
.00) a3 ew Jersey 179

Water Resources Data for New Jersey

Volume 2. Delaware River Basin and Tributaries to Delaware Bay

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NJ-79-2
WATER YEAR 1979

Prepared in cooperation with the New Jersey Department of Environmental Protection and with other agencies

CALENDAR FOR WATER YEAR 1979

1 9 7 8

OCTOBER NOVEMBER DECEMBER

S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	3 4 5 6 7 8 9
	1 9 7 9	
JANUARY	FEBRUARY	MARCH
S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
APRIL	MAY	JUNE
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
JULY	AUGUST	SEPTEMBER
S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Water Resources Data for New Jersey

Volume 2. Delaware River Basin and Tributaries to Delaware Bay

U.S GEOLOGICAL SURVEY WATER-DATA REPORT NJ-79-2
WATER YEAR 1979

Prepared in cooperation with the New Jersey Department of Environmental Protection and with other agencies

UNITED STATES DEPARTMENT OF THE INTERIOR

CECIL D. ANDRUS, Secretary

GEOLOGICAL SURVEY

H. William Menard, Director

Prepared in cooperation with

New Jersey Department of Environmental Protection
Division of Water Resources
Division of Fish, Game and Wildlife
New Jersey Department of Agriculture
Delaware River Basin Commission
Corps of Engineers, U.S. Army
U.S. Environmental Protection Agency
North Jersey District Water Supply Commission
Passaic Valley Water Commission
County of Bergen
County of Camden
County of Morris
County of Somerset
Township of West Windsor

For additional information write to
District Chief, Water Resources Division
U.S. Geological Survey
P. O. Box 1238
Room 430, Federal Building
Trenton, New Jersey 08607

PREFACE

This report was prepared by the U.S. Geological Survey in cooperation with the State of New Jersey and with other agencies by personnel of the New Jersey district of the Water Resources Division under the supervision of D. E. Vaupel, District Chief, and J. E. Biesecker, Regional Hydrologist, Northeastern Region.

This report is one of a series issued State by State under the general direction of Philip Cohen, Chief Hydrologist, U.S. Geological Survey and R. J. Dingman, Assistant Chief Hydrologist for Scientific Publications and Data Management.

Data for New Jersey are in two volumes as follows:

Volume 1. Atlantic Slope Basins, Hudson River to Cape May Volume 2. Delaware River Basin and Tributaries to Delaware Bay

0272-101 REPORT DOCUMENTATION PAGE	1. REPORT NO. USGS/WRD/HD-80-056	2.	3. Recipient's Accession No.
Water Resources Data	a for New Jersey, Water Y	ear 1979	5. Report Date July 1980
Volume 2. Delaware	River Basin and Tributar	ies to Delaware Bay	6.
. Author(s)			8. Performing Organization Rept. No. USGS-WRD-NJ-79-2
Performing Organization Name U.S. Geological Surv	and Address Vey, Water Resources Divi	sion	10. Project/Task/Work Unit No.
P.O. Box 1238, Room	430 Federal Building	31011	11. Contract(C) or Grant(G) No.
Trenton, New Jersey			(c)
			(G)
12. Sponsoring Organization Name	and Address vey, Water Resources Divi	nion	Annual - Oct. 1, 1978
	430 Federal Building	51011	to Sept. 30, 1979
Trenton, New Jersey			14.
Prepared in cooperate with other agencies.	tion with the New Jersey	Department of Envir	onmental Protection and
with other agencies. 15. Abstract (Limit: 200 words)			
Prepared in cooperate with other agencies. 13. Abstract (Limit: 200 words) Water resources data discharge, and water reservoirs; and water contains discharge and contents for 16 wells; and water lespartial-record static collected at various published as miscell	a for the 1979 water year quality of streams; stated and water qualification for 27 gaging states and reservoirs; water 16 observation water and 25 low-flow part is sites, not part of the laneous measurements. The perated by U.S. Geologica	for New Jersey con ge, contents, and w ty of ground water. tions; tide summari ter quality for 86 ells. Also include ial-record stations systematic data col ese data represent	sist of necords of stage, ater quality of lakes and This volume of the repores for 3 stations; stage surface water sites and 65 d are data for 27 crest-st. Additional water data w lection program, and are that part of the national
Prepared in cooperate with other agencies. 3. Abstract (Limit: 200 words) Water resources data discharge, and water reservoirs; and water contains discharge and contents for 16 wells; and water lespartial-record static collected at various published as miscell water data system of	a for the 1979 water year quality of streams; stated and water qualification for 27 gaging states and reservoirs; water 16 observation water and 25 low-flow part is sites, not part of the laneous measurements. The perated by U.S. Geologica	for New Jersey con ge, contents, and w ty of ground water. tions; tide summari ter quality for 86 ells. Also include ial-record stations systematic data col ese data represent	sist of necords of stage, ater quality of lakes and This volume of the repor es for 3 stations; stage surface water sites and 65 d are data for 27 crest-st Additional water data w lection program, and are that part of the national

Sampling sites, Water levels, Water analyses.

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Availability Statement No restriction on distribution. This report may be purchased from:	19. Security Class (This Report) Unclassified	21. No. of Pages 239
National Technical Information Service	20. Security Class (This Page) Unclassified	22. Price

CONTENTS

		Page
List of Lover List of List of Lover Recor Explana Colle Water Redor Explana Colle Water Sedim Water Explana Colle Publica Solle Publica Surface Dischar Low-f Crest Misce Tidal c Analyse Ground Groun Quali	surface-water stations, in downstream order, for which records are published. ground-water stations, by county, for which records are published. iction. tion. edgments. gic conditions. ion of terms. eam order and station number. ng system for wells and miscellaneous sites. networks and programs. tion of stage and water-discharge records. ection and computation of data. acy of field data and computed results. cations. data available. ds of stage or discharge collected by agencies other than the Geological Survey. tion of water-quality records. temperatures. tent. ke codes for water-quality data. cations. -quality criteria. tion of ground-water level records. cition of the data. cations. dreferences. tions on techniques of water-resources investigations. -water records. ge at partial-record stations and miscellaneous sites. low partial-record stations. -stage partial-record stations. -stage partial-record stations. laneous sites. rest-stage stations. sof samples collected at sediment partial-record stations. water records. de-water level records. de-water level records. ty of ground-water records.	VIII VVIII 11 22 29 99 100 101 112 122 123 134 144 144 177 177 177 177 177 177 177 17
	ILLUSTRATIONS	
Figure	 Well locations system	9 19 20 22 24 26
	TABLES	
Table	 Degrees Celsius (°C) to degrees Fahrenheit (°F)	13 14 17

[Letter after station name designates type of data: (d) discharge, (c) chemical, (b) biological, (m) microbiological (e) elevation, gage height or contents, (t) water temperature, (s) sediment]

	Page
MAURICE RIVER BASIN Maurice River at Norma (dcm)	28
Maurice River at Sharp Street, at Millville (cm)	33
Menantico Creek near Millville (d)COHANSEY RIVER BASIN	34
Conansey River at Seeley (dcms)	35
Cohansey River at Bridgeton (cm)	37
Delaware River at Port Jervis, NY (dt)	38
Neversink River at Godeffroy, NY (d)	41
Delaware River at Montague (dcm)	43
Flat Brook at Flatbrookville (dcm),,	44
Delaware River near Delaware Water Gap, PA (d)	
Paulins Kill at Balesville (cm)	49
Paulins Kill at Blairstown (dcm)Yards Creek near Blairstown (d)	
Paulins Kill at mouth, at Columbia (cm)	53
Delaware River near Richmond, PA (cm)	55
Pequest River at Townsbury (d)Pequest River at Pequest (ds)	57 58
Beaver Brook near Belvidere (cms)	59
Pequest River at Belvidere (cm) Delaware River at Belvidere (d)	
Delaware River at Northampton Street, at Easton, PA (cm)	63
Lehigh River at Bethlehem, PA (d)	
Lopatcong Creek at Phillipsburg (cms)Pohatcong Creek at New Village (cms)	
Pohatcong Creek at Carpentersville (cm)	70
Musconetcong River at outlet of Lake Hopatcong (cm)	
Musconetcong River at Beatyestown (cm).	74
Musconetcong River near Bloomsbury (dcms)	
Musconetcong River at Riegelsville (cms)	
Hakihokake Creek at Milford (cms)	. 80
Harihokake Creek near Frenchtown (cms)	
Delaware and Raritan Canal at Kingston (d)	84
Lockstong Creek at Raven Rock (cms).	
Delaware River at Lumberville (cm)	
Alexauken Creek near Lambertville (cm)	91
Delaware River at Lambertville (cm)	
Delaware River at Washington Crossing (cm)	
Delaware River at Trenton (dtcsbm)	
Assumptink Greek near Clarksville (dom).	
Assunpink Creek at Trenton (dcm)	113
Crosswicks Creek at Extonville (dcms)	
Doctors Creek at Allentown (cm)	120
Doctors Creek at Rt. 130, at Yardville (cms) Blacks Creek at Bordentown (cm)	
Crafts Creek at Hedding (cm)	
Assiscunk Creek at Columbus (cm)	
Assiscunk Creek near Burlington (cm)	
South Branch Rancocas Creek at Retreat (cm)	
South Branch Rancocas Creek at Vincentown (cm)	
North Branch Rancocas Creek at Browns Mills (cm)	
Greenwood Branch: McDonalds Branch in Lebanon State Forest (dtcsm)	137
North Branch Rancocas Creek at Pemberton (dcms)	144
North Branch Rancocas Creek at Pine Street, at Mount Holly (cms)	147
Pennsauken Creek:	
North Branch Pennsauken Creek near Moorestown (cms)South Branch Pennsauken Creek at Cherry Hill (dcms)	
Cooper River at Norcross Road, at Lindenwold (cm)	
Cooper River at Kirkwood (cms)	155
Cooper River at Lawnside (cms)	
North Branch Cooper River at Erlton (cms)	161
Cooper River at Camden (cms)Big Timber Creek:	162
South Branch Big Timber Creek at Blackwood Terrace (cm)	
North Branch Big Timber Creek at Glendora (cms).	
Almonesson Creek at Runnemede (cms)	
Mantua Creek at Pitman (cm)	169
Mantua Creek at Mantua (cms)	
Raccoon Creek near Swedesboro (dcms)	174
Oldmans Greek at Porches Mill (cms).	176

SURFACE WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED	VII
DELAWARE RIVER BASINContinued Salem River at Woodstown (dcms). Salem River at Courses Landing (cms). Reservoirs in Delaware River basin (e). Diversions and withdrawals in Delaware River basin.	178 181 182 187
GROUND-WATER LEVEL RECORDS	
Burlington County Camden County Cumberland County Gloucester County Hunterdon County Salem County Warren County	215 220 221 222 222 223 223
QUALITY OF GROUND WATER RECORDS Cape May County. Cumberland County. Gloucester County. Salem County.	224 225 226 227

INTRODUCTION

Water resources data for the 1979 water year for New Jersey consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This volume of the report contains discharge records for 27 gaging stations; tide summaries for 3 stations; stage and contents for 16 lakes and reservoirs; water quality for 86 surface water sites, and 65 wells; and water levels for 16 observation wells. Also included are data for 27 crest-stage partial-record stations and 25 low-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in New Jersey.

Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled, "Surface Water Supply of the United States." Through water year 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled, "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled "Ground-Water Levels in the United States." Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from Branch of Distribution, U.S. Geological Survey, 1200 South Eads Street, Arlington, VA 22202.

For water years 1961 through 1974, streamflow data were released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1974 were similarly released either in separate reports or in conjunction with streamflow records.

Beginning with the 1975 water year, water data for streamflow, water quality, and ground water are published as an offical Survey report on a State-boundary basis. These offical Survey reports carry an identification number consisting of the two letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume of the report is identified as "U.S. Geological Survey Water-Data Report NJ-79-2."

For archiving and general distribution, the reports for water years 1971-74 are also identified as water-data reports. These water-data reports are for sale, in paper copy or in microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the district chief at the address given on the back of the title page or by telephone (609) 989-2162.

COOPERATION

This report was prepared by the U.S. Geological Survey under cooperative agreement with the following organizations:

New Jersey Department of Environmental Protection, Jerry F. English, commissioner.
Division of Water Resources, Arnold Schiffman, director.
Division of Fish, Game and Wildlife, Russell A. Cookingham, director.
New Jersey Department of Agriculture, Phillip Alampi, secretary.
Division of Rural Resources, Richard D. Chumney, director.
Delaware River Basin Commission, Gerald M. Hansler, executive director.
North Jersey District Water Supply Commission, Dean C. Noll, chief engineer.
Passaic Valley Water Commission, W.E. Inhoffer, general superintendent and chief engineer.
County of Bergen, V.J. Nunno, director of Public Works and E.R. Ranuska, county engineer.
County of Camden, Joseph T. Patermo, director of Camden County Planning Board.
County of Morris, James Plante, chairman of Morris County Municipal Utilities Authority.
County of Somerset, Thomas E. Decker, county engineer, and Thomas Harris, administrative engineer.
Township of West Windsor, Larry Ellery, chairman of Environmental Commission.

Assistance in the form of funds was given by the Corps of Engineers, U.S. Army, in collecting records for 50 surface water stations, and for the collection of sediment records at two stream-sampling station, and by the U.S. Environmental Protection Agency for the collection of chemical analyses at four stream-sampling stations. In addition, several stations were operated fully or partially from funds appropriated directly to the Geological Survey. Assistance was also furnished by the National Weather Service and the National Ocean Survey.

Basic water-quality data collected at many sampling stations on the main stem of the Delaware River and estuary--an interstate stream--included in this report were collected in cooperation with the following additional agencies:

City of Philadelphia Water Department, Carmen Guarino, commissioner. Pennsylvania Department of Environmental Resources, Maurice K. Goddard, secretary. Delaware Geological Survey, Robert R. Jordan, State geologist. Delaware River Master, Francis P. Schaefer.

The following organizations aided in collecting records:

Municipalities of Atlantic City, Jersey City, Newark and New Brunswick; American Cyanamid Co.; Elizabethtown Water Co.; Hackensack Water Co.; Johns-Manville Products Corp.; and Monmouth Consolidated Water Co.

Organizations that supplied data are acknowledged in station descriptions.

ACKNOWLEDGMENTS

The water resources data for New Jersey were processed and prepared for publication under the supervision of Robert D. Schopp, Acting Chief, Hydrologic Records Section, by G. R. Kish, E. W. Moshinsky, F. L. Schaefer, E. A. Pustay, S. J. Perry, C. L. Bellante, and I. C. Santana. The data were collected, computed, and processed by other personnel as follows:

J.	В.	Campbell	J.	F.	Dudek	D.	A.	Harriman	W.	J.	Pisch
G.	L.	Centinaro	D.	K.	Fishel	J.	J.	Hochreiter	C.	L.	Qualls
T.	A.	Chepiga	J.	T.	Fisher	W.	D.	Jones III	N.	Ri	vera
R.	S.	Cole	Τ.	٧.	Fusillo	D.	W.	Jungblut	R.	L.	Ulery
Μ.	J.	DeLuca	В.	D.	Gillespie	P.	D.	Kammler	Α.	J.	Velnich
E.	Do	rr	J.	W.	Green	Α.	Α.	Meng	R.	L.	Walker

HYDROLOGIC CONDITIONS

In the beginning of 1979 water year, streamflow was within the normal range throughout New Jersey. But in January precipitation being as much as 300 percent of normal caused streams to rise unusually high. On January 21 and 25 mild temperatures and heavy rains in northern New Jersey (Morris Plains recorded about 4 inches of precipitation on January 25) caused heavy flooding in the Raritan and Delaware River basin, recording new peak stages or discharges at some sites. A cold spell in early February caused freezing but on February 24 heavy rains and ice jams again resulted in overbank flooding in northern New Jersey. Recurrence intervals exceeded 100 years at some sites. These floods and high runoff from storms in May and September resulted in above normal streamflow for the water year.

Monthly and annual discharge is compared with medians at three representative gaging stations in figures 2 and 3. The streamflow stations chosen for illustration were South Branch Raritan River near High Bridge and Great Egg Harbor River at Folsom, which reflect runoff conditions in the northern and southern parts of the State, respectively, and Delaware River at Trenton in which there is widespread interest.

Streamflow at South Branch Raritan River near High Bridge for the year averaged 167 ft 3 /s (4.73 m 3 /s), 138 percent of normal. The average flow for Great Egg Harbor River at Folsom was 113 ft 3 /s (3.20 m 3 /s), 130 percent of normal. The observed annual mean discharge on the Delaware River at Trenton was 13,770 ft 3 /s (390.0 m 3 /s), 117 percent of normal. The natural flow at Trenton (adjusted for diversion and storage upstream) was 128 percent of normal for the year.

Storage in the 13 major water-supply reservoirs in New Jersey increased from 56.5 billion gallons (75 percent of capacity) on October 1 to 67.9 billion gallons (90 percent of capacity) on September 30. Storage in Wanaque Reservoir increased from 17.5 billion gallons (63 percent of capacity) on October 1 to 24.2 billion gallons (87 percent of capacity) on September 30. Pumped storage in Round Valley Reservoir on September 30 was 54.5 billion gallons (99 percent of capacity), an increase of 2.1 billion gallons during the year.

Water levels in aquifers under water table conditions generally were above normal in the Coastal Plain portion of the State. Water levels in the heavily stressed artesian aquifers, however, continued to be lower than normal in the Coastal Plain. Continuing declines in water levels were most notable in the Englishtown aquifer and aquifers in the Potomac-Raritan-Magothy aquifer system down dip in the eastern areas. To the west water levels in most artesian aquifers have risen slightly since record lows were established near the end of the 1977 water year. North of the Fall Line water levels in water-table and semi-artesian aquifers varied from near normal to moderately below normal.

DEFINITION OF TERMS

Terms related to streamflow, water-quality and other hydrologic data, as used in this report, are defined below. See also the table for converting Inch-pound Units to Metric Units on the inside of the back cover.

 $\frac{\text{Acre-foot}}{\text{and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.}$

Adenosine triphosphate (ATP) is the primary energy donor in cellular life processes. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measure of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample.

 $\underline{\text{Algae}}$ are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Aquifer codes and geologic names:

The following list shows the aquifer codes and geologic names of the formations in which the sampled wells are finished. The aquifer codes also appear in the column "Geologic Unit" in the ground-water quality tables:

112CPMY , CAPE MAY FORMATION, UNDIFFERENTIATED 112ERNS , CAPE MAY FORMATION, ESTURINE SAND FACIES

112PLCC , PLEISTOCENE-COHANSEY SAND, UNDIFFERENTIATED 121CNSY , COHANSEY SAND

121CKKD , COHANSEY SAND-KIRKWOOD FORMATION, UNDIFFERENTIATED 122KRKDU, KIRKWOOD FORMATION, UPPER SAND

122KRKDL, KIRKWOOD FORMATION, LOWER SAND 122KRKDL, KIRKWOOD FORMATION, LOWER SAND 124MQVC, MANASQUAN-VINCENTOWN FORMATION, UNDIFFERENTIATED

124PNPN ,

PINEY POINT FORMATION
MOUNT LAUREL SAND-WENONAH FORMATION 211MLRW ,

211EGLS , ENGLISHTOWN FORMATION

211MGRR , POTOMAC-RARITAN-MAGOTHY AQUIFER SYSTEM

2110DBG , MAGOTHY FORMATION, OLD BRIDGE SAND MEMBER 211FRNG , RARITAN FORMATION, FARRINGTON SAND MEMBER

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer, tapped by the well. A flowing artesian well is one in which the water level is above land surface.

Bacteria are microscopic unicellular organisms, typically spherical, rod-like, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, other perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative Indicators of possible sewage pollution. Iney are characterized as aerobic of lacticative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as all the organisms which produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35°C \pm 0.5°C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 ml of sample.

Fecal coliform bacteria are bacteria that are present in the intestines or feces of warmblooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours when incubated at $44.5^{\circ}\text{C} \pm 0.2^{\circ}\text{C}$ on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 ml of sample.

Fecal streptococcal bacteria are bacteria found also in the intestine of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at 35°C ± 0.5°C on KF streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 ml of sample.

 $\frac{\text{Bedload}}{\text{by rolling, sliding, and making brief excursions into the flow a few diameters above}$ the hed.

Bed material is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, used for the decomposition of organic matter by microorganisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as the weight per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500°C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m^3) and periphyton and benthic organisms in grams per square meter (g/m^2) .

 $\frac{\text{Dry mass}}{\text{refers}}$ refers to the mass of residue present after drying in an oven at 60°C for zooplankton and 105°C for periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and the ash mass, and represents the actual mass of the living matter. organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

Bottom material: See Bed material.

 $\frac{\text{Cells/volume}}{\text{conscipe}} \text{ and grId or counting cell.} \text{ Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).}$

 $\frac{\texttt{Cfs-day}}{\texttt{equivalent}} \text{ is the volume of water represented by flow of 1 cubic foot per second for 24 hours.} \\ \text{It is } \frac{\texttt{equivalent}}{\texttt{equivalent}} \text{ to } 86,400 \text{ cubic feet, approximately } 1.9835 \text{ acre-feet, about } 646,000 \text{ gallons or } 1.9835 \text{ acre-feet, about } 1.9835 \text{ acre-$ 2,447 cubic meters.

Chemical oxygen demand (COD) is a measure of the quantity of organic matter which can be chemically oxidized in the presence of a strong oxidant.

 $\frac{\texttt{Chlorophyll}}{\texttt{pigments}} \ \text{refers to the green pigments of plants.} \ \ \texttt{Chlorophyll} \ \underline{a} \ \text{and} \ \underline{b} \ \text{are the two most common pigments in plants.}$

Color unit is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Continuing record station is a specified site which meets one or all conditions listed:

- When chemical samples are collected daily or monthly for 10 or more months during the water year.
- 2. When water temperature records include observations taken one or more times daily.
- When sediment discharge records include periods for which sediment loads are computed and are considered to be representative of the runoff for the water year.

Control designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, and artificial structure, or a uniform cross section over a long reach of the channel.

Control structure as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

Cubic feet per second per square mile (ft 3 /s/mi 2 , CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

Cubic foot per second (ft 3 /s, cfs) is the rate of discharge representing a volume 1 cubic foot passing a given point during 1 second, and is equivalent to 7.48 gallons per second or 448.8 gallons per minute.

Depth of well:

 ${
m Total\ depth\ of\ well}$ is the maximum depth in feet below land surface datum (1sd) at which the well was originally finished. This depth may be slightly deeper than "depth to the bottom of sample interval" because many wells have a "tailpiece" or short length of casing installed below the well screen.

Total depth of hole is the total depth in feet below land surface datum to which the hole was drilled, regardless of the finished depth of the well.

Depth to the top of water-bearing zone is the depth in feet, based on the best available information which indicates the top of the water-bearing zone that is furnishing water to the well.

Depth to bottom of water-bearing zone is the depth in feet, based on the best available information which indicates the bottom of the water-bearing zone that is furnishing water to the well.

Depth to the top of sample interval is the uppermost point in a fully cased well at which water can enter the well. In bedded sediments this is usually the uppermost part of the screened interval. In some wells the top of the well screen is installed inside and a few feet above the bottom of the casing. Under these conditions the bottom of the casing is considered to be the top of the sample interval.

 $\underline{\text{Mean discharge}}$ (Mean) is the arithmetic mean of individual daily mean discharge during a specific period.

Instantaneous discharge is the discharge at a particular instant of time.

 $\frac{Dissolved}{Dissolved}$ refers to that material in a representative water sample which passes through a 0.45 μm membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

 $\frac{\text{Diversity index}}{\text{Improved}}$ is a numerical expression of the evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\overline{d} = -\sum_{i=1}^{8} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

Where n_s is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Diversity index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

Drainage area of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

 $\frac{\text{Drainage basin}}{\text{consists of a surface stream or body of impounded surface water together with all tributary surface stream and bodies of impounded surface water.}$

 $\frac{\text{Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum.}}{\text{Height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.}$

 $\frac{\text{Gaging station}}{\text{conservations of gage}} \text{ is a particular site on a stream, canal, lake, or reservoir where systematic observations of gage} \text{ height or discharge are obtained.} \text{ When used in connection with a discharge record, the term is applied only to those gaging stations where a continuous record of discharge is obtained.}$

 $\underline{\text{Hardness}}$ of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate (CaCO $_3$).

High tide is the maximum height reached by each rising tide.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

Instantaneous flow rate is the flow rate at which water is removed from the well. Used with pump or flow period prior to sampling (see below) so that the exact volume of water pumped prior to sampling can be determined.

Land-surface datum is a datum plane that is approximately at the land surface at the well.

Low tide is the minimum height reached by each falling tide.

 $\underline{\text{Mean high or low tide}}$ is the average of all high or low tides, respectively, over a specified period.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Methylene blue active substance (MBAS) is a measure of apparent detergents. This determination depends on the formation of a blue color when methylene blue dye reacts with synethetic detergent compounds.

Micrograms per gram (UG/G) is a unit expressing the concentration of a chemical element as the weight (micrograms) of the element sorbed per unit weight (gram) of sediment.

Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in solution as weight (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

 $\frac{\text{Milligrams per liter}}{\text{constituents in solution.}} \frac{\text{(MG/L, mg/L)}}{\text{Milligrams per liter represents the weight of solute per unit volume}}{\text{Milligrams or micrograms per liter may be converted to milliequivalents}} \\ \text{(one thousandth of a gram-equivalent weight of a constituent)} \\ \text{per liter by multiplying by the factors in Hem(1970).} \\$

National Geodetic Vertical Datum of 1929 (NGVD), is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

Organism is any living entity, such as an insect, phytoplankter, or zooplankter.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meters (m^2) , acres, or hectares. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

 $\frac{\text{Organism count/volume}}{\text{and adjusted to the number per sample volume, usually milliliters (mL) or liters (L).}}$ Numbers of planktonic organisms can be expressed in these terms.

Total organism count is the total number of organisms collected and enumerated in any particular sample.

Partial-record station is a particular site where limited streamflow data are collected systematially over a period of years for use in hydrologic analyses.

Particle size is the diameter, in millimeters (mm), of suspended sediment or bed material determined either by sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in active water (the river water at the time and point of sampling).

Particle-size classification used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Si ze	(mm)	Method of analysis
Clay Silt		- 0.004 062	Sedimentation. Sedimentation.
Sand Gravel	2.0	- 2.0 - 64.0	Sedimentation or sieve. Sieve.

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

Percent composition is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass or volume.

 $\frac{\text{Periphyton}}{\text{primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton is a useful indicator of water quality.}$

Pesticides are chemical compounds used to control the growth of undesirable plants and animals. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. Since the first application of DDT as an insecticide in the early 1930's there have been almost 60,000 pesticide formulations registered, each containing at least one of the approximately 800 different basic pesticide compounds. The United States annually produces about billion pounds of these compounds. Although efforts are being made to substitute many of the chlorinated hydrocarbon pesticides with more specific, fast-acting, and easily degradable compounds, chlorinated hydrocarbon pesticides are still commonly used in many areas of the country.

Picocurie (PCI, pCi) is one trillionth (1×10^{-12}) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 10^{10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

Plankton is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

Phytoplankton is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae.

 $\frac{\text{Blue-green algae}}{\text{dotation to the green pigment called chlorophyll.}} \text{ and a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll.} \text{ Blue-green algae often cause nuisance conditions in water.}$

Diatoms are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter of sample.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algal mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column, and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

<u>Primary productivity</u> is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time [mg $C/m^2/time$ for periphyton and macrophytes and mg $C/m^3/time$ for phytoplankton] are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity that the oxygen light and dark bottle method, and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time [mg $0_2/\text{m}^2/\text{time}$ for periphyton and macrophytes and mg $0_2/\text{m}^3/\text{time}$ for phytoplankton] are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Pump or flow rate prior to sampling is used in conjunction with the instantaneous flow rate so that the exact volume of water pumped prior to sampling can be determined.

Radioisotopes are isotope forms of an element that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight, but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus. For example: ordinary chlorine is a mixture of isotopes having atomic weights 35 and 37, with the natural mixture having an atomic weight of 35.453.

Radioisotopes that are determined in this report are natural uranium in $\mu g/L$ (micrograms per liter), radium as radium-226 in PCI/L, (pCi/L, picocuries per liter), gross beta in PCI/L, and

gross alpha radiation as micrograms of uranium equivalent per liter ($\mu g/L$). Gross alpha and beta radioactivity associated with the fine grained (silt and clay sized) sediments in the samples are also determined.

 $\underline{\text{River mile}}$ as used herein, is the distance above the mouth of Delaware Bay, measured along the center line of the navigation channel or the main stem of the Delaware River. River mile data were furnished by the Delaware River Basin Commission.

Runoff in inches (IN, in) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

 $\underline{\underline{\textbf{Supended sediment}}} \ \ \textbf{is the sediment that at any given time is maintained in suspension} \\ \ \ \textbf{by the upward components} \ \ \textbf{of turbulent currents or that exists in suspension as a colloid.} \\$

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

Suspended-sediment discharge (tons) is the rate at which dry weight of sediment passes a section of a stream or is the quantity of sediment, as measured by dry weight, or by volume, that is discharged in a given time. It is computed by multiplying discharge times mg/L times 0.0027.

 $\underline{\underline{Suspended}\text{-sediment load}} \ \ \text{is quantity of suspended sediment passing a section in a specified period.}$

 $\frac{\text{Total sediment discharge}}{\text{and the bed-load discharge.}} \text{ (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge.} \text{ It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time.}$

 $\underline{\text{Mean concentration}}$ is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

 $\underline{\text{Solute}}$ is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current and is expressed in micromhos per centimeter at $25\,^{\circ}\text{C}$. Because the specific conductance is related to the number and specific chemical types of ions in solution, it can be used for approximating the dissolved-solids content of the water. Commonly, the amount of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos per cm at $25\,^{\circ}\text{C}$). This relation is not constant from stream to stream or from well to well, and it may even vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height and the amount of water flowing in a channel, expressed as volume per unit of time.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff." Streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physcial surface upon which an organism lived.

 $\frac{\text{Natural substrate}}{\text{such as a rock}} \text{ refers to any naturally occurring emersed or submersed solid surface, such as a rock} \text{ or tree, upon which an organism lived.}$

Artificial substrate is a device which is purposely placed in a stream or lake for colonization by organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multi-plate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection.

Surface area of a lake is that area outlined on the latest U.S.G.S. topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made.

Surficial bed material is that part (0.1 to 0.2 ft) of the bed material that is sampled using $\overline{\text{U.S.}}$ Series Bed-Material Samplers.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 μm membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total recoverable</u> concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 µm membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, Hexagenia limbata is the following:

 Kingdom
 Animal

 Phylum
 Arthropoda

 Class
 Insecta

 Order
 Ephemeroptera

 Family
 Epnemeridae

 Genus
 Hexageria

 Species
 Hexageria

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Thermograph is a thermometer that continuously and automatically records, on a chart, the water temperatures of a stream. "Temperature recorder" is the term used to indicate the location of the thermograph or a digital mechanism that automatically records water temperature on paper tape.

 $\underline{\text{Tons per acre-foot}}$ indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136.

 $\underline{\text{Tons per day}} \text{ is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour day.}$

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total" (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample).

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

 $\frac{\text{Total in bottom material}}{\text{of bottom material}} \text{ is the total amount of a given constituent in a representative sample} \frac{\text{of bottom material.}}{\text{of bottom material.}} \text{ This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined.} A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."}$

 $\underline{\text{Total load}}$ (tons) is the total quantity of any individual constituent, as measured by dry mass or volume, that is being transported in a specific amount of water (discharge) during a given time. It is computed by multiplying the total discharge, times the mg/L of the constituent, times the factor 0.0027, times the number of days.

Unique well number is a hyphenated, 6-digit identification number which is assigned to all New Jersey wells in the Ground Water Site Inventory (GWSI) System. This numbering system was developed in 1978 to simplify identification of wells. The first two digits are a code for the county in which the well is located, and the last four digits are a sequence number. These unique well numbers are being used now in the ground-water level descriptions, wells sampled for water-quality analyses, and on the corresponding location maps in these reports.

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

 $\underline{\mathtt{WDR}}$ is used as an abbreviation for "Water-Data Report" in the summary REVISIONS paragraph to refer to previously published State annual basic-data reports. Prior to 1976, WRD was used, which was the abbreviation for "Water-Resources Data."

 $\frac{\text{WSP}}{\text{VSP}}$ is used as an abbreviation for "Water-Supply Paper" in reference to previously published reports.

DOWNSTREAM ORDER AND STATION NUMBER

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two main-stream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of triburtaries. The rank of any tributary on which a station is situated with respect to the stream to which it is immediately tributary is indicated by an indention in a list of stations in front of the report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

As an added means of identification, each hydrologic station and partial-record station has been assigned a station number. These are in the same downstream order used in this report. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station such as 01463500, which appears just to the left of the station name, includes the 2-digit part number "01" plus the 6-digit downstream order number "463500."

NUMBERING SYSTEM FOR WELLS AND MISCELLANEOUS SITES

Miscellaneous downstream order station numbers are not assigned to wells and miscellaneous sites where only random water-quality samples or discharge measurements are taken.

The wells and miscellaneous site numbering system of the U.S. Geological Survey is based on the grid system of latitude and longitude. The system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, the next 7 digits denote degrees, minutes, and seconds of longitude, and the last 2 digits is a sequential number for wells within a 1-second grid. In the event that the latitude-longitude coordinates for a well and a miscellaneous site are the same, they are assigned sequential numbers "01", "02", etc. as one would for wells. See figure 1 below.

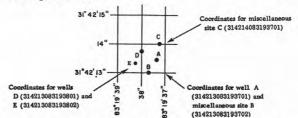


Figure 1. System for numbering wells and miscellaneous sites (latitude and longitude)

SPECIAL NETWORKS AND PROGRAMS

Some of the stations for which data are published in this report are included in special networks and programs. These stations are identified by their title, set in parentheses, under the station name.

Hydrologic bench-mark station is one that provides hydrologic data for a basin in which the hydrologic regimen will likely be governed solely by natural conditions. Data collected at a bench-mark station may be used to separate effects of natural from manmade changes in other basins which have been developed and in which the physiography, climate, and geology are similar to those in the undeveloped bench-mark basin.

National stream-quality accounting network (NASQAM) is a data collection network designed by the U.S. Geological Survey to meet many of the information demands of agencies or groups involved in national or regional water-quality planning and management. Both accounting and broad-scale monitoring objectives have been incorporated into the network design. Areal configuration of the network is based on river-basin accounting units (identified by 8-digit hydrologic-unit numbers) designated by the Office of Water Data Coordination in consultation with the Water Resources Council. Primary objectives of the network are (1) to depict areal variability of streamflow and water-quality conditions nationwide on a year-by-year basis and (2) to detect and assess long-term changes in streamflow and stream quality.

Pesticide program is a network of regularly sampled water-quality stations where samples are collected to determine the concentration and distribution of pesticides in stream where potential contamination could result from the application of the commonly used insecticides and herbicides. Operation of the network is a Federal interagency activity.

 $\frac{\text{Radiochemical program}}{\text{samples are collected to be analyzed for radioisotopes.}} \quad \text{In streams that are sampled represent major drainage basins in the conterminous United States.}$

EXPLANATION OF STAGE AND WATER-DISCHARGE RECORDS

Collection and computation of data

The base data collected at gaging stations consist of records of stage and measurements of discharge of streams or canals, and stage, surface area, and contents of lakes or reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records, and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of stage are obtained from either direct readings on a nonrecording gage or from a water-stage recorder that gives either a continuous graph of the fluctuations or a tape punched at selected time intervals. Measurements of discharge are made with a current meter, using the general methods adopted by the Geological Survey. These methods are decribed in standard text-books, in Water-Supply Paper 888, and in U.S. Geological Survey Techniques of Water Resources Investigations, book 3, chapter A6.

For stream-gaging stations, rating tables giving the discharge for any stage are prepared from stage-discharge relation curves. If extensions to the rating curves are necessary to express discharge greater than measured, they are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements, computation of flow over dams or weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharge are computed from the daily figures. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is computed by the shifting-control method, in which correction factors based on individual discharge measurements and notes by engineers and observers are used in applying the gage heights to the rating tables. If the stage-discharge relation for a station is temporarily changed by the presence of aquatic growth or debris on the control, the daily mean discharge is computed by what is basically the shifting-control method.

At some stream-gaging stations the stage-discharge relation is affected by backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in determining discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in determining discharge.

At some northern stream-gaging stations the stage-discharge relation is affected by ice in the winter, and it becomes impossible to compute the discharge in the usual manner. Discharge for periods of ice effect is computed on the basis of the gage-height record and occasional winter discharge measurements, consideration being given to the available information on temperature and precipitation, notes by gage observers and hydrologists, and comparable records of discharge for other stations in the same or nearby basins.

For a lake or reservoir station, capacity tables giving the contents for any stage are prepared from stage-area relation curves defined by surveys. The application of the stage to the capacity table gives the contents, from which the daily, monthly, or yearly change in contents is computed. Discharge over spillways is computed from a stage-discharge relation curve defined by discharge measurements.

If the stage-capacity curve is subject to changes because of deposition of sediment in the reservoir, periodic resurveys of the reservoir are necessary to define new stage-capacity curves. During the period between reservoir surveys the computed contents may be increasingly in error due to the gradual accumulation of sediment.

For some gaging stations there are periods when no gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods the daily discharge are estimated on the basis of recorded range in stage, adjoining good record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise daily contents may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information.

The data in this report generally comprise a description of the station and tabulations of daily and monthly figures. For gaging stations on streams or canals a table showing the daily discharge and monthly and yearly discharge is given. For gaging stations on lakes and reservoirs a monthly summary table of stage and contents or a table showing the daily contents is given. Tables of daily mean gage height are included for some streamflow stations and for some reservoir stations. Records are published for the water year, which begins on October 1 and ends on September 30.

The description of the gaging station gives the location, drainage area, period of record, notations of revisions of previously published records, type and history of gages, general remarks, average discharge, and extremes of discharge or contents. The location for the gaging station and the drainage area are obtained from the most accurate maps available. River mileage, given under "LOCATION" for some stations, is that determined and used by the Corps of Engineers or other agencies. Periods for which there are published records for the present stations or for stations generally equivalent to the present one are given under "PERIOD OF RECORD."

Previously published streamflow records of some stations have been found to be in error on the basis of data or information later obtained. Revisions of such records are usually published along with the current records in one of the annual or compilation reports. In order to make it easier to find such revised records, a paragraph headed "REVISED RECORDS" has been added to the description of all stations for which revised records have been published. Listed therein are all the reports in which revisions have been published, each followed by the water years for which figures are revised in that report. In listing the water years only one number is given; for instance, 1965 stands for the water year October 1, 1964, to September 30, 1965. If no daily, monthly, or annual figures of discharge are affected by the revision, the fact is brought out by notations after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in

which the revised figure was first published is given. It should be noted that for all stations for which cubic feet per square mile and runoff in inches are published, a revision of the drainage area necessitates corresponding revision of all figures based on the drainage area. Revised figures of cubic feet per second per square mile and runoff in inches resulting from a revision of the drainage area only are usually not published in the annual series of reports.

The type of gage currently in use; the datum of the present gage referred to National Geodetic Vertical Datum; and a condensed history of the types, locations, and datums of previous gages used during the period of record are given under "GAGE." National Geodetic Vertical Datum is explained in "DEFINITION OF TERMS."

The average discharge for the number of years indicated is given under "AVERAGE DISCHARGE"; it is not given for stations having fewer than 5 complete years of record or for stations where changes in water development during the period of record cause the figure to have little significance. In addition, the median of yearly mean discharges is given for stream-gaging stations having 10 or more complete years of record if the median differs from the average by more than 10 percent. Under "EXTREMES" are given first the extremes for current year, second, the extremes for the period of record, and last information available outside the period of record. Unless otherwise qualified, the maximum discharge (or contents) is the instantaneous maximum corresponding to the orest-stage obtained by use of a water-stage recorder (graphic or digital), a crest-stage gage, or a nonrecording gage read at the time of the crest. If the maximum gage height did not occur on the same day as the maximum discharge (or contents), it is given separately. Similarly, the minimum is the instantaneous minimum unless otherwise qualified. For some stations peak discharges are listed with EXTREMES FOR THE CURRENT YEAR; if they are, all independent peaks, including the maximum for the year, above the selected base with the time of occurrence and corresponding gage heights are published in tabular format. The base discharge, which is given in the table heading, is selected so that an average of about three peaks a year will be presented. Peak discharges are not published for any canals, ditches, drains, or for any stream for which the peaks are subject to substantial control by man. Time of day is expressed in 24-hour local standard time; for example, 12:30 a.m. is 0030, 1:30 p.m. is 1330. The minimums for these stations are published in a separate paragraph following the table of peaks.

Skeleton rating tables are published, immediately following FXTREMES, for stream-gaging stations where they serve a useful purpose and the dates of applicability can be easily identified.

The daily table for stream-gaging stations gives the mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also may be expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion, if the drainage area includes large noncontributing areas, or if the average annual rainfall over the drainage basin is usually less than 20 inches. In the yearly summary below the monthly summary, the figures shown are the appropriate daily discharges for the calendar and water years.

Footnotes to the table of daily discharge are introduced by word "NOTE." Footnotes are used to indicate periods for which the discharge is computed or estimated by special methods because of no gage-height record, backwater from various sources, or other unusual conditions. Periods of no gage-height record are indicated if the period is continuous for a month or more or includes the maximum discharge for the year. Periods of backwater from an unusual source, of indefinite stage-relation, or of any other unusual condition at the gage site are indicated only if they are a month or more in length and the accuracy of the records is affected. Days on which the stage-discharge relation is affected by ice are not indicated. The methods used in computing discharge for various unusual conditions have been explained in preceding paragraphs.

For most gaging stations on lakes and reservoirs the data presented comprise a description of the station and a monthly summary table of stage and contents. For some reservoirs a table showing daily contents or stage is given. A skeleton table of capacity at given stages is published for all reservoirs for which records are published on a daily basis, but is not published for reservoirs for which only monthly data are given.

Data collected at partial-record stations follow the information for continuous record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. Occasionally, a series of discharge measurements are made within a short time period to investigate the seepage gains or losses along a reach of a stream or to determine the low-flow characteristics of an area. Such measurements are also given in special tables following the tables of partial-record stations.

Accuracy of field data and computed results

The accuracy of streamflow data depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements, and (2) the accuracy of observations of stage, measurements of discharge, and interpretation of records.

The station description under "REMARKS" states the degree of accuracy of the records. "Excellent" means that about 95 percent of the daily discharges are within 5 percent; "good" within 10 percent; and "fair" within 15 percent. "Poor" means that daily discharges have less than "fair" accuracy.

Figures of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 cfs; to tenths between 1.0 and 10 cfs; to whole numbers between 10 and 1,000 cfs; and to 3 significant figures above 1,000 cfs. The number of significant figures used is based solely on the magnitude of the figure. The same rounding rules apply to discharge figures listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Publications

Each volume of the 1960 series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States" contains a listing of the numbers of all water-supply papers in which records of surface-water data were published for the area covered by the individual volumes. Each volume also contains a list of water-supply papers that give detailed information on major floods for the area. A new series of water-supply papers containing surface-water record for the 5-year period October 1, 1965 to September 30, 1970, also will include lists of annual and special reports published as water-supply papers.

Records through September 1950 for the area covered by this report have been compiled and published in Water-Supply Paper 1302; records for October 1950 to September 1960 have been compiled and published in Water-Supply Paper 1722; records for October 1960 to September 1965 have been compiled and published in Water-Supply Paper 1902; records for October 1965 to September 1970 have been compiled and published in Water-Supply Paper 2102. These reports contain summaries of monthly and annual discharge and month-end storage for all previously published records, as well as some records not contained in the annual series of water-supply papers. All records were reexamined and revised where warranted. Estimates of discharge were made to fill short gaps whenever practical. The yearly summary table for each gaging station lists the numbers of the water-supply papers in which daily records were published for that station.

Special reports on major floods or droughts or of other hydrologic studies for the area have been issued in publications other than water-supply papers. Information relative to these reports may be obtained from the district office.

Other data available

Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating tables is on file in the district office. Also most gaging-station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the district office.

Records of stage or discharge collected by agencies other than the Geological Survey

Records of stage or discharge not published by the Geological Survey were collected in New Jersey at 30 sites during the water years October 1960 to current year by the following agencies: records at 4 sites were collected by the North Jersey District Water Supply Commission; at 14 sites by Passaic County, at 1 sites by the National Weather Service; at 3 sites by the National Ocean Survey; at 3 sites by the Corps of Engineers, and 5 sites by Delaware River Joint Toll Bridge Commission. The National Water Data Exchange, Water Resources Division, U.S. Geological Survey, National Center, Reston, VA 22092, maintain an index of such sites. Information on records available at specific sites can be obtained upon request.

EXPLANATION OF WATER-QUALITY RECORDS

Collection and examination of data

Water samples for analyses usually are collected at or near gaging stations. The discharge records at these stations are used in conjunction with the computations of the chemical constituents and sediment loads.

The data in this report include a description of the sampling station and tabulations of the samples analyzed. The description of the sampling station gives the location, drainage area, periods of record for water-quality data, extremes of the pertinent data, and general remarks. For ground-water sampling stations, no descriptive statements are presented. However, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of ground water.

Water-quality information is presented for chemical, biological, and microbiological quality, water temperature, and fluvial sediment. Chemical quality includes the concentrations of individual constituents and certain properties such as hardness, specific conductance, and pH. The biological information includes qualitative and quantitative analyses of plankton, bottom organisms, and particulate inorganic and amorphous matter present. Microbiological information includes quantitative identifications of certain bacteriological indicator organisms. Water-temperature data represent once-daily observations except for stations where a water-quality noncontinuous-digital monitor furnishes hourly temperature readings that provide daily maximum, minimum, and mean temperature data summaries. Fluvial-sediment information is given for suspended-sediment discharges and concentrations and for particle-size distribution of suspended sediment.

Prior to the 1968 water year, data for chemical constituents and concentrations of suspended sediment were reported in parts per million (ppm) and water temperatures were reported in degrees Fahrenheit (°F). In October 1967, the U.S. Geological Survey began reporting data for chemical constituents and concentrations of suspended sediment in milligrams per liter (mg/L) and water temperatures in degrees Celsius (°C). In waters with a density of 1.000 g/ml (grams per

milliliter), parts per million and milligrams per liter can be considered equal. In waters with a density greater than $1.000 \, \mathrm{g/ml}$, values in parts per million should be multiplied by the density to convert to milligrams per liter. Temperatures reported in degrees Celsius may be converted to degrees Fahrenheit by using table 1 below.

In October 1968, the Geological Survey began reporting many of the chemical constituents as well as the minor elements in micrograms per liter instead of milligrams per liter. (See "Definitions of Terms," and table for converting Inch-pound Units to International System Units, inside back cover).

Table 1.--Degrees Celsius (°C) to degrees Fahrenheit (°F)* (Temperature reported to nearest $0.5\,^{\circ}\text{C}$)

°C	°F	°C	°F	°C	°F	°C	°F	°C	°F
0.0	32	10.0	50	20.0	68	30.0	86	40.0	104
0.5	33	10.5	51	20.5	69	30.5	87	40.5	105
1.0	34	11.0	52	21.0	70	31.0	88	41.0	106
1.5	35	11.5	53	21.5	71	31.5	89	41.5	107
2.0	36	12.0	54	22.0	72	32.0	90	42.0	108
2.5	36	12.5	54	22.5	72	32.5	90	42.5	108
3.0	37	13.0	55	23.0	73	33.0	91	43.0	109
3.5	38	13.5	56	23.5	74	33.5	92	43.5	110
4.0	39	14.0	57	24.0	75	34.0	93	44.0	111
4.5	40	14.5	58	24.5	76	34.5	94	44.5	112
5.0	41	15.0	59	25.0	77	35.0	95	45.0	113
5.5	42	15.5	60	25.5	78	35.5	96	45.5	114
6.0	43	16.0	61	26.0	79	36.0	97	46.0	115
6.5	44	16.5	62	26.5	80	36.5	98	46.5	116
7.0	45	17.0	63	27.0	81	37.0	99	47.0	117
7.5	45	17.5	63	27.5	81	37.5	99	47.5	117
8.0	46	18.0	64	28.0	82	38.0	100	48.0	118
8.5	47	18.5	65	28.5	83	38.5	101	48.5	119
9.0	48	19.0	66	29.0	84	39.0	102	49.0	120
9.5	49	19.5	67	29.5	85	39.5	103	49.5	121

*C = 5/9 (°F - 32) or °F = 9/5 (°C) + 32.

Most methods for collecting and analyzing water samples to determine the kinds and concentrations of solutes are described in the U.S. Geological Survey Techniques of Water-Resources Investigations listed at the end of this section. Analysis of pesticides, herbicides, and organic substances in water are described by Goerlitz and Brown. The collection and analysis of aquatic, biological and microbiological samples are described by Greeson and others.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through many vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis.

For chemical-quality stations equipped with noncontinuous-digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the U.S. Geological Survey district office (for address see Page IV).

Ground-water normally does not change significantly during short periods of time; infrequent sampling and analysis of ground water adequately defines ground-water quality at a given site. Water samples from wells are collected after prepumping the well and are analyzed individually.

Water temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for surface-water stations. For daily stations, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges. Influential factors, field measurement, and data representation of temperature are described by Stevens, Ficke and Smoot.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross-section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross section.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of the quantities of suspended sediment, records of the periodic measurements of the particle-size distribution of the suspended sediment are included.

Remark codes for water-quality data

PRINTER	REMARK	PRINTED OUTPUT	REMARK
Е	ESTIMATED VALUE	<	ACTUAL VALUE IS KNOWN TO BE LESS THAN THE VALUE SHOWN
>	ACTUAL VALUE IS KNOWN TO BE GREATER THAN THE VALUE SHOWN	ND	MATERIAL SPECIFICALLY ANALYZED FOR BUT NOT DETECTED
K	RESULTS BASED ON COLONY COUNT OUTSIDE THE ACCEPTABLE RANGE (NON-IDEAL COLONY COUNT)		

Publications

Table 2 below, shows the annual series of water-supply papers that give information on quality of surface waters in New Jersey.

Table 2.--Water-supply paper (WSP) numbers, water years, 1945-70

Year	WSP	Year	WSP	Year	WSP
1945	1030	1954	1350	1963	1947
1946	1050	1955	1400	1964	1954
1947	1102	1956	1450	1965	1961
1948	1132	1957	1520	1966	1991
1949	1162	1958	1571	1967	2011
1950	1186	1959	1641	1968	2091
1951	1197	1960	1741	1969	2141
1952	1250	1961	1881	1970	2151
1953	1290	1962	1941		

Water-quality criteria

The Federal Water Pollution Control Act Amendments of 1972 (P.L. 92-500) stipulated that water-quality criteria were to be developed to assure the integrity of ground and surface waters of the United States. Criteria were set for various types of water use.

These criteria indicate limiting values of various parameters in water to provide adequate protection of water users, essential aquatic life, and consumers of such aquatic life.

Chemical constituents in bottom sediments (BTM) are reported as weight of constituent per weight of sediment. These limiting values are based not on health effects, but rather on the potential hazard which might be caused if these sediments were suspended into the water phase.

WATER QUALITY CRITERIA

	Limiting		Han.	Basis for
Parameter name	value	Units	Use	selection
	O			
	General In	organies		
Alkalinity Tatal (as CACO)	20*	mg/L	2	A
Alkalinity, Total (as CACO ₃) Antimony	50	µg/L	5	C
Antimony, BTM	500	µg/g	5	C
Arsenic	50	µg/L	4,6	A,B,C
	100	µg/L	3	A C
Arsenic, BTM Barium	200 1000	μg/g μg/L	5 4,6	A,B,C
Barium, BTM	2000	µg/g	5	С
Beryllium	11	µg/L	2a	A,C
	100	µg/L	3	A
Benedlium BTM	1100 200	μg/L μg/g	2b 5	A C
Beryllium, BTM Boron	750	µg/L	3	A
	1000	ug/L	3 5	С
Cadmium	0.4	µg/L	1a	A A
	1.2	μg/L μg/L	1 b 2 a	A
	5.0	µg/L	8	A
	10	µg/L	4,6	A,B,C
200000000000000000000000000000000000000	12	µg/L	2B	A C
Cadmium, BTM	20 250	µg/g	5 6A	D
Chloride Chromium, total	50	mg/L µg/L	4,6	A,B,C
om omidm, bodai	100	μg/L	2	A
Chromium, BTM	200	µg/g	5	C
Color		or units	6a 4	D
0	1000	or units µg/L	4,6a	A A,C,D
Copper Copper, BTM	2000	μg/g	5	C, C, D
Cyanide	5	µg/L	2,8	A
	20	µg/L	5	C
Cyanide, BTM	100 200†	μg/g col/100 mL	5 5 7	C A
Fecal coliform, MF Fecal coliform, MPN	2001	col/100 mL	7	A
Iron	300	µg/L	4,6a	A, D
	1000	µg/L	2	A
Lead, dissolved	50 200	µg/L	4,6	A,B,C
Lead, total Lead, BTM	500	μg/L μg/g	5	Č
Manganese	50	µg/L	4,6a	A,D
Mercury	0.05	µg/L	2	A
	0.1	μg/L μg/L	8 4,6	A A,B,C
Mercury, BTM	20	µg/g	5	C, 5, 0
Nickel	100	µg/L	2,8	A,C
Nickel, BTM	2000	µg/g	5	C
Nitrate (as N) Nitrite (as N)	10	mg/L mg/L	4,6	A,B,C A,C
Oxygen, dissolved	5*	mg/L	2	A
pH	6.5-8.5		6a,8	A,C,D
	6.5-9.0		2	A A
Calanium	5.0 - 9.0	µg/L	4,6	A,B,C
Selenium Selenium, BTM	20	µg/g	5	C, 2, 0
Silver	50	µg/L	4,6	A,B,C
Silver, BTM	1000	µg/g	5	C
Solids, total dissolved Sulfate	500 250	mg/L mg/L	6a 6a	D
Zinc	5000	µg/L	4,6a	A,C,D
Zine, BTM	5000	µg/g	5	C
	2			
	Organ	ICS		
Aldrin-dieldrin	0.00		2	A
Aldrin	0.01		9 5 8	C
Aldrin, BTM Chlordane	0.00	μg/kg μg/L	8	A
chiordane	0.00		2	A,C
Chlordane, BTM	20	µg/kg	5	
DDT **	0.00	l μg/L	2 8	C A C C
DOT DEM	0.01		9	C
DDT, BTM Demeton	20	μg/kg μg/L	9 5 2,8	A
Dieldrin	0.01		9	С
Dieldrin, BTM	20	µg/kg	5	С

WATER QUALITY CRITERIA

	2000			400000	
Parameter name	Limiting value	Units	Use	Basis for selection	
rarameter name	value	Olifes	036	Selection	.,
Endosulfan	0.001	ug/L	8	A	
Endosultan	0.003	µg/L	2	A	
	0.01	ug/L	9	Č	
Endrin	0.004	µg/L	2,8	A	
Direct In	0.01	µg/L	9	C	
	0.2	µg/L	4,6	C B	
Endrin, BTM	20	µg/kg	5	C	
Guthion	0.01	µg/L	2,8	A	
Heptachlor	0.001	µg/L	2,8	A	
	0.01	µg/L	9	C	
Heptachlor, BTM	20	µg/kg	5	C	
Heptachlor epoxide	0.01	µg/L	9	C	
Heptachlor epoxide, BTM	20	µg/kg	5	C	
Lindane	0.004	µg/L	8	A	
	0.01	µg/L	2	A, C	
I de de la composição d	4	µg/L	4,6	A, B	
Lindane, BTM Malathion	0.1	µg/kg	5,8	A,C	
Malathion, BTM	20	μg/L μg/kg	5	C C	
MBAS (foaming agents)	0.5	mg/L	6a	D	
Methoxychlor	0.03	μg/L	2,8	A,C	
ne onox juntor	100	ug/L	4,6	A , B	
Methoxychlor, BTM	20	μg/kg	5	C,	
Mirex	0.001	µg/L	2,8	A	
	.01	µg/L	9	C	
Mirex, BTM	20	µg/kg	5	C	
Parathion	0.04	µg/L	2,8	A,C	
Parathion, BTM	20	µg/kg	5	C	
PCB	0.001	µg/L	2,8	A	
	0.1	µg/L	9	C	
PCB, BTM	20	µg/kg	5	C	
Phenols	1.0 5.0	µg/L	5	A C	
Townshame	0.005	µg/L	2 0	A	
Toxaphene	1.0	μg/L μg/L	2,8	Č	
	5.0	µg/L	4,6	A,B	
Toxaphene, BTM	20	μg/kg	5	C	
Silvex	10	µg/L	4,6	A,B,C	
Silvex, BTM	20	µg/kg		C	
2, 4-D	100	µg/L	4,6	A,B,C	
2, 4-D, BTM	20	μg/kg	5	С	
	Radiochem	icals			
	Radiochem	10010			
Radium 226	-	-0: //	11 6	р. С	
Stronticum 90	5 8	pCi/L	4,6	B, C B, C	
Tritium	20,000	pCi/L pCi/L	4,6	В, С	
Gross alpha	15	pCi/L	4,6	В, С	
or oop at bug		DOT'L	٦, ٥	5,0	

* Minimum recommended value

t Log mean, based on not ress chan = ** Including metabolites (DDD and DDE) Log mean, based on not less than five samples

Water Use and/or for the Protection of:

- Sensitive salmonoid species in soft water Sensitive salmonoid species in hard water Freshwater aquatic life Freshwater aquatic life in soft water Freshwater aquatic life in hard water 1a. 1b.
- 2.
- 2a . 2b.
- 3. Crop irrigation
- Domestic water supply source
 Recommended limits have not been established; limit set to arbitrarily flag no more than
 the upper 15 to 20 percent of values nationwide.
 Potable drinking water, based on health effects
 Potable drinking water, based on aesthetic considerations 5.
- 6.
- 6a.
- 8.
- Marine aquatic life
 Minimum non-zero concentration reported by the U.S. Geological Survey Central Water Quality Laboratories system.

