River below Mansfield Dam, Austin	165
Bull Creek at Loop 360 near Austin	166
West Bull Creek at Loop 360 near Austin	168
Bull Creek at Farm Road 2222 near Austin	170
Lake Austin at Austin	172
Colorado River (Town Lake):	
Barton Creek at State Highway 71 near Oak Hill	174
Barton Creek at Loop 360, Austin	177
Barton Springs at Austin	178
Barton Creek below Barton Springs at Austin	179
Shoal Creek at Northwest Park, Austin	182
Shoal Creek at 12th Street, Austin	183

	Page
WESTERN GULF OF MEXICO BASINSContinued	A STATE OF
COLORADO RIVER BASINContinued	
Colorado River (Town Lake)Continued	Air a second
Waller Creek at 38th Street, Austin	185
Waller Creek at 23d Street, Austin	
Town Lake at Austin	
Colorado River at Austin	
Boggy Creek at U.S. Highway 183, Austin	
Walnut Creek at Webberville Road, Austin	
Walnut Creek at Southern Pacific Railroad bridge, Austin	
Colorado River below Austin	218
Onion Creek near Driftwood	221
Onion Creek at Buda	224
Bear Creek below Farm Road 1826 near Driftwood	227
Slaughter Creek at Farm Road 1826 near Austin	229
Williamson Creek at Oak Hill	230
Williamson Creek at Jimmy Clay Road, Austin	
Onion Creek at U.S. Highway 183 near Austin	
Wilbarger Creek near Pflugerville	
Colorado River at Bastrop	
Cummins Creek:	
Redgate Creek near Columbus	244
Colorado River at Columbus	
Colorado River at Wharton	
Colorado River near Bay City	
TRES PALACIOS RIVER BASIN	
Tres Palacios River near Midfield	256
EAST CARANCAHUA CREEK BASIN	
East Carancahua Creek near Blessing	
LAVACA RIVER RASIN	
Lavaca River at Hallettsville	261
Lavaca River near Edna	
Navidad River near Hallettsville	and a second second second second
Sandy Creek near Louise	A CHARLEST CONT.
Navidad River near Ganado	The second secon
Mustang Creek:	
West Mustang Creek near Ganado	281
GARCITAS CREEK BASIN Garcitas Creek near Inez	285
PLACEDO CREEK BASIN Placedo Creek near Placedo	288
CHOCOLATE BAYOU BASIN	200
Chocolate Bayou near Port Lavaca	291
GUADALUPE RIVER BASIN	291
North Fork Guadalupe River near Hunt	294
Notal Fork Guadalupe niver flear nufft	294

	Page
WESTERN GULF OF MEXICO BASINSContinued	
GUADALUPE RIVER BASINContinued	
Guadalupe River at Hunt	
Johnson Creek near Ingram	
Guadalupe River at Comfort	
Guadalupe River near Spring Branch	
Rebecca Creek near Spring Branch	
Canyon Lake near New Braunfels	300
Guadalupe River at Sattler	302
Guadalupe River above Comal River at New Braunfels	303
Comal River at New Braunfels	304
Guadalupe River below New Braunfels	
San Marcos River spring flow at San Marcos	
Blanco River at Wimberley	
Blanco River near Kyle	312
San Marcos River at Luling	
Plum Creek at Lockhart	
Plum Creek near Luling	
Peach Creek below Dilworth	320
Sandies Creek near Westhoff	
Guadalupe River at Cuero	
Guadalupe River at Victoria	
Coleto Creek near Schroeder	334
San Antonio River:	
Olmos Creek:	
Olmos Creek tributary at Farm Road 1535, Shavano Par	k 335
Olmos Creek at Dresden Drive, San Antonio	
Olmos Reservoir at San Antonio	340
San Antonio River at San Antonio	341
San Pedro Creek:	
Alazan Creek at St. Cloud Street, San Antonio	344
Sixmile Creek:	
Harlendale Creek at West Harding Street, San Antonio	
Salado Creek:	
Mud Creek:	
West Elm Creek at San Antonio	348
East Elm Creek at San Antonio	
Salado Creek tributary at Bitters Road, San Antonio .	
Salado Creek (upper station) at San Antonio	
Salado Creek (lower station) at San Antonio	
Medina River near Pipe Creek	
Red Bluff Creek near Pipe Creek	
Medina Lake near San Antonio	

		Page
۷	VESTERN GULF OF MEXICO BASINSContinued	2
	GUADALUPE RIVER BASINContinued	
	San Antonio RiverContinued	
	Medina River:	
	Diversion Lake:	
	Medina Canal near Riomedina	367
	Medina River near Somerset	
	Leon Creek:	
	Leon Creek tributary at Farm Road 1604, San Antonio	369
	Culebra Creek:	
	Helotes Creek at Helotes	371
	Los Reyes Creek:	
	Ranch Creek near Helotes	374
	Leon Creek tributary at Kelly Air Force Base	376
	Medina River at San Antonio	37.9
	San Antonio River near Elmendorf	383
	San Antonio River near Falls City	388
	Cibolo Creek near Boerne	390
	Cibolo Creek at Selma	391
	Cibolo Creek near Falls City	392
	Ecleto Creek near Runge	396
	San Antonio River at Goliad	397
	Guadalupe-Blanco River Authority Calhoun Canal Flume No. 1 near	
	Long Mott	405
	Guadalupe-Blanco River Authority Calhoun Canal Flume No. 2 near	
	Long Mott	406
	Guadalupe River near Tivoli	407
	COPANO CREEK BASIN	
	Copano Creek near Refugio	412
	MISSION RIVER BASIN	
	Mission River at Refugio	415
	ARANSAS RIVER BASIN	
	Aransas River near Skidmore	422
	Chiltipin Creek at Sinton	423
	NUECES RIVER BASIN	
	Nueces River at Laguna	426
	West Nueces River near Brackettville	429
	Nueces River below Uvalde	430
	Nueces River near Asherton	431
	Nueces River at Cotulla	432
	San Casimiro Creek near Freer	433
	Nueces River near Tilden	434
	Frio River at Concan	435
	Dry Frio River near Reagan Wells	438

	Page
WESTERN GULF OF MEXICO BASINSContinued	
NUECES RIVER BASINContinued	
Nueces River:	
Frio River below Dry Frio River near Uvalde	441
Sabinal River near Sabinal	442
Sabinal River at Sabinal	445
Hondo Creek near Tarpley	446
Hondo Creek at King Waterhole near Hondo	449
Seco Creek at Miller Ranch near Utopia	450
Seco Creek at Rowe Ranch near D'Hanis	453
Frio River near Derby	454
Frio River at Tilden	455
San Miguel Creek near Tilden	457
Frio River at Calliham	460
Atascosa River at Whitsett	464
Nueces River near Three Rivers	466
Lagarto Creek near George West	474
Lake Corpus Christi near Mathis.	475
Nueces River near Mathis	476
OSO CREEK BASIN	
Oso Creek at Corpus Christi	479
SAN FERNANDO CREEK BASIN	
San Diego Creek (head of San Fernando Creek) at Alice	482
Chiltipin Creek:	
Lake Alice at Alice	483
San Fernando Creek at Alice	484
LOS OLMOS CREEK BASIN	
Los Olmos Creek near Falfurrias	485
RIO GRANDE BASIN	
Rio Grande at El Paso	488
Rio Grande below Old Fort Quitman	490
Rio Grande above Rio Conchos near Presidio	495
Sanderson Canyon at Sanderson	496
Rio Grande at Foster Ranch near Langtry	497
Pecos River at Red Bluff, NM	505
Delaware River near Red Bluff, NM	511
Red Bluff Reservoir near Orla	512
Pecos River near Orla	513
Reeves County Water Improvement District No. 2 canal near Mentone	517
Ward County Water Improvement District No. 3 canal near Barstow	518
Ward County Water Irrigation District No. 1 canal near Barstow	519
Toyah Creek:	
Limpia Creek above Fort Davis	520
Barrilla Draw near Saragosa	522

	Page
WESTERN GULF OF MEXICO BASINSContinued	
RIO GRANDE BASINContinued	
Rio Grande:	
Pecos River:	
Pecos County Water Improvement District No. 2 (upper diversion) canal	
near Grandfalls	523
Pecos County Water Improvement District No. 2 canal near Imperial	524
Pecos County Water Improvement District No. 3 canal near Imperial	
Ward County Water Improvement District No. 2 canal near Grandfalls	
Pecos River near Girvin	
Independence Creek near Sheffield	
Pecos River near Langtry	
Devils River at Pafford Crossing near Comstock	
Rio Grande below Amistad Dam near Del Rio	
Rio Grande at Laredo	543
Rio Grande at Pipeline Crossing below Laredo	548
International Falcon Reservoir near Falcon Heights	549
Rio Grande below Falcon Dam	
Rio Grande at Fort Ringgold, Rio Grande City	
Rio Grande near Los Ebanos	565
Rio Grande at Anzalduas Dam	566
North Floodway near Sebastian	
Arroyo Colorado floodway at El Fuste siphon, south of Mercedes	
Rio Grande at U.S. Highway 77 at Brownsville	
Rio Grande at Brownsville	

WATER RESOURCES DATA FOR TEXAS, 1978

VOLUME 3 COLORADO RIVER BASIN, LAVACA RIVER BASIN, GUADALUPE RIVER BASIN, NUECES RIVER BASIN, RIO GRANDE BASIN, AND INTERVENING COASTAL BASINS

INTRODUCTION

Surface-water data for Texas for the 1978 water year are presented in three volumes, appropriately identified by river basins. Data in each volume consist of records of stage, discharge, and water quality of streams and canals; and stage, contents, and water quality of lakes and reservoirs. Records for a few pertinent stations in bordering states are also included. These data represent that part of the National Water Data System operated by the U.S. Geological Survey in cooperation with State and Federal agencies in Texas.

Records of discharge (or stage) of streams and contents (or stage) of lakes and reservoirs were first published in a series of Geological Survey Water-Supply Papers entitled, 'Surface Water Supply of the United States.' Through water year 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperature, and suspended sediment were published from 1941 to 1971 in an annual series of water-supply papers entitled, 'Quality of Surface Waters of the United States.' Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from Branch of Distribution, U.S. Geological Survey, 1200 South Eads Street, Arlington, Virginia 22202.

For water years 1961 through 1974, streamflow data were released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1974 were similarly released either in separate reports or in conjunction with streamflow records. Beginning with the 1975 water year, water data for streamflow and water quality are published as an official Survey report on a State-boundary basis. These official Survey reports carry an identification number consisting of the two letter State abbreviation, the last two digits of the water year, and the volume number. For example, this report is identified as 'U.S. Geological Survey Water-Data Report TX-78-3.' Water-data reports are for sale by the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

COOPERATION

Organizations that assisted in the collection of data in this report through cooperative agreements with the Geological Survey in 1978 are:

Texas Department of Water Resources, J. M. Rose, Executive Director; A. L. Black, Chairman; R. B. Gilmore, Vice-Chairman; M. T. Potts, G. E. Roney, J. H. Garrett, and G. W. McCleskey, Members.

Pecos River Commission, Horace Babcock, Federal Representative and Chairman; R. B. McGowen, Jr., Commissioner for Texas, and J. L. Cathey, Commissioner for New Mexico.

Sabine River Compact Administration, W. H. Robinson, Federal Representative and Chairman; R. J. Palmer and D. V. Cresap for Louisiana; and J. M. Syler and G. M. Smith for Texas.

City of Austin, C. B. Graves, Jr., Director, Engineering Department.

City of Dallas, Monroe McCorkle, Director, Public Works Department.

City of Fort Worth, J. L. Robinson, Director of Public Works.

City of Garland, F. G. Greene, Director of Public Works.

City of Houston, J. A. Schindewolf, Director, Department of Public Works.

City of Mesquite, G. E. Dowling, City Engineer.

Assistance in the form of funds of services was given by the following Federal agencies:

Corps of Engineers, U.S. Army.

International Boundary and Water Commission, Department of State.

Soil Conservation Service, Department of Agriculture.

Assistance in the form of funds or services was rendered by the following organizations through the Texas Department of Water Resources:

The cities of Abilene, Alice, Arlington, Austin, Brady, Cleburne, Clyde, Corpus Christi, Dallas, El Paso, Gainesville, Galveston, Graham, Houston, Nacogdoches, San Angelo, and Wichita Falls; Athens Municipal Water Authority; Bexar, Medina, and Atascosa Counties Water Control and Improvement District No. 1; Bistone Municipal Water Supply District; Brazos River Authority; Chocolate Bayou Land and Water Company; Colorado River Municipal Water District; Dallas County; Dallas Power and Light Company; Dow Chemical Company; Edwards Underground Water District: Franklin County Water District: Freese and Nichols, Inc.; Greenbelt Municipal and Industrial Water Authority; Guadalupe-Blanco River Authority; Harris County Flood Control District; Houston Lighting and Power Company; Lone Star Steel Company; Lower Colorado River Authority; Lower Neches Valley Authority; MacKenzie Municipal Water Authority: North Central Texas Municipal Water Authority; Northeast Texas Municipal Water District: Palo Pinto County Municipal Water District: Red Bluff Water Power Control District; Reeves County Water Improvement District No. 1; Richmond Rice Association; Sabine River Authority of Texas; San Antonio City Public Service Board; San Antonio City Water Board; San Antonio River Authority; San Jacinto River Authority; Tarrant County Water Control and Improvement District No. 1; Texas Electric Service Company; Texas Utilities Services, Inc.; Titus County Fresh Water Supply District No. 1; Tom Green County Water Control and Improvement District No. 1; Trinity River Authority; Upper Guadalupe River Authority; Upper Neches River Municipal Water Authority; Upper Trinity Basin Water Quality Compact; West Central Texas Municipal Water District; Wichita County Water Improvement District No. 2; and Wood County.

HYDROLOGIC CONDITIONS

Large variations in rainfall and runoff characterize the usual hydrologic conditions in Texas. In the east, streams are usually deep with wide alluvial flood plains, and streamflow is generally perennial. Normal annual rainfall exceeds 50 inches in the extreme east and annual runoff may average as much as 15 inches. In the west, streams are generally of the arroyo type and streamflow is highly ephemeral. Normal annual rainfall is less than 8 inches in the extreme west and annual runoff averages less than 0.1 inch in many areas.

During the 1978 water year, two of the four index stations, Neches River near Rockland in east Texas and North Bosque River near Clifton in central Texas, had deficient runoff for the year. The index station in the west, North Concho River near Carlsbad, was in the median range, and the index station Guadalupe River near Spring Branch, in south-central Texas, was in the excessive range. Figure 1 on page 28 shows a comparison of monthly and annual mean discharges for the index stations. Conservation storage in a selected group of 63 reservoirs, with a combined conservation capacity of 30,252,000 acre-feet, continued to decrease from 81 percent of capacity in September 1977, to 78 percent of capacity at the end of September 1978.

The 1978 water year began with deficient streamflow across the Panhandle and North Texas and near normal runoff in the remainder of the State. By the end of July, drought conditions had spread across the eastern two-thirds of the State with deficient streamflow noted in all areas except in the Rio Grande, Pecos, and Devils River Basins in far west Texas.

On July 31, 1978, tropical storm Amelia struck the Texas coast in the vicinity of Corpus Christi. The storm moved inland and produced torrential rains of 20 to 30 inches on August 1 and 2. The heaviest rainfall occurred north of the Edwards Escarpment in the Medina, Sabinal, and Guadalupe River Basins. Remnants of the storm continued to move northward into the Brazos River Basin where the storm collided with a stationary cold front. On August 3 and 4, rainfall amounts from 20 to 30 inches were recorded north of Abilene in Shackelford and Throckmorton Counties.

Along the path of the storm, flooding to some degree occurred in an area of approximately 25,000 square miles. Major flooding, some of it record breaking, occurred at the gaging stations and miscellaneous sites listed on the following page.

The large volume of runoff associated with the August floods in the upper Brazos River Basin had considerable effect on the water quality in the streams and reservoirs. The following table lists four sampling sites in the Brazos River basin in downstream order. The table shows the variations, before and after the flood, in the average specific conductance, along the centerline section of the three reservoirs and the range of specific conductance on the Brazos River below Whitney Lake.

	Before flood		After flood	
	Date (1978)	Specific conductance 1/	Date (1978)	Specific conductance 1/
Hubbard Creek Reservoir	June 9	1450	Aug. 29	700
Possum Kingdom Reservoir	June 13	4000	Aug. 30	1600
Whitney Lake	June 23	1600	Sept. 5	3000
Brazos River below Whitney Lake	July 1 - Aug. 1	1300 – 1600	Aug. 2-31	1600 - 3700

^{1/} In micromhos per centimeter at 25 C.

No.	Date	Site	Drainage area	Disch	arge	Recurrence
			(mi ²)	(cfs)	(cfsm)	Interval
08085500	Aug.4	Clear Fork Brazos River at Fort Griffin	3,988	149,000	37.4	> 100
08086150	Aug.4	North Fork Hubbard Creek near Albany	39.3	103,000	2,620	> 100
08086212	Aug.4	Hubbard Creek below Albany	613	330,000	538	> 100
08166000		Johnson Creek near Ingram	114	73,900	648	60
08167000		Guadalupe River at Comfort	838	240,000	286	> 100
08167500		Guadalupe River near Spring Branch	1,315	158,000	120	> 100
08179000		Medina River near Pipe Creek	474	281,000	593	> 100
		Miscellar	neous sites			
<u>a</u> /08152800		Spring Creek near Fredericksburg	14.1	42,500	3,010	> 100
		Turtle Creek at SH 16 near Kerrville	26.5	32,700	1,230	•••
		North Prong Medina River near Medina	67.5	123,000	1,820	

<u>a</u>/ Formerly gaged site.

Seventeen counties in central Texas sustained widespread damages from tropical storm Amelia. Thirty-three persons were drowned and 154 were injured. More than 1,400 homes were destroyed or damaged. Total damages from this storm were estimated to be more than 110 million dollars.

At the end of the 1978 water year, streamflow was excessive in the Guadalupe, San Antonio, and Pecos River Basins, and deficient in the remainder of the State.

DEFINITION OF TERMS

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also the table for converting English units to International System (SI) on the inside of the back cover.

During water year 1978, revisions were made in the terminology used to define 143 of the water-quality parameter codes that have been used by the Geological Survey in its publication of water-quality data in its WATSTORE data system. These revisions were made to achieve consistency in terminology. They do not represent a change in the way the codes have been used in the part or in the association of specific code numbers with identified analytical procedures.

Use of the new terminology began with data for the 1978 water year, and therefore, it first appears in this publication. Definitions on which the terminology is based are included in the 'Definitions' section of this report.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet, about 326,000 gallons, or 1,233 cubic meters.

Algae are mostly aquatic, single-celled, colonial, or multicelled plants, containing chlorophyll and lacking roots, stems, and leaves.

<u>Bacteria</u> are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as the organisms which

produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35° C \pm 1.0° C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

<u>Fecal coliform bacteria</u> are bacteria that are present in the intestines or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours when incubated at 44.5°C ± 0.2°C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal streptococcal bacteria are bacteria found in intestines of warm blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at 35°C ± 1.0°C on M-enterrococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Bed material is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

<u>Biochemical oxygen demand</u> (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500°C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in g/m³ (grams per cubic meter), and periphyton and benthic organisms in g/m² (grams per square meter).

Dry mass refers to the mass of residue present after drying in an oven at 60°C for zooplankton and 105°C for periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and ash mass, and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

Biomass pigment ratio is the ratio of organic mass in mg/m² (milligrams per square meter) to the mass of chlorophyll a, in mg/m².

Bottom material: See Bed material.

Cells/volume refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually mL (milliliters) or L (liters).

<u>Cfs-day</u> is the volume of water represented by flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-ft, about 646,000 gallons or 2,447 cubic meters.

<u>Chemical oxygen demand</u> (COD) is a measure of the chemically oxidizable material in the water, and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with natural water color or with carbonaceous organic pollution from sewage or industrial wastes.

<u>Chlorophyll</u> refers to the green pigments of plants. Chlorophyll <u>a</u> and <u>b</u> are the two most common pigments in plants.

Color unit is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Contents is the volume of water in a reservoir or lake, and unless otherwise indicated is computed on the basis of a level pool. The computation does not include bank storage.

Control designates a feature downstream from a gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

Cubic foot per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

Cubic foot per second (FT³/S, ft³/s) is the rate of discharge representing a volume of 1 cubic foot pasing a given point during 1 second. This rate is equivalent to approximately 7.48 gallons per second, 448.8 gallons per minute, or 0.02832 cubic meters per second.

Discharge is the volume of water (or more broadly, volume of fluid plus suspended sediment), that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

Instantaneous discharge is the discharge at a particular instant of time.

Dissolved refers to that material in a representative water sample which passes through a 0.45 $\,\mu$ m membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of 'dissolved' constituents are made on a subsamples of the filtrate.

<u>Diversity index</u> is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\overline{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Diversity index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

<u>Drainage</u> area of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified location. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

<u>Gage height</u> (G.HT.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term 'stage,' although gage height is more appropriate when used with a reading on a gage.

<u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

<u>Hardness</u> of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate (CaCO₃).

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

Methylene blue active substance (MBAS) is a measure of apparent detergents. This determination depends on the formation of a blue color when methylene blue dye reacts with synthetic detergent compounds.

Micrograms per gram ($\mu g/g$) is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (gram) of sediment.

Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in solition as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represent the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L, and is based on the mass of sediment per liter of water-sediment mixture.

ND is used in some of the tables of pesticide data as an abbreviation for 'Not Detected.' Analyses in which this term is reported were made by the U.S. Environmental Protection Agency laboratory in Bay Saint Louis, Mississippi.

Organism is any living entity, such as an insect, phytoplankter, or zooplankter.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meters (m²), acres, or hectares. Periphyton benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliters (mL) or liters (L). Numbers of planktonic organisms can be expressed in these terms.

<u>Total organism count</u> is the total number of organisms collected and enumerated in any particular sample.

<u>Partial-record station</u> is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

Particle size is the diameter, in millimeters (mm), of suspended sediment or bed material determined either by sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

<u>Particle-size classification</u> used in this report agrees with recommendations made by the American Geophysical Unit Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size	e (r	nm)	Method of analysis			
Clay	0.0002	4 -	0.004	Sedimentation			
Silt	.004	-	.062	Do.			
Sand	.062	-	2.0	Sedimentation or sieve			
Gravel	2.0	-	64.0	Sieve			

The particle-size distribution given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

<u>Percent composition</u> is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass, or volume.

<u>Periphyton</u> is the assemblage of microorganisms attached to and growing upon solid surfaces. While primarily consisting of algae, the assemblage may include bacteria, fungi, protozoa, rotifers, and other small organisms.

<u>Pesticides</u> are chemical compounds used to control undesirable plants and animals. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. Insecticides and herbicides, which control insects and plants respectively, are the two categories reported.

<u>Picocurie</u> (PC, pCi) is one trillionth (1 x 10^{12}) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7×10^{10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

Plankton is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

<u>Phytoplankton</u> is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae.

Blue-green algae are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

<u>Diatoms</u> are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells/mL of sample.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algal mats of floating 'moss' in lakes. Their concentrations are expressed as number of cells/mL of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column, and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceous and rotifers.

<u>Polychlorinated biphenyls</u> (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Recoverable from bottom material refers to the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Runoff in inches (IN, in) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

<u>Sediment</u> is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usuage, and quantity and intensity of precipitation.

Suspended sediment is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

Suspended-sediment discharge (tons/day) is the rate at which dry weight of sediment passes a section of a stream or is the quantity of sediment, as measured by dry weight or volume, that passes a section in a given time. It is computed by multiplying discharge (ft³/s) times mg/L times 0.0027.

<u>Suspended-sediment load</u> is quantity of suspended sediment passing a section in a specified period.

Total sediment discharge (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time.

Mean concentration is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

Sodium adsorption ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions with soil and is an index of sodium or alkali hazard to the soil. This ratio should be known especially for water used for irrigation.

Solute is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in micromhos per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content in the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height (stage) and volume of water per unit of time, flowing in a channel.

<u>Streamflow</u> is the discharge that occurs in a natural channel. Although the term 'discharge' can be applied to the flow of a canal, the word 'streamflow' uniquely describes the discharge in a surface stream course. The term 'streamflow' is more general than 'runoff' as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lived.

<u>Natural substrates</u> refers to any naturally occurring emersed or submersed solid surface, such as rock or tree, upon which an organism lived.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multi-plate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection.

Suspended, recoverable refers to the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 µm membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the 'total' amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of 'suspended, recoverable' constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent.

Suspended, total refers to the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 µm membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as 'suspended, total.' Determinations of 'suspended, total' constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent.

<u>Time-weighted average</u> is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total numbers of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136.

Tons per day is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour day.

Total refers to the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as 'total.' (Note that the word 'total' does double duty here, indicating both that the sample consists of water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample.)

Total in bottom material refers to the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as 'total in bottom material.'

<u>Total load</u> (tons) is the total quantity of any individual constituent, as measured by dry mass or volume, that is dissolved in a specific amount of water (discharge) during a given time. It is computed by multiplying the mean discharge (ft³/s), times the mg/L of the constituent, times the factor 0.0027, times the number of days.

Total, recoverable refers to the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the 'total' amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, Hexagenia limbata is the following:

Kingdon	n										Animal
											Arthropoda
Class											Insecta
Order .									E	p	hemeroptera
Family										-	Ephemeridae
Genus .											Hexageria
Species						-	H	e	K	aç	enia limbata

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

<u>WDR</u> is used as an abbreviation for 'Water-Data Report' in the REVISED RECORDS paragraph to refer to State annual basic-data reports.

<u>WRD</u> is used as an abbreviation for 'Water Resources Dataa' in the REVISED RECORDS paragraph to refer to State annual basic-data reports published before 1975.

<u>WSP</u> is used as an abbreviation for 'Water-Supply Paper' in references to previously published reports.

DOWNSTREAM ORDER AND STATION NUMBER

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two main-stream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is situated with respect to the stream to which it is immediately tributary is indicated by an indention in a list of stations in the front of the report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

As an added means of identification, each hydrologic station and partial-record station has been assigned a station number. These are in the same downstream order used in this report. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The station numbering system is not used at miscellaneous sites where only random water-quality samples or discharge measurements are taken. The complete number for each station consists of eight digits, such as 08123800. The first two digits, 08 or 07, identify the river basin as previously published in the series of water-supply papers on the Surface Water Supply of the United States. The digits 07 indicate the Lower Mississippi River basin, and the digits 08 indicate the Western Gulf of Mexico Basins. The remaining six digits of the station number are sequential in downstream order.

All records for a drainage basin that extends across State boundaries can be arranged in downstream order by assembling the pages from the appropriate State reports by station number.

SPECIAL NETWORKS AND PROGRAMS

Hydrologic bench-mark station is one that provides hydrologic data for a basin in which the hydrologic regimen will likely be governed solely by natural conditions. Data collected at a bench-mark station may be used to separate effects of natural from manmade changes in other basins that have been developed and in which the physiography, climate, and geology are similar to those in the undeveloped bench-mark basin.

National stream-quality accounting network (NASQAN) is a data collection network designed by the Geological Survey to meet many of the information demands of agencies or groups involved in national or regional water-quality planning and management. Both accounting and broad-scale monitoring objectives have been incorporated into the network design. Areal configuration of the network is based on river-basin accounting units (identified by 8-digit hydrologic-unit numbers) designated by the Office of Water Data Coordination in consultation with the Water Resources Council. Primary objectives of the network are (1) to depict areal variability of streamflow and water-quality conditions nationwide on a year-by-year basis and (2) to detect and assess long-term changes in streamflow and stream quality.

<u>Pesticide program</u> is a network of regularly sampled water-quality stations where samples are collected to determine the concentration and distribution of pesticides in streams where potential contamination could result from the application of the commonly used insecticides and herbicides. Operation of the network is a Federal interagency activity.

Radiochemical program is a network of regularly sampled gaging stations where additional samples are collected monthly or twice a year (at high and low flow) to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

EXPLANATION OF STAGE AND WATER-DISCHARGE RECORDS

Collection and computation of data

The basic data collected at gaging stations consist of (1) records of stage; (2) measurements of discharge of streams and canals; and (3) stage, surface area, and contents of lakes and reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records, and other information are used to supplement basic data in determining the daily flow or volume of water in storage. Records of stage are obtained from direct readings on a nonrecording gage or from a water-stage recorder that gives either a continuous graph of the fluctuations or a tape punched at 5-, 15-, 30-, or 60-minute intervals. Measurements of discharge are made with a current meter, using the general methods adopted by the Geological Survey on the basis of experience in stream gaging since 1888. These methods are described in standard textbooks, in Water-Supply Paper 888, and in U.S. Geological Survey Techniques of Water Resources Investigations, book 3, chapter A6. Surface areas of lakes or reservoirs are determined from instrument surveys using standard methods. The configuration of the reservoir bottom is often determined by sounding at many points.

For stream-gaging stations, rating tables giving the discharge for any stage are prepared from stage-discharge relation curves. If extensions to the rating curves are necessary to express discharge greater than measured, they are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements, computation of flow over dams or weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables; monthly and yearly mean discharges are computed from the daily values. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is computed by the shifting-control method, in which correction factors (based on individual discharge measurements and notes by the hydrologists or observers) are used in applying the gage heights to the rating tables.

At some stream-gaging stations, the stage-discharge relation is affected by backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations, the stage-discharge relation is affected by changing stage; at these stations, the rate of change in stage is used as a factor in computing discharge.

For a lake- or reservoir-gaging station, a capacity table giving the contents for any stage is prepared from a stage-area relation curve defined by surveys. The application of the stage to the capacity table gives the contents, from which the daily, monthly, or yearly changes in contents are computed.

If the stage-capacity curve is subject to changes because of deposition of sediment in the reservoir, periodic resurveys of the reservoir are necessary to define new stage-capacity curves. During the period between reservoir surveys, the computed contents may be increasingly in error due to the gradual accumulation of sediment.

At some gaging stations, there are periods when no gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated on the basis of recorded range in stage, adjoining good record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Daily contents may be estimated on the basis of operator's log, adjoining good record, inflow-outflow studies, and other information.

The data in this report generally comprise a description of the station and tabulations of daily and monthly values. For gaging stations on streams or canals, a table showing the daily, monthly, and yearly discharge is given. For a gaging station on a reservoir, a table showing the daily contents is given. Tables of daily or maximum and minimum daily gage heights are included for some gaging stations. Records are published for the water year, which begins on October 1 and ends on September 30. A calendar for the current water year is shown on the inside of the front cover to facilitate finding the day of the week for any date.

The description of the gaging stations, except those partial-record stations published in tabular form in the back of the report, gives the location, drainage area, period of record, type and history of gages, average discharge, extremes of discharge or contents, general remarks, and notations of revisions of previously published records. The location of the gaging stations and the drainage areas are obtained from the most accurate maps

available. River mileage, given under 'LOCATION' for some stations, is that determined and used by the Corps of Engineers or other agencies (U.S. Water Resources Council, 1968). Periods for which there are published records for the present station or for stations generally equivalent to the present one are given under 'PERIOD OF RECORD.'

Previously published streamflow records of some stations have been found to be in error on the basis of data or information later obtained. Revisions of such records are usually published along with the current records in one of the annual or compilation reports. In order to make it easier to find such revised records, a paragraph headed 'REVISED RECORDS' has been added to the description of all stations for which revised records have been published. Listed therein are all the reports in which revisions have been published, each followed by the water years for which figures are revised in that report. In listing the water years only one number is given; for instance, 1965 stands for the water year October 1, 1964, to September 30, 1965. If no daily, monthly, or annual figures of discharge are affected by the revision, the fact is brought out by notations after the year dates as follows: '(M)' means that only the instantaneous maximum discharge was reivsed; '(m)' that only the instantaneous minimum was revised; '(P)' that only peak discharges were revised. If the drainage area has been revised, the report in which the revised figure was first published is given. It should be noted that for all stations for which cubic feet per second per square mile and runoff in inches are published, a revision of the drainage area necessitates corresponding revision of all figures based on the drainage area. Revised figures of cubic feet per second per square mile and runoff in inches resulting from a revision of the drainage area only are usually not published in the annual series of reports.

The type of gage currently in use, the datum of the present gage referred to National Geodetic Vertical Datum; and a condensed history Datum of 1929 (NGVD) is a geodetic datum derived from a general adjustment of the first order level nets of both the Unites and Canada. It was formerly called 'Sea Level Datum of 1929' or 'mean sea level' in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

Information pertaining to the accuracy of the discharge records and to conditions which affect the natural flow of the gaging station is given under 'REMARKS.' For reservoir stations information on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir is given under 'REMARKS.'

The average discharge for the number of years indicated is given under 'AVERAGE DISCHARGE'; it is not given for stations having fewer than 5 complete years of record or for stations where changes in water development during the period of record cause the figure to have little significance. Under 'EXTREMES' are given first, the extremes for the

period of record, second, information available outside the period of record, and last, those for the current year. Unless otherwise qualified, the maximum discharge (or contents) is the instantaneous maximum corresponding to the crest stage obtained by use of a water-stage recorder (graphic or digital), a crest-stage gage, or a nonrecording gage read at the time of the crest. If the maximum gage height did not occur on the same day as the maximum discharge (or contents), it is given separately. Similarly, the minimum is the instantaneous minimum unless otherwise qualified. For some stations peak discharges are listed with EXTREMES FOR THE CURRENT YEAR; if they are, all independent peaks, including the maximum for the year, above the selected base with the time of occurrence and corresponding gage heights are published in tabular format. The base discharge, which is given in the table heading, is selected so that an average of about three peaks a year will be presented. Peak discharges are not published for any canals, ditches, drains, or for any stream for which the peaks are subject to substantial control by man. Time of day is expressed in 24-hour local standard time; for example, 12:30 a.m. is 0030, 1:30 p.m. is 1330. The minimums for these stations are published in separate paragraph following the table of peaks.

The daily table for stream-gaging stations gives the mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed 'TOTAL' gives the sum of the daily figures. The line headed 'MEAN' gives the average flow in cubic feet per second during the month. The lines headed 'MAX' and 'MIN' give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also may be expressed in cubic feet per second per square mile (line headed 'CFSM'), or in inches (line headed 'IN'), or in acre-feet (line headed 'AC-FT'). Figures for cubic feet per second per square mile and runoff in inches are generally omitted if there is extensive regulation or diversion, if the drainage area includes large noncontributing areas, or if the average annual rainfall over the drainage basin is usually less than 20 inches. In the yearly summary below the monthly summary, the figures shown are the appropriate daily discharges for the calendar and water years.

Footnotes to the table of daily discharge are introduced by the word 'NOTE.' Footnotes are used to indicate periods for which the discharge is computed or estimated by special methods because of no gage-height record, backwater from various sources, or other unusual conditions. Periods of no gage-height record are indicated if the period is continuous for a month or more or includes the maximum discharge for the year. Periods of backwater from an unusual sources, of indefinite stage-relation, or of any other unusual condition at the gage site are indicated only if they are a month of more in length and the accuracy of the records is affected. Days on which the stage-discharge relation is affected by ice are not indicated. The methods used in computing discharge for various unusual conditions have been explained in preceding paragraphs.

Data collected at partial-record stations follow the information for continuous record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual, maximum stage and discharge at crest-stage stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. Occasionally, a series of discharge measurements are made and samples collected within a short time period to investigate the seepage and (or) pollutant gains or losses along a reach of a stream or to determine the low-flow characteristics of an area. Such measurements and analyses are also given in special tables following the tables of partial-record stations.

Accuracy of field data and computed results

The accuracy of discharge data depends primarily on (1) the stability of the stage-discharge relation, or if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of observations of stage, measurements of discharge, and interpretation of records.

The station description under 'REMARKS' states the degree of accuracy of the records. 'Excellent' means that about 95 percent of the daily discharges are within 5 percent; 'good', within 10 percent; and 'fair' within 15 percent. 'Poor' means that daily discharges have less than 'fair' accuracy.

Figures of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 cfs; to tenths between 1.0 and 10 cfs; to whole numbers between 10 and 1,000 cfs; and to 3 significant figures above 1,000 cfs. The number of significant figures used is based solely on the magnitude of the figure. The same rounding rules apply to discharge figures listed for partial-record stations.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such station, figures of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other data available

Information of a more detailed nature than that published for most of the gaging stations, such as observations of water temperatures, discharge measurements, gage-height records, and rating tables, is on file in the Texas District Office in Austin. Most gaging-station records are available in computer-usable form, and many statistical analyses have been made.

Records of discharge collected by agencies other than the Geological Survey

The International Boundary and Water Commission, United States and Mexico, operates all streamflow stations on the Rio Grande and near the mouth of its principal tributaries at and below El Paso, Texas. Records collected at these stations are published in annual bulletins by the Commission and may be obtained from the International Boundary and Water Commission, United States Section, P. O. Box 20003, El Paso, Texas 79998.

EXPLANATION OF SURFACE-WATER QUALITY RECORDS

Collection and examination of data

Surface-water samples for analyses usually are collected at or near gaging stations. The quality-of-water records are given immediately following the discharge records at these stations.

The descriptive heading for water-quality records gives the period of record for all water-quality data; the period of daily record for parameters that are measured on a daily basis (specific conductance, pH, dissolved oxygen, water temperature, sediment discharge, etc.); extremes for the period of daily record; extremes for the current year; and general remarks.

Water analysis

Most methods for collecting and analyzing water samples are described in U.S. Geological Survey Techniques of Water Resources Investigations listed on a following page.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating loads.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between the reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is probably the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

At stream-gaging stations where daily samples are obtained, tables are included to show monthly and annual means of specified conductance; concentrations of dissolved solids, chloride, sulfate, hardness; and loads of dissolved solids, chloride, and sulfate. The means have been computed by using the daily records of specific conductance and developing regression relationships between each water-quality parameter and specific conductance.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the district office.

Water temperature

THE REPORT OF THE PROPERTY OF

Water temperatures are measured at most of the water-quality stations. Water temperatures are also taken at time of discharge measurements at gaging stations. At sites at which daily samples are taken, the water temperature is taken about the same time each day. Large streams have a small diurnal temperature change; but small, shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams and reservoirs may be affected by waste-heat discharges.

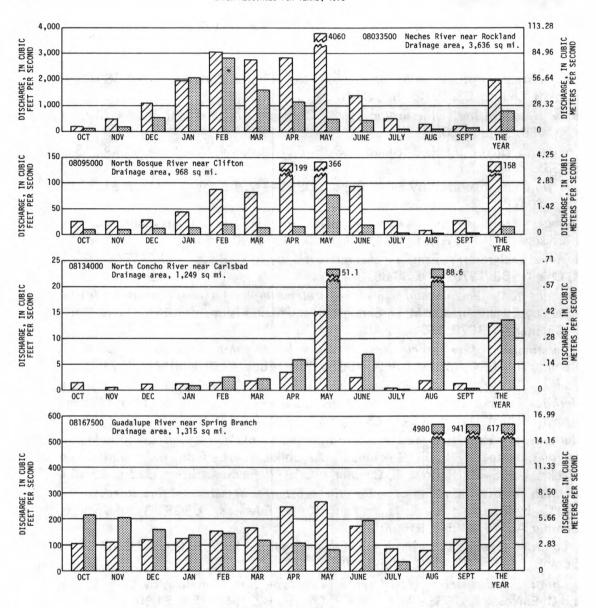
At stations where continuously recording thermographs are present, the records published consist of maximum and minimum temperatures for each day and the monthly averages.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross section.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected twice daily or, in some instances, hourly. The published values of sediment discharges for days of rapidly changing flow or concentrations were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days in which the published value of sediment discharge differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water-sediment discharge relations, sediment concentrations observed immediately before and after periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in estimating long-term sediment-discharge characteristics of the stream.


In addition to the records of the quantities of suspended sediment, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included.

PUBLICATIONS OF TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

Most methods used by the U.S. Geological Survey have been published in the series on techniques describing procedures for planning and executing specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) is on surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. The reports listed below are for sale by the U.S. Geological Survey, Branch of Distribution, 1200 South Eads Street, Arlington, VA 22202 (authorized agent of the Superintendent of Documents, Government Printing Office).

- NOTE: When ordering any of these publications, please give the title, book number, chapter number, and 'U.S. Geological Survey Techniques of Water-Resources Investigations'.
- 1-D1. Water temperature-influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1976. 65 p. \$1.60.
- 3-A1. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter A1. 1967. 30 p. \$1.00.
- 3-A2. Measurement of peak discharge by the slope-area methods, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 p. \$0.35.
- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 p. \$0.40.
- 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 4 p. \$1.00.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 p. \$0.35.
- 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS-TWRI Book 3, Chapter A6. 1968. 13 p. \$1.00.
- 3-A7. Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 p. \$1.40.
- 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 p. \$1.25.
- 3-A11. Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter A11. 1969. 22 p. \$1.20.
- 3-A12. Fluorometric procedures are dye tracing, by J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A12. 1968. 31 p. \$0.35. Not currently available.
- 3-C1. Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 p. \$0.65.
- 3-C2. Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS-TWRI Book 3, Chapter C2. 1970. 59 p. \$2.50.

- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 p. \$2.10.
- 4-A1. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter A1. 1968. 39 p. \$1.60.
- 4-A2. Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 p. \$0.35.
- 4-B1. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 p. \$0.65.
- 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 p. \$0.75.
- 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1975. 15 p. \$0.65.
- 5-A1. Methods for collection and analysis of water samples for dissolved minerals and gases, by Eugene Brown, M. W. Skougstad, and M. J. Fishman: USGS--TWRI Book 5, Chapter A1. 1970. 160 p. \$2.40.
- 5-A2. Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 p. \$0.80.
- 5-A3. Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown: USGS-TWRI Book 5, Chapter A3. 1972. 40 p. \$0.90.
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and Slack: USGS--TWRI Book 5, Chapter A4. 1977. Revised edition. 332 p. \$20.00.
- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 p. \$16.00.
- 5-C1. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58 p. \$2.10.
- 8-B2. Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 p. \$1.10.

Median of monthly and yearly mean discharge for 30-year period 1941-70.

Monthly and yearly mean discharge for 1978 water year.

FIGURE 1.--COMPARISON OF DISCHARGE AT FOUR LONG-TERM REPRESENTATIVE GAGING STATIONS DURING THE 1978 WATER YEAR WITH MEDIAN DISCHARGE FOR THE PERIOD 1941-70

29

08118000 LAKE J. B. THOMAS NEAR VINCENT, TX

LOCATION.--Lat 32°35'09", long 101°12'18", Borden County, Hydrologic Unit 12080002, at Big Spring pump station on south side of lake, 4.0 mi (6.4 km) upstream from dam on Colorado River, 7.3 mi (11.7 km) north of Vincent, 12.5 mi (20.1 km) west of Ira, and at mile 841.0 (1,353.2 km).

DRAINAGE AREA.--3,524 mi 2 (9,127 km 2), of which 2,590 mi 2 (6,710 km 2) probably is noncontributing. Drainage area includes 426 mi 2 (1,103 km 2) above Bull Creek diversion dam, of which 32 mi 2 (83 km 2) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1953 to current year.

GAGE.--Water-stage recorder and nonrecording gage read once daily. Datum of gage is National Geodetic Vertical Datum of 1929. Nov. 4, 1953, to Feb. 7, 1955, Colorado River Municipal Water District nonrecording gage located 4.0 mi (6.4 km) downstream at same datum.

REMARKS.--The lake is formed by a rolled earthfill dam, 14,500 ft (4,420 m) long. Storage began in July 1952 and the dam was completed in September 1952. There was no appreciable storage prior to July 1953. The capacity curve is based on surveys made in 1948 and 1950. There are two uncontrolled emergency spillways, both cut through natural ground and located as follows: The first is 500 ft (185 m) wide located at the left end of dam, and the second is 1,600 ft (488 m) wide located at the right end of dam. These spillways are designed to discharge 161,000 ft²/s (4,560 m³/s) at an elevation of 2,275.0 ft (693.42 m). An uncontrolled rectangular concrete drop inlet, 38.0 by 53.0 ft (11.6 by 16.2 m) at the crest, discharges into two 10.0 ft (3.0 m) concrete pripe. In addition, there is an outlet that can release water through a 24 in (610 mm) gate into a 30 in (762 mm) concrete pripe. The dam was built by the Colorado River Municipal Water District to impound water for municipal and industrial supply for the cities of Big Spring, Odessa, and Snyder. A diversion dam on Bull Creek diverts water through a 13,000-foot-long (3,960 m) gravity canal into lake J. B. Thomas. These diversions began in November 1953. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	(feet)	(acre-feet)
Top of dam	2,280.0	-
Crest of right spillway (south)	2,267.0	283,600
Crest of left spillway (north)	2,264.0	255,000
Crest of drop inlet (top of conservation pool)	2,258.0	203,600
Lowest gated outlet (invert)	2.200.0	1.300

COOPERATION.--Area and capacity curves, and record of diversions were furnished by the Colorado River Municipal Water District.

Daily elevation record was furnished by the Colorado River Municipal Water District and reviewed by the Geological Survey.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 218,600 acre-ft (270 hm³) Sept. 8, 1962, elevation, 2,259.85 ft (688.802 m); minimum since first appreciable storage, 4,960 acre-ft (6.12 hm³) May 28, 1971, elevation, 2,206.43 ft (672.520 m).

EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 22,510 acre-ft (27.8 hm³) Oct. 1, elevation, 2,218.10 ft (676.077 m); minimum, 7,630 acre-ft (9.41 hm³) Sept. 20, 21, elevation, 2,209.00 ft (673.303 m).

Capacity table (elevation, in feet, and total contents, in acre-feet)

2,209.0 2,214.0 2,219.0 7,630 14,780 24,420

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 INSTANTANEOUS OBSERVATIONS AT 0800

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	22510	20120	18510	16930	15710	14750	13040	10910	10680	11930	10190	8500
2	22430	20040	18460	16880	15680	14710	12970	10910	10700	11900	10120	8430
	22340	19980	18420	16820	15650	14680	12910	10880	10760	11860	10060	8370
4	22140	19880	18380	16780	15580	14620	12870	10880	10780	11830	9990	8310
5	22020	19830	18320	16750	15540	14550	12810	10820	10760	11830	9920	8330
6	21930	19770	18290	16710	15510	14550	12750	10760	10990	11770	9900	8310
7	21850	19730	18250	16660	15470	14490	12690	10730	12690	12140	9860	8260
8	21790	19690	18210	16600	15440	14450	12600	10700	13440	12080	9790	8220
9	21730	19610	18160	16550	15400	14390	12510	10680	13510	11930	9740	8200
10	21650	19540	18120	16510	15370	14360	12450	10620	13480	11830	9680	8160
11	21570	19460	18080	16490	15370	14290	12390	10590	13310	11760	9680	8120
12	21490	19420	18030	16440	15330	14240	12320	10560	13280	11620	9660	8070
13	21410	19380	17970	16420	15330	14190	12260	10530	13230	11560	9660	8020
14	21330	19340	17920	16410	15300	14130	12200	10480	13180	11450	9530	7960
15	21240	19310	17830	16370	15250	14050	12110	10420	13060	11390	9470	7930
16	21160	19270	17750	16320	15210	14000	12050	10390	13090	11310	9390	7850
17	21080	19230	17610	16300	15180	13930	11990	10280	13070	11250	9330	7800
18	21000	19150	17590	16290	15140	13870	11830	10250	13060	11130	9260	7740
19	20920	19070	17550	16270	15110	13800	11770	10220	12970	11020	9130	7680
20	20880	19000	17500	16230	15020	13770	11710	10300	12870	10910	9130	7630
21	20840	18960	17440	16220	14990	13740	11650	10300	12810	10820	9090	7630
22	20780	18920	17410	16200	14950	13670	11560	10280	12750	10760	9050	9050
23	20720	18920	17330	16200	14900	13610	11480	10220	12690	10700	9020	11190
24	20640	18880	17300	16110	14850	13540	11390	10190	12570	10820	8980	11420
25	20590	18840	17260	16080	14810	13480	11330	10140	12480	10760	8910	11510
26	20550	18800	17220	16030	14800	13440	11280	10080	12390	10700	8860	11900
27	20450	18730	17190	15970	14780	13380	11190	10060	12320	10620	8810	13180
28	20350	18690	17130	15920	14760	13310	11110	9980	12200	10500	8740	13670
29	20290	18650	17100	15870		13250	11050	9920	12080	10480	8680	13800
30	20250	18570	17000	15820		13150	10990	9920	12000	10330	8610	13790
31	20170		16990	15770		13090		10450		10280	8560	
MAX	22510	20120	18510	16930	15710	14750	13040	10910	13510	12140	10190	13800
MIN	20170	18570	16990	15770	14760	13090	10990	9920	10680	10280	8560	7630
(t)	2216.95	2216.12	2215.26	2214.57	2213.99	2212.96	2211.56	2211.18	2212.25	2211.06	2209.76	2213.39
(+)	-2380	-1600	-1580	-1220	-1010	-1670	-2100	-540	+1550	-1720	-1720	+5230
(++)	1210	933	1070	1100	1020	1100	1130	713	991	1380	812	627
1	1210	233	10/0	1100	1020	1100	1130	/13	991	1380	012	021

CAL YR 1977 WTR YR 1978 MAX 41850 MAX 22510 -25030 16990 tt 20100 MIN 7630 -8760 12090

t Elevation, in feet, at end of month.
 t Change in contents, in acre-feet.
 t Diversions, in acre-feet, for municipal, industrial, and mining uses.

08118000 LAKE J. B. THOMAS NEAR VINCENT, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1969 to current year.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
NOV 29	1415	646	8.2	11.5	140	0	36	11	84
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS. SUM OF CONSTI- TUENTS. DIS- SOLVED (MG/L)
NOV 29	3.1	6.2	210	0	71	51	1.0	6.3	370

08118500 BULL CREEK NEAR IRA, TX (Low-flow partial-record station)

LOCATION.--Lat 32°36'00", long 101°05'38", Scurry County, Hydrologic 12080002, 200 ft (61 m) upstream from bridge on Farm Road 2085, 1.9 mi (3.1 km) upstream from mouth, and 5.3 mi (8.5 km) downstream from Chimney Creek, 5.5 mi (8.8 km) west of Ira, and 8.3 mi (13.4 km) downstream from Bull Creek diversion dam.

DRAINAGE AREA.--25.6 mi² (66.3 km²) below Bull Creek diversion dam, 426 mi² (1,100 km²) above diversion dam.

PERIOD OF RECORD.--Periodic discharge measurements: February 1975 to current year. Operated as a daily discharge station October 1947 to December 1953, October 1958 to September 1962. Periodic water-quality data: December 1964 to June 1967, February 1975 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HAPD- NESS (MG/L AS CACO3)	HARD- NESS+ NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM. DIS- SOLVED (MG/L AS MG)
JAN									
16 MAR	0830	.06	6290	7.8	7.0	1400	1200	300	150
20	0815	.06	6080	7.6	12.5	1400	1200	310	140
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE+ DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
JAN 16 MAR	860	10	9.4	260	0	600	1800	2.1	3850
20	850	10	6.8	240	0	690	1600	.9	3720

08118600 COLORADO RIVER BELOW BULL CREEK NEAR IRA, TX (Low-flow partial-record station)

LOCATION.--Lat 32°34'54", long 101°05'42", Scurry County, Hydrologic Unit 12080002, just downstream from Bull Creek, 5.1 mi (8.2 km) downstream from Colorado River Dam (Lake J. B. Thomas), and 5.5 mi (8.9 km) west of Ira, and at mile 831.8 (1,338.7 km).

PERIOD OF RECORD. -- Chemical analyses: October 1977 to September 1978.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS+ NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM. DIS- SOLVED (MG/L AS MG)
JAN									
16 MAR	1045	.17	21400	7.8	7.0	1900	1600	420	200
20	0930	.04	19400	7.7	17.0	1900	1700	420	500
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
JAN 16	4600	46	14	290	0	2000	7000	3.4	14400
20	4100	41	15	550	0	1800	6000	.1	12600

08119000 BLUFF CREEK NEAR IRA, TX (Low-flow partial-record station)

LOCATION.--Lat 32°35'29", long 101°03'02", Scurry County, Hydrologic Unit 12080002, at bridge on Farm Road 1606, 1.8 mi (2.9 km) upstream from mouth and 2.8 mi (4.5 km) west of Ira.

DRAINAGE AREA .-- 42.6 mi2 (110.3 km2).

PERIOD OF RECORD.--Periodic discharge measurements: February 1975 to current year. Operated as a daily discharge station October 1947 to September 1965. Periodic water-quality data: March 1964 to June 1967, February 1975 to current year.

DISCHARGE AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SIREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM. DIS- SOLVED (MG/L AS MG)
JAN					215	121	011		
16 MAR	1120	• 35	2670	8.0	7.0	920	700	230	83
20	1000	.15	3200	7.9	13.5	930	750	230	87
									SOLIDS,
		SODIUM	POTAS-				CHLO-	SILICA,	SUM OF
	SODIUM,	AD-	SIUM,	BICAR-		SULFATE	RIDE,	DIS-	CONSTI-
	DIS-	SORP-	DIS-	BONATE	CAR-	DIS-	DIS-	SOLVED	TUENTS.
	SOLVED	TION	SOLVED	(MG/L	BONATE	SOLVED	SOLVED	(MG/L	DIS-
	(MG/L	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L	AS	SOLVED
DATE	AS NA)		AS K)	HC03)	AS CO3)	AS S04)	AS CL)	\$102)	(MG/L)
JAN									
16 MAR	240	3.5	4.8	260	0	710	380	5.8	1780
20	340	4.8	4.6	550	0	720	540	1.9	2030

08119100 BLUFF CREEK AT MOUTH NEAR IRA, TX (Low-flow partial-record station)

LOCATION.--Lat 32°34'20", long 101°03'21", Scurry County, Hydrologic Unit 12080002, 150 ft (46 m) upstream from mouth and 2.9 mi (4.7 km) west of Ira.

DRAINAGE AREA .-- 44.1 mi2 (114.2 km2).

PERIOD OF RECORD.--Periodic discharge measurements and water-quality data: February 1975 to current year.

DISCHARGE AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			SPE- CIFIC				HARD-		MAGNE-
		STREAM-	CON-			HARD-	NESS.	CALCIUM	SIUM,
		FLOW,	DUCT-			NESS	NONCAR-	DIS-	DIS-
		INSTAN-	ANCE	PH	TEMPER-	(MG/L	BONATE	SOLVED	SOLVED
	TIME	TANEOUS	(MICRO-		ATURE	AS	(MG/L	(MG/L	(MG/L
DATE	37 7	(CFS)	MHOS)	(UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	AS MG)
JAN									
16	1230	.35	3870	7.9	6.5	1000	800	250	94
MAR									
20	1030	.15	28100	7.5	13.0	2300	5500	490	260
									SOLIDS,
		SODIUM	POTAS-				CHLO-	SILICA.	SUM OF
	SODIUM,	AD-	SIUM.	BICAR-		SULFATE	RIDE.	DIS-	CONSTI-
	DIS-	SORP-	DIS-	BONATE	CAR-	DIS-	DIS-	SOLVED	TUENTS,
	SOLVED	TION	SOLVED	(MG/L	BONATE	SOLVED	SOLVED	(MG/L	DIS-
	(MG/L	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L	AS	SOLVED
DATE	AS NA)		AS K)	HC03)	AS C03)	AS 504)	AS CL)	5102)	(MG/L)
JAN			1 12 17						
16 MAR	500	6.8	5.6	260	0	830	750	5.3	2560
20	6000	55	43	120	0	2300	8300	.1	17500

35 08119500 COLORADO RIVER NEAR IRA, TX

LOCATION.--Lat 32°32'18", long 101°03'12", Scurry County, Hydrologic Unit 12080002, on right bank 530 ft (162 m) downstream from bridge on State Highway 350, 3.8 mi (6.1 km) downstream from Bluff Creek, 4 mi (6 km) upstream from Willow Creek, 4.5 mi (7.2 km) southwest of Ira, and at mile 826.3 (1,329.5 km).

DRAINAGE AREA.--3,617 $\rm mi^2$ (9,368 $\rm km^2$), of which 2,590 $\rm mi^2$ (6,710 $\rm km^2$) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1947 to September 1952 (monthly records only 1950-52), October 1958 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 2,134.15 ft (650.489 m) National Geodetic Vertical Datum of 1929. Oct. 1-30, 1947, nonrecording gage at site 75 ft (23 m) upstream at same datum.

REMARKS.--Water-discharge records good. Since July 1952, flow has largely been regulated by Lake J. R. Thomas (station 08118000) 11 mi (17.7 km) upstream.

AVERAGE DISCHARGE.--5 years (water years 1948-52) prior to completion of Colorado River Dam, 50.5 ft³/s (1.430 m³/s), 36,590 acreft/yr (45.1 hm³/yr); 20 years (water years 1959-78) partially regulated, 10.5 ft³/s (0.297 m³/s), 7,610 acre-ft/yr (9.38 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 20,500 ft³/s (581 m³/s) July 6, 1948, gage height, 21.35 ft (6.507 m), from rating cuve extended above 9,600 ft³/s (272 m³/s) by slope-conveyance method; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 16, 1913, gage height, 32 ft (9.8 m), was the greatest since at least that date, from information by local resident. Flood in May 1947 reached a stage of 25.1 ft (7.65 m), from floodmark at site of former bridge 269 ft (82 m) upstream from gage.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 427 ft³/s (12.1 m³/s) July 23, gage height, 6.67 ft (2.033 m); no flow at times.

		DISCHA	RGE, IN C	UBIC FEET	PER SECO	ND, WATER AN VALUES	YEAR OCT	OBER 197	7 TO SEPT	EMBER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.04	.15	.48	1.2	.59	.25	.00	3.5	.00	.00	.00
2	.00	.02	.16	.36	.86	.59	.30	3.7	1.5	.00	.00	.00
3	.00	.01	.16	.42	.74	.65	.28	5.3	.83	.00	.00	.00
4	.00	.01	.17	.36	.69	.56	.20	1.5	.69	.00	.00	.00
5	.00	.02	.14	.40	.62	.58	.17	.84	15	.00	.00	.00
6	.00	.04	.14	.41	.85	.65	.17	.55	121	.00	.00	.00
7	.00	.08	.10	.42	1.2	.57	.14	.26	16	.00	.00	.00
8	.00	.30	.22	.39	1.3	.43	.11	.08	3.4	.00	.00	.00
9	.00	.07	.17	.30	1.2	.39	.24	.02	1.2	.00	.00	.00
10	.01	.04	-17	.27	.88	.31	.37	.01	.31	.00	.00	.00
11	.00	.06	.21	.31	.71	.37	.24	.02	.12	.00	1.6	.00
12	.00	.10	.27	.35	2.8	.21	.21	.01	.06	.00	2.6	.00
13	.00	.14	.34	.38	1.6	.30	.13	.00	.02	.00	.95	.00
14	.02	.16	.28	.46	.85	.32	.08	.00	.02	.00	.31	.00
15	.01	.17	.28	.55	.70	.33	.06	.00	.02	.00	.03	.00
16	.01	.14	.27	.74	.72	.29	.05	.00	.02	.00	.01	.00
17	.01	.13	.22	.60	1.1	.26	.05	.00	.02	.00	.00	.00
18	.01	.14	.24	.60	.99	.28	.02	.00	.01	.00	.00	.00
19	.01	.14	.24	.40	.81	.26	.02	.64	.01	.00	.00	.00
20	.01	.15	.19	.42	.66	.31	.02	29	.00	.00	.00	2.2
21	.02	.11	.15	.45	.52	.33	.01	9.5	.00	.00	.00	170
22	.04	.09	.16	.49	.46	.28	.01	2.4	.00	.00	.00	41
23	.05	.13	.22	.54	.41	.44	.00	1.3	.00	77	.00	7.8
24	.03	.15	.21	.63	.36	.36	.00	.83	.00	53	.00	3.4
25	.03	.14	.26	.56	.50	.50	.00	.66	.00	5.1	.00	12
26	.03	.13	.28	.61	.42	.52	.00	.51	.00	2.0	.00	11
27	.04	.14	.31	.50	.50	.48	.00	.37	.00	.58	.00	6.2
28	.09	.14	.38	.42	.57	.36	.00	.25	.00	.12	.00	2.6
29	.06	.13	.60	.47		.26	.00	.41	.00	.02	.00	2.2
30	.08	.15	.70	.58		.31	.00	5.4	.00	.01	.00	1.4
31	.05		.61	1.1		.29		1.5		.00	.00	
TOTAL	.61	3.27	8.00	14.97	24.22	12.38	3.13	65.06	163.73	137.83	5.50	259.80
MEAN	.020	.11	.26	.48	.87	-40	.10	2.10	5.46	4.45	.18	8.66
MAX	.09	.30	.70	1.1	2.8	.65	.37	29	121	77	2.6	170
MIN	.00	.01	.10	.27	.36	-21	.00	.00	.00	.00	.00	.00 515
AC-FT	1.2	6.5	16	30	48	25	6.2	129	325	273	11	212

CAL YR 1977 TOTAL 937.04 WTR YR 1978 TOTAL 698.50 MEAN 2.57 AC-FT 1860 AC-FT 1390 MAX 318 MEAN 1.91

08119500 COLORADO RIVER NEAR IRA, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF DAILY RECORD.--Chemical analyses: November 1958 to September 1970, November 1974 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: November 1958 to September 1970, November 1974 to current year. WATER TEMPERATURES: November 1958 to September 1970, November 1974 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 87,800 micromhos May 8, 1960; minimum daily, 305 micromhos Sept. 6, 1962.
WATER TEMPERATURES: Maximum daily, 36.0°C July 23, 24, 1969, June 12, 1978; minimum daily, 0.0°C on many days during winter months.

EXTREMES FOR CURRENT YEAR .--

KIREMES FOR CURRENT TEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 49,300 micromhos Nov. 9; minimum daily, 739 micromhos June 6.
WATER TEMPERATURES: Minimum daily, 36.0°C June 12; minimum daily, 0.0°C on several days during December, January, and February.

DATE	TIME	STREAM- FLOW. INSTAN- TANEOUS (CFS)	DU AN	FIC N- CT- CE CRO-	PH INITS)	AT	PER- URE	HARD- NESS (MG/L AS CACO3)	NE NON BON (M	RD- SS, CAR- ATE G/L CO3)	(ME	IUM VED S	AGNE- SIUM, DIS- OLVED MG/L S MG)	SODIUM. DIS- SOLVED (MG/L AS NA)
NOV														
29	1330	.13	3 3	9600	7.5		7.0	2600		2400	58	0	270	8900
DEC 22	0830	.19		3700	7.8		.0	2200		2100	54		210	7500
JAN	0030	• 1	, ,	3700	7.0		.0	2200		2100			-10	
16	1325	.69	2	4800	7.7		5.5	2200		2000	47	0	240	5000
FEB	1645			0700			16.5	1600		1500	39		160	4500
25 MAR	1645	.40		0700			10.5	1000		1500	35		100	4300
20	1400	.24	2	4700	7.7		24.0	1900		1800	45	0	200	5500
MAY								1600		1500	36		180	3300
03 JUN	1300	4.4	1	6700			12.0	1600		1500	30		100	3300
07	1310	13		1420		-	27.0	180		100		5	9.8	210
SEP								144			E5.71			230
23	1100	201 7.8		1500 2290			16.0 20.0	160 210		85 120		9	9.4	390
23	1130	7.0		2270			20.0	-10		120				
DATE	SOD A SOR TI RAT	D- 5 P- (ON 50 IO (OTAS- SIUM, DIS- DLVED 4G/L S K)	BICAR- BONATE (MG/L AS HCO3)	CAR BONA (MG AS C	TE /L	SULFAT DIS- SOLVE (MG/L AS SO4	D SOL	VED /L	RIDE DIS SOLV (MG/ AS F	ED	SILICA. DIS- SOLVED (MG/L AS SIO2).	CONS TUEN DI SOL	OF TI-
NOV														
29	, 7	7	27	190		0	2300	1400	0			14	26	200
22	. 6	9	19	184		0	1900	1200	0			9.0	22	300
JAN														
16	. 4	7	18	230		0	1600	800	0			5.5	15	400
FER 25	4	8	16	170	1	0	1700	700	0			3.4	13	900
MAR														
20	, 5	4	23	160		0	1800	820	0			4.1	16	300
MAY 03	. 3	5	15	160		0	1500	510	0			2.9	10	500
JUN				24.								18	3.	
07		6.9	4.9	91		0	99	34	0		.2	7.7		771
21		7.8	5.4	96		0	88	37	0		.2	5.0		805
23		2	7.2	110		Ö	100	61			.3	6.6		240

08119500 COLORADO RIVER NEAR IRA, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

MONTH	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
ост. 1977	0.61	34900	23100	38	12500	21	1970	3.4	****
NOV. 1977	3.27	40000	26500	234	14500	128	2100	19	****
DEC. 1977	7	34600	22800	493	12300	266	1960	42	****
JAN. 1978	14.97	22900	14900	603	7680	310	1670	68	****
FEB. 1978	24.22	18700	12000	785	5980	391	1560	102	****
MAR. 1978	12.38	23000	15000	501	7720	258	1670	56	****
APR. 1978	3.13	29700	19500	165	10400	88	1840	16	****
MAY 1978	65.06	10800	6650	1170	3140	551	670	117	****
JUNE 1978	163.73	1920	1100	488	500	221	96	42	200
JULY 1978	137.83	2030	1090	405	530	197	95	35	210
AUG. 1978	5.5	10500	6440	96	2800	42	590	8.7	****
SEPT 1978	259.8	1910	1040	731	500	350	93	65	200
TOTAL	698.5	**	**	5710	**	2820	**	574	**
WTD.AVG	1.91	4940	3000	**	1500	**	300	**	520

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		43000	38100	26500	20000	21700	27800		10900			
2		42700	38000	25700	19500	21300	28000	25500	9900			
3		40800	38000	24900	19100	21000	27700	15900	11300			
4		35300	37600	24300	18900	20000	28900	21200	11800			
5		27900	38800	25100	18800	20400	29900	22300	7500			
6		28800	39700	24700	19200	20000	25300	23600	739			
7		41800	35500	24000	19500	20100	29900	24400	1290			
8		43300	35200	24900	19200	20000	32800	25800	2650			
9		49300	45200	25100	19400	20200	32300	27300	4570			
10	28800	42900	41500	25900	18500	20400	31800	29000	7020			
11		32500	39600	23800	18600	21700	30700	29900	8470		11800	
12		38200	38900	22600	16600	21500	28600	33900	10500		9480	
13		38000	39800	23700	17800	22300	28200		12000		10000	
14	28600	41600	37500	22800	17200	23500	29900		14000		12700	
15	28300	39800	34900	23200	17700	24300	29600		16800		15800	
16	28100	42000	36600	24900	18100	24100	31900		19700		20200	
17	28000	41600	35900	25200	17200	23500	32100		24300			
18	26700	42900	34800	23500	18800	24000	33200		27300			
19	26000	36400	33700	22500	17900	24400	35100	35000	29500			
20	24100	40600	34200	22400	18400	24600	37000	7560				12600
21	23700	42500	34900	22600	18800	26300	36400	5560				1540
22	22900	38500	34200	21700	19200	26000	35100	8030				996
23	33700	39000	33700	20700	19400	25800		10500		1840		2340
24	36600	38700	33900	21100	20100	26200		12400		1910		4680
25	35300	38300	35400	21700	20700	26500		14800		3550		1470
26	36700	39500	34300	22200	20900	25600		16500		5560		2230
27	37400	36200	33000	22000	21100	25200		18000		9100		5670
28	33800	41100	31900	21800	21600	25700		19700		11500		7320
29	42000	39700	31200	20900		26500		20100		14300		8990
30	41900	38400	28800	20500		26300		10500		15700		10400
31	42000		27100	19300		26200		11400				
MEAN	31800	39400	35900	23200	19000	23400	31000	19500	12100	7930	13300	5290.

08119500 COLORADO RIVER NEAR IRA, TX--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

					U.	NCE-DAILT						
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		14.5	3.5	1.0	2.5	7.5	16.0		21.0			
2		5.5	2.0	3.5	3.5	14.0	16.5	14.0	22.0			
3		18.5	4.0	8.5	6.0	1.0	19.5	11.0	21.0			
4		19.0	8.5	10.0	2.0	11.5	11.0	12.0	21.5			
5		11.5	11.0	10.0	11.5	2.0	18.0	26.5	20.0			
6		9.0	1.0	3.0	6.0	8.0	30.0	23.5	20.0			
7		15.0	3.5	13.0	6.0	7.5	17.0	29.0	19.0			
8		15.0	4.0	2.0	.0	3.0	17.0	15.0	20.0			
9		8.0	.0	.0	.0	2.5	19.0	13.0	19.5			
10	29.0	2.0	1.0	.0	6.0	6.5	13.5	17.0	32.0			
11		2.0	6.0	1.5	3.5	17.0	11.5	19.0	21.5		28.0	
12		14.5	10.0	4.0	12.0	7.0	9.5	16.5	36.0		23.5	
13		9.0	11.0	4.0	11.0	7.0	17.0		22.5		24.0	
14		9.5	10.0	• 0		7.0	14.0		22.5		23.5	
15		10.0	13.5	3.0		18.0	14.5		21.0		25.0	4077
16		6.5	10.0	7.0		14.0	17.0		22.0		33.0	
17	24.0	6.5	2.0	.0		4.0	17.0		22.0			
18	12.0	5.0	2.5	1.0	3.0	6.0	8.0		22.0			
19	15.0	17.0	6.0	•5	11.0	9.5	10.0		23.0			
50	13.0	14.0	6.0	•0	5.0	14.5	17.5	20.0				
21	14.5	7.0	.0	.0	.0	18.0	11.5	20.0				16.0
55	17.0	19.0	.0	9.0	10.0	24.0	16.5	20.5				16.0
23	25.0	10.0	4.0	10.5	12.0	20.5		21.0		22.0		20.0
24	12.0		14.0	4.0	12.0			25.0		29.0		24.0
25	12.0	6.5	4.0	•0	16.5	22.5		31.0		30.5		20.0
26	16.0	12.0	10.0	.0	4.0	10.0		25.0		25.0		19.0
27	18.0	7.5	3.0	7.0	10.0	9.0		23.0		34.0		18.0
28	16.0	11.0	8.5	.0	9.0	10.0		20.0		26.0		17.0
29	14.0	10.0	5.0	4.0		12.0		19.5		23.0		19.0
30	18.0	12.0	12.5	3.0		10.5		25.5		23.5		18.0
31	13.0		5.0	2.0		15.5		20.0				
MEAN	17.0	10.5	6.0	3.5	7.0	10.5	15.5	20.0	22.5	26.5	26.0	18.5

08120500 DEEP CREEK NEAR DUNN, TX

LOCATION.--Lat 32°34'25", long 100°54'27", Scurry County, Hydrologic Unit 12080002, at center of downstream side of bridge on Farm Road 1606, 1.5 mi (2.4 km) northwest of Dunn, 2.7 mi (4.3 km) upstream from Sulphur Draw, and 8.6 mi (13.8 km) upstream from

DRAINAGE AREA.--198 mi² (513 km²), of which 10 mi² (25.9 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- April 1953 to current year.

REVISED RECORDS .-- WSP 1922: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 2,172.17 ft (662.077 m) National Geodetic Vertical Datum of 1929. Prior to Apr. 21, 1955, nonrecording gage at same site and datum.

REMARKS .-- Water-discharge records good.

AVERAGE DISCHARGE.--25 years (water years 1954-78), 11.6 ft³/s (0.329 m³/s), 0.84 in/yr (21 mm/yr), 8,400 acre-ft/yr (10.4 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 20,700 ft 3 /s (586 m 3 /s) Aug. 14, 1972, gage height, 31.28 ft (9.534 m), from floodmarks, from rating curve extended above 12,000 ft 3 /s (340 m 3 /s) by velocity-area study; no flow for many days each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge since at least 1881, 36,400 ft³/s (1,030 m³/s) June 19, 1939, by slope-area measurement at site 8.0 mi (12.9 km) upstream from gage. Flood in 1892 reached about same stage as that of June 19, 1939, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,230 ft³/s (34.8 m³/s) May 29, gage height, 12.29 ft (3.746 m), no other peak above base of 850 ft3/s (24.1 m3/s); no flow for many days.

		DISCHARG	E, IN C	DBIC FEE.		ND, WATER AN VALUES	YEAR OC	TOBER 197	7 TO SEPTEM	BER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.04 .02 .01 .01	1.6 1.9 1.5 1.5	2.5 2.5 2.5 3.6 3.3	2.1 2.1 2.5 2.6 2.5	2.5 1.8 1.5 1.3	2.0 1.7 1.5 1.6 1.5	1.5 1.5 1.3 .91 .63	.58 12 11 1.9 .70	37 7.1 4.4 4.2	.85 .81 .72 1.4 1.3	.00 .00 .00	.00 .00 .00
6 7 8 9	.27 .25 .21 .05	1.9 2.2 3.0 3.5 2.4	3.5 2.6 1.8 2.0 2.1	2.5 2.4 2.3 2.1 2.2	1.3 2.8 2.5 1.7	2.0 2.2 1.6 1.4	.40 .68 .89 .74	.23 .09 .05 .02	166 16 5.1 3.2 2.5	.93 .54 .20 .20	.00 .00 .00	.00 .00 .00
11 12 13 14 15	.02 .03 .79 1.5 1.3	2.8 3.1 3.8 3.6 3.0	2.8 2.2 2.4 2.5 2.6	2.2 2.3 2.2 2.2 2.2	1.6 6.3 4.2 2.3 2.0	1.5 1.4 1.6 1.9	.64 .63 .52 .40	.01 .01 .01 .01	3.3 3.3 3.4 3.7 3.7	.08 .05 .03 .02	.00 .00 .00	.00 .00 .00
16 17 18 19 20	1.3 .74 .58 .56	3.1 2.9 2.7 3.3 3.9	5.6 3.0 2.5 2.4 2.6	2.4 2.1 2.0 1.9 1.8	1.9 2.1 2.2 2.3 2.0	1.5 1.4 1.4 1.1	.38 .44 .85 .84	.03 .03 .06 .07	3.6 3.2 3.1 3.1 2.9	.00 .00 .00	.00 .00 .00	.00 .00 .00
21 22 23 24 25	.26 .08 .18 .82	2.5 2.2 3.2 2.9 2.5	2.4 2.5 2.4 2.9 2.0	1.9 1.9 2.1 2.2 2.2	2.0 2.0 2.0 1.9 1.8	1.1 1.3 1.6 1.5	.92 .80 .76 .80	9.5 2.5 1.2 .66	2.7 2.7 3.0 2.5 2.1	.00 .00 .00	.00 .00 .00	67 21 4.6 2.3 2.2
26 27 28 29 30 31	.39 .18 .15 .24 .77	2.1 2.2 2.4 3.0 2.5	2.0 3.0 2.6 2.6 2.7 2.3	1.7 1.5 1.5 1.6 1.8 2.1	1.5 1.8 2.1	1.1 1.0 1.1 1.3 1.2	.82 .57 .34 .52	.19 .15 1.1 346 32 5.6	1.6 1.3 1.2 1.1 .91	.00 .00 .00 .00	.00 .00 .00 .00	9.0 8.4 3.6 2.1 2.3
TOTAL MEAN MAX MIN CFSM IN. AC-FT	13.44 .43 1.5 .01 .002 .00	78.8 2.63 3.9 1.5 .01 .01	82.4 2.66 5.6 1.8 .01 .02 163	65.1 2.10 2.6 1.5 .01	60.2 2.15 6.3 1.1 .01	45.4 1.46 2.2 1.0 .007 .01	21.93 .73 1.5 .34 .004 .00	506.02 16.3 346 .01 .08 .10	309.91 10.3 166 .91 .05 .06 615	7.27 .23 1.4 .00 .001 .00	.00 .000 .00 .00	122.50 4.08 67 .00 .02 .02 243
CAL YR WTR YR		2241.14 1312.97	ME AN ME AN		MAX 1040 MAX 346	MIN .0				T 4450 T 2600		

08120500 DEEP CREEK NEAR DUNN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1974 to current year.

WATER-QUALITY RECORDS analyses: October 1974 to current year. WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		TIME	STREAM- FLOW, INSTAN- TANEOUS	SPE- CIFIC CON- DUCT- ANCE (MICRO-	РН	TEMPER-	HARD- NESS (MG/L	HARD- NESS+ NONCAR- BONATE (MG/L	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L
D	ATE		(CFS)	MHOS)	(UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	AS MG)
JA										20
MA	6 R	1145	2.3	1570	7.9	5.5	370	21	100	28
	0	1130	.79	1490	7.8	16.0	360	61	100	26
		77 5	SODIUM	POTAS-				CHLO-	SILICA.	SOLIDS.
		SODIUM, DIS- SOLVED	SORP- TION	DIS- SOLVED	BICAR- BONATE (MG/L	CAR- BONATE	SULFATE DIS- SOLVED	DIS- SOLVED	SOLVED	TUENTS, DIS- SOLVED
0	ATE	(MG/L AS NA)	RATIO	(MG/L AS K)	HCO3)	AS CO3)	(MG/L AS SO4)	(MG/L AS CL)	SI02)	(MG/L)
JA	N								1 10	
MA	6 R	190	4.3	11	420	0	190	190	15	931
	0	190	4.4	9.8	360	0	190	190	11	894

08120700 COLORADO RIVER NEAR CUTHBERT, TX

LOCATION.--Lat 32°28'41", long 100°56'54", Mitchell County, Hydrologic Unit 12080002, on left bank at downstream side of bridge on Farm Road 1808, 4.0 mi (6.4 km) downstream from Deep Creek, 4.8 mi (7.7 km) east of Cuthbert, 8.0 mi (12.9 km) northwest of Colorado City, and at mile 810.6 (1,304.3 km).

DRAINAGE AREA.--4,028 mi² (10,433 km²), of which 2,600 mi² (6,730 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March 1965 to current year.

GAGE .-- Water-stage recorder. Datum of gage is 2,073.49 ft (632.000 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Flow is partly regulated by Lake J. B. Thomas (station 08118000).

AVERAGE DISCHARGE.--13 years (water years 1966-78), 30.5 ft³/s (0.864 m³/s), 22,100 acre-ft/yr (27.2 hm³/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 11,500 ft3/s (326 m3/s) Aug. 14, 1972, gage height, 25.99 ft (7.922 m); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Floods in 1941 and 1946 reached a stage of 36.1 ft (11.00 m), from Texas Department of Highways and Public Transportation bridge plans.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,200 ft3/s (34.0 m3/s) May 29, gage height, 8.69 ft (2.649 m); no flow at times.

		DISCHAR	GE, IN C	UBIC FEE	T PER SECO	ND, WATER AN VALUES	YEAR OC	TOBER 197	7 TO SEPTI	EMBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.83 .86 .63 .59	1.4 1.6 1.6 1.8 2.1	3.4 3.4 3.4 3.4 3.8	4.6 4.3 4.2 4.2	6.4 6.8 6.6 5.9 5.5	4.7 4.8 4.8 4.7 4.7	1.6 1.8 1.7 1.6 1.5	.58 31 43 21 14	96 44 25 19 113	.13 .10 .06 .09	.11 .07 .04 .02	.00 .00 .00
6 7 8 9	.59 .59 .69 .68	2.1 2.3 3.4 2.8 2.7	3.7 3.6 3.8 3.4 3.0	4.6 4.5 4.5 4.5	5.2 6.1 7.2 7.8 6.8	4.7 4.7 4.6 4.7 4.1	1.4 1.1 1.1 1.2 1.5	10 8.2 7.0 6.4 5.8	729 198 61 30 17	.02 .01 .00 .00	.01 .00 .00 .00	.00 .00 .00
11 12 13 14 15	.82 .74 .71 .66	2.7 2.1 2.1 2.3 2.5	2.9 3.4 3.8 3.7 3.6	4.2 4.4 4.6 4.8 4.5	6.4 7.5 11 7.9 6.4	3.8 3.6 3.6 3.6 3.4	1.5 1.5 1.4 1.2	5.3 5.0 4.4 3.9 3.4	9.0 7.3 6.0 5.1	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00
16 17 18 19 20	1.3 1.4 1.4 1.3	2.3 2.3 2.3 2.3 2.3	4.0 4.9 3.7 3.4 3.3	5.1 5.1 5.2 4.8 4.9	6.0 6.0 5.9 5.7 6.0	3.4 3.0 2.7 2.3 2.3	1.1 1.1 .98 .93	2.9 2.5 2.2 2.2 347	4.6 3.9 2.9 2.4 1.9	.00 .00 .00 .00	.07 .02 .00 .00	.00 .00 .00
21 22 23 24 25	.95 .95 1.0 1.0	3.2 2.9 2.6 2.5 3.0	3.1 3.0 2.9 3.3 3.9	5.0 5.2 5.2 5.2 5.2	5.5 5.2 5.1 5.0 5.0	2.1 1.8 1.9 2.1 2.1	.88 .93 1.0 1.0	159 33 14 7.8 5.8	1.7 1.5 1.2 1.2	.00 .00 .00	.00 .00 .00	100 347 103 25 76
26 27 28 29 30 31	1.2 1.4 1.5 1.4 1.3	3.0 2.9 2.8 2.7 2.7	3.8 3.5 3.6 4.5 4.7	5.2 5.1 4.9 4.7 4.7 5.5	4.9 4.7 4.7 	1.9 1.8 1.7 1.6 1.6	.90 .78 .71 .66	5.2 4.4 5.9 629 208 36	.95 .64 .43 .31 .20	6.1 2.0 .71 .40 .24	.00 .00 .00 .00	38 37 18 7.5 4.6
TOTAL MEAN MAX MIN AC-FT	29.85 .96 1.5 .59	73.3 2.44 3.4 1.4 145	112.6 3.63 4.9 2.9 223	147.6 4.76 5.5 4.2 293	173.2 6.19 11 4.7 344	98.4 3.17 4.8 1.6 195	34.69 1.16 1.8 .61 69	1633.88 52.7 629 .58 3240	1395.33 46.5 729 .20 2770	167.12 5.39 123 .00 331	.37 .012 .11 .00	756.10 25.2 347 .00 1500
CAL YR WTR YR					MAX 3660 MAX 729	MIN .00						

08120700 COLORADO RIVER NEAR CUTHBERT, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: March 1965 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: March 1965 to current year. WATER TEMPERATURES: March 1965 to current year.

INSTRUMENTATION .-- Specific conductance is recorded continuously at this station.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 70,000 micromhos Nov. 17, 1968; minimum daily, 290 micromhos Aug. 14, 1972.
WATER TEMPERATURES (1965-77): Maximum daily, 36.0°C Aug. 2, 1966; minimum daily, 0.0°C on many days during winter months.

EXTREMES FOR CURRENT YEAR .--SPECIFIC CONDUCTANCE: Maximum daily, 7,870 micromhos May 19; minimum daily, 474 micromhos Sept. 22.

		STREAM- FLOW. INSTAN-	SPE- CIFIC CON- DUCT- ANCE	PH	TEI	MPER-	HARD- NESS (MG/L	HARD NESS NONCA BONAT	R- D	LCIUM IS- OLVED	MAGNE SIUI DIS-	, SODIUM,
	TIME	TANEOUS	(MICRO-		A'	TURE	AS	(MG/	L	MG/L	(MG/I	(MG/L
DATE		(CFS)	MHOS)	(UNITS) (DE	EG C)	CACO3)	CACO	(E)	S CA)	AS M	AS NA)
ост											5	400
25 NOV	1505	.94	5110	7.	6	20.5	900	6	90	210	91	790
14 DEC	1425	2.9	4170	8.	0	14.0	970	6		230	97	610
05 JAN	1745	4.2	3780	8.	0	12.0	910	5	80	210	93	500
16 MAR	1050	5.7	6070	8.	1	6.0	1100	7	50	240	110	950
20 APR	1035	2.3	5710	8.	2	15.0	990	7	10	200	120	960
24 JUN	1340	.97	7100	-	-	24.5	1300	10	00	270	140	1200
21	1030	1.8	3250		-	26.0	590	11.5	00	150	53	480
28 SEP	1100	.71	2390	-	-	25.5	300	2	10	85	21	380
23	1950	78	661		-	20.0	120		34	38	7.	.1 83
DAT	SOF T: RA	AD- S RP- D ION SOI	G/L	ATE C G/L BO AS (AR- NATE MG/L CO3)	SULFAT DIS- SOLVE (MG/L AS SO4	DIS D SOL	E. VED	FLUO- RIDE, DIS- SOLVED (MG/L AS"F)	SILI DIS SOL (MG AS SIO	CA, SI - CO VED TO	DLIDS, JM OF DNSTI- JENTS, DIS- SÖLVED (MG/L)
OCT 25.		11	11	250	0	660	120	0	-	16	8.3	3090
NOV 14.		8.5	12	340	0	760	83	0	.8		6.9	2710
DEC 05.		7.2	11	400	0	730	70	0	1.1	1	0	2450
JAN 16.		13	10	370	0	860	140	0		. A.	4.3	3760
MAR 20.		13	9.4	350	0	900	130	0			.4	3660
APR 24.	••	15	11	310	0	1200	170	0	-		3.3	4680
JUN 21.	••	8.6	9.3	240	0	480	69	0	.6		8.5	1990
28.		9.6	7.1	110	0	250	56	0	•3		4.8	1360
SEP 23.		3.2	6.1	110	0	52	12	0	.3	arot e	7.5	368

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

08120700 COLORADO RIVER AT COLORADO CITY, TX--Continued

MONTH	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVE SULFAT	TE SULFATE	
OCT. 1977	29.85	5900	3790	305	1100	89	1180	95	1060
NOV. 1977	73.3	4330	2710	536	930	183	680	134	780
DEC. 1977	112.6	3770	2330	708	830	253	540	164	680
JAN. 1978	147.6	6060	3900	1550	1170	465	1180	470	1090
FEB. 1978	173.2	6310	4070	1900	1260	591	1190	557	1140
MAR. 1978	98.4	5900	3790	1010	1100	293	1180	313	1060
APR. 1978	34.69	6600	4270	400	1380	129	1210	113	1190
MAY 1978	1633.88	1830	1070	4710	360	1590	240	1080	330
JUNE 1978	1395.33	1750	970	3670	330	1240	240	921	310
JULY 1978	167.12	2170	1230	555	430	192	300	134	390
AUG. 1978	0.37	3560	2190	2.2	780	0.8	510	0.4	640
SEPT 1978	756.1	1190	660	1360	220	440	150	314	210
TOTAL	4622.43	. **	**	16700	**	5470	**	4300	**
WTD.AVG	12.66	2250	1300	**	440	**	340	**	400
SPEC	CIFIC CONDUCTAN	ICE (MICRO	MHOS/CM AT	25 DEG. C)		R OCTOBER	1977 TO 9	SEPTEMBER 19	78
214	1.21	220							

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5510	4960	3850	5070	5850	5960	6280	7600	2040	4310	3040	
	5580	4700	3810	5310	6330	5970	6080	2050	2720	4430	3080	
3	5770	4730	3920	5390	6430	5620	6240	4180	3370	4520	3130	
4	5940	4960	3840	5430	6200	5710	6280	6500	3590	4460	3150	
5	6130	5220	3780	5890	6600	5800	6300	5000	1870	4550	3200	
6	6280	5290	3840	6370	6750	5940	6380	3490	1400	4690	3240	
7	6400	5270	3800	6350	6740	5880	6280	4500	1620	4820		
8	6500	5180	3780	6190	6660	5860	6410	5630	2040			
9	6380	4580	3770	5850	6410	5590	6500	6610	2310			
10	6300	4410	3720	6140	6230	5670	6500	6900	2390			
11	6650	4320	3690	6420	6780	5850	6420	7190	2490			
12	6540	4270	3730	6380	6760	6100	6280	7470	2580			
13	6480	4090	3760	6190	7230	6220	6270	7530	2660			
14	6520	4170	3720	6120	5920	5770	6310	7580	2740			
15	6650	4180	3690	6030	6310	5910	6380	7640	2830		4610	
16	6760	4220	3720	6070	6530	5910	6650	7670	2910		4820	
17	6880	4230	3660	5910	6420	5710	6910	7810	3010		4960	
18	6980	4250	3550	6330	6290	5780	6940	7840	3100			
19	6260	4280	3240	6250	6130	5670	6960	7870	3130			
20	6090	4300	3300	6340	6080	5820	6980	2140	3140			
21	5910	4150	3490	6190	6060	6010	7080	2220	3320			2480
22	5600	3620	3660	6240	5950	6090	7080	2530	3390			474
23	5190	3750	3720	6430	5830	6200	7030	3290	3470			707
24	5060	4000	3700	6230	5790	6160	7100	4020	3600	2110		2250
25	5110	3830	3670	6200	5740	6120	7060	4170	3670	2290		5000
26	5090	3910	3660	6170	5660	6050	7030	4230	3700	2370		1880
27	5130	3990	3710	6000	5690	5980	7150	4410	3830	2320		1700
28	5150	4010	3710	6070	5860	6160	7240	4400	3900	2460		2060
29	5270	4050	4060	6080		6230	7300	786	4110	2660		2550
30	5320	4030	4270	6020		6310	7440	910	4220	2820		3040
31	5210		4580	5940		6290		1750		2950		***
MEAN	5960	4370	3750	6050	6260	5950	6700	5030	2970	3450	3690	1910

08120700 COLORADO RIVER AT COLORADO CITY, TX--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

						ONCE-DATE!						
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	22.0						20.0	20.0	26.0	29.0	28.0	
2	22.0	10.0					21.0	12.0				
3	22.0	10.0					20.0	12.0		30.0	27.0	
4		10.0					20.0	20.0			22.0	
5	19.0	13.0										
6		16.0					25.0	25.0	22.0		29.0	
7	20.0						24.0					-
8	19.0	11.0				6.0						
9	17.0						25.0	K M. Water	27.0		40.495	
10	13.0					9.0	16.0		•••			
11	13.0						21.0					
12	10.0						24.0					
13	10.0					6.0						
14	10.0					8.0						
15	12.0					15.0	21.0				27.0	
16					1111	10.0	25.0				29.0	
17						17.0	20.0		29.0			-
18	15.0								30.0			
19	15.0					15.0	21.0					
50	15.0	16.0				18.0		•••	30.0			
21	17.0	7.0				10.0	20.0		29.0			26.0
.55	18.0	8.0					23.0	26.0	29.0			18.0
23	21.0						21.0	28.0				20.0
24	20.0							28.0		25.0		
25	23.0					15.0		100		30.0		20.0
26	19.0					18.0	22.0		30.0	31.0		Street that
27						20.0			29.0	29.0		21.0
28	16.0					20.0			31.0	29.0		24.0
29	17.0						26.0	21.0	31.0	28.0		
30	22.0					21.0						28.0
31										29.0		
MEAN	17.0	11.0				14.0	22.0	21.5	28.5	29.0	27.0	22.5

45

OB121000 COLORADO RIVER AT COLORADO CITY. TX

LOCATION.--Lat 32°23'33", long 100°52'42", Mitchell County, Hydrologic Unit 12080002, on right bank at Colorado City, 3,517 ft (1,072 m) upstream from bridge on State Highway 377, 4,100 ft (1,250 m) upstream from the Texas and Pacific Railroad Co. bridge, 1.3 mi (2.1 km) downstream from bridge on Interstate Highway 20 and U.S. Highway 80, 1.6 mi (2.6 km) upstream from Lone Wolf Creek, and at mile 796.3 (1,281.2 km).

DRAINAGE AREA.--4,082 mi² (10,572 km²), of which 2,600 mi² (6,730 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- November 1923 to August 1925 (published as "at Colorado"), May 1946 to current year.

REVISED RECORDS.--WSP 1118: Drainage area. WSP 1512: 1946(M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 2,030.16 ft (618.793 m) National Geodetic Vertical Datum of 1929. Nov. 28, 1923, to Aug. 31, 1925, nonrecording gage at site 1.4 mi (2.3 km) downstream at different datum. May 9 to Aug. 5, 1946, nonrecording gage at site 185 ft (56 m) upstream at present datum.

REMARKS.--Water-discharge records good. Some regulation since 1952 by Lake J. B. Thomas (station 08118000). Numerous diversions from Lake J. B. Thomas for municipal use and oilfield operation. Record of diversion from river, 3 mi (5 km) upstream from gage, furnished by Colorado River Municipal Water District.

AVERAGE DISCHARGE.--6 years (water years 1947-52) prior to completion of Lake J. B. Thomas, 85.4 ft³/s (2.419 m³/s), 61,870 acre-ft/yr (76.3 hm³/yr); 26 years (water years 1953-78) regulated, 36.1 ft³/s (1.022 m³/s), 26,150 acre-ft/yr (32.2 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $24,900 \text{ ft}^3/\text{s}$ (705 m $^3/\text{s}$) July 6, 1948, gage height, 22.37 ft (6.818 m), from floodmark; maximum gage height, 24.89 ft (7.586 m) Aug. 14, 1972; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1910, 35.9 ft (10.94 m) June 20, 1939, present site and datum, based on floodmarks 1,000 ft (305 m) upstream and 3,740 ft (1,140 m) downstream from gage; discharge, 66,000 ft³/s (1,870 m³/s) by slope-area measurement of peak flow at site 2.5 mi (4.0 km) upstream from gage.

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

EXTREMES FOR CURRENT YEAR .--Maximum discharge, 613 ft³/s (17.4 m³/s) June 6, gage height, 6.82 ft (2.079 m); no flow at times.

		DISCHA	KGE, IN C	UBIC FEE		AN VALUES		JUBER 197	7 IU SEPIE	MBEK 1970		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.13	.11	.24	.09	.95	.15	.44	.05	104	.00	.00	.01
2	.11	.08	.21	.09	.72	.24	.35	3.5	99	.00	.00	.01
3	.14	.05	.17	.09	.62	.24	.12	.62	38	.18	.00	.01
4	.20	.06	.20	.09	.41	.15	.11	6.3	24	1.5	.00	.27
5									19			.15
5	.41	.09	.15	.15	.41	.24	.14	.62	19	.04	.00	.15
6	.41	.10	.15	.15	.64	.24	.21	.35	410	.03	.00	.08
7	.37	.14	.15	.18	.99	.41	.35	.22	250	.01	.00	.08
8	.24	.51	.22	.12	.60	.24	.46	.11	103	.00	.02	.28
9	.21	.21	.17	.09	.79	.24	.76	.09	40	.00	.04	.09
10	.39	.15	.19	.15	.41	.24	.80	.10	25	.00	.04	.08
10	.39	.15	.19	.15	.41	.24	.00	.10	23	.00	.04	.00
11	.19	.15	.18	.15	.41	.41	.46	.10	18	.00	.06	.06
12	.15	.19	.24	.21	1.5	.24	.54	.06	15	.00	.06	.04
13	.09	.24	.26	.28	.28	.41	.45	.03	13	.00	.05	.03
14	.09	.33	.21	.38	.15	.24	.48	.04	8.5	.00	.03	.02
15	.09	.26	.17	.46	.15	.24	.45	.04	1.2	.00	.24	.01
				.40	.13		.,,					
16	.09	.24	.16	.67	.21	.24	.69	.04	.57	.00	.05	.01
17	.10	.22	.09	.36	.43	.24	.47	.02	.41	.00	.03	.01
18	.15	.24	.05	.41	.24	.24	.21	.01	.21	.00	.01	.01
19	.12	.24	.07	.41	.31	.24	.16	.00	.05	.00	.00	.00
20	.09	.22	.09	.41	.36	.24	.24	58	.02	.00	.00	.03
21	.13	1.5	10	4.	0.0	41	40	270	0.1	.00	.00	20
22	+13	.15	.12	.41	.26	.41	.42	270	.01			108
	.15	.13	.13	.53	.33	.24	.43	89	.00	.00	.00	
23	.15	.15	.13	.81	.24	.41	.51	31	.00	.00	.00	41
24	.15	.19	.19	1.0	.24	.23	.45	19	.00	.00	.00	1.6
25	.15	.16	.10	.95	.24	.20	.17	13	.00	.00	.00	1.9
26	.15	.16	.12	.44	.24	.24	.16	11	.00	.00	.00	2.2
27	.16	.15	.20	.62	.24	.24	.25	9.4	.00	.00	.00	1.5
28	.24	.15	.31	.62	.24	.29	.21	8.3	.00	.00	.00	.81
29	.17	.15							.00	.00	.01	.57
			.66	.66		.21	.04	289				
30	.17	.16	.28	.93		.36	.05	238	.00	.00	.00	.41
31	.13		.21	1.3		.50		70		.00	.00	
TOTAL	5.52	5.38	5.82	13.21	12.61	8.46	10.58	1118.00	1168.97	1.76	.64	179.27
MEAN	.18	.18	.19	.43	.45	.27	.35	36.1	39.0	.057	.021	5.98
MAX	.41	.51	.66	1.3	1.5	.50	.80	289	410	1.5	.24	108
MIN	.09	.05	.05				.04	.00	.00	.00	.00	.00
AC-FT	11			.09	.15	.15				3.5	1.3	356
		11	12	26	25	17	21	2220	2320			
(†)	106	193	279	374	498	311	133	357	118	250	0	940

CAL YR 1977 TOTAL 6934.45 MEAN 19.0 MAX 2070 MIN .00 AC-FT 13750 † 3390 WTR YR 1978 TOTAL 2530.22 MEAN 6.93 MAX 410 MIN .00 AC-FT 5020 † 3560

[†] Diversions, in acre-feet, for brine disposal by Colorado River Municipal Water District.

08121000 COLORADO RIVER AT COLORADO CITY, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: May 1946 to September 1954, November 1956 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: May 1946 to September 1954, November 1956 to current year.
WATER TEMPERATURES: November 1952 to September 1954, November 1956 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE (1946-54, 1956-69, 1971-78): Maximum daily, 67,400 micromhos May 14, 17, 1961; minimum daily, 245 micromhos

May 14, 1957.
WATER TEMPERATURES (1956-69, 1971-78): Maximum daily, 37.0°C July 29, 1960, July 9, 1965, and July 1, 1973; minimum daily, 0.0°C on many days during winter months.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 33,000 micromhos Apr. 22, 30, May 1; minimum daily, 976 micromhos May 30.
WATER TEMPERATURES: Minimum daily, 0.0°C on many days during winter months.

113-			EAM-	CIFIC CON- DUCT-					HARE			RD-	CAL	CIUM	SI	NE- UM,	SODIUM,
			TAN-	ANCE		PH	TEM	PER-	(MG/		BON			LVED		VED	SOLVED
	TIME		EOUS	(MICRO		Fn		URE	AS	-		3/L		G/L	(MG		(MG/L
DATE	IIME		FS)	MHOS		NITS)		G C)	CACC)3)		(603)		CA)		MG)	AS NA)
ост													1				
19	1420		.09	1560	0	7.9		20.0	15	500		1300	3	10	17	0	3100
NOV															70.45		
30 JAN	1100		.15	2250	0	7.6		7.0	50	000		1800	4	50	21	0	4700
16 MAR	0935		.48	5550	0	7.5		6.5	21	100		1900	4	80	53	10	4600
20 APR	0920		.20	2430	0	7.4		14.0	23	300	1	2100	5	20	25	0	5300
29 MAY	1030		.05	3300	0			21.5	25	500		2400	5	50	28	0	7000
03 JUN	0930		.27	1430	0			11.0	12	200		1100	2	60	14	0	2900
08	0900	11	3	158	0			23.0		230		130		65	1	7	230
JUL 04 SEP	1300		.01	719	0			36.0		640		560	1	60		8	1400
25	1800		1.7	298	10			20.0		290		180		75		25	520
	S	DDIUM AD- ORP-	POT	45- JM, B)	CAR-	.		SULFA	TE	CHL	E.	FLU RID	E .	SILI		SOLI SUM CONS TUEN	OF TI-
	- / -	TION	SOL	VED	MG/L	BON	TE	DIS-	ED	SOL'	VED	SOL (MG	VED	(MG	/L	DI	5-
DATE	н	ATIO	AS I		AS (CO3)	AS (3/L (03)	AS SO		AS		AS		SIO		(MG	
ОСТ																	
19		35	10	6	220		0	1600		450	0				1.4	9	810
30		46	1	9	240		0	2100		710	0		-		.7	14	700
16		43	1	7	300		0	2100		720	0				2.4	14	800
20 · · ·		48	2	1	240		0	2300		790	0				1.0	16	400
29		61	9	8	500		0	2800		1000	0				5.1	20	800
03 JUN	7-17	36	1	4	140		0	1200		430	0			1144	5.1	8	890
08 JUL	1	6.6		5.7	120		0	170		33	0		.4		8.5		886
04 SEP	3 / 1	24	1	1	98		0	890		190	0		.6		4.8	4	470
25		13		7.9	140		0	250		76	0		.4		6.0	1	710

08121000 COLORADO RIVER AT COLORADO CITY, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

MONTH	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT. 1977	5.52	14800	9150	136	4410	66	1490	22	****
NOV. 1977	5.38	20900	13100	190	6370	93	1950	28	****
DEC. 1977	5.82	23100	14600	229	7090	111	2100	33	****
JAN. 1978	13.21	24000	15200	541	7380	263	2150	77	****
FEB. 1978	12.61	22600	14200	485	6930	236	2060	70	****
MAR. 1978	8.46	24300	15400	351	7470	171	2170	50	****
APR. 1978	10.58	29000	18500	529	8990	257	2480	71	****
MAY 1978	1117	2330	1360	4120	590	1770	. 220	660	270
JUNE 1978	1168.97	2530	1430	4500	640	2040	230	741	280
JULY 1978	1.76	7290	4420	21	2090	10	710	3.5	670
AUG. 1978	0.64	14600	9050	16	4330	7.4	1460	2.4	****
SEPT 1978	179.27	4620	2740	1330	1290	622	440	212	450
TOTAL	2530.22	**	**	12400	**	5650	**	1970	**
WTD.AVG	6.93	3100	1800	**	830	**	290	**	330

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

	00=	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
DAY	ОСТ	MUA	DEC	JAN	120	MAIN						18900
1	13000	19200	22200	24200	24000	24100	24900	33000	1730			
2	13200	19100	22300	23500	23900	24200	26200	14300	1970			19000 18700
3	13300	19300	22500	23600	22500	24100	25900	14500	2960	7640		
4	13200	19400	22700	23400	22300	23500	26500	30200	3250	7250		16000
5	12800	19100	22500	23500	23400	22700	27200	28500	3590	7500		16600
6	12600	19200	23000	24200	23800	23400	27300	24100	2680	7030		17200
7	13000	19200	22900	24100	24100	23800	26900	23500	2500	6730		17300
å	13300	19700	22700	24300	24400	23600	28000	22800	1760		14500	17500
9	14600	20100	22900	24600	22500	23500	28900	23200	2300		12900	20200
10	14500	21600	23000	25200	22200	23600	27100	23000	3030		13200	19800
11	15000	21500	23000	24700	21900	23700	27000	23400	3630		13000	21000
12	15300	21000	23100	24400	21500	24800	28500	23500	4240		13300	22400
	15200	20800	22700	24100	20900	24600	29800	23600	4610		13500	23700
13	15200	20700	23000	25000	20800	23300	29900	23500	5370		14900	23800
14	15200	20500	23400	25100	21000	22600	29900	25000	6030		15000	24000
16	15300	20700	23300	22900	21200	24300	29700	26000	5980		16800	24200
17	15300	20900	23400	23000	21000	24600	29500	27200	6770		16300	24100
18	15400	21400	24100	23500	20900	25000	29600	27100	6700		17800	24000
19	15500	21300	23300	23800	22000	25500	29800		7090			
20	15600	21400	23100	23500	22100	25000	29600	5980	6980			23100
21	15700	21500	24200	23200	22600	24900	29500	1690	10000			10300
22	15700	21900	24100	23300	22500	24100	33000	4070				4400
23	16000	21700	24200	23200	22400	23900	29800	4750				1960
24	16200	21800	23800	24000	22100	23700	29900	5230				3060
25	16500	21900	24300	23800	22200	23500	31800	5250				2930
26	16700	21800	24000	24000	22900	24000	31900	5460				4550
27	17000	22000	24200	24300	22300	24900	32500	5650				6160
28	17100	22200	24100	24800	21600	25300	32400	5800				6700
	17500	22300	22700	24700		25500	32800	1070			18500	7220
29		22400	22600	24600		25600	33000	976				8500
30 31	17900 18000	22400	23800	24300		25700		1820				
MEAN	15200	20900	23300	24000	22300	24200	29300	16100	4440	7230	15000	15400

08121000 COLORADO RIVER AT COLORADO CITY, TX--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

					•	ACE-DWIF!						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26.0	5.5	1.0	.5	.0 .	7.0	19.0	18.0	23.0			
3	26.0	5.0	.0	.5	.0	8.0	28.0	12.5	22.5			
3	24.0	5.0	2.5	.0	.0	8.0	29.0	11.5	24.0	37.0		
4	23.0	4.5	2.0	.0	.0	4.0	25.5	16.5	28.0	36.0		
5	21.0	5.5	• 0	2.0	.5	5.0	19.5	17.0	23.5	37.0		33.0
6	21.0	5.0	.0	2.0	•5	6.0	29.0	15.5	24.0	29.5		27.0
	22.0	4.5	• 0	1.5	• 0	6.5	20.0	23.0	21.0	38.0		27.0
8	22.0	4.5	1.0	.0	.0	6.0	22.5	20.0	28.5			24.0
9	19.0	4.0	• 0	.0	.0	6.5	21.0	23.0	30.0			25.0
10	18.5	1.0	• 0	.0	• 0	14.0	15.0	24.5	30.5			23.5
11	19.0	1.0	.0	.0	.0	11.5	13.0	27.5	32.0			33.0
12	18.0	2.0	2.0	.0	.0	9.5	19.0	20.0	33.0			33.5
13	20.5	2.0	2.5	.0	.0	11.0	17.5	28.0	28.0		22.0	31.5
14	19.0	4.0	1.5	.0	.0	9.0	26.0	22.0	34.0		25.0	32.0
15	19.0	3.0	2.5	• 0	.0	8.0	27.5	29.5	33.5		26.5	
16	16.0	4.5	1.0	.5	.0	17.5	31.0	20.0	26.0		26.5	
17	14.5	4.0	• 0	.0	.0	13.0	27.5	28.0	33.0		25.0	
18	13.0	4.0	.0	.0	.0	13.0	30.5	30.0	24.0		32.0	
19	12.0	3.5	.0	.0	.0	20.0	14.0		25.0			
50	13.5	5.0	• 0	•0	• 0	26.0	16.5	24.0	23.5			
.53	13.0	4.0	.5	.0	.5	21.5	14.5	25.0	35.5			19.0
.55	11.0	3.0	.5	.5	.0	28.0	27.0	27.0				19.0
23	9.0	3.0	.0	.0	.5	22.0	17.5	29.0				18.5
24	7.0	4.0	.0	.5	.5	24.0	17.0	30.0				23.5
25	5.5	3.0	.5	• 0	.5	19.0	24.0	29.0				20.0
26	6.0	3.0	.0	.0		17.5	22.0	27.0				21.0
27	5.0	2.0	• 0	.0		15.5	20.0	25.0				22.5
28	4.5	1.0	.0	.0		26.0	17.0	26.0				27.0
29	5.0	.0	.0	.0		21.0	21.5	24.0				27.5
:30	6.0	1.0	.0	.0		21.5	17.0	24.5				27.0
31	4.0		• 0	.0		20.0		29.5				
MEAN	15.0	3.5	.5	.5	.0	14.5	21.5	23.5	27.5	35.5	26.0	25.5

49

08123000 LAKE COLORADO CITY NEAR COLORADO CITY, TX

LOCATION.--Lat 32°20'41", long 100°55'10", Mitchell County, Hydrologic Unit 12080002, on left bank at municipal water-intake structure, 1.7 mi (2.7 km) upstream from Colorado City Dam on Morgan Creek, 2.2 mi (3.5 km) downstream from the Texas and Pacific Railway Co. bridge, 2.5 mi (4.0 km) upstream from mouth, and 4.0 mi (6.4 km) southwest of Colorado City.

DRAINAGE AREA.--322 mi² (834 km²), of which 32 mi² (83 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- April 1949 to current year.

REVISED RECORDS .-- WSP 1922: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to Aug. 23, 1950, nonrecording gages at or near powerplant about 0.7 (1.1 km) downstream at same datum.

REMARKS.--The lake is formed by a rolled earthfill dam 4,800 ft (1,460 m) long. Storage began in April 1949, and the dam was completed in September 1949. The dam and lake are owned by the Texas Electric Service Co. to operate their thermal electric power-plant. The uncontrolled emergency spillway is an excavated cut channel through natural ground 1,200 ft (366 m) wide located 600 ft (180 m) upstream and to the left of left end of dam. The spillway is designed to discharge 150,000 ft/s/s (4,250 m/s) at the maximum design flood elevation. The service spillway is an uncontrolled rectangular drop inlet located 100 ft (30 m) upstream from dam with two uncontrolled openings of 10.0 by 12.0 ft (3.0 by 3.7 m), which is designed for a maximum discharge of 5,000 ft³/s (142 m³/s). A service outlet is provided for small releases downstream through a 30 in (762 mm) valve-controlled concrete pipe. Records furnished by the Texas Electric Service Co. indicate that 9,560 acre-ft (11.8 hm³) was pumped from Champion Creek Reservoir (station 08123600) into Lake Colorado City during the current year. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	(feet)	(acre-feet)
Top of dam	2,090.0	
Design flood	2.086.7	70.700
Crest of spillway	2.073.7	37,850
Crest of service spillway (top of conservation pool)	2.070.2	31,640
Lowest gated outlet (invert)	2,024.3	316

COOPERATION.--Capacity curve was furnished by the Texas Electric Service Co. Record of diversions for municipal use was furnished by the city of Colorado City.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 40,280 acre-ft (49.7 hm³) Sept. 7, 1962, elevation, 2,075.10 ft (632.490 m); minimum since first appreciable storage, 5,800 acre-ft (7.15 hm²) Apr. 11-13, 1950, elevation, 2,045.72 ft (623.536 m).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 15,990 acre-ft (19.7 hm²) Sept. 30, elevation, 2,058.17 ft (627.330 m); minimum, 13,880 acre-ft (17.1 hm³) Aug. 25, 31, elevation, 2,056.07 ft (626.690 m).

Capacity table (elevation, in feet, and total contents, in acre-feet)

13,820 15,820 17,980 2.056.0 2,058.0 2.060.0

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	14510	14960	15000	14890	14810	15610	14830	14610	14990	14480	14150	13910
2	14530	14910	15020	14880	14850	15580	14810	14740	15030	14500	14140	13920
3	14540	14880	15040	14870	14850	15560	14780	14740	15000	14650	14150	13920
4	14560	14860	15060	14850	14890	15550	14740	14760	14970	14790	14160	14000
5	14580	14840	15080	14840	14920	15530	14710	14780	14930	14770	14170	14020
6	14590	14820	15100	14830	14990	15520	14680	14800	14900	14760	14170	14010
7	14600	14810	15120	14800	15020	15490	14630	14810	14860	14740	14170	14040
8	14600	14800	15130	14780	15060	15470	14600	14800	14820	14730	14160	14060
9	14630	14740	15140	14750	15090	15460	14600	14810	14790	14720	14160	14070
10	14680	14700	15140	14720	15120	15430	14570	14810	14770	14700	14160	14080
11	14670	14700	15160	14700	15150	15410	14590	14820	14760	14680	14150	14080
12	14680	14680	15200	14690	15230	15380	14590	14820	14740	14650	14140	14080
13	14700	14670	15200	14680	15260	15350	14590	14820	14740	14600	14120	14060
14	14710	14650	15230	14660	15280	15330	14600	14810	14720	14550	14100	14070
15	14710	14650	15230	14670	15310	15290	14620	14820	14710	14510	14080	14060
16	14730	14680	15200	14630	15340	15270	14630	14810	14690	14450	14030	14060
17	14750	14690	15170	14610	15370	15250	14610	14810	14660	14410	14010	14040
18	14770	14720	15150	14590	15410	15220	14610	14800	14660	14360	14000	14010
19	14750	14750	15140	14560	15450	15190	14610	14840	14650	14350	13980	14000
20	14750	14760	15110	14550	15470	15160	14610	15180	14640	14330	13940	14030
21	14770	14770	15090	14550	15490	15130	14610	15220	14620	14310	13930	14210
22	14790	14800	15060	14530	15520	15110	14620	15220	14600	14310	13910	15230
23	14810	14830	15050	14520	15550	15090	14630	15190	14580	14270	13900	15620
24	14830	14850	15030	14540	15580	15060	14610	15150	14570	14250	13890	15720
25	14860	14870	15000	14560	15600	15040	14610	15110	14550	14240	13890	15810
26	14870	14900	14980	14580	15630	15020	14610	15060	14530	14220	13920	15890
27	14900	14910	14960	14610	15650	14990	14600	15020	14510	14190	13910	15940
28	14930	14920	14980	14650	15630	14950	14610	14980	14500	14170	13900	15970
29	14950	14950	14970	14680	13030	14910	14610	14960	14480	14160	13890	15980
30	14980	14970	14960	14730		14890	14610	14920	14480	14170	13890	15990
31	14990		14940	14780		14870	14010	14920	14460	14160	13890	15990
MAX	14990	14970	15230	14890	15650	15610	14830	15220	15030	14790	14170	15990
MIN	14510	14650	14940	14520	14810	14870	14570	14610	14480	14160	13890	13910
(†)	2057.19	2057.17	2057.14	2056.98	2057.82	2057.07	2056.81	2057.13	2056.68			
(+)	+470	-20	-30	-610	+850					2056.35	2056.08	2058.17
(++)	116	95	103			-760	-260	+320	-450	-320	-270	+2100
(11)	110	35	103	96	86	134	182	172	217	235	216	131

CAL YR 1977 20250 MIN 14510 13890 # -5330 # +1470 15990 tt 1780

Elevation, in feet, at end of month. Change in contents, in acre-feet. Diversions, in acre-feet, for municipal use.

08123000 LAKE COLORADO CITY NEAR COLORADO CITY, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1969 to current year.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM. DIS- SOLVED (MG/L AS NA)
NOV									
30	0910	2790	8.1	11.5	680	540	120	92	390
11	1440	2890	7.7	10.0	700	550	130	91	400
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA+ DIS- SOLVED (MG/L AS SI02)	SOLIDS. SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
NOV 30	6.5	27	170	0	710	460	1.0	6.1	1890
JAN 11	6.6	26	180	0	680	520	1.1	5.0	1940

51

LOCATION.--Lat 32°16'53", long 100°51'30", Mitchell County, Hydrologic Unit 12080002, in service outlet structure at Champion Creek, Dam on Champion Creek, 0.9 mi (1.4 km) upstream from mouth, 4.8 mi (7.7 km) downstream from State Highway 208, and 7.2 mi (11.6 km) south of Colorado City.

DRAINAGE AREA .-- 203 mi 2 (526 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- April 1959 to current year.

REVISED RECORDS. -- WSP 1922: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to Sept. 29, 1959, nonrecording

REMARKS.--The reservoir is formed by a rolled earthfill dam about 6,800 ft (2,070 m) long. The dam was completed on Apr. 30, 1959. Closure and storage began in February 1959. The capacity curve is based on Geological Survey topographic map surveyed in 1950; excavation for borrow, estimated not to exceed 1,200 acre-ft (1.23 hm²), is not included. The dam and reservoir are owned and operated by the Texas Electric Service Co. Water may be pumped from the reservoir through a 24 in (610 mm) pipeline to Lake Colorado City (station 08123000) for municipal use and for cooling operations of a steam generating powerplant. There are two spillways. The uncontrolled emergency spillway, 450 ft (137 m) wide 0, 1800 ft (549 m) long, is located at the right end of dam. The controlled service spillway, a cut channel 50 ft (15 m) wide, about 1,800 ft (549 m) long, and 8 ft (2 m) deep, is cut into the emergency spillway at the extreme right end. There is a controlled drop-inlet structure, 4.0 by 5.0 ft (1.2 by 1.5 m), with a side opening of 1.5 by 3.0 ft (0.5 by 0.9 m). Figures given herein represent total contents. Data regarding the dam and reservoir are given in the following table:

	(feet)	(acre-feet)
Top of dam	2,109.0	
Design flood	2,104.1	90,020
Crest of spillway	2,091.0	56,800
Crest of spillway (top of conservation pool)	2.083.0	42,500
Lowest gated outlet (invert)	2,020.0	800

COOPERATION. -- Record of diversions into Lake Colorado City was furnished by the Texas Electric Service Co.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 27,910 acre-ft (34.4 hm³) June 19, 1966, elevation, 2,071.98 ft (631.540 m); min-imum, 1,600 acre-ft (1.97 hm³) Oct. 1, 1959, elevation, 2,025.90 ft (617.494 m).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 16,860 acre-ft (20.8 hm³) Oct. 2, elevation, 2,060.37 ft (628.001 m); minimum, 7,830 acre-ft (9.65 hm³) Sept. 30, elevation, 2,046.35 ft (623.727 m).

Capacity table (elevation, in feet, and total contents, in acre-feet)

2,046.0 7.660 12,160 17,360 2 054 0 2,061.0

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 INSTANTANEOUS OBSERVATIONS AT 2400

DAY							o oborni		4.100				
16820	DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
16820	1	16760	15390	14400	12000	12450	12400	12200	11160	12020	11670	10460	9070
4 16710 15340 14350 13800 13360 12470 12380 11210 12980 11670 10310 8870 5 16660 15340 14350 13810 13320 12470 12380 11210 12960 11650 10270 8840 6 16620 15340 14220 13800 13290 12470 12380 11060 12960 11650 10220 8790 7 16570 15350 14180 13810 13270 12470 12380 11060 13050 11510 10170 8760 8 16510 15350 14150 13800 13220 12470 12380 11060 13050 11510 10170 8760 9 16470 15320 14080 13800 13220 12470 12360 11010 13040 11460 10130 8720 10 16440 15310 14030 13790 13180 12470 12370 10960 13010 13990 10080 8670 11 16340 15310 13990 13780 13100 12480 12270 10870 12890 11280 9980 8580 12 16280 15300 13950 13780 13100 12470 12230 10960 12860 11250 9920 8540 13 16220 15310 13910 13790 13060 12470 12160 10750 12810 11210 9870 8480 14 16170 15310 13870 13790 13020 12470 12160 10750 12810 11210 9870 8480 15 16120 15290 13830 13800 12890 12470 12050 10650 12680 11200 9800 8380 16 16060 15240 13840 13800 12890 12450 11940 10540 12540 11130 9700 8280 18 15970 15130 13830 13800 12890 12450 11970 10600 12610 11180 9700 8280 18 15970 15100 13830 13800 12890 12450 11970 10600 12610 11180 9700 8280 18 15970 15100 13830 13800 12890 12450 11970 10540 12470 11080 9650 8220 19 15940 15040 13820 13790 12750 12450 11750 12260 12350 10950 9580 8130 21 15800 14970 13800 13790 12750 12450 11750 12260 12350 10950 9580 8130 21 15900 14970 13800 13790 12750 12440 11680 12920 12200 10860 9470 8090 23 15800 14970 13800 13790 12750 12440 11680 12920 12200 10860 9470 8090 24 15750 14830 13800 13790 12750 12440 11690 12920 12200 10860 9470 8090 25 15840 14930 13800 13760 12540 12400 11590 12920 12100 10760 9300 8010 26 15850 14600 13800 13760 12540 12400 11590 12990 11100 10760 9300 8010 26 15850 14600 13800 13760 12540 12400 11190 10490 11700 10560 9000 7830 31 15420 14530 13800 13600 12470 12400 11190 10490 11700 10560 9000 7830 31 15420 14530 13800 13500 12470 12400 11190 10490 11700 10560 9000 7830 31 15420 14530 13790 13550 12470 12400 11190 10490 11700 10560 9000 7930 31 15420 14550 13750 13550 12470 12400 11190 10490 11700 10560 9000 7930 3	2												
4 16710 15340 14350 13800 13360 12470 12380 11210 12980 11670 10310 8870 5 16660 15340 14350 13810 13320 12470 12380 11210 12960 11650 10270 8840 6 16620 15340 14220 13800 13290 12470 12380 11060 12960 11650 10220 8790 7 16570 15350 14180 13810 13270 12470 12380 11060 13050 11510 10170 8760 8 16510 15350 14150 13800 13220 12470 12380 11060 13050 11510 10170 8760 9 16470 15320 14080 13800 13220 12470 12360 11010 13040 11460 10130 8720 10 16440 15310 14030 13790 13180 12470 12370 10960 13010 13990 10080 8670 11 16340 15310 13990 13780 13100 12480 12270 10870 12890 11280 9980 8580 12 16280 15300 13950 13780 13100 12470 12230 10960 12860 11250 9920 8540 13 16220 15310 13910 13790 13060 12470 12160 10750 12810 11210 9870 8480 14 16170 15310 13870 13790 13020 12470 12160 10750 12810 11210 9870 8480 15 16120 15290 13830 13800 12890 12470 12050 10650 12680 11200 9800 8380 16 16060 15240 13840 13800 12890 12450 11940 10540 12540 11130 9700 8280 18 15970 15130 13830 13800 12890 12450 11970 10600 12610 11180 9700 8280 18 15970 15100 13830 13800 12890 12450 11970 10600 12610 11180 9700 8280 18 15970 15100 13830 13800 12890 12450 11970 10540 12470 11080 9650 8220 19 15940 15040 13820 13790 12750 12450 11750 12260 12350 10950 9580 8130 21 15800 14970 13800 13790 12750 12450 11750 12260 12350 10950 9580 8130 21 15900 14970 13800 13790 12750 12440 11680 12920 12200 10860 9470 8090 23 15800 14970 13800 13790 12750 12440 11680 12920 12200 10860 9470 8090 24 15750 14830 13800 13790 12750 12440 11690 12920 12200 10860 9470 8090 25 15840 14930 13800 13760 12540 12400 11590 12920 12100 10760 9300 8010 26 15850 14600 13800 13760 12540 12400 11590 12990 11100 10760 9300 8010 26 15850 14600 13800 13760 12540 12400 11190 10490 11700 10560 9000 7830 31 15420 14530 13800 13600 12470 12400 11190 10490 11700 10560 9000 7830 31 15420 14530 13800 13500 12470 12400 11190 10490 11700 10560 9000 7830 31 15420 14530 13790 13550 12470 12400 11190 10490 11700 10560 9000 7930 31 15420 14550 13750 13550 12470 12400 11190 10490 11700 10560 9000 7930 3	2												
\$\$\$16660\$\$15340\$\$14350\$\$13810\$\$13320\$\$12470\$\$12380\$\$11160\$\$12960\$\$11650\$\$10270\$\$8840\$\$\$\$\$6\$\$16520\$\$15340\$\$14220\$\$13800\$\$13270\$\$12470\$\$12380\$\$11120\$\$13040\$\$11580\$\$10220\$\$8790\$\$7\$\$16570\$\$15350\$\$14180\$\$13800\$\$13270\$\$12470\$\$12380\$\$11060\$\$13050\$\$11510\$\$10170\$\$8760\$\$8\$\$16510\$\$15350\$\$14150\$\$13800\$\$13220\$\$12470\$\$12380\$\$11010\$\$13040\$\$11460\$\$10130\$\$8720\$\$9\$\$16470\$\$15320\$\$14150\$\$13800\$\$13180\$\$12470\$\$12380\$\$11010\$\$13040\$\$11460\$\$10130\$\$8720\$\$9\$\$16470\$\$15320\$\$14150\$\$13800\$\$13180\$\$12470\$\$12370\$\$10960\$\$13010\$\$11390\$\$10080\$\$8670\$\$10\$\$16440\$\$15310\$\$14030\$\$13790\$\$13140\$\$12470\$\$12370\$\$10990\$\$12940\$\$11340\$\$10030\$\$8650\$\$11\$\$16280\$\$15300\$\$13950\$\$13780\$\$13100\$\$12470\$\$12220\$\$108800\$\$12860\$\$11250\$\$9980\$\$8580\$\$12\$\$16280\$\$15300\$\$13950\$\$13780\$\$13100\$\$12470\$\$12220\$\$108800\$\$12860\$\$11250\$\$9920\$\$8540\$\$1310\$\$13620\$\$15310\$\$13910\$\$13790\$\$13060\$\$12470\$\$12200\$\$10750\$\$12810\$\$11210\$\$9870\$\$8480\$\$14\$\$16170\$\$15310\$\$13910\$\$13870\$\$13300\$\$122470\$\$12100\$\$10750\$\$12810\$\$11210\$\$9870\$\$8480\$\$14\$\$16170\$\$15310\$\$13870\$\$13870\$\$13800\$\$12980\$\$12470\$\$12100\$\$10750\$\$12810\$\$11210\$\$9870\$\$8480\$\$14\$\$16170\$\$15310\$\$13870\$\$13800\$\$12980\$\$12470\$\$12100\$\$10750\$\$12740\$\$11200\$\$9810\$\$8380\$\$1500\$\$15100\$\$13800\$\$12980\$\$12470\$\$12100\$\$10750\$\$12680\$\$11200\$\$9800\$\$8380\$\$17\$\$16010\$\$15180\$\$13800\$\$13800\$\$12980\$\$12470\$\$12100\$\$10750\$\$12680\$\$11200\$\$9800\$\$8380\$\$17\$\$16010\$\$15180\$\$13800\$\$13830\$\$12980\$\$12450\$\$11940\$\$10540\$\$12540\$\$11130\$\$9700\$\$8220\$\$1870\$\$20\$\$13830\$\$13800\$\$12850\$\$12450\$\$11870\$\$1090\$\$12470\$\$11080\$\$9650\$\$8220\$\$1880\$\$10750\$\$130\$\$13800\$\$13800\$\$12850\$\$12450\$\$11870\$\$1090\$\$12470\$\$11080\$\$9650\$\$8220\$\$18500\$\$14870\$\$13800\$\$13800\$\$12800\$\$12440\$\$11800\$\$10500\$\$12410\$\$11100\$\$9590\$\$8170\$\$20\$\$15940\$\$14800\$\$13800\$\$13800\$\$12850\$\$12440\$\$11800\$\$10500\$\$12410\$\$1100\$\$9590\$\$8170\$\$20\$\$15940\$\$14870\$\$13800\$\$13800\$\$13800\$\$12850\$\$12450\$\$11870\$\$10540\$\$12400\$\$11900\$\$10500\$\$9300\$\$8130\$\$22100\$\$10860\$\$9470\$\$8090\$\$23\$\$15800\$\$14870\$\$13800\$\$13800\$\$13800\$\$12670\$\$12440\$\$11500\$\$12930\$\$12140\$\$10800\$\$9590\$\$8130\$\$215500\$\$2440\$\$11500\$\$12930\$\$12140\$\$11800\$\$990\$\$270\$\$9500\$\$280\$\$215500\$\$14400\$\$11900\$\$12890\$\$11880\$\$107100\$\$20\$\$7960\$\$2	3												
6													
7 16570 15350 14180 13810 13270 12470 12360 11060 13050 11510 10170 8760 8 16510 15350 14150 13800 13220 12470 12360 11010 13040 11460 10130 8720 9 16470 15320 14080 13800 13180 12470 12370 10960 13010 11390 10080 8670 10 16440 15310 14030 13790 13140 12470 12370 10960 13010 11390 10080 8670 11 16440 15310 14030 13790 13140 12470 12370 10960 13010 11390 10080 8670 11 16440 15310 13990 13780 13100 12470 12230 10900 12940 11340 10030 8630 12 16280 15300 13950 13780 13100 12470 12220 10800 12860 11250 9920 8540 13 16220 15310 13910 13790 13060 12470 12220 10800 12860 11250 9920 8540 14 16170 15310 13870 13870 13020 12470 12100 10750 12810 11210 9870 8480 15 16120 15290 13830 13800 12980 12470 12100 10750 12810 11210 9810 8440 15 16120 15290 13830 13800 12980 12470 12050 10650 12680 11200 9800 8380 16 16060 15240 13830 13800 12880 12470 12050 10650 12680 11200 9800 8380 17 16010 15180 13830 13800 12880 12450 11940 10540 12540 11180 9760 8280 18 15970 15130 13830 13800 12850 12450 11940 10540 12540 11180 9760 8280 18 15970 15130 13820 13800 12850 12450 11870 10490 12470 11080 9650 8220 15940 15040 13820 13820 12850 12450 11870 10490 12470 11080 9650 8220 15940 15040 13820 13800 12800 12440 11810 10540 12410 11020 9890 8370 15940 15040 13820 13790 12750 12450 11750 12260 12350 10950 9580 8130 12560 12580 14970 13800 13800 12670 12440 11640 12920 12200 10860 9470 8090 23 15800 14870 13800 13800 12670 12440 11640 12920 12200 10860 9470 8090 24 15860 14970 13800 13790 12550 12440 11500 12920 12100 10760 9300 8010 1560 14680 13790 13650 12470 12420 11350 12990 11880 10710 9220 7960 28 15600 14680 13790 13650 12470 12420 11350 12990 11700 10760 9300 8010 15600 14680 13790 13650 12470 12420 11350 12990 11700 10560 9050 7830 15540 14530 13810 13560 12400 1190 12900 11700 10560 9050 7830 15400 14580 13810 13560 12400 1190 14900 11700 10560 9050 7830 15400 14580 13810 13560 12400 1190 14900 11700 10560 9050 7830 15400 14580 13810 13560 12400 1190 14900 11700 10560 9050 7830 15400 14580 13810 13560 12400 11	5	16660	15340	14350	13810	13320	12470	12380	11160	12960	11650	10270	8840
8 16510 15350 14150 13800 13220 12470 12370 13040 13040 11460 10130 8720 16470 15320 14080 13800 13180 12470 12370 10960 13010 11390 10080 8670 16440 15310 14030 13790 13140 12470 12330 10900 12940 11340 10030 8630 11 16440 15310 13990 13780 13100 12470 12330 10900 12940 11340 10030 8630 11 16340 15310 13990 13780 13100 12470 12230 10800 12860 11250 9980 8580 12 16280 15300 13950 13780 13100 12470 12220 10800 12860 11250 9920 8540 13 16220 15310 13910 13790 13060 12470 12160 10750 12810 11210 9870 8840 14 16170 15310 13870 13790 13060 12470 12100 10700 12740 11200 9810 8440 15 16120 15290 13830 13800 12980 12470 12050 10650 12680 11200 9800 8380 16 16200 15180 13830 13800 12980 12470 12050 10650 12680 11200 9800 8380 17 16000 15180 13830 13800 12890 12450 11940 10540 12540 11130 9700 8280 18 15970 15130 13830 13800 12890 12450 11940 10540 12540 11130 9700 8280 18 15970 15130 13830 13800 12880 12450 11940 10540 12540 11130 9700 8280 18 15970 15090 13830 13800 12850 12450 11870 10490 12470 11080 9650 8220 15940 15040 13820 13830 12800 12440 11810 10540 12470 11080 9650 8220 15940 15040 13820 13800 12800 12440 11810 10540 12410 11020 9580 8170 20 15940 15040 13820 13790 12750 12440 11680 12920 12350 10950 9580 8130 121 15900 14970 13800 13800 12670 12440 11680 12920 12000 10860 9470 8090 23 15800 14870 13800 13800 12670 12440 11680 12920 12000 10860 9470 8090 24 15750 14830 13800 13790 12540 11590 12930 12140 10880 9420 8060 24 15750 14830 13800 13760 12540 12400 11590 12930 12140 10880 9470 8090 25 15600 14600 13810 13560 12400 1190 12890 11700 10560 9950 7960 28 15600 14680 13810 13560 12400 1190 12890 11700 10560 9950 7830 15470 14530 13810 13560 12400 1190 12890 11700 10560 9950 7830 15470 14530 13810 13560 12400 1190 10490 11700 10560 9050 7830 15470 14530 13810 13560 12400 1190 10490 11700 10560 9050 7830 15470 14530 13810 13560 12400 1190 10490 11700 10560 9050 7830 15470 14530 13810 13560 12400 1190 10490 11700 10560 9050 7830 15470 14530 13810 13560 12400 1190 10490													
9 16470 15320 14080 13800 13180 12470 12330 10900 12940 11340 10030 8670 16440 15310 14030 13790 13140 12470 12330 10900 12940 11340 10030 8670 16440 15310 13990 13780 13100 12480 12270 10870 12890 11280 9980 8580 12 16280 15300 13950 13780 13100 12470 12220 10800 12860 11250 9920 8540 13 16220 15310 13910 13790 13060 12470 12160 10750 12810 11210 9870 8480 14 16170 15310 13870 13790 13020 12470 12100 10700 12740 11200 9810 8480 15 16120 15290 13830 13800 12980 12470 12050 10650 12680 11200 9800 8380 16620 15290 13830 13800 12980 12470 12050 10650 12680 11200 9800 8380 17 16010 15180 13830 13800 12980 12450 11940 10540 12540 11130 9700 8280 18 15970 15130 13830 13800 12880 12450 11940 10540 12540 11130 9700 8280 18 15970 15130 13830 13800 12880 12450 11940 10540 12540 11130 9700 8280 19 15970 15090 13830 13800 12880 12450 11870 10490 12470 11080 9650 8220 19 15940 15040 13820 13790 12750 12450 11870 10490 12470 11080 9650 8220 19 15940 15040 13820 13790 12750 12450 11870 10490 12470 11080 9650 8220 19 15940 15040 13820 13790 12750 12450 11870 10540 12350 10950 9580 8130 12600 12440 11810 10540 12210 1020 9590 8170 15940 15040 13820 13790 12750 12450 11940 10540 12280 10890 9520 8140 1250 1250 1250 1250 1250 1250 1250 125													
10					13800	13220	12470	12360	11010	13040	11460	10130	8720
11		16470	15320	14080	13800	13180	12470	12370	10960	13010	11390	10080	8670
12 16220 15300 13950 13780 13100 12470 12220 10800 12860 11250 9920 8540 13 16220 15310 13910 13790 13060 12470 12160 10750 12810 11210 9810 8480 15 16120 15290 13830 13800 12980 12470 12100 10700 12740 11200 9810 8480 15 16120 15290 13830 13800 12980 12470 12050 10650 12680 11200 9800 8380 16 16 16 16 16 16 16 16 16 16 16 16 16	10	16440	15310	14030	13790	13140	12470	12330	10900	12940	11340	10030	8630
12	11	16340	15310	13990	13780	13100	12480	12270	10870	12890	11280	9980	8580
13	12	16280	15300	13950	13780								
14	13	16220	15310										
15													
16													
17													
18 15970 15130 13830 13800 12850 12450 11870 10490 12470 11080 9650 8220 19 15970 15990 13830 13800 12800 12440 11810 10540 12410 11020 9590 8170 20 15940 15040 13820 12750 12450 11750 12260 12350 10950 9580 8130 21 15900 14970 13800 13790 12710 12440 11680 12880 12280 10890 9520 8140 22 15840 14930 13800 13800 12670 12440 11640 12920 12200 10860 9470 8090 23 15800 14870 13800 13790 12520 12440 11530 12930 12140 10880 9420 8060 24 15750 14830 13800 13760 12540 12430 11460													
19					13800	12890	12450	11940	10540	12540	11130	9700	8280
15970 15090 13830 13800 12800 12440 11810 10540 12410 11020 9590 8170	18	15970	15130	13830	13800	12850	12450	11870	10490	12470	11080	9650	8220
20	19	15970	15090	13830	13800	12800	12440	11810	10540	12410	11020	9590	
22 15840 14930 13800 13800 12670 12440 11640 12920 12200 10860 9470 8090 23 15800 14870 13800 13800 12620 12440 11590 12930 12140 10880 9470 8090 24 15750 14830 13800 12620 12440 11590 12930 12140 10880 9420 8060 25 15690 14790 13800 13760 12540 12430 11460 12920 12010 10760 9300 8010 26 15650 14730 13790 13650 12470 12420 11350 12890 11880 10710 9270 7990 27 15600 14680 13790 13650 12470 12420 11350 12890 11880 10710 9220 7960 28 15560 14640 13810 13560 12400 11250	20	15940	15040										
22 15840 14930 13800 13800 12670 12440 11640 12920 12200 10860 9470 8090 23 15800 14870 13800 13800 12620 12440 11590 12930 12140 10880 9470 8090 24 15750 14830 13800 12620 12440 11590 12930 12140 10880 9420 8060 25 15690 14790 13800 13760 12540 12430 11460 12920 12010 10760 9300 8010 26 15650 14730 13790 13650 12470 12420 11350 12890 11880 10710 9270 7990 27 15600 14680 13790 13650 12470 12420 11350 12890 11880 10710 9220 7960 28 15560 14640 13810 13560 12400 11250	21	15000	14070	12000	12700	12710	10440	11600	12000	12200	10000	0520	0140
23													
24 15750 14830 13800 13790 12590 12440 11530 12920 12070 10820 9360 8040 25 15690 14790 13800 13760 12540 12430 11460 12920 12010 10760 9300 8010 26 15650 14730 13790 13650 12470 12430 11410 12920 11950 10760 9270 7990 27 15600 14680 13800 13610 12490 12420 11350 12910 11820 10670 9170 7920 28 15560 14640 13800 13610 12490 12420 11300 12910 11820 10670 9170 7920 29 15510 14580 13810 13560 12400 11250 12890 11760 10610 9110 7880 30 15470 14530 13810 13560 12400													
25	23												
26													
27	25	15690	14/90	13800	13760	12540	12430	11460	12920	12010	10760	9300	8010
28				13790									
29 15510 14580 13810 13560 12400 11250 12890 11760 10610 9110 7880 30 15470 14530 13810 13540 12400 11190 12890 11700 10560 9050 7830 31 15420 13830 13500 12400 12930 10510 9000 900													
30						12490	12420	11300	12910	11820	10670	9170	7920
31 15420 13830 13500 12400 12930 10510 9000 MAX 16820 15380 14490 13810 13450 12500 12400 12930 13050 11670 10460 8970 MIN 15420 14530 13790 13500 12470 12400 11190 10490 11700 10510 9000 7830 (†) 2058.54 2057.37 2056.39 2055.91 2054.47 2054.34 2052.50 2055.10 2053.30 2051.36 2048.62 2046.35 (†) -1400			14580	13810	13560		12400	11250	12890	11760	10610	9110	7880
31 15420 13830 13500 12400 12930 10510 9000 MAX 16820 15380 14490 13810 13450 12500 12400 12930 13050 11670 10460 8970 MIN 15420 14530 13790 13500 12470 12400 11190 10490 11700 10510 9000 7830 (†) 2058.54 2057.37 2056.39 2055.91 2054.47 2054.34 2052.55 2055.10 2053.30 2051.36 2048.62 2046.35 (†) -14008907003301010901210 +17401230119015101700	30	15470	14530	13810	13540		12400	11190	12890	11700	10560	9050	7830
MIN 15420 14530 13790 13500 12470 12400 11190 10490 11700 10510 9000 7830 (†) 2058.54 2057.37 2056.39 2055.91 2054.47 2054.34 2052.50 2055.10 2053.30 2051.36 2048.62 2046.35 (†) -1400 -890 -700 -330 -1010 -90 -1210 +1740 -1230 -1190 -1510 -1170	31	15420		13830									
MIN 15420 14530 13790 13500 12470 12400 11190 10490 11700 10510 9000 7830 (†) 2058.54 2057.37 2056.39 2055.91 2054.47 2054.34 2052.50 2055.10 2053.30 2051.36 2048.62 2046.35 (†) -1400 -890 -700 -330 -1010 -90 -1210 +1740 -1230 -1190 -1510 -1170	MAX	16820	15380	14490	13810	13450	12500	12400	12030	13050	11670	10460	8970
(†) 2058.54 2057.37 2056.39 2055.91 2054.47 2054.34 2052.50 2055.10 2053.30 2051.36 2048.62 2046.35 (†) -1400 -890 -700 -330 -1010 -90 -1210 +1740 -1230 -1190 -1510 -1170													
(±) -1400 -890 -700 -330 -1010 -90 -1210 +1740 -1230 -1190 -1510 -1170													
(11) 0 002 004 302 12/0 0 539 886 1080 1290 1340 1430													
	(11)	0	082	084	362	12/0	0	539	886	1080	1290	1340	1430

17510 16820 -990 7830 MIN -8990 9560

† Elevation, in feet, at end of month. ‡ Change in contents, in acre-feet. †† Diversions, in acre-feet, into Lake Colorado City.

08123600 CHAMPION CREEK RESERVOIR NEAR COLORADO CITY, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1969 to current year.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
DEC									
05	1305	1160	7.8	15.0	420	280	86	49	88
									SOLIDS,
	SODIUM	POTAS-				CHLO-	FLU0-	SILICA.	SUM OF
	AD-	SIUM,	BICAR-		SULFATE	RIDE,	RIDE,	DIS-	CONSTI-
	SORP-	DIS-	BONATE	CAR-	DIS-	DIS-	DIS-	SOLVED	TUENTS,
	TION	SOLVED	(MG/L	BONATE	SOLVED	SOLVED	SOLVED	(MG/L	DIS-
	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L	(MG/L	AS	SOLVED
DATE		AS K)	HC03)	AS C03)	AS 504)	AS CL)	AS F)	\$102)	(MG/L)
DEC									
05	1.9	9.4	170	0	320	91	.6	1.3	729

08123650 BEALS CREEK ABOVE BIG SPRING, TX

LOCATION.--Lat 32°15'01", long 101°29'26", Howard County, Hydrologic Unit 12080007, on left bank at end of Channing Street in Big Spring, just downstream from Onemile Lake, 2.9 mi (4.7 km) upstream from Little Sandy Creek, 7.5 mi (12.1 km) downstream from confluence of Sulphur Springs Creek and Mustang Draw, and 71.1 mi (114.4 km) upstream from mouth.

DRAINAGE AREA.--9,409 mi² (24,369 km²), of which 8,915 mi² (23,090 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- January 1959 to current year.

REVISED RECORDS .-- WSP 1732: 1959(M).

CAL YR 1977 TOTAL 125.32

GAGE.--Water-stage recorder and concrete control. Datum of gage is 2,400.02 ft (731.526 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Runoff from contributing drainage area is largely regulated by several natural salt lakes. Records of diversions from Threemile and Fourmile Lakes (natural lakes upstream from gage on Beals Creek) into Natural Salt Lake (natural lake on Sulphur Springs) 7.0 mi (11.3 km) upstream from gage were furnished by the Colorado River Municipal Water District.

AVERAGE DISCHARGE.--19 years (water years 1960-78), 1.16 ft3/s (0.0329 m3/s), 840 acre-ft/yr (1.04 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 255 ft³/s (7.22 m³/s) Sept. 6, 1962, gage height, 5.95 ft (1.814 m); no flow most of time.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 10, 1057, was highest known since 1932, from comparision of floods at a point 4 mi (6 km) downstream, from information by City Engineering Department. Flood of June 12, 1938, reached a stage of about 7.6 ft (2.32 m) at present site and datum, from information by Texas and Pacific Railway Co.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 90 ft³/s (2.55 m³/s) Sept. 21, gage height, 3.92 ft (1.195 m); no flow most of time.

		DISCHAP	RGE, IN	CUBIC FEET	PER SECO	ND, WATER AN VALUES	YEAR OCTO	OBER 1977	TO SEPTE	1BER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2 3 4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
9	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
11	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
12	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
13	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
14	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
15	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
16	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
17	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
21	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	77
22	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00-	66
23	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	29
24	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	11
25	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	7.4
26	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	5.9
27	.00	.00	.00	.00	.00	.00	.00	.00	.00	•.00	.00	4.4
28	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	3.1
29	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	2.2
30	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	1.8
31	.00		.00	.00		.00		.00		.00	.00	
TOTAL	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	207.80
MEAN	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	6.93
MAX	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	77
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
AC-FT	.00	.00	.00	.00	.00	.00	.00-	.00	.00	.00	.00	412
(†)	0	0	0	0	0	59	0	0	0	0	0	10

WTR YR 1978 TOTAL 207.80 MEAN .57 MAX 77 MIN .00 AC-FT 412 † 69

MAX 31

MEAN .34

.00

t Diversions, in acre-feet, from creek for brine disposal by Colorado River Municipal Water District.

08123650 BEALS CREEK ABOVE BIG SPRING, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: April 1973 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: April 1973 to current year. WATER TEMPERATURES: April 1973 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 74,000 micromhos May 9, 1974; minimum daily, 2,310 micromhos Sept. 22, 1978.
WATER TEMPERATURES: Maximum daily, 36.0°C July 9, 30, 1977; minimum daily, 0.0°C Dec. 31, 1976, Jan. 9, 29, 1977.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 5,970 micromhos Sept. 30; minimum daily, 2,310 micromhos Sept. 22.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE		TIME	STRE FLO INST TANE	CI AM- CO W, DU AN- AN OUS (MI	CT- NE CE (M CRO- A	RD- I SS NG G/L BG S	HARD- NESS, ONCAR- ONATE (MG/L CACO3)	CALCI DIS- SOLV (MG/ AS C	UM SI DI ED SOL L (MG		(UM, S- SC /ED 1	DDIUM AD- DRP- TION ATIO
SFP												
21		1722	86		2430	520	480	78	1	re 32	20	6.1
										THE WAY	SOLTOS	
			POTAS-				СН	L0-	FLUO-	SILICA.	SUM OF	
			SIUM.	BICAR-		SULFAT	E RI	DE,	RIDE,	DIS-	CONSTI-	
			DIS-	BONATE	CAR-	DIS-	DI	S-	DIS-	SOLVED	TUENTS,)
			SOLVED	(MG/L	BONATE	SOLVE	D SO	LVED	SOLVED	(MG/L	D15-	
			(MG/L	AS	(MG/L	(MG/L	_ (M	G/L	(MG/L	AS	SOI VED)
	DATE		AS K)	HC03)	AS C03)	AS 504	AS	CL)	AS F)	\$105)	(MG/L)	
9	EP											
	21	•	13	44	0	390	5	80	.3	2.2	1480	1

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

MONTH	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVE CHLORI (TONS	D SOLVED DE SULFATE	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA+MG) (MG/L)
OCT. 1977	0	*****	******	0	******	0	******	0	****
NOV. 1977	0	******	******	0	******	0	******	0	****
DEC. 1977	0	******	******	0	******	0	******	0	****
JAN. 1978	0	******	******	0	******	0	******	0	****
FEB. 1978	0	******	******	0	******	0	******	0	****
MAR. 1978	0	******	******	0	******	0	******	0	****
APR. 1978	0	******	******	0	******	0	******	0	****
MAY 1978	0	******	*******	0	******	n	******	0	****
JUNE 1978	0	******	******	0	******	0	******	0	****
JULY 1978	0	******	******	0	*******	0	******	0	****
AUG. 1978	0	******	******	0	******	0	******	0	****
SEPT 1978	207.8	2490	1470	823	620	349	400	225	470
TOTAL	207.8	**	••	823	**	349	**	225	**
WTD.AVG	0.57	2490	1500	**	620	**	400	**	470

55

08123650 BEALS CREEK ABOVE BIG SPRING, TX--Continued

	SPE	CIFIC CONDU	CTANCE (MICROMHOS/C	M AT 25	DEG. C),	WATER YEAR	COCTOBER	1977 10	SEPTEMBER	1978	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
2 3												
3												
5												
6												
8												
10												
11 12												
13 14												
15												
16 17												
18												
50												
21												2410 2310
23												2340 2540
24 25												2750
26												3300 3110
27 28												3270 4550
29 30												5970
31												3260
MEAN												3200
		TEMP	ERATURE	DEG. C) OF	WATER, ON	WATER YEA CE-DAILY	AR OCTOBER	1977 TO	SEPTEMBER	1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	PAY	JUN	JUL	AUG	SEP
1												
1 2 3 4 5												===
5												
6												
6 7 8												
10												
11												
12									-			===
15												
16								. 7				
17 18												
19 20												
21												
£ 1												
22												16.0
21 22 23 24 25												16.0 19.0 18.0 20.0
25												19.0 18.0 20.0
24 25 26 27 28												19.0 18.0 20.0 20.0 21.0 25.0
24 25 26 27 28 29												19.0 18.0 20.0 20.0 21.0
24 25 26 27 28												19.0 18.0 20.0 20.0 21.0 25.0 23.0

08123800 BEALS CREEK NEAR WESTBROOK, TX

LOCATION.--Lat 32°11'57", long 101°00'49", Mitchell County, Hydrologic Unit 12080007, on left bank at downstream side of bridge on State Highway 163, 2.1 mi (3.4 km) downstream from Hackberry Creek, 10.8 mi (17.4 km) south of Westbrook, 15.7 mi (25.3 km) southwest of Colorado City, and 19.9 mi (32.0 km) upstream from mouth.

DRAINAGE AREA.--9,903 mi 2 (25,648 km 2), of which 8,930 mi 2 (23,130 km 2) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1958 to current year.

REVISED RECORDS .-- WDR TX-72-1: 1971.

GAGE .-- Water-stage recorder. Datum of gage is 2,048.74 ft (624.456 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Low flow is affected by diversion upstream from station, see station 08123650.

AVERAGE DISCHARGE.--20 years, 23.0 ft3/s (0.651 m3/s), 0.32 in/yr (8 mm/yr), 16,660 acre-ft/yr (20.5 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,780 ft³/s (249 m³/s) May 19, 1961, gage height, 21.65 ft (6.599 m); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1908, about 24.5 ft (7.47 m) in 1922, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 454 ft³/s (12.9 m³/s) Sept. 23, gage height, 6.30 ft (1.920 m), no peak above base of 900 ft³/s (25.5 m³/s); no flow at times.

		DISCHARG	E, IN CU	BIC FEE	T PER SECO	OND, WATER	YEAR OC	TOBER 1977	TO SEPTE	MBER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.98 1.2 3.5 12 6.1	1.8 1.9 1.7 1.2	3.0 3.1 3.1 3.2 3.0	4.0 3.4 3.4 3.1 3.3	4.0 4.1 4.1 4.0 4.5	3.6 3.6 3.5 3.7 3.6	2.2 2.4 2.4 2.1 2.0	1.8 16 23 5.3 5.3	23 84 122 18 8.3	.00 13 5.2 16 22	.65 .11 .03 .02	9.3 4.5 2.0 4.0 3.4
6 7 8 9	3.6 3.7 2.9 1.7 2.8	2.3 2.4 3.4 2.8 2.4	3.1 3.0 2.9 2.7 2.9	3.6 3.4 3.2 3.1 3.0	4.1 4.5 4.8 7.1 4.0	4.0 3.6 3.6 3.4 3.3	2.0 2.6 3.6 5.0 3.1	3.1 2.4 1.6 .89	5.9 16 10 6.5 3.4	7.3 2.6 .84 .33 .16	.00 1.8 1.1 .72 .55	8.6 2.9 2.0 1.6 .98
11 12 13 14 15	2.1 2.7 3.0 1.9	2.5 2.0 2.6 2.5 2.7	3.0 2.7 3.1 3.3 3.3	3.0 3.1 3.1 3.3 3.6	6.6 6.3 8.9 13 5.9	3.2 3.2 3.0 2.9 2.7	2.4 2.9 2.6 2.0 1.8	.73 .28 .47 .36	2.8 2.4 2.3 1.8 1.4	.09 .04 .01 .00	.28 .30 .51 .54	1.3 .84 .52 .34 .24
16 17 18 19 20	1.9 1.9 1.9 1.2	2.6 2.8 2.8 2.7 1.6	3.1 2.8 2.8 2.5 2.6	4.1 4.0 4.0 4.0	4.9 4.9 4.7 7.8 4.9	2.8 2.9 2.8 2.8 1.9	1.6 1.3 1.4 1.2	.30 .15 .08 .05	1.0 .70 .47 .25	.00 .00 .00	.12 .06 .02 .00	.18 .12 .10 .11
21 22 23 24 25	1.5 1.9 2.0 3.3 2.2	.93 2.1 2.5 4.4 2.9	2.9 3.0 3.2 3.0 3.3	3.8 3.6 3.6 4.0 3.8	4.3 4.0 3.8 3.6 3.6	1.8 2.2 3.2 2.7 2.7	.76 .49 .53 2.0 2.1	37 30 6.9 3.4 2.8	.11 .09 .09 .07	.00 .01 6.7 4.5 3.8	.00 .00 .00	80 154 372 84 45
26 27 28 29 30 31	1.9 2.0 2.2 2.1 2.0 2.0	3.0 3.0 2.7 3.0 2.9	3.2 3.2 3.1 3.5 3.9 4.7	3.8 3.8 3.4 3.4 3.3 4.0	3.6 3.8 3.6	2.5 2.7 2.8 2.5 2.5 2.5	1.8 1.6 4.6 2.3 2.2	2.7 2.6 2.7 2.8 5.9 2.8	.01 .00 .00 .00	2.1 .87 .56 .25 .07	.00 .51 1.7 113 18 27	35 32 22 12 8.2
TOTAL MEAN MAX MIN CFSM IN. AC-FT	80.71 2.60 12 .63 .000 .00	73.93 2.46 4.4 .93 .000 .00	96.2 3.10 4.7 2.5 .000 .00	110.2 3.55 4.1 3.0 .000 .00 219	143.4 5.12 13 3.6 .001 .00 284	92.2 2.97 4.0 1.8 .000 .00	64.08 2.14 5.0 .49 .000 .00	274.35 8.85 112 .05 .001 .00 544	310.75 10.4 122 .00 .001 .00 616	87.63 2.83 22 .00 .000 .000	167.22 5.39 113 .00 .001 .00 332	887.56 29.6 372 .10 .003 .00
CAL YR WTR YR	1977 TOTA 1978 TOTA			11.8 6.54	MAX 394 MAX 372	MIN .43 MIN .00	CFSM CFSM			FT 8570 FT 4740		

08123800 BEALS CREEK NEAR WESTBROOK, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: November 1958 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: November 1958 to current year. WATER TEMPERATURES: November 1958 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 22,800 micromhos June 2, 1969; minimum daily, 219 micromhos Sept. 13, 1964.
WATER TEMPERATURES: Maximum daily, 37.0°C June 28, 1960, and July 3, 1976; minimum daily, 0.0°C Jan. 7, 1971, and Jan. 9, 1973.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 12,800 micromhos May 1; minimum daily, 550 micromhos Sept. 21.
WATER TEMPERATURES: Maximum daily, 33.0°C June 26, July 9, 12, 27; minimum daily, 2.0°C Jan. 10, 11, 19-21.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN. DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM. TOTAL. IMMED. (COLS. PER 100 ML)
OCT			2.2						10	20000
03 DEC	1445	4.6	9470	8.6	55.0	60	9.1	110	12	20000
31 JAN	0915	4.7	9580	8.5	10.0					
12	0930	3.2	9950	7.2	1.5					
29 APR	1125	2.7	11200		18.0					
30	1015	19	12600		23.0					
MAY 04	0915	5.0	8370							
JUN 08	1030	5.6	7120							
31 AUG	1100	.40	2830		28.0					
30	1130	11	850		28.0					
DATE	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)
ост										
03 DEC	1100	2900	1900	1800	280	300	1500	15	39	190
31 JAN			2200	2000	360	320	1500	14	44	250
12 MAR			2300	2100	360	330	1500	14	42	240
29 APR			2400	2200	350	360	1800	16	44	150
30			2600	2400	370	400	2200	19	59	240
04 JUN			1800	1700	270	270	1200	12	35	160
08			1500	1300	250	220	1100	12	29	230
31 AUG			470	390	76	68	400	8.0	14	100
30			170	75	48	13	96	3.2	5.4	120

COLORADO RIVER BASIN OB123800 BEALS CREEK NEAR WESTBROOK, TX--Continued

DATE	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- 30LVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN; NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN+ NO2+NO3 TOTAL (MG/L AS N)
ост						****	6020	.00	.01	.00
03 DEC	4	1300	2500	1.6	2.1	6460	6020	.00		30 75
31 JAN	12	1500	2500		7.1		6370		100	
12	0	1600	2600		9.1		6560		-	1
MAR 29	0	1700	3000		5.9		7330		-	
30	0	2100	3500		3.5		8750			
MAY 04	0	1300	2100	n 14	6.3		5260		+V	
JUN	0	1200	1800	.7	12		4730			RE .
JUL 31	. 0	310	650	.9	5.9		1570			-
AUG 30	0	61	170	.6	6.2		459		-	red T
DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS. TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	CARBON+ ORGANIC TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE. SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
QCT										
03 DEC	.03	2.8	2.8	1.1	.32	.07	16	103	1.3	99
31										Mil
12										
29									-	
30									Over 57	
04			40	-	in the Life	- 30			-	-
JUN 08			-		-	1 1/4	11 10 10		40 -	-
31 AUG					9	-	-		-	-
30										A

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM. TOTAL RECOV- ERABLE (UG/L AS BA)	PENDED RECOV- ERABLE	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)		CADMIUM DIS- SOLVED (UG/L AS CD)
ост										
03	1445	8	3	5	400	100	300	10	5	5
	CHRO-	CHRO-			COBALT,			COPPER,		
	MIUM.	MIUM,	CHRO-	COBALT.	SUS-		COPPER,	SUS-		IRON.
	TOTAL	SUS-	MIUM,	TOTAL	PENDED	COBALT,	TOTAL	PENDED	COPPER.	TOTAL
	RECOV-	PENDED	DIS-	RECOV-	RECOV-	DIS-	RECOV-	RECOV-	DIS-	RECOV-
	FRABLE	RECOV.	SOLVED	ERABLE	ERABLE	SOLVED	ERABLE	ERABLE	SOLVED	ERABLE
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE	AS CR)	AS CR)	AS CR)	AS CO)	AS CO)	AS CO)	AS CU)	AS CU)	AS CU)	AS FE)
OCT										120100
03	0	0	10	50	50	0	10	10	0	1400
	IRON. DIS- SOLVED	LEAD, TOTAL RECOV- ERABLE (UG/L	LEAD, SUS- PENDED RECOV- ERABLE (UG/L	LEAD, DIS- SOLVED	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L	MANGA- NESE, SUS- PENDED RECOV. (UG/L	MANGA- NESE, DIS- SOLVED	MERCURY TOTAL RECOV- ERABLE (UG/L	MERCURY SUS- PENDED RECOV- ERABLE (UG/L	MERCURY DIS- SOLVED (UG/L
DATE	AS FE)	AS PB)	AS PR)	AS PB)	AS MN)	AS MN)	AS MN)	AS HG)	AS HG)	AS HG)
OCT										
03	10	<100	<99	1	220	190	30	.0	.0	.0
		SEL	E-		SILV	ER.		ZIN		
		NIU	M, SEL	E- SILV	ER, SL	JS-	ZIN			
	SEL	E- SU	S- NIU	M, TO1	AL PEN	NDED SILV	ER, TOT	AL PEN	DED ZIN	ic,
	NIU	M, PEN	DED DI	S- REC	OV- REC	:0V- D1	IS- REC		OV- DI	
	TOT	AL TOT	AL SOL	VED ERA	BLE ERA	ABLE SOL	VED ERA	BLE ERA		VED
	(UG	/L (UG	/L (UG	/L (U	6/L (UG	5/L (U6	5/L (UG	/L (UG	/L (UG	
DAT	E AS	SE) AS	SE) AS	SE) AS	AG) AS	AG) AS	AG) AS	ZN) AS	ZN) AS	ZN)
ОСТ										
03.	••	1	1	0	<10	<10	0	20	10	10

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

MONTH	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA+MG) (MG/L)
OCT. 1977	80.71	7950	5050	1100	2030	441	1240	271	1680
NOV. 1977	73.93	8860	5710	1140	2300	459	1410	281	1890
DEC. 1977	96.2	9460	6140	1600	2490	646	1520	394	5050
JAN. 1978	110.2	9860	6430	1910	2610	776	1590	473	2110
FEB. 1978	143.4	9440	6130	2370	2480	960	1510	586	5050
MAR. 1978	92.2	10600	6950	1730	2820	702	1720	428	****
APR. 1978	64.08	11000	7250	1260	2950	510	1800	311	****
MAY 1978	274.35	3890	2420	1790	960	708	570	420	760
JUNE 1978	310.75	3140	1870	1570	720	604	420	356	590
JULY 1978	87.63	5910	3760	891	1510	356	900	213	1220
AUG. 1978	167.22	1170	640	291	230	105	120	52	210
SEPT 1978	887.56	2030	1190	2840	450	1070	250	602	370
TOTAL	2388.23	**	**	18500	**	7340	**	4390	
WTD.AVG	6.54	4560	2900	••	1100	**	680		910

MEAN

COLORADO RIVER BASIN

08123800 BEALS CREEK NEAR WESTBROOK, TX--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

					C	NCE-DAILY						
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	9530	8690	9310	9630	9900	10100	11100	12800	3950		2840	7780
2	9480	8730	9350	9410	9800	8790	11200	10000	5500	10900	2660	5530
3	9470	8700	9400	9630	9680	9620	11500	9320	1390	10400	2790	5040
4	8520	8670	9340	9370	9810	10300	11400	8400	780	2920	2880	4520
5	8050	8660	9270	9240	9680	10200	11300	6250	1650	2810	2990	4600
6	7640	8700	9310	9370	9770	10400	11200	7740	4830	2480		4850
7	7500	8770	9480	9410	10200	10300	11300	5820	4390	4650	2430	5700
8	6230	8550	9400	9440	9860	10200	11000	4430	6000	6420	1990	5930
9	6260	8620	9300	9450	9500	10000	10500	3350	2890	8580	1710	6260
10	6290	8730	9180	9630	10000	9810	11000	3100	2250	8800	1630	6500
11	6980	8770	9250	9670	10300	10100	11200	3040	2050	8960	1670	6890
12	7180	8700	9310	9860	9210	10400	11000	3380	2100	9050	1710	6690
13	7850	8480	9440	12300	10000	10500	11100	3620	2310	9160	1760	6070
14	9310	8600	9480	11600	10000	10600	11000	3880	2570 3110		1800	5510 5950
15	8630	8730	9350	10700	8900	10500	11200	3850	3110			3,30
16	7670	8850	9400	10100	10100	10900	11100	3790	3910		1720	7450
17	7180	8930	9480	9910	8980	11000	11200	3890	5050		1730	8200
18	6840	8970	9500	9810	9020	11500	11300	4000	6280		1810	8870
19	6630	8700	9510	9910	10100 8710	11200	11300 11500	4080 1550	7130 7710			8760 7850
50	6590	8560	9530	9860	0110	11100	11300					
21	6550	8550	9580	9720	6690	11000	11000	930	7880			550
22	6660	8600	9530	9590	6210	11200	10700	1460	8240	7920		1030
23	7230	8550	9510	9500	6690	11300	10600	8370	8470	10500		1090 2250
24 25	8040 8700	9000	9490 9500	9370 9590	7840 9420	11300 11300	10700	12000	8800 8990	9360		3330
23	8700	9000	7500	7370	7420	11300	10200	10100	• • • • • • • • • • • • • • • • • • • •			
26	8740	9720	9490	9680	10200	11100	10000	9490	9190	5590		3780
27	8700	9670	9440	9590	10500	11000	10100	8620		3710	3100	5290
28	8630	9320	9810	9630	10700	11100	10200	7950		2810 2830	5150 1000	6850 7110
29 30	9140 8940	9160 9200	9900 9710	10000		11200	11500 12600	7300 7150		3050	860	7160
31	8710	7200	9580	10100		11000	12000	6870		2860	1570	
MEAN	7870	8820	9460	9870	9350	10600	11000	6040	4900	6540	2160	5580
MEAN	7010	0020	7400	7010	,350	10000	11000			974		
		TEMP	PERATURE	(DEG. C)	OF WATER.	WATER YE	AR OCTOBER	R 1977 TO	SEPTEMBE	R 1978		
DAY			18	7	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
0		NOV	DEC								AUG	
	OCT	NOV	DEC	JAN								
1	25.0	18.0	13.0	6.0	5.0	11.0	27.0	20.0	25.0		27.0	24.0
2	25.0 23.0	18.0	13.0	6.0	5.0 5.0	11.0	26.0	17.0	25.0	31.0	27.0 30.0	24.0
3	25.0 23.0 20.0	18.0 13.0 13.0	13.0 8.0 9.0	6.0 4.0 4.0	5.0 5.0 6.0	11.0 7.0	26.0	17.0	25.0	31.0 28.0	27.0 30.0 23.0	24.0
3	25.0 23.0 20.0 22.0	18.0 13.0 13.0 13.0	13.0 8.0 9.0	6.0 4.0 4.0 7.0	5.0 5.0 6.0 5.0	11.0	26.0 23.0 21.0	17.0	25.0	31.0	27.0 30.0	24.0
2 3 4 5	25.0 23.0 20.0	18.0 13.0 13.0 13.0 14.0	13.0 8.0 9.0 	6.0 4.0 4.0 7.0 7.0	5.0 5.0 6.0 5.0 12.0	11.0 7.0 5.0	26.0 23.0 21.0 24.0	17.0 14.0 14.0 19.0	25.0 22.0 28.0 26.0	31.0 28.0 27.0 27.0	27.0 30.0 23.0 25.0 22.0	24.0 24.0 26.0 26.0
2 3 4 5	25.0 23.0 20.0 22.0 23.0	18.0 13.0 13.0 13.0 14.0	13.0 8.0 9.0 11.0	6.0 4.0 4.0 7.0 7.0	5.0 5.0 6.0 5.0 12.0	11.0 7.0 5.0 	26.0 23.0 21.0 24.0	17.0 14.0 14.0 19.0	25.0 22.0 28.0 26.0	31.0 28.0 27.0 27.0	27.0 30.0 23.0 25.0 22.0	24.0 24.0 26.0 26.0
2 3 4 5	25.0 23.0 20.0 22.0 23.0 24.0 25.0	18.0 13.0 13.0 13.0 14.0	13.0 8.0 9.0 11.0 6.0 6.0	6.0 4.0 4.0 7.0 7.0	5.0 5.0 6.0 5.0 12.0	11.0 7.0 5.0 	26.0 23.0 21.0 24.0 19.0 21.0	17.0 14.0 14.0 19.0 22.0 27.0	25.0 22.0 28.0 26.0 25.0 24.0	31.0 28.0 27.0 27.0 28.0 28.0	27.0 30.0 23.0 25.0 22.0	24.0 24.0 26.0 26.0 24.0 24.0
2 3 4 5 6 7 8	25.0 23.0 20.0 22.0 23.0 24.0 25.0 21.0	18.0 13.0 13.0 13.0 14.0 14.0	13.0 8.0 9.0 11.0 6.0 6.0 10.0	6.0 4.0 4.0 7.0 7.0 8.0 8.0 9.0	5.0 5.0 6.0 5.0 12.0 7.0 8.0 5.0	11.0 7.0 5.0 11.0 10.0 8.0	26.0 23.0 21.0 24.0 19.0 21.0 22.0	17.0 14.0 14.0 19.0 22.0 27.0 21.0	25.0 28.0 26.0 25.0 24.0 24.0	31.0 28.0 27.0 27.0 28.0 28.0 27.0	27.0 30.0 23.0 25.0 22.0	24.0 24.0 26.0 26.0 24.0 24.0 23.0
2 3 4 5 6 7 8 9	25.0 23.0 20.0 22.0 23.0 24.0 25.0 21.0	18.0 13.0 13.0 13.0 14.0 14.0 16.0 13.0 9.0	13.0 8.0 9.0 11.0 6.0 6.0 10.0 5.0	6.0 4.0 4.0 7.0 7.0 8.0 8.0 9.0 4.0	5.0 5.0 6.0 5.0 12.0 7.0 8.0 5.0 4.0	11.0 7.0 5.0 11.0 10.0 8.0 15.0	26.0 23.0 21.0 24.0 19.0 21.0 22.0 22.0	17.0 14.0 14.0 19.0 22.0 27.0 21.0 27.0	25.0 22.0 28.0 26.0 25.0 24.0 24.0 30.0	31.0 28.0 27.0 27.0 28.0 28.0 27.0 33.0	27.0 30.0 23.0 25.0 22.0 24.0 25.0 26.0	24.0 24.0 26.0 26.0 24.0 24.0
2 3 4 5 6 7 8	25.0 23.0 20.0 22.0 23.0 24.0 25.0 21.0	18.0 13.0 13.0 13.0 14.0 14.0	13.0 8.0 9.0 11.0 6.0 6.0 10.0	6.0 4.0 7.0 7.0 8.0 8.0 9.0 4.0 2.0	5.0 5.0 6.0 5.0 12.0 7.0 8.0 5.0	11.0 7.0 5.0 11.0 10.0 8.0 15.0	26.0 23.0 21.0 24.0 19.0 21.0 22.0 22.0	17.0 14.0 14.0 19.0 22.0 27.0 21.0 27.0 22.0	25.0 22.0 28.0 26.0 25.0 24.0 24.0 30.0 23.0	31.0 28.0 27.0 27.0 27.0 28.0 28.0 27.0 33.0 27.0	27.0 30.0 23.0 25.0 22.0 24.0 25.0 26.0 25.0	24.0 24.0 26.0 26.0 24.0 24.0 23.0 24.0 29.0
2 3 4 5 6 7 8 9 10	25.0 23.0 20.0 22.0 23.0 24.0 25.0 21.0 23.0	18.0 13.0 13.0 13.0 14.0 14.0 16.0 13.0 9.0 8.0	13.0 8.0 9.0 9.0 11.0 6.0 6.0 10.0 5.0 4.0	6.0 4.0 7.0 7.0 7.0 8.0 8.0 9.0 4.0 2.0	5.0 5.0 6.0 5.0 12.0 7.0 8.0 5.0 4.0	11.0 7.0 5.0 11.0 10.0 8.0 15.0 12.0	26.0 23.0 21.0 24.0 19.0 21.0 22.0 22.0 17.0	17.0 14.0 14.0 19.0 22.0 27.0 21.0 27.0 22.0	25.0 28.0 26.0 26.0 25.0 24.0 24.0 23.0 29.0	31.0 28.0 27.0 27.0 28.0 28.0 27.0 33.0 27.0	27.0 30.0 23.0 25.0 22.0 25.0 26.0 25.0 26.0 25.0	24.0 24.0 26.0 26.0 24.0 23.0 24.0 29.0
2 3 4 5 6 7 8 9 10	25.0 23.0 20.0 22.0 23.0 24.0 25.0 21.0 23.0	18.0 13.0 13.0 13.0 14.0 14.0 16.0 13.0 9.0 8.0	13.0 8.0 9.0 11.0 6.0 6.0 10.0 5.0 4.0	6.0 4.0 4.0 7.0 7.0 8.0 9.0 2.0	5.0 5.0 6.0 5.0 12.0 7.0 8.0 5.0 4.0 4.0	11.0 7.0 5.0 11.0 10.0 8.0 15.0 12.0	26.0 23.0 21.0 24.0 19.0 21.0 22.0 22.0 17.0	17.0 14.0 14.0 19.0 22.0 27.0 21.0 27.0 22.0	25.0 22.0 28.0 26.0 25.0 24.0 24.0 30.0 23.0	31.0 28.0 27.0 27.0 28.0 28.0 27.0 33.0 27.0	27.0 30.0 23.0 25.0 22.0 24.0 25.0 26.0 25.0	24.0 24.0 26.0 26.0 24.0 24.0 23.0 24.0 29.0
2 3 4 5 6 7 8 9 10	25.0 23.0 20.0 22.0 23.0 24.0 25.0 21.0 23.0	18.0 13.0 13.0 13.0 14.0 14.0 16.0 13.0 9.0 8.0	13.0 8.0 9.0 11.0 6.0 6.0 10.0 5.0 4.0 14.0 12.0 11.0	6.0 4.0 7.0 7.0 8.0 9.0 4.0 2.0 2.0	5.0 5.0 6.0 5.0 12.0 7.0 8.0 5.0 4.0 4.0	11.0 7.0 5.0 11.0 10.0 8.0 15.0 12.0	26.0 23.0 21.0 24.0 19.0 21.0 22.0 22.0 17.0	17.0 14.0 14.0 19.0 22.0 27.0 21.0 27.0 22.0 23.0 28.0 21.0	25.0 28.0 26.0 25.0 24.0 24.0 30.0 23.0 29.0 26.0 31.0	31.0 28.0 27.0 27.0 27.0 28.0 28.0 27.0 27.0 29.0 33.0 27.0	27.0 30.0 23.0 25.0 22.0 24.0 25.0 26.0 25.0 24.0 25.0 28.0	24.0 24.0 26.0 26.0 24.0 23.0 24.0 29.0 25.0 27.0 26.0
2 3 4 5 6 7 8 9 10	25.0 23.0 20.0 22.0 23.0 24.0 25.0 21.0 23.0	18.0 13.0 13.0 13.0 14.0 14.0 16.0 13.0 9.0 8.0	13.0 8.0 9.0 11.0 6.0 6.0 10.0 5.0 4.0 12.0 11.0 9.0	6.0 4.0 4.0 7.0 7.0 8.0 9.0 2.0	5.0 5.0 6.0 5.0 12.0 7.0 8.0 5.0 4.0 4.0	11.0 7.0 5.0 11.0 10.0 8.0 15.0 12.0	26.0 23.0 21.0 24.0 19.0 21.0 22.0 22.0 17.0	17.0 14.0 14.0 19.0 22.0 27.0 21.0 27.0 22.0	25.0 22.0 28.0 26.0 25.0 24.0 24.0 30.0 23.0	31.0 28.0 27.0 27.0 28.0 28.0 27.0 33.0 27.0	27.0 30.0 23.0 25.0 22.0 24.0 25.0 26.0 25.0	24.0 24.0 26.0 26.0 24.0 24.0 23.0 24.0 29.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15	25.0 23.0 20.0 22.0 23.0 24.0 25.0 21.0 23.0 16.0 15.0 19.0	18.0 13.0 13.0 13.0 14.0 14.0 16.0 13.0 9.0 8.0 9.0 13.0 13.0	13.0 8.0 9.0 11.0 6.0 6.0 10.0 5.0 4.0 12.0 11.0 9.0 11.0	6.0 4.0 7.0 7.0 8.0 9.0 4.0 2.0 2.0 5.0 6.0	5.0 5.0 6.0 5.0 12.0 7.0 8.0 5.0 4.0 4.0 7.0 10.0 7.0 6.0	11.0 7.0 5.0 11.0 10.0 8.0 15.0 12.0 12.0 13.0 18.0 13.0	26.0 23.0 21.0 24.0 19.0 21.0 22.0 22.0 17.0 15.0 18.0 20.0 20.0 22.0	17.0 14.0 14.0 19.0 22.0 27.0 21.0 27.0 22.0 28.0 21.0 28.0 27.0	25.0 28.0 26.0 25.0 24.0 24.0 30.0 23.0 29.0 26.0 31.0 27.0 26.0	31.0 28.0 27.0 27.0 28.0 28.0 27.0 33.0 27.0 29.0 33.0 27.0	27.0 30.0 23.0 25.0 22.0 24.0 25.0 26.0 25.0 24.0 25.0 28.0 27.0 28.0	24.0 24.0 26.0 26.0 24.0 23.0 24.0 29.0 25.0 27.0 25.0 27.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15	25.0 23.0 20.0 22.0 23.0 24.0 25.0 21.0 21.0 23.0 16.0 19.0 16.0	18.0 13.0 13.0 14.0 14.0 14.0 16.0 13.0 9.0 8.0 9.0 9.0 13.0 14.0	13.0 8.0 9.0 11.0 6.0 6.0 10.0 5.0 4.0 12.0 11.0 9.0 11.0	6.0 4.0 7.0 7.0 8.0 8.0 9.0 4.0 2.0 3.0 5.0 6.0	5.0 5.0 6.0 5.0 12.0 7.0 8.0 5.0 4.0 4.0 7.0 6.0 6.0	11.0 7.0 5.0 	26.0 23.0 21.0 24.0 19.0 21.0 22.0 22.0 17.0 15.0 18.0 20.0 20.0 22.0	17.0 14.0 14.0 19.0 22.0 27.0 21.0 27.0 22.0 23.0 28.0 27.0 28.0 27.0	25.0 22.0 26.0 26.0 25.0 24.0 24.0 30.0 23.0 29.0 26.0 31.0 27.0 26.0	31.0 28.0 27.0 27.0 28.0 27.0 33.0 27.0 33.0 27.0	27.0 30.0 23.0 25.0 22.0 25.0 26.0 25.0 26.0 25.0 28.0 27.0 28.0	24.0 24.0 26.0 26.0 24.0 23.0 24.0 29.0 27.0 25.0 27.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15	25.0 23.0 20.0 22.0 23.0 24.0 25.0 21.0 21.0 23.0 16.0 15.0 15.0 16.0	18.0 13.0 13.0 13.0 14.0 14.0 16.0 13.0 9.0 8.0 9.0 13.0 14.0	13.0 8.0 9.0 11.0 6.0 6.0 10.0 5.0 4.0 12.0 9.0 11.0	6.0 4.0 4.0 7.0 7.0 8.0 8.0 9.0 4.0 2.0 2.0 5.0 6.0	5.0 5.0 6.0 5.0 12.0 7.0 8.0 5.0 4.0 4.0 7.0 10.0 7.0 6.0 6.0	11.0 7.0 5.0 11.0 10.0 8.0 15.0 12.0 15.0 13.0 13.0 13.0	26.0 23.0 21.0 24.0 19.0 22.0 22.0 22.0 17.0 15.0 18.0 20.0 20.0 22.0	17.0 14.0 14.0 19.0 22.0 27.0 21.0 27.0 22.0 23.0 28.0 27.0 28.0 27.0	25.0 22.0 26.0 26.0 25.0 24.0 30.0 23.0 29.0 26.0 31.0 27.0 26.0	31.0 28.0 27.0 27.0 28.0 28.0 27.0 33.0 27.0 33.0 27.0	27.0 30.0 23.0 25.0 22.0 25.0 26.0 25.0 26.0 27.0 28.0 27.0 28.0	24.0 24.0 26.0 26.0 24.0 23.0 24.0 29.0 25.0 27.0 25.0 27.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	25.0 23.0 20.0 22.0 23.0 24.0 25.0 21.0 21.0 21.0 15.0 19.0 16.0 17.0 16.0	18.0 13.0 13.0 13.0 14.0 14.0 16.0 13.0 9.0 8.0 9.0 13.0 14.0	13.0 8.0 9.0 11.0 6.0 6.0 10.0 5.0 4.0 12.0 11.0 9.0 11.0	6.0 4.0 7.0 7.0 7.0 8.0 9.0 2.0 2.0 5.0 6.0	7.0 8.0 5.0 12.0 7.0 8.0 5.0 4.0 7.0 10.0 7.0 6.0 6.0	11.0 7.0 5.0 11.0 10.0 8.0 15.0 12.0 12.0 13.0 13.0 17.0 12.0 20.0	26.0 23.0 21.0 24.0 19.0 22.0 22.0 17.0 15.0 18.0 20.0 20.0 22.0 27.0 27.0 22.0	17.0 14.0 14.0 19.0 22.0 27.0 21.0 27.0 22.0 23.0 28.0 27.0 28.0 27.0 28.0 27.0	25.0 28.0 26.0 25.0 24.0 30.0 23.0 29.0 26.0 31.0 27.0 26.0	31.0 28.0 27.0 27.0 28.0 27.0 33.0 27.0 33.0 27.0	27.0 30.0 23.0 25.0 22.0 25.0 26.0 25.0 26.0 25.0 28.0 27.0 28.0	24.0 24.0 26.0 26.0 24.0 23.0 24.0 29.0 27.0 25.0 27.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15	25.0 23.0 20.0 22.0 23.0 24.0 25.0 21.0 21.0 23.0 16.0 15.0 15.0 16.0	18.0 13.0 13.0 13.0 14.0 14.0 16.0 13.0 9.0 8.0 9.0 13.0 14.0	13.0 8.0 9.0 11.0 6.0 6.0 10.0 5.0 4.0 12.0 9.0 11.0	6.0 4.0 4.0 7.0 7.0 8.0 8.0 9.0 4.0 2.0 2.0 5.0 6.0	5.0 5.0 6.0 5.0 12.0 7.0 8.0 5.0 4.0 4.0 7.0 10.0 7.0 6.0 6.0	11.0 7.0 5.0 11.0 10.0 8.0 15.0 12.0 15.0 13.0 13.0 13.0	26.0 23.0 21.0 24.0 19.0 22.0 22.0 22.0 17.0 15.0 18.0 20.0 20.0 22.0	17.0 14.0 14.0 19.0 22.0 27.0 21.0 27.0 22.0 23.0 28.0 27.0 28.0 27.0	25.0 22.0 26.0 26.0 25.0 24.0 30.0 23.0 29.0 26.0 31.0 27.0 26.0	31.0 28.0 27.0 27.0 28.0 28.0 27.0 33.0 27.0 29.0 33.0 27.0	27.0 30.0 23.0 25.0 22.0 24.0 25.0 26.0 25.0 28.0 28.0 28.0 27.0 28.0	24.0 24.0 26.0 26.0 24.0 24.0 23.0 24.0 29.0 25.0 27.0 26.0 27.0 27.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	25.0 23.0 20.0 22.0 23.0 24.0 25.0 21.0 21.0 21.0 15.0 19.0 16.0 17.0 19.0 17.0 20.0	18.0 13.0 13.0 14.0 14.0 16.0 13.0 9.0 8.0 9.0 13.0 13.0 14.0 14.0 17.0 20.0	13.0 8.0 9.0 11.0 6.0 6.0 6.0 10.0 5.0 4.0 11.0 9.0 11.0 9.0 13.0 9.0 7.0	6.0 4.0 7.0 7.0 8.0 9.0 2.0 2.0 5.0 5.0 6.0	7.0 8.0 5.0 4.0 4.0 7.0 10.0 7.0 6.0 6.0 6.0 3.0 3.0	11.0 7.0 5.0 11.0 10.0 8.0 15.0 12.0 13.0 13.0 13.0 12.0 20.0 20.0 20.0	26.0 23.0 21.0 24.0 19.0 22.0 22.0 17.0 15.0 20.0 20.0 20.0 22.0 27.0 22.0 17.0 19.0 24.0	17.0 14.0 14.0 19.0 22.0 27.0 21.0 27.0 22.0 28.0 21.0 28.0 27.0 28.0 27.0 28.0 27.0	25.0 28.0 26.0 25.0 24.0 30.0 23.0 29.0 26.0 31.0 27.0 26.0 28.0 26.0 27.0 26.0	31.0 28.0 27.0 27.0 28.0 28.0 27.0 33.0 27.0 33.0 27.0	27.0 30.0 23.0 25.0 22.0 25.0 26.0 25.0 26.0 25.0 28.0 27.0 28.0	24.0 24.0 26.0 26.0 24.0 23.0 24.0 29.0 25.0 27.0 26.0 27.0 27.0 26.0 27.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	25.0 23.0 20.0 22.0 23.0 24.0 25.0 21.0 21.0 21.0 16.0 19.0 17.0 16.0 17.0 20.0	18.0 13.0 13.0 13.0 14.0 14.0 16.0 13.0 9.0 8.0 9.0 13.0 14.0 14.0 14.0 17.0 20.0 11.0	13.0 8.0 9.0 11.0 6.0 6.0 10.0 5.0 4.0 12.0 11.0 9.0 11.0 9.0 13.0 9.0 7.0	6.0 4.0 4.0 7.0 7.0 8.0 9.0 2.0 2.0 5.0 5.0 6.0	7.0 8.0 5.0 12.0 7.0 8.0 5.0 4.0 7.0 6.0 6.0 7.0 4.0 3.0 3.0 5.0	11.0 7.0 5.0 11.0 10.0 8.0 15.0 12.0 12.0 13.0 18.0 13.0 17.0 12.0 20.0 20.0 20.0 6.0	26.0 23.0 21.0 24.0 19.0 21.0 22.0 22.0 17.0 18.0 20.0 20.0 22.0 17.0 19.0 24.0	17.0 14.0 14.0 19.0 22.0 27.0 21.0 22.0 23.0 28.0 21.0 28.0 27.0 23.0 32.0 32.0 32.0 28.0 21.0	25.0 28.0 26.0 25.0 24.0 24.0 30.0 23.0 29.0 26.0 31.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0	31.0 28.0 27.0 27.0 28.0 27.0 33.0 27.0 33.0 27.0	27.0 30.0 23.0 25.0 25.0 26.0 25.0 26.0 25.0 28.0 27.0 28.0 27.0 28.0	24.0 24.0 26.0 26.0 24.0 23.0 24.0 29.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	25.0 23.0 20.0 22.0 23.0 24.0 25.0 21.0 23.0 16.0 15.0 19.0 16.0 17.0 16.0 17.0 20.0	18.0 13.0 13.0 14.0 14.0 16.0 13.0 9.0 8.0 9.0 13.0 14.0 12.0 11.0 17.0 20.0	13.0 8.0 9.0 11.0 6.0 6.0 10.0 5.0 4.0 12.0 9.0 11.0 9.0 13.0 9.0 7.0	6.0 4.0 7.0 7.0 8.0 8.0 9.0 4.0 2.0 2.0 5.0 6.0	7.0 6.0 5.0 12.0 7.0 8.0 5.0 4.0 4.0 7.0 6.0 6.0 6.0 7.0 6.0 6.0	11.0 7.0 5.0 10.0 8.0 15.0 12.0 12.0 13.0 13.0 13.0 12.0 20.0 20.0 20.0 24.0	26.0 23.0 21.0 24.0 19.0 21.0 22.0 22.0 17.0 15.0 20.0 20.0 22.0 27.0 22.0 17.0 19.0 24.0	17.0 14.0 14.0 19.0 22.0 27.0 21.0 27.0 22.0 23.0 28.0 27.0 23.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0	25.0 28.0 26.0 25.0 24.0 24.0 30.0 23.0 29.0 26.0 31.0 27.0 26.0 27.0 26.0 27.0 28.0 27.0 28.0	31.0 28.0 27.0 27.0 28.0 28.0 27.0 33.0 27.0 33.0 27.0	27.0 30.0 23.0 25.0 25.0 26.0 25.0 26.0 25.0 28.0 27.0 28.0 27.0 28.0	24.0 24.0 26.0 26.0 24.0 23.0 24.0 29.0 25.0 27.0 26.0 27.0 27.0 26.0 27.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	25.0 23.0 20.0 22.0 23.0 24.0 25.0 21.0 21.0 23.0 16.0 15.0 15.0 17.0 16.0 17.0 20.0	18.0 13.0 13.0 13.0 14.0 14.0 16.0 13.0 9.0 8.0 9.0 13.0 14.0 12.0 11.0 17.0 20.0	13.0 8.0 9.0 11.0 6.0 6.0 10.0 5.0 4.0 12.0 9.0 11.0 12.0 9.0 13.0 9.0 7.0	6.0 4.0 7.0 7.0 7.0 8.0 8.0 9.0 4.0 2.0 5.0 5.0 6.0 6.0	7.0 8.0 7.0 8.0 4.0 4.0 7.0 10.0 7.0 6.0 6.0 3.0 3.0 5.0	11.0 7.0 5.0 11.0 10.0 8.0 12.0 12.0 13.0 13.0 13.0 12.0 20.0 20.0 20.0 20.0 24.0 23.0	26.0 23.0 21.0 24.0 19.0 22.0 22.0 17.0 15.0 20.0 20.0 20.0 22.0 27.0 22.0 17.0 19.0 24.0	17.0 14.0 14.0 19.0 22.0 27.0 21.0 27.0 22.0 23.0 28.0 21.0 28.0 27.0 28.0 28.0 21.0 28.0 21.0 28.0 21.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28	25.0 28.0 26.0 25.0 24.0 30.0 23.0 29.0 26.0 31.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0 26.0	31.0 28.0 27.0 27.0 28.0 27.0 33.0 27.0 33.0 27.0	27.0 30.0 23.0 25.0 22.0 25.0 26.0 25.0 26.0 25.0 28.0 27.0 28.0 27.0 28.0	24.0 24.0 26.0 26.0 24.0 23.0 24.0 29.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	25.0 23.0 20.0 22.0 23.0 24.0 25.0 21.0 23.0 16.0 15.0 19.0 16.0 17.0 16.0 17.0 20.0	18.0 13.0 13.0 14.0 14.0 16.0 13.0 9.0 8.0 9.0 13.0 14.0 12.0 11.0 17.0 20.0	13.0 8.0 9.0 11.0 6.0 6.0 10.0 5.0 4.0 12.0 9.0 11.0 9.0 13.0 9.0 7.0	6.0 4.0 7.0 7.0 8.0 8.0 9.0 4.0 2.0 2.0 5.0 6.0	7.0 6.0 5.0 12.0 7.0 8.0 5.0 4.0 4.0 7.0 6.0 6.0 6.0 7.0 6.0 6.0	11.0 7.0 5.0 10.0 8.0 15.0 12.0 12.0 13.0 13.0 13.0 12.0 20.0 20.0 20.0 24.0	26.0 23.0 21.0 24.0 19.0 21.0 22.0 22.0 17.0 15.0 20.0 20.0 22.0 27.0 22.0 17.0 19.0 24.0	17.0 14.0 14.0 19.0 22.0 27.0 21.0 27.0 22.0 23.0 28.0 27.0 23.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0	25.0 28.0 26.0 25.0 24.0 24.0 30.0 23.0 29.0 26.0 31.0 27.0 26.0 27.0 26.0 27.0 28.0 27.0 28.0	31.0 28.0 27.0 27.0 28.0 27.0 33.0 27.0 33.0 27.0	27.0 30.0 23.0 25.0 25.0 25.0 26.0 25.0 26.0 27.0 28.0 27.0 28.0	24.0 24.0 26.0 26.0 24.0 23.0 24.0 29.0 25.0 27.0 25.0 27.0 26.0 27.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	25.0 23.0 20.0 22.0 23.0 24.0 25.0 21.0 21.0 19.0 19.0 19.0 19.0 20.0 21.0 20.0	18.0 13.0 13.0 13.0 14.0 14.0 16.0 13.0 9.0 8.0 9.0 13.0 14.0 12.0 11.0 17.0 20.0 11.0 12.0 11.0	13.0 8.0 9.0 11.0 6.0 6.0 10.0 5.0 4.0 12.0 9.0 11.0 12.0 9.0 13.0 9.0 13.0 9.0 10.0	6.0 4.0 7.0 7.0 8.0 8.0 9.0 4.0 2.0 2.0 5.0 6.0 8.0 6.0 8.0 6.0 8.0 6.0 8.0 6.0 6.0 8.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	7.0 8.0 5.0 8.0 5.0 4.0 4.0 7.0 6.0 7.0 6.0 7.0 6.0 9.0 9.0 9.0	11.0 7.0 5.0 11.0 10.0 8.0 15.0 12.0 12.0 13.0 13.0 14.0 20.0 20.0 20.0 20.0 20.0 21.0 20.0	26.0 23.0 21.0 24.0 19.0 21.0 22.0 27.0 18.0 20.0 20.0 22.0 17.0 20.0 22.0 17.0 21.0 20.0	17.0 14.0 14.0 19.0 22.0 27.0 21.0 27.0 28.0 28.0 21.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 28.0 27.0	25.0 28.0 26.0 25.0 24.0 24.0 30.0 23.0 29.0 26.0 27.0 27.0	31.0 28.0 27.0 27.0 28.0 27.0 33.0 27.0 33.0 27.0 	27.0 30.0 23.0 25.0 22.0 24.0 25.0 26.0 25.0 28.0 28.0 27.0 28.0 27.0 32.0	24.0 24.0 26.0 24.0 23.0 24.0 29.0 25.0 27.0 27.0 27.0 26.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	25.0 23.0 20.0 22.0 23.0 24.0 25.0 21.0 21.0 15.0 19.0 16.0 17.0 16.0 17.0 20.0 20.0 21.0 21.0 21.0	18.0 13.0 13.0 13.0 14.0 14.0 16.0 13.0 9.0 8.0 9.0 13.0 13.0 14.0 17.0 12.0 11.0 17.0 12.0 11.0 12.0 11.0	13.0 8.0 9.0 11.0 6.0 6.0 6.0 10.0 5.0 4.0 11.0 11.0 9.0 11.0 12.0 9.0 13.0 9.0 13.0 9.0 13.0 9.0 10.0 10.0 9.0 10.0	6.0 4.0 7.0 7.0 7.0 8.0 8.0 9.0 2.0 2.0 5.0 5.0 6.0 8.0 2.0 2.0 6.0 6.0 8.0 8.0	7.0 8.0 5.0 12.0 7.0 8.0 5.0 4.0 7.0 10.0 7.0 6.0 6.0 6.0 7.0 3.0 3.0 3.0 3.0 7.0 9.0 9.0	11.0 7.0 5.0 11.0 10.0 8.0 12.0 12.0 13.0 18.0 13.0 17.0 12.0 20.0 20.0 20.0 24.0 24.0 25.0	26.0 23.0 21.0 24.0 19.0 21.0 22.0 17.0 15.0 18.0 20.0 27.0 24.0 19.0 24.0 19.0 24.0 27.0 23.0 27.0 23.0 24.0	17.0 14.0 14.0 19.0 22.0 27.0 21.0 27.0 22.0 28.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28	25.0 28.0 26.0 25.0 24.0 30.0 23.0 29.0 26.0 31.0 27.0 26.0 27.0 26.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0	31.0 28.0 27.0 27.0 28.0 27.0 33.0 27.0 29.0 33.0 27.0 	27.0 30.0 23.0 25.0 25.0 25.0 26.0 25.0 26.0 27.0 28.0 27.0 28.0	24.0 24.0 26.0 26.0 24.0 23.0 24.0 29.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	25.0 23.0 20.0 22.0 23.0 24.0 25.0 21.0 21.0 19.0 19.0 19.0 19.0 20.0 21.0 20.0	18.0 13.0 13.0 13.0 14.0 14.0 16.0 13.0 9.0 8.0 9.0 13.0 14.0 12.0 11.0 17.0 20.0 11.0 12.0 11.0	13.0 8.0 9.0 11.0 6.0 6.0 10.0 5.0 4.0 12.0 9.0 11.0 12.0 9.0 13.0 9.0 13.0 9.0 10.0	6.0 4.0 7.0 7.0 8.0 8.0 9.0 4.0 2.0 2.0 5.0 6.0 8.0 6.0 8.0 6.0 8.0 6.0 8.0 6.0 6.0 8.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	7.0 8.0 7.0 8.0 12.0 7.0 8.0 7.0 10.0 7.0 6.0 6.0 7.0 9.0 9.0 9.0 9.0	11.0 7.0 5.0 11.0 10.0 8.0 15.0 12.0 12.0 13.0 13.0 13.0 12.0 20.0 20.0 20.0 21.0 20.0 20.0 21.0	26.0 23.0 21.0 24.0 19.0 21.0 22.0 27.0 18.0 20.0 20.0 22.0 17.0 20.0 22.0 17.0 21.0 20.0	17.0 14.0 14.0 19.0 22.0 27.0 21.0 27.0 22.0 28.0 28.0 27.0 23.0 28.0 27.0 23.0 28.0 27.0 24.0 25.0 26.0 26.0 26.0 24.0	25.0 28.0 26.0 25.0 24.0 24.0 30.0 23.0 29.0 26.0 31.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0 26.0 31.0 27.0 26.0 31.0 27.0 26.0 31.0 27.0 26.0 31.0	31.0 28.0 27.0 27.0 28.0 27.0 33.0 27.0 33.0 27.0 	27.0 30.0 23.0 25.0 25.0 25.0 26.0 25.0 26.0 27.0 28.0 27.0 28.0 27.0 32.0	24.0 24.0 26.0 24.0 23.0 24.0 29.0 27.0 27.0 27.0 27.0 26.0 27.0 21.0 16.0 17.0 18.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	25.0 23.0 20.0 22.0 23.0 24.0 25.0 21.0 21.0 15.0 15.0 17.0 16.0 17.0 17.0 20.0 20.0 21.0 17.0 19.0 17.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	18.0 13.0 13.0 13.0 14.0 14.0 16.0 13.0 9.0 8.0 9.0 13.0 14.0 12.0 11.0 17.0 20.0 11.0 17.0 11.0 17.0 11.0 12.0 11.0	13.0 8.0 9.0 11.0 6.0 6.0 6.0 10.0 5.0 4.0 12.0 9.0 11.0 12.0 9.0 13.0 9.0 13.0 9.0 13.0 9.0 10.0 5.0 6.0 7.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	6.0 4.0 7.0 7.0 8.0 9.0 4.0 2.0 2.0 5.0 5.0 6.0 8.0 2.0 6.0 6.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	7.0 8.0 7.0 8.0 4.0 4.0 7.0 10.0 7.0 6.0 6.0 7.0 9.0 9.0 9.0 9.0 9.0	11.0 7.0 5.0 5.0 10.0 8.0 15.0 12.0 12.0 13.0 13.0 18.0 20.0 20.0 20.0 24.0 23.0 15.0 14.0 22.0 16.0	26.0 23.0 21.0 24.0 19.0 22.0 22.0 17.0 15.0 18.0 20.0 22.0 27.0 24.0 19.0 24.0 19.0 24.0 27.0 24.0 27.0 20.0 21.0 22.0 22.0 22.0 22.0 22.0 23.0 20.0	17.0 14.0 14.0 19.0 22.0 27.0 21.0 27.0 22.0 28.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 28.0 27.0 28.0 28.0 28.0 29.0 29.0 20.0 20.0 20.0 20.0 20.0 20	25.0 28.0 26.0 25.0 24.0 30.0 23.0 29.0 26.0 31.0 27.0 26.0 27.0 26.0 27.0 28.0 27.0 28.0 24.0 25.0 26.0 31.0 27.0 26.0 31.0 27.0 26.0 31.0 27.0 26.0 31.0 27.0 26.0 31.0 27.0 26.0 31.0 27.0 26.0 31.0 27.0 26.0 31.0 27.0 26.0 31.0 27.0 26.0 31.0 27.0 26.0 31.0 27.0 26.0 31.0 27.0 26.0 31.0 27.0 26.0 31.0	31.0 28.0 27.0 27.0 28.0 27.0 33.0 27.0 33.0 27.0 29.0 33.0 27.0 26.0 32.0 32.0 32.0 32.0	27.0 30.0 23.0 25.0 25.0 25.0 26.0 25.0 26.0 27.0 28.0 27.0 32.0 27.0 32.0	24.0 24.0 26.0 26.0 24.0 23.0 24.0 29.0 25.0 27.0 26.0 27.0 26.0 27.0 21.0 11.0 19.0 19.0 20.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24 25 27 28 29 30 20 21 22 23 24 25 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	25.0 23.0 20.0 22.0 23.0 24.0 25.0 21.0 23.0 16.0 17.0 19.0 17.0 20.0 20.0 19.0	18.0 13.0 13.0 14.0 14.0 14.0 13.0 9.0 9.0 13.0 13.0 14.0 12.0 11.0 17.0 20.0 11.0 17.0 11.0 17.0 11.0 11.0	13.0 8.0 9.0 11.0 6.0 6.0 10.0 5.0 4.0 12.0 11.0 9.0 11.0 9.0 13.0 9.0 7.0 8.0 8.0 10.0 5.0 4.0 10	6.0 4.0 7.0 7.0 8.0 9.0 4.0 2.0 3.0 5.0 6.0 8.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	5.0 5.0 6.0 5.0 12.0 7.0 8.0 5.0 4.0 4.0 7.0 6.0 6.0 7.0 4.0 3.0 3.0 5.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	11.0 7.0 5.0 10.0 8.0 15.0 12.0 12.0 13.0 18.0 13.0 17.0 20.0 20.0 21.0 22.0 16.0 24.0 24.0 25.0 26.0 27.0 27.0 28.0 29.0 20.	26.0 23.0 21.0 24.0 19.0 21.0 22.0 22.0 17.0 18.0 20.0 27.0 22.0 17.0 19.0 24.0 19.0 24.0 21.0 22.0 22.0 23.0 23.0 24.0 25.0 27.0	17.0 14.0 14.0 19.0 22.0 27.0 21.0 27.0 22.0 23.0 28.0 27.0 23.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 28.0 29.0 29.0 24.0 25.0 24.0 25.0 25.0	25.0 28.0 26.0 25.0 24.0 24.0 30.0 23.0 26.0 31.0 27.0 26.0 27.0 26.0 27.0 28.0 28.0	31.0 28.0 27.0 27.0 28.0 27.0 33.0 27.0 29.0 33.0 27.0 26.0 32.0 33.0 27.0 27.0 27.0 27.0 27.0 27.0	27.0 30.0 23.0 25.0 25.0 26.0 25.0 26.0 25.0 28.0 27.0 28.0 27.0 32.0 27.0 32.0 27.0 32.0 27.0 32.0	24.0 24.0 26.0 26.0 24.0 23.0 24.0 29.0 27.0 27.0 27.0 27.0 27.0 27.0 21.0 18.0 21.0 19.0 19.0 19.0 20.0 23.0 24.0 27.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	25.0 23.0 20.0 22.0 23.0 24.0 25.0 21.0 21.0 15.0 15.0 17.0 16.0 17.0 17.0 20.0 20.0 21.0 17.0 19.0 17.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	18.0 13.0 13.0 13.0 14.0 14.0 16.0 13.0 9.0 8.0 9.0 13.0 14.0 12.0 11.0 17.0 20.0 11.0 17.0 11.0 17.0 11.0 12.0 11.0	13.0 8.0 9.0 11.0 6.0 6.0 6.0 10.0 5.0 4.0 12.0 9.0 11.0 12.0 9.0 13.0 9.0 13.0 9.0 13.0 9.0 10.0 5.0 6.0 7.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	6.0 4.0 7.0 7.0 8.0 9.0 4.0 2.0 2.0 5.0 5.0 6.0 8.0 2.0 6.0 6.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	7.0 8.0 7.0 8.0 4.0 4.0 7.0 10.0 7.0 6.0 6.0 7.0 9.0 9.0 9.0 9.0 9.0	11.0 7.0 5.0 5.0 10.0 8.0 15.0 12.0 12.0 13.0 13.0 18.0 20.0 20.0 20.0 24.0 23.0 15.0 14.0 22.0 16.0	26.0 23.0 21.0 24.0 19.0 22.0 22.0 17.0 15.0 18.0 20.0 22.0 27.0 24.0 19.0 24.0 19.0 24.0 27.0 24.0 27.0 20.0 21.0 22.0 22.0 22.0 22.0 22.0 23.0 20.0	17.0 14.0 14.0 19.0 22.0 27.0 21.0 27.0 22.0 28.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 27.0 28.0 28.0 27.0 28.0 28.0 28.0 29.0 29.0 20.0 20.0 20.0 20.0 20.0 20	25.0 28.0 26.0 25.0 24.0 30.0 23.0 29.0 26.0 31.0 27.0 26.0 27.0 26.0 27.0 28.0 27.0 28.0 24.0 25.0 26.0 31.0 27.0 26.0 31.0 27.0 26.0 31.0 27.0 26.0 31.0 27.0 26.0 31.0 27.0 26.0 31.0 27.0 26.0 31.0 27.0 26.0 31.0 27.0 26.0 31.0 27.0 26.0 31.0 27.0 26.0 31.0 27.0 26.0 31.0 27.0 26.0 31.0 27.0 26.0 31.0	31.0 28.0 27.0 27.0 28.0 27.0 33.0 27.0 33.0 27.0 29.0 33.0 27.0 26.0 32.0 32.0 32.0 32.0	27.0 30.0 23.0 25.0 25.0 25.0 26.0 25.0 26.0 27.0 28.0 27.0 32.0 27.0 32.0	24.0 24.0 26.0 26.0 24.0 23.0 24.0 29.0 25.0 27.0 26.0 27.0 26.0 27.0 21.0 11.0 19.0 19.0 20.0

20.0 13.0 9.0 5.5 7.0 15.0 21.5 24.0 26.5 28.5 26.0 23.5

08123850 COLORADO RIVER ABOVE SILVER, TX (National stream-quality accounting network)

LOCATION.--Lat 32°03'37", long 100°45'56", Coke County, Hydrologic Unit 12080008, on right bank 25 ft (7.6 m) downstream from a Pan American Oil Co. bridge, 4.7 mi (7.6 km) west of Silver, and at mile 756.6 (1,217.3 km).

DRAINAGE AREA.--15,407 mi² (39,904 km²), of which 11,600 mi² (30,000 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1967 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,907.66 ft (581.455 m) National Geodetic Vertical Datum of 1929. Prior to Oct. 4, 1972, water-stage recorder at site 0.5 mi (0.8 km) downstream at same datum.

REMARKS.--Water-discharge records good. Low flow is affected by upstream diversions, see stations 08121000 and 08123650. Some regulation by Lake J. B. Thomas, Lake Colorado City, and Champion Creek Reservoir (see stations 08118000, 08123000, and 08123600).

AVERAGE DISCHARGE.--11 years, 60.8 ft3/s (1.722 m3/s), 44,050 acre-ft/yr (54.3 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 12,900 ft3/s (365 m3/s) May 29, 1971, gage height, 17.68 ft (5.389 m), at former site; no flow at times.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,480 ft 3 /s (41.9 m 3 /s) June 2, gage height, 6.24 ft (1.902 m); no flow July 16-22, Aug. 15-29.

		DISCHA	RGE, IN C	UBIC FEE	T PER SECON	ND, WAT	ER YEAR OC	TOBER 197	7 TO SEPT	EMBER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.96 1.0 17 18 13	4.1 3.5 3.3 3.5 3.6	6.6 6.6 6.6 5.8 6.0	6.4 6.7 6.6 6.6	6.6 6.7 7.3 7.7 6.9	4.8 4.6 3.8 4.7 6.5	5.5 4.2 4.1 3.8 4.0	.01 112 74 33 19	122 462 331 159 71	.01 .02 .07 .23	.05 .03 1.7 2.2 4.5	25 23 10 5.0 3.2
6 7 8 9	17 12 8.2 7.3 7.3	4.2 4.1 6.6 4.8 6.3	7.2 8.1 7.0 6.6 7.6	6.6 5.0 5.1 6.0 6.6	6.7 8.1 8.7 9.2 8.5	6.0 4.6 4.4 5.4 6.9	3.5 4.3 6.6 23	11 8.7 6.0 3.7 2.8	60 322 478 148 72	39 16 8.2 3.6 1.9	1.8 .86 .39 .14	1.9 2.1 8.9 5.9 2.9
11 12 13 14 15	5.8 4.4 4.8 4.4 4.0	7.0 7.6 7.2 6.9	8.5 8.6 7.1 7.2 7.2	5.9 5.8 5.8 6.3 7.8	12 10 11 9.9	5.2 6.7 4.4 4.1 3.1	7.3 7.1 6.0 4.5 4.1	2.3 1.2 .62 .57	39 25 19 16 14	1.0 .56 .18 .05	.03 .02 .01 .01	2.2 1.5 1.1 .70 .46
16 17 18 19 20	4.5 3.8 3.5 3.3 3.5	6.8 6.6 6.7 7.4 6.8	6.6 5.6 6.2 6.1 5.4	6.5 6.5 7.1 5.1 5.4	15 9.2 7.1 6.1 4.6	3.8 4.2 4.5 4.4 3.9	3.9 2.2 1.3 1.0	.16 .06 .03 .02	12 9.5 5.0 3.5 2.3	.00 .00 .00 .00	.00 .00 .00	.38 .54 .30 .21
21 22 23 24 25	3.5 3.6 2.8 2.8 3.6	4.8 5.1 5.1 4.1 3.8	5.4 6.7 6.0 4.9 5.1	6.5 7.0 7.7 6.8 6.2	7.9 6.9 5.2 6.0 4.0	4.3 4.1 3.0 2.8 2.8	1.2 .57 .40 .31	265 370 161 67 36	1.5 1.2 .80 .52	.00 .00 .56 .18	.00 .00 .00	1.3 123 315 473 150
26 27 28 29 30 31	4.7 5.7 5.8 6.1 6.4 6.8	7.1 7.3 6.6 7.3 6.6	5.7 6.5 7.4 9.1 8.1 7.9	7.4 6.7 6.0 6.2 6.4 6.2	4.7 5.1 4.6	4.0 4.5 5.6 5.0 4.7 5.1	.28 .16 .10 .04	25 19 22 14 62 323	.21 .19 .08 .05	.05 .03 .02 .01 .02	.00 .00 .00 .00	93 73 56 37 23
TOTAL MEAN MAX MIN AC-FT	195.56 6.31 18 .96 388	171.7 5.72 7.6 3.3 341	209.4 6.75 9.1 4.9 415	197.5 6.37 7.8 5.0 392	222.7 7.95 17 4.0 442	141.9 4.58 6.9 2.8 281	111.88 3.73 23 .03 222	1826.46 58.9 370 .01 3620	2375.20 79.2 478 .02 4710	100.80 3.25 39 .00 200	76.78 2.48 38 .00 152	1439.77 48.0 473 .18 2860
	1977 TOTA 1978 TOTA			N 37.9 N 19.4	MAX 2450 MAX 478	MIN MIN	.39 AC-	FT 27420 FT 14020				

08123850 COLORADO RIVER ABOVE SILVER, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: December 1967 to current year. Pesticide analyses: October 1970 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: December 1967 to current year. WATER TEMPERATURES: December 1967 to current year.

INSTRUMENTATION .-- Specific conductance is recorded continuously at this station.

EXTREMES FOR PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: Maximum daily, 13,600 micromhos Mar. 18, May 19, 1969; minimum daily, 235 micromhos Aug. 10, 1974.

WATER TEMPERATURES: Maximum daily, 29.0°C on several days during summer months of 1968 and 1973; minimum daily, 0.0°C on many days during winter months.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum daily, 11,000 micromhos Apr. 29, May 1; minimum daily, 1,180 micromhos June 2. WATER TEMPERATURES: Maximum daily, 27.0°C July 14, 15: minimum daily, 0.0°C Jan. 20.

												and the second
	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM+ FECAL+ 0.7 UM-MF (COLS-/ 100 ML)
	04	0800	13	5270	6.8	19.5		, 		-	Lak -	-
,	01	0730	2.7	6920	8.1	18.5	35	6.5	73	8.1	680	240
	14	1040	5.4	7330	7.7	13.0						3 1 1
	06	0815	5.0	7650	7.8	4.5	6	9.6	78	2.1	84	42
	JAN 09	1500	7.7	8280	8.2	7.5	10	12.9	115	8.1	77	40
1	06	1505	8.8	8300	8.5	7.5	9	15.1	135	4.6	83	47
,	06	1710	5.0	8290	9.7	16.0	25	13.7	147	>41	20	<1
	12	1100	6.0	9500	8.5	18.0	55	8.6	97	6.5	1600	1600
1	MAY 09	1100	3.5	11000	8.3	20.5	70	5.5	65	11	2100	420
,	JUN 13	1030	23	2600	8.1	26.0	55	6.5	82	7.2	2000	830
	JUL 18	1130	.03	6800	8.0	33.5	10	9.5	136	9.3	760	110
	SEP							9.6	117	11		1400
	01	1030	25	3200	8.3	23.8	30	7.0	110			
	DATE	STREP- TOCOCCI FECAL. KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
	ост					220						1100
1	04 NOV		1200	1100	290	120	720	9.0	13	95	0	1100
	01	760	1700	1600	360	190	1000	11	19	130 160	0	1200 1500
-	DEC	-	1800	1600	390	190	1000	10			0	1800
	06 JAN	160	1800	1700	410	200	1100	11	17	190		
	09 FER	53	5000	1800	370	250	1100	11	21	170	0	1600
	06	84	1900	1800	380	240	1300	13	55	160	16	1600
	06 APR	60	5000	1900	380	250	1200	12	24	55	12	1500
	12	7800	2400	2300	510	280	1500	13	26	140	4	2000
	09	1000	2500	2400	420	360	1800	16	41	150	0	1900
	13	60	470	380	110	47	400	8.0	9.4	110	0	410
	JUL 18	900	1600	1500	370	170	930	10	19	150	0	1100
	01	1100	590	510	130	65	410	7.3	15	98	0	450

08123850 COLORADO RIVER ABOVE SILVER, TX--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	CHLO- RIDE. DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS. RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS. SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN. NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN+ NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN. AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)
ост										
04 NOV	1100		6.3		3400					
01	1700	.8	5.5	4680	4540	.00	.03	.01	.09	1.0
14 DEC	1700		5.6		4880					
06 JAN	1700	.8	3.9	5360	5330	.01	.00	.01	.14	.96
09 FEB	1900	.8	1.2	563	5330	•02	.01	.03	.14	1.4
06 MAR	2100	.8	.5	5790	5740	.14	.04	.18	•05	1.4
06 APR	2000	.8	2.8	5660	5400	.00	.01	.01	.10	3.9
12	2700	.7	.4	6980	7090	.04	.01	.05	.08	1.7
09 JUN	5900	1.0	1.2	7830	7500	.05	.04	.09	.18	2.4
13 JUL	560			1120		.00	.01	.01	.00	1.2
18 SEP	1700	.6	5.8	4980	4370	.01	.00	.01	.01	1.8
01	670	.8	5.9	1970	1800	.01	.02	.03	.01	2.8
DATE	NITRO- GEN+AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN+AM- MONIA + ORGANIC DIS- (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	CARBON+ ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
	GEN+AM- MONIA + ORGANIC TOTAL (MG/L	GEN+AM- MONIA + ORGANIC DIS- (MG/L	TOTAL (MG/L	PHORUS, DIS- SOLVED (MG/L	ORGANIC TOTAL (MG/L	ORGANIC DIS- SOLVED (MG/L	ORGANIC SUS- PENDED TOTAL (MG/L	MENT . SUS- PENDED	MENT DIS- CHARGE, SUS- PENDED	SUSP. SIEVE DIAM. % FINER THAN
OCT 04	GEN+AM- MONIA + ORGANIC TOTAL (MG/L	GEN+AM- MONIA + ORGANIC DIS- (MG/L	TOTAL (MG/L	PHORUS, DIS- SOLVED (MG/L	ORGANIC TOTAL (MG/L	ORGANIC DIS- SOLVED (MG/L	ORGANIC SUS- PENDED TOTAL (MG/L	MENT . SUS- PENDED	MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
ост	GEN+AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN+AM- MONIA + ORGANIC DIS. (MG/L AS N)	TOTAL (MG/L	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L)	MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
0CT 04 NOV 01	GEN+AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN+AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT+ SUS- PENDED (MG/L)	MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
0CT 04 NOV 01 14 DEC	GEN+AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN+AM- MONIA + ORGANIC DIS- (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L)	MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 04 NOV 01 14 DEC 06 JAN 09	GEN.AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L)	MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 04 NOV 01 14 DEC 06 JAN 09 FEB 06	GEN.AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1-1 1-1	GEN+AM- MONIA + ORGANIC DIS- (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L)	MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE JIAM. FINER THAN .062 MM
OCT 04 NOV 01 14 DEC 06 JAN 09 FEB 06 MAR	GEN.AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1.1 1.1	GEN,AM- MONIA + ORGANI DIS. (MG/L AS N)48 1.1	PHORUS, TOTAL (MG/L AS P) .15 .05	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT. SUS- PENDED (MG/L)	MENT DIS- CHARGE. SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. FINER THAN. .062 MM
OCT 04 NOV 01 14 DEC 06 JAN 09 FEB 06 MAR 06 APR	GEN.AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N) .48 1.1 .80	PHORUS, TOTAL (MG/L AS P) .05 .17	PHORUS, DIS- SOLVED (MG/L AS P) .03 .01 .03	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT. SUS- PENDED (MG/L)	MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 04 NOV 01 14 DEC 06 JAN 09 FEB 06 MAR 06 APR 12 MAY 09	GEN.AM- MONIA ORGANIC TOTAL (MG/L AS N) 1.1 1.5 1.4 4.0	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N) .48 1.1 .80 .95	PHORUS, TOTAL (MG/L AS P) .15 .05 .17 .28	PHORUS, DIS- SOLVED (MG/L AS P) .01 .03 .07 .24	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 111 17 41 9	MENT 01S- CHARGE. SUS- PENDED (T/DAY) .81 .23 .85 .21	SUSP. SIEVE DIAM. FINER THAN. .062 MM
OCT 04 NOV 01 14 DEC 06 JAN 09 FEB 06 APR 12 MAY 09 JUN 13	GEN.AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1.1 1.5 1.4 4.0	GEN.AM- MONIA + ORGANI DIS. (MG/L AS N) .48 1.1 .80 .95	PHORUS, TOTAL (MG/L AS P) .15 .05 .17 .28 .60	PHORUS, DIS- SOLVED (MG/L AS P) .03 .01 .03 .07 .24	ORGANIC TOTAL (MG/L AS C) 11 6.9 8.4 33	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT. SUS- PENDED (MG/L) 111 17 41 9 13 83	MENT 01S- CHARGE. SUS- PENDED (T/DAY) .81 .23 .85 .21 .18	SUSP. SIEVE DIAM. FINER THAN. .062 MM
OCT 04 NOV 01 14 DEC 06 JAN 09 FEB 06 MAR 06 APR 12 MAY 09 JUN	GEN.AM- MONIA . ORGANIC TOTAL (MG/L AS N) 1.1 1.5 1.4 4.0 1.8 2.6	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N) .48 1.1 .80 .95 1.0	PHORUS, TOTAL (MG/L AS P) 	PHORUS, DIS- SOLVED (MG/L AS P) .01 .03 .07 .24 .09	ORGANIC TOTAL (MG/L AS C) 11 6.9 8.4 33 12	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT. SUS- PENDED (MG/L) 111 17 41 9 13 83	MENT 01S- CHARGE, SUS- PENDED (T/DAY) .81 .23 .85 .21 .18 1.3	SUSP. SIEVE DIAM. FINER THAN. .062 MM

08123850 COLORADO RIVER ABOVE SILVER, TX--Continued

DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	APSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM. TOTAL PECOV- ERABLE (UG/L AS BA)	BARIUM. SUS- PENDED RECOV- ERABLE (UG/L AS BA)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)
FER				-	100	0	100	0	0	3
06 JUN	1505	3	0	3	100					0
13	1030	5	0	5	500	0	300	0	0	U
DATE	CHRO- MIUM. TOTAL RECOV- FRABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT. TOTAL RECOV- EPABLE (UG/L AS CO)	CUBALT, SUS- PENDED RECOV- ERABLE (UG/L AS CO)	SOLVED (UG/L	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER. DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
FEB								0	2	130
06 JUN	50	20	0	1	0	1	1			
13	10	10	0	0	0		8	7	1	1200 MERCURY
DATE	IRON. SUS- PENDED RECOV- FRABLE (UG/L AS FE)	IRON. DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD+ DIS- SOLVED (UG/L AS PB)	(UG/L	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	PENDED RECOV- ERABLE (UG/L AS HG)
FEB		10	2	0	3	50	20	40	.0	.0
06 JUN								10	.2	•2
13	1200	0		7	3	SILVER.		10	ZINC.	
DATE	MFRCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, SUS- PENDED TOTAL (UG/L AS SE)	SOLVEN (UG/L	(UG/L	SUS- PENDED RECOV- E ERABLE (UG/L	SILVER. DIS- SOLVED (UG/L	ZINC+ TOTAL RECOV- ERABLE (UG/L AS ZN)	SUS- PENDED RECOV- ERABLE (UG/L AS ZN)	ZINC+ DIS- SOLVED (UG/L AS ZN)
FEB		4	3	1		, ,	0	20	0	20
06 JUN	• 0							20	10	10
13		P IME TO	CB+ CH	PH- HA- NES+ OLY- LOR. ALD	RIN. DA	TAL TO	DD+ DOTAL TO	DE+ DE	DI, AZI	-
ост					• •		0.0	0.0	.00	.00
04 FER		800	• 0	.00	•00	• 0	.00	•00		
	1	505	• 0	.00	.00	• 0	.00	.00	•00	.15
		030	• 0	.00	.00	• 0	.00	.00	•00	.00 THYL
DA	EL	DRIN SUL	TAL TO	TAL TO	TAL TO	EPTA- CH HLOR. EPO OTAL TO	TAL TO	DANE THE	ION, TH	RA- ION, TAL G/L)
001		.00	.00	.00	.00	.00	.00	.00	.00	.00
FE		.00	.00	.00	.00	.00	.00	.00	.00	.00
Jil	N		.00	.00	.00	.00	.00	.00	.00	.00
1:	3	.00 METHY		.00	•00	•••	***			
	DATE	TRI- THION TOTAL (UG/L	. MIREX	L TOTAL	TOTAL	· TRI-		TOTAL	TOTAL	
	04	0	0 -	0	0	0 .0	0 .00	.00	.00	
	FEH 06		0 -	0	0	0 .0	0 .00	.00	.00	
	.JUN 13					0 .0		.02	.00)

08123850 COLORADO RIVER ABOVE SILVER, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1977 TO SEPTEMBER 1978

	PHYTOPLANK	TON AN	ALYSES.	OCTOBE	R 1977 T	O SEPT	EMBER 19	78				
DATE TIME		1,77		6,78		9,78		13.78 030		18,78		1,78
TOTAL CELLS/ML	13	000	670	0000	9	500	110	000	130	000	5	100
DIVERSITY: DIVISION .CLASSORDERFAMILYGENUS		1.1 1.1 1.6 2.0 2.5		0.7 0.7 0.7 0.7 0.7		1.3 1.3 1.6 2.1 3.0		1.3 1.3 1.7 2.3 2.5		0.6 0.6 1.6 1.9 2.2		0.4 0.4 0.4 0.6 0.6
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) •CHLOROPHYCEAE ••CHLOROCOCCALES ••OOCYSTACEAE												
DICHOTOMOCOCCUS		-	570000#	85		-		-		•		-
SCHROEDERIA	350	3		-		•		-		-		-
ANKISTRODESMUS	1700	13		-	2000#	21		-	940	1		-
DICTYOSPHAERIUM		-	==	-		-	18000#	17	760	0		:
KIRCHNERIELLA	700	5		-	890	9	1400	1		-		-
SELENASTRUM	250	3		-	2100#	23	1100	1		:		-
TETRAEDRON	350	-		-	60	1		-		-		:
TREUBARIA		-		-		-		0		-		-
SCENEDESMACEAE		_		_				-	760	1		
SCENEDESMUSVOLVOCALESCHLAMYDOMONADACEAE	1400	11		-	950	10	49000#	46	1500	i		•
CHLAMYDOMONAS .ZYGNEMATALES	2100#	16		-	360	4	4600	4	760	1		-
CLOSTERIUM		-		_		-				0		
CHRYSOPHYTA BACTLLARIOPHYCEAE CENTRALES COSCINODISCACEAE							42.3		2.52			
CYCLOTELLA		-	•	0		-	3200	3	7400	6		
MELOSIRAPENNALESACHNANTHACEAE		•		-	240	3		•		-		•
ACHNANTHES		-		-		-		-		-	28	1
CYMBELLACEAE		-		-				-			41	1
···EUNOTIACEAE	122	_				100				20		0
FRAGILARIACEAE												
SYNEDRA NAVICULACEAE		-		-	360	4		-		-	28	1
NAVICULA		-		-	540	6		0		-	83	2
NITZSCHIACEAE		-	-			_	2100	2		_	170	3
.CHRYSOPHYCEAE CHRYSOMONADALES MALLOMONADACEAE							2100	•			1,0	•
MALLOMONAS		-	-/	-		-		-		-		0
.XANTHOPHYCEAE												
CHLOROTHECIACEAE												
OPHIOCYTIUM		•		-		-		0		-		•
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAE												
CRYPTOMONIDALES CRYPTOMONODACEAE												
CRYPTOMONAS		+	84000	13		-		0		-		•
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROCCOCCALES												
CHROCCOCCAEAE												
AGMENELLUM	5600# 700	42		-		-	4300	4	60000# 5300	46		
HORMOGONALES												
NOSTOCACEAE		-	- 22	_		45	122	-	16000	12	-	
OSCILLATORIACEAE			-									
OSCILLATORIA		•		-	1700#	18	16000#	15	35000#	27	4700#	95

NOTE: # - DOMINANT ORGANISM: EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM: MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

08123850 COLORADO RIVER ABOVE SILVER, TX--Continued

(CONTINUED) PHYTOPLANKTON ANALYSES. OCTOBER 1977 TO SEPTEMBER 1978 DATE NOV 1.77 MAR 6.78 1710 MAY 9.78 JUN 13.78 0730 CELLS PER-CELLS PER-CELLS PER-CELLS PER-CELLS PER-CELLS /ML PER-OHGANISM EUGLENOPHYTA (EUGLENOIDS) .EUGLENOP CEAE ..EUGLENALES ...EUGLENACEAEEUGLENATRACHELOMONAS PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAE .GYMNODINIALEA ..GYMNODINIAU ..GYMNODINIUM .PERIOINIALES ..GLENODINIACEAE 760 ...GLENODINIUM 350

NOTE: # - DOMINANT ORGANISM: EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM: MAY NOT HAVE BEEN COUNTED: LESS THAN 1/2%

....PERIDINIUM

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978
PERIPHYTON

DATE	LENGTH OF EXPOSURE (DAYS)	PERI- PHYTON BIOMASS ASH WEIGHT G/SQ M	PERI- PHYTON BIOMASS TOTAL DRY WEIGHT G/SQ M	CHLOR-A PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)	CHLOR-B PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)	SAMPLING METHOD
DEC 06	35	2.60	3.23	.680	.000	POLYETHYLENE STRIP
MAY 09	27	1.65	2.12	3.63	.840	POLYETHYLENE STRIP
JUL 18	35	8.11	9.84	21.2	.320	POLYETHYLENE STRIP

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

MONTH	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA.MG) (M3/L)
ocr. 1977	195.56	6200	3980	2100	1440	762	1140	601	1420
NOV. 1977	171.7	7320	4840	2250	1770	820	1380	637	1720
DEC. 1977	209.4	7950	5330	3010	1950	1100	1510	852	1890
JAN. 1978	197.5	8240	5550	2960	2030	1080	1570	836	1960
FEB. 1978	222.7	8110	5460	3280	2000	1200	1540	929	1930
MAR. 1978	141.9	8790	5980	2290	2190	841	1690	646	2110
APR. 1978	111.88	9240	6320	1910	2320	701	1780	538	5530
MAY 1978	1826.46	3280	1970	9730	690	3400	530	2610	640
JUNE 1978	2375.2	1790	1040	6640	340	2180	290	1870	340
JULY 1978	100.8	5850	3720	1010	1350	366	1060	290	1320
AUG. 1978	76.78	6590	4280	886	1560	324	1210	252	1520
SEPT 1978	1439.77	2650	1550	6010	530	2070	410	1600	470
TOTAL	7069.64	••	**	42100	**	14800		11700	ATT THE
WTD.AVG	19.37	3540	2200	**	780	**	610		710

COLORADO RIVER BASIN 67 08123850 COLORADO RIVER ABOVE SILVER, TX--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	SPEC	IFIC COND	OCTANCE	(MICRUMNUS		MEAN VALUES	WAICH	TEAR OCTOBE	17//	, 32, 72,,62		
DAY	ОСТ	NOV	DEC	JAN	FEE	MAR	APR	MAY	JUN	JUL	AUG	SEP
	F700	7020	7570	8220	8790	8850	9950	11000	1230	6340	7780	3470
1 2	5700 5720	7120	7600	8230	8650		10000		1180	6360	7990	2390
3	5710	7150	7630	8230	8470		10200		2470	6300	6900	2030
4	5370	7170	7600	8270	8340		10300		3010	6180	6160	2180
5	6070	7200	7550	8300	8330		10000	6900	2710	6090	7310	2370
6	6290	7220	7600	8330	8310	8310	10100		2530	6000	8090	2610
7	6970	7250	7800	8310	8050		10000		1200	5900	8150	2890
8	6560	6860	7890	8300	7910		10200		1220	3680	8180	2360
9	5870	6950	7920	8280	7760		7680		1870	5150	8230 8330	2190 2330
10	5470	6980	7800	8270	7700	8410	6750	10900	2890	6890		
11	5430	6900	7780	8300	7810		9360		2810	7580	8380 8450	2540 2790
12	5400	6950	7770	8270	7700		9440		2670 2750	7910 8030	8630	3050
13	5340	7100	7850	8300	8080 7990		9760 10200		3000	8130	8780	3320
14 15	5440 5720	7300 7460	7920 7890	8080 8240	7960		10400		3280	8230		3550
		7570	7000	0000	0020	0210	10500	10000	3570			3760
16	6120	7570	7920	8080 8170	8020		10500		3830			3940
17	6600 6920	7490 7360	7950 7980	8300	7990		10600		4040			4110
18 19	7090	7220	8050	8370	7760		10700		4230			4260
20	7160	7170	8100	8240	8180		10800		4440			4410
21	7010	7410	8110	8270	8370	9440	10900	3320	4620			4510
22	6690	7500	8200	8110	8510		10800		4820			4270
23	6560	7580	8270	8120	8340		10700		5070	7750		2150
24	6520	7630	8290	8110	8180		10600		5270	7360		2170
25	6640	7600	8320	8050	8300		10600		5430	7060		2840
26	6760	7660	8280	8110	8410	9350	10700	2870	5610	7110		2740
27	6820	7750	8270	8140	8370		10800		5800	7290		3060
28	6730	7810	8280	8200	8440		10900		5970	7500		3440
29	6640	7550	8200	8300		9750	11000		6130	7580		3740
30	6670	7520	8110	8330		9850	10900		6260	7670	6180	4010
31	6780		8210	8640		9900		2950		7760	6860	
MEAN	6280	7320	7960	8240	8170	8820	10200	6830	3660	6910	7780	3120
		75115		(550) 0: 4					CERTENDE	0.1070		
		TEMP	ERATURE	(DEG. C) (OF WATE	ONCE-DAILY	AR OCTO	BER 1977 10	SEPTEMBE	K 19/8		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	24.0	17.0	8.0		4.0	10.0	18.0	18.0	23.0	25.0	23.0	23.0
2	20.0	11.0	10.0	2.0	4.0	10.0	19.0	17.0	24.0	25.0	24.0	24.0
3	19.0	14.0	12.0	3.0	5.0		19.0	11.0	23.0	26.0	24.0	25.0
4	19.0	14.0	10.0	6.0	8.0	6.0	19.0	12.0	24.0	25.0	24.0	25.0
5	18.0	15.0	10.0	6.0	6.0		18.0	18.0	23.0	26.0	25.0	24.0
6	19.0	14.0	7.0	8.0	5.0	10.0	19.0	21.0	22.0	25.0	23.0	24.0
7	24.0	15.0	5.0	9.0	6.0		23.0	19.0	22.0	25.0	24.0	24.0
8	22.0	14.0	9.0	5.0		5.0	20.0	20.0	21.0	25.0	26.0	22.0
9	17.0	14.0	5.0	3.0	2.0		20.0	18.0	23.0	25.0	26.0	23.0
10	18.0	11.0	4.0	2.0	2.0	14.0	15.0	18.0	24.0	25.0	26.0	25.0
11	16.0	12.0	6.0	1.0	4.0	13.0	12.0	20.0	23.0	26.0	26.0	24.0
12	12.0	12.0	9.0	1.0	6.0		14.0	15.0	25.0	25.0	26.0	25.0
13	12.0	13.0	10.0	6.0	6.0		16.0	19.0	25.0	26.0	25.0	25.0
14	15.0	13.0	9.0	4.0	5.0	9.0	20.0	18.0	24.0	27.0	25.0	26.0
15	15.0	15.0	9.0	4.0	5.0	10.0	22.0	21.0	23.0	27.0		26.0
16	14.0	14.0	11.0	8.0	4.0	9.0	19.0	22.0	25.0			25.0
17	15.0	13.0	8.0	3.0		8.0	20.0	22.0	24.0			25.0
18	18.0	10.0	7.0	2.0	3.0	5.0	15.0	23.0	23.0			24.0
19	17.0	16.0	8.0	1.0	3.0	10.0	14.0	24.0	24.0			23.0
50	20.0	17.0	6.0	• 0	4.0	15.0	15.0	50.0	24.0			22.0
21	19.0	10.0	4.0	1.0	4.0	15.0	16.0	21.0	24.0			23.0
55	17.0	11.0	5.0	2.0	5.0	16.0	18.0	22.0	24.0			17.0
23	17.0	12.0	6.0	3.0	7.0	18.0	19.0	24.0	24.0	25.0		18.0
24 25	16.0	11.0		6.0 3.0	12.0	13.0	19.0 17.0	24.0	25.0 24.0	25.0 25.0		19.0 20.0
26	16.0	10.0	6.0	3.0	9.0	12.0	15.0	24.0	24.0	25.0		20.0
27 28	17.0	11.0	5.0	5.0	12.0	14.0	16.0	23.0	23.0	24.0		19.0
29	20.0	9.0	7.0	6.0 5.0	11.0	13.0 14.0	18.0	23.0	24.0	24.0		21.0
30	19.0	7.0	12.0	4.0		14.0	20.0	23.0	25.0	24.0	23.0	20.0
31	20.0		10.0	6.0		20.0		24.0		24.0	23.0	
MEAN	17.5	12.5	7.5	4.0	6.0	11.0	18.0	20.5	23.5	25.0	24.5	22.5
				7.0	0.0	44.0		20.0				

08123950 E. V. SPENCE RESERVOIR NEAR ROBERT LEE, TX

LOCATION.--Lat 31°52'46", long 100°31'01", Coke County, Hydrologic Unit 12080008, in outlet works of Robert Lee Dam on the Colorado River, 2.2 mi (3.5 km) west of Robert Lee, and at mile 715 (1,150 km).

DRAINAGE AREA.--15,740 mi² (40,770 km²), approximately, of which 11,600 mi² (30,040 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- December 1968 to current year.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to June 24, 1969, nonrecording gage at same site and datum.

REMARKS.--The reservoir is formed by a rolled earthfill dam 21,500 ft (6,550 m) long. Closure was made Dec. 30, 1968, and dam was completed in June 1969. The dam is the property of the Colorado River Municipal Water District, which has a permit to divert 50,000 acre-ft (61.6 hm²) annually for municial, mining, and industrial uses. Inflow to reservoir is partially regulated by Lake J. B. Thomas, Lake Colorado City, and Champion Creek Reservoir (stations 08118000, 08123000, and 08123000). There are two spillways: The service and the emergency spillways. The controlled service spillway is a morning-glory type that is partially controlled by 12 lift gates, 14.48 by 22.0 ft (4.41 by 6.7 m), and discharges through a 28.0-foot-diameter (8.5 m) concrete conduit. The uncontrolled emergency spillway is a 3,200-foot-wide (975 m) cut through natural ground near the right end of dam. Figures given herein represent total contents. Data regarding the dam and reservoir are given in the following table:

	(feet)	(acre-feet)
Top of dam	1.928.0	
Crest of spillway	1.908.0	653,400
TOP OT GATES	1.900.0	519,300
Top of conservation pool	1.898.0	488,800
Crest of spillway	1.878.0	262,900
Lowest gated outlet (invert)	1.815.85	4,000

COOPERATION.--Capacity table (dated March 1972) was furnished by the Colorado River Municipal Water District. Records of diversions were furnished by the city of San Angelo and the Colorado River Municipal Water District.

EXTREMES FOR PERIOD OF RECORD. -- Maximum contents, 181,900 acre-ft (224 hm³) Sept. 17, 1975, elevation, 1,867.93 ft (569.345 m); minimum since first appreciable storage in June 1969 not recorder, about 330 acre-ft (0.407 hm³) May 29, 1971.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 154,800 acre-ft (191 hm²) Oct. 1, elevation, 1,863.98 ft (568.141 m); minimum, 119,800 acre-ft (148 hm²) Sept. 22, 23; minimum elevation, 1,857.97 ft (566.309 m) Sept. 23.

Capacity table (elevation, in feet, and total contents, in acre-feet)

1,857.0	114,900	1,862.0	142,400
1,859.0	125,400	1.863.0	148,400
1.861.0	136.400	1.864.0	154 900

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 INSTANTANEOUS OBSERVATIONS AT 2400

								-100				
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	154600	150100	147300	142600	140000	139300	135900	132800	132800	131800	125500	122200
2	154200	150000	147100	142500	140000	139200	135800	132500	134400	131800	125300	122200
3	153900	150000	147000	142300	139900	139100					128300	122000
4	153700	149900					135700	132500	135300	131500		
2			146900	142200	139800	139000	135600	132600	135500	131200	128100	121800
5	153600	149800	146800	142100	139800	138900	135500	132600	135500	131000	128000	121800
6	153200	149800	146700	142100	139600	138900	135400	132600	135500	130800	127900	121600
7	153300	149700	146500	142000	139700	138700	136100	132500	135600	130600	127700	121600
8	153000	149600	146400		139800	138600	136200	132300	136200	130400	127500	121600
9	152600	149600	146300	141700	139900	138500	136500	132100	136400	130200	127300	121400
10	152300	149500										
10	152300	149500	146200	141500	139800	138400	136400	131900	136200	130000	127100	121200
11	152200	149400	146100	141400	139700	138300	136300	131900	136300	129600	126800	121200
12	152100	149400	145900	141400	140300	138100	136200	131700	136200	129400	126600	121400
13	152000	149300	145700	141300	140200	138000	136100	131500	136100	129000	126400	121300
14	151900	149200	145300	141300	140100	138000	135900	131400	136000	128600	126200	121100
15	151800	149200	145100	141100	140100	137800	135900	131300	135700	128600	126000	120900
	131000	145200	143100	141100	140100	137600	135900	121200	135700	120000	120000	120900
16	151600	149200	144900	141000	140100	137800	135700	131100	135500	128400	125700	120700
17	151400	149100	144700	141000	140000	137700	135600	131000	135200	128200	125500	120500
18	151300	149100	144300	140800	140000	137600	135100	130800	135200	128000	125300	120200
19	151100	148900	144100	140700	139900	137500	134900	130700	134900	127800	125100	120000
20	151000	148800	144000	140600	139800	137400	134600	131700	134800	127500	125000	119900
				210000	103000	107400	134000	131700	134000	127500	123000	113300
21	150900	148500	143800	140500	139800	137300	134600	132100	134500	127300	124600	120000
22	150900	148400	143600	140500	139700	137100	134500	132600	134200	127200	124500	119800
23	150800	148300	143500	140500	139600	137000	134500	132800	134000	127000	124100	119900
24	150800	148200	143400	140400	139600	136800	134400	132900	133800	126800	123800	120600
25	150700	148100	143200	140400	139500							
23	130700	140100	143200	140400	139500	136600	134100	132700	133600	126700	123600	120800
26	150600	148000	143100		139400	136500	133700	132600	133000	126500	123400	120800
27	150500	147800	143000	140200	139400	136300	133600	132400	132700	126300	123100	121100
28	150500	147700	142900	140200	139300	136200	133500	132400	132300	126200	122900	121200
29	150400	147600	142800	140100		136200	133400	132500	132200	126000	122700	121200
30	150400	147500	142700	140100		136100	133200	132300	132000	125800	122500	121200
31	150200	147500	142600			136000	133200	132600	132000	125700	122300	121200
		7										
MAX	154600	150100	147300	142600	140300	139300	136500	132900	136400	131800	128300	122200
MIN	150200	147500	142600	140100	139300	136000	133200	130700	132000	125700	122300	119800
(+)	1863.28	1862.85	1862.04	1861.61	1861.49	1860.93	1860.42	1860.30	1860.20	1859.05	1858.43	1858.23
(+)	-4600	-2700	-4900	-2500	-800	-3300	-2800	-600	-600	-6300	-3400	-1100
(++)	2080	1840	1790	1840	1620	2430	2490	2120	1930	2410	2170	2070
CAL YR	1977 N	1AX 16590	O MIN	142600	+ -23000	tt 24	630					

WTR YR 1978 MAX 154600 MIN 119800 # -33600

t Elevation, in feet, at end of month.

‡ Change in contents, in acre-feet.

†† Diversions, in acre-feet, for municipal, industrial, and mining uses.

E. V. SPENCE RESERVOIR NEAR ROBERT LEE, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1969 to current year, Biochemical analyses: October 1977 to September 1978.

315235100312201 - E. V. SPENCE RES AR

WATER QUALITY DATA. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION
JAN					Day 151		3.5
07	1215	1.0	3150	8.2	10.0	10.4	96
07	1218	10	3150	8.2	10.0	10.4	96
07	1221	20	3150	8.2	10.0	10.4	96

315335100312401 - E. V. SPENCE RESERVOIR SITE AC

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			SPE-						
			CIFIC			TRANS-			
			CON-			PAR-		PER-	
		SAMP-	DUCT-			ENCY	DIS-	CENT	HARD-
		LING	ANCE	PH	TEMPER-	(SECCHI	SOLVED	SATUR-	NESS
	TIME	DEPTH	(MICRO-		ATURE	DISK)	OXYGEN	ATION	(CA.MG)
DATE		(FT)	MHOS)	(UNITS)	(DEG C)	(M)	(MG/L)		(MG/L)
JAN					10/2				
07	1100	1.0	3150	8.2	9.5	2.40	10.6	97	620
07	1103	10	3150	8.2	9.5		10.6	97	
07	1106	20	3150	8.2	9.5		10.6	97	
07	1109	30	3150	8.2	9.5		10.5	96	
07	1112	40	3150	8.2	9.0		10.4	94	
07	1115	50	3150	8.1	8.5		10.1	90	
07	1118	60	3150	8.1	8.5		9.7	87	
07	1121	68	3150	8.1	8.5		9.6	85	640
						400			
			DIS-			DIS-			
	NON-	DIS-	SOLVED		SODIUM	SOLVED			
	CAR-	SOLVED	MAG-	DIS-	AD-	P0-			DIS-
	BONATE	CAL-	NE-	SOLVED	SORP-	TAS-	BICAR-	CAR-	SOLVED
	HARD-	CIUM	SIUM	SODIUM	TION	SIUM	BONATE	BONATE	SULFATE
	NESS	(CA)	(MG)	(NA)	RATIO	(K)	(HC03)	(CO3)	(504)
DATE	(MG/L)	(MG/L)	(MG/L)	(MG/L)		(MG/L)	(MG/L)	(MG/L)	(MG/L)
JAN	411			4.50	7.5	13	140	0	460
07	500	120	77	430		13	140		400
07									
07									
07									
07									
07									
07									
07	530	130	77	400	6.9	13	140	0	510
				DIS-					
				SOLVED	TOTAL	TOTAL			DIS-
	DIS-	DIS-		SOLIDS	NITRITE	AMMONIA	TOTAL	DIS-	SOLVED
	SOLVED	SOLVED	DIS-		PLUS	NITRO-	PHOS-	SOLVED	MAN-
	CHLO-	FLU0-	SOLVED	(SUM OF		GEN	PHORUS	IRON	GANESE
	RIDE	RIDE	SILICA	CONSTI-	NITRATE	(N)	(P)	(FE)	(MN)
2422	(CL)	(F)	(5102)	TUENTS)	(N)		(MG/L)	(UG/L)	(UG/L)
DATE	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	1007[]	(00/L/
JAN									
07	700	.4	3.8	1870	.04	.07	.02	10	0
07									
07									
07									
07					.06	.12	.03	80	20
07									
07									
07	700	.4	3.8	1900	.07	.10	.04	410	80
		• •	3.0		5.51				

315413100312501 - E. V. SPENCE RES AL

DATE	TIME	SAMP- LING DEPTH (FT)	SPF- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION
JAN							
07	1045	1.0	3150	8.2	9.5	10.6	97
07	1048	10	3150	8.2	9.5	10.6	97
07	1051	20	3150	8.2	9.5	10.5	96
07	1054	30	3150	8.2	9.5	10.2	94
07	1057	45	3150	8.1	9.0	10.2	92

E. V. SPENCE RESERVOIR NEAR ROBERT LEE, TX--Continued

315558100342601 - E. V. SPENCE RESERVOIR SITE BC

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			SPE-									
			CIFI					TRANS	-			
			CON-					PAR-			PER-	
		SAMP-						ENCY	0.7	s-	CENT	HARD-
					014	T-110						
		LING			PH	TEMP		(SECCH			SATUR-	NESS
	TIME	DEPTH					RE	DISK)		GEN	ATION	(CA,MG)
DATE		(FT)	MHOS	5) (U	NITS)	(DEG	C)	(M)	(MG	/L)		(MG/L
JAN												
07	1312	1.	0 32	270	8.2		8.5	1.5	0 1	0.5	95	70
07	1316	10		230	8.1		8.5			0.3	92	-
	1319	20		180	8.2		9.0			0.5	95	1
07	1322	30									95	
07				180	8.2		9.0			0.5		
07	1325	40	34	270	7.9		8.5	-	-	8.7	78	65
	4.2		DIS	5-				DIS-				
	NON-	DIS-	SOLV	/ED		SOD	IUM	SOLVE	D			
	CAR-	SOLVE			DIS-		D-	P0-				DIS-
	BONATE	CAL-			OLVED	SOR		TAS-	RIC	AR-	CAR-	SOLVE
	HARD-	CIUM			ODIUM	TI		SIUM		ATE	BONATE	SULFATI
	NESS	(CA)			(NA)	RAT	10	(K)	(HC		(CO3)	(504)
DATE	(MG/L)	(MG/L) (MG/	/L) (I	MG/L)			(MG/L) (MG	/L)	(MG/L)	(MG/L)
JAN												
07	580	130	90)	390		6.4	14		140	0	540
07			-					-	-			
07		-	-					-	-			
07		-	-					-	-			
07	540	130	79		480		8.2	14		140	0	540
				DIS-								
		DIS-		SOLVE	D TO	TAL	TO	TAL			D	IS-
	S	DLVED	DIS-	SOLID	S NIT	RITE	AMM	ONIA	TOTAL	DI	5- 50	LVED
	CH	ILO-	SOLVED	(SUM O		LUS	NI	TRO-	PHOS-	SOL	VED M	AN-
	R	IDE	SILICA	CONSTI-		RATE	G	EN	PHORUS	TR	ON GA	NESE
		L)	(\$102)	TUENTS		N)		N)	(P)			MN)
DA		(G/L)	(MG/L)	(MG/L		G/L)			(MG/L)			G/L)
JAL			-					1.00				
		700	3.6	194	0	.04		.18	.07		60	10
0.7	7				•							
0.7	7			-	-							
07	7			-	-							
07	7	760	3.5	208	0	.04		.18	.07		90	50
	315	6191003	35601 -	E. V. S	SPENCE	RES	BL					
									1			
	WAT	TER QUAL	ITY DATA	. WATER	YEAR	octo	BER	1977 10	SEPTEM	BEK I	978	
					PE-							
					IFIC							
					ON-				1		PER-	
			SAMP)- DI	JCT-				DI		CENT	
			LIN	IG At	NCE	P	н	TEMPER-	- SOL	VED	SATUR-	
		TIME	DEPT	H (M)	ICRO-			ATURE	OXY	GEN	ATION	
	DATE		(FT		105)	(UNI	TS)	(DEG C			12.5	
	-							772		1		
	JAN											

315712100352001 - E. V. SPENCE RES CC

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			CIFIC				22
		SAMP-	CON- DUCT-			DIS-	PER- CENT
	TIME	LING	ANCE (MICRO-	PH	TEMPER-	SOLVED	SATUR- ATION
DATE	IIME	(FT)	MHOS)	(UNITS)	(DEG C)	(MG/L)	ATTON
LAM							

315810100364901 - E.V.SPENCE RES DC

1350 1353 1356

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	T	IME	SAMP LIN DEPT (FT	G ANO	IC T- E RO-	P (UNI	H	TEMP ATU	RE	TRAMPAGENG (SECODISM)	R- CY CHI	DIS- SOLVE	D SAT	R- ENT TUR-	HARD- NESS (CA+MG) (MG/L)
DATE			()) MHC	151	LONI	15)	CDEG	C)	(14)		(MG/L	,		(MG/L)
JAN 07		436 440			910 1920		8.3 8.3		9.5		60	11.		103	820 820
		ON- AR-	DIS	- SOL	S- VED	DI	S-		IUM D-	SOLV	/ED				DIS-
	BO HA NE	NATE RD- SS	CAL	- NE		SOL SOD (N	VED IUM A)	SOR	P- ON	SIL (K)	5- JM	BICAR- BONATI (HCO3	E BO!		SOLVED SULFATE (SO4)
DATE	(M	G/L)	(MG/	L) (MG	i/L)	(MG	/L)			(MG	/L)	(MG/L	(MC	3/L)	(MG/L)
JAN															
07		700	170		7	50			7.6	14		15		0	620
07		700	170	9	16	59	0		9.0	14		15	0	0	750
		D.I	IS-		DIS		тот	AI	TO	r A i					IS-
		SOL	VED	DIS- SOLVED	SOL:	OF	NITR	ITE	AMM	RO-	TOTA	- !	DIS-	50 M	LVED
		RIE (CL		SILICA (SIO2)	TUEN		NITR		G	N)	PHOR (P)		IRON (FE)		NESE MN)
3	DATE		(L)	(MG/L)	(MG			/L)		5/L)	(MG/		(UG/L)		G/L)
J	AN														
	07	88		2.8		360		.01		.08		05	40		50
	07	92	20	2.8	20	520		.01		.07		05	110		20

315335100312401 - E. V. SPENCE RESERVOTR SITE AC

DATE	TIME	SAMP- LING DEPTH (FT)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM. DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER. DIS- SOLVED (UG/L AS CU)
JAN							
07	1100	1.0	1	300	0	0	1
07	1112	40					
07	1121	68	2	300	0	10	7
			MANGA-		SELE-		
	IRON.	LEAD.	NESE.	MERCURY	NIUM.	SILVER.	ZINC.
	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-
	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS SE)	AS AG)	AS ZN)
JAN							
07	10	1	0	.0	0	0	50
07	80		20				
07	410	5	80	.0	1	0	50

E. V. SPENCE RESERVOIR NEAR ROBERT LEE, TX--Continued

315335100312401 E. V. SPENCE RESERVOIR SITE AC PHYTOPLANKTON ANALYSES. OCTOBER 1977 TO JANUARY 1978

DATE		7,78 121
TOTAL CELLS/ML	16	000
DIVERSITY: DIVISION •CLASS ••ORDER •••FAMILY ••••GENUS		0.3 0.3 0.9 1.7 2.6
ORGANISM	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) •CHLOROPHYCEAE ••CHLOROCOCCALES ••OOCYSTACEAE •••DICTYOSPHAERIUM	1300	a
OOCYSTIS TETRAEDRON SCENEDESMACEAE	3400# 210	50
CRUCIGENIASCENEDESMUS .TETRASPORALESCOCCOMYXACEAE	4600# 3700#	
ELAKATOTHRIX	370	S
SPHÄEROCYSTIS	1800	11
CYANOPHYTA (BLUE-GREEN ALGAE) •CYANOPHYCEAE •CHROCCOCCALES ••CHROCCOCCALE		
ANACYSTIS	1100	6

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

E. V. SPENCE RESERVOIR NEAR ROBERT LEE, TX--Continued

315810100364901 E.V.SPENCE RES DC PHYTOPLANKTON ANALYSES. OCTOBER 1977 TO JANUARY 1978

DATE TIME	JAN 7.78 1440	
TOTAL CELLS/ML	5100	
DIVERSITY: DIVISION CLASS ORDER FAMILY GENUS	0.7 0.8 1.4 2.1 0.0	
ORGANISM	CELLS PER-	
CHLOROPHYTA (GREEN ALGAE) •CHLOROPHYCEAE ••CHLOROCOCCALES •••OOCYSTACEAE		
ANKISTRODESMUS	760 15	
DICTYOSPHAERIUM	920# 18	
····FRANCEIA ····KIRCHNERIELLA	32 1 32 1	
····OOCYSTIS	700 14	
TETRAEDRON	63 1	
SCENEDESMACEAE		
SCENEDESMUS	130 2 1100# 21	
VOLVOCALES	1100# 21	
CHL AMYDOMONADACEAE	320 6	
CHLAMYDOMONAS	320 6	
ZYGNEMATALES DESMIDIACEAE		
····COSMARIUM	32 1	
****COSHARION	32 1	
CHRYSOPHYTA		
·BACILLARIOPHYCEAE		
PENNALES NAVICULACEAE		
ENTOMONEIS	32 1	
CENTRALES		
COSCINODISCACEAE	160 3	
••PENNALES	160 3	
FRAGILARIACEAE		
SYNEDRA	32 1	
NAVICULACEAE	32 1	
NITZSCHIACEAE	32 1	
NITZSCHIA	130 2	
EUGLENOPHYTA (EUGLENOIDS) •CRYPTOPHYCEAE		
CRYPTOMONIDALES		
CRYPTOCHRYSIDACEAE	100	
CHROOMONAS .EUGLENOPHYCEAE	95 2	
• EUGLENOPHYCEAE		
EUGLENACEAE		
EUGLENA	95 2	
EUTREPTIA	95 2	
PHACUS	* 0	
TRACHELOMONAS	63 1	

NOTE: # - DOMINANT ORGANISM: EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM: MAY NOT HAVE BEEN COUNTED: LESS THAN 1/2%

E. V. SPENCE RESERVOIR NEAR ROBERT LEE, TX--Continued

315235100312201 - E. V. SPENCE RES AR

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN. DIS- SOLVED (PER- CENT SATUR- ATION)	
JUN		4						
08	1115	1.0	3370	8.2	25.5	7.5	100	
08	1117	10	3370	8.1	25.0	7.4	99	
08	1119	20	3370	8.1	25.0	7.3	97	
08	1122	33	3360	8.1	25.0	7.0	93	

315335100312401 - E. V. SPENCE RESERVOIR SITE AC

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			SPE-					OXYGEN.	HARD-
			CIFIC			TRANS-		DIS-	NESS,
			CON-			PAR-		SOLVED	DIS-
		SAMP-	DUCT-			ENCY	OXYGEN,	(PER-	SOLVED
		LING	ANCE	PH	TEMPER-	(SECCHI	DIS-	CENT	(MG/L
	TIME	DEPTH	(MICRO-		ATURE	DISK)	SOLVED	SATUR-	AS
DATE		(FT)	MHOS)	(UNITS)	(DEG C)	(M)	(MG/L)	ATION)	CACO3)
JUN									
08	1025	1.0	3370	8.2	25.5	1.50	7.5	100	670
08	1027	10	3370	8.1	25.0		7.0	93	
08	1029	20	3370	8.1	24.5		6.8	89	
08	1031	30	3360	8.0	24.0		6.1	79	
08	1033	40	3340	7.5	22.5		2.5	32	
08	1035	52	3340	7.2	21.5		1.7	21	660
	HARD-								
	NESS.		MAGNE-		SODIUM	POTAS-			
	NONCAR-	CALCIUM	SIUM,	SODIUM.	AD-	SIUM,	BICAR-		SULFATE
	BONATE.	DIS-	DIS-	DIS-	SORP-	DIS-	BONATE	CAR-	DIS-
	DIS.	SOLVED	SOLVED	SOLVED	TION	SOLVED	(MG/L	BONATE	SOLVED
	(MG/L	(MG/L	(MG/L	(MG/L	RATIO	(MG/L	AS	(MG/L	(MG/L
DATE	CACO3)	AS CA)	AS MG)	AS NA)	MATTO	AS K)	HC03)	AS C03)	AS 504)
JUN					4.70				40
08	560	140	78	460	7.7	15	140	0	450
08							344		
08			-						
08									
08	0/4								
08	540	140	76	460	7.8	460	150	0	440
				SOLIDS.					
	CHLO-	FLUO-	SILICA,	SUM OF	NITRO-	NITRO-			MANGA-
	RIDE.	RIDE.	DIS-	CONSTI-	GEN.	GEN,	PHOS-	IRON.	NESE.
	DIS-	DIS-	SOLVED	TUENTS.	N02+N03	AMMONIA	PHORUS,	DIS-	DIS-
	SOLVED	SOLVED	(MG/L	DIS-	TOTAL	TOTAL	TOTAL	SOLVED	SOLVED
	(MG/L	(MG/L	AS	SOLVED	(MG/L	(MG/L	(MG/L	(UG/L	(UG/L
DATE	AS CL)	AS F)	2105)	(MG/L)	AS N)	AS N)	AS P)	AS FE)	AS MN)
JUN									
08	770	.5	4.0	1990	.01	.00	.00	20	10
08									
00									
08)			.01	.00	.01	30	10
08					.01	.08	.01	20	0
08	760	.5	5.0	2420	.00	.19	.01	30	640
							and the same		

315413100312501 - E. V. SPENCE RES AL

OB 1130 1.0 3370 8.2 25.5 7.5	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN. DIS- SOLVED (MG/L)	TEMPER- ATURE (DEG C)	PH (UNITS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	SAMP- LING DEPTH (FT)	TIME	DATE
								JUN
	100	7.5	25.5	8.2	3370	1.0	1130	08
08 1132 10 3370 8.2 25.0 7.4	99	7.4	25.0	8.2	3370	10	1132	08
08 1135 25 3370 8.1 25.0 7.1	95	7.1	25.0	8.1	3370	25	1135	08

E. V. SPENCE RESERVOIR NEAR ROBERT LEE, TX--Continued

315558100342601 - E. V. SPENCE RESERVOIR SITE BC

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	P (UNI	AT	PER- (S	RANS- PAR- ENCY ECCHI ISK) (M)	OXYGEN. DIS- SOLVED (MG/L)	OXYGEN. DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS, DIS- SOLVED (MG/L AS CACO3)
JUN										
08	1155	1.0	3380		8.2	26.0	.70	7.0	95	640
08	1157	10	3380			25.5		6.5	87	
08	1159	20	3380			24.5		5.4	71	
08	1201	30	3370			24.0		3.8	49	640
	HARD-		2			12.00 1				
	NESS.		MAGNE-	4			OTAS-			CHI FATE
	NONCAR-	CALCIUM		1005			SIUM,	BICAR-	CAR-	SULFATE DIS-
	BONATE,	DIS-	DIS-	DIS			DIST	BONATE (MG/L	BONATE	SOLVED
	DIS.	SOLVED (MG/L	SOL VED	SOL V			MG/L	AS	(MG/L	(MG/L
DATE	CACO3)	AS CA)		AS			S K)	HC03)	AS C03)	AS 504)
JUN										
08	520	140	70	47	0	8.1	15	140	0	440
08										
08										
08	520	140	70	47	0	8.1	15	140	0	460
			50	LIDS.						
	CI	LO- SI		M OF	NITRO-	NITHO	-		MA	NGA-
				NSTI-	GEN.	GEN.	PH	05- IR	ON. NE	SE,
	0	IS- S	OLVED TU	ENTS.	N02+N03	AMMONI	A PHO	RUS. D	IS- C	IS-
	S	LVED (MG/L	DIS-	TOTAL	TOTAL	TO	TAL SO	LVED SC	LVED
	(1	MG/L	AS S	OLVED	(MG/L	(MG/L	(M	G/L (U	G/L (L	IG/L
D	ATE AS	S CL) S	105) (MG/L)	AS N)	AS N)	AS	P) AS	FE) AS	MN)
JU	N									
		760	4.1	1970	.01	.0	0	.01	20	10
	8						-			
	8				.01			.00	40	0
0	8	760	4.4	1990	.01	• 0	6	.01	50	50
	319	61910033	5601 - E.	V. SP	ENCE RES	BL				

315619100335601 - E. V. SPENCE RES BL

		SAMP-	SPE- CIFIC CON- DUCT-			OXYGEN.	OXYGEN. DIS- SOLVED (PER-
DATE	TIME	LING DEPTH (FT)	ANCE (MICHO- MHOS)	(UNITS)	TEMPER- ATURE (DEG C)	SOLVED (MG/L)	CENT SATUR- ATION)
JIJN							3.0
08	1550	1.0	3380	8.1	26.0	6.7	91
08	1223	10	3380	8.0	25.0	6.4	84
08	1225	21	3380	7.8	25.0	4.9	65

E. V. SPENCE RESERVOIR NEAR ROBERT LEE, TX--Continued

315712100352001 - E. V. SPENCE RES CC

WATER QUALITY DATA. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN. DIS- SOLVED (MG/L)	OXYGEN. DIS- SOLVED (PER- CENT SATUR- ATION)
JUN	1240	1.0	2520	8.4	26.0	8.8	119
08	1243	10	2940 3330	8.1	25.5 25.5	6.6	88 61
		901 - E.V	SPENCE R	ES DC			

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			SPE- CIFIC CON-			TRANS-		DIS- SOLVED	HARD- NESS, DIS-
		SAMP-	DUCT-		12 11000	ENCY	OXYGEN.	(PER-	SOLVED
		LING	ANCE	PH	TEMPER-	(SECCHI	DIS-	CENT	(MG/L
	TIME	DEPTH	(MICRO-		ATURE	DISK	SOLVED	SATUR-	CACO3)
DATE		(FT)	MHOS)	(UNITS)	(DEG C)	(M)	(MG/L)	ATION)	CACOSI
JUN									The offe
08	1315	1.0	2340	8.4	27.0	.20	8.4	115	410
08	1320	7.0	2450	8.2	26.5	4.00	7.1	97	430
	HARD-								
	NESS.		MAGNE-		SODIUM	POTAS-			
	NONCAR-	CALCIUM	SIUM,	SODIUM.	AD-	SIUM.	BICAR-		SULFATE
	BONATE .	DIS	DIS-	DIS-	SORP-	DIS-	BONATE	CAR-	DIS-
	DIS.	SOLVED	SOLVED	SOLVED	TION	SOLVED	(MG/L	BONATE	SOLVED
	(MG/L	(MG/L	(MG/L	(MG/L	RATIO	(MG/L	AS	(MG/L	(MG/L
DATE	CACO3)	AS CA)	AS MG)	AS NA)		AS K)	HC03)	AS CO3)	AS 504)
JUN							3 1-3	4	
08	310	100	40	330	7.1	7.8	120	5	320
08	330	110	38	340	7.1	7.9	130	0	320

	CHLO-	SILICA.	SOL TOS.	NITRO-	NITRO-			MANGA-	
	RIDE.	DIS-	CONSTI-	GEN.	GEN.	PHOS-	IRON.	NESE.	
	DIS-	SOLVED	TUENTS.	N02+N03	AMMONIA	PHORUS.	DIS-	DIS-	
	SOLVED	(MG/L	DIS-	TOTAL	TOTAL	TOTAL	SOLVED	SOLVED	
	(MG/L	AS	SOL VED	(MG/L	(MG/L	(MG/L	(UG/L	(UG/L	
DATE	AS CL)	5102)	(MG/L)	AS N)	AS N)	AS P)	AS FE)	AS MN)	
JUN								- 10	
08	480	4.3	1350	.04	.03	.10	20	10	
08	510	4.9	1400	.06	.01	.23	20	20	

315335100312401 - E. V. SPENCE RESERVOIR SITE AC

						CHRO-	
		SAMP-	ARSENIC DIS-	BARIUM.	CADMIUM DIS-	MIUM.	COPPER.
		LING	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED
	TIME	DEPTH	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE		(FT)	AS AS)	AS BA)	AS CD)	AS CR)	AS CU)
JUN							
08	1025	1.0	1	500	0	10	2
08	1031	30					
08	1033	40					
08	1035	52	2	300	0	0	0
			MANGA-		SELE-		
	IRON.	LEAD.	NESE.	MERCURY	NIUM.	SILVER.	ZINC.
	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-
	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS SE)	AS AG)	AS ZN)
JUN							
08	20	4	10	.0	0	0	20
08	30		10				
08	20		0				
08	30	3	640	.0	0	0	60

E. V. SPENCE RESERVOIR NEAR ROBERT LEE, TX--Continued

315335100312401 E. V. SPENCE RESERVOIR SITE AC PHYTOPLANKTON ANALYSES, JUNE 1978 TO JUNE 1978

DATE	JUN	8,78
TIME		026
TOTAL CELLS/ML	44	000
DIVERSITY: DIVISION		0.9
• CLASS		0.9
••ORDER		1.0
FAMILY		1.3
GENUS		1.8
	CELLS	PER-
ORGANISM	/ML	CENT
CHLOROPHYTA (GREEN ALGAE)		
· CHLOROPHYCEAE		
CHLOROCOCCALES		
OOCYSTACEAE		
CHODATELLA	1200	3
KIRCHNERIELLA		0
OOCYSTIS	3500	8
TETRAEDRON	3400	8
SCENEDESMACEAE		
CRUCIGENIA	300	1
SCENEDESMUS	2500	6
TETRASTRUM	300	1
VOLVOCALES		
CHLAMYDOMONADACEAE		
CHLAMYDOMONAS	*	0
ZYGNEMATALES		
DESMIDIACEAE	100	
COSMARIUM	450	1
CHRYSOPHYTA		
.BACILLARIOPHYCEAE		
CENTRALES		
COSCINODISCACEAE		
CYCLOTELLA		0
PENNALES		
FRAGILARIACEAE		
SYNEDRA	*	0
CYANOPHYTA (BLUE-GREEN ALGAE)		
· CYANOPHYCEAE		
CHROCCOCCALES		
CHROCCOCCAEAE	1000	
AGMENELLUM	600	1
ANACYSTIS	31000#	-
COCCOCHLORIS	600	1
HORMOGONALES		
OSCILLATORIACEAE		
LYNGBYA	600	1

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

E. V. SPENCE RESERVOIR NEAR ROBERT LEE, TX--Continued

315810100364901 E.V.SP PHYTOPLANKTON ANALYSES, JUNE 1	ENCE RES DC 978 TO JUNE 1978
DATE	JUN 8+78 1316
TOTAL CELLS/ML	110000
DIVERSITY: DIVISION .CLASSORDERFAMILY	1.4 1.4 1.7 2.1
GENUS	2.2
ORGANISM	CELLS PER-
CHLOROPHYTA (GREEN ALGAE)	3 - H - B
• CHLOROPHYCEAE • • CHLOROCOCCALES	
COELASTRACEAECOELASTRUMOOCYSTACEAE	5700 5
DICTYOSPHAERIUM SCENEDESMACEAE	18000# 16
ACTINASTRUM	2900 3
SCENEDESMUSTETRASPORALESPALMELLACEAE	3600 3
SPHAEROCYSTISVOLVOCALESCHLAMYDOMONADACEAE	2900 3
CHLAMYDOMONAS	2500 2
CHRYSOPHYTA BACILLARIOPHYCEAE CENTRALES COSCINODISCACEAE	
CYCLOTELLA	63000# 56
••PENNALES •••NITZSCHIACEAE ••••NITZSCHIA	710 1
CYANOPHYTA (BLUE-GREEN ALGAE •CYANOPHYCEAE •HORMOGONALES)
LYNGBYA	11000 10
EUGLENOPHYTA (EUGLENOIDS) •EUGLENOPHYCEAE ••EUGLENALES	
EUGLENACEAE	
EUGLENA	1400 1 710 1

IOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

LOCATION.--Lat 31°53'07", long 100°28'49", Coke County, Hydrologic Unit 12080008, on left bank 190 ft (58 m) upstream from bridge on State Highway 208 in Robert Lee, 0.4 mi (0.6 km) upstream from Mountain Creek, 2.7 mi (4.3 km) downstream from Messbox Creek, 3.7 mi (6.0 km) downstream from Robert Lee Dam, and at mile 712 (1,146 km).

08124000 COLORADO RIVER AT ROBERT LEE, TX

DRAINAGE AREA.--15,770 mi² (40,840 km²), of which 11,600 mi² (30,040 km²) probably is noncontributing.

PERIOD OF RECORD.--October 1923 to December 1927, April 1939 to May 1956, October 1968 to current year. Prior to December 1927, published as "near Robert Lee".

REVISED RECORDS .-- WSP 1723: 1925(M).

GAGE.--Water-stage recorder. Datum of gage is 1,771.70 ft (540.014 m) National Geodetic Vertical Datum of 1929. Prior to Dec. 31, 1927, nonrecording gage at site 9 mi (14 km) downstream at different datum. Apr. 18 to Sept. 26, 1939, nonrecording gage, and Sept. 27, 1939, to May 9, 1956, water-stage recorder at site 200 ft (61 m) downstream at same datum.

REMARKS.--Records good. Flow affected since April 1949 by Lake Colorado City and since July 1952 by Lake J. B. Thomas. Since December 1968, flow has been regulated by E. V. Spence Reservoir (station 08123950). Many diversions above station for municipal, cooling, mining, agricultural, and industrial uses. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--19 years (water years 1924-27, 1940-55) prior to completion of Robert Lee Dam, 207 ft³/s (5.862 m³/s), 150,000 acre-ft/yr (185 hm³/yr); 10 years (water years 1969-78) regulated, 2.29 ft³/s (0.0649 m³/s), 1,660 acre-ft/yr (2.05 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 32,500 ft³/s (920 m³/s) Sept. 6, 1926, gage height, 20.20 ft (6.157 m), site and datum then in use, from rating curve extended above 15,000 ft³/s (425 m³/s); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1907, 26.7 ft (8.14 m) Oct. 13, 1957, from floodmarks. Flood in April 1922 reached a stage of 25.5 ft (7.77 m), present datum, from information by local resident.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 148 ft3/s (4.19 m3/s) June 27, gage height, 4.25 ft (1.295 m); no flow at times.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES AUG SEP JUN JUL MAY DAY OCT NOV DEC JAN FEB MAR APR 0.7 1.9 .20 .17 15 -30 .00 .33 .93 1.1 .06 .32 45 .15 1.2 .19 .49 .10 .08 1.0 2 .00 1.3 16 .06 .67 .05 .00 .27 .53 1.4 2.1 .14 .63 3 .12 5.3 25 .06 1.3 .04 .62 -10 .00 .24 83 2.0 .06 14 .09 .00 .46 1.3 .04 .39 .10 .11 .11 1.0 .06 -05 .22 6 .10 .00 6.2 .12 .54 1.4 .76 .72 1.5 .20 .32 .09 2.7 .09 1.3 .10 .00 .11 .67 .50 .33 .16 .05 1.5 .60 .11 .03 1.5 .08 .11 8 .05 .71 .08 .34 .10 .09 .01 .23 .12 .89 1.3 .07 .38 .14 .83 .46 .07 .05 -20 10 .11 .01 .14 1.2 .06 .04 .20 .31 11 .10 .02 .12 .19 .73 1.2 .45 -07 .25 .06 .06 .03 .20 1.2 .43 12 .07 .02 .13 .22 1.5 1.2 .03 36 .42 .04 .38 .07 .15 13 .08 -02 .10 .03 .07 .03 120 .57 14 .07 .02 .04 .13 .85 1.2 .41 .00 .55 .15 .39 .07 .04 20 15 .08 .02 .05 .56 1.4 .01 .04 3.7 .50 .60 .09 16 .07 .01 .11 .22 1.5 .39 2.0 .45 .00 .04 -08 17 .04 .02 .29 .19 .45 1.3 .35 .87 .35 .00 .04 .03 1.0 .26 18 .00 .06 .69 .16 .36 .04 .00 .90 .12 .20 .02 .33 .27 .32 19 .17 .00 .15 .01 17 .03 .20 .23 .00 .43 .99 .17 .29 .04 .21 20 3.9 .00 .18 -20 21 .00 .90 .99 .19 .26 .04 .24 .13 .97 .00 .17 .10 22 .05 .88 1.1 .25 .29 .09 .20 25 .17 .08 .00 .20 23 .01 .69 1.1 .21 .35 .08 .18 63 .07 .38 .31 .00 1.0 .09 24 -00 .62 .18 .58 2.8 .63 .74 .12 .17 .00 .19 .10 25 .00 1.1 .26 .11 .71 .10 .12 .21 23 26 .00 .59 1.0 .27 .79 .10 .04 .14 .48 146 .24 .00 .39 .99 .27 .75 .08 .03 .08 .31 .16 .11 91 .37 .99 28 .00 .36 .81 .07 .02 .11 5.0 .24 .15 .08 .02 .38 .37 29 .00 .36 ---.13 .13 .00 .37 .75 .38 .18 .01 .25 2.7 .20 .06 ---30 .09 31 .17 .18 .00 .81 .42 .21 310.05 123.39 1.88 88.59 269.01 TOTAL 6.63 37.73 8.34 17.41 24.64 6.51 1.76 .79 8.97 10.0 3.98 .063 2.86 MEAN .057 .22 1.22 .27 .62 .22 45 146 120 63 .14 .46 1.0 1.5 MAX .30 .90 14 1.5 .04 .01 .02 .00 .17 .09 .00 .04 .26 MIN .00 .00 .11 534 615 245 3.7 3.5 75 17 35 49 13 176 AC-FT 13

CAL YR 1977 TOTAL 706.00 MEAN 1.93 MAX 83 MIN .00 AC-FT 1400 WTR YR 1978 TOTAL 895.94 MEAN 2.45 MAX 146 MIN .00 AC-FT 1780

08125500 OAK CREEK RESERVOIR NEAR BLACKWELL, TX

LOCATION.--Lat 32°03'25", long 100°17'37", Coke County, Hydrologic Unit 12080008, on left bank at municipal pump station, 1.9 mi (3.1 km) upstream from dam on Oak Creek, 2.5 mi (4.0 km) southeast of Blackwell, 14 mi (23 km) north of Bronte, and 20 mi (32 km) upstream from mouth.

DRAINAGE AREA .-- 244 mi 2 (632 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1953 to current year.

GAGE.--Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--The reservoir is formed by a rolled earthfill dam 3,800 ft (1,160 m) long. The dam was completed in May 1952, and deliberate impoundment began May 12, 1953. The uncontrolled emergency spillway is an 800-foot-wide (240 m) cut through natural ground, located 1,200 ft (366 m) from right end of dam. The service spillway is an uncontrolled cut channel through natural ground 300 ft (91 m) wide, located 2,000 ft (610 m) from right end of dam. The reservoir and dam are the property of the city of Sweetwater. The dam was built to impound water for municipal and industrial uses by the cities of Sweetwater, Blackwell, and Bronte. Since April 1962, West Texas Utilities Co. has operated a steam generating powerplant located on the reservoir. There is a gated outlet at the service spillway that can release water downstream to Oak Creek through a 24 in (610 mm) concrete pipe. The capacity curve is based no a 1950 survey. Figures given herein represent total contents. Data regarding the dam and reservoir are given in the following table:

	(feet)	(acre-feet)
Top of dam	2,014.0	-
Crest of spillway	2,005.0	52,490
Crest of spillway (top of conservation pool)	2.000.0	39,360
Lowest gated outlet (invert)	1 951 0	100

COOPERATION.--Capacity curve, record of lake elevation, and diversions were furnished by the city of Sweetwater.

EXTREMES (at 0800) FOR PERIOD OF RECORD.--Maximum contents observed, 49,100 acre-ft (60.5 hm³) oct. 13, 1957, elevation, 2,003.80 ft (610.758 m); minimum observed, 7,060 acre-ft (8.70 hm³) Aug. 1, 1953, elevation, 1,976.2 ft (602.35 m).

EXTREMES (at 0800) FOR CURRENT YEAR.--Maximum contents observed, 21,870 acre-ft (27.0 hm³) Oct. 1, elevation, 1,990.9 ft (606.83 m); minimum, 13,090 acre-ft (16.1 hm³) Aug. 1, 2, elevation, 1,983.7 ft (604.63 m).

Capacity table (elevation, in feet, and total contents, in acre-feet)

1	,983.0	12,430	1.988.0	17,810
1	,985.0	14,380	1,981.0	22,020

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 INSTANTANEOUS OBSERVATIONS AT 0800

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	21870 21720 21720 21720 21720 21720	20680 20680 20530 20530 20530	19830 19830 19690 19690 19690	18870 18870 18730 18730 18730	18070 18070 18070 17940 17940	17810 17810 17810 17940 17940	17310 17310 17310 17190 17190	16340 16340 16340 16230 16110	15660 15660 15660 15660 15660	14480 14380 14380 14380 14280	13090 13090 13980 15430 15430	14380 14280 14280 14180 14180
6 7 8 9	21570 21570 21420 21420 21420	20530 20530 20530 20390 20390	19550 19550 19410 19410 19410	18600 18600 18600 18600 18470	17940 18070 18070 18070 18070	17940 17810 17810 17810 17810	17190 17190 17190 17190 17190	16110 16110 16110 16110 16110	15660 15660 15660 15660 15540	14280 14180 14180 14180 14080	15430 15320 15320 15320 15320	14180 14080 14080 14080 14080
11 12 13 14 15	21280 21280 21130 21130 21130	20250 20250 20250 20250 20250 20250	19410 19270 19270 19270 19270	18470 18470 18470 18470 18470	18070 18070 18070 18070 18070	17810 17810 17810 17690 17690	17190 17190 17190 17190 17070	16110 16110 16110 16000 16000	15540 15430 15430 15430 15430	13980 13980 13880 13780 13780	15220 15220 15220 15220 15220	14080 13980 13980 13880 13880
16 17 18 19 20	20980 20980 20980 20830 20830	20250 20110 20110 20110 19970	19270 19270 19130 19130 19130	18470 18470 18470 18470 18340	18070 18070 18070 18070 18070	17690 17690 17690 17560 17560	17070 17070 16940 16820 16820	16000 16000 16000 15890 15890	15320 15220 15220 15110 15010	13680 13680 13580 13480 13380	15110 15110 15010 14910 14910	13780 13780 13780 13680 13680
21 22 23 24 25	20980 20980 20830 20830 20830	19970 19970 19970 19970 19830	19130 19130 19130 19000 19000	18340 18340 18340 18340 18340	18070 18070 18070 18070 17940	17560 17560 17560 17440 17440	16820 16690 16690 16690 16570	16000 16000 15890 15890 15890	15010 15010 14910 14800 14800	13380 13380 13190 13380 13380	14800 14800 14800 14690 14690	13680 13680 13680 13580 13580
26 27 28 29 30 31	20830 20830 20830 20830 20830 20830	19830 19830 19830 19830 19830	18870 18870 18870 18870 18870 18870	18210 18210 18210 18070 18070 18070	17940 17940 17940	17440 17440 17440 17440 17310 17310	16570 16570 16570 16460 16460	15890 15890 15770 15770 15770	14690 14690 14590 14590 14480	13380 13380 13280 13280 13190 13190	14590 14590 14480 14480 14380 14380	13480 13480 13480 13480 13480
MAX MIN (†) (‡) (††)	21870 20830 1990.2 -1190 397	20680 19830 1989.5 -1000 331	19830 18870 1988.8 -960 342	18870 18070 1988.2 -800 339	18070 17940 1988.1 -130 300	17940 17310 1987.6 -630 378	17310 16460 1986.9 -850 462	16340 15770 1986.3 -690 452	15660 14480 1985.1 -1290 487	14480 13190 1983.8 -1290 589	15430 13090 1985.0 +1190 496	14380 13480 1984.1 -900 415

CAL YR 1977 WTR YR 1978 MAX 21870 MIN 13090 -8540 4990

† Elevation, in feet, at end of month. ‡ Change in contents, in acre-feet. †† Diversions, in acre-feet, for municipal and industrial uses.

81

COLORADO RIVER BASIN

08125500 OAK CREEK RESERVOIR NEAR BLACKWELL, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1969 to current year.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS+ NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM. DIS- SOLVED (MG/L AS NA)
JAN 09	1010	1310	7.7	7.0	490	340	99	58	92
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE. DIS- SOLVED (MG/L AS CL)	FLUO- RIDE+ DIS- SOLVED (MG/L AS F)	SILICA. DIS- SOLVED (MG/L AS SIO2)	SOLIDS. SUM OF CONSTI- TUENTS. DIS- SOLVED (MG/L)
JAN 09	1.8	9.1	180	0	330	150	.4	8.1	835

08126500 COLORADO RIVER AT BALLINGER, TX

- LOCATION.--Lat 31°43'58", long 99°57'13", Runnels County, Hydrologic Unit 12090101, on left bank at downstream side of bridge on U.S. Highway 67 in Ballinger, 1.3 mi (2.1 km) upstream from Elm Creek, and at mile 660.2 (1,062.3 km).
- DRAINAGE AREA.--16,840 mi² (43,620 km²), approximately, of which 11,600 mi² (30,040 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

- PERIOD OF RECORD.--June 1907 to current year. Monthly discharge only for some periods published in WSP 1312. Gage-height records collected in this vicinity from 1903-29 are contained in reports of the National Weather Service.
- REVISED RECORDS.--WSP 1118: Drainage area. WSP 1512: 1916-17, 1919-20, 1921(M), 1922-25, 1928(M), 1930(M). WSP 1712: 1935, 1954-55(M).
- GAGE.--Water-stage recorder. Datum of gage is 1,593.74 ft (485.772 m) National Geodetic Vertical Datum of 1929. Prior to Nov. 29, 1930, nonrecording gages at several sites near present site at various datums. Nov. 29, 1930, to May 1, 1975, water-stage recorder at site 0.8 mi (1.3 km) downstream at same datum.
- REMARKS.--Water-discharge records good except those affected by backwater on Aug. 3-6, which are poor. Diversions above station for irrigation, municipal supplies, and oilfield operation. Flow is affected by E. V. Spence and Oak Creek Reservoirs (see stations 08123950 and 08125500) and at times by discharge from the flood-detention pools of 25 floodwater-retarding structures with a combined detention capacity of 26,640 acre-ft (32.8 hm³). These structures control runoff from 133 mi² (344 km²) in the Kickapoo and Valley Creeks drainage basins.
- AVERAGE DISCHARGE.--61 years (water years 1908-68) prior to completion of Robert Lee Dam, 336 ft³/s (9.516 m³/s), 243,400 acre-ft/yr (300 hm³/yr); 10 years (water years 1969-78) partially regulated, 45.7 ft³/s (1.294 m³/s), 33,110 acre-ft/yr (40.8 hm³/yr).
- EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 75,400 ft³/s (2,140 m³/s) Sept. 18, 1936, gage height, 28.6 ft (8.72 m); no flow at times.
- EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1882, about 36 ft (11.0 m) sometime in 1884, at former site and datum, from information by local residents. Flood of Aug. 6, 1906, reached a stage of about 32.0 ft (9.75 m), at former site and datum, from floodmarks (backwater from Elm Creek).
- EXTREMES FOR CURRENT YEAR.--Maximum discharge, 17,500 ft³/s (496 m³/s) Aug. 3, gage height, 22.94 ft (6.992 m); maximum gage height, 23.95 ft (7.300 m) Aug. 3 (backwater from Elm Creek); no flow at times.
- REVISIONS.--The maximum discharges for water year 1976 and 1977 have been revised to 1,300 ft³/s (36.8 m³/s) Nov. 2, 1975, gage height, 5.20 ft (1.585 m), from floodmarks at old site, and 932 ft³/s (26.4 m³/s) Oct. 29, 1976, gage height, 4.52 ft (1.378 m); revised daily discharges, in cubic feet per second, for high-water periods are given below. These figures supersede those published in the reports for 1975-76.

May 4, 1975 44 5 132 6 80	May 25, 1975 193 26 106 27 97	Apr. 28, 1976 95 29 584 30 277	Mar. 27, 1977 114 28 134 29 82
10 340 11 868	28	May 1	Apr. 15 247 16 221
12	30	12	17
15 57 16 43 17 31	Nov. 2	19	20
18	Apr. 12, 1976 145	21 57 28 168	23 100 24 76
20	13	0ct. 29 558 30 550 31 202	May 30 59 June 1
23 24 24 273	17 137 18 143	Nov. 1	26 91 27 137
Month	Total	Mean Max	Min Ac-ft
May 1975 July	3,726 750.2	120 868 24.2 102	10 7,390 7.3 1,490
WTR YR 1975	36,101.8	98.9 2,280	2.3 71,610
November 1975 April May	1,488 1,986.8 781.2	49.6 507 66.2 584 25.2 114	11 2,950 3.0 3,940 2.4 1,550
July September	982.5 608.7	31.7 20.3 188 168	.03 1,950 3.1 1,210
CAL YR 1975 WTR YR 1976	16,907.20 7,758.26	46.3 868 21.2 584	2.3 .03 33,540 15,380
October 1976 November	1,788.6 1,027	57.7 558 34.2 120	8.1 3,550 22 2,040
March April May	779.6 2,650 997	25.1 134 88.3 529 32.2 68	8.6 1,550 15 5,260 12 1,980
June CAL YR 1976	988.5 9,009.46	33.0 188 24.6 584	1.8 1,960 .03 17,870
WTR YR 1977	10,595.50	29.0 558	0 21,020

COLORADO RIVER BASIN

08126500 COLORADO RIVER AT BALLINGER, TX--Continued

		DISCHA	RGE, IN C	UBIC FEET	PER SECON	D, WATER	R YEAR OC	TOBER 1977	TO SEPTE	MBER 197	78	
DAY	OCT	NOV	DEC	JAN	FEB	N VALUES MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	4.1	6.9	4.1	5.0	6.0	2.4	.09	2.8	.00	.00	7.9
2 3 4	.00	3.7	6.5	3.7	5.1	5.4	1.6	316	2.9	.00	3.3	8.9
3	.00	3.6	6.1	5.0	5.9	5.4	2.0	328	5.2	.00	9200	7.5
4	.00	3.6	6.1	5.2	6.0	5.4	2.6	65	83	.16	1300	7.0
5	.00	3.7	5.7	5.2	6.7	5.2	2.6	25	18	.01	193	6.7
6 7	.00	3.5	5.7	3.6	6.8	5.5	3.0	39	7.8	.00	86	6.5
7	.00	3.1	4.6	3.8	6.8	5.9	3.1	1530	6.0	.00	37	6.4
8	.00	4.5	4.3	3.5	6.7	6.2	2.6	172	5.3	.00	23	7.3
9	.00	4.2	4.0	3.3	12	5.7	3.7	30	4.5	.00	18	6.7
10	.00	4.3	4.3	3.6	12	5.7	19	10	2.8	.00	16	6.9
11	.00	4.3	4.0	3.6	9.0	5.0	4.1	6.3	2.9	.01	16	6.3
12	.00	4.3	2.2	4.4	24	5.1	2.4	4.9	3.0	.09	28	5.4
13	.00	4.3	3.4	4.3	23	4.3	2.1	4.0	1.8	.21	15	4.7
14	.00	4.3	3.6	4.2	22	5.0	2.1	3.4	1.5	.03	12	4.6
15	.00	4.3	3.7	3.6	14	4.1	1.4	3.2	1.3	.03	9.8	4.8
16	.00	4.4	2.8	3.5	8.5	4.3	1.1	2.9	1.1	.00	9.6	4.7
17	.00	5.0	2.4	4.1	6.4	4.4	1.6	2.4	.87	.00	9.1	5.0
18	.00	4.7	2.7	4.3	5.6	4.3	1.6	2.1	.69	.00	8.3	4.9
19	.00	4.3	3.4	4.3	5.6	4.6	1.5	1.9	.69	.00	7.6	4.9
20	.00	2.3	3.3	4.7	5.8	4.7	1.5	3.2	.19	.00	7.5	4.6
21	.00	2.0	3.0	5.0	5.8	4.6	1.8	3.2	.03	.00	7.2	4.0
22	48	2.6	2.4	5.3	5.9	3.9	1.6	39	.00	.00	7.1	3.9
23	149	3.2	2.9	5.3	5.7	3.5	.94	36	.03	.00	6.9	3.9
24	4.5	5.2	3.8	5.3	5.2	3.4	.86	13	.00	.00	7.1	3.9
25	18	5.9	4.1	4.4	5.2	3.5	1.3	7.7	.00	.00	7.2	3.5
26	10	5.8	4.3	5.1	5.7	2.5	1.3	5.6	.00	.00	6.8	3.3
27	6.9	5.6	4.3	5.0	5.6	2.4	1.3	4.2	.00	.00	7.0	4.3
28	5.0	5.8	4.6	5.3	5.5	2.2	1.1	4.2	.00	.00	7.4	3.4
29	4.0	6.1	4.5	4.9		2.6	.78	4.8	.00	.00	6.8	2.9
30	3.7	6.5	4.9	5.1		2.7	.21	3.5	.00	.00	6.9	2.4
31	3.7		4.6	5.3		2.5		3.0		.00	7.1	
TOTAL		129.2	129.1	138.0	241.5	136.0	73.19	2673.59	152.40	.54	11076.70	157.2
MEAN	9.46	4.31	4.16	4.45	8.63	4.39	2.44	86.2	5.08	.017	357	5.24
MAX	149	6.5	6.9	5.3	24	6.2	19	1530	83	.21	9200	8.9
MIN	.00	2.0	2.2	3.3	5.0	2.2	.21	.09	.00	.00	.00	2.4
AC-FT	582	256	256	274	479	270	145	5300	302	1.1	21970	312
CAL YR	1977 TOTAL	7586	.50 MEAI	1 20.8	MAX 529	MIN .	.00 AC-	FT 15050				
WTR YR	1978 TOTAL				MAX 9200			FT 30150				

08126500 COLORADO RIVER AT BALLINGER, TX--Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1961 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC COMDUCTANCE: October 1961 to current year. WATER TEMPERATURES: October 1961 to current year. SUSPENDED SEDIMENT DISCHARGE: January to Setember 1978.

EXTREMES FOR PERIOD OF DAILY RECORD .--

WATER TEMPERATURE: Maximum daily, 13,500 micromhos May 3, 1963; minimum daily, 249 micromhos Aug. 14, 1963. WATER TEMPERATURES: Maximum daily, 39.0°C July 3, 1977; minimum daily, 0.0°C Jan. 9-11, 1973.

EXTREMES FOR CURRENT YEAR .--

KTREMES FOR CURRENT TEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 3,760 micromhos Jan. 11; minimum daily, 283 micromhos Aug. 3.
WATER TEMPERATURES: Maximum daily, 32.0°C Aug. 9; minimum daily, 1.0°C Jan. 20.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 3,380 mg/L May 7; minimum daily mean, 6 mg/L Feb. 16, 22.
SEDIMENT LOADS: Maximum daily, 94,100 tons Aug. 3; minimum daily, 0 tons on several days during June and July.

DATÉ	TIME	STRE FLO INST TANE (CF	CI AM- CC DW, DL AN- AM OUS (MI	PE- IFIC ON- UCT- NCE ICRO- IOS) (UI		EMPER-	HARD- NESS (MG/L AS CACO3)	HARD- NESS; NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS-	SODIUM, DIS- SOLVED (MG/L AS NA)
ост											
31	1330	3	3.6	2450	7.4	21.0	910	760	220	88	230
30	1100	6	.9	3360	8.0	12.0	1400	1300	340	140	270
18 FEB	1550	4	.4	3610	7.7	6.0	1500	1300	370	150	290
27 APR	1315	5	5.5	2760	7.7	14.0	1100	940	270	100	240
25 AUG	1410	- 1	1.5	3170		22.0	1300	1100	290	140	260
08 SEP	0945	23	3	1020		26.5	310	200	78	28	79
19	0940	4	. 7	3740		27.0	1500	1300	350	150	320
	so	DDIUM AD- DRP- TION	POTAS- SIUM, DIS- SOLVED (MG/L	BICAR- BONATE (MG/L	CAR- BONATE		D SOL	E RIC	DE . DI IS- SO VED (M	G/L DI	OF STI-
DATE			AS K)	HC03)	AS COS						5/L)
0CT 31		3.3	7.1	190		0 630	39	0	.6	12 1	1670
30 JAN	•	3.1	6.7	120		0 1100	49	0	•5	14 2	2420
18 FER		3.2	5.5	260		0 1100	54	0	.6	8.6	2590
27 APR		3.2	5.0	180		0 870	39	0	.7	16	980
25 · ·		3.1	9.6	210		0 1000	42	0	.7	6.3	2230
08 SEP	•	2.0	6.1	140		0 210	14	0	•3	8.7	619
19	•	3.6	8.3	210		0 1100	62	0	•5	14 2	2670

COLORADO RIVER BASIN 08126500 COLORADO RIVER AT BALLINGER, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE (DEG C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. FALL DIAM. % FINER THAN .002 MM	SED. SUSP. FALL DIAM. % FINER THAN .004 MM
MAY							
07	1530	1780	22.0	3830	18400	23	37
AUG	0.45			3.00			
03	1815	16500	23.0	8830	393000	22	30
03	1830	16500	25.0	3810	170000	58	70
04	1300	530	25.0	1200	1720	65	76
	SED.	SED.	SED.	SED.	SED.	SED.	SED.
	SUSP.	SUSP.	SUSP.	SUSP.	SUSP.	SUSP.	SUSP.
	FALL	FALL	FALL	SIEVE	SIEVE	SIEVE	SIEVE
	DIAM.	DIAM.	DIAM.	DIAM.	DIAM.	DIAM.	DIAM.
	% FINER	% FINER	% FINER	% FINER	S FINER	% FINER	% FINER
	THAN	THAN	THAN	THAN	THAN	THAN	THAN
DATE	.008 MM	.016 MM	.031 MM	.062 MM	.125 MM	.250 MM	.500 MM
MAY							
07	78	91	96	98	99	100	
AUG				237	- 100		
03	35	39	40	41	42	46	90
03	80	83	89	91	95	97	100

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	MONTH	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA+MG) (MG/L)
0	CT. 1977	293.3	2580	1700	1340	390	310	730	577	1000
N	ov. 1977	129.2	3360	2400	837	520	181	1060	370	1370
D	EC. 1977	129.1	3480	2510	874	540	188	1110	388	1420
J	AN. 1978	137	3450	2480	924	530	199	1100	410	1410
F	EB. 1978	241.5	3040	2110	1380	470	304	920	601	1220
M	AR. 1978	135	3160	5550	814	490	178	970	358	1270
A	PR. 1978	73.19	3320	2360	466	510	101	1040	205	1340
M	AY 1978	2673.59	1070	650	4690	150	1070	200	1450	350
J	UNE 1978	152.4	2020	1290	529	300	124	480	198	740
J	ULY 1978	0.54	3290	2340	3.4	510	0.7	1030	1.5	1330
A	ug. 1978	11076.66	342	200	5930	40	1210	53	1580	110
S	EPT 1978	157.2	3580	2600	1100	550	235	1150	490	1470
T	OTAL	15200.67	**	**	18900	**	4100	**	6630	**
W	TD.AVG	41.65	727	460	**	100	**	160	**	240

COLORADO RIVER BASIN 08126500 COLORADO RIVER AT BALLINGER, TX--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

	3.50				0	NCE-DAILY						
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		2570	3430	3460	3260	2860	3520	3540	2240			3460
2		2810	3450	3520	3330	2840	3540	2230	2190		2690	3530
3		2920	3440	3120	3380	2890	3470	1390	2340		283	3570
4		2990	3520	3590	3360	2950	3390	1060	1950	3230	350	3610
5		3050	3530	3630	3390	2910	3410	917	1990	3310	517	3540
6		3140	3480	3670	3420	2900	3470	1280	2010		675	3510
7		3180	3470		3330	2960	3500	712	1950		837	3500
8		2630	3490	3690	3450	3030	3530	850	1980		1090	3550 3590
9 10		3180 3290	3470 3440	3730 3700	3020 3250	3080 3120	3490 3300	1160	2100	26	1510 1740	3610
,,,		3420	3450	3760	3360	3140	3450	1370	2150	3500	1930	3640
11 12		3490	3430	3720	2760	3110	3600	1440	2180	3410	1600	3650
13		3540	3370	3660	3000	3180	3730	1480	2310	3250	1820	3630
14		3620	3400	3580	3210	3130	3630	1560	2320	3360	1750	3660
15		3600	3390	3620	2880	3200	3360	1750	2330	3440	1510	3680
16		3620	3380	3500	2960	3190	3450	1810	2330		1500	3690
17		3580	3360	3300	2860	3240	3210	1830	2400	hi 755	1580	3670
18		3580	3350	3700	2940	3270	2990	2000	2460	10.0	1770	3680
19 20		3480 3490	3390 3430	3480 3600	2870 3220	3280 3350	2900 2840	1960	2520 2660		1960 2200	3690 3660
								2420	2000		2440	3570
21 22	2830	3580 3390	3500 3510	3520 3380	2870 2850	3370 3390	2780 2800	2620 1740	2800	120	2630	3650
23	2470	3440	3490	3320	2810	3420	2860	1550	3010		2780	3600
24	2660	3490	3520	3240	2740	3440	2920	1730			2840	3610
25	2930	3510	3550	3220	2700	3450	2900	1820			3150	3610
26	2620	3550	3540	3190	2690	3450	2920	1850			3200	3580
27	2580	3580	3560	3170	2670	3470	2960	1900			3220	3260
28	2170	3560	3590	3190	2780	3490	3090	1950			3320	3420
29	5550	3540	3600	3210		3470	3210	1720			3390 3430	3520 3550
30 31	2330 2490	3490	3610 3600	3240 3290		3490 3510	3380	2190 2210			3460	3330
MEAN	2530	3340	3480	3470	3050	3210	3250	1700	2280	3360	2040	3580
III AII	2330	3340	3400	3410	3030	3210	3230	.,.,				
		TEMP	PERATURE	(DEG. C)		WATER YEA	AR OCTOBER	R 1977 TO	SEPTEMBER	1978		
DAY	ОСТ	NOV	DEC	JAN	FEB.	MAR	APR	MAY	JUN	JUL	AUG	SEP
DAT	001	1404	DEC	OAIT								
1		21.0	13.0	7.0	5.0	14.0		20.0	25.0		- :::	25.0
2		16.0	10.0	6.0	5.0	13.0	25.0	20.0	25.0		25.0	31.0
3		16.0	10.0	7.0 8.0	6.0	8.0	22.0	18.0	30.0		25.0	27.0
5		17.0	10.0	10.0	10.0	11.0	21.0	23.0	26.0		24.0	25.0
6		18.0	7.5		7.0	11.0	26.0	20.0	28.0		27.5	
7		15.0	10.0	12.0	8.0	9.0	25.0	22.0	27.0		26.0	25.0
8		15.0	11.0	11.0	5.0	10.0	24.0				25.0	25.0
9		13.0	8.0	7.0	4.0	17.0		23.0	29.0		32.0	25.0
10		13.0	6.0	4.0	6.0	13.0	20.0	55.0	30.0			
11		12.0	7.0	5.0	4.0	15.0	19.0	26.0	29.0		31.0	25.0
12		13.0	10.0	6.0	7.0	15.0	19.0	24.0	30.0		28.0	24.5
13		15.0	13.0	6.0	7.0	16.0	23.0	24.0	29.0		26.0	29.0
14 15		14.0	13.0	8.5	7.0 8.0	15.0	25.0	26.0	30.0		27.0	
					8.0	14.0		28.0	31.0		27.0	31.0
16 17		17.0 15.0	10.0	10.0	7.0	18.0		28.0	29.0		26.0	30.5
18		13.0	12.0	5.0	7.0	15.0	23.0	28.0	30.0		27.0	29.0
19		17.0		4.0	7.0	19.0	22.0	28.0			26.0	29.0
20		19.0	10.0	1.0	8.5	20.0		25.0			30.0	
21		13.5	9.0	2.0	5.0	21.0	17.0	25.0			28.0	25.0
55	20.0	15.0	9.0	5.0	8.0	22.0		25.0			29.0	22.0
23	20.0	16.0	9.0	6.0	14.0	20.0		25.5			29.0	25.0
24 25	50.0	14.0	8.0	5.0 9.0	12.0	16.0		25.5			31.0 28.0	22.0
26 27	25.0	14.0	10.0	5.0	13.5	20.0		29.0			30.0	22.0
28	23.0	15.0 12.0	9.0	5.0	14.0	20.0		30.0			30.0	25.0
29	24.0	12.0	12.5	6.0		18.0		26.0			30.0	25.0
30	23.0	12.0	9.0	6.5		19.0		0.85			28.0	23.0
31	55.0		12.0	7.0		23.0		28.0			58.0	
MEAN	55.0	15.0	10.0	6.5	8.0	16.0	22.5	25.0	29.0		28.0	25.5

COLORADO RIVER BASIN

O8126500 COLORADO RIVER AT BALLINGER, TX--Continued

SUSPENDED-SEDIMENT DISCHARGE (TONS/DAY). WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		JANUARY			FEBRUARY			MARCH	
1 2 3 4 5	4.1 3.7 5.0 5.2 5.2	===	=	5.0 5.1 5.9 6.0	42 18 30 30 38	.57 .25 .46 .49	6.0 5.4 5.4 5.4 5.2	18 16 7 10 10	.29 .23 .10 .15
6 7 8 9	3.6 3.8 3.5 3.3 3.6	===		6.8 6.8 6.7 12	42 24 36 32 10	.77 .44 .65 1.0	5.5 5.9 6.2 5.7 5.7	12 32 35 22 24	.18 .51 .59 .34
11 12 13 14 15	3.6 4.4 4.3 4.2 3.6	=	==	9.0 24 23 22 14	24 30 23 12 7	.58 1.9 1.4 .71	5.0 5.1 4.3 5.0 4.1	16 36 30 31 14	.22 .50 .35 .42 .15
16 17 18 19 20	3.5 4.1 4.3 4.3	56 26 33	.65 .30	8.5 6.4 5.6 5.6 5.8	6 14 8 10 7	.14 .24 .12 .15	4.3 4.4 4.3 4.6 4.7	20 25 30 20 30	.23 .30 .35 .25 .38
21 22 23 24 25	5.0 5.3 5.3 4.4	36 29 42 17 17	.51 .60 .24	5.8 5.9 5.7 5.2 5.2	15 6 24 14 9	.23 .10 .37 .20 .13	4.6 3.9 3.5 3.4 3.5	28 32 35 26 26	.35 .34 .33 .24 .25
26 27 28 29 30 31	5.1 5.0 5.3 4.9 5.1 5.3	17 14 25 39 64 64	.23 .19 .36 .52 .88	5.7 5.6 5.5	10 10 17 	.15 .15 .25	2.5 2.4 2.2 2.6 2.7 2.5	17 16 17 30 21 20	.11 .10 .10 .21 .15
DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		APRIL			MAY			JUNE	
1 2 3 4 5	2.4 1.6 2.0 2.6 2.6	24 25 20 27 58	.16 .11 .11 .19	.09 316 328 65 25	55 1750 1540 220 75	2110 1700 39 5.1	2.8 2.9 5.2 83	70 80 58 75 52	.53 .63 .81 17 2.5
6 7 8 9	3.0 3.1 2.6 3.7	21 28 30 30 30	.17 .23 .21 .30	39 1530 172 30	455 3380 1790 170 78	175 6810 831 14 2.1	7.8 6.0 5.3 4.5 2.8	65 70 60 70 44	1.4 1.1 .86 .85
11 12 13 14 15	4.1 2.4 2.1 2.1	52 24 29 26 24	.58 .16 .16 .15	6.3 4.9 4.0 3.4 3.2	67 56 73 54 45	1.1 .74 .79 .50	2.9 3.0 1.8 1.5	40 72 46 46 45	.31 .58 .22 .19
16 17 18 19 20	1.1 1.6 1.6 1.5	30 62 62 49 46	.09 .27 .27 .20	2.9 2.4 2.1 1.9 3.2	68 42 51 46 73	.53 .27 .29 .24 .63	1.1 .87 .69 .69	50 37 35 32 30	.15 .09 .07 .06 .02
21 22 23 24 25	1.8 1.6 .94 .86	44 28 30 45 45	.21 .12 .08 .10	3.2 39 36 13 7.7	42 90 92 80 80	.36 9.5 8.9 2.8 1.7	.03 .00 .03 .00	30 32 35	.00 .00 .00
26 27 28 29 30 31	1.3 1.3 1.1 .78 .21	37 37 37 32 40	.13 .13 .11 .07	5.6 4.2 4.2 4.8 3.5 3.0	65 48 74 80 36 44	.98 .54 .84 1.0 .34	.00 .00 .00		=======================================

COLORADO RIVER BASIN 08126500 COLORADO RIVER AT BALLINGER, TX--Continued

SUSPENDED-SEDIMENT DISCHARGE (TONS/DAY), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DAY	DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHAPGE (CFS)	MEAN CONCEN- THATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		JULY			AUGUST	_		SEPTEMBER	
		7.75							
1 2	.00			.00			7.9	40	.85
2	.00			3.3	100	.9	8.9	30	.72
3	.00		•00	9200	2560	94100	7.5	35	.71
4	.16	35	• 02	1300	1380	7210	7.0	38	.72
5	.01	35	•00	193	310	162	6.7	52	.94
6	.00			86	210	49	6.5	55	.97
7	.00			37	168	17	6.4	79	1.4
8	.00			23	105	6.5	7.3	60	1.2
9	.00			18	78	3.8	6.7	30	.54
10	.00			16	55	2.4	6.9	31	.58
11	.01	37	400	16	50	2.2	6.3	36	.61
12	.09	35	.01	28	52	3.9	5.4	40	.58
13	.21	40	• 02	15	40	1.6	4.7	27	.34
14	.03	40	.00	12	38	1.2	4.6	24	.30
15	.03	32	.00	9.8	40	1.1	4.8	25	.32
16	.00			9.6	55	1.4	4.7	34	.43
17	.00			9.1	72	1.8	5.0	34	.46
18	.00			A.3	85	1.9	4.9	39	.52
19	.00			7.6	65	1.3	4.9	40	.53
20	.00			7.5	65	1.3	4.6	45	.56
21	.00			7.2	60	1.2	4.0	62	.67
22	.00			7.1	55	1.1	3.9	50	.53
23	.00			6.9	55	1.0	3.9	42	.44
24	.00			7.1	40	.8	3.9	54	.57
25	.00			7.2	42	.8	3.5	32	.30
26	.00			6.8	42	.8	3.3	36	.32
27	.00			7.0	35	.7	4.3	32	.37
85	.00			7.4	30	.6	3.4	40	.37
29	.00			6.8	35	.6	2.9	50	.39
30	.00			6.9	35	.7	2.4	40	.26
31	.00	7775		7.1	37	.7			
YEAR	15200.72	,	13377.45						

YEAR 15200.72 113377.45

08127000 ELM CREEK AT BALLINGER, TX

LOCATION.--Lat 31°44'57", long 99°56'51", Runnels County, Hydrologic Unit 12090101, on right bank 1,000 ft (305 m) upstream from storage dam at Ballinger and 1.9 mi (3.1 km) upstream from mouth.

DRAINAGE AREA .-- 471 mi2 (1,220 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- April 1932 to current year.

REVISED RECORDS .-- WSP 1442: 1935, 1946, 1954.

GAGE.--Water-stage recorder and masonry control. Datum of gage is 1,617.72 ft (493.081 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good except those below 100 ft³/s (2.83 m³/s), which are fair. Stage-discharge relation during period of low flow affected by wind action and occasional accumulation of drift on dam. During the current year, records furnished by the city of Winters show they diverted 760 acre-ft (937,000 m³) from Lake Winters, capacity, 3,060 acre-ft (3.77 hm³).

AVERAGE DISCHARGE.--46 years (water years 1933-78), 47.5 ft³/s (1.345 m³/s), 1.37 in/yr (35 mm/yr), 34,410 acre-ft/yr (42.4 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 50,000 ft3/s (1,420 m3/s) Oct. 13, 1957, gage height, 14.20 ft (4.328 m), from floodmark; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1906 reached a stage of 14.5 ft (4.42 m), affected by backwater from Colorado River; highest stage not affected by backwater from Colorado River since at least 1904 was that of Oct. 13, 1957, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 23,400 ft 3 /s (663 m 3 /s) Aug. 3, gage height, 9.17 ft (2.795 m), no other peak above base of 2,100 ft 3 /s (59.5 m 3 /s); no flow at times.

DISCURDED IN CURIC FEET DED SECOND WATER VEAD OCTORED 1077 TO SERTEMBER 1078

		DISCHA	RGE, IN C	UBIC FEET	PER SECON	D, WATE N VALUE		TOBER 1977	TO SEPTE	MBER 19	78	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	.00	.74 .42	.81 .82	1.8	2.4	2.7	1.2	218	.36	.00	.00	.80 3.1 5.1
4 5	.00 .00	.32 .30 .30	.84 .89 .82	1.6 1.6 1.8	2.7 3.1 3.2	2.3 2.0 2.0	.88 .75 .67	73 24 14	.23 .18 .13	.00	12200	4.0
6	.00	.33	.67	1.8	3.0 4.1	2.2	.68	14 56	.14	.00		4.4
8	.00	.88	.81	1.5	3.7	2.2	.50	12	.23	.00	71	14
9 10	.00	.93	.75 .72	1.2	7.9 7.7	2.0	.93	4.6	.17	.00		9.2 5.9
11 12	.00	.92	.82 1.1	1.4	7.2	2.6	15	2.1	.07	.00		4.0
13	.00	.85	1.4	1.7	12 14	2.3	8.7	1.1	.02	.00		3.0
14	.00	.91	1.4	1.8	14	1.7	2.2	.71	.00	.00		2.2
15	.00	.92	1.4	1.7	11	1.6	1.6	.55	.00	.00	16	1.6
16 17	.00	.95	1.2	2.5	8.8	1.3	1.2	.45	.00	.00		1.3
18	.00	.63	.85	2.5	5.5	1.2	.60	.21	.00	.00		.74
19	.00	.63	.94	2.4	5.1	1.2	.45	.17	.00	.00		.59
20	.00	.70	1.0	2.2	3.9	1.3	.32	.26	.00	.00	4.7	.54
21	.00	.62	1.0	2.7	2.8	1.3	.24	.46	.00	.00		.47
23	.16 5.7	.56 .51	1.0	3.1	2.7	1.2	.21	.53	.00	.00		.43
24	19	.43	1.2	3.4	2.6	1.2	.19	.38	.00	.00	1.8	.53
25	12	.51	1.3	2.7	2.4	1.1	.15	.29	.00	.00	1.7	.76
26	5.0	.55	1.4	2.0	2.0	1.1	.10	.27	.00	.00		1.9
27 28	2.4	.66 .77	1.3	2.0 1.9	2.4 3.0	.98	.06	.24	.00	.00		3.8
29	1.8	.76	1.9	1.9		.74	.04	.66	.00	.00	1.6	6.3
30 31	1.4	.75	2.0	2.0		.95 1.5	.04	.56	.00	.00	1.1	2.9.
TOTAL	50.56	19.84	34.32	62.8	150.3	51.82	66.50	430.13	2.15	.00	22945.30	96.31
MEAN	1.63	.66	1.11	2.03	5.37	1.67	2.22	13.9	.072	.000	740	3.21
MAX	.00	.95	2.2	3.4	2.0	2.8	.04	.03	.36	.00	12200	.43
CFSM	.003	.001	.002	.004	.01	.004	.005	.03	.000	.000		.007
IN.	.00	.00	.00	.00	.01	.00	.01	.03	.00	.00	1.81	.01
AC-FT	100	39	68	125	298	103	132	853	4.3	.00	45510	191
	1977 TOTA 1978 TOTA			N 16.4 N 65.5	MAX 567 MAX 12200			SM .04 II		AC-FT	11890	

08127000 ELM CREEK AT BALLINGER, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1967 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1967 to current year. WATER TEMPERATURES: October 1967 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 4,220 micromhos Sept. 12, 17, 1970; minimum daily, 244 micromhos Aug. 4, 1978.
WATER TEMPERATURES: Maximum daily, 34.5°C Aug. 14, 1973; minimum daily, 0.0°C Jan. 8, 1968, Jan. 10, 13, 1973.

SPECIFIC CONDUCTANCE: Maximum daily, 3,680 micromhos Jan. 14; minimum daily, 244 micromhos Aug. 4. WATER TEMPERATURES: Maximum daily, 31.0°C Aug. 11, 20, 24, Sept. 3; minimdum daily, 1.0°C Jan. 20.