Basis for Selection

- A. Maximum levels recommended by: Quality Criteria for Water, 1976, U.S. Environmental
- Protection Agency.

 Maximum contaminant level established by: National Interim Primary Drinking Water Regulations 1976, U.S. Environmental Protection Agency.

 Suggested limiting value, U.S. Geological Survey, Quality of Water Branch.

 Maximum contaminant level recommended for the Proposed Secondary Drinking Water Regulations, U.S. Environmental Protection Agency.

EXPLANATION OF GROUND-WATER LEVEL RECORDS

Collection of the data

Only ground-water level data from a basic network of observation wells are published herein. This basic network contains observation wells so located that the most significant data are obtained from the fewest wells in the most important aquifers.

Each well is identified by means of (1) a 15-digit number that is based on latitude and longitude (see figure 1) and (2) a local name and a unique well number that are provided for local needs.

Water-level measurements in this report are given in feet with reference to land-surface datum (LSD, lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. The altitude of the land-surface datum above NGVD 1929, and the height of the measuring point (MP) above or below land-surface datum is given in each well description.

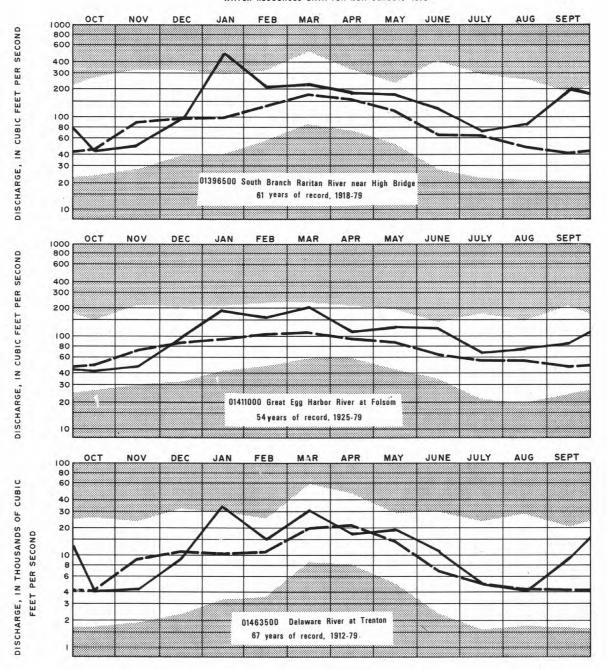
Measurements are made in many types of wells, under varying conditions of access and at different temperatures, hence, neither the method of measurement nor the equipment can be standardized. At each observation well, however, the equipment and techniques used are those that will ensure that measurements at each well are consistent.

Water-level data in these reports were obtained from water-level recorders, water-level extremes recorders, and from periodic manual measurements. The equipment used at each well is described in the well description under the listing "Instrumentation." Water levels in wells equipped with water-level recorders are reported for every fifth day and the end of each month (eom). Beginning in the 1977 water year, water-level recorders were removed from some wells and replaced by water-level extremes recorders. The extremes are read from these recorders at about three month intervals, but the actual dates of occurrance of the extremes (highest and lowest water levels) are unknown. In these reports the extreme water levels are given along with the interim dates in the well descriptions, and the manual only measurements are tabulated below the well descriptions.

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, wheareas the error in determining the net change of water level between successive measurements may be only a hundredth of a few hundredths of a foot. For lesser depths to water the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given only to a tenth of a foot or a larger unit.

Publications

Table 3 below, shows the series of water-supply papers that give ground-water level data for New Jersey, 1935 to 1974. No water-level data were published in 1975. Beginning in 1976, ground-water level data for New Jersey have been published in these annual water data reports.

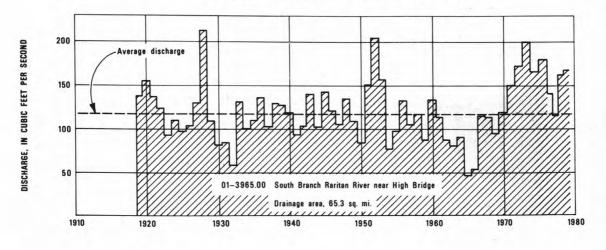

Table	3	Water-supply	paper	(WSP)	numbers,	water	years,	1935-74
-------	---	--------------	-------	-------	----------	-------	--------	---------

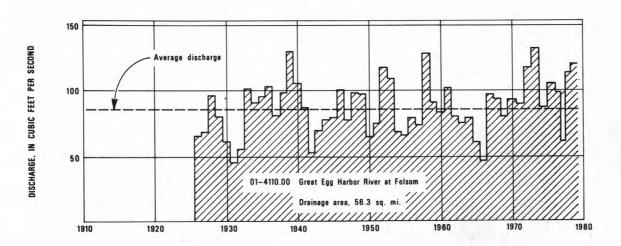
Year	WSP	Year	WSP	Year	WSP	
1935	777	1 94 4	1016	1953	1265	
1936	817	1945	1023	1954	1321	
1937	840	1946	1071	1955	1404	
1938	845	1947	1096	1956-57	1537	
1939	866	1948	1126	1958-62	1782	
1940	906	1949	1156	1963-67	1977	
1941	936	1950	1165	1968-72	2140	
1942	986	1951	1191	1973-74	2164	
1943	986	1952	1221			

SELECTED REFERENCES

- Anderson, P. W., 1970, Occurrence and distribution of trace elements in New Jersey Streams; New Jersey Division of Water Policy and Supply, Water Resources Circular 24, 24 p.
- Anderson, P.W., and Faust, S. D., 1973 Characteristics of water quality and streamflow, Passaic River basin above Little Falls, New Jersey: U.S. Geological Survey Water-Supply Paper 2026, 80 p.
- _____1974, Water-quality and streamflow characteristics, Raritan River basin, New Jersey: U.S. Geological Survey Water Resources Investigations, 14-74, 82 p.
- Anderson, P. W., and George, J. R., 1966, Water-quality characteristics of New Jersey streams: U.S. Geological Survey Water-Supply Paper 1819-G, 48 p.
- Barnett, P. R., and Mallory, Jr., E. C., 1971, Determination of minor elements in water by emission spectroscopy: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, Chapter A2, 31 p.
- Carter, R. W., and Davidian, Jacob, 1968, General procedure for gaging streams: U.S. Geological Survey Techniques Water-Resources Investigations, Book 3, Chapter A6, 13 p.
- Corbett, D. M., and others, 1943, Stream-gaging procedure, a manual describing methods and practices of the Geological Survey: U.S. Geological Survey Water-Supply Paper 888, 245 p.
- Goerlitz, D. F., and Brown, Eugene, 1972, Methods for analysis of organic substances in water: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A3, 40 p.
- Greeson, P. E., Ehlke, T. A., Irwin, G. A., Lium, B. W., and Slack, K. V., 1977, Methods for collection and analysis of aquatic biological and microbiological samples: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A4, 332 p.

- Guy, H. P., 1969, Laboratory theory and methods for sediment analysis: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter C1, 58 p.
- ____1970, Fluvial sediment concepts: U.S. Geological Survey Techniques of Water-Resources
 Investigations, Book 3, Chapter C1, 55 p.
- Guy, H. P., and Norman, V. W., 1970, Field methods for measurement of fluvial sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C2, 59 p.
- Hem, J. D., 1970, Study and interpretation of the chemical characteristics of natural water, 2d ed.: U.S. Geological Survey Water-Supply Paper 1473, 363 p.
- Langbein, W. B., and Iseri, K. T., 1960, General introduction of hydrologic definitions: U.S. Geological Survey Water-Supply Paper 1541-A, 29 p.
- Laskowski, S. L., 1970, Statistical summaries of New Jersey streamflow records: New Jersey Division of Water Policy and Supply, Water Resources Circular 23, 264 p.
- Lohman, S. W., and other, 1972, Definitions of selected ground-water terms-revisions and conceptual refinements: U.S. Geological Survey Water-Supply Paper 1988, 21 p.
- Mansue, L. J., and Anderson, P. W., 1974, Effect of landuse and retention practices on sediment yields in the Stony Brook basin, New Jersey: U.S. Geological Survey Water-Supply Paper 1798-L.
- McCall, J. E., and Lendo, A. C., 1970, A modified streamflow data program for New Jersey: U.S. Geological Survey Open-File Report, 46 p.
- Porterfield, George, 1972, Computations of fluvial-sediment discharge: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C3, 66 p.
- Schornick, J. C., and Ram, N. M., 1978, Nitrification in four acidic streams in southern New Jersey: U.S. Geological Survey Water-Resources Investigations, 77-121, 51 p.
- Schopp, R. D., and Gillespie, B. D., 1979, Selected streamflow data for the Delaware River basin: U.S. Geological Survey Open-File Report 79-347, 16 p.
- Schopp, R. D., and Velnich, A. J., 1979, Flood of November 8-10, 1977 in Northeastern and Central New Jersey: U.S. Geological Survey Open-File Report 79-559, 32 p.
- Seaber, P. R., 1963, Chloride concentrations of water from wells in the Atlantic Coastal Plain of New Jersey, 1923-61: New Jersey Division of Water Policy and Supply, Special Report 22, 250 p.
- Skougstad, N. W., Fishman, M. J., Friedman, L. C., Erdmann, D. E., and Duncan, S. S., 1978, Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A1, 626 p.
- Stankowski, S. J., 1972, Floods of August and September 1971 in New Jersey: New Jersey Division of Water Resources, Special Report 37, 329 p.
- Stankowski, S. J., and Velnich, A. J., 1974, A summary of peak stages and discharges for the flood of August 1973 in New Jersey: U.S. Geological Survey Open-File Report, 12 p.
- Stankowski, S. J., 1974, Magnitude and frequency of floods in New Jersey with effects of urbanization: New Jersey Department of Environmental Protection, Division of Water Resources, Special Report 38, 46 p.
- Stankowski, S. J., Schopp, R. D., and Velnich, A. J., 1975, Flood of July 21, 1975 in Mercer County, New Jersey: U.S. Geological Survey Water-Resources Investigations 51-75, 52 p.
- Stevens, Jr., Herbert H., Ficke, John F., and Smoot, George F., 1975, Water temperature-influential factors, field measurement, and data representation: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 1, Chapter D1, 65 p.
- U.S. Environmental Protection Agency, 1976, Quality criteria for water: U.S. Environmental Protection Agency report EPA 44019-76-023, 501 p.
- U.S. Environmental Protection Agency, 1976, National Interim Primary Drinking Water Regulations: U.S. Environmental Protection Agency report EPA 570/9-76-003, 159 p.
- U.S. Geological Survey, 1976, Surface water supply of the United States, 1966-70, Part 1. North Atlantic Slope basins, Volume 2. Basins from New York to Delaware: U.S. Geological Survey Water-Supply Paper 2102, 985 p., (most recent volume).
- _____1977, Ground-water levels in the United States, 1973-74, Northeastern States: U.S. Geological Survey Water-Supply Paper 2164, 126 p., (most recent volume).
- Vecchioli, John, and Miller, E. G., 1973, Water Resources of the New Jersey part of the Ramapo River basin: U.S. Geological Survey Water-Supply Paper 1974, 77 p.
- Velnich, A.J., and Laskowski, S.L., 1979, Technique for estimating depth of 100-year flood in New Jersey: U.S. Geological Survey Open-File Report 79-419, 17 p.
- Vickers, A. A., and McCall, J. E., 1968, Surface water supply of New Jersey, Streamflow records 1961-65: New Jersey Division of Water Policy and Supply, Special Report 31, 351 p., (most recent volume).




Unshaded area.--Indicates range between highest and lowest mean recorded for the month prior to 1979 water year.

Dashed line.--Indicates normal (median of the monthly means) for the standard reference period 1941-70

Solid line.--Indicates observed monthly mean flow for the 1979 water year.

FIGURE 2 .-- MONTHLY STREAMFLOW AT KEY GAGING STATIONS

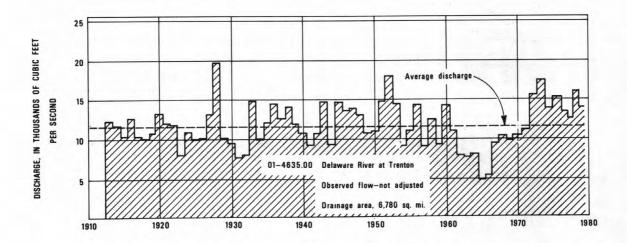


FIGURE 3.-- ANNUAL MEAN DISCHARGE AT KEY GAGING STATIONS

Thirty-four manuals by the U.S. Geological Survey have been published to date in the series on techniques describing procedures for planning and executing specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) is on surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. The reports listed below are for sale by the U.S. Geological Survey, Branch of Distribution, 1200 South Eads Street, Arlington, VA 22202 (authorized agent of the Superintendent of Documents, Government Printing Office).

- NOTE: When ordering any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations".
- Water temperature -- influential factors, field measurement, and data presentation, by H. H.
- Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter Dl. 1975. 65 pages.

 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages.

 2-D1. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages.
- 2-E1.
- Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS--TWRI Book 2, Chapter El. 1971. 126 pages.

- L. M. MacCary: USGS--TWRI Book 2, Chapter E1. 1971. 126 pages.

 General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter Al. 1967. 30 pages.

 Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter Al. 1967. 12 pages.

 Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages.

 Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 pages.

 Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages.

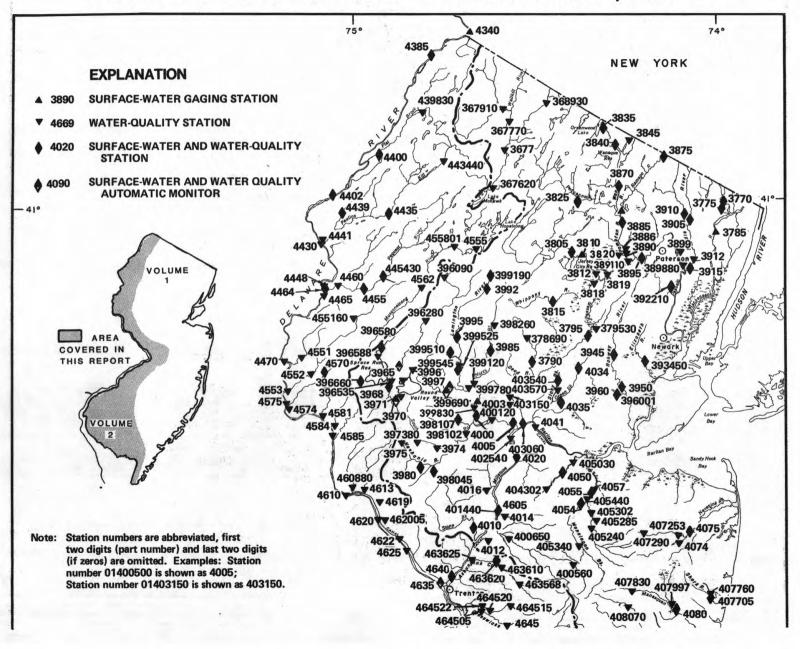
 Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages. 3-A3.
- 3-A5.
- 3-A6.
- General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages.
- Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 pages.
- 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS-TWRI Book 3, Chapter A8. 1969. 65 pages.
 3-A11. Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS-TWRI Book 3, Chapter A11. 1969. 22 pages.
 3-B1. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS-TWRI Book 3, Chapter B1. 1971. 26 pages.

- 3-B2.
- 3, Chapter B1. 1971. 26 pages.
 Introduction to ground-water hydraulics, a programed text for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages.
 Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.
 Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS-TWRI Book 3, Chapter C2. 1970. 59 pages.
 Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3,
 Chapter C3. 1972. 66 pages.
 Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter A1. 1968.
 39 pages. 3-C2.
- 4-A1.
- 39 pages.
- 4-A2.
- Jages.
 Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.
 Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages.
 Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4,
 Chapter B2. 1973. 20 pages.
 Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4,
 Chapter B3. 1973. 15 pages. 4-B1. 4-B2
- 4-B3.
- 4-D1. Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS--TWRI Book 4, Chapter Dl. 1970. 17 pages.
- 5-A1.

- 5-A3.
- TWRI Book 4, Chapter Dl. 1970. 17 pages.

 Methods for determination of inorganic substances in water and fluvial sediments, by M. W. Skougstad and others, editors: USGS--TWRI Book 5, Chapter Al. 1979. 626 pages.

 Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages.


 Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown: USGS--TWRI Book 5, Chapter A3. 1972. 40 pages.

 Methods for collection and analysis of aquatic biological and microbiological samples, edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS--TWRI Book 5, Chapter A4. 1977. 332 pages.

 Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher. V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977.
- by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-C1.
- 95 pages.
 Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter Cl. 1969. 58 pages.
 Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter Cl. 1976. 116 pages.
 Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages.
 Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS--TWRI Book 8, Chapter Al. 1968. 23 pages.
 Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages.

- 8-B2.

WATER RESOURCES DATA FOR NEW JERSEY, 1979

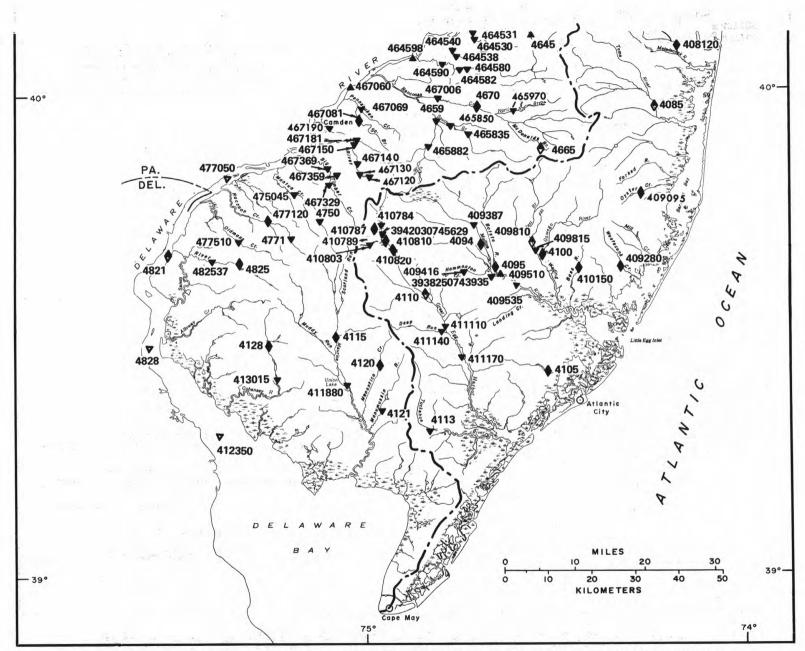
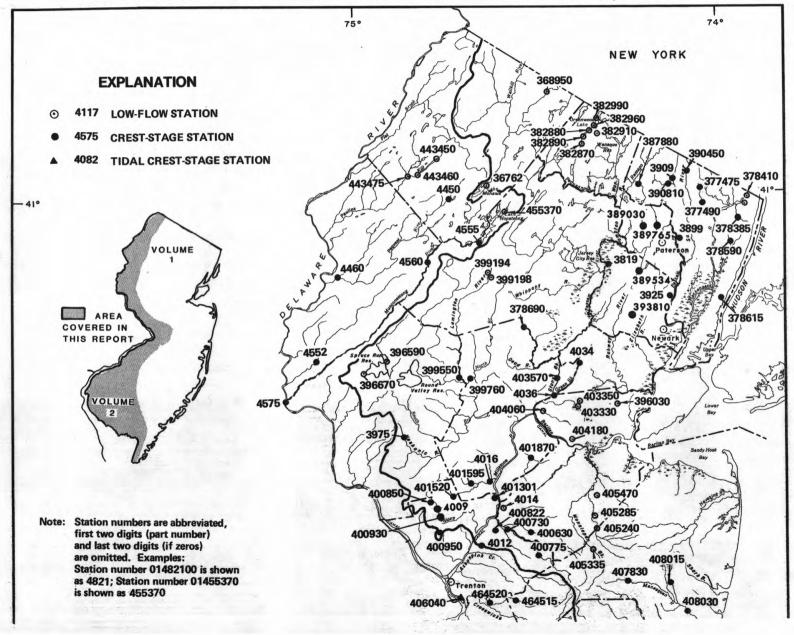



Figure 4.--Location of surface-water gaging stations and water-quality stations.

WATER RESOURCES DATA FOR NEW JERSEY, 1979

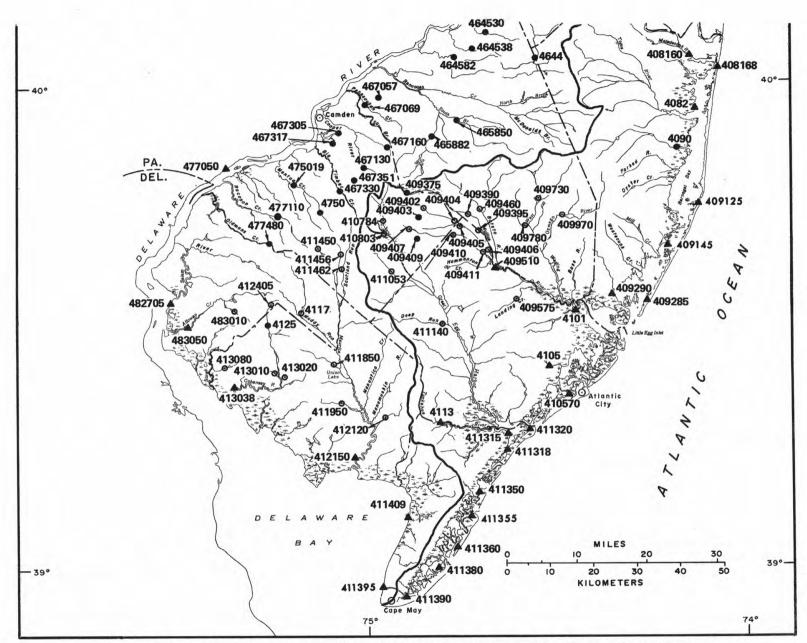
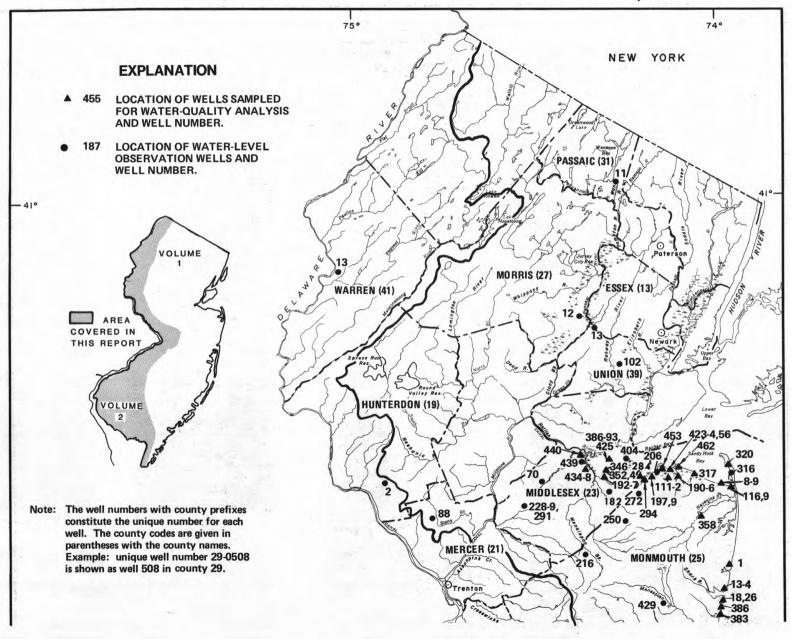



Figure 5.--Location of low-flow and crest-stage partial-record stations.

WATER RESOURCES DATA FOR NEW JERSEY, 1979

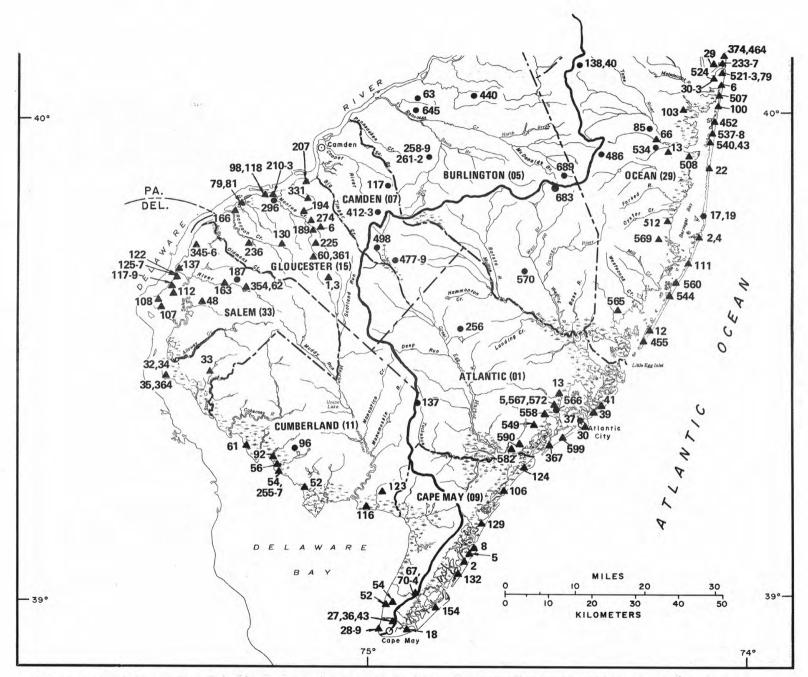


Figure 6.--Map showing location of ground-water quality stations and observation wells.

28 MAURICE RIVER BASIN

01411500 MAURICE RIVER AT NORMA, NJ (National stream quality accounting network)

LOCATION.--Lat 39°29'42", long 75°04'38", Salem County, Hydrologic Unit 02040206, on right bank just upstream from Almond Road Bridge at Norma, and 0.8 mi (1.3 km) downstream from Blackwater Branch.

DRAINAGE AREA .-- 113 mi2 (293 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1932 to current year. Monthly discharge only for December 1933, published in WSP 1302.

REVISED RECORDS. -- WSP 1382: 1933.

GAGE.--Water-stage recorder. Concrete control since Dec. 27, 1937. Datum of gage is 46.94 ft (14.307 m) National Geodetic Vertical Datum of 1929.

REMARKS. -- Water-discharge records good. Occasional regulation by ponds above station.

AVERAGE DISCHARGE. -- 47 years, 169 ft3/s (4.786 m3/s), 20.32 in/yr (516 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,360 ft³/s (208 m³/s) Sept. 2, 1940 (gage height, 8.72 ft or 2.658 m) from rating curve extended above 3,000 ft³/s (85 m³/s); minimum daily, 23 ft³/s (0.65 m³/s) Sept. 8, 1964, July 2, Sept. 7, 11-13, 1966.

REVISIONS.--Peak discharges of Aug. 4, 1967 (1300 nours) and Aug. 13, 1967 (0300 nours) have been revised to 616 ft^3/s (17.4 m³/s), gage neight, 3.86 ft (1.18 m), and 550 ft $^3/s$ (15.6 m³/s), gage height, 3.75 ft (1.14 m). They supersede figures published in the report for 1967.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 380 ft³/s (10.8 m³/s) and maximum (*):

Date		Time	Discha (ft³/s)	rge (m³/s)	Gage H	eight (m)	Date		Time	Disch (ft ³ /s)		Gage H	leight (m)
Jan. Feb.	25 28	0100	764 *1510	21.6	4.13	1.259	June June	6	1200 2100	392 440	11.1	3.47	1.058
Mar.	7	0300	557	15.6	3.78	1.152	Aug.	28	1100	562	15.9	3.80	1.158
Mav	27	2200	397	11.2	3.48	1.06							

DISCHARGE, IN CUBIC FEET PER-SECOND, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

Minimum discharge, 72 ft 3 /s (2.04 m 3 /s) Oct. 16, gage height, 2.57 ft (0.783 m).

		2200			М	EAN VALUE	S	37.000				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1	80	76	130	145	292	1060	288	305	305	180	1 42	330
	84	76	131	174	216	736	285	2.81	330	180	134	285
3	84	76	126	225	234	568	254	250	305	177	190	225
	84	75	153	225	234	491	288	243	330	170	246	218
5	87	80	184	224	231	450	351	239	360	180	269	207
6	86	80	205	222	225	465	305	235	387	170	269	257
7	84	78	183	221	213	507	273	232	378	167	211	273
8	81	78	171	258	210	507	277	214	343	161	173	285 297
9	79	77	171	274	206	518	277	211	305	154		273
10	78	76	192	274	199	4 97	292	207	281	151	148	
11	76	76	191	269	193	476	288	200	281	151	183	239
12	76	76	188	255	185	455	288	204	334	1 45	218	211 190
13	74	75	181	246	184	425	288	225	351	142	232 235	180
14	74	74	168	248	185	406	297	265	420 406	1 40 1 37	232	180
15	74	74	154	234	186	392	317	254	400			
16	73	75	143	221	186	369	313	254	338	134	225	180
17	95	78	141	212	184	351	309	254	309	177	197	177
18	92	91	134	204	179	338	292	239	321	190	167	170
19	90	100	129	190	172	325	277	235	281	243	167	161
20	88	100	124	180	183	317	261	243	265	221	158	154
21	84	98	135	327	181	305	250	243	250	221	154	151
22	82	93	134	483	193	297	243	257	235	207	151	214
23	79	90	131	539	208	288	235	257	232	207	154	277
24	78	90	133	597	273	305	228	250	197	207 194	1 40 1 42	277
25	75	88	179	675	551	365	197	301	204	194	142	
26	74	86	177	537	851	360	218	365	207	190	148	254
27	79	88	176	490	1350	360		383	204	177	170	225
28	80	105	173	454	1440			387	194	161	497	200 190
29	78	108	162	413		374	356	351	187	123	450 420	194
30	76	128	150	366		285	325	325	1 80	142	360	
31	76		145	329		285		281		142	-	
TOTAL	2500	2565	4894	9711	9144			8190	8720	5341	6749	6747
MEAN	80.6	85.5	158	313	327	427		264	291	172	218 497	225 330
MAX	95	128	205	675	1440			387	420	243	134	151
MIN	73	74	124	145	172			200	180	1.52	1.93	1.99
CFSM	.71	. 76	1.40	2.77	2.89	3.78		2.34	2.87	1.76	2.22	2.22
IN.	.82	. 84	1.61	3.20	3.01	4.36	2.78	2.10	2.01	1.10		
	1978 TOTAL		MEAN 1		788	MIN 73	CFSM 1.74	IN 23.70				
WTR YR	1979 TOTAL	86236	MEAN 2	36 MAX	1440	MIN 73	CFSM 2.09	IN 28.39				

01411500 MAURICE RIVER AT NORMA, NJ--Continued

29

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923, 1953, 1960-62, 1965 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURES: October 1966 to January 1968. SUSPENDED-SEDIMENT DISCHARGE: February 1965 to January 1968.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
OCT											
12	1000	76	81	6.2	14.5		9.2	1.0	17		
23 DEC	1520	78			16.0						
01 FEB	1210	128			6.0						
13 APR	1330	186	89	5.7	.5		12.0	1.0	5		
03 MAY	1015	246	77	5.9	12.5	2.0	8.9	1.6	33	41	K700
14 JUN	1045	265	74	6.2	18.5	3.0	6.3	1.7			44
06	1100	387	61	5.3	19.5	2.0	7.0	1.1	130	150	920
25 JUL	1130	207	75	5.3	19.0	2.0	7.0	.9		58	1900
25 AUG	1030	197	72	5.0	24.5	2.0	6.0		170	200	5300
08	0830	170	78	5.0	23.5	3.0	5.8	1.1		79	1500
23 SEP	0940	161	78		19.5					. 11	
27	1030	225	69	4.7	17.0	2.0	7.3	1.1	240	1 40	800

DATE	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
OCT										
12	240	17	3.5	2.1	5.8	2.0	7	0	6	7.7
23 DEC										
01										
FEB										
13	<2	20	4.1	2.3	5.3	1.8	8	0	7	11
APR		14					-			
03	5	17	3.6	1.9	5.5	1.9	5	0	4	11
MAY			2.0		c 0				6	0 0
14		15	3.2	1.7	5.8	1.9	77		0	9.8
JUN 06	540	15	3.2	1.8	4.7	1.7			4	9.2
	1.0								7	9.2
25 JUL		17	3.6	2.0	6.8	1.6			1	11
	1.2	10	2.0	2 1	0.6	2 2				0 5
25	13	18	3.8	2.1	8.6	2.3			7	8.5
AUG			2 2	4 0						0 4
08		16	3.3	1.8	5.7	1.7			1	8.1
23										
SEP									- 2	0 0
27	130	15	3.2	1.7	5.6	1.7			1	8.3

MAURICE RIVER BASIN
01411500 MAURICE RIVER AT NORMA, NJ--Continued

DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- PIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, PESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHAPGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. FINER THAN .062 MM	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)
OCT										
12 23 DEC	8.6	.1	5.7	52	1 2	.42		2.0	<.10	==
01					3	1.0				
FEB 13	8.6	. 1	7.0	60	2	1.1		2.5	<.10	
A PR 03	7.8	.0	2.8	56	8	5.3	27	1.4	.06	. 47
MAY 14	7.7	. 1	3.7	68	6	4.3	67	.99	. 14	.77
JUN	-			0 0 34						
06 25 JUL	7.0 8.2	.1	6.0	58 69	5	5.2 3.4	73 67	1.1	.07	.59
25 AUG	8.2	. 1	6.6	72	- 9	4.8	42	1.0	.04	.57
08	8.4	.1	6.9	81	62	28	8	.99	. 05	.58
23 SEP					5	2.2				
27	9.0	. 1	6.7	68	7	4.3	74	1.0	.07	.65
	W.TMD.O	HITTO	NITRO-					Piloa		
DATE	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, NH4 + ORG. SUSP. TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHATE, TOTAL (MG/L AS PO4)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
DATE	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, NH4 + ORG. SUSP. TOTAL (MG/L	GEN, AM- MONIA + ORGANIC DIS. (MG/L	GEN, TOTAL (MG/L	PHORUS, TOTAL (MG/L	PHATE, TOTAL (MG/L	PHORUS, DIS- SOLVED (MG/L	PHATE, ORTHO, DIS- SOLVED (MG/L	ORGANIC TOTAL (MG/L	ORGANIC DIS- SOLVED (MG/L
OCT 12	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, NH4 + ORG. SUSP. TOTAL (MG/L	GEN, AM- MONIA + ORGANIC DIS. (MG/L	GEN, TOTAL (MG/L	PHORUS, TOTAL (MG/L	PHATE, TOTAL (MG/L	PHORUS, DIS- SOLVED (MG/L	PHATE, ORTHO, DIS- SOLVED (MG/L	ORGANIC TOTAL (MG/L	ORGANIC DIS- SOLVED (MG/L
OCT 12 23	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, NH4 + ORG. SUSP. TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHATE, TOTAL (MG/L AS PO4)	PHORUS, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ORGANIĆ TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L
OCT 12 23 DEC 01	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, NH4 + ORG. SUSP. TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHATE, TOTAL (MG/L AS PO4)	PHORUS, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ORGANIĆ TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)
OCT 12 23 DEC 01 FEB	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, NH4 + ORG. SUSP. TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHATE, TOTAL (MG/L AS PO4)	PHORUS, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ORGANIĆ TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)
OCT 12 23 DEC 01 FEB 13 APR 03	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, NH4 + ORG. SUSP. TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHATE, TOTAL (MG/L AS PO4)	PHORUS, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ORGANIĆ TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)
OCT 12 23 DEC 01 FEB 13 APR 03 MAY 14	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, NH4 + ORG. SUSP. TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	GEN, TOTAL (MG/L AS N) 3.5 3.6	PHORUS, TOTAL (MG/L AS P)	PHATE, TOTAL (MG/L AS PO4) .72 .30	PHORUS, DIS - SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)
OCT 12 23 DEC 01 FEB 13 APR 03 MAY 14 JUN	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1.5 1.1 .53	GEN, NH4 + ORG. SUSP. TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	GEN, TOTAL (MG/L AS N) 3.5 3.6 1.9	PHORUS, TOTAL (MG/L AS P)	PHATE, TOTAL (MG/L AS PO4) .72 .30 .06	PHORUS, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ORGANIC TOTAL (MG/L AS C) 6.2 4.3	ORGANIC DIS- SOLVED (MG/L AS C)
OCT 12 23 DEC 01 FEB 13 APR 03 MAY 14 JUN 06 25	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1.5 1.1 .53	GEN, NH4 + ORG. SUSP. TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	GEN, TOTAL (MG/L AS N) 3.5 3.6 1.9	PHORUS, TOTAL (MG/L AS P)	PHATE, TOTAL (MG/L AS PO4) .72 .30 .06	PHORUS, DIS - SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ORGANIC TOTAL (MG/L AS C) 6.2 4.3	ORGANIC DIS- SOLVED (MG/L AS C)
OCT 12 23 DEC 01 FEB 13 APR 03 MAY 14 JUN 06 25 JUL 25	GEN, AM-MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, NH4 + ORP. SUSP. TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	GEN, TOTAL (MG/L AS N) 3.5 3.6 1.9 1.9	PHORUS, TOTAL (MG/L AS P)	PHATE, TOTAL (MG/L AS PO4) .72 .30 .06 .18	PHORUS, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	0RGANIĆ TOTAL (MG/L AS C) 6.2 4.3 12	ORGANIC DIS- SOLVED (MG/L AS C)
OCT 12 23 DEC 01 FEB 13 APR 03 MAY 14 JUN 06 25 JUL 25 AUG	GEN, AM MONIA ORGANIC TOTAL (MG/L AS N) 1.5 1.1 .53 .91 .66 .58	GEN, NH4 + ORG. SUSP. TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	GEN, TOTAL (MG/L AS N) 3.5 3.6 1.9 1.9 1.4 1.7	PHORUS, TOTAL (MG/L AS P)	PHATE, TOTAL (MG/L AS PO4) .72 .30 .06 .18 .10 .25	PHORUS, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) .69 .07 .06 .31 .25	ORGANIĆ TOTAL (MG/L AS C) 6.2 4.3 12 13	ORGANIC DIS- DIS- SOLVED (MG/L AS C)
OCT 12 23 DEC 01 FEB 13 APR 03 MAY 14 JUN 06 25 JUL 25	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1.5 1.1 .53 .91 .66 .58	GEN, NH4 + ORG. SUSP. TOTAL (MG/L AS N)	GEN, AM-MONIA + MONIA + ORGANIC DIS. (MG/L AS N)	GEN, TOTAL (MG/L AS N) 3.5 3.6 1.9 1.9 1.4	PHORUS, TOTAL (MG/L AS P)	PHATE, TOTAL (MG/L AS PO4) .72 .30 .06 .18 .10 .25	PHORUS, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) .07 .06 .31 .25	ORGANIC TOTAL (MG/L AS C) 6.2 4.3 12 13	ORGANIC DIS- SOLVED (MG/L AS C)

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BAPIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BARIUM, SUS- PENDED RECOV- ERABLE (UG/L AS BA)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
JUN 06 AUG	1100	180	180	70	0	70	2	0	2	20
08	0830	180	180	100	30	70	1	0	1	20
DATE	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO-MIUM, DIS-SOLVED (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COBALT, SUS- PENDED RECOV- ERABLE (UG/L AS CO)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)
JUN 06	10	10	2	1	1	ц	1	3	1100	390
A UG 08	10	10	3	2	1	6	4	2	1400	1000
DATE	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY SUS- PENDED RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)
JUN 06 AUG	710	7	7	0	40	10	30	<.5	.0	<.5
08	390	10	10	0	40	10	30	<.5	<.0	<.5
DA 1 JUN	SEL NIU TOT (UG	M, PEN AL TOT /L (UC	JM, SEL JS- NIU JDED DI TAL SOL G/L (UG	M, TOT S- REC VED ERA	AL PEN OV- REC BLE ERA /L (UG	DED SILV OV- DI BLE SOL	S- REC VED ERA /L (UG	AL PEN OV- REC BLE ERA	S- DED ZIN OV- DI BLE SOL /L (UG	S- VED
O6. AUG		0	0	0	0	0	0	20	0	20
08.		0	0	0	0	0	0	30	25	5
		(NGTH PER		CHLOR-A PERI-	CHLOR-B PERI-				

	OF	PERI- PHYTON	PERI-	PERI-	PERI-
	EXPO-	BIOMASS	PHYTON	PHYTON	PHYTON
	SURE	TOTAL	BIOMASS	CHROMO-	CHROMO-
	(DAYS)	DRY WEIGHT	ASH WEIGHT	GRAPHIC	GRAPHIC
DATE		G/SQ M	G/SQ M	(MG/M2)	(MG/M2)
JUN					
25 JUL	18	1.10	. 550	3.87	.240
25	29	2.91	2.91	16.1	.640

MAURICE RIVER BASIN

01411500 MAURICE RIVER AT NORMA, NJ--Continued PHYTOPLANKTON ANALYSES, OCTOBER 1978 TO SEPTEMBER 1979

DATE TIME	JUN	6,79		25,79 130		25,79 030		8,79 830		27,79 030
TOTAL CELLS/ML		13		170		720		570		39
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		0.0 0.0 0.0 0.0		0.4 0.4 1.3 1.3		1.0 1.0 1.0 1.1		1.1 1.1 1.1 2.0 2.3		0.9 0.9 0.9 0.9
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESCHARACIACEAE										
SCHROEDERIA OOCYSTACEAE		-		-		-	29	5		-
ANKISTRODESMUS	13	100		_	13	2	110°	20		-
KIRCHNERIELLA		-		-		-	29	5		-
TETRAEDRONSCENEDESMACEAE		-		-		-	14	2		-
SCENEDESMACEAESCENEDESMUSVOLVOCALESCHLAMYDOMONADACEAE		-	900	54	77	11	200 0	35		-
CHLAMYDOMONASZYGNEMATALESDESMIDIACEAE		-	640	38		-		-		-
COSMARIUM		-		-		-		-	130	33
CHRYSOPHYTA .BACILLARIOPHYCEAE .CENTRALESCOSCINODISCACEAECYCLOTELLA					26	4				
PENNALES ACHNANTHACEAE		-			20	4				-
ACHNANTHESFRAGILARIACEAE		-		-		-	14	2		-
FRAGILARIA NITZSCHIACEAE		-		-		-		-	260	67
NITZSCHIA		-		-	13	2	14	2		-
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAECRYPTOMONADALESCRYPTOCHRYSIDACEAE										
CHROOMONAS		-	13	8		-		-		-
CRYPTOMONADACEAECRYPTOMONAS		-		_	13	2		-		-
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAEHORMOGONALESOSCILLATORIACEAE										
LYNGBYA		_		_		_	1 60 °	27		
OSCILLATORIA		-		_	5 80	80		-		-

NOTE: 0 - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

MAURICE RIVER BASIN

01411880 MAURICE RIVER AT SHARP STREET AT MILLVILLE, NJ

LOCATION.--Lat 39°24'01", long 75°03'15", Cumberland County, Hydrologic Unit 02040206, at bridge on Sharp Street in Millville, 200 ft (61 m) downstream from Union Lake dam.

DRAINAGE AREA. -- 218 mi2 (565 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975 to 1979 (discontinued).

COOPERATION. --Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

		WATER QU	ALITY DAT	TA, WATER	YEAR OCT	OBER 1978	TO SEPTEM	IBER 1979		
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	FORM, FECAL, EC BROTH	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
0CT 12	1130	90	7.0	16.0	9.9	1.9	13	<2	19	4.0
DATE	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	DIS- SOLVED (MG/L	BICAR- BONATE (MG/L AS	BONATE (MG/L	ALKA- LINITY (MG/L AS CACO3)	TOTAL (MG/L	SOLVED (MG/L		FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 12	2.2	7.4	2.3	12	0	10	.0	7.9	11	.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA	GEN, ORGANIC	ORGANIC	NITRO- GEN,	PHOS- PHATE, TOTAL (MG/L AS PO4)	DIS-	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 12	5.4	60	1.4	.20	2.1	2.3	3.7	.28	.28	5.5
	DAT	TIM E	ALUM INUM DIS SOLV E (UG/ AS A	I, S- ARSEN ED TOTA L (UG)	BERY LIUM TOTA IIC RECO L ERAF 'L (UG/	I, MIUM AL TOTA OV- RECO BLE ERAB 'L (UG/	COPPE L TOTA V- RECO LE ERAB L (UG/	L TOTA V- RECO LE ERAB L (UG/	Ĺ V- LE L	
	OCT 12.	113	0	50 1	50	0 <	10	3 10	00	
		DATE	TOTAL RECOV- ERABLE (UG/L	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV-	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)		
		OCT 12	30	<.5	9	0	10	0		

34 MAURICE RIVER BASIN

01412000 MENANTICO CREEK NEAR MILLVILLE, NJ (Formerly published as Manantico Creek near Millville)

LOCATION.--Lat 39°25'12", long 74°58'00", Cumberland County, Hydrologic Unit 02040206, on right bank at upstream side of Mays Landing Road (Route 552), 0.9 mi (1.4 km) downstream of Menantico Lake, 4.0 mi (6.4 km) northeast of Millville, and 7.0 mi (11.3 km) upstream from mouth.

DRAINAGE AREA. -- 22.3 mi2 (57.8 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1931 to September 1957, October 1977 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 36.63 ft (11.165 m) Wational Geodetic Vertical Datum of 1929.

REMARKS. -- Water-discharge records good.

AVERAGE DISCHARGE.--28 years (1931-57, 1978-79), 38.2 ft3/s (1.082 m3/s), 23.26 in/yr (591 mm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discnarge, 1,050 ft 3 /s (29.7 m 3 /s) Aug. 20, 1939 (gage height, 6.21 ft or 1.893 m) from rating curve extended above 300 ft 3 /s (8.5 m 3 /s); minimum, 1.4 ft 3 /s (0.040 m 3 /s) Aug. 16-18, 1936.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above pase of 125 ft3/s (3.54 m3/s) and maximum (*):

Date		Time	Discha (ft³/s)		Gage H (ft)	leight (m)	Date		Time	Dischar (ft³/s) (ge (m³/s)	Gage H	eight (m)
Jan. Jan. Feo. Mar.	22 25 25 7 9	0315 1430 1915 1245 1215	264 110 *519 262 165	7.48 3.12 14.7 7.42 4.67	3.65 2.36 5.11 3.55 2.74	1.112 0.719 1.558 0.082 0.835	Mar. May June Aug.	25 14 2 4	1315 2145 1030 0215	133 133 163 149	3.77 3.77 4.62 4.22	2.43 2.43 2.72 2.59	0.741 0.741 0.829 0.789

DISCHARGE. IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

Minimum discharge, 19 ft3/s (0.54 m3/s) Oct. 12, 13, 14, 16, 24, 25.

		DISCH	IARGE, IN	COBIC FEI	MEA	AN VALUES	IN IEAN OC	JOBER 191	6 10 SEF1	ENDER 191	3	
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1 2 3 4 5	20 24 25 25 25	21 21 21 21 23	41 35 31 43 65	36 46 77 62 46	54 50 48 49	119 99 88 81 77	53 55 59 63 70	50 47 45 45 45	77 153 110 101 121	44 45 43 42 45	33 34 72 136 86	37 36 35 36 36
6 7 8 9	24 23 22 21 20	24 24 22 21 21	60 46 39 39 46	42 44 69 81 59	44 45 45 44 43	130 246 178 153 112	63 55 52 54 66	43 42 40 39 37	101 83 67 59 54	44 41 37 36 36	52 42 39 36 34	54 80 56 42 39
11 12 13 14 15	20 19 19 19	24 27 26 25 24	43 38 35 32 30	47 42 42 52 52	42 41 42 42 42	101 103 88 80 78	61 55 54 63 84	36 36 39 104 111	62 110 93 65 55	37 37 36 36 38	47 67 89 70 51	36 34 33 31 32
16 17 18 19 20	19 27 29 28 26	24 24 25 25 24	30 31 30 29 28	45 42 39 36 37	43 42 41 41 44	72 68 66 64 62	69 59 54 51 49	71 55 49 52 54	50 63 111 85 62	37 35 37 62 54	42 38 36 39 39	31 29 28 26 26
21 22 23 24 25	24 24 22 19	24 23 22 24 23	36 39 36 35 59	151 229 126 87 104	44 50 57 97 422	61 60 58 73 125	46 45 43 43	52 49 47 45 83	54 50 55 68 63	43 39 37 46 49	37 37 36 36 38	26 47 85 74 51
26 27 28 29 30 31	20 21 21 21 21 21	22 25 32 37 43	67 50 41 35 32 32	91 73 66 65 60 56	461 286 166 	103 71 62 58 52 51	45 69 72 65 57	98 67 54 50 52 51	54 49 46 44 43	42 39 36 34 36 35	66 71 54 51 47 42	42 38 37 37 39
TOTAL MEAN MAX MIN CFSM IN.	687 22.2 29 19 1.00 1.15	742 24.7 43 21 1.11 1.24	1233 39.8 67 28 1.79 2.06	2104 67.9 229 36 3.05 3.51	2472 88.3 461 41 3.96 4.12	2839 91.6 246 51 4.11 4.74	1716 57.2 84 42 2.57 2.86	1688 54.5 111 36 2.44 2.82	2208 73.6 153 43 3.30 3.68	1258 40.6 62 34 1.82 2.10	1597 51.5 136 33 2.31 2.66	1233 41.1 85 26 1.84 2.06

CAL YR 1978 TOTAL 16137 MEAN 44.2 MAX 233 MIN 19 CFSM 1.98 IN 26.92 WTR YR 1979 TOTAL 19777 MEAN 54.2 MAX 461 MIN 19 CFSM 2.43 IN 32.99

COHANSEY RIVER BASIN 35 01412800 COHANSEY RIVER AT SEELEY, NJ

LOCATION.--Lat 39°28'21", long 75°15'21", Cumberland County, Hydrologic Unit 02040206, on right bank just downstream from bridge on Silver Lake Road, 0.6 mi (1.0 km) south of Seeley, 2.6 mi (4.2 km) east of Shiloh, 4.1 mi (6.6 km) north of Bridgeton, and 22.5 mi (36.2 km) upstream from mouth.

DRAINAGE AREA. -- 28.0 mi2 (72.5 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1977 to current year.

GAGE. -- water-stage recorder. Altitude of gage is 27 ft (8.2 m), from topographic map.

REMARKS.--Water-discharge records good. Flow diverted above gage during summer months for irrigation.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,490 ft 3 /s (42.2 m 3 /s) Feb. 25, 1979, gage height, 6.84 ft (2.084 m); minimum daily, 14 ft 3 /s (0.40 m 3 /s) Oct. 1 - 4, 1977.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 250 ft3/s (7.08 m3/s) and maximum (*):

Date		Time	Discha (ft ³ /s)	arge (m³/s)	Gage H	eight (m)	Date		Time	Discha (ft ³ /s)		Gage H	leight (m)
Jan. Feb.	21 25	0745 0445	576 *1490	16.3	5.71 6.84	1.740 2.084	June Sept.	12 6	0100 2115	452 276	12.8	5.47 5.03	1.667
June	1	1830	312	8.84	5.13	1.564							

Minimum discharge, 19 ft³/s (0.54 m³/s) Oct. 8.

		DISC	HARGE, IN	CUBIC FE	ET PER SEG	COND, WATE AN VALUES	R YEAR O	CTOBER 197	78 TO SEPT	TEMBER 197	79	
DAY	OCT	. NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1 2 3 4 5	21 22 22 24 25	25 25 24 25 26	30 26 23 54 63	29 64 79 42 30	35 33 34 32 30	57 51 47 42 42	36 40 45 46 47	38 36 36 39 40	133 74 51 108 79	36 36 34 34 38	30 49 75 80 42	25 24 25 25 28
6 7 8 9	24 22 21 21 23	24 25 25 24 24	41 30 27 42 54	31 38 78 66 37	31 32 31 30 29	70 79 54 45 41	40 36 34 46 53	36 36 36 37 37	50 45 40 38 34	32 31 29 29 30	32 29 27 25 35	154 146 51 32 28
11 12 13 14 15	22 22 22 23 21	25 23 23 24 24	34 28 27 26 24	31 29 34 49 35	29 30 28 28 29	57 51 42 44 41	41 40 40 55 48	37 40 42 51 45	155 256 53 38 34	30 30 32 28 26	99 120 53 29 25	30 29 29 29 41
16 17 18 19 20	21 44 30 27 25	26 26 36 28 25	24 28 24 24 24	30 30 29 26 34	29 28 27 33 31	38 38 36 36 37	41 39 38 36 36	40 37 39 41 39	33 48 44 34 33	27 30 68 83 42	24 24 28 27 27	30 27 28 29 27
21 22 23 24 25	24 23 22 24 23	24 24 25 24	34 28 25 29	289 220 60 69 64	31 35 36 244 1030	36 36 36 59 56	36 35 36 37 38	39 40 41 53 99	32 38 120 51 40	35 30 32 40 37	27 25 24 28 34	28 93 96 47 34
26 27 28 29 30 31	24 28 26 24 23 25	22 27 37 32 40	37 26 23 22 22 24	51 46 44 42 39 37	716 152 74 	43 38 36 37 36 36	46 70 51 41 38	62 42 40 47 108 81	37 37 37 36 34	33 31 29 31 51	42 61 93 36 50 32	33 32 31 35 40
TOTAL MEAN MAX MIN CFSM IN.	748 24.1 44 21 .86	786 26.2 40 22 .94 1.04	978 31.5 63 22 1.13 1.30	1782 57.5 289 26 2.05 2.37	2927 105 1030 27 3.75 3.89	1397 45.1 79 36 1.61 1.86	1265 42.2 70 34 1.51 1.68	1434 46.3 108 36 1.65 1.91	1842 61.4 256 32 2.19 2.45	1111 35.8 83 26 1.28 1.48	1332 43.0 120 24 1.54 1.77	1306 43.5 154 24 1.55 1.74

CAL YR 1978 TOTAL 14228 WTR YR 1979 TOTAL 16908 MEAN 39.0 MAX 553 MEAN 46.3 MAX 1030 MIN 21 CFSM 1.39 IN 18.90 MIN 21 CFSM 1.65 IN 22.46

COHANSEY RIVER BASIN

01412800 COHANSEY RIVER AT SEELEY, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
FEB 14	1045	28	240	6.3	2.0	13.2	2.2	33	13	62
APR		47		6.9						
MAY	1030		207		12.0	10.6	1.5	49	33	55
22 JUL	1145	40	219	6.9	17.5	8.0	1.2	540	240	60
09 AUG	1100	30	220	4.2	19.5	8.3	1.6	230	90	59
09	1100	26	235	5.9	23.0	7.1	1.3	240	170	54
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
FEB										
14 APR	12	7.8	13	3.9	15	0	12	25	28	.0
05 MAY	11	6.7	11	3.8	15	0	12	24	25	.0
22 JUL	12	7.3	14	4.1	5	0	4	21	26	.1
09	12	7.1	14	3.9	0	0	0	22	27	.1
AUG 09	11	6.4	15	4.9	7	0	6	17	27	-1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
FEB										
14 APR	9.3	145	5.5	.30	1.3	1.6	7.1	.49	.20	3.5
05 MAY	6.1	116	4.4	.20	.70	.90	5.3	.12	.12	3.8
22	7.4	141	5.4	.20	.60	.80	6.2	.08	.08	2.5
JUL 09	6.4	134	3.9	<.10		1.7	5.6	.17	.17	4.5
AUG 09	8.2	148	3.7	.07	2.0	2.1	5.8	.16	.16	6.5

01413015 COHANSEY RIVER AT BRIDGETON, NJ

LOCATION.--Lat 39°25'54", long 75°14'11", Cumberland County, Hydrologic Unit 02040206, at bridge on Washington Street in Bridgeton, 1.3 mi (2.1 km) downstream from Sunset Lake, and 18.6 mi (29.9 km) upstream from mouth.

DRAINAGE AREA. -- 47.3 mi2 (122.5 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO MHOS)	P	1	EMPER- ATURE DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND BIO- CHEM- ICAL, 5 DAY (MG/L)	, C	COLI- PORM, PECAL, EC BROTH MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
FEB 14	1215	24	9	6.7	1.5	11.6	3.	1	2	<2	52	10
APR 05	1240	20	8	6.8	13.5	9.0	2.	1	70	8	51	10
JUN 11	1030	18	3	6.5	21.0	7.2	6.	6	5400	9200	42	8.7
JUL 09	1245	20		6.2	22.5	5.7	3.		330	330	80	18
AUG			-									
09	1245	23	5	6.0	26.5	2.6	3.	2	1100	330	65	10
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVEI (MG/I	DI SOL (MG	UM, BI S- BO VED /L	CAR- DNATE (MG/L AS (CO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/I AS CACO3	, s	ULFATE DIS- SOLVED MG/L S SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
FEB	V. 2											
14 APR	6.6	20		4.0	22	0	1	8	25	28	.0	9.6
05 JUN	6.3	14		4.1	24	0	2	0	24	23	.0	6.9
11 JUL	4.8	10		3.6	20	0	1	6	17	18	.1	6.8
09 AUG	8.6	5.	8	4.1	12	0	1	0	34	18	.2	.6
09	9.6	56		5.9	29	0	2	4	24	90	-1	7.2
DAT	DI	DUÉ 1 80 . C NO S- 1 VED (ITRO- GEN, 2+N03 OTAL MG/L S N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	GE	RO- GEN, EN, MONI NIC ORGA PAL TOTA V/L (MC	IA + N ANIC PAL T 3/L (ITRO- GEN, OTAL MG/L S N)	PHOS PHAT TOTA (MG/ AS PO	E, DI L SOL L (MG	TE, HO, CARE S- ORGA VED TOT /L (MG	NIĆ PAL P/L
FEB												
14. APR	••	140	4.5	.50)	.70	.2	5.7	1.	3	.78	4.2
05. JUN		110	3.8	.40)	.60	.0	4.8		19	.13	4.0
11. JUL		104	2.0	.30) 1	.3 1	.6	3.6	,	51	.31	9.4
09.		146	2.8	<.10)	4	1.4	7.2		56	.22	9.4
AUG 09.		262	3.4	.12	2 2	.8 2	2.9	6.3		92	.21	6.9

CAL YR 1978 WTR YR 1979

TOTAL

1830015

1961980

01434000 DELAWARE RIVER AT PORT JERVIS, NY

LOCATION.--Lat 41°22'14", long 74°41'52", Pike County, Pa., Hydrologic Unit 02040104, on right bank 250 ft (76 m) downstream from bridge (on U.S. Highways 6 and 209) between Port Jervis, N.Y. and Matamoras, Pa., 1.2 mi (1.9 km) upstream from Neversink River, and 6.5 mi (10.5 km) downstream from Mongaup River. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- 3,076 mi2 (7,967 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1904 to current year.

REVISED RECORDS .-- WSP 756: Drainage area. WSP 1031: 1905-36. WRD NY 1971: 1970.

GAGE.--Water-stage recorder. Datum of gage is 415.35 ft (126.599 m) National Geodetic Vertical Datum of 1929.
October 1904 to August 13, 1928, nonrecording gage at bridge 250 ft upstream at present datum; operated by U.S.
Weather Bureau prior to June 20, 1914.

REMARKS.--Records good. Flow regulated by Lake Wallenpaupack and by Toronto, Cliff Lake, and Swinging Bridge Reservoirs (see Reservoirs in Delaware River Basin) and smaller reservoirs. Large diurnal fluctuations at medium and low flows caused by powerplants on tributary streams. Subsequent to September 1954, entire flow from 371 mi² (961 m²) of drainage area controlled by Pepacton Reservoir, and subsequent to October 1963, entire flow from 454 mi² (1,176 km²) of drainage area controlled by Cannonsville Reservoir (see Reservoirs in Delaware River Basin). Part of flow from these reservoirs diverted for New York City municipal supply. Remainder of flow (except for conservation releases and spill) impounded for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 233,000 ft³/s (6,600 m³/s) Aug. 19, 1955, gage height, 23.91 ft (7.288 m), from floodmarks in gage house, from rating curve extended above 89,000 ft³/s (2,520 m³/s) on basis of slope-area measurement of peak flow; minimum observed, 175 ft³/s (4.96 m³/s) Sept. 23, 1908, gage height, 0.6 ft (0.18 m).

EXTREMES OUTSIDE PERIOD OF RECORD,--The U.S. Weather Bureau reported a discharge of 205,000 ft 3 /s (5,810 m 3 /s) Oct. 10, 1903, gage height, 23.1 ft (7.04 m), from rating curve extended above 70,000 ft 3 /s (1,980 m 3 /s) by velocity-area studies; stage on Mar. 8, 1904, was 25.5 ft (7.77 m), ice jam.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 68,000 ft³/s (1,930 m³/s) Mar. 6, gage height, 11.88 ft (3.621 m); minimum, 905 ft³/s (25.6 m³/s) Sept. 20, gage height, 1.81 ft (0.552 m); minimum daily, 1,210 ft³/s (34.3 m³/s) July 22.

					ME	EAN VALUES	5					
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1450	1970	1970	2310	6550	8750	8350	9430	12400	1470	1600	1700
2	1530	2070	1650	18000	5660	9130	8230	8430	10200	1880	1680	1730
3	1470	1970	1580	41000	4980	8920	8800	7640	8750	2030	1880	1530
4	1680	1700	1530	17300	4850	7840	8310	7840	8960	1530	1550	1730
5	1720	1680	1930	10400	4790	19300	8230	8030	7450	1400	1370	2270
6	1930	1820	2710	7490	4100	63000	8150	6510	6550	1450	1450	4980
7	1840	1700	2570	6550	4100	47500	7010	6210	5840	1370	1480	7190
8	1370	1680	2480	10800	3600	29700	5910	5700	5250	1400	1320	5180
9	1510	1840	3630	14400	3100	20100	6780	5490	4080	1370	1500	2500
10	1450	1860	7990	10000	3300	15300	11200	5320	2990	1470	1720	2070
11	1730	1500	6550	7760	3100	17500	11300	4950	3610	1530	1990	2500
12	1950	1450	4950	5910	3200	17000	10400	3880	4470	1790	1950	2290
13	1560	1650	4230	5180	2900	13500	10100	3140	4350	1770	2170	1840
14	1630	1600	4080	5110	3000	11700	9690	3290	3370	1750	1480	1810
15	2190	1500	3420	6050	3100	11400	11900	3090	2850	1560	1680	1660
16	2570	1600	2710	5350	3000	9730	12100	2460	2890	1530	1240	2010
17	1950	1450	2570	4850	2900	8800	11700	2290	2190	1840	1340	1750
18	1480	1250	2710	4540	2800	7950	10800	2130	2090	2350	1360	1560
19	1400	1310	2330	3910	2800	7490	9560	2330	1970	2150	1600	1420
20	1430	2110	1860	4470	5800	7080	8590	2110	1810	1810	1600	1390
21	1580	1820	2500	4380	2700	6780	7160	2590	1790	1430	1730	1580
22	1630	1610	3940	11000	2900	6660	5590	2460	1610	1210	1580	2460
23	1430	1660	3370	12400	2800	6660	5590	2420	1370	1510	1430	3040
24	1630	1510	2710	10100	3700	6700	5150	6400	1390	1630	1500	2920
25	1400	1560	2290	29800	6000	13400	4660	23300	1650	1750	1990	2820
26	1580	2010	2420	29600	11000	18000	4110	33100	1700	1610	1470	2400
27	1680	2310	2920	16500	12200	14800	5450	31600	1370	1680	1450	2290
28	3370	1990	3010	12400	9640	12400	13700	23500	1530	1610	1630	2130
29	2640	2050	2480	10300		11000	12100	21000	2150	1530	1470	2110
30	2050	2640	1990	8880		10700	10300	19000	1750	1420	1510	1630
31	1990		1860	7870		9640		15900		1310	1580	
TOTAL	54820	52870	92940	344580	125570	458430	260920	281540	118380	50140	49300	72490
MEAN	1768	1762	2998	11120	4485	14790	8697	9082	3946	1617	1590	2416
MAX	3370	2640	7990	41000	15500	63000	13700	33100	12400	2350	2170	7190
MIN	1370	1250	1530	2310	2700	6660	4110	2110	1370	1210	1240	1390

43500

63000

MIN

01434000 DELAWARE RIVER AT PORT JERVIS, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: January 1973 to September 1973.
WATER TEMPERATURES: February 1957 to September 1960, January 1973 to September 1973, June 1974 to current year.
SUSPENDED-SEDIMENT DISCHARGE: February 1957 to September 1960, March 1970 to June 1976.

INSTRUMENTATION. -- Temperature recorder since January 1973.

REMARKS.--No temperature record Mar. 22, 23, Apr. 9-30, due to instrument malfunctions.

EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURES: Maximum (water years 1957-59, 1973-79), 29.5°C July 19, 1959, Aug. 3, 1975; minimum (water years 1958-60, 1973, 1975-79), freezing point on many days during winter periods.

EXTREMES FOR CURRENT YEAR.--WATER TEMPERATURES: Maximum, 28.0°C Aug. 5; minimum, freezing point on several days during winter period.

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		остове	R		NOVEMBE	R		DECEMBE	R		JANUAR	Y
1	16.0	15.0	15.5	10.0	9.0	9.5	4.0	2.5	3.0	1.0	.5	.5
2	16.5	15.0	16.0	10.0	8.5	9.0	3.0	2.0	2.5	1.0	.5	.5
3	15.5	14.0	15.0	9.5	8.5	9.0	2.5	1.0	1.5	1.0	.5	.5
4	15.0	14.0	14.0	9.5	8.0	9.0	3.0	1.5	2.0	•5	•5	.5
5	14.5	13.5	14.0	9.0	8.0	8.5	3.5	2.5	3.0	•5	•0	•5 •5 •5
6	16.0	14.5	15.0	9.5	8.0	8.5	3.0	2.0	2.5	•5	.5	.5
7	15.0	14.5	15.0	9.5	8.5	9.0	3.0	2.0	2.5	.5	•5	.5
8	14.5	12.5	13.5	9.0	8.5	9.0	4.0	2.5	3.5	.5	.5	.5
9	12.5	11.5	12.0	9.0	8.5	9.0	4.0	3.5	4.0	.5	.5	.5
10	13.0	11.5	12.5	9.0	8.0	8.5	3.5	1.5	2.5	.5	.5	•5 •5 •5
11	14.5	12.5	13.5	9.0	8.5	8.5	1.5	•5	1.0	.5	.5	•5
12	15.0	14.0	14.5	9.0	7.5	8.0	1.0	• 0	.5	.5	.5	.5
13	15.5	14.0	15.0	7.5	7.0	7.0	2.0	1.0	1.5	•5	.5	.5
14	15.5	14.0	15.0	8.0	7.0	7.5	1.5	1.0	1.0	.5	.5	.5
15	14.0	11.5	12.5	8.0	8.0	8.0	1.0	.0	.5	.5	•5	.5 .5
16	11.5	10.5	11.0	8.0	7.5	8.0	1.0	.5	.5	•5	.5	.5
17	11.5	10.0	11.0	7.5	7.0	7.0	2.0	•5	1.0	.5	.5	.5
18	11.0	9.5	10.0	9.0	7.5	8.5	1.0	.5	.5	.5	. 5	.5
19	11.0	10.0	10.5	8.5	8.0	8.0	1.5	.5	.5	1.0	.5	.5
20	10.5	19.0	10.5	8.0	6.5	7.0	•5	.5	.5	.5	.5	.5 .5 .5
21	11.0	9.5	10.5	7.0	5.5	6.0	.5	.5	.5	.5	.0	.5
22	12.0	10.0	11.0	5.5	4.5	5.0	•5	•5	.5	.5	.0	.5
23.	12.5	11.0	11.5	5.0	4.0	4.5	.5	.5	.5	1.0	.5	.5
24	11.5	10.0	10.5	4.5	4.0	4.0	.5	.5	.5	1.0	.5	.5
25	10.5	9.5	10.0	4.5	3.5	4.0	.5	•5	.5	1.0	.5	1.0
26	11.0	10.5	10.5	3.5	1.5	2.5	.5	.5	.5	1.0	.5	.5
27	11.0	10.0	10.5	2.0	1.0	1.0	.5	.5	.5	1.5	1.0	1.5
28	10.5	9.5	10.0	2.5	1.0	1.5	.5	.5	.5	2.0	1.5	1.5
29	10.5	9.5	10.0	3.0	2.0	2.5	.5	.0	.5	2.0	1.5	1.5
30	10.0	8.5	9.0	4.0	2.0	3.0	1.0	.0	.5	1.5	1.0	1.5
31	10.5	8.5	9.5				•5	•5	•5	1.5	1.0	1.0
MONTH	16.5	8.5	12.0	10.0	1.0	6.5	4.0	•0	1.5	2.0	.0	.5

DELAWARE RIVER BASIN

01434000 DELAWARE RIVER AT PORT JERVIS, NY--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	RY		MARCH	4		APRIL			MAY	
1	1.0	.5	.5	2.0	.5	1.5	9.5	8.0	8.5	14.0	12.5	13.5
2	.5	.5	-5	5.0	1.5	1.5	8.5	7.0	8.0	13.5	12.0	13.0
3	•5 •5	•5	•5	1.5	1.5	1.5	7.5	6.0	6.5	13.0	12.0	12.5
5	.5	.5	.5 .5	2.0	1.0	1.5	6.0	5.5	5.5	13.0	12.0	12.0
6	.5	.5	.5	2.0	•5	1.5	6.5	5.0	5.5	14.0	12.0	12.5
7	•5	•5	.5	3.0	2.0	2.5	5.5	4.0	5.0	15.0	12.5	12.5
8	1.0	+5	•5	3.0	2.5	3.0	6.0	4.0	5.0	17.0	14.0	15.0
10	.5	.5	.5	3.5 4.0	3.0	3.0 3.5				18.5 19.5	16.0	17.0 18.5
11	.5	.5	.5	3.5	2.5	3.5				19.5	18.0	19.0
12	.5	.5	.5	2.5	2.0	2.0				19.5	17.5	18.5
13	•5	•5	•5	2.5	1.0	5.0				19.0	17.5	18.0
15	•5	•5	.5	5.5 3.5	2.5	3.0				18.0	17.5 16.5	18.0 17.5
16	.5	.5	.5	2.5	1.5	2.0				20.0	17.5	
17	•5	.5	.5	4.5	1.5	2.0				19.5	16.5	18.0
18	•5	.5	.5	4.0	2.5	3.0				19.0	16.5	17.5
19 20	•5	.5	•5	5.0	3.0	4.0				17.5	16.0	16.5
			•5	6.0	4.0	5.0				17.5	15.5	16.0
55	1.0	.5	.5	7.0	5.0	6.0				18.5	17.5	17.5
23	•5	.5	.5							18.0	16.5	17.5 17.5
24	1.0	.0	•5	8.5	7.0	8.0				16.5	14.5	16.0
25	1.0	•0	.5	9.0	7.5	8.0				14.5	14.0	14.5
26	.5	•5	.5	7.5	5.0	6.5				14.0	13.5	14.0
27	1.0	.5	1.0	5.0	3.5	4.5				13.5	13.0	13.5
29				6.0	4.5	5.0				13.0 13.5	12.0	13.0
30				7.0	6.0	6.5				15.0	13.5	14.0
31				8.0	6.5	7.5				15.0	14.0	14.5
MONTH	1.5	•0	.5	9.0	•5	3.5	9.5	4.0	6.0	20.0	11.0	15.5
DAY	MAX	MIN	MEAN						1	-		
JA.	יחחח	1,14	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
,		JUNE			JULY			AUGUST			SEPTEME	ER
1	15.5	14.5	15.5	22.5	20.5	21.5	26.5	24.5	25.5	24.0	21.5	23.0
3	18.0	16.0	17.0	21.5	20.5	21.0	25.0	24.0	25.0	23.5	55.0	22.5
4	18.0	17.5	17.5 18.0	23.0	20.0 19.5	21.5	26.5 27.5	24.5	25.5	24.5	22.5	23.0
5	18.0	17.5	18.0	20.0	18.0	19.0	28.0	25.5	26.5	23.5	22.0	22.5
6	19.0	17.5	18.5	20.0	17.0	19.0	27.0	24.5	26.0	22.0	20.5	21.0
8	19.0	17.5	18.0	20.5	17.5	19.0	25.5	22.5	24.5	21.5	20.0	20.5
9	20.0	17.5	19.0	22.5	19.0 20.5	21.0	25.0	23.0	24.0	20.5	19.5	20.0
10	20.5	19.5	20.0	22.5	20.0	21.5	25.0 24.5	22.5	23.5	20.0	18.0 17.5	19.0
11	22.5	20.5	21.5	24.0	21.0	22.5	23.5	21.5	22.5	20.5	18.5	20.0
12	20.5	16.5	18.5	24.5	21.0	23.0	21.0	19.0	20.0	20.5	18.5	19.5
13	18.0	16.0	17.0	26.0	55.0	24.0	20.0	18.0	19.0	20.5	18.5	19.5
15	18.5	16.0 17.5	17.0	26.5	23.5	25.0 25.5	20.0 19.0	19.0	19.0	20.5	19.5	20.5
16	22.0	19.0	20.0	26.5	23.5	25.0	19.0	17.0	18.0	19.5	17.5	19.0
17	23.0	19.5	21.0	26.5	23.0	24.5	20.0	17.0	18.5	20.0	17.5	19.0
18	23,5	20.5	21.5	24.0	22.5	23.5	19.0	17.5	18.0	20.0	19.0	19.5
20	23.5	19.0	21.5	24.5	22.0	23.0	19.5	17.5	18.5	19.5	17.0	18.5
			21.0	24.5	22.0	23.0	21.0	18.5	20.0	18.0	16.0	17.0
55	23.0	19.5	21.5	25.5 26.0	24.0	24.0	21.5	19.5	20.5	17.0	15.5	16.0
23	22.0	20.0	21.0	26.0	23.5	25.0 25.0	23.0	20.5	55.0	16.5	16.0	16.0
24	22.0	19.0	20.0	25.5	22.0	24.0	22.5	21.5	22.0	16.5	15.0	15.5
25	20.5	17.0	18.5	26.5	23.0	24.5	23.5	22.0	22.5	16.0	14.5	15.5
26 27	21.5	17.5	19.5	26.0	23.5	25.0	24.5	21.5	23.0	17.0	15.0	16.0
28	22.5	19.5	20.5	26.5	23.0	25.0	24.5	23.0	24.0	17.5 17.0	15.5	16.5
29	22.0	19.5	20.5	25.5	24.0	24.5	24.5	23.5	24.0	17.5	16.5	17.0
30	21.5	19.5	20.5	26.0	23.5	25.0	25.0	23.0	24.0	17.5	17.0	17.5
31				26.5	23.5	25.0	25.0	23.0	24.0			
MONTH	23.5	14.5	19.5	27.0	17.0	23.0	28.0	17.0	22.5	24.5	14.5	19.0

01437500 NEVERSINK RIVER AT GODEFFROY, NY

LOCATION.--Lat 41°26'28", long 74°36'07", Orange County, Hydrologic Unit 02040104, on right bank just upstream from highway bridge on Graham Road, 0.5 mi (0.8 km) downstream from Basher Kill, 0.8 mi (1.3 km) southeast of Godeffroy, 1.7 mi (2.7 km) south of Cuddebackville, and 8.5 mi (13.7 km) upstream from mouth.

DRAINAGE AREA . - - 302 mi2 (782 km2).

PERIOD OF RECORD. -- August to October 1903, August 1909 to April 1914 (gage heights and discharge measurements, also twice-daily figures of discharge for January 1911 to December 1912, which do not represent daily mean discharges because of diurnal fluctuation), and July 1937 to current year. August to October 1903, published as "Navesink River at Godeffroy, NY.'

REVISED RECORDS .-- WSP 821: Drainage area. WSP 1502: 1951(M).

GAGE.--Water-stage recorder. Datum of gage is 459.66 ft (140.104 m) National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Apr. 30, 1914, nonrecording gages at same site (August to October 1903 at datum 0.98 ft or 0.299 m higher).

REMARKS:--Records good except those for winter periods, which are poor. Prior to 1949, diurnal fluctuation at low and medium flow caused by powerplant at Cuddebackville. Subsequent to June 1953, entire flow from 91.8 mi² (237.8 km²) of drainage area controlled by Neversink Reservoir (see Reservoirs in Delaware River Basin). Part of flow diverted for New York City municipal supply. Remainder of flow (except for conservation releases and spill), impounded for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 33,000 ft³/s (935 m³/s) Aug. 19, 1955, gage height, 12.49 ft (3.087 m), from rating curve extended above 11,000 ft³/s (312 m³/s) on basis of slope-area measurement of peak flow; practically no flow several times in July 1911.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,700 ft³/s (105 m³/s) Jan. 2 (estimated); maximum gage height, 8.47 ft (2.582 m) Feb. 25 ice jam; minimum discharge, 81 ft³/s (2.29 m³/s) Oct. 4, Nov. 15; minimum gage height, 2.82 ft (0.860 m) Nov. 15.

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979
MEAN VALUES DAY OCT MAR AUG SEP NOV DEC JAN FEB APR MAY JUN JUL 174 157 184 167 157 597 470 525 97 41R 245 217 563 512 21 22 23 311 138 253 1110 30 TOTAL MEAN MAX 784

CAL YR 1978 TOTAL 156427 WTR YR 1979 TOTAL 162656 MEAN 429 MEAN 446 MIN H3 MAX

01438500 DELAWARE RIVER AT MONTAGUE, NJ

LOCATION.--Lat 41°18'33", long 74°47'44", Sussex County, Hydrologic Unit 02040104, on right bank 0.4 mi (0.6 km) upstream from toll bridge on U.S. Route 206 at Montague, 0.8 mi (1.3 km) downstream from Sawkill Creek, and at mile 246.3 (396.3 km). Water-quality samples collected from toll bridge.

DRAINAGE AREA. -- 3,480 mi2 (9,013 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1936 to September 1939 (gage heights only, published as "at Milford, PA"). October 1939 to current year. Monthly discharge only for some periods, published in WSP 1302.

GAGE.--Water-stage recorder. Datum of gage is 369.93 ft (112.755 m) National Geodetic Vertical Datum of 1929. Prior to Feb. 9, 1940, nonrecording gage on upstream side of left span of subsequently dismantled bridge at present site at datum 70 ft (21.3 m) lower.

REMARKS.--water-discharge records good. Diurnal fluctuations at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lake Wallenpaupack and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, and Neversink Reservoirs (see Delaware River Basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs (see Delaware River Basin, diversions).

AVERAGE DISCHARGE. -- 40 years, 5,961 ft3/s (168.8 m3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 250,000 ft 3 /s (7,080 m 3 /s) Aug. 19, 1955 (gage height, 35.15 ft or 10.714 m), from rating curve extended above 90,000 ft 3 /s (2,550 m 3 /s) on basis of flood-routing study; minimum, 382 ft 3 /s (10.8 m 3 /s) Aug. 24, 1954, gage height, 3.83 ft (1.167 m); minimum daily, 412 ft 3 /s (11.7 m 3 /s) Aug. 23, 1954.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage during period 1903-79, 35.5 ft (10.82 m) Oct. 10, 1903, present datum. from floodmark.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 62,600 ft³/s (1,773 m³/s) Mar. 6, gage height, 17.58 ft (5.358 m); minimum, 1,150 ft³/s (32.6 m³/s) Sept. 20.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979
MEAN VALUES DAY OCT DEC JAN FEB APR JUN JUL AUG SEP MAR MAY 1740 1820 42200 5820 9840 8540 9700 2520 2110 6900 6550 8770 31400 22500 6770 7360 6180 4930 1710 4940 6290 15200 11100 3750 5300 1980 2510 2300 2530 2500 1530 3100 8520 10600 2960 2710 2640 1850 4000 3680 1840 2750 1720 2160 1720 1850 1750 25100 22400 2430 3500 13700 2360 1820 11700 TOTAL 3460 3030 8950 57200 32300 13500 2510 8770 MEAN MIN

CAL YR 1978 TOTAL 2124890 MEAN 5822 MAX 52400 MIN 1320 WTR YR 1979 TOTAL 2184130 MEAN 5984 MAX 57200 MIN 1500

01439830 BIG FLAT BROOK AT TUTTLES CORNER, NJ

LOCATION.--Lat 41°12'00", long 74°48'56", Sussex County, Hydrologic Unit 02040104, at bridge on State Route 521 in Tuttles Corner, 0.7 mi (1.1 km) west of intersection of U.S. Route 206 with State Route 521, 1.2 mi (1.9 km) south of Layton, and 2.0 mi (3.2 km) upstream from Little Flat Brook.

DRAINAGE AREA. -- 28.3 mi² (73.3 km²).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1964, 1976 to current year.

COOPERATION. --Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

		STREAM- FLOW, INSTAN-	SPE- CIFIC CON- DUCT- ANCE	РН	TEMPER-	OXYGEN,	BIO-	COLI- FORM, FECAL,
DATE	TIME	TANEOUS (CFS)	(MICRO- MHOS)	(UNITS)	ATURE	SOLVED		BROTH (MPN)
JAN 30	1115	115	64	7.6	1.0	12.6	3.0	40
MAR 29	1115	85	72	7.7	5.0	11.8	3.0	20
MAY 23 AUG	1050	41	74	8.1	12.5	9.5	1.0	140
28	0930		94	6.8	18.0	9.9		<20
STR TOCO FEC	EP- NE	ARD- CALC	IUM SI - DI VED SOL	NE- UM, SODI S- DIS VED SOLV	UM, SI - DI ED SOI	UM, ALK S- LINI VED (MG	TY DIS- /L SOLVEI	DIS-

DATE	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
JAN									
30	<2	23	6.0	1.9	2.5	.6	8	11	4.5
MAR									
29	<2	21	5.8	1.6	3.5	.9	7	12	5.8
MAY 23	920	25	7.0	1 0	2.7	7	18	0.5	10
AUG	920	25	7.0	1.9	2.1	.7	18	9.5	4.5
28	140	34	9.2	2.6	3.5	.7	26	9.0	5.4

DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)	
JAN									
30	.1	4.6	38	<1.0	<.10	.30	.02	2.7	
MAR 29	.0	7 1	50	44.0			00		
MAY	.0	3.4	50	<1.0	<.10	1.4	.02		
23	-1	4.0	49	<1.0	<.10	.40	.02	5.2	
AUG			100						
28	.0	4.6	58	<1.0	<.10	-40	.03	4.3	

01440000 FLAT BROOK NEAR FLATBROOKVILLE, NJ

LOCATION.--Lat 41°06'24", long 74°57'09", Sussex County, Hydrologic Unit 02040104, on right bank 1.0 mi (1.6 km) upstream from Flatbrookville, and 1.5 mi (2.4 km) upstream from mouth. Water-quality samples collected at bridge 0.7 mi (1.1 km) downstream from gage at high flows.

DRAINAGE AREA. -- 65.1 mi2 (168.6 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1923 to current year.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1432: 1924(M), 1928(M), 1929, 1930(M), 1932, 1933(M), 1936, 1938(M), 1939-40, 1949(M), 1952-53(M).

GAGE.--Water-stage recorder. Concrete control since Aug. 19, 1929. Datum of gage is 347.73 ft (105.988 m) National Geodetic Vertical Datum of 1929. Prior to Jan. 6, 1926, nonrecording gage at same site and datum.

REMARKS .-- water-discharge records good. Flow occasionally regulated by ponds above station.

AVERAGE DISCHARGE. -- 56 years, 110 ft3/s (3.115 m3/s) 22.95 in/yr (583 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,560 ft³/s (271 m³/s) Aug. 19, 1955 (gage height, 12.58 ft or 3.834 m, from high-water mark in gage house) from rating curve extended above 2,000 ft³/s (56.6 m³/s) on basis of slope-area measurement of peak flow; minimum, 3.6 ft³/s (0.10 m²/s) Sept. 25, 26, 1964, Sept. 11, 1966.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 650 ft 3 /s (18.4 m 3 /s) and maximum (*):

Date		Time	Discha (ft³/s)		Gage H (ft)	leight (m)	Date		Time	Discha (ft ³ /s)		Gage H	leight (m)
Jan. Jan.	3	0445	1310 937	37.1 26.5	4.94	1.506	Mar. May	7 25	0015 0415	854 884	24.2 25.0	4.11	1.253
Jan. Feb.	25	1230	*2140 900	60.6	6.20	1.890	Sept.	6	2315	1170	33.1	4.69	1.430

Minimum discharge, 11 ft³/s (0.312 m³/s) Oct. 1, gage height, 1.82 ft (0.556 m).

		DISC	HARGE, IN	CUBIC FE		COND, WATE	ER YEAR O	CTOBER 19	78 TO SEP	TEMBER 19	79	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1 2	12 14	16 15	40 38	107 664	180 153	266 293	136 141	159 138	1 47 1 2 7	74 62	24	18 17
3 4 5	13 14 17	15 16 17	36 49 74	1040 408 277	141 130 117	301 273 439	153 150 162	127 136 122	127 141 114	52 46 57	30 28 23	23 30 23
6	29	15 15	59 52	202	107	707 696	147 127	112 102	122	45 40	21 19	418 604
8 9 10	19 19 16	14 14 18	51 133 205	654 590 322	102 107 102	404 305 273	119 167 277	99 92 90	92 86 82	38 33 31	18 16 16	180 114 84
11 12 13 14 15	16 14 14 19	16 15 14 14	127 99 90 82 72	226 170 164 167 150	100 98 96 88 82	428 313 251 233 212	202 170 162 212 281	84 82 84 95	167 375 170 122 99	30 31 31 36 33	20 54 99 51 36	68 57 49 49 72
16 17 18	31 25 21 21	15 16 34 39	66 64 61 70	127 107 104 95	72 70 61 64	173 167 153 141	226 195 170 153	84 76 70 82	86 78 72 68	33 70 72 90	29 25 23 28	55 45 40 38
20	19	31	54	104	70	133	1 44	114	62	52	27	34
21 22 23 24 25	18 18 17 16 15	25 23 23 55 55	82 95 72 62 70	301 639 335 297 1600	70 72 72 270 567	127 125 119 141 301	127 119 114 107 102	92 82 97 555 798	55 54 64 57 52	43 35 33 34 42	23 21 19 18 31	42 226 164 99 78
26 27 28 29 30 31	15 17 17 20 16 16	43 38 35 35 36	78 66 68 64 52	823 449 352 285 240 209	629 352 243 	222 180 159 159 156 144	107 266 297 226 183	573 399 281 222 186 170	46 43 46 55	35 31 29 28 30 28	45 35 28 24 22 20	70 62 54 86 88
TOTAL MEAN MAX MIN CFSM	589 19.0 40 12 .29 .34	731 24.4 55 14 .38 .42	2282 73.6 205 36 1.13 1.30	11388 367 1600 95 5.64 6.51	4317 154 629 61 2.37 2.47	7994 258 707 119 3.96 4.57	5142 171 297 102 2.63 2.94	5502 177 798 70 2.72 3.14	2962 98.7 375 43 1.52 1.69	1324 42.7 90 28 .66 .76	897 28.9 99 16 .44	2987 99.6 604 17 1.53 1.71

CAL YR 1978 TOTAL 42235 MEAN 116 MAX 1400 MIN 12 CFSM 1.78 IN 24.13 WTR YR 1979 TOTAL 46115 MEAN 126 MAX 1600 MIN 12 CFSM 1.94 IN 26.35

01440000 FLAT BROOK NEAR FLATBROOKVILLE, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

COOPERATION. --Selected field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

r	DATE	TIM	STRE FLO INST E TANE (CF	TILL)		11111	DXYGEN, DIS- SOLVED (MG/L)	OXYG DEMA BIO- CHE ICA 5 DA (MG/	ND, - HA M- NE L, (M Y A	RD- SS G/L S	CALCI DIS- SOLV (MG/ AS C	UM SI DI ED SOI L (MG	S- DI VED SOL	IUM, S: S- D: VED SO: G/L (MG	TAS- IUM, IS- LVED 3/L K)
00	Э	133	0	14	271	2.5	11.6	<	1.0	100	28		7.3	5.2	.8
	DAS		ALKA- LINITY (MG/L AS CACO3)	TOTAL (MG/L	DIS- SOLVED (MG/L	CHLC RIDE DIS- SOLV (MG/ AS C	E, RI VED SO L (N	IDE, DIS-		RES AT DE	180 G. C IS- LVED	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	CARBON,	
	OCT O3		78	.0	23	-11		.1.	3.3		141	<1.0	<.10	2.7	
DATE	TIM	IE (NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM INUM DIS SOLV (UG/ AS A	- ARS		ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	TO RE ER	JM, PAL	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)
OCT 03	133	50	920	3.3	3.4		30	0	0		0	<10	<10	<10	10
DATE	COPPI TOTA RECO ERAI (UG,	ER, LL OV- BLE L	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD RECO FM BO TOM M TERI (UG/ AS P	V. NE T TO IA RE IAL EF IG (U	JG/L	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MER TO RE ER (U	CURY TAL COV-	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
OCT 03		2	<10	40	1400	<	10	10	150		<.5	.00	9	<10	0
DATE	ZINC TOTA RECO ERAL (UG AS	AL OV- BLE	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRI TOTA IN BO TOM M TERI (UG/K	IN, DA L TO DT- IN IA- TOM	HLOR- ANE, DTAL BOT- MA- ERIAL 3/KG)		IN TOM TE	TAL BOT- MA- RIAL	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	IN BOT-
OCT 03		10	36	0	0		.0	0	.0		.0	.0	.0	.0	.0
1		ETHIO TOTA IN BO FOM M TERI (UG/K	N, CHI L TOT T- IN E A- TOM AL TER	OR, CH PAL EPO BOT- TOT MA- BO RIAL M	XIDE TO: IN IN I TTOM TOM ATL. TE	DANE PAL BOT- I MA- I RIAL	MALA- THION, TOTAL IN BOT- OM MA- TERIAL UG/KG)	OXY CHL TOT. BOT	OR, TH	TTOM	BOTT	THIN, TOT	ON, THE SOT- IN MA- TOM	ION, PHI TAL TO BOT- IN I MA- TOM RIAL TE	KA- ENE, FAL BOT- MA- RIAL /KG)
00	OT 03		.0	.0	.0	.0	0	133/	.0	.0		.0	.0	.0	0

01440200 DELAWARE RIVER BELOW TOCKS ISLAND DAMSITE, NEAR DELAWARE WATER GAP, PA

LOCATION.--Lat 41°00'42", long 75°05'09", Warren County, Hydrologic Unit 02040105, on left bank 40 ft (12 m) streamward from River Road, 1.0 mi (1.6 km) downstream from Tocks Island, 3.7 mi (6.0 km) northeast of Delaware Water Gap, PA, 4.0 mi (6.4 km) upstream from bridge on Interstate Highway 80, and at channel mile 216.1 (347.7 km).

DRAINAGE AREA. -- 3,850 mi2 (9,970 km2) approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1964 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 293.64 ft (89.501 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records poor. Diurnal fluctuation at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lake Wallenpaupack, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, and Neversink Reservoirs (see Delaware River Basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs (see Delaware River Basin, diversions).

AVERAGE DISCHARGE. -- 15 years, 6,653 ft3/s (188.4 m3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 103,000 ft 3 /s (2,920 m 3 /s) June 30, 1973, gage height, 23.82 ft (7.260 m); minimum daily, 580 ft 3 /s (16.4 m 3 /s) July 7, 8, 1965.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 73,000 ft³/s (2,067 m³/s) Jan. 26, maximum gage height, 18.59 ft (5.666 m) Jan. 23, result of ice jam; minimum daily discharge, 1,530 ft³/s (43.3 m³/s)July 23.

OCT											
001	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
2000	2450	2980	3120	11500	14000	11000	12700	17100	2780	1950	2020
1750	2520	2630	11000	10900	14200	10300	11300	14100	2370	2110	2020
											2090
											1890
2070	2230	2420	20200	7800	17000	10400	10800	10900	2230	2070	2250
2350	2020	3310	13200	6700	58000	10600	8970	9600	2000	1890	5700
2550	2300	3820	10300	6400	55500	9660	7800	8700	2110	1970	10900
2250	2020	3620	13800	6600							10400
1680	2090	4320	23100	5800							5360
1940	2250	9180	18300	5200	21900	12600	6880	4500	2000	1920	3650
1750	2270	9440	13000	5400	21100	14600	6700	4900	2060	2370	3650
2180	1730	7720	11000	5000	23500	13600			2100		3330
2370	1780	6340	9200	5100	18900	12800			2410		2950
2090	2110	5960	8800	5000	15400	12300	4600		2440		2520
2450	1800	5790	8600	5100	13700	14900	4910	5150	2210	2040	2830
3200	1800	4670	8500	5600	12700	15800	4140	4490	2030	2260	2230
			7600	5000	12100	14700	3730	3900	2410	1620	2920
	1970	3870	7000	4200	11200	14000	3290	3540	2780	1680	2550
	1920	3900	6200	4000	10300	12500	3430	3560	3430	1800	2090
1860	2110	2830	6000	4600	9850	11300	3930	3060	2660	2040	1890
1940	2690	3280	8000	4800	9460	10300	3730	2950	2400	2000	1940
2090	2300	4560	15000	4700	9020	7800	4110	2980	1780	2070	3680
2090	2110	5150	21000	4600	8910	7030	3650		1530	1860	4980
1830	2320	3850	18000	8000							4840
2040	2160	2900	45000	11000	13400	6440	27200	2320	2180	2180	4460
1780	2420	3020	56600	16800	22800	6060	39500	2920	2240	2780	3760
2020	2780	3470	35400	18600							3430
2690	2980	3890	24600	15600							3140
											3230
											2830
2470		2360	13100		12800		21900		1890	1860	
69360	67690	129310	556820	212340	572900	335910	374020	177210	70450	64710	109530
											3651
											10900
											1890
	1750 1940 2070 2350 2250 1680 2370 2180 2370 2180 2370 2090 2450 3200 2450 1940 2090 2090 1830 2040 1780 2090 2090 2090 2090 2090 2090 2090 20	1750	1750 2520 2630 1940 2470 2300 1730 2420 2250 2070 2230 2420 2350 2020 3320 2550 2300 3820 2250 2200 3620 1680 2090 4320 1940 2250 9440 2180 1730 7720 2370 1780 6340 2450 1800 5790 3200 1800 5790 3200 1800 3670 2370 1970 3970 2370 1970 3970 2370 1970 3870 1970 1920 3900 1860 2110 2830 2090 2300 4560 2090 2300 4560 2090 2300 4560 2090 210 5150 2090 210 5150 <t< td=""><td>1750 2520 2630 1000 1940 2470 2300 54700 1730 2420 2250 32800 2070 2230 2420 20200 2350 2020 3310 13200 2550 2300 3620 13800 1680 2090 4320 23100 1940 2250 9180 18300 1750 2270 9440 13000 2180 1730 7720 11000 2370 1780 6340 9200 2450 1800 5790 8600 3200 1800 5790 8600 3200 1800 4670 3500 6200 2370 1970 3870 7000 2370 1970 3870 7000 1800 2300 4560 15000 200 2300 4560 15000 2370 1970 3870 7000 1380</td><td>1750 2520 2630 1000 10900 1940 2470 2300 54700 9750 1730 2420 2250 32800 8590 2070 2230 2420 20200 7800 2350 2020 3310 13200 6700 2550 2020 3620 13800 6600 1680 2090 4320 23100 5800 1940 2250 9180 18300 5200 1750 2270 9440 13000 5400 2180 1730 7720 11000 5000 2370 1780 6340 9200 5100 2450 1800 5790 8600 5100 2450 1800 5790 8600 5100 2370 1970 3870 7000 4200 2370 1970 3870 7000 4200 1860 2110 2830 6800</td><td>1750 2520 2630 11000 10900 14200 1940 2470 2300 54700 9750 14300 1730 2420 2250 32800 8590 12400 2070 2230 2420 20200 7800 17000 2350 2020 3310 13200 6700 58000 2550 2300 3620 13800 6600 39000 1680 2090 4320 23100 5800 28700 1940 2250 9180 18300 5200 21900 1750 2270 9440 13000 5400 21100 2180 1730 7720 11000 5000 23500 2370 1780 6340 9200 5100 18900 2450 1800 5790 8600 5100 13700 3200 1800 5790 8600 5100 12700 3370 1970</td><td>1750 2520 2630 11000 10900 14200 10300 1940 2470 2300 54700 9750 14300 10800 1730 2420 2250 32800 8590 12400 10800 2070 2230 2420 20200 7800 17000 10400 2350 2020 3310 13200 6700 58000 10600 2550 2300 3620 13800 6600 39000 7760 1680 2090 4320 23100 5800 28700 7880 1940 2250 9180 18300 5200 21900 7880 1940 2270 9440 13000 5400 21100 14600 2180 1730 7720 11000 5000 23500 13600 2370 1780 6340 9200 5100 18900 12800 2090 2110 5960 8800 51</td><td> 1750</td><td> 1750</td><td> 1750</td><td> 1750</td></t<>	1750 2520 2630 1000 1940 2470 2300 54700 1730 2420 2250 32800 2070 2230 2420 20200 2350 2020 3310 13200 2550 2300 3620 13800 1680 2090 4320 23100 1940 2250 9180 18300 1750 2270 9440 13000 2180 1730 7720 11000 2370 1780 6340 9200 2450 1800 5790 8600 3200 1800 5790 8600 3200 1800 4670 3500 6200 2370 1970 3870 7000 2370 1970 3870 7000 1800 2300 4560 15000 200 2300 4560 15000 2370 1970 3870 7000 1380	1750 2520 2630 1000 10900 1940 2470 2300 54700 9750 1730 2420 2250 32800 8590 2070 2230 2420 20200 7800 2350 2020 3310 13200 6700 2550 2020 3620 13800 6600 1680 2090 4320 23100 5800 1940 2250 9180 18300 5200 1750 2270 9440 13000 5400 2180 1730 7720 11000 5000 2370 1780 6340 9200 5100 2450 1800 5790 8600 5100 2450 1800 5790 8600 5100 2370 1970 3870 7000 4200 2370 1970 3870 7000 4200 1860 2110 2830 6800	1750 2520 2630 11000 10900 14200 1940 2470 2300 54700 9750 14300 1730 2420 2250 32800 8590 12400 2070 2230 2420 20200 7800 17000 2350 2020 3310 13200 6700 58000 2550 2300 3620 13800 6600 39000 1680 2090 4320 23100 5800 28700 1940 2250 9180 18300 5200 21900 1750 2270 9440 13000 5400 21100 2180 1730 7720 11000 5000 23500 2370 1780 6340 9200 5100 18900 2450 1800 5790 8600 5100 13700 3200 1800 5790 8600 5100 12700 3370 1970	1750 2520 2630 11000 10900 14200 10300 1940 2470 2300 54700 9750 14300 10800 1730 2420 2250 32800 8590 12400 10800 2070 2230 2420 20200 7800 17000 10400 2350 2020 3310 13200 6700 58000 10600 2550 2300 3620 13800 6600 39000 7760 1680 2090 4320 23100 5800 28700 7880 1940 2250 9180 18300 5200 21900 7880 1940 2270 9440 13000 5400 21100 14600 2180 1730 7720 11000 5000 23500 13600 2370 1780 6340 9200 5100 18900 12800 2090 2110 5960 8800 51	1750	1750	1750	1750

CAL YR 1978 TOTAL 2492210 MEAN 6828 MAX 66100 MIN 1430 WTR YR 1979 TOTAL 2740250 MEAN 7508 MAX 58000 MIN 1530

Note.--Doubtful or no gage-height record Dec. 9 to July 18.

01443000 DELAWARE RIVER AT PORTLAND, PA

LOCATION.--Lat 40°55'26", long 75°05'46", Northampton County, Hydrologic Unit 02040105, at walkbridge connecting Portland, PA and Columbia, NJ, and 0.5 mi (0.8 km) upstream of Paulins Kill.

DRAINAGE AREA. -- 4, 165 mi2 (10, 787 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION. --Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

1	DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
	CT	1100	95			0.0	50	9	00
	03 AR		85	8.1	15.5	9.8			29
	05 PR	1100	78	7.7	2.0	12.9	490	350	20
	30	1030	66	7.4	13.0	9.1	20	9	21
	04	1015	70	7.1	19.0	9.4	20	21	22
DATE	CALCI DIS- SOLV (MG/ AS C	TUM S D VED SO. L (M	GNE- IUM, SODI IS- DIS LVED SOLV G/L (MG MG) AS	CUM, SI S- DI VED SOI		TY SULF	AL SOL	VED SOLV	RIDE, DIS- ED SOLVED L (MG/L
03 MAR	8	3.7	1.7	3.7	.9	21	.0 1	1 5	.4 .1
05 APR	6	5.1	1.2	3.5	.9	18)	9.7 5	.9 .0
30	6	5.1	1.3	2.8	.7	7	1	1 4	.4 .0
JUN 04	6	.6	1.4	2.7	.6	13		9.5 4	.1 .0
I	DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)		CARBON, ORGANIC TOTAL (MG/L AS C)
O C MA	3	1.1	53	<1.0	.20	2.4	2.6	-05	2.7
)5	3.4	40	<1.0	<.10		.60	.09	3.1
	50	2.6	54	<1.0	<.10		.50	.02	3.7
	4	2.8	43	<1.0	<.10		1.6	.59	8.0

01443000 DELAWARE RIVER AT PORTLAND, PA--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
OCT 03	1100	50	0	0	<10	6	50

	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L	MERCURY TOTAL RECOV- ERABLE (UG/L	NICKEL, TOTAL RECOV- ERABLE (UG/L	SELE- NIUM, TOTAL (UG/L	ZINC, TOTAL RECOV- ERABLE (UG/L	PHENOLS
DATE	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
OCT 03	20	<.5	1,1	0	20	0

01443440 PAULINS KILL AT BALESVILLE, NJ

LOCATION.--Lat 41°06'20", long 74°45'19", Sussex County, Hydrologic Unit 02040105, at bridge on unnamed road at Balesville, 2.2 mi (3.5 km) downstream from Dry Brook, and 3.4 mi (5.5 km) north of Newton.

DRAINAGE AREA.--67.1 mi² (173.8 km²).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- January to September 1979.

COOPERATION.--Selected field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DAT	E	TIME	STREA FLOW INSTA	W, AN- OUS	(MIC	FIC I- ET- ERO-	PH (UNITS)	A.	MPER- PURE EG C)	SC	GEN, DIS- DLVED IG/L)	DEM BI CH	GEN AND, O- EM- AL, AY /L)	COLI- FORM, FECAL EC BROTE (MPN)	TO I F	TREP- COCCI ECAL MPN)	HARD- NESS (MG/L AS CACO3)
JAN 30.		1310				314	7.3		1.0		11.8		2.0	17	70	130	110
MAR 29.		1310				368	8.0		7.0		12.0		2.0	23	50	46	130
MAY 23.		1250		92		428	8.1		14.0		9.6		3.0	130	00	240	170
	DATE	CALC DIS SOL (MG AS	- VED /L	MAGI SIU DIS SOLV (MG,	JM, S- VED /L	SODIU DIS- SOLVE (MG/ AS N	M, S D SO L (M	TAS- IUM, IS- LVED G/L K)	ALK LINI (MG AS CAC	TY /L	SULF TOT (MG AS	AL /L	SULFA DIS- SOLV (MG/ AS SO	TE F FED S	CHLO- RIDE, DIS- SOLVED MG/L AS CL)	(MG/	ED L
	JAN 30	. 2	7	10		15		1.4		69			21		28		.1
	MAR 29	. 3	4	11		17		1.6		86			26		33		.1
	MAY 23	. 4	3	15	5	20		1.6		130		.0	26		40		-1
	DATE	SILI DIS SOL (MG AS	CA, F VED L	SOLII RESII AT 18 DEG. DIS SOLV (MG/	OUÉ 30 . C S- /ED	NITR GEN NO2+N TOTA (MG/ AS N	G: 03 AMM L TO: L ('M	TRO- EN, ONIA TAL 3/L N)	NIT GE ORGA TOT (MG	N, NIC AL /L	NIT GEN, MONI ORGA TOT (MG AS	AM- A + NIC AL /L	NITE GEN TOTA (MG/ AS N	L T	HOS- HATE, OTAL MG/L PO4)	TOTA (MG/	IĊ L L
	JAN 30		5.2	1	64	1.0	,	(.10				.87	1.	9	-11	4	.2
	MAR 29		3.6	1	99	<1.0)	.10			1	. 4			.09		
	MAY 23		5.9	2	255	<1.0)	.20	1	.0	1	. 2			.38	4	. 4
DAT	E	TIME	ALUM INUM DIS SOLV (UG) AS	M, S- VED /L	ARSE TOT (UG	AL	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	RI EF	ORON, OTAL ECOV- RABLE IG/L B B)	RE ER (U	MIUM TAL COV- ABLE G/L CD)	MI TO RE ER (U	RO- UM, TAL COV- ABLE G/L CR)	COPPER TOTAL RECOV ERABL (UG/L	E		
MAY 23.		1250		30		1	0		20		0		10		5		
٤).		IRON, TOTAL RECOV- ERABLE (UG/L	LEAI TOTA RECO ERAI	D, AL OV- BLE	TOT REC ERA	IGA-	MERCURY TOTAL RECOV- ERABLE (UG/L	NIC TC RI		NI TO	CLE- UM, OTAL	TO RE ER (U	NC, TAL COV- ABLE G/L	PHENOI	s		
MAY 23.		AS FE)	ÀS			MN)	AS HG)	AS	o NI)		SE)		ZN)	(UG/I	0		

01443500 PAULINS KILL AT BLAIRSTOWN, NJ

LOCATION.--Lat 40°58'44", long 74°57'15", Warren County, Hydrologic Unit 02040105, on right bank 1,200 ft (370 m) upstream from bridge on State Highway 94 in Blairstown, 1,400 ft (430 m) upstream from Blairs Creek, and 10 mi (16 km) upstream from mouth. Water-quality samples collected at bridge 1,200 ft (370 m) downstream from gage at high flows.

DRAINAGE AREA . -- 126 mi2 (326 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1921 to September 1976, October 1977 to current year.

REVISED RECORDS .-- WSP 971: 1942. WSP 1382: 1952-53(M).

GAGE.--Water-stage recorder and concrete control (Aug. 1, 1931, to Aug. 3, 1941, concrete control at site 280 ft or 85 m, downstream). Datum of gage is 335.86 ft (102.370 m) National Geodetic Vertical Datum of 1929. Prior to May 24, 1922, nonrecording gage and May 24, 1922, to July 31, 1931, water-stage recorder, at site of former highway bridge 1,300 ft (400 m) downstream at different datum. Aug. 1, 1931 to July 28, 1939, water-stage recorder at site 100 ft (30 m) downstream at present datum.

REMARKS.-Water-discharge records poor. Diurnal fluctuation caused by powerplant above station and flow regulated slightly by Swartswood Lake.

AVERAGE DISCHARGE.--57 years, (1922-76, 1978-79) 194 ft 3 /s (5.494 m 3 /s), 20.89 in/yr (531 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,750 ft³/s (248 m³/s) Aug. 19, 1955, gage height, 11.12 ft (3.389 m) from high-water mark in gage house; minimum, about 2.8 ft³/s (0.08 m³/s) Nov. 1, 1922; minimum daily, 5 ft³/s (0.14 m³/s) Aug. 13, 14, 1930.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 1,000 ft3/s (28.3 m3/s) and maximum (*):

Date		Time	Discha (ft ³ /s)		Gage Height (ft) (m)	Date		Time	Discha (ft ³ /s)		Gage He	eight (m)
Jan.	3	Unknown	2300	65.1	Unknown	Jan.	25	Unknown	*3380	95.7	a7.47	2.277
Jan.	8	Unknown	1700	48.1	Unknown	Feb.	26	Unknown	1910	54.1	a5.54	1.689
Jan.	22	Unknown	1400	39.6	Unknown	Mar	6	Unknown	1600	45.3	Unkno	own

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

a from maximum indicator.

Minimum discharge, 16 ft³/s (0.453 m³/s) Oct. 29, gage height, 1.42 ft (0.433 m).