			-											
				E-					44	RD-			AGNE-	
				IFIC				HARD-		SS,	CALC	TUM	SIUM.	SODIUM.
		STRE		ON-				NESS		CAR-	DIS		DIS-	DIS-
		FLO		JCT-	D	754	IDEO.	(MG/L		ATE			SOLVED	SOLVED
		INST		NCE	PH		PER-	AS		IG/L			(MG/L	(MG/L
	TIME	TANE		ICRO-			URE	CACO3)		C03)			AS MG)	AS NA)
DATE		(CF	(S) MI	HOS) (UNITS	(DE	G C)	CACUSI		10031	M3	CA,	-5 1107	11/25
ост													(4)	
31	1050		.96	1330	7.8		21.0	420)	230		81	54	120
NOV													1.34	01
30	1050		.75	3120	8.2		12.0	980)	810	10	60	140	330
DEC													42	1135233
31	1700	1	.5	3520	8.2		12.0	1100)	950	1	70	160	350
FEB													ALL ST	100
27	1100	2	2.3	3350	7.6		11.5	1100)	890	1	90	150	330
APR										Mark W.	TANK			
30	1600		.07	3540			25.0	1100)	890	10	60	160	380
MAY												4.5	1	
30	1320		.63	1340			27.0	44()	270	4	86	54	110
AUG										1.3				-
22	1320	6	6.6	931			29.5	300)	170	= 1	68	32	74
SEP								200			16.	00000		100
19	1030		.62	2000			26.0	600)	450	1	20	74	180
														IDS.
	SOF	MUIC	POTAS-					CH	ILO-	FLU	0-	SILICA		
		AD-	SIUM.	BICAR-			SULFA	TE R	DE.	RID	E.	DIS-	CON	STI-
	SOF	RP-	DIS-	BONATE	E CA	R-	DIS-	D:	IS-	DI	5-	SOLVE		NTS.
		ION	SOLVED	(MG/L	BON	ATE	SOLV	ED SO	LVED	SOL	VED	(MG/L		IS-
		OIT	(MG/L	AS		G/L	(MG/	L ()	MG/L	(MG	/L	AS		LVED
DATE			AS K)	HC03	AS	C03)	AS SO	4) AS	CL)	AS	F)	5102)	(M	G/L)
4.50														
ОСТ				24		0	170		230		.6	11		792
31.	• •	2.5	7.5		+0	0	110	0.0	230		•0	10000		
NOV				2	00	0	520		590		.7	8.	2	1960
30.	••	4.6	8.3	2	00	0	520		370		• •	4.70		
DEC			7.0	100	50	0	580		760		.6	5.	0	2110
31.	••	4.6	7.0	1.	50	0	500		,00		••	The way	320	1
FEB		4 2	5.2	21	50	0	520		800		.7	13		2130
27.	• •	4.3	3.2	-	50	U	320		500		100		28/1 3	
APR		5.1	8.7	2	10	0	530		790		.8	5.	0	2140
30.	••	2.1	0.1	-		v	530		, , ,		••	11/2 81		
MAY		2.3	6.2	2	00	0	200		210		.5	11		776
30.	• •	2.3	0.2	-	00	U	200					30		100
AUG		1.9	5.3	1.	60	0	120		150		.3	12		540
SEP SEP	••	1.7	3.3	1		U	120					M TO		
19.	. 1/6	3.2	7.4	1	90	0	260		420		.4	11		1170
190	• •	200				•	_00							

91

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

монтн	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT. 1977	50.56	1660	960	131	330	46	240	33	520
NOV. 1977	19.84	2820	1700	90	610	32	450	24	890
DEC. 1977	34.32	3410	2070	192	750	69	550	51	1080
JAN. 1978	62.8	3460	2100	356	760	129	560	94	1090
FEB. 1978	150.3	3380	2050	832	740	301	540	220	1070
MAR. 1978	51.82	3220	1950	273	700	99	510	72	1020
APR. 1978	66.5	3290	1990	358	720	129	530	95	1040
MAY 1978	430.13	1170	650	754	220	253	150	177	360
JUNE 1978	2.15	1290	720	3.9	250	1.4	180	1	400
JULY 1978	0	*****	******	0	******	0 **	****	0	****
AUG. 1978	22945.27	282	150	9550	33	2040	22	1370	88
SEPT 1978	96.31	1390	780	203	270	70	190	50	430
TOTAL	23910	**	**	12700	**	3170	**	2190	**
WTD.AVG	65.51	355	190	**	49	**	34	**	110

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		2360	3190	3490	3590	3260	3270	3520	1310			1140
2		2430	3200	3520	3530	3220	3250	1000	1300			1120
3		2440	3190	3000	3400	3230	3260	1230	1290		286	1180
4		2490	3220	3520	3500	3240	3220	1900	1240		244	1220
5		2520	3240	3490	3540	3250	3230	1380	1250		443	1230
6		2440	3250	3520	3590	3240	3270	1010	1300		472	1250
7		2640	3260	3550	3550	3230	3290	1310	1250		478	1270
8		2610	3280	3510	3540	3210	3330	1340	1270		540	1310
9		2640	3300	3500	3450	3190	3320	1390	1280		556	1390
10		2660	3310	3340	3480	3200	3230	1290	1300		678	1510
11		2670	3330	3470	3450	3200	3280	1300	1290		655	1650
12		2690	3340	3550	3390	3230	3330	1310	1250		750	1650
13		2750	3390	3220	3360	3180	3340	1330	2200		850	1770
14		2800	3380	3680	3350	3220	3350	1320			840	1840
15		2840	3390	3550	3300	3200	3360	1340			831	1860
16		2930	3380	2430	3330	3200	3380	1320			809	1900
17		2900	3430	3450	3300	3220	3400	1330			831	1970
18		2930	3440	3540	3250	3160	3410	1330			850	1980
19		2970	3450	3390	3260	3230	3430	2060			904	2040
20		3000	3440	3570	3290	3220	3390	1340			947	2060
21		3010	3470	3540	3300	3200	3430	1330			927	2090
22	1220	2860	3460	3450	3290	3210	3450	1330			947	2100
23	1300	3060	3460	3330	3280	3200	3480	1320			969	2110
24	1420	3070	3470	3560	3240	3190	3490	1320			986	2130
25	1790	3060	3480	3580	3280	3200	3500	1330			1040	2150
26	1950	3050	3510	3590	3290	3210	3420	1340			1100	2190
27	2010	3070	3490	3590	3300	3220	3450	1350			1040	2220
28	1910	3080	3520	3600	3270	3210	3490	1340			1060	2240
29	2190	3100	3510	3590		3220	3520	1300			1110	2260
30	2240	3140	3520	3580		3240	3540	1290			1100	2240
31	2310		3500	3570		3250		1300			1110	
MEAN	1830	2810	3380	3460	3380	3220	3370	1420	1350		805	1770

COLORADO RIVER BASIN 08127000 ELM CREEK AT BALLINGER, TX--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		20.0	12.0	5.0	5.0	13.0	20.0	22.0				26.0
2		17.0		6.0	5.0	13.0		20.0	25.0			28.0
3		17.0	10.0	8.0	5.0		24.0	12.0	29.0		24.0	31.0
			16.0	7.0	6.0	8.0	22.0	18.0	29.5		24.0	27.0
5		18.0	10.0	10.0	9.0	10.0	20.0	23.0	26.0		23.0	26.0
6		18.0	7.0		7.0	10.0	25.0	20.0	27.0		26.0	
7		16.0	10.0	10.0	8.0	9.5	24.0	24.0	26.0		26.0	25.0
8		15.0	11.0	10.0	6.0	9.0	24.0				25.0	25.0
9		12.0	8.0	7.0	5.0	16.0		22.0	30.0		29.0	25.0
10		13.0	7.0	5.0	7.0	13.0	19.0	22.0	30.0		28.0	26.0
11		13.0	10.0	5.0	5.0	14.5	19.0	26.0	29.0		31.0	25.0
12		13.0	10.0	5.0	6.0	14.0	19.0	24.0	30.0		28.0	25.0
13		14.0	11.0	7.0	6.0	15.5	22.0	25.0	29.0		26.0	27.0
14		15.0	13.0	6.0	6.5	14.0	22.0	24.0				29.0
15		14.0	12.5	7.0	7.0	13.0	24.0	25.0			25.0	
16		17.0	10.0	8.0	7.0	14.0		28.0			28.0	30.0
17		15.0	12.0	5.0	7.0	17.0	24.0	27.0			27.0	29.0
18		12.0	14.0	4.0	6.5	14.0		28.0			27.0	28.0
19		14.0		3.5	8.0	18.0	22.0	28.0			27.0	28.0
20		20.0	9.0	1.0	7.5	20.0	19.0	25.0			31.0	
21		13.0	8.0	2.0	6.0	20.0	19.0	25.0			28.0	24.0
22	21.0	14.0	7.0	4.0	7.0	21.0	25.0	25.0		4.0	28.0	22.0
23	20.0	16.0	11.0	2.5	7.0	19.0	27.0				29.0	24.0
24	21.0	13.0	13.0	5.0	11.0	17.0	25.0	25.0			31.0	22.0
25	23.0	12.0	10.0	7.0	10.0	15.0	26.0	25.0				22.0
26	23.0	14.0	10.0	5.0		19.0	26.0	28.0			29.0	22.5
27	23.0	13.0	7.0	5.0	13.0	18.0	20.0	28.0			30.0	21.0
28	23.0	12.0	9.0		15.0	19.0	20.0	30.0			30.0	24.5
29	23.0	12.0	12.0	5.0		17.0	21.0	28.0			29.0	25.0
30	24.0	12.0	9.0	6.0		20.0	25.0	28.0			27.0	23.0
31	22.0		12.0	5.0		21.0		28.0			28.0	
MEAN	22.5	14.5	10.5	5.5	7.5	15.5	22.5	24.5	28.0		27.5	25.5

LOCATION.--Lat 31°11'17", long 100°29'59", Tom Green County, Hydrologic Unit 12090102, on right bank at Christoval, 85 ft (26 m) downstream from point of diversion, and 100 ft (30 m) downstream from bridge on U.S. Highway 277.

PERIOD OF RECORD .-- November 1939 to current year.

REVISED RECORDS .-- WSP 1312: 1940-46.

GAGE .-- Water-stage recorder. Datum of gage is 2,017.02 ft (614.788 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. The following table lists only irrigation water diverted from right bank of South Concho River 600 ft (180 m) upstream from station at Christoval (station 08128000). Several observations of water temperature were made during the year.

AVERAGE DISCHARGE .--38 years (water years 1941-78), 6.78 ft³/s (0.192 m³/s), 4,910 acre-ft/yr (6.05 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily diversion for irrigation (excluding floodflow), 21 ft³/s (0.59 m³/s) June 27, 28, 1941, Sept. 18, 21, 1942; no flow Apr. 26 to July 9, 1957, Mar. 18 to Apr. 10, 1958, Oct. 19 to Nov. 2, 1966.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES OCT NOV JUN JUL AUG SEP DAY FEB APR MAY DEC JAN MAR 15 6.8 6.0 4.6 5.8 7.2 7.0 1.8 2.1 5.3 3.8 4.6 3.5 7.0 7.2 8.4 14 15 15 15 3 12 3.2 4.6 3.8 4.6 3.4 7.0 7.1 17 14 16 18 8.9 15 3.7 3.6 2.9 3.8 4.6 5.0 6.9 7.1 15 13 17 5 7.5 5.1 2.8 5.5 3.8 4.6 6.0 6.8 7.1 15 9.5 2.7 5.5 5.8 6.9 7.7 13 17 6 4.7 4.8 6.6 4.1 7.4 13 16 15 8.6 2.7 5.6 5.1 4.3 6.5 6.5 8 8.6 2.6 4.1 4.5 4.2 4.1 6.3 6.4 7.3 13 13 15 14 5.4 6.6 2.6 3.0 4.5 4.2 5.1 6.3 6.8 7.4 13 14 5.3 7.3 10 4.7 2.5 2.9 4.5 4.1 5.0 6.3 6.3 14 11 5.9 2.9 3.4 4.5 4.5 5.0 6.5 5.9 3.7 4.5 13 12 14 12 5.8 6.1 4.7 5.4 6.4 5.8 13 4.8 3.6 4.8 3.8 7.0 6.7 7.5 13 16 14 14 14 3.8 2.3 2.4 3.8 8.3 8.1 7.4 14 16 16 14 15 5.1 2.0 2.9 3.7 5.8 6.3 8.1 7.3 16 5.8 2.0 5.2 4.7 5.0 8.0 6.9 14 16 14 3.7 5.0 2.5 5.2 4.7 4.9 7.9 6.3 14 16 14 17 5.7 3.6 5.0 18 5.6 4.8 4.6 3.6 4.9 7.0 8.3 14 16 14 19 3.9 4.6 8.1 16 14 20 5.5 3.0 3.9 4.6 3.5 4.0 9.3 9.0 8.1 16 14 16 14 3.4 2.8 3.8 6.9 5.5 5.4 7.9 21 5.5 3.6 4.6 3.5 3.9 8.9 14 7.7 14 14 22 3.4 8.8 16 5.1 3.6 3.1 3.4 7.7 14 4.5 2.9 4.5 9.1 16 14 3.6 9.3 25 12 6.6 13 14 17 13 17 13 13 14 26 1.6 4.3 3.3 4.6 4.1 3.7 10 6.6 14 17 14 7.2 27 2.7 4.2 3.3 13 4.6 6.4 3.3 6.3 7.1 13 28 2.8 3.3 4.6 6.4 2.9 6.6 6.3 13 3.3 14 15 13 6.4 4.6 4.1 ---30 3.2 5.8 4.6 8.2 14 15 13 31 5.6 5.3 4.6 7.7 8.1 TOTAL 181.0 89.5 226.9 272.6 424 458.1 423 126.6 142.3 116.9 147.3 211.6 4.75 MEAN 5.84 2.98 4.08 4.59 4.18 7.05 7.32 9.09 13.7 14.8 8.3 9.0 18 MAX 14 4.3 6.1 6.0 6.4 12 17 5.3 1.8 3.8 13 13 3.4 359 178 251 282 232 292 420 450 541 841 909 839 AC-FT

CAL YR 1977 TOTAL 2024.5 MEAN 5.55 MAX 15 MIN 1.6 AC-FT 4020 WTR YR 1978 TOTAL 2819.8 MEAN 7.73 MAX 18 MIN 1.6 AC-FT 5590

08128000 SOUTH CONCHO RIVER AT CHRISTOVAL, TX

LOCATION (revised).--Lat 31°11'16", long 100°30'09", Tom Green County, Hydrologic Unit 12090102, on left bank 1,000 ft (305 m) downstream from U.S. Highway 277 bridge, 9.5 mi (15.3 km) upstream from Twin Buttes Dam, and 85.0 mi (136.8 km) upstream from mouth. Prior to Nov. 16, 1977, at site 160 ft (49 m) upstream.

DRAINAGE AREA.--409 mi² (1,059 km²), of which 65 mi² (168 km²) probably is noncontributing.

PERIOD OF RECORD .-- February 1930 to current year.

REVISED RECORDS.--WSP 1118: 1943(M). WSP 1922: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 2,010.22 ft (612.715 m) National Geodetic Vertical Datum of 1929. Prior to July 17, 1930, nonrecording gage at same site and datum. July 17, 1930, to Nov. 15, 1977, water-stage recorder at site 160 ft (49 m) upstream at same datum.

REMARKS.--Records good. Low flow is materially affected by diversion to South Concho Irrigation Co.'s canal (station 08127500) 600 ft (180 m) upstream from station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--48 years, 33.8 ft³/s (0.957 m³/s), 24,490 acre-ft/yr (30.2 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $100,000 \text{ ft}^3/\text{s}$ (2,830 m³/s) July 23, 1938, gage height, 21.95 ft (6.690 m), from floodmark, from rating curve extended above 15,100 ft³/s (428 m³/s) on basis of slope-area measurement of 80,100 ft³/s (2,270 m³/s); no flow Feb. 28, Mar. 1, 1955.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1882, about 23 ft (7.0 m) Aug. 6, 1906, discharge 115,000 ft 3 /s (3,260 m 3 /s), from rating curve attended as noted above, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 160 ft³/s (4.53 m³/s) and maximum (*):

Date	Time	Discharge (ft ³ /s) (m ³ /s)		Gage height (ft) (m)		Date	Time	Disch (ft ³ /s)	arge (m³/s)	Gage height (ft) (m)	
June 3	1300	1,520	43.0	a5.03	1.533	Aug. 3	0100	*2,760	78.2	a6.38	1.945

a From floodmark.

Minimum discharge, 15 ft3/s (0.42 m3/s) Sept. 25-27.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND	, WATER	YEAR	OCTOBER	1977	T0	SEPTEMBER	1978
					MEAN	VALUES						

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	42	44	39	37	35	29	31	28	28	21	20	20
1 2 3	34	43	39	39	35	31	31	28	27	21	55	21
2	41	41	37	38	35	31	35	27	334	21	566	21
3	47	40	36	37	35	31	35	27	55	21	50	21
5	45	42	35	37	35	30	34	27	32	21	28	21
3												
6	39	42	35	37	35	31	38 35	25	32 31	17	21	21
7	39	43	37	38	35	33	35	25	31	18	20	20
8	38	44	39	39	35	33	32	27	31	20	20	18
6 7 8 9	39	42	37	39	35	33	34	27	31	20	20	20 18 18 18
10	42	41	37	39	35	31	33	28	31	20	20	18
11	39	42	37	39	34	30	31	30	30	20	20	18
12	37	41	36	39	36	30	31	30	30	20	20	18
13	38	39	38	39	35	29	31	29	30	20	20	18
14	40	41	39	39	35	27	31	28	30	20	20	18 17
15	39	41	40	39	35	29	31	27	30	20	20	17
16	37	39	38	38	35	31	34	27	30	20	20	17 17
17	37	37	37	38	31	31	35	27	30	20	20	17
18 19	37	37	37	38	31	31	33	26	29	20	20	17
19	37	38	39	37	31	31	29	25	28	20	20	17 17
20	37	37	39	37	31	34	29 28	28	28	20	20	17
21	37	37	39	38	31	35	31	27	28 28	20	20	17
22	45	37	39	39	31	35	33	27	28	19	20	17
23	43	38	39	39	31	35 35	33	25	28	18	20	16
24	43	39	39	39	31	35	29	25	27	18	20	16
25	44	39	39	39	31	36	25	25	22	18	20	15
26	45	39	39	39	31	37	26	25 25	21	18	20 20	15 17
27	44	40	39	39	29	38	29	25	21	18		17
28	39	41	39	35	28	38	30	26	21	19	20	17
29	39	41	39	35		37	30	25	21	20	21	17
30	39	41	39	35		35	28	25	21	20	21	16
31	39		38	35		32		24		20	21	
TOTAL	1241	1206	1179	1175	927	1009	946	825	1165	608	1243	536
MEAN	40.0	40.2	38.0	37.9	33.1	32.5	31.5	26.6	38.8	19.6	40.1	17.9
MAX	47	44	40	39	36	38	38	30	334	21	566	21
MIN	34	37	35	35	28	27	25	24	21	17	20	15
AC-FT	2460	2390	2340	2330	1840	2000	1880	1640	2310	1210	2470	1060
			7.7		, , , , , ,				100			

CAL YR 1977 TOTAL 21799 MEAN 59.7 MAX 1920 MIN 33 AC-FT 43240

NOTE. -- No gage-height record Aug. 2-28.

LOCATION.--Lat 31°25'38", long 100°42'39", Irion County, Hydrologic Unit 12090103, on left bank 0.3 mi (0.5 km) upstream from East Rocky Creek, 0.5 mi (0.8 km) southwest of Tullos Ranch Headquarters, 6.7 mi (10.8 km) northwest of Tankersley, and 20.9 mi (33.6 km) upstream from mouth.

08128400 MIDDLE CONCHO RIVER ABOVE TANKERSLEY, TX

DRAINAGE AREA.--2,436 mi² (6,309 km²), of which 1,055 mi² (2,732 km²) probably is noncontributing.

PERIOD OF RECORD .-- March 1961 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,986.47 ft (605.476 m) National Geodetic Vertical Datum of 1929.

REMARKS .-- Records good. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--17 years, 17.6 ft3/s (0.498 m3/s), 12,750 acre-ft/yr (15.7 hm3/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 15,500 ft3/s (439 m3/s) Sept. 21, 1974, gage height, 24.98 ft (7.614 m); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1900, 29.5 ft (8.99 m) Sept. 26, 1936. A flood in 1900 reached the same stage from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,700 ft3/s (48.1 m3/s) and maximum (*):

Date	Time	Disch (ft³/s)		Gage h	eight (m)	Date	Time	Disch (ft³/s)		Gage h	eight (m)
May 29	1430	2,870	81.3	13.54	4.127	Aug. 4	0630	*6,310	179	17.60	5.364

Minimum discharge, no flow at times.

		DISCHA	RGE, IN C	UBIC FEE	PER SEC	OND, WATER	YEAR OC	TOBER 197	7 TO SEPTE	MBER 197	8	
DAY	ОСТ	NOV	DEC	JAN	FEB	EAN VALUES MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	1.8 1.9 2.0 2.1 2.3	7.7 7.0 7.0 7.0 7.1	10 9.5 10 10	9.5 9.5 9.5 9.5 9.5	9.1 9.1 9.1 9.1 9.1	7.0 6.6 6.6 6.6 6.3	2.8 9.2 5.5 4.6 4.6	22 18 16 34 25	.24 .21 .21 .19 .14	.00 .00 501 999 94	1.7 1.1 .70 .53
6 7 8 9	.00 .16 .98 .81	2.4 2.4 3.5 3.5 3.5	6.4 6.7 7.5 7.3 6.6	10 10 9.9 9.1 9.1	9.5 9.5 9.5 10	8.6 8.6 8.2 8.2 8.6	6.6 6.6 6.3 7.0 7.8	4.6 7.0 3.8 2.9 2.6	46 43 22 16 14	.06 .01 .00 .00	32 17 9.5 4.6 3.5	2.8 1.0 .88 .77 .58
11 12 13 14 15	.82 .78 .86 .90	3.7 3.8 4.1 4.3 4.0	6.6 7.5 7.4 7.4 7.3	9.1 9.1 9.5 9.5 9.8	10 13 13 11 10	8.2 7.8 7.8 8.2 7.8	7.0 7.0 6.6 6.3 6.3	2.7 2.5 2.2 2.0 1.7	11 11 9.3 8.4 7.3	.00 .00 .00	4.8 3.5 2.4 1.6 1.3	.51 .41 .41 .27
16 17 18 19 20	1.0 .90 .95 .98	4.0 3.8 3.9 5.8 6.6	7.4 8.4 8.3 8.6 9.5	10 10 10 9.2 9.1	10 10 9.5 9.5 9.1	7.0 6.6 6.3 6.3	6.3 5.9 5.6 5.3	1.6 1.3 .95 .22	5.9 5.1 4.4 3.9 3.3	.00 .00 .00	1.0 .90 .90 .82 .66	.21 .32 .09 .13
21 22 23 24 25	1.1 1.6 1.8 1.9	6.7 6.9 7.4 7.0 7.3	9.1 9.1 9.1 9.1 9.1	10 11 11 11 11	8.6 8.6 9.1 9.1 9.1	7.0 7.0 7.2 7.4 6.6	4.9 4.6 4.6 4.0 3.5	6.8 5.7 4.6 3.3 2.5	2.6 2.0 1.7 1.3	.00 .00 .00	.59 .46 .41 .36	.01 .19 .26 .30
26 27 28 29 30 31	1.6 1.8 2.1 1.9 1.9	7.4 7.4 7.4 7.8 8.2	9.1 9.1 9.1 10 10	10 10 9.5 9.5 9.5 9.5	8.6 9.2 	6.6 7.0 7.4 7.0 7.0 7.0	3.5 3.3 3.4 3.3 3.2	2.1 2.0 2.1 638 79 33	.71 .50 .43 .56	.00 .00 .00 .00	.32 .46 .42 52 7.0 2.3	.32 .60 .47 .38 .46
TOTAL MEAN MAX MIN AC-FT	31.64 1.02 2.1 .00 63	142.9 4.76 8.2 1.8 283	251.5 8.11 10 6.4 499	303.9 9.80 11 9.1 603	272.0 9.71 13 8.6 540	237.5 7.66 9.1 6.3 471	168.3 5.61 7.8 3.2 334	856.87 27.6 638 .22 1700	336.76 11.2 46 .37 668	1.06 .034 .24 .00 2.1	1743.12 56.2 999 .00 3460	34.94 1.16 19 .00 69

WTR YR 1978 TOTAL 4380.49 MEAN 12.0 MAX 999 MIN .00 AC-FT 8690

08129300 SPRING CREEK ABOVE TANKERSLEY, TX

LOCATION.--Lat 31°19'48", long 100°38'24", Tom Green County, Hydrologic Unit 12090102, on right bank at downstream side of bridge on Farm Road 2335, 1.4 mi (2.3 km) south of Tankersley, and 2.5 mi (4.0 km) upstream from Dove Creek.

DRAINAGE AREA.--424 mi² (1,098 km²), of which 28 mi² (73 km²) probably is noncontributing.

PERIOD OF RECORD .-- October 1960 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,964.72 ft (598.847 m) National Geodetic Vertical Datum of 1929. Prior to Nov. 10, 1960, nonrecording gage at same site and datum.

REMARKS.--Records good. Many small diversions above station for irrigation. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--18 years, 15.0 ft3/s (0.425 m3/s), 10.870 acre-ft/yr (13.4 hm3/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 30,400 ft3/s (861 m3/s) Aug. 12, 1971, gage height, 16.57 ft (5.051 m); no flow at times most years.

EXTREMES OUTSIDE PERIOD OF RECORD.--Outstanding floods since at least 1853 occurred in 1882 and 1884. Flood of Oct. 3, 1959, reached at stage of 18.4 ft (5.61 m), from floodmarks. At former gage near Tankersley 8 mi (13 km) downstream, the flood of Oct. 3, 1959, had a discharge of 82,100 ft³/s (2,330 m³/s) and was found to be about 3 ft (0.9 m) lower than the 1882 flood, the greatest at that location since ast least 1853.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 134 ft 3 /s (3.79 m 3 /s) May 2, gage height, 4.83 ft (1.472 m), no peak above base of 400 ft 3 /s (11.3 m 3 /s); minimum, 0.02 ft 3 /s (0.001 m 3 /s) July 18-23.

		DISCHAR	GE, IN C	UBIC FEET	PER SECON	ID, WATER	YEAR OCT	OBER 1977	TO SEPTE	MBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.5 6.0 9.6 8.3 8.5	18 14 16 18	18 18 17 17 16	13 17 16 16	17 17 18 18	19 18 18 19	9.2 7.1 6.5 6.3 5.4	1.1 44 30 19 14	14 9.2 12 12 13	.14 .13 .12 .11	.04 .04 .28 .17	11 12 8.8 9.0 9.1
6 7 8 9 10	7.8 4.5 4.2 5.1 9.4	19 17 19 15	15 16 15 12 16	9.7 8.8 13 14 8.4	17 19 19 18	19 20 17 19	4.8 4.5 4.5 4.9 6.4	15 15 14 10 12	56 35 17 15 15	.08 .06 .05 .06	.11 .09 .07 .22	7.1 8.2 15 13 12
11 12 13 14 15	6.6 8.4 11 12 10	17 15 14 15	18 20 18 16 18	11 14 12 11 13	17 25 24 22 20	13 16 16 14 12	7.3 6.8 6.3 7.7 8.3	14 13 11 10 9.6	14 14 11 11	.05 .04 .05 .05	2.7 2.8 2.3 1.7 .98	9.9 8.9 8.4 5.1
16 17 18 19 20	10 14 15 12 11	15 15 18 17 13	18 16 17 16 16	13 12 12 11 14	18 18 19 19	10 10 8.5 12 7.0	6.8 5.8 3.5 2.3 2.6	6.9 3.3 3.1 1.4	8.3 4.3 1.8 1.2 1.1	.04 .04 .04 .03	1.4 1.4 .74 .33 .24	3.8 5.8 6.1 6.0 6.6
21 22 23 24 25	12 18 22 22 19	13 13 11 13 13	14 11 11 16 15	18 17 17 18 16	18 18 17 18 18	4.4 7.5 7.1 8.5 7.6	4.7 4.2 4.8 5.8 3.7	15 18 16 15 14	.76 .49 .37 .31	.02 .02 .03 .04	.44 .93 .47 .28	5.2 5.6 7.1 9.1 8.7
26 27 28 29 30 31	18 19 21 22 21 19	13 17 17 16 20	15 15 16 15 16	15 15 16 17 17	17 18 19 	8.5 10 9.0 7.0 8.1 8.2	3.1 2.7 1.8 1.2 1.7	15 15 15 15 16 14	.27 .19 .16 .15	.05 .05 .04 .03 .04	.68 .70 .36 .19 .28	8.8 10 11 10 8.3
TOTAL MEAN MAX MIN AC-FT	390.9 12.6 22 4.2 775	474 15.8 20 11 940	491 15.8 20 11 974	435.9 14.1 18 8.4 865	521 18.6 25 17 1030	388.4 12.5 20 4.4 770	150.7 5.02 9.2 1.2 299	430.4 13.9 44 1.1 854	278.02 9.27 56 .14 551	1.74 .056 .14 .02 3.5	27.65 .89 5.6 .04 55	260.6 8.69 15 3.8 517
CAL YR WTR YR	1977 TOTA 1978 TOTA			N 31.1 N 10.5	MAX 2860 MAX 56	MIN 3.						

LOCATION.--Lat 31°16'24", long 100°37'45", Tom Green County, Hydrologic Unit 12090102, on right bank at right end of bridge on Farm Road 2335, 0.4 mi (0.6 km) west of Knickerbocker, and 5.4 mi (8.7 km) upstream from mouth.

DRAINAGE AREA.--229 mi² (593 km²), of which 31 mi² (80.3 km²) probably is noncontributing.

PERIOD OF RECORD .-- October 1960 to current year.

GAGE.--Water-stage recorder. Datum of gage is 2,001.45 ft (610.042 m) National Geodetic Vertical Datum of 1929. Prior to Nov. 10, 1960, nonrecording gage at present site and datum.

REMARKS.--Records good. Flow is partly regulated by storage and diversion from two small channel dams upstream and by small diversions upstream for irrigation. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--18 years, 18.0 ft3/s (0.510 m3/s), 13,040 acre-ft/yr (16.1 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $17,500 \text{ ft}^3/\text{s}$ (496 m³/s) Aug. 12, 1971, gage height, 20.66 ft (6.297 m); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1882, 30.4 ft (9.27 m) in 1906 and Oct. 3, 1959; floods in 1882 and 1884 reached about the same stage, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 67 ft 3 /s (1.90 m 3 /s) Aug. 3, gage height, 3.85 ft (1.173 m); maximum gage height, 3.90 ft (1.189 m) Oct. 22; no peak above base of 100 ft 3 /s (2.83 m 3 /s); minimum discharge, 8.8 ft 3 /s (0.25 m 3 /s) July 22, 23.

		DISCHAF	RGE, IN O	CUBIC FEET	PER SECON	D, WATER	YEAR OCTO	DBER 1977	TO SEPTE	MBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	31	30	29	28	26	26	24	22	25	19	13	25
2	31	30	29	29	26	26	23	23	25	18	14	22
3	32	28	29	29	26	25	24	21	25	17	28	20
2 3 4	32	28	29	29	26	25	24	21	25	17	27	19
5	32	29	29	29	26	25	25	22	24	17	22	20
6	32	29	27	29	26	25	25	21	28	16	22	18
7	32	29	28	29	26	24	24	22	27	15	19	19
8	31	29	28	28	25	24	23	24	23	15	19	20
9	31	28	27	28	25	23	29	23	23	14	19	19
10	32	28	28	28	25	23	30	22	22	15	20	19
11	30	28	28	28	25	23	28	23	22	15	20	19
12	29	28	28	28	28	23	28	22	21	13	21	19
13	30	27	28	28	25	22	28	22	20	12	20	16
14	30	27	28	28	25	20	26	22	19	12	20	15
15	30	27	28	27	25	20	27	22	20	12	20	15
16	31	27	29	27	25	20	28	22	19	11	19	15
17	31	27	28	27	25	20	28	22	20	11	17	15
18	30	27	28	27	25	20	28	22	21	12	18	14
19	30	28	28	27	25	21	28	22	20	13	18	15
20	30	29	27	27	25	20	28	30	20	13	19	15
21	30	28	27	27	25	20	28	26	20	12	19	15
22	40	28	27	27	25	22	28	25	20	11	19	16
23	34	28	28	27	25	22	27	24	19	11	18	17
24	30	29	28	27	25	22	26	24	19	14	17	17
25	30	29	28	27	26	22	25	23	20	12	17	18
26	29	28	28	26	26	23	25	22	20	9.9	19	17
27	30	28	28	26	26	23	23	24	21	11	19	22
28	30	29	28	26	26	22	21	27	20	12	18	21
29	30	29	29	26		22	21	24	19	14	19	22
30	30	30	28	26		22	21	23	19	12	20	22
31	30		28	26		23		23		12	21	
TOTAL	960	849	870	851	714	698	773	715	646	417.9	601	546
MEAN	31.0	28.3	28.1	27.5	25.5	22.5	25.8	23.1	21.5	13.5	19.4	18.2
MAX	40	30	29	29	28	26	30	30	28	19	28	25
MIN	29	27	27	26	25	20	21	21	19	9.9	13	14
AC-FT	1900	1680	1730	1690	1420	1380	1530	1420	1280	829	1190	1080
AC-FI	1300	1000	1/30	1030	1420	1300	1550	1420	1200	023		

CAL YR 1977 TOTAL 16934.0 MEAN 46.4 MAX 3670 MIN 21 AC-FT 33590 WTR YR 1978 TOTAL 8640.9 MEAN 23.7 MAX 40 MIN 9.9 AC-FT 17140

08131200 TWIN BUTTES RESERVOIR NEAR SAN ANGELO, TX

LOCATION (revised).--Lat 31°22'55", long 100°32'17", Tom Green County, Hydrologic Unit 12090102, in outlet control tower at Twin Buttes Dam on Middle Concho River, Spring Creek, and South Concho River, 3.8 mi (6.1 km) upstream from Lake Nasworthy Dam, 8.1 mi (13.0 km) southwest of San Angelo, and 75.0 mi (120.7 km) upstream from mouth.

DRAINAGE AREA.--3,724 mi 2 (9,645 km 2), of which 1,178 mi 2 (3,051 km 2) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1962 to current year.

GAGE.--Water-stage recorder on Middle Concho-Spring Creek pool and nonrecording gage on South Concho pool. Datum of gages is National Geodetic Vertical Datum of 1929.

REMARKS.--The reservoir is formed by a rolled earthfill dam 8.1 mi (13.0 km) long, including a 200-foot-wide (61 m) uncontrolled off-channel concrete gravity spillway with ogee weir section. Outlet works consist of three 15.5 ft (4.7 m) concrete conduits, each is controlled by a 12.0 by 15.0 ft (3.7 by 4.6 m) fixed-wheel gate and a 12.0 by 15.0 ft (3.7 by 4.6 m) radial gate, located in Middle Concho-Spring Creek pools. Low-flow releases are made through 2.0 by 2.0 ft (0.6 by 0.6 m) gates located in the center of three fixed-wheel gates. The South Concho and Middle Concho-Spring Creek pools are connected by a 3.22 mi (5.18 km) equalizing channel. At an elevation of 1,925 ft (586.7 m) the two pools join to form one lake. Deliberate impoundment of water began on Dec. 1, 1962; dam was completed feb. 13, 1963. Capacity curve is based on a survey made in 1958. Reservoir was built for flood control, irrigation, and municipal uses. Figures given herein represent total contents. Data regarding the dam and reservoir are given in the following table:

	Elevation (feet)	(acre-feet)
Top of dam	1,991.0	
Crest of spillway	1.969.1	640,600
lop of conservation storage	1.940.2	186,200
Bottom of equalizing channel	1.925.0	84,760
Dead storage in South Concho pool	1,925.0	4,600
Lowest gated outlet (invert at Middle Concho-Spring Creek pool)	1,885.0	3,750

COOPERATION. -- Capacity curve furnished by the U.S. Bureau of Reclamation.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 205,200 acre-ft (253 hm³) May 12, 1975, elevation, 1,942.20 ft (591.983 m); minimum since first appreciable storage, 2,120 acre-ft (2.61 hm³) Apr. 15, 1971.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 153,700 acre-ft (190 hm³) May 10, 12, 13, 17, elevation, 1,936.33 ft (590.193 m); minimum, 118,000 acre-ft (145 hm³) Sept. 25, 26, elevation, 1,931.20 ft (588.630 m).

Capacity table (elevation, in feet, and total contents, in acre-feet)

1,931.0 116,800 136,500 1,937.0 159,500

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 INSTANTANEOUS OBSERVATIONS AT 2400

		NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	144100	142900	144100	145300	148500	152600	150200	142900	140700	134300	118700	120700
2	143700	142900	144100	145400	148700	152500	149700	143600	140500	133900	118500	120600
3	143600	142800	144100	145600	148800	152600	149500	143500	141000	133400	121800	120600
4	143500	142900	144100	145600	148900	152700	149200	143400	141200	133100	123800	120600
5	143300	143000	144000	145800	149100	152800	149000	143300	141000	132500	124300	120600
6	143200	143000	144100	145900	149300	153300	148800	142900	142600	132000	124500	120400
7	143100	143200	144400	145900	149400	153200	148600	142800	142800	131400	124500	120600
8	142800	143300	144000	145900	149700	153300	148300	142500	142800	130800	124300	120500
9	142800	143300	144000	146000	149700	153400	148500	142100	142800	130300	124300	120400
10	142600	143400	144100	146000	150000	153500	148400	142000	142800	129800	124200	120300
11	142400	143300	144200	146200	150000	153500	148300	141600	142700	129300	124100	120300
12	142300	143300	144400	146200	150800	153600	148200	141300	142700	128700	124000	120200
13	142200	143300	144400	146400	150900	153600	148000	141100	142600	128100	123900	120000
14	142000	143400	144500	146400	150900	153700	147900	140900	142500	127600	123700	119800
15	141800	143500	144700	146700	151100	153500	147700	140600	142300	127200	123400	119700
16	141800	143500	144500	146700	151200	153700	147700	140500	141900	126600	123100	119600
17	141700	143500	144500	146800	151300	153500	147400	140200	141500	126400	122900	119400
18	141700	143600	144600	146700	151500	153500	147300	139700	141200	125400	122600	119200
19	141700	143700	144500	146800	151600	153200	147000	139400	140700	124700	122400	119000
20	141600	143700	144600	147000	151600	153000	146800	140400	140200	124100	122300	118600
21	141800	143600	144600	147300	151700	152900	146600	140700	139700	123500	122000	118400
22	142300	143700	144700	147400	151800	152700	146300	140700	139200	122800	121800	118200
23	142500	143700	144600	147600	151900	152500	146200	140500	138600	122300	121600	118200
24	142500	143800	144600	147600	152000	152300	145800	140400	138000	121800	121300	118100
25	142600	143800	144700	147700	152100	152000	145300	140200	137400	121300	121100	118100
26	142700	143900	144700	147800	152300	151700	145000	140000	136500	120900	121300	118100
27	142800	143800	144700	147900	152400	151400	144600	139700	136100	120400	121100	118400
28	142900	143800	144800	147900	152300	151000	144200	139500	135400	120000	120800	118400
29	143000	143900	145000	148000		150700	143800	140600	134900	119600	120800	118400
30	143000	144000	145100	148200		150600	143300	140700	134500	119400	120600	118300
31	143000		145100	148300		150300		140600		119100	120600	100
MAX	144100	144000	145100	148300	152400	153700	150200	143600	142800	134200	124500	120700
MIN	141600	142800	144000	145300	148500	150300	143300	139400	134600	119100	118500	118100
(†)	1934.91	1935.04	1935.19	1935.62	1936.15	1935.88	1934.94	1934.57	1933.71	1931.36	1931.60	1931.24
(+)	-1400	+1000	+1100	+3200	+4000	-2000	-7000	-2700	-6000	-15500	+1500	-2300

MAX 202100 MAX 153700 MIN 141600 118100 -26100

Elevation, in feet, at end of month. Change in contents, in acre-feet.

COLORADO RIVER BASIN

08131200 TWIN BUTTES RESERVOIR NEAR SAN ANGELO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1969 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO-	РН	TEMPER-	HARD- NESS (MG/L AS	HARD- NESS+ NONCAR- BONATE (MG/L	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIUM. DIS- SOLVED (MG/L
DATE		MHOS)	(UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	AS MG)	AS NA)
NOV								20	12
01 MAY	0820	669	7.6	20.5	210	59	43	24	53
06 JUL	1015	712		24.0	220	69	47	26	57
18	0910	698		28.0	200	63	40	25	57
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE: DIS- SOLVED (MG/L AS F)	SILICA. DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
NOV 01	1.6	5.4	180	0	55	92	.4	13	375
MAY 06	1.7	5.1	190	0	54	92	.4	9.6	385
18	1.7	5.5	170	0	59	99	.5	13	383

08131400 PECAN CREEK NEAR SAN ANGELO, TX

LOCATION.--Lat 31°18'32", long 100°26'44", Tom Green County, Hydrologic Unit 12090102, on left bank 200 ft (61 m) upstream from U.S. Highway 277, 3.6 mi (5.8 km) upstream from mouth, and 10.5 mi (16.9 km) south of San Angelo.

DRAINAGE AREA .-- 83.2 mi2 (215.5 km2).

PERIOD OF RECORD .-- June 1961 to current year.

REVISED RECORDS .-- WDR TX-75-3: 1971, 1972(M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,930.72 ft (588.483 m) National Geodetic Vertical Datum of 1929. Prior to Apr. 30, 1968, at site 1.2 mi (1.9 km) downstream at datum 20.21 ft (6.160 m) lower.

REMARKS.--Records good except those for periods of no gage-height record, which are fair. No known diversions above station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--17 years, 1.68 ft³/s (0.0476 m³/s), 0.27 in/yr (7 mm/yr), 1,220 acre-ft/yr (1.50 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,780 ft³/s (192 m³/s) Sept. 24, 1964, gage height, 11.15 ft (3.399 m), site and datum then in use, from rating curve extended above 2,100 ft³/s (59.5 m³/s) on basis of slope-area measurement of 30,500 ft³/s (864 m³/s); no flow most of time each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1908, 14.36 ft (4.377 m), former site and datum, Sept. 15, 1936, discharge 30,500 ft³/s (864 m³/s), by slope-area measurement.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 278 ft^3/s (7.87 m^3/s) June 3, gage height, 1.32 ft (0.402 m), no other peak above base of 100 ft^3/s (2.83 m^3/s); no flow for many days.

DISCHARGE. IN CUBIC FFET PER SECOND. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		DISCHARGE	E, IN CU	BIC FEE	T PER SEC	EAN VALUES	YEAR OCT	OREK 197	/ IU SEPIEM	BEK 1976		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.62	1.0	1.2	.63	.34	.20	.02	.00	.00	.00	.00
1 2 3	.00	.44	1.0	1.2	.63	.33	.19	.02	.00	.00	.00	.00
3	.00	.21	1.0	1.2	.63	.34	.18	.03	47	.00	.00	.00
4	.00	.19	1.1	1.2	.63	.34	.18	.02	5.6	.00	.00	.00
5	.00	.23	1.1	1.2	.63	.34	.16	.02	1.0	.00	.00	.00
6	.00	.24	1.1	1.2	.63	.41	.17	.02	1.3	.00	.00	.00
7 8	.00	.40	1.1	1.2	.34	.63	.16	.02	1.3	.00	.00	.00
8	.06	.62	1.1	1.2	.34	.59	.14	.01	.55	.00	.00	.00
9	.06	.63	1.2	1.2	.44	.44	.18	.00	.28	.00	.00	.00
10	.10	.63	1.2	1.2	.44	.35	.73	.00	.20	.00	.00	.00
11	.22	.65	1.2	1.2	.42	.31	.79	.00	.18	.00	.00	.00
12	.20	.67	1.2	1.2	.93	.26	.48	.00	.15	.00	.00	.00
13	.20	.68	1.2	1.2	.67	.30	.29	.00	.10	.00	.00	.00
14	.24	.70	1.2	1.2	.39	.33	.23	.00	.04	.00	.00	.00
15	.28	.72	1.2	1.2	.34	.27	.21	.00	.01	.00	.00	.00
16	.29	.74	1.2	1.2	.33	.25	.20	.00	.00	.00	.00	.00
17	.30	.76	1.2	1.2	.33	.25	.19	.00	.00	.00	.00	.00
18	.31	.77	1.2	1.3	.34	.24	.16	.00	.00	.00	.00	.00
19	.34	.79	1.2	1.5	.31	.23	.12	.00	.00	.00	.00	.00
20	.34	.81	1.2	1.2	.32	.23	.12	.00	.00	.00	.00	.00
21	.39	.83	1.2	1.2	.34	.22	.12	.00	.00	.00	.00	.00
22	.87	.85	1.2	1.2	.34	.20	.19	.00	.00	.00	.00	.00
23	.88	.86	1.2	1.3	.74	.20	.11	.00	.00	.00	.00	.00
24	.88	.88	1.2	1.5	1.2	.22	.08	.00	.00	.00	.00	.00
25	.88	.90	1.2	1.4	.88	.19	.05	.00	.00	.00	.00	.00
26	.77	.92	1.2	.88	.88	.20	.04	.00	.00	.00	.00	.00
27	.63	.94	1.2	.88	.69	.22	.03	.00	.00	.00	.00	.00
28	.63	.95	1.2	.88	.42	.20	.03	.00	.00	.00	.00	.00
29	.63	.97	1.2	.63		.20	.02	.00	.00	.00	.00	.00
30	.63	.99	1.2	.66		.20	.02	.00	.00	.00	.00	.00
31	.63		1.2	.88		.20		.00		.00	.00	
TOTAL	10.76	20.59	36.1	35.81	15.21	9.03	5.77	.16	57.71	.00	.00	.00
MEAN	.35	.69	1.16	1.16	.54	.29	.19	.005	1.92	.000	.000	.000
MAX	.88	.99	1.2	1.5	1.2	.63	.79	.03	47	.00	.00	.00
MIN	.00	.19	1.0	.63	.31	.19	.02	.00	.00	.00	.00	.00
CFSM	.004	.008	.01	.01	.006	.003	.002	.000	.02	.000	.000	.000
IN.	.00	.01	.02	.02	.01	.00	.00	.00	.03	.00	.00	.00
AC-FT	21	41	72	71	30	18	11	.3	114	.00	.00	.00
	1977 TOTA 1978 TOTA			4.66	MAX 460 MAX 47	MIN .00 MIN .00	CFSM .0			3380 379		

NOTE .-- No gage-height record Nov. 10 to Dec. 11 and Dec. 16 to Jan. 16.

LOCATION (revised).--Lat 31°24'58", long 100°23'29", Tom Green County, Hydrologic Unit 12090105, on left bank 1,900 ft (579 m) downstream from VFW Highway, 4.2 mi (6.8 km) southeast of San Angelo, and 6.1 mi (9.8 km) downstream from Lake Nasworthy.

PERIOD OF RECORD .-- March 1963 to current year.

GAGE .-- Water-stage recorder and Parshall flume. Datum of gage is 1.855.33 ft (565.505 m) National Geodetic Vertical Datum of 1929 (Bureau of Reclamation reference mark).

REMARKS.--Records good. Discharge represents water released from Twin Buttes Reservoir (station 08131200) through Lake Nasworthy (station 08132000), principally for irrigation. Local flood runoff is excluded. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE .-- 8 years (water years 1964-71), no flow; 7 years (water years 1972-78), 18.5 ft3/s (0.524 m3/s), 13,400 acreft/yr (16.5 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 125 ft³/s (3.54 m³/s) June 25, 1978; no flow for long periods.

		DISCHARGE	, IN C	JBIC FEE		OND, WATER IEAN VALUES		TOBER 197	7 TO SEPTE	MBER 197	8	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.82	.00	.00	.00	3.1	.00	105	96	2.5	86	51	10
2	.06	.00	.00	.00	2.9	.00	99	87	2.5	82	49	7.9
3	.01	.00	.00	.00	2.9	.00	93	45	2.6	80	24	3.2
2 3 4	.00	.00	.00	.00	2.7	.00	87	51	2.2	80	.05	.55
5	.00	.00	.00	.00	2.7	.00	82	63	2.1	82	.00	.00
6	.00	.00	.00	.00	2.9	.00	73	70	4.0	89	.00	.33
7	.00	.00	.00	.00	2.8	.00	63	70	.19	91	.00	2.7
8	.00	.00	.00	.00	2.8	.00	59	70	.02	96	.00	2.9
9	.00	.00	.00	.00	2.7	.00	59	67	.02	93	.00	2.9
10	.00	.00	.00	.00	2.7	.00	50	56	.02	88	.00	2.9
11	.00	.00	.00	.00	2.7	.00	35	51	.02	96	.00	2.9
12	.00	.00	.00	.00	3.4	1.8	28	46	.05	96	.00	2.9
13	.00	.00	.00	.00	2.5	18	22	43	.05	96	.00	2.7
14	.00	.00	.00	.00	2.4	18	22	32	.05	104	.00	2.9
15	.00	.00	.00	.00	2.3	26	22	26	9.6	114	.00	2.7
16	.00	.00	.00	.00	.37	29	22	29	44	113	.00	2.7
17	.00	.00	.00	.00	.02	32	21	38	54	113	.00	2.7
18	.00	.00	.00	.00	.02	41	22	53	61	118	.00	2.7
19	.00	.00	.00	.00	.02	47	27	60	75	124	.00	2.7
20	.00	.00	.00	.00	.02	48	34	60	84	124	.00	2.6
21	.00	.00	.00	.00	.02	64	40	33	110	123	.00	2.6
22	.00	.00	.00	.00	.02	80	50	6.4	119	123	.00	2.4
23	.00	.00	.00	.00	.02	89	50	23	124	114	1.9	.06
24	.00	.00	.00	.00	.02	99	58	33	124	107	11	.00
25	.00	.00	.00	.00	.02	100	70	33	125	96	13	.00
26	.00	.00	.00	.00	.02	100	77	33	119	88	18	.00
27	.00	.00	.00	.00	.02	100	85	33	114	71	18	.00
28	.00	.00	.00	.00	.02	106	90	31	113	57	18	.00
29	.00	.00	.00	.00		105	96	2.5	104	56	20	.00
30	.00	.00	.00	2.4		106	96	.15	89	57	19	.00
31	.00		.00	3.0		105		2.1		54	13	
TOTAL	.89	.00	.00	5.40	42.11	1314.80	1737	1343.15	1484.92	2911	255.95	65.94
MEAN	.029	.000	.000	.17		42.4	57.9	43.3	49.5	93.9	8.26	2.20
MAX	.82	.00	.00	3.0	3.4	106	105	96	125	124	51	10
MIN	.00	.00	.00	.00	.02	.00	21	.15	.02	54	.00	.00
AC-FT	1.8	.00	.00	11	84	2610	3450	2660	2950	5770	508	131
	1977 TOTAL 1978 TOTAL			23.1 25.1	MAX 116 MAX 125	MIN .00 MIN .00	AC-FT AC-FT	16710 18170				

08132000 LAKE NASWORTHY NEAR SAN ANGELO, TX

LOCATION.--Lat 31°23'19", long 100°28'41", Tom Green County, Hydrologic Unit 12090102, on left bank 250 ft (76 m) upstream from Nasworthy Dam on South Concho River, 3.8 mi (6.1 km) downstream from Twin Buttes Dam, 6.0 mi (9.7 km) southwest of San Angelo, and 68.9 mi (110.9 km) upstream from mouth.

DRAINAGE AREA.--3,833 mi² (9,927 km²), of which 3,724 mi² (9,645 km²) is above Twin Buttes Reservoir and 1,178 mi² (3,051 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1930 to current year. Prior to October 1969, monthend contents only.

GAGE.--Water-stage recorder. Datum of gage is 1,840.00 ft (560.832 m) National Geodetic Vertical Datum of 1929.

REMARKS.--The lake is formed by a 6,090 ft (1,860 m) dam with a 5,590 ft (1,700 m) earthen section that has an earthen spillway 300 ft (91 m) long, a concrete spillway 475 ft (145 m) long with a bank of fifteen 25.0 by 18.0 ft (5.5 by 7.6 m) tainter gates, and a 25.0 by 3.0 ft (7.16 by 0.9 m) collapsible floodgate. The dam was completed and storage began Mar. 28, 1930. Since July 1966, West Texas Utilities Co. has operated a steam generating powerplant on the lake. Since September 1962, the lake has been almost totally controlled by releases or pumpage from Twin Buttes Reservoir (station 08131200). Siltation surveys in December 1938 and May 1953 by the Soil Conservation Service show that 1,191 acre-ft (1.47 hm³) of silt was deposited from March 1930 to December 1938 and an additional 1,023 acre-ft (1.26 hm³) was deposited from December 1938 to May 1953, totaling 2,214 acre-ft (2.73 hm²). Water is used for part of San Angelo municipal supply and for irrigation east of San Angelo (see station 08131600 for diversions). The capacity curve is based on a survey by the Soil Conservation Service in 1953 and has been used since 1955. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

Gage height

Capacity

	Gage height (feet)	Capacity (acre-feet)
Top of dam	43.5	THE STREET
Crest of spillway (300 ft)	39.1	27,810
Top of gates	33.2	13,990
Top of collapsible floodgate	32.2	12,390
Lowest outlet to canal (invert)	27.5	6,370
Crest of spillway (tainter gates sill)	15.3	435
Lowest gated outlet (invert)	-4.0	0

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 26,900 acre-ft (33.2 hm³) Sept. 15, 1936, gage height, 38.36 ft (11.692 m); minimum, 209 acre-ft (0.258 hm³) Aug. 22, 1964, gage height, 13.21 ft (4.026 m).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 11,140 acre-ft (13.7 hm²) Mar. 10, gage height, 31.42 ft (9.577 m); minimum, 10,260 acre-ft (12.7 hm²) Jan. 18, gage height, 30.85 ft (9.403 m).

Capacity table (gage height, in feet, and total contents, in acre-feet)

30.0 9,170 32.0 12,070

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	10430	10770	10570	10550	10630	11010	10490	10490	10430	10570	10570	10600
2	10470	10710	10570	10530	10650	10970	10430	10500	10490	10550	10470	10550
2	10490	10660	10570	10520	10660	10970	10430	10400	10570	10500	10530	10500
4	10470	10630	10570	10500	10660	10970	10430	10400	10600	10490	10440	10490
5	10460	10600	10520	10470	10680	10970	10440	10390	10580	10470	10430	10440
,	10400	10000	10320	10470	10000	10970	10440	10390	10560	10470	10430	10440
6	10470	10550	10530	10470	10710	11030	10470	10360	11050	10500	10390	10410
7	10460	10520	10580	10440	10730	11010	10500	10320	10980	10530	10370	10490
8	10500	10530	10490	10400	10740	11000	10500	10320	10890	10570	10370	10500
9	10490	10500	10490	10370	10740	11000	10630	10370	10840	10580	10370	10500
10	10490	10520	10500	10340	10770	11000	10610	10440	10790	10610	10370	10500
11	10530	10530	10520	10340	10770	10980	10630	10530	10710	10630	10360	10520
12	10570	10550	10550	10330	10930	10950	10630	10530	10650	10630	10370	10520
13	10570	10550	10530	10330	10920	10920	10630	10500	10650	10630	10340	10500
14	10570	10580	10550	10320	10920	10840	10630	10500	10660	10600	10340	10490
15	10570	10580	10580	10330	10920	10730						
15	10370	10560	10560	10330	10930	10/30	10610	10520	10610	10570	10370	10470
16	10580	10580	10530	10300	10950	10650	10600	10550	10500	10490	10390	10440
17	10580	10570	10520	10290	10930	10610	10570	10520	10490	10470	10410	10430
18	10600	10580	10530	10290	10970	10630	10530	10470	10490	10400	10410	10370
19	10630	10580	10500	10300	11010	10600	10470	10460	10530	10390	10410	10370
20	10650	10550	10520	10340	10970	10580	10440	10430	10530	10410	10430	10400
21	10710	10550	10520	10400	10980	10600	10430	10370	10470	10410	10440	10430
22	10770	10570	10570	10440	10970	10610	10430	10370	10470	10410	10440	10450
23	10790	10550	10530	10490	10980	10580	10430	10300	10440	10410	10430	10520
24	10790	10570	10530	10520	10970	10570	10440	10300	10440	10610	10430	10570
25	10810	10570	10530	10520	10970	10570						
23	10010	10550	10550	10530	109/0	105/0	10440	10330	10490	10660	10370	10580
26	10790	10580	10530	10550	10980	10570	10460	10340	10520	10630	10460	10600
27	10820	10530	10570	10570	11080	10570	10440	10360	10530	10610	10470	10650
28	10840	10520	10580	10580	11000	10530	10440	10370	10550	10630	10490	10650
29	10840	10550	10630	10600		10520	10490	10300	10570	10610	10500	10630
30	10840	10550	10610	10600		10500	10490	10330	10600	10650	10520	10610
31	10840		10570	10610		10470		10360		10610	10580	
MAX	10840	10770	10630	10610	11000	11020	10020	10550	11050	10660	10500	10650
MIN	10430	10770	10490	10290	11080	11030	10630	10550	11050	10660	10580	10650
	31.23				10630	10470	10430	10300	10430	10390	10340	10370
(†) (‡)		31.05	31.06	31.09	31.33	31.00	31.01	30.92	31.08	31.09	31.07	31.09
(+)	+400	-290	+20	+40	+390	-530	-20	-130	+240	+10	-30	+30

f Gage height, in feet, at end of meonth.
f Change in contents, in acre-feet.

08132000 LAKE NASWORTHY NEAR SAN ANGELO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1969 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
				2.5	12	25		
0915	875	7.7	21.0	240	75	53	26	82
0930	1010	22	25 5	290	110	68	29	110
0030	1010		23.3	2,0		•		
0825	854		29.0	230	67	48	27	80
SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA. DIS- SOLVED (MG/L AS SIO2)	SOLIDS+ SUM OF CONSTI- TUENTS+ DIS- SOLVED (MG/L)
2.3	5.5	200	0	69	130	.6	17	482
2.8	5.4	220	0	78	160	.5	14	573
2.3	5.5	200	0	69	130	.6	16	475
	0915 0830 0825 SODIUM AD- SORP- TION RATIO 2.3 2.8	CIFIC CON- CON- DUCT- ANCE TIME (MICRO- MHOS) 0915 875 0830 1010 0825 854 SODIUM POTAS- SIUM- SORP- TION SOLVED RATIO (MG/L AS K) 2.3 5.5 2.8 5.4	CIFIC CONDUCT- ANCE PH TIME (MICRO- MHOS) (UNITS) 0915 875 7.7 0830 1010 0825 854 SODIUM POTAS- AD- SIUM, BICAR- SORP- DIS- TION SOLVED (MG/L AS AS K) HC03) 2.3 5.5 200 2.8 5.4 220	CIFIC CON- DUCT- ANCE PH TEMPER- ATURE (MICRO- MHOS) (UNITS) (DEG C) 0915 875 7.7 21.0 0830 1010 25.5 0825 854 29.0 SODIUM POTAS- AD- SIUM, BICAR- SORP- DIS- BONATE CAR- TION SOLVED (MG/L BONATE RATIO (MG/L AS (MG/L AS K) HCO3) AS CO3) 2.3 5.5 200 0 2.8 5.4 220 0	CIFIC CON- DUCT- ANCE PH TEMPER- (MG/L AS (MG/L BONATE SOLVED (MG/L AS K) HCO3) AS CO3) CON- CON- CON- CON- CON- CON- CON- CON	CIFIC HARD- NESS NONCAR- NESS NOSCA NOS	CIFIC CON- DUCT- ANCE PH TEMPER- MHOS) (UNITS) (DEG C) CACO3) CACO3) AS CA) TIME (MICRO- MHOS) (UNITS) (DEG C) CACO3) CACO3) AS CA) 0915 875 7.7 21.0 240 75 53 0830 1010 25.5 290 110 68 0825 854 29.0 230 67 48 SODIUM POTAS- AD- SIUM, BICAR- SORP- DIS- BONATE CAR- DIS- DIS- TION SOLVED (MG/L BONATE SOLVED	CIFIC CON- OUCT- ANCE PH TEMPER- (MG/L BONATE SOLVED SOLVED MG/L (MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L

103

08133500 NORTH CONCHO RIVER NEAR STERLING CITY, TX

LOCATION.--Lat 31°49'48", long 100°59'36", Sterling County, Hydrologic Unit 12090104, on right bank 100 ft (30 m) upstream from bridge on State Highway 163, 0.5 mi (0.8 km) south of Sterling City, 4.0 mi (6.4 km) upstream from Sterling Creek, 5.1 mi (8.2 km) downstream from Lacy Creek, and at mile 55.3 (89.0 km).

DRAINAGE AREA.--605 mi² (1,567 km²), of which 66 mi² (171 km²) probably is noncontributing.

PERIOD OF RECORD .-- September 1939 to current year.

REVISED RECORDS .-- WSP 1512: 1945, 1948. WSP 1922: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 2,242.36 ft (683.471 m) National Geodetic Vertical Datum of 1929. Prior to Dec. 6, 1939, nonrecording gage at same site and datum.

REMARKS.--Records good. Small diversions above station for irrigation. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 39 years, 8.67 ft3/s (0.246 m3/s), 6,280 acre-ft/yr (7.74 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 16,300 ft³/s (462 m³/s) July 6, 1948, gage height, 23.70 ft (7.224 m); no flow at times each year.

EXTREMES OUTSIDE PERIOD OF RECORD .-- Maximum stage since at least 1891, that of July 6, 1948.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 359 ft³/s (10.2 m³/s) June 2, gage height, 7.82 ft (2.384 m), no other peak above base of 300 ft³/s (8.50 m³/s); no flow for many days.

		DISCHA	RGE, IN C	UBIC FEET	PER SECO	ND, WATER	YEAR OCT	OBER 197	7 TO SEPTE	MBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.17	.48	.67	.46	.15	.52	.00	.00	.00
2	.00	.00	.00	.18	.53	.69	.40	14	31	.00	.00	.00
3	.00	.00	.00	.24	.52	.60	.44	10	55	.00	.00	.00
4	.00	.00	.00	.26	.40	.57	.39	2.4	7.0	.00	.00	.00
									2.3	.00	.00	.00
5	.00	.00	.00	.27	.41	.60	.33	1.1	2.3	.00	•00	.00
6	.00	.00	.00	.29	.59	.58	.66	.88	1.3	.00	.00	.00
7	.00	.00	.00	.27	.74	.53	.76	.77	1.0	.00	.00	.00
8	.00	.00	.00	.27	.98	.49	.53	.63	.79	.00	.00	.00
9	.00	.00	.00	.35	1.6	.62	1.4	.57	.60	.00	.00	.00
10	.00	.00	.00	.25	1.4	.53	1.3	.53	.52	.00	.00	.00
11	.00	.00	.00	.22	.84	.54	.50	.57	.46	.00	.00	.00
12	.00	.00	.00	.27	.99	1.1	.39	.51	.43	.00	.00	.00
13	.00	.00	.00	.28	1.5	.67	.36	.37	.38	.00	.00	.00
							.33	.37	.34	.00	.00	.00
14	.00	.00	.00	.26	.95	.49	.33		.25	.00	.00	.00
15	.00	.00	.00	.25	.57	.51	.30	.37	.25	.00	.00	.00
16	.00	.00	.00	.31	.55	.54	.30	.35	.23	.00	.00	.00
17	.00	.00	.09	.28	.56	.61	.33	.29	.22	.00	.00	.00
18	.00	.00	.00	.29	.61	.40	.26	.18	.17	.00	.00	.00
19	.00	.00	.00	.31	.62	.36	.25	:16	.14	.00	.00	.00
20	.00	.00	.00	.30	.51	.40	.23	10	.13	.00	.00	.00
21	.00	.00	.00	.37	.58	.44	.27	6.3	.11	.00	.00	.00
22	.00	.00	.00	.42	.89	.40	.27	1.7	.08	.00	.00	.00
23	.00	.00	.00	.40	.57	.44	.25	.99	.05	.00	.00	.00
24	.00	.00	.13	.45	.52	.63	.21	.76	.04	.00	.00	.00
25	.00	.00	.09	.42	.65	.43	.21	.62	.03	.00	.00	.00
26	0.0	0.0	0.0	26		40	10	.57	.02	.00	.00	.00
	.00	.00	.06	.36	1.1	.40	.18					.00
27	.00	.00	.08	.37	.78	.39	.20	.57	.00	.00	.00	
28	.00	.00	.10	.35	.69	.40	.18	6.2	.00	.00	.00	.00
29	.00	.00	.22	.37		.43	.17	2.7	.00	.00	.00	.00
30	.00	.00	.22	.41		.38	.16	.86	.00	.00	.00	.00
31	.00		.19	.57		.40		.63	100	.00	.00	
TOTAL	.00	.00	1.18	9.81	21.13	16.24	12.02	66.10	103.11	.00	.00	.00
MEAN	.000	.000	.038	.32	.75	.52	.40	2.13	3.44	.000	.000	.000
MAX	.00	.00	.22	.57	1.6	1.1	1.4	14	55	.00	.00	.00
MIN	.00	.00	.00	.17	.40	.36	.16	.15	.00	.00	.00	.00
AC-FT	.00	.00	2.3	19	42	32	24	131	205	.00	.00	.00

CAL YR 1977 TOTAL 921.27 MEAN 2.52 MAX 657 MIN .OO AC-FT 1830 WTR YR 1978 TOTAL 229.59 MEAN .63 MAX 55 MIN .OO AC-FT 455

08134000 NORTH CONCHO RIVER NEAR CARLSBAD, TX

LOCATION.--Lat 31°35'33", long 100°38'12", Tom Green County, Hydrologic Unit 12090104, near left bank on downstream side of bridge on county road, 0.6 mi (1.0 km) southeast of Carlsbad, 1.5 mi (2.4 km) upstream from Mule Creek, 2.5 mi (4.0 km) upstream from Grape Creek, 16.2 mi (26.1 km) upstream from 0. C. Fisher Dam, and 22.9 mi (36.8 km) upstream from mouth.

DRAINAGE AREA.--1,249 mi² (3,235 km²), of which 105 mi² (272 km²) probably is noncontributing.

PERIOD OF RECORD .-- March 1924 to current year.

REVISED RECORDS.--WSP 1512: 1924(M), 1925, 1926(M), 1928, 1930, 1932(M), 1935, 1937-38(M), 1941(M), 1945(M), 1947-49(M). WSP 1922: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,968.02 ft (599.852 m) National Geodetic Vertical Datum of 1929. Prior to Feb. 4, 1925, and Sept. 27, 1936, to Feb. 7, 1937, nonrecording gage; Feb. 4, 1925, to Sept. 26, 1936, and Feb. 8, 1937, to Nov. 6, 1955, water-stage recorder, all at site 2.5 mi (4.0 km) upstream at datum 32.76 ft (9.985 m) higher.

REMARKS.--Records good. Diversions by pumping above station. Several observations of water temperature were made during the year. AVERAGE DISCHARGE.--54 years, 36.0 ft³/s (1.020 m³/s), 26,080 acre-ft/yr (32.2 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 94,600 ft³/s (2,680 m³/s) Sept. 26, 1936, gage height, 16.0 ft (4.88 m) at former site, 29.1 ft (8.87 m) at present site, from floodmarks, by slope-area measurement of peak flow at former site; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1853, that of Sept. 26, 1936. Stage unknown for major flood in June 1853.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 1,500 ft3/s (42.5 m3/s) and maximum (*):

Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)	Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)
May 29	0900	3,790	107	11.47	3.496	Aug. 3	0600	*6,030	171	13.80	4.206

Minimum discharge, no flow for many days.

		DISCHARGE	E, IN (CUBIC FEET	PER SECONE	O, WATER	YEAR OC	TOBER 197	7 TO SEPTE	MBER 197	8	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	2.4	3.5	1.3	.64	15	.08	.00	.08
2	.00	.00	.00	.00	2.4	3.2	1.2	3.4	12	.08	.00	.10
2	.00	.00	.00	.00	2.6	3.5	1.3	5.7	55	.03	2010	.08
4	.00	.00	.00	.00	2.6	3.2	2.1	18	39	.02	543	.06
5	.00	.00	.00	.00	2.6	3.2	2.1	8.9	18	.00	53	.06
6	.00	.00	.00	.00	2.6	3.2	1.9	4.8	12	.00	36	.04
7	.00	.00	.00	.00	2.4	3.2	1.9	3.8	9.4	.00	23	.03
8	.00	.00	.00	.00	2.4	2.9	100	6.4	7.2	.00	17	.08
9	.00	.00	.00	.00	2.6	2.9	22	4.8	5.6	.00	14	.06
10	.00	.00	.00	.00	2.6	2.9	8.0	2.6	4.5	.00	12	.04
11	.00	.00	.00	.00	2.4	2.9	5.5	1.9	4.1	.00	9.4	.03
12	.00	.00	.00	.04	3.2	2.6	5.2	1.7	3.5	.00	7.6	.03
13	.00	.00	.00	.64	2.9	2.6	4.1	1.2	3.2	.00	5.6	.02
14	.00	.00	.00	.64	2.6	2.4	2.9	.75	2.9	.00	4.1	.01
15	.00	.00	.00	.87	2.6	1.9	2.4	.54	3.2	.00	3.8	.00
16	.00	.00	.00	1.0	2.4	1.7	2.1	.30	2.6	.00	2.6	.00
17	.00	.00	.00	1.0	2.4	1.3	1.9	.18	2.4	.00	1.7	.00
18	.00	.00	.00	.87	2.4	1.2	1.7	.14	2.1	.00	1.5	.00
19	.00	.00	.00	1.0	2.4	1.3	1.3	.08	1.7	.00	.87	.00
20	.00	.00	.00	1.2	2.4	1.5	1.2	13	1.5	.00	.75	.00
	.00	•00	•00	1.2	2.4	1.5	1.2	13	1.5			
21	.00	.00	.00	1.5	2.1	1.7	1.0	4.5	1.3	.00	.64	.00
22	.00	.00	.00	1.9	1.9	1.7	1.0	5.2	1.0	.00	.30	.00
23	.00	.00	.00	1.7	2.1	1.5	1.0	6.4	.87	.00	.10	.00
24	.00	.00	.00	1.9	2.4	1.5	1.0	4.1	.75	.00	.06	.00
25	.00	.00	.00	2.1	2.9	1.5	.87	2.6	.54	.00	.04	.00
26	.00	.00	.00	2.1	2.9	1.5	.75	3.7	.37	.00	.04	.00
27	.00	.00	.00	1.9	3.2	1.5	.54	2.1	.24	.00	.04	.00
28	.00	.00	.00	2.1	3.5	1.5	.45	144	.14	.00	.04	.00
29	.00	.00	.00	2.1		1.5	.45	1250	.10	.00	.04	.00
30	.00	.00	.00	2.4	222	1.5	.45	60	.08	.00	.06	.00
31	.00		.00	2.4		1.5		23		.00	.06	
TOTAL	.00	.00	.00	29.36	71.9	68.0	177.61	1584.43	210.29	.21	2747.34	.72
MEAN	.000	.000	.000	.95	2.57	2.19	5.92	51.1	7.01	.007	88.6	.024
MAX	.00	.00	.00	2.4	3.5	3.5	100	1250	55	.08	2010	.10
MIN	.00	.00	.00	.00	1.9	1.2	.45	.08	.08	.00	.00	.00
AC-FT	.00	.00	.00	58	143	135	352	3140	417	.4	5450	1.4
									71/	.,	3430	
CAL YR WTR YR		1717.06 4889.86	MEAI		MAX 509			FT 3410				
WIK TR	19/0 IUIAL	4009.80	MEA	N 13.4	MAX 2010	MIN .	00 AC-	FT 9700				

08134500 O. C. FISHER LAKE AT SAN ANGELO, TX

LOCATION.--Lat 31°29'04", long 100°28'53", Tom Green County, Hydrologic Unit 12090104, in intake structure of San Angelo Dam on North Concho River, 3.1 mi (5.0 km) northwest of San Angelo, and 6.6 mi (10.6 km) upstream from mouth.

DRAINAGE AREA.--1,488 mi² (3,854 km²), of which 105 mi² (272 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--February 1952 to current year. Published as San Angelo Reservoir prior to October 1970, and as San Angelo Lake, October 1970 to September 1974.

REVISED RECORDS .-- WSP 1922: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to May 12, 1953, nonrecording gage at same site and datum.

REMARKS.--The lake is formed by a rolled earthfill dam 40,885 ft (12,462 m) long, including spillway. Closure was completed Mar. 7, 1951, and the dam was completed May 3, 1951. Deliberate impoundment began Feb. 1, 1952. The lake is operated for flood control and recreation with part as municipal supply for the city of San Angelo. The spillway is an uncontrolled off-channel concrete gravity dam with ogee weir section 1,150 ft (351 m) wide located to the right and upstream from the right end of dam. The spillway is designed to discharge 356,000 ft³/s (10,100 m³/s) at maximum design flood level. The service control outlet works consist of six gate-controlled outlets, 7.5 by 14.5 ft (2.3 by 4.4 m), opening into two 18.0-foot-diameter (5.5 m) concrete conduits and two 2.5 ft (0.8 m) gate-controlled outlets for water-supply outlets. Since February 1973, the capacity is based on a survey made in 1962. Prior to 1973, the capacity was based on a survey made in 1944. Corps of Engineers gage-height telemeter a station. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	(feet)	(acre-feet)
Top of dam	1,964.0	
Design flood	1,958.0	690,000
Crest of spillway	1.938.5	392,700
Top of conservation pool	1.908.0	115.700
Lowest gated outlet (invert)	1,840.0	0

COOPERATION. -- Records furnished by the Corps of Engineers and reviewed by the Geological Survey.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 174,100 acre-ft (215 hm³) Oct. 14, 1957, elevation, 1,916.47 ft (584.140 m); minimum since first appreciable storage, lake dry July 16, 1970, to Apr. 15, 1971.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 27,110 acre-ft (33.4 hm³) Aug. 6, elevation, 1,881.82 ft (573.579 m); minimum, 20,180 acre-ft (24.9 hm³) May 2, elevation, 1,878.06 ft (572.433 m).

Capacity table (elevation, in feet, and total contents, in acre-feet)

1,878.0	20,080	1.881.0	25,480
1,880.0	23,570	1,882.0	27,480

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4	23990 23920 23880 23860	23150 23060 23000 22990	22490 22440 22420 22400	21890 21860 21840 21840	21540 21540 21530 21510	21490 21490 21470 21420	20870 20850 20820 20780	20190 20930 20920 20880	23490 23510 23600 23650	22530 22490 22440 22370	20850 20820 25730 26950	26070 26050 26010 25990
5	23800	22970	22390	21820	21530	21410	20780	20870	23670	22320	27090	25970
6 7 8 9	23790 23770 23710 23690 23650	22930 22970 22950 22910 22880	22370 22350 22320 22260 22230	21820 21800 21770 21730 21720	21530 21540 21540 21540 21540 21530	21440 21440 21410 21390 21390	20770 20720 20780 20950 20930	20870 20850 20800 20770 20780	23840 23840 23800 23770 23750	22240 22170 22120 22050 22000	27030 27010 26990 26950 26950	25910 25930 25910 25890 25850
11 12 13 14 15	23580 23520 23490 23430 23410	22840 22820 22800 22800 22780	22230 22240 22230 22210 22210	21680 21680 21660 21660 21680	21530 21680 21650 21650 21630	21350 21340 21340 21300 21270	20920 20880 20850 20820 20800	20780 20730 20680 20650 20630	23770 23650 23600 23560 23510	21930 21890 21820 21790 21730	26930 26930 26890 26870 26830	25810 25770 25730 25710 25650
16 17 18 19	23340 23300 23280 23260 23230	22770 22750 22730 22730 22690	22160 22100 22080 22070 22050	21660 21630 21630 21600 21600	21630 21630 21610 21600 21580	21220 21200 21180 21170 21150	20780 20750 20700 20650 20600	20570 20550 20500 20470 20680	23430 23360 23320 23280 23230	21650 21600 21530 21460 21410	26790 26690 26620 26560 26520	25610 25530 25450 25420 25380
21 22 23 24 25	23230 23280 23260 23260 23260	22680 22640 22620 22600 22580	22010 22000 21980 21960 21930	21600 21610 21610 21650 21610	21560 21540 21530 21530 21510	21120 21120 21100 21070 21030	20570 20530 20520 20470 20400	20750 20730 20680 20680 20650	23150 23080 23020 22970 22910	21350 21290 21250 21200 21170	26460 26380 26320 26260 26200	25280 25240 25220 25220 25220 25200
26 27 28 29 30 31	23230 23240 23240 23230 23210 23190	22550 22530 22490 22530 22510	21930 21890 21910 21890 21890 21890	21600 21580 21560 21540 21540 21540	21490 21510 21490	21020 21000 20930 20920 20920 20880	20370 20320 20320 20320 20260	20620 20600 20600 23150 23430 23470	22800 22750 22690 22620 22600	21130 21100 21020 20980 20950 20870	26300 26280 26240 26170 26130 26090	25220 25280 25260 25220 25200
MAX MIN (†) (‡)	23990 23190 1879.80 -860	23150 22490 1879.43 -680	22490 21890 1879.08 -620	21890 21540 1878.88 -350	21680 21490 1878.85 -50	21490 20880 1878.49 -610	20950 20260 1878.08 -670	23470 20190 1879.95 +3260	23840 22600 1879.48 -870	22530 20870 1878.48 -1730	27090 20820 1881.31 +5220	26070 25200 1880.86 -890

CAL YR 1977 MAX 28740 MIN 21890 # -6820 WTR YR 1978 MAX 27090 MIN 20190 # +1150

[†] Elevation, in feet, at end of month.
‡ Change in contents, in acre-feet.

COLORADO RIVER BASIN

08134500 O. C. FISHER LAKE AT SAN ANGELO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1969 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM. DIS- SOLVED (MG/L AS NA)
FER 28	1335	667	7.8	12.5	220	76	50	24	43
20	1333	007	7.0	16.5	220	10	30		
	CODTIN	DOTAG							SOL IDS.
	SODIUM AD-	POTAS- SIUM.	DICAD		SULFATE	CHLO-	FLU0-	SILICA. DIS-	SUM OF CONSTI-
	SORP-	DIS-	BICAR- BONATE	CAR-	DIS-	RIDE.	RIDE.	SOLVED	TUENTS.
	TION	SOLVED	(MG/L	BONATE	SOLVED	SOLVED	SOLVED	(MG/L	DIS-
	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L	(MG/L	AS	SOLVED
DATE		AS K)	HC03)	AS C03)	AS 504)	AS CL)	AS F)	5102)	(MG/L)
FEB									
28	1.3	16	180	0	45	110	.3	6.0	383

08135000 NORTH CONCHO RIVER AT SAN ANGELO, TX

LOCATION.--Lat 31°27'57", long 100°26'51", Tom Green County, Hydrologic Unit 12090104, near left bank on downstream side of pier of Sixth Street Bridge in San Angelo, 3.2 mi (5.1 km) upstream from confluence with South Concho River, and 3.4 mi (5.5 km) downstream from 0. C. Fisher Dam.

DRAINAGE AREA.--1,507 mi² (3,903 km²), of which 105 mi² (272 km²) proabably is noncontributing.

PERIOD OF RECORD. --October 1915 to June 1928, February 1929 to September 1931, July 1947 to current year.

REVISED RECORDS.--WSP 568: 1916, 1918-22. WSP 1512: 1916(M), 1917-18, 1919-21(M). WSP 1922: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,813.42 ft (552.730 m) National Geodetic Vertical Datum of 1929. Prior to Sept. 1, 1920, nonrecording gage, and Sept. 1, 1920, to Feb. 11, 1929, water-stage recorder at site 1.6 mi (2.6 km) downstream at datum 11.02 ft (3.359 m) lower. Feb. 12, 1929, to Sept. 30, 1931, water-stage recorder at site 1.6 mi (2.6 km) downstream at datum 13.02 ft (3.968 m) lower.

REMARKS.--Records good. Since October 1951, flow regulated by O.C. Fisher Lake (station 08134500). Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--17 years (water years 1916-27, 1930-31, 1948-51) prior to completion of 0. C. Fisher Dam, 54.5 ft 3 /s (1.543 m 3 /s), 39,490 acre-ft/yr (48.7 hm 3 /s); 27 years (water years 1952-78) regulated, 8.95 ft 3 /s (0.253 m 3 /s), 6,480 acre-ft/yr (7.99 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 47,000 ft³/s (1,330 m³/s) June 13, 1930, gage height, 22.52 ft (6.864 m), site and datum then in use; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Sept. 17, 1936, reached a stage of 34.6 ft (10.55 m), from floodmarks, discharge 184,000 ft³/s (5,210 m³/s), by slope-area measurement. The flood in 1936 was the greatest since flood in June 1853 (stage unknown).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 425 ft³/s (12.0 m³/s) May 2, gage height, 2.78 ft (0.847 m); minimum daily, 0.07 ft³/s (0.002 m³/s) July 21, 22.

		DISCHA	RGE, IN	CUBIC FEET	PER SECO	ND, WATER AN VALUES	YEAR OC	TOBER 1977	TO SEPTE	MBER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.10 .10 .10 .10 .15	.10 .10 .10 .48 .76	1.2 1.0 .92 1.2 1.4	.72 .93 .94 .75	1.1 1.1 .90 1.1	.55 .62 .64 1.0	.53 .51 .59 .53	.15 58 5.9 1.4 1.0	1.0 .98 1.5 .96	.38 .37 .30 .29	.09 .09 45 3.9 1.3	.75 .69 .71 5.0 2.1
6 7 8 9	.15 .20 .20 .20 .20	.70 .93 5.5 3.0 2.4	1.1 .81 .92 .92 .85	.67 .61 .74 .90	1.2 1.5 1.5 1.6 1.4	1.6 1.6 .82 .68	.44 .44 .46 2.9 7.4	.70 .71 .59 .64	23 3.0 1.0 .80 .61	.12 .12 .12 .11 .10	1.0 .77 .72 .65	1.0 2.0 2.8 1.3
11 12 13 14 15	.20 .20 .20 .10	2.4 2.0 2.0 2.2 2.1	.83 .77 .89 .65	.97 .88 .64 .60	1.2 23 4.5 1.6 2.0	1.0 1.1 1.1 .76 .60	1.6 .50 .46 .42	.73 .52 .52 .53	.58 .58 .57 .49	.10 .10 .10 .10	.65 .65 .65	.83 .76 .70 .70
16 17 18 19 20	.10 .10 .10 .10	1.9 1.9 1.7 1.0	.64 .85 .83 .68	.90 .69 .68 .65	.78 .73 .73 .68	.54 .55 .58 .63	.37 .41 .36 .34	.43 .36 .29 .27	.32 .39 .28 .36	.10 .09 .08 .08	.65 .65 .66 .65	.68 .67 .67 .71
21 22 23 24 25	.23 8.3 2.2 1.0 1.5	.95 .63 .74 .73	.61 .62 .62 .63	.82 1.5 1.1 .82 .75	.59 .59 .60 .64	.55 .47 .55 .60	.27 .24 .22 .20	6.6 1.6 .96 .92	.14 .39 .28 .17	.07 .07 .08 .09	.67 .65 .65 .65	.58 .61 .62 .62 .74
26 27 28 29 30 31	.50 .30 .20 .20 .20	.70 .66 1.5 1.5	.67 .70 .71 .75 .71	.75 .72 .77 .90 .96	.60 .75 .65	.63 .64 .55 .48 .53	.16 .14 .11 .18 .15	.62 .59 2.4 7.2 3.6 2.9	.12 .21 .33 .38 .33	.08 .08 .09 .10	2.6 2.6 .84 .65 .65	.70 4.2 1.2 .78 .67
TOTAL MEAN MAX MIN AC-FT	17.63 .57 8.3 .10 35	41.73 1.39 5.5 .10 83	24.97 .81 1.4 .61 50	25.55 .82 1.5 .60 51	53.35 1.91 23 .56 106	23.56 .76 1.7 .47 47	21.25 .71 7.4 .11 42	118.40 3.82 58 .15 235	40.32 1.34 23 .12 80	3.88 .13 .38 .07 7.7	72.11 2.33 45 .09 143	35.04 1.17 5.0 .58 70

CAL YR 1977 TOTAL 533.39 MEAN 1.46 MAX 39 MIN .10 AC-FT 1060 WTR YR 1978 TOTAL 477.79 MEAN 1.31 MAX 58 MNI .07 AC-FT 948

08136000 CONCHO RIVER AT SAN ANGELO, TX

LOCATION.--Lat 31°27'16", long 100°24'37", Tom Green County, Hydrologic Unit 12090105, on left bank 0.4 mi (0.6 km) downstream from confluence of North and South Concho Rivers, 1.8 mi (2.9 km) southeast of Tom Green County Courthouse, and 60.9 mi (98.0 km) unstream from mouth.

DRAINAGE AREA. -- 5,380 mi² (13,934 km²), of which 1,283 mi² (3,323 km²) probably is noncontributing.

PERIOD OF RECORD. -- Septembe 1915 to current year. Prior to October 1969, published as "near San Angelo".

REVISED RECORDS.--WSP 568: 1915-16, 1919-22, WSP 1148: 1916-22(M), 1924(M), 1925-26, 1929(M), 1930-32, 1935-37, WSP 1512: 1917-18. WSP 1712: 1936. WSP 1922: Drainage area.

-Water-stage recorder and concrete control. Datum of gage is 1,776.79 ft (541.566 m) National Geodetic Vertical Datum of 1929. Prior to Aug. 11, 1917, nonrecording gage at same site and datum. Aug. 11, 1917, to May 15, 1963, water-stage recorder on right bank at same datum.

REMARKS.--Records good. Many diversions upstream from station for irrigation, industrial, and municipal supply. Records furnished by the city of San Angelo show that they diverted 16,140 acre-ft (19.9 hm³), of which 152 acre-ft (187,000 m³) was diverted from E. V. Spence Reservoir during the year. All of the sewage effluent is used for irrigation about 6 mi (10 km) downstream from gage, and none is returned directly to the river. Flow is regulated by Twin Buttes Reservoir (station 08131200) on the South Concho River and by 0. C. Fisher Lake (station 08134500) on the North Concho River. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 47 years (water years 1916-62) prior to construction of Twin Buttes Dam, 158 ft3/s (4.475 m3/s), 114,500 acre-ft/yr (141 hm³/yr); 16 years (water years 1963-78) regulated, 23.4 ft³/s (0.663 m³/s), 16.950 acre-ft/yr (20.9 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 230,000 ft 3 /s (6,510 m 3 /s) Sept. 17, 1936, gage height, 46.6 ft (14.20 m), from floodmarks, from rating curve extended above 105,000 ft 3 /s (2,970 m 3 /s) on basis of slope-area measurements of 167,000 and 230,000 ft 3 /s (4,730 and 6,510 m 3 /s); no flow at times in 1921, 1952-53, 1965, and 1971.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1853, 47.5 ft (14.48 m) Aug. 6, 1906, discharge, about 246,000 ft³/s (6,970 m³/s), from information by local resident. Other large floods are known to have occurred in June 1853, August 1882, and April

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,520 ft3/s (43.0 m3/s) Aug. 3, gage height, 5.19 ft (1.582 m); minimum, 2.3 ft3/s (0.065 m3/s) Feb. 24.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES DAY OCT AUG SEP NOV. JUN JUL DEC APR JAN FEB MAR MAY 36 7.7 16 6.3 10 8.5 8.1 19 28 34 33 3.1 5.7 9.0 5.9 28 34 38 12 22 8.6 3.2 19 220 3 31 4.8 8.0 8.6 4.9 3.4 20 90 31 32 262 12 29 4.1 9.0 8.6 3.9 4.0 19 41 29 26 87 13 4.9 22 5 26 10 8.0 3.2 4.5 19 27 24 26 32 6 32 10 8.0 3.2 5.7 22 27 226 33 17 16 32 9.0 37 10 8.0 3.5 13 18 25 84 11 8 23 8.0 3.5 26 42 35 8.7 25 8.0 11 19 38 15 15 8.0 8.0 3.7 9.5 27 33 18 42 5.9 31 10 20 11 8.0 9.0 3.3 7.1 46 38 13 48 3.7 23 11 15 10 8.0 18 10 3.2 6.6 24 46 11 50 3.1 12 8.0 10 22 4.8 32 14 50 3.0 15 11 11 14 13 9.4 44 2.7 13 10 9.7 9.0 20 4.1 24 28 12 14 8.0 8.9 7.4 8.0 10 4.0 22 31 45 2.7 15 7.7 8.5 6.5 9.0 3.6 14 20 29 45 2.7 9.6 6.4 16 9.5 9.7 7.2 9.0 47 2.7 9.6 4.4 22 29 3.3 15 43 17 11 10 7.8 3.9 2.9 30 2.7 12 8.0 15 22 18 9.4 10 8.3 8.0 3.2 13 19 27 38 2.7 9.7 19 7.6 9.9 7.8 3.0 8.4 10 21 35 8.6 20 4.6 9.0 6.8 8.2 2.9 12 10 72 32 37 3.0 8.5 21 3.4 8.4 8.0 10 3.4 11 10 63 34 39 3.0 6.7 37 22 8.2 9.8 13 2.7 9.9 11 38 33 43 2.7 5.4 9.9 12 5.9 23 22 9.0 13 9.7 2.7 25 34 51 24 7.7 8.1 8.3 3.0 13 20 36 11 25 7.3 7.3 8.4 3.6 16 10 18 29 20 2.7 3.2 26 9.2 5.2 8.9 25 10 3.0 11 3.7 20 13 22 20 9.5 27 5.3 10 16 26 10 9.1 3.3 20 24 23 11 8.6 25 9.0 28 10 10 25 17 3.4 20 7.1 29 10 8.4 26 32 8.0 10 19 25 53 ---10 8.7 6.3 30 6.9 8.7 19 26 39 31 37 7.8 ---7.8 31 7.7 8.7 46 39 19 TOTAL 461.3 283.4 266.1 282.7 512.4 1236 1086 1154 595.3 377.5 148.1 296.9 MEAN 14.9 9.45 8.58 9.12 37.2 19.2 5.29 9.58 17.1 39.9 36.2 12.6 37 22 220 MAX 25 10 20 46 226 262 38 3.4 4.1 3.0 MIN 2.7 2.9 18 AC-FT 915 562 528 561 294 589 1020 2450 2150 2290 1180 749 CAL YR 1977 TOTAL MAX 35344.1 MEAN 96.8 2560 MIN 2.6 70110

WTR YR 1978 TOTAL

6699.7

MEAN 18.4

MAX

262

MIN 2.7

AC-FT

13290

08136150 CONCHO RIVER NEAR VERIBEST, TX (Low-flow partial-record station)

LOCATION.--Lat 31°32'07", long 100°13'05", Tom Green County, Hydrologic Unit 12090105, at bridge on county road, 2.8 mi (4.5 km) downstream from Crownest Creek, 4.5 mi (7.2 km) northeast of Veribest, and 17.3 mi (27.8 km) downstream from gaging station near San Angelo.

PERIOD OF RECORD.--Periodic discharge measurements: April 1970 to April 1974. Periodic water-quality data: February 1968 to current year.

DISCHARGE AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		PATEN OF	ALLII DA	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TEAN OUT		10 321 12	100		
			SPE-				OXYGEN.	OXYGEN		
			CIFIC				DIS-	DEMAND.		HARD-
		STREAM-	CON-				SOLVED	BIO-	HARD-	NESS.
		FLOW.	DUCT-			OXYGEN.	(PER-	CHEM-	NESS	NONCAR-
	5 3	INSTAN-		Рн	TEMPER-	DIS-		ICAL.	(MG/L	BONATE
	*****		ANCE	Ph			CENT			
	TIME	TANEOUS	(MICRO-		ATURE	SOLVED	SATUR-	5 DAY	AS	(MG/L
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	(MG/L)	ATION)	(MG/L)	CACO3)	CACO3)
ост			181, 251							
18	0945	19	1910	8.1	18.0	8.4	92	1.7	560	310
DEC	0,45	139	1710	0.1	10.0	0.4	,,,		300	3.0
13	0815	22	2340	0.1	10 6	10 6	98	1.0	680	400
MAR	0015	66	2340	8.1	10.5	10.5	70	1.0	000	400
02	1716	29	74.00	0.6	15 0	16.0	167	11	690	430
	1715	29	2480	8.5	15.0	16.2	167	11	690	430
APR										
14	1150	19	2200	8.2	21.5	10.0	116	3.9	600	370
JUN			2.2.3	1	2.1					
15	1600	16	1640	8.3	30.0	12.4	165	12	440	280
AUG			0	3						1000
17	1740	17	1700	8.2	30.5	12.2	165	11	520	340
		MAGNE-		SODIUM	POTAS-				CHLO-	FLUO-
	CALCIUM	SIUM.	SODIUM,	AD-	SIUM.	BICAR-		SULFATE	RIDE,	RIDE,
	nIS-	DIS-	DIS-	SORP-	DIS-	BONATE	CAR-	DIS-	DIS-	DIS-
	SOLVED	SOLVED	SOLVED	TION	SOLVED	(MG/L	BONATE	SOLVED	SOLVED	SOLVED
	(MG/L	(MG/L	(MG/L	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L	(MG/L
DATE	AS CA)			RAILO	AS K)	HC03)	AS CO3)	AS SO4)	AS CL)	AS F)
DATE	AS CAI	AS MG)	AS NA)		AS NI	10031	A5 C037	A3 3041	AS CL	M3 F/
OCT										
18	120	62	190	3.5	5.1	300	0	180	360	.7
DEC	120	02.	140	3.3	3.1	300	CONTRACTOR OF THE PARTY.	100	300	1000
	150	73	240	4.0	5.2	340	0	220	460	.7
13	150	13	240	4.0	3,2	340		220	400	78
	166	7.	220			290	10	290	500	.8
02	150	76	270	4.5	6.4	290	10	290	500	• • •
APR	100	67	2.0			200	0	210	450	.7
14	130	01	240	4.3	5.3	280	U	210	450	
JUN		6.00							220	
15	91	52	180	3.7	5.8	200	0	170	330	.6
AUG						200		214	270	
17	110	60	190	3.6	5.9	550	0	210	370	• 6
		SOLI	DS.					NIT	RO-	
	SILI			TRO- NIT	RO- NIT	RO- NIT	TRO- NIT	RO- GEN.	AM-	
	DIS			N. GE				N. MONI	A + PHO	S-
	SOL						ONIA ORGA			
	(MG		S- TO				TAL TOT			
	AS			L (MG				S/L (MG		
DAT				N) AS				N) AS		
1)41	7 310	27 (100	71 43	147 45	W, A3	N/ AS	", "3	147		61110
OCT										100
14.	2	3 1	.090	6	.04 4	.6	.05	.92	.97	.05
DEC										
13.	2	1 1	340	9.4	.03 9	.4	.08	.81	.89	.03
MAD	The second						•			14.15
05.	1	0 1	470	2.9	.04 2	2.9	.02	2.5 2	2.5	.75
APR					• • • •		• " .		190	
14.	1	3 1	250	1.7	.06	.8	.01	1.2 1	.2	.06
JUN.	1		230		• 00 1		.01			• 50
	2	0	948	.67	.01	60	.01	2.5 2	2.5	.13
15.		0	,40	• 01	• 01	.68	.01		2-12-1	
17.	s	0	080	2.5	.15	.6	.04	1.7 1	.7	.10
1/0		U I	VOU .		.10	0	. 04			- 40

08136500 CONCHO RIVER AT PAINT ROCK, TX

LOCATION.--Lat 31°30'57", long 99°55'09", Concho County, Hydrologic Unit 12090105, near left bank on downstream end of pier of bridge on U.S. Highway 83, 0.5 mi (0.8 km) north of Concho County Courthouse in Paint Rock, 2.7 mi (4.3 km) downstream from Kickapoo Creek, and 19.6 mi (31.5 km) upstream from mouth.

DRAINAGE AREA.--6.415 mi² (16.615 km²), of which 1.283 mi² (3.323 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1915 to current year. Prior to October 1970, published as "near Paint Rock".

REVISED RECORDS.--WSP 458: 1915-16. WSP 568: 1919-20. WSP 1712: 1922(M). WSP 1732: 1918(M), 1923(M). WSP 1922: Drainage area.

GAGE.--Water-stage recorder with masonry dam control. Datum of gage is 1,574.36 ft (479.865 m) National Geodetic Vertical Datum of 1929. See WSP 1922 for history of changes prior to Jan. 15, 1940.

REMARKS.--Water-discharge records good. Many diversions above station for irrigation and municipal supply. Regulation same as that for Concho River at San Angelo (station 08136000).

AVERAGE DISCHARGE .-- 47 years (water years 1916-62) prior to construction of Twin Buttes Dam, 210 ft3/s (5.947 m3/s), 152,100 acreft/yr (188 hm³/yr); 16 years (water years 1963-78) regulated, 55.2 ft³/s (1.563 m³/s), 39,990 acre-ft/yr (49.3 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $301,000 \text{ ft}^3/\text{s}$ (8,520 m³/s) Sept. 17, 1936, gage height, 43.4 ft (13.23 m), from floodmarks, from rating curve extended above 98,000 ft³/s (2,780 m³/s) on basis of slope-area measurements of 144,000 and 301,000 ft 3 /s (4,080 and 8,520 m 3 /s); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1853, that of Sept. 17, 1936. Flood in August 1882 reached a stage of about 39.9 ft (12.16 m), and flood in August 1906 reached a stage of 39.5 ft (12.04 m), from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 12,700 ft³/s (360 m³/s) Aug. 3, gage height, 19.11 ft (5.825 m); minimum, 0.39 ft³/s (0.011 m3/s) July 10.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES DAY OCT NOV DEC JAN MAY JUL AUG SEP MAR 5.0 7.4 6.9 5.1 5.4 38 7 - 5 3.4 1.0 4.9 55 9.9 9.2 9.1 6.9 6.5 8.4 8.4 7.8 8.3 9.8 6.1 6.6 ---4.6 6.6 8.7 ---TOTAL 1791.0 661.8 572.0 5676.0 414.5 MFAN 39.3 39.3 40.2 44.0 41.9 21.3 19.1 59.7 13.4 37.3 MAX MIN 8.4 4.6 1.0 5.0 6.5 AC-FT CAL YR 1977 TOTAL 55361.0 MEAN MIN 18

WTR YR 1978 TOTAL

23924.3

MEAN

65.5

MAX

MIN 1.0

AC-FT

08136500 CONCHO RIVER AT PAINT ROCK, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical and biochemical analyses: October 1967 to current year. Pesticide analyses: October 1967 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1967 to current year. WATER TEMPERATURES: October 1967 to current year. SUSPENDED SEDIMENT DISCHARGE: February to September 1978.

EXTREMES FOR PERIOD OF DAILY RECORD .--

NEMES FOR PERIOD OF THE RECORD. -SPECIFIC CONDUCTANCE: Maximum daily, 3,110 micromhos Apr. 20, 24, 25, 1974; minimum daily, 321 micromhos Aug. 4, 1978.
WATER TEMPERATURES (1967-73, 1975-78): Maximum daily, 35.0°C Aug. 11, 1969 and July 18, 1978; minimum daily, 0.0°C on many days during winter months.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONCENTIAR:-SPECIFIC CONDUCTANCE: Maximum daily, 2,690 micromhos Apr. 7, 10; minimum daily, 321 micromhos Aug. 4. WATER TEMPERATURES: Maximum daily, 35.0°C July 18; minimum daily, 3.0°C Jan. 19, 20. SEDIMENT CONCENTRATIONS: Maximum daily mean, 2,930 mg/L Aug. 3; minimum daily mean, 8 mg/L Feb. 22. SEDIMENT LOADS: Maximum daily, 68,200 tons Aug. 3; minimum daily, 0.12 tons July 10.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

9° € ±			C	FIC					*	0	IS- D	XYGEN EMAND.		HARD-
		STRE	d. DI	JCT-	PH T	EMPER-	COLOR (PLAT- INUM-	TUR- BID-	OXYGE	EN. (P	ER-	BIO- CHEM- ICAL+	HARD- NESS (MG/L	NESS, NONCAR- BONATE
	TIME	TANE		CRO-		ATURE	COBALT	ITY	SOL			DAY	AS	(MG/L
DATE		(CF				DEG C)	UNITS)	(JTU)	(MG	/L) AT	ION) (MG/L)	CACO3)	CACO3)
OCT				2							-			
18 DEC	1200	35		2190	8.0	19.0	1	15		8.8	98	1.2	680	480
13 JAN	1000	46		2320	8.1	11.5	3	15	10	0.7	102	1.0	770	540
18	1010	41		2460	7.6	5.5							770	570
02 APR	1510	30		2470	7.9	15.0	5	15		9.9	102	.6	790	590
14 MAY	0945	19		2600	8.1	19.0	10	40		7.6	86	1.4	870	660
30	1000	187		440		22.5						40 -	140	58
15 AUG	1420	33		1540	7.9	29.0	20	45	10	0.3	136	5.6	420	240
04	1020	1490		344 1200	8.3	23.0	15	20		9.4	124	13	130 380	290
DATE	DI:	CIUM S- LVED G/L CA)	MAGNE- SIUM. DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVED (MG/L AS NA	SORP- TION RATIO	SIU DIS SOLV	M. BICAR- BONATI ED (MG/I L AS	BONA (MG	TE /L	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	DIS- DIS- D SOLVE (MG/L	DIS SOL D (MG	- VED /L
0CT 18	. 1	40	80	210	3.	5 4	.6 2	40	0	290	430		7 2	2
DEC 13	. 1	70	84	550	3.	5 4	.9 2	30	0	290	480		6 2	1
JAN 18	. 1	70	85	220	3.	4 4	.1 2	50	0	290	500		6 1	8
02	. 1	80	83	550	3.	4 4	.6 2	50	0	270	500		7 1	5
14	. 1	90	96	550	3.	2 5	.1 2	50	0	350	510		7 1	5
30		42	8.2	31	1.	1 5	• 4	98	0	34	60	- 12	4 1	1
15		91	46	150	3.	2 6	.1 2	10	0	140	310	to a co	6 1	7
04		42 78	5.4	13 120	2.			30	0	21 150	25 270			2

COLORADO RIVER BASIN

O8136500 CONCHO RIVER AT PAINT ROCK, TX--Continued

WATER QUALITY DATA. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	SOLIDS. SUM OF CONSTI- TUENTS. DIS- SOLVED (MG/L)	SOLIDS. RESIDUE AT 105 DEG. C. SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN. NITRATE TOTAL (MG/L AS N)	NITRO- GEN. NITRITE TOTAL (MG/L AS N)	NITRO- GEN. NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN. AMMONIA TOTAL (MG/L AS N)	NITRO- GÉN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN.AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS. TOTAL (MG/L AS P)	CARBON. ORGANIC TOTAL (MG/L AS C)
OCT											
18 DEC	1300	16	3	9.9	•04	9.9	.06	1.5	1.6	.03	2.9
13	1410	17	3	15	.03	15	.07	1.5	1.6	•02	3.1
18	1410										
02	1400	25	5	4.5	•02	4.5	.01	.19	.80	.07	3.7
14 MAY	1510	60	13	9.3	.12	9.4	.01	1.3	1.3	.06	
30	240					••				••	
15	865	65	6	.76	.06	.82	.05	2.0	5.0	.08	6.9
04	189										
17	748	36	18	.53	• 04	.57	.04	1.7	1.7	.10	12
		DATE	TIMF	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM. DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM. DIS- SOLVED (UG/L AS CR)	COPPER. DIS- SOLVED (UG/L AS CU)	IRON. DIS- SULVED (UG/L AS FE)		
		OCT									
		18	1200	3	200	0	0	3	10		
		02	1510	2	100	1	U	5	n		
		15	1420	10	200	0	0	0	30		
		17	1615	7	300	2	0	5	20		
		00 1 MA	SI CATE A	EAD. NI DIS- C OLVED SC UG/L (C	DIS- I DLVED SI UG/L (I	RCURY NI DIS- C DLVED SC UG/L ((DIS- D DLVED SO	DIS- COLVED SC	INC. DIS- DLVED JG/L S ZN) 20		
		1	JN 15 JG	3	20	.0	0	o	20		
			7	3	20	.1	2	0	10		

08136500 CONCHO RIVER AT PAINT ROCK, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		WATER 0	10 2 10 10				JER	1711	0 30	- TEMOLI	17/0				
		-6.27	DCD		APH-						HLOR-			0.0	
			PCB		THA- ENES•	107.19		RIN.			OTAL			TOT	D.
180804.7		10.0	IN 801	- 1	POLY-			BOT-	CHI		80T-			IN E	
78 700 100	TIME	PCB.	TOM MA			LDRIN.		MA-	DAI		M MA-	DD		TOM	
DATE	TIME	TOTAL (UG/L)	TERIA (UG/K)			TOTAL (UG/L)		RIAL KG)			ERIAL G/KG)	TOT (UG		(UG/	(KG)
		-									A Louis			9.1	
MAR 02	1510	.0		0	.00	.00		• 0		.0	0		.00		1.1
AUG		L ECH	Q = .	•	•00	• 00		• 0		• •			•00		14
17	1615	. 0	3 .	-	.00	.00				. 0			.00		
		20.2								- 1					
		TOTAL			DDT. OTAL					RIN, Tal				TOT	RIN.
		IN BOT-			BOT-	DI-		1-			NDO-			INE	
	DDE.	TOM MA-				ZINON.		NING			LFAN.	ENDR			MA-
DATE	(UG/L)	TERIAL (UG/KG)				TOTAL (UG/L)		TAL			UG/L)	TOT		(UG/	RIAL
5412	(00/2/	10071107	10071	, ,,	0,110,	100/2/	,,,	,0,2,	100		00/ 2/	100	,		1
MAR	0.0				-	0.0							00		
02	•00	9.9		00	.7	•00		•00		.2	.00		.00		• 0
17	•00			00		.01		.00			.00		.00		
	9.6			EPTA-		HEPT									
				HL OR .	HEOT:	CHL	OR			LINDANE			MCT		
		HE		BOT-	CHLOR	TOT.				TOTAL IN BOT-	MAL	A-	METHY PARA-		
	ETHIC	ON. CH	LOR, TO	M MA-	EPOXID			LINDA	NE	TOM MA-	THI	ON.	THION	١,	
0.75	TOTA			ERIAL	TOTAL	MAT		TOTA		TERIAL		_	TOTAL		
DATE	(UG)	L) (U	IG/L) ((IG/KG)	(UG/L) (UG/H	(6)	(UG/	L)	(UG/KG)	(UG	/L)	(UG/L	- '	
MAR		2.0		7	-										
02 AUG		.00	.00	.0	• 0	0	.0		00	• 0		.00	• (00	
17		.00	.00		.0	0			00			.00	. (00	
						TOXA	4-								
		AF				PHEN									
	METH TRI			ARA-	TOX-	IN BO		TOTA							
	THIC			HION.	APHENE			TRI		2,4-0,	2,4,	5-T	STLVEX		
	TOTA			OTAL	TOTAL	TER		THIO		TOTAL	TOT		TOTAL		
DATE	(UG)	L) (U	G/L) (UG/L)	(UG/L) (UG/H	(G)	(UG/	L)	(UG/L)	(UG	/L)	(UG/L	.)	
MAR						ar II					Mary and				
02 AUG		00		.00		0	0		00	.00		•00	.0	00	
17		.00	.00	.00		0			00	.01		.01	. 0	0	
										ccn	cer				
								SEDI-		SED.	SEC				
				REAM-		SEDI		DIS-		FALL	FAL	L			
				LOW, STAN-	TEMPER-	MENT SUS-		CHARGE		% FINER	% FIN				
		T		NEOUS	ATURE	PEND		PENDE	ED	THAN	THA				
	DAT	Ε	(CFS)	(DEG C)	(MG/	L)	(T/DA	()	.002 MM	.004	MM			
	MAY														
	24.			64	26.0		50	218		64		80			
- k 1	30. 31.			86 46	22.5		75	126 315		54 84		59 87			
	31.			74	25.9		70	3340		69		71			
	AUG														
0.5461	03. 04.			00 50	23.0		80	77200 6850		46 68		63 85			
	04.			00	25.0		50	4310		88		89			
			ED.	SED.	SED.	SED		SED		SED.	SEC				
				SUSP.	SUSP			SUSI		SUSP.	SUS				
		F	ALL	FALL	FALL	SIEV	E	SIEVE	E	SIEVE	SIE				
				DIAM. FINER	% FINER			% FINE		% FINER	% FIN				
11-97		T	HAN	THAN	THAN	THA	IN	THAI	V	THAN	THA	AN			
	DAT	E .00	8 MM .0	16 MM	.031 MM	.062	MM	.125		.250 MM	.500	ММ			
	MAY														
	24.		87	94	95		96		97	98	1	100			
	30. 31.		64 87	83 92	96		99		99	100					
	31.		79	83	84		98		99	100					
	AUG		76						20						
	03. 04.		75 93	86	92		98		99	100					
	04.		93	94	98		99		00						

115 08136500 CONCHO RIVER AT PAINT ROCK, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

MONTH	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATF (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
acr. 1977	1219	2070	1190	3910	420	1390	250	830	630
NOV. 1977	1178	2280	1310	4170	470	1500	280	900	710
DEC. 1977	1246	2400	13.0	4640	500	1670	300	1010	760
JAN. 1978	1365	2411	1380	5100	500	1850	300	1110	760
FEB. 1978	1174	2420	1390	4410	500	1590	300	959	760
MAR. 1978	661.8	2470	1420	2530	510	916	310	555	780
APR. 1978	571	2590	1490	2300	540	935	330	506	830
MAY 1978	5676	798	460	7020	140	2150	76	1160	250
JUNE 1978	1790	1190	680	3310	230	1100	130	624	360
JULY 1978	414.5	2230	1280	1430	460	514	280	308	690
AUG. 1978	7509	591	340	6900	94	1910	50	1020	190
SEPT 1978	1118	2060	1180	3570	420	1280	250	759	630
TOTAL	23924.29	**	**	49300	**	16700	**	9740	**
WTD.AVG	65.55	1330	760	**	260	**	150	**	400

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1640	2170	2370	2480	2440	2470	2550	2490	430	1910	2250	2100
1670	2220	2380	2460	2400	2460	2550	2250	592	1940	2230	2080
1690	2210	2360	2450	2440	2470	2570	1240	733	1950	500	2040
1720	2220	2370	2450	2410	2480	2550	926	1110	1940	321	2100
1800	2230	2390	2440	2440	2480	2620	903	1320	1990	581	2140
1910	2220	2400	2370	2420	2470	2680	1130	1290	2010	729	2160
1960	2210	2380	2100	2440	2460	2690					2200
5050	2220	2360	2460	2420	2450						2100
2050	2200	2340	2420		2460						2160
5150	2230	2390	2460	2420	2450	2690	918	1590	2170	1120	2140
2100	2240	2350	2390	2410	2440	2680	1060	1580	2190	1140	2080
2110	2220	2380	2410	2380	2450	2600	1160	1580			2020
2130	2230	2380	2490	2380	2470	2620	1190				1980
2150	2240	2410	2490	2390	2460	2600					2010
2250	2250	2380	5550	2400	2460	2650	1070	1550	2310	1310	1990
2270	2300	2390	2360	2420	2450	2620	1030	1560	2340	1310	2000
2290	2330	2410	2480	2430	2440	2580	1060	1590			2010
2150	2310	2380	2300	2360	2430	2570	1130				2030
2130	2330	2370	2340	2400	2440	2560					2010
2110	2340	2400	2380	2430	2430	2530	1310	1680	2370	1410	2000
2120	2310	2420	2400	2380	2450	2510	1400	1710	2380	1490	2040
2110	2320	2430	2430	2410	2460	2470	1870	1720			2010
2090	2340	2420	2440	2450	2450	2480					2020
2150	2350	2440	2440	2470	2460	2470					2010
5110	2340	2440	2410	2480	2470	2500	1910	1790	2250	1720	2030
2070	2350	2460	2420	2490	2440	2510	1930	1800	2000	1740	2010
2110	2330	2440	2430	2510	2490	2520	1940	1840	2100		2010
2120	2320	2450	2440	2480	2510	2530	1960	1890			2030
2140	2330	2430	2440		2530	2550	421	1910			5080
2160	2350	2450	2450		2540	2560	650	1920	2230		2090
2150		2460	2450		2550		595		2240	2140	
2050	2280	2400	2410	2420	2470	2580	1270	1510	2190	1400	2060
	1640 1670 1690 1720 1800 1910 1960 2050 2150 2150 2250 2250 2250 2250 2150 21	1640 2170 1670 2220 1690 2210 1720 2220 1800 2230 1910 2220 2200 2200 2200 2120 2200 2120 2230 2100 2240 2110 2220 2300 2150 2240 2150 2250 2250 2250 2270 2330 2150 2330 2150 2330 2150 2340 2250 2350 2110 2340 2110 2340 2150 2340 2150 2340 2150 2340 2150 2340 2150 2340 2150 2350 2110 2340 2150 2350 2110 2350 2110 2350 2110 2350 2110 2350 2110 2350 2110 2350 2110 2350 2110 2350 2110 2350 2110 2350 2110 2350 2110 2350 2110 2350 2110 2350 2110 2350 2150 2350	1640 2170 2370 1670 2220 2380 1690 2210 2360 1720 2220 2370 1800 2230 2390 1910 2220 2400 1960 2210 2380 2050 2200 2340 2120 2360 2390 2100 2230 2390 2110 2220 2380 2130 2230 2390 2110 2230 2380 2130 2230 2380 2150 2240 2410 2250 2380 2380 2150 2250 2380 2250 2380 2410 2250 2380 2410 2250 2380 2410 2250 2380 2410 2250 2380 2410 2150 2310 2380 2150 2310 2370	1640 2170 2370 2480 1670 2220 2380 2460 1690 2210 2360 2450 1720 2220 2370 2450 1800 2230 2390 2440 1910 2220 2400 2370 1960 2210 2380 2100 2020 2260 2360 2460 2050 2200 2340 2420 2120 2230 2390 2460 2100 2240 2350 2390 2110 2220 2380 2410 2130 2230 2380 2410 2130 2230 2380 2490 2150 2240 2410 2490 2250 2380 2420 2250 2380 2420 2270 2330 2390 2360 2270 2330 2390 2360 2270 2330	1640 2170 2370 2480 2440 1670 2220 2380 2460 2400 1690 2210 2360 2450 2440 1720 2220 2370 2450 2410 1800 2230 2390 2440 2440 1910 2220 2400 2370 2420 1960 2210 2380 2100 2440 2020 2220 2360 2460 2420 2050 2200 2340 2420 2360 2120 2230 2390 2460 2420 2050 2230 2390 2460 2420 2100 22340 2420 2360 2420 2110 2220 2380 2410 2380 2130 2230 2380 2410 2380 2130 2230 2380 2410 2380 2150 2240 2410 2490 <td< td=""><td>1640 2170 2370 2480 2440 2470 1670 2220 2380 2460 2400 2460 1690 2210 2360 2450 2440 2470 1720 2220 2370 2450 2410 2480 1800 2230 2390 2440 2440 2480 1910 2220 2400 2370 2420 2470 1960 2210 2380 2100 2440 2460 2020 2220 2360 2460 2420 2450 2050 2200 2340 2420 2360 2460 2120 2300 2390 2460 2420 2450 2150 2230 2390 2410 2440 2450 2100 2240 2350 2390 2410 2440 2110 2220 2380 2410 2440 2450 2150 2230 2380</td><td>1640 2170 2370 2480 2440 2470 2550 1670 2220 2380 2460 2400 2460 2550 1690 2210 2360 2450 2440 2470 2570 1720 2220 2370 2450 2410 2440 2550 1800 2230 2390 2440 2440 2440 2480 2620 1910 2220 2400 2370 2420 2470 2680 1960 2210 2380 2100 2440 2450 2690 2020 2260 2360 2460 2420 2450 2680 2050 2200 2340 2420 2360 2460 2670 2120 2380 240 2450 2450 2690 2100 2240 2350 2390 2410 2440 2680 2110 2240 2350 2390 2410 2440</td><td>1640 2170 2370 2480 2440 2470 2550 2490 1670 2220 2380 2460 2400 2460 2550 2250 1690 2210 2360 2450 2440 2470 2570 1240 1720 2220 2370 2450 2410 2440 2550 926 1800 2230 2390 2440 2440 2440 2550 926 1910 2220 2400 2370 2420 2470 2680 1130 1960 2210 2380 2100 2440 2440 2460 2690 450 2020 2220 2360 2460 2420 2450 2680 550 2050 2200 2340 2420 2360 2460 2670 718 2100 2240 2350 2390 2410 2440 2680 1060 2110 2240 2350 2390 2410 2440 2680 1060 2110 2240</td><td>1640 2170 2370 2480 2440 2470 2550 2490 430 1670 2220 2380 2460 2400 2460 2550 2250 592 1690 2210 2360 2450 2410 2470 2570 1240 733 1720 2220 2370 2450 2410 2440 2550 926 1110 1000 2230 2390 2440 2440 2480 2620 903 1320 1910 2220 2380 2100 2440 2460 2690 450 1260 2020 2240 2360 2460 2420 2450 2690 450 1260 2050 2240 2340 2420 2360 2460 2670 718 1510 2100 2240 2350 2390 2410 2440 2680 1060 1580 2110 2220 2380 2410</td><td>1640 2170 2370 2480 2440 2470 2550 2490 430 1910 1670 2220 2380 2460 2400 2460 2550 2250 592 1940 1690 2210 2360 2450 2440 2470 2570 1240 733 1950 1720 2220 2370 2450 2410 2440 2550 926 1110 1940 1800 2230 2390 2440 2440 2480 2620 903 1320 1990 1910 2220 2400 2370 2420 2470 2680 1130 1290 2010 1960 2210 2380 2410 2440 2460 2690 450 1260 2060 2020 2340 2420 2450 2680 550 1480 2100 2340 2420 2360 2460 2670 718 1510 2140 2450 260</td><td> 1640</td></td<>	1640 2170 2370 2480 2440 2470 1670 2220 2380 2460 2400 2460 1690 2210 2360 2450 2440 2470 1720 2220 2370 2450 2410 2480 1800 2230 2390 2440 2440 2480 1910 2220 2400 2370 2420 2470 1960 2210 2380 2100 2440 2460 2020 2220 2360 2460 2420 2450 2050 2200 2340 2420 2360 2460 2120 2300 2390 2460 2420 2450 2150 2230 2390 2410 2440 2450 2100 2240 2350 2390 2410 2440 2110 2220 2380 2410 2440 2450 2150 2230 2380	1640 2170 2370 2480 2440 2470 2550 1670 2220 2380 2460 2400 2460 2550 1690 2210 2360 2450 2440 2470 2570 1720 2220 2370 2450 2410 2440 2550 1800 2230 2390 2440 2440 2440 2480 2620 1910 2220 2400 2370 2420 2470 2680 1960 2210 2380 2100 2440 2450 2690 2020 2260 2360 2460 2420 2450 2680 2050 2200 2340 2420 2360 2460 2670 2120 2380 240 2450 2450 2690 2100 2240 2350 2390 2410 2440 2680 2110 2240 2350 2390 2410 2440	1640 2170 2370 2480 2440 2470 2550 2490 1670 2220 2380 2460 2400 2460 2550 2250 1690 2210 2360 2450 2440 2470 2570 1240 1720 2220 2370 2450 2410 2440 2550 926 1800 2230 2390 2440 2440 2440 2550 926 1910 2220 2400 2370 2420 2470 2680 1130 1960 2210 2380 2100 2440 2440 2460 2690 450 2020 2220 2360 2460 2420 2450 2680 550 2050 2200 2340 2420 2360 2460 2670 718 2100 2240 2350 2390 2410 2440 2680 1060 2110 2240 2350 2390 2410 2440 2680 1060 2110 2240	1640 2170 2370 2480 2440 2470 2550 2490 430 1670 2220 2380 2460 2400 2460 2550 2250 592 1690 2210 2360 2450 2410 2470 2570 1240 733 1720 2220 2370 2450 2410 2440 2550 926 1110 1000 2230 2390 2440 2440 2480 2620 903 1320 1910 2220 2380 2100 2440 2460 2690 450 1260 2020 2240 2360 2460 2420 2450 2690 450 1260 2050 2240 2340 2420 2360 2460 2670 718 1510 2100 2240 2350 2390 2410 2440 2680 1060 1580 2110 2220 2380 2410	1640 2170 2370 2480 2440 2470 2550 2490 430 1910 1670 2220 2380 2460 2400 2460 2550 2250 592 1940 1690 2210 2360 2450 2440 2470 2570 1240 733 1950 1720 2220 2370 2450 2410 2440 2550 926 1110 1940 1800 2230 2390 2440 2440 2480 2620 903 1320 1990 1910 2220 2400 2370 2420 2470 2680 1130 1290 2010 1960 2210 2380 2410 2440 2460 2690 450 1260 2060 2020 2340 2420 2450 2680 550 1480 2100 2340 2420 2360 2460 2670 718 1510 2140 2450 260	1640

COLORADO RIVER BASIN
08136500 CONCHO RIVER AT PAINT ROCK, TX--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

					01	MCE-DAILY						
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	28.0	21.0	13.0	7.0	5.0	15.0	25.0	27.0	23.0	30.0	30.0	28.0
2	26.0	18.0	13.0	5.0	5.0	14.0	24.0	20.0	25.0	30.0	27.0	25.0
3	26.0	18.0	14.0	9.0	5.0	10.0	25.0	18.0	23.0	32.0	23.0	30.0
4	24.0	19.0	13.0	11.0	5.0	10.0	25.0	21.0	25.0	32.0	25.0	28.0
5	26.0	19.0	13.0	13.0	8.0	11.0	25.0	25.0	29.0	31.0	24.0	28.0
6	24.0	18.0	11.0	14.0	8.0	16.0	25.0	25.0	27.0	33.0	25.0	30.0
7	24.0	19.0	12.0	12.0	7.0	11.0	25.0	21.0	24.0	33.0	28.0	26.0
8	24.0	17.0	12.0	10.0	6.0	11.0	24.0	26.0	30.0	30.0	32.0	26.0
9	22.0	14.0	10.0	10.0	6.0	15.0	17.0	29.0	29.0	32.0	32.0	25.0
10	23.0	14.0	7.0	4.0	6.0	16.0	20.0	26.0	26.0	33.0	33.0	29.0
11	23.0	14.0	6.0	7.0	5.0	17.0	24.0	26.0	33.0	33.0	30.0	30.0
12	21.0	15.0	13.0	5.0	7.0	15.0	25.0	29.0	30.0	33.0	30.0	34.0
13	20.0	16.0	13.0	7.0	7.0	16.0	22.0	29.0	33.0	30.0	32.0	33.0
14	20.0	14.0	14.0	8.0	8.0	18.0	24.0	27.0	32.0	33.0	32.0	32.0
15	19.0	14.0	14.0	9.0	7.0	17.0	27.0	32.0	32.0	30.0	31.0	32.0
16	19.0	17.0	14.0	7.0	8.0	17.0	25.0	31.0		34.0		29.0
17	19.0	17.0	12.0	6.0	5.0	18.0	26.0	33.0	32.0	34.0	29.0	31.0
18	23.0	16.0	14.0	5.0	6.0	19.0	26.0	30.0	32.0	35.0	29.0	30.0
19	23.0	20.0	12.0	3.0	7.0	19.0	23.0	27.0	32.0	32.0	32.0	30.0
20	23.0	19.0	10.0	3.0	6.0	23.0	21.0	26.0	34.0	30.0	34.0	15
21	23.0	15.0	9.0		6.0	22.0	23.0	26.0	32.0	31.0	30.0	26.0
22	21.0	17.0	6.0	4.0	7.0	55.0	25.0	27.0	28.0	30.0	28.0	25.0
23	20.0	17.0	10.0	7.0	14.0	21.0	27.0	29.0	34.0	27.5	32.0	24.0
24	19.0	15.0	10.0	6.0	14.0	20.0	27.0	26.0	28.0	31.5	29.0	24.0
25	55.0	15.0	7.0	7.0	14.0	18.0	25.0	27.0	33.0	32.0	32.0	29.0
26	24.0	13.0	7.0	7.0	12.0	19.0	24.0	27.0	31.0	30.0	31.0	22.0
27	20.0	14.0	7.0	5.0	14.0	17.0	25.0	27.0	32.0	33.0	29.0	23.0
28	55.0	14.0	7.0	4.0	15.0	20.0	28.0	30.0	29.0	30.0	33.0	27.0
29	20.0	11.0	10.0	5.0		18.0	29.0	20.0	28.0	30.0	30.0	28.0
30	23.0	12.0	11.0	5.0		20.0	28.0	26.0	28.0	32.0	29.0	31.0
31	24.0		13.0	5.0		24.0		55.0		30.0	28.0	
MEAN	22.5	16.0	11.0	7.0	8.0	17.0	24.5	26.5	29.5	31.5	29.5	28.0

SUSPENDED-SEDIMENT DISCHARGE (TONS/DAY), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		JANUARY			FEBRUARY			MARCH	
1 2 3 4 5	41 43 46 4c 49			43 43 43 41 40	27 27 27 19 28	3.1 3.1 3.1 2.1 3.0	31 31 29 30 31	23 61 72 29 29	1.9 5.1 5.6 2.3 2.4
6 7 8 9	49 43 41 41 41			36 35 36 43 41	15 14 22 12 11	1.5 1.3 2.1 1.4 1.2	29 29 31 33 36	18 23 36 19 27	1.4 1.8 3.0 1.7 2.6
11 12 13 14 15	41 43 43 43 43			41 54 55 55 60	30 37 16 14 50	3.3 5.4 2.4 2.1 8.1	32 27 30 28 24	49 34 32 28 51	4.2 2.5 2.6 2.1 3.3
16 17 18 19 20	43 41 41 41 42			52 49 44 42 42	34 17 12 14 15	4.8 2.2 1.4 1.6 1.7	20 18 14 12 11	99 159 61 62 65	5.3 7.7 2.3 2.0 1.9
21 22 23 24 25	47 49 47 49			38 36 36 36 32	9 8 34 35 15	.92 .78 3.3 3.4 1.3	10 9.9 10 9.1 8.4	95 159 117 128 98	2.3 4.3 3.2 3.1 2.2
26 27 28 29 30 31	47 45 44 42 41			30 36 35	12 55 32	.97 5.3 3.0	8.4 10 19 17 15	118 124 146 186 191 216	2.7 3.3 7.5 8.5 7.7

SUSPENDED-SEDIMENT DISCHARGE (TONS/DAY), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		APRIL			MAY			JUNE	
1 2 3 4 5	19 16 15 18 18	115 105 70 260 107	5.9 4.5 2.8 13	5.0 66 666 227 98	19 50 359 142 48	.26 8.9 664 87 13	199 107 229 145 79	200 140 160 113 107	107 40 99 44 23
6 7 8 9	15 14 11 11 27	48 118 31 62 106	1.9 4.5 .92 1.8 7.7	65 905 192 62 42	53 1770 800 220 55	9.3 6480 415 37 6.2	62 178 216 101 70	98 57 33 54 50	16 27 19 15 9.5
11 12 13 14 15	49 58 44 33 26	46 66 46 61 68	6-1 10 5-5 5-4 4-8	48 52 57 47 37	84 82 85 80 74	11 12 13 10 7.4	57 48 37 31 28	42 60 54 86 41	6.5 7.8 5.4 7.2 3.1
16 17 18 19 20	19 17 16 19	78 66 66 46 73	4.0 3.0 2.9 2.4 3.7	36 29 24 26 25	110 125 115 125 449	11 9.8 7.5 8.8 30	21 17 22 22 19	81 50 83 77 90	4.6 2.3 4.9 4.6 4.6
21 22 23 24 25	18 16 13 11	88 52 48 34 49	4.3 2.2 1.7 1.0	34 145 93 63 46	713 1280 419 1250 234	65 501 105 213 29	16 13 9.2 6.9 6.5	64 60 88 35 86	2.8 2.1 2.2 .65 1.5
26 27 28 29 30 31	11 10 8.3 6.1 4.6	84 52 64 32 37	2.5 1.4 1.4 .53 .46	36 35 42 1600 333 540	167 78 56 2710 575 495	16 7.4 6.4 12900 555 845	7.8 12 14 9.8 7.8	90 102 67 59 70	1.9 3.3 2.5 1.6 1.5
		MEAN	CENTHENT		MEAN CONCEN-	CERTURNS	MEAN	MEAN CONCEN-	SEDIMENT
DAY	DISCHARGE (CFS)	CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	DISCHARGE (CFS)	TRATION (MG/L)	DISCHARGE (TONS/DAY)
DAY	DISCHARGE	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE
DAY 1 2 3 4 5	DISCHARGE	TRATION (MG/L)	DISCHARGE	DISCHARGE	TRATION (MG/L)	DISCHARGE	DISCHARGE	TRATION (MG/L)	DISCHARGE
1 2 3 4	7.4 6.9 5.1	TRATION (MG/L) JULY 41 42 43 50	01SCHARGE (TONS/DAY) .82 .78 .59 .73	22 28 4350 1750	TRATION (MG/L) AUGUST 85 94 2930 1590	DISCHARGE (TONS/DAY) 5.0 7.1 68200 9240	DISCHARGE (CFS)	TRATION (MG/L) SEPTEMBER 35 26 24 31	DISCHARGE (TONS/DAY) 4.5 2.5 1.8 2.3
1 2 3 4 5	7.4 6.9 5.1 5.4 12	TRATION (MG/L) JULY 41 42 43 50 48 67 60 42 50	01scharge (TONS/DAY) .82 .78 .59 .73 1.6 2.4 1.8 .85	22 28 4350 1750 306 143 82 58	TRATION (MG/L) AUGUST 85 94 2930 1590 380 100 79 34 28	DISCHARGE (TONS/DAY) 5.0 7.1 68200 9240 314 39 17 5.3 3.5	DISCHARGE (CFS) 4A 35 28 27 37 44 44 50 46	TRATION (MG/L) SEPTEMBER 35 26 24 31 34 40 28 43	DISCHARGE (TONS/DAY) 4.5 2.5 1.8 2.3 3.4 4.8 3.3 5.6
1 2 3 4 5 6 7 8 9 10	7.4 6.9 5.1 5.4 12 13 11 7.5 3.4 1.0	TRATION (MG/L) JULY 41 42 43 50 48 67 60 42 50 45 46 62 53 42	01scharge (TONS/DAY) .82 .78 .59 .73 1.6 2.4 1.8 .85 .46 .12 .61 2.7 2.1	22 28 4350 1750 306 143 82 58 46 39 35 53 39	TRATION (MG/L) AUGUST 85 94 2930 1590 380 100 79 34 28 30 14 25 27	DISCHARGE (TONS/DAY) 5.0 7.1 68200 9240 314 39 17 5.3 3.5 3.2 1.3 3.6 2.0 4.6	DISCHARGE (CFS) 4A 35 28 27 37 44 44 50 46 58 51 40 38	TRATION (MG/L) SEPTEMBER 35 26 31 34 40 28 43 14 64 62 56 12 23	01SCHARGE (TONS/DAY) 4.5 2.5 1.8 2.3 3.4 4.8 3.3 5.8 1.7 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	7.4 6.9 5.1 5.4 12 13 11 7.5 3.4 1.0 4.9 1.5 21 24	TRATION (MG/L) JULY 41 42 43 50 48 67 60 42 50 45 46 62 53 42 38 76 79	01scharge (TONS/DAY) .82 .78 .59 .73 1.6 2.4 1.8 .85 .46 .12 .61 2.7 2.1 2.4 2.5 2.5	DISCHARGE (CFS) 22 28 4350 1750 306 143 82 58 46 39 35 31 28 27 25 23	TRATION (MG/L) AUGUST 85 94 2930 1590 380 100 79 34 28 30 14 25 27 49 28 40 32 23 14	DISCHARGE (TONS/DAY) 5.0 7.1 68200 9240 314 39 17 5.3 3.5 3.2 1.3 3.6 2.8 4.6 2.3 3.0 2.3 1.6 .87	DISCHARGE (CFS) 4A 35 28 27 37 44 44 50 46 58 51 40 38 43 36 31 25 29	TRATION (MG/L) SEPTEMBER 35 26 24 31 34 40 28 43 14 64 62 56 12 23 31 14 25 78 40	01SCHARGE (TONS/DAY) 4.5 2.5 1.8 2.3 3.4 4.8 3.3 5.8 1.7 10 9.7 7.7 1.3 2.4 3.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	7.4 6.9 5.1 5.4 12 13 11 7.5 3.4 1.0 4.9 16 15 21 24 23 20 23 18 15	TRATION (MG/L) JULY 41 42 43 50 48 67 60 45 50 45 46 62 53 42 38 42 38 76 79 108 84 98 98	01SCHARGE (TONS/DAY) .82 .78 .59 .73 1.6 2.4 1.8 .85 .46 .12 .61 2.7 2.1 2.4 2.5 2.6 2.1 4.7 3.8 4.4 2.7 3.8 3.8	DISCMARGE (CFS) 22 28 4350 1750 306 143 82 58 46 39 35 53 39 35 31 28 27 25 23 24 21 18	TRATION (MG/L) AUGUST 85 2930 1590 380 100 79 34 28 30 14 25 27 49 28 40 32 23 14 20 20 20 20 20	DISCHARGE (TONS/DAY) 5.0 7.1 68200 9240 314 39 17 5.3 3.5 3.2 1.3 3.6 2.8 4.6 2.3 3.0 2.3 1.6 .87 1.3	DISCHARGE (CFS) 4A 35 28 27 37 44 45 50 38 51 51 30 25 29 27 27 27 20	TRATION (MG/L) SEPTEMBER 35 26 31 34 40 28 43 14 64 62 56 12 23 31 14 25 78 40 64 48 48 48 20 31	01SCHARGE (TONS/DAY) 4.5 2.5 1.8 2.3 3.4 4.8 3.3 5.8 1.7 10 9.7 7.7 1.3 2.4 3.6 1.4 2.0 5.3 3.1 5.4 3.8 3.2 1.5 2.4

08136700 COLORADO RIVER NEAR STACY, TX (National stream-quality accounting network)

LOCATION.--Lat 31°29'37", long 99°34'25", Coleman County (revised), Hydrologic Unit 12090106, on left bank at downstream side of bridge on Farm Road 503, 1.2 mi (1.9 km) upstream from Bois d'Arc Creek, 1.8 mi (2.9 km) northeast of Stacy, 24 mi (39 km) downstream from Concho River, and at mile 604.8 (973.1 km).

DRAINAGE AREA.--24,040 mi² (62,260 km²), approximately, of which 12,880 mi² (33,360 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--March 1968 to current year. Prior to October 1970, published as "at Stacy".

GAGE.--Water-stage recorder. Datum of gage is 1,394.66 ft (425.092 m) National Geodetic Vertical Datum of 1929 (Texas Department of Highways and Public Transportation bridge plans).

REMARKS.--Water-discharge records good. Many diversions above station for irrigation, municipal, and oilfield operation uses. Effluent from numerous sewage plants is returned to the river. Flow is affected by reservoirs upstream (see stations 08126500 and 08136000) and at times by discharge from the flood-detention pools of 40 floodwater-retarding structures with a combined detention capacity of 54,040 acre-ft (66.6 hm3). These structures control runoff from 260 mi2 (673 km2).

AVERAGE DISCHARGE.--10 years (water years 1969-78), 225 ft³/s (6.372 m³/s), 163,000 acre-ft/yr (201 hm³/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 35,700 ft3/s (1,010 m3/s) Aug. 4, 1978, gage height, 22.50 ft (6.858 m); no flow June 22 to Aug. 3, 1974.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since since at least 1882, 356,000 ft³/s (10,1000 m³/s) Sept. 18, 1936, gage height, 64.59 ft (19.687 m), by slope-area measurement of peak flow. The flood of Sept. 18, 1936, was 4 ft (1.2 m) higher than the 1906 flood and 7 to 8 ft (2.1 to 2.4 m) higher than the 1882 flood, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 35,700 ft3/s (1,010 m3/s) Aug. 4, gage height, 22.50 ft (6.858 m); minimum, 1.6 ft3/s (0.045 m3/s) July 17.

		DISCHAR	GE, IN	CUBIC FEET	PER SECON	ND, WATER AN VALUES	YEAR OCT	DBER 1977	TO SEPTE	MBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	23 21 21 23 24	75 68 68 67 74	68 68 69 66	61 64 64 64	73 73 74 74 74	57 58 57 57 57	28 28 28 31 29	12 12 351 828 350	482 258 1980 499 245	8.5 13 16 12 10	14 34 6250 28000 7540	100 93 100 85 77
6 7 8 9	26 48 59 57 55	78 84 88 72 66	66 64 63 64	66 68 68 67 66	72 73 74 93 86	54 56 56 54 54	26 25 29 29 38	203 550 1730 449 210	182 142 131 279 165	8.3 6.2 5.1 4.5 4.0	1460 625 406 300 239	68 77 97 90 96
11 12 13 14 15	58 60 56 50 51	71 76 83 81 71	64 60 59 63 64	64 64 61 61	82 109 106 109 128	54 61 58 54 48	32 27 59 100 82	142 110 95 87 82	119 96 83 72 59	9.5 8.9 6.8 5.0 3.8	196 172 155 162 138	83 93 91 81 72
16 17 18 19 20	53 50 50 46 48	68 67 67 71 70	60 57 56 56 56	63 64 64 64	122 127 115 103 89	47 45 41 35 33	62 49 40 31 25	78 65 58 51 53	50 46 40 33 27	2.6 2.8 16 21 21	120 106 98 90 86	65 62 56 48 42
21 22 23 24 25	50 93 144 150 152	71 66 63 63 64	54 55 52 49 46	64 65 72 76 74	83 82 78 73 70	30 27 22 21 20	23 23 26 25 23	67 66 88 137 137	30 32 30 26 23	20 20 18 18 15	82 78 76 72 69	41 43 43 42 41
26 27 28 29 30 31	142 122 105 94 88 83	64 63 63 64	46 47 51 59 59	75 74 74 74 74 74	69 64 59 	19 20 20 18 18	19 16 13 12 11	114 90 76 2830 776 373	20 16 14 12 11	13 12 24 35 26 19	64 58 62 75 81 97	40 44 48 49 51
TOTAL MEAN MAX MIN AC-FT	2102 67.8 152 21 4170	2109 70.3 88 63 4180	1826 58.9 69 46 3620	2078 67.0 76 61 4120	2434 86.9 128 59 4830	1268 40.9 61 18 2520	989 33.0 100 11 1960	10270 331 2830 12 20370	5202 173 1980 11 10320	405.0 13.1 35 2.6 803	47005 1516 28000 14 93230	2018 67.3 100 40 4000
CAL YR 1 WTR YR 1				N 229 MA N 213 MA		MIN 21 MIN 2.6	AC-FT AC-FT	166000 154100	BA.			

08136700 COLORADO RIVER NEAR STACY, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: April 1968 to current year. Sediment analyses: October 1974 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: April 1968 to current year. WATER TEMPERATURES: April 1968 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 3,580 micromhos Sept. 23, 1970; minimum daily, 188 micromhos July 29, 1971.
WATER TEMPERATURES (1968-77): Maximum daily, 33.5°C July 18, 1971; minimum daily, 2.0°C Jan. 8, 1970, Dec. 16, 1972, and Jan. 12, 1973.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum daily, 2,910 micromhos May 2; minimum daily, 291 micromhos Aug. 4.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	STREAM- FLOW. INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND. BIO- CHEM- ICAL. 5 DAY (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM. FECAL. 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL+ KF AGAR (COLS- PER 100 ML)
ост		5.4			200	1.2	4.2		2.2		2.	
17	1520	50	1580	8.2	20.0	15	9.2	105	1.1	180	84	6300
09 DEC	1350	72	2000	7.5	15.5							
22 MAR	1430	56	2340	8.0	8.0							
30	1200	50	2560	8.0	20.0							
30	1100	29	2860		20.0							
31	1100	560	692		25.0							
01 JUL	0830	530	552		24.5							
12 AUG	1045	9.2	1690		28.0							
04	1350	32100	276		23.0							
DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS. NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM. DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION HATIO	POTAS- SIUM. DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT												
17	500	350	110	55	140	2.7	4.9	190	0	220	290	.6
09 DEC	650	540	140	73	170	2.9	5.2	140	0	350	370	.6
22	750	580	170	80	210	3.3	4.9	210	0	350	490	.5
30	820	680	180	89	230	3.5	6.0	160	0	480	480	.6
30	951	830	500	110	270	3.8	8.1	150	0	510	590	.6
31	200	100	58	14	55	1.7	5.1	120	0	78	100	.4
01 JUL	170	77	49	11	36	1.2	4.8	110	0	68	72	.3
12	470	350	110	47	170	3.4	7.2	150	0	240	330	.5
04	110	14	36	5.4	9.3	.4	4.3	120	0	17	15	.3

08136700 COLORADO RIVER NEAR STACY, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMPER 1978

			WATER QU	ALITY DAT	A, WATER	YEAR OCTO	BEK 1977	10 SEPIE	HER 1978			
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS. PESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS. DIS- SOLVED (MG/L)	NITRO- GEN. NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	GEN.	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS. TOTAL (MG/L AS P)	CARBON. ORGANIC TOTAL (MG/L AS C)	SEDI- MENT. SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
ост												N. A.
17	20	1010	935	1.6	.02	1.6	1.1	.03	3.6	81	11	93
NOV 09	14		1190						-		-	-
55 DEC	12		1420									
MAR 30	3.8		1550						1			-
30	9.0		1770									
31	11		381									
JUN 01	11		306									-
JUL 12	1.9		981				1			-	19/ -	5 - 1 -
AUG 04	8.2		155			-					y	
04	6.2	Ī	ARSENIC	ARSENIC SUS- PENDED	ARSENIC DIS-	BARIUM. TOTAL HECOV-	BARTUM. SUS- PENDED RECOV- ERABLE	BARIUM. DIS- SOLVED	CADMIUM TOTAL RECOV- ERABLE	CADMIUM SUS- PENDED RECOV- ERABLE	CADMIUM DIS- SOLVED	
	DATE	TIME	TOTAL (UG/L AS AS)	TOTAL (UG/L AS AS)	SOLVEO (HG/L AS AS)	(UG/L AS BA)	(UG/L AS BA)	(UG/L AS BA)	(UG/L AS CD)	(UG/L AS CD)	(UG/L AS CD)	
	0CT 17	1520	3	0	3	300	100	500	<10	<10	0	
	DATE	CHRO- MIUM. TOTAL RECOV- FRABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM. DIS- SOLVED (UG/L AS CR)	COBALT. TOTAL RECOV- ERABLE (UG/L AS CO)	COBALT. SUS- PENDED RECOV- ERABLE (UG/L AS CO)	COBALT. DIS- SOLVED (UG/L AS CO)	COPPER. TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER. SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER. DIS- SOLVED (UG/L AS CU)	IRON. TOTAL RECOV- ERABLE (UG/L AS FE)	
	OCT					450		20	7	13	270	
	17	10	10	0	<50	<50	0	20			2.0	
	DATE	TRON. DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	SUS- PENDED RECOV- ERABLE (UG/L AS PR)	LEAD+ DIS- SOLVED (UG/L AS PB)	MANGA- NESE • TOTAL HECOV- ERABLE (UG/L AS MN)	MANGA- NESE + SUS- PENDED RECOV • (UG/L AS MN)	MANGA- NESE: DIS- SOLVED (UG/L AS MN)	TOTAL	PENDED RECOV- ERABLE	MERCURY DIS- SOLVED (UG/L AS HG)	
	OCT	122	4100	400	1	10	6	4	.0	.0	.0	
	17	130		<99	1			•	Laky William			
		ATE AS	NICE- SCORE TO TO THE STATE TO	DS- NIC NDED DI TAL SOL	IS- REC LVED ERG G/L (UI	TAL PEN COV- REC ABLE ERM	JS- NDED SIL' COV- D ABLE SOI G/L (UC	VER, TO IS- REG LVED ERG G/L (UG	COV- REC ABLE ERA	JS- NDED ZII COV- D' ABLE SOI G/L (UC	NC. IS- LVED G/L ZN)	
	00	7	3	0	3	<10	<10	0	10	0	30	

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

08136700 COLORADO RIVER NEAR STACY, TX--Continued

		ONTH	DISCHARGE (CFS-DAYS)		DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVE CHLORI (TONS	DE SUL	IS- DLVED FATE S/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA+MG) (MG/L)
	OCT.	1977	2102	1690	990	5610	310	1740	230	i	1310	480
	NOV.	1977	2109	2030	1200	6850	380	2170	300		1710	620
	DEC.	1977	1826	2260	1350	6640	430	2110	370)	1810	700
	JAN.	1978	2078	2280	1360	7620	430	2430	370		2100	710
	FEB.	1978	2434	2340	1400	9180	450	2930	390)	2570	730
	. MAR.	1978	1268	2400	1440	4920	460	1570	410)	1410	760
		1978	989	2450	1470		470	1250	430)	1140	780
		1978	10270	1070	620		180	4850	140		3930	240
			5202	566	320	4460	68	958	53		742	190
		1978										520
		1978	404	1790	1050		330	359	250		269	
		1978	47005	407	230		39	4990	33		4220	140
	SEPT	1978	2018	1640	950	5190	300	1610	550		1200	460
	TOTAL		77705.9	93 **	**	101000	**	27000	**		22400	**
	WTD.	AVG	212.8	836	490	**	130	**	110)	**	150
		SPECIF	C CONDUCTAR	NCE (MICROMH	OS/CM AT	25 DEG. C).	WATER YEAR	OCTOBER 1	977 TO 9	SEPTEM	BER 1978	
DA	Y	ОСТ	NOV (DEC JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
	1	1490		170 2230			2500	2900	526	1520	1920	1250 1290
	2	1500 1510		180 2220 190 2220			2490 2480	2910 2750	771 362	1540 1550	1870 850	1320
	4	1510		200 2210			2420	2500	355	1560	291	1360
	5	1520		210 2230			2430	2090	358	1580	320	1380
	6	1510	1980 22	200 2210	2320	2380	2450	1880	370	1590	370	1390
	7	1520		210 2250			2440	1550	432	1530	416	1400
	8	1530	2020 22	240 2260	2280	2350	2430	1230	518	1630	489	1420
	9	1530		250 2250			2400	842	660	1640	540	1440
1	0	1540	2020 2	150 2260	2270	2380	2380	727	857	1660	588	1500
1	1	1520	2000 2	200 2280	2300	2370	2360	726	940	1670	630	1560
	2	1530		230 2270			2340		1110	1690	664	1600
	3	1550		250 2280			2320	750	1140	1630	700	1700
	4	1570		240 2290			2370	758	1150	1590 1730	729 772	1800 1840
	5	1560	1970 23	250 2300	2200	2380	2300	765	1160	1730	112	1040
1	6	1580	2010 2	270 2280	2240	2390	2340	768	1180	1760	802	1880
	7	1600		290 2290			2380	750	1100	1790	842	1870
	8	1640		310 2290			2390	755	1150	1680	875	1860
	9.	1670		330 2310			2420	760 750	1210	1750	907 935	1890 1880
•	0	1690	2060 2:	350 2320		2450	2470		1230			
	1	1710		300 2300			2530	735	1250	1880	961	1890
	2	1500		360 2290			2590	731	1310	1900	987 1000	1930 1950
-	3	1210 1770		330 2260 350 2240			2650 2720	773 904	1350 1380	1950	1020	1940
	5	1850		330 2290			2700	1040	1410	1940	1050	1950
												1000
	6	1820		320 2300			2800	1030	1440	1960	1070	1980 1990
	7	2190		320 2320 310 2340			2810	1120	1460 1470	1950 1960	1100 1120	2000
	8	1860		310 2340 290 2320			2820	363	1490	1910	1150	1980
	9											
- 2	9	1800 1950		280 2310			2860	755	1520	1930	1160	1970

MEAN

COLORADO RIVER BASIN
08136700 COLORADO RIVER NEAR STACY, TX--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	28.0	20.0	10.0		8.0	8.0	15.0		25.0	25.0	28.0	25.0
2		15.0	10.0	5.0		15.0		15.0	26.0		24.0	25.0
3	20.0	20.0	10.0	5.0	8.0		15.0	10.0	24.0	32.0	20.5	
4	20.0	15.0		6.0	10.0	5.0	20.0	15.0			23.0	30.0
5	26.5	20.0	10.0	10.0			20.0	20.0	20.0	30.0		28.0
6	21.0		10.0	10.0		8.0	20.0	20.0	20.0	28.0	22.0	26.0
7	21.0	18.0	15.0	8.0			20.0	5	20.0	32.0	24.0	26.0
8	20.0	18.0	15.0				25.0	20.0	25.0	25.0	20.0	24.0
9		15.0	10.0	5.0		10.0		15.0	25.0		28.0	25.0
10	21.0	10.0	15.0		8.0	10.0	20.0	20.0	20.0	22.0	30.0	25.0
11	20.0	10.0				12.0	18.0	20.0			20.0	26.0
12	20.0	15.0	15.0				20.0	25.0	25.0		22.0	28.0
13	19.0		15.0	10.0	0.8	10.0	18.0	25.0	30.0			28.0
14	20.0	15.0	15.0	8.0	7.0	15.0	20.0		30.0	30.0	30.0	25.0
15	20.0	20.0	12.0			8.0	20.0	25.0	30.0	28.0	32.0	30.0
16		20.0				15.0		15.0	28.0		30.0	29.0
17	20.0	15.0	10.0	8.0		15.0	20.0	20.0	25.0		28.0	28.0
18	30.5	15.0			8.0	10.0	22.0	25.0			28.0	26.0
19	30.0	20.0	10.0				20.0	25.0	30.0		26.0	28.0
50			10.0		8.0	20.0	20.0	22.0	30.0			
21	20.0	15.0	8.0		8.0	10.0	18.0		28.0	30.0	28.0	20.0
22	20.0	15.0	8.0		8.0	20.0	20.0	27.0	30.0		30.0	22.0
23		20.0	10.0		10.0	20.0		25.0	25.0		28.0	23.0
24	30.0		10.0		10.0	15.0	25.0	28.0	30.0	30.0	25.0	
25	30.0	15.0		8.0	12.0		20.0	28.0			28.0	28.0
26	30.0	20.0	10.0	8.0		20.0	18.0	20.0		32.0	28.0	20.0
27	25.0		6.0		12.0	20.0	15.0	25.0	28.0			18.0
28	20.0	10.0	8.0	5.0	10.0	10.0	20.0		24.0	34.0	28.0	22.0
29	20.0		10.0			8.0	15.0	20.0	28.0		30.0	18.0
30		10.0	10.0			20.0	20.0	25.0	28.0	2555	26.0	18.0
31	25.0		10.0			15.0		25.0		32.0	28.0	
MEAN	23.0	16.0	11.0	7.5	9.0	13.5	19.5	21.5	26.0	29.5	26.5	25.0

LOCATION.--Lat 31°28'04", long 99°09'43", McCulloch-Brown County line, Hydrologic Unit 12090106, near left bank on downstream end of pier of bridge on U.S. Highway 377, 0.3 mi (0.5 km) south of Winchell, 5.9 mi (9.5 km) downstream from Home Creek, and at mile 560.7 (902.2 km).

08138000 COLORADO RIVER AT WINCHELL, TX

DRAINAGE AREA.--24,580 mi² (63,660 km²), approximately, of which 12,880 mi² (33,360 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- November 1923 to September 1934 (published as "near Milburn"), June 1939 to current year.

REVISED RECORDS .-- WSP 1118: Drainage area.

DAY

TOTAL

AC-FT

MEAN

MAX

56.1

54.9

OCT

NOV

DEC

JAN

GAGE.--Water-stage recorder. Datum of gage is 1,264.86 ft (385.529 m) National Geodetic Vertical Datum of 1929. November 1923 to September 1934, nonrecording gage at site 4.2 mi (6.8 km) downstream at datum 10.14 ft (3.091 m) lower. Jan. 13, 1939, to Mar. 24, 1940, nonrecording gage at present site and datum.

REMARKS.--Water-discharge records good. Many diversions above station for irrigation, municipal supply, and oilfield operation. Flow is affected by reservoirs upstream (see stations 08126500 and 08136000) and at times by discharge from flood-detention pools of 85 floodwater-retarding structures with combined detention capacity of 100,320 acre-ft (124 hm^3). These structures control runoff from 486 mi^2 ($1,259 \text{ km}^2$).

AVERAGE DISCHARGE.--39 years (water years 1925-34, 1940-68) prior to completion of Robert Lee Dam, 628 ft³/s (17.78 m³/s), 455,000 acre-ft/yr (561 hm³/yr); 10 years (water years 1969-78) partially regulated, 266 ft³/s (7.533 m³/s), 192,700 acre-ft/yr (238

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 76,100 ft3/s (2,160 m3/s) Oct. 15, 1930, gage height, 51.8 ft (15.79 m), present site and datum; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Highest stages since 1882 were 62.2 ft (18.96 m) Sept. 19, 1936, and 56.2 ft (17.13 m) Aug. 8, 1906, at railway bridge 1,000 ft (305 m) upstream and converted to present site and datum, from information by Gulf, Colorado, and Santa Fe Railway Co.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 29,600 ft³/s (838 m³/s) Aug. 5, gage height, 31.88 ft (9.717 m), no other peak above base of 12,000 ft 3 /s (340 m 3 /s); no flow part of each day Aug. 1, 2.

FEB

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES

MAR

APR

MAY

SEP

AUG

JUL

.01

1.56

9.3

.01

75.0

48.28 45598.01

JUN

9.3 .01 7.9 7.0 6.0 5.1 4.0 3.1 2.2 1.3 .59 .38 .35 .30 .20 .10 .07 .04 .04 .03 .02 .04 .03 .03 .03 .03 .03 14 .02 .02 .01 ------.01

26.5

36.1

CAL YR 1977 TOTAL 111409.00 MEAN 305 MAX MIN 18 AC-FT WTR YR 1978 TOTAL 74775.29 .01 MEAN 205 MAX 19500 MIN AC-FT 148300

73.3

56.0

49.8

08138000 COLORADO RIVER AT WINCHELL, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: November 1967 to current year.

WATER QUALITY DATA. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	STREA FLOW INSTA	AM- CO W. DU AN- AN DUS (MI	FIC N- CT- CE CRO-	PH NITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD NESS NONCA BONAT (MG/	R- DI	CIUM S	AGNE- SIUM, DIS- DLVED MG/L S MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT 24	1530	111		1490	7.7	22.0	440		310	88	54	150
DEC											74	180
05 JAN	1230	57		2040	7.9	14.5	630		80	130	74	100
09	1245	55		2370	7.7	9.0	770		10	170	83	550
FEB 21	1415	74		2190	7.7	8.0	730		580	170	75	190
MAR 27	1240	19		2450		19.0	810		590	170	94	220
MAY 08	1710	2190		2010		25.0	610		50	140	63	170
JUN 12	1210	114		434		29.0	140		44	43	8.6	23
JUL 24	1300		.03	953		32.5	280		170	74	24	78
SEP 05	1430	68		836		29.0	260	10	150	70	21	73
DAT	SO	DIUM AD- IRP- ION	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONAT (MG/ AS CO	TE SOL	ATE RI - DI VED SO /L (M	LO- DE, S- LVED G/L CL)	FLUO- RIDE. DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOL	OF TI-
ОСТ				140		0 21		90	.6	18		895
DEC.	•••	3.1	5.8	160		0 21	0 2	70	••			
US.	•••	3.1	5.4	180		0 33	0 3	90	.6	13		210
ng. FEB	•••	3.5	5.1	190		0 35	0 4	90	.5	8.1	1	420
21	•••	3.1	4.3	190		0 35	0 4	20	.5	7.8	1	310
MAR 27		3.4	5.2	150		0 43	0 4	80	.5	1.9		480
YAM 80		3.0	7.5	200		0 30	0 3	60	.6	12	1	150
JUN 12	•••	.8	4.0	120		0 4	1	44	.2	9.8		233
	•••	2.0	7.0	140		0 13	0 1	60	.5	15		558
SEP 05		2.0	5.8	130		0 13	0 1	30	.3	12		506

125

08140600 LAKE CLYDE NEAR CLYDE, TX

LOCATION.--Lat 32°19'05", long 99°28'43", Callahan County, Hydrologic Unit 12090107, at Clyde pump station, 0.6 mi (1.0 km) west of dam on North Prong Pecan Bayou, 2.1 mi (3.4 km) downstream from bridge on Farm Road 604, and 7.0 mi (11.3 km) southeast of Clyde.

DRAINAGE AREA .-- 37.9 mi2 (98.2 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- January 1970 to current year.

GAGE.--Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929.

1,858.0

REMARKS.--The lake is formed by a rolled earthfill dam, 3,950 ft (1,204 m) long. Appreciable storage began in April 1970, and the dam was completed in May 1970. The uncontrolled emergency spillways are two 200-foot-wide (61 m) cut channels through natural ground located at left end of dam. The service spillway is an uncontrolled 3.5 by 10.5 ft (1.1 by 3.2 m) reinforced concrete drop inlet connected to a 42 in (1,067 mm) concrete outlet pipe. A 14 in (356 mm) controlled drain pipe is connected to the drop inlet. There are four 4.83 by 3.50 ft (1.47 by 1.07 m) rectangular slots, two on each side, divided by a 10 in (254 mm) concrete web. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	(feet)	(acre-feet)
Top of dam	1,888.9	16,530
Crest of spillway	1,881.4	10,840
Crest of spillway (invert of drop inlet)	1.872.0	5,720
Lowest gated outlet (invert)	1.842.2	60

COOPERATION.--Record of lake elevations and diversions were furnished by the city of Clyde. Capacity table was furnished by the Soil Conservation Service.

EXTREMES (at 0700) FOR PERIOD OF RECORD.--Maximum contents, 7,420 acre-ft (9.15 hm³) Aug. 4, 1978, elevation, 1,875.5 ft (571.65 m); minimum, 1,460 acre-ft (1.80 hm³) Aug. 1, 2, 1978, elevation, 1,858.8 ft (566.56 m).

EXTREMES (at 0700) FOR CURRENT YEAR.--Maximum contents, 7,420 acre-ft (9.15 hm²) Aug. 4, elevation, 1,875.5 ft (571.65 m); minimum, 1,460 acre-ft (1.80 hm³) Aug. 1, 2,, elevation, 1,858.8 ft (566.56 m).

Capacity table (elevation, in feet, and total contents, in acre-feet)

1,870.0

			CONTENTS	, IN ACRE	-FEET, WA TANTANEOU	TER YEAR S OBSERVA	OCTOBER 1 TIONS AT	977 TO SE 0700	PTEMBER 1	978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2770	2620	2480	2370	2290	2290	2190	2040	1920	1710	1460	5720
2	2740	2590	2480	2370	2290	2290	2190	2040	1920	1710	1460	5670
3	2740	2590	2480	2340	2290	2290	2190	2040	1920	1690	2740	5670
3	2740	2590	2480	2340	2290	2290	2160	2010	1920	1690	7420	5670
5	2710	2590	2480	2340	2270	2290	2160	2010	1900	1690	6660	5630
6 7	2710	2590	2480	2340	2270	2290	2160	2010	1900	1670	6320	5630
7	2710	2560	2450	2340	2290	2290	2140	2010	1900	1670	6230	5720
8	2710	2560	2450	2340	2290	2290	2140	1990	1900	1670	5990	5720
9	2680	2560	2450	2340	2320	2270	2140	1990	1870	1650	5900	5670
10	2680	2560	2450	2340	2340	2270	2160	1990	1870	1650	5860	5670
11	2680	2560	2450	2340	2320	2270	2160	1990	1870	1650	5810	5670
12	2680	2560	2450	2340	2320	2270	2160	1990	1870	1630	5760	5670
13	2650	2560	2450	2320	2320	2270	2140	1970	1850	1630	5720	5670
14	2650	2540	2430	2320	2320	2270	2140	1970	1850	1610	5720	5670
15	2650	2540	2430	2320	2320	2270	2140	1970	1850	1610	5720	5670
16	2620	2540	2430	2320	2320	2270	2140	1970	1850	1590	5720	5670
17	2620	2540	2430	2320	2320	2240	2110	1970	1830	1590	5670	5670
18	2620	2540	2430	2320	2340	2240	2110	1940	1830	1590	5670	5630
19	2620	2540	2400	2320	2320	2240	2110	1940	1800	1570	5670	5630
20	2620	2510	2400	2320	2320	2240	2110	1940	1800	1570	5670	5630
21	2590	2510	2400	2320	2320	2240	2090	1940	1800	1540	5670	5630
22	2680	2510	2400	2290	2320	2240	2090	1940	1780	1540	5760	5630
23	2650	2510	2400	2290	2320	2240	2090	1920	1780	1540	5760	5590
24	2650	2510	2400	2290	2320	2240	2090	1920	1780	1520	5760	5590
25	2620	2510	2400	2290	2320	2210	2060	1920	1760	1520	5760	5590
26	2620	2510	2400	2290	2320	2210	2060	1900	1760	1520	5760	5540
27	2620	2510	2370	2290	2320	2210	2060	1900	1740	1500	5720	5540
28	2620	2510	2370	2290	2290	2210	2060	1900	1740	1500	5720	5540
29	2620	2510	2370	2290		2210	2040	1940	1740	1480	5720	5540
30	2620	2510	2370	2290		2210	2040	1940	1710	1480	5720	5500
31	2620		2370	2290		2190		1940		1480	5720	
MAX	2770	2620	2480	2370	2340	2290	2190	2040	1920	1710	7420	5720
MIN	2590	2510	2370	2290	2270	2190	2040	1900	1710	1480	1460	5500
(†)	1863.6	1863.2	1862.7	1862.4	1862.4	1862.0	1861.4	1861.0	1860.0	1858.9	1872.0	1871.5
(+)	-150	-110	-140	-80	0	-100	-150	-100	-230	-230	+4240	-220
(++)	29	22	18	25	21	27	36	39	43	48	31	30

CAL YR 1977 WTR YR 1978 MAX 3580 MAX 7420 MIN 1460 + +2730

t Elevation, in feet, at end of month. † Change in contents, in acre-feet. †† Diversions, in acre-feet, for municipal use.

COLORADO RIVER BASIN

08140600 LAKE CLYDE NEAR CLYDE, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1974 to current year.

WATER QUALITY DATA. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SPE CIF CON DUC ANC (MIC MHO	IC T- E TEM RO- AT	PER- (ARD- ESS MG/L AS ACO3)	HARD- NESS+ NONCAR- BONATE (MG/L CACO3)	CALCI DIS- SOLV (MG/ AS C	UM SI DI ED SOL L (MG		UM, - SO ED T	DIUM AD- RP- ION TIO
22	1240	1	490	25.0	280	170	68	2	7 20	0	5.2
D		POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HC03)	CAR- BONATE (MG/L AS CO3	(MG	ATE RI	ILO (DE + (S- DLVED (G/L (GCL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS S102)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	
MA*	2	13	140		0 14	0 3	320	.5	2.4	840	

08140700 PECAN BAYOU NEAR CROSS CUT. TX

LOCATION.--Lat 31°58'21", long 99°07'48', Brown County, Hydrologic Unit 12090107, on right bank at downstream side of bridge on State Highway 279, 1.2 mi (1.9 km) downstream from Turkey Creek, and 4.2 mi (6.8 km) south of Cross Cut.

DRAINAGE AREA .-- 532 mi2 (1,378 km2).

PERIOD OF RECORD .-- April 1968 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,453.35 ft (442.981 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Several small diversions above station. Flow is affected at times by discharge from flood-detention pools of 32 floodwater-retarding structures with combined detention capacity of 43,850 acre-ft (54.1 hm³). These structures control runoff from 236 mi² (611 km²) in the Turkey Creek and upper Pecan Bayou drainage basins. National Weather Service gage-height telemeter and rain gage at station.

AVERAGE DISCHARGE.--10 years, 37.4 ft3/s (1.059 m3/s), 27,100 acre-ft/yr (33.4 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 16,200 ft³/s (459 m³/s) Aug. 4, 1978, gage height, 24.90 ft (7.590 m); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in 1908 reached a stage of 26.5 ft (8.08 m) and was exceeded by a flood in 1900, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,000 ft³/s (28.3 m³/s) and maximum (*):

Date	Time	Disch	arge	Gage h	eight	Date	Time	Disch	arge	Gage I	height
		(ft^3/s)	(m^3/s)	(ft)	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
Aug. 3	2100	7,480	212	20.37	6.209	Sept. 4	2200	1,100	31.2	5.29	1.612
Aug A	2330	*16 200	150	24 00	7 500						

Minimum discharge, no flow for many days.

		DISCHARGE	, IN	CUBIC FEET	PER SECON	D, WATER	YEAR OCTOB	ER 1977	TO SEPTE	MBER 197	78	
DAY	OCT	NOV	DEC	JAN	FEB	N VALUES MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	2.3
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	79	2.4
3	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	3840	2.7
4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	5700	129
2 3 4 5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	6160	114
6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1620	26
7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1210	124
8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1020	184
9	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	899	45
10	.00	.00					.00	.00	.00	.00	822	23
10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00		
11	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	741	19
12	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	626	14
13	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	390	11
14	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	190	8.1
15	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	134	6.2
16	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	101	5.0
17	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	45	4.4
18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	27	3.1
19	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	21	2.7
20	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	18	1.9
20	.00	.00	.00	.00	.00	.00						
21	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	14	1.4
22	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	14	1.3
23	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	12	.81
24	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	8.6	.44
25	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	6.3	.24
26	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	4.6	.24
27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	3.6	.37
28	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	7.0	.35
29	.00	.00	.00	.00		.00	.00	.00	.00	.00	18	.24
30	.00	.00	.00	.00		.00	.00	.00	.00	.00	5.0	.22
31	.00		.00	.00		.00		.00		.00	2.7	
TOTAL	20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	23738.80	733.41
TOTAL	.00	.00	.00	.00	.00	.00	.00	.00	.00		766	24.4
MEAN	.000		.000	.000	.000	.000	.000	.000	.000	.000		
MAX	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	6160	184
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.22
AC-FT	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	47090	1450
	1977 TOTAL 1978 TOTAL				MAX 771 MAX 6160	MIN .	00 AC-FT	8540 48540				

COLORADO RIVER BASIN

08140800 JIM NED CREEK NEAR COLEMAN, TX

LOCATION.--Lat 31°58'59", long 99°24'52", Coleman County, Hydrologic Unit 12090108, on right bank 77 ft (23 m) downstream from centerline of U.S. Highway 283, 1.4 mi (2.3 km) downstream from Turtle Bayou, 7.4 mi (11.9 km) downstream from Lake Coleman, and 10.8 mi (17.4 km) north of Coleman.

DRAINAGE AREA.--333 mi² (862 km²), of which 299 mi² (774 km²) is above Lake Coleman.

PERIOD OF RECORD. -- October 1961 to September 1964 (miscellaneous measurements only), March 1965 to current year.

GAGE .-- Water-stage recorder. Datum of gage is 1,592.31 ft (485.336 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Since March 1966 when deliberate impoundment began, flow has been largely controlled by Lake Coleman, capacity, 40,000 acre-ft (49.3 hm³) at service spillway; elevation, 1,717.5 ft (523.49 m). During year, the city of Coleman diverted 970 acre-ft (1.20 hm³) from Lake Coleman for municipal use. Two observations of water temperature were made during the

AVERAGE DISCHARGE.--13 years, 23.9 ft³/s (0.677 m³/s), 17,310 acre-ft/yr (21.3 hm³/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 5,020 ft3/s (142 m3/s) May 6, 1969, gage height, 9.08 ft (2.768 m); no flow at

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,830 ft3/s (51.8 m3/s) Aug. 4, gage height, 5.77 ft (1.759 m); no flow for many days.

		DISCHAF	RGE, IN	CUBIC FEET	PER SECOND	, WATER	YEAR OCTO	BER 1977	TO SEPTEM	IBER 197	8	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.2
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.64
3	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	31	.26
4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	967	.13
5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1770	.46
6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1740	.31
7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1730	.44
8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1540	3.8
9	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	994	3.4
10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	719	2.4
11	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	577	3.9
12	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	469	3.1
13	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	364	2.2
14	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	278	1.3
15	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	220	.95
16	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	176	.79
17	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	144	.51
18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	109	.16
19	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	82	.07
20	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	64	.06
21	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	49	.06
22	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	39	.04
23	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	31	.03
24	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	23	.19
25	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	17	.58
26	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	12	.54
27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	8.4	1.3
28	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	5.6	1.5
29	.00	.00	.00	.00		.00	.00	.00	.00	.00	6.8	1.5
30	.00	.00	.00	.00		.00	.00	.00	.00	.00	6.1	.98
31	.00		.00	.00		.00		.00		.00	2.7	
TOTAL	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	12174.60	32.80
MEAN	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	393	1.09
MAX	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1770	3.9
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.03
AC-FT	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	24150	65
CAL YR WTR YR				AN .86 AN 33.4	MAX 72 MAX 1770	MIN	.00 AC-1					

COLORADO RIVER BASIN 08141000 HORDS CREEK LAKE NEAR VALERA, TX

129

LOCATION.--Lat 31°49'58", long 99°33'38", Coleman County, Hydrologic Unit 12090108, at outlet works structure near right end of dam on Hords Creek, 5.6 mi (9.0 km) north of Valera, and 8.8 mi (14.2 km) west of Coleman.

DRAINAGE AREA .-- 48 mi2 (124 km2), approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- April 1948 to current year. Prior to October 1970, published as Hords Creek Reservoir.

GAGE. -- Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--The lake is formed by a rolled earthfill dam 6,800 ft (2,070 m) long, including spillway. The deliberate impoundment of water began Apr. 7, 1948, and the dam was completed in June 1948. The emergency spillway is an excavated channel through natural ground, 500 ft (150 m) wide, located about 600 ft (180 m) from the right end of dam. The service spillway consists of three concrete conduits; two controlled by slide gates 5.0 by 6.0 ft (1.5 by 1.8 m), and the third an uncontrolled oges spillway 4.0 ft (1.2 m) wide and 19.5 ft (5.9 m) high. The lake is operated for flood control and municipal water supply for the city of Coleman. The capacity table of August 1974 is based on a sedimentation survey made in 1968. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	(feet)	(acre-feet)
Top of dam	1,939.0	-
Design flood	1,933.6	
Crest of spillway	1,920.0	24,730
Crest of spillway (top of conservation pool)	1,900.0	8,110
Lowest gated outlet (invert)	1,856.0	3

COOPERATION. -- Records furnished by the Corps of Engineers and reviewed by the Geological Survey.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 12,790 acre-ft (15.8 hm³) May 1, 1956, elevation, 1,906.86 ft (581.211 m); minimum since first appreciable storage in June 1951, 2,340 acre-ft (2.89 hm³) Aug. 2, 1978, elevation, 1,882.52 ft (573.792 m).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 3,860 acre-ft (4.76 hm³) Oct. 1, elevation, 1,888.96 ft (575.755 m); minimum, 2,340 acre-ft (2.89 hm³) Aug. 2, elevation, 1,882.52 ft (573.792 m).

Capacity table (elevation, in feet, and total contents, in acre-feet)

1,882.0	2,240	1,888.0	3,600
1,884.0	2,630	1,890.0	4,160
1 006 0	2 000		

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 INSTANTANEOUS OBSERVATIONS AT 2400

2.0	424	4.47	2.00	170			200		****	****	****	
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3850	3710	3550	3380	3280	3240	3110	2940	2820	2590	2540	3350
2	3840	3700	3540	3380	3280	3240	3100	2950	2820	2590	2550	3360
2	3820	3690	3530	3370	3280	3240	3100	2940	2820	2580	3490	3340
4	3810	3680	3530	3370	3270	3240	3100	2930	2810	2570	3550	3350
5	3800	3680	3530	3370	3270	3230	3090	2940	2810	2560	3570	3340
3	3000	3000	3330	3370	3270	3230	3030	2340	2010	2500	5570	
6	3790	3670	3520	3360	3270	3220	3090	2940	2800	2550	3550	3330
7	3780	3670	3510	3360	3280	3220	3080	2930	2800	2540	3550	3340
8	3780	3660	3500	3350	3280	3220	3080	2920	2800	2530	3540	3340
9	3760	3660	3500	3340	3280	3220	3080	2920	2790	2520	3530	3330
10	3750	3650	3490	3340	3280	3210	3080	2910	2780	2510	3520	3330
10	0,00	3030	3430	3340	3200	3210	3000	2310	2.00	2010		
11	3740	3650	3490	3340	3280	3210	3080	2910	2770	2500	3520	3320
12	3730	3640	3480	3330	3290	3210	3070	2910	2770	2490	3510	3320
13	3730	3640	3480	3330	3290	3200	3070	2900	2760	2480	3500	3310
14	3720	3630	3470	3320	3280	3200	3060	2900	2750	2470	3490	3310
15	3710	3630	3470	3320	3280	3190	3060	2890	2750	2470	3480	3300
16	3710	3620	3460	3320	3280	3180	3050	2880	2730	2460	3470	3300
17							3050	2870	2720	2450	3460	3290
	3700	3620	3450	3320	3280	3180						
18	3690	3610	3450	3320	3270	3170	3040	2860	2720	2440	3460	3280
19	3690	3610	3440	3310	3270	3170	3040	2860	2710	2420	3450	3270
20	3680	3600	3430	3310	3270	3170	3030	2860	2700	2410	3440	3260
21	3720	3600	3420	3310	3260	3160	3030	2870	2690	2390	3430	3250
22	3740	3590	3420	3300	3260	3160	3000	2870	2680	2390	3420	3250
23	3740	3580	3410	3310	3260	3150	3000	2860	2690	2390	3410	3250
23	3730	3580	3410	3300	3260	3150	3000	2850	2660	2390	3410	3250
25	3730	3580	3400	3300	3250	3140	2990	2850	2650	2380	3400	3240
23	3730	3300	3400	3300	3230	3140	2990	2030	2030	2300	3400	3240
26	3720	3570	3400	3300	3250	3140	2980	2840	2640	2370	3390	3250
27	3730	3570	3390	3290	3250	3140	2970	2840	2630	2370	3390	3250
28	3720	3570	3390	3290	3250	3130	2960	2840	2620	2370	3380	3240
29	3720	3560	3390	3290		3120	2960	2840	2610	2360	3380	3240
30	3720	3550	3390	3280		3120	2950	2840	2600	2350	3370	3230
31	3710		3390	3280		3120		2830		2340	3360	
MAY	2052	27.0	2552	2200	2000	2242	2112	2950	2820	2590	3570	3360
MAX	3850	3710	3550	3380	3290	3240	3110				2540	3230
MIN	3680	3550	3390	3280	3250	3120	2950	2830	2600	2340		
(+)			1887.20	1886.79	1886.65	1886.12	1885.42	1884.89	1883.85	1882.57	1887.09	1886.60
	1888.44	1887.85										
(#)	-150 27	-160 37	-160	-110	-30 38	-130 48	-170 36	-120 34	-230 39	-260 67	+1020	-130 54

CAL YR 1977 WTR YR 1978 MAX 5120 MAX 3850 MIN 3390 MIN 2340 -1180 -630

[†] Elevation, in feet, at end of month. ‡ Change in contents, in acre-feet. †† Diversions, in acre-feet, for municipal use by city of Coleman.

COLORADO RIVER BASIN

08141000 HORDS CREEK LAKE NEAR VALERA, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1969 to current year.

WATER QUALITY DATA. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TI	4E (SPE- CIF: CON- DUC! ANCE MIC! MHO!	IC I- E TEM RO- AT	PER- (ARD- ESS MG/L AS ACO3)	HAR NES NONC BONA (MG	S, AR- TE	CALCI DIS- SOLV (MG/ AS C	ED S	AGNE- SIUM, DIS- OLVED MG/L S MG)	SODI DIS SOLV (MG	UM,	SODIUM AD- SORP- TION RATIO
MAY 30	094	15	1	520	26.0	390		260	83		45	15	0	3.3
Da	ATE	POTA SIL DIS SOLV (MG/ AS H	ED L	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3	DI SC	FATE S- OLVED IG/L S04)	RI DI SO	LO- DE, S- LVED G/L CL)	FLUO- RIDE. DIS- SOLVE (MG/L AS F)	D (N	ICA. S- DLVED IG/L IS	SOLIO SUM O CONST TUENT DIS SOLV	F I- S+ FD
MA'	Y 0	,	.5	160		0	76	3	50		2	4.1		95

131

LOCATION.--Lat 31°50'03", long 99°32'04", Coleman County, Hydrologic Unit 12090108, on left bank 2,500 ft (762 m) downstream from Farm Road 503, 1.6 mi (2.6 km) downstream from Hords Creek Dam, 5.7 mi (9.2 km) north of Valera, 7.0 mi (11.3 km) west of Coleman, and 21.8 mi (35.1 km) upstream from mouth.

08141500 HORDS CREEK NEAR VALERA, TX

DRAINAGE AREA. --53 mi² (137 km²), approximately, of which 48 mi² (124 km²) is above Hords Creek Dam.

PERIOD OF RECORD .-- April 1947 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,819.88 ft (554.699 m) National Geodetic Vertical Datum of 1929 (Corps of Engineers bench mark).

REMARKS.--Records good. Flow regulated by Hords Creek Lake (station 08141000). One observation of water temperature was made during the year.

AVERAGE DISCHARGE.--31 years, 1.75 ft3/s (0.0496 m3/s), 1,270 acre-ft/yr (1.57 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,860 ft³/s (109 m³/s) Apr. 30, 1956, gage height, 14.73 ft (4.490 m), from rating curve extended above 1,900 ft³/s (53.8 m³/s); no flow at times each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1900, 23.0 ft (7.01 m) July 3, 1932, from information by local residents (discharge not determined). Flood in July or September 1900 reached a stage of 3.7 ft (1.13 m) higher than that of July 1932, 12 mi (19 km) downstream from station, from information by loca residents.

DISCHARGE IN CHRIC EEET DED SECOND. WATER VEAD OCTORED 1977 TO SEDTEMBER 1978

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,900 ft³/s (53.8 m³/s) Aug. 3, gage height, 11.06 ft (3.371 m); no flow for many days.

		DISCHAR	GE, IN	CUBIC FEET		OND, WATER EAN VALUES	YEAR OCT	OBER 1977	TO SEPIE	MBER 197	8	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.12	.02	.02	.04	.03	.00	.00	.00	.00	.00
2	.00	.00	.12	.02	.02	.02	.03	.00	.00	.00	.00	.00
3	.00	.00	.15	.02	.02	.02	.02	.01	.00	.00	189	.00
4	.00	.00	.18	.02	.02	.02	.03	.00	.00	.00	.36	.00
5	.00	.00	.03	.02	.02	.02	.02	.00	.00	.00	.20	.00
6	.00	.00	.02	.02	.02	.03	.02	.00	.00	.00	.20	.00
7	.00	.00	.03	.02	.04	.04	.02	.00	.00	.00	.20	.00
8	.00	.00	.05	.02	.04	.04	.02	.00	.00	.00	.20	.00
9	.00	.00	.04	.02	.17	.03	.03	.00	.00	.00	.10	.00
10	.00	.00	.04	.02	.08	.03	.04	.00	.00	.00	.10	.00
11	.00	.02	.04	.02	.05	.03	.02	.00	.00	.00	.10	.00
12	.00	.05	.05	.02	.39	.03	.02	.00	.00	.00	.10	.00
13	.00	.07	.04	.02	.11	.03	.02	.00	.00	.00	.10	.00
14	.00	.09	.04	.02	.06	.03	.01	.00	.00	.00	.00	.00
15	.00	.09	.03	.02	.06	.03	.01	.00	.00	.00	.00	.00
16	.00	.09	.03	.03	.06	.02	.01	.00	.00	.00	.00	.00
17	.00	.09	.02	.02		.02	.01	.00	.00	.00	.00	.00
18					.06							.00
	.00	.12	.02	.02	.06	.02	.01	.00	.00	.00	.00	
19	.00	.13	.03	.07	.05	.02	.01	.00	.00	.00	.00	.00
20	.00	.06	.03	.03	.03	.03	.01	.00	.00	.00	.00	.00
21	.00	.08	.03	.03	.03	.03	.01	.06	.00	.00	.00	.00
22	.04	.06	.03	.04	.03	.02	.00	.01	.00	.00	.00	.00
23	.00	.06	.02	.07	.02	.03	.00	.00	.00	.00	.00	.00
24	.00	.06	.02	.06	.03	.03	.00	.00	.00	.00	.00	.00
25	.00	.06	.02	.04	.02	.03	.00	.00	.00	.00	.00	.00
26	.00	.06	.02	.03	.04	.03	.00	.00	.00	.00	.00	.00
27	.00	.09	.02	.03	.03	.03	.00	.00	.00	.00	.00	.00
28	.00	.15	.02	.04	.03	.03	.00	.00	.00	.00	.00	.00
29	.00	.13	.03	.03		.03	.00	.00	.00	.00	.00	.00
30	.00	.12	.02	.02		.03	.00	.00	.00	.00	.00	.00
31	.00		.03	.02		.03		.00		.00	.00	
TOTAL	.04	1.68	1.37	.88	1.61	.87	.40	.08	.00	.00	190.66	.00
MEAN	.001	.056	.044	.028	.058	.028	.013	.003	.000	.000	6.15	.000
MAX	.04	.15	.18	.07	.39	.028	.04	.06	.00	.00	189	.00
MIN	.00	.00	.02					.00	.00	.00	.00	.00
AC-FT	.08	3.3		.02	.02	.02	.00				378	.00
AC-FI	.08	3.3	2.7	1.7	3.2	1.7	.8	.2	.00	.00	3/6	.00
CAL VD	1077 TOTA	96 00	MEAN	24 MAY	7 2	MIN OO	AC ET	171				

CAL YR 1977 TOTAL 86.09 MEAN .24 MAX MIN .00 7.3 AC-FT 171 WTR YR 1978 TOTAL 197.59 AC-FT 392 MEAN .54 MAX 189 .00 MIN

08142500 BROWN COUNTY WATER IMPROVEMENT DISTRICT NO. 1 CANAL NEAR BROWNWOOD, TX

LOCATION.--Lat 31°49'43", long 98°59'53", Brown County, Hydrologic Unit 12090107, on right bank 100 ft (30 m) upstream from bridge on Farm Road 2125, 6,000 ft (1,830 m) downstream from Brownwood Dam, and 7 mi (11 km) north of Brownwood.

PERIOD OF RECORD .-- March 1950 to current year.

CAL YR 1977 TOTAL 8730.62 WTR YR 1978 TOTAL 11053.00

GAGE.--Water-stage recorder. Datum of gage is 1,403.96 ft (427.927 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Water is released into the canal from Lake Brownwood (station 08143000) at Brownwood Dam on Pecan Bayou. Diversions began Apr. 9, 1939. A small amount of water is diverted from the canal upstream from the gage for domestic use. Water for irrigation has been diverted from the canal above gage since 1971. Records furnished by Brown County Water Improvement District No. 1 show that during the current year 479 acre-ft (591,000 m³) was diverted from canal above gage for irrigation, and of the total flow of canal passing gage, 7,130 acre-ft (8.79 hm³) was used for municipal and industrial supply and 2,180 acre-ft (2.69 hm³) was used for irrigation. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE .-- 28 years, 26.5 ft3/s (0.750 m3/s), 19,200 acre-ft/yr (23.7 hm3/yr).

MEAN 23.9 MEAN 30.3

MAX 59

MAX 61

EXTREMES FOR PERIOD OF RECORD .-- Maximum daily discharge, 77 ft3/s (2.18 m3/s) July 17, 1957; no flow Jan. 27, 1977.

		DISCHA	RGE, IN C	JBIC FEET	PER SECON	ID, WATER	YEAR OC	TOBER 1977	TO SEPTEM	MBER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	29	37	29	18	11	13	18	34	27	45	61	46
2	29	37	29	17	11	13	18	33	26	47	56	43
3	29	37	29	16	12	14	21	34	27	49	41	34
4	29	37	29	15	12	14	23	33	27	48	34	37
5	30	35	28	15	12	14	23	32	27	49	51	41
6	31	36	27	16	12	14	22	32	28	48	47	9.3
7	31	35	29	18	12	14	22	32	28	49	50	23
8	30	32	35	17	12	14	22	29	28	52	56	44
9	30	57	32	17	13	14	21	3.7	28	52	23	36
10	31	59	23	17	12	14	17	21	28	52	12	34
11	30	59	23	17	12	14	14	41	25	52	37	38
12	30	59	23	16	13	14	17	40	32	49	34	45
13	30	56	26	16	13	14	20	40	40	50	33	44
14	30	12	31	16	14	14	20	40	35	51	35	42
15	28	5.6	30	16	14	14	19	39	31	55	36	37
16	29	8.4	25	15	13	13	21	39	33	56	41	36
17	30	34	25	13	14	12	27	40	34	56	38	33
18	30	33	24	13	14	13	33	39	35	56	38	40
19	31	32	24	13	14	12	34	39	41	56	39	48
20	21	31	15	13	14	18	35	40	43	57	41	49
21	29	30	4.8	12	13	27	38	43	43	57	42	50
22	30	30	17	13	13	27	37	43	43	58	41	51
23	30	27	17	12	13	27	37	43	43	59	40	52
24 25	33	21	17	12	13	27	36	43	43	60	38	53
25	36	21	15	12	13	25	36	42	44	60	38	52
26	35	21	14	12	13	21	34	41	44	60	39	48
27	33	20	14	11	13	20	34	41	45	57	39	46
28	34	6.2	14	11	13	21	34	40	45	57	40	41
29	35	15	14	11		26	35	32	46	57	41	34
30	36	25	16	11		26	34	27	47	58	44	30
31	36		19	11		21		26		60	45	
TOTAL	955	948.2	697.8	442	358	544	802	1101.7	1066	1672	1250	1216.3
MEAN	30.8	31.6	22.5	14.3	12.8	17.5	26.7	35.5	35.5	53.9	40.3	40.5
MAX	36	59	35	18	14	27	38	43	47	60	61	53
MIN	21	5.6	4.8	11	11	12	14	3.7	25	45	12	9.3
AC-FT	1890	1880	1380	877	710	1080	1590	2190	2110	3320	2480	2410

MIN .00 MIN 3.7 AC-FT 17320 AC-FT 21920

133

08143000 LAKE BROWNWOOD NEAR BROWNWOOD, TX

LOCATION.--Lat 31°50'13", long 99°00'13", Brown County, Hydrologic Unit 12090107, at outlet structure for irrigation canal just upstream from right end of dam on Pecan Bayou, 0.2 mi (0.4 km) downstream from Jim Ned Creek, 8 mi (13 km) north of Brownwood, and 57.1 mi (91.9 km) upstream from mouth.

DRAINAGE AREA .-- 1,535 mi2 (3,976 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1933 to May 1941, November 1944 to current year. Fragmentary records July 1934 to April 1935, and October 1940 to May 1941. Prior to October 1970, published as Brownwood Reservoir.

REVISED RECORDS .-- WSP 1212 - 1948-50

GAGE.--Nonrecording gage read once daily. Datum of gage is 0.50 ft (0.152 m) below Mational Geodetic Vertical Datum of 1929. Prior to November 1944, nonrecording gages or water-stage recorder at various sites at dam at same datum.

REMARKS.--The lake is formed by a rolled earthfill dam, 1,580 ft (482 m) long. The dam was completed in 1933 and deliberate impoundment began in July 1933. The capacity table is based a on 1959 survey. The uncontrolled emergency spillway is a broadcrested weir 479 ft (146 m) long located 800 ft (240 m) to the left of dam. The controlled service spillway consists of two 12 ft (4 m) horseshoe-shaped concrete conduits. Water is released into Brown County canal through a 5 ft (2 m) circular conduit that is controlled by a slide gate in a service structure located near the right end of dam. Water is used for irrigation and for municipal and industrial supply by the city of Brownwood (see station 08142500). Flow is affected at times by discharge from the flood-detention pools of 59 floodwater-retarding structures with a combined capacity of 73,310 acre-ft (90.4 hm²). These structures control runoff from 353 mi² (914 km²) in the Jim Ned Creek and Pecan Bayou drainage basins. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	(feet)	(acre-feet)
Top of dam	1,450.0	-
Crest of spillway	1,425.1	143,400
Lowest gated outlet to irrigation canal (invert)	1,406.0	46,510
Lowest gated outlet (invert)	1.330.0	

COOPERATION.--Record of daily gage heights were furnished by Brown County Water Improvement District No. 1. Capacity table was furnished by the Corps of Engineers and by the Soil Conservation Service.

EXTREMES (at 1800) FOR PERIOD OF RECORD.--Maximum contents, 192,300 acre-ft (237 hm³) May 2, 1956, gage height, 1,431.4 ft (436.29 m); minimum, 11,900 acre-ft (14.7 hm³) July 15, 1934, gage height, 1,389.5 ft (423.52 m).

EXTREMES (at 1800) FOR CURRENT YEAR.--Maximum contents observed, 141,300 acre-ft (174 hm³) Sept. 9-14, gage height, 1,424.8 ft (434.28 m); minimum, 59,120 acre-ft (72.9 hm³) Aug. 2, gage height, 1,409.6 ft (429.65 m).

Capacity table (gage height, in feet, and total contents, in acre-feet)

56,870 92,430 142,700 1,409.0 1.425.0

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 INSTANTANEOUS OBSERVATIONS AT 1800

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	85730	81790	79880	77530	76170	75270	74370	71280	68280	63780	59500	138500
2	85230	81790	79880	77530	75720	75270	73920	71280	67860	63780	59120	138500
3	85230	81790	79880	77070	75720	75270	73920	70850	67860	63380	62980	138500
4	84730	81790	79880	77070	75720	75270	73920	70850	67860	63380	79880	138500
5	84730	81310	79410	77070	75720	75270	73920	70850	67860	63380	100700	139200
6	84730	81310	79410	77070	75720	75270	73920	70420	67450	62980	110300	139200
7	84230	81310	79410	77070	75720	75270	73920	70420	67450	62980	116300	139200
8	84230	81790	79410	77070	75720	75270	73470	69990	67450	62590	121700	140600
9	84230	81790	78940	77070	75720	75270	73470	69990	67040	62590	126600	141300
10	84230	81790	78940	76620	75720	75270	73470	69560	67040	62200	130800	141300
11	83740	81310	78940	76620	75720	75270	73920	69560	67040	62200	132900	141300
12	83740	81310	78940	76620	76170	75270	73920	69560	67040	62200	135000	141300
13	83740	81310	78940	76620	76170	75270	73470	69130	66630	62200	137100	141300
14	83250	80830	78940	76620	76170	74820	73470	69130	66630	61810	137800	141300
15	83250	80830	78940	76620	76170	74820	73470	69130	66630	61810	137800	140600
16	83250	80830	78940	76620	76170	74820	73020	69130	66220	61810	138500	140600
17	82760	80830	78940	76620	76170	74820	73020	68700	66220	61420	138500	139900
18	82760	80830	78940	76620	76170	74820	73020	68700	66220	61420	138500	139900
19	82760	80830	78470	76170	75720	74370	72580	68700	65810	61030	138500	139900
20	82270	80830	78470	76170	75720	74370	72580	68700	65810	61030	138500	139900
21	82270	80350	78470	76170	75720	74370	72580	68700	65400	60640	138500	139200
22	82760	80350	78000	76170	75720	74370	72140	68700	65400	60260	138500	139200
23	82760	80350	78000	76170	75720	74370	72140	68700	64990	60260	138500	139200
24	82760	80350	78000	76170	75720	74820	71710	68280	64990	60260	138500	138500
25	82760	80350	77530	76170	75720	74820	71710	68280	64580	60260	137800	138500
26	82760	80350	77530	76170	75720	74820	71710	68280	64580	59880	137800	138500
27	82760	79880	77530	76170	75720	74370	71710	67860	64580	59880	137800	138500
28	82270	79880	77530	76170	75720	74370	71280	67860	64180	59880	137800	138500
29	82270	79880	77530	76170		74370	71280	68280	64180	59880	138500	138500
30	82270	79880	77530	76170		74370	71280	68280	64180	59500	138500	137800
31	82270		77530	76170		74370		68280		59500	138500	
MAX	85730	81790	79880	77530	76170	75270	74370	71280	68280	63780	138500	141300
MIN	82270	79880	77530	76170	75720	74370	71280	67860	64180	59500	59120	137800
(†)	1415.0	1414.5	1414.0	1413.7	1413.6	1413.3	1412.6	1411.9	1410.9	1409.7	1424.4	1424.3
(#)	-3960	-2390	-2350	-1360	-450	-1350	-3090	-3000	-4100	-4680	+79000	-700

MAX MIN 77530 MIN 59120 CAL YR 1977 WTR YR 1978 112100 141300

f Gage height, in feet, at end of month.
‡ Change in contents, in acre-feet.

134

COLORADO RIVER BASIN

08143000 LAKE BROWNWOOD NEAR BROWNWOOD, TX--Continued

PERIOD OF RECORD.--Chemical analyses: October 1969 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SPE- CIFI CON- DUCT ANCE (MICE MHOS	C - T- TEMP RO- ATU	ER- (ME	RD- NES SS NONG G/L BONG S (MG	CAR-	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE SIUM DIS- SOLVE (MG/L AS MG	, SODI DIS D SOLV (MG	ED TION
MAY 31	1430		359 2	7.0	260	130	68	21	,	5 2.0
		OTAS-	BICAR-		SULFATE	CHLO)- FL	.uo- s	ILICA.	SOLIDS. SUM OF CONSTI-
0.		DIS- SOLVED MG/L	BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4)	DIS-	ED SO	IS- DLVED IG/L	SOLVED (MG/L AS SIO2)	TUENTS, DIS- SOLVED (MG/L)
MA		7.0	150	0	63	160	1	.2	4.6	473

LOCATION.--Lat 31°43'54", long 98°58'25", Brown County, Hydrologic Unit 12090107, on right bank at Brownwood, 502 ft (153 m) upstream from city dam, 6.3 mi (10.1 km) downstream from Salt Creek, 10 mi (16 km) downstream from Lake Brownwood, and 47.5 mi (76.4 km) upstream from mouth.

DRAINAGE AREA .-- 1,614 mi2 (4,180 km2).

PERIOD OF RECORD .-- May 1917 to June 1918, October 1923 to current year.

REVISED RECORDS.--WSP 1312: 1928. WSP 1512: 1924(M), 1926-27, 1928(M), 1930-32, 1935(M), 1936, 1941.

GAGE.--Water-stage recorder. Datum of gage is 1,318.58 ft (401.903 m) National Geodetic Vertical Datum of 1929. See WSP 1922 for history of changes prior to Apr. 2, 1962.

REMARKS.--Records good. Flow regulated by Lake Brownwood (station 08143000). Brown County Water Improvement District No. 1 canal (station 08142500) diverts water from Lake Brownwood 10 mi (16 km) upstream. At end of year, flow from 20.8 mi² (53.9 km²) above this station and below Lake Brownwood was partly controlled by nine floodwater-retarding structures with a combined detention capacity of 4,720 acre-ft (5.82 km³). National Weather Service gage-height telemeter at station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--7 years (water years 1925-28, 1930-32) prior to completion of Lake Brownwood, 251 ft³/s (7.108 m³/s), 181,800 acre-ft/yr (224 hm³/yr); 46 years (water years 1933-78) partially regulated, 123 ft³/s (3.483 m³/s), 89,110 acre-ft/yr (110 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 31,600 ft³/s (895 m³/s) Oct. 14, 1930, gage height, 16.92 ft (5.157 m); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage, 21.7 ft (6.61 m) in September 1900, from information by Gulf, Colorado, and Santa Fe Railway Co. Flood of July 3, 1932, probably the greatest, reached a discharge of about 235,000 ft³/s (6,660 m²/s) as it entered Lake Brownwood (computed from rate of change of contents in lake; data furnished by engineers of Brownwood County Water Improvement District No. 1).

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 130 ft3/s (3.68 m3/s) May 11, gage height, 1.29 ft (0.393 m); no flow at times.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND	, WATER	YEAR	OCTOBER	1977	TO	SEPTEMBER	1978	
					MEAN	VALUEC							

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00	.45 .48 .49 .44	1.5 2.3 3.1 3.2 3.2	3.6 3.0 2.8 2.9 3.3	4.0 3.6 3.4 3.2 3.1	3.0 2.9 3.2 2.8 2.4	2.4 2.3 1.6 .78 .46	.44 1.1 1.9 1.9	6.9 7.5 4.4 3.0 1.9	.00 .00 .00	.00 .00 .00 21 6.0	.00 .00 .00
6 7 8 9	.00 .00 .00	.42 .66 9.3 9.2 6.0	3.7 5.1 6.1 5.3 3.4	3.7 3.9 3.7 2.9 1.7	2.9 3.9 3.9 4.4 4.0	2.6 4.7 4.0 3.2 3.0	.51 .48 .32 .25	1.4 1.5 1.5 1.2 .60	1.7 2.0 4.2 4.8 2.5	.00 .00 .00	3.3 2.2 1.6 1.2	.00 .01 2.0 4.2 3.1
11 12 13 14 15	.00 .00 .00	4.4 3.6 3.3 3.2 3.2	2.4 1.3 .84 .68	2.2 3.1 3.5 3.3 3.3	3.5 5.6 7.0 4.8 4.0	2.9 2.7 2.5 2.5 2.4	.55 .37 .25 .19	13 40 6.8 3.7 1.9	1.5 1.1 1.3 2.2 2.1	.00 .00 .00	1.1 .93 .82 .77 .63	1.9 1.7 1.5 1.3
16 17 18 19 20	.00 .00 .00	3.1 2.4 2.1 2.4 3.1	1.0 .69 .96 1.9 2.5	3.8 3.8 3.4 3.5 3.1	3.9 4.5 4.3 3.5 3.2	2.2 1.9 1.8 1.9 2.2	.17 .14 .10 .09	1.3 1.0 .95 .78 2.8	1.3 .82 .40 .20	.00 .00 .00	.54 .31 .19 .16	1.1 .91 .60 .48
21 22 23 24 25	.00 .00 .00	2.7 1.8 1.7 2.2 2.4	2.7 2.4 2.5 2.9 3.0	3.3 3.9 3.9 3.9 4.0	2.7 2.3 2.3 2.3 2.3	3.0 3.2 3.8 7.8 4.6	.04 .03 .03 .02	11 7.4 4.0 2.0 1.3	.03 .01 .00 .00	.00 .00 .00	.06 .06 .01 .00	.51 .51 .43 .43
26 27 28 29 30 31	.00 .01 .05 .11 .20	2.7 4.9 5.0 2.5 1.4	2.8 2.7 2.8 3.3 3.5 3.5	3.6 3.5 3.5 3.5 3.5 3.8	2.5 2.4 2.8	3.0 2.7 2.6 2.5 2.5 2.5	.01 .00 .00 .01 .12	1.0 .94 1.7 12 6.6 3.2	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.35 1.2 1.9 1.8 1.4
TOTAL MEAN MAX MIN AC-FT	.71 .023 .34 .00	85.90 2.86 9.3 .36 170	82.37 2.66 6.1 .68 163	104.9 3.38 4.0 1.7 208	100.8 3.60 7.0 2.3 200	93.0 3.00 7.8 1.8 184	12.15 .41 2.4 .00 24	136.51 4.40 40 .44 271	49.95 1.67 7.5 .00 99	.00 .000 .00	42.18 1.36 21 .00 84	29.19 .97 4.2 .00 58

CAL YR 1977 TOTAL 1576.92 MEAN 4.32 MAX 106 MIN .00 AC-FT 3130 WTR YR 1978 TOTAL 737.66 MEAN 2.02 MAX 40 MIN .00 AC-FT 1460

08143600 PECAN BAYOU NEAR MULLIN, TX

LOCATION.--Lat 31°31'02", long 98°44'25", Mills County, Hydrologic Unit 12090107, on right bank 44 ft (13 m) downstream from bridge on Farm Road 573, 0.6 mi (1.0 km) downstream from Blanket Creek, 5.5 mi (8.8 km) southwest of Mullin, and 10 mi (16 km) upstream from Colorado River.

DRAINAGE AREA .-- 2,034 mil (5,268 kml).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1967 to current year.

GAGE .-- Water-stage recorder. Datum of gage is 1,202.93 ft (366.653 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Flow is affected by Lake Brownwood 47 mi (76 km) upstream (see station 08143000). At end of year, flow from 143 mill (370 kml) above this station and below Lake Brownwood was partly controlled by 40 floodwater-retarding structures with a combined detention capacity of 32,280 acre-ft (39.8 hml) below the flood-spillway crests.

AVERAGE DISCHARGE.--11 years, 140 ft /s (3.965 m /s), 101,400 acre-ft/yr (125 hm /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,700 ft"/s (388 m"/s) Jan. 23, 1968, gage height, 29.26 ft (8.918 m); no flow June 29 to Aug. 5, 1974, and July 7 to Aug. 2, 1978.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,690 ft"/s (47.9 m"/s) Aug. 3, gage height, 6.50 ft (1.981 m); no flow July 7 to Aug. 2.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES DAY OCT NOV JUN JUL AUG SEP DEC JAN FEB MAR APR MAY .07 .00 4.3 1 45 2.6 14 10 8.8 12 7.3 2.9 26 5.1 .45 9.0 4.0 2.3 13 9.4 12 4.7 20 .23 .00 9.9 958 2.8 3.1 1.5 8.9 12 12 4.1 30 8.7 .10 225 23 3.9 8.6 .45 1.7 12 11 11 5 .04 72 5.9 .33 10 11 2.2 1.8 6.8 5. 3 4.2 6 .17 1.3 11 10 5.3 4.0 9.7 .01 32 .90 2.8 14 6.9 .10 7.2 9.8 11 12 3.9 5.1 8.7 .00 9.4 7.6 .00 13 8 .19 12 18 3.0 5.9 9.8 .00 5.4 8.6 19 23 - 55 32 8 8 23 6.2 4.1 11 10 .87 30 8.8 23 8.3 3.0 10 .00 30 11 1.6 8.1 25 12 10 .00 3.7 16 12 2.7 9.9 8.3 9.4 21 12 20 1.3 9.2 .00 3.0 9.1 13 1.9 7.7 8.3 11 35 15 23 7.5 .00 2.1 9.1 14 1.1 6.5 6.9 12 35 11 24 11 .00 1.6 12 9.3 12 11 2.8 .00 .70 6.2 23 13 16 1.2 5.8 6.3 12 17 11 11 6.3 2.9 .00 1.4 7.3 2.2 4.1 5.5 4.1 12 7.7 3.6 3.1 .00 1.2 6.8 2.9 12 18 5.1 18 10 6.9 2.4 2.3 .00 1.1 5.8 5.5 3.0 .93 1.4 .00 19 7.3 5.9 12 20 10 4.2 1.1 4.9 6.5 .00 20 12 1.0 1.2 17 9.4 2.6 .61 21 6.7 6.1 12 16 9.1 2.0 1.0 .00 1.3 4.9 12 7.0 8.1 1.0 .00 22 5.3 5.8 5.5 6.0 6.9 23 1.7 5.8 6.5 14 8.2 2.0 .81 .00 .61 24 2.4 6.9 8.2 12 13 8.8 1.9 11 .00 8.5 5.5 .00 7.0 4.9 25 5.6 9.3 8.3 14 12 10 3.8 26 12 12 4.3 .35 .00 5.3 4.9 3.8 9.1 8.3 12 27 2.6 8.6 7.3 11 11 12 1.3 2.7 .31 .00 4.5 4.9 28 1.9 8.4 11 12 .74 2.6 .25 .00 3.8 5.4 26 9.7 29 1.7 9.2 6.0 10 14 .64 120 .20 .00 .00 13 30 1.8 11 8.5 9 ---12 .70 132 .16 23 2.4 10 .00 4.8 9.3 31 8.8 45 ---1447.80 TOTAL 233.70 237.0 356.5 52.01 328.8 464.2 187.28 464.32 218.55 3.55 248.6 MEAN 3.1 46.7 8.29 1.68 7.79 7.65 10.6 16.6 11.5 6.24 15.0 7.29 35 MAX 5.6 32 14 14 19 20 132 30 2.8 .10 90 7.6 8.8 7.0 .00 .00 MIN 64 . 61 .16 464 921 707 371 921 7.0 2870 493 AC-FT 652

CAL YR 1977 TOTAL 23808.49 MEAN 65.2 MAX 4520 MIN .10 AC-FT 47220 WTR YR 1978 TOTAL 4242.31 MEAN 11.6 MAX 958 MIN .00 AC-FT 8410

08143600 PECAN BAYOU NEAR MULLIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1967 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1967 to current year. WATER TEMPERATURES: October 1967 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE (1967-70, 1972-78): Maximum daily, 2,230 micromhos May 14, 1978; minimum daily, 203 micromhos Sept. 18,

1974.
WATER TEMPERATURES (1967-70, 1972-75): Maximum daily, 32.0°C on several days during summer months; minimum daily, 1.0°C Jan. 15, 1975.

EXTREMES FOR CURRENT YEAR.-- SPECIFIC CONDUCTANCE: Maximum daily, 2,230 micromhos May 14; minimum daily, 287 micromhos Aug. 3.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			SI	PE-							
		STRE FLO	AM- CO	IFIC DN- JCT-		G	HARD- NESS	HARD- NESS. NONCAR-	CALCIUM DIS-	SIUM, DIS-	SODIUM.
		INST		NCE	PH	TEMPER-	(MG/L	BONATE	SOLVED	SOLVED	
DATE	TIME	TANE (CF		ICRO- HOS) (1	UNITS)	(DEG C)	AS CACO3)	(MG/L CACO3)	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)
DATE		ter	51 MI	105) (011121	(DEG C)	CACUSI	CACUSI	AS CAI	AS MOI	, MS ITM/
NOV											
02	1545	2	.6	1970	8.6	15.0	410	170	110	33	260
DEC									22		
05	1500	6	.2	1340	7.7	13.5	280	110	79	20	160
JAN 09	1530		.8	1920	7.9	7.0	400	180	110	30	260
MAR	1550		• •	1720	1.7	7.0	400	100	110	30	200
27	1605	13		1650		19.0	350	150	99	25	200
APR										4.0	233
01	1020	7	.6	1600		19.0	350	150	99	26	200
MAY 09	0820		.5	1810		22.0	370	130	100	28	230
JUN	0050	7	• 5	1010	100	22.0	3/0	130	100	20	230
01	2100	23		454		27.0	120	29	37	6.6	38
JUL											
03	2030		.60	974		29.5	240	72	73	15	93
AUG		1440		200		22.0	100			5.6	6.5
03	1100	1640		280		23.0	120	8	40		
									22		IDS.
		DIUM AD-	POTAS-	07540		5111 FA	CHL				OF
		RP-	DIS-	BICAR- BONATE	CAR-	SULFA DIS-					NTS,
		ION	SOLVED	(MG/L	BONAT				VED (MC		IS-
		TIO	(MG/L	AS	(MG/						LVED
DATE			AS K)	HC03)	AS CO						IG/L)
NOV		5.6	14	26		14 130	43	•	•5	7 7	1120
DEC		3.0	14	201	,	14 130	42	U	• 5	7.7	1120
05		4.2	11	21	0	0 89	26	0	.4	1.5	724
JAN											
09		5.7	13	27	0	0 150	41	0	1.2	6.4	1110
MAR		4.7	11	24					_		
27		4.7	11	24	0	0 120	34	0	•5	.6	914
01		4.6	12	25	0	0 120	33	0	.5	1.1	912
MAY		137.57		-							
09		5.2	13	29	0	0 100	36	0	•5	7.3	982
JUN									2	2.0	2.2
01		1.5	8.3	110	U	0 27	6	4	•5	7.1	242
JUL 03		2.6	10	21	0	0 71	16	0	.4	7.5	533
AUG			• •	21		, ,,	10	•			-33
03		.3	4.1	14	0	0 15		7.4	.1 1	2	160

08143600 PECAN BAYOU NEAR MULLIN, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	MONTH	DISCHOR	GE	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDI (TONS)	DIS- SOLVEN SULFATF (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA+MG) (MG/L)
ост	. 1977	52		1710	960	134	360	50	120	17	360
NOV	. 1977	233	.7	1970	1100	696	440	276	140	89	390
DEC	. 1977	236		1780	1000	638	380	242	130	81	370
JAN	. 1978	328	.8	1850	1040	919	400	356	130	118	380
FER	. 1978	464	٠2	1590	490	1110	320	400	110	139	340
	. 1978	356		1540	860	824	300	293	110	104	340
	. 1978	187		1700	950	481	350	179	120	61	360
MAY	20074.2	464							87	110	300
				1280	710	891	250	312			
	F 1978	218		605	330	195	81	48	36	21	160
	Y 1978	3	•55	991	550	5.2	160	1.5	66	0.6	240
AUG	. 1978	1447	. 8	353	190	730	24	95	14	54	110
SEP	т 1978	248	.6	1250	700	467	240	160	85	57	290
TOT	AL	4242	. 3	**	**	7090	**	2410	**	852	**
WTO	.AVG	11	.62	1110	620	**	210	**	74	**	260
	SPECIF	IC CONDUC	TANCE	(MICROMH	OS/CM AT	25 DEG. C), ONCE-DAILY	WATER YEAR	OCTOBER 1	977 TO SEPT	EMBER 1978	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN .	IUL AUG	SEP
1	1830	1900	1800	1870	1790	1150	1600	1740	470 11	80	661
3	1850 1860	1980 1970	1780	1890 1900	1780 1710	1190 1230	1610 1620	1720 1730		78 287	Land Control of the C
4	1860	1990	1450	1910	1660	1320	1650	1760		62 300	
5	1860	1980	1340	1880	1630	1380	1660	1760		75 333	
6	1860	1970	1390	1700	1610	1430	1660	1760	525 9	85 350	841
7	1870	1970	1420	1900	1590	1470	1670	1790		369	750
8	1870	1890	1530	1920	1600	1450	1670	1820	306	400	
9	1870	1750	1640		1610	1470	1680	1810	-50	415	
10	1860	1850	1740	1950	1660	1490	1690	1820	705 -	428	550
11	1830	2210	1800	1970	1680	1530	1670	1820	.00	442	
12	1720	5500	1850	1940	1700	1580	1700	1850	00,	466	
13	1710	2170	1920		1730	1640	1740	1990	000	463	
14 15	1680 1700	2090	1940 1940	1910 1920	1740 1660	1670 1640	1780 1780	2230 1970	0.7.0	474	
16	1670	2070	1950	1920	1650	1650	1750	1810	922 -	490	1780
17	1620	2080	1970	1940	1610	1630	1720	1840		500	
18	1580	2100	5000	1930	1590	1640	1700	1870	1000 -	507	1720
19	1570	2110	1890	1910	1540	1660	1700	1900	1030 -	538	1710
20	1570	2070	1870	1900	1500	1670	1680	1910	1040 -	542	1680
21	1580	2050	1880	1880	1470	1680	1710	1900	1060 -	540	1640
55	1570	2020	1890	1810	1450	1680	1720			450	
23	1590	2000	1920	1740	1400	1680	1700	2100	1070 -	550	
24	1620	1990	1850	1700	1370	1670	1710			600	1590
25	1680	1860	1830	1710	1330	1670	1700	2160	1080 -	685	1590
26	1740	1870	1840	1730	1270	1660	1710	2170	1090 -	720	1640
27	1800	1900	1870	1740	1190	1650	1700	2170		771	1710
28	1870	1950	1850	1750	1160	1600	1700	2180		775	1790
29	1900	1980	1870	1770		1580	1710	1250	1100 -	650	1650
30	1890	1900	1920	1780		1590	1730			678	
31	1850		1950	1770		1600		500		612	4 10 3
			2 - 2						TOTAL CO.		

1560

1550

1690

1810

2000 1790 1850

MEAN

1750

847 1040 511 1350

		TEM	PERATURE	(DEG. C)		WATER YEAR	R OCTOBER	R 1977 TO	SEPTEMBE	R 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	28.0					12.0	19.0	26.0	27.0			27.0
2		15.0	12.0	6.0	5.0				30.0			
3	24.0	17.0	12.0		6.0	10.0	21.0			29.5	23.0	
4	24.0	18.0			7.0	10.0	23.0	25.0		31.0	25.0	
5	23.0			10.0			22.5	25.0			23.0	28.0
6	22.0			11.0	6.5		21.0	28.0	27.5			
7		16.0	10.5	11.0	6.0	10.0	24.0				27.0	25.0
8	23.0	16.0	7.0				23.0	25.0	29.0			25.0
9	21.0		11.0	9.0	6.0	11.0		24.0	25.5		27.0	26.0
10	23.0	14.0	10.5	5.0	4.0	13.0			25.0		28.5	
11	18.0	11.0	8.0				19.5	24.5			29.5	
12	16.0		11.5				20.5		30.0		30.0	
13	16.5		13.5	7.0			22.5	24.0			27.5	27.0
14	17.0	14.5	11.0	6.0	8.0	16.5	27.0	25.0			28.0	29.0
15	18.0	20.0	13.0		7.0	15.5	24.0	27.0	29.0			28,5
16		17.0		6.0	8.0			27.0	31.0			28.5
17				2.0	6.0		25.0	26.5	30.0			
18					6.5	16.5	21.5				29.0	
19	16.0	16.0	9.0	3.0			21.0		27.0		32.0	26.0
20	20.0	17.0	7.0			20.0	21.0		29.0			
21	20.0	14.0		1.5	6.5	17.0	20.0				29.0	25.0
55	20.0	15.0	9.0		9.0	20.0			29.0		29.0	
23	21.0	13.0	11.5	6.0		20.0		27.0	29.0			
24	21.5			8.0		18.0	25.0	27.5	29.0			25.0
25	50.0			17.0	12.0	18.0	20.0				30.0	24.5
26	21.0			5.0				28.0	30.0			23.0
27			5.0		12.0		22.5	30.0	27.5		30.0	23.0
28	20.0	12.5	6.0		15.0		25.0					24.5
29	55.0	10.0	12.0			17.0		28.0	30.0		28.0	
30			10.0	6.5					32.0		28.0	
31			10.0			21.0					27.0	
MEAN	20.5	15.0	10.0	7.0	7.5	15.5	22.5	26.5	29.0	30.5	28.0	26.0

COLORADO RIVER BASIN

08144000 NOYES CANAL AT MENARD, TX

LOCATION.--Lat 30°54'57", long 99°47'02", Menard County, Hydrologic Unit 12090109, on right bank at intersection of Canal and Gay Streets in Menard and 4.7 mi (7.6 km) downstream from headgates.

PERIOD OF RECORD .-- March 1924 to current year.

WTR YR 1978 TOTAL

7182.67

MEAN 19.7

MAX 26

MIN

.00

AC-FT 14250

GAGE.--Water-stage recorder. Datum of gage is 1,878.06 ft (572.433 m) National Geodetic Vertical Datum of 1929. Prior to July 23, 1940, nonrecording gage at site 2,000 ft (610 m) upstream at datum 4.99 ft (1.521 m) higher.

REMARKS.--Records good. Discharge represents flow diverted from San Saba River; local runoff between diversion point and gage excluded. Canal diverts water from right bank of San Saba River 4.7 mi (7.6 km) upstream from Menard for irrigation near Menard. First diversion was about 1890. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--54 years (water-years 1925-78), 13.4 ft³/s (0.379 m³/s), 9,710 acre-ft/yr (12.0 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge (exclusive of times canal was submerged by floodwaters of San Saba River or when flow was affected by local runoff between point of diversion and station), 43 ft³/s (1.22 m³/s) Apr. 29, 30, 1928; no flow at times.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES DAY OCT NOV DEC JAN FFR APR MAY JUN JUL AUG SEP MAR .00 .00 .00 2.8 .00 .55 .00 .00 24 .00 .42 .00 .36 q .00 .38 .34 .00 .00 .31 .00 .62 24 .00 .96 .00 .56 8.5 .00 19 9.4 .01 .00 .00 ---.00 ---430.26 TOTAL 622.01 261.40 19.1 24.8 20.4 20.4 20.1 19.9 13.9 20.5 MEAN 20.1 8.71 25.0 23.3 MAX .23 MIN -00 .00 AC-FT 3780.09 .00 CAL YR 1977 TOTAL MEAN 10.4 MAX 26 MIN

141 COLORADO RIVER BASIN 08144500 SAN SABA RIVER AT MENARD, TX

LOCATION.--Lat 30°55'08", long 99°47'07", Menard County, Hydrologic Unit 12090109, on downstream side of bridge on U.S. Highway 83 in Menard, 1.1 mi (1.8 km) downstream from Las Moras Creek, 1.9 mi (3.1 km) upstream from Volkmann Draw, and 110.4 mi (177.6 km) upstream from mouth.

DRAINAGE AREA .-- 1,151 mi2 (2,981 km2).

PERIOD OF RECORD.--September 1915 to current year.

REVISED RECORDS.--WSP 568: Drainage area. WSP 1512: 1918-20, 1922-25, 1926(M), 1927-32, 1934(M), 1936, 1938(M).

GAGE.--Water-stage recorder. Datum of gage is 1,863.05 ft (567.858 m) National Geodetic Vertical Datum of 1929. Sept. 14, 1915, to Mar. 12, 1924, nonrecording gage at site 635 ft (194 m) downstream at datum 2.00 ft (0.671 m) lower. Mar. 13, 1924, to Feb. 21, 1939, nonrecording gage at site 1,000 ft (305 m) upstream at datum 2.00 ft (0.610 m) higher. Feb. 22, 1939, to Jan. 25, 1940, nonrecording gage at present site and datum. Jan. 26, 1940, to Sept. 19, 1957, water-stage recorder at site 240 ft (73 m) to right at present datum. Feb. 8, 1962, to Jan. 22, 1963, nonrecording gage at site 600 ft (180 m) downstream at present datum.

REMARKS.--Records good. Since about 1890, low flow during irrigation season regulated by diversions to Noyes Canal 4.5 mi (7.2 km) upstream and diversions by pumping at several locations upstream. Records of the Texas Water Commission show permits have been granted to irrigate 3,338 acres (1,400 hm²) above station. See record of Noyes Canal on preceding page. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 63 years, 65.2 ft3/s (1.846 m3/s), 47,240 acre-ft/yr (58.2 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 130,000 ft³/s (3,680 m³/s) July 23, 1938, gage height, 22.2 ft (6.77 m), present site and datum, from floodmark, from rating curve extended above 56,000 ft³/s (1,590 m³/s) on basis of slope-area measurement of peak flow; no flow at times as result of upstream diversion to Noyes Canal (station 08144000).

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1880, 23.3 ft (7.10 m) June 6, 1899, present site and datum, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 670 ft³/s (19.0 m³/s) and maximum (*):

Date	Time	Discharge		Gage h	eight	Date	Time	Disch	arge	Gage !	height
		(ft^3/s)	(m^3/s)	(ft)	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
Aug. 2	2300	*35,400	1,000	17.36	5.291	Aug. 12	1915	680	19.3	6.23	1.899
Minimum disch	arge, 5.6	ft3/s (0.	16 m³/s)	July 14.							

		DISCHA	RGE, IN	CUBIC FEET	PER SECON	ND, WATER	YEAR OCT	OBER 1977	TO SEPTE	MBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	37	76	51	51	54	55	44	42	88	28	25	52
2	35	74	50	53	54	56	44	42	77	28	5240	52
2 3	35	74	49	54	54	51	47	43	62	28	5460	47
4	37	75	49	53	53	54	4.7	42	55	29	315	45
5	38	75	48	52	53	58	46	42	49	28	151	51
6	38	75	48	52	52	62	47	41	44	27	113	134
7	38	76	48	52	54	66	46	41	48	26	103	76
8	38	81	50	50	54	63	44	41	48	25	97	72
9	37	79	48	50	54	60	45	39	45	22	97	63
10	37	76	47	50	54	59	71	38	43	23	87	55
11	37	76	49	51	53	58	59	38	44	23	82	51
12	36	75	50	54	67	58	51	40	44	22	210	50
13	37	75	51	52	67	58	48	38	46	18	250	49
14	38	75	49	53	58	59	47	39	47	6.4	111	48
15	38	75	49	51	56	59	46	39	47	9.1	76	47
16	39	63	50	53	57	61	46	39	44	13	54	47
17	40	61	50	52	59	61	4.7	38	34	17	49	45
18	40	59	50	51	57	60	45	35	33	20	46	43
19	40	54	51	51	55	60	44	35	33	18	42	42
20	41	54	50	51	57	58	44	38	33	17	40	42
21	41	53	50	53	55	58	45	44	26	17	39	44
22	66	52	50	5.5	54	59	45	46	27	18	41	48
23	71	52	50	54	54	53	45	43	28	21	36	47
24	56	52	51	54	54	51	45	40	29	24	33	47
25	52	53	50	53	54	51	44	38	29	25	38	48
26	49	54	52	52	54	51	42	38	29	23	38	46
27	54	55	50	51	54	50	42	35	28	22	40	53
28	76	54	51	52	56	48	41	35	28	23	44	55
29	77	51	52	51		47	41	45	28	24	51	51
30	76	53	52	52		47	41	60	29	25	47	48
31	76		52	53		46		87		26	45	
TOTAL	1450	1957	1547	1616	1557	1737	1389	1301	1245	675.5	13100	1598
MEAN	46.8	65.2	49.9	52.1	55.6	56.0	46.3	42.0	41.5	21.8	423	53.3
MAX	77	81	52	55	67	66	71	87	88	29	5460	134
MIN	35	51	47	50	52	46	41	35	26	6.4	25	42
AC-FT	2880	3880	3070	3210	3090	3450	2760	2580	2470	1340	25980	3170

CAL YR 1977 TOTAL 35474.0 WTR YR 1978 TOTAL 29172.5 MEAN 97.2 MEAN 79.9 MAX 3840 MAX 5460 MIN 33 MIN 6.4 AC-FT 70360 AC-FT 57860

08144800 BRADY CREEK NEAR EDEN, TX

LOCATION.--Lat 31°11'05", long 99°50'29", Concho County, Hydrologic Unit 12090110, on right bank at upstream side of bridge on U.S. Highway 83, 0.8 mi (1.3 km) downstream from Fitzgerald Creek, 2.2 mi (3.5 km) south of Eden, 2.4 mi (3.9 km) upstream from Hardin Branch, and 69.3 mi (111.5 km) upstream from mouth.

DRAINAGE AREA .-- 97 mi² (251 km²).

CAL YR 1977 TOTAL 1017.28 WTR YR 1978 TOTAL 280.32

MFAN 2.79

MEAN .77

MAX 485

MAX

PERIOD OF RECORD .-- April 1962 to current year.

GAGE.--Water-stage recorder. Datum of gage is 2,000.99 ft (609.902 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Flow is affected at times by discharge from the flood-detention pools of five floodwater-retarding structures with combined detention capacity of 22,190 acre-ft (27.4 hm³). These structures control runoff from 65.0 mi² (168.4 km²) above this station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 16 years, 1.14 ft3/s (0.0323 m3/s), 826 acre-ft/yr (1.02 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,110 ft³/s (145 m³/s) Apr. 28, 1966, gage height, 7.08 ft (2.158 m); no flow for many days most years.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1884, 15.8 ft (4.82 m) in July 1938, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 38 ft^3/s (1.08 m^3/s) May 28, gage height, 1.84 ft (0.561 m); no flow July 20, as result of construction pumping, from gage pool.

		DISCHA	RGE, IN	CUBIC FEET	PER SECON	, WATER	YEAR OCT	OBER 1977	TO SEPTE	MBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.88 .93 1.5 1.7	1.1 1.0 .93 .97	1.5 1.4 1.3 1.3	.97 .97 .97 1.0	1.1 .97 .97 .97	.84 .92 .92 .97	.71 .79 .67 .60	.74 .98 1.4 1.1	.65 .52 1.4 1.1	.27 .39 .57 .39	.16 .73 1.7 1.0 .71	.21 .29 .25 .21
6 7 8 9	1.3 1.3 1.2 1.2	1.1 1.2 2.6 1.4 1.2	1.3 1.2 1.2 .97	.79 .91 .88 .88	.89 1.1 1.1 1.1 1.0	.96 1.2 1.1 .90	.70 .67 .80 .88	.97 1.1 .56 .49	.40 .51 .44 .40	.09 .16 .10 .13	.98 .93 .71 .57	.22 .25 1.1 1.5 .72
11 12 13 14 15	1.3 1.2 1.3 1.2	1.2 1.2 1.2 1.3 1.3	.94 1.0 1.1 1.1	.97 1.1 .97 .93 .88	.97 2.2 1.2 1.0	1.1 1.1 .96 .68	.84 .61 .57 .45	.32 .40 .29 .38 .13	.46 .35 .73 .64	.08 .10 .04 .04	.42 .47 .51 .36 .35	.51 .34 .28 .25 .20
16 17 18 19 20	1.1 1.0 1.1 1.1	1.2 1.2 1.2 1.2 1.2	.99 .88 .88 .94	.98 .97 .97 .93	.88 1.2 1.1 .94	.74 .69 .69 .81	.79 .54 .42 .39	.08 .06 .06 .21	.23 .24 .28 .17 .25	.13 .05 .01 .01	.19 .15 .19 .19	.18 .13 .13 .14
21 22 23 24 25	1.1 2.4 1.7 1.3	1.2 1.2 1.2 1.2 1.2	.89 .87 .83 .88	.96 1.1 1.1 .97 .95	.91 .82 .89 .87	.83 .67 .79 .88	.72 .79 .83 .74	.49 .49 .40 .23	.25 .31 .23 .30	.03 .04 .10 .15	.18 .16 .17 .18 .17	.08 .10 .11 .15
26 27 28 29 30 31	1.1 1.1 1.2 1.2 1.1	1.2 1.2 1.3 1.5 1.5	.97 1.2 .90 .98 1.1	.90 .89 .89 .88 .88	.97 .97 .92	.92 .80 .76 .89 .82	.72 .69 .74 .79 .79	.20 .22 1.7 9.6 .97	.12 .09 .58 .87 .28	.10 .12 .15 .13 .15	.21 .22 .22 .22 .17 .13	.15 .21 .20 .20 .17
TOTAL MEAN MAX MIN AC-FT	38.51 1.24 2.4 .88 76	37.40 1.25 2.6 .93 74	32.79 1.06 1.5 .82 65	29.25 .94 1.1 .79 58	28.74 1.03 2.2 .82 57	27.14 .88 1.2 .67 54	21.28 .71 1.5 .39 42	25.85 .83 9.6 .06 51	13.43 .45 1.4 .09 27	4.07 .13 .57 .00 8.1	13.11 .42 1.7 .13 26	8.75 .29 1.5 .08 17

MIN

.64

AC-FT 2020

556

08144900 BRADY CREEK RESERVOIR NEAR BRADY, TX

LOCATION.--Lat 31°08'17", long 99°23'07", McCulloch County, Hydrologic Unit 12090110, at mouth of Rear Creek on Brady Creek, 280 ft (85 m) upstream from Farm Road 3022 over Brady Creek Dam, 3.0 mi (4.8 km) west of Brady, and 34.1 mi (54.9 km) upstream from

DRAINAGE AREA .-- 513 mi2 (1,329 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1963 to current year.

GAGE .-- Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.—The reservoir is formed by a compacted earthfill dam 8,400 ft (2,560 m) long. The dam was completed and storage began in May 1963. The dam was built by the city of Brady in cooperation with the Soil Conservation Service and the Farmers Home Administration for flood control, municipal, and industrial water supply. The spillway is a cut channel through natural ground 1,000 ft (305 m) wide located at right end of dam. The top of conservation pool is an uncontrolled concrete drop-inlet structure that discharges through a 7.0 by 7.0 ft (2.1 by 2.1 m) concrete box conduit and is designed to discharge 4,000 ft²/s (113 m²/s) at a 19.4 ft (5.9 m) head. The gated outlet is a 36 in [914 mm) pipe that extends through the embankment and is equipped with three sluice gates for controlled releases downstream. Flow into reservoir is affected at times by discharge from the flood-detention pools of 35 floodwater-retarding structures with a combined detention capacity of 82,180 acre-ft (101 hm²). These structures were built during the period February 1955 to July 1962 and control runoff from 263 mi² (681 km²) in the Brady Creek watershed above this station. The capacity curve is based on Geological Survey topographic map but was not adjusted for borrow. Figures given herein represent total contents. Data regarding the dam and reservoir are given in the following table:

	Elevation (feet)	Capacity (acre-feet)
Top of dam	1.783.0	-
Crest of spillway	1.762.4	90.310
trest of spillway (top of conservation pool)	1.743.0	30,430
Lowest gated outlet (invert)	1 712.0	1 320

COOPERATION.--Records furnished by the city of Brady show no water was diverted during year for municipal or industrial use. Capacity curve was furnished by the city of Brady.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 40,880 acre-ft (50.4 hm³) Sept. 24, 1971, elevation, 1,747.70 ft (532.669 m); minimum since first appreciable storage, 1,030 acre-ft (1.27 hm³) Sept. 18, 1964, elevation, 1,710.4 ft (521.33 m).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 24,590 acre-ft (30.3 hm³) Oct. 1, elevation, 1,739.91 ft (530.325 m); minimum, 19,920 acre-ft (24.6 hm³) Aug. 1, elevation, 1,737.07 ft (529.459 m).

Capacity table (elevation, in feet, and total contents, in acre-feet)

1,737.0 19,810 23,020 1.739.0 1,740.0

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	24550	23950	23760	23360	23380	23690	23350	22890	22260	21210	19970	20890
	24460	23860	23760	23360	23360	23710	23350	22890	22230	21180	21180	20870
2	24460	23830	23740	23360	23380	23670	23350	22820	22310	21140	21570	20860
4	24430	23810	23730	23360	23400	23660	23330	22790	22290	21090	21570	20840
5	24380	23810	23670	23360								
3	24360	23010	230/0	23300	23380	23660	23310	22760	22260	21040	21540	20810
6	24360	23780	23640	23380	23420	23730	23300	22760	22280	20980	21550	20780
7	24330	23830	23600	23380	23430	23710	23280	22720	22260	20930	21540	20900
8	24290	24000	23620	23330	23450	23690	23260	22710	22230	20890	21500	23590
9	24240	23900	23570	23310	23450	23690	23450	22660	22180	20840	21490	23690
10	24280	23880	23550	23300	23450	23690	23500	22610	22130	20790	21450	23780
11	24140	23880	23550	23330	23480	23690	23480	22620	22100	20750	21440	23830
12	24100	23860	23590	23350	23620	23670	23470	22570	22060	20700	21400	23860
13	24050	23860	23570	23350	23600	23660	23450	22530	22030	20650	21350	23860
14	24020	23860	23570	23330	23600	23660	23420	22490	22000	20620	21320	23860
15	23980	23860	23550	23350	23640	23620	23400	22460	21950	20590	21280	23850
		20000	23330	23330	23040	23020	23400	22400	21930	20330	21200	23030
16	23970	23860	23540	23360	23660	23600	23380	22440	21900	20540	21230	23810
17	23930	23850	23500	23330	23710	23590	23360	22390	21850	20500	21180	23760
18	23930	23850	23480	23350	23690	23570	23310	22360	21820	20420	21150	23710
19	23910	23850	23470	23330	23710	23570	23280	22330	21780	20370	21120	23670
20	23900	23850	23450	23300	23710	23550	23230	22430	21730	20340	21090	23660
21	23900	23810	23420	23350	23690	23550	23190	22410	21680	20290	21040	23640
22	24020	23790	23380	23350	23690	23540	23170	22390	21630	20230	21010	23600
23	24000	23790	23380	23360	23690	23540	23160	22360	21580	20250	20980	23590
24	24000	23780	23380	23380	23690	23520	23120	22330	21540	20220	20950	23570
25	24000	23780	23350	23360	23690	23480	23070	22290	21470	20180	20920	23550
26	23980	23740	23350	23350	23690	23470	23040	22260	21400	20150	20870	23520
27	24000	23730	23330	23350	23710	23450	22990	22240	21350	20090	20840	23520
28	24000	23710	23330	23350	23710	23420	22950	22330	21320	20060	20780	23500
29	24000	23780	23350	23350	23710	23400	22940	22310	21280	20030	20810	23480
30	23980	23780	23350	23350		23400	22940	22310	21230	20000	20790	23470
31	23980	23700	23350	23360		23380	22940	22260	21230	19950	20760	23470
			23330	23300		23300		22200		19950	20/60	
MAX	24550	24000	23760	23380	23710	23730	23500	22890	22310	21210	21570	23860
MIN	23900	23710	23330	23300	23360	23380	22940	22240	21230	19950	19970	20780
(+)	1739.56	1739.44	1739.19	1739.20	1739.40	1739.21	1738.95	1738.54	1737.91	1737.09	1737.61	1739.26
(+)	-610	-200	-430	+10	+350	-330	-440	-680	-1030	-1280	+810	+2710

CAL YR 1977 MAX 29120 WTR YR 1978 MAX 24550 MIN 19950 ± -1120

Elevation, in feet, at end of month. Change in contents, in acre-feet.

08144900 BRADY CREEK RESERVOIR NEAR BRADY, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1969 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
04.6					GHGGG.				AT THE RESERVE OF THE PARTY OF
JAN									
09	0835	1380	7.8	8.0	300	160	62	36	160
		19.76							P4.5
									SOLIDS,
	SODIUM	POTAS-				CHLO-	FLU0-	SILICA,	SUM OF
	AD-	SIUM.	BICAR-		SULFATE	RIDE.	RIDE.	DIS-	CONSTI-
	SORP-	DIS-	BONATE	CAR-	DIS-	DIS-	DIS-	SOLVED	TUENTS.
	TION	SOLVED	(MG/L	BONATE	SOLVED	SOLVED	SOLVED	(MG/L	DIS-
	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L	(MG/L	AS	SOLVED
DATE		AS K)	HCO3)	AS C03)	AS 504)	AS CL)	AS F)	S102)	(MG/L)
0.7.1			110007	H3 0007	A3 3017	42 05.			100
JAN									
09	4.0	9.6	180	0	110	270	.3	8.4	745
							-		

145 08145000 BRADY CREEK AT BRADY, TX

LOCATION.--Lat 31°08'17", long 99°20'05", McCulloch County, Hydrologic Unit 12090110, on left bank just upstream from bridge on U.S. Highway 377 on North Bridge Street in Brady, 0.4 mi (0.6 km) downstream from Live Oak Creek, and 29.5 mi (47.5 km) unstream from mouth.

DRAINAGE AREA .-- 575 mi2 (1,489 km2).

PERIOD OF RECORD .-- May 1939 to current year.

REVISED RECORDS .-- WSP 1512: 1941(M), 1951(M).

GAGE.--Water-stage recorder. Datum of gage is 1,646.50 ft (501.853 m) National Geodetic Vertical Datum of 1929. Prior to July 9, 1940, nonrecording gage at site 3,600 ft (1,100 m) upstream at datum 8.24 ft (2.512 m) higher.

REMARKS.--Records good. The city of Brady, which obtains its water supply from ground-water sources, reported that 369 acre-ft (455,000 m³) of sewage effluent was returned to Brady Creek downstream from the gage during the current year. Flow largely controlled since May 22, 1962, by Brady Creek Reservoir (station 08144900). At end of year, flow from 24.2 mi² (62.7 km²) above this station and below Brady Creek Reservoir was partly controlled by six floodwater-retarding structures with a combined capacity of 6,440 acre-ft (7.94 hm³) below flood-spillway crests. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--23 years (water years 1940-62) prior to completion of Brady Creek Reservoir, 25.2 ft³/s (0.714 m³/s), 18,260 acre-ft/yr (22.5 hm³/yr); 16 years (water years 1963-78) regulated, 12.2 ft³/s (0.346 m³/s), 8,840 acre-ft/yr (10.9 hm³/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 39,100 ft3/s (1,110 m3/s) Sept. 10, 1952, gage height, 24.80 ft (7.559 m); no

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1882, 29.1 ft (8.87 m) July 23, 1938, present site and datum, discharge at site 5 mi (8 km) downstream, 86,000 ft³/s (2,440 m³/s) by slope-area measurement. Flood of Oct. 6, 1930 (second highest since 1882), reached a stage of 25.9 ft (7.89 m), discharge 50,300 ft³/s (1,420 m³/s), present site and datum, from information by local residents.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 3,710 ft3/s (105 m3/s) Sept. 8, gage height, 11.15 ft (3.399 m); no flow for many days.

		DISCHA	RGE, IN C	UBIC FEET	PER SECOI	ND, WATER	YEAR OCT	OBER 1977	TO SEPTEM	BER 197	3	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.04 .04 .04 .04	.10 .07 .07 .07	.14 .07 .04 .05	.00 .00 .00	.00 .00 .00 .00	.17 .21 .19 .19	.00 .00 .00 .00	.00 .00 .00 .02	.00 .00 .07 .00	.00 .00 .00	.00 153 261 36 16	2.2 2.7 .39 .17
6 7 8 9 10	.04 .04 .04 .04	.07 .09 5.4 1.2	.03 .03 .03 .02	.00 .00 .05 .12	.00 .15 .04 .04	.19 .37 .14 .11	.00 .00 .00 .62 5.7	.01 .01 .01 .00	.00 .02 .02 .01	.00 .00 .00	5.8 2.8 1.2 .53	.08 4.8 706 58 38
11 12 13 14 15	.03 .03 .03 .03	.39 .31 .25 .20	.05 .06 .07 .06	.40 .05 .04 .04	.06 2.5 .63 .54	.09 .10 .09 .08	.61 .24 .05 .01	.00 .00 .00	.05 .04 .01 .00	.00 .00 .00	.18 .13 .10 .07	34 26 14 12 9.8
16 17 18 19 20	.02 .02 .02 .02	.21 .21 .25 .30	.07 .07 .12 .00	.08 .06 .06 .07	.31 .84 .34 .29	.05 .05 .07 .06	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.04 .03 .02 .02	6.8 4.0 2.3 1.5
21 22 23 24 25	.02 .15 .15 .07	.40 .39 .45 .49	.00 .00 .00	.06 .00 .00 .01	.26 .36 .32 .28	.07 .06 .06 .06	.00 .00 .00 .00	.01 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.02 .02 .02 .02	1.2 .51 .33 .48 .29
26 27 28 29 30 31	.05 .06 .09 .10 .10	.55 .43 .05 .26	.00 .00 .00 .00	.02 .04 .30 .32 .00	.38 .32 .23	.05 .04 .01 .02 .00	.00 .00 .00	.00 .00 .88 2.0 .01	.00 .00 .00 .00	.00 .00 .00 .00	.02 .01 .34 2.5 .35	.29 .21 .18 .10 .03
TOTAL MEAN MAX MIN AC-FT	1.59 .051 .15 .02 3.2	14.22 .47 5.4 .05 28	1.04 .034 .14 .00 2.1	2.08 .067 .40 .00 4.1	9.15 .33 2.5 .00	2.98 .096 .37 .00 5.9	7.23 .24 5.7 .00 14	3.14 .10 2.0 .00 6.2	.23 .008 .07 .00	.00 .000 .00	480.72 15.5 261 .00 954	927.46 30.9 706 .03 1840

CAL YR 1977 TOTAL 3911.94 WTR YR 1978 TOTAL 1449.84 MEAN 10.7 MAX 264 MIN .00 AC-FT 7760 MEAN 3.97 MAX 706 .00 AC-FT 2880

08146000 SAN SABA RIVER AT SAN SABA, TX

LOCATION.--Lat 31°12'47", long 98°43'09", San Saba County, Hydrologic Unit 12090109, on right bank at downstream side of bridge on State Highway 16, 1.2 mi (1.9 km) north of San Saba, 2.7 mi (4.3 km) upstream from Mill Creek, 4.8 mi (7.7 km) downstream from China Creek, and 16.6 mi (26.7 km) upstream from mouth.

DRAINAGE AREA .-- 3,042 mi 2 (7,879 km2).

PERIOD OF RECORD.--December 1904 to December 1906 (gage heights only), September 1915 to current year. Published as "near San Saba" December 1904 to December 1906 and September 1915 to August 1930.

REVISED RECORDS.--WSP 458: 1915-16. WSP 1282: Drainage area. WSP 1512: 1918-19(M), 1922, 1931(M), 1935-36. WSP 1922: 1917.

GAGE.--Water-stage recorder. Datum of gage is 1,162.16 ft (354.226 m) National Geodetic Vertical Datum of 1929. See WSP 1922 for history of changes prior to July 8, 1953. Since Oct. 1, 1956, supplementary water-stage recorder 2,780 ft (847 m) to right of main-channel gage used for floodflows.

REMARKS.--Records good. Many diversions above station for irrigation and municipal use affect low flow. Flow partly affected by Brady Creek Reservoir (see station 08144900), capacity 90,300 acre-ft (111 hm³). Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 63 years, 241 ft3/s (6.825 m3/s), 174,600 acre-ft/yr (215 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 203,000 ft 3 /s (5,750 m 3 /s) July 23, 1938, gage height, 39.3 ft (11.98 m), present site and datum, from rating curve extended above 41,000 ft 3 /s (1,160 m 3 /s) on basis of slope-area measurement of peak flow; no flow at times in 1918, 1930, 1954-56, and 1963-64.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1899, that of July 23, 1938. Flood of June 6, 1899, reached a stage of 36.7 ft (11.19 m), present site and datum, from information by local residents.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 3,000 ft3/s (85.0 m3/s) and maximum (*):

Date	Time	Dischar (ft³/s) (ge m³/s)	Gage h	eight (m)	Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)
Aug. 3	2130	*27,000	765	28.38	8.650	Sept. 9	0100	6,710	190	19.84	6.047

Minimum discharge, 5.4 ft³/s (0.15 m³/s) July 21.

		DISCHARG	E, IN C	UBIC FEET	PER SECO	OND, WATER	YEAR OCT	OBER 1977	TO SEPTE	MBER 1978	1.3	
DAY	OCT	NOV	.DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	67 68 64 69 71	123 122 119 118 119	125 123 121 121 121 118	112 117 121 122 121	124 124 125 125 125	128 128 127 127 125	91 90 90 94 92	64 88 109 92 84	99 104 156 458 200	37 41 39 32 30	21 34 8620 8520 1020	145 159 154 154 152
6 7 8 9 10	73 72 74 73 78	120 121 153 171 161	114 115 117 115 114	121 118 114 112 113	125 130 132 137 133	125 136 143 140 134	92 92 92 93 107	82 86 80 70 69	138 121 121 119 104	27 29 28 26 27	601 470 376 298 256	123 103 1170 2680 462
11 12 13 14 15	84 77 75 76 80	143 137 134 131 130	114 115 118 119 119	115 118 121 120 123	130 145 162 157 148	135 136 134 131 126	114 115 106 113 109	71 74 67 59	100 97 115 95 88	26 22 19 16 11	242 261 212 295 367	306 246 208 191 172
16 17 18 19 20	81 86 86 86	129 127 126 124 118	118 115 114 114 107	125 122 121 121 121	154 152 153 150 141	122 121 122 122 122	105 96 87 82 84	56 56 58 52 52	82 79 71 67 61	13 16 16 14 10	264 213 183 160 148	159 144 135 127 124
21 22 23 24 25	89 100 110 113 147	113 112 112 111 111	105 102 104 99 101	121 125 125 127 127	137 133 132 131 129	117 111 108 113 117	82 80 82 81 73	74 123 89 95 82	54 48 43 42 41	8.2 8.8 12 14	142 140 141 136 127	123 124 144 134 129
26 27 28 29 30 31	141 122 117 117 115 116	113 114 113 118 128	105 110 107 115 117 114	126 121 122 120 119 121	127 128 130	106 104 103 95 91	68 67 67 67	72 73 71 139 120 198	37 34 36 35 40	16 15 12 13 20 22	124 124 117 126 148 134	126 123 126 132 127
TOTAL MEAN MAX MIN AC-FT	2808 90.6 147 64 5570	3771 126 171 111 7480	3515 113 125 99 6970	3732 120 127 112 7400	3819 136 162 124 7570	3741 121 143 91 7420	2677 89.2 115 66 5310	2564 82.7 198 52 5090	2885 96.2 458 34 5720	633.0 20.4 41 8.2 1260	24020 775 8620 21 47640	8402 280 2680 103 16670
CAL YR WTR YR	1977 TOTAL 1978 TOTAL			1 215 MAX 1 171 MAX	5720 8620	MIN 64 MIN 8.2	AC-FT AC-FT	155900 124100				

08147000 COLORADO RIVER NEAR SAN SABA, TX (National stream-guality accounting network)

LOCATION.--Lat 31°13'04", long 98°33'51", San Saba-Lampasas County line, Hydrologic Unit 12090201, near left bank at downstream side of pier of bridge on U.S. Highway 190, 5.2 mi (8.4 km) downstream from San Saba River, 9.2 mi (14.8 km) east of San Saba, and at mile 474.3 (763.1 km).

DRAINAGE AREA.--30,600 mi² (79,250 km²), approximately, of which 12,880 mi² (33,360 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1915 to October 1922 (published as "near Chadwick"), October 1923 to August 1930 (published as "near Tow"), September 1930 to current year. Monthly discharge only for some periods, published in WSP 1312.

REVISED RECORDS.--WSP 458: 1916. WSP 858: 1900(M), 1936(M). WSP 1118: Drainage area. WSP 1512: 1916-18(M), 1936. WSP 1732:

GAGE.--Water-stage recorder. Datum of gage is 1,096.22 ft (334.128 m) National Geodetic Vertical Datum of 1929. See WSP 1922 for history of changes prior to May 23, 1940.

REMARKS.--Water-discharge records good. Many diversion above station for irrigation, municipal use, and oilfield operation. Flow is affected by four reservoirs upstream from Winchell and one reservoir in the San Saba River and Pecan Bayou basins; combined capacity, 1,973,000 acre-ft (2.43 km³). Flow is affected at times by discharge from flood-detention pools of 183 floodwater-retarding structures with combined detention capacity of 196,360 acre-ft (242 hm³). These structures control runoff from 896 mi² (2,321 km²). National Weather Service gage-height telemeter at station.

AVERAGE DISCHARGE.--50 years (water years 1917-19, 1921-22, 1924-68) prior to completion of Robert Lee Dam, 1,340 ft 3 /s (37.95 m 3 /s), 970,100 acre-ft/yr (1,200 hm 3 /yr); 10 years (water years 1969-78) partially regulated, 722 ft 3 /s (20.45 m 3 /s), 523,100 acre-ft/yr (645 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 224,000 ft³/s (6,340 m³/s) July 23, 1938, gage height, 63.2 ft (19.26 m), present site, based on floodmarks at site then in use; no flow Aug. 27-31, 1954; Aug. 3-13, 1963; July 20 to Aug. 8, Aug. 11-14,

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage during period 1878 to July 22, 1938, 58.4 ft (17.80 m) Sept. 25, 1900, discharge, 184,000 ft³/s (5,210 m³/s), present site, from floodmarks at former site.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 28,100 ft³/s (796 m³/s) Aug. 4, gage height, 22.59 ft (6.885 m); minimum, 11 ft³/s (0.31 m3/s) July 23, 24.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978
MEAN VALUES AUG SEP DAY OCT NOV DEC JAN FEB MAR JUN JUL 182 126 201 119 117 414 324 547 17 140 195 119 131 18 167 ---TOTAL 2440 25.2 19700 3640 315 MAX MIN AC-FT 144309 TOTAL TOTAL MIN 90 MIN 12 AC-FT AC-FT

MEAN 395

MAX

08147000 COLORADO RIVER NEAR SAN SABA, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: September 1947 to current year. Chemical and biochemical analyses: October 1969 to current year. Pesticide analyses: January 1968 to current year.

PERIOD OF DAILY RECORD .--

WATER TEMPERATURES: October 1947 to current year.
WATER TEMPERATURES: October 1947 to current year.
SUSPENDED SEDIMENT DISCHARGE: December 1950 to September 1962.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 5,660 micromhos June 28, 1962; minimum daily, 161 micromhos Sept. 11, 1952.
WATER TEMPERATURES: Maximum daily, 37.0°C Aug. 3, 1956; minimum daily, 0.0°C Jan. 29, 1948, Jan. 30, 1951.

EXTREMES FOR CURRENT YEAR.--SPECIFIC CONDUCTANCE: Maximum daily, 2,650 micromhos May 10; minimum daily, 253 micromhos Aug. 4. WATER TEMPERATURES: Maximum daily, 33.0°C June 24, July 14-16, 21; minimum daily, 4.0°C Jan. 20.

WATER QUALITY DATA+ WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			SPE- CIFIC					OXYGEN.	OXYGEN DEMAND.	COLI-	COLI-
	*	STREAM- FLOW, INSTAN-	CON- DUCT- ANCE	PH	TEMPER-	TUR- BID-	OXYGEN, DIS-	SOLVED (PER- CENT	BIO- CHEM- ICAL+	TOTAL, IMMED. (COLS.	FECAL.
DATE	TIME	TANEOUS (CFS)	(MICRO- MHOS)	(UNITS)	ATURE (DEG C)	(UTU)	SOLVED (MG/L)	SATUR- ATION)	5 DAY (MG/L)	PER 100 ML)	(COLS./
ост											
17	1220	133	891	8.2	18.0		8.7	95	1.2	420	48
31	1200	558	1070	8.3	23.0	15	8.2	98	1.7		
30 DEC	1810	207	852	8.3	15.0						-
12 JAN	1544	194	1110	8.0	12.5	10	10.5	102	1.1	32	16
09	1100	186	1050	8.2	8.0	9	11.4	100	1.1	350	12
10 APR	0920	210	1030	8.1	10.0	10	13.2	121	2.7	140	20
26 MAY	1010	630	904	8.4	20.0	30	6.8	79	2.5	140	30
16 JUN	1200	155	1210	8.2	26.0	50	8.6	113	3.3	K3000	100
26	1015	56	540	8.1	27.0	40	6.4	81	1.5	360	40
28 AUG	1215	18	599	8.2	30.5		7.2	97	10.87		16 **
23	1300	156	550	8.2	30.0	25	6.8	93	1.4	270	140
SEP 26	1015	182	615	8.0	24.0	35	6.8	83	1.1	390	100
945	STREP- TOCOCCI FECAL. KF AGAR (COLS. PER	HARD- NESS (MG/L AS	HARD- NESS. NONCAR- BONATE (MG/L	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
DATE	100 ML)	CACO3)	CACO3)	AS CA)	AS MG)	AS NA)		A3 N7	110037	H3 0007	102.00
OCT					41	62	1.5	3.6	270	0	78
31	92	330 370	110 170	65 77	43	78	1.8	4.1	240	0	120
NOV 30		290	120	54	37	63	1.6	3.6	200	0	78
DEC 12	20	380	160	83	42	79	1.8	3.9	270	0	120
JAN 09	80	390	170	84	44	77	1.7	3.2	270	0	130
MAR 10	60	360	180	80	40	78	1.8	3.2	230	0	100
APR 26	76	330	100	66	39	57	1.4	3.4	270	0	73
MAY 16	190	390	210	85	42	100	2.2	5.3	210	0	140
JUN 26	100	220	25	46	26	26	.8	3.2	240	0	24
JUL 29		240	27	42	33	37	1.0	3.5	260	0	25
AUG 23	1500	230	45	62	19	23	.7	4.1	230	0	33
SFP 26	1300	240	31	60	21	28	.8		250	0	35
E	2511	6.717	31	J.,			-				

08147000 COLORADO RIVER NEAR SAN SABA, TX--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOL VED (MG/L AS SIO2)	SOLIOS. RESIDUE AT 150 DEG. C DIS- SOLVED (MG/L)	SOLIDS. SUM OF CONSTI- TUENTS. DIS- SOLVED (MG/L)	NITRO- GEN. NITRATE TOTAL (MG/L AS N)	NITRO- GEN. NITRITE TOTAL (MG/L AS N)	NITRO- GEN+ NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN; AMMONIA TOTAL (MG/L AS N)	NITRO- GEN. ORGANIC TOTAL (MG/L AS N)
OCT					10000					
17	160	.3	16 16	621	519 617	.30 .15	.01	.31	.02	.80
31	100	.4	10	021	•	•••	•••			
30 DEC	120	•3	12		467		•			
12	150	.3	11	616	622	.75	.01	.76	.08	1.5
JAN 09	140	.3	8.9	644	621	1.2	.01	1.2	.07	.43
10	150	•3	6.3	614	571	.66	.01	.67	.01	.69
26	100	.3	11	504	483	.31	.01	.32	.04	.66
MAY 16	190	.4	11	711	677	.74	.03	.77	.00	.61
26	43	.2	13	286	300	.10	.00	.10	.01	.59
JUL	4.2		18	339	349	.00	.01	.00	.00	.70
28	62	•5	10	339	347	• 00				
23 SFP	40	•2	14	307	309	•15	.01	.16	•01	.59
26	52	.2	14	355	337	•33	.00	.33	.02	.58
	The second section is									
DATE	NITRO- GFN: AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS. TOTAL (MG/L AS P)	PHOS- PHORUS. DIS- SOLVED (MG/L AS P)	CARBON. ORGANIC TOTAL (MG/L AS C)	CARBON. ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT. SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
DATE	GFN+AM- MONIA + ORGANIC TOTAL (MG/L	GEN+AM- MONIA + ORGANIC DIS- (MG/L	PHORUS. TOTAL (MG/L	PHORUS. DIS- SOLVED (MG/L	OPGANIC TOTAL (MG/L	ORGANIC DIS- SOLVED (MG/L	ORGANIC SUS- PENDED TOTAL (MG/L	MENT + SUS- PENDED (MG/L)	MENT DIS- CHARGE, SUS- PENDED	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 17	GFN.AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN+AM- MONIA + ORGANIC DIS- (MG/L AS N)	PHORUS. TOTAL (MG/L AS P)	PHORUS. DIS- SOLVED (MG/L AS P)	OFGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT+ SUS- PENDED (MG/L)	MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 17 31	GFN.AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS. TOTAL (MG/L AS P)	PHORUS. DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT + SUS- PENDED (MG/L)	MENT DIS- CHARGE, SUS- PENDED	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 17 31 NOV 30	GFN.AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN+AM- MONIA + ORGANIC DIS- (MG/L AS N)	PHORUS. TOTAL (MG/L AS P)	PHORUS. DIS- SOLVED (MG/L AS P)	OFGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT+ SUS- PENDED (MG/L)	MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 17 31 NOV 30 DEC	GFN.AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN+AM- MONIA + ORGANIC DIS- (MG/L AS N)	PHORUS+ TOTAL (MG/L AS P)	PHORUS. DIS- SOLVED (MG/L AS P)	OPGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT+ SUS- PENDED (MG/L)	MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 17 31 NOV 30 DEC 12 JAN	GFN•AM- MONIA • ORGANIC TOTAL (MG/L AS N) •82 •30	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS. TOTAL (MG/L AS P) .05	PHORUS. DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT+ SUS- PENDED (MG/L)	MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 17 31 NOV 30 DEC 12 JAN 09 MAR 10	GFN-AM- MONIA + ORGANIC TOTAL (MG/L AS N) -82 -30 	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N)33	PHORUS. TOTAL (MG/L AS P) .05 .04	PHORUS. DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVEN (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT+ SUS- PENDED (MG/L)	MENT 01S- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 17 31 NOV 30 DEC 12 JAN 09 MAR 10 APR 26	GFN-AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1.6 -50	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS. TOTAL (MG/L AS P) .05 .04 .02	PHORUS. DIS- SOLVED (MG/L AS P) .02	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT SUS- PENDED (MG/L)	MENT 015- CHARGE. SUS- PENDED (T/DAY) 14 20	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 17 31 NOV 30 DEC 12 JAN 09 MAR 10 APR 26 MAY 16	GFN-AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1.6 -50	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N) .33	PHORUS. TOTAL (MG/L AS P) .05 .04 	PHORUS. DIS- SOLVED (MG/L AS P) .02 .00	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT - SUS- PENDED (MG/L) 23 39 27 16	MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 17 31 NOV 30 DEC 12 JAN 09 MAR 10 APR 26 MAY 16 JUN 26	GFN-AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1.6 -50 -70	GEN-AM- MONIA + ORGANIC DIS- (MG/L AS N) .33 .95 .48 .26	PHORUS. TOTAL (MG/L AS P) .05 .04 .02 .03 .10	PHORUS. DIS- SOLVED (MG/L AS P) .02 .00 .03 .07	ORGANIC TOTAL (MG/L AS C) 	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT - SUS- PENDED (MG/L) 23 39 27 16 94	MENT 015- CHARGE, SUS- PENDED (T/DAY) 14 20 14 9.1	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 17 31 NOV 30 DEC 12 JAN 10 APR 26 MAY 16 JUN 26 JUN 26	GFN-AM- MONIA + ORGANIC TOTAL (MG/L AS N) .82 .30 1.6 .50 .70 .61	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N) .33 .95 .48 .26	PHORUS. TOTAL (MG/L AS P) .05 .04 .02 .03 .10 .08	PHORUS. DIS- SOLVED (MG/L AS P) 0200 .03 .07 .00	ORGANIC TOTAL (MG/L AS C) 5.1 2.6 4.0	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT - SUS- PENDED (MG/L) 23 39 27 16 94 56	MENT 015- CHARGE. SUS- PENDED (T/DAY) 14 20 14 9.1 160 23	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 17 31 NOV 30 DEC 12 JAN 09 MAR 10 APR 26 MAY 16 JUN 26 JUL	### ### ##############################	GEN-AM- MONIA + ORGANIC DIS- (MG/L AS N) .33 .95 .48 .26 .60	PHORUS. TOTAL (MG/L AS P) .05 .04 .02 .03 .10 .06	PHORUS. DIS- SOLVED (MG/L AS P) .02 .00 .03 .07 .00	ORGANIC TOTAL (MG/L AS C) 5.1 2.6 4.0 4.0	ORGANIC OIS- SOLVEN (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT - SUS- PENDED (MG/L) 23 39 27 16 94 56 57	MENT 015- CHARGE, SUS- PENDED (T/DAY) 14 20 14 9.1 160 23 8.6	SUSP. SIEVE DIAM. % FINER THAN .062 MM

08147000 COLORADO RIVER NEAR SAN SABA, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIMF	ARSENIC TOTAL (UG/L AS AS)	APSENIC SUS- PENDED TOTAL (UG/L- AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	RARIUM. TOTAL RECOV- ERABLE (UG/L AS BA)	BAPIUM. SUS- PENDED RECOV- ERABLE (UG/L AS BA)	BARTUM. DIS- SOLVED (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)
MAR 10	0920	1	0	1	200	100	100	0	0	2
26 AUG	1015	2	0	3	300	0	300	1	1	0
23	1300	6	3	3	200	0		0	0	0
DATE	CHRO- MIUM, TOTAL PECOV- FRABLE (UG/L AS CR)	CHRO- MIUM. SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM. DIS- SOLVED (UG/L AS CP)	COBALT. TOTAL RECOV- ERABLE (UG/L AS CO)	COBALT, SUS- PENDED RECOV- ERABLE (UG/L AS CO)	COBALT. DIS- SOLVED (UG/L AS CO)	COPPER. TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER. SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER. DIS- SOLVED (UG/L AS CU)	IRON. TOTAL RECOV- ERABLE (UG/L AS FE)
MAR										
10 JUN	0	0	10	1	1	0	5	3	2	210
26 AUG	- 0	0	n	1	1	0	8	6	5	820
23	0	0	10	0	0	0	7	4	3	640
DATE	TRON. SUS- PENDED RECOV- FRABLE (UG/L AS FE)	IRUN, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD. DIS- SOLVED (UG/L AS PB)	MANGA- NESE + TOTAL RECOV- EPABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE+ DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY SUS- PENDED RECOV- ERABLE (UG/L AS HG)
MAR 10		10	14	14	0	40	40	0	.0	.0
26	810	10	4	4	0	40	40	5	.0	• 0
23	620	20	3	3	0	50	50	0	.1	.1
	MERCURY DIS- SOLVED (UG/L	SELE- NIUM, TOTAL (UG/L	SELE- NIUM. SUS- PENDED TOTAL (UG/L	SELE- NIUM, DIS- SOLVED (UG/L	SILVER. TOTAL RECOV- ERABLE (UG/L	SILVER. SUS- PENDED RECOV- ERABLE (UG/L	SILVER, DIS- SOLVED (UG/L	ZINC. TOTAL RECOV- ERABLE (UG/L	ZINC, SUS- PENDED RECOV- ERABLE (UG/L	ZINC. DIS- SOLVED (UG/L
DATE	AS HG)	AS SE)	AS SE)	AS SE)	AS AG)	AS AG)	AS AG)	AS ZN)	AS ZN)	AS ZN)
10	• 0	2	0	2	0	0	0	10	0	10
26 AIIG	• 0	0	0	1	0	0	0	30	50	10
23	.0	1	1	0	0	0	0	10	0	10

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

08147000 COLORADO RIVER NEAR SAN SABA, TX--Continued

	TIM	E	PCB.	PC CHL TOT	IA- IES. DLY- OR.	ALDRIN TOTAL	IN E	RIAL	ATRA ZINE TOTA	L	ATRA- ZINE, TOTAL IN BOT TOM MA TERIA	- DAN	TAL	CHLOR DANE, TOTAL IN BOT TOM MA TERIA	- DI	DD,	TOTAL TOM IN BOTTER	AL OT- MA- IAL
DATE			(UG/L) (06	/L)	(UG/L) (UG,	/KG)	(UG/	L)	(UG/KG) (00	5/L)	(UG/KG) (0	3/L)	(UG/	(G)
0CT 31	120	0	N	0		N	D	ND		ND	N	D	ND	N	D	ND		ND
26 AUG	101	5	•	0	.00	.0	0				-	-	• 0	-	-	.00		
23 SEP	130	0		0	.00	.0	0					-	• 0	-	-	.00		
26	101	5		0	.00	.0	0				n-4	-	• 0	-	-	.00		
DATE	DDE TOTA (UG/	L	DDE . TOTAL IN BOT TOM MA TERIA (UG/KG	- DD L TOT	T,	DDT. TOTAL IN BOT TOM MA TERIA (UG/KG	- AZIN	NON,	DI- AZINO TOTA IN BO TOM M TERI (UG/K	IL II – IA –	DI- ELDRII TOTAL (UG/L	TER	TAL ROT- MA-	ENDO- SULFAN TOTAL (UG/L	, END	(IN, TAL G/L)	ENDRI TOTA IN 80 TOM N TERI (UG/N	AL OT- MA- IAL
OCT 31		ND	1.	4	ND	N	D	ND		ND	N	D	ND	_	_	ND		NU
JUN 26		00	_		.00			.00			.0	0		• 0	0	.00		
AUG 23		00	_		.00	_	-	.00			.0	0		.0	0	.00		
SEP 26		00	_		.00	_	_	.00			.0	0		• 0	0	.00		
	ETHIO	N,	ETHION TOTAL IN BOT TOM MA	- HEF	TA-	HEPTA CHLOR TOTAL IN BOT TOM MA	, - CHI - EPO	PTA- OR CIDE	HEPT CHLO EPOXI TOT. BOTT	DE IN	LINDAN	LING TOT IN E	TAL 30T- MA-	MALA- THION	TH. TO	ION, TAL BOT-	METH OXY CHLO	Y- OR,
DATE	TOTA (UG/		TERIA (UG/KG		AL	TERIA (UG/KG		TAL G/L)	MAT (UG/K		TOTAL (UG/L		KG)	TOTAL (UG/L		(KG)	TOT/	
31 JUN		ND	N	D	ND	N	D	ND		ND	N	D	ND	N	D	ND		ND
26 AUG		00	· +	-	.00	-	-	• 00			• 0	0		• 0	0			
23 SEP		00	-	-	.00	-	-	.00			.0	0		• 0	0			
26		00	-	-	.00	-	-	.00			.0	0		• 0	0			
C	DATE	TOT PO	Y- LOR, IN	METHYL PARA- THION, TOTAL (UG/L)	TH TOT BO	RA- ION, IN TTOM	METHYL TPI- THION. TOTAL (UG/L)	T HT. TOT 08 M	THYL RI- ION. IN TTOM ATL. /KG)	MIR!	EX, TAL	PARA- THION, TOTAL (UG/L)	TOT IN B TOM	ON, AL BOT- MA- RIAL	ZIMA- ZINE TOTAL COUL- SON COND. (UG/L)	ZIN BOT MAT AL KG	MA- E IN TOM ERI- (UG/ DRY INS)	
00	CT 31		ND	NC		ND	ND		ND			ND		ND	ND		ND	
JU	JN 26			.00			.00				.00	.00						
AL	JG 23			.00			.00				.00	.00						
SF	EP 26			.00			.00				.00	.00						
		APHE	OX- I	TOXA- PHENE, TOTAL N BOT- OM MA-	T	TAL I	TRI- THION. TOTAL N BOT- OM MA-		4-n•	Z,4- TOT: IN B	AL 0T- MA- 2	,4,5-T	2,4, TOT IN F	AL ROT- MA- S	ILVEX,	IN TOM	VEX. TAL BOT-	
0	DATE			TERIAL UG/KG)			TERIAL UG/KG)		TAL	TER (UG/		TOTAL (UG/L)	(UG/		(UG/L)		/KG)	
	31		ND	ND		ND	ND		ND		ND	ND		ND	ND		ND	
2	JN 26		0			.00			.00			.00			.00			
2	JG 23 EP		0			.00			.00			.00			.00			
	26		0			.00			.00			.00			.00			

08147000 COLORADO RIVER NEAR SAN SABA, TX--Continued

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 PERIPHYTON

PERI- CHLOR-A CHLOR-B

	DATE	LENGTH OF EXPOSURE (DAYS)	PERI- PHYTON BIOMASS ASH WEIGHT G/SQ M	BIO TO DI WE	RI- YTON MASS TAL RY IGHT SQ M	CHLOR-A PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)	CHLOR-E PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)	SAMPI	LING MI	ETHOD			
	DEC 12	42	108	118		6.23	.620	POLYET	HYLENE	STRIP			
	28	32	5.04	6	.22	8.35	.280	POLYET	HYLENE	STRIP			
		PHYTOPLA	NKTON ANA	LYSES	, oct	OBER 1977	TO AUG	UST 197	8				
DATE TIME			31,77		10,78		16,78		26,78 015		28•78 215		23,78 300
TOTAL CELLS/ML		12	000	3	900	160	0000	20	000	75	000	13	3000
DIVERSITY: DIVISION .CLASSORDERFAMILYGENUS			0.4 0.4 0.4 0.4		1.3 1.3 1.4 1.5		1.1 1.1 1.4 1.9 2.5		1.3 1.3 1.4 2.0 2.4		0.6 0.6 0.9 1.0	B.	1.7 1.7 2.4 2.8 3.5
ORGANISM		CELLS /ML	PER- C	ELLS /ML	PER- CENT		PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN AL •CHLOROPHYCEAE •CHLOROCOCCALES ••CHARACIACEAE •••SCHROEDERIA •••COELASTRACEAE •••COELASTRUM	LGAE)					2800	-	 2200	- 11	- 1		150	1
PEDIASTRUMMICRACTINIACEAE			•		-	3200	2	270	1			-	
GOLENKINIA MICRACTINIUM OOCYSTACEAE		===	:		:	4800	3		:	New	•	250	0
ANKISTRODESMUS		:	0		-	4000	0	230	1	490	1	150	5
DICTYOSPHAERIUM			0		-	4000	5		-		0	98	1
OOCYSTIS			-		-	1600	1		-	tie T		200	5
SELENASTRUM		86	1		-		0			-	-	250	-
TREUBARIA					-		-		-	1	0.5	98	1
SCENEDESMACEAE					1	4800	3	2700	13	BY BY	0	200	2
SCENEDESMUS		300	2	320	8	18000	11	6200#		4000	5	690	5
TETRASTRUM			0		-	1600	1	-				DEL COURT	
PALMELLACEAE											-		
SPHAEROCYSTIS .VOLVOCALESCHLAMYDOMONADACEA	E					-						440	3
CARTERIA			-		-	1200	1		-		-		
CHLAMYDOMONAS			•	130	3		0			1600	5	94	1
PHACOTUS			-		-				-			98	1
VOLVOCACEAE			_				_		3	1100	1		302
PANDORINA			-		-		-		-	1300	2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ZYGNEMATALES DESMIDIACEAF COSMARIUM		-	0						(A.2.)			1.00	
CHRYSOPHYTA													
.BACILLARIOPHYCEAECENTRALES											1		

NOTE: # - DOMINANT ORGANISM: EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM: MAY NOT HAVE BEEN COUNTED: LESS THAN 1/2%

08147000 COLORADO RIVER NEAR SAN SABA, TX--Continued

PHYTOPLANKTON ANALYSES. OCTOBER 1977 TO AUGUST 1978 (CONTINUED) DATE OCT 31.77 MAR 10,78 JUL 28,78 1215 AUG 23,78 MAY 16,78 JUN 26,78 TIME 1015 CELLS PER-CELLS PER-CELLS PFR-CELLS PFR-CELLS PER-CELLS PER-ORGANISM CENT CENT /ML CENT CENT /ML CENT CENT /ML ... COSCINODISCACEAECYCLOTELLA 99 3600 2 920 4 0 2300# 17 MELOSIRA 1100 8 . . PENNALES ... ACHNANTHACE AECOCCONE IS 230 1 ... CYMBELLACEAFCYMBELLA 32 1 ... DIATOMACEAE ...DIATOMA ...FRAGILARIACEAE 32 1 230 1FRAGILARIA 230 ...SYNEDRA 0 0 0 ... NITZSCHIACEAENITZSCHIA 0 130 3 990 1 3 340 ... SURTRELL ACEAE SURIRELLA 0 CRYPTOPHYTA (CRYPTOMONADS) -CRYPTOPHYCEAE .. CRYPTOMONIDALES ... CRYPTOMONODACEAE CRYPTOMONAS 0 CYANOPHYTA (BLIJE-GREEN ALGAE) .CYANOPHYCEAE .. CHROCCOCCALES ... CHROCCOCCAEAEAGMENELLUM 13000 7100# 35 51000# 68 ANACYSTIS 11000# 540 94000# 58 11000 15 3800# 30 . . HORMOGONAL ES ... OSCILLATORIACEAELYNGBYA 2400 590 5OSCILLATORIA 2 1600 2000 980 ...CHROCCOCCALES GOMPHOSPHAERIA 1100 2 EUGLENOPHYTA (EUGLENOIDS) . EUGLENOPHYCEAE .. EUGLENALES ... EUGLENACEAE EUGLENA 0 2700# 70 0 0 ... PHACUS TRACHEL OMONAS 340 3 PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAE .. PERIDINIALES ... PERIDINIACE AE

0

0

....PERIDINIUM

NOTE: # - DOMINANT ORGANISM: EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM: MAY NOT HAVE BEEN COUNTED: LESS THAN 1/2%

08147000 COLORADO RIVER NEAR SAN SABA, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

MONTH	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	OIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT. 1977	4393	921	530	6230	120	1480	89	1050	330
NOV. 1977	6218	909	520	8670	120	2050	87	1460	330
DEC. 1977	5951	1040	600	9590	150	2370	110	1720	360
JAN. 1978	6236	1110	640	10800	170	2810	120	2020	390
FER. 1978	7028	1210	700	13300	190	3630	130	2560	420
MAR. 1978	5491	1000	570	8500	140	5080	100	1500	350
APR. 1978	3651	840	470	4680	110	1060	76	753	310
MAY 1978	9948	1450	850	22900	270	7180	170	4690	490
JUNE 1978	12395	546	310	10200	49	1640	33	1120	550
JULY 1978	780	584	330	687	56	118	33	70	230
AUG. 1978	70238	368	210	39000	21	4020	17	3300	170
SEPT 1978	11980	499	280	9010	41	1330	27	875	200
TCTAL	144309	· ** ·		144000	**	29800	**	21100	**
WTD.AVG	395.37	647	370	**	76	**	53	**	250

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	930	969	897	934	1200	1080	854	785	650	555	577	579
	926	941	977	975	1210	1070	871	776	592	567	601	580
2		918	1000	1010	1200	1080	825	716	496	558	400	581
3	930			983	1200	1090	836	640	729	584	253	589
4	859	899	1030			1080	847	689	365	580	550	595
5	866	910	982	1040	1190	1000	041	007	303			
6	770	918	991	1020	1170	1070	787	716	422	536	321	622
7	666	892	1020	1020	1180	1010	777	2040	484	579	399	614
8	775	875	1010	1100	1170	1060	768	2150	575	579	367	550
9	796	858	1020	1050	1180	1050	750	2570	580	572	372	345
10	705	914	1010	1080	1200	1060	748	2650	587	566	378	484
10	705	714	1010	1000	1.00			-				
11	718	900	977	1110	1260	1060	719	2410	587	565	405	528
	668	890	1070	1090	1190	1070	820	1860	593	567	432	533
12		881	1060	1100	1270	1050	858	1610	533	580	452	537
13	675	937	1060	1120	1260	1030	868	1480	486	575	466	527
14	682			1120	1240	1020	872	1360	450	578	480	536
15	664	885	1050	1120	1240	1020	0,2					
16	847	864	1040	1040	1240	1000	875	1240	422	590	69	544
17	915	890	1060	1140	1220	991	864	1160	453	589	473	569
18	966	910	1070	1120	1210	978	791	1050	496	590	485	603
19	950	925	1090	1110	1240	1000	777	966	491	598	497	619
20	942	914	1100	1130	1210	1000	753	945	493	591	507	629
20	742	71-	1100	1130						The same of		
21	935	910	1100	1160	1270	965	895	926	498	601	526	628
55	908	905	1080	1190	1220	953	1030	989	510	605	546	635
23	919	903	995	1180	1190	965	987	905	521	607	558	643
24	940	885	1050	1180	1200	914	829	922	525	596	564	628
25	962	921	1070	1190	1190	885	896	830	531	605	565	623
23	702	,										
26	894	935	1080	1210	1140	851	914	833	542	613	558	616
27	1010	945	1060	1210	1140	845	900	836	540	623	565	615
28	1120	925	1070	1200	1120	835	885	789	538	630	554	614
29	1140	921	1080	1200		851	840	872	542	637	540	655
30	1110	937	1070	1220		875	796	1220	549	640	555	623
31	1030		1050	1200		899		758		660	571	
31	1030		1030	1200		3,,,				10.70		
MEAN	878	909	1040	1110	1200	990	841	1220	526	591	483	580

COLORADO RIVER BASIN 08147000 COLORADO RIVER NEAR SAN SABA, TX--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

					U	ACE-DATE!						
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		21.0	14.0	8.0	6.0	15.0	25.0			31.0	31.0	29.0
2		17.0	15.0				23.0	20.0	27.0	32.0	26.0	
3		19.0	17.0	10.0	8.0	9.0	23.0	20.0	28.0	31.0	26.0	32.0
4		20.0	19.0	12.0	9.0	11.0		24.0	27.0	29.0	25.0	
5	25.0		15.0	16.0	10.0	13.0	23.0	25.0	28.0	30.0	25.0	30.0
6		21.0	12.0	15.0	8.0	16.0	24.0	23.0	27.0	31.0	25.0	29.0
7	25.0	20.0	10.0	16.0	5.0	10.0		26.0	29.0	31.0	26.0	26.0
8	25.0	19.0	8.0	10.0	5.0	8.0	22.0	26.0	29.0	32.0	26.0	27.0
8 9	22.0	15.0		8.0	5.0	13.0	25.0	26.0		30.0		
10	25.0	17.0	9.0		6.0	9.0	20.0	25.0	30.0	32.0	28.0	
11	22.0		9.0	7.0	6.0		23.0	25.0	29.0			
12	20.0		14.0	5.0	8.0	15.0	23.0	28.0	30.0	31.0	30.0	
13		17.0	13.0		9.0	15.0	24.0	28.0	29.0	32.0	30.0	
14	20.0	17.0	13.0	6.0	9.0	18.0	25.0	28.0	30.0	33.0		
15	55.0	18.0	15.0	5.0	8.0	17.0				33.0	30.0	
16	21.0	18.0	17.0	7.0	9.0	17.0	25.0	29.0	31.0	33.0	30.0	
17	22.0		15.0	6.0		19.0	25.0	29.0	30.0		31.0	
18	23.0	19.0	17.0		9.0	19.0	25.0		31.0	32.0		
19	23.0	19.0	15.0	5.0	9.0	18.0	24.0	30.0	30.0	32.0	32.0	
50	23.0	20.0		4.0	11.0	20.0	23.0	26.0	31.0	32.0	32.0	
21	23.0		10.0	5.0	10.0	22.0		26.0	32.0	33.0		
55	22.0	17.0	10.0	7.0	12.0	22.0	25.0	29.0		30.0	30.0	
23	21.0	19.0	11.0	6.0	13.0	21.0	27.0		31.0	30.0	30.0	25.0
24		16.0	11.0	8.0	13.0	20.0	27.0	28.0	33.0	30.0	32.0	27.0
25	24.0	17.0	10.0	9.0	15.0		25.0	28.0	31.0		32.0	
26	24.0		11.0	9.0	13.0	19.0	25.0	30.0	30.0	31.0	32.0	24.0
27		18.0	9.0		15.0	27.0	25.0	28.0	30.0	28.0	29.0	23.0
28	22.0	15.0	10.0	8.0	18.0	21.0	24.0	30.0	30.0		30.0	23.0
29	24.0	12.0	11.0	5.0		20.0		28.0	32.0	31.0	28.0	25.0
30	22.0	15.0	12.0	5.0			26.0	28.0	32.0	32.0		27.0
31	24.0		15.0	6.0		18.0		27.0		28.0	28.0	
MEAN	23.0	18.0	12.5	8.0	9.5	16.5	24.0	26.5	30.0	31.0	29.0	26.5
	2000								1305			

08148000 LAKE BUCHANAN NEAR BURNET, TX

LOCATION.--Lat 30°45'04", long 98°25'06", Burnet County, Hydrologic Unit 12090201, in powerhouse at Buchanan Dam on Colorado River, 1.3 mi (2.1 km) upstream from bridge on State Highway 29, 11 mi (18 km) west of Burnet, and at mile 413.6 (665.6 km).

DRAINAGE AREA.--31,250 mi² (80,940 km²), approximately, of which 12,880 mi² (33,360 km²) probably is noncontributing.

PERIOD OF RECORD.--May 1937 to current year. Prior to Oct. 1, 1968, published as Buchanan Reservoir.

REVISED RECORDS. -- WSP 1118: Drainage area.

GAGE.--Nonrecording gage. Datum of gage is 0.48 ft (0.146 m) above National Geodetic Vertical Datum of 1929 (levels by Lower Colorado River Authority). Prior to July 1938, temporary staff and float gages at same site and datum.

REMARKS.--The lake is formed by two reinforced concrete multiple-arch sections, three banks of tainter gates, a 1,100 ft (335 m) uncontrolled emergency concrete spillway, and natural ground. A net opening of 1,270 ft (387 m) is controlled by thirty 33 by 15 ft (10 by 5 m) and by seven 40 by 15 ft (12 by 5 m) tainter gates. The dam was completed and storage began May 20, 1937. Water is used for power development and for irrigation below Columbus. The power generating features consist of three generating units, each with a 12,677 kilowatt capacity. A pump-back unit with a capacity of 840 ft³/s (23.8 m³/s), returns water from Inks Lake to Lake Buchanan during off-peak power demand periods. Inflow is largely regulated by twelve major reservoirs with a combined capacity of 2,438,000 acreft (3.01 km³), of which 1,091,000 acreft (1.35 km³) is for flood control. For statement regarding regulation by Soil Conservation Service floodwater-retarding structures, see Colorado River near San Saba (station 08147000). The capacity table is based on a 1925 survey. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	(feet)	(acre-feet)
Top of dam	1,025.5	
Crest of gravity overflow spillway (top of conservation storage)	1,020.0	992,000
Crest of spillway (15 ft gates)	1,005.0	678,000
Crest of spillway (25 ft gates)	995.0	505,000
Invert of three 12-foot-diameter penstocks	937.0	36,800

COOPERATION. -- Capacity curve and gage-height record were furnished by the Lower Colorado River Authority.

EXTREMES (at 2400) FOR PERIOD OF RECORD.--Maximum contents, 1,010,000 acre-ft (1.25 km³) Jan. 24, 1968, gage height, 1,020.8 ft (311.14 m); minimum after initial filling of lake in July 1938, 340,800 acre-ft (42 hm³) Sept. 8-10, 1952, gage height, 983.4 ft (299.74 m).

EXTREMES (at 2400) FOR CURRENT YEAR.--Maximum contents observed, 882,200 acre-ft (1.09 km³) May 11-16, gage height, 1,015.1 ft (309.40 m); minimum, 698,900 acre-ft (0.862 km³) July 31, Aug. 1; gage height, 1,006.1 ft (306.66 m).

Capacity table (gage height, in feet, and total contents, in acre-feet)

1,006.0 697,000 1,012.0 816,000 1,009.0 755,000 1,016.0 902.000

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 INSTANTAMEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	851700	849600	849600	849600	851700	864600	871200	875600	873400	811800	698900	751000
2	849600	849600	849600	849600	851700	866800	871200	877800	873400	807600	700800	751000
3	849600	849600	849600	849600	851700	866800	871200	877800	873400	803400	700800	751000
4	849600	849600	849600	849600	853800	864600	873400	875600	875600	799200	733100	751000
5	849600	849600	851700	849600	853800	864600	873400	875600	877800	795000	755000	751000
6	847500	849600	847500	849600	853800	864600	873400	877800	880000	791000	787000	751000
7	847500	849600	847500	849600	853800	864600	873400	877800	880000	789000	811800	755000
8	847500	851700	849600	849600	853800	866800	873400	877800	880000	785000	813900	757000
9	847500	851700	847500	849600	855900	864600	873400	877800	877800	781000	813900	759000
10	847500	851700	847500	849600	853800	864600	875600	880000	875600	777000	813900	763000
11	845400	851700	847500	849600	853800	866800	875600	882200	873400	773000	811800	765000
12	845400	851700	847500	849600	855900	866800	875600	882200	871200	769000	807600	767000
13	845400	851700	847500	849600	858000	866800	875600	882200	869000	765000	801300	767000
14	845400	851700	847500	849600	858000	866800	875600	882200	866800	763000	799200	767000
15	845400	851700	847500	849600	858000	866800	875600	882200	866800	757000	795000	767000
16	843300	851700	847500	851700	858000	866800	875600	882200	862400	755000	791000	767000
17	843300	851700	847500	851700	860200	866800	875600	880000	860200	751000	787000	767000
18	843300	851700	847500	851700	860200	866800	875600	877800	858000	747000	783000	767000
19	843300	851700	847500	851700	860200	866800	877800	875600	853800	743000	779000	767000
20	843300	853800	847500	851700	862400	869000	875600	877800	851700	739000	775000	769000
21	843300	853800	847500	851700	862400	869000	875600	877800	849600	735000	773000	769000
22	847500	853800	847500	851700	862400	869000	875600	877800	845400	731200	769000	769000
23	847500	853800	847500	851700	862400	871200	875600	877800	841200	729300	765000	769000
24	847500	853800	847500	853800	862400	871200	875600	875600	837000	723600	761000	769000
25	847500	853800	847500	853800	862400	871200	875600	875600	832800	719800	757000	769000
26	847500	853800	847500	853800	862400	871200	875600	873400	828600	716000	757000	769000
27	847500	853800	847500	853800	864600	871200	873400	871200	826500	716000	755000	769000
28	847500	853800	847500	853800	864600	871200	873400	871200	824400	710300	751000	769000
29	849600	855900	849600	853800		871200	873400	871200	818100	706500	751000	769000
30	849600	849600	849600	851700		871200	875600	871200	816000	700800	751000	769000
31	849600		849600	851700		871200		871200		698900	751000	
MAX	851700	855900	851700	853800	864600	871200	877800	882200	880000	811800	813900	769000
MIN	843300	849600	847500	849600	851700	864600	871200	871200	816000	698900	698900	751000
(†) (‡)	1013.6	1013.6	1013.6	1013.7	1013.2	1014.6	1014.8	1014.6	1012.0	1006.1	1008.8	1009.7
(+)	-2100	0	0	+2100	+12900	+6600	+4400	-4400	-55200	-117100	-52100	+18000

CAL YR 1977 MAX 985100 MIN 843300 ‡ -96400 WTR YR 1978 MAX 882200 MIN 698900 ‡ -82700

t Gage height, in feet, at end of month. F Change in contents, in acre-feet.

LOCATION.--Lat 30°29'45", long 99°43'19", Kimble County, Hydrologic Unit 12090204, on right bank 600 ft (180 m) north of Farm Road 2169, 1.4 mi (2.3 km) east of Junction, 3.6 mi (5.8 km) downstream from bridge on Interstate Highway 10, 3.9 mi (6.3 km) downstream from confluence of North and South Llano Rivers, 4.3 mi (6.9 km) upstream from Johnson Fork, and 106.7 mi (171.7 km) upstream from mouth.

08150000 LLANO RIVER NEAR JUNCTION, TX

DRAINAGE AREA .-- 1,874 mi2 (4,854 km2).

PERIOD OF RECORD. -- September 1915 to current year.

REVISED RECORDS.--WSP 568: 1915-16, 1918-20, 1922. WSP 1342: Drainage area. WSP 1922: 1920, 1923.

GAGE.--Water-stage recorder. Datum of gage is 1,630.32 ft (496.922 m) National Geodetic Vertical Datum of 1929. Prior to Aug. 14, 1925, gage and Aug. 14, 1925, to May 17, 1940, water-stage recorder at present site gage datum. May 18, 1940, to Aug. 17, 1944, water-stage recorder at site 5,330 ft (1,620 m) upstream at datum 6.0 ft (1.83 m) higher. Since Aug. 18, 1944, gage at site 5,330 ft (1,620 m) upstream has been used as a supplementary gage.

REMARKS.--Records good. Diversions above station for irrigation. Several observations of water temperature were made during the

AVERAGE DISCHARGE.--63 years, 194 ft3/s (5.494 m3/s), 1.40 in/yr (36 mm/yr), 140,600 acre-ft/yr (173 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 319,000 ft 3 /s (9,030 m 3 /s) June 14, 1935, gage height, 43.3 ft (13.20 m) at regular gage, 41.4 ft (12.62 m) at supplementary gage, from floodmarks, from rating curve extended above 54,000 ft 3 /s (1,530 m 3 /s) on basis of slope-area measurements of 154,000 and 319,000 ft 3 /s (4,360 and 9,030 m 3 /s); minimum, 3.1 ft 3 /s (0.088 m 3 /s)

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1875, that of June 14, 1935. There was a major flood in 1889 which was the highest known prior to June 14, 1935.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,500 ft3/s (42.5 m3/s) and maximum (*):

Date	Time	Disch	narge	Gage h	eight	Date	Time	Disch	arge	Gage h	eight
		(ft³/s)	(m^3/s)	(ft)	(m)			(ft3/s)	(m^3/s)	(ft)	(m)
June 3	1200	1,930	54.7	3.60 a3.75	1.097	Aug. 2	1630	*76,700	2,170	22.14 a26.24	6.748
June 7	0900	4,570	129	5.19 a5.75	1.582 1.753						

a From supplementary gage.

Minimum discharge, 68 ft3/s (1.93 m3/s) July 21-23.

		DISCHARG	E, IN	CUBIC FEET	PER SECO	ND, WATER	YEAR OCTOR	BER 1977	TO SEPTEME	BER 1978		
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	133	150	156	152	148	142	126	112	108	94	93	161
	156	146	154	152	145	141	124	116	117	92	14800	156
2 3 4	148	145	154	155	145	139	126	117	926	90	6030	131
4	145	146	152	156	144	135	125	114	634	88	610	124
5	144	148	151	155	142	137	124	112	275	87	338	375
6	142	148	150	155	142	139	123	110	204	86	258	229
7	141	148	151	153	145	145	121	109	1530	85	226	174
8	140	178	151	151	145	141	120	105	591	84	200	219
9	138	169	149	152	145	138	123	102	311	83	173	286
10	139	157	150	152	143	138	144	98	232	81	160	195
11	137	154	153	151	143	137	141	98	192	79	177	174
12	137	154	155	151	158	135	141	100	174	82	172	163
13	138	154	154	150	154	136	134	95	161	81	151	155
14	139	154	151	148	147	134	131	93	151	79	143	151
15	139	154	151	149	148	133	129	94	142	80	138	148
16	139	153	153	153	147	132	128	91	135	77	134	146
17	140	152	152	149	151	132	124	89	129	76	131	142
18	140	152	152	148	147	132	123	87	125	75	128	137
19	141	154	152	148	145	131	120	88	122	74	124	134
20	140	154	151	148	145	132	118	94	121	74	123	134
21	138	151	151	148	142	129	118	109	118	72	120	158
22	177	151	151	148	141	127	118	117	114	70	116	164
23	172	152	152	148	142	127	117	113	110	72	113	151
24	159	152	152	148	143	125	116	108	108	78	112	147
25	153	152	152	147	143	124	112	105	103	77	111	142
26	151	152	152	145	142	126	111	102	100	93	109	138
27	151	152	152	146	144	125	110	98	99	91	108	145
28	155	152	154	145	144	125	110	97	99	100	107	147
29	154	158	157	145		123	111	106	97	100	113	142
30 31	153 152	160	155 155	148 148		125 125	112	101 96	96	92 93	115 118	138
TOTAL	4531	4602	4725	4644	4070	4110	3680	3176	7424	2585	25551	5006
MEAN	146	153	152	150	4070 145	133	123	102	247	83.4	824	167
MAX	177	178	157	156	158	145	144	117	1530	100	14800	375
MIN	133	145	149	145	141	123	110	87	96	70	93	124
CFSM	.08	.08	.08	.08	.08	.07	.07	.05	.13	.05	.44	.09
IN.	.09	.09	.09	.09	.08	.08	.07	.06	.15	.05	.51	.10
AC-FT	8990	9130	9370	9210	8070	8150	7300	6300	14730	5130	50680	9930
CAL YR WTR YR			MEAN	1 327 MAX 1 203 MAX	15400 14800	MIN 133 MIN 70	CFSM .17 CFSM .11	IN 2.3 IN 1.4	AC-FT AC-FT	236700 147000		

08150700 LLANO RIVER NEAR MASON, TX

LOCATION.--Lat 30°39'35", long 99°06'29", Mason County, Hydrölogic Unit 12090204, on right bank 98 ft (30 m) downstream from downstream bridge on U.S. Highway 87, 1.0 mi (1.6 km) upstream from Beaver Creek, 9.1 mi (14.6 km) southeast of Mason, 10.2 mi (16.4 km) downstream from James River and 54.5 mi (87.7 km) upstream from mouth.

DRAINAGE AREA .-- 3,280 mi 2 (8,500 km2).

PERIOD OF RECORD .-- March 1968 to current year.

REVISED RECORD .-- WDR TX-75-3: 1968(P).

GAGE.--Water-stage recorder. Datum of gage is 1,230.36 ft (375.014 m) National Geodetic Vertical Datum of 1929. Prior to Jan. 19, 1971, at site 190 ft (58 m) upstream at same datum.

REMARKS.--Records good except those for period of no gage-height record, which are fair. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--10 years (water years 1969-78), 362 ft³/s (10.25 m³/s), 1.48 in/yr (38 mm/yr), 262,300 acre-ft/yr (323 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $151,000 \text{ ft}^3/\text{s}$ (4,280 m³/s) Oct. 13, 1973, gage height, 26.30 ft (8.016 m), from rating curve extended above 59,000 ft³/s (1,670 m³/s) on basis of slope-area measurement of peak flow; minimum, 16 ft³/s (0.45 m³/s) July 23, 1971.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum flood since at least 1875 occurred June 14, 1935, discharge 388,000 ft³/s (11,000 m³/s), by slope-area measurement of peak flow at site 17.0 mi (27.4 km) downstream.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 92,500 ft 3 /s (2,620 m 3 /s) Aug. 3, gage height, 21.35 ft (6.507 m), no other peak above base of 3,000 ft 3 /s (85.0 m 3 /s); minimum daily, 60 ft 3 /s (1.70 m 3 /s) July 16-22.

		DISCHAR	RGE, IN	CUBIC FEET	PER SEC	OND, WATER EAN VALUES	YEAR OCTO	BER 1977	TO SEPTEME	BER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	134	168	186	175	170	159	136	100	111	75	95	76
2	148	162	178	177	172	158	131	120	120	75	4430	79
	154	157	175	178	172	154	132	140	442	75	30300	111
4	168	156	173	176	172	151	136	135	769	75	2240	117
5	158	157	172	174	172	149	136	130	844	75	947	104
6	153	159	171	172	172	155	134	125	416	70	647	146
7	153	163	166	173	177	216	135	120	372	70	526	281
8	153	227	169	172	186	183	133	115	1500	70	362	288
9	153	237	165	169	186	174	131	110	787	70	295	318
10	149	211	164	172	183	168	211	106	467	70	255	307
11	150	190	166	170	176	161	216	103	296	65	221	313
12	146	179	170	175	186	156	179	99	249	65	201	242
13	146	175	174	179	216	148	169	96	206	65	188	192
14	146	172	176	179	205	145	162	92	183	65	177	168
.15	148	173	175	179	195	143	152	89	170	65	155	155
16	146	172	170	182	188	142	144	91	160	60	138	147
17	148	171	164	188	196	140	140	89	150	60	128	140
18	149	169	168	186	196	139	135	81	140	60	120	135
19	149	170	169	183	189	137	130	80	130	60	115	130
20	150	171	169	179	182	137	125	82	120	60	110	127
21	149	174	169	179	176	138	120	88	110	60	106	126
22	187	170	167	172	170	137	120	126	100	60	105	147
23	220	168	166	172	169	138	120	158	95	65	101	165
24	205	169	168	172	167	142	115	134	90	70	95	166
25	185	170	169	173	166	134	110	112	85	70	90	151
26	172	169	169	172	164	133	110	104	80	71	86	129
27	169	169	169	169	162	131	105	100	80	72	85	129
28	170	169	169	169	162	131	105	96	80	84	82	126
29	170	193	171	169		131	100	158	80	103	77	126
30	170	189	177	169		135	100	153	75	94	75	126
31	170		178	169		137		116		96	73	
TOTAL	4968	5279	5292	5423	5027	4602	4072	3448	8507	2195	42625	4967
MEAN	160	176	171	175	180	148	136	111	284	70.8	1375	166
MAX	220	237	186	188	216	216	216	158	1500	103	30300	318
MIN	134	156	164	169	162	131	100	80	75	60	73	76
CFSM	.05	.05	.05	.05	.06	.05	.04	.03	.09	.02	.42	.05
IN.	.06	.06	.06	.06	.06	.05	.05	.04	.10	.02	.48	.06
AC-FT	9850	10470	10500	10760	9970	9130	8080	6840	16870	4350	84550	9850
CAL YR	1977 TOTA	AL 161565	MEAN	443 MAX	25300	MIN 134	CFSM .14	IN 1.8	B3 AC-FT	320500		

MIN 60

CFSM .08

IN 1.09

AC-FT 191200

WTR YR 1978 TOTAL 96405 MEAN 264 MAX 30300 NOTE.--No gage-height record June 14 to July 25.

159

08150800 BEAVER CREEK NEAR MASON, TX

LOCATION (revised).--Lat 30°38'39", long 99°05'46", Mason County, Hydrologic Unit 12090204, on left bank at downstream side of downstream bridge on U.S. Highway 87, 1.4 mi (2.3 km) upstream from Llano River, 6.4 mi (10.3 km) downstream from Spring Creek, and 11.1 mi (17.9 km) southeast of Mason. Prior to Aug. 3, 1978, at site 300 ft (91 m) upstream.

DRAINAGE AREA .-- 218 mi2 (565 km2).

PERIOD OF RECORD .-- July 1963 to current year.

REVISED RECORDS .-- WSP 2122: 1964-65.

GAGE.--Water-stage recorder. Datum of gage is 1,253.24 ft (381.988 m) National Geodetic Vertical Datum of 1929. Prior to Aug. 3, 1978, at site 300 ft (91 m) upstream at same datum.

REMARKS.--Records fair. No known regulation or diversion above station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--15 years, 19.8 ft³/s (0.561 m³/s), 1.23 in/yr (31 mm/yr), 14,350 acre-ft/yr (17.7 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $66,900 \text{ ft}^3/\text{s}$ (1,890 m³/s) Aug. 3, 1978, gage height, 24.0 ft (7.315 m), from floodmarks, from rating curve extended above 7,400 ft³/s (210 m³/s) on basis of slope-area measurements of 20,100 and $66,900 \text{ ft}^3/\text{s}$ (569 and 1,890 m³/s); no flow at times most years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $66,900 \text{ ft}^3/\text{s}$ (1,890 m³/s) Aug. 3, gage height, 24.0 ft (7.315 m), from floodmarks, no other peak above base of 1,000 ft³/s (28.3 m³/s); no flow at times.

DISCHARGE IN CURIC FEET DED CECOND WATER VEAR OCTORER 1077 TO CERTINDER 1070

		DISCHARG	SE, IN CL	IBIC FEE	PER SECONI MEAI	N VALUES	YEAR OC	TOBER 197	7 TO SEPT	EMBER 19	78	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.02 .63 .14 .10	1.8 2.0 2.0 1.4 1.4	5.8 4.2 3.3 2.9 2.6	3.5 3.5 3.1 2.4 2.5	3.1 3.2 3.2 2.9 2.7	2.6 2.6 2.6 2.6 2.6	1.9 1.3 1.5 1.6	.41 4.3 53 21 9.0	4.8 3.5 9.2 6.8 6.2	.06 .06 .06 .04	616 12800 73 35	3.1 2.9 3.1 1.9 4.5
6 7 8 9 10	.07 .07 .07 .09	1.3 1.3 7.3 13 6.7	2.4 2.0 2.0 2.1 2.1	2.6 2.6 2.5 1.6 1.9	3.1 3.9 4.4 4.0 3.7	2.4 2.4 2.4 2.4 2.4	1.8 1.5 1.4 1.4 5.4	4.6 3.3 2.1 1.8 1.3	9.2 69 30 13 6.3	.02 .02 .02 .02	29 25 22 18 16	9.0 4.4 45 27 15
11 12 13 14 15	.05 .04 .03 .03	4.1 3.2 2.6 2.6 2.6	1.9 1.9 2.2 2.4 2.4	1.8 1.9 2.4 2.4 2.4	5.1 9.9 8.1 4.9 4.1	2.4 2.4 2.4 2.4 2.4	17 8.7 4.9 3.3 2.5	1.0 .75 .61 .47	3.7 2.4 1.6 1.2 .96	.00 .00 .00 .00	14 13 11 9.7 7.1	9.6 6.8 9.0 6.6
16 17 18 19 20	.14 .14 .14 .14	2.5 2.4 2.4 2.2 2.4	2.2 2.1 1.7 1.7	2.4 2.6 2.6 2.2 2.5	5.0 6.2 4.8 4.6 3.8	2.4 2.4 2.1 2.1	1.9 1.6 1.3 1.2	.48 .47 .27 .23	.68 .40 .32 .27 .20	.01 .00 .00 .00	5.0 3.4 2.7 2.5 2.2	4.8 3.8 2.5 1.9
21 22 23 24 25	.22 2.3 5.5 3.7 2.1	2.6 2.4 2.1 2.1 2.2	1.7 1.7 1.7 1.8 1.9	2.0 2.4 2.4 2.6 2.1	3.3 3.2 2.9 2.9 2.9	2.1 2.1 2.1 2.1 2.1	.82 .68 .63 .66	.48 7.6 4.5 2.3 1.5	.19 .16 .11 .08	.00 .00 .01 .01	2.1 1.9 1.5 1.4 1.3	64 35 22 19 16
26 27 28 29 30 31	1.9 1.8 1.8 2.0 2.1 2.1	2.5 2.3 2.1 3.3 5.9	1.9 1.9 1.9 2.2 2.8 3.2	2.4 2.1 2.1 2.1 2.1 2.7	2.9 2.6 2.6	1.9 1.9 1.9 1.9 2.0	.50 .48 .37 .37 .35	.98 .64 .40 52 34 8.2	.08 .08 .07 .06	.00 .00 .01 68 14 2.2	1.2 1.1 1.0 1.4 3.8 3.4	14 14 16 14 12
TOTAL MEAN MAX MIN CFSM IN. AC-FT	27.84 .90 5.5 .02 .004 .00	92.7 3.09 13 1.3 .01 .02	72.3 2.33 5.8 1.7 .01 .01	74.4 2.40 3.5 1.6 .01 .01	114.0 4.07 9.9 2.6 .02 .02 226	70.4 2.27 2.6 1.9 .01 .01	68.30 2.28 17 .35 .01 .01	218.32 7.04 53 .23 .03 .04 433	170.70 5.69 69 .06 .03 .03	84.59 2.73 68 .00 .01 .01	13725.59 443 12800 .89 2.03 2.34 27220	399.5 13.3 64 1.6 .06 .07 792
	1977 TOTAL 1978 TOTAL			1 14.5	MAX 2370 MAX 12800	MIN			IN .90 IN 2.58	AC-FT AC-FT		

NOTE .-- No gage-height record Aug. 3-15.

08151500 LLANO RIVER AT LLANO, TX

LOCATION.--Lat 30°45'10", long 98°40'10", Llano County, Hydrologic Unit 12090204, on right bank in Llano, 0.4 mi (0.6 km) downstream from bridge on State Highway 16, 7 mi (11 km) upstream from Little Llano River, and 24.2 mi (38.9 km) upstream from mouth.

DRAINAGE AREA .-- 4,233 mi2 (10,963 km2).

PERIOD OF RECORD. -- September 1939 to current year.

REVISED RECORDS .-- WSP 1342: Drainage area.

GAGE .-- Water-stage recorder. Datum of gage is 970.01 ft (295.659 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Many small diversions above station. Part of low flow of Llano River disappears into various formations, many of which are faulted, between stations near Junction and Llano. National Weather Service gage-height telemeter and rain gage at station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--39 years, 359 ft3/s (10.17 m3/s), 260,100 acre-ft/yr (321 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 232,000 ft³/s (6,570 m³/s) Sept. 10, 1952, gage height, 32.6 ft (9.94 m), from rating curve extended above 129,000 ft³/s (3,650 m³/s) on basis of slope-area measurement of peak flow; no flow at times in 1952-56, 1964.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1879, 41.5 ft (12.65 m) June 14, 1935, discharge, 380,000 ft³/s (10,800 m³/s), from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 139,000 ft 3 /s (3,940 m 3 /s) Aug. 3, gage height, 25.61 ft (7.806 m), from floodmark, no other peak above base of 7,500 ft 3 /s (212 m 3 /s); minimum, 32 ft 3 /s (0.91 m 3 /s) July 19.

		DISCHAR	GE, IN (CUBIC FEET	PER SECO	OND, WATER AN VALUES	YEAR OC	TOBER 1977	TO SEPTE	MBER 1978	3	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	117 126 130 132 161	191 176 169 166 164	206 202 195 189 182	184 184 184 183	175 175 175 175 175	175 175 169 166 162	146 145 142 142 142	109 136 207 167 157	175 172 255 576 893	74 72 69 66 63	107 233 54300 6000 2090	105 115 120 149 178
6 7 8 9	158 156 148 141 157	162 165 237 279 274	179 177 177 173 173	179 178 173 167	173 173 173 170 170	168 179 212 214 194	143 142 138 137 211	144 139 128 118 113	688 711 888 1170 637	60 57 55 52 49	1760 949 618 399 314	151 217 694 1120 752
11 12 13 14 15	184 130 133 194 129	244 217 200 193 190	173 177 184 186 187	172 173 179 181 182	168 184 237 227 219	186 174 169 164 160	201 237 197 181 174	122 107 101 98 97	432 323 262 226 197	49 50 48 45 42	268 225 210 215 217	587 484 422 381 364
16 17 18 19 20	123 178 131 171 141	188 184 182 182 182	184 175 173 173 171	190 183 185 185 182	210 214 210 208 200	159 157 155 154 152	164 156 145 140 136	97 99 105 85 88	179 165 153 142 133	42 41 40 37 39	189 175 161 147 141	358 353 347 347 342
21 22 23 24 25	134 213 215 247 228	179 178 180 179 177	167 170 170 170 168	179 177 177 181 181	191 187 184 182 178	149 150 159 175 169	130 126 127 126 116	157 153 130 173 169	124 115 108 100 94	40 38 42 47 47	141 132 117 115 105	389 636 471 404 353
26 27 28 29 30 31	205 190 188 182 182 183	174 173 173 206 208	168 170 171 176 178 183	177 174 172 173 173 175	176 175 175 	158 151 150 150 150 149	117 113 110 108 108	140 124 113 148 659 257	88 84 81 81 76	47 49 51 54 85 112	104 101 101 106 101 95	308 290 279 262 246
TOTAL MEAN MAX MIN AC-FT	5107 165 247 117 10130	5772 192 279 162 11450	5527 178 206 167 10960	5531 178 190 167 10970	5257 188 237 168 10430	5154 166 214 149 10220	4400 147 237 108 8730	4640 150 659 85 9200	9328 311 1170 76 18500	1662 53.6 112 37 3300	69936 2256 54300 95 138700	11224 374 1120 105 22260
CAL YR WTR YR			MEAN MEAN		41100 54300	MIN 117 MIN 37	AC-FT AC-FT	405800 264900				

08152000 SANDY CREEK NEAR KINGSLAND, TX LOCATION.--Lat 30°33'30", long 98°28'19", Llano County, Hydrologic Unit 12090201, on left bank at downstream side of bridge on State Highway 71, 3.9 mi (6.3 km) upstream from Lake Lyndon B. Johnson, and 7.3 mi (11.7 km) south of kingsland.

DRAINAGE AREA . - - 327 mi2 (847 km2).

PERIOD OF RECORD. -- October 1966 to current year.

Water-quality records: Sediment records: January 1968 to September 1975.

GAGE .-- Water-stage recorder. Datum of gage is 862.31 ft (262.832 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Some diversions above station for irrigation, amount unknown. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--12 years, 63.4 ft3/s (1.795 m3/s), 2.63 in/yr (67 mm/yr), 45,930 acre-ft/yr (56.6 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 27,000 ft³/s (765 m³/s) Sept. 8, 1978, gage height, 17.20 ft (5.243 m), from floodmark; no flow at times most year.

EXTREMES OUTSIDE PERIOD OF RECORD.--The flood of Sept. 11, 1952, which was the highest since at least 1881, reached a stage of 34.2 ft (10.42 m), discharage 163,000 ft³/s (4,620 m³s), from slope-area measurement at gage site.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 1,000 ft3/s (28.3 m3/s) and maximum (*):

Date	Time	Disch	arge	Gage	height	Date		Time	Disch	arge	Gage h	eight
		(ft^3/s)	(m^3/s)	(ft)	(m)	2713		17.00	(ft^3/s)	(m^3/s)	(ft)	(m)
June 3	1000	1,230	34.8	7.31	2.228	Aug.	2	1430	3,610	102	8.89	2.710
July 27	2130	1,470	41.6	7.49	2.283	Sept. 8	8	1000	*27,000	765	17.20	5.243

Minimum discharge, no flow at times.

		DISCHA	RGE, IN C	UBIC FEET	PER SECO ME	ND, WATEI AN VALUES	R YEAR OC	TOBER 197	7 TO SEPT	EMBER 197	8	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .07 .00 .00	5.0 6.1 5.4 4.4	14 14 14 13	7.9 7.4 7.4 7.0 7.0	8.8 7.9 7.3 7.0 6.5	7.9 8.3 7.4 7.4	5.3 5.0 5.1 5.0 4.5	2.0 8.8 39 19 9.7	14 12 487 230 63	.00 .00 .01 .01	22 1140 498 212 55	1.3 1.6 .59 .31
6 7 8 9	.24 .28 .27 .28 .41	3.7 3.7 17 20 13	8.3 7.9 7.9 7.0 6.5	6.5 6.1 5.7 5.4 4.7	6.4 13 13 12 11	8.7 13 11 9.3 8.8	4.3 4.1 4.0 4.3	6.8 6.3 4.9 3.2 2.8	35 140 94 45 27	.00 .01 .00 .00	30 17 9.3 7.4 5.9	.32 .85 3610 490 81
11 12 13 14 15	.46 .41 .57 .59	13 12 12 12 12	6.5 8.3 8.8 7.9 7.4	7.9 8.8 7.4 6.5 5.7	10 30 37 22 20	8.1 7.0 7.5 6.9 6.3	16 15 12 9.5 7.6	8.9 5.1 2.2 1.2 .52	18 13 9.8 7.9 6.5	.00 .00 .01 .01	5.0 4.0 3.2 2.5 1.8	48 36 24 18 18
16 17 18 19 20	.63 .64 .82 1.2	9.8 8.8 8.3 9.3	6.5 5.7 5.0 5.4 5.4	11 13 12 9.3 9.3	18 22 18 14 14	5.7 5.9 5.7 5.4 5.3	6.3 5.3 4.5 3.4 2.9	.25 .03 .00 .00	4.9 3.7 2.8 2.2 1.8	.01 .00 .01 .01	1.3 1.1 .66 .46	14 11 8.1 6.5 5.7
21 22 23 24 25	1.2 1.2 1.2 1.2 1.2	10 10 9.8 10	4.7 4.7 5.0 5.7 5.7	8.8 8.3 7.9 7.4 6.5	12 11 10 9.6 9.1	5.6 5.6 6.7 18	2.6 2.5 2.3 2.7	16 14 12 9.5 6.7	1.4 1.1 .72 .38 .17	.00 .00 .00 .01	.60 .71 .63 .63	11 18 13 12 9.5
26 27 28 29 30 31	1.2 1.2 1.2 1.2 2.3 4.0	10 9.3 9.3 15 17	5.7 5.7 5.7 7.9 8.3 8.3	5.3 5.4 5.4 5.4 5.7 7.0	8.3 8.7 9.2	12 10 8.0 6.8 6.1 5.6	7.6 4.7 3.2 2.7 2.3	4.5 2.7 1.7 5.7 5.6	.06 .03 .01 .01	.06 129 113 29 14 8.8	.63 .55 .61 .34 .32	7.4 8.0 10 8.8 7.6
TOTAL MEAN MAX MIN CFSM IN. AC-FT	25.99 .84 4.0 .00 .003 .003	297.9 9.93 20 3.7 .03 .03 591	237.9 7.67 14 4.7 .02 .03 472	229.1 7.39 13 4.7 .02 .03 454	375.8 13.4 37 6.4 .04 .04 745	248.4 8.01 18 5.3 .02 .03 493	182.7 6.09 18 2.3 .02 .02 362	220.30 7.11 39 .00 .02 .03 437	1221.49 40.7 487 .01 .12 .14 2420	294.02 9.48 129 .00 .03 .03 583	2023.05 65.3 1140 .32 .20 .23 4010	4480.89 149 3610 .31 .46 .51 8890

CAL YR 1977 TOTAL 22324.33 MEAN 61.2 6670 MIN .00 CFSM .19 IN 2.54 TOTAL 9837.54 MEAN 27.0 3610 .00 CFSM .08

08153500 PEDERNALES RIVER NEAR JOHNSON CITY, TX

LOCATION.--Lat 30°17'27", long 98°24'01", Blanco County, Hydrologic Unit 12090206, near center of span at downstream side of bridge on U.S. Highway 281, 0.2 mi (0.3 km) downstream from Towhead Creek, 1.1 mi (1.8 km) northeast of Johnston City, 3.4 mi (5.5 km) downstream from Buffalo Creek, and 48.2 mi (77.6 km) upstream from mouth.

DRAINAGE AREA .-- 947 mi2 (2,453 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1939 to current year.

REVISED RECORDS.--WSP 1632: 1953(M), 1957, 1958(M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,096.70 (334.274 m) National Geodetic Vertical Datum of 1929.
May 4 to Sept. 13, 1939 nonrecording gage, and Sept. 14, 1939 to Sept. 10, 1952, water-stage recorder at upstream side of bridge at same datum. Sept. 11, 1952, to June 29, 1953, nonrecording gage, and June 30, 1953, to Oct. 7, 1954, water-stage recorder at site 360 ft (110 m) downstream at same datum.

REMARKS.--Water-discharge records good. Some diversions above station for irrigation. During year, the city of Fredericksburg discharged 646 acre-ft (797,000 m³) of sewage effluent into the river. Records furnished by the city of Johnson City show that 176 acre-ft (217,000 m³) was diverted from pool at gage and 86.6 acre-ft (107,000 m³) of treated sewage effluent was returned to the river below gage.

AVERAGE DISCHARGE.--39 years (water years 1940-78), 176 ft³/s (4.984 m³/s), 127,500 acre-ft/yr (157 hm²/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $441,000 \text{ ft}^3/\text{s}$ (12,500 m³/s) Sept. 11, 1952, gage height, 42.5 ft (12.95 m), from floodmark, from rating curve extended above $116,000 \text{ ft}^3/\text{s}$ (3,290 m³/s) on basis of slope-area measurement of $441,000 \text{ ft}^3/\text{s}$ (12,500 m³/s); no flow at times in 1951-52, 1954, 1956-57, 1963-64, 1967-68, 1971.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1859, 42.5 ft (12.95 m) Sept. 11, 1952; flood of July 1869 reached a stage of 33 ft (10.1 m), from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 4,100 ft3/s (116 m3/s) and maximum (*):

Date	Time	Disch	arge	Gage h	Gage height (ft) (m)		Date	Time	Disch	arge	Gage height (ft) (m)	
		(ft^3/s)	(m^3/s)	(ft)	(m)				(ft ³ /s)	(m^3/s)	(ft)	(m)
Aug. 2	1515			20.21	6.160		Sept. 8	1200	52,900	1,500	18.73	5.709
Aug. 3	1315	*127,000	3,600	24.90	7.590							

Minimum daily discharge, 0.50 ft3/s (0.014 m3/s) July 22.