		D130	HANGE, IN	COBIC PE		CAN VALUES	n IEAR	OCTOBER 197	8 TO SEP	TEMBER 19	79	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1	38	52	34	200	389	560	279	245	290	122	54	52
2	36	50	33	1000	321	600	285	224	260	108	58	48
3	34	48	34	2000	292	620	303	209	270	96	90	5.8
3	41	48	71	1000	275	600	328	224	300	87	65	58 62
5	51	26	116	600	242	900	328	209	230		60	56
			110			900	320	209	230	93	00	50
6 7 8 9	64	25	105	450	214	1400	297	189	250	84	54	452
7	67	29	90	380	216	1300	273	180	210	77	52	621
8	55	29	95	1280	205	707	250	171	180	72	48	343
9	47	29	250	1100	196	561	316	161	170	67	46	229
10	41	29	368	700	182	494	466	152	200	65	42	182
11	40	20	264	11.50		0.40						
		29		450	200	812	392	158	350	62	50	153
12	38	28	214	350	210	611	341	157	500	60	93	126
13	38	27	189	330	220	470	316	165	330	62	166	107
14	46	26	177	330	221	421	360	1 85	260	67	122	102
15	49	26	162	300	200	391	452	192	220	99	87	131
16	46	29	152	250	165	325	398	150	190	96	72	108
17	43	28	148	210	130	302	360	140	170	134	62	90
18	38	38	140	200	110	287	328	140	160	126	58	
19	35	40	162	180	118	266	320					79 76
20							297	170	150	130	69	
20	37	44	128	200	130	252	267	230	1 40	105	65	78
21	36	45	200	600	130	240	250	180	134	90	58	103
22	37	46	222	1200	132	231	240	170	126	90	54	387
23	146	44	160	700	140	225	229	210	126	82	50	370
23	131	56	140	640	600	255	214	400	118	74	48	257
25	115	54	130	2700	1000	435	204	700	108	69	56	204
26	87	50	4.00								11	
			145	1500	1220	358	204	500	99	65	99	177
27	22	37	122	900	700	301	297	430	90	62	72	153
28	19	32	123	760	500	273	348	380	90	56	69	133
29	21	28	122	600		277	316	350	114	58	62	170
30	60	34	105	500		285	273	330	122	65	58	175
31	56		92	455		285		310		58	58	
TOTAL	1614	1106	4493	22065	8658	15044	9211	7611	5957	2581	2097	5282
MEAN	52.1											
		36.9	145	712	309	4 85	307	246	199	83.3	67.6	176
MAX	146	56	368	2700	1220	1400	466	700	500	134	166	621
MIN	19	25	33	180	110	225	204	1 40	90	56	42	48
CFSM	. 41	. 29	1.15	5.65	2.45	3.85	2.44	1.95	1.58	.66	.54	1.40
IN.	.48	. 33	1.33	6.51	2.56	4.44	2.72	2.25	1.76	.76	. 62	1.56

CAL YR 1978 TOTAL 74606 MEAN 204 MAX 1500 MIN 19 CFSM 1.62 IN 22.03 WTR YR 1979 TOTAL 85719 MEAN 235 MAX 2700 MIN 19 CFSM 1.87 IN 25.31

Note. -- No gage-height record Dec. 15 to Jan 31, Feb. 11 to Mar. 8, and May 11 to June 20.

DELAWARE RIVER BASIN

01443500 PAULINS KILL AT BLAIRSTOWN, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1921, 1925, 1957-60, 1962-63, 1976 to current year.

COOPERATION. --Selected field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	<u>c</u>	TIME	FLO INS	EAM- OW, TAN- EOUS FS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)		PH ITS)	ATU	PER- JRE 3 C)	SC	GEN, DIS- DLVED MG/L)	DEN BI CH IC	GEN MAND, IO- IEM- CAL, DAY G/L)	FO FE BR	LI- RM, CAL, C OTH PN)	STR TOCO FEC (MF	AL	HAF NES (MG AS	SS /L
OCT 03		1100		32	448				15.0		10.6		<1.0						180
FEB 27		1100		E700	195		7.8		.5		13.9		4.0		1100	1	600		55
APR 24		1030		219	317		8.2		14.0		11.0		3.0		20		11		130
MAY 24		0930		E400	295		7.2		15.0		9.2		4.0		3500	>2	400		120
	DAME	(MG	VED /L	MAGN SIU DIS SOLV (MG/	M, SODI - DIS ED SOLV L (MC	ED F/L	DI SOL (MG		ALK LINI (MG AS	TY /L	SULF TOT (MG	AL /L	SULF DIS- SOL (MG	VED	CHLORID: DIS- SOL (MG	E, VED /L	FLUO RIDE DIS SOLV	ED L	
	DATE	AS	CA)	AS M	G) AS	NA)	AS	K)	CAC	03)	AS	S)	AS S)4)	AS	СТ)	AS F)	
	03 PEB	4	4	18	1	8		1.8		150		.0	3:	2	3	4		. 1	
	27 APR	1	4	4	.9 1	2		2.0		36			1		1.9	9		.1	
	24 MAY	. 3	3	12	- 1	3		1.2		100			23	2	2	6		. 1	
	24	. 2	9	11	1	5		1.4		88		.0	1	3	29	9		.1	
	DATE	SILI DIS SOL (MG AS	VED /L	SOLID RESID AT 18 DEG. DIS SOLV (MG/	UÉ NITO GE C NO24 - TOT ED (MO	NO3	NIT GE AMMO TOT (MG AS	NIA AL	NIT GE ORGA TOT (MG AS	N, NIC AL /L	NIT GEN, MONI ORGA TOT (MG	AM- A + NIC AL /L	NITI GEI TOT. (MG,	N, AL /L	PHO: PHA' TOT. (MG,	TE, AL /L	CARBO ORGAN TOTA (MG/ AS C	IĆ L L	
- 0	03		1.1	2	53 <1	.0								22		,	8	.5	
	27		3.1	1	05 1	.0		.30	1	.0	1	.3	2	.3		.23	6	.5	
	24		1.3	1	84 <1	.0		.20		.50		.70				.04	4	. 4	
P	1AY 24		4.4	1	95 <1	.0	<	.10			1	.3				. 47	6	.8	
		DATE	т	IME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	T(SENIC DTAL IG/L S AS)	TO RE ER (U	RYL- UM, TAL COV- ABLE G/L BE)	RI EI (1	ORGN, OTAL ECOV- RABLE UG/L S B)	R: E: (1	DMIUM OTAL ECOV- RABLE UG/L S CD)	MI TO RE ER (U	RO- UM, TAL COV- ABLE G/L CR)	ERA (UC			
		0CT 03	1	100	30		1		0		44		22		<10		6		
		MAY 24	0	930	40		1		0		10		0		30		4		
		DATE	TO RE ER (U	ON, OTAL CCOV- ABLE IG/L S FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	TO RI EH (U	ANGA- ESE, OTAL ECOV- RABLE IG/L S MN)	TO RE ER (U	CURY TAL COV- ABLE G/L HG)	R. El	CKEL, OTAL ECOV- RABLE UG/L S NI)	N T	ELE- IUM, OTAL UG/L S SE)	RE ER (U	NC, DTAL GCOV- ABLE G/L S ZN)	PHEI	NOLS 3/L)		
		03		70			30		<.5		11		0		30		0		
		MAY 24		2200	4		390		<.5		1		0		20		0		

01443900 YARDS CREEK NEAR BLAIRSTOWN, NJ

LOCATION.--Lat 40°58'51", long 75°02'25", Warren County, Hydrologic Unit 02040105, on left bank 100 ft (30 m) upstream from bridge on Hainesburg-Mount Vernon Road, 2.2 mi (3.5 km) northeast of Hainesburg, 2.4 mi (3.9 km) upstream from mouth, and 4.2 mi (6.8 km) west of Blairstown.

DRAINAGE AREA .-- 7.16 mi2 (18.54 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1966 to current year.

REVISED RECORDS . -- WDR-NJ-77-2: 1976.

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 608 ft (185 m), from topographic map.

REMARKS.--Water-discharge records fair. Complete regulation by the Jersey Central Power and Light Co., at Yards Creek Reservoir above station.

AVERAGE DISCHARGE. -- 13 years, 11.4 ft3/s (0.323 m3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 583 ft³/s (16.5 m³/s) revised, Feb. 24, 1977, gage height, 3.92 ft (1.195 m); no flow Sept. 12, 1971.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 468 ft³/s (13.2 m³/s) Feb. 26, gage height, 3.73 ft (1.14 m); minimum daily, 0.77 ft³/s (.022 m³/s) Sept. 12, 13.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

REVISIONS.--The maximum discharge for the water year 1977 has been revised to 583 ft^3/s (16.5 ft^3/s) Feb. 24, 1977, gage height 3.92 ft (1.195 m), superceding figure published in the report for 1977.

MEAN VALUES DAY OCT NOV DEC SEP JAN FEB MAR APR MAY JUN JUL. AUG 1.6 1.6 20 67 17 .91 1.2 54 1.6 1.3 1.0 1.4 1.2 1.5 58 26 4.0 53 .91 1.2 1.8 93 96 61 14 60 4.3 1.3 1.3 27 1.9 26 44 61 24 38 3.5 6 3.0 2.1 20 12 18 1.3 7.9 1.3 1.0 1.9 .94 1.3 1.4 2.5 25 12 18 8 9 10 37 35 26 1.2 88 25 20 119 15 20 .98 1.1 5.8 84 17 21 1.9 1.1 1.5 1.4 11 1.1 1.1 4.0 26 14 19 16 13 21 4.5 1.2 1.9 .98 3.3 12 24 10 2.6 .77 20 1.1 9.8 8.9 8.2 1.8 13 14 15 1.2 .98 25 16 12 18 2.2 1.1 2.6 21 9.0 16 13 20 1.9 1.9 16 20 8.1 16 11 21 1.8 1.1 1.6 1.5 17 1.3 1.5 7.6 21 8.8 15 20 20 8.2 13 9.4 6.8 16 20 1.6 1.8 6.3 1.5 . 87 1.5 19 1.0 42 13 21 1.5 1.5 1.5 1.7 1.1 1.2 11 80 7.6 14 21 4.0 1.0 7.9 15 1.3 1.1 1.3 74 8.4 14 20 8.6 23 .91 1.9 4.0 109 15 27 24 .91 2.5 4.0 122 25 42 1.0 20 37 26 1.8 1.6 3.0 29 170 18 21 31 1.0 1.3 1.6 1.4 27 2.0 1.5 8.2 27 119 27 26 1.6 1.3 1.1 3.8 4.5 8.2 25 23 21 23 21 21 1.8 1.6 22 24 91 1.9 .91 1.6 1.1 22 29 1.6 2.5 1.7 2.5 ---.98 31 1.6 21 21 21 TOTAL 43.28 42.68 236.4 1582 1018.8 542.6 567.2 612.1 325.78 46.56 62.40 39.30 10.9 1.40 1.42 7.63 51.0 36.4 17.5 19.7 1.50 2.08 18.9 1.27 MAX 3.0 2.7 25 131 170 67 61 42 1.9 8.6 . 98 3.8 3.5

CAL YR 1978 TOTAL 3933.44 MEAN 10.8 MAX 143 MIN .57 WTR YR 1979 TOTAL 5119.10 MEAN 14.0 MAX 170 MIN .77

DELAWARE RIVER BASIN

01444100 PAULINS KILL AT MOUTH AT COLUMBIA, NJ

LOCATION.--Lat 40°55'14", long 75°05'18", Warren County, Hydrologic Unit 02040206, at bridge on U.S. Route 46 in Columbia, 2.3 mi (3.7 km) southwest of Polkville, and 3.2 mi (5.2 km) southeast of Knowlton.

DRAINAGE AREA. -- 177 mi2 (458 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

4.5

128

<1.0

<.10

1.0

.33

5.9

SPE-

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

OXYGEN

	DATE	TIME	FL INS TAN	EAM- OW, TAN- EOUS FS)	DUC ANO (MIC	FIC N- CT- CE CRO-	PH (UNITS	A	MPER- TURE DEG C)	SC	GEN, DIS- DLVED	DEM BI CH IC	EM- AL, AY	FO	C OTH	TOC	REP- OCCI CAL PN)	NES (MC	1/L
3	OCT																		
3	O2 FEB	1330				450	-	-	15.5		11.8								200
	27 APR	1300		1440		180	8.	3	1.0		14.4		4.0		330	>	2400		52
	24 MAY	1150		1070		303	8.	1	14.0		9.0		2.0		50		<2		130
	24	1145		710		205	7.	2	15.0		10.8		1.0		5400	>	2400		84
	DATE OCT O2 FEB 27 APR 24 MAY 24	(MG AS	VED	DIS SOLV (MG, AS I	JM, S- VED /L AG)	DIS-	M, D S L (AA) A	DIS- OLVED MG/L	ALK LINI (MG AS CAC	TY	SULF TOT (MG AS	AL /L	(MG/	ED L 4)	CHLC RIDI DIS- SOL' (MG, AS (E, VED /L CL)	FLUC RIDI DIS SOLV (MG/ AS I	E, ED L	
	DATE	(MG AS	VED /L	SOLII RESII AT 18 DEG DIS SOLI (MG,	OUE 30 C 3- VED	NITR GEN NO2+N TOTA (MG/	03 AM L T	ITRO- GEN, MONIA OTAL MG/L S N)	GE ORGA TOT (MG	N, NIC AL /L	NIT GEN, MONI ORGA TOT (MG	AM- A + NIC AL /L	NITR GEN TOTA (MG/ AS N	L L	PHOS PHAS TOTA (MG, AS PO	E,	CARBO ORGAN TOTA (MG/	IIC L L	
	OCT																		
	O2 FEB		1.0		248													2.9	
	27 APR		3.1		97	1.0	0	.30	r	.90	1	.2	2.	2		.17	16		
	24 MAY		2.0		162	<1.0	0	.20).	.00		.20				.05	8	3.1	
	MAI				00						- 4								

01444100 PAULINS KILL AT MOUTH AT COLUMBIA, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
MAY	197							
24	1145	50	1	0	10	1	20	2
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)
MAY 24	830	0	110	<.5	0	0	0	0

01444800 DELAWARE RIVER NEAR RICHMOND, PA (BELVIDERE, NJ) LOCATION.--Lat 40°49'44", long 75°05'06", Warren County, NJ, Hydrologic Unit 02040104, at bridge at Belvidere, 200 ft (61 m) upstream from Pequest River, and 4.1 mi (6.5 km) southwest of Buttzville.

DRAINAGE AREA. -- 4,380 mi2 (11,344 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1964, 1976 to current year.

COOPERATION. --Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

CALCIUM SIUM, SODIUM, DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-	34 25
MAR 05 1315 15200 88 7.9 2.0 13.6 310 130 APR 30 1245 15500 69 7.4 14.0 9.0 140 4 JUN 04 1230 13100 78 7.6 20.0 8.7 210 170 MAGNE- SIUM, SODIUM, SIUM, SIUM, DIS- BIS- SOLVED SOLVED SOLVED SOLVED GMG/L (MG/L) DATE AS CA) AS MG) AS NA) AS K) OCT 03 10 2.3 5.7 1.0 29 .0 13 6.8 MAGNE- SULFATE RIDE, RIDE, RIDE, BIS- DIS- DIS- DIS- LINITY SULFIDE DIS- DIS- DIS- DIS- LINITY SULFIDE DIS- DIS- DIS- LINITY SULFIDE DIS- DIS- DIS- DIS- LINITY SULFIDE DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-	
APR 30 1245 15500 69 7.4 14.0 9.0 140 4 JUN 04 1230 13100 78 7.6 20.0 8.7 210 170 MAGNE- SIUM, SODIUM, DIS- SOLVED SOLVE	20
JUN 04 1230 13100 78 7.6 20.0 8.7 210 170 CALCIUM SIUM, SODIUM, DIS- SIUM, DIS- SOLVED SOLVED SOLVED (MG/L (
CALCIUM SIUM, SODIUM, SIUM, DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-	24
CALCIUM SIUM, SODIUM, DIS- DIS- DIS- DIS- DIS- SOLVED SOLV	25
O3 10 2.3 5.7 1.0 29 .0 13 6.8 MAR 05 7.3 1.7 3.8 1.0 19 11 6.8 APR 30 7.0 1.6 3.3 .8 10 11 5.0 JUN 04 7.4 1.6 3.0 .6 17 10 4.7	JO- DE, IS- LVED G/L F)
O5 7.3 1.7 3.8 1.0 19 11 6.8 APR 30 7.0 1.6 3.3 .8 10 11 5.0 JUN O4 7.4 1.6 3.0 .6 17 10 4.7	.1
APR 30 7.0 1.6 3.3 .8 10 11 5.0 JUN 04 7.4 1.6 3.0 .6 17 10 4.7	.0
JUN 04 7.4 1.6 3.0 .6 17 10 4.7	
	.0
	.0
SOLIDS	
OCT 038 61 <1.0 <.10 1.9 .02 2.2	
MAR 05 3.4 46 <1.0 .20 .30 .50 ,11 4.8	
APR 30 2.6 50 <1.0 <.1030 .04 7.1	
JUN 04 2.8 46 <1.0 <.10 2.4 .03 5.1	

01444800 DELAWARE RIVER NEAR RICHMOND, PA (BELVIDERE, NJ)--Continued
WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
OCT 03	1315	40		0	<10	. 8	60

	MANGA- NESE,	MERCURY	NICKEL,	an- n	ZINC,	
	TOTAL RECOV- ERABLE	TOTAL RECOV- ERABLE	TOTAL RECOV- ERABLE	SELE- NIUM, TOTAL	TOTAL RECOV- ERABLE	PHENOLS
DATE	(UG/L AS MN)	(UG/L AS HG)	(UG/L AS NI)	(UG/L AS SE)	(UG/L AS ZN)	(UG/L)
OCT 03	30	<.5	14	0	10	0

01445430 PEQUEST RIVER AT TOWNSBURY, NJ

LOCATION.--Lat 40°51'06", long 74°56'02", Warren County, Hydrologic Unit 02040105, on left upstream abutment of highway bridge in Townsbury and 2.1 mi (3.4 km) upstream from Furnace Brook.

DRAINAGE AREA. -- 92.5 mi2 (239.6 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- June 1977 to current year.

GAGE. -- Water-stage recorder. Altitude of gage is 480 ft (146 m), from topographic map.

REMARKS. -- Water-discharge records fair.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,170 ft³/s (61.5 m³/s) Jan. 25, 1979, gage height, 5.30 ft (1.615 m) from floodmark; minimum, 10 ft³/s (0.28 m³/s) Sept. 16, 1977, gage height, 1.11 ft (0.338 m).

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 600 ft3/s (16.99 m3/s) and maximum (*):

Date		Time	Discha (ft ³ /s)		Gage H	eight (m)	Date		Time	Discha (ft ³ /s)		Gage (ft)	Height (m)
Jan. Jan.	3	0300 0400	789 1070	22.3	3.44	1.049	Feb. Mar.	26 7	un known un known	1500 830	42.5	un	known known
Jan. Jan.	21	un known un known	1200 *2170	34.0 61.5	un kn a5.30	own 1.615	Mar. June	11	0815 2045	675 670	19.1	3.2	

a - from floodmark

Minimum discharge, 24 ft³/s (0.68 m³/s) Oct. 25, Nov. 12, 13, Aug. 10.

		DISCHARGE	, IN	CUBIC FEET	PER SECO ME	ND, WATER AN VALUES	YEAR OCT	OBER 1978	TO SEPTEM	1BER 1979		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	34 33	25	61	174	352	590	207	157 144	179	85	35 34	26 26
2	33	25	52		304	480	215		157	80	34	26
3	32	26	49		278	3 95	229	138	170	74 69	35 33	39 35 32
4	36 46	26	64		245	370	241	150	175	76	31	33
5	46	26	89	275	218	450	251	1 40	154			
6	55	28	74	260	200	500	217	127	139	67 62	29	316 298
7	54	25	59		188	620	188	119	129 119	57	28	219
7 8 9	47	25	64		179	510	175	112 105	112	54	26	120
9	44	25	281	740	184	470 435	221 317	100	109	53	26	87
10	42	25	285	560	168	435	317					
11	37	25	199	445	176	606	270	97	308 465	54 50	29 57	71 58 52 51 64
12	37 35	24	155	. 345	167	466	234	94	465	50	57	58
13	33 36	24	118		154	400	2 12	103	3 43	46	88 65	52
14	36	25 25	113		148	367	274	111	251	68	65	51
15	40	25	99	260	137	332	325	113	203	66	48	64
16	37 35	25	89	230	128	285	283	99	176	51	41	54
17	35	26	89		123	263	253	87	157	78	36	47
18	33	49	92		122	249	229	83	148	73	34 38	43
19	33 35	46	99		127	228	205	1 03	1 34	71	38	41 38
20	35	38	92	150	132	212	186	111	122	59	37	
21	33	37	139	690	136	199	1 75	99	113	54	34	45 310
22	30	35	139		140	190	166	89	108	50 47	33	236
23	27	35	116		147	180	158 150	119 421	1 08 100	46	31	169
24	25	49	99 166	850	350 480	232 363	144	428	104	49	31	121
25	25	48	100	1900	460	303						
26	25	41	166		800	300	146	386	100	43	30	101
27	31	33	134	1150	760	249	222	292	85	41	29	86
28	31	44	108		680	225	240	247	77	38	28	76
29	28	37	108			225	210	218	89	39	27	75 74
30	26	52	142			225	178	197	87	43	29	
31	25		111	400		212		197		38	29	
TOTAL	1083	974	3651	17261	7223	10828	6521	4986	4721	1781	1110	3010
MEAN	34.9	32.5	118		258	349	217	161	157	57.5	35.8	100
MAX	55	52	285	1900	800 122	620	325	428	465	85	88 26	316 26
MIN	25	24	49		122	180	144	83	1.70	.62	.39	1.08
CFSM	.38	.35	1.28	6.02	2.79	3.77	2.35	2.01	1.90	.72	. 45	1.21
IN.	. 44	- 39	1.47	6.94	2.90	4.35	2.02	2.01	1.90	.12	. 45	1.61

CAL YR 1978 TOTAL 52156 MEAN 143 MAX 780 MIN 24 CFSM 1.55 IN 20.97 WTR YR 1979 TOTAL 63149 MEAN 173 MAX 1900 MIN 24 CFSM 1.87 IN 25.38

Note. -- No gage-height record Jan. 10-30 and Feb. 6 to Mar. 8.

01445500 PEQUEST RIVER AT PEQUEST, NJ

LOCATION.--Lat 40°49'43", long 74°58'45", Warren County, Hydrologic Unit 02040105, on right bank at Pequest, 100 ft (30 m) upstream from Lehign and Hudson River Railway Bridge, and 300 ft (91 m) downstream from Furnace Brook.

DRAINAGE AREA. -- 108 mi2 (280 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1921 to current year. Monthly discharge only for October 1921, published in WSP 1302. REVISED RECORDS. --WSP 1902: 1940(M), 1945, 1955(M), 1957, 1959(M).

GAGE.--Water-stage recorder. Concrete control since Sept. 29, 1929. Datum of gage is 398.78 ft (121.548 m) National Geodetic Vertical Datum of 1929. Prior to June 22, 1926, nonrecording gage at site 10 ft (3 m) upstream at same datum

REMARKS. -- Water-discharge records fair.

AVERAGE DISCHARGE. -- 58 years, 154 ft3/s (4.361 m3/s), 19.36 in/yr (492 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,130 ft³/s (60.3 m³/s) Jan. 25, 1979, gage height, 5.97 ft (1.820 m) from flood mark; minimum, 12 ft³/s (0.34 m³/s) Aug. 17-22, Dec. 10, 1965.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 650 ft3/s (18.4 m3/s) and maximum (*):

Date		Time	Discha (ft ³ /s)		Gage H	eight (m)	Date		Time	Discha (ft ³ /s)		Gage H (ft)	leight (m)
Jan. Jan. Jan. Jan.	3 8 21 25	0015 1345 2100 Unknown	822 1030 1220 *2130	23.3 29.2 34.6 60.3	3.55 3.99 4.36 a5.97	1.082 1.216 1.329 1.820	Feb. Mar. Mar. Jun.	26 6 11 11	0615 2200 0745 Unknown	1650 868 713 700	46.7 24.6 20.2 19.8		1.561 1.113 1.009 known

a From floodmark.

Minimum discharge, $42 \text{ ft}^3/\text{s}$ (1.19 m $^3/\text{s}$) Sept. 2, gage height, 1.30 ft (0.396 m) but may have been lower during the period of no gage-height record in October and November.

		DISCHARGE	, IN	CUBIC FEET		ECOND, WATER MEAN VALUES	YEAR	OCTOBER	1978 1	O SEPTEMBE	1979		
DAY	OCT	NOV	DEC	JAN	FEE	B MAR	AP	R M	AY	JUN	JUL	A UG	SEP
1 2 3 4 5	53 51 50 51 57	48 47 48 48	72 77 70 67 81	213 547 631 373 341	344 332 304 270	4 542 2 483 4 435	25 26 27 29 30	3 1 7 1 0 1	88 83 82 78 72	197 203 210 195 180	110 105 100 95 101	54 55 55 54 51	44 43 57 54 50
6 7 8 9	66 72 65 61 58	50 51 50 49 59	99 73 81 314 317	293 278 894 699 566	235 252 243 223 198	740 3 619 3 520	26 23 21 26 36	3 1 9 1 5 1	63 50 40 32 30	1 98 180 1 60 1 4 5 1 40	91 86 82 80 79	48 48 48 45	321 328 252 147 107
11 12 13 14 15	55 52 50 55 60	60 49 47 45 46	220 176 143 131 116	439 342 325 339 302	200 192 180 170 162	2 525 0 448 0 435	32 28 25 32 37	7 1 8 1 4 1	30 30 32 40 34	300 580 400 270 233	79 78 75 100 92	50 83 113 88 71	90 80 74 72 83
16 17 18 19 20	58 55 52 51 50	47 47 48 70 63	106 106 100 83 90	263 230 208 156 180	155 145 147 15 158	9 326 7 308 1 284	33 30 28 26 23	0 1 6 1 2 1	26 10 14 28 40	214 195 185 172 155	78 98 87 85 77	63 57 55 59 57	75 68 62 61 56
21 22 23 24 25	48 47 46 48 48	56 53 52 52 63	159 148 122 106 193	832 1010 677 930 2040	164 176 420 800	4 234 0 224 0 291	22 21 20 19	5 1 8 1 9 2	17 59 130	140 135 135 126 130	74 72 71 71 72	54 53 51 51 51	68 344 269 198 144
26 27 28 29 30 31	48 51 55 51 50 49	62 57 50 58 56	178 144 108 93 99 106	1760 1640 1210 722 531 453	1510 1280 804	298 4 270 - 269 - 269	19 27 29 26 20	6 2 0 2 2 2 0 2	98 277 242 228 212	126 111 103 116 113	69 69 59 56 59	50 48 46 47 48 47	121 106 93 91 91
TOTAL MEAN MAX MIN CFSM IN.	1663 53.6 72 46 .50 .57	52.7 70 45 .49	3978 128 317 67 1.19 1.37	19424 627 2040 156 5.81 6.69	9779 349 1510 147 3 • 23 3 • 37	9 409 0 740 7 224 3 3.79	797 26 37 19 2.4 2.7	6 1 1 3 2 1 6 1.	78 397 110 65 90	5747 192 580 103 1.78 1.98	2506 30.8 110 56 .75 .86	1745 56.3 113 45 .52 .60	3649 122 344 43 1.13 1.26

CAL YR 1978 TOTAL 64100 MEAN 176 MAX 906 MIN 45 CFSM 1.63 IN 22.08 WTR YR 1979 TOTAL 76245 MEAN 209 MAX 2040 MIN 43 CFSM 1.94 IN 26.26

NOTE. -- No gage-height record Oct. 1 to Nov. 6 and Apr. 30 to Jun. 14.

LOCATION.--Lat 40°50'40", long 75°02'48", Warren County, Hydrologic Unit 02040105, 2,000 ft (610 m) upstream from mouth, and 2.0 mi (3.2 km) east of Belvidere.

DRAINAGE AREA. -- 36.2 mi2 (93.8 km2).

WATER-QUALITY RECORDS

01446000 BEAVER BROOK NEAR BELVIDERE, NJ

PERIOD OF RECORD. -- Water years 1923-25, 1958, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
JAN			1.02			10.0		12	
18 MAR	1100	90	418	8.1	1.0	12.8		80	23
26 MAY	1030	112	357	8.2	8.0	11.9		1300	130
15	1000	57	370	7.4	16.0	9.8	1.0	490	240
AUG 09	1015		460	8.4	19.0	9.4	1.0	1700	48
DATE JAN	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
18	170	41	17	9.2	1.2	130	32	17	1
MAR 26	150	36	14	8.2	1.3	120	26	18	.1
MAY 15	180	44	18	9.0	1.2	150	26	17	.1
AUG	1,7-			12.35			- 73		
09	210	49	21	9.5	1.4	170	28	16	.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
JAN 18	7.3	216	1.4	.08	.10	40	1.6	00	4.0
MAR						.18	1.0	.09	1.8
26 MAY	4.1	214	<1.0	<.10		1.5		.06	3.6
15 AUG	6.4	219	<1.0	<.10		.60		.05	3.1
09	3.4	278	<1.0	<.10		1.6		.28	3.2

01446400 PEQUEST RIVER AT BELVIDERE, NJ

LOCATION.--Lat 40°49'45", long 75°04'44", Warren County, Hydrologic Unit 02040105, at last highway bridge before mouth in Belvidere, and 0.3 mi (0.4 km) upstream from mouth.

DRAINAGE AREA. -- 158 mi2 (409 km2).

60

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1957, 1962, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DA	TE		STREAM- FLOW, INSTAN- PANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PI (UNI	A	MPER- TURE EG C)	OXYGEN DIS- SOLVE (MG/L	DEM BI , CH I D 5 I	GEN MAND, IO- HEM- CAL, DAY	COLI- FORM, FECAL, EC BROTH (MPN)	STF TOCO FEO (MI	EP- CCI AL	HARD- NESS (MG/L AS CACO3)
OCT O2		1030		500			14.5	12.	0	1.0				250
JAN 18		1300	355	439		3.2	1.0	13.	8	3.0	490		23	190
MAR 26		1250		391		3.4	8.5	11.	8		1300		70	170
MAY 15		1130		400		3.0	16.0	10.	2	1.0	700		240	200
AUG 09		1115		480			20.0	8.	8	2.0	230		130	220
	DATE OCT O2. JAN 18. MAR 26. MAY 15. AUG O9.	43 39 45	DIS ED SOLV L (MG/	M, SOD - DI ED SOL L (M G) AS		POTAS- SIUM, DIS- SOLVED (MG/L AS K) 1.5 1.4	ALKA LINIT (MG/ AS CACO	Y SU L T	LFIDE OTAL MG/L S S)	SULFAT DIS- SOLVE (MG/L AS SO4 34 30 29 27	DIS SOL (MG AS	E, VED	FLUO-RIDE, DIS-SOLVE (MG/L AS F)	D 1 1 1 1 1 1 1
	DATE OCT O2 JAN 18 MAR 26	. 8	AT 18 ED DEG. DIS SOLV (MG/	UE NI O G C NO2 TO ED (M L) AS	TRO- EN, +NO3 TAL G/L N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	GEN ORGAN TOTA (MG/ AS N	O- GE , MO IC OR L T	ITRO- N,AM- NIA + GANIC OTAL MG/L S N)	NITRO GEN, TOTAI (MG/I AS N)	PHA TOT (MG AS F	TE,	CARBON ORGANI TOTAL (MG/L AS C)	ć 8 9
	MAY 15				1.0	<.10			.80				3.	
	AUG 09				1.0	<1.0			2.0		_	.14	4.	
			-		1000							A COUNTY		

01446400 PEQUEST RIVER AT BELVIDERE, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)
OCT 02	1030	9000	1.6	12			0	200		
MAY 15	1130	9000	1.0	12	20	1	· ·	0	30	0
13	1170				20		-	O	50	.0
DATE	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)
OCT 02	<10		<10	10		<10		3400		100
MAY 15	- 2	30			3		360		2	
7.67										
DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)
OCT	AS MN)	(00/0)	AS HG)	AS HG)	AS NI)	AS NI)	AS SE)	AS ZN)	AS ZN)	(04/11)
02 MAY		310		.00		<10			50	44
15	40		<.5		7		0	10		2
DATE	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 02	44	0		0	0	0	0		0	0
MAY	44	.0	4	.0	.0	.0	.0	.0	.0	.0
15			77	7-				75		
DATE	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 02	.0	.0	.0	.0	.0	.0	.0	.0	.0	0
MAY 15										-

01446500 DELAWARE RIVER AT BELVIDERE, NJ

LOCATION.--Lat 40°49'36", long 75°05'02", Warren County, Hydrologic Unit 02040105, on left bank at Belvidere, 800 ft (240 m) downstream from Pequest River, and at channel mile 197.7 (318.1 km).

DRAINAGE AREA . -- 4,535 mi2 (11,746 km2).

62

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1922 to current year.

REVISED RECORDS. -- WSP 781: 1933(M). WSP 951: 1940-41, Drainage area. WSP 1432: 1923, 1924(M).

GAGE.--Water-stage recorder. Datum of gage is 226.43 ft (69.016 m) National Geodetic Vertical Datum of 1929. Prior to Jan. 1, 1929, nonrecording gage at site 200 ft (61 m) upstream at same datum.

REMARKS.--Water-discharge records excellent. Diurnal fluctuations at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lake Wallenpaupack, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, and Neversink Reservoirs (see Delaware River Basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs (see Delaware River Basin, diversions).

AVERAGE DISCHARGE.--57 years, 7,977 ft^3/s (225.9 m^3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 273,000 ft 3 /s (7,730 m 3 /s) Aug. 19, 1955 (gage height, 30.21 ft or 9.208 m, from high-water mark in gage house), from rating curve extended above 170,000 ft 3 /s (4,810 m 3 /s) on basis of flood-routing study; minimum, 609 ft 3 /s (17.2 m 3 /s) Sept. 28, 29, 1943, gage height, 2.11 ft (0.643 m).

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 10, 1903, reached a stage of 28.6 ft (8.72 m), from floodmark, discharge, 220,000 ft³/s (6,230 m³/s) from rating curve extended above 170,000 ft³/s (4,810 m³/s).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 76,800 ft 3 /s (2,175 m 3 /s) Mar. 7, gage height, 15.64 ft (4.767 m); minimum, 1,810 ft 3 /s (51.3 m 3 /s) Oct. 2, 3.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1	2050	2660	3630	4370	13400	17600	13600	15200	19700	3170	2080	2220
	1850	2660	3000	13300	11100	17800	13000	13600	16600	2880	2320	2310
3	2050	2700	2660	55800	9800	18000	13700	12500	13900	3190	2580	2510
й	2080	2660	2740	36100	8770	15400	13700	12200	13600	3130	2740	2270
5	2220	2410	3170	21300	8310	17000	13200	12600	13000	2800	2360	2400
6	2390	2290	3680	15800	6830	59100	13200	11200	11200	2530	2100	8430
7	2500	2400	4310	13500	6700	68300	12300	10000	10300	2490	2130	14200
8	2250	2310	4140	19500	6850	46000	10600	9760	9200	2380	2110	12600
9	1870	2250	5950	26800	6080	32900	10800	9280	8580	2340	1950	7650
10	1980	2410	10400	20400	5570	25800	15100	8690	6600	2240	2080	4980
11	2110	2450	11700	15400	5640	25000	17200	8500	6380	2340	2380	4340
12	2340	2130	9640	11800	5250	27200	16200	7570	9970	2360	3020	4200
13	2560	1980	7780	10800	5340	22400	15400	6380	9200	2620	3680	3730
14	2410	2170	7100	10400	5250	19100	15300	6270	7820	2700	3600	3250
15	2680	2180	6830	10500	5280	18000	17500	6450	6450	2780	2660	3790
16	3170	2050	5570	10000	5740	16400	18200	5740	5570	2530	2560	3210
17	3320	2130	4730	8740	5120	14500	17600	4920	5140	3130	2150	3340
18	2700	2560	4520	8190	4430	13600	16400	4370	4370	3230	2060	3020
19	2270	2470	4000	6700	4190	12500	15000	4580	4140	4030	2170	2720
20	2170	2320	3300	5940	4710	11900	13700	5500	3730	3370	2360	2490
21	2170	2940	3870	10900	4990	11400	12600	5140	3450	2880	2320	2700
22	2290	2680	5240	17700	4930	11000	10500	5430	3370	2430	2410	6980
23	2380	2450	5910	24100	4840	10900	9400	5400	3150	2150	2240	6010
24	2240	2760	5060	20800	8550	11100	9320	13200	2900	2470	2100	5230
25	2320	2720	4770	48600	14800	15300	8580	29300	2820	2740	2560	4960
26	2150	2640	4130	57000	21700	24400	8120	42900	3020	2660	3190	4340
27	2270	3040	4370	35000	23100	22300	9720	45600	2900	2490	2530	4010
28	2400	3210	4280	25700	20000	18700	16300	35400	2540	2510	2340	3720
29	4110	2940	3870	20700		16700	20600	29700	2980	2470	2380	3870
30	3250	3190	3690	17300		15700	16200	27100	3500	2400	2240	3420
31	2760		3790	15100		15300		24200		2200	2200	
TOTAL	75310	75760	157830	618240	237270	671300	413040	438680	216080	83640	75600	138900
MEAN	2429	2525	5091	19940	8474	21650	13770	14150	7203	2698	2439	4630
MAX	4110	3210	11700	57000	23100	68300	20600	45600	19700	4030	3680	14200
MIN	1850	1980	2660	4370	4190	10900	8120	4370	2540	2150	1950	2220

CAL YR 1978 TOTAL 2959520 MEAN 8108 MAX 73900 MIN 1590 WTR YR 1979 TOTAL 3201650 MEAN 8772 MAX 68300 MIN 1850

63 01447000 DELAWARE RIVER AT NORTHAMPTON STREET AT EASTON, PA

LOCATION.--Lat 40°41'30", long 75°12'15", Northampton County, Hydrologic Unit 02040105, at bridge on Northampton Street in Easton, 600 ft (182 m) upstream from Lehigh River, and 0.2 mi (0.3 km) downstream from U.S. Route 22 toll bridge in Easton.

DRAINAGE AREA. -- 4,717 mi2 (12,217 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA. WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

	WAT	ER QUALIT	Y DATA, V	VATER YEAR	OCTOBER	1978 TO	SEPTEMBER	1979	
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 04	1100	205	22	15.5	8.8	1.0		-2	66
MAR 06	1015	85	7.6	.0	12.4	3.0	130	920	25
MAY 01	1000	84	7.5	14.0	9.8	3.0	130	7	30
JUN 05	1010	96	7.4	19.0	9.2	1.0		22	100
• > • • •	1010	50	1.4	13.0	3.2))0	22	,,
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT									
O4 MAR	18	5.1	7.1	1.8	46	.0	24	8.5	.1
06 MAY	7.1	1.7	3.7	1.0	16		11	6.3	.0
01	8.5	2.2	3.7	.8	16	22	11	5.0	.1
JUN 05	9.7	2.5	3.5	.7	23	.0	13	5.5	.0
	DI SO (M A ATE SI	ICA, RES S- AT LVED DE G/L D S SC	180 GG. C NO2 IS- TO LVED (N	EN, G 2+NO3 AMM DTAL TO NG/L (M	TRO- GEN EN, MON ONIA ORG TAL TO G/L (N	FANIC (DTAL TO	GEN, PHOTAL TO	G/L (MC	
00	T 4	1.1	108		-	22	-22		8.0
MA		3.2		1.1	<.10	.50	1.6	.38	2.2
MA	Y						,.0		
JU.		2.5			<.10	1.0		.03	3.0
0	5	2.9	64 <	1.0	<.10	2.1		.04	7.9

01447000 DELAWARE RIVER AT NORTHAMPTON STREET AT EASTON, PA--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT	30022							- 1
04 JUN	1100	30	1	0			<10	7
05	1010	30	3	0	0	3	20	17
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)
OCT O4 JUN	80		20	<.5	10	0	20	0
05	290	8	50	<.5	9	0	30	0

01453000 LEHIGH RIVER AT BETHLEHEM, PA

LOCATION.--Lat 40°36'55", long 75°22'45", Lehigh County, PA, Hydrologic Unit 02040106, on left bank 1110 ft (34 m) upstream from New Street Bridge at Bethlehem, and 1,800 ft (549 m) upstream from Monocacy Creek. Records include flow of Monocacy Creek.

DRAINAGE AREA.--1,279 mi² (3,313 km²) includes that of Monocacy Creek. At site used prior to Oct. 1, 1928, 1,229 mi² (3.183 km²).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1902 to February 1905, April 1909 to current year. Monthly discharge only for some periods, published in WSP 1302. Published as "at South Bethlehem" prior to October 1913.

REVISED RECORDS.--WSP 261: 1903-05. WSP 321: 1910-11. WSP 1051: Drainage area. WSP 1141: 1929-34(M). WSP 1302: 1914(M), 1916(M), 1918, 1921, 1927-28. WSP 1432: 1903, 1919(M), 1920-21, 1929, 1933.

IE.--Water-stage recorder. Datum of gage is 210.94 ft (64.295 m) National Geodetic Vertical Datum of 1929. Prior to October 1928, nonrecording gage at New Street Bridge 120 ft (37 m) downstream at same datum. Oct. 1, 1928, to Sept. 30, 1962, water-stage recorder at site 4,250 ft (1,295 m) downstream at datum 2.49 ft (0.759 m) lower. Oct. 1, 1963 to Dec. 14, 1975, water-stage recorder at site 40 ft (12 m) downstream at same datum.

REMARKS.--Water-discharge records fair. Flow regulated by Wild Creek Reservoir since January 1941, Penn Forest Reservoir since October 1958, Francis E. Walter Reservoir since February 1961, and Beltzville Lake since February 1971 (see Delaware River Basin, reservoirs in).

AVERAGE DISCHARGE.--72 years (1902-04, 1909-79), 2,347 ft³/s (66.47 m³/s), 24.92 in/yr (633 mm/yr), adjusted for diversion 1902-04, 1909-42 and for recirculated water, October 1, 1959 to September 30, 1962.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 92,000 ft 3 /s (2,610 m 3 /s) May 23, 1942, (gage height, about 25.9 ft or 7.89 m, from floodmark, present site and datum), from rating curve extended above 48,000 ft 3 /s (1,360 m 3 /s); minimum, 125 ft 3 /s (3.54 m 3 /s) June 28, 1965, gage height, 0.94 ft (0.287 m).

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Feb. 28, 1902, reached a stage of 24.9 ft (7.59 m) from floodmark, present site and datum, discharge, about 88,000 ft³/s (2,490 m³/s).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 51,700 ft³/s (1,460 m³/s) Jan. 25, gage height, 17.12 ft (5.218 m); minimum, 428 ft³/s (12.1 m³/s) Aug. 22; minimum gage height, 1.32 ft (0.402 m) Nov. 15, Aug. 22.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 197% TO SEPTEMBER 1979
MEAN VALUES AUG DAY OCT NUV DEC JAN APR JUN JUL SEP 2340 783 H12 1540 1 380 727 ------TOTAL 5440 MEAN 1730 MAX MEN CFSM .69 1.00 IN. .87 1.75 7.12 2.84 4.79 3.14 3.53 1.75 1.15 .80 2.38

MAX 20300 CFSM 2.19 WTR YR 19/9 TOTAL MEAN MAX 32900 MIN 467 CFSM 2.29 10 31.13

01455100 LOPATCONG CREEK AT PHILLIPSBURG, NJ

LOCATION.--Lat 40°40'38", long 75°10'13", warren County, Hydrologic Unit 02040105, at bridge on Lock Street in Phillipsburg, and 0.9 mi (1.4 km) upstream from mouth.

DRAINAGE AREA . --

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1959-62, January to September 1979.

COOPERATION. -- Selected field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococoi by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

		SPE- CIFIC CON-				OXYGEN DEMAND, BIO-	COLI- FORM,		HARD-
	TIME	DUCT- ANCE (MICRO-	РН	TEMPER-	OXYGEN, DIS- SOLVED	CHEM- ICAL, 5 DAY	FECAL, EC BROTH	STREP- TOCOCCI FECAL	NESS (MG/L AS
DATE		MHOS)	(UNITS)	(DEG C)	(MG/L)	(MG/L)	(MPN)	(MPN)	CACO3)
JAN 24 MAR	1215	170	7.4	1.0	13.4	8.0	>24000	>2400	43
20	1150	368	8.0	9.5	11.5	<1.0	1100	5	140
MAY 16	1130	362	8.1	15.0	9.0	1.0	230	240	160
AUG 07	1145	410	7.8	15.0	8.9		1300	920	210
26	1300	410	8.0	14.0	10.0	3.0	3500	170	200
		MAGNE-		POTAS-				CHLO-	FLUO-
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)
JAN									
24 MAR	12	3.2	13	3.0	21		15	24	.0
20 MAY	33	15	7.7	1.7	100		34	13	-1
16 AUG	36	18	6.9	1.8	110	.0	34	-11	.0
07	48	23	7.4	2.0	160		34	13	.1
SEP 26	47	20	7.3	2.0	150	.0	34	12	-1
	SILICA.	SOLIDS, RESIDUE	NITRO-	NITRO-	NITRO-	NITRO- GEN, AM-			
DATE	DIS- SOLVED (MG/L AS SIO2)	AT 180 DEG. C DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L AS N)	MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
JAN									
24 MAR	3.9	95	1.4	1.2	3.0	4.2	5.6	1.2	35
20 MAY	13	195	2.4	<.10		.90	3.3	.02	.6
16	13	203	2.8	<.10		.30	3.1	.06	1.3
O7 SEP	12	283	3.2	<.10		.60	3.8	.65	1.8
26	11	256	3.4	.30	.30	.60	4.0	<.01	3.1

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

01455100 LOPATCONG CREEK AT PHILLIPSBURG, NJ--Continued

				WAL	וום	иптт	I DAI	м, мл	HIBR	LIMI	. 0010	וממי	1310	10 0	DI LBN	DBR 1	213						
DATE	T	IME	GEN, + OR TOT BOT	NH4 G. IN MAT /KG		IN IN TOM	CARE INC GAN TOT BOT (G/ AS	R- IIC, IN MAT KG	CARE INOF ORGA TOT. BOT (G/ AS	RG + ANIC IN MAT KG	SOI (UG	M- M, S- VED H/L AL)	ARSE TOT (UG AS	AL	(UG	AL OT- MA- IAL	TOT REC ERA (UG	OV- BLE	TOT	OV- BLE /L	TOT REC ERA (UG	OV- BLE	
MAY 16	1	130										20		1				0		40		1	
SEP 26		300	140	0		5.1		2.6		7.7		10		1		0		0		0		0	
DATE	FM TOM	MIUM COV. BOT- MA- RIAL G/G CD)		M, AL OV- BLE /L	FM E TOM TER	M, COV. BOT-	TOM TER (UG	OV. BOT- MA- HAL	ERA (UC	COV- ABLE		OV. BOT- MA-	IRC TOT REC ERA (UG	OV- BLE	TOM TER (UG	OV.	ERA (UG	AL	TOM TER (UG	OV.	NES TOT REC	AL OV- BLE	
MAY 16				10						2				190				0				30	
SEP 26		<10		10		20		10		3		10		130	16	000		2		40		20	
D	DATE	NE RE FM TOM TE	NGA- SE, COV. BOT- MA- RIAL G/G)	TO RE ER (U	CURY TAL COV- ABLE G/L HG)	FM TOM TE (U	CURY COV. BOT- MA- RIAL G/G HG)	TO: REG ER/	KEL, TAL COV- ABLE G/L NI)	FM TOM TE (U	KEL, COV. BOT- MA- RIAL G/G NI)	NI TO (U	LE- UM, TAL G/L SE)	NI TO IN TOM TE	LE- UM, TAL BOT- MA- RIAL G/G)	ZIN TOT REC ERA (UG	AL OV- BLE /L	TER (UG	OV. BOT- MA-	PHEN	OLS		
	AY 16				<.5				11				0				0				1		
SE	EP 26		760		<.5		.00		0		<10		0		0		0		60		3		
							12.4																
I	DATE	IN TOM TE	CB, TAL BOT- MA- RIAL /KG)	IN TOM TE	RIN, TAL BOT- MA- RIAL /KG)	DA TO IN TOM TE	LOR- NE, TAL BOT- MA- RIAL /KG)	TOM	TAL	IN TOM TE	DE, TAL BOT- MA- RIAL /KG)	IN TOM TE	DT, TAL BOT- MA- RIAL /KG)	TO IN TOM	I- NON, TAL BOT- MA- RIAL /KG)	ELDRI TOT. IN BO TOM I TER (UG/I	IN, AL OT- MA- IAL	IN E	AL BOT- MA- RIAL	ETHI TOT IN E TOM TER (UG/	AL OT- MA- IAL		
MA	AY 16																						
SE	EP 26		7		.0		2		.1		.1		.4		.0		.2		.0		.0		
Е	DATE	TO IN TOM	PTA- LOR, TAL BOT- MA- RIAL /KG)	EPO TOT BO	PTA- LOR XIDE . IN TTOM ATL. /KG)	IN TOM TE	DANE TAL BOT- MA- RIAL /KG)	TH: TO: IN I TOM TE	LA- ION, FAL BOT- MA- RIAL /KG)	OX CH TOT BO M	TH- Y- LOR, IN TTOM ATL. /KG)	TH TOT BO	HYL RA- ION, IN TTOM ATL. /KG)	TH TOT BO	THYL RI- ION, IN TTOM ATL. /KG)	PAR. THIOT. IN BO TOM I TER.	ON, AL OT- MA- IAL	THI TOT IN E	MA- RIAL	TOX PHE TOT IN B TOM TER (UG/	NE, AL OT- MA- IAL		
	16																						
	EP 26		.0		.0		.0		.0		.0		.0		.0		.0		.0		0		

01455200 POHATCONG CREEK AT NEW VILLAGE, NJ

LOCATION.--Lat 40°42'57", long 75°04'20", Warren County, Hydrologic Unit 02040105, at bridge on Edison Road, 0.4 mi (0.6 km) southeast of New Village, and 4.3 mi (6.9 km) upstream from Merrill Creek.

DRAINAGE AREA. -- 33.4 mi2 (86.5 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1959, 1962 and January to September 1979.

SPE-CIFIC

COOPERATION.--Selected field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiclogy.

OXYGEN DEMAND, COLI-

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER ATURE (DEG C	SOI	FEN, IS- LVED 5	EMAND, BIO- CHEM- ICAL, DAY MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
JAN 24	1030	155	165	7.6	2.	5 1	12.5	5.0	9200	>2400	54
MAR 20	1015	54	190	8.0	6.	5 1	11.6	2.0	790	7	64
MAY 16 AUG	0950	35	200	7.9	16.	0	9.6	2.0	2800	540	73
07	1015	17	240	7.7	20.	5	8.4	5.0	9200	540	95
SEP 26	1000	25	228	7.6	14.	0	9.0	3.0	3500	>2400	87
DATE JAN 24 MAR	. 1:	- DIS /ED SOLV /L (MG/ CA) AS M	MM, SODI DIS ED SOLV (L (MG IG) AS	UM, SI - DI ED SOI /L (MG NA) AS	S- LI LVED (H/L K) C	LKA- NITY MG/L AS ACO3)	SULFID TOTAL (MG/L AS S)	SOLVE (MG/I AS SO4	DIS SOL (MG AS	E, RID DI VED SOL /L (MG CL) AS	E, S- VED /L F)
20 MAY	. 1	5 6	.4	7.3	1.4	40	-	- 20	1	1	-1
16 AUG	. 1	7 7	.5	7.0	1.6	49		0 20	1	0	.0
07 SEP	. 2	2 9	1 8.0	0	2.6	67	-	- 19	1	4	.1
26	. 2	1 8	3.4	9.3	2.2	60		0 20	1	1	-1
DATE	SILIO DIS- SOL (MG AS SIO	- AT 18 VED DEG. /L DIS SOLV	OUÉ NIT BO GE C NO2+ S- TOT VED (MG	N, GH NO3 AMMO AL TOT /L (MO	EN, ONIA OR EAL T E/L (ITRO- GEN, GANIC OTAL MG/L S N)	NITRO GEN, AM MONIA ORGANI TOTAL (MG/L AS N)	+ NITRO C GEN, TOTAI	PHA TOT (MG	TE, ORGA AL TOT /L (MG	NIC AL /L
JAN											2.0
24 MAR	. 1)	2 1	01 1	• 4	.41	1.9	2.3	3.7		.56	3.4
20 MAY	. 1	3 1	09 1	.2	.30	.60	• 9	0 2.1		.29	2.8
16	. 1	3 1	07 1	.6	.20	.20	.4	0 2.0)	.46	3.6
AUG 07	, 1	4 1	56 2	.0	.20	1.2	1.4	3.4	1	.3	6.3
SEP 26	. 1	4 1	39 1	.9	.80	.00	.8	0 2.7	1	.0	4.2

01455200 POHATCONG CREEK AT NEW VILLAGE, NJ--Continued

DATE	т	IME	NIT GEN, + OR TOT BOT (MG AS	G. IN MAT /KG		NIC IN TOM T. KG	CARE INC GAN TOT BOT (G/ AS	IC, IN MAT KG	CARE INOF ORGA TOT. BOT (G/ AS	NIC IN MAT KG	ALU INU DI SOI (UG AS	S- VED	ARSE TOT (UG	AL	ARSE TOT IN B TOM TER (UG AS	AL I OT- T MA- R IAL E	ERYL- JUM, OTAL ECOV- CRABLE UG/L S BE)	TOT REC ERA	OV- BLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)
MAY 16	0	950										20		1			0		40	2
SEP 26	1	000	141	0		2.5		.1		2.6		10		1		0	10		30	0
DATE	RE FM TOM TE (U	MIUM COV. BOT- MA- RIAL G/G CD)		M, AL OV- BLE /L	FM E TOM TER	M, OV. OT-	COBA REC FM E TOM TER (UG AS	OV. OT- MA- IAL	REC ERA (UG	ER,	COPF REC FM F TOM TER (UG AS	OV. BOT- MA- NAL	ERA (UG	OV- BLE	IRO REC FM B TOM TER (UG AS	OV. I OT- T MA- R IAL E	EAD, OTAL ECOV- RABLE UG/L S PB)	TOM TEF (UG	OV.	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
MAY 16				10				44		4				360			2			50
SEP 26		<10		10		10		<10		5		<10		370	7	200	2		<10	20
D	OATE	NE RE FM TOM TE	NGA- SE, COV. BOT- MA- RIAL G/G)	TO RE ER (U	CURY TAL COV- ABLE G/L HG)	TOM TOM (U	BOT-	ER/	COV-	TEF (UG	OV. BOT- MA- RIAL	TO:	LE- JM, PAL 3/L SE)	SEI NIU TOT IN H TOM TER (UC	MA- RIAL	ZINC, TOTAL RECOV ERABL (UG/L	FM TOI	INC, ECOV. BOT- M MA- ERIAL JG/G S ZN)	PHEN (UG	NOLS P/L)
	6				<.5				10				0				0	22		2
	EP 26		130		<.5		.00		0		<10		0		0	1	0	20		4
D	DATE	IN TOM TE	CB, TAL BOT- MA- RIAL /KG)	IN TOM TE	RIN, TAL BOT- MA- RIAL /KG)	TOM TOM TE	LOR- NE, FAL BOT- MA- RIAL /KG)	IN I	DD, TAL BOT- MA- RIAL /KG)	IN E	NAL BOT- MA- RIAL	IN TOM	DT, FAL BOT- MA- RIAL /KG)	IN F	ON, PAL BOT- MA- RIAL	IN BOT	- IN - TOI	DRIN, DTAL BOT- M MA- ERIAL 3/KG)	MOT	PAL BOT- MA- RIAL
MA 1	Y 6										-22		24					4.		42
SE 2	EP 26		6		.0		0		.0		.0		.0		.0		0	.0		.0
D	DATE	CH TO IN TOM TE	PTA- LOR, TAL BOT- MA- RIAL /KG)	EPO TOT BO	PTA- LOR XIDE . IN TTOM ATL. /KG)	TOM	DANE FAL BOT- MA- RIAL /KG)	THE TO IN I TOM TER			LOR, IN	TOT BO'	RA- ION, IN	THI TOT. BOT	TOM	PARA- THION TOTAL IN BOT TOM MA TERIA (UG/KG	TION	PRI- HION, DTAL BOT- MA- ERIAL G/KG)	TOT IN E TOM	ENE, PAL BOT- MA- RIAL
	6																_			
SE	EP 26		.0		.0		.0		.0		.0		.0		.0		0	.0		0

01455300 POHATCONG CREEK AT CARPENTERSVILLE, NJ

LOCATION.--Lat 40°37'30", long 75°11'10", Warren County, Hydrologic Unit 02040105, at bridge on Carpentersville-Riegelsville Road in Carpentersville, and 2,000 ft (610 m) upstream from mouth.

DRAINAGE AREA. -- 57.1 mi2 (147.9 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1959-62, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

D	ATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
JA		1000							>0400	57
MA	4 R	. 1350	174	7.4	2.0	13.3	8.0	>24000	>2400	
MA	0	1330	299	8.3	9.0	12.0	1.0	330	70	110
1	6	1300	288	8.2	17.0	9.1	1.0	460	79	120
AU	д 7	1315	328	8.0	19.0	9.3	1.0	16000	1600	1.60
D	ATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
JA 2	N 4	14	5.4	9.5	3.2	38		17	14	.0
MA		26	12	6.6	1.6	85		25	9.7	.1
MA	Y									
A U	6 G	28	13	6.0	1.7	91	.0	26	9.0	.0
	7	35	17	8.2	2.2	130		28	13	,1
D	ATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
JA 2 MA	4	6.8	100	5.0	1.1	3.3	4.4	9.4	1.0	18
	0	12	155	1.9	<.10		.50	2.4	.16	3.2
1	6	12	152	1.9	<.10		.90	2.8	.22	3.7
AU	7	12	222	2.2	<.10		.70	2.9	.24	5.7

01455300 POHATCONG CREEK AT CARPENTERSVILLE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
MAY 16	1300	20	1	0	20	- 1	20	3
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)
MAY 16	360	5	40	<.5	12	0	10	1

01455500 MUSCONETCONG RIVER AT OUTLET OF LAKE HOPATCONG, NJ

LOCATION.--Lat 40°55'00", long 74°39'55", Morris County, Hydrologic Unit 02040105, just upstream of bridge on Warren County Route 43 and 300 ft (91 m) downstream from Lake Hopatcong dam in Landing.

DRAINAGE AREA. -- 25.6 mi2 (66.3 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962, 1976 to current year.

COOPERATION. --Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	
JAN 23 MAR 27 MAY 24	1030 1030 1000	246 256 214	7.6 7.6 7.8	2.0 6.0 17.0	13.7 11.8 9.4	2.0 2.0 4.0	20 <20 20	<2 2 13	60 46 46	16 12 12	4.9 4.0 3.8	20 21 20	
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)	
JAN 23	1.0	22	17	41	-1	3.3	122	<1.0	<.10	.69	.02	2.8	
MAR 27	1.0	17	15	39	.0	2.1	129	<1.0	<.10	1.3	.07	3.4	
MAY 24	.9	21	12	38	.1	.3	1 28	<1.0	<.10	1.1	.18	3.4	

01455801 MUSCONETCONG RIVER AT LOCKWOOD, NJ

LOCATION.--Lat 40°55'10", long 74°44'07", Sussex County, Hydrologic Unit 02040105, at bridge in Lockwood, at boundary between Sussex County and Morris County, 0.2 mi (0.4 km) southeast of Cage Hill, 0.4 mi (0.7 km) south of Jefferson Lake, and 0.9 mi (1.4 km) downstream from Lubbers Run.

DRAINAGE AREA. -- 60.5 mi2 (156.7 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

	DAT	E	т	IME	SPE- CIFI CON- DUCT ANCE (MICR MHOS	-	PH (UNITS)	TEMI ATU (DEG	IRE	D SO	GEN, IS- LVED G/L)	DEM BI CH IC 5 D	EM- AL,	COLI- FORM, FECAL, EC BROTH (MPN)	TOC	REP- OCCI CAL PN)	
	JAN 23.		1	210	2	45	7.3		2.0		13.8		3.0	70		13	
	MAR 27.		1	145	2	35	7.6		7.0		12.1		1.0	<20		<2	
	MAY 24.	••	1	145	2	27	8.1	1	6.0		9.2		2.0	5400		920	
DATE		HARI NESS (MG) AS CACO	L L	CALC DIS SOL (MG AS	IUM VED /L	MAGNI SIUM DIS- SOLVI (MG/I AS MO	M, SODI - DIS ED SOLV L (MC	3-	SI	/L	ALK LINI (MG AS	TY /L	SULFA DIS- SOLV (MG/ AS SO	TE RII	LO- DE, S- LVED G/L CL)	FLUC RIDE DIS SOLV (MG/ AS F	E, ED LED
JAN 23			59	1	5	5.	.2 2	21		.9		26	16		40		.1
MAR 27			69	1	7	6.	.5	19		1.2		40	19		37		.1
MAY 24			63	1	6	5.	.6 1	17		1.1		36	11		32		.1
	DAT	E	DI SO (M	LVED G/L	SOLID RESID AT 18 DEG. DIS SOLV (MG/	JÉ C 1 ED	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)		AL /L	ORG. TO (M	TRO- EN, ANIC TAL G/L N)	GEN MON ORG TO (M	TRO-, AM- IA + ANIC TAL G/L N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	ORG TO (M	BON, ANIC TAL G/L C)	
	JAN 23.			6.0	1	30	<1.0	<	.10				.51	.11		3.0	
	MAR 27. MAY			4.9	1	49	<1.0		.30		1.7		2.0	.13		4.4	
	24.			5.9	1	33	<1.0	<	.10				1.1	.23		6.3	

01456200 MUSCONETCONG RIVER AT BEATYESTOWN, NJ

LOCATION. --Lat 40°48'48", long 74°50'32", warren County, Hydrologic Unit 02040105, at bridge at Beatyestown, 1.6 mi (2.6 km) upstream of Hanes Brook, 2.1 mi (3.4 km) northeast of Stephensburg, and 3.5 mi (5.7 km) northeast of Scrappy Corner.

DRAINAGE AREA. -- 90.7 mi2 (234.9 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION. --Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE		TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PI (UNI	AT	PER- URE G C)	OXYGE DIS SOLV (MG/	ED.	OXYGE DEMAN BIO- CHEM- ICAL 5 DAY (MG/L	FO. FE. E. BR	LI- RM, CAL, C OTH PN)	STRE TOCOC FECA (MPN	CI	HARD- NESS (MG/I AS CACO3	
JAN 23		1345	262		7.6	1.0	13	4	7	.0	20		23	7	4
MAR	•	1747	202		1.0	1.0	1)	• 4	,	. 0	20		2)	,	4
27 MAY	•	1320	284		3.1	7.5	12	.7	2	.0	170		11	8	2
24	•	1310	235		7.6	16.0	9	.7	3	.0	1300	>24	00	7	6
DATE	I S	ALCIUM DIS- BOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVI (MG	JM, S - D ED SO /L (M	TAS- IUM, IS- LVED G/L K)	ALKA LINIT (MG/ AS CACO	Y L	SULFI TOTA (MG/ AS S	DE DI L SO L (M	FATE S- LVED G/L SO4)	CHLO RIDE DIS- SOLV (MG/ AS C	ED L	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	D
JAN 23		18	7.0	18	В	.9		36			17	34			1
MAR 27		19	8.5	15	5	1.1		54		_	18	27			1
MAY 24		18	7.5	13	3	1.4		52		.0	12	25			1
	DATI	DI SO (M	ICA, RE S- AT LVED D G/L S S	LIDS, SIDUE 180 EG. C DIS- OLVED MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	AMM TO (M	TRO- EN, IONIA OTAL IG/L		NIC OAL	NITRO- JEN, AM- MONIA + DRGANIC TOTAL (MG/L AS N)	PH TO (M		CARBO ORGAL TOT (MG	NIC AL /L	
	JAN 23.		7.0	130	<1.0		<.10			.63		.16		3.1	
	MAR 27.		6.3	146	<1.0		.30	1	.3	1.6		.43		3.8	
	MAY 24		7.4	132	<1.0		<.10			1.4		.95		7.5	

DELAWARE RIVER BASIN

01456200 MUSCONETCONG RIVER AT BEATYESTOWN, NJ--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
MAY 24	1310	160	1	0	10	0	40	10
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)
MAY 24	7200	27	280	<.5	2	0	40	0

01457000 MUSCONETCONG RIVER NEAR BLOOMSBURY, NJ

LOCATION.--Lat 40°40'20", long 75°03'40", Warren County, Hydrologic Unit 02040105, on right bank just downstream from highway bridge, 1.5 mi (2.4 km) upstream from Bloomsbury, and 9.5 mi (15.3 km) upstream from mouth.

DRAINAGE AREA . -- 143 mi2 (370 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1903 to March 1907, July 1921 to current year.

REVISED RECORDS.--WSP 521: Drainage area. WSP 1051: 1944-45. WSP 1382: 1904-06, 1922, 1923-29(M), 1931(M), 1933-34(M), 1936(M), 1940, 1942(M), 1944-45(M), 1951-52(M).

GAGE.--Water-stage recorder. Concrete control since Sept. 29, 1932. Datum of gage is 274.83 ft (83.768 m) National Geodetic Vertical Datum of 1929. July 1903 to Mar. 31, 1907, nonrecording gage at bridge 15 ft (4.6 m) upstream at different datum. July 26 to Sept. 12, 1921, nonrecording gage at bridge at present datum.

REMARKS.--Water-discharge records good except those for periods of no gage-height record and those above 2,000 ft³/s (56.6 m³/s) which are fair. Flow regulated by Lake Hopatcong (see Delaware River Basin, reservoirs in). Diurnal fluctuation caused by small powerplants above station.

AVERAGE DISCHARGE.--61 years (1903-06, 1921-79), 234 ft3/s (6.627 m3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,200 ft³/s (204 m³/s) Jan. 25, 1903, gage height, 8.50 ft (2.591 m) from floodmark, discharge from rating curve extended above 1,800 ft¹/s (51.0 m³/s) on basis of slope-area measurement at gage height, 6.95 ft (2.118 m); minimum, 8.1 ft³/s (0.23 m³/s) Aug. 2, 1955; minimum daily 27 ft³/s (0.76 m³/s) Sept. 8, 1966.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,000 ft3/s (28.3 m3/s) and maximum (*):

Date	Time	Discha (ft ³ /s)	(m³/s)	Gage H	eight (m)	Date		Time	Discha (ft ³ /s)		Gage (ft)	Height (m)
Jan. 8	1030	1600	45.3	4.55	1.387	Feb.	26	Unknown	2000	56.6		nown
Jan. 22	Un known	2300	65.1	Unkn	own	Mar.	6	Unknown	1300	36.8		nown
Jan. 25	Un known	*7200	204	8.50	2.591	Sept.	6	1415	1090	30.9		1.140

Minimum discharge, 54 ft 3 /s (1.53 m 3 /s) Oct. 19, gage height, 1.23 ft (0.375 m).

		DISCH	HARGE, IN	CUBIC FEET		SECOND, WATER MEAN VALUES	YEAR	OCTOBER 1978	TO SEP	TEMBER 1979		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1	74	84	143	295	602	680	310	400	360	170	110	88
2	76	84	140	690	553	730	335	370	300	159	108	82
2 3 4 5	76	156	1 45	831	523	830	360	315	345	153	115	. 92
4	80	210	173	715	506	740	390 375	340 300	320	148	110	90
5	99	244	204	657	477	900	375	300	280	153	113	90
6 7 8 9	108	247	179	611	462	1600	345	270	300	148	101	600
7	97	244	151	602	439	1400	290	250	265	132	94	629
8	86	244	140	1390	439	1050	320	235	235	125	90	485
9	82	244	359	1070	416	830	400	225	215	120	86	372
10	80	240	430	769	416	660	650	215	205	120	88	302
11	80	240	334	667	416	900	480	200	700	115	99	251
12	80	240	299	611	407	760	430	190	560	117	194	217
13	76	237	276	584	402	640	400	205	450	117	254	220
14	82	237	258	5 97	367	580	570	230	385	117	217	287
15	84	227	240	514	291	520	7.00	210	334	135	165	310
16	80	194	237	448	227	475	600	190	291	143	143	201
17	80	194	237	416	207		520	170	265	170	125	165
18	76	233	233	398	210	380	450	160	251	210	110	151
19	76	204	220	376	176		410	195	230	167	110	1 40
20	82	167	210	363	220	320	365	210	210	156	110	130
21	84	151	291	1200	207		330	215	194	143	106	167
22	82	143	247	2200	246		295	195	191	135	101	648
23	90	125	204	1400	335	280	275	255	197	127	101	472
24 25	88	135 132	179	1200	440	350	265 250	400	179 167	122	99	363
25	87	132	299	3000	1350	580	250	970	167	122	106	310
26	84	108	265	2500	1400		440	940	156	125	106	269
27	99	99	227	1300	900		810		1 45	117	101	233
28	103	94	194	1000	740		680		143	108	94	213
29 30	99	94	213	850			550		170	120	86	201
30	90	122	185	750			460		165	132	92	201
31	90		188	653		300		420		117	88	
TOTAL	2650	5373	7100	28657	13374		13055		8208	4243	3622	7979
MEAN	85.5	179	229	924	478	604	435		274	137	117	266
MAX	108	247	430	3000	1400		810		700	210	254	648
MIN	74	84	140	295	176	280	250	160	143	108	86	. 82

CAL YR 1978 TOTAL 99980 MEAN 274 MAX 2800 MIN 74 WTR YR 1979 TOTAL 123917 MEAN 339 MAX 3000 MIN 74

NOTE. -- No gage-height record Feb. 22 to June 14.

77

01457400 MUSCONETCONG RIVER AT RIEGELSVILLE, NJ

LOCATION.--Lat 40°35'32", long 75°11'20", Warren County, Hydrologic Unit 02040105, at bridge on State Highway 13 in Riegelsville, 0.2 mi (0.4 km) north of Mount Joy, and 0.2 mi (0.3 km) upstream from mouth.

DRAINAGE AREA.--156 mi² (404 km²).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DAT	E	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
FEB										
28. APR	• •	1010	252	8.2	2.5	13.0	4.0	790	350	75
16. MAY		1015	258	8.1	9.0	12.2		80	33	96
29. JUL	• •	1010	251	8.1	15.0	10.2	2.0	5400	350	82
25.	• •	1030	350	8.0	23.0	8.5	3.0	1300	350	140
DAT	E	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- + SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
FEB 28.		17	7.9	15	1.4	49		18	28	.1
APR 16.		22	9.9	11	1.2	64		19	23	-1
YAM										
JUL	• •	19	8.5	13	1.1	63	.0	17	24	.1
25.	• •	31	16	12	1.6	110		19	22	-1
DAT	E	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
FEB		7.0	1.75		4.0	00			24	7.0
APR		7.9	1 35	1.0	.12	•99	1.1	2.1	-21	3.9
16. MAY	• •	7.1	147	1.0	<.10		-30	1.3	.09	1.9
29. JUL	٠.	8.1	139	1.0	<.10		4.1	5.1	.43	4.9
25.		9.5	218	1.5	<.10		1.2	2.7	.29	7.1

DELAWARE RIVER BASIN

01457400 MUSCONETCONG RIVER AT RIEGELSVILLE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG//L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
MAY								
29	1010	80	1	0	20	1	10	5
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)
MAY								
29	1200	26	80	<.5	14	0	40	0

01457500 DELAWARE RIVER AT RIEGELSVILLE, NJ

LOCATION.--Lat 40°35'36", long 75°11'17", Warren County, Hydrologic Unit 02040105, at suspension bridge in Rieglesville, and 600 ft (183 m) upstream from Musconetcong River.

DRAINAGE AREA.--6,328 $\mathrm{mi^2}$ (16,390 $\mathrm{km^2}$), includes that of Musconetcong River.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1969-74, 1976 to 1979 (discontinued).

REMARKS.--Discharge records include flow of Musconetcong River. Water-quality records at periods of base flow probably are influenced by inflow from Musconetcong River.

COOPERATION. --Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	TEMPER ATURE (DEG C	- D	GEN, IS- LVED G/L)	OXYGE DEMAN BIO- CHEM ICAI 5 DAY (MG/I	ID,	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT 04	1300	260	17.	0	9.5	<1	.0	84	21	7.6	10
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFID TOTAL (MG/L AS S)	E DIS	FATE S- LVED G/L SO4)	CHLC RIDE DIS- SOLV (MG/ AS C	ED L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 04	2.2	55		0 :	31	13	5	.1	2.6	141	5.9
	DATE	TIME	ALUM- INUM, DIS- SOLVE (UG/L AS AL	D TO:	ENIC TAL G/L AS)	BERY LIUM TOTA RECO ERAE (UG/ AS E	L V- SLE L	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	
	OCT 04	1300	4	0	1		0	<10	5	110	
	D	N T R E	OTAL ECOV- RABLE UG/L	ERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	TO RE ER (U	KEL, TAL COV- ABLE G/L NI)	SEI NIU TOT (UG	E TO RE AL ER L/L (U	G/L	enols	
	00	T 94	40	<.5		10		1	50	0	

01458100 HAKIHOKAKE CREEK AT MILFORD, NJ

LOCATION.--Lat 40°34'06", long 75°05'44", Hunterdon County, Hydrologic Unit 02040105, at bridge on Bridge Street at Milford, and 4,000 ft (1,220 m) upstream from mouth.

DRAINAGE AREA .-- 17.2 mi2 (44.5 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1959-62, 1976 to current year.

COOPERATION. --Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DA	TE	TIME	SPI COI DUC ANO (MIC MHC	FIC N- CT- CE CRO-		PH (TS)	ATI	PER- URE G C)	OXYG DI SOL (MG	S- VED	OXYGE DEMAN BIO- CHEM ICAI 5 DAY (MG/I	D, CO FO FE BR	LI- RM, CAL, C OTH PN)	STREP- TOCOCCI FECAL (MPN)		
FEE 28	3	1145		148		8.1		4.5	1	1.4	4	.0	50	11	54	
		1155		190		8.2		8.5	1	2.1			130	46	68	
		1230		195		8.1		15.0		9.7	3	.0	2400	540	69	
JUI 25	·	1230		220		8.1	:	23.0		9.7	1	.0	1600	540	86	
DA	TE	CALCIU DIS- SOLVE (MG/L AS CA	M SI D SOI (MC	SNE- IUM, IS- LVED J/L MG)		3-	SOI SOI (MC	TAS- IUM, IS- LVED G/L K)	ALK LINI (MG AS CAC	TY /L	SULFA DIS- SOLV (MG/ AS SO	TE RI DI ED SO L (M	LO- DE, S- LVED G/L CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	
APR		14		4.5		9.3		1.7		26	23		15	.1		
MAY		18		5.5		7.7		1.2		32	25		12	.1		
JUL								1.3		42	25		11	.1		
25		22		7.6		7.1		1.4		68	21		9.7	-1	15	
	D	R. A	OLIDS, ESIDUE T 180 DEG. C DIS- SOLVED (MG/L)	NO2 TO (M	TRO- EN, +NO3 TAL G/L N)	G AMM TO (M	TRO-EN, ONIA TAL G/L N)	ORG TO (M	TRO- EN, ANIC TAL IG/L	GEN MON ORG TO (M	TRO-, AM- IA + ANIC TAL G/L N)	NITRO- GEN, TOTAL (MG/L AS N)	PH. TO (M	ATE, OR TAL T G/L (RBON, GANIC OTAL MG/L S C)	
	FE	B 8	111		1.0		.11		.85		.96	2.0		00	1.4	
	AP		113		1.1		<.10		.07			1.6		.09		
	MA		121		1.4		<.10				.50			.04	1.9	
	JU		137		1.4		<.10				.40	1.6		.17	6.2	
	4	····	151		1 . 2		1.10				.40	1.0		.02	0.2	

01458400 HARIHOKAKE CREEK NEAR FRENCHTOWN, NJ

LOCATION.--Lat 40°32'53", long 75°04'09", Hunterdon County, Hydrologic Unit 02040105, at bridge on Frenchtown-Milford Road, 1,600 ft (490 m) upstream from mouth, and 1.5 mi (2.4 km) north of Frenchtown.

DRAINAGE AREA. -- 9.75 m12 (25.25 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD, -- Water years 1959-62, 1976 to current year.

COOPERATION. --Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

	D 4 W 7	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO		PH	TEMPER-	SOLV	S- VED	OXYGEI DEMANI BIO- CHEM- ICAL	FO FO FE BR	HTO	STREP- TOCOCCI FECAL	HARD- NESS (MG/	L
1	DATE		MHOS)	(UN	ITS)	(DEG C)	(MG)	(L)	(MG/L) (M	PN)	(MPN)	CACO	3)
	EB 28 PR	1340	11	6	8.1	4.0	11	1.7	4	.0	130	350		34
1	16	1330	15	1	8.0	9.0	13	3.2			<20	9		51
	AY	1715									5000	0.10		
	29 UL	1345	15	4	8.1	16.0		9.7	2	.0 1	6000	240		51
	25	1330	15	6	7.7	25.0	1	7.9	2	.0	700	540		53
1	DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE SIUM DIS- SOLVE (MG/I AS MG	DISOLUTION (MC	3-	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINI	LY L	SULFAS DIS- SOLVI (MG/I AS SO	TE RI DI ED SO L (M	LO- DE, S- LVED G/L CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA DIS- SOLVA (MG/I AS SIO2)	ED L
	EB	0.0			- 1	0.0		04			7.0			-
	28 PR	9.9	2.	2	5.4	2.2		21	17		7.9	.0	7	.7
	16	15	3.	2	5.8	1.4		20	22		8.5	.0	8	. 1
	AY 29	15	3.		6.0	1.4		27	21		6.9	.1	10	
	UL	12	٥.	4	0.0	1.4		21	21		0.9	• 1	10	
	25	16	3.	2	5.7	1.9		44	16		7.5	.1	9	.8
	D	RES AT DE E SO	GIDS, SIDUE 180 GG. C N DIS- DLVED IG/L)	NITRO- GEN, O2+NO3 TOTAL (MG/L AS N)	AMM TO	EN, ONIA OR TAL T G/L (ITRO- GEN, GANIC OTAL MG/L S N)	GEN MON ORG TO (M	TRO- , AM- IA + ANIC TAL G/L N)	NITRO- GEN, TOTAL (MG/L AS N)		TE, ORG	RBON, BANIC DTAL MG/L S C)	
		8	76	1.3		.21	.84		1.0	2.3		.21	2.9	
	AP 1	к 6	89	1.6		<.10			.80	2.4		.06	3.8	
	MA	ү 9	96	2.0		<.10			.50	2.5		.20	3.5	
		5	87	1.4		<.10			.30	1.7		.08	7.2	

01458500 DELAWARE RIVER AT FRENCHTOWN, NJ

LOCATION.--Lat 40°31'34", long 75°03'55", Hunterdon County, Hydrologic Unit 02040105, at bridge at Frenchtown, 1,000 ft (300 m) upstream from Nishisakawick Creek, and 3.4 mi (5.5 km) southeast of Milford.

DRAINAGE AREA. -- 6, 420 mi2 (16, 628 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
1000	253	7.8	18.0	9.0		330	12	99
	2))	1.0	10.0	3.0))0	12	"
1300	94	7.7	2.0	15.0	2.0	3500	>2400	28
1245	108	7.6	15.0	9.9	2.0	2800	13	38
1250	129	7.8	19.5	9.1	1.0	1100	<2	45
CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
25	8.8	11	2.2	57	.0	32	15	.1
7 7	2.1	16		10		17		.0
1.1	2.1	4.0	1.1	18		15	1.1	.0
10	3.1	5.2	1.0	27		14	7.1	.1
12	3.7	5.2	1.0	30		16	7.9	.1
SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
3.3	153	1.4	.30	3.1	3.4	4.8	.46	2.1
3.6	59	1.0	.30	.20	.50	1.5	.36	4.6
3.2	67	<1.0	<.10		.80		.08	6.1
	1000 1300 1245 1250 CALCIUM DIS- SOLVED (MG/L AS CA) 25 7.7 10 12 SILICA, DIS- SOLVED (MG/L AS SI02) 3.3 3.6	CIFIC CONTROL OF CONTROL OF CALCIUM DIS-SOLVED (MG/L AS CA) 25 8.8 7.7 2.1 10 3.1 12 3.7 SILICA, RESIDUE AS CAUVED (MG/L AS CA) SOLVED (MG/L AS CA) 3.1 12 3.7 SILICA, RESIDUE AS SOLVED (MG/L AS CA) 3.1 12 3.7 SILICA, RESIDUE AS SOLVED (MG/L) 3.3 153 3.6 59	CIFIC CON- CON- DUCT- ANCE (MICRO- MHOS) (UNITS) 1000 253 7.8 1300 94 7.7 1245 108 7.6 1250 129 7.8 CALCIUM SIUM, DIS- SOLVED (MG/L (MG/L AS CA) AS MG) AS NA) 25 8.8 11 7.7 2.1 4.6 10 3.1 5.2 12 3.7 5.2 SILICA, RESIDUE AT 180 DIS- SOLVED (MG/L AS MG) NITRO- DIS- SOLVED (MG/L AS MG) 3.3 153 1.4 3.6 59 1.0	CALCIUM DIS- SOLVED (MG/L AS CA) 100 3.1 5.2 1.0 100 3.1 5.2 1.0 100 3.1 5.2 1.0 100 3.1 5.2 1.0 100 3.1 5.2 1.0 100 3.1 5.2 1.0 SOLVED (MG/L AS MG) DIS- SOLVED (MG/L AS MG) DIS- SOLVED (MG/L AS MG) AS NA) SOLVED (MG/L AS MG) AS NA) 3.3 155 1.4 .30 3.6 59 1.0 .30	CIFIC CON- DUCT- ANCE PH TEMPER- ATURE SOLVED (MG/L) 1000 255 7.8 18.0 9.0 1300 94 7.7 2.0 15.0 1245 108 7.6 15.0 9.9 1250 129 7.8 19.5 9.1 CALCIUM DIS- SOLVED (MG/L) AS CA) AS MG) AS NA) AS K) CALCIUM AS CA) AS MG AS NA) AS K) SILICA, RESIDUE NOTAL AT 180 SOLVED (MG/L) AS CA) AS MG AS NA) AS K) SILICA, RESIDUE NOTAL AT 180 SOLVED (MG/L) AS CAD AT 180 GEN, GEN, GEN, ORGANIC TOTAL AS SOLVED (MG/L) AS CAD (MG/L) AS N) AS N) 3.3 155 1.4 .30 3.1 3.6 59 1.0 .30 .20	CIFIC CON- DUCT- ANCE PH TEMPER- DIS- SOLVED SOLVED SOLVED (MG/L) AS N) AS N)	CIFIC CON- DUCT- ANGE PH TEMPER- ATURE SOLVED 5 DAY BROTH (MICRO- MHOS) (UNITS) (DEG C) (MG/L) (MG/L) (MG/L) 1000 253 7.8 18.0 9.0 330 1300 94 7.7 2.0 15.0 2.0 3500 1245 108 7.6 15.0 9.9 2.0 2800 1250 129 7.8 19.5 9.1 1.0 1100 CALCIUM SIUM, DIS- SOLVED SOLVED SOLVED SOLVED SOLVED (MG/L) (MG/L) (MG/L) (MG/L) (MG/L) AS CA) AS MG) AS NA) AS K) CALCIUM SIUM, DIS- SOLVED (MG/L) (MG/L) (MG/L) (MG/L) AS CA) AS MG) AS NA) AS K) CALCIUM SOLVED SOLVED SOLVED SOLVED SOLVED (MG/L) AS CA) AS MG) AS NA) AS K) CALCIUM SIUM, DIS- SOLVED SOLVED SOLVED SOLVED SOLVED (MG/L) AS CA) AS MG) AS NA) AS K) CACO3) AS SOLVED DIS- TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL AS NOINA AS N) SILICA, RESIDUE (MG/L) (MG/L) (MG/L) (MG/L) (MG/L) AS CA) AS SOLVED (MG/L) (MG/L) (MG/L) (MG/L) AS CA) AS NO AS N) AS N) AS N) AS N) 3.3 153 1.4 .30 3.1 3.4 4.8 3.6 59 1.0 .30 .20 .50 1.5	CIFIC COM- DUCT- ANCE PH TEMPER- DIS- SOLVED STREP-TOCOCK PECAL STREP-TOCK PECAL STREP-TOCK PECAL PE

DELAWARE RIVER BASIN

01458500 DELAWARE RIVER AT FRENCHTOWN, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIM	SOI (UG	M, S- ARSI VED TO:	LIU TO: ENIC REG PAL ERA 3/L (UC	JM, MI PAL TO COV- RI ABLE EN	DTAĹ TO ECOV- RI RABLE EI IG/L (I	OTAL TO ECOV- RI RABLE EI JG/L (U	RON, OTAL ECOV- RABLE UG/L S FE)
0CT 02	100	0	60	1	0	<10	12	1 20
DA	TE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLI (UG/L AS ZN	E PHENOLS	
0CT 02		50	<.5	9	1	50) (0

01460500 DELAWARE AND RARITAN CANAL AT KINGSTON, NJ

LOCATION.--Lat 40°22'24", long 74°37'08", Middlesex County, Hydrologic Unit 02040105, on right bank at canal lock at Kingston, and 250 ft (76 m) upstream from new bridge on State Highway 27.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March 1947 to current year.

GAGE.--Two water-stage recorders and concrete control. Datum of gage is 40.00 ft (12.192 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. The canal diverts water from the Delaware River at Raven Rock and discharges into Raritan River at New Brunswick. Some water wasted to the Millstone River 500 ft (152 m) above station.

EXTREMES FOR PERIOD OF RECORD. --Maximum daily discharge, 174 ft³/s (4.93 m³/s) Apr. 6, 1957; no flow Dec. 31, 1948, Oct. 15, 1950, Oct. 25 to Nov. 1, 1950, Mar. 12, 1970.

		DISCHARGE	, IN	CUBIC FEE	T PER			YEAR C	CTOBER	1978	TO SEPTI	EMBER 1979		
						MEAN	VALUES							
DAY	OCT	NOV	DEC	JAN	F	EB	MAR	APR	1 1	MAY	JUN	JUL	A UG	SEP
1	71	80	105			61	106	108		95	82	78	88	77
2	70	82	105			23	97	108		91	79	79	84	77 76
3	71	80	105			28	99	108		89	80	77	86	76
5	74	82 83	106			27	101 101	109		83	83 88	77 78	93 88	76 76
5	10	03	101	102		20	101	110	,	14			00	10
6	78	85 86	105			15	109	110		70	89 89 88	76 77	87 82	73 71
7	78	86	104			13	104	108		61	89	77	82	71
8	75	86	103			13	98	106		58	88	80	80	67 80
9 10	72 71	86 95	110			14 12	95 99	106		53 53	86 85	82 82	91 92	82
10		95	110	105		12	99	110	,	23	05	02	92	02
11	72	96	110			19	103	119		54	84	81	91	80
12	72	94	110			22	98	117		55	98	79	95	79 78
13	78	102	100			03	96	114		57	102	78	99	78
14 15	83 85	93	111			94	100	116		55	102	84	96	75 73
15	85	90	111	111		84	102	121		56	98	90	97	13
16	83	90	111			88	102	120		65	91	83	89	72 75
17	80	95	111			89	103	119		64	94	80	76	75
18	78	99	111			90	103	117		63	91	83	75	77 76
19	78 78	100 100	111			90	103	115		62 72	91 92	89 83	79 81	74
20	10	100	110	102		90	107	112		12	92		01	14
21	76	97	111			88	113	109		72	90 88	79 67	83	75
22	73	95	116			88	111	107		71	88	67	80	88
23	74	96	113			91	111	106		72	87	72	73	89
24 25	79 82	98 98	113			02 12	111 117	105		93	83 81	69 63	77	75 88 89 86 85
25	02	90	120	134		12	111	104		90	01	03	34	
26	80	98	122	134		05	116	1 04		92 93	82	63	86	85 85 85 82
27	80	97	110			06	114	110		93	81	67	79	85
28	82 82	99	105			12	112	107		91	80 81	80 84	80 77	85
29 30	82	102 104	108				110 110	103		87	80	78	77	97
31	80		108				108			84		84	78	
TOTAL	. 2303	2788	2206	3572	25	199	3259	3314	1 2:	268	2625	2422	2633	2371
MEAN	L 2393 77.2	2788	3396	3573 115	1	04	105	110	7	3.2	2625 87.5	78.1	2633 84.9	2371 79.0
MAX	85	104	126	1 39	1	28	117	121		98	102	90	99	97 67
MIN	70	80	100	83		61	95	98	3	53	79	63	73	67

CAL YR 1978 TOTAL 32797 MEAN 89.9 MAX 150 MIN 55 WTR YR 1979 TOTAL 33941 MEAN 93.0 MAX 139 MIN 53

NOTE.--Gage height record for Dec. 15, 1978 to Feb. 15, 1979, furnished by the New Jersey Department of Environmental Protection.

85

01460880 LOCKATONG CREEK AT RAVEN ROCK, NJ

LOCATION.--Lat 40°24'58", long 75°01'05", Hunterdon County, Hydrologic Unit 02040105, at bridge, on Raven Rock-Rosemont Road, and 0.7 mi (1.1 km) upstream from mouth.

DRAINAGE AREA. -- 22.9 mi2 (59.3 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1956, 1959-62, 1976 to current year.

COOPERATION. --Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
MAR 01	0950	89	7.8	1.0	13.8	2.0	490	220	22
APR									
26 JUN	0915	148	7.6	15.0	9.9	1.0	<20	23	47
07 SEP	0940	158	7.7	18.0	10.4	<1.0	310	1700	51
27	0945	148	8.1	14.0	9.3	2.0	490	79	50
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
MAR	5.4	2.0	3.8	1 7	7		4.5	4.1	.0
O1				1.7			15		
26 JUN	11	4.8	7.9	1.9	21		26	8.6	.1
07	12	5.0	8.2	2.2	22	.0	26	7.7	-1
SEP 27	12	4.8	7.5	2.4	17	.0	25	7.8	.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
MAR									
01 APR	6.2	55	1.0	.20	1.4	1.6	2.6	.17	4.7
26 JUN	8.0	101	1.7	<.10		.50	2.2	.03	2.5
07	13	107	1.4	<.10		1.8	3.2	.26	6.1
SEP 27	11	108	2.0	.30	.20	.50	2.5	.15	2.8

01460880 LOCKATONG CREEK AT RAVEN ROCK, NJ--Continued

DATE	TI	ME	NIT GEN, + OR TOT BOT (MG AS	NH4 G. IN MAT /KG	CARB ORGA TOT. BOT MA (G/ AS	NIC IN TOM T. KG	CARB INO GAN TOT BOT (G/ AS	R- IC, IN MAT KG	CARB INOR ORGA TOT. BOT (G/ AS	G + NIC IN MAT KG	SOI (UG	M, S- VED	ARSE TOT (UG AS	AL /L	ARSE TOT IN B TOM TER (UG AS	AL OT- MA- IAL /G	BERT LIUM TOTA RECO ERAI (UG)	AL OV- BLE L	BOR TOT REC ERA (UG AS	AL OV- BLE /L	CADMI TOTA RECO ERAI (UG/ AS C	L OV- BLE L
JUN 07	09	40										40		3				0		0		.1
SEP 27	09	45	250	0		4.1		.1		4.2		20		1		0		10		0		0
DATE	(UG	OV. BOT- MA- IAL	CHR MIU TOT REC ERA (UG	M, AL OV- BLE /L		M, OV.	(UG	OV. BOT- MA- HAL	ERA (UG	AL OV- BLE	TOM TEF (UG	OV.	IRO TOT REC ERA (UG	AL OV- BLE /L	IRO REC FM B TOM TER (UG AS	OV. OT- MA- IAL /G	LEAD TOTA RECO ERAD (UG)	AL OV- BLE /L	LEA REC FM B TOM TER (UG AS	OÝ. OT- MA- IAL /G	MANO NESI TOTA RECO ERAI (UG) AS N	L OV- BLE 'L
JUN 07				20						8				210				4				10
SEP 27		<10						40		2								2		30		10
21		(10		20		40		40		2		30		110	44	000		2		90		10
1	DATE	NE RE FM TOM	NGA- SE, COV. BOT- MA- RIAL	TO RE ER (U	CURY TAL COV- ABLE G/L HG)	RE FM TOM TE (U	CURY COV. BOT- MA- RIAL G/G HG)	RE ER (U	KEL, TAL COV- ABLE G/L NI)	FM TOM TE (U	KEL, COV. BOT- MA- RIAL G/G NI)	TO (U	LE- UM, TAL G/L SE)	TO! TOM TOM	LE- UM, FAL BOT- MA- RIAI G/G)	ZINC TOTA RECO ERAB (UG/ AS Z	L V- LE L	TOM TER (UG	OV. BOT- MA- RIAL	PHEI	IOLS	
JU	UN																					
SI	07 EP				<.5				13				0				0				0	
2	27		150		<.5		.00		1		40		0		0		0		110		0	
I	DATE	IN TOM TE	CCB, TAL BOT- MA- CRIAL F/KG)	IN TOM TE	RIN, TAL BOT- MA- RIAL (KG)	DA TO IN TOM TE	LOR- NE, TAL BOT- MA- RIAL /KG)	IN TOM TE	DD, TAL BOT- MA- RIAL /KG)	IN TOM TE	DE, TAL BOT- MA- RIAL (KG)	IN TOM TE	DT, TAL BOT- MA- RIAL /KG)	TOM TOM TE	I- NON, TAL BOT- MA- RIAL /KG)	DI- ELDRI TOTA IN BO TOM M TERI (UG/K	N, L T- A- AL	MOT	MA- RIAL	ETHI TO IN I TOM TEI (UG,	NAL BOT- MA- RIAL	
	UN 07																5					
SI	EP 27		4		.0		0		.0		.0		.0		.0		.0		.0		.0	
			-								, ,											
1	DATE	IN TOM TE	EPTA- ILOR, DTAL BOT- I MA- ERIAL E/KG)	EPO TOT BO	PTA- LOR XIDE : IN TTOM (ATL:	IN TOM TE	DANE TAL BOT- MA- RIAL (KG)	TH TO IN TOM TE	LA- ION, TAL, BOT- MA- RIAL	OX CH TOT BO	TH- Y- ILOR, TTOM ATL.	TH TOT BO M	HYL RA- ION, IN TTOM ATL. /KG)	TH TOT BO	THYL RI- ION, IN TTOM ATL. /KG)	PARA THIO TOTA IN BO TOM M TERI (UG/K	N, L T- A- AL	THI TOT IN F TOM TER		TO! IN I TOM TEI	ENE, PAL BOT-	
	UN 07																					
	EP 27		.0		.0		.0		.0		.0		.0		.0		.0		.0		0	

01461000 DELAWARE RIVER AT LUMBERVILLE, PA

LOCATION.--Lat 40°24'27", long 75°02'16", Bucks County, Hydrologic Unit 02040105, at pedestrian bridge at Lumberville, 1.4 mi (2.3 km) upstream of Lockatong Creek.

DRAINAGE AREA. -- 6,598 mi2 (17,089 km2).

WATER-QUALITY RECORDS

87

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 02	1310	240	8.1	18.0	9.6		170	2	96
MAR				7,12,112,					
07 MAY	0945	80	7.9	.0	15.4	3.0	3500	>2400	23
02	0915	111	7.6	14.5	9.7	1.0	E1700	E13	41
JUN 06	0930	133	7.7	20.0	6.2	2.0	460	27	46
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 02	24	8.7	11	2.2	58	.0	31	15	.1
MAR									
07 MAY	6.4	1.7	3.3	1.1	12		10	6.0	.0
02	11	3.2	5.4	1.0	22		15	7.2	-1
JUN 06	12	3.8	5.2	1.0	29		17	7.9	.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT						,			
02 MAR	3.1	150	1.5	.30	2.3	2.6	4.1	.45	2.8
07	3.1	49	<1.0	.30	1.1	1.4		.42	9.1
MAY 02	3.0	69	<1.0	<.10		1.0		.10	2.7
JUN 06	3.9	83	<1.0	<.10		2.4		.11	2.9

01461000 DELAWARE RIVER AT LUMBERVILLE, PA--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CHRO- MIUM, TOTAL REGOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	
OCT 02	1310	50	1	0	10	11	160	

DATE	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
D.4.0073	RECOV- ERABLE (UG/L	RECOV- ERABLE (UG/L	RECOV- ERABLE (UG/L	NIUM, TOTAL (UG/L	RECOV- ERABLE (UG/L	PHENOLS
	MANGA- NESE, TOTAL	MERCURY	NICKEL, TOTAL	SELE-	ZINC, TOTAL	

01461300 WICKECHEOKE CREEK AT STOCKTON, NJ

LOCATION.--Lat 40°24'41", long 74°59'13", Hunterdon County, Hydrologic Unit 02040105, at bridge on State Route 29 in Stockton, 900 ft (270 m) upstream from mouth.

DRAINAGE AREA .-- 26.5 m12 (68.6 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1959-63, 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

		SPE- CIFIC CON- DUCT-			OXYGEN,	OXYGEN DEMAND, BIO- CHEM-	COLI- FORM, FECAL,	STREP-	HARD- NESS
		ANCE	PH	TEMPER-	DIS-	ICAL.	EC,	TOCOCCI	(MG/L
	TIME	(MICRO-		ATURE	SOLVED	5 DAY	BROTH	FECAL	AS
DATE		MHOS)	(UNITS)	(DEG C)	(MG/L)	(MG/L)	(MPN)	(MPN)	CACO3)
OCT									
05	1415	492		15.5	11.8	1.0	170	240	64
MAR									
01 APR	1110	171	7.8	2.0	13.5	3.0	330	280	26
26	1020	407	8.7	15.0	10.0	1.0	20	11	51
JUN									(-22
07 SEP	1100	332	7.8	18.0	10.3	2.0	170	1 30	59
27	1145	590	7.8	15.5	9.7	1.0	490	33	62
					1.0		344		
		MAGNE-		POTAS-				CHLO-	FLUO-
	CALCIUM	SIUM,	SODIUM,	SIUM,	ALKA-		SULFATE	RIDE,	RIDE,
	DIS-	DIS-	DIS-	DIS-	LINITY	SULFIDE	DIS-	DIS-	DIS-
	SOLVED (MG/L	SOL VED	SOL VED (MG/L	SOL VED	(MG/L AS	TOTAL	SOLVED	SOLVED	SOLVED
DATE	AS CA)	AS MG)	AS NA)	AS K)	CACO3)	(MG/L AS S)	(MG/L AS SO4)	(MG/L AS CL)	(MG/L AS F)
ост									
05	14	7.1	75	2.5	39	.0	48	89	.1
MAR							- 1		
01 APR	6.3	2.5	16	2.1	8		19	19	,0
26	12	5.2	60	2.1	21		41	82	.1
JUN 07	15	5.2	40	2.2	36	^	25	50	
SEP		3.2	40	2.2	30	.0	35	50	.1
27	15	5.9	80	2.8	21	.0	43	120	.1
		SOLIDS.				NITRO-			
	SILICA,	RESIDUE	NITRO-	NITRO-	NITRO-	GEN, AM-			
	DIS-	AT 180	GEN,	GEN,	GEN,	MONIA +	NITRO-	PHOS-	CARBON,
	SOL VED	DEG. C	NO2+NO3	AMMONIA	ORGANIC	ORGANIC	GEN,	PHATE,	ORGANIC
	AS	SOL VE D	TOTAL (MG/L	TOTAL (MG/L	TOTAL (MG/L	TOTAL	TOTAL	TOTAL	TOTAL
DATE	SIO2)	(MG/L)	AS N)	AS N)	AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS PO4)	(MG/L AS C)
	02007	(110, 11,		NO 117	40 117	40 M/	40 117	NO 1047	NO 07
OCT 05	11	285	1.8				2.0	24	
MAR	- 11	205	1.0	<.10		1.1	2.9	.21	2.1
01	7.6	90	1.0	<.10		1.1	2.1	.13	4.4
APR 26	8.7	236	1.8	.20	.20	.40	2.2	.06	4.4
JUN									
07 SEP	14	190	1.9	<.10		4.4	6.3	.62	3.5
27	13	322	2.2	. 40	.00	.40	2.6	.11	1.4

01461300 WICKECHEOKE CREEK AT STOCKTON, NJ -- Continued

DATE	T.	IME	NIT GEN, + OR TOT BOT (MG	NH4 G. IN MAT /KG	CARB ORGA TOT. BOT MA (G/	NIC IN TOM T. KG	CARB INO GAN TOT BOT (G/ AS	R- IC, IN MAT KG	CARE INOR ORGA TOT. BOT (G/	IG + NIC IN MAT KG	ALU INU DI SOL (UG AS	M, S- VED /L	ARSE TOT (UG AS	AL	ARSE TOT IN B TOM TER (UG AS	AL OT- MA- IAL /G	BER LIU TOT REC ERA (UG AS	M, AL OV- BLE /L	BOR TOT REC ERA (UG AS	AL OV- BLE /L	CADMII TOTAL RECO ERABI (UG/I	L V- LE L
OCT 05	. 14	115										30		1				0				
JUN 07		100										30		3				0		0		1
SEP 27		145	210	0		2.2		.0		2.2		20		0		0		20		0		0
21		47	210			2.2		.0		2.2		20		. 0		Ü		20		•		
DATE	FM TOM TEN (UC	MIUM COV. BOT- MA- RIAL G/G CD)	CHR MIU TOT REC ERA (UG AS	M, AL OV- BLE /L	CHR MIU REC FM B TOM TER (UG	M, OV. OT- MA- IAL	COBA REC FM B TOM TER (UG AS	OV. SOT- MA- IAL	ERA (UG	AL OV- BLE	COPP REC FM B TOM TER (UG AS	OV. OT- MA- IAL	ERA (UG	OV- BLE	IRO REC FM B TOM TER (UG AS	OV. OT- MA- IAL /G	LEA TOT REC ERA (UG AS	AL OV- BLE /L	LEA REC FM B TOM TER (UG AS	OV. OT- MA- IAL	MANGA NESE TOTA RECOVERAB (UG/1 AS MI	L V- LE L
OCT 05				10						4				30								10
JUN 07				20						6				120				5				20
SEP 27		<10		20		30		30		1		20		70	29	000		0		30		0
	DATE OCT O5 JUN O7 SEP 27	NE RE FM TOM TE (U	NGA- SE, COV. BOT- MA- RIAL G/G)	ERA (UG AS	AL SOV- BLE S/L HG) <.5 <.5 <.5	REGENTOM TEMPORAL CHARACTER CHARACTE	CURY COV. BOT- MA- RIAL G/G HG)	ERA (UG AS	TAL COV- ABLE 3/L NI) 6 18	TOM TEI (UCAS	COV. BOT- MA- RIAL J/G NI)	NI TO (U AS	PAL 3/L SE) O O O O TAL	NI TOM TEM (U	LE- UM, TAL BOT- MA- RIAL G/G)	ZIN TOT REC ERA (UG AS	AL OV- BLE /L ZN) 20 10 0	TOM TEI (UC AS	COV. BOT- MA- RIAL G/G ZN) 70	ETH1	OON,	
	DATE	TOM	BOT- MA- RIAL /KG)	IN F TOM TER (UG/	MA- RIAL	TOM	MA- RIAL /KG)	IN F TOM TEF (UG/	MA- RIAL	TOM	MA- RIAL /KG)	TOM	MA- RIAL /KG)	TOM	BOT- MA- RIAL /KG)	IN B TOM TER (UG/	MA- IAL	TOM	MA- RIAL /KG)	IN I TOM TEF (UG)	MA- RIAL	
	OCT 05																		44			
	JUN 07																					
	SEP 27		5		.0		0		.0		.0		.0		.0		.2		.0		.0	
	DATE	TO IN TOM TE	PTA- LOR, TAL BOT- MA- RIAL /KG)	EPOX TOT. BOT	IN TOM	IN TOM	DANE TAL BOT- MA- RIAL /KG)	IN F TOM TEF	ION, PAL BOT-	OX: CH: TOT BO:	TH- Y- LOR, IN TTOM ATL. /KG)	TH TOT BO	HYL RA- ION, IN ITOM ATL. /KG)	TH TOT BO M	THYL RI- ION, IN TTOM ATL. /KG)	PAR THI TOT IN B TOM TER (UG/	ON, AL OT- MA- IAL	TH TO IN TOM TE	RI- ION, FAL BOT- MA- RIAL /KG)	IN I	ENE, PAL BOT- MA- RIAL	
	ОСТ 05																					
	JUN 07																					
	SEP 27		.0		.0		.0		.0		.0		.0		.0		.0		.0		0	
	STORY.								-						-							

01461900 ALEXAUKEN CREEK NEAR LAMBERTVILLE, NJ

91

LOCATION.--Lat 40°22'51", long 74°56'54", Hunterdon County, Hydrologic Unit 02040105, at bridge on State Route 29, 0.4 mi (0.6 km) upstream from mouth, and 1.1 mi (1.8 km) north of Lambertville.

DRAINAGE AREA. -- 14.9 mi2 (38.6 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1959-63, 1976 to current year.

COOPERATION. --Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DAT	e E	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMP ATU (DEG	RE	OXYGEN, DIS- SOLVEI (MG/L)	ICA:	ND, CO - FO M- FE L, E	LI- RM, CAL, C OTH PN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
MAR 01.		1250	153	7.7		4.5	12.4		2.0	20	110	41
APR 26.		1130	. 205							140	100	74
JUN.		1150	. 205	8.6	1	5.0	11.8	,	2.0	140	17	14
O7.	.,	1300	205	7.7	2	0.0	9.9	<	1.0	790	140	72
27.	••	1345	202	7.8	1	6.5	9.9		1.0	1300	240	75
DAT	?E	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	DI SOL (MG	UM, S- VED /L	ALKA- LINITY (MG/L AS CACO3)	SULFA DIS- SOLV (MG, AS SO	ATE RI DI VED SO L (M	LO- DE, S- LVED G/L CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
MAR 01.		10	4.0	6.2		1.5	18	21		9.5	.0	11
APR 26.		18	7.1	8.4		1.9	35	36	5	12	-1	8,2
JUN 07.		18	6.6	7.8		2.0	33			11	-1	13
SEP												1
27.	•••	19	6.7	7.5		2.1	43	30)	9.3	-1	14
	D	RES AT DE D SO	180 G. C NO: IS- TO LVED (1	GEN, 2+NO3 AM DTAL I MG/L (ITRO- GEN, MONIA OTAL MG/L S N)	ORGA TOT (MC	PRO- GEEN, MCANIC OF PAL TG/L (ITRO- N, AM- NIA + GANIC OTAL MG/L S N)	NITRO- GEN, TOTAL (MG/L AS N)	PHA	ATE, ORG	BON, ANIC TAL G/L C)
	MAI O API	1	87	1.4	<.10			.70	2.1		.13	2.4
	2	6	128	1.2	<.10			.30	1.5		.04	1.9
	O'	7	130	1.8	<.10			1.3	3.1		.62	5.4
		7	134	2.4	.40		.40	.80	3.2		.12	1.4

01462000 DELAWARE RIVER AT LAMBERTVILLE, NJ

LOCATION.--Lat 40°21'53", long 74°56'57", Hunterdon County, Hydrologic Unit 02040105, at U.S. Route 202 bridge connecting Lambertville, NJ, and New Hope, PA, and 600 ft (183 m) upstream of Swan Creek.

DRAINAGE AREA. -- 6,680 mi2 (17,301 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

	DA	TE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNI)		EMPER- ATURE DEG C)	OXYGEN DIS- SOLVI (MG/I	DEM BI I, CH IC ED 5 I	GEN IAND, IO- IEM- IAL, DAY	COLI- FORM, FECAL, EC BROTH (MPN)	STREP TOCOCC FECAL (MPN)	I
	OCT O5		1300	235			17.0	10.	5			-	_
			1130	84	7	.2	.0	14.	.2	3.0	1300	160	0
			1115	111	7	.6	15.0	9.	5	1.0	1700		5
	JUN 06		1130	130	7	.7	20.0	8.	5	1.0	80	1	2
MAR 07. MAY		2	DIS SOL (MG AS) AS 23	TIUM S: D: VED SOI CA) AS	IS- LVED S 3/L MG) 9.2	SODIUM DIS- SOLVED (MG/L AS NA	DI SOL (MG	UM, A S- LI VED /L K) (ALKA- INITY MG/L AS CACO3)	SULFA DIS- SOLV (MG/ AS SO	DIS ED SOI L (MG 04) AS	E, R LVED S L/L (CL) A 3	LUO- IDE, DIS- OLVED MG/L S F)
JUN		4	41 1	1	3.3	5.	1	1.0	22	15		7.3	.1
	DA OCT O5 MAR O7	TE 	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITH GEN NO2+1 TOTA (MG, AS 1	1, 103 A 1L 'L 1)	NITRO- GEN, MMONIA TOTAL (MG/L AS N)	NITR GEN ORGAN TOTA (MG/) AS N	O- GEN MON IC ORO L TO L (N	ITRO- I,AM- IIA + HANIC TAL MG/L S N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON ORGANI TOTAL (MG/L AS C)	ić 1
	MAY 02		3.0	68			<.10			.90	.08	1.	
	JUN				<1	0	<.10			2.0	.15		_

93

01462005 SWAN CREEK AT LAMBERTVILLE, NJ

LOCATION.--Lat 40°21'51", long 74°56'41", Hunterdon County, Hydrologic Unit 02040105, at bridge in Lambertville 250 ft (76 m) upstream from Delaware-Raritan Canal, 350 ft (107 m) downstream from State Route 29, and 500 ft (152 m) upstream from mouth.

DRAINAGE AREA. -- 3.28 mi2 (8.50 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR 26	1300	181	9.0	17.0	11.5	2.0	>24000	540	63	15	6.3	9.8
JUN 07	1410	200	8.2	20.0	10.0	<1.0	330	1600	70	17	-6.6	9.6
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
APR 26 JUN 07	1.9	30 38	31 28	13 14	.1	14 16	122	<1.0 <1.0	<.10 <.10	.50	.15	5.2 3.7

01462500 DELAWARE RIVER AT WASHINGTON CROSSING, NJ

LOCATION.--Lat, 40°17'20", long 74°52'08", Mercer County, Hydrologic Unit 02040105, at bridge at Washington Crossing, 1.4 mi (2.3 km) upstream of Jacobs Creek.