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1 26 57 57 40 44 41 34 27 45 4.5 123 490 2 27 64 60 40 44 40 35 56 739 4.1 30100 119 4 29 46 49 40 45 40 35 133 381 3.5 2580 86 5 29 43 40 41 44 39 34 69 134 3.1 743 88 6 28 41 40 42 44 51 34 52 105 2.3 451 66 7 27 40 42 40 49 45 33 45 69 134 3.1 743 88 8 6 28 41 40 40 42 44 51 34 52 105 2.3 451 66 8 26 83 44 40 51 45 33 43 262 1.8 455 10000 9 27 75 36 39 45 45 33 43 262 1.8 455 10000 10 27 76 40 36 47 47 64 33 77 114 1.9 277 1590 10 27 76 40 36 47 47 64 33 77 1.6 220 591 11 27 66 40 39 46 45 45 34 37 114 1.9 277 1590 11 27 76 40 36 40 40 47 47 47 40 47 47 1.3 166 296 11 2 24 79 42 40 40 49 45 34 37 114 1.9 277 1590 11 2 24 79 42 40 86 35 44 47 47 1.3 166 296 11 2 24 79 42 40 86 35 44 40 87 37 47 1.3 166 296 11 2 24 79 42 40 86 35 44 40 87 37 47 1.3 166 296 11 2 24 79 42 40 86 35 44 40 87 37 47 1.3 166 296 11 2 24 79 42 40 86 35 44 40 87 37 47 1.3 166 296 11 2 24 47 40 40 86 35 44 40 87 37 40 1.3 123 203 15 24 55 43 40 110 35 51 47 47 1.3 166 296 16 24 47 41 46 74 35 35 40 28 32 1.1 133 223 15 24 55 43 40 110 35 51 47 47 1.3 166 296 17 24 45 40 50 64 35 38 24 29 .92 102 159 18 24 45 40 50 64 35 38 24 29 .92 102 159 18 24 45 40 55 64 35 33 27 27 76 96 127 19 24 45 37 45 64 35 33 27 27 76 69 61 27 19 24 45 40 56 64 35 38 24 29 .92 102 159 18 24 45 40 57 64 35 38 24 29 .92 102 159 18 24 45 40 57 64 35 33 27 27 76 69 61 127 29 24 45 37 45 64 35 33 27 27 76 69 61 127 20 24 45 37 45 64 35 33 27 27 76 69 61 127 21 24 40 36 45 45 35 33 27 27 76 69 61 127 22 28 51 40 40 40 44 43 35 34 35 41 22 7.3 1.8 57 122 28 51 40 40 40 44 43 35 35 40 22 20 .50 76 262 28 51 40 40 40 44 43 35 35 40 22 20 .50 76 262 28 51 40 40 40 44 43 35 35 36 41 22 7.3 1.8 57 124 29 45 40 36 45 43 35 36 45 57 35 30 22 20 .50 76 264 23 211 45 37 45 45 45 35 33 22 29 13 1.5 70 176 25 78 40 40 36 45 43 35 35 30 22 77 76 69 61 127 30 45 44 55 40 35 57 35 30 22 20 .50 76 264 23 211 45 37 45 45 45 35 33 32 29 77 0 .55 57 124 29 45 40 40 40 40 44 35 47 35 37 37 59 98 6.39 195 35 57 31 31 31 31 31			DISCHA	RGE, IN	CUBIC FEET			YEAR OCT	OBER 197	TO SEPT	EMBER 1978	3	
2 27 64 60 40 40 45 40 35 56 739 4.8 22400 266 3 35 70 458 40 35 56 739 4.1 30100 119 4 29 46 49 40 45 40 35 133 381 3.5 2580 86 86 7 29 43 40 41 44 39 34 69 134 3.1 743 88 86 6 28 41 40 42 40 49 45 34 50 618 1.9 1230 69 8 26 83 44 40 51 45 33 43 50 618 1.9 1230 69 9 27 75 36 39 45 45 34 33 37 114 1.9 277 1590 10 27 76 40 36 47 47 64 33 77 1.6 220 591 11 27 66 40 39 46 45 84 42 59 1.5 191 380 12 24 79 42 40 86 35 44 37 37 114 1.9 277 1590 11 27 26 66 40 39 46 45 84 42 59 1.5 191 380 12 24 79 42 40 86 35 44 37 37 17 1.6 220 591 11 27 40 63 40 87 37 47 1.3 166 296 13 22 56 40 37 127 40 87 37 47 1.3 166 296 13 22 56 40 37 127 40 87 37 47 1.3 166 296 13 22 56 40 37 127 40 87 37 47 1.3 166 296 13 22 56 40 37 127 40 87 37 47 1.3 166 296 13 22 56 40 37 127 40 87 37 47 1.3 123 123 159 16 24 50 42 40 86 35 44 37 35 1.0 123 159 16 24 45 50 42 40 86 35 44 37 35 1.0 123 159 16 24 45 50 42 40 86 35 44 37 35 1.0 123 159 18 24 45 45 40 50 64 35 38 24 29 .92 102 159 18 24 45 37 45 64 35 38 27 27 .76 96 127 19 24 45 37 45 64 35 38 27 27 .76 96 127 19 24 45 37 45 64 35 38 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 45 54 35 30 27 27 .76 96 127 19 24 45 37 45 45 54 35 30 27 27 .76 96 127 19 24 45 37 45 45 54 35 30 27 27 .76 96 127 19 24 45 37 45 45 35 30 27 27 .76 96 127 19 24 45 37 45 45 54 35 30 27 27 .76 96 127 19 24 45 37 45 45 54 35 30 27 27 .76 96 127 19 24 45 37 45 45 54 35 30 27 27 .76 96 127 19 24 45 37 45 45 54 35 30 27 27 .76 96 127 19 24 45 37 45 45 45 35 30 27 27 .76 96 64 127 12 2.0 64 127 12 2.0 64 127 12 2.0 64 127 12 2.0 64 127 12 2.0 64 127 12 2.0 64 127 12 2.0 64 127 12 2.0 64 127 12 2.0 64 127 12 2.0 64 127 12 2.0 64 127 12 2.0 64 127 12 2.0 64 127 12 2.0 64 1	DAY	OCT	NOV	DEC	JAN			APR	MAY	JUN	JUL	AUG	SEP
2 27 64 60 40 44 40 34 28 37 4.8 22400 266 3 35 70 55 41 45 40 35 56 739 4.1 30100 119 4 29 46 49 40 45 40 35 133 381 3.5 2580 86 5 29 43 40 41 44 39 34 50 618 1.9 1230 69 8 26 83 44 40 51 45 33 43 262 1.8 455 10000 9 27 75 36 39 45 45 34 37 114 1.9 277 1590 10 27 76 40 36 47 47 64 33 77 1.6 220 591 11 27 66 40 39 46 45 84 42 59 1.5 191 380 12 24 79 42 40 57 40 87 37 17 1.6 220 591 11 27 66 40 39 46 45 84 42 59 1.5 191 380 12 24 79 42 40 57 40 87 37 47 1.3 166 296 13 22 56 40 37 127 40 68 33 44 42 1.1 148 245 14 24 51 43 40 110 35 51 41 38 1.1 133 203 15 24 55 42 50 42 40 86 35 44 37 38 1.1 133 203 16 24 47 41 46 74 35 40 28 32 1.1 113 325 17 24 45 40 50 64 35 38 24 29 .92 102 159 18 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 45 36 35 30 27 27 .76 96 28 112 20 24 45 37 45 45 36 35 30 27 27 .76 96 28 112 21 24 40 35 45 57 35 31 26 23 .64 83 335 22 278 43 36 45 54 55 35 32 29 13 1.5 70 176 21 24 40 35 45 57 35 31 28 26 .59 87 105 21 24 40 35 45 57 35 31 28 26 .59 87 105 21 24 40 40 35 45 54 55 13 35 31 26 28 29 13 1.5 70 176 25 78 40 40 40 40 44 35 41 22 7.3 1.8 57 122 27 51 39 37 40 44 35 41 22 7.3 1.8 57 122 29 45 40 43 40 35 26 22 6.8 42 54 119 30 45 40 43 40 35 26 22 6.8 42 54 119 31 43 45 40 35 26 22 6.8 42 54 119 30 45 40 43 40 35 26 22 6.8 42 54 119 30 45 40 43 40 35 26 22 6.8 42 54 119 30 45 40 43 40 35 26 22 6.8 42 54 119 31 43 45 40 35 26 22 6.8 42 54 119 31 43 45 40 35 26 22 6.8 42 54 119 30 45 40 40 40 40 40 40 40 40 40 40 40	1	26	57	57	40	44	41	34	27	45	4.5	123	490
4 29 46 49 40 45 40 35 133 381 3.5 2580 86 6 29 43 40 41 44 39 34 69 134 3.1 743 88 8 6 28 41 40 42 40 49 45 34 50 618 1.9 1230 69 8 26 83 44 40 61 45 33 43 262 1.8 455 1000 9 27 75 36 39 45 45 45 34 37 114 1.9 277 1590 10 27 76 40 36 47 47 64 33 77 1.6 220 591 11 27 66 40 39 46 45 88 4 42 59 1.5 191 380 12 24 79 42 40 86 37 127 40 87 37 47 1.3 166 220 591 11 27 56 40 37 127 40 87 37 47 1.3 166 220 591 13 22 56 40 37 127 40 87 37 47 1.3 166 296 13 22 56 40 37 127 40 86 35 44 37 35 1.0 123 155 16 24 50 42 40 86 35 44 37 35 1.0 123 159 16 24 45 40 50 64 35 38 24 29 .92 102 159 18 24 45 40 57 64 35 38 24 29 .92 102 159 18 24 45 45 40 57 64 35 38 24 29 .92 102 159 18 24 45 45 40 57 64 35 38 24 29 .92 102 159 18 24 45 45 40 57 64 35 38 24 29 .92 102 159 18 24 45 45 40 57 64 35 38 24 29 .92 102 159 18 24 45 45 40 57 64 35 38 24 29 .92 102 159 18 24 45 45 40 57 64 35 38 24 29 .92 102 159 18 24 45 45 40 57 64 35 38 24 29 .92 102 159 18 24 45 36 45 57 64 35 38 24 29 .92 102 159 18 24 45 36 45 57 35 31 28 26 .59 87 105 12 27 86 45 45 45 45 45 40 57 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 22 20 .50 76 26 28 112 20 24 45 37 45 45 45 35 30 27 27 .76 96 127 19 24 45 37 45 45 45 35 30 27 27 .76 96 127 19 24 45 37 45 45 45 35 30 22 20 .50 76 26 28 111 31 31 31 31 31 31 31 31 31 31 31 31	2									37	4.8	22400	266
4 29 46 49 40 45 40 35 133 381 3.5 2580 86 6 29 43 40 41 44 39 34 69 134 3.1 743 88 8 6 28 41 40 42 40 49 45 34 50 618 1.9 1230 69 8 26 83 44 40 61 45 33 43 262 1.8 455 1000 9 27 75 36 39 45 45 45 34 37 114 1.9 277 1590 10 27 76 40 36 47 47 64 33 77 1.6 220 591 11 27 66 40 39 46 45 88 4 42 59 1.5 191 380 12 24 79 42 40 86 37 127 40 87 37 47 1.3 166 220 591 11 27 56 40 37 127 40 87 37 47 1.3 166 220 591 13 22 56 40 37 127 40 87 37 47 1.3 166 296 13 22 56 40 37 127 40 86 35 44 37 35 1.0 123 155 16 24 50 42 40 86 35 44 37 35 1.0 123 159 16 24 45 40 50 64 35 38 24 29 .92 102 159 18 24 45 40 57 64 35 38 24 29 .92 102 159 18 24 45 45 40 57 64 35 38 24 29 .92 102 159 18 24 45 45 40 57 64 35 38 24 29 .92 102 159 18 24 45 45 40 57 64 35 38 24 29 .92 102 159 18 24 45 45 40 57 64 35 38 24 29 .92 102 159 18 24 45 45 40 57 64 35 38 24 29 .92 102 159 18 24 45 45 40 57 64 35 38 24 29 .92 102 159 18 24 45 45 40 57 64 35 38 24 29 .92 102 159 18 24 45 36 45 57 64 35 38 24 29 .92 102 159 18 24 45 36 45 57 35 31 28 26 .59 87 105 12 27 86 45 45 45 45 45 40 57 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 37 45 64 35 30 22 20 .50 76 26 28 112 20 24 45 37 45 45 45 35 30 27 27 .76 96 127 19 24 45 37 45 45 45 35 30 27 27 .76 96 127 19 24 45 37 45 45 45 35 30 22 20 .50 76 26 28 111 31 31 31 31 31 31 31 31 31 31 31 31	3				41	45	40		56	739	4.1	30100	
\$ 29	4	29	46	49	40	45	40	35	133	381	3.5	2580	
7	5	29	43	40	41	44	39	34	69	134	3.1	743	88
8	6												66
10 27 76 40 36 47 47 64 33 77 1.6 220 591 11 27 66 40 39 46 45 84 42 59 1.5 191 380 12 24 79 42 40 57 40 87 37 47 1.3 166 296 13 22 56 40 37 127 40 63 44 42 1.1 148 245 14 24 51 43 40 110 35 51 41 38 1.1 133 203 15 24 50 42 40 86 35 44 37 35 1.0 123 159 16 24 47 41 46 74 35 40 28 32 1.1 113 325 17 24 45 40 50 64 35 38 24 29 .92 102 159 18 24 45 40 50 64 35 38 24 29 .92 102 159 18 24 45 40 57 64 35 33 27 27 .76 96 127 19 24 45 35 45 57 35 31 28 26 .59 87 105 21 24 45 35 45 57 35 31 28 26 .59 87 105 21 24 40 35 45 57 35 31 28 26 .59 87 105 21 24 40 35 45 51 35 31 28 26 .59 87 105 21 24 40 35 45 54 35 35 32 29 13 1.5 70 176 22 278 43 36 45 54 35 36 30 22 20 .50 76 246 23 211 45 37 45 45 35 35 32 29 13 1.5 70 176 24 123 42 35 45 45 35 35 32 29 13 1.5 70 176 26 59 41 37 42 45 35 35 35 32 29 13 1.5 70 176 26 59 41 37 42 45 35 35 35 22 9 13 1.5 70 176 26 59 41 37 42 45 35 35 35 22 9 13 1.5 70 176 26 59 41 37 42 45 35 35 35 22 9 13 1.5 70 176 26 59 41 37 42 45 35 35 35 22 9 13 1.5 70 176 27 51 39 37 40 44 35 35 30 20 7.0 2.5 57 124 28 51 40 40 40 40 45 35 35 30 20 7.0 2.5 57 124 29 45 40 43 40 40 40 44 35 41 22 7.3 1.8 57 122 28 51 40 40 40 40 45 35 30 20 7.0 2.5 57 124 29 45 40 43 40 35 27 31 5.2 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 51 110 30 45 54 54 54 54 38.4 39.8 37.5 99.8 6.39 1953 573 MAX 278 83 60 57 127 51 87 133 799 54 30100 10000	7												
10 27 76 40 36 47 47 64 33 77 1.6 220 591 11 27 66 40 39 46 45 84 42 59 1.5 191 380 12 24 79 42 40 57 40 87 37 47 1.3 166 296 13 22 56 40 37 127 40 63 44 42 1.1 148 245 14 24 51 43 40 110 35 51 41 38 1.1 133 203 15 24 50 42 40 86 35 44 37 35 1.0 123 159 16 24 47 41 46 74 35 40 28 32 1.1 113 325 17 24 45 40 50 64 35 38 24 29 .92 102 159 18 24 45 40 50 64 35 38 24 29 .92 102 159 18 24 45 40 57 64 35 33 27 27 .76 96 127 19 24 45 35 45 57 35 31 28 26 .59 87 105 21 24 45 35 45 57 35 31 28 26 .59 87 105 21 24 40 35 45 57 35 31 28 26 .59 87 105 21 24 40 35 45 51 35 31 28 26 .59 87 105 21 24 40 35 45 54 35 35 32 29 13 1.5 70 176 22 278 43 36 45 54 35 36 30 22 20 .50 76 246 23 211 45 37 45 45 35 35 32 29 13 1.5 70 176 24 123 42 35 45 45 35 35 32 29 13 1.5 70 176 26 59 41 37 42 45 35 35 35 32 29 13 1.5 70 176 26 59 41 37 42 45 35 35 35 22 9 13 1.5 70 176 26 59 41 37 42 45 35 35 35 22 9 13 1.5 70 176 26 59 41 37 42 45 35 35 35 22 9 13 1.5 70 176 26 59 41 37 42 45 35 35 35 22 9 13 1.5 70 176 27 51 39 37 40 44 35 35 30 20 7.0 2.5 57 124 28 51 40 40 40 40 45 35 35 30 20 7.0 2.5 57 124 29 45 40 43 40 40 40 44 35 41 22 7.3 1.8 57 122 28 51 40 40 40 40 45 35 30 20 7.0 2.5 57 124 29 45 40 43 40 35 27 31 5.2 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 51 110 30 45 54 54 54 54 38.4 39.8 37.5 99.8 6.39 1953 573 MAX 278 83 60 57 127 51 87 133 799 54 30100 10000	8												
11 27 66 40 39 46 45 84 42 59 1.5 191 380 12 24 79 42 40 57 40 87 37 47 1.3 166 296 13 22 56 40 37 127 40 63 44 42 1.1 148 245 14 24 51 43 40 110 35 51 41 38 1.1 133 203 15 24 50 42 40 86 35 44 37 35 1.0 123 159 16 24 47 41 46 74 35 40 28 32 1.1 113 325 17 24 45 40 50 64 35 38 24 29 .92 102 159 18 24 45 40 50 64 35 38 24 29 .92 102 159 18 24 45 40 57 64 35 38 24 29 .92 102 159 18 24 45 37 45 64 35 33 27 27 .76 96 127 19 24 45 35 45 57 35 31 28 26 .59 87 105 21 24 40 35 45 57 35 31 28 26 .59 87 105 21 24 40 35 45 51 35 31 26 23 .64 83 335 22 278 43 36 45 54 35 35 30 27 27 .62 88 112 20 21 44 33 36 45 54 35 35 30 27 27 .62 88 112 21 24 40 35 45 51 35 31 26 23 .64 83 335 22 278 43 36 45 54 35 30 27 27 .62 88 122 24 45 37 45 45 36 30 27 27 .62 88 122 25 278 43 36 45 54 35 31 26 23 .64 83 335 22 278 43 36 45 54 35 35 31 26 22 20 .50 76 246 23 211 45 37 45 45 35 35 30 27 27 .62 88 24 123 42 35 45 45 35 30 27 27 .62 88 122 278 43 36 45 54 35 35 31 26 27 20 .50 76 246 23 211 45 37 45 45 35 35 31 26 27 20 .50 76 246 24 123 42 35 45 45 35 36 30 21 17 .65 72 218 24 123 42 35 45 45 35 36 30 21 17 .65 72 218 24 123 42 35 45 45 35 35 32 29 13 1.5 70 176 25 78 40 36 45 43 35 45 35 32 29 13 1.5 70 176 26 59 41 37 42 45 35 35 32 29 13 1.5 70 176 27 51 39 37 40 44 35 41 22 7.3 1.8 57 122 28 51 40 40 40 40 40 43 35 41 22 7.3 1.8 57 122 28 51 40 40 40 40 40 43 35 41 22 7.3 1.8 57 122 28 51 40 40 40 40 40 45 35 30 20 7.0 2.5 57 124 29 45 40 43 40 35 27 31 5.2 51 51 110 30 45 44 45 40 35 27 31 5.2 51 51 110 31 43 45 40 35 27 31 5.2 51 51 110 31 43 45 40 35 27 31 5.2 51 51 110 31 43 45 40 35 27 31 5.2 51 51 51 110 31 43 45 40 35 27 31 5.2 51 51 51 110 31 43 45 40 35 27 31 5.2 51 51 51 110 31 43 45 40 35 27 31 5.2 51 51 51 110 31 43 45 40 35 27 31 5.2 51 51 51 110 31 43 45 40 35 27 31 5.2 51 51 51 110 31 43 45 40 35 27 31 5.2 51 51 51 110	9	27											
12	10	27	76	40	36	47	47	64	33	77	1.6	220	591
13	11												
14 24 51 43 40 110 35 51 41 38 1.1 133 203 15 24 50 42 40 86 35 51 41 38 1.1 133 203 16 24 47 41 46 74 35 40 28 32 1.1 113 35 17 24 45 40 50 64 35 38 24 29 .92 102 159 18 24 45 40 57 64 35 38 24 29 .92 102 159 19 24 45 37 45 64 35 30 27 27 .76 96 127 19 24 45 35 45 57 35 31 26 23 .64 83 335 20 278 43													
16													
16	14												203
17	15	24	50	42	40	86	35	44	37	35	1.0	123	159
18 24 45 40 57 64 35 33 27 27 .76 96 127 19 24 45 35 45 57 35 31 28 26 .59 87 105 21 24 40 35 45 51 35 31 26 23 .64 83 335 22 278 43 36 45 54 35 30 22 20 .50 76 246 23 211 45 37 45 45 35 30 21 17 .65 72 218 24 123 42 35 45 45 35 30 21 17 .65 72 218 24 123 42 35 45 45 35 32 29 13 1.5 70 176 25 78 40 36													
19 24 45 37 45 64 35 30 27 27 .62 88 112 20 24 45 35 45 57 35 31 28 26 .59 87 105 21 24 40 35 45 51 35 31 26 23 .64 83 32 22 278 43 36 45 54 35 30 21 17 .65 72 246 23 211 45 37 45 45 36 30 21 17 .65 72 218 24 123 42 35 45 45 35 32 29 13 1.5 70 216 25 78 40 36 45 43 35 43 27 12 2.0 64 143 26 59 41											.92		
20													112
21													
22 278 43 36 45 54 35 30 22 20 .50 76 246 23 211 45 37 45 45 45 36 30 21 17 .55 72 218 24 123 42 35 45 45 45 35 32 29 13 1.5 70 176 25 78 40 36 45 43 35 43 27 12 2.0 64 143 26 59 41 37 42 45 35 35 43 27 12 2.0 64 143 26 59 41 37 42 45 35 35 41 22 7.3 1.8 57 122 27 51 39 37 40 44 35 35 41 22 7.3 1.8 57 122 28 51 40 40 40 40 45 35 30 20 7.0 2.5 57 124 29 45 40 43 40 35 26 22 6.8 42 54 119 30 45 44 45 40 35 27 31 52 51 51 110 31 43 45 40 35 27 31 52 51 51 110 31 43 45 40 35 27 31 52 51 51 110 TOTAL 1530 1538 1289 1305 1579 1189 1195 1164 2994.2 197.98 60528 17196 MEAN 49.4 51.3 41.6 42.1 56.4 38.4 39.8 37.5 99.8 6.39 1953 573 MAX 278 83 60 57 127 51 87 133 739 54 30100 1066 MIN 22 39 35 36 43 35 26 20 5.2 .50 51													
23 211 45 37 45 46 36 30 21 17 .65 72 218 24 123 42 35 45 45 45 35 32 29 13 1.5 70 178 25 78 40 36 45 43 35 43 27 12 2.0 64 143 26 59 41 37 42 45 35 35 33 24 8.9 1.9 64 127 27 51 39 37 40 44 35 41 22 7.3 1.8 57 122 28 51 40 40 40 45 35 30 20 7.0 2.5 57 124 29 45 40 43 40 35 26 22 6.8 42 54 119 30 45 44 45 40 35 27 31 5.2 51 51 110 31 43 45 40 35 27 31 5.2 51 51 110 31 43 54 40 40 45 45 40 40 45 45 45 45 40 45 45 45 45 45 45 45 45 45 45 45 45 45													
24 123 42 35 45 45 35 32 29 13 1.5 70 176 25 78 40 36 45 43 35 43 27 12 2.0 64 143 26 59 41 37 42 45 35 33 24 8.9 1.9 64 143 27 51 39 37 40 44 35 41 22 7.3 1.8 57 122 28 51 40 40 40 45 35 30 20 7.0 2.5 57 124 29 45 40 43 40 35 26 22 6.8 42 54 119 30 45 54 44 45 40 35 27 31 5.2 51 110 31 43													
25 78 40 36 45 43 35 43 27 12 2.0 64 143 26 59 41 37 42 45 35 33 24 8.9 1.9 64 127 27 51 39 37 40 44 35 41 22 7.3 1.8 57 122 28 51 40 40 40 40 45 35 30 20 7.0 2.5 57 124 29 45 40 43 40 35 26 22 6.8 42 54 119 30 45 44 45 40 35 27 31 5.2 51 51 110 31 43 45 40 35 57 54 54 TOTAL 1530 1538 1289 1305 1579 1189 1195 1164 2994.2 197.98 60528 17196 MEAN 49.4 51.3 41.6 42.1 56.4 38.4 39.8 37.5 99.8 6.39 1953 573 MAX 278 83 60 57 127 51 87 133 739 54 30100 10000 MIN 22 39 35 36 43 35 26 20 5.2 .50 51													
26	24								29		1.5		176
27 51 39 37 40 44 35 41 22 7.3 1.8 57 122 28 51 40 40 40 40 40 40 35 26 22 6.8 42 54 119 30 45 44 45 40 35 27 31 5.2 51 51 110 31 43 45 40 35 27 31 5.2 51 51 110 31 43 3 45 40 3 30 35 36 37 39 54 30 30 45 44 45 40 35 35 36 37 37 37 37 38 38 37 5 38 38 37 5 39 8 6.39 1953 573 MAX 278 83 60 57 127 51 87 133 739 54 30100 10000 MIN 22 39 35 36 43 35 26 20 5.2 50 51	25	78	40	36	45	43	35	43	27	12	2.0	64	143
28 51 40 40 40 45 35 30 20 7.0 2.5 57 124 29 45 40 43 40 35 26 22 6.8 42 54 119 31 43 45 40 35 27 31 5.2 51 51 110 31 43 45 40 35 57 54 54 TOTAL 1530 1538 1289 1305 1579 1189 1195 1164 2994.2 197.98 60528 17196 MEAN 49.4 51.3 41.6 42.1 56.4 38.4 39.8 37.5 99.8 6.39 1953 573 MAX 278 83 60 57 127 51 87 133 739 54 30100 100000 MIN 22 39 35 36 43 35 26 20 5.2 50 51 66	26										1.9		127
29 45 40 43 40 35 26 22 6.8 42 54 119 30 45 44 45 40 35 27 31 5.2 51 51 110 31 43 45 40 35 57 54 54 TOTAL 1530 1538 1289 1305 1579 1189 1195 1164 2994.2 197.98 60528 17196 MEAN 49.4 51.3 41.6 42.1 56.4 38.4 39.8 37.5 99.8 6.39 1953 573 MAX 278 83 60 57 127 51 87 133 739 54 30100 1000 MIN 22 39 35 36 43 35 26 20 5.2 .50 51 .666													
30						45							
31 43 45 40 35 57 54 54 TOTAL 1530 1538 1289 1305 1579 1189 1195 1164 2994.2 197.98 60528 17196 MEAN 49.4 51.3 41.6 42.1 56.4 38.4 39.8 37.5 99.8 6.39 1953 573 MAX 278 83 60 57 127 51 87 133 739 54 30100 10000 MIN 22 39 35 36 43 35 26 20 5.2 50 51 66	29												
TOTAL 1530 1538 1289 1305 1579 1189 1195 1164 2994.2 197.98 60528 17196 MEAN 49.4 51.3 41.6 42.1 56.4 38.4 39.8 37.5 99.8 6.39 1953 573 MAX 278 83 60 57 127 51 87 133 739 54 30100 10000 MIN 22 39 35 36 43 35 26 20 5.2 .50 51 66													
MEAN 49.4 51.3 41.6 42.1 56.4 38.4 39.8 37.5 99.8 6.39 1953 573 MAX 278 83 60 57 127 51 87 133 739 54 30100 1000 MIN 22 39 35 36 43 35 26 20 5.2 50 51 66	31	43		45	40		35		5/		54		
MAX 278 83 60 57 127 51 87 133 739 54 30100 10000 MIN 22 39 35 36 43 35 26 20 5.2 .50 51 66			1538										
MIN 22 39 35 36 43 35 26 20 5.2 .50 51 66													573
							51						
AC-FT 3030 3050 2560 2590 3130 2360 2370 2310 5940 393 120100 34110								26					
	AC-FT	3030	3050	2560	2590	3130	2360	2370	2310	5940	393	120100	34110

CAL YR 1977 TOTAL 110737.00 MEAN 303 MAX 36400 MIN 21 AC-FT 219600 WTR YR 1978 TOTAL 91705.18 MEAN 251 MAX 30100 MIN .50 AC-FT 181900

08153500 PEDERNALES RIVER NEAR JOHNSON CITY, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: April 1948 to September 1950, October 1971 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	STRE FLO INST TANE (CF	CI AM- CO W. DU AN- AN OUS (MI	FF- FIC IN- ICT- ICE CRO- IOS) (U	PH INITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS+ NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
ост									-		54
05 NOV	0826	31		786	7.9	22.5	270	61	34	46	34
11	0920	64		650	8.1	12.0	250	40	42	36	39
DEC 23	0850	35	5	821	8.0	8.5	310	64	45	48	53
FEB 01	0945	45		830	8.0	5.5	330	66	54	47	53
MAR				-0.4							
15 APR	0855	35	5	776	8.1	16.0	300	62	46	45	49
26	0825	35	5	724		22.5	270	36	34	44	51
JUN 07	0945	105		337		26.0	130	11	29	15	13
JUL	0,45	10.	907	331		20.0					.72
19	0955		.72	648		28.0	240	35	35	37	40
AUG 30	0925	51		669		27.0	230	46	33	37	43
DAT	S	DDIUM AD- DRP- TION ATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HC03)	CAR- BONA (MG/ AS CO	TE SOL	ATE RI - DI VED SO /L (M	DE, RIC S- D: LVED SOL G/L (MC	DE + DIS IS - SOI LVED (MG	ICA, SUM S- CON LVED TUE G/L D S SO	IDS. OF STI- NTS. IS- LVED G/L)
OCT											
NOV	•••	1.4	3.5	260		0 4	5	98	•4	15	424
DEC DEC	•••	1.1	3.1	260)	0 3	7	64	.4	7.7	357
23. FER	••	1.3	3.4	300)	0 4	4	89	• 4	3.0	434
01.		1.3	2.9	320)	0 4	3 1	10	.4	4.0	472
MAR 15.		1.2	2.9	290)	0 4	1	83	.4	. A	411
APR 26.		1.4	3.7	280)	0 3	7	86	.4	4.3	398
JUN 07.		.5	3.2	150				21	.2	9.6	177
JUL.	• • •	• 5	3.2	150	,	0 1	_	-1		200	
19.	•••	1.1	4.1	250)	0 2	7	68	.4	23	358
30.		1.2	3.9	230)	0 4	0	78	.4	9.3	358

08154500 LAKE TRAVIS NEAR AUSTIN, TX

LOCATION.--Lat 30°23'29", long 97°54'24", Travis County, Hydrologic Unit 12090205, in powerhouse at Mansfield Dam on Colorado River, 7.3 mi (11.7 km) downstream from Sandy Creek, 12 mi (19 km) northwest of Austin, and at mile 318.0 (511.7 km).

DRAINAGE AREA.--38,130 mi² (98,760 km²), approximately, of which 12,880 mi² (33,360 km²) probably is noncontributing.

PERIOD OF RECORD.--September 1940 to current year. Prior to October 1948, published as Marshall Ford Reservoir near Austin.

REVISED RECORDS. -- WSP 1342: Drainage area.

GAGE.--Nonrecording gage. Datum of gage is 0.12 ft (0.37 m) National Geodetic Vertical Datum of 1929 (levels by Bureau of Reclamation). Prior to Dec. 26, 1940, staff gages on left bank near dam, datum at National Geodetic Vertial Datum, unadjusted. Dec. 26, 1940, to February 1942, mercury manometer in powerhouse, datum at National Geodetic Vertical Datum, unadjusted.

REMARKS.--The lake is formed by a concrete gravity, earth, and rockfill dam, 7,098 ft (2,163 m) long. Storage began Sept. 9, 1940, and dam was completed in early 1942. Capacity curve is based on an October 1939 survey. The capacity between gage heights 681.0 and 714.0 ft (207.57 and 217.63 m) is 778,000 acre-ft (959 hm²) and is reserved for flood control. Water is used for power development and for irrigation below Columbus. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	Gage height (feet)	(acre-feet)
Top of dam (roadway)	750.1	
Design flood	748.9	3,223,000
Crest of spillway	714.0	1,950,000
Top of power storage	681.0	1,172,000
Lowest gated outlet (invert)	535.8	27,900

COOPERATION. -- Records of daily gage heights and capacity curve were furnished by the Lower Colorado River Authority.

EXTREMES (at 2400) FOR PERIOD OF RECORD.--Maximum contents, 1,770,000 acre-ft (2.18 km²) May 18, 1957, gage height, 707.4 ft (215.62 m); minimum, 332,600 acre-ft (410 hm²) Aug. 13, 14, 1951, gage height, 614.2 ft (187.21 m).

EXTREMES (at 2400) FOR CURRENT YEAR.--Maximum contents, 916,000 acre-ft (1.13 km³) Mar. 13, gage height, 666.07 ft (203.018 m); minimum, 640,900 acre-ft (0.790 km³) July 21, gage height, 645.78 ft (196.834 m).

Capacity table (gage height, in feet, and total contents, in acre-feet)

645.0	631,700	660.0	824,700
650.0	690,700	665.0	899,700
655.0	754.500	667.0	930,400

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	896300	903500	899900	884000	892000	908800	891500	809900	707400	664200	652500	824300
2	895600	903700	899900	883700	891400	909700	888300	809700	706000	661400	682400	820600
3	898200	903100	899900	883400	890500	911900	887300	812900	708800	659900	814600	816500
4	897900	903100	899900	883200	890600	912700	883800	809300	707200	657500	868200	812600
5	897300	903100	899900	885300	890300	912700	880800	805400	706000	655700	863900	808400
6	897000	903100	898100	885500	890800	913900	877500	801400	711300	654800	861900	804100
7	896600	902900	898800	885500	892600	914000	875000	797700	717200	653800	860900	801200
8	896900	905500	899100	886500	892300	914900	873500	793400	723300	653300	862200	840600
9	896600	905200	898800	885900	894900	915100	870200	788900	720400	652500	864000	843800
10	896100	904900	898100	888500	897000	915400	870000	784900	717700	651900	865200	844700
11	895600	904900	897800	888200	897000	900700	869000	781200	722000	652400	866600	845600
12	896600	904900	897300	887700	899900	915200	866100	778300	715900	650600	867500	846200
13	894600	904700	897800	887400	899900	916000	863900	773900	712800	648500	865500	849300
14	894100	907100	895200	887100	899600	915700	861200	769600	709200	647000	865800	849300
15	894100	909700	893200	887100	902200	914200	857400	765400	706200	647700	866000	847800
16	893700	910400	892800	892300	902000	914200	853500	762900	702900	646700	866700	845900
17	892800	910300	890900	891100	904700	913000	853800	758600	701900	645000	865800	843600
18	892800	910100	889600	891500	905000	911500	850700	754900	697500	643900	865800	841500
19	892500	910100	888500	891700	905000	910700	847200	750900	693800	642600	864600	838200
20	892900	911300	886700	891700	905200	909500	844200	747400	691300	641500	862800	829100
21	894100	912700	885900	891200	905500	908900	840800	744000	689800	640900	862100	836700
22	895900	912400	885800	890800	905500	908000	836700	740100	688000	641100	861000	834300
23	896400	912800	885200	891200	905600	910000	832800	737100	685600	641800	858500	831500
24	899000	912800	884300	892000	905500	908000	829500	733100	684300	641500	857400	828600
25	899100	912500	883800	891700	905500	906700	827100	729800	681100	643000	855000	827400
26	899100	912200	882900	890900	906400	905600	824000	728100	679800	644900	852200	825300
27	899400	912200	882000	890900	908000	904400	821000	724600	677700	646100	848000	823400
28	900400	909800	881900	890200	908200	901900	817900	720800	671500	646600	846200	821000
29	900200	907400	883200	889300		899100	815100	717100	668500	648000	840000	819800
30	900700	901600	883400	892300		896600	811900	713500	666200	648000	834200	818400
31	901000	301000	883500	891200		893800		709900		647700	828900	010400
						993900		709900				
MAX	901000	912800	899900	892300	908200	916000	891500	812900	723300	664200	868200	849300
MIN	892500	901600	881900	883200	890300	893800	811900	709900	666200	640900	652500	801200
(†) (‡)	665.07	665.11	663.92	664.43	665.55	664.60	659.13	651.55	647.92	646.36	660.28	659.57
1.1	+2300	+600	-18100	+7700	+17000	-14400	-81900	-102000	-43700	-18500	+181200	-10500

CAL YR 1977 MAX 1404000 MIN 881900 ‡ -271500 HTR YR 1978 MAX 916000 MIN 640900 ‡ -80300

t Gage height, in feet, at end of month. ‡ Change in contents, in acre-feet.

08154510 COLORADO RIVER BELOW MANSFIELD DAM, AUSTIN, TX

LOCATION.--Lat 30°23'30", long 97°54'28", Travis County, Hydrologic Unit 12090205, at the downstream side of Mansfield Dam, 12.9 mi (20.8 km) northwest of the State Capitol at Austin, and at mile 318.0 (511.7 km).

DRAINAGE AREA.--38,130 mi² (98,760 km²), approximately, of which 12,880 mi² (33,360 km²) probably is noncontributing.

PERIOD OF RECORD .-- October 1974 to current year.

GAGE .-- None. Daily discharge record is based on daily releases from Lake Travis.

REMARKS .-- Records fair.

CAL YR 1977

WTR YR 1978

TOTAL

TOTAL

834111.00

384475.00

MAX

MAX

.00

.00

AC-FT

MIN

MIN

MEAN

MEAN

COOPERATION. -- All records of releases were furnished by the Lower Colorado River Authority.

EXTREMES FOR PERIOD OF RECORD .-- Maximum daily discharge, 25,300 ft3/s (716 m3/s) Apr. 17-19, 1977; no flow at times.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 3,830 ft³/s (108 m³/s) June 28; no flow at times.

MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP .00 2140 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 1830 .00 -00 .00 -00 .00 -00 .00 -00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 1470 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 -00 63530.00 39752.00 TOTAL 5346.00 7560.00 11888.00 4125.00 1924.00 13604.00 64980 71600.00 MEAN 68.7 MAX MIN .00 .00 .00 .00 .00 .00 .00 .00 .00 AC-FT

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

08154700 BULL CREEK AT LOOP 360 NEAR AUSTIN, TX

LOCATION.--Lat 30°22'19°, long 97°47'04°, Travis County, Hydrologic Unit 12090205, on right bank at downstream side of bridge at Loop 360, 1.0 mi (1.6 km) upstream from West Fork Bull Creek and Farm Road 2222, and 7.1 mi (11.4 km) northwest of the State Capitol Building in Austin.

DRAINAGE AREA .-- 22.3 mi2 (57.8 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --April 1976 to July 1978 (operated as a flood-hydrograph partial-record station only), July to September 1978.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 534.08 ft (162.788 m) National Geodetic Vertical Datum of 1929 (levels from city of Austin bench mark).

REMARKS.--Water-discharge records good. No known regulation or diversion above station. There are two recording rain gages in the basin above the station. This station is part of a hydrologic research project to study the rainfall-runoff relationship for the Austin urban-rural areas.

EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 6.09 ft (1.856 m) Apr. 18, 1976 (discharge unknown); minimum discharge not

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period July to September, 60 ft 3 /s (1.70 m 3 /s) Sept. 15, gage height, 3.37 ft (1.027 m), no peak above base of 800 ft 3 /s (22.7 m 3 /s); minimum, 0.02 ft 3 /s (0.001 m 3 /s) July 30, 31.

WATER-OUALITY RECORDS

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: April to September 1968.

WATER QUALITY DATA+ WATER YEAR OCTOBER 1977 TO SEPTEMPER 1978

DATE	TIME	FL INS TAN	EAM- CO OW. DO TAN- AT EOUS (M:	FF - IFIC DN- UCT- NCE ICRO- HOS) (U	PH JNITS)	AT	PER- UKE (G C)	IN COL	LOR LAT- UM- BALT ITS)	TUR- HID- ITY (JTU)	So	GEN. IS- LVED	SOL (PE CE SA1	S- VED	DEMA BIC CHE ICA 5 OA (MGA	AND.
APR																
11	0825		6.0	617	7.8		15.0		50	30		9.0		95		5.0
JUN 07	0830	4	5	594	7.7		23.0		30	75		8.3		99		1.2
JUL	0900		.14	564	7.2		26.0		5	3		2.5		31		1.4
25 AUG																
01 SEP	1235		6.7	316	7.2		23.5		30	140		8.1		98		5.1
08	0855		4.2	508	7.1		24.0		20	35		5.2		63		1.3
25	0930		.46	756	7.6		23.0		0	1		6.0		71		.4
DATE	TO IM	ER	COLI- FORM. FECAL. 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCC FECAL KF AGAI (COLS. PER 100 ML	HAF	55 5/L	NES! NONC HONA (MG	S. AR- TE. /L	CALCIU DIS- SOLVE (MG/L AS CA	M S D SOI	IVED S/L MG)	SODI DIS SOLV (MG AS	ED /L	SOD SOR TI RAT	D- P- ON	
11	16	0000	3000	580	0	260		66	74		19	3	1		.8	
JUN																
07	. 4	5000	11000	1900	0	230		36	65		17	3	3		.9	
25	. 1	4000	500	24	0	250		92	68		19	2	3		.6	
01	. 16	0000	84000	2000	0	130		27	40		8.2	1	0		.4	
SFP OA	. 3	5000	7000	750	0	210		66	59		14	2	1		.6	
25		2800	110	32	0	280		93	70		26	3	8		1.0	
DATE	SOI (M	TAS- IUM. IS- LVED G/L K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3	(MC	VED	RIDI DIS- SOL (MG.	VED /L	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	DI: SOI D (M	VED	SOL	OF TI-	SOLI RESI AT 1 DEG. SUS PEND (MG	DUE 05 C+ E0	
APR																
JIIN	•	2.3	240		0 6	55	4	5		2	8.0		363		33	
07 JUL		2.3	240		0 4	94	3	8		2	7.0		329		114	
25		3.4	190		0 (57	4	6		2	10		331		2	
01		2.4	130		0 7	29	1	7	-	1	6.5		177		176	
SEP 08		2.9	170		0	54	3	6		2	8.1		289		27	
25		3.0	230			00	5	5		4	10		416		1	
DATE	VO TI SU PEN		NITHO- GEN. NITRATE TOTAL (MG/L AS N)	NITRO GEN+ NITRIT TOTAL (MG/L AS N)	F. NO2 TO	TRO- EN, •NO3 TAL G/L N)	NIT GE AMMO TOT (MG AS	N. NIA AL /L	NITRO GEN. ORGANI TOTAL (MG/L AS N)	GEN MON C ORG TO	TRO- AM- IA + ANIC TAL G/L N)	PHOR PHOR TOT (MG	AL	CARB ORGA TOT (MG	AL /L	
APR																
11 JUN	•	A	.10	.0	1	.11		.01	.3	1	.32		.03		6.7	
07		15	.34	• 0	2	• 36		.09	.4	3	.52		• 05		5.4	
JI:L		2	.04	.0	0	.04		.00	• 3	10	.30		.01		5.0	
01		48	.42	•0	2	.44		.00	.6	0	.60		.06		6.9	
SFP 08		6	.14			.17		.01	.5		.60		.02		5.8	
1184	:	0	.00			.00		.00			.26		.01		3.6	

	DATE	TIMF	ARSENI DIS- SOLVE (UG/L AS AS	D SOL		CADMIC DIS- SOLVI (UG/I AS CI	UM MIC - DIS ED SOIL	RO- JM, S- LVED G/L CR)	COPPER DIS- SOLVE (UG/L AS CU	D SOL	S- VED		
	JUN 07	0830		1	100		0	10		1	10		
	.JUL 25	0900		1	200		0	0	1	3	50		
	A11G	1235		1	30		<1	0		1	20		
	SEP 08	0855		2	0		0	10		1	20		
	25	0930		1	60		<1	0		1	<10		
	D	9	EAD. DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	SOI (U)	CURY IS- LVED G/L HG)	SELE- NIUM. DIS- SOLVED (UG/L AS SE)	SOL	(ER+ (S- VED G/L AG)	ZINC, DIS- SOLVED (UG/L AS ZN)			
	JU 0	N 7	2	10		.0	1		0	10			
		5	0	30		.0	0		0	10			
		1	5	<1		.0	0		0	<3			
		8	0	10		.0	0		0	20			
	2	5	O NAPH-	6		.0	U		U	.,			
			THA-										
NATE	TIME	PCR. TOTAL (UG/L)	POLY CHLOR TOTAL	- ALD	RIN. TAL G/L)	CHLO DANE TOTA (UG/	L TO	DD, TAL G/L)	DDE . TOTAL (UG/L	TOT	AL S/L)	AZING TOTA (UG)	ON,
JIIN 07	0830) .0	0	.00		. 0	.00	.0	0	.00		.01
JIIL 25	0900				.00		.0	.00	. (.00		. 37
SFP 09	0855				•00		.0	.00	. (.00		. 05
25	0930		.0		•00		• 0	.00	. (•00		•00
DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN- TOTAL (UG/L)	TOTAL	TO	ION. TAL G/L)	HEPT CHLO TOTA (UG/	A- CHI R. EPO L TO	PTA- LOR XIDE TAL G/L)	LINDAN TOTAL (UG/L	TOT	ON.	METH PARA THIC TOTA (UGA	A- ON, AL
JUN	.00	.00		.0	.00		00	.00	.0	10	.00		.00
07 JIL 25		.00			.00		00	.00	.0		.00		.00
SED OR	.00	.00			.00		00	.00	.0		.00		.00
25	.00	.0			•00		00	.00	• (0	•00		.00
DA	T TH TO	TAL	VIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TO	OX- ENE • TAL G/L)	TOTAL TRI- THION (UG/L)	TO:	4-D• 2 TAL 3/L)	2,4,5-T TOTAL (UG/L)	TO	VEX.	
1UL	7	•00		.00		0	.00		.00	.00		.00	
ارار. 29		.00	•00	.00		0	.00		.00	.00		.00	
OF OF	••••	.00	.00	.00		0	.00		.01	.01		.00	
25	•••	.00	•00	•00		0	•00		.00	.00		.00	

08154750 WEST BULL CREEK AT LOOP 360 NEAR AUSTIN, TX (Flood-hydrograph partial-record station)

LOCATION.--Lat 30°21'34", long 97°47'24", Travis County, Hydrologic Unit 12090205, 150 ft (46 m) north of the intersection of Farm Road 2222 and northbound Loop 360 access road, and 6.5 mi (10.5 km) northwest of the State Capitol Building in Austin.

DRAINAGE AREA.--6.77 mi² (17.53 km²).

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: April to September 1978.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	,	STREAM-	SPF CIF CON	IC -				OR				SOL	S- D	XYGEN EMAND, BIO-
		FLOW.	DUC					AT-	TUR-	OXY		(PE		CHEM-
		INSTAN-	ANC			MPER-	INL		810-		IS- LVED			DAY
DATE	1 Twe	(CFS)	MHO			TURE DEG C)		TS)	(UTU)		3/L)			MG/L)
100 V														
11	0752	64		628	7.8	14.5		5	1		9.7		98	.8
JIIN														
07 4UG	0933	2.8		472	8.0	23.0		50	10		8.3		99	•6
01	1300	.24		65A	8.0	25.0		20	8		8.2		101	1.8
08	0945	.01	1	000	7.4	23.5		5	4		8.2		99	.6
	COLI			STREP-										
	FORM		M.	TOCOCCI		HARD-			MAGI				SONIU	
	TOTAL			FECAL.	HAPD-	NESS		CALCIUM			SODIU		AD-	
	IMME			KF AGAR	NESS	NONCAF		DIS-	01		DIS-		SORP-	
	(COLS			ICOLS.	(MG/L	BONATE		SOL VE			SOLVE		TION	
DATE	PER 100 MI			PER 100 ML)	CACO3	(MG/L		AS CA	(MG		AS N		PATIO	
DATE	100 M	., 100		100 667	CACOS	CACO.	.,							
APR			4.2						-			•		2
JUN JUN	110	00	72	440	34	0 12	20	90	S	7		.9		2
07	250	00 2	100	6000	24	0	60	65	1	9	7	.7		5
01	>700	00 70	000	5400	34	0 2	10	94	2	5	5	.0		1
SEP 08	290	00 7	400	1800	58	0 40	00	160	4	3	11			2
											SOLID	s.	SOLIDS	,
	POTA	S-				CHLO-	-	FLUO-	SILI	CA.	SUM 0	F	RESIDU	
	SIU		R-		SULFAT			RIDE.	DIS	-	CONST	I-	AT 105	
	015			CAR-	DIS-	DIS-		DIS-	SUL	VED	TUENT	5.	DEG. C	•
	SOLV			BONATE	SOLVE	O SOLVE	ED	SOLVE	D (MG	1	DIS		SUS-	
	(MG/		S	(MG/L	(MG/L		L	(MG/L	AS		SOLV	ED	PENDED	
DATE	AS K		(8)	AS C03)	AS 504) AS CI	L)	AS F)	SIO	5)	(MG/	L)	(MG/L)
AFR														
11	. 1	. 3	260	0	100	55			2	9.7	3	87		1
JIIN		100							17.5		,	74	,	5
AUG	. 1	. 3	550	0		16		•		2			- 10	
01	. 4	. 9	150	0	210	8	. 8		2	9.6	4	35		4
0A	. 4	.5	210	0	390	12			2 1	1	7	35		1
										F0-				
	SOL ID	S. NI	-0A	NITRO-	NITRO	- NITR	0-	NITRO						
	VOLA	- GE	N.	GEN.	GEN.	GEN	•	GEN.	1000	4 4	PHOS		CARBON	
	TILE			NITRITE			IA	ORGANI			PHORU		ORGANI	
	SUS-	TO	TAL	TOTAL	TOTAL	TOTA	L	TOTAL			TOTA		TOTAL	
	PENDE	0 (M	i/L	(MG/L	(MG/L	(MG/	L	(MG/L			(MG/		(MG/L	
DATE	(MG/	L) AS	N)	AS N)	AS N)	AS N)	AS N)	AS	N)	AS P)	AS C)	
APR													1	
11		1	.06	.01	• 0	7 .	01	• 2	8	.29		00	5.	0
JIIN 07		3	.14	.01	•1	5 .	06	.2	5	.31		02	3.	9
Alle												03	7.	5
SFP		1	.15	.01			00	.8						
08	•	1	.24	.01	• 2	•	01	. 4	4	.50		01	6.	4

WATER QUALITY DATA. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

08154750 WEST BULL CREEK AT LOOP 360 NEAR AUSTIN, TX--Continued

			ARSEN DIS	- D	RIUM. IS- _VED	CADMIU DIS- SOLVE	DIS	4. CO	PPER. IS- DLVED	IRON. DIS- SOLVED	
	DATE	TIME	(UG/	'L (JG/L S BA)	AS CD			JG/L S CU)	(UG/L AS FE)	
	JUN										
	07 AUG	0933		1	200		0	0	0	20	
	01 SEP	1300		1	40	<	1	0	2	10	
	08	0945		1	0		1	0	4	10	
	D	9	EAD. DIS- SOLVED (UG/L AS PB)	MANGA NESE, DIS- SOLVE (UG/L AS MN	MERO DI D SOL (UC	CURY IS- LVED G/L HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER DIS- SOLVE (UG/L AS AG	DIS D SOLV	6- /ED /L	
		7	4		0	• 0	0		0	10	
		1	3	1	0	.0	0		0	4	
	SEI 0	8	4	1	0	.0	1		0	20	
DATE	TIME	PCB. TOTAL (UG/L)	TOT	A- ES, LY- DR. AL	ORIN, OTAL UG/L)	CHLOF DANE (TOTAL (UG/L	DD	AL T	DOE, OTAL UG/L)	DDT. TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)
JUN 07	0933		0	.00	.00		. 0	.00	.00	•00	.00
08	0945		0	.00	.00		. 0	.00	.00	.00	.00
DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN TOTAL (UG/L	. ENDR	AL T	HION. OTAL UG/L)	HEPT A	EPOX TOT	OR IDE LI AL T	NDANE OTAL UG/L)	MALA- THION. TOTAL (UG/L)	METHYL PARA- THION, TOTAL (UG/L)
JUN 07	.00	• 0	0	.00	.00		00	.00	.00	•00	.00
SFP 08	.00	.0		.00	•00			.00	.00	.00	.00
00			•	• • •	•••						
DAT	T TH TO	TAL	MIREX. TOTAL (UG/L)	PARA- THION TOTAL (UG/L	, APH	OX- ENE, TAL G/L)	TOTAL TRI- THION (UG/L)	2,4-D TOTAL (UG/L	TOT	AL TO	VEX.
JUN 07. SEP	•••	.00		.0	0	0	.00	.0	0	.00	.00

08154760 BULL CREEK AT FARM ROAD 2222 NEAR AUSTIN, TX (Reconnaissance partial-record station)

LOCATION.--Lat 30°21'33", long 97°47'16", Travis County, Hydrologic Unit 12090205, low-water crossing at Farm Road 2222, 50 ft (15 m) west of Lakewood Drive, and 6.5 mi (10.5 km) northwest of State Capitol in Austin.

DRAINAGE AREA.--30.42 mi² (78.79 km²).

PERIOD OF RECORD.--Occasional discharge measurements and water-quality data: January 1975 to April 1978 (discontinued).

DISCHARGE AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

D	ATE	TIME	FL INS TAN	EAM- OW, TAN- EOUS	DU AN	FIC N- CT- CE CRO-	PH UNITS)	AT	PER-	INI	LOR LAT- UM- BALT ITS)	TUR- 810- 1TY (JTU)	. s	YGEN. DIS- OLVED MG/L)	SO (P	GEN, IS- LVED ER- ENT (TUR- ION)	DEMAI BIO CHE ICA 5 DA (MG/	ND, M- L,	
0.	-11			,		037	0.12.57	,,,,	,										
JAI	N													V-0" W-					
	1	0930		8.0		759	8.1		4.0		5		6	12.0		94		.8	
FE				0			0.0		4 E.		5		6	12.9		108		.2	
2	1	0900	1	8		636	8.0		6.5		2		0	12.7		100		• •	
		COL		COL		STREP							100						
		FOF		FOR		TOCOCC			HARD-		4		AGNE-				IUM		
			TAL,	FEC		FECAL		RD-	NESS.		CALCIU	М	SIUM .	SODI		SOR	D-		
		(COL	MED.	0.7 UM-		KF AGA		G/L	BONATE		DIS-	n 6	OLVED			TI			
			ER.	(COL		PER.	A		(MG/L		(MG/L		MG/L	(MG		RAT			
	DATE		ML)	100		100 ML		C03)	CACOS		AS CA		S MG)						
	OFIC											1	-						
	JAN																		
	11		6000		80	3	6	290	13	30	74		26	4	5		1.1		
	FFR																		
	21	•	900		15	1	7				-	-		•					
														SOLI					
			TAS-						CHLO-		FLU0-		LICA,			RESI			
			IUM.	BICA				FATE	RIDE .		RIDE,		IS-	CONS		AT 1			
			IS-	BONA		CAR-	DI		DIS-	- 0	DIS-		OLVED		5-	DEG.			
			LVED	(MG	_	BONATE		G/L	SOL VE		SOLVE (MG/L	-	MG/L AS		VED	PEND			
	DATE		G/L K)	HCO	5	AS CO3		504)	AS CL		AS F)		(201		/L)		/L)		
	UATE	AS	,,	nco	3,	M3 C03	, 43	3047	43 00	•						1	73.0		
	JAN																		
	FER		2.4		200		0 1	50	55			2	5.3		457		6		
	21											-	-	ALC:			5		
													ITRO-						
		SOL	IDS,	NIT	RO-	NITRO		TRO-	NITRO		NITRO		N . AM-						
			LA-	GE	N.	GEN,		EN.	GEN,		GEN.		AINC			CARB			
			LE.	NITR		NITRIT		+N03	AMMONI		ORGANI		RGANIC			ORGA			
		SUS		TOT		TOTAL		TAL	TOTAL		TOTAL		TOTAL	TOT		TOT			
				(MG		(MG/L		G/L	(MG/L		(MG/L		(MG/L	(MG		(MG			
	DATE	(M	G/L)	AS	N)	AS N)	AS	N)	AS N)	'	AS N)	,	AS N)	AS	-,	AS	-		
	JAN																		
	11		0		.21	. 0	1	.22	.0	18	.3	2	.40	1	.02		3.4		
	FER	N.													1				
	21		5		.05	• 0	0	.05	• 0	1	.1	5	.16		.02		3.9		

										CHRC)-						
				ARSE	NIC	BARI	UM.	CADM		MIUN		COPP		IRO			
				D:	IS-	DIS		DI		DIS-		DIS		DI			
				SOL	VED	SOLV	ED	SOL	VED	SOL			VED	2.(14).00	VED		
			TIM	F (U	i/L	(UG	/L	(UG		(UG		(UG		(UG			
	DA	TE		AS	AS)	AS	BAI	49	CDI	AS ((4)	AS	CU)	AS	FE)		
	111		093	^	0		0		0		10		0		10		
	1.1	• • • •	1193	U	U		U						•		• •		
						NGA-	4.4		SEL			de la composición dela composición de la composición dela composición dela composición dela composición de la composición de la composición dela composición de la composición dela compo					
				LEAD.		SE.		CURY	NIL			VER.		NC.			
				DIS-		IS-		IS-		S-		IS-		IS-			
				SOLVED		LVED		LVED G/L		VED		LVED G/L		G/L			
		0.4	TE	(UG/L AS PB)		G/L MN)		HG)		SE)		AG)		ZNI			
		U	116	45 FB1	АЗ	14141	МЭ	1107	43	36.7			43				
		JAN	ı														
		11		0		0		.0		0		0		0			
					NA	PH-											
					T	HA-											
						NES.				3.5							
						OLY-				OR-				05		DT.	
				PCB.		LOR.		RIN.		VE .		DD.		DE,		TAL	
	0.75	Τ.	ME	TOTAL		TAL		TAL		TAL 3/L)		TAL G/L)		G/L)		G/L)	
	DATE			(UG/L)	10	G/L)	(0	G/L)	101	3/1/	10	G/L/	10	0, 0,	10	0, 1,	
J	AN																
	11	0	930	.0		.00		.00		. 0		.00		.00		.00	
												HER	T 0-				
	0.1		01-	ENI	00-					HEP	ΤΔ-	CHL				MAL	A-
	AZIN	[-	ELDR		AN.	ENDA	IN.	ETHI	ON.	CHL		EPO		LIND	ANE		0440
	TO		TOTA		TAL	TOT		TOT		TOT		TOT		TOT			FAL
DATE		3/L)	(UG/		G/L)		I/L)	(UG		(UG		(00	/L)	(40	/L)	(06	(A)
JAN 11		.00		00	.00		.00		.00		.00		.00		.00		.00
11		• 00		00	.00				• • •				• • • •				
			THYL	METHYL													
			- A F	TRI-		HA-		OX-		TAI_							
			ION.	THION.		ION.		ENE .		₹I-		4-0.		•5-T		VEX.	
			TAL	TOTAL		TAL		TAL		ION		TAL G/L)		TAL		TAL G/L)	
	DATE	(0)	5/L)	(UG/L)	((16/L)	((G/L)	100	3/L)	10	0/L)	10	0/1	(0	0/1	
J	AN																
	11		.00	.00		.00		0		.00		.00		.00		.00	

08154900 LAKE AUSTIN AT AUSTIN, TX

LOCATION.--Lat 30°18'53", long 97°47'10", Travis County, Hydrologic Unit 12090205, at city of Austin Waterplant No. 2 and 1.5 mi (2.4 km) upstream from Tom Miller Dam on the Colorado River at Austin.

DRAINAGE AREA.--38,240 mi² (99,040 km²), of which 11,900 mi² (30,800 km²) probably is noncontributing.

PERIOD OF RECORD. -- Chemical analyses: October 1964 to current year.

SPF-

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1964 to current year. WATER TEMPERATURES: October 1964 to current year.

REMARKS. -- No water-discharge records available.

EXTREMES FOR PERIOD OF DAILY RECORDS .--

SPECIFIC CONDUCTANCE (1964-75): Maximum daily, 982 micromhos Aug. 15-17, 1974; minimum daily, 311 micromhos June 19, 1968. WATER TEMPERATURES (1964-75): Maximum daily, 32.0°C Aug. 24, 1965; minimum daily, 9.0°C Jan. 30, 1966, Jan. 9, 11, 1968, and Jan. 5, 1969.

		CIFIC				HARD-		MAGNE-	
		CON- DUCT-			HARD- NESS	NESS,	CALCIUM DIS-	SIUM.	SODIUM,
	TIME	ANCE (MICRO-	PH	TEMPER-	(MG/L	BONATE (MG/L	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L
DATE	TIME	MHOS)	(UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	AS MG)	AS NA)
NOV									
15 FER	1345	596	8.1	18.0	220	41	54	21	32
15 MAR	1330	570		8.0	210	51	45	23	35
20	1320	584		16.0	220	61	49	23	34
17 MAY	1335	587		18.0	220	63	48	24	37
16 JUL	1330	600		19.0	220	56	47	25	36
14 AUG	1330	600		25.0	210	45	44	24	37
15 SEP	1320	585		28.5	210	58	46	24	41
15	1400	504		28.0	180	45	41	18	30
									SOL IDS.
	SODIUM	POTAS-				CHLO-	FLUO-	SILICA,	SUM OF
	AD-	SIUM.	BICAR-		SULFATE	RIDE.	RIDE.	DIS-	CONSTI-
	SORP-	DIS-	BONATE	CAR-	DIS-	DIS-	DIS-	SOLVED	TUENTS,
	TION	SOLVED	(MG/L	BONATE	SOLVED	SOLVED	SOLVED	(MG/L	DIS-
100	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L	(MG/L	AS	SOLVED
DATE		AS K)	HC03)	AS C03)	AS 504)	AS CL)	AS F)	2105)	(MG/L)
NOV									
15 FER	.9	3.6	220	0	37	62	.3	12	330
15 MAR	1.1	3.7	180	5	42	65	.3	8.7	316
20	1.0	3.9	190	0	42	57	.2	7.8	311
17	1.1	3.6	190	0	41	67	.2	6.7	321
16 JUL	1.1	3.8	200	0	42	66	.3	8.4	327
14 AUG	1.1	3.9	200	0	43	68	•3	8.5	327
15 SFP	1.2	3.9	190	0	42	70	•2	9.7	330
15	1.0	4.2	160	0	35	58	•5	8.9	274

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

08154900 LAKE AUSTIN AT AUSTIN, TX--Continued

	SPEC	IFIC CONDU	JCTANCE	(MICROMHOS/CM		5 DEG. C), ONCE-DAILY	WATER YE	AR OCTOBER	1977 10	SEPTEMBE	1978	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	548		604	574				596	531			509
ż		556			564	567		595	331	550		
3	549	561	591	574				593	558	527	584	
5	553	558 560	550 594	577 577	574 574	561	598	582	521	598 532	585	
			394	211		577	598	565	548			
6	553	565			577	574			563	584	585	
8	550	578 578			571	567 579	598	554	548 569		589 585	
9		565	586		582	576		595	537	550		
10			586	574				592		584	565	
11			579	577	579		595	599				
12	550	571	584	577	574	580	505	593	500	598	589	
14	552 554	578		577	567 573	577 569	595 587	594 594	582 572	595	589	509
15		582	578		574	550	587	595		532	585	
16		564			570	577	585			589	574	
17		581	578	574	575	555	585			569	571	
18		586		577	573	563	598	598			565	509
20	557		568	576	571 573	563	598	598 598	576 554	602	555	
55	565 559	589 589	568	579 574	576	581 581	598 572	594 594	601 540	597		
23	559	557	572		573	580	593	591			538	
24	559	573	574	571	573	581	548	591		579	523	
25		580		573	574	578	598	594				523
26		597		570	574	578	598				528	
27	559	587	565	563	575		596		599	592	523	
28		605	570	567 574		587 581	595	589 589	592 601	573	514 514	
30	565	559				587	582		595	597	518	
31	565			573		565					514	
MEAN	556	575	578	574	573	573	590	591	566	575	557	513
DAY	ОСТ	NOV	DEC	E (DEG. C) OF	FEB	ONCE-DAILY	APR	R 1977 TO	JUN	JUL	AUG	SEP
1	31.0	23.0	16.5	9.5	9.0	14.5		18.5	19.0	21.5		25.5
3	27.0	21.0	16.5	11.0				16.5	18.5	22.0	25.5	
4	25.5	20.5	16.5	11.0	7.0	13.5	19.0	16.5		22.0		
5		20.5	15.5	11.5	9.0	14.5	19.0	16.5	18.0	23.5		
6	25.0	20.5			12.0	13.5			18.0	23.5	25.5	
7	25.0	21.0			7.0	11.0	18.5	16.5	19.5		26.0	
9		20.0	15.5		8.0	10.0		18.5	18.0	24.5		
10			16.0	11.0				19.0		24.5	25.5	
11			15.0		7.0		18.0	17.0				
12		10.0	16.0		8.0	13.0	17.5	18.0	21.0	24 5	22.0	
13	23.0	18.0 17.0		10.0	8.0	11.0	16.5	18.5	21.5	24.5	24.5	25.5
15		18.0	14.5		8.0	14.0	18.0	18.0		24.5	26.5	
16		18.0			8.0	14.5	18.0			25.0	26.0	
17		18.0	15.0	9.5	8.5	13.5	18.0			25.0	25.5	
18		18.5		9.5	8.0	14.5	18.0	16.5			25.5	26.5
19 20	23.0			9.5	8.0	15.0	16.5	19.0	20.5	25.0	24.5	
		10.0		0.5								
21	22.0	19.0	13.5	7.7	8.0	15.5 15.5	17.0 17.0	18.5 18.5	20.5	25.5		
23	22.0	18.0	13.5		8.0	15.5	16.0	18.5			25.5	
24 25	55.0	18.0 18.0	13.5	9.5 9.0	8.0	17.0 16.0	16.0 16.5	18.5		25.5	23.5	25.0
26 27	22.0	18.0	12.0	9.0 10.0	10.0	16.5	17.0 16.0		23.5	25.5	23.5	
28				9.0		17.0	16.5	19.0	22.0		24.5	
29		16.5	12.0	9.0		17.0	10.5	18.5	21.0	25.5	25.5	
30	55.0	16.0		9.5		16.5	18.5		20.5	25.5	25.5 25.5	
ME AN	23.5	19.0	15.0	9.5	8.5	14.5	17.5	18.0	20.0	24.5	25.0	25.5

08155200 BARTON CREEK AT STATE HIGHWAY 71 NEAR OAK HILL, TX

LOCATION.--Lat 30°17'46", long 97°55'31", Travis County, Hydrologic Unit 12090205, at downstream side of bridge on State Highway 71, 0.1 mi (0.2 km) downstream from Little Barton Creek, and 5.8 mi (9.3 km) northwest of Oak Hill.

DRAINAGE AREA .-- 89.7 mi2 (232.3 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--August 1975 to February 1978 (periodic gage heights and discharge measurements only), February to September 1978.

GAGE.--Water-stage recorder. Datum of gage is 737.04 ft (224.650 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair above 15.0 ft^3/s (0.42 m^3/s) and poor below. No known regulation or diversions. There is a recording rain gage in the watershed upstream from gage. Several observations of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,750 ft³/s (135 m³/s) Apr. 18, 1976, gage height, 11.56 ft (3.523 m); no flow for many days each year.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 124 ft 3 /s (3.51 m 3 /s) June 7, gage height, 3.74 ft (1.140 m), no peak above base of 1,000 ft 3 /s (28.3 m 3 /s); no flow for several days.

DISCHARGE, IN CUBIC FEET PER SECOND, FEBRUARY TO SEPTEMBER 1978 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP -00 .00 43 .36 .00 .00 6.8 .43 .00 2 ---.00 .43 .00 .00 2.4 .00 .00 .00 .64 3 ---.00 .47 7.6 .00 .00 .26 .51 .00 ---5 .00 .51 .43 .00 .00 5.1 .36 ---.00 3.2 .01 6 .12 .51 .33 2.6 .00 2.1 .01 .00 .17 .51 .36 48 1.4 13 .00 8 .00 .10 .51 .26 .00 6.6 .00 1.1 .00 .51 .83 10 .00 9.8 .15 2.8 .00 1.0 .00 11 .00 .00 1.5 2.2 .00 .85 2.3 .76 .94 .00 .00 .10 2.1 .00 .59 1.9 .43 1.3 13 .00 .00 .94 .03 .00 .35 14 .00 .00 94 .00 .00 .00 .31 1.3 .94 .00 1.6 15 .00 .00 .00 .00 .94 .00 .00 .25 .90 16 17 .00 .00 .94 .00 1.2 .00 .21 .16 .13 .16 18 .00 .00 1.2 .00 .94 .00 .10 19 .00 .30 1.2 .00 -00 .16 .08 .16 .51 .00 20 .00 .36 1.2 .10 21 .00 .26 -00 .08 .16 .94 .00 .30 .03 .10 .00 .08 .16 23 .00 .30 .94 .00 .00 .00 .03 .16 24 .00 .40 .94 .00 .00 .00 .00 .16 .00 .16 .00 .83 .00 .00 .00 26 .00 .40 .64 .05 .00 .00 .00 .16 27 .00 .40 .56 .17 .00 .00 .00 .16 .00 .16 28 .00 .40 .47 .08 .00 .00 .00 29 .47 .00 .00 .00 .16 ---.40 .00 .00 .00 .16 .40 .00 ---.40 .00 .00 31 .43 .00 ------12.31 TOTAL 5.24 32.22 4.56 87.65 .00 34.83 .17 .15 .000 7.6 2.3 MEAN ---1.07 2.92 .43 48 .00 MAX ---9.8 .00 .00 .00 .00 .00 MIN ---.40 .002 .000 .005 .002 .01 .03 .01 CFSM----9.0 .04 .00 .01 .01 ---.00 .01 IN. .00 174 69 4.21 2.36 (++) 1.83 1.37 1.99 2.13 3.37 1.05

WTR YR 1978 TOTAL - MEAN - MAX - MIN - CFSM - IN. - AC-FT - ++ -

tt Weighted-mean rainfall, in inches, based on one rain gage.

08155200 BARTON CREEK AT STATE HIGHWAY 71 NEAR OAK HILL, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: April to September 1978.

DATE	TIME	INS TAN	EAM- CO DW. DI TAN- AI	PF- IFIC ON- UCT- NCE ICRO- HOS) (PH UNITS)	AT	PER- TURE (G C)	IN	LOR LAT- UM- BALT ITS)	TUR BIC ITY (JTC)-	XYGEN. DIS- SOLVED (MG/L)	50 (P SA	GEN, IS- OLVED ER- ENT (TUR- ION)	OXYGEN DEMAND. BIO- CHEM- ICAL. 5 DAY (MG/L)
APR 10	1000		8.1	202	8.6		20.0		60	3	320	6.1		69	4.4
JUN 07	1100	5		269	8.0		22.0		40		70				1.2
SEP	1100	,	,	207	0.0										
05	1230 0850		.11	381 421	7.8		28.0		5		5	8.8		113	.9
					0.700										
	FO	RM. TAL, MED.	COLI- FORM. FECAL. 0.7 UM-MF	TOCOCC FECAL KF AGA (COLS.	HAP	RD- SS G/L	HARD- NESS NONCAR	· -	CALCIU		MAGNE SIUM DIS- SOLVE	, SOD	IUM, S- VED	SOD!)- }-
	P	ER	(COLS./	PER	Δ.		(MG/I		(MG/L AS CA		(MG/L	(M	G/L NA)	RAT	10
DATE	100	ML)	100 ML)	100 ML	CA	2031	CACO.	31	AS CA	'	43 70	, ,,			
APR 10	. 3	2000	19000	1500	0	98	-	16	29		6.	2	2.9		•1
07 SEP	. 4	3000	9600	1700	0	130		11	35		9.	3	4.6		.2
05	. 1	7000	480	83	0	190		23	50		15		7.1		.2
27		660	26	18	0	510		85	57		16		7.2		• 2
DATE	S D S O (M	TAS- IUM, IS- LVED G/L K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3	DIS SOI	FATE S- LVED G/L S04)	CHLO- RIDE- DIS- SOLVE (MG/I AS CI	ED	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	D	SILICA DIS- SOLVE (MG/L AS SIO2)	, SUM CON D TUE D SO	IDS, OF STI- NTS, IS- LVED G/L)	SOLIC RESID AT 10 DEG. SUS- PENDE (MG/	DUE 05 C+
APR 10		2.2	100		0	17	5	. 6		2	4 •	6	117	,	520
07		1.7	140		0	17	8	. 7		1	7.	9	153		98
05		1.3	200			19	17			2	11		219		5
27		1.1	220		0	19	12		•	2	NITRO		232		1
	VO TI SU PEN	IDS. LA- LE. S- DED	NITRO- GEN. NITRATE TOTAL (MG/L	GEN. NITRIT TOTAL (MG/L	E NO2 TO	TRO- EN. +NO3 TAL G/L	MITRI GEN AMMON TOTAL (MG/I	I A L	NITRO GEN. ORGANI TOTAL (MG/L	c	GEN.AM MONIA DRGANI TOTAL (MG/L	+ PH C PHO TO (M	OS- RUS. TAL G/L	CARBO ORGAN TOTA (MG.	VIC AL /L
DATE	(M	G/L)	AS N)	AS N)	AS	N)	AS N	,	AS N)		AS N)	AS	P)	45	.,
APR 10		90	.14	• 0	1	.15		08	1.2		1.3		.12	3	2
07 SEP		12	.19	.0	1	.20	•	08	• 5	0	.5	8	.04	15	4.7
75		3	.15	.0	0	.15		01	.3		. 4		.02		2.8
27		0	.02			.02		00	.1	5	. 1	5	.00		1.3

08155200 BARTON CREEK AT STATE HIGHWAY 71 NEAR OAK HILL, TX--Continued

	DATE	TIME	ARSENI DIS- SOLVE (UG/L AS AS	D SOLV (UG	ED /L	ADMIUM DIS- SOLVED (UG/L AS CD)	CHRO MIUM DIS- SOLV (UG/ AS C	COPPI DIS ED SOL L (UG	VED SOL	S- VED /L	
	JUN 07	1100		1.	100	0		0	0	40	
	05	1230		3		0		0	0	40	
	27	0850		0	0	0		0	0	30	
	0,	S	EAD. DIS- OLVED UG/L	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCU DIS SOLV (UG/ AS H	ED SO	LE- LUM, DIS- DLVED JG/L S SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)		
	JUL										
		7	4	0		.0	0	0	0		
		•••	0	20		.0	0	0	0		
	2		0	0		. 0	0	0	10		
			NAPH- THA- LENES								DI-
	TIME	PCB.	CHLOR	. ALDE	RIN,	CHLOR- DANE + TOTAL	DDC				INON,
DATE	IIME	(UG/L)			3/L)	(UG/L)	(UG)				(UG/L)
JUN											
07 SEP	1100	• 0		00	•00	• 0		.00	.00	•00	•00
27	1230 0850			00	.00	.0		00	.00	.00	.00
27	01-	ENDO-				HEPTA-	HEP	ΤΔ-		A- I	METHYL PARA-
	ELDRIN	SULFAN			ION.	CHLOR.					THION,
DATE	(UG/L)	TOTAL (UG/L)	TOTAL		TAL G/L)	TOTAL (UG/L)	(UG				(UG/L)
JUN	2-2			• •				0.0	.00	.00	.00
07 SEP	.00	•00	0 •	00	•00	.00		•00			1 77
05	.00	.00		0 0 0 0	.00	.00		.00	.00	.00	.00
		THYL					12/7				
		RI-	MIREX.	PARA- THION,	APHE		OTAL TRI-	2,4-D,	2,4,5-T	SILVE	x •
	TO	TAL	TOTAL	TOTAL	TOT	AL T	HION	TOTAL (UG/L)	TOTAL (UG/L)	TOTA	
		G/L)	(UG/L)	(UG/L)	(06	/L) (UG/L)	(UG/L)	(00/L)	(007	
JUI 0 SE	7	.00		.00		0	.00	.00	•00	- 1	00
0	5	.00	.00	.00		0	.00	.00	.00		00
-	••••	• ., 0	• 00	• 00			-00				

177

COLORADO RIVER BASIM

08155300 BARTON CREEK AT LOOP 360, AUSTIM, TX

LOCATION.--Lat 30°14'40", long 97°48'07", Travis County, Hydrologic Unit 12090205, on Loop 360, 0.9 mi (1.4 km) west of the intersection of Ben White and Lamar Boulevards, and 4.3 mi (6.9 km) southwest of the State Capitol Building in Austin.

DRAINAGE AREA .-- 116 mi2 (300 km2).

PERIOD OF RECORD.--June 1975 to January 1977 (periodic gage heights and discharge measurements only), February 1977 to current year.

GAGE.--Water-stage recorder. Datum of gage is 510.32 ft (155.546 m) National Geodetic Vertical Datum of 1929 (Texas Department of Highways and Public Transportation bench mark).

REMARKS.--Records good. No known regulation or diversions. There are two recording rain gages in the watershed.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,270 ft³/s (92.6 m³/s) Apr. 15, 1977, gage height, 7.67 ft (2.338 m); no flow for many days each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--The flood of May 28, 1929, was probably the highest since that date, discharge 39,400 ft³/s (1,120 m³/s), based on a slope-area measurement of peak flow at a site about 2 mi (3 km) upstream.

EXTREMES FOR CURRENT YEAR. -- No flow during year.

08155500 BARTON SPRINGS AT AUSTIN, TX

- LOCATION.--Lat 30°15'48", long 97°46'16", Travis County, Hydrologic Unit 12090205, at ground-water well (YD 58-42-903), on right bank 0.4 mi (0.6 km) upstream from Barton Springs Road bridge over Barton Creek, 0.7 mi (1.1 km) upstream from mouth, and 1.8 mi (2.9 km) southwest of the State Capitol Building in Austin.
- DRAINAGE AREA.--Not applicable. Only flow from springs is published for this station.
- PERIOD OF RECORD.--November 1894 to April 1917, and October 1918 to February 1978 (discharge measurements only), May 1917 to September 1918 (published as "Barton Creek at Austin, Texas"), and March to September 1978.
- GAGE.--Water-stage recorder. Datum of gage, at ground-well (YD 58-42-903), is 462.34 ft (140.92 m) National Geodetic Vertical Datum of 1929. May 1917 to September 1918, nonrecording gage at site 1,000 ft (305 m) downstream at different datum.
- REMARKS.--Water-discharge records poor. Entire flow published is springflow from the Edwards and associated in the Balcones Fault Zone. This station is part of an urban hydrologic project to study the ground-water resources in the Austin urban area.
- EXTREMES FOR PERIOD OF RECORD (DISCHARGE MEASUREMENTS ONLY).--Maximum measured discharge, 166 ft³/s (4.70 m³/s) May 10, 1941; minimum measured, 9.6 ft³/s (0.27 m³/s) Mar. 29, 1956.
- EXTREMES FOR PERIOD OF RECORD (1917-18 AND SINCE MARCH 1978).--Maximum daily discharge, 42 ft³/s (1.19 m³/s) Mar. 10, 12, 14, 1978; minimum daily, 12 ft³/s (0.34 m³/s) Feb. 25, 1918.
- EXTREMES FOR CURRENT YEAR.--Maximum daily discharge during period March to September, 42 ft³/s (1.19 m³/s) Mar. 10, 12, 14; minimum daily, 19 ft³/s (0.54 m³/s) July 25, 27-29, and Aug. 1.

08155505 BARTON CREEK BELOW BARTON SPRINGS AT AUSTIN, TX (Reconnaissance partial-record station)

LOCATION.--Lat 30°15'50", long 97°46'03", Travis County, Hydrologic Unit 12090205, 800 ft (240 m) upstream from bridge on Barton Springs Road and 1.8 mi (2.9 km) southwest of State Capitol at Austin.

DRAINAGE AREA.--125.3 mi² (324.5 km²).

PERIOD OF RECORD.--Occasional discharge measurements and water-quality data: January 1975 to current year.

DISCHARGE AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	STREAM- FLOW. INSTAN- TANEOUS (CFS)	SPF- CIFIC CON- DUCT- ANCE (MICRO MHOS)	-		TEMPER- ATURE (DEG C)	IN CO	LOR LAT- UM- BALT ITS)	TUR- BID- ITY (JTU)	OXYGEN DIS- SOLVE	, (F	GEN, DIS- DLVED PER- CENT ATUR- TION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)
JAN													
16	1340	39	65	9	7.4	21.0		0	0	8.	0	92	•5
FER 28	1030	42	70	2	7.0	21.5		0	0	7.	B	91	.4
MAR	1050	72	, ,	2	1.0	21.5		v	•				
28	1535	34	67	9	7.1	22.0				7.	6	89	
APR 11	1010	32	66	6	7.2	21.0		0	0	8.	1	93	.7
JUN											_		
08 AUG	1600	35	67	7	7.0	23.5		0	4	8.	2	99	•2
08	1600	26	71	6	7.0	23.5		0	1	8.	0	96	• 3
SEP 27	1200	26	68	1	7.2	21.5		0	0	6.	6	77	.3
	COLI			TREP-					7.				
	FORM TOTA IMME (COLS	• FOF L• FEC D• 0•1	RM, TO CAL, F 7 KF -MF (C	COCCI ECAL, AGAR OLS. PER	HARD- NESS (MG/I	NONC	AR-	CALCIUM DIS- SOLVED	019	M. SOI - D: ED SOI	DIUM. IS- LVED MG/L	SOD SORI TIC RAT	0- 0N
DATE	100 M			O ML)	CACO			AS CA)			S NA)		
JAN													
16 FER	25	00	38	140	3	10	45	82	25	5	21		.5
28	110	00	10	17		-							
MAR 28						-							
11	22	00	69	80	3	20	55	86	25	5	21		•5
JUN	110	00	500	190	3	00	42	84	23	3	27		.7
08	3	00	190	140	31	00	35	78	25	5	28		.7
SFP 27	43	00	23	1200	3	0 0	34	81	5	3	25		.6
DATE	POTA SIU DIS SOLV (MG/ AS K	M, BICA - BONA ED (MC	ATE C	AR- NATE MG/L CO3)	SULFA' DIS- SOLVI (MG/I	DIS-	VED	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILIO DIS- SOLV (MG/ AS SIO2	CA SUI	M OF NSTI- ENTS. DIS- DLVED	SOLII RESII AT 1 DEG. SUS- PENDI (MG.	OUE 05 C+ ED
1431													
JAN 16 FER	1	.4	320	0	40	31	5	•3	3 11	1	373		0
78													Ò
MAR 28													
11	1	. 4	320	0	28	3	4	.3	3 10)	363		1
JUN		.8	320	0	36	4	1	.3	12	2	383		8
AUG na		.8	320	0	38	44	5	.3	3 11		386		1
SFP 27		.6	320	0	35	4;		.3			377		0

180

08155505 BARTON CREEK BELOW BARTON SPRINGS AT AUSTIN, TX--Continued

DATE	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN. NITRATE TOTAL (MG/L AS N)	NITRO- GEN. NITRITE TOTAL (MG/L AS N)	NITRO- GEN+ NOZ+NO3 TOTAL (MG/L AS N)	NITRO- GEN• AMMONIA TOTAL (MG/L AS N)	GEN.	NITRO- GEN.AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS. TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
JAN							ν -		
16 FER	0	1.7	.01	1.7	• 06	.24	.30	.01	.5
28	0	.47	.01	• 48	.00	.02	.02	.01	.0
28		1.7	.02	1.7	.01	.24	.25	• 02	-
11 JUN	0	.57	.00	•57	.01	.43	.44	.00	2.5
08	1	•31	.02	•33	.09	.58	.67	•13	5.9
OR	1	1.5	.01	1.5	.00	•50	.20	.01	•5
27	0	1.4	.00	1.4	.01	.35	.36	.01	1.0
	DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CO)	CHRO- MIUM. DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON. DIS- SOLVED (UG/L AS FF)	
	JAN								
	16	1340	0	0	0	0	1	0	
	08	1600	1	200	0	5	0	30	
	08 SEP	1600	1	60	<1	0	3	<10	
	27	1200	1	0	0	0	0	10	
	JAI 10 JUI	D SO (U ATE AS	AD, NE IS- 0 (UVED SO G/L (UVED AS	IIS- E DLVED SC IG/L (L I MN) AS	CCURY N DIS- DIVED SI DIVED SI DIG/L (I DIG/L (I	DIS- OLVED SO UG/L (U S SE) A	DIS- D DLVED SO UG/L (U S AG) AS	NC. IS- LVED G/L ZN)	
	Δυ.	B G	3	5	. 0	0	0	10	
	OF SEE	8	4	1	• 0	6	U	6	
	5.	7	0	0	.0	0	0	10	

O8155505 BARTON CREEK BELOW BARTON SPRINGS AT AUSTIN, TX--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

181

	TIME	PCB.	NAPH- THA- LENES. POLY- CHLOR. TOTAL	ALDRI TOTA	IN DA	TAL	DDD+ TOTAL	DOE	AL TO	TAL T	DI-
DATE		(UG/L)	(UG/L)	(UG/	(L) (U	3/L)	(UG/L)	(UG)	/L) (U	G/L)	(UG/L)
JAN	0.2354										
16	1340						-				
08	1600	.0	.00		.00	.0	.00		.00	.00	• 05
08	1600	.0	.00		• 00	.0	.00		.00	•00	.00
27	1200	.0	.00		.00	.0	.00		.00	.00	.00
	DI- ELDRIN TOTAL	ENDO- SULFAN. TOTAL	ENDRIN.	ETHIC	ON. CH	PTA- LOR,	HEPTA- CHLOR EPOXIDE TOTAL		ANE TH	LA- I	PARA- THION,
DATE	(UG/L)	(UG/L)	(UG/L)	(UG.		G/L)	(UG/L)			G/L)	(UG/L)
JAN 16											
JUN 08	.00	.00	.00		.00	.00	.00		.00	.00	.00
AUG 08	.00	.00	.00		.00	.00	.00		.00	.00	.00
SEP 27	.00	.00	.00		.00	.00	.00)	.00	.00	.00
	T	THYL RI-		ARA- HION,	TOX-		TAL RI- 2	2.4-0.	2,4,5-T	STLVE	х,
DA	TO	TAL 1	OTAL T	OTAL UG/L)	TOTAL (UG/L)	TH	ION 1	OTAL (UG/L)	(UG/L)	TOTAL (UG/	T
JAN 16 JUN								.00	.00		00
08	• • •	.00		.00	0		.00	.00	.00		00
08 SEP		.00	.00	.00	0		.00	.03	.00	•	00
	•••	.00	.00	.00	0		.00	.00	.00		00

08156700 SHOAL CREEK AT NORTHWEST PARK, AUSTIN, TX

LOCATION.--Lat 30°20'50", long 97°44'41", Travis County, Hydrologic Unit 12090205, at Northwest Park in Austin, 400 ft (122 m) upstream from Shoal Creek Boulevard bridge, 0.5 mi (0.8 km) west of intersection of Burnet Road and Justin Lane, and 5.0 mi (8.0 km) north of State Capitol Building in Austin.

DRAINAGE AREA .-- 7.03 mi2 (18.21 km2).

PERIOD OF RECORD .-- March 1975 to current year.

GAGE.--Water-stage recorder. Datum of gage is 661.34 ft (201.576 m) National Geodetic Vertical Datum of 1929 (city of Austin bench mark).

REMARKS.--Records good. The city of Austin diverts water into the channel above gage during the summer months from a swimming pool at Northwest Park. There is some diversion into and out of the drainage area by storm sewers. This station is part of a hydrologic project to study the rainfall-runoff relationship for the Austin urban area. There are two digital recording rain gages in the watershed. Several observations of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,620 ft³/s (45.9 m³/s) Apr. 28, 1976, gage height, 7.50 ft (2.286 m); no flow for many days each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1885, occurred Apr. 22, 1915, stage and discharge unknown.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 500 ft3/s (14.2 m3/s) and maximum (*)

Date	Time	Disch	narge	Gage !	height	Date		Time	Disch	arge	Gage	height
		(ft^3/s)	(m^3/s)	(ft)	(m)				(ft^3/s)	(m^3/s)	(ft)	(m)
Oct. 22	0930	561	15.9	5.33	1.625	May	2	2015	800	22.7	5.90	1.798
Feb. 12	1200	627	17.8	5.50	1.676	May	11	0100	*978	27.7	6.29	1.917
Apr. 10	0345	615	17.4	5.47	1.667	June	6	2330	736	20.8	5.76	1.756

Minimum discharge, no flow for several days.

		DISCHAR	GE, IN	CUBIC FEET		ND, WATE		OBER 1977	TO SEPTI	EMBER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	21	.02	.03	.25	.11	.05	.14	1.0	.03	39	5.4
2	2.9	.10	.02	.04	.13	.13	.04	37	.51	.03	1.2	.15
3	.08	.02	.02	.03	1.8	.21	.05	4.7	.45	.02	.12	.06
4	.06	.01	.02	.03	.13	.11	.13	.31	.40	.03	.77	.17
5	.04	.01	.02	.03	.11	.11	.13	.27	.35	.02	.18	.11
6	.02	.01	.02	.03	.16	3.6	.05	.29	104	.02	.05	.04
7	.01	.02	.02	.03	7.6	.75	.04	.23	26	.01	.04	18
8	.00	23	.03	.03	.46	.11	.04	.20	.20	.02	.05	10
9	.00	.06	.03	.02	.67	.09	.05	.15	.17	.02	.04	.43
10	.01	.04	.03	.02	.18	.08	57	.12	.16	.00	1.6	5.7
11	.07	.03	.03	1.8	.47	.07	.87	42	.16	.02	.11	16
12	.03	.02	.07	.25	4.5	.06	.51	5.1	.15	.02	.04	3.7
13	.02	.02	.21	.16	.78	.06	.42	2.1	.14	.00	.11	7.8
14	.02	.02	.05	.13	.22	.06	.33	.46	.13	.00	.03	.39
15	.01	.02	.04	.12	1.4	.06	.34	.40	.08	.00	.04	2.3
16	.00	.02	.04	10	.22	.05	.30	.39	.07	.00	.02	.14
17	.00	.02	.04	.30	8.3	.05	.61	.30	.07	.00	.02	.10
18	.00	.02	.05	.16	.33	.06	.49	.29	.06	.00	.01	.10
19	.00	.02	.06	.17	.18	.06	.29	.31	.06	.02	.01	.10
20	.00	.02	.06	.12	.16	.07	.39	5.3	.07	.01	.03	.10
21	9.6	.35	.06	.12	.14	.07	.37	3.4	.06	.00	.07	.10
22	36	.02	.07	.12	.13	.06	.17	.56	.04	.00	.08	.98
23	.06	.02	.08	.12	.13	4.4	.18	.23	.05	10	.05	.69
24	.43	.02	.08	.14	.11	1.4	.13	.19	.04	.12	.03	.26
25	.02	.02	.07	.13	.11	.09	.12	3.6	.03	.09	.07	.10
26	.02	.01	.07	.11	.11	.07	.08	14	.03	.06	.04	.18
27	.01	.01	.07	.11	.11	.06	.10	2.1	.04	.03	.03	.25
28	.00	.00	.26	.19	.11	.12	.10	.34	.03	.04	.03	.13
29	.00	.12	.37	.13		.07	.10	.35	.04	.04	1.6	.10
30	.01	.18	.03	.22		.14	.11	.40	.03	.03	.25	.10
31	.01		.03	.34		.09		.40		4.5	.06	
TOTAL	49.43	45.23	2.07	15.23	69.50	12.47	63.59	125.63	134.62	15.18	45.78	73.68
MEAN	1.59	1.51	.067	.49	2.48	.40	2.12	4.05	4.49	.49	1.48	2.46
MAX	36	23	.37	10	45	4.4	57	42	104	10	39	18
MIN	.00	.00	.02	.02	.11	.05	.04	.12	.03	.00	.01	.04
CFSM	.23	.22	.01	.07	.35	.06	.30	.58	.64	.07	.21	.35
IN.	.26	.24	.01	.08	.37	.07	.34	.66	.71	.08	.24	.39
AC-FT	98	90	4.1	30	138	25	126	249	267	30	91	146
(††)	3.18	2.62	.25	1.07	3.09	.96	2.33	5.17	2.98	1.48	2.31	4.14
CAL YR WTR YR		AL 555.11 AL 652.41		1.52 MAX 1.79 MAX	72 MI 104 MI		CFSM .22 CFSM .26	IN 2.94 IN 3.45	AC-FT AC-FT		24.36 29.58	

tt Weighted-mean rainfall, in inches, based on one rain gage. NOTE.--No gage-height record May 29 to June 14.

08156800 SHOAL CREEK AT 12TH STREET, AUSTIN, TX (Flood-hydrograph partial-record station)

LOCATION.--Lat 30°16'35", long 97°45'00", Travis County, Hydrologic Unit 12090205, at downstream side of bridge on 12th Street and 0.6 mi (1.0 km) west of the State Capitol Building in Austin.

DRAINAGE AREA .-- 12.8 mi¶ (33.2 kmf).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1975 to current year. Periodic discharge measurements only: November 1974 to current year.

GAGE.--Flood-hydrograph recorder and crest-stage gage. Datum of gage is 455.33 ft (138.785 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Additional storm rainfall-runoff data for this site can be obtained from the report "Hydrologic Data for Urban Studies in the Austin, Texas Metropolitan Area, 1978."

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,800 ft ** /s (136 m ** /s) Nov. 23, 1974, gage height, 15.0 ft (4.57 m) from slope-area measurement of peak flow.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,000 ftm/s (28.3 mm/s) and maximum (*):

Date	Time	Disch	arge	Gage I	height	Date	Time	Disch		Gage	height
		(ft"/s)	(m"/s)	(ft)	(m)			(ft*/s)	(m*/s)	(ft)	(m)
Feb. 12 Apr. 11	unknown 0415	1,090	30.9 36.0	8.74	2.664 2.804	May 2 May 11	2130 0515	*1,470 *1,470		*9.66 9.64	2.944

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: January 1975 to current year. Water temperatures: January 1975 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	INS'	EAM- OW, TAN- EOUS	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	A	MPER- TURE EG C)	COLO (PL/ INU COB/ UNI	AT- M- ALT	TUR- -018 YTY (UTU)	50	GEN, IS- LVED G/L)	OXYGEN, DIS- SOLVEC (PER- CENT SATUR- ATION)	DEMAND BIO- CHEM- ICAL. 5 DAY
APR					100		44.4		24					
11 MAY	0900		1.5	480	7.5		16.0		10	6		8.4	88	1.:
03 JUN	1045		9.5	325	7.9		16.0		50	75		8.6	90	5.0
07	1025	3	5	273	7.6		22.5		50	80		8.2	96	1.
01	1015	16	9	156	7.5		23,5		50	300		8.1	98	4.
08	1045	-	9.9	270	7.4		24.5		30	50		7.1	81	2.
DATE APR 11 MAY 03 JUN 07 AUG 01 SEP 08	190 100 190 230	AL, ED. S.	COLI- FORM FECAI 0.7 UM-MI (COLS 100 MI 300 260 490 2700 460	TOCOL FEC FC	CCI AL + HA GAR NE S - (M R A	RD- SS G/L S CO3) 200 130 120 59		, (R- E L	CALCIUM DIS- SOLVE((MG/L AS CA) 70 47 43 21	DI SOL (MG AS	UM. S- VED	5	M. SC D 1 L RA	001UM AD- RP- ION ITION ITION .6 .4 .3
DATE	SOI (MC	IAS- IUM, IS- VED 3/L K)	BICAR BONAT (MG/ AS HCO3	E CAR L BONA (MG	TE SO	FATE S- LVED G/L S04)	CHLO- RIDE DIS- SOLV (MG/ AS C	ED L	FLUO- RIDE: DIS- SOLVEI (MG/L AS F)		VED /L	SOLID SUM O CONST TUENT DIS SOLV (MG/	F RES	IDS+ SIDUE 105 3. C+ US- NDED
APR		3.6		60	0	65	28			,	5.4	,	74	6
MAY														92
03 JUN		3.5	1	10	0	46	17		•		4.9		87	
07		3.1	1	00	0	36	9	.2	•		6.3	1	57	102
01 SFP		1.9	9/	64	0	13	8	.1	•	1	2.6		85	442
08		2.5	-	10	0	29	12				5.1		56	51

08156800 SHOAL CREEK AT 12TH STREET, AUSTIN, TX--Continued

SOLIDS		WAT	ER QUALIT	Y DATA.	ATER YEAR	OCTOBER	1977 TO S	EPTEMBER	1978	
APR 11 3 3.31 .01 .32 .03 .36 .39 .09 3.5 137 .37 .30 .39 .09 3.5 137 .37 .30 .30 .39 .09 3.5 .39 .39 .09 3.5 .39 .30 .39 .30 .39 .30 .39 .39 .39 .30 .37 .30 .30 .30 .30 .39 .39 .30 .37 .30 .30 .30 .30 .39 .30 .39 .30 .30 .30 .30 .30 .39 .30 .30 .30 .30 .30 .30 .30 .30 .30 .30	DATE	SOLIDS, VOLA- TILE, SUS- PENDED	NITRO- GEN. NITRATE TOTAL (MG/L	NITRO- GEN, NITRITE TOTAL (MG/L	NITRO- GEN+ NO2+NO3 TOTAL (MG/L	NITRO- GEN. AMMONIA TOTAL (MG/L	NITRO- GEN. ORGANIC TOTAL (MG/L	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L	PHOS- PHORUS. TOTAL (MG/L	ORGANIC TOTAL (MG/L
111 3 .31 .01 .32 .03 .30 .39 .09 .39 .39 .39 .39 .39 .39 .39 .39 .39 .3		(MOZEZ								
MAY		3	.31	.01	•32	.03	.36	.39	.09	3.5
JUN 07 14	MAY.	16	.92	.05	.97	.20	.60	.80	.19	9.7
100 101 122 102 124 100 189 189 130 130 135 155 155 1015	JUN						.46	.55	-15	6.2
01 110	AUG									
S	SEP	110	•55	•05	.24	•00				
DATE SALVED SOLVED SOL		8	.36	.01	•37	.01	.49	.50	.10	7.0
MAY		DATE	TIME	SOLVED (UG/L	SOLVED (UG/L	DIS- SOLVED (UG/L	MIUM. DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	SOLVED (UG/L	
03 1045				43 40.						
07 1025 7 200 0 0 1 20 101 1015 13 20 <1 0 1 40 101 1015 13 20 <1 0 1 40 102 1045 39 0 0 0 10 3 20		03	1945	24	200	0	0	2	0	
1015 13 20 <1 0 1 40			1025	7	200	0	0	1	20	
		AIIG		13	20	<1	0	1	40	
LEAD, NESE, NERCUPY NIUM, SILVER, ZINC, DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-		SED			0	0	10	3	20	
LEAD		00	1045							
03 3 0 .0 0 0 10 07 4 5 .0 0 0 0 5 AUIG 01 5 <1 .0 0 0 0 3 SEP 08 2 0 .0 1 0 0 NAPH- THA- THA- THA- THA- THA- THA- THA- TH		c	50 ()	DLVED S	DIS- COLVED SC	CURY NI DIS- COLVED SC	IUM. SII DIS- I DLVED SI	DIS- DLVED S	DIS- DLVED UG/L	
JUN 07									10	
AUG Olive SEP Olive SEP Olive SEP Olive Oliv		JL	13	3						
SEP OH SEP OH OH OH OH OH OH OH O				4	5	.0	0	0	5	
NAPH- THAN SULFAN ENDRIN ETHION CHLOR CHLOR CHLOR CHLOR CHLOR TOTAL TOT		(11	5	<1	.0	0	0	<3	
THA- LENES				2	0	.0	1	0	0	
03 1045 .0 .00 .00 .00 .00 .00 .00 .01 .36 SFP 08 1045 .0 .00 .00 .00 .00 .00 .00 .01 .36 SFP 08 1045 .0 .00 .00 .00 .00 .00 .00 .01 .36 DI- ENDO- ELDRIN SULFAN- ENDRIN. ETHION, TOTAL TO	DATE	TIME	TOTAL	THA- LENES, POLY- CHLOR. TOTAL	TOTAL	DANE +	TOTAL	TOTAL	TOTAL	AZINON.
03 1045 .0 .00 .00 .00 .00 .00 .00 .01 .36 SFP 08 1045 .0 .00 .00 .00 .00 .00 .00 .01 .36 SFP 08 1045 .0 .00 .00 .00 .00 .00 .00 .01 .36 DI- ENDO- ELDRIN SULFAN- ENDRIN. ETHION, TOTAL TO	MAY									
07 1025	03	1045	• 0	.00	.00	•0	.00	.00	•01	.45
DATE (UG/L) (UG/	07	1025	.0	.00	.00	.0	.00	.00	.01	.36
DI- ENDO- SULFAN. ENDRIN. ETHION. CHLOR. CHLOR. CHLOR. TOTAL		1045	.0	.00	.00	.0	.00	.00	.01	•20
03 02 .00 .00 .00 .00 .00 .00 .14 .00 JIIN 0701 .00 .00 .00 .00 .01 .00 .02 .00 SEP 0801 .00 .00 .00 .00 .00 .00 .00 .05 .00 METHYL TRI- THION, TOTAL TO	DATE	ELDRIN TOTAL	SULFAN.	TOTAL	TOTAL	TOTAL	CHLOR EPOXIDE TOTAL	LINDANE	THION.	PARA- THION. TOTAL
No		43	0.0	.00	-00	-00	.00	.00	.14	.00
METHYL TRI- THION, MIREX, THION, APHENE, TRI- TOTAL TO	JUN									-
METHYL TRI- THION, MIREX, THION, APHENE, TRI- 2.44-D. 2.415-T SILVEX, TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL DATE (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) MAY 030000 0 .00 .24 .06 .03 JUN 070000 0 .00 .06 .08 .00 SEP	SFP									
TRI- THION, MIREX, THION, APHENE, TRI- TOTAL TOT	08	.01	•00	•00	•00	.00	.00	.00	05	.00
030000 0 .00 .24 .06 .03 JUN 070000 0 .00 .06 .08 .00		DATE (TRI- HION, M OTAL	TOTAL	THION, AP	HENE .	TRI-	TOTAL	TOTAL T	OTAL
JUN 070000 0 .00 .06 .08 .00 SEP		03	.00		.00	0	.00	.24	.06	.03
SEP 00	J	UN	.00		.00	0	.00	.06	.08	.00
	5	EP		.00				.02	.04	.00

08157000 WALLER CREEK AT 38TH STREET, AUSTIN, TX

185

LOCATION.--Lat 30°17'49", long 97°43'36", Travis County, Hydrologic Unit 12090205, on right bank 200 ft (61 m) upstream from bridge at East 38th Street in Austin, 1.1 mi (1.8 km) upstream from West Branch of Waller Creek, and 3.3 mi (5.3 km) upstream from Colorado River.

DRAINAGE AREA .-- 2.31 mi2 (5.98 km2).

PERIOD OF RECORD .-- April 1955 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 555.44 ft (169.298 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Flow slightly regulated at times by a small reservoir at Holy Cross High School (formerly St. Mary's Academy) on East 41st Street and a small swimming pool at the school which is drained into the creek every week or two during the summer. Water from other swimming pools also drain into the creek. Station is part of hydrologic research project to study rainfall-runoff relation for small urban areas. Two recording rain gages are located in the watershed. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--23 years, 1.67 ft3/s (0.0473 m3/s), 9.82 in/yr (249 mm/yr), 1,210 acre-ft/yr (1.49 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,970 ft 3 /s (55.8 m 3 /s) Oct. 29, 1960, gage height, 7.77 ft (2.368 m); no flow for many days in 1955-57, 1964.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 300 ft 3 /s (8.50 m 3 /s) and maximum (*):

Date		Time	Disch	arge	Gage h	neight	Date	Time	Disch	arge	Gage !	height
			(ft^3/s)	(m^3/s)	(ft)	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
Feb. 1	12	1230	363	10.3	5.07	1.545	June 6	2000	357	10.1	5.05	1.539
May	2	2045	*531	15.0	5.54	1.689	June 6	2400	363	10.3	5.07	1.545
May 1	11	0115	458	13 0	5 35	1 631	19-11-12	1 12 14 1				

DISCHARGE IN CHRIC EEET DED SECOND MATER VEAR OCTORER 1977 TO SEPTEMBER 1978

Minimum daily discharge, 0.07 ft3/s (0.002 m3/s) Sept. 6.

		DISCHA	RGE, IN C	CUBIC FEET	PER SECO ME.	MD, WATE AN VALUE	R YEAR OC S	TOBER 1977	TO SEPT	EMBER 1978	3	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	2.2	11	.19	.14	.17	.17	.17	23	.40	.37	.71	8.1
3	.14	.13	.14	.15	.16	.17	:17	1.7	.89	.15	.43	.35
4	.11	.12	.14	.15	.15	.17	.18	.20	.41	.37	.40	.48
5	.10	.12	.13	.15	.16	.17	.25	.19	.16	.44	.37	.10
6	.10	.12	.13	.16	.17	2.4	.26	.17	25	.38	.36	.07
7	.09	.11	.14	.15	5.0	.69	.28	.16	20	.35	.12	9.2
8	.10	14	.15	.14	.29	.18	.25	.14	.53	.36	.37	9.0
9	.10	.26	.14	.15	.27	.18	.24	.13	.45	.34	.40	3.3
10	.09	.16	.13	.14	.20	.18	24	.13	.45	.13		
11	.09	.14	.13	1.5	.25	.18	.24	22	.40	.28	.35	11
12	.09	-14	.15	.20	24	.17	.20	1.5	.16	.35	.37	6.1
13	.09	.13	1.1	.16	.34	.17	.18	.94	.48	.34	.35	3.9
14	.10	.13	.14	.15	.20	.18	.17	.14	.41	.32	.13	.18
15	.14	.13	.12	.16	.88	.19	.19	.14	.41	.35	.28	.14
16	.19	.13	+12	4.8	.24	.22	.19	.14	.43	.33	.35	.36
17	.18	.13	.12	.19	6.3	.18	.20	.13	.36	-12	.36	.37
18	.17	.13	.12	.26	.27	.17	.17	.15	.37	.28	.37	.14
19	.16	.13	.12	.19	.19	.16	.15	.13	.13	.37	.35	.10
20	.14	.13	.11	.21	.18	.17	.16	3.3	.42	.32	.32	.10
21	3.1	.47	.12	.17	.17	.17	.15	1.2	.36	.39	.38	.11
22	16	.14	.12	.17	.17	.17	.19	.19	.42	.13	.31	.08
23	.15	.14	.12	.18	.17	2.6	.17	.14	.39	3.0	.29	.37
25	.17	.14	.12	.17	.18	.98	.17	2.9	.36	.33	.30	.15
			.13	.15	.17	.16	.17	2.9				
26	.12	.13	.13	.19	-17	.16	.39	16	.14	.33	.31	.08
27 28	-11	.13	.13	.15	.22	.17	.18	.91	.36	-33	.29	.10
29	.11	.14	.21	.16	.18	.18	.16	.18	.39	.35	.12	.10
30	.12	.13	.37	.15		.16	.15	.18	.42	.36	.12	.30
31	.13		.15	.21		.17	.15	.16		2.2	.16	
TOTAL	24.73	29.24	5.41	11.19	40.99	11.37	29.70	76.75	56.10	14.20	33.48	55.54
MEAN	.80	.97	.17	.36	1.46	.37	.99	2.48	1.87	.46	1.08	1.85
MAX	16	14	1.1	4.8	24	2.6	24	23	25	3.0	24	11
MIN	.09	.11	.11	.14	.14	.16	.15	.13	.13	.12	.12	.07
CFSM	.35	.42	.07	.16	.63	.16	.43	1.07	.81	.20	.47	.80
IN.	.40	.47	.09	.18	.66	.18	.48	1.24	.90	.23	.54	.89
AC-FT	49	58	11	22	81	23	59	152	111	28	66	110
(++)	2.10	2.23	.39	.62	2.63	.51	1.84	5.19	2.94	1.15	2.24	6.26
CAL VP	1977 101	TAL 420 60	MEAN 1	10 MAY	41 111	0.0	CECH E1	TN 6 02	AC ET	05/ ++	22 12	

CAL YR 1977 TOTAL 430.68 MEAN 1.18 MAX 41 MIN .08 CFSM .51 IN 6.93 AC-FT 854 †† 22.12 WTR YR 1978 TOTAL 388.70 MEAN 1.06 MAX 25 MIN .07 CFSM .46 IN 6.26 AC-FT 771 †† 28.10

tt Weighted-mean rainfall, in inches, based on two rain gages.

08157500 WALLER CREEK AT 23D STREET, AUSTIN, TX

LOCATION.--Lat 30°17'08", long 97°44'01", Travis County, Hydrologic Unit 12090205, on San Jacinto Boulevard, 50 ft (15 m) upstream from bridge on East 23d Street in Austin, and 2.1 mi (3.4 km) upstream from Colorado River.

DRAINAGE AREA .-- 4.13 mi2 (10.70 km2).

PERIOD OF RECORD .-- December 1954 to current year.

Water-quality records: Periodic chemical, biochemical, and pesticide analyses: October 1970 to September 1971.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 509.95 ft (155.433 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Some regulation by small dam upstream. Diversion of city water into channel during the summer months from municipal and private swimming pools. Some diversions into and out of drainage area by storm sewers. Station is part of a hydrologic research project to study rainfall-runoff relation for small urban areas. Three recording rain gages are located in the watershed. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--23 years, 3.51 ft3/s (0.099 m3/s), 11.54 in/yr (293 mm/yr), 2,540 acre-ft/yr (3.13 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,020 ft 3 /s (114 m 3 /s) Oct. 11, 1973, gage height, 9.00 ft (2.743 m); minimum daily, 0.2 ft 3 /s (0.006 m 3 /s) at times in 1955-57.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum flood since 1885 occurred Apr. 22, 1915, stage unknown.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,280 ft 3 /s (36.2 m 3 /s) May 2, gage height, 5.65 ft (1.722 m), no other peak above base of 800 ft 3 /s (22.7 m 3 /s); minimum daily, 0.27 ft 3 /s (0.008 m 3 /s) Dec. 25.

DISCHARGE IN CURIC FEET DED SECOND HATED VEAR OCTORED 1077 TO SERTEMBER 1078

		DISCHAR	GE, IN	CUBIC FEET	PER SECON	ID, WAT	ER YEAR OC	TOBER 1977	TO SEP	TEMBER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.39 3.5 .38 .35	18 .53 .41 .39 .38	.45 .44 .40 .31	.32 .41 .36 .36	.40 .34 .33 .34 .33	.66 .63 .61	.50 .47 .48 .51	.48 63 3.7 .57 .51	1.6 1.0 4.0 .71	.54 .53 .55 .36	46 1.8 .77 .75 .65	.75 .57 2.0 .50
6 7 8 9	.41 .36 .32 .44	.38 .39 25 .49	.30 .33 .36 .28	.40 .39 .35 .32	.36 9.3 .60 .65	5.3 1.6 .68 .64	.59 .56 .52 .49	.52 .51 .45 .44	50 24 .98 .76	.57 .59 .54 .55	.63 .54 .51 .66	.35 18 16 .88 6.7
11 12 13 14 15	.32 .32 .29 .35	.42 .39 .39 .45	.31 .42 1.6 .35 .34	3.9 .48 .37 .35	1.2 44 .98 .76 2.4	.61 .60 .60	.65 .56 .53 .50	38 1.7 2.0 .44 .45	.70 .56 .64 .66	.38 .60 .57 .63	.59 .56 .54 .62	15 13 8.0 .68 .55
16 17 18 19 20	.38 .51 .40 .39	.41 .34 .35 .35	.36 .31 .31 .35	8.6 .41 .51 .53 .43	.88 12 .92 .77 .78	.57 .55 .52 .56	.45 .74 .54 .45	.46 .44 .46 .48	.69 .61 .57 .49	.52 .54 .39 .61	.65 .57 .56 .74	.64 .67 .51 .42
21 22 23 24 25	7.5 32 .77 .69	1.3 .35 .35 .35	.28 .30 .30 .28	.33 .34 .35 .35	.70 .72 .71 .73	.58 .54 3.9 2.1 .55		3.0 .64 .49 .46 3.1	.60 .62 .77 .60	10	2.6 .52 .47 .52 .61	.46 .43 .51 .65
26 27 28 29 30 31	.43 .41 .41 .40 .40	.35 .39 .41 .44	.30 .30 .98 1.3 .36	.34 .32 .32 .32 .38	.70 .73 .72	.54 .55 .54 .53 .54	.51 .47 .48 .49	26 1.9 .50 .46 .54	.59 .46 .60 .64	.65	.48 .46 .44 .46 .37	.36 .44 .47 .43 .49
TOTAL MEAN MAX MIN CFSM IN. AC-FT (++)	54.48 1.76 32 .29 .43 .49 108 2.14	55.14 1.84 25 .32 .45 .50 109 2.20	13.13	23.37 .75 8.6 .30 .18 .21 46	83.58 2.99 44 .33 .72 .75 166 2.68	28.56 .92 5.3 .52 .22 .26 57	56.03 1.87 41 .45 .45 .50	158.79 5.12 63 .42 1.24 1.43 315 5.21	96.48 3.22 50 .46 .78 .87 191 2.80	32.63 1.05 10 .36 .25 .29 65	66.01 2.13 46 .33 .52 .59 131 2.31	104.43 3.48 18 .35 .84 .94 207 5.77
CAL YR WTR YR	1977 TOT	AL 818.65 AL 772.63	MEAN MEAN	2.24 MAX	72 MIN	.27 .27	CFSM .54 CFSM .51	IN 7.37 IN 6.96	AC-FT AC-FT	1620 tt	22.21 27.91	

tt Weighted-mean rainfall, in inches, based on three rain gages.

08157900 TOWN LAKE AT AUSTIN, TX

LOCATION.--Lat 30°14'56", long 97°43'03", Travis County, Hydrologic Unit 12090205, at Longhorn Dam on the Colorado River at Austin, 1.5 mi (2.4 km) downstream from Interstate Highway 35, and 2.3 mi (3.7 km) southeast of the State Capitol in Austin.

DRAINAGE AREA.--38,390 mi² (99,430 km²), approximately, of which 12,880 mi² (33,360 km²) probably is noncontributing.

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: Feburary 1975 to current year.

301559097424801 - TOWN LAKE AR

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		SAMP- LING	SPE- CIFIC CON- DUCT- ANCE	PH	TEMPER-	DIS- SOLVED	PER- CENT SATUR-
DATE	TIME	DEPTH (FT)	(MICRO- MHOS)	(UNITS)	(DEG C)	(MG/L)	ATION
DEC							
29	1053	1.0	585	8.0	14.5	9.0	91
29	1056	10	585	8.0	14.0	9.0	90
29	1059	20	585	8.0	14.0	8.8	88
29	1102	24	585	7.9	13.5	8.8	87

301500097424801 - TOWN LAKE SITE AC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (JTU)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION
29 29 29 29	1108 1112 1116 1120	1.0 10 20 28	587 585 585 585	8.0 8.0 7.9 7.9	15.0 14.0 13.5 13.5	2.70	1 5	2 55	8.9 8.9 8.8 8.8	91 89 87 87
DATE	BIO- CHEM- ICAL OXYGEN DEMAND 5 DAY (MG/L)	IMME- DIATE COLI- FORM (COL. PER 100 ML)	FECAL COLI- FORM •7UM-MF (COL./ 100 ML)	FECAL STREP- TOCOCCI KF AGAR (COL. PER 100 ML)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	SODIUM AD- SORP- TION RATIO
DEC										
29	.4	1600	52	140	220	50	51	23	34	1.0
29										
29										
29	.8				550	42	51	23	34	1.0
DATE	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)	BICAR- BONATE (HCO3) (MG/L)	CAR- BONATE (CO3) (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	TOTAL NON- FILT- RABLE RESIDUE	VOL. NON- FILT- RABLE RESIDUE
222										
DEC					2.0					
29	3.6	210	0	43	56	.3	9.6	324	5	1
29										
29	3.6	220	0	43	56	.2	9.6	329	96	16
DAT	TOT NITR (N E (MG	ATE NIT	RITE NITE	LITE AMMO	NIA ORGA RO- NIT	NIC TOTAL RO- PHOS- N PHORE) (P)	ORGA US CAR	NIC SOL BON IR) (F	S- SOL VED MA ON GAN	S- VED N- ESE N)
227					130	Marie A Control	TO THE STATE OF		100	
Sec DEC		.28	.28	.28	.06	.74	01	2.5	10	0
29.		.28	.00	.28			02		10	0
29.					17					
29.	••	.28	• 0.0	.28	.06	.60	05	3.2	10	10

301503097424701 - TOWN LAKE AL

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	TIME	SAMP- LING DEPTH	SPE- CIFIC CON- DUCT- ANCE (MICRO-	РН	TEMPER-	DIS- SOLVED OXYGEN	PER- CENT SATUR- ATION
DATE		(FT)	MHOS)	(UNITS)	(DEG C)	(MG/L)	
DEC							
29	1130	1.0	585	8.0	15.5	8.8	91
29	1133	10	585	8.0	14.0	8.9	89
29	1135	16	585	8.0	13.5	8.9	88

301500097440801 - TOWN LAKE BR

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION
DEC							
29	1158	1.0	585	7.8	14.0	9.2	92
29	1200	14	585	7.8	13.0	9.2	90

301504097440901 - TOWN LAKE BC

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

•	SAMP-	SPE- CIFIC CON- DUCT-			DIS-	PER- CENT
	LING	ANCE	PH	TEMPER-	SOLVED	SATUR-
TIME	DEPTH			ATURE	OXYGEN	ATION
	(FT)	MHOS)	(UNITS)	(DEG C)	(MG/L)	
1203	1.0	585	7.9	14.0	9.0	90
1205	10	585	7.8	13.5	9.1	90
1207	20	585	7.8	13.0	9.0	88
1209	27	585	7.8	13.0	8.9	87
	1205 1207	TIME DEPTH (FT) 1203 1.0 1205 10 1207 20	SAMP- DUCT- LING ANCE TIME DEPTH (MICRO- (FT) MHOS) 1203 1.0 585 1205 10 585 1207 20 585	TIME DEPTH (MICRO- (FT) MHOS) (UNITS) 1203 1.0 585 7.9 1205 10 585 7.8 1207 20 585 7.8	TIME DEPTH (MICRO- ATURE (FT) MHOS) (UNITS) (DEG C) 1203 1.0 585 7.9 14.0 1205 10 585 7.8 13.5 1207 20 585 7.8 13.0	TIME DEPTH (MICRO- ATURE OXYGEN (FT) MMOS) (UNITS) (DEG C) (MG/L) 1203 1.0 585 7.9 14.0 9.0 1205 10 585 7.8 13.5 9.1 1207 20 585 7.8 13.0 9.0

301544097445201 - TOWN LAKE CR

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			CIFIC CON-			0.00	PER-
		SAMP- LING	DUCT-	PH	TEMPER-	DIS-	CENT SATUR-
	TIME	DEPTH	(MICRO-		ATURE	OXYGEN	ATION
DATE		(FT)	MHOS)	(UNITS)	(DEG C)	(MG/L)	
DEC							
29	1228	1.0	585	7.7	15.0	8.9	91
29	1230	10	585	7.8	13.0	9.4	92

301546097445101 - TOWN LAKE CC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION
DEC							
29	1234	1.0	585	7.7	15.0	8.8	90
29	1236	10	585	7.8	13.0	8.8	86
29	1240	18	585	7.7	12.5	8.6	83

301556097452301 - TOWN LAKE DR

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			SPE- CIFIC				
			CON-				PER-
		SAMP-	DUCT-			DIS-	CENT
		LING	ANCE	PH	TEMPER-	SOLVED	SATUR-
	TIME	DEPTH	(MICRO-		ATURE	OXYGEN	ATION
DATE		(FT)	MHOS)	(UNITS)	(DEG C)	(MG/L)	
DEC							
29	1320	1.0	619	7.4	14.5	7.9	80
29	1325	11	580	7.7	12.5	8.6	93

301558097452201 - TOWN LAKE SITE DC

DATE DEC 29 29	TIME 1253 1259 1306	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS) 7.6 7.8 7.8	TEMPER- ATURE (DEG C) 15.0 12.0	TRANS- PAR- ENCY (SECCHI DISK) (M)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (JTU)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION 82 87 88
DATE	BIO- CHEM- ICAL OXYGEN DEMAND 5 DAY (MG/L)	IMME- DIATE COLI- FORM (COL. PER 100 ML)	FECAL COLI- FORM .7UM-MF (COL./	FECAL STREP- TOCOCCI KF AGAR (COL. PER 100 ML)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	SODIUM AD- SORP- TION RATIO
DEC	1 1000 70	10.13			1000		31,21,21			
29	.2	9800	540	940	260	48	65	24	28	.8
29		,000	340							
29	.2				220	51	48	23	33	1.0
	DIS- SOLVED PO- TAS- SIUM (K)	BICAR- BONATE (HCO3)	CAR- BONATE (CO3)	DIS- SOLVED SULFATE (SO4)	DIS- SOLVED CHLO- RIDE (CL)	DIS- SOLVED FLUO- RIDE (F)	DIS- SOLVED SILICA (SIO2)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS)	TOTAL NON- FILT- RABLE RESIDUE	VOL. NON- FILT- RABLE RESIDUE
DATE	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)
DEC										
29	2.6	260	0	37	47	.2	10	342	2	1
29										
29	3.7	200	0	42	56	•2	9.3	314	30	0
	тот	AL TOT	TOT NITR AL PL	ITE AMMO	NIA ORGAN	IC TOTAL				VED
	NITR									ESE
	(N						(C			N)
DAT	E (MG	/L) (MG	/L) (MG	/L) (MG	/L) (MG/	L) (MG/L) (MG,	/L) (UG	/L) (UG	/L)
DEC										
29.		.95	.00	.95	.02 .	35 .0	1	1.5	10	0
29.						73 .0			10	ŏ
29.						57 .0		3.1	10	ŏ
		1	5100	4.7.5				E.A. 57	6.5	7

TOWN LAKE AT AUSTIN, TX--Continued

301712097470701 - TOWN LAKE EC

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (JTU)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION
DEC										
29	1350	1.0	578	7.7	13.0	2.70	1	2	8.4	82
29	1358	13	578	7.9	12.5		i	3	8.4	82
DATE	BIO- CHEM- ICAL OXYGEN DEMAND 5 DAY (MG/L)	IMME- DIATE COLI- FORM (COL. PER 100 ML)	FECAL COLI- FORM .7UM-MF (COL./ 100 ML)	FECAL STREP- TOCOCCI KF AGAR (COL. PER 100 ML)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	SODIUM AD- SORP- TION RATIO
DEC										
29	.2	2000	9	160	220	50	51	23	31	.9
29	.2				210	48	47	23	34	1.0
0.25	DIS- SOLVED PO- TAS- SIUM (K)	BICAR- BONATE (HCO3)	CAR- BONATE (CO3)	DIS- SOLVED SULFATE (SO4)	DIS- SOLVED CHLO- RIDE (CL)	DIS- SOLVED FLUO- RIDE (F)	DIS- SOLVED SILICA (SIC2)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS)	TOTAL NON- FILT- RABLE RESIDUE	VOL. NON- FILT- RABLE RESIDUE
DATE	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MO/L)	(MO/L)
DEC	2.5	210		41	53	2		315	2	0
29	3.5 3.9	200	0	41	58	.2	9.3	315	4	0
	TOT NITR (N	ATE NITE	ITE NITE	ITE AMMO US NIT ATE GE) (N	NIA ORGA RO- NIT N GE) (N	NIC TOTA RO- PHOS N PHOR) (P)	ORGA RUS CAR	NIC SOL BON IR) (F	S- SOL VED MA ON GAN E) (M	S- VED N- IESE
DAT	E (MG	/L) (MG	/L) (MG	/L) (MG	/L) (MG	/L) (MG/	L) (MG	/L) (UG	/L) (UG	/L)
DEC			4.50 B	44	4.0	4.2	0.		277 174 3	0.23
29. 29.		.25	.00	.25 .15				2.6	10	0
		30160109	7454001 -	TOWN LAK	E FC					

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION
DEC							
29	1337	1.0	660	7.2	20.0	8.3	94
29	1339	4.0	660	7.2	20.0	8.2	93

301500097424801 - TOWN LAKE SITE AC

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

					DIS-	DIS-	
			DIS-	DIS-	SOLVED	SOLVED	DIS-
		SAMP-	SOLVED	SOLVED	CAD-	CHRO-	SOLVED
		LING	ARSENIC	BARIUM	MIUM	MIUM	COPPER
	TIME	DEPTH	(AS)	(BA)	(CD)	(CR)	(CU)
DATE		(FT)	(UG/L)	(UG/L)	(IIG/L)	(UG/L)	(UG/L)
DEC							
29	1108	1.0	1	0	0	10	5
29	1112	10					
29	1120	28	1	0	0	0	1
			DIS-		DIS-		
	DIS-	DIS-	SOLVED	nis-	SOLVED	DIS-	DIS-
	SOLVED	SOLVED	MAN-	SOLVED	SELE-	SOLVED	SOLVED
	IRON	LEAD	GANESE	MERCURY	NIUM	SILVER	ZINC
	(FE)	(PB)	(MN)	(HG)	(SE)	(AG)	(ZN)
DATE	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
DEC							
29	10	1	0	.0	0	0	10
29	10		0				
29	10	1	10	. 0	0	0	10

301558097452201 - TOWN LAKE SITE DC

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

					DIS-	DIS-	
			DIS-	DIS-	SOLVED	SOLVED	DIS-
		SAMP-	SOLVED	SOLVED	CAD-	CHRO-	SOLVED
		LING	ARSENIC	BARTUM	MIUM	MIIJM	COPPER
	TIME	DEPTH	(AS)	(BA)	(CD)	(CR)	(CU)
DATE		(FT)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
DEC							
29	1253	1.0	1	0	0	0	1
29	1259	10					
29	1306	18	1	0	0	0	1
			DIS-		DIS-		
	DIS-	DIS-	SOLVED	DIS-	SOLVED	DIS-	DIS-
	SOLVED	SOLVED	MAN-	SOLVED	SELE-	SOLVED	SOLVED
	IRON	LEAD	GANESE	MERCURY	NIUM	SILVER	ZINC
	(FE)	(PB)	(MN)	(HG)	(SE)	(AG)	(ZN)
DATE	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
DEC							
29	10	1	0	.0	0	0	10
29	10		0				
29	10	1	0	.0	0	0	10

301712097470701 - TOWN LAKE EC

DATE	TIME	SAMP- LING DEPTH (FT)	DIS- SOLVED ARSENIC (AS) (UG/L)	DIS- SOLVED BARTUM (BA) (UG/L)	DIS- SOLVED CAD- MIUM (CD) (UG/L)	DIS- SOLVED CHRO- MIUM (CR) (UG/L)	DIS- SOLVED COPPER (CU) (UG/L)
DEC							
29	1350	1.0	1	0	0	0	0
29	1358	13	1	0	0	0	0
			DIS-		DIS-		
	DIS-	DIS-	SOLVED	DIS-	SOLVED	DIS-	DIS-
	SOLVED	SOLVED	MAN-	SOLVED	SELE-	SOLVED	SOLVED
	IRON	LEAD	GANESE	MERCURY	NIUM	SILVER	ZINC
	(FE)	(PB)	(MN)	(HG)	(SE)	(AG)	(ZN)
DATE	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
DEC							
29	10	1	0	.0	0	0	10
29	10	0	0	.0	0	0	10

301559097424801 - TOWN LAKE AR

WATER QUALITY DATA. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	ΤΙ∾E	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICKO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN. DIS- SOLVED (MG/L)	OXYGEN. DIS- SOLVED (PER- CENT SATUR- ATION)
APH							
10	1345	1.0	570	8.1	20.5	8.8	100
10	1347	10	574	8.1	19.5	8.7	98
10	1350	23	57A	8.0	18.0	8.6	93

301500097424801 - TOWN LAKE SITE AC

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPEH- ATURE (DEG C)	TPANS- PAK- ENCY (SECCHI DISK) (M)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- HID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN. DIS- SOLVED (PER- CENT SATUR- ATION)
APR										
10	1318	1.0	563	8.1	21.0	.60	5	15	8.9	102
10	1323	10	570	8.1	19.5				9.0	101
10	1328	20	570	8.0	18.0				9.0	98
10	1333	25	570	8.0	18.0		10	55	8.7	95
	CYYGEN DEMAND.	COLI-	COLI-	STREP- TOCOCCI		HARD-		MAGNE-		SODIUM
	PI0-	TOTAL.	FECAL .	FECAL.	HARD-	NESS.	CALCIUM	SIUM,	SODIUM,	AD-
	CHEM-	IMMED.	0.7	KF AGAR	NESS	NONCAR-	DIS-	DIS-	DIS-	SORP-
	TCAL .	(COLS.	UM-MF	(COLS.	(MG/L	HONATE	SOLVED	SOLVED	SOLVED	RATIO
	5 DAY	PER	(COLS./	PER	AS	(MG/L	(MG/L	(MG/L	(MG/L AS NA)	RATIO
DATE	(MG/L)	100 ML)	100 ML)	100 ML)	CACO3)	CAC()3)	AS CA)	AS MG)	AS WAT	
APR								-22		
10	1.7	>3800	3800	5600	210	59	44	23	36	1.1
10				==	==			===		
10	1 2		==		210	56	47	23	35	1.0
10	1.3	-	-		210	30	-			
DATE	POTAS- SIUM. DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE. DIS- SOLVED (MG/L AS CL)	FLUO- RIDE. DIS- SOLVED (MG/L AS F)	SILICA. DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C. SUS- PENDED (MG/L)	SOLIDS. VOLA- TILE. SUS- PENDED (MG/L)
APR		100	0	43	59	.2	6.5	313	16	3
10	3.7	190		43	39		0.5			
10	- 22									
10	3.7	190	0	36	60	• 2	8.4	307	101	9
		N. G RATE NIT	EN. G RITE NOZ TAL TO	EN+ G +NO3 AMM TAL TO	EN. G ONIA ORG TAL TO	ANIC PHO	TAL TO	TAL SO	ON. NE IS- D LVED SO	NGA- SE, IS- LVED G/L
04	ATE AS						P) AS	C) AS	FE) AS	MN)
APP										
	0	.10	.01	.11	.04	.45	.03	3.5	10	10
	1									
		.14	.01	.15	.06	.29	.03		10	10
	0	.09	.01	.10	.05	.33	. 05	5.0	0	50
		3015030	97424701	- TOWN LA	KE AL					

		SPE-				DIS-
						SOLVED
	C D .				OXYGEN.	(PER-
			Du	TENDEO-		CENT
220.2			Ph			SATUR-
TIME						ATION)
	(FT)	MHOS	(UNITS)	(DEG C)	(MG/L)	ATTONY
1353	1.0	563	8.1	21.5	8.7	101
1355	10	570	8.1	19.0	8.9	99
1358	19	570	8.0	18.5	8.8	97
	1355	(FT) 1353 1.0 1355 10	TIME DEPTH (#ICRO) 1353 1.0 563 1355 10 570	TIME DEPTH (#ICRO- (FT) MHOS) (UNITS) 1353 1.0 563 8.1 1355 10 570 8.1	TIME DEPTH (MICHO) (UNITS) (DEG C) 1353 1.0 563 8.1 21.5 1355 10 570 8.1 19.0	TIME DEPTH (MICRO- (FT) MHOS) (UNITS) (DEG C) (MG/L) 1353 1.0 563 8.1 21.5 8.7 1355 10 570 8.1 19.0 8.9

301500097440801 - TOWN LAKE BR

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN. DIS- SOLVED (MG/L)	OXYGEN. DIS- SOLVED (PER- CENT SATUR- ATION)
APR							
10	1415	1.0	460	8.1	18.5	8.6	95
10	1418	13	520	8.1	17.5	8.6	92
3015	04097440	901 - TOW	N LAKE BC				

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN. DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
APR							
10	1409	1.0	470	8.0	18.5	8.8	97
10	1411	10	480	8.0	18.0	8.8	96
10	1413	19	550	8.0	17.5	9.3	100

301544097445201 - TOWN LAKE CR

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		SAMP-	SPE- CIFIC CON- DUCT-			OXYGEN.	DIS- SOLVED (PER-
DATE	TIME	LING DEPTH (FT)	ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DIS- SOLVED (MG/L)	CENT SATUR- ATION)
APR							
10	1435	1.0	550	8.1	18.5	8.8	97
10	1437	6.0	550	8.1	18.0	8.8	96

301546097445101 - TOWN LAKE CC

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
10 10	1425 1427 1429	1.0 10 17	530 550 560	8.0 8.1 8.1	19.0 17.5 17.0	8 • 8 8 • 8 8 • 8	98 95 94

301556097452301 - TOWN LAKE DR

TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN. DIS- SOLVED (MG/L)	DIS- SOLVED (PER- CENT SATUR- ATION)
1508	1.0	570	8.0	17.5	9.2	99
1510	12	570	8.0	17.5	9.9	96
	1508	TIME DEPTH (FT)	SAMP- DUCT- LING ANCE TIME DEPTH (MICRO- (FT) MHOS) 1508 1.0 570	CIFIC CON- SAMP- DUCT- LING ANCE PH TIME DEPTH (MICRO- (FT) MHOS) (UNITS) 1508 1.0 570 8.0	CIFIC CON- SAMP- DUCT- LING ANCE PH TEMPER- TIME DEPTH (MICRO- (FT) MHOS) (UNITS) (DEG C) 1508 1.0 570 8.0 17.5	CIFIC CON- SAMP- DUCT- LING ANCE PH TEMPER- DIS- TIME DEPTH (MICRO- (FT) MHOS) (UNITS) (DEG C) (MG/L) 1508 1.0 570 8.0 17.5 9.2

TOWN LAKE AT AUSTIN, TX--Continued

301558097452201 - TOWN LAKE SITE DC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS	TEMPI ATUI (DEG	ER- (SE	RANS- PAR- ENCY ECCHI ISK)	COE	AT-	TUR- BID- ITY (JTU	-	DXYGEN. DIS- SOLVED (MG/L)	OXYGEN. DIS- SOLVED (PER- CENT SATUR- ATION)
APR	4 4 1 2 1						2						
10	1442	1.0		8.		7.5	1.00		5		5	9.0	97
10	1446	20	570 570	8.		7.5 7.0			5		6	9.2	96
10	1452	20	570	8.		.0			5		0	9.0	70
	OXYGEN DEMAND. RIO- CHEM- ICAL. 5 DAY (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM. FECAL. 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCC FECAL KF AGA (COLS- PER 100 ML	HARI NES! (MG.	D- NE 5 NON /L BON (N	ARD- ESS, NCAR- NATE NG/L ACO3)	(MG	VED	MAGNI SIUI DIS- SOLVI (MG/I	M, S ED S	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO
APR													
10	1.6	9400	2800	K160)	220	56	5	0	23		33	1.0
10													
10	1.2					210	59	4	R	53		35	1.0
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVEI (MG/L AS SO4)	DIS- SOL	0- FL E. R1 - C VED SC VL (N	UU- IDE. DIS- DLVED	SILI DIS SOL (MG AS	VED /L	SOLID SUM OF CONST TUENTS DIS- SOLVE (MG/	F F F F F F F F F F F F F F F F F F F	RESIDUE AT 105 DEG. C. SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)
APR													
10	3.6	200	0	35	5	В	.2		7.1		09	7	5
10					•							8	3
10	3.7	190	0	36	6	1	.2		7.0	3	08		3
DAT	GE NITH TOT (MG	ATE NIT	EN. GIRITE NO? TAL TO G/L (M	EN + (1) +NO3 AM TAL TO	ITRO- GEN, MONIA (DTAL MG/L S N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	PHOR TUT (MG	AL S/L	CARBO ORGAN TOTA (MG.	AL /L	IRON DIS-	NES DI ED SOL	S- VED
10.		.07	.00	.07	.05	.39		.01		2.9		0	0
10.		.18	.01	.19	.05	.30		.02	3			30	10
			* 11 A										10

TOWN LAKE AT AUSTIN, TX--Continued

301712097470701 - TOWN LAKE EC

WATER QUALITY DATA: WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

				200 200 200			200	220 2117		
D. 75	TIME	SAMP- LING DEPTH	SPE- CIFIC CON- DUCT- ANCE (MICRO-	РН	TEMPER-	TRANS- PAR- ENCY (SECCHI DISK)	COLOR (PLAT- INUM- COBALT	TUR- BID- ITY	OXYGEN. DIS- SOLVED	OXYGEN, DIS- SOLVED (PER- CENT SATUR-
DATE		(FT)	MHOS)	(UNITS)	(DEG C)	(M)	UNITS)	(UTU)	(MG/L)	ATION)
APR										
10	1542	1.0	577	8.2	18.0	1.30	5	4	9.5	103
10	1547	10	577	8.2	18.0				9.5	103
10	1552	15	577	8.1	18.0		5	4	9.5	103
	OXYGEN DEMAND. PIO-	COLI- FORM, TOTAL,	COLI- FORM, FECAL,	STREP- TOCOCCI FECAL.	HARD-	HARD- NESS,	CALCIUM	MAGNE- SIUM.	SODIUM,	SODIUM AD-
	CHEM-	IMMED.	0.7	KF AGAR	NESS	NONCAR-	DIS-	DIS-	DIS-	SORP-
	ICAL.	(COLS. PER	UM-MF	COLS. PER	(MG/L	BONATE (MG/L	SOL VED	SOLVED (MG/L	SOLVED (MG/L	TION RATIO
DATE	(MG/L)	100 ML)	100 ML)	100 ML)	CACO3)	CACO3)	AS CA)	AS MG)	AS NA)	
APR										
10	1.5	5500	280	330	210	51	45	23	36	1.1
10										
10	1.5				210	51	45	23	35	1.1
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE. DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS. SUM OF CONSTI- TUENTS. DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)
APR										
10	3.8	190	0	42	62	.2	8.0	314	5	3
10										
10	3.8	190	0	42	62	•5	7.9	313	6	1
	NIT GE NITP TOT (MG	N. GE ATE NITH AL TOT	N. GE RITE NO24	No GE NO3 AMMO	N, GE NIA ORGA AL TOT	AL TOT	US, ORGA	NIC DI	N. NES S- DI VED SOL	S- VED
DA.	TE AS	N) AS	N) AS	N) AS	N) AS	N) AS	P) AS	C) AS	FE) AS	MN)
APR										
		.07	.01	.08	.01	. 34		3.1	30	0
	•••	.06	.00	.06	.19	.13	.00	5.0	10	10
200				TOWN LAK				7.7	- *	
				A. WATER		050 1077	TO SERTE.	OED 1070		

		SAMP-	SPE- CIFIC CON- DUCT-			OXYGEN,	DIS- SOLVED (PER-
DATE	TIME	LING DEPTH (FT)	ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DIS- SOLVED (MG/L)	CENT SATUR- ATION)
10	1515	1.0	577	8.3	18.0	9.9	108

TOWN LAKE AT AUSTIN, TX--Continued

301500097424801 - TOWN LAKE SITE AC

				NAPH-						
				POLY-		CHLOR-		DDE+ TOTAL (UG/L)	100	
			PCB.	CHLOR.	ALDRIN.	DANE.	000+	DDE.	DDT.	
		TIME	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL (UG/L)	TOTAL	
	DATE		(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(OG/L)	
,	PR									
	10	1318	.0	.00	.00	.0	.00	.00	.00	
	10	1333	.0	.00	.00	.0	.01	.01	.02	
	0.1	- 0	I- EN	00-		HE	PTA- CH	OR	MALA	
	ATTA	ION. FI	DOTA SIII	FAN. FND	RIN. ETH	ION. CH	OR. EPO	XIDE LIND	ANE THIO	N.
	T01	AL TO	TAL TO	TAL TO	TAI TO	TAI TO	TAI TO	TAL IOI	AL IUIA	L
DATE	(00	3/L) (U	G/L) (U	G/L) (U	G/L) (U	G/L) (U	G/L) (U	G/L) (UG	3/L) (UG/	(L)
AFR		- 04	-00	-00	.00	.00	.00	.00	.00 .	00
10	:	.03	.00	.00	.00	.00	.00	.00	.00 .	00
			377							
		METHYL	METHYL							
		PARA-	TRI-	PARA-	TOX-	TOTAL		2,4,5-T TOTAL (UG/L)		
		THION,	THION.	THION.	APHENE,	TRI-	2,4-0,	2,4,5-T	SILVEX.	
		TOTAL	TOTAL	TOTAL	TOTAL	THION	TOTAL	(UG/L)	(UG/L)	
	DATE	(UG/L)	(06/L)	(UG/L)	10671	(UG/L)	(00/L/	100/2/	(00) 2.	
	APR									
	10	.00	.00	.00	0	.00	.03	.00	.00	
	10	.00	• • • • •	.00	0	.00	.02	.01	.00	
		3015580	97452201	- TOWN LA	KE SITE D	С				
					WEAD OCT	0050 1077		MOED 1078		
		WATER G	WALITY DA	TA. WATER	TEAR OCT	OREM TALL	IU SEPIE	MBER 1978		
				NAPH-						
				THA-						
				LENES.		200				
				POLY-						
				PULT-		CHLOR-	200	DDE.	DOT.	
	DATE		PCB.	CHI OD.	AL DOTAL	DANE .	DDD+	DDE+	DDT.	
		TIME	TOTAL	CHI OD.	AL DOTAL	DANE .	DDD+	DDE+ TOTAL (UG/L)	DDT. TOTAL (UG/L)	
	0-16	TIME	TOTAL (UG/L)	CHLOR. TOTAL (UG/L)	AL DOTAL	DANE .	DDD+	DDE. TOTAL (UG/L)	DDT. TOTAL (UG/L)	
	.00		TOTAL (UG/L)	CHLOR. TOTAL (UG/L)	TOTAL (UG/L)	DANE. TOTAL (UG/L)	TOTAL (UG/L)	(UG/L)	(UG/L)	
	.00		TOTAL (UG/L)	CHLOR. TOTAL (UG/L)	TOTAL (UG/L)	DANE. TOTAL (UG/L)	TOTAL (UG/L)	(UG/L)	(UG/L)	
	.00		TOTAL (UG/L)	CHI OD.	TOTAL (UG/L)	DANE. TOTAL (UG/L)	TOTAL (UG/L)	(UG/L)	(UG/L)	
	.00	1442 1452	TOTAL (UG/L)	CHLOR. TOTAL (UG/L)	ALDRIN- TOTAL (UG/L)	DANE, TOTAL (UG/L)	DDD+ TOTAL (UG/L)	.00 .00	.00 .00	
	10 10	1442 1452	TOTAL (UG/L)	CHLOR. TOTAL (UG/L)	ALDRIN- TOTAL (UG/L)	DANE, TOTAL (UG/L)	DDD+ TOTAL (UG/L)	.00 .00	.00 .00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	10 10	1442 1452	TOTAL (UG/L)	CHLOR. TOTAL (UG/L)	ALDRIN- TOTAL (UG/L)	DANE, TOTAL (UG/L)	DDD+ TOTAL (UG/L) .00 .00	.00 .00 PTA- LOR	.00 .00	A- ON•
	10 10	1442 1452	TOTAL (UG/L)	CHLOR. TOTAL (UG/L)	ALDRIN- TOTAL (UG/L)	DANE, TOTAL (UG/L)	DDD+ TOTAL (UG/L) .00 .00	.00 .00 PTA- LOR	.00 .00	A- ON.
	10 10	1442 1452	TOTAL (UG/L)	CHLOR. TOTAL (UG/L)	ALDRIN- TOTAL (UG/L)	DANE, TOTAL (UG/L)	DDD+ TOTAL (UG/L) .00 .00	.00 .00 PTA- LOR	.00 .00	A- ON. AL /L)
DATE	10 10	1442 1452	TOTAL (UG/L)	CHLOR. TOTAL (UG/L)	ALDRIN- TOTAL (UG/L) .00 .00 RIN- ETH TAL TO G/L) (U	DANE, TOTAL (UG/L) .0 .0 .0 HE ION, CH TAL TO G/L) (U	DDD+ TOTAL (UG/L) .00 .00 HE PTA- CH LOR+ EPO TAL TO G/L) (U	OOO .000 PTA- LOR XIDE LINI TAL TO G/L) (U	(UG/L) .00 .00 .00 MALA DANE THIO TAL TOTA G/L) (UG/	1
DATE	APR 10 10	1442 1452 I- (C NON+ EL TAL T(G/L) (C	TOTAL (UG/L) OCTOBER SUL DITAL TO	CHLOR. TOTAL (UG/L) .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	ALDRIN- TOTAL (UG/L) .00 .00 RIN- ETH TAL TO G/L) (U	DANE, TOTAL (UG/L) .0 .0 .0 HE ION, CH TAL TO G/L) (U	DDD+ TOTAL (UG/L) .00 .00 HE PTA- CH LOR+ EPO TAL TO G/L) (U	OOO .000 PTA- LOR XIDE LINI TAL TO G/L) (U	(UG/L) .00 .00 .00 MALA DANE THIO TAL TOTA G/L) (UG/	1
DATE APR 10	APR 10 10	1442 1452 I- (NON+ EL TAL T(G/L) (U	TOTAL (UG/L) OF THE PROPERTY	CHLOR. TOTAL (UG/L) .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	ALDRIN- TOTAL (UG/L) .00 .00 RIN- ETH TAL TO G/L) (U	DANE, TOTAL (UG/L) .0 .0 .0 HE ION, CH TAL TO G/L) (U	DDD+ TOTAL (UG/L) .00 .00 HE PTA- CH LOR+ EPO TAL TO G/L) (U	OOO .000 PTA- LOR XIDE LINI TAL TO G/L) (U	(UG/L) .00 .00 .00 MALA DANE THIO TAL TOTA G/L) (UG/	1
DATE	APR 10 10	1442 1452 I- (NON+ EL TAL T(G/L) (U	TOTAL (UG/L) OF THE PROPERTY	CHLOR. TOTAL (UG/L) .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	ALDRIN- TOTAL (UG/L) .00 .00 RIN- ETH TAL TO G/L) (U	DANE, TOTAL (UG/L) .0 .0 .0 HE ION, CH TAL TO G/L) (U	DDD+ TOTAL (UG/L) .00 .00 HE PTA- CH LOR+ EPO TAL TO G/L) (U	OOO .000 PTA- LOR XIDE LINI TAL TO G/L) (U	.00 .00	1
DATE APR 10	APR 10 10	1442 1452 1452 1- (Control of the control of the co	TOTAL (UG/L) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	CHLOR. TOTAL (UG/L) .00 .00 .00 .00 .00 .00 .00	ALDRIN- TOTAL (UG/L) .00 .00 RIN- ETH TAL TO G/L) (U	DANE. TOTAL (UG/L) .0 .0 HE ION. CH TAL TO G/L) (U	DDD+ TOTAL (UG/L) .00 .00 HE PTA- CH LOR+ EPO TAL TO G/L) (U	.00 .00 PTA- LOR XIDE LINI TAL TO G/L) (U	OO .00 ADANE THIO TAL TOTA G/L) (UG/	1
DATE APR 10	APR 10 10	1442 1452 1452 1- (Control of the control of the co	TOTAL (UG/L) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	CHLOR. TOTAL (UG/L) .00 .00 .00 .00 .00 .00 .00	ALDRIN- TOTAL (UG/L) .00 .00 RIN- ETH TAL TO G/L) (U	DANE. TOTAL (UG/L) .0 .0 HE ION. CH TAL TO G/L) (U	DDD+ TOTAL (UG/L) .00 .00 HE PTA- CH LOR+ EPO TAL TO G/L) (U	.00 .00 PTA- LOR XIDE LINI TAL TO G/L) (U	OO .00 ADANE THIO TAL TOTA G/L) (UG/	1
DATE APR 10	APR 10 10	1442 1452 I- (1 NON+ EL TAL TO G/L) (1 .01 .00 METHY! PARA- THION	TOTAL (UG/L) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	CHLOR. TOTAL (UG/L) .00 .00 .00 .00 .00 .00 .00	ALDRIN- TOTAL (UG/L) .00 .00 RIN- ETH TAL TO G/L) (U	DANE. TOTAL (UG/L) .0 .0 HE ION. CH TAL TO G/L) (U	DDD+ TOTAL (UG/L) .00 .00 HE PTA- CH LOR+ EPO TAL TO G/L) (U	.00 .00 PTA- LOR XIDE LINI TAL TO G/L) (U	OO .00 ADANE THIO TAL TOTA G/L) (UG/	1
DATE APR 10	APR 10 10 D A711 TO (U)	1442 1452 I- (1 NON- EL TAL T(G/L) (1 .00 METHY! PARA- THION TOTAL	TOTAL (UG/L) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	CHLOR. TOTAL (UG/L) .00 .00 .00 .00 .00 .00 .00	ALDRIN- TOTAL (UG/L) .00 .00 RIN- ETH TAL TO G/L) (U	DANE. TOTAL (UG/L) .0 .0 HE ION. CH TAL TO G/L) (U	DDD+ TOTAL (UG/L) .00 .00 HE PTA- CH LOR+ EPO TAL TO G/L) (U	.00 .00 PTA- LOR XIDE LINI TAL TO G/L) (U	OO .00 ADANE THIO TAL TOTA G/L) (UG/	1
DATE APR 10	APR 10 10 D A711 TO (U)	1442 1452 I- (1 NON- EL TAL T(G/L) (1 .00 METHY! PARA- THION TOTAL	TOTAL (UG/L) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	CHLOR. TOTAL (UG/L) .00 .00 .00 .00 .00 .00 .00	ALDRIN- TOTAL (UG/L) .00 .00 RIN- ETH TAL TO G/L) (U	DANE. TOTAL (UG/L) .0 .0 HE ION. CH TAL TO G/L) (U	DDD+ TOTAL (UG/L) .00 .00 HE PTA- CH LOR+ EPO TAL TO G/L) (U	OOO .000 PTA- LOR XIDE LINI TAL TO G/L) (U	OO .00 ADANE THIO TAL TOTA G/L) (UG/	1
DATE APR 10	APR 10 10 D A7II TO (U	1442 1452 I- (1 NON- EL TAL T(G/L) (1 .00 METHY! PARA- THION TOTAL	TOTAL (UG/L) OI - EN ORIN SUL TAL TO OG/L) (U OO .00 METHYL TRI- THION, TOTAL (UG/L)	CHLOR. TOTAL (UG/L) .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	ALDRIN- TOTAL (UG/L) .00 .00 RIN- ETH TAL TO G/L) (U .00 .00 TOX- APHENE- TOTAL (UG/L)	DANE, TOTAL (UG/L) .00 .00 TOTAL TRI- THION (UG/L)	DDD+ TOTAL (UG/L) .00 .00 HE PTA- CH LOR+ EPO TAL TO G/L) (U .00 .00 2.4-D- TOTAL (UG/L)	.00 .00 PTA- LOR XIDE LINI TAL TO G/L) (UC	OO .00 OO .00 MALA DANE THIO TAL TOTA G/L) (UG/ .00 .00 . SILVEX. TOTAL (UG/L)	1
DATE APR 10	APR 10 10 D A711 TO (U)	1442 1452 I- (1 NON+ EL TAL T(G/L) (1 .01 .00 METHY! PARA- THION TOTAL (UG/L	TOTAL (UG/L) OI - EN ON SUL OO - OO	CHLOR. TOTAL (UG/L) .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	ALDRIN- TOTAL (UG/L) .00 .00 RIN- ETH TAL TO G/L) (U .00 .00 TOX- APHENE- TOTAL (UG/L)	DANE, TOTAL (UG/L) .00 .00 TOTAL TRI- THION (UG/L)	DDD+ TOTAL (UG/L) .00 .00 HE PTA- CH LOR+ EPO TAL TO G/L) (U	.00 .00 PTA- LOR XIDE LINI TAL TO G/L) (UG/L) .00 .00	OO	.00

197

COLORADO RIVER BASIN

TOWN LAKE AT AUSTIN, TX--Continued

301712097470701 - TOWN LAKE EC

	DATE	TIME	TO	CB, TAL G/L)	NAPH- THA- LENES. POLY- CHLOR. TOTAL (UG/L)	TO	RIN.	CHL DAN TOT (UG	E. AL	DDD . TOTAL (UG/L	. T	DDE. DTAL UG/L)	TO	DT. TAL G/L)
	PR 10	1542		.0	.00		.00		.0	.0	00	.00		.00
DATE	DI- AZINO TOTA (UG/	N. EL	DRIN DRIN DTAL DG/L)	ENDO SULFA TOTA (UG/	N. END	RIN.	ETHI TOT (UG	AL	HEPT CHLO TOTA (UG)	R. EF	HEPTA- CHLOR POXIDE TOTAL (UG/L)	LINE		MALA- THION, TOTAL (UG/L)
APR 10		00	.00		00	.00		.00		00	.00		.00	.00
	DATE	METHYL PARA- THION TOTAL (UG/L)	TH TO	THYL RI- ION. TAL G/L)	PARA- THION, TOTAL (UG/L)	APH	OX- IENE + ITAL IG/L)	TOT TR THI (UG	I- ON	2+4-0 TOTAL (UG/L	. T	4,5-T OTAL UG/L)	TO	VEX. TAL G/L)
	PR 10	.00)	.00	.00		0		.00	.0	3	.00		.00

TOWN LAKE AT AUSTIN, TX--Continued

301559097424801 - TOWN LAKE AR

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN. DIS- SOLVED (MG/L)	OXYGEN+ DIS- SOLVED (PER- CENT SATUR- ATION)
JUL							
18	1145	1.0	601	7.9	31.0	6.6	90
18	1147	10	601	7.8	27.0	7.2	94
18	1150	19	601	7.6	26.5	5.7	74

301500097424801 - TOWN LAKE SITE AC

WATER QUALITY DATA. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			SPE-								OXYGEN.
			CIFIC				TRANS-				015-
			CON-				PAR-	COLOR		11	SOLVED
		SAMP-	DUCT-				ENCY	(PLAT-	TUR-	OXYGEN	(PER-
		LING	ANCE	P	H TEN	PER-	(SECCHI	INUM-	HID-	DIS-	CENT
	TIME	DEPTH	(MICRO-			URE	DISK)	COBALT	ITY	SOLVE	SATUR-
DATE		(FT)	MHOS)	(UNI		G C)	(M)	UNITS)	(JTU)	(MG/L)	ATION)
OHIL				10.700							
JUL											
18	1112	1.0	601		7.8	29.5	2.10	6			
18	1114	10	601		7.8	27.0					
18	1116	20	601		7.7	26.0					
18	1120	27	603		7.5	26.0		6		5.	64
			1	126							
	OXYGEN	COLI-	COLI-		EP-				MAGNE		SODIUM
	DEMAND.	FORM.	FORM.	TOCO			HARD-				
	P10-	TOTAL ,				ARD-	NESS.	CALCIUM	SIUM		SORP-
	CHEM-	IMMED.		KF A		:55	NONCAR-	DIS-	DIS-	DIS-	TION
	ICAL.	(COLS.	UM-MF	(COL		4G/L	BONATE	SOLVED	SOLVE		RATIO
	5 DAY	PER	(COLS.			15	(MG/L	(MG/L	(MG/L	(MG/L	
DATE	(MG/L)	100 ML)	100 ML	100	ML) C	AC03)	CACO3)	AS CA)	AS MG	AS NA	
JUL											
18	.6	8400	94		5	220	52	47	24	37	1.1
18											
18											
18	.6					220	52	47	24	37	1.1
									SOLIDS	SOLIDS	
					r	HLO-	FLU0-	SILICA.	SUM OF	RESIDU	
	POTAS-			SULF		IDE,	RIDE.	DIS-	CONSTI		VOLA-
	SIUM,	BICAR- BONATE	CAR-	DIS		IS-	DIS-	SOLVED	TUENTS		
	DIS-	(MG/L	BONATE			DLVED	SOLVED	(MG/L	DIS-	SUS-	SUS-
	SOLVED (MG/L	AS	(MG/L	(MG		MG/L	(MG/L	AS	SOLVE		PENDED
DATE	45 K)	HC03)	AS COS			S CL)	AS F)	SIOZI	(MG/L		(MG/L)
	43 N/	110037	A5 000								
JUL		-				70		8.7	33	1	2 0
18	3.9	200			2		.2	0.7	33		
18						==			_		
18	3.8	200			2	68	.2				4 0
18	3.7	200		,		0.5	•-	,			
		80- N	ITRO- N	TRO-	NITRO-	NIT	Pn-			м	ANGA-
				EN.	GEN,			OS- CAR	BON. I	RON. N	ESE.
	NITE			P+N03	AIMONIA	ORGA					DIS-
	TO			TAL	TOTAL	TOT					OLVED
				4G/L	(MG/L	(MG					UG/L
0.	ATE AS			5 N)	AS N)	AS					S MN)
JUL							0.1			•	10
	۹	.09	.00	.09	.00		.81	.00		0	
	۹		77							50	20
	۹	.09	.00	.09	•00		•26	•00	3 0	40	20
1:	۹	.10	.00	.10	.00		• 32	.00	8.5	•0	20
		301503	097424701	- TOWN	LAKE A	L					

			SPE-				OXYGEN.
			CIFIC				DIS-
			CON-				SOLVED
		SAMP-	DUCT-			OXYGEN.	(PER-
		LING	ANCE	PH	TEMPER-	DIS-	CENT
					ATURE	SOLVED	SATUR-
	TIME	DEPTH	(MICRO-			(MG/L)	ATION)
DATE		(FT)	MHUS)	(UNITS)	(DEG C)	(MG/L)	41104
JUL							
18	1138	1.0	601	7.8	30.0	6.6	89
18	1149	12	601	7.8	26.5	6.5	A4

301500097440801 - TOWN LAKE BR

WATER QUALITY DATA. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		SAMP-	SPE- CIFIC CON- DUCT- ANCE	PH	TEMPER→	OXYGEN+	OXYGEN. DIS- SOLVET (PER- CENT
DATE	71 4E	DEPTH (FT)	(MICRO- MHOS)	(UNITS)	ATURE (DEG C)	SOLVED (MGZL)	SATUR- ATION)
19 19	1213 1215	1.0 13	601 601	7.8 7.7	26.5 25.5	6.8 5.9	88 76

301504097440901 - TOWN LAKE BC

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			SPE-				OXYGEN.
			CIFIC				DIS-
			CON-				SOLVED
		SAMP-	DUCT-			OXYGEN.	(PER-
		LING	ANCE	PH	TEMPER-	DIS-	CENT
	TIME	DEPTH	(MICRO-		ATURE	SOLVED	SATUR-
DATE		(FT)	MHOS)	(UNITS)	(DEG C)	(MG/L)	ATION)
JUL							
18	1158	1.0	601	7.8	26.5	6.8	88
18	1200	10	601	7.7	25.5	6.1	78
18	1202	20	601	7.7	25.5	5.8	74
18	1205	25	601	7.7	25.5	5.8	74

301544097445201 - TOWN LAKE CR

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

PE-	SPE-		
IFIC	CIFIC		
ON-	CON-		
UCT-	SAMP- DUCT-		
NCE PH	LING ANCE		
ICRO-	DEPTH (MICRO	TIME	
HOS) (UNITS	(FT) MHOS)		DATE
			JUL
601 7.	1.0 60	1232	18
601 7.	9.0 60	1235	18
NCE PH ICRO- HOS) (UNITS	LING ANCE DEPTH (MICRO (FT) MHOS)	1232	JUL 18

301546097445101 - TOWN LAKE CC

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			SPE-				OXYGEN.
			CIFIC				DIS-
			CON-				SOLVED
		SAMP-	DUCT-			OXYGEN.	(PER-
		LING	ANCE	PH	TEMPER-	DIS-	CENT
	TIME	DEPTH	(MICRO-		ATURE	SOLVED	SATUR-
DATE		(FT)	MHOS)	(UNITS)	(DEG C)	(MG/L)	ATION)
JUL							
18	1224	1.0	601	7.8	27.5	6.5	86
18	1226	10	601	7.7	25.5	6.3	81
18	1228	15	601	7.7	25.5	6.3	81

301556097452301 - TOWN LAKE UR

		SAMP-	SPE- CIFIC CON- DUCT-		aa.	OXYGEN,	OXYGEN, DIS- SOLVED (PER-
		LING	ANCE	РН	TEMPER-	DIS-	CENT
	TIME	DEPTH	(MICRO-		ATURE	SOLVED	SATUR-
DATE		(FT)	MHOS)	(UNITS)	(DEG C)	(MG/L)	ATION)
JUL							
18	1301	1.0	603	7.6	25.5	6.2	79
18	1303	10	603	7.7	25.5	6.1	78
18	1305	19	603	7.7	25.5	6.4	82

TOWN LAKE AT AUSTIN, TX--Continued

301558097452201 - TOWN LAKE SITE DC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCH DISK) (M)	CO (P I IN CO	LOR LAT- UM- BALT ITS)	TUR- BID- ITY (JTU)	OXYGEN. DIS- SOLVED (MG/L)	OXYGEN. DIS- SOLVED (PER- CENT SATUR- ATION)
JUL								-			01
18	1244	1.0		7.7		1.9		5	5	6.3 5.8	81 73
18	1246	10	603	7.7		-		5	5	5.6	71
18	1249	21	601	7.7	25.0	-	-	5	5	5.0	1.1
	OXYGEN	COLI-	COLI-	STREP-							
	DEMAND.	FORM,	FORM.	TOCOCCI		HARD-			MAGNE-		SODIUM
	810-	TOTAL.	FECAL.	FECAL.	HARD-	NESS.		CIUM	SIUM.	SODIUM.	AD-
	CHEM-	IMMED.		KF AGAR		NONCAR	- 01	5-	DIS-	DIS-	SORP-
	TCAL.	(COLS.	UM-MF	(COLS.	(MG/L	BONATE			SOLVED	SOLVED	TION
	5 DAY	PER	(COLS./	PER	AS	(MG/L	(M	G/L	(MG/L	(MG/L	RATIO
DATE	(MG/L)	100 ML)	100 ML)	100 ML)	CACO3)	CAC03) AS	CA)	AS MG)	AS NA)	
JUL		3200	38	4	230	6		50	25	37	1.1
18	.5	3200								3,	
18	.6					6		49	24	37	1.1
18	•0			-	220		,	47		٥,	111 3
								S	OLIDS.	SOL IDS.	
	POTAS-				CHLO-	FLU0-	SIL		UM OF	RESIDUE	SOLIDS,
	SIUM,	BICAR-		SULFATE	RIDE.	RIDE,			ONSTI-	AT 105	VOLA-
	DIS-	BONATE	CAR-	DIS-	DIS-	DIS-			UENTS,	DEG. C.	TILE.
	SOLVED	(MG/L	BONATE	SOLVED	SOLVED	SOLVE		IG/L	DIS-	SUS-	SUS-
	(MG/L	AS	(MG/L	(MG/L	(MG/L	(MG/L			SOLVED	PENDED	PENDED
DATE	AS K)	HC03)	AS C03)	AS 504)	AS CL)	AS F)	SI	(20	(MG/L)	(MG/L)	(MG/L)
JUL											
18	3.7	200	0	42	68		2	8.8	333	2	0
18						-					
18	3.8	190		42	70		2	8.7	328	7	1
	NIT	RO- NI	TRO- NI	TRO- NI	TRO- NI	TRO-				MAI	NGA-
							HOS-	CARBON	, IRO	N. NE	SE.
	NITE						ORUS.	ORGANI			IS-
	TOT						OTAL	TOTAL	SOL	VED SOI	EVED
	(MC						MG/L	(MG/L			G/L
DA							S P)	AS C)	AS	FE) AS	MN)
JUL		.12	.01	.13	.00	.35	.00	2.	4	10	20
	•••	.09	.00	.09	.00	.33	.00			10	20
	•••	.09	.00	.09	.00	.29	.00	2.		10	20
14	•••	• 09	• 00	.09	• 00		• 00	2.	-	. 0	

301712097470701 - TOWN LAKE EC

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TPANS- PAR- ENCY (SECCHI DISK) (M)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- RID- ITY (JTU)	OXYGEN. DIS- SOLVED	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
JUL 18	1330	1.0	599	7.7	25.0	1.20	5	4	5.9	75
18	1333	13	599				7	4	5.9	75
DATE	OXYGEN DEMAND. RIO- CHEM- ICAL. E DAY (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	0.7 UM-MF (COLS./	KF AGAR (COLS. PER	HARD- NESS (MG/L AS	HARD- NESS. NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM. DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO
JUL										
18	•5	960				64	47	25	37 37	1.1
18	•5				220	63	48	24	31	1.1
DATE	POTAS- SIUM. DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HC03)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOL DS. RES DUE AT 05 DEG C. SU - PEN ED (M /L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)
JUL										
18	3.9	190	0	43	70	.2	8.7	328	5	1
18	3.9	190	0	42	70	.2	8.7	327	5	2
DA	GE NITH TOT (MG	N. G ATE NIT AL TO /L (M	EN. G RITE NO2 TAL TO G/L (M	EN, G +NO3 AMM TAL TO G/L (M		AL TOT	AL TOT	NIC DI AL SOL	N. NES S- DI VED SOL	S- VED
JUL										
		.09	.00	.09	.00	.43	.00	2.8	10	10
18	•••	.08	.00	.08	•00 1	. 2	.00	2.7	10	0
		3016010	97454001	- TOWN LA	KE FC					

301601097454001 - TOWN LAKE FC

			SHE-				OXYGEN.	
			CIFIC				DIS-	
			CON-				SOLVED	
		SAMP-	DUCT-			OXYGEN.	(PER-	
		LING	ANCE	PH	TEMPER-	015-	CENT	
	TIME	DEPTH	(MICRO-		ATURE	SOL VED	SATUR-	
DATE		(FT)	MHOS)	(UNITS)	(DEG C)	(MG/L)	ATION)	
JUL								
18	1311	1.0	653	7.4	26.0	7.3	94	
18	1314	6.0	705	7.2	24.5	9.8	122	

08158000 COLORADO RIVER AT AUSTIN, TX (National stream-quality accounting network)

- LOCATION.--Lat 30°14'40", long 97°41'39", Travis County, Hydrologic Unit 12090205, on right bank 1,000 ft (305 m) upstream from upstream bridge on U.S. Highway 183 in Austin, 1.4 mi (2.3 km) downsream from Longhorn Dam, and at mile 290.3 (467.1 km).
- DRAINAGE AREA.--38,400 mi² (99,500 km²), approximately, of which 12,880 mi² (33,360 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

- PERIOD OF RECORD. -- February 1898 to current year. Records of daily discharge for Dec. 13-26, 1914, and Feb. 9-17, 1915, published in WSP 408, have been found unreliable and should not be used.
- REVISED RECORDS.--WSP 508: 1915(m). WSP 528: 1900(M), 1918(m). WSP 548: 1901-16. WSP 1342: Drainage area. WSP 1562: 1908, 1929(M), 1936.
- GAGE.--Water-stage recorder. Datum of gage is 402.27 ft (122.612 m) National Geodetic Vertical Datum of 1929. Prior to June 19, 1939, all records collected at or near Congress Avenue Bridge 3.9 mi (6.3 km) upstream at datum 19.6 ft (5.97 m) higher; prior to June 18, 1915, nonrecording gages, recording gages thereafter; June 20, 1939, to Oct. 16, 1963, at site 1,000 ft (305 m) downstream from present site at datum 5.0 ft (1.52 m) higher.
- REMARKS.--Water-discharge records good. National Weather Service gage-height telemeter at station. Since 1937, at least 10 percent of drainage area regulated by reservoirs. Flow largely regulated by Lake Travis (station 08154500). The city of Austin reported that 75,700 acre-ft (93.3 hm³) was diverted for municipal use above station and 37,520 acre-ft (46.3 hm³) of treated sewage was returned below station. Many other diversions above Lake Buchanan for irrigation, municipal supplies, and oilfield operations.
- AVERAGE DISCHARGE.--38 years (water years 1899-1936) unregulated, 2,711 ft³/s (76.78 m³/s), 1,964,000 acre-ft/yr (2.42 km³/yr); 42 years (water years 1937-78) regulated, 2,049 ft³/s (58.03 m³/s), 1,485,000 acre-ft/yr (1.83 km³/yr).
- EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 481,000 ft³/s (13,600 m³/s) June 15, 1935, gage height, 50 ft (15.2 m), present site and datum, from floodmark; minimum daily, 10 ft³/s (0.28 m³/s) Dec. 17, 1972.
- EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1833, 51 ft (15.5 m) July 7, 1869, present site and datum (adjusted to present site on basis of record for flood of June 15, 1935), determined from information concerning stage at former site furnished by Dean T. U. Taylor.
- EXTREMES FOR CURRENT YEAR.--Maximum discharge, 6,880 ft 3 /s (195 m 3 /s) June 7, gage height, 9.23 ft (2.813 m); minimum daily, 21 ft 3 /s (0.59 m 3 /s) Mar. 12.

			DISCHAR	GE, IN C	UBIC FE	ET PE		D, WATER N VALUES	YEAR OCT	TOBER 1977	TO SEPT	EMBER 197	В	
DAY	00	T	NOV	DEC	JAN	-	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1250	1	2640	72	80		405	7.4	1510	1750	2700	2900	785	2650
1 2	124		4110	102	82		397	60	1520	2250	2650	2950	82	2460
3	102		1830	98	67		324	59	1550	1960	2740	2970	1100	2470
4	87		154	100	67		332	43	1920	1860	2710	2790	1440	2560
5	80		120	236	318		407	33	1930	2050	2640	2330	2170	2300
	80	9	120	230	318		407	33	1930	2050	2040	2330	21/0	2300
6	10		122	1740	79		381	113	1880	2070	2820	2270	1920	2160
7	. 8	5	122	165	54		375	63	1970	2070	1310	2120	2140	2430
8	31	0	394	79	332		56	71	2060	2060	77	2080	2130	2120
9	7		144	116	314		46	48	2010	2220	2060	2140	2220	1830
10	8	2	94	55	323		74	26	2050	2480	2380	1990	2150	1860
11	7	9	102	91	231		58	88	934	2600	2340	2040	2220	1380
12	7		102	696	83		379	21	1610	2480	2280	1890	2220	216
13	9		102	1150	56		52	67	1630	2260	2570	1900	2110	122
1-4	5		109	1150	56		61	27	2040	2400	3020	1920	2210	70
15	7		88	1130	52		75	710	2080	2430	2890	1880	2420	1080
16	5	Q	98	353	144		65	699	2130	2540	2950	1820	2400	1130
17	3		112	780	66		182	734	2110	2300	1910	1900	2320	1150
18	10		114	738	71		46	696	2080	2410	3520		2340	1120
19	6		86	667	183		53	724	2070	2530	3270	1870	2960	1250
20	6		106	769	65		79	698	1390	2730	2680	1890	2780	1780
20	0	U	100	709	0.5		19	090	1390	2/30	2000	1030	2700	
21	5		99	525	238		47	688	2000	2240	2820	1750	2900	1600
22	32	2	96	532	62		95	734	2210	2040	2880	1490	2730	1550
23	5	7	99	544	60		63	675	2120	2220	2880	1830	3040	1550
24	8	4	65	533	160		74	906	2090	2380	2830	1800	2700	1600
25	7	3	104	522	390		66	988	2170	2470	2880	1480	3440	1500
26	7	2	89	536	332		64	911	1750	2750	3360	1140	2940	1140
27	6		96	523	336		58	922	1590	2660	2950	1400	3040	1060
28	5		98	438	413		83	1540	1740	2590	3230	1240	3080	1100
29	6		105	110	419			1550	1780	2650	3050	1280	3040	750
30	6		79	72	401			1550	1750	2640	2910	1280	3000	725
31	. 5			67	386			1530		2690		1330	2870	
TOTAL	752	,	11679	14689	5920		4397	17048	55674	72780	79357	59540	72897	44713
MEAN	24		389	474	191		157	550	1856	2348	2645	1921	2352	1490
MAX	125		4110	1740	419		407	1550	2210	2750	3520	2970	3440	2650
					52					1750	77	1140	82	70
MIN AC-FT	1492		65 23170	55 29140	11740		46 8720	33810	934	144400	157400	118100	144600	88690
AC-FI	1492	U	231/0	29140	11/40		0/20	33010	110400	144400	137400	110100	144000	00030
CAL YR		TOTAL		MEAN	2604	MAX	31500	MIN 36	AC-FT	1886000				
WTR YR	1978	TOTAL	446215	MEAN	1223	MAX	4110	MIN 21	AC-FT	885100				

203

08158000 COLORADO RIVER AT AUSTIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1947 to October 1973. Chemical, biochemical, and pesticide analyses: October 1973 to current year. Sediment records: October 1974 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1947 to current year. WATER TEMPERATURES: October 1947 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 737 micromhos Jan. 12, 1964; minimum daily, 243 micromhos Dec. 2, 1953.
WATER TEMPERATURES (1947-76): Maximum daily, 31.0°C on several days during summer months; minimum daily, 6.0°C Jan. 28, 1948, Feb. 4, 1949.

EXTREMES FOR CURRENT YEAR.--SPECIFIC CONDUCTANCE: Maximum daily, 647 micromhos June 6; minimum daily, 416 micromhos Nov. 1.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	STREA FLOW INSTA TANEC	SP CI M- CO I. DU N- AN DUS (MI	E- FIC N- CT- CE CRO-	PH UNITS)	TEMPER- ATURE (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DIS- SOLVE (PER- CENT SATUR	OXY DEM D BI CH IC	AND, O- EM- AL, AY	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM+ FECAL+ 0.7 UM-MF (COLS+/
	0858	64		579	7.5	22.0	1	1	6.3	7	4	.4	14000	32
	1235	99	Ŧ	561	8.4	23.0	5	1	11.8	14	0	.3	60000	8800
DEC 14	1330	1110		598	7.8	18.0	1	2	11.1	12	1	1.2	3800	80
JAN 23	1410	9.	.3	602	7.9	14.5	1	1	12.0	12	1	.3	790	21
FEB	1400	42		536	8.5	15.0	0	1	19.2	19	6	.6	220	10
MAR	1042	3050		598	8.2	21.0	1	3	9.9	11	4	.4	2200	29
APR	1145	3230		596	8.1	20.5	0	7	9.8	11	4	1.6	780	160
MAY	1400	3=20		610	8.2	21.5	0	3	9.9			.7	3100	71
JUN	0830	3130		610	7.8	23.5	5	3	8.4			.1	270	47
JUL		3130		609	7.3	27.5			4.6		1			
AUG	1010						5		19.6			.7	1100	230
SEP	1000	3520		560	6.9	27.0		4						
25	0900	83		550	7.8	27.0	2	1	5.1		55	.6	580	130
DATE	FE KF (CO	REP- OCCI CAL+ AGAR LS• ER ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3	SOL (MG	VED SOL	UM. SODIU S- DIS- VED SOLVE /L (MG/	SOR TI RAT	D- S P- D ON SO IO (N	DIS- BO	CAR- NATE MG/L AS	CAR- BONAT (MG/ AS CO	E SOL	VEO
0CT 13		420	220	4	7 5	3 2	1 32		.9	3.4	210		0 4	1
NOV 07		300	210	4	6 4	8 2	2 34		1.0	3.5	200		0 3	19
DEC 14		1200	240	4	8 6	0 2	3 32		•9	3.3	240		0 4	4
JAN 23		100	240	5	3 5	9 2	3 31		.9	3.5	230		0 4	0
FER 21		10	220	6	0 5	4 2	1 31		.9	3.5	180		8 4	1
MAR 31		7	210	4	7 4	5 2	4 34		1.0	4.2	200		0 4	2
APR 17		110	210	5	2 4	7 2	2 34		1.0	3.9	190		0 4	0
MAY 19		26	210	4	7 4	5 2	4 40		1.2	4.0	200		0	3
JUN 27		66n	220	5	2 4	7 2	4 36		1.1	3.8	200		0 4	3
JUL 28			230	6	4 5	0 2	5 37		1.1	3.9	200		0	3
AUG 25 SEP		63	200	5	6 4	7 2	1 31		.9	3.7	180		0 :	36
25		410	190	3	6 4	7 1	8 32		1.0	3.5	190		0	35

08158000 COLORADO RIVER AT AUSTIN, TX--Continued

DATE	CHLO- RIDE+ DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS. RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN: NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN+ NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN+ AMMONIA TOTAL (MG/L AS N)
0CT 13	55	.2	11	307	320	4	1	.03	.00	.03	.01
NOV 07	59	.2	11	308	315	2	0	.05	.02	.07	.04
DEC	55	.3	11	342	347	4	1	.54	.01	.55	.08
14 JAN	55	• 3	11								
23 FE8	57	•3	8.7	337	336	2	1	.24	•01	.25	.03
21 MAR	53	.3	4.8	100	305	2	0	.16	•01	.17	.01
31	62	.3	7.9	308	318	6	3	.04	•01	.05	.01
17 MAY	68	•5	7.9	321	317	16	2	.15	•01	.16	.03
19	63	.3	7.7	312	326	5	2	.35	•01	• 36	.01
27 JUL	65	.3	7.1	318	325	1	0	.15	.00	•15	.00
28 AUG	66	.3	9.6	341	333			.07	.01	.08	.00
25 SEP	55	• 2	8.7	297	291	5	1	.07	•05	•12	.22
25	58	•5	10	303	297	1	1	.30	•01	.31	.03
DATE	NITRO- GEN. ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	CARBON. ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON. ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
ост	GEN. ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L	ORGANIC SUS- PENDED TOTAL (MG/L	MENT, SUS- PENDED (MG/L)	MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
0CT 13	GEN. ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS. DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L	MENT, SUS- PENDED (MG/L)	MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
0CT 13 NOV 07 DEC	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS, TOTAL (MG/L AS P) .01	PHORUS. DIS- SOLVED (MG/L AS P) .02	ORGANIC TOTAL (MG/L AS C) 3.0 2.8	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L	MENT, SUS- PENDED (MG/L)	MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 13 NOV 07	GEN. ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS, TOTAL (MG/L AS P) .01 .03	PHORUS. DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C) 3.0 2.8 3.1	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L)	MENT DIS- CHARGE. SUS- PENDED (T/DAY) .86	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 13 NOV 07 DEC 14	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS, TOTAL (MG/L AS P) .01 .03 .02	PHORUS. DIS- SOLVED (MG/L AS P) .02 .02	ORGANIC TOTAL (MG/L AS C) 3.0 2.8 3.1	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 5 6	MENT DIS- CHARGE, SUS- PENDED (T/DAY) .86	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 13 NOV 07 DEC 14 JAN 23	GEN. ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS, TOTAL (MG/L AS P) .01 .03 .02 .03	PHORUS. DIS- SOLVED (MG/L AS P) .02 .02 .00	3.0 2.8 3.1 2.4	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 5 6 7 2	MENT DIS- CHARGE. SUS- PENDED (T/DAY) .86 1.6	SUSP. SIEVE JIAM. % FINER THAN .062 MM 55 79
OCT 13 NOV 07 DEC 14 JAN 23 FEB 21 MAR 31	GENO ORGANIC TOTAL (MG/L AS N) -29 -26 -46	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .30 .30 .54	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N) .20 .30 .54	PHORUS, TOTAL (MG/L AS P) .01 .03 .02	PHORUS. DIS- SOLVED (MG/L AS P) .02 .02 .00 .02 .00	ORGANIC TOTAL (MG/L AS C) 3.0 2.8 3.1	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 5 6 7 2	MENT DIS- CHARGE. SUS- PENDED (T/DAY) .86 1.6 .18 .23	SUSP. SIEVE DIAM. % FINER THAN .062 MM 55 79 38 8 67
OCT 13 NOV 07 DEC 14 JAN 23 FEB 21 MAR 31 APR	GEN• ORGANIC TOTAL (MG/L A5 N) -29 -26 -46 -37	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .30 .30 .54 .40	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N) .20 .30 .54 .37	PHORUS, TOTAL (MG/L AS P) .01 .03 .02 .03	PHORUS. DIS- SOLVED (MG/L AS P) .02 .02 .00	3.0 2.8 3.1 2.4	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT SUS-PENDED (MG/L) 5 6 7 2 5 6 6	MENT DIS- CHARGE, SUS- PENDED (T/DAY) .86 1.6 .18 .23	SUSP. SIEVE DIAM. % FINER THAN .062 MM 55 79 38 8 67
OCT 13 NOV 07 DEC 14 JAN 23 FEB 21 MAR 31 APR 17 MAY 19	GEN. ORGANIC TOTAL (MG/L AS N) .29 .26 .46 .37 .19	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .30 .30 .54 .40	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N) .20 .30 .54 .37	PHORUS, TOTAL (MG/L AS P) .01 .03 .02 .03 .01	PHORUS. DIS- SOLVED (MG/L AS P) .02 .02 .00 .02 .00	3.0 2.8 3.1 2.4	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 5 6 7 2 5	MENT DIS- CHARGE. SUS- PENDED (T/DAY) .86 1.6 .18 .23 41	SUSP. SIEVE DIAM. % FINER THAN .062 MM 55 79 38 8 67 69
OCT 13 NOV 07 DEC 14 JAN 23 FEB 21 MAR 31 APR 17 MAY 19 JUN 27	GEN• ORGANIC TOTAL (MG/L A5 N) -29 -26 -46 -37 -19 -43	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .30 .54 .40 .20 .44	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N) .20 .30 .54 .37 .14	PHORUS, TOTAL (MG/L AS P) .01 .03 .02 .03 .01	PHORUS. DIS- SOLVED (MG/L AS P) .02 .02 .00 .02	ORGANIC TOTAL (MG/L AS C) 3.0 2.8 3.1 2.4 2.9 2.4	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 5 6 7 2 5 6 5 6	MENT DIS- CHARGE. SUS- PENDED (T/DAY) .86 1.6 .18 .23 41 52 48 51	SUSP. SIEVE DIAM. % FINER THAN .062 MM 55 79 38 8 67 69 83 76
OCT 13 NOV 07 DEC 14 JAN 23 FEB 21 MAR 31 APR 17 MAY 19 JUN 27 JUN 28	GEN. ORGANIC TOTAL (MG/L A5 N) .29 .26 .46 .37 .19 .43	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .30 .54 .40 .20 .44	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N) .20 .30 .54 .37 .14 .43	PHORUS, TOTAL (MG/L AS P) .01 .03 .02 .03 .01 .00	PHORUS, DIS- SOLVED (MG/L AS P) .02 .02 .00 .02 .02 .00 .02 .00 .00 .00	3.0 2.8 3.1 2.4 2.9 2.4 3.8	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 5 6 7 2 5 6 5	MENT DIS- CHARGE. SUS- PENDED (T/DAY) .86 1.6 .18 .23 41 52 48 51	SUSP. SIEVE DIAM. % FINER THAN .062 MM 55 79 38 8 67 69 83 76 73
OCT 13 NOV 07 DEC 14 JAN 23 FEB 21 MAR 31 APR 17 MAY 19 JUN 27 JUN	GEN. ORGANIC TOTAL (MG/L AS N) .29 .26 .46 .37 .19 .43 1.6 .62 .35	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .30 .54 .40 .20 .44 1.6	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N) .20 .30 .54 .37 .14 .43 .61	PHORUS, TOTAL (MG/L AS P) .01 .03 .02 .03 .01 .00	PHORUS. DIS- SOLVED (MG/L AS P) .02 .02 .00 .02 .00 .02 .00 .00 .00 .0	3.0 2.8 3.1 2.4 2.9 2.4 3.8	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 5 6 7 2 5 6 5 6	MENT DIS- CHARGE. SUS- PENDED (T/DAY) .86 1.6 .18 .23 41 52 48 51	SUSP. SIEVE DIAM. % FINER THAN .062 MM 55 79 38 8 67 69 83 76

08158000 COLORADO RIVER AT AUSTIN, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	TIMF	ARSENIC TOTAL (UG/L	ARSENIC SUS- PENDED TOTAL (UG/L	ARSENIC DIS- SOLVED (UG/L	BARIUM, TOTAL RECOV- ERABLE (UG/L	BARIUM, SUS- PENDED RECOV- ERABLE (UG/L	BARIUM. DIS- SOLVED (UG/L	CADMIUM TOTAL RECOV- ERABLE (UG/L	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L	CADMIUM DIS- SOLVED
DATE		AS AS)	AS AS)	AS AS)	AS BA)	AS BA)	AS BA)	AS CD)	AS CD)	AS CD)
0CT 13 FEB	0858	2	1	1	400	200	200	<10	<7	3
21	1400	4	3	.1	100	0	100	0	0	1
27	0830	5	0	2	300	100	200	1	1	0
25	1000	1	0	2	100	0		0	0	0
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM. DIS- SOLVED (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COBALT. SUS- PENDED RECOV- ERABLE (UG/L AS CO)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER. TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER. DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
OCT		0	0	<50	450		<10	<6	4	40
13 FEB	0		- 3		<50	0				
21	10	10	0	0	0	0	13	8	5	20
27 AUG	0	0	0	0	0	0	5	4	1	110
25	0	0	0	0	0	0	5	3	2	20
DATE	PENDED RECOV- FRABLE (UG/L	IRON. DIS- SOLVED (UG/L	LEAD, TOTAL RECOV- ERABLE (UG/L	LEAD. SUS- PENDED RECOV- ERABLE (UG/L	LEAD. DIS- SOLVED (UG/L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L	MANGA- NESE, SUS- PENDED RECOV. (UG/L	MANGA- NESE + DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY SUS- PENDED RECOV- ERABLE (UG/L AS HG)
	AS FE)	AS FE)	AS PB)	AS PB)	AS PB)	AS MN)	AS MN)	AS MN)	AS HG/	AS HO)
13 FEB		20	<100	<100	0	30	10	20	.0	.0
21										
27		10	0	0	0	10	10	0	.0	• 0
	90	20	3	0	0	10 10	10 5	0 5	.0	•0
AIIG 25	90 10		120							
AIIG		20	3	1	2	10	5	5	•0	• 0
DATE	MERCURY DIS- SOLVED (UG/L	SELE- NIUM. TOTAL (UG/L AS SE)	3 SELE- NIUM. SUS- PENDED TOTAL (UG/L AS SE)	SELE- NIUM, DIS- SOLVEO (UG/L	SILVER, TOTAL RECOV- ERABLE (UG/L	SILVER. SUS- PENDED RECOV- EPABLE (UG/L	SILVER. DIS- SOLVED (UG/L AS AG)	ZINC. TOTAL RECOV- ERABLE (UG/L	.0 .1 7INC, SUS- PENDED RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)
DATE	MERCURY DIS- SOLVED (UG/L	SELE- NIUM. TOTAL (UG/L AS SE)	3 SELE- NIUM. SUS- PENDED TOTAL (UG/L	SELE- NIUM, DIS- SOLVEO (UG/L	SILVER, TOTAL RECOV- ERABLE (UG/L	SILVER. SUS- PENDED RECOV- EPABLE (UG/L	SILVER. DIS- SOLVED	ZINC. TOTAL RECOV- ERABLE (UG/L	.0 .1 7INC, SUS- PENDED RECOV- ERABLE (UG/L	ZINC, DIS- SOLVED
DATE	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM. TOTAL (UG/L AS SE)	3 SELE- NIUM. SUS- PENDED TOTAL (UG/L AS SE)	SELE- NIUM, DIS- SOLVEN (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	SILVER, SUS- PENDED RECOV- ERABLE (UG/L AS AG)	SILVER. DIS- SOLVED (UG/L AS AG)	ZINC. TOTAL RECOV- ERABLE (UG/L AS ZN)	.0 .1 7INC, SUS- PENDED RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)
DATE OCT 13 FER 21	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM. TOTAL (UG/L AS SE)	3 SELE- NIUM. SUS- PENDED TOTAL (UG/L AS SE)	SELE-NIUM, DIS-SOLVEN (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	SILVER- SUS- PENDED RECOV- ERABLE (UG/L AS AG)	SILVER. DIS- SOLVED (UG/L AS AG)	ZINC+ TOTAL RECOV- ERABLE (UG/L AS ZN)	.0 .1 7INC, SUS- PENDED RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

PERIPHYTON

DATE	LENGTH OF EXPOSURE (DAYS)	PERI- PHYTON BIOMASS ASH WEIGHT G/SQ M	PERI- PHYTON BIOMASS TOTAL DRY WEIGHT G/SQ M	CHLOR-A PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)	CHLOR-B PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)	SAMPLING METHOD
NOV						
07 FEB	25	.945	1.50	5.46	2.40	POLYETHYLENE STRIP
21	29	49.3	55.9	74.1	4.31	POLYETHYLENE STRIP

08158000 COLORADO RIVER AT AUSTIN, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1977 TO AUGUST 1978

	PHTTOPL	ANKION	ANALYSES	s, octo	BER 1977	10 AU	GUST 197	78				
DATE TIME		7.77 1235		31.78		19.78		27•78 830		28•78 1010		25•78 000
TOTAL CELLS/ML	- 1	3200		14		9		88		230	1	900
DIVERSITY: DIVISION		1.1		0.0		0.0		0.9		0.3		1.4
.CL ASS		1.2		0.0		0.0		0.9		0.3		1.4
ORDER		1.8		0.0		0.0		0.9		0.3		2.0
GENUS		2.7		0.0		0.0		1.5		0.3		2.5
***************************************		2.7		0.0		0.0		1.5		0.3		3.1
ORGANISM	/ML	CENT	/ML	PER-	/ML	PER- CENT	/ML	PER- CENT	/ML	PER- CENT	CELLS /ML	PER-
CHLOROPHYTA (GREEN ALGAE) •CHLOROCOCCALES												
COELASTRACEAE	84	3		_		-		_	2204	94		
HYDRODICTYACEAE PEDIASTRUM	0.4											
MICRACTINIACEAE	84	3	-	-		•	-	•			-	
GOLENKINIA		-		-		-		-		-	14	1
MICRACTINIUM		-		-		-		-		•	28	1
ANKISTRODESMUS	150	5		-		-		-		-		
FRANCEIA		0		-		-		-		-	-	- 1
KIRCHNERIELLA OOCYSTIS	28	1		-		•		- :		-	56	3
SELENASTRUM		-		-	9#	100			==		110	6
TETRAEDRON	21	1		-		-		-		-		
SCENEDESMACE AE												190
SCENEDESMUS	110	6	-	:		-				-	56	3
TETRASPORALES				100	-1, 7		1000	7	100	88.0	550	11
PALMELLACEAE												
SPHAEROCYSTIS	. •	0		-		-		-				
CHL AMYDOMONADACEAE												
CHLAMYDOMONAS	56	5		-		-		_		-	14	1
VOL VOCACEAE												
EUDORINA		-		-		-	59#	33		-		-
CHRYSOPHYTA .BACILLARIOPHYCEAECENTRALES												
COSCINODISCACEAE	130	4										
***************************************	130	•		-		-		-		-		-
PENNALES												
ACHNANTHACEAE		-										
COCCONE IS		-		-		-				-	14	1
FRAGILARIACEAE												
SYNEDRAGOMPHONEMATACEAE				-		-		-	14	6	- 28	1
GOMPHONEMA				_		4	1720	-		-	14	
NAVICULACEAE						-		7		-	14	1
NAVICULA		0		-		-	15#	17		-	28	1
NITZSCHIACEAE				100								
TABELLARIACEAE		0	14#	100		•		•		-	69	4
TABELLARIA		-		-		-	44#	50		-		-
-CHRYSOPHYCEAE												
OCHRYSOMONADALES OCHROMONADACEAE												
DINOBRYON	56	2		-		-				-		
CYANOPHYTA (BLUE-GREEN ALGAE)												
CHROCCOCCALES												
CHROCCOCCAEAE												
AGMENELLUM		-		-		-		-		-	360#	19
ANACYSTIS	370	12		-		-		-		2		1
NOSTOCACEAE												
CYL INDROSPERMUM	750#	24		-		-						-
CSCILLATORIACEAE		4										21
OSCILLATORTA	1100#	35				-				:	420#	
				-					- 1		440#	
EUGLENOPHYTA (EUGLENOIDS) •EUGLENOPHYCEAE												
EUGLENALES												
EUGLENACEAE												
TRACHEL OMONAS		-		-		-		-		-	56	3

NOTE: # - ODMINANT ORGANISM: EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM: MAY NOT HAVE BEEN COUNTED: LESS THAN 1/2%

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

MONTH	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVEN SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT. 1977	7521	551	300	6150	55	1120	37	761	200
NOV. 1977	11679	507	280	8730	49	1560	33	1050	190
DEC. 1977	14689	555	310	12200	56	2200	38	1490	200
JAN. 1978	5920	563	310	4990	57	909	38	614	210
FEB. 1978	4397	549	300	3610	55	653	37	439	200
MAR. 1978	17048	574	320	14600	58	2680	39	1810	210
APR. 1978	55674	579	320	48300	59	8870	40	6000	210
MAY 1978	72780	573	320	62500	58	11400	39	7740	210
JUNE 1978	79357	579	320	68800	59	12600	40	8560	210
JULY 1978	59540	591	330	52900	61	9730	41	6580	220
AUG. 1978	72897	549	300	59800	55	10800	37	7310	200
SEPT 1978	44713	512	280	34000	50	6040	34	4080	190
TOTAL	446215	**	**	377000	**	68600	**	46400	••
WTD.AVG	1222.51	564	310	**	57	**	38	**	210

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY SEP DAY OCT NOV DEC JAN FEB APR MAY JUN JUL ALIG 2 3 555 537 519 599 ---MEAN

COLORADO RIVER BASIN 08158000 COLORADO RIVER AT AUSTIN, TX--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		23.0			6.5	13.5	14.5	15.5		19.5	24.0	
2		20.0			6.0			15.5		19.5	24.5	
3	25.0	19.5		11.0			15.0	15.5		19.5	24.5	
4	23.5			11.0	6.0			15.0		20.0	24.0	
5	23.5			12.0			16.5	15.5		21.0	24.5	24.5
-6	24.0	20.0	15.5		6.5		15.5	15.5	17.0	20.5		24.5
7		19.0	13.5		6.5	15.5	16.5		17.0	21.0		24.5
8	24.0	18.5			6.5	16.5	16.0	16.0			25.0	24.5
9	24.0	19.5			6.5			16.5		22.0	25.0	24.5
10	23.5	17.0		10.0	6.5		15.5	16.5		23.5		24.5
11	21.0	16.0		9.0	6.5		16.0	16.0		23.5		24.5
12	21.0	16.0		10.0	7.0		16.5			23.0		24.5
13			15.0	11.5	8.5		15.5		19.0			24.5
14	23.0		14.5		9.0	17.0	16.0		19.0	23.0		24.5
15	21.0	16.5			9.0	18.5	15.5			23,5	25.0	24.5
16					9.0			16.0		24.0	25.0	
17	20.5	18.0		9.5	7.0			16.0				24.5
18	20.0	19.0		9.0	9.0	13.5	16.0			23.5		24.5
19	20.0	18.5		10.0		13.0	16.0		19.5	23.5		25.0
50	20.5	19.0	12.0	9.0		13.5	16.0		19.0	24.0		25.0
21			12.0	8.5	8.0	14.0	15.5		18.5	24.0		24.5
55	21.0	18.0			9.0	14.5			19.0	24.0	25.0	
23		18.0				15.5	14.5	16.0	19.0	24.0	25.0	24.5
24	21.0	18.0		8.0		15.5	15.0	16.0	19.0	23.5		25.5
25	20.5		12.0	7.0		15.5	15.5	16.0	19.5	23.5		25.5
26	20.5			7.0		14.5	16.0		19.5	24.0		25.0
27	21.5		12.0			15.5	16.0		19.5	24.0		25.0
28			10.0		13.5	15.5	14.5		20.0	24.0		25.5
29	21.0	17.0	10.5			14.5	15.0		20.0	24.0	24.5	24.5
30	20.5	16.0	12.0	7.0		15.0	15.5	20.5	20.0	24.0	25.0	24.5
31	21.0		11.5	6.0				21.0		24.5		
MEAN	22.0	18.5	12.5	9.0	7.5	15.0	15.5	16.5	19.0	23.0	24.5	24.5

08158050 BOGGY CREEK AT U.S. HIGHWAY 183, AUSTIN, TX

LOCATION.--Lat 30°15'47", long 97°40'20", Travis County, Hydrologic Unit 12090205, on U.S. Highway 183, 1.6 mi (2.6 km) south of the intersection of Webberville Road and U.S. Highway 183, and 4.1 mi (6.6 km) east of the State Capitol Building in Austin.

DRAINAGE AREA .-- 13.1 mi2 (33.9 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--January to July 1975 (periodic discharge measurements only), August 1975 to June 1977 (operated as a flood-hydrograph partial-record station only), June 1977 to current year.

GAGE.--Water-stage recorder. Datum of gage is 411.29 ft (125.361 m) National Geodetic Vertical Datum of 1929 (levels from city of Austin bench mark).

REMARKS.-- Water-discharge records poor. No known regulation or diversions. There is a recording rain gage in the watershed above station. The station is part of a hydrologic research project to study the rainfall-runoff relationship for the Austin urban area.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,100 ft³/s (173 m³/s) May 23, 1975, gage height, 17.03 ft (5.191 m), from flood-mark, from rating curve extended above 500 ft³/s (14.2 m³/s) on basis of slope-area measurement of peak flow; minimum discharge not determined.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 750 ft3/s (21.2 m3/s) and maximum (*):

	Date	Time	Disch	arge	Gage I	height	Date	Time	Disch	arge	Gage	height
		(ft^3/s)	(m^3/s)	(ft)	(m)	75.75		(ft3/s)	(m3/s)	(ft)	(m)	
	Feb. 12	1345	1,210	34.3	10.02	3.054	May 11	0230	1,110	31.4	9.82	2.993
	Apr. 10	0515	869	24.6	9.27	2.825	May 26	1730	752	21.3	8.98	2.737
	May 2	2145	*1.920	54.4	11.34	3.456	June 7	0045	1.090	30.9	9.78	2.981

Minimum discharge, no flow for several days.

		DISCHARG	E, IN	CUBIC FEET	PER S	MEAN VALU	ER	YEAR OCT	OBER 19	77 TO SEP	TEMBER 1978		
DAY	ОСТ	NOV	DEC	JAN	FE	B MAR		APR	MAY	JUN	JUL	AUG	SEP
1	.04	32	.03	.03	.0	4 .02		.03	.02	1.2	.05	26	51
2	.04	.03	.03	.03	.0			.03	126	.11	.05	.07	.50
3	.04	.03	.03	.03	.0			.02	20	39	.05	.01	.00
4	.04	.03	.03	.03	.0			.02	5.7	.84	.05	.00	
5	.04	.03	.03	.03	.0			.01	.05	.12	.04	.00	
6	.04	.03	.03	.03	.0			.01	.04	19	.04	.00	
7	.04	.03	.03	.03	73	27		.01	.04	100	.04	.00	
8	.04	24	.03	.03	11	1.1		.01	.03	.24	.04	.00	33
9	.04	.03	.03	.03	.3			.01	.03	.12	.03	.00	
10	.04	.03	.03	.03	.0			77	.02	.16	.03	.40	
11	.04	.03	.03	35	.0	5 .06		.03	57	.16	.02	.10	53
12												.02	
	.04	.03	.03	6.1	141	.06		.03	.57	.16	.01		
13	.04	.03	.03	.09	19	.06		.03	4.0	.15	.00	.00	
14	.04	.03	.03	.05	1.3			.02	.04	.15	.00	.00	
15	.04	.03	.03	.04	12	.06	,	.02	.04	.15	.00	.00	.39
16	.04	.03	.03	65	2.7	.06	5	.02	.04	.14	.00	.00	.39
17	.03	.03	.02	6.3	69	.06		.01	.04	.13	.00	.00	.06
18	.04	.03	.02	.11	5.1			.01	.04	.12	.00	.00	
19	.03	.03	.02	.07	.0			.01	.03	.11	.00	.00	
20	.03	.03	.02	.05	.0			.01	.16	.10	.00	.00	
											120		
21	.66	.03	.02	.04	.0			.01	1.7	.10	.00	.00	
22	41	.03	.01	.04	.0			.05	.05	.10	.00	.00	
23	.03	.03	.01	.04	.0			.02	.04	.09	33	.00	
24	.03	.03	.01	.04	.0	2 17		.01	.04	.08	.10	.00	
25	.03	.03	.01	.04	.0	2 .08	3	.01	.68	.07	.00	.00	.00
26	.03	.03	.01	.03	.0	2 .06		.01	80	.06	.00	.00	.00
27	.03	.03	.02	.03	.0			.01	3.3	.06	.00	.20	
28	.03	.03	.05	.03	.0			.01	.07	.06	.00	.20	
29	.03	.03	.04	.04				.01	.04	.06	.00	.20	
30	.03	.03	.05	.04				.02	.04	.06	.00	.00	
31													
31	.03		.04	.04		03			.04		1.4	.00	
TOTAL	42.70	56.84	.83	113.52	335.1			77.50	299.89	162.90	34.95	27.20	
MEAN	1.38	1.89	.027	3.66	12.	0 2.56	5	2.58	9.67	5.43	1.13	.88	
MAX	41	32	.05	65	14	1 33	3	77	126	100	33	26	53
MIN	.03	.03	.01	.03	.0			.01	.02	.06	.00	.00	
CFSM	.11	.14	.002	.28	.9			.20	.74	.42	.09	.07	
IN.	.12	.16	.00	.32	.9			.22	.85	.46	.10	.08	
AC-FT	85	113	1.6	225	66			154	595	323	69	54	
		1.73										1.55	
(††)	1.24	1./3	.36	.94	2.0	0 .85	,	1.71	5.58	2.98	1.15	1.55	4.02
CAL YR			MEA			- MIN	-	CFSM		IN -	AC-FT -	tt	355
WTR YR	1978 TOT	AL 1478.93	MEA	N 4.05	MAX 14	1 MIN	.00	CFSM	.31	IN 4.20	AC-FT 2930	††	24.71

tt Rainfall, in inches, based on one rain gage.

08158050 BOGGY CREEK AT U.S. HIGHWAY 183, AUSTIN, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Periodic chemical, biochemical, and pesticide analyses: January 1975 to current year.

DISCHARGE AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	INST TANE	CI EAM- CO DW, DU FAN- AM EOUS (MI	PF- IFIC IN- ICT- ICE ICRO-		Δ	MPER- TURE EG C)	IN CO	LOR LAT- UM- BALT ITS)	TUR- BID- ITY (JTU)	50	GEN, IS- LVED G/L)	OXYGE DIS SOLV (PS: CEN SATU	- DEI ED 8 - CI IT I	YGEN MAND. 10- HEM- CAL, DAY G/L)
JAN	1335		.03	738		8.1	5.0		0	1		15.4		24	.4
10 FEB 21	1105		.03	757		8.0	7.5		0	3		12.9		11	.2
APR	1415		.9	250		7.5	22.0		50	80		7.8	-	92	5.4
JUN 07	1600	35		321		7.8	26.5		40	30		7.2		91	1.5
SEP	1245		1.9	289		7.4	25.5		20	45		7.6		95	2.4
00	COL		COLI-	STR	FD-		23.3		20	43				,	
DATE		AL, ED.		TOCOL FEC KF AI (COL) PEI	CCI AL, GAR S.	HARD- NESS (MG/L AS CACO3)	NESS NONCA BONAT (MG/	R- E L	CALCIUM DIS- SOLVEM (MG/L AS CA	M S1 D1 D SOL	WE-	SODIU DIS- SOLVE (MG/ AS N	D 'L	SODIUM AD- SORP- TION RATIO	
10	. 26	000	1800	8	800	300		49	100		.3	39		1.0	
FE9 21		140	25		32				-	-					
10	. 450	000	56000	16	000	100		19	36		8.5	8	.3	.4	
JUN 07	. 230	000	10000	1	400	130		20	48		3.6	11		.4	
SFP 08	. 61	000	22000	6	900	120		18	40		4.0	12	2	.5	
DATE	SOL (MG	UM, S- VED /L	BICAR- BONATE (MG/L AS HCO3)	CAR BONA (MG AS C	TE /L	SULFATE DIS- SOLVEO (MG/L AS SO4)	DIS- SOLV (MG/	ED L	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	D (MC	VED	SOLIC SUM C CONST TUENT DIS SOLV (MG/	OF F FI - 1 FS - 0 FED F	RESIDUE AT 105 DEG. C. SUS- PENDED (MG/L)	
JAN 10		2.2	310		0	57	56			4	16		436	1	
FFR						_				_				2	
S1														145	
10 JUN		3.4	100		0	18	10			1	4.9		133		
07 SFP	•	3.8	140		0	27	15		•	2	11	N Best	189	48	
08		3.0	150		0	21	15	,		5	7.2		162	64	
DATE	SOLI VOL TIL SUS PEND (MG	A- E, ED	NITRO- GEN. NITRATE TOTAL (MG/L AS N)	GE	ITE AL /L		GEN B AMMON	IIA L	NITRO GEN. ORGANI TOTAL (MG/L AS N)	GEN MON C ORG TO	IA + ANIC IAL 3/L N)	PHOS PHORU TOTA (MG/ AS F	JS. (AL /L	CARBON. DRGANIC TOTAL (MG/L AS C)	
JAN															
10 FFR	•	1	.72		.01	•7:	3 .	04	• 3		.40		.01	1.6	
21 · ·	•	1	.87		.01	.88		0.5	•1	3	.15	4	• 03	1.8	
10		17	.31		.02	• 33	3 .	16	• 6	6	.82		.24	9.4	
07 SFP		5	1.6		.01	1.6		06	•2		.27		.02	• 6	
08		13	.24		.01	• 2'	5	01	1.5	,	1.5	-	.12	7.7	

08158050 BOGGY CREEK AT U.S. HIGHWAY 183, AUSTIN, TX--Continued

	DATE	TIME	ARSE DI' SOL (UG AS	S- VED :	BARIUM DIS- SOLVED (UG/L AS BA) 50 . (U	MIUM IS- LVED G/L CD)	(UG	M. VED	COPPE DIS- SOLV (UG/ AS (ED	IRON DIS SOLV (UG/ AS F	ED L	
	JAN 10	1335		2		0	0		10		1		10	
	07 SEP	1600		8	20	00	0		0		1		40	
	08	1245		11		0	0		0		3		20	
	D		DIS- SOLVED (UG/L AS PB)	MAN NES DI SOL (UG AS	E. N S- VED /L	DIS- SOLVED (UG/L AS HG)	N1 50	LE- IUM, DIS- DLVED JG/L S SE)	S01	VER, IS- LVED G/L AG)	SOL (UG	IC+ S- VED S/L ZN)		
		0	0		0	.0		1		0		10		
		7	7		0	.0		0		0		5		
	SE 0	8	0		10	.0		0		0		0		
CATE	TIME	PCB, TOTAL (UG/L	CHL	A- ES, LY- OR.	ALDRIN TOTAL (UG/L	No DA	ILOR- INE + ITAL IG/L)	TOT)D+ [AL []/L)	DOE TOTA	AL.	DDT TOTA (UG/	L	DI- AZINON, TOTAL (UG/L)
JAN 10	1335		0	.00	. (00	.0		.00		.00		00	.00
JUN 07	1600		0	.00	. (00	.0		.02		.02		03	.18
SFP 08	1245		0	.00	. (00	.0		.03		.01		03	.13
PATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN TOTAL (UG/L	ENDR		ETHION TOTAL (UG/L	N. CH	PTA- ILOR, ITAL IG/L)	EPOX TOT	OR (IDE (AL	LIND: TOT: (UG:	AL	MALA THIO TOTA (UG/	N,	METHYL PARA- THION, TOTAL (UG/L)
JAN 10	.00	. 0	0	.00		00	.00		.00		.00		00	.00
JUN	.00	• 0	0	.00		00	.00		.00		.00		02	.00
08	.00	• 0	0	.00		00	.00		.00		.00		04	•00
DAT	T TH TO	THYL RI- ION. TAL G/L)	MIREX. TOTAL (UG/L)	PAR THI TOT (UG	ON.	TOX- APHENE TOTAL (UG/L)	T	OTAL TRI- HION UG/L)	TO	4-0, TAL G/L)		5-T TAL 3/L)		EX.
.JAN 10.		•00			.00) .	.00		.00		.00		.00
.JUN 07		.00			.00			.00		.02		.05		.00
SEP 08		.00	.00		.00)	.00		.00		.00		.00

08158600 WALNUT CREEK AT WEBBERVILLE ROAD, AUSTIN, TX

LOCATION.--Lat 30°16'59", long 97°39'17", Travis County, Hydrologic Unit 12090205, on left bank 190 ft (58 m) downstream from bridge on Farm Road 969, 0.8 mi (1.3 km) downstream from Little Walnut Creek, 2.8 mi (4.5 km) upstream from Colorado River, and 5.2 mi (8.4 km) east of the State Capitol Building in Austin.

DRAINAGE AREA .-- 51.3 mi2 (132.9 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

GAGE.--Water-stage recorder. Datum of gage is 425.96 ft (129.833 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records fair. No known regulation or diversion. Station is part of hydrologic research project to study rainfall-runoff relation for urban areas. Six recording rain gages are located in the watershed. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--12 years, 22-2 ft3/s (0.629 m3/s), 5.88 in/yr (149 mm/yr), 16,080 acre-ft/yr (19.8 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,500 ft³/s (297 m³/s) Nov. 23, 1974, gage height, 26.16 ft (7.974 m); no flow at times in 1967 and 1971.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1891, that of Nov. 23, 1974. Flood of Oct. 11, 1973, reached a stage of 25.56 ft (7.791 m), discharge 10,000 ft³/s (283 m³/s). Flood of June 15, 1935, reached a stage of 24 ft (7.3 m) (backwater from Colorado River). A flood in 1919 reached a stage of 22 ft (6.7 m), from information by local residents.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 500 ft3/s (14.2 m3/s) and maximum (*):

Date	Time	Disch	narge	Gage h	eight	Date	Time	Disch	arge	Gage	height
		(ft^3/s)	(m^3/s)	(ft)	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
Feb. 12	1415	1,240	35.1	10.67	3.252	May 11	0245	1,560	44.2	11.60	3.536
Apr. 10	0530	1,260	35.7	10.72	3.682	June 7	0215	*1,760	49.8	12.16	3.706
May 2	2200	1.730	49.0	12.08	3.682						

DISCHARGE IN CHRIC FEFT DED SECOND WATER VEAR OCTORED 1977 TO SEPTEMBER 1978

Minimum discharge, $0.08 \text{ ft}^3/\text{s}$ $(0.002 \text{ m}^3/\text{s})$ Oct. 15.

		DISCHARG	E, IN C	UBIC FEE	T PER SECO	OND, WATER	YEAR OC	TOBER 197	7 TO SEPTE	MBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.24 7.0 1.1 .72 .72	47 8.2 2.3 1.7 1.5	2.2 2.0 2.0 2.0 2.0	2.3 2.0 2.0 2.0 2.0	2.9 2.9 2.9 3.1 3.1	6.3 6.1 6.1 5.7 5.4	3.5 3.5 3.3 3.1 2.8	3.5 176 86 9.8 6.6	15 7.1 15 5.3 4.2	1.8 1.8 1.7 1.6	88 6.0 2.4 1.9 1.7	6.0 1.8 .67 .55
6 7 8 9	.64 .63 .78 .55	1.5 1.5 45 6.0 2.7	1.8 1.7 1.7 1.7	2.0 2.1 2.1 2.1 2.1	3.1 22 7.0 4.8 3.9	25 22 8.7 7.3 6.6	3.7 3.3 3.0 2.9 253	5.2 5.4 4.7 3.8 3.4	150 342 19 17 9.8	1.4 1.3 1.2 .93	1.7 1.5 1.3 1.3	.55 38 21 3.0 7.6
11 12 13 14 15	.22 .63 .38 .24	2.3 2.1 2.1 2.1 2.1	1.7 1.8 3.0 2.2 2.1	8.6 5.0 3.3 2.8 2.6	3.9 226 32 16 16	6.3 5.7 5.7 5.4 5.2	17 11 8.7 7.3 6.5	260 17 22 7.1 5.8	7.6 6.7 5.9 5.4 5.0	.85 .89 .93 .93	3.7 1.5 1.4 1.4	45 24 14 3.4 2.6
16 17 18 19 20	.12 .14 .17 .24	2.1 2.1 2.1 2.0 2.0	2.1 2.1 2.1 2.1 2.0	28 7.6 3.9 3.9 3.0	12 52 17 13 12	4.7 4.5 4.3 4.3	5.8 5.7 5.9 4.7 4.3	4.9 4.7 4.1 4.0	4.7 4.3 4.1 3.7 3.5	.72 .72 .64 .78	1.4 1.4 1.5 1.5	2.3 2.0 1.9 1.6 1.5
21 22 23 24 25	20 92 5.6 1.7 1.3	3.3 2.5 2.4 2.4 2.6	2.0 2.0 1.8 1.8	2.9 3.1 3.1 3.1 2.7	9.9 9.1 9.0 8.2 7.9	4.1 4.1 7.9 30 6.0	4.3 4.2 4.5 4.2 4.8	13 5.8 5.0 4.2 6.6	3.5 3.3 3.1 2.6 2.3	.93 .69 11 1.5 1.1	1.4 1.3 1.2 1.2	1.7 1.7 2.9 1.8 1.5
26 27 28 29 30 31	1.2 .99 .93 .93 .93	2.6 2.4 2.3 2.3 2.9	1.7 1.7 2.5 4.4 3.0 2.6	2.3 2.4 2.4 2.4 2.4 2.6	7.1 6.6 6.9	4.6 4.1 4.1 3.9 3.9 3.7	4.0 3.6 3.3 3.5 3.5	52 19 5.4 4.3 4.0 3.7	2.1 2.1 2.1 2.1 2.1	.93 .72 1.1 .92 .50	.89 .87 .63 .82 .84	1.3 1.3 1.5 1.4 1.2
TOTAL MEAN MAX MIN CFSM IN. AC-FT (††)	141.89 4.58 92 .08 .09 .10 281 2.98	164.1 5.47 47 1.5 .11 .12 325 2.52	65.3 2.11 4.4 1.7 .04 .05 130	119.1 3.84 28 2.0 .08 .09 236 1.33	520.3 18.6 226 2.9 .36 .38 1030 2.86	225.8 7.28 30 3.7 .14 .16 448 1.13	398.9 13.3 253 2.8 .26 .29 791 2.39	776.0 25.0 260 3.4 .49 .56 1540 5.53	660.6 22.0 342 2.1 .43 .48 1310 3.10	46.13 1.49 11 .50 .03 .03 .91	137.39 4.43 88 .63 .09 .10 273 2.05	194.77 6.49 45 .55 .13 .14 386 3.99
CAL YR WTR YR	1977 TOT 1978 TOT			20.9	MAX 755 MAX 342	MIN .08 MIN .08	CFSM CFSM		5.54 AC- 2.50 AC-			27.04 29.31

tt Weighted-mean rainfall, in inches, based on five rain gages.

08158600 WALNUT CREEK AT WEBBERVILLE ROAD, AUSTIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical and biochemical analyses: October 1975 to current year. Sediment records: October 1977 to September 1978.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	STREAM- FLOW+ INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- 810- 1TY (JTU)	OXYGEN. DIS- SOLVED (MG/L)	OXYGEN. DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, 810- CHEM- ICAL, 5 DAY (MG/L)
JAN		2.	420	7.0	5.0	5	1	12.0	97	1.1
FEB	1000	9.9	639 791	7.8	5.5	5	2	12.2	100	4.1
21 MAR 21	0835	4.0	565		12.0					
APR 10	1240	168	276	7.2	20.0	40	570	8.0	91	8.1
MAY 01	0920	3,6	570		17.0					
JUN 08	0930	20	498	7.8	24.0	20	15	7.2	88	1.0
08	1410	55	467		24.0	-		-	58	1.7
25 SFP	1030	1.1	452	7.5	27.0	20	6	4.6	77	.8
05	1135	1.2	436	7.6	25.0	10		6.2		
25	0745 1050	1.5	365 512	7.7	23.0	1		6.9	82	.7
DATE	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM. FECAL. 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL. KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS+ NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM. DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM. DIS- SOLVED (MG/L AS K)
JAN 10	540	29	74	270	77	94	7.6	28	.7	2.6
FEB 21	1100	60	380							
21										
10	68000	23000	55000	110	15	41	2.8	9.4	.4	3.2
01 JUN										
08	35000	3100	4400	550	54	80	4.3	18	.5	3.9
JUL 25	14000	2700	1900	180	48	63	5.2	21	.7	3.3
05	3800	600	2300	170	40	60	5.1	20	.7	2.7
25	2200	220	3000	180	43	65	4.9	27	.0	2.6
DATE	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CMLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE. DIS- SOLVED (MG/L AS F)	SILICA. DIS- SOLVED (MG/L AS SIO2)	SOLIOS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIOS. RESIDUE AT 105 DEG. C. SUS- PENDED (MG/L)	SOLIDS. VOLA- TILE. SUS- PENDED (MG/L)	NITRO- GEN. NITRATE TOTAL (MG/L AS N)
JAN 10	230	0	76	47	.4	2.3	371	1	1	.05
FEB 21								2	2	.75
MAR 21										124
APR 10	120	0	26	10	.3	5.9	158	1030	92	.42
01										
08	200	0	46	29	.4	9.4	290	19	3	.60
08 JUL 25	160		38	39	.4	7.7	257	2	1	.03
SFP 05	160	0	33	41)	.4	5.7	246		2	.02
06										
25	170	0	41	53	.5	2.8	581	0	0	.02

08158600 WALNUT CREEK AT WEBBERVILLE ROAD, AUSTIN, TX--Continued

DATE	NITRO- GEN+ NITRITE TOTAL (MG/L AS N)	NITRO- GEN+ NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS-	CARBON+ ORGANIC TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)
JON							2.2		
10 FER	.01	.06	•06	•34	• 40	.02	2.0	3	•02
21	.01	.76	.01	.29	.30	.01	2.7		
MAR					-			46	.50
21 · · ·					-			40	
10	.02	.44	.21	1.4	1.6	.66	21		
MAY 01								34	.33
JUN 08	.02	.62	.09	.50	•59	.05	3.7		
08								40	2.4
JIJL 25	.00	.03	.00	•30	.30	.01	10		
SEP 05	.00	.02	.01	•39	.40	.02	5.1		- ark
06								6	.01
25	.00	•02	.01	•55	.23	.02	3.6		
						CHRO-			
	DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM. DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	DIS- SOLVED (UG/L	(UG/L	IRON, DIS- SOLVED (UG/L AS FE)	
	JAN								
	10	1000	1	0	0	10	1	20	
	JUN								
		0930	2	200	() (2	20	
	25 SFP	1030	4	200	() (0	30	
	25	1050	5	70	<1	. (2	20	
		. S	EAD. N DIS- OLVED S UG/L (DIS- OLVED S UG/L (RCURY N DIS- OLVED S UG/L	DIS- SOLVED S	DIS- D SOLVED SO	NC+ IS- LVED IG/L IG/L	
	. 11	an .							
		10	0	0	.0	0	0	10	
		JN	6	0	.0	0	0	5	
		08	0	U	• 0	U			
	1	25	0	30	.0	0	0	0	
		25	0	10	.0	0	0	<3	

O8158600 WALNUT CREEK AT WEBBERVILLE ROAD, AUSTIN, TX--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			NAPH-						
			THA-						
			LENES		47.27.22				01-
			POLY-		CHLOR-		005	DDT.	AZINON,
		PCB,	CHLOR.			DDD+	DDE .	TOTAL	TOTAL
	TIME	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL (UG/L		(UG/L)	(UG/L)
DATE		(UG/L)	(UG/L)	(UG/L	(UG/L)	(00/2	, 100, 2,		1000
JAN									
10	1000	. (.00	.00	0 .0	.0	0 .00	.00	.02
JUN									
08	0930		.00	.0	0 • 0	.0	0 .00	.00	.11
JUL								•00	.18
25	1030	•	.00	.0	0 • 0	.0	0 .00	•00	•10
SEP				.0	0 .0	.0	0 .00	.00	.02
25	1050	•	.00				• •••	•••	
						HEPTA	-		METHYL
	DI-	ENDO-			HEPTA-			MALA-	PARA-
	ELDRIN		ENDRIN	ETHION				THION,	THION,
	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
DATE	(UG/L)				(UG/L)	(UG/L) (UG/L)	(UG/L)	(UG/L)
JAN						.0	0 .00	.00	.00
10	.00	• 00	.00	.0	0 .00		• • • • • • • • • • • • • • • • • • • •	•••	
JUN	.00	.00	.00	.0	0 .00	0.0	0 .00	.00	.00
JUL	.00				• • • • • • • • • • • • • • • • • • • •				
25	.00	.0	.00	0 .0	0 .00	.0	0 .00	.00	.00
SEP									
25	.00	.0	0 .0	0 .0	0 .00	.0	0 .00	.00	.00
		METHYL							
	,	TRI-		PARA-	TOX-	TOTAL			
	1				PHENE .	TRI-			LVEX.
		TOTAL	TOTAL	TOTAL					OTAL
D	ATE	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L) (UG/L) (UG/L)
JA		0.0		.00	0	.00	.09	.00	.00
JU	0	.00		.00		•00	•••		
	8	.00		.00	0	.00	.03	.05	.00
JÜ		•••							1.2
2	5	.00	• 0 0	.00	0	.00	.16	.08	.00
SE							0.0	.00	.00
2	5	.00	• 00	.00	0	.00	.08	.00	.00
							SEDI-		
							MENT		
				STREAM-	•	SEDI-	DIS-		
				FLOW,	******	MENT.	CHARGE .		
			7145	INSTAN-		PENDE			
		DATE	TIME	(CFS)	(DEG C)				
		DATE		10.57	1020 07				
		JAN							
		10	1000	2.4	5.0		.02		
		MAR			72.3				
		21	0835	4.0	12.0	40	.50		
		MAY			17 6	34	33		
		01	0920	3.6	17.0	3.	33		
		08	1410	22	24.0	4	2.4		
		SEP							
		06	0745	.52	18.0		.01		

08158640 WALNUT CREEK AT SOUTHERN PACIFIC RAILROAD BRIDGE, AUSTIN, TX (Reconnaissance partial-record station)

LOCATION.--Lat 30°15'58", long 97°39'24", Travis County, Hydrologic Unit 12090205, at Southern Pacific Railroad bridge, 1.2 mi (1.9 km) south of Webberville Road, and 5.0 mi (8.0 km) east of the State Capitol in Austin.

DRAINAGE AREA .-- 53.5 mi2 (138.6 km2).

PERIOD OF RECORD. -- Periodic chemical, biochemical, and pesticide analyses: January 1975 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	TIME	FLO INS	EAM- CO	PE- IFIC DN- JCT- NCE ICRO-	PH 1	EMPER-	(PI	LOR LAT- UM- BALT	TUR- BID- ITY	0	GEN, IS- LVED	SOL (PE CE	S- VED R- NT	DEMA BIO CHE ICA 5 DA	M-
DATE					NITS)	DEG C)			UTU)		G/L)	ATI	ON)	(MG/	L
JAN				7					- 1					16	-
10	1140		6.5	868	7.0	11.5		10	6		6.8		64	1	5
FEB 21	1035	2	6	856	7.3	12.0		10	7		10.0		96		7.
APR	1035		•	050	1.3	12.0		10							
10	1330	11	5	314	7.8	20.0		30	700		7.6		86	1	0
JUN 08	1130	4	4	601	7.4	25.5		20	15		7.2		90		1.
JUL 25	1100	1	5	810	7.2	29.5		0	6		5.6		74		3.
SEP		-													
05	1110	3		723	6.9	29.0		5	8		5.8		76		8.
25	1205	2	5	786	6.8	28.5		4	2		5.8		75		4.
		.I-	COLI-	STREP- TOCOCCI		HARI) -		MAG	NE-			SODI	UM	
		AL.	FECAL,	FECAL.	HARD-	- NES	5,	CALCIU		UM.	SODIU		AD		
		ED.	0.7	KF AGAR				DIS-		5-	DIS-		SORP		
	(COI		UM-MF	(COLS.	(MG/L			SOLVE!		VED	SOLVE (MG/		RATI		
DATE		R ML)	(COLS./	PER 100 ML)				AS CA		MG)	AS N			•	
JAN 10		5000	16	76	1	70	81	42	1	6	100		3	.3	
FER	•	,,,,		, -	-		•	-			7 7.7 7				
21		8	<1	4											
APR	. 8	3000	25000	26000	12	20	17	40		3.7	15			.6	
JUN													-		
08	. 2:	3000	1900	2200	20	00	64	68		8.1	43		1	.3	
JUL 25	6	5000	16000	740	1.	80	85	42	,	9	85		2	.7	
SEP	•	3000	10000	140			0.5								
05		3000	750			30	58	32		3	75			.8	
25	•	2300	71	180	1:	30	52	34	. 1	15	90		3	.4	
											SOLID	S,	SOLID	5,	
	PO	TAS-					0-				SUM O		RESID		
		IUM.	BICAR-		SULFA			RIDE,			CONST		AT 10		
		IS-	BONATE (MG/L	BONATE	DIS-		VED	DIS-		VED	TUENT		DEG.		
		G/L	AS	(MG/L	(MG/			(MG/L			SOLV		PENDE		
DATE		K)	HC03)	AS C03)				AS F)		150	(MG/		(MG/		
JAN															
10		11	110		110	11	0	2.	1 1	11	4	56		9	
FER															
21	•							-	100					9	
APR 10		3.7	120	(31	1	7		5	6.1	1	76	- 11	140	
JUN															
08		5.8	170	(71	5	2	1.	6	10	3	44		23	
JUL		11	120		100	11	0	1.	а .	12		40		9	
SEP 25	•	11	120	,	100	11	U	1.			3 18	7.0			
05		11	92		67	9	6	1.	0	11	. 3	151		11	
U200												05		4	

08158640 WALNUT CREEK AT SOUTHERN PACIFIC RAILROAD BRIDGE, AUSTIN, TX--Continued water quality data, water year october 1977 to september 1978

	WAI	ER GOALIT	DATAY .	AICK ICAN	001002				
DATE	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN; NITRITE TOTAL (MG/L AS N)	NITRO- GEN+ NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN+ AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN.AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS. TOTAL (MG/L AS P)	CARBON. ORGANIC TOTAL (MG/L AS C)
JAN 10	8	15	1.4	16	1.2	2.0	3.2	8.1	8.0
FER	6	7.8	.14	7.9	3.5	1.5	5.0	4.7	8.8
21 · · ·				.90	.17	1.7	1.9	1.3	24
10 JUN	114	.88	.02			.71	.81	1.7	5.4
JUL	6	4.8	.02	4.8	•10				
25 SFP	5	12	.06	12	.23	2.0	2.2	5.6	7.8
25	8	4.8	.19	5.0	2.4	2.9	5.0	7.9	9.7
	DATE	TIMF	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM. DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM. DIS- SOLVED (UG/L AS CR)	COPPER+ DIS- SOLVED (UG/L AS CU)	IRON. DIS- SOLVED (UG/L AS FE)	
	JAN	1140	2	0	0	10	12	40	
	10						4	30	
	08	1130	2						
	25 SEP	1100	3						
	25	1205	3 M	ANGA-		ELE-			
	.1	50	DIS- DLVED S	DIS- OLVED S UG/L (DIS- OLVED S UG/L (DIS- OLVED S UG/L (DIS- OLVED S UG/L (INC+ DIS- OLVED UG/L S ZN)	
		AN		10	.0	0	0	50	
	J	10	1	10					
		08 UL	6	5	.0	0	0	20	
		25 EP	0	10	.0	0	0	10	
	TIME	PCH.	O NAPH- THA- LENES+ POLY- CHLOR. TOTAL		.0 CHLOR- DANE, TOTAL	DDD.	DDE+	DDT,	DI- AZINON, TOTAL
DATE		(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
JAN 10	1140	.0	.00	.00	.0	.00	.00	.00	.00
JIIN 08	1130	.0	.00	.00	.1	.00	.00	.00	.07
JIIL 25	1100	.0	.00	.00	.0	.00	.00	.00	.15
SFP 25	1205	.0		.00	.0	.00	.00	.00	.49
DATE	DI- ELDRIN TOTAL (UG/L)	ENOO- SULFAN. TOTAL	ENDRING TOTAL	ETHION.	HEPTA- CHLOR.	HEPTA- CHLOR EPOXIDE TOTAL	LINDANE	TOTAL	METHYL PARA- THION+ TOTAL (UG/L)
JAN 10	.01	.00	.00	.00	.00	.00	.00	.00	.00
JUN								.00	.00
JUL	.00								
25 SFP	.01								
25	•01	•00 ETHYL	.00	• • • • • • •	.00				
	Ţ	TRI- HION. * OTAL UG/L) (IHEX. TOTAL UG/L)	IUG/L)	PHENE + TOTAL T (UG/L) (HION T	OTAL 1	OTAL T	LVEX. OTAL UG/L)
	10	•00		.00	0	.00	.00	.00	.00
	08	.00		•00	0	•00	٤0.	.04	.00
	25 EP	.00	.00	.00	0	• 0 0	.08	.00	.00
	25	.00	.00	.00	0	.00	.00	.00	.00

08158650 COLORADO RIVER BELOW AUSTIN, TX (Low-flow partial-record station)

LOCATION.--Lat 30°12'28", long 97°38'15", Travis County, Hydrologic Unit 12090205, at bridge on Farm Road 973, 0.3 mi (0.5 km) northeast of intersection of State Highway 71 and Farm Road 973, 8.8 mi (14.2 km) downstream from Govalle Sewage Treatment Plant outfall, and 9.6 mi (15.4 km) downstream from gaging station at Austin.

PERIOD OF RECORD.--Periodic chemical and biochemical analyses: February 1968 to current year. Pesticide analyses: October 1974 to current year.

DISCHARGE AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		CZDE	CI	FIC						XYGEN. DIS- SOLVED	OXYGEN DEMAND, BIO-
		STRE		N-			COLOR	TUD (
		FLC		ICT-	D.1 -		(PLAT-		XYGEN,	(PER-	CHEM-
	***	INST		ICE		MPER-	INUM-	BIO-	DIS-	CENT	
0475	TIME	TANE		CRO-		TURE	COBALT	ITY		SATUR-	5 DAY
DATE		(CF	5) MF	10S) (U	NITS) (D	EG C)	UNITS)	(JTU)	(MG/L)	ATION)	(MG/L)
OCT					Y						
11	1028	136	5	623	7.4	22.0	2	4	5.9	69	
NOV											
08	1112	380)	647	7.4	20.5	10	15	4.9	56	7.4
DEC					- 1			12.00		1 1	
15	1540	870)	620	7.8	17.0	2	5	8.8	94	2.6
JAN 24	1415	128		674	7.6	10.0	12	3	9.2	84	7.8
FEB	1412	120		0/4	1.0	10.0	12		7.6	04	
27	0915	145	5	690	7.3	16.5	12	10	6.4	67	12
MAR								1			
30	1330	1430)	618	8.1	21.0	5	25	8.4	97	1.7
APR											
18	0758	610)	602	7.7	20.0	5	8	9.0	105	2.2
MAY		-									
18	1800	70)	605	7.8	24.5	0	15	9.8	122	2.0
JUN 27	1045	3000	,	620	7.9	24.5	5	4	8.0	98	.5
JUL	1045	3000	,	020	1.9	24.5	5	•	0.0	70	• • •
31	0800	3000)	578	7.5	28.0		4	5.6	74	1.2
SEP											
05	0918	1220)	522	7.6	27.0	5	5	6.3	81	.7
25	1015	200)	531	7.8	26.5	2	4	6.5	82	.7
		LI-	COLI-	STREP-					2000		•
		RM,	FORM.	TOCOCCI		HARD-		MAGNE			IUM
		TAL.	FECAL,	FECAL .		NESS,				SOR	D-
		LS.	UM-MF	(COLS.	(MG/L	BONATE					
		ER	(COLS./	PER	AS	(MG/L					
DATE		ML)	100 ML)	100 ML)							
ОСТ								- 1			
11	. 1	7000	55	280	220		52 52	21	41		1.2
NOV	,	0000	2800	2200					_		
08		9000	2000	2200						7,120	
15		6600	39	26	240	4	3 58	23	34		1.0
JAN				- 0			-				
24	. 1	8000	840	87					-	•	
FER											
27	. 5	9000	17	500	520	3	19 55	50	50		1.5
MAR	,	4000	27	27						A STATE OF THE STA	
30		4000	21	21			-		0.00		
18		2000	76	200	200	. 4	7 45	22	36		1.1
MAY	4 .				200	. B		1000			
18		2400	720	63	210		1 45	23	40		1.2
JUN					0.1						
27	•	1300	77	89	210		1 48	23	38		1.1
JUL		220		1		1 4 1			20		
SEP.	•	320	77		210		8 46	24	38		1.1
05		800	250	130	180		50 43	18	29		.9
25		180	38	42			- 43			-	
	-			7 6							

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

08158650 COLORADO RIVER BELOW AUSTIN, TX--Continued

DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE. DIS- SOLVED (MG/L AS F)	SILICA. DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)
ост	14.74	4.0			66	.5	11	343	5
NOV	4.6	200	0	48			11		55
DEC DEC									
15 JAN	3.8	240	0	46	56	.4	11	351	8
24									12
FE8 27	6.4	220	0	54	68	.8	6.0	369	16
30									47
APR 18	4.0	190	0	40	70	.3	8.4	319	11
MAY 18	3.9	190	0	42	63	.3	7.7	319	25
JUN 27	3.9	200	0	46	68	.3	7.3	333	6
JUL 31	4.0	190	0	42	68	.3	9.4	325	6
SFP 05	3.8	160	0	37	59	.3	8.7	278	23
25									10
							NITRO-		
DATE	VOLA- TILE. SUS- PENDED (MG/L)	NITRO- GEN. NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN+ AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS. TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT	VOLA- TILE. SUS- PENDED (MG/L)	GEN. NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN+ AMMONIA TOTAL (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L AS N)	MONIA + ORGANIC TOTAL (MG/L AS N)	PHORUS. TOTAL (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)
0CT 11	VOLA- TILE. SUS- PENDED (MG/L)	GEN. NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN. AMMONIA TOTAL (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L AS N)	MONIA + ORGANIC TOTAL (MG/L AS N)	PHORUS. TOTAL (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)
OCT 11 NOV 08 DEC	VOLA- TILE • SUS- PENDED (MG/L)	GEN. NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N) .05	GEN+ NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N) .30	GEN, ORGANIC TOTAL (MG/L AS N)	MONIA + ORGANIC TOTAL (MG/L AS N) 1.5	PHORUS. TOTAL (MG/L AS P) .86	ORGANIC TOTAL (MG/L AS C) 4.4 9.2
OCT 11 NOV 08	VOLA- TILE. SUS- PENDED (MG/L)	GEN. NITRATE TOTAL (MG/L AS N)	GEN+ NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N) .17 .74	GEN• AMMONIA TOTAL (MG/L AS N) .30 3.7 .55	GEN, ORGANIC TOTAL (MG/L AS N) 1.2 .40	MONIA + ORGANIC TOTAL (MG/L AS N) 1.5 4.1 .93	PHORUS, TOTAL (MG/L AS P) .86	ORGANIC TOTAL (MG/L AS C) 4.4 9.2 3.8
OCT 11 NOV 08 DEC 15	VOLA- TILE • SUS- PENDED (MG/L)	GEN. NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N) .05	GEN+ NO2+NO3 TOTAL (MG/L AS N)	GEN. AMMONIA TOTAL (MG/L AS N) .30 3.7 .55	GEN, ORGANIC TOTAL (MG/L AS N) 1.2 .40 .38 2.5	MONIA + ORGANIC TOTAL (MG/L AS N) 1.5 4.1 .93	PHORUS. TOTAL (MG/L AS P) .86 .3.8 .34 2.1	ORGANIC TOTAL (MG/L AS C) 4.4 9.2 3.8 5.9
OCT 11 NOV 08 DEC 15 JAN 24	VOLA- TILE. SUS- PENDED (MG/L)	GEN. NITRATE TOTAL (MG/L AS N)	GEN+ NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N) .17 .74	GEN• AMMONIA TOTAL (MG/L AS N) .30 3.7 .55	GEN, ORGANIC TOTAL (MG/L AS N) 1.2 .40	MONIA + ORGANIC TOTAL (MG/L AS N) 1.5 4.1 .93 3.5 6.3	PHORUS. TOTAL (MG/L AS P) .86 .34 2.1 2.6	ORGANIC TOTAL (MG/L AS C) 4.4 9.2 3.8 5.9 8.1
OCT 11 NOV 08 DEC 15 JAN 24 FFR 27 MAR 30	VOLA- TILE- SUS- PENDED (MG/L)	GEN. NITRATE TOTAL (MG/L AS N) .12 .54 .66	GEN. NITRITE TOTAL (MG/L AS N) .05 .20 .06	GEN, NO2+NO3 TOTAL (MG/L AS N) -17 -74 -72	GEN. AMMONIA TOTAL (MG/L AS N) .30 3.7 .55	GEN, ORGANIC TOTAL (MG/L AS N) 1.2 .40 .38 2.5	MONIA + ORGANIC TOTAL (MG/L AS N) 1.5 4.1 .93	PHORUS. TOTAL (MG/L AS P) .86 .3.8 .34 2.1	ORGANIC TOTAL (MG/L AS C) 4.4 9.2 3.8 5.9 8.1
OCT 11 NOV 08 DEC 15 JAN 24 FFR 27 MAR 30 APR	VOLA- TILE- SUS- PENDED (MG/L)	GEN. NITRATE TOTAL (MG/L AS N) .12 .54 .66	GEN+ NITRITE TOTAL (MG/L AS N) .05 .20 .06 .05	GEN, NO2+NO3 TOTAL (MG/L AS N) -17 -74 -72 -42 -60	GEN• AMMONIA TOTAL (MG/L AS N) .30 3.7 .55 1.0	GEN, ORGANIC TOTAL (MG/L AS N) 1.2 .40 .38 2.5 3.3	MONIA + ORGANIC TOTAL (MG/L AS N) 1.5 4.1 .93 3.5 6.3	PHORUS. TOTAL (MG/L AS P) .86 .34 2.1 2.6	ORGANIC TOTAL (MG/L AS C) 4.4 9.2 3.8 5.9 8.1
OCT 11 NOV 08 DEC 15 JAN 24 FFR 27 MAR 30 APR 18 MAY 18	VOLA- TILE- SUS- PENDED (MG/L) 2 5 4 4	GEN. NITRATE TOTAL (MG/L AS N) .12 .54 .66 .37 .46	GEN. NITRITE TOTAL (MG/L AS N) .05 .20 .06 .05 .14	GEN, NOZ+NO3 TOTAL (MG/L AS N) -17 -74 -72 -42 -60	GEN. AMMONIA TOTAL (MG/L AS N) .30 3.7 .55 1.0 3.0 .19	GEN, ORGANIC TOTAL (MG/L AS N) 1.2 .40 .38 2.5 3.3	MONIA + ORGANIC TOTAL (MG/L AS N) 1.5 4.1 .93 3.5 6.3 2.0	PHORUS * TOTAL (MG/L AS P) *** *** *** *** *** *** *** *** ***	ORGANIC TOTAL (MG/L AS C) 4.4 9.2 3.8 5.9 8.1
OCT 11 NOV 08 DEC 15 JAN 24 FER 30 APR 18 MAY 18 JIIN 27	VOLA- TILE- SUS- PENDED (MG/L) 2 5 4 6	GEN. NITRATE TOTAL (MG/L AS N) .12 .54 .66 .37 .46 .12	GEN. NITRITE TOTAL (MG/L AS N) .05 .20 .06 .05 .14 .02	GEN, NO2+NO3 TOTAL (MG/L AS N) -17 -74 -72 -42 -60 -14	GEN. AMMONIA TOTAL (MG/L AS N) .30 3.7 .55 1.0 3.0 .19	GEN, ORGANIC TOTAL (MG/L AS N) 1.2 .40 .38 2.5 3.3 1.8	MONIA + ORGANIC TOTAL (MG/L AS N) 1.5 4.1 .93 3.5 6.3 2.0 .60	PHORUS. TOTAL (MG/L AS P) .86 .3.8 .34 2.1 2.6 .09	ORGANIC TOTAL (MG/L AS C) 4.4 9.2 3.8 5.9 8.1 4.8 2.9
OCT 11 NOV 08 DEC 15 JAN 24 FFR 30 APR 18 MAY 18 JUN 27 JUN 27 JUN 21	VOLA- TILE. SUS- PENDED (MG/L) 2 5 4 6 10	GEN. NITRATE TOTAL (MG/L AS N) .12 .54 .66 .37 .46 .12 .29 .08	GEN. NITRITE TOTAL (MG/L AS N) .05 .20 .06 .05 .14 .02 .04	GEN, NOZ+NO3 TOTAL (MG/L AS N) .17 .74 .72 .42 .60 .14 .33	GEN. AMMONIA TOTAL (MG/L AS N) .30 3.7 .55 1.0 3.0 .19 .27 .06	GEN, ORGANIC TOTAL (MG/L AS N) 1.2 .40 .38 2.5 3.3 1.4	MONIA + ORGANIC TOTAL (MG/L AS N) 1.5 4.1 .93 3.5 6.3 2.0 .60	PHORUS* TOTAL (MG/L AS P) -86 3.8 -34 2.1 2.6 -09 -19 -10	ORGANIC TOTAL (MG/L AS C) 4.4 9.2 3.8 5.9 8.1 4.8 2.9
OCT 11 NOV 08 DEC 15 JAN 24 FFR 27 MAR 30 APR 18 MAY 18 JIN 27 JUL	VOLA- TILE- SUS- PENDED (MG/L) 2 5 4 4 6 10	GEN. NITRATE TOTAL (MG/L AS N) .12 .54 .66 .37 .46 .12 .29 .08 .36 .25	GEN. NITRITE TOTAL (MG/L AS N) .05 .20 .06 .05 .14 .02 .04 .01 .02	GEN, NO2+NO3 TOTAL (MG/L AS N) .17 .74 .72 .42 .60 .14 .33 .09	GEN. AMMONIA TOTAL (MG/L AS N) .30 3.7 .55 1.0 3.0 .19 .27 .06	GEN, ORGANIC TOTAL (MG/L AS N) 1.2 .40 .38 2.5 3.3 1.8 .33 1.4	MONIA + ORGANIC TOTAL (MG/L AS N) 1.5 4.1 .93 3.5 6.3 2.0 .60 1.5 .50	PHORUS. TOTAL (MG/L AS P) .86 .34 2.1 2.6 .09 .19 .10	ORGANIC TOTAL (MG/L AS C) 4.4 9.2 3.8 5.9 8.1 4.8 2.9

08158650 COLORADO RIVER BELOW AUSTIN, TX--Continued

			(SENIC DIS- DLVED	BAR: DI: SOL			IUM S- VED	CHR MIU DIS SOL	м,	COPP DIS SOL			N. S- VED		
	DATE	TIM	E ((JG/L S AS)	(U	G/L BA)	(UG	/L	(UG	/L	(UG		(UG	FE)		
	0CT 11 FER	102	8	2		200		0		0		2		20		
	27	091	5	2		100		0		10		3		20		
	.JUN 27 SEP	104	5	1		300		0		0		2		10		
	05	091	8	4		100		0		0		1		40		
	0	ATE	DIS- SOLVEI (UG/L AS PB	NE 0 SC (1	NGA- ESE, DIS- DLVED JG/L MN)	50I (U	CURY IS- LVED G/L HG)	NII D SOI	LE- UM, IS- LVED G/L SE)	50 (U	VER. IS- LVED G/L AG)	SO (U	NC+ IS- LVED G/L ZN)			
	00	T		0	40		.0		0		0		10			
	FE	В		5	90				0		0		20			
	JU						•0									
	SE	7 P		0	10		.0		0		0		10			
	0	5		0	0		• 0		0		0		0			
DATE	TIME	PCB TOTA (UG/	• C	APH- THA- ENES, POLY- HLOR. OTAL UG/L)	TO	RIN, Tal G/L)	DAN		TOT	D+	TOT	E+		TAL	AZIN TOT	NON.
ОСТ																
11 FER	1028		• 0	.00		•00		• 0		.00		.00		.00		.00
27 JUN	0915		• 0	.00		.00		• 0		.00		.00		.00		.32
27	1045		.0	.00		.00		.0		.00		.00		.00		.00
SEP 05	0918		•0	.00		.00		.0		.00		.00		.00		.01
DATE	DI- ELDRIN TOTAL (UG/L)	ENDO SULFA TOTA (UG/	N, EN	DRIN, OTAL UG/L)	TO	ION, TAL G/L)	CHL	TA- OR.	EPOX TOT	IDE	LINO TOT (UG		TOT	A- ION, IAL	THI TOT	HYL RA- ION, TAL G/L)
OCT	00		00	.00		.00		.00		.00		.00		.00		.00
FEA	.00		00													
27 JUN	.00		00	.00		•00		•00		.00		.00		.01		.00
27 SFP	.00	•	00	.00		.00		.00		.00		.00		•00		.00
05	.00			.00		.00		.00		.00		.00		.00		.00
DA	TH TC	THYL RI- ION. TAL	MIREX TOTA (UG/L	L TO	ARA- HION. DTAL UG/L)	TO	OX- ENE+ TAL G/L)	TH	TAL RI- ION G/L)	TO	4-D+ TAL G/L)	TO	,5-T TAL G/L)	TO	VEX,	
nct																
11 FEB	•••	.00	-	-	.00		0		•00		.03		.00		.00	
27 JUN	•••	.00	-	•	.00		0		.00		.01		.00		.00	
SEP	•••	.00	• 0		.00		0		•00		.13		.00		.00	
05	•••	.00	• 0	0	.00		0		•00		.03		.00		.00	

08158700 ONION CREEK NEAR DRIFTWOOD, TX (Reconnaissance partial-record station)

LOCATION.--Lat 30°05'00", long 98°00'20", Hays County, Hydrologic Unit 12090205, at bridge at lower crossing on Farm Road 150, 3.2 mi (5.1 km) southeast of Driftwood, and 10 mi (16 km) west of Buda.

PERIOD OF RECORD.--Occasional discharge measurements: April 1958, November 1961 to current year. Occasional water-quality data: January 1974 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			SPE- CIFIC CON- DUCT- ANCE (MICRO-	РН	TEMPER-	COLOR (PLAT- INUM- COBALT	TUR- BID- ITY	SOL	SEN. (S-	YGEN, DIS- OLVED PER- CENT ATUR-	OXYGEN DEMAND. BIO- CHEM- ICAL. 5 DAY
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	UNITS)	(JTU)	(MG	/L) A	TION)	(MG/L)
JAN											
12	1005	1.0	519	7.8	6.0	0	1	1	0.6	88	.8
FEB 28	8080	1.1	517	7.8	13.0	0	1		8.7	85	1.0
10	1150	5.4	434	7.5	21.0	5	6		8.1	93	3.2
JUN											
07 AUG	1520	60	223	7.7	23.5	70	180		8.5	102	2.2
01	1426	8.0	351	7.6	25.0	5	5		8.0	99	1.3
SEP 08	1025	2.1	394	7.2	24.0	0	2		7.3	89	1.0
26	1230	4.5	432	7.8	24.0	0	i		8.2	100	.6
20					2						
	FORM,				HARD	2	MA	GNE-		SOO	IUM
	TOTAL								SODIUM.	-	D-
	IMMED		KF AGA					IS-	DIS-	SOR	
	(COLS.						ED SO	LVED	SOLVED	TI	
	PER	(COLS	./ PER	AS	(MG/			G/L	(MG/L	RAT	10
DATE	100 ML) 100 MI	_) 100 ML) CACO	3) CACO	3) AS ((A) AS	MG)	AS NA)		
JAN											
12	100	0	72 29	90 2	60	51 71		21	9.1		•5
FER 28	. 92	0	12	72							
APR						58 56		18	8.6		.3
10	1600	0 1000	00 830	,	10	58 56	,	10	0.0		•3
07	4900	0 610	00 1000	00 1	00	2 32	2	5.0	2.8		.1
01	2800	0 130	00 190	00 1	70	27 42	2	15	6.8		.2
SEP	21.00				00	24 5		16	7.8		.2
08			30 12 96 13		90	36 52 28 51		15 16	7.4		.2
26	. 620		, 1.	20 2	10	20 31		-			
	POTAS SIUM DIS- SOLVE (MG/L	BICAR- BONATE D (MG/I	E CAR- L BONATE (MG/L	(MG/	ED SOLV	ED SOLV	DI 5- 50 /ED (M	ICA. S- LVED G/L S	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED	RESI AT 1 DEG. SUS PEND	DUE 05 C+
DATE	AS K)	HC03) AS CO:	3) AS SO	(4) AS C	L) AS F	, 51	02)	(MG/L)	THE	,,,,
JAN											
12 FEB	. 3.	7 20	60	0 42	18	I.	•2	8.9	302		1
28		-									0
10	. 1.	6 1	90	0 47	13	i	.2	8.7	247		11
JUN								0.1	130		250
07	. 2.	4 1	20	0 15		.8	.1	8.1			
01 SEP	. 1.	6 1	70	0 28	13	1	.2	8.9	199		6
08	1.	4 1	90	0 33	11		.2	9.5	224		2
26			20	0 31	11		•5	9.4	242		5

08158700 ONION CREEK NEAR DRIFTWOOD, TX--Continued

									N	ITRO-		
	SOLIDS,	NITRO-	NITRO	- NI	RO-	NITE	-08	NITRO	- GE	N.AM-		
	VOLA-	GEN.	GEN:	GE	N.	GEN	1.	GEN	MO	NIA +	PHOS-	CARBON,
	TILE,	NITRATE			NO3	AMMON		ORGAN		GANIC	PHORUS.	ORGANIC
	SUS-	TOTAL	TOTAL		TAL	TOTA		TOTAL		OTAL	TOTAL	TOTAL
	PENDED	(MG/L	(MG/L		3/L	(MG/		(MG/L		MG/L	(MG/L	(MG/L
DATE	(MG/L)	AS N)	AS N			AS N		AS N		S N)	AS P)	AS C)
DAIL	11.07 27	~5 m	· · ·		,		.,	A3 111	_	3 117	no . ,	
JAN												
12	0	.03		1	.04		06	. (54	.70	.02	1.5
FER												
28	0	.00		11	.00		20		10	.12	.01	1.8
APR			•	-	•••			•		•	• • •	
10	7	.01		1	.02		01		29	.30	.02	5.4
JIIN		•01	•		• 02		.01	• • •		• • • •	•02	
07	46	•38		2	.40		10		54	.74	.07	9.7
AUG	40	• 36	• • •	, _	•+0		10	• '	, -	• ' -	• 01	
01	2	.04	(11	.05		00		30	.30	.02	3.7
SEP	-	• 04	• • •	, .	•05		.00	• ·	30	.30	•02	3.1
	1	.01		10	.01		01		29	.30	.00	2.6
08	2											2.1
26	~	.00	• • •	00	•00		01	• •	23	.24	.01	2.1
			0.000					CHRO				
			ARSEN		IUM.	CADM		MIUM		PPER.	IRON,	
			DIS		s-		S-	DIS-		IS-	DIS-	
			SOLV		VED	SOL		SOLV		OLVED	SOLVED	
		TIME	(UG/		G/L	(UG		(UG/		UG/L	(UG/L	
	DATE		AS A	S) AS	BA)	AS	CD)	AS C	Q) A	S CU)	AS FE)	
	JAN											
	12	1005		1	0		0		10	0	20	
	JUN	1005			U		U		10	U	20	
	07	1520		1	200		0		0	1		
	AUG	1520			200		U		U		50	
		1436		1	20		<1		0	0	<10	
	01 SEP	1426		1	20		< 1		U	U	<10	
		1020		2	0		•		0	0	50	
	08	1025		2			0		0			
	26	1230		1	0		0		0	1	10	
				MANGA-			SF	LE-				
			LEAD.	NESE.		CURY		-	SILVER	. 7	INC.	
			DIS-	DIS-		IS-		IS-	DIS-		DIS-	
			SOLVED	SOLVED		LVED		LVED	SOLVE		DLVED	
			(UG/L	(UG/L		IG/L		G/L	(UG/L		JG/L	
			AS PB)	AS MN)		HG)		SE)	AS AG		S ZN)	
		MIL	45 FB)	AS MIN	AS	no,	AS	361	AS AC	, A.	5 2147	
	J	N										
		2	0	20		.0		0		0	0	
	Ji							•		•		
		7	7	0		.0		0		0	10	
	AL			U		• •		v		7	••	
		1	1	<1		. 0		0		0	<3	
	SE		•			• 0		v			-	
		8	0	10		.0		0		0	0	
		6	0	0		.0		0		0	10	
			10	U				•		-	- 0	

08158700 ONION CREEK NEAR DRIFTWOOD, TX--Continued

DATE		TIME	PCB, TOTAL (UG/L)	NAPH THA LENE POL CHLO TOTA (UG/	- 5, y- R. ALDI L TO	RIN, TAL G/L)	CHLOR DANE TOTAL (UG/I	DE TO1		DDE, TOTAL (UG/L)	DDT TOTA (UG/	L	DI- ZINON, TOTAL (UG/L)
JAN 12		1005	•0	,	00	.00		.0	.00	.00		00	.00
JUN 07		1520	.0		00	.00		. 0	.00	.00	•	00	.00
SEP 26		1230	.0		00	.00		. 0	.00	.00		00	.00
DATE		DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRI TOTA (UG/	L TO	ION, TAL G/L)	HEPT CHLOS	A- CHL R, EPO	IDE L	INDANE TOTAL (UG/L)	MALA THIO TOTA (UG/	N,	METHYL PARA- THION, TOTAL (UG/L)
JAN			-		••			00	.00	.00		00	.00
12	•	.00	.00		00	•00			7.70				
07	•	.00	.00	•	00	.00	•	00	•00	.00		00	•00
26	•	.00	.00	•	00	.00	•	00	.00	.00		00	.00
		T	THYL		PARA-	то		TOTAL				SILVE	
	DA	TO	TAL	TOTAL	THION. TOTAL (UG/L)	TOT (UG	AL	TRI- THION (UG/L)	TOTAL	L TO	TAL G/L)	TOTA	AL
	JAN												
		• • •	.00		.00		0	•00	•	00	.00		.00
	-		.00		.00		0	•00	•	02	.01		.00
		•••	.00	.00	.00		0	•00		00	.00	3	.00

08158800 ONION CREEK AT BUDA, TX (Reconnaisance partial-record station)

LOCATION.--Lat 30°05'09", long 97°50'52", Hays County, Hydrologic Unit 12090205, on Farm Road 967, 0.5 mi (0.8 km) west of Buda.

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: January to September 1978.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	1	TREAM- FLOW, NSTAN- ANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNIT	A	MPER- TURE EG C)	COLOR (PLAT- INUM- COBALT UNITS)	. B	ID-	YGEN. DIS- OLVED MG/L)	DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	
JAN										11.2	93	1.5	2
FEB	1220	.41	448		.9	6.0	0		1				
28 APR	0905	.13	458	7	1.5	13.0	0)	1	9.2	90	1.0	
10 JUN	1030	.15	414	7	7.1	21.0	10)	3	5.6	64	3.	1
07 AUG	1400	140	211	7	7.9	24.0	90)	310	8.1	99	3.1	В
01	1312	1.5	397	7	7.6	25.0	5	5	3	8.6	106	1.	4
SEP 08	1130	3.4	419		5.8	25.5	0)	3	7.5	94		5
26	1121	.87	478		7.5	24.5	Č		1	8.6	105		
	COLI- FORM, TOTAL IMMED (COLS. PER	FORI FEC. 0. 0.7 UM-	MF (COI	ER	HARD- NESS (MG/L AS	HARD- NESS NONCAR BONATE (MG/I	CAL R- DI SC	CIUM (S- OLVED	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVEM	SOI T RA	DIUM AD- RP- ION	
DATE	100 ML) 100	ML) 100	ML)	CACO3)	CACO	5) AS	S CA)	AS POI	AS IN	150		
JAN					220			71				.2	
12 FEB			80	34	230		38	71	12		. 8		
28 APR	. 400	00	7	14			-		- 35		463	-	
10	4100	00	440	780	210	-	35	65	11	7	•1	.2	
07	13000	00 8	000 2	9000	95		21	85	6.1	. 3	• 0	.1	
01 SEP	2800	00 2	200	3100	170		33	56	7.8	9	.8	.3	
08	920	00	36	220	200		22	70	6.7	8	.5	.3	
26			48	150	230		41	78	8.4	7	.2	.2	
DATE	POTAS SIUM DIS- SOLVE (MG/L	BICA BONA ED (MG	TE CA	R- ATE G/L	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLV	R R R R R R R R R R R R R R R R R R R	LUO- IDE, DIS- DLVED	SILICA: DIS- SOLVED (MG/L AS SIO2)	CONST	F RES	IDS. IDUE 105 . C. S- DED G/L)	
JAN													
12 FER	. 1	.9	230	0	29	16		.2	8.6	2	59	1	
28												1	
APR 10	. 2	.3	210	0	26	12		.2	9.5	5 2	37	3	
JUN 07	. 2	. 4	91	0	16	5	.6	.1	7.5	1	14	510	
AUG 01	. 2	.6	170	0	33	18		.1	10	2	21	1	
SEP		.7	220	0	24	12		.2	9.8	, ,	41	6	
26		.0	230	0	42	11		.1	9.2		71	1	

COLORADO RIVER BASIN 225
08158800 ONION CREEK AT BUDA, TX--Continued

DATE JAN 12 FER	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN. NITRITE TOTAL (MG/L AS N)		GE AMMO	TRO- EN, DNIA TAL 5/L N)	NITRO- GEN+ ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
28	0	.03	.01			.02	.07		.01	1.7
10 JUN	3	.01	.00	•	01	.01	• 25	.26	•01	5.4
07 AUG	74	.24	.02	•	26	.12	.72	.84	.12	18
01 SEP	1	.20	•02	•	22	.00	.40	.40	•02	3.6
08	2	.05	.00		05	.01	.39	.40	.02	2.0
	0						.73			2.8
26	. 0	.49	.01	•	50	.02	.13	•15	•02	2.0
			ARSENIC DIS- SOLVED	BARIUM DIS- SOLVE	501	IUM IS- VED	CHRO- MIUM, DIS- SOLVED	COPPER, DIS- SOLVED	IRON. DIS- SOLVED	
		TIME	(UG/L	(UG/		3/L	(UG/L	(UG/L	(UG/L	
	DATE		AS AS)	AS B	A) AS	CD)	AS CR)	AS CU)	AS FE)	
	JAN 12	1220	1		0	0	10	5	20	
	JUN 07	1400	1	2	00	0	0	0	50	
	01	.1312	1		30	<1	0	0	50	
	SEP					0	0	1	20	
	08	1130	3		0		0	1		
	26	1121	1		0	0	U		211	
			M	ANGA-		SEL	E			
	D	5	EAD. N DIS- DLVĘD S UG/L (DIS- SOLVED (UG/L AS HG)	NIU SOL (UG	IM, SII S- I VED SO	DIS- (INC; DIS- OLVED UG/L S ZN)	
		2	0	20	.0		0	0	10	
		7	3	0	.0		0	0	5	
	AU O SE	1	0	2	• 0		0	0	<3	
		8	0	80	.0		0	0	0	
	2	6	0	40	.0		0	0	10	

08158800 ONION CREEK AT BUDA, TX--Continued

				NAF	H-												
				LEN	NES,			СНІ	OR-							DI	-
			PCB.		OR.	ALDR	IN.	DAN		DD	D,	DE	E.	DO	т,	AZIN	
		TIME	TOTAL	TOT		TOT		TOT		TOT		TOT		TOT	AL	TOT	
DATE			(UG/L)		3/L)	(00	/L)	(UG	/L)	(UG	/L)	(UC	5/L)	(UG	/L)	(UG	(1/L)
JAN																	
12	•	1220															
JUN		1.00	.0		.00		.00		.0		.00		.00		.00		.10
07	•	1400	• 0		.00		•00		• 0		•••		•••				
26		1121	.0		.00		.00		.0		.00		.00		.00		.00
										HEP	TA-						HYL
		DI-	ENDO-					HEF	TA-	CHL				MAL		PAR	
		ELDRIN	SULFAN,	END	RIN.	ETH	ON,	CHL	OR,	EPOX			DANE		ON,		ON.
		TOTAL	TOTAL	TO	TAL	TO	TAL	TOT		TOT			TAL	TOT		TOT	
DATE		(UG/L)	(UG/L)	(U	G/L)	(U(3/L)	(00	3/L)	(00	(L)	(00	3/L)	(00	5/L)	(00	5/L)
JAN																3. 7.	- 18
12		2			04 H	A11- 1	7.7	1 11									
JUN		.00	.00		.00	. 4	.00		.00		.00		.00		.00		.00
07	•	.00	.00		.00		•00		•••		•••						
26		.00	.00		.00		.00		.00		.00		.00		.00		.00
			THYL				-46		2								
			RI-			RA-		TOX-		TAL		4-0.	2.4	,5-T	CTI	VEX.	
				IREX.		TAL		HENE,		ION		TAL		TAL		TAL	
	DA			TOTAL UG/L)		G/L)		JG/L)		JG/L)		IG/L)		G/L)		G/L)	
	04			00, 2,	,,												
	JAN											.00		.00			
	JUN	•••										•••					
	07	•••	.00			.00		0		.00		.01		.01		.00	
	SEP 26	•••	.00	.00		.00		0		.00		.00		.00		.00	

227

08158810 BEAR CREEK BELOW FARM ROAD 1826 NEAR DRIFTWOOD, TX--Continued (Reconnaisance partial-record station)

LOCATION.--Lat $30^\circ09'19"$, long $97^\circ56'23"$, Hays County, Hydrologic Unit 12090205, 1.0 mi (1.6 km) downstream from Farm Road 1826, and 6.1 km (9.8 km) east of Driftwood.

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: March to September 1978.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	1	TREAM- FLOW, NSTAN- ANEOUS	SPE- CIFIC CON- DUCT- ANCE (MICRO-	РН	A.	PER-	COLOR (PLAT- INUM- COBALT	8	ID-	XYGEN, DIS- SOLVED	50 (P C	GEN+ IS- LVED ER- ENT TUR-	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY
DATE		(CFS)	MHOS)	(UNITS) (D	EG C)	UNITS)	()	TU)	(MG/L)	AT	ION)	(MG/L)
MAR													
01 APR	1143	.06	544	7.	5	12.0	5		0	9.8		94	•8
10	1255	.66	456	7.	8	21.5	5		6	9.8		114	2.1
JUN													
07 SEP	1630	2.2	204	7.	8	28.5	80		50	7.3		95	1.8
08	0930	.01	413	7.	1	24.0	10		30	5.6		68	1.4
27	1000	.35	489	7.		22.0	0		1	5.4		64	.4
	COLI- FORMA TOTAL IMMED	FOR	M. TOCO		ARD- ESS	HARD- NESS, NONCAR	CALC:		MAGNE SIUM DIS-	, SOD	IUM,	SOD AI SORI	0-
	(COLS.				MG/L	BONATE	SOL		SOLVE			TI	
	PER	(COL	S./ P	R	AS	(MG/L	(MG	/L	(MG/L	. (MC	3/L	RAT	
DATE	100 ML) 100	ML) 100	ML) C	AC03)	CAC03) AS (CA)	AS MO	i) AS	NA)		
MAR													
01	410	0	41	33	270	6	5 79	5	20		9.8		.3
10	1100	0 7	600 2	2900	220	4	7 58	9	18		9.0		.3
JUN									100				
07	3900	0 3	700 9	5400	96		5 29	9	5	.6	3.0		.1
SEP 08	1400	0 1	900	480	190	2	8 49	9	17		9.7		.3
27	760	0	160	150	240	3	5 68	3	17		8.0		.2
DATE	POTAS SIUM DIS- SOLVE (MG/L AS K)	BICAL BONA	TE CAP	ATE S	LFATE IS- OLVED MG/L SO4)	CHLO- RIDE. DIS- SOLVEI (MG/L AS CL	(MG/	ED	SILICA DIS- SOLVE (MG/L AS SIO2)	CONS D TUEN DI SOL	OF TI-	SOLII RESII AT 10 DEG. SUS- PENDI (MG.	DUE 05 C+ ED
MAR													
01 APR			250	0	46	20		•2	6.	6	302		0
10	1.	6	210	0	39	22		.2	10		261		8
07 SFP			110	0	12	5.	1	.1	9.	0	121		70
08	1.		200	0	30	18 15		.2	11		225		45
27	SOLIDS VOLA- TILE, SUS-	• NITE	N. GE ATE NITE	RO- NEN,	ITRO- GEN, 2+NO3	NITRO- GEN+ AMMONIA	GEN	IIC	NITRO GEN, AM MONIA ORGANI TOTAL	+ PHO	S- RUS,	CARBO	DN.
	PENDED				MG/L	(MG/L	(MG/	'L	(MG/L	(MG	J/L	(MG/	'L
DATE	(MG/L				S N)	AS N)	AS N	1)	AS N)	AS	P)	AS (2)
MAR													
01		0	• 00	.01		.00	0 .	00		-	•01	1	1.5
10 JUN		3	. 02	.00	•02	.01	1 .	27	.2	8	.00		5.5
07 SFP		0	.16	.02	•18	• 08	в .	50	.5		• 05		3.9
08		8	.01	.00	.01	.0		39	. 4	•	.01		3.7

08158810 BEAR CREEK BELOW FARM ROAD 1826 NEAR DRIFTWOOD, TX--Continued

	DATE	TIME	SOL	S- VED	BARI DIS SOLV (UG	E0	CADM DI SOL (UG AS	S- VED /L	MIUN DIS- SOLV (UG, AS (VED	COPPI DIS- SOL (UG AS	VED /L	SOL	S- VED		
	07	1630		1		100		0		0		0		100		
	08	0930		2		0		0		0		1		20		
	. 0.	ATE	LEAD. DIS- SOLVED (UG/L AS PB)	SC	NGA- SE+ DIS- DLVED JG/L S MN)	SOI (U	CURY IS- LVED G/L HG)	NIC SOI (UC	LE- JM, IS- LVED G/L SE)	SOI	VER. IS- LVED G/L AG)	SOI (U	NC. IS- LVED G/L ZN)			
	JU	N 7	6		0		.0		0		0		10			
	SE	B	0		0		.0		1		0		0			
	2	7	0 NAP		10		.0		0		U		10			
	TIME	PCB .	LEN PO CHL	ES. LY- OR.	ALDA TOT		CHL DAN TOT	E,	DDI		0D TOT		DO	Τ,	DI: AZIN	ON.
DATE	IIME	(UG/L		76)		(L)		71)	(UG			71)		/L)	(UG	
JIIN 07	1630		.0	.00		•00		.0		.00		.00		.00		.00
27	1000		.0	.00		.00		.0		.00		.00		.00		.00
	DI- ELDRIN TOTAL	ENDO- SULFAR	N. ENDE		ETH!	ION.		TA- OR,	HEP CHL EPOX TOT	OR IDE	LIND		TOT	ON.	PAR THI TOT	A- ON, AL
DATE	(UG/L)	(UG/		/L)		3/L)	(00	/L)	(UG	/L)	(UG	/L)	(00	3/L)	(UG	/L)
JUN 07 SFP	.00	,	00	.00		.00		.00		.00		.00		.00		.00
27	.00	•	00	.00		.00		.00		.00		.00		.00		.00
DA	T TH TO	THYL RI- ION, TAL G/L)	MIREX. TOTAL (UG/L)	T	ARA- HION. OTAL UG/L)	TO	OX- ENE. TAL G/L)	TH	TAL RI- ION G/L)	TO	4-D, TAL (G/L)	TO	•5-T TAL G/L)	TO	VEX.	
	• • •	.00			.00		0		.00		.00		.00		.00	
SEP 27		.00	.00		.00		0		.00		.00		.00		.00	

08158840 SLAUGHTER CREEK AT FARM ROAD 1826 NEAR AUSTIN, TX

LOCATION.--Lat 30°12'32", long 97°54'11", Travis County, Hydrologic Unit 12090205, 1.7 mi (2.7 km) south of the intersection of U.S. Highway 290 and Farm Road 1826 and 11.9 mi (19.1 km) southwest of the State Capitol Building in Austin.

DRAINAGE AREA .-- 8.24 mi2 (21.3 km2).

PERIOD OF RECORD .-- January to September 1978.

GAGE.--Water-stage recorder. Datum of gage is 876.14 ft (267.047 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair above 3 ft³/s (0.085 m³/s) and poor below. No known regulation or diversion. There is a recording rain gage in the watershed.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 197 ft³/s (5.58 m³/s) June 6, 1978, gage height, 5.02 ft (1.530 m), no flow at times.

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period January to September, 197 ft 3 /s (5.58 m 3 /s) June 6, gage height, 5.02 ft (1.530 m), no peak above base of 500 ft 3 /s (14.2 m 3 /s); no flow at times.

			DISCHARGE,	IN CUBIC	FEET F	PER SECOND, AN VALUES	JANUAR	Y TO SEPT	EMBER 1978			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1					.00	.01	.00	.02	.02	.03	3.5	.01
2.					.00	.01	.01	.03	.02	.03	.43	.00
3					.00	.01	.01	.03	.05	.03	.24	.00
2. 3 4					.00	.01	.01	.03	.04	.02	.23	.00
5					.00	.01	.01	.02	.04	.02	.16	.00
6					.00	.02	.01	.03	6.9	.01	.09	.00
7					.01	.02	.01	.03	9.3	.01	.11	.00
8					.01	.02	.01	.03	.41	.00	.08	.07
9					.01	.02	.02	.02	.26	.00	.04	.01
10					.01	.02	.09	.02	.20	.00	.02	.16
11					.01	.02	.03	.02	.18	.00	.01	.05
12					.05	.01	.03	.02	.14	.00	.00	.01
13					.02	.01	.03	.02	.12	.00	.00	.23
14					.02	.00	.03	.02	.10	.00	.00	.27
15					.02	.00	.02	.01	.09	.00	.00	.28
16				.01	.02	.00	.02	.01	.07	.00	.00	.30
17				.01	.04	.00	.02	.01	.06	.00	.00	.30
18				.01	.02	.00	.01	.01	.06	.00	.00	.30
19				.01	.02	.00	.01	.01	.05	.00	.00	.30
20				.01	.02	.00	.02	.06	.05	.00	.00	.30
21				.01	.01	.00	.02	.04	.05	.00	.00	.26
22				.01	.01	.00	.02	.04	.04	.00	.00	.24
23				.01	.01	.01	.02	.03	.04	1.1	.00	.27
24				.01	.01	.03	.02	.03	.04	.03	.00	.27
25				.01	.01	.02	.02	.02	.04	.02	.00	.27
26				.00	.01	.02	.02	.03	.04	.01	.00	.27
27				.00	.01	.02	.02	.04	.04	.01	.00	.27
28				.00	.01	.02	.02	.03	.03	.00	.00	.27
29				.00		.02	.02	.02	.03	.00	.00	.27
30				.00		.01	.02	.02	.03	.00	.00	.27
31				.00		.00		.02		.01	.00	
TOTAL					.36	.34	.60	.77	18.54	1.33	4.91	5.25
MEAN					.013	.011	.020	.025	.62	.043	.16	.18
MAX					.05	.03	.09	.06	9.3	1.1	3.5	.30
MIN					.00	.00	.00	.01	.02	.00	.00	.00
CFSM					.002	.001	.002	.003	.08	.005	.02	.02
IN.					.00	.00	.00	.00	.08	.01	.02	.02
AC-FT					.7	.7	1.2	1.5	37	2.6	9.7	10
(++)							1.80	2.56	4.42	2.86	3.67	6.28

WTR YR 1978 TOTAL - MEAN - MAX - MIN - CFSM - IN. - AC-FT - ++

tt Weighted-mean rainfalll, in inches, based on one rain gage.

08158920 WILLIAMSON CREEK AT OAK HILL, TX

LOCATION.--Lat 30°14'06", long 97°51'36", Travis County, Hydrologic Unit 12090205, on downstream side of bridge on U.S. Highway 290 in Oak Hill, 0.8 mi (1.3 km) east of the intersection of U.S. Highway 290 and State Highway 71, and 7.7 mi (12.4 km) southwest of the State Capitol Building in Austin.

DRAINAGE AREA .-- 6.30 mi2 (16.32 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--January 1974 to February 1977 (periodic discharge measurements only), January to September 1978.

GAGE.--Water-stage recorder. Datum of gage is 798.68 ft (243.438 m) National Geodetic Vertical Datum of 1929 (levels from city of Austin bench mark).

REMARKS.--Water-discharge records poor. Station is part of a hydrologic-research project to study rainfall-runoff relation for the Austin urban-rural areas. Two digital recording rain gages are in the watershed above station.

EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 4.61 ft (1.405 m) June 6, 1978, discharge unknown; no flow for many days.

EXTREMES FOR CURRENT YEAR.--Maximum gage height during period January to September, 4.61 ft (1.405 m) June 6, discharge unknown; no flow for many days.

			DISCHARGE	, IN CUE	BIC FEET P MEA	PER SECONI AN VALUES), JANUARY	TO SEPT	EMBER 197	8		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1					.00	.00	.00	.00	.00	.00	14	.00
2					.00	.00	.00	.26	.00	.00	1.5	.00
3					.00	.00	.00	.33	.00	.00	.00	.00
4					.00	.00	.00	.00	.01	.00	.00	.13
5					.00	.00	.00	.00	.00	.00	.00	.00
6					.00	.01	.00	.00	28	.00	.00	.00
7					.00	.00	.00	.00	28	.00	.00	.02
8					.00	.00	.00	.00	5.4	.00	.00	3.2
9					.00	.00	.00	.00	2.6	.00	.00	.19
10				.00	.00	.00	3.8	.00	2.1	.00	.00	3.7
11				.00	.00	.00	.00	.00	1.5	.00	.00	1.3
12				.00	.24	.00	.00	.00	1.7	.00	.00	.21
13				.00	.00	.00	.00	.00	1.7	.00	.00	3.2
14				.00	.00	.00	.00	.00	1.2	.00	.00	.98
15				.00	.00	.00	.00	.00	.24	.00	.00	.20
16				.00	.00	.00	.00	.00	.18	.00	.00	.13
17				.00	.41	.00	.00	.00	.20	.00	.00	.15
18				.00	.00	.00	.00	.00	.21	.00	.00	.13
19				.00	.00	.00	.00	.00	.21	.00	.00	.10
20				.00	.00	.00	.00	1.7	.20	.00	.00	.02
21				.00	.00	.00	.00	.14	.10	.00	.00	.00
22				.00	.00	.00	.00	.00	.00	.00	.00	.00
23				.00	.00	.00	.00	.00	.00	.33	.00	.00
24				.00	.00	.00	.00	.00	.00	.00	.00	.00
25				.00	.00	.00	.00	.00	.00	.00	.00	.00
26				.00	.00	.00	.00	.00	.00	.00	.00	.00
27				.00	.00	.00	.00	.23	.00	.00	.00	.00
28				.00	.00	.00	.00	.00	.00	.00	.00	.06
29				.00		.00	.00	.00	.00	.00	.00	.03
30				.00		.00	.00	.00	.00	.00	.00	.00
31				.00		.00		.00	N 25 W	.00	.00	
TOTAL					.65	.01	3.80	2.66	73.55	.33	15.50	13.75
MEAN					.023	.000	.13	.086	2.45	.011	.50	.46
MAX					.41	.01	3.8	1.7	28	.33	14	3.7
MIN					.00	.00	.00	.00	.00	.00	.00	.00
CFSM					.004	.000	.02	.01	.39	.002	.08	.07
IN.					.00	.00	.02	.02	.43	.00	.09	.08
AC-FT					1.3	.02	7.5	5.3	146	.7	31	27
(++)					2.25	.74	1.89	2.73	3.93	2.07	3.80	4.93

WTR YR 1978 TOTAL - MEAN - MAX - MIN - CFSM - IN. - AC-FT - †† -

tt Weighted-mean rainfall, in inches, based on one rain gage prior to April and two rain gages thereafter.

08158920 WILLIAMSON CREEK AT OAK HILL, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Occasional discharge measurements and water-quality data: January 1974 to current year.

DISCHARGE AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	T	IME	INS TAN	REAM- OW, STAN- SEOUS FS)	DU	FIC N- CT- CE CRO-		PH ITS)	AT	PER- URE G C)	IN	LOR LAT- UM- BALT ITS)	8	UR- ID- TY TU)	50	GEN. IS- LVED	SO (P	GEN. IS- LVED ER- ENT TUR- ION)	DEM BI CH		FO TO IM (CO P	LI- RM, TAL, MED. LS. ER	HARD NESS (MG/ AS CACO	L.
APR 10	1	100		1.6		287		8.2		20.0		40		260		6.6		75		6.4	4	8000	1	30
JUN 07	12	230		5.0		324		7.9		22.5		50		70						2.4	13	0000	1	50
DATE	NONG BONA	CAR-	DI 50	CIUM S- DLVED IG/L (CA)	SOI (MC	GNE- IUM. IS- LVED G/L MG)	DI SOL (M	IUM, S- VED G/L NA)	SO T	DIUM AD- RP- ION TIO	5 50 (M	TAS- IUM, IS- LVED G/L K)			BON (M	R- ATE IG/L CO3)	DI SC	FATE S- LVED G/L SO4)	RI DI SO (M	DE, S- LVED	RI D SO (M	UO- DE. IS- LVED G/L F)	SILIC DIS- SOLV (MG/ AS SIO2	ED L
APR 10		13		37		8.6		6.5		.3		3.0		140		0		19		13		•1	-	. 8
JUN												200												
07		17		43		9.9		7.6		• 3		2.6		160		0		21		16		• 2	7	.2
DA	7.5	SOL I SUM CONS TUEN DI SOL	OF TI- TS. S- VED	SOLID RESID AT 10 DEG. SUS- PENDE	OUE 05 C+	SOL III	A- E, ED	NITE GEN NITE TOTA (MG/	TE L	NITE GEN NITE TOTA (MG/	TE L	NIT	N, NO3 AL	NIT GE AMMO TOT (MG	N, NIA AL /L	NIT GE ORGA TOT (MG	N, NIC AL /L	MIT GEN, MONI ORGA TOT (MG	AM- A + NIC AL	PHOR PHOR TOT (MG	US, AL /L	CARB ORGA TOT (MG	NIC AL /L	
UA	16	(MG	/()	(MG/	(,)	(MG,	<i>(</i> L)	AS N	()	AS N	1)	AS	N)	AS	N)	AS	N)	AS	N)	AS	P)	AS	C)	
APR			162		342		76		21		0.4		25		27		0.3	,	2		20	1	0	
JUN			105		142		10		31		.04		. 35		.27		.93	1	•5		. 39	1	Q	
07	•••		187	1	80		46		48		05		.53		.27		.43		.70		.19		9.4	

08158920 WILLIAMSON CREEK AT OAK HILL, TX--Continued

	DATE		TIME	SOL	S- VED	BARI DIS SOLV (UG AS	ED /L	CADM: DIS SOLV (UG,	VED VL	MIUI DIS- SOL' (UG	VED	(UG	VED	SOL	S- VED		
	JUN		1230		1		100		0		5		0		40		
	07	•	1230				100		U		,		٠		40		
			9	EAD. DIS- OLVED UG/L	NES SOL (U)	VED	SOL	S- VED	SOL	M, S- VED	SO (U	VER+ IS- LVED G/L	SO (U	NC. IS- LVED G/L			
		DATE		S PB)	AS	MN)	AS	HG)	AS	SE)	AS	AG)	AS	ZN)			
		JUN															
		07		. 7		0		.0		. 0		0		10			
					LEN	NES.				.OR-		4-				-41	
		****		PCB.		OR.	ALDE	RIN.	TOT			DD.	_	DE.		TAL	
DA	TE	TIME		UG/L)		3/L)		3/L)		7L)		G/L)		G/L)		G/L)	
JUN 07		1230		.0		.00		.00		.0		.00		.00		.00	
DATE	DI- AZINON TOTAL (UG/L	, E	DI- LDRIN OTAL UG/L)	TOT	AN.	ENDR TOT (UG		ETHI TOT	AL	HEP CHL TOT (UG	OR.	CHL EPOX TOT	IDE		ANE AL B/L)	TOT	ON.
JUN																	-
07	• 0	5	.00)	.00		.00		.00		.00		.00		.00		.00
DA		METHY PARA- THION TOTAL (UG/L	, 1	TRI- THION, TOTAL (UG/L)	TH	RA- ION. TAL G/L)			TH	AL RI- ION B/L)	TO	4-D+ TAL G/L)	TO	,5-T TAL G/L)	TO	VEX. TAL G/L)	
JUN 07	•••	• 0	00	.00		.00		0		.00		.00		.00		.00	

233

08158970 WILLIAMSON CREEK AT JIMMY CLAY ROAD, AUSTIN, TX

LOCATION.--Lat 30°11'21", long 97°43'56", Travis County, Hydrologic Unit 12090205, at Jimmy Clay Road, 0.5 mi (0.8 km) southeast of the intersection of Jimmy Clay and Nuckles Crossing Roads, and 5.9 mi (9.5 km) south of the State Capitol in Austin.

DRAINAGE AREA .-- 27.6 mi2 (71.5 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- November 1974 to September 1975 (periodic discharge measurements only), September 1975 to current year.

GAGE.--Water-stage recorder. Datum of gage is 497.18 ft (151.540 m) National Geodetic Vertical Datum of 1929 (city of Austin bench mark).

REMARKS.--Water-discharge records good above 50 ft^3/s (1.42 m^3/s) and fair below. No known regulation or diversion above station. There are two recording rain gages located in the watershed. The station is part of a hydrologic research project to study the rainfall-runoff relationships for the Austin urban-rural areas.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,100 ft³/s (286 m³/s) Nov. 23, 1974, gage height, 15.2 ft (4.63 m), from flood-mark, by slope-area measurement; minimum not determined.

EXTREMES OUTSIDE PERIOD OF RECORD.--The maximum flood since 1869 occurred on Sept. 9 or 10, 1921, stage and discharge not determined.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 428 ft 3 /s (12.1 m 3 /s) Feb. 12, gage height, 4.89 ft (1.490 m), no peak above base of 500 ft 3 /s (14.2 m 3 /s), revised; minimum, 0.38 ft 3 /s (0.011 m 3 /s) July 25.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES SEP DAY OCT NOV DEC JAN FFB APR MAY JUN JUL AUG MAR 1.0 35 6.1 .62 20 2.2 .93 1.0 .72 .82 7.5 2 .73 7.9 2.2 .93 1.0 .63 .82 34 1.1 1.0 1.0 2.0 3 .82 1.3 2.2 .88 1.0 .54 .82 33 .97 1.1 .59 30 4 .82 .66 2.2 .82 .93 .54 .82 2.5 5.0 .93 15 5 .72 .63 2.0 .93 .93 .50 .80 1.4 1.1 - 75 -63 6 .86 .57 1.7 1.2 .97 .98 .69 .72 1.9 .76 1.7 1.2 3.1 1.0 .63 1.7 1.3 3.9 2.3 .82 1.2 64 .81 .93 8 1.2 33 1.4 3.3 1.2 .82 1.0 3.6 .74 1.0 15 8.2 .93 q 1.7 1.4 1.5 1.6 2.1 .85 .81 .82 1.2 .78 10 1.9 1.3 1.4 1.7 1.6 .82 45 .80 .69 .66 1.2 4.0 11 2.2 .72 2.3 .48 1.0 26 1.6 2.9 .63 1.6 .82 1.1 2.4 .63 3.1 50 .82 1.3 .96 .63 .45 1.3 32 12 1.6 2.5 .54 2.9 5.8 .98 1.0 .64 .43 1.3 7.7 13 1.8 1.1 14 2.4 .46 1.6 .95 1.0 .72 .43 1.2 5.0 .85 15 2.5 .63 1.6 2.5 2.3 .93 .82 1.4 .96 -40 1.0 1.4 16 2.7 .79 1.6 5.8 .82 .43 1.0 2.2 .93 1.6 1.1 1.2 .43 .93 .59 17 3.1 .74 1.4 3.6 .83 .82 1.7 16 3.7 1.2 1.2 2.4 1.3 .43 .93 .52 18 3.3 .82 .82 1.7 1.3 3.5 2.4 1.9 .72 1.9 1.4 .45 .93 .60 19 1.8 .88 20 3.7 3.7 1.3 1.5 1.4 .93 .72 2.5 1.3 .43 .93 .71 .72 21 4.2 1.3 1.3 .43 .93 4.3 1.3 .72 3.9 1.3 .93 9.3 .93 2.4 .93 22 4.0 1.4 1.3 .82 2.8 .43 .67 1.3 13 3.3 1.4 1.0 .82 .88 1.5 1.2 .51 .93 1.2 24 9.0 2.7 1.3 1.4 .43 .82 1.4 1.0 1.7 .82 25 1.6 2.7 1.2 1.0 .82 .98 .68 1.3 1.0 .39 .82 1.4 26 .96 .93 1.1 1.6 2.4 1.0 .74 74 .63 1.3 99 . 41 2.4 .93 .93 .72 .94 .44 1.1 1.0 1.2 .68 .63 2.4 .72 .72 .44 1.0 28 1.3 .93 1.0 .63 1.1 1.0 29 1.4 2.2 .98 1.0 .72 .63 1.1 1.0 .49 1.2 ---30 1.6 2.2 1.1 1.0 .77 .69 1.2 1.1 .48 1.4 .89 4.4 31 2.0 .98 1.0 ---.82 1.2 .65 ---TOTAL 84.97 107.80 46.28 51.59 110.52 72.29 110.05 127.08 17.79 74.41 172.38 28.06 2.40 MEAN 2.74 3.59 1.49 1.66 3.95 .91 2.41 3.55 4.24 .57 5.75 MAX 13 33 2.2 5.8 50 2.3 45 64 1.0 35 32 .77 MIN .62 .46 .93 .82 .50 .63 .63 .39 .59 .52 CFSM .10 .13 .05 .06 .14 .03 .09 .13 .15 .02 .09 .21 169 .15 .15 .10 .02 .10 .23 IN. -06 .07 .04 . 15 AC-FT 102 218 252 35 92 56 (++) 2.52 2.46 .40 2.74 .76 1.92 2.74 3.65 1.43 3.44 5.18 1.26 2225.75 CAL YR 1977 TOTAL MEAN 6.10 MAX 254 MIN .03 CFSM .22 IN 3.00 AC-FT 4410 26.77 WTR YR 1978 TOTAL 1003.22 MEAN 2.75 MAX 64 MIN .39 CFSM .10 IN 1.35 AC-FT 1990 tt 28.50

tt Weighted-mean rainfall, in inches, based on two rain gages prior to April and three rain gages thereafter.

08158970 WILLIAMSON CREEK AT JIMMY CLAY ROAD, AUSTIN, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Periodic chemical, biochemical, and pesticide analyses: January 1975 to current year.

			-1 0.						1 89		7						
			SPE-											OXY	GEN.	OXY	GEN
			CIFIC											0	IS-		AND,
	9	TREAM-	CON-					CO	LOR					50	LVED	BI	0-
		FLOW,	DUCT-					(P	LAT-	TUR			GEN,		ER-		EM-
	1	NSTAN-	ANCE		PH	TEN	MPER-		UM-	BID			IS-		ENT		AL.
	TIME T	ANEOUS	(MICRO-				TURE		BALT	ITY			LVED		TUR-	5 D	
DATE		(CFS)	MHOS)	(UI	VITS)	(DE	EG C)	UN	ITS)	(JTU)	(M	G/L)	AT	ION)	(MG	/L)
JAN	1120	2.9	806		7.6		9.0		5		7		7.4		66		5.7
11 FEB	1120	2.9	000	,	1.0		9.0		3		1						
21	1215	1.3	589		7.5		10.0		5		15		11.0		101		1.6
APR	1215	1.5	50	,	,.,		10.0		3								
10	1140	48	27	7	7.6		20.0		60	3	10		7.6		86		12
JUN													Te 174				
07	1400	22	220	0	7.8		24.0		60	1	00	- 11	7.4		90		2.4
JUL								- ^-					12 1		-		100
25	1325	.38	95	1	7.6		27.5		5		1		4.9		63		1.7
SEP																	
08	0755	9.9	414		7.1		25.0		20		20		6.6		81		3.3
25	1342	1.4	948	8	7.5		23.0		6		1		6.4		76		3.6
	COLI-	COLI	- 61	TREP-													
	FORM			COCCI			HARD	-			MAGN	E-			SOD	IUM	
	TOTAL			ECAL,	HAR	0-	NESS		CALCI		SIU		SODI	UM,	A	D-	
	IMMED			AGAR	NES		NONCA		DIS-		DIS	-	DIS	-	SOR	P-	
	(COLS.			DLS.	(MG		BONAT	E	SOLVE		SOLV		SOLV		TI		
	PER	(COLS	./	PER	AS		(MG/		(MG/		(MG/			/L	RAT	10	
DATE	100 ML) 100 M	L) 100	D ML)	CAC	03)	CACO	3)	AS C	A) .	AS M	G)	AS	NA)			
JAN	. 1900	10	56	220		330		58	110		13		4	5		1.1	
FEB	. 1900	, ,	30	220		330		30	110		13			-		•••	
21	. 160	00	66	76													
APR		, ,	00														
10	. 14000	0 1400	00 10	60000		110		17	38		3	.0		6.4		.3	2
JUN																	
07	. 19000	00 330	00	37000		91		9	33		5	.1		5.3		.2	
JUL		11							12000				200				
25	. 3300	00 2	10	700		340		50	110		17		190	4		1.7	
SEP 08	7000	0 160	00	9200		170		24	60		-	.3		8		.6	
			76	300		330		17	110		13		12.01	8		1.6	
25	. 200	,0	10	300		330		.,	110		13		315				
													SOLI	DS.	SOLI	DS.	
	POTAS	-					CHLO	_	FLU0-	- 5	ILIC	A .	SUM		RESI		
	SIUN		_		SULF	ATE	RIDE		RIDE		DIS-		CONS		AT 1		
	DIS-			AR-	DIS		DIS-		DIS		SOLV		TUEN		DEG.	C.	
	SOLVE		L BON		SOL	VED	SOLV	ED	SOLVE		(MG/	L	DI	S-	SUS		
	(MG/L	AS	()	4G/L	(MG	/L	(MG/		(MG/I		AS			VED	PEND		
DATE	AS K)	нсоз) AS	C03)	AS S	04)	AS C	L)	AS F)	2015)	(MG	/L)	(MG	/L)	
JAN	. 3.		30	0	_	3	60			. 4	12			470		9	
FER			30	U	0	3	00			• •	16			410			
21																13	
APR	46 /															70	2.17
10	. 3.	2 1	10	0	2	2	10			.2	5	.2		142		524	
JUN																100	
07	. 2.	6 1	00	0	5	1	6	.7	400	.2	5	.9		126		160	
JUL					We fire		Variation.			-						17	
25	. 4.	4 3	60	0	6	6	96			.5	15			561		11	
SEP 08	. 3.	1 1	80	0	2	2	21			.3		.6		238		26	
25	•		80	0		8	87			5	16			534		8	
23.0			- 0	J	-	-	01										

COLORADO RIVER BASIN 235 08158970 WILLIAMSON CREEK AT JIMMY CLAY ROAD, AUSTIN, TX--Continued

DATE	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN. NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITI TOTAL (MG/L AS N)	GE NO24 TO1	AL S/L	NITR GEN AMMON TOTA (MG/ AS N	IA L	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	MONI	AM- NIC AL	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBON. ORGANIC TOTAL (MG/L AS C)
JAN 11	2	.81	•0:	3	.84	1.	6	.40	2	.0	.03	3.1
FEB 21	2	.31	.0	2	.33		52	.36		.88	• 05	3.5
APR 10	78	.32	.0	2	.34		20	1.6	1	.8	.47	18
JUN 07	30	.22	.0:	3	.25		18	2.5	2	.7	.16	6.7
JUL 25	6	1.5	.2		.7		10	.80		.90	•01	4.9
SEP												
25	8	.10	.21		.12	1.	15 3	.60		.80	.04	6.0 5.5
	DATE	TIME	ARSENI DIS- SOLVE (UG/L AS AS	D SOL		CADMI DIS SOLV (UG/ AS C	ED L	CHRO- MIUM, DIS- SOLVEI (UG/L AS CR)	(UG	- VED	IRON. DIS- SOLVED (UG/L AS FE)	
	JAN						- '					
	11	1120		2	200		0	()	0	30	
	07 JUL	1400		2	200		0	()	1	50	
	25 SEP	1325		3	200		0)	0	20	
	08 25	0755 1342		5 6	0		0	1)	2	20 10	
	J/ J((DATE A	EAD. DIS- OLVED UG/L	MANGA- NESE, DIS- SOLVED (UG/L AS MN) 130 0	SO (U AS	CCURY OIS- DLVED OG/L HG)	NI D SO (U	IS- LVED S G/L	LVER. DIS- GOLVED (UG/L AS AG)	SO (U	O O	
	(8	0	90		.0		0	0		0	
	4	25	0	540		. 0		U	0		20	

08158970 WILLIAMSON CREEK AT JIMMY CLAY ROAD, AUSTIN, TX--Continued

			NAPH-										
			THA-										
			LENES,									0.7	
		242	POLY-			CHLOR-		_	00	-	DDT.	AZIN	
		PCB,	CHLOR.	ALDR		DANE,	DD		DD		TOTAL	TOT	
	TIME	TOTAL	TOTAL	TOT		TOTAL	TOT	AL /L)	(UG		(UG/L)	(UG	
DATE		(UG/L)	(UG/L)	(06	/L)	(UG/L)	100	,,,	100	,,,	100/ 1	100	
JAN										12/21			
11	1120	.0	.00		.00	.0		.00		.00	.00		.01
JUN													
07	1400	• 0	.00		.00	• 0		.00		.00	•00		.41
JUL										00	.00		.01
25	1325	.0	.00		.00	.0	Comme	.00		.00	•00		•0.
SFP						.0		.00		.00	.00		.01
25	1342	• 0	.00		•00	. 0		•00		.00	•00		
							HED	TA-				MET	HYL
	0.7	ENDO-				HEPTA-					MALA-	PAR	
	DI-	SULFAN,	ENDRIN,	ETHI	ON-	CHLOR,			LIND		THION.		ON.
	ELDRIN	TOTAL	TOTAL	TOI		TOTAL	TOT		TOT		TOTAL	TOT	
2175	TOTAL (UG/L)	(UG/L)	(UG/L)		3/L)	(UG/L)		3/L)		/L)	(UG/L)	(UG	/L)
DATE	(00/L)	(UG/L)	(00/L/	,,,,	,, ,,	100/ 2/							
JAN					Mar.			•		.00	.00		.00
11	.00	.00	.00		.00	.00	,	.00		.00	•00		•••
JUN					.00	.00		.00		.00	.04		.00
07	•00	.00	.00		•00	•00	,	.00		•••	•04		-
JUL	.00	.00	.00		.00	.00)	.00		.00	.00		.00
25 SEP	.00	•00	•00		•00	•••		•••		•			
25	.00	.00	.00		.00	.00)	.00		.00	.00		.00
		THYL		ARA-	то		OTAL						
		RI-		HION,	APHE		TRI-	2.	4-D,	2,4,5	-T ST	LVEX.	
				OTAL	TOT		HION		TAL	TOTA		OTAL	
•		100 m		UG/L)	(UG		(UG/L)		G/L)	(UG/		UG/L)	
U	ATE (U	IG/L) (()6/L/ \	00/1	100	, ,	1007 67	,,,	0, 2,	1007			
JA	N											.00	
	1	.00		.00		0	.00		.00	•	.00	.00	
JU									.03		04	.00	
	7	•00		.00		0	.00		.03		.04	.00	
JU		00	00	.00		0	.00		.00		.00	.00	
SE	5	.00	•00	•00		U	•00						
	5	.00	.00	.00		0	.00		.00		.00	.00	
~	2	• 00	* 0 0			•					34073		

08159000 ONION CREEK AT U.S. HIGHWAY 183 NEAR AUSTIN, TX

LOCATION.--Lat 30°10'40", long 97°41'18", Travis County, Hydrologic Unit 120902065, on right bank at downstream side of downstream bridge on U.S. Highway 183, 2.4 mi (3.9 km) downstream from Williamson Creek, 3.2 mi (5.1 km) southwest of Del Valle, and 7.5 mi (11.7 km) southeast of the State Capitol Building in Austin.

DRAINAGE AREA . - - 321 mi 2 (831 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1924 to March 1930, March 1976 to current year. Discharge records for the period 1924-30 were published as monthly and annual figures in WSP 1312 as Onion Creek near Del Valle.

GAGE.--Water-stage recorder. Datum of gage is 442.85 ft (134.981 m) Texas Department of Highways and Public Transportation datum.
May 15, 1924, to Mar. 15, 1930, nonrecording gage at highway bridge 1,700 ft (518 m) upstream at 6.42 ft (1.957 m) higher datum.

REMARKS.--Water-discharge records fair. Flow is slightly regulated by several small ponds on main channel and tributaries above

AVERAGE DISCHARGE.--7 years (water years 1925-29, 1977-78), 73.1 ft3/s (2.070 m3/s), 3.09 in/yr (78 mm/yr), 52,960 acre-ft/yr (65.3 hm3/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 76,000 ft3/s (2,150 m3/s) May 28, 1929, gage height, 30.5 ft (9.30 m), present datum; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1869 occurred about July 3, 1869, stage about 38 ft (11.6 m) from newspaper accounts, and Sept. 9, 1921, stage 38.0 ft (11.58 m) from floodmark, present site and datum.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 323 ft 3 /s (9.15 m 3 /s) Nov. 1, gage height, 7.77 ft (2.368 m), no peak above base of 2,500 ft 3 /s (70.8 m 3 /s); minimum daily, 0.45 ft 3 /s (0.013 m 3 /s) July 28-31.

		DISCHAI	RGE, IN C	JBIC FEET	PER SECON	ND, WATER	R YEAR OCT	OBER 1977	TO SEPT	EMBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4	4.0 3.9 3.6 4.0	96 28 11 8.5	6.6 6.6 6.6	6.2 6.2 6.2	7.4 7.4 7.4 7.4	6.2 6.2 6.2 5.9	5.0 5.0 5.0 4.9	4.0 17 72 11	4.0 4.4 26 22	1.2 1.2 1.2 1.2	29 21 4.8 2.0	12 6.4 3.1 13
5	4.0	7 - 4	6.6	6.2	7.4	5.8	4.6	7.0	8.5	.90	1.4	43
6 7 8 9 10	4.0 4.0 4.0 4.0	7.0 6.6 23 17 9.5	6.6 6.6 6.6 6.6	6.2 6.2 6.2 6.2 6.2	7.4 8.2 9.6 9.0 8.2	5.8 7.4 7.4 7.4 7.4	4.6 4.6 4.3 40	5.0 5.2 4.6 4.0 3.9	6.3 133 76 23 13	.90 .90 .90 .90	1.4 1.4 .90 1.4 1.4	6.9 4.3 10 20 7.4
11 12 13 14 15	4.0 4.0 3.8 3.6 3.6	8.1 7.0 7.0 7.0 6.7	6.2 6.2 6.2 6.2 6.2	6.3 6.6 6.6 6.6	7.4 53 33 14 11	6.9 5.4 5.4 5.1 5.0	9.5 5.8 5.0 4.4 4.0	3.3 3.3 3.3 2.8	9.2 8.1 6.7 5.8 4.8	.90 .90 .90 .66	1.4 1.4 1.4 .91	34 47 39 75 20
16 17 18 19 20	3.6 3.6 3.6 3.6	6.6 6.6 6.6 6.6	6.2 6.2 6.2 6.2 6.2	7.7 9.1 8.8 8.2 7.9	10 18 15 11 8.7	5.0 5.0 5.0 5.0	4.0 4.0 3.9 3.5 3.3	2.7 2.7 2.7 2.7 3.0	4.6 4.0 4.0 3.4 3.0	.66 .66 .66	.90 .90 .90 .90	9.0 8.0 6.2 5.4
21 22 23 24 25	3.6 4.5 5.8 5.8	6.6 6.6 6.6 6.6	6.2 6.2 6.2 6.2 6.2	7.8 7.8 7.8 7.8 7.6	7.7 7.1 7.0 6.3 6.2	5.0 4.8 4.6 5.1 5.4	3.3 3.4 4.6 4.6 4.5	3.0 4.2 4.3 4.3	3.0 3.0 2.5 2.4 2.4	.66 .66 .66	.66 .66 .66	5.3 4.6 4.6 5.5 7.9
26 27 28 29 30 31	5.4 5.4 5.3 4.3 4.3	6.6 6.6 6.6 6.6	6.2 6.2 6.2 6.2 6.2 6.2	7.4 7.4 7.4 7.4 7.4	6.2 6.2 6.2	5.4 5.4 5.4 5.4 5.4	4.3 4.0 4.0 4.0 4.0	5.3 5.4 4.0 3.4 3.3	1.9 1.6 1.6 1.2	.66 .66 .45 .45 .45	.66 .66 .66 .66	8.1 6.7 6.6 6.6 6.5
TOTAL MEAN MAX MIN CFSM IN. AC-FT	130.5 4.21 5.8 3.6 .01 .02 259	348.8 11.6 96 6.6 .04 .04 692	196.2 6.33 6.6 6.2 .02 .02	219.6 7.08 9.1 6.2 .02 .03 436	313.4 11.2 53 6.2 .04 .04 622	175.4 5.66 7.4 4.6 .02 .02 348	170.7 5.69 40 3.3 .02 .02 339	208.3 6.72 72 2.7 .02 .02 413	390.6 13.0 133 1.2 .04 .05 775	23.94 .77 1.2 .45 .002 .00	85.01 2.74 29 .66 .009 .01 169	444.1 14.8 75 3.1 .05 .05 881
CAL YR WTR YR				77.5 7.42	MAX 2880 MAX 133				N 3.28 N .31		070 370	

08159000 ONION CREEK AT U.S. HIGHWAY 183 NEAR AUSTIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical and biochemical analyses: October 1976 to current year. Sediment analyses: October 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		WATER QU	ALITY DAT	A, WATER	YEAR OCTO	BER 1977	O SEPTEM	BER 1978			
		STREAM-	SPE- CIFIC CON-			COLOR			DIS- SOLVED	OXYGEN DEMAND, BIO-	
	*****	FLOW, INSTAN-	DUCT-	Рн	TEMPER-	INUM-	TUR- BID- ITY	DIS- SOLVED	CENT SATUR-	CHEM- ICAL, 5 DAY	
DATE	TIME	(CFS)	(MICRO- MHOS)	(UNITS)	(DEG C)	UNITS)	เม่าบ้า	(MG/L)	ATION)	(MG/L)	
OCT 13	1205	3.6	786	8.1	19.0	2	3	9.3	103	.3	
NOV 08	1200	81	539	7.9	19.0	10	50	7.2	80	1.0	
DEC 14	1500	6.2	738	7.6	15.0	2	5	11.2	114	.4	
JAN 24	1045	6.2	718	7.9	6.5	2	3	12.0	101	.4	
FE8 27	1115	5.4	668	7.8	14.5	2		9.9	100	1.0	
MAR 27	1405	5.0	676	8.1	21.5	3	3	12.0	140	.7	
19	0750	4.0	600	7.6	20.5	0	4	7.5	87	.6	
25 MAY	1305	4.6	544		25.5				W -		
17 JUN	1135	2.7	610	7.7	26.0	5	3	7.8	100	1.1	
08	1345	63	461		28.0				==		
27	1445 1315	.76	396 590	8.0	31.0		2	9.8	132	.7	
JUL 18	1230	.70	597		32.5						
28 AUG	1115	.09	682	7.7	28.0			6.4	84		
30	1400 1413	.76	670 613	8.0	32.0 27.5	0		6.8	94	.6	
SEP 17	1135	2.9									
25	1115	10	650	7.9	25.5	2	•	9.9	124	.8	
DATE	COLI- FORM. TOTAL. TMMED. (COLS. PER 100 ML)	COLI- FORM. FECAL. 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL: KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	
OCT											
13	5600	8	47	270	27	78	19	60	1.6	3.1	
n8	8200	480	1000	210	25	64	11	32	1.0	3.2	
14 JAN	580	31	75	290	35	88	17	47	1.2	3.0	
24 FFB	350	16	28	24.0	0	69	16	55	1.6	2.5	
27 MAR	880	9	58	260	44	80	14	41	1.1	2.5	
27 APR	2800	11	21	240	40	70	15	48	1.4	3.0	
19 25	91	24	300	230	36	72		34	1.0		
1.7 JUN	3400	500	190	200	23	60	13	45	1.4	3.1	
08											
27	180	140	15	190	28	52	15	50	1.6	3.2	
18											
28 AUG				170	1	43	16	76	2.5	3.5	
24	3800	160	K10	150	7	37	15	73	2.6	3.0	
SEP	4					4 4 1	10 12				
25	350	28	48	550	16	67	13	48	1.4	3.1	

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

08159000 ONION CREEK AT U.S. HIGHWAY 183, AUSTIN, TX--Continued

DATE	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULF DIS SOL (MG AS S	ATE RI	DE, S- DLVED	FLUO- RIDE. DIS- SOLVED (MG/L AS F)	SILICA. DIS- SOLVED (MG/L AS SIO2)	SOLID SUM O CONST TUENT DIS SOLV (MG/	F RES	IDS. IDUE 105 6. C. IS- IDED	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITE GENITRA TOTA (MGAS)	N; ATE AL /L
OCT 13	300	0	4	7	78	.4	13	4	47	4	1		.06
NOV							11		07	70	8		.46
08 DEC	220	0		2	35	.3					0		
14 JAN	310	0	5	18	58	.4	7.8		32	4			.63
24 FEB	300	0	5	0	54	.3	7.6	4	02	3	1		.27
27 MAR	260	0	5	2	55	.3	4.1	3	77	6	1		.50
27	240	0	4	8	61	.4	4.8	3	68	4	2		.07
19	230	0	4	0	44	.3	6.7	3	124	5	2		.08
25													
17	550	0	3	16	53	.3	3.6	3	122	6	2		. 05
08													
08										2	0		.01
27	200	0	3	35	66	.4	12	-	30	-	·		•••
18													
28	210	0	2	25	99	.4	16	3	182				.00
AUG	100			12	0.2	4	15	-	47	10	1		.00
30	180	0		22	93	.4	15						
SEP													
17										5	0		.30
25	250	0	3	99	61	.3	12		167	5	U		. 30
	GE NITA TOT (MG	N. G ITE NOZ AL TO	TRO- EN. +NO3 TAL G/L	NITRO- GEN, AMMONIA TOTAL (MG/L	NITR GEN ORGAN TOTA (MG/	MONIA IC ORGAN L TOTAL L (MG/	+ PHO IC PHOF L TO	RUS, C FAL B/L	ARBON, RGANIC TOTAL (MG/L	SEDI MENT SUS- PENC	- DI: - CHAI - SU!	S- RGE •	
DAT	TE AS	N) AS	N)	AS N)	AS N) AS N) A5	P)	AS C)	(MG/	L) (1)	DATI	
OCT									3.5				
13.		.01	07	.01		59 •	60	.00	6.0				
NOV 08		.04	.50	.10		60 .	70	.06	4.3				
DEC 14		.02	.65	.11		31 .	42	.01	3.0				
JAN 24.		.01	.20	.18		22 .	40	.02	3.2				
FF9 27.		.03	.53	.10		20 .	30	.02	3.1				
MAD		.01	.08	.04		24 .	28	.00					
APR													
19	•••	.01	.09	.03		-	30	.00	2.9		35	.43	
MAY	•••												
17.	•••	.00	• 05	.00			54	.01					
0.8.												2.2	
na.							40	.01	3.7		53	8.7	
27. Jil	•••	.00	.01	•00		+0	- 0		5.1				
18.											14	.03	
28.		.00	.00	.00		.60	60	.02	5.7				
AUG		0.1	0.1	.01		.59	60	.02	5.3				
		.01	.01	.01							8	.02	
SEP													
17													
	• • •	• 01	.31	.01		.63	64	.02	6.1				

08159000 ONION CREEK AT U.S. HIGHWAY 183, AUSTIN, TX--Continued

WATER QUALITY DATA: WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

ARSENIC BARIUM CADMIUM MIUM, COPPE DIS- DIS- DIS- DIS- SOLVED SOLVED SOLVED SOLVED TIME (UG/L (UG/L (UG/L (UG/L AS AS) AS BA) AS CD) AS CR) AS C	DIS- VED SOLVED /L (UG/L
ост	W. Salah M.
13 1205 1 200 1 10 FEB	1 20
27 1115 2 100 1 0	1 10
27 1315 3 300 0 0	0 20
AIJG	
24 1400 5 0 0	1 10
MANGA- SELE- LEAD. NESE, MERCURY NIUM, SILVER, DIS- DIS- DIS- DIS- DIS- SOLVED SOLVED SOLVED SOLVED (UG/L (UG/L (UG/L (UG/L (UG/L DATE AS PR) AS MN) AS HG) AS SE) AS AG)	ZINC+ DIS- SOLVED (UG/L AS ZN)
OCT 13 0 10 .0 0	10
FEB	0
JUN	
27 0 10 .0 0 AUG	10
24 0 20 .0 0	10
NAPH-	
THA- LENES. POLY- PCB, CHLOR- PCB, CHLOR. ALDRIN, DANE, DDD, DDE TIME TOTAL TOTAL TOTAL TOTAL TOTAL	
DATE (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L)	
OCT	A
13 1025 .0 .00 .00 .0 .00 .	00.00.00
FER 27 1115 .0 .00 .00 .0 .00 .	00 .00 .01
JON	00.00
AUG	
24 1400 .0 .00 .00 .00 .00	
DI- ENDO- HEPTA- CHLOR ELDRIN SULFAN, ENDRIN, ETHION, CHLOR, EPOXIDE LINDA TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL DATE (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L)	L TOTAL TOTAL
OCT 13 200 200 200 200 200 200 200 200 200	00 .00 .00
FER	
2700 .00 .00 .00 .00 .00	.00 .00
Z700 .00 .00 .00 .00 .00 .00	.00 .00 .00
AUG 2400 .00 .00 .00 .00 .00	.00 .00
METHYL	
TRI- PARA- TOX- TOTAL	2,4,5-T SILVEX.
TOTAL TOTAL TOTAL TOTAL THION TOTAL	TOTAL TOTAL
DATE (UG/L) (UG/L) (UG/L) (UG/L) (UG/L)	(IJG/L) (UG/L)
nCT	0.3
130000 0 .00 .00	.01 .00
270000 0 .00 .00	.01 .00
2700 .00 .00 .00 .00	.00
2400 .00 .00 0 .00 .00	.00

08159150 WILBARGER CREEK NEAR PFLUGERVILLE, TX

LOCATION.--Lat 30°27'16", long 97°36'02", Travis County, Hydrologic Unit 12090301, on left bank downstream from county road (Pfluger Lane), 800 ft (240 m) downstream from Farm Road 685, 1.6 mi (2.6 km) northeast of Pflugerville, and 1.9 mi (3.1 km) downstream from Missouri-Kansas-Texas Railroad.

DRAINAGE AREA .-- 4.61 mi2 (11.9 km2).

PERIOD OF RECORD .-- August 1963 to current year. Water-quality records: Chemical, biochemical, and pesticide analyses: October 1970 to September 1971.

GAGE .-- Water-stage recorder and concrete control. Datum of gage is 670.61 ft (204.402 m) National Geodetic Vertical Datum of 1929.

REMARKS .-- Records good. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--15 years, 1.85 ft3/s (0.052 m3/s), 5.45 in/yr (138 mm/yr), 1,340 acre-ft/yr (1.65 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,760 ft³/s (49.8 m³/s) June 16, 1964, gage height, 6.92 ft (2.109 m); no flow at times most years.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1894, occured in September 1921, stage unknown from information by local residents, discharge, 2,300 ft³/s (65.1 m³/s), from Corps of Engineers publication "Flood Plain Information, Williamson Creek, Austin, Texas".

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 97 ft³/s (2.75 m³/s) May 11, gage height, 2.25 ft (0.686 m), no peak above base of 400 ft³/s (11.3 m³/s); no flow for many days.

		DISCHAR	GE, IN	CUBIC FEET	PER SECON	D, WATER	R YEAR OC'S	TOBER 1977	TO SEP	TEMBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.01	.00	.00	.13	.07	.08	.02	.00	.00	.00
2 3	.00	.00	.00	.00	.00	.13	.06	2.6	.02	.00	.00	.00
3	.00	.00	.00	.00	.00	.13	.06	.93	.07	.00	.00	.00
4	.00	.00	.00	.00	.00	.09	.05	.17	.04	.00	.00	.00
5	.00	.00	.00	.00	.00	.07	.06	.12	.01	.00	.00	.00
6	.00	.00	.00	.00	.00	.26	.07	.13	.11	.00	.00	.00
7	.00	.00	.00	.00	.00	.29	.06	.15	.69	.00	.00	.00
8	.00	.05	.00	.00	.00	.18	.08	.09	.05	.00	.00	.00
9	.00	.04	.00	.00	.00	.17	.09	.07	.03	.00	.00	.00
10	.00	.03	.00	.00	.00	.16	7.5	.41	.02	.00	.00	.00
11	.00	.03	.00	.00	.01	.18	.48	14	.01	.00	.00	.00
12	.00	.02	.00	.00	2.2	.13	.36	.41	.01	.00	.00	.00
13	.00	.02	.00	.00	.14	.15	.29	.24	.01	.00	.00	.00
14	.00	.02	.00	.00	.07	.13	.21	.18	.01	.00	.00	.00
15	.00	.02	.00	.00	.10	.13	.18	.15	.01	.00	.00	.00
16	.00	.02	.00	.00	.09	.13	.18	.13	.01	.00	.00	.00
17	.00	.01	.00	.00	.26	.14	.15	.11	.01	.00	.00	.00
18	.00	.01	.00	.00	.15	.11	.14	.11	.01	.00	.00	.00
19	.00	.01	.00	.00	.15	.11	.11	.09	.01	.00	.00	.00
20	.00	.01	.00	.00	.13	.11	.09	.09	.01	.00	.00	.00
21	.00	.01	.00	.00	.09	.13	.10	.08	.00	.00	.00	.00
22	.00	.00	.00	.00	.09	.13	.11	.08	.00	.00	.00	.00
23	.00	.00	.00	.00	.09	.14	.13	.08	.00	.00	.00	.00
24	.00	.00	.00	.00	.13	.15	.10	.06	.00	.00	.00	.00
25	.00	.00	.00	.00	.15	.10	.10	.06	.00	.00	.00	.00
26	.00	.00	.00	.00	.09	.11	.07	.06	.00	.00	.00	.00
27	.00	.00	.00	.00	.13	.11	.08	.05	.00	.00	.00	.00
28	.00	.00	.00	.00	.13	.10	.06	.04	.00	.00	.00	.00
29	.00	.00	.00	.00		.07	.06	.04	.00	.00	.00	.00
30	.00	.01	.00	.00		.07	.06	.03	.00	.00	.00	.00
31	.00		.00	.00		.07		.02		.00	.00	
TOTAL	.00	.31	.01	.00	4.20	4.11	11.16	20.86	1.16	.00	.00	.00
MEAN	.000	.010	.000	.000	.15	.13	.37	.67	.039	.000	.000	.000
MAX	.00	.05	.01	.00	2.2	.29	7.5	14	.69	.00	.00	.00
MIN	.00	.00	.00	.00	.00	.07	.05	.02	.00	.00	.00	.00
CFSM	.000	.002	.000	.000	.03	.03	.08	.15	.008	.000	.000	.000
IN.	.00	.00	.00	.00	.03	.03	.09	.17	.01	.00	.00	.00
AC-FT	.00	.6	.02	.00	8.3	8.2	22	41	2.3	.00	.00	.00
CAL YR WTR YR		L 658.31 L 41.81	MEAN MEAN				CFSM .39 CFSM .02	IN 5.31 IN .34	AC-FT AC-FT	1310 83		

08159200 COLORADO RIVER AT BASTROP, TX

LOCATION.--Lat 30°06'20", long 97°19'08", Bastrop County, Hydrologic Unit 12090301, on left bank in city park at Bastrop, 400 ft (122 m) upstream from bridge on State Highway 71, 0.3 mi (0.5 km) upstream from Gills Creek, 1.1 mi (1.8 km) downstream from Piney Creek, and at mile 236.8 (381.0 km).

DRAINAGE AREA.--39,400 mi² (102,000 km²), approximately, of which 12,880 mi² (33,360 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March 1960 to current year.

GAGE.--Water-stage recorder. Datum of gage is 307.38 ft (93.689 m) National Geodetic Vertical Datum of 1929. Prior to May 10, 1960, nonrecording gage at same site and datum.

REMARKS.--Water-discharge records good. There are many diversions above stations for irrigation and municipal supply. Regulation is the same as that for Colorado River at Austin. During the water year, 5,802 acre-ft (7.15 hm³) was diverted above this station by pumping into Decker Lake by the city of Austin. During the year, the Lower Colorado River Authority diverted 5,138 acre-ft (6.34 hm³) above this station into Lake Bastrop. National Weather Service gage-height telemeter at station.

AVERAGE DISCHARGE.--18 years, 2,215 ft3/s (62.73 m3/s), 1,605,000 acre-ft/yr (1.98 km3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 79,600 ft 3 /s (2,250 m 3 /s) Oct. 29, 1960, gage height, 34.45 ft (10.500 m); minimum, daily, 75 ft 3 /s (2.12 m 3 /s) Apr. 1, 1964.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1845, 60.3 ft (18.38 m) July 7 or 8, 1869. Flood of June 16, 1935, reached a stage of 57.0 ft (17.37 m), and flood of Dec. 4, 1913, reached a stage of 53.3 ft (16.25 m), from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 6,410 ft³/s (182 m³/s) June 7, gage height, 8.54 ft (2.603 m); minimum daily, 164 ft³/s (4.64 m³/s) Mar. 14.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND.	, WATER	YEAR	OCTOBER	1977	TO	SEPTEMBER	1978
					MFAN	VALUES						

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1210	286	197	215	459	183	1340	1720	2520	2600	1340	2780
2	1240	2460	193	199	465	194	1410	1760	2550	2590	1350	2600
3	1280	3500	181	194	463	186	1400	2310	2500	2600	738	2420
4 5	983 1140	1750 486	190 189	186 187	459 459	180 179	1400 1400 1500	2210 2070	2840 2570	2600 2470	445 1290	2420 2520
6 7	635	331 278	180 945	184 312	464 501	183 1040	1590 1580	2060 2130	2500 4070	2230 1930	1870 1790	2470 2160
8	320	308	742	221	604	580	1690	2120	2270	1920	1960	2510
9	274	596	291	178	382	272	1830	2100	850	1880	1970	2420
10	383	407	217	308	248	215	2010	2130	1550	1920	2040	1950
11	243	280	216	372	216	194	2290	2700	2310	1830	1980	1940
12	234	241	199	441	261	172	1380	2780	2290	1820	2060	1690
13	206	230	291	316	855	183	1460	2440	2270	1720	2060	1150
14	198	221	933	216	581	164	1660	2260	2520	1720	1960	574
15	208	217	984	184	302	175	1860	2310	2840	1740	2060	443
16	186	214	991	195	255	195	1920	2320	2760	1720	2200	519
17	186	205	569	204	253	797	1950	2350	2950	1660	2210	1100
18	180	198	668	269	280	596	1970	2250	2050	1710	2220	1130
19	174	203	703	205	352	625	1900	2300	3130	1700	2170	1130
20	210	210	686	180	240	644	1870	2560	2960	1690	2520	1200
21	206	200	680	226	211	658	1530	2580	2480	1710	2500	1650
	217	221	656	208	213	544	1720	2340	2630	1640	2600	1610
23 24 25	688 421 264	213 204 202	559 554 540	282 220	194 204	769 674	2010 1920	2170 2210	2630 2600	1430 1630	2540 2760	1560 1570
26	249	190	533	187 335	190 187	1060	1820 2000	2330 2390	2600	1620	2580 2990	1720 1460
27 28 29	233 226 224	195 188 192	526 531 543	414 430 438	191 191	881 803 1120	1770 1470 1690	2700 2550 2480	2950 2900 2820	1100 1310 1130	2730 2780 2780	1400 1070 1210
30 31	217 217	201	309 246	459 455		1340 1370	1740	2480 2460	2660	1210 1210	2820 2830	1000
TOTAL	13252	14627	15242	8420	9680	16821	51680	71570	77170	55510	66143	49376
MEAN	427	488	492	272	346	543	1723	2309	2572	1791	2134	1646
MAX	1280	3500	991	459	855	1370	2290	2780	4070	2600	2990	2780
MIN	174	188	180	178	187	164	1340	1720	850	1100	445	443
AC-FT	26290	29010	30230	16700	19200	33360	102500	142000	153100	110100	131200	97940

CAL YR 1977 TOTAL 1114363 MEAN 3053 MAX 39600 MIN 174 AC-FT 2210000 WTR YR 1978 TOTAL 449491 MEAN 1231 MAX 4070 MIN 164 AC-FT 891600

08159200 COLORADO RIVER AT BASTROP, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical and biochemical analyses: October 1967 to September 1973, October 1975 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	DUCT-		TEMPER ATURE (DEG C	- D	GEN, IS- LVED G/L)	OXYGEN+ DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
0CT 11	1330	221	63	4 8.0	22.	0	10.0	118	.4	250	44
16	1015	990	63	6 7.5	15.	5	8.1	84	1.3	240	48
FEB 24	0920	206	65	8 8.1	12.	0	12.8	123	2.6	250	64
18	1118	2390	57	5 8.0	22.	5	7.2	87	.9	220	61
26 AUG	1600	3050	60	0 8.2	27.	5	7.6	97	•5	220	59
22	0920	2340	58	0 7.0	29.	0	6.6	88	.4	190	38
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM DIS- SOLVEC (MG/L AS MG)	SODIUM DIS- SOLVED (MG/L	SORP- TION RATIO	POTAS SIUM DIS- SOLVE (MG/L AS K)	BIC BON D (M	ATE G/L AS	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE. DIS- SOLVED (MG/L AS CL)	FLUO- RIDE: DIS- SOLVED (MG/L AS F)
ост											
11 DEC	62	23	38	1.0	3.	7	250	0	43	56	• 3
16 FEB	60	23	36	1.0	4.	0	240	0	48	59	• 4
24 APR	70	19	44	1.2	4.	7	230	0	63	62	•5
18 JUN	49	23	37	1.1	3.	9	190	0	40	63	•3
26 AUG	48	25	39	1.1	3.	9	200	0	46	66	•3
22	43	21	34	1.1	3.	8	190	0	38	58	•2
	DIS SOI (MC	ICA, SUM S- COM LVED TUE G/L [S SC	NSTI- ENTS, NI DIS- T	GEN, C TRATE NIT OTAL TO MG/L (M	GEN, TRITE NO DTAL T MG/L (ITRO- GEN, 2+NO3 OTAL MG/L	NITR GEN AMMON TOTA (MG/	GE IA ORGA L TOT L (MG	NIC ORGA AL TOT /L (MG	AM- A + PH NIC PHO AL TO /L (M	OS- RUS, TAL G/L
DA		05) (1	AG/L) A	S N) AS	5 N) A	S N)	AS N) AS	N) AS	N) AS	P)
0CT 11 DEC		9.5	359	.23	•01	.24		00	.44	.44	•18
		10	359	1.3	• 09	1.4		23	.43	.66	•50
		2.9	379	.49	.05	•54		15	. 79	•94	.83
		8.2	318	.40	.03	.43		08	.92 1	• 0	.24
		6.7	334	.33	.01	.34		00	.40	.40	.13
	•••	8.9	300	.32	•02	.34		03	.65	.68	.10

08160800 REDGATE CREEK NEAR COLUMBUS, TX

LOCATION.--Lat 29°47'56", long 96°31'55", Colorado County, Hydrologic Unit 12090301, on left bank 68 ft (21 m) downstream from bridge on Farm Road 109, 1.8 mi (2.9 km) upstream from Cummins Creek, and 7.0 mi (11.3 km) north of Columbus.