DRAINAGE AREA. -- 6,735 mi2 (17,444 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DAT	E	TI	ME	SPE- CIFI CON- DUCT ANCE (MICR MHOS	C - 3 10-	PH ITS)	ATI	PER- JRE 3 C)	SOL	EN, S- VED /L)	OXYG DEMAI BIO CHE ICA 5 DA (MG/	ND, M- L,	COLI- FORM, FECAL EC BROTH (MPN)	, STR	AL	HAR NES (MG AS	S /L
OCT		09	7 0	2	34			16.5		0.4							93
MAR	• •	09	50	2	.54			10.5	1	0.4			_	-			95
O7.	• •	13	45		84	7.5		.0	1	4.3		4.0	49	0 >2	400		23
02.		13	45	1	15	7.6		15.0		9.6		1.0	110	0	8		41
JUN 06.	• •	13	45	1	34	7.8		20.0		6.1			22	0	17		46
DAT	E	(MG	VED	MAGN SIU DIS SOLV (MG/ AS M	M, SOD ED SOI L (M	IUM, S- VED G/L NA)	SOI SOI (MC	TAS- IUM, IS- LVED 3/L K)	ALK LINI (MG AS CAC	TY /L	SULF TOT (MG AS	AL /L	SULFAT DIS- SOLVE (MG/L AS SO4	D SOL	E, VED		E, S- VED /L
OCT O5.		2	2	9	.3	9.6		1.9		52			31	1	3		.1
MAR 07.			6.4	1	.7	3.3		1.1		12			11		5.6		.0
MAY O2.		1	1		3.3	5.4		1.1		22			15		7.4		.1
JUN																	
06.	• •	1	2	3	.8	5.0		1.0		26		.0	16		7.5		.1
	D	ATE	DIS	LVED G/L	SOLIDS, RESIDUE AT 180 DEG. O DIS- SOLVED (MG/L)	NI G NO2 TO	TRO- EN, +NO3 TAL G/L N)	AMM TO (M	TRO- EN, IONIA TAL IG/L	ORG TO	TRO- EN, ANIC TAL G/L N)	GEN MON ORG TO (M	ANIC TAL G/L	PHOS- PHATE, TOTAL (MG/L S PO4)	ORG.	BON, ANIC TAL G/L C)	
	oc			2.0	121											7.1	
	MA			2.9	134									40		3.1	
	MA			3.1	47		1.0		.20		1.1		1.3	.42		5.0	
	JU	2 N		3.0	66		1.0		<.10				.50	,09		2.8	
	0	6		4.1	79	(1.0		<.10				2.1	.13		5.0	

01462500 DELAWARE RIVER AT WASHINGTON CROSSING, NJ--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 06	1345	60	2	0	0	1	20	14
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)
JUN 06	330	26	60	<.5	13	0	30	0

01463500 DELAWARE RIVER AT TRENTON, NJ (National stream quality accounting network, Pesticide program, and Radiochemical program station)

LOCATION.--Lat 40°13'18", long 74°46'42", Mercer County, Hydrologic Unit 02040105, on left bank 450 ft (137 m) upstream from Calhoun Street Bridge at Trenton, 0.5 mi (0.8 km) upstream from Assunpink Creek, and at mile 134.5 (216.4 km).

DRAINAGE AREA. -- 6,780 mi2 (17,560 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--February 1913 to current year. October 1912 to February 1913 monthly discharge only, published in WSP 1302. Gage-height records collected in this vicinity since 1904 are contained in reports of the National Weather Service.

REVISED RECORDS.--WSP 951: Drainage area. WSP 1302: 1913-20. WSP 1382: 1924, 1928.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to Sept. 30, 1965, at datum 7.77 ft (2.368 m) higher. Feb. 24, 1913, to Oct. 2, 1928, nonrecording gage on downstream side of highway bridge at site 500 ft (152 m) downstream.

REMARKS.--Water-discharge records good. Diurnal fluctuations at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lakes Wallenpaupack and Hopatoong, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, Neversink, and Wild Creek Reservoirs (see Delaware River Basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs and to Delaware and Raritan Canal (see Delaware River Basin, diversions). Water diverted just above station by borough of Morrisville, PA, and city of Trenton for municipal supply (see Delaware River Basin, diversions).

AVERAGE DISCHARGE. -- 67 years, 11,772 ft3/s (333.4 m3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 329,000 ft³/s (9,320 m³/s) Aug. 20, 1955 (elevation, 28.60 ft or 8.717 m, from high-water mark in gage house) from rating curve extended above 230,000 ft³/s (6,510 m³/s); minimum, 1,180 ft³/s (33.4 m³/s) Oct. 31, 1963, elevation, 7.26 ft (2.213 m). Flow in Delaware and Raritan Canal not included.

EXTREMES OUTSIDE PERIOD OF RECORD. --Flood of Oct. 11, 1903, reached an elevation of about 28.5 ft (8.69 m) National Geodetic Vertical Datum of 1929, discharge estimated, 295,000 ft³/s (8,350 m³/s). Maximum elevation since 1903, 30.6 ft (9.33 m) National Geodetic Vertical Datum of 1929, Mar. 8, 1904, from floodmark (ice jam).

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 50,000 ft3/s (1,420 m3/s) and maximum (*):

Date		Time	Disch (ft3/s)	arge (m³/s)	Elevat (ft)	ion (m)	Date		Time	Disch (ft3/s)		Elevat (ft)	ion (m)
Jan. Jan.	3	2245 1730	83200 51100	2356 1447	16.40	4.999 4.295	Feb. Mar.	26	1500 1015	77600 98200	2198 2781	16.01 17.45	4.880 5.319
Jan. Jan.	22	0300 1145	55500 *117000	1572 3313	14.44	4.401	Мау	27	1045	63300	1793	15.02	4.578

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979
MEAN VALUES

Minimum discharge, 3,090 ft 3 /s (87.5 m 3 /s) Nov. 17, gage height, 8.06 ft (2.457 m).

DAY	OCT	NO V	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3360	4220	5590	7250	20600	32300	17900	19700	29600	6040	4500	3430
2	3740	4010	5470	16500	16800	30200	16300	17900	22600	6040	4430	3330
3	3360	4250	4790	63300	15000	28600	16400	16200	19400	5350	4600	3460
4	3300	4390	4900	64200	13300	24100	17600	15400	17900	5510	5710	3880
5	3490	4530	6290	39000	12400	21700	18100	15500	17100	5280	4680	3680
6 7 8 9	3840 4790 4570 4220 3740	4350 4180 4220 3710 3550	6890 7020 7110 12800 17700	29100 21700 41300 45900 37400	1170.0 10700 10300 10100 9470	57400 94200 72400 53500 41200	17800 16700 15200 14100 18500	15400 13400 12300 11800 11100	15400 13800 12800 11600 10600	4790 4530 4500 4530 4220	4080 3940 3650 3490 3300	11800 23300 18500 16000 11400
11	3550	3980	17900	27600	9780	38200	22900	10900	10900	4010	3490	8560
12	3550	4430	15300	21300	10000	39500	22100	10700	12300	4010	4460	6980
13	3580	3710	12900	17000	10000	35200	20400	9780	13000	4010	8370	6460
14	3810	3240	11400	16600	9600	30400	21500	9320	11400	4250	7020	6000
15	4010	3330	9990	15600	9400	26500	24500	9210	9620	5550	6000	6160
16	4390	3330	9210	14200	9800	23200	25400	9110	8710	5090	4710	6630
17	5200	3150	8080	13600	9000	19900	23900	8420	7990	8030	4390	5750
18	5200	3650	7290	11700	8000	18200	21700	7710	7340	8610	3980	5750
19	4500	4750	7470	11100	7500	16800	19700	7430	6670	9060	3840	5050
20	3980	4390	6370	9680	8200	15600	17800	8520	6330	7340	3810	4680
21	3710	3910	6460	31200	8400	14700	16200	8910	5710	5910	4010	4460
22	3740	4320	7660	47100	8300	14200	14700	8270	5390	5160	3810	18400
23	4040	4110	8420	32100	8200	13800	12700	8910	5710	4820	3710	17300
24	3980	4180	8370	46600	10300	14200	11900	22600	5320	4280	3680	13500
25	3810	4640	11600	106000	20000	17400	11600	40200	4790	4750	3620	11800
26 27 28 29 30 31	3840 3810 3880 4110 5550 4750	4430 4220 4640 4790 5200	9990 8320 7750 7290 6630 6500	86800 65500 48900 39000 31000 25100	67200 46700 34000	27400 31000 25600 21200 19800 18900	11000 12700 18400 28100 24500	58300 61600 52900 42600 38700 34600	4640 4820 4640 4710 5350	4570 4460 4150 4180 6760 5430	3940 4710 4080 3840 3840 3650	11100 9160 8080 7520 9730

CAL YR 1978 TOTAL 4640610 MEAN 12710 MAX 79200 MIN 3150 WTR YR 1979 TOTAL 5024290 MEAN 13770 MAX 106000 MIN 3150

TOTAL

MEAN

MAX

MIN

01463500 DELAWARE RIVER AT TRENTON, NJ -- Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1945 to current year.

PERIOD OF DAILY RECORD. --SPECIFIC CONDUCTANCE: June 1968 to current year.

SPECIFIC COMMUNICATION.

PH: June 1968 to current year.

WATER TEMPERATURES: October 1944 to current year.

DISSOLVED OXYGEN: October 1962 to current year.

SUSPENDED-SEDIMENT DISCHARGE: September 1949 to current year.

INSTRUMENTATION. -- Temperature recorder since October 1944, water-quality recorder since October 1962.

REMARKS. -- Missing continuous water-quality records are the result of malfunction of sensor or sampling mechanism.

EXTREMES FOR PERIOD OF DAILY RECORD .--

XTREMES FOR PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: Maximum, 400 micromhos Jan. 24, 1959; minimum, 50 micromhos Mar. 19, 1945.

pH: Maximum, 10.2 July 5, 6, 1971, June 14, 15, 1974; minimum, 5.3 June 22, 1972.

WATER TEMPERATURES: Maximum, 34.0°C June 18, 1957; minimum 0.0°C on many days during winter months.

DISSOLVED OXYGEN: Maximum, 17.3 mg/L July 9, 1974; minimum, 4.0 mg/L Nov. 9, 1972.

SEDIMENT CONCENTRATIONS: Maximum daily, 1,720 mg/L Nov. 26, 1950; minimum daily, less than 0.5 mg/L Oct. 21, 1952 and Jan. 18, 1970.

SEDIMENT LOADS: Maximum daily, 1,087,000 tons (986,126 tonnes) Aug. 20, 1955; minimum daily, less than 0.5 ton (0.45 tonnes) Oct. 21, 1952 (0.45 tonnes) Oct. 21, 1952.

EXTREMES FOR CURRENT YEAR.-SEDIMENT CONCENTRATIONS: Maximum daily mean, 644 mg/L Jan. 25, 1979; minimum daily mean, 1 mg/L Feb. 21, 22, 1979.
SEDIMENT LOADS: Maximum daily, 186,000 tons (169,000 Mg) Jan. 25, 1979; minimum daily, 19 tons (17 Mg) on Oct. 12,

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
OCT										
25	1120	3910	207	7.6	12.0	1.0	11.7			12
NOV 28 DEC	1100	4740	191	7.3	3.5	1.0	12.7		2.5	150
13	1030	13100	141	7.1	2.0	6.0	13.8		2.5	K160
JAN			7.4			" 0	12.0	10	1 1	K130
30 FEB	1100	31000	112	7.3	2.0	4.0	13.8	19	1.1	K130
28 MAR	1030	32500	128	7.3	2.0	19	14.0	13	2.2	1000
07	1100	97900								
14	1120	30200	105	7.2	4.0	2.0	12.3	16	1.6	
APR	1005	22500	126	7 6	6.5	5.0	12.4	13	2.1	17
11 MAY	1045	22500	126	7.6	0.5	5.0	12.4	13	2.1	1.1
16	1215	9370	164	7.8	19.5	2.0	9.2		2.1	
JUN									3.0	
20	1100	6470	188	9.0	24.0	1.0	11.6		2.8	К3
JUL	1220	7900	205	7.8	26.0	45	6.9	28	1.5	K2500
18 AUG	1230	7800	205	1.0	20.0	45	0.9	20	1.5	KZJOO
08	1430	3650	226	8.6	28.0	5.0	10.4		4.4	K61
13	1130	8860								
SEP									1 0	1000
19	1130	4880	180	7.0	21.0	2.0	10.0	4	1.2	1800

DELAWARE RIVER BASIN
01463500 DELAWARE RIVER AT TRENTON, NJ--Continued
WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE - SIUM, DIS - SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- PIDE, DIS- SOLVED (MG/L AS F)
OCT										
25	2	80	21	6.8	9.5	1.7	50	28	13	.1
NOV			40		0.0			0.0	4.5	
28 DEC	>10000	73	19	6.2	8.8	1.6	41	28	13	. 1
13	320	44	11	4.1	6.5	1.5	30	20	9.8	. 1
JAN								1.4		
30 FEB	100	37	9.4	3.3	5.4	1.0	20	16	9.0	. 1
28	880	38	10	3.1	6.5	1.5	19	15	10	.0
MAR	000	30		3						
07										
14	320	37	9.8	3.0	5.0	1.0	19	15	7.9	. 1
APR 11	29	46	12	3.8	5.8	1.1	21	19	8.7	. 1
MAY	2,	40	12	3.0	5.0		2.1	1,5	0.1	
16		61	16	5.2	6.6	1.4	36	20	12	.0
JUN 20	150	70	18	6.2	7 0	1 5	51	25	11	.1
JUL	150	70	10	0.2	7.8	1.5	51	25	1-1	• 1
18	800	79	21	6.4	8.0	2.2	44	28	12	.1
AUG										
08	K45	84	22	7.0	9.6	2.1	53	26	. 14	. 1
13 SEP									,	
19	K74	65	17	5.5	8.2	, 1.3	36	24	11	.1

DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. FINER THAN .062 MM	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	
OCT										
25	2.0	127	3	32		1.2	.05	.26	. 31	
NOV 28	2.8	117	8	102	29	1.2	. 15	.26	. 41	
DEC	2.0		O	102	2 9	1.2		.20		
13	4.5	86	17	601	38	1.1	. 19	.34	.53	
JAN										
30	4.4	69	43	3600	74	. 65	. 12	. 18	.30	
FEB 28	2.0	78	70	6140	80	71	. 17	.58	75	
MAR	3.9	10	10	0140	80	.71	. 17	.50	.75	
07			285	75300	69					
14	4.0	71	16	1310	59	.74	.10	.20	.30	
APR										
11	3.9	72	15	911	63					
MAY 16	3.6	87	9	228	73	.90	.07	. 42	. 49	
JUN	3.0	01	9	220	13	. 90	.01	.42	.49	
20	1.9	121	- 4	70	82	.71	. 04	.39	. 43	
JUL								-	3 30	
18	4.8	143	129	2720	92	1.3	. 12	.88	1.0	
AUG		4 110								
08	4.0	1 45	18	177	77	1.0	.01	.67	. 68	
13 SEP			65	1560	99					
19	3.8	115	12	158	68	. 86	.05	1.2	1.2	
100000000000000000000000000000000000000	5.0			. 50	30	. 50				

DELAWARE RIVER BASIN

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DAT	NIT GEN, + O SUS TOT (MG E AS	NH4 GEN RG. MON: P. ORGA AL DI: /L (MO	ANIC G S. TO G/L (M	FRO- EN, FAL G/L N)	PHOS- PHORUS TOTAL (MG/L AS P)	TOT	TE, TAL G/L	PHOR PHOR DIS SOL (MG AS	VED	CARBO DRGAL TOTA (MG,	ON, OR NIC D AL SO /L (RBON, GANIC IS- LVED MG/L S C)	CARB ORGA SUS PEND TOT (MG AS	NIĆ - ED AL /L
OCT		44							00		2 0			22
25. NOV		.00		1.5	•				. 09		3.8			4.2
28. DEC		. 10	. 31	1.6		11			. 09			3.2		
13. JAN	••	. 10	. 43	1.6	. (08			. 05		3.8			
30. FEB		. 14	. 16	. 95	. (04			.03		3.2			
28. MAR		. 17	.58	1.5		11			. 05			6.0		
07.						04			.02		9.7			
14. APR		.00		1.0										
MAY	••													
16. JUN	••	.22	. 27	1.4	. (09	. 28		.06			2.6		. 5
JUL	••	.22	.21	1.1	. (06	. 18		.03		4.5			
18. AUG		. 39	. 61	2.3	- 5	23			.09		6.2			
08. 13.		. 39	. 29	1.7		13			.07			5.3		
SEP				2.1		09			. 07		3.3			
19.	••	. 30	. 90	2.1		09					3.3			
DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	SOLVED (UG/L	ERA (UC	IUM,	BARIUM, SUS- PENDED RECOV- ERABLE (UG/L AS BA)		S-	CADM TOT REC ERA (UG	AL OV- BLE /L	CADMIU SUS- PENDE RECOV ERABL (UG/L AS CI	D CAI	OMIUM DIS- DLVED JG/L G CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
NOV														
28 FEB	1100	1	1		0	0		0		2		0	2	10
28 MAY	1030	3	2		0	0		0		0		0	0	<10
16 AUG	1215	2	2		0	0		0		2		1	1	<20
08	1430	2	1		100	50		50		1		1	0	20
DATE	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	ERA (UC	DED C	COBALT, DIS, SOLVED (UG/L AS CO)	ERA (UC	PER, TAL COV- ABLE G/L CU)	COPP SUS PEN REC ERA (UG AS	DED OV- BLE /L	COPPER DIS- SOLVE (UG/L AS CU	, TO	ON, OTAL COV- ABLE IG/L FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)
NOV 28	10	0	1		1	0		4		2		2	120	70
FEB 28	<10	0	2		0	2		6		4		2	1400	1300
MAY 16	10	<10	1		1	0		5:		2		3	220	200
AUG 08	10	10			2	0		6		3		3	530	520
		10	-		-	·				,		,	230	,,,,
DATE	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	SOI (UC	AD, IS- VED G/L PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NES PEI REC	NGA- SE, US- NDED COV. G/L MN)	MAN NES DI SOL (UG AS	E, S- VED /L	MERCUR TOTAL RECOV ERABL (UG/L	Y S PE RE E EF	CURY US- NDED COV- ABLE (G/L	MERCURY DIS- SOLVED (UG/L AS HG)
NOV 28	50	12	0		12	100		90		10	3 >	5		
FEB								1700			ζ.		.0	<.5
28 MAY	80	5			1	60		20		40	<.		.0	<.5
16 AUG	20	16			0	70		60		10	<.		.0	<.5
08	10	6	6		0	60		60		1	<.	5	<.0	<.5

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

	DATE	SEL NIU TOT (UG	E- M, I AL 1	SELE- NIUM, SUS- PENDED TOTAL (UG/L AS SE)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	SILVER, SUS- PENDED RECOV- ERABLE (UG/L AS AG)		ER, S- VED /L	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, SUS- PENDED RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	
	NOV 28		0	0	0.	0	0		0	50	10	40	
	FEB 28		0	0	0	0	0		0	50	40	10	
	MAY 16		0	0	0.	.0	0		0	40	20	20	
	AUG 08.		0	0	0	0	0		0	20	10	9	
			1	GROSS ALPHA, DIS- SOLVED	GROSS ALPHA, SUSP. TOTAL	GROSS BETA, DIS- SOLVED	GROSS BETA, SUSP: TOTAL	GROS BETA DIS SOLV		GROSS BETA, SUSP. TOTAL	RADIUM 226, DIS- SOLVED,	URANIUM DIS- SOLVED,	
	DATE		ME	(UG/L AS J-NAT)	(UG/L AS U-NAT)	(PCI/L AS CS-137)	(PCI/L AS CS-137)	AS S	SR/	(PCI/L AS SR/ YT-90)	RADON METHOD (PCI/L)	TION (UG/L)	
	JAN)-NA1 /	0-1117	05-1317	05-1317	11-9	,0,	11-907	(101/2)	(00/2)	
	30	. 11	00	<1.0	.5	1.6	.7	1	.5	.7	.03	.40	
DATE	TIME		B, TO	PCB, TOTAL N BOT- OM MA- TERIAL JG/KG)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL (UG/L)	CHLC DANE TOTA IN BC TOM M TERI (UG/K	AL OT - MA- IAL	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 28 FEB	. 1100)	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND
28 MAY	. 1030)	ND		N D		ND			ND		ND	
16 AUG	. 1215	5	ND		ND	ND	ND		ND	ND	ND	ND	ND
08	. 1430)	ND		ND		ND			ND		ND	
	DATE	DDT, TOTAL (UG/L)	DDT TOTAL IN BOT TOM MA TERIA (UG/KO	L F- D: A- AZII AL TO:	AZI TO I- IN NON, TOM TAL TE	MA- EI	EL T DI- IN LDRIN TO DTAL T	DI- DRIN, OTAL BOT- M MA- ERIAL G/KG)	ENDRI TOTA (UG/	TO IN N, TOM L TE	RIAL TO	IN IION, TOM TAL TE	ION, TAL BOT- MA- RIAL /KG)
	NOV 28	ND		ND	ND	ND	ND	ND		ND	ND	ND	ND
	FEB 28	ND			ND		ND	ND		N D	ND	ND	ND
	MAY 16	ND		ND	ND	N D	ND	ND		N D	ND	ND	ND
	AUG 08	ND			ND		ND			N D		ND	
					7.						100		1

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	HEPTA - CHLOR, TOTAL (UG/L)	HEPTA - CHLOR, TOTAL IN BOT - TOM MA- TERIAL (UG/KG)	HEPTA - CHLOR EPOXIDE TOTAL (UG/L)	HEPTA - CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL (UG/L)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)
NOV										
28 FEB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
28	ND		ND		ND		ND		ND	
MAY 16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AUG 08	ND		ND		ND		ND		ND	-
DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOTAL (UG/L)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	PARA- THION, TOTAL (UG/L)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL TRI- THION (UG/L)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOX- APHENE, TOTAL (UG/L)	TOXA - PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 28 FEB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
28	ND		ND		ND		ND		ND	
MAY 16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AUG 08	ND	- 12	ND		ND		ND	120	ND	

DATE	LENGTH OF EXPO- SURE (DAYS)	PERI- PHYTON BIOMASS TOTAL DRY WEIGHT G/SQ M	PERI- PHYTON BIOMASS ASH WEIGHT G/SQ M	CHLOR-A PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)	CHLOR-B PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)
NOV 28	33	8.66	6.14	47.2	4.12
FEB 28	28	.000	.000	.000	.000
MAY 16	34	10.0	7.64	8.48	2.21
AUG 08	20	2.36	2.05	. 140	.000

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued PHYTOPLANKTON ANALYSES, OCTOBER 1978 TO SEPTEMBER 1979

PHITOPLANKI	ON AN	ALYSES,	OC	TOBER	1978 TO	SEPTE	MBER 197	9			
DATE TIME		NOV	11	8,78	MAR 1	14,79 120	MAY 1	16,79 215	JUN 1	20,79	
TOTAL CELLS/ML			4	20	1	400	70	000	210	000	
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS			1 2	0.8 0.8 0.5 0.8	(0.2 0.2 0.8 0.8		0.9 0.9 1.6 2.2 2.5		1.5 1.5 1.9 2.3 2.4	
ORGANISM		CELLS /ML		PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER-	
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALES											
CHARACIACEAE SCHROEDERIA				-	14	4		_		0	
COELASTRACEAE				_		-		_	1100	5	
HYDRODICTYACEAE				_		_		-		_	
MICRACTINIACEAE				2		_	230	3		_	
OOCYSTACEAE ANKISTRODESMUS							560	8			
CHODATELLA				-		-		-		-	
GLOEOACTINIUM KIRCHNERIELLA				-		-	560	8	11	-	
OOCYSTIS				-		-	1 90	3	2 60	1	
SELENASTRUM TREUBARIA				-		-	==	-	==	-	
SCENEDESMACEAE											
SCENEDESMUS		58	3	14		_	5 60	8	6 00 0°	29	
TETRASTRUM				-		-		-	260	1	
TETRASPORALESPALMELLACEAE											
GLOEOCYSTIS VOLVOCALES			-	-		-				-	
CHLAMYDOMONADACEAE		29	9	7		-		-		-	
CHLAMYDOMONAS ZYGNEMATALES DESMIDIACEAE		-	•	-		-	320	5		-	
COSMARIUM EUASTRUM		15		3		-		-		-	
				7	77						
CHRYSOPHYTA .BACILLARIOPHYCEAECENTRALES							1				
COSCINODISCACEAE		_					3800°	54	2200	11	
CYCLOTELLA MELOSIRA		2		7		-	3000	-		-	
PENNALES ACHNANTHACEAE											
ACHNANTHES			-	-		-	1 40	2		-	
COCCONEIS		-	-	-		-		-		-	
CYMBELLACEAE		-	_	-		-	280	4		-	
DIATOMACEAE		4	11	10				_		_	
FRAGILARIACEAE		,	•	10							
, SYNEDRA		12	00	28		-	140	2	590	3	
GOMPHONEMATACEAE											
GOMPHONEMANAVICULACEAE		1		3		-					
NAVICULA NITZSCHIACEAE		8	7°	21		-	140	2		-	
NITZSCHIA		2	9	7		-	46	1	330	2	
TABELLARIACEAE		_	_	_		-	93	1		4	
CYANOPHYTA (BLUE-GREEN ALG	AFY										
.CYANOPHYCEAE CHROOCOCCALES	IKE)										
CHROOCOCCACEAE ANACYSTIS		_	_	-	58	14		-	1700	8	
COCCOCHLORIS HORMOGONALES		-	-	-		-		-	130	1	
NOSTOCACEAE			_	_		-	6.5		-	1	
OSCILLATORIACEAE							T and			20	
OSCILLATORIA		-	-	-	330 0	82		-	7900°	38	
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALES											
EUGLENACEAETRACHELOMONAS		_	_	-		-				-	

NOTE: 0 - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued PHYTOPLANKTON ANALYSES, OCTOBER 1978 TO SEPTEMBER 1979

PHITOPLANKTON ANALYSES,	OCTOBER	1978 1	O SEPTEM	BER 19	19		
DATE TIME		18,79 230		8,79 430		19,79 130	
TOTAL CELLS/ML	20	000	160	000	3	800	
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		1.2 1.2 1.3 2.2 2.7		0.7 0.7 0.8 1.0		1.1 1.1 1.5 2.4 3.0	
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESCHARACIACEAESCHROEDERIA						0	
COELASTRACEAE COELASTRUM			4100	3	34		
HYDRODICTYACEAE	1200	7	4100	,	22	-	
PEDIASTRUMMICRACTINIACEAE	1300	7	-	-		-	
MICRACTINIUM OOCYSTACEAE		-		-		-	
ANKISTRODESMUS CHODATELLA	1600	8	2100	1	600°	16	
GLOEOACTINIUM KIRCHNERIELLA	2700	14		-	810 0	21	
OOCYSTIS		-		- 4	34	1	
SELENASTRUM TREUBARIA	===	-	6200	o	34	-	
SCENEDESMACEAECRUCIGENIASCENEDESMUSTETRASTRUM	1300 5200°	7 26	4800	3	1100° 69	28 2	
TETRASPORALESPALMELLACEAEGLOEOCYSTISVOLVOCALES		_			1 40	4	
CHLAMYDOMONA DACEAE CHLAMYDOMONAS ZYGNEMATALES	Ξ	-	3 40 0	2	51	ī	
DESMIDIACEAE COSMARIUM EUASTRUM	- 22	-	==	-		0	
CHRYSOPHYTA .BACILLARIOPHYCEAECENTRALESCOSCINODISCACEAE							
CYCLOTELLA MELOSIRA PENNALES	490	3	2400	1	120	3	
ACHNANTHACEAE ACHNANTHES		-	*	0		0	
COCCONEIS		-		-	34	1	
CYMBELLACEAE		-	*	0	*	0	
DIATOMACEAE		-		4		-2	
FRAGILARIACEAE		-		-		-	
SYNEDRAGOMPHONEMATACEAE		-		-	86	2	
GOMPHONEMANAVICULACEAE		-		-		-	
NAVICULA NITZSCHIACEAE		-		-		-	
NITZSCHIA TABELLARIACEAE	490	3	1700	1	120	3	
TABELLARIA		-		121		-	
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE CHROOCOCCALES							
CHROOCOCCACEAEANACYSTISCOCCOCHLORISHORMOGONALES	6100	31	140000	84	==	1	
NOSTOCACEAE		2		-	530	14	
OSCILLATORIACEAE OSCILLATORIA	250	1		_			
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYTEAEEUGLENALESEUGLENACEAE	230		77				
TRACHELOMONAS		-		-	*	0	

NOTE: 0 - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

	S	PECIFIC C	ONDUCTANCE	(MICROMHO	S/CM AT 2	5 DEG. C)	, WATER	YEAR OCTOBER	1978	TO SEPTEMBER	1979	
DAY	ост	NOV	DEC	JAN	FEB	CE-DAILY MAR	APR	MAY	JUN	JUL	A UG	SEP
1								114	110	212	208	
2								127		206	234	
3									122			204
5									124			
6									126	205	220	206
7						-4-		128	134		225	152
. 8								127	1 44		226	
10								152 145		218 227	240	
10								1,72			- 13	
11							126	150		220		4.51
12			141						168	224	199	154 156
. 14			141			105		153	171		225	176
15								149	159			
16								164			194	
17								154		195	197	
18								170	178	205		187
19							112		179	184		180
20							116		188		235	187
21											232	197
22									203	127	229	
23								157 154		221	219	194
25	207						146	151	217	233		160
26							158		228	230 216	230	152
27		191			128		167		228	210	219	
29								90				
30				112			104	96		236	224	
31								96		247	225	
MEAN							133	1 36	170	217	222	177
			PH (ST	CANDARD III	TAW (PTT	ER VEAR	CTORER 1	078 TO SEPTE	MRER 1	1070		
***			PH (ST	ANDARD U		ER YEAR O	CTOBER 1	978 TO SEPTE	MBER 1	1979		
DAY	ост	NOV	PH (ST	TANDARD UI			APR	978 TO SEPTE	MBER 1	1979 JUL	A UG	SEP
			DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL		
- 1	ост				ON	CE-DAILY		MAY 7.5		JUL 	7.9	
1 2 3			DEC	JAN	FEB	MAR	A PR	MAY	JUN 7.7	JUL		=
1 2 3 4	===	===	DEC	JAN	FEB	MAR	A PR	MAY 7.5 7.6 7.5	JUN 7.7 7.4	JUL 8.2 8.4	7.9 8.6 8.4	8.2
1 2 3	==		DEC	JAN	FEB	MAR	A PR	MAY 7.5 7.6 7.5	JUN 7.7	JUL 8.2 8.4	7.9 8.6 8.4	=
1 2 3 4 5	===	===	DEC	JAN	FEB	MAR	A PR	MAY 7.5 7.6 7.5	JUN 7.7 7.4	JUL 8.2 8.4	7.9 8.6 8.4	8.2
1 2 3 4 5	=======================================	=======================================	DEC	JAN	FEB	MAR	A PR	MAY 7.5 7.6 7.5 7.5 7.8	JUN 7.7 7.4 7.7 7.6 7.8	8.2 8.4 	7.9 8.6 8.4 8.8 8.6	7.6 7.3
1 2 3 4 5 6 7 8	=======================================	=======================================	DEC	JAN	ON FEB	MAR	APR	MAY 7.5 7.6 7.5 7.7 7.8 7.6 7.7	JUN 7.7 7.4 7.7 7.6 7.8 7.8	JUL 8.2 8.4 	7.9 8.6 8.4 8.8 8.6 8.6	7.6 7.3
1 2 3 4 5	=======================================	=======================================	DEC	JAN	FEB	MAR	A PR	MAY 7.5 7.6 7.5 7.8 7.8	JUN 7.7 7.4 7.7 7.6 7.8	3UL 8.2 8.4 8.4 8.8	7.9 8.6 8.4 8.8 8.6 8.6 8.7	7.6 7.3
1 2 3 4 5 6 7 8 9			DEC	JAN	ON FEB	MAR	A PR	MAY 7.5 7.6 7.5 7.8 7.7 7.8 7.7	JUN 7.7 7.4 7.7 7.6 7.8 7.8	JUL	7.9 8.6 8.4 8.8 8.6 8.6 8.7 8.9	7.6
1 2 3 4 5 6 7 8 9			DEC	JAN	ON FEB	MAR	APR	MAY 7.5 7.6 7.5 7.8 7.8 7.7 7.8 7.9	JUN 7.7 7.4 7.7 7.6 7.8 7.8	JUL 8.2 8.4 8.4 8.8 8.8 9.1	7.9 8.6 8.4 8.8 8.6 8.6 8.7 8.9	7.6
1 2 3 4 5 6 7 8 9 10			DEC	JAN	ON FEB	MAR	APR	MAY 7.5 7.6 7.5 7.8 7.6 7.7 7.8 7.4 7.9	JUN 7.7 7.4 7.7 7.6 7.8 7.8 7.8	3UL 8.2 8.4 8.4 8.8 8.8	7.9 8.6 8.4 8.8 8.6 8.6 8.7 8.9	7.6 7.3
1 2 3 4 5 6 7 8 9 10 11 12 13			DEC	JAN	ON FEB	MAR	APR	MAY 7.5 7.6 7.5 7.8 7.6 7.7 7.8 7.9 7.9	JUN 7.7 7.4 7.7 7.6 7.8 7.8	JUL 8.2 8.4 8.4 8.8 8.8 9.1	7.9 8.6 8.4 8.8 8.6 8.6 8.7 8.9	7.6 7.3 7.9 7.8
1 2 3 4 5 6 7 8 9 10 11 12 13			DEC	JAN	ON FEB	MAR	A PR	MAY 7.5 7.6 7.5 7.8 7.6 7.7 7.8 7.4 7.9	JUN 7.7 7.4 7.7 7.6 7.8 7.8 7.8	3UL 8.2 8.4 8.4 8.8 8.8 9.1	7.9 8.6 8.4 8.8 8.6 8.6 8.7 8.9	7.6 7.3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15			DEC	JAN	ON FEB	MAR	APR	MAY 7.5 7.6 7.5 7.8 7.6 7.7 7.8 7.4 7.9 7.4 7.6	JUN 7.7 7.4 7.7 7.6 7.8 7.8 8.2 8.2	8.2 8.4 8.4 8.8 8.8 9.1	7.9 8.6 8.4 8.8 8.6 8.6 8.7 8.9	7.6 7.3 7.9 7.8 7.8
1 2 3 4 5 6 7 8 9 10 11 12 13			DEC	JAN	ON FEB	MAR	A PR	MAY 7.5 7.6 7.5 7.8 7.6 7.7 7.8 7.4 7.9 7.4	JUN 7.7 7.4 7.7 7.6 7.8 7.8 7.8 8.2 8.2	8.2 8.4 8.4 8.8 8.8 9.1	7.9 8.6 8.4 8.8 8.6 8.6 8.7 8.9 8.1 7.8	7.6 7.3 7.9 7.8 7.8
1 2 3 4 5 6 6 7 7 8 8 9 10 11 12 13 14 15 16 17 18			DEC	JAN	ON FEB	MAR	7.6	MAY 7.5 7.6 7.5 7.8 7.6 7.7 7.8 7.4 7.9 7.4 7.6 7.8	JUN 7.7 7.4 7.7 7.6 7.8 7.8 7.8 8.2 8.2	8.2 8.4 8.4 8.8 8.8 9.1 8.8	7.9 8.6 8.4 8.8 8.6 8.6 8.7 8.9 8.1 7.8	7.6 7.3 7.9 7.8 7.8
1 2 3 4 5 5 6 7 8 9 10 11 12 13 11 15 16 17 18 19			DEC	JAN	ON FEB	MAR	7.6	MAY 7.5 7.6 7.5 7.8 7.6 7.7 7.8 7.4 7.9 7.4 7.9 7.6 7.8 7.6 7.7	JUN 7.7 7.4 7.7 7.6 7.8 7.8 7.8 8.2 8.2 8.8	8.2 8.4 8.4 8.8 8.8 9.1 8.8	7.9 8.6 8.4 8.8 8.6 8.6 8.7 8.9 8.1 7.8 	7.6 7.3 7.9 7.8 7.8 7.8
1 2 3 4 5 6 6 7 7 8 8 9 10 11 12 13 14 15 16 17 18			DEC	JAN	ON FEB	MAR	7.6	MAY 7.5 7.6 7.5 7.8 7.6 7.7 7.8 7.6 7.7 7.8 7.6 7.7 7.8 7.6 7.7	JUN 7.7 7.4 7.7 7.6 7.8 7.8 7.8 8.2 8.2	8.2 8.4 8.4 8.8 8.8 9.1 8.8	7.9 8.6 8.4 8.8 8.6 8.6 8.7 8.9 8.1 7.8	7.6 7.3 7.9 7.8 7.8
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 114 15 15 16 17 18 19 20 21			DEC	JAN	ON FEB	MAR	7.6	MAY 7.5 7.6 7.5 7.8 7.6 7.7 7.8 7.4 7.9 7.4 7.6 7.6 7.6 7.8 7.7 7.8	JUN 7.7 7.4 7.7 7.6 7.8 7.8 8.2 8.2 8.8 9.0	8.2 8.4 8.8 8.8 8.8 9.1 8.8 7.3	7.9 8.6 8.4 8.8 8.6 8.7 8.9 8.1 7.8 8.0 8.1 8.4	7.6 7.3 7.9 7.8 7.8 7.9 8.1 8.3
1 2 3 4 5 5 6 7 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22			DEC	JAN	ON FEB	MAR	7.6	MAY 7.5 7.6 7.5 7.8 7.6 7.7 7.8 7.4 7.9 7.4 7.6 7.8 7.5 7.8 7.6 7.8	JUN 7.7 7.4 7.7 7.6 7.8 7.8 8.2 8.2 8.8 8.9 9.0	8.2 8.4 8.8 8.8 9.1 8.8 9.1 7.3 7.8 7.3	7.9 8.6 8.4 8.8 8.6 8.7 8.9 8.1 7.8 8.1 7.8 8.1 8.1 8.3	7.6 7.3 7.9 7.8 7.8 7.9 8.1 8.3
1 2 3 4 5 6 6 7 7 8 9 9 10 11 12 13 14 15 . 16 17 18 19 20 21 22 23 24			DEC	JAN	ON FEB	MAR	7.6	MAY 7.5 7.6 7.5 7.8 7.6 7.7 7.8 7.4 7.9 7.4 7.6 7.8 7.5 7.8 7.7 7.8 7.7 7.8	JUN 7.7 7.4 7.7 7.6 8.2 8.2 8.2 8.9 9.0	8.4 8.4 8.8 8.8 9.1 8.8 7.3 7.8 7.3	7.9 8.6 8.4 8.8 8.6 8.7 8.9 8.1 7.8 8.0 8.1 8.4	7.6 7.3 7.9 7.8 7.8 7.9 8.1 8.3 8.0
1 2 3 4 5 5 6 7 8 9 10 11 12 13 11 14 5 16 17 18 9 20 21 22 23			DEC	JAN	ON FEB	MAR	7.6	MAY 7.5 7.6 7.5 7.8 7.6 7.7 7.8 7.4 7.9 7.4 7.6 7.8 7.5 7.8 7.7 7.8 7.7 7.8	JUN 7.7 7.4 7.7 7.6 7.8 8.2 8.8 8.9 9.0	3UL	7.9 8.6 8.4 8.8 8.6 8.7 8.9 8.1 7.8 8.0 8.1 8.4 8.1 8.3 8.8	7.6 7.3 7.9 7.8 7.8 7.9 8.1 8.3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	7.6		DEC	JAN	ON FEB	MAR	7.6 	MAY 7.5 7.6 7.5 7.8 7.6 7.7 7.8 7.4 7.9 7.4 7.6 7.8 7.4 7.7 7.4 7.6 7.8 7.7 7.4 7.6	JUN 7.7 7.4 7.7 7.6 7.8 7.8 8.2 8.2 8.9 9.0 9.0 9.2	3UL	7.9 8.6 8.4 8.8 8.6 8.7 8.9 8.1 7.8 8.0 8.1 8.3 8.3 8.8	7.6 7.8 7.8 7.8 7.9 7.8 7.8 7.8 7.6
1 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 16 7 18 19 20 21 22 23 24 25 26 27	7.6		DEC	JAN	ON FEB	MAR	7.5 8.2 	MAY 7.5 7.6 7.5 7.8 7.6 7.7 7.8 7.4 7.9 7.4 7.6 7.8 7.6 7.8 7.7 7.3 7.4	JUN 7.7 7.4 7.7 7.6 7.8 7.8 8.2 8.2 8.9 9.0 9.0 9.2 9.2 9.2	3UL	7.9 8.6 8.4 8.8 8.6 8.6 8.7 8.1 7.8 8.1 8.1 8.1 8.3 8.3 8.5	7.6 7.7 7.9 7.8 7.8 7.8 8.1 8.3 8.0 7.6 7.6
1 2 3 4 5 6 7 7 8 9 9 10 11 12 13 14 15 16 17 8 19 20 21 22 23 24 25 26 27 28	7.6		7.1	JAN	ON FEB	MAR	7.6 	MAY 7.5 7.6 7.5 7.8 7.6 7.7 7.8 7.4 7.9 7.4 7.6 7.8 7.5 7.7 7.8 7.4 7.7 7.8 7.4 7.7 7.8	7.7 7.4 7.7 7.8 7.8 7.8 8.2 8.2 8.2 9.0 9.0 9.0 9.2 9.2	3UL	7.9 8.6 8.4 8.8 8.6 8.7 8.9 8.1 7.8 8.0 8.1 8.3 8.8 8.3	7.6 7.3 7.9 7.8 7.8 7.8 7.8 7.8 7.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 33 24 5 26 27 28 29	7.6		7.1	JAN	ON FEB	MAR	7.6 	MAY 7.5 7.6 7.5 7.8 7.6 7.7 7.8 7.4 7.9 7.4 7.6 7.8 7.4 7.7 7.4 7.6 7.8 7.7 7.4 7.7 7.4 7.7 7.4 7.7 7.4	JUN 7.7 7.4 7.7 7.6 7.8 7.8 8.2 8.2 8.9 9.0 9.0 9.2 9.0 9.2 9.0 9.2 9.0	3UL	7.9 8.6 8.4 8.8 8.6 8.7 8.9 8.1 7.8 8.1 8.1 8.3 8.8 8.5 8.5	7.6 7.3 7.9 7.8 7.8 7.8 7.8 7.7 7.7 7.6 7.6
1 2 3 4 5 6 7 7 8 9 9 10 11 12 13 14 15 16 17 8 19 20 21 22 23 24 25 26 27 28	7.6		7.1	JAN	ON FEB	MAR	7.6 	7.5 7.6 7.7 7.8 7.6 7.7 7.8 7.4 7.9 7.4 7.6 7.6 7.5 7.4 7.6 7.5	7.7 7.4 7.7 7.8 7.8 7.8 8.2 8.2 8.2 9.0 9.0 9.0 9.2 9.2	3UL	7.9 8.6 8.4 8.8 8.6 8.7 8.9 8.1 7.8 8.0 8.1 8.3 8.8 8.3	7.6 7.3 7.9 7.8 7.8 7.8 7.8 7.8 7.7
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	7.6		7.1	JAN	ON FEB	MAR	7.6 	MAY 7.5 7.6 7.5 7.8 7.6 7.7 7.8 7.4 7.9 7.4 7.6 7.8 7.7 7.8 7.7 7.4 7.6 7.8 7.7 7.4 7.6 7.8 7.7 7.4 7.6	JUN 7.7 7.4 7.7 7.6 7.8 7.8 8.2 8.2 8.8 8.9 9.0 9.0 9.2 9.0 9.2 9.0 9.2 9.0	3UL	7.9 8.6 8.4 8.8 8.6 8.6 8.7 8.9 8.1 7.8 8.0 8.1 8.3 8.4 8.1 8.3 8.8 8.1 8.3 8.6 8.1 8.1 8.3 8.6 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	7.6 7.7 7.9 7.8 7.8 7.8 7.8 7.7 7.9 8.1 8.1 8.1 8.0

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979 ONCE-DAILY

					ON	CE-DAILY						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1								14.5	18.5		27.0	
2								14.5		22.5	30.0	
3								14.5	17.5	22.5	28.0	26.5
5									20.0			
6									22.0	21.5	29.0	25.0
7								15.5	22.0		27.0	24.0
8								17.0	22.5		28.0	
10								19.0		24.5	28.5	
11							6.5	22.0		24.0		
12									18.5			23.0
13			2.0							26.0	21.0	22.0
14					===	4.0		18.5 18.0	21.5		23.0	22.5
16								19.5			21.5	
17								18.0		27.5	21.0	
18								17.5	23.0			21.0
19							9.0		23.0		23.5	21.0
21								17.0	22.5		22.5	19.5
23								18.0		26.0	26.0	
24								18.0		28.0		16.5
25	12.0						15.0	16.5	20.5	27.5		16.0
26							15.5		22.0	28.5		18.0
27 28		3.5			2.0		16.5		22.0	28.5	27.0	
29		3.3						14.5				
30				2.0			16.0	16.0		25.5	26.0	
31								16.5		26.0	27.0	
MEAN							12.5	17.5	21.5	25.5	25.5	21.0
		0	XYGEN, DIS	SSOLVED (, WATER Y		ER 1978 T	O SEPTEMB	ER 1979		
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1								9.6	9.3		7.8	
2								9.1		9.0	9.9	
3								9.3		9.6	0.4	8.2
5									9.0			
6									9.0	10.0	9.2	7.3
. 7								9.9	8.6		8.9	6.6
8	/ ===							9.8	8.8	10.5	10.4	
10										9.5	9.8	
11							12.4			11.0		
12									9.3			8.6
13			13.8			10.0				10.5	7.9	8.2
15						12.3		-7-	9.7		8.2	7.8
16								9.2			9.1	
17								8.2		6.8	9.0	
18								8.4	9.6	6.9		8.4
19							10.6		10.4	7.0	9.3	9.8
21								8.7			7.6	8.5
22								0.1	9.4		9.1	0.5
23										7.8	9.9	
24	11.7						10.0	8.3	9.9	9.4 7.4		8.4
26							9.0 8.7		11.4	8.0 10.5	9.0	9.4
- 28		12.7			14.0				10.0		0.0	
30	722			13.8			9.7	9.1		8.0	7.6	
31				13.0			9.1	9.0		7.8	9.5	
MEAN							10.2	9.0	9.9	8.8	9.0	8.3

DELAWARE RIVER BASIN

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

1 350 3 3 27 4200 5 57 570 0 102 2 3740 3 30 4010 5 57 577 5790 4 553 4 3300 3 27 4250 5 57 4790 4 553 4 3300 3 27 4250 5 57 4790 4 553 4 3300 3 27 4250 5 57 4790 4 553 4 350 7 86 6259 6 102 1	DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
2 3740 3 3 0 4010 5 5 57 5470 6 82 32 34300 3 3 27 4250 5 57 7470 4 533 5 57 4700 4 533 5 57 4700 4 533 5 57 4700 4 533 5 57 4700 4 533 5 57 4700 4 533 5 57 4700 6 102 4 533 5 57 4700 6 102 4 533 5 57 4700 6 102 4 533 5 57 4700 6 102 4 570 5 57 4700 6 102 4 570 5 57 4700 6 102 4 570 5 57 4700 6 102 4 570 5 57 4700 6 102 4 570 5 57 4700 6 102 4 570 5 57 4700 6 102 4 570 5 57 4 570 6 102 4 570 5 57 4 570 6 102 4 570 5 57 4 570 6 102 4 570 5 57 5 57			OCTOBER			NOVEMBER			DECEMBER	
7 4790 6 84 4180 6 71 7020 14 267 82 82 82 82 82 82 82 82 82 82 82 82 82	3 4	3740 3360 3300	3	30 27 27	4010 4250 4390	5 5 6	57 57 77	5470 4790 4900	6 4	82 53 53
12 3550	7 8 9	4790 4570 4220	8	84 101 52	4180 4220 3710	6 7 5	71 75 49	7020 7110 12800	14 25 130	267 482 5680
17 5200 9 126 3150 4 34 6080 8 174 18 5200 7 94 3650 5 54 7290 6 114 19 4500 5 554 4750 9 110 7470 4 86 20 3380 4 43 4390 6 69 6370 4 63 21 3710 4 400 3910 3 366 6460 3 54 22 3740 5 48 4320 4 44 7660 4 92 23 4040 6 6 62 4110 3 333 8420 4 93 25 3810 3 27 4810 3 33 8420 4 93 26 3840 4 38 4430 4 48 9990 10 257 27 3810 3 27 4810 4 50 1820 8 8 183 27 3810 3 27 4810 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	12 13 14	3550 3580 3810	2 2	19 20 31	4430 3710 3240	8 6 3	96 60 30	15300 12900 11400	30 16 9	1280 548 283
22 3740 5 48 4320 4 44 7660 4 92 23 4040 6 62 4110 3 333 8420 4 93 24 3980 5 49 4180 3 34 8370 4 90 25 3810 3 27 4640 4 50 11600 6 188 26 3840 4 38 4430 4 48 9990 10 257 27 3810 3 33 34 4320 8 8 183 28 3880 2 24 4640 5 59 7750 8 167 29 4110 6 66 64 4790 6 81 7290 9 177 30 5550 8 124 5200 8 110 6630 8 139 31 4750 7 93 6500 9 153 TOTAL 125400 1592 123810 1788 273460 22646 JANUARY FEBRUARY MARCH 1 7250 8 164 20600 14 784 32300 38 3290 2 16500 45 3170 16800 12 530 30200 30 2440 3 63300 317 56600 15000 8 326 28600 28 2140 3 63300 317 56600 15000 8 326 28600 28 2140 3 64200 160 28900 13300 7 225 12400 29 1910 5 39000 87 9320 12400 7 226 21700 29 1910 5 39000 87 9320 12400 7 226 21700 29 1910 5 39000 87 9320 12400 7 226 21700 29 1910 7 21700 25 1510 10700 5 144 94200 277 70800 8 41300 92 11400 10300 4 111 72400 126 25200 9 45900 82 10300 10100 4 108 53500 57 8370 11 27600 19 1430 9780 7 191 38200 30 3100 11 27600 19 1430 9780 7 191 38200 30 3100 12 21300 8 507 10000 62 9270 35200 30 3930 11 27600 19 1430 9780 7 191 38200 30 3100 12 21300 8 507 10000 62 9270 35200 22 2660 14 1660 6 269 9600 34 4560 34000 14 1130 15 15600 6 257 9400 17 2220 26500 14 974 16 14200 10 364 9800 3 400 11 112 14700 5 20 295 14 11100 4 118 7500 2 2 19300 11 1090 1 112 14700 5 2 2950 13 17000 6 276 10000 62 9270 35200 14 974 16 14200 10 364 9800 3 4450 3 4450 3 4400 14 1130 15 15600 6 257 9400 17 2220 26500 14 974 16 14200 10 364 9800 3 4500 1 112 14700 5 2 2960 14 16600 6 269 9600 34 4560 39400 14 1130 15 15600 6 257 9400 17 2220 26500 14 974 16 14200 10 364 9800 3 400 1 112 14700 5 2 296 24 47100 277 27400 8300 1 1 112 14700 6 2 22 2660 24 47100 277 27400 8300 1 1 112 14700 5 2 296 25 106000 644 186000 20000 237 37000 17400 16 71400 26 86800 185 42900 6700 485 8000 27400 275 1400 27 65500 92 15900 46700 184 24800 31000 32 2640 28 48900 48 6160 34000 55 5000 26500 271 1460 28 48900 48 6160 34000 55 5000 26500 271 1460 28 48900 48 6160 34000 55 5000 26500 271 1460 28 48900 48 6160 34000 55 5000 26500 271 1460 27 6550	17 18 19	5200 5200 4500	6 9 7 5 4	126 94 55	3150 3650 4750	5	34 54 110	8080 7290 7470	8 6 4	174 114 86
27 3810 3 33 4220 3 36 8320 8 183 28 3880 2 244 4640 5 59 7750 8 167 29 4110 6 66 6 4790 6 81 7290 9 177 30 5550 8 124 5200 8 110 31 4750 7 93 6500 9 153 TOTAL 125400 1592 123810 1788 273460 22646 JANUARY FEBRUARY MARCH 1 7250 8 164 20600 14 784 32300 30 2440 3 63300 317 56600 15000 8 326 28600 28 2140 4 6420 150 28900 13300 7 251 24100 29 1910 5 39000 87 9320 12400 7 226 21700 25 1450 6 29100 48 3840 11700 5 165 57400 167 32100 7 21700 25 1510 10700 5 144 94200 277 70800 8 41300 92 11400 10300 4 111 72400 277 70800 9 45900 82 10300 10100 4 101 72400 126 25200 9 45900 82 10300 10100 4 108 55500 57 8370 11 27600 19 1430 9780 7 191 38200 30 3100 11 27600 19 1430 9780 7 191 38200 30 3100 12 21300 8 507 10000 45 4570 39500 28 2950 11 27600 19 1430 9780 7 191 38200 30 3100 12 21300 8 507 10000 45 4570 39500 28 2950 14 16600 6 269 9600 34 486 3000 11 1900 126 2920 114 111 1100 15 1500 6 257 9400 17 2220 2660 14 16600 6 269 9600 34 4860 30400 14 111 1300 12 21300 8 507 10000 45 4570 39500 28 2950 13 17000 6 276 10000 62 9270 35200 22 20600 14 16600 6 269 9600 34 4860 30400 14 1130 17 13600 6 2214 9000 8 1050 22200 14 1100 18 11700 4 126 8000 3 111 1900 6 223 2000 14 11 1900 15 2000 18 11700 4 126 8000 3 11 1 12 14700 5 209 18 11700 4 126 8000 3 3 394 1860 30400 14 1130 17 13600 6 2214 9000 8 1050 22200 14 1693 18 11700 4 126 8000 3 3 394 1860 8 3220 17 13600 6 224 9000 8 1050 22200 14 1600 8 322 20 9680 4 111 8200 2 193 15600 6 223 23 32100 64 5550 8200 3 334 18600 6 226 24 46600 145 26300 10300 5 4 7630 14200 10 379 25 106000 644 186000 20000 237 37000 17400 16 714 26 86000 3 3 4900 3 3 34 13800 6 226 24 46600 145 22600 3 3 334 13800 6 226 24 46600 145 22600 3 3 334 13800 6 226 24 46600 145 22600 3 3 334 13800 6 226 24 46600 145 22600 3 3 334 13800 6 226 24 46600 145 22600 3 3 334 13800 6 226 24 46600 145 22600 3 3 334 13800 6 226 24 46600 145 22600 3 3 34 4960 31000 32 2640 25 39000 33 4590	22 23 24	3740 4040 3980	5 6 5	48 62 49	4320 4110 4180	4 3 3	44 33 34	7660 8420 8370	4 4 4	92 93 90
Table Tabl	27 28 29 30	3810 3880 4110 5550	3 2 6 8	33 24 66 124	4220 4640 4790 5200	3 5 6	36 59 81 110	8320 7750 7290 6630	8 8 9 8	183 167 177 139
1 7250 8 164 20600 14 784 32300 38 3290 2 16500 45 3170 16800 12 530 30200 30 2440 3 663300 317 56600 15000 8 326 28600 28 2140 4 64200 160 28900 13300 7 251 24100 29 1910 5 39000 87 9320 12400 7 226 21700 25 1450 6 29100 48 3840 11700 5 165 57400 167 32100 7 21700 25 1510 10700 5 144 94200 277 70800 8 41300 92 11400 10300 4 111 72400 126 25200 9 45900 82 10300 10100 4 108 53500	TOTAL	125400		1592	123810		1788	273460		22646
2 16500			JANUARY			FEBRUARY			MARCH	
7 21700 25 1510 10700 5 144 94200 277 70800 8 41300 92 11400 10300 4 111 72400 126 25200 9 45900 82 10300 10100 4 108 53500 57 8370 10 37400 32 3340 9470 3 77 41200 35 3930 11 27600 19 1430 9780 7 191 38200 30 3100 12 21300 8 507 10000 45 4570 39500 28 2950 13 17000 6 276 10000 62 9270 35200 22 2060 14 16600 6 269 9600 34 4560 30400 14 1130 15 15600 6 257 9400 17 2220 26500 14 974 1130 15 15600 6 257 9400 17 2220 26500 14 974 1130 15 15600 6 214 9000 3 411 19900 9 468 18 11700 4 126 8000 3 211 1 693 18 11700 4 126 8000 3 296 18200 9 402 19 11100 4 118 7500 2 194 16800 8 332 20 9680 4 111 8200 2 194 16800 8 332 20 9680 4 111 8200 2 194 16800 8 332 20 9680 4 111 8200 2 194 16800 6 226 227 220 220 220 220 220 220 220 220 220	3 4	16500 63300 64200	45 317 160	3170 56600 28900	16800 15000 13300	12 8 7	530 326 251	30200 28600 24100	30 28 29	2440 2140 1910
12 21300 8 507 10000 45 4570 39500 28 2950 13 17000 6 276 10000 62 9270 35200 22 2060 14 16600 6 269 9600 34 4560 30400 14 1130 15 15600 6 257 9400 17 2220 26500 14 974 16 14200 10 364 9800 8 1050 23200 11 693 17 13600 6 214 9000 3 411 19900 9 468 18 11700 4 126 8000 3 296 18200 9 402 19 11100 4 118 7500 2 194 16800 8 332 20 9680 4 111 8200 2 194 16800 8 332 21 31200 128 15400 8400 1 112 <t< td=""><td>7 8 9</td><td>21700 41300 45900</td><td>25 92 82</td><td>1510 11400 10300</td><td>10700 10300 10100</td><td>5 4 4</td><td>144 111 108</td><td>94200 72400 53500</td><td>277 126 57</td><td>70800 25200 8370</td></t<>	7 8 9	21700 41300 45900	25 92 82	1510 11400 10300	10700 10300 10100	5 4 4	144 111 108	94200 72400 53500	277 126 57	70800 25200 8370
17 13600 6 214 9000 3 411 19900 9 468 18 11700 4 126 8000 3 296 18200 9 402 19 11100 4 118 7500 2 194 16800 8 332 20 9680 4 111 8200 2 193 15600 6 267 21 31200 128 15400 8400 1 112 14700 5 209 22 47100 217 27400 8300 1 112 14200 6 223 23 32100 64 5550 8200 3 334 13800 6 226 24 46600 145 26300 10300 54 7630 14200 10 379 25 106000 644 186000 2000 237 37000 17400 16 714 26 86800 185 42900 67200 435 80400	12 13 14	21300 17000 16600	8 6	507 276 269	10000 10000 9600	45 62 34	4570 9270 4560	39500 35200 30400	28 22 14	2950 2060 1130
22 47100 217 27400 8300 1 112 14200 6 223 23 32100 64 5550 8200 3 334 13800 6 226 24 46600 145 26300 10300 54 7630 14200 10 379 25 106000 644 186000 20000 237 37000 17400 16 714 26 86800 185 42900 67200 435 80400 27400 25 1900 27 65500 92 15900 46700 184 24800 31000 32 2640 28 48900 48 6160 34000 55 5090 25600 21 1460 29 39000 33 4590 21200 13 723 30 31000 23 1910 18900 8 408	17 18 19	13600 11700 11100	6 4 4	214 126 118	9000 8000 7500	3 3 2	411 296 194	19900 18200 16800	9 9 8	468 402 332
27 65500 92 15900 46700 184 24800 31000 32 2640 28 48900 48 6160 34000 55 5090 25600 21 1460 29 39000 33 4590 21200 13 723 30 31000 23 1910 19800 9 470 31 25100 18 1240 18900 8 408	22 23 24	47100 32100 46600	217 64 145	27400 5550 26300	8300 8200 10300	1 3 54	112 334 7630	14200 13800 14200	6 6 10	223 226 379
10300	27 28 29 30	65500 48900 39000 31000	92 48 33 23	15900 6 16 0 459 0 1910	46700 34000	184 55 	24800 5090	31000 25600 21200 19800	32 21 13 9	2640 1460 723 470
										400

107 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		APRIL			MAY			JUNE	
1 2 3 4 5	17900 16300 16400 17600 18100	8 7 8 9 8	386 313 341 374 356	19700 17900 16200 15400 15500	22 14 11 9 8	1160 664 497 375 342	29600 22600 19400 17900 17100	18 15 12 12 11	1460 963 634 550 494
6 7 8 9	17800 16700 15200 14100 18500	8 8 6 5	384 354 258 174 484	15400 13400 12300 11800 11100	9 8 7 7 7	380 285 245 211 220	15400 13800 12800 11600 10600	10 8 9 8 7	428 284 315 237 206
11 12 13 14 15	22900 22100 20400 21500 24500	14 14 11 14 16	856 827 618 800 1070	10900 10700 9780 9320 9210	8 9 9 9	235 272 243 236 218	10900 12300 13000 11400 9620	10 20 19 12 7	289 676 666 384 193
16 17 18 19 20	25400 23900 21700 19700 17800	13 10 8 7 12	915 678 503 398 558	9110 8420 7710 7430 8520	9 7 6 7 8	225 171 117 134 181	8710 7990 7340 6670 6330	5 3 3 3 3	109 71 59 55 49
21 22 23 24 25	16200 14700 12700 11900 11600	10 8 6 6	432 301 215 194 197	8910 8270 8910 22600 40200	9 6 9 138 102	206 145 220 8690 10900	5710 5390 5710 5320 4790	2 4 4 3	35 53 62 47 46
26 27 28 29 30 31	11000 12700 18400 28100 24500	9 11 32 54 37	266 388 1630 4070 2490	58300 61600 52900 42600 38700 34600	108 76 51 33 33	17000 12700 7450 3860 3440 2060	4640 4820 4640 4710 5350	5 6 7 7 8	64 80 87 94 115
TOTAL	550300		20830	617390		73082	316140		8805
		JULY			AUGUST			SEPTEMBER	
1 2 3 4 5	6040 6040 5350 5510 5280	8 16 11 9	132 261 168 138 124	4500 4430 4600 5710 4680	21 16 33 40 32	254 199 404 579 410	3430 3330 3460 3880 3680	5 6 8 11	46 53 58 81 111
6 7 8 9	4790 4530 4500 4530 4220	7 5 6 6 5	90 67 71 72 53	4080 3940 3650 3490 3300	20 17 14 11	218 185 139 108 123	11800 23300 18500 16000 11400	92 334 268 201 109	3590 21700 13300 8760 3370
11 12 13 14	4010 4010 4010 4250 5550	4 5 7 46	38 43 52 81 734	3490 4460 8370 7020 6000	13 22 53 33 19	123 287 1210 619 311	8560 6980 6460 6000 6160	39 21 18 16	915 404 304 256 239
16 17 18 19 20	5090 8030 8610 9060 7340	49 334 208 237 167	705 7440 4780 5780 3310	4710 4390 3980 3840 3810	13 11 7 5	168 125 75 54 54	6630 5750 5750 5050 4680	11 9 12 9 7	202 146 180 125 86
21 22 23 24 25	5910 5160 4820 4280 4750	103 61 36 23 35	1650 842 474 268 446	4010 3810 3710 3680 3620	6 6 4 5 5	65 60 36 47 49	446 0 18400 17300 13500 11800	8 119 74 33 22	99 6830 3500 1220 694
26 27 28 29 30 31	4570 4460 4150 4180 6760 5430	33 23 14 16 54 34	406 273 159 183 1000 506	3940 4710 4080 3840 3850	6 10 8 9 8	64 131 92 94 79	11100 9160 8080 7520 9730	20 19 17 16 14	598 467 380 324 368
TOTAL	165220		30346	135340		6402	271850		68406
YEAR	5024290		1057976						

01463568 ASSUNPINK CREEK AT CARSONS MILLS, NJ

LOCATION.--Lat 40°13'05", long 74°33'08", Mercer County, Hydrologic Unit 02040105, at bridge at Carsons Mills, 0.1 mi (0.2 km) upstream from New Sharon Branch, and 1.3 mi (2.0 km) northeast of Pages Corner.