DRAINAGE AREA .-- 17.3 mi2 (44.8 km2).

PERIOD OF RECORD .-- April 1962 to current year.

REVISED RECORDS .-- WSP 2122: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 200.82 ft (61.210 m) National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1975, at datum 10.00 ft (3.048 m) higher.

REMARKS.--Records fair. No known diversion above station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE .--16 years, 5.82 ft3/s (0.165 m3/s), 4.57 in/yr (116 mm/yr), 4,220 acre-ft/yr (5.20 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,200 ft³/s (119 m³/s) Oct. 23, 1970, gage height, 24.60 ft (7.498 m), from rating curve extended above 2,170 ft³/s (61.5 m³/s) on basis of slope-area measurement of peak flow of Jan. 22, 1965; no flow for many days.

EXTREMES OUTSIDE PERIOD OF RECORD.---Maximum stage since at least 1860, about 33.4 ft (10.18 m) in late June or early July 1940, from information by Texas Department of Highways and Public Transportation and local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,990 ft 3 /s (56.4 m 3 /s) Sept. 12, gage height, 19.21 ft (5.855 m), no other peak above base of 600 ft 3 /s (17.0 m 3 /s); minimum, 0.03 ft 3 /s (0.001 m 3 /s) Aug. 19.

		DISCHAR	RGE, IN C	UBIC FEET	PER SEC	OND, WATER	YEAR OCTO	DBER 1977	TO SEPTEM	BER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.22	7.2	.92	.99	4.2	1.4	1.0	.68	.59	1.3	.66	.40
2	.25	1.3	.86	1.1	1.8	1.4	1.0	.69	.88	.42	.53	.30
2 3 4	.39	.46	.82	.97	1.6	1.4	1.0	1.6	1.2	.39	.33	.16
	.20	.42	.82	.97	1.4	1.3	1.0	.88	.98	.36	.24	1.7
5	.18	.42	.86	.97	1.3	1.3	.97	.76	.76	.30	.22	.39
6	.22	.42	.71	.97	1.3	1.4	.97	.72	1.1	.30	.19	.20
7	.23	.42	.69	.93	12	1.7	.97	.72	17	.27	.18	.19
8	.22	8.8	.81	.97	18	1.4	.97	.72	.99	.27	.16	.21
9	.20	1.0	.81	.82	3.0	1.3	1.0	.68	.78	.27	.14	.20
10	.17	.53	.77	.82	2.0	1.3	1.1	.59	.72	.25	.12	2.2
11	.39	.46	.77	14	1.8	1.3	1.1	.76	.71	.25	.11	5.1
12	.21	.45	.77	3.2	34	1.2	1.2	.76	.66	.27	.10	387
13	.19	.45	1.2	1.3	5.8	1.3	1.2	.67	1.1	.25	.08	168
14	.28	.45	.93	1.1	2.6	1.4	1.0	.55	1.1	.25	.07	17
15	.20	.48	.79	1.0	2.4	1.2	.97	.57	.72	.25	.06	5.6
16	.19	.52	.77	33	2.3	1.1	.97	.61	.72	.22	.05	3.1
17	.17	.52	.77	2.7	9.2	1.1	.99	.63	.66	.20	.05	2.2
18	.18	.54	.77	52	4.0	1.1	1.0	.63	.79	.22	.04	1.7
19	.18	.63	.77	11	2.6	1.1	.92	1.9	.80	.22	.04	1.5
20	.18	.63	.73	2.8	2.2	1.1	.82	1.3	.71	.33	.04	1.4
21	.18	.61	.68	2.1	1.8	1.1	.85	.77	.63	.39	.05	1.3
22	.29	.55	.68	2.0	1.7	1.1	.89	.77	.63	.27	.05	2.9
23	.38	.59	.76	2.1	1.6	1.1	.81	.77	.62	.39	.05	1.3
24	.87	.63	.82	1.8	1.6	2.1		.76	.56	.63	.05	1.2
25	.42	.63	.79	1.7	1.6	1.2	.65	.72	.55	.24	.05	1.1
26	.32	.56	.72	1.6	1.6	1.0	.59	.73	.54	.15	.05	.92
27	.30	.55	.72	1.4	1.5	1.0	.59	.76	.50	.13	.04	.92
28	.30	.55	.86	1.3	1.5	1.0	.59	.72	.54	.15	.04	.92
29 30	.30	4.7	1.2	1.3		1.0	.59	.68	.53	.20	.05	.90
31	.30	1.3	1.0	1.3		1.0	.65	.67	3.9	.91	.05	.05
TOTAL	8.41	36.77	25.54	150.01	100 4		27.07	24.40	41.97	10.52	4.18	610.86
MEAN		1.23			126.4	38.4			1.40	.34	.13	20.4
MAX	.27		.82	4.84	4.51	1.24	.90	.79			.66	387
	.87 .17	8.8	1.2	52	34	2.1	1.2	1.9	17	1.3	.04	.16
MIN CFSM		.42	.68	.82	1.3	1.0	.59	.55	.50			
	.02	.07	.05	.28	.26	.07	.05	.05	.08	.02	.008	1.18
IN.	.02	.08	.05	.32	.27	.08	.06	.05	.09	.02	.01	1.31
AC-FT	17	73	51	298	251	76	5.4	48	83	21	8.3	1210
CAL YR WTR YR					AX 477	MIN .17 MIN .04	CFSM .36 CFSM .18					
							3. 4					

245

08161000 COLORADO RIVER AT COLUMBUS, TX

LOCATION.--Lat 29°42'22", long 96°32'12", Colorado County, Hydrologic Unit 12090302, near right bank at downstream side of pier of bridge on U.S. Highway 90 at eastern edge of Columbus, 340 ft (104 m) downstream from Texas and New Orleans Railroad Co. bridge, 2.6 mi (4.2 km) downstream from Cummins Creek, and at mile 135.1 (217.4 km).

DRAINAGE AREA.--41,070 mi² (106,370 km²), approximately, of which 12,880 mi² (33,360 km²) probably is noncontributing; 41,170 mi² (106,630 km²), approximately, at site "near Eagle Lake".

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--January 1903 to December 1911 (gage heights only), May 1916 to current year. Discharge records for 1902-11, published in MSP 84, 99, 132, 174, 210, 288, and 308, have been found to be unreliable and should not be used. Records collected at site 23 mi (37 km) downstream October 1930 to May 1939, published as "near Eagle Lake". Gage-height records collected in this vicinity since 1903 are contained in reports of the National Weather Service.

REVISED RECORDS.--WSP 1342: Drainage area. WSP 1562: 1920-21(M), 1922. See also PERIOD OF RECORD.

GAGE.--Water-stage recorder. Datum of gage is 155.52 ft (47.402 m) National Geodetic Vertical Datum of 1929. Prior to May 1, 1919, various nonrecording gages at sites in the immediate vicinity at datum 3.00 ft (0.914 m) lower. May 1, 1919, to Nov. 23, 1930, water-stage recorder at site about 300 ft (91 m) downstream at datum 3.00 ft (0.914 m) lower. Sept. 17, 1930, to June 12, 1939 (Oct. 1, 1930, to May 31, 1939, used herein), water-stage recorder at site 23 mi (37 km) downstream at different datum. May 17 to Nov. 14, 1939, nonrecording gage at present site and datum.

REMARKS.--Water-discharge records good. At times, low-flow release from Lake Travis (station 08154500) are made for generation of electric power and (or) to fulfill downstream water contracts. The Lower Colorado River Authority reported that 51,140 acre-ft (63.1 hm²) was diverted from the river to Cedar Creek Reservoir during the current year. This reservoir is located 10 mi (16 km) north of the river and 3.5 mi (5.6 km) west of Fayettville. Many other diversions above station for irrigation and municipal supply.

AVERAGE DISCHARGE.--20 years (water years 1917-36) unregulated, 3,809 ft³/s (107.9 m³/s), 2,760,000 acre-ft/yr (3.40 km²/yr); 42 years (water years 1937-78) regulated, 2,969 ft³/s (84.08 m³/s), 2,151,000 acre-ft/yr (2.65 km³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 190,000 ft³/s (5,380 m³/s) June 18, 1935, gage height, 38.5 ft (11.73 m), present site and datum, computed on basis of records for station near Eagle Lake; minimum, 93 ft³/s (2.63 m³/s) Sept. 1, 1918.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1852, 41.6 ft (12.68 m), present datum, in July 1869 and Dec. 6, 1913, from information by local resident. River divided each time and left Columbus on an island.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 14,400 ft 3 /s (408 m 3 /s) Sept. 14, gage height, 12.14 ft (3.700 m); minimum daily, 148 ft 3 /s (4.19 m 3 /s) Mar. 18.

		DISCHA	ARGE, IN	CUBIC FEET	PER SEC	OND, WATER	YEAR OC	TOBER 197	7 TO SEPT	EMBER 197	8	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	967	258	295	671	533	216	1310	1500	2450	2680	1250	2610
2	1020	557	258	512	547	220	1360	1540	2480	2660	1340	2780
2 3 4	1030	474	251	404	532	215	1360	1600	2590	2630	1450	2590
Ä	1030	2270	249	337	526	200	1420	1660	2670	2620	1310	2410
5											1070	2310
9	1050	2850	243	300	532	192	1400	2240	2660	2610	10/0	2310
6 7	928	1390	249	266	526	214	1450	2120	2790	2550	876	2390
7	970	862	192	254	555	254	1510	1960	4100	2420	1140	2360
8	838	756	204	218	2370	273	1580	2000	5270	2110	1580	2260
9	826	799	417	192	2500	707	1620	2040	5750	1890	1610	2090
10	722	692	870	253	1110	814	1700	2010	2320	1850	1760	2360
1												
11	625	674	641	376	819	608	1890	1990	1280	1800	1800	2440
12	584	704	486	600	700	456	2120	2320	1700	1820	1840	6540
13	550	587	405	707	642	373	2050	2830	2390	1740	1820	6180
14	475	498	441	653	697	312	1260	2690	2410	1700	1870	9090
15	430	438	481	629	748	253	1310	2360	2380	1590	1870	7270
16	371	406	663	550	000	200	1430	2240	2760	1570	1810	3410
17				560	820				2830	1600	1880	1390
	322	378	994	2350	651	179	1690	2260				
18	300	350	1010	1290	792	148	1770	2300	2840	1580	2000	1000
19	273	332	889	1660	997	238	1800	2250	2950	1550	2010	1160
20	240	325	785	988	665	641	1790	2230	2290	1670	2010	1,200
21	218	317	830	668	543	663	1760	2270	3180	1690	2070	1500
22	204	307	833	475	505	687	1750	2780	2640	1680	2300	2860
23	227	281	845	371	397	721	1370	2570	2590	1760	2320	1640
24	285	273	859	319	334	737	1570	2320	2670	1660	2320	1550
25	362	280	766	308	315	769	1840	2090	2660	1460	2350	1440
23	302	200	700	300	315	709	1040	2090	2000	1400	2330	1440
26	558	277	730	293	267	793	1760	2170	2600	1630	2460	1450
27	428	265	725	274	238	768	1720	2300	2630	1560	2440	1510
28	322	294	719	188	241	951	1790	2420	2670	1420	2570	1370
29	270	380	735	243		942	1580	2650	2910	1290	2480	1300
30	235	341	735	432		937	1320	2530	3110	1320	2560	1140
31	210		724	472		1070		2450		1240	2680	
TOTAL	16870	18615	18524	17063	20102	15751	40000	60600	84570	57350	58846	79600
MEAN	544			17263	20102	15751	48280	68690				2653
		621	598	557	718	508	1609	2216	2819	1850	1898	
MAX	1050	2850	1010	2350	2500	1070	2120	2830	5750	2680	2680	9090
MIN	204	258	192	188	238	148	1260	1500	1280	1240	876	1000
AC-FT	33460	36920	36740	34240	39870	31240	95760	136200	167700	113800	116700	157900

CAL YR 1977 TOTAL WTR YR 1978 TOTAL 3590 1382 MIN 192 MIN 148 2599000 1310519 MEAN 62000 MEAN

08161000 COLORADO RIVER AT COLUMBUS, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1967 to September 1971. Chemical and biochemical analyses: February 1968 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		WAI	ER GU	ALI	T UAI	A, W	AIER	ICAR	ocio	DC.K	1911	10 3	CFICM	DEN	1910				
			EAM-	CI	FIC ON- UCT-					OXY	SEN,	50	GEN. IS- LVED ER-	DEN	GEN MAND, IO- HEM-	H	ARD- ESS	NE	RD-
			TAN-		NCE		PH	TEMP	ER-		IS-	C	ENT	I	CAL	(MG/L	BON	MATE
	TIME		EOUS		CRO-			ATU			VED		TUR-		YAC		AS	(1	IG/L
DATE			FS)		105)	(UN	ITS)	IDEG			3/L)		ION)		3/L)	C	AC03)	CA	(CO3)
NOV																			
30	0845	34	8		679		7.8	1	4.0		8.6		86		.8		280		46
JAN	00.5	•									•••								
23	1530	37	1		490		7.8		6.0		11.0		91		2.0		180		36
MAR 20	1305	64	1		684		8.5	-	0.0		9.0		102		2.2		230		44
MAY	1305	04	•		004		0.5		.0.0		***		102						100
17 AUG	1420	231	0		600		7.9	2	8.0		7.6		97		1.0		210		45
08 SEP	1650	173	0		640		8.0	3	80.0		6.8		91		2.2	100	230		50
27	0750	155	0	- 10	560		7.9	2	25.0		8.5		105		.8		190		38
	CALCIUM		GNE-	SOF	DIUM,	S	MUI CO		AS-	BIC	AP-			SUI	FATE		HLO-		UO-
	DIS-		IS-		IS-	S	RP-		S-	BON		CA	R-		IS-		IS-		IS-
	SOLVED		LVED		VED		TION		VED		G/L		ATE		DLVED	S	OLVED		LVED
	(MG/L	(M	G/L	(1	MG/L	RA	OITA	(MG	J/L	1	AS	(M	G/L		MG/L		MG/L		16/L
DATE	AS CA)	AS	MG)	AS	S NA)			AS	K)	HC	03)	AS	C03)	AS	504)	A	S CL)	AS	5 F)
NOV																			
30	79		19		36		.9		3.9		280		0		45		46		• 3
JAN													•		24		40		2
23	52		11		26		.9		3.9		170		0		36		40		•2
20	62		19		47		1.3		4.3		230		0		73		58		.4
MAY																	58		.3
17	49		21		42		1.3		4.2		200		0		44		36		• 3
08 SEP	56		22		41		1.2		4.0		550		0		45		68		.3
27	48		18		32		1.0		4.3		190		0		36		58		.3
	SILI		SOL I		NII	RO-	NIT	80-	NIT	R0-	NII	R0-	NIT	R0-		TRO-			
	DIS		CONS			N.	GE		GE			N.		N.	MON	IA +		05-	
		VED	TUEN		NITE		NITR		N02+		AMMO	NIA	ORGA	NIC		ANIC		RUS,	
		J/L		S-	TO		TOT	AL	TOT		TOT		TOT			TAL		TAL	
	AS			VED	(MC		(MG		(MG		(MG		(MG			G/L		G/L	
ŊΔ	TE SIC	15)	(MG	/L)	AS	N)	AS	N)	AS	N)	AS	N)	AS	N)	AS	N)	AS	P)	
NOV																			
		10		377		.97		.03	1	• 0		.09		.30		.39		.14	
JAN		0		263		.77		.02		.79		.01		.46		.47		.23	
MAR		. 0		200		• • •		• • •											
	•••	2.1		379		.41		.05		.46		.03		.53		.56	M.	.20	
MAY 17	•••	9.4		327		.64		.01		.65		.03		.72		.75	-	.27	
AliG																			
	•••	4.9		350		.17		.01		.18		.02		.61		.63		.14	
SEP 27	•••	7.9		298		.58		.01		.59		.02		.76		.78	Part !	.21	
6.1								-				-							

247

08162000 COLORADO RIVER AT WHARTON,TX (National stream-quality accounting and radiochemical networks)

LOCATION.--Lat 29°18'32", long 96°06'13", Wharton County, Hydrologic Unit 12090302, near left bank at downstream side of downstream bridge on U.S. Highway 59 in Wharton, 1,100 ft (335 m) downstream from Texas and New Orleans Railroad Co. bridge, 12 mi (19 km) upstream from Jones Creek, and at mile 66.6 (107.2 km).

DRAINAGE AREA.--41,380 mi² (107,170 km²), approximately, of which 12,880 mi² (33.360 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1916 to August 1918 (intermittent periods), March 1919 to September 1925, July and August 1938 (flood discharge measurements only), October 1938 to current year. June to November 1901 and May to September 1902, daily records published in U.S. Department of Agriculture, Office of Experiment Stations, Bulletin Nos. 119 and 133. Gage-height records collected in this vicinity since 1935 are contained in reports of the National Weather Service.

REVISED RECORDS .-- WSP 878: 1938(M). WSP 1342: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 62.42 ft (19.026 m) National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1938, various types of recording and nonrecording gages 800 ft (244 m) upstream at different datum. Oct. 1, 1938, to June 1, 1966, nonrecording gage 100 ft (30 m) upstream at datum 3.00 ft (0.914 m) higher. June 1, 1966, to Sept. 30, 1975, water-stage recorder at present site at datum 3.00 ft (0.914 m) higher.

REMARKS.--Water-discharge records fair. Many diversions above station for irrigation, municipal supply, cooling water for thermal-electric powerplant, and oilfield operations. For statement regarding upstream regulation, see station 08161000.

AVERAGE DISCHARGE.--5 years (water years 1920-25) unregulated, 3,680 ft³/s (104.2 m³/s), 2,666,000 acre-ft/yr (3.29 km³/yr); 40 years (water years 1939-78) regulated, 2,739 ft³/s (77.57 m³/s), 1,984,000 acre-ft/yr (2.45 km³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 100,000 ft³/s (2,830 m³/s) July 3, 1940, gage height, 38.99 ft (11.884 m); no flow Aug. 6, 1925 (result of pumping).

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1869, 41.9 ft (12.77 m) Dec. 8, 1913, present datum, from information by local residents; below Wharton floodwater combined with floodwater of Brazos River. Flood of about July 12, 1869, reached about same height. Flood of June 20, 1935, reached to stage of 41.2 ft (12.56 m), present datum, furnished by National Weather Service, discharge, 159,000 ft³/s (4,500 m³/s), from rating curve defined by current-meter measurements below 145,000 ft³/s (4,110 m³/s). Flood of July 30, 1938, reached a stage of 40.4 ft (12.31 m), present datum, observed by Geological Survey engineers, discharge, 145,000 ft³/s (4,110 m³/s).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 20,300 ft³/s (575 m³/s) Sept. 14, gage height, 17.70 ft (5.395 m); minimum daily, 308 ft3/s (8.72 m3/s) Mar. 20.

		DISCHA	ARGE, IN	CUBIC FEET		OND, WATER		TOBER 197	7 TO SEPTE	MBER 1978	3	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	700	552	470	662	568	429	625	916	1550	1950	1020	1580
	732	700	422	662	592	421	916	868	1660	1830	952	1590
3	722	646	388	587	615	407	991	859	1780	1800	970	1740
2 3 4	838	768	370	507	625	410	922	1110	2190	1780	979	1770
5	931	1370	359	470	611	407	1010	1060	2340	1750	927	1580
	,,,	10,0	333	47.0	011	407	1010	1000	2340	1,30	327	1000
6	1090	2810	351	438	611	398	1030	1210	2130	1730	718	1540
7	1090	1970	341	415	606	399	1060	1360	2480	1730	604	1690
8	1090	1290	345	388	760	507	1070	1130	3740	1650	540	1570
9	959	1000	331	372	1810	474	1220	981	4780	1410	792	1510
10	855	872	328	352	2760	459	1280	1010	5110	1160	926	1360
				7.7			11222					
11	771	810	584	384	1620	874	1350	957	2580	1230	935	1900
12	727	694	713	493	1230	743	1380	941	1410	1190	929	3880
13	694	705	590	615	1080	591	1650	975	1020	1200	967	12200
14	662	662	558	625	1130	497	1830	1450	1380	1150	872	15400
15	615	581	470	652	843	437	1330	1490	1400	1210	914	13400
	010	501	470	032	045	437	1550	1450	2100			
16	582	528	484	872	843	395	1140	1260	1320	1060	915	7790
17	563	493	488	1130	1170	365	1350	1040	1500	1060	852	4350
18	535	474	760	2020	995	337	1470	1080	1710	1130	879	2460
19	512	466	931	3020	919	323	1500	1050	1710	1160	906	1700
20	502	440	912	2640	1190	308	1180	1090	1840	1140	962	1490
			5.23									
21	488	441	754	1620	919	397	1050	1040	1370	1210	971	1410
22	498	429	727	1100	705	550	1060	1100	2040	1270	994	1290
23	493	411	754	815	635	551	1440	1410	1840	1270	1210	2350
24	521	404	771	705	585	583	1380	1380	1520	1330	1220	1440
25	507	394	782	625	525	594	1310	1280	1600	1330	1260	1290
		200			1						1000	1070
26	521	388	754	596	493	552	1590	1070	1580	1170	1230	959
27	611	387	684	554	472	582	1520	945	1600	1220	1340	
28 29	688	384	668	526	447	496	1360	1050	1550	1280	1290	1070
29	590	397	673	488		484	1410	1150	1680	1170	1480	973
30	531	438	678	460		624	1140	1600	1890	1030	1420	934
31	502		678	507		606		1710		956	1510	
TOTAL	21120	21904	18118	25300	25359	15200	37564	35572	60300	41556	31484	93286
MEAN	681	730	584	816	906	490	1252	1147	2010	1341	1016	3110
MAX	1090	2810	931	3020	2760	874	1830	1710	5110	1950	1510	15400
MIN	488	384	328	352			625	859	1020	956	540	934
AC-FT	41890	43450			447	308		70560	119600	82430	62450	185000
AC-FI	41890	43450	35940	50180	50300	30150	74510	70500	113000	02430	02430	103000

3339 2417000 52300 CAL YR 1977 TOTAL WTR YR 1978 TOTAL 1218634 MIN 328 MIN 308 MEAN 426763 1169 MAX 15400 MEAN

08162000 COLORADO RIVER AT WHARTON, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: April 1944 to current year. Chemical and biochemical analyses: January 1968 to current year. Pesticide analyses: February 1968 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: April 1944 to current year. WATER TEMPERATURES: October 1945 to September 1948, March 1950 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 904 micromhos Oct. 29, 1963; minimum daily, 146 micromhos Sept. 27, 1957.
WATER TEMPERATURES: Maximum daily, 35.0°C July 26, 1954; minimum daily, 2.0°C Dec. 23, 1963, Jan. 14, 1964.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 751 micromhos Dec. 13; minimum daily, 210 micromhos Sept. 15.
WATER TEMPERATURES: Maximum daily, 32.0°C Aug. 15; minimum daily, 3.0°C Jan. 21.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	TIME	STREA FLOW INSTA	CI AM- CO W, DU AN- AN DUS (MI	FIC N- ICT- ICE CRO-			EMPER-	COLOR (PLAT- INUM- COBALT	TUR- RID- ITY	OXYGEN DIS- SOLVE	50 1. (F	DIS- I DLVED PER- CENT ATUR- !	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY	COLI- FORM. TOTAL. IMMED. (COLS. PER	COLI- FORM. FECAL. 0.7 UM-MF (COLS./
DATE		(CFS	5) MH	105)	(UN	ITS) (DEG C)	UNITS)	(JTU)	(MG/L	.) AT	(NOI	(MG/L)	100 ML)	100 ML)
ОСТ															
25	1300	507		688		8.1	23.0	50	50	8.	6	102	.7	2900	38
NOV 30	1025	438		689		8.3	14.0	10	10	9.	3	93	.8	4000	150
DEC								10		10	•	94	1.0	30000	2200
28	0930	641		686		8.4	11.5	10	10	10.	. 0				
23	1230	821		340		8.1	5.0	100	100	11.	,6	94	2.1	3100	780
FEB 07	1030	625		681		8.2	7.5	10	20	10.	2	88	1.8	500	10
MAR				684				10	5	10	ń	115	1.2	900	60
20 APR	1545	300		004		8.2	21.0	10	,	10.	. 0	115	1.2		
11	0850	1310		617		8.1	18.5	5	80	.8	.2	90	1.7	8300	240
MAY 17	0915	995		620		8.2	26.0	5	80	7.	.2	90	.9	25000	38
JUN	0900	1.00		500		7.9	20 6	30	100	7.	4	96	1.0	32000	250
14 JUL	0900	1400		500		1.9	28.5	30	100	1					
19 AUG	0835	1110		640		8.5	30.0	20	20	7.	. 0	93	.8	6700	26
09	1000	776		620		7.9	27.5	20	20	7.	4	95	33	8700	44
SEP 27	1100	1020		540		8.0	24.5	20	30	a	.3	101	2.5		64
21				340		0.0		20	30		The sector	N. Santa	1710		The state of
55	FE KF (CO	REP- OCCI CAL. AGAR LS. ER	HARD- NESS (MG/L AS	NESS NONC BONA (MG	S. AR- TE /L	CALCIU DIS- SOLVE (MG/L	D SOL	JM. SODIU 5- DIS- /ED SOLVE /L (MG/	M. SOF D TI L RAI	ID- IP- ION S	SIUM, DIS- SOLVED	BICAR- BONATI (MG/I	E CAR L BONA (MG	- DI TE SO /L (M	LVED G/L
DATE	100	ML)	CACO3)	CAC	03)	AS CA) AS 1	(G) AS N	A)	,	S K)	нсоз) AS C	03) AS	504)
0CT 25		48	270		28	70	23	2 34		.9	3.5	2	90	0	34
30		150	280		44	80	2	37		1.0	3.7	2	90	0	44
DEC 28		6600	260		41	69	2	36		1.0	3.7	2	70	0	43
JAN															
23 FEB		850	120		19	37		5.1 19		.8	3.8	1	20	0	55
07		36	250		33	69	14	39		1.1	3.7	- 2	60	0	45
MAR 20		85	250		42	74	1	7 48		1.3	4.0	2	60	0	51
APR															4.2
MAY		34	550		59	53	2	2 34		1.1	4.3	2	00		42
17		65	550		64	50	2:	3 41		1.2	4.3	1	90	0	52
JUN 14		190	180	1.7	52	47	10	5 28		.9	4.3	1	60	0	36
JUL		5.0	220		47	49	2	4 40		1.2	4.0	2	10	1	44
19		50				49									
09 SEP		50	550		42	56	2	37		1.1	3.8	2:	20	0	40
27		56	180		27	47	10	32		1.0	4.5	1	90	0	34

08162000 COLORADO RIVER AT WHARTON, TX--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	CHLO- RIDE. DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS. RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS. SUM OF CONSTI- TUENTS. DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C. SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN: NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN. NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN+ AMMONIA TOTAL (MG/L AS N)
0CT 25	49	.3	10	362	370	31	1	.14	.01	.15	.04
30 DEC	48	.3	10	370	386	25	8	.72	.03	.75	.08
28	57	.3	7.4	381	372	17	4	.55	•00	•55	.03
23 FEB	26	•5	8.8	192	182	158	42	.36	.01	.37	.08
07	56	.4	4.3	350	363	29	9	1.2	.01	1.2	.04
20	61	.3	1.3	369	385	12	9	.04	.01	.05	.01
11 MAY	65	.3	12	344	336	129	33	.30	•03	.33	.05
17 JUN	61	.3	9.4	340	335	156	36	.63	.01	.64	.01
14 JUL	47	.3	11	270	269	223	45	.30	.01	.31	.01
19 AUG	70	.3	6.7	337	343	66	26	.08	•00	.08	.01
09 SEP	65	•3	5.8	328	336	33	10	.04	.00	.04	.00
27	53	.3	10	293	291	66	30	.56	•02	.58	.03
DATE	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN.AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN+AM- MONIA + ORGANIC DIS- (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	CARBON+ ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
ОСТ							-		22	30	94
25 NOV	•27	.31	.32	.07	•02	2.4			40	47	35
30	.36	.44	.45	.10	.06		3.1	.3		38	58
28	•42	.45	.68	.19	.22	7.6	3.1		131	290	93
23 FEB	1.2	1.3	.60	.25	.23		1		412	695	46
07 MAR			.46	.28		3.0	3.7	.2	- 127	4.0	84
20 APR	.32	.33	.33	.18					117	414	89
MAY	•71	.76	.61	.41						408	97
17	3.3	3.3	1.5				4.1	1.4		782	87
JUL 14	•96	.97	.54	.21					35	105	98
19 AUG	.54	.55	.37						44	92	62
09 SEP 27	.48	.48	.52					.2			90
	•00										

08162000 COLORADO RIVER AT WHARTON, TX--Continued

WATER GUALITY DATA. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	DATE	1	IMF	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSEN DIS SOLV (UG/ AS A	IC TO - RE En ER L (U	IUM. TAL COV- ABLE G/L BA)	BARIUM. SUS- PENDED RECOV- ERABLE (UG/L AS BA)	BARI	DM. T R ED E	DMIUM OTAL ECOV- RABLE UG/L S CD)	CADMIL SUS- PENDI RECOV ERABI (UG/I	ED CA	DMIUM DIS- OLVED UG/L S CD)	
	DEC 28	0	930	2	0		3	0	0		100	0		0	0	181
	MAR											1		0	1	
	20	1	545	4	1		3	100	0		100					
	14	0	900	3	0		4	300	100		200	0		0	1	
	SFP 27	1	100	4			3	100	0	,	100	2		1	<1	
		MI TO RE FR	RO- UM. TAL COV- ABLE	CHRO- MIUM. SUS- PENDED RECOV. (UG/L	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBAL TOTA RECO ERAH (UG/ AS C	T+ SU L PEN L PEN LE EF	IALT. IS- IDED ICOV- IABLE IG/L	COBALT, DIS- SOLVED (UG/L AS CO)	REC ERA (UG	ER. S AL P OV- R BLE E	PPER. SUS- PENDED RECOV- RABLE SUG/L AS CU)	COPPE DIS- SOLV (UG/ AS C	R. T ED E	RON. OTAL ECOV- RABLE UG/L S FE)	
	DATE	Δ,	CR)	AS CR)	AS CRI	A5 C	.07 83		43 607							
	28		10	0	20		0	0	()	9	8		1	250	
	70		0	0	0		0	0	(0	6	5		4	90	
	14		20	0	50		5	1	1	1	7	5		2	3900	
	27		10	10	n		3	1	- 7	2	47	41		6	2000	
	DATE	PE RE FF	NON. SUS- ENDED COV- PABLE JG/L	IRON. DIS- SOLVED (UG/L AS FF)	LEAD; TOTAL HECOV- ERABLE (UG/L AS PR)	PENE RECC ERAF (UG/ AS F	5- DEO LE DV- (BLE SO /L ((EAD. DIS- DLVED JG/L S PR)	MANGA- NESE + TOTAL RECOV- ERABLE (UG/L AS MN	NES SU - PEN E REC	E. N S- N DED OV. S	AANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCU TOTA RECO ERAB (UG/ AS H	RY L F V- H LE E	RCURY SUS- ENDED ECOV- RABLE UG/L IS HG)	
	DEC 28			16	2		2	0	3	0	30	0		.1	.1	
	20			10	2		2	0	3	0	0	40		.0	.0	
	JIIN 14		3900	20	43		43	0	16	0	160	0		•1	•1	
	SFP 27		2000	<10	20	1	20	0	9	0	90	3		.2	.2	
	DATE	91	RCURY DIS- DLVED UG/L S HG)	SELE- NIUM. TOTAL (UG/L AS SE)	SFLE- NIUM, SUS- PENDEC TOTAL (UG/L AS SEI	SOL	M. TO 5- RI VEO E	LVEH, OTAL ECOV- RABLE UG/L S AG)	SILVER SUS- PENDE RECOV ERABLI (UG/L AS AG	D SILV	S- I	ZINC. TOTAL RECOV- ERABLE (UG/L AS ZN)	PEND RECC ERAB (UG/ AS 2	DED A	ZINC, DIS- GOLVEN (UG/L	
		-	,,	43 367	7.0 50				7100							
	28		.0	4			0	0		0	0	50		10		the .
	20		.0	0			0	0		0	0	10		0	10	
	14	•	• 0	0)	0	0		0	0	30		30	O	
	27	•	• 0	TO	CB. TAL LE	PH- HA- NES+	0		RIN. TAL BOT- A	O TRA-	O ATRA- ZINE. TOTAL IN BOT	- CH		CHLOR- DANE + TOTAL N BOT-		
DAT		TTME	TOTA (UGA	AL TE	RIAL TO		TOTAL (UG/L)	TOM	T JAIS	INE+ OTAL UG/L)	TERIA (UG/KG	L TO	TAL	TERIAL	. TO	DD. TAL IG/L)
30.	••	1025		ND			ND		ND	ND	N	D	ND	N)	ND
28.		0930		.0	0	.00	.00		.0		-	-	.0	i	0	.00
97.		1030		ND			ND				-	-	NO	-		ND
MAR 20.		1545		.0	0	.00	•00		.0		-	-	.0		0	.00
17.	••	0915		ND			ND				-	-	ND	-		ND
14.	••	0900		.0	0	.00	.00		.0		-	-	.0		0	.00
09.	••	1000		.0	0	.00	•00		.0		-	-	.0		0	.00

OB162000 COLORADO RIVER AT WHARTON, TX--Continued
WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	DDD+ TOTAL IN BOT- TOM MA-	DOE.	DDE . TOTAL IN HOT- TOM MA-	DDT.	DDT. TOTAL IN HOT- TOM MA-	DI- AZINON,	DI- AZINON, TOTAL IN BOT- TOM MA-	DI- ELDRIN	DI- ELDRIN. TOTAL IN BOT- TOM MA- TERIAL	ENDO- SULFAN, TOTAL	ENDRIN.
DATE	(UG/KG)	(UG/L)	(UG/KG)	(UG/L)	(UG/KG)	(UG/L)	(UG/KG)	(UG/L)	(UG/KG)	(UG/L)	(UG/L)
30	NO	ND	ND	ND	ND	ND	ND	ND	ND		ND
28	• 0	.00	.0	.00	.0	.02		.00	.0	.00	.00
FEB 07		ND		ND		ND		ND			ND
MAR 20	• 0	.00	.0	.00	.0	.01		.00	.0	.00	.00
MAY 17		ND		ND		ND	- 22	ND			NO
JUN						.01		.00	.0	.00	.00
14 AUG	• 0	.00	• 0	.00	.0						.00
09	•0	.00	• 0	.00	.0	.00		.00	.0	•00	MALA-
DATE	ENDRIN. TOTAL IN ROT- TOM MA- TERIAL (UG/KG)	ETHION. TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR. TOTAL (UG/L)	HEPTA- CHLOR. TOTAL IN BOT- TOM MA- TFRIAL (UG/KG)	HEPTA- CHLOR EPOXIOE TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL (UG/L)	THION. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 30	NO	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO
DEC 28	• 0	.00		.00	.0	.00	.0	.00	.0	.00	
97		ND		ND		NO		ND		ND	
MAR 20	•0	.00		.00	.0	.00	.0	.00	.0	.00	
MAY 17		ND		ND		ND		ND		ND	
JUN 14	.0	.00		.00	.0	.00	.0	.00	.0	.00	
AUG 09		.00		.00	.0	.00	.0	.00	.0	.00	
	- 0										
					••						SIMA-
DATE	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR. TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOTAL (UG/L)	METHYL PARA- THION. TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION. TOTAL (UG/L)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX. TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	PARA- THION+ TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	SIMA- ZINE TOTAL COUL- SON	SIMA- ZINE IN BOTTOM MATERI- AL (UG/ KG DRY SOLIDS)
DATE NOV 30	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL.	PARA- THION, TOTAL	METHYL PARA- THION. TOT. IN ROTTOM MATL.	METHYL TRI- THION. TOTAL	METHYL TRI- THION, TOT. IN BOTTOM MATL.	MIREX.	PARA- THION, TOTAL	PARA- THION+ TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	SIMA- ZINE TOTAL COUL- SON COND. (UG/L)	ZINE IN BOTTOM MATERI- AL (UG/ KG DRY SOLIDS)
DATE NOV 30 DEC 28	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR. TOT. IN BOTTOM MATL. (UG/KG)	PARA- THION, TOTAL (UG/L)	METHYL PARA- THION. TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION. TOTAL (UG/L)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	PARA- THION+ TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	SIMA- ZINE TOTAL COUL- SON COND. (UG/L)	ZINE IN BOTTOM MATERI- AL (UG/ KG DRY SOLIDS)
DATE NOV 30 DEC 28 FEB 07	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR. TOT. IN BOTTOM MATL. (UG/KG)	PARA- THION, TOTAL (UG/L)	METHYL PARA- THION. TOT. IN ROTTOM MATL. (UG/KG)	METHYL TRI- THION. TOTAL (UG/L)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL (UG/L)	PARA- THION+ TOTAL (UG/L)	PARA- THION+ TOTAL IN BOT- TOM MA- TEPIAL (UG/KG)	SIMA- ZINE TOTAL COUL- SON COND. (UG/L)	ZINE IN BOTTOM MATERI- AL (UG/ KG DRY SOLIDS)
DATE NOV 30 DEC 28 FEB 07	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR. TOT. IN BOTTOM MATL. (UG/KG)	PARA- THION. TOTAL (UG/L)	METHYL PARA- THION. TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION. TOTAL (UG/L)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX. TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	PARA- THION- TOTAL IN BOT- TOM MA- TEPIAL (UG/KG)	SIMA- ZINE TOTAL COUL- SON COND. (UG/L)	ZINE IN BOTTOM MATERI- AL (UG/ KG DRY SOLIDS)
DATE NOV 30 DEC 28 FEB 07 MAR 20 MAY	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR. TOT. IN BOTTOM MATL. (UG/KG)	PARA- THION- TOTAL (UG/L) ND	METHYL PARA- THION. TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION. 10TAL (UG/L) ND	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG) ND	MIREX. TOTAL (UG/L)	PARA- THION, TOTAL (UG/L) ND	PARA- THION- TOTAL IN BOT- TOM MA- TEPIAL (UG/KG)	SIMA- ZINE TOTAL COUL- SON COND. (UG/L)	ZINE IN BOTTOM MATERI- AL (UG/ KG DRY SOLIDS)
DATE NOV 30 DEC 28 FEB 07 MAR 20 MAY 17 JUN	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR. TOT. IN BOTTOM MATL. (UG/KG)	PARA-THION-TOTAL (UG/L) ND .000 ND .000	METHYL PARA- THION. TOT. IN BOITOM MATL. (UG/KG)	METHYL TRI- THION. TOTAL (UG/L) ND .000 ND	METHYL TRI- THION, TOT. IN BOITIOM MATL. (UG/KG) ND	MIREX. TOTAL (UG/L)	PARA- THION- TOTAL (UG/L) ND .01	PARA- THION+ TOTAL IN BOT- TOM MA- TEPIAL (UG/KG)	SIMA- ZINE TOTAL COUL- SON COND, (UG/L)	ZINE IN BOTTOM MATERI- AL (UG/ KG DRY SOLIDS)
DATE NOV 30 DEC 28 FEB 07 MAR 20 MAY 17 JUN 14 AUG	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR. TOT. IN BOTTOM MATL. (UG/KG)	PARA- THION- TOTAL (UG/L) ND .00 ND .00 ND	METHYL PARA- THION. TOT. IN BOITOM MATL. (UG/KG)	METHYL TRI- THION- TOTAL (UG/L) ND .00 ND .00	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG) ND	MIREX. TOTAL (UG/L) .00	PARATHION- THION- TOTAL (UG/L) ND .01	PARA- THION+ TOTAL IN BOT- TOM MA- TEPIAL (UG/KG)	SIMA- ZINE TOTAL COUL- SON COND. (UG/L)	ZINE IN BOTTOM MATERI- AL (UG/ KG DRY SOLIDS)
DATE NOV 30 DEC 28 FEB 07 MAR 17 JUN 14 AUG 09	METH- OXY- CHLOR, TOTAL (UG/L) NO	METH- OXY- CHLOR, TOT. IN POTTOM MATL. (UG/KG) ND TI PI TOX- IN HENE, TOI OTAL TOXY- TOXY	PARA- THION- TOTAL (UG/L) ND .00 ND .00 ND .00 DXA- HENE, DTAL BOT- M MA- TERTAL THEON-	METHYL PARA- THION. TOT. IN ROTTOM MATL. (UG/KG) NO THION.	METHYL TRI- THION. TOTAL (UG/L) ND .00 ND .00 NO .00 RI- ION. TAL BOT- MA- Z: RIAL RIAL RIAL RIAL RIAL RIAL RIAL RIAL	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG) ND	MIREX, TOTAL (UG/L) .00 .00 .00 .00	PARA- THION- TOTAL (UG/L) ND .01 ND .00 ND .00 .00 2- T IN 4-5-T TOOTAL	PARA- THION+ TOTAL IN BOT- TOM MA- TEPIAL (UG/KG) ND 4.5-T BOT- M MA- SI ERIAL T	SIMA- ZINE TOTAL COUL- SON COND. (UG/L) ND SI I I I LVEX, TO OTAL T	ZINE IN BOTTOM MATERI- AL (UG/ KG DRY SOLIDS)
DATE NOV 30 DEC 28 FEB 07 MAR 20 MAY 17 JUN 14 AUG 09	METH- OXY- CHLOR, TOTAL (UG/L) NO NO NO DATE (I	METH- OXY- CHLOR, TOT. IN POTTOM MATL. (UG/KG) ND TI PP TOX- IN HENE. TOI OTAL IT UG/L) (U	PARA- THION- TOTAL (UG/L) ND .00 ND .00 ND .00 DXA- HENE, DTAL BOT- G/KG) (UG/L)	METHYL PARA- THION. TOT. IN ROTTOM MATL. (UG/KG) ND TTH TC OTAL IN I	METHYL TRI- THION. TOTAL (UG/L) ND .00 ND .00 NO .00 RI- ION. BOT- MA- Z- RIAL TICKG) (U	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG) ND	MIREX. TOTAL (UG/L) 	PARA- THION- TOTAL (UG/L) ND .01 ND .00 ND .00 .00 2- T IN 4-5-T TOOTAL	PARA- THION+ TOTAL IN BOT- TOM MA- TEPIAL (UG/KG) ND 4.5-T OTAL BOT- M MA- SI ERIAL T	SIMA- ZINE TOTAL COUL- SON COND. (UG/L) ND SI I I I LVEX, TO OTAL T	ZINE IN BOTTOM MATERI-AL (UG/KG DR/KG DR/K
DATE NOV 30 DEC 28 FEB 07 MAR 20 MAY 17 JUN 14 AUG 09	METH- OXY- CHLOR, TOTAL (UG/L) NO	METH- OXY- CHLOR, TOT. IN POTTOM MATL. (UG/KG) ND TI PI TOX- IN HENE, TOI OTAL IT UG/L) ND	PARA- THION- TOTAL (UG/L) ND .00 .00 ND .00	METHYL PARA- THION. TOT. IN ROTTOM MATL. (UG/KG) ND THION.	METHYL TRI- THION. TOTAL (UG/L) ND .00 ND .00 NO .00 RI- ION. MA- 21 RIAL RIAL RIAL RIAL RIAL ND ND	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG) ND 20 IN ND	MIREX. TOTAL (UG/L) 	PARA- THION- TOTAL (UG/L) ND .01 ND .00 ND .00 2- T IN IN TOTAL T TO TAL T TO TAL ND ND	PARA- THION+ TOTAL IN BOT- TOM MA- TEPIAL (UG/KG) ND 4.5-T OTAL BOT- M MA- SI ERIAL T G/KG) (SIMA- ZINE TOTAL COUL- SON COND. (UG/L) ND SI IN LVEX, TO OTAL T UG/L) (U	ZINE IN BOTTOM MATERI-AL (UG/KG DRYSOLIDS) ND
DATE NOV 30 DEC 28 FEB 07 MAR 17 JUN 14 AUG 09	METH- OXY- CHLOR, TOTAL (UG/L) NO NO NO DATE (I	METH- OXY- CHLOR, TOT. IN POTTOM MATL. (UG/KG) ND TI PI TOX- IN HENE, TO OTAL IN ND 0	PARA- THION- TOTAL (UG/L) ND .00 NO .00 NO .00 .00 DXA- HENE, DTAL BOT- TC M MA- TERTAL TH G/KG) ND 0	METHYL PARA- THION. TOT. IN BOTTOM MATL. (UG/KG) ND TTHION THION THI	METHYL TRI- THION- TOTAL (UG/L) ND .00 ND .00 NO .00 RI- ION- TAL BOT- MA- Z- RIAL T(/KG) (U	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG) ND 20 IT IN MATL. 10 IN MATL. 10	MIREX, TOTAL (UG/L) 	PARA- THION- TOTAL (UG/L) ND .01 ND .00 ND .00 .00 2- T IN 4-5-T TO OTAL (UG/L) ND .00 ND	PARA- THION. TOTAL IN BOT- TOM MA- TEPIAL (UG/KG) ND 4.5-T OTAL BOT- M MA- SI ERIAL T G/KG) ND	SIMA- ZINE TOTAL COUL- SON COND. (UG/L) ND SI IN IN LVEX. IN OTAL T UG/L) ND .00	ZINE IN BOTTOM MATERI-AL (UG/ KG DRY SOLIDS) ND
DATE NOV 30 DEC 28 FEB 07 MAR 20 MAY 17 JUN 14 AUG 09	METH- OXY- CHLOR. TOTAL (UG/L) NO	METH- OXY- CHLOR, TOT. IN POTTOM MATL. (UG/KG) ND TTOX- IN HENE, TOTAL UG/L) ND 0	PARA- THION- TOTAL (UG/L) ND .00 NO .00 NO .00 .00 DXA- HENE, DTAL BOT- TG M MA- TFRIAL TF G/KG) ND 0	METHYL PARA- THION- TOT- IN BOTTOM MATL. (UG/KG) NO TTHE TOTAL IN	METHYL TRI- THION. TOTAL (UG/L) ND .00 NO .00 NO .00 RI- ION. TAL BOT- RIAL T(/KG) (U	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG) ND 20 T(NA-0. TO) TAL TI OG/L) (UG/KG) ND .00	MIREX. TOTAL (UG/L)000000 .00 .00 .00 .00 .0	PARA- THION- TOTAL (UG/L) ND .01 ND .00 .00 2- TIN 4-5-TIN OTAL TUG/L) ND .00 .00	PARA- THION+ TOTAL IN BOT- TOM MA- TEPIAL (UG/KG) ND 4+5-T OTAL BOT- M MA- SI ERIAL T G/KG) ND	SIMA- ZINE TOTAL COUL- SON COND. (UG/L) ND SI TI IVEX, IN OTAL T UG/L) ND .00	ZINE IN BOTTOM MATERI-AL (UG/KG DRYSOLIDS) ND
DATE NOV 30 DEC 28 FEB 07 MAY 17 JUN 14 AUG 09	METH- OXY- CHLOR, TOTAL (UG/L) NO	METH- OXY- CHLOR, TOT. IN ROTTOM MATL. (UG/KG) ND TI TOX- IN HENE. TOI OTAL TI UG/L) ND 0	PARA- THION- TOTAL (UG/L) ND .00 ND .00 ND .00 .00 DXA- HENE- DTAL BOT- ERIAL FRIAL TH G/KG) ND 0	METHYL PARA- THION- TOT. IN BOTTOM MATL. (UG/KG) ND TTH TC TAL IN	METHYL TRI- THION. TOTAL (UG/L) ND .00 ND .00 NO .00 ND .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG) ND 2 T(IN MATL.	MIREX. TOTAL (UG/L)000000 .00 .00 .00 .00	PARA- THION- TOTAL (UG/L) ND .01 ND .00 .00 2- T IN 4-5-T IN UG/L) ND .00 .00	PARA- THION+ TOTAL IN BOT- TOM MA- TEPIAL (UG/KG) ND 4.5-T OTAL BOT- M MA- SI ERIAL T G/KG) ND ND	SIMA- ZINE TOTAL COUL- SON COND. (UG/L) ND SI IN LVEX. IN ND .0000	ZINE IN BOTTOM MATERI-AL (UG/ KG DRY SOLIDS) ND
DATE NOV 30 DEC 28 FEB 07 MAY 20 MAY 14 JUN 14 AUG 09	METH- OXY- CHLOR, TOTAL (UG/L) NO	METH- OXY- CHLOR, TOT. IN POTTOM MATL. (UG/KG) ND TTOX- IN HENE, TOTAL UG/L) ND 0	PARA-THION-TOTAL (UG/L) ND .00 ND .00 .00 ND .00 .00 ND .00 .00 ND .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	METHYL PARA- THION- TOT- IN BOTTOM MATL. (UG/KG) NO TTHE TOTAL IN	METHYL TRI- THION. TOTAL (UG/L) ND .00 ND .00 NO .00 RI- ION. TAL BOT- MA- 2. RIAL T(/KG) (U	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG) ND 20 TV NA-D, TOTO ND .0001	MIREX. TOTAL (UG/L)000000 .00 .00 .00 .00	PARA- THION- TOTAL (UG/L) ND .01 ND .00 .00 .00 2- T IN 4-5-T IN UG/L) ND .00 .00	PARA- THION+ TOTAL IN BOT- TOM MA- TEPIAL (UG/KG) ND 4.5-T OTAL BOT- M MA- SI ERIAL T G/KG) ND	SIMA- ZINE TOTAL COUL- SON COND. (UG/L) ND SI TI LVEX. ND .0000	ZINE IN BOTTOM MATERI-AL (UG/ AG DRY SOLIDS) ND
DATE NOV 30 DEC 28 FEB 07 MAR 20 MAY 17 JUN 14 AUG 09	METH- OXY- CHLOR. TOTAL (UG/L) NO	METH- OXY- CHLOR, TOT. IN ROTTOM MATL. (UG/KG) ND TI TOX- IN HENE. TOI OTAL TI UG/L) ND 0	PARA- THION- TOTAL (UG/L) ND .00 ND .00 ND .00 .00 DXA- HENE- DTAL BOT- ERIAL FRIAL TH G/KG) ND 0	METHYL PARA- THION- TOT. IN BOTTOM MATL. (UG/KG) ND TTH TC TAL IN	METHYL TRI- THION. TOTAL (UG/L) ND .00 ND .00 NO .00 ND .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG) ND 2 T(IN MATL.	MIREX. TOTAL (UG/L)000000 .00 .00 .00 .00 .0	PARA- THION- TOTAL (UG/L) ND .01 ND .00 .00 2- T IN 4-5-T IN UG/L) ND .00 .00	PARA- THION+ TOTAL IN BOT- TOM MA- TEPIAL (UG/KG) ND 4.5-T OTAL BOT- M MA- SI ERIAL T G/KG) ND ND	SIMA- ZINE TOTAL COUL- SON COND. (UG/L) ND SI IN LVEX. IN ND .0000	ZINE IN BOTTOM MATERI-AL (UG/ KG DRY SOLIDS) ND

08162000 COLORADO RIVER AT WHARTON, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1977 TO SEPTEMBER 1978

DATE		30.77		20,78 545		17•78 1915		14,78		19,78 835		9,78
TOTAL CELLS/ML		110		440		110		0		490		370
DIVERSITY: DIVISION .CL \SSODDERFAMILYGENUS		0.7 0.7 0.7 1.9 2.0		0.0 0.0 0.2 1.3		0.8 0.8 0.8 1.3		0.0 0.0 0.0 0.0 0.0		0.4 0.4 0.4 0.4		0.2
ORGANISM	CELLS	PER- CENT	CELLS /ML	PER-	CELLS /ML	PER-	CELLS /ML	PER- CENT	CELLS /ML	PER-	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) •CHLOROPHYCEAE •CHLOROCOCCALES ••OOCYSTACEAE												
ANKISTHODESMUSZYGNFMATALESDESMIDIACEAF		-		•		*#		3 3 4 2		3 1	14	4
····CLOSTEPTUM CHRYSOPHYTA		-		-		- 1		-	14	3		1.5
BACILLARIOPHYCEAE CENTRALES BIDDULPHIACFAE												
BIDDULPHIA		- 3	14	3		-		-		-		-
PENNALES ACHNANTHACEAE												
DIATOMACFAE		-	210-	-		-		-	14	3		-
FRAGILAGIACFAE	47#	43	310=	-	68#	63						D.
GYPOSIGMA	8	7		-		-		-				
PINNULARIA	8	7	43	10	14	13	==	-		:	==	- 1
····NITZSCHIA	241	21	4[7	16		-	-	•	-			-
CYANOPHYTA (RLUE-GREEN ALGAE) •CYANOPHYCEAE ••CHPOCCOCCALES ••CHPOCCOCCAEAE												
AGMENEL LIM		-		-		-			460#	94		
ANACYSTISHORMOGONALESOSCILLATORIACEAE	241	21	-	•		5	-		-			G.
OSCILLATOPTA		-		-		•		-	-	-	360#	96
EUGLENOPHYTA (EUGLENOIDS) •EIGLENOPHYCEAF ••EUGLENALFS •••CUGI ENACFAF												
TRACHEL OMONAS	Ξ	:		:	14 14	13 13	Ξ		Ξ	:	Ξ	

NOTE: # - DOMINANT ORGANISM: EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM: MAY NOT HAVE BEEN COUNTED: LESS THAN 1/2%

253

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

MONTH	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA+MG) (MG/L)
ост. 1977	21120	632	340	19500	58	3330	46	2600	230
vov. 1977	21904	631	340	20200	58	3440	46	2690	230
DEC. 1977	18118	700	380	18500	67	3260	51	2500	250
JAN. 1978	25300	462	250	17100	37	2560	32	2170	170
FEB. 1978	25359	516	280	19100	44	3000	36	2480	190
MAR. 1978	15200	661	360	14700	62	2540	48	1970	230
APR. 1978	37564	622	340	34200	57	5780	45	4540	220
MAY 1978	35572	611	330	31800	56	5360	44	4230	220
JUNE 1978	60300	554	300	49000	49	7920	39	6390	200
JULY 1978	41556	625	340	37900	57	6430	45	5050	220
AUG. 1978	31484	621	340	28500	57	4840	45	3800	220
SEPT 1978	93286	348	190	47500	24	5960	22	5630	130
TOTAL	426763	**	**	339000	**	54400	**	44000	**
WTD.AVG	1169.21	542	290	**	47	**	38	**	500

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C). WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	589	689	668	662	631	610	642	633	591	615	630	569
2	599	518	698	634	657	648	646	643	575	576	625	558
1 2 3	601	637	682	645	684	667	639	637	557	617	635	548
4	610	651	679	655	682	673	635	629	575	620	641	553
5	608	676	675	660	682	660	634	631	596	621	643	547
6	604	630	684	663	689	643	628	629	595	623	625	542
7	614	619	649	653	662	635	620	623	577	617	635	551
8	617	582	640	679	687	630	625	612	554	621	637	555
9	620	550	717	690	576	638	623	626	434	625	638	539
10	629	570	728	685	505	554	627	575	480	630	639	526
11	623	573	725	692	386	609	624	594	443	632	630	530
12	618	630	740	585	360	691	621	595	430	634	617	473
13	639	610	751	596	332	689	615	623	453	636	610	272
14	641	612	724	634	365	696	605	621	494	640	619	257
15	651	593	711	591	361	675	611	609	530	638	627	210
16	593	635	720	612	420	682	615	591	551	640	633	296
17	664	671	729	440	484	689	644	623	570	638	637	273
18	678	660	735	587	509	687	615	560	595	634	636	281
19	650	645	728	275	525	690	609	598	598	632	637	291
50	630	655	683	225	473	696	612	610	600	630	636	309
21	645	673	673	253	551	693	615	622	604	628	635	384
22	679	669	688	270	612	649	621	615	609	627	633	466
23	659	685	718	315	614	643	615	611	615	623	629	350
24	592	695	703	379	517	656	606	621	619	630	623	282
25	657	683	684	427	508	683	607	610	617	631	613	458
26	672	691	686	444	528	698	626	602	619	632	612	519
27	678	701	687	459	549	693	624	613	621	623	606	526
28	647	706	688	502	568	696	627	602	623	625	601	536
29	660	695	685	559		667	629	618	621	617	597	540
30	688	682	688	589		647	630	598	602	630	585	545
31	700		689	619		649		594		638	571	
MEAN	637	643	699	538	540	662	623	612	565	627	624	443

COLORADO RIVER BASIN

08162000 COLORADO RIVER AT WHARTON, TX--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	28.0	24.0	14.0		7.0	17.0	28.0	24.0	28.0	30.0	27.0	27.5
2	26.0	18.0	15.0	8.0	7.0	16.0	22.0	24.0	27.0	30.0	27.5	28.0
3	25.0	20.0	18.0	6.0	7.0	14.0	22.0	22.0	27.0	29.5	31.0	28.0
4	23.0	17.0	20.0	9.0	7.0	7.0	22.0	20.0	27.0		28.5	28.0
5	23.0	19.0	20.0	15.0	9.0		23.0	22.0	28.0	30.0	29.0	27.0
6	23.0		13.0		8.0	15.0	23.0	24.0	28.0	30.0	28.5	27.0
7	25.0	20.0	11.0	15.0		12.0	23.0	25.0	27.0	30.0	28.5	27.0
8	25.0	21.0	18.0	14.0	6.0	13.0	23.0	26.0	27.0	30.0		26.0
9	24.0	17.0	15.0	8.0	7.0	10.0	22.0	26.0	26.0	30.0		27.0
10	23.0	14.0	10.0	8.0	5.0	17.0	22.0	26.0	28.0	30.0	28.0	21.0
11		14.0	10.0	7.0	6.0	16.0	18.0	26.0	28.0	29.0	29.0	23.0
12	23.0		13.0	7.0		16.0	18.0	26.0	28.0	30.0	29.0	26.0
13	17.0		17.0	6.0	9.0	18.0	17.0	25.0	29.0	30.0		26.0
14	18.0	17.0	14.0	5.0	9.0	17.0	20.0	24.0	28.5	30.0	29.0	26.0
15	19.0	18.0	12.0	5.0	10.0	18.0	21.0	25.0	28.0	30.0	32.0	25.5
16	20.0	20.0	15.0	7.0	8.0	15.0	22.0	26.0	29.0	31.0	29.0	26.0
17	18.0	23.0	17.0	9.0	11.0	14.0	23.0	26.0	29.0	30.0	29.0	28.0
18	20.0			7.0	7.0	16.0	23.0	26.0	29.0	30.0	29.0	28.0
19		21.0	16.0			18.0	24.0	26.0	28.5	30.0	29.0	28.0
20	21.0	22.0	14.0		10.0.	18.0	20.0				30.5	28.0
21	22.0	22.0	11.0	3.0	7.0	10.0	20.0	0.85	29.0	29.0	29.0	28.0
22	23.0	18.0	18.0	4.0	8.0	20.0	21.0	27.0	29.0	30.0	28.0	26.0
23	21.0	18.0	11.0	4.0	9.0	21.0		26.0	29.5	30.0	29.0	27.0
24	55.0	20.0	15.0	7.0	12.0	15.0	23.0	27.0	30.0	28.0	29.0	26.0
25	21.0	20.0	14.0	7.0	15.0	17.0	24.0	27.0	30.0	29.5	29.0	25.0
26	26.0	17.0	11.0	6.0		16.0	22.0	27.0	29.5	29.0	29.0	25.0
27	22.0	20.0	10.0	8.0	15.0	17.0	23.0	28.0	29.0	29.0	29.0	25.0
28	23.0	20.0	11.0	8.0	17.0	18.0	23.0	28.0	29.0	29.0	29.0	25.0
29	23.0	16.0	11.0	8.0		18.0	22.0	28.0	30.0	28.5	28.0	23.0
30	24.0	14.0	11.0	8.0		17.0	23.0	27.0	. 28.0	29.0	29.0	24.0
31	23.0		10.0	7.0		17.0		28.0		28.0	27.5	
MEAN	22.5	19.0	14.0	7.5	9.0	16.0	22.0	25.5	28.5	29.5	29.0	26.0

08162500 COLORADO RIVER NEAR BAY CITY, TX

LOCATION.--Lat 28°58'26", long 96°00'44", Matagorda County, Hydrologic Unit 12090302, on right bank 6,300 ft (1,920 m) downstream from bridge on State Highway 35, 7,100 ft (2,160 m) downstream from Texas and New Orleans Railroad Co. bridge, 2.8 mi (4.5 km) west of Bay City, and at mile 32.5 (52.3 km).

DRAINAGE AREA.--41,650 mi² (107,870 km²), approximately, of which 12,880 mi² (33,360 km²) probably is noncontributing.

PERIOD OF RECORD.--July 1940 (in WSP 1046), April 1948 to current year. Records of elevation collected in this vicinity since 1946 are contained in reports of the National Weather Service.

Water-quality records: Chemical and biochemical analyses: October 1974 to September 1975.

REVISED RECORDS .-- WSP 1342: Drainage area.

1129433

315938

MEAN

MEAN

3094

866

MAX

49100

MAX 16600

MIN 174

MIN 161

AC-FT

AC-FT

TOTAL

TOTAL

CAL YR 1977

WTR YR 1978

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. July 2-6, 1940, nonrecording gage at highway bridge, 6,300 ft (1,920 m) upstream at datum 30.60 ft (9.327 m) lower.

REMARKS.--Records fair. Diversions above station for irrigation and municipal supply. For statement regarding upstream regulation, see Colorado River at Columbus (station 08161000).

AVERAGE DISCHARGE.--30 years (water years 1949-78), 2,424 ft³/s (68.65 m³/s), 1,756,000 acre-ft/yr (2.17 km³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 84,100 ft³/s (2,380 m³/s) June 26, 1960; maximum elevation, 48.2 ft (14.69 m), present datum, July 4, 1940, at site 6,300 ft (1,920 m) upstream at bridge on State Highway 35, observed by Corps of Engineers, elevation 46.6 ft (14.20 m), adjusted to present site; no flow at times in 1951-53 and 1956.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum elevation since 1869, 56.1 ft (17.10 m) Dec. 10, 1913. Flood in July 1869 probably reached about same elevation. Elevation of other floods are as follows: May 8, 1922, 55.4 ft (16.89 m); June 1929, 55.0 ft (16.76 m); June 22, 1935, 54.6 ft (16.64 m); Oct. 5, 1936, 52.2 ft (15.91 m); Aug. 2, 1938, 53.4 ft (16.28 m); Nov. 27, 1940, 47.6 ft (14.51 m). All above flood data from information by Texas and New Orleans Railroad Co. and adjusted to present site.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 19,700 ft 3 /s (558 m 3 /s) Sept. 15, elevation, 22.96 ft (6.998 m); minimum daily, 161 ft 3 /s (4.56 m 3 /s) Mar. 22.

	DISCHA	ARUE, IN C	OBIC FEET	ME SECO	AN VALUES	YEAR OCI	UBER 1977	TO SEPTE	MDEK 1970		
OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
299	465	479	590	642	523	240	524	492	649	690	633
							347	492	775	770	674
										712	723
										752	880
564	770	389	454	689	513	363	386	1960	621	767	774
682	1950	374	425	647	514	418	337	1480	653	794	660
842		371	497	714		442	461	1400			779
							520	2040	641	445	901
										388	762
629	1260	369	388	3120	556	633	334	4370	405	564	707
583	920	373	497	2460	669	692	330	2840	348	575	901
							294	1000	427		1980
									390	505	10100
											14300
534	623	480	660	1320	469	1250	614	278	443	336	16600
510	559	428	619	1130	384	855	479	288	466	280	9950
									440	251	5700
											2930
										230	1550
443	463	797	4110	1200	206	885	198	513	665	227	1070
433	491	762	2640	1290	164	545	211	556	728	227	1120
									838	228	937
									856		1590
											1560
586	416	681	834	548	272	1310	330	430	1050	346	949
884	406	683	773	611	275	1060	260	466	1010	347	787
		649	713	565	252	1130				349	608
										388	600
								411	1020	402	664
									880	517	597
446		593	521		228		538		771	540	
16639	24783	16625	31211	32738	12416	24291	10193	30175	20879	14002	81986
								1006	674	452	2733
					948		614		1050	794	16600
								222		227	597
33000	49160	32980	61910	64940	24630	48180	20220	59850	41410	27770	162600
	299 294 316 411 564 682 842 784 788 629 583 506 496 486 534 510 489 476 456 443 433 440 506 586 586 884 508 574 582 506 446	299 465 294 1750 316 1770 411 916 564 770 682 1950 842 2320 784 1480 788 1570 629 1260 583 920 506 775 496 672 486 678 534 623 510 559 489 515 476 500 456 481 443 463 433 491 440 466 506 436 586 423 586 416 884 406 508 404 574 388 582 416 506 500 446 16639 24783 537 826 884 2320 294 388	299 465 479 294 1750 459 316 1770 438 411 916 416 564 770 389 682 1950 374 842 2320 371 784 1480 374 788 1570 369 629 1260 369 583 920 373 506 775 603 496 672 615 486 678 532 534 623 480 510 559 428 489 515 459 476 500 471 456 481 707 443 463 797 433 491 762 440 466 646 506 436 653 586 416 681 884 406 683 <td>299 465 479 590 294 1750 459 587 316 1770 438 588 411 916 416 523 564 770 389 454 682 1950 374 425 842 2320 371 497 784 1480 374 522 788 1570 369 419 629 1260 369 388 583 920 373 497 506 775 603 1080 496 672 615 886 486 678 532 731 534 623 480 660 510 559 428 619 489 515 459 1230 476 481 707 3810 443 463 797 4110 433 491 762</td> <td>OCT NOV DEC JAN FEB 299 465 479 590 642 294 1750 459 587 700 316 1770 438 588 696 411 916 416 523 712 564 770 389 454 689 682 1950 374 425 647 842 2320 371 497 714 784 1480 374 522 998 788 1570 369 419 1250 629 1260 369 388 3120 583 920 373 497 2460 506 775 603 1080 1710 496 672 615 886 2370 486 678 532 731 1710 496 672 415 886 2370 489 515</td> <td>OCT NOV DEC JAN FEB MAR 299 465 479 590 642 523 294 1750 459 587 700 513 316 1770 438 588 696 509 411 916 416 523 712 511 564 770 389 454 689 513 682 1950 374 425 647 514 842 2320 371 497 714 523 784 1480 374 522 998 506 788 1570 369 419 1250 576 629 1260 369 388 3120 556 583 920 373 497 2460 669 506 775 603 1080 1710 948 496 672 615 886 2370 723</td> <td>299 465 479 590 642 523 240 294 1750 459 587 700 513 270 316 1770 438 588 696 509 441 411 916 416 523 712 511 406 564 770 389 454 689 513 363 682 1950 374 425 647 514 418 842 2320 371 497 714 523 442 784 1480 374 522 998 506 461 788 1570 369 419 1250 576 633 629 1260 369 388 3120 556 633 583 920 373 497 2460 669 692 506 775 603 1080 1710 948 818 496 <t< td=""><td>OCT NOV DEC JAN FEB MAR APR MAY 299 465 479 590 642 523 240 524 294 1750 459 587 700 513 270 347 316 1770 438 588 696 509 441 293 411 916 416 523 712 511 406 330 564 770 389 454 689 513 363 386 682 1950 374 425 647 514 418 337 842 2320 371 497 714 523 442 461 784 1480 374 522 998 506 461 520 784 1480 374 522 998 506 461 520 788 150 369 419 1250 576 513 <td< td=""><td>OCT NOV DEC JAN FEB MAR APR MAY JUN 299 465 479 590 642 523 240 524 492 294 1750 459 587 700 513 270 347 492 316 1770 438 588 696 509 441 293 932 411 916 416 523 712 511 406 330 1840 564 770 389 454 689 513 363 386 1960 682 1950 374 425 647 514 418 337 1480 842 2320 371 497 714 523 442 461 1400 784 1480 374 522 998 506 461 520 2040 784 1480 374 522 998 506 461</td><td>OCT NOV DEC JAN FEB MAR APR MAY JUN JUL 299 465 479 590 642 523 240 524 492 649 294 1750 459 587 700 513 270 347 492 775 316 1770 438 588 696 509 441 293 932 614 411 916 416 523 712 511 406 330 1840 621 564 770 389 454 689 513 363 386 1960 621 682 1950 374 425 647 514 418 337 1480 653 842 2320 371 497 714 523 442 461 1400 665 784 1480 374 522 998 506 461 520 2040</td><td>OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 299 465 479 590 642 523 240 524 492 649 690 294 1750 459 587 700 513 270 347 492 775 770 316 1770 438 588 696 509 441 293 932 614 712 411 916 416 523 712 511 406 330 1840 621 752 564 770 389 454 689 513 363 386 1960 621 752 564 770 389 454 689 513 363 386 1960 621 762 682 1950 374 425 647 514 418 337 1480 653 794 481</td></td<></td></t<></td>	299 465 479 590 294 1750 459 587 316 1770 438 588 411 916 416 523 564 770 389 454 682 1950 374 425 842 2320 371 497 784 1480 374 522 788 1570 369 419 629 1260 369 388 583 920 373 497 506 775 603 1080 496 672 615 886 486 678 532 731 534 623 480 660 510 559 428 619 489 515 459 1230 476 481 707 3810 443 463 797 4110 433 491 762	OCT NOV DEC JAN FEB 299 465 479 590 642 294 1750 459 587 700 316 1770 438 588 696 411 916 416 523 712 564 770 389 454 689 682 1950 374 425 647 842 2320 371 497 714 784 1480 374 522 998 788 1570 369 419 1250 629 1260 369 388 3120 583 920 373 497 2460 506 775 603 1080 1710 496 672 615 886 2370 486 678 532 731 1710 496 672 415 886 2370 489 515	OCT NOV DEC JAN FEB MAR 299 465 479 590 642 523 294 1750 459 587 700 513 316 1770 438 588 696 509 411 916 416 523 712 511 564 770 389 454 689 513 682 1950 374 425 647 514 842 2320 371 497 714 523 784 1480 374 522 998 506 788 1570 369 419 1250 576 629 1260 369 388 3120 556 583 920 373 497 2460 669 506 775 603 1080 1710 948 496 672 615 886 2370 723	299 465 479 590 642 523 240 294 1750 459 587 700 513 270 316 1770 438 588 696 509 441 411 916 416 523 712 511 406 564 770 389 454 689 513 363 682 1950 374 425 647 514 418 842 2320 371 497 714 523 442 784 1480 374 522 998 506 461 788 1570 369 419 1250 576 633 629 1260 369 388 3120 556 633 583 920 373 497 2460 669 692 506 775 603 1080 1710 948 818 496 <t< td=""><td>OCT NOV DEC JAN FEB MAR APR MAY 299 465 479 590 642 523 240 524 294 1750 459 587 700 513 270 347 316 1770 438 588 696 509 441 293 411 916 416 523 712 511 406 330 564 770 389 454 689 513 363 386 682 1950 374 425 647 514 418 337 842 2320 371 497 714 523 442 461 784 1480 374 522 998 506 461 520 784 1480 374 522 998 506 461 520 788 150 369 419 1250 576 513 <td< td=""><td>OCT NOV DEC JAN FEB MAR APR MAY JUN 299 465 479 590 642 523 240 524 492 294 1750 459 587 700 513 270 347 492 316 1770 438 588 696 509 441 293 932 411 916 416 523 712 511 406 330 1840 564 770 389 454 689 513 363 386 1960 682 1950 374 425 647 514 418 337 1480 842 2320 371 497 714 523 442 461 1400 784 1480 374 522 998 506 461 520 2040 784 1480 374 522 998 506 461</td><td>OCT NOV DEC JAN FEB MAR APR MAY JUN JUL 299 465 479 590 642 523 240 524 492 649 294 1750 459 587 700 513 270 347 492 775 316 1770 438 588 696 509 441 293 932 614 411 916 416 523 712 511 406 330 1840 621 564 770 389 454 689 513 363 386 1960 621 682 1950 374 425 647 514 418 337 1480 653 842 2320 371 497 714 523 442 461 1400 665 784 1480 374 522 998 506 461 520 2040</td><td>OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 299 465 479 590 642 523 240 524 492 649 690 294 1750 459 587 700 513 270 347 492 775 770 316 1770 438 588 696 509 441 293 932 614 712 411 916 416 523 712 511 406 330 1840 621 752 564 770 389 454 689 513 363 386 1960 621 752 564 770 389 454 689 513 363 386 1960 621 762 682 1950 374 425 647 514 418 337 1480 653 794 481</td></td<></td></t<>	OCT NOV DEC JAN FEB MAR APR MAY 299 465 479 590 642 523 240 524 294 1750 459 587 700 513 270 347 316 1770 438 588 696 509 441 293 411 916 416 523 712 511 406 330 564 770 389 454 689 513 363 386 682 1950 374 425 647 514 418 337 842 2320 371 497 714 523 442 461 784 1480 374 522 998 506 461 520 784 1480 374 522 998 506 461 520 788 150 369 419 1250 576 513 <td< td=""><td>OCT NOV DEC JAN FEB MAR APR MAY JUN 299 465 479 590 642 523 240 524 492 294 1750 459 587 700 513 270 347 492 316 1770 438 588 696 509 441 293 932 411 916 416 523 712 511 406 330 1840 564 770 389 454 689 513 363 386 1960 682 1950 374 425 647 514 418 337 1480 842 2320 371 497 714 523 442 461 1400 784 1480 374 522 998 506 461 520 2040 784 1480 374 522 998 506 461</td><td>OCT NOV DEC JAN FEB MAR APR MAY JUN JUL 299 465 479 590 642 523 240 524 492 649 294 1750 459 587 700 513 270 347 492 775 316 1770 438 588 696 509 441 293 932 614 411 916 416 523 712 511 406 330 1840 621 564 770 389 454 689 513 363 386 1960 621 682 1950 374 425 647 514 418 337 1480 653 842 2320 371 497 714 523 442 461 1400 665 784 1480 374 522 998 506 461 520 2040</td><td>OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 299 465 479 590 642 523 240 524 492 649 690 294 1750 459 587 700 513 270 347 492 775 770 316 1770 438 588 696 509 441 293 932 614 712 411 916 416 523 712 511 406 330 1840 621 752 564 770 389 454 689 513 363 386 1960 621 752 564 770 389 454 689 513 363 386 1960 621 762 682 1950 374 425 647 514 418 337 1480 653 794 481</td></td<>	OCT NOV DEC JAN FEB MAR APR MAY JUN 299 465 479 590 642 523 240 524 492 294 1750 459 587 700 513 270 347 492 316 1770 438 588 696 509 441 293 932 411 916 416 523 712 511 406 330 1840 564 770 389 454 689 513 363 386 1960 682 1950 374 425 647 514 418 337 1480 842 2320 371 497 714 523 442 461 1400 784 1480 374 522 998 506 461 520 2040 784 1480 374 522 998 506 461	OCT NOV DEC JAN FEB MAR APR MAY JUN JUL 299 465 479 590 642 523 240 524 492 649 294 1750 459 587 700 513 270 347 492 775 316 1770 438 588 696 509 441 293 932 614 411 916 416 523 712 511 406 330 1840 621 564 770 389 454 689 513 363 386 1960 621 682 1950 374 425 647 514 418 337 1480 653 842 2320 371 497 714 523 442 461 1400 665 784 1480 374 522 998 506 461 520 2040	OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 299 465 479 590 642 523 240 524 492 649 690 294 1750 459 587 700 513 270 347 492 775 770 316 1770 438 588 696 509 441 293 932 614 712 411 916 416 523 712 511 406 330 1840 621 752 564 770 389 454 689 513 363 386 1960 621 752 564 770 389 454 689 513 363 386 1960 621 762 682 1950 374 425 647 514 418 337 1480 653 794 481

2240000

626700

TRES PALACIOS RIVER BASIN

08162600 TRES PALACIOS RIVER NEAR MIDFIELD, TX

LOCATION.--Lat 28°55'40", long 96°10'15", Matagorda County, Hydrologic Unit 12100401, at left downstream end of bridge on Farm Road 456, 1.0 mi (1.6 km) downstream from Juanita Creek, and 2.4 mi (3.9 km) southeast of Midfield.

DRAINAGE AREA .-- 145 mi2 (376 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1970 to current year. Prior to October 1973, published as Tres Palacios Creek near Midfield.

GAGE.--Water-stage recorder. Datum of gage is 5.38 ft (1.640 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Ten known diversions above stations (amounts unknown). An undetermined amount of water from irrigated ricefields enters stream upstream at various points. Recording rain gage at station.

AVERAGE DISCHARGE .-- 8 years (water years 1971-78), 136 ft3/s (3.852 m3/s), 98,530 acre-ft/yr (121 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,590 ft³/s (215 m³/s) Sept. 11, 1973, gage height, 31.11 ft (9.482 m); minimum, 2.2 ft³/s (0.062 m³/s) Feb. 1, 2, 1971.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1885, 37 ft (11.3 m) in September 1960 and 35 ft (10.7 m) in June 1945, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,000 ft3/s (28.3 m3/s) and maximum (*):

Date	Time	Discha (ft³/s)	arge (m³/s)	Gage h	eight (m)	Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)
Oct. 24 Nov. 2	1600 1800	*1,530 1,180	43.3	20.39	6.215 5.566 5.660	Feb. 13 June 4	0700 0600	1,040 1,400	29.5 39.6	17.29 19.67	5.270 5.995

DISCHARGE IN CHRIS EEET DED SECOND MATER VEAR ACTORED 1077 TO SERTEMBER

Minimum discharge, 7.0 ft3/s (0.20 m3/s) Dec. 11, 21, 22, 26.

		DISCHAF	RGE, IN	CUBIC FEET	PER SECON	ID, WATER	YEAR OCT	OBER 1977	TO SEPTE	MBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	39	80	42	8.3	269	19	26	13	20	29	55	86
2	44	979	26	8.1	202	18	31	17	25	34	53	76
3	58	866	16	7.8	98	18	26	26	593	36	31	67
4	50	320	12	7.6	58	17	31	32	1290	36	20	64
5	42	108	10	8.7	42	16	26	30	686	37	15	60
6	36	58	9.2	8.6	28	14	26	23	291	40	38	57
7	31	40	8.1	65	164	14	24	27	353	39	39	59
8	26	98	8.2	383	654	14	32	27	358	41	23	104
9	23	384	7.7	89	356	12	22	34	167	29	14	80
10	19	233	7.1	35	170	12	35	32	77	36	25	80
11	17	85	7.0	244	98	10	35	30	53	58	33	243
12	14	47	7.6	1080	265	11	48	24	43	58	18	549
13	13	31	7.8	491	868	11	116	18	36	59	8.3	629
14	12	20	8.0	166	353	12	94	15	35	84	8.0	635
15	11	16	7.6	81	138	12	53	17	32	99	8.4	637
16	10	14	8.6	58	223	11	39	13	29	72	8.0	475
17	10	12	7.8	172	215	11	40	19	27	47	9.5	404
18	9.3	16	7.2	134	338	11	42	25	28	46	11	240
19	7.9	22	7.2	414	254	11	39	17	34	61	13	122
20	13	16	7.3	421	92	14	30	15	32	96	19	73
21	11	22	7.0	147	53	13	19	13	32	112	21	76
22	49	32	7.0	116	40	12	26	13	29	84	27	85
23	436	18	7.1	103	32	13	423	17	26	89	21	141
24	1300	15	7.2	84	28	14	194	22	28	101	17	117
25	887	12	7.1	104	25	17	80	21	25	69	16	69
26	286	10	7.0	96	24	24	39	14	28	62	15	54
27	110	9.4	7.1	60	22	17	18	12	22	56	15	49
28	58	8.9	7.3	40	20	12	17	9.1	19	46	15	47
29	39	14	7.4	25		15	12	9.7	19	46	18	44
30	25	55	7.4	18		18	13	12	22	43	20	39
31	17		7.4	21		20		15		47	85	
TOTAL	3703.2	3641.3	301.4	4696.1	5129	443	1656	611.8	4459	1792	719.2	5461
MEAN	119	121	9.72	151	183	14.3	55.2	19.7	149	57.8	23.2	182
MAX	1300	979	42	1080	868	24	423	34	1290	112	85	637
MIN	7.9	8.9	7.0	7.6	20	10	12	9.1	19	29	8.0	39
AC-FT	7350	7220	598	9310	10170	879	3280	1210	8840	3550	1430	10830
	1977 TO				IAX 1300	MIN 7.0	AC-FT	46560				
WIR YR	1978 . 10	TAL 32613.	O MEA	N 89.4 M	1AX 1300	MIN 7.0	AC-FT	64690				

TRES PALACIOS RIVER BASIN

08162600 TRES PALACIOS RIVER NEAR MIDFIELD, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: October 1968 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	STREA FLOW INSTA	AN- ANCI	IC - T- E P RO-	AT	PER- URE G C)	TUR- BID- ITY (JTU)	- D1	GEN. (S- VED	OXYGEN DIS- SOLVE (PER- CENT SATUR ATION	DEMAN D BIO- CHEM ICAL - 5 DAY	HAR - NES	5 /L	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
OCT 18	. 1355	10	1	050	7.9	23.0	1	10	9.0	10	7	.9	270	7
NOV 29	. 1510	15	1	350	7.8	17.5		25	7.5	8	1 1	.4	380	88
JAN										8			140	42
10 FEB	. 1355	31		570		10.0	18	30	9.6					
22 APR	. 1150	40		695	7.5	10.0	18	30 1	10.0	9	2 2	.9	190	29
04	• 1405	32		960	7.8	25.5	•	50	7.6	9	5 4	.1	270	51
16	. 1425	12	1	180	8.2	26.5	1	10	9.4	11	9 4	.2	270	52
JUN 21	. 1550	33		900	8.1	30.0		9	8.6	11	5 1	.2	250	20
AUG 07	. 1520	35		577	7.4	29.0	4	40	6.6	8	7 3	.6	160	24
SEP														0
20	. 1010			393	7.5	28.0	4	40	5.2				120	
DATE	CALCIU DIS- SOLVE (MG/L AS CA	D SOL	UM, SODI S- DIS VED SOLV /L (MG	UM, A - SOF ED TI /L RAT	ID- S IP- I ION SO	OTAS- SIUM. DIS- DLVED MG/L S K)	BICAR- BONATE (MG/L AS HC03)	E CAR L BON		SULFAT DIS- SOLVE (MG/L AS SO4	DIS- D SOLV (MG/	PID DI ED SOL	E. S- VED	SILICA, DIS- SOLVED (MG/L AS SIO2)
OCT	22							20	•	25	160		.5	25
18	• 70	2	3 11	0	2.9	6.3		20	0	35				
29	• 99	3	1 14	0	3.1	4.6	35	50	0	33	250)	.7	19
10	. 38	1	1 4	9	1.8	5.2	12	20	0	30	110)	.2	12
22	. 51	1	4 6	5	2.1	4.1	1	90	0	20	100)	.3	14
APR 04	. 73	2	2 9	1	2.4	5.5	2	70	0	38	140)	.5	12
MAY 16	. 88	1	3 12	0	3.2	6.0	2	70	0	68	180)	.5	13
JUN		2		6	2.4			80	0	31	130		.5	21
21 AUG						2.6								
07	. 44	1	3 5	3	1.8	8.2	1	70	0	20	81		.3	19
20	. 34		9.2 2	9	1.1	8.0	10	60	0	8.	7 42	2	.2	38
	9	OLIDS, SUM OF CONSTI- UENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	NITRO- GEN. NITRATE TOTAL (MG/L AS N)	NITRO GEN, NITRIT TOTAL (MG/L AS N)	E NOZ	TRO- SEN+ 2+NO3)TAL MG/L	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	ORG TO (M	EN.	NITRO- SEN, AM- NONIA + DRGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	ORG TO	BON. SANIC TAL IG/L C)
	OCT 18	588	18	.97	.0	3	1.0	.01		.67	.68	.42		6.3
	NOV 29	751	44	•13			.14	•06		.32	.38	.26		5.3
	JAN										3.3	.32		15
	FEB	315	282	1.2	•0		1.2	•08		3.2				
	22 APR	362	328	•32	• 0	2	•34	•08		1.1	1.2	.27		12
	04 MAY	515	122	.71	.0	5	.76	• 05		.86	.91	.25		7.2
	16	622	23	•58	•1	3	.71	•12		.98	1.1	.16		6.5
	21	496	22	.39	.0	1	.40	.00		.71	.71	.08		5.0
	07	322	67	.39	.0	1	.40	.05		.75	.80	.18		8.9
	SEP 20	249	102	.47	.1	1	.58	•08		1.1	1.2	.52		14

TRES PALACIOS RIVER BASIN

08162600 TRES PALACIOS RIVER NEAR MIDFIELD, TX--Continued

WATER QUALITY DATA: WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		TIF	500 4E (U	IS- LVED S	ARIUM. DIS- OLVED	CADMI DIS SOLV	UM - /ED	CHRO- MIUM. DIS- SOLVED (UG/L	COPPER. DIS- SOLVED (UG/L	IRON. DIS- SOLVED (UG/L AS FE)		
	DAT	E	AS	AS)	AS BA)	AS C	(D)	AS CR)	AS CU)	AS FEI		
	NOV 29.	151	10	4	800		0	0	2	50		
	FE⊰			2			0	0	3	40		
	22.				200							
	16. SFP	142	25	3	300		0	0	3	0		
	20.	10:	10	11	100		1	0	4	480		
		DATE	DIS- SOLVED (UG/L AS PR)	MANG NESE DIS SOLV (UG/ AS M	MER D ED SO	CURY IS- LVED G/L HG)	SELE NIUM DIS SOLV (UG/ AS S	FD SO	IS- D LVED SO	NC+ IS- LVED G/L ZN)		
		NOV 29	0		40	.0		0	0	10		
		FEB								10		
		22	0		50	.0		0	0			
		16	1		30	.0		0	0	20		
		20	S		10	.0		0	0	10		
			PCB, TOTAL IN BOT-	LENE POL	- :S•		TOTA	AL	DA TO	LOR- NE+ TAL BOT-		DDD. TOTAL IN BOT-
	*****	PCB.	TOM MA-	CHL	OR. ALD	RIN,	TOM I	MA- DA			DD.	TERIAL
DATE	TIME	(UG/L)	(UG/KG)			G/L)	(UG/			/KG) (U		(UG/KG)
NOV												
29 FEB	1510	• 0	0		.00	.00		.0	• 0	1	.00	1.6
22	1150	.0	0		.00	.00		.0	.0	0	.00	•0
16	1425	.0	0		.00	.00		.0	.0	0	.00	•1
SEP 20	1010	.0	0		.00	.00		.0	.0	0	.00	.1
DATE	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT. TOTAL (UG/L)	TOTAL TOM I	AL OT- C MA- AZI IAL TO	OI- (NON+ OTAL JG/L)	DI ELD TOT (UG	ELI TO - IN RIN TO	MA- SUL	TAL TO	RIN. TAL G/L)	ENDRIN. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV		1.0	.00		.0	.12		.00	.3	.00	.00	.0
29 FEB	•00	1.0								.00	.00	.0
22	.00	.8	•01		.2	•02		.01	.1			
16 SEP	•00	• 4	• 00)	• 4	.04		•00	•1	•00	.00	•0
20	•00	.3	CI	PTA-	.4 HEPTA-	CHL		•00	.1 LINDANE TOTAL	.00	.00	.0 HYL
DAT	ETHIC TOT	ON. CHL	OR, TO	80T-	CHLOR EPOXIDE TOTAL (UG/L)	TOT.	IN TOM	LINDANE TOTAL (UG/L)	IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL (UG/L)	THI TOT (UG	DN+
NOV		.00	0.0	.0	.00		.0	.00	.0	.00		.00
FER	270								1940	.00		.00
YAM YAM	•••	.00	.00	.0	•00		.0	.00				
16. SFP	•••	.00	.00	.0	•00		.0	.00	.0	.00		•00
20		.00	.00	.0	.00		.0	.00	.0	•00		.01
	MET			ARA-	TOX-	TO	NE .	TOTAL				4.1
DA	THI	ON. MI	REX. T	HION+ OTAL UG/L)	TOTAL (UG/L)	TOM	MA- RIAL /KG)	TRI- THION (UG/L)	TOTAL (UG/L)	2.4.5-T TOTAL (UG/L)	SILV TOT (UG	
NOV		-22				-6				.00		.00
FER	•••	•00		.00	0		0	.00				
22	•••	.00		.00	0		0	.00				.00
16	•••	.00		.00	0)	0	.00	.01	•00		.00
SFP 20		.00	.00	.00	0		0	.00	.24	•00		.00

EAST CARANCAHUA CREEK BASIN

08162700 EAST CARANCAHUA CREEK NEAR BLESSING, TX (Reconnaissance partial-record station)

LOCATION.--Lat 28°51'48", long 96°17'05", Matagorda County, Hydrologic Unit 12100401, at bridge on Farm Road 616, 100 ft (30 m) downstream from Missouri Pacific Railroad bidge, and 4.2 mi (6.8 km) west of Blessing.

DRAINAGE AREA .-- 81.2 mi2 (210.3 km2).

PERIOD OF RECORD.--Periodic discharge measurements: September 1967 to July 1968, February 1970 to current year. Periodic water-quality data: February 1968 to current year.

DISCHARGE AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TI	ME T	TREAM- FLOW, NSTAN- ANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO MHOS)			EMPER- ATURE DEG C)	TUR BIO ITI (JTL)-	OXYGEN DIS- SOLVE (MG/L	, (PE	SEN.	DEMAND BIO- CHEM- ICAL- 5 DAY (MG/L)	HAI NE:	3/L	HARD- NESS+ NONCAR- BONATE (MG/L CACO3)
ОСТ																100
18	. 12	05	.80	102	0	7.5	23.0		15	7.	6	90	1.	.1	290	48
29 JAN	. 13	10	2.2	100	0	7.6	18.5		60	13.	4	147	1	.8	290	64
10	. 14	45	11	42	0	6.9	9.0	3	320	10.	4	93	6	. 4	110	31
FER 22	. 13	35	12	65	0	7.3	11.5	1	130	10.	4	98			190	31
APR 04		55	16	105	0	8.0	26.0		70	8.	7	109	4	.3	230	0
MAY 16			9.0	105	0	8.3	26.5		40	7.	5	95	3	.2	210	0
JUN 21			4.8	88		8.1	30.5		50	8.		111	1	.6	220	0
AUG				70		7.8	30.0		25	7.		100		.3	170	0
SEP			4.9												140	0
20	CALC DIS- SOL	IUM VED	18 MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVED (MG/L AS NA	SOR SOR TI	D- P- ON IO	29.0 POTAS- SIUM. DIS- SOLVED (MG/L AS K)	BICAR BONAT (MG/ AS	E 'L	CAR- BONATE (MG/L AS CO3	SULF DIS SOL	VED	CHLO- RIDE- DIS- SOLVE (MG/L AS CL	D 501	JO- DE, IS- VED G/L F)	SILICA+ DIS- SOLVED (MG/L AS SIO2)
OCT		_	20	100		2.4	6.5		290		0 2	23	170		.5	36
18			30	100		2.6										
29	. 6	3	31	100		2.6	5.1		270			36	160		.5	20
FER	. 2	9	9.8	43		1.8	4.4	1	100		0 2	27		-	.3	9.1
22	. 4	5	18	63		2.0	3.8	1	190		0 2	29	94		.3	12
04 MAY	• 5	1	24	150		4.3	4.8	2	290		0	36	170		.7	17
16	. 4	7	23	130		3.9	4.7	ā	290		0 :	30	160		.7	16
JUN 21	. 4	9	24	97		2.8	2.2	- 2	280		0 7	25	130		.6	21
AUG 08	. 4	2	17	83		2.7	6.1	2	220		0 :	11	110		.5	30
SEP 20	. 3	6	13	53		1.9	8.0	2	200		0	11	70		.4	47
	DATE	SOLID SUM O CONST TUENT DIS SOLV (MG/	F RES	105 3. C. N US- NDED	NITRO- GEN, ITRATE TOTAL (MG/L AS N)	NITR GEN NITRI TOTA (MG/ AS N	TE NO	TRO- SEN+ P+NO3 DTAL MG/L S N)	AMMO TO	EN.	NITRO- GEN. ORGANIC TOTAL (MG/L AS N)	GEN MON ORG	TRO-	PHOS- PHORUS. TOTAL (MG/L AS P)	ORG TO	BON. FANIC TAL IG/L
	ост							• • •			.56		.57	.05		8.7
	18 NOV		74	20	.03		00	.03		•01						
	29 JAN	5	50	101	.04		01	.05		.08	.44		.52	.09		8.8
	10 FEB			522	1.7		07	1.8		.16	.39		.55	.33		27
	22 APR	3	159	204	.28		01	.29		.07	1.2		1.3	.13		14
	04 MAY	5	96	134	.49		05	.54		.14	1.1		1.2	.12		8.3
	16	5	55	86	.05		02	.07		.03	.87		.90	.09		7.6
	21	4	87	37	.01		.00	.01		.01	.67		.68	.05		6.2
	AUG 08	4	08	39	.01		.00	.01		.02	.68		.70	.07		10
	SEP 20	3	137	12	.06		.02	.08		.05	1.3		1.3	.31		14

EAST CARANCAHUA CREEK BASIN

08162700 EAST CARANCAHUA CREEK NEAR BLESSING, TX--Continued

WATER QUALITY DATA. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE AS AS) AS BA1 AS CD1 AS FE			711	ARSEN DIS- SOLVI	D SOLV	ED SO	MIUM IS- LVED G/L	CHRO- MIUM, DIS- SOLVED (UG/L	COPPER. DIS- SOLVED (UG/L	IRON. DIS- SOLVED (UG/L		
20 1310 3 760 0		DAT										
FEP 1335			13	10	3	700	0	4	2	60		
16 1320 3 300 0 10 4 10 10 10 10 10 1		FER		35	1	100	0	0	2	50		
		MAY			3	300	0	10	4	10		
LEAD, NOW DATE LEAD, NOW		SEP			9	200	1	10	1	160		
29				LEAD. DIS- SOLVED	NESE. DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	DI SOL (UG	M. SIL S- D VED SO	LVED SOL	S- VED		
PEB 122 0 30 .0 0 0 10 10 10 10 10					40	-0		0	0	10		
NOV 20 1310 -00			FEB									
SEP 23 0 10 .0 0 0 0 0 0 0 0 0			MAY									
NATE PCS, 1707AL TEMPA THE POLY TOTAL TEMPA TOTAL TOTAL TEMPA TOTAL TOTAL TOTAL TOTAL TEMPA TOTAL TOTAL TOTAL TOTAL TOTAL TEMPA TOTAL TOTAL TOTAL TEMPA TOTAL TOTAL TOTAL TOTAL TEMPA TOTAL TOTAL TOTAL TEMPA TOTAL TOTAL TOTAL TOTAL TEMPA TOTAL TOTA			SEP									
PCB			20	u		••						
NOV 29 1310 .000 .00 .000 .00		TIME	TOTAL	TOTAL IN BOT- TOM MA- TERIAL	THA- LENES+ POLY- CHLOR. TOTAL	TOTAL	IN E	TAL BOT- CH MA- DA RIAL TO	DA TO HLOR- IN NNE+ TOM OTAL TE	NE+ TAL BOT- MA- DI RIAL TO	DD, TO	OTAL BOT- M MA- ERIAL
29 1310			100727	1007107	100727	10072	100.					
22 1335	29	1310	•0		.00	.00)		.0		.00	
1320	22	1335	.0		.00	.00)		.0			
1210	16	1320	.0	0	.00	.00)	•0	.0	0		•0
DDE		1210	.0	0	.00	.00	0			0	.00	• 3
PER	DATE	TOTAL	TOTAL IN BOT- TOM MA- TERIAL	TOTAL	TOTAL IN BOT- TOM MA- TERIAL	TOTAL	EL!	I- IN DRIN TO TAL T	DRIN+ DTAL BOT- EN M MA- SUL ERIAL TO	TAL TO	RIN. TO	OTAL BOT- M MA- TERIAL
FER 22		-00		.00		.0	0	.00		.00	.00	
MAY 16 0.0 .5 .00 .0 .00 .00 .1 .00	FEB									.00	.00	
SEP 20 .00 .4 .00 .0 .00	MAY				.0				.1		.00	.0
HEPTA- CHLOR	SEP									.00	.00	.0
PER 2200 .0000000000 .00		ETHI TOT	ON. CHI	PTA- IN BOLOR, TOM	TA- DR. AL HE DT- CH MA- EPO IAL TO	PTA- EP LOR TO XIDE B	EPTA- HLOR OXIDE T. IN OTTOM MATL.	TOTAL	TOTAL IN BOT- TOM MA- TERIAL	THION,	PARA- THION TOTAL	
FER 22 00 .00000000 .00 .00	NOV		-00	.00		.00		.00		.00	.0	0
MAY 1600 .00 .0 .00 .0 .00 .0 .00 .00 .0	FER										.0	0
SEP 2000 .00 .0 .00 .0 .00 .00 .00 .00	MAY				.0		.0				.0	0
TOXA- PHENE + TOTAL TOTA	SEP									.00	.0	0
THION, MIREX, THION, APHENE. TOM MA- TRI- 2.4-D. 2.4-5-T SILVEX, TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL (UG/L) (MET	HYL			T P	OXA- HENE, OTAL	-6				
290000 000 .00 .00 .00 FFF 220000 U00 .00 .00 .00 .00 .00 .00 .00 .00	DA	THI	AL T	REX. THE	ON. APH	TAL T	M MA-	TRI-	TOTAL	TOTAL	TOTAL	
FFP 220000 000 .00 .00 .00 .00			.00		.00	0		.00	.00	.00	.0	0
140000 0 0 .00 .00 .00 .00 .00 .	FER					0		.00	.00	.00	.0	0
SFP	MAY					0	0	.00	.00	.00	.0	0
	SFP	•		.00		0	0	.00	.00	.00	.0	0

08163500 LAVACA RIVER AT HALLETTSVILLE, TX

LOCATION.--Lat 29°26'35", long 96°56'39", Lavaca County, Hydrologic Unit 12100101, on left bank 75 ft (23 m) downstream from bridge on U.S. Highway 77 in Hallettsville and 0.7 mi (1.1 km) downstream from Campbell Branch.

DRAINAGE AREA .-- 108 mi2 (280 km2).

PERIOD OF RECORD.--July 1939 to current year.

REVISED RECORDS.--WSP 1312: 1942(M), 1944(M). WSP 1732: 1952(M). WSP 2123: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 186.72 ft (56.912 m) National Geodetic Vertical Datum of 1929. Prior to Apr. 19, 1960, water-stage recorder for high stages and movable nonrecording gage for stages below about 6.2 ft (1.89 m). Apr. 20, 1960, to June 2, 1961, movable nonrecording gage. All gages at same site and datum.

REMARKS.--Records good. No diversion above station. The Corps of Engineers began channel rectification 1.6 mi (2.6 km) downstream from gage in April 1959. This rectification reached the gage Sept. 21, 1959, and was completed in February 1960. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--39 years, 48.1 ft³/s (1.362 m³/s), 6.05 in/yr (154 mm/yr), 34,850 acre-ft/yr (43.0 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $93,100 \text{ ft}^3/\text{s}$ (2,640 m³/s) June 30, 1940, gage height, 40.60 ft (12.375 m), from floodmarks, from rating curve extended above 23,000 ft³/s (651 m³/s) on basis of slope-area measurement of peak flow; no flow at times in 1953 and 1956.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1840, that of June 30, 1940; maximum stage from about 1870 to 1940, 32.8 ft (10.00 m) July 16, 1936, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 2,300 ft3/s (65.1 m3/s) and maximum (*):

Date	Time	Disch	arge	Gage	height	Date	Time	Disch	arge	Gage h	eight
		(ft^3/s)	(m^3/s)	(ft)	(m)			(ft^3/s)	(m^3/s)	Gage h	(m)
June 7	1200	*9,030	256	a24.6	7.50	Sept. 13	1700	6,370	180	22.38	6.821

a From floodmark.

Minimum discharge, 0.35 ft3/s (0.010 m3/s) Aug. 29.

		DISCHA	ARGE, IN	CUBIC FEET	PER SECO	ND, WATER	YEAR OCT	TOBER 197	7 TO SEPTE	MBER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.3	34	5.5	3.5	7.4	8.2	7.1	5.7	3.6	.94	1.1	2.8
2	2.3	20	5.2	3.7	7.7	8.3	7.2	5.7	3.0	.90	.92	2.8
3	2.3	12	5.0	3.2	7.5	8.0	7.3	7.3	4.7	.88	.92	2.4
	2.3	7.8	5.3	3.1	7.0	7.9	7.3	6.4	29	.88	.94	2.0
5	2.5	6.4	5.2	3.4	7.0	8.2	6.9	6.1	18	.80	.85	1.5
6	2.6	5.8	4.6	3.3	6.9	9.5	6.9	5.9	7.0	.73	1.0	1.3
7 8	2.6	5.4	4.5	3.4	32	49	6.6	5.4	2810	.72	.84	1.5
8	2.6	24	4.7	3.0	4.5	12	6.7	5.0	75	.70	.82	1.5
9	2.6	15	4.1	2.8	16	10	6.8	4.7	20	.67	.82	1.4
10	2.6	9.5	3.9	2.8	11	9.1	7.1	4.3	9.3	.62	.91	7.8
11	2.9	6.6	4.0	15	9.6	8.5	7.0	3.9	6.1	.59	.85	129
12	2.8	5.4	4.1	9.6	9.8	7.7	7.5	3.8	4.6	.57	.75	506
13 14	3.0	4.9	4.1	7.8	9.2	7.7	7.3	3.5	3.7	-49	.71	2220 429
15	3.1		3.8	5.3	8.8	7.4	6.8	3.2	3.2	.50	.65	108
15	3.1	4.6	3.8	4.6	9.0	7.2	6.3	3.0	2.1	.50		
16	3.1	4.6	3.9	5.1	8.9	6.7	5.9	2.9	2.4	.48	.60	29
17	3.1	4.7	3.7	6.4	10	6.7	5.5	2.9	2.1	.46	.61	18
18	3.3	4.7	3.6	10	9.3	6.8	5.3	2.8	1.8	.46	.59	13
19	3.4	4.7	3.6	12	9.5	7.0	4.8	2.7	2.0	.53	.66	11
20	3.6	4.9	3.4	7.9	8.8	6.9	4.5	2.6	1.7	.64	.61	9.1
21	3.6	5.1	3.1	6.8	8.1	7.2	4.3	3.1	1.5	.59	1.3	148
22	4.8	5.1	3.0	6.5	8.0	7.2	9.3	2.9	1.4	.59	.53	365
23	5.1	5.3	3.2	6.5	8.1	7.2	85	2.6	1.2	.57	.47	100
24	5.7	5.5	3.4	6.9	8.3	7.4	17	2.6	1.2	.67	.44	20
25	5.6	5.5	3.3	7.1	8.4	7.0	11	2.4	1.1	.81	.44	10
26	5.5	5.3	3.0	6.6	8.5	7.1	8.2	2.4	1.1	.73	.45	7.1
27	5.5	5.3	3.0	6.5	8.4	7.0	7.0	2.3	1.1	.72	.43	5.6
28	5.5	5.2	3.3	6.3	8.6	7.1	6.3	2.2	.94	.77	.41	4.9
29	5.5	15	3.6	6.4		7.0	6.0	2.2	.94	.78	.40	4.3
30	5.6	7.4	3.6	6.4		7.4	5.9	3.5	.95	.74	2.4	3.8
31	5.7		3.6	6.8		7.2		5.6	***	.87	7.6	
TOTAL	114.1	254.4	122.1	188.7	306.8	281.6	290.8	119.6	3021.33	20.90	30.69	4165.8
MEAN	3.68	8.48	3.94	6.09	11.0	9.08	9.69	3.86	101	.67	.99	139
MAX	5.7	34	5.5	15	45	49	85	7.3	2810	.94	7.6	2220
MIN	2.3	4.6	3.0	2.8	6.9	6.7	4.3	2.2	.94	.46	.40	1.3
CFSM	.03	.08	.04	.06	.10	.08	.09	.04	.94	.006	.009	1.29
IN.	.04	.09	.04	.06	.11	.10	.10	.04	1.04	.01	.01	1.43
AC-FT	226	505	242	374	609	559	577	237	5990	41	61	8260

CAL YR 1977 TOTAL 19404.60 MEAN 53.2 MAX 7410 MIN 1.0 CFSM .49 IN 6.68 AC-FT 38490 WTR YR 1978 TOTAL 8916.82 MEAN 24.4 MAX 2810 MIN .40 CFSM .23 IN 3.07 AC-FT 17690

08164000 LAVACA RIVER NEAR EDNA, TX (National stream-quality accounting network)

LOCATION.--Lat 28°57'35", long 96°41'10", Jackson County, Hydrologic Unit 12100101, at downstream side near center of upstream bridge of two bridges on U.S. Highway 59, 660 ft (201 m) upstream from Texas and New Orleans Railroad Co. bridge, and 2.8 mi (4.5 km) southwest of Edna.

DRAINAGE AREA .-- 817 mi2 (2,116 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- August 1938 to current year.

REVISED RECORDS.--WSP 1923: 1955. WDR TX-73-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 13.88 ft (4.231 m) National Geodetic Vertical Datum of 1929. Prior to June 6, 1939, nonrecording gage (property of Corps of Engineers); June 6, 1939, to Apr. 3, 1957, nonrecording gage at site 110 ft (34 m) downstream; Apr. 4, 1957, to Mar. 21, 1961, nonrecording gage; all at same datum.

REMARKS.--Water-discharge records good. Small diversions above station for irrigation.

AVERAGE DISCHARGE.--40 years, 316 ft³/s (8.949 m³/s), 5.25 in/yr (133 mm/yr), 228,900 acre-ft/yr (282 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 73,000 ft³/s (2,070 m³/s) July 1, 1940, gage height, 32.51 ft (9.909 m); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1880, 33.8 ft (10.30 m) May 25, 1936, discharge, 83,400 ft 3 /s (2,360 m 3 /s), from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 4,100 ft 3 /s (116 m 3 /s) and maximum (*):

Date	Time	Disch		Gage h	eight	Date	Time	Disch		Gage h	eight
		(ft^3/s)	(m^3/s)	(ft)	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
Sept. 14	1700	*22,400	634	26.46	8.065	Sept. 23	1000	5,820	165	21.12	6.437
Minimum discha	rge, 8.0	ft3/s (0.	23 m³/s)	Aug. 31.							

		DISCHA	RGE, IN	CUBIC FEET		D, WATER	YEAR OCTO	DBER 1977	TO SEPTE	MBER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26	42	141	43	57	56	48	79	33	21	31	8.2
2	25	807	89	44	57	53	48	72	34	22	25	9.2
3	23	745	68	45	57	52	49	67	291	22	22	25
4	22	220	60	4.5	58	52	46	64	543	21	20	20
5	23	120	54	45	57	51	46	63	357	20	19	16
6	25	87	49	46	53	50	46	64	148	19	19	17
7	28	70	45	47	129	60	46	60	136	19	29	14
8	30	111	45	45	659	1040	47.	56	705	19	137	14
9	28	479	44	43	835	405	46	52	984	19	59	16
10	24	599	41	43	372	154	47	50	209	19	35	21
11	23	187	40	50	195	111	48	43	117	19	28	1020
12	22	115	40	70	151	93	50	39	85	21	20	4890
13	21	89	41	138	188	83	62	37	65	23	17	8940
14	21	76	43	109	147	75	60	34	54	24	14	17800
15	25	67	42	82	104	69	54	32	48	22	12	17700
16	25	62	42	86	100	65	52	31	45	19	11	12900
17	22	58	42	191	226	61	48	30	39	18	10	5520
18	21	55	42	274	351	58	47	30	37	16	9.5	960
19	21	52	41	1380	217	56	44	29	34	15	8.8	583
20	20	50	39	686	127	56	41	28	32	17	8.8	456
21	20	49	38	282	96	55	42	27	32	17	9.2	468
22	26	46	38	168	79	54	49	28	30	17	8.5	3280
23	52	45	37	123	71	55	2620	29	26	18	8.8	5600
24	39	44	37	106	66	57	2690	29	- 26	15	10	2790
25	39	44	37	96	63	57	602	27	26	14	9.2	649
26	39	43	37	87	61	55	233	25	24	14	8.8	431
27	32	42	37	77	59	52	154	26	23	14	8.5	336
28	30	42	38	68	57	51	117	24	22	508	9.2	287
29	28	51	39	62		49	100	23	22	222	9.2	254
30	28	312	40	59		48	87	50	21	59	8.2	226
31	27		41	57		49		66		40	8.0	
TOTAL	835	4809	1467	4697	4692	3282	7669	1314	4248	1333	632.7	85250.4
MEAN	26.9	160	47.3	152	168	106	256	42.4	142	43.0	20.4	2842
MAX	52	807	141	1380	835	1040	2690	79	984	508	137	17800
MIN	20	42	37	43	53	48	41	23	21	14	8.0	8.2
CFSM	.03	.20	.06	.19	.21	.13	.31	.05	.17	.05	.03	3.48
IN.	.04	.22	.07	.21	.21	.15	.35	.06	.19	.06	.03	3.88
AC-FT	1660	9540		9320	9310				8430	2640	1250	169100
AC-FI	1000	9340	2910	9320	9310	6510	15210	2610	0430	2040	1230	109100

CAL YR 1977 TOTAL 102806.0 MEAN 282 MAX 6770 MIN 20 CFSM .35 IN 4.68 AC-FT 203900 MTR YR 1978 TOTAL 120229.1 MEAN 329 MAX 17800 MIN 8.0 CFSM .40 IN 5.47 AC-FT 238500

08164000 LAVACA RIVER NEAR EDNA, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1960 to September 1977. Chemical and biochemical analyses: October 1977 to current year. Pesticide analyses: January 1968 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: November 1977 to August 1978. WATER TEMPERATURES: November 1977 to August 1978.

EXTREMES FOR CURRENT YEAR.--SPECIFIC CONDUCTANCE: Maximum daily, 899 micromhos Apr. 22; minimum daily, 202 micromhos July 30. WATER TEMPERATURES: Maximum daily, 33.0°C July 16; minimum daily, 5.0°C Jan. 22.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		STREAM- FLOW,	SPE- CIFIC CON- DUCT-			TUR-	OXYGEN.	OXYGEN. DIS- SOLVED (PER-	OXYGEN DEMAND, BIO- CHEM-	COLI- FORM, TOTAL, IMMED.	COLI- FORM, FECAL, 0.7
		INSTAN-	ANCE	PH	TEMPER-	BID-	DIS-	CENT	ICAL.	(COLS.	UM-MF
	TIME	TANEOUS	(MICRO-	F11	ATURE	ITY	SOLVED	SATUR-	5 DAY	PER	(COLS./
DATE	1146	(CFS)	MHOS)	(UNITS)	(DEG C)	(ÚTÚ)	(MG/L)	ATION)	(MG/L)	100 ML)	100 ML)
NOV											
10 DEC	1030	618	235	7.1	15.0	230	8.7	89	3.9	270000	14000
08	1015	44	008	7.8	16.0	5	8.7	91	.8	2900	360
JAN 26	0755	107	563	7.9	7.0	25	10.4	88	1.4	1500	300
16	0945	102	530	7.5	8.0	45	10.3	90	1.6	840	240
MAR 16	0835	68	744	7.6	15.5	10	9.6	99	.6	560	160
APR					20.5	170	6.9	78	5.1	210000	8400
25 MAY	0915	564	374	7.6							
JUN 22	1603	28	801	8.0	28.0	10	6.2	79	3.1	840	320
13	0920	67	554	7.8	28.0	35	12.8	164	2.6	11000	3200
18 AUG	1000	16	745	7.8	28.0	15	7.2	92	1.6	7800	580
22 SEP	0845	85	727	8.4	26.0	10	7.4	92	1.0		500
26	1015	440	449	7.8	24.0	45	7.2	88	1.7		1300
	STREP-		HARD-		MAGNE-		SODIUM	POTAS-			
	TOCOCCI	HADD-	NESS.	CALCIUM	SIUM,	SODIUM,	AD-	SIUM,	BICAR-		SULFATE
	FECAL.	HARD-					SORP-	DIS-	BONATE	CAR-	DIS-
	KF AGAR	NESS	NONCAR-	DIS-	DIS-	DIS-		SOLVED	(MG/L	BONATE	SOLVED
	(COLS.	(MG/L	BONATE	SOLVED	SOLVED	SOLVED	RATIO	(MG/L	AS	(MG/L	(MG/L
DATE	PER 100 ML)	CACO3)	(MG/L CACO3)	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	RATIO	AS K)	HC03)	AS C03)	AS 504)
NOV											
DEC DEC	20000	78	0	28	2.0	16	.8	3.9	96	0	8.0
08 JAN	1300	280	15	100	6.7	56	1.5	3.2	320	0	26
26 FEB	440	190	13	69	5.1	40	1.3	3.6	220	0	21
16 MAR	800	180	55	63	5.0	39	1.3	3.5	190	0	21
16 APR	550	260	24	94	6.6	52	1.4	3.4	290	0	29
25 MAY	2400	120	24	44	3.0	29	1.1	4.4	120	0	18
22	440	300	22	110	6.3	62	1.6	3.4	340	0	23
JUN 13	1100	160	10	57	3.7	32	1.1	4.4	180	0	17
JUL 18	920	240	0	83	7.9	73	2.1	3.0	320	0	18
						122			214	7	17
22	920	260	0	93	7.0	55	1.5	3.6	310	4	11

LAVACA RIVER BASIN

08164000 LAVACA RIVER NEAR EDNA, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE. DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS+ RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN. AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)
NOV										
10 DEC	. 22	•2	9.8	153	137	.43	.01	.44	•04	.81
08	78	.4	21	449	449	•44	.01	.45	.06	.20
26 FEB	59	.3	16	329	322	.81	.01	.82	.04	.64
16	56	.2	15	303	297	1.2	.01	1.2	.04	.66
16 APR	71	.4	18	424	417	.16	.00	.16	.01	.32
25	46	•3	10	206	214	•33	.05	.38	.18	1.1
22	77	.3	21	462	471	•03	.00	.03	.01	.94
JUN 13	42	.4	18	262	263	.18	.03	.21	.01	.78
JUL 18	83	.4	29	455	455	•02	.00	.02	.00	.60
22	75	. 3	19	422	427	•02	.01	.03	.03	.47
26	33	•2	21	282	263	.15	.01	.16	.04	.85
DATE	NITRO- GEN+AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	CARBON. ORGANIC TOTAL (MG/L AS C)	CARBON. ORGANIC DIS- SOLVED (MG/L AS C)	CARBON. ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE. SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
NOV	GEN.AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L	ORGANIC SUS- PENDED TOTAL (MG/L	MENT, SUS- PENDED (MG/L)	MENT DIS- CHARGE. SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
NOV 10	GEN+AM- MONIA + ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS. TOTAL (MG/L AS P)	PHORUS. DIS- SOLVED (MG/L	ORGANIC TOTAL (MG/L	ORGANIC DIS- SOLVED (MG/L	ORGANIC SUS- PENDED TOTAL (MG/L	MENT , SUS- PENDED	MENT DIS- CHARGE+ SUS- PENDED	SUSP. SIEVE DIAM. % FINER THAN .062 MM
NOV 10	GEN.AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L)	MENT DIS- CHARGE. SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
NOV 10 DEC 08	GEN+AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS. TOTAL (MG/L AS P)	PHORUS. DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L)	MENT DIS- CHARGE+ SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
NOV 10 DEC 08 JAN 26 FEB	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .85	GEN•AM- MONIA + ORGANIC DIS• (MG/L AS N)	PHORUS. TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C) 15	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 491	MENT DIS- CHARGE. SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
NOV 10 DEC 08 JAN 26 FEB 16 MAR 16	GEN•AM- MONIA + ORGANIC TOTAL (MG/L AS N) *85	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N) .38 .23	PHORUS, TOTAL (MG/L AS P) -21 -11	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C) 15 2.9 7.2	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 491 35	MENT DIS- CHARGE. SUS- PENDED (T/DAY) A19 4.2	SUSP. SIEVE DIAM. % FINER THAN .062 MM
NOV 10 DEC 08 JAN 26 FEB 16 MAR 16 APR 25	GEN.AM- MONIA + ORGANIC TOTAL (MG/L AS N) -85 -26 -68	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N) .38 .23 .47	PHORUS, TOTAL (MG/L AS P) -21 -11 -13	PHORUS, DIS- SOLVED (MG/L AS P) .09 .05	ORGANIC TOTAL (MG/L AS C) 15 2.9 7.2	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT + SUS - PENDED (MG/L) 491 35 53	MENT DIS- CHARGE. SUS- PENDED (T/DAY) A19 4.2 15 20	SUSP. SIEVE SIEVE % FINER THAN .062 MM 99 79 95
NOV 10 DEC 08 JAN 26 FEB 16 MAR 16 APR 25 MAY	GEN.AM- MONIA + ORGANIC TOTAL (MG/L AS N) .85 .26 .68 .70	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N) .38 .23 .47 .61	PHORUS, TOTAL (MG/L AS P) -21 -11 -13 -13	PHORUS, DIS- SOLVED (MG/L AS P) .09 .05 .06	ORGANIC TOTAL (MG/L AS C) 15 2.9 7.2 4.0	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 491 35 53 73 25	MENT DIS- CHARGE. SUS- PENDED (T/DAY) A19 4.2 15 20 4.6	SUSP. SIEVE DIAM. % FINER THAN. .062 MM 99 79 95 90
NOV 10 DEC 08 JAN 26 FEB 16 MAR 16 APR 25 MAY 22 JUN 13	GEN•AM- MONIA + ORGANIC TOTAL (MG/L AS N) -85 -26 -68 -70 -33 1-3	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N) .38 .23 .47 .61 .32	PHORUS, TOTAL (MG/L AS P) -21 -11 -13 -13 -17	PHORUS, DIS- SOLVED (MG/L AS P) .09 .05 .06 .05	ORGANIC TOTAL (MG/L AS C) 15 2.9 7.2 4.0	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 491 35 53 73 25	MENT DIS- CHARGE. SUS- PENDED (T/DAY) A19 4.2 15 20 4.6 527	SUSP. SIEVE DIAM. % FINER THAN .062 MM 99 79 95
NOV 10 DEC 08 JAN 26 FEB 16 MAR 16 APR 25 MAY 22 JUN 13 JUL 18	GEN.AM- MONIA + ORGANIC TOTAL (MG/L AS N) .85 .26 .68 .70 .33 1.3	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N) .38 .23 .47 .61 .32 .84	PHORUS, TOTAL (MG/L AS P) -21 -11 -13 -13 -17 -18 -13	PHORUS, DIS- SOLVED (MG/L AS P) .09 .05 .06 .05 .09 .07	ORGANIC TOTAL (MG/L AS C) 15 2.9 7.2 4.0 16	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT + SUS - PENDED (MG/L) 491 35 53 73 25 346	MENT DIS- CHARGE. SUS- PENDED (T/DAY) 819 4.2 15 20 4.6 527	SUSP. SIEVE DIAM. % FINER THAN. .062 MM 99 79 95 90 79
NOV 10 DEC 08 JAN 26 FEB 16 APR 25 MAY 22 JUN 13 JUL	GEN.AM- MONIA + ORGANIC TOTAL (MG/L AS N) .85 .26 .68 .70 .33 1.3 .95	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N) .38 .23 .47 .61 .32 .84	PHORUS, TOTAL (MG/L AS P) -21 -11 -13 -13 -17 -18 -13	PHORUS, DIS- SOLVED (MG/L AS P) .09 .05 .06 .05 .09 .07	ORGANIC TOTAL (MG/L AS C) 15 2.9 7.2 4.0 16	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 491 35 53 73 25 346 17	MENT DIS- CHARGE. SUS- PENDED (T/DAY) A19 4.2 15 20 4.6 527 1.3	SUSP. SIEVE DIAM. % FINER THAN .062 MM 99 79 95 90 79 95 86

08164000 LAVACA RIVER NEAR EDNA, TX--Continued

	APR 25	.00	.00	.00		.00	.30	.03	.00	
	DATE	METHYL PARA- THION, TOTAL (UG/L)	TRI- THION. TOTAL	PARA- THION. TOTAL	TOTAL	THION	2.4-D. TOTAL (UG/L)	TOTAL	STLVEX. TOTAL (UG/L)	
2	S	.00	.00	.00	.00	.00	.00	.00	.05	.00
	AZII TO ATE (U	NON. EL	DRIN SUL	TAL TO	TAL TO	TAL TO	PTA- CHI LOR, EPO: TAL TO		TAL TO	LA- ION. TAL G/L)
	APR 25	0915	.0	.00	.00	•0			.00	
	DATE	TIME	PCB. TOTAL (UG/L)	NAPH- THA- LENES. POLY- CHLOR. TOTAL (UG/L)	ALDRIN. TOTAL (UG/L)	TOTAL	DDD+ TOTAL (UG/L)	DDE+ TOTAL (UG/L)	DDT+ TOTAL (UG/L)	
AUG 22	.0	1	1	0	0	0	0	20	20	0
FER 16 MAY 22	.0	0	0	0	0	0	0	20 20	10 10	10 10
DATE	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM. TOTAL (UG/L AS SE)	SFLE- NIUM. SUS- PENDED TOTAL (UG/L AS SE)	SELE- NIUM. DIS- SOLVED (UG/L AS SE)	SILVER. TOTAL RECOV- ERABLE (UG/L AS AG)	SILVER. SUS- PENDED RECOV- ERABLE (UG/L AS AG)	SILVER+ DIS- SOLVED (UG/L AS AG)	ZINC+ TOTAL RECOV- ERABLE (UG/L AS ZN)	7INC. SUS- PENDED RECOV- ERABLE (UG/L AS ZN)	ZINC. DIS- SOLVED (UG/L AS ZN)
22	170	50	2	2	0	AO	50	30	.0	.0
16 MAY 22	250	30 30	18	17	1	140	110	30	.1	.1
DATE	PENDED RECOV- FRABLE (UG/L AS FE)	IRON+ DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PR)	PENDED RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PR)	TOTAL RECOV- ERABLE (UG/L AS MN)	PENDED RECOV. (UG/L AS MN)	NESE. DIS- SOLVED (UG/L AS MN)	RECOV- ERABLE (UG/L AS HG)	RECOV- ERABLE (UG/L AS HG)
22	TRON. SUS-	10	LEAD.	LEAD+ SUS-	0	MANGA- NESE.	MANGA- NESE+	MANGA-	MERCURY TOTAL	MERCURY SUS- PENDED
22 AUG	25	25	0	0	0	0	6	5	0	280
FEB 16	10	10	0	2	2	0	6	5	1	1100
DATE	CHRO- MIUM. TOTAL RECOV- FRABLE (UG/L AS CR)	CHRO- MIUM. SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM. DIS- SOLVED (UG/L AS CR)	COBALT. TOTAL RECOV- ERABLE (UG/L AS CO)	COBALT. SUS- PENDED RECOV- ERABLE (UG/L AS CO)	COBALT. DIS- SOLVED (UG/L AS CO)	COPPER+ TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER. SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER. DIS- SOLVED (UG/L AS CU)	IRON. TOTAL RECOV- ERABLE (UG/L AS FE)
AUG 22	0845	6	0	6	400	0	400	2	2	0
FEB 16 MAY 22	0945 1603	3	1 2	2	200 300	0	300	0	0	0
DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	APSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM. TOTAL RECOV- ERABLE (UG/L AS BA)	BARIUM. SUS- PENDED RECOV- ERABLE (UG/L AS BA)	BARIUM. DIS- SOLVED (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)
		WATER QU	ALITY DATA	A. WATER	YEAR OCTO		TO SEPTEME	ER 1978	CADMIUM	

08164000 LAVACA RIVER NEAR EDNA, TX--Continued

PHYTOPLANKTON ANALYSES. OCTOBER 1977 TO AUGUST 1978

DATE TIME		10.77 030		16.78		22,78		13,78		18,78		22•78 845
TOTAL CELLS/ML	7 1	200	18	000	240	0000	26	3000	1	9000	,	700
DIVERSITY: DIVISION		1.3										
.CL ASS		1.3		1.0		0.9		1.1		1.5		1.2
ORDER		2.0		1.7		1.9		1.8		2.0		1.9
FAMILY		2.3		2.3		2.5		2.5		2.7		2.6
GENUS		2.4		2.9		3.3		3.6		3.7		2.9
ORGANISM	CELLS /ML	PER- CENT	CELLS	PER- CENT								
CHLOROPHYTA (GREEN ALGAE)											- 10	
.CHLOROPHYCEAE												
CHLOROCOCCALFS												
SCHROEDERIA				_		_			-			4
COELASTRACEAE		7	-	-		-		0				-
COELASTRUM		-		-		-	1100	4	2100	11		-
HYDRODICTYACEAE												
PEDIASTRUM		-		-		-		-			85	5
MICRACTINIACEAE		4										
MICRACTINIUM		-		-	6500	3	850	0				
OOCYSTACEAE					0500	3	000	3	15.7	S. T. MB		145
ANK ISTRODESMUS		-		-	16000	7	490	2	990	5	85	5
CHODATELLA		-		-	11000	5		ō	260	1		-
DICTYOSPHAERIUM		•	3600#			-	1600	6	1400	8		
KIRCHNERIELLA		-	1300	7	18000	8	360	1	1100	6		
00CYSTIS	57	5		-	4000	2	1500	-		41.3	110	6
QUADRIGULA	57	-	-	2.00	4900	-	1500 720	5		- 3		
SELENASTRUM		-		-	26000	11		-				
TETRAEDRON		-		-		-		0	130	1	11	1 .
TREUBARIA		-		-	1600	1		-		-	-	
SCENEDESMACEAE												
CRUCIGENIA		-	1.00	-		-	800	3		-		
SCENEDESMUS	==	-	1400 2200	12	44000#	19	360 1600	1	790	6	===	29
TETRASTRUM		-	290	2	44000#	19	360	6	1200	7	510#	5
TETRASPORALES			- 70				300	•	1300		73	-
PALMELLACEAE												
GLOEOCYSTIS	57	5		-		-		-		-		-
SPHAEROCYSTIS		-		-	25000	10		-		-		-
CHLAMYDOMONADACEAE												
CARTERIA		-		_	3300	1		0				-
CHLAMYDOMONAS	14	1	3400#	19	31000	13	180	1	720	4	430#	25
PHACOTACEAE								1				-
PHACOTUS				•		-		-	200	1		-
PTEROMONAS ZYGNEMATALES		-	720	4	100	-		0				12
ZYGNEMATACEAE												
MOUGEOTIA	29	2		-		-						-
CHRYSOPHYTA												
.BACILLARIOPHYCEAE												
CENTRALES												
CYCLOTELLA		_	220	1	1600	1		•	330	2		_
		- F	220	1	1000	1	-	0	330	-		
MELOSIRA		-		-		-		0		-		-
PENNALES												
DIATOMACEAE												
OPEPHORA	43	4		-		•		-		-		-
DIPLONEIS	43	4	-	52		_		-		200		_
GYROSIGMA		-		-		-					43	2
NAVICULA	57	5		0		-		-			21	1
NITZSCHIACEAE				1							- 17	1
HANTZSCHIA	29	2		-								
···NITZSCHIA	43	4	140	1	4900	2	550	1	390	5	160	9
.XANTHOPHYCEAE HETEROCOCCALES												
CHLOROTHECIACEAE												
OPHIOCYTIUM		-		1					500	1		-
COVETOBUYTA (COVETOBUSES												
CRYPTOPHYTA (CRYPTOMONADS) •CRYPTOPHYCEAE												
CRYPTOMONIDALES												
CRYPTOMONODACEAE												
CRYPTOMONAS		-		-		-		-	790	4	190	1:

NOTE: # - DOMINANT ORGANISM: EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM: MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

267 08164000 LAVACA RIVER NEAR EDNA, TX--Continued

PHITOPLA	INKTON	ANALTSES	. 0010	DEK 1911	10 40	9021 141	0				CONTIN
											22,78
1	030	0	835	1	603	0	920	1	000	(1845
CELLS	PER-	CELLS	PER-	CELLS	PER-	CELLS	PER-	CELLS	PER-	CELLS	PER-
/ML	CENT	/ML	CENT	/ML	CENT	ML	CENT	/ML	CENT	ML	CENT
						4300#	15	3900#	21		-
140	12	4500#	25	39000#	17	2900	10	5500	12		-
	-		•		-		-	660	3		-
	1	4.6	1			2500		1000			7 1
6404	55	22	-						-		-
040#	33	-	-			7300#	20		-		-
	-		-		-	490	2		-		-
							-				
	-		-		-		-		-	43	5
77	-		-		-		0		-		-
					-				-		-
	-	140	1	1600	1		0	500	1		-
	•		-		-		-		-	11	1
		77.00	100					2.6		73.54	1.00
	NOV 1 CELLS /ML	NOV 10.77 1030 CELLS PER-/ML CENT	NOV 10.77 MAR 0 0 CELLS PER- CELLS /ML CENT /ML 12 4500#	NOV 10+77 MAR 16+78 1030 0835 CELLS PER- /ML CENT CELLS PER- /ML CENT 140 12 4500# 25	NOV 10,77 MAR 16,78 MAY 1030 10835 1 CELLS PER- CELLS PER- CELLS PER- CELLS /ML CENT /ML CENT /ML 140 12 4500# 25 39000#	NOV 10.77 MAR 16.78 MAY 22.78 1030 0835 1603 CELLS PER- CELLS PER- CELLS PER-/ML CENT /ML CENT /ML CENT 140 12 4500# 25 39000# 17	NOV 10,77 MAR 16,78 MAY 22,78 JUN 1030 0835 1603 JUN 1603 0 0 0835 1603 MAY 22,78 JUN 160	1030 0835 1603 0920 CELLS PER- CELLS PER- CELLS PER- CELLS PER- /ML CENT /	NOV 10.77 MAR 16.78 MAY 22.78 JUN 13.78 JUL 1030 0835 1603 JUN 13.78 JUL 1030 0920 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NOV 10.77 MAR 16.78 MAY 22.78 JUN 13.78 JUL 18.78 1030 CELLS PER- CELLS PER- CELLS PER- CELLS PER- /ML CENT /M	NOV 10.77 MAR 16.78 MAY 22.78 JUN 13.78 JUL 18.78 AUG 0835 1603 JUN 13.78 JUL 18.78 AUG 0920 JUN 1000 AUG 0920

NOTE: # - DOMINANT ORGANISM: EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM: MAY NOT HAVE BEEN COUNTED: LESS THAN 1/2%

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

MONTH	DISCHAPGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICHO- MHOS)	SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	OIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATF (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA.MG) (MG/L)
ост. 1977	. 835	768	450	1010	79	178	23	52	270
NOV. 1977	. 4809	371	210	2790	38	498	14	179	130
DEC. 1977	. 1467	712	420	1650	73	291	22	A6	250
JAN. 1978	. 4697	411	240	3040	42	538	15	187	140
FER. 1978	4692	448	260	3320	46	586	16	206	160
мая. 1978	3282	575	340	2970	59	524	19	169	200
APR. 1978	7669	378	220	4540	39	811	14	243	130
MAY 1978	. 1314	781	460	1620	81	286	23	83	270
JUNF 1978	. 4244	409	240	2730	42	483	16	178	140
JULY 1978	• 1333	460	270	476	47	171	15	56	160
AUG. 1978	632.7	499	290	497	52	88	17	29	180
SEPT 1978	• 9525n•37	142	83	19100	14	3310	5	1260	50
TOTAL	. 120224.06		**	44200	**	7761		2770	**
WTD.AVG	. 329.39	234	140	**	24	**	A. 2	**	42

LAVACA RIVER BASIN
08164000 LAVACA RIVER NEAR EDNA, TX--Continued

	SPECIF	IC CONDU	CTANCE	(MICROMHOS/CM	AT	25 DEG. C). ONCE-DAILY	WATER YEAR	OCTOBER	1977 TO	SEPTEMBER	1978	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		680	363	807	763	795	854	698	548	752	307	
2		280	512	801	768		844	722	658	727	354	
3		280	577	787	781		853	753	558	730	444	
4		299	602	790	794		852	764	331	750	526 673	
5		364	696	799	800	810	850	779	400	767	613	
			044	787	803	816	853	807	411	770	677	
6		414	844	782	704		867	822	435	772	766	
8		434	800	790	275		863	815	350	778	259	
9		314	776	801	346		867	810	303	772	327	tan and a second
10		270	784	813	338	481	851	816	350	767	381	
									363	792	493	
11		322	790	704	354		847 815	815 813	416	772	519	
12		357	793 784	646	401		798	822	475	780	631	
13		442	756	588	429		830	825	512	808	700	
14 15		540	772	668	497		850	830	572	805	750	
								100				
16		574	777	732	553		863	837	611	808 796	758 771	
17		605	782	416	440		870 865	828 840	656	772	784	
18		646	796	400 220	388		870	831	680	786	771	
19 20		677 700	784 787	247	457		877	834	708	752	758	
20		100										
21		712	793	272	579		888	831	731	770	750	
22		724	800	318	650		899	828	743	786	728 691	
23		736	801	415	704		242	837	753 759	824 830	708	
24		743	799	473	757		278 397	835 834	756	780	718	
25		759	796	537	15:	910	371	034				
26		752	796	590	765	823	460	834	761	752	729	
27		775	796	643	770		534	831	760	772	722	
28		772	791	698	773		571	793	759	301	713	
29		759	774	732			580	810	720	215	740	
30		277	784	762			600	722 492	742	234	734	
31			787	771		- 847		472		234	104	
MEAN		539	752	626	588	742	750	797	582	707	631	
								77.73		0 1070		
		TEMP	PERATURE	(DEG. C) OF	WATE	ONCE-DAILY	AR OCTOBER	1977 TO	SEPTEMBE	K 1970		
DAY	ост	NOV	DEC	JAN	FEE	ONCE-DAILY	APR	1977 TO	JUN	JUL	AUG	SEP
	ост	NOV	DEC	JAN	FEE	ONCE-DAILY MAR	APR	MAY		JUL 28.5	28.0	SEP
1	ОСТ	NOV	DEC 17.0	JAN 15.0	FEE	ONCE-DAILY MAR 17.5	APR 24.0		JUN	JUL 28.5 29.5	28.0 29.5	SEP
1 2	ост	NOV	DEC 17.0 18.5	JAN	FEE	ONCE-DAILY MAR 17.5 20.0	APR 24.0 23.5 24.0	MAY 26.0 25.0 22.0	JUN 27.0 27.5 16.0	JUL 28.5 29.5 31.5	28.0 29.5 30.0	SEP
1 2 3 4	ост	NOV	DEC 17.0 18.5 20.0 21.0	JAN 15.0 10.0 11.0 15.0	9.0 10.5 10.0	ONCE-DAILY MAR 17.5 5 20.0 14.0 14.0	APR 24.0 23.5 24.0 27.0	MAY 26.0 25.0 22.0 22.5	JUN 27.0 27.5 16.0 27.5	JUL 28.5 29.5 31.5 32.0	28.0 29.5 30.0 31.0	SEP
1 2 3	ОСТ	NOV	DEC 17.0 18.5 20.0	JAN 15.0 10.0 11.0	9.0 10.5 10.6	ONCE-DAILY MAR 17.5 5 20.0 14.0 14.0	APR 24.0 23.5 24.0	MAY 26.0 25.0 22.0	JUN 27.0 27.5 16.0	JUL 28.5 29.5 31.5	28.0 29.5 30.0	SEP
1 2 3 4 5	ОСТ	NOV	DEC 17.0 18.5 20.0 21.0 21.5	JAN 15.0 10.0 11.0 15.0	9.0 10.5 10.0 11.0	ONCE-DAILY MAR 17.5 5 20.0 14.0 15.0	APR 24.0 23.5 24.0 27.0 25.5	MAY 26.0 25.0 22.0 22.5 24.5	JUN 27.0 27.5 16.0 27.5 28.0	JUL 28.5 29.5 31.5 32.0 30.0	28.0 29.5 30.0 31.0 29.5	SEP
1 2 3 4 5	ОСТ	NOV 18.0 20.0	DEC 17.0 18.5 20.0 21.0 21.5	JAN 15.0 10.0 11.0 15.0 18.0	9.0 10.5 10.0 11.0 12.0	ONCE-DAILY B MAR 17.5 5 20.0 14.0 114.0 15.0	APR 24.0 23.5 24.0 27.0 25.5	MAY 26.0 25.0 22.0 22.5 24.5	JUN 27.0 27.5 16.0 27.5 28.0	JUL 28.5 29.5 31.5 32.0 30.0	28.0 29.5 30.0 31.0 29.5	SEP
1 2 3 4 5	ост	NOV 18.0 20.0 20.0	DEC 17.0 18.5 20.0 21.0 21.5	JAN 15.0 10.0 11.0 15.0 18.0	9.0 10.5 10.0 11.0 12.0	ONCE-DAILY MAR 17.5 5 20.0 14.0 14.0 15.0 5 15.5 19.5	APR 24.0 23.5 24.0 27.0 25.5 24.0 23.5	MAY 26.0 25.0 22.0 22.5 24.5 25.0 27.0	JUN 27.0 27.5 16.0 27.5 28.0 29.5 27.0	JUL 28.5 29.5 31.5 32.0 30.0	28.0 29.5 30.0 31.0 29.5 29.0 29.0 26.5	SEP
1 2 3 4 5	ОСТ	NOV 18.0 20.0 20.0 21.0 20.5	DEC 17.0 18.5 20.0 21.0 21.5 15.5 15.0 20.0	JAN 15.0 10.0 11.0 15.0 18.0 20.0 21.0	9.0 10.0 11.0 12.0	ONCE-DAILY B MAR 17.5 5 20.0 14.0 15.0 5 15.5 19.5 15.0	APR 24.0 23.5 24.0 27.0 25.5	MAY 26.0 25.0 22.0 22.5 24.5 25.0 27.0 27.5 28.5	JUN 27.0 27.5 16.0 27.5 28.0	JUL 28.5 29.5 31.5 32.0 30.0 29.0 30.5 32.0 30.5	28.0 29.5 30.0 31.0 29.5 29.0 26.5 26.0	SEP
1 2 3 4 5	ост	NOV 18.0 20.0 20.0	DEC 17.0 18.5 20.0 21.0 21.5	JAN 15.0 10.0 11.0 15.0 18.0	9.0 10.5 10.0 11.0 12.0	ONCE-DAILY MAR 17.5 5 20.0 14.0 15.0 15.0 5 19.5 15.0 16.0	APR 24.0 23.5 24.0 27.0 25.5 24.0 23.5 24.0	MAY 26.0 25.0 22.0 22.5 24.5 25.0 27.0 27.5	JUN 27.0 27.5 16.0 27.5 28.0 29.5 27.0 26.0	JUL 28.5 29.5 31.5 32.0 30.0 29.0 30.5 32.0	28.0 29.5 30.0 31.0 29.5 29.0 29.0 26.5	SEP
1 2 3 4 5 6 7 8 9	ост	NOV 18.0 20.0 20.0 21.0 20.5 17.5 16.5	DEC 17.0 18.5 20.0 21.0 21.5 15.5 15.0 20.0 15.5	JAN 15.0 10.0 11.0 15.0 18.0 20.0 21.0 16.0 12.0	9.0 10.5 10.0 11.0 12.0 9.5 12.0 8.0 8.0	ONCE-DAILY MAR 17.5 5 20.0 14.0 15.0 15.5 19.5 0 15.0 16.0 15.0	APR 24.0 23.5 24.0 27.0 25.5 24.0 23.5 24.0 23.5 24.0 23.0	MAY 26.0 25.0 22.0 22.5 24.5 25.0 27.0 27.5 28.5 28.0	JUN 27.0 27.5 16.0 27.5 28.0 29.5 27.0 26.0 26.0	JUL 28.5 29.5 31.5 32.0 30.0 29.0 30.5 32.0 30.5 28.0	28.0 29.5 30.0 31.0 29.5 29.0 26.5 26.0 29.5	SEP
1 2 3 4 5 6 7 8 9 10	ост	NOV 18.0 20.0 20.0 21.0 20.5 17.5 16.5	DEC 17.0 18.5 20.0 21.0 21.5 15.5 15.0 20.0 15.5 12.5	JAN 15.0 10.0 11.0 15.0 18.0 20.0 21.0 16.0 12.0 10.0	9.0 10.5 10.0 11.0 12.0 8.0 8.0	ONCE-DAILY MAR 17.5 5 20.0 14.0 14.0 15.0 15.5 19.5 19.5 115.0 16.0 15.0	APR 24.0 23.5 24.0 27.0 25.5 24.0 23.5 24.0 23.0 24.0	MAY 26.0 25.0 22.0 22.5 24.5 25.0 27.0 27.5 28.5 28.0	JUN 27.0 27.5 16.0 27.5 28.0 29.5 27.0 26.0 26.0	JUL 28.5 29.5 31.5 32.0 30.0 29.0 30.5 32.0 30.5	28.0 29.5 30.0 31.0 29.5 29.0 29.0 26.5 26.0 29.5	SEP
1 2 3 4 5 6 7 8 9 10	ост	NOV 18.0 20.0 20.0 21.0 20.5 17.5 16.5	DEC 17.0 18.5 20.0 21.0 21.5 15.5 15.0 20.0 15.5 12.5	JAN 15.0 10.0 11.0 15.0 18.0 20.0 21.0 16.0 12.0 10.0	9.0 10.5 10.0 11.0 12.0 8.0 8.0 8.0	ONCE-DAILY MAR 17.5 5.20.0 14.0 14.0 15.0 5.15.5 15.5 0.16.0 16.0 15.0 0.16.0 0.19.5	APR 24.0 23.5 24.0 27.0 25.5 24.0 23.5 24.0 24.0 24.0 21.5	MAY 26.0 25.0 22.0 22.5 24.5 27.0 27.5 28.5 28.0	JUN 27.0 27.5 16.0 27.5 28.0 29.5 27.0 26.0 26.0 27.0 28.0	JUL 28.5 29.5 31.5 32.0 30.0 29.0 30.5 32.0 30.5 28.0 28.0	28.0 29.5 30.0 31.0 29.5 29.0 26.5 26.0 29.5	SEP
1 2 3 4 5 6 7 8 9 10	ост	NOV 18.0 20.0 20.0 20.5 17.5 16.5 14.5 15.5	DEC 17.0 18.5 20.0 21.0 21.5 15.5 15.0 20.0 15.5 12.5	JAN 15.0 10.0 11.0 15.0 18.0 20.0 21.0 16.0 12.0 10.0	9.0 10.0 11.0 12.0 9.5 12.0 8.0 8.0 9.1	ONCE-DAILY MAR 17.5 20.0 14.0 15.0 15.0 15.0 16.0 15.0 15.0 16.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	APR 24.0 23.5 24.0 27.0 25.5 24.0 23.5 24.0 23.0 24.0 23.0	MAY 26.0 25.0 22.5 24.5 25.0 27.0 27.5 28.5 28.0 27.5 28.0 27.5	JUN 27.0 27.5 16.0 27.5 28.0 29.5 27.0 26.0 26.0 27.0 28.0 31.0	JUL 28.5 29.5 31.5 32.0 30.0 29.0 30.5 32.0 30.5 28.0 28.0 31.0 31.0	28.0 29.5 30.0 31.0 29.5 29.0 29.0 26.5 26.0 29.5	SEP
1 2 3 4 5 6 7 8 9 10 11 12 13 14	ост	NOV 18.0 20.0 20.0 21.0 20.5 17.5 16.5	DEC 17.0 18.5 20.0 21.5 15.5 15.0 20.0 20.0 17.0 20.0	JAN 15.0 10.0 11.0 15.0 18.0 20.0 21.0 16.0 12.0 10.0 10.0	9.0 10.0 11.0 12.0 9.5 12.0 8.0 8.0 9.1 13.0	ONCE-DAILY MAR 17.5 5 20.0 14.0 14.0 15.0 15.0 16.0 16.0 15.0 19.5 22.5 5 22.0	APR 24.0 23.5 24.0 27.0 25.5 24.0 23.5 24.0 24.0 24.0 21.5	MAY 26.0 25.0 22.0 22.5 24.5 27.0 27.5 28.5 28.0	JUN 27.0 27.5 16.0 27.5 28.0 29.5 27.0 26.0 26.0 27.0 28.0	JUL 28.5 29.5 31.5 32.0 30.0 29.0 30.5 32.0 30.5 28.0 28.0	28.0 29.5 30.0 31.0 29.5 29.0 29.0 26.5 26.0 29.5	SEP
1 2 3 4 5 6 7 8 9 10	ост	NOV 18.0 20.0 20.0 20.5 17.5 16.5 14.5 15.5	DEC 17.0 18.5 20.0 21.0 21.5 15.5 15.0 20.0 15.5 12.5	JAN 15.0 10.0 11.0 15.0 18.0 20.0 21.0 16.0 12.0 10.0 10.5 9.5	9.5 10.6 11.6 12.6 9.5 12.6 8.6 8.6 13.1 14.1	ONCE-DAILY MAR 17.5 20.0 14.0 14.0 15.0 15.5 19.5 0 16.0 15.0 0 20.0 0 19.5 0 22.5 5 22.0 21.0	APR 24.0 23.5 24.0 27.0 25.5 24.0 23.5 24.0 23.0 24.0 17.5 20.0 23.0	26.0 25.0 22.0 22.5 24.5 27.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0	JUN 27.0 27.5 16.0 27.5 28.0 29.5 27.0 26.0 26.0 26.0 27.0 28.0 31.0 30.0	JUL 28.5 29.5 31.5 32.0 30.0 29.0 30.5 32.0 30.5 28.0 31.0 31.0	28.0 29.5 30.0 31.0 29.5 29.0 29.5 26.0 29.5 30.5 30.5 30.5 30.0 30.5	SEP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	ост	NOV 18.0 20.0 20.0 20.5 17.5 16.5 17.5 17.5 17.5 17.5 17.5	DEC 17.0 18.5 20.0 21.5 15.5 15.0 20.0 15.5 12.5 14.0 20.0 20.0 20.0 20.0	JAN 15.0 10.0 11.0 15.0 18.0 20.0 21.0 16.0 12.0 10.5 9.5 10.5 9.0	9.0 10.5 10.0 11.0 9.5 12.0 8.0 8.0 9.1 13.1 11.1	ONCE-DAILY MAR 17.5 5.20.0 14.0 15.0 5.15.5 15.5 0.16.0 16.0 15.0 0.20.0 0.22.5 5.22.0 0.20.0	APR 24.0 23.5 24.0 27.0 25.5 24.0 23.5 24.0 24.0 23.0 24.0 23.0 24.0 23.5	MAY 26.0 25.0 22.0 22.5 24.5 25.0 27.5 28.5 28.0 27.5 28.0 27.5 28.0 25.5 26.0 25.5	JUN 27.0 27.5 16.0 27.5 28.0 29.5 27.0 26.0 26.0 28.0 31.0 28.0 30.0	JUL 28.5 29.5 31.5 32.0 30.0 29.0 30.5 32.0 30.5 28.0 31.0 31.0 31.0 31.0	28.0 29.5 30.0 31.0 29.5 29.0 29.0 26.5 26.0 29.5 30.0 29.0 31.0 30.5	SEP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	ОСТ	NOV 18.0 20.0 20.0 21.0 20.5 17.5 16.5 14.5 17.5 17.5 17.5	DEC 17.0 18.5 20.0 21.5 15.5 15.0 20.0 20.0 15.5 12.5 14.0 17.0 18.0	JAN 15.0 10.0 11.0 15.0 18.0 20.0 21.0 16.0 10.0 10.0 10.5 9.5 10.5 9.0	9.0 10.5 11.0 12.0 8.0 8.0 8.0 9.1 14.1 13.1 11.1	ONCE-DAILY MAR 17.5 20.0 14.0 15.0 15.0 15.5 19.5 0 16.0 15.0 0 20.0 0 19.5 0 22.5 0 22.5 0 22.0 0 19.5	APR 24.0 23.5 24.0 27.0 25.5 24.0 23.5 24.0 23.0 24.0 23.0 23.0 23.5 24.0 23.5	26.0 25.0 22.0 22.5 24.5 27.0 27.5 28.0 27.5 28.0 27.5 28.0 25.5 25.0 25.5 25.0 25.5 25.0	JUN 27.0 27.5 16.0 27.5 28.0 29.5 27.0 26.0 26.0 27.0 28.0 30.0 29.5 30.5	JUL 28.5 29.5 31.5 32.0 30.0 29.0 30.5 32.0 31.0 31.0 31.0 31.0	28.0 29.5 30.0 31.0 29.5 29.0 29.0 26.5 26.0 29.5 30.5 30.0 31.0 31.0	SEP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	ост	NOV 18.0 20.0 20.0 21.0 21.0 21.5 17.5 16.5 14.5 17.5 19.5 21.0 21.0	DEC 17.0 18.5 20.0 21.0 21.5 15.5 15.0 17.0 20.0 17.0 18.0 19.0 14.0	JAN 15.0 10.0 11.0 15.0 18.0 20.0 21.0 16.0 12.0 10.0 10.5 9.5 10.5 9.0	9.0 10.5 11.0 12.0 8.0 8.0 8.1 13.1 11.1	ONCE-DAILY MAR 17.5 20.0 14.0 14.0 15.0 15.0 16.0 15.0 16.0 19.5 22.5 22.0 21.0 20.0	APR 24.0 23.5 24.0 25.5 24.0 23.5 24.0 23.0 24.0 23.0 24.0 23.0 24.0 23.0 24.0 23.0 24.0	26.0 25.0 22.0 22.5 24.5 27.0 27.5 28.5 28.0 27.5 28.0 27.5 28.0 25.5 25.0 26.0	JUN 27.0 27.5 16.0 27.5 28.0 26.0 26.0 26.0 26.0 31.0 30.0 29.5 30.5	30.0 29.5 31.5 32.0 30.0 29.0 30.5 32.0 30.5 28.0 28.0 31.0 31.0 31.0 32.0 31.0	28.0 29.5 30.0 29.5 29.0 29.0 26.5 26.0 29.5 30.0 30.5 31.0 31.0 31.5	SEP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	ОСТ	NOV 18.0 20.0 21.0 20.5 17.5 16.5 14.5 17.5 19.5 21.0 21.0 20.5	DEC 17.0 18.5 20.0 21.0 21.5 15.5 20.0 15.5 12.5 14.0 17.0 20.0 18.0 19.0 19.0	JAN 15.0 10.0 11.0 15.0 18.0 20.0 21.0 16.0 12.0 10.0 10.5 9.5 10.5 9.0 16.0 13.0 10.0	9.0 10.5 10.6 11.6 12.6 8.6 8.6 8.6 13.1 11.1 12.1 12.1	ONCE-DAILY MAR 17.5 20.0 14.0 15.0 15.0 15.0 16.0 19.5 20.0 16.0 19.5 22.5 22.0 22.0 22.0 20.0 19.5 22.0 22.0 20.0 20.0 20.0 20.0 20.0 20	APR 24.0 23.5 24.0 27.0 25.5 24.0 23.5 24.0 23.0 24.0 23.0 24.0 23.5 24.0 23.5	26.0 25.0 22.0 22.5 24.5 27.0 27.5 28.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0	JUN 27.0 27.5 16.0 27.5 28.0 29.5 27.0 26.0 26.0 28.0 31.0 31.0 28.0 30.5 27.0 28.0	JUL 28.5 29.5 31.5 32.0 30.0 29.0 30.5 32.0 31.0 31.0 31.0 31.0	28.0 29.5 30.0 31.0 29.5 29.0 29.0 26.5 26.0 29.5 30.5 30.0 31.0 31.0	SEP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	ОСТ	NOV 18.0 20.0 20.0 21.0 21.0 21.5 17.5 16.5 14.5 17.5 19.5 21.0 21.0	DEC 17.0 18.5 20.0 21.0 21.5 15.5 15.0 17.0 20.0 17.0 18.0 19.0 14.0	JAN 15.0 10.0 11.0 15.0 18.0 20.0 21.0 16.0 12.0 10.0 10.5 9.5 10.5 9.0	9.0 10.5 11.0 12.0 8.0 8.0 8.1 13.1 11.1	ONCE-DAILY MAR 17.5 20.0 14.0 15.0 15.0 15.0 16.0 19.5 20.0 16.0 19.5 22.5 22.0 22.0 22.0 20.0 19.5 22.0 22.0 20.0 20.0 20.0 20.0 20.0 20	APR 24.0 23.5 24.0 27.0 25.5 24.0 23.5 24.0 23.0 24.0 23.0 24.0 23.0 24.0 23.5 24.0 23.5 24.0 23.5	MAY 26.0 25.0 22.0 22.5 24.5 27.0 27.5 28.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 29.0 27.5	JUN 27.0 27.5 16.0 27.5 28.0 29.5 27.0 26.0 26.0 26.0 30.0 30.0 29.5 30.5 27.0 28.0 31.0 29.5 30.5 27.0 31.0 31.0 31.0	JUL 28.5 29.5 31.5 32.0 30.0 29.0 30.5 32.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0	28.0 29.5 30.0 29.5 29.0 29.0 26.5 26.0 29.5 30.0 29.0 31.0 31.0 31.0 31.5	SEP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	ост	NOV 18.0 20.0 21.0 20.5 17.5 16.5 14.5 17.5 19.5 21.0 21.0 20.5	DEC 17.0 18.5 20.0 21.0 21.5 15.5 15.0 20.0 17.0 20.0 17.0 19.0 14.5 19.0 14.5 19.0	JAN 15.0 10.0 11.0 15.0 18.0 20.0 21.0 16.0 12.0 10.0 10.5 9.5 10.5 9.0 16.0 13.0 10.0 5.5	9.0 10.5 10.6 11.6 9.5 12.6 8.6 8.6 8.1 13.1 11.5 12.1 10.1 11.1	ONCE-DAILY MAR 17.5 20.0 14.0 15.0 15.0 15.0 16.0 15.0 20.0 15.0 20.0 21.0 20.0 21.0 20.0 20.0 20.0 20	APR 24.0 23.5 24.0 27.0 25.5 24.0 23.5 24.0 23.0 24.0 23.0 23.0 24.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5	26.0 25.0 22.0 22.5 24.5 27.0 27.5 28.0 27.5 28.0 27.5 28.0 25.5 25.5 25.0 26.0 27.5 28.0	JUN 27.0 27.5 16.0 27.5 28.0 29.5 27.0 26.0 27.0 28.0 31.0 30.5 27.0 28.0 31.0 30.5	JUL 28.5 29.5 31.5 32.0 30.0 29.0 30.5 28.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0	28.0 29.5 30.0 29.5 29.0 29.5 26.0 29.5 30.5 30.5 31.0 31.0 31.0 31.0 31.0 30.5	SEP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	ОСТ	NOV 18.0 20.0 20.0 21.0 21.0 21.5 17.5 16.5 17.5 19.5 21.0 20.5 21.0 20.5 21.0	DEC 17.0 18.5 20.0 21.5 15.5 15.0 20.0 17.0 20.0 17.0 18.0 18.0 14.5 19.0 14.5	JAN 15.0 10.0 11.0 15.0 18.0 20.0 21.0 16.0 12.0 10.0 10.5 9.5 10.5 9.0 16.0 13.0 10.0 7.0 6.0	9.0 10.0 11.0 12.0 8.0 8.0 8.1 13.1 11.1 12.1 12.1 11.1 15.1	ONCE-DAILY MAR 17.5 20.0 14.0 14.0 15.0 15.0 15.0 15.0 15.0 15.0 19.5 22.5 22.0 0 20.0 19.5 22.5 22.0 0 20.0 0 20.0 0 20.0 0 20.0 0 20.0	APR 24.0 23.5 24.0 25.5 24.0 25.5 24.0 23.0 24.0 23.0 24.0 23.0 23.0 24.0 25.5 20.5	26.0 25.0 22.0 22.5 24.5 27.0 27.5 28.5 28.0 27.5 28.0 25.5 28.0 25.5 27.5 28.0 25.0 26.0 27.0 27.0 27.0 27.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28	JUN 27.0 27.5 16.0 27.5 28.0 26.0 26.0 26.0 26.0 31.0 29.5 30.0 29.5 31.0 31.0	30.0 20.0 30.0 30.0 20.0 30.5 32.0 30.5 28.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0	28.0 29.5 30.0 29.5 29.0 29.0 26.5 26.0 29.5 30.0 30.5 31.0 31.5 30.5 31.5 30.5	SEP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	OCT	NOV 18.0 20.0 21.0 20.5 17.5 16.5 17.5 17.5 21.0 21.0 20.5 21.5 21.0 21.0 20.5 21.0	DEC 17.0 18.5 20.0 21.0 21.5 15.5 20.0 17.0 20.0 17.0 18.0 17.0 18.0 14.5 12.5 12.0 10.0 10.0	JAN 15.0 10.0 11.0 15.0 18.0 20.0 21.0 16.0 12.0 10.0 10.5 9.5 10.5 9.0 16.0 13.0 10.0 5.5 5.0 8.0	9.5 10.6 11.6 12.6 8.6 8.6 8.6 13.1 11.5 12.1 11.5 12.1 11.5 11.5 11.5 11	ONCE-DAILY MAR 17.5 20.0 14.0 15.0 15.0 15.0 16.0 19.5 0.0 16.0 0.0 19.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	APR 24.0 23.5 27.0 27.0 25.5 24.0 23.5 24.0 23.0 24.0 23.0 24.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5	26.0 25.0 22.0 22.5 24.5 27.0 27.5 28.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27	JUN 27.0 27.5 28.0 29.5 27.0 26.0 26.0 28.0 31.0 29.5 27.0 30.5 27.0 30.5 30.5 30.5 30.5	JUL 28.5 29.5 31.5 32.0 30.0 29.0 30.5 32.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31	28.0 29.5 30.0 29.5 29.0 29.0 26.5 26.0 29.5 30.5 31.0 31.0 31.5 31.0 30.0 30.0 30.0	SEP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	ОСТ	NOV 18.0 20.0 20.0 21.0 20.5 17.5 16.5 14.5 15.5 17.5 21.0 20.5 21.5 21.0 20.5 21.5	DEC 17.0 18.5 20.0 21.0 21.5 15.5 15.0 20.0 17.0 20.0 17.0 20.0 17.0 18.0 14.5 19.0 14.5 19.0 14.5 19.0 10.0 11.0	JAN 15.0 10.0 11.0 15.0 18.0 20.0 21.0 16.0 12.0 10.0 10.5 9.0 16.0 13.0 10.0 7.0 6.0 8.0	9.5 10.6 11.6 12.6 8.6 8.6 9.5 13.1 11.1 12.1 12.1 15.1 16.1 16.1	ONCE-DAILY MAR 17.5 20.0 14.0 14.0 15.0 15.0 15.0 16.0 15.0 20.0 19.5 22.0 22.5 22.0 20.0 20.0 20.0 20.0 20	APR 24.0 23.5 27.0 25.5 24.0 23.5 24.0 23.0 24.0 23.0 24.0 23.0 24.0 23.0 24.0 25.5 24.0 25.5 24.0 25.5 24.0 25.5 24.0	26.0 22.0 22.0 22.5 24.5 27.0 27.5 28.0 27.5 28.0 25.5 26.0 25.5 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 28.0 27.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28	JUN 27.0 27.5 16.0 27.5 28.0 26.0 26.0 26.0 30.0 30.0 29.5 30.5 30.5 30.0 30.5	JUL 28.5 29.5 31.5 32.0 30.0 29.0 30.5 32.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31	28.0 29.5 30.0 29.5 29.0 29.0 26.5 26.5 26.5 30.0 29.0 31.0 31.0 31.5 30.5 30.5 30.5 30.5 30.5 30.5 30.5 30	SEP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	ОСТ	NOV 18.0 20.0 21.0 20.5 17.5 16.5 17.5 17.5 21.0 21.0 20.5 21.5 21.0 21.0 20.5 21.0	DEC 17.0 18.5 20.0 21.0 21.5 15.5 20.0 17.0 20.0 17.0 18.0 17.0 18.0 14.5 12.5 12.0 10.0 10.0	JAN 15.0 10.0 11.0 15.0 18.0 20.0 21.0 16.0 12.0 10.0 10.5 9.5 10.5 9.0 16.0 13.0 10.0 5.5 5.0 8.0	9.5 10.6 11.6 12.6 8.6 8.6 8.6 13.1 11.5 12.1 11.5 12.1 11.5 11.5 11.5 11	ONCE-DAILY MAR 17.5 20.0 14.0 14.0 15.0 15.0 15.0 16.0 15.0 20.0 19.5 22.0 22.5 22.0 20.0 20.0 20.0 20.0 20	APR 24.0 23.5 27.0 27.0 25.5 24.0 23.5 24.0 23.0 24.0 23.0 24.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5	26.0 25.0 22.0 22.5 24.5 27.0 27.5 28.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27	JUN 27.0 27.5 28.0 29.5 27.0 26.0 26.0 28.0 31.0 29.5 27.0 30.5 27.0 30.5 30.5 30.5 30.5	JUL 28.5 29.5 31.5 32.0 30.0 29.0 30.5 32.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31	28.0 29.5 30.0 29.5 20.0 29.5 26.5 26.5 26.5 30.0 29.5 31.0 31.5 31.0 31.5 30.0 29.0 30.5 30.0	SEP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	OCT	NOV 18.0 20.0 21.0 20.5 17.5 16.5 14.5 15.5 17.5 17.5 19.5 21.0 21.0 20.5 21.0 21.0 21.0 21.0	DEC 17.0 18.5 20.0 21.0 21.5 15.5 15.0 20.0 17.0 20.0 17.0 19.0 14.5 19.0 10.0 10.0 11.0	JAN 15.0 10.0 11.0 15.0 18.0 20.0 21.0 16.0 12.0 10.0 10.5 9.0 16.0 13.0 10.0 7.0 6.0 8.0	9.5 10.6 11.6 12.6 8.6 8.6 9.5 13.1 11.1 12.1 12.1 15.1 16.1 16.1	ONCE-DAILY MAR 17.5 20.0 14.0 14.0 15.0 15.0 16.0 15.0 0 19.5 22.5 5 22.0 0 20.0 19.5 22.5 5 20.0 0 20.0 19.5 22.5 5 20.0 0 20.0 19.5 22.5 5 20.0 0 20.0 19.5 5 22.0 0 20.0 19.5 5 22.0 0 20.0 19.5 5 22.0 0 20.0 19.5 5 20.0 0 20.5 0 20.0 0 20.5 0 20.5 0 20.5 0 20.5 0 20.0	APR 24.0 23.5 24.0 27.0 25.5 24.0 23.5 24.0 23.0 24.0 23.0 24.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 24.0 25.5 21.0 26.0 21.5 20.5	MAY 26.0 25.0 22.0 22.5 24.5 27.0 27.0 27.5 28.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.0 28.0 29.0 29.0	JUN 27.0 27.0 26.0 27.5 28.0 26.0 26.0 26.0 26.0 31.0 28.0 30.0 30.5 30.5 27.0 30.5 30.5 30.5 30.5 30.5 30.5 30.5 30	JUL 28.5 29.5 31.5 32.0 30.0 29.0 30.5 32.0 30.5 28.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31	28.0 29.5 30.0 29.5 29.0 29.0 26.5 26.0 29.5 30.0 29.0 31.0 31.0 31.5 30.5 31.0 30.5 30.5 31.0	SEP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	OCT	NOV 18.0 20.0 20.0 21.0 20.5 17.5 16.5 14.5 15.5 17.5 21.0 20.5 21.5 21.0 20.5 21.5	DEC 17.0 18.5 20.0 21.0 21.5 15.5 15.0 20.0 17.0 20.0 17.0 20.0 17.0 18.0 14.5 19.0 14.5 19.0 14.5 19.0 10.0 11.0	JAN 15.0 10.0 11.0 15.0 18.0 21.0 16.0 12.0 10.0 10.0 10.5 9.5 10.5 9.0 16.0 13.0 10.0 5.5 5.0 8.0 8.0	9.0 10.5 10.0 11.0 8.0 8.0 8.1 8.0 8.1 13.1 11.1 12.1 10.1 11.1 15.1 16.1 16.1	ONCE-DAILY MAR 17.5 20.0 14.0 15.0 15.0 15.0 20.0 16.0 15.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2	APR 24.0 23.5 24.0 27.0 25.5 24.0 23.0 24.0 23.0 24.0 23.5 24.0 23.5 24.0 23.5 21.0 25.5 20.5 21.0 20.0 21.5	26.0 25.0 22.0 22.5 24.5 27.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.0 27.5 28.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27	JUN 27.0 27.5 16.0 27.5 28.0 29.5 27.0 26.0 27.0 28.0 31.0 28.0 30.5 27.0 30.5 27.0 30.5 30.5 30.5	30.0 29.0 30.5 32.0 30.5 32.0 30.5 28.0 31.0 31.0 31.0 31.0 31.0 31.5 28.0 31.5 28.0 31.5 31.0 31.5 31.0 31.5 31.0	28.0 29.5 30.0 29.5 29.0 29.5 29.0 26.5 26.0 29.5 30.5 31.0 31.5 31.0 31.5 30.5 31.0 30.5 30.5 30.5 30.5 30.5 30.5 30.5 30	SEP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	ОСТ	NOV 18.0 20.0 20.0 21.0 20.5 17.5 16.5 14.5 15.5 17.0 20.5 21.5 21.0 20.5 21.5 21.5 21.5 21.5 21.5 21.5	DEC 17.0 18.5 20.0 21.0 21.5 15.5 15.0 20.0 17.0 20.0 17.0 18.0 14.5 19.0 14.5 12.0 17.0 14.0 14.0 14.0	JAN 15.0 10.0 11.0 15.0 18.0 20.0 21.0 16.0 12.0 10.0 10.5 9.5 10.5 9.0 16.0 13.0 10.0 7.0 6.0 8.0 10.5 10.0 12.0 11.0	9.0 11.0 12.0 8.0 8.0 8.0 13 11 12 12 16 16 16 16	ONCE-DAILY MAR 17.5 20.0 14.0 14.0 15.0 15.0 15.0 15.0 15.0 15.0 20.0 19.5 22.5 22.0 22.5 22.0 22.0 20.0 22.5	APR 24.0 23.5 27.0 25.5 24.0 25.5 24.0 23.0 24.0 23.0 24.0 23.0 24.0 23.0 24.0 23.0 24.0 23.0 24.0 23.0 24.0 23.0 23.0 24.0 23.0 23.0	26.0 22.0 22.0 22.5 24.5 27.0 27.5 28.0 27.5 28.0 25.5 28.0 25.5 27.5 28.0 25.5 27.5 28.0 27.5 28.0 27.5 28.0 27.0 27.0 28.0 28.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29	JUN 27.0 27.5 16.0 27.5 28.0 26.0 26.0 26.0 31.0 30.5 30.5 28.0 30.5 28.0 30.5 28.0 30.5 28.0 30.5 28.0 30.5 28.0 30.5 28.0 30.5 28.0 30.5 28.0 30.5 28.0 30.5 28.0 30.5 28.0 30.5 30.5 28.0	JUL 28.5 29.5 31.5 32.0 30.0 29.0 30.5 32.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31	28.0 29.5 30.0 29.5 29.0 29.0 26.5 26.0 29.5 30.0 30.5 31.0 31.5 30.5 31.0 30.5 30.5 30.5 30.0 29.0 29.0 29.0 29.0 29.0	SEP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	OCT	NOV 18.0 20.0 21.0 20.5 17.5 16.5 17.5 17.5 19.5 21.0 21.0 20.5 21.5 21.5 21.0 19.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21	DEC 17.0 18.5 20.0 21.0 21.5 15.5 20.0 15.5 17.0 20.0 18.0 17.0 18.0 17.0 18.0 17.0 18.0 17.0 18.0 19.0 14.5 12.0 16.0 17.0 14.0 17.0 14.0	JAN 15.0 10.0 11.0 15.0 18.0 21.0 21.0 16.0 12.0 10.0 10.5 10.5 9.0 16.0 13.0 10.0 5.5 5.0 8.0 10.5	9.0 10.5 12.0 9.5 12.0 8.6 8.6 13.1 11.5 12.1 10.1 11.5 16.1 16.1 16.1	ONCE-DAILY MAR 17.5 20.0 14.0 15.0 15.0 15.0 16.0 19.5 20.0 16.0 19.5 22.5 22.0 22.5 20.0 20.0 24.0 23.5 22.5 22.0 22.5 22.0 22.5 22.0 22.5 22.0	APR 24.0 23.5 27.0 27.0 25.5 24.0 23.5 24.0 23.0 24.0 23.0 24.0 23.5 24.0 25.5 26.5 26.5 27.5 27.0 27.0 27.0 27.0 27.0	26.0 25.0 22.0 22.5 24.5 27.0 27.5 28.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.0 27.0 27.0 27.0 27.0 28.0 27.0 28.0 27.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28	Z7.0 27.5 28.0 29.5 27.0 26.0 26.0 27.0 28.0 31.0 30.5 27.0 30.5 27.0 31.0 30.5 27.0 30.5 27.0 31.0	JUL 28.5 29.5 31.5 32.0 30.0 29.0 30.5 32.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31	28.0 29.5 30.0 29.5 29.0 29.0 26.5 26.0 29.5 30.0 31.0 31.0 31.0 31.0 30.5 31.0 30.5 31.0 30.5 31.0 30.5 31.0 30.5 31.0 30.5 30.5 30.5 30.5 30.5 30.5 30.5 30	SEP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 30	OCT	NOV 18.0 20.0 21.0 20.5 17.5 17.5 17.5 19.5 21.0 21.0 20.5 21.5 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	DEC 17.0 18.5 20.0 21.0 21.5 15.5 15.5 20.0 17.0 20.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 1	JAN 15.0 10.0 11.0 15.0 18.0 20.0 21.0 16.0 12.0 10.0 10.0 10.5 9.5 10.5 9.0 16.0 13.0 10.0 7.0 6.0 8.0 8.0 8.0 10.5 9.0 11.0 11.0 9.5	9.0 11.0 11.0 12.0 8.0 8.0 8.0 13.0 11.0 11.0 11.0 11.0 11.0 11.0 11	ONCE-DAILY MAR 17.5 20.0 14.0 15.0 15.0 15.0 16.0 15.0 20.0 15.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2	APR 24.0 23.5 27.0 25.5 24.0 25.5 24.0 23.0 24.0 23.0 24.0 23.0 24.0 23.0 24.0 23.0 24.0 23.0 24.0 23.0 24.0 23.0 23.0 24.0 23.0 23.0	26.0 22.0 22.0 22.5 24.5 27.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.0 27.5 28.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27	JUN 27.0 27.5 16.0 27.5 28.0 26.0 26.0 26.0 31.0 30.5 30.5 28.0 30.5 28.0 30.5 28.0 30.5 28.0 30.5 28.0 30.5 28.0 30.5 28.0 30.5 28.0 30.5 28.0 30.5 28.0 30.5 28.0 30.5 28.0 30.5 30.5 28.0	JUL 28.5 29.5 31.5 32.0 30.0 29.0 30.5 32.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31	28.0 29.5 30.0 29.5 20.0 29.5 26.5 26.5 26.5 30.0 29.0 31.0 31.5 30.5 30.5 30.0 29.0 30.5 30.0 29.0 30.5 30.0 30.5 30.0 30.5 30.0 30.5 30.0 30.5 30.0 30.5 30.0 30.5 30.0 30.5 30.0 30.5 30.0 30.5 30.0 30.5 30.0 30.5 30.0 30.0	SEP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	ОСТ	NOV 18.0 20.0 21.0 20.5 17.5 16.5 17.5 17.5 19.5 21.0 21.0 20.5 21.5 21.5 21.0 19.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21	DEC 17.0 18.5 20.0 21.0 21.5 15.5 20.0 15.5 17.0 20.0 18.0 17.0 18.0 17.0 18.0 17.0 18.0 17.0 18.0 19.0 14.5 12.0 16.0 17.0 14.0 17.0 14.0	JAN 15.0 10.0 11.0 15.0 18.0 21.0 21.0 16.0 12.0 10.0 10.5 10.5 9.0 16.0 13.0 10.0 5.5 5.0 8.0 10.5	9.0 10.5 12.0 9.5 12.0 8.6 8.6 13.1 11.5 12.1 10.1 11.5 16.1 16.1 16.1	ONCE-DAILY MAR 17.5 20.0 14.0 15.0 15.0 15.0 16.0 15.0 20.0 15.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2	APR 24.0 23.5 24.0 27.0 25.5 24.0 23.5 24.0 23.0 24.0 23.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 24.0 23.0 23.5 24.0 23.0 23.5	26.0 25.0 22.0 22.5 24.5 27.0 27.5 28.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.5 28.0 27.0 27.0 27.0 27.0 27.0 28.0 27.0 28.0 27.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28	JUN 27.0 27.5 16.0 27.5 28.0 29.5 27.0 26.0 26.0 28.0 31.0 30.5 30.5 27.0 30.5 30.5 30.5 30.5 30.5 30.5	JUL 28.5 29.5 31.5 32.0 30.0 29.0 30.5 32.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31	28.0 29.5 30.0 29.5 29.0 29.0 26.5 26.0 29.5 30.0 31.0 31.0 31.0 31.0 30.5 31.0 30.5 31.0 30.5 31.0 30.5 31.0 30.5 31.0 30.5 30.5 30.5 30.5 30.5 30.5 30.5 30	SEP

08164300 NAVIDAD RIVER NEAR HALLETTSVILLE, TX

LOCATION.--Lat 29°28'00", long 96°48'45", Lavaca County, Hydrologic Unit 12100102, on right bank 28 ft (9 m) downstream from bridge on U.S. Highway 90-A, 0.8 mi (1.3 km) downstream from Mixons Creek, 1.2 mi (1.9 km) southwest of Sublime, and 8 mi (13 km) northeast of Hallettsville.

DRAINAGE AREA . - - 332 mi 2 (860 km2).

PERIOD OF RECORD. -- October 1961 to current year.

REVISED RECORDS .-- WSP 2123: Drainage area.

GAGE .-- Water-stage recorder. Datum of gage is 159.28 ft (48.549 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. No known diversion above station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--17 years, 154 ft3/s (4.361 m3/s), 6.30 in/yr (160 mm/yr), 111,600 acre-ft/yr (138 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 53,500 ft³/s (1,520 m³/s) Sept. 13, 1974, gage height, 36.05 ft (10.988 m); no flow Aug. 5-7, 22, Sept. 2-16, 1964.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1860, 40 ft (12.2 m) in June 1940; flood in July 1936 reached a stage of 39 ft (11.9 m), from information by local residents and Southern Pacific Railroad Co.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 10,200 ft 3 /s (289 m 3 /s) Sept. 13, gage height, 26.53 ft (8.086 m), no other peak above base of 2,500 ft 3 /s (70.8 m 3 /s); minimum, 0.60 ft 3 /s (0.017 m 3 /s) Aug. 16-22.

		DISCHA	RGE, IN CL	BIC FEET	PER SECO	OND, WATER EAN VALUES	YEAR O	CTOBER 197	7 TO SEPTE	MBER 197	78	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.6 4.1 4.1 4.3 4.3	28 93 42 24 20	26 22 21 20 20	21 21 20 20 20	32 34 30 29 28	41 40 40 40 39	30 29 29 28 27	17 20 24	8.9 7.2 59 342 62	5.2 6.5 5.4 4.9 4.2	1.8 2.8 3.1 2.4 1.7	31 18 8.4 5.7 4.3
6 7 8 9 10	4.6 4.6 4.6 4.6	18 17 25 94 31	18 17 18 19 17	20 21 20 18 17	28 77 221 96 62	41 112 56 50 45	27 27 27 26 27	17 17 15	33 1310 582 91 53.	4.0 3.4 3.1 2.9 2.7	1.4 1.2 1.0 1.1 1.0	3.6 3.3 3.3 3.3
11 12 13 14 15	5.9 12 9.1 7.3 7.0	20 17 16 15	17 18 19 22 20	59 128 42 31 27	55 60 55 49 48	43 41 40 40 38	28 27 27 26 24	12 11 9.9	38 30 58 122 27	2.4 2.2 1.9 1.9	.94 .74 .70 .70	122 1590 2220 5700 839
16 17 18 19 20	7.0 6.7 7.0 7.0	15 15 15 15	19 19 18 18	29 70 119 173 61	48 52 57 49 46	36 35 35 35 34	23 21 21 20 18	8.8 8.8 8.0	19 16 15 13	1.6 1.3 1.2 1.2	.65 .60 .60	165 101 74 59 50
21 22 23 24 25	7.0 8.8 9.8 11	16 15 15 16 17	16 16 16 17 18	41 38 34 33 32	44 43 43 42 42	34 34 34 35 38	18 29 45 28 23	15 8.9	11 9.8 9.2 8.3 7.7	1.7 1.5 1.4 1.4	.60 .65 .70 .74	59 403 300 62 41
26 27 28 29 30 31	12 12 11 9.8 10	16 16 17 42 42	17 17 17 20 22 22	29 28 27 27 27 27	42 41 42 	34 33 32 31 31 30	19 18 17 17	9.1 6.8 5.7 5.5 26	7.1 6.3 5.6 5.4 5.2	1.9 1.5 2.2 2.2 2.0 1.9	.87 .85 .76 .70 1.0 4.2	34 30 29 27 25
TOTAL MEAN MAX MIN CFSM IN. AC-FT	233.3 7.53 12 4.1 .02 .03 463	763 25.4 94 15 .08 .09	584 18.8 26 16 .06 .07	1280 41.3 173 17 .12 .14 2540	1495 53.4 221 28 .16 .17 2970	1247 40.2 112 30 .12 .14 2470	743 24.8 45 17 .08 .08	395.9 12.8 26 5.5 .04 .04 785	2973.7 99.1 1310 5.2 .30 .33 5900	78.6 2.54 6.5 1.2 .008 .01 156	36.18 1.17 4.2 .60 .004 .00	12020.9 401 5700 3.3 1.21 1.35 23840
CAL YR WTR YR	1977 TOTAL 1978 TOTAL					500 MIN 700 MIN	4.1	CFSM .46 CFSM .18	IN 6.25 IN 2.45	AC-FT AC-FT	110600 43340	

08164450 SANDY CREEK NEAR LOUISE, TX

LOCATION.--Lat 29°09'36", long 96°32'46", Jackson County, Hydrologic Unit 12100102, on left bank at downstream end of bridge on Farm Road 710, 0.9 mi (1.4 km) upstream from Goldenrod Creek, and 9.1 mi (14.6 km) northwest of Louise.

DRAINAGE AREA .-- 289 mi2 (749 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1977 to September 1978.

GAGE .-- Water-stage recorder. Datum of gage is 59.72 ft (18.203 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good except those below 100 ft³/s (2.83 m³/s), which are fair. Much of the low flow during the irrigation season (April to September) comes from drainage from ricefields irrigated by water originally diverted from the Colorado River.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 14,000 ft³/s (396 m³/s) Sept. 14, 1978, gage height, 23.03 ft (7.020 m); no flow at times.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 1,500 ft3/s (42.5 m3/s) and maximum (*):

Date	Time	Disch	narge	Gage h	eight	Date	Time	Disch	arge	Gage h	eight
		(ft^3/s)	(m^3/s)	(ft)	(m)			(ft ³ /s)	(m^3/s)	(ft)	(m)
Jan. 19	1600	2,660	75.3	13.79	4.203	Sept. 14	1700	*14,000	396	23.03	7.020
Minimum dis	charge no	flow at ti	imes.								

ОСТ					IEAN VALU	ES					
	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
7.5 8.0 8.5 9.0 9.5	105 564 628 473 173	2.8 3.9 1.9 .54	.06 .13 .08 .08	22 25 35 28 21	5.7 4.6 3.6 3.1 2.5	.01 .53 2.4 .02 .00	3.5 1.8 2.2 9.1 6.1	16 79 492 548 376	39 62 104 103 101	55 61 50 29 18	.00 1.1 3.9 11 24
10 9.5 9.0 8.5 8.0	84 53 197 537 518	.02 .02 .03 .04	.08 .11 .09 .06	16 22 538 930 583	1.9 1.6 275 103 46	.00 .76 .52 2.3 3.3	4.7 .78 4.3 2.9 .47	193 142 389 257 104	67 82 89 89 85	18 11 7.1 4.9 1.6	25 16 28 49 74
7.5 7.0 6.5 6.0 7.0	229 103 60 38 26	.01 .01 .03 .02	9.6 136 263 125 58	247 173 595 496 195	27 18 12 7.8 4.9	5.7 23 34 32 15	1.3 .60 .16 .08	42 18 6.8 3.7 2.9	103 111 119 118 114	4.0 3.7 1.8 1.3	294 3040 6640 11400 7450
8.0 7.0 5.6 3.9 2.2	19 13 10 8.4 8.0	.02 .02 .02 .03	282 1190 1310 2430 1980	120 179 359 251 108	2.7 1.1 .51 .49	7.6 5.0 2.7 .89 .21	.06 .06 .11 .23	4.0 1.7 1.1 1.1 2.2	108 86 65 60 75	.27 .05	3490 2180 1400 860 573
.54 19 36 114 275	6.6 6.5 5.1 3.9 2.6	.03 .03 .03 .03	1160 502 259 222 185	58 38 29 23 16			.57 .84 1.2 1.6 1.9	2.4 1.0 .30 .19 .21	91 84 69 64 61	.00 .00 .00 .01	454 489 682 480 303
353 176 82 43 23 12	.65 .36 .30 .22 .13	.03 .03 .03 .05 .06	174 129 74 40 27 22	12 9.4 7.6	.11 .08 .07 .03 .02	90 31 16 9.6 3.1	2.6 3.0 3.3 4.1 5.9	.15 2.1 4.3 .50 2.6	73 57 96 121 94 66	.00 .00 .00 .00	227 212 192 159 154
1281.74 41.3 353 .54 .14 .16 2540	3872.76 129 628 .13 .45 .50 7680	9.94 .32 3.9 .01 .001 .00	10578.43 341 2430 .06 1.18 1.36 20980	5136.0 183 930 7.6 .63 .66	523.66 16.9 275 .02 .06 .07 1040	1899.04 63.3 754 .00 .22 .24	76.89 2.48 13 .06 .009 .01	2693.25 89.8 548 .15 .31 .35	2656 85.7 121 39 .30 .34 5270	8.66 61 .00 .03	40911.00 1364 11400 .00 4.72 5.27 81150
	9.0 9.5 10 9.5 9.0 8.5 8.0 7.5 6.0 7.0 6.5 6.0 7.0 8.0 7.0 5.6 3.9 2.2 .54 36 114 275 353 176 82 43 23 12 12 12 13 15 16 16 17 16 16 17 17 18 18 18 18 18 18 18 18 18 18	9.0 473 9.5 173 10 84 9.5 53 9.0 197 8.5 537 8.0 518 7.5 229 7.0 103 6.5 60 6.0 38 7.0 26 8.0 19 7.0 13 5.6 10 3.9 8.4 2.2 8.0 .54 6.6 19 6.5 36 5.1 114 3.9 275 2.6 353 65.1 114 3.9 275 2.6 353 65.1 114 3.9 275 2.6 353 1.65 36 3.1 114 3.9 275 2.6 353 1.65 176 3.6 82 30 43 .22 23 1.3 12 1281.74 3872.76 41.3 129 353 628 .14 .45 .16 .50 2540 7680	9.0 473 .54 9.5 173 .05 10 84 .02 9.5 53 .02 9.0 197 .03 8.5 537 .04 8.0 518 .02 7.5 229 .01 7.0 103 .01 6.5 60 .03 6.0 38 .02 7.0 26 .02 8.0 19 .02 7.0 13 .02 7.	9.0 473 .54 .08 9.5 173 .05 .08 10 84 .02 .08 9.5 53 .02 .11 9.0 197 .03 .09 8.5 537 .04 .06 8.0 518 .02 .06 7.5 229 .01 9.6 7.0 103 .01 136 6.5 60 .03 263 6.0 38 .02 125 7.0 26 .02 58 8.0 19 .02 282 7.0 13 .02 1190 3.9 8.4 .03 2430 2.2 8.0 .03 1980 .54 6.6 .03 1160 19 6.5 .03 502 36 5.1 .03 259 114 3.9 .03 222 275 2.6 .03 185 353 .65 .03 174 176 .36 .03 129 82 .30 .03 74 43 .92 .05 40 23 .13 .06 27 1206 22 1281.74 3872.76 9.94 10578.43 41.3 129 .32 341 353 628 3.9 2430 .14 .45 .06 .16 .50 .00 1.36 2540 7680 20 20980	9.0 473 .54 .08 28 9.5 173 .05 .08 21 10 84 .02 .08 16 9.5 53 .02 .11 22 9.0 177 .03 .09 538 8.5 537 .04 .06 930 8.0 518 .02 .06 583 7.5 229 .01 9.6 247 7.0 103 .01 136 173 6.5 60 .03 263 595 6.0 38 .02 125 496 7.0 26 .02 58 195 8.0 19 .02 282 120 7.0 13 .02 1190 179 5.6 10 .02 1310 359 3.9 8.4 .03 2430 251 2.2 8.0 .03 1980 108 .54 6.6 .03 159 29 114 3.9 .03 222 23 275 2.6 .03 174 12 176 .36 .03 129 9.4 82 .30 .03 174 12 176 .36 .03 129 9.4 83 .02 .03 2430 251 23 .13 .06 27 1206 22	9.0 473	9.0 473	9.0 473	9.0 473	9.0 473	9.0 473

08164450 SANDY CREEK NEAR LOUISE, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: October 1977 to September 1978.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN. DIS- SOLVED (MG/L)	OXYGEN. DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
OCT	22.2	2.20							2.0	256		
18	1700	5.9	598	7.9	26.0	6	7.7	96	1.5	160	0	39
30	0850	.14	370	7.0	13.0	10	5.6	55	2.7	120	5	32
11	1315	2.8	200	7.3	7.0	40	10.4	88	3.5	83	13	25
FEB 21	1525	54	150	7.0	11.0	100	11.1	104	3.0	39	11	11
05 MAY	1150	.04	420	7.0	24.0	7	5.6	68	3.2	150	35	47
17	0835	.06	480	7.6	25.0	7	5.5	68	43.4	160	45	50
21 AUG	1210	2.1	585	7.7	28.5	8	8,3	108	1.9	160	33	53
08	1230	6.7	734	7.9	30.0	10	8.4	112	2.6	220	28	52
SEP 20	1615	545	222	7.2	29.0	20	5.4	71	3.5	74	5	19
DATE	MAGNE- SIUM. DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM. DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS+ RESIDUE AT 105 DEG. C+ SUS- PENDED (MG/L)
0CT 18	14	66	2.3	5.5	190	0	10	100	•3	39	367	11
NOV												
30	9.7	24	1.0	5.6	140	0	3.9	41	•1	24	211	11
FER	5.1	14	.7	3.3	86	0	6.6	25	.1	12	134	66
21	2.8	10	.7	3.7	34	0	11	18	.1	6.3	80	126
05 MAY	7.9	27	1.0	4.5	140	0	7.8	56	•5	21	240	7
17	8.4	33	1.1	4.8	140	0	14	69	.2	20	269	23
JUN 21	7.8	49	1.7	1.7	160	0	12	88	.3	26	317	14
08	21	56	1.7	15	230	0	33	98	.5	46	435	18
SEP 20	6.4	13	.7	4.7	84	0	7.3	23	1	27	143	64
DA*	NITE TO	EN. GE RATE NITE TAL TOT BYL (MG	AL TOT	NO GE NO AMMO AL TOT /L (MG	N. GE NIA ORGA AL TOT I/L (MG	RO- GEN. N. MONI NIC ORGA AL TOT C/L (MG	A + PHO NIC PHOR AL TOT /L (MG	US, ORGA AL TOT /L (MG	NIC MEN AL SUS /L PEN	T, CHAR - SUS DED PEN	T SU - SIE GE, DI - % FI DED TH	NER
ост												
NOV		.04		• 05				.16 1				
JAN		.02		.03					6.7			••
FE8	•••	•12	.01	.13			.29	.11	4.9			
	•••	-11	.01	.12	.04 1	•1 1	•1	.12 1	4			
	• • •	.04	.01	. 05	.20	.61	.81	•11	6.9			
	• • •	.00	.01	.01	.01	.81	.82	.08	6.2		-	
	• • •	.14	•02	.16	.03	•65	.68	.13	5.6		-	
	•••	•06	.02	.08	.05 1	.1 1	•1	.43 1	3			
	•••	.05	.03	.08	.12 1	.2 1	•3	.35 1	4			

08164450 SANDY CREEK NEAR LOUISE, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMPER 1978

		DATE	TIME	ARSENI DIS- SOLVE (UG/L AS AS	D SOLV	ED 501	VED	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER. DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVE (UG/L AS FEI			
		NOV 30	0850		2	500	0	0	1	670	0		
		FEB 21	1525		1	0	0	10	4	14	0		
		MAY 17			2	200	0	0	3	6	0		
		SEP			5	100	1	0	2	59	0		
		20	1015		MANGA-	100	SEL						
				DIS- SOLVED (UG/L AS PB)	NESE. DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	NIU DI SOL (UG AS	M, SIL S- D VED SO /L (U	IS- C	INC. DIS- DLVED UG/L S ZN)			
		,	VOV										
			30	0	680	.0		0	0	10			
			21	0	10	.0		0	0	20			
			17	0	160	.0		0	0	10			
			20	2	30	.0		0	0	0			
					NAPH-					HLOR-			
				PCB.	THA-		ALDR TOT			OTAL		TOTA	L
				N 80T-	POLY-	AL DOTAL	IN 8	OT- CH		BOT-	DDD.	IN BO	
			TOTAL	TERIAL	TOTAL	TOTAL	TER	IAL TO	TAL T	ERIAL	TOTAL	TERI	IAL
DATE			(UG/L)	(UG/KG)	(UG/L)	(UG/L)	(UG/	KG) ((JG/L) (U	G/KG)	(UG/L)	(UG/K	.0,
NOV 30		850	.0	0	.00	.00		.0	.0	0	.00		.0
FER		525	•0	0	.00			.0	.0	0	.00		.0
21			.0	0	.00			.0	.0	0	.00		.0
SEP		0835		0	.00			.0	.0	0	.00		.0
20	•	1615	.0	٠	•••	•••			01-				
			DDE.		DDT.			ELI	DRIN.			ENDR	AL
DATE	TO	DE. T	TOTAL N BOT- OM MA- TERIAL	DDT. TOTAL	IN BOT- TOM MA- TERIAL	TOTAL	TOT	RIN TO	BOT- E M MA- SU ERIAL T	OTAL	NDRIN. TOTAL (UG/L)	TOM N	MA- IAL
DATE	TO	DE. T	N BOT-		IN BOT-	TOTAL	ELC TOT	RIN TO	BOT- E M MA- SU ERIAL T	LFAN. E		TOM N	MA- IAL
NOV 30	(1	DE. T	N BOT- OM MA- TERIAL	TOTAL	IN BOT- TOM MA- TERIAL	TOTAL (UG/L	TOI TOI	RIN TO	BOT- E M MA- SU ERIAL T	OTAL	TOTAL	TOM N	MA- IAL
NOV 30 FEB 21	•	DDE, TOTAL	N BOT- OM MA- TERIAL UG/KG)	(UG/L)	IN BOT- TOM MA- TERIAL (UG/KG)	AZINON- TOTAL (UG/L	ELC TOI (UC	I- IN DRIN TO TAL TO S/L) (U	BOT- E M MA- SU ERIAL T G/KG) (OTAL UG/L)	TOTAL (UG/L)	TOM N	MA- IAL KG)
NOV 30 FEB 21	•	DDE. TOTAL JG/L) (N BOT- OM MA- TERIAL UG/KG)	(UG/L)	IN BOT- TOM MA- TERIAL (UG/KG)	AZINON TOTAL (UG/L)	ELC TOTO	(- IN ORIN TO TAL TO S/L) (U	BOT- E M MA- SU ERIAL T G/KG) (OTAL UG/L)	TOTAL (UG/L)	TOM N	MA- IAL KG)
NOV 30 FEB 21 MAY 17	•	DDE. T DTAL JG/L) (N BOT- OM MA- TERIAL UG/KG)	.00 .00	IN BOT- TOM MA- TERIAL (UG/KG)	AZINON TOTAL (UG/L)	ELC TO1	- IN TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR	BOT- EM MA- SU ERIAL T G/KG) (OTAL UG/L)	.00 .00	TOM N	MA- IAL KG)
NOV 30 FEB 21 MAY 17	•	DDE. TOTAL UG/L) (N BOT- OM MA- TERIAL UG/KG) .0 .0 .0	.00 .00 .00 .00 .00 HEP1 CHLC	IN BOT- TOM MA- TERIAL (UG/KG)	AZINON TOTAL (UG/L: .00 .00 .00 .00 .00 .00 .00 .	TOTOLOGICAL CONTRACTOR	- IN ORIN TOU FAL TO 67L) (UI	BOT- E M MA- SU ERIAL T G/KG) (.00 .00 .00	.00 .00 .00 .00	TOM N TER! (UG/)	MA- IAL KG)
NOV 30 FEB 21 MAY 17	•	DDE, T DTAL JG/L) (.00 .00 .00	N BOT- OM MA- TERIAL UG/KG) .0 .0 .0 .0	.00 .00 .00 .00 .00 HEP1 CHLC TOT/A	IN BOT- TOM MA- TERIAL (UG/KG) .(.(.(.(.(.(.(.(.(.(.(.(.(AZINON TOTAL (UG/L: O O O O O O O O O O O O O O O O O O O	DEPTA-HLOR DOXIDE T. IN	- IN TOO TO	BOT- EM MA- SU ERIAL T G/KG) (.0 .0 .0 .0 LINDANE TOTAL IN BOT-	.00 .00 .00 .00	.00 .00 .00 .00	TOM N TER (UG/)	MA- IAL KG)
NOV 30 FEB 21 MAY 17 SEP 20	•	.00 .00 .00	N BOT- OM MA- TERIAL UG/KG) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.00 .00 .00 .00 .00 .00 HEPT CHLC TOT/ A- IN BC	IN BOT- TOM MA- TERIAL (UG/KG) .(.(.(.(.(.(.(.(.(.(.(.(.(AZINON. TOTAL (UG/L:) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00	DEPTA- HLOR DXIDE T. IN	- IN TOUS (UI OF COLUMN TOUS (UI	BOT- EMM MA- SU ERIAL T G/KG) (.0 .0 .0 .0 LINDANE TOTAL IN BOT-	.00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00	TOM N TER (UG/)	MA- IAL KG)
NOV 30 FEB 21 MAY 17 SEP 20		DDE, I TOTAL JG/L) (.00 .00 .00 .00 .00 .00 .00 .00 .00 .0	N BOT- OM MA- TERIAL UG/KG) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	IN BOT- TOM MA- TERIAL (UG/KG) -C	AZINON. TOTAL (UG/L)	DEPTA-HLOR DITTOM MATL. GG/KG)	- IN TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR	BOT- EM MA- SU ERIAL T G/KG) (.0 .0 .0 .0 LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00	TOM N TER (UG/)	MA- IAL KG)
NOV 30 FEB 21 MAY 17 SEP 20	DATE	DDE, TOTAL JG/L) (.00 .00 .00 .00 .00	N BOT- OM MA- TERIAL UG/KG) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.00 .00 .00 .00 .00 .00 HEPT CHLC TOT/ A- IN BC	IN BOT- TOM MA- TERIAL (UG/KG) .(.(.(.(.(.(.(.(.(.(.(.(.(AZINON. TOTAL (UG/L) 0 00 0 00 0 00 HOPTA- EPTA- E	O ELC TOTO O (UGO O DO D D D D D D D D D D D D D D D D D	INDANE LINDANE LINDANE LINDANE LINDANE LOGAL LOG	BOT- EM MA- SU ERIAL T G/KG) (.0 .0 .0 .0 LINDANE TOTAL TERIAL (UG/KG)	.UG/L) .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	TOM P TER (UG/)	MA- IAL KG)
NOV 30 FEB 21 MAY 17 SEP 20	DATE IOV 30	DDE, I TOTAL JG/L) (.00 .00 .00 .00 .00 .00 .00 .00 .00 .0	N BOT- OM MA- TERIAL UG/KG) .0 .0 .0 .0 .0 .0 .0 .0 .0 .	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	IN BOT- TOM MA- TERIAL (UG/KG) -C	AZINON. TOTAL (UG/L)	O CONTROL OF CONTROL O	- IN TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR	BOT- EM MAS- SU ERIAL T G/KG) (.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	HYL RA- ION- IAL)	MA- IAL KG)
NOV 30 FEB 21 MAY 17 SEP 20	DATE 10V 30EH 21AAY 17	DDE. I DTAL JG/L) (.00 .00 .00 .00 .00 ETHION TOTAL (UG/L)	N 80T- 00	.00 .00 .00 .00 .00 .00 HEPT CHLC TOT/ A- IN BER. TOM IL L TER. L) (UG/N	IN BOT- TOM MA- TERIAL (UG/KG) .0 .0 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	AZINON. TOTAL (UG/L) 0 00 0 00 0 00 HOPTA- EPTA- E	O ELC TOTO O (UGO O DO D D D D D D D D D D D D D D D D D	INDANE LINDANE LINDANE LINDANE LINDANE LOGAL LOG	BOT- EM MA- SU ERIAL T G/KG) (.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	TOM P TER (UG/)	MA- IAL KG)
NOV 30 FEB 21 MAY 17 SEP 20	DATE OV 30 ER 21	DDE, I TOTAL UG/L) (00 .00 .00 .00 .00 .00 .00 .00 .00 .00	N 80T- 00M MA- TERIAL UG/KG) .0 .0 .0 .0 .0 .0 .0 .0 .0 .	.00 .00 .00 .00 .00 .00 HEPI CHLC TA- IN BC R, TOM N L TER, L) (UG/H	IN BOT- TOM MA- TERIAL (UG/KG) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	AZINON. TOTAL (UG/L:) .01 0 .01 0 .01 0 .01 0 .01 0 .02 0 .03 0 .04 0 .05 0 .07 0 .	O CONTROL OF CONTROL O	- IN TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR	BOT- EMM MA- SUERIAL TO G/KG) (0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	HYL RA- ION- IAL)	MA- IAL KG)
NOV 30 FEB 21 MAY 17 SEP 20	DATE 10V 30 EH 21 17 17	DDE, I TOTAL JG/L) (00 .00 .00 .00 .00 .00 .00 .00 .00 .00	N BOT- OM MA- TERIAL UG/KG) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	107AL (UG/L) .00 .00 .00 .00 .00 MEP1 CHLC TOT/A IN BE L TERL UGG/L UG/L 00 00 00	IN BOT- TOM MA- TERIAL (UG/KG) -(-(-(-(-(-(-(-(-(-(-(-(-(AZINON. TOTAL (UG/L) 0 00 00 00 00 00 00 00 00 00 00 00 00	DO D	- IN TOO	BOT- EMM MA- SUERIAL TO G/KG) (0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	TOM: TER: (UG/) (UG/) (HYL HA- ON - ON -	MA- IAL KG)
NOV 30 FEB 21 MAY 17 SEP 20	DATE 10V 30 EH 21 17 17	DDE, I TOTAL JG/L) (N BOT- OM MA- TERIAL UG/KG) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	107AL (UG/L) .00 .00 .00 .00 .00 MEPT TOTA TOTA TOTA TER! L) (UG/H) 00 00 00 00 PARK THI (ALL TOTA ALL TOTA TOTA ALL TOTA	IN BOT- TOM MA- TERIAL (UG/KG)	AZINON. TOTAL (UG/L) 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0	O ELC TOTO (UCCO) O O O O O O O O O O O O O O O O O O	- IN TOUR TOU	BOT- EM MAS SUBERIAL TOTAL INDOTE	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	TOTAL (UG/L) .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	TOM: TER: (UG/) (UG/) (HYL HA- ON - ON -	MA- IAL KG)
NOV 30 FEB 21 MAY 17 SEP 20	DATE OV 30 EH 21 AAY 17 EP 20	DDE, I TOTAL JG/L) (.00 .00 .00 .00 .00 .00 .00 .00 .00 .0	N BOT- OM MA- TERIAL UG/KG) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	107AL (UG/L) -00 -00 -00 -00 -00 HEPPT CHLC TOTA - IN BER TOM PLL TOTA - TO PARK - THI TOTA - TO PARK - TO PARK - THI TOTA - TO PARK - TO PARK - THI TOTA - TO PARK - TO PARK - THI TOTA - THI T	IN BOT- TOM MA- TERIAL (UG/KG) -(-(-(-(-(-(-(-(-(-(-(-(-(AZINON. TOTAL (UG/L: 0	DO D	- IN IN TO IN TO IN TO IN IN IN IN IN IN IN I	BOT- EM MA- SU ERIAL T G/KG) (.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	.UG/L) .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	101AL (UG/L) .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	TOM T TERT (UG/1) HYL (NA-0N-0N-0N-0N-0N-0N-0N-0N-0N-0N-0N-0N-0N-	MA- IAL KG)
NOV 30 FEB 21 MAY 17 SEP 20	DATE OV 30 E21 AAY 17 DATE OV 30 EFP 20	DDE, TOTAL JG/L) (.00 .00 .00 .00 .00 .00 .00 .00 .00 .	N BOT- OM MA- TERIAL UG/KG) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	TOTAL (UG/L) -00 -00 -00 -00 -00 -00 -00 -00 -00 -	IN BOT- TOM MA- TERIAL (UG/KG) -(AZINON. TOTAL (UG/L: 0	O ELC TOTO (UC O O O O O O O O O O O O O O O O O O O	- IN MEN TO IN THION (UG/L)	BOT- EM MA- SU ERIAL T G/KG) (.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	.UG/L) .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	TOTAL (UG/L) .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	TOM; TER; (UG/) (UG/) (HYL HA- OO OO OO OO OO OO OO	MA- IAL KG)
NOV 30 FEB 21 MAY 17 SEP 20	DATE OATE OATE OATE OATE OATE OATE OATE OATE OATE OATE	DDE, I TOTAL JG/L) (N BOT- OM MA- TERIAL UG/KG) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	TOTAL (UG/L) .00 .00 .00 .00 .00 MEPPCHLC TOTA IN 86 TOM 1 TERLL) UG/H 00 00 00 00 00 PARITHI (UG/L) THI (UG/L) THI (UG/L) THI (UG/L) THI (UG/L)	IN BOT- TOM MA- TERIAL (UG/KG) -(AZINON. TOTAL (UG/L) 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0	O ELCTOTO O O O O O O O O O O O O O O O O O	- IN MEN TO TO TAL THION (UG/L)	BOT- EM MA- SU ERIAL T G/KG) (.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	.UG/L) .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	TOTAL (UG/L) .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	TOM; TER; (UG/) (UG/) (UG/) (UG/) (UG/) (UG/) (UG/)	MA- IAL KG)
NOV 30 FEB 21 MAY 17 SEP 20	DATE OV 30 DATE OV 30 DATE OV 30	DDE, I TOTAL JG/L) (N BOT- OM MA- TERIAL UG/KG) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	TOTAL (UG/L) .00 .00 .00 .00 .00 HEP1CHLC TOTA A- IN BER. TOTA L TOTAL L TOTA	IN BOT- TOM MA- TERIAL (UG/KG) -(AZINON. TOTAL (UG/L: 0	O ELC TOTO (UC O O O O O O O O O O O O O O O O O O O	- IN MEN TO IN THION (UG/L)	BOT- EM MA- SU M MA- SU ERIAL T G/KG) (.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	.UG/L) .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	TOTAL (UG/L) .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	TOM; TER; (UG/) (UG/) (HYL HA- OO OO OO OO OO OO OO	MA- IAL KG)

08164450 SANDY CREEK NEAR LOUISE, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	STREAM- FLOW. INSTAN- TANEOUS (CFS)	TEMPER- ATURE (DEG C)	STREAM WIDTH (FT)	STREAM VELOC- ITY+ MEAN (FPS)	STREAM DEPTH, MEAN (FT)	NUMBER OF SAM- PLING POINTS	SEDI- MENT DISCH. SUSP. + BED MA- TERIAL (T/DAY)	SEDI- MENT, SUS- PENDED (MG/L)
SFP									
12	1015	2620	25.0	315	2.1	4.0	8	5560	753
12	1540	3410	26.5	332	2.0	5.2	5	4960	519
13	1100	7800	26.0	349	2.5	8.9	5	1780	63
	SEDI-	SED.	SED.	SED.	SED.	SED.	SED.	SED.	SED.
	MENT	SUSP.	SUSP.	SUSP.	SUSP.	SUSP.	SUSP.	SUSP.	SUSP.
	DIS-	FALL	FALL	FALL	FALL	FALL	SIEVE	SIEVE	SIEVE
	CHARGE.	DIAM.	DIAM.	DIAM.	DIAM.	DIAM.	DIAM.	DIAM.	DIAM.
	SUS-	% FINER	% FINER	% FINER	% FINER	% FINER	% FINER	% FINER	% FINER
	PENDED	THAN	THAN	THAN	THAN	THAN	THAN	THAN	THAN
DATE	(T/DAY)	.002 MM	.004 MM	MM 800.	.016 MM	.031 MM	.062 MM	.125 MM	.250 MM
SFP									
12	5330	68	68	74	81	92	94	96	97
12	4780	65	80	86	90	91	92	93	95
13	1330						78	79	86
	SED.	SED.	RED	BED	BED	RED	BED	BED	BED
	SUSP.	SUSP.	MAT.	MAT.	MAT.	MAT.	MAT	MAT.	MAT.
	SIEVE	SIEVE	SIEVE	SIEVE	SIEVE	SIEVE	SIEVE	SIEVE	SIEVE
	DIAM.	DIAM.	DIAM.	DIAM.	DIAM.	DIAM.	DIAM.	DIAM.	DIAM.
	% FINER	% FINER	% FINER	% FINER	% FINER	% FINER	% FINER	% FINER	% FINER
	THAN	THAN	THAN	THAN	THAN	THAN	THAN	THAN	THAN
DATE	.500 MM	1.00 MM	•125 MM	.250 MM	.500 MM	1.00 MM	2.00 MM	4.00 MM	8.00 MM
SFP									
12	100		2	4	62	95	99	100	
12	99	100		1	52	88	94	98	100
13	99	100		10	80	99	100		

SUSPENDED-SEDIMENT DISCHARGE FOR SELECTED DAYS, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TEMPER- ATURE (DEG.C)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	DATE	TEMPER- ATURE (DEG.C)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
Sept. 11, 1978		294	405	477	Sept. 15, 1978	26.5	7450	175	3520
Sept. 12	26.5	3040	748	5090	Sept. 16	26.0	3490	180	1700
Sept. 13	27.0	6640	178	3230	Sept. 17	28.5	2180	95	559
Sept. 14	26.5	11400	282	8390					

WTR YR 1978

TOTAL 197530.9

MEAN 541

MAX

28500

LAVACA RIVER BASIN

08164500 NAVIDAD RIVER NEAR GANADO, TX

LOCATION.--Lat 29°01'32", long 96°33'08", Jackson County, Hydrologic Unit 12100102, at downstream side near center of upstream bridge of two bridges on U.S. Highway 59, 170 ft (52 m) upstream from Texas and New Orleans Railroad Co. bridge, 0.2 mi (0.3 km) downstream from Sandy Creek, and 2.5 mi (4.0 km) southwest of Ganado.

DRAINAGE AREA .-- 1,062 mi2 (2,751 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1939 to current year.

REVISED RECORDS .-- WDR TX-73-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 13.62 ft (4.151 m) National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to May 7, 1958, nonrecording gage at site 70 ft (21 m) downstream at same datum. Mar. 7, 1958, to Mar. 22, 1961, nonrecording gages at same site and datum.

REMARKS.--Water-discharge records good. Numerous diversions for irrigation above station. Much of low flow during the April to September irrigation season comes from Sandy Creek; see station 08164450 for water-discharge records during the current year. This low flow is drainage from ricefields irrigated by water originally diverted from the Colorado River.

AVERAGE DISCHARGE .-- 39 years, 559 ft3/s (15.83 m3/s), 405,000 acre-ft/yr (499 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $88,000 \text{ ft}^3/\text{s}$ (2,490 m³/s) June 15, 1973, gage height, 39.8 ft (12.13 m); no flow at times in 1955-56, 1967.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1876, 39.8 ft (12.13 m) May 27, 1936, and June 15, 1973, from information by local resident, Texas and New Orleans Railroad Co., and Texas Department of Highways and Public Transportation; discharge, 94,000 ft³/s (2,660 m³/s) May 27, 1936, from rating curve extended above 57,000 ft³/s (1,610 m³/s).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 30,600 ft 3 /s (867 m 3 /s) Sept. 15, gage height, 30.76 ft (9.376 m); no other peak above base of 5,500 ft 3 /s (156 m 3 /s); minimum, 1.2 ft 3 /s (0.034 m 3 /s) Aug. 22, 23.

		DISCHA	RGE, IN	CUBIC FEET		ID, WATER	YEAR OCT	OBER 1977	TO SEPTE	MBER 1978	3	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	149	199	72	27	90	40	36	49	54	26	122	4.1
2	152	1220	70	29	94	38	38	45	326	86	116	4.8
2 3 4	160	1090	46	30	98	33	48	43	2340	135	91	5.1
	155	845	35	29	97	29	45	51	3600	149	62	19
5	158	453	28	29	71	28	42	53	1980	140	41	27
6	141	214	25	29	56	28	38	67	957	117	34	38
7	126	136	24	42	161	28	37	47	680	129	31	32
8	106	381	24	36	1150	454	40	33	1510	154	18	34
9	93	1130	23	31	1780	292	50	34	1590	143	22	54
10	93	879	22	29	1150	145	72	35	538	133	19	106
11 12	65	611	22	78	656	100	91	35	266	130	16	762
13	61 73	280 166	23	316	464	77	105	45	158	147	13	5540
14	68	115	23 24	605 394	1020 957	66	184	42	101	164	9.3	14000
15	61	86	24	188	518	58	170	30	69	157	7.3	24500
						53	101	26	143	137	5.6	28500
16	49	67	25	195	346	49	66	21	115	134	3.7	19700
17	39	54	25	1690	714	44	49	23	61	115	3.1	11100
18	31	4 5	24	1790	1120	43	39	20	47	94	2.7	3620
19	28	38	24	4610	735	42	30	21	40	92	2.3	1690
20	25	33	24	4640	371	41	31	18	32	101	2.8	1140
21	25	31	23	2250	191	36	30	15	32	144	2.4	1070
22	37 133	28	22	1110	126	36	49	14	35	128	1.8	1480
24	342	28	23 23	705	93	38	2010	13	36	102	2.2	2150
25	569	25	22	571 487	76 65	48	2020	24	30	101	3.2	1740
			22	487	0.5	4.4	923	17	24	114	3.1	829
26 27	581 366	25 25	22	453	55	45	449	13	20	125	3.7	610
28	173	25	24	329 210	50 45	45 43	203 113	17	17	106	3.2	548
29	107	24	25	137	45	37	80	15 13	18	108 192	3.1	522 454
30	69	27	25	99		34	61	46	18	176	4.2	411
31	45		25	83		41		53		137	3.9	411
TOTAL	4280	8308	864	21251	12349	2135	7250	978	14854	3916	655.0	120690.0
MEAN	138	277	27.9	686	441	68.9	242	31.5	495	126	21.2	4023
MAX	581	1220	72	4640	1780	454	2020	67	3600	192	122	28500
MIN	25	24	22	27	45	28	30	13	17	26	1.8	4.1
AC-FT	8490	16480	1710	42150	24490	4230	14380	1940	29460	7770	1300	239400

MIN 1.8 AC-FT 391800

LAVACA RIVER BASIN 275

08164500 NAVIDAD RIVER NEAR GANADO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1959 to current year. Chemical, biochemical, and pesticide analyses: January 1968 to current year. Sediment records: October 1974 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1959 to current year. WATER TEMPERATURES: October 1959 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 1,350 micromhos Oct. 26, 28, 1963; minimum daily, 44 micromhos Mar. 24, 25, 1973.
WATER TEMPERATURES (1959-73): Maximum daily, 37.0°C July 21, 27, 28, 1962, Aug. 19, 1969; minimum daily, 0.0°C Jan. 9-11, 1962, Feb. 22, 1963.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 929 micromhos Oct. 21; minimum daily, 80 micromhos Jan. 20.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			WATER QU	JALITY DA	TA, WATE	R YEAR	OCTOBER	1977 T	O SEPTEM	1BER 197	8		
DATE	TIME	STRE FLO INST TANE (CF:	M, DUC AN- AND DUS (MIC	FIC 4- CT- CE I CRO-		EMPER- ATURE DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR 810 1TY (JTU	- D1	SEN, (YGEN, DIS- OLVED PER- CENT ATUR- (TION)	OXYGEN DEMAND BIO- CHEM- ICAL, 5 DAY (MG/L)	
OCT													
20	1355	160 25		635 832	7.6	19.0	120		10	7.8	87	1.4	
NOV	0925	23		032	7.0	19.0	120		10	7.0	67	•••	2400
10	1550	55		190	6.8	14.5	280	1	30	9.0	91	3.8	
16 JAN	0800	24		741	8.2	13.5						-	
26 MAR	0920	470		188	7.1	7.0	440	1	30	0.6	90	3.6	
16	0950	49		756	7.9	15.5	20		10	0.2	105	.:	
22	1505	14		784	8.4	31.0	40		15	6.1	82	3.6	
02	1000	73		642		27.0							
JUL 18 SEP	0830	94		650	8.1	28.0	50		25	7.4	95	1.1	
26	0815	616		246	7.5	23.5	160		45	7.2	87	1.8	3
DA	F 0 0	OLI- ORM, ECAL, 1.7 M-MF OLS./	STREP- TOCOCCI FECAL, KF AGAR (COLS, PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR BONATE (MG/L CACO:	CALC R- DIS SOL	STUM STUM	AGNE- SIUM, DIS- DLVED MG/L S MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIU AD- SORP- TION RATIO	S D SO (M	IS- BO LVED G/L	CAR- DNATE (MG/L AS
ост													
	• • •										-		
NOV	•••	260	570	550		0 6	58	11	96	2.	8	4.9	300
				47		0 1	13	3.6	18	1.	1	5.6	60
16 JAN	•••			250		3 9	90	5.8	57	1.	6	3.0	300
				45		5 1	13	3.0	15	1.	0	4.3	48
16				260		22 9	94	6.0	57	1.	5	2.5	290
				250		17 8	37	7.5	75	2.	1	4.5	270
				180		0 6	50	6.3	57	1.	9	3.7	220
JUL 18 SEP				200		27 5	50	18	68	2.	1	2.3	210
	•••			87		5 2	27	4.7	15		7	3.7	100

LAVACA RIVER BASIN

08164500 NAVIDAD RIVER NEAR GANADO, TX--Continued

DATE	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS: RESIDUE AT 105 DEG. C: SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)
ост										
05										**
20	0	14	110	.4	38	494	490	16	5	.05
10 DEC	0	9.5	25	.2	14		118	238	28	.08
16	0	17	89	.4	21		431			
JAN 26	0	9.9	22	.1	8.8		100	194	8	.74
MAR										
16	0	55	85	.4	13		423	23	2	.00
JUN 22	6	20	100	• 4	19		453	38	6	.07
02 JUL	0	24	77	.3	18		355			
18	0	30	100	.5	23		396	46	1	.06
SEP 26	- 0	8.6	21	.2	23		153	98	16	.12
DATE	NITRO- GEN. NITRITE TOTAL (MG/L AS N)	NITRO- GEN; NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBON+ ORGANIC TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
ост										
05					70			101	44	97
NOV	•00	.05	•02	.68	.70	•11	8.7	14	.94	71
10	•01	.09	•03	1.2	1.2	.18	31			
16 JAN										
26	.01	.75	•12	1.2	1.3	.14	16			
MAR 16	•00	.00	.00	.78	.78	.09			n 1 -	9
22	.01	.08	.04	1.5	1.5	.08	7.8	2		
02	74				au di	77	The state of			7-29
JUL		W 33		24	1472 77 2		100	14 17	May .	12 19 17 17
SFP	•01	.07	.00	.80	.80	.10	6.9	-		-
26	•01	.13	•04	.96	1.0	.18	13	1 1		-
	D	T ATE	IME (U	IS- DI LVED SOL G/L (U	S- D VED SO G/L (U	MIUM MI IS- DI LVED SO G/L (U	LVED SOL	VED SOI	ON, IS- LVED G/L FE)	
	MA	1								
	.JUI		505	6	200	1	5	2	40	
		3 0	830	3	300	2	0	5	30	
			815	3	100	1	10	4	370	
			LEAD. DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	(UG/L	DIS-	(UG/L	ZINC, DIS- SOLVED (UG/L AS ZN)		
		MAY 22	3	50	.0	0	0	20		
		JUL 18	3	10	.0	0	0	20		
		SEP. 26	1	20	.0	0	0	10		

277 08164500 NAVIDAD RIVER NEAR GAMADO, TX--Continued

DATE	TIME	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR	. ALDRIN	TERIAL	CHLOR- DANE+ TOTAL	CHLOR- DANE. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD+ TOTAL (UG/L)	DDD+ TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN	****					0 .0	.0	0	.00	.0
26	0920	• 0		.0	0 .0	•				
18	0830	.0		.0	0 .0	0 .0	.0	0	.00	.0
DATE	DDE. TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT TOM MA TERIA (UG/KG	- AZINON L TOTAL	TOTAL	TERIAL	ENDO- SULFAN. TOTAL (UG/L)	ENDRIN. TOTAL (UG/L)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN										
26	•00	.1	.00		0 .0	0 .00	.1	.00	.00	.0
JUL 18	.00	.0	.00		0 .0	0 .00	.0	.00	.00	.0
DATE JAN 26		ON. CHI	CH TO PTA- IN LOR, TOM TAL TE	BOT- C MA- EP	EPTA- EPHLOR TOO	MATL. TO	TO' IN I IDANE TOM TAL TEI	RIAL TOT	A- PAR ON, THI	ON.
JUL	•	•••	25.5							
18	MET TR THI TOT	I- ON, MI	REX. TH	TAL T	TOX- IN HENE, TO	M MA- 1 ERIAL TH	ION TO	-0 2.4. TAL TOT	AL TOT	AL
DATE	(UG	/L) (U	G/L) ((JG/L) (UG/L) (U	G/KG) (L	JG/L) (U	G/L) (UG	(UG	(/L)
JAN 26 Jul		.00		.00	0	0	•00	.00	.00	.00
18				.01	0		.00	.01		

LAVACA RIVER BASIN

08164500 NAVIDAD RIVER NEAR GANADO, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	STREAM- FLOW. INSTAN- TANEOUS (CFS)	TEMPER- ATURE (DEG C)	STREAM WIDTH (FT)	STREAM VELOC- ITY, MEAN (FPS)	STREAM DEPTH, MEAN (FT)	NUMBER OF SAM- PLING POINTS	SEDI- MENT DISCH. SUSP. + BED MA- TERIAL (T/DAY)	SEDI- MENT, SUS- PENDED (MG/L)
0311		101 37	1000 07	,	(11-37			(1704)7	1
OCT									
05	1355	160							101
20	1925	25	19.0						14
12	1430	6060	25.5	515	3.5	8.2		9180	464
13	1100	10300	26.0	280	2.5	15		11100	364
13	1700	11100	26.0	320	3,1	11	5	10200	271
	SEDI-	SED. SUSP.	SED. SUSP.	SUSP.	SED. SUSP.	SED.	SED. SUSP.	SED. SUSP.	SED. SUSP.
	DIS-	FALL	FALL	FALL	FALL	FALL	SIEVE	SIEVE	SIEVE
	CHAPGE.	DIAM.	DIAM.	DIAM.	DIAM.	DIAM.	DIAM.	DIAM.	% FINER
	SUS-	# FINER	% FINER	% FINER	% FINER	% FINER	% FINER	THAN	THAN
DATE	(YAGNT)	MM 500.	•004 MM	.008 MM	.016 MM	.031 MM	.062 MM	.125 MM	.250 MM
OCT									(AL)
05	44								
20	.94						97		
SEP					-5				
12	7590	63	63	6 =	70	73	76	79	86
	10100	37	38	41	45	45	47	55	77
13	8120	37	38	41	45	45	47	55	77
	SED. SUSP.	SED.	MAT.	MAT.	BED MAT.	BED MAT.	BED MAT.	BED MAT.	BED MAT.
	SIEVE	SIEVE	SIEVE	SIEVE	SIEVE	SIEVE	SIEVE	SIEVE	SIEVE
	DIAM.	DIAM.	DIAM.	DIAM.	DIAM.	DIAM.	DIAM.	DIAM.	DIAM.
	* FINER	% FINER	% FINER	% FINER	% FINER	% FINER	% FINER	% FINER	% FINER
100	THAN	THAN	THAN	THAN	THAN	THAN	THAN	THAN	THAN
DATE	.500 MM	1.00 MM	.125 MM	.250 MM	.500 MM	1.00 MM	S.00 WM	4.00 MM	8.00 MM
OCT									
05									
20			75.44	MOJ 1243		41 k 49			
510		210	11.3		-10	F - 613	14		
12	98	100		2	45	94	98	99	100
13	99	100	1	19	80	100		100	
13	99	100	1	19	73	96	99	100	

SUSPENDED-SEDIMENT DISCHARGE FOR SELECTED DAYS, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TEMPER- ATURE (DEG.C)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	DATE	TEMPER- ATURE (DEG.C)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
Sept. 11, 1978	26.5	762	263	838	Sept. 15, 1978	26.5	28500	230	17700
Sept. 12	26.5	5540	443	6620	Sept. 16	26.0	19700	140	7450
Sept. 13	27.0	14000	284	10400	Sept. 17	28.0	11100	95	2850
Sept. 14	26.5	24500	219	14400					

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

MONTH	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA+MG) (MG/L)
OCT. 1977	4280	512	290	3410	60	689	17	202	170
NOV. 1977	8308	284	160	3670	30	678	11	245	93
DEC. 1977	864	749	430	1000	90	210	24	57	250
JAN. 1978	21251	156	92	5280	15	832	7	426	49
FEB. 1978	12349	201	120	3910	50	652	9	292	64
MAR., 1978	2135	542	310	1790	64	367	18	105	180
APR. 1978	7250	362	210	4140	40	791	13	260	120
MAY 1978	978	657	380	995	78	206	22	57	550
JUNE 1978	14854	290	170	6770	31	1230	11	451	95
JULY 1978	3916	702	400	4250	84	891	23	239	240
AUG. 1978	655.9	662	380	670	79	140	22	38	550
SEPT 1978	120689.93	128	76	24700	11	3600	7	2160	40
TOTAL	197530.72	**	***	60600	••	10300	**	4530	**
WTD.AVG	541.18	194	110	**	19	••	8.7	**	62

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY JUL AUG SEP FEB APR MAY JUN DAY OCT NOV DEC JAN MAR 670 562 705 731 27 ---

MEAN

LAVACA RIVER BASIN 08164500 NAVIDAD RIVER NEAR GANADO, TX--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1			13.0			15.5		23.5	24.5		26.5	
2		20.0	14.0		7.0	16.0		24.0			26.5	
3	24.5	19.5		5.5		15.5	21.0	20.5		27.0	27.0	
4	23.0	19.5		9.5			21.5	20.5			26.5	
5	21.5			13.5			21.5	21.0	28.0	28.5		26.0
6	21.5			16.0	7.0	14.5	21.5		29.0	28.0		25.5
7	22.0	20.5		18.5		16.5	21.0		26.5	27.0	26.5	26.0
8		21.0				13.0		21.0	25.5		26.0	26.0
9		15.5		7.0	5.5	11.0		21.5	24.5		25.5	
10	23.0	14.5			5.5	12.0	21.5	23.0	25.5	27.0	25.5	
11	22.0	13.0					21.5	24.5		28.0	26.5	
12	21.0		13.5	6.0				25.5	27.0	28.5		
13	19.0		13.5	7.0	10.0	18.0	21.0		27.0	29.0		26.0
14	16.5	13.5	13.0		11.5	17.0	21.5		26.0	27.0	27.0	26.0
15		14.5	13.5			15.5		21.0	26.5		26.5	25.5
16		15.0	13.5	11.0	8.5	13.5		22.0	26.5		26.5	
17	15.5	15.0	14.5	13.0	10.5	15.5	22.0	23.0		29.0	26.5	
18	18.0	19.0					23.5	24.5		29.0	26.5	28.5
19	18.5		14.0				23.0	24.5	27.0	29.0		28.0
20	19.0		10.5	5.5	7.0	18.0	23.5		26.5	29.0		27.0
21	21.0	21.5	8.5		8.0	18.5	23.5		27.0	29.0	26.5	27.0
55		21.0	8.0		7.0	18.5		23.5	27.0		26.5	26.0
23		21.0	9.0		9.0	18.0		24.0	28.0		25.5	
24		21.0			10.0	18.0	20.5	24.5		29.0		
25	20.0	20.5		8.0			20.5	24.5		29.0		24.5
26	20.0			6.5			21.0		27.0	28.5		24.0
27	20.5		9.0	7.0	14.5	19.5	22.0		27.0	29.0		24.0
28	20.5	19.0	9.5		16.5	20.0	23.0		27.0	29.0		24.0
29						20.5			27.0			24.5
30		12.0		8.0				24.5	28.0			
:31	21.0			8.0				24.5				
MEAN	20.5	18.0	12.0	9.5	9.0	16.5	22.0	23.0	26.5	28.5	26.5	26.0

281

08164503 WEST MUSTANG CREEK NEAR GANADO, TX LOCATION.--Lat 29°04'17", long 96°28'01", Jackson County, Hydrologic Unit 12100102, on right bank at downstream end of downstream bridge on U.S. Highway 59, 2.1 mi (3.4 km) upstream from Middle Mustang Creek, and 3.6 mi (5.8 km) east of Ganado.

DRAINAGE AREA .-- 178 mi2 (461 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1977 to September 1978.

GAGE.--Water-stage recorder. Datum of gage is 39.67 ft (12.091 m) National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation).

REMARKS.--Water-discharge records fair. Much of low-flow during irrigation season (April to September) comes from drainage from ricefields irrigated by water originally diverted from the Colorado River.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,050 ft³/s (143 m³/s) Sept. 13, 1978, gage height, 16.68 ft (5.084 m); minimum, 0.15 ft³/s (0.004 m³/s) Jan. 11, 1978.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,000 ft3/s (28.3 m3/s) and maximum (*):

Date	Time	Disch	arge	Gage h	eight	Date	Time	Disch	arge	Gage h	eight
		(ft^3/s)	(m^3/s)	(ft)	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
Nov. 2	1400	1,420	40.2	13.10	3.993	June 4	1000	1,200	34.0	12.87	3.923
Jan. 19	1800	2,890	81.8	a15.27	4.654	Sept. 13	2200	*5,050	143	16.68	5.084
Feb. 18	0800	1,200	34.0	12.87	3.923	Sept. 22	1700	1,010	28.6	12.34	3.761

a From floodmark.

Minimum discharge, $0.15 \text{ ft}^3/\text{s}$ ($0.004 \text{ m}^3/\text{s}$) Jan. 11.

		DISCHA	ARGE, IN	CUBIC FEE	T PER SEC	COND, WA	TER YEAR OCUES	CTOBER 197	7 TO SEPTEMB	ER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MA	R APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	70 75 80 80	166 1260 1000 406 167	2.9 5.8 6.2 5.9 4.6	.28 .26 .24 .24 .25	32 43 31 20 12	2.4 2.1 1.6 1.3	4.0 8.5 4.9 8.9	3.9 5.6 8.0 23 22	19 31 468 1120 638	67 96 124 113 129	83 75 62 52 43	47 46 34 26 101
6 7 8 9	75 70 65 55 50	69 31 89 494 252	3.4 2.9 1.9 1.2 .76	.26 .62 .48 .23	8.0 33 281 402 235	1.2 1.2 .9	1 36	20 23 23 54 35	337 372 389 251 140	117 105 106 132 139	34 28 20 15 16	111 85 105 107 157
11 12 13 14 15	45 40 35 32 28	103 43 24 18 14	.61 .47 .51 .48	12 172 230 90 37	108 72 340 277 93	.86 .86 .78	6 74 6 146 8 73	22 15 6.1 6.3 4.8	56 22 13 8.3 6.6	146 178 165 164 165	19 11 24 24 12	332 1770 3800 4500 3410
16 17 18 19 20	25 23 21 18 16	9.8 8.6 7.7 7.0	13 8.7 5.7 4.4 4.0	21 512 528 1860 1490	67 256 1050 317 78	.68 .53 .53	7 7.6 3 6.4 3 4.3	6.2 6.1 4.8 3.2 2.5	6.3 7.5 7.2 12 20	163 129 104 121 173	7.7 7.6 7.6 7.2	2020 1590 910 341 261
21 22 23 24 25	15 15 25 50 100	6.4 6.0 5.6 5.1 4.7	2.2 1.2 .77 .59	746 364 147 110 110	33 17 10 7.1 5.5	.58 .62 .62	2 6.3 2 285 554	3.8 5.4 5.0 4.9 5.1	16 13 16 16 21	181 206 191 151 146	24 18 15 21 22	603 959 841 417 230
26 27 28 29 30 31	112 69 39 24 13 9.8	7.4 4.1 3.1 2.7 2.8	.33 .30 .26 .30 .33	158 80 38 26 18 14	4.4 3.6 3.0	2.2 6.0 2.6 1.3 .78		3.4 3.5 1.7 2.0 3.7	17 11 9.4 23 29	165 138 117 108 100 90	29 43 43 46 28 38	171 149 129 125 110
TOTAL MEAN MAX MIN CFSM IN. AC-FT	1454.8 46.9 112 9.8 .26 .30 2890	4228.0 141 1260 2.7 .79 .88 8390	80.80 2.61 13 .26 .02 .02	6766.03 218 1860 .17 1.23 1.41 13420	3838.6 137 1050 3.0 .77 .80 7610	37.82 1.22 6.0 .53 .007	2 61.0 554 3 1.8 7 .34 1 .38	346.0 11.2 54 1.7 .06 .07	4095.3 137 1120 6.3 .77 .86 8120	4229 136 206 67 .76 .88 8390	890.1 28.7 83 7.2 .16 .19	23487 783 4500 26 4.40 4.91 46590
WTR YR	1978 TO	TAL 51282			MAX		MIN .17	CFSM .79	IN 10.72			, , , , ,

282

08164503 WEST MUSTANG CREEK NEAR GANADO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: October 1977 to September 1978.

				WA	TER QUA	LITY	DAT	A, WA	TER	YEAR	OCTO	BER 1	977	TO SE	TEMB	ER 19	78						
DATE	TI	ME	STRE FLO INST TANE (CF	AM- CO AN- AI DUS (M	PE- IFIC ON- UCT- NCE ICRO- HOS)	P		TEMPI ATU	RE			SOL	SEN.	OXYGI DIS SOL (PEI SATI	VED R- NT UR-	DEMAN BIO- CHEN ICAL 5 DAY	1D.	HAR NES (MG AS	S /L	HAR NES NONC BONA (MG CAC	S. AR- TE /L	CALC DIS SOL (MG AS	VED
ост																							
18	15	45	20		871		7.8	2	2.0		15		8.4		99		2.1	1	230		63	6	6
NOV 30	10	30	2	.5	390		7.5	1	4.5		75		7.4		75		2.2		120		20	3	5
JAN					590			1			30	,	0.6		92		3.7		220		77	6	7
FEB	11	30		• 0			7.7		8.0														
21	14	00	29		175		6.8	1	1.0		210	1	10.4		97		3.1		62		16		9
05	10	50	20		1100		7.8	. 5	3.5		25		6.8		82	133	3.6		330		120	10	0
17	11	30	6	.6	135		7.9	2	5.0		15		6.2		77	1	2		250		87	7	9
JUN			17		725		7.8		6.5		20		6.3		80		2.1		220		68	7	0
21	05	930	11						0.5		-												
08 SEP	08	330	22		820		7.6	S	6.5		25		6.1		77	- 3	1.6	15	240		63	,	1
21	10	010	417		218		7.3	2	7.0		40		5.2		66		3.8		68		2	2	20
17.	SOL (MG		SODI DIS SOLV (MG	UM. ED	ODIUM AD- ORP- TION ATIO	POT SI DI SOL (MG	UM. S- VED	BICA BONA (MG A	TE /L S	CAF BONA (MC	TE S/L	SULF DIS SOL (MC	VED	CHL RID DIS SOL (MG	VED	FLUC RIDI DIS SOL' (MG	E+ S- VED	SILI DIS SOL (MG	VED	SOL	OF TI-	SOLI RESI AT 1 DEG. SUS PEND	OUE OS C+
DATE	AS	MG)	AS	NA)		AS	~,	псо	31	M3 (,031	A3 .	,,,,					-	-	-			
OCT		15	8	•	2.3		6.7		200		0	,	15	16	0		.3	9	51		493		34
18																		,	6		220		86
30		7.5	2	7	1.1		7.2		120		0		19	4			•5						
11	1	12	4	7	1.4		6.7		170		0	;	36	10	0		.3	1	2		365		53
FEB 21		3.6	1	6	.9		3.9		56		0		16	2	2		.1	1	0		118		332
APR 05		19	7	6	1.8		7.1		250		0		33	18	0		.4	- 2	21	13	560		55
MAY				3	2.0		5.1		200		ò		36	14	0		.4		31		476		38
17 JUN		13					1					- (.3		30		399		42
21		12	-5	4	1.6		2.0		190		0		27	11	0		• •						
08		16	6	6	1.8	1	2		220		0		85	14	.0		.4		39		481		50
SEP 21		4.4	1	3	.7		4.9		80		0		5.9	2	2		.1	3	30		140		92
D	ATE	NIT GE NITR TOT (MG	ATE AL	NITRO- GEN. NITRITE TOTAL (MG/L AS N)	GE	N, NO3 AL /L	MIT GE AMMO TOT (MC	AL S/L	NIT GE ORGA TOT (MC	AL.	NIT GEN, MONI ORGA TOT (MG	AM- NIC AL	PHOP PHOR TOT (MG	AL AL	CARBO ORGAI TOTA (MG.	NIC AL	SED MEN SUS PEN (MG	DED	DIS CHAR SUS PEN	GE,	SIE DI	IAM.	
00	T B		.03	.00				.06		1.1				.14	1								
NO	v 0		.06	.01				.10		.85				.17	1	1							
JA	N		.05	.01		.06		.08		.34		.42		.13		7.7							
FE								.08		1.1	,	.2		.19	1								
API			.37	.01		.38									100	8.5				-			
MA			-86	•09		.95		.18		1.0		.2	1	.12								-	
JU	7 N		.33	.06		.39		.98		6.7	1	.7		.12	1								
AU 2	1		.07	.01		.08		.01		.81		.82		.10		5.7							
	8		.05	.01	1	.06		.05		.85		.90		.12	,	9.8							
	1		.08	.03	3	.11		.11	-	1.1	1	1.2		.28	1	3							

LAVACA RIVER BASIN 283

	DATE	T I)	501 4E (U	VED SO	ARIUM. DIS- DLVED (UG/L AS BA)	CADMIUI DIS- SOLVEI (UG/L AS CD	DIS SOL (UG	M. VED	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVEI (UG/L AS FE		
	NOV 30.	. 10:	30	3	500		0	0	3	10	0	
	FE8 21.			1	0		1	10	8	20	0	
	MAY 17.			3	200		0	0	4		0	
	SEP 21.			5	0		1	10	2	27	0	
		DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANG NESE DIS SOLV (UG/ AS M	A- • MEF - C ED SC	RCURY DIS- DLVED JG/L	SELE- NIUM, DIS- SOLVED (UG/L AS SF)	SOL	VED SO	NC+ IS- LVED IG/L ZN)		
		NOV					0		0	10		
		30 FEB	0		8	•0						
		21 MAY	0		20	.0	2		0	20		
		17 SEP	1		10	.0	0		0	20		
DATE	TIME	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	NAPH THA LENE POL CHLU TOTA (UG/	- S, Y- R. ALI	DRIN, T	DRIN. TOTAL N BOT- OM MA- TERIAL UG/KG)	TO	DA TO OR- IN NE, TOM	10 ILOR- INE, OTAL BOT- I MA- RIAL IS/KG)	DDD, TOTAL (UG/L)	DDD. TOTAL IN BOT TOM MA- TERIAL (UG/KG
30	1030	.0	3		00	.00	.0		.0	1	.00	1.
EB 21	1400	.0	0		00	.00	.0		.0	0	.00	2.
AY 17	1130	.0	0		00	.00	.0		.0	0	.00	
FP 21	1010	.0	0		00	.00	.0		.0	7	.00	
DATE	DDE+ TOTAL (UG/L)	DOE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DOT. TOTAL (UG/L)	TOTA IN BO TOM M TERI (UG/K	IL IT- IA- AZ AL T	DI- INON. OTAL UG/L)	DI- ELDRIN TOTAL (UG/L)	TO IN TOM	MA- SUL	NDO- FAN+ E OTAL JG/L)	NDRIN. TOTAL (UG/L)	ENDRIN TOTAL IN BOT TOM MA TERIA (UG/KG
30	•00	2.6	•00		.0	.00	.00		.4	.00	.00	
E8 21	.00	6.2	.00		.0	.00	.01		.4	.00	.00	
17	.00	.4	.00		.0	.00	.01		.2	.00	.00	
21	.00	7.7	• 0 C		.5 HEPTA-	.00 HEPTA	.01		5.3 LINDANE TOTAL	.00	•00	THYL
DAT	ETHIC TOTA	IN CHI	OR, TON	BOT-	CHLOR POXIDE TOTAL (UG/L)	BOTTO MATE	IN OM LIN	DANE TAL G/L)	IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THIOM TOTAL (UG/L	Y. TH	RA- ION+ TAL G/L)
NOV 30.		.00	.00	.0	.00		. 0	.00	.0		00	.00
FEP 21		.00	.00	.0	.00		.0	.00	.0		00	.00
MAY 17		.00	.00	.0	.00		. 0	.00	.0		00	.00
SFP 21		.00	.00	.0	•00		.2	•00	•0		00	•20
DAT	METI TR THI TOT.	I- ON, MI AL T	REX. TI	ARA- HION, OTAL JG/L)	TOX- APHENE, TOTAL (UG/L)	TOTA IN BO TOM M TERI	L T- TO A- T AL TH	TAL RI- ION IG/L)	2,4-D, TOTAL (UG/L)	2+4+5 TOTA (UG/	L TO	VEX, TAL G/L)
NOV		.00		.00	()	6	.00	.00		00	.00
FEB		.00		.00			0	.00	.00		00	.00
MAY												
17		.00		.00	(0	0	.00	.00		00	.00

LAVACA RIVER BASIN

08164503 WEST MUSTANG CREEK NEAR GANADO, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

STREAM- FLOW, FLOW, INSTAN- TEMPER- STREAM ITY TIME TANEOUS ATURE WIDTH MEA OATE (CFS) (DEG C) (FT) (FP.	C- STREAM SAM- SUSP. + MENT, CHARGE, DEPTH, PLING BED MA- SUS- SUS- N MEAN POINTS TERIAL PENDED PENDED
SEP	
	1.5 11 5 399 145 395
	2.0 13 5 295 112 287
13 0855 2340 27.0 130	2.0 9.0 5 566 86 543
THAN THAN THAN THAN	SED. SED. SED. SED. SED. SUSP. FALL SIEVE SIEVE SIEVE SIEVE DIAM. DIAM. DIAM. DIAM. DIAM. DIAM. BFINER FINER FINER FINER THAN THAN THAN THAN THAN THAN THAN THAN
SEP	
12 69 72 77 78	82 98 98 99 100
12 72 80 84 92	98 99 99 100
13 69 72 77 78	82 98 99 99 100
BED BED BED BED MAT. MAT. MAT. MAT. SIEVE SIEVE SIEVE SIEVE DIAM. DIAM. DIAM. DIAM. % FINER % FINER % FINER % FINER THAN THAN THAN THAN THAN	BED BED BED BED BED MAT. MAT. MAT. MAT. SIEVE SIEVE SIEVE SIEVE SIEVE DIAM. DIAM. DIAM. DIAM. DIAM. & FINER % FINER % FINER % FINER THAN THAN THAN THAN THAN
	1.00 MM 2.00 MM 4.00 MM 8.00 MM 16.0 MM
SEP	
12 3 17 45	52 58 65 79 100
12 2 21 51	57 61 66 82 100
13 1 4 26 62	65 71 77 86 100

SUSPENDED-SEDIMENT DISCHARGE FOR SELECTED DAYS, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	DATE	TEMPER- ATURE (DEG.C)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	DATE	TEMPER- ATURE (DEG.C)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
Sept.	11, 1978	26.5	332	60	53.8	Sept. 15, 1978	26.5	3410	80	737
Sept.	12	27.0	1770	145	630	Sept. 16	27.5	2020	75	409
Sept.	13	26.5	3800	90	923	Sept. 17	29.0	1590	40	172
Sept.	14	27.0	4500	85	1030					

GARCITAS CREEK BASIN

285

08164600 GARCITAS CREEK NEAR INEZ, TX

LOCATION.--Lat 28°53'28", long 96°49'08", Victoria County, Hydrologic Unit 12100402, at right downstream end of bridge on U.S. Highway 59 access road, 0.3 mi (0.5 km) upstream from Southern Pacific Railroad bridge, 2.0 mi (3.2 km) southwest of Inez, and 3.6 mi (5.8 km) upstream from Case Blanca Creek.

DRAINAGE AREA .-- 91.7 mi2 (238 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1970 to current year.

GAGE .-- Water-stage recorder. Datum of gage is 29.16 ft (8.888 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. No known diversion above station. An undetermined amount of return water from irrigation enters stream above station. Recording rain gage at station.

AVERAGE DISCHARGE.--8 years (water years 1971-78), 51.9 ft³/s (1.470 m³/s), 7.69 in/yr (195 mm/yr), 37,600 acre-ft/yr (46.4 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 17,000 ft³/s (481 m³/s) Sept. 14, 1978, gage height, 27.85 ft (8.489 m); no flow May 22, 23, May 26 to June 17, 1971.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage during period 1903-70, 24.5 ft (7.47 m) Oct. 26, 1960. In 1929, a flood nearly as high as the 1960 flood occurred, and a flood in September 1967 reached a stage of 23.4 ft (7.13 m), from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 400 ft³/s (11.3 m³/s) and maximum (*):

Date	Time	Disch	arge	Gage h	eight	Date	Time	Disch	arge	Gage h	eight
		(ft^3/s)	(m^3/s)	(ft)	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
Feb. 8	1200	473	13.4	10.45	3.185	Sept. 12	1900	7,720	219	22.31	6.800
Apr. 23	1200	411	11.6	10.10	3.078	Sept. 14	0400	*17,000	481	27.85	8.489
June 4	0100	1,340	37.9	13.81	4.209	Sept. 23	1500	412	11.7	10.11	3.082
June 8	0400	426	12.1	10.19	3.106						

Minimum discharge, 0.34 ft³/s (0.010 m³/s) Aug. 29, 30.

		DISCHA	RGE, IN C	JBIC FEE	T PER SECONI	, WATER	R YEAR OCTO	BER 19	77 TO SEPT	EMBER 197	8	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.6 3.1 4.2 1.9	19 32 33 26 17	9.4 7.2 5.7 4.4	2.9 2.9 2.9 2.9	7.6 6.1 5.1 4.2 3.8	5.7 5.1 4.9 4.6 4.2	1.6 1.4 1.4 1.3	7.5 6.7 6.5 6.1 5.5	2.6 2.9 361 624 100	1.2 1.2 1.1 1.0 .92	2.5 1.9 1.3 .95	.65 1.2 1.3 1.1 .90
6 7 8 9	1.1 1.0 1.7 2.1 1.9	11 8.3 25 110 53	3.2 2.9 3.1 3.2 2.6	2.8 2.9 2.6 2.4 2.3	3.3 44 407 210 85	4.2 4.0 3.3 3.2 3.1	1.4 1.9 1.6 1.4	5.2 5.0 4.8 4.4 3.8	39 115 277 70 31	.92 .84 .75 .68	.62 .47 .46 2.3 2.7	.81 1.5 1.4 1.5 4.5
11 12 13 14 15	2.2 2.0 1.5 1.3	28 16 10 7.3 5.5	2.4 2.3 2.5 2.5 2.6	5.9 6.6 5.5 4.9 4.1	47 34 37 36 27	4.3 3.7 3.2 2.8 2.5	1.7 2.8 2.3 2.0 7.9	3.7 3.5 3.2 2.8 2.6	23 18 15 11 9.1	.60 .52 .56 .54	1.9 1.3 .89 .67	93 4680 5300 10500 1290
16 17 18 19 20	1.3 1.3 1.4 1.5	4.9 4.3 4.0 4.1 4.2	2.9 3.1 3.0 3.0 2.9	3.9 3.9 34 267 128	35 67 200 82 41	2.1 1.9 1.7 1.6 1.6	6.7 4.0 3.1 2.9 2.6	2.7 2.8 2.7 2.5 2.3	7.7 13 8.4 6.7 4.7	4.5 2.2 1.3 .93 1.0	.63 .56 .49 .46	523 208 115 73 51
21 22 23 24 25	2.1 124 60 38 35	4.7 4.2 3.8 3.7 3.5	2.7 2.7 2.7 2.6 2.5	57 34 23 17 14	26 17 13 11 9.1	1.7 1.7 1.8 2.1 1.9	2.5 5.1 214 74 32	2.1 2.2 2.0 1.8 1.7	3.9 3.6 3.1 2.8 2.3	.97 1.2 1.5 1.3 1.1	.82 .84 .82 .78	40 95 326 170 70
26 27 28 29 30 31	21 13 8.9 6.6 5.7 5.0	3.4 3.4 3.4 5.1 9.7	2.4 2.4 2.6 3.1 3.3 3.0	12 9.5 7.4 5.9 5.1 5.6	7.7 6.7 6.2	1.7 1.5 1.6 1.5 1.4	20 14 10 8.8 8.0	1.6 1.7 1.5 1.7 3.1	1.9 1.6 1.5 1.4 1.3	1.1 .88 .86 1.1 2.0 2.4	.87 .67 .52 .40 .38	37 26 20 17 15
TOTAL MEAN MAX MIN CFSM IN. AC-FT	354.8 11.4 124 1.0 .12 .14 704	467.5 15.6 110 3.4 .17 .19 927	110.9 3.58 12 2.3 .04 .04 220	681.8 22.0 267 2.3 .24 .28 1350	1478.8 52.8 407 3.3 .58 .60 2930	86.0 2.77 5.7 1.4 .03 .03	439.3 14.6 214 1.3 .16 .18 871	105.6 3.41 7.5 1.5 .04 .04 209	1762.5 58.8 624 1.3 .64 .71 3500	36.53 1.18 4.5 .52 .01 .01	29.61 .96 2.7 .38 .01 .01	23663.86 789 10500 .65 8.60 9.60 46940
CAL YR WTR YR				31.7	MAX 2140 MAX 10500	MIN 1			IN 4.69 IN 11.85	AC-FT	22920 57950	

08164600 GARCITAS CREEK NEAR INEZ, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: October 1969 to current year.

DATE	TIM	STRE FLC INSI E TANE (CF	EAM- COW, C	SPE- CIFIC CON- DUCT- ANCE MICRO- MHOS)	PH (UNIT	TE!	MPER- TURE EG C)	TU TI TI TL)	R- D- Y	OXYGE DIS SOLVI (MG/I	OX) SC N+ (F	GEN, DIS- DLVED PER- CENT ATUR- TION)	OXYGEN DEMAND BIO- CHEM- ICAL, 5 DAY (MG/L)	HAF NES	S /L	HARD- NESS: NONCAR- BONATE (MG/L CACO3)
0CT 19	. 105	5 1	.6	706	7	.7	22.0		3	7	.8	92		9	230	23
NOV 30	. 140	0 11		688	8	.2	18.0		9	10	.1	110	1.	2	270	48
JAN 11			9.9	730		.9	8.0		2	10		94	1.		280	30
FER 21	. 170	0 23		270	7	.2	12.0		70	10		99	2.	5	86	16
APR				760											270	44
05			. 4			• 0	25.5		2	10		130	1.			
17		0 2	8.8	694	8	• 2	27.5		4	8	.9	114	1.	3	250	36
20 AUG	• 150	5 3	3.7	550	7	.7	33.0		9	8	.6	119	1.	7	200	36
07 SEP	. 133	0	.47	649	7	•7	31.0		5	11	.3	153	1.	3	170	17
19	. 160	5 70)	311	7	• 4	30.5		15	5	.6	75	1.	8	120	11
	CALCI DIS-	UM SI	S- 0	DIUM.	SOD I AD SORP	- ;	OTAS- SIUM. DIS-	BICA	TE	CAR-	DI	FATE	CHLO- RIDE, DIS-		E.	SILICA, DIS- SOLVED
	SOL V			OLVED (MG/L	TIO		OLVED MG/L	(MG	/L S	BONATI		LVED IG/L	SOLVE (MG/L		VED VL	(MG/L
DATE	AS C	A) AS	MG) A	AS NA)			s K)	нсо		AS CO		504)	AS CL) AS	F)	2105)
19 NOV	. 70	1	.3	64	1	.8	1.9		250		0	52	86		.4	34
30	. 88	1	12	42	1	.1	2.0		270		0	53	58		.3	28
11	. 89	1	.3	49	1	.3	1.7		300		0	54	65		.3	28
21 APR	. 28		3.9	16		.8	2.6		86		0	16	21		.1	12
05 MAY	. 85	1	3	52	1	• 4	1.8		270		0	50	70		.4	23
17 JUN	. 80	1	2	49	1	.4	1.8		260		0	49	59		.3	26
20 AUG	. 66		8.5	33	1	• 0	2.2		200		0	28	48		.3	33
07	. 51	1	1	70	2	.3	2.3		190		0	34	90		.3	31
SEP 19	. 39		4.8	16		.6	3.1		130		0	19	21		.1	25
	DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS RESIDU AT 105 DEG. C SUS- PENDEC (MG/L	JE NI 5 G C, NIT TO	TRO- EN, RATE TAL G/L N)	NITRO GEN. NITRIT TOTAL (MG/L AS N)	E NO	ITRO- GEN+ 2+NO3 DTAL 4G/L 6 N)	AMM TO	TRO- EN. IONIA TAL IG/L	NITRO- GEN, ORGANIO TOTAL (MG/L AS N)	GEN MON ORG TO	SANIC POTAL	PHOS- HORUS, TOTAL (MG/L AS P)	ORG TO (M	BON. ANIC TAL G/L C)
	OCT 19	445		4	.01	.0	0	.01		•01	.34		.35	.01		4.6
	NOV 30	417	1	16	.01	.0	1	•02		.06	.3		.37	.00		5.8
	JAN 11	448		3	.01	.0		•02		.01	.02		.03	.01		2.8
	FE8 21	142		90	.03	.0		.03		.02	.78		.80	.06		13
	APR 05	428		3	.01	.0		.02		•00	.24		.24	.01		3.4
	MAY 17	406		8	.01	.0		.01		.01	.39		.40	.02		5.3
	JUN 20	318		14	.01	.0		.01		.01	.8		.88	.03		11
	AIJG 07	383	·	2									.40	.01		5.7
	SEP			20	•01	.0		.01		•00	.40			.09		15
	19	193	•	_ 0	• 04	• 0		• 05		•02	.8.	,	.85	• 09		• 3

GARCITAS CREEK BASIN 287

08164600 GARCITAS CREEK NEAR INEZ, TX--Continued

			TIME		S- VED	BARI DIS SOLV	ED.	CADM DI SOL (UG	S- VED	MIU DIS SOL (UG	M. VED	COPP DIS SOL (UG	- VED		S- VED		
	DAT				AS)		BA)	AS			CR)	AS		AS	FE)		
	NOV 30		1400		2		800		0		0		1		30		
	FEB 21.		1700		1		100		0		10		2		80		
	MAY 17		1340		4		300		0		0		1		10		
	SEP 19		1605		5		100		1		10		2		220		
		DATE	LI Se	EAD, DIS- DLVED JG/L S PB)	MA NE SC	ANGA- ESE, DIS- DLVED JG/L G MN)	50	CURY IS- LVED IG/L HG)	SOL		SOI (U	VER+ IS- LVED G/L AG)	SOL	S- VED			
		NOV										•					
		FEB		0		8		.0		0		0		0			
		21		0		20		.0		1		0		20			
		SEP		1		200		.0		0		0		10			
		19	•	0		70		.0		0		0	Cui	10			
DATE	TIME	PCB. TOTAL (UG/L	IN TO	PCB, DTAL BOT- M MA- ERIAL G/KG)	LE F CH	NPH- THA- ENES. POLY- HLOR. DTAL JG/L)	TO	RIN, TAL	TOM TOM TER	MA-	TO	OR- NE • TAL G/L)	TOT IN E	MA-	TO	DD, Tal G/L)	DDD. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
FEB 21 SEP	1700		. 0	0		.00		.00		.0		.0		0		.00	•0
19	1605		0	0		.00		.00		.0		.0		0		.00	• 0
DATE	DDE . TOTAL	DDE + TOTAL IN BOT TOM MA TERIA (UG/KG	- - I	DDT, DTAL JG/L)	IN TOM TE	DOT+ DTAL BOT- MA- ERIAL BOKG)	AZI	I- NON.	ELC TOT	I- ORIN TAL	TOM TOM TEI	I- RIN, FAL BOT- MA- RIAL KG)	SULF		TO	RIN, TAL G/L)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
	(UG/L)	TOGZKO	, ,	36767	100	37107	10	10/1	100	,,,,	100	, KG,	100	,, _,	,,,	0, 2,	10071107
Z1 SEP	•00		0	•00		• 0		•00		•00		.0		•00		.00	•0
19	•00	•	. 0	•00		. 0		•00		•00		.0		•00		.00	•0
DATE	ETHIC TOTA (UG.	ON, C	EPTA- CHLOR, OTAL	TOT IN B TOM	MA-	CHL EPOX TOT		TOT.	OR IDE IN TOM TL.	TOT		LIND TOT IN B TOM TER (UG/	AL OT- MA- IAL	TOT	ON.	MET PAR THI TOT (UG	A- ON, AL
FEA																	
21 SFP	•	.00	.00		.0		•00		.0		.00		• 0		.00		•00
19	MET		•00		• 0		•00	TOX PHE TOT	NE .		•00		•0		•00		•00
DATE	THI THI TOT	ON, M	IREX, TOTAL (UG/L)	TOT	ON,	TOT		TOM TER (UG/	MA- IAL	THI	- I	2•4 101 (UG		2,4, TOT (UG		SILV TOT (UG	AL
FEB 21		.00			.00		0		0		.00		.01		.00		.00
SEP 19		.00	.00		.00		0		0		.00		.00		.00		•00

PLACEDO CREEK BASIN

08164800 PLACEDO CREEK NEAR PLACEDO, TX

LOCATION.--Lat 28°43'30", long 96°46'07", Victoria County, Hydrologic Unit 12100401, on right bank at downstream end of bridge on Farm Road 616, 0.1 mi (0.2 km) downstream from confluence of Lone Tree Creek and Arroyo Palo Alto, 1.2 mi (1.9 km) upstream from Ninemile Creek, and 4.4 mi (7.1 km) northeast of Placedo.

DRAINAGE AREA .-- 68.3 mi2 (177 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- June 1970 to current year.

GAGE.--Water-stage recorder. Datum of gage is 5.58 ft (1.701 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. No known diversion above station. Recording rain gage at station.

AVERAGE DISCHARGE.--8 years, 62.5 ft3/s (1.770 m3/s), 45,280 acre-ft/yr (55.8 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 15,100 ft³/s (428 m³/s) Sept. 14, 1978, gage height, 29.64 ft (9.034 m); no flow Sept. 8, 9, 1971.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1930, 31.9 ft (9.72 m) in September 1967 and 30.4 ft (9.27 m) in 1960 (probably October), from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,000 ft3/s (28.3 m3/s) and maximum (*):

Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)	Date	Time	Disch (ft³/s)		Gage h	eight (m)
Nov. 1	2300	3,450	97.7	21.74	6.626	Sept. 12	0900	6,240	177	24.69	7.526
Feb. 7	2200	1,210	34.3	17.95	5.471	Sept. 14	0400	*15,100	428	29.64	9.034

Minimum discharge, 0.01 ft 3 /s (0.0003 m 3 /s) Aug. 17-19, 28-30.

		DISCHA	RGE, IN	CUBIC FEET		ND, WATER AN VALUES		OBER 197	7 TO SEPTI	EMBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.3 1.3 1.5 1.4	977 1530 159 34 12	11 3.6 1.8 1.2 .85	1.1 1.1 1.2 1.1 1.1	12 10 5.6 2.5 1.4	.76 .72 .72 .66	.68 .88 .56 .53	.35 .38 1.1 .95 1.6	5.3 48 307 499 89	2.2 2.4 1.2 .94	2.6 1.7 1.5 .64	1.2 .36 .06 .05
6 7 8 9	1.5 2.0 2.7 3.1 3.3	5.5 3.1 94 93 32	.71 .72 .71 .74	1.3 1.3 1.3 1.2	.93 396 832 225 66	.68 .76 .66 .58	.92 .39 .40 .40	1.8 1.3 2.1 .89	24 35 83 28 7.2	.97 .92 .81 .59	1.6 1.4 .24 20 6.3	1.8 1.5 1.4 12 291
11 12 13 14	4.0 3.5 2.6 2.0 3.7	9.9 4.6 2.8 2.1 1.8	.75 .81 .81 .72	21 27 14 3.8 1.4	25 36 52 14 7.2	.55 .55 .54 .57	.74 2.1 5.6 11 3.1	.38 .35 .50 .86	3.1 1.9 1.3 1.0	.86 .92 .87 .89	20 7.2 2.1 .59	1780 5520 5400 10900 2540
16 17 18 19 20	3.0 1.9 1.3 1.5	1.7 1.7 46 22 6.0	.74 .74 .80 .70 .78	.93 .75 32 206 67	15 212 229 56 17	.50 .54 .59 .64	1.2 .94 .61 .43	.88 1.2 .69 .43	.94 1.4 1.5 1.6 1.4	.76 .91 .83 3.7 5.0	.04 .02 .01 .01	437 112 37 13 27
21 22 23 24 25	81 311 102 75 56	3.2 4.5 3.0 1.9 1.5	.76 .78 .82 .89	19 7.5 4.0 2.7 2.2	6.4 3.0 1.8 1.3	.65 .61 .61 .97	.38 1.1 4.1 7.3 7.3	.34 .39 .41 .29	1.2 1.1 1.0 .90	3.2 7.8 9.6 4.4 3.2	.94 .74 .24 .07	46 87 119 33 9.8
26 27 28 29 30 31	18 9.2 5.7 3.6 2.6 2.1	1.2 1.3 1.5 1.7 7.2	.91 .98 1.0 1.3 1.3	1.7 1.1 .95 .82 .70 2.0	.92 .79 .78	.50 .58 .70 .71 .63	1.9 .82 .49 .41	.30 .27 .24 .27 .63	.99 1.0 1.0 .81 .75	16 12 4.3 4.1 5.5 4.3	.03 .02 .01 .01 .26	4.2 2.6 2.2 1.9 1.8
TOTAL MEAN MAX MIN AC-FT	710.8 22.9 311 1.3 1410	3065.2 102 1530 1.2 6080	40.51 1.31 11 .70 80	428.35 13.8 206 .70 850	2230.62 79.7 832 .78 4420	19.53 .63 .97 .50	56.58 1.89 11 .35 112	21.27 .69 2.1 .24 42	1150.52 38.4 499 .75 2280	101.37 3.27 16 .59 201	69.71 2.25 20 .01 .138	27382.92 913 10900 .05 54310
CAL YR WTR YR		TAL 22594 TAL 35277		AN 61.9 AN 96.7	MAX 549 MAX 1090		.37 AC-					

289

08164800 PLACEDO CREEK NEAR PLACEDO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: October 1968 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	DUCT-	PH (UNITS)	TEMPER- ATURE (DEG C)	ITY	SOL	EN. S- VED	OXYGEN. DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGE DEMAN BIO- CHEM ICAL 5 DAY	HAR NES MG	S /L	HARD- NESS+ NONCAR- BONATE (MG/L CACO3)
OCT		(013)	MHOS	TONITS	TOES C	(JTU)	(MC	(/L)	ATTONY	(MG/L	, смс	031	CACOS
18	1035	1.3	5650	7.2	21.0		6	4.5	52	2	.8 1	100	870
29	1120	1.7	3850	7.3	19.5	3	5	3.0	34	1	.7	720	440
JAN 10	1050	1.1	4750	7.6	10.0		3	8.0	73	1	.3 1	000	670
22	1545	2.8	1200	7.1	13.0	13	0	9.7	95	2	.5	270	150
APR 04	1350	.61	4400	7.6	25.0		8	6.1	75	2	.0	910	580
MAY 16	0930	.72	3380	7.7	23.0	3	5	4.1	49	3	.3	570	290
JUN 21	1745	1.3	2700	7.8	28.0	1	0	5.8	74	1	•6	460	200
AUG 09	0800	27	384		27.0	40		5.8	73		.9	78	0
SEP 19	1410	13	713		28.5		5	5.0	65			160	47
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS-	SODIUM. DIS- DIS- SOLVED (MG/L	SODIUM AD- SORP- TION RATIO	POTAS- SIUM. DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR BONA (MG	TE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO RIDE DIS- SOLV (MG/ AS C	- FLUG RIDI DIS ED SOL'	0- E, S- VED	SILICA, DIS- SOLVED (MG/L AS SIO2)
ОСТ						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			40.00	,,,,	91)		12124
18	340	66	608	10	5.9	31	0	0	51	1800		.6	26
29	220	41	550	8.9	6.2	34	0	0	48	1100		.4	30
JAN 10	310	55	650	8.9	3.6	40	0	0	62	1300		.6	25
22	86	14	130	3.4	4.5	15	0	0	20	310		.2	17
04	280	50	590	8.5	4.2	40	0	0	61	1200		.7	26
MAY 16	170	34	450	8.2	5.8	33	0	0	39	840		.7	17
21	140	27	380	7.7	3.5	32	0	0	45	700		.6	29
09	23	5.0	50	2.5	4.6	13	0	0	14	45		.3	13
SEP 19	52	7.8	75	2.6	4.3	14	0	0	12	150		.2	22
C	SU CO TU	M OF RENSTI- ATENTS, DEDIS- SOLVED PE	T 105 EG. C. NI BUS- T ENDED (GEN, COTAL TO	GEN, TRITE NO. DTAL TO MG/L (1	GEN, 2+NO3 A OTAL MG/L	NITRO- GEN, MMONIA TOTAL (MG/L AS N)	NIT GE ORGA TOT (MG AS	RO- GEN N, MON NIC ORG AL TO /L (M	TRO- I, AM- IIA + GANIC TAL IG/L	PHOS- PHORUS, TOTAL (MG/L AS P)	ORG TO	BON. ANIC TAL IG/L
no		3340	16	0.2	0.0	0.0	0.4			4.0	0.0		- 2
NO		3240	15	•03	•00	.03	•04		• 44	.48	.08		5.3
JA		2170	104	•10	•01	•11	•10		•40	.50	•09		5.5
FE		2600	8	•00	•00	•00	•02		.18	.20	.03		3.1
AF		656	204	•71	.02	.73	• 07		.2	1.3	.16		12
MA		2410	18	• 04	•00	.04	.01		.41	.42	.06		
JU		1720	79	•06	.02	.08	•11		.76	.87	.11		35
ΔΙ		1480	23	• 0 8	.01	.09	•03		.71	.74	.09		6.4
SE	9	219	920	2.1	.09	2.2	.20	1	• 4	1.6	.24		16
1	9	393	38	.07	.01	.08	.04	1	.2	1.2	.24		9.3

08164800 PLACEDO CREEK NEAR PLACEDO, TX--Continued

						CH	RO-					
			ARSENIC				IUM,	DIS-	IRON, DIS-			
			SOL VED	DIS-			DLVED	SOLVED	SOLVED			
		TIME	(UG/L	(UG/	L (UG		JG/L	(UG/L AS CU)	(UG/L AS FE)			
	DATE		AS AS)	AS B	A) AS	CU) AS	S CR)	AS CO	AS FEI			
	NOV											
	29 FEB	. 1120	4	20	00	0	0	1	40			
	22	. 1545	3	3	00	0	0	1	30			
	MAY		6		00	0	0	6	0			
	16 SEP	. 0930		,	100							
	19	. 1410	9	•	20	1	0	1	60			
				ANGA-		SELE-			NC+			
			DIS-	DIS-	MERCURY DIS-	NIUM. DIS-	SILV		IS-			
				SOLVED	SOLVED	SOLVE	D SOL		LVED			
				S MN)	(UG/L AS HG)	AS SE			G/L ZN)			
						1,700						
		29	0	240	.0		0	0	10			
		FEB	v	240					11.			
		22	0	100	.0		0	0	10			
		16	0	160	.0		0	0	20			
		SEP	0	80	.0		0	0	10			
		19		IAPH-	.0		•		LOR-			
			PCB,	THA-		ALDRIN		DA	NE +		DDD	
				POLY-		TOTAL IN BOT			TAL BOT-		TOTA	
			N HOT-	CHLOR.	ALDRIN.	TOM MA	- DAN	E. TOM	MA- D	00.	TOM N	MA-
	TIME	TOTAL	TERIAL 1	OTAL	TOTAL (UG/L)	TERIAL (UG/KG				TAL	TERT	
DATE		(UG/L) (UG/KG)	(UG/L)	(OG/L)	100710	, 100	,,, ,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0, 2,	1007.	
NOV		-							0	.00		.0
29 FEB	1120	.0	0	.00	.00	•	0	. 0	v			••
22	1545	.0		.00	.00	-	-	.0		.00		
MAY 16	0930	.0	0	.00	.00		0	.0	0	.00		.1
SEP										.00		1
19	1410	• 0		.00	.00	-		.0		.00		
		DDE.		DDT.			ELDR				ENDRI	IN.
		TOTAL		OTAL		16.6	TOT	AL			TOTA	
		N BOT-		M MA-	DI- AZINON.	ELDRI	IN B		DO- FAN. END	RIN,	IN BO	
			TOTAL 1	TERTAL	TOTAL	TOTAL	TER	IAL TO	TAL TO	TAL	TER	
DATE	(UG/L)	UG/KG)	(UG/L) (JG/KG)	(UG/L)	(UG/L) (UG/	KG) (U	G/L) (U	IG/L)	(UG/H	101
NOV					1.2				.00	.00		.0
29 FEB	•00	• 2	.00	.0	.00	•0	0	• 0	•00	.00		••
22	.00		.00		.01	• 0	0		.00	.00		
MAY	00		.00	.0	.00	.0	0	.0	.00	.00		.0
16 SEP	•00	• 4										
19	.00		•00		.00	•0	0		.00	.00		
			CHLOR		CHL	OR		LINDANE				
			TOTAL	HEP	TA- EPOX	IDE		TOTAL		MET		
	ETHION	HEPTA					NDANE	IN BOT-	MALA- THION.	THI		
	TOTAL	TOTAL	TERIA	L TOT	AL MA	TL. T	OTAL	TERTAL	TOTAL	TOT		
DATE	E (UG/L) (UG/L	.) (UG/KG	(UG	/L) (UG/	rkg) (UG/L)	(UG/KG)	(UG/L)	100	/L)	
NOV								1 /2				
29.		00 .0	. 00	0	.00	.0	.00	.0	.00		.00	
FE9		00 .0	00 -	4	.00		.00		.00		.00	
MAY							.00	.0	.00		.00	
16. SFP	••	00 •0	•	0	•00	• 0	.00	••				
19.		00 .0	00 -	-	.00		.00		.00		.00	
						(A-						
	METH	YL.				TAL						
	TRI	•	PARA-		X- IN	30T- T	OTAL	2 . 0	2.4.5.7	SILV	Ev.	
	TOTAL					MA- RIAL T	TRI-	TOTAL	TOTAL	TOT		
DAT							(UG/L)	(UG/L)	(UG/L)	(UG	/L)	
NOV												
29.		00 .	0	0	0	0	.00	.00	.00		.00	
FEA	••											
	17.			0	0		.00	-00	.00		.00	
AAY		00 .	0		0		•00	.00	.00			
22. MAY 16.		00 -	0		0	0	.00	.00	.00		.00	
AY YAM		00 -		0								

291

OB164850 CHOCOLATE BAYOU NEAR PORT LAVACA, TX (Reconnaissance partial-record station)

LOCATION.--Lat 28°35'40", long 96°41'48", Calhoun County, Hydrologic Unit 12100402, at bridge on Sweetwater Road, 2.3 mi (3.7 km) upstream.from State Highway 35, and 4.5 mi (7.2 km) southwest of Port Lavaca.

DRAINAGE AREA.--53.7 mi² (139.1 km²).

PERIOD OF RECORD.--Periodic discharge measurements: September 1967 to July 1968, February 1970 to current year. Periodic water-quality data: June 1970 to current year.

DISCHARGE AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	TIME	STREAM FLOW, INSTAN TANEOU	- DUCT-	. _P		PER- URE	TUR- BID- ITY	OXYGE DIS	5-	OXYGEN, DIS- SOLVED (PER- CENT SATUR-	DEMAND BIO- CHEM- ICAL 5 DAY	HARI NESS	, L	HARD- NESS: NONCAR- BONATE (MG/L
DATE		(CFS)				G C)	(JTU)	(MG,	/L)	ATION)	(MG/L	CAC)3)	CACO3)
ОСТ														260
18	0940	.3	0 496	50	7.4	21.0	50		5.9	79	3	.3 1	100	860
29	0950	1.1	180	00	7.2	19.0	35	1	0.2	113	5	9	20	290
JAN 10	1155	.3	0 57	00	8.2	9.5	7	1	1.5	104	5	.4 1	00	1100
FEB 22	1635	6.9	6	50	7.0	12.0	220	1:	2.0	115	2	.3	140	76
APR 04	1235	1.0	319	50	8.0	25.5	20	1	1.3	141	15		570	400
16	1040	1.0	24	90	7.9	26.0	30		4.5	56	5	.0	390	99
JUN 22	0855	.8	0 289	50	7.8	27.5	9		3.9	50	3	.4	530	270
AUG 09	1000	.2				27.5	25		3.8	49	4	.1	500	230
SEP						29.5	20		4.0	53		. 4	77	0
19	1225	29		98 SOD		TAS-	20			23	CHLO			SILICA.
	CALCIUM DIS- SOLVED	SIUM DIS- SOLVE	SODIU	M. A	D- S P- D	IUM. IS- LVED	BICAR- BONATE (MG/L	CAR		SULFATE DIS- SOLVED	RIDE DIS- SOLV	. RID	E,	DIS- SOLVED (MG/L
	(MG/L	(MG/L	(MG/	L RAT	IO (M	G/L	AS	(MG	/L	(MG/L	(MG/	L (MG.	/L	AS
DATE	AS CA)	AS MG) AS N	A)	AS	K)	HC03)	AS C	03)	AS 504)	AS C	L) AS	.)	2105)
18 NOV	300	84	630		8.3	7.4	290		0	300	1400		.7	28
29 JAN	120	30	200		4.2	6.0	160		0	100	420		.5	27
10 FER	380	100	730		8.6	5.0	350	1.	0	370	1700		.7	18
22 APR	43	8.	.2 60		2.2	4.7	80	1	0	35	110		.1	19
04 MAY	190	48	490		8.2	8.9	330	1	0	150	910		.7	14
16 JUN	110	29	360		7.9	5.4	360	1	0	85	540		.8	18
22 AUG	150	38	390		7.4	6.2	320	1	0	120	720		.7	23
09 SEP	140	36	370		7.2	7.4	330)	0	120	660		.7	28
19	24	4.	1 28		1.4	6.4	110)	0	7.9	39		.5	36
	COL	M OF F	RESIDUE AT 105 DEG. C.	NITRO- GEN, NITRATE TOTAL	NITRO- GEN, NITRITE TOTAL	NO2	EN,	IITRO- GEN, IMONIA	ORG	TRO- GEI	TRO- N.AM- NIA + GANIC OTAL	PHOS- PHORUS, TOTAL	ORG	BON, ANIC TAL
	DATE ((MG/L)	(MG/L AS N)	(MG/L AS N)			MG/L			AG/L S N)	(MG/L AS P)		G/L C)
00 1	8	2890	46	•55	.04		.26	.21		.69	.90	.29		7.7
J	9	983	74	•37	.04		.41	.52		.58	1.1	.33		9.9
1	10	3480	20	.26	.03		.29	.51		.48	.99	.42		4.5
- 2	8 2	320	400	1.6	•03		1.6	.10		1.3	1.4	.22		15
	04	1970	38	•04	.01		.05	.05		1.5	1.5	.22		
1	16	1320	74	.10	.03		.13	.35		1.5	1.8	.43		8.6
- 2	22	1610	20	.16	.03	1	.19	.34		.86	1.2	.28		7.8
(JG 19	1520	42	.24	•02	2	.26	.71		1.3	2.0	.57		12
SE	19	200	46	.02	.01		.03	.10		.84	.94	.35		12

CHOCOLATE BAYOU BASIN

08164850 CHOCOLATE BAYOU NEAR PORT LAVACA, TX--Continued

		TE	DI SOL IME (UG		5- D] /ED SOL 3/L (UG	ITUM MIT S- DIS VED SOI	LVED SOL	VED SOL	ON+ IS- LVED D/L FE)	
	NOV	0	950	6	700	0	4	1	70	
	FEB		635	A	0	0	0	1	40	
4	MAY									
	SEP		040	8	200	0	0	4	0	
	19	1	225	18	0	1	0	1	80	
		DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM. DIS- SOLVED (UG/L AS SE)	(UG/L	ZINC+ DIS- SOLVED (UG/L AS ZN)	10	
			#3 FB/	AS MIN	A3 1107	A3 367	A3 A07	N3 2117		
		29 FEB	0	260	.0	1	. 0	10		
		22	0	60	.0	0	0	10		
		16	0	50	.0	0	0	50		
		19	0	40	.0	0	0	0		
DATE	TIME	PCB, TOTAL (UG/L)	PCB. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	NAPH- THA- LENES+ POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)		CHLOR- DANE. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD+ TOTAL (UG/L)	DDD+ TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV										
29 FEB	0950	•0	10	.00	.00	.0	.0	9	.00	15
22	1635	• 0		.00	•00		.0		.00	10
16 SEP	1040	•0	0	.00	.00	.0	.0	0	.00	36
19	1225	.0	3	.00	.00	.0	.0	0	.00	35
DATE	DDE+ TOTAL (UG/L)	DDE. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT. TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	TERTAL	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN. TOTAL (UG/L)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV			100						17-1	
29 FEB	•00	25	•00	7.8	.01	•00	•2	.00	.00	•0
22	•00		.00		.00	•00		.00	.00	
16 SEP	•00	290	•00	38	.02	•00	.0	.00	.00	•5
19	.00	94	.00	8.0	.00	.00	•2	.00	.00	.1

CHOCOLATE BAYOU BASIN

293

08164850 CHOCOLATE BAYOU NEAR PORT LAVACA, TX--Continued

DATE	ETHION. TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOTAL (UG/L)
NOV									.00
29 FER	.00	.00	• 0	•00	.1	.00	•0	•00	.00
22	.00	.00		•00		.00		•00	.00
16 SEP	.00	•00	.0	•00	.3	•00	•0	•00	.00
19	.00	.00	.0	•00	.0	.00	.0	.00	.00
	METHYL		PARA-	TOX-	TOXA- PHENE, TOTAL IN BOT-	TOTAL			
	THION,	MIREX,	THION.	APHENE.	TOM MA-	TRI-	2,4-0,	2+4+5-T	SILVEX.
DATE	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TERIAL (UG/KG)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
NOV									
29 FEB	.00		.00	0	20	.00	.00	.00	.00
22	.00		.00	0		.00	.00	.00	•00
16	.00		.00	0	200	.00	.00	•00	.00
SEP 19	.00	.00	.00	0	65	.00	.00	.00	.00

08165300 NORTH FORK GUADALUPE RIVER NEAR HUNT, TX

LOCATION.--Lat 30°03'36", long 99°23'40", Kerr County, Hydrologic Unit 12100201, on right bank 410 ft (125 m) downstream from Ranch Road 1340, 1.3 mi (2.1 km) downstream from Bear Creek, 3.7 mi (6.0 km) west of Hunt, and 4.1 mi (6.6 km) upsteam from Honey Creek.

DRAINAGE AREA .-- 168 mi2 (435 km2).

PERIOD OF RECORD.--August 1967 to current year.

REVISED RECORDS .-- WDR TX-74-1: 1971(P).

GAGE.--Water-stage recorder and crest-stage gages. Datum of gage is 1,800.10 ft (548.670 m) National Geodetic Vertical Datum of 1929.

REMARKS--Records good. There is a permit upstream from station issued by the Texas Water Commission to impound and use 20.33 acreft $(25,100 \text{ m}^3)$ of water on a game preserve. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--11 years, 39.0 ft³/s (1.104 m³/s), 3.15 in/yr (80 mm/yr), 28,260 acre-ft/yr (34.8 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 39,300 ft 3 /s (1,110 m 3 /s) Aug. 3, 1978, gage height, 26.80 ft (8.169 m), from highwater mark and from rating curve extended above 170 ft 3 /s (4.81 m 3 /s) on basis of slope-area measurements of 7,460 and 38,400 ft 3 /s (211 and 1,090 m 3 /s); minimum, 0.68 ft 3 /s (0.019 m 3 /s) May 30, 1969.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1900 occurred July 1, 1932, gage height, 37.3 ft (11.37 m), discharge 140,000 ft³/s (3,960 m³/s), by slope-area measurements, combined flow of North Fork Guadalupe River 5 mi (8 km) upstream and Bear Creek 2 mi (3 km) upstream from mouth, and adjusted for difference in drainage area.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 500 ft3/s (14.2 m3/s) and maximum (*):

Date	Time	Disch	arge	Gage I	height	Date	Time	Disch	arge	Gage h	eight
		(ft^3/s)	(m^3/s)	(ft)	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
Aug. 2	0815	a32,300	915	24.8	7.56	Aug. 3	0345	*39,300	1,110	26.80	8.169

a Based on information from local resident.

Minimum discharge, 2.0 ft3/s (0.057 m3/s) May 19.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978
MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	18	19	24	21	20	20	21	18	15	12	44	34
2	18	19	23	20	20	20	18	17	16	13	6370	34
3	18	19	21	20	20	20	17	18	18	12	5870	31
4	18	20	21	20	20	20	17	18	17	12	194	30
5	18	20	21	21	20	20	18	17	15	11	135	34
6	18	20	21	21	20	20	16	17	17	11	120	43
7	18	20	21	21	20	22	16	17	41	11	109	44
8	18	24	20	21	20	22	15	17	37	11	95	100
9	18	23	21	19	20	20	15	16	31	11	86	69
10	18	20	20	19	20	20	31	15	26	11	79	54
11	18	19	20	19	20	20	27	15	23	11	72	49
12	18	20	23	20	23	19	22	16	21	11	65	45
13	17	20	22	20	23	19	20	16	20	11	60	42
14	17	19	21	20	20	19	19	15	18	11	59	40
15	18	19	21	20	20	19	18	15	17	10	52	110
16	18	19	21	21	20	19	18	15	16	10	46	53
17	18	19	21	21	21	19	18	15	14	11	44	44
18	18	19	21	20	20	18	18	14	14	12	43	40
19	18	19	21	20	20	18	17	10	14	11	41	37
20	18	19	20	20	20	18	17	11	14	8.8	39	36
21	18	20	20	20	19	19	17	15	14	9.9	38	36
22	27	19	20	20	19	18	18	15	13	11	37	35
23	30	21	20	20	19	18	18	17	13	10	36	34
24	24	21	21	20	20	18	18	15	13	11	35	33
25	21	22	21	20	20	17	17	13	13	11	35	32
26	19	22	20	20	20	17	17	11	12	11	34	30
27	19	22	21	20	20	17	17	13	11	11	33	31
28	19	22	21	20	21	17	16	14	12	12	32	32
29	19	26	21	20		17	17	14	12	13	32	31
30	18	27	21	20		17	18	14	12	12	33	30
31	18		21	20		17		14		12	32	
TOTAL	590	618	651	624	565	584	551	467	529	345.7	14000	1293
MEAN	19.0	20.6	21.0	20.1	20.2	18.8	18.4	15.1	17.6	11.2	452	43.1
MAX	30	27	24	21	23	22	31	18	41	13	6370	110
MIN	17	19	20	19	19	17	15	10	11	8.8	32	30
CFSM	.11	.12	.13	.12	.12	.11	.11	.09	.11	.07	2.69	.26
IN.	.13	.14	.14	.14	.13	.13	.12	.10	.12	.08	3.10	.29
AC-FT	1170	1230	1290	1240	1120	1160	1090	926	1050	686	27770	2560

CAL YR 1977 TOTAL 18537.0 MEAN 50.8 MAX 8640 MIN 17 CFSM .30 IN 4.10 AC-FT 36770 WTR YR 1978 TOTAL 20817.7 MEAN 57.0 MAX 6370 MIN 8.8 CFSM .34 IN 4.61 AC-FT 41290

295

08165500 GUADALUPE RIVER AT HUNT, TX

LOCATION.--Lat 30°04'08", long 99°19'23", Kerr County, Hydrologic Unit 12100201, on right bank 56 ft (17 m) upstream and 137 ft (42 m) right of right end of bridge on State Highway 39, 0.6 mi (1.0 km) downstream from confluence of North and South Forks, 0.8 mi (1.3 km) east of Hunt, and at mile 430.9 (693.3 km).

DRAINAGE AREA .-- 288 mi² (746 km²).

PERIOD OF RECORD.--October 1941 to September 1949, discharge not computed above 600 ft³/s (17.0 m³/s), and April 1965 to current year. Occasional discharge measurements made 1950-64.

REVISED RECORDS .-- WSP 2123: Drainage area.

GAGE.--Water-stage recorder and crest-stage gages. Datum of gage is 1,722.7 ft (525.08 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Numerous diversions for irrigation above station, amounts unknown. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--13 years, 71.9 ft³/s (2.036 m³/s), 3.39 in/yr (86 mm/yr), 52,090 acre-ft/yr (64.2 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $62.900 \text{ ft}^3/\text{s}$ (1,780 m³/s) Aug. 2, 1978, gage height, 23.5 ft (7.16 m), from floodmark, from rating curve extended above $3,700 \text{ ft}^3/\text{s}$ (105 m²/s) on basis of channel geometry and flow-over-dam measurement of peak flow; minimum, $6.9 \text{ ft}^3/\text{s}$ (0.20 m³/s) June 17, 1948.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1900, 36.6 ft (11.16 m) July 2, 1932, from information by local resident, discharge 206,000 ft³/s (5,830 m³/s), determined by slope-area measurement 4.5 mi (7.2 km) downstream from gage.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,000 ft³/s (28.3 m³/s) and maximum (*):

Date	Time	Discharge	Gage	height	Date	Time	Disch	arge	Gage I	neight
		(ft^3/s) (m^3/s)	s) (ft)	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
Oct. 22	0845	1.050 2	9.7 5.36	1.634	Sept. 8	1130	1.090	30.9	5.49	1.673
Aug. 2	0700	*62,900 1,78	1 a23.5	7.16	Sept. 15	1245	2,610	73.9	8.87	2.704
Aug. 3	0500	52,800 1,50	0 a22.25	6.782	100					

a From floodmark.

Minimum discharge, 12 ft3/s (0.34 m3/s) May 20.

		DISCHAF	RGE, IN	CUBIC FEET		ND, WATER AN VALUES	YEAR OCT	OBER 1977	TO SEPTE	MBER 1978	3	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	38	53	68	50	44	44	37	38	29	22	621	92
2	39	50	61	48	44	44	44	38	33	23	16300	86
1 2 3 4	39	47	58	47	44	42	41	39	88	23	9460	74
	35	49	58	47	44	41	40	30	46	22	687	69
5	35	49	5.5	4.7	44	41	40	27	38	22	424	79
6	36	48	53	47	43	40	40	34	52	21	342	97
7	37	48	52	4.7	44	44	39	36	147	21	324	94
8	38	74	53	46	44	46	38	33	84	19	234	395
9	38	66	52	4.4	44	46	41	31	65	19	189	206
10	38	55	49	43	44	46	59	29	58	19	171	144
11	38	51	49	44	43	45	62	30	50	19	151	126
12	35	50	53	45	57	44	51	32	43	18	141	117
13	31	52	56	45	56	44	47	29	41	18	129	113
14	31	50	53	4.5	48	44	4.5	27	40	18	116	105
15	35	50	51	44	47	42	43	40	37	17	117	493
16	34	50	51	48	47	42	41	48	34	17	111	199
17	34	49	50	49	49	42	41	30	31	20	106	148
18	33	48	50	46	49	41	41	27	30	21	102	131
19	33	48	50	45	4.6	41	39	18	29	23	97	109
20	34	48	50	4.5	45	41	37	16	28	21	94	112
21	34	48	48	44	44	42	37	28	26	17	95	118
22	238	47	47	44	43	43	37	27	26	17	85	112
23	240	45	47	44	43	43	38	30	25	18	82	106
24	97	37	48	45	43	43	37	29	24	18	76	103
25	74	45	49	45	44	42	50	27	24	19	70	99
26	65	46	49	43	43	42	37	24	25	20	71	95
27	59	46	48	43	44	41	35	18	22	21	73	96
28	59	46	48	43	45	40	35	24	22	21	71	97
29	56	113	50	43		42	36	25	22	23	69	93
30	54	86	51	43		35	37	29	22	23	84	91
31	64	77.7	50	43		32		27		23	74	
TOTAL	1751	1594	1607	1402	1275	1305	1245	920	1241	623	30766	3999
MEAN	56.5	53.1	51.8	45.2	45.5	42.1	41.5	29.7	41.4	20.1	992	133
MAX	240	113	68	50	5.7	46	62	4.8	147	23	16300	493
MIN	31	37	47	43	43	32	35	16	22	17	69	69
CFSM	.20	.18	.18	.16	.16	.15	.14	.10	.14	.07	3.44	.46
IN.	.23	.21	.21	.18	.16	.17	.16	.12	.16	.08	3.97	.52
AC-FT	3470	3160	3190	2780	2530	2590	2470	1820	2460	1240	61020	7930

CAL YR 1977 TOTAL 39793 MEAN 109 MAX 11600 MIN 30 CFSM .38 IN 5.14 AC-FT 78930 MTR YR 1978 TOTAL 47728 MEAN 131 MAX 16300 MIN 16 CFSM .46 IN 6.16 AC-FT 94670

08166000 JOHNSON CREEK NEAR INGRAM, TX

LOCATION.--Lat 30°06'00", long 99°16'58", Kerr County, Hydrologic Unit 12100201, on right bank 1.6 mi (2.6 km) upstream from Henderson Branch, 3.4 mi (5.5 km) northwest of Ingram, 3.8 mi (6.1 km) upstream from mouth, and 9.2 mi (14.8 km) northwest of Kerryille.

DRAINAGE AREA .-- 114 mi2 (295 km2).

PERIOD OF RECORD. -- September 1941 to November 1959, October 1961 to current year.

REVISED RECORDS.--WSP 1058: 1942-45. WSP 2123: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,1721.30 ft (524.652 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Numerous small diversions above station for irrigation. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--35 years (water years 1942-59, 1962-78), 19.2 ft³/s (0.544 m³/s), 2.29 in/yr (58 mm/yr), 13,910 acre-ft/yr (17.2 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 95,900 ft 3 /s (2,720 m 3 /s) Oct. 4, 1959, gage height, 24.25 ft (7.391 m), from rating curve extended above 4,400 ft 3 /s (125 m 3 /s) on basis of slope-area measurements of 9,100 and 16,000 ft 3 /s (258 and 453 m 3 /s) and conveyance study; minimum daily, 0.4 ft 3 /s (0.011 m 3 /s) July 26, 27, 1956.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1852, 35 ft (10.7 m) July 2, 1932, from information by local resident; discharge, 138,000 ft³/s (3,910 m³/s), by slope-area measurement at point 0.5 mi (0.8 km) downstream from State fish hatchery and 6 or 7 mi (10 or 11 km) upstream from gage. Flood of June 14, 1935, reached a stage of 31 or 32 ft (9.4 or 9.8 m), from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 500 ft³/s (14.2 m³/s) and maximum (*):

Date	Time	Disch (ft³/s)	arge	Gage h	eight	Date	Time	Disch	arge	Gage (ft)	height
		(ft^3/s)	(m^3/s)	(ft)	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
Aug. 2	1000	13,500	382	11.08	3.377	Aug. 3	0200	*73,900	2,090	a21.4	6.52

Minimum discharge, 6.6 ft3/s (0.19 m3/s) Jan. 21, 22.

		DISCHA	RGE, IN	CUBIC FEET	PER SECON	ND, WATER AN VALUES	YEAR OCT	OBER 1977	TO SEPTE	MBER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	18 20 21 20 19	27 24 24 24 24	21 20 19 19	19 19 19 19	21 21 21 21 21	17 17 17 17 17	14 14 15 16	15 24 20 18 15	12 12 13 12 11	11 9.4 10 10 9.2	30 3710 17200 215 130	35 30 24 24 27
6 7 8 9	20 19 19 20 21	24 26 32 26 23	20 20 20 19 19	18 17 17 17 17	21 22 21 21 21	17 19 16 15	15 16 16 17 44	15 15 13 14 15	28 45 26 20 15	9.6 9.2 8.1 7.9 7.9	106 97 87 79 73	23 25 115 83 55
11 12 13 14 15	19 20 21 21 21	23 23 23 23 24	19 20 21 21 19	17 17 17 17 17	21 26 22 19	17 16 15 15	28 24 23 22 19	14 13 11 11	15 15 15 15 13	7.9 7.9 7.9 7.9 7.9	66 61 58 53 46	49 44 42 40 38
16 17 18 19 20	21 21 21 22 22	23 21 21 23 22	19 19 19 19	20 19 19 19	19 20 19 19	14 14 15 15	17 15 16 14 14	12 13 12 12 11	15 15 13 12 11	8.8 9.8 9.4 8.0 7.9	41 39 37 36 34	37 33 33 31 28
21 22 23 24 25	21 46 32 28 27	21 21 21 20 19	19 19 19 19	17 17 17 18 19	17 18 17 17	14 14 13 12 13	14 12 12 12 13	12 14 15 14 14	11 11 11 11	6.6 7.9 7.9 8.7 9.2	32 30 29 29 28	30 29 27 27 28
26 27 28 29 30 31	25 25 26 26 26 26	19 19 20 34 23	19 19 21 21 19	20 21 21 21 21 21 21	17 18 17	14 15 15 14 14	11 13 12 13 14	13 13 12 12 12 12	11 11 11 11 11	9.2 8.9 12 12 11	25 24 24 22 27 26	31 30 28 26 24
TOTAL MEAN MAX MIN CFSM IN. AC-FT	713 23.0 46 18 .20 .23 1410	697 23.2 34 19 .20 .23 1380	604 19.5 21 19 .17 .20 1200	574 18.5 21 17 .16 .19 1140	551 19.7 26 17 .17 .18 1090	470 15.2 19 12 .13 .15 932	500 16.7 44 11 .15 .16 992	427 13.8 24 11 .12 .14 847	443 14.8 45 11 .13 .14 879	280.1 9.04 12 6.6 .08 .09 556	22494 726 17200 22 6.37 7.34 44620	1096 36.5 115 23 .32 .36 2170

AL YR 1977 TOTAL 16237.0 MEAN 44.5 MAX 4050 MIN 14 CFSM .39 IN 5.30 AC-FT 32210 NTR YR 1978 TOTAL 28849.1 MEAN 79.0 MAX 17200 MIN 6.6 CFSM .69 IN 9.41 AC-FT 57220

297

08167000 GUADALUPE RIVER AT COMFORT, TX

LOCATION.--Lat 29°57'55", long 98°53'49", Kendall County, Hydrologic Unit 12100201, on left bank at downstream side of pier of bridge on U.S. Highway 87, 0.1 mi (0.2 km) downstream from Cypress Creek, and at mile 396.6 (638.1 km).

DRAINAGE AREA .-- 838 mi2 (2,170 km2).

PERIOD OF RECORD. -- May 1939 to current year.

REVISED RECORDS.--WSP 1632: 1958. WSP 1732: 1939(M). WSP 2123: Drainage area, 1944(M), 1952(M), 1957(M), 1960(M).

GAGE.--Water-stage recorder. Datum of gage is 1,372.05 ft (418.201 m) National Geodetic Vertical Datum of 1929. Prior to Nov. 27, 1939, nonrecording gage.

REMARKS.--Records good. Many small diversions above station for irrigation. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--39 years (water years 1940-78), 176 ft³/s (4.984 m³/s), 127,500 acre-ft/yr (157 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 240,000 ft 3 /s (6,800 m 3 /s) Aug. 2, 1978, gage height, 40.90 ft (12.466 m), from high-water mark in well, from rating curve extended above 74,000 ft 3 /s (2,100 m 3 /s) on basis of current-meter measurement of 124,000 ft 3 /s (3,510 m 3 /s) at gage height 32.47 ft (9.897 m) and slope-area measurement of 182,000 ft 3 /s (5,150 m 3 /s) at gage height 38.4 ft (11.70 m), made at former gaging station "near Comfort" 5 mi (8 km) upstream; no flow at times in 1952-57, 1963-64.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1848, that of Aug. 2, 1978. Flood of July 1869 reached a stage of 40.3 ft (12.28 m), from report by Corps of Engineers. Flood of July 1, 1932, reached a stage of 38.4 ft (11.70 m), from flood-mark, and from information by Texas Department of Highways and Public Transportation. Flood of July 16, 1960, reached about the same stage as that of July 1, 1932, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 2,600 ft3/s (73.6 m3/s) and maximum (*):

Date	Time	Disch			height	Date	Time	Disch			height
		(ft^3/s)	(m^3/s)	(ft)	(m)			(ft³/s)	(m ³ /s)	(ft)	(m)
June 6	2300	10,200	289	15.63	4.764	Aug. 3	0800	150,000	4,250	a35.20	10.729
June 7	0400	3,030	85.8	10.38	3.164	Sept. 9	0300	4,820	137	12.60	3.840
Aug. 2	0900	*240 000	6 800	a40.90	12.466	44.4		12.72			

a From high-water mark in well.

Minimum discharge, 35 ft3/s (0.99 m3/s) July 23.

		DISCHAR	GE, IN	CUBIC FEET		OND, WATER		CTOBER 1977	TO SEPTE	MBER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	6.5	132	160	112	101	101	82	71	61	50	873	624
2	66	132	140	109	103	99	82	96	68	47	74200	628
2	76	113	132	106	103	98	84	95	176	45	55100	380
4	7.4	110	128	106	101	94	85	80	129	45	3820	307
5	73	125	124	106	101	93	85	74	95	45	1800	513
	7.5	123	124	100	101	93	65	74	93	45	1000	313
6	70	113	121	107	101	93	85	6.7	685	44	1270	358
7	71	112	118	107	104	114	84	67	1500	44	1330	356
8	70	206	117	106	109	109	81	69	363	44	936	1290
9	71	179	117	102	106	102	80	66	198	42	772	2240
10	71	148	115	101	104	99	148	64	145	41	695	792
11	74	133	114	101	103	98	140	138	120	39	619	651
12	70	126	118	102	128	96	123	79	104	38	561	612
13	70	126	125	104	166	95	108	69	98	38	519	668
14	70	126	124	104	137	94	100	64	89	37	480	601
15	70	126	121	103	126	93	95	60	82	38	450	562
	70	120	121	103	120	93	33	00	02	30	430	302
16	72	123	116	107	124	89	90	60	77	37	416	904
17	74	120	114	119	125	86	88	64	72	38	398	553
18	74	117	113	112	129	86	86	64	70	37	371	492
19	76	117	112	113	122	85	81	58	68	36	357	447
20	76	117	111	107	116	85	79	56	64	37	341	403
21	7.7	117	110	106	111	85	76	54	60	36	326	435
22	338	113	109	105	107	87	75	52	58	36	311	453
23	454	112	112	103	106	79	76	59	57	36	292	412
24	244	113	112	103	106	81	76	73	57	37	274	401
25	174	111	112	106	105	81	73	71	55	40	257	380
26	149	107	100								0.50	
27	137	110	109	100	103	81	72	68	53	42	250	357
28	135	112	109		103	82	73	67	52	47	241	358
29	131	123		98	102	82	67	62	51	50	235	380
30	125		112	98		84	67	61	51	53	234	354
31		178		99		84	69	71	51	52	249	331
31	122		112	101		88		68		48	259	
TOTAL	3519	3797	3659	3251	3151	2823	2610	2167	4809	1299	148236	17242
MEAN	114	127	118	105	113	91.1	87.0	69.9	160	41.9	4782	575
MAX	454	206	160	119	166	114	148	138	1500	53	74200	2240
MIN	65	107	108	98	101	79	67	52	51	36	234	307
AC-FT	6980	7530	7260	6450	6250	5600	5180	4300	9540	2580	294000	34200
CAL VD	1077 TOTAL	117211	мсли	201 444	00500	MIN 65	AC 57	000700				

CAL YR 1977 TOTAL 117311 MEAN 321 MAX 23500 MIN 65 AC-FT 232700 WTR YR 1978 TOTAL 196563 MEAN 539 MAX 74200 MIN 36 AC-FT 389900

08167500 GUADALUPE RIVER NEAR SPRING BRANCH, TX

LOCATION.--Lat 29°51'38", long 98°22'58", Comal County, Hydrologic Unit 12100201, on right bank at downstream side of bridge on county road, 226 ft (69 m), downstream from bridge on Ranch Road 311, 1.9 mi (3.1 km) southeast of Spring Branch Post Office, 7.5 mi (12.1 km) downstream from Curry Creek, and at mile 334.4 (538.0 km).

DRAINAGE AREA .-- 1,315 mi2 (3,406 km2).

PERIOD OF RECORD .-- June 1922 to current year.

REVISED REOCRDS.--WSP 1562: 1923-24, 1926, 1927-28(M), 1929, 1930(M). WSP 2123: Drainage area.

GAGE.--Water-stage recorder and crest-stage gages. Datum of gage is 948.10 ft (288.981 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Several small diversions above station for irrigation. Several observations of water temperature were made during the year. Guadalupe-Blanco River Authority gage-height telemeter at station.

AVERAGE DISCHARGE. -- 56 years, 299 ft3/s (8.468 m3/s), 216,600 acre-ft/yr (267 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, $160,000 \text{ ft}^3/\text{s}$ (4,530 m³/s) Aug. 3, 1978, gage height, 45.25 ft (13.792 m), from floodmark, from rating curve extended above $55,600 \text{ ft}^3/\text{s}$ (1,570 m³/s) on basis of slope-area measurement of peak flow; no flow at times in 1951-52, 1954-56, and 1963-64.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1859, about 53 ft (16.2 m) in 1869; flood in July 1900 reached a stage of about 49 ft (14.9 m), from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 4,000 ft3/s (113 m3/s) and maximum (*):

Date	Time	Disch	arge	Gage h	neight	Date	Time	Disch	arge	Gage h	eight
		(ft^3/s)	(m^3/s)	(ft)	(m)			(ft^3/s)	(m³/s)	(ft)	(m)
Oct. 22	1800	10,300	292	14.72	4.487	Aug. 4	0200	117,000	3,310	a40.6	12.37
June 7	1700	4,210	119	9.01	2.746	Sept. 8	1300	6,680	189	10.77	3.283
Aug. 3	0300	*160,000	4,530	a45.25	13.792	Sept. 9	0100	6,590	187	10.68	3.255

a From floodmark.

Minimum discharge, 23 ft³/s (0.65 m³/s) July 22, 23.

		DISCHA	RGE, IN C	UBIC FEET		ND, WATER AN VALUES	YEAR OCT	OBER 1977	TO SEPTEM	MBER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	100	481	209	148	130	132	106	84	68	54	62	423
2	104	363	223	145	130	132	107	89	90	53	6730	1120
3	101	240	194	140	130	127	102	107	167	50	76500	804
4	100	190	183	139	130	123	101	118	165	49	46300	519
5	105	173	176	139	130	121	101	112	157	46	4290	431
6	105	178	167	139	130	121	101	99	130	44	2550	629
7	103	173	161	140	133	123	102	95	1720	43	2280	490
8	102	214	161	140	135	124	103	87	895	43	2020	1670
9	103	326	159	135	136	140	103	84	375	41	1500	3650
10	101	285	154	134	137	130	128	84	249	36	1240	2120
11	101	234	154	132	137	126	152	77	192	35	1020	1220
12	96	209	151	132	145	121	171	130	161	34	881	1050
13	97	196	154	133	151	121	152	122	149	32	806	955
14	96	192	161	135	213	118	139	91	134	29	735	1010
15	98	190	161	135	177	122	128	82	125	28	664	1660
16	97	189	160	139	164	125	122	77	114	28	608	1220
17	96	182	156	142	160	120	116	73	105	27	569	1140
18	99	178	151	147	157	118	116	69	97	26	545	859
19	101	173	149	146	159	119	107	72	92	24	508	757
20	101	172	147	141	154	121	101	74	89	24	483	686
21	101	183	144	141	144	118	99	70	84	24	456	628
22	1860	167	144	137	139	118	99	69	79	23	438	667
23	608	164	145	137	135	118	99	66	74	24	421	658
24	534	160	147	137	135	118	97	61	69	24	396	612
25	359	159	149	137	135	118	95	62	67	26	375	590
26 27 28 29 30 31	269 225 205 193 189 180	158 154 152 154 156	146 142 141 143 146 147	133 132 132 131 130 130	132 132 132	108 110 109 108 107 105	87 84 86 87 84	63 64 64 60 58	63 61 57 54 54	25 24 38 43 39 36	356 344 332 322 326 332	555 536 534 539 510
TOTAL	6729	6145	4925	4258	4022	3706	3275	2522	5936	1072	154389	28242
MEAN	217	205	159	137	144	120	109	81.4	198	34.6	4980	941
MAX	1860	481	223	148	213	140	171	130	1720	54	76500	3650
MIN	96	152	141	130	130	103	84	58	54	23	62	423
AC-FT	13350	12190	9770	8450	7980	7350	6500	5000	11770	2130	306200	56020

CAL YR 1977 TOTAL 198049 MEAN 543 MAX 29900 MIN 96 AC-FT 392800 WTR YR 1978 TOTAL 225221 MEAN 617 MAX 76500 MIN 23 AC-FT 446700

08167600 REBECCA CREEK NEAR SPRING BRANCH, TX

LOCATION.--Lat 29°55'06", long 98°22'10", Comal County, Hydrologic Unit 12100201, on right bank 72 ft (22 m) upstream from private road crossing, 2.9 mi (4.7 km) upstream from mouth, 3.7 mi (6.0 km) northeast of Spring Branch Post Office, and 6.3 mi (10.1 km) south of Twin Sisters.

DRAINAGE AREA .-- 10.9 mi2 (28.2 km2).

PERIOD OF RECORD .-- January 1960 to current year.

REVISED RECORD .-- WSP 1923: Drainage area.

GAGE .-- Water-stage recorder and concrete control. Datum of gage is 985.55 ft (300.396 m) Corps of Engineers datum.

REMARKS.--Records good. Six dams forming recreational lakes at housing developments upstream control runoff from 3.13 mi² (8.11 km²) drainage area. Amount of impoundment unknown. Recording rain gage located at station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--18 years, 5.31 ft3/s (0.150 m3/s), 3,850 acre-ft/yr (4.75 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 9,300 ft 3 /s (263 m 3 /s) Oct. 18, 1965, gage height, 7.97 ft (2.429 m), from rating curve extended above 420 ft 3 /s (11.9 3 /s) on basis of critical-depth measurement of 4,340 ft 3 /s (123 m 3 /s); no flow in 1963-65, 1967, 1971, and 1974.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1885, 25.5 ft (7.77 m) in September 1952. Flood in 1947 or 1948 was about 4.5 ft (1.4 m) lower than flood in 1952, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 14 ft 3 /s (0.40 m 3 /s) Nov. 21, gage height, 2.28 ft (0.695 m), no peak above base of 100 ft 3 /s (2.83 m 3 /s); minimum daily, 0.28 ft 3 /s (0.008 m 3 /s) June 26 to Aug. 1.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1977	TO	SEPTEMBER	1978
					MCAN	VALUEC						

					m	AN VALUE	3					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	1.2 1.3 1.2	1.5 1.8 2.3	2.5 2.7 2.9	1.2 1.2 1.3	.74 .74	.95 .93	.93 .74	.56 1.0 1.1	.84 .69	.28 .28 .28	.54 1.4 .95	.40 .40
4 5	1.2	2.9	2.9	1.2	.74	.85 .95	.74	.95 .76	.56 .56	.28	.93	.40
6 7	1.2	3.4	2.6	1.2	.74	.99	.74	.56	.56	.28	.40	.40
8	1.2	3.0	2.1	1.0	.74	1.2	.95	.56	.56	.28	.40	1.5
10	1.2	2.1	2.1	.95	.74	1.2	2.0	.56	.56	.28	.40	1.2
11 12	.96	2.1	2.1	.95	.74	.95	1.2	.56	.56 .56	.28	.40	1.2
13 14	.95 1.3	2.3	2.0	.95	.91	.95 1.0	1.2	.56	.56	.28	.59	1.2
15	1.3	2.1	2.1	.95	.74	.95	1.2	.40	.55	.28	.54	1.2
16 17	1.5	2.3	2.1	.95	.74	.95	1.1	.40	.40	.28	.47	1.2
18 19	1.5	2.1	2.1	.74	.74	1.2	.95	.40	.40	.28	.40	.95
20	1.2	1.8	1.7	.74	.74	1.2	.74	.40	.40	.28	.40	.95
21	1.0	4.8	1.7	.74	.74	1.2	.74	.47	.40	.28	.40	.90
23	2.5	2.9	1.5	.74 .77	.74	1.2	.74	.56	.40	.28	.40	.94
25	2.1	2.2	1.3	.80	.95	.95	.74	.56	.40	.28	.40	.95
26 27	2.1 1.9	2.1	1.2	.74 .74	.95	.95	.69	.56 .56	.40	.28	.40	.95
28 29	1.5	2.5	1.2	.74 .74	.95	.95	.74 .74	.56 .56	.28	.28	.40	.74
30 31	1.5	2.9	1.5	.74 .74	===	.95 .95	.64	.56 .56	.28	.28	.40	.95
TOTAL MEAN	44.88	75.5 2.52	60.5	28.29	22.27	31.92	27.05	17.85	14.68	8.68	15.67	27.05
MAX	2.5	4.8	2.9	1.3	.80	1.03	.90 2.0	.58 1.1	.49	.28	1.4	1.6
MIN AC-FT	.67 89	1.5	1.2	.74 56	.74 44	.75 63	.56 54	.40 35	.28 29	-28 17	.40 31	.40 54
CAL VD	1077 TOTA	0410				0.00	132 7 231					

CAL YR 1977 TOTAL 2412.74 MEAN 6.61 MAX 205 MIN .67 AC-FT 4790 WTR YR 1978 TOTAL 374.34 MEAN 1.03 MAX 4.8 MIN .28 AC-FT 743

08167700 CANYON LAKE NEAR NEW BRAUNFELS, TX

LOCATION.--Lat 29°52'07", long 98°11'55", Comal County, Hydrologic Unit 12100201, in intake structure of Canyon Dam on Guadalupe River, 12 mi (19 km) northwest of New Braunfels, and at mile 303.0 (487.5 km).

DRAINAGE AREA .-- 1,432 mi2 (3,709 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1962 to current year. Prior to October 1970, published as Canyon Reservoir.

REVISED RECORDS.--WSP 2123: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Sept. 24, 1964, nonrecording gage at present site and datum. Corps of Engineers gage-height telemeter at station.

REMARKS.--The lake is formed by a rolled earthfill dam 6,830 ft (2,082 m) long, consisting of the main dam 4,410 ft (1,344 m) long, an earthen dike 210 ft (64 m) long, a 1,260-foot-long (384 m) uncontrolled broad-crested type spillway, and a 950 ft (290 m) concrete and earthen nonoverflow section. Deliberate impoundment began June 16, 1964, and main part of dam was completed in August 1964. The flood-control outlet works consist of a 10.0-foot-diameter (3.0 m) conduit controlled by two 5.7 by 10.0 ft (1.7 by 3.0 m) hydraulically operated slide gates. The lake was built for water conservation and flood control. Capacity table beginning Oct. 1, 1974, is based on a sedimentation survey of August 1972. Small diversions above the lake for irrigation. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	(feet)	(acre-feet)
Top of dam	974.0	
Crest of spillway	943.0	736,700
Top of conservation pool	909.0	382,000
Lowest gated outlet (invert)	775.0	240

COOPERATION.---Records furnished by the Corps of Engineers and reviewed by the Geological Survey.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 588,400 acre-ft (725 hm³) Aug. 4, 1978, elevation, 930.61 ft (283.650 m); minimum observed since conservation pool first reached in April 1968, 340,700 acre-ft (420 hm³) Oct. 6, 1975, elevation, 903.81 ft (275.481 m).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 588,400 acre-ft (725 hm 3) Aug. 4, elevation, 930.61 ft (283.650 m); minimum, 344,500 acre-ft (425 hm 3) Oct. 18-21, elevation, 904.30 ft (275.631 m).

Capacity table (elevation, in feet, and total contents, in acre-feet)

904.0	342,200	914.0	424,600	924.0	518,700
906.0	357,800	916.0	442,400	926.0	539,100
908.0	373,800	918.0	460,800	928.0	560,100
910.0	390,300	920.0	479,600	930.0	581,700
912.0	407.300	922.0	498 800	932.0	603,800

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	347000 347200	351000 350800	352800 353000	354800 354700	356200 356200	360400 360600	362000	363400 363800	362200 363000	367300 367000	362200 369800	409200 408800
3	346800	350200	353300	354700	356300	360600	362000 362000	363700	363500	366700	500800	408400
4	346600	349900	353500	354800	356400	360400	362000	363700	363500	366500	588400	407500
5	346400	349400	353500	355000	356400	360500	362100	363600	363700	366100	583400	406400
6	346300	348900	353300	355100	356500	360800	362100	363800	365000	365800	577600	405400
7	346300	348700	353500	3553,00	356900	361000	362200	363900	367900	365700	570500	405400
8	346200	349700	353700	355100	357000	361000	362200	363800	369600	365500	563600	407700
9	346000	349500	353500	355000	357000	360900	362300	363800	370000	365000	555600	412300
10	346100	349500	353400	355000	357100	361100	363600	363500	370300	364400	547300	414400
11	345700	349500	353400	355300	357400	361100	363400	363500	370400	364300	538300	415000
12	345300 345100	349500	353500	355200	358000	361200	363700	363500	370500	364000	530100	415200
14	345100	349500	353800	355300	358200	361400	363800	363400	370500	363600	520700	416900
15	344800	349500 349700	353800 353900	355400 355500	358200	361500	363800	363300	370500	363400	512400	418800
	344000	349700	333900	355500	358600	361400	363900	363200	370400	363300	503500	420600
16	344600	349900	354000	355700	358700	361300	364000	363000	370300	363200	494500	421400
17	344600	350100	354200	355500	359300	361400	364200	363000	370200	362900	485300	422000
18	344500	350200	354200	355700	359200	361400	364100	362800	370000	362100	475500	418900
19	344500	350400	354200	355700	359400	361400	363900	362600	369900	361700	467500	410700
20	344500	350600	354200	355600	359600	361500	363800	363000	369600	361400	458400	402100
21	344500	351800	354000	355600	359500	361500	363800	362900	369500	361200	449500	398500
22	349700	351900	353900	355700	359600	361600	363800	362800	369300	360700	441100	397700
23	351000	352000	354000	355700	359800	362100	363800	362600	369100	360300	431100	397400
24	351800	352300	354200	356100	359900	362000	363800	362600	368900	360100	422700	396500
25 0	352300	352300	354100	355900	360000	361900	363700	362600	368700	359900	416600	395800
26	352000	352400	354000	355900	360100	361900	363500	362400	368300	359600	415400	394900
27	351700	352400	354100	355900	360300	361900	363400	362300	368000	359400	414200	394100
28	351400	352400	354300	355900	360400	361900	363400	362200	367800	359100	413000	393200
29	351000	352700	354500	355900		361900	363400	362400	367500	358800	411500	392200
30	350600	352700	354600	356100		361900	363400	362200	367300	358700	410100	391300
31	350200		354700	356100		361900		362100		360500	409100	
MAX	352300	352700	354700	356100	360400	362100	364200	363900	370500	367300	588400	422000
MIN	344500	348700	352800	354700	356200	360400	362000	362100	362200	358700	362200	391300
(+)	905.03	905.35	905.61	905.79	906.33	906.52	906.70	906.54	907.19	906.34	912.21	910.12
(+)	+3100	+2500	+2000	+1400	+4300	+1500	+1500	-1300	+5200	-6800	+48600	-17800

CAL YR 1977 MAX 459000 MIN 344500 # -27600 WTR YR 1978 MAX 588400 MIN 344500 # +44200

t Elevation, in feet, at end of month.
t Change in contents, in acre-feet.

301

GUADALUPE RIVER BASIN

08167700 CANYON LAKE NEAR NEW BRAUNFELS, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1969 to current year.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS+ NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM. DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
MAR							100		
10 JUN	1250	430	8.0	10.5	210	44	52	19	10
06	1153	440	7.8	14.0	210	31	52	19	10
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA+ DIS- SOLVED (MG/L AS SIO2)	SOLIDS. SUM OF CONSTI- TUENTS. DIS- SOLVED (MG/L)
MAR 10	.3	1.7	200	0	20	16	.2	12	230
06	.3	1.8	216	0	20	19	.2	8.7	237

08167800 GUADALUPE RIVER AT SATTLER, TX

LOCATION.--Lat 29°51'32", long 98°10'47", Comal County, Hydrologic Unit 12100202, on right bank 200 ft (61 m) upstream from Horseshoe Falls, 0.8 mi (1.3 km) north of Sattler, 1.8 mi (2.9 km) downstream from Canyon Dam, 2.3 mi (3.7 km) upstream from Heiser Hollow, 11.2 mi (18.0 km) north of New Braunfels, and at mile 301.2 (484.6 km).

DRAINAGE AREA .-- 1,436 mi² (3,719 km²), 1,432 mi² (3,709 km²) is above Canyon Dam.

PERIOD OF RECORD .-- March 1960 to current year.

REVISED RECORDS .-- WSP 2123: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 742.24 ft (226.235 m) National Geodetic Vertical Datum of 1929 (Corps of Engineers bench mark).

REMARKS.--Records good. Flow completely regulated since July 21, 1962, by Canyon Lake (station 08167700) 1.8 mi (2.9 km) upstream. Small diversions above station for irrigation. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--16 years (water years 1962-78) since regulation began at Canyon Lake, $376 \text{ ft}^3/\text{s}$ (10.65 m³/s), 272,400 acre-ft/yr (336 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 20,800 ft³/s (589 m³/s) Oct. 29, 1960, gage height, 12.20 ft (3.719 m). Maximum discharge since closure of Canyon Dam on July 21, 1962, 5,850 ft³/s (166 m³/s) Aug. 5, 1978, gage height, 8.31 ft (2.533 m); no flow July 31 to Aug. 6, 1962 (result of closure of Canyon Dam), and part of Jan. 29, 30, Feb. 1, 1965 (result of closure while constructing control).

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in July 1869 (stage unknown) has not been exceeded since that date; flood in July 1900 (stage unknown) exceeded 39 ft (11.9 m); maximum stage since at least 1904, 39 ft (11.9 m) in July 1932 and June 1935, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 5,850 ft 3 /s (166 m 3 /s) Aug. 5, gage height, 8.31 ft (2.533 m); minimum, 13 ft 3 /s (0.37 m 3 /s) Sept. 14.

		DISCHA	RGE, IN C	UBIC FEET		ND, WATER AN VALUES		OBER 1977	TO SEPTE	MBER 1978	3	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	95	390	97	97	95	99	99	99	93	93	123	951
2	95	390	97	97	95	99	99	100	98	93	99	946
3	95	390	97	97	95	99	99	100	95	93	98	946
4	95	390	97	97	95	99	99	97	93	93	1820	946
5	95	390	97	97	95	99	99	97	84	93	5680	946
6	95	390	97	97	95	99	99	97	96	93	5620	946
7	95	289	97	97	98	99	99	97	100	93	5570	948
8	95	172	97	97	97	99	99	97	96	93	5550	957
9	95	169	97	97	97	99	99	97	93	93	5520	957
10	95	169	97	97	97	99	103	86	93	93	5390	957
11	95	169	97	97	97	99	97	95	93	93	5380	957
12	95	169	97	97	99	99	98	95	93	93	5410	957
13	95	169	97	97	99	99	97	95	93	93	5420	460
14	95	134	97	97	99	99	97	95	93	93	5440	121
15	95	97	97	97	99	99	97	95	93	93	5420	471
16	95	97	97	97	99	99	97	95	93	93	5390	763
17	95	97	97	97	99	99	97	95	93	93	5360	767
18	95	97	97	97	99	98	97	92	93	93	5330	2440
19	95	97	97	97	99	99	97	92	93	93	5320	5210
20	95	97	97	97	99	99	97	93	93	93	5290	5180
21	86	99	97	97	99	99	97	95	93	93	5260	2900
22	61	97	97	97	99	99	97	93	93	93	5260	936
23	60	97	97	97	99	99	97	93	93	95	5240	936
24	60	97	97	97	99	99	98	93	93	95	5210	936
25	176	97	97	97	99	99	99	93	93	95	3610	936
26	380	97	97	97	99	99	99	93	93	95	939	936
27	380	97	97	97	99	99	99	93	93	95	936	936
28	380	97	97	97	99	99	99	93	93	95	939	936
29	380	97	97	97		99	99	95	93	95	946	936
30	380	97	97	96		99	99	93	93	95	946	936
31	380		97	95		99		93		95	946	
TOTAL	4623	5334	3007	3004	2739	3068	2948	2936	2801	2901	119462	38150
MEAN	149	178	97.0	96.9	97.8	99.0	98.3	94.7	93.4	93.6	3854	1272
MAX	380	390	97	97	99	99	103	100	100	95	5680	5210
MIN	60	97	97	95	95	98	97	86	84	93	98	121
AC-FT	9170	10580	5960	5960	5430	6090	5850	5820	5560	5750	237000	75670

TOTAL CAL YR 1977 225629 MEAN 618 MAX 5270 MIN 60 AC-FT 447500 WTR YR 1978 TOTAL 190973 MEAN 523 MAX 5680 MIN 60 AC-FT 378800

LOCATION.--Lat 29°42'53", long 98°06'35", Comal County, Hydrologic Unit 12100202, on right bank at New Braunfels, 1.1 mi (1.8 km) upstream from Comal River, 21.9 mi (35.2 km) downstream from Canyon Lake, and at mile 281.1 (452.3 km).

08168500 GUADALUPE RIVER ABOVE COMAL RIVER AT NEW BRAUNFELS, TX

DRAINAGE AREA .-- 1,518 mi2 (3,932 km2).

CAL YR 1977 TOTAL 283008

WTR YR 1978 TOTAL 212338

MEAN 775

MEAN 582

5710

5600

MIN 112

MAX

PERIOD OF RECORD .-- December 1927 to current year.

REVISED RECORDS.--WSP 898: 1935. WSP 1562: 1932. WSP 2123: Drainage area.

GAGE .-- Water-stage recorder and concrete control. Datum of gage is 586.65 ft (178.811 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Small diversions for irrigation below station 08167800 and above this station. Since July 21, 1962, flow is largely regulated by Canyon Lake (station 08167700) 21.9 mi (35.2 km) upstream. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--34 years (water years 1929-62) prior to regulation by Canyon Lake, 372 ft³/s (10.54 m³/s), 269,500 acre-ft/yr (332 hm³/yr); 16 years (water year 1963-78) regulated, 467 ft³/s (13.23 m³/s), 338,300 acre-ft/yr (417 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 101,000 ft³/s (2,860 m³/s) June 15, 1935, gage height, 32.95 ft (10.043 m); no flow July 8, 9, July 17 to Aug. 20, 1956.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1845, 38 ft (11.6 m) July 8, 1869, and in December 1913, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 5,620 ft 3 /s (159 m 3 /s) Aug. 5, 6, gage height, 6.45 ft (1.966 m); minimum, 97 ft 3 /s (2.75 m 3 /s) June 6.

		DISCHA	RGE, IN	CUBIC FEET	PER SECO ME	ND, WATER AN VALUES	YEAR OCT	OBER 1977	TO SEPTE	MBER 197	8	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	170 177 168 166 166	468 475 475 475 471	170 167 166 166 166	160 157 157 157 157	141 141 140 139 141	141 142 142 141 141	134 137 134 134	130 132 138 128 127	128 122 146 127 124	118 118 120 118 118	301 268 224 672 5510	1050 1030 1020 1020 1020
6 7 8 9 10	166 163 162 163 161	466 449 307 272 269	165 166 166 163 161	157 155 146 145 145	141 154 144 141 140	151 149 141 141 141	134 134 134 134 181	127 127 127 127 127	123 230 180 154 141	116 118 118 118 118	5600 5570 5540 5520 5500	1020 1060 1320 1210 1170
11 12 13 14 15	159 157 157 157 157	268 265 263 261 198	161 161 166 162 161	150 147 145 145 145	142 162 153 147 146	141 141 141 141 138	159 156 149 145 143	116 124 124 124 122	136 134 131 127 127	118 114 114 114 113	5480 5430 5430 5390 5370	1160 1160 1470 303 508
16 17 18 19 20	157 158 157 156 153	188 186 184 184	161 161 161 161 159	147 142 142 142 141	145 150 147 147 145	137 140 137 137 137	141 141 139 136 134	121 121 121 120 131	126 124 124 122 122	113 113 112 113 113	5340 5310 5280 5240 5220	1000 989 1730 5400 5450
21 22 23 24 25	155 151 130 126 123	200 185 184 184 180	158 157 158 161 160	141 141 141 141 140	148 147 148 149 149	137 137 139 151 137	134 135 135 134 133	129 123 121 121 123	122 120 120 121 121	113 113 113 113 112	5180 5260 5300 5250 4290	3980 1190 1180 1160 1160
26 27 28 29 30 31	387 419 426 426 426 427	174 174 172 173 170	158 159 161 161 161 161	140 141 140 141 141 141	145 143 143	135 134 134 135 135	130 130 130 130 130	123 121 120 118 125 121	120 118 118 118 118	113 112 113 114 113 119	1200 1040 1040 1030 1030 1040	1150 1150 1140 1140 1130
TOTAL MEAN MAX MIN AC-FT	6426 207 427 123 12750	8104 270 475 170 16070	5025 162 170 157 9970	4530 146 160 140 8990	4078 146 162 139 8090	4328 140 151 134 8580	4154 138 181 130 8240	3859 124 138 116 7650	3944 131 230 118 7820	3565 115 120 112 7070	119855 3866 5600 224 237700	44470 1482 5450 303 88210

561300

421200

08169000 COMAL RIVER AT NEW BRAUNFELS, TX

LOCATION.--Lat 29°42'21", long 98°07'20", Comal County, Hydrologic Unit 12100202, on right bank 200 ft (61 m) upstream from San Antonio Street viaduct in New Braunfels and 1.1 mi (1.8 km) upstream from mouth.

DRAINAGE AREA.--130 mi² (337 km²). Normal flow of river comes from springs; drainage area not applicable.

PERIOD OF RECORD.--1882 to current year (1882 to November 1927, discharge measurements only).

REVISED RECORDS .-- WSP 2123: Drainage area.

304

GAGE.--Water-stage recorder. Concrete control since Oct. 1, 1955. Datum of gage is 582.80 ft (177.637 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. The flow from Comal Springs emerges from the Edwards and associated limestones in the Balcones Fault Zone. Except during periods of rainfall, flow of river is primarily from Comal Springs about 1.0 mi (1.6 km) upstream. Diurnal fluctuations from steam powerplant 0.5 mi (0.8 km) upstream. Flow is affected at times by discharge from flood-detention pools of four floodwater-retarding structures with combined detention capacity of 9,875 acre-ft (12.2 hm²). These structures control runoff from 44.4 mi² (115 km²). Several observations of water temperature were made during the year.

AVERAGE DISCHARGE .--46 years (water years 1933-78), 297 ft3/s (8.411 m3/s), 215,200 acre-ft/yr (265 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 60,800 ft³/s (1,720 m³/s) May 11, 1972, gage height, 36.55 ft (11.140 m), from floodmark, from rating curve extended above 13,000 ft³/s (368 m³/s) on basis of contracted-opening measurements on Blieders and Dry Comal Creeks and unit rainfall-runoff studies; no flow from Comal Springs from June 13 to Nov. 3, 1956.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood information begins with flood of July 8, 1869, which reached a stage of 36.91 ft (11.250 m), from painted and dated marks in old Remmert Brewery 0.5 mi (0.8 km) downstream; the flood of Oct. 17, 1870, reached a stage of 37.65 ft (11.476 m) at same site (probably some backwater from Guadalupe River).

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 1,100 ft3/s (31.2 m3/s) and maximum (*):

Date	Time	Disch (ft³/s)	arge (m³/s)	Gage (ft)	neight (m)	Date	Time	Disch (ft³/s)	arge (m³/s)	Gage (ft)	height (m)
June 7	0200	2,770	78.4	8.39	2.557	Sept. 13	1430	*4,440	126	10.75	3.277

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

Minimum daily discharge, 226 ft3/s (6.40 m3/s) July 19, 21, 28.

				,0010 1 661	ME	AN VALUES	I LAK OU	ODER 1377	10 32112	HOLK 1970		157
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	345	446	365	360	350	340	322	312	304	270	304	258
2	355	375	365	360	350	340	322	312	290	274	340	266
3	340	350	365	375	350	340	322	317	286	270	286	266
4	340	345	365	365								
					350	340	317	312	286	262	266	262
5	340	350	365	365	345	340	317	312	282	258	309	254
6	340	350	365	365	340	350	317	312	350	254	335	254
7	340	355	365	365	360	345	317	312	910	250	335	266
8	340	439	365	360	350	345	317	312	317	250	330	274
9	335	380	365	365	350	340	322	304	304	254	330	270
10	340	365	365	360	350	345	350	304	304		335	
10	340	303	. 303	300	350	345	350	304	304	250	335	278
11	340	365	365	360	350	335	322	304	304	238	330	286
12	330	365	365	355	370	335	326	304	304	242	330	282
13	340	365	365	355	360	330	322	299	294	238	330	1210
14	330	370	365	355	350	330	322	299	294	230	330	439
15	326	370	365	355	350	330	317	299	294	238	326	335
13	320	370	303	333	350	330	317	299	294	238	320	335
16	330	370	365	355	345	330	322	290	290	242	330	335
17	335	370	365	350	355	330	317	290	294	234	326	330
18	330	360	365	350	345	326	317	290	294	230	322	330
19	330	360	365	350	350	326	317	286	294	226	322	330
20	326	360	365	350	355	330	317	294	286	234	322	330
	020	300	303	330	333	330	317	234	200	234	322	330
21	326	365	365	350	350	326	312	290	290	226	324	326
22	345	365	370	350	345	326	312	286	294	234	322	326
23	330	360	365	345	345	330	317	286	290	230	317	330
24	335	365	365	345	345	330	317	286	286	234	317	335
25	335	360	365	350	345	322	317	290	286	234	288	330
26	330	360	365	340	345	326	317	282	282	234	254	330
27		360	365	343	345							
						330	317	290	274	234	254	330
28	335	375	365	350	340	326	317	286	274	226	250	330
29	330	375	365	350		326	312	282	274	242	250	330
30	330	365	365	350		322	312	278	266	242	258	330
31	330		365	350		326		278		246	270	
TOTAL	10388	11060	11320	10998	9785	10317	9572	9198	9397	7526	9542	10152
												338
												1210
												254
AC-FT	20600	21940	22450	21810	19410	20460	18990	18240	18640	14930	18930	20140
TOTAL MEAN MAX MIN AC-FT	10388 335 355 326 20600	11060 369 446 345 21940	11320 365 370 365 22450	10998 355 375 340 21810	9785 349 370 340 19410	10317 333 350 322 20460	9572 319 350 312 18990	9198 297 317 278 18240	9397 313 910 266 18640	7526 243 274 226 14930	9542 308 340 250 18930	

CAL YR 1977 TOTAL 146054 MEAN 400 MAX 1520 MIN 326 AC-FT 289700 WTR YR 1978 TOTAL 119255 MEAN 327 MAX 1210 MIN 226 AC-FT 236500

GUADALUPE RIVER BASIN 305 08169580 GUADALUPE RIVER BELOW NEW BRAUNFELS, TX

LOCATION.--Lat 29°40'00", long 98°04'14", Comal County, Hydrologic Unit 12100202, in Lake Dunlap, 8 mi (13 km) southeast of New Braunfels, and 15 mi (24 km) downstream from Interstate Highway 35 bridge.

PERIOD OF RECORD.--Periodic chemical and biochemical analyses: January 1968 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		SPE-	ALIIT DAI	A, WAIE	TEAP		XYGEN.		GEN	.K 1976			
		CIFIC CON-			4		DIS- SOLVED	DEN	AAND,	HARD-	NE	RD- SS, CAR-	CALCIUM
		DUCT-	D11	TEMPER		GEN.	(PER-		HEM-	NESS	BON		DIS- SOLVED
	TIME	ANCE	PH	TEMPER-		DIS-	CENT SATUR-		DAY	(MG/L		G/L	(MG/L
DATE	TIME	(MICRO- MHOS)	(UNITS)	(DEG C)		OLVED	ATION)		3/L)	CACO3)		CO3)	AS CA)
DATE		MHOST	1041137	TOEG C		10/1/	411047	,,,,,	3, 2,	CACOSI	-		no 0n/
OCT													
17	1000	552	7.9	21.0)	9.0	103		.8	270		38	79
DEC										274		24	9.0
05 FEB	1020	559	7.7	20.5	•	8.3	94		.6	270		36	80
14	1010	527	7.6	16.5		8.9	94		.8	240		32	70
MAY		321		10	•				• •	-			
31	1715	390	8.3	30.0)	12.4	165		>9.0	160		31	37
JUL													
05 SEP	1020	455	8.0	29.5	5	15.6	201		16	190		34	48
06	1030	333	7.6	24.0	0	8.0	98		4.5	160		11	48
	MAGNI		SOF	IUM PO	TAS-					CHL	0-	FLU	0-
	SIU				IUM.	BICAR-			SULFAT			RID	
	DIS				IS-	BONATE		-	DIS-			DI	
	SOLV				LVED	(MG/L			SOLVE		VED	SOL	
	(MG/				1G/L	AS		3/L	(MG/L		J/L	(MG	
DATE	AS M	3) AS N	vA)	AS	5 K)	нсоз	AS C	(603	AS 504) AS	CL)	AS I	F)
ОСТ													
17 DEC	. 17	16	5	.4	1.6	21	30	0	35	2	23		.2
05 FER	. 18	15	5	. 4	1.6	29	90	0	30	i	23		.2
14	. 17	14		. 4	1.6	20	50	0	26	- 2	22		.2
MAY									100				
31	. 17	16	5	.5	1.6	10	50	0	55	- 7	24		.2
JUL	. 17	19		-	1 4	1.	90	0	23		22		.2
05 SEP	. 11	1.	-	.5	1.6	1.	90	U	23	•			•
06	. 9	.4	5.1	.2	2.2	1	30	0	14	1	0		.2
		SOLI	os.							NI	RO-		
	SILIC			RO- N	ITRO-	NITR	- NI	TRO-	NITRO				
	DIS-	CONST			SEN.	GEN	, GE	EN,	GEN	MON	A +	PHO	S-
	SOLV				TRITE	N05+N		AINC	ORGANI		ANIC	PHOR	
	(MG/				DTAL	TOTAL		TAL	TOTAL		TAL	TOT	
100000	AS	SOL			MG/L	(MG/		G/L	(MG/L		3/L	(MG	
DATE	2105) (MG,	/L) AS	N) AS	5 N)	AS N) A5	N)	AS N	AS	N)	AS	Ρ)
OCT													0.00
17	. 11		321	.3	.02	1.	3	.03	• 4	8	.51		• 04
DEC	12		222								50		. 05
05 FEB	. 12		323	.6	•02	1.		.11	• 4	• •	•55		• 05
14	. 11		290	.3	.02	1.	3	.09	. (2	.11		.07
MAY 31	. 12	3	209	.09	.02		11	.04	3.2	2	3.2		.00
JUL				400									
05 SEP	. 12		232	.14	•02	•	16	.00	3.2	2	3.2		.19
06	. 9	.8	188	.45	.01		46	.09	. 6	88	.97		.18

08170000 SAN MARCOS RIVER SPRING FLOW AT SAN MARCOS. TX

LOCATION.--Lat 29°52'06", long 97°55'38", Hays County, Hydrologic Unit 12100203, on left bank 0.7 mi (1.1 km) downstream from bridge on Interstate Highway 35 and U.S. Highway 81, 1.2 mi (1.9 km) southeast of courthouse in San Marcos, and 2.1 mi (3.4 km) upstream from Blanco River.

DRAINAGE AREA.--93.0 mi² (240.9 km²). Normal flow or river comes from springs, drainage area of stream not applicable.

PERIOD OF RECORD.--May 1956 to current year. June 1915 to January 1916, March 1916 to September 1921, and May to September 1956, published as San Marcos River at San Marcos; records include some surface runoff. Periodic measurements of spring flow were made at this location outside periods of records since Nov. 14, 1894, and are published as miscellaneous measurements.

REVISED RECORDS .-- WSP 1923: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 536.82 ft (163.623 m) National Geodetic Vertical Datum of 1929. June 10, 1915, to Jan. 19, 1916, nonrecording gage at site 1.2 mi (1.9 km) upstream, and Mar. 13, 1916, to Sept. 7, 1921, water-stage recorder near present site, datum relations unknown.

REMARKS.--Records good. Flow slightly regulated by utilities dam about 1.5 mi (2.4 km) upstream. Entire flow of river is from San Marcos Springs, about 1.8 mi (2.9 km) upstream, except during period of local runoff. Springs emerge from the Edwards and associated limestones in the Balcones Fault Zone. Small diversion for operation of State fish hatchery, some of which is returned above gage. Several observations of water temperatures were made during the year.

AVERAGE DISCHARGE.--22 years (water years 1957-78), 168 ft3/s (4.758 m3/s), 121,700 acre-ft/yr (150 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily spring discharge, 316 ft 3 /s (8.95 m 3 /s) June 12, 1975; maximum discharge, 76,600 ft 3 /s (2,170 m 3 /s) May 15, 1970, gage height, 35.12 ft (10.705 m); minimum daily spring discharge, 46 ft 3 /s (1.30 m 3 /s) Aug. 15, 16, 1956.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1913, 38.6 ft (11.77 m) Sept. 10, 1921 (from floodmark, backwater from Blanco River), present datum.

EXTREMES FOR CURRENT YEAR.--Maximum daily spring discharge, 177 ft³/s (5.01 m³/s) Oct. 1; maximum gage height, 7.00 ft (2.134 m) Sept. 13 (flood runoff); minimum daily spring discharge, 100 ft³/s (2.83 m³/s) July 27, 28.

DISCHAR	GE, IN CU	BIC FEET	PER SECOND MEAN	, WATER VALUES	YEAR	OCTOBER	1977	TO SEPTEMB	ER 1978
NOV	DEC	JAN	FEB	MAR	AP	R M	1A Y	JUN	JUL

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	177	143	146	126	118	121	115	124	119	113	110	113
2	174	143	141	125	119	121	114	122	119	113	115	112
3	174	144	141	128	121	116	113	122	119	115	116	112
4	172	142	138	124	122	117	110	122	119	113	116	113
5	174	144	138	125	121	118	108	119	118	113	116	113
6 7 8 9 10	174 174 173 165 166	144 143 149 154	138 139 139 135 137	126 127 127 128 127	122 122 121 119 117	119 118 116 117 117	108 108 108 108 107	119 122 121 119 118	116 127 135 132 133	113 113 115 113 110	116 115 117 117 116	112 113 113 115 119
11	163	155	137	127	122	120	110	116	133	110	115	119
12	162	155	138	127	121	119	108	116	130	107	113	119
13	161	155	135	125	121	121	110	116	125	105	115	119
14	162	153	135	127	118	121	113	116	124	104	113	136
15	164	153	135	127	122	121	114	118	124	102	113	138
16	162	153	135	125	121	121	113	118	124	102	114	138
17	159	152	134	124	119	119	113	116	124	101	111	139
18	157	151	134	127	119	121	112	116	124	101	110	139
19	154	153	133	125	119	119	113	118	124	101	111	138
20	154	152	131	122	119	119	114	118	124	102	112	138
21	152	150	130	122	119	119	114	119	122	102	112	137
22	153	150	132	122	119	118	117	119	121	101	110	136
23	153	150	132	122	119	118	118	119	118	104	110	136
24	153	152	131	122	119	115	122	119	122	103	108	136
25	150	150	132	122	119	110	122	119	122	102	108	135
26 27 28 29 30 31	149 147 146 146 144 144	150 151 151 148 147	132 130 129 129 127 126	121 119 119 119 119	122 123 121	108 109 109 111 112 113	124 124 124 124 124	116 115 115 118 118 118	118 116 116 113 113	101 100 100 101 104 105	108 108 105 105 109 110	132 130 130 130 131
TOTAL	4958	4491	4169	3844	3364	3623	3432	3671	3672	3289	3474	3791
MEAN	160	150	134	124	120	117	114	118	122	106	112	126
MAX	177	155	146	128	123	121	124	124	135	115	117	139
MIN	144	142	126	118	117	108	107	115	113	100	105	112
AC-FT	9830	8910	8270	7620	6670	7190	6810	7280	7280	6520	6890	7520

CAL YR 1977 TOTAL 81457 MEAN 223 MAX 306 MIN 126 AC-FT 161600 WTR YR 1978 TOTAL 45778 MEAN 125 MAX 177 MIN 100 AC-FT 90800 PE RIVER BASIN 307

08171000 BLANCO RIVER AT WIMBERLEY, TX

LOCATION.--Lat 29°59'39", long 98°05'19", Hays County, Hydrologic Unit 12100203, on left bank at downstream side of highway, near left end of bridge on Ranch Road 12, 0.3 mi (0.5 km) southeast of Wimberley, 2,200 ft (671 m) downstream from Cypress Creek, and at mile 29.0 (46.7 km).

DRAINAGE AREA .-- 355 mi 2 (919 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1924 to September 1926, June 1928 to current year.

REVISED RECORDS.--WSP 1562: 1929, 1930-31(M), 1935-36(M), 1938(M), 1941-42(M), 1947(M), 1949(M). WSP 2123: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 797.23 ft (242.996 m) National Geodetic Vertical Datum of 1929. Aug. 6, 1924, to Sept. 30, 1926, nonrecording gage at site 1,030 ft (314 m) upstream at datum 5.00 ft (1.524 m) higher. Recording gage June 6, 1928, to June 12, 1975, at site 1,000 ft (305 m) upstream at datum 5.00 ft (1.524 m) higher.

REMARKS.--Water-discharge records good. Numerous small diversions above station. The Geological Survey operated satellite telemeter at station.

AVERAGE DISCHARGE.--52 years (water years 1925-26, 1929-78), 122 ft³/s (3.455 m³/s), 4.67 in/yr (119 mm/yr), 88,390 acre-ft/yr (109 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $113,000 \text{ ft}^3/\text{s}$ (3,200 m³/s) May 28, 1929, gage height, 33.9 ft (10.33 m), present site and datum, from floodmarks, from rating curve extended above $30,000 \text{ ft}^3/\text{s}$ (850 m³/s) on basis of slope-area measurements of 95,000 and 113,000 ft³/s (2,690 and 3,200 m³/s); minimum, 0.6 ft³/s (0.017 m³/s) Aug. 16, 1956.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1869, that of May 28, 1929; flood in July 1869 reached a stage of 26 ft (7.9 m), from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,800 ft³/s (51.0 m³/s) and maximum (*):

Date	Time	Disch (ft ³ /s)	arge (m³/s)	Gage (ft)	neight (m)	Date	Time	Disch (ft³/s)	arge (m³/s)	Gage (ft)	height (m)
Oct. 22	1800	2,380		7.06	2.152	Sept. 8	2200	*3,100		7.68	2.341

Minimum daily discharge, 18 ft³/s (0.51 m³/s) July 26, Aug. 17, 25.

		DISCHAR	GE, IN	CUBIC FEE	T PER SECO	ND, WATER AN VALUES	YEAR OCTO	BER 1977 T	O SEPTEM	BER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	45	48	46	45	45	43	37	31	31	29	236	48
2	47	42	46	43	43	41	37	38	54	26	94	35
3	45	43	48	43	43	41	36	44	61	24	63	59
4	46	43	49	43	43	38	33	38	49	23	45	63
5	44	41	48	44	43	39	33	42	41	26	41	58
6	45	40	45	4.5	43	43	34	37	43	24	39	46
7	4.4	41	43	46	43	42	35	35	305	23	37	44
8	42	56	44	44	41	40	35	31	168	23	35	351
9	41	45	43	41	41	42	35	29	150	21	33	613
10	39	51	43	41	41	42	77	28	128	23	37	202
11	39	52	43	43	43	43	46	27	110	23	27	149
12	36	53	44	41	52	41	50	28	93	21	24	126
13	37	51	47	41	45	42	51	26	85	21	23	130
14	38	49	46	41	45	40	49	28	72	21	23	114
15	37	48	46	41	49	38	47	29	64	20	20	105
16	35	49	47	43	47	38	44	29	63	20	20	102
17	33	48	48	42	52	36	43	30	60	20	18	97
18	34	48	46	41	52	38	43	29	58	20	20	97
19	35	49	47	42	54	38	40	27	54	19	21	94
20	34	50	46	41	54	37	38	40	51	19	20	91
21	34	187	59	41	52	38	38	36	48	19	20	89
22	440	75	48	41	47	38	38	35	47	19	20	86
23	285	58	47	41	47	39	37	33	44	19	21	91
24	104	55	47	41	47	41	38	31	45	19	20	89
25	77	51	46	41	47	37	35	29	47	19	18	89
26	69	51	45	40	47	38	30	29	44	18	20	83
27	66	50	45	42	47	38	33	26	43	19	21	83
28	61	49	46	43	4.5	40	32	25	39	19	19	81
29	54	50	47	43		39	31	39	35	21	21	75
30	51	46	47	44		38	32	31	29	23	21	75
31	49		47	45		37		29		26	24	
TOTAL	2086	1619	1439	1313	1298	1225	1187	989	2161	667	1101	3465
MEAN	67.3	54.0	46.4	42.4	46.4	39.5	39.6	31.9	72.0	21.5	35.5	116
MAX	440	187	59	46	54	43	77	44	305	29	236	613
MIN	33	40	43	40	41	36	30	25	29	18	18	35
CFSM	.19	.15	.13	.12	.13	.11	.11	.09	.20	.06	.10	.33
IN.	.22	.17	.15	-14	.14	.13	.12	.10	.23	.07	.12	.36
AC-FT	4140	3210	2850	2600	2570	2430	2350	1960	4290	1320	2180	6870
CAL YR			MEAN	204 M	1AX 4680	MIN 33	CFSM .58	IN 7.79		147500		
WTR YR	1978 TOTAL	18550	MEAN	50.8 N	1AX 613	MIN 18	CFSM .14	IN 1.94	AC-FT	36790		

08171000 BLANCO RIVER AT WIMBERLEY, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: January 1974 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURES: December 1976 to current year.

INSTRUMENTATION.--Water-temperature is recorded continuously at this station.

REMARKS.--Interruptions in the record were due to malfunctions of the instrument. Where maximum or minimum values are not shown, mean value is estimated.

EXTREMES FOR PERIOD OF DAILY RECORD.--WATER TEMPERATURES: Maximum daily, 36.0°C July 16, 1978, minimum daily, 2.5°C Jan. 20, 1978.

EXTREMES FOR CURRENT YEAR.--WATER TEMPERATURES: Maximum, 36.0°C July 16; minimum daily 2.5°C Jan. 20.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		WATE	R QUALIT	Y DATA,	ATER Y	YEAR C	CTOBER	1977 TO	SEPTEMBE	R 1978			
		STRE FLO INST	AM- CO W. DU AN- AN	FIC N- CT- CE	РН	TEMPE	R- IN	LOR LAT-	810-	DXYGEN. DIS- SOLVED	OXYG DIS SOL (PEI CEI	S- DE VED E R- C	XYGEN EMAND, BIO- CHEM- ICAL, DAY
DATE	TIME	TANE (CF	OUS (MI	CRO- OS) (UI	(STI	(DEG		BALT ITS)	ITY (JTU)	(MG/L)	ATI		MG/L)
OCT 13	1440	37		466	8.2	20	.5	0	1	9.6		109	.1
DEC 15	1125	52		496	7.5	12	2.0	0	2	10.6		102	.3
FEB	1850	47		480	8.2		0.5	0	1	10.7		99	.0
APR				470			1.5	0	2	9.6		114	.4
19 JUN	1044	37			8.1				1	7.6		96	.1
28 AUG	0930	35		460	8.0		7.0	0				134	.8
22	1217 COL	20	COLI-	430 STREP-	7.6	3	1.5	0	5	9.8		134	• "
DATE	FOR TOT IMM (COL PE	M, AL, ED. S.	FORM. FECAL. 0.7 UM-MF (COLS./	TOCOCCI FECAL* KF AGAR (COLS* PER 100 ML)	HARI NESS (MG, AS CAC	S !	HARD- NESS. NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVEI (MG/L AS CA)	DIS SOLV (MG/	M. SODI - DIS ED SOLV	ED	SODIU AD- SORP- TION RATIO	
ост	1			53		230	36	62	19		8.0		2
13 DEC		400	47						18		8.3		2
FEA		640	15	52		250	32	72			4.0		
21 APR		80	7	11		260	47	73	19				
19 JUN	. ,	340	K340	180		230	28	62	17		8.0		2
28 AUG		420	88	280		210	25	56	18	-170	8.4		3
55		360	350	1300		190	19	50	16	SOL	8.0	SOLIDS	3
DATE	SI SOL (MG		BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULF DIS SOL (MG.	VED /L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVEI (MG/L AS F)	SILIC DIS- SOLV O (MG/ AS SIO2	ED TUEN	OF STI-	RESIDU AT 105 DEG. C SUS- PENDED (MG/L	
ост 13		1.3	240	0	3	1	11		2 11		262		0
DEC 15		1.4	270	0	3	8	14		2 9	.2	294		2
FEP 21		1.3	260	0	3	1	16		2 7	.6	281		2
19		1.3	240	0	2	7	17		2 8	.6	259		2
JUN 28		1.5	230	0	3	10	15			.4	252		1
AUG 22		1.3	210	0	2	4	12		2 11		226	1	2
4	•		7.7						NITE				
DATE	SOL I VOL TIL SUS PENG	A- E+	NITRO- GEN. NITRATE TOTAL (MG/L AS N)	NITRO- GEN. NITRITE TOTAL (MG/L AS N)	GE	NO3	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	ORGANI TOTAL (MG/L AS N)	MONIA C ORGAN	IC PHO	OS- RUS. TAL G/L P)	CARBON ORGANI TOTAL (MG/L AS C)	C
ост		0	.09	.00		.09	.01	.0	•	10	.00		.8
13 DEC				.01		.72	.06	.0		09	.00	1.	
FEA		1	.71								.85		6
21 APR		0	.40	•01		•41	•02	.1		20		1.	
19 JUN		1	.15	.01		.16	.01	.1		.20	•00		
ZA	•	1	.18	.00		-18	.00	• 2		.20	.00	1.	
55		2	.14	.01		.15	.02	.2	7 .	.29	.02		•

08171000 BLANCO RIVER AT WIMBERLEY, TX--Continued

	DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	SOL.	UM M1 5- D1 /ED SC	HRO- (UM. (S- DLVED JG/L G CR)	COPPER DIS- SOLVE (UG/L AS CU	D SOL	S- VED /L	
	FE8 21	1850	1	300		2	0		1	10	
	22	1217	1			0	0		0	50	
	D	50	AD, NE	DIS- DLVED S	RCURY DIS- GOLVED UG/L AS HG)	SELE- NIUM, DIS- SOLVEI (UG/L AS SEI	SOL (UG	S- VED	ZINC+ DIS- SOLVED (UG/L AS ZN)		
			1	0	.0		2	0	0		
	AUG 22	2	0	10	.0		0	0	10		
DATE	TIME	PCB. TOTAL (UG/L)	NAPH- THA- LENES. POLY- CHLOR. TOTAL (UG/L)	ALDRING TOTAL (UG/L)	TOT	E. T	DDD. OTAL UG/L)	ODE • TOTAL (UG/L	TOT	AL 1	DI- ZINON.
FER 21	1850	.0	.00	.00	0	.0	.00	.0	0	.00	.00
22	1217	.0	.00	.0	0	.0	.00	.0	0	•00	.00
DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN. TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	TOTAL	· CHL	TA- C OR. EP AL T	EPTA- HLOR OXIDE OTAL UG/L)	LINDAN TOTAL (UG/L	TOT	A- F ON. 1	THYLE PARA- THION, TOTAL (UG/L)
FER 21	.00	.00	.00	.0	0	.00	.00	.0	00	.00	.00
22	.00	.00	.00	.0	0	.00	.00	.0	00	.00	.00
	TH TO TE (U	TAL	IREX. T	OTAL	TOX- PHENE+ TOTAL (UG/L)	TOTAL TRI- THION (UG/L	20	4-D. 2 TAL G/L)	2,4,5-T TOTAL (UG/L)	SILVE) TOTAL (UG/L	
FEB 21 AUG	•••	.00		.00	0	• 0	0	.00	.00		00
22	•••	•00	.00	.00	0	• 0	0	.00	.00	• (00

08171000 BLANCO RIVER AT WIMBERLEY, TX--Continued

TEMPERATURE (DEG. C) OF WATER. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	OCTOBER		R		NOVEMBE	R		DECEMBE	R		JANUAR	Y
721			10.27									
1	30.0	26.0	28.0	23.5	18.5	21.5	15.5	12.0	13.5	14.0	8.5	12.0
3	27.5	24.0	26.5	19.5	16.5	18.0	16.0	11.0	13.5	10.0	6.5	8.5
	25.0	55.0	23.5	19.5	15.5	17.0	17.5	13.0	15.0	11.5	6.0	8.5
4	26.0	20.5	23.0	20.0	15.5	17.0	19.0	14.5	16.0	11.0	8.0	10.0
5	26.5	21.0	23.5	20.0	15.5	17.5	17.5	13.5	15.5	15.5	11.0	13.0
6	26.0	22.5	24.0	20.0	15.5	17 6	14 0		12.0	15.5	11.5	13.5
7	27.0	21.5	24.0	20.0	16.5	17.5 18.0	14.0	9.5	12.0	17.5	13.0	15.0
8	27.0	23.5	25.0	20.0	16.5	18.0	17.5	12.5	15.5	14.5	10.0	12.5
9	23.5	20.5	21.5	17.0	12.5	15.0	14.5	8.5	11.5	12.0	7.5	9.5
10	24.5	20.5	22.5	16.0	11.5	13.5	10.0	8.0	9.0	8.0	7.0	8.0
11	22.5	18.5	21.5	16.0	10.5	13.0	10.5	8.5	9.5	6.5	6.0	6.5
12	21.0	16.5	18.5	16.0	10.5	13.0	13.5	10.0	12.0	8.0	5.5	6.5
13	21.0	14.5	17.5	15.5	12.0	14.0	16.0	13.0	14.5	11.5	6.0	8.0
14	20.5	14.5	17.5	16.5	13.5	15.0	15.5	10.5	13.0	11.0	6.0	8.0
15	21.5	16.5	18.5	20.0	15.5	17.0	15.0	10.5	12.5	10.0	5.5	8.0
16	20.5	16.0	18.0	21.0	16.5	18.5	17.0	12.0	15.0	14.5	9.0	11.5
17	21.0	15.0	17.5	19.5	15.5	17.5	15.5	11.5	14.0	9.0	7.0	8.0
18	22.5	17.0	19.5	20.5	17.0	18.0	15.5	10.0	12.5	7.5	6.0	7.0
19	23.5	18.0	20.5	21.0	18.0	19.0	16.5	12.5	14.0	8.0	4.0	5.5
20	24.0	19.0	21.0	22.0	19.5	20.0	13.5	10.0	12.0	7.5	2.5	4.5
21		20.5	22.0	20.5	16.0	18.5	12.0	7.5	9.5	5.5	3.0	4.0
22	24.0	20.5	21.5	17.0	15.0	16.0	10.5	6.0	8.0	8.0	3.0	5.0
23	21.5	19.5	20.5	20.5	16.0	17.5	11.5	8.0	9.5	7.0	4.0	6.0
24	21.5	19.5	20.5	20.5	18.0	18.5	13.5	9.0	11.0	8.5	6.0	7.5
25	23.0	18.5	20.5	19.5	15.5	17.5	12.0	8.5	10.0	10.0	6.5	8.0
26	23.5	18.5	21.0	18.5	14.5	16.0	11.0	7.5	9.0	10.0	5.0	7.0
27	22.5	19.0	20.5	19.5	15.5	17.0	10.0	7.0	8.5	8.5	6.0	7.5
28	24.0	20.0	21.5	17.5	15.5	16.5	9.5	8.5	9.0	8.5	5.5	7.0
29	25.0	21.0	22.5	16.5	12.5	14.0	12.5	8.5	10.5	7.5	6.0	7.0
30	23.5	21.5	22.0	16.0	12.5	14.0	15.0	11.0	12.5	8.0	6.0	7.0
31	25.0	21.5	23.0				15.5	12.5	14.0	7.5	6.0	6.5
												3000
MONTH	30.0	14.5	21.5	23.5	10.5	17.0	19.0	6.0	12.0	17.5	2.5	8.5
		FEBRUAR			MARCH			APRIL			MAY	
		LEGROAM	,		МАКСП			AFRIL			MAT	
1	8.0	6.0	7.0	16.0	14.5	15.0	24.5	17.5	20.5			26.0
2	7.5	6.0	7.0	18.0	14.0	15.5	22.5	18.5	20.5			24.0
3	7.5	6.0	6.5	14.5	9.5	12.0	25.5	19.0	22.0			22.0
4	10.0	6.0	8.0	14.0	7.0	10.0	26.5		23.0			20.0
5	10.5	6.0	8.0	14.5	7.5	10.5	24.0	20.5	22.0			19.5
- 25					Ren La		2.21					
6	9.5	5.5	8.0	14.0	11.0	12.5	24.5	19.5	22.0			21.5
7		6.5	7.5	16.0	11.0	13.5	24.5	20.0	22.0			24.0
8	7.0	5.0	6.0	14.5	9.5	11.5	23.0	20.5	21.5			26.0
9	7.0	5.0	6.0	16.0	8.0	12.0	24.5	20.0	22.0			25.0
10	8.0	4.5	6.0	18.0	10.0	13.5	22.5	18.5	20.5			25.5
11	8.0	5.0	6.5	20.0	14.0	16.0	22.5	17.5	19.5			26.0
12	13.5	7.5	10.0	17.0	13.5	15.0	18.5	16.0	17.5			26.0
13	14.5	8.0	10.5	20.0	14.5	16.5	24.0		19.0			25.0
14	13.0	8.0	10.0	21.0	13.5	16.5	25.0	17.5	21.0			24.0
15	9.5	8.0	9.0	19.5	14.5	16.0	25.5	19.0	22.0			23.0
16	13.5	8.0	10.5	20.0	12.5	15.5	26.0	20.0	22.5			25.0
17	11.0	8.0	9.5	19.5	12.0	15.5	25.5	21.0	22.5			27.0
18	12.5	6.5	9.0	20.0	13.0	16.5	27.0	20.5	23.0			26.0
19	12.5	6.0	8.5	21.0	14.5	17.0	25.0	18.0	21.0			26.5
50	13.5	7.0	9.5	20.5	16.0	18.0	24.0	16.5	20.0			27.0
21	12.5	6.5	9.0	24.5	17.0	20.0	24.0	16.5	20.0			26.0
22	14.0	6.0	9.5	22.0	18.5	20.0	20.5	18.5	19.5			26.0
23	14.5	7.5	10.5	20.5	19.0	19.5	25.5	18.0	21.5			26.0
24	16.0	8.5	12.0	23.0	16.5	19.0	28.0	21.0	24.0			26.5
		12.5	15.0	18.0	14.5	16.5			22.5			27.0
25	18.0											
25			4 4 -			2000						
25 26	17.5	12.5	14.5	21.0	13.0	16.0			21.0			27.5
25 26 27	17.5 15.0	12.5 13.5	14.5	22.0	13.5	17.5			20.0			28.0
25 26 27 28	17.5 15.0 20.5	12.5 13.5 14.5	14.5 17.0	22.5	13.5 15.0	17.5 18.0	===		20.0			28.0
25 26 27 28 29	17.5 15.0 20.5	12.5 13.5 14.5	14.5	22.0 22.5 21.5	13.5 15.0 15.5	17.5 18.0 18.0	=	==	20.0 21.5 23.0			28.0 28.0 28.0
25 26 27 28 29 30	17.5 15.0 20.5	12.5 13.5 14.5	14.5	22.0 22.5 21.5 24.0	13.5 15.0 15.5 16.0	17.5 18.0 18.0 19.5		===	20.0 21.5 23.0 25.0			28.0 28.0 28.0 26.5
25 26 27 28 29	17.5 15.0 20.5	12.5 13.5 14.5	14.5	22.0 22.5 21.5	13.5 15.0 15.5	17.5 18.0 18.0		==	20.0 21.5 23.0			28.0 28.0 28.0
25 26 27 28 29 30	17.5 15.0 20.5	12.5 13.5 14.5	14.5	22.0 22.5 21.5 24.0	13.5 15.0 15.5 16.0	17.5 18.0 18.0 19.5	28.0	===	20.0 21.5 23.0 25.0			28.0 28.0 28.0 26.5

GUADALUPE RIVER BASIN

08171000 BLANCO RIVER AT WIMBERLEY, TX--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUS1			SEPTEME	BER
1			26.0	33.0	27.0	30.0	25.0	24.0	24.5	28.5	25.0	26.5
2			27.0	34.0	27.5	30.5	27.0	24.0	25.5	31.5	25.5	28.0
3			27.0	34.0	28.0	31.0	29.0	20.0	26.5	31.0	26.0	28.5
4			27.0	34.5	27.5	31.0	30.5	25.5	27.5	31.0	26.0	28.0
5			27.0	34.5	28.0	31.0	32.0	26.0	28.5	30.5	25.5	27.5
6			26.0	34.0	27.5	30.5	32.0	26.5	28.5	29.5	25.5	27.0
7	26.0	20.5	23.5	34.0	27.5	30.5	32.0	26.0	29.0	27.0	25.0	26.0
8	29.0	24.0	26.5	34.5	27.5	30.5	33.0	26.5	29.5	26.5	25.0	25.5
9	30.0	24.5	26.5	34.5	27.5	30.5	32.5	27.0	29.5	26.0	24.0	25.0
10	29.5	23.5	26.5	34.5	28.0	31.0	33.0	27.5	30.0	26.5	24.5	25.5
11	30.5	25.0	27.5	33.0	27.5	30.5	34.0	27.0	30.0	26.5	25.0	25.5
12	31.0	26.0	28.5	34.0	28.0	31.0	34.5	28.0	31.0	28.5	25.0	26.5
13	33.5	26.5	29.5	34.5	28.0	31.0	34.5	28.0	30.5	26.5	25.0	25.5
14	32.0	26.5	29.0	34.0	28.5	31.0	34.5	28.0	30.5	27.5	25.0	26.0
15	32.5	27.0	29.5	35.5	28.5	31.5	34.0	27.0	30.5	30.0	25.5	27.5
16	33.0	27.5	29.5	36.0	29.0	32.0	34.5	27.5	30.5	30.0	26.0	28.0
17	33.0	27.0	29.5	34.5	28.5	31.5	34.0	27.5	30.5	30.5	26.5	28.0
18	33.0	27.0	29.5	35.0	28.5	31.0	34.5	28.0	31.0	30.0	26.5	28.0
19	32.5	27.0	29.5	33.0	28.0	30.0	34.0	28.5	31.0	30.0	26.5	28.0
20	33.0	26.5	29.5	34.5	28.0	30.5	35.5	28.0	31.5	30.0	26.0	28.0
21	32.5	26.5	29.5	34.0	28.0	31.0	34.0	28.0	31.0	29.0	26.0	27.5
55	33.0	26.5	29.5	34.0	28.0	30.5	33.5	28.0	30.5	28.5	24.5	26.0
23	33.5	26.5	30.0	34.5	28.5	30.5	33.5	27.5	30.0	26.0	24.5	25.0
24	33.5	27.0	30.5	33.0	26.5	29.5	33.0	27.0	30.0	27.5	24.0	25.5
25	33.5	27.5	30.0	33.5	27.5	30.5	33.5	28.0	30.5	27.5	23.5	25.0
26	32.5	27.0	29.5	34.0	28.0	30.5	33.5	28.0	30.5	25.5	22.5	24.0
27	32.5	27.0	29.5	34.0	28.0	30.5	34.0	27.5	30.5	23.5	22.0	23.0
28	32.5	27.0	29.0	30.0	26.5	28.0	33.5	27.5	30.0	24.0	21.5	22.5
29	33.0	26.0	29.5	32.5	26.0	29.5	32.0	26.5	29.0	25.5	20.5	23.0
30	33.0	26.0	29.5	33.0	27.5	30.0	29.5	26.0	27.5	26.0	20.5	23.0
31				29.0	25.5	26.5	29.0	25.5	27.0			
MONTH	33.5	20.5	28.5	36.0	25.5	30.5	35.5	20.0	29.5.	31.5	20.5	26.0

08171300 BLANCO RIVER NEAR KYLE, TX

LOCATION.--Lat 29°58'45", long 97°54'35", Hays County, Hydrologic Unit 12100203, on left bank 800 ft (240 m) downstream from Tarbutton Ranch House (Hatchett Ranch), 2.2 mi (3.5 km) southwest of Kyle, 4.2 mi (6.8 km) downstream from Halifax Creek, and 6.3 mi (10.1 km) upstream from bridge on U.S. Highway 81.

DRAINAGE AREA .-- 412 mi 2 (1,067 km2).

PERIOD OF RECORD .-- May 1956 to current year.

REVISED RECORDS .-- WSP 1923: 1957-58, 1960(M). WSP 2123: Drainage area.

GAGE .-- Water-stage recorder. Datum of gage is 620.12 ft (189.013 m) Corps of Engineers datum.

REMARKS.--Records good. Small diversions above station for irrigation. Most of the low flow of the Blanco River enters the Edwards and associated limestones in the Balcones Fault Zone which crosses the basin upstream from this station and below the station at Wimberley. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--22 years (water years 1957-78), 152 ft3/s (4.305 m3/s), 5.01 in/yr (127 mm/yr), 110,100 acre-ft/yr (136 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 98,000 ft³/s (2,780 m³/s) May 2, 1958, gage height, 36.3 ft (11.06 m); from floodmark, from rating curve extended above 37,000 ft³/s (1,050 m³/s) on basis of slope-area measurement of 139,000 ft³/s (3,940 m³/s) and slope-conveyance study; no flow at times in 1956-57, 1963-65, 1967, and 1971.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1882, about 40 ft (12.2 m) in May 1929, from information by local residents, discharge, 139,000 ft 3 /s (3,940 m 3 /s). Flood of Sept. 11, 1952, reached a stage of 38.0 ft (11.58 m), discharge, 115,000 ft 3 /s (3,260 m 3 /s).

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,500 ft³/s (42.5 m³/s) and maximum (*):

	Date	Time	Disch	narge	Gage I	height	Date	Time	Disch	arge (m³/s)	Gage	height
			(ft^3/s)	(m³/s)	(ft)	(m)			(ft³/s)	(m^3/s)	(ft)	(m)
	Oct. 22	2345	1,570	44.5	9.33	2.844	Sept. 9	0330	*1,950	55.2	9.93	3.027
м	inimum disch	arge no	flow July	19-29.								

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 VALUES DAY OCT NOV JUN JUL AUG SEP DEC JAN FFR MAR APR MAY 8.9 21 13 5.6 1 2 73 3.8 2.7 2.1 1.8 1.6 68 12 34 30 10 8.4 20 54 1.2 1.1 6.7 5.6 .61 .50 4.4 .30 3.3 .11 2.9 .00 2.6 .00 2.8 22 24 22 16 14 2.8 .00 45 .00 .00 9.1 .00 2.2 8.0 .00 2.0 12 11 18 .00 1.8 9.8 1.4 .00 .52 1.4 7.0 ---------TOTAL 1050.1 39.33 502.2 2212.9 46.6 135 35 33.3 37 30 36.8 54 30 32.4 25.5 53 17 1.27 5.6 .00 .003 MEAN 47.9 31.7 18.4 35.0 16.2 73.8 MAX MIN 19 11 CFSM .11 .09 .18 .12 .08 .08 .09 .08 .06 .05 .09 .09 .09 .09 .05 .09 .00 AC-FT AC-FT AC-FT CAL YR 1977 WTR YR 1978 71991.00 N 6.50 .00 TOTAL 12073.53 MEAN 33.1 MAX MIN CFSM .08 IN 1.09

08172000 SAN MARCOS RIVER AT LULING, TX

LOCATION.--Lat 29°39'54", long 97°38'59", Caldwell-Guadalupe County line, Hydrologic Unit 12100203, on left bank 390 ft (119 m) downstream from bridge on State Highway 80, 1.0 mi (1.6 km) south of U.S. Post Office at Luling, and 9.4 mi (15.1 km) upstream from Plum Creek.

DRAINAGE AREA .-- 838 mi2 (2,170 km2).

CAL YR 1977

WTR YR 1978 TOTAL

TOTAL

MEAN 569

MEAN 173

MAX

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- April 1939 to current year.

REVISED RECORDS.--WSP 958: 1940. WSP 1312: 1940(M), 1945(M), 1947(M). WSP 2123: Dainage area.

GAGE .-- Water-stage recorder. Datum of gage is 322.05 ft (98.161 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Flow is affected at times by discharge from flood-detention pools of 17 floodwater-retarding structures with combined detention capacity of 18,250 acre-ft (22.5 hm³). These structures control runoff from 71.3 mi² (184.7 km²) in the Town and York Creeks drainage basins.

AVERAGE DISCHARGE. -- 39 years, 368 ft3/s (10.42 m3/s), 266,600 acre-ft/yr (329 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 57,000 ft 3 /s (1,610 m 3 /s) Sept. 12, 1952, gage height, 34.95 ft (10.653 m); minimum daily, 43 ft 3 /s (1.22 m 3 /s) Aug. 12, 1951.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1859, 40.4 ft (12.31 m) in 1869 or 1870, from information by Texas Department of Highways and Public Transportation. Flood of May 29, 1929, reached a stage of 37.1 ft (11.31 m) and is the second highest known.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,020 ft 3 /s (57.2 m 3 /s) June 7, gage height, 15.39 ft (4.691 m), no peak above base of 2,900 ft 3 /s (82.1 m 3 /s); minimum, 88 ft 3 /s (2.492 m 3 /s) July 21.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES SEP DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 177 173 ---------TOTAL MEAN 510 MAX MIN AC-FT

MIN 173

MIN 91

AC-FT

08172000 SAN MARCOS RIVER AT LULING, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: September 1961 to April 1966, October 1968 to current year.

		WAIL	, GOALI	, ,,,,,,							1211112		
DATE	TIME	STRE FLO INST TANE (CF:	CI AM- CO W, DU AN- AN OUS (MI	FIC ON- OCT- ICE (CRO-	PH UNITS)	TEMPE ATUR (DEG	R- C	IARD- IESS IMG/L AS (ACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	SOL	IUM S- VED S	AGNE- SIUM, DIS- OLVED MG/L S MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT													
03	1315	198		627	7.9	26	.5	280	44		30	20	23
NOV	1050	213		598	7.8	10	.5	270	42		19	18	20
07 DEC	1050	213		290	1.0	17	. 5	210	7.5	1	1		
19	1115	193		654	8.0	16	. 0	300	45		37	20	55
JAN													12
30		182							-				
13	1130	179		630	8.1	19	.5	290	60		33	20	24
APR									-			20	24
24	1150	152		657		51	.0	280	39	,	31	20	26
JUN 05	1150	164		589	7.8	27	7.0	250	34		71	17	23
JUL												AL.	
17	1025	102		576		3(0.0	250	35		8	19	21
AUG 28	1200	93		577		26	3.5	260	48		75	18	21
20	1200	,,		311		-							- 1
											SILICA.	SOL I	
		AD-	POTAS- SIUM,	BICAR-			ULFATE	CHL		DE,	DIS-	CONS	
		RP-	DIS-	BONATE			DIS-	DIS		IS-	SOLVED		
		ION	SOLVED	(MG/L	BONA		SOLVE			LVED	(MG/L		S-
		TIO	(MG/L	AS	(MG		(MG/L	(MG		G/L	AS		VED /L)
DATE			AS K)	HC03)	AS C	(03)	S 504)	AS	CL) AS	F)	5102)	(MG	71
ОСТ													
03.		.6	1.8	29	0	0	31	3	6	.2	12		347
NOV			1.0	28	0	0	39		2	.3	11		349
DEC.	•	•5	1.8	20	U	U	39	7		• •	100		
19.		.6	1.9	31	0	0	32	3	6	.2	9.2		361
JAN													
MAR	• •			-	-						-		100
13.		.6	1.4	28	0	0	37	4	0	.3	5.0		349
APR													
24.	•	.7	2.1	30	0	0	34	4	4 104	•2	11		366
JUN 05•		.6	1.9	26	0	0	32	4	4	.2	12		329
JUL			•••	-0									
17.		.6	1.8	26	0	0	30	3	8	.2	12		318
ALIG		.6	1.8	26	0	0	29		0	.3	12		325
28.		• ()	1.0	20	v	U	67	-	v	• •			

08172400 PLUM CREEK AT LOCKHART, TX

LOCATION.--Lat 29°55'22", long 97°40'44", Caldwell County, Hydrologic Unit 12100203, on right bank 548 ft (167 m) upstream from bridge on U.S. Highway 183, 2.7 mi (4.3 km) north of Lockhart, 3.7 mi (6.0 km) upstream from Town Creek, 5.0 mi (8.0 km) downstream from Brushy Creek, and 30.4 mi (48.9 km) upstream from mouth.

DRAINAGE AREA .-- 112 mi2 (290 km2).

PERIOD OF RECORD .-- April 1959 to current year.

REVISED RECORDS.--WSP 2123: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 431.19 ft (131.427 m) National Geodetic Vertical Datum of 1929. Apr. 30, 1959, to July 25, 1968, at site 548 ft (167 m) downstream at present datum.

REMARKS.--Records good. No known diversion above station. Flow at times is affected by discharge from the flood-detention pools of 17 floodwater-retarding structures with combined detention capacity of 24,850 acre-ft (30.6 $\,\mathrm{km}^3$). These structures control runoff from 67.8 $\,\mathrm{mi}^2$ (175.6 $\,\mathrm{km}^2$) above this station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE .-- 19 years, 49.2 ft3/s (1.393 m3/s), 35,650 acre-ft/yr (44.0 hm3/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 26,600 ft3/s (753 m3/s) Oct. 29, 1960, gage height, 20.62 ft (6.285 m); no flow at times each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1905, 22 ft (6.7 m) in June 1936 at present site; flood in 1951 reached a stage of 20 ft (6.1 m) at present site, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 5.9 ft3/s (0.17 m3/s) Feb. 13, gage height, 2.35 ft (0.176 m), no peak above base of 2,000 ft 3 /s (56.6 m 3 /s); no flow for many days.

		DISCHA	RGE, IN	CUBIC FEET	PER SECO	ND, WATER	YEAR OCT	OBER 1977	TO SEPTEM	MBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.32	.32	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.32	.32	.00	.00	.00	.00	.00
3	.00	.00	.00	.00	.00	.32	.28	.00	.00	.00	.00	.00
4	.00	.00	.00	.00	.00	.28	.24	.00	.00	.00	.00	.00
5	.00	.00	.00	.00	.00	.26	.21	.00	.00	.00	.00	.00
6	.00	.00	.00	.00	.00	.34	.18	.00	.00	.00	.00	.00
7	.00	.00	.00	.00	.00	.48	.14	.00	.00	.00	.00	.00
8	.00	.00	.00	.00	.00	.58	.12	.00	.00	.00	.00	.00
9	.00	.00	.00	.00	.84	.78	.11	.00	.00	.00	.00	.00
10	.00	.00	.00	.00	1.2	.80	.45	.00	.00	.00	.00	.00
11	.00	.00	.00	.00	.87	.67	.43	.00	.00	.00	.00	.00
12	.00	.00	.00	.00	1.1	.55	.39	.00	.00	.00	.00	.00
13	.00	.00	.00	.00	2.0	.49	.36	.00	.00	.00	.00	.00
14	.00	.00	.00	.00	4.2	.46	.26	.00	.00	.00	.00	.00
15	.00	.00	.00	.00	2.1	.41	.19	.00	.00	.00	.00	.00
16	.00	.00	.00	.00	1.2	.35	.13	.00	.00	.00	.00	.00
17	.00	.00	.00	.00	.97	.32	.09	.00	.00	.00	.00	.00
18	.00	.00	.00	.00	.86	.28	.08	.00	.00	.00	.00	.00
19	.00	.00	.00	.00	.80	.26	.06	.00	.00	.00	.00	.00
20	.00	.00	.00	.00	.99	.26	.04	.00	.00	.00	.00	.00
21	.00	.00	.00	.00	.81	.25	.02	.00	.00	.00	.00	.00
22	.00	.00	.00	.00	.58	.24	.01	.00	.00	.00	.00	.00
23	.00	.00	.00	.00	.47	.24	.01	.00	.00	.00	.00	.00
24	.00	.00	.00	.00	.43	.33	.00	.00	.00	.00	.00	.00
25	.00	.00	.00	.00	.37	.28	.00	.00	.00	.00	.00	.00
26	.00	.00	.00	.00	.30	.22	.00	.00	.00	.00	.00	.00
27	.00	.00	.00	.00	.29	.39	.00	.00	.00	.00	.00	.00
28	.00	.00	.00	.00	.29	.46	.00	.00	.00	.00	.00	.00
29	.00	.00	.00	.00		.42	.00	.00	.00	.00	.00	.00
30	.00	.00	.00	.00		.39	.00	.00	.00	.00	.00	.00
31	.00		.00	.00		.35		.00		.00	.00	
TOTAL	.00	.00	.00	.00	20.67	12.10	4.44	.00	.00	.00	.00	.00
MEAN	.000	.000	.000	.000	.74	.39	.15	.000	.000	.000	.000	.000
MAX	.00	.00	.00	.00	4.2	.80	.45	.00	.00	.00	.00	.00
MIN	.00	.00	.00	.00	.00	.22	.00	.00	.00	.00	.00	.00
AC-FT	.00	.00	.00	.00	41	24	8.8	.00	.00	.00	.00	.00
A0-11	.00	.00	.00	•00	7.1	2.7	0.0	•••	• • •	77.7	7.7.5	192

TOTAL 15201.70 MEAN 41.6 .00 AC-FT 30150 CAL YR 1977 TOTAL WTR YR 1978 TOTAL MAX 1720 37.21 MEAN .10 MAX .00

DAY

26

27

28

29

30

31

TOTAL

MEAN

MAX

MIN

AC-FT

60

41

22

18

15

13

534.8

17.3

6.2

1060

14

13

12

12

12

443

34

11

879

14.8

12

12

14

17

16

383

11

760

12.4

OCT

NOV

DEC

JAN

GUADAL LIPE RIVER BASTN

08173000 PLUM CREEK NEAR LULING, TX

LOCATION.--Lat 29°41'58", long 97°36'12", Caldwell County, Hydrologic Unit 12100203, near left bank on downstream side of pier of bridge on county road, 1.2 mi (1.9 km) upstream from West Fork, 1.9 mi (3.1 km) upstream from Southern Pacific Railroad Cobridge, 2.2 mi (3.5 km) upstream from McNeil Creek, 2.9 mi (4.7 km) northeast of Luling, and at mile 7.5 (12.1 km).

DRAINAGE AREA . - - 309 mi 2 (800 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March 1930 to current year.

REVISED RECORDS.--WSP 1923: 1933. WSP 2123: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 321.57 ft (98.015 m) National Geodetic Vertical Datum of 1929. Prior to Aug. 18, 1976, at datum 5 ft (1.5 m) higher.

REMARKS.--Water-discharge records fair. Low flow is slightly regulated by oilfield operation above station. At end of year, flow from 119 mi² (308 km²) above this station was partly controlled by 27 floodwater-retarding structures with a combined detention capacity of 41,840 acre-ft (51.6 hm³). No known diversion above station.

AVERAGE DISCHARGE.--48 years (water years 1931-78), 105 ft³/s (2.974 m³/s), 76,070 acre-ft/yr (93.8 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 78,500 ft³/s (2,220 m³/s) July 1, 1936, gage height, 30.7 ft (9.36 m), from floodmarks, present datum, from rating curve extended above 37,500 ft³/s (1,060 m³/s); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1868, that of July 1, 1936; flood in December 1913 reached about same stage, from information by loca residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,800 ft³/s (108 m³/s) June 7, gage height, 20.50 ft (6.248 m), no other peak above base of 2,300 ft³/s (65.1 m³/s); minimum daily, 1.4 ft³/s (0.040 m³/s) July 27, 28.

FEB

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES

MAR

APR

MAY

JUN

8.2

7.6

8.3

7.9

7.8

145

2460

8610

4339.9

1.8 1.4 1.4

2.5

6.6

3.7

128.9

4.16

256

6.6

6.1 7.1

6.8

5.0

260.6

8.41

5.0

517

JUL

AUG

SEP

4.7

4.3

4.3

5.7

321.2

10.7

56

3.7

637

2.0

2.0

2.0

2.1

28

18

177.5

5.73

28

1.8

352

8.3 9.6 5.6 7.8 9.8 56 30 15 13 20 9.7 8.4 7.8 20 23 34 12 14 15 20 14 9.1 13 19 14 8.5 13 8.1 16 14 14 7.4 7.0 7.3 8.7 6.0 8.6 12 13 13 19 5 8.3 13 14 13 19 14 11 7.0 6.6 7.4 4.1 9.8 6.8 3.7 6 8.3 15 6.1 11 12 13 20 14 9.8 9.7 5.8 4.6 11 14 2460 5.7 10 11 15 19 117 4.8 20 10 1060 6.0 12 8 14 46 64 13 7.9 8.0 28 25 26 13 9.5 172 13 11 10 7.6 16 11 19 21 18 8.3 3.4 14 12 2.9 50 11 7.3 13 11 15 18 20 28 7.8 94 4.3 21 12 6.5 12 12 31 26 19 15 7.7 63 4.6 3.9 3.2 13 6.2 12 13 14 19 58 17 13 8.4 47 11 9.0 39 2.8 29 13 14 15 16 15 7.5 12 13 24 7.0 32 2.0 13 16 12 16 7.8 13 12 15 23 15 12 7.2 25 3.1 2.3 8.2 2.0 17 7.8 13 12 17 30 14 11 6.9 23 3.0 7.1 22 5.7 6.9 2.8 18 12 12 15 31 14 12 12 8.1 12 2.8 2.8 19 14 23 6.5 2.8 2.7 5.7 20 8.2 13 11 14 20 10 15 5.2 13 3.0 2.3 21 7.8 13 11 19 16 10 8.8 4.9 2.1 3.0 22 8.0 13 11 12 18 16 10 11 13 4.7 8.3 3.0 1.8 47 16 12 23 13 12 12 18 11 14 13 1.8 75 12 12 18 8.1 10 14 9.1 2.5 2.0 5.2 25 66 13 13 18 20 11

15

15 14

15

15

15

680

21.9

1350

9.7

8.8

9.3

9.1

9.4

380.3

12.7

28

8.8

CAL YR 1977 TOTAL 55387.3 MEAN 152 MAX 9530 MIN 6.2 AC-FT 109900 WTR YR 1978 TOTAL 8710.2 MEAN 23.9 MAX 2460 MIN 1.4 AC-FT 17280

13

12

12

12

12

12

441

31

12

875

14.2

19

19

19

620

58

13

22.1

1230

08173000 PLUM CREEK NEAR LULING, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Chemical analyses: October 1967 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1967 to current year. WATER TEMPERATURES: October 1967 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 6,210 micromhos Feb. 27, 1977; minimum daily, 148 micromhos Dec. 1, 1968.
WATER TEMPERATURES: Maximum daily, 35.0°C July 24, 1969; minimum daily, 4.0°C Jan. 4, 1968.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 2,120 micromhos Apr. 27; minimum daily, 309 micromhos June 8.
WATER TEMPERATURES: Maximum daily, 32.0°C July 16, 18, 21, 26, 27; minimum daily, 10.0°C on several days during January and February.

			SF	PE-								
			CI	IFIC				HARD-			MAGNE-	
		STREAM	4- CC	ON-			HARD-	NESS.	CAL	CIUM	STUM.	SODIUM.
		FLOW	· DI	JCT-			NESS	NONC AR-	DI	5-	DIS-	DIS-
		INSTA	V- AN	NCE	PH	TEMPER-	(MG/L	BONATE	SC	LVED	SOLVED	SOLVED
	TIME	TANEO	JS (M)	CRO-		ATURE	AS	(MG/L	(N	IG/L	(MG/L	(MG/L
DATE		ICFS) M+	105) (UNITS)	(DEG C)	CACO3)	CACO3)	AS	CA)	AS MG)	AS NA)
NOV												
07	0920	11		1290	8.0	17.0	370	120	1	30	12	120
DEC												
19	0935	12		1430	H.1	13.0	420	140	1	50	12	130
FEB												
28	1500	14		1500		18.0	410	140	1	40	14	150
APR				2223		23.3	4.4				-	120
24 MAY	1000	12		1520		19.5	460	170	1	60	15	150
31	1900	5.	0	1450		27.0	400	110	1	40	13	140
JUN	4200											
30	0800	7.1	В	1560		24.0	430	150	1	50	14	170
JUL							- 22	44			2.0	
17	0855	3.		1670		27.0	410	79	1	40	14	190
AUG	1000	20				20. 0	220	0.5		7.	0.2	04
SEP	1800	30		923		58.0	550	85		76	8.3	86
06	0800	2.	0	1470		26.0	400	140	1	40	15	170
											SOLI	DS.
			POTAS-				CHL	0- FL	UO-	SILICA		
		D-	SIUM.	BICAR-		SULFA			DE .	DIS-	CONS	
	SOR		DIS-	BONATE	CAR-				15-	SOLVE		
			OLVED	(MG/L	BONAT				LVED	(MG/L		S-
	RAT		MG/L	AS	(MG/				G/L	AS	SOL	
DATE		,	IS K)	HC03)	AS CO	3) AS SO	4) AS	CL) AS	F)	\$102)	(MG	/L)
NOV				200								22
07		2.7	4.6	31	0	0 110	20	0	.4	20		750
DEC		2 7	2.	25	•					10		000
19 FER		2.7	3.6	35	0	0 110	23	0	.6	19		828
24		3.2	4.0	28	•	0 120	26	•	.5	14		841
APR		3.6	4.0	20	U	0 120	20	U	• 5	14		041
24		3.0	4.0	36	0	0 140	23	n	.6	17		894
MAY		3.0	4.0	30	•	0 140	23	U	•0	.,		074
31		3.0	4.6	36	0	0 100	23	0	.6	23		929
JUN				30				o .	•			
30		3.6	6.0	35	0	0 110	27	0	.5	20		913
JUL								3				
17		4.1	4.9	40	0	0 120	28	0	.7	50		967
AUG												
31		2.5	6.4	17	0	0 68	16	0	.3	12		501
SEP			-									292
06		3.7	6.9	32	0	0 140	27	n	•5	18		915

MEAN

GUADALUPE RIVER BASIN

08173000 PLUM CREEK NEAR LULING, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	MONTH	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLOPIDE (MG/L)	DIS- SOLVED CHLORID (TONS)	E SULFAT		HARONESS (CA,MG) (MG/L)
ост	. 1977	534.8	1350	780	1120	220	318	110	158	360
NOV	. 1977	443	1350	770	926	220	264	110	131	360
DEC	1977	383	1400	800	827	230	237	110	114	380
JAN	1978	441	1410	810	963	230	277	110	134	380
FEB	1978	620	1360	780	1300	220	372	110	182	370
MAR	1978	680	1420	820	1500	240	433	110	206	380
	1978	380.3	1520	870	897	250	261	120	121	410
	1978	260.6	1500	860	605	250	176	120	83	400
	1978	4339.88	468	260	3100	53	619	40	465	150
								110	39	380
	1978	128.9	1400	810	280	230	80			
AUG	. 1978	177.5	1270	730	348	210	99	100	49	340
SEP	1978	321.2	1470	840	732	240	211	110	99	390
TOT	AL	8710.17	**	**	12600	**	3350	100	1780	**
WTD	AVG	23.86	937	530	**	140	**	76	**	560
	SPECIF	TIC CONDUCTANC	E (MICROMH	OS/CM AT 25	DEG. C),	WATER YEAR	OCTOBER 1	977 TO SEP	TEMBER 1978	
YAC	ОСТ	NOV DE	C JAN	FEB	MAR	APR	MAY	JUN	JUL AUG	SEP
1	1390	1280 138	0 1400	1350	1520	1550	1580	1480 1	330 1370	1290
1 2	1390 1340	1280 138 1470 138	0 1400 0 1420				1580 1520	1480 1 1370 1	330 1370 410 1330 620 1430	1290 763 1490
1 2 3 4	1390 1340 1340 1370	1280 138 1470 138 1210 140 1490 139	0 1400 0 1420 0 1370 0 1400	1350 1430 1420 1400	1520 1550 1530 1440	1550 1580 1560 1580	1580 1520 1510 1510	1480 1 1370 1 1600 1 1520 1	330 1370 410 1330 620 1430 600 1330	1290 763 1490 1620
1 2 3	1390 1340 1340	1280 138 1470 138 1210 140	0 1400 0 1420 0 1370 0 1400	1350 1430 1420	1520 1550 1530	1550 1580 1560	1580 1520 1510	1480 1 1370 1 1600 1 1520 1	330 1370 410 1330 620 1430	1290 763 1490 1620
1 2 3 4 5	1390 1340 1340 1370	1280 138 1470 138 1210 140 1490 139 1210 140 1320 121	0 1400 0 1420 0 1370 0 1400 0 1270	1350 1430 1420 1400 1450	1520 1550 1530 1440 1530	1550 1580 1560 1580 1580	1580 1520 1510 1510 1580	1480 1 1370 1 1600 1 1520 1 1600 1	330 1370 410 1330 620 1430 600 1330 520 1340	1290 763 1490 1620 1310
1 2 3 4 5	1390 1340 1340 1370 1410	1280 138 1470 138 1210 140 1490 139 1210 140 1320 121 1270 140	0 1400 0 1420 0 1370 0 1400 0 1270 0 1420 0 1330	1350 1430 1420 1400 1450	1520 1550 1530 1440 1530	1550 1580 1560 1580 1580 1570	1580 1520 1510 1510 1580	1480 1 1370 1 1600 1 1520 1 1600 1 1580 1 390 1	330 1370 410 1330 620 1430 600 1330 520 1340 580 1380 620 1090	1290 763 1490 1620 1310
1 2 3 4 5	1390 1340 1340 1370 1410 1330 1310	1280 138 1470 138 1210 140 1490 139 1210 140 1320 121 1270 140 1250 142	0 1400 0 1420 0 1370 0 1400 0 1270 0 1420 0 1330 0 1430	1350 1430 1420 1400 1450 1410 1390 1220	1520 1550 1530 1440 1530 1440 1860 831	1550 1580 1560 1580 1580 1570 1570	1580 1520 1510 1510 1580 1500 1500	1480 1 1370 1 1600 1 1520 1 1600 1 1580 1 390 1 309 1	330 1370 410 1330 620 1430 600 1330 520 1340 580 1380 620 1090 640 1380	1290 763 1490 1620 1310 1470 1660 1430
1 2 3 4 5 6 7 8 9	1390 1340 1340 1370 1410 1330 1310 1300 1420	1280 138 1470 138 1210 140 1490 139 1210 140 1320 121 1270 140 1250 128	0 1400 0 1420 0 1370 0 1400 0 1270 0 1420 0 1330 0 1430 0 1430	1350 1430 1420 1400 1450 1410 1390 1220 1310	1520 1550 1530 1440 1530 1440 1860 831 807	1550 1580 1560 1580 1580 1570 1570 1570 1530	1580 1520 1510 1510 1580 1500 1500 1430 1410	1480 1 1370 1 1600 1 1520 1 1600 1 1580 1 390 1 309 1 317 1	330 1370 410 1330 620 1430 600 1330 520 1340 580 1380 620 1090 640 1380 410 1720	1290 763 1490 1620 1310 1470 1660 1430 1370
1 2 3 4 5	1390 1340 1340 1370 1410 1330 1310	1280 138 1470 138 1210 140 1490 139 1210 140 1320 121 1270 140 1250 142	0 1400 0 1420 0 1370 0 1400 0 1270 0 1420 0 1330 0 1430 0 1430	1350 1430 1420 1400 1450 1410 1390 1220	1520 1550 1530 1440 1530 1440 1860 831	1550 1580 1560 1580 1580 1570 1570	1580 1520 1510 1510 1580 1500 1500	1480 1 1370 1 1600 1 1520 1 1600 1 1580 1 390 1 309 1 317 1 323 1	330 1370 410 1330 620 1430 600 1330 520 1340 580 1380 620 1090 640 1380 410 1720 290 1380	1290 763 1490 1620 1310 1470 1660 1430 1370 1590
1 2 3 4 5 6 7 8 9 10	1390 1340 1340 1370 1410 1330 1310 1300 1420 1320	1280 138 1470 138 1210 140 1490 139 1210 140 1320 121 1270 140 1250 142 1250 128 1310 130	0 1400 0 1420 0 1370 0 1400 0 1270 0 1420 0 1330 0 1430 0 1430	1350 1430 1420 1400 1450 1410 1390 1220 1310 1230	1520 1550 1530 1440 1530 1440 1860 831 807 1010	1550 1580 1560 1580 1580 1570 1570 1570 1550 1560	1580 1520 1510 1510 1580 1500 1500 1430 1410 1410	1480 1 1370 1 1600 1 1520 1 1600 1 1580 1 390 1 317 1 323 1	330 1370 410 1330 620 1430 600 1330 520 1340 580 1380 640 1380 410 1720 290 1380	1290 763 1490 1620 1310 1470 1660 1430 1370 1590
1 2 3 4 5 6 7 8 9 10	1390 1340 1340 1370 1410 1330 1310 1300 1420 1320	1280 138 1470 138 1210 140 1490 139 1210 140 1320 121 1270 140 1250 128 1310 142 1310 130 1300 143	0 1400 0 1420 0 1370 0 1400 0 1270 0 1420 0 1330 0 1430 0 1430 0 1430	1350 1430 1420 1400 1450 1410 1390 1220 1310 1230	1520 1550 1530 1440 1530 1440 1860 831 807 1010	1550 1580 1560 1580 1580 1570 1570 1570 1550 1550 1560	1580 1520 1510 1510 1580 1500 1500 1430 1410 1410	1480 1 1370 1 1600 1 1520 1 1600 1 1580 1 390 1 309 1 317 1 323 1 1520 1 419 1	330 1370 410 1330 620 1430 600 1330 520 1340 580 1380 620 1090 640 1380 410 1720 290 1380 320 1670 340 1430	1290 763 1490 1620 1310 1470 1660 1430 1370 1590
1 2 3 4 5 6 7 8 9 10	1390 1340 1340 1370 1410 1330 1310 1300 1420 1320	1280 138 1470 138 1210 140 1490 139 1210 140 1320 121 1270 140 1250 142 1250 128 1310 142 1310 130 1300 143 1310 141	0 1400 0 1420 0 1370 0 1400 0 1270 0 1420 0 1330 0 1430 0 1430 0 1430 0 1300 0 1390	1350 1430 1420 1400 1450 1410 1390 1220 1310 1230 1190 1390 1360	1520 1550 1530 1440 1530 1440 1860 831 807 1010	1550 1580 1560 1580 1580 1570 1570 1530 1550 1560	1580 1520 1510 1510 1580 1500 1500 1430 1410 1580 1580 1590	1480 1 1370 1 1600 1 1520 1 1600 1 1580 1 390 1 309 1 317 1 323 1 1520 1 419 1 1630 1	330 1370 410 1330 620 1430 600 1330 520 1340 580 1380 620 1090 640 1380 410 1720 290 1380 320 1670 340 1430 650 1720	1290 763 1490 1620 1310 1470 1660 1430 1370 1590 1290 1890 1830
1 2 3 4 5 6 7 8 9 10	1390 1340 1340 1370 1410 1330 1310 1300 1420 1320 1320 1250 1260 1320	1280 138 1470 138 1210 140 1490 139 1210 140 1320 121 1270 140 1250 142 1250 128 1310 130 1300 143 1310 1301	0 1400 0 1420 0 1370 0 1400 0 1270 0 1430 0 1430 0 1430 0 1430 0 1430 0 1300 0 1390 0 1370	1350 1430 1420 1400 1450 1410 1390 1220 1310 1230 1190 1390 1360 1410	1520 1550 1530 1440 1530 1440 1860 831 807 1010	1550 1580 1560 1580 1580 1570 1570 1570 1550 1550 1560	1580 1520 1510 1510 1580 1500 1500 1430 1410 1410	1480 1 1370 1 1600 1 1520 1 1600 1 1580 1 390 1 317 1 323 1 1520 1 419 1 1630 1 561 1	330 1370 410 1330 620 1430 600 1330 520 1340 580 1380 620 1090 640 1380 410 1720 290 1380 320 1670 340 1430	1290 763 1490 1620 1310 1470 1660 1430 1370 1590 1290 1890 1830 1800
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1390 1340 1340 1370 1410 1330 1310 1300 1420 1320 1250 1260 1320 1290	1280	0 1400 0 1420 0 1370 0 1400 0 1270 0 1420 0 1330 0 1430 0 1430 0 1430 0 1300 0 1370 0 1370 0 2020	1350 1430 1420 1400 1450 1410 1390 1220 1310 1230 1190 1390 1360 1410 1140	1520 1550 1530 1440 1530 1440 1860 831 807 1010 1150 1380 1450 1290 1510	1550 1580 1580 1580 1580 1570 1570 1530 1550 1560 1480 1440 1270 1340 1470	1580 1520 1510 1510 1580 1500 1430 1410 1410 1580 1590 1520 1510	1480 1 1370 1 1600 1 1520 1 1600 1 1580 1 390 1 309 1 317 1 323 1 1520 1 419 1 1630 1 561 1 1420 1	330 1370 410 1330 620 1430 600 1330 520 1340 580 1380 620 1090 640 1380 410 1720 290 1380 320 1670 340 1430 650 1720 630 1530 650 1870	1290 763 1490 1620 1310 1470 1660 1430 1370 1590 1290 1890 1830 1810
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1390 1340 1340 1370 1410 1330 1310 1300 1420 1320 1250 1260 1320 1290	1280 138 1470 138 1210 140 1490 139 1210 140 1320 121 1270 140 1250 142 1250 128 1310 130 1300 143 1310 141 1270 139 1340 142	0 1400 0 1420 0 1370 0 1400 0 1270 0 1420 0 1330 0 1430 0 1430 0 1430 0 1300 0 1390 0 1370 0 2020	1350 1430 1420 1400 1450 1410 1390 1220 1310 1230 1190 1390 1360 1410 1140	1520 1550 1530 1440 1530 1440 1860 831 807 1010 1150 1380 1450 1290 1510	1550 1580 1560 1580 1580 1570 1570 1530 1550 1560 1480 1440 1470 1470	1580 1520 1510 1510 1580 1500 1430 1410 1410 1580 1520 1510 1510	1480 1 1370 1 1600 1 1520 1 1600 1 1580 1 390 1 317 1 323 1 1520 1 419 1 1630 1 1630 1 16420 1	330 1370 410 1330 620 1430 620 1330 520 1340 580 1380 640 1380 410 1720 290 1380 320 1670 340 1430 650 1720 630 1530 650 1870	1290 763 1490 1620 1310 1470 1660 1430 1370 1590 1890 1890 1830 1800 1810
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1390 1340 1340 1370 1410 1330 1310 1300 1420 1320 1250 1260 1320 1290	1280 138 1470 138 1210 140 1490 139 1210 140 1320 121 1270 140 1250 142 1250 128 1310 130 1300 143 1310 141 1270 139 1340 142	0 1400 0 1420 0 1370 0 1400 0 1270 0 1430 0 1430 0 1430 0 1430 0 1430 0 1390 0 1390 0 1390 0 1390 0 1390 0 1390	1350 1430 1420 1400 1450 1410 1390 1220 1310 1230 1190 1390 1360 1410 1140	1520 1550 1530 1440 1530 1440 1860 831 807 1010 1150 1380 1450 1290 1510	1550 1580 1560 1580 1580 1570 1570 1530 1550 1560 1480 1440 1270 1340 1470	1580 1520 1510 1510 1580 1500 1430 1410 1410 1500 1510 1510	1480	330 1370 410 1330 620 1430 600 1330 520 1340 580 1380 620 1090 640 1380 410 1720 290 1380 320 1670 340 1430 650 1720 630 1530 650 1870	1290 763 1490 1620 1310 1470 1660 1430 1370 1590 1290 1890 1830 1800 1810
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1390 1340 1340 1370 1410 1330 1310 1320 1420 1320 1250 1260 1290 1290	1280	0 1400 0 1420 0 1370 0 1400 0 1270 0 1420 0 1330 0 1430 0 1430 0 1430 0 1390 0 1390 0 1370 0 2020	1350 1430 1420 1400 1450 1410 1390 1220 1310 1230 1190 1390 1360 1410 1140	1520 1550 1530 1440 1530 1440 1860 831 807 1010 1150 1380 1450 1290 1510	1550 1580 1580 1580 1580 1570 1570 1530 1550 1560 1480 1440 1270 1340 1470	1580 1520 1510 1510 1510 1580 1500 1430 1410 1410 1500 1520 1510 1510	1480	330 1370 410 1330 620 1430 600 1330 520 1340 580 1380 620 1090 640 1380 410 1720 290 1380 320 1670 340 1430 650 1720 630 1530 650 1870	1290 763 1490 1620 1310 1470 1660 1430 1370 1590 1290 1890 1830 1800 1810
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	1390 1340 1340 1370 1410 1330 1310 1300 1420 1320 1250 1260 1320 1290 1290 1290	1280 138 1470 138 1210 140 1490 139 1210 140 1320 121 1270 140 1250 142 1250 128 1310 130 1310 141 1270 139 1340 142 1380 143 1390 135 1630 143 141	0 1400 0 1420 0 1370 0 1400 0 1270 0 1420 0 1330 0 1430 0 1430 0 1430 0 1390 0 1390 0 1370 0 2020	1350 1430 1420 1400 1450 1410 1390 1220 1310 1230 1190 1390 1360 1410 1140	1520 1550 1530 1440 1530 1440 1860 831 807 1010 1150 1380 1450 1290 1510	1550 1580 1580 1580 1580 1570 1570 1530 1550 1560 1440 1270 1340 1470	1580 1520 1510 1510 1580 1500 1430 1410 1410 1500 1510 1510	1480	330 1370 410 1330 620 1430 600 1330 520 1340 580 1380 620 1090 640 1380 410 1720 290 1380 320 1670 340 1430 650 1720 630 1530 650 1870	1290 763 1490 1620 1310 1470 1660 1430 1370 1590 1890 1890 1800 1810 1730 1700 1690 1660
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1390 1340 1340 1370 1410 1330 1310 1320 1420 1320 1250 1260 1320 1290 1290 1290 1290 1290 1280	1280	0 1400 0 1420 0 1370 0 1400 0 1270 0 1420 0 1330 0 1430 0 1430 0 1430 0 1390 0 1390 0 1370 0 2020 0 1410 0 1330 0 1430	1350 1430 1420 1400 1450 1410 1390 1220 1310 1230 1190 1390 1360 1410 1140 1210 1310 1540 1350	1520 1550 1530 1440 1530 1440 1860 831 807 1010 1150 1380 1450 1290 1510	1550 1580 1580 1580 1580 1570 1570 1570 1550 1560 1440 1270 1340 1470	1580 1520 1510 1510 1500 1500 1430 1410 1410 1510 1520 1510 1520 1470 1470 1470	1480	330 1370 410 1330 620 1430 600 1330 520 1340 580 1380 620 1090 640 1380 410 1720 290 1380 320 1670 340 1430 650 1720 650 1720 650 1870 341 1280 650 1580 378 1560 670 1540 414 1600	1290 763 1490 1620 1310 1470 1660 1430 1370 1590 1290 1890 1830 1800 1810 1730 1700 1690 1660 1670
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	1390 1340 1340 1370 1410 1330 1310 1320 1420 1320 1250 1260 1320 1290 1290 1290 1290 1290 1280	1280	0 1400 0 1420 0 1370 0 1400 0 1270 0 1420 0 1330 0 1430 0 1430 0 1430 0 1390 0 1390 0 1370 0 2020 0 1410 0 1380 0 1420	1350 1430 1420 1400 1450 1410 1390 1220 1310 1230 1190 1390 1360 1410 1140 1210 1310 1540 1350 1280	1520 1550 1530 1440 1530 1440 1860 831 807 1010 1150 1380 1450 1290 1510 1440 1530 1420 1530 1510	1550 1580 1580 1580 1580 1570 1570 1530 1550 1560 1440 1270 1340 1470 1460 1500 1560 1910 1580	1580 1520 1510 1510 1510 1500 1500 1430 1410 1410 1500 1520 1510 1520 1520 1470 1470 1550	1480	330 1370 410 1330 620 1430 620 1330 520 1340 580 1380 620 1090 640 1380 410 1720 290 1380 320 1670 340 1430 650 1720 630 1530 650 1870 341 1280 650 1580 378 1560 670 1540 414 1600	1290 763 1490 1620 1310 1470 1660 1430 1370 1590 1890 1890 1830 1800 1810 1730 1700 1690 1660 1670
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	1390 1340 1340 1370 1410 1330 1310 1300 1420 1320 1250 1260 1320 1290 1290 1290 1290 1290 1280	1280	0 1400 0 1420 0 1370 0 1400 0 1270 0 1430 0 1430 0 1430 0 1430 0 1430 0 1390 0 1370 0 1370 0 1370 0 1380 0 1380 0 1380 0 1340	1350 1430 1420 1400 1450 1410 1390 1220 1310 1230 1190 1390 1360 1410 1140 1210 1350 1280	1520 1550 1530 1440 1530 1440 1860 831 807 1010 1150 1380 1450 1290 1510 1440 1530 1420 1530 1510	1550 1580 1580 1580 1580 1570 1570 1570 1550 1560 1440 1270 1340 1470 1460 1500 1560 1560 1560 1560	1580 1520 1510 1510 1580 1500 1500 1430 1410 1410 1510 1520 1510 1510 1520 1470 1470 1470 1550	1480	330 1370 410 1330 620 1430 620 1330 520 1340 580 1380 620 1090 640 1380 410 1720 290 1380 320 1670 340 1430 650 1720 630 1530 650 1870 341 1280 650 1580 378 1560 670 1540 414 1600	1290 763 1490 1620 1310 1470 1660 1430 1370 1590 1890 1830 1800 1810 1700 1690 1660 1670
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 21 22 23	1390 1340 1340 1370 1410 1330 1310 1300 1420 1320 1250 1260 1320 1290 1290 1290 1290 1280	1280	0 1400 0 1420 0 1370 0 1400 0 1270 0 1420 0 1330 0 1430 0 1430 0 1430 0 1390 0 1390 0 1390 0 1390 0 1390 0 1390 0 1390 0 1440 0 1330 0 1440 0 1410	1350 1430 1420 1400 1450 1410 1390 1220 1310 1230 1190 1390 1360 1410 1140 1210 1310 1540 1350 1280	1520 1550 1530 1440 1530 1440 1860 831 807 1010 1150 1380 1450 1290 1510 1440 1530 1420 1530 1510	1550 1580 1580 1580 1580 1570 1570 1570 1550 1560 1440 1470 1470 1460 1560 1560 1580 1580 831	1580 1520 1510 1510 1580 1500 1500 1430 1410 1410 1510 1520 1510 1520 1470 1470 1470 1470 1470 1470 1430 1430 1440	1480	330 1370 410 1330 620 1430 600 1330 520 1340 580 1380 620 1090 640 1380 410 1720 290 1380 320 1670 340 1430 650 1720 650 1870 341 1280 650 1580 378 1560 670 1540 670 1600 670 1620 503 1640	1290 763 1490 1620 1310 1470 1660 1430 1370 1590 1290 1890 1830 1800 1810 1730 1700 1690 1660 1670
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	1390 1340 1340 1370 1410 1330 1310 1320 1420 1320 1250 1260 1320 1290 1290 1290 1290 1290 1290 1290 12	1280	0 1400 0 1420 0 1370 0 1400 0 1270 0 1420 0 1330 0 1430 0 1430 0 1430 0 1390 0 1390 0 1370 0 2020 0 1410 0 1360 0 1410	1350 1430 1420 1400 1450 1410 1390 1220 1310 1230 1190 1390 1360 1410 1140 1350 1280 1440 1360 1440 1440 1440	1520 1550 1530 1440 1530 1440 1860 831 807 1010 1150 1380 1450 1290 1510 1440 1530 1420 1530 1510	1550 1580 1580 1580 1580 1570 1570 1570 1550 1550 1440 1470 1440 1270 1340 1470 1460 1560 1910 1580 1580 1580 1580 1580 1580	1580 1520 1510 1510 1510 1580 1500 1430 1410 1410 1500 1520 1510 1510 1520 1470 1470 1470 1550	1480	330 1370 410 1330 620 1430 600 1330 520 1340 580 1380 620 1090 640 1380 410 1720 290 1380 320 1670 340 1430 650 1720 650 1870 341 1280 650 1580 378 1560 670 1540 414 1600 670 1660 670 1660 670 1660 670 1660 670 1660 670 1660 670 1660 670 1660 670 1660 670 1660 670 1660 670 1660 670 1660 670 1660 670 1660 670 1660	1290 763 1490 1620 1310 1470 1660 1430 1370 1590 1290 1890 1830 1800 1810 1730 1600 1670 1650 1650 1640 1640
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 21 22 23	1390 1340 1340 1370 1410 1330 1310 1300 1420 1320 1250 1260 1320 1290 1290 1290 1290 1280	1280	0 1400 0 1420 0 1370 0 1400 0 1270 0 1420 0 1330 0 1430 0 1430 0 1430 0 1390 0 1390 0 1370 0 2020 0 1410 0 1360 0 1410	1350 1430 1420 1400 1450 1410 1390 1220 1310 1230 1190 1390 1360 1410 1140 1350 1280 1440 1360 1440 1440 1440	1520 1550 1530 1440 1530 1440 1860 831 807 1010 1150 1380 1450 1290 1510 1440 1530 1420 1530 1510	1550 1580 1580 1580 1580 1570 1570 1570 1550 1560 1440 1470 1470 1460 1560 1560 1580 1580 831	1580 1520 1510 1510 1580 1500 1500 1430 1410 1410 1510 1520 1510 1520 1470 1470 1470 1470 1470 1470 1430 1430 1440	1480	330 1370 410 1330 620 1430 600 1330 520 1340 580 1380 620 1090 640 1380 410 1720 290 1380 320 1670 340 1430 650 1720 650 1870 341 1280 650 1580 378 1560 670 1540 670 1600 670 1620 503 1640	1290 763 1490 1620 1310 1470 1660 1430 1370 1590 1890 1830 1800 1810 1730 1690 1650 1650 1640 1620 1590
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25	1390 1340 1370 1410 1370 1410 1330 1310 1320 1320 1250 1260 1320 1290 1290 1290 1290 1280 1270 1300 1300 1420 1250	1280	0 1400 0 1420 0 1370 0 1400 0 1270 0 1430 0 1430 0 1430 0 1430 0 1390 0 1390 0 1390 0 1390 0 1390 0 1390 0 1390 0 1340 0 1410 0 1340	1350 1430 1420 1400 1450 1410 1390 1220 1310 1230 1190 1390 1360 1410 1140 1210 1350 1280 1440 1350 1440 1440 1440 1440	1520 1550 1530 1440 1530 1440 1860 831 807 1010 1150 1380 1450 1290 1510 1440 1530 1420 1530 1510	1550 1580 1580 1580 1580 1570 1570 1570 1550 1550 1440 1470 1440 1270 1340 1470 1460 1560 1910 1580 1580 1580 1580 1580 1580	1580 1520 1510 1510 1510 1580 1500 1430 1410 1410 1510 1520 1510 1510 1520 1470 1470 1470 1550	1480	330 1370 410 1330 620 1430 620 1330 520 1340 580 1380 620 1090 640 1380 410 1720 290 1380 320 1670 340 1430 650 1720 650 1870 341 1280 650 1580 378 1560 670 1540 414 1600 670 1600 670 1620 503 1650 620 1580 3356 1650	1290 763 1490 1620 1310 1470 1660 1430 1370 1590 1290 1890 1830 1800 1810 1730 1600 1670 1650 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	1390 1340 1340 1370 1410 1330 1310 1320 1420 1320 1250 1260 1320 1290 1290 1290 1290 1290 1290 1290 12	1280	0 1400 0 1420 0 1370 0 1400 0 1270 0 1420 0 1330 0 1430 0 1430 0 1430 0 1390 0 1390 0 1370 0 1370 0 1370 0 1340 0 1410 0 1410	1350 1430 1420 1400 1450 1410 1390 1220 1310 1230 1190 1390 1360 1410 1140 1210 1310 1540 1350 1280 1440 1440 1440 1440 1430	1520 1550 1530 1440 1530 1440 1860 831 807 1010 1150 1380 1450 1290 1510 1440 1530 1420 1530 1510	1550 1580 1580 1580 1580 1570 1570 1570 1550 1560 1480 1440 1270 1340 1470 1460 1500 1560 1910 1580 1580 831 1520 1570	1580 1520 1510 1510 1580 1500 1430 1410 1410 1580 1520 1520 1510 1510 1520 1470 1470 1470 1470 1490 1490	1480	330 1370 410 1330 620 1430 620 1330 520 1340 580 1380 620 1090 640 1380 410 1720 290 1380 320 1670 340 1430 650 1720 630 1530 650 1870 341 1280 650 1580 378 1560 670 1640 414 1600 670 1620 503 1640 670 1660 670 1680 660 1580 356	1290 763 1490 1620 1310 1470 1660 1430 1370 1590 1890 1830 1800 1810 1730 1600 1650 1650 1640 1620 1590
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 26 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1390 1340 1340 1370 1410 1330 1310 1320 1420 1320 1250 1260 1320 1290 1290 1290 1290 1290 1290 1290 12	1280	0 1400 0 1420 0 1370 0 1400 0 1270 0 1430 0 1430 0 1430 0 1430 0 1430 0 1300 0 1390 0 1370 0 2020 0 1410 0 1360 1420 10 1410 0 1410	1350 1430 1420 1400 1450 1410 1390 1220 1310 1230 1190 1390 1360 1410 1140 1210 1350 1280 1440 1440 1440 1440 1440 1440	1520 1550 1530 1440 1530 1440 1860 831 807 1010 1150 1380 1450 1290 1510 1440 1530 1420 1530 1510	1550 1580 1580 1580 1580 1570 1570 1570 1550 1560 1440 1270 1340 1470 1460 1500 1560 1580 1580 1580 1580 1570 1580	1580 1520 1510 1510 1580 1500 1500 1430 1410 1410 1510 1520 1510 1510 1520 1470 1470 1470 1470 1470 1470 1490 1490 1490 1490	1480	330 1370 410 1330 620 1430 620 1340 520 1340 580 1380 620 1090 640 1380 410 1720 290 1380 320 1670 340 1430 650 1720 630 1530 650 1870 341 1280 650 1580 378 1560 670 1540 414 1600 670 1600 670 1620 503 1644 620 1580 356 1650	1290 763 1490 1620 1310 1470 1660 1430 1370 1590 1290 1890 1830 1800 1810 1730 1700 1690 1660 1670 1650 1630 1640 1620 1590
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 27 28 29 29 20 20 20 20 20 20 20 20 20 20	1390 1340 1340 1370 1410 1330 1310 1320 1420 1320 1250 1260 1320 1290 1290 1290 1290 1290 1290 1280 1270 1300 1390 1420 1420 1420 1420 1420 1420 1420 142	1280	0 1400 0 1420 0 1370 0 1400 0 1270 0 1420 0 1330 0 1430 0 1430 0 1390 0 1390 0 1390 0 1390 0 1390 0 1390 0 1390 0 1340 0 1410 0 1410	1350 1430 1420 1400 1450 1410 1390 1220 1310 1230 1190 1390 1360 1410 1140 1210 1310 1540 1350 1280 1440 1440 1440 1440 1440 1440 1450	1520 1550 1530 1440 1530 1440 1860 831 807 1010 1150 1380 1450 1290 1510 1440 1530 1420 1530 1470 1260 1590 1450 1490	1550 1580 1580 1580 1580 1570 1570 1570 1550 1550 1480 1440 1270 1340 1470 1560 1910 1580 1580 1580 1580 1580 1570	1580 1520 1510 1510 1580 1500 1500 1430 1410 1410 1510 1520 1510 1520 1470 1470 1470 1470 1470 1490 1490 1490 1490 1490	1480	330 1370 410 1330 620 1430 620 1330 520 1340 580 1380 620 1090 640 1380 410 1720 290 1380 320 1670 340 1430 650 1720 650 1870 341 1280 650 1870 341 1280 670 1540 670 1600 670 1620 503 1650 670 1600 670 1620 503 1650 670 1690 670 1690 620 1680 620 1680 620 1680 660 1690 7700 1690 290 1690	1290 763 1490 1620 1310 1470 1660 1430 1370 1590 1290 1890 1830 1800 1810 1730 1700 1690 1660 1670 1650 1640 1620 1590 1540 1510
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 3 22 5 26 7 28	1390 1340 1340 1370 1410 1330 1310 1300 1420 1320 1250 1250 1250 1290 1290 1290 1290 1290 1290 1290 1290 1280 1270 1300 1420	1280	0 1400 0 1420 0 1370 0 1470 0 1270 0 1430 0 1430 0 1430 0 1430 0 1430 0 1430 0 1390 0 1370 0 2020 0 1310 0 1340 0 1340 0 1440 0 1440 0 1440 0 1440	1350 1430 1420 1400 1450 1410 1390 1220 1310 1230 1190 1360 1410 1140 1350 1280 1440 1350 1440 1440 1440 1440 1450	1520 1550 1530 1440 1530 1440 1860 1860 1831 807 1010 1150 1380 1450 1290 1510 1440 1530 1420 1530 1470 1260 1590 1450	1550 1580 1580 1580 1580 1570 1570 1570 1550 1560 1440 1270 1340 1470 1460 1500 1560 1580 1580 1580 1580 1570 1580	1580 1520 1510 1510 1580 1500 1500 1430 1410 1410 1510 1520 1510 1510 1520 1470 1470 1470 1470 1470 1470 1490 1490 1490 1490	1480	330 1370 410 1330 620 1430 620 1340 520 1340 580 1380 620 1090 640 1380 410 1720 290 1380 320 1670 340 1430 650 1720 630 1530 650 1870 341 1280 650 1580 378 1560 670 1540 414 1600 670 1600 670 1620 503 1644 620 1580 356 1650	1290 763 1490 1620 1310 1470 1660 1430 1370 1590 1890 1890 1830 1800 1810 1730 1690 1660 1670 1650 1640 1650 1650 1550 1540 1510

1190 1360 1480 1560

GUADALUPE RIVER BASIN 08173000 PLUM CREEK NEAR LULING, TX--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

					•	TOL DAIL!						
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	24.0	24.0	16.0	12.0	10.0	16.0	16.0	20.0	24.0	29.0	26.0	26.0
2	25.0	20.0	17.0	12.0	10.0	17.0	17.0	25.0	27.0	26.0	28.0	26.0
3	26.0	26.0	20.0	14.0	12.0	14.0	13.0	18.0	24.0	30.0	23.0	26.0
4	24.0	24.0	18.0	14.0	12.0	12.0	24.0	20.0	26.0	28.0	28.0	26.0
5	24.0	24.0	19.0	15.0	10.0	12.0	24.0	23.0	26.0	31.0	26.0	26.0
6	22.0	25.0	16.0	15.0	12.0	16.0	19.0	24.0	27.0	30.0	26.0	26.0
7	27.0	28.0	16.0	14.0		15.0	22.0	26.0	20.0	28.0	28.0	30.0
8	27.0	28.0	17.0	14.0		14.0	20.0	26.0	24.0	26.0	30.0	30.0
9	26.0	20.0	14.0	14.0	10.0	16.0	18.0	18.0	27.0	30.0	26.0	26.0
10	58.0	18.0	14.0	14.0	12.0	18.0	20.0	18.0	27.0	26.0	30.0	26.0
11	23.0	18.0	15.0	12.0	12.0	18.0	20.0	26.0	20.0	30.0	26.0	28.0
12	23.0	16.0	14.0	10.0	12.0	17.0	20.0	27.0	28.0	31.0	30.0	28.0
13	24.0	18.0	16.0	12.0	14.0	19.0	19.0	26.0	30.0	31.0	26.0	
14	25.0	22.0	18.0	14.0	14.0	19.0	24.0	25.0	30.0	31.0	30.0	
15	24.0	24.0	18.0	14.0	14.0	20.0	18.0	26.0	24.0	26.0	30.0	
16	24.0	26.0	16.0	15.0	14.0	18.0	20.0	25.0	30.0	32.0	30.0	
17	24.0	26.0	16.0	12.0	12.0	18.0	20.0	26.0	24.0	28.0	26.0	
18	24.0	26.0	15.0		14.0	16.0	24.0	24.0	24.0	32.0	30.0	
19	28.0	24.0	14.0	12.0	14.0	16.0	23.0	26.0	30.0	27.0	26.0	
20	24.0	22.0	14.0	10.0	12.0	18.0	18.0	24.0	30.0	27.0	26.0	
21	26.0	16.0	14.0	10.0	12.0	19.0	22.0	24.0	26.0	32.0	30.0	
55	24.0	18.0	15.0	12.0	14.0	19.0	18.0	26.0	30.0	26.0	30.0	
23	24.0	20.0	15.0	12.0	16.0	19.0	18.0	24.0	29.0	26.0	26.0	
24	24.0	50.0	14.0	12.0	14.0	18.0	24.0	26.0	30.0	28.0	28.0	
25	28.0	55.0	15.0	10.0	14.0	16.0	24.0	26.0	30.0	26.0	28.0	
26	24.0	20.0	15.0	10.0	14.0	15.0	24.0	26.0	30.0	32.0	26.0	
27	28.0	20.0	15.0	12.0	14.0	20.0	18.0	24.0	28.0	32.0	26.0	
28	58.0	19.0	14.0	12.0	18.0	18.0	24.0	24.0	30.0	30.0	30.0	
29	29.0	19.0	14.0	12.0		20.0	20.0	27.0	29.0	30.0	30.0	
30	26.0	18.0	16.0	12.0		20.0	25.0	26.0	24.0	26.0	26.0	
31	28.0		14.0	10.0		16.0		27.0		28.0	28.0	
MEAN	25.5	21.5	15.5	12.5	13.0	17.0	20.5	24.5	27.0	29.0	27.5	27.0

08174600 PEACH CREEK BELOW DILWORTH, TX

LOCATION.--Lat 29°28'26", long 97°18'59", Gonzales County, Hydrologic Unit 12100202, on right bank at downstream side of bridge on U.S. Highway 90-A, 1.3 mi (2.1 km) downstream from Mitchell Creek, 3.1 mi (5.0 km) southwest of Dilworth, 6.4 mi (10.3 km) upstream from mouth, and 8.5 mi (13.7 km) southeast of Gonzales.

DRAINAGE AREA .-- 460 mi 2 (1,191 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- August 1959 to current year.

REVISED RECORDS .-- WSP 2123: Drainage area.

GAGE.--Water-stage recorder. Prior to Feb. 11, 1960, nonrecording gage at same site and datum. Datum of gage is 213.53 ft (65.084 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Recording rain gage located at station was discontinued May 30, 1978.

AVERAGE DISCHARGE .--19 years, 160 ft3/s (4.531 m3/s), 4.72 in/yr (120 mm/yr), 115,900 acre-ft/yr (143 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 76,800 ft³/s (2,170 m³/s) Apr. 20, 1977, gage height, 33.11 ft (10.092 m); no flow at times in 1959-67, 1969-74, 1978.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1840, 35.3 ft (10.76 m) in June 1940. A stage of 32.8 ft (10.00 m) was reached June 30, 1936, but may have been affected by backwater from Guadalupe River, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,820 ft 3 /s (79.9 m 3 /s) June 7, gage height, 25.53 ft (7.782 m), no other peak above base of 1,800 ft 3 /s (51.0 m 3 /s); no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES

						term incor.						
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.92 1.1 1.3 1.1	6.2 143 115 23 9.9	1.1 1.2 1.2 1.2 1.4	1.6 1.6 1.7 1.5	3.5 3.2 3.2 3.2 3.2	7.9 7.8 7.8 7.7 7.4	4.8 4.9 4.7 4.7	6.6 6.3 7.0 6.8 6.7	1.8 5.2 8.4 34	2.2 2.9 2.1 1.9 1.8	8.8 83 86 17 8.4	.23 .18 1.3 1.2 .92
6 7 8 9	.84 .87 .93 .92	5.0 2.7 9.7 45 29	1.6 1.6 1.9 2.1 2.0	1.6 1.6 1.5 1.7	3.1 5.3 152 356 87	7.7 22 32 25 18	4.3 4.3 4.2 4.2	6.5 6.5 6.2 5.3 4.7	19 1930 2090 1080 97	1.8 1.6 1.3 1.4	5.5 3.4 1.3 .45	.41 .67 1.8 4.0 3.8
11 12 13 14 15	1.9 1.3 1.3 1.3	14 6.6 3.3 2.2 1.8	2.0 2.1 2.4 2.5 1.9	1.9 5.3 5.2 3.7 6.0	31 19 14 12	9.9 8.7 8.1 7.5	13 12 6.9 6.4 5.5	4.1	27 15 11 8.6 7.7	1.4 1.1 .72 .08 .00	.12 .29 .05 .00	12 79 138 880 1310
16 17 18 19 20	1.2 1.1 1.0 1.2 1.1	1.6 1.4 1.3 1.2	2.1 2.2 1.4 1.4	5.0 174 116 107 38	10 10 118 135 34	7.0 6.6 6.1 5.9 5.8	4.7 4.1 3.7 3.3 3.3	1.9 1.9 1.7 1.6	9.7 7.6 6.3 5.1 4.6	.00 .00 .00 .00	.00 .00 .00 .00	1370 485 27 11 6.8
21 22 23 24 25	1.1 1.4 1.9 1.9	1.0 .99 1.1 1.2 1.0	1.2 1.1 1.3 1.4	14 7.7 6.3 6.1 5.1	19 13 11 9.8 9.1	5.8	3.2 51 43 12 9.7	4.2	4.4 3.8 3.6 3.4 2.9	.00 .00 .00	1.6 1.8 .81 .71	19 341 36 18 8.8
26 27 28 29 30 31	1.6 1.5 1.4 1.4 1.4	.96 .99 1.1 1.1 1.2	1.3 1.4 1.6 1.6	4.3 3.9 3.7 3.5 3.4 3.4	8.7 8.3 8.2	6.8	7.9 7.3 7.0 6.7 6.6	4.3 4.1 3.0 2.0 .97	2.3 2.6 2.6 2.3 2.3	.00 .00 .00 .00	.34 .11 .00 .00	6.3 4.8 3.8 3.1 2.8
TOTAL MEAN MAX MIN CFSM IN. AC-FT	39.76 1.28 1.9 .84 .003 .00	433.64 14.5 143 .96 .03 .04 860	49.7 1.60 2.5 1.1 .003 .00	539.3 17.4 174 1.5 .04 .04	1100.8 39.3 356 3.1 .09 .09 2180	32 4.9 .02	262.4 8.75 51 3.2 .02 .02 520	123.57 3.99 7.0 .97 .009 .01 245	5478.2 183 2090 1.8 .40 .44 10870	22.52 .73 2.9 .00 .002 .002	220.32 7.11 86 .00 .02 .02 437	4776.91 159 1370 .18 .35 .39 9470
	1977 TO 1978 TO			AN 317 AN 36.5	MAX MAX		IN .27 IN .00	CFSM .69 CFSM .08	IN 9.37 IN 1.08	AC-FT AC-FT	229800 26440	

08174600 PEACH CREEK BELOW DILWORTH, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: April 1962 to current year.

DATE	TIME	FL INS TAN	EAM- CO OW, DI TAN- AI	PE- IFIC ON- UCT- NCE ICRO- HOS) (TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS; NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT 31	1325		1.4	620	7.5	24.5	85	0	28	3.7	120
DEC	1323			020		24.5	03		-		
12 JAN	1525		2.1	644	7.5	17.0	85	0	26	4.8	110
24 MAR	1723		6.0	413	6.9	7.5	110	52	32	6.7	34
07	1707	1	7	920	7.4	14.5	200	110	58	14	120
APR										15	89
19	1719		3.4	790	7.4	22.0	200	73	57	15	09
MAY 31	1715		1.2	890	7.4	26.0	240	57	62	20	110
JUL 12	0830		1.2	600	7.2	27.0	81	0	25	4.6	100
AUG	0030		1.6	000	1.0	21.00	0.				
23	1515		.87	424	8.0	29.0	41	0	13	2.1	79
DATE	SC	DDIUM AD- DRP- TION ATIO	POTAS- SIUM. DIS- SOLVED (MG/L AS K)	BONATE		_ (MG/	ED SOL	E, RID - DI VED SOL	S- SOL VED (MG	- CONS VED TUEN /L DI SOL	OF TI-
OCT									1.0		.14
31	•	5.7	3.4	30	0	0 38	4	6	.2 1	5	402
DEC 12		5.2	3.9	23	0	0 59	5	0	.2 2	0	387
JAN 24 MAR		1.4	5.9	6	8	0 70	4	1	.1 1	4	237
07		3.7	5.8	11	0	0 130	16	0	.1 1	2	554
19 MAY		2.7	6.6	16	0	0 140	10	0	•2 1	6	503
31 JUL	•	3.1	6.0	22	0	0 160	10	0	.3 1	3	580
12 AUG		4.8	4.5	25	0	0 34	4	6	•5 5	0	358
23		5.4	4.0	22	0	0 14	. 2	4	.2 1	6	261

08175000 SANDIES CREEK NEAR WESTHOFF, TX

LOCATION.--Lat 29°12'54", long 97°26'57", De Witt County, Hydrologic Unit 12100202, on left bank 100 ft (30 m) downstream from bridge on county highway, 1.9 mi (3.1 km) upstream from Birds Creek, 2.0 mi (3.2 km) northeast of Westhoff, and 20.4 mi (32.8 km) upstream from mouth.

DRAINAGE AREA .-- 549 mi 2 (1,422 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--March 1930 to November 1934, August 1959 to current year.

REVISED RECORDS.--WSP 2123: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 178.27 ft (54.337 m) National Geodetic Vertical Datum of 1929. Prior to Nov. 9, 1934, water-stage recorder at site 150 ft (46 m) upstream at datum 0.86 ft (0.262 m) higher. Aug. 10, 1959, to Feb. 2, 1960, nonrecording gage at present site and datum.

REMARKS.--Water-discharge records good. No known diversion above station. Recording rain gage was discontinued in June 1978.

AVERAGE DISCHARGE.--23 years (water years 1931-34, 1960-78), 132 ft³/s (3.738 m³/s), 3.27 in/yr (83 mm/yr), 95,630 acre-ft/yr (118 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $79,700 \text{ ft}^3/\text{s}$ (2,260 m³/s) Sept. 22, 1967, gage height, 32.34 ft (9.857 m), from rating curve extended above 21,000 ft $^3/\text{s}$ (595 m³/s) on basis of slope-area measurement of 92,700 ft $^3/\text{s}$ (2,630 m $^3/\text{s}$); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge since at least 1864, 92,700 ft³/s (2,630 m³/s) July 2, 1936, gage height, 33.1 ft (10.09 m), from floodmarks, on basis of computation of peak flow, at present site and datum. Flood in October 1913 reached a stage of 26.0 ft (7.92 m), present site and datum, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,000 ft3/s (28.3 m3/s) and maximum (*):

Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)	Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)
Nov. 3	1200	*1,520	43.0	16.20	4.938	Sept. 16	1900	1,330	37.7	15.44	4.706

Minimum discharge, $0.56 \text{ ft}^3/\text{s}$ ($0.016 \text{ m}^3/\text{s}$) July 25.

		DISCHA	RGE, IN C	UBIC FEET		ND, WATER AN VALUES	YEAR O	TOBER 197	7 TO SEPTE	MBER 197	8	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5.5 5.8 5.4 4.8 4.9	297 1050 1460 882 231	10 11 11 11 10	12 12 12 12 12	11 11 11 11	14 14 13 13	11 10 10 9.9 9.8	20 18 18 20 19	6.7 6.4 14 30 34	3.3 4.0 4.3 4.2 3.5	119 124 150 100 39	2.7 4.8 5.1 4.6 5.9
6 7 8 9	5.1 4.6 5.3 5.3	68 38 287 401 415	9.7 9.6 9.5 9.4 9.6	13 13 12 11	11 36 136 116 85	13 372 262 89 55	9.6 9.4 9.2 9.6 9.8	18 16 15 13	29 79 253 480 263	3.1 2.8 2.4 2.0 1.9	18 11 22 12 7.1	5.3 4.2 3.9 4.0 7.0
11 12 13 14 15	5.1 5.0 4.8 4.5 4.5	349 100 41 27 21	9.1 8.7 8.8 9.2 9.5	17 21 22 17 15	49 33 25 22 23	37 27 22 18 16	9.9 14 24 19 14	11 11 10 9.2 8.8	79 39 26 19	1.8 1.6 1.4 1.3	5.1 4.4 4.1 3.8 3.5	29 47 269 537 784
16 17 18 19 20	5.1 4.8 4.5 4.3 4.6	18 16 15 13	10 9.6 9.4 10	15 14 13 23 20	25 23 42 59 53	15 14 13 13 12	12 12 11 10 9.8	8.0 7.8 7.6 7.3 7.3	12 11 9.6 8.5 7.8	1.1 .94 .84 .79	3.2 2.9 2.8 2.7 3.0	1210 753 103 48 34
21 22 23 24 25	4.9 11 26 57 89	11 11 11 10 11	9.8 8.9 8.5 9.0 9.1	15 13 13 12 11	34 26 21 18 16	12 12 11 13 14	9.4 12 37 528 533	7.9 9.3 9.1 9.2	7.3 6.7 6.3 6.1 5.9	.78 .75 .74 .75	3.0 2.5 2.1 2.0 2.0	29 44 32 39 32
26 27 28 29 30 31	23 19 16 11 8.8 7.6	11 11 10 9.9	9.6 9.4 9.2 10 11	9.9 9.7 9.8 9.9	15 15 18	21 21 15 13 12	130 54 36 27 23	9.8 8.8 8.2 8.2 7.3	5.5 5.2 4.8 4.3 3.3	.96 .99 1.9 2.8	2.0 1.9 1.9 2.7 2.6 2.5	22 17 14 13 12
TOTAL MEAN MAX MIN CFSM IN. AC-FT	372.1 12.0 89 4.3 .02 .03 738	5846.9 195 1460 9.9 .36 .40 11600	301.6 9.73 12 8.5 .02 .02 598	421.3 13.6 23 9.7 .03 .03	956 34.1 136 11 .06 .06	1199 38.7 372 11 .07 .08 2380	1623.4 54.1 533 9.2 .10 .11 3220	356.8 11.5 20 7.3 .02 .02 708	1477.4 49.2 480 3.3 .09 .10 2930	80.28 2.59 15 .74 .005 .01 159	662.8 21.4 150 1.9 .04 .04	4115.5 137 1210 2.7 .25 .28 8160
CAL YR WTR YR		TAL 69820 TAL 17413				500 MIN 460 MIN	1.1	CFSM .35 CFSM .09	IN 4.73 IN 1.18	AC-FT AC-FT	138500 34540	

08175000 SANDIES CREEK NEAR WESTHOFF, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: April 1962 to current year.

DATE	ΤI	ME	INST	CEAM- CO DW. DI TAN- AI	PE- IFIC ON- UCT- NCE ICRO- HOS) (PH UNITS)	TEMP ATU (DEG	ER- RE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	D I	CIUM S- DLVED NG/L S CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
NOV 02	16	52	121	n	185	6.5	1	6.5	35		2	10	2.4	18
DEC	10	32	121	,	103		-							
14	15	57		9.3	1200	7.5	1	5.0	220	26	•	63	14	150
JAN								202	44.	-			17	180
26	14	40	1	0	1276	7.8		8.5	250	56	•	71	17	100
MAR					1100	7 7	,	4.0	220	45		64	15	160
06 APR	13	25	1.	3	1180	7.7	1	4.0	220	7	•	04		
20	15	35		9.8	1225	7.6	1	4.0	220	2:	1	61	16	150
JUN	13	33			1223									100
02	15	30		6.3	1500	7.8	2	8.0	260	40	ó	71	20	190
JUL									270.1				10	160
10	11	40		1.8	1100	7.4	2	7.0	200)	59	12	
29	12	55		1.1	1390	7.9	2	6.5	160)	49	10	210
DAT	ΤE	SOF	ON	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BONATE	BONA (MG	TE /L	SULFAT DIS- SOLVE (MG/L AS SO4	D IS D SOL (MG	E • R: - (VED S(LUO- IDE + DIS- DLVED 4G/L 5 F)	SILIO DIS- SOLV (MG/ AS SIO	CA. SUM CONSIED TUE!	IDS, OF STI- NTS, IS- LVED G/L)
NOV			1.3	6.6	4	0	0	15	2	0	.1	1		106
DEC														
14			4.5	10	23	0	0	97	19	0	.3	2)	658
JAN							-					1		758
26			5.0	9.3	27	0	0	130	20	0	.4			130
MAR					21	•	0	110	20	0	.3	1	5	678
06.			4.7	9.2	21	.0	U	110	20	U	• • •			
			4.4	11	24	.0	0	120	18	0	.4	1	7	674
JUN				•••	_		43	12.23						
			5.1	11	26	0	0	98	25	0	.4	19	5	784
JUL									5.12		-	-		452
	• • •		5.0	11	26	0	0	76	18	0	.4	2	•	652
AUG				12	24		U	56	26	.0	.3	2:	3	739
29	• • •		7.1	12	24	U	0	50	20	U	• 3	-		

08175800 GUADALUPE RIVER AT CUERO, TX

LOCATION.--Lat 29°03'57", long 97°19'16", De Witt County, Hydrologic Unit 12100204, on left bank at downstream side of bridge on U.S. Highways 77-A, 87, and 183, 2.1 mi (3.4 km) upstream from Gohlke Creek, 2.4 mi (3.9 km) southwest of Cuero, 4.2 mi (6.8 km) downstream from Sandies Creek, and at mile 100.6 (161.9 km).

DRAINAGE AREA .-- 4,934 mi2 (12,779 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--December 1902 to December 1906, August 1916 to December 1935, January 1964 to current year. Published as "near Cuero" 1902-6, and as "below Cuero" 1916-35. Gage height records collected at site 7.1 mi (11.4 km) upstream from Sandies Creek from 1941 to 1966 (published in reports of the National Weather Service) and at present site since June 12, 1968.

REVISED RECORDS.--WDR TX-1968-1969-1: Drainage areas at all sites.

GAGE.--Water-stage recorder. Datum of gage is 128.64 ft (39.209 m) National Geodetic Vertical Datum of 1929. Dec. 26, 1902, to June 1903, nonrecording gage at site 7.1 mi (11.4 km) upstream at different datum, gage heights moved to site 3.3 mi (5.3 km) upstream from present site before computation; July 1903 to December 1906 nonrecording gage 3.3 mi (5.3 km) upstream at different datum; Aug. 19, 1916, to Dec. 16, 1935, water-stage recorder at site 5.0 mi (8.0 km) downstream at datum 3.19 ft (0.972 m) lower.

REMARKS.--Water-discharge records good. Flow below New Braunfels is partly regulated by a series of small power dams, combined capacity of six largest dams 33,550 acre-ft (41.4 hm³). Flow is affected at times by discharge from flood-detention pools of 50 floodwater-retarding structures with combined detention capacity of 68,060 acre-ft (83.9 hm³). These structures control runoff from 220 mi² (570 km²) in the Comal, San Marcos, and Plum Creek drainage basins. Many small diversions above station. National Meather Service gage-height telemeter at station.

AVERAGE DISCHARGE.--34 years (water years 1904-6, 1917-18, 1921-35, 1965-78), 1,630 ft³/s (46.16 m³/s), 1,181,000 acre-ft/yr (1.46 km³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 101,000 ft³/s (2,860 m³/s) May 30, 1929, gage height, 35.2 ft (10.73 m), site and datum then in use, from rating curve extended above 45,000 ft³/s (1,270 m³/s); maximum gage height, 36.90 ft (11.247 m) May 14, 1972; minimum daily discharge, 79 ft³/s (2.24 m³/s) Aug. 13, 14, 1967.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1900, probably occurred July 2, 1936, 44.33 ft (13.512 m), present site and datum, from information by Texas Department of Highways and Public Transportation. Other floods at this station occurred Mar. 1, 1903, 43.0 ft (13.11 m), at different site and datum; Oct. 4, 1913, 37.57 ft (11.451 m), at different site and datum; Dec. 6, 1913, 34.57 ft (10.537 m), at different site and datum; Oct. 20, 1919, 32.2 ft (9.81 m), site and datum then in use; May 30, 1929, 35.2 ft (10.73 m), site and datum then in use; June 21, 1961, 37.0 ft (11.28 m), present site and datum; all from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 7,500 ft3/s (212 m3/s) and maximum (*):

Date	Time	Time Discharge (ft ³ /s) (m ³ /s)		Gage height (ft) (m)		Date	Time	Disch (ft3/s)	arge	Gage h	eight (m)
June 9 Sept. 14	1600 0100	8,450 *8,480	239 240	16.27 16.30	4.959 4.968	Sept. 15	1200	8,100	229	15.89	4.843

Minimum discharge, 473 ft³/s (13.4 m³/s) July 28, 29.

		DISCHA	RGE, IN	CUBIC FEET	PER SEC	OND, WATER	YEAR OC	TOBER 1977	TO SEPTE	MBER 197	8	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	813	1390	923	870	818	842	861	591	573	604	646	1620
	808	2890	986		849	829	722	657	570	615	803	1580
3	804	4820	983	867	828	848	679	714	602	614	792	1480
2 3 4	824	3810	903		827	796	747	756	718	610	1100	1500
5	861	2040	810		805	794	768	669	752	602	873	1600
6	781	1390	851		792	794	839	664	745	597	1290	1550
7	768	1300	863		855	1250	796	659	881	589	2650	1550
8	804	2100	. 853		980	1660	697	669	4950	583	4350	1550
9	1000	2390	868	823	1340	1360	734	662	8030	565	4780	1550
10	819	1990	868	800	1440	1060	738	660	4740	532	4890	1550
11	815	1760	851		1080	866	814	654	1510	528	4940	4000
12	797	1280	848		926	892	954	650	1140	521	4960	2810
13	787	1060	885		909	834	921	626	975	536	5000	4070
14	768	1070	904		956	819	862	625	820	513	5020	6750
15	827	1050	862	854	987	866	848	621	803	521	5020	7640
16	780	1050	862		953	833	810	600	788	517	5030	6290
17	767	1040	836	911	913	795	775	559	766	513	5030	4720
18	775	957	879		896	795	769	583	747	510	5020	2570
19	824	936	850		1250	785	781	595	715	506	5020	1760
20	783	956	826	904	1200	788	762	591	698	498	5020	1800
21	815	901	848		1000	807	749	609	693	491	5060	3920
22	882	910	824		896	852	728	756	679	498	5050	5380
23	918	923	812	826	844	776	3050	838	663	498	5030	5260
24	920	910	830		831	747	1810	675	651	484	5020	2690
25	959	1020	856	830	824	833	1630	612	644	487	5000	1930
26	1210	960	833		837	971	1020	574	641	484	4990	1860
27	1020	928	805		851	860	725	591	632	491	4810	1800
28	998	922	838	781	833	819	623	587	624	495	2820	1780
29	1060	903	844			795	633	586	618	487	1820	1760
30	1120	876	841	796		887	627	598	615	517	1700	1730
31	1120		839	816		827		574		517	1650	
TOTAL	27227	44532	26681		26520	27680	27472	19805	37983	16523	115184	86050
MEAN	878	1484	861		947	893	916	639	1266	533	3716	2868
MAX	1210	4820	986		1440	1660	3050	838	8030	615	5060	7640
MIN	767	876	805		792	747	623	559	570	484	646	1480
AC-FT	54000	88330	52920	53450	52600	54900	54490	39280	75340	32770	228500	170700
AC-FT	54000	88330	52920	53450	52600	54900	54490	39280	75340	32770	228500	17070

CAL YR 1977 TOTAL 1023178 MEAN 2803 MAX 45400 MIN 767 AC-FT 2029000 MTR YR 1978 TOTAL 482604 MEAN 1322 MAX 8030 MIN 484 AC-FT 957200

08175800 GUADALUPE RIVER AT CUERO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: March 1968 to current year.

DATE	TIME	STREA FLOW INSTA TANEC	M- CO N- DU N- AN DUS (MI	FIC N- CT- CE CRO-		MPER- ATURE DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
NOV 02	1542	3050		410	7.6	22.0	150	19	45	9.3	22
DEC									141	2.2	
14 JAN	1229	960		648	7.8	15.0	280	44	83	18	29
23 MAR	1530	809		588	8.2	7.5	260	43	78	17	31
07 APR	1350	1260		570	8.0	17.5	260	56	75	18	32
20 JUN	1400	759		670	7.8	21.5	270	52	78	19	34
01 JUL	1106	605		640	7.8	25.5	250	41	72	18	37
10	1600	524		570	7.7	31.0	230	35	65	17	30
28	1500	2610		312	8.2	28.0	140	2	41	9.6	9.1
DATE	50 T	DIUM AD- RP- ION TIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFA DIS- SOLV (MG/	DIS ED SOL	E RIC	DE + DIS IS - SOI LVED (MO	LVED TUEN G/L DI S SOL	OF TI-
NOV 02		.8	4.1	160		0 21	3	1	.2	13	224
DEC 14		.8	2.3	290		0 35	4	2	.3	13	365
JAN 23		.8	2.6	270		0 38	. 4	6	.3	11	357
MAR 07		.9	2.0	250		0 39	4	3	•2	6.5	339
APR 20		.9	2.6	270		0 40	5	60	•3	13	370
JUN 01		1.0	2.5	260		0 36	5	i3	.3	11	358
JUL 10		•9	2.6	240		0 33	4	1	•3	16	323
28	C ₁	.3	2.6	170		0 12	1	5	•1	9.8	183

08176500 GUADALUPE RIVER AT VICTORIA, TX (National stream-quality accounting network)

LOCATION.--Lat 28°47'34", long 97°00'46", Victoria County, Hydrologic Unit 12100204, on left bank just upstream from pier of upstream bridge of two bridges on U.S. Highway 59 in Victoria, 1,300 ft (396 m) upstream from Southern Pacific Railroad Co. bridge, 15 mi (24 km) upstream from Coleto Creek, and at mile 50.7 (81.6 km).

DRAINAGE AREA.--5,198 mi² (13,463 km²).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--November 1934 to current year. Gage-height records collected in this vicinity since 1904 are contained in reports of the National Weather Service.

REVISED RECORDS .-- WSP 2123: Drainage area.

GAGE .-- Water-stage recorder. Datum of gage is 29.15 ft (8.885 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Many diversions above station. Records furnished by the city of Victoria show that during the year they discharged about 6,500 acre-ft (8.01 hm³) of sewage effluent below station.

AVERAGE DISCHARGE .--43 years (water years 1936-78), 1,769 ft³/s (50.10 m³/s), 1,282,000 acre-ft/yr (1.58 km³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 179,000 ft 3 /s (5,070 m 3 /s) July 3, 1936, gage height, 31.22 ft (9.516 m); minimum daily, 14 ft 3 /s (0.40 m 3 /s) Aug. 20, 1956.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1833, that of July 3, 1936. Flood of June 1, 1929, reached a stage of 30.2 ft (9.21 m), present site and datum.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 7,800 ft3/s (221 m3/s) and maximum (*):

Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)	Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)
Sept. 12	1300	11,200	317	24.23	7.385	Sept. 14	0500	*12,700	360	25.64	7.815

Minimum discharge, 565 ft³/s (16.0 m³/s) July 25.

		DISCHA	ARGE, IN C	CUBIC FEET		OND, WATER		TOBER 1977	TO SEPTE	MBER 197	8	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	858	1280	965	919	856	865	840	794	842	698	628	1790
2	862	2120	1000	942	874	878	867	762	789	692	811	1790
4	868 860	3340 4680	1060 1030	946	868	858	728	814	1850	696	820	1660
5	893	3110	945	912 891	872 852	882 833	724 777	866 886	1460 1060	695 687	979 1110	1670 1720
6	905	1740	888	892	840	843	808	792	987	680	993	1690
7	827	1430	933	913	949	864	860	804	1230	672	1530	1670
8	844	1580	938	909	1160	1440	804	788	1930	664	3350	1680
10	908 1010	2740 2210	924 942	915 859	1180 1480	1480 1270	725 783	797 786	5·910 7060	655 636	4380 4650	1690 1680
11	877	1960	934	914	1350	1020	771	785	3330	620	4750	1980
12	865	1640	923	983	1080	909	935	775	1520	615	4830	8640
13	857	1250	934	995	982	927	975	770	1260	616	4880	6000
14	838	1160	959	843	965	865	929	748	1100	628	4920	11500
15	854	1140	979	900	1030	860	889	744	962	601	4950	11300
16	870	1120	945	892	1040	891	877	746	941	605	4990	8190
17	836	1120	948	896	1090	842	829	708	914	603	5010	6220
18 19	833 848	1090 1020	921 973	1050 1320	1060 1040	813	815	675	888	600	5040	4460
20	872	1020	915	1130	1330	809 796	799 814	713 703	866 823	608 614	5050 5080	2470 2050
21	841	1030	924	945	1160	812	789	743	810	590	5120	2610
22	977	972	923	900	1020	829	833	745	800	581	5140	5640
23	1010	1000	909	875	919	875	1210	954	783	586	5150	6290
24 25	1040 971	990	893	862	884	805	2850	920	760	599	5140	4850
		1010	915	841	868	802	1780	806	744	571	5150	2650
26	1080	1070	936	880	865	903	1560	747	736	572	5130	2210
27	1190	1010	896	881	876	962	1070	713	725	572	5120	2110
28 29	1030 1050	996	895	838	886	875	886	737	722	587	4470	2040
30	1110	1020 977	928 914	831 850		845 838	803 815	727 755	711 706	588 583	2460 1940	1990 1940
31	1120		909	849		908	815	740	706	632	1860	1940
TOTAL	28804	46825	29098	28573	28376	28399	29145	24043	43219	19346	115431	112180
MEAN	929	1561	939	922	1013	916	972	776	1441	624	3724	3739
MAX	1190	4680	1060	1320	1480	1480	2850	954	7060	698	5150	11500
MIN	827	972	888	831	840	796	724	675	706	571	628	1660
AC-FT	57130	92880	57720	56670	56280	56330	57810	47690	85720	38370	229000	222500

CAL YR 1977 WTR YR 1978 50100 2088000 TOTAL 533439 MEAN 1461 MAX 11500 1058000

08176500 GUADALUPE RIVER AT VICTORIA, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1945 to September 1946, October 1948 to current year. Sediment records: October 1972 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1945 to current year. WATER TEMPERATURES: November 1950 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 1,950 micromhos on several days during January 1946; minimum daily, 155 micromhos Sept. 22, 1967.

WATER TEMPERATURES: Maximum daily, 32.0°C Aug. 4, 27, 1952; minimum daily, 2.0°C Jan. 11, 12, 1962, Jan. 24, 1963.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 722 micromhos Mar. 18; minimum daily, 175 micromhos Sept. 12.
WATER TEMPERATURES: Maximum daily, 30.0°C on many days during summer months; minimum daily, 7.0°C Jan. 20, 21.

WAILK	GUALITY	UAIA	WAIER	TEAR	OCLOBER	19//	10	SEPTEMBER	19/8

DATE	TIME	STRE	AM- CO W. DO AN- AI DUS (M:	PE- IFIC ON- UCT- NCE ICRO-	PH (UNITS)	TEMPER- ATURE (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (JTU)	OXYGEN DIS- SOLVE (MG/L	, (PE CE D SAT	IS- D VED ER- ENT TUR- 5	XYGEN EMAND, BIO- CHEM- ICAL, DAY MG/L)	COLI- FORMS TOTAL IMMED (COLS- PER 100 ML	, F 0. 0 U	OLI- ORM, ECAL, .7 M-MF OLS./
ОСТ															
20	1525	870		599	7.4	23.5	0	15	7.	8	94	1.0	53	30	32
NOV															5400
DEC 10	1630	5060		302	7.3	17.5	110	130	8.	4	90	2.3	8400	10	5400
08	1505	938		648	7.7	18.0	15	15	9.	0	98	1.0	210	00	310
JAN 26 FER	1515	906		637	7.9	10.0	15	8	11.	1	102	.9	17	70	8
	1715	1030		621	7.7	11.0	30	20	11.	0	103	1.2	21	0	36
	1535	891		673	8.0	18.5	25	20	9.		105	.4	14	0	64
APR 24	1245	2800		622	7.5	22.0	25	200	я.	0	94		760	0.0	1100
MAY		100													
22 JUN	1245	736		655	7.8	28.5	10	10	5.	8	75	1.1	34	+0	140
12	1155	1480		312	7.3	29.5	140	140	5.	0	66	3.0	580	00	240
JUL 17	1245	601		595	7.8	31.0	5	20	7.	4	100	.8	58	30	28
AUG															
SEP SEP	1130	5140		340	8.0	27.5	30	150	7.	8	100	1.2		-	380
	1320	2190		328	7.9	25.5	50	85	7.	5	94	.3			360
DATE	FE KF (CO	REP- OCCI CAL, AGAR LS. FR ML)	HARD- NESS (MG/L AS CACO3)	HARE NESS NONCA BONAT (MG/ CACO	CALC R- DIS E SOL (L (MC		UM. SODIU S- DIS- VED SOLVE /L (MG/	IM, A SOF ID TI	ID- ION S	OTAS- SIUM, DIS- OLVED MG/L S K)	BICAR- BONATE (MG/L AS HCO3)	CAR	- [ULFATE DIS- SOLVED (MG/L S SO4)	
ОСТ															
20		140	240			58 1			.9	2.1	27	0	0	33	
10		3700	110		3 3	34	5.9 18	l.	.8	4.3	13	0	0	13	
08		440	280		39 8	31 1	8 29	1	.8	2.3	29	0	0	33	
26 FEB		24	270		40 8	30 1	7 32		.8	2.6	28	0	0	36	
16		630	250		37 7	14 1	6 34		.9	2.8	26	0	0	39	
16		48	270		61 7	17 1	39)	1.0	2.7	25	0	0	56	
APR 24 May		870	260		51 7	76 1	8 30	i	.8	2.4	26	0	0	37	
22		50	260		42 7	1 1	9 34		.9	2.6	26	0	0	38	
JUN 12 JUL		800	110		16 3	33	5.7 18	1	.8	5.3	11	0	0	20	
17 AUG		50	230			53 1			.9	2.7	24		0	34	
22 SEP		460	170		18 4	5 1	3 10	0	• 3	2.3	18	0	0	16	
26		320	150		14 4		0 1 0		4	2 0	16	0	0	14	

08176500 GUADALUPE RIVER AT VICTORIA, TX--Continued

DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS. SUM OF CONSTI- TUENTS. DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C. SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN: NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN+ NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN; AMMONIA TOTAL (MG/L AS N)
ОСТ			1.4	335	344	30	6	.99	•01	1.0	.06
20	45	.•2	14								.03
10 DEC	23	.1	11	181	173	306	60	.55	.01	.56	
80	41	.3	14	343	362	21	1	1.5	.01	1.5	.06
JAN 26	47	.2	11	359	364	14	0	.43	.01	.44	.01
FE8 16	50	.2	11	355	355	40	5	1.5	.01	1.5	.08
MAR				367	380	42	3	1.2	.01	1.2	.01
16 APR	54	• 2	10		- 1				1		
24 MAY	45	.3	13	357	350	506	104	1.4	•02	1.4	.04
22	50	.3	11	345	354	29	3	.73	.01	.74	.01
12	23	.2	12	182	171	270	50	.64	•02	.66	.03
JUL 17	46	.3	18	333	332	46	3	.46	.00	.46	.00
AUG 22	18	.2	10	194	203	308	126	.52	.01	.53	.03
SEP 26	15	.1	11	192	185	164	26	.57	.01	.58	.02
2000	• •	NITRO-						CARBON.		SEDI-	SED.
			NITRO-								
DATE	NITRO- GEN. ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	CARBON+ ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	MENT DIS- CHARGE. SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
ост	GEN. ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN.AM- MONÍA + ORGANIC DIS. (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L	SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L)	DIS- CHARGE. SUS- PENDED (T/DAY)	SIEVE DIAM. % FINER THAN .062 MM
	GEN. ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN,AM- MONÍA + ORGANIC DIS. (MG/L	PHORUS. TOTAL (MG/L	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L	SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L)	DIS- CHARGE. SUS- PENDED (T/DAY)	SIEVE DIAM. FINER THAN .062 MM
OCT 20	GEN. ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN.AM- MONÍA + ORGANIC DIS. (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C) 3.8 9.8	ORGANIC DIS- SOLVED (MG/L	SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 90 270	DIS- CHARGE. SUS- PENDED (T/DAY) 211	SIEVE DIAM. FINER THAN .062 MM
0CT 20 NOV 10 DEC 08	GEN. ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONÍA + ORGANIC DIS+ (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)	SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L)	DIS- CHARGE. SUS- PENDED (T/DAY) 211 1500 157	SIEVE DIAM. FINER THAN .062 MM
0CT 20 NOV 10	GEN. ORGANIC TOTAL (MG/L AS N) .40 .65	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS- SOLVE() (MG/L AS P)	ORGANIC TOTAL (MG/L AS C) 3.8 9.8	ORGANIC DIS- SOLVED (MG/L AS C)	SUS- PENDED TOTAL (MG/L AS C)	MENT SUS- PENDED (MG/L) 90 270 62	DIS- CHARGE, SUS- PENDED (T/DAY) 211 1500 157 73	SIEVE DIAM. FINER THAN .062 MM 80 92 78
OCT 20 NOV 10 DEC 08 JAN 26 FER 16	GEN. ORGANIC TOTAL (MG/L AS N) .40 .65	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN.AM-MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS. TOTAL (MG/L AS P) 05	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C) 3.8 9.8	ORGANIC DIS- SOLVED (MG/L AS C)	SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 90 270	DIS- CHARGE. SUS- PENDED (T/DAY) 211 1500 157	SIEVE DIAM. FINER THAN .062 MM 80 92 78 83
OCT 20 NOV 10 DEC 08 JAN 26 FER 16	GEN. ORGANIC TOTAL (MG/L AS N) .40 .65 .15	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .46 .68 .21	GEN.AM-MONIA + ORGANIC DIS. (MG/L AS N)49 .00	PHORUS, TOTAL (MG/L AS P) 05 18 07	PHORUS, DIS- SOLVED (MG/L AS P) .08	ORGANIC TOTAL (MG/L AS C) 3.8 9.8 1.8	ORGANIC DIS- SOLVED (MG/L AS C)	SUS- PENDED TOTAL (MG/L AS C)	MENT SUS- PENDED (MG/L) 90 270 62	DIS- CHARGE. SUS- PENDED (T/DAY) 211 1500 157 73	SIEVE DIAM. FINER THAN .062 MM 80 92 78
OCT 20 NOV 10 DEC 08 JAN 26 FER 16 MAR	GEN. ORGANIC TOTAL (MG/L AS N) .40 .65 .15 .30	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .46 .68 .21 .31	GEN.AM-MONIA + ORGANIC DIS. (MG/L AS N)49 .00 .20 .30	PHORUS, TOTAL (MG/L AS P) 05 18 07 06	PHORUS, DIS- SOLVED (MG/L AS P) .08 .02 .02	ORGANIC TOTAL (MG/L AS C) 3.8 9.8 1.8 3.0	ORGANIC DIS- SOLVED (MG/L AS C)	SUS- PENDED TOTAL (MG/L AS C)	MENT • SUS - PENDED (MG/L) 90 270 62 30	DIS- CHARGE. SUS- PENDED (T/DAY) 211 1500 157 73	SIEVE DIAM. FINER THAN .062 MM 80 92 78 83
OCT 20 NOV 10 DEC 08 JAN 26 FER 16 MAR 16 APR 24 MAY	GEN. ORGANIC TOTAL (MG/L AS N) .40 .65 .15 .30 .44 .37	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .46 .68 .21 .31 .52 .38	GEN.AM-MONIA + ORGANIC DIS. (MG/L AS N)49 -00 -20 -30 -28	PHORUS, TOTAL (MG/L AS P) 05 18 07 06 09 13	PHORUS. DIS- SOLVED (MG/L AS P) .02 .02 .03 .07	ORGANIC TOTAL (MG/L AS C) 3.8 9.8 1.8 3.0	ORGANIC DIS- SOLVED (MG/L AS C)	SUS- PENDED TOTAL (MG/L AS C)	MENT + SUS - PENDED (MG/L) 90 270 62 30 39 28	DIS- CHARGE, SUS- PENDED (T/DAY) 211 1500 157 73 108 67	SIEVE DIAM. * FINER THAN. .062 MM 80 92 78 83
OCT 20 NOV 10 DEC. JAN 26 FER 16 MAR 16 APR 24 MAY 22 JUN	GEN. ORGANIC TOTAL (MG/L AS N) .40 .65 .15 .30 .44 .37 .79	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .46 .68 .21 .31 .52 .38 .83	GEN.AM-MONIA + ORGANIC DIS. (MG/L AS N)49 .00 .20 .30 .28 .40 .36	PHORUS, TOTAL (MG/L AS P) 05 18 07 06 09 13 20	PHORUS, DIS- SOLVED (MG/L AS P) .08 .02 .03 .07 .03 .02	ORGANIC TOTAL (MG/L AS C) 3.8 9.8 1.8 3.0 3.0	ORGANIC DIS- SOLVED (MG/L AS C)	SUS- PENDED TOTAL (MG/L AS C)	MENT + SUS - PENDED (MG/L) 90 270 62 30 39 28 431	DIS- CHARGE, SUS- PENDED (T/DAY) 211 1500 157 73 108 67 3260 26	SIEVE DIAM. FINER THAN .062 MM 80 92 78 83 87 80 97
OCT 20 NOV 10 DEC. 08 JAN 26 FER 16 MAR 16 APR 24 MAY 22 JUN 12 JUL	GEN. ORGANIC TOTAL (MG/L AS N) .40 .65 .15 .30 .44 .37 .79 .47	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .46 .68 .21 .31 .52 .38 .83 .48	GEN.AM-MONIA + ORGANIC DIS. (MG/L AS N)49 -00 -20 -30 -28 -40 -36 -56	PHORUS, TOTAL (MG/L AS P) 05 18 07 06 09 13 20 04	PHORUS, DIS- SOLVED (MG/L AS P) .08 .02 .02 .03 .07 .03	ORGANIC TOTAL (MG/L AS C) 3.8 9.8 1.8 3.0 3.0	ORGANIC DIS- SOLVED (MG/L AS C)	SUS-PENDED TOTAL (MG/L AS C)	MENT + SUS - PENDED (MG/L) 90 270 62 30 39 28 431 13	DIS- CHARGE, SUS- PENDED (T/DAY) 211 1500 157 73 108 67 3260 26 819	SIEVE DIAM. FINER THAN .062 MM 80 92 78 83 87 80 97 86 98
OCT 20 NOV 10 DEC. 08 JAN 26 FER 16 MAR 16 APR 24 MAY 22 JUN 12 JUN 17	GEN. ORGANIC TOTAL (MG/L AS N) .40 .65 .15 .30 .44 .37 .79	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .46 .68 .21 .31 .52 .38 .83	GEN.AM-MONIA + ORGANIC DIS. (MG/L AS N)49 .00 .20 .30 .28 .40 .36	PHORUS, TOTAL (MG/L AS P) 05 18 07 06 09 13 20	PHORUS, DIS- SOLVED (MG/L AS P) .08 .02 .02 .03 .07 .03	ORGANIC TOTAL (MG/L AS C) 3.8 9.8 1.8 3.0 3.0	ORGANIC DIS- SOLVED (MG/L AS C)	SUS-PENDED TOTAL (MG/L AS C)	MENT + SUS - PENDED (MG/L) 90 270 62 30 39 28 431 13 205	DIS- CHARGE. SUS- PENDED (T/DAY) 211 1500 157 73 108 67 3260 26 819 68	SIEVE DIAM. * FINER THAN .062 MM 80 92 78 83 87 80 97 86 98
OCT 20 NOV 10 DEC. 08 JAN 26 FER 16 MAR 16 APR 24 MAY 22 JUN 12 JUL	GEN. ORGANIC TOTAL (MG/L AS N) .40 .65 .15 .30 .44 .37 .79 .47	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .46 .68 .21 .31 .52 .38 .83 .48	GEN.AM-MONIA + ORGANIC DIS. (MG/L AS N)49 -00 -20 -30 -28 -40 -36 -56	PHORUS, TOTAL (MG/L AS P) 05 18 07 06 09 13 20 04	PHORUS. DIS- SOLVED (MG/L AS P) .08 .02 .03 .07 .03 .02	ORGANIC TOTAL (MG/L AS C) 3.8 9.8 1.8 3.0 3.0	ORGANIC DIS- SOLVED (MG/L AS C)	SUS-PENDED TOTAL (MG/L AS C)	MENT - SUS - PENDED (MG/L) 90 270 62 30 39 28 431 13 205 42 295	DIS- CHARGE. SUS- PENDED (T/DAY) 211 1500 157 73 108 67 3260 26 819 68	SIEVE DIAM. FINER THAN .062 MM 80 92 78 83 87 80 97 86 98

GUADALUPE RIVER BASIN 329 08176500 GUADALUPE RIVER AT VICTORIA, TX--Continued

DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BARIUM, SUS- PENDED RECOV- ERABLE (UG/L AS BA)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)
DATE		AS AS	A3 A37	A3 A37	H3 0H7	42 047			100	
FEB 16	1715	2	1	1	100	0	100	. 0	0	0
MAY 22	1245	3	1	2	100	100	0	0		1
AUG 22	1130	2	0	2	200	0	200	0	0	0
22	CHRO-	CHRO-	CHRO-	COBALT.	COBALT,		COPPER.	COPPER.		IRON.
	TOTAL RECOV- FRABLE	PENDED RECOV.	MIUM. DIS- SOLVED	TOTAL RECOV- ERABLE	PENDED RECOV- ERABLE (UG/L	DIS- SOLVED	TOTAL RECOV- ERABLE (UG/L	PENDED RECOV- ERABLE (UG/L	COPPER. DIS- SOLVED	TOTAL RECOV- ERABLE (UG/L
DATE	(UG/L AS CR)	(UG/L AS CR)	(UG/L AS CR)	AS CO)	AS CO)	AS CO)	AS CU)	AS CU)	AS CU)	AS FE)
FEB			10	1	. 1	0	2	1	1	690
16 MAY	0	0	10	1	. 1	U				
22 AUG	0	0	0	0	0	0	4	3	1	170
22	10	10	0	0	0	0	13	11	5	3900
DATE	TRON. SUS- PENDED RECOV- FRABLE (UG/L AS FE)	IRON. DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD+ SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD. DIS- SOLVED (UG/L AS PB)	MANGA- NESE + TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE + SUS- PENDED RECOV • (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY SUS- PENDED RECOV- ERABLE (UG/L AS HG)
FEB		241	2.4				20	0	.0	•0
16 MAY		10	10	9	1	20	20			
22 AUG		40	3	0	3	20	0	20	.1	•1
22	3900	30	10	10	0	130	130	0	• 0	•0
DATE	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM+ SUS- PENDED TOTAL (UG/L AS SE)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER+ TOTAL RECOV- ERABLE (UG/L AS AG)	SILVER+ SUS- PENDED RECOV- ERABLE (UG/L AS AG)	SILVER. DIS- SOLVED (UG/L AS AG)	ZINC. TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, SUS- PENDED RECOV- ERABLE (UG/L AS ZN)	ZINC+ DIS- SOLVED (UG/L AS ZN)
FEB 16	.0	1	1	0	0	0	0	30	20	10
MAY 22	• 0	0	0	0	0	0	0	20	. 20	5
AUG 22	.0	1	1	0	0	0	0	20	10	10

08176500 GUADALUPE RIVER AT VICTORIA, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	PCB, TOTAL (UG/L)	PCB. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	NAPH- THA- LENES. POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL (UG/L)	TOM MA-	DDD.	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN										As .
26 APR	1515	• 0	5	.00	.00	• 0	.0		•00	•5
24 JUL	1245	• 0		.00	.00		.0	- de la -	.00	
17	1245	.0	1	.00	.00	.0	.0		.00	.2
							DI-			
DATE	DDE, TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL (UG/L)	DDT, TOTAL IN ROT- TOM MA- TERIAL (UG/KG)	DI- AZINON+ TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	ELDRIN. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFANO TOTAL	TOTAL	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN										
26 APR	•00	.7	•00	•3	.01	•00	.0	.00	.00	•0
24 JUL	•00		• 0 0		.01	.00		.00		
17	•00	. 2	•00	• 2	.00	•00	• 0	.00	.00	• 0
DATE	ETHI(TOTA E (UG,	AL TOTA	OR. TOM M	OR. AL HEP OT- CHL MA- EPOX (AL TOT	OR TOT. IDE BOT	OR IDE IN TOM LING TL. TOT	TO IN OANE TOM	MA- TH	ILA- PAI	THYL RA- ION, TAL G/L)
JAN										
26.	••	.00	.00	• 0	• 0 0	• 0	.00	•0	•00	.00
24 • JUL	••	.00	.00		• 0 0		.01		•00	.00
17.	••	.00	.00	.0	•00	.0	.00	• 0	•00	.00
F. 1.	METH TRI THIC	-	PARA			NE, AL OT- TOT		4-D• 2•4	•5-T SIL	/EX•
DATE	TOTAL CUGA									TAL G/L)
JAN 26.	• •	.00		00	0	0	.00	.03	•00	.00
APR 24.		.00		00	0		.00	.02	.00	.01
JIIL 17.				00	0	0	.00	.03	•00	.00

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978
PERIPHYTON

DATE	LENGTH OF EXPOSURE (DAYS)	PERI- PHYTON BIOMASS ASH WEIGHT G/SQ M	PERI- PHYTON BIOMASS TOTAL DRY WEIGHT G/SQ M	CHLOR-A PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)	CHLOR-B PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)	SAMPLING METHOD	
20	35	66.4	70.2	1.36	.571	POLYETHYLENE STRIP	

08176500 GUADALUPE RIVER AT VICTORIA, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1977 TO AUGUST 1978

DATE TIME		10.77		16•78 535		22,78 245		12•78 155		17.78 245		22,78 1130
TOTAL CELLS/ML		86		700		620		420	88	000		8
DIVERSITY: DIVISION .CLASSORDERFAMILYGENUS		1.3 1.3 1.3 1.3		1.5 1.5 2.5 2.9 2.9		0.8 0.8 1.6 2.4 2.7		1.1 1.1 1.1 1.1 1.3		0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER-	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) •CHLOROPHYCEAE ••CHLOROCOCCALES ••MICRACTINIACEAE	7.4.6	CLIVI	/ MC	CENT	/ ML	CENT	7 11 1	CENT	/ HL	CENT	7112	CENT
MICRACTINIUM OOCYSTACEAE		-	41	6				-		•		-
ANKISTRODESMUS			30	4		-		- 1		0	==	-
SCENEDESMACEAEACTINASTRUM .TETRASPORALESCOCCOMYXACEAE		-		-		-	280#	67		•		-
ELAKATOTHRIXVOLVOCALESCHLAMYDOMONADACEAE		•	24	3				•		•		•
CHRYSOPHYTA BACILLARIOPHYCEAE	14#	17	47	7	43	7				•		•
COSCINODISCACEAECYCLOTELLA	144	-	24	3	190#	30				-	8#	100
MELOSIRAPENNALESCYMBELLACEAE		•		•	14	2	1.50	-		-		•
AMPHORADIATOMACEAE		0	6	1						-		
DIATOMA FRAGILARIACEAE		-	*	0		-				-		-
SYNEDRA NAVICULACEAE		-	18	3	160#			-		•		
GYROSIGMANAVICULANITZSCHIACEAE		-	6	1	72 57	9		-				(1)
NITZSCHIACEAE	14#	17	89	13	43	7	23	6		-		-
CYMATOPLEURA .CHRYSOPHYCEAE .CHRYSOMONADALESOCHROMONADACEAE		*	6	1		18		•		-		*
CRYPTOPHYTA (CRYPTOMONADS)		-	6	ì		-		•		•		-
•CRYPTOPHYCEAE •CRYPTOMONIDALES ••CRYPTOMONODACEAE •••CRYPTOMONOAS	- 12-		6	1		2		-		12		.2
CYANOPHYTA (BLUE-GREEN ALGAE) •CYANOPHYCEAE •CHROCCOCCALES ••CHROCCOCCAEAE												
AGMENELLUM	57#	67	170#	25	14	2		-	88000#	100		:
OSCILLATORIACEAE	21#		110#	23	1.4		7.7		1000			
UNGBYA		0	220#	32		-		-		-		-
EUGLENOPHYTA (EUGLENOIDS) •EUGLENOPHYCEAE ••EUGLENALES ••EUGLENACEAE												
PHACUSTRACHELOMONAS		-			29	5	23 93#	6		-		:
**** I NACILE OF ORAS		1.0	77		27	,	75#					

NOTE: # - DOMINANT ORGANISM: EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM: MAY NOT HAVE BEEN COUNTED: LESS THAN 1/2%

MEAN

GUADALUPE RIVER BASIN

08176500 GUADALUPE RIVER AT VICTORIA, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	MONTH	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA+MG) (MG/L)
ост.	1977	28804	584	330	25700	44	3380	35	2740	240
NOV.	1977	46825	495	280	35500	36	4600	29	3660	200
DEC.	1977	29098	648	370	28900	48	3790	40	3140	260
	1978	28573	636	360	27800	47	3650	39	3020	260
	1978	28376	641	360	27900	48	3660	39	3020	260
								40	3050	260
	1978	28399	646	370	28100	48	3680			
	1978	29145	567	320	25300	41	3240	34	2680	230
MAY	1978	24043	624	350	23000	46	3010	38	2480	250
JUNE	1978	43219	439	250	29100	32	3680	25	2880	180
JULY	1978	19346	569	320	16900	42	5510	34	1790	230
AUG.	1978	115431	398	230	70500	28	8620	22	6810	170
SEPT	1978	112180	285	160	48900	15	4600	14	4140	120
TOTA	L	533439	**	**	388000	**	49100	**	39400	**
WTD.	AVG	1461.48	474	270	**	33	**	27	**	200
	SPECIA	FIC CONDUCTAN	CF (MTCROMH	OS/CM AT 2	5 DEG. C).	WATER YEAR	OCTORER 19	77 TO SEPTE	MRFD 1978	7.0
	5, 4, 4,				ONCE-DAILY	TATEL TEAM	OCTOBER 17	77 10 52 10	DEM 1710	
DAY	ОСТ	NOV (DEC JAN	FEB	MAR	APR	MAY	JUN JU	JL AUG	SEP
1	603		34 566		683	646		603 54		335
3	595 600		535 590 528 620		678 664	652 659	592 619	589 55 376 55		345 348
4	599		30 644		670	655		281 56		371
5	587	433	650		664	669		507 52		
6	531	402	37 655	660	662	679	676	554 54	0 558	376
7	587		630		658	670		557 55		390
8	514		26 640		650	674		433 55		401
10	577 598		655 630 657		617 472	683 689		475 56 437 56		422 379
				040	412	007	000	431 30	41.2	3,7
11	559		45 659		477	667	594	331 58		383
12	572		56 603		583	683		307 58		175
13	565		57 652		626	668		324 58		286
14 15	577 568		657 611 655 607		670 686	660 657	648	345 58 365 58		215 198
16	581		51 652		673	655		390 58		277
17 18	577 574		40 655		691	675	643	418 58		269
19	597		67 636 62 639		722	694		439 56		275
20	605		62 639 56 622	646	678 670	672	631	459 56 462 58		261 296
21	608		58 630		662	670		475 57		368
22	599		59 678		658	687		467 57		261
23 24	589 571		61 611 646 606	682 656	664	634		459 58 467 58		300 318
25	582		59 644		658 637	275		467 58 491 58		325
26	587		63 634	619	666	404		510 57		330
27	546		57 644		660	448		533 57		
28	614		61 655		663	459		531 57		360
29 30	604 606		557 660 558 663		666	502 567		545 57 549 57		373 395
31	623		57 674		668 660	507		54		
31	923		,51 614		000		011		340	

GUADALUPE RIVER BASIN 08176500 GUADALUPE RIVER AT VICTORIA, TX--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

					U	NCE-DAIL T						
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	29.0	24.0	16.0	14.0	9.0	16.0	20.0		28.0	30.0	28.0	27.0
2	29.0	21.0	17.0	10.0	9.0	16.0	21.0	25.0	28.0	30.0	28.0	27.0
3	27.0	20.0	18.0	10.0	8.0	15.0	22.0	23.0	26.0	30.0	28.0	27.0
	25.0	19.0	19.0	11.0	9.0	12.0	23.0	22.0	26.0	30.0	28.0	27.0
5	25.0	20.0	18.0	13.0	9.0	13.0	23.0	23.0	28.0	30.0	28.0	27.0
6	25.0	19.0	16.0	14.0		15.0	23.0	25.0	29.0	30.0	29.0	27.0
7	25.0	20.0	15.0	16.0	9.0	16.0	23.0	25.0	28.0	30.0	29.0	
8	26.0	20.0	17.0	14.0	8.0	15.0	23.0	26.0	27.0	30.0	29.0	27.0
9	25.0	20.0	16.0	13.0	8.0	13.0	23.0	26.0	27.0	30.0	29.0	27.0
10	25.0	17.0	13.0	12.0	8.0	14.0	23.0	26.0	26.0	30.0	28.0	27.0
11	25.0	16.0	14.0	11.0	8.0	16.0	21.0	27.0	27.0	30.0	29.0	27.0
12	22.0	16.0	15.0	10.0	10.0	16.0	20.0	27.0	27.0		29.0	25.0
13	21.0	16.0	17.0	10.0	10.0	18.0	20.0	27.0	28.0	30.0	25.0	27.0
14	21.0		15.0	10.0	10.0	18.0	20.0	26.0	29.0	30.0	24.0	25.0
15	21.0	17.0	15.0	10.0		18.0	21.0	26.0		30.0	24.0	25.0
16	21.0		16.0	10.0	10.0	17.0	22.0	27.0		30.0	25.0	26.0
17		19.0	15.0	10.0	11.0	17.0	23.0	27.0	29.0	30.0	25.0	26.0
18	21.0	20.0	15.0	9.0	10.0	17.0	23.0	27.0	30.0	30.0	25.0	27.0
19	55.0	20.0	16.0	8.0	10.0	18.0	23.0	28.0	30.0	30.0	26.0	28.0
20	55.0	55.0	15.0	7.0	10.0	19.0	22.0	28.0	30.0	30.0	27.0	28.0
21	23.0	20.0	12.0	7.0	10.0	19.0	21.0	28.0	29.0	30.0	27.0	27.0
55		18.0	11.0	8.0	10.0	20.0	22.0	27.0	29.0	30.0		26.0
23	23.0	19.0	12.0	8.0	11.0	20.0	21.0	28.0	30.0	29.0		26.0
24	22.0	20.0	14.0	9.0	12.0	20.0	21.0	28.0	30.0	28.0		26.0
25	55.0		14.0	8.0	13.0	20.0	19.0	28.0	30.0	29.0		
26	22.0	18.0	13.0	8.0	13.0	18.0	19.0	28.0	30.0	30.0		25.0
27	22.0	19.0	12.0	8.0	15.0		20.0	28.0	30.0	30.0		25.0
28	23.0	20.0	13.0	9.0	15.0	19.0	21.0		30.0	30.0	27.0	25.0
29	23.0	19.0	13.0			19.0	22.0		30.0	29.0	27.0	24.0
30	23.0	16.0	13.0	9.0		19.0	23.0	28.0	30.0	29.0	27.0	24.0
31	24.0		13.0	9.0		20.0		28.0		28.0	27.0	
MEAN	23.5	19.0	15.0	10.0	10.0	17.0	21.5	26.5	28.5	29.5	27.0	26.5

08177000 COLETO CREEK NEAR SCHROEDER, TX

LOCATION.--Lat 28°49'53", long 97°11'10", Goliad-Victoria County line, Hydrologic Unit 12100204, on left bank 373 ft (114 m) downstream from bridge on Farm Road 622, 2.5 mi (4.0 km) northeast of Schroeder, 4.2 mi (6.8 km) downstream from confluence of Twelvemile and Fifteenmile Creeks, 9.1 mi (14.6 km) upstream from Perdido Creek, 11.1 mi (17.9 km) west of Victoria, and 21.8 mi (35.1 km) upstream from mouth.

DRAINAGE AREA .-- 369 mi2 (956 km2).

PERIOD OF RECORD. -- January 1930 to December 1933, October 1952 to current year.

REVISED RECORDS.--WSP 1312: 1930(M). WSP 2123: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 87.59 ft (26.697 m) National Geodetic Vertical Datum of 1929. Prior to Dec. 31, 1933, nonrecording gage at site 0.7 mi (1.1 km) downstream at same datum; Oct. 20, 1952, to Jan. 17, 1955, and Sept. 22 to Nov. 8, 1967, nonrecording gage at site 0.6 mi (1.0 km) downstream at same datum. Jan. 18, 1955, to Sept. 21, 1967, water-stage recorder at same site and datum.

REMARKS.--Records good. No known diversions above station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE .--29 years, 95.6 ft³/s (2.707 m³/s), 3.52 in/yr (89 mm/yr), 69,260 acre-ft/yr (85.4 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 122,000 ft³/s (3,460 m³/s) Sept. 21, 1967, gage height, 33.47 ft (10.202 m), from floodmark, from rating curve extended above 28,000 ft³/s (793 m³/s) on basis of slope-area measurement of peak flow; no flow for many days in 1956, 1963-65, and 1971.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1872 at present site and datum, that of Sept. 21, 1967, Oct. 16, 1946, 26.0 ft (7.92 m), discharge 63,700 ft 3 /s (1,800 m 3 /s) and October 1925, 23.0 ft (7.01 m), discharge 46,700 ft 3 /s (1,320 m 3 /s), from information by local resident.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 2.500 ft3/s (70.8 m3/s) and maximum (*):

Date	Time	Disch (ft³/s)	(m³/s)	Gage h	eight (m)	Date	Time	Disch (ft³/s)		Gage h	eight (m)
June Sept.	1300 0500	2,640 5,470	74.8 155	8.18 10.17	2.493 3.100	Sept. 13 Sept. 14	1900 2000	14,100 *16,100	399 456	13.28 14.01	4.048 4.270

DISCHARGE. IN CHRIC FEET DED SECOND. WATER VEAR OCTORER 1977 TO SEPTEMBER 1978

Minimum discharge, 0.97 ft3/s (0.028 m3/s) Aug. 29.

		DISCHAF	RGE, IN	CUBIC FEET	PER SECO ME.	ND, WATER AN VALUES	YEAR OC	TOBER 197	7 TO SEPTE	MBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	11 11 9.5 9.3 9.3	68 97 106 56 41	21 20 20 20 20 18	21 21 21 22 22	24 25 24 23 21	20 20 18 17 18	22 23 22 21 21	19 18 19 19	19 33 907 181 70	6.2 6.2 6.2 5.6 5.1	16 11 19 14 9.1	4.2 5.9 5.0 7.4 8.1
6 7 8 9	9.3 9.7 11 14 14	34 30 494 618 134	16 16 18 16	23 23 19 16 16	21 65 60 41 33	22 27 23 20 20	21 21 22 23 26	17 17 16 16	44 214 143 65 42	5.6 5.6 5.1 4.6 4.1	7.0 7.2 5.4 4.4 5.3	5.0 8.1 6.6 8.6
11 12 13 14 15	19 20 16 15	77 55 44 38 34	15 17 19 19	23 26 25 24 23	30 35 30 24 25	20 18 20 19	26 30 34 30 27	14 14 12 11	32 25 21 17 16	4.1 3.2 2.8 2.8 2.8	4.5 4.0 3.5 2.6 2.2	53 2070 3380 5720 4340
16 17 18 19 20	13 13 13 13	31 29 27 26 26	20 18 17 17 15	27 26 33 34 28	29 46 39 32 28	17 18 20 20 22	25 25 21 16 15	11 11 12 10 9.8	15 15 13 12 11	2.8 2.5 2.5 3.2 4.1	2.3 2.4 2.1 1.8 2.6	349 189 135 107 89
21 22 23 24 25	14 30 52 58 59	23 21 21 21 21	15 15 17 18 17	25 24 24 24 25	23 23 23 22 23	22 23 23 30 30	14 26 51 46 31	11 18 26 16 12	10 8.7 8.2 7.9 7.3	3.6 2.8 2.6 3.1 3.1	9.2 4.8 3.1 2.3 2.4	107 137 108 78 58
26 27 28 29 30 31	44 33 30 28 26 26	21 21 20 24 22	16 16 17 19 21	24 22 20 20 20 20	22 22 22 	27 24 23 21 20 21	24 20 19 18 18	9.8 9.1 8.5 16	6.7 5.6 7.3 7.0 6.2	2.7 2.3 6.2 4.5 4.3	2.0 1.9 2.0 1.6 1.9 3.7	49 44 39 37 34
TOTAL MEAN MAX MIN CFSM IN. AC-FT	658.1 21.2 59 9.3 .06 .07 1310	2280 76.0 618 20 .21 .23 4520	547 17.6 21 15 .05 .06 1080	722 23.3 34 16 .06 .07 1430	835 29.8 65 21 .08 .08 1660	662 21.4 30 17 .06 .07	738 24.6 51 14 .07 .07 1460	441.2 14.2 26 8.5 .04 .04 875	1969.9 65.7 907 5.6 .18 .20 3910	134.3 4.33 14 2.3 .01 .01 266	161.3 5.20 19 1.6 .01 .02 320	17198.9 573 5720 4.2 1.55 1.73 34110

CAL YR 1977 TOTAL 34594.1 MEAN 94.8 MAX 3790 MIN 9.3 CFSM .26 IN 3.49 AC-FT 68620 WTR YR 1978 TOTAL 26347.7 MEAN 72.2 MAX 5720 MIN 1.6 CFSM .20 IN 2.66 AC-FT 52260

335

08177600 OLMOS CREEK TRIBUTARY AT FARM ROAD 1535, SHAVANO PARK, TX (Flood-hydrograph partial-record station)

LOCATION.--Lat 29°34'35", long 98°32'45", Bexar County, Hydrologic Unit 12100301, at culvert on Farm Road 1535 at Shavano Park and 1.9 mi (3.1 km) southeast of intersection of Farm Roads 1535 and 1604.

DRAINAGE AREA .-- 0.33 mi2 (0.85 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1968 to current year.

GAGE.--Digital recorders (water stage and rainfall). Datum of gage is 907.92 ft (276.734 m) National Geodetic Vertical Datum of 1929, San Antonio supplementary adjustments of 1951 and 1953.

REMARKS.--Additional storm rainfall-runoff data for this site can be obtained from the report "Hydrologic Data for Urban Studies in the San Antonio, Texas Metropolitan Area, 1978.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 339 ft⁵/s (9.60 m³/s) Sept. 13, 1978, gage height, 6.71 ft (2.045 m).

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 50 ft3/s (1.42 m3/s) and maximum (*):

Date	Time	Disch	narge	Gage I	neight	Date	Time	Disch	arge	Gage	neight
		Disch (ft³/s)	(m ⁵ /s)	(ft)	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
aNov. 1	0825	106	3.00	3.76	1.146	aSept. 13	0805	*339	9.60	6.71	2.045

a Water-quality samples were obtained during this flood event.

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: May 1970 to current year. Water temperatures: May 1970 to current year. Bacteria analyses: April 1976 to current year.

		STREAM- FLOW,	SPE- CIFIC CON- DUCT-			COLOR (PLAT-	TUR-	OXYGEN,	OXYGEN, DIS- SOLVED (PER-	OXYGEN DEMAND, BIO- CHEM-
	TIME	INSTAN- TANEOUS	MICRO-	РН	TEMPER-	INUM- COBALT	BID-	DIS- SOLVED	CENT SATUR-	ICAL .
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	UNITS)	(JTU)	(MG/L)	ATION)	(MG/L)
NOV										
Ol	0912	30	142	7.0	19.0	280	25			3.4
13	1100	23	1:56	6.7	22.5	50	25	7.2	85	2.6
	COLI-	COLI-	STREP-							2.5-5
	FORM,	FORM.	TOCOCCI		HARD-		MAGNE-		SODIUM	POTAS-
	TOTAL .	FECAL,	FECAL .	HARD-	NESS,	CALCIUM	SIUM,	SODIUM,	AD-	SIUM,
	IMMED.	0.7	KF AGAR	NESS	NONCAR-	DIS-	DIS-	DIS-	SORP-	DIS-
	(COLS.	UM-MF	(COLS.	(MG/L	BONATE	SOLVED	SOLVED	SOLVED	TION	SOLVED
	PER	(COLS./	PER	AS	(MG/L	(MG/L	(MG/L	(MG/L	RATIO	(MG/L
DATE	100 ML)	100 ML)	100 ML)	CACO3)	CACO3)	AS CA)	AS MG)	AS NA)		AS K)
NOV										
01	220000	48000	92000	55	2	20	1.2	3.3	.2	4.9
SEP	2070.00									
13	190000	20000	49000	74	5	27	1.6	2.4	• 1	5.1
							SOLI	DS. SOLID	s,	
				CHL	0- FLL	O- SILIC	A. SUM	OF RESID	UE SOLI	05,
	BICA	R-	SULF	ATE RIO	E. RIC	E, DIS-	CONS	TI- AT 10	5 VOL	A-
	BONA	TE CAR	- DIS	- DIS	- DI	S- SOLV	ED TUEN	TS. DEG.		
	(MG	/L BONA	TE SOL	VED SOL	VED SOL	VED (MG/	10 J	s- sus-		
		S (MG	/L (MG.	/L (MG	IL (MG			VED PENDE		
DA	TE HCO	3) AS C	(03) AS S	04) AS	CL) AS	F) 5102	(MG	/L) (MG/	L) (MG	/L)
NOV										
01		65	0	5.0	6.0	.1 12		86	42	3
SFP										2
13	•••	84	0	5.8	2.9	.1 19	•	102	40	0
						NITE				HY-
			PO- NITI			RO- GEN.				NE
			N. GEI			N, MONIA				UE THE
	NITR									IVE B-
	(MG									NCE
DA	TE AS									/(.)
NOV		2					-	20		10
SEP.		.8	• 04 1	. 8	•07	.1 1.		.29 14		.10
13		.29	.01	.30	.05	.1 1.	1	.16 16		.10

08177600 OLMOS CREEK TRIBUTARY AT FARM ROAD 1535, SHAVANO PARK, TX--Continued

									0110	•					
	O Military	TIM	50 E ((SENIC DIS- DLVED	SOLV (UC	6- /ED 6/L	SOL	VED	MIU DIS SOL (UG	M. VED	COPPI DIS- SOL (UG	VED /L	SOL	S- VED	
	DATE		AS	(SAS)	AS	BA)	AS	CD)	AS	CR)	AS	CUI	AS	FE)	
	VOI														
	01	091	2	2		0		0		5		1		60	
	SEP		_							-		-		172	
	13	110	0	2				0		10		4		50	
					ANGA-				LE-						
			LEAD.		SE+		CURY		UM,		VER,		NC,		
			DIS-		DIS- DLVED		IS- LVED		IS- LVED		IS- LVED		LVED		
			(UG/L		JG/L		G/L		G/L		G/L		G/L		
	D	ATE	AS PB		MN)		HG)		SE)	AS	AG)	AS	ZN)		
	NO														
		1		1	4		.0		0		0		10		
	SE	3)	0		.2		0		0		0		
		3		,	U		• -		U						
			N/	PH-											
				HA-											
				NES.											
				OLY-			CHL			_		_	-		DI-
	****	PCB		LOR.		RIN,	DAN		TOT		TOT		TOT	T,	TOTAL
DATE	TIME	TOTA (UG/		JG/L)		TAL 3/L)	(UG			/L)	(UG			/L)	(UG/L)
DATE		1007	., "	,0,2,	101	3727	100	, ,	100	, . ,	100	, - ,	,,,,		172
NOV															9
01	0912		• 0	.00		.00		.0		.00		.00		.00	.31
SFP										• •		0.0		00	.00
13	1100		• 0	.00		.00		• 0		.00		.00		.00	.00
									HEP	TA-					METHYL
	DI-	ENDO	_				HEP	TA-	CHL				MAL	A-	PARA-
	ELDRIN	SULFA		RIN.	ETH:	ION,	CHL	OR,	EPOX	IDE	LIND			ON.	THION,
	TOTAL	TOTA		TAL		TAL	TOT		TOT		TOT			AL	TOTAL
DATE	(UG/L)	(UG/	L) ((JG/L)	(00	G/L)	(UG	/L)	(UG	/L)	(UG	/L)	(00	(L)	(UG/L)
NOV															
01	.00		00	.00		.00		.00		.00		.00		.00	.00
SFP	• • • •	-		• • • •										-171	4
13	.01		00	.00		.00		.00		.01		.00		.00	.00
	MF	THYL													
		RI-		P	ARA-	T	ox-	TO	TAL						
	TH	ION,	MIREX	TH	ION,	APHI	ENE,	T	RI-	2,	4-D+	2.4	,5-T		VEX,
20		TAL	TOTAL		TAL		TAL		ION		TAL		TAL		TAL
DA	TE (U	G/L)	(UG/L		JG/L)	(0	G/L)	(U	G/L)	(U	G/L)	(0	G/L)	(U	G/L)
NOV															
		.00			.00		0		.00		.02		.06		.00
SEP					•••										40.2 13
13	• • •	.00	.00)	.00		0		.00		.00		.22		.00

337

08177700 OLMOS CREEK AT DRESDEN DRIVE, SAN ANTONIO, TX

LOCATION.--Lat 29°29'56", long 98°30'36", Bexar County, Hydrologic Unit 12100301, on right bank 30 ft (9 m) downstream from low-water bridge on Dresden Drive at San Antonio, 0.15 mi (0.24 km) west of intersection of Blanco Road and Dresden Drive, and 4.0 mi (6.4 km) upstream from Olmos Dam.

DRAINAGE AREA .-- 21.2 mi 2 (54.9 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- June 1968 to current year.

GAGE.--Water-stage recorder. Datum of gage is 726.10 ft (221.315 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Recording rain gage located at station, with three additional recording rain gages located in watershed. City of San Antonio rain gage and gage-height telemeters at station.

AVERAGE DISCHARGE.--10 years, 4.57 ft³/s (0.129 m³/s), 2.93 in/yr (74 mm/yr), 3,310 acre-ft/yr (4.08 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,450 ft³/s (211 m³/s) Sept. 13, 1978, gage height, 14.82 ft (4.517 m), from floodmark; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1935, that of Sept. 13, 1978. Floods in September and November 1947 reached a stage of 8.5 ft (2.59 m), from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 400 ft³/s (11.3 m³/s) and maximum (*):

Date	Time	Disch	arge	Gage !	neight	Date	Time	Disch	arge	Gage I	neight
		(ft^3/s)	(m^3/s)	(ft)	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
aNov. 1	0730	1,270	36.0	9.41	2.868	aAug. 1	2200	415	11.8	6.98	2.128
Apr. 22	1500	1,210	34.3	9.53	2.905	aSept. 7	2245	882	25.0	8.39	2.557
aJune 6	2230	941	26.6	8.58	2.615	Sept. 13	0900	*7.450	211	b14.82	4.517

DISCHARGE IN CHRIC ECET DED SECOND WATER VEAR OCTORED 1977 TO SEPTEMBER 1978

Minimum discharge, no flow for many days.

		DISCHAR	GE, IN C	UBIC FE		COND, WATER MEAN VALUES		TOBER 197	7 TO SEPTEM	BER 197	8	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.10	583	.00	.12	.21	.18	.95	.84	5.5	.04	128	5.4
2	.10	12	.00	.11	.16	.14	.46	3.8	2.8	.04	34	5.3
3	.10	2.0	.01	.11	.17	.24	.84	6.4	14	.04	3.5	.85
4	.10	.93	.00	.14		.24	.88	.73	3.1	.03	.91	3.4
5	.10	.68	.00	.14	.18	.10	.73	.44	.65	.02	.62	1.5
6	.10	.57	.00	.14	.19	7.7	.68	.33	69	.01	1.1	.91
7	.10	.38	.00	-14	11	.97	.77	.36	43	.01	1.0	88
8	.06	14	.00	.14	.26	.38	.65	.31	3.0	0.00	.51	124
9	.04	1.6	.00	.14	.08	.24	.78	.29	.34	.00	.46	3.7
10	.04	.57	.00	.14	.05	.24	34	.20	.27	.00	.36	1.7
11	.02	.31	.12	.50	.30	.24	1.7	.52	.23	.00	.36	1.6
12	.02	.31	.02	.44	16	.24	.84	.23	.17	.00	.36	.29
13	.04	.31	.01	.14	.14	.24	.93	.16	.17	.00	.32	791
14	.04	.24	.00	.08	.10	.24	1.1	.16	.14	.00	.37	24
15	.04	.24	.00	.06	.10	.24	1.2	.18	.13	.00	.31	11
16	.04	.24	.01	.59	.06	.24	1.2	.18	.13	.00	.29	10
17	.04	+24	.01	.14	.52	.24	1.6	.18	.13	.00	.27	6.3
18	.04	.18	.01	.22	.14	.24	1.6	.18	.10	.00	.25	4.2
19	.06	.18	.01	.23	.04	.24	1.5	.18	.10	.00	.21	3.7
20	.06	.14	.01	.10	.02	.24	1.6	2.8	.09	.00	.18	3.0
21	2.5	.14	.03	.10	.02	.24	1.6	5.8	.10	.00	.15	2.8
22	26	.18	.05	.10		.22	122	2.1	.10	.01	.14	3.0
23	19	.18	.06	.10	.10	.48	10	.39	.07	.00	.12	3.9
24	7.1	.18	.06	.11	.14	4.4	2.7	.31	.06	.00	.12	3.4
25	3.6	.18	.09	.13	.10	.77	.81	.31	.04	.00	.10	2.7
26	3.4	.17	.08	.10		.65	.86	.29	.05	.00	.10	1.8
27	3.4	.18	.08	.26	.18	.66	.64	.31	.04	.17	.09	3.4
28	3.1	.18	.08	.30	.18	.57	.61	.25	.04	3.3	.07	3.1
29	2.9	.62	.15	.14		.58	.45	3.6	.05	.38	.09	2.7
30	2.7	.01	.14	.17		.61	.46	6.7	.04	.10	.15	2.7
31	2.4		.14	.39		.81		.68		1.6	.17	
TOTAL	77.34	620.14	1.17	5.72		22.82	194.14	39.21	143.64	5.75	174.68	1119.35
MEAN	2.49	20.7	.038	.18	1.11	.74	6.47	1.26	4.79	.19	5.63	37.3
MAX	26	583	.15	.59		7.7	122	6.7	69	3.3	128	791
MIN	.02	.01	.00	.06	.02	.10	.45	.16	.04	.00	.07	.29
CFSM	.12	.98	.002	.008	.05	.04	.31	.06	.23	.009	.27	1.76
IN.	.14	1.09	.00	.01	.05	.04	.34	.07	.25	.01	.31	1.96
AC-FT	153	1230	2.3	11	62	45	385	78	285	11	346	2220
(++)	2.07	6.70	.26	.74		.92	4.00	2.42	2.52	.66	4.64	9.02
CAL YR		TAL 1553.60		4.26	MAX 583	MIN .00	CFSM .				tt 29.55	
WTR YR	1978 TO	TAL 2434.98	B MEAN	6.67	MAX 791	MIN .00	CFSM .	32 IN 4	.27 AC-FT	4830	†† 35.96	

tt Weighted-mean rainfall, in inches, based on four rain gages.

a Water-quality samples were obtained during this flood event. b From floodmark.

08177700 OLMOS CREEK AT DRESDEN DRIVE, SAN ANTONIO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: November 1968 to current year. Sediment analyses: October 1972 to September 1973. Water temperatures: November 1968 to current year. Bacteria analyses: April 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	T	IME	FL! INS	EAM- OW, TAN- EOUS	CI CO DU AN (MI	FIC N- ICT- ICE CRO- IOS)	(UN	PH	TEMP ATU	RE	IN CC	OLOR PLAT- NUM- OBALT		8	JR- [D- [Y	So	GEN, IS- DLVED	SO (P	GEN, DIS- DLVED PER- CENT TUR- TION)	OXYG DEMA BIO CHE ICA 5 DA (MG/	ND,
NOV																					
01	0	920	104	0		105		8.1	1	9.5		560			320		8.3		93		4.3
01	1	415	159	0		100		8.4		9.0		520			310		8.4		93		3.9
JUN																					
06	S	305	126	0		87		8.2	1	7.5		520			1400		6.8		73		6.1
01	,	446	13	0		124		7.5	-	2 =		100			170		7.1		86		4.8
SEP	1	440	13	,		124		1.5	-	3.5		100			110		1.1		00		4.0
08	0	040	638	8		110		7.7	2	2.5		100			280		8.8		104		1.3
100000	-	LI-	COL	LI-	CT	REP-		N. T.													0.76.35
	F0 T0 TM (C0	RM, TAL, MED. LS. ER	FOI FEI O. UM-	CAL, 7 -MF	FE KF (CO	OCCI CAL, AGAR LS. ER	NE (M	RD- SS G/L S	HAR NES NONC BONA (MG	AR- TE	DI SC	CIUM S- OLVED		SOL (MC	SNE-	SOL (M	IUM, S- VED	50 T	AD- ORP- ION	SOL (MG	UM. S- VED
DATE	100	ML)	100	ML)	100	ML)	CA	C03)	CAC	03)	AS	CA)		AS	MG)	AS	NA)			AS	K)
NOV																					
01	55	0000	66	6000	8	2000		44		0		16			.9		2.4		.2		4.0
01	24	0000	72	2000		0000		43		0		16			.8		2.8		.2		3.4
JUN																					
O6		5000		5000		6000		40		0		15			.6		3.2		.2		3.0
01 SEP	50	0000	25	0000	12	0000		49		0		18			.9		3.1		.2		3.2
08	11	0000	7	0000	11	0000		46		5		17			.9		2.1		.1		3.2
0.4	ATE.	BICA BONA (MG A	TE /L S	CAR BONA (MG	TE /L	SULFA DIS- SOLV (MG/	ED L	CHL RID DIS SOL (MG AS	E. VED	FLUC RIDE DIS SOLV (MG/	E P	DI SO (M	ICA S- LVE G/L S 02)		SOLI SUM CONS TUEN DI SOL (MG	OF TI- TS, S- VED	SOLI RESI AT 1 DEG. SUS PEND (MG	DUE 05 C+	SOL II VOL TIL SUS PENDI (MG	A- E, ED	
		1100	٠,	,, v	03,	-3 30	, ,	43	UL. /	43	•	31	02,		11.10	, - ,			1	-	
NOV			2.0								15						10 12				
	•••		57		0		.7		2.3		.1		6.			64		772		805	
JUN			57		0		1.1		2.4		.1		6.	U		63		704		196	
			52		0		.6		2.5		.1		4.	2		59	3	420		480	
AUG	;												1								
			60		0		.6		2.6		.1		5.	8		69		264		36	
SEP 08			50		0		.2		2.8		.1		5.	7		64		490		80	

		NIT GE NITR TOT (MG	N. ATE AL	NITE GEI NITE TOT	ITE AL	NITE GEN NO2+N TOTA	103 L	NIT GE AMMO TOT (MG	N, NIA AL	NITE GEN ORGAN TOTA (MG/	VIC AL	GEN MON ORG TO	TRO- AM- IA - ANIC TAL G/L	-	PHOR PHOR TOT	US,	CARBO ORGAI TOT	VIC AL	METI BLI ACT: SUI STAI	NE I VE 3-	
DA	TE	AS		AS I		AS N		AS		AS N			N)		AS		AS	(2)	(MG		
	40																				
NOV			4.4		.02		4.6		10	,	0		1.9			.61	2	1.0		.00	
	• • •		.44		.02		36		•10 •04	1.			1.3			.43	2			.00	
JUN)					15	55		• 0 4								A SEC		1	45 21	
			.76		.00		76		.27	1.	3		1.6		1	.2	5	0	- 3	.00	
AliG																				10.14	
01	•••		• 35		. 05		40		.01		65		.66	5		.38	. 17.1	9.7		.00	
SFP			.27		.01		28		.02	1.	7		1.7			.53	1	11%	911	.00	
0.8					• O.T.		20		. 02	1.	1		101			. 73			Dell's	00	

GUADALUPE RIVER BASIN

08177700 OLMOS CREEK AT DRESDEN DRIVE, SAN ANTONIO, TX--Continued

D	ATE	TIME	SOL (UG	S- VED		5-	SOL (UG	IUM S- VED S/L CD)	CHR MIU DIS SOL (UG AS	M. VED	COPP DIS SOL (UG AS	VED /L	SOL	N, S- VED S/L FE)		
NO	v 1	0920		2		0		0		5		1		30		
	1	1415		5		200		0		10		6		90		
JU	N 6	2305		3		200		0		0		15		130		
Ü		2303			NGA-				LE-							
	DAT	S	EAD, DIS- OLVED UG/L S PB)	NE D SO (U	SE, IS- LVED G/L MN)	SC (1	CURY IS- OLVED IG/L IG/L	NI D SO (U	UM, IS- LVED G/L SE)	50 (U	VER. IS- LVED G/L AG)	50 (U	NC, IS- LVED G/L ZN)			
	NOV															
	01.		1		4		.0		0		0		10			
	Ol.	••	5		4		.0									
	06.	• •	9		5		. 0		0		0		20			
DATE	TIM	E T	PCB, OTAL UG/L)	LE P CH TO	PH- HA- NES. OLY- LOR. TAL G/L)	TO	RIN.	TO	LOR- NE, TAL G/L)	TO	DD+ TAL G/L)	TO	DE+ TAL G/L)	TO	DT, TAL G/L)	
NOV.																
01	092	0	.0		.00		.00		.2		.00		.00		.00	
01	141	5	. 0		.00		.00		• 3		.00		.00		.01	
06	230	5	.0		.00		.00		.4		.00		.02		.04	
AZI TO		DI- ELDRIN TOTAL (UG/L)	END SULF TOT	AN,	TO	RIN, TAL G/L)		(ON+	CHL	TA- OR, AL	CHL EPOX TOT	IDE		DANE TAL G/L)	TOT	ON,
NOV																
01 01	.22	.01		.00		.00		.00		.00		.02		.00		.00
06	.34	.06		.00		.00		.00		.01		.03		.01		.00
DATE	METH PARA THIO TOTA (UG/	- N, T	ETHYL TRI- HION, OTAL UG/L)	TH TO	RA- ION, TAL G/L)	APH	OX- HENE, OTAL	TH	TAL RI- ION G/L)	TO	4-0+ TAL G/L)	TO	•5-T TAL G/L)	TO	VEX, TAL G/L)	
NOV																
01		00	.00		.00		0		.00		.00		.01		.00	
01		00	•00		.00		0		.00		.00		.02		.00	
06		00	•00		.00		U		• 00		.00				•••	

08177800 OLMOS RESERVOIR AT SAN ANTONIO, TX

LOCATION.--Lat 29°28'28", long 98°28'23", Bexar County, Hydrologic Unit 12100301, at left upstream side of dam on Olmos Drive, 0.8 mi (1.3 km) upstream from Hildebrand Street, 1.5 mi (2.4 km) upstream from Brackenridge Park Zoo, and 4.0 mi (6.4 km) downstream from gaging station 08177700, Olmos Creek at Dresden Drive, San Antonio.

DRAINAGE AREA .-- 32.4 mi 2 (83.9 km2).

PERIOD OF RECORD.--June 1968 to September 1971, April 1976 to current year.

GAGE .-- Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--The dam is a concrete gravity-type structure with a maximum height of 50 ft (15 m) and a total length of 1,740 ft (530 m). There is a 24-foot-wide (7.31 m) roadway (Olmos Drive) along the top of the dam. The outlet structure consists of six vertical slide-gate-controlled concrete conduits with entrance dimensions of 6.5 ft (2.0 m) wide by 8.5 ft (2.6 m) high. The gates are maintained and operated by the city of San Antonio Fire Department as required to control downstream floodflow. The reservoir is empty except during flooding when it is used as a detention reservoir. The reservoir has a surface area of about 1,050 acres (424 hm²) at top of the dam. The dam is owned by the city of San Antonio. National Weather Service rain gage and gage-height telemeters at station. Figures given herein represent total contents. Data regarding the dam and reservoir are given in the following table:

	Elevation (feet)	Capacity (acre-feet)
Top of dam	728.5	15,500
Design flood	725.5	12,600
Floor of gate operating room	714.0	5,000
Lowest gated outlet (invert)	680.0	0

EXTREMES FOR PERIOD OF RECORD. -- Maximum elevation, 704.50 ft (214.732 m) Sept. 13, 1978.

EXTREMES FOR CURRENT YEAR. -- Maximum elevation, 704.50 ft (214.732 m) Sept. 13.

GAGE HEIGHT, IN FEET, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 EQUIVALENT MEAN

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	679.86	697.20	680.46	680.38	680.44	680.77	680.58	680.68	681.17	680.50	692.32	682.33
2	681.22	680.97	680.46	680.51	680.39	680.80	680.68	683.13	680.82	680.37	681.56	681.34
3	680.34	680.63	680.46	680.40	680.36	680.86	680.64	681.20	681.12	680.47	681.35	681.11
4	680.19	680.54	680.44	680.39	680.35	680.85	680.63	680.92	680.81	680.44	681.17	683.46
5	680.25	680.51	680.45	680.37	680.40	680.93	680.63	680.72	680.68	680.43	681.09	681.22
6	680.12	680.50	680.42	680.35	680.36	685.19	680.67	680.78	694.88	680.41	681.95	681.07
7	680.12	680.51	680.38	680.36	684.08	683.74	680.61	680.72	681.20	680.31	681.13	694.37
8	680.10	681.10	680.42	680.36	681.50	681.80	680.69	680.83	680.94	680.15	681.05	681.89
9	680.15	680.58	680.41	680.37	681.04	681.23	680.60	680.67	680.67	679.99	681.02	681.42
10	680.10	680.52	680.39	680.35	680.96	681.15	682.44	680.66	680.59	679.86	681.03	681.44
11	680.15	680.44	682.07	681.79	681.98	681.20	680.95	680.70	680.56		681.00	681.50
12	680.08	680.43	680.51	680.51	684.21	680.90	680.89	680.66	680.56	680.09	680.90	681.22
13	680.10	680.42	680.46	680.44	681.72	680.92	680.81	680.62	680.51	680.38	680.89	700.74
14	680.11	680.41	680.39	680.37	680.94	680.90	680.77	680.54	680.52	680.27	680.84	681.56
15	680.21	680.43	680.37	680.35	681.91	680.86	680.74	680.52	680.51	680.07	680.49	681.27
15	000.21	000.43	000.37	000.33	001.91	000.00	000.74	000.52	000.31	000.07		
16	680.14	680.43	680.37	681.76	680.86	680.73	680.74	680.56	680.49	679.92	680.26	681.20
17	680.18	680.41	680.36	680.47	683.71	680.74	680.77	680.55	680.47		680.11	681.15
18	680.15	680.39	680.37	680.39	680.97	680.71	680.72	680.58	680.47		679.96	681.12
19	680.15	680.39	680.37	680.65	680.76	680.82	680.73	680.64	680.47		679.84	681.11
20	680.22	680.38	680.34	680.37	680.64	680.95	680.82	681.43	680.62	680.24		681.18
21	682.77	680.52	680.34	680.34	681.12	681.04	680.72	681.30	680.52	679.96	680.81	681.18
22	681.23	680.37	680.35	680.33	680.93	681.09	693.82	680.76	680.49	679.82	680.96	681.33
23	683.40	680.35	680.37	680.32	680.90	684.12	681.32	680.64	680.51		681.03	681.31
24	680.63	680.37	680.37	680.33	680.62	681.16	680.98	680.62	680.47		681.04	681.32
25	680.38	680.36	680.36	680.37	680.66	680.71	680.85	680.61	680.46	680.00	680.91	681.32
23	000.30	000.50	000.50	000.37	000.00	000.71	000.03	000.01	000.40			
26	680.26	680.35	680.35	680.32	680.69	680.67	680.82	680.55	680.26	680.16	681.07	681.37
27	680.22	680.35	680.35	680.33	680.76	680.69	680.75	680.54	680.50	680.46	681.20	681.47
28	680.25	680.34	680.39	680.37	680.80	680.64	680.75	680.54	680.62	683.30	681.06	681.28
29	680.21	680.85	680.64	680.35		680.62	680.69	682.18	680.50	681.28	681.15	681.17
30	680.20	680.42	680.44	680.35		680.61	680.71	681.02	680.39	681.09	681.20	681.11
31	680.23		680.40	680.37		680.59		680.72		683.42	681.65	
MAX	683.40	697.20	682.07	681.79	684.21	685.19	693.82	683.13	694.88		13	700.74
	679.86	680.34	680.34	680.32	680.35	680.59	680.58	680.52	680.26			681.07
MIN	0/9.00	000.34	000.34	000.32	080.35	080.59	000.58	000.52	000.20			301.07

NOTE.--Gage heights below 679.8 ft are not published.

08178000 SAN ANTONIO RIVER AT SAN ANTONIO, TX

LOCATION.--Lat 29°24'34", long 98°29'41", Bexar County, Hydrologic Unit 12100301, on left bank 193 ft (59 m) downstream from South Alamo Street Bridge in San Antonio, 2.1 mi (3.4 km) upstream from San Pedro Creek, and 230.6 mi (371.1 km) upstream from mouth.

DRAINAGE AREA.--41.8 mi² (108.3 km²). Flow of river comes from intermittent spring flow and from artesian wells; drainage area of streams not applicable.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--January 1915 to November 1929, February 1939 to current year. Ground-water discharge into river is discussed by Petit and George, Texas Board of Water Engineers Bull. 5608, vol. 1 (1956, p. 45). December 1895 to June 1906, periodic discharge measurements only.

REVISED RECORDS.--WSP 1312: 1917. WSP 1923: Drainage area. WDR TX-72-1: 1971(m).

TOTAL

28055.2

MEAN

GAGE.--Water-stage recorder and concrete control. Datum of gage is 605.26 ft (184.483 m) National Geodetic Vertical Datum of 1929.

Jan. 26, 1915, to Feb. 27, 1916, nonrecording gage at site 1.3 mi (2.1 km) upstream at different datum. Feb. 28, 1916, to Apr. 7, 1920, nonrecording gage at site 1.1 mi (1.8 km) upstream at different datum. Apr. 8, 1920, to Nov. 16, 1929, and Feb. 15, 1939, to Apr. 25, 1967, vater-stage recorder in vicinity of South Alamo Street Bridge at 7.00 ft (2.134 m) higher datum. Apr. 25, 1967, to May 13, 1969, water-stage recorder at site 307 ft (94 m) downstream at same datum.

REMARKS.--Water-discharge records good. Floodflow is regulated by Olmos flood-control reservoir, capacity 15,500 acre-ft (19.1 hm³) about 8.5 mi (13.7 km) upstream. Dam completed in 1926. Springs emerge intermittently from the Edwards and associated lime-stones along the Balcones Fault Zone. City of San Antonio rain gage and gage-height telemeters at station.

AVERAGE DISCHARGE .--53 years, 55.1 ft3/s (1.560 m3/s), 17.90 in/yr (455 mm/yr), 39,920 acre-ft/yr (49.2 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.---Maximum discharge, 15,300 ft³/s (433 m³/s) Sept. 10, 1921, gage height, 20.14 ft (6.139 m), from floodmark, at former site and datum, from rating curve extended above 2,000 ft³/s (56.6 m³/s) on basis of slope-area measurement of peak flow; no flow at times due to regulation.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since 1819, that of Sept. 10, 1921; flood of July 5, 1819, equaled or exceeded that of Sept. 10, 1921.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,470 ft³/s (98.3 m²/s) Sept. 13, gage height, 12.56 ft (3.828 m); no flow at times due to regulation.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES MAY DAY OCT NOV DEC JAN FEB MAR APR JUN JUL AUG SEP 310 20 72 70 7.5 93 28 75 6.1 78 74 77 72 51 79 76 5.6 757 1.6 8.6 9.6 53 11 9.1 7.1 8.9 89 72 72 315 6.4 5.9 9.9 54 8.7 9.3 7.6 66 90 75 47 44 43 27 9.1 8.8 72 7.5 ... TOTAL 452.9 1372.1 3868.6 650.7 867.9 124 103 21.0 124 1.6 44.3 634 6.1 MEAN 88.5 1330 93.1 82.3 72.5 69.0 28.9 14.6 1160 2.12 2.44 4.12 4.58 MIN CFSM 5.9 7.6 7.5 2.66 2.23 1.06 3.09 1.97 2.05 2.00 .40 1.84 .58 AC-FT CAL YR 1977 WTR YR 1978 TOTAL 53002.0 MEAN 76.9 MAX 1330 MAX 1330 MIN 34 MIN 1 CFSM 3.47 CFSM 1.84

1.6

08178000 SAN ANTONIO RIVER AT SAN ANTONIO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: November 1968 to current year. Sediment analyses: May 1970 to September 1973. Water temperatures: November 1968 to current year. Bacteria analyses: May 1976 to current year.

REMARKS.--Peak discharges for storm events during which water-quality samples were obtained are given in the following table:

Date	Time	Disch (ft ^m /s)	arge (m™/s)	Gage h	eight (m)	Date	Time	Disch (ft™/s)	arge (m™/s)	Gage (ft)	height (m)
Nov. 1 May 2 July 28	1315 2015 1745	3,170 1,720 483	89.8 48.7 13.7	a12.2 9.99 7.73	3.72 3.045 2.356	Sept. 7 Aug. 1	1945 1000	1,500 1,120	42.5 31.7	9.77 9.17	2.978 2.795

a From floodmark.

342

		WATER QU	ALITY DAT	A, WAIER	TEAR OC	I OBEK 1	911	10 SEPTEM	HEK 1910		
			SPF-							OXYGEN.	OXYGEN
			CIFIC							DIS-	DEMAND.
			CON-			COL	00			SOLVED	
		STREAM-						THO	OXYGEN.		CHEM-
		FLOW.	DUCT-				AT-	TUR-		CENT	ICAL,
		INSTAN-	ANCE	PH	TEMPER		JM-	BID-	DIS-		
	TIME	TANEOUS	(MICRO-		ATURE		BALT	ITY	SOLVED		
DATE		(CFS)	MHOS)	(UNITS)	(DEG C) UNI	(TS)	(JTU)	(MG/L)	ATION)	(MG/L)
NOV	1505	1870	128	8.2	19.	•	440	310	7.3	81	4.6
01	1525	1870	128	0.2	19.	U	440	310		, 0,	4.0
MAY						-	100	85	8.8	100	20
02	2134	398	219	7.1	20.	5	100	85	0.0	100	20
JUL			20.2			_				87	7.6
28	1710	129	443	8.1	27.	5	30	40	6.8		1.0
AUG		2.0	4.00							98	
01	1405	70	161	7.8	24.	5	90	150	8.0	98	5.0
SEP											
08	0115	817	150	7.9	23.	5	80	200	7.4	89	3.5
	-01 -		67050								
	COLI-	COLI-	STREP-					****		SODIUM	POTAS-
	FORM.	FORM.	TOCOCCI		HARD-			MAGNE-			
	TOTAL .	FECAL,	FECAL,	HARD-	NESS,		CIUM	SIUM,	SODIUM	AD-	SIUM,
	IMMED.	0.7	KF AGAR	NESS	NONCAR			DIS-	DIS-	SORP-	DIS-
	(COLS.	UM-MF	(COLS.	(MG/L	BONATE		VED	SOLVED	SOLVED	TION	SOLVED
	PER	(COLS./	PER	AS	(MG/L		3/L	(MG/L	(MG/L	RATIO	(MG/L
DATE	100 ML)	100 ML)	100 ML)	CACO3)	CAC03) AS	CA)	AS MG)	AS NA		AS K)
NOV										:	3.7
01	530000	68000	190000	47		1	16	1.7	3.4	• • • •	3.1
MAY					W 7.						
02	420000	90000	160000	84	2	0 2	26	4.6	7.1	:	3.5
JUL									100		
28	250000	94000	40000	200	2	5 5	56	14	11	• :	2.5
AUG											
01	890000	310000	240000	59	1	0 7	20	2.2	4 . 2	2 .2	3.4
SEP											
08	K180000	130000	94000	61	1	2 2	21	2.1	3.8	3	3.1
				4				SOLIDS,	SOLIDS		NITRO-
				CHLO-	FLUO-	SIL		SUM OF	RESIDUE		GEN.
	BICAR-	100	SULFATE	RIDE.	RIDE,	DIS		CONSTI-	AT 105	VOLA-	NITRATE
	BONATE	CAR-	DIS-	DIS-	DIS-		LVED	TUENTS,	DEG. C	SUS-	TOTAL
	(MG/L	BONATE	SOLVED	SOLVE			G/L	DIS-	SUS-	PENDED	(MG/L
	AS	(MG/L	(MG/L	(MG/L	(MG/L			SOLVED	PENDED		
DATE	HC03)	AS C03)	AS 504)	AS CL	AS F)	510	05)	(MG/L)	(MG/L	(MG/L	A3 147
NOV				3.0			4.8	68	84	180	.59
01	56	0	7.3	3.0		1	4.0	00	04		
MAY						,		109	53	9 14	.90
02	78	0	14	11	•	1	4.5	109	53		• • • •
JUL		0	28	22		2	9.8	247	9	9 17	1.2
28	210	0	28	~~		-	3.0	241	,		
AUG	60	0	13	5.	1	1	5.3	83	23	2 1	. 55
01 SEP	60	U	13	3.1	•	•	3.3	00		1	2 85
08	60	0	14	5.	0 .	1	5.4	84	39	0 9	.46
00	00	·	• •	-							
						ITRO-				ETHY-	
						N.AM-				LENE	
						NIA +	PHO			BLUE	
	NITE					GANIC	PHOR				OIL.
						OTAL	TOT				AND
						MG/L	(MG				REASE
DA	ATE AS	N) AS	N) AS	N) AS	5 N) A	S N)	AS	P) AS	C) (MG/L) (4G/L)
NO					1 .	1 7		40	23	.00	
	1	.02	.61	.14	1.6	1.7		.40		.00	
MAY				24	2.2	2 6		42		20	-
02	2	.04	.94	.34	2.2	2.5		.63	•6	• 30	
JUL		0.4	1 2	04	97	.91		.22	9.2	.30	
	8	.04	1.2	.04	.87	.71		• = =	706	• 50	
AUG		0.4	50	0.0	.87	.87		.38	14	.00	0
	1	.04	.59	.00	•01	.01		. 30	• •	.00	CAN LAND
SEF	8	.02	.48	.07	.83	.90		.41	17	.10	
01		• 42	. 40		•05	.,,		• • •	-		

GUADALUPE RIYER BASIN 08178000 SAN ANTONIO RIYER AT SAN ANTONIO, TX--Continued

	DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	
	01	1525	4	0	0	5	1	50	
	YAY	2134	3	0	0	0	7	100	
	28	1710	5		<1	50	7	20	
	DA	Si	EAD, NE DIS- D DLVED SO UG/L (U	LVED SO	CURY NI DIS- D DLVED SO	IS- D LVED SO G/L (U	IS- D LVED SO	NC. IS- LVED G/L ZN)	
		1	2	0	.0	0	0	10	
		2	13	40	.0	0	0	40	
	JUL	·	25	20	.0	0	0	20	
DATE	TIME	PCB, TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE + TOTAL (UG/L)	DDD+ TOTAL (UG/L)	DDE+ TOTAL (UG/L)	DDT+ TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)
NOV							272		
01	1525	.0	.00	•00	• 4	• 02	.00	•04	.07
YAM	2134	.5	.00	.00	1.3	.00	.00	•21	1.5
28	1710	.0	.00	.00	.1	.00	.01	.04	.16
01	1405	.0	.00	•00	.4	.00	.00	.09	•37
	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)
NOV 01	.02	.00	.00	.00	.00	.02	.00	.00	
MAY 02	.00	.00	.00	.00	.02	.00	.02	.86	
JUL 28	.01	.00	.00	.00	.00	.00	.01	.00	.00
01	.05	.00	.00	.00	.01	.00	.00	.03	
	METHYL PARA- THION, TOTAL	METHYL TRI- THION, TOTAL	MIREX.	PARA- THION, TOTAL	TOX- APHENE, TOTAL	TOTAL TRI- THION	2+4-0+ TOTAL	2.4.5-T TOTAL	SILVEX,
	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
NOV 01	.00	.00		.00	0	.00	.00	.02	.00
MAY 02	.00	.00		•00	0	.00	.50	.14	.04
JUL 28	.01	.00	.00	.01	0	.00	.00	.01	.00
01	.00	•00	.00	.00	0	.00	.00	•02	.02

08178300 ALAZAN CREEK AT ST. CLOUD STREET, SAN ANTONIO, TX (Flood-hydrograph partial-record station)

LOCATION.--Lat 29°27'29", long 98°32'59", Bexar County, Hydrologic Unit 12100301, at bridge on St. Cloud Street in San Antonio and 1.5 mi (2.4 km) upstream from Woodlawn Lake Dam.

DRAINAGE AREA .-- 3.26 mi2 (8.44 km2).

344

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1968 to current year.

GAGE .-- Digital recorders (water stage and rainfall). Gage not referenced to National Geodetic Vertical Datum of 1929.

REMARKS.--Additional storm rainfall-runoff data for this site can be obtained from the report "Hydrologic Data for Urban Studies in the San Antonio, Texas Metropolitan Area, 1978."

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,380 ft⁵/s (124 m³/s) May 8, 1975, elevation, 16.08 ft (4.901 m).

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 400 ft3/s (11.3 m3/s) and maximum (*):

Date	Time	Disch	narge	Elevation		Date		Time	Discharge		Elevation	
		(ft ³ /s)	(m5/s)	(ft)	(m)				(ft^3/s)	(m^3/s)	(ft)	(m)
a0ct. 22	0715	464	13.1	8.28	2.524	aJune	6	2120	608	17.2	8.91	2.716
aNov. 1	1325	1,800	51.0	12.07	3.679	aAug.	1	1215	304	8.61	7.48	2.280
Apr. 10	0225	554	15.7	8.68	2.646	Aug.	1	2100	803	22.7	9.66	2.944
Apr. 22	1355	1,740	49.3	11.94	3.639	Sept.	13		*3,200	90.6	b14.44	4.401
aMay 2	1915	201	5.69	6.87	2.094	7.5			100			

- Water-quality samples were obtained during this flood event.
- From crest-stage gage mark.

WATER-OUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: November 1968 to current year. Sediment analyses: September 1970 to September 1973. Water temperatures: November 1968 to current year. Bacteria analyses: December 1975 to current year.

WATER QUALITY DATA. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 OXYGEN. OXYGEN DEMAND. DIS-SOLVED (PER-CENT CIFIC BIO-CHEM-ICAL, 5 DAY (MG/L) CON-DUCT-COLOR (PLAT-INUM-STREAM-TUR-BID-ITY OXYGEN. DIS-SOLVED FLOW. TEMPER-ANCE PH TIME TANFOUS (MICRO-ATURE COBAL T SATUR-(UNITS) (DEG C) (JTU) (MG/L) DATE OCT 95 5.7 22... 1045 14 202 7.3 21.5 220 120 8.2 NOV 94 4.3 01... 1500 62 230 MAY 82 21 02... 7.2 2205 51 228 7.0 20.5 110 85 JUN 07... 74 7.9 120 78 3.9 0130 158 AUG 56 3.3 180 4.7 1213 214 110 7.9 23.0 110 COLI-FORM. TOTAL. COLI-FORM, FECAL STREP-HARD-TOCOCCI MAGNE-SODIUM POTAS-CALCIUM SODIUM. AD-SIUM. DIS-HARD-SIUM, DIS-FECAL . NESS. TMMED. 0.7 UM-MF KE AGAR NESS DIS-DIS-SOLVED (MG/L AS CA) SOLVED (MG/L AS MG) SOLVED (MG/L AS NA) SOLVED (COLS. (MG/L BONATE TION (MG/L CACO3) (MG/L AS K) (COLS. CACO3) 100 ML) 100 ML) DATE 100 ML) 7.7 3.3 920000 98000 22 ... NOV 01... 540000 130000 240000 93 16 33 2.6 8.8 6.6 82 29 13 4.1 63000 150000 02... 390000 JUN 07... 26 4.9 .3 2.6 430000 K180000 51000 69 1 1.1 2.1 2.3 01... K1200000 490000 SOLIDS. SOLIDS RESIDUE AT 105 DEG. C. FLUO-RIDE. SUM OF CONSTI-SILICA. SOL TOS. VOLA-SULFATE BICAR-RIDE . DIS-SOLVED DIS-SOLVED (MG/L BONATE CAR-DIS-DIS-TUENTS, SOLVED (MG/L (MG/L AS HCO3) BONATE (MG/L AS CO3) SOLVED (MG/L AS F) (MG/L DIS-SUS-SUS-PENDED SOLVED (MG/L) PENDED AS 5102) (MG/L AS CL) DATE AS 5041 OCT 24 12 108 172 46 55 ... NOV 28 01... MAY 02... 28 8.7 10 144 132 94 .1 984 256 21 14 5.4 133 JUN 180 21 4.7 5.4 11 .1 07... 84 0 AUG 01... 64 42 8.7 2.2 3.8 55 484 NITRO-METHY-LENE BLUE ACTIVE NITRO-NITRO-NITRO-NITRO-NITRO-GEN. NITRITE TOTAL GEN+ NO2+NO3 TOTAL CARBON. GEN. NITRATE PHOS-GEN, GEN. MONIA + ORGANIC ORGANIC PHORUS. ORGANIC TOTAL (MG/L TOTAL (MG/L AS C) SUR-TOTAL STANCE (MG/L) (MG/L (MG/L (MG/L (MG/L (MG/L DATE AS N AS NI AS NI AS NI AS N) AS P) OCT .24 9.6 .10 .46 .02 .48 .00 .61 .61 22 ... NOV 01... .10 2.0 . 04 2.0 -04 1.4 .42 11 .05 .80 .16 27 .30 .75 02 ... JUN 07...

.50

.35

.09

.01

.75

1.1

.84

.04

.03

.46

.32

AUG

01 ...

.00

.00

11

26

.17

.34

GUADALUPE RIVER BASIN

08178300 ALAZAN CREEK AT ST. CLOUD STREET, SAN ANTONIO, TX--Continued

	DA	ATE.	TIME	ARSEN DIS SOLV (UG/ AS A	VED SOLV	5-	CADMI DIS SOLV (UG/ AS C	- DIS ED SOL L (UC	JM , C	OPPER, DIS- SOLVED (UG/L AS CU)	IRON DIS SOLV (UG/ AS F	ED L	
	NO.		1500		2	0		0	10	4		50	
	MAY		2205		2	0		0	0	4		60	
	112		2205			U							
		DA		DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	50I (U	CURY IS- LVED G/L HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVE DIS SOLV (UG/ AS A	S- [/ED S(INC. DIS- DLVED UG/L S ZN)		
		NOV											
		01		10	8		.0	0		0	10		
		YAM 20		12	20		.1	0		0	20		
	DAŤE	717		PCB, TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	TO	RIN; TAL G/L)	CHLOR- DANE, TOTAL (UG/L)	DDD TOTA (UG/	L TO	DDE + DTAL UG/L)	DDT+ TOTAL (UG/L)	
	CT 22	104	. 5	.0	.00		.00	.0		.00	.00	.00	
	OV												
	01	150	0 0	• 0	.00		.00	.1		,00	.00	.01	
	02	22	05	:0	.00		.00	.1		,00	.01	.02	
DATE	AZIN	I- NON, TAL	DI- ELDRII TOTAL (UG/L	TOTA	AN END	RIN, TAL G/L)	ETHIO TOTA (UG/	N+ CHI	PTA- LOR, E TAL G/L)	HEPTA- CHLOR POXIDE TOTAL (UG/L)	LINDA TOTA (UG/	L TOTA	ON,
ОСТ		.20	.0	0	.00	.00		00	.00	.00		.00	.00
NON													00
01		.00	• 0	2	• 00	•00	•	00	•00	.02			.00
02		•55	.0	1	.00	.00		00	.02	.00		.00	.19
	DATE	METH PARA THIC TOTA (UG.	0N+	METHYL TRI- THION, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TO	OX- ENE, TAL G/L)	TOTAL TRI- THION (UG/L)	2•4- TOTA (UG)	AL TO	4,5-T OTAL UG/L)	SILVEX, TOTAL (UG/L)	
	cT												
	22		.00	• 0 0	.00		0	.00		.00	.02	.00	
	01	- 8	.00	.00	.00		0	.00		.00	.02	.00	

08178555 HARLENDALE CREEK AT WEST HARDING STREET, SAN ANTONIO, TX

LOCATION.--29°21'05", long 98°29'32", Bexar County, Hydrologic Unit 12100301, at mid-channel, 71 ft (22 m) upstream from West Harding Street, and 1.3 mi (2.1 km) upstream from Six Mill Creek.

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: October 1977 to September 1978.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			WATER	QUALIT	TY DATA	. WATER	YEA	R OCTO	BER 1	977 TO	SEPTEM	BER 1978			
		TIME	STREAM FLOW, INSTAN TANEOU	- CC DU - AM S (M)	PE- IFIC ON- UCT- NCE ICRO-	Рн	A	MPER- TURE	COL (PL INU COB	AT- M- ALT	TUR- BID- ITY	OXYGEN, DIS- SOLVED	OXYGE DIS SOLV (PER CEN SATU	- DE ED 6 - () T 1 R- 5	XYGEN EMAND, BIO- CHEM- ICAL, DAY
DATE			(CFS)	MI	105)	(UNITS)	(DI	EG C)	UNI	TS) (JTU)	(MG/L)	ATIO	N) (1	MG/L)
OCT 22		1430	21		124	7.9				140	80	5.1		4	4.4
NOV 01		1330	340		201	7.5		13.0		80	250	7.5		81	5.7
APR 10		1110	3.0		150	6.8	1 157	22.0		130	35	3.0		35	6.2
MAY															
02 JUN	•	2248	45		124	7.1		20.0		80	35	6.2		70	14
07		0040	3.3		89	7.8		24.0		80	50			-	3.3
	1	OLI- ORM, OTAL, MMED. OLS. PER	COLI- FORM, FECAL 0.7 UM-MF (COLS.	, FE KF (CC	COCCI CCAL, AGAR DLS. PER	HARD- NESS (MG/L AS	NO BOT	ARD- ESS. NCAR- NATE	CALC: DIS- SOL'	IUM - VED S /L (AGNE- SIUM, DIS- OLVED MG/L	SODIUM, DIS- SOLVED (MG/L	SODI AD SORP TIO RATI	- N 9	OTAS- SIUM, DIS- SOLVED
DATE	10	0 ML)	100 ML) 100	ML)	CACO3)	C	AC03)	AS (CA) A	S MG)	AS NA)			IS K)
0CT 22	. 14	00000	24000	0 18	30000	44		3	10	5	.9	3.4		.2	2.8
01	. 4	70000	10000	0 16	0000	66		5	22	2	2.8	8.4		.4	7.2
10	. ,	70000	17000	0 20	00000	62		0	23	3	1.0	3.4		.2	3.5
02	. 19	00000	100000	0 10	0000	43		5	10	5	.7	4.2		.3	3.1
JUN 07	. 2	70000	24000	0 8	0000	42		2	10	5	.5	1.5		.1	1.5
	DATE	BICA BONA (MG A	TE C.	AR- NATE MG/L CO3)	SULFA DIS- SOLV (MG/ AS SO	TE RI DI ED SO L (M	LO- DE, S- LVED G/L CL)	FLUG RIDI SOLV (MG,	E, S- VED /L	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONS	OF RESI	DUE S	OLIDS, VOLA- TILE, SUS- ENDED (MG/L)	
	22		50	0	5	.6	3.8		.0	2.4		60	116	28	
N	0V		74	0	19		9.3		.1	6.1		111	568	40	
	PR 10		76	0	4	.3	3.7		.1	3.6		80	42	16	
	02		46	0	6	.0	5.0		.0	1.7		59	60	16	,
	UN 07		49	0	4	.1	1.6		.0	2.2		52	66	20	,
										NITRO-				METHY-	
		NIT GE NITR TOT (MG	ATE NI	ITRO- GEN, TRITE DTAL MG/L	NITR GEN NO2+N TOTA (MG/	G 03 AMM L TO	TRO- EN, ONIA TAL G/L	ORGAN TOTA	VIC C	GEN+AM- HONIA + ORGANIC TOTAL (MG/L	PHO	AL TOT	NIC AL	LENE BLUE ACTIVE SUB- STANCE	
	DATE	AS		5 N)	AS N		N)	AS M		AS N)	AS	P) AS	C)	(MG/L)	
	T		.20	.01		21	.00	-1	50	.50		.24	9.4	.10	100
N	0v		.71	.03		74	.26		5	2.8			5	.00	
A	PR 10		.25	.04		29	.05		70	.75			1	.20	
M	02		.31	.01		32	.25		2	1,4			2	.40	
J	IN 07		.19	.02		21	.06		49	.55		.12	9.6	.10	
							-								

GUADALUPE RIVER BASIN

08178555 HARLANDALE CREEK AT WEST HARDING BOULEVARD, SAN ANTONIO, TX--Continued

DATE	D SO TIME (U	ENIC BARI IS- DIS LVED SOLV G/L (UG AS) AS	6- D1 /ED SOL 6/L (UG	CHR IIUM MIU S- DIS VED SOL I/L (UG CD) AS	M. COPPE DIS- VED SOLV	DIS- ED SOLVED L (UG/L	
ост							
22	1430	2	0	0	0	2 30	
NOV 01 APR	1330	3	0	0	5	2 40	
10	1110	3	100	0	0	2 30	
DAT	LEAD+ DIS- SOLVED (UG/L E AS PB)	MANGA- NESE+ DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER. DIS- SOLVED (UG/L AS AG)	ZINC+ DIS- SOLVED (UG/L AS ZN)	
ост							
22. NOV	5	4	.0	0	0	4	
01.	2	4	.0	0	0	10	
APR 10.	6	0	.0	0	0	10	
TIM DATE	PCB, E TOTAL (UG/L)	NAPH- THA- LENES. POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD+ TOTAL (UG/L)	TOTAL T	DDT, OTAL UG/L)
	(00/L/	(00/2/	100727	100/2/	100727		
OCT 22 143 NOV	0 .0	•00	.00	.4	.00	.00	.02
01 133	0 .0	.00	.00	.1	.02	.03	.02
10 111	0 .0	.00	.00	.0	.01	.01	.02
	ELDRIN SUL TOTAL TO		TAL TOT	TAL TOT	OR. EPOXI	R DE LINDANE L TOTAL	MALA- THION, TOTAL (UG/L)
2209	.01	.00	.00	.00	.00 .	00 .00	.00
NOV 0110	•00	.00	•00	•00	.00 .	00 .00	.00
APR 1024	.01	.00	.00	.00	.00 .	00 .00	.04
METH							
PARA THIO TOTA DATE (UG/	N, THION, L TOTAL	TOTAL	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	TOTAL T	LVEX. OTAL UG/L)
	00 .00	.00	0	.00	.00	.00	.00
NOV 01	00 .00	.00	0		.00	.00	.00
	00 .00	.00	0	•00	.08	.03	.00

08178640 WEST ELM CREEK AT SAN ANTONIO, TX (Flood-hydrograph partial-record station)

LOCATION.--Lat 29°37'23", long 98°26'29", Bexar County, Hydrologic Unit 12100301, at mid-channel, 1.8 mi (2.9 km) upstream from East Elm Creek, 2.1 mi (3.4 km) upstream from Farm Road 1604, and 7.0 mi (11.3 km) north of San Antonio International Airport.

DRAINAGE AREA .-- 2.45 mi2 (6.35 km2).

348

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- February 1976 to current year.

GAGE. -- Digital recorders (water stage and rainfall). Gage not referenced to National Geodetic Vertical Datum of 1929.

REMARKS.--Additional storm rainfall-runoff data for this site can be obtained from the report "Hydrologic Data for Urban Studies in the San Antonio, Texas Metropolitan Area, 1978."

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,000 ft²/s (56.6 m³/s) Nov. 1, 1978, gage height, 5.82 ft (1.774 m).

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 100 ft3/s (2.83 m3/s) and maximum (*):

Date	Time	Disch	arge	Elevation (ft) (m)	ation	Date	Time	Disch	narge	Eleva	tion
		(ft^3/s)	(m ⁵ /s)	(ft)	(m)	1757		Disch (ft³/s)	(m^3/s)	(ft)	(m)
aNov. 1	0820	*2.000	56.6	5.82	1.774	aSept. 13	0825	335	9.49	4.30	1.311

a Water-quality samples were obtained during this flood event.

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, pesticide and bacteria analyses: May 1976 to current year. Water temperatures: May 1976 to current year.

WATER QUALITY DATA. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

								-		-									
				SPE												OXY	EN.	DEMA	
		STRE	AM-	CON						co	LOR					SOL	VED	810	
		FLO		DUC							LAT-	T	UR-	OXYG	EN,		R-	CHE	
		INST		ANG			PH	TEM	PER-	IN	UM-	В	ID-	DI	S-		NT	ICA	
	TIME	TANE			RO-			AT	JRE	CO	BALT	I	TY	SOL			TUR-	5 DA	
DATE		(CF		мн		(UN	ITS)	(DE	3 C)	UN	ITS)	()	TU)	(MG	/L)	AT	(NO	(MG/	L)
NOV									17.5		160		25		8.7		94		2.5
Ol SEP	0950	26			121		7.4						20		7.9		94		2.3
13	1054	28			156		8.1		23.0		160				7.5		89		1.9
13	1355		.70		202		7.1		23.0		140		10		1.5		07		1.7
	COLI-	COL	.I-	ST	REP-														
	FORM.	FOF	RM.	TOC	DCCI				RD-				GNE-				MUIC	POT	
	TOTAL .	FEC	CAL	FE	CAL		RD-		ss,		CIUM		IUM,	SODI			4D-		UM,
	IMMED.	0.7			AGAR	NE			CAR-		5-		IS-	DIS			RP-		S-
	(COLS.	UM-	-MF	(CO			G/L	BON			LVED		LVED	SOLV			ION		VED
	PER		.5./		ER		S		G/L		G/L		G/L	(MG		RA	110	(MG	
DATE	100 ML)	100	ML)	100	ML)	CA	C03)	CA	CO3)	AS	CA)	AS	MG)	AS	NA)			AS	K)
NOV																			
01	160000	A:	2000	4	1000		59		5		22		.9		1.0		.1		2.7
SEP	100000	7.	.000	,															
13	51000	39	9000	4	6000		75		1		28		1.2		1.3		.1		3.4
13	190000	25	5000	3	4000		110		8		41		1.0		1.2		.1		3.2
													IDS.	SOLI		LAR			
							LO-		UO-		ICA.		OF	RESI			IDS,		HO-
	BICAR-				FATE		DE,		DE,		S-		STI-	AT 1			LA-		N.
	BONATE	CAI		DI		DI			IS-		LVED		NTS,	DEG.			LE,	NITR	
	(MG/L	BON			LVED		LVED		LVED		G/L		IS-	SUS			5-	TOT	
	AS		G/L		G/L		G/L		G/L		S		LVED	PEND		PEN		(MG	
DATE	HC03)	AS	CO3)	AS	504)	AS	CL)	AS	F)	51	02)	(M	G/L)	(MG	/L)	(11	G/L)	AS	147
NOV																			2.7
01	66		0		4.4		2.3		.0		9.4		75		42		12		.34
SEP									1								9		.02
13	90		0		5.6		2.0		:1		14		100		13		0		.01
13	150		0		6.6		2.0		••		14		120						9.30
										RO-						THY-			
		TRO-		RO-		R0-		TRO-	GEN							ENE			
		EN.		N,		N.		EN,	MON!)5-	CARE			UE			
		RITE	N054		AMMO			ANIC	ORG		PHOP		ORG			LIVE	0	ND ND	
		TAL		TAL	TOT			TAL	TO			AL	TO			JB-		EASE	
		G/L		3/L	(MG			G/L		3/L		3/L	(MC					S/L)	
DA	ATE AS	N)	AS	N)	AS	N)	AS	N)	AS	N)	AS	P)	AS	()	(M	3/L)	(111	3/ [/	
NO	,																		
	i	.01		.35		.02		.72		.74		.09		10		.10		0	
SE												180							
	3	.01		.03		.04		.74		.78		.06		1.3		.10		0	
	3	.00		.01		.02		.59		.61		.02		17		.10		0	

GUADALUPE RIVER BASIN 08178640 WEST ELM CREEK AT SAN ANTONIO, TX--Continued

	DATE	TIME	ARSEN DIS SOLV (UGA AS A	ED SOL	5-	CADMIUM DIS- SOLVED (UG/L AS CD)	DIS	M, COP DI VED SO /L (U	PER, S- LVED G/L CU)	IRON, DIS- SOLVED (UG/L AS FE)	
	NOV 01	0950		1	0	0		5	0	40	
	13 13	1054 1355		1		0		10	8	40	
			LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE+ DIS- SOLVED (UG/L AS MN)		URY N S- VED S	ELE- IUM, DIS- OLVED UG/L S SE)	SILVER+ DIS- SOLVED (UG/L AS AG)	SOL:	S- VED /L	
	NO									8	
	SE	1 P 3	0	0		.0	0	0		10	
	1	3	0	0		.2	0	ő		0	
DATE	TIME	PCB, TOTAL	TOT	A- ES. LY- DR. ALDI AL TO	RIN, TAL G/L)	CHLOR- DANE+ TOTAL (UG/L)	DD TOT (UG	AL TO	DE •	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)
NOV		1477.5				150,0			21:30		
01 SEP	0950		0	.00	•00	.0		•00	.00	•00	.00
13	1054 1355			00	.00	.0		.00	.00	.00	.00
DATE	DI- ELORIN TOTAL (UG/L)	ENDO- SULFAN TOTAL (UG/L	, ENDR	AL TO	ION. TAL G/L)	HEPTA- CHLOR, TOTAL (UG/L)	EPOX TOT	OR IDE LIN AL TO	DANE TAL IG/L)	MALA- THION. TOTAL (UG/L)	METHYL PARA- THION, TOTAL (UG/L)
NOV 01	.00	.0	0 .	.00	•00	.00		.00	.00	.00	.00
13	.00	.0		.00	.00	.00		.00	.00	.00	.00
0.4	T TH TO	TAL	MIREX.	PARA- THION. TOTAL	APHE	NE ,	OTAL TRI- HION	2,4-D, TOTAL	TOT	AL TO	VEX.
DA NOV		G/L)	(UG/L)	(UG/L)	(UG	/L) (UG/L)	(UG/L)	(UG.	/L) (U	G/L)
		.00		•00		0	•00	.00		•00	•00
	:::	.00	.00	.00		0	.00	.00		.00	.00

08178645 EAST ELM CREEK AT SAN ANTONIO, TX (Flood-hydrograph partial-record station)

LOCATION.--Lat 29°37'04", long 98°25'41", Bexar County, Hydrologic Unit 12100301, at mid-channel, 2.1 mi (3.4 km) upstream from West Elm Creek, 2.4 mi (3.9 km) upstream from Farm Road 1604, and 6.9 mi (11.1 km) north of San Antonio International Airport.

DRAINAGE AREA .-- 2.33 mi2 (6.03 km2).

350

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- November 1975 to current year.

GAGE.--Digital recorders (water stage and rainfall). Gage not referenced to National Geodetic Vertical Datum of 1929.

REMARKS.--Additional storm rainfall-runoff data for this site can be obtained from the report "Hydrologic Data for Urban Studies in the San Antonio, Texas Metropolitan Area, 1978."

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 310 ft 3 /s (8.78 m 3 /s) May 7, 1976, elevation, 6.78 ft (2.067 m).

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 100 ft3/s (2.83 m3/s) and maximum (*):

Date	Time	Disch	arge	Gage	height	Date	Time	Disch	arge	Gage	height
		(ft ⁵ /s)	(m ⁵ /s)	(ft)	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
aNov. 1 Sept. 4	0940 2100	*277 158	7.84	6.61 5.47	2.015	aSept. 13	0845	267	7.56	6.53	1.990

a Water-quality samples were obtained during this flood event.

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, pesticide and bacteria analyses: May 1976 to current year. Water temperatures: May 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	STREAM FLOW+ INSTAN TANEOU (CFS)	- CO DU - AN JS (MI	FIC N- CT-	PH (UNITS		TEMPER ATURE (DEG C	-	COLOR (PLAT- INUM- COBALT UNITS)	TU 81 11 (JT	D- Y	OXYGEN DIS- SOLVE (MG/L	D	DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND. BIO- CHEM- ICAL. 5 DAY (MG/L)
NOV											10.0				
01 SEP	1109	6.8	3	100		. 3	18.		180		15	8.		920	2.3
13	0945	130		85	7.	.8	22.		120		20	8.		99	1.9
13	1515	2.0	0	144	7.	.2	24.	5	140		7	7.	. 7	94	1.7
DATE	COLI- FORM. TOTAL. IMMED. (COLS. PER 100 ML)	COLI- FORM: FECAL 0.7 UM-MI (COLS: 100 MI	F (CO	REP- OCCI CAL, AGAR LS. ER ML)	HARD NESS (MG/I	L	HARD- NESS, NONCAR BONATE (MG/L CACO3	- '	CALCIUM DIS- SOLVED (MG/L AS CA)	SI SOL (MG	NE- UM, S- VED	SODIUM DIS- SOLVEC (MG/L	D L	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
	100														
01	330000	210	00 1	7000		46		3	17		.9		.9	•1	3.3
13	60000	K300	00 3	1000		41		0	15		.9		. 7	.0	3.0
13	86000	190		4000		73		4	27		1.3	1	. 0	.1	3.6
DATE	BJCAR- PONATE (MG/L AS HC03)	CAR- BONAT (MG/ AS CO	E SC	FATE IS- DLVED 4G/L SO4)	CHLO RIDE DIS- SOLV (MG/ AS C	ED L	FLUO- RIDE DIS- SOLVE (MG/L AS F)	ED .	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONS TUEN DI SOI	OS. OF STI- NTS. IS- VED	SOLID: RESID: AT 10 DEG. SUS- PENDE (MG/	UE 5 C•	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN; NITRATE TOTAL (MG/L AS N)
NOV															
01 SEP	53		0	5.9	2	.2		. 0	11		64		17	*	. 34
13	50		0	4.0		.8	-	. 0	13		62		51	13	
13	84		0	4.1	1	.2		. 1	18		98		8	0	.05
ים	G NIT TO (M	EN, RITE N	NITRO- GEN, 102+NO3 TOTAL (MG/L AS N)		AL I/L	NITI GEI RGAI TOT. (MG.	RO- GI N. MO NIC OI AL	NITR EN, A ONIA RGAN TOTA (MG/ AS N	H- + PHO IC PHOF L TOT L (MC	RUS, TAL S/L	CARE ORGA TO (MC	BON+ ANIC TAL	METH LEN BLU ACTI SUB STAN (MG/	IE IVE O: IVE O: ICE GRI	IL ND EASE G/L)
NO	v 1•••	.01	.35		.01		.81		82	.07		9.7		10	0
SFI															
	3	.01	.05		.05		.1	1.		.04		6.9		.00	0
	3	.01	.06		.03		.63		66	.02	-	27		10	1

GUADALUPE RIVER BASIN

08178645 EAST ELM CREEK AT SAN ANTONIO, TX--Continued

	DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	DIS- SOLVE	COPPE DIS- D SOLV (UG/	ED SOLV	ED L
	NOV 01	1109	0	0	0		0	0	40
	SEP 13	0945	1		0		0		30
	13	1515	1		0		0	3	30
	DA	50L (UG	D. NES S- D: VED SOI	IS- D LVED SO G/L (U	CURY N IS- LVED S G/L (DIS- OLVED S	ILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)	
	NOV 01		1	0	.0	0	0	10	
	SEP		0	0	.0	0	0	0	
			o	ő	.0	0	o	10	
			NAPH- THA- LENES+						
DATE	TIME	PCB. TOTAL (UG/L)	POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	TOTAL	DDD	TOT	AL TOTA	AL TOTAL
NOV		10.51							
01 SEP	1109	•0	.00	•00					.00
13	0945 1515	•0	.00	.00		0 .0			.00 .00
13			•••	•00		HEPT	-		METHYL
	DI- ELDRIN	ENDO-	ENDRIN.	ETHION.	HEPTA-			MALA	
DATE	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L	TOTAL	TOT		
NOV 01	.00	.00	•00	•00	.0	0 .0	00	.00	.00 .00
SEP 13	.00		.00	.00	.0	0 .	00	.00	.00 .00
13	.00	.00	.00	.00				.00	.00 .00
	ME	THYL							
		RI-				TOTAL TRI-	2,4-0,	2.4.5-T	SILVEX.
					HENE,	THION	TOTAL	TOTAL	TOTAL
DA						(UG/L)	(UG/L)	(UG/L)	(UG/L)
NOV 01		.00		.00	0	•00	.00	.00	.00
SEP		.00	.00	.00	0	.00			

08178690 SALADO CREEK TRIBUTARY AT BITTERS ROAD, SAN ANTONIO, TX (Flood-hydrograph partial-record station)

LOCATION.--Lat 29°31'36", long 98°26'25", Bexar County, Hydrologic Unit 12100301, at culvert on Bitters Road immediately east of MacArthur High School in San Antonio.

DRAINAGE AREA .-- 0.26 mi2 (0.67 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1968 to current year.

GAGE.--Digital recorders (water stage and rainfall). Gage not referenced to National Geodetic Vertical Datum of 1929.

REMARKS.--Additional storm rainfall-runoff data for this site can be obtained from the report "Hydrologic Data for Urban Studies in the San Antonio, Texas Metropolitan Area, 1978."

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 279 ft³/s (7.90 m³/s) Sept. 13, 1978, elevation, 8.34 ft (2.542 m).

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 50 ft³/s (1.42 m³/s) and maximum (*):

Date	Time	Disch	narge	Eleva	ation	Date	Time	Disch	arge	Eleva	ation
5446		(ft3/s)	(m³/s)	(ft)	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
Oct. 22	0720	83	2.35	4.66	1.420	June 1	1105	57	1.61	4.13	1.259
Oct. 23	1820	94	2.66	4.88	1.487	June 6	2030	213	6.03	7.15	2.179
Nov. 1	0435	211	5.98	7.12	2.170	Aug. 1	0940	86	2.44	4.72	1.439
aNov. 1	0740	154	4.36	6.08	1.853	Sept. 4	2035	59	1.67	4.17	1.271
Apr. 10	0245	93	2.63	4.86	1.481	aSept. 7	2020	97	2.75	4.95	1.509
Apr. 22	1405	244	6.91	7.72	2.353	Sept. 13	0645	279	7.90	8.34	2.542
May 29	1845	132	3.74	5.64	1.719						

a Water-quality samples were obtained during this flood event.

WATER-OUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: November 1968 to current year. Sediment analyses: April to September 1973. Water temperatures: November 1968 to current year. Bacteria analyses: April 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		STREAM FLOW. INSTAN	DUCT	c _		PER- IN	NUM-	BID-	OXYGEN,	OXYGEN, DIS- SOLVED (PER- CENT	OXYGEN DEMAND, BIO- CHEM- ICAL,
DATE	TIME	(CFS)	MHOS					UTU)	SOLVED (MG/L)	SATUR-	5 DAY (MG/L)
NOV											
SEP	0828	55	1	55	7.2	19.0	200	25	8.0	89	4.7
07	1055	16		69	7.2	24.5	55	20	8.5	104	1.4
	COLI- FORM. TOTAL. TMMED.	FECAL 0.7	FECA	CI L. HAI	SS NON	CAR- D	CIUM	DIS-	SODIUM, DIS- SOLVED	SODIUM AD- SORP- TION	POTAS- SIUM, DIS- SOLVED
	PER	(COLS.	/ PER	A	S (M	IG/L (1	MG/L (MG/L S MG)	(MG/L AS NA)	RATIO	(MG/L AS K)
DATE	100 ML)	100 ML) 100 M	L) CA	COST CA	(CU3) A	S CA) A	15 MU/	M3 11M1		73 ",
nov ni	270000	3200	0 830	00	45	1	15	1.9	3.2	.2	5.4
07	140000	9200	0 1000	00	31	4	11	.8	.9	•1	2.2
		ATE C		SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L	FLUO- RIDE. DIS- SOLVED (MG/L	SILICA: DIS- SOLVED (MG/L AS	CONST TUENT DIS SOLV	F RESIGNATION OF THE PENDER OF	OUE SOLI 05 VOI C+ TIL - SUS	A- E• S- DED
DA	TE HC	03) 45	C03) A	15 504)	AS CL)	AS F)	\$102)	(MG/	L) (MG,	/L) (M	3/L)
NOV 01		54	0	5.9	4.6	.1	4.6		67	41	10
		33	0	4.0	1.3	.0	2.6	5	39	29	5
	NIT TO	EN. RATE NI	GEN. TRITE NOTAL	NITRO- GEN, NO2+NO3 TOTAL (MG/L	NITRO- GEN, AMMONIA TOTAL (MG/L	NITRO- GEN. ORGANIC TOTAL (MG/L	MONIA ORGANIC TOTAL (MG/L	PHOSE PHORE TOTA	S. ORGAL TOT	ON, BI NIC AC AL S	THY- ENE LUE TIVE UB- ANCE
17 /			S N)	AS N)	AS N)	AS N)	AS N)	AS F) AS	C) (M	G/L)
		.85	• 05	.87	.08	.72	.8	0	.66	8.2	•00
SFE	· · · ·	.26	.01	.27	03	.47	.5	0	.20 1	2	.10

353

WATER QUALITY DATA. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

08178690 SALADO CREEK TRIBUTARY AT BITTERS ROAD, SAN ANTONIO, TX--Continued

	DA		TIM	ΙE	ARSEI DIS SOLY (UG.	S- VED /L		5-	SOL (UG	S- VED	CHRI MIUI DIS- SOL (UG	VED	COPP DIS SOL (UG AS	VED /L	IRON DIS SOLV (UG/ AS F	ED L		
			082	8		2		0		1		5		2		50		
	SEP 07		225	0		2				0		0		2		20		
		D	ATE	501	AD, IS- VED G/L PB)	NE SO (U	NGA- SE. IS- LVED G/L MN)	SO (U	CURY IS- LVED G/L HG)	NI SO (U	LE- IUM, DIS- DLVED JG/L S SE)	50 (U	VER. IS- LVED G/L AG)	SOI (U	NC, IS- _VED G/L _ZN)			
		NO	v															
		0	1		9		4		. 0		0		0		20			
		SE 0	7		0		0		.2		0		0		0			
DATE	ΤI	ME	PCE TOTA (UG)	1L	NAP TH LEN PO CHL TOT (UG	A- ES, LY- OR. AL	TO:	RIN, TAL G/L)	DAN TOT		DD TOT (UG	AL	TOT)E+ [AL [6/L]	DD1 TOTA (UG/	AL	DI AZIN TOT (UG	ON,
NOV 01	08	28		• 0		.00		•00		•2		.00		.00		01		.00
07	22	50		.0		.00		.00		.1		.00		.01		01		.15
DATE	TOT	RIN	ENDO SULF	AN,	ENDR TOT (UG	AL	TO	ION, TAL G/L)	TOT	OR,	CHL EPOX TOT	IDE	LING		MALA THIC TOTA (UG)	N.	PAR THI TOT	HYL RA- ION.
NOV																		
01 SEP		.03		• 00		.00		•00		.00		.03		.00		.00		•00
07		.02		.00		.00		.00		.00		.02		.00		.00		.00
	DATE	TH	THYL RI- ION, TAL G/L)	T	REX. OTAL G/L)	TH	ARA- HION, OTAL UG/L)	APH TO	OX- ENE, TAL G/L)	T	OTAL TRI- HION UG/L)	TO	4-D, TAL IG/L)	TO	•5-T TAL G/L)	TO	VEX, TAL G/L)	
	01		.00				.00		0		.00		.00		.05		.00	
	07		.00		•00		.00		0		•00		.00		.00		.00	

08178700 SALADO CREEK (UPPER STATION) AT SAN ANTONIO, TX

LOCATION.--Lat 29°30'57", long 98°25'51", Bexar County, Hydrologic Unit 12100301, on upstream side of upstream bridge of two bridges on Interstate Highway 410 in San Antonio, 1.0 mi (1.6 km) west of Northeast School, 1.1 mi (1.8 km) upstream from Perrin-Beitel Creek, and 2.7 mi (4.3 km) east of San Antonio International Airport.

DRAINAGE AREA .-- 137 mi 2 (355 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1960 to current year.

GAGE.--Water-stage recorder with concrete control. Datum of gage is 684.60 ft (208.666 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. No known diversion above station. Recording rain gage located at station with four additional recording rain gages located in watershed. Flow is affected at times by discharge from flood-detention pools of seven floodwater-retarding structures with combined detention capacity of 17,390 acre-ft (21.4 hm³). These structures control runoff from 46.4 mi² (125.4 km²) above this station.

AVERAGE DISCHARGE.--18 years, 10.2 ft³/s (0.289 m³/s), 1.01 in/yr (26 mm/yr), 7,390 acre-ft/yr (9.11 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 24,900 ft³/s (705 m³/s) May 12, 1972, gage height, 15.22 ft (4.639 m), from rating curve extended above 8,000 ft³/s (227 m³/s) on basis of slope-area measurement of peak flow; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1853, 23 to 24 ft (7.0 to 7.3 m) in October 1913. Flood in September 1921 reached a stage of 18 ft (5.5 m), and flood of Sept. 27, 1946, reached a stage of 18.2 ft (5.55 m), and are the highest since 1899.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 150 ft3/s (4.25 m3/s) and maximum (*):

Date	Time	Disch	arge	Gage 1	neight	Date		Time	Disch	arge	Gage	height
		(ft^3/s)	(m^3/s)	(ft)	(m)				(ft^3/s)	(m^3/s)	(ft)	(m)
aNov. 1	1045	5,070	144	b9.34	2.847	aJune	6	2315	2,900	82.1	8.31	2.533
aApr. 10	0530	70	1.98	3.36	1.024	Aug.	1	1145	285	8.07	4.66	1.420
Apr. 22	1545	772	219	6.65	2.027	aSept.	7	2200	543	15.4	. 6.06	1.847
May 29	2130	243	6.88	4.37	1.332	Sept.	13	1030	*19,800	561	b13.96	4.255

a Water-quality samples were obtained during this flood event.
b From floodmark.

Minimum discharge, no flow for many days.

		DISCHA	RGE, IN C	UBIC FEE	T PER SECO ME	ND, WATER AN VALUES	R YEAR OCT	OBER 197	7 TO SEPTE	MBER 1978	3	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.7 6.6 4.4 3.1 1.2	1890 225 19 10 7.8	.74 .60 .51 .51	1.1 1.2 1.3 1.3	5.7 5.4 5.3 4.0	4.6 4.8 3.8 3.8 3.1	.42 .07 .67 2.3 2.2	2.3 4.0 4.8 5.0 4.9	21 6.1 11 4.4 2.9	.68 .66 .62 .56	87 42 9.6 7.7 6.0	1.8 2.2 2.8 3.7 7.2
6 7 8 9	.98 .79 4.5 6.8 5.9	6.8 6.5 12 6.6 5.6	.51 2.6 5.2 .89 .63	5.9 5.3 3.5 .75	1.1 10 4.8 3.9 3.8	1.1 5.2 1.0 .53 .17	.38 .06 .03 .02	3.5 4.9 3.4 .66 .51	216 516 15 9.3 7.6	.32 .19 .08 .04	.44 .23 2.5 2.9 3.4	3.1 76 65 8.0 8.8
11 12 13 14 15	.96 2.3 4.6 .67	4.9 4.6 4.6 4.6 4.4	.68 .44 .75 .75	.88 .90 .84 .90	3.8 12 4.0 1.3 2.0	.09 .07 1.8 5.7 6.0	5.5 4.9 4.0 3.3 2.0	2.0 4.9 2.4 .72 .57	6.9 6.5 6.0 6.0	.00 .33 .51 .51	2.0 1.7 .19 .05	12 10 4040 182 17
16 17 18 19 20	.51 .42 5.8 5.7 2.5	3.6 .83 .65 .62	.90 .90 .90 .90	2.4 5.0 5.1 4.2 .89	7.2 6.0 2.8 2.5 2.4	5.9 3.5 1.1 .90	.98 2.1 5.7 5.4 1.6	.51 .51 .51 .51	5.1 3.7 3.2 2.6 2.3	.31 .13 .05 .01	.89 1.8 2.0 1.7 .15	14 12 10 9.6 8.5
21 22 23 24 25	5.5 7.4 14 9.4 6.1	3.4 4.9 .89 .97	.97 .93 1.3 1.1	.78 .90 .90 .99	2.4 1.9 1.1 1.0 .52	.90 .96 .91 2.3 .75	.73 94 14 8.5 8.0	.51 .51 .51 .51	1.9 1.8 1.2 .85 .87	.00 .00 .00	.02 .00 .00 .04	10 10 7.4 7.0 6.1
26 27 28 29 30 31	6.1 6.1 5.7 1.3 .75 2.6	.62 .62 .66 5.4 4.2	1.3 1.3 1.3 3.5 5.8 1.3	.84 .53 .29 3.3 4.6 5.7	.53 .17 4.1	.75 .99 3.5 3.4 2.8	8.0 3.2 .75 .75 .75	.62 2.3 .99 22 7.3 6.3	.82 .57 .46 .37 .79	.00 .00 .18 .02 .00	1.6 1.6 1.6 .12 .03	4.9 4.9 4.9 4.8
TOTAL MEAN MAX MIN CFSM IN. AC-FT (††)	125.89 4.06 14 .42 .03 .03 250 2.46	2240.90 74.7 1890 .54 .55 .61 4440 6.12	41.38 1.33 5.8 .44 .01 .01 .82	66.95 2.16 5.9 .29 .02 .02 133 .55	100.82 3.60 12 .17 .03 .03 200	72.24 2.33 6.0 .07 .02 .02 143 .82	196.31 6.54 94 .02 .05 .05 .389 2.88	89.28 2.88 22 .51 .02 .02 177 1.96	867.43 28.9 516 .37 .21 .24 1720 2.61	6.16 .20 .68 .00 .001 .00 12 .95	181.78 5.86 87 .00 .04 .05 361 5.73	4558.6 152 4040 1.8 1.11 1.24 9040 7.74

MIN

.00

CFSM .11 CFSM .17

AC-FT 10610 tt 28.76 AC-FT 16950 tt 34.00

MAX 1890 4040

MEAN 14.7 MEAN 23.4 tt Weighted-mean rainfall, in inches, based on five rain gages.

08178700 SALADO CREEK (UPPER STATION) AT SAN ANTONIO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: November 1968 to current year. Sediment analyses: November 1971 to September 1973. Water temperatures: November 1968 to current year. Bacteria analyses: May 1976 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	DUC	IC - T- E RO-	PH IITS)	TEMPER- ATURE (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	CENT SATUR-	OXYGEN DEMAND. BIO- CHEM- ICAL. 5 DAY (MG/L)
NOV											
01 APR	1112	4550		118	7.3	19.5	720	380	8.2	92	5.2
10	0915	18		566	7.7	21.5	55	180	7.2	84	5.4
JUN 06	2310	2620		167	8.6	22.0	280	3800			4.6
SEP 07	2340	448		212	8.6	23.0	120	1500	4.8	57	2.1
	COLI-	COLI-	STR								
	FORM, TOTAL, IMMED. (COLS. PER	FORM, FECAL, 0.7 UM-MF (COLS./	FEC KF A (COL PE	CCI AL, HA GAR NE S. (M	IG/L	HARD- NESS, NONCAR- BONATE (MG/L	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM. DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L
DATE	100 ML)	100 ML)	100	ML) CA	(CO3)	CACO3)	AS CA)	AS MG)	AS NA)		AS K)
NOV 01	250000	34000	100	000	54	0	20	.9	2.7	.2	5.0
10	89000	7600	430	000	180	48	60	7.2	29	.9	33
JUN 06	>50000	K50000	114	000	45	0	17	.7	7.6	.5	6.8
SEP 07	150000	94000	130	000	46	0	17	.9	6.8	.4	18
DA		ATE CA G/L BON AS (M	R- ATE G/L	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO RIDE DIS- SOLV (MG/ AS C	PID DI	E. DIS S- SOL VED (MG /L AS	CA, SUM - CON VED TUE /L D SO	OF RES	IDS; IDUE SOLI 105 VOL 6. C. TIL 95- SUS IDED PEND 16/L) (MG	A- E,
NOV 01 APR		120	0	4.7	3	1.4	•2	7.6	104	1100	272
10		160	0	100	34		.6	7.9	351	210	56
JUN 06 SEP		65	3	5.2	2	.1	.1	2.7	78	7750	690
	•••	64	3	28	6	.5	.6	8.6	121	2320	360
	NIT!	EN, G RATE NIT TAL TO	TRO- EN, RITE TAL G/L	NITRO- GEN+ NO2+NO3 TOTAL (MG/L	NITR GEN AMMON TOTA (MG/	GE GE GAL TOT	N, MONI NIC ORGA AL TOT	AM- A + PH NIC PHO AL TO	RUS, ORG	BON. BL ANIC ACT TAL SU	HY- INE UE IVE IB-
DA			N)	AS N)	AS N						(VL)
NOV 01		.79	•02	.81		09 2	.1 2	.2	.77	22	.00
APR		•56	.03	.59				.95	.29	3.4	.10
JUN 06		.88	•00	.88						65	.00
SEP		.44	.03	.47		08 1	.0 1	.1	.67	19	.00

08178700 SALADO CREEK (UPPER STATION) AT SAN ANTONIO, TX--Continued

DATE	TIM	E (UG	VED SOLV	S- D VED SO S/L (U	MIUM MI DIS- DI DLVED SO	S- D DLVED S	IS- DOLVED SO	ON, IS- LVED G/L FE)
NOV								
01	. 111	2	3	100	1	5	2	80
APR	V					0	1	20
10	. 091	5	5	100	0	U		20
06	. 231	0	3	200	0	0	9	160
	DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	DIS- SOLVED (UG/L	(UG/L	DIS- D SOLVED (UG/L	
	VOV							
	01	3	4	.() ()	0 20	Mark Mark
-	10	1	0	. (,	0 0	A LANGE WAY
	JUN							
	06	4	5	• () ()	0 10	
DATE	TIME	PCB. TOTAL (UG/L)	NAPH- TH4- LENES. POLY- CHLOR. TOTAL (UG/L)	ALDRIN- TOTAL (UG/L)	TOTAL	DDD .	TOTAL	DDT. TOTAL (UG/L)
NOV								
01	1112	.0	.00	.0	0 .	1 .0	00 .00	•00
10	0915	.0	.00	.0	0 .	0 .0	.00	.00
JUN	2212		.00	.0	0 .	, ,	00 .00	.01
DI- AZINON TOTAL DATE (UG/L	TOTA	IN SULF	OO- FAN, END	RIN. ET	HION+ CO	EPTA- CHLOR, EF	HEPTA- CHLOR POXIDE LIP	MALA- NDANE THION, DTAL TOTAL JG/L) (UG/L)
NOV		3.					.00	.00 .00
010 APR		.00	.00	.00	•00	.00	.00	
102	1 .	.00	.00	.00	.00	.00	.00	.00 .04
JUN 162	3 .	.01	.00	.00	.00	.00	.01	.00 .00
	METHYL PARA-	METHYL TRI-	PARA-	TOX-	TOTAL			
	THION,	THION.	THION,	APHENE				
DATE	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L	THION (UG/L			
			10				1	
NOV 01	.00	.00	.00		0 .0	0 -	00 .3	.00
APR	•00				• • • • • • • • • • • • • • • • • • • •			
10	.00	.00	.00		0 .0	0 .0	08 .1	7 .00
JUN 06	.00	•00	.00		0 .0	0 1.1	1 1.7	.16

08178800 SALADO CREEK (LOWER STATION) AT SAN ANTONIO, TX

LOCATION.--Lat 29°21'25", long 98°24'45", Bexar County, Hydrologic Unit 12100301, on right bank at upstream side of bridge on Loop 13 at San Antonio, 1.4 mi (2.3 km) east of Brooks Air Force Base, and 3.3 mi (5.3 km) upstream from Rosillo Creek.

DRAINAGE AREA.--189 mi² (490 km²).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1960 to current year.

GAGE.--Water-stage recorder. Datum of gage is 526.95 ft (160.614 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Small diversions above station. Recording rain gage located at station with six additional recording rain gages located in watershed. Most of low flow comes from artesian wells and springs in city of San Antonio. For statement regarding regulation by Soil Conservation Service floodwater-retarding structures, see station 08178700.

AVERAGE DISCHARGE.--18 years, 42.2 ft3/s (1.195 m3/s), 3.03 in/yr (77 mm/yr), 30,570 acre-ft/yr (37.7 hm3/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 13,100 ft³/s (371 m³/s) Sept. 27, 1973, gage height, 28.83 ft (8.787 m); no flow

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1941, that of Sept. 27, 1973. Floods of Sept. 27, 1946, and Aug. 15, 1960, were about equal magnitude. Flood of Aug. 15, 1960, reached a stage of 26.8 ft (8.17 m), from floodmarks.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 600 ft³/s (17.0 m³/s) and maximum (*):

Date Time	Time	Disch	narge	Gage h	eight	Date		Time	Disch	arge	Gage h	eight
		(ft^3/s)	(m^3/s)	(ft)	(m)				(ft^3/s)	(m^3/s)	(ft)	(m)
aOct. 22	1500	402	11.4	10.15	3.094	aJune	7	1100	3,840	109	b19.50	5.944
aNov. 1	2100	5,470	155	b22.00	6.760	Aug.	1	2200	1,410	39.9	b14.33	4.368
aApr. 10	1400	678	19.2	11.71	3.569	Sept.	8	0900	1,160	32.9	13.57	4.136
Anr. 23	0300	1 080	30.6	13 27	4 045	Sent	13	1,000	*12 000	340	b28-21	8.598

a Water-quality samples were obtained during this flood event. b From high-water mark.

Minimum discharge, 6.8 ft³/s (0.19 m³/s) July 22, 23.

		DISCHA	RGE, IN C	UBIC FEET	PER SECON	ND, WATER AN VALUES	YEAR OCT	OBER 1977	TO SEPTE	MBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	20	1960	35	28	28	31	29	33	135	13	607	38
2	81	1150	31	28	28	32	28	34	111	13	740	25
3	52	87	30	27	28	32	28	81	119	13	79	15
4	27	5.5	29	29	28	31	27	39	54	12	41	13
5	24	46	28	29	28	31	29	35	24	11	33	50
6	22	43	26	29	25	37	30	34	39	10	27	23
7	21	40	27	31	77	81	29	33	1670	10	22	99
8	22	157	28	29	70	39	26	33	122	10	21	716
9	25	80	31	28	26	31	33	30	52	10	18	82
10	24	44	28	26	23	29	375	24	43	11	17	57
11	23	40	30	27	22	29	81	34	37	10	15	66
12	22	38	38	29	58	28	41	28	35	13	15	54
13	21	37	30	27	70	28	37	27	33	15	14	3670
14	22	36	27	27	35	28	35	27	30	14	14	1200
15	23	35	27	27	37	31	33	27	29	15	12	117
16	21	35	27	30	34	31	34	25	27	17	12	63
17	20	35	27	30	47	31	31	23	26	20	13	53
18	20	33	27	30	39	30	30	24	24	17	13	48
19	21	33	26	32	29	28	31	25	23	16	13	44
20	23	33	26	32	27	27	31	42	21	16	13	42
21	26	35	26	27	26	27	30	60	19	16	13	38
22	214	41	26	27	26	27	139	38	18	13	13	36
23	68	36	27	26	33	28	414	28	17	9.6	12	45
24	67	33	26	26	32	84	55	25	15	12	13	38
25	34	32	26	26	31	41	43	23	15	14	13	34
26	26	31	25	25	29	30	41	23	15	13	13	32
27	25	31	25	25	29	29	41	21	14	14	14	31
28	25	31	27	23	29	28	38	21	14	30	18	33
29	25	4.5	29	23		31	35	22	14	82	19	30
30	23	5.5	29	23		31	34	89	14	30	23	29
31	22		31	26		31		30		22	16	
TOTAL	1089	4387	875	852	994	1052	1888	1038	2809	521.6	1906	6821
MEAN	35.1	146	28.2	27.5	35.5	33.9	62.9	33.5	93.6	16.8	61.5	227
MAX	214	1960	38	32	77	84	414	89	1670	82	740	3670
MIN	20	31	25	23	22	27	26	21	14	9.6	12	13
CFSM	.19	.77	.15	.15	.19	.18	.33	.18	.50	.09	.33	1.20
IN.	.21	.86	.17	.17	.20	.21	.37	.20	.55	1030	3780	1.34
AC-FT	2160	8700	1740	1690	1970	2090	3740	2060	5570 2.98	1.13	5.35	8.91
(++)	2./5	6.07	.27	.52	1.86	.87	3.03	2.03	2.98	1.13	5.35	8.91

MEAN 61.9 MAX 2580 MIN 17 CFSM .33 IN 4.45 AC-FT 44820 tt 28.34 MEAN 66.4 MAX 3670 MIN 9.6 CFSM .35 IN 4.77 AC-FT 48070 tt 35.77 CAL YR 1977 TOTAL 22595.0 WTR YR 1978 TOTAL 24232.6

tt Weighted-mean rainfall, in inches, based on seven rain gages.

08178800 SALADO CREEK (LOWER STATION) AT SAN ANTONIO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: November 1968 to current year. Sediment analyses: November 1971 to September 1973. Water temperatures: November 1968 to current year. Bacteria analyses: December 1975 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIM	INS E TAR	REAM- LOW, STAN- NEOUS CFS)	CI CC DL AN	PE- IFIC ON- ICT- ICE (CRO-	PH (UNITS)	TEMP ATU (DEG	RE	COLOR (PLAT- INUM- COBALT UNITS)	E	TUR- BID- (TY)TU)	50	GEN, IS- LVED G/L)	OXYGEN DIS- SOLVE (PER- CENT SATUR ATION	DE D B C I	YGEN MAND. 10- HEM- CAL. DAY
ОСТ																
22	164	0 34	0		340	7.8	5	3.0	480		320		6.4	7	6	5.0
01	145	0 239	90		58	7.4	1	8.0	180		80		6.9	7	5	4.7
10	100	5 50	80		446	7.1	2	2.5	140		280		5.6	6	6	11
JUN 07	013	0 2:	31		311	7.8			70		640			//-	-	4.1
AUG 02	100	n 9:	12		222	7.5	,	4.5	120		240		7.2		8	3.5
02						7.5	-	***	120		240			10		3.3
	FORM:		RM,		REP-		HAR	D -		MA	GNE-			SODIU	M P	OTAS-
	TOTAL		CAL.		CAL.	HARD-	NES:		ALCIUM		IUM,		IUM,	AD-		SIUM,
	IMME		7		AGAR	NESS	NONC		DIS-		IS-	DI		SORP-		DIS-
	(COLS		M-MF		LS. ER	(MG/L	BONA (MG.		SOL VED		LVED	SOL	G/L	RATIO		OLVED MG/L
DATE	100 MI		ML)		ML)	CACO3)	CAC		AS CA)		MG)		NA)	NA.110		S K)
ост																
22	30000	00 18	30000	12	0000	120		21	37		6.6		20	•	8	5.1
01 APR	42000	00 16	0000	18	0000	25		0	9.2		.5		1.9		2	2.0
10	10000	00 17	70000		290	160		24	50		9.4		25		9	6.0
JUN 07	22000	00 16	0000	12	0000	110		16	35		5.1	-	17		7	6.9
AUG 02	55000	00 8	34000	8	8000	81		10	28		2.6		7.1		3	6.8
DA	ВС	CAR- DNATE (MG/L AS	CAR BONA (MG AS C	TE /L	SULFAT DIS- SOLVE (MG/L AS SO4	DIS D SOL	E,	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	DIS SOL D (MG AS	VED /L	SOL I SUM CONS TUEN DI SOL (MG	OF TI- TS, S- VED	SOLII RESII AT 10 DEG. SUS- PENDI (MG.	DUE SO 05 V C. T S ED PE	LIDS, OLA- ILE, US- NDED MG/L)	
ОСТ		120		0	20		26		,	7.0		189	,	320	264	
NOV					28											
01 APR		34		0	1.	.7	1.7	•	0	1.8		36		176	46	
		170		0	38	3	19		2	8.5	1,39	260	A FIG.	704	148	
07		113		0	29	2	22		2	9.2		180	1	740	400	
02		86		0	19		8.0		2	9.4		124		392	52	
	N:	NITRO- GEN, ITRATE TOTAL (MG/L		AL	NITRO GEN+ NO2+NO TOTAL (MG/L	GE 3 AMMO TOT	AL	NITRO GEN, ORGANI TOTAL (MG/L	C ORGA TOT	AM- A + NIC AL	PHOR PHOR TOT (MG	US.	CARBO ORGAI TOTA (MG.	ON. NIC A	ETHY- LENE BLUE CTIVE SUB- TANCE	
DA		AS N)	AS		AS N)			AS N)			AS		AS (MG/L)	
ост							1					-	.373			
NO V		.70		.01	• 7	1	•05	1.2	1	.2		.32	1		.10	
O I		.18		.01	. 1	19	•06	• 9	1	.97		.25	1	0	.10	
		•72		.03	.7	75	.13	1.7	1	.8		.51	14	8		
	7	.88		.00	.8	38	.26	1.8	2	.1		.73	3	7	.00	
		.45		. 05	.5	50	.00	1.0	1	.0		.30	1:	3	.00	

GUADALUPE RIVER BASIN

08178800 SALADO CREEK (LOWER STATION) AT SAN ANTONIO, TX--Continued

WATER QUALITY DATA: WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

D	ATE	TIME	SOL	S= VED	BARIUM DIS- SOLVEI (UG/L AS BA) S	DMIUM DIS- OLVED UG/L S CD)	(UG	M. C	OPPER. DIS- SOLVED (UG/L AS CU)	SOL	ON, (S- VED S/L FE)	
oc.	r 2	1640		2		0	0		10	2		30	
100		1450		1		0	1		5	4		40	
API	2			2	,	00	0		0	1		20	
1	0	1005				00			U			20	
	DAT	S	EAD. DIS- OLVED UG/L S PB)	(UG	S- VED	DIS- SOLVE (UG/L AS HG	Y NI D D SO (U	LE- UM, IS- LVED G/L SE)	SILVE DIS SOLV (UG/ AS A	ED S	INC, DIS- OLVED UG/L S ZN)		
	ост												
	22. NOV	••	5		4	•	0	0		0	10		
	01.	••	14		4		0	0		0	10		
	10.	••	2		60		0	0		0	10		
DATE	TIM	E T	PCB. OTAL UG/L)	PO CHL TOT	ES. LY-	ALDRIN TOTAL (UG/L	• DA	LOR- NE, TAL G/L)	DDC TOTA (UG/	L T	DDE, OTAL UG/L)	DD TOT (UG	AL
ост								-					
55	164	0	.0		.00	• 0	0	.0		.00	.00		.02
01	145	0				-	-						
10	100	5	.0		.00	• 0	0	.1		,00	.01		.03
AZ I	I- NON, TAL G/L)	DI- ELDRIN TOTAL (UG/L)	T01	AN,	ENDRII TOTAI (UG/I	L T	HION. OTAL UG/L)	CHL		HEPTA- CHLCR POXIDE TOTAL (UG/L)	LING	DANE FAL B/L)	MALA- THION, TOTAL (UG/L)
OCT	.10	.00		.00		00	.00		.00	.00		.00	.00
NOV													
Ol									.00	.00		•00	.04
10	.18 METH	.01	ETHYL	.00	•	00	•00		•00	•00		•00	•04
DATE	PARA THIO TOTA (UG/	- N, T L T	TRI- HION, OTAL UG/L)	TOT	ON.	TOX- APHENE TOTAL (UG/L	, Т ТН	TAL RI- ION G/L)	2•4- TOTA (UG/	L T	4,5-T OTAL UG/L)	SILV TOT (UG	
55		00	•00		.00		0	•00		.00	.00		.00
MOV										.00	.01		.00
01 APR 10		00	.00		.00		0	•00		.03	.12		.34
10	•	70	• 00		• 00		v	•00		.03	.12		

08179000 MEDINA RIVER NEAR PIPE CREEK, TX

LOCATION.--Lat 29°40'31", long 98°58'33", Bandera County, Hydrologic Unit 12100302, on right bank 500 ft (150 m) upstream from Bandera Falls, 0.6 mi (1.0 km) upstream from Red Bluff Creek, and 4.1 mi (6.6 km) southwest of Pipe Creek.

DRAINAGE AREA .-- 474 mi2 (1,228 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1922 to June 1935, October 1952 to current year. Monthly discharge only for some periods published in MSP 1312 and 1732.

REVISED RECORDS.--WSP 1312: 1925(M). WSP 1923: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,067.37 ft (325.334 m) Corps of Engineers datum. December 1922 to June 1935, water-stage recorder at site 1.9 mi (3.1 km) upstream at different datum.

REMARKS.--Water-discharge records good. Small diversion above station.

AVERAGE DISCHARGE.--38 years (water years 1923-34, 1953-78), 137 ft³/s (3.880 m³/s), 3.92 in/yr (100 mm/yr), 99,260 acre-ft/yr (122 hm³/s).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 281,000 ft 3 /s (7,960 m 3 /s) Aug. 2, 1978, gage height, 49.6 ft (15.12 m), from floodmark, from rating curve extended above 32,000 ft 3 /s (906 m 3 /s) on basis of slope-area measurements of 64,000 and 281,000 ft 3 /s (1,810 and 7,960 m 3 /s); minimum, 0.2 ft 3 /s (0.006 m 3 /s) July 14-16, 1956.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1880, that of Aug. 2, 1978. Flood in 1919 reached a stage of about 43 ft (13.1 m), present site and datum, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,600 ft3/s (45.3 m3/s) and maximum (*):

Date	Time	Disch (ft³/s)		Gage (ft)	height (m)	Date	Time	Disch (ft³/s)		Gage (ft)	height (m)
Aug. 2 Aug. 3	1100 0400	*281,000 30,400	7,960 861	a49.6 23.0	15.12 7.01	Sept. 16	0200	2,310	65.4	6.53	1.990

a From floodmark.

Minimum discharge, 9.2 ft 3 /s (0.26 m 3 /s) July 21 to Aug. 1.

		DISCHAR	GE, IN C	UBIC FEET	PER SECON MEA	D, WATER N VALUES	YEAR OCTO	DBER 1977	TO SEPTE	MBER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	39 39 39 39	651 307 161 126 109	110 103 98 96 93	72 70 70 68 69	65 65 65 65	68 68 68 68	48 48 48 48	41 40 44 43 42	23 28 36 100 74	22 22 21 20 18	18 41700 15000 3680 2870	284 477 311 259 238
6 7 8 9	37 37 37 36 36	102 102 244 263 202	89 88 88 86 84	70 68 67 65 65	64 65 65 65	68 67 68 67 68	48 48 45 45	39 39 39 37 35	57 191 153 104 83	17 16 15 15	2030 1420 776 816 581	235 233 355 485 394
11 12 13 14 15	36 36 36 36 36	163 137 131 124 124	84 85 90 88 85	66 67 67 67	65 71 88 89 82	67 67 66 65 64	62 66 60 56 54	34 32 31 30 29	71 62 55 52 49	14 14 13 13 12	478 449 413 387 356	354 348 588 459 546
16 17 18 19 20	36 36 36 36	120 111 111 111 109	84 83 81 80 79	68 68 68 68	80 82 82 80 79	64 61 61 60 59	52 51 49 46 45	28 27 26 24 24	45 43 41 40 37	12 12 12 11 10	336 321 304 288 274	1220 598 477 419 383
21 22 23 24 25	36 40 154 153 106	106 98 96 96	77 77 77 76 76	68 68 68 68	74 73 72 71 71	59 57 57 56 56	44 48 45 45 43	24 26 28 28 27	35 32 31 29 29	10 9.3 10 9.3 9.2	266 254 244 236 227	350 325 305 291 279
26 27 28 29 30 31	84 78 71 67 67	93 93 91 96 103	74 74 74 75 74	67 67 66 65 65	68 68 	53 53 52 52 50 48	39 38 39 39 39	26 25 23 22 22 21	26 23 23 23 22	9.2 9.7 9.2 9.2 9.2	221 214 207 202 205 205	261 256 265 256 248
TOTAL MEAN MAX MIN CFSM IN. AC-FT	1661 53.6 154 36 .11 .13 3290	4476 149 651 91 .31 .35 8880	2602 83.9 110 74 .18 .20 5160	2092 67.5 72 65 .14 .16 4150	2012 71.9 89 64 .15 .16 3990	1905 61.5 68 48 .13 .15 3780	1440 48.0 66 38 .10 .11 2860	956 30.8 44 21 .07 .08 1900	1617 53.9 191 22 .11 .13	406.5 13.1 22 9.2 .03 .03 806	74978 2419 41700 18 5.10 5.88 148700	11499 383 1220 233 .81 .90 22810

WTR YR 1978 TOTAL 105644.5 MEAN 289 MAX 41700 MIN 9.2 CFSM .46 IN 6.19 AC-FT 209500

08179000 MEDINA RIVER NEAR PIPE CREEK, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: January 1974 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN. DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND. BIO- CHEM- ICAL. 5 DAY (MG/L)
NOV		92	559	7.8	18.0	0	15	8.8	96	.2
07 JAN	1110	68	560	7.5	14.5	0	5	10.2	103	.3
16 MAR	1145	59	549	8.0	17.0	0	7	9.0	96	.4
20	1100			7.6	22.5	0	10	6.8	. 80	1.1
30	1045	22	561				10	6.6	115	1.3
05 AUG	1255	18	560	7.8	26.5	0	15	8.8	111	1.6
OB	1800	776	494	7.5	27.0	20			113	.2
06	1350	238	537	7.9	26.5	15	20	8.7	113	••
DATE	COLI- FORM, TOTAL, IMMED. (COLS, PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL. KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM. DIS- SOLVED (MG/L AS K)
NOV	900	310	440	280	72	78	20	8.2	.2	1.5
07 JAN				290	89	80	21	9.0	.2	1.3
16 MAR	30	11	88		78	72	21	9.0	.2	1.3
20	120	20	480	270	90	75	21	7.7	.2	1.5
30	1700	110	1100	270			21	9.5	.3	1.7
O5				270	80	73		6.3	.2	1.9
SEP	51000	610	390	250	4.7	76	15		.2	1.6
06		320	56	280	63	84	17	7.1	SOLIDS.	
				CHLO-	E1 110					SOLIDS,
DATE	BTCAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	RIDE+ DIS- SOLVED (MG/L AS CL)	FLUO- RIDE. DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA. DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C. SUS- PENDED (MG/L)	VOLA- TILE+ SUS- PENDED (MG/L)
DATE NOV 07	BONATE (MG/L AS	BONATE (MG/L	DIS- SOLVED (MG/L	RIDE. DIS- SOLVED (MG/L	RIDE. DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	DIS- SOLVED (MG/L AS	CONSTI- TUENTS, DIS- SOLVED	AT 105 DEG. C. SUS- PENDED	VOLA- TILE: SUS- PENDED
NOV 07	MG/L AS HCO3)	BONATE (MG/L AS CO3)	SOLVED (MG/L AS SO4)	RIDE+ DIS- SOLVED (MG/L AS CL)	RIDE. DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS BR)	DIS- SOLVED (MG/L AS SIO2)	CONSTI- TUENTS, DIS- SOLVED (MG/L)	AT 105 DEG. C. SUS- PENDED (MG/L)	VOLA- TILE. SUS- PENDED (MG/L)
NOV 07 JAN 16	BONATE (MG/L AS HC03)	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4)	RIDE+ DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS BR)	DIS- SOLVED (MG/L AS SIO2)	CONSTITUENTS, DIS- SOLVED (MG/L)	AT 105 DEG. C. SUS- PENDED (MG/L)	VOLA- TILE. SUS- PENDED (MG/L)
NOV 07 JAN 16 MAR 20	BONATE (MG/L AS HC03) 250	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4)	RIDE+ DIS- SOLVED (MG/L AS CL)	RIDE. DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS BR)	DIS- SOLVED (MG/L AS SIO2)	CONSTITUENTS, DIS- SOLVED (MG/L)	AT 105 DEG. C. SUS- PENDED (MG/L)	VOLA- TILE. SUS- PENDED (MG/L)
NOV 07 JAN 16 MAR 20 MAY 30	BONATE (MG/L AS HC03) 250 240 230	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4) 74 74 72	RIDE+ DIS- SOLVED (MG/L AS CL)	RIDE. DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS BR)	DIS- SOLVED (MG/L AS SIO2) 12 9.4 6.1	CONSTI- TUENTS, DIS- SOLVED (MG/L) 333 331	AT 105 DEG. C. SUS- PENDED (MG/L) 23 8	VOLA- TILE- SUS- PENDED (MG/L)
NOV 07 JAN 16 MAR 20 MAY 30 JUL 05	BONATE (MG/L AS HC03) 250 240 230	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4) 74 74 72 76	RIDE+ DIS- SOLVED (MG/L AS CL) 16 18 16	RIDE- DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS BR)	DIS- SOLVED (MG/L AS SIO2) 12 9.4 6.1	CONSTI- TUENTS, DIS- SOLVED (MG/L) 333 331 311	AT 105 DEG. C. SUS- PENDED (MG/L) 23 8 12	VOLA- TILE- SUS- PENDED (MG/L)
NOV 07 JAN 16 MAR 20 MAY 30 JUL 05 AUG 08 SEP	80NATE (MG/L AS HC03) 250 240 230 220	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4) 74 74 72 76 71	RIDE+ DIS- SOLVED (MG/L AS CL) 16 18 16 18	RIDE- DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS BR)	DIS- SOLVED (MG/L AS SIO2) 12 9.4 6.1 11	CONSTI- TUENTS, DIS- SOLVED (MG/L) 333 331 311 319	AT 105 DEG. C., SUS- PENDED (MG/L) 23 8 12 18	VOLA- TILE- SUS- PENDED (MG/L)
NOV 07 JAN 16 MAR 20 MAY 30 JUL 05 AUG 08	80NATE (MG/L AS HC03) 250 240 230 220 230	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4) 74 74 72 76 71	RIDE+ DIS- SOLVED (MG/L AS CL) 16 18 16 18	RIDE- DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS BR)	DIS- SOLVED (MG/L AS SIO2) 12 9.4 6.1 11	CONSTI- TUENTS, DIS- SOLVED (MG/L) 333 331 311 319 317 285	AT 105 DEG. C., SUS-, PENDED (MG/L) 23 8 12 18 20 27	VOLATILE. SUS- PENDED (MG/L) 3 1 2 6
NOV 07 JAN 16 HAR 20 MAY 30 JUL 05 AUG 08 SEP 06	80NATE (MG/L AS HC03) 250 240 230 250 264 NITRO-GEN* NITRATE TOTAL (MG/L AS N)	BONATE (MG/L AS CO3) 0 0 0 0 NITRO-GEN. NITRITE TOTAL (MG/L AS N)	DIS- SOLVED (MG/L AS SO4) 74 72 76 71 39 55 NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	RIDE+ DIS- SOLVED (MG/L AS CL) 16 18 16 18 14 10 12 NITRO- GEN- AMONIA TOTAL (MG/L AS N)	NIDE- DIS- SOLVED (MG/L AS F) .2 .2 .3 .3 .3 .2 .2 NITRO- GENIC TOTAL (MG/L AS N)	DIS- SOLVED (MG/L AS BR) 1 NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	DIS- SOLVED (MG/L AS SIO2) 12 9.4 6.1 11 13 13 13 13 13 PHOS- PHORUS. TOTAL (MG/L AS P)	CONSTI- TUENTS, DIS- SOLVED (MG/L) 333 331 311 319 317 285 320 CARBON- ORGANIC TOTAL (MG/L) AS C)	AT 105 DEG. C, SUS- PENDED (MG/L) 23 8 12 18 20 27 30 METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	VOLA- TILE- SUS- PENDED (MG/L) 3 1 2 6 2 7 OIL AND GREASE (MG/L)
NOV 07 JAN 16 HAR 30 MAY 30 JUL 05 AUG 08 SEP 06	80NATE (MG/L AS) 250 240 230 250 264 NITRO- NITROTALE (MG/L AS N)	BONATE (MG/L AS CO3) 0 0 0 0 0 NITRO- GEN. NITRITE TOTAL (MG/L AS N)	DIS- SOLVED (MG/L AS SO4) 74 74 72 76 71 39 55 NITRO- GEN. NO2+NO3 TOTAL AS N) .664	RIDE+ DIS+ SOLVED (MG/L AS CL) 16 18 16 18 14 10 12 NITRO- GEN+ AMMONIA TOTAL AS N)	RIDE- DIS- DIS- DIS- DIS- DIS- MG/L AS F) .2 .3 .3 .3 .3 .2 .2 NITRO- ORGANIC TOTAL (MG/L AS N)	DIS- SOLVED (MG/L AS BR) NITRO- GEN.AM- MONIA - ORGANIC TOTAL (MG/L AS N)	DIS- SOLVED (MG/L AS SIO2) 12 9.4 6.1 11 13 13 13 13 PHOS- PHORUS, TOTAL (MG/L AS P)	CONSTI- TUENTS- DIS- SOLVED (MG/L) 333 331 311 319 317 285 320 CARBON- ORGANIC TOTAL (MG/L AS C)	AT 105 DEG. C, SUS- PENDED (MG/L) 23 8 12 18 20 27 30 METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	VOLATILE- SUS- PENDED (MG/L) 3 1 2 6 2 7 OIL AND GREASE (MG/L)
NOV 07 JAN 16 MAR 20 MAY 30 JUL 05 AUG 08 SEP 06 DATE NOV 07 JAN 16 MAR	80NATE (MG/L AS) 250 240 230 220 230 250 264 NITRO- GEN. NITRATE TOTAL AS N) .64	BONATE (MG/L AS CO3) 0 0 0 0 0 NITRO- GEN. NITRITE TOTAL (MG/L AS N) .00 .01	DIS- SOLVED (MG/L AS SO4) 74 74 72 76 71 39 55 NITRO- GEN. NO2+NO3 TOTAL (MG/L AS N) .644	RIDE- DIS- SOLVED (MG/L AS CL) 16 18 16 18 14 10 12 NITRO- GEN- AMMONIA TOTAL (MG/L AS N) .00	RIDE- DIS- SOLVED (MG/L AS F) .2 .2 .3 .3 .3 .3 .2 .2 NITRO- GEN- ORGANIC TOTAL (MG/L AS N) .40 .19	DIS- SOLVED (MG/L AS BR) NITRO- GEN,AM- MONIA - ORGANIC TOTAL (MG/L AS N)	DIS- SOLVED (MG/L AS SIO2) 12 9.4 6.1 11 13 13 13 PHOS-PHORUS. TOTAL (MG/L AS P) .03	CONSTI- TUENTS, 01S- 50LVED (MG/L) 333 331 311 319 317 285 320 CARBON- ORGANIC TOTAL (MG/L AS C)	AT 105 DEG. C, SUS- PENDED (MG/L) 23 8 12 18 20 27 30 METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	VOLATILE- SUS- PENDED (MG/L) 3 1 2 6 2 7 OIL AND GREASE (MG/L)
NOV 07 JAN 16 MAR 300 JUL 05 AUG 08 SEP 06 DATE	80NATE (MG/L AS N) 250 240 230 220 230 250 264 NITRO- GEN- NITRATE TOTAL (MG/L AS N) -64 -58	BONATE (MG/L AS CO3) 0 0 0 0 0 NITRO-GEN. NITRITE (MG/L AS N) .00 .01	DIS- SOLVED (MG/L AS SO4) 74 74 72 76 71 39 55 NITRO- GEN. NO2+NO3 TOTAN (MG/L AS N) .64 .59	RIDE- DIS- SOLVED (MG/L AS CL) 16 18 16 18 14 10 12 NITRO- GEN- AMMONIA TOTAL (MG/L AS N) .00	NITRO- GEN. ORGANIC TOTAL (MG/L AS F) .2 .3 .3 .3 .2 .2 NITRO- GEN. ORGANIC TOTAL (MG/L AS N) .40 .19 .30	DIS- SOLVED (MG/L AS BR) NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) -40 -20 -30	DIS- SOLVED (MG/L AS SIO2) 12 9.4 6.1 11 13 13 PHOSPHORUS (MG/L AS P) .03 .01	CONSTITUENTS, DIS- SOLVED (MG/L) 333 331 311 319 317 285 320 CARBON. ORGANIC (MG/L) AS C) 1.9	AT 105 DEG. C, SUS- PENDED (MG/L) 23 8 12 18 20 27 30 METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	VOLATILE- SUS- PENDED (MG/L) 3 1 2 6 2 7 OIL AND GREASE (MG/L)
NOV 07 JAN 16 MAR 20 MAY 30 JUL 05 AUG 08 SEP 06 DATE NOV 07 JAN 16 MAR 20	80NATE (MG/L AS) 250 240 230 250 264 NITRO- GEN- NITRATE TOTATE TOTATE 1 MG/L AS N) .64 .58	BONATE (MG/L AS CO3) 0 0 0 0 0 NITRO-GEN. NITRITE (MG/L AS N) .00 .01 .01	DIS- SOLVED (MG/L AS SO4) 74 74 72 76 71 39 55 NITRO- GEN. NO2+NO3 TOTAL (MG/L AS N) .644	NIDE- DIS- SOLVED (MG/L AS CL) 16 18 16 18 14 10 12 NITRO- GEN- AMMONIA (MG/L AS N) .00 .01	RIDE, DIS- SOLVED (MG/L AS F) .2 .2 .3 .3 .3 .3 .2 .2 NITRO- GEN, ORGANIC TOTAL (MG/L AS N) .40 .19 .30 .33	DIS- SOLVED (MG/L AS BR) 1 NITRO- GEN.AM- MONIA - ORGANIC TOTAL AS N) -40 -20 -30 -33	DIS- SOLVED (MG/L AS SIO2) 12 9.4 6.1 11 13 13 13 PHOSPHORUS-TOTAL (MG/L AS P) .03 .01 .00	CONSTI- TUENTS, 0IS- 50LVED (MG/L) 333 331 311 317 285 320 CARBON. ORGANIC TOTAL (MG/L AS C) 1.9 1.3	AT 105 DEG. C, SUS- PENDED (MG/L) 23 8 12 18 20 27 30 METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	VOLA- TILE- SUS- PENDED (MG/L) 3 1 2 6 2 7 OIL AND GREASE (MG/L)
NOV 07 JAN 16 MAR 20 MAY 30 JUL 05 AUG 08 SEP 06 DATE NOV 07 JAN 16 MAR 20 MAY 30 JUL 05	80NATE (MG/L AS N) 250 240 230 220 230 250 264 NITRO- GEN- NITRATE TOTAL (MG/L AS N) -64 -58	BONATE (MG/L AS CO3) 0 0 0 0 0 NITRO-GEN. NITRITE (MG/L AS N) .00 .01 .01	DIS- SOLVED (MG/L AS SO4) 74 74 72 76 71 39 55 NITRO- GEN. NO2+NO3 TOTAN (MG/L AS N) .64 .59	NIDE- DIS- SOLVED (MG/L AS CL) 16 18 16 18 14 10 12 NITRO- GEN- AMMONIA (MG/L AS N) .00 .01 .00 .00	RIDE, DIS- SOLVED (MG/L AS F) .2 .2 .3 .3 .3 .2 .2 NITRO- GEN. ORGANIC (MG/L AS N) .40 .19 .30 .33 .00	DIS- SOLVED (MG/L AS BR) 11 NITRO- GEN.AM- MONIA ORGANIC TOTAL (MG/L AS N) -40 -30 -33 -00	DIS- SOLVED (MG/L AS SIO2) 12 9.4 6.1 11 13 13 13 PHOSPHORUS. TOTAL (MG/L AS P) .03 .01 .00 .00 .01	CONSTI- TUENTS, 0IS- 50LVED (MG/L) 333 331 311 319 317 285 320 CARBON. ORGANIC TOTAL (MG/L AS C) 1.9 1.3 1.4	AT 105 DEG. C, SUS- PENDED (MG/L) 23 8 12 18 20 27 30 METHY- LENE BLUE ACTUS- STANCE (MG/L)	VOLA- TILE- SUS- PENDED (MG/L) 3 1 2 6 2 7 OIL AND GREASE (MG/L)
NOV 07 JAN 16 HAR 20 JUL 05 AUG 08 SEP 06 DATE NOV 07 JAN 16 MAY 30 JUL JUL JUL JUL JUL JUL JUL JUL JUL JUL	80NATE (MG/L AS) 250 240 230 250 264 NITRO- GEN- NITRATE TOTATE TOTATE 1 MG/L AS N) .64 .58	BONATE (MG/L AS CO3) 0 0 0 0 0 NITRO-GEN. NITRITE (MG/L AS N) .00 .01 .01	DIS- SOLVED (MG/L AS SO4) 74 74 72 76 71 39 55 NITRO- GEN. NO2-NO3 TOTAL (MG/L AS N) .64	NIDE- DIS- SOLVED (MG/L AS CL) 16 18 16 18 14 10 12 NITRO- GEN-AMMONIA (MG/L AS N) .00 .01 .00	RIDE, DIS- SOLVED (MG/L AS F) .2 .2 .3 .3 .3 .2 .2 NITRO- GEN. ORGANIC (MG/L AS N) .40 .19 .30 .33 .00	DIS- SOLVED (MG/L AS BR) 1 NITRO- GEN.AM- MONIA - ORGANIC TOTAL AS N) -40 -20 -30 -33	DIS- SOLVED (MG/L AS SIO2) 12 9.4 6.1 11 13 13 13 PHOSPHORUS-TOTAL (MG/L AS P) .03 .01 .00	CONSTI- TUENTS, DIS- SOLVED (MG/L) 333 331 311 319 317 285 320 CARBON- ORGANIC TOTAL (MG/L AS C) 1.9 1.3 1.4	AT 105 DEG. C. SUS- PENDED (MG/L) 23 8 12 18 20 27 30 METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	VOLATILE- SUS- PENDED (MG/L) 3 1 2 6 2 7 OIL AND GREASE (MG/L)

GUADALUPE RIVER BASIN OB179000 MEDINA RIVER NEAR PIPE CREEK, TX--Continued

	DAT	T I M	ARSEN DIS SOLV E (UG/ AS A	ED SOLV	ED	CADMIUM DIS- SOLVED (UG/L AS CD)	CHROMIUM DIS- SOLV (UG/ AS C	COPP DIS ED SOL L (UG	VED SOL	S- VED	
	JAN 16.	114	5	0	100	0		0	0	10	
	ALIG 08.	180	0	1	30	<1		10	0	<10	
	5EP		0	1		1		0	2	10	
		DATE	LEAD. DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCI DIS SOLV (UG,	JRY NI S- (C VED SC /L (L	ELE- IUM, DIS- DLVED UG/L S SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC+ DIS- SOLVED (UG/L AS ZN)		
		JAN 16	0	0		.0	0	0	10		
		AUG 08	3	5		.0	0	0	<3		
		SEP 06	0	10		.2	1	0	0		
DATE	TIME	PCB, TOTAL (UG/L)	PCB. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	NAPH- THA- LENES. POLY- CHLOR. TOTAL (UG/L)	ALDR TOT (UG	AL T	DRIN. OTAL BUT- M MA- ERIAL G/KG)	CHLOR- DANE. TOTAL (UG/L)	CHLOR- DANE+ TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD. TOTAL (UG/L)	DDD+ TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN 16	1145	.0		.00		.00		.0		.00	
AUG 08	1800	.0		.00		.00		.0		.00	
SEP		•0	4				.0	98	1		.0
06	1350		1				••	01-	100		
DATE	DDE. TOTAL (UG/L)	DDE. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT. TOTAL (UG/L)	DDT. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	AZIN	ION E	DI- LDRIN OTAL UG/L)	ELDRIN, TOTAL IN ROT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN. TOTAL (UG/L)	ENDRIN: TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN			•			.00	.00	-	.00	.00	24.11
AUG	•00	1	.00	Y .					.00		
08 SEP	.00		.00			.00	.00				.0
06		• 3		• 2				.0	-	11/8	
DATE	ETHION, TOTAL (UG/L)	HEPTA- CHLOR. TOTAL (UG/L)	HEPTA- CHLOR. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	EPOX TOTA BOT	IN TTOM LI	INDANE TOTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION: TOTAL	TOTAL	METHYL PARA- THION, TOTAL (UG/L)
JAN	FI THE						0.0	1	.00		.00
AUG	.00	.00		.00			.00		.00		.00
SEP	.00	.00	573	.00							
06		HYL	.0	- x		TOXA- PHENE TOTAL		.0			
DAT	THI		TAL TOT	ON. APP	OX- HENE . OTAL JG/L)	TOM MA- TERIAL (UG/KG	- TR	I- 2.	TAL TO	TAL TO	VEX. TAL G/L)
JAN		0.0		.00	0	31. 4.	3	.00	.00	.00	.00
AI-G		.00	. with			A.P.				.00	.00
SFP.		.00	•00	.00	0	1		.00	.01	.00	.00
06.	••						0		.00	•00	.00

08179100 RED BLUFF CREEK NEAR PIPE CREEK, TX

LOCATION.--Lat 29°40'51", long 98°57'19", Bandera County, Hydrologic Unit 12100302, on left bank 0.8 mi (1.3 km) upstream from bridge on Farm Road 1283, 1.8 mi (2.9 km) downstream from Pipe Creek, 1.9 mi (3.1 km) upstream from mouth, and 3.2 mi (5.1 km) south of Pipe Creek.

DRAINAGE AREA .-- 56.3 mi2 (145.8 km2).

PERIOD OF RECORD .-- April 1956 to current year.

REVISED RECORDS .-- WSP 1923: Drainage area.

GAGE .-- Water-stage recorder. Datum of gage is 1,107.2 ft (337.475 m) Corps of Engineers datum.

REMARKS.--Records good. Small dams on upstream tributaries affect flow during time of storm runoff. No known diversion. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE .-- 22 years (water years 1957-78), 12.2 ft³/s (0.346 m³/s), 2.94 in/yr (75 mm/yr), 8,840 acre-ft/yr (10.9 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 46,900 ft³/s (1,330 m³/s) Sept. 27, 1964, gage height, 22.64 ft (6.901 m), from rating curve extended above 2,000 ft³/s (56.6 m³/s) on basis of slope-area measurement of peak flow; no flow for many days each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1905, that of Sept. 27, 1964. A stage of about 17 ft (5.2 m) was reached in July 1937. Flood in October 1953 reached a stage of 13.8 ft (4.21 m).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,240 ft 3 /s (35.1 m 3 /s) Nov. 1, gage height, 6.16 ft (1.878 m), no other peak above base of 200 ft 3 /s (5.66 m 3 /s); no flow most of time.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1977	T0	SEPTEMBER	1978
						VALUES						

						111111111111111111111111111111111111111						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	360	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	38	.00	.00	.00	.00	.00	.00	.00	00	70	.00
1 2 3	.00	15	.00	.00	.00	.00	.00	.00	.00	.00	5.4	.00
4	.00	7.4	.00	.00	.00	.00	.00	.00	.00	.00	.01	.00
5	.00	3.7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
5	.00	3.7	.00	.00	•00	.00	•00	.00	•00	•00		
6	.00	1.6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
7	.00	.39	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
8	.00	29	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
9	.00	12	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
10	.00	7.6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
11	.00	5.8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
12	.00	4.8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
13	.00	4.0	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
14	.00	2.7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
15	.00	1.4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	•00	1.4	•00	•00	.00	.00						
16	.00	.71	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
17	.00	.11	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
21	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
23	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
24	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
24 25	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
25	.00	.00	.00	.00	.00	•00	.00	•00	.00			
26	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
28	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
29	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	.00
30	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	.00
31	.00		.00	.00		.00		.00		.00	.00	
TOTAL	.00	494.21	.00	.00	.00	.00	.00	.00	.00	.00	75.41	.00
MEAN	.000	16.5	.000	.000	.000	.000	.000	.000	.000	.000	2.43	.000
MAX	.00	360	.00	.00	.00	.00	.00	.00	.00	.00	70	.00
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
CFSM	.000	.29	.000	.000	.000	.000	.000	.000	.000	.000	.04	.000
IN.	.00	.33	.00	.00	.00	.00	.00	.00	.00	.00	.05	.00
AC-FT	.00	980	.00	.00	.00	.00	.00	.00	.00	.00	150	.00
AC-FI	.00	300	.00	.00	.00	.00	.00	.00				-,-
CAL YR		TAL 4155.43		11.4	MAX 360	MIN .00	CFSM			T 8240		
WTR YR	1978 TO	TAL 569.62	MEAN	1.56	MAX 360	MIN .00	CFSM	.03 IN	.38 AC-F	T 1130		

08179500 MEDINA LAKE NEAR SAN ANTONIO, TX

LOCATION.--Lat 29°32'24", long 98°56'01", Medina County, Hydrologic Unit 12100302, at gate operating platform, 576 ft (176 m) from left end of Medina Dam on Medina River, 4.2 mi (6.8 km) upstream from Medina diversion dam, 13 mi (21 km) north of Castroville, 28 mi (45 km) west of San Antonio, and 70.4 mi (113.3 km) upstream from mouth. Water-quality sampling site at the center of low-water bridge 0.6 mi (1.0 km) downstream.

DRAINAGE AREA .-- 634 mi2 (1,642 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1913 to current year. Prior to October 1965, monthend contents only.

REVISED RECORDS .-- WSP 1923: Drainage area.

GAGE.--Nonrecording gage read once daily if stage changing materially, otherwise intermittently. Datum of gage is 7.80 ft (2.377 m) below National Geodetic Vertical Datum of 1929.

REMARKS.--The lake is formed by a gravity-type concrete dam, 1,580 ft (482 m) long. The dam was completed and storage began May 7, 1913. The uncontrolled emergency spillway is a cut through natural rock 880 ft (268 m) long, with a 3-foot-wide (1 m) cutoff wall, located near right end of dam. The dam and lake are owned by the Bexar-Medina-Atascosa Counties Water Improvement District No. 1, which has a permit from the Texas Water Commission to irrigate 150,000 acres (60,700 hm²) annually. An undetermined amount of water from the lake enters the Edwards and associated limestones in the Balcones Fault Zone, part of which is above and part below the dam. Water is released downstream to Medina Diversion Resevoir where it is diverted into Medina Canal by the Water District. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	(feet)	(acre-feet)
Top of dam	1.084.0	
Crest of spillway	1.072.0	254,000
Water-supply outlet pipes (invert)	966.5	4,780
Lowest gated outlet (invert)	920.0	0

COOPERATION.--Capacity table, based on survey made prior to June 1912, and gage height record were furnished by the Bexar-Medina-Atascosa Counties Water Improvement District No. 1.

EXTREMES (at 0800) FOR PERIOD OF RECORD.--Maximum contents observed, 288,800 acre-ft (365 hm³) Sept. 16, 1919, gage height, 1,078.0 ft (328.57 m); minimum observed since lake first filled, 780 acre-ft (0.962 hm³) about Apr. 11, 1948, gage height, 944.0 ft (287.73 m).

EXTREMES (at 0800) FOR CURRENT YEAR.--Maximum contents, 280,100 acre-ft (345 hm³) Aug. 3, gage height, 1,076.5 ft (328.12 m); minimum, 188,200 acre-ft (232 hm³) Aug. 1, gage height, 1,059.1 ft (322.81 m).

Capacity table (gage height, in feet, and total contents, in acre-feet)

1.059.	0 187.	800 1	.070.0	242,400
1,060.				271,400
1,065.	0 217.	200 1	.080.0	300.300

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 INSTANTANEOUS OBSERVATIONS AT 0800

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	236900	233900	236400	233900	230300	228300	223300	219700	211700	203100	188200	254000
2	236400	236400	236400	233400	230300	228300	222800	219700	211200	202600	198100	254000
3	236400	236400	236400	233400	230300	228300	222800	219200	211200	202100	280100	255200
4	235900	236400	236400	233400	229800	228300	222300	219200	210700	201600	278300	255200
5	235900	236400	235900	233400	229800	227800	222300	218700	210200	200600	274300	255200
6	235400	236400	235900	233400	229800	227800	221800	218700	210700	200100	271400	254600
7	235400	236400	235900	232800	229800	227800	221800	218700	210700	199600	268500	254600
8	235400	236400	235900	232800	229800	227800	221800	218200	210700	199100	265000	255200
9	234900	236900	235900	232800	229800	227800	221200	218200	210700	198600	262100	255200
10	234900	236900	235400	232800	229300	227300	221200	218200	210200	198100	259200	255700
11	234400	236900	235400	232800	229300	227300	221200	217700	210200	197500	256900	255700
12	234400	236900	235400	232300	229300	227300	221200	217200	210200	197000	256300	255700
13	234400	236900	235400	232300	229300	227300	221200	217200	210200	196500	255700	256900
14	233900	236900	235400	232300	229300	227300	221200	216700	210200	196000	255700	256900
15	233400	236900	235400	232300	229300	227300	220700	216700	210200	195500	255700	256300
16	233400	236900	234900	232300	229300	226800	220700	216200	209700	195000	255700	257500
17	232800	236900	234900	231800	229300	226800	220700	216200	209100	194500	255200	257500
18	232800	236900	234900	231800	229300	226800	220200	215700	208600	194000	255200	256900
19	232300	236900	234900	231800	229300	226300	220200	215200	208100	193500	255200	256900
20	232300	236900	234900	231800	229300	226300	220200	215200	208100	193000	255200	256300
21	231800	236900	234900	231800	229300	226300	220200	214200	207600	192000	255200	256300
22	231800	236900	234400	231300	229300	225800	219700	214200	207100	191600	255200	256300
23	231300	236900	234400	231300	228800	225800	220700	213700	206600	191200	254600	255700
24	232300	236900	234400	231300	228800	225300	220700	213700	206100	191200	254600	255700
25	232300	236900	234400	231300	228800	225300	220700	213200	205600	190700	254600	255700
26	231800	236900	234400	230800	228800	224800	220200	213200	205100	190300	254600	255700
27	231800	236900	233900	230800	228300	224800	220200	212700	204600	189900	254600	255200
28	231800	236900	233900	230800	228300	224300	220200	212700	204100	189500	254000	255200
29	231800	236900	233900	230800		223800	220200	212200	203600	189100	254000	255200
30	231800	236400	233900	230300		223800	219700	212200	203100	188600	254000	255200
31	231800		233900	230300		223300		211700		188600	254000	
MAX	236900	236900	236400	233900	230300	228300	223300	219700	211700	203100	280100	257500
MIN	231300	233900	233900	230300	228300	223300	219700	211700	203100	188600	188200	254000
(†)	1067.9	1068.8	1068.3	1067.6	1067.2	1066.2	1065.5	1063.9	1062.2	1059.2	1072.0	1072.2
(+)	-5100	+4600	-2500	-3600	-2000	-5000	-3600	-8000	-8600	-14500	+65400	+1200

260400 MIN 231300 -22400 WTR YR 1978 MAX 280100 MIN 188200 -18300

Gage height, in feet, at end of month. Change in contents, in acre-feet.

08179500 MEDINA LAKE NEAR SAN ANTONIO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1969 to current year.

		CIF COM DUC	IC I-				COLOR (PLAT-		UR-		GEN,	DIS- SOLVED (PER-	DEM BI CH	GEN IAND, O-	COLI- FORM, TOTAL, IMMED.
		ANC		PH		MPER-	INUM-		ID-		IS-	CENT		AL,	PER
	TIME		RO-			TURE	COBALT		TY		LVED	SATUR- ATION)		AY (L)	100 ML)
DATE		MHC	151	(UNITS	(0	EG C)	UNITS)	()	TU)	(M	G/L)	ATTON	IMO	,,,,	100 ML)
JAN															
06	1304		441	8.	0	16.0									
JUN															
22	1500		447	7.	9	15.0									
AUG											3.5	323			
08	1540		351	8,	, 3	27.5	5		5		9.7	124		1.8	K380
	COL	1-	STRE	P-											
	FOR		TOCOC			HARD-			MAGI	NE-		SO	DIUM	POTA	
	FEC		FECA		ARD-	NESS.		UM	SI	UM.	SODIUM		AD-	SIU	
	0.7		KF AG		ESS		- DIS-		DI	S-	DIS-		RP-	DIS	
	UM-		(COLS		MG/L	BONATE	SOLV	ED	SOL		SOLVED		ION	SOLV	
	(COL		PER		AS	(MG/L			(MG		(MG/L		TIO	(MG/	
DATE	100	ML)	100 M	L) ((E03A	CACOS) AS C	(A)	AS	MG)	AS NA	1)		AS K)
JAN										,					
06					210		2 56		1	7	9.	. 0	.3	1	.6
JUN	•								-						
22					220		9 57		1	8	9.	. 8	.3	1	.7
AUG															
08		K40	K	41	170		2 42	2	1	5	8	.0	.3	1	.8
												SOL	IDS.	SOLID	S,
						CHLO-	FLUC	-			SILICA		OF	RESID	
	BICA	R-		St	LEATE	RIDE			BROM	IDE	DIS-		STI-	AT 10	5
	BONA		CAR-		IS-	DIS-			DI	5-	SOLVE		NTS,	DEG.	
	(MG		BONAT		OLVED	SOLVE	D SOLV	ED	SOL	VED	(MG/L		IS-	SUS-	
	A	S	(MG/		MG/L	(MG/L			(MG		AS		LVED	PENDE	
DATE	HCO	3)	AS CO	13) AS	5 504)	AS CL) AS F)	AS	BR)	51021	(M	G/L)	(MG/	L)
JAN															
06		180		0	50	18		.2			12		253		
JUN															
22		180		0	54	16		.2			12		257		
AUG															
08		140		0	46	13		.2		.2	9.	. 9	205		5
												ME	THY-		
	SOLI	DS.	NITE	10-	NITRO-	NITRO	- NITE	-08				L	ENE		
	VOL		GEN		GEN,	GEN			PH0	S-	CARBO		LUE		
	TIL	E.	NITRA	ATE N	ITRITE	AMMON:	A ORGA	VIC	PHOR	US,	ORGAN		TIVE	OIL	
	SUS		TOTA		TOTAL	TOTAL			TOT		TOTAL		UB-	ANI	
	PEND		(MG		(MG/L	(MG/I			(MG		(MG/		ANCE	GRE	
DATE	(MG	/L)	AS I	N)	AS N)	AS N	AS I	4)	AS	۱۲)	AS C	, (1	IG/L)	(MG/	Li
JAN															
06															
JUN															
22															
AUG															
08		0		.14	.00		00	.27		.01	_	.0	.00		0

08179500 MEDINA LAKE NEAR SAN ANTONIO, TX--Continued

	DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER. DIS- SOLVED (UG/L AS CU)	IRON. DIS- SOLVED (UG/L AS FE)	
	AUG								
	08	1540	1	20	<1	10	0	<10	
			D. NES	IS- D		M, SILV S- DI VED SOL	S- DI	S- VED	
	DA				G/L (UG HG) AS			ZN)	
	AUG							7	
	90	•••	0	<1	.0	1	0	. 3	
			NAPH-						
			POLY-		CHLOR-				DI-
		PCB,	CHLOR.	ALDRIN.	DANE .	DDD •	DDE .	DDT.	AZINON,
DATE	TIME	TOTAL (UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	TOTAL (UG/L)	TOTAL (UG/L)
AUG						1.0	63		
08	1540	.0	•00	•00	• 0	.00	.00	•00	.00
						HEPTA-			METH-
	DI- ELDRIN	ENDO-	ENDRIN.	ETHION.	HEPTA- CHLOR,	CHLOR	LINDANE	MALA- THION.	OXY-
	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
DATE	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
AUG 08	9 .00	•00	.00	•00	•00	.00	.00	•00	•00
	METHYL	METHYL							
	PARA-	TRI-		PARA-	TOX-	TOTAL TRI-	2,4-0,	2,4,5-T	SILVEX.
	THION.	THION,	MIREX,	TOTAL	TOTAL	THION	TOTAL	TOTAL	TOTAL
DATE	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
AUG									
08	.00	.00	.00	•00	0	.00	.01	.00	•00

367

08180000 MEDINA CANAL NEAR RIOMEDINA, TX

LOCATION.--Lat 29°30'19", long 98°54'11", Medina County, Hydrologic Unit 12100302, in center of canal, 54 ft (16 m) upstream from center pier of double-barrel flume, 350 ft (107 m) downstream from county highway bridge, 1,900 ft (579 m) downstream from head of canal and diversion dam, 4.6 mi (7.4 km) downstream from Medina Dam, 4.7 mi (7.6 km) north of Riomedina, and 25 mi (40 km) northwest of San Antonio.

PERIOD OF RECORD .-- March 1922 to May 1934, July 1957 to current year.

REVISED RECORDS .-- WSP 568: 1922. WSP 1712: 1922(M), 1924, 1926.

GAGE.--Water-stage recorder. Altitude of gage is 910 ft (277 m), from topographic map.

REMARKS.--Records good. Station is above all diversions from canal. Canal diverts from right end of Medina Diversion Dam 1,900 ft (579 m) upstream from gage for irrigation downstream near Lacoste and Natalia. Several observations of water temperatures were made during the year.

AVERAGE DISCHARGE.--32 years (water years 1923-33, 1958-78), 40.3 ft3/s (1.141 m3/s), 29,200 acre-ft/yr (36.0 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 216 ft³/s (6.12 m³/s) May 6, 1971; no flow at times.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES

						AN VALUE						
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	46	26	35	27	38	30	108	57	96	189	49	22
2	4.5	26	35	26	48	30	98	67	167	178	7.8	4.4
3	47	26	34	30	58	36	91	86	142	179	8.1	.00
3	51	26	35	34	55	54	88	55	106	185	3.9	.00
5	50	26	34	34	53	52	85	33	115	187	2.4	12
6	50	26	34	34	50	59	85	33	124	188	1.6	53
7	57	17	33	33	23	61	84	41	39	193	1.4	56
8	65	.00	33	33	10	59	83	57	5.8	196	38	7.3
9	63	.00	33	33	21	57	83	65	5.5	192	98	.00
10	54	10	33	31	.12	53	46	79	5.3	190	46	.00
11	50	26	32	26	.09	50	18	71	5.3	189	30	.00
12	5.5	26	32	26	.08	47	20	5.5	72	191	30	.00
13	53	26	31	29	.01	33	21	48	142	190	29	.56
14	51	26	32	35	19	33	7.3	38	145	190	29	.00
15	50	26	32	35	9.0	44	.06	61	144	189	41	.00
16	49	26	32	31	.06	48	.03	81	129	188	65	.00
17	48	26	32	24	.05	54	6.0	86	147	187	80	.00
18	51	26	32	24	.01	58	31	92	156	188	80	.00
19	59	26	32	24	.00	59	58	98	120	187	80	.00
20	67	26	32	24	15	61	54	101	124	187	72	.00
21	60	26	32	24	26	66	35	91	127	187	66	.00
22	46	26	32	24	28	84	28	72	145	187	71	.00
23	16	26	32	24	30	94	28	78	182	187	85	.00
24	.06	33	39	33	30	100	46	82	181	184	92	.00
25	.01	47	44	35	31	103	63	84	181	172	92	.00
26	.00	32	43	39	31	103	59	73	182	160	91	.00
27	.00	24	37	39	30	105	66	63	183	163	91	.00
28	.00	25	30	39	30	106	70	62	186	165	91	12
29	.00	25	38	38		109	59	74	188	147	90	14
30	.00	29	38	28		111	55	88	189	123	79	13
31	18		27	31		111		83		105	51	
TOTAL	1201.07	736.00	1050	947	635.42	2070	1575.39	2154	3733.9	5543	1691.2	194.26
MEAN	38.7	24.5	33.9	30.5	22.7	66.8	52.5	69.5	124	179	54.6	6.48
MAX	67	47	44	39	58	111	108	101	189	196	98	56
MIN	.00	.00	27	24	.00	30	.03	33	5.3	105	1.4	.00
AC-FT	2380	1460	2080	1880	1260	4110	3120	4270	7410	10990	3350	385

CAL YR 1977 TOTAL 15185.09 MEAN 41.6 MAX 135 MIN .00 AC-FT 30120 WTR YR 1978 TOTAL 21531.24 MEAN 59.0 MAX 196 MIN .00 AC-FT 42710

08180800 MEDINA RIVER NEAR SOMERSET, TX

LOCATION.--Lat 29°15'45", long 98°34'56", Bexar County, Hydrologic Unit 12100302, on left bank 300 ft (91 m) upstream from bridge on State Highway 16, 2.1 mi (3.4 km) upstream from Elm Creek, 4.9 mi (7.9 km) downstream from Medio Creek, 5.2 mi (8.4 km) northeast of Somerset, and 14.1 mi (22.7 km) upstream from mouth.

DRAINAGE AREA.--967 mi² (2,505 km²), 634 mi² (1,642 km²) above dam forming Medina Lake.

PERIOD OF RECORD .-- October 1970 to current year.