DRAINAGE AREA. -- 12.5 mi2 (32.4 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to current year.

COOPERATION. --Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

		WHITH WO	ADILL DAL	A, WALDI	IBAR OOLO	DER 1910	TO DELLEM	DBR 1919		
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
FEB	1070		4.04						-	7.1
08 MAR	1030		101	5.9	.0	11.6	1.4	11	5	34
29 JUN	0900	25	112	6.0	8.0	11.0	2.8	5	4	34
13 JUL	1345		112	6.7	20.0	8.6	1.7	70	490	35
17	1130		117	7.0	25.5	9.1	3.1	3500	>2400	41
AUG 07	1130	29	102	6.6	24.0	7.7	3.2	540	540	34
SEP 19	1315		103	6.6	21.0	8.0	1.7	70	280	34
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
FEB 08	7.1	4.0	3.1	2.5	5	0	4		23	7.7
MAR 29	7.4	3.8	3.4	2.2	6	0	5		24	7.9
JUN 13	7.3	4.0	3.6	2.0	10	0	8		20	7.6
JUL 17	8.4				15	0	12		21	9.4
AUG		4.8	4.1	2.3						
07 SEP	7.4	3.8	3.5	2.5	15	0	12		17	8.1
19	7.3	3.8	3.6	2.5	20	0	16	.0	16	8.0
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
FEB 08	.1	5.3	51	1.1	<1.0	1.1	2.2	.33	.30	2.6
MAR 29	.1	4.5	67	1.0	<.10	.60	1.6	.09	.09	
JUN 13	.2	3.1	75	<1.0	<.10	1.1		.25	.10	7.8
JUL 17	.2	5.8	90	<1.0	<.10	1.8		.51	.43	6.2
AUG 07	.2	4.4	82	<1.0	<.10	1.5		.86	.05	12
SEP										
19	.2	4.9	78	<1.0	<.03	1.5		.17	.03	4.4

DELAWARE RIVER BASIN

01463568 ASSUNPINK CREEK AT CARSONS MILLS, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
SEP 19	1315	0	2	10	20	0	10	3
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS
SEP 19	2000	1	120	<.5	1	0	20	0

01463620 ASSUNPINK CREEK NEAR CLARKSVILLE, NJ

LOCATION.--Lat 40°16'11", long 74°40'20", Mercer County, Hydrologic Unit 02040105, on left bank 200 ft (61 m) upstream from bridge on Quaker Bridge Road, 1.9 mi (3.1 km) south of Clarksville, 2.0 mi (3.2 km) upstream from Shipetaukin Creek, and 7.6 mi (12.2 km) upstream of mouth.

DRAINAGE AREA. -- 34.3 mi2 (88.8 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- Occasional low-flow measurements water years 1963-67. October 1972 to current year.

REVISED RECORDS. -- WRD-NJ 1974: 1973(M). WDR-NJ-75-1: 1971(M).

GAGE. -- Water-stage recorder. Datum of gage is 49.28 ft (15.021 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records poor. Some regulation from flood-control dams and ponds upstream.

AVERAGE DISCHARGE. -- 7 years, 58.7 ft3/s (1.662 m3/s), 23.24 in/yr (590 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,050 ft 3 /s (29.7 m 3 /s) July 21, 1975, gage height, 9.36 ft (2.853 m), from crest-stage gage; minimum daily, 7.0 ft 3 /s (0.20 m 3 /s) July 31, 1977.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 28, 1971, reached a stage of 10.9 ft (3.32 m), discharge, 1,500 ft 3 /s (42.5 m 3 /s).

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 200 ft 3 /s (5.66 m 3 /s) and maximum (*):

Date		Time	Dischar (ft³/s)	rge (m³/s)	Gage H	(m)	Date		Time	Discha (ft ³ /s)		Gage H	(m)
Dec. Jan.	11	0200	203 744	5.75	5.77	1.759	Feb. Mar.	25	1745 0615	*865 517	24.5		2.658
Jan.	25	1215	704	19.9	8.13	2.478	May	25	2100	315	8.92	6,42	1.957

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

Minimum daily discharge, 8.0 ft³/s (0.27 m³/s) July 31 to Aug. 2.

					ME	AN VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1	24	14	40	63	104	154	58	52	99	31	8.0	33
2	30	18	41	78	78	139	54	48	92	31	38	30
2 3 4	29	18	3.9	119	98	130	52	45	86	31	72	27
4	28	18	40	116	- 86	123	54	43	108	30	98	28
5	28	18	51	101	80	119	57	40	139	31	101	30
6	29	17	59	87	70	208	54	38	145	33	94	38
7	32	16	58	81	67	434	54	35	145	31	88	98
8 9	30 28	16	54	139	63	203	52	34	145	30	82	105
9	28	16	89	180	59	146	53	30	92	27	72	92
10	26	17	167	148	55	128	62	31	92	26	62	89
11	24	17	180	120	53	127	65	31	92	25	56	84
12	24	16	133	96	50	130	65	33	93	24	57	77
13 14	24	16	109	87	48	121	62	37	90	24	63	68
14	23	17	93	89	44	112	66	40	82	26	70	65
15	22	16	82	77	43	105	81	43	73	69	66	63
16	22	17	74	74	43	98	82.	43	64	65	61	64
17	24	18	66	67	42	90	77	40	60	58	56	59
18	27	23 26	61	57	39	84	73	39	72	53	52	59 57 55 50
19	29	26	56	37	40	80	68	46	67	53	49	55
20	30	26	52	48	39	75	65	50	61	49	45	50
21	30	24	54	340	40	72	63	51	53	45	43	45
22	30	24	59	487	46	68	59	51	48	40	39	58
23	31	23	57	227	55	65	57	56	45	34	38	64
24	31	24	56	178	105	64	54	157	42	36	44	62
25	31	25	105	616	691	72	53	259	38	31	72	58
26	31	25	123	320	832	74	54	252	36	25	65	53
27	33	25	109	162	515	70	60	165	35	24	57	50
28	32	26	93	134	208	66	64	120	31	19	51	46
29	31	29	65	123		62	62	103	31	20	46	44
30	27	36	76	116		60	55	117	31	12	41	73
31	22		66	111		57		109		8.4	36	
TOTAL	862	621	2407	4678	3693	3536	1835	2238	2287	1041.4	1822.0	1765
MEAN	27.8	20.7	77.6	151	132	114	61.2	72.2	76.2	33.6	58.8	58.8
MAX	33	36	180	616	832	434	82	259	145	69	101	105
MIN	22	14	39	37	39	57	52	30	31	8.4	8.0	27
CFSM	. 81	.60	2.26	4.40	3.85	3.32	1.78	2.11	2.22	.98	1.71	1.71
IN.	.93	. 67	2.61	5.07	4.01	3.83	1.99	2.43	2.48	1.13	1.98	1.91

CAL YR 1978 TOTAL 22686.0 MEAN 62.2 MAX 606 MIN 14 CFSM 1.81 IN 24.60 WTR YR 1979 TOTAL 26785.4 MEAN 73.4 MAX 832 MIN 8.0 CFSM 2.14 IN 29.05

01463620 ASSUNPINK CREEK NEAR CLARKSVILLE, NJ--Continued

WATER-QUALITY RECORDS

111

PERIOD OF RECORD. -- Water years 1963, 1965, 1967, and 1979.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

			WAIDH 6	OWDILL DE	IIA, WAI	THAI TAN	OCTOBE	1910	IO SEF	LENDER	1313				
DATE	TIM	FL INS	EAM- CCO OW, DU TAN- AN EOUS (MI	PE- FIC ON- ICT- ICE ICRO- IOS) (UN		EMPER- ATURE DEG C)	OXYGEN DIS- SOLVE: (MG/L	BIO CHI ICA D 5 DA	AND, O- EM- AL, AY	COLI- FORM, FECAL, EC BROTH (MPN)	STR TOCO FEC (MP	EP- N CCI (I	ARD- ESS MG/L AS ACO3)	(MC	CIUN S- LVEI G/L CA
AN															
 R	111	5 2	16	71	5.7	.0	13.	4	1.8	130			18		4.
9	122	0	59	125	6.6	8.0	12.0	0	2.9	8		2	40		8.
N 3	100	0	92	129	7.0	20.0	8.	9	3.2	210		230	39		8.
L					1100										
O G	110	0	9.5	112	6.7	24.0	8.	b	8.9	2400	>24	.000	37		8.
O	151	0	41	108	6.6	27.5	8.	4	2.8	50		110	33		7.
9	091	5	56	104	7.3	21.0	9.	9	3.2	80		49	34		7.
DA JAN		MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	DIS- SOLVEI (MG/L	BICAR	E CA L BON (M	R- L: ATE G/L	ALKA- INITY (MG/L AS CACO3)	SULFI TOTA (MG/	DE DI L SC L (N	SFATE IS- DLVED IG/L SO4)	CHLO- RIDE, DIS- SOLVE: (MG/L AS CL	RI D D SO (M	UO- DE, DIS- DLVED IG/L F)	
		1.9	4.0	1.8	3	1	0	1		-	11	7.	4	.1	
29		4.4	5.4	2.4		7	0	6			24	12		.1	
JUN 13		4.4	4.6	2.2		17	0	14		.0	18	9.	5	.2	
JUL		3.9	4.2				0				16	9.		.1	
AUG						17		14							
30 SEP	• • •	3.7	3.7	2.6		17	0	14		-	13	9.	2	.2	
19		3.8	4.4	3.0)	23	0	19		.0	16	9.8	8	.2	
DA		SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	MITRO- GEN, NO2+NO3 TOTAL (MG/L	GEN	IA ORGAL TOLL	TRO- GI EN, MO ANIC OI TAL S G/L	NITRO- EN, AM- ONIA + RGANIC FOTAL (MG/L AS N)	NITR GEN TOTA (MG/ AS N	L TO	IOS- HATE, OTAL IG/L PO4)	PHOS-PHATE ORTHO DIS-SOLVED (MG/L) AS PO4	, CAR ORG D TO	BON, ANIC TAL IG/L C)	
JAN															
23 MAR	• • •	3.0	42	1.0		16	1.2	1.4	2.	4	.72	-5	1	5.7	
29 JUN		4.7	79	1.5	<.	10		.70	2.	2	.11	.1	1		
		4.9	87	1.0	<.	10		1.2	2.	2	-11	.1	1	8.0	
JUL		6.1	81				1.1	1.5	2.		.15	.0'		13	
AUG															
SEP		3.8	79		۷.	10		.90		-	.15	-13	2	8.2	
19	• • •	5.3	77	<1.0		90	.20	1.1			.17	.03	2	4.1	

01463620 ASSUNPINK CREEK NEAR CLARKSVILLE, NJ--Continued

DATI		ME	NIT GEN, + OR TOT BOT (MG AS	NH4 G. IN MAT /KG	CARB ORGA TOT. BOT MA (G/ AS	NIC IN TOM T. KG	CARB INO GAN TOT BOT (G/ AS	R- IC, IN MAT KG	CARE INOF ORGA TOT. BOT (G/	NIC IN MAT	DI	VED /L	TOT	AL	ARSE TOT IN B TOM TER (UG AS	AL OT- MA- IAL /G	BER LIU TOT REC ERA (UG AS	M, AL OV- BLE /L	TOT	OV- BLE /L	RECO	AL OV- BLE /L
JUN 13	. 10	00										40		2				0		9		0
SEP 19.	. 09	15	460	0	1	3		.0	1	3		0		2		0		0		30		0
DATI	(UG	OV. OT- MA- IAL		M, AL OV- BLE /L	CHR MIU REC FM B TOM TER (UG	M, OV. OT- MA- IAL	FM B	OV. OT- MA- IAL	TOT REC ERA (UG	PER,	TOM TER (UG	OV. OT- MA-	ERA (UG	ON, CAL COV- BLE (/L FE)	IRO REC FM B TOM TER (UG AS	OT- MA- IAL /G	LEA TOT REC ERA (UG	AL OV- BLE /L	LEA REC FM B TOM TER (UG AS	OV. OT- MA- IAL /G	MANO NESI TOTA RECO ERAI (UG) AS N	E, AL OV- BLE /L
JUN 13				10						3			1	800				2			1	190
19.		<10		20		20		<10		3		<10	1	500	10	000		2		20		70
	DATE JUN 13 SEP 19	NES REC FM I TOM TEN	NGA- SE, COV. BOT- MA- RIAL #/G)	REC ERA (UC	CURY TAL COV- ABLE HG)	FM TOM		TO RE ER (U	KEL, TAL COV- ABLE G/L NI)	(UG AS	VO.	TO (U	LE- JM, FAL SE)	TOM TOM	LE- JM, FAL BOT- MA- RIAL J/G)	ZIN TOT REC ERA (UG AS	AL OV- BLE /L	TEF (U)	COV.	PHEI	NOLS P/L) O	
	DATE	IN TOM	CB, FAL BOT- MA- RIAL /KG)	IN I	LAL	TOM TOM	LOR- NE, FAL BOT- MA- RIAL /KG)	IN TOM TE	DD, TAL BOT- MA- RIAL /KG)	DD TOT IN B TOM TER (UG/	MA-	IN TOM	DT, TAL BOT- MA- RIAL /KG)	TOM TOM	I- NON, FAL BOT- MA- RIAL /KG)	DI- ELDR TOT IN B TOM	IN, AL OT- MA- IAL	IN I	RIN, FAL BOT- MA- RIAL /KG)	IN TOM	BOT-	
	JUN 13																				- 7	
	SEP 19		5		.0		2		2.5		3.7		2.5		.0		.6		.0		.0	
	DATE	TOM TOM TEN	PTA- LOR, TAL BOT- MA- RIAL /KG)	EPON TOT . BOY	IN TOM	IN TOM	LAL	TH TO IN TOM TE	LA- ION, TAL BOT- MA- RIÁL /KG)	MET OXY CHI TOT. BOT MA (UG/	OR, IN TOM	TOT BO		TH: TOT BOS	THYL RI- ION, IN TTOM ATL. /KG)	PAR THI TOT IN B TOM TER (UG/	ON, AL OT- MA- IAL	THE TOT IN I TOM	RI- ION, FAL BOT- MA- RIAL /KG)	TOM TOM	KA- ENE, PAL BOT- MA- RIAL /KG)	
	JUN 13 SEP 19		.0						.0												0	
	13		.0				.0		.0		.0		.0		.0							

01464000 ASSUNPINK CREEK AT TRENTON, NJ

LOCATION.--Lat 40°13'27", long 74°44'58", Mercer County, Hydrologic Unit 02040105, on left bank at Chambers Street Bridge in Trenton, and 1:5 mi (2.4 km) upstream from mouth.

DRAINAGE AREA. -- 89.4 mi2 (231.5 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1923 to current year.

GAGE.--Water-stage recorder. Concrete control since July 10, 1932. Datum of gage is 24.76 ft (7.547 m) National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Water-discharge records good. Records include water diverted from outside the basin since February 1954 for municipal supply which returns to Assunpink Creek through Ewing-Lawrence Sewerage Authority Treatment Plant, 2.4 mi (3.9 km) above station (records given herein). In addition there is an average inflow of about 2.0 ft¹/s (0.057 m³/s) from industrial use of water that originates outside the basin. Some diversion for irrigation in headwater area during summer months.

AVERAGE DISCHARGE. -- 56 years, 128 ft3/s (3.625 m3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,450 ft³/s (154 m³/s) July 21, 1975, gage height, 14.61 ft (4.453 m), from high-water mark in gage house; minimum, 1.0 ft³/s (0.028 m³/s) Aug. 21, Oct. 22, 1931, gage height, 0.25 ft (0.076 m); minimum daily, 4.0 ft³/s (0.11 m³/s) July 21, Aug. 8, Sept. 2, 1929.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 900 ft3/s (25.5 m3/s) and maximum (*):

Date		Time	Discha (ft ³ /s)		Gage H	eight (m)	Date		Time	Discha (ft ³ /s)		Gage H	leight (m)
Dec.	9	1145	1180 1290	33.4	6.66	2.030	Feb.	26	0900	2610 1260	73.9 35.7	10.27	3.130
Jan. Jan.	21	1400	*2800 2240	79.3	10.76	3.280	May July	24	0315	1770 1730	50.1	8.19	2.496

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

Minimum discharge, 45 ft 3 /s (1.27 m 3 /s) Nov.12 13, gage height, 2.67 ft (0.814 m).

		2200				MEAN VALU						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	76 92 80 77 74	56 56 56 54 52	95 87 172 225	177 491 520 295 237	256 190 207 191 175	435 374 337 308 303	127 135 145 149 158	118 111 111 110 99	232 202 225 479 381	97 113 77 101 90	76 152 207 198 173	79 74 72 73 79
6 7 8 9	119 82 72 68 66	54 55 54 54 53	159 146 144 817 617	205 259 1060 534 378	158 153 147 140 130	862 891 560 382 317	135 123 115 216 265	93 89 87 86 97	307 248 207 186 167	77 72 65 65 64	164 148 136 120 129	390 227 179 158 148
11 12 13 14 15	66 66 64 67 59	53 49 53 54 54	386 309 254 216 189	292 239 249 324 255	122 118 115 110 114	424 341 293 271 246	173 155 140 351 294	86 119 95 111 116	358 324 215 179 162	62 60 60 179 245	133 298 217 152 133	136 123 113 160 173
16 17 18 19 20	61 66 62 62 61	58 62 109 80 76	168 153 138 126 121	212 189 170 146 154	108 97 91 94 95	219 204 187 177 168	218 189 169 152 140	108 97 121 190 146	158 179 179 154 129	315 694 488 378 169	118 106 107 111 90	118 104 97 95 84
21 22 23 24 25	59 60 66 61 57	72 69 68 85 70	227 165 139 186 625	2120 1320 736 826 1450	116 235 203 764 1680	159 151 145 245 225	129 121 118 112 111	128 118 268 1210 1200	116 107 115 90 87	134 116 107 97 87	86 82 78 282 293	115 470 190 141 123
26 27 28 29 30 31	59 73 61 54 55	66 72 93 98 175	330 257 212 159 163 148	80 9 488 384 336 302 280	2090 1140 646 	182 163 150 148 142 134	141 246 152 134 125	605 417 339 321 310 277	83 79 79 99 78	76 73 62 62 327 97	154 122 113 113 86 91	113 104 97 113 504
TOTAL MEAN MAX MIN (†)	2102 67.8 119 54 11.7	2060 68.7 175 49 11.0	7245 234 817 87 14.2	15437 498 2120 146 20.7	9685 346 2090 91 16.2	9143 295 891 134 18.8	4938 165 351 111 16.9	7383 238 1210 86 15.8	5604 187 479 78 16.1	4709 152 694 60 13.9	4468 144 298 76 14.8	4652 155 504 72 14.6

CAL YR 1978 TOTAL 64931 WTR YR 1979 TOTAL 77426 MEAN 178 MAX 2070 MEAN 212 MAX 2120 MIN 49 + 14.2 MIN 49 + 15.4

[†] Inflow from outside the basin, 2.4 mi (3.9 km) upstream of station through plant of Ewing-Lawrence Sewerage Authority, in cubic feet per second.

01464000 ASSUNPINK CREEK AT TRENTON, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1971 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health. Division of Laboratories and Epidemiology.

DAT		STRE FLO INST ME TANE (CF	AN- ANC	IC T- E P	H TEMP ATU TS) (DEG	RE SOI	OXYG DEMA BIC JEN, CHE IS- ICA LVED 5 DA J/L) (MG/	ND, COI FOR M- FEC	AL, STR. TOCO OTH FEC.	CCI (MG	/L SOL'	VED
OCT O4.	09	00	66	390	6.8 1	6.0	6.0	6.2 160	0000 5	400	79 2	0
	DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HC03)		ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	(MG/L	
	OCT 04	7.0	34	5.2	56	0	46	.0	56	43	.6	
	DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L	ORGANIC	NITRO-	PHOS- PHATE, TOTAL (MG/L AS PO4)	DIS- SOLVED (MG/L	CARBON, ORGANIC TOTAL (MG/L AS C)	
	OCT 04	6.9	210	1.5	.05	1.1	1.2	2.7	1.7	1.4	7.9	
DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	INOR- GANIC, TOT IN BOT MAT	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	(UG/G	LIUM, TOTAL RECOV- ERABLE	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)
OCT 04	0900	610	3.8	4.3	30	<0	0	0	<10	10	20	<10
DATE	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	TOTAL RECOV-		LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	TOM MA- TERIAL	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
OCT 04	+17	0	1200	3800	260	140		<.5	.09	54	<10	í
DATE	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS		ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL IN BOT-	DDD, TOTAL IN BOT- TOM MA- TERIAL	TOM MA-	TOM MA- TERIAL	DI- AZINON, TOTAL IN BOT-	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 04	70	180	4	270	.0	- 22	7.2	.0	4.8	.0	2.2	.0
DA	IN TOM TEI TE (UG)	ION, CHI FAL TO: BOT- IN I MA- TOM RIAL TEI	LOR, CHI TAL EPOX BOT- TOT MA- BOX RIAL MA	KIDE TO! IN IN IN INTOM TOM	DANE THI FAL TOT BOT- IN I MA- TOM RIAL TER	ION, OX PAL CH BOT- TOT MA- BO RIAL M	LOR, THE TOT TOM BOY ATL. M.	RA- TI ION, THE IN TOT ITOM BOS ATL. M.	ION, TOT IN IN E TTOM TOM	ON, THI PAL TOT BOT- IN B MA- TOM RIAL TER	ON, PHE TOT SOT- IN B MA- TOM	NE, AL OT- MA- IAL
OCT O4		.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0

01464500 CROSSWICKS CREEK AT EXTONVILLE, NJ

LOCATION.--Lat 40°08'15", long 74°36'02", Mercer County, Hydrologic Unit 02040201, on right bank upstream from highway bridge on Extonville, 0.5 mi (0.8 km) upstream from Pleasant Run, and 0.7 mi (1.1 km) downstream from Mercer-Monmouth County line.

DRAINAGE AREA .-- 83.6 mi2 (216.5 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1940 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 24.94 ft (7.602 m) National Geodetic Vertical Datum of 1929.

REMARKS .-- Water-discharge records good. Flow regulated occasionally by lakes above station.

AVERAGE DISCHARGE.--38 years (1940-51, 1952-79), 136 ft³/s (3.851 m³/s), 22.09 in/yr (561 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,860 ft 3 /s (138 m 3 /s) Sept. 1, 1978, gage height, 14.18 ft (4.322 m); minimum 13.1 ft 3 /s (0.37 m 3 /s) Feb. 14, 1942 (result of freezeup); minimum daily, 16 ft 3 /s (0.45 m 3 /s) Aug. 30 to Sept. 3, Sept. 12, 1966.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 750 ft3/s (21.2 m3/s) and maximum (*):

Date		Time	Discha (ft ³ /s)	arge (m³/s)	Gage H	eight (m)	Date		Time	Discha (ft ³ /s)		Gage H	leight (m)
Dec.	10 25	0800 2400	1310 800	37.1	8.76 7.08	2.670	Jan. Feb.	25 25	1200 1400	2060 *3440	58.3 97.4	10.29	3.136
Jan. Jan.	8 22	2400	1120 1870	31.7	8.22	2.505	Mar. Sept.	7	0800	1510 999	42.8	9.24 7.82	2.816

Minimum discharge, 54 ft 3 /s (1.53 m 3 /s) July 14, gage height, 2.54 ft (0.774 m).

REVISIONS.--The maximum discharge for the water year 1971 has been revised to 4640 ft³/s (131.4 m³/s) Aug. 28, 1971, gage height, 13.93 ft (4.246 m); superseding figure published in the report for 1971.

0-0-	neight,				ET PER SEC				8 TO SEP	TEMBER 197	9	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1 2	64 74	70 70	166 123	150 238	1 54 1 32	396 309	123 121	121 110	140 127	74 74	61 64	93 96
2 3 4	74	68	110	617	130	265	132	105	117	72	132	104
4	74	70	163	402	121	225	157	104	288 378	67 85	418 470	95 98
5	103	70	294	217	116	205	171	1 02				-
6	88	70	272	166	127	532	150	95	240	75	220	421
7	79	70	164	177	112	1330	128 117	92 88	176 145	66 59	139 95	845 388
8	72 68	72 72	136 479	696 917	123 112	725 408	132	85	123	59	72	168
10	68	68	1020	396	103	269	269	81	112	56	67	114
11	68	68	350	217	110	318	192	79	122	62	66	96
12	66	68	210	171	119	349	154	88	225	62	164	86
13	64	68	175	161	127	234	138	123	151	58	329	80
14	64	68	160	323	1 30	216	184	157	113	61	205	82 125
15	64	70	146	261	1 32	233	327	152	100	240	134	125
16	62	74	136	175	136	177	219	129	90	130	105	99
17	68	83	146	152	134	160	169	112	118	78 72	92 84	80 74
18	70	116	136	142	134	152 144	150 133	1 10 1 83	256 157	114	86	70
19	70 74	125 88	125 119	136 132	134 142	150	123	237	105	81	82	67
21	72	86	189	1010	146	134	117	186	91	69	76	65
22	70	81	178	1490	227	130	112	143	85	66	74	133
23	. 68	77	142	723	363	127	110	162	102	62	70	134
24	68	94	140	530	737	1 42	108	540	109	95	69	110
25	74	92	566	1780	2990	267	109	602	100	93	69	94
26	74	81	574	925	2590	194	113	581	85	75	67	86
27	81	79	278	484	1410	152	192	275	80	74	64	80
28	83	127	171	324	650	1 40	171	207	73	66	66 80	74 76
30	74 70	134 194	138 121	248 194		132 130	154 135	173 171	80 80	67	107	94
31	70		121	166		125	135	147		73	112	
TOTAL	2238	2573	7248	13720	11641	8470	4610	5540	4168	2445	3939	4227
MEAN	72.2	85.8	234	443	416	273	154	179	139	78.9	127	141
MAX	103	194	1020	1780	2990	1330	327	602	378	240	470	845
MIN	62	68	110	132	103	125	108	79	73	56	61	65
CFSM	. 86	1.03	2.80	5.30	4.98	3.27	1.84	2.14	1.66	1.09	1.52	1.69
IN.	1.00	1.14	3.23	6.10	5.18	3.77	2.05	2.41	1.05	1.09		

CAL YR 1978 TOTAL 68802 MEAN 188 MAX 2570 MIN 45 CFSM 2.25 IN 30.61 WTR YR 1979 TOTAL 70819 MEAN 194 MAX 2990 MIN 56 CFSM 2.32 IN 31.51

01464500 CROSSWICKS CREEK AT EXTONVILLE, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1965 to current year.

PERIOD OF DAILY RECORD. --WATER TEMPERATURES: October 1966 to June 1970. SUSPENDED-SEDIMENT DISCHARGE: February 1965 to June 1970.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	STRE FLO INST TANE (CF	AM- COI W, DUG AN- ANG OUS (MIC	FIC N- CT- CE CRO-		TEMPER- ATURE (DEG C)	OXYGE DIS- SOLV (MG/	BI N, CH - IC ED 5 D	AND, O- EM- AL, AY	COLI- FORM, FECAL, EC BROTH (MPN)	STRI TOCOO FEC	EP- NO CCI (I	ARD- ESS MG/L AS ACO3)	CALCIUM DIS- SOLVEI (MG/L AS CA)
OCT 04	1245		70	165	7.1	14.0	8	. 1	5.5	400		500	54	17
JAN 18	1115		144	137	6.9	1.0	12	.9	1.8	240		23	38	11
APR 04	0900		155	137	6.8	10.0	9	.8	2.5	350		220	44	13
JUN 11	1000		101	136	7.0	20.5		.0	3.0	1100	>2	400	43	13
JUL 24	1245		99	161	6.8	22.5		.8	5.1	3500	>240		52	16
AUG 30	1320		108	152	6.7	24.5		.2	1.6	540		200	42	13
SEP 20	1115		68	157	6.9	16.0		.2	3.0	1300		340	49	15
20	1119		00	197	0.9	10.0			<i>y</i> .0	1,000		740	43	
DA	S (AGNE- SIUM, DIS- OLVED MG/L S MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVEI (MG/L AS K)	BICA	TE CA /L BON S (M	R- IATE IG/L CO3)	ALKA- LINITY (MG/L AS CACO3)	SULF TOT (MG AS	IDE DI AL SO /L (I	LFATE IS- OLVED MG/L SO4)	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	D SC	LUO- IDE, DIS- DLVED MG/L S F)
OCT		0.0	7.0	7 -		7.0	0	0.0			27	17		
JAN		2.9	7.0	3.3		32	0	26			23	13		.2
APR		2.6	6.5	2.1		22	0	18			22	11		-1
JUN		2.8	6.0	2.4		1	0	1			24	11		-1
JUL JUL	• • • •	2.6	4.5	2.4		24	ó	14		.0	20	11		.2
24 AUG	,	3.0	6.8	3.4	1	46	0	38			20	12		-3
		2.4	6.5	2.8	3	29	0	24			16	11		.2
	,	2.8	7.6	3.0)	37	0	30		.0	20	12		.3
	TE S	LICA, DIS- SOLVED MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL	GE	N, G NIA ORG AL TO /L (N	EN,	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NIT	N, Pi AL TO /L (1	HOS- HATE, OTAL MG/L PO4)	PHOS- PHATE ORTHO DIS- SOLVE (MG/L AS PO4	ORC D TO	RBON, JANIC DTAL MG/L S C)
OCT O4		10	108	1.4		.40	.00	.40	1	.8	.31	.3	1	7.6
		8.9	83	1.0		.58	-11	.69	1	.7		.3	8	3.4
		8.2	88	1.0		.30	.40	.70	1	.7	.69	.4	0	5.4
JUN 11		9.1	97	1.2		.20	1.0	1.2	- 2	. 4	1.0	.5	1	5.7
JUL 24		10	121	1.5		.40	1.0	1.4	2	.9	.86	.7	4	12
AUG 30		9.8	89			.30	1.8	2.1		.1	1.5	.5		12
SEP		-												

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

01464500 CROSSWICKS CREEK AT EXTONVILLE, NJ--Continued

DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)
OCT 04	1245	900	2.6	2.7			0			
JUN 11	1000				60	2		0	30	1
SEP 20	1115				20	1		10	50	0
					20			, ,	,,,	
DATE	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)
OCT 04	<10	22	10	<10		<10		21000	-64	<10
JUN 11		30			6		3800		11	
SEP 20		10			4		3100		3	
77,444		1,0					3100		3	
DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)
OCT 04		60		.00		<10			120	- 22
JUN	70			.00		110		40	120	2
11 SEP 20	60	-	<.5		10		0			
20	60		<.5		3		0	20		3
DATE	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 04	0	.0	3	4.5	1.2	1.0	.0	.5	.0	.0
JUN 11										
SEP 20	-								-	
21416										
DATE	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA - CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOXA - PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 04	.0	.0		.0	0	.0	.0	0		0
JUN 11	.0	.0	.0		. 0	.0	.0	. 0	.0	
SEP 20										
20										

01464505 CROSSWICKS CREEK AT GROVEVILLE, NJ

LOCATION.--Lat 40°10'26", long 74°40'48", Mercer County, Hydrologic Unit 02040201, at bridge on U.S. Route 130 in Groveville, 0.3 mi (0.5 km) upstream from Doctors Creek, and 0.6 mi (1.0 km) southwest of Yardville.

DRAINAGE AREA. -- 94.5 mi2 (244.8 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
ОСТ 04	1500	194	7:2	14.0	9.0	3.2	5400	4900	54	16
FEB 08	1100	225	6.6	1.0	13.4	1.9	49	920	52	14
MAR 22	0930	152	7.2	8.0	9.7	1.9	<2	540	44	12
JUN 07	0930	137	6.8	19.0	8.0	2.3	330	33	40	11.
JUL 17	1445	160	6.9	25.0	6.5	2.9	1300	920	46	13
AUG 06	1330	94	6.3	25.0	7.1	2.9	490	130	30	8.6
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 04	3.5	12	3.8	29	0	24	.0	26	20	.3
FEB 08	4.2	17	2.7	29	0	16	.0	28	29	.2
MAR								26	16	
22 JUN	3.5	8.2	2.5	18	0	15				-1
JUL	3.0	7.2	2.6	17	0	14		21	15	.2
17	3.2	9.1	3.5	27	0	22		24	15	.2
06	2.0	3.9	2.3	12	0	10		16	7.0	.2
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 04	10	127	1.6	.20	.10	.30	1.9	.76	.41	8.9
FEB 08	9.6	121	1.3	.60	.80	1.4	2.7	.58	.46	4.0
MAR 22	8.5	100	1.2	.38	1.6	2.0	3.2	.76	.52	4.9
JUN									1 100	100
JUL JUL	8.3	129	1.2	<.10	7.6	2.0	3.2	.66	.44	15
17 AUG	8.2	112	1.0	.30	3.6	3.9	4.9	1.6	.81	9.0
06	7.3	82	<1.0	.20	1.2	1.4		1.3	.40	25

01464505 CROSSWICKS CREEK AT GROVEVILLE, NJ -- Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

COBALT. ARSENIC CADMIUM CHRO-CHRO-NITRO-CARBON. CARBON, GEN, NH4 + ORG. TOT IN BOT MAT ALUM-INOR-GANIC, LIUM, TOTAL MIUM. RECOV. INORG TOTAL RECOV. MIUM. ORGANIC INUM, DIS-SOLVED IN BOT-FM BOT-TOM MA-RECOV. FM BOT-FM BOT-ARSENIC TOT IN BOT MAT TOT. IN BOT MAT TOM MA-RECOV-RECOV-TOTAL (UG/L TERIAL (UG/G TERIAL (UG/G ERABLE (UG/L ERABLE TOM MA-TERIAL TIME (UG/L (MG/KG (G/KG (G/KG (UG/L AS CR) AS CO) DATE AS N) AS C) AS C) AS AL) AS AS) AS AS) AS BE) AS CD) (HG/G) OCT 5.4 1500 4.9 0 0 <10 <10 <10 <10 830 30 1 MERCURY NICKEL, RECOV. COPPER, IRON, LEAD, MANGA-MANGA-NICKEL, TOTAL COPPER, MERCURY IRON, TOTAL RECOV. FM BOT-NESE, TOTAL RECOV. RECOV. NESE. RECOV. FM BOT-FM BOT-RECOV. TOTAL FM BOT-FM BOT-SELE-TOTAL NIUM, TOTAL RECOV-TOM MA-RECOV-TOM MA-TERIAL TOM MA-RECOV-FM BOT-RECOV-TOM MA-RECOV-TOM MA-ERABLE (UG/L TERIAL (UG/G TERIAL (UG/G TERIAL ERABLE TERIAL ERABLE TOM MA-ERABLE (UG/L (UG/L (UG/L (UG/G (UG/L (UG/G (UG/G (UG/L TERIAL DATE AS CU) AS CU) AS FE) AS FE) AS PB) AS MN) (UG/G) AS HG) AS HG) AS NI) AS NI) AS SE) OCT 04... 11 <10 4100 20 100 60 <.5 .00 11 <10 0 8500 ZINC, RECOV. DI-CHLOR-DI-AZINON, ELDRIN, ENDRIN, ZINC. ALDRIN. DDD. DDE, DDT . PCB. DANE, TOTAL TOTAL IN BOT-TOM MA-TERIAL TOTAL IN BOT-TOM MA-TERIAL TOTAL RECOV-FM BOT-TOTAL TOTAL IN BOT-TOTAL IN BOT-TOM MA-TOTAL IN BOT-TOTAL IN BOT-TOTAL TOM MA-IN BOT-IN BOT-TERIAL (UG/G TOM MA-TERIAL TOM MA-TERIAL TOM MA-ERABLE PHENOLS TOM MA-TOM MA-TOM MA-TERIAL (UG/KG) TERIAL (UG/KG) TERIAL (UG/KG) TERIAL (UG/KG) (UG/L TERIAL DATE AS ZN) (UG/L) (UG/KG) (UG/KG) (UG/KG) (UG/KG) AS ZN) (UG/KG) OCT 04... 70 40 0 14 .0 18 14 .0 4.9 .0 2.3 . 0 HEPTA-METH-METHYL. METHYL. PARA-TRI-TOXA-HEPTA-MALA-CHLOR, THION, THION, PHENE, ETHION, CHLOR LINDANE THION, OXY-PARA-TRI-TOTAL IN BOT-TOTAL IN BOT-THION TOTAL EPOXIDE TOTAL CHLOR THION TOTAL TOTAL. TOTAL. TOT. IN TOT. IN TOT. IN IN BOT-TOM MA-IN BOT-TOT. IN IN BOT-IN BOT-IN BOT-BOTTOM TOM MA-TOM MA-TOM MA-TOM MA-TOM MA-TOM MA-MATL. (UG/KG) TERIAL (UG/KG) TERIAL (UG/KG) MATL. TERIAL TERIAL (UG/KG) DATE (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG)

.0

. 0

. 0

. 0

0

. 0

. 0

OCT

04 . . .

.0

. 0

.0

. 0

01464515 DOCTORS CREEK AT ALLENTOWN, NJ

LOCATION.--Lat 40°10'37", long 74°35'57", Monmouth County, Hydrologic Unit 02040201, at bridge on Breza Road in Allentown, and 0.8 mi (1.3 km) downstream from Conines Millpond dam.

DRAINAGE AREA. -- 17.2 mi2 (44.5 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
FEB		156					224	8	56	12
O8 MAR	1330	156	6.8	.0	13.4	.7	221			
23 JUN	0845	130	6.8	10.5	10.8	1.8	>2400	49	45	10
11	1300	141	7.0	21.0	7.0	2.1	1700	920	51	12
JUL 17	1300	163	7.0	26.0	6.9	2.1	490	540	56	13
AUG 07	1415	134	7.0	25.0	8.4	2.0	330	540	46	11
SEP 20	0845	147	7.1	16.5	8.6	.3	1300	110	51	12
20	004)	147		10.5	0.0	.,	1,000	110	,	
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
FEB										
08 MAR	6.2	5.5	2.8	15	0	12		25	14	,1
23 JUN	4.9	5.0	2.9	17	0	14		24	14	.1
11	5.2	4.1	2.2	29	0	24		20	12	.2
17	5.8	5.3	3.3	41	0	34		19	14	.2
AUG 07	4.6	4.4	3.9	34	0	28		14	14	.2
SEP 20	5.0	5.7	4.2	39	0	32	.0	16	13	.3
20111	,.0	5.1	4.2		Ü	, ,,,	.0	10	.,	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
FEB										
08	9.5	87	2.1	.50	.70	1.2	3.3	.46	.31	2.0
MAR 23	6.0	86	1.5	.30	1.4	1.7	3.2	.29	.14	2.8
JUN 11	7.9	101	1.0	.30	.60	.90	1.9	.86	.23	6.5
JUL 17	5.4	112	<1.0	.70	1.6	2.3		1.0	.49	5.1
AUG 07	7.4		<1.0	.20	1.1	1.3		.18	.18	
SEP										
20	5.8	102	.48	1.3	.28	1.6	2.1	-41	.33	1.3

01464515 DOCTORS CREEK AT ALLENTOWN, NJ--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
SEP 20	0845	10	1	0	30	0	10	3
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS
SEP 20	1200	1	40	<.5	2	0	20	0

01464522 DOCTORS CREEK AT ROUTE 130 NEAR YARDVILLE, NJ

LOCATION.--Lat 40°10'31", long 74°40'33", Mercer County, Hydrologic Unit 02040201, at bridge on U.S. Route 130, 0.3 mi (0.5 km) upstream from mouth, 0.4 mi (0.7 km) northwest of Groveville, 0.6 mi (1.0 km) southwest of Yardville, and 2.5 mi (4.0 km) southwest of Haines Corner.

DRAINAGE AREA. -- 25.8 mi2 (66.8 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
OCT 06	0915	165	7.1	15.0	8.6	6.9	>2400	>2400	57	13
FEB 08	1230	200	6.9	1.0	13.1	.9	13	2	61	13
MAR 22	1145	165	6.9	9.5	10.9		2	2	50	11
JUN 07	1245	157	7.0	20.0	8.4	1.6	220	330	52	12
JUL 18	0900	190	7.2	23.5	7.2	2.7	490	330	61	14
AUG 06	1015	149	7.0	24.5	7.6	4.4	>2400	>2400	46	11
SEP 20	1500	176	7.3	17.0	9.1	1.9	270	49	56	13
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 06	5.9	7.6	3.7	34	0	28	.0	21	15	.2
FEB 08	7.0	8.8	3.0	17	0	14		31	20	.1
MAR 22	5.5	7.6	2.8	16	0	13		28	16	.1
JUN 07	5.4	6.1	2.9	21	0	17		24	14	. 2
JUL 18	6.3	8.9	3.4	34	0	28		23	20	.2
AUG 06	4.6	5.7	4.2	27	0	22		17	13	.3
SEP 20	5.6	8.5	4.0	39	0	32		20	17	.3
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 06	5.6	106	1.2	.74	1.9	2.6	3.8	1.8	.57	5.3
FEB 08	9.2	102	2.6	.80	.70	1.5	4.1	.74	.54	2.5
MAR 22	6.7	101	2.0	.58	1.2	1.8	3.8	.46	.38	5.4
JUN 07	8.7	109	1.8	.40	1.5	1.9	3.7	.39	.38	7.8
JUL 18	7.2	149	1.6	.70	2.2	2.9	4.5	.91	. 87	9.2
AUG 06	7.9		1.0	<.10		1.8	2.8	.88	.28	6.9
SEP 20	6.6	113	1.3	1.5	.70	2,2	3.5	.69	.58	

01464522 DOCTORS CREEK AT ROUTE 130 NEAR YARDVILLE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

				BERYL-	CHRO-		
		ALUM-		LIUM.	MIUM.	COPPER,	IRON,
		INUM,		TOTAL	TOTAL	TOTAL	TOTAL
		DIS-	ARSENIC	RECOV-	RECOV-	RECOV-	RECOV-
		SOLVED	TOTAL	ERABLE	ERABLE	ERABLE	ERABLE
	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE		AS AL)	AS AS)	AS BE)	AS CR)	AS CU)	AS FE)
OCT							
. 06	0915	30	1	0	10	14	6200

	MANGA-					
	NESE,	MERCURY	NICKEL,		ZINC,	
	TOTAL	TOTAL	TOTAL	SELE-	TOTAL	
	RECOV-	RECOV-	RECOV-	NIUM,	RECOV-	
	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	PHENOLS
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
OCT						
06	110	<.5	12	0	60	0

01464531 BLACKS CREEK AT BORDENTOWN, NJ

LOCATION.--Lat 40°08'14", long 74°42'42", Burlington County, Hydrologic Unit-02040201, at bridge on U.S. Route 130 in Bordentown, 1.0 mi (1.6 km) northeast of Fieldsboro, 1.3 mi (2.1 km) upstream of mouth, and 3.1 mi (4.9 km) southwest of Groveville.

DRAINAGE AREA. -- 14.5 mi2 (37.6 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DAT	ľE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
OCT O2		1415	232	7.1	16.0	8.8	16	16000	700	68	18
FEB 20		1315	258	6.7	.5	13.2	1.6	920	110	60	15
MAR											12
JUN		1120	175	6.7	9.0	9.5	1.1	<2	<2	52	
JUL		1400	179	6.8	19.0	8.4	1.0	40	5	56	13
18.		1030	191	6.9	23.0	6.2	5.7	230	2400	63	16
08		1300	180	7.2	28.5		3.0	5400	27	60	16
DA!	TE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT			4.7	F 4	45	0	37	.0	29	23	.4
FEB		5.7	13	5.4	45						
20 MAR	• • •	5.4	17	3.6	22	0	18		35	34	.1
26 JUN		5.3	8.3	3.9	23	0	19		33	18	.2
		5.6	7.0	3.8	20	Q	16		30	15	.2
18		5.5	8.7	4.0	40	0	33		25	19	.3
AUG 08		4.8	7.7	4.8	39	0	32		26	16	.3
DA	TE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT O2 FEB		13	147	1.1	1.6	2.9	4.5	5.6	1.7	.88	6.0
20		12	149	1.8	1.2	.70	1.9	3.7	1.0	.53	3.1
		11	113	1.7	.50	1.5	2.0	3.7	1.0	.60	4.6
JUN 06		12	116	2.1	.30	2.1	2.4	4.5	1.0	.59	6.4
JUL		13	140	1.0	<.10		2.6	3.6	1.4	.76	7.1
AUG		13	131	1.2	.23	1.2	1.4	2.6	.85	.75	9.2

DELAWARE RIVER BASIN

01464531 BLACKS CREEK AT BORDENTOWN, NJ -- Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	
OCT 02	1415	30	0	0	10	9	2000	

DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS
	AS MIN)	AS nu)	AS NI)	AS SE	A3 4N7	(00/1)
OCT 02	140	<.5	13	0	640	0

01464540 CRAFTS CREEK AT HEDDING, NJ

LOCATION.--Lat 40°06'01", long 74°45'23", Burlington County, Hydrologic Unit 02040201, at bridge on Old York Road in Hedding, 1.6 mi (2.6 km) southeast of Roebling, and 2.2 mi (3.5 km) upstream from mouth.

DRAINAGE AREA .-- 10.6 mi2 (27.5 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1959-63, 1976 to current year.

1.6

<.10

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CAGO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
JAN 31	1045	244	6.7	2.0	12.7	.6	49	9	64	13
MAR 27	0830	247		4.0	11.6	1.4		17	63	13
JUN	100								1	12
JUL JUL	1300	187			8.4		5400	2200	57	
18 AUG	1215	215		23.5	7.3			1400	61	13
17	0800	201	6.7	17.0	8.2	1.0	3500	400		_
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	DIS- SOLVED (MG/L	BICAR- BONATE	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
JAN 31	7.7	16	3.4	2	0	2	40	34	.1	9.8
MAR 27	7.5	17	3.5	10	0	8	39	37	.1	8.9
JUN 05	6.6	9.9	3.6	20	0	16	27	23	.1	10
JUL 18	7.0	12	3.8	16	0	13	32	27	.2	12
AUG 17					0					
				.,	·	, -				
DA:	SOI	DUE NI 80 (6. C NO 8. T TO VED (1	EEN, G 2+NO3 AMM OTAL TO MG/L (M	EN, GONIA ORGOTAL TOGOLOGIC (M	TRO- GEN EN. MON ANIC ORG TAL TO G/L (M	ANIC G TAL TO G/L (M	EN, PH. TAL TO:	PHO PHA OS- ORT ATE, DI TAL SOL G/L (MG PO4) AS P	TE, HO, CARI S- ORGA VED TOT /L (MO	NIĆ PAL H/L
JAN		170	2.0					0.4	04	1.5
MAR		138	333	<.10			3.3		.04	250
JUN		172	1.9	<.10			2.6		.09	2.7
O5 JUL	•••	132	2.0	.30	1.6	1.9	3.9	-56	.29	7.3
		190	1.6	<.10		2.1	3.7	.13 <	.01	9.9

.30

1.9

.07

01464580 ASSISCUNK CREEK AT COLUMBUS, NJ

LOCATION.--Lat 40°03'25", long 74°43'27", Burlington County, Hydrologic Unit 02040201, at bridge on U.S. Route 206, 1.1 mi (1.8 km) south of Columbus, 1.2 mi (1.9 km) downstream of Annaricken Brook, and 2.1 mi (3.4 km) northwest of Jobstown.