TOTAL 110635

77418

MEAN 212

10700

MAX

MIN 41

TOTAL

WTR YR 1978

GAGE .-- Water-stage recorder. Datum of gage is 493.56 ft (150.437 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Flow is regulated by Medina Lake (station 08179500) 56 mi (90 km) upstream and by Medina Diversion Lake, capacity 4,500 acre-ft (5.55 hm³). For diversion of canal records, see Medina Canal near Riomedina (station 08180000). A large part of the streamflow is lost into the Edwards and associated limestones in the Balcones Fault Zone, which crosses the basin between the upstream end of Medina Lake and about 5 mi (8 km) downstream from Medina Dam, or 0.9 mi (1.4 km) downstream from the diversion dam. There are several small diversions below Medina Diversion Dam. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--8 years, 283 ft3/s (8.015 m3/s), 205,000 acre-ft/yr (253 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 30,500 ft 3 /s (864 m 3 /s) July 17, 1973 gage height, 29.39 ft (8.958 m); minimum, 21 ft 3 /s (0.59 m 3 /s) July 23, 24, 1971.

EXTREMES OUTSIDE PERIOD OF RECORD .-- Maximum stage since about 1890, that of July 17, 1973.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 12,800 ft 3 /s (362 m 3 /s) Aug. 4, gage height, 22.35 ft (6.812 m); minimum, 40 ft 3 /s (1.13 m 3 /s) July 22, 23.

		DISCHA	RGE, IN	CUBIC FEET		OND, WATER		CTOBER 1977	TO SEPT	EMBER 1978	3	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	94 99 100 93 93	412 1670 385 183 149	98 97 97 96 94	90 90 91 91 92	86 85 85 85 84	82 82 82 82 81	66 64 65 65	63 65 68	53 55 63 66 61	48 48 49 47 46	62 268 2260 10700 6450	117 111 111 162 190
6 7 8 9	92 91 92 89 87	138 130 147 142 126	92 91 93 97 97	92 91 90 89 87	83 88 95 89 83	84 88 90 82 82	64 64 65 67 147	66 67 60	59 89 86 67 62	45 44 44 47 47	3470 2190 1880 1570 1170	195 187 333 432 339
11 12 13 14 15	86 85 84 85 86	113 111 106 104 104	97 96 95 97 96	88 90 92 94 97	80 80 85 83 81	81 80 80 78 78	116 88 79 77 76	62 58 54	74 64 59 57 56	49 48 46 44 42	974 848 746 664 595	391 419 437 961 797
16 17 18 19 20	84 83 82 81 80	104 103 103 103 104	93 93 95 96 95	92 90 88 87 87	81 84 84 83 82	76 74 71 71 71	75 74 73 71 70	53 53 52	55 51 49 48 47	43 45 44 42 43	536 477 420 372 327	967 762 848 771 675
21 22 23 24 25	81 100 101 100 98	101 100 100 100 100	92 89 89 89	87 86 86 89 92	82 82 82 82 83	71 70 69 69 71	70 71 78 83 76	59 56 55	47 47 47 48 47	41 41 41 44 42	289 263 231 196 162	626 585 542 483 446
26 27 28 29 30 31	92 89 88 87 86 84	99 99 97 98 98	89 89 93 93	89 88 87 85 85	84 84 84	72 71 70 67 66 66	72 70 69 68 67	58 57 59	45 45 44 45 45	42 43 44 52 53	145 133 125 120 118 121	416 389 353 331 328
TOTAL MEAN MAX MIN AC-FT	2772 89.4 101 80 5500	5529 184 1670 97 10970	2897 93.5 98 89 5750	2768 89.3 97 85 5490	2349 83.9 95 80 4660	2357 76.0 90 66 4680	2254 75.1 147 64 4470	58.7 68 51	1681 56.0 89 44 3330	1405 45.3 53 41 2790	37882 1222 10700 62 75140	13704 457 967 111 27180

AC-FT 219400

AC-FT 153600

08181000 LEON CREEK TRIBUTARY AT FARM ROAD 1604, SAN ANTONIO, TX (Flood-hydrograph partial-record station)

LOCATION.--Lat 29°35'14", long 98°37'40", Bexar County, Hydrologic Unit 12100301, 97 ft (30 m) upstream from culvert on Farm Road 1604 at San Antonio and 1.5 mi (2.4 km) west of bridge on Leon Creek.

DRAINAGE AREA.--5.57 mi² (14.43 km²).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1968 to current year.

GAGE.--Digital recorders (water stage and rainfall). Gage not referenced to National Geodetic Vertical Datum of 1929.

REMARKS.--Additional storm rainfall-runoff data for this site can be obtained from the report "Hydrologic Data for Urban Studies in the San Antonio, Texas Metropolitan Area, 1978."

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,790 ft⁵/s (50.7 m³/s) July 16, 1973, gage height, 10.91 ft (3.325 m).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 945 ft 3 /s (26.8 m 3 /s) Nov. 1, gage height, 7.00 ft (2.134 m), no peak above base of 200 ft 3 /s (5.66 m 3 /s); water-quality sample obtained during this flood event.

WATER-OUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: May 1970 to current year. Sediment analyses: May 1972 to June 1973. Water temperatures: May 1970 to current year. Bacteria analyses: April 1976 to current year.

DATE	TIME	STREAM FLOW, INSTAN TANEOU (CFS)	- DUC	IC I- CT- CE CRO-	PH	TEMPER- ATURE (DEG C)	INCOM	LOR LAT- UM- BALT ITS)			OXYGEN DIS- SOLVE (MG/L	i, i	YGEN. DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)
NOV														
01	0945	170		146	7.3	19.0		400		200	9.	5	106	2.4
0.475	COLI- FORM, TOTAL, IMMED. (COLS. PER	COLI- FORM, FECAL 0.7 UM-MF (COLS. 100 ML	FEC KF A (COL	GAL, HA	RD- SS IG/L S	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	DIS SOI	CIUM S= LVED G/L CA)	SI DI SOL (MG	NE- UM, S- VED	SODIUM DIS- SOLVED (MG/L AS NA) . F	AD- SORP- TION PATIO	POTAS- SIUM. DIS- SOLVED (MG/L AS K)
DATE	100 ML)	TOO ML	, 100	ML) CA	(03)	CACOST	AS	CMI	43	1407	A3 117	.,		43
NOV					0.5							-		
01	78000	2700	0 44	000	72	1		26		1.8	1.	.5	- 1	3.1
DATE	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3	(MC	FATE RI S- DI LVED SC	DE, S- DLVED IG/L	FLUO- RIDE. DIS- SOLVED (MG/L AS F)	DIS SOI (MC	LVED G/L	SOL	OF TI-	SOLIDS RESIDU AT 105 DEG. C SUS- PENDED (MG/L	JE 50	OLIDS, OLA- TILE, SUS- ENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)
NOV														
01	86		0	5.1	2.7	.0		6.2		89	35	52	96	.41
O.A	GE NITE TOT (MG	ITE NO	ITRO- GEN. 2+NO3 OTAL MG/L S N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NIT GE ORGA TOT (MG AS	RO- GEN N, MON NIC ORG AL TO /L (M	TRO- , AM- IA + ANIC TAL G/L N)	PHOR PHOR TOT (MG	US, AL	CARBO ORGAN TOTA (MG/ AS (NIC A	LENE BLUE ACTIVE SUB- STANCE	E OI	
NOV	•••	.01	.42	•13	1	•2	1.3		.13	15		.20	n	0
01	•••	• 01	• 72	•13	1				.13	1.		• = .		

08181000 LEON CREEK TRIBUTARY AT FARM ROAD 1604, SAN ANTONIO, TX--Continued

	01	.00	•00	.00	0	.00	.00	.00	.00
	NOV								
	DATE	THION, TOTAL (UG/L)	THION,	THION. TOTAL (UG/L)	APHENE, TOTAL (UG/L)	TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	TOTAL T	LVEX, OTAL UG/L)
		METHYL PARA-	METHYL TRI-	PARA-	TOX-	TOTAL			
-	NOV 01			.00	•00	.00	.00	00 .00	•00
	AZIN	ION EL	DRIN SULI	TAL TO	RIN, ETHI TAL TOT G/L) (UG	AL TOTA	OR, EPOXI	R DE LINDANE L TOTAL	TOTAL
	NOV 01	0945	•0	.00	.00	.0	.00	.00	•00
	DATE	IIME	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)		UG/L)
		TIME	PCB.	NAPH- THA- LENES, POLY- CHLOR. TOTAL	ALDRIN.	CHLOR- DANE, TOTAL	DDD+		DDT.
		NOV 01	1	4	.0	0	0	10	
		DATE	DIS- SOLVED (UG/L AS PB)	NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)	
			945	1 MANGA-	0	0 SELE-	0	0 40	
	NOV		AS	A57 A5	DAI AS	CD7 AS C	,R) AS C	, A3 FE	
	DA		IME (UG	VED SOLV		S- DIS- VED SOLV	COPPER DIS- ED SOLVE L (UG/	DIS- ED SOLVED L (UG/L	

08181400 HELOTES CREEK AT HELOTES, TX

371

LOCATION.--Lat 29°34'42", long 98°41'29", Bexar County, Hydrologic Unit 12100302, 42 ft (13 m) left of and 44 ft (13 m) downstream from centerline of bridge on State Highway 16, 0.1 mi (0.2 km) northwest of Helotes, and 8.6 mi (13.8 km) upstream from mouth.

DRAINAGE AREA .-- 15.0 mi2 (38.8 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1968 to current year.

REVISED RECORDS .-- WDR TX-73-1: 1972(M).

GAGE.--Water-stage recorder. Datum of gage is 1,014.82 ft (309.317 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. An undetermined amount of flow is diverted for domestic use above the station, and some flow enters the Edwards and associated limestones through the Balcones Fault Zone in the vicinity of the gage. Recording rain gage located at station, with two additional recording rain gages located in watershed.

AVERAGE DISCHARGE.--10 years, 4.57 ft³/s (0.129 m³/s), 4.14 in/yr (105 mm/yr), 3,310 acre-ft/yr (4.08 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $7.680 \text{ ft}^3/\text{s}$ (217 m $^3/\text{s}$) July 16, 1973, gage height, 10.8 ft (3.29 m), from floodmarks, from rating curve extended above $5.000 \text{ ft}^3/\text{s}$ (142 m $^3/\text{s}$); no flow most of time.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1923, 13.7 ft (4.18 m) in 1927, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 140 ft³/s (3.96 m³/s) and maximum (*):

Date	Time	Disch	arge	Gage	height	Date	Time	Disch	arge	Gage	height
		(ft3/s)	(m^3/s)	(ft)	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
aNov. 1	0815	*1,970	55.8	5.37	1.637	aSept. 15	0845	132	3.74	2.42	0.738

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

a Water-quality samples were obtained during this flood event.

Minimum discharge, no flow at times.

		DISCHARG	L, IN C	OBIC FE	LI FER SE	MEAN VALUES	TEAR OCTOL	JER 1577 I	O SELLEN	J. 1. 1. 1.		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	346	.00	.00	.00	.00	.00	.00	.04	.00	2.1	.07
2	.00	42	.00	.00		.00	.00	.03	.00	.00	3.2	.00
2	.00	16	.00	.00		.00	.00	.00	.13	.00	.23	.00
4	.00	6.7	.00	.00		.00	.00	.00	.00	.00	.00	.00
5	.00	3.4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
6	.00	1.8	.00	.00	.00	.01	.00	.00	.25	.00	.00	.00
7	.00	.54	.00	.00	.02	.00	.00	.00	.01	.00	.00	.69
8	.00	1.9	.00	.00	.00	.00	.00	.00	.00	.00	.00	.68
9	.00	.01	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
10	.00	.00	.00	.00		.00	.22	.00	.00	.00	.00	.00
11	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
12	.00	.00	.00	.00	.14	.00	.00	.00	.00	.00	.00	.00
13	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	11
14	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	11
15	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	49
16	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	24
17	.00	.00	.00	.00	.05	.00	.00	.00	.00	.00	.00	13
18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	7.3
19	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	5.0
20	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	2.6
21	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.57
22	.05	.00	.00	.00	.00	.00	4.1	.00	.00	.00	.00	.02
23	.07	.00	.00	.00	.00	.00	.25	.00	.00	.00	.00	.00
24	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
25	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
26	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
28	.00	.00	.00	.00	.00	.00	.00	.00	.00	.09	.00	.00
29	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	.00
30	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	.00
31	.00		.00	.00		.00		.00		.00	.00	
TOTAL	.12	418.35	.00	.00	.21	.01	4.57	.03	.43	.09	5.53	124.93
MEAN	.004	13.9	.000	.000	.008	.000	.15	.001	.014	.003	.18	4.16
MAX	.07	346	.00	.00	.14	.01	4.1	.03	.25	.09	3.2	49
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
CFSM	.000	.93	.000	.000		.000	.01	.000	.001	.000	.01	.28
IN.	.00	1.04	.00	.00	.00	.00	.01	.00	.00	.00	.01	.31
AC-FT	.2	830	.00	.00	.4	.02	9.1	.06	.9	.2	11	248
(††)	1.65	7.56	.18	.38	2.08	.69	3.05	1.32	1.79	.56	5.87	8.02
	1977 TO 1978 TO			4.43	MAX 346 MAX 346	00. NIM 00. NIM	CFSM .30 CFSM .10	IN 4.01 IN 1.37		3210 1100	tt 33.58 tt 33.15	

tt Weighted-mean rainfall, in inches, based on three rain gages.

08181400 HELOTES CREEK AT HELOTES, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: May 1969 to current year. Sediment analyses: May 1972 to September 1973. Water temperatures: May 1969 to current year. Bacteria analyses: April 1976 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	DUCT-	PH (UNITS)	TEMPER- ATURE (DEG C)	COBALT	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND. BIO- CHEM- ICAL. 5 DAY (MG/L)
NOV 01	1020	393	165	7.4	19.0	640	250	9.2	102	3.4
AUG 01	1250	3.2	126	7.8	23.0	70	20	8.0	95	2.8
SEP	1230	3.2	120		23.0			•••		
15	1400	39	436	7.9	26.5	45	15	8.4	106	.6
	COLI- FORM, TOTAL, IMMED. (COLS. PER	COLI- FORM, FECAL, 0.7 UM-MF (COLS./	KF AGAR (COLS. PER	HARD- NESS (MG/L AS	HARD- NESS, NONCAR- BONATE (MG/L	SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIUM. DIS- SOLVED (MG/L	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L
DATE	100 ML)	100 ML)	100 ML)	CACO3)	CACO3)	AS CA)	AS MG)	AS NA)		AS K)
NOV 01	79000	32000	47000	80	2	27	3.0	2.6	.1	2.5
AUG 01	K120000	K95000		56			1.3	2.0	.1	3.3
SEP 15	19000	4600	4900	230	23	73	11	6.2	.2	1.5
		ATE CA G/L BON AS (M		ATE RI S- DI VED SO	DE, RI S- D LVED SO G/L (M	UO- SILI DE, DIS IS- SOL LVED (MG	CA SUM CONS VED TUEN CL DI	IDS, SOLII OF RESII STI- AT 1 NTS, DEG. IS- SUS- LVED PENDI G/L) (MG.	DUE SOLI 05 VOL C, TIL - SUS ED PEND	A- E,
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
O AU	1	95	0	6.3	3.9	•1	5.4	98	440	124
	1	67	0	2.3	1.0	.0	6.9	70	25	0
	5	250	0 1	17	12	.1 1	1	255	15	0
D	GI NIT TO (M	EN, G RATE NIT TAL TO G/L (M	EN, GE RITE NOZ- TAL TOI	EN, G NO3 AMM TAL TO G/L (M	EN, G ONIA ORG TAL TO G/L (M	TRO- GEN, EN, MONI ANIC ORGA TAL TOT G/L (MG	A + PHO NIC PHO AL TO	OS- CARB RUS. ORGA TAL TOT. G/L (MG P) AS	ON, BL NIC ACT AL SU /L STA	HY- NE UE IVE B- NCE
NO		At .							of the fi	S. S. C.
	1	.55	.01	.56	.08	1.6	.7	.12 1	7	.00
	1	.21	•02	.23	.01	.57	.58	.14	6.3	.10
	5	.62	.01	.63	.01	.49	.50	.00	5.4	.10

GUADALUPE RIVER BASIN

08181400 HELOTES CREEK AT HELOTES, TX--Continued

	DA	ΤE	TIN	4E	ARSEI DIS SOL	VED	BARI DIS SOLV (UG	ED.	SOL (UG	S- VED	MIUI DIS- SOL (UG	VED	COPP DIS SOL (UG AS	vED /L	DISOL (UG	S- VED /L		
	NOV																	
	01 AUG	•••	102	50		1		0		0		15		1		40		
			129	50		1		300		0		0		2		20		
			14	00		2				0		10		2		20		
		D	ATE	501	AD, IS- VED G/L PB)	NE D SO	NGA- SE, IS- LVED IG/L MN)	SO	RCURY) IS-) LVED) G/L 6 HG)	NII D SOI	LE- UM. IS- LVED G/L SE)	SOI (U	VER+ IS- LVED G/L AG)	SOL	IC+ IS- VED B/L ZN)			
		NO	,															
		AUG	3		0		4		.0		0		0		4			
			1		4		0		.1		0		0		10			
			5		0		0		.2		0		0		0			
					LEN	H- A- ES. LY-			СНІ	_OR-								I <i>-</i>
DATE	ŤI	ME	TOT (UG		TOT	OR.	TO	RIN, TAL G/L)	TO	NE, TAL G/L)	TOT	D+	TOT	AL S/L)	TOT	AL (/L)	TO	TAL G/L)
NOV		20				0.0		00		.0		.00		.00		.00		.00
01 AUG	10	020		• 0		.00		•00		• 0								
Ol	12	250		• 0		•00		.00		• 0		.00		.00		•00		.00
15	14	00		.0		.00		.00		.0		.00		.00		.00		.00
DATE	TOT	RIN	END SULF TOT (UG	AN,	ENDR TOT (UG		TO	ION, TAL G/L)	CHI	PTA- LOR, TAL G/L)	CHL EPOX TOT	IDE	LING		TOT	ON.	TH:	THYL RA- ION, TAL G/L)
NOV																		
01		.00		.00		.00		•00		•00		.00		.00		•00		.00
01 SFP		.00		.00		.00		.00		.00		.00		.00		.00		.00
15		.00		.00		.00		.00		.00		.00		.00		.00		.00
	DATE	TH TO	THYL RI- ION, TAL G/L)	T	REX+ OTAL G/L)	TH	ARA- HION, DTAL UG/L)	TO	TOX- HENE. OTAL UG/L)	TH	TAL RI- ION G/L)	TO	4-0+ TAL G/L)	TO	,5-T TAL G/L)	TO	VEX+	
	0V 01		.00				.00		0		.00		.00		.00		.00	
٨	UG 01		.00		•00		.00		0		.00		.00		.00		.00	
	EP												.00		.00		.00	
	15		.00		•00		.00		0		.00		.00		.00		•00	

08181410 RANCH CREEK NEAR HELOTES, TX

LOCATION.--Lat 29°36'06", long 98°43'26", Bexar County, Hydrologic Unit 12100302, on right bank 1.5 mi (2.4 km) upstream from Los Reyes Creek and 2.6 mi (4.2 km) northwest of Helotes.

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: October 1976 to current year.

WATER QUALITY DATA. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	STREAM FLOW INSTAM TANEOU (CFS)	A- CO DU N- AN US (MI	FIC N- CT-		РН (TS)	AT	PER- URE G C)	IN CO	LOR LAT- IUM- BALT ITS)	B	UR- ID- TY	OXYGE DIS SOLV (MG/	ED	SOL (PE CE SAT	S- VED	OXYGE DEMAN BIO- CHEN ICAL 5 DAY (MG/L	ID •
01	1040 1437	1.1		291 237		7.3 7.4		21.0		100		7		.8		101		• 0
01	1355		20	170		7.8		23.0		70		15	8	.2		98	1	.6
01	1955		05	168						90		260						.7
01	2005		10	147						90		180		==				.8
01	2045 2135		05 05	172 178						80		25 15						.6
01	2145		06	142						90		120						.0
01	2305	8.		257		7.8		24.0		100	-	5	9	.0		110	2	.4
0.15	COLI- FORM. TOTAL, IMMED. (COLS. PER	COLI- FORM, FECAL 0.7 UM-MF	TOC FE KF (CO	ER	HAF NES (MG	SS S/L	NON BON	RD- SS, CAR- ATE G/L CO3)	SO (M	CIUM S- LVED G/L CA)	SOI (M	GNE- IUM, IS- LVED G/L MG)	SODIU DIS- SOLVE (MG/ AS N	D	SOF	ON	POTA SIL DIS SOLV (MG/	ED L
DATE	100 ML)	100 ML	., 100	ML)	CAC	.031	CA	C031	AS	CAI	43	401	A3 11	-,			45	
NOV										200			_					
01	62000	670		7900		130		7		50		1.9		.8		.1		.8
Ol	55000	200	00	A500		110		3		43		1.7	-	• 2		• 1		•0
01	K130000	491	00 1	5000		78		13		28		1.9	1	.9		.1		.6
01	K130000	640		4000		76		7		27		2.0		.3		.1		.5
01	K98000	260		9000		67		1		24		1.6		.8		•1		0
01	52000	530		0000		81		7		29		2.0		.9		:1		.8
01	60000 24000	53		9700 9300		68		8		29 24		1.8		.0		·i		.7
01	200000	260		4000		130		32		49		2.0		.8		.1		.3
DATE	BICAR- BONATE (MG/L AS HC03)	CAR- BONATI (MG/I	DI E 50	FATE S- LVED G/L SO4)	DIS SOI (MC		RI D SO (M	UO- DE, IS- LVED G/L F)	DI SO (M	ICA. S- DLVED IG/L IS	CON TUE D SO	OF STI- NTS, IS- LVED G/L)	SOLID RESID AT 10 DEG. SUS- PENDE (MG/	UE 5 C,	PEN	A- E,	NITE GEN NITE TOTA (MG/ AS N	TE L
NOV																	72	
01	150		0	5.1		5.0		.0		8.3		149		6		5	3,	
01	130		0	4.0		3.9		• 0		7.8		129		6			1.	.0
01	79		0	6.9		2.9		.1		6.9		91		22		0	2.	0
01	84		0	5.4		3.1		.1		5.9		91		40		448		79
01	80		0	3.7		2.5		.1		5.4		82	4	08		20		.59
01	90		0	5.2		3.6		:1		6.6		95 98		45		0		41
01	90 72		0	7.0		5.0		.1		6.3		81	2	88		0		30
01	120		0	9.5		7.2		.0		8.2		141		12		0	4	.2
DA		N, PITE NOTAL	NITRO- GEN. 02+NO3 TOTAL (MG/L AS N)	NIT GE AMMO TOT (MG AS	N, NIA AL /L		AL S/L	NIT GEN. MONI ORGA TOT (MG AS	AM- A + NIC AL /L	PHOR PHOR TOT (MG	US, AL /L	CARB ORGA TOT (MG AS	ON. NIC AL	MET LE BL ACT SU STA (MG	NE UE IVE B- NCE	OI AN GRE (MG	ASE	
NOV		0.1	3 0		.03		.85		.88		.02	1	0		.20		0	
	•••	.01	3.0		.00		.86		.86		.02		2		.10		ő	
Ai G																		
01		.03	2.0		.00		.58		.58		.01		6.3		.10		0	
	•••	.02	.41		.05		-4		• 4		.17		1		.00		0	
	•••	.02	.61		.05		.0		• 4		.15		7 8.7		.00		0	
	•••	.03	.44		.00		.50		.50		.01		8.0				0	
		.02	.32		.00		.1		.1		.05	1	0					
	•••	.03	4.2		.01		1.5	1	•5		.04	1	9		.20			

08181410 RANCH CREEK NEAR HELOTES, TX--Continued

01 1040						D	ENIC	DI		D:	IIUM	MI	RO- UM,	DI	PER,	D	ON, IS-		
01 1040 01 1437 1 0 0 0 1 0 0 40 01 1437 1 0 0 0 5 0 40 01 1355 1 0 0 0 0 5 0 40 01 1355 1 0 0 0 0 5 0 40 01 2005 1 10 0 1 10 11 30 01 2005 1 10 0 1 10 0 20 01 2045 1 10 0 1 10 0 9 20 01 2045 1 10 0 1 10 0 9 20 01 2145 0 300 1 1 0 5 30 01 2305 0 300 1 1 0 5 30 01 2145 0 150 150 150 150 150 150 150 150 150		DA	TE	TI	ME	(U	G/L	(U	G/L	(U	J/L	(U	G/L	(U	G/L	(U	G/L		
01 1355 1 20 <1 10 13 350 01 1955 1 20 <1 10 11 300 01 2045 1 10 <1 0 0 200 01 2045 1 10 <1 0 0 0 200 01 2145 0 200 1 10 0 5 30 01 2145 0 200 1 10 0 5 30 01 2145 0 200 1 10 0 5 30 01 2145 0 200 1 10 0 5 30 01 2145 0 200 1 10 0 5 30 01 2145 0 200 1 10 0 5 30 01 2145 0 200 1 10 0 5 30 01 2145 0 200 1 10 0 5 30 01 2145 0 200 1 10 0 5 30 01 2145 0 10 30		01 01	:::	-															
01 2005 1 10 <1 0 9 20 01 2045 1 10 <1 10 9 40 01 2145 0 300 1 0 5 30 01 2145 0 300 1 0 5 30 01 2145 0 300 1 0 5 30 01 2305 0 200 1 0 0 5 30 01 2305 0 200 1 0 0 5 30 01 2305 0 200 1 0 0 5 30 01 2305 0 200 1 0 0 5 30 01 2305 0 200 1 0 0 5 30 01 2005 015- 015- 015- 015- 015- 015- 015- 0				13	355														
01 2045 1 10 <1 10 9 40 01 2145 0 300 1 10 5 30 01 2145 0 300 1 10 5 30 01 2145 0 300 1 10 5 30 01 2145 0 300 1 10 5 30 01 2145 0 300 1 10 0 5 30 01 2145 0 300 1 10 0 2 30 01 2145 0 105- 015- 015- 015- 015- 015- 015- 0																			
		01		20	045		1		10		<1								
LEAD, DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-																			
NOV				DATE		DIS- SOLVED (UG/L	5	DIS- OLVED UG/L	MER SC (L	IS- LVED JG/L	N S	IUM, DIS- OLVED UG/L	. 5	DIS- OLVED UG/L	S (1	DIS- OLVED UG/L			
01 0 4 .0 0 0 10 01 1 4 4 .0 0 0 0 10 AUG 01 3 10 .0 0 0 10 01 0 2 .0 1 0 7 01 0 1 .0 1 0 7 01 0 1 .0 1 0 1 0 7 01 0 1 .0 1 0 1 0 7 01 0 1 .0 1 0 1 0 7 01 0 1 .0 1 0 1 0 7 01 0 1 .0 1 0 1 0 10 01 2 0 .0 0 0 0 10 01 2 0 .0 0 0 0 10 01 2 0 .0 0 0 0 10 NAPH- THA- LENES, POLY- PCB, CHLOR, ALDRIN, DANE, DDD, DDE, DDT, AZINON, TIME TOTAL TOT						.5 . 0,	1												
01 3 10 .0 0 0 10 10 10 10 11 .0 17 10 0 11 0 12 0 11 0 17 10 0 10				01												0.7			
			A	01															
O																			
Naph-				01		0		3		.0									
THA- LENES, POLY- POB. CHLOR. ALDRIN, DANE, DDD, DDF, DDT, AZINON, TOTAL TOT																			
DATE TIME TOTAL TO																			
DATE TIME TOTAL TO						LEN	ES,												0
DATE TIME TOTAL TO				PCE	в.			ALDR	IN.			DD	D•	DO	E,	DD	т.		
NOV		TIM	E	TOT	AL	TOT	AL	TOT	AL	TOT	AL								
11 1040 .0 .00 .00 .00 .00 .00 .00 .00 .00 .	DATE			(00)	,,,	(06	,,,	100	,,,,	100	, ,	100	,	,,,,				,,,,	
01 1437 .0 .00 .00 .00 .00 .00 .00 .00 .00 .00	NOV	104	0		- 0		-00		.00		.0		.00		.00		.00		.00
01 1355	01												.00		.00		.00		.00
01 2005		135	5		.0		.00		.00		.0		.00						
D1- ENDO-	01	200																	
DI- ENDO- HEPTA- CHLOR EDATE TOTAL T																			
NOV	377											HEP	TA-					MET	THYL
01 00	DATE	TOTA	IN	SULF	AN.	TOT	AL	TOT	AL	TOT	OR.	EPOX	AL	TOT	AL	THI	ON,	THI	ON.
01 00 .00 .00 .00 .00 .00 .00 .00 .00	NOV																		
AIIG 0100 .00 .00 .00 .00 .00 .00 .00 .0																			
01 00 00 00 00 00 00 00 00 00 00 00 00																	00		00
01 00 00 00 00 00 00 00 00 00 00 00 00																			.00
METHYL TRI- THION, MIREX, THION, APHENE, TRI- DATE (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) NOV 010000 0 .00 .00 .00 .00 010000 0 .00 .00 .00 .00 0100 0 -0 .00 0 .00 .00 .00 0100 0 0 .00 0 .00 .00 .00 0100 0 0 .00 0 .00 .00 .00 .00 0100 .00 .00 0 .00 .00 .00 .00 0100 .00 .00 0 .00 .00 .00 .00	01		00		.00		.00												
TRI- THION, MIREX, THION, APHENE, TRI- DATE (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) NOV 010000 0 .00 .00 .00 .00 010000 0 .00 .00 .00 .00 0100 0 -0 .00 0 .00 .00 .00 0100 0 .00 .00 0 .00 .00 .00 0100 .00 .00 0 .00 .00 .00 .00 0100 .00 .00 0 .00 .00 .00 .00 0100 .00 .00 0 .00 .00 .00 .00	01				•00		•••				•••		•••						
NOV 010000 0 .00 .00 .00 .00 .00 .00			1	RI-														u=u	
01 0000 0 .00 .00 .00 .00 .00 .00		DATE	T-C	TAL		TOTAL	TO	TAL	TO	TAL	TH	ION	TO	TAL	TO	TAL	TO	TAL	
010000 0 .00 .00 .00 .00 .00 .00		ov																	
AUG 0100 .00 .00 0 .00 .00 .00 .00 0100 .00 .00 0 .00 .00 .00 .00 0100 .00 .00 0 .00 .00 .00																			
0100 .00 .00 0 .00 .00 .00 .00		UG								1									
0100 .00 .00 0 .00 .00 .00	*																		
0100 .00 .00 .00 .00 .00		01		.00		.00		.00		0		.00		.00		.00		.00	
		01		•00		•00		.00		0		.00		.00		.00		.00	

08181450 LEON CREEK TRIBUTARY AT KELLY AIR FORCE BASE, TX

LOCATION.--Lat 29°23'12", long 98°36'00", Bexar County, Hydrologic Unit 12100302, on left bank 128 ft (39 m) downstream from centerline of bridge on Billy Mitchell Road at Kelly Air Force Base, 0.15 mi (0.24 km) upstream from mouth, and 2.0 mi (3.2 km) southeast of intersection of U.S. Highway 90 West and Loop 13.

DRAINAGE AREA .-- 1.19 mi 2 (3.08 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1969 to current year.

GAGE.--Water-stage recorder and sharp-crested weir. Datum of gage is 657.57 ft (220.427 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records fair. Recording rain gage located at station with an additional rain gage located in watershed.

AVERAGE DISCHARGE.--9 years, 0.54 ft3/s (0.0153 m3/s), 6.16 in/yr (156 mm/yr), 391 acre-ft/yr (482,100 m3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 555 ft³/s (15.7 m³/s) May 14, 1970, gage height, 4.44 ft (1.353 m), from rating curve extended above 300 ft³/s (8.50 m³/s) on basis of formula, Q=CLH³/²; no flow at times each year.

EXTREMES OUTSIDE PERIOD OF RECORD. -- No historical flood information is available.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 150 ft 3 /s (4.25 m 3 /s), revised, and maximum (*):

Date	Time	Disch	narge	Gage I	neight	Date		Time	Disch	arge	Gage h	neight
		(ft^3/s)	(m^3/s)	(ft)	(m)				(ft3/s)	(m^3/s)	(ft)	(m)
aOct. 22	0815	152	4.30	2.48	0.756	aJuly	28	1545	159	4.50	2.52	0.768
aNov. 1	1500	128	3.62	2.35	.716	aAug.	1	2130	119	3.37	2.30	.701
Apr. 10	0345	160	4.53	2.53	.771	Sept.	7	2045	*186	5.27	2.67	.814
alline 6	2300	61	1.73	1.95	594							

a Water-quality samples were obtained during this flood event.

Minimum discharge, no flow most of time.

		DISCHAR	GE, IN	CUB	IC FEE	T PE		ND, WAT AN VALU		AR OC	TOBER 19	77 TO SEP	TEMBE	1978	8	
DAY	ОСТ	NOV	DEC		JAN		FEB	MAR	1	APR	MAY	JUN		JUL	AUG	SEP
1	.00	24	.00		.00		.00	.00		.00	.00	.00		.00	24	.79
2	.00	4.4	.00		.00		.00	.00)	.00	2.3	.00		.00	6.6	.00
3	.00	2.1	.00		.00		.00	.00	1	.00	.39	3.8		.00	.08	.00
4	.00	1.1	.00		.00		.00	.00		.00	.00			.00	.03	.00
5	.00	.12	.00		.00		.00	.00		.00	.00			.00	.02	.00
6	.00	.00	.00		.00		.00	1.1		.00	.00	3.4		.00	.02	.00
7	.00	.00	.00		.00		3.9	1.3		.00	.00			.00	.02	22
8	.00	4.5	.00		.00		.00	.00)	.00	.00			.00	.00	7.8
9	.00	.46	.00		.00		.00	.00		.00	.00			.00	.00	.03
10	.00	.04	.00		.00		.00	.00		3	.00			.00	.00	.02
11	.00	.00	.00		.00		.00	.00)	.00	.00	.00		.00	.00	.13
12	.00	.00	.00		.00		1.3	.00		.00	.00			.00	.00	.08
13	.00	.00	.00		.00		.00	.00		.00	.00			.00	.00	4.5
14	.00	.00	.00		.00		.00	.00		.00	.00			.00	.00	.08
15	.00	.00	.00		.00		.00	.00		.00	.00			.00	.00	.08
16	.00	.00	.00		.00		.00	.00)	.00	.00	.00		.00	.00	.08
17	.00	.00	.00		.00		.00	.00		.00	.00			.00	.00	.01
18	.00	.00	.00		.00		.00	.00		.00	.00			.00	.00	.00
19	.00	.00	.00		.00		.00	.00		.00	.00			.00	.00	.00
20	.00	.00	.00		.00		.00	.00		.00	.00			.00	.00	.00
21	.99	.00	.00		.00		.00	.00)	.00	.00	.00		.00	.00	.00
22	16	.00	.00		.00		.00	.00		7.8	.00			.00	.00	.00
23	4.4	.00	.00		.00		.00	.00		.00	.00			.00	.00	.00
24	1.2	.00	.00		.00		.00	.00		.00	.00			.00	.00	.00
25	.04	.00	.00		.00		.00	.00		.00	.00			.00	.00	.00
26	.00	.00	.00		.00		.00	.00)	.00	.00	.00		.00	.00	.00
27	.00	.00	.00		.00		.00	.00)	.00	.00	.00		.00	.00	.00
28	.00	.00	.00		.00		.00	.00		.00	.00				.00	.00
29	.00	.00	.00		.00			.00		.00	.00			.35	.00	.00
30	.00	.00	.00		.00			.00		.00	.00			1.3	.18	.00
31	.00		.00		.00			.00			.00			.04	.00	
TOTAL	22.63	36.72	.00		.00		5.20	2.40) ;	20.80	2.69	11.90	2	1.69	30.95	35.60
MEAN	.73	1.22	.000		.000		.19	.077		.69	.087			.70	1.00	1.19
MAX	16	24	.00		.00		3.9	1.3		13	2.3			20	24	22
MIN	.00	.00	.00		.00		.00	.00		.00	.00			.00	.00	.00
CFSM	.61	1.03	.000		.000		.16	.07		.58	.07			.59	.84	1.00
IN.	.71	1.15	.00		.00		.16	.07		.65	.08			.68	.97	1.11
AC-FT	45	73	.00		.00		10	4.8		41	5.3			43	61	71
(††)	4.13	2.81	.41		.45		1.72	1.06		2.90	1.73			2.64	4.01	5.74
CAL YR WTR YR		AL 304.13 AL 190.58	MEAN MEAN		MAX MAX		MIN	.00	CFSM CFSM		IN 9.50 IN 5.95		603 378	†† 2 †† 3		

tt Weighted-mean rainfall, in inches, based on two rain gages.

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: December 1969 to current year. Sediment analyses: April 1972 to September 1973. Water temperatures: December 1969 to current year. Bacteria analyses: April 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

08181450 LEON CREEK TRIBUTARY AT KELLY AIR FORCE BASE, TX--Continued

DATE	TIME	FL INS TAN	EAM- OW, TAN- EOUS FS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)		PH	TEMPI ATUI (DEG	ER- RE	COLOR (PLAT- INUM- COBAL UNITS	T .	TUR- BID- ITY JTU)	SO	GEN. IS- LVED G/L)	SOL (PE CE SAT	S- VED	DEMAN BIO- CHEN ICAL 5 DAY (MG/L	ND, - M- L,
OCT	1010									•	Fo		7.8		89		2.6
NOV	1210		0	9		8.1		0.5	8		50						
01 JUN	1410		9	6		7.5		9.0	10		60		9.0		100		2.4
07 JUL	0030	3	5	6	4	8.4	2	2.0	9	0	80		6.4		75		3.0
28 AUG	1900	5	6	7	2				8	0	50					į	5.0
01	1317	3	2	10	9	7.2	2	3.5	7	0	10		6.8		82	7	2.2
DATE	COLI- FORM, TOTAL IMMED (COLS. PER 100 ML	F0 FE 0. 0. UM (C0	CAL, 7 -MF	STREP TOCOCC FECAL KF AGA (COLS. PER 100 ML	I R NE	ARD- ESS MG/L AS ACO3)	HAR NES NONC BONA (MG CAC	S. C AR- TE /L	CALCIUM DIS- SOLVEM (MG/L AS CA	M D S	AGNE- SIUM, DIS- OLVED MG/L S MG)	SOL (M	IUM, S- VED G/L NA)	SOF	OIUM AD- RP- ION	POTA SIGNAL SOLV (MG/ AS	UM, S- VED /L
OCT 22	17000	10 1	4000	1700	n	26		0	9.	4	.5		.9		.1		1.8
NOV 01	6400		1000	2000		35		3	13	7	.6		.9		.1		2.0
JUN 07	4800		9000	2500		26		5	9.	0	.4		.6		.1		1.5
JUL										0					.2		2.7
28 AUG	2700		8000	1200		27		0	10		.5		2.0				
01	K16000	0 5	4000	4800	0	50		3	19		.7		1.2		•1		2.5
DA	ВС	CAR- ONATE (MG/L AS	CAR- BONAT (MG/ AS CO	. D TE S 'L (FATE IS- DLVED MG/L SO4)	(MG	E, VED	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	D (LICA, IS- OLVED MG/L AS IO2)	DI	OF TI- TS, S- VED	RESID AT 10 DEG. SUS- PENDE (MG/	OUE 05 C+	SOLI VOL TIL SUS PEND (MG	A- E, - ED	
001		36		0	1.3		.8		. 0	2.7		35		63		20	
NOV		39		0	2.6		1.7		.0	2.4		42	,	103		3	
JUN	V	24		1					.0	2.1		32		10		15	
JUL					3.2		1.0									5	
AUG		38		0	3.8		1.4		. 0	2.4		42		81			
01		58		0	2.3		1.2		. 0	6.1		62		14		0	
DA	NI I	GEN. TRATE TOTAL MG/L	NITE GEN NITE TOTA (MG/ AS N	TE NO	ITRO- GEN, 2+NO3 DTAL MG/L S N)	NIT GE AMMO TOT (MG AS	N, NIA AL	NITRO GEN• ORGANI TOTAL (MG/L AS N)	GEI MOI C OR	ITRO- N,AM- NIA + GANIC OTAL MG/L S N)	PHO PHOR TOT (MG AS	US, AL /L	CARBO ORGAN TOTA (MG/ AS C	IC L	MET LE BL ACT SU STA (MG	NE UE IVE B- NCE	
001		0.7		0.1	20		0.0			31		14	-			.10	
NOV		•27		.01	.28		•00	• 3		.36		.16		.0			
JUN		.18		.01	.19		• 06	• 2		• 35		.13		. 7		.10	
O7 JUL		.42		.02	.44		-11	• 3	33	.44		.08		.5		.10	
		.24		.03	.27		• 06	.7	74	.80		. 25	8	8.6		.20	
		.13		.03	.16		.00	. 3	39	.39		.07	6	.2		.10	

GUADALUPE RIVER BASIN

08181450 LEON CREEK TRIBUTARY AT KELLY AIR FORCE BASE, TX--Continued

										CHRO							
					S-	BARIU DIS-		CADMI	-	MIUM DIS-	•	COPPE DIS-		DIS			
					VED	SOLVE		SOLV		SOLV		SOLV (UG/		SOLV (UG/			
	DAT	E	TIME	(UG		AS B		AS C		AS C		AS C		AS F			
	JUN 07		0030		5	,	00		0		0		3		10		
	0.,	920	0000				•				4.3		1.30				
				LEAD.		GA-	ue no	URY	SEL		SILV	ED.	ZIN	C-			
				DIS-		IS-		S-		5-		5-		5-			
				SOLVED	501	VED	SOL	VED	SOL			VED		VED			
		DAT		(UG/L AS PB)		MN)		HG)	(UG		(UG	AG)	(UG	ZN)			
		UAI	-	M3 101	-3	11147	43	1107	-3	36,			-			1.0	
		JUN										0		10			
		07.	•••	3		0		.0		0		U		10			
0						THA-											
						ENES.											
						POLY-		316		LOR-							
			***	PCB,		TAL		ORIN.		NE .		DD.		DE.		DT.	
	DATE	11	ME	(UG/L)		JG/L)		JG/L)				G/L)		G/L)		G/L)	
	22	12	210	.0		.00		.00		.0		.00		.00		.84	
	NOV	-		•													
	01	14	+10	.0)	.00		.00		• 0		.07		.00		.20	
	JUN 07	00	030														
												HER	TA-				
	D	- 1	DI-	- EN	00-						TA-	CHL	OR			MAL	
	AZI		ELDR		FAN.	ENDR		ETHI			OR.	EPOX		LIND		THI	ON,
DATE		TAL G/L)	TOTA		TAL	TOT (UG		TOT	AL		AL)		/L)		/L)		(L)
						200		4			134						
OCT		.00		.04	.00		.00		.00	4	.00		.00		.00		.00
NOA .	Total .	.00	123	.04	•00						100						
01.		.04	204	.00	.00		.01		.00		.00		.00		.00		.00
JUN 07.	V 27 19																
		MET	THYL	METHYL													
			RA-	TRI-		ARA-		TOX-		RI-	3.	4-D+	2.4	•5-T	CTI	VEX.	
			ION,	THION,		HION,		HENE,		ION		TAL		TAL		TAL	
	DATE		3/L)	(UG/L)		UG/L)		JG/L)		G/L)	11	IG/L)	"	IG/L)	(U	G/L)	
	OCT			100													
	22		.00	.00)	.00		0		.00		.00	5	.00		.00	
	NOV		00	.00	5.1	.00		0		.00		.00		.00		.00	
	01		.00	•00	1	.00		U		•00		.00					
	3011											.02		.01		.00	

08181500 MEDINA RIVER AT SAN ANTONIO, TX

LOCATION.--Lat 29°15'14", long 98°28'20", Bexar County, Hydrologic Unit 12100302, near left bank on downstream side of pier of upstream bridge of two bridges on U.S. Highway 281 in San Antonio and 6.8 mi (10.9 km) upstream from mouth.

DRAINAGE AREA.--1,317 mi² (3,411 km²), 634 mi² (1,642 km²) is above dam forming Medina Lake.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1929 to December 1930, July 1939 to current year. October 1929 to December 1930 records below about 50 ft³/s (1.42 m³/s) in connection with seepage investigation (published as "at Losoya"). Published as "near San Antonio" July 1939 to September 1970.

REVISED RECORDS.--WSP 1562: 1957. WSP 1923: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 439.0 ft (133.81 m) National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). October 1929 to December 1930, nonrecording gage at Losoya 1.5 mi (2.4 km) downstream at different datum.

REMARKS.--Water-discharge records good. Flow is slightly regulated by Medina Lake (station 08179500), 60 mi (97 km) upstream, and diversion dam reservoir, capacity 4,500 acre-ft (5.55 hm³). For diversion of canal records, see Medina Canal near Riomedina (station 08180000). For statement concerning losses into the Edwards and associated limestones formation, see Medina River near Somerset (station 08180800). Several small diversions below diversion dam reservoir. During the current year, records furnished by the city of San Antonio show that no releases were made of sewage effluent from Mitchell Lake into river above gage during periods of high water, and 14,650 acre-ft (18.1 hm²) of sewage effluent was made into the river just above the Mitchell Lake discharge point from the Leon Creek Plant. A considerable part of the low flow is wastewater from Kelly Field Air Force Base which enters via Leon Creek. City of San Antonio Sanitation Department temperature and gage-height telemeter at station.

AVERAGE DISCHARGE.--39 years (water years 1930-31, 1939-78), 161 ft³/s (4.560 m³/s), 116,600 acre-ft/yr (144 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $31,900 \text{ ft}^3/\text{s}$ ($903 \text{ m}^3/\text{s}$) July 17, 1973, gage height, 43.59 ft (13.286 m); minimum daily, $3.3 \text{ ft}^3/\text{s}$ ($0.093 \text{ m}^3/\text{s}$) Apr. 18, Nov. 1, 1956, Jan. 24, 1957.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage, 55 ft (16.8 m) sometime prior to construction of Medina Dam in 1913, from information by Texas Department of Highways and Public Transportation.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $9.440 \text{ ft}^3/\text{s}$ ($267 \text{ m}^3/\text{s}$) Aug. 4, gage height, 25.95 ft (7.910 m), no other peak above base of $1,500 \text{ ft}^3/\text{s}$ ($42.5 \text{ m}^3/\text{s}$); $58 \text{ ft}^3/\text{s}$ ($1.64 \text{ m}^3/\text{s}$) July 23, 25, 27, 28.

		DISCHA	RGE, IN C	UBIC FEET		ND, WATER AN VALUES		OBER 1977	TO SEPTE	MBER 1978	k	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	123 123	254 909	146 145	129 129	134 133	127 126	98 95	105 104	99 99	77 75	247 788	264 269
2 3 4	141 122	424 207	146 148	133 131	131 133	126 122	96 96	122 110	104 113	75 74	434 7760	243 285
5	121	178	144	133	133	121	95	107	111	73	6250	326
6 7 8	118 112 113	167 167 226	140 138 142	133 134 131	131 165 168	125 163 139	93 97 102	106 107 107	114 174 182	72 71 70	3370 2320 1890	323 331 907
9 10	111 109	234 182	143 138	129 127	150 141	130 126	102 480	105 99	116 96	70 71	1720 1300	749 490
11 12 13 14 15	109 108 113 120 118	182 174 165 163 165	136 143 141 142 142	130 134 137 133 136	133 144 145 136 133	125 122 120 119 117	280 155 130 124 118	103 106 105 103 100	111 96 94 94	72 72 70 69 66	1100 977 856 762 689	501 509 556 1000 940
16 17 18 19 20	117 116 117 114 114	163 161 160 156 157	138 140 138 140 138	132 133 135 132 130	133 135 134 129 128	115 112 108 108 102	115 114 115 111 110	98 98 97 95 96	102 101 97 96 93	65 66 65 64 66	630 558 508 462 428	1100 828 927 847 728
21 22 23 24 25	114 267 199 231 167	158 154 154 155 151	138 133 132 132 129	130 129 129 130 135	126 125 125 125 125	97 97 95 103 97	109 114 168 133 116	98 98 98 98	93 91 90 88 85	63 62 61 63 62	397 387 366 339 312	658 610 578 509 464
26 27 28 29 30 31	145 130 128 128 130 128	149 149 153 155 154	129 123 120 122 128 132	131 130 129 130 133 135	124 126 128	97 98 100 103 103 101	102 102 108 107 106	98 99 98 98 98	82 76 76 77 76	63 60 60 139 68 68	287 262 256 251 256 255	432 415 388 366 363
TOTAL MEAN MAX MIN AC-FT	4106 132 267 108 8140	6126 204 909 149 12150	4246 137 148 120 8420	4082 132 137 127 8100	3772 135 168 124 7480	3544 114 163 95 7030	3891 130 480 93 7720	3153 102 122 95 6250	3022 101 182 76 5990	2172 70.1 139 60 4310	36417 1175 7760 247 72230	16906 564 1100 243 33530

CAL YR 1977 TOTAL 145724 MEAN 399 MAX 3020 MIN 107 AC-FT 289000 WTR YR 1978 TOTAL 91437 MEAN 251 MAX 7760 MIN 60 AC-FT 181400

08181500 MEDINA RIVER AT SAN ANTONIO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: October 1970 to current year.

									OXYGEN.	OXYGEN		
	TIME	STREAM- FLOW. INSTAN- TANEOUS	SPE- CIFIC CON- DUCT- ANCE (MICRO-	РН	TEMPER-	COLOR (PLAT- INUM- COBALT	TUR- BID- ITY	OXYGEN. DIS- SOLVED	DIS- SOLVED (PER- CENT SATUR- ATION)	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	UNITS)	(JTU)	(MG/L)	ATTON	(MO/L)	CACOSI	CACOS
21 NOV	1315	112	879	7.6	22.5	10	20	6.6	7	.8	320	78
11	1405	180	753	8.0	16.0	20	30	8.9	93	1.0	300	90
DEC	1445	144	870	7.5	14.0	10	10	7.9	79	2.4	340	98
27 FEB	1340	127	868	7.9	14.0	10	15	8.5	85	8.2	340	90
17	1340	134	877	7.6	13.0	15	15	7.9	77	7.7	350	110
MAR 17	1220	106	937	7.4	18.0	20	25	7.1	77	8.5	370	140
APR 20	1545	110	927	7.7	21.0	35	40	5.9	68	11	340	110
MAY 11	1350	103	908	7.4	26.0	30	40	4.8	60	7.4	320	95
JUN 09	1200	115	762	7.4	26.5	55	70	6.2	78	7.0	270	69
JUL 31	1115	67	710	7.7	26.0	30	70	6.8	84	3.0	270	77
21	1045	392	667	7.5	27.0	10	35	6.9	87	1.6	290	83
SEP 28	1500	384	594	8.0	23.5	20	25	7.5	90	.8	250	51
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM. DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE. DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS; SUM OF CONSTI- TUENTS; DIS- SOLVED (MG/L)
ОСТ	92	23	58	1.4	4.0	300	0	95	73	.4	14	507
21							0	77	61	.3	13	432
DEC	87	19	47	1.2	4.7	250		- 10 41		.4	14	513
09	100	23	54	1.3	4.0	300	0	98	72			519
27 FEB	100	23	55	1.3	3.8	310	0	94	77	• 4	13	
17	99	24	58	1.4	4.1	290	0	97	85	.4	13	524
17	110	24	59	1.3	3.7	290	0	100	78	.4	9.7	528
20	100	23	59	1.4	4.5	280	0	110	84	.4	14	533
11	92	23	60	1.5	4.4	280	0	110	83	.3	14	525
09	80	16	53	1.4	5.5	240	0	88	68	.4	10	439
31	80	18	46	1.2	4.5	240	0	93	65	.3	12	437
21	84	19	30	.8	2.9	250	0	70	44	.2	13	387
SEP 28	73	16	25	.7	2.9	240	0	57	36	.2	12	340

08181500 MEDINA RIVER AT SAN ANTONIO, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN. NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN+ AMMONIA TOTAL (MG/L AS N)	NITRO- GEN+ ORGANIC TOTAL (MG/L AS N)	MONIA +	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBON. ORGANIC TOTAL (MG/L AS C)	PHENOLS
ОСТ											
21	30	8	6.2	.09	6.3	•51	.69	1.2	•91	2.4	2
11	51	18	4.2	.05	4.2	.24	.69	.93	.72	4.3	2
DEC 09	24	2	4.8	.14	4.9	.29	.68	.97	.80	3.2	5
JAN 27	28	5	4.3	.47	4.8	1.6	1.1	2.7	1.4	4.3	3
FEB											
17	33	8	4.5	.48	5.0	1.9	.70	2.6	2.1	5.3	1
17 APR	50	7	3.9	.75		1.8	1.4		1.4	21	15
20	69	14	3.9	.47	4.4	2.0	1.0	3.0	1.2	5.7	23
MAY 11	18	3	3.9	.52	4.4	1.2	2.2	3.4	.37	6.1	10
JUN 09	134	24	1.7	.30	2.0	1.6	2.1	3.7	.99	7.4	1
31	126	19	3.5	.05	3.5	•09	.71	.80	.25	7.1	3
AUG 21	78	13	2.7	.12	2.8	.22	.39	.61	.30	5.0	0
SEP											
28	56	12	2.3	.15	2.4	.24	.69	.93	.43	5.3	1
		DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM. DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)		
		FER									
		17	1340	1	500	0	0	0	10		
		11	1350	1	300	0	0	1	0		
		21	1045	1	500	0	0	1	10		
		FE 1 MA 1 AU	0 S0 (U ATE AS 8 7	AD, NE IS- D LVED SO G/L (U	IS- C LVED SC G/L (L	CURY NI DIS- I DLVED SO JG/L (I	DIS- DLVED S	DIS- COLVED SC	INC+ IIS- ILVED IG/L IO 20		

08181500 MEDINA RIVER AT SAN ANTONIO, TX--Continued

DATE	т	IME	TO	CB, TAL G/L)	TOT IN 8 TOM	MA-	LEI PO CHI TO	PH- HA- NES+ OLY- LOR. TAL G/L)	TO	RIN, TAL G/L)	ALDR TOT IN B TOM TER (UG/	AL OT- MA-	TOT		TO IN TOM	LOR- NE, TAL BOT- MA- RIAL /KG)	TO	DD, TAL G/L)	TOT IN B	MA-
JAN														•		14		00		.9
27	1	340		• 0		14		.00		.00		.0		• 0		16		.00		
20	1	545		• 0		5		.00		.00		• 0		.0		0		.00		.6
JUL 31	1	115		.0		13		.00		.00		.0		.0		15		.00		2.6
DATE	TO	DE• TAL G/L)	TO IN TOM TE	DE, TAL BOT- MA- RIAL /KG)	TOT)T • [AL [S/L]	IN TOM	DT, TAL BOT- MA- RIAL /KG)	AZI	I- NON• TAL G/L)	TOT	RIN	TON TOM TEN	AL BOT-	SUL	DO- FAN• TAL G/L)	TO	RIN. TAL G/L)	ENDR TOT IN B TOM TER (UG/	MA-
JAN														139						
27 APR		•00		1.9		•00		.0		•06		•00		.5		.00		.00		• 0
20		.00		1.1		.00		. 4		.11		.00		.3		.00		.00		• 0
JUL 31		.00		4.0		.00		.0		.02		.00		.6		.00		.00		.0
DAT	Έ		[ON, [AL []/L)	HEP CHL TOT (UG	OR,	HEP CHL TOT IN B TOM TER (UG/	OR. AL OT- MA- IAL	CHL EPOX TOT	IDE	EPOX TOT. BOT	IDE IN TOM	L I N C		LIND TOT IN B TOM TER	AL OT- MA-	TH	LA- ION, TAL G/L)	THI TO	ON.	
JAN																				
27 .	•••		.00		•00		.0		.00		• 0		.01		• 0		•00		•00	
20.			.00		.00		.0		.00		.6		.01		.0		.00		.00	
JIIL 31.			.00		.00		.0		.00		.0		.00		.0		.00		.00	
DAT	ſΕ	TH: TO	THYL RI- ION, TAL G/L)	TO	EX.	PAR THI TOT (UG	ON,	APHE TOT		TOT IN E	NE, IAL BOT- MA- RIAL	TH	-IS	TOT	-D,	TO	•5-T Tal G/L)		/EX+	
JAN 27 APR			.00				.00		0		0		.00		.00		•00		•00	
20.			.00				.00		0		0		.00		.01		.00		.00	
JUL 31			.00		.00		.00		0		0		.00		.00		.01		.00	

383

08181800 SAN ANTONIO RIVER NEAR ELMENDORF, TX

LOCATION.--Lat 29°14'15", long 98°21'43", Bexar County, Hydrologic Unit 12100301, on left bank 2,000 ft (610 m) downstream from Braunig Plant Lake, 2.2 mi (3.5 km) southwest of Elmendorf, and 205.5 mi (330.6 km) upstream from mouth. Water-quality sampling site at Farm Road 1604, 2.5 mi (4.0 km) downstream.

DRAINAGE AREA .-- 1,743 mi 2 (4,514 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1962 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 392.50 ft (119.634 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good except those for period of no gage-height record, which are fair. Flow slightly regulated by Medina Lake (station 08179500) and Olmos flood-control reservoir, combined capacity 269,500 acre-ft (332 hm³). Storage began in Medina Reservoir in 1913, and Olmos Dam was completed in 1926. Water is diverted above station from Medina River for irrigation in the vicinity of Devine and Lytle, with some water diverted for irrigation near San Antonio. Records furnished by the city of San Antonio show that during the current year 23,030 acre-ft (2.84 hm²) of sewage effluent was discharged into the San Antonio River from the Salado Creek Plant and 85,060 acre-ft (10.81 hm²) was discharged from the Rilling Road Plant, about 7.5 and 15.5 mi (12.1 and 24.9 km), respectively, upstream from this station. Records furnished by the San Antonio City Public Service Board show that at pump plant 1,700 ft (518 m) upstream from this station 7,570 acre-ft (9.33 hm²) was pumped into the Braunig Plant Lake and 11,900 acre-ft (14.7 hm²) was pumped into Calaveras Lake. During the current year, 629 acre-ft (0.776 hm²) was released from Braunig Lake. For additional information relative to sewage effluent, see Medina River at San Antonio (station 08181500).

AVERAGE DISCHARGE.--16 years (water years 1963-78), $507 \text{ ft}^3/\text{s}$ ($14.36 \text{ m}^3/\text{s}$), 367,300 acre-ft/yr ($453 \text{ hm}^3/\text{yr}$).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $40,000 \text{ ft}^3/\text{s}$ (1,130 m³/s) Sept. 27, 1973, gage height, 47.60 ft (14.508 m); minimum, 12 ft³/s (0.34 m³/s) Aug. 24-26, 1963.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1900, 61 ft (18.6 m) in 1946. Second highest was 53 ft (16.2 m) in 1913, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 7,000 ft³/s (198 m³/s), revised, and maximum (*):

Date	Time	Disch	arge	Gage h	eight	Date	Time	Disch	arge	Gage h	eight
		(ft^3/s)	(m^3/s)	(ft)	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
Nov. 2	0200	*12,400	351	31.16	9.498	Sept. 8	0700	8,490	240	28.13	8.574
Aug. 2	0600	9,100	258	28.74	8.760	Sept. 14	0600	11,900	337	*31.27	9.531
Aug. 5	0100	11,500	326	30.91	9.421						

Minimum discharge, 52 ft3/s (1.47 m3/s) July 28.

		DISCH	ARGE, IN	CUBIC FEET	PER SECO	OND, WATER EAN VALUES	YEAR OC	TOBER 1977	TO SEPTE	MBER 197	8	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	271	4160	544	460	449	425	355	367	408	144	1970	561
2	362	7680	521	455	443	430	333	365	645	134	6030	578
3	467	1270	502		437	425	333	830	850	132	1470	392
2 3 4 5	306	720	503	442	432	420	330	408	543	136	6780	414
5	287	605	517	446	431	420	326	374	347	135	10300	668
					431	420			347	133	10300	
6	279	581	500	446	435	740	325	358	344	136	5490	510
7	273	584	496	437	781	690	329	357	3740	132	2990	532
8	268	1080	505	436	727	475	331	364	1330	119	2110	5170
9	283	976	500	440	482	445	335	353	462	109	1950	1400
10	298	645	482	426	462	390	1880	329	383	117	1580	726
11	317	615	488	440	443	430	1040	410	353	124	1280	848
12	305	586	559	433	675	425	493	381	353			
13	304	571								122	1150	748
14			518	383	550	420	434	324	344	122	1020	2950
	317	607	506	369	465	410	418	317	327	122	925	7230
15	314	586	500	367	500	400	400	275	319	118	858	1710
16	317	561	495	392	435	390	388	202	323	108	797	1390
17	365	568	488	413	510	385	389	208	313	112	738	1130
18	350	564	479	387	470	380	397	203	297	122	681	1190
19	315	539	492	387	430	365	381	200	295	119	626	1140
20	304	541	485	392	425	355	374	211	300	124	584	1030
	504	341	403	332	423	333	3/4	211	300	124	304	1030
21	323	569	481	386	420	345	371	336	290	119	556	949
22	1450	563	475	381	418	335	700	268	287	115	549	903
23	834	551	476	389	430	335	1680	231	283	108	527	886
24	827	521	472	390	420	660	522	216	276	109	498	822
25	479	518	461	393	410	450	441	255	269	119	476	773
26	403	534	447	386	405	376	387	309	223	116	441	720
27	399	515	465	418								738
28	395	526			415	371	371	295	148	120	408	716
29	376		464	429	425	374	380	285	155	180	397	711
		584	471	427		364	368	283	149	572	422	675
30	383	636	470	438		367	361	461	149	324	466	652
31	387		471	446		357		349		394	476	
TOTAL	12558	29556	15233	12897	13325	13154	15172	10124	14505	4763	54545	38142
MEAN	405	985	491	416	476	424	506	327	484	154	1760	1271
MAX	1450	7680	559	463	781	740	1880	830	3740	572	10300	7230
MIN	268	515	447	367	405	335	325	200	148	108	397	392
AC-FT	24910	58620	30210	25580	26430	26090	30090	20080	28770	9450	108200	75650
	2.310	00020	55210	23300	20430	20030	30030	20000	20110	5450	100200	73030

CAL YR 1977 TOTAL 312509 MEAN 856 MAX 13300 MIN 268 AC-FT 619900 WTR YR 1978 TOTAL 233974 MEAN 641 MAX 10300 MIN 108 AC-FT 464100

NOTE .-- No gage-height record Feb. 11 to Mar. 24.

08181800 SAN ANTONIO RIVER NEAR ELMENDORF, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1966 to current year. Chemical, biochemical, and pesticide analyses: January 1968 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1966 to current year. WATER TEMPERATURES: October 1966 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 1,240 micromhos Jan. 29, 1973, Aug. 8, 1975; minimum daily, 263 micromhos Sept. 27, 1973, Sept. 14, 1978.

WATER TEMPÉRATURES: Maximum daily, 32.0°C June 21, 1969; minimum daily, 5.5°C Jan. 10, 1973.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum daily, 982 micromhos July 2; minimum daily, 263 micromhos Sept. 14.
WATER TEMPERATURES: Maximum daily, 30.5°C Aug. 18; minimum daily, 12.0°C on several days during December, January, and February.

		STREAM- FLOW, INSTAN-	SPE- CIFIC CON- DUCT- ANCE	PH	TEMPER-	COLOR (PLAT- INUM-	TUR- 810-	OXYGEN.	OXYGEN, DIS- SOLVED (PER- CENT	OXYGEN DEMAND, BIO- CHEM- ICAL,	HARD- NESS (MG/L	HARD- NESS, NONCAR- BONATE
DATE	TIME	(CFS)	(MICRO- MHOS)	(UNITS)	ATURE (DEG C)	COBALT UNITS)	(UTU)	SOLVED (MG/L)	SATUR- ATION)	5 DAY (MG/L)	CACO3)	CACO3)
ост												
21	1235	270	861	7.3	24.5	15	8	4.1	50	20	280	34
11 DEC	1330	566	771	7.8	18.0	30	30	7.6	83	8.4		
09 JAN	1320	459	840	7.2	16.5	15	10	5.3	56	8.7	300	56
27 FEB	1300	401	855	7.6	15.0	15	10	5.6	57	9.0		-
17	1240	470	891	7.2	15.5	40	15	5.2	54	8.1	300	68
17	1140	385	876	7.4	19.0	25	10	5.2	58	8.6	300	72
26	1230	359	830	7.3	23.5	45	30	5.2	63	16	280	76
11	1515	394	858	7.4	27.5	40	290	3.8	49	23	280	57
JUN 09	1025	448	691	7.3	26.5	90	150	4.9	62	14	240	73
JUL 31	1000	326	559	7.3	28.0	40	70	4.3	54	13	180	46
21	1230	537	731	7.5	28.5	20	35	6.0	78	3.2	280	74
28	1300	671	696	7.8	24.5	20	30	6.3	77	2.7	260	42
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM. DIS- SOLVED (MG/L AS MG)	SODIUM. DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM. DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA. DIS- SOLVED (MG/L AS SIO2)	SOLIDS: SUM OF CONSTI- TUENTS: DIS- SOLVED (MG/L)
21	81	19	62	1.6	5.2	300	0	75	78	.4	16	485
11										4.2		
09	88	20	59	1.5	5.5	300	0	69	77	.5	16	483
JAN 27					-			10.1				
17	86	20	62	1.6	7.5	280	0	74	86	.4	15	489
17	88	20	60	1.5	5.3	280	0	77	76		13	478
26	83	18	56	1.5	6.2	250	0	76	74		14	451
YAY	80	19	64	1.7	7.3	270	0	73	87	.5	15	479
11 JUN 09	70	17	47	1.3	7.0	210	0	73	63	20.5	11	392
JUL 31	53	11	29	.9	5.2	160	0	53	47	.3	10	287
AUG 21	82	18	45	1.2	4.5	250	0	73	56	.3	14	416
SEP	4						100	71	54	.3	13	403
28	76	16	40	1.1	4.5	260	0	/1	74	• 3	13	70.

08181800 SAN ANTONIO RIVER NEAR ELMENDORF, TX--Continued

WATER QUALITY DATA. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		,	NATER QUAL	ITY DAT	A. WATER	YEAR OCT	BER 1977	TO SEPTE	MBER 1978			
DATE	SOLIDS. RESIDUE AT 105 DEG. C. SUS- PENDED (MG/L)	SOLIDS. VOLA- TILE. SUS- PENDED (MG/L)	NITRO- GEN. NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN+ NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN. AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	MONIA +	PHOS-	CARBON, ORGANIC TOTAL (MG/L AS C)	PHENOLS	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
OCT 21	20	5	2.5	•90	3.4	3.7	1.0	4.7	8.0	4.9	2	.20
NOV 11	78	26	2.7	.41	3.1	2.0	1.5	3.5	3.0	5.9	3	.20
DEC												
09	30	4	2.9	1.4	4.3	2.5	•90	3.4	4.7	5.7	2	.10
27 FEB	25	7	1.3	3.3	4.6	2.6	1.5	4.1	1.7	7.1	2	.20
17	36	10	3.0	1.3	4.3	4.6	1.5	6.1	2.4	7.8	3	.30
17	35	12	3.0	1.4	4.4	1.9	2.0	3.9	1.9	7.5	2	.10
APR 26	67	13	2.1	1.1	3.2	3.9	.80	4.7	1.6	7.0	4	.20
MAY 11	238	94	2.2	1.4	3.6	3.0	1.9	4.9	1.6	17	1	.10
JUN 09	276	48	2.0	.57	2.6	1.8	1.2	3.0	.01	12	2	.00
JUL 31	139	26	2.0	.35	2.3	.38	1.6	2.0	1.2	14	4	.20
AUG 21	76	12	3.3	.77	4.1	.32	•59	.91	1.1	6.8	0	.10
SEP 28	112	19	2.6	.67	3.3	1.1	2.3	3.4	1.3	6.0	1	.20
		DATE	TIME	ARSEI DIS SOLV (UG.	S- DIS VED SOLV	6- DI /ED SOL 6/L (UG	S- DIS	JM, COP 5- DI _VED SO 3/L (U	S- DI LVED SOL G/L (UC	DN. IS- LVED G/L FE)		
		FE4 17.	124)	1	100	0	10	1	20		
		11.	. 1519	5	3	200	0	10	0	0		
		21.	. 123)	2	300	0	10	1	50		
			DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	DIS- SOLVED (UG/L			
			FEB 17	1	40	• 0	4	C	20			
			11	3	20	.0	1		20			

11... AUG 21...

. 0

.0

GUADALUPE RIVER BASIN OB181800 SAN ANTONIO RIVER NEAR ELMENDORF, TX--Continued

		TOTAL	LE	PH- HA- NES+		ALDRIN TOTAL			CHLOR- DANE, TOTAL		DDD.
TIME	PCB.	TOM MA	- Сн	OLY- LOR. TAL	ALDRIN,	IN BOT TOM MA TERIA	- DAI	NE. TO	N BOT- OM MA- TERIAL	DDD.	IN BOT- TOM MA- TERIAL
IIME					(UG/L)					(UG/L)	(UG/KG)
1300	• 0	17	0	.00	.00		0	.0	130	.00	12
1230	• 0	2	0	.00	.00		0	.0	19	.00	4.0
1000	.0	1	0	.00	.00		0	.0	3	.01	.8
	DDE + TOTAL IN BOT-		TO	TAL	DI-	DI-	ELD	RIN, TAL BOT-			ENDRIN. TOTAL IN BOT-
DDE. TOTAL (UG/L)	TOM MA-	DOT.	TOM	MA-	TOTAL (UG/L)	TOTAL	TE.	RIAL		TOTAL (UG/L)	TERIAL (UG/KG)
.00	18	.0	0	.0	.30	. (00	5.0	.00	.00	.0
.00	4.		0	1.6	.44		01	.8	.00	.00	•0
.00		• • (1	.0	•55	• (00	.5	.00	.00	.0
	ON. CI	PTA- IN	HLOR. OTAL BOT- M MA-	EPOX	TA- EPO OR TOT IDE BO	LOR XIDE . IN TTOM LI		TOTAL IN BOT TOM MA	- MALA	N, THI	ON.
				(I)G	/L) (UG	/KG)	(UG/L)	(UG/KG	(UG/	L) (U	3/L)
	.00	.00	.0		.00	.0	.03			00	.00
	.00	.00	.0		.00	.1	.01			04	.00
					.00	.0	.00		.0 .	03	.00
					TO	XA-					1
THI THI	RI- ION, M	IREX.	THION.	TOT	TAL TE	RIAL	TRI-	TOTAL	TOTA	L TO	VEX. TAL G/L)
	-	2									1.14
	.00		.00		0	0	.00				•00
	.00		.00		0	0	.00				•02
	.00	.00	.00		0	0	.00	•	16 .	.09	.14
	1300 1230 1000 DDE, TOTAL (UG/L) .00 .00 ETHI TOT (UG	(UG/L) 1300 .0 1230 .0 1230 .0 1000 .0 DDE. TOTAL IN HOTTOTAL	OB OB OB	OB OB OB	(UG/L) (UG/KG) (UG/L) 1300	(UG/L) (UG/KG) (UG/L) (UG/L) 1300	(UG/L) (UG/KG) (UG/L) (UG/L) (UG/KG) 1300	1300	1300	1300	1300 .0 170 .00 .00 .0 .0 .0 130 .00 1230 .0 20 .00 .00 .0 .0 .0 19 .00 1000 .0 10 .00 .00 .0 .0 .0 3 .01 DDE. TOTAL TOTAL TOTAL TENIAL TOTAL

MONTH	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLOPIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVEN SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARONESS (CA,MG) (MG/L)
OCT. 1977	12558	740	410	14000	65	5500	68	2300	250
NOV. 1977	29556	606	340	26900	48	3860	54	4300	220
DEC. 1977	15233	830	460	19000	76	3140	77	3170	290
JAN. 1978	12897	842	470	16300	78	2710	78	2730	290
FEB. 1978	13325	A24	460	16500	76	2720	77	2760	540
MAR. 1978	13154	822	460	16200	75	2680	76	2710	280
APR. 1978	15172	789	440	18000	71	2910	73	2990	270
MAY 1978	10124	e53	480	13000	79	2170	80	2180	290
JUNE 1978	14505	673	370	14600	56	5510	61	2390	240
JULY 1978	4763	838	470	6000	78	997	78	1000	290
AUG. 1978	54545	512	280	41700	36	5260	44	6530	200
SEPT 1978	38142	484	270	27800	34	3530	41	4260	190
TOTAL	233974		**	230000		34400	••	37300	••
WTD.AVG	641.02	655	360		54	••	59	**	240

08181800 SAN ANTONIO RIVER NEAR ELMENDORF, TX--Continued SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY DAY OCT NOV DEC JAN FEB APR MAY JUN JUL AUG SEP MAR 766 852 810 856 835 966 661 500 814 888 894 845 2 332 982 400 668 780 810 891 848 821 849 880 613 692 464 837 809 856 870 853 571 671 922 502 769 678 832 745 820 869 898 859 765 608 5 798 789 803 918 421 722 862 888 708 878 402 6 800 804 815 885 794 710 842 827 600 913 751 784 877 750 420 820 831 911 395 562 909 896 470 836 550 834 857 745 762 909 875 438 309 833 602 854 921 859 966 500 453 807 701 10 804 728 837 826 833 850 783 900 777 926 522 583 11 798 875 550 771 847 859 921 907 617 848 601 842 12 833 765 783 839 815 911 603 596 895 728 830 829 789 794 13 845 861 679 844 809 862 835 929 619 400 14 853 784 831 864 774 834 846 966 875 918 618 263 840 792 837 867 825 877 891 896 899 957 653 413 16 953 863 831 844 818 804 884 880 862 806 667 506 587 819 819 850 804 859 870 859 922 918 907 693 18 814 831 857 827 937 708 537 898 868 834 846 930 853 903 534 853 846 891 880 930 903 738 970 20 856 846 840 851 830 909 878 907 756 566 856 926 21 806 844 867 849 880 930 900 933 755 600 22 833 851 782 613 536 844 859 941 961 884 800 804 23 529 827 840 827 875 884 545 827 949 974 790 625 550 856 868 883 700 645 893 966 899 796 635 25 651 830 804 851 893 750 733 965 858 807 645 910 26 764 804 810 861 890 831 909 922 925 903 831 662 27 793 818 804 910 857 695 861 843 815 859 REP RAS 28 813 813 873 903 847 708 806 881 856 850 945 926 29 825 821 835 871 870 950 925 614 819 728 880 30 873 798 700 733 838 884 891 865 933 860 31 805 831 848 ---880 784 549 807 MEAN 785 750 830 843 892 655 608 831 839 835 873 823 TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 27.0 25.0 17.0 18.0 13.0 19.5 27.0 27.0 27.0 28.0 24.0 24.0 2 27.0 19.0 16.5 15.0 14.0 18.5 24.0 24.5 26.0 27.0 26.0 3 25.5 18.5 20.0 13.5 13.5 18.0 23.0 21.0 26.0 29.0 26.0 26.0 20.0 24.5 15.0 16.0 23.5 21.5 25.0 28.0 22.0 26.0 28.5 24.5 17.0 16.5 15.0 17.0 24.0 27.0 29.0 24.0 6 25.5 16.5 18.0 28.5 29.5 25.0 27.0 19.0 23.5 25.0 25.5 21.0 16.0 19.0 13.5 18.0 23.5 25.0 25.0 29.5 27.0 ---29.0 8 25.0 21.0 19.0 19.0 12.0 16.5 24.0 25.5 24.5 28.0 25.0 18.0 14-5 24.0 26.0 28.0 12.0 16.0 25.0 10 14.5 23.0 29.0 25.5 25.0 17.0 15.0 29.5 12.0 18.0 26.0 25.0 11 24.5 16.5 20.0 13.5 15.0 20.0 20.0 26.5 26.0 29.5 27.0 27.0 12 21.5 17.0 16.5 13.5 18.0 20.0 19.5 26.5 28.0 29.5 27.0 13 28.0 20.5 20.0 16.5 14.5 14.5 19.0 19.5 25.0 29.0 30.0 27.0 20.0 15.0 17.0 30.0 28.5 27.0 16.0 18.0 14.5 21.0 23.0 28.5 15 20.0 14.5 18.5 25.0 29.0 16 22.0 20.5 18.5 16.5 29.0 28.0 28.5 27.0 21.0 20.5 18.0 14.5 15.5 19.0 24.0 26.5 27.0 29.0 28.5 27.0 18 28.0 21.5 21.0 19.0 13.5 14.0 23.5 30.0 30.5 20.0 27.0 27.0 19 23.5 23.0 18.0 30.0 27.0 28.5 12.0 21.0 27.0 28.0 20 28.0 24.0 18.0 12.0 14.5 20.5 21.5 29.0 29.0 27.0 25.0 21 23.0 24.0 15.5 14.0 14.5 22.0 28.5 29.0 28.5 28.0 22 22.0 12.0 14.0 14.5 27.0 23.0 22.0 25.5 28.5 28.0 28.5 23 20.0

24.5

20.0

19.5

20.0

20.5

21.5

19.5

22.0

19.5

19.5

16.5

20.0

23.5

23.5

24.0

24.0

25.0

24.5

23.5

25

26

27

28

30

31

MEAN

18.0

14.5

15.5

17.0

18.0

17.0

14.5

13.5

13.5

15.0

13.5

13.5

15.0

15.0

20.0

19.0

18.0

19.0

15.0

26.0

26.5

26.5

26.5

26.0

26.0

27.0

26.5

25.5

28.5

27.0

28.0

29.0

29.5

29.0

28.5

28.5

27.5

21.0

20.5

23.5

23.0

21.5

23.0

23.0

22.5

29.0

28.5

27.0

27.0

28.5

28.5

29.0

27.0

28.0

25.0

25.5

25.5

25.5

24.5

24.0

23.0

26.5

28.0

29.5

29.5

29.0

29.0

27.0

28.0

28.0

29.0

388

GUADALUPE RIVER BASIN

08183500 SAN ANTONIO RIVER NEAR FALLS CITY, TX

LOCATION.--Lat 28°57'05", long 98°03'50", Karnes County, Hydrologic Unit 12100303, on left bank 23 ft (7 m) downstream from bridge on Farm Road 791, 0.9 mt (1.4 km) upstream from Scared Dog Creek, 3.6 mi (5.8 km) southwest of Falls City, and 150.5 mi (242.2 km) upstream from mouth.

DRAINAGE AREA .-- 2,113 mi 2 (5,473 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- April 1925 to current year.

REVISED RECORDS.--WSP 1732: 1947(M). WSP 1923: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 285.49 ft (87.017 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Hater-discharge records good. Diversion and regulation above station, see REMARKS for Salado Creek (upper station) at San Antonio (station 08178700), Medina River at San Antonio (station 08181800). Flow slightly regulated by Calaveras Lake on Calaveras Creek, which enters San Antonio River downstream from San Antonio in River near Elmendorf. Records furnished by San Antonio City Public Service Board show that during the current year 4,290 acre-ft (5.29 hm³) was released into Calaveras Creek from Calaveras Lake.

AVERAGE DISCHARGE.--53 years (water years 1926-78), 383 ft³/s (10.85 m³/s), 277,500 acre-ft/yr (342 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $47,400 \text{ ft}^3/\text{s}$ (1,340 m³/s) Sept. 29, 1946, gage height, 33.80 ft (10.302 m), from floodmark); minimum, 15 ft³/s (0.42 m³/s) June 27, 28, 1956.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1875, that of Sept. 29, 1946. Flood in October 1913 reached a stage of 28.4 ft (8.66 m), from floodmark, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 4,000 ft³/s (113 m³/s), revised, and maximum (*):

Date	Time	Disch (ft³/s)	arge (m³/s)	Gage (ft)	height (m)	Date	Time	Disch (ft³/s)	marge (m³/s)	Gage (ft)	height (m)
Nov. 4	0400	4,580	130	7.74	2.359	Sept. 16	0300	4,750	135	8.00	2.438

Minimum discharge, 84 ft 3 /s (2.38 m 3 /s) July 18, 19, 25, 26.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND	, WATER	YEAR	OCTOBER	1977	TO	SEPTEMBER	1978
					MFAN	VALUES						

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	300	414	572	453	425	432	369	393	427	148	406	505
2	284	1190	572	451	430	438	364	391	333	150	1370	535
-												535
3	273	3610	522	442	429	430	358	456	614	139	3060	615
	472	3790	502	437	422	430	339	748	721	127	3170	468
5	380	1020	490	439	420	428	336	550	780	121	2590	410
6 7	298	670	480	428	417	422	338	425	421	124	4810	578 565
7	276	598	485	426	419	438	333	404	900	126	6520	565
8	279	581	484	421	532	881	330	392	1880	129	4830	582
9	274	732	481	415	903	657	336	388	2400	121	3150	2590
10	282								2400	121	3150	. 2590
10	282	1220	482	414	548	485	343	390	728	108	2400	2700
11	267	745	484	417	460	446	1180	370	461	103	2010	997
12	308	610	475	414	438	425	1600	363	395	98	1490	889
13	309	590	493	416	473	426	646	456	371	108	1270	1160
14	301	568	516	405	756	416	488	374	367	109	1130	1700
15	315	554	502	366	554	414	448	340	353	108	1020	3770
13	313	554	502	300	554	414	448	340	353	108	1020	3//0
16	331	577	484	352	454	408	430	327	337	112	936	4040
17	321	549	482	343	509	405	415	248	326	111	871	1720
18	344	540	478	360	472	393	400	198	323	99	793	1310
19	390	537	475	379	548							1310
20						386	405	193	313	90	710	1250
20	343	535	465	360	469	372	406	193	295	107	646	1230
21	319	520	460	359	430	359	402	409	300	108	598	1130
22	310	511	458	370	426	358	416	410	294	118	555	1030
23	1010	532	459	364	421	352	905	314	290	116	531	977
24	1230	530	463	359	424	358	1710	253	284	111	520	945
24	846	518										945
25	846	518	459	366	434	450	850	215	276	102	499	899
26	648	502	457	368	436	557	506	202	265	95	476	824
27	449	507	445	368	429	403	437	274	261	119	453	783
28	439	508	437	365	420	364	403	300	203	135	424	746
29	435	493	445	415		378	402	285		129	401	729
30	427	504							148			
30			445	411		370	404	267	153	400	412	697
31	413		450	411		374		334		458	423	
TOTAL	12873	24755	14902	12294	13498	13455	16299	10862	15219	4229	48474	36374
MEAN	415	825	481	397	482	434	543	350	507	136	1564	1212
MAX	1230	3790	572	453	903	881	1710	748	2400	458	6520	4040
	267										0520	4040
MIN		414	437	343	417	352	330	193	148	90	401	410
AC-FT	25530	49100	29560	24390	26770	26690	32330	21540	30190	8390	96150	72150
CAL YR	1977 TOTAL	351111	MEAN	962 MAX	11800	MIN 259	AC-FT	696400				
	1978 TOTA				6520	MIN 90	AC-FT					
	TOTA		HEAN	OTE HAY	0320	11111 90	AC-FI	442000				

389 08183500 SAN ANTONIO RIVER NEAR FALLS CITY, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical and biochemical analyses: January 1968 to current year. Sediment analyses: January 1966 to September 1975.

DATE	TI	IME	STRE FLO INST TANE	W.	SPE CIF CON DUC ANC (MIC	IC - T- E RO-	PH UNITS)	AT	PER- URE G C)	OXYGE DIS SOLV	S- VED	OXYG DI SOL (PE CE SAT ATI	S- VED R- NT UR-	DEMA BIO CHE ICA 5 DA (MG/	ND.	HAR NES (MG AS CAC	S /L	HARD- NESS NONCAR BONATE (MG/I	- E
ост																			
21	10	045	313	3		892	7.2		22.5		3.7		44		5.0		310		76
11 DEC	1	155	711	1		635	7.2		17.5		5.2		56		7.6		230		64
09	1	120	479	•		930	7.1		15.0		4.9		50		5.9		330		90
JAN 27	1	115	368	3		873	7.6	,	12.5		5.5		53		3.8		320		93
17	1	115	53	0		868	7.2		13.0		4.2		41		8.2		300		90
MAR 17	10	025	393	3		891	7.4		18.0		5.1		55		1.9		330	1	10
APR 26	1	045	510	5		519	7.0)	20.5		4.3		49		6.2		180		47
MAY 24	1	130	25	3		971	7.1		26.5		1.8		23	1	16		300		68
JUN 27	1	045	25	2	1	130	7.8	3	30.0		6.4		84		4.4		340	1	10
JUL 19	1	130	9	5	1	150	8.0)	30.5		7.4		99		7.0		390	1	40
AUG 24	1	110	52	0		805	8.0)	29.0		5.8		76		1.1		300		77
SEP 25		045	91	9		652	7.9	,	26.0	-	6.2		78		1.0		250		56
DATE	CAL DI: SOI	CIUM	MAI S D SOI (M	GNE- IUM. IS- LVED G/L MG)		(UM +	SODIUM AD- SORP- TION RATIO	9 PC	TAS- SIUM. DIS- DLVED	BICA BONA (MG A	R- TE /L S	CAR BONA (MG	TE S/L	D1:	FATE S- LVED G/L 504)	(MG	E.	FLUO RIDE DIS SOLV (MG/ AS F	ED L
ост				20					5.6		280		0	-	97	7	8		. 4
NOV		86		22		56	1.0				200		0		65		3		.3
11 DEC		70		13		39	1.		5.8				0		97		0		.5
09 JAN		95		55		56	1.0		5.9		290		0		89		8		.4
27 FEB		93		22		50	1.		5.1		280								
17 MAR		90		19	-	62	1.		6.3		260		0		91		32		• 4
17 APR		99		21		64	1.	5	5.2		270		0		95		19		• 3
26		55		10		31	1.	0	7.0		160		0		56		88		.3
24 JUN		88		19		81	2.	0	8.4		280		0		99	,	9		.5
27 JUL	1	00		23		90	2.	1	8.0		290		0	1	10	12	50		•5
19	1	10		28	1	20	2.	6	8.3		310		0	1	80	16	50		•5
24		85		21		52	1.	3	4.7		270		0		91	7	70		• 3
SEP 25		75		16		38	1.	0	4.1		240		0		63		9		• 3
D	ATE		S- VED 3/L	SOL	OF TI-	NITR GEN NITRA TOTA (MG/ AS N	TE NI	ITRO- GEN. TRITE OTAL MG/L S N)	NO2-	TAL G/L		AL S/L		AL /L	MONIA ORGAN TOTA (MG, AS I	AH- NIC AL	(M		
oc			16		509	5.	5	.73		6.2		.67	1	.1	1	.8		9.8	
NO	l V		13		358	2.		.51		3.1		.05		.8		. 8	2	5	
DE	С				535	5.		.49		5.8		.85		.65		.5		5.7	
JA			16					.57		6.1		.46		.64		. 1		2.1	
FE			15		491	5.						1.1	,	.5		.6		2.3	
MA			15		494	5.		.48		5.6				.1		.2		1.9	
AP			13		510	4.		.23		5.1		.12						.94	
MA			9.8		286	2.		.23		2.7		.15		1.4		.5			
20	4 · · ·		14		547	4.		1.1		5.3	1	1.5		1.8		.3		2.0	
	7		14		608	5.	0	.25		5.2		.01		1.2		.2		1.5	
1 AU	9		17		777	2.	3	.06		2.4		.18		1.7		.9		2.1	
5	4		15		472	4.	3	.05		4.3		.04		1.1		.1		.83	
SE 2	5		13		377	2.	9	.14		3.0		.02		.94		•96		.63	

08183900 CIBOLO CREEK CREEK NEAR BOERNE, TX

LOCATION.--Lat 29°46'26", long 98°41'50", Kendall County, Hydrologic Unit 12100304, on left bank 0.6 mi (1.0 km) upstream from Southern Pacific Lines bridge, 0.9 mi (1.4 km) downstream from Menger Creek, and 2.5 mi (4.0 km) southeast of Boerne.

DRAINAGE AREA .-- 68.4 mi2 (177.2 km2).

PERIOD OF RECORD .-- March 1962 to current year.

REVISED RECORDS.--WDR TX-73-1: 1964-65, 1966(P), 1968-72(P).

GAGE.--Water-stage recorder. Datum of gage is 1,339.61 ft (408.313 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. No know diversion above station. Flow is affected at times by discharge from flood-detention pools of a multiple-purpose floodwater-retarding structure with detention-capacity of 4,693 acre-ft (5.79 hm³). This structure controls runoff from 19.8 mi² (51.3 km²). Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--16 years, 28.5 ft3/s (0.807 m3/s), 5.66 in/yr (144 mm/yr), 20,650 acre-ft/yr (25.5 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 36,400 ft 3 /s (1,030 m 3 /s) Sept. 27, 1964, gage height, 19.15 ft (5.837 m), from floodmark, from rating curve extended above 2,500 ft 3 /s (70.8 m 3 /s) on basis of slope-area measurement at 12,000 ft 3 /s (340 m 3 /s) and contracted-opening measurement of 36,400 ft 3 /s (81,030 m 3 /s); no flow at times in 1962-64, 1966-67, and 1971.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1892, that of Sept. 27, 1964. Second highest flood in 1952 reached a stage of 16.3 ft (4.97 m), discharge 25,600 ft³/s (725 m³/s), from information by local residents; no flow at times in 1962-64, 1966-67, 1971.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 450 ft³/s (12.7 m³/s) and maximum (*):

Date	Time	Disch		Gage	height	Date	Time	Disch	arge	Gage	height
		(ft^3/s)	(m^3/s)	(ft)	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
Nov. 1	0730	*3,830	108	6.91	2.106	Sept. 15	0845	2.760	78.2	6.04	1.841
Aug. 2	0045	462	13.1	3.65	1.113						

Minimum discharge, $0.03 \text{ ft}^3/\text{s}$ ($0.001 \text{ m}^3/\text{s}$) July 13, 14.

		DISCHA	RGE, IN C	UBIC FEE	T PER SECO	OND, WATER	YEAR OCT	OBER 1977	TO SEPTE	MBER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.7	994	12	7.3	6.0	7.2	4.3	4.9	1.6	.89	21	9.0
2	6.3	146	11	7.3	6.0	6.9	4.5	5.2	2.1	.98	97	11
3	3.0	72	11	7.3	5.6	6.7	4.5	7.0	5.9	.90	4.7	3.4
4	2.0	39	12	7.3	5.6	6.2	4.4	5.3	4.4	1.0	2.0	2.5
5	1.8	28	12	7.3	5.6	6.0	4.2	4.6	2.7	1.0	1.2	1.8
6	1.6	23	11	7.0	5.6	6.2	4.2	4.0	2.2	.82	1.1	1.6
7	1.6	20	11	6.8	6.3	9.5	4.1	4.2	21	.57	2.7	4.1
8	1.7	63	11	6.6	6.5	7.3	3.7	4.5	5.9	.38	1.5	77 11
9	1.6	43	11	6.2	6.4	6.4	3.5	4.2	4.1	.17	.97	4.7
10	2.0	31	9.4	6.0	6.0	6.4	8.9	3.8	3.8	.10	.00	4.7
11	2.2	27	8.9	6.2	6.0	6.1	5.0	3.6	3.0	.12	.89	10
12	2.4	24	9.4	6.4	13	6.0	4.5	3.9	2.7	.09	.93	9.2
13	2.1	22	11	6.1	11	5.9	4.5	3.5	2.6	.04	1.0	19
14	1.7	21	11	6.0	9.7	5.9	4.5	2.5	2.6	.04	1.0	12 393
15	1.6	20	10	6.0	9.0	5.4	4.5	2.0	2.0	.10	. 90	393
16	1.5	19	9.4	8.0	8.9	5.2	4.6	2.2	1.8	.40	.88	32
17	1.7	17	9.4	8.9	13	5.2	6.6	2.4	1.8	.57	.96	19
18	1.6	16	8.9	8.5	9.8	5.2	6.3	2.0	1.4	.48	1.0	16
19	1.4	16	8.9	7.7	8.7	4.9	5.4	1.9	1.7	.55	1.1	15
20	1.1	16	8.3	7.0	8.2	4.9	5.0	1.9	1.5	.86	1.1	14
21	1.0	17	6.9	6.6	7.2	4.9	4.9	2.6	1.9	.92	1.2	14
22	33	16	6.9	6.4	6.5	4.9	6.3	3.0	1.5	.76	1.2	16
23	3.9	16	6.9	6.4	6.4	4.9	6.8	2.4	1.3	.81	1.2	14
24	3.1	15	6.9	6.6	6.4	5.6	6.6	1.8	1.6	1.3	1.2	13
25	2.7	14	6.9	6.7	6.6	5.4	5.9	1.7	.95	1.4	1.2	13
26	2.3	13	6.9	6.1	6.9	5.1	5.4	1.7	.55	1.1	1.3	12
27	2.0	13	6.9	6.0	6.4	4.9	5.1	1.6	.62	1.1	1.2	12
28	2.2	13	6.9	6.0	7.1	4.9	4.8	1.4	.80	1.4	1.1	13
29	1.7	13	7.3	6.0		4.6	4.5	1.2	.69	2.1	1.4	12
30	1.6	13	7.8	6.0		4.5	4.5	1.6	.58	1.8	2.3	11
31	1.4		7.8	6.0		4.5		1.5		.70	3.4	
TOTAL	96.5	1800	284.7	208.7	210.4	177.7	152.0	94.1	85.29	23.53	159.51	795.3
MEAN	3.11	60.0	9.18	6.73	7.51	5.73	5.07	3.04	2.84	.76	5.15	26.5
MAX	33	994	12	8.9	13	9.5	8.9	7.0	21	2.1	97	393
MIN	1.0	13	6.9	6.0	5.6	4.5	3.5	1.2	.55	.04	.88	1.6
CFSM	.05	.88	.13	.10	.11	.08	.07	.04	.04	.01	.08	.39
IN.	.05	.98	.15	:11	.11	.10	.08	.05	.05	.01	316	.43
AC-FT	191	3570	565	414	417	352	301	187	169	47	310	1580
CAL VD	1977 TOTAL	13677	AO MEA	N 37.5	MAY 994	MIN 1.0	CESM .	55 IN 7	7.44 AC-	FT 27130		

CAL YR 1977 TOTAL 13677.40 MEAN 37.5 MAX 994 MIN 1.0 CFSM .55 IN 7.44 AC-FT 27130 WTR YR 1978 TOTAL 4087.73 MEAN 11.2 MAX 994 MIN .04 CFSM .16 IN 2.22 AC-FT 8110

391

08185000 CIBOLO CREEK AT SELMA, TX

LOCATION.--Lat 29°35'38", long 98°18'39", Bexar-Guadalupe County line, Hydrologic Unit 12100304, on right bank 0.6 mi (1.0 km) downstream from Missouri-Kansas-Texas Railroad Co. bridge and 0.9 mi (1.4 km) upstream from bridge on Interstate Highway 35 at Selma.

DRAINAGE AREA .-- 274 mi2 (710 km2).

PERIOD OF RECORD.--March 1946 to current year. Figures for water year 1960 in WSP 1813 are in error and should be disregarded.

REVISED RECORDS .-- WSP 1923: Drainage area.

GAGE .-- Water-stage recorder. Datum of gage is 728.34 ft (221.998 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Small diversion above station. For statement regarding regulation by Soil Conservation Service floodwaterretarding structures, see station 08183900. Considerable flow of Cibolo Creek enters the Edwards and associated limestones in the Balcones Fault Zone, which crosses basin between this station and the one near Boerne (station 08183900). Several observations of water temperature were made during the year.

AVERAGE DISCHARGE .-- 32 years, 15.2 ft3/s (0.430 m3/s), 11,010 acre-ft/yr (13.6 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $65,000 \text{ ft}^3/\text{s}$ (1,840 m³/s) July 16, 1973, gage height, 26.2 ft (7.99 m) from floodmark, from rating curve extended above $16,000 \text{ ft}^3/\text{s}$ ($453 \text{ m}^3/\text{s}$) on basis of field estimate of $54,000 \text{ ft}^3/\text{s}$ ($1,530 \text{ m}^3/\text{s}$) and contracted-opening measurement of $65,000 \text{ ft}^3/\text{s}$ ($1,840 \text{ m}^3/\text{s}$); no flow most of time.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1869, that of July 16, 1973. A stage of 26 ft (7.9 m) occurred in 1889, but stage for flood in 1913 is unknown, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 400 ft3/s (11.3 m3/s), revised, and maximum (*):

Date	Time	Disch (ft ³ /s)	arge (m³/s)	Gage (ft)	neight (m)	Date	Time	Disch (ft³/s)		Gage (ft)	neight (m)
Nov. 2 June 6	0200 2400	1,500 476	42.5 13.5	6.35	1.935 1.460	Sept. 9 Sept. 13	0400 1000	412 *2,490	11.7	4.77	1.454

Minimum discharge, no flow most of time.

		DISCHA	RGE, IN C	UBIC FEET		ID, WATER N VALUES		OBER 1977	TO SEPTE	MBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00	38 533 33 1.6 .22	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	47 19 .13 .03 .01	.00 .00 .00
6 7 8 9 10	.00 .00 .00	.06 .03 .28 .08	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	20 53 .03 .00	.00 .00 .00	.00 .00 .00	.00 3.3 99 126 3.8
11 12 13 14 15	.00 .00 .00	.03 .01 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.50 .22 407 9.0 2.2
16 17 18 19 20	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	1.3 1.0 .54 .37 .27
21 22 23 24 25	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.23 .18 .17 .12
26 27 28 29 30 31	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.02 .02 .02 .01
TOTAL MEAN MAX MIN AC-FT	.00 .000 .00	606.35 20.2 533 .00 1200	.00 .000 .00	.00 .000 .00 .00	.00 .000 .00	.00 .000 .00	.00 .000 .00	.00 .000 .00 .00	73.03 2.43 53 .00 145	.00 .000 .00	66.17 2.13 47 .00 131	655.33 21.8 407 .00 1300

CAL YR 1977 TOTAL 3402.28 MEAN 9.32 MAX 896 MIN .00 AC-FT 6750 WTR YR 1978 TOTAL 1400.88 MEAN 3.84 MAX 533 MIN .00 AC-FT 2780

08186000 CIBOLO CREEK NEAR FALLS CITY. TX

LOCATION.--Lat 29°00'50", long 97°55'48", Karnes County, Hydrologic Unit 12100304, on right bank at downstream side of pier of bridge on State Highway 123, 5.7 mi (9.2 km) northeast of Falls City, and 10.4 mi (16.7 km) upstream from mouth.

DRAINAGE AREA .-- 827 mi² (2,142 km²).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1930 to current year. Monthly discharge only for some periods, published in WSP 1312.

REVISED RECORDS.--WSP 733: 1931. WSP 1058: 1935. WSP 1562: 1931(M), 1933. WSP 1923: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 264.28 ft (80.553 m) National Geodetic Vertical Datum of 1929. Nov. 4, 1930, to Aug. 4, 1940, water-stage recorder at site 1,600 ft (488 m) upstream at datum 0.56 ft (0.171 m) higher. Aug. 5 to Sept. 13, 1940, nonrecording gage at present site and datum.

REMARKS.--Water-discharge records good. Diversions for irrigation above station. Much of the base flow is effluent from the Carrizo Sands in the vicinity of Sutherland Springs.

AVERAGE DISCHARGE.--48 years, 124 ft³/s (3.512 m³/s), 89,840 acre-ft/yr (111 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 33,600 ft³/s (952 m³/s) July 6, 1942, gage height, 34.45 ft (10.500 m); maximum gage height, 35.44 ft (10.802 m) Sept. 28, 1973; no flow July 30, 31, Aug. 4-22, 1956, Aug. 1, 1971.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1890, that of Sept. 28, 1973. In October 1913, a stage of 35 ft (10.7 m) occurred, discharge about 35,000 ft 3 /s (991 m 3 /s).

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 3,600 ft3/s (102 m3/s) and maximum (*):

Date	Time	Disch (ft³/s)		Gage h (ft)	eight (m)	Date	Time	Disch (ft³/s)		Gage h	eight (m)
Nov. 2	1800	*9,460	268	23.94	7.297	June 8	1400	4,030	114	17.81	5.428

Minimum discharge, 16 ft³/s (0.45 m³/s) July 23.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1977	T0	SEPTEMBER	1978
					MEAN	VALUES						

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN	JUL	AUG SEP
1 39 672 54 47 44 44 36 45 84	33	238 50
1 39 672 54 47 44 44 36 45 84 2 39 6630 54 46 44 44 35 46 161	32	932 59
3 40 2650 54 46 43 43 35 83 106	31	1270 42
3 40 2650 54 46 43 43 35 83 106 4 61 604 52 47 43 41 34 66 121	30	493 49
	31	354 41
5 51 429 52 48 42 40 34 56 115	31	354 41
6 43 337 51 47 42 41 34 45 91	29	284 36
7 43 279 49 47 47 45 34 41 1320	27	236 38
8 41 285 49 47 61 51 33 40 3080 9 40 1000 49 44 72 68 32 38 848	26	196 113
9 40 1000 49 44 72 68 32 38 848	26	134 841
10 40 435 48 43 67 54 55 37 624	26	112 367
11 39 219 47 48 61 52 202 35 488	24	98 448
12 37 156 49 53 55 52 171 36 352	23	87 387
	23	74 1010
14 36 118 52 46 86 50 79 32 152	23	62 1130
15 36 109 52 46 78 50 61 31 123	21	51 1190
16 35 100 50 48 71 49 50 31 103	19	41 380
17 35 93 50 56 63 47 43 30 91	19	34 254
18 35 85 49 51 77 46 39 30 81	20	31 209
19 36 80 48 49 85 46 36 30 72	19	29 161
20 36 75 46 47 66 46 33 31 64	19	28 119
	00	07 00
21 36 71 45 47 55 47 31 49 59	20	27 99
22 50 64 44 48 49 47 106 61 53	18	26 88
23 65 62 45 45 46 46 1350 50 48	16	25 78
24 82 62 46 45 44 56 458 41 43 25 56 61 46 45 44 56 140 36 40	19	24 69 23 65
25 56 61 46 45 44 56 140 36 40	20	23 65
26 49 59 45 45 43 73 94 35 37	19	22 60
27 46 58 46 44 41 49 72 33 35	24	22 55
28 43 56 47 44 43 42 59 32 35	79	22 55
29 41 56 48 43 39 51 34 34	30	23 54
30 40 54 48 43 38 47 234 33	25	23 52
	63	37
31 40 47 43 37 55	63	3/
TOTAL 1346 15090 1513 1446 1566 1489 3596 1477 8722	834	5058 7599
MEAN 43.4 503 48.8 46.6 55.9 48.0 120 47.6 291	26.9	163 253
MAX 82 6630 54 56 86 73 1350 234 3080	79	1270 1190
MIN 35 54 44 43 41 37 31 30 33	16	22 36
AC-FT 2670 29930 3000 2870 3110 2950 7130 2930 17300	10	
	1650	10030 15070

CAL YR 1977 TOTAL 98453 MEAN 270 MAX 19800 MIN 26 AC-FT 195300 WTR YR 1978 TOTAL 49736 MEAN 136 MAX 6630 MIN 16 AC-FT 98650

08186000 CIBOLO CREEK NEAR FALLS CITY, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1968 to current year. Chemical and biochemical analyses: October 1969 to current year. Sediment records: October 1968 to September 1969.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1968 to current year. WATER TEMPERATURES: October 1968 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE (1968-77): Maximum daily, 2,270 micromhos May 20, 21, 1971; minimum daily, 176 micromhos Sept. 28, 1973.
WATER TEMPERATURES (1968-77): Maximum daily, 33.0°C on several days during August 1969; minimum daily, 4.5°C Jan. 7, 1970.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			SPE- CIFIC				OXYGEN. DIS-	OXYGEN DEMAND.		HARD-	
		STREAM- FLOW, INSTAN-	CON- DUCT- ANCE	РН	TEMPER-	OXYGEN, DIS-	SOLVED (PER- CENT	BIO- CHEM- ICAL+	HARD- NESS (MG/L	NESS. NONCAR- BONATE	
DATE	TIME	(CFS)	(MICRO- MHOS)	(UNITS)	(DEG C)	(MG/L)	SATUR- ATION)	5 DAY (MG/L)	CACO3)	CACO3)	
OCT 21	0955	35	1490	7.5	21.5	6.9	80	.9	440	170	
NOV 11	1110	208	524	7.6	15.5	9.0	93	2.5	180	66	
DEC 09	1025	49	1430	7.6	12.0	9.1	88	.8			
JAN 27	0945	46	1470	8.2	10.0	11.4	105	4.1			
FEB 17	1025	62	1350	7.7	12.0	9.4	90	2.3	400	140	
MAR 17	0930	47	1560	7.6	15.0	8.3	86	1.0	470	200	
APR 26	0945	96	510	7.4	20.0	7.8	89	2.7	150	47	
MAY 24	1000	41	1280	7.6	26.0	5.6	70	1.3	370	180	
JUN 27	1145	35	1270	7.8	29.0	7.6	99	.8	390	180	
JUL 19	1030	19	1350	7.9	29.0	6.8	88	.9	420	200	
AUG						7.0	91	.7	350	160	
SEP	0950	24	1160	8.2	28.0		100	.4	250	90	
25	1245	65	780	8.0	25.5	8.0	100	••	250	70	
		MAGNE-		SODIUM	POTAS-			45 6 00 22	CHLO-	FLUO-	
	CALCIUM	SIUM,	SODIUM,	AD-	SIUM,	BICAR-	72.00	SULFATE	RIDE.	RIDE,	
	DIS-	DIS-	DIS-	SORP-	DIS-	BONATE	CAR-	DIS-	DIS-	DIS-	
	SOLVED	SOLVED	SOLVED	TION	SOLVED	(MG/L	BONATE	SOLVED	SOLVED	SOLVED	
	(MG/L	(MG/L	(MG/L	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L	(MG/L	
DATE	AS CA)	AS MG)	AS NA)		AS K)	HC03)	AS C03)	AS 504)	AS CL)	AS F)	
OCT						200		270	170	.4	
21	130	27	150	3.1	6.9	320	0	270			
11 DEC	59	8.1	38	1.2	5.1	140	0	83	41	•3	
09 JAN											
27 FEB											
17	120	24	120	2.6	6.0	310	0	180	150	• 4	
17	140	28	140	2.8	5.3	320	0	250	170	.4	
APR 26	49	7.7	36	1.3	5.5	130	0	77	39	.4	
MAY 24	110	24	95	2.1	7.9	240	0	210	140	.4	
JUN 27	120	21	110	2.4	7.7	250	0	190	130	.4	
JUL 19	120	28	160	3.4	7.9	260	0	280	190	.4	
AUG 24	110	18	100	2.3	7.2	230	0	200	120	.4	
SEP 25	82	12	63	1.7	6.2		0	120	73	.3	

08186000 CIBOLO CREEK NEAR FALLS CITY, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS. SUM OF CONSTI- TUENTS. DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN. NITRITE TOTAL (MG/L AS N)	NITRO- GEN. NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS. TOTAL (MG/L AS P)
OCT 21	17	929	1.7	•01	1.7	.02	.58	.60	.06
NOV	7	,,,		1500	100	• • • •			
11 DEC	13	317	.77	•02	.79	.08	1.0	1.1	•36
09		W. S. 20"	2.8	-02	2.8	.12	.05	.17	.06
JAN		SIMPS TO STATE OF	25 4		4		1300.60	1000	
27	45 40 40		2.8	.01	2.8	.02	2.7	2.7	.17
FEB 17	16	769	4.3	.03	4.3	.03	1.3	1.3	.42
MAR								4	
17	5.6	897	1.9	.03	1.9	.00	.62	.62	•20
APR 26	11	290	.88	.06	.94	.18	.92	1.1	.34
MAY	1 1 1 2	207		4	a		- 11.7	190	
24	14	720	1.2	.03	1.2	.01	.74	•75	.11
JUN 27	16	718	.83	.01	.84	.01	.38	.39	.10
JUL	2 10 20		- 1					No.	.7
19	13	927	.36	.01	.37	.00	.51	.51	.07
AUG 24	16	685	.60	.01	.61	.04	.48	.52	.10
SEP 25	17	472	.99	.01	1.0	.03	.64	.67	.25

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

MONTH	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA+MG) (MG/L)
OCT. 1977	1346	1340	820	2960	150	538	220	816	400
NOV. 1977	15090	591	350	14200	54	2200	91	3700	180
DEC. 1977	1513	1450	880	3600	160	663	240	987	430
JAN. 1978	1446	1460	890	3460	160	634	240	948	430
FEB. 1978	1566	1390	840	3570	150	654	230	986	410
MAR. 1978	1489	1340	810	3270	150	594	230	907	400
APR. 1978	3596	932	560	5430	99	962	160	1570	280
MAY 1978	1477	1110	670	2650	120	480	190	754	330
JUNE 1978	8722	620	370	8630	58	1360	94	2230	200
JULY 1978	834	1200	730	1640	130	295	200	451	360
AUG. 1978	5058	490	280	3880	42	567	70	950	160
SEPT 1978	7599	563	330	6760	51	1040	88	1820	180
TOTAL	49736	••	**	60000	**	9990	**	16100	
WTD.AVG	136.26	751	450	**	74	**	120		230

395 08186000 CIBOLO CREEK NEAR FALLS CITY, TX--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

					U	NCE-DAILY						
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1490	1350			1400	1370	1350		987	1450	559	1120
2	1480	430			1410	1320	1360		1090	1430	371	978
3	1460	500			1410	1310	1370		1150	1240	319	987
4	1300	600			1390	1370	1380		1040	1320	453	970
5	1340	731			1410	1350	1380		1250	1490	440	1030
6	1400	761			1430	1310	1410		1400	1350	430	1100
7	1460	794			1420	1180	1390		1040	1260	428	1080
8	1410	767			1390	1250	1320		335	1350	616	750
9	1300	350	1430		1360	1370	1300		398	1450	645	404
10	1210	403			1400	1380	1250		393	1460	605	413
11	1460	447			1420	1370	700		442	1470	620	437
12	1330	904			1350	1280	800		500	1460	668	720
13 14	1340 1300	857 897			1360	1370	944		719 885	1480 1460	654	520 532
15	1300	1000			1380 1410	1420	1330 1320		800	1310	633	526
16	1310	1200			1350	1380	1330		748	1400	950	532
17	1290	1320			1360	1360	1280		780	1470	1070	450
18	1300	1340			1450	1290	1320		806	1430	991	422
19	1250	1300			1410	1270	1310		868	1480	1070	466
50	1210	1290			1390	1250	1300		1050	1520	1240	534
21	1240	1200			1400	1390	1270		1100	1490	1150	593
22	1460	1340			1380	1380	1000		1190	1420	1060	841
23	1400	1300			1380	1410	825		1150	1470	1040	1030
24	1350	1340			1390	1380	800	1280	1270	1520	1020	915
25	1300	1350			1340	1450	782		1400	1300	1150	901
26	1460	1340			1370	1290	869		1220	1140	1160	910
27	1250	1400		1470	1390	1320	850		1240	1060	1150	950
28	1140	1440			1410	1470	844		1210	500	1160	1030
29	1300	1430				1310	1030		1220	600	1160	1020
30 31	1320 1350	1450				1360 1280	1110		1370	699 650	1170 1140	1040
MEAN	1340	1030	1430	1470	1390	1340	1150	1280	968	1290	831	773
BEAN	1340	1030	1430	1410	1370	1340	1150	1200	700	1270	031	1,13
		TEM	PERATURE	(DEG. C)	OF WATER,	WATER YE	AR OCTOBE	R 1977 TO	SEPTEMBE	R 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	29.5	25.5			26.0	28.0	28.0		28.5	28.5	25.5	27.5
ż		24.0			28.0	27.5	28.5		29.5	27.5	26.0	27.5
3	29.5	26.5			29.0	29.0	29.0			28.0	25.5	27.0
4	30.0	26.0			28.5	28.0			29.0		26.0	28.5
5	31.0	27.5			29.0	27.0	29.0		27.5	28.5	27.5	28.0
6	30.5	26.0				28.0	28.0		27.0	27.5		27.5
7	29.5	24.5			29.0	28.0	29.0			28.5	26.0	
8	30.0	24.0			29.5	28.0	28.0		24.0		28.5	26.0
9		25.5	12.0		29.0	29.0	27.5			29.5	28.5	25.5
10	29.5	26.0			28.5				26.5	27.5	26.5	26.5
11	30.0	24.5			28.5	28.0	29.0		26.0		27.0	28.5
12	28.5	25.0			27.5	28.0	28.0		26.0	29.0	27.5	27.0
13	29.0	26.0				28.0	28.0		27.5		28.0	27.5
14	29.5	25.5			28.0	27.5	27.5		27.5	28.5		27.0
15					27.5					28.5	27.5	26.0
16	30.5	24.0			26.5		28.0		28.5	28.5	28.0	27.5
17	29.0	23.5			27.5	27.5	29.0			29.5	28.5	
18	29.5	23.0			28.5	28.0	29.0		28.0	28.5	27.5	28.0
19					28.0				28.5		27.0	27.5
20	29.0	25.5			27.5	28.0	29.5		28.5	27.5	27.5	26.5
21	27.0	26.0			27.5	27.5	27.5			28.0		27.0
55	26.5	23.5			27.5	28.5	28.5		29.0	29.5	26.5	27.5
23		24.0					27.5		29.0			28.0
24	27.0	25.5			27.5	28.0		26.0	29.5	28.5	28.5	28.5
25	28.5				27.5	27.0	27.5		28.5		28.0	27.0
26	24.0	26.0		10.0	27.0	29.0	29.5		27.5	27.5	27.5	20 5
27	25.5	24.0		10.0	27.0				28.5	28.0	28.5	28.5
28	25.5	24.0			28.5	28.0	27.5		29.0	26.5	28.0	27.5
30	26.0					27.0	28.0		28.5	27.5	28.5 27.5	28.0
31	26.0					27.5 28.0	29.5		27.5	26.0		
MEAN	28.5	25.0	12.0	10.0	28.0	28.0	28.5	26.0	28.0	28.0	27.5	27.5
	20.7	23.0	.2.0	10.0	20.0	20.0	20.3	20.0	20.0	20.0	2.00	2

08186500 ECLETO CREEK NEAR RUNGE, TX

LOCATION.--Lat 28°55'12", long 97°46'19", Karnes County, Hydrologic Unit 12100303, on left bank 55 ft (17 m) downstream from Farm Road 81, 215 ft (66 m) left of left end of bridge, 2.6 mi (4.2 km) upstream from Salt Branch, 4.5 mi (7.2 km) northwest of Runge, and 5.2 mi (8.4 km) upstream from mouth.

DRAINAGE AREA .-- 239 mi 2 (619 km2).

PERIOD OF RECORD.--March 1962 to current year.
Water-quality records: Sediment: February 1966 to September 1975.

GAGE .-- Water-stage recorder. Datum of gage is 215.03 ft (65.541 m) Texas Department of Highways and Public Transportation datum.

REMARKS .-- Records good. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--16 years, 37.7 ft3/s (1.068 m3/s), 2.14 in/yr (54 mm/yr), 27,310 acre-ft/yr (33.7 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 58,400 ft³/s (1,650 m³/s) Sept. 22, 1967, gage height, 33.3 ft (10.15 m), from floodmark, from rating curve extended above 7,300 ft³/s (207 m³/s) on basis of slope-area measurement of peak flow; no flow at times in 1962-67, 1969-72, 1974, 1976, and 1978.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood information begins with the flood in June 1903, which reached a stage of 34 ft (10.4 m), discharge 71,000 ft³/s (2,010 m³/s). A stage of 32 ft (9.8 m), discharge 39,000 ft³/s (1,100 m³/s), occurred in September 1952, from information by local residents.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 500 ft3/s (14.2 m3/s) and maximum (*):

Date	Time	Disch	arge	Gage I	neight	Date	Time	Disch	arge	Gage h	eight
		(ft^3/s)	(m^3/s)	(ft)	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
Nov. 3 June 8	1330 0600	700 526	19.8 14.9	8.00 7.00	2.438	Aug. 1 Sept. 13	2130	510 *2.120	14.4	6.90 13.64	2.103 4.157

WATER VEAR OCTORER 1077 TO CERTEMPER 1079

CFSM .28 IN 3.78 CFSM .06 IN .87

.01

.00

MIN

MIN

AC-FT

48120

Minimum discharge, no flow May 20, 21, 23-29.

CAL YR 1977 TOTAL 24258.90 WTR YR 1978 TOTAL 5600.63

MEAN 66.5

MEAN 15.3

MAX

MAX

4240

798

		DISCHA	RGE, IN C	UBIC FEET		ND, WATER		OBER 197	7 TO SEPTE	MBER 1978	8	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.08 .06 .04 .04	19 220 581 101 35	2.6 2.0 2.4 2.2 2.1	1.3 1.7 1.3 1.5	.91 .91 .91 .91	1.7 2.0 1.7 1.6 1.6	1.6 1.4 1.3 1.1	3.7 2.7 2.8 2.5 2.4	35 49 80 50 31	.20 .16 .13 .13	253 298 51 18 8.4	5.8 .42 .42 .13 .04
6 7 8 9	.03 .03 .03 .02	19 13 48 121 54	1.6 1.6 2.3 1.4 1.2	1.4 1.4 1.2 1.2	1.0 1.3 1.6 2.3 3.7	2.1 3.1 3.7 2.9 2.9	.98 1.0 .88 .69	3.2 3.5 2.7 2.1 1.8	13 124 466 188 46	.10 .10 .10 .06	4.8 2.9 2.0 1.2 .69	.04 .03 .06 .06
11 12 13 14 15	.02 .02 .01 .01	26 14 9.2 6.7 5.9	1.5 1.7 1.5 1.2 1.3	1.6 1.9 1.8 1.5	5.0 6.4 4.8 3.5 3.1	5.9 4.2 3.5 2.6 2.2	.76 .70 .60 3.4 4.5	1.3 .83 .44 .22 .13	26 15 11 8.1 6.3	.06 .06 .06 .07	.42 .29 .16 .10	29 13 798 679 109
16 17 18 19 20	.01 .01 .01 .01	5.3 4.4 4.0 3.6 3.5	1.3 1.4 1.1 1.5	1.6 1.4 1.3 1.4	2.9 2.7 2.8 3.1 6.6	1.9 1.8 1.5 1.3	4.0 3.8 3.3 2.4 1.7	.11 .08 .06 .02	4.7 3.8 3.1 2.5 2.0	.08 .08 .08 .08	.08 .06 .06 .04	54 28 13 7.9 5.3
21 22 23 24 25	.02 15 11 4.1 4.9	3.2 2.6 2.7 2.9 3.4	1.1 1.4 1.5 1.3 1.2	1.6 2.8 2.9 2.3 2.0	11 7.4 5.2 4.0 3.4	1.3 1.9 1.9 1.8 1.9	1.2 1.2 6.1 159 75	.04 .19 .03 .00	1.7 1.3 .91 .69	.10 .08 .06 .06	.04 .04 .03 .03	3.6 2.5 2.1 1.7 1.3
26 27 28 29 30 31	4.5 2.6 1.7 .72 .37 .42	3.0 2.7 2.6 2.6 3.9	1.1 1.2 1.2 1.0 1.0	1.7 1.5 1.2 .97 .91	2.8 2.1 1.6 	1.8 1.5 1.7 1.4 1.3	28 15 8.6 5.9 4.5	.00 .00 .00 .00	.35 .29 .24 .35 .29	.06 .06 .26 .28 .16	.02 .02 .02 .02 .03	.98 .80 .69 .64
TOTAL MEAN MAX MIN CFSM IN. AC-FT	45.85 1.48 15 .01 .006 .01	1323.2 44.1 581 2.6 .19 .21 2620	46.2 1.49 2.6 1.0 .006 .01	47.69 1.54 2.9 .91 .006 .01	92.94 3.32 11 .91 .01 .01	67.3 2.17 5.9 1.3 .009 .01	340.31 11.3 159 .60 .05 .05	61.90 2.00 17 .00 .008 .01 123	1171.12 39.0 466 .24 .16 .18 2320	3.45 .11 .36 .06 .000 .00	642.59 20.7 298 .02 .09 .10 1270	1758.08 58.6 798 .03 .25 .27 3490

397

08188500 SAN ANTONIO RIVER AT GOLIAD, TX (National stream-quality accounting network)

LOCATION.--Lat 28°38'58", long 97°23'04", Goliad County, Hydrologic Unit 12100303, on right bank at upstream side of bridge on U.S. Highway 183, 1.2 mi (1.9 km) southeast of courthouse in Goliad, 11.7 mi (18.8 km) upstream from Manahuilla Creek, and 66.5 mi (107.0 km) upstream from mouth.

DRAINAGE AREA. -- 3,921 mi2 (10,155 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1924 to March 1929, February 1939 to current year.

REVISED RECORDS.--WSP 1923: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 91.08 ft (27.761 m) National Geodetic Vertical Datum of 1929. Prior to Mar. 31, 1929, nonrecording gage at Texas and New Orleans Railroad Co. bridge 0.9 mi (1.4 km) upstream at same datum.

REMARKS.--Water-discharge records good. Many diversions and regulations above station (see station 08181800). Flow is affected at times by discharge from flood-detention pools of 30 floodwater-retarding structures with combined detention capacity of 50,820 acre-ft (62.7 hm³). These structures control runoff from 159 mi² (412 km²).

AVERAGE DISCHARGE.--43 years (water years 1925-28, 1940-78), 652 ft³/s (18.46 m³/s), 472,400 acre-ft/yr (582 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $138,000 \text{ ft}^3/\text{s}$ (3,910 m³/s) Sept. 23, 1967, gage height, 53.7 ft (16.37 m), from floodmark, from rating curve extended above $26,000 \text{ ft}^3/\text{s}$ ($736 \text{ m}^3/\text{s}$) on basis of slope-area measurement of peak flow; minimum observed, $1.2 \text{ ft}^3/\text{s}$ ($0.034 \text{ m}^3/\text{s}$) June 16, 1956.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1869, that of Sept. 23, 1967. Flood of July 9, 1942, reached a stage of 44.9 ft (13.69 m); floods in October 1913 and June 15, 1935, reached about the same stage. Maximum stage since about 1800 occurred in 1869 and was several feet higher than flood of Sept. 23, 1967.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 6,000 ft3/s (170 m3/s), revised, and maximum (*):

Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)	Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)
Nov. 5	0600	6,770	192	23.99	7,312	Sept. 15	1500	*7,660	217	25.77	7.855

Minimum discharge, 146 ft3/s (4.13 m3/s) July 28.

		DISCHA	RGE, IN	CUBIC FEE	F PER SECON	ID, WATER	YEAR OCT	DBER 1977	TO SEPTE	MBER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	462	572	585	558	514	524	469	536	499	267	434	669
	441	735	611	559	515	517	469	526	514	259	872	704
3	401	2950	666	561	525	526	463	512	1800	252	1210	719
4	377	5900	620	556	530	525	458	524	1870	246	2910	756
2 3 4 5	377	6510	588					654	867	239	3620	779
3	3//	6510	200	546	529	514	452	034	807	239	3020	119
6	561	3380	573	554	523	514	433	801	920	225	2900	658
7	478	1200	555	548	556	521	428	627	924	213	3250	624
8	402	1320	561	537	554	514	428	532	1330	211	4730	786
9	403	1490	562	533	541	558	427	502	3280	208	5680	763
10	380	1420	554	527	698	859	425	481	4100	211	5080	1820
11	371	1740	555	529	0.45	711	432	470	2090	204	2910	3170
12	371				845	711					2260	
		1230	564	544	654	605	498	463	1010	192		2570
13	358	875	564	547	593	567	1530	442	838	179	1790	1490
14	383	777	557	532	563	539	1210	440	739	169	1480	3910
15	392	735	593	541	632	529	740	502	660	171	1340	7200
16	383	707	599	515	794	516	626	439	611	172	1220	6130
17	390	699	578	482	711	507	579	405	567	170	1130	5180
18	406	692	570	481	617	499	549	389	527	169	1050	3440
19	400	664	568	478	628	494	525	334	501	170	990	1810
20	416	659	566	494	629	487	502	281	481	164	934	1510
20	410	039	300	494	029	487	502	201	401	104	934	1510
21	458	651	552	499	656	484	493	280	460	153	883	1450
22	471	634	541	479	597	471	498	294	434	154	332	1350
23	520	622	547	477	558	459	493	474	428	161	790	1240
24	627	623	547	486	545	465	1110	499	415	164	757	1160
25	1360	631	549	481	536	458	2090	406	402	169	742	1100
26	1070	620	550	473	533	467	1570	346	394	166	725	1060
27	869	605	548	475		564		306		158	699	998
28	691				534		867		383			
29		594	546	476	532	634	673	282	371	150	676	956
	565	604	530	473		518	598	322	383	172	655	919
30	550	595	537	471		474	550	362	331	334	634	891
31	534		548	510		477		595		277	629	
TOTAL	15867	40434	17584	15923	16642	16497	20585	14026	28129	6149	53812	55812
MEAN	512	1348	567	514	594	532	686	452	938	198	1736	1860
MAX	1360	6510	666	561	845	859	2090	801	4100	334	5680	7200
MIN	358	572	530	471	514	458	425	280	331	150	434	624
AC-FT	31470	80200	34880	31580	33010	32720	40830	27820	55790	12200	106700	110700
CAL VD	1077 TOT	AI 49781	2 MEAN	1364	1AX 15200	MIN 358	AC-FT	987400				

CAL YR 1977 TOTAL 497813 WTR YR 1978 TOTAL 301460

08188500 SAN ANTONIO RIVER AT GOLIAD, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: September 1945 to September 1946, September 1958 to current year. Chemical and biochemical analyses: January 1968 to current year. Pesticide analyses: January 1968 to current year. Sediment records: October 1974 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: September 1945 to September 1946, September 1958 to current year.
WATER TEMPERATURES: September 1958 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 1,580 micromhos July 22, 1978; minimum daily, 138 micromhos Oct. 27, 1960.
WATER TEMPERATURES: Maximum daily, 36.0°C June 5, 1969; minimum daily, 0.0°C on many days during winter months.

SPECIFIC CONDUCTANCE: Maximum daily, 1,580 micromhos July 22; minimum daily, 218 micromhos Sept. 15.
WATER TEMPERATURES: Maximum daily, 31.0°C Sept. 1; minimum daily, 0.0°C on several days during winter months.

		STREAM-	SPE- CIFIC CON- DUCT-	Su.	*FW050	COLOR (PLAT-	TUR-	OXYGEN.	OXYGEN, DIS- SOLVED (PER- CENT	OXYGEN DEMAND, BIO- CHEM- ICAL,	COLI- FORM, TOTAL, IMMED. (COLS.	COLI- FORM, FECAL, 0.7
DATE	TIME	INSTAN- TANEOUS (CFS)	(MICRO- MHOS)	(UNITS)	TEMPER- ATURE (DEG C)	INUM- COBALT UNITS)	BID- ITY (JTU)	DIS- SOLVED (MG/L)	SATUR- ATION)	5 DAY (MG/L)	PER 100 ML)	(COLS./
		,										
19	1415	398	1160	7.6	22.0	15	25	7.6	89	1.2	8000	170
NOV 09	1615	1240	672	7.4	18.0	30	310	7.4	80	3.6	140000	12000
DEC 08	1245	562	1080	7.7	17.0	10	25	8.3	88	1.1	72000	3100
JAN 25	1440	481	1220	7.9	11.5	10	15	9.8	92	1.7	1700	160
FEB 16	1530	788	1080	7.6	13.5	15	55	8.9	88	5.0	3400	130
MAR 15	1455	532	1110	7.7	20.0	30	40	9.0	102	.8	380	290
APR 25	1600	2080	535	7.4	22.5	90	140	6.1	72	7.7	230000	8400
YAM 23	1300	532	1400	7.7	28.5	20	95	5.6	73	2.5	8400	200
28	1000	371	1260	7.8	29.5	30	35	6.8	89	1.4	>150	150
JUL 19	0815	168	1450	8.1	29.0	20	40	6.8	89	3.5	3600	120
23	1215	787	819	8.2	29.5	10	80	7.0	92	1.3		480
SEP 28	0900	957	730	8.1	24.0	20	90	7.6	93	.5		190
	STREP- TOCOCCI		HARD-	CALCTUM	MAGNE-	SODTUM.	SODIUM AD-	POTAS- SIUM+	BICAR-		SULFATE	CHLO-
	FECAL, KF AGAR (COLS.	HARD- NESS (MG/L	NESS, NONCAR- BONATE	DIS- SOLVED	SIUM, DIS- SOLVED	SOLVED	SORP- TION	DIS- SOLVED	BONATE (MG/L	CAR- BONATE	DIS- SOLVED	DIS- SOLVED
DATE	PER 100 ML)	CACO3)	(MG/L CACO3)	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	RATIO	(MG/L AS K)	HC03)	(MG/L AS CO3)	(MG/L AS 504)	(MG/L AS CL)
ост	12											
19 NOV	450	400	150	120	25	100	2.2	5.9	310	0	140	140
09 DEC	26000	550	67	68	11	53	1.6	6.3	180	0	65	72
08	5700	370	- 120	110	23	91	2.1	5.7	310	0	120	120
25 FEB	100	380	120	110	25	100	2.2	6.3	310	0	130	150
16 MAR	380	340	110	100	55	85	2.0	6.5	280	0	120	120
15 APR	420	360	140	110	21	91	2.1	6.2	270	0	110	130
25	13000	140	52	42	7.7	51	1.9	5.5	140	0	51	58
23 JUN	1400	460	550	140	27	130	2.6	8.1	290	0	190	180
28	640	350	110	100	24	100	2.3	8.0	290	0	100	160
19 AUG	580	450	180	130	30	170	3.5	8.1	330	0	190	230
23 SEP	1200		75	84	19	57	1.5	5.1	260	0	89	72
28	660	260	58	79	16	49	1.3	4.5	250	0	80	66

GUADALUPE RIYER BASIN O8188500 SAN ANTONIO RIVER AT GOLIAD, TX--Continued

					1000						
	FLUO- RIDE,	SILICA. DIS-	SOLIDS, RESIDUE AT 180	SOLIDS, SUM OF CONSTI-	RESIDUE AT 105	SOLIDS.	NITRO- GEN,	NITRO- GEN, NITRITE	NITRO- GEN. NO2+NO3	NITRO- GEN, AMMONIA	NITRO- GEN+ ORGANIC
	DIS- SOLVED	SOLVED (MG/L	DEG. C	TUENTS.	DEG. C.	TILE,	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	(MG/L	AS	SOLVED	SOLVED	PENDED	PENDED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DATE	AS F)	\$102)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS N)
ост											.83
19 NOV	• 4	20	706	704	19	4	4.6	.06	4.7	•01	•••
09 DEC	•3	15	412	379	1020	265	2.1	.08	2.2	.03	.97
08	•5	19	647	642	66	9	4.9	.05	4.9	.12	.74
25 FEB	.4	18	698	693	35	0	5.5	.10	5.6	.24	1.1
16	•5	17	625	609	152	22	5.8	.14	5.9	.65	1.1
15 APR	.4	16	625	618	98	9	4.6	.01	4.6	.03	.94
25	.4	11	303	296	2860	496	2.0	.04	2.0	.11	1.4
MAY 23	.4	18	843	837	279	37	4.9	.05	4.9	•03	1.3
28	•5	17	711	652	80	8	5.3	.02	5.3	.01	1.6
JUL 19	•5	21	944	942	95	12	1.5	.02	1.5	.00	1.3
AUG 23	.4	16	483	471	190	8	3.3	.01	3.3	•02	•58
SEP 28	•3	15	446	433	222	40	2.8	.01	2.8	.03	1.1
57777	NITRO-	NITRO-					CARBON.			SEDI-	SED.
	GEN . AM-	GEN . AM-		PHOS-		CARBON,	ORGANIC			MENT	SUSP.
	MONIA +	MONIA +	PHOS-	PHORUS,	CARBON.	ORGANIC	SUS-		SEDI-	DIS-	SIEVE DIAM.
	ORGANIC	ORGANIC	PHORUS,	DIS-	ORGANIC	DIS-	PENDED	-	MENT, SUS-	SUS-	% FINER
	TOTAL	DIS.	TOTAL	SOLVED	TOTAL	SOLVED	TOTAL	PHENOLS	PENDED	PENDED	THAN
	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L AS C)	(MG/L AS C)	(MG/L AS C)	(UG/L)	(MG/L)	(T/DAY)	.062 MM
DATE	AS N)	AS N)	AS P)	AS P)	AS CI	AS CI	AS CI	100/2/	11107 27		
OCT								2	65	70	91
19	.84		17		3.8						98
09 DEC	1.0	.62	.75	.31	25			1	1240	4150	95
08	.86	.80	.92	.81	4.3			3	61	93	
25 FEB	1.3	.75	1.7	.89	4.6			2	67	87	77
16 MAR	1.7	1.2	2.2	.86				1	130	277	94
15 APR	.97	.84	1.4	1.3	6.3			0	78	112	96
25 MAY	1.5	.87	.53	.28	45			2	2450	13800	97
23	1.3	1.1	.90	.80				1	295	424	92
28	1.6	1.6	1.8	1.7	6.1			0	87	87	88
JUL 19	1.3	.76	1.2	.96	7.0			0	84	38	99
23	.60	.46	1.1	1.1		4.6	2.1	0	181	385	97
SEP 28	1.1	1.3	.78	.46	8.4			1	265	685	85

OB188500 SAN ANTONIO RIVER AT GOLIAD, TX--Continued

DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BARIUM, SUS- PENDED RECOV- ERABLE (UG/L AS BA)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)
FEB										
16 MAY	1530	3	1	5	100	0	200	0	0	0
23	1300	5	1	4	200	200	10	0		1
23	1215	4	0	4	300	100	200	0	0	0
DATE	CHRO- MIUM, TOTAL RECOV- FRABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COBALT, SUS- PENDED RECOV- ERABLE (UG/L AS CO)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER. TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER. DIS- SOLVED (UG/L AS CU)	IRON. TOTAL RECOV- ERABLE (UG/L AS FE)
FEB		1		P . P			10	8	2	2200
16 MAY	10	10	0	2	5	0	10		2	3200
23 AUG	10	10	0	0	0	0	15	13		
DATE	TRON, SUS- PENDED RECOV- FRABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	D LEAD+ SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE+ SUS- PENDED RECOV- (UG/L AS MN)	MANGA- NESE+ DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	2800 MERCURY SUS- PENDED RECOV- ERABLE (UG/L AS HG)
FE8 16		0	18	15	3	120	120	0	.2	.2
MAY						170		50	.1	.1
23	3100	80	8	4	4		120			1
23	2800	50	- 11	11	0	220	220	0	• • • • • • • • • • • • • • • • • • •	.1
DATE	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, SUS- PÉNDED TOTAL (UG/L AS SE)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	SILVER, SUS- PENDED RECOV- ERABLE (UG/L AS AG)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, SUS- PENDED RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)
FEB			2					40	20	20
16	.0	1	1	0	0	0	0	40		10
23 AUG	• 0	5	2	0	0		0	40	30	
DATE	TIME .0	PCB, TOTAL (UG/L)	PCB. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	NAPH- THA- LENES. POLY- CHLOR. TOTAL (UG/L)	ALDRIN+ TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ATRA- ZINE. TOTAL (UG/L)	CHLOR-DANE, TOTAL (UG/L)	TO CHLOR-DANE, TOTAL IN BOT-TOM MA-TERIAL (UG/KG)	DDD+ TOTAL (UG/L)
NOV								NO		NO
09 JAN	1615	NO			ND		ND	ND		ND
25 FEB	1440	.1	7	.00	.00	.0	1.	•0	4	.00
16 APR	1530	ND			ND	7		NO		ND
25	1600	• 0		.00	.00	-	-	.0		.00
23 JUL	1300	ND	ND		ND	ND	ND	ND	3	ND
19	0815	.0	0	.00	.00	• 0	-	•0	0	.00
23	1215	NO		\$ F	ND	-2		ND	6 e	ND

GUADALUPE RIVER BASIN 401

08188500 SAN ANTONIO RIVER AT GOLIAD, TX--Continued

DATE	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE. TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL (UG/L)	DDT+ TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL (UG/L)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN TOTAL (UG/L)	DI- ELDRIN+ TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL (UG/L)
NOV		ND		ND		ND		ND		
09 JAN	1.2	.00		.00	.0	.10		.00	.2	.00
FEB	1.3		1.7	ND.		2.3		ND		
16 APR	-	ND				.05		.00		.00
25 MAY		.01		.01				ND	ND	
JUL		ND	ND	ND	ND	ND		.00	.0	.00
19 AUG	• 0	.00	.1	.00	.0	• 07		ND		
23		ND		NO		HEPTA-		HEPTA-		
DATE	ENDRIN, TOTAL (UG/L)	ENDRIN. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL (UG/L)	ETHION. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL (UG/L)	CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 09	ND		ND		ND		ND		ND	
JAN 25	•00	.0	.00		.00	.0	.00	.0	.00	.0
FEB 16	ND		ND		ND				ND	
APR 25	.00		.00		.00		.00		.01	
YAM 23	ND	ND	ND	ND	ND	NC		ND	ND	ND
JUL 19	.00	.0	.00		•00	. (.0	.00	.0
AUG 23	ND		ND		ND				ND	
DATE	MALA- THION, TOTAL (UG/L)	MALA- THION+ TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR. TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOTAL (UG/L)	METHYL PARA- THION- TOT. IN BOTTON MATL- (UG/KG)	TRI- THION, TOTAL	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX. TOTAL (UG/L)	PARA- THION. TOTAL (UG/L)
NOV 09	ND		ND		ND	1.	ND			ND
JAN 25	.00				.00		.00			.00
FEB 16	ND		ND		NO	_				ND
APR 25	.00				.00		.00			.00
MAY 23	ND.	ND	ND	ND	ND	N		ND		ND
JUL					.00				.00	.00
19 AUG	.00				ND	_				ND
23	TOT IN 8 TOM TER	ON. ZI FAL TOTO FOT- COU MA- SC FIAL COM	INE TAL JL- TO DN APHE ND. TO1	TO: PHI TO: IX- IN I ENE, TOM	KA- ENE; TAL BOT- TO MA- TI RIAL TH	THE TO	RI- HION. DTAL BOT- M MA- 2. ERIAL TO	4-D, 2,4 TAL TO	TAL TO	VEX.
D. NO	ATE (UG/	'KG) (U	3/L) (U(S/L) (UG	/KG) (U	G/L) (U	3/KG) (U	G/L) (U	G/L) (U	G/L)
	9		ND	ND		ND		ND	ND	ND
	5			0	0	.00		.00	.01	.00
	6			ND		ND				
	5			0		.00		.08	.01	.00
	3	ND	ND	ND	ND	ND	ND			
	9			0	0	.00		.00	.00	.00
	3			ND		ND				

08188500 SAN ANTONIO RIVER AT GOLIAD, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1977 TO AUGUST 1978

	FHITOF	LAMINION	ANALTSE	, 0010	DEK TAL	/ IU AU	19031 191	0				
DATE	NO	V 9,77		15•78 1455		23.78 1300		28+78 000		19,78 0815		23,78 1215
TOTAL CELLS/ML		3700		3000	i	2600	14	000	180	0000	1	1300
DIVERSITY: DIVISION .CLASSORDER		0.4 0.4 0.5		1.4		1.1		1.2		1.0		0.4
FAMILY		0.5		1.7		2.1		2.1		2.1		0.4
GENUS		0.5		1.9		2.7		2.4		2.5		0.4
ORGANISM	CELLS /ML	S PER-	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER-
CHLOROPHYTA (GREEN ALGA	E)											
.CHLOROPHYCEAE CHLOROCOCCALES												- 10
COELASTRACEAE									200	1. 500		
COELASTRUM			155	1				-	3300	5	-	
GOLENKINIA				2 -					1000	1		
MICRACTINIUM	3				110	4	520	4		0		
OOCYSTACEAE	57	7 2	120			8.81	1.4	-				
CHODATELLA			120	1			160	0		0	-	
DICTYOSPHAERIUM				-	460#	18	300	2	2900	2		
KIRCHNERIELLA	-	18.50	-	-	29	1	140	1		0		-
QUADRIGULA		75			110	4	72	1	6000	3		9.00
SELENASTRUM		. 0		-		-				-		
TREUBARIA				-		-		0				
SCENEDESMACEAE				_			2200#	10	1200			
CRUCIGENIA				-		-	2200#	15	1700	0	30	
SCENEDESMUS			240	3	1100#	42	430	3	24000	13	40	3
TETRASTRUM				-	110	4	170	1	5000	3		-
CHLAMYDOMONADACEAE												
CHLAMYDOMONAS				-	29	1		0	1200	1		-
ZYGNEMATALES								117	7000	0.7		
CLOSTERIUM			120						10.00			
CHLOROCOCCALES		00.00	120	1		-		-		-		
OOCYSTACEAE												
GLOEOACTINIUM				-		-		-	1000	1		
CHRYSOPHYTA												
.BACILLARIOPHYCEAE												
CENTRALES												
COSCINODISCACEAE		0	4700#	50		71.30	500			4.2	200	
	4		4100#	39	-	-	500		1000	1		4 12
MELOSIRA	29	1		-		-		-				
CYMBELLACEAE												
AMPHORA		-	120	1		-		_		. 3		
CYMBELLA	29	1		-		-		-		0		-
FRAGILARIACEAE												
SYNEDRA		-		-		-		-			7	1
NAVICULACEAE			120		16				200			
NAVICULA	43	1	120	1	29	1		0		100		12
NITZSCHIACEAE												
NITZSCHIA	29	1	350	4		-	370	3	1200	1	7	1
SURIRELLACEAE				-	29	1		0				
.XANTHOPHYCEAE						•						
HETEROCOCCALES												
CHLOROTHECIACEAE		0	10 m	_				32.70	11/4/12/2	12.00		
					-					3 3 10		
CYANOPHYTA (BLUE-GREEN	ALGAE)											
.CYANOPHYCEAE CHROCCOCCALES												
CHROCCOCCAEAE												
AGMENELLUM		-		-		-	1300	9	43000#	24		-
ANACYSTISHORMOGONALES		-	1800#	55		-			2900	5		
OSCILLATORIACEAE												
OSCILLATORIA	3500	# 93		-	170	7	7700#	55	80000#	45	1200#	95
EUG ENORHYT, JEUG EUG								1			10.1	1135.5
EUGLENOPHYTA (EUGLENOID: •EUGLENOPHYCEAE	5)											
EUGLENALES											3 4	
EUGLENACEAE	, 81 " F5.	-			7 200			131			4 2 2 2	1.30
EUGLENA		0			260	10		0		1	13	1
		-		-		_	-	^				
PHACUS	100		350	-	170	7		0		0	17	

NOTE: # - DOMINANT ORGANISM: EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM: MAY NOT HAVE BEEN COUNTED: LESS THAN 1/2%

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

08188500 SAN ANTONIO RIVER AT GOLIAD, TX--Continued

MONTH	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA.MG) (MG/L)
OCT. 1977	15867	1030	590	25300	120	5170	110	4740	330
NOV. 1977	40434	620	350	38200	60	6520	60	6520	230
DEC. 1977	17584	1080	620	29400	120	5700	120	5520	340
JAN. 1978	15923	1130	650	28000	130	5630	120	5260	360
FEB. 1978	16642	1070	610	27400	120	5490	110	5100	340
MAR. 1978	16497	1120	640	28600	130	5840	120	5320	350
APR. 1978	20585	872	490	27500	98	5430	91	5080	310
MAY 1978	14026	1100	630	23800	130	4930	120	4440	350
JUNE 1978	28129	649	370	27700	64	4860	64	4850	240
JULY 1978	6149	1490	860	14300	200	3320	160	2700	450
AUG. 1978	53812	548	310	44500	50	7240	53	7650	200
SEPT 1978	55812	466	260	39300	40	5960	42	6270	180
TOTAL	301460	**	**	354000	**	66100	**	63400	••
WTD.AVG	825.92	766	440	**	81	**	78	**	280

	SPEC	IFIC COND	UCTANCE	(MICROMHOS		DEG. C).	WATER YE	AR OCTOBER	R 1977 TO	SEPTEMBE	R 1978	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1160	978	1080	1090	1150	1150	1160	911	962	1270	1020	991
2	1170	942	1070	1070	1140	1160	1140	1030	809	1350	1110	974
3	1170	877	1050	1070	1160	1170	1150	1060	600	1380	596	1020
4	1200	308	1040	1080	1140	1180	1160	1110	361	1400	450	983
5	1240	271	1050	1090	1130	1150	1180	1120	550	1440	301	970
6	1260	335	1060	1100	1110	1130	1240	970	865	1480	348	934
7	1200	460	1070	1100	1140	1160	1250	941	678	1460	579	915
8	1170	592	1080	1100	1100	1170	1220	1040	692	1480	421	885
9	1150	576	1090	1080	1180	1180	1210	839	430	1510	419	926
10	1140	675	1090	1100	1150	1070	1200	991	400	1520	433	500
11	1170	536	1070	1130	1010	978	1210	1070	350	1510	484	317
12	1190	677	1080	1120	974	936	1210	1120	406	1520	533	381
13	1230	609	1090	1130	870	895	750	1160	482	1530	541	500
14	1250	729	1090	1150	1010	1000	575	1170	589	1540	554	422
15	1240	830	1110	1140	996	1070	714	1160	713	1550	596	218
16	1250	916	1090	1120	1020	1130	761	1130	830	1540	630	230
17	1180	958	1070	1150	1000	1140	803	1160	926	1550	640	248
18	1160	980	1030	1170	983	1160	932	1170	987	1560	657	345
19	1170	996	1050	1190	987	1190	1010	1140	1020	1570	677	452
20	1190	1000	1070	1210	1010	1150	1080	1240	1050	1560	709	527
21	1170	1040	1100	1190	1070	1160	1140	1310	1090	1570	734	625
22	1140	1070	1090	1170	1050	1190	1150	1290	1130	1580	777	592
23	996	1060	1110	1150	1110	1200	1150	1430	1160	1570	794	597
24	1030	1070	1110	1170	1060	1190	750	1170	1180	1560	814	636
25	1000	1050	1100	1160	1100	1200	600	933	1200	1550	851	670
26	633	1070	1090	1170	1110	1210	751	978	1210	1560	868	701
27	630	1060	1100	1190	1120	1180	541	933	1200	1570	875	712
28	628	1070	1100	1170	1140	1120	564	1220	1190	1550	888	750
29	803	1080	1110	1170		1100	623	1260	1220	1550	918	763
30	841	1090	1130	1160		1150	800	1200	1240	1520	933	784
31	908		1120	1160		1070		1180		1280	961	
MEAN	1090	830	1080	1140	1070	1130	967	1110	851	1500	681	652

GUADALUPE RIVER BASIN

08188500 SAN ANTONIO RIVER AT GOLIAD, TX--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26.5	21.0	10.0	10.0	4.5	10.0	18.5	24.0	24.0	29.5	24.0	31.0
2	26.5	10.0	10.0	.0	4.5	15.5	21.0	21.0	26.5	26.5	24.0	29.5
3	21.0	7.0	18.5	.0	7.0	10.0	21.0	10.0	21.0	26.5	24.0	29.5
4	15.5	13.0	21.0	13.0	7.0	.0	24.0	15.5	21.0	29.5	24.0	26.5
5	18.5	13.0	10.0	18.5	13.0	1.5	24.0	18.5	24.0	26.5	24.0	24.0
6	18.5	13.0	4.5	18.5	10.0	15.5	21.0	21.0	26.5	29.5	26.5	29.5
7	24.0	18.5	4.5	18.5	10.0	15.5	21.0	24.0	18.5	26.5	24.0	21.0
8	21.0	13.0	15.5	7.0	1.5	4.5	24.0	26.5	24.0	26.5	24.0	24.0
9	18.5	10.0	4.5	1.5	4.5	10.0	21.0	24.0	21.0	26.5	24.0	24.0
10	21.0	4.5	4.5	4.5	• 0	13.0	21.0	24.0	26.5	26.5	24.0	26.5
11	15.5	4.5	10.0	3.5	7.0	15.5	15.5	24.0	29.5	26.5	26.5	21.0
12	10.0	13.0	21.0	1.5	10.0	13.0	13.0	26.5	29.5	29.5	26.5	24.0
13	7.0	13.0	21.0	4.5	15.5	18.5	4.5	21.0	26.5	29.5	29.5	26.5
14	10.0	15.5	7.0	4.5	4.5	18.5	15.5	24.0	29.5	29.5	24.0	26.5
15	18.5	15.5	15.5	13.0	7.0	18.5	21.0	24.0	26.5	29.5	29.5	26.5
16	15.5	21.0	18.5	15.5	1.5	13.0	21.0	24.0	26.5	29.5	24.0	26.5
17	18.5	21.0	10.0	.0	4.5	18.5	21.0	26.5	29.5	29.5	24.0	26.5
18	21.0	21.0	10.0	4.5	.0	18.5	24.0	21.0	29.5	26.5	26.5	24.0
19	24.0	18.5	18.5	.0	10.0	18.5	15.5	24.0	29.5	29.5	29.5	24.0
20	24.0	24.0	10.0	.0	1.5	18.5	10.0	26.5	29.5	29.5	29.5	24.0
21	24.0	15.5	1.5	.0	.0	18.5	10.0	24.0	29.5	26.5	21.0	21.0
22	18.5	10.0	.0	4.5	7.0	21.0	21.0	26.5	26.5	26.5	21.0	21.0
23	21.0	18.5	10.0	7.0	13.0	21.0	18.5	24.0	29.5	29.5	29.5	21.0
24	18.5	18.5	15.5	10.0	13.0	10.0	15.5	26.5	26.5	26.5	21.0	24.0
25	18.5	15.5	15.5	7.0	15.5	15.5	21.0	26.5	29.5	26.5	29.5	21.0
26	15.5	15.5	4.5	10.0	15.5	18.5	13.0	26.5	29.5	26.5	29.5	18.5
27	18.5	21.0	10.0	13.0	15.5	18.5	13.0	26.5	29.5	26.5	29.5	21.0
28	15.5	18.5	10.0	4.5	15.5	18.5	21.0	26.5	29.5	26.5	29.5	18.5
29	18.5	10.5	10.0	7.0		15.5	21.0	29.5	26.5	26.5	24.0	18.5
30	18.5	7.0	13.0	4.5		13.0	24.0	26.5	26.5	29.5	29.5	21.0
31	21.0		13.0	4.5		15.5		26.5		18.5	24.0	
MEAN	19.0	14.5	11.0	7.0	8.0	14.5	18.5	24.0	26.5	27.5	26.0	24.0

08188600 GUADALUPE-BLANCO RIVER AUTHORITY CALHOUN CANAL FLUME NO. 1 NEAR LONG MOTT, TX

LOCATION.--Lat 28°29'44", long 96°46'18", Calhoun County, Hydrologic Unit 12100204, on right bank at concrete Parshall flume No. 1, 518 ft (158 m) upstream from State Highway 185, 1,900 ft (579 m) downstream from pumping station on Goff Bayou, and 1.1 mi (1.8 km) northwest of Long Mott.

PERIOD OF RECORD.--March 1968 to Feburary 1970 (monthly discharge only), March 1970 to current year.

GAGE.--Deflection-vane recorder, duplex water-stage recorder and Parshall flume. Datum of gage is 23.53 ft (7.172 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair. Flow is diverted from Guadalupe River 550 ft (168 m) upstream from Guadalupe River near Tivoli (station 08188800), and then through a system of canals, Hog Bayou, and Goff Bayou, a distance of 8.9 mi (14.3 km) to the pumping station on Goff Bayou 1,900 ft (579 m) upstream from flume No. 1. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--9 years (water years 1969-78), 102 ft³/s (2.889 m³/s), 73,900 acre-ft/yr (91.1 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 311 ft³/s (8.81 m³/s) July 7, 1968; no flow at times in 1968-74 and 1977-78.

DISCHARGE IN CHRIC FEET DED SECOND. WATER VEAR OCTORER 1077 TO SERTEMBER 1078

		DISCHA	RGE, IN C	UBIC FEET	PER SEC	OND, WATER EAN VALUES	YEAR OCT	TOBER 1977	7 TO SEPTI	MBER 1978	3	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	127	30	36	28	29	23	79	182	168	245	69	209
2	138	30	48	32	24	24	80	201	84	249	46	210
2 3 4	116	30	49	31	26	16	73	219	45	249	45	210
	92	25	22	25	24	19	73	193	47	243	64	206
5	81	10	13	42	23	16	88	144	103	239	91	187
6	61	.00	15	37	25	24	123	104	152	242	100	188
7	61	5.0	15	29	39	17	129	201	177	256	100	226
8	63	25	35	37	33	12	117	209	188	257	110	226
9	65	26	36	44	30	9.3	115	194	191	247	116	226
10	85	35	34	31	28	36	98	175	190	229	145	223
11	110	65	35	25	27	39	104	160	188	231	172	171
12	84	65	40	25	30	45	76	163	217	220	170	122
13	79	65	51	23	25	29	79	168	258	200	172	81
14	67	6.5	62	24	34	43	96	166	246	218	171	32
15	50	65	61	21	25	45	95	190	233	233	171	32
16	45	65	36	25	31	53	95	223	233	220	172	42
17	40	6.5	22	24	34	40	92	236	263	213	198	48
18	24	6.5	18	29	30	45	104	241	264	185	219	70
19	80	45	14	17	34	23	156	244	266	149	222	88
20	80	.00	16	39	43	7.5	155	235	261	148	224	89
21	80	.00	23	43	61	25	143	227	250	151	238	125
22	80	2.9	24	42	75	42	153	239	257	150	228	145
23	55	26	22	40	69	47	130	251	252	149	243	145
24	40	48	23	47	31	82	98	236	233	141	222	146
25	30	49	18	52	26	95	94	237	234	146	204	148
26	15	50	24	28	12	93	95	231	239	147	236	145
27	25	39	25	23	2.6	95	93	234	255	116	221	143
28	15	33	26	23	1.9	94	128	242	255	102	208	142
29	15	16	32	23		94	152	242	247	99	198	142
30	15	14	24	29		82	168	248	242	98	193	141
31	25		26	21		72		247		103	192	
TOTAL	1943	1058.90	925	959	872.5	1386.8	3281	6482	6238	5875	5160	4308
MEAN	62.7	35.3	29.8	30.9	31.2	44.7	109	209	208	190	166	144
MAX	138	65	62	52	75	95	168	251	266	257	243	226
MIN	15	.00	13	17	1.9	7.5	73	104	45	98	45	32
AC-FT	3850	2100	1830	1900	1730	2750	6510	12860	12370	11650	10230	8540

CAL YR 1977 TOTAL 38509.10 MEAN 106 MAX 301 MIN .00 AC-FT 76380 WTR YR 1978 TOTAL 38489.20 MEAN 105 MAX 266 MIN .00 AC-FT 76340

406

GUADALUPE RIVER BASIN

08188750 GUADALUPE-BLANCO RIVER AUTHORITY CALHOUN CANAL FLUME NO. 2 NEAR LONG MOTT, TX

LOCATION.--Lat 28°30'09", long 96°45'40", Calhoun County, Hydrologic Unit 12100204, on left bank at concrete Parshall flume No. 2, 3,700 ft (1,130 m) downstream from State Highway 185, 4,200 ft (1,280 m) downstream from streamflow station 08188600, and 1.4 mi (2.3 km) north of Long Mott.

PERIOD OF RECORD. -- October 1971 to June 1972 (monthly discharge only), July 1972 to current year.

GAGE.--Deflection-vane recorder, water-stage recorder, and Parshall flume. Datum of gage is 22.37 ft (6.818 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair except for periods of low velocities, which are poor. Flow is diverted from Guadalupe River 550 ft (168 m) upstream from Guadalupe River near Tivoli (station 08188800), and then through a system of canals, Hog Bayou, and Goff Bayou, a distance of 8.9 mi (14.3 km) to the pumping station on Goff Bayou 1,900 ft (579 m) upstream from flume No. 1. Diversions to the Union Carbide Co. between flumes 1 (station 08188600) and 2 during the current year were 17,520 acre-ft (21.6 hm³). Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--7 years, 82.0 ft3/s (2.322 m3/s), 59.410 acre-ft/yr (73.3 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 282 ft³/s (7.99 m³/s) June 23, 1975; no flow at times in 1972-78.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES

						THE THEOLO						
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	115	.00	.00	.00	.00	.00	70	136	157	234	65	190
2	112	.00	.00	.00	.00	.00	70	158	76	237	29	188
2 3 4	106	.00	.00	.00	.00	.00	69	175	26	237	28	187
3										235	46	189
4	92	.00	.00	.00	.00	.00	70	188	26			
5	81	.00	.00	20	.00	.00	83	144	82	229	77	181
6	61	.00	.00	24	.00	.00	107	97	127	227	83	173
7	60	.00	.00	16	19	.60	114	183	156	238	92	173
8	60	9.2	.40	16	16	2.0	115	194	166	234	92	174
9	61	21	.00	26	16	3.0	115	176	167	215	98	176
10	59	.10	.00	12	16	2.0	96	154	168	197	124	175
11	34	.00	.00	.00	16	2.6	94	143	166	201	152	135
12	19	.00	.00	.00	16	3.0	63	147	201	196	148	74
13	12	.00	.00	.00	16	2.7	65	153	243	162	151	31
14	5.0	.00	.00	.00	16	2.5	83	151	236	183	151	32
15	.00	.00				1.6	80	176	233	196	151	32
15	.00	.00	.00	.00	16	1.0	80	170	233	190	131	32
16	.00	.00	.00	.00	16	2.7	82	214	222	179	151	32
17	.00	.00	.00	.00	16	2.0	84	231	250	186	159	32
18	.00	.00	.00	.00	16	2.8	89	232	259	170	167	54
19	.00	.00	.00	.00	16	2.0	111	233	255	127	169	81
20	.00	.00	.00	.00	26	2.4	110	223	249	128	169	80
21	.50	.00	.00	.00	32	3.2	100	215	242	128	187	85
22	.00	.00	.00	.00	32	3.4	113	227	247	127	191	105
23	.00	.00	.00	.00	31	39	86	240	235	124	219	113
23									209	117	206	114
24	.00	.00	.00	.00	.00	70	52	227				
25	.00	.00	.00	.00	.00	87	48	228	210	118	188	111
26	.00	.00	.00	.00	.00	87	48	223	221	123	218	116
27	.00	.00	.00	.00	.00	88	47	226	241	98	213	123
28	.00	.00	.00	.00	.00	86	82	234	242	85	207	122
29	.00	.00	.00	.00		86		236	234	85	197	122
30	.00	.00	.00	.00		75	123	239	229	85	190	123
31	.00		.00	.00		61		241		66	180	
TOTAL	877.50	30.30	.40	114.00	332.00	717.50	2575	6044	5775	5167	4498	3523
									193	167	145	117
ME AN'	28.3	1.01	.013	3.68	11.9	23.1	85.8	195				
MAX	115	21	.40	26	32	88	123	241	259	238	219	190
MIN	.00	.00	.00	.00	.00	.00	47	97	26	66	28	31
AC-FT	1740	60	.8	226	659	1420	5110	11990	11450	10250	8920	6990

CAL YR 1977 TOTAL 28687.80 MEAN 78.6 MAX 271 MIN .00 AC-FT 56900 WTR YR 1978 TOTAL 29653.70 MEAN 81.2 MAX 259 MIN .00 AC-FT 58820

08188800 GUADALUPE RIVER NEAR TIVOLI, TX

LOCATION.--Lat 28°30'20", long 96°53'04", Calhoun-Refugio County line, Hydrologic Unit 12100204, on right bank at diversion and saltwater barrier, one orifice located upstream and one downstream, 550 ft (168 m) downstream from Calhoun County Irrigation Canal intake, 0.4 mi (0.6 km) downstream from San Antonio River, 3.5 mi (5.6 km) north of Tivoli, and at mile 10.2 (16.4 km). Water-quality sampling site on left bank 474 ft (144 m) upstream.

DRAINAGE AREA .-- 10,128 mi2 (26,232 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1965 to current year.

REVISED RECORDS .-- WDR TX-68-1: Drainage area.

GAGE.--Duplex water-stage recorder. Datum of gage is 0.04 ft (0.012 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Many small diversions above station. Some regulation by powerplants. Upstream regulation same as that for Guadalupe River at Cuero (station 08175800) and San Antonio River at Goliad (station 08188500).

EXTREMES FOR PERIOD OF RECORD.--Maximum gage height (upstream from barrier), 13.7 ft (4.18 m) Sept. 22, 1967; minimum, 1.5 ft (0.46 m) Mar. 16, 1967. Maximum gage height (downstream from barrier), 13.6 ft (4.15 m) Sept. 22, 1967; minimum, 0.5 ft (0.15 m) July 12, 14, 1967.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1936, that of Sept. 22, 1967. Flood in July 1936 reached a stage of 11 ft (3.4 m), present site and datum. Levees along the Navigation Canal from San Antonio Bay to Victoria were built in 1961 and decreased the flood plain materially.

EXTREMES FOR CURRENT YEAR.--Maximum gage height (upstream from barrier), 9.0 ft (2.74 m) Sept. 14, 15; minimum, 2.1 ft (0.64 m) July 9. Maximum gage height (downstream from barrier), 8.9 ft (2.71 m) Sept. 15; minimum, 1.1 ft (0.40 m) July 17.

MAXIMUM DAILY GAGE HEIGHT, IN FEET, UPSTREAM AND DOWNSTREAM FROM SALTWATER BARRIER, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
	up down	up down	up down	up down	up down	up down	up down	up down	up down	up down	up down	up down
1	4.4 4.1	6.6 6.5	5.1 5.0	4.4 4.3	4.2 4.1	4.6 4.5	3.6 3.5	5.1 5.1	4.4 3.6	4.1 2.7	4.0 3.0	7.0 7.0
2	4.1 4.0	7.9 7.8	5.0 4.9	4.3 4.2	4.2 4.1	4.5 4.4	3.8 3.7	4.6 4.6	4.9 4.5	4.1 2.6	4.0 3.0	6.9 6.9
3	3.8 3.6	7.9 7.8	4.8 4.7	4.5 4.4	4.2 4.1	4.5 4.5	3.9 3.8	4.4 4.4	6.2 6.1	4.0 2.6	4.6 3.6	6.8 6.7
4	4.0 3.7	8.0 7.9	5.0 4.9	4.5 4.4	4.2 4.1	4.3 4.2	3.8 3.7	3.7 3.7	7.5 7.4	4.0 2.6	4.8 4.7	6.7 6.7
5	4.3 3.8	8.1 8.0	5.0 4.9	4.6 4.5	4.2 4.1	4.2 4.1	3.7 3.6	4.0 3.9	7.8 7.7	4.0 2.0	6.2 5.9	6.6 6.5
6 7 8 9	3.8 3.7 4.1 4.0 4.1 4.0 4.0 3.9 4.1 4.0	8.1 8.0 8.2 8.0 8.2 8.1 8.2 8.1 8.0 7.9	4.9 4.8 4.6 4.5 4.5 4.4 4.5 4.4 4.5 4.4	4.5 4.4 4.4 4.3 4.3 4.2 4.2 4.1 4.2 4.1	4.3 4.2 5.3 5.2 6.4 6.4 6.6 6.5 6.5 6.4	4.4 4.3 4.3 4.2 4.1 4.0 5.1 5.0 5.2 5.1	3.7 3.6 3.6 3.5 3.8 3.7 4.0 3.9 4.0 3.9	41. 4.0 4.2 4.1 4.2 4.1 4.0 4.0 3.8 3.7	7.8 7.7 7.5 7.4 7.3 7.2 7.6 7.5 7.9 7.8	4.0 1.9 4.0 1.8 4.0 1.8 3.8 1.8 4.0 1.8	6.8 6.7 7.6 7.4 7.8 7.7 8.0 7.9 8.0 7.9	6.6 6.5 6.5 6.4 6.4 6.4 6.5 6.4 6.9 6.8
11	4.1 4.0	7.9 7.8	4.7 4.6	4.4 4.3	6.5 6.4	5.5 5.3	3.3 3.2	4.0 3.9	8.0 7.9	3.9 1.8	8.0 7.9	7.9 7.9
12	3.7 3.6	7.9 7.8	4.6 4.5	4.7 4.6	6.8 6.7	5.5 5.3	3.4 3.3	3.7 3.7	8.1 7.9	3.9 1.8	8.0 7.9	8.7 8.5
13	3.5 3.4	7.9 7.8	4.6 4.5	4.7 4.6	6.7 6.6	5.2 5.1	3.8 3.6	3.6 3.5	8.0 7.9	3.9 1.9	8.0 7.9	8.7 8.5
14	3.4 3.3	7.8 7.7	4.5 4.4	4.6 4.5	6.3 6.2	4.8 4.6	5.4 5.2	3.3 3.1	7.7 7.6	3.9 2.2	8.0 7.9	9.0 8.8
15	3.4 3.2	7.5 7.4	4.4 4.3	4.6 4.5	5.8 5.7	4.5 4.4	5.7 5.5	3.3 3.2	7.4 7.2	3.9 2.3	7.9 7.8	9.0 8.9
16	3.2 3.1	7.2 7.1	4.5 4.4	4.4 4.3	5.6 5.5	4.1 3.9	5.6 5.5	4.0 3.2	6.9 6.8	3.9 2.1	7.9 7.8	8.9 8.8
17	3.2 3.1	6.9 6.8	4.5 4.4	4.3 4.2	6.0 5.9	3.8 3.7	5.0 5.0	4.0 3.2	6.3 6.2	3.9 1.9	7.8 7.7	8.7 8.6
18	3.1 3.0	6.7 6.6	4.3 4.2	4.3 4.2	6.7 6.6	3.8 3.6	4.6 4.5	4.0 3.3	5.6 5.6	4.0 2.5	7.7 7.6	8.4 8.4
19	3.2 3.0	6.6 6.5	4.3 4.2	5.0 4.9	6.7 6.6	3.6 3.4	4.1 4.0	4.0 3.0	5.2 5.2	4.0 2.4	7.6 7.5	8.4 8.3
20	3.2 3.0	6.5 6.4	4.2 4.1	5.3 5.2	6.4 6.3	3.6 3.4	3.5 3.4	4.0 3.0	4.8 4.7	4.0 2.4	7.6 7.4	8.3 8.2
21	3.4 3.3	6.3 6.2	4.2 4.1	5.3 5.2	6.1 6.1	3.5 3.4	3.5 3.4	4.0 2.7	4.4 4.3	4.0 2.2	7.5 7.4	8.2 8.1
22	4.1 3.9	6.0 5.9	4.0 3.9	4.9 4.9	6.1 6.0	3.5 3.3	3.8 3.7	3.9 2.8	4.0 4.0	4.0 2.3	7.5 7.4	8.1 8.0
23	4.7 4.6	5.9 5.8	4.0 3.9	4.7 4.6	5.9 5.8	3.7 3.6	5.0 4.8	4.0 2.7	3.8 3.7	4.0 2.4	7.4 7.3	8.0 8.0
24	5.1 5.0	5.7 5.6	4.0 3.9	4.6 4.5	5.6 5.5	3.8 3.7	6.0 5.8	4.1 3.2	3.6 3.5	4.0 2.5	7.4 7.3	8.0 7.9
25	5.2 5.1	5.5 5.4	3.9 3.8	4.4 4.3	5.2 5.1	3.5 3.4	6.5 6.4	3.9 3.4	4.1 3.4	4.0 2.6	7.3 7.2	7.9 7.9
26 27 28 29 30 31	5.9 5.8 6.2 6.1 6.2 6.1 5.8 5.8 5.5 5.4 5.1 5.0	5.3 5.2 5.4 5.3 5.3 5.2 5.2 5.1 5.1 5.0	3.9 3.9 4.3 4.2 4.3 4.2 4.4 4.3 4.4 4.3	4.1 4.0 4.0 3.9 4.0 3.9 4.0 4.9 4.0 3.9 4.1 4.0	4.9 4.8 4.7 4.6 4.6 4.5	3.3 3.2 3.5 3.4 3.6 3.5 3.7 3.6 3.7 3.6 3.5 3.4	7.2 7.1 7.4 7.3 7.4 7.3 6.9 6.9 5.8 5.8	3.8 3.4 3.6 3.4 4.1 3.4 4.1 2.8 4.0 2.6 4.2 2.7	4.1 3.4 4.1 3.0 4.1 2.7 4.0 2.6 4.0 2.6	4.0 2.6 4.0 2.5 4.0 2.6 4.0 2.5 4.0 2.9 4.1 3.7	7.3 7.3 7.3 7.2 7.3 7.2 7.3 7.2 7.2 7.2 7.1 7.1	7.8 7.8 7.8 7.7 7.7 7.6 7.6 7.6 7.6 7.5

08188800 GUADALAUPE RIVER NEAR TIVOLI, TX--Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1965 to current year. Chemical and biochemical analyses: October 1968 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1965 to current year. WATER TEMPERATURES: October 1965 to current year.

INSTRUMENTATION .-- Specific conductance is recorded continuously at this station.

EXTREMES FOR PERIOD OF DAILY RECORD. --

VICENES FOR FERROU OF DALLY RECORD.-SPECIFIC CONDUCANCE: Maximum daily, 1,000 micromhos June 1, 1971, Aug. 3, 1978; minimum daily, 170 micromhos Oct. 30, 1972.
WATER TEMPERATURES (1966-69): Maximum daily, 32.0°C on several days during June, July, and August 1967-69; minimum daily, 8.0°C Jan. 15, 1968.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 1,000 micromhos Aug. 3; minimum daily, 208 micromhos Sept. 13.

		SPE- CIFIC CON-			COLOR			OXYGEN, DIS- SOLVED	OXYGEN DEMAND. BIO-	HARD-	HARD- NESS,
	*****	ANCE	РН	TEMPER-	(PLAT-	BID-	OXYGEN, DIS-	CENT	ICAL,	NESS (MG/L	NONCAR- BONATE
DATE	TIME	(MICRO- MHOS)	(UNITS)	(DEG C)	UNITS)	(UTU)	SOLVED (MG/L)	SATUR- ATION)	(MG/L)	CACO3)	(MG/L CACO3)
NOV											
10	1500	434	7.2	17.5	70	310	7.4	80	2.8	150	26
26	1348	864	7.9	10.5	20	30	9.8	91	1.4	300	73
23	0825	822	7.8	28.0	20	40	5.3	68	1.7	300	76
19	1520	602		31.0						190	27
JUL 18	1220	870	7.9	31.0	10	35	5.7	77	1.8	300	76
SEP 27	1300	470	7.7	26.0	40	90	5.8	72	1.1	190	32
		MAGNE-		SODIUM	POTAS-				CHLO-	FLU0-	SILICA.
	CALCIUM	SIUM,	SODIUM,	AD-	SIUM.	BICAR-		SULFATE	RIDE.	RIDE,	DIS-
	DIS-	DIS-	DIS-	SORP-	DIS-	BONATE	CAR-	DIS-	DIS-	DIS-	SOLVED
	SOLVED	SOLVED	SOLVED	TION	SOLVED	(MG/L	BONATE	SOLVED	SOLVED	SOLVED	(MG/L
DATE	AS CA)	(MG/L AS MG)	(MG/L AS NA)	RATIO	(MG/L AS K)	HCO3)	(MG/L AS CO3)	(MG/L AS 504)	(MG/L AS CL)	(MG/L AS F)	SIO2)
NOV											
10	47	7.6	28	1.0	5.1	150	0	38	39	.2	13
JAN						150	U	36		• •	13
26	90	19	64	1.6	3.9	280	0	66	97	.6	4.6
23 JUN	86	20	61	1.5	4.2	270	0	61	86	.2	13
19	60	10	43	1.4	5.4	200	0	47	63	.3	17
18 SEP	86	20	71	1.8	4.3	270	0	68	100	.4	20
27	59	9.7	24	.8	3.9	190	0	34	34	.2	14
	SOL IDS.	SOLIDS,							NITRO-		
	SUM OF	RESIDUE	SOLIDS.	NITRO-	NITRO-	NITRO-	NITRO-	NITRO-	GEN . AM-		
	CONSTI-	AT 105	VOLA-	GEN,	GEN,	GEN,	GEN.	GEN.	MONIA +	PHOS-	CARBON,
	TUENTS.	DEG. C.	TILE,	NITRATE	NITRITE	N05+N03	AMMONIA	ORGANIC	ORGANIC	PHORUS.	ORGANIC
	DIS-	SUS- PENDED	SUS- PENDED	TOTAL (MG/L	TOTAL (MG/L	TOTAL (MG/L	TOTAL (MG/L	TOTAL (MG/L	TOTAL (MG/L	TOTAL (MG/L	TOTAL (MG/L
DATE	(MG/L)	(MG/L)	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)	AS P)	AS C)
NOV											
10 JAN	252	850	190	.67	.01	.68	.02	.86	.88	.54	
26	483	59	10	1.8	.01	1.8	.03	.42	.45	.38	13
23 JUN	465	88	11	1.5	•02	1.5	.03	.87	.90	.42	4.1
19	344								-		
JUL 18	503	65	3	.35	.01	•36	.01	.69	.70	.34	3.1
SEP 27	273	200	26	.93	.01	.94	.03	.82	.85	.46	1.5

GUADALUPE RIVER BASIN 409

08188800 GUADALUPE RIVER NEAR TIVOLI, TX--Continued

	DATE	τI	SOL	S- DI VED SOL /L (U	S- D: VED SOI G/L (U	MIUM NIS- CLVED S	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)		
	МАЧ	0.00	35	2	0	1	0	2	40		
	23 JUL 18			3	300	2	0	2	20		
	SEP 27			4	100	1	0	0	20		
	21	• 13	00	MANGA-		SELE-			20		
		DATE	DIS- SOLVED (UG/L AS PB)	NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L	NIUM, DIS- SOLVE (UG/L AS SE	SIL D SOIL (U	IS- D LVED SO G/L (U	NC, IS- LVED G/L ZN)		
		YAY 23	5	40	.0		0	0	10		
		JUL 18	3	20			0	0	20		
		SEP 27	1	0			0	0	10		
DATE		PCB. TOTAL (UG/L)	PCB. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	NAPH- THA- LENES. POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN TOTAL IN BOT TOM MA TERIA (UG/KG	- CHL	CH DA TO OR- IN NE, TOM	LOR- NE, TAL BOT- MA- [ODD; OTAL JG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
23	0825	• 0		.00	.00		-	.0		.00	
JUL 18	1220	.0	1	.00	.00		0	.0	0	.00	.1
DATE	DDE. TOTAL	DDE, TOTAL N BOT- DM MA- TERIAL UG/KG)	DDT. TOTAL (UG/L)	DDT. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL (UG/L)	DI- ELDRI TOTAL (UG/L	ELDS TO IN S IN TOM	MA- SUL	TAL TO	DRIN, DTAL UG/L)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
YAM 23	.00		•00		.04	• 0	00		.00	.00	
JUL 18	•00	.2	•00	.0		.0	00	.0	.00	.00	•0
DATE	ETHION TOTAL (UG/L	TOTA	OR, TOM	OR, AL HER OT- CHI MA- EPOS IAL TO	CHL PTA- EPOX LOR TOTA XIDE BOT	IN TOM LI	NDANE OTAL UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL (UG/L)	MET PAR THI TOT (UG	A- ON, AL
MAY 23 JUL		0 .	.00		•00		.00		.00		•00
18	0	0 .	.00	.0	•00	• 0	.00	• 0	•00		.00
DATE	METHYL TRI- THION: TOTAL	MIRE TOT	AL TOT	ON APHE	TOT DX- IN E ENE, TOM	NE + BOT - T MA - RIAL T	OTAL TRI- HION UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILV TOT (UG	AL
YAM 23.	00	0		.00	0		.00	.22	.01		•00
JUL 18.				.00	0	0	.00	.01	.00		•00

GUADALUPE RIVER BASIN

08188800 GUADALUPE RIVER NEAR TIVOLI, TX--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		007000			NOVENCE			0=05405				
		OCTORE	H		NOVEMBE	.н		DECEMBE	P		JANUAF	44
1	830	813	820	719	620	670			810	855	839	848
2	852	805	829	653	555	607			820	861	843	853
3	852	827	843	555	425	490			820	876	849	862
5	858 855	843 833	850 846	732 670	425 328	561 438			820	849 839	830 819	841 831
	633	033	040	010	360	436			821	637	017	031
6	840	819	831	460	355	411			816	852	836	843
7	870	827	845	375	351	364			816	858	827	847
8	906	870 880	891 898	372 437	351 373	357 406		1	824 830	861 872	843 854	855 863
10	880	822	851	470	425	448			825	868	843	856
11	827 811	800 794	812	505	399	440			830	865	846	856
13	832	818	825	557 537	498 468	530 498			819 824	865 855	849 822	857 838
14	833	805	818	545	523	533			836	849	827	840
15	846	827	834	552	519	534			840	883	852	864
16	874	839	855	580	519	545			842	880	858	868
17	877	859	868	645	580	615			845	887	868	878
18	885	863	874	700	643	672			847	870	849	860
19	867	855	858	724	700	714	861	843	852	849	802	826
50	874	833	853	751	724	742	858	839	850	819	786	805
21	852	838	844	753	746	750	852	827	838	791	772	781
55	843	805	822			754	849	824	838	827	780	802
23	805	714	790			758	849	824	838	864	827	844
24	763 759	716	740 746			765	855	824	839	874	852	863
23	139	111	140			778	861	843	852	892	851	872
26	861	717	784			782	864	849	858	862	850	856
27	867	783	818			788	872	850	861	875	854	864
28	791 655	645	700 632			799	862	843	852	870 868	860 849	865 858
30	681	651	672			808 807	849 852	830 839	839 845	887	878	882
31	696	664	678				846	836	842	887	878	882
MONTH	909		011	25.2	22.		.70			202	220	
MONTH	909	616	811	753	328	612	872	824	835	892	772	850
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FERRUAR			MARCH			APRIL			MAY	
		LEGAUSK			МАКСП			PERIL			ITAT	
1	891	882	886	879	866	872	854	833	844	624	587	603
S	887	875	881	886	874	880	858	839	849	693	628	657
3	896 896	878 878	887 887	906	887 889	896 895	858 891	816 847	830 869	756 780	711	726 746
5	893	878	886	906	875	890	886	874	879	825	708	766
		0.75	200		004		-64	.70	070	014	741	700
6	884 886	875 843	880	906 886	886	896	896 881	870 819	879 852	816 861	761 789	790 822
8	874	775	815	904	846	875	864	835	850	893	815	854
9	833	679	732	852	783	818	889	845	867	818	796	807
10	712	657	680	813	785	799	917	873	895	822	794	803
11	724	672	700	852	783	822	910	857	884	839	805	824
12	819	724	784	819	791	801	920	880	900	805	751	767
13	843	791	817	791	730	760	900	860	880	816	783	805
14	783 797	767 773	775	789	748	776	930 879	877 839	904	852 890	822 862	836 876
13	191	113	785	783	778	780	519	839	859	690	200	010
16	773	700	736	819	778	797	839	640	740	899	858	875
17	794	722	763	855	822	834	724	705	714	909	864	884
18	769	769 618	791 662	874	855 870	866	751 790	724	743 759	903 892	867 858	885 875
50	681	655	649	926	905	880 917	803	754	778	889	861	876
21		713	730	912	889	902	817	733	775	877	855	866
	746		743		886	895	813	761	789	864	816	848 822
55	787	750	768		861	880	816	759				
			768 814 853	891 874	861 858	880 863	816 824	759 557	778 642	861 858	783 775	816
53 55	787 840	750 788	814	891								
22 23 24 25	787 840 870 849	750 788 836 836	814 853 843	891 874 896	858 870	863 878	824 746	557 670	642 713	858 919	775 858	816 894
22 23 24 25	787 840 870 849	750 788 836 836	814 853 843 856	891 874 896	858 870 880	863 878 890	824 746 860	557 670 571	642 713 716	858	775	816
22 23 24 25 26 27 28	787 840 870 849	750 788 836 836	814 853 843	891 874 896 896 899 877	858 870 880 877 855	863 878	824 746 860 585 632	557 670 571 435 438	713 716 506 552	969 936 867	775 858 909 813 794	816 894 939 877 842
22 23 24 25 26 27 28 29	787 840 870 849 867 879 879	750 788 836 836 843 853 841	814 853 843 856 868 860	891 874 896 896 899 877 922	858 870 880 877 855 897	863 878 890 889 866 910	824 746 860 585 632 616	557 670 571 435 438 525	716 506 552 556	969 936 867 824	775 858 909 813 794 751	816 894 939 877 842 798
22 23 24 25 26 27 28 29 30	787 840 870 849 867 879	750 788 836 836 843 853 841	814 853 843 856 868 860	891 874 896 896 899 877 922 925	858 870 880 877 855 897 890	863 878 890 889 866 910 908	824 746 860 585 632 616 585	557 670 571 435 438 525 546	716 506 552 556 570	858 919 969 936 867 824 800	775 858 909 813 794 751 710	939 877 842 798 777
22 23 24 25 26 27 28 29	787 840 870 849 867 879 879	750 788 836 836 843 853 841	814 853 843 856 868 860	891 874 896 896 899 877 922	858 870 880 877 855 897	863 878 890 889 866 910	824 746 860 585 632 616	557 670 571 435 438 525	642 713 716 506 552 556 570	858 919 969 936 867 824 800 827	775 858 909 813 794 751 710 751	816 894 939 877 842 798 777 795
22 23 24 25 26 27 28 29 30	787 840 870 849 867 879 879	750 788 836 836 843 853 841	814 853 843 856 868 860	891 874 896 896 899 877 922 925 890	858 870 880 877 855 897 890	863 878 890 889 866 910 908	824 746 860 585 632 616 585	557 670 571 435 438 525 546	716 506 552 556 570	858 919 969 936 867 824 800	775 858 909 813 794 751 710	939 877 842 798 777

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
7		JUNE			JULY			AUGUST			SEPTEMA	ER
								222	42.4	405	478	490
1	899	802	859	819	623	771	975	852 858	930	495 514	495	506
2	906	852	876	813 833	624	759 777	1000	906	956	527	505	518
3	852 626	574 456	710 541	849	761	822	982	851	931	546	525	538
5	456	331	394	846	790	818	946	555	692	563	527	545
6	425	325	355	864	769	817	722	412	487	585	550	577
7	655	431	559	858	783	827	433	364	398	587	557	572
8	671	580	642	877	797	829	628	424	526	557	534 528	545 544
9	599	528	566	880	805	833	628 486	472	550 481	564 580	545	562
10	637	457	564	889	H30	863	400	411	401			
11	457	386	416	874	849	862	471	454	462	608	545	576
12	478	424	451	899	846	852	482	468	475	593 281	281 208	361 228
13	424	406	415	889	824	856 786	505 514	482 506	511	251	211	231
14	443	416	430	904 861	669 677	800	516	500	508	291	251	265
								-07	E10	297	280	287
16	498	465	478	880 890	827	853 860	512 513	507 509	510 512	287	283	284
17	539 589	500 539	519 564	892	822	857	512	501	507	320	283	304
19	624	589	606	906	836	877	508	489	498	330	316	322
50	670	640	655	899	808	859	490	476	484	351	318	334
21	705	670	687	892	830	861	484	463	474	403	352	375
55	719	705	713	902	830	871	467	459	462	432	405	421
53	740	694	717	902	827	866	462	452	456	460	432	454
24	732	684	710	891	830	860	452	435	443	467	456 447	460 457
25	743	670	714	874	813	848	441	432	438	467	***	
26	771	659	715	925	856	890	440	431	434	467	451	459
27	809	710	760	956	399	928	432	425	430	482	465	472 488
28	805	696	749	947	880	914	430	419	423	497 505	482 490	499
29	A31	693	762	923	952 852	891 894	424 451	410	431	523	505	513
30 31	839	651	745	916 926	843	884	481	452	470			
	906	325	611	956	623	848	1000	364	539	608	208	440
MONTH	4110										1.00	
		TE	MPERATURE	(DEG. C)		WATER YEA	AR OCTOBER	1977 TO	SEPTEMBE	R 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		24.0	17.0		10.0	17.0		25.0	28.0		29.0	29.0
2		20.0	18.0		9.0	17.0		25.0	28.0		28.0	
3	27.0	19.0		12.0	9.0	16.0	22.0	23.0		31.0	29.0	
5	27.0	20.0	20.0	12.0			23.0	23.0	27.0	30.0	28.0	29.0
-	21.0	1707	2000	14.0								
6	27.0		17.0	15.0	11.0	15.0	24.0		27.0	31.0	20.0	28.0
7	26.0	20.0	17.0		11.0	16.0	24.0	26.0	27.0	31.0	28.0	27.0
8		20.0	18.0	13.0	9.0	15.0		27.0	28.0		28.0	
10	26.0	17.0	15.0	13.0	9.0	16.0	23.0	26.0		31.0	28.0	
11	23.0	16.0		12.0			21.0	27.0		31.0	28.0	26.0
12	22.0	10.0	15.0	11.0			20.0	27.0	28.0	31.0		26.0
13	22.0		17.0	10.0	11.0	19.0	20.0		28.0	31.0		26.0
14	55.0	18.0	16.0		12.0	20.0	20.0		29.0	31.0	28.0	26.0
15		19.0	16.0		11.0	20.0		27.0	29.0		28.0	26.0
16		20.0	17.0	14.0	11.0	18.0		27.0	29.0		28.0	
17	22.0	20.0		11.0	12.0	19.0	23.0	27.0		31.0 31.0	28.0	27.0
18	55.0	20.0	17.0	10.0			24.0	27.0	30.0	31.0	20.0	28.0
19	55.0		17.0 15.0	9.0	11.0	18.0	23.0		30.0	31.0		28.0
									20.0	20.0		28.0
21	23.0	20.0	14.0		11.0	18.0	23.0	28.0	30.0	30.0		27.0
53		19.0	13.0	R.0	11.0	20.0		28.0	30.0		26.0	
24	22.0	20.0		9.0	13.0		21.0	28.0		30.0	28.0	
25	22.0	19.0		10.0			23.0	28.0		29.0		26.0
26	23.0			10.0			22.0	28.0	30.0	30.0		26.0
									30.0	30.0		26.0
27	55.0		14.0	10.0	17.0	19.0	21.0					
28	53.0	21.0	13.0		18.0	18.0	22.0		30.0	30.0	29.0	24.0
28	53.0	21.0	13.0 13.0		18.0	18.0	22.0		30.0	30.0	29.0	24.0
28 29 30	53.0	21.0 18.0 18.0	13.0 13.0 13.0	10.0	18.0	18.0 19.0 20.0	22.0	28.0	30.0 31.0 31.0	30.0	29.0 29.0 29.0	24.0
28	53.0	21.0	13.0 13.0 13.0		18.0	18.0	22.0		30.0	30.0	29.0	25.0

COPANO CREEK BASIN

08189200 COPANO CREEK NEAR REFUGIO, TX

LOCATION.--Lat 28°18'12", long 97°06'44", Refugio County, Hydrologic Unit 12100405, on right bank at bridge on Farm Road 774, 3.6 mi (5.8 km) upstream from Alameda Creek, 8.1 mi (13.0 km) east of Refugio, and 11.9 mi (19.1 km) upstream from mouth.

DRAINAGE AREA .-- 87.8 mi2 (227 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- June 1970 to current year.

GAGE.--Water-stage recorder. Datum of gage is 17.25 ft (5.258 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. No known diversion above station. Recording rain gage is located at station.

AVERAGE DISCHARGE. -- 8 years, 51.7 ft3/s (1.464 m3/s), 37,460 acre-ft/yr (46.2 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $6,300 \text{ ft}^3/\text{s}$ (178 m³/s) Sept. 12, 1971, gage height, 21.00 ft (6.401 m), from rating curve extended above 3,800 ft³/s (108 m³/s); no flow at times each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1921, 22 ft (6.7 m) in September 1967, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 500 ft³/s (14.2 m³/s) and maximum (*):

Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)	Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)
June 4	1100	722	20.4	11.13	3.392	Sept. 14	1200	*2,690	76.2	16.12	4.913

Minimum discharge, no flow at times.

		DISCHA	RGE, IN C	UBIC FEE	T PER SECO	ND, WATI AN VALUE	ER YE	AR OCTOB	ER 197	7 TO SEPTE	MBER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR		APR	MAY	JUN	JUL	AUG	SEP
1	.00	.01	2.8	.00	1.1	3.0		.00	.04	26	.00	3.8	.00
2	.00	28	2.0	.02	1.1	2.4		.00	.01	179	.00	6.7	.00
2	.00	70	1.7	.07	1.1	1.9		.00	.01	461	.00	5.4	.00
4	.00	64	1.5	.07	.88	1.5		.00	.00	705	.00	3.3	.00
5	.00	52	1.1	.07	.77	1.1		.00	.00	509	.00	1.9	.00
6	.00	53	.79	.10	.63	1.0		.00	.01	272	.00	1.1	.00
7	.00	55	.65	.10	23	.87		.00	.04	245	.00	.60	.00
8	.00	57	.48	.05	78	.70		.00~	.05	264	.00	.31	.00
9	.00	50	.28	.02	80	.68		.00	.05	203	.00	.13	.00
10	.00	40	.17	.02	71	.50		.00	.02	154	.00	.29	.00
11	.00	30	.18	.50	65	.41		.00	.01	121	.00	.36	24
12	.00	22	.13	1.5	60	.29		.00	.00	89	.00	.11	990
13	.00	19	.09	1.5	49	.27		.00	.00	61	.00	.03	1870
14	.00	15	.05	.95	34	.23		.00	.00	44	.00	.00	2570
15	.00	11	.03	.56	20	.30		.00	.00	28	.00	.00	2030
16	.00	8.0	.03	.49	15	.36		.00	.00	16	.00	.00	1370
17	.00	6.2	.02	.30	17	.32		.00	.00	10	.00	.00	1050
18	.00	5.5	.00	.31	30	.22		.00	.00	7.0	.00	.00	891
19	.00	6.8	.00	.36	35	.11		.00	.00	5.0	.00	.00	782
20	.00	5.8	.00	.36	35	.07		.00	.00	3.7	.00	.00	708
21	.00	4.5	.00	.36	36	.05		.00	.00	2.8	.00	.00	661
22	.00	4.2	.00	.36	32	.03		.44	.00	2.0	.00	.00	628
23	.00	5.7	.00	2.5	20	.02		3.4	.00	1.4	.00	.00	856
24	.00	9.6	.00	5.2	13	.01		1.5	.00	.91	.00	.00	1300
25	.00	8.9	.00	4.8	9.5	.00		.94	.00	.55	12	.00	954
26	.00	7.2	.00	3.7	6.8	.00		.44	.00	.31	33	.00	655
27	.00	5.7	.00	2.9	4.9	.00		.18	.00	.15	15	.00	420
28	.00	4.6	.00	2.1	3.8	.00		.09	.00	.07	6.8	.00	246
29	.00	3.9	.00	1.6		.00		.05	.00	.02	3.9	.00	140
30	.00	3.5	.00	1.3		.00		.05	.00	.00	2.4	.00	71
31	.00		.00	1.1		.00			.00		2.1	.00	
TOTAL	.00	656.11	12.00	33.27	743.58	16.34		7.09	.24	3410.91	75.20	24.03	18216.00
MEAN	.000	21.9	.39	1.07	26.6	.53		.24	.008	114	2.43	.78	607
MAX	.00	70	2.8	5.2	80	3.0		3.4	.05	705	33	6.7	2570
MIN	.00	.01	.00	.00	.63	.00		.00	.00	.00	.00	.00	.00
AC-FT	.00	1300	24	66	1470	32		14	.5	6770	149	48	36130
CAL YR WTR YR				N 16.2 N 63.5	MAX 195 MAX 2570		.00	AC-FT AC-FT	11760 46010				

COPANO CREEK BASIN 413

08189200 COPANO CREEK NEAR REFUGIO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: June 1970 to current year.

DATE	TIME	STRE FLO INST TANE (CF	AN-	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PI	A.	MPER- TURE EG C)	TUI BII IT	D- Y	OXYGE DIS SOLV	ED	OXYGE DIS SOLV (PER CEN SATU ATIO	- DE ED E - C T I	YGEN MAND, BIO- CHEM- CAL, DAY	HAR NES (MG	S /L	HARD- NESS. NONCAR- BONATE (MG/L CACO3)
								,	•				** Y		-		100000
NOV																	
29	. 0810	3	.6	270		7.0	20.5		190		.4		61	2.5	,	34	0
09 FEB	1527		. 05	450		5.8	10.5		240	1	.2		67	7.7			
23	1140	20		200	4	7.1	11.0		220	9	8.6		92	2.7		31	4
JUN 22	1045	1	.9	325		7.2	28.5		55	4	.2		55	4.5		62	0
09	1125		.18	414		5.7	26.5		95		3.5		45	5.1		50	0
SEP 19	0950	782		93		5.3	29.0		15	,	.6		21	2.7		27	0
DATE	CALCIUM DIS- SOLVEI (MG/L	MAG M SI DI SOL	NE- UM, S- VED	SODIUM. DIS- SOLVED (MG/L	SOD	IUM PO D- :	OTAS- SIUM. DIS- DLVED	BICA BONA (MG A	R- TE /L S	CAR- BONAT	E 'L	SULFA DIS- SOLV (MG/	TE F	CHLO- RIDE, DIS- GOLVED (MG/L	FLU RID DI SOL (MG	0- E, S- VED	SILICA. DIS- SOLVED (MG/L AS SIO2)
DATE	AS CA	AS	MUI	AS NA)		A	5 K)	HCU	31	AS CO	131	AS SO	,, ,	15 CL/	AS	,	31021
NOV																	
JAN	. 10		2.2	27	3	2.0	6.0		56		0	13		35		.0	• 2
09 FEB									120		0	31		72		.2	25
23		1	2.1	24		1.9	4.9		34		0						8.8
22	• 19		3.5	38	3	2.1	7.9		98		0	14		38		.2	41
09 SEP	. 16		2.4	64		3.9	6.3		98		0	16		74		.1	25
19	. 7.9	9	1.7	5.5		.5	4.4		38		0	4	.7	6.5	5	.0	19
	SI CC TI	DLIDS, JM OF DNSTI- JENTS, DIS- SOLVED (MG/L)	DEG. SUS PENI	IDUE N 105 • C, NI S- TODED (ITRO- GEN, TRATE OTAL MG/L S N)	NITRO- GEN, NITRITI TOTAL (MG/L AS N)	E NOZ	TRO- GEN, 2+NO3 DTAL MG/L G N)	AMM TO	TRO- EN, ONIA TAL G/L N)	ORG TO	EN,	NITRO GEN, AM MONIA ORGANI TOTAL (MG/L AS N)	1- 1C PH	PHOS- HORUS, TOTAL (MG/L	ORG TO	BON, ANIC TAL G/L C)
	vov																
	29 JAN	119		284	•14	• 0	1	•15		.10		2.0	2.1		.20		25
	09 FEB			120	.01	.0	2	.03		.24		1.2	1.4		.24		30
	23 JUN	406		388	.24	.0	1	.25		.03		1.1	1.1	L.	.12		10
	22 AUG	210		70	.06	.0	2	.08		•04		2.5	2.5	5	.17		25
	09 SEP	252		192	•00	.0	3	.02		•55		2.5	2.1	•	.16		30
	19	69		80	.00	.0	1	.01		.06		.94	1.0)	.09		16

COPANO CREEK BASIN

08189200 COPANO CREEK NEAR REFUGIO, TX--Continued

	DAT	T II	DI SOL ME (UG	VED SOL	RIUM, IS- LVED UG/L S BA)	CADM: DIS SOLV (UG.	S- VED /L	CHRO MIUM DIS- SOLV (UG/ AS C	ED L	COPPER, DIS- SOLVED (UG/L AS CU)	SOL (UG	S- VED /L			
	NOV														
	29. FER		10	2	600		0		16	5		500			
	23.	11	40	1	100		0		0	4		190			
	19.		50	2	0		1		0	2		90			
		DATE	DIS- SOLVED (UG/L AS PB)	MANGA NESE + DIS- SOLVE (UG/L AS MN	MER D SC	RCURY DIS- DLVED DG/L S HG)	SOL (UG	E- IM, IS- VED S/L SE)	SILV DI SOL (UG AS	S- VED S	INC+ DIS- SOLVED (UG/L AS ZN)				
		NOV	3	2	0	.0		0		0	50				
		29 FEB													
		23 SEP	0	1	0	.0		0		0	50				
		19	0	2	0	.0		0		0	0				
DATE	TIME	PCB+ TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	NAPH- THA- LENES POLY CHLOR TOTAL (UG/L	- ALI	ORIN.	TOM TOM TER	MA-	CHL DAN TOT (UG	OR- IN E, TO AL 1	CHLOR- DANE, TOTAL N BOT- DM MA- TERIAL JG/KG)	TOT	D.	TOT IN B	HA-
NOV															
29 FEB	0810	.0	0	.0	0	.00		.0		.0	0		.00		.0
23 SEP	1140	• 0	0	.0	0	.00		.0		• 0	0		.00		•0
19	0950	.0	0	.0	0	.00		.0		.0	0		.00		.0
DATE	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL (UG/L)	DOT. TOTAL IN BOT TOM MA TERIA (UG/KG	- AZ	DI- INON, DTAL UG/L)	TOT	I- ORIN TAL G/L)	TOT IN B	IN. AL OT- E MA- SI	ENDO- JLFAN, TOTAL (UG/L)		RIN.	IN E	MA-
NOV 29	.00	.0	.00		0	.00		.00		.0	.00		.00		.0
FE8 23	.00	.0	.00		0	.00		.00		.0	.00		.00		.0
SEP 19	•00	.0	•00		0	.00		.00		.0	.00		.00		.0
DATE	ETHIC	HEP DN. CHL AL TOT	HEI CHI TO TA- IN OR, TOM	DTA- LOR+ TAL H BOT- C MA- EP	EPTA- HLOR OXIDE OTAL UG/L)	HEP CHL EPOX TOT. BOT	IDE IN TOM	LIND TOT (UG	ANE AL	LINDANI TOTAL IN BOT- TOM MA- TERIAI (UG/KG	- MAL - THI L TOI	A- ION. IAL	MET PAR THI TOT (UG	A- ON,	
NOV		00	0.0	.0	.00		.0		.00		0	.00		.00	
FER		.00	•00						.00			.00		.00	
SEP		.00	•00	• 0	•00		• 0							.00	
19.	MET! TH	I- ON. MIF	REX. TH		TOX-	TOX PHE TOT IN E	AL BOT-	TOT TR	I -	2,4-0	, 2,4	•00	SILV	EX,	
DAT	E (UG				OTAL (UG/L)	(UG/	KG)	(UG		(UG/L		TAL G/L)	(00	AL)	
NOV		.00		.00	0		0		.00	.0	0	.00		.00	
FEP 23.		.00		.00	0		0		.00	.0		.00		.00	
SFP		.00	.00	.00	0		0		.00	.0		.00		.00	
19.	••	• • • •	. 00	.00	U					•••					

415

08189500 MISSION RIVER AT REFUGIO, TX

LOCATION.--Lat 28°17'30", long 97°16'44", Refugio County, Hydrologic Unit 12100406, on left bank at upstream side of upstream bridge of two bridges on U.S. Highway 77, 560 ft (171 m) upstream from Missouri Pacific Railroad Co. bridge, and 0.2 mi (0.3 km) southwest of Refugio.

DRAINAGE AREA .-- 690 mi² (1,787 km²).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1939 to current year.

REVISED RECORDS.--WSP 1923: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1.00 ft (0.305 m) National Geodetic Vertical Datum of 1929. Prior to Nov. 25, 1958, nonrecording gage at site 59 ft (18 m) downstream at same datum. Nov. 26, 1958, to Apr. 18, 1963, nonrecording gage at present site and datum.

REMARKS.--Water-discharge records good. Several small diversions above station.

AVERAGE DISCHARGE.--39 years (water years 1940-78), 115 ft3/s (3.257 m3/s), 2.26 in/yr (57 mm/yr), 83,320 acre-ft/yr (103 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 79,000 ft³/s (2,240 m³/s) Sept. 12, 1971, gage height, 38.25 ft (11.659 m); minimum observed, 0.7 ft³/s (0.02 m³/s) Oct. 7, 9, 1940, Aug. 18-20, Sept. 5, 1945, Dec. 29, 31, 1949, Jan. 1, 1950, July 13, Aug. 28, 1963, July 18, 19, 22-26, 31, Aug. 1, 2, 1971.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since about 1899, that of Sept. 12, 1971. Flood of Sept. 21, 1967, reached a stage of 36.5 ft (11.13 m), discharge $60,200 \text{ ft}^3/\text{s}$ (1,700 m³/s). Flood of July 7, 1942, reached a stage of 33.3 ft (10.15 m), discharge $41,700 \text{ ft}^3/\text{s}$ (1,180 m³/s). Floods in August 1914 and May 17, 1938, reached a stage of 32.3 ft (9.85 m), from information by local residents. Flood of May 13, 1972, reached a stage of 28.25 ft (8.611 m).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,320 ft 3 /s (122 m 3 /s) June 4, gage height, 21.80 ft (6.645 m), no other peak above base of 3,000 ft 3 /s (85.0 m 3 /s), revised; minimum, 5.8 ft 3 /s (0.16 m 3 /s) Aug. 24, 27-30.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1977	T0	SEPTEMBER	1978
					MEAN	VALUES						

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	11 11 11 11 11	36 566 614 186 93	45 30 26 25 24	21 21 21 21 21	18 19 20 19 18	25 24 23 22 21	14 14 14 14 13	10 9.8 9.8 9.8	455 558 1070 3850 2830	18 17 17 17 16	19 23 17 12 10	7.1 7.7 7.9 7.9 8.0
6 7 8 9 10	11 11 11 17 23	58 42 36 225 419	22 20 20 20 20	21 21 20 20 19	18 30 85 165 86	21 21 22 21 20	13 13 13 13	10 10 10 9.9 9.6	535 510 1760 899 292	15 14 13 13	9.1 8.7 8.9 7.9 7.2	9.4 9.7 9.8 17 21
11 12 13 14 15	24 21 18 15	135 74 53 42 38	19 19 19 20 20	20 21 21 20 19	54 39 33 28 26	20 19 19 19	13 15 15 16 15	9.4 9.1 8.7 7.5 7.2	157 107 79 64 53	12 11 11 11 11	6.8 6.5 6.5 6.5	209 1380 915 600 527
16 17 18 19 20	14 14 14 14	35 33 31 30 29	20 20 19 19	18 18 19 32 68	25 36 769 365 131	18 17 17 17	13 13 12 12	7.2 7.2 7.2 7.2 6.9	46 40 36 33 29	11 11 10 19 13	6.7 6.2 6.2 7.4 6.6	612 328 129 78 54
21 22 23 24 25	13 16 19 29 33	29 30 28 27 26	18 18 18 18	41 29 24 22 21	74 50 38 33 30	17 17 17 17	11 21 19 16 14	6.8 7.4 16 16	27 25 24 23 22	13 10 9.1 12 11	6.9 6.2 6.2 6.4 6.8	42 36 78 240 125
26 27 28 29 30 31	24 23 19 17 16	26 25 25 25 29	18 19 19 19 20 20	21 19 18 18 17	28 27 26 	17 16 15 15 14 15	12 11 10 10	8.5 7.6 7.6 7.2 6.5 6.1	21 20 19 18 18	9.0 8.6 8.3 8.3 8.5	6.4 5.9 5.8 5.8 6.0 8.5	60 36 27 24 21
TOTAL MEAN MAX MIN CFSM IN. AC-FT	515 16.6 33 11 .02 .03	3045 102 614 25 .15 .16 6040	650 21.0 45 18 .03 .04 1290	709 22.9 68 17 .03 .04	2290 81.8 769 18 .12 .12	578 18.6 25 14 .03 .03	403 13.4 21 10 .02 .02 799	277.2 8.94 16 6.1 .01 .01	13620 454 3850 18 .66 .73 27020	386.8 12.5 19 8.3 .02 .02 767	259.9 8.38 23 5.8 .01 .01	5626.5 188 1380 7.1 .27 .30 11160
CAL YR WTR YR	1977 TOTAL 1978 TOTAL			132 77.7	MAX 4160 MAX 3850	MIN MIN			N 2.59 N 1.53		220 250	

MISSION RIVER BASIN

08189500 MISSION RIVER AT REFUGIO, TX--Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: September 1961 to current year. Chemical and biochemical analyses: January 1968 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: September 1961 to current year. WATER TEMPERATURES: September 1961 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 100,000 micromhos Nov. 28, 1965; minimum daily, 85 micromhos Sept. 13, 1971.
WATER TEMPERATURES: Maximum daily, 37.0°C May 12, 1967; minimum daily, 0.0°C Jan. 18, 1977.

EXTREMES FOR CURRENT YEAR.--SPECIFIC CONDUCTANCE: Maximum daily, 3,790 micromhos May 31; minimum daily, 176 micromhos June 4. WATER TEMPERATURES: Maximum daily, 31.5°C July 17; ;minimum daily, 5.5°C Jan. 21.

	TIME	STPEAM- FLOW. INSTAN- TANEOUS	SPE- CIFIC CON- DUCT- ANCE (MICRO-	РН	TEMPER- ATURE	COLOR (PLAT- INUM- COBALT	TUR- BID- ITY	OXYGEN, DIS- SOLVED	OXYGEN, DIS- SOLVED (PER- CENT SATUR-	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY	COLI- FORM. TOTAL. IMMED. (COLS. PER
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	UNITS)	(UTU)	(MG/L)	ATION)	(MG/L)	100 ML)
02	1035	31	1520	7.9	16.0			-		-	- ·
JAN 26	1200	21	1770	7.7	10.0	·	15	10.6	97	1.4	640
16	1315	25	1850	7.6	12.5		20	10.0	97	1.5	740
16	1345	18	2480	7.9	19.5		15	9.7	109	.6	660
25 MAY	1145	14	2560	7.8	25.0		50	8.0	99	2.9	6600
23	1015	17	2830	7.7	26.5		20	5.7	72	2.0	3500
27 JUL	1350	50	2260	7.8	30.5	30	15	7.5	101	1.6	>110
18 AUG	1420	10	2710	7.7	31.5		15	7.8	107	1.4	4500
23 SEP	0930	6.2	3140	8.0	28.5		15	6.3	83	1.5	-
27	0930	38	755	7.7	24.0		40	6.8	83	1.4	
DATE	COLI- FORM. FECAL. 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS, PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM. DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)
05			320	120	98	19	180	4.4	3.8	250	0
24	220	120	340	140	100	21	220	5.2	4.2	240	0
16	180	130	340	150	100	22	220	5.2	4.2	230	0
16	160	120	530	260	160	31	310	5.9	4.2	330	0
25 MAY	370	1300	480	250	140	32	300	6.0	4.7	280	0
23	550	1300	520	240	150	34	390	7.5	5.2	320	7
27 JUL	110	180	480	180	150	25	280	5.6	4.2	360	0
18	KSJ	210	470	210	140	29	380	7.6	4.1	320	0
23 SEP	K3800	740	490	240	150	29	450	8.8	5.6	310	0
27	1500	620	160	47	52	7.8	88	3.0	4.3	140	0

417 MISSION RIVER BASIN

> 08189500 MISSION RIVER AT REFUGIO, TX--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	SULFAT DIS- SOLVI (MG/I AS SO	DIS- ED SOLV	ED SOLV	5- SOL /ED (MG	VED DEG	DUE SUM 180 CON 3. C TUE IS- C VED SC	ISTI- INTS: NI DIS- T	GEN+ TRATE TOTAL (MG/L	NITRO GEN, NITRIT TOTAL (MG/L AS N)	E NO2+N TOTA	NO AMMO AL TOT YL (MG	N. G NIA ORG AL TO /L (M	TRO- EN, ANIC TAL G/L N)
DEC	40	350		.3 3	12		846			-			
JAN 26	40	420		.2 2	7	1000	971	.08	.0	1 .	.09	.02	.56
FE4 16	42	430			7	1020	960	.15	. (1	.16	.07	.48
MAR 16	62	570)		36	1380	1340	.02	. (1		.01	1.4
25	70	550)	.4	37	1380	1270	.01	. (01	.02	.01	.58
23	61	740)	.3	1	1580	1590	.01	. (00	.01	.01	.98
JIIN 27	43	500)	.3		1260		.02	. (00	.02	.01	.58
JUL 18	48	710)	.4	3	1580	1510	.01	. (00	.01	.00	.50
23	44	830	,	.3	¥ 0	1680	1700	.02	. (01	.03	.05	1.1
27	16	160		.1	-1	454	418	.07	. (01	.08	.07	1.1
		NITRO- GEN.AM- MONIA + OPGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS. TOTAL (MG/L AS P)	PHOS- PHORUS. DIS- SOLVEO (MG/L AS P)	CARBONIO TOTAL (MG/LAS C)		PEN C SU	RBON. GANIC JS- NDED DTAL MG/L GC)	SEDI- MENT+ SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. FINER THAN .062 MM	
	EC												
J	AN 26	.58	.52	.03	.01	6.	4			25	1.4	97	
F	ER 16	•55	.44	.03	.02	_				21	1.4	94	1
M	16	1.4		•07	.05	4.	5			48	2,3	51	
Δ1	PR 25	•59	.46	.03	.00	4.				56	2.1	98	3
M	AY 23	.99	.35	.04	.00	_				48	2.2	79	,
J	UN 27	.59	.37	• 03	.01	5.	2			25	1.3	100)
J	UL 18	•50	.40	• 12	.00	4.	3			23	.62	84	
A	23	1.1	.64	.03	.01	_	- 5	.5	.3	43	.72	52	2
5	FP 27	1.2	.77	• 05	.02	13				69	7.1	6	•
	DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIO DIS- SOLVED (UG/L	RECOV ERABL (UG/L	PENDE RECO E ERAB	D BA	RIUM. IIS- LVED UG/L IS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIU DIS-	D
	ER 16	1315	6	1	c	, 80	0 1	.00	700	0	0		0
M	23	1015	13	4		9 80	0	0	800	0			1
Δ	23	0930	8			8 80	00	0	800	0	0		0
	DATE	CHRO- MIUM. TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM. DIS- SOLVEC (UG/L AS CR)	(UG/L	PENDER RECOVE ERABL (UG/L	COBAL COBAL COBAL E SOLVE	T F	PPER+ TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER. SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	RECOV ERABL (UG/L	Ē
F	FEB					,	2	0	5	4	1	58	10
	16 MAY	10	0	10		2	1	1	70	69	1		
	23 AUG 23	10	10	10		0	0	0	5	5			
		10	U			7							

MISSION RIVER BASIN

08189500 MISSION RIVER AT REFUGIO, TX--Continued

WATER QUALITY DATA. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		w	AIER G	UALITT	UATA	. WAILE	ILAK	ucio	DE4 19		10 36			,,,,				
	SUS	5-	IRON.	1 E 4		SUS-		AD.	MANG NESE TOTA	•	NES	GA-	MAN	IGA-	MERO TOI	URY		URY IS-
	PENE	- VC	DIS-	REC	BLE	RECOV-	D	IS-	RECO)V-	REC	DED OV.	SOL	VED	REC	BLE	REC	BLE
DATE	45	/L	(UG/L AS FE)		PB)	AS PB)		G/L PB)	AS M			MN)	AS	MN)		HG)		HG)
FEB 16			20	-	4	2		2	1	190		50		140		.0		.0
YAM 23	,	700	100		5	2		3		380		220		160		.1		.1
AUG								0	1 100	+00		190		210		.0		.0
23		320	100		5	S		0				190		210	718	NC.		3
	MFRCI		SELE-			SELE- NIUM. DIS-	TO	VER, TAL COV-	SILVE SUS PEND RECO	S- DED DV-		S-	TO:	AL COV-	PEN	NDED COV-		IS-
	SOL!		TOTAL (UG/L		TAL 3/L	SOLVED (UG/L		ABLE G/L	ERAE			VEU		ABLE S/L		ABLE		VED
DATE	AS		AS SE)		SE)	AS SE)		AG)	AS A			AG)		ZN)		ZN)		ZN)
16		•1	1		0	1		0		0		0		20		10		10
23		. 0	0	1	0	0		0		0		0		20		0		20
23		.0	1		1	- 0		0		0		0		20		10		10
				TO	TAL	NAPH- THA- LENES. POLY-			TOTA	AL	СНІ	.0R-	TOT IN	BOT-			TOT IN E	
DATE	TI	ME	PCR. TOTAL (UG/L)	TOM	MA- RIAL /KG)	TOTAL (HG/L)	ALD	RIN. TAL G/L)	TER!	IAL	TO		TER	MA- RIAL /KG)	TO	TAL G/L)	TER	MA- RIAL /KG)
APR 25	11	45	• (1	.00		.00		.0		.0		2		.00		.4
23111	2			desir								01						
				DOE.			DT.					ELDR						
				HOT-		IN	ROT-		-	DI		IN F	OT-	ENE				
		TOTAL		RIAL	TOT		HIAL	AZIN	NON.	TOT	RIN	TOM	IAL	SULF TOT		TOT	AL.	
b	ATE	(UG/		G/KG)	(UG.		/KG)		3/L)		/L)	(UG/			3/L)	(00	5/L)	
AP													.1		.00		.00	
2	5		00	.6		.00	.6		.00		.00		• 1		•00		•00	
		ENDRI	N•				PTA-			CHL	OR			LIN				
		TOTAL			HEP		BOT-			EPOX				IN		MAL	-A-	
		TOM M	A- ET	HION.	CHL	OR. TO	MA-	EPO	KIDE .	801	MOT	LIN		TOM			ION.	
D	ATE	TERI (UG/K		OTAL UG/L)	TOT		HIAL KG)		TAL G/L)	(UG/	KG)		AL S/L)		(KG)		3/L)	
AP	R																	
	5		.0	.00		.00	.0		•00		.0		.00		.0		.00	
									ENE.									
		METH		ETHYL	PAR		rox-		TAL BOT-	TOI	. AI							
		THIO	N. T	HION,	THI	ON. API	HENE .	TOM	MA-	TF	-18		-D+		5-T	SIL		
. 0	ATE	TOTA (UG/		OTAL UG/L)	TOT		JG/L)		RIAL /KG)	THI	ON S/L)		AL S/L)		TAL G/L)		TAL G/L)	
AP	R							4										
S	5		00	.00		.00	0		0		.00		.00		.00		.00	

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978
PERIPHYTON

DATE	LENGTH OF EXPOSURE (DAYS)	PERI- PHYTON BIOMASS ASH WEIGHT G/SQ M	PERI- PHYTON BIOMASS TOTAL DRY WEIGHT G/SQ M	CHLOR-A PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)	CHLOR-B PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)	SAMPLING METHOD
APR						
25	40	10.4	15.0	11.8	.000	POLYETHYLENE STRIP
AUG					1	
23	36	16.8	20.9	2.48	.390	POLYETHYLENE STRIP

PHYTOPLANKTON ANALYSES. OCTOBER 1977 TO JULY 1978

DATE			16,78 1345		23,78 1015		27.78 1350	JUL	18,78
TOTAL CELLS/ML			1400	23	0000		2000	5	9000
0	ISION ASS RDER FAMILY •GENUS		1.8 1.8 2.1 2.2 2.2		1.4 1.4 1.8 2.0 2.8		0.7 0.7 1.0 1.1 1.9		0.6 0.6 1.1 1.2 2.1
ORGANISM		CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (G .CHLOROPHYCEAE CHLOROCOCCAL COELASTRACE	ES					10.7			
COELASTRUM			-	6000	3		-		-
GOLENKINIA	CEAE		-		-		0		-
OOCYSTACEAE	SMIIS	22		1500		400			
FRANCEIA	3803	23	2	1500	1 -	690	1	1100	5
KIRCHNERIE	LLA	23	2		-		-	460	1
TETRAEDRON			-	6000	3		0		-
SCENEDESMAC	EAE			-			U		0
SCENEDESMU			-			270	1	1500	5
VOLVOCALES			-	31000	13	1200	2	920	5
CHL AMYDOMON	ADACEAE								
CHLAMYDOMO	NAC	110	8	4700	-		0		-
PHACOTACEAE	,,,,	110	•	6700	3		0	820	1
PHACOTUS			-		-		-		0
VOLVOCACEAE						550	1		-
CHRYSOPHYTA .BACILLARIOPHYCPENNALESNAVICULACEARENTOMONEIS			-		0		2		
CENTRALES COSCINODISCA	CEAE	150	10	4000					
PENNALES		150	10	6000	3		•	•	0
COCCONEIS	ic .		_		-		<u>-</u> -		0
CYMBELLACEAE								-	U
AMPHORA			-		0		-		-
NAVICULACEAE					-		0		-
DIPLONEIS		68	5	2200	1		-		-
NAVICULA			-		-		0		-
PINNULARIA	F		-		-		0		-
DENTICULA			-		0				5-
NITZSCHIA		34	2	3000	1	1300	S	1000	2
.XANTHOPHYCEAE	S								
CENTRITRACTA	CEAE								
CENTRITRACT	US		-	1500	1		-		-
CRYPTOPHYTA (CR .CRYPTOPHYCEAE CRYPTOMONIDAL CRYPTOMONODA	ES CEAE								
CRYPTOMONAS			-		-		-		0
CYANOPHYTA (BLU .CYANOPHYCEAE CHROCCOCCALES									
AGMENELLUM		25.04	25	43000#		19000#		23000#	
ANACYSTIS		350#	25	100000#	**	25000#	49	25000#	42
OSCILLATORIA									
OSCILLATORI			-	6000	3	2400	5	4500	8
CHROCCOCCAEA	Ε								
GOMPHOSPHAE			•	3000	1		-		•

NOTE: # - DOMINANT ORGANISM: EQUAL TO OR GREATER THAN 15%
• - OBSERVED ORGANISM: MAY NOT HAVE BEEN COUNTED: LESS THAN 1/2%

MISSION RIVER BASIN

08189500 MISSION RIVER AT REFUGIO, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1977 TO JULY 1978

DATE	MAR 16,78 1345			23,78 015		27,78 350		18•78 420
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALESEUGLENACEAE								
EUGLENA		-	2200	1				
TRACHELOMONAS	650#	46	9000	4	890	2	488	0
PYRRHOPHYTA (FIRE ALGAE) DINOPHYCEAE								
PERIDINIALES								
PERIDINIACEAE			2200	1		-		

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

MONTH	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT. 1977	515	2420	1330	1850	610	846	51	70	470
NOV. 1977	3045	651	360	2950	130	1090	12	102	150
DEC. 1977	650	2130	1170	2060	530	933	45	79	410
JAN. 1978	709	1960	1080	2060	480	928	41	79	380
FEB. 1978	2290	663	370	2260	140	846	13	78	160
MAR. 1978	578	2250	1240	1930	560	879	47	74	430
APR. 1978	403	2510	1380	1500	630	689	53	58	480
MAY 1978	277.2	2900	1590	1190	740	550	61	45	560
JUNE 1978	13620	363	200	7330	58	2140	6	205	96
JULY 1978	386.8	2380	1310	1370	600	625	50	52	460
AUG. 1978	259.9	2490	1370	959	630	440	52	37	480
SEPT 1978	5626.5	348	190	2910	52	785	5	80	93
TOTAL	28360.39	**	**	28400	**	10800		959	••
WTD.AVG	77.7	674	370	**	140		13	**	160

MISSION RIVER BASIN 421

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

					01	NCE-DAILY						
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
	3590	1450	1750	2700	2180	1710	2500	2710	1500	2160	1850	2740
1 2	3480	356	1520	2950	2060	1890	2520	2770	1240	2170	1360	2680
3	3380	221	1350	2330	2000	1870	2640	2960	219	2180	1550	2560
4	3270	312	1480	2390	2230	1910	2630	2680	176	2270	1790	2530
5	3410	435	1670	2260	2140	2000	2620	2660	199	2300	2210	2810
6	3420	710	1760	2240	2340	2080	2720	2650	297	2270	2320	2560
7	3360	945	1900	2370	1890	2130	2590	2630	312	2340	2510	2270
8	3280	1240	1950	2250	1360	1980	2680	2610	200	2450	2420	2250
9	2560	700	2100	2360	382	2200	2670	2610	218	2470	2610	1820
10	5000	328	2230	\$580	582	2130	2680	2730	400	2530	2680	1700
11	1890	380	2180	2100	787	2270	2600	2950	586	2500	2570	317
12	1970	670	1950	1990	900	2290	2670	3040	826	2620	2650	220
13	2240	983	2240	1940	1070	2290	2200	3100	865	2620	2700	232
14	2350	1260	2150	2100	1230	2350	2290	3190	1110	2450	2750 2790	281 391
15	2480	1430	2190	2310	2020	2390	2350	3410	1250	2550		
16	2720	1590	2260	2340	1720	2360	2410	3400	1300	2660	2950	217
17	2450	1710	5550	2250	1530	2430	2630	3400	1500	2690	3000	301
18	2500	1870	2270	2350	250	2450	2660	3380	1600	2710	3040	391
19	2530	1710	2300	2080	289	2490	2650	3320	1650	2000	2900	524
20	2550	1790	2320	1430	315	2360	2690	3360	1730	2050	2860	700
21	2550	1800	2320	870	518	2450	2860	3440	1840	2080	2900	822
22	2450	1670	2390	1000	996	2360	5500	3400	1910	2350	3060	983
23	2390	1840	2500	1370	1220	2390	5000	2250	1960	2610	3100	781
24	2150	1920	2610	1550	1330	2440	1930	2000	2010	2270	3120	318
25	1650	1950	2630	1680	1450	2430	2320	2250	2030	2140	3030	297
26	1710	1970	2620	1750	1540	2410	2500	2710	2030	2430	3070	557
27	2020	2130	2470	1920	1630	2510	2670	3200	2150	2690	3100	882
28	5550	2670	2630	2030	1760	2420	2740	3290	2170	2760	3220	1100
29	5580	2190	2760	2100		2580	2810	3430	2200	2680	3300	1380
30	2380	2030	2570	2260		2640	2860	3610	2310	2700	3260	1500
31	2500		2420	2170		2560		3790		2390	2930	
MEAN	2570	1340	2180	2060	1350	2280	2540	3000	1260	2420	2700	1200
		TEM	PERATURE	(DEG. C)	OF WATER,	WATER YE	AR OCTOBER	R 1977 TO	SEPTEMBER	R 1978		
DAY	ОСТ	NOV	DEC	.IAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	27.0	21.0			10.0	18.0	20.5	26.0	27.0	29.0	26.0	29.0
Ş		19.0	15.0	9.0	9.0	16.5	21.0	26.0	25.0	28.5	26.5	23.5
3		16.5	20.5	10.5		13.5	25.0	21.0	26.5	31.0	29.5	27.0
4	23.0	16.5	21.0	14.0	10.0	13.0	22.0	25.0	26.5	29.5	27.0	29.5
5	21.5	19.5	21.5	17.0	13.0		24.0	23.5	28.5	31.0	31.0	27.0
6	23.5	21.0	15.0	19.0	9.5	16.5	24.5		29.5	31.0	29.0	26.5
7	25.5	20.5	16.0	20.5	12.0	19.5	25.0	27.0	25.0	31.0	30.5	24.5
Я	25.5	21.0	20.0		8.5	14.0	24.5	28.5		31.0	29.5	
9	25.0	20.0		13.0	7.0	18.0		29.5	30.0	28.5	30.0	26.5
10	26.5	14.5	11.0	11.0	9.5	16.0	23.0	28.5		31.0	30.0	
11	24.5	14.5	15.0	9.5	10.0	19.0	18.5	28.5	29.5	31.0	30.5	25.5
12	21.5	16.0	18.0	9.5		18.5	15.5	30.0	30.5	29.0		26.5
13	21.0	16.0	19.0	10.0	14.5	19.5	21.5		28.5	29.0	28.5	27.0
14		18.5	17.0		11.5		23.5	24.5	28.5	29.5	30.5	28.0
15	50.0	18.0	16.0	12.0	10.5	22.0		28.0	27.0		30.5	28.5
16	19.5	19.5	20.0	15.0	12.0	19.5	23.0	28.5	27.0	31.0	30.5	28.5
17	22.0	20.0	18.0	12.0	14.5	18.0	25.0	27.0		31.5		29.5
18		21.0	11.0	9.0			28.0	26.0	28.0	29.0	31.0	29.0
19	24.5	23.0		8.5	9.0	17.0	26.5	29.5	26.5	27.0		30.0
50	24.5	6.65	14.5	6.5	10.0	21.0	21.5		26.5	30.5	29.0	
21	21.5	23.5	12.0	5.5	10.0	24.0	23.5		26.0	30.5	27.0	29.0
55		18.0	10.0		14.0	23.5	23.5	25.5	26.1		29.0	25.5
23	22.0	17.0		7.0	16.0	22.0	19.5	25.5	26.5	28.5	29.5	26.0
24	21.5	20.0	14.5	9.0	16.5	24.0	25.5	25.5	27.0	28.5	29.5	26.5
25	23.5	20.0		10.5			25.5	26.5	28.5	27.0	26.5	26.5
26	22.0	19.0		11.0		22.0		26.5	30.5	30.5	29.0	26.5
27	21.5	19.5	15.0	14.0	18.0	21.5	21.0	30.5	29.0	30.5	28.5	25.5
58	55.0	23.0	14.0	10.0	18.5	21.5	24.5	30.0	31.0	29.0	30.5	23.5
59	21.5	18.5	15.0	10.0		17.0	23.5	26.5	31.0	31.0	30.0 29.5	29.0
30	21.5	15.0	16.0	9.5		23.0	23.5	26.5	29.0	24.5	29.5	
31	21.5		15.5	9.0		19.0		26.5				
MEAN.	23.0	19.0	16.0	11.0	12.0	19.0	23.0	27.0	28.0	29.5	29.0	27.0

08189700 ARANSAS RIVER NEAR SKIDMORE, TX

LOCATION.--Lat 28°16'56", long 97°37'14", Bee County, Hydrologic Unit 12100407, on right bank 160 ft (49 m) downstream from center-line of county road bridge, 3.8 mi (6.1 km) downstream from confluence of West Aransas and Poesta Creeks, and 4.4 mi (7.1 km) northeast of Skidmore.

DRAINAGE AREA .-- 247 mi2 (640 km2).

PERIOD OF RECORD .-- March 1964 to current year.

Water-quality records: Chemical analyses: October 1965 to September 1966. Sediment records: February 1966 to September 1975.

GAGE .-- Water-stage recorder. Datum of gage is 72.37 ft (22.058 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. No known diversion. Chase Field Naval Air Station and city of Beeville discharge sewage effluent into the stream via Poesta Creek. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--14 years, 48.1 ft3/s (1.362 m3/s), 2.64 in/yr (67 mm/yr), 34,850 acre-ft/yr (43.0 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, $82,800 \text{ ft}^3/\text{s}$ (2,340 m³/s) Sept. 22, 1967, gage height, 42.22 ft (12.869 m), from floodmark, from rating curve extended above $14,000 \text{ ft}^3/\text{s}$ (396 m³/s) on basis of slope-area measurements of 29,600 and 82,800 ft³/s (838 and 2,340 m³/s); no flow at times in 1964-67 and 1971.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1914, that of Sept. 22, 1967. Flood of September 1954 reached a stage of 33 ft (10.1 m), discharge 19,600 ft³/s (555 m³/s), from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 945 ft 3 /s (26.8 m 3 /s) Sept. 14, gage height, 11.62 ft (3.542 m), no other peak above base of 500 ft 3 /s (14.2 m 3 /s); minimum, 1.1 ft 3 /s (0.031 m 3 /s) July 8.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND	, WATER	YEAR	OCTOBER	1977	TO	SEPTEMBER	1978
					MEAN	VALUES						

					112	AN TALOLS						
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.4 3.5 3.4 3.1 3.0	6.6 25 20 8.9 7.3	5.4 4.7 4.7 4.7 4.8	5.6 5.7 5.7 5.7 5.9	5.1 5.7 5.7 4.7 4.4	5.3 5.4 5.4 5.5 5.1	3.7 3.7 3.8 3.8 3.9	4.3 4.4 4.7 4.2 3.9	2.2 4.2 87 88 21	3.2 4.2 14 5.3 3.2	21 27 12 6.2 4.9	5.3 4.7 5.4 5.0 3.5
6 7 8 9 10	3.2 3.3 3.4 4.4 5.0	6.4 6.1 6.6 40	4.8 4.6 4.6 4.7 4.7	5.9 5.9 5.9 5.7 5.5	4.0 5.0 11 9.6 5.8	5.3 5.9 6.1 5.5 5.3	4.1 4.4 4.7 4.4 4.5	4.1 4.6 4.5 4.2 4.3	11 110 169 35 15	2.4 2.0 1.8 1.8	3.9 3.2 2.9 2.9 3.1	4.3 6.4 7.6 15 41
11 12 13 14 15	5.0 4.4 4.1 4.0 4.0	7.3 6.4 6.2 5.9	4.7 4.9 5.1 5.2 5.2	5.5 5.8 6.8 5.8	5.1 5.3 5.1 4.9 4.9	5.2 4.3 3.9 3.7 3.7	4.4 5.4 15 11 6.5	3.9 3.7 3.8 3.6 3.0	9.5 7.1 6.2 5.4 4.8	1.8 1.7 1.7 1.7	3.0 2.6 2.6 2.6 2.3	41 46 23 199 199
16 17 18 19 20	3.9 3.5 3.5 3.5 3.5	5.7 5.6 5.4 5.1 4.9	5.1 5.1 5.0 4.9 4.9	5.4 5.6 5.4 5.7 6.8	5.0 12 38 12 6.3	3.6 3.5 3.6 3.7 3.8	5.5 5.1 5.1 4.8 4.3	2.6 2.9 2.7 2.6 2.4	4.3 4.8 4.1 3.7 3.2	1.6 1.6 1.5 1.5	2.0 2.0 1.9 2.1 1.8	29 14 8.1 6.0 5.1
21 22 23 24 25	3.7 4.1 5.0 8.0 7.4	4.7 4.6 6.1 6.9 5.9	4.9 5.0 4.9 5.1 5.3	6.5 5.8 5.4 5.2 5.2	5.3 5.0 4.5 4.7 4.6	3.9 4.0 4.0 4.4 3.7	4.1 4.6 5.3 5.9 6.1	2.6 3.3 9.8 5.3 3.5	3.2 3.2 3.0 2.9 2.8	8.4 3.5 2.2 13 15	1.7 2.1 2.2 1.9 1.8	5.1 4.9 5.1 5.7 6.5
26 27 28 29 30 31	7.9 6.1 5.5 5.4 5.3 5.1	5.4 5.2 5.6 5.7 5.9	5.4 5.4 5.4 5.4 5.6	5.2 5.1 5.1 5.0 4.9 5.0	4.9 5.1 5.2 	3.8 3.7 3.7 3.7 3.7 3.7	4.6 3.9 3.7 3.9 4.2	2.8 2.3 2.2 1.9 1.8 1.8	2.3 2.2 2.5 2.8 3.0	6.0 3.4 2.6 2.4 2.2 5.5	1.6 1.8 1.6 2.1 2.5 3.7	4.3 4.0 3.9 3.5 3.4
TOTAL MEAN MAX MIN CFSM IN. AC-FT	138.6 4.47 8.0 3.0 .02 .02 275	277.4 9.25 40 4.6 .04 .04	155.8 5.03 5.6 4.6 .02 .02	174.0 5.61 6.8 4.9 .02 .03 345	198.9 7.10 38 4.0 .03 .03	136.1 4.39 6.1 3.5 .02 .02 270	154.4 5.15 15 3.7 .02 .02 306	111.7 3.60 9.8 1.8 .02 .02	623.4 20.8 169 2.2 .08 .09 1240	120.9 3.90 15 1.5 .02 .02 240	133.0 4.29 27 1.6 .02 .02 264	714.8 23.8 199 3.4 .10 .11 1420
CAL YR WTR YR	1977 TOTA 1978 TOTA			18.6 8.05	MAX 1170 MAX 199	MIN 3.0 MIN 1.5	CFSM CFSM			-FT 13440 -FT 5830		

08189800 CHILTIPIN CREEK AT SINTON, TX LOCATION.--Lat 28°02'48", long 97°30'13", San Patricio County, Hydrologic Unit 12100407, on left bank at upstream end of bridge on U.S. Highway 77, 0.2 mi (0.3 km) upstream from Missouri Pacific Railroad Co. bridge, and 0.8 mi (1.3 km) northeast of Sinton.

DRAINAGE AREA .-- 128 mi2 (332 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1970 to current year.

REVISED RECORDS .-- WDR TX-72-1: 1971(P).

GAGE.--Water-stage recorder. Datum of gage is 18.74 ft (5.712 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. No known diversions above station. An undetermined amount of water from oilfield operations enters stream upstream at various points. A recording rain gage is located at station.

AVERAGE DISCHARGE .--8 years, 50.9 ft3/s (1.441 m3/s), 5.40 in/yr (137 mm/yr), 36,880 acre-ft/yr (45.5 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 22,300 ft 3 /s (632 m 3 /s) Sept. 12, 1971, gage height, 29.10 ft (8.870 m), from rating curve extended above 13,400 ft 3 /s (379 m 3 /s); no flow for part of several days in 1973, 1975-76, and 1978.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stages since 1910, 30.27 ft (9.226 m) Sept. 22, 1967, and 28.8 ft (8.78 m) in April 1930, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 600 ft³/s (17.0 m³/s) and maximum (*):

Date	Time	Disch	arge (m³/s)	Gage I	height	Date	Time	Disch	arge	Gage I	height
		(ft^3/s)	(m^3/s)	(ft)	(m)			(ft^3/s)	arge (m³/s)	(ft)	(m)
June 1	2200	1,160	32.9	7.79	2.374	Sept. 12	1400	*1,360	38.5	8.31	2.533

Minimum discharge, no flow for some days.

		DISCHA	RGE, IN	CUBIC FEET	PER SECO ME	ND, WATER AN VALUES	YEAR OCT	OBER 197	7 TO SEPTE	MBER 197	8	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.26	12	.14	2.2	.37	.29	.04	.02	389	.04	210	2.5
2	.28	124	.14	3.1	.30	.33	.04	.02	580	.00	45	26
3	.26	39	.14	.26	.18	.40	.06	.28	290	.00	4.0	18
4	.24	10	.14	.14	.16	.29	.06	.03	121	.00	1.1	3.0
5	.19	3.8	.16	.16	.17	.30	.04	.02	55	.00	.39	19
6	.21	1.9	.16	.16	.22	.38	.05	.02	13	.00	.17	18
7	.25	1.0	.14	.14	7.1	.37	.08	.02	159	.00	3.0	18
8	.26	.56	.09	.16	1.1	.24	.07	.03	286	.00	11	76
9	43	.14	.07	.10	.91	.22	.08	.04	131	.00	104	148
10	.32	.09	.09	.10	.54	.33	.15	.02	33	.00	28	133
11	.15	.03	.11	2.1	.39	.19	.28	.02	7.1	.00	3.9	439
12	.07	.02	.14	.43	.48	.23	2.7	.04	2.8	.00	1.5	1160
13	.06	.02	.19	.23	.24	.28	.21	.02	1.2	.00	.65	694
14	.07	.04	.19	.19	.24	.26	.05	.01	.62	.00	.25	302
15	.04	.04	.11	.17	1.0	.22	.04	.02	.26	.00	.13	173
16	.04	.04	.09	.23	.44	.17	.03	.02	.09	.00	.12	101
17	.04	.04	.11	.21	3.5	.12	.02	.02	.02	.00	.13	47
18	.07	.02	.14	1.8	1.6	.11	.03	.04	.02	.00	.09	16
19	.11	.02	.11	.45	.90	.09	.03	.03	.07	.00	.08	6.3
20	.11	.02	.09	.12	.95	.10	.01	.02	.01	.00	.08	2.8
21	.06	.04	.07	.11	.47	.12	.02	.07	.16	.00	.31	1.5
22	15	.06	.07	.14	.17	.14	.05	.08	.01	.00	.09	3.3
23	19	.03	.09	.19	.17	.13	.06	27	.01	.00	.07	1.0
24	28	.04	.11	.19	.19	.13	.04	11	.01	.01	.07	77
25	19	.06	.14	.26	.28	.09	.01	2.2	.01	2.0	.07	62
26	5.7	.06	.09	.13	.27	.04	.02	.98	.01	.39	.06	20
27	1.4	.06	.11	.11	.32	.04	.01	.39	.00	.04	.06	6.1
28	.56	.09	.14	.14	.41	.03	.02	.17	.00	.00	.06	2.5
29	.16	.14	.26	.16		.03	.01	.09	.00	.00	1.6	1.3
30	.09	.14	.22	.23		.03	.03	.07	.00	.00	.14	.67
31	.09		.39	.45		.04		.05		36	.17	
TOTAL	135.09	193.50	4.24	14.56	23.07	5.74	4.34	42.84	2069.40	38.48	416.29	3586.97
MEAN	4.36	6.45	.14	.47	.82	.19	.14	1.38	69.0	1.24	13.4	120
MAX	43	124	.39	3.1	7.1	.40	2.7	27	580	36	210	1160
MIN	.04	.02	.07	.10	.16	.03	.01	.01	.00	.00	.06	.67
CFSM	.03	.05	.001	.004	.006	.001	.001	.01	.54	.01	.11	.94
IN.	.04	.06	.00	.00	.01	.00	.00	.01	.60	.01	.12	1.04
AC-FT	268	384	8.4	29	46	11	8.6	85	4100	76	826	7110

CAL YR 1977 TOTAL 10814.30 WTR YR 1978 TOTAL 6534.52 AC-FT 21450 AC-FT 12960 MEAN 29.6 MAX 2960 MIN .01 CFSM .23 IN 3.14 MEAN 17.9 CFSM .14 IN 1.90 MAX 1160 MIN .00

08189800 CHILTIPIN CREEK AT SINTON, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1968 to current year. Biochemical analyses: October 1969 to current year. Pesticide analyses: October 1969 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	S	IIM OF R	ESTOLIE !	TTDO-		NITRO-	NITE		TRO- G	EN.AM-			
				ITRO-	NITRO-								
	S	OLIDS, S	OLIDS,						9	NITRO-			
18.	26	5.	5 76	3.	5	8.2	70	0	9.	6 150		.2	30
O9.	17	3.	6 32	1.	8	8.4	46	0	٤.		1	.1	
AUG													15
JUN		46	980	17	1:	3	260	0	36	1900		.6	22
MAY 15.	120	35	1600	33		7.8	390	6	24	2600	211	1.5	8.3
03.	•• 590	140	4400	42	20	0	300	0	93	7600		1.2	7.1
23 ·													
FEB		100	2700	30	10	1 1	150	0	82	5000		.3	8.5
JAN 09.	1100	230	5500	39	24		260	0	83	11000		.7	7.9
28.	1200	330	6700	44	27	7	140	0	190	13000		.4	4.1
NOV	170	43	1400										
OCT	170	43	1400	25		.1	290	0	27	2400		.9	9.0
DATE	AS CA) AS MG	AS NA)		A5 F	,	,31 A	.5 0037	A3 304	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
0.75	(MG/L	(MG/L	(MG/L	RATIO		'L	1S	(MG/L AS CO3)	AS SO4	(MG/I			AS S102)
	DIS- SOLVE		SOLVED	TION	SOLV	ED (MC	J/L B	ONATE	SOLVE	SOLVE	D SOL	VED	(MG/L
	CALCIU	M SIUM	SODIUM,	AD- SORP-	DIS			CAR-	SULFATE DIS-	DIS-	RIDE		DIS- SOLVED
		MAGNE-		SODIU					CIU 5.7	CHLO-			SILICA.
18.	1535	15	579	7.	8 33	3.0	140	6.9	90	5 3	• 1	88	30
09.	1330	121	284	6.	7 31	.5	350	4.4	61		. 0	57	
22		.01											20
JUN						i. 0	7	10.4	149		.1 (540	430
MAY 15.	. 1500	.02	8770	8.	3 29	0.0	15	11.9	15	7.	.4	450	120
APR 03.	. 1450	.06	22000	8.	2 30	.0	8	14.5	193	6.	.1 21	100	1800
23	. 1240	.17	13000	8.	2 20	.0	20	11.8	134	8.	,6 16	500	1500
09 FEB	. 1432	.10	24500	7.	5 16	.5	7	14.4	152		113- 6		
28												700	3500
NOV		.09		8.	3 26	.5	15	16.2	205	6.	4 44	00	4200
OCT 17	. 1530	.04	7820	8.	1 26	.5	5	11.4	144	2.	.6	500	360
DATE		(CFS)	MHOS)	(UNITS	(DEG	C) (JT	UI	(MG/L)	ATTONY	(MO/L)	CACC	,,,	CACCO.
	TIME	TANEOUS	(MICRO-		ATUR	E IT	Y	SOLVED (MG/L)	SATUR-	5 DAY	AS	13)	(MG/L CACO3)
		FLOW, INSTAN-	DUCT-	РН	TEMPE		R- 0 D-	XYGEN, DIS-	CENT	ICAL	(MG/		BONATE
		STREAM-	CON-					VVCEN	SOLVED	BIO- CHEM-	HARD NESS		NESS +
			SPE- CIFIC						DIS-	DEMAND		Sirver.	HARD-

08189800 CHILTIPIN CREEK AT SINTON, TX--Continued

						CHRO	1-			
		*****	ARSENIC DIS- SOLVED	BARIUM. DIS- SOLVED	DIS- SOLVED	MIUM DIS-	COPE DIS	VED SO	ON, IS- LVED G/L	
	DATE	TIME	AS AS)	AS BA)	AS CD)				FE)	
	28	1550	2	4500	1		0	2	40	
	FE9 23	1240	5	3600	0)	10	3	40	
	MAY 15	1500	10	2000	1		20	6	20	
	SEP 18	1535	18	100	1		10	2	70	
				NGA-		ELE-	CTIVED	ZINC,		
	DA	50 (U	IS- 0 LVED SO G/L (U	IS- (DIS- DLVED S DG/L	DIS- BOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	DIS- SOLVED (UG/L AS ZN)		
	NOV									
	FER		0	490	. 0	0	0	50		
	MAY		0	1700	. 0	0	0	30		
	SEP		0	310	. 0	0	0	20		
	18	•••	0	40 PH=	. 0	0	0	CHLOR-		
	0.0	IN	CB, I TAL LE BOT- F	NES.	I	ORIN.	CHLOR-	DANE . TOTAL IN BOT- TOM MA-		DDD+ TOTAL IN BOT- TOM MA-
DATE	TIME TOT	AL TE	RIAL TO	TAL TO	OTAL	TERIAL JG/KG)	TOTAL (UG/L)	TERIAL (UG/KG)	TOTAL	TERIAL (UG/KG)
NOV 28	1550	.0	0	.00	.00	.0	.0	0	.00	.0
FEB 23	1240	.0	0	.00	.00	.0	.0	0	.00	.3
MAY 15	1500	• 0	0	.00	.00	.0	.0	0	.00	4.1
18	1535	.0	0	.00	.00	.0	.0	C	.00	.0
	DI	E,	1	DT.			DI- ELDRIN.			ENDRIN.
		MA- D	IN TO	MA- AZ	OTAL	DI- ELDRIN TOTAL	TOTAL IN ROT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL (UG/L)	TOTAL	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
DATE	(UG/L) (UG/	/KG) (U	IG/L) (U	6/KG) (uG/L)	(UG/L)	1007107	(00/2)	(00/2/	10071107
28 FFB	.00	•1	• 00	. 0	.00	•00	• 0			•0
23	•00	• 8	• 00	• 0	.00	•00	.0			.0
SFP	•00	• 2	.00	1.9	•00	•00	.0			•0
18	• 0 0	• 0	.00 HEPTA- CHLOR, TOTAL	.O HEPTA-	.00 HEPTA CHLOR EPOXID			.00 DANE		THYL
DATE	ETHION. TOTAL (UG/L)	HEPTA- CHLOR. TOTAL (UG/L)	IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR EPOXIDE TOTAL (UG/L)	BOTTO MATL	M LIND	ANE TOM	BOT- MA- TE	TAL TO	RA- ION, TAL G/L)
NOV	0.0	0.0	.0	.00		0	.00	•0	•00	.00
FEA.		•00				0	.00	• 0	.18	.18
23		•00	•0				.00	.0	•00	.00
SFP		.00	•0			0		.0	.00	.00
18.	METHYL	•00	•0	•00	TOXA-	•	•00	•0	•00	•••
DATE	TRI- THION, TOTAL (UG/L)	MIREX. TOTAL (UG/L)	THION, TOTAL (UG/L)	TOX- APHENE . TOTAL (UG/L)	TERIA	- TH	ION TO	TAL T	OTAL TO	VEX+ OTAL OG/L)
VOV	00		.00)	0	.00	.00	•00	.00
FF9 23.			.40)	0	.00	.16	.09	.00
MAY			.00)	0	.00	.00	.00	.00
SFP 19.		.00)	0	.00	.00	.08	.00
							1997			

426

NUFCES RIVER BASIN

08190000 NUECES RIVER AT LAGUNA, TX

LOCATION.--Lat 29°25'42", long 99°59'49", Uvalde County, Hydrologic Unit 12110101, on right bank 0.5 mi (0.8 km) downstream from Sycamore Creek, 1.0 mi (1.6 km) northeast of Laguna, and at mile 395.4 (636.2 km).

DRAINAGE AREA .-- 764 mi2 (1,979 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1923 to current year.

REVISED RECORDS .-- WSP 1562: 1930, 1931(M), 1932, 1939.

GAGE.--Water-stage recorder. Datum of gage is 1,119.72 ft (341.291 m) National Geodetic Vertical Datum of 1929. Prior to Jan. 26, 1925, nonrecording gage at site 2 mi (3 km) downstream at different datum.

REMARKS.--Water-discharge records good. Many small diversions above station for irrigation.

AVERAGE DISCHARGE.--55 years, 150 ft³/s (4.248 m³/s), 2.67 in/yr (68 mm/yr), 108,700 acre-ft/yr (134 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $307,000 \text{ ft}^3/\text{s}$ (8,690 m³/s) Sept. 24, 1955, gage height, 29.95 ft (9.129 m), in gage well, 32.7 ft (9.97 m), from floodmarks, from rating curve extended above 40,000 ft²/s (1,130 m³/s) on basis of float measurement of $110,000 \text{ ft}^3/\text{s}$ (3,120 m³/s) and slope-area measurements of $213,000 \text{ and } 307,000 \text{ ft}^3/\text{s}$ (6,030 and 8,690 m³/s); minimum, $2.6 \text{ ft}^3/\text{s}$ (0.074 m³/s) Mar. 14-16, 1957.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1866, that of Sept. 24, 1955. Flood in June 1913 reached a stage of about 29 ft (8.8 m), discharge 210,000 ft³/s (5,950 m³/s); flood of Sept. 21, 1923, reached a stage of about 26.5 ft (8.08 m), discharge 160,000 ft³/s (4,530 m³/s); from information by local residents. Discharges based on rating curve mentioned above.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 700 ft3/s (19.8 m3/s) and maximum (*):

Date	Time	Disch (ft³/s)	(m³/s)	Gage H	neight (m)	Date	Time	Disch (ft³/s)	arge (m³/s)	Gage (ft)	neight (m)
Nov. 8	0030	2,420	68.5	7.20	2.195	Aug. 1	1830	*6,700	190	8.70	2.652

Minimum discharge, 21 ft3/s (0.59 m3/s) July 26.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES

DAY	ост	NOV	DEC	JAN	FEB	MAR.	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	52 52 53 53	68 73 71 71 71	123 122 121 120 118	98 98 97 97	84 83 82 83 82	79 79 78 79 78	72 73 73 73 74	83 83 83 79 76	47 48 62 83 105	42 40 38 33 33	775 419 265 184 148	63 61 59 58 69
6 7 8 9	55 54 52 50 51	71 118 381 202 171	117 116 113 111 109	96 95 93 93 93	83 83 83 82 82	80 83 82 79 78	71 69 70 70 223	74 73 70 67 64	99 98 90 85 80	33 32 32 31 31	135 128 119 112 108	68 69 67 68 67
11 12 13 14	51 52 51 51 51	160 156 151 150 146	113 116 113 108 105	92 92 90 89 89	82 90 89 85 86	78 77 77 76 75	316 210 170 152 140	65 65 60 58 56	75 72 69 67 64	29 28 28 27 28	105 101 98 94 91	66 64 74 68 67
16 17 18 19 20	51 52 51 51 50	146 145 147 142 141	102 100 99 99 100	89 89 89 89	87 86 86 85 84	73 74 73 72 72	130 125 119 115 110	55 55 53 52 57	62 61 60 59 57	28 27 26 27 26	87 84 81 78 78	65 63 61 60 59
21 22 23 24 25	50 62 71 68 64	138 136 135 135 135	103 103 104 102 100	87 87 87 87 87	84 82 82 82 80	72 72 74 78 78	104 102 100 97 93	64 66 61 58 56	55 53 53 52 50	26 25 25 25 25 24	76 74 72 69 67	58 57 58 58 56
26 27 28 29 30 31	64 66 68 68 68	133 132 131 128 125	100 99 99 100 99 98	85 84 83 82 81 83	80 80 80	77 76 74 74 73 73	90 88 87 85 84	55 51 50 50 48 47	48 46 46 44 44	24 24 25 28 28 29	65 63 61 63 60 61	56 60 59 59 58
TOTAL MEAN MAX MIN CFSM IN. AC-FT	1754 56.6 71 50 .07 .09 3480	4108 137 381 68 .18 .20 8150	3332 107 123 98 .14 .16 6610	2785 89.8 98 81 .12 .14 5520	2337 83.5 90 80 .11 .11 4640	2363 76.2 83 72 .10 .12 4690	3385 113 316 69 .15 .16 6710	1934 62.4 83 47 .08 .09 3840	1934 64.5 105 44 .08 .09 3840	902 29.1 42 24 .04 .04	4021 130 775 60 .17 .20 7980	1875 62.5 74 56 .08 .09 3720
CAL YR	1977 TOTAL	L 78523	MEAN	215 M	1AX 4500	MIN 50	CFSM .28	IN 3.82	AC-FT	155800		

CAL YR 1977 TOTAL 78523 MEAN 215 MAX 4500 MIN 50 CFSM .28 IN 3.82 AC-FT 155800 WTR YR 1978 TOTAL 30730 MEAN 84.2 MAX 775 MIN 24 CFSM .11 IN 1.50 AC-FT 60950

08190000 NUECES RIVER AT LAGUNA, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: January 1974 to current year.

DATE	TIM	STRE FLO INST E TANE (CF	CAM- CO DW+ DU TAN- AN	FIC N- CT- ICE CRO-		EMPER- ATURE DEG C)	INC	JM- B	10- D	GEN. (P	GEN. IS- LVED ER- ENT TUR- ION)	OXYGEN DEMAND, BIO- CHEM- ICAL. 5 DAY (MG/L)
NOV											97	•2
08 JAN	114	0 21	7	415	7.9	20.5		0	3	8.5		
17 MAR	110	5 90	0	432	7.7	13.0		0	0	9.8	96	• 2
21	102	0 7	8	419	7.9	19.5		0	1	9.1	105	•5
31 JUL	123	0 5	0	411	7.6	25.0		0	1	R.4	105	•3
07	085	0 3	2	410	7.8	27.0		0	2	6.6	81	.7
SFP 07	124	5 7	3	422	7.9	25.0		15	20	8.7	110	.2
DATE		COLI- FORM. TOTAL. IMMED. COLS. PER	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3	NONG BONA	S. AR-	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM. DIS- SOLVED (MG/L AS MG)	SODIUM+ DIS- SOLVED (MG/L AS NA)	SORE SORE TIC RAT	D- D- DN
NOV		5300	920	620	19	90	29	56	13	9.2		.3
0A Jan 17		32	15	24	21		26	58	15	9.6		.3
MAR 21.		9	5	13	21		33	59	14	8.9		.3
MAY 31.		K48	11	5	19	90	28	54	14	8.9		.3
JUL 07.					19		18	53	14	8.9		.3
SEP 07.			320	56		10	19	60	14	8.5		.3
DAT		POTAS- SIUM. DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFAT DIS- SOLVE (MG/I	TE RII	LO- DE, S- LVED G/L CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA+ DIS- SOLVED (MG/L AS SIO?)	SOLIDS. SUM OF CONSTI- TUENTS. DIS- SOLVED (MG/L)	SOLI RESI AT 1 DEG. SUS PEND (MG	DUE 05 C+
NOV		.9	200	0	12		18	.2	11	219		4
JAN 17.		.8	220	0			20	.2	11	239		1
MAR 21.		.8	210	0			20	.1	10	230		2
MAY		.9	200				17	.1	11	216		0
31 • JUL		1.1	210				16	.1	13	223		4
O7.			230				17	.1	13	240		30
07.		SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN+ NITRATE TOTAL (MG/L AS N)	NITRO- GEN,	NITR	0- NI , G 03 AMM L TO L (M	TRO- EN. ONIA TAL G/L N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN-AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS-	CARE ORGA TOT (MG	NIC AL S/L
NOV		1	1.9	.00	1.	9	.00	.50	.50	.01		1.9
08. JAN		0	1.6	.01			.00	.00	.00			1.0
17.				.01			.00	.30	.30			.9
AAY		1	1.4				.00	1.4	1.4	.00		.8
JUL		0	1.2	.01			.00	.00	.00			.9
O7. SEP		3	.87			88		.21	.21			1.2
07.		7	1.1	.01	1.	1	.00	.21	• • • • •	.00		

NUECES RIVER BASIN 08190000 NUECES RIVER AT LAGUNA, TX--Continued

					ARSE DI SOL		BAR DIS			IUM S- VED	MIU DIS SOL	M •	DIS	-	IRO DI SOL				
	1114		TI	ME	(UG			G/L	(UG		(UG		(UG		(UG				
	DA	TE.			AS	AS)	AS	BA)	AS	CD)	AS	CHI	AS	COI	AS	FE)			
	JAN													519					
	17 SEP	•••	11	05		1		100		0		10		1		20			
			12	45		1		100		0		0		1		50			
						МА	NGA-				LE-								
				LE	AD.		SE.	MER	CURY		UM,	SIL	VER.		IC.				
					IS- LVED		IS-		IS-		IS- LVED		IS-		VED				
					G/L		G/L		LVED G/L		G/L		LVED G/L		/L				
		DA	TE		PB)		MN)		HG)		SE)	AS	AG)	AS	ZN)				
		JAN																	
					1		0		.0		1		0		10				
		SEP			7														
		07	•••		0		0		.2		0		0		10				
	80				9/1		PH-								OR-			146	
					TAL		HA- NES.				RIN,			TOT				TOT	DD.
	1				POT-		OLY-				BOT-	СН	LOR-	IN E				IN B	30T-
		PC			MA-		LOR.		RIN.		MA-		NE.	TOM			DD.	TOM	
DATE	TIME	TOT (UG			RIAL /KG)		TAL G/L)		TAL		RIAL /KG)		TAL G/L)	(UG/	KG		TAL G/L)	(UG/	RIAL (KG)
DATE		100	, . ,	100	, , , ,	10	0, 2,	,,,	0/ [/	100	, 110,							,,,,,	
JAN	****																00		
17	1105		• 0				.00		.00				.0	2440			.00		
07	1245		. 0		0		.00		.00		.0		.0		0		.00		.0
			- 1										I-					ENDE	DTN.
		TOT	E,				TAL						RIN, TAL						TAL
		IN B	OT-		1.0	IN	BOT-		-10		I-		BOT-		-00	END	DIN	INE	
	TOTAL	TOM			DT.		MA-		NON,		DRIN		MA- RIAL	SULF			RIN,	TOM	RIAL
DATE	(UG/L)	(UG/			G/L)		/KG)		G/L)		G/L)		/KG)		3/L)		G/L)	1 200	(KG)
JAN																			
17	.00				.00	1			.00		.00				.00		.00		
SEP 07	.00		2.7		.00		.0		.00		.00		.0		.00		.00		.0
0	•00										•••				N.				
						TA- OR,			CHL	OR			LIND	ANE					
					TOT	AL		PTA-	EPOX	IDE			TOT	AL	14			HYL	
	ETHI	ON.		TA-	IN B			LOR XIDE	TOT	TOM	LIND	ANE	IN B		MAL	ON.	PAR		
	TOT		TOT			IAL		TAL		TL.	TOT		TER		TOT		TOT		
DATE	(UG	/L)	(UG	/L)	(UG/	KG)	(U	G/L)	(UG/	KG)	(UG	/L)	(UG/	KG)	(UG	/L)	(UG	/L)	
JAN																			
17.		.00		.00				.00				.00				.00		.00	
SEP 07.		.00		.00		.0		.00		.0		.00		.0		.00		.00	
		•00		•00		•		•00				•••		•		•••			
									PHE										
		HYL					1	23	T01	AL									
	THI	I-	MIC	Ex,	PAR	ON,		OX-	IN E		TOT	I-	2.4	-D•	2,4,	5-T	SILV	FY-	
	TOT			TAL	TOT			TAL.		IAL	THI		TOT		TOT		TOT		
DATE		/L)		/L)		/L)		G/L)	(UG/			/L)		/L)		(L)		/L)	
JAN				-															
17.		.00				.00		U				.00		.00		.00		.00	
SFP 07.		.00		.00		.00		0		0		.00		.00		.00		.00	
07.	•	• 0.0		•00		• 00		U		U						•00			

429

08190500 WEST NUECES RIVER NEAR BRACKETTVILLE, TX LOCATION.--Lat 29°28'21", long 100°14'10", Kinney County, Hydrologic Unit 12110102, at Wilson Ranch on Farm Road 3199, 1.3 mi (2.1 km) upstream from Miguel Canyon, 16.0 mi (25.7 km) northeast of Brackettville, and 40.2 mi (64.7 km) upstream from mouth.

DRAINAGE AREA .-- 700 mi2 (1,800 km2).

PERIOD OF RECORD. -- September 1939 to September 1950, April 1956 to current year.

REVISED RECORDS .-- WSP 1312: 1949(M).

TOTAL 1032.64

953.68

WTR YR 1978 TOTAL

MEAN 2.83

MEAN 2.61

MAX 71

MAX 427

GAGE .-- Water-stage recorder. Datum of gage is 1,326.79 ft (404.406 m) National Geodetic Vertical Datum of 1929. Prior to Mar. 14, 1940, nonrecording gage at same site and datum.

REMARKS.--Records good above 10 ft3/s (0.28 m3/s) and fair below. In ordinary years, a large part of streamflow from basis in lost by seepage into the Balcones Fault Zone of the Edwards and associated limestones above station. No known diversion above station. Several observations of water temperatures were made during the year.

AVERAGE DISCHARGE.--33 years (water years 1940-50, 1957-78), 36.2 ft³/s (1.025 m³/s), 26.230 acre-ft/yr (32.3 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 246,000 ft 3 /s (6,970 m 3 /s) Sept. 20, 1964, gage height, 31.3 ft (9.54 m), from floodmark, from rating curve extended above 4,500 ft 3 /s (127 m 3 /s) on basis of slope-area measurements of 10,000, 51,000, 150,000, and 246,000 ft 3 /s (283, 1,440, 4,250, and 6,970 m 3 /s); no flow most of time.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1879, about 40 ft (12.2 m) June 14, 1935, discharge 550,000 ft³/s (15,600 m³/s), based on slope-area measurements of 580,000 ft³/s (16,400 m³/s) at site 33 mi (53 km) upstream from gage and 536,000 ft³/s (15,200 m³/s) at site 24 mi (39 km) downstream from gage, present site and datum, from gage-height relation of 1935 and 1955 flood peaks at site 0.6 mi (1.0 km) upstream. Flood in 1900 reached a stage of about 34 ft (10.4 m), and flood of Sept. 24, 1955, reached a stage of 27.1 ft (8.26 m), from floodmark at present site, discharge 150,000 ft³/s (4,250 m³/s), by slopearea measurement.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,340 ft 3 /s (94.6 m 3 /s) Aug. 1, gage height, 7.80 ft (2.377 m), from floodmarks, no other peak above base of 1,000 ft 3 /s (28.3 m 3 /s); no flow for many days.

		DISCHA	RGE, IN C	CUBIC FEET		ND, WATER AN VALUES		OBER 1977	TO SEPTE	MBER 197	8	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.03	.12	.12	.20	.20	.02	.00	.00	.00	.00	427	.03
2	.04	.09	.13	.18	.14	.02	.00	.00	.00	.00	248	.01
3	.05	.10	.14	.18	.09	.01	.00	.00	.00	.00	84	.00
4	.05	.10	.14	.18	.07	.01	.00	.00	.00	.00	54	.00
5												.04
5	.04	.12	.12	.18	.07	.01	.00	.00	.00	.00	28	.04
6 7	.05	.12	.12	.21	.06	.01	.00	.00	.01	.00	16	.01
7	.04	.13	.12	.20	.07	.01	.00	.00	.01	.00	11	.00
8	.04	.30	.14	.17	.07	.01	.00	.00	.04	.00	9.4	.00
9	.04	.19	.13	.16	.05	.01	.00	.00	.09	.00	8.0	.00
10	.05	.20	.13	.16	.05	.01	.01	.00	.04	.00	7.1	.00
10	.03	.20	.13	.10	.03	•01	.01	.00	.04	.00	/ - 1	.00
11	.06	.22	.14	.20	.05	.01	.02	.00	.02	.00	6.4	.00
12	.05	.22	.18	.21	.07	.01	.05	.00	.01	.00	5.5	.00
13	.05	.22	.16	.21	.06	.00	.04	.00	.00	.00	4.7	.00
14	.05	.18	.15	.21	.04	.00	.03	.00	.00	.00	4.1	.00
15	.05	.18	.12	.23	.05	.00	.02	.00	.00	.00	3.4	.00
13	.03	.10	.12	.23	.05	.00	.02	.00	.00	.00	3.4	.00
16	.05	.17	.12	.23	.04	.00	.02	.00	.00	.00	2.8	.00
17	.05	.16	.11	.21	.04	.00	.02	.00	.00	.00	2.5	.00
18	.05	.16	.11	.21	.03	.00	.01	.00	.00	.00	2.1	.00
19	.05	.16	.12	.21	.03	.00	.01	.00	.00	.00	1.8	.00
20	.05	.16	.12	.23	.03	.00	.01	.00	.00	.00	1.5	.00
20	.03	•10	•12	.23	.03	.00	•01	.00	•00	.00	1.5	.00
21	.06	.14	.10	.24	.02	.00	.01	.00	.00	.00	1.2	.00
22	.28	.14	.10	.24	.02	.00	.00	.00	.00	.00	1.1	.00
23	.16	.14	.12	.24	.02	.00	.00	.00	.00	.00	.89	.00
24	.15	.11	.13	.30	.02	.00	.00	.00	.00	.00	.74	.00
25	.14	.10	.13	.27	.02	.00	.00	.00	.00	.00	.61	.00
26	.12	.10	.13	.26	.02	.00	.00	.00	.00	.00	.51	.00
27	.13	.10	.13	.25	.02	.00	.00	.00	.00	.00	.40	.00
28	.13	.12	.16	.27	.02	.00	.00	.00	.00	.00	.29	.00
29	.13	.11	.16	.27		.00	.00	.00	.00	.00	.35	.00
30	.14	.11	.16	.29		.00	.00	.00	.00	.00	.10	.00
31	.14		.18	.29		.00		.00		.00	.02	
31	• 1 7	-222	•10	. 23	7.77	.00		.00		.00	.02	
TOTAL	2.52	4.47	4.12	6.89	1.47	.14	.25	.00	.22	.00	933.51	.09
MEAN	.081	.15	.13	.22	.053	.005	.008	.000	.007	.000	30.1	.003
MAX	.28	.30	.18	.30	.20	.02	.05	.00	.09	.00	427	.04
MIN	.03	.09	.10	.16	.02	.00	.00	.00	.00	.00	.02	.00
AC-FT	5.0	8.9	8.2	14	2.9	.3	.5	.00	.4	.00	1850	.2
	0.0	0.5	0.2	4.7	2.5			.00	• 7	.00	1000	

MIN

MIN .00

.00

AC-FT 2050

AC-FT 1890

08192000 NUECES RIVER BELOW UVALDE, TX

LOCATION.--Lat 29°07'25", long 99°53'40", Uvalde County, Hydrologic Unit 12110103, on right bank at McDaniel Ranch, 5.7 mi (9.2 km) upstream from bridge on U.S. Highway 83, 8.8 mi (14.2 km) southwest of Uvalde, 18.2 mi (29.3 km) downstream from West Nueces River, and at mile 366.0 (588.9 km).

DRAINAGE AREA .-- 1,947 mi2 (5,043 km2).

PERIOD OF RECORD.--April 1939 to current year. October 1927 to April 1939 published as "near Uvalde"; records equivalent only during periods of floodflow.

REVISED RECORDS .-- WSP 1732: 1956(M).

GAGE.--Water-stage recorder. Datum of gage is 796.12 ft (242.657 m) National Geodetic Vertical Datum of 1929. Oct. 4, 1927, to Apr. 30, 1939, water-stage recorder at site 6.2 mi (10.0 km) upstream at different datum.

REMARKS.--Records good. Part of flow of Nueces River enters Edwards and associated limestones in Ralcones Fault Zone which crosses basin downstream from Laguna (station 08190000) and upstream from this station. At low stage most of headwater flow enters this formation. Many small diversions above station for irrigation. Several obsevations of water temperature were made during the

AVERAGE DISCHARGE.--39 years, 118 ft³/s (3.342 m³/s), 85,490 acre-ft/yr (105 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 189,000 ft³/s (5,350 m³/s) Sept. 24, 1955, gage height, 24.61 ft (7.501 m), from floodmark, from rating curve extended above 34,000 ft³/s (963 m³/s) on basis of conveyance study and slope-area measurement of peak flow; no flow at times in 1951-57.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1836, 40.4 ft (12.31 m) June 14, 1935, from floodmarks, discharge at former site, 616,000 ft³/s (17,400 m³/s), by slope-area measurement. Large floods occurred in 1901 and 1913, stages unknown.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 250 ft3/s (7.08 m3/s) and maximum (*):

Date	Time	Disch	arge	Gage h	eight	Date	Time	Disch	arge	Gage	height
		(ft3/s)	(m^3/s)	Gage h	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
Nov. 8 Aug. 1	1200 2300	984 *8,270	27.9	5.16 a9.93	1.573	Aug. 2	0430	6,330	179	8.76	2.670

a From floodmark.

Minimum discharge, 22 ft3/s (0.62 m3/s) July 20 to Aug. 1.

		DISCHAR	GE, IN	CUBIC FEE	T PER SECON	D, WATER	YEAR OC	TOBER 1977	TO SEPTEM	MBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	N VALUES MAR	APR	MAY	JUN	JUL	AUG	SEP
1	54	41	109	83	73	50	40	44	32	25	598	40
2 3	53	39	109	81	70	49	40	44	33	25	2670	38
3	51	39	108	81	69	49	40	42	55	25	275	38
4	51	39	106	81	69	46	40	43	34	25	109	38
5	51	39	106	80	68	47	41	42	32	24	75	39
6	51	39	104	81	66	47	42	43	32	24	59	38
7	50	40	101	81	66	45	40	42	32	24	52	37
8	50	340	101	81	65	44	41	41	33	24	48	36
9	48	244	100	81	64	45	41	41	33	24	44	36
10	49	174	98	79	62	45	43	42	33	24	42	36
11	47	150	98	79	62	44	40	42	31	24	41	36
12	46	136	99	78	61	4.4	39	40	31	24	41	36
13	46	129	99	77	60	43	39	39	31	23	44	39
14	4.5	127	98	78	59	44	42	39	31	23	39	36
15	45	126	96	77	59	43	52	39	30	23	38	35
16	45	125	94	78	59	42	59	39	30	23	36	35
17	4.5	124	92	77	56	43	57	36	30	23	36	35
18	44	124	91	78	55	43	56	36	30	23	36	34
19	44	127	90	77	56	43	55	36	28	23	36	34
20	4.3	121	88	77	55	43	54	44	28	22	36	33
21	43	120	86	77	54	43	53	42	28	22	35	33
22	51	118	86	75	54	42	52	38	27	22	35	32
23	47	118	85	75	54	43	50	36	27	22	35	33
24	45	117	85	75	53	41	48	36	27	22	35	32
25	43	116	85	72	51	42	47	35	27	22	35	31
26	42	115	83		51	42	46	35	26	22	35	31
27	42	115	85	75	52	40	47	35	26	22	34	32
28	42	114	85	75	49	36	46	34	26	22	34	31
29	41	115	84	75		45	45	33	25	22	43	30
30	41	114	83	73		42	44	32	25	22	39	31
31	40	+++	83	73		41		32		22	39	
TOTAL	1435	3485	2917	2406	1672	1356	1379	1202	913	717	4754	1045
MEAN	46.3	116	94.1	77.6	59.7	43.7	46.0	38.8	30.4	23.1	153	34.8
MAX	54	340	109	83	73	50	59	44	55	25	2670	40
MIN	40	39	83	72	49	36	39	32	25	22	34	30
AC-FT	2850	6910	5790	4770	3320	2690	2740	2380	1810	1420	9430	2070
CAL YR	1977 TOTAL	85693	MEAN	235	MAX 5140	MIN 39	AC-FT	170000				
WTR YR	1978 TOTAL	23281	MEAN	63.8	MAX 2670	MIN 22	AC-FT	46180				

08193000 NUECES RIVER NEAR ASHERTON, TX

LOCATION.--Lat 28°30'00", long 99°40'54", Dimmit County, Hydrologic Unit 12110103, on right bank 28 ft (9 m) downstream from bridge on Farm Road 190, 0.1 mi (0.2 km) downstream from El Moro Creek, 5.8 mi (9.3 km) northeast of Asherton, and at mile 288.3 (463.9

DRAINAGE AREA .-- 4,082 mi2 (10,572 km2).

PERIOD OF RECORD .-- October 1939 to current year.

REVISED RECORDS .-- WSP 1118: 1944.

GAGE .-- Water-stage recorder. Datum of gage is 470.92 ft (143.536 m) National Geodetic Vertical Datum of 1929. Prior to Feb. 2, 1940, nonrecording gage at same site and datum.

REMARKS.--Records good. Part of flow of the Nueces River and its headwater tributaries enters the Edward and associated limestones in the Balcones Fault Zone, which crosses basin between Laguna and Uvalde (stations 08190000 and 08192000, respectively). Considerable loss of flow into various permeable formations occurs downstream from the Balcones Fault Zone. Since March 1948, flow slightly regulated by Upper Nueces Reservoir, capacity 7,590 acre-ft (9.36 hm³), 13 mi (21 km) upstream. Many small diversions above station for irrigation. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE .-- 39 years, 183 ft3/s (5.183 m3/s), 132,600 acre-ft/yr (163 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 28,500 ft3/s (807 m3/s) Oct. 6, 1959, gage height, 30.88 ft (9.412 m); no flow for many days each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1900, 33 ft (10.1 m) June 17, 1935; flood of June 30, 1913, reached about same stage, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,060 ft3/s (58.3 m3/s) May 23, gage height, 14.97 ft (4.563 m), no other peak above base of 2,000 ft 3 /s (56.6 m 3 /s); no flow for many days.

		DISCH	ARGE, IN C	UBIC FEET		ND, WATER AN VALUES		TOBER 197	7 TO SEPTE	MBER 1978	3	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	62	1.4	.02	.50	.31	.48	7.6	.00	.54	28
2	.00	.00	62	.84	.03	2.7	.14	1.3	3.6	.00	.08	17
3	.00	.00	58	.46	.05	2.8	.04	1.3	97	.00	.02	49
4	.00	.00	57	.32	.05	2.9	.01	1.2	246	.00	.00	35
5	.00	.00	60	.20	.10	2.6	.00	1.8	181	.00	.00	24
6	.00	.00	52	.14	.12	2.5	.00	1.1	105	.00	.00	28
7	.00	.00	48	.29	.12	3.5	.00	.81	749	.00	.00	31
8	.00	.00	47	.27	.12	2.3	.00	.59	1030	.00	.00	229
9	.00	.00	44	.22	.10	2.5	.00	.26	1380	.00	.00	677
10	.00	.00	43	.17	1.1	1.7	.00	.10	821	.00	.00	483
11	.00	.00	41	.42	1.4	1.9	.00	.04	337	.00	.00	256
12	.00	.00	44	1.1	.57	1.9	.00	.02	183	.00	2.9	159
13	.00	.00	51	.53	.27	3.3	.00	.10	110	.00	2.4	109
14	.00	.00	54	.29	.19	3.2	.00	1.4	69	.00	1.5	99
15	.00	.00	53	.13	.14	3.0	.00	1.2	43	.00	.68	83
16	.00	1.5	48	.06	.12	1.6	.00	.40	28	.00	.33	70
17	.00	57	44	.04	.12	.78	.00	.12	18	.00	.03	61
18	.00	52	43	.02	.06	.39	.00	.03	10	.00	.02	52
19	.00	51	37	.02	.64	.21	.00	.53	6.2	.00	.02	47
20	.00	51	31	.02	1.2	.11	.00	1.7	3.6	.00	.17	37
21	.00	52	24	.01	4.2	.05	.00	2.1	2.2	.00	.56	29
22	.00	55	16	1.7	1.3	.24	.00	763	1.4	.00	.48	21
23	.00	57	10	1.2	.32	.50	.00	1970	.73	.00	.39	17
24	.00	56	5.6	2.2	.15	.40	.00	1380	.71	.00	.03	18
25	.00	55	19	.90	.06	.24	.00	479	.16	.00	.32	16
26	.00	56	31	.26	.02	.15	.00	213	.07	.00	.67	12
27	.00	50	31	.15	.02	.24	.00	125	.04	.27	.57	9.8
28	.00	45	28	.07	.01	.88	.00	71	.02	.25	.39	11
29	.00	44	16	.03		.38	.00	42	.01	.00	.84	10
30	.00	51	4.5	.02		.36	.00	26	.00	2.5	20	9.4
31	.00		2.0	.02		.65		16		1.8	57	
TOTAL	.00	733.50	1166.1	13.50	12.60	44.48	.50	5101.58	5433.34	4.82	89.94	2727.2
MEAN	.000	24.5	37.6	.44	.45	1.43	.017	165	181	.16	2.90	90.9
MAX	.00	57	62	2.2	4.2	3.5	.31	1970	1380	2.5	57	677
MIN	.00	.00	2.0	.01	.01	.05	.00	.02	.00	.00	.00	9.4
AC-FT	.00	1450	2310	27	25	88	1.0	10120	10780	9.6	178	5410

WTR YR 1978 TOTAL 15327.56 MEAN 42.0 MAX 1970 MIN .00 AC-FT 30400

08194000 NUECES RIVER AT COTULLA, TX

LOCATION.--Lat 28°25'34", long 99°14'23", La Salle County, Hydrologic Unit 12110105, on left bank at downstream side of bridge on U.S. Highway 81, 0.4 mi (0.6 km) upstream from Missouri Pacific Railroad Co. bridge, 0.8 mi (1.3 km) southwest of Cotulla, 1.0 mi (1.6 km) upstream from Lind Dam, and at mile 235.7 (379.2 km).

DRAINAGE AREA .-- 5,260 mi2 (13,620 km2).

432

PERIOD OF RECORD.--November 1923 to current year. November 1923 to September 1926 monthly discharge only, published in WSP 1312; figures of daily discharge for Oct. 31, 1923, to Sept. 30, 1926, published in WSP 588, 608, and 628, have been found to be unreliable and should not be used. Gage-height records collected in this vicinity in 1914-17 and since 1922 are contained in reports of the National Weather Service.

REVISED RECORDS .-- WSP 1732: 1957(M). See PERIOD OF RECORD.

GAGE.--Water-stage recorder. Datum of gage is 368.08 ft (112.191 m) National Geodetic Vertical Datum of 1929. Oct. 31, 1923, to Aug. 3, 1924, nonrecording gage at approximate site of present gage at datum 7.28 ft (2.219 m) higher. Aug. 4, 1924, to Nov. 19, 1934, nonrecording gage at site 5,000 ft (1,520 m) downstream at datum 8.42 ft (2.566 m) higher. Nov. 20, 1934, to July 14, 1938, water-stage recorder, and July 15, 1938, to Apr. 30, 1963, nonrecording gage, at present site and datum.

REMARKS.--Records good. Part of flow of Nueces River and its headwater tributaries enter the Edwards and associated limestones in the Balcones Fault Zone, which crosses basin between Laguna and Uvalde (stations 08190000 and 08192000, respectively). Considerable loss of flow into various permeable formations occurs downstream from the Balcones Fault Zone. Low flow is slightly regulated by small storage reservoirs above station, with most diverted above station by pumping (see REMARKS for Nueces River near Asherton, station 08193000). Several observations of water temperature were made during the year.

AVERAGE DISCHARGE .--54 years (water years 1925-78), 277 ft3/s (7.845 m3/s), 200,700 acre-ft/yr (247 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 82,600 ft³/s (2,340 m³/s) June 18, 1935, gage height, 32.4 ft (9.88 m), from floodmarks, from rating curve extended above 43,000 ft³/s (1,220 m³/s) on basis of slope-area measurement of peak flow; no flow at times each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1879, that of June 18, 1935. Flood of June 19, 1899, reached a stage of 29.7 ft (9.05 m), from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,620 ft³/s (45.9 m³/s) June 12, gage height, 11.51 ft (3.508 m), no peak above base of 2,500 ft³/s (70.8 m³/s); no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES JUN JUL AUG SEP DAY OCT NOV DEC JAN MAY 120 00 00 36 .90 28 28 48 68 69 .00 .00 .00 22 .31 .03 .00 .00 00 38 19 .03 .00 .00 82 1.2 1.0 42 39 5 .00 -00 45 13 .32 .00 .00 .00 255 .41 .21 .10 15 45 18 15 .00 .00 6.4 .24 .00 .00 .00 518 .00 .00 .00 .00 .24 .00 31 .00 .00 .00 6.4 235 10 .00 .00 38 2.9 .21 .00 .00 .00 1300 .00 560 11 .00 .00 36 2.9 .00 .00 .00 2.6 .25 .00 .00 36 .00 .00 -00 1580 .00 3.5 483 .00 .00 .00 278 325 .00 14 .00 .00 36 .18 .00 .00 .00 .00 .00 .00 .00 -00 185 .00 2.5 118 104 41 46 47 120 .00 16 .00 .00 2.3 .13 .00 .00 .00 .00 .00 .00 .00 80 53 .00 1.9 .00 .00 .20 .00 .00 18 .00 .00 68 19 .00 .00 .75 .00 .00 37 .00 104 26 .00 1.2 59 54 .81 20 .00 21 22 .00 .00 37 .63 .09 .00 .00 95 .00 .00 .09 .00 .57 23 .00 .00 28 .63 .07 .00 .00 7.6 .00 .00 .63 .00 .00 .00 .09 36 24 23 .02 29 22 .06 .00 26 .00 33 18 .51 .05 .00 .00 1380 3.7 .00 .00 22 .00 21 35 35 .00 .00 .04 .00 28 29 .00 .34 .04 .00 .00 248 2.1 .00 .00 .00 9.4 .00 .00 -00 16 .00 1.6 30 34 .32 ---.00 .00 165 31 .00 .32 .00 51 .00 3015 142.77 4405.00 6.92 351.39 TOTAL .00 194.00 1021.5 4.96 .10 .00 8611.6 .000 .22 1.7 .00 MEAN 33.0 .18 .003 .000 287 11.3 101 .00 1580 165 560 MAX .03 MIN .00 .32 .00 .00 .00 5980 .00 385 2030 283 9.8 .2 .00 8740 17080 14 697

CAL YR 1977 TOTAL 71194.32 MEAN 195 MAX 1970 MIN .00 AC-FT 141200 WTR YR 1978 TOTAL 17753.24 MEAN 48.6 MAX 1580 MIN .00 AC-FT 35210

433

08194200 SAN CASIMIRO CREEK NEAR FREER, TX

LOCATION.--Lat 27°57'53", long 98°58'00", Webb County, Hydrologic Unit 12110105, at downstream side of bridge on State Highway 44, 11.4 mi (18.3 km) upstream from mouth, and 22 mi (35 km) northwest of Freer.

DRAINAGE AREA .-- 469 mi2 (1,215 km2).

PERIOD OF RECORD .-- January 1962 to current year.

GAGE.--Water-stage recorder. Datum of gage is 298 ft (90.8 m) Texas Department of Highways and Public Transportation datum.

REMARKS .-- Records good. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--16 years, 69.5 ft³/s (1.968 m³/s), 2.01 in/yr (51 mm/yr), 50,350 acre-ft/yr (62.1 hm²/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $82,000 \text{ ft}^3/\text{s}$ (2,320 m³/s) Oct. 17, 1971, gage height, 26.87 ft (8.190 m), from rating curve extended above $21,000 \text{ ft}^3/\text{s}$ (595 m³/s) on basis of flow-through-culverts, contracted-opening, and flow-over-road determination of $82,000 \text{ ft}^3/\text{s}$ (2,320 m³/s); no flow for many days each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1946, that of Oct. 17, 1971. Second highest stage, 26 ft (7.9 m), discharge 65,200 ft³/s (1,850 m³/s), occurred in 1954, from information by Texas Department of Highways and Public Transporta-

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 500 ft3/s (14.2 m3/s) and maximum (*):

Date	Time	Disch		Gage h		Date	Time	Disch		Gage h	
		(ft^3/s)	(m^3/s)	(ft)	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
Oct. 25	unknown	688	19.5	a14.37	4.380	June 8	1700	696	19.7	14.42	4.395
June 3	1300	534	15.1	13.32	4.060	Sept. 14	0400	*947	26.8	15.61	4.758

a From floodmark.

Minimum discharge, no flow for many days.

		DISCHARG	E, IN (CUBIC FEET		ND, WATER AN VALUES	YEAR OCT	TOBER 197	7 TO SEPTEM	BER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.38	.02	.01	.02	.01	.00	.00	18	.00	.00	57
2	.00	.24	.02	.01	.02	.01	.00	.00	336	.00	21	13
3	.00	.18	.02	.01	.02	.00	.00	.00	447	.00	3.7	.26
4	.00	.15	.02	.01	.01	.00	.00	.00	319	.00	.08	.37
5	11	.12	.02	.01	.01	.00	.00	.00	170	.00	.01	42
6	2.0	.12	.01	.01	.01	.00	.00	.00	33	.00	.00	19
7	.96	.10	.01	.02	.03	.00	.00	.00	262	.00	.00	19
8	.49	.08	.02	.01	.01	.00	.00	.00	610	.00	6.1	88
9	.47	.06	.01	.00	.01	.00	.00	.00	176	.00	.02	31
10	.31	.04	.01	.00	.01	.00	.00	.00	37	.00	.00	13
11	.24	.03	.01	.01	.01	.00	.00	.00	23	.00	.00	1.4
12	.17	.03	.02	.01	.02	.00	.00	.00	7.2	.00	.00	5.6
13	.11	.03	.02	.01	.01	.00	.00	.00	3.5	.00	.00	43
14	.06	.03	.02	.01	.01	.00	.00	.00	1.7	.00	.00	699
15	.00	.03	.01	.01	.02	.00	.00	.00	1.0	.00	.00	164
16	.00	.03	.01	.01	.02	.00	.00	.00	.63	.00	.00	137
17	.00	.03	.01	.01	.02	.00	.00	.00	.36	.00	.00	29
18	.00	.03	.01	.01	.00	.00	.00	.00	.26	.00	.00	3.3
19	.00	.03	.01	.01	.00	.00	.00	.00	.15	.00	.00	.49
20	.00	.03	.01	.01	.00	.00	.00	.08	.10	.00	.00	.12
21	.00	.03	.01	.01	.00	.00	.00	7.9	.08	.00	.00	.08
22	.00	.03	.01	.02	.00	.00	.00	16	.03	.00	.00	.15
23	.00	.03	.01	.02	.00	.00	.00	5.5	.02	.00	.00	167
24	56	.03	.01	.02	.00	.00	.00	17	.00	.00	.00	349
25	571	.02	.01	.02	.00	.00	.00	1.2	.00	.00	.00	368
26	193	.02	.01	.02	.00	.00	.00	.25	.00	.00	.00	118
27	40	.02	.01	.01	.00	.00	.00	.06	.00	.00	.00	32
28	10	.02	.01	.00	.01	.00	.00	.02	.00	.00	.00	14
29	2.5	.02	.01	.00		.00	.00	.00	.00	.00	.00	10
30	1.1	.02	.02	.01		.00	.00	.00	.00	.00	.00	3.1
31	.58		.01	.02		.00		.00	1.5551	.00	.27	
TOTAL	889.99	2.01	.41	.34	.27	.02	.00	97.51	2446.03	.00	31.18	2426.87
MEAN	28.7	.067	.013	.011	.010	.001	.000	3.15	81.5	.000	1.01	80.9
MAX	571	.38	.02	.02	.03	.01	.00	55	610	.00	21	699
MIN	.00	.02	.01	.00	.00	.00	.00	.00	.00	.00	.00	.08
CFSM	.06	.000	.000	.000	.000	.000	.000	.007	.17	.000	.002	.17
IN.	.07	.00	.00	.00	.00	.00	.00	.01	.19	.00	.00	.19
AC-FT	1770	4.0	.8	.7	.5	.04	.00	193	4850	.00	62	4810
CAL YR	1977 TOTAL	7796.28	MEA	N 21.4 M	AX 1290	MIN .OC	CFSM	.05 IN	.62 AC-F	T 15460		

WTR YR 1978 TOTAL 5894.63 CFSM .03 IN .47 AC-FT 11690 MEAN 16.1 MAX 699 MIN .00

08194500 NUECES RIVER NEAR TILDEN, TX

LOCATION.--Lat 28°18'31", long 98°33'25", McMullen County, Hydrologic Unit 12110105, on right bank at downstream side of pier of bridge on State Highway 16, 1.8 mi (2.9 km) upstream from Kings Branch, 10.5 mi (16.9 km) south of Tilden, and at mile 141.2

DRAINAGE AREA .-- 8,192 mi2 (21,217 km2).

PERIOD OF RECORD .-- November 1942 to current year.

REVISED RECORDS .-- WSP 1512: 1947. WSP 1732: 1951(M).

GAGE .-- Water-stage recorder. Datum of gage is 183.5 ft (55.93 m) National Geodetic Vertical Datum of 1929.

REMARKS. -- Records good. Part of flow of Nueces River and its headwater tributaries enters Edwards and associated limestones in the Balcones Fault Zone, which crosses basin between Laguna and Uvalde (stations 08190000 and 08192000, respectively). Some loss of flow into various permeable formations occurs downstream from the Balcones Fault Zone. Some diversions for irrigation above station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 35 years (water years 1944-78), 453 ft3/s (12.83 m3/s), 328,200 acre-ft/yr (405 hm3/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 76,500 ft3/s (2,170 m3/s) Sept. 24, 1967, gage height, 26.57 ft (8.099 m); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since about 1902, that of Sept. 24, 1967. Flood of Oct. 11, 1946, reached a stage of 26.46 ft (8.065 m), discharge 70,000 ft³/s (1,980 m³/s). Floods in June 1935 reached a stage of 23.7 ft (7.22 m) and in July 1942 about 22 ft (6.7 m), from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,150 ft3/s (32.6 m3/s) June 12, gage height, 13.03 ft (3.972 m) no peak above base of 1,800 ft 3 /s (51.0 m 3 /s); no flow for many days.

					ME	AN VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.5	20	1.9	15	.76	.57	.46	.00	125	5.1	25	51
2	2.5	13	1.8	12	.61	.51	.42	.00	80	4.0	293	32
3	2.6	7.8	1.8	10	.58	.36	.39	.00	659	3.2	181	48
4	2.7	5.7	1.9	8.7	.47	.33	.27	.00	685	2.6	425	180
5	2.7	4.7	1.9	7.8	.43	.37	.20	.00	611	1.8	692	90
6	2.7	4.0	1.7	8.6	.53	.48	.14	.00	674	1.3	408	99
7	3.1	3.6	1.6	12	.76	.66	.12	.00	667	1.3	97	103
8	3.5	3.3	3.0	13	.69	.66	.09	.00	660	1.2	49	241
9	3.6	3.0	31	12	.63	.56	.08	.00	815	1.1	28	449
10	5.1	2.6	34	9.8	.64	.52	.13	.00	931	1.1	68	498
11	2.6	2.4	38	8.1	.56	.55	.18	.00	1010	1.1	43	618
12	1.7	2.3	40	7.1	.80	.53	.38	.00	1120	1.0	17	364
13	1.4	2.2	39	6.1	1.0	.53	.58	.00	1110	1.0	10	359
14	1.4	2.1	37	5.3	1.0	.46	.58	.00	963	.91	6.4	479
15	1.4	2.0	36	4.7	1.3	.51	.53	.00	944	.84	4.2	564
16	1.3	2.0	36	4.3	1.3	.51	.00	.00	970	.82	2.9	718
17	1.3	1.9	36	3.9	1.2	.51	.00	.00	642	.82	3.4	665
18	1.4	1.8	33	3.4	1.0	.52	.00	.00	218	.67	3.1	341
19	1.5	1.9	32	3.2	.88	.49	.00	.00	124	.66	2.1	160
20	1.7	1.8	33	2.8	.82	.53	.00	7.9	82	.58	1.6	100
21	1.7	1.8	37	2.4	.82	.61	.00	69	61	.52	1.4	74
22	2.2	1.6	39	2.3	.74	.68	.00	13	44	.40	1.2	74
23	3.7	1.6	38	2.0	.82	.73	.00	215	32	.40	1.0	7.5
24	8.1	1.7	36	1.8	1.1	.62	.00	519	24	.28	.94	78
25	7.6	1.8	33	1.6	.97	.54	.00	270	18	.25	.91	252
26	167	1.8	30	1.4	.72	.48	.00	88	12	.17	.91	384
27	427	1.8	29	1.2	.60	.48	.00	252	8.7	.12	1.0	409
28	199	1.8	26	1.3	.57	.51	.00	544	7.2	.09	.96	204
29	74	2.0	23	1.2		.46	.00	644	6.6	.09	1.4	88
30	61	2.0	20	.94		.46	.00	680	5.9	.11	72	57
31	36		17	.91		.46		325		.30	14	
TOTAL	1034.0	106.0	768.6	174.85	22.30	16.19	4.55	3626.90	13309.4	33.83	2455.42	7854
MEAN	33.4	3.53	24.8	5.64	.80	.52	.15	117	444	1.09	79.2	262
MAX	427	20	40	15	1.3	.73	.58	680	1120	5.1	692	718
MIN	1.3	1.6	1.6	.91	.43	.33	.00	.00	5.9	.09	.91	32
AC-FT	2050	210	1520	347	44	32	9.0	7190	26400	67	4870	15580

MAX 1120

AC-FT

58330

MIN .00

MEAN

80.6

WTR YR 1978 TOTAL 29406.04

08195000 FRIO RIVER AT CONCAN, TX

LOCATION.--Lat 29°29'18", long 99°42'16", Uvalde County, Hydrologic Unit 12110106, on left bank 0.7 mi (1.1 km) southeast of Concan Post Office, 15 mi (24 km) upstream from Dry Frio River, and 224.1 mi (360.6 km) upstream from mouth.

DRAINAGE AREA .-- 405 mi2 (1.049 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1923 to September 1929, October 1930 to current year.

REVISED RECORDS.--WSP 1342: Drainage area. WSP 1512: 1926, 1931-32, 1934(M), 1935-36. WSP 1712: 1958. WSP 1923: 1954(M), 1957(M).

GAGE.--Water-stage recorder. Datum of gage is 1,203.71 ft (366.891 m) National Geodetic Vertical Datum of 1929. Oct. 26, 1923, to July 28, 1924, nonrecording gage at site 86 ft (26 m) upstream at datum 5.08 ft (1.548 m) lower. July 29, 1924, to Oct. 3, 1930, nonrecording gage, and Oct. 4, 1930, to May 18, 1939, water-stage recorder, at site 130 ft (40 m) downstream at present datum.

REMARKS .-- Water-discharge records good. Many small diversions for irrigation above station.

AVERAGE DISCHARGE.--53 years (water years 1925-29, 1931-78), 109 ft3/s (3.087 m3/s), 3.65 in/yr (93 mm/yr), 78,970 acre-ft/yr (97.4 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $162,000 \text{ ft}^3/\text{s}$ (4,590 m³/s) July 1, 1932, gage height, 34.44 ft (10.497 m), from floodmarks, from rating curve extended above $44,000 \text{ ft}^3/\text{s}$ (1,250 m³/s) on basis of flow-over-dam measurement of $56,000 \text{ ft}^3/\text{s}$ (1,600 m³/s) and slope-area measurement of $162,000 \text{ ft}^3/\text{s}$ (4,590 m³/s); no flow Aug. 5, 1956, to Jan 6, 1957.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1869, that of July 1, 1932.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 500 ft3/s (14.2 m3/s) and maximum (*):

Date	Time	Discha (ft³/s)	arge (m³/s)	Gage h	eight (m)	Date	Time	Disch (ft³/s)	arge (m³/s)	Gage (ft)	height (m)
Oct. 22	1300	*20,800	589	13.62	4.151	Aug. 2	1700	3,350	94.9	6.90	2.103

Minimum discharge, 20 ft3/s (0.57 m3/s) July 26-28.

		DISCHAR	GE, IN	CUBIC FEET	PER SE	COND, WAT	ER YEAR OC	TOBER 1977	TO SEPT	EMBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MEAN VALU	APR	MAY	JUN	JUL	AUG	SEP
1	56	310	126	105	102	74	58	49	45	40	65	88
2	54	280	125	105	99	70	59	51	48	38	834	81
3	54	260	122	105	98	70	58	50	143	37	616	85
4	5.4	240	119	105	98	70	58	50	78	34	415	75
5	54	240	115	105	95	71	58	49	70	35	280	81
6	54	330	115	105	94	69	58	49	66	32	207	82
7	54	420	115	102	95	70	58	49	68	33	184	78
8	5.4	320	115	105	95	69	56	48	64	34	165	78
9	54	233	114	105	93	69	57	47	64	32	151	77
10	54	199	112	105	92	70		49	63	32	139	75
11	54	177	113	106	90	68	69	50	62	31	133	75
12	52	163	118	105	101	6.7	64	48	59	30	129	75
13	52	156	116	104	96	64	61	43	59	29	126	90
14	52	150	111	102	93	65	59	44	58	26	118	78
15	52	146	115	102	94	65	58	45	57	26	110	77
16	52	142	113	101	92	66	57	42	55	25	105	73
17	52	142	111	98	89	66	57	40	55	26	101	72
18	52	141	111	102	89	6.5	56	40	53	25	97	72
19	52	137	110	100	89	65	56	40	52	24	95	71
20	52	136	108	102	90	62		53	49	24	91	70
21	52	132	108	102	89	61	54	57	49	23	88	70
22	4090	130	107	102	89	63	53	52	47	23	86	69
23	1550	126	106	102	81	62	52	49	46	22	83	70
24	980	126	105	101	80	60		47	4.5	23	81	70
25	790	125	107	100	80	60	50	47	44	23	79	68
26	660	125	108	102	78	60	49	46	42	21	77	67
27	550	124	106	102	78	60	47	44	42	21	77	68
28	485	122	107	100	74	60	47	4.5	41	24	74	70
29	420	132	106	99		60	47	44	44	26	75	69
30	380	124	105	102		61	49	43	41	26	75	67
31	340		105	102		58		43		26	75	
TOTAL	11361	5588	3474	3183	2533	2020	1686	1453	1709	871	5031	2241
MEAN	366	186	112	103	90.5	65.2	56.2	46.9	57.0	28.1	162	74.7
MAX	4090	420	126	106	102	74	75	57	143	40	834	90
MIN	52	122	105	98	74	58	47	40	41	21	65	67
CFSM	.90	.46	.28	.25	.22	.16	.14	.12	.14	.07	.40	.18
IN.	1.04	.51	.32	.29	.23	.19	.15	.13	.16	.08	.46	.21
AC-FT	22530	11080	6890	6310	5020	4010	3340	2880	3390	1730	9980	4450
CAL YR	1977 TOTA	L 70822	MEAN 1	194 MAX	4090	MIN 52	CFSM .48	IN 6.51	AC-FT	140500		

WTR YR 1977 TOTAL 70822 MEAN 194 MAX 4090 WTR YR 1978 TOTAL 41150 MEAN 113 MAX 4090 MIN 21 CFSM .28 IN 3.78

08195000 FRIO RIVER AT CONCAN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: January 1974 to current year.

		STRE FLO INST	AM- COI W. DUG AN- ANG	FIC N- CT-		MPER- II	NUM- B	ID- D	D SO GEN, (P IS- C	IS- DEF LVED BI ER- CH ENT I	YGEN MAND, IO- HEM- CAL,
DATE	TIME	TANE (CF		CRO- OS) (UN							G/L)
NOV									19	M. L.	
08 JAN	0925	420		373	7.9	17.0	5	60	9.1	97	.7
17	0830	98		437	7.6	11.0	0	0	9.8	92	•1
MAR 21	0810	61		419	7.9	18.0	0	0	8.8	96	-1
MAY 31	1015	43		385	7.6	25.5	0	1	8.1	101	.6
JUL 06	1355	32	i. 30-163	390	7.9	29.0	0	1	8.1	102	.6
SEP 07	0930	78		389	7.8	24.5	0	5	8.1	99	• 0
07	COL		COLI-	STREP-	1.0	24.5				60	
DATE	FOR TOT IMM (COL PE 100	M, AL, ED. S.	FORM. FECAL, 0.7 UM-MF (COLS./ 100 ML)	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	
NOV 08	. 12	000	5000	3700	180	10	53	12	5.9	.2	
JAN 17		40	26	150	220	31	63	15	7.5	.2	
MAR 21		110	40	44	210	31	60	15	7.4	.2	
MAY 31	. 1	400	60	120	190	29	51	14	7.6	.2	
JUL 06					190	21	51	14	7.8	.3	
SEP 07			96	230	200	25	56	14	7.0	.2	
DATE	DI SOL (MG	UM, S- VED /L	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA. DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	
NOV		1 2	210	0	8.9	10	.1	9.5	204	98	
08 JAN 17		1.3	230	0	16	15	.2	11	242	1	
MAR 21		.8	220	0	14	15	.1	9.9	231	0	250
MAY 31		.9	190	0	12	16	.1	11	206	31	
JUL			200	0	15	15	.1	13	216	2	
06 SEP		1.0		8.11				12	219	1	
07		.9	210	0	12	13 NITRO-	.1	NITRO-			
DATE	SOLI VOL TIL SUS PEND (MG	A- E+	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN,	GEN,	MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
NOV 08		16	1.3	.00	1.3	• 0 0	.60	.60	.04	3.0	
JAN 17		0	1.5	.01	1.5	.00	.00	.00	.01	1.0	
MAR 21		0	.39	.01	.40			.25	.00	1.0	3.77
MAY		30	.64	.01	.65			.36	.00	1.0	
31 • • JUL								.10	.01	1.9	
SEP		2	.23	.01	•24					1.6	
07	•	1	•54	.00	•54	• • • • • • • • • • • • • • • • • • • •	.30	.30	•00	1.0	

08195000 FRIO RIVER AT CONCAN, TX--Continued

DATE AS AS) AS BA) AS CD) AS CR) AS CU) AS FE) JAN 17 0830 1 100 0 10 0 20 SEP 07 0930 2 0 0 1 10 MANGA- SELE- LEAD, NESE, MERCURY NIUM, SILVER, ZINC,	
17 0830 1 100 0 10 0 20 SEP 07 0930 2 0 0 1 10 MANGA- SELE- LEAD, NESE, MERCURY NIUM, SILVER, ZINC,	
07 0930 2 0 0 1 10 MANGA- SELE- LEAD, NESE, MERCURY NIUM, SILVER, ZINC,	
LEAD, NESE, MERCURY NIUM, SILVER, ZINC,	
DIS- DIS- DIS- DIS- DIS- DIS- SOLVED SOLVED SOLVED SOLVED SOLVED (UG/L (UG/L (UG/L (UG/L (UG/L DATE AS PB) AS MN) AS HG) AS SE) AS AG) AS ZN)	
JAN	
17 0 0 .0 1 0 10 SEP	
07 0 0 .0 0 0	
TOTAL LENES, TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TO STATE TO ST	DDD, DTAL BOT- M MA- ERIAL G/KG)
JAN 17 0830 .000 .00000 SFP	
07 0930 .0 0 .00 .00 .0 0 .00	.0
TOTAL	DRIN. DTAL BOT- M MA- ERIAL G/KG)
JAN 170000000000 .00	
0700 .2 .00 .2 .00 .100	.0
HEPTA- CHLOR, TOTAL HEPTA- EPOXIDE TOTAL METHYL HEPTA- IN BOT- CHLOR TOT. IN BOT- MALA- PARA- ETHION, CHLOR, TOM MA- EPOXIDE BOTTOM LINDANE TOM MA- THION, THION, TOTAL TOTAL TERIAL TOTAL MATL. TOTAL TERIAL TOTAL DATE (UG/L) (UG/L) (UG/KG) (UG/L) (UG/KG) (UG/L) (UG/L)	
JAN 1700 .00000000	
0700 .00 .0 .00 .0 .00 .0 .00	
TOXA- PHENE, TOTAL TRI- THION, MIREX, THION, APHENE, TOM MA- TOTAL	
Jan 170000 000 .00 .00	
0700 .00 .00 0 .00 .00 .00 .00	

08196000 DRY FRIO RIVER NEAR REAGAN WELLS, TX

LOCATION.--Lat 29°30'16", long 99°46'52", Uvalde County, Hydrologic Unit 12110106, on right bank 2.3 mi (3.7 km) upstream from bridge on U.S. Highway 83, 3.1 mi (5.0 km) upstream from Rocky Creek, and 4.3 mi (6.9 km) southeast of Reagan Wells.

DRAINAGE AREA .-- 117 mi2 (303 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1952 to current year.

REVISED RECORDS .-- WSP 1712: 1953. WSP 1923: 1955(M).

GAGE.--Water-stage recorder. Datum of gage is 1,335.2 ft (406.97 m) Texas Department of Highways and Public Transportation datum.

REMARKS.--Water-discharge records good. Several small diversions above station.

AVERAGE DISCHARGE.--26 years, 34.8 ft3/s (0.986 m3/s), 4.04 in/yr (103 mm/yr), 25,210 acre-ft/yr (31.1 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 123,000 ft 3 /s (3,480 m 3 /s) Aug. 13, 1966, gage height, 27.6 ft (8.41 m), from floodmark, from rating curve extended above 900 ft 3 /s(25.5 m 3 /s) on basis of slope-area measurements of 11,400, 30,700, 64,700, and 123,000 ft 3 /s (323, 869, 1,830, and 3,480 m 3 /s); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1875 occured in 1880, about 33 ft (10.1 m). Flood of June 14, 1935, reached a stage of 26.0 ft (7.92 m), discharge at site 2.6 mi (4.2 km) upstream, 64,700 ft 3 /s (1,830 m 3 /s), and that of July 1, 1932, reached a stage of 23 ft (7.0 m), discharge at site 2.0 mi (3.2 km) upstream, 30,700 ft 3 /s (869 m 3 /s), from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 200 ft³/s (5.66 m³/s) and maximum (*):

Date	Time		arge	Gage I		Date	Time	Disch	arge	Gage h	eight
		(ft ³ /s)	(m^3/s)	(ft)	(m)			(ft ³ /s)	(m^3/s)	(ft)	(m)
Nov. 8	0230	742	21.0	3.89	1.186	Aug. 1	1700	*1,640	46.4	a5.48	1.670

a From floodmark.

Minimum discharge, 0.14 ft3/s (0.004 m3/s) July 28.

		DISCHARGE	, IN CU	BIC FEET	PER SECO	ND, WATER	YEAR OCT	OBER 1977	TO SEPTE	MBER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5.9 6.0 6.0 6.0	30 31 33 31 29	24 23 23 22 21	16 16 16 16	15 15 15 15 15	14 14 14 13 13	9.5 9.5 9.6 9.4 9.0	9.0 8.9 9.9 8.7 8.0	4.1 5.6 59 27 23	8.4 8.2 8.1 7.3 6.6	334 136 68 46 36	11 12 11 9.7
6 7 8 9	6.0 6.2 6.1 5.5 5.7	28 30 328 140 87	20 20 20 20 20	16 16 15 15	15 15 15 15 14	14 16 14 13	9.0 9.0 8.5 8.6	8.2 8.8 8.2 7.4 6.9	22 26 21 18 16	5.9 6.0 5.6 5.2 4.7	32 32 29 27 25	11 11 11 9.9 9.1
11 12 13 14 15	6.5 6.2 6.0 5.9 6.2	69 60 54 50 47	20 23 22 20 19	16 16 16 15	15 20 19 17 18	13 13 13 12 12	12 12 11 9.5 8.8	7.3 7.5 6.9 6.1 5.7	16 14 13 12	4.7 4.5 4.5 4.2 3.8	22 18 15 15	8.8 8.3 14 12 9.8
16 17 18 19 20	6.2 6.2 6.5 6.6	44 41 39 37 36	19 18 17 17	15 15 15 15 15	17 17 16 16	12 12 11 11 12	9.0 11 11 10 9.4	5.7 5.7 5.8 5.6 7.1	8.2 9.2 11 15 14	3.6 3.4 3.0 2.8 2.6	16 15 14 12 9.8	9.0 8.3 7.7 7.7 8.3
21 22 23 24 25	6.6 40 54 45 38	34 32 31 29 28	17 16 16 16	15 15 15 15 15	15 14 14 14 14	12 11 12 12 12 8.9	9.3 9.4 9.3 9.3 8.8	9.5 9.5 8.0 7.1 6.9	12 11 12 14 12	2.3 2.1 1.5 1.0 1.1	12 8.8 8.1. 7.6 7.2	8.2 7.8 7.0 7.0 6.7
26 27 28 29 30 31	34 33 34 32 31 31	26 25 24 26 24	16 16 17 17 17	14 14 15 14 15	14 14 15	9.9 9.9 9.8 9.5 9.5	7.9 8.1 8.5 8.9 9.1	7.3 6.2 5.1 4.6 4.2 3.9	11 11 11 9.9 9.3	1.1 .81 .72 .92 1.1 2.0	5.6 5.5 6.2 14 6.7 6.3	6.1 6.5 7.5 6.9 6.4
TOTAL MEAN MAX MIN CFSM IN. AC-FT	500.4 16.1 54 5.5 .14 .16 993	1523 50.8 328 24 .43 .48 3020	585 18.9 24 16 .16 .19	472 15.2 16 14 .13 .15 936	433 15.5 20 14 413 .14 859	374.5 12.1 16 8.9 .10 .12 743	288.4 9.61 14 7.9 .08 .09	219.7 7.09 9.9 3.9 .06 .07 436	457.3 15.2 59 4.1 .13 .15 907	117.75 3.80 8.4 .72 .03 .04 234	1004.8 32.4 334 5.5 .28 .32 1990	270.7 9.02 14 6.1 .08 .09 537
CAL YR WTR YR					MAX 328 MAX 334	MIN 5.5 MIN .72	CFSM .			-FT 24760 -FT 12390		

08196000 DRY FRIO RIVER NEAR REAGAN WELLS, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: January 1974 to current year.

WATER QUALITY DATA. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	TIME	FL!	EAM- CO OW, DU TAN- AN	E- FIC N- CT- ICE CRO-		EMPER-	IN	LOR LAT- UM- BALT	TUR- BID- ITY	OXYGE DIS SOLV	S(N+ (F) - (F)	GEN. DIS- DLVED DER- CENT ATUR-	OXYGEN DEMAND. BIO- CHEM- ICAL. 5 DAY
DATE		(CI	FS) MH	(UN	NITS)	(DEG C)	UN	ITS)	(UTU)	(MG/	L) A1	(NOI	(MG/L)
NOV	1111							5	30		8.8	95	.7
08 JAN	1015	32	4	299	7.7	17.5							
17 MAR	0935	1	5	411	7.9	10.0		0	0	10	.4	95	.2
21	0900	1	2	401	7.9	17.0		0	0	9	.1	97	• 2
MAY 31	0850		3.9	351	7.7	23.5		0	1	7	.9	95	.7
JUL	1200		5.9	365	8.0	28.5		0	1	,	.8	96	.6
O6 SEP									0			95	.1
07	1045	1		388	7.6	25.5		0	0		.6	95	•
DATE	FOI TO IMI (COI	TAL.	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL. KF AGAR (COLS. PER 100 ML)	HARD NESS (MG/I AS CACO	NONC BONA (MG	AR-	CALCIUM DIS- SOLVEI (MG/L AS CA	D SOL	VED S	ODIUM. DIS- OLVED (MG/L AS NA)	SOR	ON
NOV 08	. 1	1000	6600	3200	1	40	18	44		7.6	4.6		.2
JAN 17		44	26	59	2	10	33	59	1	4	7.1		.2
MAR			28	29		00	37	59	1	3	7.0		.2
21		64		1.00									
31	•	1900	29	170	1	90	31	55	1		7.3		.2
06 SEP					1	90	23	55	1	2	7.1		• 2
07			43	150	1	90		58	1	2	6.7		.2
DATE	50 (M	TAS- IUM, IS- LVED G/L K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFA DIS- SOLV (MG/ AS SO	ED SOL	VED	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	DIS SOL D (MG	VED	SOLIDS. SUM OF CONSTI- TUENTS. DIS- SOLVED (MG/L)	SOLI RESI AT 1 DEG. SUS PEND	DUE 105 . C+
NOV		4.4					8.9			7.8	156		47
80 NAL	•	1.0	150	0		.6							
17	•	.5	210	0	20	1	15		1	8.8	228		1
21		.5	200	0	17	1	16	•	1	9.0	220		0
31		.5	190	0	16	1	15		1 1	1	210		0
JUL 06		.7	200	0	14	1	13		1 1	3	213		5
SEP 07		.6			13		12			2			1
DATE	SOL VO TI SU PEN	IDS, LA- LE, S- DED	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITR GEN	0- NIT , GE 03 AMMO L TOT L (MO	TRO- EN. ONIA TAL G/L N)	NITRO GEN, ORGANI TOTAL (MG/L AS N)	MONI C ORGA	RO- AM- IA + INIC	PHOS- PHORUS. TOTAL (MG/L AS P)	TO (M	BON+ ANIC TAL G/L C)
NOV			112.0				0.0	.6	.0	.60	•03		4.3
08 JAN	•	6	2.0	.01			.00						
17	•	0	1.7	.01	1.	7	.00	.1	0	.10	.01		1.0
21		0	.94	.01		95	.00	.4	0	.40	.00)	.7
MAY 31		0	.34	.01	i .	35	.00	.8	37	.87	.00)	.9
JUL 06 SEP		5	.19	.01		20	.00	.2	20	.20	.00)	1.6

08196000 DRY FRIO RIVER NEAR REAGAN WELLS, TX--Continued

		will .	THE	DIS SOLV	ED	BARI	ED	SOL	S- VED	DIS-	/ED	COPPI DIS- SOL	VED	IRO DI SOL (UG	S- VED		
	DAT		TIME	AS A			BA)	AS		AS C		AS		AS			
	JAN																
	17.	••	935		1		100		0		0		0		20		
	SEP 07.		1045		2		0		0		0		1		20		
						NGA-		A11011		E-				1			
			(DIS-		SE,		CURY IS-		JM• [S-		VER,		S-			
				JG/L		LVED G/L		LVED G/L		VED 3/L		LVED G/L	SOL	VED /L			
		DATE		S PB)		MN)		HG)		SE)		AG)	AS				
		JAN										-1.3					
		SEP		0		0		.0		1		0		10			
		07	•	0		0		.2		0		0		0			
			7.	есв,		PH- HA-			AL DE	RIN.			CHL			0	DD.
			T	DTAL	LE	NES.			TO	TAL			TOT	AL		TO	TAL BOT-
		PCB,		HOT-		OLY- LOR.	ALD	RIN.	TOM	MA-		LOR-	IN B		DDD,		MA-
DATE	TIME	TOTAL (UG/L		ERIAL G/KG)		TAL G/L)		TAL G/L)		RIAL (KG)		TAL G/L)	TER (UG/		TOTAL (UG/L		RIAL /KG)
JAN																	
17	0935		0			.00		.00				.0			.0)	
SEP 07	1045		0	0		.00		.00		.0		.0		0	.0)	.0
												I -					
		TOTAL				DT.						RIN.					RIN,
	DDE,	IN BOT		DDT,		HOT-		I-		I- DRIN		BOT-	SULF		ENDRIN		BOT-
DATE	TOTAL	TERIA	L T	DTAL	TE	RIAL	TO	TAL	TO	TAL	TE	RIAL	TOT	AL	TOTAL	TE	RIAL
DATE	(UG/L)	(UG/KG	, (JG/L)	106	/KG)	(0	G/L)	(0)	G/L)	(06	/KG)	100	/L)	(UG/L	100	i/KG)
JAN 17	.00	-	8	.00				.00		.00				.00	.0	0	
SEP 07	•00		3	•00		.0		.00		.00		.0		.00	.0	0	.0
				HEPT	Δ-	•		HEP	ΤΔ-	//				1			
				CHL	R.	ueo		CHL	OR			LIND			44	THYL	
			PTA-	IN BO	T-	CHL		EPOX TOT.	IN		4	IN B	T-TC	MAL	A- P/	RA-	
	ETHIO		TAL	TOM N		EPOX		BOT	TOM	TOTA		TOM I		THI		TAL	
DATE	(UG/	L) ((JG/L)	(UG/H	(G)	(UG	(L)	(UG/I	(G)	(UG/	L)	(UG/I	(G)	(UG	/L) ((IG/L)	
JAN		0.0									•					00	
17		00	•00				•00				00				•00	•00	
07		00	.00		• 0		•00		.0	. 9	00		• 0		•00	.00	
								PHE									
	METH			PAR	-	TO	x-	TOT.		TOTA	L						
	THIO	N. MI	REX,	THI	N.	APHE	NE.	TOM I	MA-	TRI		2,4		2.4.		VEX.	
DATE			G/L)	TOT/		TOT (UG	AL (L)	TER (UG/		THIC		TOT.		TOT.		G/L)	
JAN																	
17 SEP		00			00		0			•	00		.00	7	•00	.00	
07		00	.00		00		0		0		00		.00	6	•00	.00	

08197500 FRIO RIVER BELOW DRY FRIO RIVER NEAR UVALDE, TX

LOCATION.--Lat 29°14'44", long 99°40'27", Uvalde County, Hydrologic Unit 12110106, on right bank 1.1 mi (1.8 km) upstream from Farm Road 1023, 5.7 mi (9.2 km) downstream from Dry Frio River, 6.3 mi (10.1 km) downstream from bridge on U.S. Highway 90, and 7.2 mi (11.6 km) northeast of Uvalde.

DRAINAGE AREA .-- 661 mi2 (1.712 km2).

PERIOD OF RECORD.--September 1952 to current year. Sum of records published as Frio River at Knippa and Dry Frio River at Knippa for period September 1952 to September 1953 is equivalent to record for this station.

GAGE.--Water-stage recorder. Datum of gage is 882.47 ft (268.977 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Part of flow of Frio River enters the Edwards and associated limestones in the Balcones Fault Zone, which crosses basin between Concan (station 08195000) and this station. Most of low flow enters this formation. Many diversions for irrigation above station.

AVERAGE DISCHARGE.--26 years, 25.6 ft³/s (0.725 m³/s), 18.550 acre-ft/vr (22.9 hm³/vr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $88,500 \text{ ft}^3/\text{s}$ (2,510 m³/s) Aug. 13, 1966, gage height, 23.88 ft (7.279 m), from floodmark, from rating curve extended above 12,000 ft³/s (340 m³/s) on basis of slope-area measurements of 24,400, 53,000, and $88,500 \text{ ft}^3/\text{s}$ (691, 1,500, and 2,510 m³/s); no flow most of time each year.

EXTREMES OUTSIDE PERIOD OF RECORD.---Maximum stage since at least 1887, about 35 ft (10.7 m) in 1894. Flood of July 1, 1932, reached a stage of about 30 ft (9.1 m). A higher flood than that of 1894 occurred prior to 1887. Above information by local residents.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 1,000 ft3/s (28.3 m3/s) and maximum (*):

Date	Time	Disch	arge	Gage h	eight	Date	Time	Disch	arge	Gage I	neight
		(ft^3/s)	(m^3/s)	Gage h (ft)	(m)			Disch (ft³/s)	(m^3/s)	(ft)	(m)
Oct. 22	2000	*11,200	317	11.04	3.365	Aug. 2	0030	2,990	84.7	7.29	2.222

Minimum discharge, no flow most of time.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1977	TO	SEPTEMBER	19/8	
					MEAN	VALUES							

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	15	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	480	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	249	.00
4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	144	.00
5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	44	.00
3	.00	.00	•00	.00	.00	•00	.00	•00	•00	.00		
6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	2.3	.00
7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.28	.00
8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.01	.00
9	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
11	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
12	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
13	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
14	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
15	.00							.00	.00	.00	.00	.00
15	.00	.00	.00	.00	.00	.00	.00	.00	•00	.00	.00	.00
16	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
17	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
												0.272
21	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
22	1220	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
23	956	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
24	170	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
25	49	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
26	4.8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
27	.52	.00		.00	.00	.00	.00	.00	.00	.00	.00	.00
28			.00					.00	.00	.00	.00	.00
29	.12	.00	.00	.00	.00	.00	.00				.00	.00
	.00	.00	.00	.00		.00	.00	.00	.00	.00		.00
30	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	
31	.00		.00	.00		.00		.00		.00	.00	
TOTAL	2400.44	.00	.00	.00	.00	.00	.00	.00	.00	.00	934.59	.00
MEAN	77.4	.000	.000	.000	.000	.000	.000	.000	.000	.000	30.1	.000
MAX	1220	.00	.00	.00	.00	.00	.00	.00	.00	.00	480	.00
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
AC-FT	4760	.00	.00	.00	.00	.00	.00	.00	.00	.00	1850	.00
CAI VI	R 1977 TOTAL	8845.00	MEAN	24.2	MAX 1940	MIN	.00 AC-FT	17540				
UNL II	L TOIL IOINE	0043.00	HEMI	67.6	1100 1340	1.1 7 1.4	. UU MU-11	11340				

WTR YR 1978 TOTAL 3335.03 MEAN 9.14 MAX 1220 MIN .00 AC-FT 6620

08198000 SABINAL RIVER MEAR SABINAL, TX

LOCATION.--Lat 29°29'35", long 99°29'49", Uvalde County, Hydrologic Unit 12110106, on right bank 108 ft (33 m) upstream from concrete dam, 2.3 mi (3.7 km) downstream from mouth of Onion Creek, and 12.5 mi (20.1 km) north of Sabinal.

DRAINAGE AREA .-- 206 mi2 (534 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1942 to current year.

REVISED RECORDS .-- WSP 1312: 1943(M), 1944(M), 1947(M).

GAGE.--Water-stage recorder. Datum of gage is 1,131.20 ft (344.790 m) National Geodetic Vertical Datum of 1929. Prior to Apr. 9, 1971, at site 0.3 mi (0.5 km) downstream at same datum.

REMARKS.--Water-discharge records good. Several small diversions above station for irrigation.

AVERAGE DISCHARGE.--36 years, 52.5 ft³/s (1.487 m³/s), 3.46 in/yr (88 mm/yr), 38,040 acre-ft/yr (46.9 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $55,200 \text{ ft}^3/\text{s}$ (1,560 m³/s) June 17, 1958, gage height, 28.3 ft (8.63 m), from floodmark at present site, from rating curve extended above $6,900 \text{ ft}^3/\text{s}$ (195 m³/s) on basis of slope-area measurement of $55,200 \text{ ft}^3/\text{s}$ (1,560 m³/s); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1892, about 33 ft (10.1 m) July 2, 1932, from information by local residents. There is a legend that a flood in the middle 1800's reached a stage of nearly 63 ft (19.2 m), see flood history for station 08198500.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 300 ft³/s (8.50 m³/s) and maximum (*):

Date	Time	Disch	arge	Gage h	eight	Date	Time	Disch	arge	Gage h	eight
		(ft^3/s)	(m^3/s)	(ft)	(m)			(ft ³ /s)	(m^3/s)	(ft)	(m)
Oct. 22	0800	17,700	501	16.72	5.096	June 6	2130	716	20.3	6.38	1.945
Nov.	0600	1,260	35.7	6.88	2.097	Aug.	0700	*23,200	657	19.43	5.922

Minimum discharge, 7.4 ft3/s (0.21 m3/s) July 12-16.

		DISCHARC	E, IN C	JBIC FEET	PER SECOND MEAN	, WATER	YEAR OCTO	BER 1977	TO SEPTE	MBER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	19 19 19 19	90 102 86 79 74	104 98 95 92 90	67 65 66 67 67	50 50 50 50 49	46 46 44 47 46	29 29 29 27 26	18 20 19 18 18	26 29 176 73 44	17 15 12 8.1 8.1	49 5710 1480 331 186	58 87 69 61 58
6 7 8 9	19 19 19 18	70 70 391 185 142	85 86 87 83 85	65 64 62 60	48 48 48 46 46	47 44 37 38 37	26 26 24 25 36	19 19 19 19	78 53 26 17 21	8.1 8.1 7.5 8.5 8.4	135 111 96 86 78	61 60 63 69 65
11 12 13 14 15	19 19 19 19	125 116 110 107 104	85 87 89 84 82	60 61 60 60	46 56 58 52 50	34 32 34 34 34	43 36 33 32 30	19 19 18 18	29 27 27 24 23	8.4 8.3 7.8 7.4 7.4	73 68 63 61 56	63 62 69 63 79
16 17 18 19 20	18 19 18 18	100 95 97 94 94	82 81 79 79 75	59 56 56 56 54	50 49 48 48 46	34 33 32 32 32	28 27 25 24 23	19 19 19 19	22 22 20 20 19	7.4 7.4 6.8 6.8	52 49 45 42 40	91 79 69 64 62
21 22 23 24 25	18 5300 295 151 112	88 88 90 87 85	74 73 73 73 73	54 54 54 54 52	46 44 46 45 44	32 32 32 29 29	27 24 24 22 20	23 22 22 20 19	19 19 18 17	6.8 6.8 6.8 6.8	38 37 35 36 29	57 58 58 55 56
26 27 28 29 30 31	92 84 81 77 71	83 81 81 108 127	69 69 70 71 70	51 52 50 50 50	44 43 45	29 29 29 29 29	18 19 19 18 18	19 25 26 27 26 24	15 14 17 22 17	6.8 6.8 6.8 6.8 8.8	32 48 46 49 52 52	56 54 56 53 50
TOTAL MEAN MAX MIN CFSM IN. AC-FT	6727 217 5300 18 1.05 1.21 13340	3249 108 391 70 .52 .59 6440	2512 81.0 104 69 .39 .45 4980	1796 57.9 67 50 .28 .32 3560	1345 48.0 58 43 .23 .24 2670	1091 35.2 47 29 .17 .20 2160	787 26.2 43 18 .13 .14 1560	629 20.3 27 18 .10 .11 1250	951 31.7 176 14 .15 .17 1890	252.1 8.13 17 6.8 .04 .05 500	9265 299 5710 29 1.45 1.67 18380	1905 63.5 91 50 .31 .34 3780
CAL YR WTR YR					MAX 5300 MAX 5710	MIN 1			7.85 7.51	AC-FT 862 AC-FT 605		

08198000 SABINAL RIVER NEAR SABINAL, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: January 1974 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		WATE	R QUALITY	DATA, W	ATER YEA	R OCTOB	ER 1	977 TO 9	SEPTEMBE	R 1978			
		STRE FLO INST	W. DU	IC N- CT-	РН ТЕ	MPER-	COL (PL INL	AT-	BID-	DXYGEN,	OXYGE DIS SOLV (PER CEN	- DE ED 8 - C	YGEN MAND, IO- HEM- CAL,
	TIME	TANE		CRO-		TURE			ITY JTU)	SOLVED (MG/L)	SATU		DAY G/L)
DATE		(CF	S) MH)5) (UN	ITS) (D	EG C)	UNI	(TS) (.	3107	(MO/L/	2120		
NOV	2322					20.0			0	9.0		02	.2
07 JAN	1450	73	,	518	7.9	20.0		0	U	9.0	•		
16	1550	64		485	7.8	15.0		0	0	10.0	1	.02	.2
MAR 20	1500	30)	470	7.9	19.5		0	0	10.8	1	21	.2
MAY										9.9		27	.6
30	1630	25	•	423	7.7	27.5		5	1	7.7			
06	1515	8	3.1	440	7.9	29.5		5	2	8.0	. 1	01	.8
SEP 08	0945	64		451	8.1	24.0		5	7	8.6	1	05	•5
		LI-	COLI-	STREP-									
	FO TO IN	ORM. OTAL. MMED. OLS. PER	FORM, FECAL, 0.7 UM-MF (COLS./	TOCOCCI FECAL, KF AGAR (COLS. PER	HARD- NESS (MG/L AS	HARD NESS NONCA BONAT (MGA	AR-	CALCIUM DIS- SOLVED (MG/L	SOLV (MG/	M, SOD - DI ED SOL L (M	VED G/L	SODIUM AD- SORP- TION RATIO	
DATE	100	ML)	100 ML)	100 ML)	CACO3)	CAC)3)	AS CA)	AS M	G) AS	NA)		
NOV				225			20	70			7.5	.2	,
07		180	110	100	260)	38	79	15		1.5		
16		15	8	43	250)	33	74	15		8.2	. 2	2
MAR 20		28	14	37	240)	46	74	14		8.3	. 2	2
MAY				100	200		39	60	13		8.6	.3	3
JUL	•	1400	12	180	200								
06	•				200)	29	59	13		8.6	• 3	3
SEP 08		560	240	150	230)	26	71	13		7.7	• 2	2
	P	DTAS-				CHL		FLUO-	SILIC	A. SUM	OF F	RESIDUE	
		SIUM,	BICAR- BONATE	CAR-	SULFATE DIS-	RIO		RIDE, DIS-	DIS- SOLV			AT 105 DEG. C	,
		DLVED	(MG/L	BONATE	SOLVE	SOL	VED	SOLVED	(MG/	L D	IS-	SUS-	
DATE		MG/L S K)	HCO3)	(MG/L AS CO3)	AS SO4	(MG		(MG/L AS F)	SIO2		IG/L)	(MG/L)	
		3 117					-						
NOV 07		1.0	270	0	25	1	2	.1	13		286		0
JAN					20	1		.2	12		283		1
16	•	1.0	260	0	28								
20	•	1.0	240	0	27	1	6	•2	2 10		269		1
MAY 30		1.0	200	0	27	1	7	.2	2 11		236		1
JUL		1.3	210	0	25	1	5	.2	2 13		239		5
SEP													1
08		1.1	250	0		1		, ž	NITE	-0	265		
	V	OLA-	NITRO- GEN. NITRATE TOTAL	NITRO- GEN; NITRITE TOTAL	NITRO GEN, NO2+NO TOTAL	GE		ORGANIC TOTAL	MONIA	IC PHO		CARBON ORGANI TOTAL	С
		NDED	(MG/L	(MG/L	(MG/L	(MG	/L	(MG/L	(MG	'L (MG/L	(MG/L	
DATE		MG/L)	AS N)	AS N)	AS N)	AS	N)	AS N)	AS I	() AS	5 P)	AS C)	
NOV 07.		0	1.1	.00	1.1		.01	•2	9	.30	.01	1.	5
JAN 16.		0	1.3	.01	1.3		.01	.0	0	.00	.01		9
MAR										.63	.00	1.	0
MAY	•	1	.70	.01	.7		.00	.6					
30.		0	.29	.01	• 3	0	.00	.3	2	.32	•00	1.	3
JUL 06.		3	.09	.00	.0	9	.00	.3	0	.30	.00	1.	7
SEP 08.		1	.49	.01	•5	0	.00	.2	5	.25	.00	1.	5

08198000 SABINAL RIVER NEAR SABINAL, TX--Continued

	DAT		TIME	SOL (UG	S- VED	SOLV		DI	S- VED /L	CHRO MIUM DIS- SOLV (UG) AS (VED	COPP DIS SOL (UG AS	VED /L	(UG	S- VED		
	JAN																
	16. SEP	•••	1550		0	1 .	0		0		0		0		10		
	08.		0945		1		100		0		10		0		20		
					MA	NGA-			SEL	E-						2	
		DATE	Si	EAD, DIS- DLVED UG/L S PB)	SO (U	SE, IS- LVED G/L MN)	S0 (U	CURY IS- LVED IG/L HG)	SOL	S- VED	SOI (U	VER. IS- LVED G/L AG)	SO (U	NC. IS- LVED G/L ZN)			
		JAN															
		16	•	1		0		.0		1		0		10			
		SEP 08		0		. 0		.2		0		0		0			
					NA	PH-							CHI	LOR-			
				PCB,	T	HA-			ALDR				DA	NE.			DD.
				DAL		NES,			TOT		CHI	00-		TAL			BOT-
		PCB,		BOT-		OLY-	ALD	RIN,	IN B			OR-		BOT-	DDD.		MA-
DATE	TIME	TOTAL (UG/L		ERIAL G/KG)		TAL G/L)		TAL G/L)	TER (UG/	KG)		TAL G/L)		RIAL /KG)	TOTAL (UG/L		RIAL (KG)
JAN 16 SEP	1550		0			.00		.00				.0			.0	0	
08	0945		0	0		.00		.00		.0		.0		1	.0	0	.0
DATE	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT TOM MA TERIA (UG/KG	- - (DDT, DTAL UG/L)	IN TOM TE	DT, TAL BOT- MA- RIAL /KG)	AZI	I- NON+ TAL G/L)	TOT	RIN	TOM TOM	I- RIN. TAL BOT- MA- RIAL KG)	SUL	DO- FAN, TAL G/L)	ENDRIN TOTAL (UG/L	IN TOM TE	RIN, OTAL BOT- MA- (RIAL S/KG)
JAN 16 SEP	•00	rá Ta		•00				•00		•00				.00	.0	0	
08	.00		6	.00		.0		.00		.00		.1	40)	.00	.0	0	.0
					TA- OR,	HEE	PTA-	HEP CHL EPOX	OR			LIND			M	THYL	
DATE	ETHIC TOTA (UG)	N. C	EPTA- HLOR. OTAL UG/L)	IN B	MA-	EPO:	OR.	TOT.	IN TOM TL.	LIND/ TOT/ (UG/	AL	IN B TOM TER (UG/	OT- MA- IAL	THI TOT (UG	A- P ON, T AL T	ARA- HION, DTAL JG/L)	
JAN																	1
16 SEP		.00	•00				•00				.00				•00	•00	
08	. METH	17L	•00		.0		•00	TOX PHE TOT	NE.		•00		•0		•00	.00	
DATE	THIC THIC TOTA (UG)	IN. M	IREX. TOTAL UG/L)	TOT	ON.	TOT	NE,	IN B TOM TER (UG/	MA- IAL	TOTA	I- ON	2+4 TOT (UG	AL	2,4, TOT (UG	AL T	VEX, DTAL JG/L)	
JAN		.00	1		.00		0				.00		.00		.00	.00	
16 SEP	•																

08198500 SABINAL RIVER AT SABINAL, TX

LOCATION.--Lat 29°18'47", long 99°28'46", Uvalde County, Hydrologic Unit 12110106, on left bank 80 ft (24 m) downstream from bridge on U.S. Highway 90, 1,100 ft (335 m) downstream from Southern Pacific Lines railroad bridge, 0.8 mi (1.3 km) west of Sabinal, and 5.8 mi (9.3 km) upstream from Ranchero Creek.

DRAINAGE AREA .-- 247 mi 2 (640 km2).

PERIOD OF RECORD. -- September 1952 to current year.

GAGE.--Water-stage recorder. Datum of gage is 882.17 ft (268.885 m) National Geodetic Vertical Datum of 1929. Prior to July 29, 1958, nonrecording gage, and July 29, 1958, to Mar. 19, 1964, water-stage recorder at site 80 ft (24 m) upstream at same datum.

REMARKS.--Records good. Several small diversions for irrigation above station. Most of low flow of the Sabinal River enters the Edwards and associated limestones in the Balcones Fault Zone, which crosses basin upstream from this station and downstream from Sabinal River near Sabinal (station 08198000). Several observations of water temperature were made during the year.

AVERAGE DISCHARGE .-- 26 years, 30.2 ft3/s (0.855 m3/s), 21,880 acre-ft/yr (27.0 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 73,300 ft³/s (2,080 m³/s) June 17, 1958, gage height, 33.3 ft (10.15 m); no flow at times most years.

EXTREMES OUTSIDE PERIOD OF RECORD.—Maximum stage since at least 1890, 40 ft (12.2 m) Aug. 24, 1919, from information by local residents. Flood of July 2, 1932, reached a stage of 31 ft (9.4 m), discharge 60,000 ft³/s (1,700 m³/s), from information by Southern Pacific Lines. There is a legend that a flood in 1858 covered the townsite of Sabinal. The stage would have been 70 to 80 ft (21.3 to 24.4 m), which seems unlikely. However, it is possible that a flood occurred in 1858 that covered part of the townsite and was higher than any flood since that date.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 100 ft3/s (2.83 m3/s) and maximum (*):

Date	Time	Disch	arge	Gage h	eight	Date	Time	Disch		Gage h	eight
		(ft ³ /s)	(m^3/s)	(ft)	(m)			(ft3/s)	(m^3/s)	(ft)	(m)
Oct. 22	1300	18,400	521	a20.9	6.37	Aug. 2	1200	*26,300	745	a23.35	7.117
Nov. 8	1600	556	15.7	7.06	2.152	Aug. 3	1100	4,860	138	a12.97	3.953

a From floodmark.

Minimum discharge, 0.28 ft3/s (0.008 m3/s) July 12-16.

			MEA	N VALUES					
NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	
5.9	36	3.7	3.2	2.2	1.6	.96	.66	.49	

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.4 1.5 1.7 1.6	5.9 5.2 4.6 6.7 6.9	36 26 22 17 15	3.7 3.6 3.6 3.5 3.4	3.2 3.1 2.9 3.0 3.0	2.2 2.1 2.0 1.9 2.0	1.6 1.5 1.5 1.4 1.3	.96 .65 .89 1.0	.66 .78 1.4 .92	.49 .48 .48 .46	4.2 4590 1660 506 209	2.7 2.6 2.5 2.4 2.4
6 7 8 9	1.6 1.5 1.5 1.7	5.9 5.3 166 165 84	12 10 9.7 9.9 9.3	3.2 3.2 3.1 3.2 3.3	3.0 3.0 2.9 2.8 2.7	2.1 2.1 2.2 2.0 2.0	1.2 1.1 1.1 1.1 1.1	.85 .92 .99 .99	.92 1.1 1.0 .92 .96	.46 .44 .38 .35	113 80 64 53 41	2.4 2.3 2.4 2.3 2.3
11 12 13 14	1.8 1.9 1.9 1.9	65 54 46 39 34	8.6 9.7 13 13	3.3 3.7 3.6 3.5 3.2	2.8 3.0 3.1 3.1 2.9	2.1 2.0 1.9 1.9	1.1 1.1 1.2 1.1	.92 .92 .85 .99	.96 .94 .92 .87	.35 .35 .33 .32	32 26 19 14 11	2.4 2.4 7.6 2.8 2.6
16 17 18 19 20	1.7 1.7 1.7 1.7	30 26 23 21	8.9 7.8 7.1 6.8 6.1	3.3 3.6 4.4 4.3 3.9	2.9 2.9 2.7 2.7 2.5	1.8 1.9 1.9 1.8 1.8	1.0 1.0 1.1 1.1	.92 .85 .85 .85	.89 .83 .76 .73	.33 .39 .41 .39	8.0 6.1 5.4 4.7 4.2	2.5 2.5 2.3 2.2 2.1
21 22 23 24 25	1.7 4260 565 137 67	16 14 12 12 11	5.4 5.2 4.9 4.8 4.4	4.1 3.9 3.9 3.8 3.8	2.5 2.5 2.4 2.4 2.2	1.8 1.8 1.8 1.8	1.0 1.1 1.1 1.1 1.1	1.1 .92 .85 .78	.65 .65 .62 .61	.36 .35 .39	3.7 3.3 3.1 3.0 3.2	2.1 2.0 2.0 2.0 2.0
26 27 28 29 30 31	40 23 14 9.8 7.7 6.5	9.1 8.4 7.9 7.9 27	4.2 4.2 4.1 4.1 4.1	3.8 3.6 3.7 3.4 3.4	2.2 2.0 2.0	1.8 1.7 1.8 1.8 1.7	1.1 1.1 1.0 .92 .92	.72 .72 .66 .66	.57 .55 .54 .53 .50	.34 .35 .92 .74 .55	3.1 2.9 2.7 2.7 2.7 2.7	2.0 2.1 2.0 1.9
TOTAL MEAN MAX MIN AC-FT	5165.3 167 4260 1.4 10250	937.8 31.3 166 4.6 1860	308.3 9.95 36 4.0 612	111.2 3.59 4.4 3.1 221	76.4 2.73 3.2 2.0 152	59.1 1.91 2.2 1.7 117	34.24 1.14 1.6 .92 68	26.84 .87 1.1 .65 53	23.94 .80 1.4 .50 47	13.21 .43 .92 .32 26	7483.7 241 4590 2.7 14840	73.8 2.46 7.6 1.9 146

CAL YR 1977 TOTAL 18434.40 WTR YR 1978 TOTAL 14313.83 MEAN 50.5 MAX 4260 MAX 4590 MIN -1.4 MIN .32 MEAN 39.2

08200000 HONDO CREEK NEAR TARPLEY, TX

LOCATION.--Lat 29°34'10", long 99°14'47", Medina County, Hydrologic Unit 12110107, on left bank 460 ft (140 m) downstream from bridge on Ranch Road 462, 6.3 mi (10.1 km) southeast of Tarpley, and 16.6 mi (26.7 km) northwest of Hondo.

DRAINAGE AREA. -- 86.2 mi2 (223.3 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1952 to current year.

REVISED RECORDS .-- WSP 1712: 1957.

GAGE .-- Water-stage recorder. Datum of gage is 1,169.1 ft (356.34 m) Magnolia Oil Co. datum.

REMARKS.--Water-discharge records good. Several small diversions for irrigation above station.

AVERAGE DISCHARGE.--26 years, 37.9 ft³/s (1.073 m³/s), 5.97 in/yr (152 mm/yr), 27,460 acre-ft/yr (33.9 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $69,800 \text{ ft}^3/\text{s}$ (1.980 m³/s) June 17, 1958, gage height, 28.2 ft (8.60 m), from floodmark, from rating curve extended above $2,600 \text{ ft}^3/\text{s}$ (73.6 m³/s) on basis of slope-area measurements of $18,600 \text{ and } 69,800 \text{ ft}^3/\text{s}$ (527 and $1,980 \text{ m}^3/\text{s}$); no flow at times in 1952-57, 1962-64, 1967, and 1971.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1907, that of June 17, 1958. Flood in July 1932 reached a stage of about 26 ft (7.9 m), discharge 58,500 ft³/s (1,660 m³/s), from infromation by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 500 ft3/s (14.2 m3/s) and maximum (*):

Date	Time	Dischar		Gage h	eight	Date	Time	Disch	arge	Gage I	neight
		(ft ³ /s)	(m^3/s)	(ft)	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
June 6	2300		32.6	a4.18	1.274	Aug. 3	0500	1,240	35.1	a4.56	1.390
Aug. 2	0500	*13,700	388	a13.1	3.99	Sept. 13	0400	555	15.7	3.54	1.079

a From floodmark.

Minimum discharge, 0.19 ft3/s (0.005 m3/s) July 27.

		DISCHA	RGE, IN CL	BIC FEE	PER SECON	D, WATER Y	YEAR OCT	DBER 1977	TO SEPT	EMBER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.7 4.4 4.4 4.4	60 12 10 9.0 8.2	7.2 6.8 6.5 6.5	3.3 2.9 3.3 3.5 3.5	3.3 3.3 3.3 3.3	3.3 3.3 3.1 3.3 3.3	2.3 2.7 2.5 2.5 2.7	1.7 2.9 6.4 2.1 1.7	1.0 2.0 88 9.3 7.2	1.9 1.7 1.4 1.4	84 3270 488 234 152	37 34 31 30 31
6 7 8 9	4.1 4.1 4.1 3.8 3.8	7.9 7.6 52 21 16	5.6 5.6 5.6 5.3 5.0	3.1 3.3 2.9 2.9 2.9	3.1 3.5 3.5 3.1 2.9	4.1 5.6 3.5 3.3 3.5	2.7 2.5 2.3 2.3 7.6	2.1 2.5 1.9 1.7	67 93 16 12 10	1.1 1.1 1.2 1.0	114 97 82 70 62	31 32 46 42 40
11 12 13 14 15	3.8 3.3 3.3 3.3	14 13 12 12	5.3 6.5 5.9 5.0 5.0	2.9 3.3 3.1 3.1 3.1	3.1 7.5 4.7 3.8 5.3	3.5 3.1 3.1 3.1 2.9	2.7 2.3 2.7 2.5 2.5	1.4 1.4 1.3 1.0	8.6 7.9 7.2 6.8 6.2	.80 .70 .70 .60	56 53 48 46 42	40 39 128 64 88
16 17 18 19 20	3.3 3.3 2.7 2.7 2.7	11 11 10 10 9.6	5.0 4.4 4.1 4.1 3.8	3.3 3.1 3.1 3.1 3.1	4.7 5.3 4.7 4.7	2.7 2.7 2.5 2.3 2.5	2.5 2.5 2.3 1.9 1.7	1.0 1.0 .80 .80	5.6 4.7 4.4 3.8 3.8	.50 .50 .50 .41	40 39 37 37 35	82 70 64 59 55
21 22 23 24 25	2.7 6.8 4.7 4.4 4.1	9.3 8.6 8.2 8.2 7.9	3.5 3.5 3.5 3.3 3.1	3.3 3.3 3.3 3.3	3.8 3.8 3.8 3.8	2.3 2.5 2.5 2.5 2.5	1.9 2.1 2.3 2.3 1.7	1.4 1.4 1.2 1.0	3.1 2.7 2.9 2.7 2.5	.32 .24 .24 .90	34 34 31 32 31	52 47 46 44 41
26 27 28 29 30 31	3.8 4.1 4.1 3.5 3.5 3.8	7.9 7.6 7.2 8.6 7.6	2.9 3.3 3.3 3.5 3.5	2.9 3.1 3.1 3.1 3.3	3.5 3.5 3.8	2.5 2.3 2.3 2.3 2.5 2.3	1.5 1.5 1.5 1.7	1.0 1.2 1.0 2.4 1.3	2.3 2.1 2.3 2.5 2.1	.32 .24 .28 .70 .50	31 30 28 31 35	39 40 39 36 34
TOTAL MEAN MAX MIN CFSM IN. AC-FT	119.4 3.85 6.8 2.7 .05	399.4 13.3 60 7.2 .15 .17	146.3 4.72 7.2 2.9 .06 .06 290	97.9 3.16 3.5 2.9 .04 .04	110.4 3.94 7.5 2.9 .05 .05	91.0 2.94 5.6 2.3 .03 .04	71.9 2.40 7.6 1.5 .03 .03	48.80 1.57 6.4 .80 .02	389.7 13.0 93 1.0 .15 .17	23.19 .75 1.9 .24 .009	5434 175 3270 28 2.03 2.35 10780	1461 48.7 128 30 .57 .63 2900
	1977 TOTA	L 21121	.60 MEA	N 57.9 N 23.0	MAX 1780 MAX 3270	MIN 2.7 MIN .2	CFSM	.67 IN	9.12 3.62	AC-FT 418 AC-FT 166	390	11

08200000 HONDO CREEK NEAR TARPLEY, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: January 1974 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		STREAM FLOW-	- CO	FIC N- CT-	Рн	TEMPER-	(PI	LOR LAT- UM-	TUR- BID-	OXYGEN. DIS-	OXYGE DIS SOLV (PER CEN	- DEN ED BI - CH T IC	GEN AND, IO- HEM- CAL,
		TANEO	US (MI	CRO-		ATURE	COL	BALT	ITY	SOLVED	SATU		AY S/L)
DATE		(CFS) мн	0S) (U	NITS)	(DEG C)	UN	ITS)	(JTU)	(MG/L)	ATIO	N) (M	3/L1
NOV	V242	2.5		11.5	1.1								-
07 JAN	1225	7.	0	442	8.0	19.0		0	0	9.0	1	00	•2
16	1325	3.	1	455	7.9	15.0		0	0	10.0	1	02	.2
MAR 20	1225	2.:	3	446	7.9	19.0		0	1	8.8		98	•3
MAY	1225	٠	3	440	1.9	17.0		U	•	0.0		,0	• 5
30	1330	1.	0	385	7.6	27.0		5	3	8.8	1	11	.6
JUL 05	1445	1.	2	405	8.0	31.0		5	2	7.2		93	.7
06	1540	28		374	7.9	27.5		0	0	8.6	1	10	•2
DATE	COLI FORM TOTA IMME (COLS PER 100 M	D.	COLI- FORM, FECAL, 0.7 UM-MF COLS./	STREP- TOCOCCI FECAL: KF AGAR (COLS: PER 100 ML)	HARD	L BONA	S. AR- TE	CALCIUM DIS- SOLVEI (MG/L AS CA)	DIS SOLV (MG/	M, SODI S- DIS VED SOLV	; -	SODIUM AD- SORP- TION RATIO	
NOV													
07	. 2	20	40	64	2	210	50	66	12	2	8.2	•2	
16		13	13	10	2	20	50	69	12	2	8.9	.3	
20		40	2.8	41	i	210	58	66	12	2	8.9	.3	
30	. 15	00	660	440	1	90	75	58	11	1	0	.3	
JUL 05•••					1	180	46	51	12	2	9.1	.3	
SEP 06			10	36		180	35	58		.3	6.6	.2	
00			10	30						SOLI	DS. S	OLIDS,	
DATE	POTA SIU DIS SOLV (MG/ AS K	M. B ED	ICAR- ONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFA DIS- SOLV (MG/ AS SO	ED SOL	E, VED	FLUO- RIDE, DIS- SOLVEI (MG/L AS F)		CONS ZED TUEN ZL DI	ITI- A	ESIDUE IT 105 DEG. C. SUS- PENDED (MG/L)	
NOV													
07	. 1	.3	200	0	4	1 1	2	• •	2 10)	255	1	
JAN 16	. 1	.1	210	0	43	3 1	7	•	2 10)	265	1	
MAR 20	. 1	.2	190	0	48	3 1	6	.:	3 (.6	256	2	
MAY 30		.3	140	0	76	5 1	8		2 1:	3	257	6	
JUL			160	0			5				223	4	
SEP		.7											
06	. 1	.2	180	0	3:	3 1	0	•			218	1	
DATE	SOLID VOLA TILE SUS- PENDE (MG/	• N	NITRO- GEN. ITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	GEN	NO3 AMMO AL TOT YL (MG	AL S/L	NITRO- GEN. ORGANIO TOTAL (MG/L AS N)	MONIA C ORGAN	AM- A + PHO AL TOTAL (MC		CARBON, DRGANIC TOTAL (MG/L AS C)	
NOV													
07		0	•51	•00		.51	.00	.20		.20	•01	.8	
16	•	0	•53	.01		.54	.01	• 21		,30	.01	.8	
20	•	1	.24	.01		25	•00	.2	0	.20	.00	1.1	
30		1	.18	.01		.19	.01	• 3	9 .	.40	.00	1.6	
JUL 05		2	.07	.00		.07	.00	.2	0	.20	.01	1.4	
SFP 06		1	.20	.00		.20	.01	. 36	6	.37	.00	1.7	
11000									-				

08200000 HONDO CREEK NEAR TARPLEY, TX--Continued

16 1325 .000 .000000000 SEP 06 1540 .0 0 0 .00 .00 .0 .0 0 .0 0 .0 0 .00 .0 .		DAT	ΓE	TIME	ARSENI DIS- SOLVE (UG/L AS AS	D SOL		SOL	S- VED	CHR MIU DIS SOL (UG AS	M, VED	COPP DIS SOL (UG AS	VED	SOL	S- VED		
1540 1				1325		0	100		0		0		0		10		
LEAD, NESSE MERCUSY NIUM SILVER, ZINC, DIS- SOLVED SOLVE			Car.	1540		1	3		0		0		1		20		
16 0				LE D SO	IS- LVED G/L	NESE. DIS- SOLVED (UG/L	SO (U	IS- LVED G/L	SE NI D SO	UM, IS- LVED G/L	SO (U	IS- LVED G/L	50I (U	IS- LVED G/L			
SEP 06 0 0 0 0 1 0 0 0 0 0														-			
Dec				•	0	0		• 0		0		0		10			
PCB, TMA- TOTAL LENS, TOTAL TERIAL TOTAL TOTAL TERIAL TOTAL TERIAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TERIAL TOTAL TOTAL TOTAL TOTAL TOTAL TERIAL TOTAL TERIAL TOTAL					0	0		.0		1		0		0			
16 1325 .000 .000000000 SEP 06 1540 .0 0 0 .00 .00 .0 .0 0 .0 0 .0 0 .00 .0 .	DATE	TIME	TOTAL	IN TOM TE	TAL BOT- MA- RIAL	THA- LENES, POLY- CHLOR. TOTAL	ALD	TAL	IN TOM	TAL BOT- MA- RIAL	DA	NE,	TO IN I	NE, TAL BOT- MA- RIAL	TOTAL	TOTAL IN BO TOM I	AL OT- MA- IAL
SEP 06 1540	JAN																
1540		1325		0		.00		.00				.0			.00)	
DDE,		1540		0	0	.00		.00		• 0		.0		0	.00)	.0
16000000 .0000 .0000 .00	DATE	TOTAL	TOTAL IN BOT TOM MA TERIA	- D	DT. T	TOTAL IN BOT- TOM MA- TERIAL	AZI	NON,	EL	DRIN	TO IN TOM	RIN, TAL BOT- MA- RIAL	SUL!	TAL	TOTAL	IN BO	AL OT- MA- IAL
0600 .0 .00 .0 .00 .00 .00 .00 .00	16	•00		- 4	•00			.00		•00				.00	.00)	
CHLOR		.00	- A 1	0	.00	.0		.00		.00		.0		.00	.00)	.0
1600 .00000000 .00 .00	DATE	TOTA	N, C	HLOR, OTAL	CHLOR TOTAL IN BOT TOM MA TERIA	HEF - CHI - EPO	LOR XIDE TAL	EPOX TOT. BOT	OR IDE IN TOM TL.	TOT	AL	TOT IN B TOM TER	AL OT- MA- IAL	THI	A- PA ON. TH AL TO	RA- ION, TAL	
0600 .00 .0 .00 .0 .00 .0 .00 .00 .	16		00	.00		_	.00				.00				.00	.00	
TOXA- PHENE, TOTAL TRI- THION, MIREX, THION, APHENE, TOM MA- TOTAL TOTA		-	.00	.00		0	.00		.0		.00		.0	100	.00	.00	
160000 000 .00 .00 .00		METH TRI THIO TOTA	IYL - N, M	IREX.	PARA- THION TOTAL	TO:	OX- ENE,	PHE TOT IN B TOM TER	A- NE, AL OT- MA- IAL	TOT TR THI	AL I – ON	TOT	-D•	2,4, TOT	5-T SIL AL TO	VEX,	
SEP SEP	16		00		.0	00	0				.00		.00		.00	.00	
		TA TA	0.0	.00			0		0						.00	.00	

LOCATION.--Lat 29°23'26", long 99°09'04", Medina County, Hydrologic Unit 12110107, on left bank 0.3 mi (0.5 km) downstream from county road low-water crossing, 3.1 mi (5.0 km) north of Hondo, and 7.8 mi (12.6 km) upstream from Verde Creek.

08200700 HONDO CREEK AT KING WATERHOLE NEAR HONDO, TX

DRAINAGE AREA .-- 142 mi2 (368 km2).

PERIOD OF RECORD .-- October 1960 to current year.

GAGE .-- Water-stage recorder. Datum of gage is 897.87 ft (273.671 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except those below 4 ft³/s (0.11 m³/s), which are fair. Most of the low flow of Hondo Creek enters Edwards and associated limestones in the Balcones Fault Zone, which crosses basin between Tarpley (station 08200000) and this station. Small diversions above station for irrigation, amounts unknown. Several observations of water temperature were made during the vear.

AVERAGE DISCHARGE.--18 years, 13.9 ft3/s (0.394 m3/s), 10,070 acre-ft/yr (12.4 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 46,900 ft³/s (1,330 m³/s) July 15, 1973, gage height, 16.4 ft (5.00 m), from floodmark, from rating curve extended above 9,800 ft³/s (278 m³/s) on basis of contracted-opening measurement of peak flow; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1875, 21 ft (6.4 m) in September 1919, from information by local resident. Other floods occurred in July 1932, stage 18 ft (5.5 m) and June 17, 1958, stage 17 ft (5.2 m).

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 500 ft3/s (14.2 m3/s) and maximum (*):

Date	Time	Disch	arge	Gage I	height	Date	Time	Disch	arge	Gage	height
		(ft^3/s)	(m^3/s)	(ft)	height (m)	12.25		(ft^3/s)	arge (m³/s)	(ft)	(m)
Aug. 2	0700	*14,200	402	a9.65	2.941	Aug. 3	.0930	704	19.9	4.36	1.329

a From floodmark.

Minimum discharge, 0.01 ft3/s (0.0003 m3/s) for several days.

		DISCHAR	GE, IN	CUBIC FEE.	PER SECO ME	ND, WATER AN VALUES	YEAR OCT	OBER 1977	TO SEPTE	MBER 197	78	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.04	4.0	.13	.02	.01	.21	.04	.05	.50	.22	1.0	.07
	.04	1.9	.11	.02	.01	.18	.05	.16	1.0	.15	2660	.06
2 3 4	.04	1.1	.10	.02	.01	.16	.04	.20	2.0	.11	348	.08
4	.04	.76	.09	.02	.01	.14	.03	.18	.82	.10	139	.05
5	.04	.54	.08	.02	.01	.13	.03	.15	.40	.08	52	.05
6	.03	.40	.07	.02	.01	.31	.03	.12	.23	.08	15	.05
7	.03	.30	.07	.02	1.0	.50	.03	.11	.70	.07	5.9	.10
8	.03	.86	.07	.02	.62	.32	.02	.09	.12	.06	.24	1.0
9	.03	.25	.06	.02	.50	.23	.02	.08	.10	.06	.16	.72
10	.03	.18	.06	.02	.42	.18	2.0	.07	.08	.06	.12	.56
11	.03	.15	.08	.02	.40	.15	1.8	.12	.12	.05	.10	.52
12	.03	.13	.05	.02	2.0	.13	.40	.10	.12	.05	.09	.45
13	.03	.11	.05	.02	1.4	.12	.22	.08	.10	.05	.08	2.0
14	.03	.10	.04	.02	.50	.10	.16	.07	.10	.05	.07	1.0
15	.03	.09	.04	.01	.90	.09	.12	.07	.09	.05	.07	.70
16	.03	.08	.04	.01	.60	.09	.09	.06	.08	.04	.06	.40
17	.03	.07	.04	.01	1.0	.08	.25	.05	.07	.17	.06	.20
18	.03	.07	.04	.01	.70	.07	.15	.05	.07	.14	.05	.13
19	.02	.06	.04	.01	.50	.07	.11	.05	.25	.11	.05	.10
20	.02	.06	.04	.01	.37	.06	.30	.11	.20	.08	.05	.08
21	.02	.05	.03	.01	.30	.06	.19	1.0	.16	.07	.04	.07
22	1.9	.05	.03	.01	.25	.06	.70	.70	.13	.06	.04	.06
23	1.3	.05	.03	.01	.21	.05	1.0	.58	.11	.10	.04	.12
24	2.2	.04	.03	.01	.18	.07	.20	.48	.10	.08	.04	.0.9
25	.90	.04	.03	.01	.16	.06	.11	.44	.09	.07	.03	.0,9
26	.80	.04	.03	.01	.15	.06	.08	.38	.09	.06	.03	.07
27	.70	.04	.03	.01	.13	.05	.06	.34	.08	.06	.03	.06
28	.90	.20	.03	.01	.24	.05	.05	.80	.50	.60	.03	.20
29	.56	.17	.02	.01		.05	.04	.50	.25	.20	.05	.11
30	.50	.14	.02	.01		.04	.04	.38	.19	.17	.12	.08
31	.48		.02	.01		.04		.30		.14	.08	
TOTAL	10.89	12.03	1.60	.45	12.59	3.91	8.36	7.87	8.85	3.39	3222.63	9.25
MEAN	.35	.40	.052	.015	.45	.13	.28	.25	.30	.11	104	.31
MAX	2.2	4.0	.13	.02	2.0	.50	2.0	1.0	2.0	.60	2660	2.0
MIN	.02	.04	.02	.01	.01	.04	.02	.05	.07	.04	.03	.05
AC-FT	22	24	3.2	.9	25	7.8	17	16	18	6.7	6390	18
	1977 TOTA 1978 TOTA				IAX 1340 IAX 2660	MIN .01 MIN .01					,	

08201500 SECO CREEK AT MILLER RANCH NEAR UTOPIA, TX

LOCATION.--Lat 29°34'23", long 99°24'10", Medina County, Hydrologic Unit 12110107, on right bank 200 ft (61 m) upstream from county road crossing, 4.5 mi (7.2 km) downstream from Cascade Creek, and 7.9 mi (12.7 km) southeast of Utopia.

DRAINAGE AREA .-- 43.1 mi2 (111.6 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1961 to current year.

GAGE.--Water-stage recorder, crest-stage gages, and concrete control. Datum of gage is 1,265.8 ft (385.82 m) Magnolia Oil Co. datum. adjustment unknown.

REMARKS.--Water-discharge records good except those for period of no gage height record Sept. 1-30, which are fair. No known diversion above station.

AVERAGE DISCHARGE.--17 years , 18.4 ft3/s (0.521 m3/s), 5.80 in/yr (147 mm/yr), 13,330 acre-ft/yr (16.4 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 38,500 ft³/s (1,090 m³/s) July 15,1973 gage height, 14.4 ft (4.39 m), from floodmark from rating curve extended above 910 ft³/s (25.8 m³/s) on basis of field estimate of flow over and around end of dam, 14,100 ft³/s (399 m³/s), and slope-area measurement of 52,600 ft³/s (14,90 m³/s); no flow for many days in 1963-64.

EXTREMES OUTSIDE PERIOD OF RECORD.---Maximum stage since at least 1901, 16.4 ft (5.00 m) June 17, 1958, from floodmarks, discharge 52,600 ft³/s (1,490 m³/s), by slope-area measurement of peak flow.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 10,600 ft 3 /s (300 m 3 /s) Aug. 2, gage height, 8.40 ft (2.560 m), from rating curve extended as explained above, no other peak above base of 600 ft 3 /s (17.0 m 3 /s); minimum daily, 0.09 ft 3 /s (0.003 m 3 /s) July 22.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND	, WATER	YEAR	OCTOREK	19//	10	SELLEWREK	19/8
					MEAN	VALUES						

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.5 1.6 1.6 1.7	21 7.9 4.9 4.5 4.0	5.3 5.0 4.9 4.7 4.4	4.5 4.1 3.9 3.9 3.9	3.4 3.4 3.4 3.4	3.8 3.6 3.6 3.4 3.4	2.4 2.6 2.6 2.6 2.6	1.8 2.1 2.4 1.8 1.5	1.9 1.7 5.5 3.1 2.3	1.3 1.3 1.1 1.0 .90	28 1070 140 75 53	13 9.6 9.7 7.9
6 7 8 9	1.7 1.7 1.7 1.7	3.9 3.4 36 18	4.0 3.9 3.9 3.8 3.6	3.9 3.9 3.8 3.6 3.6	3.4 4.1 3.8 3.4 3.4	5.1 7.9 4.6 4.0 3.8	2.6 2.5 2.4 2.5 6.6	1.4 1.5 1.5 1.5	37 19 6.8 5.1 4.0	.75 .67 .58 .56	41 36 32 26 24	7.5 7.8 15 11 8.9
11 12 13 14 15	1.7 1.7 1.6 1.5	9.6 8.8 7.8 7.4	3.6 4.5 4.8 4.0 3.9	4.4 4.6 4.3 4.2 3.9	3.4 8.3 6.6 4.7 5.3	3.6 3.4 3.4 3.1 3.1	3.1 2.8 2.8 2.6 2.6	1.4 1.4 1.4 1.3 1.5	3.2 2.7 2.3 2.1 1.8	.42 .40 .36 .36	22 20 18 17 16	8.9 8.8 37 22 53
16 17 18 19 20	1.5 1.5 1.5 1.5	6.9 6.1 6.1 6.0 5.7	3.8 3.4 3.4 3.4 3.3	4.3 4.1 3.9 3.9 3.8	5.3 6.4 5.2 4.9	2.9 2.7 2.6 2.6 2.6	2.5 2.4 2.4 2.1 2.0	1.5 1.5 1.3 1.3	1.5 1.4 1.4 1.4 1.3	.36 .34 .27 .21 .15	14 13 13 11 11	41 31 24 22 21
21 22 23 24 25	1.5 7.5 2.8 2.2 2.0	5.5 4.9 4.9 4.9	3.1 2.9 3.1 3.1 3.1	3.6 3.6 3.8 3.7	4.3 3.9 4.3 4.3	2.7 2.8 2.9 2.9 2.6	2.0 2.0 2.3 2.1 1.8	1.6 1.7 1.7 1.7	1.3 1.2 1.2 1.2 1.2	.11 .09 .11 .11	10 9.5 8.8 7.9 7.4	19 17 17 16
26 27 28 29 30 31	1.8 1.8 2.0 2.0 2.0	4.6 4.6 4.3 6.0 6.8	2.9 2.8 2.8 3.4 4.6 4.6	3.4 3.4 3.4 3.4 3.4	3.7 3.7 3.9	2.6 2.6 2.5 2.3 2.6 2.6	1.6 1.5 1.4 1.5 1.8	1.5 1.4 1.4 3.3 2.4 2.0	1.0 .89 1.3 4.4 1.5	.11 .11 .15 .29 .41	7.4 7.0 6.8 7.3 7.8 6.9	13 13 13 11 11
TOTAL MEAN MAX MIN CFSM IN. AC-FT	59.7 1.93 7.5 1.5 .05	244.1 8.14 36 3.4 .19 .21 484	118.0 3.81 5.3 2.8 .09 .10 234	119.2 3.85 4.6 3.4 .09 .10 236	122.4 4.37 8.3 3.4 .10 .11 243	102.3 3.30 7.9 2.3 .08 .09 203	72.7 2.42 6.6 1.4 .06	51.4 1.66 3.3 1.3 .04 .04	120.59 4.02 37 .89 .09 .10 239	13.90 .45 1.3 .09 .01	1766.8 57.0 1070 6.8 1.32 1.52 3500	513.1 17.1 53 7.5 .40 .44 1020
CAL YR		L 7526.	80 MEAN	20.6	MAX 401 MAX 1070	MIN 1.5 MIN .09	CFSM				930 550	

08201500 SECO CREEK AT MILLER RANCH NEAR UTOPIA, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: January 1974 to current year.

		STRE	EAM- C	PE- IFIC DN- UCT-				DLOR PLAT-	т	UR- 0	XYGEN.	S01	GEN, IS- LVED ER-	OXYG DEMA BIO CHE	ND.
		INST		NCE	PH	TEMP	ER- II	-MUN-		10-	DIS-		ENT	ICA	
	TIME			ICRO-	MITCH	(DEG		OBALT VITS)		TY TU)	SOLVED (MG/L)		TUR- ION)	5 DA	
DATE		(C)	FS) M	HOS) (U	NITS)	IDEG	C) 01	41137	10	107	11107 27				7
NOV					7.0	-	. =	0		0	9.6		109		.2
07 JAN	1400		3.1	414	7.9	-	0.5	· ·							
16	1430		4.3	431	7.9	1	8.0	0		1	10.0		109		.6
MAR 20	1345		2.4	429	8.0	2	4.5	0		0	9.8		120		.3
MAY	1455		2.6	382	7.9	3	2.0	5		2	10.2		140		.5
JUL								0		2	7.8		106		.6
05 SEP	1615		.90	390	8.3		4.5								.3
08	1155	1		381	8.2	2	4.5	0		0	9.2		112		• 3
DATE	FO TO IM (CO	LI- RM, TAL, MED. LS. ER	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	KF AGAR	HAR NES (MG	S /L	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALC DIS SOL (MG AS	- VED /L	MAGNE SIUM DIS- SOLVE (MG/L AS MG	SOD DI D SOL	IUM+ S- VED G/L NA)	SOR	ON	
NOV															
07		240	150	68	3	200	51	5	8	13		7.4		.2	
16		37	21	23	3	210	61	6	2	13		7.4		.2	
MAR 20		120	96	18	3	210	75	6	1	13		7.4		.2	
MAY 30		1400	170	144		180	83	5	3	12		7.9		.3	
JUL 05						170	64	5	0	11		7.8		.3	
SEP 08		460	200	80	,	190	53	5	9	11		6.1		.2	
DATE	P0 5 0 50	TAS- IUM, IS- LVED IG/L	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	(MG	VED /L	CHLO- RIDE. DIS- SOLVED (MG/L AS CL)	(MG	E. S- VED /L	SILICA DIS- SOLVE (MG/L AS SIO2)	CON CON ED TUE	IDS, OF ISTI- INTS, OIS- DLVED	SOL I RESI AT 1 DEG. SUS PEND	DUE .05 . C+	
NOV 07		1.0	180) 5	0	14		.1	10		242		0	
JAN 16		1.0	180) 5	8	15		.2	10		255		3	
MAR 20		1.0	160) 6	2	14		.2	9	.8	247		0	
MAY 30		1.3	120) 6	.1	16		.2	11		222		2	
JUL							13		.2	14		216		5	
SEP	•	1.4	130			55									
08	•	1.0	170		0 4	4	9.9		.2	11		226		2	
DATE	VC T: SI PEI	IDS, DLA- ILE, JS- NDED	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	GEN,	GE NO24 TO1 (MG	AL 3/L	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	GE	AL /L	MITRI GEN, AI MONIA ORGAN TOTAL (MG/ AS N	M- + PH IC PHO L TO L (F	HOS- DRUS. DTAL HG/L S P)	TOT	BON, ANIC TAL B/L C)	
NOV			1,4		•				20		20	.01		1.0	
07	•	0	.60			.66	• 00		.20						
16	•	0	.79	.0	1	.76	.02		.08		10	.01		1.2	
20 MAY	•	0	•1:	.0	1	.14	• 00)	.30	•	30	•00		1.6	
30	•	1	.20	5 .0	1	.27	• 0 1		• 39		40	.00		1.6	
JUL 05		4	.1	.0	1	.12	.00)	.10		10	.00		2.0	
SEP 08		1	•3	2 .0	0	.32	.00)	.31		31	.00		1.5	

08201500 SECO CREEK AT MILLER RANCH NEAR UTOPIA, TX--Continued

	DAT		SOL ME (UC	VED SOL	RIUM. IS- VED JG/L S BA)	CADMI DIS SOLV (UG/ AS C	ED L	CHRO- MIUM, DIS- SOLVE (UG/L AS CR	DIS-	VED SOL	N, S- VED J/L FE)		
	JAN 16.	14	30	0	100		0		0	0	10		
	SEP 08.		55	2		8 7	0		0	0	10		
	06.	DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVEC (UG/L	MER D SO (U	CURY IS- LVED G/L HG)	SEL NIU DI	E- M, S S- VED /L	DIS- SOLVED (UG/L AS AG)	ZINC+ DIS- SOLVED (UG/L AS ZN)			
			43 . 07	A5 1111	- 10	,		J.,					
		JAN 16 SEP	0			.0		1	0	0			
		08	0	NAPH-	,	.1		0	0	CHLOR-			
DATE	TIME	PCB. TOTAL (UG/L)	PCB. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	THA- LENES POLY- CHLOR TOTAL (UG/L)	ALD TO	RIN,	TOT IN B TOM TER (UG/	AL OT- MA- IAL	CHLOR- DANE+ TOTAL (UG/L)	DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD (TOTAL	IN TOM	DD. TAL BOT- MA- RIAL /KG)
JAN													
16	1430	.0		.00	0	.00			.0		. (00	
08	1155	• 0	0	.00	0	.00		.0	.0	0		00	• 0
DATE	DDE+ TOTAL (UG/L)	DDE. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL (UG/L)	DDT. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	- AZI	I- NON, TAL G/L)	TOT	- I RIN T	DI- ELDRIN. TOTAL IN BOT- TOM MA- TERIAL UG/KG)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIM TOTAL (UG/L	IN TOM	RIN, TAL BOT- MA- RIAL /KG)
JAN 16	.00		•00			.00		•00		.00		00	
SEP 08	.00	.0	.00		0	.00		.00	.0	.00		00	.0
		HEF	CH TO		EPTA-	CHLC EPOXI	DE		LIND TOT IN B	AL		METHYL	
DATE	TOTA (UG/	L TOT	TAL TE	RIAL T	DXIDE DTAL UG/L)	MAT (UG/H	L.	TOTAL (UG/L	TER	IAL TO	TAL	THION, TOTAL (UG/L)	
JAN 16.		.00	.00		.00			• (00	- 5	•00	.00	
SFP 08.		.00	.00	.0	.00		.0		00	.0	.00	.00	
DATE	METH TRI THIC	HYL I- DN, MII	PA REX, TH	RA- ION, AP TAL T	TOX- HENE, OTAL UG/L)	TOXA PHEN TOTA IN BO TOM I TER:	NE , AL OT - MA-	TOTAL TRI- THIOM	2.4 N TOT	AL TO	TAL	ILVEX, TOTAL (UG/L)	
JAN 16.		.00		.00	0		<u> </u>		00	.00	.00	.00	
SEP 08•		.00	.00	.00	0.		0	•	00	.00	.00	.00	

453

08202700 SECO CREEK AT ROWE RANCH NEAR D'HANIS, TX

LOCATION.--Lat 29°21'43", long 99°17'05", Medina County, Hydrologic Unit 12110107, on left bank 2.9 mi (4.7 km) north of D'Hanis and 8.0 mi (12.9 km) downstream from Rocky Creek.

DRAINAGE AREA .-- 168 mi2 (435 km2).

CAL YR 1977 TOTAL 113.89

WTR YR 1978 TOTAL 713.97

MEAN .31

MEAN 1.96

MAX 104

MAX 652

MIN .00

MIN .00

PERIOD OF RECORD .-- November 1960 to current year.

GAGE.--Water-stage recorder. Datum of gage is 900.88 ft (274.588 m) National Geodetic Vertical Datum of 1929. Prior to October 1970, published as "as Crook Ranch, near D'Hanis".

REMARKS.--Records fair. All of low flow of Seco Creek enters Edwards and associated limestones in the Balcones Fault Zone which crosses basin between Miller Ranch (station 08201500) and this station. No known diversion above station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--17 years (water years 1962-78), 8.59 ft³/s (0.243 m³/s), 6,220 acre-ft/yr (7.67 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 30,500 ft 3 /s (864 m 3 /s) July 15, 1973, gage height, 26.0 ft (7.92 m), from flood-mark, from rating curve extended above 16,000 ft 3 /s (453 m 3 /s) on the basis of slope-area measurement of 35,800 ft 3 /s (1,010 m 3 /s); no flow most of time each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1852, 35.7 ft (10.88 m) May 31, 1935, from information by local resident. Other floods occurred Aug. 31, 1894, 33 ft (10.1 m); September 1919, 28 ft (8.5 m); July 2, 1932, 28.2 ft (8.60 m), discharge 35,800 ft³/s (1,010 m³/s), by slope-area measurement; June 17, 1958, 32.4 ft (9.88 m).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 8,690 ft³/s (246 m³/s) Aug. 2, gage height, 15.83 ft (4.825 m), from floodmark, no other peak above base of 600 ft³/s (17.0 m³/s); no flow most of year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		D 1 0 0 1 1 1 1	NGL, IN C	0010 1221	ME	AN VALUES			100			
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	652	.00
3	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	54	.00
4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	6.8	.00
5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.77	.00
6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.24	.00
6 7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.13	.00
8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.03	.00
9	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
11	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
12	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
13	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
14	.00								.00	.00	.00	.00
		.00	.00	.00	.00	.00	.00	.00			.00	.00
15	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	•00	.00
16	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
17	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
21	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
23	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
24	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
25	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
26	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
28	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
29	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	.00
30	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	.00
31	.00		.00	.00		.00		.00		.00	.00	
TOTAL	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	713.97	.00
MEAN	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	23.0	.000
MAX	.000	.000	.000	.000	.000	.000	.000	.000	.00	.00	652	.00
MIN	.00							.00	.00	.00	.00	.00
AC-FT	.00	.00	.00	.00	.00	.00	.00		.00	.00	1420	.00
AC-FI	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1420	.00

AC-FT 226

AC-FT 1420

08205500 FRIO RIVER NEAR DERBY, TX

LOCATION.--Lat 28°44'11", long 99°08'40", Frio County, Hydrologic Unit 12110106, on right bank 17 ft (5 m) downsream from centerline of railroad tracks, 35 ft (11 m) right of the Missouri Pacific Railroad Co. bridge abutment, 167 ft (51 m) downstream from Interstate Highway 35, 917 ft (280 m) downstream from Leona River, 2.5 mi (4.0 km) south of Derby, and 122.4 mi (196.9 km) upstream from mouth.

DRAINAGE AREA.--3,493 mi² (9,047 km²).

PERIOD OF RECORD .-- August 1915 to current year.

REVISED RECORDS.--WSP 568: 1915-16, 1918-22. WSP 763: Drainage area. WSP 1312: 1917-18(M). WSP 1923: 1954.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 449.11 ft (136.889 m) National Geodetic Vertical Datum of 1929.

Aug. 1, 1915, to Apr. 21, 1931, nonrecording gage, and Apr. 22, 1931, to Mar. 6, 1940, water-stage recorder at same site and datum. Mar. 7, 1940, to May 4, 1972, water-stage recorder, and May 5 to Nov. 1, 1972, nonrecording gage at site 167 ft (51 m) upstream at same datum.

REMARKS.--Records good. Part of flow of Frio River and its headwater tributaries enters the Edwards and associated limestones in the Balcones Fault Zone upstream from U.S. Highway 90 (see REMARKS for stations 08197500, 08198500, 08200700, and 08202700). Considerable loss of flow into various permeable formations occurs downstream from the Balcones Fault Zone. Many small diversions for irrigation above station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 63 years, 137 ft3/s (3.880 m3/s), 99,260 acre-ft/yr (122 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 230,000 ft 3 /s (6,510 m 3 /s) July 4, 1932, gage height, 29.45 ft (8.976 m), from floodmarks, from rating curve extended above 76,000 ft 3 /s (2,150 m 3 /s) on basis of slope-area measurement of peak flow; no flow at times most years.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1860, that of July 4, 1932.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,100 ft3/s (31.2 m3/s) and maximum (*):

Date T	ime	Discha	irge	ge Gage height m³/s) (ft) (m)		Date	Time	Discharge		Gage height (ft) (m)	
		(ft^3/s)	(m^3/s)	(ft)	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
Oct. 24 1	600	3,300	93.5	7.82	2.384	Aug. 4	1330	*4,580	130	9.01	2.746

Minimum discharge, no flow July 13-31.

		DISCHAI	RGE, IN C	UBIC FEET	PER SECON	ID, WATER N VALUES	YEAR OCTO	DBER 1977	TO SEPTE	MBER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	42	147	96	102	76	57	48	27	22	8.8	13	26 28
2	42	149	107	101	77	57	48	24	21	8.1	257	28
1 2 3 4	42	148	115	100	67	57	45	26	341	7.5	1500	28 28
4	42	101	121	100	74	57	42	25	49	5.2	4130	28
5	44	90	121	95	73	57	45	23	134	4.8	2970	28
6	41	88	116	95	70	55	44	23	188	4.8	970	28
7	40	83	115	95	70	55	41	22	391	4.3	480	28
8	39	89	111	95	70	56	39	20	400	3.9	346	28 25 25
9	42	91	106	92	70	56	39	19	218	2.5	260	25
10	48	171	100	92	68	56	38	18	121	1.3	179	25
11	44	251	100	92	68	54	38	16	70	.80	136	25
12	40	201	100	93	68	53	67	16	50	.42	108	25
13	42	172	104	95	66	53	76	16	45	.00	92	28
14	43	157	108	95	62	52	58	14	42	.00	76	28 28
15	46	141	108	92	65	51	50	13	38	.00	64	28
16	55	141	107	90	67	52	48	14	38	.00	58	31
17	52	132	107	87	63	50	47	11	36	.00	5.5	49
18	51	125	105	85	59	48	47	12	33	.00	50	64
19	46	119	105	85	60	51	45	13	29	.00	43	46
20	45	116	102	84	59	50	48	20	26	.00	40	40
21	45	112	102	83	57	49	43	15	24	.00	37	37
22	45	107	99	82	57	48	42	16	23	.00	33	34
23	644	110	95	81	57	46	40	37	22	.00	33	30
24	2900	106	97	81	57	48	38	56	18	.00	33	28 28
25	1530	102	105	82	57	48	39	40	15	.00	30	28
26	513	95	103	83	57	46	41	32	13	.00	28	28
27	301	92	102	83	55	45	36	27	13	.00	25	23 28
28	192	91	102	78	56	45	32	26	12	.00	25	28
29	150	92	102	74		47	30	24	12	.00	25	28
30	124	92	102	74		48	29	23	11	.00	25	24
31	111		102	74		47		23		.00	25	
TOTAL	7441	3711	3265	2740	1805	1594	1323	691	2455	52.42	12146	924
MEAN	240	124	105	88.4	64.5	51.4	44.1	22.3	81.8	1.69	392	30.8
MAX	2900	251	121	102	77	57	76	56	400	8.8	4130	64
MIN	39	83	95	74	55	45	29	11	11	.00	13	23
AC-FT	14760	7360	6480	5430	3580	3160	2620	1370	4870	104	24090	1830

CAL YR 1977 TOTAL 74917.00 MEAN 205 MAX 2900 MIN 39 AC-FT 148600 WTR YR 1978 TOTAL 38147.42 MEAN 105 MAX 4130 MIN .00 AC-FT 75670

08206600 FRIO RIVER AT TILDEN, TX

LOCATION.--Lat 28°28'02", long 98°32'50", McMullin County, Hydrologic Unit 12110108, at left downstream end of State Highway 16 bridge in Tilden, 300 ft (91 m) downstream from Leoncita Creek, 1.3 mi (2.1 km) upstream from Salt Branch, and 1.8 mi (2.9 km) downstream from Big Slough.

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: July to September 1978.

DATE	TIME	FL INS TAN	EAM- CON- ETAN- A	SPE- CIFIC CON- DUCT- ANCE MICRO- MHOS)	PH (UNIT	A	MPER- I	OLOR PLAT- NUM- OBALT UNITS)	TUR BID ITY (JTU	-	XYGEN, DIS- SOLVED (MG/L)	SOL (PE CE SAT	SEN. IS- VED ER- ENT TUR- ION)	DEMA BIC CHE ICA 5 DA (MG/	AND, D- EM- AL,	HARD- NESS (MG/L AS CACO3)	NE NON BON (M	RD- SS, ICAR- IATE IG/L ICO3)
JUL 13	1500		2.6	2300	7	.8	29.5	35		10	6.9		90		.8	460		240
AUG	1515		6	783		.8	30.0	40		65	6.6		88		.8	270		100
EP	1320	62	0	219		.5	27.0	140	2	80	6.9		87		3.8	66		2
	1320	02	MAGNE-			SODIUM	POTAS-		-		0.,		CHL		FLU0-		ICA,	-
DATE	DI SC (M	CIUM S- LVED G/L CA)	SIUM DIS- SOLVEI (MG/L AS MG)	SODIU DIS- SOLVE (MG/	M, D L F	AD- SORP- TION RATIO	SIUM DIS- SOLVED (MG/L AS K)	BICAR	E L B	CAR- ONATE (MG/L 5 CO3	(MC	VED	RIDE DIS- SOLV (MG/ AS (/ED	RIDE, DIS- SOLVE (MG/L AS F)	DI SO D (M		
JUL												77.149						
13	1	30	32	300		6.1	8.0	2	60		0 30	0	430)	•	5	11	
16 SEP		83	14	54		1.4	4.6	, 2	00		0 6	3	110)	•	1	15	
14		23	5.0	13		.7	4.3	1	78		0 1	6	16	5		1	14	
	SUM CON TUE	IDS, OF STI- NTS. IS- LVED	RESIDUE AT 105 DEG. C. SUS- PENDED	SOLID:	, N	GEN, ITRATE TOTAL	NITRO- GEN. NITRITE TOTAL (MG/L	GEN	03 A	NITRO GEN, MMONI TOTAL (MG/L	GE A ORGA TOT	AL	MITE GEN.A MONIA ORGAN TOTA (MG/	M- HIC	PHOS- PHORUS TOTAL (MG/L	• ORG	BON. ANIC TAL G/L	
DATE	(M	G/L)	(MG/L)	(MG/	_) /	15 N)	AS N)	AS N)	AS N)	AS	N)	AS N	1)	AS P)	AS	C)	
JUL 13		13 4 n	16	3	1	.15	•01			.0	1	.60			• 0	4	6.3	140
16 SEP		443	131	l,	8	1.7	.02			.0	2	.86			.1	0	7.1	
14		127	568	3	68	.34	• 02		36	.0	3 1	.1	1.	1	.7	8	14	
			DATE	TIME	5	SENIC DIS- OLVED UG/L S AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIL DIS- SOLVE (UG/L AS CO	JM M D 5	CHRO- IIUM, DIS- GOLVED UG/L AS CR)	(UG	ED /L	IRON DIS- SOLVI (UG/I AS FI	ED L				
			AUG 16	1515		2	300		0	0		2		10				
			ſ		DIS- SOLVEI (UG/L AS PB	NE D SO	IS- (LVED SO G/L ((CURY	SELE- NIUM, DIS- SOLVE (UG/L AS SE	SI D S	LVER, DIS- OLVED UG/L S'AG)	ZING DIS SOLV (UG)	ED					
				JG 16		2	0	.1	1000	0	0		10					

08206600 FRIO RIVER AT TILDEN, TX--Continued

					NA	PH-							CH	LOR-				
				PCB.		HA-			ALD	RIN.			DA	NE.				D.
				TOTAL		NES.				TAL			TO	TAL				AL
				N BOT-		OLY-				BOT-	CH	LOR-	IN	BOT-			IN E	OT-
		PC		DM MA-		LOR.	ALD	RIN.		MA-	DA	NE.	TON	MA-	0	DD,	TOM	MA-
	TIME	TOT		TERTAL		TAL		TAL		RIAL	TO	TAL	TE	RIAL	TO	TAL	TER	MIAL
DATE				UG/KG)		G/L)		IG/L)		/KG)		IG/L)	(00	/KG)	(1	IG/L)	(U6/	KG)
AUG																4 4		
16	1515		• 0	8		.00		.00		.0		.0		0		.00		.5
												I-					ENDE	-N
		00				DT,						RIN.					ENDR	
		TOT				TAL		_		_		TAL					IN B	
		IN B				BOT-		I-		I-		BOT-		DO-			TOM	
	DDE.	TOM		DDT,		MA-		NON,		DRIN		MA-		FAN.		RIN.		IAL
	TOTAL			TOTAL		RIAL		TAL		TAL		RIAL		TAL		TAL G/L)	(UG/	
DATE	(UG/L)	(UG/	KG)	(UG/L)	(UG	/KG)	((IG/L)	"	G/L)	(06	/KG)	10	G/L)	,,,	6/1	. 6	
AUG												1 %				.00		.0
16	.00		.7	.00		.0		.00		.00		.1		.00		.00		•0
				HEP				HEP										
				CHL			1.33	CHL				LIND		MET	uvi	MET	LVI	
				TOT		HEP		EPOX				TOT		PAR			1-	
	1434	-1.	HEPTA-			CHL		TOT.				IN B		THI		THI		
	ETHI		CHLOR			EPOX:		BOT		LIND		TER		TOT		TOT		
13.44	TOT		TOTAL	TER		TOT			TL.	TOT		(UG/		(UG		(UG		
DATE	rug	/L)	(UG/L	(UG/	KG)	(UG	/L)	(UG/	KG)	(06	/L)	(00)	101	100	,,,	,00		
AUG							••				.00		.0		.00		.00	
16.	••	.00	.0	0	.0		• 00		.0		•00		••		•00			
								TOX										
			MIREX					TOT										
			TOTAL	240		TO		IN B		TOT	AL							
			IN BOT-					TOM			I-	2.4	-0-	2.4.	5-T	SILV	FX.	
	MIR		TOM MA-			APHE		TER		THI		TOT		TOT		TOT		
DATE		TAL	TERIAL			TOT		(UG/			/L)	(UG		(UG		(UG		
	en)		333,30												200			
AUG					00		0		0		.00		.00		.00		.00	
16.	•	.00	•	,	.00		U		v		• • •							

08206700 SAN MIGUEL CREEK NEAR TILDEN, TX

LOCATION.--Lat 28°35'14", long 98°32'44", McMullen County, Hydrologic Unit 12110109, on left bank 25 ft (8 m) downstream from State Highway 16, 0.3 mi (0.5 km) upstream from mouth of Bruce Branch, 0.9 mi (1.4 km) downstream from mouth of Far Live Oak Creek, 3 mi (5 km) upstream from San Patricio Creek, 7 mi (11 km) downstream from Clear Creek, 8.7 mi (14.0 km) north of Tilden, and 13 mi (21 km) upstream from mouth.

DRAINAGE AREA .-- 793 mi2 (2,054 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- January 1964 to current year.

GAGE.--Water-stage recorder. Datum of gage is 242.95 ft (74.051 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. There are five diversions above station, but amounts are unknown. At times, excess water from Bexar-Medina-Atascosa Counties Water Improvement District No. 1 system enters San Miguel Creek basin via Chacon Creek 52 mi (84 km) upstream (amounts unknown).

AVERAGE DISCHARGE.--14 years, 68.6 ft3/s (1.943 m3/s), 49,700 acre-ft/yr (61.3 hm3/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 15,400 ft³/s (436 m³/s) Apr. 15, 1977, gage height, 27.00 ft (8.230 m); no flow at times in 1964-67 and 1969-74.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1919, 32.6 ft (9.94 m) in 1942; stage of 1919 flood not known, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 900 ft3/s (25.5 m3/s) and maximum (*):

Date	Time	Disch	arge	Gage h	eight	Date		Time	Disch	arge	Gage h	eight
		(ft^3/s)	(m^3/s)	(ft)	(m)				(ft^3/s)	(m^3/s)	(ft)	(m)
June 3	0800	*8,680	246	22.51	6.861	Aug. 3		2000	2,690	76.2	15.70	4.785
July 28 Aug. 2	1600 1000	975 7,780	27.6 220	10.67 21.80	3.252 6.645	Sept. 1	13	2200	966	27.4	10.63	3.240

Minimum discharge, 0.02 ft 3 /s (0.001 m 3 /s) May 16, 17.

		DISCHA	RGE, IN C	UBIC FEET		OND, WATER		TOBER 197	7 TO SEPT	EMBER 197	8	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.09 .08 .07 .06	53 493 113 36 11	3.5 3.0 2.6 2.3 2.5	2.7 2.5 4.0 5.1 4.9	5.7 5.2 4.1 4.3 5.7	5.9 5.8 6.0 6.0 5.7	.55 .49 .46 .36	.20 .31 .43 .20	2.2 79 5240 1390 115	1.6 1.4 1.4 1.4	916 6060 1460 114 87	975 101 40 24 81
6 7 8 9 10	.06 .05 .05 .05	4.3 2.4 1.7 1.1 .73	5.6 4.6 4.0 3.2 2.3	5.8 6.0 8.8 7.7 5.8	6.9 6.3 5.3 4.1 3.5	6.9 6.4 5.2 5.2 5.1	.57 .85 .64 .53	.64 .30 3.5 3.4 1.8	40 369 546 219 78	1.2 1.2 1.0 .98 .85	51 36 28 24 21	123 96 549 99 73
11 12 13 14 15	.07 .07 .07 .07	.83 1.8 2.0 1.5 1.6	1.9 2.6 4.7 6.9 7.7	5.5 5.5 9.8 12 9.7	5.8 8.8 8.0 6.5 5.5	3.9 3.0 3.2 13 8.8	1.1 5.1 83 35 18	.94 .43 .20 .10	46 28 19 13 9.5	.75 .72 .63 .63	19 16 16 15 13	58 46 431 377 106
16 17 18 19 20	.07 .07 .06 .05	1.3 1.1 .85 .85	8.1 9.0 8.7 8.6 8.1	8.9 8.7 7.1 6.7 6.3	6.2 6.8 6.0 5.3 4.3	5.3 3.4 2.8 2.3 1.9	11 8.2 5.9 4.3 2.7	.05 .39 5.4 4.9	7.2 6.1 5.1 4.4 3.9	.55 .44 .39 .35	9.7 9.3 8.2 6.0	50 31 21 15 12
21 22 23 24 25	.05 .05 .69 17 7.5	.68 .55 .50 .48	5.7 4.0 5.0 6.7 7.6	6.0 5.2 6.1 8.1 7.9	3.5 2.8 2.5 3.6 5.8	1.8 1.6 1.5 1.1	1.7 1.2 1.2 1.3 1.2	81 52 13 7.1	3.9 3.5 3.5 3.5 3.2	.31 .31 .28 .27 .20	6.2 6.7 6.1 5.6 5.3	9.1 9.2 7.7 6.9
26 27 28 29 30 31	1.7 20 15 8.0 4.9 3.4	.46 .41 .41 1.4 3.5	9.3 9.0 6.7 5.1 3.9 3.3	8.9 9.5 9.1 7.8 6.4 5.1	5.8 5.2 6.0	.64 .63 .63 .63	.80 .55 .42 .33 .27	7.3 4.5 3.5 2.2 1.4	2.7 2.5 2.1 1.9 1.7	.20 .20 578 224 29 8.2	5.2 4.9 6.7 7.9 14 1480	5.8 5.5 5.5 5.2 4.9
TOTAL MEAN MAX MIN AC-FT	79.57 2.57 20 .05 158	737.77 24.6 493 .41 1460	166.2 5.36 9.3 1.9 330	213.6 6.89 12 2.5 424	149.5 5.34 8.8 2.5 297	116.39 3.75 13 .55 231	188.49 6.28 83 .27 374	258.55 8.34 81 .05 513	8248.9 275 5240 1.7 16360	858.42 27.7 578 .20 1700	10468.8 338 6060 4.9 20760	3378.8 113 975 4.9 6700

08206700 SAN MIGUEL CREEK NEAR TILDEN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical and biochemical analyses: July to September 1978.

WATER CHALLTY DATA, WATER YEAR OCTORER 1977 TO SEPTEMBER 1978

			WATER QU	ALITY DAT	A. WATER	YEAR OCTO	BER 1977	TO SEPTEM	BER 1978			
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (JTU)	OXYGEN. DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS: NONCAR- BONATE (MG/L CACO3)
DEC		. 23										
07 JUL	1615	4.3	1590		13.0	-			-	-		1119-
13 AUG	1615	.63	2600	7.7	31.5	50	. 7	7.5	100	2.2	700	410
16	1625	11	1990	7.7	29.5	35	5	9.1	120	1.5	590	580
SEP 14	1515	230	231	7.2	27.0	240	220	6.0	76	4.2	78	8
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS. SUM OF CONSTI- TUENTS. DIS- SOLVED (MG/L)
DEC		1	The same of	- 2		1		1.0		6 L E		74.2
JUL	210	43	290	4.0	15	350	0	470	420	.4	22	1640
13 AUG 16	180	35	200	3.6	10	380	0	330	280	.3	20	1240
SEP	26		12			86	0	25	12	.1	12	139
14		3.2	12	.6	6.5	86	U		16		12	
DATE	SOLIDS. RESIDUE AT 105 DEG. C. SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN. NITRATE TOTAL (MG/L AS N)	NITRO- GEN. NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN.AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE: SUS- PENDED (T/DAY)
DEC											F. You	18,116
07 JUL			#157		12		200 T	1	40		29	.34
13	16	1	•02	•00	•05	.00	.63	.63	.05	8.1	-	1146
16 SEP	9	0	.06	•01	.07	•00	•54	.54	.04	6.2	10.45	
14	344	0	•55	•02	.24	.10	1.0	1.1	.28	16		10.74
		DA	T I I	ARSE DI SOL 4E (UG AS	S- DIS- VED SOLV	ED SOL	S- DIS VED SOL /L (UG	M. COPPI - DIS- VED SOL' /L (UG.	VED SOLV	S- VED /L		
	1	AUG		A SECTION OF	A A	300		0	0	20		
		16	DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE+ DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER. DIS- SOLVED (UG/L AS AG)	ZINC+ DIS- SOLVED (UG/L AS ZN)	20		
			AUG 16	2	110	.1	0	0	10			

08206700 SAN MIGUEL CREEK NEAR TILDEN, TX--Continued

DATE	TIME	PCB, TOTAL (UG/L)	PCB. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE. TOTAL (UG/L)	CHLOR- DANE. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD. TOTAL (UG/L)	DDD+ TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
AUG										
16	1625	.0	0	.00	.00	.0	.0	0	.00	.0
DATE	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL (UG/L)	DI- ELORIN TOTAL (UG/L)	DI- ELDRIN. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN. TOTAL (UG/L)	ENDRIN. TOTAL (UG/L)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
AUG			4.1				.0	.00	.00	•0
16	•00	•4	•00	.0		•00	.0	.00	•00	••
DAT	ETHI TOT	ON. CHI	CHL TOT PTA- IN E	MA- EPO	CHL PTA- EPOX LOR TOT. XIDE BOT	IDE IN TOM LIND		AL OT- MALA MA- THIO IAL TOTA	N, THI	A- ON, AL
AUG					2.1					
16.	••	.00	.00	• 0	•00	.0	•00	.0 .	00	•00
DAT	THI THI TO 1	AL T	OTAL TO	TAL TO	TOT OX- IN E ENE, TOM	NE, TAL BOT- TOT MA- TF RIAL THI	21- 2.4	AL TOTA	L TOT	AL
AUG 16.		.00	.00	.00	0	0	.00	.00 .	00	.00

08207000 FRIO RIVER AT CALLIHAM, TX

LOCATION.--Lat 28°29'31", long 98°20'47", McMullen County, Hydrologic Unit 12110108, on right bank at upstream side of county bridge, 0.6 mi (1.0 km) upstream from bridge on Farm Road 99, 0.8 mi (1.3 km) north of Calliham, 10.7 mi (17.2 km) downstream from San Miguel Creek, and 20.8 mi (33.5 km) upstream from mouth.

DRAINAGE AREA .-- 5,491 mi2 (14,222 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1924 to April 1926 (monthly discharge only), April 1932 to current year.

REVISED RECORDS.--WSP 788: Drainage area. WSP 2123: 1932.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 153.47 ft (46.778 m) National Geodetic Vertical Datum of 1929. Prior to Apr. 30, 1926, nonrecording gage at present site and datum.

REMARKS.--Water-discharge records good. Part of flow of Frio River and its headwater tributaries enter the Edwards and associated limestones in the Balcones Fault Zone, which crosses basin upstream from U.S. Highway 90 (see REMARKS for station 08205500 Frio River near Derby). Considerable loss of flow into various permeable formations also occurs downstream from the Balcones Fault Zone. Many small diversions above station for irrigation.

AVERAGE DISCHARGE .--47 years (water years 1925, 1933-78), 248 ft3/s (7.023 m3/s), 179,700 acre-ft/yr (222 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 80,200 ft³/s (2,270 m³/s) July 6, 1932, gage height, 39.2 ft (11.95 m), from floodmarks, from rating curve extended above 24,000 ft³/s (680 m³/s) on basis of contracted-opening measurement and flow-over-road measurement of 42,400 ft³/s (1,200 m³/s); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1870, that of July 6, 1932, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 2,700 ft3/s (76.5 m3/s) and maximum (*):

Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)	Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)
June 4	1500	*7,970	226	28.76	8.766	Aug. 3	2400	7,250	205	27.99	8.531
Minimum disch	arge, 1.1	ft3/s (0.	031 m³/s)	July 27.							

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES OCT FEB APR JUN JUL AUG SEP DAY DEC 92 94 64 64 2 3 44 41 39 17 16 40 39 41 79 8.3 7.4 6.7 6.1 36 37 15 55 238 1330 9.8 5.2 8.8 8.0 6.6 5.9 4.8 4.2 3.9 17 135 131 56 47 70 72 3.5 3.0 2.5 47 42 37 51 45 225 1.8 27 1.5 1.4 50 27 624 97 44 ------TOTAL 1193.1 1063.4 MEAN MAX MIN 116 92 77.0 89 63 52.5 64 43 38.5 311 5.9 982 97.4 43.4 34.3

CAL YR 1977 TOTAL 121062.0 MEAN 332 MAX 7960 MIN 36 AC-FT 240100 WTR YR 1978 TOTAL 92894.5 MEAN 255 MAX 7040 MIN 1.4 AC-FT 184300

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: November 1967 to current year. Pesticide analyses: October 1974 to current year. Sediment records: October 1976 to current year.

08207000 FRIO RIVER AT CALLIHAM, TX--Continued

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: November 1967 to current year. WATER TEMPERATURES: November 1967 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 5,750 micromhos Nov. 30, 1968; minimum daily, 104 micromhos Feb. 13, 1969.
WATER TEMPERATURES: Maximum daily, 33.0°C July 17, 1971; minimum daily, 6.0°C Jan. 9, 1970, Jan. 12, 13, 1973.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 2,720 micromhos July 27; minimum daily, 150 micromhos Aug. 4.
WATER TEMPERATURES: Maximum daily, 31.0°C on many days during summer months; minimum daily, 8.0°C on several days during January and February.

DATE	TIME	STREA FLOW INSTA TANEO (CFS	DUCT-	C - P)	A1	MPER- TURE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	SOL	VED SOLV	M, SODI - DIS ED SOLV	SORP- ED TION /L RATIO
ост 31	1600	238	7	30	7.9	23.0	230	100	7:	3 11	5	9 1.7
30	_	- 92	12	40	3.1		380	270	110	25	11	0 2.5
08 31	1310 1600		13 15	30 70	3.1	14.0	490	300	15		13	0 2.6
MAR 31	1800	43	17	80	8.0	23.0	480	310	14	0 31	17	0 3.4
30	1800	30	18	20			510	330	15	0 34		
24 JUL	1244			40	-	26.0	260	140				
31	1900					27.0	280	160				
31 SEP 30	1645			30 60		29.0	370 360	200				
DA		POTAS- SIUM, DIS- SOLVED (MG/L AS K)	AS	CAR- BONATE (MG/L AS CO3)	SULFATI DIS- SOLVE (MG/L AS SO4	DIS- D SOLV (MG/	PI DED SOL (M	DE, D IS- S LVED (G/L	LICA+ IS- OLVED MG/L AS	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE. SUS- PENDED (T/DAY)
ост				A3 603,	20 304		.,	.,	.02.		1	1,0,0,0,0
31 NOV	•••	4.8	150	0	72	110		•5	13	417		
DEC	•••	3.3	130	0	170	220		•5	14	717		
31	•••	3.5	230	0	210	270	-	.2	14	919	128	39
MAR 31 APR		4.6	200	0	210	350		•3	A.5	1010		
		5.6	550	0	200	350		•3	16	1040		
JUL		6.6	140	0	120	170		.3	11	570	/	
AUG	•••	8.8	150 210	0	150 210	220		.2	11	706 853		-
SEP		7.8	240	0	180	250		.2	16	853		

08207000 FRIO RIVER AT CALLIHAM, TX--Continued

 	DATA.	WATER	YEAD	OCTOBER	1977	TO	SEPTEMBER	1978	

		-	ILA GOAL		.,			-						
					NAP						CHLOR-		DDD	
				PCB,	TH			ALDRI			DANE .		TOTA	
				OTAL	LEN			TOTA			TOTAL		IN BO	
				-TOR		LY-		IN BO			IN BOT-	200		
			PCB, TO	-AM MC	CHL	OR. ALE	RIN.	TOM M			TOM MA-	DDD.	TOM M	
	TIM	E TO	OTAL	TERTAL	TOT	AL TO	TAL	TERI		TAL	TERIAL	TOTAL	TERI	
DATE				JG/KG)	(UG	/L) ((JG/L)	(UG/K	G) (L	JG/L)	(UG/KG)	(UG/L)	(UG/K	(6)
JAN														
25	123	10	.0	0		.00	.00		.0	.0	0	.00		• 2
APR	16-													
20	112	0.0	.0	0		.00	.00		.0	.0	0	.00)	.0
JUL	112	. 0		•		•••								
13	135	5	.0	0		.00	.00		.0	.0	0	.00)	• 0
13	13.	,,	••							-10				
					-	100				ORIN.			ENDRI	N.
			DDE .)T+				OTAL			TOTA	
			OTAL		TOT					BOT-	ENDO-		IN BO	
			BOT-	1.4	IN E		-10	DI-		801-	SULFAN.	ENDRIN		
	DDE		M MA-	DDT.	TOM		INON.	ELDR		MA-	TOTAL	TOTAL	TERI	
	TOTA			TOTAL			DTAL	TOTA			(UG/L)	(UG/L		
DATE	(UG)	(L) (U	G/KG)	(UG/L)	(UG)	(KG)	UG/L)	(UG/	L) (U	G/KG)	100/2/	(00/ L	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
JAN 25		.00	.7	.00		• 0	.00		00	.0	.00	.00	0	.0
APR									••	.0	.00	.0	0	.0
20		.00	.1	•00		.4	•05		00	• •				
JUL 13		.00	.4	.00		.0	.00	0 %	00	.0	.00	.0	0	•0
					PTA-		HEP	TA-						
					LOR,		CHL			LINDA	NE			
					TAL	HEPTA-				TOTA		MI	ETHYL	
			HEDTA		BOT-	CHLOR	TOT.			IN BO			ARA-	
			HEPTA		MA-	EPOXIDE	BOT		INDANE				HION,	
		THION.	TOTAL		RIAL	TOTAL		TL.	TOTAL	TERI			OTAL	
		TOTAL (UG/L)			/KG)	(UG/L)	(UG/		(UG/L)	(UG/K			UG/L).	
DA	16	(UG/L)	1007	, 100	, 10,	100/2/	,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
JAN														
		.00	.0	0	.0	.00		.0	.00		.0	.00	.00	
APR	•••	.00						3.7						
		.00		0	.0	.00		.0	.00		.0	.00	.00	
JUL	•••	.00		•	••	***								
		.00		0	.0	.00		.0	.00		.0	•00	•00	
							TOX	A-						
							PHE	NE .						
		METHYL					TOT	AL						
		TRI-	1-	PA	RA-	TOX-	IN E	OT-	TOTAL				10000	
		THION	MIRE	. TH	ION,	APHENE .	TOM	MA-	TRI-	2,4			LVEX.	
		TOTAL	TOTA		TAL	TOTAL		LAL	THION	TOT	AL TO		OTAL	
DA	TE	(UG/L			IG/L)	(UG/L)	(UG/	KG)	(UG/L)	(UG	/L) (L	IG/L) (UG/L)	
	1													
JAN		.00			.00)	0	.00)	.00	.00	.00	
APR	•••	.00		6					- 30		-14.7			
		.0	0 .		.00	()	0	.00)	.00	.00	.00	
JUL		.01		-							- 11.5			
		.0	0 .	00	.00)	0	.00)	.00	.00	.00	
										0 1077		Eupep 10	78	
	MONT	HLY AND	ANNUAL	MEANS	AND L	DADS FOR	WATER	YEAR	OCTOBE	K 1977	IO SEPI	C-014 13		
			SPECIF			1	No.	20			1		616-	
			CONDUC		DIS-		IS-		5-	OIS-			DIS-	HARDNE
			ANCE		OLVED	SC	LVED	SOL	VED	SOLVE	50	LVED	SOLVED	HARDING

MONTH	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	OIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT. 1977	4471	796	460	5600	120	1430	89	1070	240
NOV. 1977	4951	974	560	7530	160	2080	110	1480	290
DEC. 1977	3121	1500	880	7430	270	2280	200	1670	410
JAN. 1978	3018	1580	930	7590	290	2360	210	1720	430
FEB. 1978	2156	1600	940	5480	290	1700	210	1250	430
MAR. 1978	1626	1650	970	4270	300	1330	220	978	450
APR. 1978	1302	1890	1120	3940	350	1250	270	935	500
MAY 1978	1193.1	1380	810	2610	240	780	180	567	380
JUNE 1978	30983	340	200	16400	30	2490	29	2450	120
JULY 1978	1063.4	859	500	1440	130	382	100	288	260
AUG. 1978	27498	354	200	15100	34	2540	31	2310	120
SEPT 1978	11512	434	250	7750	46	1430	38	1190	160
TOTAL	92894.43		**	85100	**	20100		15900	••
WTD.AVG	254.51	584	340	**	80	**	63	**	190

NUECES RIVER BASIN 463
08207000 FRIO RIVER AT CALLIHAM, TX--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	SPECI	IFIC CONDU	JCTANCE	(MICROMHOS	/CM AT	ONCE-DAILY	WATER YEA	R OCTOBER	1977 10	O SEPTEMBER	1976	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1660	746	1340	1570	1550	1620	1800	1850	2240	1580	1150	277
2	1670	400	1390	1550	1580	1650	1840	1830	1880	1620	223	365
3	1690	446	1410	1520	1550		1880	1720	304	1670	192	450
5	1660	842	1420	1540 1570	1540 1570		1860 1850	1690 1810	278	1700 1730	150 421	595 683
	1720	855										
6	1670	900	1470	1580	1590		1820	1860	286	1750	550 615	650 772
7 8	1700	922 1000	1480 1500	1560 1570	1620 1580		1810 1800	1870 1880	307 378	1810 1860	414	500
9	1740 1750	1060	1500	1580	1610		1820	1900	385	1900	395	265
10	1760	1100	1490	1570	1600		1830	1890	508	1940	350	400
11	1750	1150	1470	1600	1590	1590	1850	1980	510	1950	520	556
12	1720	1190	1440	1640	1620		1860	1960	514	1970	809	705
13	1730	1300	1450	1620	1640		1840	2010	662	2040 2090	810 806	650 250
14 15	1740 1760	1390 1300	1470 1460	1640 1630	1610 1590		1800 1850	2020	804 865	2130	889	307
16	1770	1230	1490	1620	1620	1620	2000	2070	918	2200	918	468
17	1750	1410	1520	1590	1610		2080	2100	983	2210	1030	600
18	1740	1370	1540	1580	1580	1670	1930	2120	1050	5550	1020	775
19	1750	1340	1550	1590	1600		1880	2130	1110	2250	1070	978
20	1730	1300	1550	1580	1610	1720	1900	1500	1160	2330	1100	1220
21	1720	1280	1540	1570	1640		1950	741	1200	2390	1160	1180
55	1730	1230	1530	1580	1660		1960	869	1240	2410	1210	595
23	1690	1180	1540	1560	1640		1970	890	1270 1330	2480 2540	1270 1310	556 750
24 25	1260 1670	1200 1230	1560 1550	1570 1560	1620 1570		1960	1040 1740	1350	2590	1340	982
26	1300	1260	1560	1570	1560	1740	1950	1900	1390	2680	1390	1220
27	501	1290	1560	1580	1550		1930	1880	1430	2720	1420	1450
28	496	1320	1570	1590	1590		1850	1920	1490	1750	1450	1480
29	453	1340	1590	1580			1830	1970	1510	388	1710	1500
30 31	734	1350	1600 1580	1590 1600		2.2.2.2	1820	2220	1580	750 1250	1700	1460
MEAN	1500	1130	1500	1580	1600		1880	1790	972	1960	916	755
MEAN	1500											1,00
		TEM	PERATUR	E (DEG. C)	OF WATE	R. WATER YE	AR OCTOBER	R 1977 TO	SEPTEMB	ER 1978		
DAY	ост	NOV	DEC	JAN	FEE	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	30.0	23.0	15.0		8.0	17.0	23.0	26.0		30.0	27.0	27.0
2			17.0		8.0			26.0	28.0		28.0	28.0
3	26.0	20.0	19.0		9.0		24.0	24.0	25.0	30.0	27.0	
5	26.0	20.0	17.0		10.0		24.0	26.0	28.0	31.0	27.5	29.0
	27.0											
6	27.0		15.0		10.0		24.0	26.0	28.0	31.0	28.5	26.0
7 8	28.0	19.0	15.0 17.0		9.0		24.0	27.0	27.0	31.0	29.0	27.0
9	28.0	19.0			9.0			27.0	28.0		29.0	27.0
10	28.0		12.0		9.0		25.0	27.0	28.0	31.0	30.0	
11	24.0				10.0	19.0	21.0	28.0		31.0	30.0	27.0
12	20.0	15.0	14.0				19.0	28.0	30.0	31.0	30.0	28.5
13	20.0	10.0	13.0		13.0		20.0	28.0	30.0	31.0	30.0	27.0
14 15	55.0	19.0	13.0		12.0		21.0	28.0	31.0	31.0	30.0	28.0
16		19.0	15.0	14.0	11.0	20.0		28.0	30.0		30.0	29.0
17	22.0	20.0	14.0		12.0		25.0	28.0	31.0	31.0	30.0	
18	23.0	20.0			11.0		25.0	28.0		31.0	30.0	29.0
19	23.0		15.0				25.0	29.0	31.0	31.0	30.0	29.0
50	24.0		13.0	8.0		21.0	23.0		30.0	31.0		29.0
21	24.0	20.0	12.0		12.0		22.0	25.0	30.0	31.0	30.0	28.0 25.5
53	24.0	20.0	10.0		12.0		24.0	26.0	30.0	30.0	30.0	26.0
24	24.0	20.0	12.0		14.0		24.0	27.0	30.0	30.0	30.0	
25	23.0	20.0			17.0		24.0	28.0		30.0	30.0	26.0
26	23.0	19.0	11.0				24.0	28.0	30.0	30.0	29.0	26.0
27	15.0	19.0	11.0		17.0		23.0	30.0	30.0	30.0	30.0	24.5
28	15.0	19.0	12.0		19.5		24.0	30.0	30.0	28.0	30.0 28.0	25.0
30 30	24.0	17.0	12.0			/ C (1) */ (5/ (1)	24.0	30.0	30.0		29.0	25.0
31	23.0		14.0			75.55		29.0		27.0	29.0	
MEAN	23,5	19.5	14.0	10.5	11.5	20.0	23.5	27.5	29.5	30.5	29.0	27.0

08208000 ATASCOSA RIVER AT WHITSETT, TX

LOCATION.--Lat 28°37'18", long 98°17'02", Live Oak County, Hydrologic Unit 12110110, on right bank 1,000 ft (305 m) upstream from bridge on Farm Road 99, 1.1 mi (1.8 km) southwest of Whitsett, 3.9 mi (6.3 km) downstream from La Parita Creek, and 13.1 mi (21.1 km) upstream from mouth.

DRAINAGE AREA .-- 1,171 mi2 (3,033 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1924 to May 1926, May 1932 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 159.04 ft (48.475 m) National Geodetic Vertical Datum of 1929. Prior to May 8, 1926, nonrecording gage at bridge 1,200 ft (366 m) downstream at datum 1.38 ft (0.421 m) higher.

REMARKS.--Water-discharge records good. Considerable loss of flow into various permeable formations occurs upstream from station.

Records from the Lower Nueces River Water Supply District indicate that during the current year the Campbellton water wells

discharge 43.2 acre-ft (53,300 m²) into the Atascosa River 12 mi (19 km) upstream from this station. Small diversions above

AVERAGE DISCHARGE.--47 years (water years 1925, 1933-78), 137 ft3/s (3.880 m3/s), 99,260 acre-ft/yr (122 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 121,000 ft³/s (3,430 m³/s) Sept. 23, 1967, gage height, 41.3 ft (12.59 m), from floodmark, from rating curve extended above 24,000 ft³/s (680 m³/s) on basis of slope-area measurement of peak flow; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1881, that of Sept. 23, 1967. Second highest stage, 41 ft (12.5 m), discharge 106,000 ft³/s (3,000 m³/s), occurred in September 1919.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,500 ft³/s (42.5 m³/s) and maximum (*):

Date	Time	Disch	arge	Gage h	eight	Date	Time	Disch	arge	Gage h	eight
		(ft^3/s)	(m^3/s)	Gage h	(m)			(ft ³ /s)	(m^3/s)	Gage h	(m)
Aug. 3	1500	*9,110	258	28.65	8.733	Sept. 14	0700	3,360	95.2	22.93	6.989

Minimum discharge, no flow for several days.

		DISCHA	RGE, IN	CUBIC FEET	PER SECO	ND, WATER AN VALUES	YEAR OCT	OBER 197	7 TO SEPT	EMBER 197	8	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	8.7 7.7 6.9 6.4 6.2	16 81 292 135 50	7.1 8.4 9.5 8.2 7.9	8.6 8.7 9.0 9.0	6.4 7.0 7.6 7.3 7.0	8.2 7.7 8.0 8.7 8.9	6.0 6.0 5.7 5.6 5.4	3.3 2.9 4.3 18 36	3.1 2.8 403 1190 361	.89 .78 .54 .14	190 1500 6820 4020 873	269 572 311 115 96
6 7 8 9	6.3 6.2 6.1 5.6 5.5	29 21 17 21 16	6.9 6.9 7.0 6.7 6.1	8.8 9.2 8.5 8.1 7.8	6.4 7.3 9.0 9.6	8.0 8.1 7.9 7.6 7.8	5.4 5.6 5.6 5.6	25 16 11 8.3 6.8	53 269 737 401 77	.03 .04 .00 .00	149 92 69 59 50	129 217 644 794 488
11 12 13 14 15	5.3 4.6 4.3 4.2 4.4	15 15 13 11 10	6.0 6.4 6.6 6.9 7.2	7.7 7.4 7.7 7.3 7.1	11 11 11 10 10	8.1 7.2 6.4 6.9 6.9	5.1 5.0 6.3 20 21	5.6 4.7 4.0 3.6 3.1	37 24 17 15	.00 .00 .00 .00	42 37 34 31 27	323 522 1070 3180 2270
16 17 18 19 20	4.3 4.0 4.0 4.1 4.0	9.8 8.9 8.4 8.1	7.3 7.1 6.1 5.6 5.6	7.7 7.7 7.0 6.7 5.9	10 9.9 12 11 11	6.2 5.9 5.9 5.7 6.1	13 9.1 7.8 6.0 4.7	2.6 2.6 2.7 4.6	10 9.5 8.2 7.4 6.2	.00 .00 .00 .00	23 21 19 19	374 115 69 52 43
21 22 23 24 25	3.9 4.5 4.5 18 24	7.6 7.1 6.8 6.7 7.2	5.4 5.7 5.9 5.6 5.2	5.6 6.4 7.0 7.0 6.7	10 8.8 8.9 8.8 9.1	5.7 5.4 5.1 5.4 6.4	4.5 4.4 4.3 3.7 3.7	9.1 29 46 29 16	4.6 3.3 3.3 2.9 2.2	.00 .00 .00 .00	17 16 15 14 13	37 32 62 60 39
26 27 28 29 30 31	50 31 18 12 9.7 8.4	7.0 8.7 8.1 7.7 8.0	5.1 4.9 6.1 6.9 8.0 8.6	6.4 6.7 6.7 6.4 5.9	9.0 8.8 8.6	6.4 6.4 6.3 6.1 5.9 5.9	2.9 2.7 2.6 2.5 3.1	9.9 7.2 5.5 4.5 7.7 5.8	1.9 1.4 1.0 .89	.13 .05 141 744 1090 117	12 11 10 10 9.4 202	30 24 22 21 20
TOTAL MEAN MAX MIN AC-FT	292.8 9.45 50 3.9 581	860.1 28.7 292 6.7 1710	206.9 6.67 9.5 4.9 410	229.7 7.41 9.2 5.6 456	257.5 9.20 12 6.4 511	211.2 6.81 8.9 5.1 419	188.7 6.29 21 2.5 374	337.4 10.9 46 2.6 669	3666.64 122 1190 .89 7270	2094.67 67.6 1090 .00 4150	14421.4 465 6820 9.4 28600	12000 400 3180 20 23800

CAL YR 1977 TOTAL 85801.10 MEAN 235 MAX 13200 MIN 2.9 AC-FT 170200 WTR YR 1978 TOTAL 34767.01 MEAN 95.3 MAX 6820 MIN .00 AC-FT 68960

465

NUECES RIVER BASIN

08208000 ATASCOSA RIVER AT WHITSETT, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Sediment records: September 1976 to current year.

DATE	TIME	STREAM- FLOW. INSTAN- TANEOUS (CFS)	TEMPER- ATURE (DEG C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)
DEC 08	1535	7.0	16.0	36	.68

08210000 NUECES RIVER NEAR THREE RIVERS, TX (National stream-gaging accounting network)

LOCATION.--Lat 28°26'10", long 98°11'06", Live Oak County, Hydrologic Unit 12110111, on left bank 100 ft (30 m) downstream from Missouri Pacific Railroad bridge, 0.2 mi (0.3 km) downstream from Frio River, 1.7 mi (2.7 km) south of Three Rivers, and at mile 102.6 (165.1 km).

DRAINAGE AREA.--15,600 mi² (40,400 km²).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1915 to current year. Monthly discharge only for November 1919 to January 1920, published in WSP 1312.

REVISED RECORDS.--WSP 548: 1920-21. WSP 1562: 1916, 1918-21, 1922(M), 1923, 1929.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 101.13 ft (30.824 m) National Geodetic Vertical Datum of 1929.

Prior to Apr. 5, 1932, nonrecording gage at railroad bridge 100 ft (30 m) upstream at same datum.

REMARKS.--Water-discharge records good. Part of flow of Nueces and Frio Rivers and their headwater tributaries enter the Edwards and associated limestones in the Balcones Fault Zone upstream from U.S. Highway 90 (see REMARKS for stations 08194600 and 08205500). Considerable loss of flow into various permeable formations occurs downstream from the Balcones Fault Zone. Many small diversions for irrigation and municipal supply above station. Minor upstream regulation by small reservoirs and by ground-water supplements (see station 08208000 Atascosa River at Whitsett). National Weather Service gage-height telemeter at station.

AVERAGE DISCHARGE. -- 63 years, 862 ft3/s (24.41 m3/s), 624,500 acre-ft/yr (770 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 141,000 ft³/s (3,990 m³/s) Sept. 23, 1967, gage height, 49.21 ft (14.999 m); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since about 1875, that of Sept. 23, 1967.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 6,000 ft³/s (170 m³/s) and maximum (*):

Date	Time	Disch (ft ³ /s)	(m³/s)	Gage h	eight (m)	Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)
June 5	1900	7,930	225	28.06	8.553	Aug. 5	0800	*10,800	306	31.83	9.702

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

Minimum discharge, 1.3 ft 3 /s (0.037 m 3 /s) July 28, 29.

					MEA	N VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	
.1	50	299	100	126	100	71	52	39	334	43	
2	48	653	100	123	96	71	52	37	206	37	
3	51	894	101	121	96	72	53	39	1130	34	

1	50	299	100	126	100	71	52	39	334	43	202	1540
2	48	653	100	123	96	71	52	37	206	37	1350	2190
3	51	894	101	121	96	72	53	39	1130	34	4650	1250
4	4.5	622	102	119	97	72	53	33	5710	32	8220	457
5	44	339	105	118	96	72	52	47	7570	26	10400	382
6	44	207	110	115	95	74	52	61	7120	21	6310	296
. 7	44	160	113	112	93	74	52	51	5970	17	1530	431
8	45	134	121	111	96	7.0	50	40	4910	15	1170	691
9	45	124	117	110	94	68	48	33	3580	13	1620	1990
10	45	116	110	112	90	67	49	28	2180	11	2150	2090
11	44	107	129	116	91	65	47	23	2030	9.7	1900	1230
12	41	108	134	110	91	64	46	20	1960	8.7	929	1200
13	40	112	134	108	90	66	47	19		7.6	386	1120
14	41	188	133	107	90	63	75	15	1380	6.4	266	3480
15	43	198	133	108	91	63	102	13	1190	6.2	206	5510
16	42	169	135	109	90	66	87	12	1130	5.6	169	3520
17	39	152	137	107	88	64	91	10	1120	5.3	142	1270
	41			107			77	8.6	721	5.0	124	856
18 19	41	143 136	139 139	110	86 88	62	64	7.6	331	4.4	106	499
	40	134	135	108	88	59 57	55	33	234	4.2	98	327
20	40	134	135	108	88	57	2.2	33	234	4.2	90	321
21	44	128	133	105	84	58	51	398	186	3.8	89	248
22	46	125	133	105	79	56	63	362	153	3.2	81	372
23	47	119	135	105	77	53	199	170	131	2.7	74	-570
24	82	116	135	104	76	5.5	72	315	111	2.7	69	303
25	112	112	133	103	74	54	49	561	94	2.8	61	233
26	105	111	130	103	73	54	42	285	81	2.4	60	366
27	439	110	127	102	75	56	40	137	70	1.8	55	487
28	868	109	129	102	73	56	39	294	60	1.6	52	489
29	875	103	132	104		57	37	589	51	585	56	273
30	999	100	129	103		55	37	682	48	1300	51	175
31	757		126	102		53		698		776	85	
TOTAL	5247	6128	3869	3395	2457	1047	1000	5060.2	51421	2994.1	42661	33845
		204	125	110		1947	1833			96.6	1376	1128
MEAN	169 999	894	139		87.8	62.8	61.1	163 698	1714 7570	1300	10400	5510
MAX				126	100	74	199					
MIN	39	100	100	102	73	53	37	7.6	48	1.6	51	175
AC-FT	10410	12150	7670	6730	4870	3860	3640	10040	102000	5940	84620	67130

CAL YR 1977 TOTAL 305033.0 MEAN 836 MAX 19100 MIN 39 AC-FT 605000 WTR YR 1978 TOTAL 160857.3 MEAN 441 MAX 10400 MIN 1.6 AC-FT 319100

NUECES RIVER BASIN 467 08210000 NUECES RIVER NEAR THREE RIVERS, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1941 to September 1947, September 1950 to September 1952. Chemical, biochemical, and pesticide analyses: January 1968 to current year.

PERIOD OF DAILY RECORD .--SPECIFIC CONDUCTANCE: September 1945 to September 1947, September 1950 to September 1952, October 1974 to current year. WATER TEMPERATURES: October 1975 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE (1974-78): Maximum daily, 4,310 micromhos Jan. 17, 1977; minimum daily, 157 micromhos May 26, 1975.
WATER TEMPERATURES (1975-78): Maximum daily, 32.0°C July 31, Aug. 8, 22, 1977, July 16, 1978; minimum daily, 8.0°C Jan. 2, 1977, Jan. 23, 1978.

EXTREMES FOR CURRENT YEAR .--SPECIFIC CONDUCTANCE: Maximum daily, 2,350 micromhos July 28; minimum daily, 178 micromhos Aug. 4. WATER TEMPERATURES: Maximum daily, 32.0°C July 16; minimum daily, 8.0°C Jan. 23.

85

28009

23

30

2.5

24

1.1

5.8

76

38

0

			WAT	ED OUAL	TTV DATA	- WATED V	EAR OCTOB	FD 1977	TO SEPTE	MBFD 1978				
DATE	TIME	STREAM FLOW INSTAM TANEOU (CFS)	SF C1 4- C0 , DU N- AM JS (M)	PE- IFIC ON- UCT- NCE ICRO-	PH (UNITS)	TEMPER- ATURE (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (JTU)	OXYGEN. DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVEC (PER- CENT SATUR- ATION)	OXYO DEMA BIO CHE ICA	AND, D- EM- AL, (COLI- FORM, TOTAL, IMMED. COLS. PER	COLI- FORM, FECAL, 0.7 UM-MF (COLS./
0CT 19	1100	41		1860	7.5	21.0	15	15	7.3	84		1.6	2800	120
NOV	1200	125		985	7.5	19.0	40	30	8.7			1.4	3300	360
DEC 07	1407	113		1500	7.9	15.0	15	15	9.1		3	.7	600	170
JAN						9.5	0	5	11.1			.8	700	32
FEB	1110	103		1700	8.0					94		.5	280	39
15 MAR	1205	91		1820	7.9	10.5	15	8	10.1					
15 APR	1155	63		1790	7.8	19.0	20	20	9.6	107		1.0	72	16
20 MAY	1000	55		2350	7.8	22.0	20	20	7.8	92	2	5.2	1200	55
11 JUN	1045	23		1620	7.6	26.5	30	15	6.5	82	2	1.7	740	560
08	1315	4860		382	7.0	26.5	180	280	6.5	88	2	3.8	120000	30000
JUL 13	1130	7.	6	1900	7.9	30.5	30	10	7.0	9:	3	.4	190	28
16	1030	176		937	8.0	28.5	45	25	6.8	86	3	2.0	7700	370
SEP 14	1015	2470		320	7.6	25.0	80	640	6.0	74		3.0		48000
DATE	FE KF (CC	AGAR OLS. PER	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR BONATI (MG/I	CALC R- DIS E SOL (MG	VED SOLV	JM. SODIU S- DIS- VED SOLVE /L (MG/	M, SOF D TI L RAT	AD- S RP- D ION SO	IS- BOI	CAR- NATE MG/L AS CO3)	CAR- BONATE (MG/L AS CO3	(MG	VED
0CT 19		540	500	3	10 15	0 3	1 190		3.7	5.1	230		0 25	50
09		140	300	1	50 9	2 1	6 87		2.2	5.3	180		0 12	20
DEC 07		280	470	2	70 14	0 2	8 130		2.6	4.3	240		0 18	30
JAN 25		64	500	3	00 15	0 3	0 150		2.9	3.8	240		0 21	10
FE8 15		23	470	2	80 14	0 3	0 190		3.8	4.1	. 230		0 20	00
MAR 15		32	480	3	10 14	0 3	1 180		3.6	4.5	200		0 19	90
APR 20		3000	640	4	20 18	0 4	6 250		4.3	8.4	270		0 34	• 0
MAY 11		60	380	2	10 11	0 2	5 180		4.0	8.8	210		0 18	30
JUN 08		8400	110		36 4	0	3.5 33		1.3	5.7	96		0 4	44
JUL 13		16	470		60 15				4.0	11	250		0 19	90
AUG 16		210	280		83 8			1	2.2	7.4	240		0	97

08210000 NUECES RIVER NEAR THREE RIVERS, TX--Continued

						COL * DC					
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)
OCT					. 63						
19	330	.3	14	1110	1080	27	5	1.8	.02	1.8	.14
NOV										2.1	0.6
09	150	.2	14	600	573	59	14	2.1	.01	2.1	.06
DEC		-	15	022	944	31	5	4.1	.01	4.1	.10
07	250	•3	15	933	866	31	,	***	•01	***	
JAN 25	300	.3	12	1020	974	9	0	4.8	.02	4.8	.04
FEB	300	••			ALL SALE						5/5/11
15	340	.2	10	1040	1030	19	2	4.6	.02	4.6	.01
MAR					200						.01
15	330	.3	6.0	1010	980	44	4	1.7	•00	1.7	.01
APR			3	1400	1390	48	6	1.5	.05	1.5	.19
20	420	.4	14	1480	1390	40		1	•05		
11	300	.3	15	957	923	12	4	1.4	.09	1.5	.19
JUN								1.00			
08	48	.2	9.7	556	231	724	112	.28	.02	.30	.05
JUL							2	16		.17	.03
13	370	• 3	25	1140	1090	24	2	.15	•02	•11	.03
AUG	100	.2	21	565	550	45	0	.88	• 02	.90	.03
16 SEP	150		21	303	330	43	•	•••			
14	31	.2	15	195	184	1640	200	.29	.01	.30	.07
	NITRO-	NITRO- GEN, AM-	NITRO- GEN, AM-		PHOS-		CARBON,	CARBON. ORGANIC		SEDI- MENT	SED.
	GEN, ORGANIC TOTAL	MONIA + ORGANIC TOTAL	MONIA + ORGANIC DIS.	PHOS- PHORUS. TOTAL	PHORUS, DIS- SOLVED	CARBON+ ORGANIC TOTAL (MG/L	ORGANIC DIS- SOLVED (MG/L	PENDED TOTAL (MG/L	SEDI- MENT, SUS- PENDED	DIS- CHARGE, SUS- PENDED	SIEVE DIAM. % FINER THAN
DATE	ORGANIC TOTAL (MG/L	MONIA + ORGANIC TOTAL (MG/L	ORGANIC	PHORUS.	DIS-	ORGANIC	DIS-	PENDED	MENT .	CHARGE,	DIAM.
DATE	ORGANIC	MONIA + ORGANIC TOTAL	ORGANIC DIS. (MG/L	TOTAL (MG/L	DIS- SOLVED (MG/L	ORGANIC TOTAL (MG/L	DIS- SOLVED (MG/L	PENDED TOTAL (MG/L	MENT. SUS- PENDED	CHARGE, SUS- PENDED	DIAM. % FINER THAN
ост	ORGANIC TOTAL (MG/L AS N)	MONIA + ORGANIC TOTAL (MG/L AS N)	ORGANIC DIS. (MG/L AS N)	TOTAL (MG/L AS P)	DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	DIS- SOLVED (MG/L AS C)	PENDED TOTAL (MG/L AS C)	MENT + SUS - PENDED (MG/L)	CHARGE, SUS- PENDED (T/DAY)	DIAM. % FINER THAN .062 MM
OCT 19	ORGANIC TOTAL (MG/L	MONIA + ORGANIC TOTAL (MG/L	ORGANIC DIS. (MG/L	TOTAL (MG/L	DIS- SOLVED (MG/L	ORGANIC TOTAL (MG/L	DIS- SOLVED (MG/L	PENDED TOTAL (MG/L	MENT. SUS- PENDED	CHARGE, SUS- PENDED	DIAM. % FINER THAN
0CT 19	ORGANIC TOTAL (MG/L AS N)	MONIA + ORGANIC TOTAL (MG/L AS N)	ORGANIC DIS. (MG/L AS N)	PHORUS. TOTAL (MG/L AS P)	DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	DIS- SOLVED (MG/L AS C)	PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L)	CHARGE, SUS- PENDED (T/DAY)	DIAM. % FINER THAN .062 MM
OCT 19 NOV 09	ORGANIC TOTAL (MG/L AS N)	MONIA + ORGANIC TOTAL (MG/L AS N)	ORGANIC DIS. (MG/L AS N)	TOTAL (MG/L AS P)	DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	DIS- SOLVED (MG/L AS C)	PENDED TOTAL (MG/L AS C)	MENT. SUS- PENDED (MG/L)	CHARGE, SUS- PENDED (T/DAY) 3.7	DIAM. % FINER THAN .062 MM
0CT 19	ORGANIC TOTAL (MG/L AS N)	MONIA + ORGANIC TOTAL (MG/L AS N)	ORGANIC DIS. (MG/L AS N)	PHORUS. TOTAL (MG/L AS P)	DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	DIS- SOLVED (MG/L AS C)	PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L)	CHARGE, SUS- PENDED (T/DAY)	DIAM. % FINER THAN .062 MM
0CT 19 NOV 09 DEC 07	ORGANIC TOTAL (MG/L AS N) •47	MONIA + ORGANIC TOTAL (MG/L AS N) .61 .69	ORGANIC DIS. (MG/L AS N)	PHORUS. TOTAL (MG/L AS P) .11 .11	DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C) 3.7 6.4 3.4	DIS- SOLVED (MG/L AS C)	PENDED TOTAL (MG/L AS C)	MENT + SUS- PENDED (MG/L) 33 52	CHARGE, SUS- PENDED (T/DAY) 3.7 18	DIAM. % FINER THAN .062 MM 86 96
0CT 19 NOV 09 DEC 07 JAN 25	ORGANIC TOTAL (MG/L AS N) •47	MONIA + ORGANIC TOTAL (MG/L AS N) -61	ORGANIC DIS. (MG/L AS N)	PHORUS. TOTAL (MG/L AS P) .11	DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C) 3.7 6.4	DIS- SOLVED (MG/L AS C)	PENDED TOTAL (MG/L AS C)	MENT. SUS- PENDED (MG/L)	CHARGE, SUS- PENDED (T/DAY) 3.7	DIAM. % FINER THAN .062 MM
OCT 19 NOV 09 DEC 07 JAN 25 FEB	ORGANIC TOTAL (MG/L AS N) -47 -63 -31	MONIA + ORGANIC TOTAL (MG/L AS N) -61 -69 -41 -46	ORGANIC DIS- (MG/L AS N) .61 .20	PHORUS - TOTAL (MG/L AS P) - 11 - 11 - 06 - 04	DIS- SOLVED (MG/L AS P) .03	ORGANIC TOTAL (MG/L AS C) 3.7 6.4 3.4 2.5	DIS- SOLVED (MG/L AS C)	PENDED TOTAL (MG/L AS C)	MENT • SUS- PENDED (MG/L) 33 52 61 47	CHARGE, SUS- PENDED (T/DAY) 3.7 18 19	DIAM. % FINER THAN .062 MM 86 96
OCT 19 NOV 09 DEC 07 JAN 25 FEE	ORGANIC TOTAL (MG/L AS N) -47 -63	MONIA + ORGANIC TOTAL (MG/L AS N) .61 .69	ORGANIC DIS. (MG/L AS N)	PHORUS. TOTAL (MG/L AS P) .11 .11	DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C) 3.7 6.4 3.4	DIS- SOLVED (MG/L AS C)	PENDED TOTAL (MG/L AS C)	MENT + SUS- PENDED (MG/L) 33 52	CHARGE, SUS- PENDED (T/DAY) 3.7 18	DIAM. % FINER THAN .062 MM 86 96 84 64
OCT 19 NOV 09 DEC 07 JAN 25 FEB 15	ORGANIC TOTAL (MG/L AS N) -47 -63 -31 -42 -60	MONIA + ORGANIC TOTAL (MG/L AS N) -61 -69 -41 -46	ORGANIC DIS- (MG/L AS N) .61 .20	PHORUS - TOTAL (MG/L AS P) - 11 - 11 - 06 - 04	DIS- SOLVED (MG/L AS P) .03	ORGANIC TOTAL (MG/L AS C) 3.7 6.4 3.4 2.5	DIS- SOLVED (MG/L AS C)	PENDED TOTAL (MG/L AS C)	MENT • SUS- PENDED (MG/L) 33 52 61 47	CHARGE, SUS- PENDED (T/DAY) 3.7 18 19	DIAM. % FINER THAN .062 MM 86 96 84
OCT 19 NOV 09 DEC 07 JAN 25 FEE	ORGANIC TOTAL (MG/L AS N) -47 -63 -31	MONIA + ORGANIC TOTAL (MG/L AS N) -61 -69 -41 -46 -61 -77	ORGANIC DIS. (MG/L AS N) .61 .20 .39 .60	PHORUS- TOTAL (MG/L AS P) .11 .06 .04 .05	DIS- SOLVED (MG/L AS P) .03 .02 .03 .01	ORGANIC TOTAL (MG/L AS C) 3.7 6.4 3.4 2.5 	DIS- SOLVED (MG/L AS C)	PENDED TOTAL (MG/L AS C)	MENT - SUS- PENDED (MG/L) 33 52 61 47 18	CHARGE, SUS- PENDED (T/DAY) 3.7 18 19 13 4.4 7.5	DIAM. % FINER THAN .062 MM 86 96 84 64 65
OCT 19 NOV 09 DEC 07 JAN 25 FEB 15 MAR 15	ORGANIC TOTAL (MG/L AS N) -47 -63 -31 -42 -60	MONIA + ORGANIC TOTAL (MG/L AS N) -61 -69 -41 -46 -61	ORGANIC DIS. (MG/L AS N) .61 .20 .39	PHORUS. TOTAL (MG/L AS P) .11 .06 .04	DIS- SOLVED (MG/L AS P) .03 .02 .03	ORGANIC TOTAL (MG/L AS C) 3.7 6.4 3.4 2.5	DIS- SOLVED (MG/L AS C)	PENDED TOTAL (MG/L AS C)	MENT • SUS-PENDED (MG/L) 33 52 61 47	CHARGE, SUS- PENDED (T/DAY) 3.7 18 19 13	DIAM. % FINER THAN .062 MM 86 96 84 64
OCT 19 NOV 09 DEC 07 JAN 25 FEB 15 MAR 15 APR 20 MAY	ORGANIC TOTAL (MG/L AS N) -47 -63 -31 -42 -60 -76	MONIA + ORGANIC TOTAL (MG/L AS N) -61 -69 -41 -46 -61 -77 -98	ORGANIC DIS- (MG/L AS N) .61 .20 .39 .60 .46	PHORUS. TOTAL (MG/L AS P) .11 .06 .04 .05 .12 .10	DIS- SOLVED (MG/L AS P) .03 .02 .03 .01 .07	ORGANIC TOTAL (MG/L AS C) 3.7 6.4 3.4 2.5	DIS- SOLVED (MG/L AS C)	PENDED TOTAL (MG/L AS C)	MENT - SUS- PENDED (MG/L) 33 52 61 47 18 44 56	CHARGE, SUS- PENDED (T/DAY) 3.7 18 19 13 4.4 7.5 8.3	DIAM. % FINER THAN .062 MM 86 96 84 64 65 89
OCT 19 NOV 09 DEC 07 JAN 25 FEE 15 MAR 15 APR 20 MAY	.76	MONIA + ORGANIC TOTAL (MG/L AS N) -61 -69 -41 -46 -61 -77	ORGANIC DIS. (MG/L AS N) .61 .20 .39 .60	PHORUS- TOTAL (MG/L AS P) .11 .06 .04 .05	DIS- SOLVED (MG/L AS P) .03 .02 .03 .01	ORGANIC TOTAL (MG/L AS C) 3.7 6.4 3.4 2.5 	DIS- SOLVED (MG/L AS C)	PENDED TOTAL (MG/L AS C)	MENT - SUS- PENDED (MG/L) 33 52 61 47 18	CHARGE, SUS- PENDED (T/DAY) 3.7 18 19 13 4.4 7.5	DIAM. % FINER THAN .062 MM 86 96 84 64 65
OCT 19 NOV 09 DEC 07 JAN 25 FEB 15 MAR 15 APR 20 MAY 11 JUN	.76 .79 .79	MONIA + ORGANIC TOTAL (MG/L AS N) -61 -69 -41 -46 -61 -77 -98 -93	ORGANIC DIS. (MG/L AS N) .61 .20 .39 .60 .46	PHORUS- TOTAL (MG/L AS P) .11 .06 .04 .05 .12 .10 .15	DIS- SOLVED (MG/L AS P) .03 .02 .03 .01 .07	3.7 6.4 3.7 6.4 3.4 2.5 	DIS- SOLVED (MG/L AS C)	PENDED TOTAL (MG/L AS C)	MENT - SUS- PENDED (MG/L) 33 52 61 47 18 44 56	CHARGE, SUS- PENDED (T/DAY) 3.7 18 19 13 4.4 7.5 8.3	DIAM. % FINER THAN .062 MM 86 96 84 64 65 89
OCT 19 NOV 09 DEC 07 JAN 25 FEB 15 MAR 15 APR 20 MAY 11 JUN 08	ORGANIC TOTAL (MG/L AS N) -47 -63 -31 -42 -60 -76	MONIA + ORGANIC TOTAL (MG/L AS N) -61 -69 -41 -46 -61 -77 -98	ORGANIC DIS- (MG/L AS N) .61 .20 .39 .60 .46	PHORUS. TOTAL (MG/L AS P) .11 .06 .04 .05 .12 .10	DIS- SOLVED (MG/L AS P) .03 .02 .03 .01 .07	ORGANIC TOTAL (MG/L AS C) 3.7 6.4 3.4 2.5	DIS- SOLVED (MG/L AS C)	PENDED TOTAL (MG/L AS C)	MENT - SUS- PENDED (MG/L) 33 52 61 47 18 44 56 31 572	CHARGE, SUS- PENDED (T/DAY) 3.7 18 19 13 4.4 7.5 8.3 1.9	DIAM. % FINER THAN .062 MM 86 96 84 64 65 89 88 100 97
OCT 19 NOV 09 DEC 07 JAN 25 FEB 15 MAR 15 APR 20 MAY 11 JUN 088 JUL	.76 .79 .79	MONIA + ORGANIC TOTAL (MG/L AS N) -61 -69 -41 -46 -61 -77 -98 -93	ORGANIC DIS. (MG/L AS N) .61 .20 .39 .60 .46	PHORUS- TOTAL (MG/L AS P) .11 .06 .04 .05 .12 .10 .15	DIS- SOLVED (MG/L AS P) .03 .02 .03 .01 .07	3.7 6.4 3.7 6.4 3.4 2.5 	DIS- SOLVED (MG/L AS C)	PENDED TOTAL (MG/L AS C)	MENT - SUS- PENDED (MG/L) 33 52 61 47 18 44 56 31	CHARGE, SUS- PENDED (T/DAY) 3.7 18 19 13 4.4 7.5 8.3 1.9	DIAM. % FINER THAN .062 MM 86 96 84 64 65 89 88 100
OCT 19 NOV 09 DEC 07 JAN 25 FEB 15 MAR 15 APR 20 MAY 11 JUN 08 JUL 13 AUG	.47 .63 .31 .42 .60 .76 .79 .74	MONIA + ORGANIC TOTAL (MG/L AS N) -61 -69 -41 -46 -61 -77 -98 -93 1.4 -66	ORGANIC DIS. (MG/L AS N) 	PHORUS. TOTAL (MG/L AS P) .11 .06 .04 .05 .12 .10 .15 .13	DIS- SOLVED (MG/L AS P) .03 .02 .03 .01 .07 .05 .10	ORGANIC TOTAL (MG/L AS C) 3.7 6.4 3.4 2.5 3.7 4.6	DIS- SOLVED (MG/L AS C)	PENDED TOTAL (MG/L AS C)	MENT. SUS- PENDED (MG/L) 33 52 61 47 18 44 56 31 572	CHARGE, SUS- PENDED (T/DAY) 3.7 18 19 13 4.4 7.5 8.3 1.9 7510 .35	DIAM. % FINER THAN .062 MM 86 96 84 64 65 89 88 100 97
OCT 19 NOV 09 DEC 07 JAN 25 FEB 15 APR 20 MAY 11 JUN 08 JUL 13 AUG 16	ORGANIC TOTAL (MG/L AS N) -47 -63 -31 -42 -60 -76 -79 -74	MONIA + ORGANIC TOTAL (MG/L AS N) -61 -69 -41 -46 -61 -77 -98 -93 1-4	ORGANIC DIS. (MG/L AS N) .61 .20 .39 .60 .46 .78	PHORUS. TOTAL (MG/L AS P) .11 .06 .04 .05 .12 .10 .15	DIS- SOLVED (MG/L AS P) .03 .02 .03 .01 .07 .05 .10	ORGANIC TOTAL (MG/L AS C) 3.7 6.4 3.4 2.5 3.7 4.6	DIS- SOLVED (MG/L AS C)	PENDED TOTAL (MG/L AS C)	MENT - SUS- PENDED (MG/L) 33 52 61 47 18 44 56 31 572	CHARGE, SUS- PENDED (T/DAY) 3.7 18 19 13 4.4 7.5 8.3 1.9	DIAM. % FINER THAN .062 MM 86 96 84 64 65 89 88 100 97
OCT 19 NOV 09 DEC 07 JAN 25 FEB 15 MAR 15 APR 20 MAY 11 JUN 08 JUL 13 AUG	.47 .63 .31 .42 .60 .76 .79 .74	MONIA + ORGANIC TOTAL (MG/L AS N) -61 -69 -41 -46 -61 -77 -98 -93 1.4 -66	ORGANIC DIS. (MG/L AS N) 	PHORUS. TOTAL (MG/L AS P) .11 .06 .04 .05 .12 .10 .15 .13	DIS- SOLVED (MG/L AS P) .03 .02 .03 .01 .07 .05 .10	ORGANIC TOTAL (MG/L AS C) 3.7 6.4 3.4 2.5 3.7 4.6	DIS- SOLVED (MG/L AS C)	PENDED TOTAL (MG/L AS C)	MENT. SUS- PENDED (MG/L) 33 52 61 47 18 44 56 31 572	CHARGE, SUS- PENDED (T/DAY) 3.7 18 19 13 4.4 7.5 8.3 1.9 7510 .35	DIAM. % FINER THAN .062 MM 86 96 84 64 65 89 88 100 97

08210000 NUECES RIVER NEAR THREE RIVERS, TX--Continued

DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BARIUM, SUS- PENDED RECOV- ERABLE (UG/L AS BA)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)
FEB 15	1205	1	0	1	100	0	100	0	0	0
11	1045	4	3	1	300	0	300	0	0	0
16	1030	5	1	4	300	200	100	0	0	<1
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COBALT, SUS- PENDED RECOV- ERABLE (UG/L AS CO)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER. TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER+ SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
FE8 15	10	10	0	2	2	0	6	6	0	330
11	0	0	10	3	2	1	3	3	0	480
16	0	0	10	0	0	<1	9	8	1	790
DATE	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY SUS- PENDED RECOV- ERABLE (UG/L AS HG)
FEB 15		0	4	2	2	40	30	10	.3	•3
AUG		0	3	0	4	100	40	60	•0	•0
16	780	<10	6	6	0	50	40	8	•0	.0
DATE	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, SUS- PENDED TOTAL (UG/L AS SE)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	SILVER, SUS- PENDED RECOV- ERABLE (UG/L AS AG)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC+ TOTAL RECOV- ERABLE (UG/L AS ZN)	7 INC. SUS- PENDED RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)
FEB			75 567	75 JE/	15 15/			A. 2.47		
15 MAY	• 0	1	0	2	0	0	0	20	10	10
11 AUG	•0	1	1	0	.0	0	0	20	10	10
16	.0	1	1	0	0	0	0	30	30	<3

08210000 NUECES RIVER NEAR THREE RIVERS, TX--Continued

			WAILK (OALIII	UNINY		TEAN (001002		10 30							
		PCB	IN	PCB+ DTAL BOT-	NAPH- THA- LENES+ POLY- CHLOR.		1	ALDRIN TOTAL IN BOT	- AT	RA-	ZINE TOTAL IN 80 TOM M	· -	CHLOR-	TOTAL IN BO	AL OT-	DDD	
DATE	TIME	TOTA	L TE	RIAL G/KG)	TOTAL (UG/L)	TOT	AL	TERIA (UG/KG	L TO	TAL S/L)	TERT (UG/K	AL '	TOTAL (UG/L)	(UG/I		TOTA (UG/	
NOV 09	1200		ND				ND	N	D	ND		ND	ND		5		ND
25	1110		.0	0	.00		.00		0				.0		0	•	00
FE8 15	1205		ND				ND	-	-	ND			ND				ND
APR 20	1000		.0	0	.00		.00		0				.0		0		00
MAY			ND	ND			ND	N		ND			ND		ND		ND
11	1045								n	1-			DI-				
	TOTAL IN ROT-		IN	DDE . DTAL BOT-	207	TOT IN B TOM	AL OT-	DI- AZINON	TO IN	NON+ TAL BOT-	DI-	I	TOTAL N BOT- OM MA-	END		ENDRI	N.
DATE	TERIAL (UG/KG)	TOTA	AL T	M MA- ERIAL G/KG)	TOTAL (UG/L)	TER	IAL	TOTAL (UG/L	TE	RIAL /KG)	TOTA (UG/	L	TERIAL UG/KG)	TOT	AL	TOTA (UG/	L
NOV 09	NO		ND	ND	N)	ND	N	D	ND		ND	ND				ND
JAN 25	.2		.00	1.1	.00)	.0	.0	0			00	.0		.00		.00
FEB 15			ND		N			N	D			ND					ND
APR 20	• 0		.00	.2	.00	0	.0	.0	1			00	.0		.00		.00
MAY			ND	ND	N		ND		ID	ND		ND	ND				ND
11	N	,	NU	NO												MALA	-
	TOTAL IN BOT- TOM MA- TERIAL	ETHI	IN ON, TO AL T	HION, OTAL BOT- M MA- ERIAL G/KG)	HEPTA- CHLOR TOTAL (UG/L	CHL TOT IN B TOM TER	MA-	HEPTA CHLOR EPOXIO TOTAL (UG/L	E BO	LOR XIDE . IN TTOM ATL.	LINDA	NE T	INDANE TOTAL N BOT- OM MA- TERIAL UG/KG)	MAL THI TOT	ON.	THIC TOTA IN BO TOM N TERI	ON. AL DT- MA- IAL
DATE	(UG/KG)	100	,, ,,	0/NO/	10076	, (00)		10076	.,								
NOV	NO	,	ND	ND	N	0	ND		O	ND		ND	ND	1	ND		ND
JAN 25 FEB			.00		.0	0	.0	• 0	00	.0		00	.0		.00		
15			ND		N	D			ID			ND			ND		
20)	.00		.0	0	.0	• (0	.0		00	.0		.00		
MAY 11	N)	ND	ND	N	D	ND		1D	ND		ND	NC)	ND		ND
			METH-		M	ETHYL			METHYL			PARA		IMA-		MA-	
		ETH-	OXY-	ME		PARA- THION,	MET	HYL	TRI-			THIC		ZINE	BOT	E IN	
		OXY-	TOT. I	N PAR	RA- T	OT. IN	TR	1- 1	TOT. IN	PA	RA-	IN BO	T- (SON		ERI-	
		TOTAL	BOTTO		ION.	BOTTOM MATL.	TOT		MATL	TO	TAL	TER	AL C	OND.	KG	DRY	
C		(UG/L)	(UG/KG) (U	G/L) (UG/KG)	(UG	6/L)	(UG/KG)	((JG/L)	(UG/H	(G)	(UG/L)	SOL	IDS)	
NO	9	ND		ID	ND	ND		ND	N)	ND		ND	ND		ND	
JA	AN 25			-	.00			.00			.00						
FE	B 15	ND			ND			ND	-		ND			ND			
AF	PR			_	.00			-00	-		.00						
MA	20 AY			ın		ND		ND	N	,	ND		ND	ND			
,	11	ND	TOXA-	ID	ND	TRI-		NO									
		TOX-	PHENE TOTAL IN BOT TOM MA	- TO	TAL I	THION, TOTAL N BOT- OM MA- TERIAL	2.4	-D.	Z+4-D+ TOTAL IN BOT- TOM MA- TERIAL	2.4	-5-T	TOTAL TOTAL TOM N	IL DT- IA- SI	LVEX,	IN TOM TE	TAL BOT- MA- RIAL	
NO.	DATE	(UG/L)	(UG/K			UG/KG)	(UG	3/L)	(UG/KG)	((JG/L)	(UG/I	(G)	(UG/L)	(UG	/KG)	
J	19 AN	ND 0	•	0	ND •00	ND		ND .00	NO.		.00		ND	.00		ND	
FE														ND			
	15 PR	ND		-	ND			ND			ND						
2	20	0		0	•00			.00	-	•	.01			.00			
	ii	ND	,	10	ND	ND			-	•			••				

PHYTOPLANKTON ANALYSES, OCTOBER 1977 TO AUGUST 1978

	PHYTOPLA	NKTON	ANALYSES	octo	BER 1977	TO AU	GUST 19	78				
DATE TIME		9,77		15•78 155		11,78		8,78 315		13,78 130		16•78 030
TOTAL CELLS/ML		190	12	2000		300		3700	4	200		47
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		1.4 1.4 1.4 2.0 2.4		0.2 0.2 0.2 0.2		1.1 1.1 1.4 2.0 2.0		0.6 0.6 0.7 0.8 0.9		0.1 0.1 0.8 0.8		1.0 1.0 1.4 1.6 2.5
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	/ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) •CHLOROPHYCEAE ••CHLOROCOCCALES ••COELASTRACEAE												
COELASTRUM MICRACTINIACEAE		-		-		-	110	3		-		-
MICRACTINIACEAE		-		-			57	2		-		
OOCYSTACEAE												
CHODATELLA		-		0		-	29	1			1	3
DICTYOSPHAERIUM		-		-		-		0		-		-
· · · SCENEDESMACEAE	- 22	_		2		2	67	2				12
TETRASTRUM		-		-		-	57	2			5	11
CHLAMYDOMONADACEAE												
CHLAMYDOMONAS		-		0	76#	25	29	1		-		-
CHRYSOPHYTA BACILLARIOPHYCEAE CENTRALES												
COSCINODISCACEAE		_				-				-	1	3
····CYCLOTELLA				•	10			•	1		154	21
STEPHANODISCUSPENNALESCYMBELLACEAE		•		-	19	-		-		-	15# 15#	
AMPHORA	19	10		-		-		-				-
GOMPHONEMATACEAEGOMPHONEMANAVICULACEAE	19	10		-		-				-		-
NAVICULA	58#	30		0	57#	19		-	43	1		-
PLEUROSIGMA NITZSCHIACEĀE	***	•		•		•		-		0		-
HANTZSCHIA		-		•		-		0		-		-
NITZSCHIA		-	63	1	130#	44	86	5			5	11
SUPIRELLA		-		0		-		-		-		-
CRYPTOPHYTA (CRYPTOMONADS) •CRYPTOPHYCEAE ••CRYPTOMONIDALES												
CRYPTOCHRYSIDACEAE	19	10		-		4		-		-	4-	-
CYANOPHYTA (BLUE-GREEN ALGAE) •CYANOPHYCEAE ••CHROCCOCCALES												
CHROCCOCCAEAE												
ANACYSTIS		-	13000#	-		-		•	3200#			-
ANACYSTIS HORMOGONALES			12000#	98		•			110	3	-	-
OSCILLATORIACEAE		43				_	3300#	88	830#	20	1.	
			1.57				3300#	00	030#	20		
EUGLENOPHYTA (EUGLENOIDS) •EUGLENOPHYCEAF ••EUGLENALES ••EUGLENACEAE												
· · · · EUGLENA	58#	30			19	6		0		0	1	3
· · · · PHACUS · · · · · TRACHELOMONAS	19	10		0		-		-		-	1	3
- TATTE OF CHANGE	19	10		U		(2)		-				

NOTE: # - DOMINANT ORGANISM: EQUAL TO OR GREATER THAN 15%
* - ORSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

NUECES RIVER BASIN
08210000 NUECES RIVER NEAR THREE RIVERS, TX--Continued

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 PERIPHYTON

DATE	LENGTH OF EXPOSURE (DAYS)	PERI- PHYTON BIOMASS ASH WEIGHT G/SQ M	PERI- PHYTON BIOMASS TOTAL DRY WEIGHT G/SQ M	CHLOR-A PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)	CHLOR-B PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/MZ)	SAMPLING METHOD
OCT						
19	35	93.1	102	10.5	2.59	POLYETHYLENE STRIP
DEC						
07	28	•177	.472	.080	.000	POLYETHYLENE STRIP
20	36	79.7	98.3	90.9	18.9	POLYETHYLENE STRIP

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

MONTH	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)		HARDNESS (CA,MG) (MG/L)
OCT. 1977	5247	1040	600	8530	170	2400	120	1690	290
NOV. 1977	6128	964	560	9250	150	2510	110	1780	270
DEC. 1977	3869	1770	1020	10600	320	3350	210	2190	480
JAN. 1978	3395	1660	960	8820	300	2730	190	1780	450
FEB. 1978	2457	1710	990	6560	310	2050	200	1320	470
MAR. 1978	1947	1760	1010	5320	320	1670	210	1080	480
APR. 1978	1833	1950	1120	5550	360	1780	230	1150	530
MAY 1978	5060.2	1150	670	9120	190	2640	130	1800	320
JUNE 1978	51421	402	230	32100	49	6840	46	6350	110
JULY 1978	2994.1	451	260	2080	61	495	52	421	130
AUG. 1978	42661	395	230	26400	48	5550	45	5180	110
SEPT 1978	33845	428	250	22700	53	4850	49	4460	120
TOTAL	160857.25	**	**	147000	**	36900	••	29200	A separation
WTD.AVG	440.7	586	340	**	85	**	67		170

08210000 NUECES RIVER NEAR THREE RIVERS, TX--Continued

				08210000	MOECE2 KIN	EK NEAK THREE	KINEKS' IY	continued				
	SPEC	IFIC CO	NDUCTANCE	(MICROMHO	DS/CM AT	25 DEG. C). ONCE-DAILY	WATER YE	AR OCTOBE	R 1977 TO	SEPTEMBER	1978	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1670	799	1410	1670	1650	1710	1930	2050	639	1280	454	526
	1670	723	1420	1670	1670	1720	1900	2080	718	1290	400	400
3	1720	550	1430	1660	1680	1700	1850	2010	1060	1330	214	385
4	1730	631	1450	1640	1650	1710	1880	1990	400	1370	178	450
5	1730	709	1480	1650	1690	1770	1910	1980	260	1470	224	502
6	1740	823	1500	1640	1680	1760	1950	1970	275	1530	699	590
7	1750	848	1510	1640	1690	1750	1960	2160	336	1550	702	830
8	1740	925	1530	1650	1670	1740	1960	1610	434	1580	610	667
9	1750	974	1540	1660	1700	1730	1950	1500	404	1650	427	657
10	1760	1000	1550	1650	1710	1730	1940	1440	462	1710	410	392
11	1800	1080	1660	1640	1730	1730	1950	1610	491	1750	483	429
12	1810	1090	1770	1640	1740	1730	1930	1700	455	1810	581	451
13	1830	1160	1760	1660	1740	1730	1950	1740	451	1870	386	423
14	1860	1210	1760	1670	1730	1740	1930	1800	430	1880	829	379
15	1870	1370	1900	1680	1730	1740	1900	1890	419	1900	901	251
												25.0
16	1880	1400	2050	1680	1730	1730	1950	1940	414	1950	950	250
17	1830	1380	2180	1670	1730	1730	2000	1990	414	2000	1000	462
18	1840	1300	2160	1690	1730	1730	1950	2030	515	2070	1050	488
19	1860	1260	2140	1680	1740	1730	2100	2080	655	2110	1060	585
20	1840	1440	2120	1680	1730	1730	2290	5050	708	2130	1140	619
21	1830	1490	2120	1670	1700	1750	2140	1700	762	2150	1230	681
22	1840	1450	1980	1670	1710	1780	2120	1460	806	2170	1280	600
23	1830	1420	1900	1650	1710	1790	2010	1370	853	2200	1310	500
24	1700	1350	1830	1650	1720	1800	1910	1650	856	2210	1330	643
25	1410	1260	1800	1640	1750		1340	1450	973	2200	1350	651
23	1410	1200	1000	1040	1,20	1810	1340	1450	71.3	2200	1330	031
26	1770	1270	1730	1650	1720	1830	1640	1040	1030	2230	1430	619
27	1640	1270	1710	1660	1720	1820	1900	1020	1090	2270	1450	702
28	900	1340	1680	1650	1710	1810	1930	855	1140	2350	1480	530
29	750	1400	1670	1640		1830	1950	800	1170	400	1460	703
30	523	1400	1680	1650		1870	2000	682	1250	250	1490	709
31	667		1680	1680		1890		518		350	1190	
MEAN	1630	1140	1750	1660	1710	1760	1940	1620	662	1710	893	536
		TE	MPERATURE	(DEG. C)		NATER YEAR	R OCTOBER	1977 TO	SEPTEMBER	1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
,	20.0	24 5	17 0	11.5	9.0	17.0	23.0	26.0	29.0	30.5	26.5	26.5
1	30.0	24.5	17.0	11.5		17.0			29.0	30.0	27.0	26.0
2	31.0	21.5	17.0	10.5	8.5	17.5	23.5	25.0			26.0	28.0
3	28.0	20.0	17.0	10.5	9.0	16.0	24.0	23.5	27.0	31.0		20.0
4	27.0	19.0	18.0	11.0	9.0	14.0	24.0	23.0	28.0	31.0	27.0	
5	26.5	19.0	18.0	14.0	9.5	12.5	25.0	25.0	25.0	31.5	28.0	28.0
6	26.0	20.0	16.0	15.0	10.0	15.5	24.0	25.5	27.5	31.0	28.0	27.0
7	25.5	20.0	15.0	16.0	9.5	18.0	24.5	25.0	27.0	31.0	29.0	
8	25.5	20.0	17.0	14.0	9.0	16.5	25.0	27.0	27.0	30.5	29.0	26.0

D 25.5 26.0 26.0 16.5 16.5 17.5 20.0 19.0 17.5 9.0 9.0 8.5 25.0 17.0 14.0 27.0 27.0 27.5 26.0 31.5 29.5 10 13.0 12.0 24.0 27.0 28.0 30.5 30.0 27.0 30.0 30.0 11 24.0 16.5 12.0 10.0 9.0 18.0 21.0 28.0 29.0 27.5 19.5 29.0 30.0 29.0 30.0 12 22.0 17.0 12.5 10.5 9.5 19.5 30.0 30.0 13 21.5 16.5 15.0 10.0 13.5 20.0 30.5 30.5 30.0 21.0 15.0 14.5 9.5 20.0 28.0 14 21.5 17.0 12.5 15 11.0 31.5 30.5 27.5 10.0 22.0 27.0 30.5 21.0 18.0 28.0 32.0 30.5 29.5 21.5 19.0 15.0 13.0 11.0 18.5 21.5 30.5 30.0 28.5 31.5 30.5 28.0 23.5 17 20.5 19.5 15.0 12.0 12.5 18.5 30.0 22.0 31.0 30.5 29.0 14.0 13.5 19.0 18 20.0 10.0 10.5 20.5 24.5 29.0 30.0 30.0 29.0 20.0 9.5 19 20 22.0 13.5 10.0 11.5 20.5 23.0 30.0 29.0 29.0 29.0 29.0 29.5 29.5 21 23.5 20.5 11.0 8.5 11.5 21.5 23.0 27.0 30.0 30.0 == 29.5 28.0 19.5 24.0 22 23.0 9.5 8.5 14.0 22.0 23.5 24.0 30.5 30.0 28.0 23.0 8.0 12.5 24.5 27.0 30.0 30.0 26.0 24 9.0 13.5 22.5 ---27.0 23.0 18.5 10.0 30.0 29.5 30.0 ---29.5 26.5 18.5 26 16.0 28.0 24.0 11.0 10.0 20.5 24.0 30.5 30.0 25.5 23.0 23.5 23.0 23.0 27 18.5 11.5 17.0 27.0 11.0 20.0 30.5 ---30.0 24.5 28 18.0 20.5 29.0 12.0 ------24.5 30.0 29.5 25.0 29 17.5 13.0 9.5 30.0 30 24.0 17.0 13.5 9.0 22.0 23.5 28.5 30.0 29.5 26.0 ---31 24.5 14.0 9.0 ---22.0 29.5 28.5 30.5 29.0 27.0 23.5 27.0 29.0

19.0

MEAN

24.0

19.0

14.0

11.0

11.5

08210400 LAGARTO CREEK NEAR GEORGE WEST, TX

LOCATION.--Lat 28°03'34", long 98°05'48", Live Oak County, Hydrologic Unit 12110111, near right bank 75 ft (23 m) downstream from bridge on U.S. Highway 281, 0.6 mi (1.0 km) upstream from Dix Hollow, and 19.3 mi (31.1 km) south of George West.

DRAINAGE AREA .-- 155 mi2 (401 km2).

PERIOD OF RECORD .-- April 1972 to current year.

GAGE .-- Water-stage recorder. Datum of gage is 197.77 ft (60.280 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. No known regulation or diversion. An observation of water temperature was made during the year.

AVERAGE DISCHARGE. -- 6 years, 0.33 ft3/s (0.009 m3/s), 239 acre-ft/yr (295,000 m3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,900 ft³/s (53.8 m³/s) May 13, 1972, gage height, 12.20 ft (3.719 m); no flow most of time.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since about 1887, 25.1 ft (7.65 m), discharge 33,500 ft³/s (949 m³/s) Oct. 17, 1971. Second highest stage, 24.3 ft (7.41 m), discharge 29,500 ft³/s (835 m³/s) occurred Sept. 12, 1971. The third and fourth highest floods occurred in 1914 and September 1967 (stages unknown).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 6.6 ft³/s (0.19 m³/s) Aug. 31, gage height, 5.10 ft (1.554 m), no peak above base of 50 ft³/s (1.42 m³/s); no flow most of time.

		DISCH	ARGE, IN	CUBIC FEET	PER SECO ME	ND, WATE AN VALUE	R YEAR OCT	TOBER 1977	TO SEPTE	MBER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
3	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
6 7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.40	.00	.00	.00
8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
9	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
11	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
12	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
13	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
14	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
15	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
16	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
17	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
21	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
23	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
24	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
25	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
26	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
28	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
29	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	.00
30	.00	.00	.00	.00		.00	.00	.00	.00	.00	.05	.00
31	.00		.00	.00		.00		.00		.00	1.6	
TOTAL	.00	.00	.00	.00	.00	.00	.00	.00	.40	.00	1.65	.00
MEAN	.000	.000	.000	.000	.000	.000	.000	.000	.013	.000	.053	.000
XAN	.00	.00	.00	.00	.00	.00	.00	.00	.40	.00	1.6	.00
NIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
AC-FT	.00	.00	.00	.00	.00	.00	.00	.00	.8	.00	3.3	.00
	1977 TOTA 1978 TOTA		MEAN .0		.22 MIN		AC-FT 2.1 AC-FT 4.1			in the		

08210500 LAKE CORPUS CHRISTI NEAR MATHIS, TX

LOCATION.--Lat 28°02'17", long 97°52'15", San Patricio-Jim Wells County line, Hydrologic Unit 12110111, on right upstream corner of outlet tower at right end of Wesley E. Seale Dam on Nueces River, 0.6 mi (1.0 km) upstream from bridge on State Highway 359, and 4.5 mi (7.2 km) southwest of Mathis.

DRAINAGE AREA .-- 16,656 mi2 (43,139 km2).

PERIOD OF RECORD.--September 1948 to current year. Prior to October 1960, monthend records only. The Soil Conservation Service, U.S. Department of Agriculture, in cooperation with the Texas Board of Water Engineers (now Texas Department of Water Resources), collected fragmentary gage-height records in connection with sedimentation studies from Feb. 2, 1942, to July 10, 1947.

REVISED RECORDS .-- WSP 1923: 1953(M) . 1957(M) .

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1957, nonrecording gage at various sites O.2 mi (0.3 km) upstream at datum O.52 ft (0.158 m) higher. Oct. 1, 1957, to Apr. 3, 1961, nonrecording gage near left end of Mathis Dam O.2 mi (0.3 km) upstream at present datum.

REMARKS.--Mathis Dam was completed and storage began July 24, 1934. The original capacity at spillway crest (elevation, 74.5 ft or 22.71 m) was 54,000 acre-ft (66.6 hm³), but by March 1948 had decreased because of sedimentation to 39,400 acre-ft (48.6 hm³). Wesley E. Seale Dam was completed and deliberate impoundment began on Apr. 26, 1958, submerging the old Mathis Dam. Wesley E. Seale Dam is a rolled earthfill dam 5,930 ft (1,810 m) long, including two spillways. The 1,320 ft (400 m) north spillway has 33 gates that are operated by movable hydraulic lifts. The 1,080 ft (330 m) south spillway has 27 gates that are electrically operated from the control tower. The gates were repaired and modified in August 1966. All gates in both spillways are 37.5 by 8.75 ft (11.4 by 2.67 m) wide. Water for municipal supply for the city of Corpus Christi is released downstream through a 4.0-foot-diameter (1.2 m) cylinder valve and three 2.5 by 4.0 ft (0.8 by 1.2 m) rectangular openings. The releases are diverted from the river at Calallen 35 mi (56 km) downstream, for domestic, municipal, irrigation, mining, and industrial uses in the Corpus Christi area. The city of Alice withdrew 4,630 acre-ft (5.71 hm³) of water from the lake during the current year for municipal use. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

Elevation Capacity (feet) (acre-feet)

COOPERATION.--The capacity curve is from an October 1972 survey. Elevation record furnished by the city of Corpus Christi and reviewed by the Geological Survey.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 320,000 acre-ft (395 hm³) Sept. 22, 1967, and Sept. 12, 1971; maximum elevation, 94.82 ft (28.901 m) Sept. 22, 1967; minimum contents, 14,740 acre-ft (18.2 hm³) May 5, 1951, elevation, 67.62 ft (20.611 m).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 276,200 acre-ft (341 hm³) Aug. 7, Sept. 4, 22, elevation, 94.2 ft (28.71 m); minimum, 207,900 acre-ft (256 hm³) May 21, elevation, 90.4 ft (27.55 m).

Capacity table (elevation, in feet, and total contents, in acre-feet)

 90.0
 201,400
 93.0
 253,400

 91.0
 217,900
 94.0
 272,400

 92.0
 235,300
 95.0
 292,100

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978
INSTANTAMEOUS OBSERVATIONS AT 2400

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	231700 233500 231700 230000 230000	238800 237000 238800 238800 238800	238800 240600 240600 240600 240600	238800 237000 235300 235300 237000	237000 237000 237000 237000 237000	235300 235300 237000 235300 235300	228200 224800 224800 224800 224800	219600 217900 219600 216200 216200	214600 214600 216200 224800 235300	264700 262800 262800 260900 260900	247900 247900 251600 262800 274300	266600 270400 272400 274300 274300
6 7 8 9	230000 230000 230000 231700 231700	238800 238800 240600 240600 238800	238800 237000 237000 238800 237000	237000 237000 237000 237000 237000	235300 238800 237000 237000 237000	235300 237000 235300 235300 235300	224800 224800 223000 221300 228200	216200 217900 217900 216200 214600	238800 266600 272400 274300 272400	259000 259000 257100 257100 257100	274300 272400 272400 272400 272400	272400 272400 272400 272400 272400 272400
11 12 13 14 15	231700 230000 230000 230000 231700	238800 238800 238800 238800 238800	237000 237000 237000 237000 237000	237000 237000 237000 237000 237000	235300 237000 237000 237000 237000	235300 233500 233500 233500 235300	224800 224800 224800 224800 224800	216200 214600 214600 214600 212900	272400 272400 272400 272400 272400	255300 253400 253400 253400 251600	272400 272400 270400 270400 270400	272400 272400 272400 274300 272400
16 17 18 19 20	228200 228200 228200 228200 228500	238800 238800 238800 238800 238800	237000 237000 237000 237000 237000	238800 238800 240600 238800 237000	237000 240600 238800 237000 238800	233500 231700 231700 230000 231700	223000 224800 223000 223000 223000	212900 212900 211200 211200 211200	274300 272400 272400 272400 272400 272400	251600 249700 249700 249700 247900	270400 268500 268500 268500 268500	272400 272400 272400 272400 272400 272400
21 22 23 24 25	226500 228200 228200 228200 228200	240600 238800 238800 240600 238800	237000 237000 237000 237000 237000	237000 237000 237000 237000 235300	237000 235300 237000 237000 237000	231700 230000 230000 231700 231700	221300 223000 221300 221300 221300	211200 211200 211200 211200 211200	270400 270400 270400 268500 268500	247900 247900 247900 246100 246100	268500 268500 266600 266600 266600	272400 272400 272400 272400 272400 272400
26 27 28 29 30 31	228200 228200 230000 231700 231700 233500	238800 238800 238800 238800 238800	235300 235300 235300 235300 237000 235300	235300 237000 237000 237000 237000 237000	235300 235300 235300	230000 228200 228200 228200 228200 228200 226500	221300 219600 219600 219600 219600	211200 211200 211200 212900 212900 212900	266600 266600 266600 266600 264700	244200 244200 244200 244200 246100 247900	266600 266600 266600 266600 264700 264700	272400 272400 272400 272400 270400
MAX MIN (†) (‡)	233500 226500 91.9 +1800	240600 237000 92.2 +5300	240600 235300 92.0 -3500	240600 235300 92.1 +1700	240600 235300 92.0 -1700	237000 226500 91.5 -8800	228200 219600 91.1 -6900	219600 211200 90.7 -6700	274300 214600 93.6 +51800	264700 244200 92.7 -16800	274300 247900 93.6 +16800	274300 266600 93.9 +5700

CAL YR 1977 MAX 276200 MIN 226500 # -37100 WTR YR 1978 MAX 274300 MIN 211200 # +38700

t Elevation, in feet, at end of month. t Change in contents, in acre-feet.

08211000 NUECES RIVER NEAR MATHIS, TX

LOCATION.--Lat 28°02'17", long 97°51'36", San Patricio-Jim Wells County line, Hydrologic Unit 12110111, on left bank 6 ft (2 m) downstream from pier of bridge on State Highway 359, 200 ft (61 m) downstream from Texas and New Orleans Railroad Co. bridge, 0.6 mi (1.0 km) downstream from Wesley E. Seale Dam, 4 mi (6 km) southwest of Mathis, and at mile 46.7 (75.1 km).

DRAINAGE AREA .-- 16,660 mi2 (43,150 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- August 1939 to current year.

GAGE .-- Water-stage recorder. Datum of gage is 27.53 ft (8.391 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Flow is regulated by Lake Corpus Christi (station 08210500) 0.6 mi (1.0 km) upstream. Upstream from Lake Corpus Christi, flow is affected by recharge to permeable formations, small diversions, and minor regulation. Water for municipal and industrial uses at Corpus Christi is released from Lake Corpus Christi above gage and is diverted from river at Calallen 34 mi (55 km) downstream.

AVERAGE DISCHARGE.--39 years, 860 ft3/s (24.36 m3/s), 623,100 acre-ft/yr (768 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $138,000 \text{ ft}^3/\text{s}$ (3,910 m³/s) Sept. 24, 1967, gage height, 47.7 ft (14.54 m), from floodmark; minimum daily, 6.8 ft³/s (0.19 m³/s) Aug. 15, 1940.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1888, that of Sept. 24, 1967. A stage of about 40 ft (12 m) occurred Sept. 20, 1919, from information by Texas and New Orleans Railroad Co. and is the second highest known.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 8,700 ft $^3/s$ (246 m $^3/s$) Aug. 6, gage height, 25.78 ft (7.858 m); minimum daily, 72 ft $^3/s$ (2.04 m $^3/s$) Dec. 13.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND	, WATER	YEAR	OCTOBER	1977	T0	SEPTEMBER	1978	
					MFAN	VALUES							

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	112	102	104	104	92	92	101	103	136	132	108	103
2	88	85	104	79	86	100	101	110	94	132	353	124
3	122	102	91	82	86	91	118	118	125	132	1140	250
1 2 3 4	146	102	81	98	86	91	172	99	123	131	1280	310
5	102	101	109	99	98	89	134	116	123	146	1850	471
							154	110				
6 7 8 9	99	100	105	92	98	99	134	127	166	171	7690	571
7	108	101	100	87	94	107	134	116	324	184	4960	494
8	129	119	101	100	88	113	119	98	2940	161	1120	298
9	143	124	103	101	88	113	101	115	4210	140	1130	1100
10	105	110	100	100	87	102	117	186	2360	140	1590	2620
11	112	105	101	95	86	102	131	141	1670	162	1990	1890
12	118	101	84	90	109	111	116	96	2340	170	1190	1130
13	114	96	72	90	107	136	100	95	2100	160	387	1100
14	107	87	109	90	92	116	100		988	160	187	1850
15	120	117			92			115				
15	120	117	123	90	83	104	109	171	673	160	150	5610
16	120	128	100	104	82	101	129	115	685	160	147	5380
17	120	118	100	103	89	104	128	142	723	159	144	1960
18	125	102	100	104	87	116	113	173	762	159	143	1070
19	134	102	100	120	84	132	102	146	524	158	149	279
20	115	102	87	88	84	148	116	128	289	164	155	265
21	103	100	98	85	93	133	129	162	238	168	143	289
22	108	99	149	93	102	142	124	124	219	156	148	353
23	97	99	112	99	103	137	99	121	208	156	120	494
24	75	92	105		98						120	540
25				105		134	99	160	205	155		
25	108	85	105	155	92	133	98	222	203	151	126	286
26	147	100	105	84	92	131	98	179	201	156	132	222
27	119	114	97	86	91	132	113	128	179	184	127	277
28	99	111	91	79	90	128	129	128	163	105	133	298
29 30	105	114	91	73		130	129	156	145	145	134	217
30	105	98	98	93		136	121	174	132	171	121	185
31	107		102	101		125		176		125	114	
TOTAL	3512	3116	3127	2969	2567	3628	3514	4240	23248	4753	27281	30036
MEAN	113	104	101	95.8			117	137	775	153	880	1001
					91.7	117						
MAX	147	128	149	155	109	148	172	222	4210	184	7690	5610
MIN	75	85	72	73	82	89	98	95	94	105	108	103
AC-FT	6970	6180	6200	5890	5090	7200	6970	8410	46110	9430	54110	59580

CAL YR 1977 TOTAL 266578 MEAN 730 MAX 15600 MIN 44 AC-FT 528800 WTR YR 1978 TOTAL 111991 MEAN 307 MAX 7690 MIN 72 AC-FT 222100

08211000 NUECES RIVER NEAR MATHIS, TX--Continued

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1947 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1947 to current year-WATER TEMPERATURES: October 1947 to current year-

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 1,580 micromhos Apr. 19, 20, 1977; minimum daily, 216 micromhos Sept. 19, 1971.
WATER TEMPERATURES (1947-76): Maximum daily, 36.0°C Aug. 8, 1964; minimum daily, 3.0°C Jan. 19, 1968.

EXTREMES FOR CURRENT YEAR.-- SPECIFIC CONDUCTANCE: Maximum daily, 1,060 micromhos May 30, 31; minimum daily, 760 micromhos Oct. 2.

		STREAM-	SPE- CIFIC CON-		HARD-	HARD- NESS+	CALCIUM	MAGNE- SIUM.	SODIUM.
	TIME	FLOW. INSTAN- TANEOUS	DUCT- ANCE (MICRO-	PH	NESS (MG/L	NONCAR- BONATE (MG/L	DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	DIS- SOLVED (MG/L
DATE	12112	(CFS)	MHOS)	(UNITS)	CACO3)	CAC03)	AS CA)	AS MG)	AS NA)
ОСТ						111	-6		70
26	1600	155	807	8.1	220	100	68	12	78
25 FEB	1600	105	889	8.2	240	110	73	13	83
26 APR	1600	93	930		240	120	74	14	85
20	1600	128	991		260	140	80	15	99
29	1600	132	1040		260	130	80	14	99
JUL 16	1600	160	1000		240	120	72	14	100
AUG 17	1630	145	897		220	110	65	13	95
SEP 25	1600	263	794		190	76	60	10	72
		20270					F1.110-	CT1 TC4	SOLIDS.
	SODIUM	POTAS-	200			CHLO-	FLUO-	SILICA.	CONSTI-
	AD-	SIUM.	BICAR-		SULFATE	RIDE.	RIDE.	SOLVED	TUENTS,
	SORP-	DIS-	BONATE	CAR-	DIS-	DIS-	SOLVED	(MG/L	DIS-
	TION	SOLVED	(MG/L	BONATE	SOLVED	SOLVED			SOLVED
	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L	(MG/L	AS	
DATE		AS K)	HC03)	AS C03)	AS 504)	AS CL)	AS F)	S102)	(MG/L)
ОСТ	2.3	7.2	140	0	64	150	.2	43	491
26	2.3	1.2	140	U					
25 FER	2.4	7.1	150	0	75	160	•2	15	500
26 APR	2.4	7.3	150	0	77	170	•5	14	515
20	2.7	7.9	150	0	86	190	•5	14	566
29 JUL	2.7	7.4	150	0	92	200	•5	14	581
16	2.8	7.3	140	0	87	190	•2	14	554
AUG 17	2.8	8.1	130	0	84	170	•2	15	514
SEP 25	2.3	7.9	140	0	66	130	•5	14	429

NUECES RIVER BASIN 08211000 NUECES RIVER NEAR MATHIS, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

MONTH	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLOPIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA+MG) (MG/L)
OCT. 1977	3512	788	450	4290	130	1190	62	588	220
NOV. 1977	3116	839	480	4040	140	1210	67	566	230
DEC. 1977	3127	883	500	4250	160	1330	72	606	230
JAN. 1978	2969	915	520	4170	170	1360	75	602	240
FE8. 1978	2567	927	530	3660	170	1180	76	529	240
MAR. 1978	3628	956	540	5320	180	1780	80	780	240
APR. 1978	3514	986	560	5300	190	1820	83	784	250
MAY 1978	4240	1030	580	6680	210	2360	87	1000	250
JUNE 1978	23248	1030	580	36600	210	13100	87	5470	250
JULY 1978	4753	999	570	7250	200	2520	84	1080	250
AUG. 1978	27281	905	510	37900	160	12100	74	5480	240
SEPT 1978	30036	820	470	38200	140	11200	65	5280	550
TOTAL	111991	**	**	158000	**	51100	**	22800	**
WTO.AVG	306.82	916	520	**	170	••	75	**	240

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY JUL AUG SEP APR MAY JUN JAN FEB MAR DAY OCT NOV DFC 2 3 768 880. 780 787 21 786 987 27 987 ---MEAN

08211520 OSO CREEK AT CORPUS CHRISTI, TX ATION.--Lat 27°42'40", long 97°30'06", Nueces County, Hydrologic Unit 12110202, on left downstream end of b

LOCATION.--Lat 27°42'40", long 97°30'06", Nueces County, Hydrologic Unit 12110202, on left downstream end of bridge on Farm Road 763, 1.5 mi (2.4 km) south of intersection of Farm Roads 763 and 665, 1.6 mi (2.6 km) downstream from mouth of West Oso Creek, and 1.9 mi (3.1 km) southwest of intersection of Farm Road 665 and State Highway 357.

DRAINAGE AREA .-- 90.3 mi2 (233.9 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1972 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1.91 ft (0.582 m) below National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. No known diversions above station. An undetermined amount of water from oilfield operations enters stream upstream at various points. Recording rain gage is located at station.

AVERAGE DISCHARGE.--6 years, 34.2 ft3/s (0.969 m3/s), 24,780 acre-ft/yr (30.6 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,110 ft³/s (173 m³/s) Oct. 12, 1973, gage height, 26.09 ft (7.952 m); minimum, 0.25 ft³/s (0.07 m³/s) Aug. 26, 27, 1973.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1919, that of Oct. 12, 1973. A stage of about 24.5 ft (7.47 m) occurred in May 1968, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 300 ft³/s (8.50 m³/s) and maximum (*):

Date	Time		narge	Gage h		Date	Time	Disch		Gage h	
		(ft ³ /s)	(m^3/s)	(ft)	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
June 2	2200	1,160	32.9	15.86	4.834	Sept. 11	2400	*2,290	64.9	20.74	6.322
June 7	2200	1,660	47.0	18.38	5.602	Sept. 24	0800	2,110	59.8	20.16	6.145
Sept. 6	2000	642	18.2	12.35	3.764						

Minimum discharge, 0.88 ft3/s (0.025 m3/s) Apr. 18-21.

CAL YR 1977 TOTAL

WTR YR 1978 TOTAL

6143.08

11674.64

MEAN 16.8

MEAN 32.0

MAX

MAX

1600

1460

MIN

MIN

.62

.90

AC-FT

AC-FT

12180

		DISCHA	RGE, IN C	CUBIC FEET	PER SECO ME	ND, WATE AN VALUE	R YEAR OCT S	OBER 197	7 TO SEPTE	MBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.2 1.7 1.9 1.9	9.2 13 25 13 6.3	1.9 1.8 1.8 1.8	1.9 3.5 2.4 2.2 2.3	2.0 2.0 2.1 2.0 2.0	2.3 3.0 2.1 1.7 1.5	1.9 3.8 6.3 3.1 2.9	1.9 1.8 1.8 2.0 2.6	66 865 832 328 90	1.8 1.9 1.9 1.7 2.0	17 12 9.0 4.9 3.0	4.4 4.2 7.0 8.1
6 7 8 9	1.8 1.7 1.7 3.8 5.4	3.8 2.8 3.1 2.3 2.2	1.7 1.6 1.7 1.6 1.6	2.2 2.1 1.9 1.9	1.9 2.9 2.8 2.8 2.5	2.3 1.6 1.6 1.6	2.0 2.1 3.2 3.8 3.0	2.3 2.0 1.8 1.9	25 856 993 215 55	2.1 2.3 1.8 1.7 1.6	2.2 2.2 2.1 2.1 2.1	222 454 235 217 110
11 12 13 14 15	18 12 9.9 5.9 3.8	2.3 2.2 2.1 2.0 1.9	1.9 1.8 1.8 1.8	3.6 3.0 2.8 2.4 2.3	2.7 2.6 2.0 1.8 2.3	1.6 1.4 1.7 1.4 1.3	1.3 4.2 2.4 1.8 1.3	2.0 1.9 1.7 1.5	24 12 6.7 4.6 3.4	1.6 1.7 1.6 1.6	2.2 2.3 2.6 2.9 2.8	523 1460 431 112 34
16 17 18 19 20	2.7 2.2 2.0 2.0 2.2	1.7 2.0 2.4 2.2 1.9	1.9 2.1 2.1 1.9 1.8	2.3 2.0 2.3 2.1 2.0	2.2 2.3 1.9 1.9	1.2 1.2 1.3 1.5 2.6	1.1 1.4 .92 .92	1.5 1.7 1.8 1.6 2.0	2.6 2.2 2.0 2.0 2.0	1.5 1.4 1.3 1.2 1.3	2.4 2.2 2.3 1.7	14 8.0 5.2 3.7 2.9
21 22 23 24 25	2.2 8.0 24 26 14	6.3 2.8 2.7 2.8 2.3	1.7 1.6 1.6 1.7	2.0 2.0 2.0 2.0 2.0	1.7 1.7 1.7 1.7 1.8	1.7 1.5 2.9 1.6 1.2	.90 8.7 38 29 12	1.5 1.5 1.4 1.6 2.0	1.9 1.8 1.8 1.7	1.3 1.3 1:2 1.2 1.6	3.1 1.7 1.8 2.2 2.3	2.6 2.9 572 1380 320
26 27 28 29 30 31	17 9.5 5.6 3.5 2.6 2.2	2.0 2.0 2.0 2.0 1.9	1.7 1.7 1.7 1.7 1.8 1.8	1.9 1.9 1.7 1.7 1.8 1.9	1.6 1.8 1.8	1.1 1.3 1.3 1.3	5.2 2.5 2.3 2.2 2.0	1.7 1.6 1.2 1.2 1.1	2.6 2.1 1.8 1.8	1.5 1.3 1.3 1.2 1.6	2.3 2.1 2.0 1.9 2.1 3.9	83 29 16 13 9.4
TOTAL MEAN MAX MIN AC-FT	199.2 6.43 26 1.7 395	128.2 4.27 25 1.7 254	54.9 1.77 2.1 1.6 109	68.0 2.19 3.6 1.7 135	58.3 2.08 2.9 1.6 116	50.6 1.63 3.0 1.1 1.00	151.14 5.04 38 .90 300	53.0 1.71 2.6 1.1 105	4405.7 147 993 1.7 8740	86.1 2.78 39 1.2 171	105.1 3.39 17 1.7 208	6314.4 210 1460 2.6 12520

OSO CREEK BASIN

08211520 OSO CREEK AT CORPUS CHRISTI, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: July 1972 to current year.

DATE	TIME	STREAM- FLOW. INSTAN- TANEOUS (CFS)	DUCT-	PH (UNITS)	TEMPER ATURE (DEG (8- B	UR- ID- TY TU)	OXYGE DIS SOLV	EN,	OXYGEN. DIS- SOLVED (PER- CENT SATUR- ATION)	DEMA BIO CHE ICA 5 DA	ND, - M- NL,	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
OCT 17	1350	2.0	4450	7.7	23.	.5	35		8.2	99		3.1	700	580
NOV										92		2.5	920	810
28 JAN	1315	2.0	5850	7.7			50		7.8					
09 FEB	1250	1.9	4380	7.6	10.	. 0	40	11	1.5	106		6.7	790	670
23	1400	1.7	6000	8.3	15.	.5	20	13	3.1	135		4.3	950	800
APR 03	1340	6.3	6200	8.3	25.	.5	45	11	1.7	146	1	15	920	770
MAY 15	1315	1.4	3170	8.2	26.	.5	35		9.7	123	1	11	750	600
JUN										144		5.4	1200	1000
22 AUG	1445	1.8	7200	8.4	32.	. 0	20		0.5					
09 SEP	1630	2.2	4700	7.8	30.	.5	40	1	4.4	60)	7.8	710	550
18	1330	4.8	4190	7.7	29.	. 0	25		7.4	9)	3.2	780	600
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L	SODIUM AD- SORP- TION RATIO	POTAS SIUM DIS- SOLVE (MG/L AS K)	BIC BON D (M	AR- ATE G/L AS 03)	CAR- BONAT (MG/ AS CC	TE /L	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS SOL (MG	E,	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
OCT		27			12		150		•	170	120		.2	17
17 NOV	550	37	630	10	13		150		0					
28	280	54	880	13	18		140		0	220	170)0	.2	16
09	240	47	740	11	18		150		0	330	140	00	.3	14
FEB 23	290	55	900	13	19		180		0	250	180	00	.3	8.9
03	280	54	1100	16	24		190		0	260	200	00	.5	10
MAY 15	230	43	640	10	20		180		0	240	130	00	.4	14
JUN														
22 AUG	360	67	1100	14	21		190		4	280	220		.3	13
09 SEP	230	32	690	11	16		190		0	200	130	00	.3	19
18	250	37	560	8.7	13		210		0	160	120	00	.2	27
c	SUM CON TUE CON	OF RESTI- ATENTS, DESTIS- SOLVED PE	105 G. C. NI US- T NDED (GEN, TRATE NI OTAL T MG/L	ITRO- GEN, TRITE N OTAL MG/L S N)	NITRO- GEN: NO2+NO3 TOTAL (MG/L AS N)	AMM TO (M	TRO- EN, ONIA TAL G/L N)		RO- GE N, MC NIC OF AL T	IITRO- N.AM- NIA + GANIC OTAL MG/L MG/L	PHOS PHORU TOTA (MG/ AS F	S ORG	BON, ANIC TAL G/L C)
00	T	2360	83	1.7	.04	1.7		.19		.75	.94	4.	.0	9.2
NC		3240	97	9.1	.13	9.2		.31		.79	1.1	5.	6	9.2
JA	AN							.18		.2	1.4	5.		12
FE		2860		14	.17	14								
	23	3410	48	1.9	.16	2.1		•30		.5	1.8	4.		15
(03 AY	3820	102	1.3	.33	1.6		.41	2	.5	2.9	3,	9	14
1	15	2580	94	3.7	.90	4.6		.25	2	.5	2.7	3.	.1	16
	22	4140	40	.21	.06	.27		.12	1	.7	1.8		52	11
AL	JG 09	2580	89	1.2	.17	1.4		.10	1	.9	2.0	2.	9	16
SE	P												.72	8.0
	18	2350	60	.74	.04	.78		.15	1	.1	1.2	1. S. S. C. C. C.		0.0

08211520 OSO CREEK AT CORPUS CHRISTI, TX--Continued

ARSENIC BARIUM, CADMIUM MIUM, COPPER, DIS- DIS- DIS- DIS- DIS- SOLVED SOLVED SOLVED SOLVED SOLVED TIME (UG/L (UG/L (UG/L (UG/L (UG/L DATE AS AS) AS BA) AS CD) AS CR) AS CU)	DIS- SOLVED (UG/L AS FE)	
	30	
	30	
NOV 28 1315 14 1000 2 0 5		
FER	20	
MAY		
15 1315 17 300 0 20 2	30	
18 1330 59 200 0 10 1	30	
DIS- DIS- DIS- DIS- DIS- SOLVED SOLVE	INC+ DIS- OLVED UG/L IS ZN)	
NOV 28 1 580 .0 0 0 FEB	20	
23 0 720 .0 0 MAY	10	
15 0 400 .0 0	20	
SEP 18 0 850 .0 0	10	
PCB, THA- ALDRIN, D TOTAL LENES, TOTAL T IN BOT- POLY- IN BOT- CHLOR- IN	CHLOR- DANE + TOTAL I BOT- DM MA- D	DDD+ TOTAL IN BOT- DD+ TOM MA-
TIME TOTAL TERIAL TOTAL TOTAL TERIAL TOTAL T	ERIAL TO	TAL TERIAL
FEB 23 1400 .0 0 .00 .00 .0	0	.00 2.7
01- DDE+ DDT+ ELDRIN+ TOTAL TOTAL TOTAL IN BOT- IN BOT- DI- IN BOT-	ENDO-	
DDE, TOM MA- DDT, TOM MA- AZINON, ELDRIN TOM MA- TOTAL TERIAL TOTAL TERIAL TOTAL TOTAL TERIAL		ENDRIN, TOTAL
DATE (UG/L) (UG/KG) (UG/L) (UG/KG) (UG/L) (UG/KG)		(UG/L)
FER		
2300 2.9 .00 1.0 .12 .00 .2	.00	.00
HEPTA- ENDRIN, CHLOR, CHLOR TOTAL HEPTA- EPOXIDE IN BOT- HEPTA- IN BOT- CHLOR TOT. IN TOM MA- ETHION, CHLOR, TOM MA- EPOXIDE BOTTOM LINDANE TERIAL TOTAL TOTAL TERIAL TOTAL MATL. TOTAL	LINDANE TOTAL IN BOT- TOM MA- TERIAL	MALA- THION, TOTAL
DATE (UG/KG) (UG/L) (UG/KG) (UG/L) (UG/KG) (UG/L)		(UG/L)
FER		
230 .00 .00 .0 .00 .0 .14 TOXA- PHENE.	.3	.00
METHYL METHYL TOTAL PARA- TRI- PARA- TOX- IN BOT- TOTAL THION, THION, THION, APHENE, TOM MA- TRI- 2.4-D. TOTAL TOTAL TOTAL TOTAL TERIAL THION TOTAL	TOTAL	SILVEX.
DATE (UG/L) (UG/L) (UG/L) (UG/KG) (UG/L) (UG/L)	(UG/L)	(UG/L)
FEP 2300 .00 .00 0 .00 .00	•00	.00

SAN FERNANDO CREEK BASIN

08211800 SAN DIEGO CREEK AT ALICE. TX

LOCATION.--Lat 27°45'59 , long 98°04'31", Jim Wells County, Hydrologic Unit 12110204, at bridge on Edith Drive in Alice, 540 ft (165 m) downstream from Texas and New Orleans Railroad Co. bridge, and 3.2 mi (5.1 km) upstream from confluence with Chiltipin Creek.

DRAINAGE AREA .-- 319 mi2 (826 km2).

PERIOD OF RECORD. -- September 1963 to current year.

REVISED RECORDS .-- WDR TX-72-1: 1971.

CAL YR 1977 TOTAL 453.92 WTR YR 1978 TOTAL 323.43 MEAN 1.24

.89

MAX 52

MEAN

GAGE .-- Water-stage recorder. Datum of gage is 189.60 ft (57.790 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Flow is affected at times by discharge from the flood-detention pools of 10 floodwater-retarding structures with a combined detention capacity of 35,980 acre-ft (44.4 hm³). These structures control runoff from 170 mi² (440 km²) in the San Diego-Rosita drainage basins. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--15 years, 11.3 ft3/s (0.320 m3/s), 8,190 acre-ft/yr (10.1 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 19,200 ft³/s (544 m³/s) Oct. 17, 1971, gage height, 17.70 ft (5.395 m); no flow at times each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1928, 18.2 ft (5.55 m) April 1949, equivalent gage height in channel modified in 1955, 17.2 ft (5.24 m), from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 80 ft 3 /s (2.27 m 3 /s) June 8, gage height, 4.75 ft (1.448 m), no peak above base of 250 ft 3 /s (7.08 m 3 /s); no flow at times.

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		DISCHA	ARGE, IN C	OBIC FEEL	ME'	AN VALUES	YEAR OLI	DBEK 197	IU SEPIEI	4BER 1970		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	5.4	.45	.38	.13	.27	.00	.00	.00	.02	.00	2.9
2	.00	6.6	.40	.65	.14	.25	.00	.01	.01	.02	9.6	2.4
2 3	.14	2.5	.35	.39	.12	.22	.00	.04	3.3	.00	15	.43
4	.04	.45	.33	.64	.12	.23	.00	.01	15	.00	3.4	.11
5	.03	.13	.29	.52	.14	.19	.00	.01	2.5	.00	1.3	.11
6	.02	.08	.27	.41	.15	.31	.00	.00	.88	.00	.55	.44
7	.01	.06	.33	.41	.34	.29	.00	.00	23	.00	.25	.40
8	.01	.09	.34	.35	.28	.17	.00	.00	52	.00	1.1	5.0
9	.12	.05	.25	.34	.25	.16	.00	.00	19	.00	.99	2.7
10	.08	.05	.26	.38	.23	.19	.01	.05	5.9	.00	.20	5.9
11	.12	.07	.31	.78	.23	.19	.00	.04	1.6	.00	.09	19
12	.09	.05	.33	.74	.22	.16	.14	.01	.83	.00	.03	17
13	.05	.07	.29	.63	.17	.15	.05	.00	.47	.00	.00	6.6
14	.06	.12	.30	.66	.15	.13	.21	.00	.27	.00	.00	2.1
15	.04	.12	.31	.87	.23	.17	.14	.00	.20	.00	.00	.78
16	.03	.10	.34	.90	.25	.16	.15	.00	.15	.00	.00	.41
17	.04	.10	.33	.96	.31	.13	.09	.00	.13	.00	.00	.26
18	.05	.12	.28	1.2	.24	.06	.05	.00	.07	.00	.00	.15
19	.04	.08	.32	.99	.24	.03	.03	.00	.08	.00	.00	.07
20	.03	.09	.23	.87	.26	.05	.02	.00	.11	.00	.00	.04
21	.06	.10	.24	.53	.24	.05	.01	.00	.06	.00	.00	.19
22	.04	.09	.24	.30	.23	.02	.01	.15	.07	.00	.00	.24
23	1.7	.10	.22	.23	.23	.01	.02	.33	.07	.00	.00	.78
24	2.2	.15	.22	.18	.18	.00	.01	.11	.06	.00	.00	5.2
25	1.2	.14	.24	.16	.28	.00	.01	.04	.05	.00	.00	13
26	1.8	.16	.23	.09	.20	.00	.00	.02	.02	.00	.00	7.8
27	.65	.20	.27	.07	.25	.00	.00	.01	.01	.00	.00	2.6
28	.37	.16	.28	.07	.28	.00	.00	.00	.00	.00	.00	1.5
29	.14	1.1	.31	.09		.00	.00	.00	.00	.00	.00	.76
30	.09	.36	.32	.08		.00	.00	.00	.00	.00	.30	.33
31	.23		.35	.11		.00		.00		.00	1.5	•
TOTAL	9.48	18.89	9.23	14.98	6.09	3.59	.95	.83	125.84	.04	34.31	99.20
MEAN	.31	.63	.30	.48	.22	.12	.032	.027	4.19	.001	1.11	3.31
MAX	2.2	6.6	.45	1.2	.34	.31	.21	.33	52	.02	15	19
MIN	.00	.05	.22	.07	.12	.00	.00	.00	.00	.00	.00	.04
AC-FT	19	37	18	30	12	7.1	1.9	1.6	250	.08	68	197
		• /	-0		7.70							- 3

.00

.00

MIN

900

AC-FT

SAN FERNANDO CREEK BASIN

08211850 LAKE ALICE AT ALICE, TX

LOCATION.--Lat 27°47'25", long 98°03'39", Jim Wells County, Hydrologic Unit 12110204, on right bank just upstream from Alice Dam on Chiltipin Creek, 1.8 mi (2.9 km) upstream from confluence of Chiltipin and San Diego Creeks, and 2.6 mi (4.2 km) northeast of Alice.

DRAINAGE AREA .-- 150 mi2 (388 km2).

PERIOD OF RECORD .-- December 1964 to current year.

GAGE .--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by city of Alice).

REMARKS.--The lake is formed by a rolled earthfill dam, which has a total length of 11,525 ft (3,513 m). The dam consists of the main embankment 3,470 ft (1,060 m) long and two protective levees. The west protective levee is 4,275 ft (1,303 m) long and the east protective levee is 2,343 ft (714 m) long. Storage began Oct. 26, 1964, and the dam was completed Mar. 16, 1965. The emergency spillway, 1,000 ft (300 m) wide, is located between the main embankment and the west levee. Collapsible flashboards, 3.5 ft (1.1 m) high, were added to the crest of the emergency spillway. The main spillway is 41 ft (126 m) wide with thirteen 30-foot-wide (9 m) slots for gates, but no gates have been installed at the present time. The main spillway is located between the main embankment and the east levee. The service spillway is a concrete siphon-type spillway, 22.5 ft (6.9 m) wide with a 3.5 ft (1.1 m) opening, and is located in the main embankment section. The dam is the property of the Alice Water Authority and was built to store water for use by the city of Alice. The area and capacity tables are based on revised maps surveyed in 1963. Records furnished by the city of Alice show that 5,440 acre-ft (6.71 m³) was diverted during the current year for municipal use. Records furnished by the city of Corpus Christi show that 4,630 acre-ft (5.71 hm³) was diverted to Lake Alice from Lake Corpus Christi during the current year. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	Elevation (feet)	Capacity (acre-feet)
Top of dam	205.0	
Top of west levee	202.0	
Top of collapsible flashboards	199.5	5,300
Top of east levee	199.0	4,910
Crest of main spillway	196.5	3,110
Crest of spillway	196.0	2,780
Crest of siphon spillway (lowest outlet)	196.0	2,780

COOPERATION. -- The area and capacity tables are furnished by the Alice Water Authority.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 4,780 acre-ft (5.89 hm³) Sept. 12, 1971, elevation, 198.83 ft (60.603 m), from floodmark; minimum, 14 acre-ft (17,300 m³) Feb. 3, 1965, elevation, 185.67 ft (56.592 m).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 754 acre-ft (0.930 hm³) Jan. 16, 18, 19, elevation, 192.00 ft (58.522 m); minimum, 61.2 acre-ft (0.075 hm³) Aug. 30, elevation, 188.62 ft (57.491 m).

Capacity table (elevation, in feet, and total contents, in acre-feet)

188.5	56.2	190.5	288
189.0	82.2	191.0	423
189.5	127	192.0	754
190.0	195	193.0	1,160

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	189	519	598	669	532	423	305	256	180	239.0	79.2	73.2
2	186	561	598	676	513	429	303	256	195	235.0	81.0	76.8
2	192	565	604	680	497	429	295	254	211	230.0	82.2	79.2
1	197	561	611	687	481	432	295	250	210	225.0	84.3	78.0
7	200	565							206	221.0	87.1	73.2
3	200	202	608	694	466	423	286	248	200	221.0	07.1	13.2
6	202	565	608	697	447	432	288	252	192	213.0	85.7	72.6
7	205	565	604	708	438	438	279	258	535	206.0	87.8	78.0
8	203	575	611	697	426	426	273	256	673	202.0	96.4	79.8
9	205	568	604	694	412	417	277	250	676	195.0	101.0	85.7
10	200	565	604	708	391	389	282	241	652	186.0	104.0	110.0
	200											
11	203	558	614	722	369	391	291	241	621	179.0	104.0	117.0
12	202	558	621	729	366	369	310	241	598	166.0	103.0	121.0
13	202	561	628	736	352	366	320	232	571	159.0	103.0	122.0
14	208	568	628	740	352	347	320	230	539	152.0	102.0	125.0
15	215	565	628	736	363	352	328	220	507	147.0	99.0	125.0
16	208	545	638	751	361	344	320	215	472	136.0	94.8	126.0
17	197	529	631	743	375	338	325	208	444	126.0	91.6	127.0
18	183	516	635	751	377	333	325	203	414	121.0	87.8	128.0
19	183	523	635				320	194	386	113.0	85.7	128.0
20	183			736	377	333					83.6	
20	183	529	631	718	389	330	312	200	361	109.0	83.0	128.0
21	183	542	628	701	389	338	307	208	336	105.0	87.1	131.0
22	179	542	628	687	391	333	307	211	298	103.0	85.7	138.0
23	375	551	635	669	403	330	293	215	273	102.0	82.9	147.0
24	406	558	641	655	403	336	279	211	271	106.0	81.6	154.0
25	400	558	635	638	409	333	279	210	262	104.0	81.6	161.0
26	383	561	638	618	409	323	266	210	252	105.0	76.8	165.0
27	375	565	641	601	412	325	260	203	248	99.0	70.2	166.0
									248			
28	380	565	645	581	420	320	254	198	248	94.8	67.7	165.0
29	383	584	648	568		320	258	195	241	84.3	68.2	170.0
30	383	591	648	548		320	260	191	235	76.8	67.7	176.0
31	389		659	539		312		182		73.8	72.6	
MAX	406	591	659	751	532	438	328	258	676	239	104	176
MIN	179	516	598	539	352	312	254	182	180	73	67	72
(t)	190.88	191.53	191.73	191.37	190.99	190.60	190.37	189.91	190.24	188.86	188.84	189.87
(+)	+197	+202	+68	-120	-119	-108	-52	-78	+53	-161.2	-1.2	+103.4
(+)	+19/	7202	+08	-120	-119	-108	-52	-/8	+53	-101.2	-1.2	+103.4

CAL YR 1977 MAX 2760 MIN 179 # -2061 WTR YR 1978 MAX 751 MIN 67 # -16

Elevation, in feet, at end of month.
 Change in contents, in acre-feet.

08211900 SAN FERNANDO CREEK AT ALICE, TX

LOCATION.--Lat 27°46'20", long 98°02'00", Jim Wells County, Hydrologic Unit 12110204, on left bank 34 ft (10 m) downstream from downstream bridge of two bridges on State Highways 44 and 359, 0.5 mi (0.8 km) downstream from confluence of San Diego and Chiltipin Creeks, 2.3 mi (3.7 km) upstream from head of Pintas Creek, and 2.7 mi (4.3 km) northeast of Alice.

DRAINAGE AREA .-- 507 mi2 (1,313 km2).

PERIOD OF RECORD .-- December 1964 to current year.

GAGE.--Water-stage recorder. Datum of gage is 161.68 ft (49.280 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. San Diego Creek joins Chiltipin Creek below Lake Alice to form San Fernando Creek. Flow is regulated by Lake Alice (station 08211850) 2.3 mi (3.7 km) upstream from Chiltipin Creek since Oct. 26, 1964. For statement regarding regulation by Soil Conservation Service floodwater-retarding structures, see San Diego Creek at Alice (station 08211800). Records furnished by city of Alice show that 3,260 acre-ft (4.02 km³) of sewage effluent was discharged into San Diego Creek 1.3 mi (2.1 km) upstream, which comprises most of the low flow. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--13 years (water years 1966-78), 29.3 ft³/s (0.830 m³/s), 21,230 acre-ft/yr (26.2 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 26,800 ft³/s (759 m³/s) Sept. 12, 1971, gage height, 16.51 ft (5.032 m); no flow part of each day Aug. 23-26, Sept. 14, 1965, several days in June, July and August, 1967, part of Dec. 27, 1972, and Sept. 17, 18, 1978.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1949, that of Sept. 12, 1971. Other high stages for this period are 15.86 ft (4.834 m) Sept. 23, 1967, discharge 16,900 ft³/s (479 m³/s); 15.5 ft (4.72 m) Sept. 9, 1962, discharge 14,600 ft³/s (413 m³/s) from field estimate; 14.2 ft (4.33 m) Sept. 14, 1951. Discharge for flood of Sept. 14, 1951, may have exceeded that for 1962 as the highway was raised between 1952 and 1962. Flood in 1951 was higher at site of discontinued station "San Fernando Creek near Alice". Flood in 1962 was higher than that of 1967 at site of discontinued station; there is a diversion into the Pintas Creek basin between the two gaging sites, and apparently this diversion was greater in 1967 than in 1962.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 195 ft³/s (5.52 m³/s) June 7, gage height, 3.69 ft (1.125 m); no flow Sept. 17, 18.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.5 1.5 2.0 1.8 1.8	1.8 40 8.6 3.9 2.9	2.4 2.1 2.0 1.9 2.0	2.0 2.0 2.8 2.6 2.4	1.3 1.4 1.5 1.2 1.5	1.7 1.7 1.7 1.5 1.5	1.6 1.7 1.6 2.1 1.8	1.7 1.9 2.0 1.9	1.9 1.8 2.1 5.7 3.8	1.5 1.3 1.4 1.4	1.0 1.6 18 5.7 3.3	1.9 2.1 2.5 2.1 1.8
6 7 8 9	1.7 1.8 1.6 1.7 1.6	1.8 1.7 1.8 1.7	2.3 1.8 2.4 2.0 1.9	2.6 2.2 2.0 2.1 2.2	1.2 1.5 1.4 1.3	1.8 1.7 1.8 1.7	2.1 1.6 1.8 2.0 1.8	2.0 1.7 2.0 1.9	2.7 60 103 23 5.2	1.4 1.4 1.3 .99	2.5 2.3 2.6 2.8 2.3	1.9 1.9 1.9 3.0 4.2
11 12 13 14 15	1.7 1.6 1.7 1.7	1.9 2.0 1.9 1.8 2.0	2.2 2.2 2.3 2.3 2.2	2.2 2.0 1.9 1.7	1.4 1.5 1.4 1.4	2.1 1.8 1.8 1.8	2.2 2.8 2.5 2.2 2.3	1.9 1.8 1.9 1.8 2.0	2.8 2.1 1.9 1.7 2.0	.90 1.2 1.1 1.1	1.3 1.8 1.7 1.8 1.6	6.1 9.8 3.9 2.0 1.2
16 17 18 19 20	1.6 1.5 1.4 1.4	1.8 2.0 1.9 1.8 2.1	2.3 2.1 2.0 2.2 2.0	2.0 1.6 1.7 1.6 1.6	1.6 2.1 2.3 2.2 2.1	1.3 1.4 1.6 1.7	2.4 1.8 1.9 1.7	1.8 1.8 1.7 1.9 2.0	1.6 1.4 1.3 1.2	1.5 1.4 1.0 .92 1.2	1.4 1.7 1.7 1.4 1.8	.75 .34 .53 1.9
21 22 23 24 25	1.5 1.5 6.2 10 4.0	2.3 6.2 3.0 2.2 2.2	2.2 2.1 2.1 2.2 2.2	1.5 1.5 1.6 1.5	2.2 2.0 1.5 2.0 1.5	1.3 1.2 1.1 1.2 1.1	1.7 2.1 1.9 1.8 2.2	1.9 1.8 1.9 2.2 2.1	1.2 1.2 1.2 1.4 1.2	1.2 1.4 1.5 1.5	1.8 1.5 1.2 1.8 1.6	1.5 2.0 3.0 3.0 7.4
26 27 28 29 30 31	2.6 2.2 1.7 1.5 1.3	2.2 2.0 1.9 2.3 2.7	1.9 2.2 2.1 2.4 2.3 2.2	1.6 1.3 1.3 1.3 1.4	1.3 1.6 1.7	1.1 1.0 1.1 1.1 1.3 1.9	2.1 1.9 1.9 1.9 2.0	1.8 1.6 1.7 1.7 1.7	1.0 1.2 1.1 .97 1.3	1.1 1.4 1.5 1.5 1.5	1.3 1.8 1.6 1.3 1.9 2.0	8.4 4.8 3.3 2.7 2.3
TOTAL MEAN MAX MIN AC-FT	66.3 2.14 10 1.2 132	112.2 3.74 40 1.7 223	66.5 2.15 2.4 1.8 132	57.0 1.84 2.8 1.3 113	44.7 1.60 2.3 1.2 89	46.7 1.51 2.1 1.0 93	59.0 1.97 2.8 1.6 117	57.7 1.86 2.2 1.6 114	238.17 7.94 103 .97 472	39.91 1.29 1.5 .90 79	76.1 2.45 18 1.0 151	90.12 3.00 9.8 .34 179

CAL YR 1977 TOTAL 1161.92 MEAN 3.18 MAX 40 MIN .54 AC-FT 2300 WTR YR 1978 TOTAL 954.40 MEAN 2.61 MAX 103 MIN .34 AC-FT 1890

LOS OLMOS CREEK BASIN

08212400 LOS OLMOS CREEK NEAR FALFURRIAS, TX (National stream-quality accounting network)

LOCATION.--Lat 27°15'51", long 98°08'08", Brooks County, Hydrologic Unit 12110205, at downstream side of bridge on U.S. Highway 281 and 2.6 mi (4.2 km) north of Falfurrias.

DRAINAGE AREA.--480 mi² (1,243 km²), of which 4.5 mi² (11.7 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- January 1967 to current year.

GAGE.--Water-stage recorder and V-notch weir low-water control. Datum of gage is 116.58 ft (35.534 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. La Gloria Oil Refinery no longer releases waste during low-flow periods.

AVERAGE DISCHARGE.--11 years, 5.69 ft3/s (0.161 m3/s), 0.16 in/yr (4 mm/yr), 4,120 acre-ft/yr (5.08 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,300 ft³/s (150 m³/s) Sept. 13, 1971, gage height, 12.66 ft (3.859 ft); no flow at times in 1970-77.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1929, 15.0 ft (4.57 m) Sept. 13, 1951, from information by Texas Department of Highways and Public Transportation.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 118 ft³/s (3.34 m³/s) Sept. 26, gage height, 4.41 ft (1.344 m), no other peak above base of 100 ft³/s (2.83 m³/s); no flow most of time.

		DISCHAR	GE, IN	CUBIC FEET	PER SECON MEA	D, WAT N VALU	ER YEAR OCT	OBER 1977	TO SEPT	EMBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.01	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
3	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
9	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
11	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
12	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
13	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
14	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
15	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
16	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
17	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
21	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
23	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.52
24	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	4.0
25	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	50
26	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	100
27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	29
28	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	14
29	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	9.1
30 31	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	2.1
											0.0	000 70
TOTAL	.00	.00	.00	.00	.00	.00	.00	.00	.01	.00	.00	208.72
MEAN	.000	.000	.000	.000	.000	.000		.000	.000	.000	.000	6.96
MAX	.00	.00	.00	.00	.00	.00	.00	.00	.01	.00	.00	.00
MIN	.00	.00	.00	.00	.00	.00	.00		.000	.000	.000	.02
CFSM IN.	.000	.000	.000	.000	.000	.000	.000	.000	.000	.00	.00	.02
AC-FT	.00	.00	.00	.00	.00	.00		.00	.02	.00	.00	414
			.00								.00	7.24
CAL YR	1977 TOTAL 1978 TOTAL	208 73	MEAN		71 MIN 100 MIN	.00	CFSM .001 CFSM .001	IN .01 IN .02	AC-FT AC-FT	211 414		

LOS OLMOS CREEK BASIN

08212400 LOS OLMOS CREEK NEAR FALFURRIAS, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: October 1974 to curent year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1974 to current year. WATER TEMPERATURES: October 1974 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 7,380 micromhos July 5, 1976; minimum daily, 69 micromhos July 16, 1975.
WATER TEMPERATURES (1974-77): Maximum daily, 33.0°C July 29, Aug. 1, 1976, May 30, 1977; minimum daily, 3.0°C Nov. 28, 1977.

EXTREMES FOR CURRENT YEAR.--SPECIFIC CONDUCTANCE: Maximum daily, 5,000 micromhos June 1; minimum daily, 125 micromhos Sept. 25.

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

MONTH	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT. 1977	0	*****	*****	0	*****	0 ***	****	0	****
NOV. 1977	0	*****	******	0	*****	0 ***	****	0	****
DEC. 1977	0	******	*****	0	******	0 ***	****	0	****
JAN. 1978	0	*****	******	0	*****	0 ***	****	0	****
FEB. 1978	0	*****	******	0	******	0 ***	****	. 0	****
MAR. 1978	0	*****	******	0	******	0 ***	****	0	****
APR. 1978	0	*****	******	0	******	0 ***	****	0	****
MAY 1978	r	*****	******	0	*****	0 ***	****	0	****
JUNE 1978	0	5000	3530	0.09	9 440	0.02	1290	0.03	880
JULY 1978	0	*****	******	0	******	0 ***	****	0	****
AUG. 1978	0	*****	******	n	*****	0 ***	****	0	****
SEPT 1978	208.72	153	97	55	13	7.4	18	9.8	33
TOTAL	208.73	**	**	55.1	**	7.42	** 0	9.83	**
WTD.4VG	0.57	153	97	**	13	**	18	**	33

LOS OLMOS CREEK BASIN

08212400 LOS OLMOS CREEK NEAR FALFURRIAS, TX--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C). WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

					•	HOL DAIL!						100
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1									5000			*****
ż												
3												
4												
5												
6												
6												
8												
9												
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												
20												
21												
55												
23												750
24 25												250 125
25												125
26											and the s	150
27												179
88												165
29												150 179 165 152 156
30 31												150
31												
MEAN									5000			241
				(DEG. C) 0	10	NCE-DAILY					7.	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1												-
2 3 4												
3												
5												
6 7												
7												
8												
10												
11											199	
12											- 41.7	
13 14 15												
15												
											5	
16 17												
17												
18 19 20												
20												
51											- 11	
21 22 23												
24												26.0
25												29.0
26 27												30.0
28												25.0
29												23.0
29 30												24.0
31												
MEAN												26.0
												(O.U

488 RIO GRANDE BASIN

08364000 RIO GRANDE AT EL PASO, TX

LOCATION.--Lat 31°48'10", long 106°32'25", El Paso County, Hydrologic Unit 13030102, at gaging station on the downstream side of the Courchesne Bridge, 5.6 mi (9.0 km) upstream from the Santa Fe Street-Juarez Avenue bridge between El Paso, Tex., and Cd. Juarez, Mex., and 1.7 mi (2.7 km) upstream from the American Dam.

DRAINAGE AREA.--29,267 mi² (75,802 km²).

PERIOD OF RECORD.--Chemical analyses: February 1930 to current year.

REMARKS.--Records of specific conductance and discharge for water year 1978 are given in International Boundary and Water Commission Water Bulletins Nos. 47 and 48.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		WATER	QUALIT	Y DATA,	WATER YE	AR OCTOBE	R 1977 T	O SEPTEME	ER 1978			
DATE	TIME	STREA FLOW INSTA TANEO	AM- CO N, DL AN- AM DUS (MI	PE- IFIC ON- UCT- VCE (CRO- HOS) ((EMPER- ATURE DEG C)	TUR- BID- ITY (JTU)	OXYGEN. DIS- SOLVED (MG/L)	COLI- FORM. FECAL, 0.7 UM-MF (COLS./ 100 ML)	STRE TOCOC FECA KF AG (COLS PER 100 M	CI L, H	HARD- NESS (MG/L AS CACO3)
ост												
17	0800	575		2340	8.2	12.0						440
NOV 18	0810	47		2430	8.3	9.5						460
DEC												
19 JAN	0800	48		2960	8.1	6.5						490
16	0810	43		2780	8.0	6.5						470
19 FEB	1111	37		3200	8.2	2.0	15	12.7	270	28	00	470
15	1551	26		3160	8.1	13.5	10	10.6	77		60	480
21 MAR	0800	16		3550	8.1	5.5			711117			510
20	0800	483		1540	7.5	9.0						340
21 APR	1634	490		1370	8.4	17.5	140	9.2	270	16	00	340
17	0800	208		1380	7.9	14.5						280
18 MAY	1618	140		1400	8.4	22.0	40	9.2	30	1	60	310
15	0900	18		4040	8.0	18.0						510
16 JUN	1551	20		4200	8.3	26.5		10.2	130	1	30	540
13	1313	500		1220	8.4	25.0		8.9	300	3	30	290
19 JUL	0900	562		1150	7.6	21.0						250
17	0900	527		1010	8.0	28.0						240
19 AUG	1234	572		1010	8.4	26.0		7.3	350	2	00	250
14	0825	858		867	7.6	25.5						210
15 SEP	1415	719		820	8.4	.27.5		7.3	470	3	80	230
12	1712	315		969	8.4	26.5		8.1	790	9	20	240
18	0905	147		1630	8.0	21.0	98	-				300
DATE	NE NON BON (M	CAR-	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM DIS- SOLVEI (MG/L AS MG	SODIUM DIS- D SOLVED (MG/L	SORP- TION RATIO	DIS	BICAR BONAT ED (MG/	E CAR	TE	ULFATE DIS- SOLVEE (MG/L S SO4))
ОСТ												
17		170	120	33	350	7.	3 12		120	0	540	
18		190	130	34	370	7.	5 10	3	40	0	590	
19		190	140	34	510	10	11		70	0	700	
JAN		170	130	36	470	9.	4 11		70	. 0	650	
19 FEB		170	130	35	470	9.	4 10		70	0	670	
15	9	160	130	37	540	11			90	0	680	
21	- F	170	140	39	560	11	8	1.9	10	0	730	
20		160	100	23	200	4.	7 10) 2	20	0	260	
21	185	160	100	23	200	4.	7 9	8.8	220	0	270	
17		86	82	19	180	4.	7 10		240	0	310	
18	•	110	88	21	180	4.	5 9	0.0	230	7	310	
15		200	140	39	720	14	12		086	0	860	
16 JUN		230	150	39	740	14	9	.5	•		880	
13		110	84	19	160	4.	1 9	.4			260	
JUL 19		75	71	17	130	3.	0 8	3.9	210	0	240	
17		66	69	16	120	3.			210	0	210	
19		88	73	16	120	3.	3 7	.9				
14		58	64	13	93	2.	8 6		190	0	170	
SEP 15		79	67	15	110	3.		.9			190	
12		74 88	73 86	15 21	140 250	3.		.6	260		230 370	
1000			-				• • • • • • • • • • • • • • • • • • • •					

RIO GRANDE BASIN 489

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

08364000 RIO GRANDE NEAR EL PASO, TX--Continued

DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS. RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS. SUM OF CONSTI- TUENTS. DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)
ОСТ								-	
17 NOV	280		30		1520				
18 DEC	300		34		1640				
19 JAN	390		39		2010				
16 19 FEB	380 350	1.0	35 34	1850	1890 1880	.20	.08	==	=======================================
15	410 440	.9	37 36	2070	2040 2160	•17	-10	•35	.45
20 21	250 210	.9	14 13	928	965 935	.19	.08	1.7	1.8
17 18	140 150	.9	14 16	882	873 895	.05	.09	1.0	1.1
15 16	560 710	1.2	41 45	2620	2560 2760	.15	.03		=
JUN 13 19	120 100	.9	8.9 10	755	770 680	•01	.01	1.2	1.2
JUL 17	82 85		12	623	621 631	.05	.01	.80	.81
14 15	68 80	.7	13 13	574	521 576	.03	.09	.73	.82
12	100	.7	17	711	681	.04	.01	•90	.91
18	190		23		1080				
DATE	NITRO- GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS: DIS- SOLVED (MG/L AS P)	CARBON. ORGANIC TOTAL (MG/L AS C)	CARHON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON. ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
DATE OCT 17	NITRO- GEN.AM- MONIA + ORGANIC DIS. (MG/L	PHOS- PHORUS, TOTAL (MG/L	PHOS- PHORUS, DIS- SOLVED (MG/L	CARBON. ORGANIC TOTAL (MG/L	CARBON, ORGANIC DIS- SOLVED (MG/L	CARBON. ORGANIC SUS- PENDED TOTAL (MG/L	SEDI- MENT, SUS- PENDED	SEDI- MENT DIS- CHARGE, SUS- PENDED	SED. SUSP. SIEVE DIAM. % FINER THAN
DATE OCT 17 NOV 18	NITRO- GEN.AM- MONIA + ORGANIC DIS. (MG/L	PHOS- PHORUS, TOTAL (MG/L	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	CARBON. ORGANIC TOTAL (MG/L	CARBON, ORGANIC DIS- SOLVED (MG/L	CARBON. ORGANIC SUS- PENDED TOTAL (MG/L	SEDI- MENT, SUS- PENDED	SEDI- MENT DIS- CHARGE, SUS- PENDED	SED. SUSP. SIEVE DIAM. % FINER THAN
DATE OCT	NITRO- GEN.AM- MONIA + ORGANIC DIS. (MG/L	PHOS- PHORUS, TOTAL (MG/L	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	CARBON. ORGANIC TOTAL (MG/L	CARBON, ORGANIC DIS- SOLVED (MG/L	CARBON. ORGANIC SUS- PENDED TOTAL (MG/L	SEDI- MENT, SUS- PENDED	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN
DATE OCT 17 NOV 18 DEC	NITRO- GEN.AM- MONIA + ORGANIC DIS. (MG/L	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	CARBON. ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L	CARBON. ORGANIC SUS- PENDED TOTAL (MG/L	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN
DATE OCT 17 NOV 18 DEC 19 JAN 16	NITRO- GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	CARBON. ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L	CARBON. ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
DATE OCT 17 NOV 18 DEC 19 JAN 16 19 FEB	NITRO- GEN+AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	CARBON. ORGANIC TOTAL (MG/L AS C)	CARHON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON. ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN. .062 MM
DATE OCT 17 NOV 18 DEC 19 JAN 16 19 FEB 15 ARR 20	NITRO- GEN+AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	CARBON. ORGANIC TOTAL (MG/L AS C)	CARHON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON. ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN. .062 MM
DATE OCT 17 NOV 18 DEC 19 JAN 16 19 FEB 15 21 MAR 20 21 APR 17 18	NITRO- GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS-PHORUS, OIS-SOLVED (MG/L AS P)	CARBON. ORGANIC TOTAL (MG/L AS C)	CARHON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON- ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN. .062 MM
DATE OCT 17 NOV 18 DEC 19 JAN 16 19 FEB 15 21 MAR 20 21 APR 17 18 MAY 15 16	NITRO- GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS-PHORUS, DIS-SOLVED (MG/L AS P)	CARBON- ORGANIC TOTAL (MG/L AS C)	CARHON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON- ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY) 5.6 3.2 459	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
DATE OCT 17 NOV 18 DEC 19 JAN 16 19 FEB 15 21 MAR 20 APR 17 18 MAY 15 16 JUN 13 19	NITRO- GEN:AM- MONIA + ORGANIC DIS: (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS-PHORUS, DIS-SOLVED (MG/L AS P)	CARBON. ORGANIC TOTAL (MG/L AS C)	CARHON. ORGANIC DIS- SOLVED (MG/L AS C)	CARBON- ORGANIC SUS- PENDED TOTAL (M6/L AS C)	SEDI- MENT. SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY) 5.6 3.2 459	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
DATE OCT 17 NOV 18 DEC 19 JAN 16 19 FEB 15 21 MAR 20 21 APR 17 18 MAY 15 16 JUN 13	NITRO- GEN: AM- MONIA + ORGANIC DIS. (MG/L AS N) 30 -46505641	PHOS-PHORUS, TOTAL (MG/L AS P)	PHOS-PHORUS, DIS-SOLVED (MG/L AS P)	CARBON. ORGANIC TOTAL (MG/L AS C)	CARHON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON- ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY) 5.6 3.2 459 27	SED. SUSP. SIEVE DIAM. % FINER THAN. .062 MM
DATE OCT 17 NOV 18 DEC 19 JAN 16 19 FEB 15 21 MAR 20 APR 17 18 JUN 13 19 JUL 17 19 AUG 14 15	NITRO- GEN: AM- MONIA + ORGANIC DIS. (MG/L AS N) 30 -46505641 -49	PHOS-PHORUS, TOTAL (MG/L AS P)	PHOS-PHORUS, DIS-SOLVED (MG/L AS P)	CARBON. ORGANIC TOTAL (MG/L AS C)	CARHON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON. ORGANIC SUS- PENDED TOTAL (M6/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. FINER THAN .062 MM
DATE OCT 17 NOV 18 DEC 19 19 FEB 15 21 MAR 20 APR 17 18 JUN 13 JUL 17 19 AUG 14	NITRO- GEN: AM- MONIA + ORGANIC DIS. (MG/L AS N) 30 -46505641 -4952	PHOS-PHORUS, TOTAL (MG/L AS P)	PHOS-PHORUS, DIS-SOLVED (MG/L AS P)	CARBON. ORGANIC TOTAL (MG/L AS C)	CARHON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON. ORGANIC SUS- PENDED TOTAL (M6/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY) 5.6 3.2 459 27 4.5 447	SED. SUSP. SIEVE DIAM. % FINER THAN. .062 MM

490 RIO GRANDE BASIN

08370500 RIO GRANDE BELOW OLD FORT OUITMAN. TX (National stream-quality accounting network)

LOCATION.--Lat 31°05'05", long 105°36'25", Hudspeth County, Hydrologic Unit 13040201, at gaging station on the rectified channel of the Rio Grande, 1.5 mi (2.4 km) downstream from Old Fort Quitman, and 81.1 mi (130.5 km) downstream from the American Dam at El Paso.

DRAINAGE AREA.--31,944 mi² (82,735 km²), United States and Mexico; from International Boundary and Water Commission Water Bulletin No. 44.

PERIOD OF RECORD.--Chemical analyses: February 1930 to December 1977. Chemical and biochemical analyses: October 1974 to December 1977.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1974 to January 1978. WATER TEMPERATURES: October 1974 to January 1978.

REMARKS.--Records of discharge for water year 1978 are given in International Boundary and Water Commission Water Bulletins Nos. 47 and 48.

EXTREMES FOR PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: Maximum daily, 13,000 micromhos May 18, 1977; minimum daily, 1,500 micromhos July 15, 1976. WATER TEMPERATURES: Maximum daily, 35.0°C Aug. 10, 1976; minimum daily, 0.5°C Jan. 25, 1978.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 10,200 micromhos Jan. 20; minimum daily, 3,870 micromhos Nov. 22.
MATER TEMPERATURES: Minimum daily, 0.5°C Jan. 25.

		IN	REAM-	CIFI CON- DUCT ANCE	- -	эн	TEMPE		TUF)-	YGEN	SOL (PE	S- VED R-	OXYG DEMA BIO CHE ICA	ND, M-	COL FOR TOT IMM (COL	M, AL, ED. S.	COLI FORM FECA 0.7 UM-M	M. AL.
DATE	TI		NEOUS CFS)	MHOS		ITS)	(DEG		(JTL		OL VE		UR-	5 DA		PE 100		COLS	
DATE			CFSI	MHUS) (UN	1151	IDEG	.,	(3)(,	MOZE	ALL	ON	(MO)	۲,	100		.00	
OCT	- 1															44.	700		260
NOV	18	30	1.5		310	8.1		2.0		85	12.		151		7.5	2.4	000	136	540
09	08	00	24	5	130	8.2	E.V.	3.0		30	12.		112			36	000		
13 JAN	08	15	14	61	020	8.2	1	5.0		60	11.		97	1	9.	15	000		30
18	17	00	7.0	108	300	8.2	13	3.5		10	17.	2							7
15 MAR	11	21	6.0	99	560	7.9	1	0.0		30	14.	5							63
21	11	23	2.6	10:	300	7.9	1	7.0		30	12.	0						. 1	150
18	12	24	2.0	117	200	7.8	5:	3.5		25	11.	4							57
0	ATE	STREE TOCOCC FECAL KF AGA (COLS. PER 100 ML	R NE	ARD- SS 46/L AS 4C03)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	DI:	CIUM S- LVED G/L CA)	SIL DIS SOLV (MG/	JM, S- VED /L	SODIUM DIS- SOLVED (MG/L AS NA	•	AD- SORP- TION RATIO	SOI SOI (M	TAS- IUM. IS- LVED G/L K)			CAR- BONA (MG,	TE/L	
00	T																		
NO		55		1700	1500		40	150		1600		17		19		230		0	
DE	9	50	00	880	620	2	30	74	4	800		15		15		320	196	0	
	3	30	00	1000	740	5	70	85	5	970		13		17		350		0	
FE	8 B	5500	00	1800	1500	4	30	170	0	1700		18		18	e 40.	280		0	
1 MA	5 R	(7	1800	1600		60	160		1600		16		17		290		0	
4	1	16	30	2100	1900	5	40	18	0	1900		19		20		250		0	
	8	12	20	2000	1800	- 5	00	18	0	1800		18	35%	41		270		0	
		SULFAT DIS- SOLVE	E R1	IDE.	FLUO- RIDE, DIS- SOLVED (MG/L	50	G/L	SOLIO RESIO AT 18 DEG. DIS	0UE 80 • C	SOLIDS SUM OF CONSTI TUENTS DIS- SOLVE	- N	NITRO- GEN. ITRATE TOTAL (MG/L	NIT TO	TRO- EN: RITE TAL G/L	NO2	TRO- EN+ +NO3 TAL G/L	MITI GEI AMMOI TOT	NIA AL	
0	ATE	AS 504		CL)	AS F)		05)	(MG)		(MG/L		AS N)		N)		N)	AS I		
	0	1500	24	•00	.7		21	63	310	624	0	.03		.00		.03	W.	.04	
NO	9	800	- 11	100	.8		25	38	270	320	0	.66		.25		.91	3	. 1	
	3	1000	13	300	.9		26	36	840	384	0	.52	1	.13		.65		.9	
JA 1 FF	8	1500	26	500	.8		21	60	650	658	0					.02		.02	
	5	1500	25	500	.7		21	6	420	640	0					.01		.01	
	1	1700	3(000	.7		15	7	480	748	30					.01		.01	
	8	1700	29	900	. 9		16	7	140	727	0					.04		.09	

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

08370500 RIO GRANDE BELOW OLD FORT QUITMAN, TX--Continued

DATE	NITRO- GEN. ORGANIC TOTAL (MG/L AS N)	MONIA +	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	SOLVED (MG/L	ORGANIC	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	SEDI- MENT, SUS-		SED. SUSP SIEVE DIAM % FINE THAN .062 M
OCT 10	1.3	1.3	.67	.15	.00	11		30	.12	9
NOV 09	1.7	4.8	3.3	3.8	.89	11		44	2.9	9
DEC 13	3.2	8.1	4.7	2.9	•58	12		82	3.1	9
JAN 18			•30	.05	.06	9.6		37	.70	4
15	1.5	1.5	.61	.21	.04		7.5	74	1.2	5
MAR 21	1.9	1.9	•75	.17	.02	9.1		89	.62	7
APR 18	1.3	1.4	.92	.20	.02	12		94	•51	е
DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	SUS-	ARSENIC DIS- SOLVED (UG/L AS AS)	RECOV-	PENDED	BARIUM. DIS- SOLVED (UG/L AS BA)	TOTAL RECOV- ERABLE (UG/L	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)
0CT	1030	4	1	3	700	500	200	10	10	
FEB 15	1121	3	1	2	200	0	300	0	0	2
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM. SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	(UG/L	COBALT. DIS- SOLVED (UG/L AS CO)	RECOV- ERABLE (UG/L	PENDED RECOV- ERABLE	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
0CT 10	10	0	10	50	50	0	20	18	2	25
15	10	0	10	1	. 1	0	6	5	1	93
DATE	IRON. DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD. DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE. DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY SUS- PENDED RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVEI (UG/L AS HG
0CT 10	10	100	100	0	170	0	170	.0	.0	
15	70	16	11	5	550	0	560	•3	•3	
DAT	SELI NIU TOT (UG	M. PEN AL TOT /L (UG	M. SEL S- NIU DED DI AL SOL /L (UG	M, TOT S- REC VED ERA /L (UG	AL PEN OV- REC BLE ERA /L (UG	S- DED SILV OV- DI BLE SOL /L (UG	S- REC VED ERA /L (UG	AL PEN OV- REC BLE ERA /L (UG	S- DED ZING OV- DIS BLE SOLV	5- /ED /L
ОСТ										

08370500 RIO GRANDE BELOW OLD FORT QUITMAN, TX--Continued

7		TIME	TOT	B. T	PCB+ TOTAL N BOT- OM MA- TERIAL	ALDF TO	IN TO	DRIN, OTAL BOT- M MA- ERIAL	ZII	RA- NE+ TAL		TAL BOT- MA- RIAL	CHLOR DANE •	DA TO TOM TOM		DDC), T	DDI TOTA N BO OM I TER:	AL OT- MA- IAL
DATE			(00	5/L) (UG/KG)	(00	S/L) (U	G/KG)	(0	G/L)	(UG/	/KG)	(UG/L) (UG	/KG)	(UG/	/L) (UG/I	(G)
10		1030		ND			ND			ND			N	D	4		ND		
09	•	0800		ND	ND		ND	ND		ND		ND	N	D	ND		ND		ND
21	•	1123		ND			ND			ND			N	D			ND		
	DATE	TO:	DE. TAL G/L)	P.P DDE TOTAL IN BO TOM MA TERIA (UG/KI	T- A- D AL TO	DT, TAL G/L)	DDT, TOTAL IN BOT TOM MA TERIA (UG/KG	- AZ	DI- INON, OTAL UG/L)	DI AZIN TOT IN B TOM TER (UG/	ON, AL OT- MA- IAL	DI- ELDR TOTAL (UG/I	IN T	DI- LDRIN, TOTAL N BOT- OM MA- TERIAL UG/KG)	ENDRIN TOTAL (UG/L		ENDRI TOTA IN BO TOM M TERI (UG/K	L T- A- AL	
	ост																		
	10	•	ND		- /	ND	-	9	ND				ND			ND.			
	MAR		ND	1	•5	ND	N	D	•12		ND	at i	D	ND		ND.		ND	
	21	•	ND		-	ND	- HEDT.		ND	uen		,	ND			VD.			
				TOTAL IN BO	T- HE	PTA-	CHLOR TOTAL IN BOT	- с	EPTA- HLOR	HEP CHL EPOX TOT.	OR IDE IN		I	INDANE TOTAL N BOT-	MALA-		THIO TOTA IN BO	N, L T-	
	DATE	TO	ION. TAL G/L)	TERI	AL TO	LOR, TAL G/L)	TOM MA TERIA (UG/KG	L T	OXIDE OTAL UG/L)	BOT MA (UG/	TL.	TOTAL (UG/	-200	OM MA- TERIAL UG/KG)	THION TOTAL (UG/L		TERI (UG/K	AL	
	10	• 0 0	NÖ	a .		ND		-	ND				ND	2-2	1	ND			
	09.		ND)	ND	ND	N	D	ND		ND		D	ND		O		ND	
	21	•	ND			ND	-	-	ND				ND			ND			
		CHI O	TH- XY- LOR,	METH- OXY- CHLO TOT. BOTT	R+ ME IN PA OM TH	THYL RA- ION.	METHYL PARA- THION TOT. I BOTTO MATL	, M N M T	ETHYL TRI- HION,	MET TR THI TOT. BOT MA	I- ON, IN	PARA THIO	- I	PARA- THION, TOTAL N BOT- OM MA- TERIAL	SIMA- ZINE TOTAL COUL- SON COND	AST AST	SIMA ZINE BOTTO MATER AL (U KG DR	IN M I- G/	
	DATE	(U	G/L)	(UG/K	G) (U	G/L)	(UG/KG) (UG/L)	(UG/	KG)	(UG/	L) (UG/KG)	(UG/L	_)	SOLID	S)	
	10		ND		-	ND		-	ND			7	ND		i	ND		/	
	MAR		ND		ND	ND	N	D	ND		ND		ND	ND		ND		ND	
	21	•	ND			ND		-	ND				NO			ND			
		APH	OX-	TOXA PHEN TOTA IN BO TOM M	E, L T- TO A- T	TAL RI-	TRI- THION TOTAL IN BOT TOM MA	· - 2	•4-0•	2.4 TOT IN B TOM	AL OT- MA-	2,4,5	-T T	,4,5-T TOTAL N BOT- OM MA-	SILVE		SILVE TOTA IN BO TOM M	L T-	
	DATE		TAL G/L)	TERI (UG/K		ION G/L)	TERIA (UG/KG		OTAL UG/L)	TER (UG/		TOTAL	_) (TERIAL UG/KG)	TOTAL (UG/L	.)	TERI (UG/K		
	10.		ND		-	ND	-	-	ND				ND	-	Tage !	ND			
	NOV 09.	•	ND		ND	ND	N	D	ND		ND		ND	ND	4 1	ND		ND	
	21.		ND			ND	-	-	ND				ON		4.1	OV			

08370500 RIO GRANDE BELOW OLD FORT QUITMAN, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1977 TO MARCH 1978

DATE TIME		21,78
TOTAL CELLS/ML	40	000
DIVERSITY: DIVISION CLASS ORDER FAMILY GENUS		0.4 0.4 1.3 1.5
ORGANISM	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) •CHLOROPHYCEAE •VOLVOCALES ••CHLAMYDOMONADACEAE •••CHLAMYDOMONAS CHRYSOPHYTA •BACILLARIOPHYCEAE	3400	9
• PENNALES • • • NAVICULACEAE • • • • ENTOMONEIS	380	1
CENTRALESCOSCINODISCACEAECYCLOTELLA .PENNALES	19000#	47
NAVICULACEAENAVICULANITZSCHIACEAE	760	2
NITZSCHIACEAE	17000#	42

NOTE: # - DOMINANT ORGANISM: EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C). WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1			6780	9500								
2			6640	9720								
2 3		6860	5050	9200								
4			4720	8710								
5			4900	8540								
6 7			4110	8710								
7			4480	9210								
8		6310	6390	9380								
9		4420	7520	9090								
10	9310	5050	8370	9140								
11		5770	8620	9170								
12		6220	5030	8370								
13		4160	6250	9090								
14		4000	7410	9380								
15		4910	4470	9860								
16		4650	5950	9060								
17		4850	7040	9680								
18	5830	4740	7690	9810								
19	5250	4980	7870	10000								
50	4730	4420	7720	10200								
21	7730	4550	6830	10100								
23		3870	8850	9910								
23		4740	8300	10000								
24		4780	8740	9860								
25		5690	8750	10000								
26		6010	8780	9860								
27		7040	8890	10000								
28		6250	8700	10100								
29		7200	6020	10100								
30		6950	7590	10100								
31			9260	10000								
MEAN	6570	5350	7020	9540								

RIO GRANDE BASIN 08370500 RIO GRANDE BELOW OLD FORT QUITMAN, TX--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1			10.5	9.0								
			11.5	9.5								
3			12.0	12.0								
4			16.0	15.0								
5			16.0	13.5								
6			11.0	15.0								
7			6.0	13.0								
8		15.0	13.5	11.0								
9		16.5	8.0	12.0								
10		16.0	5.0	11.5								
11		16.0	13.0	13.0								
12		16.0	14.0	14.0								
13		15.0	4.0	10.0								
14		14.5	4.0	4.0								
15		17.5	13.5	8.0								
. 16		16.5	9.5	15.0								
17		17.5	11.5	12.5								
18	13.5	17.0	11.0	13.5								
19	16.0	10.0	12.5	6.5								
20	24.0	17.0	3.0	10.0								
21	20.5	18.0	8.5	11.0								
22		17.5	10.0	7.0								
23		10.0	12.0	12.0								
24		10.0	16.0	6.0								
25		15.0	12.5	.5								
26		15.5	12.5	10.5								
27		15.0	12.5	3.0								
28		15.5	13.0	7.0								
29		15.0	7.0	15.5								
30		12.0	13.0	9.0								
31			13.0	18.5								
MEAN	18.5	15.0	11.0	10.5				V-01				

495

08371500 RIO GRANDE ABOVE RIO CONCHO NEAR PRÉSIDIO, TX

LOCATION.--Lat 29°37'15", long 104°28'50", Presidio County, Hydrologic Unit 13040201, at gaging station 7.8 mi (12.6 km) upstream from the junction of Rio Conchos, about 10 mi (16 km) northwest of Presidio, Tex., and Ojinaga, Chihuahua, Mex., and 285.7 mi (459.7 km) downstream from the American Dam at El Paso.

DRAINAGE AREA, 34,966 mi² (90,562 km²), revised, United States and Mexico; from International Boundary and Water Commission Water Bulletin No. 44.

PERIOD OF RECORD.--Chemical analyses: February 1935 to current year. Prior to 1964, published as "Rio Grande at Upper Presidio".

REMARKS.--Records of specific conductance and discharge for water year 1978 are given in International Boundary and Water Commission Water Bulletins Nos. 47 and 48.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			SPE-						
			CIFIC				HARD-		MAGNE-
		STREAM-	CON-			HARD-	NESS,	CALCIUM	SIUM.
		FLOW,	DUCT-			NESS	NONCAR-	DIS-	DIS-
		INSTAN-		РН	TEMPER-	(MG/L	BONATE	SOLVED	SOLVED
	*****		ANCE	PH			(MG/L	(MG/L	(MG/L
	TIME	TANEOUS	(MICRO-		ATURE	AS			AS MG)
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	AS MOI
OCT	1000	12225	16.253		350.50				
17	1145	2780	1380	8.0	18.0	340	200	110	17
NOV	1.2		1,000						
16	1200	2.0	1330	8.0		330	170	100	19
JAN	1325	4.0	1360	7.9	13.0	320	150	98	18
16 FER	1323	4.0	1300	1.7	13.0	320	150	,0	
21	0943	6.2	1360	7.9	8.0	300	140	90	18
APR	0710		1300			300			7.7
20	1100	2.5	1220	7.9	18.5	290	120	88	16
MAY					- 6.56				
17	0940	7.5	1290	7.6	21.0	280	130	85	16
JUN	3.00						0.72		
26	0955	6.4	1360	7.5	28.0	290	140	90	15
JUL									14
20	0855	6.6	1330	7.9	25.0	270	120	83	16
AUG	0040	151	731	7.9	20.0	200	59	70	5.8
SEP	0940	151	131	1.9	20.0	200	3,9	70	3.0
21	1400	3.0	1230	7.8		300	160	100	13
									SOLIDS,
		SODIUM	POTAS-				CHLO-	SILICA.	SUM OF
	SODIUM,	AD-	SIUM,	BICAR-		SULFATE	RIDE,	DIS-	CONSTI-
	DIS-	SORP-	DIS-	BONATE	CAR-	DIS-	DIS-	SOLVED	TUENTS,
	SOLVED	TION	SOLVED	(MG/L	BONATE	SOLVED	SOLVED	(MG/L	DIS-
	(MG/L	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L	AS	SOLVED
DATE	AS NA)		AS K)	HC03)	AS C03)	AS 504)	AS CL)	S102)	(MG/L)
OCT	220	3.0	2.00	12.20	1.0	72	32		
17	170	4.0	7.8	180	0	420	89	28	931
NOV					100			20	004
16	170	4.1	6.8	190	0	420	89	28	926
JAN	180	4.4	7.3	200	0	400	96	28	926
16 FER	100	4.4	7.3	200	U	400	90	20	720
21	180	4.5	7.1	190	0	380	88	23	880
APR	100	4.5		.,,	v	300	00		000
20	160	4.1	8.4	200	0	380	53	28	832
MAY	10000								
17	190	5.0	8.3	180	0	400	100	28	916
JUN									
26	180	4.6	8.3	180	0	410	74	28	894
JUL	10.00								
50	180	4.7	7.9	190	0	400	72	29	882
AUG	7.	2.5		1.00		100	20	15	465
SFP	74	2.3	6.1	170	0	180	30	13	+05
21	150	3.7	7.5	180	0	390	74	25	848
21000	130	3.1	1.5	100	U	370	, -	23	5.40

08376300 SANDERSON CANYON AT SANDERSON, TX

LOCATION (revised).--Lat 30°07'46", long 102°23'06", Terrell County, Hydrologic Unit 13040208, on right bank at downstream side of bridge on U.S. Highway 90, 1.0 mi (1.6 km) south of Sanderson, 2.9 mi (4.7 km) downstream from Three Mile Draw, and 30 mi (48 km) upstream from mouth. Prior to Oct. 19, 1977, at site 95 ft (29 m) upstream.

DRAINAGE AREA .-- 195 mi 2 (505 km2).

PERIOD OF RECORD .-- February 1968 to current year.

GAGE.--Water-stage recorder. Datum of gage is 2,706.35 ft (824.895 m) National Geodetic Vertical Datum of 1929. Prior to Oct. 19, 1977, at site 95 ft (29 m) upstream at same datum.

REMARKS.--Records fair. No known regulation or diversion above the station. National Weather Service gage-height telemeter at station.

AVERAGE DISCHARGE.--10 years, 9.43 ft³/s (0.267 m³/s), 0.66 in/yr (17 mm/yr), 6.830 acre-ft/yr (8.42 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 32,600 ft³/s (923 m³/s) Sept. 18, 1969, gage height, 9.18 ft (2.798 m), from rating curve based on a step-backwater analysis below 10,000 ft³/s (283 m³/s) and two combined slope-area measurements of about 100,000 ft³/s (2,830 m³/s); maximum gage height, 9.44 ft (2.877 m) Apr. 30, 1974; no flow most of time each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum flood since at least 1935, 14.2 ft (4.33 m) June 11, 1965, discharge about 100,000 ft³/s (2,830 m³/s), by combining two slope-area measurements within 4 mi (6 km) upstream from gage. The next highest flood was that of Sept. 18, 1969. Flood in 1935 reached a discharge of about 20,000 ft³/s (566 m³/s) estimated channel capacity by Corps of Engineers.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,200 ft 3 /s (62.3 m 3 /s) May 29, gage height, 3.88 ft (1.183 m), from rating curve extended above 1,100 ft 3 /s (31.2 m 3 /s) on basis of slope-area measurement of 15,800 ft 3 /s (447 m 3 /s) for flood of Nov. 5, 1978, no other peak above base of 1,500 ft 3 /s (42.5 m 3 /s); no flow most of time.

		DISCHAR	GE, IN	CUBIC FEET		D, WATER N VALUES		OBER 1977	TO SEPT	EMBER 1978		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
3	.00	.00	.00	.00	.00	.00	.00	.00	74	.00	.00	.00
4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
											200	
6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.01
8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
9	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
11	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
12		.00					.00	.00	.00	.00	.00	1.6
	.00		.00	.00	.00	.00				.00	.00	.00
13	.00	.00	.00	.00	.00	.00	.00	.00	.00			.00
14	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
15	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	24
16	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	124
17	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	96
18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
21	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
23	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.02
24	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	14
25	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	4.5	.10
0.0				0.0	0.0	0.0	0.0	0.0	.00	.00	.12	5.1
26	.00	.00	.00	.00	.00	.00	.00	.00	.00		.00	11
27	.00	.00	.00	.00	.00	.00	.00	.00		.00	.00	.00
28	.00	.00	.00	.00	.00	.00	.00	32	.00	.00	.00	.00
29	.00	.00	.00	.00		.00	.00	225	.00	.00		
30	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	.00
31	.00		.00	.00	777	.00		.00		.00	.91	4.7
TOTAL	.00	.00	.00	.00	.00	.00	.00	257.00	74.00	.00	5.53	275.83
MEAN	.000	.000	.000	.000	.000	.000	.000	8.29	2.47	.000	.18	9.19
MAX	.00	.00	.00	.00	.00	.00	.00	225	74	.00	4.5	124
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.000					.000	.000	.04	.01	.000	.001	0.5
CFSM		.000	.000	.000	.000		.000	.05	.01	.00	.00	.05
IN.	.00	.00		.00	.00	.00			147	.00	11	547
AC-FT	.00	.00	.00	.00	.00	.00	.00	510	147	.00	11	347
	1977 TOT 1978 TOT		MEAN MEAN	.000 MA 1.68 MA				M .000 I	N .00 N .12	AC-FT AC-FT 1210	.00	

497

08377200 RIO GRANDE AT FOSTER RANCH NEAR LANGTRY, TX (National stream-quality accounting network)

LOCATION.--Lat 29°46'50", long 101°45'20", Val Verde County, Hydrologic Unit 13040212, at gaging station 0.1 mi (0.2 km) downstream from Terrell-Val Verde County line, 16.9 mi (27.2 km) from Langtry, and 597.2 mi (960.9 km) downstream from the American Dam at El Paso.

DRAINAGE AREA.--80,742 mi² (209,122 km²), United States and Mexico; from International Boundary and Water Commission Water Bulletin No. 44.

PERIOD OF RECORD. -- Chemical analyses: April 1944 to current year. Chemical and biochemical analyses: October 1974 to current

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1974 to current year. WATER TEMPERATURES: October 1974 to current year.

REMARKS.--Records of specific conductance and discharge for water year 1978 are given in International Boundary and Water Commission Water Bulletins Nos. 47 and 48.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 2,110 micromhos Dec. 4, 1974; minimum daily, 395 micromhos May 3, 1976.
WATER TEMPERATURES: Maximum daily, 32.0°C June 13, 1977; minimum daily, 9.0°C Jan. 12, 1975, Jan. 8, 1976.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 1,520 micromhos Apr. 14; minimum daily, 422 micromhos May 29.
WATER TEMPERATURES: Maximum daily, 31.0°C July 16, 17, Aug. 17; minimum daily, 9.5°C Jan. 20, 21.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND. BIO- CHEM- ICAL. 5 DAY (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS, PER 100 ML)	COLI- FORM. FECAL. 0.7 UM-MF (COLS./ 100 ML)
OCT 18	1130	453	1180	8.2	21.0	50	8.7	100	1.0	320	60
NOV 09	1055	499	1020	8.2	16.0	140	9.7	101	.4	800	200
DEC 06	1130	521	1100	8.0	14.0	80	9.6	96	.6	170	20
JAN								95	.5	100	24
18 FEB	1200	466	1080	7.8	10.0	65	10.4			0.000	
15 MAR	1115	491	1090	7.9	13.0	80	10.0	98	.7	52	23
22	1105	399	1100	7.9	21.0	68	8.7	100	.6	220	52
APR 12	1200	904	946	7.9	21.5	240	8.4	98	1.2	3100	700
MAY 03	1230	1330	1180	8.2	22.5	320	9.0	106	.3	600	180
JUN 07	1430	2040	780	7.4	26.5	3800	8.5	108	.8	3500	3000
JUL										12000	920
12 AUG	1205	664	900	8.1	27.5	420	7.6	97	1.1		
09 SEP	1430	11600	760	7.6	26.0	4200	8.4	105	3.4	12000	6000
14	1330	1050	889	7.8	29.0	800	7.8	103	.4		8000
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS, PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS+ NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM. DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
ост				-					170	0	330
18 NOV	68	300	160	83	23	130	3.3	6.3			
09 DEC	400	280	130	78	21	110	2.9	5.3	190	0	280
06 JAN	80	310	150	87	22	120	3.0	5.7	190	0	320
18	6A	300	140	84	22	130	3.3	5.3	200	0	300
FE8 15	120	260	110	81	15	120	3.2	5.3	190	0	270
MAR 22	140	300	150	82	23	120	3.0	5.9	180	0	280
APR 12	1500	280	130	75	23	94	2.4	5.4	190	0	230
MAY	7 3.03								190	0	340
03	320		170	98	19	150	3.6	7.9	1500		
07	1800	270	120	96	8.4	60	1.6	5.9	184	0	230
12 AUG	740	270	120	88	12	86	2.3	5.9	180	0	230
09 SEP	7600	280		99	8.5	41	1.1	4.9		-	550
14	4800	280	160	98	9.6	74	1.9	4.9	156	0	260

08377200 RIO GRANDE AT FOSTER RANCH NEAR LANGTRY, TX--Continued

DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN+ NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN+ ORGANIC TOTAL (MG/L AS N)
ост										
18	89	1.4	24	805	771	•51	.01	.52	.00	.40
09	69	1.3	25	689	683	.66	.00	.66	.00	.70
DEC 06	77	1.4	24	731	751	.80	.00	.80	.07	.73
J'AN	75		24	714				.75	.02	.00
18 FEB	15	1.5			740	.74	.01	.15		
15 MAR	74	1.4	24	704	685	.79	.01	.80	.02	.18
22	77	1.3	19	686	697	.67	.01	.68	.00	.50
12	62	1.4	20	600	604	.70	.01	.71	.01	.72
MAY 03	62	2.0	29	781	802	.89	.01	.90	.06	.94
JUN										
07	18	.6	14	532	524	.84	.04	.88	.19	3.6
12	45	1.2	24	595	581	.97	.01	.98	.01	1.4
09 SEP	17	.7	16	461		1.4	.10	1.5	.45	6.3
14	40	1.0	17	599	581	.27	.00	.27	.00	1.5
DATE	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN+AM- MONIA + ORGANIC DIS- (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS. DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE. SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
DATE OCT	GEN.AM- MONIA + ORGANIC TOTAL (MG/L	GEN.AM- MONIA + ORGANIC DIS. (MG/L	PHORUS, TOTAL (MG/L	PHORUS. DIS- SOLVED (MG/L	ORGANIC TOTAL (MG/L	ORGANIC DIS- SOLVED (MG/L	ORGANIC SUS- PENDED TOTAL (MG/L	MENT . SUS- PENDED	MENT DIS- CHARGE. SUS- PENDED	SUSP. SIEVE DIAM. % FINER THAN
OCT 18	GEN.AM- MONIA + ORGANIC TOTAL (MG/L	GEN.AM- MONIA + ORGANIC DIS. (MG/L	PHORUS, TOTAL (MG/L	PHORUS. DIS- SOLVED (MG/L	ORGANIC TOTAL (MG/L	ORGANIC DIS- SOLVED (MG/L	ORGANIC SUS- PENDED TOTAL (MG/L	MENT . SUS- PENDED	MENT DIS- CHARGE. SUS- PENDED	SUSP. SIEVE DIAM. % FINER THAN
OCT 18 NOV 09	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS. DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L	ORGANIC SUS- PENDED TOTAL (MG/L	MENT . SUS- PENDED (MG/L)	MENT DIS- CHARGE. SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 18 NOV 09 DEC	GEN.AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN•AM- MONIA + ORGANIC DIS• (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS. DIS- SOLVED (MG/L AS P) .00	ORGANIC TOTAL (MG/L AS C) 2.7 2.2	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L	MENT + SUS- PENDED (MG/L)	MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 18 NOV 09 DEC 06	GEN•AM- MONIA + ORGANIC TOTAL (MG/L AS N) .40 .70	GEN•AM- MONIA + ORGANIC DIS• (MG/L AS N) .26 .46	PHORUS, TOTAL (MG/L AS P) .05 .11	PHORUS. DIS- SOLVED (MG/L AS P) .00	ORGANIC TOTAL (MG/L AS C) 2.7 2.2 2.1	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 90 338	MENT DIS- CHARGE. SUS- PENDED (T/DAY) 110 455 246	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 18 NOV 09 DEC 06 JAN 18 FEB	GEN•AM- MONIA + ORGANIC TOTAL (MG/L AS N) -40 -70 -80	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N) .26 .46 .67	PHORUS, TOTAL (MG/L AS P) .05 .11 .07	PHORUS, DIS- SOLVED (MG/L AS P) .00 .01	ORGANIC TOTAL (MG/L AS C) 2.7 2.2 2.1	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT. SUS- PENDED (MG/L) 90 338 175	MENT DIS- CHARGE, SUS- PENDED (T/DAY) 110 455 246 150	SUSP. SIEVE DIAM. % FINER THAN. .062 MM
OCT 18 NOV 09 DEC 06 JAN 18	GEN•AM- MONIA + ORGANIC TOTAL (MG/L AS N) .40 .70	GEN•AM- MONIA + ORGANIC DIS• (MG/L AS N) .26 .46	PHORUS, TOTAL (MG/L AS P) .05 .11	PHORUS. DIS- SOLVED (MG/L AS P) .00	ORGANIC TOTAL (MG/L AS C) 2.7 2.2 2.1	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 90 338	MENT DIS- CHARGE. SUS- PENDED (T/DAY) 110 455 246	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 18 NOV 09 DEC 06 JAN 18 FEB 15 MAR 22	GEN•AM- MONIA + ORGANIC TOTAL (MG/L AS N) -40 -70 -80	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N) .26 .46 .67	PHORUS, TOTAL (MG/L AS P) .05 .11 .07	PHORUS, DIS- SOLVED (MG/L AS P) .00 .01	ORGANIC TOTAL (MG/L AS C) 2.7 2.2 2.1	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT. SUS- PENDED (MG/L) 90 338 175	MENT DIS- CHARGE, SUS- PENDED (T/DAY) 110 455 246 150	SUSP. SIEVE DIAM. % FINER THAN. .062 MM
OCT 18 NOV 09 DEC 06 JAN 18 FEB 15 MAR 22 APR 12 MAY	GEN•AM- MONIA + ORGANIC TOTAL (MG/L AS N) .40 .70 .80 .00	GEN•AM- MONIA + ORGANIC DIS• (MG/L AS N) .26 .46 .67 .45	PHORUS, TOTAL (MG/L AS P) .05 .11 .07 .07	PHORUS. DIS- SOLVED (MG/L AS P) .00 .01 .00 .01	ORGANIC TOTAL (MG/L AS C) 2.7 2.2 2.1 1.4	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 90 338 175 119	MENT DIS- CHARGE. SUS- PENDED (T/DAY) 110 455 246 150 240	SUSP. SIEVE DIAM. % FINER THAN .062 MM 100 87 100 100
OCT 18 NOV 09 DEC 06 JAN 18 FEB 15 MAR 22 APR 12 MAY 03	GEN•AM- MONIA + ORGANIC TOTAL (MG/L AS N) .40 .70 .80 .00	GEN•AM- MONIA + ORGANIC DIS• (MG/L AS N) .26 .46 .67 .45	PHORUS, TOTAL (MG/L AS P) .05 .11 .07 .07	PHORUS, DIS- SOLVED (MG/L AS P) .00 .01 .01	ORGANIC TOTAL (MG/L AS C) 2.7 2.2 2.1 1.4 2.5	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT. SUS- PENDED (MG/L) 90 338 175 119 181	MENT DIS- CHARGE. SUS- PENDED (T/DAY) 110 455 246 150 240	SUSP. SIEVE DIAM. % FINER THAN .062 MM 100 87 100 100 99
OCT 18 NOV 09 DEC 06 JAN 18 FEB 15 MAR 22 APR 12 MAY 03 JUN 07	GEN•AM- MONIA + ORGANIC TOTAL (MG/L AS N) .40 .70 .80 .20 .50	GEN•AM- MONIA + ORGANIC DIS• (MG/L AS N) .26 .46 .67 .45 .21	PHORUS, TOTAL (MG/L AS P) .05 .11 .07 .08 .05	PHORUS, DIS- SOLVED (MG/L AS P) .00 .01 .01 .00	ORGANIC TOTAL (MG/L AS C) 2.7 2.2 2.1 1.4 2.5	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT - SUS- PENDED (MG/L) 90 338 175 119 181 145 595	MENT DIS- CHARGE. SUS- PENDED (T/DAY) 110 455 246 150 240 156	SUSP. SIEVE DIAM. % FINER THAN. .062 MM 100 87 100 100 99 99
OCT 18 NOV 09 DEC 06 JAN 18 FEB 15 MAR 22 APR 12 MAY 03 JUN 07 JUN 07	GEN•AM- MONIA + ORGANIC TOTAL (MG/L AS N) .40 .70 .80 .00 .20 .50	GEN-AM- MONIA + ORGANIC DIS- (MG/L AS N) .26 .46 .67 .45 .21 .54 .33	PHORUS, TOTAL (MG/L AS P) .05 .11 .07 .07 .08 .05 .31	PHORUS, DIS- SOLVED (MG/L AS P) .00 .01 .01 .00 .01	ORGANIC TOTAL (MG/L AS C) 2.7 2.2 2.1 1.4 2.5 5.7 6.6	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT. SUS- PENDED (MG/L) 90 338 175 119 181 145 595	MENT DIS- CHARGE. SUS- PENDED (T/DAY) 110 455 246 150 240 156 1450 2480	SUSP. SIEVE DIAM. % FINER THAN .062 MM 100 87 100 100 99 99
OCT 18 NOV 09 DEC 06 JAN 18 FEB 15 MAR 22 APR 12 MAY 03 JUN 07 JUL	GEN•AM- MONIA + ORGANIC TOTAL (MG/L AS N) .40 .70 .80 .00 .20 .50 .73 1.0 3.8	GEN-AM- MONIA + ORGANIC DIS- (MG/L AS N) .26 .46 .67 .45 .21 .54 .33 .37	PHORUS, TOTAL (MG/L AS P) .05 .11 .07 .07 .08 .05 .31 .41	PHORUS, DIS- SOLVED (MG/L AS P) .00 .01 .00 .01 .00 .01	ORGANIC TOTAL (MG/L AS C) 2.7 2.2 2.1 1.4 2.5 5.7 6.6	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT. SUS- PENDED (MG/L) 90 338 175 119 181 145 595 690 7280	MENT DIS- CHARGE. SUS- PENDED (T/DAY) 110 455 246 150 240 156 1450 2480 40100	SUSP. SIEVE DIAM. % FINER THAN. .062 MM 100 87 100 100 99 99

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

08377200 RIO GRANDE AT FOSTER RANCH NEAR LANGTRY, TX--Continued

							17-57-53	3000		
			ARSENIC SUS-	ARSENIC	BARIUM, TOTAL	BARIUM, SUS- PENDED	BARIUM,	CADMIUM	CADMIUM SUS- PENDED	CADMIUM
	TIME	ARSENIC TOTAL	PENDED	DIS- SOLVED	RECOV- ERABLE	RECOV- ERABLE	DIS- SOLVED	RECOV- ERABLE	RECOV- ERABLE	DIS- SOLVED
DATE	IIME	(UG/L AS AS)	AS AS)	AS AS)	(UG/L AS BA)	(UG/L AS BA)	(UG/L AS BA)	(UG/L AS CD)	(UG/L AS CD)	AS CD)
ост										
18 FEB	1130	4	0	4	0	0	0	<10	<8	2
15 JUN	1115	8	1	7	100	0	100	0	0	2
07	1430	8	6	2	1000	800	200	10		0
AUG 09	1430	40	39	1	1600	1500	100	4	3	<1
	CHRO-	CHRO-	CHRO-	CORALT	COBALT,		CORRER	COPPER,		IRON.
	TOTAL RECOV- ERABLE	SUS- PENDED RECOV.	MIUM, DIS- SOLVED	COBALT, TOTAL RECOV- ERABLE	SUS- PENDED RECOV- ERABLE	COBALT. DIS- SOLVED	COPPER, TOTAL RECOV- ERABLE	PENDED RECOV- ERABLE	COPPER, DIS- SOLVED	TOTAL RECOV- ERABLE
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE	AS CR)	AS CR)	AS CR)	AS CO)	AS CO)	AS CO)	AS CU)	AS CU)	AS CU)	AS FE)
OCT 18	10	0	10	<50	<50	0	<10	<9	1	1100
FEB 15	0	0	10	0	0	0	11	11	0	1700
JUN 07	85	85	0	38	38	0	5	3	2	75000
09	110	110	0	61	56	5	100		2	130000
1,111	IRON.	(9.37)		LEAD.		MANGA-	MANGA-		7	MERCURY
	SUS-		LEAD,	SUS-		NESE,	NESE,	MANGA-	MERCURY	SUS-
	PENDED	IRON,	TOTAL	PENDED	LEAD,	TOTAL	SUS-	NESE,	TOTAL	PENDED
	RECOV-	DIS-	RECOV-	RECOV-	DIS-	RECOV-	PENDED	DIS-	RECOV-	RECOV-
	ERABLE (UG/L	SOLVED	ERABLE (UG/L	ERABLE (UG/L	SOLVED (UG/L	ERABLE (UG/L	RECOV.	SOLVED (UG/L	ERABLE (UG/L'	ERABLE (UG/L
DATE	AS FE)	AS FE)	AS PB)	AS PB)	AS PB)	AS MN)	AS MN)	AS MN)	AS HG)	AS HG)
QCT										
18 FEB		90	<100	<100	0	40	30	10	.0	•0
15 JUN		10	1	0	1	40	40	0	.0	•0
07	75000	10	81	81	0	2700	2700	5	•3	• 0
09	130000	1000	210	200	6	6600	6600	50	.9	.9
	100221121	24/5	SELE-	SELE-	SILVER,	SILVER. SUS-		ZINC.	ZINC.	2.102
	MERCURY DIS- SOLVED	SELE- NIUM, TOTAL	SUS- PENDED TOTAL	NIUM, DIS- SOLVED	TOTAL RECOV- ERABLE	PENDED RECOV- ERABLE	SILVER, DIS- SOLVED	TOTAL RECOV- ERABLE	PENDED RECOV- ERABLE	ZINC, DIS- SOLVED
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE	AS HG)	AS SE)	AS SE)	AS SE)	AS AG)	AS AG)	AS AG)	AS ZN)	AS ZN)	AS ZN)
OCT									3.4	4.0
18 FEB	• 0	2	2	0	<10	<10	0	20	10	10
15 JUN	• 0	1	0	1	0	0	0	20	50	0
07	.6	0	0	1	0	0	0	450	430	20
09	• 0	4	3	1	1	1	0	710	700	10

RIO GRANDE BASIN

08377200 RIO GRANDE AT FOSTER RANCH NEAR LANGTRY, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

							16.21											DI	
								ATR		CHL		001		DO		DD	T	AZIN	
			15.5	PCE		ALDR		ZINI		DAN		DDI		DDI		TOT		TOT	
		TI	ME	TOT		TOT		TOT		TOT		TOT		TOT				(UG	
DA	TE			(UG	/L)	(UG	/L)	(UG.	/L)	(UG	/L)	(UG	/L)	(UG	/L)	(06	/L)	100	,,,
NO	,																		
0.0		10	55				ND		ND		ND		ND		ND		ND		ND
FER	3																		200
15	5	11	15		ND		ND		ND		ND		ND		ND	81	ND		ND
MAY	1																		
	3	12	30						ND										
AUC																			ND
0.9	9	14	30		ND		ND		ND		ND		ND		ND		ND		NU
										HEP	TA-					MET	H-	MET	
		DI	-					HEP	TA-	CHL	OR			MAL	A-	OX	Y-	PAR	
			RIN	ENDR	IN.	ETHI	ON.	CHL	OR.	EPOX	IDE	LIND	ANE	THI	ON,		OR.	THI	
		TOT		TOT	AL	TOT	AL	TOT	AL	TOT	AL	TOT	AL	TOT		TOT		TOT	
D	ATE	(UG	/L)	(UG	/L)	(UG	/L)	(UG	/L)	(UG	/L)	(UG	/L)	(UG	/L)	(00	/L)	(UG	/L)
NO	v =6																		
	9		ND		ND		ND		ND		ND		ND		ND		ND		ND
FE			140		140		.,,												
	5		ND		ND		ND		ND		ND		ND		ND		ND		ND
MA					-														
	3																		
AU	G																		
- 0	9		ND		ND		ND		ND		ND		ND		ND		ND		ND
							SI	MA-											
								INE											
				THYL				TAL											
			Т	RI-		RA-		UL-		OX-		TAL							
				ION,		ION.		ON		ENE,		RI-		4-D,		•5-T		VEX,	
				TAL		TAL		ND.		TAL		ION		TAL		TAL		TAL	
	D	ATE	((IG/L)	((IG/L)	(U	G/L)	(()	G/L)	((IG/L)	(0	G/L)	(U	G/L)	((IG/L)	
	NO	٧																	
		9		ND		ND		ND.		ND		ND		ND		ND		ND	
	FE	8																	
	1	5		ND		ND		ND		ND		ND		ND		ND		ND	
	MA																		
		3						ND										W ST	
	٨١					10.6													
	0	9		ND		ND		ND		ND		ND				200		-	

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978
PERIPHYTON

		PERI-	PERI- PHYTON		
DATE	LENGTH OF EXPOSURE (DAYS)	CHROMO- GRAPHIC FLUOROM (MG/M2)	CHROMO- GRAPHIC FLUOROM (MG/M2)	SAMPLING METHOD	
NOV 09	22	.580	.000	POLYETHYLENE STRIP	

RIO GRANDE BASIN 501
08377200 RIO GRANDE AT FOSTER RANCH NEAR LANGTRY, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1977 TO SEPTEMBER 1978

	Contract Contract	75.75						
DATE		9,77		22•78 1105		3.78 1230	JUN	7.78 1430
TOTAL CELLS/ML	ž	2500		420		1200		440
DIVERSITY: DIVISION		0.7						
•CLASS		0.7		0.9		1.0		0.9
•• ORDER						1.0		0.9
· · · FAMILY		1.0		1.1		1.0		0.9
		2.3		2.0		1.4		0.9
• • • • GENUS		2.9		2.6		1.9		0.9
ORGANIZON	CELLS	PER-	CELLS	PER-	CELLS	PER-	CELLS	PER-
ORGANISM	/ML	CENT	/ML	CENT	/ML	CENT	/ML	CENT
CHLOROPHYTA (GREEN ALGAE)								
* 75 TO THE STATE OF THE STATE								
CHLOROCOCCALES								
CHARACIACEAE	4.00							
SCHROEDERIA	170	7		0		-		
COELASTRACEAE								
COELASTRUM	68	3		•		•		-
OOCYSTACEAE								
ANKISTRODESMUS	68	3	27	6	54	5		-
OOCYSTIS	930#	38		-	760			
TREUBARIA	68	3						
SCENEDESMACEAE								
ACTINASTRUM	450#	18						
CRUCIGENIA								
SCENEDESMUS	240	10	110#	26				
VOLVOCALES	-11	•		20	1	-	-	-
CHLAMYDOMONADACEAE								
CHLAMYDOMONAS	79	3		_		_		
ZYGNEMATALES	1.5	3		5		-		-
DESMIDIACEAE								
COSMARIUM	11/1/20						144	- 22
****COSHARTON		-		-		-	150#	33
CHRYSOPHYTA								
BACILLARIOPHYCEAE								
CENTRALES								
COSCINODISCACEAE								
CYCLOTELLA								
CTCLUTELLA	56	5	14	3		•		-
PENNALES								
CYMBELLACEAE								
CYMBELLA					225	1.02		
		-		•	27	5		•
EPITHEMIA		•		-	54	5		•
RHOPALODIA		-		•		•		•
DIATOMACEAE								
DIATOMA				•		-		
FRAGILARIACEAE								
FRAGILARIA			95#	23		-		•
SYNEDRA	160	6	54	13	54	5	-	-
NAVICULACEAE								
CALONEIS		-		-	27	2		
GYROSIGMA		0	14	3	41	3		
NAVICULA	68	3	95#	23	140	11	290#	67
PINNULARIA		-	14	3		-		
NITZSCHIACEAE								
DENTICULA		-						-
HANTZSCHIA						_		15 T
NITZSCHIA	90	4	100000	2	14	1		
SURIRELLACEAE	70	7	(2.2)	-	1.4			
SURIRELLA		-		-				-
EUGLENOPHYTA (EUGLENOIDS)								
.EUGLENOPHYCEAE								
EUGLENALES								
EUGLENACEAE								
EUGLENA		0				-		-
TRACHELOMONAS				-	14	1		-
					• •		0.00	

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

08377200 RIO GRANDE AT FOSTER RANCH NEAR LANGTRY, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1977 TO SEPTEMBER 1978

TIME		12,78 1205	AUG	9,78 1430		14,78
TOTAL CELLS/ML		110		690		72
DIVERSITY: DIVISION		1.1		0.0		1.4
.CLASS		i.i		0.0		1.4
• • ORDER		1.1		0.0		1.4
FAMILY		2.0		1.5		1.4
GENUS		2.4		2.3		1.4
	CELLS	PER-	CELLS	PER-	CELLS	PER-
ORGANISM	/ML	CENT	/ML	CENT	/ML	CENT
CHLOROPHYTA (GREEN ALGAE) •CHLOROPHYCEAE ••CHLOROCOCCALES						
CHARACIACEAE						
SCHROEDERIA						
COELASTRACEAE		_		•		-
COELASTRUM		_		_		
OOCYSTACEAE						-
ANKISTRODESMUS					2.1	_
00CYSTIS	14	13				
TREUBARIA		-		-		
SCENEDESMACEAE						
ACTINASTRUM				-		-
CRUCIGENIA		-		-	43#	60
SCENEDESMUS		-		-		-
VOLVOCALES						
CHLAMYDOMONADACEAE						
CHLAMYDOMONAS		•		-		-
ZYGNEMATALES						
COSMARIUM		_				
****COSMANION	-			•		-
CHRYSOPHYTA						
.BACILLARIOPHYCEAE						
CENTRALES						
COSCINODISCACEAE						
CYCLOTELLA		-		•		-
PENNALES						
CYMBELLACEAE						
CYMBELLA		-		-		-
EPITHEMIA		-		-		-
RHOPALODIA	14	13		•		-
DIATOMACEAE						2.
FRAGILARIACEAE		-		•	14#	20
FRAGILARIA	2.2	_				
SYNEDRA		2		12		
NAVICULACEAE		_		_		-
CALONE IS	- 100 0	-		-		-
GYROSIGMA		-		-		-
NAVICULA	14	13	140#	20		-
PINNULARIA		-	140#	20		-
NITZSCHIACEAE						
DENTICULA		-	140#	20		
HANTZSCHIA	14	13		-		-
NITZSCHIA	43#		140#	20		-
SURIRELLACEAE						
SURIRELLA		-	140#	50		-
EUGLENOPHYTA (EUGLENOIDS)						
.EUGLENOPHYCE AE						
EUGLENALES						
EUGLENACEAE						
EUGLENACEAETRACHELOMONAS	14	13		-	14#	-

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

MONTH	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVEN SULFATF (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT. 1977	16201	1040	670	29300	62	2710	290	12700	290
NOV. 1977	15326	1080	690	28800	66	2730	300	12600	300
DEC. 1977	16146	1110	720	31200	71	3080	320	13800	310
JAN. 1978	15802	1120	720	30800	72	3070	320	13600	310
FE8. 1978	13713	1090	710	26100	69	2540	310	11500	300
MAR. 1978	13211	1090	700	25000	68	2410	310	11000	300
APR. 1978	25636	1150	740	51500	79	5480	320	22300	310
MAY 1978	65250	958	620	109000	55	9760	260	46000	280
JUNE 1978	47534	744	480	61700	34	4310	190	24000	240
JULY 1978	39534	867	560	59700	41	4350	230	24700	260
AUG. 1978	99200	835	540	145000	36	9670	220	58300	260
SEPT 1978	114930	807	520	152000	32	9830	210	64600	250
TCTAL	482483	**	**	760000	**	59900	**	315000	**
WTO.AVG	1321.87	903	580	**	46	**	240	**	270

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY DAY OCT NOV DEC JAN FEB APR MAY JUN JUL AUG SEP 1100 1170 982 1150 1150 68B ------MEAN

RIO GRANDE BASIN
08377200 RIO GRANDE AT FOSTER RANCH NEAR LANGTRY, TX--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	30.0	24.0	15.5		13.0	20.0	25.0	28.5	28.0	28.0	28.0	26.5
Š	28.0	20.0	15.0	11.5	12.0	20.0	25.0	25.0	27.5	28.0	26.0	26.0
3	20.0	20.5	17.0	13.0	12.0	17.5	26.0	24.0	24.0	29.0	28.0	27.5
3	25.5	20.5	17.0	12.5	13.5	16.5	24.0	25.0	22.5	29.0	28.0	26.0
5	23.5	20.0	16.0	15.5	14.0	15.0	23.0	25.5	22.5	29.5	28.0	26.0
	24.5	20.5	1540	14.0		16.5	26.0	26.0	24.0	29.0	24.0	28.0
6	24.5	20.5	15.0	16.0	14.5	17.0	24.0	26.0	26.5	28.0	26.0	25.5
	27.0				12.5		26.0	24.0	30.0	29.0	27.0	27.0
8	27.0	20.0	15.0	15.0		15.0		26.0	29.0	29.0	25.0	27.0
9	25.5	14.0	12.0	13.0	13.5	17.0	25.0		29.0	29.0	26.0	28.0
10	27.0	14.0	12.5	10.5	12.5	19.5	23.0	26.0	29.0	27.0	20.0	20.0
11	23.5	14.0	12.0	11.5	12.0	20.0	23.0	26.5	27.0	29.5	27.0	29.0
12	22.0	17.5	14.0	13.0	14.5	18.0	24.0	30.0	29.0	30.0	26.0	28.0
13	21.5	18.0	16.5	14.5	15.5	18.5	22.5	25.0	30.0	29.0	28.0	27.0
14	21.5	19.0	15.0	14.0	15.0	19.5	23.0	26.0	28.0	29.0	29.0	29.5
15	22.0	20.5	13.0	13.0	16.0	17.5	24.0	24.5	30.0	30.0	29.5	30.0
16	22.0	20.5	16.5	15.5	15.5	19.5	25.0	28.0	29.5	31.0	30.0	30.0
17	20.0	19.0	15.0	11.5	14.0	18.5	26.0	28.5	29.5	31.0	31.0	28.5
18	24.0	18.0	15.5	11.5	14.0	19.5	25.0	28.5	29.0	30.5	30.5	28.0
19	24.0	19.0	15.5	10.0	12.0	19.5	24.0	28.5	30.0	30.5	30.0	27.5
20	21.5	21.0	14.0	9.5	14.0	22.0	22.5	26.0	30.0	30.0	30.0	27.5
21	23.5	17.0	13.0	9.5	10.0	22.0	22.0	26.5	26.0	29.0	30.0	26.0
55	23.5	18.0	12.0	11.0	15.0	24.0	22.0	24.0	30.5	30.0	29.0	24.0
23	22.0	17.5	13.0	11.5	14.0	25.0	25.5	24.5	29.5	28.0	29.0	22.5
24	23.5	17.5	14.5	13.5	17.0	23.5	27.0	27.0	27.5	30.0	28.5	22.5
25	24.0	18.0	14.5	11.5	16.5	22.5	25.0	27.0	30.0	30.5	27.0	22.0
							- 20			20.0	27.0	21.5
26	23.0	18.0	14.0	11.0	17.0	23.0	24.0	27.5	27.0	30.0		
27	22.0	18.0	14.0	13.0	18.0	23.0	24.0		29.0	30.0	29.5	20.5
28	24.0	18.0	15.0	13.0	19.0	21.0	26.0	25.0	29.5	30.0	29.5	20.0
29	25.0	15.0	16.0	13.0		21.0	27.0	23.0	29.5	27.0	28.0	19.0
30	24.0	15.5	16.0	11.0		21.5	27.0	26.0	28.0	26.5	27.0	19.5
31	24.5		17.0	11.0				27.5		26.5	26.0	
MEAN	24.0	18.5	14.5	12.5	14.5	20.0	24.5	26.0	28.0	29.0	28.0	25.5

08407500 PECOS RIVER AT RED BLUFF. NM

LOCATION.--Lat 32°04'30", long 104°02'21", in SW1/4NW1/4NE1/4 sec.1, T.26 S., R.28 E., Eddy County, Hydrologic Unit 13060011, on right bank at Red Bluff, 0.2 mi (0.3 km) downstream from Red Bluff Draw, 1.6 mi (2.6 km) northwest of the E1 Paso Natural Gas (Pecos River) compressor station, 5.2 mi (8.4 km) north of the New Mexico-Texas State line, 5.5 mi (8.8 km) upstream from Delware River, and 411.2 (661.6 km) upstream from mouth. Water-quality sampling site 1.4 mi (2.3 km) downstream at mile 409.8 (659.4 km).

DRAINAGE AREA.--19,540 mi² (50,610 km²), approximately (contributing area).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1937 to current year.

GAGE.--Water-stage recorder. Datum of gage is 2,850.05 ft (868.695 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records fair. Flow regulated by storage in Lake Sumner, Lake McMillan, Lake Avalon, and by several small diversion dams that divert for power or irrigation. Diversions and ground-water withdrawals above station for irrigation of about 202,000 acres (820 km²), 1959 determination.

AVERAGE DISCHARGE.--41 years, 177 ft3/s (5.013 m3/s), 128,200 acre-ft/yr (158 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 111,000 ft 3 /s (3,140 m 3 /s) Aug. 23, 1966, gage height, 33.32 ft (10.156 m), from rating curve extended above 30,000 ft 3 /s (850 m 3 /s) on basis of slope-area measurement of peak flow; minimum, 0.19 ft 3 /s (0.005 m 3 /s) Aug. 1, 1966.

EXTREMES OUTSIDE PERIOD OF RECORD.--The flood of Aug. 23, 1966, exceeded all floods at this location. Flood in October 1904 reached a stage of 28.0 ft (8.53 m), from information by Panhandle and Santa Fe Railway Co.

EXTREMES FOR CURRENT YEAR. --Maximum discharge, 29,400 ft 3 /s (833 m 3 /s) Sept. 26, gage height, 20.57 ft (6.270 m); minimum, 0.42 ft 3 /s (0.012 m 3 /s) Mar. 28.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978
MEAN VALUES

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.4 1.2 1.1 2.6 6.2	8.6 8.2 7.4 7.1 7.1	3.6 4.4 7.8 8.6 8.6	8.6 9.0 10 11 12	15 16 17 17 16	11 11 13 13	7.1 9.4 9.0 8.6 6.8	6.2 50 10 12 13	20 1800 1870 273 102	5.5 6.0 6.0 5.5 5.5	6.5 6.2 133 13	6.8 6.8 7.8 8.6
6 7 8 9 10	9.9 12 9.9 8.6 7.8	6.5 6.8 6.5 7.4 7.4	5.9 5.6 8.2 9.0 8.6	11 12 12 12 12	17 19 16 13	12 12 10 9.0 9.0	6.2 5.6 5.0 4.4 5.9	8.6 7.1 7.4 6.8 5.0	44 25 5.0 5.0 5.0	5.5 5.3 5.0 4.7 4.4	9.4 7.8 7.1 7.1 6.8	9.9 11 10 7.1 6.2
11 12 13 14 15	8.6 8.2 7.1 6.5 6.2	7.4 7.8 7.8 8.2 8.2	9.0 9.0 9.4 8.6 7.1	12 11 13 13 14	14 17 18 16 16	10 9.9 9.9 9.9 9.9	6.5 7.8 9.4 10 8.2	4.0 4.0 6.5 6.5 5.9	5.0 5.0 5.0 5.0	5.3 5.9 7.1 7.4 7.1	4.2 3.4 7.8 8.2 7.8	5.9 6.2 6.8 7.1 7.8
16 17 18 19 20	5.9 5.9 5.9 5.9	8.2 6.8 4.7 4.0 4.4	6.2 8.6 7.4 9.9	15 14 12 16 16	16 17 16 16	9.0 6.8 6.8 8.2 9.0	6.8 5.9 6.5 5.3 4.2	5.0 4.0 3.4 6.7 9.4	5.0 5.0 5.0 5.0	7.4 7.4 7.1 6.8 5.9	7.1 6.2 6.5 8.8 8.6	8.2 7.4 6.8 6.5 6.2
21 22 23 24 25	5.6 59 13 14 26	6.2 7.8 7.8 6.5 5.0	9.9 8.2 9.9 13	12 11 9.4 9.0 8.6	16 16 20 23 22	7.8 7.8 3.6 1.4	4.2 5.0 5.3 7.1 7.1	7.4 8.6 9.0 7.1 6.5	5.0 5.0 5.0 5.0	5.9 7.4 52 43 29	7.4 6.8 6.9 13 5.0	27 32 29 143 1730
26 27 28 29 30 31	15 11 11 9.9 9.9 9.4	5.9 5.3 4.4 6.8 5.0	9.9 9.0 7.8 8.6 9.9 9.9	8.6 8.6 8.6 10 14	16 13 13 	.64 .50 1.1 4.2 4.7 5.9	5.0 4.2 4.0 5.0 5.9	7.8 7.1 7.4 9.0 9.0	5.0 5.0 5.0 14 5.0	18 12 6.5 5.9 5.9	5.6 5.6 6.5 6.5 9.0 7.4	17100 6160 951 342 220
TOTAL MEAN MAX MIN AC-FT	310.3 10.0 59 1.1 615	201.2 6.71 8.6 4.0 399	265.6 8.57 13 3.6 527	360.4 11.6 16 8.6 715	461 16.5 23 13 914	240.45 7.76 13 .50 477	191.4 6.38 10 4.0 380	286.4 9.24 50 3.4 568	4258.0 142 1870 5.0 8450	312.3 10.1 52 4.4 619	356.2 11.5 133 3.4 707	26890.1 896 17100 5.9 53340

CAL YR 1977 TOTAL 5247.7 MEAN 14.4 MAX 81 MIN 1.1 AC-FT 10410 WTR YR 1978 TOTAL 34133.35 MEAN 93.5 MAX 17100 MIN .50 AC-FT 67700

08407500 PECOS RIVER AT RED BLUFF, NM--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water year 1937 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: July 1937 to current year. WATER TEMPERATURES: October 1952 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 51,400 micromhos June 20, 1972; minimum daily, 268 micromhos Sept. 18, 1946.
WATER TEMPERATURES: Maximum daily, 36.0°C July 31, 1966, July 13, 1970; minimum daily, 1.0°C Jan. 10, 11, 1962, Jan. 13, 1963.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 46,500 micromhos Oct. 3; minimum daily, 693 micromhos Sept. 26.
WATER TEMPERATURES: Maximum daily, 32.5°C June 25, 28; minimum daily, 5.0°C Jan. 21, 24.

WATER QUALIT	Y DATA	WATER	YEAR	OCTOBER	1977	TO	SEPTEMBER	1978
--------------	--------	-------	------	---------	------	----	-----------	------

DATE	TIME	INS TAN	EAM- OW, TAN- EOUS FS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER ATURE (DEG C	- B	ID-		COLI- FORM. FECAL. 0.7 UM-MF COLS./	KF AGAR A	ESS N	HARD- NESS; IONCAR- IONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
		10	r 51	MNO5)	(014113)	TOES C	, ,	10,	(MOZE)		100 1127			
OCT	0800	1	2	36000	8.1	22.	0	4	6.4	86	2000	3800	3700	740
07 NOV	11000		3	30000	0.1		v	-	0.4		2000			
03 DEC	1030		7.1	31000	8.2	15.	5	9	10.3	3	90	3100	3000	650
08	1000		8.2	29500	8.2	9.	5	6	10.2	0	12	3300	3200	670
11	0918	1	2	21500	8.3	3.	5	2	11.6	0	14	2800	2700	650
09	1050	1	3	17500	8.4	8.	5	3	13.3	0	15	2300	2200	490
08 APR	1415		9.9	21300	8.3	14.	5	4	13.6	0	3	2600	2400	530
06	1500		6.2	30800	8.1	23.	0	8	9.7	10	65	3400	3500	690
04 JUN	1600	1	4	21500	8.2	21.	5	10	12.1	35	880	5300	5500	470
14 JUL	1230		5.0	15000	8.0	28.	5		8.9	6	65	>100	Leven.	560
19	0900		7.8	24200	7.5	26.	5		6.5	4	920	3800	4.5	800
16 SEP	1100		7.1	17100	7.9	26.	5		8.4	14	460	2000	A	420
27	1130	494	0	525	7.2	16.	0		7.1	3400	13000	240	227	77
DATE	50 50 (M	GNE- IUM. IS- LVED G/L MG)	SODIU DIS- SOLVE (MG/ AS N	SOI D T	AD- 9 RP- 0 ION 50 TIO (N	DIS- BO DLVED (CAR- DNATE MG/L AS	CAR- BONATE (MG/L AS CO3	SULFAT DIS- SOLVE (MG/L	DIS-	RIDE. DIS- VED SOLVEI	SILICA DIS- SOLVE (MG/L AS SIO2)	D DEG	DUE 80 • C S- VED
ОСТ		1												
07	4	70	6000	- 年	42 3	310	120		0 660	12000				000
03	. 3	70	6700		52 2	250	150	1 = 7	0 2900	9900	•	8.	1 21	700
08	4	00	6400	A .	48 2	250	150		0 3000	9700		9 4.	.8 21	000
11		90	4200	energy and the	34 1	60	160		0 2600	6600	•	9.	8 14	800
09	. 2	70	3700		33 1	40	160		1 2400	5700				600
APR	. 3	00	4600	P. P.	40 1	70	140		0 2300	7100	•	6.	3 12	300
06 MAY	. 4	00	7100		53 2	280	150		0 2800	11000	• '	2.	5 21	100
04 • • • JUN:		70	4100		37	8.2	100		0 2000	6300	• •	2.	0 13	400
14	1	60	2900		Sa	94		-	- 1700	4400	•	6.		500
19	. 4	30	7900		56 1	40		-	- 3000	13000				500
16	2	30	3200		31 1	10		-	- 1700	5300		5 10	11	600
27		12	24		.7	4.0		-	- 130	35		1 8.	9	382

DATE	SOLIDS. SUM OF CONSTI- TUENTS. DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	NITRO- GEN, NOZ+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITE GEN ORGAN TOTA (MG/ AS N	NIC PHO AL TO YL (M	OS- RUS, TAL G/L P)	CARBON. ORGANIC TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDE (MG/L	MEI DIS CHAR SUS D PEI	RGE .	SED SUS SIEV DIA % FIN THA .062	E M. IER N
07 07	20300			•09	•07	1.	.2	.05	13	2	9	1.0		86
03 DEC	20900	25000	14	•02	.30		90	.07	6.2		6	.12		94
08 JAN	20500			.16	.23		.97	.04			7	.15		35
11 FEP	14600			1.4	•27		58	.04	2.9	3	n	.97		67
09	12800	1		.92	.14		.61	.02	4.0	3	0	1.1		99
08	15100			.34	•11		75	.12		2	6	.69		69
06	22400	55000	10	.04	.19	1.	0	.04	10	2	6	.44		54
04 JUN	13200			.67	•25	1.	.8	.12	15	2	3	.87		90
14 JUL				.03	.17	1.	. 1	.00		5	3	.72		61
19				.06	.00	1.	2	.03		6	6	1.4		36
16				.03	.00	1.	. 7	.05	17	4	8	.92		37
27				.44	.19	2.	.3	.03		82	1 1070	0		97
c	DATE	IMF (U	ENIC PE TAL TO	NDED TAL SO	SENIC TO DIS- RI DLVED EI UG/L (1	RIUM, DTAL ECOV- RABLE UG/L S BA)	BAPIUM. SUS- PENDED RECOV- ERABLE (UG/L AS BA)	SOLV	UM. TO ED EF	OMIUM OTAL COV- RABLE IG/L	ADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	SOL	VED	
00	T													
NO		800	1	1	0	600				30	30		0	
DE		030												
	18 1	000	1	0	1	600	0		600	0	0		0	
	1 0	918												
	9 1	050												
	8 1	415	0	0	0	200	100		100	1	0		1	
0	16 1	500												
	14 1	600												
JI 1		230	1	0	1	50	0		300	2	1		1	
ال. 1	IL 19 0	900	4	2	2	300	0		300	1	1		0	
	16 1	100												
SE		130	4		1	0	0		0	1	0		1	

RIO GRANDE BASIN 08407500 PECOS RIVER AT RED BLUFF, NM--Continued

	-1150							COPPER.		
	CHRO-	CHRO-	01100	COD T	COBALT,		COPPER,	SUS-		IRON.
	MIUM.	MIUM,	CHRO-	COBALT,	SUS-	*****			COPPER,	TOTAL
	TOTAL	SUS-	MIUM.	TOTAL	PENDED	COBALT.	TOTAL	PENDED		
	RECOV-	PENDED	DIS-	RECOV-	RECOV-	DIS-	RECOV-	RECOV-	DIS-	RECOV-
	ERABLE	RECOV.	SOLVED	ERABLE	ERABLE	SOLVED	ERABLE	ERABLE	SOLVED	ERABLE
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE	AS CR)	AS CR)	AS CR)	AS CO)	AS CO)	AS CO)	AS CU)	AS CU)	AS CU)	AS FE)
ост										728
07	50	0	20	150	150	0	30	30	0	550
NOV										
03										
DEC										
08	30	0	40	0	0	0	6	4	2	160
JAN										
11										
FFB										
09										
MAR										
	20	0	20	1	1	0		2	2	170
08	20	U	20		100	U	-	13.	1	
APR										
06										
MAY									1	
04									16	1
JUN			14	_						224
14	10	0	15	2	2	0	6	4	5	230
JUL									_	
19	30	10	20	0	0	0	5	3	2	180
AIIG										
16										
SFP										
27	20	20	0	8	7	1	31	30	1	14000
										**EDC!!DY
	TRON.			LEAD.		MANGA-	MANGA-			MERCURY
	SUS-		LEAD,	SUS-		NESE,	NESE.	MANGA-	MERCURY	SUS-
	PENDED	IRON.	TOTAL	PENDED	LEAD,	TOTAL	SUS-	NESE+	TOTAL	PENDED
	RECOV-	DIS-	RECOV-	RECOV-	DIS-	RECOV-	PENDED	DIS-	RECOV-	RECOV-
	FRABLE	SOLVED	ERABLE	ERABLE	SOLVED	EDAR! E	RECOV.			
	(UG/L	SULTED		CHADLE	SOLVED	ERABLE		SOLVED	ERABLE	ERABLE
DATE		(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	ERABLE (UG/L	(UG/L
	AS FE)							(UG/L AS MN)	ERABLE	
OCT		(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	ERABLE (UG/L	(UG/L
0CT		(UG/L AS FE)	(UG/L	(UG/L	(UG/L AS PB)	(UG/L AS MN)	(UG/L	(UG/L	ERABLE (UG/L	(UG/L
07		(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L AS MN)	(UG/L AS MN)	(UG/L AS HG)	(UG/L AS HG)
07 NOV	AS FE)	(UG/L AS FE) 70	(UG/L	(UG/L AS PB)	(UG/L AS PB)	(UG/L AS MN)	(UG/L AS MN)	(UG/L AS MN)	(UG/L AS HG)	(UG/L AS HG)
07 NOV 03		(UG/L AS FE)	(UG/L	(UG/L	(UG/L AS PB)	(UG/L AS MN)	(UG/L AS MN)	(UG/L AS MN)	ERABLE (UG/L AS HG)	(UG/L AS HG)
07 NOV 03 DEC	AS FE)	(UG/L AS FE) 70 30	(UG/L AS PB)	(UG/L AS PB)	(UG/L AS PB)	(UG/L AS MN) 1000	(UG/L AS MN)	(UG/L AS MN) 50	ERABLE (UG/L AS HG)	(UG/L AS HG)
07 NOV 03 DEC 08	AS FE)	(UG/L AS FE) 70	(UG/L	(UG/L AS PB)	(UG/L AS PB)	(UG/L AS MN)	(UG/L AS MN)	(UG/L AS MN)	ERABLE (UG/L AS HG)	(UG/L AS HG)
07 NOV 03 DEC 08	AS FE)	70 30 20	(UG/L AS PB)	(UG/L AS PB)	(UG/L AS PB)	(UG/L AS MN) 1000 40	(UG/L AS MN) 950	(UG/L AS MN) 50 	ERABLE (UG/L AS HG)	(UG/L AS HG)
07 NOV 03 DEC 08 JAN 11	AS FE)	(UG/L AS FE) 70 30	(UG/L AS PB)	(UG/L AS PB)	(UG/L AS PB)	(UG/L AS MN) 1000	(UG/L AS MN)	(UG/L AS MN) 50	ERABLE (UG/L AS HG)	(UG/L AS HG)
07 NOV 03 DEC 08 JAN 11	AS FE)	(UG/L AS FE) 70 30 20 70	(UG/L AS PB)	(UG/L AS PB)	(UG/L AS PB)	(UG/L AS MN) 1000 40	(UG/L AS MN) 950 0	(UG/L AS MN) 50 60	ERABLE (UG/L AS HG)	(UG/L AS HG)
07 NOV 03 DEC 08 JAN 11 FEB	AS FE)	70 30 20	(UG/L AS PB)	(UG/L AS PB)	(UG/L AS PB)	(UG/L AS MN) 1000 40	(UG/L AS MN) 950	(UG/L AS MN) 50 	ERABLE (UG/L AS HG)	(UG/L AS HG)
07 NOV 03 DEC 08 JAN 11 FEB	AS FE)	(UG/L AS FE) 70 30 20 70	(UG/L AS PB) 3	(UG/L AS PB)	(UG/L AS PB) 3 4	1000 40	(UG/L AS MN) 950 0	(UG/L AS MN) 50 60 	ERABLE (UG/L AS HG) -00	.0 .0
07 NOV 03 DEC 08 JAN 11 FEB 09 MAR	AS FE)	(UG/L AS FE) 70 30 20 70	(UG/L AS PB)	(UG/L AS PB)	(UG/L AS PB)	(UG/L AS MN) 1000 40	(UG/L AS MN) 950 0	(UG/L AS MN) 50 60	ERABLE (UG/L AS HG)	(UG/L AS HG)
07 NOV 03 DEC 08 JAN 11 FEB 09 MAR 98	as Fē)	(UG/L AS FE) 70 30 20 70	(UG/L AS PB) 3 14	(UG/L AS PB)	(UG/L AS PB) 3 4	1000 40 60	(UG/L AS MN) 950 0 10	(UG/L AS MN) 50 60 50	.0 .0 .0 .0	.0 -0 .0
07 NOV 03 DEC 08 JAN 11 FEB 09 MAR 08 APR 06	AS FE)	(UG/L AS FE) 70 30 20 70	(UG/L AS PB) 3	(UG/L AS PB)	(UG/L AS PB) 3 4	1000 40	(UG/L AS MN) 950 0	(UG/L AS MN) 50 60 	ERABLE (UG/L AS HG) -00	.0 .0
07 NOV 03 DEC 08 JAN 11 FEB 09 MAR 08 APR 06	as Fē)	(UG/L AS FE) 70 30 20 70 10 0	(UG/L AS PB) 3 14	(UG/L AS PB)	(UG/L AS PB) 3 4	1000 40 60	(UG/L AS MN) 950 0 10	(UG/L AS MN) 50 60 50	ERABLE (UG/L AS HG) 00	.0 .0 .0
07 NOV 03 DEC 08 JAN 11 FEB 09 MAR 08 APR 06 MAY	as Fē)	(UG/L AS FE) 70 30 20 70	(UG/L AS PB) 3 14	(UG/L AS PB)	(UG/L AS PB) 3 4	1000 40 60	(UG/L AS MN) 950 0 10	(UG/L AS MN) 50 60 50	.0 .0 .0 .0	.0 -0 .0
O7 NOV O3 DEC O8 JAN 11 FEB O9 MAR O8 APR O6 AV	as Fē)	(UG/L AS FE) 70 30 20 70 10 0 20	(UG/L AS PB) 3 14	(UG/L AS PB)	(UG/L AS PB) 3 4 10	1000 40 60	(UG/L AS MN) 950 0 10	(UG/L AS MN) 50 60 50 	ERABLE (UG/L AS HG) .000	.0 .0 .0
07 NOV 03 DEC 08 JAN 11 FEB 09 MAR 08 APR 06 MAY 04 JUIN 14	as Fē)	(UG/L AS FE) 70 30 20 70 10 0	(UG/L AS PB) 3 14	(UG/L AS PB)	(UG/L AS PB) 3 4	1000 40 60	(UG/L AS MN) 950 0 10	(UG/L AS MN) 50 60 50	ERABLE (UG/L AS HG) 00	.0 .0 .0
07 NOV 03 DEC 08 JAN 11 FEB 09 MAR 08 APR 06 MAY 04 JUL	as FE)	(UG/L AS FE) 70 30 20 70 10 20	(UG/L AS PB) 3 14 10	(UG/L AS PB)	(UG/L AS PB) 3 4 10 4	1000 40 60 170	(UG/L AS MN) 950 0 10 110	(UG/L AS MN) 50 60 50 60	.0 .0 .0	.0 -0 .0 .0
07 NOV 03 DEC 08 JAN 11 FEB 09 MAR 08 APR 06 MAY 04 JUIN 14	as Fē)	(UG/L AS FE) 70 30 20 70 10 0 20	(UG/L AS PB) 3 14	(UG/L AS PB)	(UG/L AS PB) 3 4 10	1000 40 60	(UG/L AS MN) 950 0 10	(UG/L AS MN) 50 60 50 	ERABLE (UG/L AS HG) .000	.0 .0 .0
07 NOV 03 DEC 08 JAN 11 FEB 09 MAR 08 APR 06 MAY 04 JUL	as FE)	(UG/L AS FE) 70 30 20 70 10 20 10 20 50	(UG/L AS PB) 3 14 10	(UG/L AS PB)	(UG/L AS PB) 3 4 10 4	1000 40 60 170	(UG/L AS MN) 950 0 10 110	(UG/L AS MN) 50 60 50 60 90	.0 .0 .0	.0 -0 .0 .0
07 NOV 03 DEC 08 JAN 11 FEB 09 MAR 08 APR 06 MAY 11 JUL 19 JUL 19 AUG	as FE)	(UG/L AS FE) 70 30 20 70 10 20	(UG/L AS PB) 3 14 10	(UG/L AS PB)	(UG/L AS PB) 3 4 10 4	1000 40 60 170	(UG/L AS MN) 950 0 10 110	(UG/L AS MN) 50 60 50 60	.0 .0 .0	.0 -0 .0 .0
07 NOV 03 DEC 08 JAN 11 FEB 09 MAR 06 APR 06 MAY 11 JUIN 14 JUL 19	as FE)	(UG/L AS FE) 70 30 20 70 10 20 10 20 50	(UG/L AS PB) 3 14 10	(UG/L AS PB)	(UG/L AS PB) 3 4 10 4 0	(UG/L AS MN) 1000 40 60 170 120	(UG/L AS MN) 950 0 10 110 30	(UG/L AS MN) 50 60 50 60 90	.0 .0 .0 .0	.00000000
07 NOV 03 DEC 08 JAN 11 FEB 09 MAR 08 APR 04 JUL 19 AUG 16	as FE)	(UG/L AS FE) 70 30 20 70 10 20 10 20 50	(UG/L AS PB) 3 14 10	(UG/L AS PB)	(UG/L AS PB) 3 4 10 4	(UG/L AS MN) 1000 40 60 170 120	(UG/L AS MN) 950 0 10 110 30	(UG/L AS MN) 50 60 50 60 90	.0 .0 .0	.0 -0 .0 .0

509

DATE	MFRCURY DIS- COLVED (UG/L AS HG)	SELE- NIUM. TOTAL (UG/L AS SE)	SELE- NIUM, SUS- PENDED TOTAL (UG/L AS SE)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER. TOTAL RECOV- ERABLE (UG/L AS AG)	PENDED RECOV- ERABLE (UG/L	SILVER. DIS- SOLVED (UG/L	ZINC+ TOTAL RECOV- ERABLE (UG/L AS ZN)	PENDED RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)
0CT	.0	1	1	0	30	30	. 0	40	20	20
NOV 03										
DEC 08	•2	2	0	2	0	0	0	60	30	30
JAN 11										
FEB 09								-		
08 APR	• 0	4	0	4	1	1	0	30	0	30
06										
04 JUN										
14 JUL	.3	1	0	1	0	0	0	30	0	30
19 AUG	• 0	0	0	0	0	0	0	70	0	70
16 SFP					-					•••
27	• 0	1	1	0	0	0	0	80	70	10
DaT	TIM	PCI TOT	AL TOT	IN. DAN	TAL TO	TAL TO	TAL TO	TAL TOT	TAL TOT	RIN
NOV	100		ND	ND	ND	ND	ND	ND	ND	ND
03. FFR 09.			ND	ND	ND	ND	ND	ND	ND	ND
MAY 04.			ND	ND	ND	ND	ND	ND	NO	ND
16.			ND	ND	ND	ND	ND	ND	ND	ND
DAT	ENDRI TOTA	L TOT	AL TOT	TA- CHL OR, EPOX AL TO	TAL TO	DANE TH	ION, CHU	CY- PAR OR, THI	ION. THE	I- ON.
NOV	••	ND	ND	ND	NO	ND	ND	ND	ND	ND
FFR 09.		ND	ND	ND	ND	NO	ND	ND	ND	ND
MAY	••	ND	ND	ND	ND	ND	ND	ND	NO	ND
AHG 16.	••	ND	ND	ND	ND	ND	ND	ND	ND	ND
	DATE	PARA- THION. TOTAL (UG/L)	TOX- APHENE. TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	ATPA- ZINE• TOTAL (UG/L)	STM3- TINF TOTAL COUL- SON COND. (UG/L)	2+4-D+ TOTAL (UG/L)	2•4•5-T TOTAL (UG/L)	STLVEX. TOTAL (Ue/L)	
	NOV 03	ND	ND	NO	ND	ND	ND	ND	ND	
	FF8 09	ND	ND	ND					100	
	MAY 04	ND	ND	ND	ND	ND				
	16	ND	ND	ND	ND	NO				

08407500 PECOS RIVER AT RED BLUFF, NM--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

	SPECI	IF IC COMP	JOTANOE .		10	CE-DAILY						
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
		22000	21500	30100	21000	24500	24500	30000	6190	20200	26500	24600
1	46100	32000	31500	28800	21100	23300	24900	28500	6560	20700	27000	24400
2	46100	31600 32800	32000 31500	26400	20500	22700	25500	26800	3620	20900	25800	24700
3	46500		31200	26800	20900	22200	26200	24200	4680	21300	19300	25100
5	37700 37200	32800 32800	31000	25200	21600	21200	28100	20400	19500	21200	16500	24900
6	37100	32700	30900	25200	21300	20500	28200	20600	7770	21500	13100	25200
7	37200	32100	30800	24500	21200	21000	30200	21800	8630	21700	11000	25300
8	40000	31900	30900	24700	21400	21000	29400	55800	9270	22000	10900	25500 24800
9	40500	31800	30800	24800	21400	21300	29700	24000	10100	22200	9370	24500
10	38600	31200	31100	25500	20100	21600	30200	24700	10800	22700	8520	
11	38900	31200	31100	26100	20100	21800	30400	25100	11600	22900	8000	24600
12	38500	31000	31000	24800	19600	22100	30600	25600	12700	23600	9540	23900
13	38500	30500	31000	23300	20600	22600	31000	26000	12400	24300	8140	22600
14	38000	29800	30700	21800	20600	23800	31500	26300	13400	25500	7550	21600
15	38000	29800	31800	21500	21600	23800	31500	26500	14000	26400	7500	21300
16	38900	29900	32100	21500	23300	24200	31300	26500	14600	27400	9050	21300
17	38200	30000	32900	24300	23300	24600	31000	26500	15100	29700	9210	21600
18	38600	30100	33600	24300	22500	24600	31000	27100	15400	29900	10900	21700
19	39900	30300	35200	25100	22500	24600	30800	26800	16000	30800	10900	21900
20	40100	30500	35200	24100	22100	24600	30700	22100	16400	31700	13300	22100
21	40200	30600	35000	24100	22100	24100	30700	25500	16800	32300	14700	19700
	39900	30800	31800	23800	22300	23800	30700	26100	17100	33100	15800	20000
22	20500	31200	31800	23300	24600	23800	30500	26800	17400	19200	17000	18800
24	18600	31500	31600	23600	24800	23600	30400	27200	17600	30100	18600	11500
25	16700	31700	31300	23500	25900	23900	30000	27700	17800	24700	20000	2100
26	19400	31900	31200	23400	26100	23900	29900	26500	18000	25600	21600	693
26 27	23000	32300	32000	23200	25000	24400	29900	28600	18200	25400	22400	1070
28	26100	32200	32400	23200	24900	24300	30000	28900	15300	24400	23300	3660
29	28500	32500	32800	23000		24400	30100	29100	17500	25200	24000	9120
30	31000	32400	32800	22900		24500	30300	29500	19400	25600	24500	5570
31	30800		31900	22800		24600		29600		26000	24200	
MEAN	35100	31400	32000	24400	55500	23300	29600	26100	13500	25100	15700	18800
		TEM	PERATURE	(DEG. C)	OF WATER	WATER YE	AR OCTOBE	R 1977 TO	SEPTEMBE	R 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	27.0	17.0	12.0	6.5	6.5	13.5	22.0	24.5	20.0	31.5	30.5	26.0
2	20.0	17.0	10.0	6.0	6.0	13.5	21.0	20.0	20.5	32.0	30.5	25.0
3	20.0	16.0	11.5	6.0	8.5	10.0	21.5	22.0	20.0	31.5	27.5	27.0
4	21.0	16.0	11.5	6.5	9.0	10.0	21.0	24.5	23.5	30.5	25.5	26.0
5	21.5	15.5	13.0	8.0	9.5	11.0	21.5	23.5	26.0	31.0	25.5	27.0
6	22.0	17.0	10.5	8.5	9.5	13.0	22.5	28.0	24.5	30.5	28.5	27.5
7	22.0	15.5	10.0	8.0	10.0	13.0	22.5	20.5	26.5	29.0	30.5	26.0
8	22.5	15.0	12.5	8.0	9.5	13.5	22.0	24.5	28.0	30.0	28.0	27.0
9	19.5	14.0	9.5	7.5	9.0	14.5	19.5	25.0	26.0	29.5	28.5	27.5
10	22.0	13.0	9.0	6.0	9.0	15.0	18.0	22.0	27.5	28.5	28.5	28.0
11	18.5	13.0	8.5	6.5	9.5	15.5	19.0	26.5	30.0	29.5	29.0	28.0
12	19.0	13.0	10.0	8.0	10.0	14.5	19.5	26.0	29.0	30.0	30.0	28.0
13	19.0	13.5	10.0	7.5	10.0	15.0	20.0	25.0	29.5	31.0	30.0	28.5
14	21.0	14.0	9.5	7.5	9.0	15.0	22.0	26.5	28.0	30.0	27.5	28.0
15	19.0	15.0	9.5	8.5	10.0	14.5	22.0	27.0	29.0	31.0	26.0	
16	10 6	14.0	9.5	9.0	10.0	15.0	23.0	27.0	30.0	32.0	28.0	28.0
16	18.5	13.5	9.0	6.0	9.0	15.0	23.0	26.0	29.5	31.0	30.0	28.5
17 18	20.5	14.0	9.0	7.0	8.5	15.5	22.0	26.5	29.5	30.5	30.0	27.5
19	20.0	14.0	9.5	6.5	7.0	15.5	21.0	25.0	28.5	29.5	30.5	27.0
20	20.0	14.0	9.0	6.0	8.0	18.0	22.0	27.0	30.5	30.0	30.5	24.0
21	10 0	13.0	8.0	5.0	8.0	18.0	22.5	26.5	30.0	27.0	29.0	20.0
21	19.0 21.5	13.0	7.5		9.5	20.0	22.5	27.0	29.5	31.0	29.0	19.0
23	20.0	12.0	7.5		10.0	20.0	22.5	26.5	27.5	26.0	29.0	19.0
24	20.0	12.0	9.0		11.5	20.0	22.0	28.0	29.5	30.0	30.0	19.0
25	20.0	11.5	9.0		12.5	16.5	22.0	28.0	32.5	31.0	30.0	17.5
26	20.0	12.5	7.0	7.0	12.5	18.5	22.0	27.0	32.0	32.0	30.5	17.0
27	19.0	12.5	6.0		13.0	22.0	22.0	29.0	24.5	30.0	30.5	17.0
28	21.0	13.5	8.0		14.0	18.0	24.5	29.0	32.5	28.0	27.0	19.0
29	21.0	12.0	9.0			18.0	24.5	26.0	26.0	30.0	26.0	21.0
30	20.0	12.0	10.0			22.0	24.0	27.0	28.5	28.5	26.5	22.5
31	20.5		9.5			24.5		26.0		28.0	25.5	
MEAN	20.5	14.0	9.5	6.5	9.5	16.0	22.0	25.5	27.5	30.0	28.5	24.5

511

08408500 DELAWARE RIVER NEAR RED BLUFF, NM

LOCATION.--Lat 32°01'23", long 104°03'15", in NE1/4SW1/4SE1/4 sec.23, T.26 S., R.28 E., Eddy County, Hydrologic Unit 13070002, near center of channel on downstream side of pier of bridge on U.S. Highway 285, 2.1 mi (3.4 km) north of the New Mexico-Texas State line, 3.6 mi (5.8) km southwest of Red Bluff, 3.7 mi (6.0 km) upstream from mouth, 14 mi (23 km) south of Malaga, and 405.6 mi (652.6 km) upstream from mouth.

DRAINAGE AREA .-- 689 mi2 (1,785 km2).

CAL YR 1977 TOTAL 832.97

10547.50

WTR YR 1978 TOTAL

MEAN 2.28

MEAN 28.9

MAX

MAX

139

4960

PERIOD OF RECORD.--April 1912 to September 1913, May 1914 to June 1915, October 1937 to current year. Published as "near Malaga, N. Mex." 1912-13, and as "near Angeles, Tex." 1914-15.

GAGE.--Water-stage recorder. Datum of gage is 2,900.66 ft (884.121 m) National Geodetic Vertical Datum of 1929. Prior to May 1914, at site 3.0 mi (4.8 km) upstream at different datum. May 1914 to June 1915 at site 2.5 mi (4.0 km) downstream at different datum.

REMARKS.--Records fair. One small upstream diversion. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE .--41 years (water years 1938-78), 13.5 ft3/s (0.382 m3/s), 9,780 acre-ft/yr (12.1 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $81,400 \text{ ft}^3/\text{s}$ (2,310 m³/s) Oct. 2, 1955, gage height, 27.0 ft (8.23 m), from floodmarks, from rating curve extended above 1,500 ft $^3/\text{s}$ (42.5 m³/s) on basis of slope-area measurements at gage heights 8.65, 12.84, 18.00, and 27.0 ft (2.637, 3.914, 5.486, and 8.23 m); no flow for many days most years.

EXTREMES OUTSIDE PERIOD OF RECORD .-- Maximum discharge since at least 1911, that of Oct. 2, 1955.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 17,000 ft³/s (481 m³/s) Sept. 25, gage height, 14.61 ft (4.453 m); no flow for many days.

		DISCHA	RGE, IN C	UBIC FEET	PER SECO	ND, WATER AN VALUES	YEAR OCT	OBER 197	7 TO SEPTE	MBER 1978	3	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.67	1.7	2.1	2.2	1.9	1.7	.15	.00	.00	.00	.00
2	.00	.67	1.7	2.0	2.1	1.9	1.6	.93	510	.00	.03	1.9
3	.00	.67	1.7	2.0	2.1	1.9	1.3	.33	450	5.0	35	74
4	.00	.81	1.7	2.1	2.0	1.9	1.3	.68	21	2.0	1.6	154
5	.00	1.0	1.7	2.1	2.0	1.9	1.2	.92	6.0	.20	.22	18
6	.00	1.0	1.6	2.1	2.0	1.7	1.2	.65	3.0	.00	.00	4.0
7	.00	1.1	1.6	2.1	2.0	1.6	1.2	.40	2.0	17	.00	1.3
8	.01	1.1	1.6	2.0	2.0	1.6	1.3	.15	1.0	23	.00	.67
9	.45	1.0	1.6	2.0	2.0	1.6	1.3	.07	.70	5.1	.00	.38
10	.54	1.1	1.6	2.0	1.9	1.9	1.2	.05	.40	1.2	3.3	.15
11	.49	1.2	1.6	2.1	2.0	1.8	1.3	.06	.20	.50	2.7	.08
12	.48	1.4	1.7	2.1	2.3	1.7	1.3	.04	.10	.28	.22	.00
13	.42	1.4	1.8	2.1	2.1	1.6	1.2	.03	.00	.13	.00	.00
14	.43	1.5	1.9	2.1	2.1	1.6	1.3	.03	.00	.15	.00	.00
15	.44	1.5	1.9	2.1	1.9	1.6	1.3	.00	.00	.02	.00	.00
16	.45	1.5	1.7	2.1	1.9	1.7	1.2	.00	.00	.00	.00	.00
17	.46	1.4	1.7	2.1	1.9	1.6	.85	.00	.00	.00	.00	.00
18	-44	1.5	1.7	2.1	1.9	1.7	.73	.00	.00	.00	.00	.00
19	.47	1.5	1.7	2.0	1.8	1.7	.68	.00	.00	.00	.00	.00
20	.47	1.5	1.8	2.1	1.8	1.8	.69	.00	.00	.00	.00	.00
21	.47	1.4	1.8	2.1	1.8	1.7	.73	.00	.00	.00	.00	9.9
22	.52	1.4	1.8	2.1	1.8	1.8	.84	.00	.00	.00	.00	9.1
23	4.7	1.5	1.9	2.1	1.8	1.7	.85	.00	.00	.39	.00	.34
24 25	1.7	1.5	1.9	2.1	1.9	1.7	.56	.00	.00	17	.00	81 4960
25	.84	1.6	1.9	2.1	1.8	1.7	.46	9.3	.00	6.2	.00	4900
26	.74	1.6	1.9	2.1	1.8	1.7	.58	11	.00	.91	.00	3180
27	.81	1.5	1.9	2.1	1.9	1.8	.52	1.1	.00	.04	.00	269
28	1.0	1.6	2.0	2.1	1.9	1.7	.54	.00	.00	.00	.00	135
29 30	1.0	1.6	2.0	2.0		1.6	.60	.00	.00	.00	.00	104
31	.95	1.7	2.1	2.0		1.6	.43	.00	.00	.00	.00	86
31	./4	1	2.1	2.1		1.5		.00		.80	.00	
TOTAL	19.02	38.92	55.3	64.3	54.7	53.2	29.96	25.89	994.40	79.92	43.07	9088.82
MEAN	.61	1.30	1.78	2.07	1.95	1.72	1.00	.84	33.1	2.58	1.39	303
MAX	4.7	1.7	2.1	2.1	2.3	1.9	1.7	11	510	23	35	4960
MIN	.00	-67	1.6	2.0	1.8	1.5	.43	.00	.00	.00	.00	.00
AC-FT	38	77	110	128	108	106	59	51	1970	159	85	18030

.00

.00

MIN

MIN

AC-FT

AC-FT 20920

1650

08410000 RED BLUFF RESERVOIR NEAR ORLA, TX

LOCATION (revised).--Lat 31°54'04", long 103°54'35", Reeves County, Hydrologic Unit 13070001, at right end of Red Bluff Dam on the Pecos River, 2.8 mi (4.5 km) upstream from Salt Creek, and 5.2 mi (8.4 km) north of Orla.

DRAINAGE AREA.--20,720 mi² (53,660 km²), approximately (contributing area).

PERIOD OF RECORD.--February 1937 to current year. Monthly contents only for some periods, published in WSP 1312.

GAGE.--Nonrecording gage. Datum of gage is 0.43 ft (0.131 m) below National Geodetic Vertical Datum of 1929.

REMARKS.--The reservoir is formed by a rock-faced earthfill dam 9,200 ft (2,800 m) long. The dam was completed and storage began in September 1936. The dam and reservoir are owned and operated by the Red Bluff Water Power Control District. The water is used for power development and for irrigation from Mentone to Grandfalls. The uncontrolled emergency spillway, 790 ft (241 m) wide, is a cut through natural ground located to the right of right end of dam. The controlled service spillway is equipped with 12 tainter gates that are 25 by 15 ft (8 by 5 m) high. Inflow is partly regulated by storage in Lake Sumner, Lake McMillan, and Lake Avalon, total combined capacity 154,400 acre-ft (190 hm²), and by several small diversion dams that divert water for power or irrigation. The capacity curve is based on Geological Survey topographic map, survey of 1925. Figures given herein represent total contents. Data regarding the dam and reservoir are given in the following table:

	Gage height (feet)	(acre-feet)
Top of dam	2,856.0	
Crest of spillway	2.845.0	340,000
Top of gates (top of conservation pool)	2.842.0	310,000
Crest of spillway	2.827.0	166,500
Lowest gated outlet (invert)	2 764 0	3 000

COOPERATION.--Gage-height records and capacity curve were furnished by the Red Bluff Water Power and Control District.

EXTREMES (at 0800) FOR PERIOD OF RECORD.--Maximum contents observed, 352,000 acre-ft (434 hm³) Sept. 27, 28, 1941, gage height, 2,846.2 ft (867.52 m), observed on nonrecording gage at service spillway (affected by variable drawdown due to flow through tainter gates); minimum observed, 11,080 acre-ft (13.7 hm³) May 13, 1948, gage height, 2,781.4 ft (847.77 m).

EXTREMES (at 0800) FOR CURRENT YEAR.--Maximum contents observed, 96,500 acre-ft (119 hm³) Sept. 30, gage height, 2,815.5 ft (858.16 m); minimum observed, 20,960 acre-ft (25.8 hm³) Oct. 2, gage height, 2,790.4 ft (850.51 m).

Capacity table (gage height, in feet, and total contents, in acre-feet)

2,790.0	20,400	2,810.0	71,500
2,796.0	30,300	2,816.0	99,000
2,803.0	47,000		

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 INSTANTANEOUS OBSERVATIONS AT 0800

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	21100 20960	22160 22040	22280 22280	22880 22880	23760 23950	25070 25070	25240 25240	24710 24710	24520 24520	34400 34400	33560 33560	32720 32720
3	21100	22040	22400	22880	23950	25070	25240	24710	31300	34400	33560	32720
4	21100	22040	22400	22880	23950	25070	25240	24710	35060	34400	33560	32720
5	21100	22040	22400	22880	23950	25240	25240	24710	35280	34190	33770	32930
6	21100	22040	22400	23000	24140	25240	25240	24520	35500	34190	33770	32930
7	21100	22040	22400	23000	24140	25240	25070	24520	35500	34190	33770	33140
8	21100	22160	22400	23000	24140	25240	25070	24520	35500	34190	33770	33140
9	21100	22160	22400	23000	24330	25240	25070	24520	35500	34190	33770	32930
10	21100	22160	22400	23000	24330	25240	25070	24520	35500	33980	33560	32930
11	21100	22160	22400	23000	24330	25240	25070	24520	35500	33980	33560	32930
12	21100	22160	22400	23190	24330	25240	25070	24520	35500	33980	33560	32930
13	21100	22160	22520	23190	24520	25240	25070	24520	35280	33770	33350	32930
14	21240	22160	22520	23190	24520	25240	25070	24330	35280	33770	33350	32930
15	21240	22160	22520	23190	24520	25240	25070	24330	35280	33770	33350	32930
16	21240	22160	22520	23190	24520	25240	25070	24330	35280	33560	33350	32930
17	21240	22160	22520	23190	24520	25240	25070	24330	35060	33560	33350	32930
18	21240	22160	22520	23190	24520	25240	24900	24330	35060	33560	33140	32930
19	21240	22160	22640	23380	24710	25240	24900	24140	35060	33350	33140	32930
20	21240	22280	22640	23380	24710	25240	24900	24520	34840	33350	32930	32720
21	21240	22280	22640	23380	24710	25240	24900	24710	34840	33350	32930	32930
22	21240	22280	22640	23380	24710	25410	24900	24710	34840	33350	32930	33140
23	21520	22280	22640	23380	24900	25410	24900	24710	34620	33350	33140	33350
24	21800	22280	22640	23570	24900	25410	24900	24710	34620	33770	32930	33350
25	21920	22280	22640	23570	24900	25410	24710	24710	34400	33770	32930	35940
26	21920	22280	22640	23570	24900	25410	24710	24710	34400	33770	32930	61400
27	21920	22280	22640	23570	24900	25240	24710	24710	34400	33770	32930	89000
28	22040	22280	22760	23570	24900	25240	24710	24520	34190	33770	32930	95000
29	22040	22280	22760	23760		25240	24710	24520	34400	33560	32930	96000
30	22040	22280	22760	23760		25240	24710	24520	34400	33560	32720	96500
31	22040		22880	23760		25240		24520		33560	32720	9
MAX	22040	22280	22880	23760	24900	25410	25240	24710	35500	34400	33770	96500
MIN	20960	22040	22280	22880	23760	25070	24710	24140	24520	33350	32720	32720
(†)	2791.2	2791.4	2791.9	2792.4	2793.0	2793.2	2792.9	2792.8	2798.0	2797.6	2797.2	2815.5
(+)	+940	+240	+600	+880	+1140	+340	-530	-190	+9880	-840	-840	+63780

CAL YR 1977 MAX 70700 MIN 20960 # -45820 WTR YR 1978 MAX 96500 MIN 20960 # +75400

[†] Gage height, in feet, at end of month. ‡ Change in contents, in acre-feet.

LOCATION.--Lat 31°52'21", long 103°49'52", Reeves County, Hydrologic Unit 13070001, on right bank at bridge on Farm Road 652, 5.5 mi (8.8 km) downstream from Salt Creek (Screw Bean Arroyo), 5.9 mi (9.5 km) northeast of Orla, and 8.5 mi (13.7 km) downstream from Red Bluff Reservoir.

08412500 PECOS RIVER NEAR ORLA, TX

DRAINAGE AREA.--21,210 mi² (54,930 km²), approximately (contributing area).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1937 to current year.

REVISED RECORDS .-- WSP 928: 1937.

GAGE.--Water-stage recorder. Datum of gage is 2,730.86 ft (832.366 m) National Geodetic Vertical Datum of 1929. Prior to Nov. 16, 1969, at site 6.9 mi (11.1 km) downstream at datum 12.81 ft (3.904 m) lower.

REMARKS.--Water-discharge records fair. Most of flow is released from storage in Red Bluff Reservoir (station 08410000). Occasional runoff from draws between dam and station. Many diversions above Red Bluff Reservoir for irrigation.

AVERAGE DISCHARGE .--41 years (water years 1938-78), 173 ft3/s (4.899 m3/s), 125,300 acre-ft/yr (154 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 23,700 ft³/s (671 m³/s) Sept. 29, 1941, gage height, 20.74 ft (6.322 m), site and datum then in use; no flow at times in 1946 and 1965.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 19,000 ft3/s (538 m3/s) Sept. 26, gage height, 24.64 ft (7.510 m), from rating curve extended above 5,100 ft³/s (144 m³/s); minimum, 1.5 ft³/s (0.042 m³/s) June 27.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES AUG SEP DAY OCT NOV DEC JAN MAR APR MAY JUN JUL FEB 2.3 20 18 8.0 7.2 6.0 8.6 5.6 11 11 10 8.6 15 7.5 9.7 9.2 17 12 11 9.7 5.1 10 6.0 7.2 7.5 8.6 14 9.8 9.2 9.7 8.6 6.0 5.6 12 27 6.0 112 7.0 19 13 9.8 9.2 6.0 5 14 9.8 9.2 7.5 6.0 22 6.0 21 14 6.7 9.4 6.5 9.2 14 5.6 17 7.0 5.6 6 14 9.8 6.2 9.4 9.2 7.0 10 5.1 16 8.6 6.1 5.1 14 10 8.6 9.0 7.0 7.0 4.4 8.6 4.7 15 8.6 8 6.0 6.5 14 10 8.6 8.6 9 6.6 6.0 6.5 4.0 10 14 8.0 9.2 14 10 8.6 10 9.0 7.0 9.7 4.0 13 8.0 14 6.5 7.5 10 8.6 8.0 12 8.6 8.5 8.0 8.0 7.5 4.7 6.5 4.0 13 7.5 12 15 8.6 7.6 9.2 11 7.5 8.0 4.7 5.6 3.6 7.5 8.6 3.6 12 13 15 8.6 8.3 9.7 13 8.0 8.0 4.4 2.9 4.0 19 14 9.1 9.1 8.1 9.2 8.3 7.5 7.5 2.9 12 7.0 8.2 9.2 8.0 7.0 4.0 11 15 8.7 8.6 6.5 9.2 14 6.5 16 8.2 9.7 8.5 8.0 7.5 3.6 5.6 2.9 5.1 7.0 8.1 2.9 26 17 9.2 8.6 8.5 5.6 6.5 3.2 4.4 7.5 2.9 7.5 12 2.9 4.0 18 9.7 8.6 8.0 8.3 5.6 7.5 6.0 8.0 3.2 8.6 3.6 19 9.7 8.2 6.9 8.1 5.6 5.1 3.6 10 25 3.2 10 9.1 5.1 9.7 9.2 20 6.8 8.3 5.1 976 21 8.2 8.1 5.6 29 2.9 3.6 10 9.8 302 4.7 5.1 12 2.9 3.6 10 8.1 8.6 69 5.6 2.6 340 23 181 9.1 8.6 8.9 4.7 8.6 5.6 11 2.6 896 21 100 24 35 7.2 8.7 9.4 4.4 8.0 5.6 4490 2.0 32 15 25 21 6.2 8.6 9.7 4.7 8.0 5.1 3.2 6.2 2.9 2.3 20 10 11400 26 15 8.6 9.7 5.1 8.6 6.0 7.0 9.8 27 12 6.2 8.6 5.6 9.2 7.0 2.9 2.0 16 2120 316 2.6 17 15 28 13 6.7 8.7 8.6 5.1 8.6 7.5 20 14 7.0 122 7.2 9.2 29 14 9.6 8.5 ---6.5 2.3 49 7.0 30 13 11 8.1 ---6.0 9.2 14 8.0 12 2.3 8.1 31 11 ---1478.1 20156.9 181.8 409.0 TOTAL 575.8 258.3 247.8 205.1 239.8 203.6 911.4 672 7.74 30.4 47.7 896 13.2 MEAN 18.6 8.61 7.99 8.89 7.33 6.79 5.86 11400 9.2 29 MAX 181 11 12 10 13 2.3 7.0 6.2 6.1 8.1 4.4 5.1 2.0 MIN 8.7 5.6 361 1810 2930 811 39980 512 476 404 AC-FT 1140 492 546 407

WTR YR 1978 TOTAL 25143.1 MEAN 68.9 MAX 11400 MIN 2.0 49870

NOTE .-- No gage-height record Sept. 24-30.

08412500 PECOS RIVER NEAR ORLA, TX--Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: July 1937 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1937 to current year. WATER TEMPERATURES: March 1953 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 29,400 micromhos May 16, 1978; minimum daily, 1,610 micromhos June 2, 1948.
WATER TEMPERATURES (1953-61, 1968-78): Maximum daily, 31.0°C Aug. 13, 1978; minimum daily, 0.5°C Jan. 6, 1971, Jan. 11, 1973.

WATER TEMPERATURES: Maximum daily, 29,400 micromhos May 16; minimum daily, 1,730 micromhos Sept. 26. WATER TEMPERATURES: Maximum daily, 31.0°C Aug. 13; minimum daily, 2.0°C Jan. 22.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPEI ATURI (DEG	AS	- NE NON L BON	NCAR- I	ALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM. DIS- SOLVED (MG/L AS NA)
DEC	0020		25500				••	2400	950	330	4900
31 FEB	0830	8.0	25500	7.7	0	5 37	00	3600	950	330	4900
14 MAR	1530	8.5	24100	7.7	9	.0 36	00	3400	880	330	4500
29 APR	0915	9.3	26000	7.3	15	.0 40	00	3900	1000	360	5400
19 JUN	0820	7.6	27200		16	0 46	00	4500	1200	390	5400
13 JUL	1525	13	19400		27	.0 34	00	3300	930	260	3700
25 AUG	1600	28	8880		26	.5 15	00	1400	420	110	1600
19 SEP	0830	6.6	12500		25	.0 19	00	1900	490	170	2300
06	1450	9.2	21000		28	.5 29	00	2900	830	210	4400
DATE	SOD SORI TIC RAT	D- SI D- DI DN SOL	UM, BICA S- BONA VED (MG	TE CA	R- I ATE S G/L	JLFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVEI (MG/L AS F)	SILICA DIS- SOLVE (MG/L AS SIO2)	CONS D TUEN DI SOL	OF TI-
DEC 31	3:	5 4	8	140	0 :	3200	8100	152	- 5,	5 17	600
FEB 14	3	3 4	7	140	0	2900	7600		- 11	16	300
MAR 29	3	7 5	5	140	0	3500	8400	-	- 1.	3 18	800
APR 19	. 3	5 11	0	150	0	4000	8500	40	- 3.	6 19	700
13	. 2	5	8	130	0	3000	5800	1.	1 6.	7 13	800
25 AUG	1	8 2	4	110	0	1300	2400	•	7 13	9	920
19 SEP	2:	3 3	6	88	0	1900	3400		7 3.	4 8	340

15300

RIO GRAND BASIN
08412500 PECOS RIVER NEAR ORLA, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

MONTH	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA+MG) (MG/L)
ост. 1977	575.8	15400	10400	16200	4440	6900	2250	3500	****
NOV. 1977	258.3	24000	16600	11600	7590	5290	3260	2270	****
DEC. 1977	247.8	24900	17300	11600	7970	5340	3370	2250	****
JAN. 1978	275.5	24700	17200	12800	7890	5870	3340	2490	****
FEB. 1978	205.1	23600	16300	9050	7420	4110	3210	1780	****
MAP. 1978	239.8	25300	17600	11400	8120	5260	3410	2210	****
APR. 1978	203.6	26600	18500	10200	8640	4750	3550	1950	****
MAY 1978	181.8	22600	15600	7680	7070	3470	3100	1520	****
JUNE 1978	911.4	9530	6350	15600	2510	6160	1590	3920	1820
JULY 1978	1478.1	7140	4710	18800	1760	7030	1310	5240	1480
AUG. 1978	409	19900	13600	15100	5980	6600	2780	3070	****
SEPT 1978	20156.89	2560	1680	91700	460	25200	690	37700	820
TOTAL	25143.09	*	**	232000	**	86000	**	67900	**
WTD.AVG	68.89	5070	3400	**	1300	**	1000	**	1200

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	18500	24500	23800	25900	23800	24800	26200	28300	22100	13600	17200	22000
2	18400	25400	24600	25600	23500	24600	26100	28200	18000	11900	18100	23600
3	18300	24900	24700	25400	23600	24800	26200	27900	5700	11800	20600	23200
4	18100	25000	24600	25200	23900	24700	26300	27600	11200	12600	20700	21400
5	18000	24600	24500	25100	23800	24600	26200	27300	13000	13200	26000	22000
6	20800	24200	24700	25400	23600	24100	26300	27700	13600	14400	23100	21600
7	21000	24500	24900	25400	23500	24300	26100	27800	15000	14700	23500	21500
8	20300	24100	24900	26500	23300	24400	26200	27900	16400	15700	24200	21400
9	21000	23800	24600	24900	23200	24800	26300	28000	17400	16200	24500	20900
10	20900	23600	24800	24600	23400	24700	26100	28100	17900	16700	24300	20400
11	20700	23700	24700	24500	23600	24700	26000	28300	18000	17600	22800	20000
12	20500	23500	24900	24700	23300	25200	26100	28500	18300	18300	21300	20500
13	20900	23300	24400	24800	23200	25100	26200	29000	19400	19300	21500	20300
14	20700	23500	24700	24700	23900	25100	26300	28100	17500	19200	21600	20200
15	20400	23400	25000	24600	23400	24800	26400	29100	18500	19900	21700	20300
16	22800	23300	25100	24600	23700	27700	26700	29400	18700	20300	21800	20400
17	21800	24600	25500	24400	22900	26000	26800	29200	19900	20800	12000	21000
18	22100	24100	24900	24500	22400	25200	27000	29100	21600	17500	12100	20900
19	55500	23800	25500	24400	23300	25100	27100	29000	22100	21400	12200	21700
20	22500	23500	25800	24300	23500	25000	27200	16500	22300	21600	13000	20000
21	22700	23400	25700	24500	23700	25200	26900	15000	22600	19900	17300	3860
25	22400	23300	25700	24800	23900	25300	26800	18200	22800	22200	20100	6310
23	9000	23400	25300	24300	23800	25700	27000	19600	22700	10000	21400	9850
24	9190	23000	24700	23700	23900	25900	27100	19800	22200	4180	18000	9700
25	12500	22800	24600	24300	24400	25800	27200	20200	21700	9310	22500	2120
26	14300	25300	24700	24400	24500	25900	27000	20400	21300	10700	17900	1730
27	17600	23500	24800	24400	24600	25800	26800	20600	21200	12500	18100	3300
28	20400	24900	24700	24300	24600	25700	26600	21200	17000	14200	16800	6450
29	21200	24500	25500	24200	24500	25900	27700	21400	15000	14800	17900	10000
30	21500	24000	25100	24100		25800	28300	21600	12500	15500	19500	12500
31	23400	24000	25300	24000		26000		21900		16100	21200	
MEAN	19500	24000	24900	24700	23700	25200	26600	25000	18200	15700	19800	16300

516

RIO GRANDE BASIN 08412500 PECOS RIVER NEAR ORLA, TX--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	22.0		8.0	8.5	6.0	13.5	25.0	18.5	23.5	28.5	30.0	21.0
2		12.0	9.5	4.5	7.0	15.0	20.0	18.5	27.0	26.0	27.0	23.5
3	19.5		10.0	3.0	7.0	11.0	23.5	15.0	18.5	26.0	26.0	22.0
4	21.0		9.5	4.0	6.0	7.0	18.5		25.0	26.0	26.0	22.0
5	20.5		9.5	5.0	7.0	13.0	19.0	19.5	26.0	25.0	26.0	23.5
6	23.0		8.5	6.0	8.5	14.5	22.0	19.5	25.0	30.0	23.5	23.0
7	22.0		8.0	8.5	8.0	11.0	19.5	19.5	24.5	25.0	25.0	
8	21.0		7.0	6.0	8.5	15.0	19.0	18.5	24.5	30.0	26.0	20.5
9	19.5		9.0	5.0	8.0	10.0	20.0	25.0	29.5	24.5	30.0	22.0
10	17.0		5.0	4.0	6.0	17.0	16.0	21.0	25.0	24.5	25.0	23.5
11	18.5		9.5	3.5	6.0	17.0	20.0	20.0	27.0	30.0	30.5	22.0
12	15.5		5.0	4.0	9.0	16.5	15.5	19.5	26.0	30.0	25.0	26.0
13	15.0	10.0	6.0	5.0	9.0	12.0	22.0	20.0	29.5	30.0	31.0	23.5
14	15.0	9.5	6.0	5.5	9.5	17.0	18.5		27.0	25.0	27.0	23.5
15	15.5	10.0	5.5	5.5	8.5	12.0	22.0		30.0	25.0	26.5	23.0
16	15.0	10.0	8.5	7.0		14.5	22.0		27.0	25.0	26.0	
17	15.5	13.5	7.0	6.0	8.5	10.0	19.5		27.0	25.0	25.0	
18	16.0	9.5	8.5	4.5	9.5	18.5	23.5		26.0	30.0		
19	16.5	10.5	7.0	4.5	8.0	13.5	16.0		26.5	25.0	25.0	
20	16.0	12.0	6.0	4.0		14.5	16.0		26.0	25.0	28.5	
21	18.0	11.0	3.5	3.5	10.0	17.0	16.5		26.0	24.0	23.5	
22	18.5		3.0	2.0	5.0	17.0	16.0		30.0	26.0	25.5	
23	15.0	10.0	5.0	3.5	13.0	22.0	23.5		26.0	25.0	29.5	
24	15.0	9.5	7.0	3.0	8.5		17.0		26.5	20.0	26.0	12.0
25	15.5	9.0	8.5	3.0	15.0	15.0	23.0	27.0	26.0	27.0	25.0	18.5
26	16.0	13.5	7.0	3.0	12.0	14.5	18.5	25.0	26.5	28.5	24.5	17.0
27	18.5	9.0	6.0	6.0	11.0	15.0	25.0	24.5	24.5	29.5	25.0	16.0
28	17.0	9.5	6.0	5.0	12.0	19.5	21.0	26.0	19.5	30.0	24.5	16.0
29	19.5	9.5	7.0			16.5	20.0	24.5			21.0	20.0
30	19.0	8.5	8.0	5.5		17.0	19.5	23.5	23.5	26.0	21.5	20.0
31	19.5		8.5	6.0		18.5		24.5		25.0	20.0	
MEAN	18.0	10.5	7.0	5.0	8.5	15.0	20.0	21.5	26.0	26.5	26.0	21.0

LOCATION.--Lat 31°37'57", long 103°34'30", Loving County, Hydrologic Unit 13070001, on right bank 173 ft (53 m) downstream from headgate, 5.3 mi (8.5 km) south of Mentone, and 15 mi (24 km) northwest of Pecos.

PERIOD OF RECORD.--February 1922 to July 1925, August 1939 to May 1941, March 1942 to September 1957, and March 1964 to current year. Records from August 1939 to October 1940, not equivalent because diversion was not included. Published as "Farmers Independent Canal near Porterville" 1922-25.

GAGE.--Water-stage recorder. Concrete weir since Mar. 1, 1964. Altitude of gage is 2,640 ft (805 m), from topographic map. Prior to July 22, 1925, at site 250 ft (76 m) downstream at different datum. Mar. 10, 1939, to Oct. 4, 1940, at site 2.5 mi (4.0 km) downstream at different datum. Oct. 5, 1940, to Feb. 19, 1943, at site 123 ft (37 m) upstream at datum 1.10 ft (0.335 m) higher. Feb. 20, 1943, to Mar. 1, 1954, at site 123 ft (37 m) upstream at present datum.

REMARKS.--Records good. Local runoff is deleted from daily discharge record. Water is diverted from right bank of Pecos River, and is used for irrigation between Mentone and Pecos.

AVERAGE DISCHARGE .--32 years (water years 1923-24, 1940, 1943-57, 1965-78), 8.89 ft3/s (0.252 m3/s), 6,440 acre-ft/yr (7.94 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 160 ft³/s (4.53 m³/s) June 14, 1922; no flow at times each year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES

					11127	III INLOLD						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.02	.00	.00	.00	.00	.00	.00	.00	.00	.00	.34	.00
2	.02	.00	.00	.00	.00	.00	.00	.00	.00	15	.34	.00
3	.02	.00	.00	.00	.00	.00	.00	.00	.00	17	.34	.00
4	.02	.00	.00	.00	.00	.00	.00	.00	3.1	3.8	.34	.00
5	.02	.00	.00	.00	.00	.00	.00	.00	24	.34	.34	.00
	•02	.00	•00	.00	.00	•00	.00	•00				
6 7	.02	.00	.00	.00	.00	.00	.00	.00	18	.14	.24	.00
7	.02	.00	.00	.00	.00	.00	.00	.00	12	.24	.24	.46
8	.01	.00	.00	.00	.00	.00	.00	.00	7.4	.24	.24	.70
9	.02	.00	.00	.00	.00	.00	.00	.00	.34	.24	.24	.70
10	.02	.00	.00	.00	.00	.00	.00	.00	.14	.20	.24	.70
11	.02	.00	.00	.00	.00	.00	.00	.00	.14	.04	.24	.56
12	.02	.00	.00	.00	.00	.00	.00	.00	.14	.00	.34	.56
13	.02	.00	.00	.00	.00	.00	.00	.00	.02	.00	.34	.56
14	.02	.00	.00	.00	.00	.00	.00	.00	.02	.00	.24	.56
15	.01	.00	.00	.00	.00	.00	.00	.00	.01	.00	.14	.56
	.01	.00	•00	.00	.00	•00	•00	•00	.01			
16	.00	.00	.00	.00	.00	.00	.00	.00	.02	.00	.14	.56
17	.00	.00	.00	.00	.00	.00	.00	.00	.02	.00	.64	.56
18	.00	.00	.00	.00	.00	.00	.00	.00	.01	.00	1.2	.44
19	.00	.00	.00	.00	.00	.00	.00	.00	.01	.00	4.2	.34
20	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.5	.34
21	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.24	.34
22	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.24	.14
23	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.14	.00
24	.00	.00	.00	.00	.00	.00	.00	.00	.00	7.9	.02	.00
25	.00	.00	.00	.00	.00	.00	.00	.00	.00	41	.00	.02
0.0	0.0	0.0	0.0	0.0	0.0	0.0	.00	.00	.00	22	.01	.07
26	.00	.00	.00	.00	.00	.00			.00	5.1	1.4	.07
27	.00	.00	.00	.00	.00	.00	.00	.00			1.4	.07
28	.00	.00	.00	.00	.00	.00	.00	.00	.05	1.2	.70	.02
29	.00	.00	.00	.00		.00	.00	.00	.00		.34	.02
30	.00	.00	.00	.00		.00	.00	.00	.00	.34		
31	.00		.00	.00		.00		.00		.34	.06	
TOTAL	.28	.00	.00	.00	.00	.00	.00	.00	65.42	115.56	16.43	8.35
MEAN	.009	.000	.000	.000	.000	.000	.000	.000	2.18	3.73	.53	.28
MAX	.02	.00	.00	.00	.00	.00	.00	.00	24	41	4.2	.70
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
AC-FT	.6	.00	.00	.00	.00	.00	.00	.00	130	229	33	17
AC-FT	.6	.00	.00	.00	.00	.00	.00	.00	130	229	33	1

CAL YR 1977 TOTAL 595.46 MEAN 1.63 MAX 29 MIN .00 AC-FT 1180 WTR YR 1978 TOTAL 206.04 MEAN .56 MAX 41 MIN .00 AC-FT 409

08415000 WARD COUNTY WATER IMPROVEMENT DISTRICT NO. 3 CANAL NEAR BARSTOW, TX

LOCATION.--Lat 31°34'28", long 103°30'04", Ward County, Hydrologic Unit 13070001, on left bank 96 ft (29 m) upstream from concrete culvert that crosses canal, 2 mi (3 km) downstream from headgate, and 10.5 mi (16.9 km) northwest of Barstow.

PERIOD OF RECORD.--August 1939 to May 1941, August to September 1941, December 1941 to September 1957, and March 1964 to current

GAGE.--Water-stage recorder. Altitude of gage is 2,600 ft (792 m), from topographic map. Prior to Dec. 14, 1940, at site 1.75 mi (2.82 km) upstream at datum 2.98 ft (0.908 m) higher. Dec. 14, 1940, to May 26, 1941, at site 1.4 mi (2.3 km) upstream at datum 1.72 ft (0.524 m) higher.

REMARKS.--Records fair. Local runoff is deleted from daily discharge record. Water is diverted from the left bank of Pecos River, and is used for irrigation in the vicinity of Barstow.

AVERAGE DISCHARGE.--30 years (water years 1940, 1943-57, 1965-78), 8.89 ft³/s (0.252 m³/s), 6,440 acre-ft/yr (7.94 hm³/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily discharge, 189 ft3/s (5.35 m3/s) Sept. 28, 1978; no flow at times each year.

		DISCHA	RGE, IN C	UBIC FEE	T PER SEC	OND, WATER	YEAR O	CTOBER 1977	TO SEPT	EMBER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	14	12	2.6	.00	.00	.00	.00	.00	.00	.00	1.5	.00
2	8.9	11	2.7	.00	.00	.00	.00	.00	.00	.00	.90	.00
3	5.3	9.1	2.6	.00	.00	.00	.00	.00	.00	.00	.65	.00
4	4.3	7.2	2.2	.00	.00	.00	.00	.00	.07	.00	1.4	.00
5	4.4	6.1	1.9	.00	.00	.00	.00	.00	5.8	.00	2.0	.00
6	4.6	5.4	1.3	.00	.00	.00	.00	.00	12	.00	1.6	.00
7	6.5	5.3	.07	.00	.00	.00	.00	.00	11	.00	1.4	.00
8	8.7	5.6	.04	.00	.00	.00	.00	.00	3.4	.00	1.6	.00
9	9.0	5.7	.03	.00	.00	.00	.00	.00	.10	.00	1.1	.00
10	11	6.2	.02	.00	.00	.00	.00	.00	.07	.00	.62	.00
11	10	6.2	.02	.00	.00	.00	.00	.00	.07	.00	.22	.00
12	9.6	6.4	.02	.00	.00	.00	.00	.00	.04	.00	.06	.00
13	9.7	6.8	.01	.00	.00	.00	.00	.00	.04	.00	.00	.00
14	9.3	6.5	.00	.00	.00	.00	.00	.00	.02	.00	.68	.00
15	8.6	6.3	.00	.00	00	.00	.00	.00	.00	.00	.00	.00
16	8.4	6.2	.01	.00	.00	.00	.00	.00	.00	.00	.00	.00
17	7.0	5.8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
18	5.0	5.9	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
19	4.2	5.8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
20	4.0	5.7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
21	3.8	5.2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
22	3.4	4.9	.00	.00	.00	.00	.00	.00	.00	.00	.00	10
23	4.7	4.8	.00	.00	.00	.00	.00	.00	.00	.00	.00	17
24	20	4.7	.00	.00	.00	.00	.00	.00	.00	.00	.00	12
25	27	4.8	.00	.00	.00	.00	.00	.00	.00	46	.00	20
26	24	4.5	.00	.00	.00	.00	.00	.00	.00	33	.00	59
27	21	4.3	.00	.00	.00	.00	.00	.00	.00	15	.00	186
28	18	3.9	.00	.00	.00	.00	.00	.00	.00	10	.00	189
29	16	3.4	.00	.00		.00	.00	.00	.00	6.9	.00	184
30 31	15	2.9	.00	.00		.00	.00	.00	.00	3.4	.00	168
31	13		.00	.00		.00		.00	1111	2.2	.00	
TOTAL	318.4	178.6	13.52	.00	.00	.00	.00	.00	32.61	116.50	13.73	845.00
MEAN	10.3	5.95	.44	.000	.000	.000	.000	.000	1.09	3.76	.44	28.2
MAX	27	12	2.7	.00	.00	.00	.00	.00	12	46	2.0	189
MIN	3.4	2.9	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
AC-FT	632	354	27	.00	.00	.00	.00	.00	65	231	27	1680
CAL YR WTR YR	1977 TOT 1978 TOT				MAX 30 MAX 189	MIN .00 MIN .00	AC-FT AC-FT					

519

08418000 WARD COUNTY IRRIGATION DISTRICT NO. 1 CANAL NEAR BARSTOW, TX LOCATION.--Lat 31°32'26", long 103°29'42", Ward County, Hydrologic Unit 13070001, on left bank 0.6 mi (1.0 km) downstream from head-gate and 7.9 mi (12.7 km) northwest of Barstow.

PERIOD OF RECORD.--February 1922 to September 1925 (published as "Barstow Canal near Barstow"), August 1939 to May 1941, October 1941 to September 1957, and March 1964 to current year.

GAGE.--Water-stage recorder. Concrete weir since Nov. 20, 1968. Altitude of gage is 2,600 ft (792 m) from topographic map. Prior to Aug. 15, 1939, at site about 3,000 ft (910 m) upstream at different datum.

REMARKS.--Records good. Local runoff is deleted from daily discharge record. Water is diverted from left bank of Pecos River and is used for irrigation in the vicinity of Barstow. An observation of water temperature was made during the year.

AVERAGE DISCHARGE. -- 34 years (water years 1923-25, 1940, 1942-57, 1965-78), 29.5 ft3/s (0.835 m3/s), 21,370 acre-ft/yr (26.3

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 385 ft³/s (10.9 m³/s) Aug. 30, 1923; no flow at times each year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES SEP DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG .00 .00 -00 .00 -00 1 .10 2.6 .00 .00 .00 .00 .00 .00 -00 .00 .00 2 .02 2.5 .00 .00 .00 .00 .00 .00 .00 .00 .00 -00 3 .00 2.5 .00 .00 .00 .00 .00 -00 76 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 5 .00 152 .00 .00 .00 .00 2.2 .00 .00 .00 .00 .00 .00 .00 .00 6 .00 .00 .00 .00 .00 .00 .00 43 5.5 .00 .00 .00 .00 2.1 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 8 .00 1.9 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 9 .00 1.9 .00 .00 .00 .00 .00 .00 .00 .00 10 .00 .00 .00 1.9 .00 .00 .00 .00 .00 .00 .00 .00 11 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 12 .00 1.9 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 -00 .00 13 .00 1.4 .00 .00 .00 .00 .00 .00 .00 .00 14 .00 -02 .00 .00 .00 -00 .00 -00 .00 .00 .00 .00 .00 .00 15 .00 .00 .00 .00 .00 .00 .00 .00 16 .00 18 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 19 .00 .00 .00 .00 .00 .00 .00 -00 -00 .00 .00 .00 20 .00 .00 .00 .00 .00 .00 .00 .00 .00 21 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 24 .00 .00 .00 22 .00 .00 .00 .00 .00 .00 .00 .00 23 .00 .00 .00 .00 .00 221 .00 .00 .00 .00 .00 .00 24 12 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 108 189 .42 71 .00 .00 25 .00 .00 .00 .00 .00 .00 .00 26 19 .00 .00 .00 .00 .00 .00 .00 210 .00 .08 .00 27 .00 15 .00 .00 6.7 .00 .00 .00 .00 .00 .00 .00 28 5.0 .00 .00 .00 .00 6.9 .00 .00 .00 .00 .00 .00 70 29 4.0 .00 .00 .00 .00 .00 .00 .00 4.3 .00 .00 186 30 3.4 .00 .00 .00 ___ .00 .00 -00 .00 2.1 .00 2.9 .77 .00 31 .00 .00 ---.00 ------TOTAL 27.42 .00 .00 276.50 428.07 .00 609.50 124.12 .00 .00 .00 .00 .000 MEAN 4.00 .000 .000 .000 .000 .000 9.22 13.8 20.3 .91 .000 221 MAX 2.6 .00 .00 .00 .00 .00 .00 152 210 .00 71 .00 MIN .00 .00 .00 .00 .00 .00 .00 .00 .00 -00 .00 1210 849 .00 AC-FT 246 54 -00 .00 .00 .00 .00 .00 548

CAL YR 1977 TOTAL 2787.51 MEAN 7.64 71 .00 AC-FT 5530 AC-FT 2910 WTR YR 1978 TOTAL 1465.61 MEAN 4.02 MAX 221 MIN .00

08431700 LIMPIA CREEK ABOVE FORT DAVIS, TX (Hydrologic bench-mark station)

LOCATION.--Lat 30°36'55", long 104°00'10", Jeff Davis County, Hydrologic Unit 13070005, on left bank about 600 ft (180 m) upstream from bridge on State Highway 118, about 2,000 ft (610 m) upstream from Jones Creek, and 6.8 mi (10.9 km) west of Fort Davis.

DRAINAGE AREA .-- 52.4 mi² (135.7 km²).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1965 to current year.

GAGE.--Water-stage recorder. Datum of gage is 5,178.71 ft (1,578.471 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records fair. No diversion above station. Recording rain gage at station.

AVERAGE DISCHARGE.--13 years, 3.08 ft3/s (0.0872 m3/s), 0.80 in/yr (20 mm/yr), 2,230 acre-ft/yr (2.75 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,420 ft 3 /s (96.9 m 3 /s) Sept. 25, 1978, gage height, 8.92 ft (2.719 m), from rating curve extended above 150 ft 3 /s (4.25 m 3 /s) on basis of slope-area measurements of 1,130, 1,560, and 2,630 ft 3 /s (32.0, 44.2, and 74.5 m 3 /s); no flow at times each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1925, about 10 ft (3.0 m) in 1939, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,420 ft 3 /s (96.9 m 3 /s) Sept. 25, gage height, 8.92 ft (2.719 m), from rating curve extended as explained above, no other peak above base of 1,000 ft 3 /s (28.3 m 3 /s); no flow most of year.

		DISCHARG	E, IN CU	JBIC FEET	PER SECON	ND, WATER AN VALUES	YEAR OC	TOBER 1977	TO SEPTE	MBER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
3	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
9	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
11	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
12	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
13	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
14	.00	.00					.00	.00	.00	.00	.00	.00
15	.00		.00	.00	.00	.00					.00	.00
15	•00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
16	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
17	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
21	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
23	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
24	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	96
25	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	6.7	1440
26	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	3.7.	1350
27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	275
28	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	105
29	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	64
30	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	42
31	.00		.00	.00		.00		.00	-1.7	.00	.00	
TOTAL	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	10.40	3372.00
MEAN	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.34	112
MAX	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	6.7	1440
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
CFSM	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.006	2.14
IN.	.00	.00						.000		.00	.01	2.39
			.00	.00	.00	.00	.00	.00	.00			6690
AC-FT	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	21	0090
CAL YR WTR YR	1977 TOTAL 1978 TOTAL			.000 9.27	MAX MAX 1440	.01 MI		CFSM .000 CFSM .18	IN IN 2.	.00 AC-FT	6710	.02

521

RIO GRANDE BASIN

08431700 LIMPIA CREEK ABOVE FORT DAVIS, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: May 1965 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM. DIS- SOLVED (MG/L AS NA)
SEP									
27	1210	246	213	16.0	75	3	25	3.1	9.5
									SOLIDS.
	SODIUM	POTAS-				CHLO-	FLUO-	SILICA.	SUM OF
	AD-	SIUM,	BICAR-		SULFATE	RIDE,	RIDE .	DIS-	CONSTI-
	SORP-	DIS-	BONATE	CAR-	DIS-	DIS-	DIS-	SOLVED	TUENTS,
	TION	SOLVED	(MG/L	BONATE	SOLVED	SOLVED	SOLVED	(MG/L	DIS-
	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L	(MG/L	AS	SOLVED
DATE		AS K)	HC03)	AS C03)	AS 504)	AS CL)	AS F)	5102)	(MG/L)
SEP									
27	.5	3.9	88	0	20	5.8	.6	31	142

08433000 BARRILLA DRAW NEAR SARAGOSA, TX

LOCATION.--Lat 30°57'28", long 103°27'33", Reeves County, Hydrologic Unit 13070005, on right bank at downstream side of bridge on U.S. Highway 290 (Interstate 10), 12.2 mi (19.6 km) east of Saragosa, 17.0 mi (27.4 km) east of Balmorhea, and 34.4 mi (55.3 km) west of Fort Stockton.

DRAINAGE AREA .-- 612 mi2 (1,585 km2).

PERIOD OF RECORD.--December 1924 to July 1926, June to September 1932 (published as "Barrilla Creek"), October 1975 to current year. REVISED RECORDS .-- WSP 1312: 1925.

REMARKS.--Records fair. Considerable diversion for irrigation by spreader dams above station.

GAGE.--Water-stage recorder. Datum of gage is 3,078.36 ft (938.284 m), revised, National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1975, water-stage recorder at site 600 ft (180 m) upstream at 6.07 ft (1.850 m) higher datum.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 15,500 ft³/s (439 m³/s) Aug. 30, 1932, gage height, 15.45 ft (4.709 m), site and datum then in use; no flow most of times.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 13,600 ft3/s (385 m3/s) Sept. 26, gage height, 12.75 ft (3.886 m); no flow most of year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 2 .00 .00 .00 .00 .00 .00 .00 .00 34 .00 .00 .00 1.7 3 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 -00 -00 -00 .00 .00 .00 .00 -00 5 .00 .00 3.2 .00 .00 .00 .00 .00 .00 .00 .00 .00 6 .00 8 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 -00 .00 .00 .00 .00 .00 .00 .00 .00 .00 10 .00 .00 -00 -00 .00 .00 -00 .00 .00 .00 -00 .00 12 .00 13 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 14 .00 -00 .00 .00 .00 .00 .00 .00 .00 .00 -00 -00 .00 .00 15 -00 .00 .00 -00 .00 .00 .00 .00 .00 .00 16 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 17 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 18 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 19 .00 .00 .00 .00 .00 .00 -00 .00 .00 .00 .00 .00 20 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 21 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 22 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .02 23 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 24 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 33 -00 .00 25 .00 .00 .00 .00 .00 .00 .00 .00 -00 .00 4260 26 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 27 .00 .00 .00 2720 .00 .00 .00 .00 .00 .00 .00 .00 28 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 738 304 29 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 ---.00 136 30 .00 3.6 .00 .00 .00 -00 ---.00 .00 .00 31 .08 .00 .00 .00 .00 -00 .42 ---------3.20 TOTAL .00 .00 .00 .00 .00 .00 .00 .42 35.70 3.68 8534-02 MEAN .000 .000 .000 .000 .000 .000 .000 .014 1.19 .12 3.2 284 4260 MAX .00 .00 .00 .00 .00 .00 .00 .42 34 3.6 .00 .00 .00 .00 MIN .00 .00 .00 .00 -00 .00 -00 .00 7.3 16930 6.3 AC-FT .00 .00 .00 .00 .00 -00 .00 .8 **CAL YR 1977** TOTAL .00 0.00 .00 WTR YR 1978 TOTAL 8577.02 MEAN 23.5 MAX 4260 .00 AC-FT 17010

MIN

NOTE .-- No gage-height record Sept. 26-28.

08436500 PECOS COUNTY WATER IMPROVEMENT DISTRICT NO. 2 (UPPER DIVERSION) CANAL NEAR GRANDFALLS, TX

LOCATION.--Lat 31°18'43", long 102°55'10", Ward County, Hydrologic Unit 13070001, on left bank about 2.5 mi (4.0 km) upstream from bridge on State Highway 18, 4.6 mi (7.4 km) southwest of Grandfalls, and 12.5 mi (20.1 km) downstream from headgate of canal.

PERIOD OF RECORD.--March 1922 to July 1925 (published as "Imperial Highline Canal near Grandfalls"), August 1939 to September 1957, and March 1964 to current year.

GAGE.--Water-stage recorder. Concrete weir since Dec. 8, 1947. Altitude of gage is 2,455 ft (748 m), from topographic map. Prior to Aug. 21, 1939, water-stage recorder at site 8.5 mi (13.7 km) upstream at different datum. Aug. 21 to Oct. 3, 1939, and May 25 to Aug. 4, 1941, staff gage, and Oct. 4, 1939, to May 21, 1941, and Aug. 5, 1941, to Sept. 30, 1957, water-stage recorder at site 2.5 mi (4.0 km) downstream at different datum.

REMARKS.--Records good. Local runoff is deleted from daily discharge record. Water is diverted from right bank of Pecos River and is used for irrigation and to supply water for Imperial Reservoir. Water is released from Imperial Reservoir into Pecos County Water Improvement District No. 2 canal and into Pecos County Water Improvement District No. 3 canal for irrigation. An observation of water temperature was made during the year.

AVERAGE DISCHARGE.--33 years (water years 1924, 1940-57, 1965-78), 31.6 ft3/s (0.895 m3/s), 22,890 acre-ft/yr (28.2 hm3/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily discharge, 368 ft3/s (10.4 m3/s) Sept. 18, 1923; no flow at times each year.

		DISCHAR	GE, IN C	UBIC FEE		OND, WATER	YEAR OCT	OBER 197	7 TO SEPTE	MBER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
3	.00	.00	.00	.00	.00	.00	.00	.00	.41	.00	.00	.00
4	.00	.00	.00	.00	.00	.00	.00	.00	.05	.00	.00	.00
5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	4.0
6	.00	.00	.00	.00	.00	.00	.00	.00	19	.00	.00	.06
7	.00	.00	.00	.00	.00	.00	.00	:00	149	.00	.00	.00
8	.00	.00	.00	.00	.00	.00	.00	.00	25	.00	.00	.00
9	.00	.00	.00	.00	.00	.00	.00	.00	6.5	.00	.00	.00
10	.00	.00	.00	.00	.00	.00	.00	.00	1.4	.00	.00	.00
11	.00	.00	.00	.00	.00	.00	.00	.00	.01	.00	.00	.00
12	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
13	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
14	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
15	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
16	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
17	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
21	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
23	29	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
24	6.4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
25	.50	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	2.5
26	.03	.00	.00	.00	.00	.00	.00	77	.00	.00	.00	163
27	.00	.00	.00	.00	.00	.00	.00	98	.00	.00	.00	214
28	.00	.00	.00	.00	.00	.00	.00	62	.00	.00	.00	195
29	.00	.00	.00	.00		.00	.00	3.3	.00	.00	12	239
30	.00	.00	.00	.00		.00	.00	.09	.00	.00	2.8	268
31	.00		.00	.00		.00		.00		.00	.10	
TOTAL	35.93	.00	.00	.00	.00	.00	.00	240.39	201.37	.00	14.90	1085.56
MEAN	1.16	.000	.000	.000	.000	.000	.000	7.75	6.71	.000	.48	36.2
MAX	29	.00	.00	.00	.00	.00	.00	98	149	.00	12	268
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
AC-FT	71	.00	.00	.00	.00	.00	.00	477	399	.00	30	2150
CAL YR WTR YR				19.9 4.32	MAX 194 MAX 268	MIN .00 MIN .00	AC-FT AC-FT	14390 3130				

08437500 PECOS COUNTY WATER IMPROVEMENT DISTRICT NO. 2 CANAL NEAR IMPERIAL, TX

LOCATION.--Lat 31°16'38", long 102°43'54", Pecos County, Hydrologic Unit 13070001, on left bank about 2.4 mi (3.9 km) west of Imperial and 7.7 mi (12.4 km), revised, downstream from Imperial Reservoir.

PERIOD OF RECORD.--April 1940 to May 1941, March 1942 to September 1957, and March 1964 to current year. Records since March 1942 are equivalent to earlier records if diversions to Pecos County Water Improvement District No. 3 canal near Imperial (station 08437600) are added to flow past station.

GAGE.--Water-stage recorder. Wooden weir June 1, 1943, to Feb. 29, 1964, and concrete weir since Mar. 1, 1964. Altitude of gage is about 2,400 ft (732 m), from topographic map. Prior to July 11, 1940, at site 1.5 mi (2.4 km) upstream at different datum. July 12, 1940, to Mar. 23, 1942, at site 2.5 mi (4.0 km) upstream at datum 3.36 ft (1.024 m) higher. Mar. 24, 1942, to May 31, 1943, at site 0.5 mi (0.8 km) upstream at datum 0.70 ft (0.213 m) higher.

REMARKS.--Records good. Local runoff is deleted from daily discharge record. Water is diverted from Imperial Reservoir (on right bank of Pecos River) for irrigation in the vicinity of Imperial, and at times includes water diverted from the Pecos River through Cut Around Canal. The total flow at this station does not include 171 acre-ft (211,000 m³) diverted from canal 75 ft (23 m) upstream, or water diverted into Pecos County Improvement District No. 3 canal (see station 08437600) 0.6 mi (1.0 km)

AVERAGE DISCHARGE.--29 years (water years 1943-57, 1965-78), 12.7 ft³/s (0.360 m³/s), 9,200 acre-ft/yr (11.3 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 144 ft3/s (4.08 m3/s) July 27, 28, 31, Aug. 1, 1945; no flow at times each year.

		DISCHAR	GE, IN C	UBIC FEE		OND, WATER	YEAR O	CTOBER 197	7 TO SEPTE	MBER 1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	31	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
3	.00	30	.00	.00	.00	.00	.00	.00	.92	.00	.00	.00
4	.00	26	.00	.00	.00	.00	.00	.00	.12	.00	.00	.00
5	.00	23	.00	.00	.00	.00	.00	.00	27	.00	.00	.00
6	.00	15	.00	.00	.00	.00	.00	.00	2'3	.00	.00	.00
7	.00	4.4	.00	.00	.00	.00	.00	.00	25	.00	.00	.00
8	.00	1.6	.00	.00	.00	.00	.00	.00	31	.00	.00	.00
9	.00	.00	.00	.00	.00	.00	.00	.00	27	.00	.00	.00
10	.00	.00	.00	.00	.00	.00	.00	.00	24	.00	.00	.00
11	.00	.00	.00	.00	.00	.00	.00	.00	21	.00	.00	.00
12	25	.00	.00	.00	.00	.00	.00	.00	17	.00	.00	.00
13	30	.00	.00	.00	.00	.00	.00	.00	2.5	.00	.00	.00
14	30	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
15	29	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
16	29	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
17	31	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
18	34	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
19	27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
20	8.1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
21	15	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
22	35	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
23	37	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
24	35	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
25	35	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
26	33	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
27	33	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
28	32	.00	.00	.00	.00	.00	.00	11	.00	.00	.00	.00
29	31	.00	.00	.00	.00	.00	.00	13	.00	.00	.00	.00
30	30	.00	.00	.00		.00	.00	4.7	.00	.00	.00	.00
31	29		.00	.00		.00		.26		.00	.00	
TOTAL	588.10	158.00	.00	.00	.00	.00	.00	28.96	198.54	.00	.00	.00
MEAN	19.0	5.27	.000	.000	.000	.000	.000	.93	6.62	.000	.000	.000
MAX	37	31	.000	.000	.000	.00	.000	13	31	.000	.00	.00
MIN		.00							.00	.00	.00	.00
AC-FT	.00 1170	313	.00	.00	.00	.00	.00	.00 57	394	.00	.00	.00
CAL YR WTR YR		TAL 4369.8 TAL 973.6		12.0	MAX 62 MAX 37	MIN .00 MIN .00	AC-FT AC-FT					

LOCATION.--Lat 31°16'51", long 102°44'26", Pecos County, Hydrologic Unit 13070001, on left bank about 220 ft (67 m) upstream from bridge on Farm Road 11, 0.3 mi (0.5 km) downstream from headgate (Pecos No. 2 canal), and 2.9 mi (4.7 km) west of Imperial.

08437600 PECOS COUNTY WATER IMPROVEMENT DISTRICT NO. 3 CANAL NEAR IMPERIAL, TX

PERIOD OF RECORD.--March 1940 to September 1941, March 1942 to September 1957, and March 1964 to current year.

GAGE.--Water-stage recorder. Concrete weir since Mar. 7, 1944. Altitude of gage is 2,390 ft (728 m), from topographic map. Prior to Jan. 10, 1941, at site 350 ft (107 m) downstream at datum 6.79 ft (2.070 m) lower. Jan. 10, 1941, to Mar. 29, 1942, at site 200 ft (61 m) downstream at datum 3.65 ft (1.113 m) lower.

REMARKS.--Records good. Local runoff is deleted from daily discharge record. Water is diverted from Imperial Reservoir (on right bank of Pecos River), 7.6 mi (12.2 m) upstream, for irrigation in the vicinity of Imperial, and at times includes water diverted from the Pecos River by Cut Around Canal.

AVERAGE DISCHARGE.--30 years (water years 1941, 1943-57, 1965-78), 9.82 ft³/s (0.278 m³/s), 7,110 acre-ft/yr (8.77 hm³/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily discharge, 175 ft³/s (4.96 m³/s) Aug. 11, 1940; no flow at times each year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES DAY OCT NOV DEC JAN FEB APR MAY JUN JUL AUG SEP MAR .00 .00 .00 .00 .00 1 -00 .00 .00 .00 .00 .00 .00 .00 .00 .00 -00 .00 .00 .00 .00 .00 .00 .00 -00 .00 .00 .00 .00 -00 .00 -00 .00 .00 .00 .00 .00 .00 .00 .00 2.3 .00 .00 .00 .00 -00 .00 -00 -00 5 .00 .00 .00 .00 .00 .00 .00 20 .00 .00 .00 .00 .00 6 .00 .00 .00 .00 .00 .00 .00 .00 17 .00 .00 .05 .00 .00 -00 .00 .00 .00 .00 .00 .00 -00 .00 8 .00 .00 .00 .00 .00 .00 -00 -00 .00 .00 -00 .00 .00 .00 .00 .00 .00 .00 .00 -00 .00 -00 -00 -00 10 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 11 .00 .00 .00 .00 .00 .00 .00 .00 -00 .00 .00 .00 12 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 13 .00 -00 .00 .00 .00 .00 .00 .00 1.9 -00 .00 14 .00 .00 .00 24 .00 -00 .00 -00 -00 .00 .00 .00 15 .00 .00 .00 14 .00 .00 .00 .00 .00 .00 .00 .00 16 .00 .00 ,.00 .00 .00 .00 .00 .00 .28 .00 .00 .00 17 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 18 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 19 .00 .00 .00 .00 .00 .00 .00 -00 .00 .00 .00 20 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 -00 21 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 22 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 23 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 24 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 25 -00 -00 -00 .00 .00 .00 .00 .00 .00 .00 .00 -00 26 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 27 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 28 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 29 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 30 .00 .00 .00 .00 ---.00 .00 .00 .00 -00 .00 .00 31 .00 .00 .00 .00 .00 ----00 ----00 ---79.53 TOTAL .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 MEAN .000 .000 .000 .000 .000 .000 .000 .000 2.65 .000 .000 .000 MAX .00 .00 .00 .00 .00 .00 .00 .00 24 .00 .00 .00 .00 MIN -00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 AC-FT .00 .00 .00 .00 .00 .00 .00 .00 158 .00 .00 .00

.00

.00

MIN

MIN

AC-FT 2000

AC-FT 158

CAL YR 1977

WTR YR 1978 TOTAL

TOTAL

1006.91

79.53

MEAN 2.76

.22

MEAN

MAX 47

MAX 24

08437700 WARD COUNTY WATER IMPROVEMENT DISTRICT NO. 2 CANAL NEAR GRANDFALLS, TX

LOCATION.--Lat 31°22'13", long 103°00'24", Ward County, Hydrologic Unit 13070001, on left bank 1,550 ft (477 m) upstream from Farm Road 1776, 2.3 mi (3.7 km) downstream from headgate, and 9.5 mi (15.3 km) west of Grandfalls.

PERIOD OF RECORD. -- August 1939 to September 1941, November 1941 to September 1957, and March 1964 to current year.

GAGE.--Water-stage recorder. Concrete weir since Feb. 17, 1947. Altitude of gage is 2,460 ft (750 m), from topographic map. Prior to Jan. 10, 1941, at site 1.75 mi (2.82 km) downstream at different datum. Jan. 11, 1941, to Feb. 16, 1947, at site 50 ft (15 m) downstream at present datum.

REMARKS.--Records good. Local runoff is deleted from the discharge record. Water is diverted from the left bank of the Pecos River for irrigation in the vicinity of Grandfalls. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 30 years (water years 1940, 1943-57, 1965-78), 20.0 ft3/s (0.566 m3/s), 14,490 acre-ft/yr (17.9 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 198 ft3/s (5.61 m3/s) Apr. 9, 10, 1947; no flow at times each year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 MEAN VALUES SEP DAY OCT NOV DEC JAN FEB APR MAY JUN JUL AUG MAR 1.2 .06 .03 .00 3.6 1.3 1.9 .20 0.0 nn .19 0.8 .65 2 .09 .08 1.3 .08 .00 1.9 .23 .22 .00 1.2 1.9 1.9 .09 1.3 .26 .09 .00 .29 .13 1.3 .00 1.3 2.0 .27 .10 .05 .30 1.8 .84 .00 .00 5 1.8 1.4 2.3 .21 .11 .09 .35 .10 2.1 .39 .00 .00 .10 7.5 2.1 -00 6 1.4 1.8 .18 .14 .08 .33 .11 17 3.3 .00 .00 19 1.5 1.4 .14 .17 .03 .31 .09 24 15 .07 .00 .00 1.9 8 1.5 11 1.3 .09 :10 .03 .32 6.4 1,3 .05 .00 .00 1.4 .04 .06 .04 .38 3.6 1.3 .00 .77 10 6.3 1.1 .04 .04 .02 .00 .03 .00 .00 .29 11 4.2 1.2 .94 .06 .05 .00 4.6 .04 6.1 12 1.1 1.3 .93 .03 .08 .00 1.9 .00 5.3 .00 .00 .10 .00 4.1 .00 .00 13 1.1 1.3 .91 .02 .03 1.7 .00 .00 .00 .00 .00 1.3 .81 .04 3.2 1.1 .02 -00 1.5 15 1.2 1.3 .82 .07 .00 2.7 .00 .00 .00 .00 1.6 -00 .00 16 1.2 1.3 .70 .05 .00 .00 .00 2.3 .00 .00 17 1.6 1.6 .49 .00 .00 .00 1.5 .00 2.0 .00 -00 .00 .00 18 1.8 1.6 .44 .00 .00 .00 1.3 .00 1.6 .00 .00 .00 .00 .00 19 1.8 1.7 -50 -00 -00 .01 .32 .00 1.3 20 1.7 1.8 .64 .00 .00 .23 .00 .99 .00 .00 .00 .18 21 1.7 1.7 .70 .05 .00 .25 .29 .00 .51 .00 .00 .00 5.8 22 1.7 1.7 .50 .07 .00 .24 .29 .00 .65 .00 .00 .00 23 8.3 1.8 .37 -05 .00 .21 .29 .00 .58 -00 8.9 6.9 .00 .00 24 1.8 .30 .03 -00 .14 -26 .00 .25 25 1.8 1.8 .03 .00 .00 73 .22 .23 .00 .00 .00 .17 26 1.9 .20 .04 .00 .00 .00 .00 80 38 27 1.3 1.8 .11 .02 .00 .15 .17 106 .00 .00 .00 70 74 .00 28 1.8 1.8 .12 .00 .00 .16 .16 66 .03 .00 82 29 1.5 .00 4.1 1.9 16 .24 .08 ---.18 .12 .09 30 1.3 1.9 .33 ---.10 .00 30 91 .10 .10 .20 5.1 31 1.3 .31 .09 ---1.1 .00 15 .22 ---TOTAL 97.3 46.1 27.58 2.45 1.17 2.62 34.94 233.10 103.49 2.74 49.10 508.47 MEAN 3.14 1.54 .89 .079 .042 .085 1.16 7.52 3.45 .088 1.58 16.9 MAX 19 1.9 2.3 .27 .17 .25 14 106 24 1.3 30 91 .00 .00 .00 .00 MIN 1.1 1.2 .11 .00 .00 .00 .10 .00 AC-FT 193 55 2.3 462 5.4 97 1010 4.9 69 205 5.2

CAL YR 1977 TOTAL 2756.11 MEAN 7.55 MAX 107 MIN .00 AC-FT 5470 WTR YR 1978 TOTAL 1109.06 MEAN 3.04 MAX 106 MIN .00 AC-FT 2200

08446500 PECOS RIVER NEAR GIRVIN, TX

LOCATION.--Lat 31°06'47", long 102°25'02", Pecos County, Hydrologic Unit 13070008, on right bank 2.1 mi (3.4 km) upstream from Comanche Creek, 3.8 mi (6.1 km) northwest of Girvin, and 7.2 mi (11.6 km) upstream from bridge on U.S. Highway 67. Water-quality sampling site on left bank 7.2 mi (11.6 km) downstream.

DRAINAGE AREA.--29,560 mi² (76,560 km²), approximately for contributing area of supplementary gage 7.2 mi (11.6 km) downstream.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- August 1939 to current year.

WTR YR 1978

TOTAL

7355.3

MEAN 20.2

MAX 229

MIN 6.3

14590

AC-FT

GAGE.--Water-stage recorder with concrete control and measuring flume. Datum of gage not determined. Supplementary water-stage recorder, used as regular gage prior to July 17, 1951, is now used only for peaks exceeding about 400 ft³/s (11.3 m³/s), 7.2 mi (11.6 km) downstream at datum 2,269.65 ft (691.789 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Flow is largely regulated by Red Bluff Reservoir (station 08410000) and reservoirs above Carlsbad, N. Mex. Numerous diversions above station for irrigation.

AVERAGE DISCHARGE .-- 39 years 90.6 ft³/s (2.566 m³/s), 65.640 acre-ft/yr (80.9 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 20,000 ft 3 /s (566 m 3 /s) Oct. 5, 1941, gage height, 20.49 ft (6.245 m), at supplementary gage; minimum daily, 2.2 ft 3 /s (0.062 m 3 /s) July 18, 1964.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1932, that of Oct. 5, 1941.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 405 ft 3 /s (11.5 m 3 /s) Sept. 21, gage height, 2.94 ft (0.896 m); minimum daily, 6.3 ft 3 /s (0.18 m 3 /s) May 19.

D.4.V	0.07			444	442				(2.17)	2.00	****	0.51
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEI
1	15	22	20	19	23	23	15	8.0	161	8.7	6.8	12
2 3 4	15 14	21	20 20	24	23	23	15	8.3	75 76	8.7 17	8.0	11
4	13	19	19	22	23 23	22 23	15 14	8.0	100	20	8.7	27
5	14	18	19	20	23	21	14	8.5	60	14	37	24
6	14	17	19	19	23	22	14	7.7	42	12	43	12
7	13 13	18	18 19	18	23	23	13	7.8	46	12	27 12	10 10
9	12	18 18	18	18 20	23 23	22 21	13 13	7.8 7.8	38 28	11 11	10	12
10	12	18	19	29	23	20	14	7.1	21	10	9.4	13
11	11	17	19	26	22	21	14	7.2	17		11	15
12 13	12 12	17	18 19	21	23	20	14	7.4 6.8	16	8.0	9.4	14 11
14	13	17	19	20 19	23 23	20 20	13 12	6.9	16 15	8.0	8.7	10
15	13	17	19	19	22	20	12	6.9	16	8.0	9.4	8.8
16	13	18	20	.21	22	19	11	6.6	14	8.0	9.4	8.7
17 18	13 13	18 27	21 20	21	22	19	11	6.9	13 12	8.0	9.4	7.6
19	12	26	20	21 21	22 22	18 18	11 10	6.7	11	7.4	9.4	7.4
20	13	21	19	21	22	19	9.7	12	11	7.4	11	7.4
21	13	20	19	22	36	19	9.7	47	10	7.4	12	228
22	13	19	19	22	33	18	9.4	26	9.3	6.8	11	93
23	17 30	18 18	19 19	23 23	27 25	18 18	9.4	14 9.9	8.9 7.9	6.8 7.4	10 9.4	29 24
25	19	18	19	23	24	17	9.1	10	7.9	10	9.4	30
26	16	18	19	23	24	17	8.8	13	7.9	10	11	40
27 28	74	19	19	22	23	17	8.7	26	7.4	9.4	11	63
29	69 43	18	23 24	22	23	16 16	8.7 8.7	22 14	8.0	9.4 7.4	12 12	81 131
30	29	21	21	22		16	8.0	13	8.7	6.8	12	195
31	25		19	23		16		229		8.0	12	
TOTAL	608	574	605	670	668	602	347.5	576.8	872.0	294.0	386.3	1151.7
MEAN MAX	19.6 74	19.1	19.5	21.6	23.9	19.4	11.6 15	18.6 229	29.1 161	9.48	12.5	38.4
MIN	11	17	18	18	22	16	8.0	6.3	7.4	6.8	6.8	7.4
AC-FT	1210	1140	1200	1330	1320	1190	689	1140	1730	583	766	2280

08446500 PECOS RIVER NEAR GIRVIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1939 to June 1941, October 1946 to September 1947, October 1953 to current year. Pesticide analyses: October 1968 to September 1974.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: October 1939 to June 1941, October 1946 to September 1947, October 1953 to current year.
WATER TEMPERATURES: October 1953 to January 1959, March 1964 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 38,900 micromhos Aug. 6, 1965; minimum daily, 790 micromhos Apr. 26, 1957.
WATER TEMPERATURES (1953-59, 1964-68, 1970-78): Maximum daily, 35.0°C July 26, Aug. 18, 27, 1978; minimum daily, 3.0°C Feb. 3, 4, 1956.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 27,400 micromhos May 21; minimum daily, 5,250 micromhos June 5.
WATER TEMPERATURES: Maximum daily, 35.0°C July 26, Aug. 18, 27; minimum daily, 6.0°C Jan. 19.

			SPE- CIFIC				HARD-		MAGNE-	
		STREAM- FLOW,	CON-			HARD- NESS	NESS.	DIS-	SIUM, DIS-	SODIUM,
	*****	INSTAN-	ANCE	PH	TEMPER-	(MG/L	BONATE	SOLVED	SOLVED	SOLVED (MG/L
	TIME	TANEOUS	(MICRO-		ATURE	AS	(MG/L	(MG/L	(MG/L	
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	AS MG)	AS NA)
OCT										The second
31	1630	72	19600	7.6	25.0	3300	3300	710	380	3200
DEC										
31	1900	66	20400	7.7	15.0	3900	3700	810	450	3800
FEB				177	175					
15	1225	23	20600	7.6	11.5	4100	3900	790	520	3600
	1553	23	20000	7.0	11.5	4100	3400			5500
MAR								020	600	4600
30	0845	18	23800		17.0	4500	4400	820	600	4000
APR						11 42 1 1 1	4		100	AM STATE
30	1800	75	26500		28.0	5400	5300	940	730	5400
JUN										
12	1300	19	9040		28.0	1600	1600	340	190	1500
JUL		-								
27	1030	12	21900		24.0	3700	3600	490	600	4400
	1030	16	21700		24.0	3,00	3000	170		
AUG	1000		10000		24 0	2000	3000	410	480	3300
31	1800	11	18000		26.0	3000	3000	410	400	3300
SEP		- 2.95				4			24.0	2222
30	0945	204	11900		21.0	2100	5000	430	260	5500
									SOLIDS.	
	SODIUM	POTAS-				CHLO-	FLU0-	SILICA,	SUM OF	
	AD-	SIUM,	BICAR-		SULFATE	RIDE.	RIDE.	DIS-	CONSTI-	PHOS-
	SORP-	DIS-	BONATE	CAR-	DIS-	DIS-	DIS-	SOLVED	TUENTS,	PHORUS,
	TION	SOLVED	(MG/L	BONATE	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	TOTAL
						(MG/L	(MG/L	45	SOLVED	(MG/L
	RATIO	(MG/L	AS	(MG/L	(MG/L					AS P)
DATE		AS K)	HC03)	AS C03)	AS 504)	AS CL)	AS F)	2105)	(MG/L)	AS PI
ост										
31	24	61	56	0	3200	4900		2.4	12500	.18
DEC			30		32.00					
	27	54	170	0	3400	6100		7.0	14700	.21
31		54	170	. 0	3400	0100	Mary To		14.00	
FEB						- 37			14500	
15	24	50	210	0	3500	5900	Allega San	6.4	14500	
MAR										
30	30	63	150	0	3900	6800		.9	16900	
APR										
30	32	61	56	0	5200	8000		3.3	20400	.11
JUN	-		30		3200	0000				
	. 14	21	70	0	1600	2400	1.3	2.7	6090	.06
12	16	21	70	0	1600	2400	1.3	c.1	0090	• 30
JUL		- 1	200	11	The Land		-		14500	24
27	32	56	61	0	4200	6700	5.5	8.4	16500	.26
AUG									Est.	100
31	26	41	51	0	3600	4600	2.1	9.0	12500	.14
SEP			the second							
30	21	31	120	0	2000	3200	1.3	4.8	8190	.00
~~										

RIO GRANDE BASIN 08446500 PECOS RIVER NEAR GIRVIN, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

м	ONTH		С	PECIFIC ONDUCT- ANCE MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVEC CHLORIC (TONS)	SOL DE SULF		DIS- SOLVED SULFATE (TONS)	HARDNESS (CA+MG) (MG/L)
ост.	1977		608	19300	13500	22200	5520	9050	3330		5470	****
NOV.	1977		574	17100	11700	18100	4800	7440	2960		580	****
DEC.	1977		605	19300	13600	22100	5510	9000	3330		5440	****
JAN.	1978		670	20700	14700	26600	5980	10800	3570		5460	****
FEB.	1978		668	20700	14700	26500	5960	10700	3560		5430	****
MAR.	1978		602	22800	16400	26600	6650	10800	3930		5380	****
APR.	1978		347.5	24800	18000	16900	7310	6850	4270		+010	****
MAY	1978		576.8	22000	15700	24500	6390	9950	3790		5900	****
	1978		871	10600	7210	17000	2760	6510	1880		4440	****
	1978		293	19700	13900	11100	5660	4490	3410		2700	****
	1978		386.3	17000	11800	12300	4780	4990	2950		3080	****
	1978		1151.7	14900	10300	32200	4100	12800	2590		9060	****
			7355.29	**	**	256000	**	103000	**	6	2900	**
	vg		20.15	18300	13000	**	5200	**	3200		**	*****
#10.2		FIC CO				25 DEG. C), ONCE-DAILY		OCTOBER		SEPTEMB	ER 1978	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	20400	18600		20700	20600	22400	23800		17800	17100	21900	18100
2	20800	18700		20500	20500	22100	24500 24600		10900	17400 17400	21300 21400	18000 18000
3	20400	18100		20700	20400	22300 22200	24400	26800	5530	18900	19800	17800
5	20400	17000		20400	20400		24400	26200	5250	18500	12200	22700
6	20200	17400	18500	20200	20400	22300	24600	26500	6130	18600	11000	22500
7	20000	17300		20300	20300	22200	24800	27000	5950	18700	21500	22000
8	19800	17200	17600	20200	20200		24700	27100	6830	19000	22300	22300
9	19900	17300		20800	20400		24300	26800	7830	18900	23600	22400 22500
10	19800	17400	18100	21600	20500	22300	24300	26500	8650	18900	19700	
11	20000	17400	18100	21100	20600		24500	25700	8960	18500	20100	22700
12	20300	17300		20600	20500		24400	25500	9000	18700	20500	23100 22900
13	20500	17100		20700	20700		24100	26700	9290 9470	19400 18900	20700 20600	23000
14 15	20900	17000 16900		20900 21000	20700 20600		24300 25100	25800 24800	10100	19400	20100	23200
16	21400	16800	19300	21300	20500	22800	25000	24600	11100	19800	19400	23300
17	21300	16800		20700	20700		24900		11600	19300	18500	23400
18	21400	16700		20300	20500		24800	24300	11900	20100	17500	22500
19	21500	16700	20000	20400	20500	23100	24900		12400	19600	16800	21800
20	21100	16500	20100	20600	20700	23300	24900	25100	12900	20000	15900	22100
21	21300	16500 16500			20800 20900		24600 25500	27400 25000	13800 14000	20600	15400 14800	
53	21100 20500	16600			20500		25600	24000	14700	20700	14700	
24	19900	16300			20700		25500	23600	15100	21000	14600	9190
25	20300	16300			20800		25000	23300	15500	21300	15100	
26	19900	16600		20100	20900		25900	19100	16100	21400	15300	
27	17000	17000	20500		21500		25300	22900	16600	23100	15700	
28	16800	17400			22000		25500	20400	16900	23300	16200	
29	18600	17200					25700	20700	16900	23300	17000 17700	75233
30	18000	17000					26500	20300	16700	22700	17800	
31	17400		20300	20600		23400		18000		22100	11000	

MEAN

RIO GRANDE BASIN
08446500 PECOS RIVER NEAR GIRVIN, TX--Continued

TEMPERATURE (DEG. C) OF WATER. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26.0	19.0	12.0	8.0	12.0	17.0	20.0	27.0	28.0	31.0	32.0	26.0
2	23.0	17.0	15.0	8.0	10.0	17.0	25.0	23.0	28.0	30.0	32.0	27.0
3	21.0	16.0	16.0	10.0	9.0	12.0	27.0	21.0		32.0	30.0	30.0
4	23.0	19.0	16.0	12.0	16.0	11.0	26.0	25.0	28.0	33.0	28.0	26.0
5	24.0	19.0	14.0	12.0	13.0	12.0	23.0	28.0	28.0	33.0	21.0	28.0
6	25.0		10.0	12.0	9.0	11.0	28.0	27.0	25.0	28.0	26.0	28.0
7	24.0	19.0	14.0	13.0	13.0	12.0	26.0	27.0	29.0	33.0	27.0	24.0
8	26.0	15.0	13.0	11.0	9.0	13.0	28.0	27.0	30.0	29.0	28.0	28.0
9	22.0	17.0	9.0	9.0	8.0	20.0	24.0	23.0	32.0	32.0	31.0	30.0
10	21.0	15.0	9.0	7.0	11.0	12.0	20.0	27.0	29.0	33.0	29.0	27.0
11	22.0	15.0	12.0	7.0	11.0	20.0	19.0	29.0	30.0	34.0	33.0	30.0
12	22.0	16.0	9.0	9.0	12.0	17.0	18.0	25.0	27.0	32.0	30.0	30.0
13	23.0	17.0		9.0	10.0	14.0	23.0	28.0	31.0	27.0		31.0
14	23.0	17.0	10.0	13.0	11.0	12.0	25.0	28.0	29.0	32.0	33.0	30.0
15	21.0	17.0	11.0	11.0	12.0	16.0	26.0	25.0	25.0	34.0	31.0	32.0
16	21.0	17.0	14.0	11.0	12.0	14.0	27.0	25.0	31.0	30.0	26.0	28.0
17	19.0	18.0	13.0	11.0	8.0	15.0	23.0	26.0	31.0	34.0	33.0	27.0
18	19.0	18.0	15.0	11.0	10.0	20.0	20.0	30.0	32.0	34.0	35.0	30.0
19	23.0	18.0	15.0	6.0	11.0	21.0	18.0	30.0	28.0	28.0	29.0	29.0
50	25.0	18.0	12.0	8.0	11.0	20.0	15.0	21.0	28.0	33.0	32.0	26.0
21	22.0	15.0	9.0	7.0	9.0	22.0	27.0	25.0	29.0	29.0	32.0	20.0
55	20.0	18.0	12.0	9.0	14.0	19.0	26.0		26.0	27.0	27.0	20.0
23	19.0	17.0	15.0	10.0	14.0	19.0		31.0	32.0	28.0	27.0	19.0
24	23.0	16.0	15.0	10.0	19.0	22.0	29.0	31.0	33.0	29.0	27.0	21.0
25	24.0	16.0	14.0	11.0	18.0	22.0	25.0	30.0	33.0	27.0	31.0	21.0
26	21.0	17.0	11.0	11.0	15.0	23.0	26.0	24.0	31.0	35.0	32.0	20.0
27	19.0	18.0	10.0	12.0	15.0	19.0	27.0	25.0	31.0	33.0	35.0	20.0
28	20.0	15.0	11.0	12.0	17.0	17.0	27.0	25.0	32.0	33.0	32.0	23.0
29	20.0	14.0	12.0	9.0		22.0	28.0	22.0	31.0	30.0	27.0	20.0
30	23.0	14.0	11.0	9.0		19.0	28.0	26.0	28.0	28.0	27.0	21.0
31	25.0		15.0	8.0		24.0		27.0		24.0	26.0	
MEAN	22.0	17.0	12.5	10.0	12.0	17.0	24.5	26.5	29.5	31.0	29.5	25.5

LOCATION.--Lat 30°27'07", long 101°43'58", Terrell County, Hydrologic Unit 13070010, on left bank 0.5 mi (0.8 km) downstream from Joe Chandler Ranch Headquarters, 1.0 mi (1.6 km) upstream from mouth, 6 mi (10 km) downstream from bridge on Farm Road 1217, and 17 mi (27 km) southeast of Sheffield.

DRAINAGE AREA .-- 763 mi 2 (1,976 km2).

PERIOD OF RECORD .-- January 1974 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,883 ft (574 m) National Geodetic Vertical Datum of 1929, by topographic division plane table survey.

REMARKS.--Records good. The Chandler Estate and the Roden Ranch have permits to divert 243 acre-ft (300,000 m³) and 530 acre-ft (653,000 m³) annually, respectively. National Weather Service rain gage and gage-height satellite telemeter at station. Several observations of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 78,100 ft 3 /s (2,210 m 3 /s) Sept. 20, 1974, gage height, 16.74 ft (5.102 m), from rating curve extended above 130 ft 3 /s (3.68 m 3 /s) on basis of slope-area measurement of peak flow; minimum, 13 ft 3 /s (0.37 m 3 /s) July 26, 1974, and Nov. 16, 1977.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1900, about 22 ft (6.7 m) June 28, 1954, from information by local

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,390 ft 3 /s (39.4 m 3 /s) June 2, gage height, 3.98 ft (1.213 m), no other peak above base of 700 ft 3 /s (19.8 m 3 /s); minimum, 13 ft 3 /s (0.37 m 3 /s) Nov. 16.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978
MEAN VALUES

					ME	AN VALUES						
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4	23 22 23 23	23 23 23 21	23 23 23 23	21 21 22 23	21 22 23 23	22 22 22 22	20 20 20 20	23 21 20 21	29 124 174 40	22 22 22 22	24 23 23 23	21 19 20 19
5	23	22	23	24	23	22	20	21	31	21	23	21
6 7 8 9	24 25 25 24 25	23 22 25 23 23	22 22 21 21 20	24 24 24 24 23	23 23 24 24 23	22 22 22 22 22 22	20 20 20 21 24	20 20 20 20 21	31 30 29 26 26	21 21 21 22 22	24 24 22 22 22	21 29 28 24 22
11 12 13 14 15	23 23 23 21 22	23 23 23 23 21	20 20 20 21 21	23 22 21 21 21 22	23 25 25 23 23	22 22 22 21 20	23 22 22 21 22	23 21 20 19 19	25 25 25 25 25	21 20 20 20 20	23 22 21 21 21	22 23 21 22 22
16 17 18 19 20	23 23 24 25 24	19 21 22 23 23	21 20 19 19 21	22 23 23 23 23	23 23 23 23 24	20 20 19 20 20	22 22 20 21 22	20 19 20 20	25 24 24 24 24	20 20 20 20 20	20 20 20 19 20	28 28 23 24 22
21 22 23 24 25	21 28 30 28 25	23 23 23 23 24	22 21 20 21 22	23 23 23 23 23	24 24 24 24 23	19 19 20 20	20 20 19 19	23 23 23 21 19	23 24 21 21 20	21 20 21 22 20	20 19 19 19	27 26 26 28 28
26 27 28 29 30 31	23 23 24 24 24 24	24 24 24 23 23	23 23 23 21 20 20	23 24 24 24 22 21	22 22 22 	20 20 20 20 20 20 20	20 20 21 22 23	18 19 21 22 20 19	21 22 22 22 22 22	19 21 23 24 28 26	22 21 19 22 22 21	29 42 32 28 26
TOTAL MEAN MAX MIN AC-FT	742 23.9 30 21 1470	683 22.8 25 19 1350	659 21.3 23 19 1310	706 22.8 24 21 1400	649 23.2 25 21 1290	644 20.8 22 19 1280	626 20.9 24 19 1240	636 20.5 23 18 1260	1004 33.5 174 20 1990	662 21.4 28 19 1310	660 21.3 24 19 1310	751 25.0 42 19 1490

TOTAL 10706 MEAN 29.3 MIN 19 21240 WTR YR 1978 TOTAL 8422 MAX 174 MIN 18

08447410 PECOS RIVER NEAR LANGTRY, TX (National stream-quality accounting network)

LOCATION.--Lat 29°48'10", long 101°26'45", Val Verde County, Hydrologic Unit 13040212, at gaging station 7.4 mi (12.1 km) east of Langtry, 15.0 mi (24.1 km) upstream from confluence with the Rio Grande, and 638.2 mi (1,026.9 km) downstream from the American Dam at El Paso.

DRAINAGE AREA.--35,179 mi² (91,114 km²).

PERIOD OF RECORD.--Chemical analyses: October 1954 to current year. Chemical and biochemical analyses: October 1974 to current year.

REMARKS.--Records of specific conductance and discharge for water year 1978 are given in International Boundary and Water Commission Water Bulletins Nos. 47 and 48.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		***	CK GOMETI	I DATAS N	AICK ICAN	OCTOBER	1911 10 3	EF I EMBER	1710		
DATE	TIME	STREAM- FLOW. INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
		10.07		10.12.57	1020 07	10.01				-	
0CT 18 NOV	0845	175	2060	8.1	20.0	10	8.5	97	•5	50	8
09	0830	221	2320	7.9	15.0	5	8.9	92	.2	92	30
DEC 06	0830	195	2590	7.6	14.0	5	9.6	97	.4	25	2
JAN 18 FER	0905	195	2830	7.9	9.0	4	10.6	95	.2	4	2
15	0830	189	3130	8.0	10.5	4	10.1	94	.6	21	1
22 APR	0830	175	3360	8.0	20.5	6	8.3	95	.5	38	5
12	0900	175	2920	8.0	20.0	10	8.6	98	.7	40	S
MAY 03	0930	137	3200	8.2	23.5	10	7.5	91	.8	44	10
JUN 07 JUL	1040	5520	960	7.7	22.0	300	8.1	95	2.9	>130	130
12	0925	150	3200	8.3	28.0	7	7.5	97	.8	130	78
09 SEP	1100	145	1760	7.9	29.5	15	8.6	113	1.0		270
14	0940	215	1800	7.6	28.5	2	8.2	101	.1		130
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
ОСТ											
18	76	430	290	96	46	270	5.7	5.7	170	0	240
09 DEC	120	510	370	110	58	290	5.6	5.9	170	0	-580
06 JAN	26	570	420	130	60	350	6.4	6.8	180	0	340
18	9	610	460	140	63	380	6.7	6.6	180	0	350
15 MAR	32	630	480	140	68	420	7.3	7.1	180	0	290
22	14	680	550	150	74	450	7.5	8.3	160	. 0	430
12	. 6	580	470	130	63	390	7.0	7.5	140	0	360
MAY 03	24	560	460	120	64	410	7.5	8.8	130	0	360
JUN 07	74	210	22	58	16	110	3.3	4.5	230	0	100
JUL 12	28	500	380	110	54	320	6.2	7.0	146	0	300
09	37	340	220	79	35	220	5.2	5.4	150	0	200
SEP 14	24	360	220	86	36	220	5.0	5.1	170	0	210

08447410 PECOS RIVER NEAR LANGTRY, TX--Continued
WATER QUALITY DATA, WATER YEAR OCTORER 1977 TO SEPTEMBER 1978

		WATER QU	ALITY DAT	A. TAIER	TEAR OCTO	DEW 1311	TO SEFIE	CLA INIO		
DATE	CHLO- RIDE. CIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA. DIS- SOLVED (MG/L AS SIO2)	SOLIOS. RESIDUE AT 140 DEG. C DIS- SOLVED (MG/L)	SOLIDS. SUM OF CONSTI- TUENTS. DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN+ NITRITE TOTAL (MG/L AS N)	NITRO- GEN+ NOZ+NO3 TOTAL (MG/L AS N)	NITRO- GEN. AMMONIA TOTAL (MG/L AS N)	NITRO- GEN+ ORGANIC TOTAL (MG/L AS N)
ост	120			1000	1180		.01	1.3	.00	.30
NOV	420	.8	16	1290	32.65	1.3			.00	.30
09 DEC	510	.6	16	1430	1350	1.2	.01	1.2		
06 JAN	570	.8	14	1620	1560	1.6	.01	1,6	.08	.32
18 FER	640	.7	13	1710	1680	1.5	.01	1.5	• 02	.0A
15 MAR	810	.8	12	1880	1840	1.5	.01	1.5	.01	.19
22 APR	730	.8	7.5	2030	1930	.80	.01	.81	.03	.84
12 MAY	660	.8	8.2	1790	1690	.85	.02	.87	.04	.42
03	690	.8	8.4	1800	1730	.51	•02	.53	.08	.43
07	170	.2	8.3	541	581	1.6	.03	1.6	.12	1.8
JUL 12	550	.9	17	1510	1430	.A0	.01	.81	.01	.49
09	370	.7	13	1040	997	.84	.01	.85	• 02	.48
SEP 14	370	.7	15	1070	1030	•51	.01	.52	.03	.48
DATE	NITRO- GEN: AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN:AM- MONIA + ORGANIC DIS- (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS. DIS- SOLVED (MG/L AS P)	CARBON+ ORGANIC TOTAL (MG/L AS C)	CARBON. ORGANIC DIS- SOLVED (MG/L AS C)	CARBON: ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT + SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE. SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 18	.30	.24	.00	.00	1.5			18	8.5	99
NOV 09		.18	.01	.01	1.5			24	14	84
DEC	•30			.00	1.2			16	8.4	77
06 JAN	.40	.44	.00					9	4.7	93
18 FER	•10	.10	.01	.01	1.0			22	11	51
15 MAR	•20	.15	.01	.01		1.3	.0	17	8.0	91
22 APR	.87	.89	.00	.00	1.7	1.5		12	5.7	91
12	.46	.38	.01	.00	3.0	-				92
03	•51	.11	•02	.00	2.5			11	4.1	98
07 JUL	1.9	.83	•20	.18	-	7.9	>10	543	8090	
12	•50	.45	.00	.00	2.2		-	14	5.7	97
09 SEP	•50	.54	•01	.01		3.7	1.0	15	5.9	98
14	.51	.55	•02	.04	2.6	BARIUM.		25	15 CADMIUM	93
DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM. TOTAL RECOV- ERABLE (UG/L AS BA)	SUS- PENDED RECOV- ERABLE (UG/L AS BA)	BARIUM. DIS- SOLVED (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)
ост				2	0	0	100	<10	<10	0
18 FEB	0845	2	0	1	200	100	100	0	0	2
15 JUN	0830				200	0	200	0		0
07	1040	2	1	1		100	70	0	0	<1
DATE	1100 CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COBALT. SUS- PENDED RECOV- ERABLE (UG/L AS CO)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER. TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
OCT		,	400			A 20 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16				
18	5	5	0	50	50	0	<10	<10	0	70
15	0	0	10	0	0	0	9	9	0	80
JUN 07	10	5	5	2	1	1	9	6	3	4300
09	0	0	0	0	0	<1	4	3	1	420

08447410 PECOS RIVER NEAR LANGTRY, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	IRON,					LEAD,			MAN	IGA-	MANGA-					MERCI	URY
	SUS-			LEAD	,	SUS-			NES	E.	NESE,	MA	NGA-	MERC		SUS	s-
	PENDE		ON.	TOTA		PENDED	LEA		TOT	AL	SUS-		SE, IS-	TOT		PEN	
	RECOV		IS- LVED	RECC		RECOV- ERABLE		S- VED		BLE	RECOV.		LVED	ERA		ERA	BLE
	(UG/L		G/L	(UG/	'L	(UG/L	(U6	J/L	(UG	J/L	(UG/L	(U	G/L	(UG		(UG	
DATE	AS FE		FE)	AS F	(B)	AS PB)	AS	PB)	AS	MN)	AS MN)	AS	MN)	AS	HG)	AS	HG)
OCT		_	10	-1	100	<100		0		0			4		.0		.0
18 FEB				•											.0		.0
15		-	10		0	0		1		10	(10				
07	430	00	10		10	10		0		190	190)	5		.2		.5
09	41	10	<10		7	7		0		20	50)	<1		.2		.0
				SELE		SELE-	SILV	ED.	SILV	ER,		71	NC.	ZIN			
	MERCUR	RY SE	LE-	SUS		NIUM,	TOT		PEN	IDED	SILVER	TO	TAL	PEN	DED	ZIN	
	DIS-	- NI	UM.	PEN	DED	DIS-		-voc		-VO	DIS-		COV-	REC		SOL	
	SOLVE (UG/L		TAL	TOT/		SOLVED (UG/L		ABLE 3/L		ABLE S/L	SOL VEC		G/L	(UG	/L	(UG	
DATE	AS H		SE)	AS S		AS SE)		AG)		AG)	AS AG		ZN)	AS	ZN)	AS	ZN)
ост					0	1		<10		<10			10		4		6
18 FEB		• 0	1										20		10		10
15		. 0	1		0	1		0		0							
07		. 0	0		0	0		0		0)	40		20		20
09		•3	0		0	1		0		0)	10		7		<3
			PCI		ALDRIN		RA- NE,	DAN		DD	n. 1	DDE,	DO	т.	AZIN	ON.	
		TIME	TOT		TOTAL		TAL	TOT		TOT		DTAL	TOT		TOT		
DA	TE		(UG		(UG/L		G/L)	(UG	/L)	(UG	/L) (JG/L)	(UG	/L)	(UG	/L)	
NOV											ND	ND		ND		ND	
PER	•••	0830		ND		ID	ND		ND		ND						
15 MAY	•••	0830		ND		ID.	ND		ND		ND	ND		ND		ND	
		0930		ND		1D	ND		ND		ND	ND		ND		ND	
		1100		ND		ND	ND		ND		ND	ND		ND		ND	
								HEP					MET		PAR	HYL	
		DI- ELDRIN	ENDR	TN.	ETHIO		PTA-	CHL		LIND		ALA- HION,		OR.		ON,	
		TOTAL	TOT		TOTAL		TAL	TOT		TOT	AL T	OTAL	TO	TAL	TOT		
Di	TE	(UG/L)	(UG		(UG/I	_) (U	G/L)	(UG	/L)	(UG	/L) (UG/L)	(00	3/L)	(UG	/L)	
NO		ND		ND		ND	ND		ND		ND	ND		ND		ND	
FEI											ND	ND		ND		ND	
MA'	5 • • • Y	ND		ND		ND	ND		ND							ND	
O:	3	ND		ND		ND	ND		ND		ND	ND		ND			
	9	ND		ND	1	ND	ND		ND		ND	ND		ND		ND	
						SIMA-											
			ETHYL	20.5		TOTAL											
			TRI-	PAR	ON,	COUL-		OX-		TAL	2,4-0	. 2.	4,5-T	SIL	VEX.		
		T	OTAL	TOT	AL	COND.	TO	TAL	TH	ION	TOTAL (UG/L	T	OTAL UG/L)	TO	TAL G/L)		
	DAT	E (UG/L)	(06	/L)	(UG/L)	"	IG/L)	10	IG/L)	100/L		00, 1	10	-,-,		
	NOV		ND		ND	N		ND		ND		D	ND		ND		
	FEB																
	MAY	•••	ND		ND	N		ND		ND		-					
	O3.	••	ND		ND	N)	ND		ND		-					
	09.	•••	ND		ND	N	0	ND		ND		-			77		

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978
PERIPHYTON

		4-4-4	PERI-	CHLOR-A	CHLOR-B	
		PERI-	PHYTON	PERI-	PERI-	
		PHYTON	BIOMASS	PHYTON	PHYTON	
		BIOMASS	TOTAL	CHROMO-	CHROMO-	
	LENGTH OF	ASH	DRY	GRAPHIC	GRAPHIC	SAMPLING METHOD
	EXPOSURE	WEIGHT	WEIGHT	FLUOROM	FLUOROM	SAMPLING METHOD
DATE	(DAYS)	G/SQ M	G/50 M	(MG/M2)	(MG/M2)	
NOV						
09	22			.560	.260	POLYETHYLENE STRIP
JAN						
18	43	3.62	4.57	.470	.000	POLYETHYLENE STRIP
MAR		1				
22	35	4.17	4.96	1-56	-000	POLYETHYLENE STRIP

535

RIO GRANDE BASIN 08447410 PECOS RIVER NEAR LANGTRY, TX--Continued

PHYTOPLANKTON ANALYSES. OCTOBER 1977 TO SEPTEMBER 1978

PHYTOPLANKTON A	NALYSES.	OCTOBE	R 1977	TO SEPT	EMBER 1	978		
DATE TIME	NOV	9•77 0830		22.78 0830	MAY	3,78 0930		7,78 1040
TOTAL CELLS/ML		580	6	7000		500		9100
DIVERSITY: DIVISION CLASS ORDER FAMILY GENUS		1.4 1.4 1.9 2.4 2.7		0.0 0.0 0.0 0.0		1.2 1.2 1.2 1.7 2.3		0.8 0.8 1.6 2.0 2.0
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE)CHLOROPHYCEAECHLOROCOCCALESMICRACTINIACEAE								
GOLENKINIA		•		-		-		•
ANKISTRODESMUS		-		-		-		0
KIRCHNERIELLA		-		-		-		-
SELENASTRUMSCENEDESMACEAE		-		•		-		-
SCENEDESMUS	83	14		-		-	58	1
CHLAMYDOMONADACEAE								
CHLAMYDOMONAS		-	*	-0		-		-0
PHACOTACEAE								
ZYGNEMATALES		-		•		-	•	0
DESMIDIACEAE					1			
COSMARIOM		-		-	29	6		-
CHRYSOPHYTA .BACILLARIOPHYCEAEPENNALES								
NAVICULACEAE		2				-		
		-	-			-		130
CENTRALESCOSCINODISCACEAECYCLOTELLA	100#	18				4		_
PENNALES ACHNANTHACEAE								
ACHNANTHES		-		0		-		-
CYMBELLACEAE				-	160#	31	190	2
CYMBELLA		-		-	43	9	160	2
EPITHEMIA DIATOMACEAE		-		-	29	6		-
DIATOMA		-		-	14	3		-
FRAGILARIACEAE		_		-			1000	11
SYNEDRA		-		-		-	1000	
GOMPHONEMATACEAE		40						
NAVICULACEAE	42	7		-		-		0
CALONEIS				-		-		0
GYROSIGMA	65	11		-	14	3		-
NAVICULA	83	14		-		-	86	1
NITZSCHIACEAE	42	7		-	14	3	260	3
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAE CRYPTOMONIDALES								
CRYPTOMONODACEAE						-		-
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE .CHROCCOCCALES								
CHROCCOCCAEAE		-		-		_		
ANACYSTIS HORMOGONALES NOSTOCACEAE		-		•		-	3600#	39
ANABAENA				-		-		-
UNGBYA	170#	29	67000#1	00		-		
OSCILLATORIA		-		-	200#	40	3600#	40
RIVULARIACEAE		-		-		-	72	1
FUGLENOPHYTA (EUGLENGIDS) .EUGLENOPHYCEAEEUGLENALESEUGLENACEAE							,,	
TRACHELOMONAS		-		-		-		-

NOTE: # - DOMINANT ORGANISM: EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM: MAY NOT HAVE BEEN COUNTED: LESS THAN 1/2%

08447410 PECOS RIVER NEAR LANGTRY, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1977 TO SEPTEMBER 1978

DATE TIME		12,78 925	AUG 1	9.78		14•78 940
TOTAL CELLS/ML		2200	1	700	** 3	300
DIVERSITY: DIVISION		1.0		1.6		0.7
•CLASS		1.2		1.6		1.1
FAMILY		2.3		3.0		1.4
GENUS		2.4		0.0		1.9
	CELLS	PER-	CELLS	PER-	CELLS	PER-
ORGANISM	/ML	CENT	/ML	CENT	/ML	CENT
CHLOROPHYTA (GREEN ALGAE)						
.CHLOROPHYCEAE CHLOROCOCCALES						
MICRACTINIACEAE						
GOLENKINIA OOCYSTACEAE		-		-	55	1
ANKISTRODESMUS	29	1	43	3		- 1
DICTYOSPHAERIUM		-	87	5		
KIRCHNERIELLA	14	1	130	8		
SCENEDESMACEAE						
SCENEDESMUSVOLVOCALES	43	5	43	3		•
CHLAMYDOMONADACEAE		-	110	6		- 3
CHLAMYDOMONAS			65	4	-	
PHACOTUS		-02			-	
ZYGNEMATALES						
DESMIDIACEAE						
CHRYSOPHYTA BACILLARIOPHYCEAE						
PENNALES						
NAVICULACEAE	43	2				
****ENTONONE IS	43	5		-		-
CENTRALES						
CYCLOTELLA	110	5			44	1
PENNALES						
ACHNANTHACEAE	14	1	43	3	22	1
CYMBELLACEAE	• •		45			
CYMBELLA	29	1	87	5	180	5
EPITHEMIA		-	65	4	55	1
DIATOMACEAE					1	
FRAGILARIACEAE				-	55	1
FRAGILARIA	72	3	220	13	180	5
SYNEDRA			55	1		1700
GOMPHONEMA				-		
CALONE IS						
DIPLONEIS			43	3	55	1
GYROSIGMA	14	1		.:		
NITZSCHIACEAE	72	3	200	11	55	1
NITZSCHIA	130	6	110	6	44	1
CRYPTOPHYTA (CRYPTOMONADS)						
-CRYPTOPHYCEAE						
CRYPTOMONIDALESCRYPTOMONODACEAE						
CRYPTOMONAS	14	1		-		-
CYANOPHYTA (BLUE-GREEN ALGAE)						
.CYANOPHYCEAE						
CHROCCOCCALES CHROCCOCCAEAE						
AGMENELLUM		-		-	440	14
ANACYSTIS HORMOGONALES	-	-	410#	24	2100#	64
NOSTOCACEAE	1 6 10					
ANABAENA OSCILLATORIACEAE	650#	29		-		10
LYNGBYA	5			-	14 -	-13
OSCILLATORIA RIVULARIACEAE	980#	44		-	180	5
RAPHIDIOPSIS		-		-		-
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAE						
EUGLENALES EUGLENACEAE						
TRACHELOMONAS		-	22	1		1.
				-		

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

537 08449400 DEVILS RIVER AT PAFFORD CROSSING NEAR COMSTOCK, TX

LOCATION.--Lat 29°40'35", long 101°00'00", Val Verde County, Hydrologic Unit 13040302, on left bank 10 mi (16 km) east of Comstock, and 25.5 mi (16.1 km) upstream from mouth.

DRAINAGE AREA .-- 3,961 mi2 (10,259 km2).

PERIOD OF RECORD.--Chemical and biochemical analyses: January to September 1978.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: February to September 1978. WATER TEMPERATURES: February to September 1978.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 422 micromhos Feb. 18; minimum daily, 241 micromhos Apr. 11.
WATER TEMPERATURES: Maximum daily, 30.0°C many days during summer months.

		W	ATER QUAL	ITY DATA	. WATER	YEAR OCT	OBER 19	77 TO S	EPTEMBER	1978		
DATE	TIME	STREAM FLOW, INSTAN- TANEOUS (CFS)	DUCT-	- РН	ATU	ER- B	ID-	XYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
JAN												
17	1510	330	41	17 7	.9 1	0.5	0	10.8	100	.4	8	0
14	1600	330	4	16 7	.9 1	4.0	1	10.4	104	6.0	10	0
21 · · ·	1345	319	4.0	06 8	.0 2	2.5	5	9.7	114	.2	2	<1
11	1000	454	24	46 7	.7 1	7.5	35	9.0	97	2.5	5600	3900
02	1330	314	3	70 8	.1 2	5.5	1	9.0	112	. 8	1	1
06	1200	547	3;	20 7	.4 2	6.0	65	8.5	106	1.2	3400	560
11	1125	310	3	70 8	.1 2	6.5	5	8.7	110	1.2	1100	80
08	1300	320	31	00 7	.9 2	28.0	7	8.4	108	1.0	480	20
13	1210	341				6.5	1	8.8	111	.0		30
13	STREP- TOCOCCI FECAL.	HARD-	HARD-	- CALCI	MAG UM SI	NE-	ium.	SODIUM AD- SORP-	POTAS- SIUM,	BICAR- BONATE	CAR-	SULFATE DIS-
DATE	(COLS. PFR 100 ML)	NESS (MG/L AS CACO3	BONATI (MG/I	E SOLV	ED SOL	VED SOL	VED	TION RATIO	DIS- SOLVED (MG/L AS K)	(MG/L AS HCO3)	BONATE (MG/L AS CO3)	SOLVED (MG/L AS SO4)
JAN 17	4	20	0	14 58		4	7.8	.2	1.3	230	0	11
FER							7.8	.2	1.3	220	0	10
14	4	19		10 53		4					0	9.0
21	<1	50		22 58		4	7.7	.2	1.3	220		
11	10000	12	0	13 38		5.9	3.3	.1	2.1	130	0	5.9
02	<1	18	0	10 50	1	4	7.9	.3	1.4	210	0	9.6
06	360	15	0	2 48	1	7.2	4.5	.2	2.6	180	0	6.7
11 AUG	19	18	0	19 47	1	4	7.8	.3	1.4	190	0	12
08	10	17	0	3 46	1	3	7.8	.3	1.4	505	0	8.8
13	28	17	0	18 48	1	3	7.9	.3	1.4	190	0	- 11
D	B D S	IDE, IS- OLVED MG/L	FLUO- RIDE+ DIS- SOLVED (MG/L AS F)		SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS+ SUM OF CONSTI- TUENTS+ DIS- SOLVED (MG/L)	MITRA GEN NITRA TOTA (MG/	TE NIT	EN. RITE NO: TAL TO	GEN+ 2+NO3 AMI OTAL TO MG/L (GEN, MONIA ORO OTAL TO MG/L ()	TRO- GEN, GANIC DTAL MG/L S N)
JA 1	7	22	.3	14	219	242	2.	2	.01	2.2	.01	.29
1	4	15	.3	14	212	224	2.	2	.01	2.2	.01	.00
MA 2	1	17	.3	13	196	229		70	.01	.71	.01	.49
AP	R 1	6.9	.1	7.9	152	134	1.	6	.03	1.6	.08	.70
MA .0	2	11	.3	15	205	213	1.	7	.03	1.7	.04	.37
JU	N 6	7.9	.2	13	183	179			.02	1.5	.09	.73
JU	L	15	.3	18	196	209			.02	1.6	.01	.49
AU	1 G 8	15			186	208			.02	1.7	.02	1.9
SE	P		•3	16								
1	3	13	.3	15	203	203	1.	0	.02	1.6	.03	.64

08449400 DEVILS RIVER AT PAFFORD CROSSING NEAR COMSTOCK, TX--Continued

	NITRO- GEN+AM- MONIA + ORGANIC TOTAL (MG/L	NITRO- GEN+AM- MONIA + ORGANIC DIS- (MG/L	PHOS- PHORUS, TOTAL (MG/L	PHOS- PHORUS, DIS- SOLVED (MG/L	CARBON, ORGANIC TOTAL (MG/L	CARBON, ORGANIC DIS- SOLVED (MG/L	CARBON: ORGANIC SUS- PENDED TOTAL (MG/L	SEDI- MENT, SUS- PENDED	SEDI- MENT DIS- CHARGE, SUS- PENDED	SED. SUSP. SIEVE DIAM. % FINER THAN
JAN	AS N)	AS N)	AS P)	AS P)	AS C)	AS C)	AS C)	(MG/L)	(T/DAY)	.062 MM
17 FEB	.30	.20	.01	•01	.6		-	5	4.5	36
14 MAR	•00	.00	•01	.01		1.4	•0	6	5.3	16
21 APR	•50	.51	.00	.00	.2	Ma les		35	3.4	78 98
MAY	.78	.62	•05	.00	9.0		Boulding	5	4.2	71
02 JIJN .06	.82	.64	.01	.00	1.0	4.3	1.5	95	140	99
JUL 11		.41	.00	.09		4.3		10	8.4	92
AUG 08	1.9	1.4			1.3	1.6		16	14	98
SEP 13	.67	.61	.01	.00	1.2	1.0		9	8.3	84
13	•07	•01	•01	.01		BARIUM,		20 7	CADMIUM	
DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	SUS- PENDED RECOV- ERABLE (UG/L AS BA)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)
FEB 14	1600	2	1	1	200	100	100	1	0	2
JUN 06	1200	2	0	2	300	100	200	0	-	0
08	1300	2	1	1	300	200	100	1	0	<1
DATE	CHRO- MIUM. TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COBALT, SUS- PENDED RECOV- ERABLE (UG/L AS CO)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER. TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON. TOTAL RECOV- ERABLE (UG/L AS FE)
FEB		10		0	0	0	6	6		10
14 JUN 06	10	10	5	0	0	1	6	4	2	1500
AUG 08	0	0	0	1	0	<1	6	6		200
	TRON. SUS- PENDED RECOV- FRABLE (UG/L	IRON. DIS- SOLVED (UG/L	LEAD, TOTAL RECOV- ERABLE	LEAD+ SUS- PENDED RECOV- ERABLE (UG/L	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY SUS- PENDED RECOV- ERABLE (UG/L AS HG)
DATE	AS FE)	AS FE)	AS FB)	AS PB)	A3 F67	AS MILI	A3 (1117)	A3 1111		
FEB 14 JUN	4.0	0	0	0	0	0	0	0	•5	•5
06		0	5	3	5	60	60	5	•1	•1
08	190	<10	6	6	0	20 ETI VED-	20	<1	ZINC.	•1
DATE	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, SUS- PENDED TOTAL (UG/L AS SE)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	SILVER. SUS- PENDED RECOV- ERABLE (UG/L AS AG)	SILVER. DIS- SOLVED (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	SUS- PENDED RECOV- ERABLE (UG/L AS ZN)	ZINC. DIS- SOLVED (UG/L AS ZN)
FEB			-							
14 JUN	.0	0	0		0	0	0	10	10	10
AUG	.0	0	0	0	0	0	0	20	7	10
08	.3	1	0	1	. 0	0	0	10	1425	4

08449400 DEVILS RIVER AT PAFFORD CROSSING NEAR COMSTOCK, TX--Continued

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978
PERIPHYTON

		DATE	LENGTH OF EXPOSURE (DAYS)	PERI- PHYTON BIOMASS ASH WEIGHT G/SQ M	PERI- PHYTO BIOMAS TOTAL DRY WEIGH G/SQ	N PE S PH CHR GRA T FLU	RI- YTON OMO- C PHIC G OROM F	HLOR-B PERI- PHYTON HROMO- RAPHIC LUOROM MG/M2)	SAMPLI	NG MET	HOD			
		MAY 02	21	1.42	1.65		.000	.000	POLYETHY	LENE ST	TRIP			
			PHYTOPLAN											
TIME			MAR	1345		2•78 330	JUN	6.78 1200		11,78 125	AUG 1	8,78 300		13,78 210
TOTAL	CELLS/ML			270	1	450		650		130	1	600	4	300
DIVER	SITY: DIVISIO .CLASSORDERFAMI	LY		0.7 0.7 0.9 2.6 2.8		1.2 1.2 1.4 2.7 2.7		1.2 1.2 2.1 2.7 2.8		0.0 0.0 0.9 1.2		1.0 1.0 1.6 1.9		0.6 0.6 0.9 1.2
ORGA	NISM		CELLS	S PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
. CHLO	OPHYTA (GREEN ROPHYCEAE OROCOCCALES CYSTACEAE	ALGAE)												
C	HODATELLA ENEDESMACEAE		14	5		-		-		-		-		•
S	CENEDESMUS NEMATALES		21	7 10	29	6	15	2		•	55	4		-
	SMIDIACEAE OSMARIUM		14	4 5						-		-		-
••••5	PONDYLOSTUM		1 -			-	15	2		-		-		-
CEN	OPHYTA LLARIOPHYCEAE TRALES SCINODISCACEA YCLOTELLA				14	3			-					_
13.4														-
PEN	ELOSIRA NALES HNANTHACEAE		-				100	# 16	88#	67			110	3
A	CHNANTHES				72#	16		-		-		-		-
CY	MBELLACEAE MPHORA		2.		14	3	15	2		-		-		-
C	YMBELLA		14			-	44		15	11	83	5	150	4
••••E	PITHEMIA ATOMACEAE			0		-		-		-		•		-
	IATOMA				14	3				-		-		-
FR	AGILARIACEAE						100							
S	RAGILARIA YNEDRA		81			-	15 29	2		-	42	3	28	1
GO!	MPHONEMATACEA	E												
G	OMPHONEMA VICULACEAE		14	5	14	3				-		-		-
C	ALONEIS		14	4 5		_		-		-		-	28	1
M	ASTOGLOIA		-			-		-						0
	AVICULA Innularia		68	3# 25	72#	16	180	# 27	15 15	11	220	14	110	3
NI	TZSCHIACEAE													
	ENTICULA		21	7 10		-		-		:		2	220	5
CYANOR	ITZSCHIA PHYTA (BLUE-G OPHYCEAE	REEN ALG	AE)		58	13					-		220	5
CHR	OCCOCCALES													
CHF	ROCCOCCAE A E GMENELLUM					-	120	w 18				-		-
A	NACYSTIS		1			-				-	330#	21	170	4
HORE	MOGONALES	_												
	CILLATORIACEA SCILLATORIA	E		-	160#	35	120	# 18		-	830#	53	3400#	80
	PIRULINA		-			-				-		-		0
100														

NOTE: # - DOMINANT ORGANISM: EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM: MAY NOT HAVE BEEN COUNTED: LESS THAN 1/2%

08449400 DEVILS RIVER AT PAFFORD CROSSING NEAR COMSTOCK, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

MONTH	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)		DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVEN SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA+MG) (MG/L)
OCT. 1977	0	******	******	0	******	0 **	****	0	****
NOV. 1977	U	******	******	0	******	0 **	****	0	****
DEC. 1977	0	******	******	0	******	0 **	****	0	****
JAN. 1978	0	******	******	0	******	0 **	****	0	****
FEB. 1978	9050	407	230	5630	15	369	10	249	200
MAR. 1978	9676	389	220	5730	14	378	10	257	190
APR. 1978	10721	347	190	5630	13	373	9	256	170
MAY 1978	10688	367	210	5940	14	392	9	269	180
JUNE 1978	14209	333	190	7170	12	476	8	325	160
JULY 1978	9691	346	200	5110	13	337	9	228	170
AUG. 1978	9441	343	190	4920	13	323	9	220	160
SEPT 1978	10437	352	200	5590	13	367	9	250	170
TOTAL	83913	**	**	45700	* **	3010		2050	**
WTD.AVG	347	359	200	**	13	**	9.1	••	170

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
					419	407	370	354	295	312	342	335
1					394	400	377	325	310	328	351	328
2					400	391	380	354	319	341	357	350
3					404		391	380	328	326	352	370
4						410		314	260	341	307	351
5					401	421	333	314	200	1	307	331
6					398	415	343	363	308	323	325	357
7					413	410	344	358	344	354	331	365
Я					405	403	345	396	393	317	348	356
9					407	385	304	356	341	315	313	365
10					403	365	268	381	357	345	335	360
11					394	349	241	366	375	334	323	351
12					406	375	343	395	299	358	331	355
13					400	398	364	389	325	334	335	349
13					390	384	359	377	310	366	338	338
14 15							357	385	307	357	340	350
15					400	342	351	303	307	33.7	340	330
16					386	370	360	392	357	354	290	345
17					408	393	392	393	350	349	338	343
18					422	380	393	366	349	350	347	353
19					418	381	380	373	347	360	350	341
20					408	400	396	344	319	338	355	347
								- 1			The second	100
21					413	396	364	308	344	336	360	335
55					415	349	361	375	357	343	364	326
23					420	396	360	393	367	357	344	349
24					417	384	353	375	350	355	327	362
25					418	390	378	389	333	359	358	357
26					415	390	358	378	350	355	361	353
27					407	391	356	385	346	359	359	370
28					412	381	388	378	358	368	356	366
29					412	402	354	385	356	365	362	353
						400	370	373	340	368	359	362
30						393	370	350	340	369	366	
31						343		350		307		
MEAN					407	389	356	369	336	346	343	351

08449400 DEVILS RIVER AT PAFFORD CROSSING NEAR COMSTOCK, TX--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY

					U.	NCE-DAILT						
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1					10.0	17.0	19.0	24.0	27.0	27.0	25.0	26.0
					10.0	19.0	19.0	25.0		27.0	25.0	26.0
3					11.0	15.0		22.0	23.0	29.0	25.0	26.0
4					10.0		22.0	20.0	24.0	27.0	25.0	
2 3 4 5					10.0	15.0	21.0	19.0	25.0	28.0	30.0	26.0
6					10.0	17.0	21.0	22.0	26.0	25.0	30.0	25.0
6 7 8 9					11.0	14.0	24.0	27.0	24.0	26.0	30.0	25.0
8					12.0	12.0	17.0	23.0	28.0	28.0	25.0	27.0
9					10.0	16.0	24.0	26.0	25.0	29.0	30.0	25.0
10					9.0	14.0	17.0	23.0	24.0	27.0	26.0	
11					8.0	15.0	18.0	25.0	25.0	30.0	29.0	27.0
12					11.0		16.0	21.0	27.0	26.0	30.0	27.0
13					13.0	18.0	20.0	23.0	29.0	30.0	30.0	25.0
14					11.0	15.0	23.0	21.0	29.0	29.0	30.0	28.0
15					11.0	15.0	23.0	24.0	24.0	28.0	29.0	30.0
16					10.0	18.0	23.0	25.0	23.0	30.0	30.0	30.0
17					10.0	16.0	21.0	25.0		28.0	30.0	30.0
18					7.0	14.0	18.0	24.0	25.0	27.0	28.0	25.0
19					11.0	14.0	19.0	24.0	25.0	27.0		25.0
50					10.0	18.0	19.0	24.0	24.0	28.0		26.0
21					9.0	20.0	23.0	25.0	25.0	27.0		
22					12.0	20.0	26.0	26.0	25.0	26.0	26.0	25.0
23					14.0	21.0	27.0	25.0	26.0	26.0	26.0	25.0
24					15.0	19.0	29.0	24.0		26.0	25.0	25.0
25					15.0	17.0	25.0	23.0	29.0	27.0	25.0	26.0
26							23.0	24.0	27.0	27.0	26.0	26.0
27					15.0	17.0	23.0	23.0	27.0	26.0		50.0
28					19.0	20.0	20.0	23.0	28.0	26.0	28.0	24.0
29						16.0	25.0	23.0	25.0	25.0	25.0	25.0
30						18.0	26.0	26.0	29.0	25.0	26.0	21.0
31						19.0		27.0		25.0	26.0	
MEAN					11.5	17.0	22.0	23.5	26.0	27.0	27.5	26.0

08450900 RIO GRANDE BELOW AMISTAD DAM NEAR DEL RIO, TX

LOCATION.--Lat 29°25'30", long 101°27'00", Val Verde County, Hydrologic Unit 13080001, 2.2 mi (3.5 km) downstream from Amistad Dam and 10 mi (16 km) northwest of Del Rio.

DRAINAGE AREA.--123,143 mi2 (318,940 km2).

PERIOD OF RECORD.--Chemical analyses: July 1968 to current year.

REMARKS.--The flow is controlled largely by releases from Amistad Reservoir. Records of daily mean discharge for water year 1978 are given in International Boundary and Water Commission Water Bulletins Nos. 47 and 48.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		STREAM- FLOW, INSTAN-	SPE- CIFIC CON- DUCT- ANCE	PH	TEMPER-	HARD- NESS (MG/L	HARD- NESS, NONCAR- BONATE	CALCIUM DIS- SOLVED	MAGNE- SIUM, DIS- SOLVED
DATE	TIME	TANEOUS (CFS)	(MICRO- MHOS)	(UNITS)	(DEG C)	AS CACO3)	(MG/L CACO3)	(MG/L AS CA)	(MG/L AS MG)
ОСТ									
19 NOV	0720	892	1090	8.0	17.0	270	130	75	20
16 DEC	0715	897	1070	8.0	17.0	270	150	74	21
21	0820	971	1060	8.0	13.0	260	140	71	20
JAN 18 FEB	0825	971	1060	8.0	10.5	260	150	70	21
15	0820	944	1050	8.1	10.0	260	140	69	21
MAR 15 APR	0800	3070	1040	7.8		270	150	75	20
19	0815	1230	1060	8.1	18.0	240	120	63	20
17	0725	6640	1100	7.8	26.5	260	140	70	21
JUN 21 JUL	0720	5090	1090	8.0	22.0	250	120	66	20
19 AUG	0720	4450	1080	8.2		250	130	66	50
16 SEP	0720	2480	1070	7.8	26.0	250	130	67	19
20	.0725	2430	1030	7.9	26.0	250	140	68	20
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA. DIS- SOLVED (MG/L AS SIO2)	SOLIDS. SUM OF CONSTI- TUENTS. DIS- SOLVED (MG/L)
ОСТ									
19	120	3.2	4.9	170	0	210	130	18	662
16	110	5.9	5.1	150	0	550	130	18	652
21	120	3.2	4.9	140	0	210	130	18	643
JAN 18	120	3.2	5.2	140	0	220	130	18	653
FEB 15	110	3.0	5.1	150	0	220	120	16	635
MAR 15	120	3.2	5.1	150	0	220	130	15	659
APR 19	120	3.4	5.3	150	0	210	120	16	628
MAY 17	120	3.2	5.3	150	0	200	130	16	636
21	120	3.3	5.2	150	0	210	130	17	642
JUL 19	130	3.6	5.3	140	0	210	130	17	647
AUG 16	110	3.1	4.9	140	0	210	130	16	626
20	120	3.3	5.1	140	Ó	240	120	18	660

543

150

08459000 RIO GRANDE AT LAREDO, TX (National stream-quality accounting network)

LOCATION.--Lat 27°29'45", long 99°29'30", Webb County, Hydrologic Unit 13080002, at gaging station 1.1 mi (1.8 km) downstream from the highway bridge between Laredo and Nuevo Laredo, Tamaulipas, Mex., and 891.0 mi (1.433.6 km) downstream from the American Dam at El Paso.

DRAINAGE AREA.--132,578 mi² (343,377 km²), United States and Mexico; from International Boundary and Water Commission Water Bulletin No. 44.

PERIOD OF RECORD. -- Chemical analyses: July 1955 to current year. Chemical, biochemical, and sediment analyses: January 1973 to current year.

PERIOD OF DAILY RECORED.--SPECIFIC CONDUCTANCE: October 1974 to current year. WATER TEMPERATURES: October 1974 to current year.

REMARKS.--Records of discharge for water year 1978 are given in International Boundary and Water Commission Water Bulletins Nos. 47 and 48.

EXTREMES FOR PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: Maximum daily, 1,690 micromhos June 1, 1963; minimum daily, 214 micromhos Sept. 26, 1964.

11 ...

2700

550

100

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 1,230 micromhos Apr. 11-12, 14; minimum daily, 533 micromhos Oct. 27.

		WAT	ER QUALIT	Y DATA.	ATER YEAR	OCTOBER	1977 10 5	EPIEMBER	1978		
		STREAM- FLOW. INSTAN-	SPE- CIFIC CON- DUCT- ANCE	РН	TEMPER-	TUR- BID-	OXYGEN,	OXYGEN, DIS- SOLVED (PER- CENT	OXYGEN DEMAND. BIO- CHEM- ICAL.	COLI- FORM, TOTAL, IMMED. (COLS.	COLI- FORM. FECAL. 0.7
	TIME	TANEOUS	(MICRO-	PH	ATURE	ITY	SOLVED	SATUR-	5 DAY	PER	(COLS./
DATE	TIME	(CFS)	MHOS)	(UNITS)	(DEG C)	(UTU)	(MG/L)	ATION)	(MG/L)	100 ML)	100 ML)
ост					100					47000	7500
17	1315	1570	1000	7.9	22.0	15	8.4	99	1.1	67000	7500
07 DEC	1415	1740	947	7.9	24.5	25	8.7	106	.8	5600	2400
05	1515	1620	910	7.9	20.5	15	9.7	110	.7	840	390
23	1615	1320	1050	P.0	9.5	6	11.0	99	1.4	7800	4600
13	1245	1230	1050	7.9	14.0	15	10.3	103	1.4	8600	1400
13	1255	2670	1060	7.8	20.5	55	8,5	97	.2	21000	1600
APR 17	1630	1700	1110	8.1	27.5	50	8.0	102	1.5	14000	2000
YAM 08	1530	780	1150	8.0	28.5	30	8.2	106	3.1	170000	16000
JUN 05	1630	8330	1000	7.6	29.0		7.4	97	1.0	47000	7600
JUL 10	1630	4270	1200	8.0	31.0	30	8.0	108	.4	1400	290
AUG		2540	1070	8.0	30.0	40	7.3	97	1.0	2900	840
SEP	1310					-		91	.8		19000
11	1510	3570	757	8.1	28.5	90	7.0	71	••		1,000
DATE	STREP- TOCOCCI FECAL. KF AGAR (COLS. PFR 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS. NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM. DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
ОСТ											
17	3300	270	140	77	50	110	2.9	4.1	170	0	230
07 DE	4200	280	130	83	18	96	2.5	3.7	180	0	. 500
05 JAN	270	280	150	80	20	100	2.6	3.9	160	0	190
23 FE#	4200	290	150	43	21	110	2.8	4.0	170	0	550
13	5200	300	160	84	21	100	2.5	4.0	170	0	200
13 APR	2300	310	190	HH	51	100	2.5	3.9	140	0	180
17 MAY	3700	310	170	88	22	110	2.7	4.8	170	0	550
08	47000	280	160	76	22	130	3.4	5.3	150	0	230
05	3200	280	160	73	53	110	2.9	5.2	140	0	550
10	350	270	150	70	55	120	3.2	4.9	140	0	230
14	k160	260	130	70	20	110	3.0	4.9	150	0	210

14

2.2

4.0

RIO GRANDE BASIN
08459000 RIO GRANDE AT LAREDO, TX--Continued

DATE	CHLO- PIDE. DIS- SOLVED (MG/L AS CL)	FLUO- RIDE. DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS. RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN. NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN. ORGANIC TOTAL (MG/L AS N)
OCT										
17	100	.7	18	622	644	.34	.00	.34	.03	.24
NOV	100	•	, 0	022	011	• 5 4	•••	•••		• • •
07	100	.7	17	592	607	•53	.01	.54	.01	.53
DEC		-								
05	110	.7	15	608	598	.42	.01	.43	.06	.27
JAN					1 2 8 5				5 (24)	
23	120	. 4	15	648	657	.20	.01	.21	.01	.50
FFB										
13	110	.7	15	634	619	•58	.01	.59	.01	.40
MAR							1-2			
13	120	. 7	14	610	597	.33	.00	.33	.01	.60
APR										
17	120	.9	17	675	667	.53	.02	.55	.01	.58
MAY										
08	140	.9	16	693	694	.16	.01	.17	.05	.53
JUN										
05	110	.9	12	613	623	• 25	.09	.34	.01	.71
JUL										
10	130	1.0	20	666	667	•21	.01	.22	.00	.59
AUG									1.18	
14	150	.9	18	643	628	.25	.01	.26	.02	.57
SEP										
11	79	.6	14	470	469	•57	.01	.58	.01	.59
	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L)	PHOS- PHORUS, TOTAL (MG/L	PHOS- PHORUS, DIS- SOLVED (MG/L	CARBON. ORGANIC TOTAL (MG/L	CARBON. ORGANIC DIS- SOLVED (MG/L	CARBON DORGANIC SUS-PENDED TOTAL (MG/L	SEDI- MENT, SUS- PENDED	SEDI- MENT DIS- CHARGE, SUS- PENDED	SED. SUSP. SIEVE DIAM. % FINER THAN
DATE	GFN,AM- MONIA + ORGANIC FOTAL	GEN, AM- MONIA + ORGANIC DIS.	PHORUS,	DIS- SOLVED	ORGANIC TOTAL	ORGANIC DIS- SOLVED	ORGANIC SUS- PENDED	MENT , SUS-	MENT DIS- CHARGE, SUS-	SUSP. SIEVE DIAM. % FINER
DATE	GFN+AM- MONIA + ORGANIC FOTAL (MG/L	GEN, AM- MONIA + ORGANIC DIS. (MG/L)	PHORUS, TOTAL (MG/L	PHORUS. DIS- SOLVED (MG/L	ORGANIC TOTAL (MG/L	ORGANIC DIS- SOLVED (MG/L	ORGANIC SUS- PENDED TOTAL (MG/L	MENT , SUS- PENDED	MENT DIS- CHARGE, SUS- PENDED	SUSP. SIEVE DIAM. % FINER THAN
oct	GFN.AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC DIS. (MG/L)	PHORUS, TOTAL (MG/L	PHORUS. DIS- SOLVED (MG/L	ORGANIC TOTAL (MG/L	ORGANIC DIS- SOLVED (MG/L	ORGANIC SUS- PENDED TOTAL (MG/L	MENT, SUS- PENDED (MG/L)	MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
ncT 17	GFN+AM- MONIA + ORGANIC FOTAL (MG/L	GEN, AM- MONIA + ORGANIC DIS. (MG/L)	PHORUS, TOTAL (MG/L	PHORUS. DIS- SOLVED (MG/L	ORGANIC TOTAL (MG/L	ORGANIC DIS- SOLVED (MG/L	ORGANIC SUS- PENDED TOTAL (MG/L	MENT , SUS- PENDED	MENT DIS- CHARGE, SUS- PENDED	SUSP. SIEVE DIAM. % FINER THAN
17	GFN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC DIS. (MG/L, AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L)	MENT DIS- CHARGE. SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 17 NOV 07	GFN.AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC DIS. (MG/L, AS N)	TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L)	MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 17 NOV 07 DEC	GFN.AM-MONIA + ORGANIC TOTAL (MG/L AS N)	GEN.AM- MONIA + ORGANIC DIS. (MG/L, AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C) 2.2	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L)	MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
0CT 17 NOV 07 DEC	GFN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN+AM- MONJA + ORGANIC DIS- (MG/L, AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L)	MENT DIS- CHARGE. SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 17 NOV 07 DEC 05	GFN+AM- MONIA + ORGANIC TOTAL (MG/L AS N) .27 .54	GEN.AM- MONIA + ORGANI DIS. (MG/L, AS N)	PHORUS, TOTAL (MG/L AS P) .03 .03	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C) 2.2 4.2 3.6	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 40 77	MENT DIS- CHARGE. SUS- PENDED (T/DAY) 170 362 96	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 17 NOV 07 DEC 05 JAN 23	GFN.AM-MONIA + ORGANIC TOTAL (MG/L AS N)	GEN.AM- MONIA + ORGANIC DIS. (MG/L, AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C) 2.2	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L)	MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 17 NOV 07 DEC 05 JAN 23 FEB	GFN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .27 .54 .33	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS, TOTAL (MG/L AS P) .03 .03	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C) 2.2 4.2 3.6 2.2	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 40 77 22	MENT DIS- CHARGE, SUS- PENDED (T/DAY) 170 362 96 29	SUSP. SIEVE DIAM. % FINER THAN .062 MM 74 97
OCT 17 NOV 07 DEC 05 JAN 23 FEB 13	GFN+AM- MONIA + ORGANIC TOTAL (MG/L AS N) .27 .54	GEN.AM- MONIA + ORGANI DIS. (MG/L, AS N)	PHORUS, TOTAL (MG/L AS P) .03 .03	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C) 2.2 4.2 3.6	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 40 77	MENT DIS- CHARGE. SUS- PENDED (T/DAY) 170 362 96	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 17 NOV 67 DEC 65 JAN 23 FEH 13	6FN-AM- MONIA + ORGANIC TOTAL (MG/L AS N) .27 .54 .33 .51	GEN.AM- MONIA + ORGANIC DIS. (MG/L, AS N)33 .25	PHORUS, TOTAL (MG/L AS P) .03 .03 .04	PHORUS, DIS- SOLVED (MG/L AS P) .01 .02	ORGANIC TOTAL (MG/L AS C) 2.2 4.2 3.6 2.2	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 40 77 22 8	MENT DIS- CHARGE. SUS- PENDED (T/DAY) 170 362 96 29 70	SUSP. SIEVE DIAM. % FINER THAN .062 MM 74 97 96 78
OCT 17 NOV 07 DEC 05 JAN 23 FEH 13 MAR	GFN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .27 .54 .33	GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS, TOTAL (MG/L AS P) .03 .03	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C) 2.2 4.2 3.6 2.2	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 40 77 22	MENT DIS- CHARGE, SUS- PENDED (T/DAY) 170 362 96 29	SUSP. SIEVE DIAM. % FINER THAN .062 MM 74 97
OCT 17 NOV 07 DEC 05 JAN 23 FEH 13 MAR 13	GFN-AM- MONIA + ORGANIC TOTAL (MG/L AS N) -27 -54 -33 -51 -41	GEN.AM- MONIA + ORGANIC DIS. (MG/L, AS N)	PHORUS, TOTAL (MG/L AS P) .03 .03 .04 .05	PHORUS, DIS- SOLVED (MG/L AS P) .01 .02 .02	ORGANIC TOTAL (MG/L AS C) 2.2 4.2 3.6 2.2	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 40 77 22 8 21	MENT DIS- CHARGE. SUS- PENDED (T/DAY) 170 362 96 29 70 901	SUSP. SIEVE DIAM. % FINER THAN .062 MM 74 97 96 78 95
OCT 17 NOV 67 DEC 05 JAN 23 FEH 13 MAR 13	6FN-AM- MONIA + ORGANIC TOTAL (MG/L AS N) .27 .54 .33 .51	GEN.AM- MONIA + ORGANIC DIS. (MG/L, AS N)33 .25	PHORUS, TOTAL (MG/L AS P) .03 .03 .04	PHORUS, DIS- SOLVED (MG/L AS P) .01 .02	ORGANIC TOTAL (MG/L AS C) 2.2 4.2 3.6 2.2	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 40 77 22 8	MENT DIS- CHARGE. SUS- PENDED (T/DAY) 170 362 96 29 70	SUSP. SIEVE DIAM. % FINER THAN .062 MM 74 97 96 78
OCT 17 NOV 07 DEC 05 JAN 23 FEH 13 MAR 13 APR 17	6FN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) -27 -54 -33 -51 -41 -61	GEN.AM- MONIA + ORGANIC DIS. (MG/L, AS N)	PHORUS, TOTAL (MG/L AS P) .03 .03 .04 .05 .14	PHORUS, DIS- SOLVED (MG/L AS P) .01 .02 .02	ORGANIC TOTAL (MG/L AS C) 2.2 4.2 3.6 2.2 4.0 2.9	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT - SUS-PENDED (MG/L) 40 77 22 8 21 125	MENT DIS- CHARGE. SUS- PENDED (T/DAY) 170 362 96 29 70 901 422	SUSP. SIEVE DIAM. % FINER THAN .062 MM 74 97 96 78 95 96
OCT 17 NOV 07 DEC 05 JAN 23 FEB 13 MAR 13 APR 17	GFN-AM- MONIA + ORGANIC TOTAL (MG/L AS N) -27 -54 -33 -51 -41	GEN.AM- MONIA + ORGANIC DIS. (MG/L, AS N)	PHORUS, TOTAL (MG/L AS P) .03 .03 .04 .05	PHORUS, DIS- SOLVED (MG/L AS P) .01 .02 .02	ORGANIC TOTAL (MG/L AS C) 2.2 4.2 3.6 2.2	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 40 77 22 8 21	MENT DIS- CHARGE. SUS- PENDED (T/DAY) 170 362 96 29 70 901	SUSP. SIEVE DIAM. % FINER THAN .062 MM 74 97 96 78 95
OCT 17 NOV 07 DEC 05 JAN 23 FEH 13 MAR 13 APR 17 MAY 08 JUN	GFN-AM- MONIA + ORGANIC TOTAL (MG/L AS N) -27 -54 -33 -51 -41 -61 -59	GEN.AM- MONIA + ORGANIC DIS. (MG/L, AS N)	PHORUS, TOTAL (MG/L AS P) -93 -03 -04 -05 -14 -07 -11	PHORUS, DIS- SOLVED (MG/L AS P) .01 .02 .05 .00	ORGANIC TOTAL (MG/L AS C) 2.2 4.2 3.6 2.2 4.0 2.9	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 40 77 22 8 21 125 92 45	MENT DIS- CHARGE. SUS- PENDED (T/DAY) 170 362 96 29 70 901 422	SUSP. SIEVE DIAM. % FINER THAN .062 MM 74 97 96 78 95 96
OCT 17 NOV 07 DEC 05 JAN 23 FEB 13 MAR 13 APR 17	6FN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) -27 -54 -33 -51 -41 -61	GEN.AM- MONIA + ORGANIC DIS. (MG/L, AS N)	PHORUS, TOTAL (MG/L AS P) .03 .03 .04 .05 .14	PHORUS, DIS- SOLVED (MG/L AS P) .01 .02 .02	ORGANIC TOTAL (MG/L AS C) 2.2 4.2 3.6 2.2 4.0 2.9	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT - SUS-PENDED (MG/L) 40 77 22 8 21 125	MENT DIS- CHARGE. SUS- PENDED (T/DAY) 170 362 96 29 70 901 422	SUSP. SIEVE DIAM. % FINER THAN .062 MM 74 97 96 78 95 96
OCT 17 NOV 07 DEC 05 JAN 23 FEB 13 MAR 17 MAY 08 JUN 05 JUL	GFN-AM- MONIA + ORGANIC TOTAL (MG/L AS N) -27 -54 -33 -51 -41 -61 -59	GEN.AM- MONIA + ORGANIC DIS. (MG/L, AS N)	PHORUS, TOTAL (MG/L AS P) -93 -03 -04 -05 -14 -07 -11	PHORUS, DIS- SOLVED (MG/L AS P) .01 .02 .05 .00	ORGANIC TOTAL (MG/L AS C) 2.2 4.2 3.6 2.2 4.0 2.9	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 40 77 22 8 21 125 92 45	MENT DIS- CHARGE. SUS- PENDED (T/DAY) 170 362 96 29 70 901 422	SUSP. SIEVE DIAM. % FINER THAN .062 MM 74 97 96 78 95 96
OCT 17 NOV 67 DEC 05 JAN 23 FEH 13 MAR 13 APR 17 MAY 08 JUN 05	GFN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) -27 -54 -33 -51 -41 -61 -59 -58	GEN.AM- MONIA + ORGANIC DIS. (MG/L, AS N)333 .25 .37 .35 .43 .36	PHORUS, TOTAL (MG/L AS P) .03 .03 .04 .05 .14 .07 .11	PHORUS, DIS- SOLVED (MG/L AS P) .01 .02 .05 .00	ORGANIC TOTAL (MG/L AS C) 2.2 4.2 3.6 2.2 4.0 2.9	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS-PENDED (MG/L) 40 77 22 8 21 125 92 45 392	MENT DIS- CHARGE. SUS- PENDED (T/DAY) 170 362 96 29 70 901 422 95 8820	SUSP. SIEVE DIAM. % FINER THAN .062 MM 74 97 96 78 95 96 98 100 92
OCT 17 NOV 07 DEC 05 JAN 23 FEH 13 APR 17 MAY 08 JUN 05 JUL 10 AUG	GFN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) -27 -54 -33 -51 -41 -61 -59 -58	GEN.AM- MONIA + ORGANIC DIS. (MG/L, AS N)333 .25 .37 .35 .43 .36	PHORUS, TOTAL (MG/L AS P) .03 .03 .04 .05 .14 .07 .11	PHORUS, DIS- SOLVED (MG/L AS P) .01 .02 .05 .00	ORGANIC TOTAL (MG/L AS C) 2.2 4.2 3.6 2.2 4.0 2.9	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS-PENDED (MG/L) 40 77 22 8 21 125 92 45 392	MENT DIS- CHARGE. SUS- PENDED (T/DAY) 170 362 96 29 70 901 422 95 8820	SUSP. SIEVE DIAM. % FINER THAN .062 MM 74 97 96 78 95 96 98 100 92
OCT 17 NOV 67 DEC 05 JAN 23 FEH 13 MAR 13 APR 17 MAY 08 JUN 05 JUL 10	6FN-AM- MONIA + ORGANIC TOTAL (MG/L AS N) .27 .54 .33 .51 .41 .61 .59 .58 .72	GEN.AM- MONIA + ORGANIC DIS. (MG/L, AS N) .33 .25 .37 .35 .43 .36 .34	PHORUS, TOTAL (MG/L AS P) -93 -03 -03 -04 -05 -14 -07 -11 -03 -03	PHORUS, DIS- SOLVED (MG/L AS P) .01 .02 .05 .00 .04 .01	ORGANIC TOTAL (MG/L AS C) 2.2 4.2 3.6 2.2 4.0 2.9 7.8 3.2	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS-PENDED (MG/L) 40 77 22 8 21 125 92 45 392 61 100	MENT DIS- CHARGE. SUS- PENDED (T/DAY) 170 362 96 29 70 901 422 95 8820 703	SUSP. SIEVE DIAM. % FINER THAN .062 MM 74 97 96 78 95 96 98 100 92 88 91
OCT 17 NOV 07 DEC 05 JAN 23 FEB 13 APR 17 MAY 08 JUN 05 JUL 10 AUG	6FN-AM- MONIA + ORGANIC TOTAL (MG/L AS N) .27 .54 .33 .51 .41 .61 .59 .58 .72	GEN.AM- MONIA + ORGANIC DIS. (MG/L, AS N) .33 .25 .37 .35 .43 .36 .34	PHORUS, TOTAL (MG/L AS P) -93 -03 -03 -04 -05 -14 -07 -11 -03 -03	PHORUS, DIS- SOLVED (MG/L AS P) .01 .02 .05 .00 .04 .01	ORGANIC TOTAL (MG/L AS C) 2.2 4.2 3.6 2.2 4.0 2.9 7.8 3.2	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) 40 77 22 8 21 125 92 45 392 61	MENT DIS- CHARGE. SUS- PENDED (T/DAY) 170 362 96 29 70 901 422 95 8820 703	SUSP. SIEVE DIAM. % FINER THAN .062 MM 74 97 96 78 95 96 98 100 92

08459000 RIO GRANDE AT LAREDO, TX--Continued

WATER GUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BARIUM, SUS- PENDED RECOV- ERABLE (UG/L AS BA)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)
FEB								0	0	0
13	1245	3	1	2	100	0	100	0	U	
08 AUG	1530	5	2	3	300	100	200	0	0	0
14	1310	4	0	4	300	200	100	1	0	<1
DATE	CHRO- MIUM, TOTAL RECOV- FRABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT. TOTAL RECOV- ERABLE (UG/L AS CO)	COBALT, SUS- PENDED RECOV- ERABLE (UG/L AS CO)	COBALT. DIS- SOLVED (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER. DIS- SOLVED (UG/L AS CU)	IRON. TOTAL RECOV- ERABLE (UG/L AS FE)
FEB										
13	0	0	10	2	2	0	7	5	2	370
08 AUG	0	0	0	0	0	2	7	7	0	780
14	10	10	0	0	0	<1	7	6	1	1300
DATE	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY SUS- PENDED RECOV- ERABLE (UG/L AS HG)
FEB										
13	+-	10	9	4	5	20	10	10	.0	.0
08 AUG	-	0	6	5	1	40	30	10	.0	•0
14	1300	<10	8	8	0	40	40	<1	.0	.0
DATE	MERCURY DIS+ SOLVED (UG/L AS HG)	SELE- NIUM. TOTAL (UG/L AS SE)	SELE- NIUM, SUS- PENDED TOTAL (UG/L AS SE)	SELE- NIUM. DIS- SOLVED (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	SILVER, SUS- PENDED RECOV- ERABLE (UG/L AS AG)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, SUS- PENDED RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)
								::!		
13 MAY	.0	0	0	0	1	1	0	20	10	10
08 AUG	• 0	0	0	0	0	0	0	20	0	20
14	.0	1	1	0	0	0	0	20	20	<3

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978
PERIPHYTON

DATE	LENGTH OF EXPOSURE	PERI- PHYTON BIOMASS ASH WEIGHT G/SQ M	PERI- PHYTON BIOMASS TOTAL DRY WEIGHT G/SQ M	CHLOR-A PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)	CHLOR-B PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)	SAMPLING METHOD
DATE	(DAYS)	G/SQ M	G/SQ M	(MG/MZ)	(MG/MZ)	
MAR						
13	28	39.3	43.9	9.29	.960	POLYETHYLENE STRIP

08459000 RIO GRANDE AT LAREDO, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1977 TO AUGUST 1978

	PHYTOPL	ANKTON	ANALYSE	S, OCTO	BER 197	7 TO AU	JGUST 19	78				
DATE TIME		7,77 1415		13,78 1255	MAY	8,78 1530		5•78 1630		10.78		14.78 1310
TOTAL CELLS/ML		230		340		2300		570		1000		250
DIVERSITY: DIVISION		1.5		1.3								
.CLASS		1.5		1.3		1.4		1.3		1.2		0.7
ORDER		1.5		1.5		2.1		1.4		1.4		0.7
FAMILY		2.2		2.4		2.2		2.2		2.0		1.0
GENUS		5.5		2.5		2.3		2.4		2.2		1.1
ORGANISM	/ML	PER-	CELLS /ML	PER- CENT	CELLS /ML	PER-	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER-
CHLOROPHYTA (GREEN ALGAE)												
. CHLOROPHYCEAE												
CHLOROCOCCALES												
CHARACIACEAE		121										
· · · · SCHROEDERIA · · · · OOCYSTACEAE	8	3		-		-	14	2		•		-
· · · · ANKISTRODESMUS		1 1		115								
CHODATELLA						:			89	9	Man 1	2
FRANCEIA				-		-			55	2	10 De	
KIRCHNERIELLA		-			41	2						4
00CYSTIS				-					89	9		-
SCENEDESMACEAE	3 3	1										
SCENEDESMUSVOLVOCALFS	15	7	31	9		•			360#	36	2004	81
CHL AMYDOMONADACEAE												
CHLAMYDOMONAS		-	16	5	210	9	29	5	22	2		20
PHACOTACEAE				-	210	,	24	-	- 22	-		V 100
PHACOTUS			8	2								
POLYBLEPHARIDACEAE												
SPERMATOZOOPSIS				-	41	2		11/10				
CHRYSOPHYTA BACILLARIOPHYCEAE CENTRALES												
COSCINODISCACEAE												
CYCLOTFLLA		-		-	1200#	53		-		-	4	2
STEPHANODISCUS		1		15								
PENNALES				-		1 100		41.56		•	•	5
ACHNANTHACE AE												
COCCONFIS	8	3		-				-				
CYMBELLACEAF												
· · · · AMPHORA				•		-	14	2				•
CYMBELL A				0				-19	10	•		
····DIATOMA		0				4		2				
FRAGILARIACEAE			(1)			-	14	- uly	44			4000
FRAGILARIA		-	16	5		-	57	10				
SYNEDRA	8	3	8	2		-	29	5				
GOMPHONEMATACEAE				mp.								
NAVICULACEAF		•	8	2		•			••		Yes to	13
NAVICULA	15	7	47	14	83	4	43	7		191	8	3
NITZSCHIACEAE					0.5	-	4.0		100	100		3
NITZSCHIA	77#	33	130#	39	120	5	86	15	22	2	28	11
CYANOPHYTA (BLUE-GREEN ALGAE)												
·CYANOPHYCEAE												
CHROCCOCCALES												
CHROCCOCCAEAE												
AGMENELLUM			78#	23	170	7			360#	36		
ANACYSTIS		•		-	100	5						•
HORMOGONALES		N. W.										
OSCILLATORIACEAE		70	10.00									
OSCILLATORIA	92#	40		-	270	12	290#	50				
							24(48.5					10
EUGLENOPHYTA (EUGLENOIDS) •EUGLENOPHYCEAE ••EUGLENALES											4	
EUGLENACEAE												
EUGLENA	8	3		-		-						-
TRACHELOMONAS		•		-	41	2						1 .

NOTE: # - DOMINANT ORGANISM: EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED: LESS THAN 1/2%

RIO GRANDE BASIN

08459000 RIO GRANDE AT LAREDO, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

монтн	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- WHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA+MG) (MG/L)
OCT. 1977	58910	993	600	95700	110	17500	200	32200	270
NOV. 1977	39210	984	600	63300	110	11500	200	21000	270
DEC. 1977	39200	1030	620	65900	120	12200	210	22300	280
JAN. 1978	39650	1040	630	67600	120	12800	210	22900	280
FEH. 1978	35080	1040	6.30	59700	120	11000	210	20200	280
MAR. 1978	78246	1090	660	139000	120	25900	230	48100	290
APR. 1978	44494	1150	700	83800	140	16300	240	29300	300
MAY 1978	125660	1070	650	219000	120	41000	220	75200	280
JUNE 1978	192100	1040	630	310000	120	57300	550	106000	280
JULY 1978	137090	1070	650	241000	120	45500	220	A2600	290
AUG. 1978	87670	1060	640	152000	120	28200	220	52100	240
SEPT 1978	117200	877	530	168000	92	29100	170	53800	250
TOTAL	984510	4*	**	1660000	**	308000	**	566000	**
WTD.4VG	2697.29	1030	630	**	120	**	210	**	280

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C). WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY SEP AUG APR MAY JUN JUI JAN FEB MAR NOV DEC DAY OCT 4 5 17 ------MEAN

548

RIO GRANDE BASIN

08459200 RIO GRANDE AT PIPELINE CROSSING BELOW LAREDO, TX

LOCATION.--Lat 27°24'09", long 99°29'18", Webb County, Hydrologic Unit 13080002, 8.7 mi (14.0 km) downstream from Texas-Mexican Railway Bridge near Laredo, and at mile 352.69 (567.48 km).

PERIOD OF RECORD.--Chemical analyses: November 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	CIFIC CON-			OVVCEN.	DIS- SOLVED	DEMAND, BIO-	FORM. TOTAL.	FORM. FECAL.	TOCOCCI FECAL.	SOLIDS, RESIDUE AT 105 DEG. C.
		PH	TEMPER-							SUS-
TIME										PENDED
, , , , ,	MHOS)	(UNITS)	(DEG C)	(MG/L)	ATION)	(MG/L)	100 ML)	100 ML)	100 ML)	(MG/L)
1425	1026	8.1	23.0	9.5	113	1.2	140000	1700	5500	19
1520	989	8.0	24.5	A.5	104	1.0	260000	60000	23000	30
1300	,,,	0.0	24.5	0.5	104	***	20000	00000	25000	30
0845	870	7.5	13.5	8.7	86	3.1	60000	4900	6300	
0820	1060	7.9	9.5	9.3	84	2.4	350000	78000	31000	9
1435	1020	7.9	15.0	11.1	113	1.2	44000	1100	500	19
1410	1090	7.6	20.5	7.1	81	4.1	250000	50000	51000	85
0905	1110	7.6	25.0	6.2	77	2.8	1300000	110000	9000	68
1416	1100		20.0				1200000	220000	470000	18
1015	1140	7.0	28.0	3.0	40	3.9	1200000	330000	670000	10
1320	978	7.6	28.0	6.9	88	1.7	120000	41000	9700	413
	46.00	4.7			100					_
0910	1180	8.1	28.5	7.0	91	1.3	130000	15000	100000	54
1510	1030	8.0	30.5	7.1	95	1.6	100000	17000	2400	83
0905	844	8.0	27.5	6.6	85	2.0		33000	6400	198
	1520 0845 0820 1435 1410 0905 1015 1320	TIME CON- DUCT- ANCE (MICRO- MHOS) 1425 1026 1520 989 0845 870 0820 1060 1435 1020 1410 1090 0905 1110 1015 1190 1320 978 0910 1180 1510 1030	TIME (MICRO-MHOS) (UNITS) 1425 1026 8.1 1520 989 8.0 0845 870 7.5 0820 1060 7.9 1435 1020 7.9 1410 1090 7.6 0905 1110 7.6 1015 1190 7.6 1015 190 7.6 0910 1180 8.1 1510 1030 8.0	TIME (MICRO- MHOS) (UNITS) (DEG C) 1425 1026 8.1 23.0 1520 989 8.0 24.5 0845 870 7.5 13.5 0820 1060 7.9 9.5 1435 1020 7.9 15.0 1410 1090 7.6 20.5 0905 1110 7.6 25.0 1015 1190 7.6 28.0 1320 978 7.6 28.0 0910 1180 8.1 28.5 1510 1030 8.0 30.5	CIFIC CON- DUCT- ANCE PH TEMPER- OIS- SOLVED (MG/L) 1425 1026 8.1 23.0 9.5 1520 989 8.0 24.5 8.5 0845 870 7.5 13.5 8.7 0820 1060 7.9 9.5 9.3 1435 1020 7.9 15.0 11.1 1410 1090 7.6 20.5 7.1 0905 1110 7.6 25.0 6.2 1015 1190 7.6 28.0 3.6 1320 978 7.6 28.0 3.6 0910 1180 8.1 28.5 7.0 1510 1030 8.0 30.5 7.1	CIFIC CON- DUCT- ANCE PH TEMPER- OIS- CENT SOLVED (MICRO- MHOS) (UNITS) (DEG C) (MG/L) SATUR- ATION) 1425 1026 8.1 23.0 9.5 113 1520 989 8.0 24.5 8.5 104 0845 870 7.5 13.5 8.7 86 0820 1060 7.9 9.5 9.3 84 1435 1020 7.9 15.0 11.1 113 1410 1090 7.6 20.5 7.1 81 0905 1110 7.6 25.0 6.2 77 1015 1190 7.6 28.0 3.6 46 1320 978 7.6 28.0 3.6 46 1320 978 7.6 28.0 6.9 88 0910 1180 8.1 28.5 7.0 91 1510 1030 8.0 30.5 7.1 95	CIFIC CON- DUCT- ANCE PH TEMPER- DIS- SOLVED SATUR- 5 DAY MHOS) (UNITS) (DEG C) (MG/L) SATUR- 5 DAY 1520 989 8.0 24.5 8.5 104 1.0 0845 870 7.5 13.5 8.7 86 3.1 0820 1060 7.9 9.5 9.3 84 2.4 1435 1020 7.9 15.0 11.1 113 1.2 1410 1090 7.6 20.5 7.1 81 4.1 0905 1110 7.6 25.0 6.2 77 2.8 1015 1190 7.6 28.0 3.6 46 3.9 1320 978 7.6 28.0 3.6 46 3.9 1320 978 7.6 28.0 6.9 88 1.7 0910 1180 8.1 28.5 7.0 91 1.3 1510 1030 8.0 30.5 7.1 95 1.6	CIFIC CON- DUCT- ANCE PH TEMPER- ATURE SOLVED SATUR- 5 DAY PER SOLVED SATUR SATUR SATUR SATUR SATUR SA	CIFIC CON- DUCT- ANCE PH TEMPER- TIME (MICRO- MHOS) (UNITS) (DEG C) (MG/L) ATION) (MG/L) 100 ML) 100 ML) 1425 1026 8.1 23.0 9.5 113 1.2 140000 1700 1520 989 8.0 24.5 8.5 104 1.0 260000 60000 0845 870 7.5 13.5 8.7 86 3.1 60000 4900 0820 1060 7.9 9.5 9.3 84 2.4 350000 78000 1435 1020 7.9 15.0 11.1 113 1.2 44000 1100 1410 1090 7.6 20.5 7.1 81 4.1 250000 20000 0905 1110 7.6 25.0 6.2 77 2.8 1300000 110000 1015 1190 7.6 28.0 3.6 46 3.9 1200000 330000 1020 978 7.6 28.0 6.9 88 1.7 120000 41000 0910 1180 8.1 28.5 7.0 91 1.3 130000 15000 1510 1030 8.0 30.5 7.1 95 1.6 100000 17000	CIFIC CON- DUCT- ANCE PH TEMPER- OXYGEN, MHOS) (UNITS) (DEG C) (MG/L) ATION) (MG/L) 100 ML) 100 ML) 1425 1026 8.1 23.0 9.5 113 1.2 140000 1700 2200 1520 989 8.0 24.5 8.5 104 1.0 260000 60000 23000 0845 870 7.5 13.5 8.7 86 3.1 60000 4900 6300 0820 1060 7.9 9.5 9.3 84 2.4 350000 78000 31000 1435 1020 7.9 15.0 11.1 113 1.2 44000 1100 500 140 1090 7.6 20.5 7.1 81 4.1 250000 20000 51000 0905 1110 7.6 25.0 6.2 77 2.8 130000 110000 9000 1015 1190 7.6 28.0 3.6 46 3.9 120000 330000 670000 1320 978 7.6 28.0 6.9 88 1.7 120000 41000 9700 1510 1030 8.0 30.5 7.1 95 1.6 100000 17000 2400

LOCATION.--Lat 26°33'25", long 99°10'05", Starr County, Hydrologic Unit 13080003, on upstream side of Falcon Dam in International Falcon Reservoir, about 1 mi (2 km) west of Falcon Heights, 75 mi (121 km) downstream from Laredo, and at mile 274.81 (442.17

INTERNATIONAL FALCON RESERVOIR NEAR FALCON HEIGHTS, TX

PERIOD OF RECORD. -- Chemical and biochemical analyses: October 1976 to current year.

263337099100101 - INTERNATIONAL FALCON RESERVOIR SITE AC WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	TIME	SAMP- LING DEPTH	SPE- CIFIC CON- DUCT- ANCE (MICRO-	РН	TEMPER-	TRANS- PAR- ENCY (SECCHI DISK)	DIS- SOLVED OXYGEN	PER- CENT SATUR- ATION	HARD- NESS (CA+MG)
DATE	11110	(FT)	MHOS)	(UNITS)	(DEG C)	(M)	(MG/L)	ATTON	(MG/L)
JAN									
05	1742	1.0	1060	8.1	15.5	1.70	9.0	93	260
05	1746	10	1060	8.1	15.5		8.9	92	
05	1748	20	1060	8.1	15.5		8.8	91	
05	1751	30	1060	8.1	15.5		8.8	91	
05	1754	40	1060	8.1	15.5		8.8	91	
05	1755	50	1060	8.0	15.5		8.5	88	
05	1756	60	1060	7.9	15.5		8.4	87	
05	1757	70 80	1060	7.9	15.0		8.4	86	
05	1758 1759	95	1060 1060	7.9 7.9	15.0 15.5	===	8.3	85 83	270
			DIS-			DIS-			
	NON-	DIS-	SOLVED		SODIUM	SOLVED			
	CAR-	SOLVED	MAG-	DIS-	AD-	P0-			DIS-
	BONATE	CAL-	NE-	SOLVED	SORP-	TAS-	BICAR-	CAR-	SOLVED
	HARD-	CIUM	SIUM	SODIUM	TION	SIUM	BONATE	BONATE	SULFATE
	NESS	(CA)	(MG)	(NA)	RATIO	(K)	(HC03)	(CO3)	(504)
DATE	(MG/L)	(MG/L)	(MG/L)	(MG/L)		(MG/L)	(MG/L)	(MG/L)	(MG/L)
JAN									
05	160	69	22	120	3.2	4.6	130	0	230
05									
05									
05								===	
05									
05									
05									
05		100							
05	160	70	22	120	3.2	4.6	130	0	230
				DIS-					
	DIS-	DIS-		SOLVED	TOTAL	TOTAL			DIS-
	SOLVED	SOLVED	DIS-	SOLIDS	NITRITE	AMMONIA	TOTAL	DIS-	SOLVED
	CHLO-	FLUO-	SOLVED	(SUM OF	PLUS	NITRO-	PHOS-	SOLVED	MAN-
	RIDE	RIDE	SILICA	CONSTI-	NITRATE	GEN	PHORUS	IRON	GANESE
DATE	(CL) (MG/L)	(F) (MG/L)	(SIO2)	TUENTS)	(N) (MG/L)	(N) (MG/L)	(P) (MG/L)	(FE) (UG/L)	(MN) (UG/L)
			11.07.27		1.107 27	(1.0,)		.00, 6,	1007 27
JAN 05	120	.7	12	642	.10	.07	.03	20	10
05			12	042	.10	.07	.03		
05									
05									
05									
05									
05									
05									
05	120		12	643	.11	.07	.03	20	10

263326099092201 - INTERNATIONAL FALCON RES SITE AL

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION
JAN							
05	1810	1.0	1060	8.3	15.5	9.0	93
05	1812	10	1060	8.4	15.5	9.0	93
05	1815	25	1060	8.4	15.5	9.0	93

RIO GRANDE BASIN

INTERNATIONAL FALCON RESERVOIR NEAR FALCON HEIGHTS, TX--Continued

263815099124901 - INTERNATIONAL FALCON RES SITE BR

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		SPE-				
					4.22	PER-
	SAMP-	DUCT-				CENT
	LING	ANCE	PH	TEMPER-	SOLVED	SATUR-
TIME	DEPTH	(MICRO-		ATURE	OXYGEN	ATION
	(FT)	MHOS)	(UNITS)	(DEG C)	(MG/L)	
1716	1.0	1060	8.2	15.5	9.0	93
1717	10	1060	8.2	15.5	9.0	93
1718	20	1060	8.1	15.5	8.8	91
1720	30	1060	8.1	15.5	8.7	90
1722	40	1060	8.0	15.0	8.3	85
1724	46	1060	8.0	15.0	8.1	83
	1716 1717 1718 1720 1722	TIME DEPTH (FT) 1716 1.0 1717 10 1718 20 1720 30 1722 40	TIME DEPTH (MICRO-WHOS) 1716 1.0 1060 1717 10 1060 1718 20 1060 1720 30 1060 1722 40 1060	TIME DEPTH (MICRO- (FT) MHOS) (UNITS) 1716 1.0 1060 8.2 1717 10 1060 8.2 1718 20 1060 8.1 1720 30 1060 8.1 1722 40 1060 8.0	TIME DEPTH (MICRO- (FT) MHOS) (UNITS) (DEG C) 1716 1.0 1060 8.2 15.5 1717 10 1060 8.2 15.5 1718 20 1060 8.1 15.5 1720 30 1060 8.1 15.5 1722 40 1060 8.0 15.0	TIME DEPTH (MICRO- (FT) MHOS) (UNITS) (DEG C) (MG/L) 1716 1.0 1060 8.2 15.5 9.0 1717 10 1060 8.2 15.5 9.0 1718 20 1060 8.1 15.5 8.8 1720 30 1060 8.1 15.5 8.7 1722 40 1060 8.0 15.0 8.3

264002099101701 - INTERNATIONAL FALCON RESERVOIR SITE CC

		0.02	SPE- CIFIC CON-			TRANS-	
		SAMP-	DUCT-		TEMPER	ENCY (SECCHI	DIS-
	TIME	DEPTH	ANCE (MICRO-	РН	TEMPER-	DISK)	SOLVED
DATE		(FT)	MHOS)	(UNITS)	(DEG C)	(M)	(MG/L)
JAN							
05	1618	1.0	1060	8.2	15.5	1.40	9.1
05	1621	10	1060	8.2	15.5		9.0
05	1624	20	1060	8.2	15.5		8.8
05	1626	30	1060	8.1	15.0		8.5
05	1628	40	1060	8.1	15.0		8.3
05	1630	50	1060	8.0	14.5		7.9
05	1633	60	1060	8.0	14.5		7.8

	PER- CENT SATUR-	TOTAL NITRITE PLUS NITRATE	TOTAL AMMONIA NITRO- GEN	TOTAL PHOS- PHORUS	DIS- SOLVED IRON	DIS- SOLVED MAN- GANESE
	ATION	(N)	(N)	(P)	(FE)	(MN)
DATE		(MG/L)	(MG/L)	(MG/L)	(UG/L)	(UG/L)
JAN						
05	94	.09	.20	.08	175	70
05	93					
05	91					
05	87					
05	85					
05	80					
05	79	.09	.07	.03	80	10

RIO GRANDE BASIN

INTERNATIONAL FALCON RESERVOIR NEAR FALCON HEIGHTS, TX--Continued

264328099123101 - INTERNATIONAL FALCON RESERVOIR SITE DC

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	1000										
			SPE-								
							TRANS-				
			CIFIC				PAR-		P	ER-	
		CAMB	CON-				ENCY	DIS		ENT	HARD-
		SAMP-	DUCT-	PH	TEMP	DED- (SECCHI	SOL		TUR-	NESS
		LING	ANCE	PH	ATL		DISK)	OXY		ION	(CA,MG)
	TIME	DEPTH	(MICRO-	(UNITS)	(DE		(M)	(MG		1014	(MG/L)
DATE		(FT)	MHOS)	(00115)	TUE	, ()	(14)	(MO)	, ,		1.107 27
JAN											
	1532	1.0	1060	8.3	1	15.5	1.20		9.1	94	270
05		10	1060	8.2		15.5			9.0	93	
05	1534 1536	20	1060	8.2		15.5			8.6	89	
05	1538	30	1060	8.1		15.5			B • 4	87	
05		40	1060	8.0		15.0			8.1	83	
05	1540	50	1080	8.0		15.0			8.0	82	
05	1542	60	1080	8.0		15.0			8.0	82	
05	1544	70	1100	8.0		14.5			7.9	80	
05	1547					14.5			7.6	77	280
05	1550	82	1100	8.0		14.5			,.0		200
			100								
	l sanda		DIS-		1000		DIS-				
	NON-	DIS-	SOLVED			MUIC	SOLVED				
	CAR-	SOLVED	MAG-	DIS-		AD-	P0-				DIS-
	BONATE	CAL-	NE-	SOLVED		RP-	TAS-	BIC		AR-	SOLVED
	HARD-	CIUM	SIUM	SODIUM		ION	SIUM	BON		NATE	SULFATE
	NESS	(CA)	(MG)	(NA)	RA.	TIO	(K)	(HC		(03)	(504)
DATE	(MG/L)	(MG/L)	(MG/L)	(MG/L)			(MG/L)	(MG	/L) (N	(G/L)	(MG/L)
1441											
JAN	170	71	23	120		3.2	4.7		130	0	240
05	170	′1	23	120		3.2					
05											
05											
05											
05											
05											
05											
05	170	74	24	120		3.1	4.5		140	0	260
05	110		24	120		3.1	4.5		• • •		
			n	IS-							
	0	IS-			OTAL	TOTA	M.			D	IS-
					TRITE	AMMON		TAL	DIS-	50	LVED
					PLUS	NITE		05-	SOLVED		AN-
					TRATE	GEN		ORUS	IRON		NESE
					(N)	(N)		P)	(FE)		MN)
DAT					MG/L)	(MG/		G/L)	(UG/L)		G/L)
0.4							-				
JAN											10
05	1	20	12	655	.07		04	.02	40		10
05	•••										
05											
05											
05					.10		10	.03	110		20
05											
05											
05											
05	1	20	12	683	.09		16	.03	(,	10

552

INTERNATIONAL FALCON RESERVOIR NEAR FALCON HEIGHTS, TX--Continued

264858099154201 - INTERNATIONAL FALCON RES SITE EC

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SAMP- LING DEPTH (FT)	CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DIS- SOLVED OXYGEN (MG/L)	PER- CENT SATUR- ATION
JAN							
05	1455	1.0	1100	8.0	15.5	9.1	94
05	1457	10	1100	8.0	15.0	8.8	90
05	1459	20	1100	7.9	15.0	8.4	86
05	1501	30	1100	8.0	14.5	8.1	82
05	1504	40	1120	8.0	14.5	8.0	81
05	1506	50	1120	7.9	14.5	7.9	80
05	1509	64	1120	7.9	14.5	7.6	77

265224099160701 - INTERNATIONAL FALCON RESERVOIR SITE FC

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SAMP- LING DEPTH (FT)	CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	DIS- SOLVED OXYGEN (MG/L)
JAN							
05	1250	1.0	1100	8.2	14.5	1.00	9.0
05	1300	10	1100	8.2	14.5		8.9
05	1302	20	1100	8.2	14.5		8.8
05	1305	30	1100	8.2	14.5		8.7
05	1307	44	1100	8.1	14.0		6.7

DATE	PER- CENT SATUR- ATION	TOTAL NITRITE PLUS NITRATE (N) (MG/L)	TOTAL AMMONIA NITRO- GEN (N) (MG/L)	TOTAL PHOS- PHORUS (P) (MG/L)	DIS- SOLVED IRON (FE) (UG/L)	DIS- SOLVED MAN- GANESE (MN) (UG/L)
JAN						
05	91	.08	.09	.04	20	0
05	90					
05	89					
05	88					
05	67	.05	•34	.07	20	10

265014099190601 - INTERNATIONAL FALCON RES GC

.5		SPE-			TOANS-	
	CAMP					DIS-
			PH	TEMPER-		SOLVED
TIME					DISK)	OXYGEN
1111	(FT)	MHOS)	(UNITS)	(DEG C)	(M)	(MG/L)
1408	1.0	1190	8.3	14.5	.90	9.2
1410	10	1190	8.2	14.5		9.0
1414	20	1190	8.1	14.5		8.4
		1190	8.1	14.5		8.3
		1160	8.0	14.0		7.8
1420	45	1160	8.0	14.0		7.2
	1410 1414 1416 1418	1408 1.0 1410 10 1414 20 1416 30 1418 40	TIME DEPTH (MICRO-MHOS) 1408 1.0 1190 1410 10 1190 1414 20 1190 1416 30 1190 1418 40 1160	TIME DEPTH (MICRO- (FT) MHOS) (UNITS) 1408 1.0 1190 8.3 1410 10 1190 8.2 1414 20 1190 8.1 1416 30 1190 8.1 1418 40 1160 8.0	TIME DEPTH (NICRO- (FT) MHOS) (UNITS) (DEG C) 1408 1.0 1190 8.3 14.5 1416 30 1190 8.1 14.5 1416 30 1190 8.0 14.5 1418 40 1160 8.0 14.0	TIME DEPTH (MICRO- (FT) MHOS) (UNITS) (DEG C) (M) 1408 1.0 1190 8.3 14.5 1414 20 1190 8.1 14.5 1416 30 1190 8.1 14.5 1418 40 1160 8.0 14.0

	PER- CENT SATUR-	TOTAL NITRITE PLUS NITRATE	TOTAL AMMONIA NITRO- GEN	TOTAL PHOS- PHORUS	DIS- SOLVED IRON	SOLVED MAN- GANESE
	ATION	(N)	(N)	(P)	(FE)	(MN)
DATE		(MG/L)	(MG/L)	(MG/L)	(UG/L)	(UG/L)
JAN						
05	93	.08	.09	.04	10	10
05	91					
05	85					
05	84					
05	78					
05	72	.07	.24	.06	20	0

INTERNATIONAL FALCON RESERVOIR NEAR FALCON HEIGHTS, TX--Continued

265213099190801 - INTERNATIONAL FALCON RESERVOIR SITE HC

SPE- CIFIC CON- SAMP- DUCT- PH TEMPER- (SECCHI OXYGEN ATION (CA.SMG)		WATE	R QUALIT	Y DATA, V	ATER YEAR	OCTOBER	1977 TO 9	SEPTEMBER	1978	
DATE SAMP- DUCT- LING ANCE PH TEMPER- (SECK) SOLVED SATUR- MESS M				CIFIC					PED_	
LING			SAMP-					DIS-		HARD-
DATE (FT) PHOS) (UNITS) (DEG C) (N) (MG/L) (MG/L) (M				ANCE	PH		(SECCHI	SOLVED	SATUR-	
05 1334 10	DATE	TIME			(UNITS)				ATION	
05 1334 10	JAN									
05 1347 20		1330	1.0	1110	8.3	14.5	.90	9.0	91	290
05 1340 30										
05 1343 40 1110 8.1 14.0 7.9 79 79 05 1345 50 1100 8.1 14.0 7.6 76 290 NON- DIS- SOLVED										
05 1345 50 1100 8.1 14.0 7.6 76 290 NON- DIS- SOLVED MAG- DIS- AD- PO-										
NON-										290
BONATE CAL				SOLVED	DIS-		SOLVED			DIS-
DATE (MG/L) (MG/								BICAR-	CAR-	
DATE (MG/L) (MG/										
05	DATE					RATIO				
05 05 05 05 160 77 23 120 3.1 4.4 150 0 260 DIS- SOLVED DIS- SOLVED CHO- SOLVED (SUM OF PLUS NITRITE AMMONIA TOTAL DIS- SOLVED CHO- SOLVED (CL) (SID2) TUENTS) (N) (N) (P) (FE) (HN) DATE (MG/L) (MG/L) (MG/L) (MG/L) (MG/L) (MG/L) (UG/L) (UG/L) JAN 05 120 13 697 .09 .10 .05 10 0 05 10 .14 .04 20 10 05 10 .14 .04 20 10 05 120 13 691 .12 .23 .06 20 0 263337099100101 - INTERNATIONAL FALCON RESERVOIR SITE AC WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 DATE (FT) (UG/L) (UG/L) (UG/L) (UG/L) JAN 05 1742 1.0 2 100 0 0 1 DIS- SOLVED SOLVED MAN- SOLVED DIS- SOLVED SOLVED MAN- SOLVED SOLVED SOLVED SOLVED SOLVED LIRON LEAD GAMESE MERCURY NIUM SILVER ZINC	JAN	180	76	25	120	3.1	4.5	140	0	270
05 05 160 77 23 120 3.1 4.4 150 0 260 DIS- SOLVED DIS- SOLVED DIS- SOLVED DIS- SOLVED SOLVED SOLVED NITRITE AMMONIA TOTAL C(HLO- SOLVED SUM OF PLUS NITRO- RIDE SILICA CONSTI- NITRATE GEN PHORUS IRON GANESE (CL) (SI02) TUENTS) (N) (N) (P) (FE) (MN) DATE (MG/L) (MG/L) (MG/L) (MG/L) (MG/L) (MG/L) (UG/L) (UG/L) JAN 05 120 13 697 .09 .10 .05 10 0 05										
05 160 77 23 120 3.1 4.4 150 0 260 DIS- DIS- SOLVED DIS- SOLVED TOTAL TOTAL CHLO- SOLVED SOLVED (SUM OF PLUS NITRO-PHOS- RIDE SILICA CONSTI- NITRATE GEN PHORUS IRON GANESE (CL) (SI02) TUENTS) (N) (N) (P) (FE) (HN) DATE (MG/L) (MG/L) (MG/L) (MG/L) (MG/L) (MG/L) (UG/L) JAN 05 120 13 697 .09 .10 .05 10 0 05 05 10 .14 .04 20 10 05 10 .14 .04 20 10 05 120 13 691 .12 .23 .06 20 0 26333709910010 - INTERNATIONAL FALCON RESERVOIR SITE AC WATER GUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 TIME DEPTH (AS) (GA) (CD) (CR) (CU) DATE (FT) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) JAN 05 1742 1.0 2 100 0 0 1 O5 1759 95 2 100 0 0 1 O1S- SOLVED SOLVED SOLVED OLS- SOLVED SOLVED OLS- SOLVED SOLVED SOLVED OLS- SOLVED SOLVED SOLVED OLS- SOLVED SOLVED SOLVED SOLVED OLS- SOLVED SO	05									
DIS-										
DIS- SOLVED DIS- SOLVED TOTAL TOTAL CHLO- SOLVED SOLVED SOLVED NITRITE AMMONIA TOTAL DIS- SOLVED MAN- RIDE SILICA CONSTI- NITRATE GEN PHORUS IRON GANESE (CL) (SIO2) TUENTS) (N) (N) (P) (FE) (MN) DATE (MG/L) (MG/L) (MG/L) (MG/L) (MG/L) (MG/L) (UG/L) (UG/L) JAN 05 120 13 697 .09 .10 .05 10 0 0510 .14 .04 20 10 0510 .14 .04 20 10 0510 .14 .04 20 10 0510 .14 .04 20 10 0510 .14 .04 20 10 0510 .14 .04 20 10 0510 .14 .04 20 10 0510 .14 .04 20 10 0510 .14 .04 20 10 0510 .14 .04 20 10 0510 .14 .04 20 10 0510 .14 .04 20 10 05			77	22	120					260
05 120 13 697 .09 .10 .05 10 0 05		SOL CHL RID (CL	VED D: 0- SOI E SII) (S:	IS- SO VED (SU ICA CON IO2) TUE	LIDS NIT M OF P STI- NIT	RITE AMM LUS NI RATE (MONIA TO ITRO- PH GEN PH (N)	IOS- SO IORUS I	IS- 50 LVED M RON GA FE) (LVED AN- NESE MN)
0510 .14 .04 20 10 0510 .14 .04 20 10 0510 .14 .04 20 10 05	05	12	0 :	13	697	.09	.10	.05	10	0
05										
05 120 13 691 .12 .23 .06 20 0 263337099100101 - INTERNATIONAL FALCON RESERVOIR SITE AC WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 DIS- DIS- DIS- SOLVED SOLVED DIS- SAMP- SOLVED SOLVED CAD- CHRO- SOLVED LING ARSENIC BARIUM MIUM MIUM COPPER TIME DEPTH (AS) (8A) (CD) (CR) (CU) DATE (FT) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) JAN 05 1742 1.0 2 100 0 0 1 05 1759 95 2 100 0 0 0 1 DIS- DIS- SOLVED DIS- SOLVED DIS- SOLVED (FE) (PB) (MN) (HG) (SE) (AG) (ZN)										
05 120 13 691 .12 .23 .06 20 0 263337099100101 - INTERNATIONAL FALCON RESERVOIR SITE AC WATER GUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 DIS- DIS- DIS- DIS- SOLVED SOLVED DIS- SAMP- SOLVED SOLVED CAD- CHRO- SOLVED LING ARSENIC BARIUM MIUM MIUM COPPER TIME DEPTH (AS) (BA) (CD) (CR) (CU) DATE (FT) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) JAN 05 1742 1.0 2 100 0 0 1 05 1759 95 2 100 0 0 0 1 DIS- DIS- SOLVED DIS- SOLVED DIS- SOLVED (FE) (PB) (MN) (HG) (SE) (AG) (ZN)										
WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 DIS- DIS- DIS- SOLVED SOLVED DIS- SAMP- SOLVED SOLVED CAD- CHRO- SOLVED LING ARSENIC BARIUM MIUM MIUM COPPER TIME DEPTH (AS) (BA) (CD) (CR) (CU) DATE (FT) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) JAN 05 1742 1.0 2 100 0 0 1 05 1759 95 2 100 0 0 0 1 DIS- DIS- SOLVED DIS- SOLVED DIS- SOLVED (FE) (PB) (MN) (HG) (SE) (AG) (ZN)			0 :	13	691	.12	.23	.06	20	0
DIS- DIS- DIS- DIS- DIS-		26333	70991001	01 - INTE	ERNATIONAL	. FALCON	RESERVOIR	SITE AC		
DIS- DIS- SOLVED SOLVED DIS- SOLVED DIS- SOLVED CAD- CHRO- SOLVED LING ARSENIC BARIUM MIUM MIUM COPPER (FT) (UG/L) (UG/		WATER	QUALITY	DATA, WA	TER YEAR	OCTOBER	1977 TO SE	PTEMBER 1	978	
SAMP- SOLVED SOLVED CAD- CHRO- SOLVED					nts-	DIS-			DIS-	
TIME DEPTH (AS) (8A) (CD) (CR) (CU) DATE (FT) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) JAN 05 1742 1.0 2 100 0 0 1 05 1759 95 2 100 0 0 1 DIS- DIS- SOLVED DIS- SOLVED DIS- DIS- SOLVED SOLVED MAN- SOLVED SELE- SOLVED SOLVED IRON LEAD GANESE MERCURY NIUM SILVER ZINC (FE) (PB) (MN) (HG) (SE) (AG) (ZN)				SAMP-						
DATE (FT) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) JAN 05 1742 1.0 2 100 0 0 1 05 1759 95 2 100 0 0 1 DIS- DIS- SOLVED DIS- SOLVED DIS- DIS- SOLVED SOLVED MAN- SOLVED SELE- SOLVED SOLVED IRON LEAD GANESE MERCURY NIUM SILVER ZINC (FE) (PB) (MN) (MG) (SE) (AG) (ZN)										
JAN 05 1742 1.0 2 100 0 0 1 05 1759 95 2 100 0 0 1 DIS- DIS- DIS- SOLVED DIS- SOLVED DIS- SOLVED SOL		DATE	TIME							
05 1742 1.0 2 100 0 0 1 05 1759 95 2 100 0 0 1 DIS- DIS- DIS- SOLVED DIS- SOLVED DIS- DIS- SOLVED SOLVED MAN- SOLVED SELE- SOLVED SOLVED IRON LEAD GANESE MERCURY NIUM SILVER ZINC (FE) (PB) (MN) (HG) (SE) (AG) (ZN)		DATE		(11)	(00/1)	(06/6)	(UG/L)	(06/1)	(06/1)	
05 1759 95 2 100 0 0 1 DIS- DIS- DIS- DIS- DIS- DIS- DIS- SOLVED SOLVED DIS- SOLVED DIS- DIS- SOLVED SOLVED MAN- SOLVED SELE- SOLVED SOLVED IRON LEAD GANESE MERCURY NIUM SILVER ZINC (FE) (PB) (MN) (HG) (SE) (AG) (ZN)										
DIS- DIS- DIS- DIS- DIS- DIS- SOLVED DIS- DIS- SOLVED SOLVED MAN- SOLVED SELE- SOLVED SOLVED IRON LEAD GANESE MERCURY NIUM SILVER ZINC (FE) (PB) (MN) (HG) (SE) (AG) (ZN)										
DIS- DIS- SOLVED DIS- SOLVED DIS- DIS- SOLVED SOLVED MAN- SOLVED SELE- SOLVED SOLVED IRON LEAD GANESE MERCURY NIUM SILVER ZINC (FE) (PB) (MN) (HG) (SE) (AG) (ZN)		03	1/37	73	E	100	v	U		
DIS- DIS- SOLVED DIS- SOLVED DIS- DIS- SOLVED SOLVED MAN- SOLVED SELE- SOLVED SOLVED IRON LEAD GANESE MERCURY NIUM SILVER ZINC (FE) (PB) (MN) (HG) (SE) (AG) (ZN)										
SOLVED SOLVED MAN- SOLVED SELE- SOLVED SOLVED IRON LEAD GANESE MERCURY NIUM SILVER ZINC (FE) (PB) (MN) (HG) (SE) (AG) (ZN)			DIS-	DIS-		019-		019-	DT9-	
IRON LEAD GANESE MERCURY NIUM SILVER ZINC (FE) (PB) (MN) (HG) (SE) (AG) (ZN)										
(FE) (PB) (MN) (HG) (SE) (AG) (ZN)										
DATE (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L)			(FE)	(PB)	(MN)	(HG)	(SE)	(AG)	(ZN)	
		DATE	(UG/L)	(IIG/L)	(UG/L)	(UG/L)	(UE/L)	(NE/F)	(UG/L)	

INTERNATIONAL FALCON RESERVOIR NEAR FALCON HEIGHTS, TX--Continued

263337099100101 INTERNATIONAL FALCON RESERVOIR SITE AC PHYTOPLANKTON ANALYSES, OCTOBER 1977 TO JANUARY 1978

DATE TIME	JAN	5,78 1742
TOTAL CELLS/ML	14	000
DIVERSITY: DIVISION CLASS ORDER FAMILY GENUS		0.5 0.5 1.3 1.5
ORGANISM	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) • CHLOROPHYCEAE • • CHLOROCOCCALES • • • OOCYSTACEAE		
ANKISTRODESMUSKIRCHNERIELLAOOCYSTIS	200	1 1 0
SELENASTRUMTETRAEDRONSCENEDESMACEAE	120 90	1
CRUCIGENIA	750	0 5
CHRYSOPHYTA BACILLARIOPHYCEAE CENTRALES		
CYCLOTELLA		0
PENNALESFRAGILARIACEAESYNEDRA		0
NITZSCHIACEAENITZSCHIA .CHRYSOPHYCEAE		0
OCHROMONADALESOCHROMONADACE AEOCHROMONAS	Section 5	0
CYANOPHYTA (BLUE-GREEN ALG) •CYANOPHYCEAE ••CHROCCOCCALES ••CHROCCOCCAEAE	AE)	
AGMENELLUMANACYSTISHORMOGONALES	240 9300#	66 2
NOSTOCACEAEAPHANIZOMENONOSCILLATORIACEAE	360	3
OSCILLATORIA	2800#	20
EUGLENOPHYTA (EUGLENOIDS) • CRYPTOPHYCEAE • • CRYPTOMONIDALES • • • CRYPTOMONODACEAE		
CRYPTOMONAS	The Total	0

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

INTERNATIONAL FALCON RESERVOIR NEAR FALCON HEIGHTS, TX--Continued

265213099190801 INTERNATIONAL FALCON RESERVOIR SITE HC PHYTOPLANKTON ANALYSES, OCTOBER 1977 TO JANUARY 1978

DATE TIME	JAN I	5•78 330		
TOTAL CELLS/ML	340	000		
DIVERSITY: DIVISION CLASS ORDER FAMILY GENUS		0.8 0.8 1.4 2.3 2.5		
ORGANISM	CELLS /ML	PER- CENT		
CHLOROPHYTA (GREEN ALGAE) •CHLOROCOCCALES ••COELASTRACEAE ••COELASTRUM ••OOCYSTACEAE •••ANKISTRODESMUS ••CHODATELLA ••*IRCHNERIELLA ••*TETRAEDRON ••SCENEDESMACEAE •••CRUCIGENIA •••SCENEDESMUS •••CHLAMYDOMONADACEAE •••CHLAMYDOMONAS CHRYSOPHYTA •BACILLARIOPHYCEAE	7400 20000 * * * * 4900 17000 3100 9800 1800	2 6 0 0 0 0 1 5 1		
PENNALES FRAGILARIACEAE				
SYNEDRA	1800	1		
CYANOPHYTA (BLUE-GREEN ALGAE) •CYANOPHYCEAE ••CHROCCOCCALES •••CHROCCOCCAEAE ••••AGMENELLUM ••HORMOGONALES	39000	12		
NOSTOCACEAEAPHANIZOMENONOSCILLATORIACEAE	120000#	35		
OSCILLATORIA	110000#	32		
EUGLENOPHYTA (EUGLENOIDS) •CRYPTOPHYCEAE ••CRYPTOMONIDALES •••CRYPTOCHRYSIDACEAE •••CHROOMONAS NOTE: # - DOMINANT ORGANISM; E	2500 QUAL TO OF	1 GREATER	THAN 15	5%

^{* -} OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

INTERNATIONAL FALCON RESERVOIR NEAR FALCON HEIGHTS, TX--Continued

263351099105701 - INTERNATIONAL FALCON RES AR

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			SPE- CIFIC				DIS- SOLVED
		SAMP-	CON- DUCT-			OXYGEN,	(PER-
		LING	ANCE	РН	TEMPER-	DIS-	CENT
	TIME	DEPTH	(MICRO-		ATURE	SOLVED	SATUR-
DATE		(FT)	MHOS)	(UNITS)	(DEG C)	(MG/L)	ATION)
JUN							
06	1405	1.0	1120	8.0	29.5	7.7	103
06	1407	10	1120	8.0	29.5	8.1	108
06	1409	20	1120	8.0	29.5	78.0	104
06	1411	30	1120	7.8	29.5	6.1	81
06	1414	40	1120	7.8	29.5	6.0	80

263337099100101 - INTERNATIONAL FALCON RESERVOIR SITE AC

	WAT	ER QUALITY	DATA, W	ATER YEAR	OCTOBER	1977 TO S	EPTEMBER	1978	
			SPE-					OXYGEN.	HARD-
						TRANS-		DIS-	NESS.
			CIFIC			PAR-		SOLVED	DIS-
		2002	CON-			ENCY	OXYGEN.	(PER-	SOLVED
		SAMP-	DUCT-				DIS-	CENT	(MG/L
		LING	ANCE	PH	TEMPER-	(SECCHI		SATUR-	AS
	TIME	DEPTH	(MICRO-		ATURE	DISK)	SOLVED		CACO3)
DATE		(FT)	MHOS)	(UNITS)	(DEG C)	(M)	(MG/L)	ATION)	CACOSI
JUN									
06	1301	1.0	1120	8.0	29.5	1.20	7.4	100	290
06	1302	2.0							
06	1303	10	1120	8.0	29.5		7.3	99	
	1305	20	1120	8.0	29.5	15 75 52	6.9	93	
06	1307	30	1120	7.8	29.5	- 114-4	5.8	78	
06	1309	40	1120	7.8	29.5		5.8	78	
06		50	1120	7.7	29.5		5.2	70	
06	1311	60	1140	7.7	29.0		4.8	64	
06	1314			7.5	29.0		3.7	49	
06	1316	70	1140	7.3	29.0		2.6	35	
06	1318	80	1140		29.0	14.	.8	11	300
06	1320	90	1140	7.0	29.0		•0	-	
	HARD-					1- 10			
	NESS+		MAGNE-		SODIUM	POTAS-			
		CALCIUM	SIUM,	SODIUM.	AD-	SIUM,	BICAR-		SULFATE
	NONCAR-	DIS-	DIS-	DIS-	SORP-	DIS-	BONATE	CAR-	DIS-
	BONATE.	SOLVED		SOLVED	TION	SOLVED	(MG/L	BONATE	SOLVED
	DIS.	(MG/L	SOL VED	(MG/L	RATIO	(MG/L	AS	(MG/L	(MG/L
	(MG/L			AS NA)	HAILU	AS K)	HC03)	AS C03)	AS 504)
DATE	CACO3)	AS CA)	AS MG)	AS NA)		AS KI	110037	A5 0037	
JUN		-	24			4.0	130	0	240
06	180	75	24	120	3.1	4.9	130		
06									
06					-	1917997			
06									
06						44.5	100		
06			1028						
06	1.57								
06									
06	3 (10)	mal -		W 7 1 167	78.3	-			
06	180	80	24	120	3.0	5.0	-01.22	0	230
06	100	00		120					
				SOLIOS.					
	CHLO-	FLU0-	SILICA.	SUM OF	NITRO-	NITRO-			MANGA-
						GEN.	PHOS-	IRON.	NESE,
	RIDE.	RIDE.	DIS-	CONSTI-	GEN+ NO2+NO3	AMMONIA		DIS-	DIS-
	DIS-	015-	SOLVED	TUENTS,					SOLVED
	SOLVED	SOLVED	(MG/L	DIS-	TOTAL	TOTAL	TOTAL	SOLVED (UG/L	(UG/L
DATE	(MG/L AS CL.)	(MG/L AS F)	4S S102)	SOLVED (MG/L)	(MG/L AS N)	(MG/L AS N)	(MG/L AS P)	AS FE)	AS MN)
DATE	45 CL.7	AS FI	51027	(MO/L)	MS IV	A3 117		-3 ()	7
JUN	140						.00	0	20
06	140	.8	11	680	.01	.00			
06									-
06									-0
06					• 02		.00		
06						-			-
06									
06									
06						-			
06						7			
06	140			687	.00				310
06	140	.8	13	087	.00	.30	• 02		510

RIO GRANDE BASIN 557
INTERNATIONAL FALCON RESERVOIR NEAR FALCON HEIGHTS, TX--Continued

263326099092201 - INTERNATIONAL FALCON RES SITE AL

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN. DIS- SOLVED (MG/L)	OXYGEN. DIS- SOLVED (PER- CENT SATUR- ATION)
JUN						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	200 - 200
06	1432	1.0	1120	8.1	29.0	7.8	104
06	1434	10	1120	8.0	29.0	7.4	99
06	1436	20	1120	7.9	28.5	6.6	87
06	1438	33	1120	7.8	28.5	6.4	84

263815099124901 - INTERNATIONAL FALCON RES SITE BR

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			SPE-				OXYGEN.
			CIFIC				DIS-
			CON-				SOLVED
		SAMP-	DUCT-			OXYGEN,	(PER-
		LING	ANCE	PH	TEMPER-	DIS-	CENT
	TIME	DEPTH	(MICRO-		ATURE	SOLVED	SATUR-
DATE		(FT)	MHOS)	(UNITS)	(DEG C)	(MG/L)	ATION)
JUN							
06	1531	1.0	1120	8.1	30.5	8.2	111
06	1533	10	1120	8.1	29.5	8.4	112
06	1535	20	1120	8.0	29.5	7.9	105
06	1537	30	1120	8.0	29.0	7.3	97
06	1539	37	1120	7.7	29.0	5.7	76

263815099111901 - INTERNATIONAL FALCON RES SITE BC

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			SPE-				OXYGEN,
			CIFIC				DIS-
			CON-				SOLVED
		SAMP-	DUCT-			OXYGEN,	(PER-
		LING	ANCE	PH	TEMPER-	DIS-	CENT
	TIME	DEPTH	(MICRO-		ATURE	SOLVED	SATUR-
DATE		(FT)	MHOS)	(UNITS)	(DEG C)	(MG/L)	ATION)
JUN							
06	1502	1.0	1120	8.1	30.5	8.2	111
06	1504	10	1120	8.1	29.5	8.3	111
06	1506	50	1120	8.0	29.5	7.4	99
06	1508	30	1120	7.9	29.0	7.1	95
06	1510	40	1120	7.7	29.0	5.5	73
06	1512	50	1140	7.5	28.5	4.2	55
06	1514	60	1140	7.4	28.5	3.8	50
06	1516	69	1140	7.5	28.5	4.1	54

264002099101701 - INTERNATIONAL FALCON RESERVOIR SITE CC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN; AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JUN												
06	1555	1.0	1120	8.1	30.5	8.1	111	.01	.00	.00	0	0
06	1557	10	1120	8.1	30.0	8.2	111					
06	1559	20	1120	7.9	29.5	7.0	95					
06	1601	30	1120	7.7	28.5	5.6	74					
06	1603	40	1120	7.6	28.5	4.4	58					
06	1605	47	1120	7.3	28.5	2.6	35	.03	.14	.00	0	10

INTERNATIONAL FALCON RESERVOIR NEAR FALCON HEIGHTS, TX--Continued

264328099123101 - INTERNATIONAL FALCON RESERVOIR SITE DC

WATER QUALITY DATA. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			SPE- CIFIC CON-			TRANS			SEN, IS- VED	HARD- NESS, DIS-
		SAMP-	DUCT-			ENC				SOLVED
		LING	ANCE	PH	TEMPER-				NT	(MG/L
	TIME	DEPTH	(MICRO-		ATURE	DISK			UR-	AS
DATE	12	(FT)	MHOS)	(UNITS)	(DEG C)	(M)	(MG		(NO)	CACO3)
JUN										
06	1628	1.0	1120	8.1	30.5	1.0		8.3	114	290
06	1630	10	1120	8.1	30.0			8.5	115	
06	1632	20	1120	7.9	29.5			7.4	100	
06	1634	30	1120	7.6	28.5			4.5	59	
06	1636	40	1120	7.6	28.5			4.8	63	
06	1638	50	1140	7.6	28.5			4.6	61	
06	1640	60	1140	7.4	28.5			3.6	47	
06	1642	73	1140	7.1	28.0		•	.5	7	300
	HARD-									
	NESS,		MAGNE-		SODIUM	POTA	5-			
	NONCAR-	CALCIUM	SIUM,	SODIUM,	AD-	SIU	M. BICA	P-		SULFATE
	BONATE,	DIS-	DIS-	DIS-	SORP-	DIS	- BONA	TE CAF	- 5	DIS-
	DIS.	SOLVED	SOLVED	SOLVED	TION	SOLV	ED (MG	/L BONA	TE	SOLVED
	(MG/L	(MG/L	(MG/L	(MG/L	RATIO	(MG/	L A	S (MC	3/L	(MG/L
DATE	CACO3)	AS CA)	AS MG)	AS NA)		AS K) нсо	3) AS (:03)	AS 504)
JUN		4								27.0
06	190	75	24	120	3.1			120	0	240
06										
06								7.7		
06										
06										
06			- 12							
06	180	77	25	120	3.0			140	0	240
	СН	LO- SIL		IDS.	ITRO- N	ITRO-			мА	NGA-
		DE. DI			GEN.	GEN,	PHOS-	IRON,		SE,
							PHORUS,	DIS-		IS-
						OTAL	TOTAL	SOLVED		LVED
		G/L A				MG/L	(MG/L	(UG/L		G/L
D	ATE AS	CL) SI				S N)	AS P)	AS FE)	AS	MN)
JUI	N									
		40	11	674	.01	.00	.00	0		10
	5									
	5				•00	.00	.00	0		0
	6				• 05	.06	.00	10		10
06	5									
	5				.04	• 09	.00	10		10
	6									
06	6 1	77.0	13	689	.05	.24	.01	50		20

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
JUN							
06	1719	1.0	1120	8.2	30.0	9.2	124
06	1721	10	1120	8.1	29.5	8.2	109
06	1723	20	1120	7.8	29.0	7.1	95
06	1725	30	1120	7.7	29.0	6.0	80
06	1727	40	1180	7.5	29.0	4.7	63
06	1730	56	1180	7.4	29.0	3.7	49

INTERNATIONAL FALCON RESERVOIR NEAR FALCON HEIGHTS, TX--Continued

265224099160701 - INTERNATIONAL FALCON RESERVOIR SITE FC

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN. DIS- SOLVED	DIS- SOLVED (PEK- CENT SATUR- ATION)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS. TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JUN												
06	1142	1.0	1120	8.0	30.0	9.5	128	.00	.00	.01	0	0
06	1144	10	1120	8.0	30.0	9.2	124					
06	1146	20	1120	7.8	29.0	8.0	107					
06	1148	32	1120	7.2	29.0	3.0	40	.05	.11	.01	0	20

265014099190601 - INTERNATIONAL FALCON RES GC

			SPE-				
			CIFIC			TRANS-	
			CON-			PAR-	
		SAMP-	DUCT-			ENCY	OXYGEN.
		LING	ANCE	PH	TEMPER-	(SECCHI	DIS-
	TIME	DEPTH	(MICRO-		ATURE	DISK)	SOLVED
DATE		(FT)	MHOS)	(UNITS)	(DEG C)	(M)	(MG/L)
JUN							
06	1825	1.0	1340	8.4	30.0	.80	10.2
06	1827	10	1340	8.2	29.0		9.0
06	1830	20	1340	7.5	27.5		4.7
06	1832	30	1340	7.3	27.0		2.1
06	1834	37	1340	7.2	27.0		.9

	OXYGEN.					
	DIS-	NITRO-	NITRO-			MANGA-
	SOLVED	GEN,	GEN.	PHOS-	IRON,	NESE.
	(PER-	N02+N03	AMMONTA	PHORUS,	DIS-	DIS-
	CENT	TOTAL	TOTAL	TOTAL	SOLVED	SOLVED
	SATUR-	(MG/L	(MG/L	(MG/L	(UG/L	(UG/L
DATE	ATION)	AS N)	AS N)	AS P)	AS FE)	AS MN)
JUN						
06	138	.08	.00	.01	60	5
06	120					
06	61					
06	27					
06	12	.24	.21	.01	0	60
	JUN 06 06 06	DIS- SOLVED (PER- CENT SATUR- DATE ATION) JUN 06 138 06 120 06 61	DIS- NITRO- SOLVED GEN, (PER- NO2+NO3 CENT TOTAL SATUR- (MG/L ATION) AS N) JUN 06 138 .08 06 120 06 61 06 27	DIS- NITRO- NITRO- SOLVED GEN, GEN, (PER- NO2+NO3 AMMONTA CENT TOTAL TOTAL SATUR- (MG/L (MG/L ATION) AS N) JUN 06 138 .08 .00 06 120 06 61 06 27	DIS- NITRO- NITRO- SOLVED GEN, GEN, GEN, GEN, PHOS- NO2-NO3 AMMONIA PHORUS, TOTAL TOTAL SATUR- (MG/L (MG/L ATION) AS N) AS N) AS P) JUN 06 138 .08 .00 .01 06 120	DIS- NITRO- NITRO- SOLVED GEN, GEN, GEN, PHOS- IRON, (PER- NO2+NO3 AMMONIA PHORUS, DIS-CENT TOTAL TOTAL TOTAL SOLVED SATUR- (MG/L (MG/L (MG/L (UG/L ATION) AS N) AS N) AS P) AS FE) JUN 06 138 .08 .00 .01 60 06 120 06 61 06 27

INTERNATIONAL FALCON RESERVOIR NEAR FALCON HEIGHTS, TX--Continued

265213099190801 - INTERNATIONAL FALCON RESERVOIR SITE HC

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

				SPE-						OXYG	EN.	HARD-
				CIFIC			TR	ANS-			5-	NESS.
				CON-	T.			AR-	2. 1	SOL	VED	DIS-
			SAMP-	DUCT-				NCY	OXYGEN	, IPE	R-	SOLVED
			LING	ANCE	PH	TEMP		CCHI	DIS-		NT	(MG/L
	- 4	TIME	DEPTH	(MICRO-		ATU		SK)	SOLVE	D SAT	UR-	AS
	DATE		(FT)	MHOS)	(UNITS)				(MG/L) ATI	ON)	CACO3)
-	JUN											
	06	1750	1.0	1060	8.0	3	0.0	.50	8.		118	260
	06	1752	10	1060	7.4	2	9.5		8.		111	
	06	1754	20	1060	7.8	2	9.0		6.	8	91	10 E - 10
	06	1756	30	1060	7.4	. 2	8.5		4.	4	58	13 TO 18
	06	1758	40	1380	7.3	3 2	8.5		2.	8	37	340
		HARD-					IUM PO	TAS-				
		NESS.	CALCIUM	MAGNE-	C00114		-	IUM,	BICAR-			SULFATE
		NONCAR-	CALCIUM	SIUM.	SODIUM	SOF		IS-	BONATE	CAF	-	DIS-
		BONATE,	DIS-	DIS-	DIS-				(MG/L	BONA		SOLVED
		DIS.	SOLVED	SOLVED	SOLVED (MG/L	RAT		LVED G/L	AS		/L	(MG/L
	DATE	(MG/L CACO3)	(MG/L AS CA)	(MG/L AS MG)	AS NA)			K)	HCO3)	AS C		AS 504)
	HILL											
	JUN 06	150	70	21	120		3.2	5.2	13	0	0	210
	06									-		
	06											
	06								13.3			
	06	260	96	24	150		3.5	5.0	10	0	0	380
		io.			IDS.		NATOO					NGA-
						VITRO-	NITRO-		00	IRON,		SE,
			DE, DI		STI-	GEN.	GEN,			DIS-		IS-
		-				02+N03	AMMONIA		RUS,	SOLVED		LVED
						TOTAL	TOTAL					G/L
			G/L A			(MG/L	(MG/L		G/L	(UG/L AS FE)		MN)
	U	ATE AS	CL) SI	(20)	(G/L)	AS N)	AS N)	AS	P)	AS FEI	AS	MIN
	JU	N										
	0	6 1	30	14	634	.13	.00	E. S	.00	10		0
		6										
		6				.14	.01		.01	20		5
		6				.16	.06		.01	0		20
	0	6 1	40	8.8	853	.22	.13		.01	0		20
		263	337099100	01 - INT	FRNATION	AL FAL	CON RESE	RVOIR	SITE A	C		

263337099100101 - INTERNATIONAL FALCON RESERVOIR SITE AC WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	TIME	SAMP- LING DEPTH	ARSENIC DIS- SOLVED (UG/L	BARIUM, DIS- SOLVED (UG/L	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER. DIS- SOLVED (UG/L AS CU)
DATE		(FT)	AS AS)	AS BA)	AS CUI	AS CHI	AS CO
JUN 06	1301 1305	1.0	3	200	0	0	5
06	1320	90	3	200	0	0	0
	IRON. DIS- SOLVED (UG/L	LEAD. DIS- SOLVED (UG/L	MANGA- NESE, DIS- SOLVED	MERCURY DIS- SOLVED (UG/L	SELE- NIUM. DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS SE	AS AU	45 ZN/
JUN							
06	0	3	20	.0	0	0	20
06	0		0				-
06	0	4	310	.0	4	0	10

INTERNATIONAL FALCON RESERVOIR NEAR FALCON HEIGHTS, TX--Continued

263337099100101 INTERNATIONAL FALCON RESERVOIR SITE AC PHYTOPLANKTON ANALYSES, APRIL 1978 TO JUNE 1978

DATE TIME		6•78 302
TOTAL CELLS/ML	64	000
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		0.8 0.8 1.3 1.8
ORGANISM	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) •CHLOROPHYCEAE •CHLOROCOCCALES ••COELASTRACEAE •••COELASTRUM	2900	4
MICRACTINIACEAE		0
OOCYSTACEAE		
ANKISTRODESMUS	420	1
····CHODATELLA ····KIRCHNERIELLA	420 340	1
TETRAEDRON	340	Ô
SCENEDESMACEAE		
CRUCIGENIA	340	1
SCENEDESMUS ULOTRICHALES	3000	5
•••ULOTRICHACEAE		
ULOTHRIX	4000	6
CHRYSOPHYTA BACILLARIOPHYCEAE CENTRALES COSCINODISCACEAE COSCINODISCACEAE	420	1
PENNALES		
ACHNANTHACEAE		
ACHNANTHES		0
FRAGILARIACEAE		,
•XANTHOPHYCEAE	590	1
HETEROCOCCALES		
CHLOROTHECIACEAE		
OPHIOCYTIUM	*	Q
CYANOPHYTA (BLUE-GREEN ALGAE) •CYANOPHYCEAE •CHROCCOCCALES ••CHROCCOCCAEAE		
AGMENELLUM	1900	3
ANACYSTIS	1300	2
HORMOGONALES		
OSTOCACEAECYLINDROSPERMUM	2400	5
OSCILLATORIACEAE	3400	5
OSCILLATORIA	44000#	69
PYRRHOPHYTA (FIRE ALGAE) •DINOPHYCEAE		
PERIDINIALES		
PERIDINIACEAE		
PERIDINIUM	*	0

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM; MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

INTERNATIONAL FALCON RESERVOIR NEAR FALCON HEIGHTS, TX--Continued

265213099190801 INTERNATIONAL FALCON RESERVOIR SITE HC PHYTOPLANKTON ANALYSES, APRIL 1978 TO JUNE 1978

DATE TIME		6•78 751
TOTAL CELLS/ML	150	000
DIVERSITY: DIVISION		0.6
•CLASS		0.6
••ORDER		1.2
FAMILY		1.2
• • • • GENUS		1.4
	05116	250
ORGANISM	/ML	
CHLOROPHYTA (GREEN ALGAE)		
· CHLOROPHYCEAE		
CHLOROCOCCALES		
OOCYSTACEAE		
ANKISTRODESMUS	1100	1
KIRCHNERIELLA	- TA + T	0
OOCYSTIS	890	1
SELENASTRUM	•	0
SCENEDESMACEAE		
SCENEDESMUS	1800	1
VOLVOCALES		
CHLAMYDOMONADACEAE		
CARTERIA	2000	1
CHLAMYDOMONAS	2500	2
CHRYSOPHYTA		
.BACILLARIOPHYCEAE		
CENTRALES		
COSCINODISCACEAE		
CYCLOTELLA	4500	3
PENNALES		
NITZSCHIACEAE		
NITZSCHIA		0
CYANOPHYTA (BLUE-GREEN ALGAE) •CYANOPHYCEAE		
CHROCCOCCALES		
CHROCCOCCAEAE		
AGMENELLUM	5400	4
· · · · ANACYSTIS	10000	7
HORMOGONALES	10000	1
OSCILLATORIACEAE		
OSCILLATORIA	110000#	79
EUGLENOPHYTA (EUGLENOIDS)		
•EUGLENOPHYCEAE		
• EUGLENALES		
EUGLENACEAE		
TRACHELOMONAS	Luc All	0
PYRRHOPHYTA (FIRE ALGAE)		
.DINOPHYCEAE		
PERIDINIALES		
PERIDINIACEAE		
PERIDINIUM		0
••••bekinininw		0

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

08461300 RIO GRANDE BELOW FALCON DAM, TX

LOCATION.--Lat 26°33'25", long 99°10'05", Starr County, Hydrologic Unit 13090001, U.S. Tailrace at Falcon Dam.

DRAINAGE AREA.--159,270 mi² (412,509 km²), revised, United States and Mexico; from International Boundary and Water Commission Water Bulletin No. 44.

PERIOD OF RECOD .-- Chemical analyses: July 1955 to current year.

REMARKS.--Records of specific conductance and discharge for water year 1978 are given in International Boundary and Water Commission Water Bulletins Nos. 47 and 48.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM. DIS- SOLVED (MG/L AS NA)
OCT								42.5	722
17	0955	1020	8.0	25.5	250	150	68	20	120
29	1130	1030	8.0	21.0	270	170	73	22	110
DEC		2	2.0			144		22	110
19	0900	1060	7.8	16.5	280	170	73	23	110
JAN 16	1000	1060	7.9	15.5	270	160	71	22	110
FER		111111		14				23	110
21 MAR	1100	1080	8.0	12.0	280	180	76	23	110
13	1000	1090	7.8	13.5	290	170	77	23	120
APR								24	120
17 MAY	1000	1100	7.8	19.0	270	160	69	24	120
15	0930	1140	7.8	24.5	280	160	74	23	140
JUN					200	170	75	23	120
19 JUL	0915	1150	7.8	24.5	280	170	15	23	120
17	1015	1140	8.0	26.5	270	160	70	23	130
AUG				20.0	240	160	70	21	130
28	1130	1140	7.6	28.0	260	100	70		
18	0900	1120	7.7	28.0	250	150	63	22	140

DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE+ DIS- SOLVED (MG/L AS CL)	SILICA+ DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	
OCT									
17	3.3	4.6	150	0	220	120	12	624	
NOV 29	2.9	4.8	130	0	240	120	12	646	
DEC	110						10	667	
19	2.9	4.7	130	0	260	120	12	001	
JAN 16	2.9	5.0	130	0	240	130	13	655	
FEB									
21	2.8	4.9	130	0	230	120	10	638	
MAR 13	3.1	4.9	140	0	230	130	10	664	
APR	3.1			3					
17	3.2	5.1	140	0	230	130	11	658	
MAY	2.4		140	0	390	56	11	768	
15 JUN	3.6	5.1	140	U	390	50	•••		
19	3.1	5.1	140	0	250	140	11	693	
JUL						200			
17	3.4	5.3	130	0	240	140	11	683	
AUG			100	0	260	140	11	696	
28	3.5	5.1	120	U	200	140	••	• ,•	
18	3.9	5.4	120	0	270	140	11	711	

08464700 RIO GRANDE AT FORT RINGGOLD, RIO GRANDE CITY, TX

LOCATION.--Lat 26°22'05", long 98°48'20", Starr County, Hydrologic Unit 13090001, at gaging station about 1 mi (2 km) downstream from Rio Grande City, 3.9 mi (6.3 km) downstream from mouth of Rio San Juan, and 1,014.3 mi (1,632.0 km) downstream from the American Dam at E1 Paso.

DRAINAGE AREA.--174,362 mi² (451,598 km²), United States and Mexico; from International Boundary and Water Commission Water Bulletin No. 44.

PERIOD OF RECORD .-- Chemical analyses: January 1959 to current year.

REMARKS.--Records of specific conductance and discharge for water year 1978 are given in International Boundry and Water Commission Water Bulletins Nos. 47 and 48.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	STREAM- FLOW+ INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS: NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	
ост										
17	1230	3620	1030	7.8	25.0	250	150	66	20	
NOV	1330	2560	1060	7.7	22.0	270	170	73	22	
21	1330	2500	1000		22.0					
19	1130	3080	1070	7.8	19.0	270	170	73	22	
JAN 16	1400	4460	1070	7.8	15.0	270	170	72	23	
FEB					14.0	340	220	92	27	
21 MAR	1330	540	1460	8.0	14.0	340	220	76		
13 APR	1300	3260	1140	7.6	19.0	290	180	79	23	
18	1330	2560	1140	7.9	26.0	270	160	70	24	
22	1500	11300	1150	7.8	26.0	280	170	75	23	
JUN						070	140	71	23	
19 JUL	1430	2680	1220	7.7	30.0	270	160		23	
17	1400	4150	1150	8.0	30.5	270	160	70	23	
AUG 14	1420	3490	1170	7.6	28.5	270	160	72	22	
SEP			-				120	01	15	
18	1400	631	1220	7.4	29.0	260	120	81	15	
DATE	SODIUM+ DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA. DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	
ОСТ										
17	120	3.3	4.7	120	0	220	130	12	632	
21	110	2.9	4.9	130	0	240	130	12	656	
DEC 19	110	2.9	4.6	130	0	240	130	11	655	
JAN	110	2.9	5.0	130	0	240	130	13	657	
FER	110	4.2	5.1	150	0	300	210	7.5	896	
21 MAR	100	***	3.1							
13	120	3.1	4.9	140	0	230	140	11	677	
18	130	3.4	5.2	140	0	250	140	11	699	
22	140	3.6	5.1	140	0	380	58	11	761	
JUN 19	140	3.7	5.2	140	0	260	150	11	729	
JUL 17	130	3.4	5.4	130	0	250	140	11	693	
AUG 14	140	3.7	5.0	130	0	260	150	11	724	
SEP 18	160	4.3	5.8	170	0	230	180	12	768	

08466300 RIO GRANDE NEAR LOS EBANOS, TX

LOCATION.--Lat 26°14'15", long 98°33'49", Hidalgo County, Hydrologic Unit 13090001, on Farm Road 886 at U.S. Border Port of Entry near Los Ebanos and at mile 204.37 (328.83 km).

PERIOD OF RECORD. -- Chemical analyses: June 1977 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		STREA FLOW INSTA	M- CO	FIC N- ICT-	Рн	TEMPER-	HARD- NESS (MG/L	HARD- NESS+ NONCAR BONATE	- CAL	CIUM S-	AGNE- SIUM. DIS-	SODIUM. DIS- SOLVED
DATE	TIME		US (MI	CRO-	UNITS)	ATURE (DEG C)	AS CACU3)	CACO3	(M		MG/L S MG)	(MG/L AS NA)
ост				****			2.0					120
17 NOV	1330	3670		1080	7.9	24.0	250			69	20	120
21	1500	3180		1260	7.7	25.0	310	20	0	82	26	140
19 JAN	1300	3420		1140	7.7	19.0	290	18	0	77	23	130
16	1430	6920		1080	7.8	16.0	270	17	0	72	23	120
FEH 21	1445	5 1480		1840	7.9	14.0	410	27	0 1	10	34	230
MAR 13	1430	0 1470		1340	7.6	20.0	330	22	0	89	27	160
APR 18	1419	5 1500		1400	7.9	28.0	330	19	0	84	28	160
MAY										74	23	140
JUN 22	160			1150	7.8	26.5				76	24	160
19 JUL	1519			1350	7.9	30.0	290					200
17	152	0 3420		1200	8.0	30.5	280	17	0	71	24	130
14 SEP	152	0 5480		1170	7.6	29.0	270	17	0	73	55	130
18	152	0 1210		1660	7.8	29.5	370	21	0 1	10	23	210
DA		SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	BONA (MG	R- DI ATE SO B/L (M	FATE RI S- DI LVED SO G/L (M	DE + F	FLUO- RIDE: DIS- GOLVED (MG/L	SILICA DIS- SOLVER (MG/L AS SIO2)	CONS TUE!	
OCT								20		13		641
NOV	•••	3.3	4.6	13				30				
DEC	•••	3.5	4.8	14	0	0 2	80 1	170		12		784
19. Jan	•••	3.3	4.7	13	10	0 2	80 1	140		11		730
	•••	3.2	4.9	13	10	0 2	30 1	30		13		657
21	• • •	4.9	5.7	18	0	0 3	40 2	280	.8	11		1100
		3.8	5.4	14	0	0 2	80 1	180		11		821
APR 18		3.9	5.9	16	0	0 3	00 1	90		11		858
MAY.		3.6	5.2	14	0	0 2	50 1	140		11		712
JUN	•••	4.1	5.4	15			80 1	170		12		801
JUL		3.4	5.3	13				150		11		715
AUG	•••			13				140		11		705
SEP		4.8	5.0 7.1	19				280		16		1040
19		7.0	(• 1	17				-50				

08469200 RIO GRANDE AT ANZALDUAS DAM, TX

LOCATION.--Lat 26°08'00", long 98°20'05", Hidalgo County, Hydrologic Unit 13090002, at gaging station 0.5 mi (0.8 km) downstream from Anzalduas Dam, 12.2 mi (19.6 km) from Hidalgo, and 1,077.1 mi (1,733.1 km) downsteam from the American Dam at El Paso.

DRAINAGE AREA.--176,112 mi 2 (456,130 km 2), United States and Mexico; from International Boundary and Water Commission Water Bulletin No. 44.

PERIOD OF RECORD. -- Chemical analyses: March 1959 to current year. Pesticide analyses: October 1968 to September 1971.

PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: October 1977 to September 1978.

REMARKS.--Records of and discharge for water year 1978 are given in International Boundary and Water Commission Water Bulletins Nos. 47 and 48.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum daily, 2,880 micromhos Feb. 21; minimum daily, 517 micromhos Sept. 13.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

OCT 17 0915 1400 1130 7.9 24.0 270 160 70 23 NOV 21 1200 900 1180 8.0 24.5 300 200 80 25 DEC 19 1050 1080 1230 7.7 19.0 310 190 91 25 JAN 16 1345 3100 1110 7.9 19.0 270 170 72 23 FER 23 1015 300 2830 7.8 15.5 710 480 190 56 MAS 13 1340 1100 1430 7.9 20.5 350 230 95 28 MAS 13 1045 700 1330 8.0 23.5 310 200 83 26 MAY 23 0815 4400 1260 8.0 25.5 300 190 80 25 JUN 19 1600 1830 7.9 29.5 370 240 100 30 JUN 19 1600 1830 7.9 29.5 370 240 100 30 JUN 19 1600 1830 7.9 29.5 370 240 100 30 JUN 19 1600 1830 7.9 29.5 370 240 100 30 JUN 19 1000 2600 1430 8.2 29.0 300 180 77 26 AUG 17 1100 2600 1430 8.2 29.0 300 180 77 26 SODIUM SODIUM SODIUM SODI MAY 1100 MAY 1 OCT 17 110		TIME	STREAM- FLOW. INSTAN- TANEOUS	SPE- CIFIC CON- DUCT- ANCE (MICRO-	РН	TEMPER- ATURE	HARD- NESS (MG/L AS	HARD- NESS+ NONCAR- BONATE (MG/L	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L
17	DATE		(CFS)	MH05)	(UNITS)	(DEG C)	CAC03)	CACO3)	AS CA)	AS MG)
1200 900 1180 8.0 24.5 300 200 80 25	17	0915	1400	1130	7.9	24.0	270	160	70	23
19. 1050 1080 1230 7.7 19.0 310 190 91 25	21	1200	900	1180	8.0	24.5	300	200	80	25
16 1345 3100 1110 7.9 19.0 270 170 72 23 75 75 75 75 75 75 75 7	19	1050	1080	1230	7.7	19.0	310	190	81	25
21 1015 300 2830 7.8 15.5 710 480 190 56 MAR 13 1340 1100 1430 7.9 20.5 350 230 95 28 APR 17 1045 700 1330 8.0 23.5 310 200 83 26 MAY 23 0815 4400 1260 8.0 25.5 300 190 80 25 JUN 19 1600 1830 7.9 29.5 370 240 100 30 117 1100 2600 1430 8.2 29.0 300 180 77 26 AUG 17 1150 1400 1190 7.6 29.0 290 170 78 23 SEP 18 1145 400 875 7.4 28.0 170 69 53 8.4 SODIUM AD- DIS- SORP- DIS- SOLVED TION SOLVED TION SOLVED TION SOLVED MAG/L RATIO MG/L AS K) HCO3) AS CO3) AS SO4) AS CL SOLVED TOWN 17 130 3.4 4.7 130 0 230 140 13 675 NOV 21 130 3.3 4.9 130 0 270 150 12 736 DEC 19 140 3.5 4.7 140 0 270 160 12 762 PER 18 170 3.9 5.4 150 0 290 200 10 872 APR 13 170 3.9 5.4 150 0 290 200 10 872 APR 13 170 3.9 5.4 150 0 290 200 10 872 APR 13 170 3.9 5.4 150 0 290 200 10 872 APR 17 150 3.7 5.5 140 0 250 170 170 12 786 AUG 17 170 4.3 5.5 140 0 290 200 12 850 TUENTS	16	1345	3100	1110	7.9	19.0	270	170	72	23
13 1340 1100 1430 7.9 20.5 350 230 95 28 APR 17 1045 700 1330 8.0 23.5 310 200 83 26 MAY 23 0815 4400 1260 8.0 25.5 300 190 80 25 JUN 19 1600 1830 7.9 29.5 370 240 100 30 117 1100 2600 1430 8.2 29.0 300 180 77 26 AUG 17 1150 1400 1190 7.6 29.0 290 170 78 23 SEP 18 1145 400 875 7.4 28.0 170 69 53 8.4 SODIUM AD- DIS- SOLVED TION SOLVED TION SOLVED MG/L MG/L AS K) HCO3) AS CO3) AS SO4) AS CL OCT 17 130 3.4 4.7 130 0 230 140 13 675 NOV 21 130 3.3 4.9 130 0 270 150 12 736 DEC 19 140 3.5 4.7 140 0 270 160 12 762 ISOLUED TION SOLVED MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	21	1015	300	2830	7.8	15.5	710	480	190	56
17 1045 700 1330 8.0 23.5 310 200 83 26 MAY 23 0815 4400 1260 8.0 25.5 300 190 80 25 JUN 19 1600 1830 7.9 29.5 370 240 100 30 JUN 17 1100 2600 1430 8.2 29.0 300 180 77 26 AUG 17 1150 1400 1190 7.6 29.0 290 170 78 23 SFP 18 1155 4400 875 7.4 28.0 170 69 53 8.4 SODIUM, AD- DIS- SORP- DIS- SOLVED TURN'S, TORK'S T	13	1340	1100	1430	7.9	20.5	350	230	95	28
23 0815 4400 1260 8.0 25.5 300 190 80 25 JUN 19 1600 1830 7.9 29.5 370 240 100 30 JUN 17 1100 2600 1430 8.2 29.0 300 180 77 26 AUG 17 1150 1400 1190 7.6 29.0 290 170 78 23 SEP 18 1145 400 875 7.4 28.0 170 69 53 8.4 SODIUM	17	1045	700	1330	8.0	23.5	310	500	83	26
19 1600	23	0815	4400	1260	8.0	25.5	300	190	80	25
17 1100 2600 1430 8.2 29.0 300 180 77 26 AUG 17 1150 1400 1190 7.6 29.0 290 170 78 23 SEP 18 1145 400 875 7.4 28.0 170 69 53 8.4 SODIUM, ADD DISS SOLVED TION OUT 17 130 3.4 4.7 130 0 230 140 13 675 NOV 21 130 3.3 4.9 130 0 270 150 12 736 DEC 19 140 3.5 4.7 140 0 270 160 12 762 19 150 3.2 5.0 130 0 240 140 11 675 FEB 21 350 5.7 7.2 270 0 520 510 16 1780 MAR 17 150 3.7 5.5 140 0 270 170 12 786 MAY 23 140 3.5 5.3 140 0 250 170 12 786 MAY 23 140 3.5 5.3 140 0 250 170 12 786 MAY 23 140 3.5 5.3 140 0 290 200 12 850 JUN 19 150 3.7 5.5 140 0 290 200 12 850 JUN 19 240 5.4 6.0 160 0 360 280 15 1110 JUN 19 240 5.4 6.0 160 0 360 280 15 1110 JUN 19 240 5.4 6.0 160 0 290 200 12 850 AUG AUG 17 170 4.3 5.5 140 0 290 200 12 850 AUG 17 170 4.3 5.5 140 0 290 200 12 850 AUG 17 170 4.3 5.5 140 0 290 200 12 850	19		1600	1830	7.9	29.5	370	240	100	30
17 1150	17	1100	2600	1430	8.2	29.0	300	180	77	26
18 1145 400 875 7.4 28.0 170 69 53 8.4 SODIUM	17	1150	1400	1190	7.6	29.0	290	170	78	23
SODIUM		1145	400	875	7.4	28.0	170	69	53	8.4
17 130	DATE	DIS- SOLVED (MG/L	AD- SORP- TION	SIUM, DIS- SOLVED (MG/L	BONATE (MG/L AS	BONATE (MG/L	DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L AS	SUM OF CONSTI- TUENTS, DIS- SOLVED
NOV 21 130 3.3 4.9 130 0 270 150 12 736 DEC 19 140 3.5 4.7 140 0 270 160 12 762 JAN 16 120 3.2 5.0 130 0 240 140 11 675 FEB 21 350 5.7 7.2 270 0 520 510 16 1780 MAR 13 170 3.9 5.4 150 0 290 200 10 872 APR 17 150 3.7 5.5 140 0 270 170 12 786 MAY 23 140 3.5 5.3 140 0 250 170 12 761 JUN 19 240 5.4 6.0 160 0 360 280 15 1110 JUL 17 170 4.3 5.5 140 0 290 200 12 850 AUG 17 170 4.3 5.5 140 0 290 200 12 850 AUG 17 170 4.3 5.5 140 0 290 200 12 850 AUG 17 170 4.3 5.5 140 0 290 200 12 850 AUG 17 130 3.3 5.1 140 0 260 150 10 725 SEP		130	3.4	4.7	130	0	230	140	13	675
19 140 3.5 4.7 140 0 270 160 12 762 JAN 16 120 3.2 5.0 130 0 240 140 11 675 FEB 21 350 5.7 7.2 270 0 520 510 16 1780 MAR 13 170 3.9 5.4 150 0 290 200 10 872 APR 17 150 3.7 5.5 140 0 270 170 12 786 MAY 23 140 3.5 5.3 140 0 250 170 12 751 JUN 19 240 5.4 6.0 160 0 360 280 15 1110 JUL 17 170 4.3 5.5 140 0 290 200 12 850 AUG 17 170 4.3 5.5 140 0 290 200 12 850 AUG 17 170 4.3 5.5 140 0 290 200 12 850 AUG 17 130 3.3 5.1 140 0 260 150 10 725 SEP		130	3.3	4.9	130	0	270	150	12	736
16 120 3.2 5.0 130 0 240 140 11 675 FEB 21 350 5.7 7.2 270 0 520 510 16 1780 MAR 13 170 3.9 5.4 150 0 290 200 10 872 APR 17 150 3.7 5.5 140 0 270 170 12 786 MAY 23 140 3.5 5.3 140 0 250 170 12 751 JUN 19 240 5.4 6.0 160 0 360 280 15 1110 JUL 17 170 4.3 5.5 140 0 290 200 12 850 AIIG 17 130 3.3 5.1 140 0 260 150 10 725 SEP		140	3.5	4.7	140	0	270	160	12	762
21 350 5.7 7.2 270 0 520 510 16 1780 MAR 13 170 3.9 5.4 150 0 290 200 10 872 APR 17 150 3.7 5.5 140 0 270 170 12 786 MAY 23 140 3.5 5.3 140 0 250 170 12 751 JUN 19 240 5.4 6.0 160 0 360 280 15 1110 JUL 17 170 4.3 5.5 140 0 290 200 12 850 AUG 17 130 3.3 5.1 140 0 260 150 10 725 SEP	16	120	3.2	5.0	130	0	240	140	11	675
13 170 3.9 5.4 150 0 290 200 10 872 APR 17 150 3.7 5.5 140 0 270 170 12 786 MAY 23 140 3.5 5.3 140 0 250 170 12 751 JUN 19 240 5.4 6.0 160 0 360 280 15 1110 JUL 17 170 4.3 5.5 140 0 290 200 12 850 AIIG 17 130 3.3 5.1 140 0 260 150 10 725 SEP		350	5.7	7.2	270	0	520	510	16	1780
17 150 3.7 5.5 140 0 270 170 12 786 MAY 23 140 3.5 5.3 140 0 250 170 12 751 JUN 19 240 5.4 6.0 160 0 360 280 15 1110 JUL 17 170 4.3 5.5 140 0 290 200 12 850 AUG 17 130 3.3 5.1 140 0 260 150 10 725 SEP	13	170	3.9	5.4	150	0	290	200	10	872
23 140 3.5 5.3 140 0 250 170 12 751 JUN 19 240 5.4 6.0 160 0 360 280 15 1110 JUL 17 170 4.3 5.5 140 0 290 200 12 850 AIIG 17 130 3.3 5.1 140 0 260 150 10 725 SEP	17	150	3.7	5.5	140	0	270	170	12	786
19 240 5.4 6.0 160 0 360 280 15 1110 JUL 17 170 4.3 5.5 140 0 290 200 12 850 AIJG 17 130 3.3 5.1 140 0 260 150 10 725 SEP	23	140	3.5	5.3	140	0	250	170	12	751
17 170 4.3 5.5 140 0 290 200 12 850 AUG 17 130 3.3 5.1 140 0 260 150 10 725 SEP	19	240	5.4	6.0	160	0	360	280	15	1110
17 130 3.3 5.1 140 0 260 150 10 725 SEP	17	170	4.3	5.5	140	0	290	200	12	850
	17	130	3.3	5.1	140	0	260	150	10	725
		120	4.0	5.0	120	0	160	130	11	547

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

MONTH	DISCHAPGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA+MG) (MG/L)
ост. 1977	34083	1150	700	64200	140	13200	240	21900	290
NOV. 1977	28405	1670	1020	78500	250	19200	330	25100	390
DEC. 1977	36393	1500	910	89700	210	20800	300	29400	340
JAN. 1978	49693	1190	720	96800	150	20100	240	32800	290
FEB. 1978	8778	1970	1210	28800	320	7510	380	8900	470
MAR. 1978	36784	1420	870	86000	200	19500	290	28500	330
APR. 1978	49954	1250	760	102000	160	21600	260	35000	300
MAY 1978	114150	1220	740	228000	150	46400	250	78300	300
JUNF 1978	64290	1340	410	141000	180	31000	270	47300	320
JULY 1978	71530	1240	750	145000	150	29800	260	49300	300
AUG. 1978	38406	1220	740	76400	150	15600	250	26200	300
SEPT 1978	129869	840	510	179000	110	37600	170	60500	550
TOTAL	662335	**	**	1320000	**	282000	**	443000	**
WTD.AVG	1814.62	1210	740	**	160	**	250	**	300

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978 ONCE-DAILY APR JUN JUL AUG SEP MAY DAY OCT NOV DEC JAN FEB MAR 1 2 Q 1330 1360 1440 1510 ------MEAN

568

RIO GRANDE BASIN

08470200 NORTH FLOODWAY NEAR SEBASTIAN, TX

LOCATION.--Lat 26°18'51", long 97°46'36", Cameron County, Hydrologic Unit 12110208, at International Boundary and Water Commission gaging station on U.S. Highway 77 and approximately 2 mi (3 km) south of Sebastian.

PERIOD OF RECORD.--Sediment records: February 1966 to current year.

REMARKS.--Records of discharge are given in International Boundary and Water Commission Water Bulletins Nos. 47 and 48.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE (DEG C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. FALL DIAM. % FINER THAN .002 MM	SED. SUSP. FALL DIAM. % FINER THAN .004 MM
SEP							
30	1000	948	26.0	3040	7780	34	37
	SED.	SED.	SED.	SED.	SED.	SED.	SED.
	SUSP.	SUSP.	SUSP.	SUSP.	SUSP.	SUSP.	SUSP.
	FALL	FALL	FALL	SIEVE	SIEVE	SIEVE	SIEVE
	DIAM.	DIAM.	DIAM.	DIAM.	DIAM.	DIAM.	DIAM.
	% FINER	% FINER	% FINER	% FINER	% FINER	% FINER	% FINER
	THAN	THAN	THAN	THAN	THAN	THAN	THAN
DATE	.008 MM	.016 MM	.031 MM	.062 MM	.125 MM	.250 MM	.500 MM
SEP							
30	41	48	55	68	87	99	100

MONTHLY AND ANNUAL SUMMARY OF WATER AND SUSPENDED-SEDIMENT DISCHARGE

WATER YEAR, OCTOBER 1977 TO SEPTEMBER 1978

DATE	DISCHARGE (CFS-DAYS)	MEAN WEIGHTED SUS PENDED SEDIMENT CONCENTRATION (MG/L)	SUS PENDED SED IMENT DISCHARGE (TONS)
OCT. 1977	3949	150	1600
NOV. 1977	3362	140	1270
DEC. 1977	3061	131	1080
JAN. 1978	7825	267	5640
FEB. 1978	4098	76	836
MAR. 1978	4442	143	1710
APR. 1978	5273	199	2830
MAY 1978	5468	161	2380
JUNE 1978	6011	323	5250
JULY 1978	5313	169	2430
AUG. 1978	5417	202	2960
SEP. 1978	7780	453	9530
TOTAL	61999	224	37500

08470300 ARROYO COLORADO FLOODWAY AT EL FUSTES SIPHON, SOUTH OF MERCEDES, TX

LOCATION.--Lat 26°07'45", long 97°54'45", Hidalgo County, Hydrologic Unit 12110208, at International Boundary and Water Commission gaging station, 50 ft (15 m) upstream from Mercedes Canal and Fuste Siphon on Arroyo Colorado, approximately, 1.4 mi (2.3 km) downstream from Arroyo Colorado heading on the main floodway and 1.5 mi (2.4 km) south of Mercedes.

PERIOD OF RECORD.--Chemical analyses: November 1967 to February 1968, Pesticide analyses: May 1968 to September 1973, October 1975 to current year. Sediment records: February 1966 to current year.

REMARKS.--Records of discharge are given in International Boundary and Water Commission Water Bulletins Nos. 47 and 48.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		WAIER	GUALII	Y DATA,	WATER	TEAR OCT	BER 1971	IU SE	PIEMBER	1910		
					VAPH-				C	HLOR-		
			Р	св,	THA-		ALDRIN,			ANE,		DDD.
					ENES.		TOTAL			OTAL		TOTAL
				HOT-	POLY-		IN BOT-	- CHI		BOT-		IN BOT-
		PCB			CHLOR.	ALDRIN.	TOM MA-			M MA-	DDD,	TOM MA-
	TIME	TOTAL			TOTAL	TOTAL	TERIAL			ERIAL	TOTAL	TERIAL
DATE		(UG/L			(UG/L)	(UG/L)	(UG/KG)			G/KG)	(UG/L)	(UG/KG)
JAN												
24	1240		.3	1	.00	.00	. ()	.0	2	.00	2.8
APR	12.40		••		.00	•00	•		• •	_		
18	1520	-	. 0		.00	.00			.0		.00	
JUL												
11	1410	-	• 0	0	.00	.00	• (. 0	0	.00	• 4
								DI				
		DDE	•		DDT,			ELDR	IN.			ENDRIN.
		TOTAL			TOTAL			TOT				TOTAL
		IN BOT			N BOT-	01-	DI-	IN B		NDO-		IN BOT-
	DDE,	TOM MA			OM MA-	AZINON,	ELDRIN			LFAN,	ENDRIN.	TOM MA-
	TOTAL	TERI			TERIAL	TOTAL	TOTAL	TER		OTAL	TOTAL	TERIAL
DATE	(UG/L)	(UG/K	G) (U	IG/L) (UG/KG)	(UG/L)	(UG/L)	(UG/	KG) (UG/L)	(UG/L)	(UG/KG)
JAN												
24 APR	.02	7.	. 8	• 0 0	3.1	.06	• 0 1	L _y	.5	.01	•02	.6
18 JUL	.04			• 0 0		• 02	.00)		.00	.01	
11	•02	2	• 9	.00	.0	.02	.02	2	.1	.00	.02	• 0
				HEPTA		HEI	PTA-					
				CHLOR	,	CHI	OR		LINDANE			
				TOTAL		TA- EPO	CIDE		TOTAL			HYL
			HEPTA-	IN BOT	- CHL	OR TOT	. IN		IN BOT-	MAL		
	ETH	ION,	CHLOR,	TOM MA	- EPOX	IDE BO	TTOM LIN	DANE	TOM MA-	THI		ON,
	TO	TAL	TOTAL	TERIA	L TOT	AL M	ATL. TO	TAL	TERIAL			
DAT	E (U	G/L)	(UG/L)	(UG/KG) (UG	(UG,	/KG) (L	JG/L)	(UG/KG)	(UG	/L) (UG	i/L)
JAN												
24.		.00	.00		0	.00	. 0	.00	.0		.00	.08
APR												
18.	••	.00	.00	-	-	•00		.00			•00	•00
JUL 11.	24	.00	.00		0	.00	.0	.00	.0		.00	.24
•••											100	
							KA- ENE •					
	ME	THYL				TO:	TAL					
	Т	RI-		PARA-	TO	X- IN	30T- TO	TAL				
	TH	ION,	MIREX,	THION	, APHE	NE. TOM	MA-	RI-	2,4-D,	2,4,	5-T SILV	EX,
	TO	TAL	TOTAL	TOTAL	TOT	AL TE	RIAL TH	HION	TOTAL	TOT		
DAT	E (U	G/L)	(UG/L)	(UG/L) (UG	(UG.	/KG) ((JG/L)	(UG/L)	(UG	/L) (UG	5/L)
JAN												
24.		.00		.3	3	0	8	.00	.35		.00	.00
APR	•	7.7		•-			•	•••			7.5	200
18.		.00		.0	1	0		.00	.00		.00	.00
JUL					7			13.50				7.5
11.	••	.00	.00	.0	0	0	0	.00	.00		.00	.00

RIO GRANDE BASIN

08470300 ARROYO COLORADO FLOODWAY, AT EL FUSTE SIPHON, SOUTH OF MERCEDES, TX--Continued

MONTHLY AND ANNUAL SUMMARY OF WATER AND SUSPENDED-SEDIMENT DISCHARGE WATER YEAR, OCTOBER 1977 TO SEPTEMBER 1978

DATE		DISCHARGE	MEAN WEIGHTED SUSPENDED SEDIMENT CONCENTRATION	SUS PENDED SEDIMENT DISCHARGE	
		(CFS-DAYS)	(MG/L)	(TONS)	
OCT.	1977	5686	110	1700	
NOV.	1977	3196	116	1000	
DEC.	1977	3181	126	1080	
JAN.	1978	5501	141	2090	
FEB.	1978	2951	121	964	
MAR.	1978	4225	149	1700	
APR.	1978	3950	122	1300	
MAY	1978	4088	141	1560	
JUNE	1978	3812	130	1340	
JULY	1978	3754	122	1240	
AUG.	1978	6574	131	2320	
SEP.	1978	9196	209	5180	
TOTAL	L	56114	142	21500	

571

08474550 RIO GRANDE AT U.S. HIGHWAY 77 AT BROWNSVILLE, TX LOCATION.--Lat 25°53'54", long 97°29'51", Cameron County, Hydrologic Unit 12110208, on upstream side of bridge on U.S. Highway 77 in Brownsville and at mile 55.67 (89.57 km).

PERIOD OF RECORD. -- Chemical and biochemical analyses: October 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

			WAI	ER GUAL	LITT UATA	WAIER	TEAR OCT	ODER 1911	10 36	LINELA	1910			
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO MHOS)	. ,		TEMPER- ATURE (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (JTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGE DIS SOLV (PER CEN SATU	- DEM ED 81 - CH IT IC	AND, F	COLI- FORM, FECAL, 0.7 JM-MF COLS./	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L
ост		155			24.5	25	10			01	2.3	160	300	210
18 NOV	1130	155		7.5	24.5	25	15	8.3						
08 DEC	1100	150	0	8.0	23.0	20	35	9.1	1	08	2.6	170	290	230
06 JAN	1415	150	0	8.0	21.0	30	30	9.1	1	05	3.2	96	290	210
24	1415	133	0	7.8	11.0	0	65	10.5		98	1.1	64	260	190
FER 14	1320	168	0	7.7	17.5	25	15	9.1		98	2.5	20	290	250
MAR 14	1245	243	0	7.5	21.0	25	25	8.7	1	00	1.6	62	430	380
APR 19	1045	124	0	7.8	26.0	20	30	9.4	1	18	1.9	1400	240	150
MAY 09	1600	141		8.3	29.0	30	25			10	2.7	700	290	180
JUN										7		55000	250	150
07 JUL	1130	124		7.9	28.0	20	170				1.6			
11	1540	155	0	8.1	31.0	15	50	8.8	1	19	1.3	1600	320	190
15 SEP	1040	147	0	7.8	29.0	35	30	7.0		92	2.9	500	300	200
12	1625	142	0	7.7	29.0	10	360	6.2		82	3.2	1300	290	190
DATE	SOL	DUE RE	SIDUE 105 G. C. US- NDED MG/L)	SOLIDE VOLATILE SUS- PENDE (MG/	NITR TOT D (MG	N, GE ATE NITR AL TOT /L (MG	N. G ITE NOZ AL TO	EN, G +NO3 AMM TAL TO G/L (M	TRO- EN. ONIA C TAL IG/L	NITRO- GEN. ORGANIC TOTAL (MG/L AS N)	NITRO GEN+AM MONIA ORGANI TOTAL (MG/L AS N)	- + PHC	AL TO	RBON. GANIC DTAL MG/L S C)
0CT 18		997	24		8			.02			.6	0	.04	13
NOV 08		953	82		19			.07			.8	2	.06	5.2
DEC 06		940	52		12			.12			.4	3	.07	7.0
JAN											.6		.08	5.1
24 FEB		772	89		11			.49						
MAR	· .	981	67		12	.08	.01	.09	.06	.51	•5		.06	4.1
14	•	1490	50		9			.03			.8	9	.10	34
19		746	52		7			.05			.7	4	.05	3.8
MAY 09		860	16		5			.03			.9	3	.06	6.8
JUN 07		743	334		46						.1	7	.01	6.5
JUL 11		912	40		6			.00			.6	4	.03	3.7
AUG 15		921	42		4			.02			.8	9	.00	5.2
SEP 12		851	652	1	20			.22			1.1		.32	8.0
	•	-51											-2.	

08475000 RIO GRANDE AT BROWNSVILLE, TX (National stream-quality accounting network)

LOCATION.--Lat 25°52'35", long 97°27'15", Cameron County, Hydrologic Unit 13090002, at International Boundary and Water Commission gaging station, 1,000 ft (300 m) downstream from El Jardin pumping plant, 6.8 mi (10.9 km) below International Bridge between Brownsville and Matamoros, Tamps., Mex., and 48.8 mi (78.5 km) above the Gulf of Mexico.

DRAINAGE AREA .-- 176,333 mi2 (456,702 km2).

PERIOD OF RECORD. -- Chemical analyses: October 1967 to January 1968, October 1974 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: April 1967 to current year. MATER TEMPERATURES: October 1966 to current year. SUSPENDED-SEDIMENT DISCHARGE: February 1966 to current year.

REMARKS.--Records of discharge furnished by International Boundary and Water Commission.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 4,130 micromhos May 29, 1972; minimum daily, 337 micromhos Sept. 3, 1967.
MATER TEMPERATURES (1966-69, 1970-75, 1977-78): Maximum daily, 33.5°C on several days during July and August 1978; minimum daily, 8.0°C Jan. 10, 1967.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 3,560 mg/L Sept. 16, 1971; minimum daily mean, 4 mg/L Apr. 26, 1970, Aug. 16, 18,

24, 27, 1977.
SEDIMENT LOADS: Maximum daily, 83,500 tons Sept. 16, 1971; minimum daily, 0.18 tons July 22.

EXTREMES FOR CURRENT YEAR . --

KTREMES FOR CURRENT YEAR.-SPECIFIC COMBUCTANCE: Maximum daily, 2,620 micromhos Mar. 7, 10; minimum daily, 661 micromhos Sept. 30.
MATER TEMPERATURES: Maximum daily, 33.5°C on several days during July and August; minimum daily, 11.5°C Jan. 20, 21.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 2,160 mg/L Sept. 28; minimum daily mean, 16 mg/L Feb. 9.
SEDIMENT LOADS: Maximum daily, 62,400 tons Sept. 28; minimum daily, 0.18 tons July 22.

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		SPE- CIFIC CON- DUCT- ANCE	РН	TEMPER-	TUR- BID-	OXYGEN, DIS-	OXYGEN+ DIS- SOLVED (PER- CENT	OXYGEN DEMAND. BIO- CHEM- ICAL.	COLI- FORM. TOTAL. IMMED. (COLS.	COLI- FORM, FECAL, 0.7 UM-MF
DATE	TIME	(MICRO- MHOS)	(UNITS)	(DEG C)	(JTU)	(MG/L)	SATUR- ATION)	5 DAY (MG/L)	PER 100 ML)	(COLS./ 100 ML)
ост										
18	1330	1680	7.2	25.5	20	5.4	68	5.1	790000	1700
08	1325	1470	8.1	23.5	35	9.6	116	2.9	39000	12000
DEC 06	1635	1550	8.0	20.5	30	8.5	97	3.1	63000	2400
JAN 24	1545	1380	7.8	11.0	40	9.9	93	1.4	200000	150000
FEB 14	1530	1650	7.7	17.5	20	8.6	92	3.2	35000	800
MAR		2540	7.9	22.0	20		126	2.1	4600	2700
APR	1445			22.0		10.7				
19	0900	1270	7.8	26.0	40	9.1	114	3.3	23000	600
10 JUN	1030	1810	7.9	28.5	30	7.8	101	2.9	380000	290000
07	1615	1280	7.7	29.5	160	7.9	104	1.1	490000	280000
JUL 12	1020	1600	8.0	30.0	25	7.6	101	3.0	9000	1700
15	1200	1470	8.0	30.0	30	8.6	115	3.4	2200	K1200
SEP 13	1045	1330	7.8	29.5	280	6.2	82	2.0		18000
DATE	STREP- TOCOCCI FECAL. KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS. NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- RONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)
ост										
18	1000	560	300	150	44	200	3.7	6.8	310	0
08 DEC	7400	370	250	98	31	170	3.8	5.4	150	0
06	4100	410	250	110	33	170	3.7	5.6	190	0
JAN 24	14000	320	220	86	26	160	3.9	4.9	130	0
FEB 14	1600	440	260	120	35	180	3.7	5.2	220	0
MAR 14	1600	630	410	170	51	300	5.2	7.0	270	0
APR 19	10000	310	200	83	26	140	3.4	5.2	140	0
MAY										0
10 JUN	120000	500	290	130	42	200	3.9	7.4	250	
JUL	760000	330	550	86	27	150	3.6	5.5	130	0
12 AUG	9000	390	240	100	33	180	4.0	5.8	180	0
15 SEP	2500	360	210	93	31	180	4.1	6.1	180	. 0
13	3000	230	140	66	17	180	5.1	5.5	110	0

573

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS. RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN. NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN+ NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN+ AMMONIA TOTAL (MG/L AS N)
0CT 18	350	280	.6	24	1210	1210	.06	.05	•11	2.4
NOV 08	280	220	.6	.0	908	879	.02	.01	.03	•02
DEC 06	310	220	.6	13	968	956	.00	.01	.01	.09
JAN 24	270	190	.7	11	811	813	.13	.01	.14	.10
14	290	250	.6	13	984	1000	.00	.01	.01	.09
MAR 14	460	410	.6	9.9	1490	1540	.04	.00	.04	.00
19	260	160	.7	12	775	756	.04	.01	.05	.03
10	340	270	.6	21	1100	1130	.03	.02	.05	.01
JUN 07 JUL	280	170	.8	8.6	774	792	.16	.01	.17	.03
12	330	210	.8	18	961	966	.00	.00	.00	.00
15 SEP	300	200	.8	15	931	915	.00	•01	.01	.03
13	250	200	.6	11	789	784	•55	.03	.25	.05
DATE	NITRO- GEN, ORGANIC TOTAL (MG/L	NITRO- GEN.AM- MONIA + ORGANIC TOTAL	NITRO- GEN.AM- MONIA + ORGANIC DIS.	PHOS- PHORUS, TOTAL	PHOS- PHORUS, DIS- SOLVED	CARBON. ORGANIC TOTAL	CARBON+ ORGANIC DIS- SOLVED	CARBON. ORGANIC SUS- PENDED TOTAL	SEDI- MENT, SUS-	SED. SUSP. SIEVE DIAM. % FINER
UAIL	AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS P)	(MG/L AS P)	(MG/L AS C)	AS C)	(MG/L AS C)	PENDED (MG/L)	.062 MM
ост	AS N)	AS N)	AS N)	AS P)	AS P)	AS C)	AS C)	AS C)	PENDED (MG/L)	.062 MM
0CT 18	AS N)	3.0	AS N)	AS P)	AS P)	AS C)	AS C)	AS C)	PENDED (MG/L)	.062 MM
0CT 18 NOV 08	.60 .66	3.0 .68	AS N)	.78 .07	AS P)	4.5 3.8	AS C)	AS C)	PENDED (MG/L) 29	.062 MM 91 75
OCT 18 NOV 08 DEC 06	.60 .66	3.0 .68	 -62	.78 .07	 .00	4.5 3.8 4.6	 	 	PENDED (MG/L) 29 93 57	.062 MM 91 75 91
OCT 18 NOV 08 DEC 06 JAN 24 FEB	.60 .66 .43	3.0 .68 .52	.62 .46	.78 .07 .09	 .00 .02	4.5 3.8 4.6 3.8	 		PENDED (MG/L) 29 93 57	.062 MM 91 75 91 89
OCT 18 NOV 08 DEC 06 JAN 24 FEB 14	.60 .66 .43 .58	3.0 .68 .52 .68		.78 .07 .09 .10		4.5 3.8 4.6 3.8			PENDED (MG/L) 29 93 57 79	.062 MM 91 75 91 89
OCT 18 NOV 08 DEC 06 JAN 24 FEB 14 MAR 14	.60 .66 .43 .58 .57	3.0 .68 .52 .68 .66	.62 .46 .73 .35	.78 .07 .09 .10 .07	.00 .02 .03 .01	4.5 3.8 4.6 3.8 5.7			PENDED (MG/L) 29 93 57 79 34	.062 MM 91 75 91 89 93
OCT 18 NOV 08 DEC 06 JAN 24 FEB 14 MAR 14 APR 19 MAY	.60 .66 .43 .58 .57	3.0 .68 .52 .68 .66		.78 .07 .09 .10 .07	.00 .02 .03 .01	4.5 3.8 4.6 3.8 5.7			PENDED (MG/L) 29 93 57 79 34 97	.062 MM 91 75 91 89 93 94
OCT 18 NOV 08 DEC 06 JAN 24 FEB 14 MAR 14 APR 19 MAY 10 JUN	.60 .66 .43 .58 .57 1.3 .77	3.0 .68 .52 .68 .66 1.3 .80	.62 .46 .73 .35 .46	.78 .07 .09 .10 .07 .10	.00 .02 .03 .01 .05	4.5 3.8 4.6 3.8 5.7 5.0			PENDED (MG/L) 29 93 57 79 34 97 51	.062 MM 91 75 91 89 93 94 96
OCT 18 NOV 08 DEC 06 JAN 24 FEB 14 MAR 19 MAY 10 JUN 07 JUL	.60 .66 .43 .58 .57 1.3 .77	3.0 .68 .52 .68 .66 1.3 .80 .79	AS N)62 -46 -73 -35 -46 -46 -12 -63	.78 .07 .09 .10 .07 .10	AS P)00 .02 .03 .01 .05 .00 .01	4.5 3.8 4.6 3.8 5.7 5.0			PENDED (MG/L) 29 93 57 79 34 97 51 94	.062 MM 91 75 91 89 93 94 96 97
OCT 18 NOV 08 DEC 06 JAN 24 FEB 14 MAR 19 APR 19 JUN 07 JUN 07 JUN 07	.60 .66 .43 .58 .57 1.3 .77 .78	3.0 .68 .52 .68 .66 1.3 .80 .79 .73	.62 .46 .73 .35 .46 .46 .12	.78 .07 .09 .10 .07 .10 .07 .10		4.5 3.8 4.6 3.8 5.7 5.0 6.5			PENDED (MG/L) 29 93 57 79 34 97 51 94 271	.062 MM 91 75 91 89 93 94 96 97 99
OCT 18 NOV 08 DEC 06 JAN 24 FEB 14 MAR 19 MAY 10 JUN 07 JUN	.60 .66 .43 .58 .57 1.3 .77	3.0 .68 .52 .68 .66 1.3 .80 .79	AS N)62 -46 -73 -35 -46 -46 -12 -63	.78 .07 .09 .10 .07 .10	AS P)00 .02 .03 .01 .05 .00 .01	4.5 3.8 4.6 3.8 5.7 5.0			PENDED (MG/L) 29 93 57 79 34 97 51 94	.062 MM 91 75 91 89 93 94 96 97

08475000 RIO GRANDE AT BROWNSVILLE, TX--Continued

WATER QUALITY DATA. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

												CAL	MIUM		
DAT	E	TIME	TOTAL (UG/L	TOTA	S- A DED AL /L	RSENIC DIS- SOLVED (UG/L AS AS)	TOTAL RECO ERAB (UG/ AS B	M. L. I V- LE L	BARIUM. SUS- PENDED RECOV- ERABLE (UG/L AS BA)	BARIUM DIS- SOLVED (UG/L AS BA	ERAF (UG)	UM S	ENDED ECOV- RABLE JG/L S CD)	CADMIU DIS- SOLVE (UG/L AS CO	D
FE8 14.		1530		3	1	2	1	00	0	20	10	0	0		0
MAY				7	5	2		00	0	30	10	0	0		0
10.		1030							200			1	0		<1
15.	••	1200	01100	4	1	3	COBAL	00	200	10	COPPI		·		•
DAT	F	CHRO- MIUM. TOTAL PECOV- ERABLE (UG/L AS CR)	PENDI RECO' (UG/	CHRIED DIS	M. - VED /L	TOTAL RECOV- ERABLE (UG/L AS CO)	SUS- PENDE RECO ERAB (UG/	D V-	COBALT. DIS- SOLVED (UG/L AS CO)	ERABL (UG/L	PEN PEN PEN E ERA (UG	DED CO OV- D BLE S	PPER. IS- OLVED UG/L S CU)	TOTAL RECOVERABLE (UG/I	/- _E
FEB	_														
14.		10		0	10	1		1	0		7	7	0		70
10.		10		0	10	3		1	2		25	24	1		30
15.		10		0	10	0		0	< 1		7	6	1	6	90
		TRON. SUS- PENDED RECOV- FRABLE (UG/L	IRON DIS SOLV (UG/	- REC	OV-	SUS- PENDED RECOV- ERABLE (UG/L	SOLV (UG)	VED	MANGA- NESE + TOTAL RECOV- ERABLE (UG/L	NESE SUS PEND RECO	MAN NES ED DI V. SOL	E+ T S- R VED E	RCURY OTAL ECOV- RABLE UG/L	MERCU SUS PEND RECO ERAB (UG/	ED V- LE L
DAT	TE	AS FE)	AS F	E) AS	PB)	AS PB	AS I	98)	AS MN	AS M	N) AS	MN)	S HG)	AS H	61
FEB				0	33	31	1	2	120	0	70	50	.2		.2
MAY				50	4		0	4	23		90	40	.0		.0
AUG								0	10		00	2	.0		.0
15	•••	680	•	:10	6	,	5	U	SILVER		00		INC.		••
DA		MERCURY DIS- SOLVED (UG/L AS HG)	NIUM TOTA	L TO		SELE- NIUM, DIS- SOLVEI (UG/L AS SE	(UG	AL OV- BLE /L	SUS- PENDEI RECOV- ERABLI (UG/L AS AG	D SILVE DIS E SOLV	ED ER	ABLE I	SUS- PENDED RECOV- ERABLE (UG/L AS ZN)	ZINO DIS SOLV (UG/ AS 2	ED L
FFR								0		0	0	40	30		10
MAY		• (0	0		0						0		20
10	•••	• ()	0	0		0	0		0	0	20			
	•••	. ()	0	0		0	0		0	0	10 CHLOR	7		<3
D∻TE	11	ME T	PCR. OTAL UG/L)	PCB. TOTAL IN HOT- TOM MA- TERIAL (UG/KG)	ALDR TOT (UG	IN. TO	DRIN. TOTAL N BOT- DM MA- TERIAL JG/KG)	ZI	RA- III NE. TO	ATRA- ZINE . FOTAL N BOT- DM MA- TERIAL JG/KG)	CHLOR- DANE, TOTAL (UG/L)	TOTAL TOTAL IN BOT TOM MA TERIA	- 1- 1- I	DDD+ DTAL JG/L)	DDD+ TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
v	13	25	ND	NO		ND	ND		ND	ND	ND	. ,	ND	ND	
EE 14	15					NU			ND	7	ND			ND	
10		00	ON	ND		ND	NO		ND		ND		ND	ND	ND
ug 15		00	0.4			00					ND			ND	
DATE	TOM TEL	D. AL OT- MA-	DOE +	COE. TOTAL IN HOT- TOM MA- TERIAL (UG/KG)	TOT	T. T	DDT. TOTAL N BOT- OM MA- TERIAL UG/KG)	A7I TO	I- I NON. T	OI- ZINON, TOTAL N BOT- OM MA- TERIAL UG/KG)	DI- ELORIN TOTAL (UG/L)	DI- ELDRIU TOTAL IN 80 TOM M TERI (UG/K	L T- A- EN AL T	DRIN. OTAL UG/L)	ENDRIN. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
0v		1.0	(IN	1.4		ND			ND	ND	ND		ND	ND	ND
08 E0		1.0							ND		ND			ND	
14			MO			NO					ND		ND	ND	ND
10			MD	.4		ND	NO		ND	ND				ND	
15			140			NO			MO		ND			NU	-

WATER QUALITY DATA. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

c)ATE	FTHION, TOTAL (UG/L)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOP, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TEPIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	HEPTA CHLOR EPOXIO TOT. I BOTTO MATL (UG/KG	E N DM LIN	IDANE T	INDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION. TOTAL (UG/L)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NO					7.4			_		ND	ND	ND
FE		NO	ND	ND	NO	ND		ID	ND	ND	ND	ND
M /		สก		ND		ND		-	NO		ND	
Al		ND	ND	ND	ND	ND		ID	NO	ND	ND	ND
1	5	NO.	METH- OXY-	ND	METHYL PARA-	ND	METHY TRI-		ИО	PARA- THION,	SIMA- ZINE	SIMA- ZINE IN
ſ	DATE	OXY- CHLOR. TOTAL (UG/L)	CHLOR. TOT. IN BOTTOM MATL. (UG/KG)	METHYL PAHA- THION, TOTAL (UG/L)	THION. TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOTAL (UG/L)	THION TOT. I BOTTO MATL (UG/KG	N PA	TAL	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL COUL- SON COND. (UG/L)	BOTTOM MATERI- AL (UG/ KG DRY SOLIDS)
NC		(007.7	10071107	100/2/	(00)/(0)	100/6/	1007.110	,			1131.23	2556275
FF	8	ND	ND	NO	ND	ND		ID	ND ND	ND	ND ND	ND
MA		Ni)		V.D.		ND			ND	ND	ND	
A1		ND	ON	NO	ND	ND		10				
,	5	NO	 -AXOT	V.U.	TPI-	ND		-	ND			
		TOX-	PHENE . TOTAL IN BOT- TOM MA-	TOTAL	THION. TOTAL IN BOT- TOM MA-	2,4-0,	2,4-0 TOTAL IN BOT TOM MA	_		TOTAL IN BOT-	SILVEX.	SILVEX, TOTAL IN BOT- TOM MA-
r	DATE	(UG/L)	TERIAL (UG/KG)	THION (UG/L)	TERIAL (UG/KG)	TOTAL (UG/L)	TERIA (UG/KG		JG/L)	TERIAL (UG/KG)	(UG/L)	(UG/KG)
N() V	ND	ND	ND	ND	ND		ND.	ND	ND	ND	ND
FF		NO		ND		ND			NO		ND	
W/		ND	NO	ND	NO							
Δ:		NO		+17								
DATE	TIME	STRE/ FLOW INST/	AN- TEMPE	SEDI MENT R- SUS- E PENI	CHARGE SUS-	FA SE, DI % FI DED TH	SP. LL AM. NER %	SED. SUSP. FALL DIAM. FINER THAN 004 MM	SED SUSF FALL DIAP % FINE THAP	FAL M. DIA ER % FIR	SP. SU L FA AM. DI NER % FI AN TH	SP. SUSP. LL SIEVE AM. DIAM. NER % FINER AN THAN
18	133	0 80	25	.5	29 6	5.3						91
08	132	5 96	23	.5	93 24							75
06	1639	5 450	20	.5	57 69	•						91
JAN 24	1549	5 508	11	. 0	79 108	3						89
FEB 14	153	0 275	17	.5	34 25	5						93
MAR 14	1445	5 75	55	. 0	97 20)						94
APR 19	090	0 141	26	• 0	51 19	•						96
10	103	0 48	28	.5	94 12	2						97
JUN 07	161	5 960	29	.5	271 702	2						99
12	102	0 52	30	. 0	19	2.7						96
15	120	0 21	30	.0	59 3	3.3						82
13 28	1049		29 30		558 4220 480 139000		51	68		83	92	92 98 100

08475000 RIO GRANDE AT BROWNSVILLE, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1977 TO AUGUST 1978

	· III TOP E	alvix I Oliv	ANAL I SES	, 0010	DEK 1911	IU AU	0051 19	0				
DATE TIME		8,77 1325		14,78 445		10,78		7,78 615		12,78		15•78 200
TOTAL CELLS/ML	200	0000	32	000	320	000	19	0000	450	0000	580	0000
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		0.8 0.8 1.4 1.6 2.5		1.2 1.2 1.2 2.0 2.4		0.4 0.4 1.0 1.1		0.9 0.9 1.5 1.8 2.7		0.3 0.3 1.2 1.5 2.2		0.0 0.0 0.1 0.9 1.8
ORGANISM	CELLS	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) •CHLOROPHYCEAE ••CHLOROCOCCALES ••CHARACIACEAF					and the second							
SCHROEDERIA	10	0		-					6 e ••	-		-
COELASTRACEAE	1100	1		2		0	210	1	5100	1		_
PEDIASTRUM			830	3		0	1100	6				
GOLENKINIA		0				-		-				
MICRACTINIUM OOCYSTACEAE		-	1000	3				•			-	
DICTYOSPHAFRIUM	14000	0	830 14000#	3 45	2400 4500	1		0	5100	0	=	
····FRANCEIA ····KIRCHNFRIELLA	==	:		-	*	0	*	0	- :	-	=	
OOCYSTIS	2000	1	1000	3	*	0	530	3		0		
TREUBARIA SCENEDESMACEAE		-		0		-		-		-		
ACTINASTRUM CRUCIGENIA		-	2200	7			*	0		-		-
SCENEDESMUS	5100 5500	3	1200	4	3800 3800	1	230 1800	9		0		0
TETRASTRUM TETRASPORALES	1700	1		0		-				•		
SPHAEROCYSTIS	5600	3		-			240	1				14.1
CHLAMYDOMONADACEAE		1										
CHLAMYDOMONAS	-	-		-	==			0		0	Ξ	
ZYGNEMATALES DESMIDIACEAE												
····COSMARIUM		0	-	-		0		-	=	:	-	
STAURASTRUM	-	•		-		-		Ö				-
CHRYSOPHYTA BACILLARIOPHYCEAE CENTRALES												
CYCLOTELLA	100 m	0		0		0	190	1	10,1975	0		
MELOSIPA PENNALES			-	-15		0		•			••	•
COCCONFIS		0					-			• 1		
CYMBELLACEAE	-	•		0			4.					
FRAGILARIACEAE			-	-	-			0				•
NAVICULACEAE		0		0	10	0						
NITZSCHIACEAE		•	7900#	25	4800	1	170	1	100	0		
SURIRELLACEAE		-		0		•				-		• 4
CRYPTOPHYTA (CRYPTOMONADS) •CRYPTOPHYCEAE ••CRYPTOMONIDALES ••CRYPTOCHRYSIDACEAE												
CHROOMONAS		•		-		•		0		•	••	•

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% # - ORSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

08475000 RIO GRANDE AT BROWNSVILLE, TX--Continued

PHYTOPLANKTON ANALYSES. OCTOBER 1977 TO AUGUST 1978

DATE TIME		8,77 325		14,78 1445		10,78 030		7•78 615		12,78 020		15•78 200
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CYANOPHYTA (BLUE-GREEN ALGAE) •CYANOPHYCEAE • HORMOGONALES												
OSCILLATORIACEAEPHORMIDIUM .CHROCCOCCALES		-		-		-	6400#	33		-		
CHROCCOCCAEAE												
AGMENELLUM	59000#	29			42000	13	460	2	70000#	16	3300	1
ANACYSTIS	84000#		2200	7	220000#		1500	8	180000#			-
HORMOGONALES						7.			***************************************			
ANABAENA		-		-		-		-	31000	7	71000	12
ANABAENOPSIS		-		-	9300	3		-		-	53000	9
APHANIZOMENON	2900	1		-		-		-		-		-
CYL INDROSPERMUM		0		-		-		-		-		-
OSCILLATORIACEAE												
LYNGBYA		-		-	4800	1		-		-	210000#	36
OSCILLATORIA	18000	9		-	29000	9	6100#	32	140000#	31	240000#	42
RIVULARIACEAE												
RAPHIDIOPSIS		-		-		-		-		-	3300	1
CHROCCOCCALES												
CHROCCOCCAEAE												
GOMPHOSPHAERIA		-		0		-		-	10000	2		-
EUGLENOPHYTA (EUGLENOIDS) •EUGLENOPHYCEAE ••EUGLENALES												
EUGLENACEAE												
EUGLEN4		0		-	*	0	*	0		-		-
PHACUS		-		-		0		-				
TRACHELOMONAS		0		-	*	0		-				
PYRRHOPHYTA (FIRE ALGAE) •DINOPHYCEAE ••PERIDINIALES												
PERIDINIACEAE												
PERIDINIUM												

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15*
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978
PERIPHYTON

DATE	LENGTH OF EXPOSURE (DAYS)	PERI- PHYTON BIOMASS ASH WEIGHT G/SQ M	PERI- PHYTON BIOMASS TOTAL DRY WEIGHT G/SQ M	CHLOR-A PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)	CHLOR-B PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)	SAMPLING METHOD
OCT						
18	35	27.6	30.8	.394	.038	POLYETHYLENE STRIP
14 JUN	28	68.0	72.9	16.2	1.73	POLYETHYLENE STRIP
07	28	12.8	13.7	.730	.000	POLYETHYLENE STRIP
15	34	22.7	24.3	1.70	.000	POLYETHYLENE STRIP

RIO GRANDE BASIN 08475000 RIO GRANDE AT BROWNSVILLE, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

MONTH	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT. 1977	3030	1640	1000	8170	240	1960	320	2610	410
NOV. 1977	14691	1720	1040	41400	250	10000	330	13000	430
DEC. 1977	7024	1870	1140	21600	280	5300	350	6690	470
JAN. 1978	11612	1290	780	24500	170	5460	260	8190	320
FEH. 1978	6492	1680	1020	17900	250	4320	330	5710	420
MAR. 1978	2591	2340	1420	9920	360	2540	420	2940	590
APR. 1978	6833	1220	740	13700	160	2990	250	4560	310
MAY 1978	7502.8	1250	760	15400	170	3380	250	5150	310
JUNF 1978	10973	1270	770	22800	170	5050	260	7590	320
JULY 1978	2779.1	1360	820	6170	190	1410	270	2050	340
AUG. 1978	3637.4	1270	770	7560	170	1690	250	2500	320
SEPT 1978	61769	1010	610	103000	130	21900	210	34500	250
TOTAL	138934.18	**	**	292000	**	66000	**	95500	
WTD.AVG	380.64	1280	770	**	170	**	260	**	320
SPECIF	IC CONDUCTANCE	(MICROMHO	S/CM AT	25 DEG. C), N	ATER YEAR	OCTOBER 197	7 TO SEPTE	MBER 1978	

JUL AUG SEP DAY OCT NOV DEC JAN FEB APR MAY JUN MAR 1190 1520 1300 1310 1530 1410 1420 1510 19 1470 1730 1400 1450 1530 ---------MEAN

							The same					
		TEM	PERATURE	(DEG. C)	OF WATER,	WATER YEAR	OCTOBER	1977 10	SEPTEMBER	1978		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	28.0	25.5	22.0		12.5	14.0	19.0	28.0	31.0		33.5	31.5
		25.0	12.0	20.0	13.0	14.0		28.5	31.0		33.5	31.5
3	28.0	25.0	21.0	20.0	13.0	14.0	19.0	29.0	31.0	32.5	33.5	
4	28.0	25.0		20.0	13.0	14.0	19.0	28.5		32.5	33.5	30.0
5	28.0	25.0	21.0	20.0			19.0	28.0	31.0	32.5	33.5	30.5
6	28.5		21.0	21.0	13.0	14.5	19.0	29.0	31.0	33.0		30.5
7	28.5	25.0	21.0	21.0	12.5	14.5	20.0		31.0	33.0	33.0	30.5
8	28.5	24.0	21.0		13.0	14.5	20.0	29.0	31.0	33.0	33.0	31.0
9		24.0	21.0	19.5	13.0	14.5		29.0	31.5		33.0	31.0
10	29.0	24.0	21.0	20.0	13.0	14.5	20.0	29.0	31.5	33.0	33.0	
11	29.0	24.0		19.0	13.5	15.0	21.0	29.0		33.0	33.0	30.5
12	29.0	24.0	20.5	18.0			21.0	29.5	31.5	33.0	32.5	31.0
13	29.0		20.0	17.5	13.0	15.0	22.5	29.5	31.0	32.5		30.0
14	29.0	24.0	20.0	17.0	13.0	15.0	24.0		31.5	32.5	31.5	31.0
15	29.0	24.0	20.0		13.5	16.0	24.0	29.5	31.5	33.0	31.5	30.5
16		24.0	20.0	16.0	13.5	16.0		30.0	31.5		31.5	30.5
17	29.0	24.0	20.0	16.0	14.0	16.0	25.0	30.0	32.0	33.0	32.0	
18	29.0	24.0		15.0	14.0	16.5	25.5	30.0		33.0	32.0	30.5
19	29.0	24.0	19.0	14.0			24.0	30.0	32.0	33.0	32.0	30.5
20	29.0		19.5	11.5	13.5	17.0	25.0	30.5	32.0	33.5		30.5
21	29.0	24.0	19.5	11.5	13.0	17.0	24.5		32.0	33.5	32.5	29.5
22	29.0	24.0	19.5		13.0	17.0	25.0	31.0	32.0	33.5	32.0	30.0
23		23.0	19.0	12.0	13.5	17.0		31.0	32.0		32.0	30.0
24	27.5	23.0		12.0	14.0	17.5	26.0	30.5	32.0	33.5	32.0	
25	27.0	23.0		12.0	14.0	18.0	26.5	31.0		32.0	31.5	30.0
26	27.0	23.0	19.0	12.0			26.5	31.5	32.0	33.0	32.5	30.5
27	26.5		19.0		13.5	18.0	27.5	31.0	32.0	33.0		30.0
28	26.0	22.0	19.0	13.0	14.0	18.0	26.0		32.0	33.0	32.0	30.0
29	25.5	22.0				18.5	28.0	31.5	32.0	33.5	31.5	30.0
30		22.0		12.0		19.0		31.5	32.0		31.0	30.0
31	25.5			12.0		19.0		30.0		33.5	31.5	

SUSPENDED-SEDIMENT DISCHARGE (TONS/DAY), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

16.0 23.0

30.0

32.5

30.5

13.5

16.0

20.0

MEAN

28.0

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		OCTOBER			NOVEMBER			DECEMBER	
1	115	76	24	341	62	57	126	60	20
2	110	65	19	270	90	66	141	62	24
3	117	53	17	163	112	49	320	56	49
4	130	64	22	151	100	41	453	55	67
3 4 5	127	142	49	586	106	168	500	58	78
6	141	62	24	961	100	259	457	58	72
7	116	34	11	891	98	236	353	78	74
8	100	34	9.2	776	96	201	173	53	25
9	87	35	8.2	727	124	243	114	86	26
10	87	36	8.5	529	195	279	233	72	45
11	116	33	10	557	58	87	448	60	73
12	83	37	8.3	757	55	112	539	55	80
13	56	43	6.5	770	50	104	576	62	96
14	63	32	5.4	702	46	87	605	62	101
15	47	34	4.3	665	46	83	333	56	50
16	50	32	4.3	583	42	66	140	91	34
17	81	30	6.6	519	39	55	91	186	46
18	80	46	9.9	571	65	100	82	90	50
19	67	61	11	454	144	177	83	70	16
20	64	48	8.3	311	60	50	81	58	13
21	51	60	8.3	314	46	39	62	58	9.7
55	32	51	4.4	392	57	60	49	92	12
23	146	46	18	444	56	67	49	76	10
24	216	46	27	397	48	51	60	80	13
25	164	148	66	387	59	62	113	77	23
26	101	56	15	298	66	53	262	76	54
27	66	56	10	361	65	63	184	161	80
28	35	68	6.4	365	62	61	90	88	21
29	28	7.0	5.3	260	70	49	52	70	9.8
30	58	65	10	189	54	28	85	65	15
31	294	158	125				173	60	28

RIO GRANDE BASIN

08475000 RIO GRANDE AT BROWNSYILLE, TX--Continued

SUSPENDEU-SEDIMENT DISCHARGE (TONS/DAY). WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT UISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		YHAUMALY			FEBRUARY			MARCH	
1 2 3 4 5	214 326 197 198 259	50 52 44 50 43	24 46 23 27 30	216 214 236 289 386	28 48 35 42 70	16 28 22 33 73	194 155 172 184 185	31 46 49 30 40	16 19 23 15 20
6 7 8 9	147 107 99 133 134	42 44 43 44 43	17 13 11 16	366 291 257 264 221	86 48 24 16 24	85 38 17 11 14	181 198 170 143 125	54 20 42 76 54	26 11 19 29 18
11 12 13 14	66 118 161 151	42 32 27 27 40	9.4 5.7 8.6 12	177 204 232 275 222	20 30 36 22 23	9.6 17 23 16 14	106 97 87 75 57	92 50 18 88 106	26 13 4.2 18 16
16 17 18 19	170 141 290 857 2030	59 42 74 120 66	27 16 58 278 362	1/3 166 163 187 235	20 36 30 22 29	9.3 16 13 11 18	26 22 32 34 29	93 82 92 60 75	6.5 4.9 7.9 5.5 5.9
21 22 23 24 25	1410 1050 650 608 440	98 90 90 78 34	479 255 158 107 40	194 193 210 194 213	32 22 24 26 36	17 11 14 14 21	18 20 32 37 32	86 104 82 68 108	4.2 5.6 7.1 6.8 9.3
26 27 28 29 30 31	34 A 1 d 7 1 d 1 1 3 d 2 0 2 2 6 1	34 30 32 30 28 26	32 15 12 11 15 18	227 230 257	37 37 18	23 23 12	22 59 31 26 21	115 146 86 121 58 56	6.8 23 7.2 8.5 3.3 3.2
DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		APRIL			MAY			JUNE	
1 2 3 4 5	22 22 23 42 86	51 60 81 68 52	3.0 3.6 5.0 7.7	7.4 5.6 11 8.6	24 84 54 152	2.1 .48 1.3 1.6 3.5	33 102 193 370 1490	48 79 72 74 150	4.3 22 38 74 603
6 7 8 9	133 172 242 343 458	145 150 137 140 150	52 70 90 130 185	13 9.7 7.5 25	120 80 55 33 56	4.2 2.1 1.1 2.2 7.3	2170 960 970 1150 890	727 664 242 235 158	4260 1720 634 730 380
11 12 13 14 15	729 688 1000 1120 542	74 64 120 89 88	146 119 324 269 129	35 86 185 187 296	46 52 42 50 61	4.3 12 21 25 49	710 495 275 185 87	100 56 147 28 42	192 75 109 14 9.9
16 17 19 19	274 152 145 141 84	100 110 51 64 52	74 45 20 24	1950 2000 791 207 76	90 77 1280 614 115	474 416 2730 343 24	58 46 30 24 54	37 34 36 38 60	5.8 4.2 2.9 2.5 8.7
21 22 23 24 25	61 55 53 53 47	44 61 65 68 44	7.2 9.1 9.3 9.7 5.6	60 106 317 416 237	80 324 106 96 108	13 93 91 108 69	146 115 60 35 24	54 27 74 98 95	21 8.4 12 9.3 6.2
26 27 28 29 30 31	41 36 31 21 17	56 32 53 32 40	6.2 3.1 4.4 1.8	126 91 52 34 48	71 102 80 64 111	24 25 11 5.9 14	21 38 79 111 52	96 80 89 89 92	5.4 8.2 19 27 13

08475000 RIO GRANDE AT BROWNSVILLE, TX--Continued

SUSPENDED-SEDIMENT DISCHARGE (TONS/DAY), WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

		MEAN			MEAN			MEAN	
	MEAN	CONCEN-	SEDIMENT	MEAN	CONCEN-	SEDIMENT	MEAN	CONCEN-	SEDIMENT
	DISCHADGE	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE
DAY	(CFS)	(MG/L)	(TONS/DAY)	(CFS)	(MG/L)	(TONS/DAY)	(CFS)	(MG/L)	(TONS/DAY)
		JULY			AUGUST			SEPTEMBER	
1	39	91	9.6	329	78	69	214	32	18
2	40	92	9.9	373	83	84	205	50	28
3	HB	90	21	320	92	79	387	40	42
4	163	94	41	192	74	38	611	48	79
5	160	110	48	240	94	61	289	39	30
6	77	124	26	171	400	185	214	42	24
6	40	103	11	102	116	32	162	46	20
B	18	88	4.3	138	94	35	217	84	49
9	9.1	95	2.3	118	75	24	682	58	107
10	21	103	5.8	95	120	31	2060	500	1110
11	33	86	7.7	74	91	18	2540	156	1070
12	52	83	12	57	98	15	2890	156	1220
13	54	70	10	44	112	13	2650	210	1500
14	35	100	9.5	32	126	11	2500	461	3110
15	34	77	7.1	21	82	4.6	1670	818	3690
16	227	85	52	16	73	3.2	793	460	985
17	231	78	49	10	44	1.2	443	550	658
18	96	106	27	4.7	51	.65	365	706	696
19	6.8	64	12	1.7	92	.42	320	523	452
50	34	104	9.5	25	80	5.4	275	473	351
21	15	52	2.1	70	72	14	258	96	67
55	1.3	50	.18	86	83	19	328	150	133
23	3.6	65	.63	126	66	22	524	85	120
24	256	85	59	66	1010	180	574	83	129
25	369	106	106	112	274	83	657	53	94
26	246	46	31	182	71	35	951	50	128
27	102	65	18	158	75	32	4890	400	5280
28	47	95	12	100	78	21	10300	2160	62400
29	2.3	77	4.8	76	71	15	11800	830	26400
30	5.1	75	1.0	99	49	13	12000	900	29200
31	192	76	39	199	26	14			

YEAR 138934.3 164441.16

A low-flow investigation along a watercourse involves making discharge measurements at selected sites in a given reach of a channel. In addition, discharge measurements of inflow and diversions, field commentary relative to observations, water samples and temperature, and other relevant data are collected. Measuring sites are described to the extent that they may be used in subsequent investigations. At times, temporary recording installations are used to supplement records at regular gaging stations in the study of flow trends.

In tabulating the results, the indicated gains or losses may appear incompatible because of diurnal or other flow variations, or because of small inaccuracies in open-channel discharge measurements. These trends in a reach may vary with the seasons, because of regulation, or other factors. Successive investigations may serve to delineate a progressive change in flow trends.

COLORADO RIVER RASIN

Colorado River Low-Flow Investigations

PURPOSE.--To determine the changes in quantity and quality of low flow in this reach of the Colorado River.

REACH.--The investigations began on the Colorado River at a point 50 ft above the mouth of Bull Creek and ended at the stream-gaging station, Colorado River at Colorado City. The investigations involved a distance along the Colorado River of 35.5 miles.

PREVIOUS INVESTIGATIONS .-- 1968, 1975, 1976, and 1977.

SUMMARY.--Two low-flow investigations were made on Jan. 16, 1978, and Mar. 20, 1978. During these investigations, climatic factors were favorable for determing the gains and losses. There was no storm runoff, no known diversions from the river, and no appreciable loss could be attributed to evapotranspiration.

Location and description of data-collection sites, Colorado River and tributaries

				D4	Water	Discharge		
Site No.	Stream	Location	Date	River	temp.	Main stream	tribu- ary	Remarks
1	Colorado River	Lat 32°34'58", long 101°05'42", 50 ft upstream from Bull Creek.	Jan. 16 Mar. 20	831,8	7.0	0.09	-	Streambed of sand. Grass and scattered trees on banks.
2	Bull Creek	Lat 32°36'00", long 101°05'38", 300 ft upstream from bridge on Farm Road 2085.	Jan. 16 Mar. 20	-	7.0 12.5	÷	0.06 0.06	Streambed of gravel and sand. Grass and scattered trees on banks.
2A	do	Lat 32°34'54", long 101°05'42", 30 ft upstream from Col rado River.	Jan. 16 Mar. 20	-	6.5 12.0	i.	.20	Do
3	Colorado River	Lat 32°36'00", long 101°05'42", 30 ft downstream from Bull Creek.	Jan. 16 Mar. 20	831.8	7.0 17.0	.17	-	Streambed of gravel and sand. Grass and scattered trees on banks.
4	do	Lat 32°34'17", long 101°05'42", 40 ft upstream from Bluff Creek.	Jan. 16 Mar. 20	828.8	6.5 13.0	.13	:	Streambed of gravel and sand. Grass, brush, and scattered trees on both banks.
5	Bluff Creek	Lat 32°35'29", long 101°03'02", at bridge on Farm Road 1606.	Jan. 16 Mar. 20		7.0 13.5		.35 .15	Streambed of gravel and sand. Grass and scattered trees on both banks.
6	do	Lat 32°34'20", long 101°03'21", 150 ft upstream from mouth	Jan. 16 Mar. 20	1	6.5 14.0	-	.35 .15	Streambed of coarse sand over sandstone. Grass and thin brush on both banks.
7	Colorado River	Lat 32°32'18", long 101°03'12", at stream-gaging station.	Jan. 16 Mar. 20	826.3	5.5 24.0	.24	:	Wide, flat sand channel with steep banks. Thick stand of salt cedars along both banks.
8	do	Lat 32°30'43", long 101°01'42", 30 ft upstream from Willow Creek.	Jan. 16 Mar. 20	824.0	6.0 14.0	1.17 .27	-	Streambed of sand and silt. Steep banks with heavy stand of salt cedars along left bank
9	Willow Creek	Lat 32°30'42", long 101°01'46", 300 ft upstream from mouth.	Jan. 16 Mar. 20	1	-	:	0	Streambed of sand. Steep grassy banks with heavy stand of brush on both banks.
10	Colorado River	Lat 32°32'25", long 100°56'54", 15 ft upstream from Canyon Creek.	Jan. 16 Mar. 20	817.8	6.0 14.5	.71 .22	-	Streambed of sand. Steep banks with thick stand of salt cedars.
11	Canyon Creek	Lat 32°32'26", long 100°56'53", 15 ft upstream from mouth.	Jan. 16 Mar. 20	-	6.5 14.0	-	.53 .51	Streambed of gravel and sand. Steep banks with heavy stand of brush and trees.
12	Colorado River	Lat 32°30'51", long 100°54'46", 300 ft upstream from Deep Creek.	Jan. 16 Mar. 20	814.3	7.0 18.0	2.43	-	Wide sand channel. Thick stand of salt cedars along both banks.
13	Deep Creek	Lat 32°32'25", long 100°54'27", at stream-gaging station 08120500.	Jan. 16 Mar. 20	2	5.5 16.0	3	2.30	Streambed of gravel. Steep grassy banks lined with scattered large trees.
14	do	Lat 32°30'51", long 100°54'43", 70 ft upstream from mouth.	Jan. 16 Mar. 20	1	5.5 15.0	12:	4.70 2.63	Streambed of sand. Steep grassy banks with heavy stand of salt cedars.
15	Colorado River	Lat 32°28'41", long 100°56'54", at stream-gaging station 08120700.	Jan. 16 Mar. 20	:	6.0 15.0	5.73 2.27	7	Wide streambed of gravel and sand. Steep banks with heavy stand of salt cedars.

COLORADO RIVER LOW-FLOW INVESTIGATIONS--Continued

Location and description of data-collection sites, Colorado River and tributaries--Continued

Site No	Stream	Location	Date	River mile	Water temp. (°C)	Discharge Main stream	(ft³/s) tribu- ary	Remarks
16	Colorado River	Lat 32°26'35", long 100°56'45", 1,000 ft downstream from Cedar Bend bridge.	Jan. 16 Mar. 20	804.4	7.0 17.5	6.19 4.29	:	Streambed of gravel. Steep banks with heavy stand of salt cedars.
17	do	Lat 32°25'51", long 100°55'00", 30 ft upstream from low-water crossing l mile northwest of Colorado River Municipal Water District diversion station.	Jan. 16 Mar. 20	802.1	7.0 19.0	6.88 4.36	-	Streambed of gravel. Steep banks with scattered salt cedars.
18	Bone Hollow	Lat 32°25'33", long 100°53'43", at right of private dam and 300 ft upstream from mouth.	Jan. 16 Mar. 20	-	6.0 22.0	1	0.17 .09	Streambed of sandstone and shale. Scattered trees and brush.
19	Colorado River Municipal Water District pump Station	Lat 32°25'08", long 100°54'21", at Colorado River Municipal Water District pump station.	Jan. 16 Mar. 20	799.3	:		:	Entire flow of river was being pumped into CRMWD off-channel reservoir.
20	Colorado River	Lat 32°24'51", long 100°54'28", 1,500 ft downstream from Colorado River Municipal Water District diversion dam.	Jan. 16 Mar. 20	798.9	7.0 27.0	.15	÷	Wide streambed of gravel over sandstone. Heavy stand of saltcedar along fairly steep banks.
21	do	Lat 32°23'33", long 100°52'42", at stream-gaging station 08121000.	Jan. 16 Mar. 20	796.3	6.5 14.0	.48	-	Streambed of gravel with heavy stand of saltcedar.

COLORADO RIVER LOW-FLOW INVESTIGATIONS--Continued

STREAMFLOW AND WATER-QUALITY DATA FOR THE COLORADO RIVER AND TRIBUTARIES, JAN. 16, 1978

		DISCHARGE	DIS- SOLVED SILICA (SIO ₂)	DIS- SOLVED CAL- CIUM (CA)	DIS- SOLVED MAGNE- SIUM (MG)	DIS- SOLVED SODIUM (NA)	DIS- SOLVED POTAS- SIUM (P)	a/ BICAR- BONATE (HCO ₃)	DIS- SOLVED SUL- FATE (SO4)	DIS- SOLVED CHLO- RIDE (CL)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS)	HARD- NESS (CA.MG)	NON- CAR- BONATE HARD- NESS	SPECIFIC CONDUCT- ANCE (MICRO-	PH
SITE	STREAM	(FT3/S)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	MHOS)	(UNITS)
1	Colorado River	b/0.09	-	-	-	-	-	-	-	-		-	-		
2	Bull Creek	.06	2.1	300	150	860	9.4	260	600	1800	3850	1400	1200	6290	7.8
2A	do	.20	5.2	390	130	3300	12.0	270	1600	4800	10400	1500	1300	16100	7.7
3	Colorado River	.17	3.4	420	200	4600	14.0	290	2000	7000	14400	1900	1600	21400	7.8
4	do	.13	.2	440	240	5500	17.0	210	2200	8400	16900	2100	1900	25600	7.7
5	Bluff Creek	.35	5.8	230	83	240	4.8	260	710	380	1780	920	700	2670	8.0
6	do	.35	5.3	250	94	500	5.6	260	830	750	2560	1000	800	3870	7.9
7	Colorado River	.75	5.5	470	240	5000	18	230	1600	8000	15400	2200	2000	24800	7.7
8	do	1.2	6.7	450	200	4500	15	270	1700	7100	14100	1900	1700	21000	7.8
10	do	.71	2.3	510	210	4800	17	230	1500	7900	15100	2100	2000	23800	7.6
11	Canyon Creek	.53	3.1	190	130	380	3.7	400	1000	320	2220	1000	680	3050	8.1
12	Colorado River	2.4	3.4	390	180	2700	10	320	1300	4100	8840	1700	1500	14300	7.7
13	Deep Creek	2.3	15	100	28	190	11	420	190	190	931	370	21	1570	7.8
14	do	4.7	7.8	160	73	260	9.2	390	600	250	1550	700	380	2290	8.2
15	Colorado River	5.7	4.3	240	110	950	10	370	860	1400	3760	1100	750	6070	8.1
16	do	6.2	3.4	250	120	1100	10	360	980	1600	4240	1100	820	6600	8.1
17	do	6.9	2.9	290	130	1600	11	360	1100	2400	5710	1300	960	8790	8.1
18	Bone Hollow	.17	5.0	250	170	430	9.8	320	1300	460	2780	1300	1100	3710	8.0
20	Colorado River	.15	5.6	810	450	16000	46	170	3700	24000	45100	3900	3700	65600	6.7
21	do	.48	2.4	480	230	4600	17	300	2100	7200	14800	2100	1900	22200	7.5

a/ Includes the equivalent of any carbonate (CO3) present. $\underline{b}/$ Sample was contaminated.

COLORADO RIVER LOW-FLOW INVESTIGATIONS--Continued

STREAMFLOW AND WATER-QUALITY DATA FOR THE COLORADO RIVER AND TRIBUTARIES, MAR. 20, 1978

SITE	STREAM	DISCHARGE (FT³/S)	DIS- SOLVED SILICA (SIO ₂) (MG/L)	DIS- SOLVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAGNE- SIUM (MG) (MG/L)	DIS- SOLVED SODIUM (NA) (MG/L)	DIS- SOLVED POTAS- SIUM (P) (MG/L)	a/ BICAR- BONATE (HCO ₃) (MG/L)	DIS- SOLVED SUL- FATE (SO ₄) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	HARD- NESS (CA,MG) (MG/L)	NON- CAR- BONATE HARD- NESS (MG/L)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	PH (UNITS)	
2	Bull Creek	0.06	0.9	310	140	850	6.8	240	690	1600	3720	1400	1200	6080	7.6	
2A	do	.09	2.0	410	180	3200	12	200	1600	4800	10300	1800	1600	16100	7.7	
3	Colorado River	.04	.1	420	200	4100	15	220	1800	6000	12600	1900	1700	19400	7.7	
4	do	.04	.1	490	260	6000	43	120	2300	9300	18500	2300	2200	28100	7.5	
5	Bluff Creek	.15	1.9	230	87	340	4.6	220	720	540	2030	930	750	3200	7.9	
6	do	.15	.4	260	97	590	5.6	220	870	830	2760	1000	870	4380	7.9	
7	Colorado River	.24	4.1	450	200	5500	23	160	1800	8200	16300	1900	1800	24700 .	7.7	
8	do	.27	.1	470	200	4400	18	180	2000	6400	13600	2000	1900	20100	7.6	
10	do	.22	.3	520	230	4700	17	160	2000	6900	14400	2200	2100	22200	7.6	
11	Canyon Creek	.51	1.0	190	130	440	3.7	340	1100	370	2400	1000	730	3390	8.1	
12	Colorado River	1.1	.7	340	170	2100	9.0	240	1300	3200	7240	1600	1400	11600	7.9	
13	Deep Creek	.79	11	100	26	190	9.8	360	190	190	894	360	61	1490	7.8	
14	do	2.6	3.3	180	92	310	8.4	360	790	280	1840	830	530	2620	8.2	
15	Colorado River	2.3	.4	200	120	960	9.4	350	900	1300	3660	990	710	5710	8.2	
16	do	4.3	.1	230	120	1100	10	240	1000	1500	4080	1100	870	6570	7,6	
17	do	4.4	.1	260	130	1400	11	230	1100	2000	5010	1200	1000	7840	7.7	
18	Bone Hollow	.09	.1	260	170	490	9.1	280	1400	480	2950	1400	1100	3970	8.0	
20	Colorado River	.09	1.0	1500	510	19000	130	84	4200	31000	79200	5800	5800	79200	7.2	
21	do	.20	1.0	520	250	5300	21	240	2300	7900	16400	2300	2100	24300	7.4	

a/ Includes the equivalent of any carbonate (CO₃) present.

Because the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than continuous stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. In addition, discharge measurements are made at other sites not included in the pa-tial-record program. These measurements are generally made in times of drought or flood to give better areal coverage of those events. The data collected for special reasons are called measurements at miscellaneous sites.

Streamflow data collected at partial-record stations where water-quality data other than observations of water temperature are not obtained are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations; the second is a table of annual maximum stage and (or) discharge at crest-stage stations. Discharge measurements made at miscellaneous sites for both low and high flows are given in a third table. Discharge measurements and water-quality data collected at partial-record stations are presented in downstream order in the section of this report entitled "Gaging-station records."

Low-flow partial-record stations

Measurements of streamflow at low-flow partial-record stations that are not published in the gaging-station section are given in the following table. Most of the measurements of low flow were made during periods when streamflow was sustained primarily by ground-water discharge. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will indicate the low-flow potential of the stream. The years its ted in the column headed "Period of record" identifies the water years in which measurements were made at the same or at practically the same site.

Discharge measurements made at low-flow partial-record stations during water year 1978

	in the second		Drainage	Period	Measur	ements
Station No.	Station name	Location	area (sq mi)	of record	Date	Discharge (ft ³ /s)
		Colorado River basin				V W (1984)
08129500	Dove Creek Spring near Knickerbocker, TX	Lat 31°11'06", long 100°43'51", Irion County, at headquarters ranchhouse, 500 ft upstream from Dove Creek, 1.8 mi upstream from Stilson Dam on Dove Creek, and 8.5 mi southwest of Knickerbocker.	(c)	1944-58+, 1959-78	11- 3-77 12-13-77 1-18-78 2-28-78 4-25-78 6- 5-78 7-18-78 8-29-78	25 26 24 26 25 23 24 30
08131300	South Concho River above Pecan Creek near San Angelo, TX	Lat 31°20'13", long 100°28'46", Tom Green County, 1,000 ft upstream from Pecan Creek and about 9 mi south of San Angelo.	(c)	1963-78	11- 2-77 12-12-77 1-17-78 2-27-78 4-26-78 7-17-78 8-29-78	6.0 7.0 6.9 7.5 6.8 4.2 4.3
08143900	Springs at Fort McKavett, TX	Lat 30°50'03", long 100°05'37", Menard County, at Fort McKavett.	(c)	1902, 1905, 1922, 1942, 1948-49, 1951-52, 1955-56, 1958-78	2-24-78 9- 8-78	40 41
08146500	San Saba Springs at San Saba, TX	Lat 31°11'44", long 98°42'42", San Saba County, 150 ft upstream from bridge on U.S. Highway 190 at San Saba and 0.8 mi east of courthouse.	(c)	1939, 1952, 1957, 1959-78	12- 6-77 6-13-78	9.1 9.4
08149400	South Llano River near Telegraph, TX	Lat 30°15'43", long 99°56'01", Edwards County, 3.7 mi upstream from Paint Creek, 5.7 mi south of Telegraph, and 18.7 mi southwest of Junction.	(c)	1939, 1952, 1956, 1959-78	1-12-78 7-26-78	27 25
08149500	Seven Hundred Springs near Telegraph, TX	Lat 30°16'12", long 99°55'22", Edwards County, about 3 mi upstream from Paint Creek, about 5 mi south of Telegraph, and about 18 mi southwest of Junction.	(c)	1939, 1952, 1955-56, 1959-78	1-12-78 7-26-78	21 14
08155400	Barton Creek above Barton Springs at Austin, TX	Lat 30°15'48", long 97°46'19", Travis County, just upstream from upper dam of Barton Creek swimming pool in 21lker Park and upstream from all springs known as Barton Springs at Austin.	125	1919-78	3-28-78 9-27-78	0
08155500	Barton Springs at Austin, TX	Lat 30°15'49", long 97°46'02", Travis County, in Zilker Park just below the lowest dam at Austin.	(c)	1895- 1916, 1917-18+, 1919-78*	1-16-78 2-28-78	39 42
		Guadalupe River basin				
08166150	Guadalupe River above Kerrville, TX	Lat 30°03'55", long 99°11'02", Kerr County, 0.6 mi downstream from Bear Creek and 3.0 mi northwest of Keerville.		1976-78	10-13-77 11-23-77 1- 5-78 2-15-78 3-29-78 5-10-78 6-21-78	56 76 77 83 63 52 43

^{*} Converted to continuous-record station in March 1978.

* Operated as a continuous-record station.

C Not applicable.

Discharge measurements made at low-flow partial-record stations during water year 1978--Continued

			Drainage	Period	Measur	ements
Station No.	Station name	Location	area (sq mi)	of record	Date	Discharge (cfs)
	· ·	Guadalupe River basinContinued				
08168000	Hueco Springs near New Braunfels, TX	Lat 29°45'31", long 98°08'34", Comal County, two springs located 200 and 400 ft west of the Guadalupe River, 0.3 mi upstream from mouth of Elm Creek, and 4.2 mi north of new Braunfels.	(c)	1944-78	11- 7-77 12-20-77 1-31-78 3-10-78 4-24-78 6- 6-78 7-13-78 8-21-78	80 35 19 21 17 14 20
08168600	Blieders Creek at New Braunfels, TX	Lat 29°43'14", long 98°07'23", Comal County, at Grove Avenue crossing in northwest New Braunfels and 0.25 mi upstream from mouth.	=	1962-78	1-27-78 6- 7-78 7-14-78	0 0 0
08168700	Panther Canyon at New Braunfels, TX	Lat 29°42'47", long 98°08'14", Comal County, at Landa Park Drive crossing in Landa Park at New Braunfels.		1962-78	1-27-78 6- 7-78 7-14-78	0 0 0
08168800	Dry Comal Creek at New Braunfels, TX	Lat 29°41'52", long 98°08'll", Comal County, at Floral Avenue crossing in New Braunfels, 0.6 mi upstream from Missouri Pacific Railroad Co. bridge, and 0.9 mi upstream from mouth.	6	1962-78	1-30-78 7-14-78	.90 .10
08177180	Coleto Creek at Coletoville Road near Schroeder, TX	Lat 28°45'46", long 97°09'53", Goliad County, at bridge on Coletoville Road, 1.4 mi upstream from Turkey Creek, 4.7 mi downstream from Hog Thief Creek, and 5.9 mi downstream from station 08177000.	393	-	3-23-78 5- 1-78 5- 9-78 5-18-78 5-31-78 6-14-78 6-29-78 7-21-78 8- 1-78 9- 6-78	21 21 17 13 15 22 11 7.7 18 7.4
08177250	Turkey Creek at first crossing upstream from Coleto Creek near Schroeder, TX	Lat 28°45'02", long 97°10'52", Goliad County, at bridge on first crossing upstream from Coleto Creek, 0.9 mi upstream from Coleto Creek.	21.8	•	3-23-78 5- 2-78 5- 9-78 5-18-78 5-31-78 6-14-78 6-29-78 7-21-78 8- 1-78 9- 6-78	.32 .24 .11 .19 .17 .99 .29 .28 .79
08177450	Coleto Creek at damsite near Victoria, TX	Lat 28°43'23", long 97°09'49", Victoria County, about 100 ft downstream from centerline targets at Coleto Creek damsite.	494	-	3-23-78 5- 1-78 5- 9-78 5-18-78 6-14-78 6-29-78 7-20-78 8- 1-78 9- 5-78	27 33 22 16 39 20 11 30 9.9
		Nueces River basin				
08204000	Leona River spring flow near Uvalde, TX	Lat 29°09'10", long 99°44'30", Uvalde County, at old road crossing on White's Ranch, 2.0 mi downstream from Cooks Slough, and 4.7 mi southeast of Uvalde.	(c)	1931-33*, 1942-66*, 1967-78	12- 5-77 12-20-77 2- 2-78 3-13-78 4-19-78 6- 5-78 7-17-78	f54 f56 f48 f37 f38 f37 f16

Dperated as a continuous-record station.Not applicable.Cooks Slough included.

				D1-1	Measur	ements
Station No.	Station name	Location	Drainage area (sq mi)	Period of record	Date	Discharge (cfs)
		Rio Grande basin				
08425500	Phantom Lake Spring near Toyahvale, TX	Lat 30 56'01", Long 103 50'43", Jeff Davis County, 375 ft downstream from source of spring, 3.5 mi southwest of Toyahvale, and 7.0 mi southwest of Balmorhea.	(c)	1931-33+, 1942-66+, 1967-78	10-25-77 12- 6-77 1-10-78 2-14-78 3-28-78 5- 2-78 6-13-78 7-25-78 9- 6-78	3.4 2.8 2.9 3.2 3.4 2.9 2.7 2.9 4.8
08427000	Giffin Springs at Toyahvale, TX	Lat 30 56'51", long 103 47'19", Reeves County, 2,000 ft northwest of Post Office in Toyahvale.	(c)	1919, 1922-23, 1925, 1932-33*, 1941-78	1-10-78 6-13-78	2.1 3.1
08427500	San Solomon Springs at Toyahvale, TX	Lat 30 56'34", long 103 47'16", Reeves County, on South Canal at Toyahvale, 540 ft downstream from headgate at pool of springs, and 4.0 mi southwest of Balmorhea.	(c)	1931-33+, 1941-65+, 1966-78	10-26-77 1-10-78 2-14-78 3-28-78 6-13-78 7-25-78 9- 6-78	29 29 25 26 27 26 31
08444500	Comanche Springs at Fort Stockton, TX	Lat 30 53'20", long 102 51'59", Pecos County, on outlet canal of Pecos County Water Improvement District No. 1 in Fort Stockton, 0.2 mi upstream from bridge on U.S. Highway 290, and 0.5 mi downstream from head of springs.	(c)	1899- 1935, 1936-64+, 1965-78	1-12-78 6-12-78	0
08456300 <u>k</u> /	Las Moras Springs at Brackettville, TX	Lat 29 18'33", long 100 25'13", Kinney County, in springflow pool at Brackettville, 160 ft south of U.S. Highway 90, and 1,550 ft upstream from bridge on Brackettville-Fort Clark Road.	(c)	1896, 1899- 1900, 1902, 1904-6, 1910, 1912, 1925, 1928, 1951-77	10-11-77 11-10-77 12-13-77 1-10-78 2-14-78 3-14-78 4-11-78 5- 9-78 6-13-78 7-11-78 8- 8-78 9-12-78	17 19 18 15 14 7.2 12 9.1 12 2.8 27

Operated as a continuous-record station.
Not applicable.
Records for the current year were furnished by the International Boundary and Water Commission.

Crest-stage partial-record stations

The following table contains annual maximum stage and (or) discharge at partial-record stations operated primarily for the purpose of defining the flooding characteristics of the streams. At stations where discharge is given, or is footnoted "to be determined", a stage-discharge relation has been, or will be, defined by discharge measurements obtained by current meter or by indirect procedures. Mater-stage recorders are located at these flood-hydrograph stations to facilitate complete hydrograph definition. At stations where only the maximum stage is given (discharge column is dashed), data are generally collected for use in stage-frequency studies or flood-profile definition. Gages at these stations usually consist of a device that will register the peak stage occurring between inspections of the gage. The years used in the column "Period of record" identify the years in which the annual maximum has been determined.

Annual maximum stage and (or) discharge during water year 1978

			1.00	1000	Ann	ual maxim	
Station No.	Station name	Location	Drainage area (sq mi)	Period of record	Date	Gage height (feet)	Dis- charge (ft ³ /s
		Colorado River basin					
08155550	West Bouldin Creek at Riverside Drive, Austin, TX	Lat 30°15'49", long 97°45'17", Travis County, on upstream side of eastbound bridge on Riverside Drive in Austin.	3.12	1975-78	2-12-78	2.82	240
08156650	Shoal Creek at Steck Avenue, Austin, TX	Lat 30°21'55", long 97°44'11", Travis County, on downstream side of bridge on Steck Avenue in Austin.	3.19	1975-78	5-11-78	2.74	391
08156750	Shoal Creek at White Rock Drive, Austin, TX	Lat 30°20'21", long 97°44'50", Travis County, on downstream side of bridge on White Rock Drive in Austin.	7.56	1975-78	5-11-78	9.53	1,010
08156800	Shoal Creek at 12th Street, Austin, TX	Lat 30°16'35", long 97°45'00", Travis County, on downstream side of bridge on 12th Street in Austin.	12.8	1975-78	5- 2-78 5-11-78	9.66 9.66	1,470 1,470
08158100	Walnut Creek at Farm Road 1325 near Austin, TX	Lat 30°24'35", long 97°42'41", Travis County, on downstream side of bridge on Farm Road 1325 and 9.5 mi north of the State Capitol building in Austin.	12.6	1975-78	4-10-78	2.96	74
08158200	Walnut Creek at Dessau Road, Austin, TX	Lat 30°22'30", long 97°39'37", Travis County, on downstream side of bridge on Dessau Road and 8.4 mi northeast of the State Capitol building in Austin.	26.2	1975-78	2-12-78	7.44	832
08158400	Little Walnut Creek at Interstate Highway 35, Austin, TX	Lat 30°20'57", long 97°41'34", Travis County, on downstream frontage road bridge on Inter- state Highway 35 in Austin.	5.57	1975-78	5- 2-78	4.76	1,500
08158500	Little Walnut Creek at Manor Road, Austin, TX	Lat 30°18'34", long 97°40'04", Travis County, on downstream side of bridge on Manor Road in Austin.	12.1	1975-78	5- 2-78	6.48	1,180
08158860	Slaughter Creek at Farm Road 2304 near Austin, TX	Lat 30°09'43", long 97°49'55", Travis County, at bridge on Farm Road 2304 near Austin.	23.1	1978*		-	0
08158880	Boggy Creek (South) at Circle S Road, Austin, TX	Lat 30°10'50", long 97°46'55", Travis County, on downstream side of bridge on Circle S Road in Austin.	3.58	1976-78	5- 2-78	4.64	360
08158930	Williamson Creek at Manchaca Road, Austin, TX	Lat 30°13'16", long 97°47'36", Travis County, on downstream side of bridge on Manchaca Road in Austin.	19.0	1975-78	5- 2-79	5.29	551
		Guadalupe River basin				-	
08169500	Guadalupe River at New Braunfels, TX	Lat 29°41'52", long 98°06'23", Comal County, at Comal Mills in New Braunfels and 0.4 mi up- stream from Interstate Highway 35.	1,652	1898- 1902, 1915-27+, 1974-78	9-13-78	12.50	6,060
08173900	Guadalupe River at Gonzales, TX	Lat 29°29'49", long 97°27'17", Gonzales County, at Gonzales Hydro Station in Gonzales and 1.4 mi upstream from U.S. Highway 183.	-	1977-78	6- 8-78	20.61	7,400
08177900	San Antonio River at Navarro Street, San Antonio, TX	Lat 29°25'50", long 98°29'24", Bexar County, at bridge on Navarro Street in San Antonio.	-	1973-78	9-13-78	e644.64	-
08178100	San Pedro Creek at Santa Rosa Street, San Antonio, TX	Lat 29°25'51", long 98°29'49", Bexar County, at bridge on Santa Rosa Street in San Antonio.	-	1973-78	9-13-78	e644.90	I i.e.
08178350	Martinez Creek at Fredericksburg Road, San Antonio, TX	Lat 29°27'22", long 98°31'04", Bexar County, at bridge on Fredericksburg Road in San Antonio.	÷	1973-78	9-13-78	e682.55	-
08178400	Alazan Creek at West Martin Street, San Antonio, TX	Lat 29°25'51", long 98°30'51", Bexar County, at bridge on West Martin Street in San Antonio.	-	1973-78	9-13-78	e640.79	-

^{*} For the period March to September. * Operated as a continuous-record station. Elevation in feet above mean sea level.

					Ann	ual maximu	ım
Station No.	Station name	Location	Drainage area (sq mi)	Period of record	Date	Gage height (feet)	Dis- charge (ft ³ /s)
		Guadalupe River basinContinued					1111
08178450	Apache Creek at South Zarzamora Street, San Antonio, TX	Lat 29°24'47", long 98°31'42", Bexar County, at bridge on South Zarzamora Street in San Antonio.		1973-78	9- 7-78	e632.05	1-
08178500	San Pedro Creek at Furnish Street, San Antonio, TX	Lat 29°24'22", long 98°30'38", Bexar County, at bridge on Furnish Street in San Antonio.	•	1973-78	9-13-78	e608.86	-
08178550	San Antonio River at Ashley Street (Berg's Mill), San Antonio, TX	Lat 29°20'04", long 98°27'20", Bexar County, at bridge on Ashley Street in San Antonio.	-	1973-78	11- 1-78	e522.16	3
08178720	Salado Creek at Rittiman Road, San Antonio, TX	Lat 29°29'05", long 98°24'59", Bexar County, at bridge on Rittiman Road in San Antonio.	- 44	1968-78	9-13-78	e668.69	-
08178740	Salado Creek at East Houston Street, San Antonio, TX	Lat 29°25'27", long 98°25'55", Bexar County, at bridge on East Houston Street in San Antonio.		1969-78	9-13-78	e621.18	-
08178760	Salado Creek at U.S. Highway 87, San Antonio, TX	Lat 29°23'53", long 98°25'35", Bexar County, at bridge on U.S. Highway 87 in San Antonio.		1969-78	9-13-78	e589.53	-
08178780	Salado Creek at Southcross Boulevard, San Antonio, TX	Lat 29°22'28", long 98°25'32", Bexar County, at bridge on Southcross Boulevard in San Antonio.		1969-78	9-13-78	e565.95	-
		Nueces River basin					
08207300	Atascosa River at U.S. Highway 281, Pleasanton, TX	Lat 28°57'44", long 98°28'51", Atascosa County, at bridge on U.S. Highway 281 in Pleasanton.		1973-78	8- 2-78	e344.22	-
		San Fernando Creek basin					
08212300	Tranquitas Creek at Kingsville, TX	Lat 27°31'33", long 97°52'02", Kleberg County, at bridge on U.S. Highway 77 Business Route in Kingsville, 4.9 mi above San Fernando Creek, and 5.9 mi downstream from Tranquitas Dam.	48.5	1965-78	10- 9-77	2.66	-

e Elevation in feet above mean sea level.

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

Measurements of streamflow at points other than gaging stations of partial-record stations are given in the following table:

Discharge measurements made at miscellaneous sites during water year 1978 Measured Measurements Drainage previously Stream Tributary to Location area (water Date Discharge (sq mi) (ft^3/s) years) Colorado River basin Bear Creek Lat 30°31'57", long 99°50'11", Kimble County, 1.3 mi upstream from Interstate Highway 10 and 3.4 mi west of Junction, TX 81,000 8- 3-78 North Llano 155 River Lat 29°12'00", long 96°03'19", Wharton County, 1.8 mi southwest of Lane City, TX Lower Colorado Colorado River 1918, 3-21-78 127 River (Diversion) 1962-65, 3-21-78 133 Authority's Lane City Canal 3-21-78 1968-69 96 88 81 3-21-78 Lat 28°59'05", long 96°00'56", Matagorda County, on right bank of Colorado River, 0.2 mi north of State Highway 35, and 3 mi west of Bay Lower Colorado 1954. 5- 4-78 5- 4-78 166do..... River 1958, 162 Authority's 1961, Gulf Coast Canal City, TX 1969, Lat 28°58'57", long 95°59'52", Matagorda County, on left bank of Colorado River just down-stream from State Highway 35 and 1.8 mi west 1962-65, 72 71 3-28-78Do..... do 1969. 3-28-78 of Bay City, TX Rio Grande basin Lat 29°27'10", long 100°37'30", Kinney County, on Mays Ranch and about 16 mi northwest of Brackettville, TX 1939-41, 1952-53, 10-11-77 24 26 25 24 22 20 19 18 18 Mud Springs 1/ Mud Creek 11-10-77 1962, 12-13-77 1965-78 1-10-78 2-14-78 3-14-78 4-11-78 5- 9-78 6-13-78 7-11-78 8- 8-78 16 9-12-78 16 Lat 29°24'10", long 100°27'15", Kinney County, on C. C. Belcher Ranch and 7.5 mi northwest of Brackettville, TX 1939-41, 7.4 Pinto Springs 1/ Pinto Creek 10-11-77 11-10-77 12-13-77 6.8 1952-53, 1965-78 1-10-78 2-14-78 1.2 3-14-78 0 4-11-78 0 5- 9-78 6-13-78 7-11-78 0 0 8- 8-78 9-12-78

 $[\]underline{1}$ / Measurements by International Boundary and Water Commission.

	Page		Pag
Accuracy of field data and computed results	22	Comal River at New Braunfels	30
Acre-foot, definition of	6	Comanche Springs at Fort Stockton	58i
collected by	23	at Paint Rock	111-11
Alazan Creek, at St. Cloud Street, San Antonio		near Veribest	11
Algae, definition of	589 6	Contents, definition of	
Apache Creek at South Zarzamora Street, San Antonio	590	Cooperation	
Aransas River near Skidmore	422	Copano Creek near Refugio	
south of Mercedes	569-570	Cubic foot per second, definition of	203-23
Ash mass, definition of	7	Cubic foot per second per square mile, definition of	
Atascosa River, at Whitsett	464-465 590	Data, accuracy of field, and computed results	2
as old highway cor at Freusanton	390	collection and computation of	1
Bacteria, definition of	6	collection and examination of	2:
Barrilla Draw near Saragosa	522 586	other available Deep Creek near Dunn	39-4
at Loop 360, Austin	177	Definition of terms	33-4
at State Highway 71 near Oak Hill		Delaware River near Red Bluff, N. Mex	51
below Barton Springs at Austin		Devils River at Pafford Crossing near Comstock Diatoms, definition of	537-54
Beals Creek, above Big Spring	53-55	Discharge, at partial-record stations and	47.5
near Westbrook	56-60	miscellaneous sites	586-59
Bear Creek below Farm Road 1826 near Driftwood Beaver Creek near Mason	159	definition of measurements at miscellaneous sites	59
Bed material, definition of	7	Dissolved, definition of	
Biochemical oxygen demand (BOD), definition of	7	Diversity index, definition of	0
Biomass pigment ratio, definition of	8	Dove Creek Spring near Knickerbocker	580
Blanco River, at Wimberley		Downstream order and station number	10
near Kyle	312 587	Drainage area, definition of	
Blue-green algae, definition of	12	Drainage basin, definition of	58
Bluff Creek, at mouth near Ira	34	Dry Frio River near Reagan Wells	438-44
near IraBoggy Creek at U.S. Highway 183, Austin	33	Dry mass, definition of	
Boggy Creek (South) at Circle S Road, Austin	589	East Carancahua Creek near Blessing	259-260
Brady Creek, at Brady	145	East Elm Creek at San Antonio	350-35
near EdenBrady Creek Reservoir near Brady	142	Ecleto Creek near Runge	39 89-9
Brown County Water Improvement District No. 1	143-144	E. V. Spence Reservoir near Robert Lee	68-78
canal near Brownwood	132	Explanation, of stage and water-discharge records	18
Bull Creek, at Farm Road 2222 near Austin		of surface-water quality records	2:
near Ira	31	Fecal coliform bacteria, definition of	
Canyon Lake near New Braunfels	200 201	Fecal streptococcal bacteria, definition of	460-46
Cells/volume, definition of	8	Frio River, at Callihamat Concan	435-43
Cfs-days, definition of	8	at Tilden	455-450
Champion Creek Reservoir near Colorado City Chemical oxygen demand (COD), explanation of	51-52	below Dry Frio River near Uvaldenear Derby	44
	423-425	near perby	10
Chlorophyll, definition of	8	Gage height, definition of	
Chocolate Bayou near Port Lavaca	291-293 391	Gaging station, definition of	2
near Boerne	390	Garcitas Creek near Inez	
near Falls City		Giffin Springs at Toyahvale	588
Coleto Creek, at Coletoville Road near Schroeder	587 587	Green algae, definition ofGuadalupe-Blanco River Authority Calhoun Canal,	
near Schroeder	334	Flume No. 1 near Long Mott	40
Coliform organisms, definition of	18	Flume No. 2 near Long Mott	400 300
and examination of data	23	above Kerrville	586
Color unit, definition of	8	at Comfort	29
Colorado River, above Silverat Austin	61-67	at Cueroat Gonzales	324-325
at Ballinger	82-88	at Hunt	29
at Bastrop	242-243	at New Braunfels	589
at Colorado Cityat Columbus	45-48	at Sattlerat Victoria	326-33
at Robert Lee	79	below New Braunfels	30
at Wharton		near Spring Branchnear Tivoli	407-41
at Winchellbelow Austin		Guadalupe River basin, crest-stage partial-record	
below Bull Creek near Ira	32	stations in	589-590
below Mansfield Dam, Austinnear Bay City	165 255	gaging-station records inlow-flow partial-record stations in	586-59
near Cuthbert	41-44	TOW-TIOW PARTIAL-RECORD STATIONS IN	JUU-JO
near Ira	35-38	Harlendale Creek at West Harding Street, San Antonio	346-34
near San Saba		Hardness, definition of	371-37
near Stacy	110-122	Hondo Creek, at King Waterhole near Hondo	449
stations in	589	near Tarplev	446-448
discharge measurements at miscellaneous sitesgaging-station records in	591	Hords Creek near Valera	129-130
low-flow investigation in		Hueco Springs near New Braunfels	58
low-flow partial-record stations in		Hydrologic bench-mark station	1

	Page		Page
Hydrologic conditions	3	ND, definition of	10
Hydrologic unit	10	NGVD, definition of	20
7-1	F21	North Concho River, at San Angelo	108 104
Independence Creek near Sheffield	531	at Sterling Citynear Carlsbad	105
International Falcon Reservoir near Falcon Heights	549-562	North Floodway near Sebastian	568
Introduction	1	North Fork Guadalupe River near Hunt	294
lim Ned Cyrok pean Coleman	120	Noyes Canal at Menard	140 432
Jim Ned Creek near Coleman	128 296	at Laguna	
		below Uvalde	430
Lagarto Creek near George West	474	near Asherton	431
Lake Alice at Alice	483 172-173	near Mathisnear Three Rivers	466-473
Lake Brownwood near Brownwood		near Tilden	434
Lake Buchanan near Burnet	156	Nueces River basin, crest-stage partial-record	
Lake Clyde near Clyde		station in	590 426-478
Lake Colorado City near Colorado City Lake Corpus Christi near Mathis	49-50 475	gaging-station records inlow-flow partial-record station in	587
Lake J. B. Thomas near Vincent	29-30	Ton Tron par oral record season interest in the season in	
Lake Nasworthy near San Angelo		Oak Creek Reservoir near Blackwell	80-81
Lake Travis near Austin	164	O. C. Fisher Lake at San Angelo	106-107
Lake Surveys (Water Quality): E. V. Spence Reservoir near Robert Lee	69-78	Olmos Creek tributary at Farm Road 1535,	337-333
International Falcon Reservoir near Falcon Heights		Shavano Park	335-336
Town Lake at Austin	187-201	Olmos Reservoir at San Antonio	340
Lakes and reservoirs: Alice, Lake, at Alice	483	Onion Creek, at Budaat U.S. Highway 183 near Austin	237-240
Austin, Lake, at Austin		near Driftwood	221-223
Brady Creek Reservoir near Brady		Organic mass, definition of	8
Brownwood, Lake, near Brownwood		Organism, definition of	10
Buchanan, Lake, near Burnet	300-301	Organism count/area, definition of	10 10
Champion Creek Reservoir near Colorado City	51-52	Oso Creek at Corpus Christi	479-481
Clyde, Lake, near Clyde		Other data available	23
Colorado City, Lake, near Colorado City	49-50		507
Corpus Christi, Lake, near Mathis E. V. Spence Reservoir near Robert Lee	475 68-78	Panther Canyon at New Braunfels Partial-record station, definition of	587 10
Hords Creek Lake near Valera		Particle size, definition of	10
J. B. Thomas, Lake, near Vincent	29-30	Particle-size classification, definition of	11
Medina Lake near San Antonio	364-366	Peach Creek below Dilworth	320-321
Nasworthy, Lake, near San AngeloOak Creek Reservoir near Blackwell		Pecan Bayou, at Brownwoodnear Crosscut	135 127
O. C. Fisher Lake at San Angelo		near Mullin	
Red Bluff Reservoir near Orla	512	Pecan Creek near San Angelo	100
Town Lake at Austin		Pecos County Water Improvement District No. 2	524
Travis, Lake, near Austin Twin Buttes Reservoir near San Angelo		canal near Imperial Pecos County Water Improvement District No. 2 (upper	324
Las Moras Springs at Brackettville		diversion) canal near Grandfalls	523
Lavaca River, at Hallettsville	261	Pecos County Water Improvement District No. 3	
near Edna		canal near Imperial	525
Lavaca River basin, gaging-station records in Leona River spring flow near Uvalde		near Girvin	527-530
Leon Creek tributary, at Farm Road 1604		near Langtry	532-536
at San Antonio		near Orla	513-516
at Kelly Air Force Base		Pedernales River near Johnson City Percent composition, definition of	102-103
Little Walnut Creek, at Interstate Highway 35,	320-321	Periphyton, definition of	11
Austin		Pesticide program	18
at Manor Road, Austin		Pesticides, definition of	11
Llano River, at Llanonear Junction		Phantom Lake Spring near Toyahvale Phytoplankton, definition of	588 11
near Mason		Picocurie, definition of	ii
Los Olmos Creek near Falfurrias	485-487	Placedo Creek near Placedo	
Low-flow investigations		Plankton, definition of	11
Low-flow partial-record measurements Low-flow partial-record station, definition of		Plum Creek, at Lockhartnear Luling	315-319
The second secon		Polychlorinated biphenyls, definition of	12
Martinez Creek at Fredericksburg Road, San Antonio	589	Publications of techniques of water-resources	
Mean concentration, definition of		investigations	26
Medina Canal near Riomedina	367	Radiochemical program	18
Medina Canal near Riomedina	364-366	Ranch Creek near Helotes	374-375
Medina River, at San Antonio	379-382	Rebecca Creek near Spring Branch	299
near Pipe Creeknear Somerset		Records of discharge collected by agencies other	23
Methylene blue active substance, definition of	10	than the Geological Survey	363
Micrograms per gram, definition of	10	Red Bluff Reservoir near Orla	512
Micrograms per liter, definition of	10	Redgate Creek near Columbus	244
Middle Concho River above Tankersley	95 10	Reeves County Water Improvement District No. 2	517
Miscellaneous measurements	591	canal near Mentone	317
Mission River at Refugio	415-421	Rio Grande, above Rio Conchos near Presidio	495
Mission River basin, gaging-station records in	415-421	at Anzalduas Dam	
Mustang Creek below Ganado	201-284	at Brownsvilleat El Paso	
National stream-quality accounting network (NASQAN),		at Fort Ringgold, Rio Grande City	564
definition of	17	at Foster Ranch near Langtry	497-504
Navidad River, near Ganadonear Hallettsville	274-280 269	at International Falcon Reservoir near Falcon Heights at Laredo	
	203	WV LUI GUU	340-34/

INDEX 595

	Page		Page
Rio Grande, at pipeline crossing below Laredo	548	Special conductance, definition of	13
at U.S. Highway 77 at Brownsville		Spring Creek above Tankersley	96
below Amistad Dam near Del Rio		Springs at Fort McKavett	586
below Falcon Dam	563	Stage, definition of	18
below Old Fort Quitman		Stage-discharge relation, definition of	13
near Los Ebanos		Station number and downstream order	16
Rio Grande basin, discharge measurements	303	Streamflow, definition of	14
at miscellaneous sites in	591	Substrate, definition of	14
gaging-station records in		Suspended, recoverable, definition of	14
gaging-station records published by International	400-301		13
	22	Suspended sediment, definition of	
Boundary and Water Commission	23	Suspended-sediment concentration, definition of	13
low-flow partial-record stations in		Suspended-sediment discharge, definition of	13
Runoff in inches, definition of	12	Suspended-sediment load, definition of	13
	100	Suspended, total, definition of	14
Sabinal River, at Sabinal			
near Sabinal		Taxonomy, definition of	16
Salado Creek, at East Houston Street, San Antonio	590	Temperature, collection and examination	24
at lower station at San Antonio		Terms, definition of	6
at Rittiman Road, San Antonio	590	Time-weighted average, definition of	15
at Southcross Boulevard, San Antonio	590	Tom Green County Water Control and Improvement	
at upper station at San Antonio		District No. 1 canal near San Angelo	101
at U.S. Highway 87, San Antonio		Tons per acre-foot, definition of	15
Salado Creek tributary at Bitters Road, San Antonio	352-353	Tons per day, definition of	15
San Antonio River, at Ashley Street (Berg's Mill),	002 000	Total coliform bacteria, definition of	6
San Antonio	590		•
		Total (in tables of chemical analyses),	15
at Goliad		definition of	
at Navarro Street, San Antonio		Total load (tons), definition of	15
at San Antonio		Total organism count, definition of	10
near Elmendorf		Total, recoverable, definition of	15
near Falls City		Total sediment discharge, definition of	13
San Casimiro Creek near Freer	433	Town Lake at Austin	187-201
Sanderson Canyon at Sanderson	496	Tranquitas Creek at Kingsville	590
San Diego Creek at Alice	482	Tres Palacios River near Midfield	256-258
Sandies Creek near Westhoff	322-323	Turkey Creek near Schroeder	587
Sandy Creek, near Kingsland	161	Twin Buttes Reservoir near San Angelo	98-99
near Louise			
San Fernando Creek at Alice	484	Waller Creek, at 23d Street, Austin	186
San Fernando Creek basin, crest-stage		at 38th Street, Austin	185
partial-record station in	590	Walnut Creek, at Dessau Road, Austin	589
gaging-station records in		at Farm Road 1325 near Austin	589
San Marcos River at Luling	212 214		
		at Southern Pacific Railroad bridge, Austin	210-217
San Marcos River spring flow at San Marcos		at Webberville Road, Austin	212-213
San Miguel Creek near Tilden		Ward County Irrigation District No. 1 canal	519
San Pedro Creek, at Furnish Street, San Antonio	590	near Barstow	319
at Santa Rosa Street, San Antonio	589	Ward County Water Improvement District No. 2 canal	rac
San Saba River, at Menard	141	near Grandfalls	526
at San Saba	146	Ward County Water Improvement District No. 3 canal	
San Saba Springs at San Saba	586	near Barstow	518
San Solomon Springs at Toyahvale	588	Water analysis, explanation of	23
Seco Creek, at Rowe Ranch near D'Hanis		Water discharge records, explanation of	18
at Miller Ranch near Utopia		Water temperature, explanation of	24
Sediment, collection and examination	25	WDR, definition of	16
definition of	12	Weighted average, definition of	16
Seven Hundred Springs near Telegraph	586	West Bouldin Creek at Riverside Drive, Austin	589
Shoal Creek, at 12th Street, Austin	183-184.	West Bull Creek at Loop 360 near Austin	168-169
	589	West Elm Creek at San Antonio	348-349
at Northwest Park, Austin	182	West Nueces River near Brackettville	429
at Steck Avenue, Austin	589	Wet mass, definition of	8
at White Rock Drive, Austin	589	Wilbarger Creek near Pflugerville	241
Slaughter Creek at Farm Road 1826 near Austin	229	Williamson Creek, at Jimmy Clay Road, Austin	
		WITH HER Dead Austin	589
Sodium adsorption ratio, definition of	13	at Manchaca Road, Austinat Oak Hill	
Solute, definition of	13	dt Udk mill	
South Concho Irrigation Co.'s canal at Christoval	93	WRD, definition of	16
South Concho River, above Pecan Creek near San Angelo	586	WSP, definition of	16
at Christoval	94		
South Llano River near Telegraph	586		12
Special networks and programs	17	Zooplankton, definition of	12

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI). This report contains both the inch-pound and SI unit equivalents in the station manuscript descriptions.

Multiply inch-pound units	Ву	To obtain SI units
	Length	
inches (in)	2.54x10¹	millimeters (mm)
feet (ft)	2.54x10 ⁻² 3.048x10 ⁻¹	meters (m) meters (m)
miles (mi)	1.609x10°	kilometers (km)
	Area	
acres	4.047x10 ³	square meters (m ²)
	4.047x10 ⁻¹ 4.047x10 ⁻³	square hectometers (hm²) square kilometers (km²)
square miles (mi ²)	2.590x10°	square kilometers (km²)
	Volume	
gallons (gal)	3.785x10°	liters (L)
	3.785x10° 3.785x10° ³	cubic decimeters (dm³) cubic meters (m³)
million gallons	3.785x10 ³ 3.785x10 ⁻³	cubic meters (m ³) cubic hectometers (hm ³ -)
cubic feet (ft³)	2.832x10 ¹ 2.832x10 ⁻²	cubic decimeters (dm ³) cubic meters (m ³)
cfs-days	2.447x10 ³	cubic meters (m³)
acre-feet (acre-ft)	2.447x10 ⁻³ 1.233x10 ³	cubic hectometers (hm³) cubic meters (m³)
	1.233x10 ⁻³ 1.233x10 ⁻⁶	cubic hectometers (hm³) cubic kilometers (km³)
	Flow	
cubic feet per second (ft ³ /s)	2.832x10 ¹	liters per second (L/s)
cubic feet per second (ft 7s)	2.832x10 ¹	cubic decimeters per second (dm ³ /s)
gallons per minute (gal/min)	2.832x10 ⁻² 6.309x10 ⁻²	cubic meters per second (m ³ /s) liters per second (L/s)
	6.309x10 ⁻² 6.309x10 ⁻⁵	cubic decimeters per second (dm³/s) cubic meters per second (m³/s)
million gallons per day	4.381x10 ¹	cubic decimeters per second (dm ³ /s)
	4.381x10 ⁻²	cubic meters per second (m³/s)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

POSTAGE AND FEES PAID U.S. DEPARTMENT OF THE INTERIOR INT 413

U.S. DEPARTMENT OF THE INTERIOR Geological Survey 630 Federal Building, 300 East 8th Avenue Austin, TX 78701

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300
SPECIAL 4TH CLASS BOOK RATE