DRAINAGE AREA. -- 8.28 mi2 (21.45 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1958-63, 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
FEB 06	1400	179	6.9	.0	11.0	.9	<2	2	58	13
MAR 26	0920	147	6.2	6.5	10.1	.7	33	39	46	11
JUN 06	1030	139	6.4	17.0	7.6	.7	16000	5400	50	12
JUL 19	1445	155	6.4	22.0	6.0	1.3	5400	170	49	12
AUG 17	1000	155	6.4	14.0	8.6	.9	220	1100	49	13
	1000	135	0.4	14.0	0.0	• • •	220	1100	43	1,5
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
FEB										
O6 MAR	6.2	6.7	3.9	12	0	10	40	18	•1	14
26 JUN	4.5	4.4	4.3	15	0	12	38	11	.2	13
06 JUL	4.8	3.8	4.1	21	0	17	29	8.0	.2	1.4
19 AUG	4.6	4.3	4.4	16	0	13	35	10	.3	18
17	4.1	3.7	4.6	15	0	9	36	12	.2	17
DAT	SOLI RESI AT 1 DEG DI SOL	DUÉ NIT 80 GH . C NO24 S- TOT	EN, GE -NO3 AMMO PAL TOT E/L (MG	N, GE NIA ORGA AL TOT /L (MG	RO- GEN, NNIC ORGA AL TOT L/L (MG	A + NIT NIC GE AL TOT	L/L (MG	TE, DIS	TE, HO, CARE S- ORGA VED TOT 'L (MG	NIĆ AL /L
FEB 06.		119 1	.6 <	.10		.60 2	2.2	.22	.06	1.3
MAR 26.				.10	1		3		20	3.5
JUN 06.			.0					7.5		1
JUL 19.				.10		.4			10	5.1
AUG 17.				.10			.7		.07	3.1
		1		7.5			7.5			

01464590 ASSISCUNK CREEK NEAR BURLINGTON, NJ

LOCATION.--Lat 40°04'19", long 74°47'57", Burlington County, Hydrologic Unit 02040201, at bridge on Old York Road, 1.4 mi (2.3 km) southwest of Bustleton, 2.8 mi (4.5 km) northeast of Deacons, 3.2 mi (5.1 km) east of Burlington, and 4.2 mi (6.8 km) upstream from mouth.

DRAINAGE AREA .-- 37.2 mi2 (96.4 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
OCT	0070					_	. 70	770		4.7
O4 FEB	0930	185	6.7	15.0	8.8	.7	170	330	57	13
06 MAR	1030	195	7.1	.0	12.3	.6	E2	E2	53	13
27 JUN	1245	154	6.5	6.5	10.6	1.9	79	8	49	11
19	1330	115	6.4	20.5	7.2	2.2	2200	230	38	8.8
JUL 18	1330	141	6.7	23.0	7.0	2.0	790	920	47	11
AUG 10	0845	159	6.8	22.5	6.6	1.2	2400	330	58	14
	MAGNE- SIUM, DIS- SOLVED	SODIUM, DIS- SOLVED	POTAS- SIUM, DIS- SOLVED	BICAR- BONATE (MG/L	CAR- BONATE	ALKA- LINITY (MG/L	SULFIDE	SULFATE DIS- SOLVED	CHLO- RIDE, DIS- SOLVED	FLUO- RIDE, DIS- SOLVED
DATE	(MG/L AS MG)	(MG/L AS NA)	(MG/L AS K)	AS HCO3)	(MG/L AS CO3)	AS CACO3)	(MG/L AS S)	(MG/L AS SO4)	(MG/L AS CL)	(MG/L AS F)
OCT 04	6.0	6.9	5.0	17	0	14	.0	33	18	.2
FEB										
O6 MAR	4.9	5.3	4.5	5	0	4		41	14	.2
27 JUN	5.2	5.8	3.3	7	0	6		35	14	.1
19 JUL	3.8	3.7	3.4	15	0	12		24	9.1	.2
18	4.8	4.6	3.9	13	0	11		30	12	.2
AUG 10	5.7	5.8	4.5	21	0	17		29	12	.3
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 04	9.9	1 20	1.1	<1.0		2.3	3.4	.13	.11	4.7
FEB 06	16	112	1.8	<1.0		1.5	3.3	.12	.09	1.1
MAR	11	116	1.0	<.10		.90	1.9	.15	.14	3.7
27 JUN							1.9			
19 JUL	11	94	<1.0	.20	1.6	1.8		.76	-45	8.2
18 AUG	14	127	<1.0	<.10		1.3		-53	-11	9.0
10	16	125	1.0	.07	.23	.30	1.3	.42	.33	6.9

01464590 ASSISCUNK CREEK NEAR BURLINGTON, NJ -- Continued

DELAWARE RIVER BASIN 129

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

CARBON, NITRO-CARBON. ARSENIC BERYL- CADMIUM CHRO-CHRO-COBALT. GEN, NH4 INOR-GANIC, INORG + ORGANIC ALUM-TOTAL IN BOT-LIUM, TOTAL RECOV. FM BOT-MIUM, TOTAL MIUM, RECOV. RECOV. + ORG. TOT IN BOT MAT INUM, DIS-SOLVED FM BOT-TOT IN BOT MAT TOT. IN BOT MAT TOM MA-TERIAL RECOV-ERABLE TOM MA-TERIAL RECOV-ERABLE FM BOT-TOM MA-ARSENIC TOM MA-TERIAL TOTAL TIME (G/KG AS C) (G/KG AS C) (UG/L AS AL) (UG/G AS AS) (UG/L AS BE) (UG/G AS CD) (UG/L AS CR) TERIAL (UG/G) (UG/G AS CO) (MG/KG (UG/L DATE AS N) AS AS) OCT 0930 0 667 1.9 2.2 30 1 0 <10 <10 <10 <10 COPPER, LEAD, RECOV. FM BOT-MANGA-IRON, MANGA-MERCURY NICKEL, COPPER, IRON, TOTAL RECOV. NESE, TOTAL NESE, RECOV. MERCURY RECOV. FM BOT-NICKEL, TOTAL RECOV. FM BOT-RECOV. TOTAL FM BOT-FM BOT-TOTAL SELE-RECOV-TOM MA-TERIAL TOM MA-TERIAL FM BOT-TOM MA-TOM MA-TERIAL NIUM, TOTAL TOM MA-RECOV-RECOV-RECOV-RECOV-TOM MA-ERABLE TERIAL ERABLE ERABLE ERABLE ERABLE TERIAL (UG/L AS HG) (UG/L (UG/G (IIG/I. (UG/G (UG/G (UG/L TERTAL (UG/G (UG/L (UG/G (UG/L DATE AS CU) AS CU) AS FE) AS FE) AS PB) AS MN) AS HG) AS NI) AS NI) (UG/G) AS SE) OCT 8 <10 1200 6700 <10 60 .00 <10 50 4.5 0 ZINC, RECOV. CHLOR-DI-DI-ZINC. PCB. DANE, TOTAL DDD, TOTAL AZINON, TOTAL IN BOT-ELDRIN, ENDRIN, TOTAL TOTAL IN BOT- IN BOT-ALDRIN, DDE . DDT. TOTAL RECOV-FM BOT-TOM MA-TOTAL TOTAL IN BOT-TOTAL TOTAL IN BOT-TOM MA-TERIAL IN BOT-TOM MA-TERIAL IN BOT-TOM MA-IN BOT-IN BOT-TOM MA-TERIAL TOM MA-TERIAL ERABLE TERTAL. PHENOLS TOM MA-TOM MA-TOM MA-(UG/L (UG/G TERIAL TERIAL TERIAL TERIAL TERIAL DATE AS ZN) AS ZN) (UG/L) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) OCT 04... 20 30 0 0 .0 7 .0 4.1 2.0 . 0 .0 .0 HEPTA-MALA-THION, HEPTA-METH-METHYL METHYL PARA-TRT-TOXA -CHLOR, ETHION, CHLOR LINDANE OXY-PARA-THION, THION, PHENE, TRI-EPOXIDE TOT. IN BOTTOM CHLOR, TOT. IN BOTTOM THION, TOT. IN BOTTOM THION, TOT. IN BOTTOM TOTAL IN BOT-TOTAL IN BOT-TOTAL IN BOT-TOTAL IN BOT-TOTAL IN BOT-TOTAL IN BOT-TOTAL IN BOT-TOM MA-TOM MA-TERIAL TOM MA-TERIAL TOM MA-TOM MA-TOM MA-TOM MA-TERIAL MATL. TERIAL TERIAL MATL. MATL. MATL. TERIAL DATE (UG/KG) (UG/KG)

. 0

. 0

. 0

. 0

04. . .

0

.0

. 0

. 0

.0

.0

0

01464598 DELAWARE RIVER AT BURLINGTON, NJ

LOCATION.--Lat 40°04'42", long 74°52'28", Burlington County, Hydrologic Unit 02040201, on left bank at the intake canal of the Public Service Electric and Gas Company, 0.3 mi (0.5 km) downstream from Burlington-Bristol Bridge, 1.4 mi (2.3 km) downstream from Assiscunk Creek, and at channel mile 117.40 (188.89 km).

DRAINAGE AREA. -- 7, 160 mi2 (18,540 km2).

PERIOD OF RECORD.-TIDE ELEVATIONS: July 1964 to current year. March 1921 to July 1926, January 1931 to November 1939, August 1951 to June 1954, July 1957 to June 1964, in files of Philadelphia District Corps of Engineers.

REVISED RECORDS. -- WDR NJ-76-1: 1973(m).

GAGE.--Water-stage recorder. Datum of gage is -12.90 ft (-3.932 m) National Geodetic Vertical Datum of 1929. Prior to May 20, 1971, water-stage recorder at site 0.8 mi (1.3 km) upstream at same datum. Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum of 1929 for publication.

REMARKS.--Summaries for months with short periods of no gage-height record have been estimated with negligible or no loss of accuracy unless otherwise noted. Some periods cannot be estimated and are noted by dash (--) lines.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 8.58 ft (2.615 m) June 30, 1973; minimum, -6.60 ft (-2.012 m) Feb. 26, 1967.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum elevation known, 10.8 ft (3.29 m) Aug. 20, 1955, from high-water mark at site 1.4 mi (2.3 km) upstream; minimum, -9.1 ft (-2.77 m) Dec. 31, 1962, at present site.

EXTREMES FOR CURRENT YEAR.--Maximum recorded elevation, 8.36 ft (2.548 m) Jan. 24; minimum recorded, -5.27 ft (-1.606 m) Jan. 19.

Summaries of tide elevations during current year are as follows:

TIDE ELEVATIONS, IN FEET, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Maximum	Elevation	5.98			8.36		6.53	7.55		6.40		6.45	
high tide	Date	4,16			24		24	27		11		8	
Minimum	Elevation	-3.34			-5.27		-3.84	-4.44		-3.43		-3.62	
low tide	Date	11			19		15	7		16		15	
Mean high t	ide				5.34		5.32	5.28		5.34		5.21	
Mean water	level				1.98		1.75	1.56		1.54		1.51	
Mean low ti	de				-1.73		-1.94	-2.33		-2.51		-2.45	

NOTE. -- Missing or doubtful record on Oct. 16 to Jan. 5, Feb. 1 to Mar. 1, May 1 to June 1, July 1 to Aug. 1, Sept. 1-30.

01465835 SOUTH BRANCH RANCOCAS CREEK AT RETREAT, NJ

LOCATION. -- Lat 39°55'23", long 74°43'05", Burlington County, Hydrologic Unit 02040202, at bridge on light-duty road in Retreat, 40 ft (12.2 m) upstream of Friendship Creek, 1.2 mi (1.9 km) southwest of Buddtown, and 1.8 mi (2.9 km) northeast of Beaverville.

DRAINAGE AREA. -- 44.4 mi2 (115.0 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
JAN 31 MAR	1205	65	4.0	2.0	12.9	1.0	2	12	8	1.8
28	1030	66	4.0	6.5	12.0	1.0	<2	<2	10	2.4
JUN 14	1300	54	4.6	19.0	6.4	.2	110	330	8	1.7
JUL 19 AUG	1100	67	4.2	25.0	5.2	2.0	170	790	12	2.8
30	1330	64	4.0	24.0	5.7	1.8	240	33	9	2.2
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
JAN								7.7		
31 MAR	.8	2.2	.8	0	0	0		11	4.2	.0
28 JUN	1.0	2.6	.9	0	0	0		13	4.8	- 11
14	.8	2.7	.7	1	0	1	.2	8.5	4.7	.0
JUL 19 AUG	1.1	3.0	1.1	0	0	0		13	5.3	.1
30	.9	2.0	1.3	0	0	0		11	4.1	-1
DAT	(MG	VED DEC	DUE NI 180 G1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EN, GE +NO3 AMMO PAL TOT E/L (MG	EN; GH ONIA ORGA PAL TOTA E/L (MG	PRO- GEN, EN, MONI ANIC ORGA PAL TOI E/L (MG	A + PHO NIC PHA PAL TOT F/L (MG	TE, DIS	TE, HO, CARE S- ORGA VED TOT /L (MG	NIĆ AL /L
JAN 31.		3.7	38 (1	.0	.10		.60	.07	.07	7.8
MAR			100							
28. JUN 14.		2.6 4.4		.0	7.0		.80			6.6
JUL					.30					3
19. AUG	••	5.8	54 <1	.0	.30 1	.3 1	.6	.26	.11 1	2
30.		4.6	50 <1	.0	.20	.90 1	.1	.64	.20 1	9

01465835 SOUTH BRANCH RANCOCAS CREEK AT RETREAT, NJ--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 14	1300	260	1	0	70	. 1	10	5
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS
JUN 14	2300	4	20	<.5	8	0	40	1

133

01465850 SOUTH BRANCH RANCOCAS CREEK AT VINCENTOWN, NJ

LOCATION.--Lat 39°56'22", long 74°45'50", Burlington County, Hydrologic Unit 02040202, at bridge on Lumberton-Vincentown Road at Vincentown, 2.9 mi (4.7 km) southeast of Lumberton, and 3.1 mi (5.0 km) upstream from Southwest Branch.

DRAINAGE AREA. -- 53.3 mi2 (138.0 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1925, 1959-62, 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

	DATE	TIME	STRI FLO INST TANI (CI	EAM- COM DW, DUC CAN- AND BOUS (MIC	PIC I- UT- UE URO-		TEMPER- ATURE (DEG C)	SOI	EN,	DXYG DEMA BIO CHE ICA 5 DA (MG/	ND, - M- L, Y	COLI- FORM FECAL EC BROTI (MPN	L, STI	REP- OCCI CAL PN)	HARI NESS (MG, AS CACO	/L	ALCI DIS- SOLV (MG/ AS C	ED L
d	JAN 31	1005		168	63	4.9	2.0	1	3.0		1.2		33	14		15	2	5.9
N	1AR 28	0845		126	63	100	7.0		0.8		1.3		8	9		16		5
	JUN				18.5	4.9					100	-		400				
	14 UL	1000		126	56	5.4	18.0		8.0		.6		10	490		14		5.9
	19	1245		82	86	5.9	24.0		5.6		3.1	92	00	480		26	7	7.2
c	30 SEP	0915		490	52	4.7	22.5		6.3		2.1	>240	00	2400		15	4	.0.
	26	0900		82	60	6.2	16.0		8.8		.8	<2	00	330		16	4	.6
	DAT JAN	Š	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVEI (MG/L AS K)	BONA	TE C /L BO	AR- NATE MG/L CO3)	ALKA LINI: (MG, AS CAC	/L	SULF TOTA (MG,	DE L L	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLC RIDI DIS- SOLV (MG/ AS C	E, /ED /L	FLUC RIDE DIS SOLV (MG/ AS F	ED L	
	31.		1.2	2.6	1.1		1	0		1			14	5	5.1		.1	
	MAR 28		1.2	3.0	1.1		1	0		1			15	-	5.5		.1	
	JUN 14.		1.1	3.1	. 9)	2	0		2		.2	10		5.5		.1	
	JUL 19.		2.0	3.6	2.3	5	7	0		6			18	6	5.6		.1	
	AUG 30.		1.2	2.1	1.9	,	1	0		1			10		1.7		.1	
	SEP 26.		1.2	3.1	1.4		6	0		5		.0	12		5.3		.1	
	20.		1.2	SOLIDS,			· ·	0	NIT			.0	12	PHOS			.,	
	DAT	3	ILICA, DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GE	N, NIA OR AL T /L (ITRO- GEN, GANIC OTAL MG/L S N)	GEN, MONI ORGAL TOT. (MG AS	AM- A + NIC AL /L	NITE GEI TOTA (MG AS	N, AL /L	PHOS- PHATE, TOTAL (MG/L AS PO4)	PHATORTH ORTH DIS SOLV (MG, AS PO	PE, HO, S- /ED /L	CARBO ORGAN TOTA (MG/ AS C	IIĆ L L	
	JAN		4.0	47	44.0	,	10								.11	-	.8	
	MAR		4.0	47	<1.0		.10			.51			.14					
	JUN		3.0	50	<1.0		.10			.60			.09		.09		3.2	
	14. JUL	• •	5.2	52	<1.0		.30	1.0	1	.3			.23		.23	16)	
	19. AUG		6.1	86	<1.0		.20	2.0	2	.2			.83		.66	15	,	
	30. SEP		4.6	56	<1.0		.20	1.2	1	. 4			.88		45	18	3	
	26.	• •	7.0	56	.24	1	.70	.40	1	. 1	1	3	.28		17	14	1	

01465850 SOUTH BRANCH RANCOCAS CREEK AT VINCENTOWN, NJ -- Continued

DATE	ŤIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 14	1000	240	1	0	80	1	10	7
SEP	1000	240		·	00	•		,
26	0900	270	1	10	50	0	10	5
	IRON, TOTAL RECOV-	LEAD, TOTAL RECOV-	MANGA- NESE, TOTAL RECOV-	MERCURY TOTAL RECOV-	NICKEL, TOTAL RECOV-	SELE-	ZINC, TOTAL RECOV-	
	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	TOTAL (UG/L	ERABLE (UG/L	PHENOLS
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
JUN								
14 SEP	2400	7	30	<.5	9	0	50	- 1
26	1900	5	30	<.5	3	0	40	2

01465900 SOUTHWEST BRANCH RANCOCAS CREEK AT EAYRESTOWN, NJ

LOCATION.--Lat 39°56'49", long 74°47'58", Burlington County, Hydrologic Unit 02040202, at bridge on East Bella Bridge Road in Eayrestown, 0.3 mi (0.5 km) upstream from mouth, and 2.7 mi (4.3 km) west of Vincentown.

DRAINAGE AREA. -- 76.0 mi2 (196.8 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1925, 1959-61, 1975 to 1979 (discontinued).

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER	OHALITY	DATA	WATER	YEAR	OCTOBER	1978	TO.	SEPTEMBER	1979
	doi: TTT	war war ,	WILLIAM	Thirt	COTODDIC	1010	10	OUT THINDS	1010

	DATE	TIME	DUC ANO	FIC N- OT- OE ORO-	PH (UNITS)	TEMI ATU	PER- JRE	OXYGEN, DIS- SOLVEI (MG/L)	BI CH IC	AND, O- EM- AL, AY	COLI FORM FECA EC BROT (MPN	L, SO	TREP- COCCI ECAL MPN)	HARD- NESS (MG/L, AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	
	OCT 04	1230		142	6.7	1	6.5	7.6		1.5	7	00	340	41	13	
	DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODI DIS SOLV (MC	S- /ED S/L	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICA BONA (MG	ATE 3/L AS	CAR- BONATE (MG/L AS CO3)	LIN (M A	G/L	SULFA DIS- SOLV (MG/ AS SO	TE R: D: ED SC L (1	HLO- IDE, IS- OLVED MG/L S CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	
10	OCT 04	2.0		7.0	3.4		22	(18	20		9.9	-1	6.2	
	DAT	SOL	DUE 80	NITRO GEN, NO2+NO TOTAI (MG/I AS N)	GE 3 AMMO TOT L (MG	N, NIA AL /L	NITR GEN ORGAN TOTA (MG/ AS N	O- GEN MON IC ORO L TO L (N	TRO- I, AM- IIA + ANIC TAL IG/L N)	NIT GE TOT (MG AS	N, AL /L	PHOS- PHATE, TOTAL (MG/L S PO4)	PHOS PHAT ORTH DIS SOLV (MG/ AS PO	TE, IO, CARE S- ORGA VED TOT 'L (MG	NIC AL /L	
	OCT O4.		91	1.4	1	.30	1.	2	1.5	2	.9	1.4	1.	3	8.9	

01465970 NORTH BRANCH RANCOCAS CREEK AT BROWNS MILLS, NJ

LOCATION.--Lat 39°58'04", long 74°34'48", Burlington County, Hydrologic Unit 02040202, at bridge on Lakehurst Road at outflow of Mirror Lake in Browns Mills, 1.5 mi (2.4 km) north of Browns Mills Junction, and 2.0 mi (3.2 km) northwest of outflow of Country Lake.

DRAINAGE AREA. -- 19.5 mi2 (50.5 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

		WALDR	MOUTT.	LI DAIR	, WAIDA	IDAR OC	TODER	1910	TO SEPTE	лади	1919				
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO MHOS)	_	PH NITS)	TEMPER- ATURE (DEG C)	OXYGEN DIS- SOLVE (MG/L	DEM BI CH IC	GEN IAND, IO- IEM- IAL, IAY	COLI- FORM, FECAL, EC BROTH (MPN)	TO	TREP- COCCI ECAL MPN)	NES (MC	J/L	DI SO. (M	CIUM S- LVED G/L CA)
FEB															
15 MAR	1445	5	5	4.5	.0	12.	0	.9	<2	2	<2		10		2.3
28	1330	4	6	4.5	10.0	10.	В	.9	<2		7		9		2.1
JUN															
18	1300	4	1	4.8	21.5	7.	4	1.7	920)	350		8		1.9
19	0915	4	5	5.6	25.0	6.	3	1.6	<20)	460		10		2.3
AUG			-												
30	1445	3	7	4.9	25.0	8.	2	1.6	540)	130		8		1.9
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVED (MG/L AS NA	, s	OTAS- SIUM, DIS- DLVED MG/L S K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3	LIN (M	KA- ITY · IG/L S CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	R D S (1	HLO- IDE, IS- OLVED MG/L S CL)	RII DI SOI (MC	JO- DE, IS- LVED G/L F)	DIS SO: (MC	LVED G/L
FEB															
15	1.1	2.	7	.8	0	9	0	0	11		4.6		.0		4.4
MAR 28	.9	2.	-	.8	0		0	0	10				.0		2 7
JUN	.9	۷.	2	.0	0		0	0	10		4.6		.0		2.3
18	.8	2.	4	.8	1	- 9	0	1	6.9)	3.9		.0		3.6
JUL 19	1.1	2.	7	.8	4		0	3	8.3	. 1	4.6		.0		4.0
AUG		٠.	1	.0					0.,		4.0				4.0
30	.9	2.	3	.8	2		0	2	7.3	5	4.0		.0		2.8
DAT		DUE N 80 . C NO S- T VED (ITRO- GEN, 2+NO3 OTAL MG/L S N)	NITE GEN AMMON TOTA (MG/ AS N	I, GE IIA ORGA L TOT L (MG	RO- GE EN, MO ENIC OR EAL T	ITRO- N,AM- NIA + GANIC OTAL MG/L S N)	NIT GE TOT (MG AS	N, PE AL TO /L (N	IOS- IATE, OTAL IG/L PO4)	PHOS PHAS ORTI DIS SOL' (MG,	TE, HO, S- VED	CARB ORGA TOT (MG AS	NIC AL /L	
FEB		70	20				7.0			0.0		0.4		7 0	
15. MAR		38	.50	<.	10		.70	1	. 2	.02		.01		3.8	
28.		34	<1.0	<.	10		.50			.03		.03	1	0	
JUN 18.		32	<1.0		20 1	. 4	1.6			1.6		.09	1	7	
JUL.		12			20 1	• 4	1.0			1.0		.09		,	
19.		41	<1.0		30 1	.3	1.6			.12		.06	1	1	
AUG 50.		52	<1.0		10	1	1.1			.46		.03	1	2	
50.		12		١.						.40		. 00		-	

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ (Hydrologic bench-mark station)

LOCATION.--Lat 39°53'05", long 74°30'20", Burlington County, Hydrologic Unit 02040202, on right bank in Lebanon State Forest, 25 ft (7.6 m) upstream from Butterworth Road Bridge, 3.4 mi (5.5 km) upstream from confluence with Cooper Branch, and 7.0 mi (11.3 km) southeast of Browns Mills.

DRAINAGE AREA . -- 2.31 mi2 (5.98 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1953 to current year. Prior to October 1962, published as "McDonald Branch in Lebanon

GAGE.--Water-stage recorder and concrete control. Datum of gage is 117.73 ft (35.884 m) National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--water-discharge records good. Gage-height record is collected above concrete control and discharge record, which includes leakage around control, is at site 785 ft (239 m) downstream.

AVERAGE DISCHARGE.--26 years, 2.36 ft³/s (0.067 m³/s), 13.88 in/yr (353 mm/yr).

EXTREMES FOR PERIOD OF DAILY RECORD.--Maximum discharge, $35 \text{ ft}^3/\text{s}$ (0.991 m³/s) Aug. 25, 1968, gage height, 2.33 ft (0.710 m); minimum daily, 0.8 ft $^3/\text{s}$ (0.023 m $^3/\text{s}$) July 6, 19, 1967.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 7.0 ft3/s (0.198 m3/s) and maximum (*):

Date		Time	Dischar (ft³/s) (Gage H	(m)	Date		Time	Dischar (ft³/s) ((ft)	eight (m)
Jan.	21	1845	15	0.42	1.80	0.549	May	19	2000	12	0.34	1.74	0.530
Jan.	25	0815	12	0.29	1.74	0.530	June	6	1630	*29	0.82	2.08	0.634
Mar.	7	0015	22	0.62	1.97	0.600	Sept.	6	0715	8.6	0.24	1.62	0.494

Minimum daily discharge, $1.3 \text{ ft}^3/\text{s}$ (0.037 m³/s) many days in November.

		DISC	HARGE, IN	CUBIC FE	ET PER SI	ECOND, WAT EAN VALUES	ER YEAR	OCTOBER 19	78 TO SEP	TEMBER 19	79	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1 2 3 4 5	1.6 1.7 1.6 1.6	1.4 1.4 1.4 1.4	1.5 1.4 1.4 1.6 1.8	1.8 2.2 2.6 2.8 2.5	3.8 3.7 3.7 3.6 3.6	6.1 5.6 5.6 4.7 4.7	4.1 4.3 4.1 4.1	3.3 3.2 3.1 3.1 3.1	4.7 4.5 4.1 5.8 6.3	3.3 3.5 3.5 3.3	2.2 2.5 4.3 3.5 2.7	2.0 2.2 2.2 2.0 2.0
6 7 8 9	1.6 1.6 1.5 1.5	1.4 1.4 1.4 1.4	1.6 1.5 1.5 1.8 2.0	2.3 3.0 3.6 4.2 3.7	3.6 3.5 3.5 3.5	12 14 8.4 6.8 6.0	3.9 3.6 4.1 4.5	3.0 3.0 2.8 2.8 2.8	10 13 7.8 6.5 6.0	3.2 3.1 3.1 3.0 3.0	2.4 2.2 2.2 2.1 2.0	7.0 6.0 3.6 3.0 2.6
11 12 13 14 15	1.5 1.5 1.5 1.5	1.3 1.3 1.3 1.3	1.8 1.8 1.8 1.8	3.3 3.6 4.9 4.1 3.1	3.5 3.5 3.5 3.5 3.5	6.5 6.3 5.6 5.4 5.6	3.9 3.9 3.9 4.7	2.7 2.8 3.9 5.6 4.7	6.3 6.3 5.6 5.1 4.9	3.1 3.0 2.8 2.7 2.7	2.2 3.5 3.3 2.6 2.3	2.5 2.4 2.2 2.2 2.2
16 17 18 19 20	1.5 1.5 1.6 1.5	1.4 1.4 1.5 1.4	1.6 1.6 1.6 1.6	3.0 2.7 2.4 2.3 2.4	3.5 3.5 3.5 3.5	5.1 4.9 4.9 4.7 4.7	4.5 4.1 3.9 3.8 3.5	3.9 3.5 3.8 6.8	4.7 5.1 5.4 4.7 4.5	2.6 2.5 3.0 3.5 3.0	2.2 2.0 2.0 2.1 2.1	2.1 2.0 1.9 1.9
21 22 23 24 25	1.5 1.5 1.5 1.5	1.3 1.3 1.3 1.4	1.6	5.8 8.9 4.9 5.8	3.5 3.6 3.6 3.9 4.1	4.5 4.3 4.7 4.9	3.3 3.3 3.2 3.2	7.0 5.4 5.1 5.1 6.0	4.3 4.1 4.5 4.3 4.1	2.7 2.5 2.6 3.1 3.0	2.1 2.1 2.0 2.0 1.9	1.8 2.4 2.5 2.2 2.0
26 27 28 29 30 31	1.5 1.6 1.4 1.4 1.4	1.3 1.4 1.5 1.4 1.6		6.5 4.9 4.3 4.1 3.8 3.8	4.5 5.0 6.0	4.5 4.3 4.1 4.3 4.1 4.1	3.3 4.1 3.8 3.8 3.5	5.4 4.7 5.1 5.4 5.1 4.7	3.8 3.6 3.5 3.5 3.5	2.7 2.7 2.5 2.3 2.2 2.2	2.0 2.0 2.1 2.2 2.4 2.0	1.9 1.8 1.8 1.8
TOTAL MEAN MAX MIN CFSM IN.	47.2 1.52 1.7 1.4 .66	41.3 1.38 1.6 1.3 .60	54.3 1.75 2.5 1.4 .76 .87	123.3 3.98 10 1.8 1.72 1.98	105.3 3.76 6.0 3.5 1.63	175.7 5.67 14 4.1 2.46 2.83	116.6 3.89 4.9 3.2 1.68 1.88	137.9 4.45 11 2.7 1.93 2.22	160.5 5.35 13 3.5 2.32 2.58	89.7 2.89 3.5 2.2 1.25 1.44	73.2 2.36 4.3 1.9 1.02 1.18	73.9 2.46 7.0 1.8 1.07 1.19

CAL YR 1978 TOTAL 1035.0 WTR YR 1979 TOTAL 1198.9 MEAN 2.84 MEAN 3.28 MAX 16 MIN 1.3 CFSM 1.23 MAX 14 MIN 1.3 CFSM 1.42

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1968 to current year. WATER TEMPERATURES: October 1960 to current year.

INSTRUMENTATION. -- Temperature recorder since October 1960, water-quality monitor since October 1968.

EXTREMES FOR PERIOD OF DAILY RECORDS.--SPECIFIC CONDUCTANCE: Maximum, 182 micromhos June 16, 1969; minimum, 19 micromhos Aug. 25, 1979. WATER TEMEPRATURES: Maximum, 22.0°C Aug. 1, 1970; minimum, 0.0°C on many days during winter months.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 79 micromhos Dec. 26, 27; minimum, 19 micromhos Aug. 25.
WATER TEMPERATURES: Maximum, 21.5°C Sept. 6; minimum, 0.0°C on several days during January, February.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
OCT									
18	1400 1120	1.6			12.5				
NOV	1120	1.0			10.0				
08	1300	1.4	28	4.2	10.5	2.7	. 3	K 1	K2
DEC 01	1020								
JAN	1020	1.5			9.5				
15	1230	3.2			1.5				
17	1050	2.4	66	3.8	1.5	3.0	. 1	K28	<0
MAR 07	1145	15	48	3.9	8.0	8.2	.8	K2	<1
APR	1113		40	3.9	0.0	0.2	.0	K Z	11
19	1615	3.6			11.0				
MAY 09	1100	2.8			13.5				
09	1315	2.8	50	3.8	14.0	2.8	1.1	K180	К3
JUL			-						
11	1015	3.0	30	4.0	15.0	2.1	1.0	K 6	K2
11 SEP	1345	3.0							
13	1115	2.2	28	3.9	15.0	2.6	.6		К1
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
DATE	TOCOCCI FECAL, KF AGAR (COLS. PER	NESS (MG/L AS	DIS- SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L	LINITY (MG/L AS	DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L
OCT 04	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	NESS (MG/L AS	DIS- SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L	LINITY (MG/L AS	DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L
OCT 04 18	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	NESS (MG/L AS CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)
OCT 04 18 NOV 08	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	NESS (MG/L AS CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)
OCT 04 18 NOV 08 DEC	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	NESS (MG/L AS CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)
OCT 04 18 NOV 08 DEC 01	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	NESS (MG/L AS CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)
OCT 04 18 NOV 08 DEC 01 JAN 15	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	NESS (MG/L AS CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)
OCT 04 18 NOV 08 DEC 01	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	NESS (MG/L AS CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)
OCT 04 18 NOV 08 DEC 01 JAN 15 17 MAR 07	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	NESS (MG/L AS CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)
OCT 04 18 NOV 08 DEC 01 JAN 15 17 MAR 07	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	NESS (MG/L AS CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA) 1.8 2.1	SIUM, DIS- SOLVED (MG/L AS K)	LINITY (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL) 3.0 3.1 2.3
OCT 04 18 NOV 08 DEC 01 JAN 15 17 MAR 07	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	NESS (MG/L AS CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)
OCT 04 18 NOV 08 DEC 01 JAN 15 17 MAR 07 APR 19 MAY 09	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	NESS (MG/L AS . CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA) 1.8 2.1 1.3	SIUM, DIS- SOLVED (MG/L AS K)	LINITY (MG/L AS CACO3) 0 0	DIS- SOLVED (MG/L AS SO4) 1.8 9.1 6.8	RIDE, DIS- SOLVED (MG/L AS CL)
OCT 04 18 NOV 08 DEC 01 JAN 15 17 MAR 07 APR 19 MAY 09	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	NESS (MG/L AS CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA) 1.8 2.1 1.3	SIUM, DIS- SOLVED (MG/L AS K)	LINITY (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4) 1.8 9.1 6.8	RIDE, DISP. SOLVED (MG/L AS CL)
OCT 04 18 NOV 08 DEC 01 JAN 15 MAR 07 APR 19 MAY 09 09	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	NESS (MG/L AS CACO3)	DIS- SOLVED (MG/L AS CA) 5 1.0 .85	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA) 1.8 2.1 1.3 1.5	SIUM, DIS- SOLVED (MG/L AS K)	LINITY (MG/L AS CACO3) 0 0 0	DIS- SOLVED (MG/L AS SO4) 1.8 9.1 6.8 4.4	RIDE, DIS- SOLVED (MG/L AS CL) 3.0 3.1 2.3 2.9
OCT 04 18 NOV 08 PEC 01 JAN 15 17 MAR 07 APR 19 MAY 09 09 JUL 11	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	NESS (MG/L AS . CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA) 1.8 2.1 1.3	SIUM, DIS- SOLVED (MG/L AS K)	LINITY (MG/L AS CACO3) 0 0	DIS- SOLVED (MG/L AS SO4) 1.8 9.1 6.8	RIDE, DIS- SOLVED (MG/L AS CL)
OCT 04 18 04 18 08 08 DEC 01 JAN 15 17 MAR 07 APR 19 MAY 09 09 JUL. 11	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	NESS (MG/L AS CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL) 3.0 3.1 2.3 2.9 3.4

DELAWARE RIVER BASIN

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued

DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT									
04				1	.00				
18				1	.00				
NOV									
08	.0	4.1	20	1	.00	.00	.00		7.6
DEC									
01				1	.00				
JAN				1.2					
15				2	.02				
17	.0	3.4	27	1	.01	.01	.00		6.0
MAR 07	.0		24		0.11				
APR	.0	1.5	31	1	.04	.01	.01		10
19				1	.01				
MAY				1	.01				
09				-1	.01			0.7	155.0
09	.0	1.6	20	1	.01	.01	.00	.00	8.8
JUL			20		.01	.01	.00	.00	0.0
11	.0	2.5	28	16	. 13	.01	.00		15
11				33	.27				
SEP					7.5				
13	.0	4.1	26	1	.01	.00	.00		11

DELAWARE RIVER BASIN

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued

D	DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	SELE- NIUM, TOTAL (UG/L AS SE)
	8	1300	0	0	0	<10	3	100		0	<.5	0	0
M A	9	1315	4	0	0	10	4	1 90	2	10	<.5	0	0
D	DATE	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)	CYANIDE TOTAL (MG/L AS CN)	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NO	0V 08	30	.6	<.4	.7	<.4	.7	<.4	.10	.41	.00	.0	0
MA	9	40			12.						.00		
D	DATE	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL (UG/L)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL (UG/L)
NO	0V 08	.00	.00	.0	.0	3	.00	4.2	.00	.0	.00	.7	.00
MA													
Γ	DATE	DI- ELDRIN TOTAL (UG/L)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL (UG/L)	HEPTA - CHLOR, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA - CHLOR EPOXIDE TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
	08	.00	.0	.00	.00	.0	.00	.00	.0	.00	.0	.00	.0
MA	9												
I	DATE	MALA- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	PER- THANE TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
	08	.00	.00	.00	.00	.00	.00	.00	0	0	.00	.00	.00
MA	9												

141

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DAY	MAX	MIN	MEAN	XAM	MIN	MEAN	MAX	MIN	MEAN	ма	X MIN	MEAN
		OCTOBE	R		NOVEMBE	R		DECEMBE	R		JANUA	RY
1 2 3 4 5	34 34 33 33 35	30 30 33 33 35	32 33 33 33 35	28 28 27 28 32	27 27 27 27 27 28	27 27 27 27 27 29	46 46 43 44 52	45 44 40 36 42	45 45 41 41 50	7 7 7	4 47 1 64 3 69 6 73 4 70	58 68 72 75 72
6 7 8 9	36 35 35 33 33	33 33 33 33 32	35 34 33 33 33	32 29 30 32 31	28 28 28 30 29	29 28 29 30 30	52 50 55 74 75	50 48 48 52 73	52 49 52 61 74	6	0 67 7 56 9 47 6 60 8 75	69 66 53 71 76
11 12 13 14 15	32 33 34 34 34	32 32 32 34 31	32 32 34 34 33	32 32 31 32 32	30 29 30 30 31	30 30 30 31 31	75 68 67 65 62	69 67 64 62 60	72 68 66 64 61	7 6 6	4 71 1 66 5 59 8 55 1 67	70 68 63 64 70
16 17 18 19 20	34 34 31 33 33	32 31 30 30 31	34 32 31 31 33	32 32 38 35 32	31 32 32 32 31	32 32 36 33 31	59 59 57 56 50	57 58 54 49 45	58 59 55 51 47	6	0 68 9 66 8 67 8 65 6 62	69 68 68 66 64
21 22 23 24 25	32 33 33 33 30	30 31 31 30 28	31 32 32 32 32 30	37 36 34 35 35	32 33 33 32 32	34 35 34 33 33	55 54 53 61 72	52 52 50 47 65	54 53 52 49 69	5	5 50 7 50 9 57 8 47 1 46	56 54 58 53 56
26 27 28 29 30 31	30 30 30 29 28 29	29 30 28 26 26 26	29 30 29 28 28	34 35 39 43 47	32 33 35 39 42	33 34 37 41 46	79 79 76 71 65 61	70 75 71 66 60 57	74 78 73 68 63 59	5 5 6	0 57 8 57 9 56 9 57 0 59 0 59	59 58 58 58 59
MONTH	36	26	32	47	27	32	79	36	58	7	8 46	64
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MA	X MIN	MEAN
DAY	MAX	MIN FEBRUAR		MAX	MIN	MEAN	MAX	MIN APRIL	MEAN	МА	X MIN MAY	MEAN
DAY 1 2 3 4 5	60 60 60 59 60			MAX 45 45 46 39		MEAN 45 44 45 43 37	53 54 52 52 53		MEAN 53 53 52 52 52 52	MA 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	MAY 4 53 4 52	54 53 51 51 51
1	60 60 60 59	FEBRUAR 59 59 59	60 60 60	45 45 45 46	MARCH 44 44 44	45 44 45	53 54 52	A PRIL 53 52 52		5	MAY 4 53 4 52 2 51 1 51 1 50 0 48 9 48	54 53 51 51
1 2 3 4 5 6 7 8	60 60 59 60 59 58 58	59 59 59 59 59 59 59 59	60 60 60 59 60 58 57 58	45 45 46 39 43 49 47	MARCH 44 44 44 39 36	45 445 43 37 40 47 46	53 54 52 52 53	APRIL 53 52 52 52 52 50	53 53 52 52 52 52 53 53	5 5 5 5 5 5 5 5	MAY 4 53 4 52 2 51 1 51 1 51 1 50 9 48 9 48 2 47 1 50 0 49 48 7 54	54 53 51 51 51 50 48
1 2 3 4 5 6 7 8 9 10	60 60 59 60 60 59 58 58 58 57 56 54	59 59 59 59 59 59 57 57 57	60 60 60 59 60 60 57 58 57 58 58 57	45 45 45 46 39 43 49 47 47 46 50 51 51	MARCH 444 449 33 383 455 460 496	444537 4466 4466 45508	53 54 52 52 53 53 53 55 55 55 55	APRIL 53 52 52 52 50 52 53 53 51 55 54 53 53	53 53 52 52 52 53 53 53 53 55 54 54	55555 55455 5455	MAY 4 53 4 52 51 51 51 51 50 48 9 48 47 50 49 48 7 54 48 48 47 54 48 47	54 551 551 50 480 50 490
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	60 60 60 59 60 60 59 58 58 57 54 54 54 53 55 51	59 59 59 57 57 57 57 56 54 53 54 54 54 55 51	60 60 60 59 60 58 57 58 58 57 55 53 54 54 53	45 45 45 46 39 47 47 47 46 50 51 51 51 51	MARCH 44 44 44 44 45 45 45 45 45 45 50 51 50	4545 445 437 4466 481 481 551 551 551	53 54 52 52 53 53 53 55 55 56 56 56 55 55	APRIL 53 52 52 52 50 52 53 53 53 53 53 54 55 54 55 54 55 54	53 53 52 52 52 53 53 53 53 53 54 54 54 54 56 56	55555 55455 54555 5545	MAY 44 532 51 1 51 1 51 1 50 48 8 47 7 50 9 48 8 47 7 50 9 48 8 47 7 50 9 48 8 47 7 50 9 48 8 47 7 50 9 48 8 47 7 50 9 48 8 47 7 50 9 48 8 47 7 50 9 48 8 47 7 50 9 48 8 47 7 50 9 9 48 8 47 7 50 9 9 48 8 47 7 50 9 9 8 48 8 47 7 50 9 9 8 48 8 7 7 46	543 551 551 550 550 550 550 550 550 550 550
12345 67890 10112345 167890 222345 222890	60 60 60 60 59 60 60 59 58 58 57 54 54 54 53 55 55 55 58 58 58 58 58 58 58 58 58 58	59 59 59 59 57 57 57 57 56 54 53 54 54 551 49 52 45 52 45 52 45 52 52 45 52 52 53 54 55 54 55 55 55 55 55 55 55 55 55 55	60 60 60 60 60 59 60 60 57 58 57 58 57 58 57 58 59 60 60 57 58 58 57 58 59 59 60 60 60 57 57 58 59 59 59 59 59 59 59 59 59 59 59 59 59	455 456 456 457 456 457 457 457 457 457 457 457 457 457 457	MARCH 44 44 44 44 44 45 45 45 45 51 50 51 51 52 52 54 55 54 55	544537 07666 81081 1111 12235 554	344223 5555 55555 55555 55555 55555 55555 5555	APRIL 53 52 52 52 50 52 53 53 53 55 54 55	53 53 52 52 52 53 53 53 53 53 53 54 54 55 55 55 55 55 55 55 55 55 55 55	55555 55455 54555 54444 44444	MAY 44 53 52 251 51 51 51	43111 00800 09052 19891 08778 76666 5555 54445 54444 44444
1 2 3 4 5 6 7 8 9 10 11 2 3 1 1 4 1 5 16 17 18 9 20 21 2 23 4 2 5 26 27 2 8 9	60 60 60 60 59 58 58 57 54 54 54 55 55 55 55 55 55 56 56 57 56 57 56 57 57 57 57 57 57 57 57 57 57 57 57 57	59 59 59 57 57 57 57 57 54 54 52 51 49 49 49 52 45 43 43 43	60 60 60 50 60 58 57 58 58 57 53 54 54 53 54 59 60 60 58 57 58 58 57 58 59 60 60 60 60 60 60 60 60 60 60 60 60 60	45 45 45 45 46 39 47 46 50 51 49 51 51 55 55 55 55 55 55 55 55 55 55	MARCH 44 44 44 44 44 45 45 45 45 45 50 51 50 51 52 52 54 55 54	5445 445 437 44666 4810881 551111 552335 555 555 555 555	554223 55555 55555 55555 55555 55555 55555 5555	APRIL 53 52 52 52 52 50 52 53 53 53 51 55 54 54 54 54 54 54 54 54	53 53 52 52 52 52 53 53 53 53 53 54 55 56 55 55 55 55 55 55 55 55 55 55 55	55555 55455 55455 54444 4444	MAY 44 532 511 511 510 488 487 50 498 487 50 498 487 50 498 47 50 498 47 50 498 47 50 498 47 50 498 47 50 498 47 50 498 47 50 498 47 50 498 47 50 498 47 50 498 47 50 498 47 50 498 47 50 498 47 46 47 47 46 47 47 46 47 47 46 47 47 46 47 47 46 47 47 46 47 47 46 47 47 47 47 47 47 47 47 47 47 47 47 47	43111 00800 09052 19891 08778 7666

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DAY	MAX	MIN	MEAN		MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAI	MAA		MEAN		MAA		MEAN	MAA			MAX		
		JUNE				JULY			AUGUST			SEPTEME	BER
1	45	45	45		35	34	34 34	27	26	27	25	21	23
2 3 4	45	44	44		34	33 33 33 32	34	39	26	29	28	21	24 28 27 26
3	44	43	43		34	33	33	40	35	37	30	27	28
	47	43	45 46		33	33	33 33	36	33	34 32	28	26 25	27
5	40	44	40		33	32	33	33	31	32	21	25	20
6	59	45	50		33	31	33	31	30	30	44	25	41
7	54	48	52		33	32	32	30	29	29	43	41	42
8	51	47	49		33	32	32 32 32	29	28	28	41	38	39
9	48	46	47		32	32	32	28	27	27	37	35	39 36 33
10	45	44	45		32	31	31	28	24	26	35	32	33
11	44	43	43		33	30	32	30	26	27	32	31	. 31
12	44	43	44		34	32	33	36	31	34 35	31	30	31 30 29 28 29
13	44	43	43		33	32	33 32 31	36	34	35	30	28	29
14	43	42	43		34	31	32	34	30	32	29	28	28
15	43	42	43		32	30	31	31	28	29	29	28	29
16	43	41	42	4	31	30	31	29	26	28	29	28	28
17	42	40	41		30	29	30	28	24	27	28	27	28
18	41	39	40		35	29	31	26	23	25	28	27	27
. 19	40	39	40		34	33	34	26	21	24	28	26	28 28 27 27 27
20	. 39	38	39		34	31	32	26	22	24	27	26	27
21	39	38	38		31	30	30	26	20	24	27	24	26
22	39	37	38		30	28	29	26	24	25	31	26	30 31 30 28
23	39	38	39		29	28	28	25	23	24	32	31	31
24	39	38 37	38		30	29	30	24	22	23 21	31	29 28	30
25	38	37	38		30	28	29	23	19	21	29	28	28
26	38	37	38		29	28	29	23	20	21	28	27	27
27	38	36	37		29	28	29	23	20	22	27	26	27 25
28	37	36	37		29	28	28	26	23	25	27	24	25
29	36	36	36		28	27	28	31	25	27	24	23	24
30	36	35	35		27	26	27	32	28	30	25	23	24
'31					27	25	27	28	24	26			
MONTH	59	35	42		35	25	31	40	19	27	44 -	21	29
		5.00											

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DAY		MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
			ОСТОВЕ	R		NOVEMBE	R		DECEMBE	R		JANUAR	Y
1 2 3 4 5	1	2.5 3.5 2.5 2.5	12.0 12.5 12.0 12.5 12.5	12.0 12.5 12.5 12.5 12.5	10.5 10.5 10.0 10.0 10.5	9.5 9.5 9.5 9.5	10.0 10.5 9.5 10.0 10.0	8.0 8.0 8.0 9.0 9.0	7.5 7.5 7.5 8.0 8.5	7.5 7.5 7.5 8.5 8.5	5.0 6.0 5.5 2.5 2.0	4.0 5.0 3.0 1.5 1.5	4.5 5.5 4.0 2.0 2.0
6 7 8 9	1	13.5 12.5 12.0 12.0	12.5 12.0 11.5 11.0	13.0 12.5 12.0 11.5 11.0	10.5 10.5 10.5 11.0 10.5	10.0 10.0 10.5 10.0 9.5	10.5 10.5 10.5 10.0 10.0	8.5 8.0 9.0 9.5 8.5	8.0 7.5 8.0 8.5 7.0	8.0 8.5 9.0 7.5	2.5 3.0 2.5 .5	2.0 2.5 .5 .0	2.0 2.5 2.0 .5
11 12 13 14 15	1	12.0 12.5 12.5 13.0	11.0 11.5 11.5 12.0 11.5	11.0 11.5 12.0 12.5 12.0	10.5 10.5 10.0 11.0	9.5 10.0 10.0 10.0 10.5	10.0 10.0 10.0 10.5 10.5	6.5 6.0 5.5 5.5	6.0 5.5 5.0 5.0	6.5 5.5 5.5 5.0 5.0	1.0 1.5 2.0 1.5 1.5	1.0 1.5 1.5 1.0	1.0 1.0 1.5 1.5
16 17 18 19 20		11.0 11.5 11.0 11.0	11.0 10.5 10.0 10.5 10.5	11.0 11.0 10.5 10.5	10.5 11.0 11.5 10.5 10.0	10.0 10.0 10.5 10.0 9.5	10.5 10.5 11.0 10.5 9.5	5.5 6.0 6.0 5.5 6.0	5.0 5.5 5.5 5.5	5.5 5.5 5.5 5.5	1.5 1.5 2.0 1.5 2.0	1.0 1.0 1.5 1.5	1.0 1.5 1.5 1.5 1.5
21 22 23 24 25		11.0 11.5 11.5 11.0	10.0 10.5 10.5 10.5 10.0	10.5 10.5 11.0 11.0	10.0 9.5 9.5 10.0 9.5	9.0 9.0 9.0 9.5 9.0	9.5 9.0 9.0 9.5 9.5	6.0 6.0 6.0 5.5	6.0 5.5 5.5 5.5 5.0	6.0 6.0 5.5 5.5	1.5 .0 .5 1.5	.0 .0 .5	.5 .0 .5 1.0
26 27 28 29 30 31		11.0 11.5 11.0 10.5 10.5	10.5 11.0 10.0 10.0 10.5 9.5	11.0 11.5 10.5 10.0 10.0	9.0 8.5 8.5 8.0	8.0 7.5 8.0 7.5 8.0	8.5 8.0 8.0 8.0	4.5 4.0 3.0 3.0 3.5 4.0	4.0 3.0 3.0 2.5 2.5 3.5	4.5 3.5 3.0 3.0 3.0	1.0 2.0 2.0 2.5 2.5 2.5	.5 1.0 1.5 2.0 2.5 2.0	1.0 1.5 1.5 2.0 2.5 2.5
MONTH		13.5	9.5	11.5	11.5	7.5	9.5	9.5	2.5	6.0	6.0	.0	1.5

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCH			APRIL			MAY	
1 2 3 4 5	2.0 1.5 1.5 1.5	1.5 1.5 1.5 1.0	1.5 1.5 1.5 1.5	2.0 2.5 2.5 4.0 6.5	1.0 2.0 2.5 2.5 4.5	1.5 2.0 2.5 3.0 5.5	11.5 10.5 10.0 9.5 9.0	11.0 10.0 9.5 8.5 8.5	11.0 10.0 10.0 9.0 8.5	12.5 12.0 12.0 12.5 13.0	11.5 11.0 11.0 11.5 11.5	12.0 11.5 11.5 12.0 12.0
6 7 8 9	1.5 1.5 1.5 1.5	1.0 1.0 1.5 1.0	1.0 1.0 1.5 1.5	8.5 8.5 7.5 6.5 7.5	6.5 7.5 6.5 5.5 6.0	7.5 8.0 7.0 6.0 7.0	8.5 7.5 7.0 7.0 7.5	7.5 7.0 6.0 6.5 6.5	8.0 7.0 6.5 7.0 7.0	12.0 12.5 13.0 14.0 14.5	11.0 11.0 12.0 12.5 13.5	11.5 12.0 12.5 13.5 14.0
11 12 13 14 15	1.5 1.5 1.5 1.5 2.0	1.0 1.0 1.5 1.0	1.0 1.0 1.5 1.5	7.5 5.0 5.0 7.0 6.5	5.0 4.0 3.5 5.0 4.0	6.5 4.5 4.5 6.5 5.5	7.5 8.0 8.0 7.5 8.0	6.5 7.0 7.5 7.5 7.0	7.0 7.5 8.0 7.5 8.0	15.5 14.5 15.5 15.5	14.5 14.5 14.5 15.0 14.5	14.5 14.5 15.0 15.5 15.0
16 17 18 19 20	2.0 2.0 1.5 1.5 2.0	1.5 1.5 1.5 1.0 1.5	2.0 1.5 1.5 1.5 2.0	4.0 4.5 5.5 5.0 5.5	3.0 3.0 4.5 4.0 4.0	3.5 4.0 5.0 4.5 5.0	8.5 9.0 9.0	8.0 8.0 8.0 8.0	8.0 8.5 8.5 8.5 8.5	15.0 14.5 14.0 13.5 14.0	14.5 14.0 13.5 13.5	15.0 14.5 14.0 13.5 13.5
21 22 23 24 25	2.5 2.0 2.0 2.0	2.0 2.0 2.0 .0	2.0 2.0 2.0 1.5	6.5 7.0 7.5 8.5 9.0	5.0 5.5 6.5 7.5 8.5	6.0 6.5 7.0 8.0 9.0	9.5 10.0 11.0 11.0	8.0 9.0 10.0 10.5 11.0	9.0 9.5 10.5 11.0 11.5	14.5 14.5 15.0 15.5 16.0	13.5 14.0 14.0 15.0 15.5	14.0 14.0 14.5 15.5 16.0
26 27 28 29 30 31	.0 .5 1.5	.0	.0 .5 1.0 	8.5 7.0 6.0 7.5 9.5	7.0 6.0 5.0 5.5 7.5 9.5	7.5 6.5 5.5 6.5 8.5	12.5 13.0 12.5 12.5 12.5	11.5 12.0 12.0 11.5 11.5	12.0 12.5 12.0 12.0 12.0	15.5 14.5 15.0 14.5 15.0	14.5 14.0 14.0 14.0 14.5	15.0 14.0 14.5 14.5 15.0 15.0
MONTH	2.5	.0	1.5	11.0	1.0	6.0	13.0	6.0	9.0	16.0	11.0	14.0
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEME	ER
1 2 3 4 5	16.0 16.0 16.0 15.5 16.5	15.5 16.0 15.5 15.5	15.5 16.0 15.5 15.5 16.0	16.0 16.0 16.5 16.0 15.5	16.0 16.0 16.0 15.5 14.5	16.0 16.0 16.0 15.5 15.0	18.0 20.0 20.5 20.5 19.5	17.5 17.5 19.5 20.0 19.0	17.5 18.0 20.0 20.0 19.5	17.0 17.5 18.0 17.5 17.0	16.0 16.0 17.0 16.5 16.5	16.5 16.5 17.5 17.0 16.5
6 7 8 9	16.5 18.0 18.5 18.5 18.5	16.0 16.5 17.0 18.0 18.0	16.5 17.5 18.0 18.0 18.5	14.5 14.5 14.5 15.0 15.0	14.0 14.0 14.0 14.5 14.5	14.5 14.0 14.5 14.5 14.5	19.0 18.5 18.0 18.0	18.5 18.0 17.5 16.5 16.5	19.0 18.0 17.5 17.0 16.5	21.5 21.0 19.5 18.5 16.5	17.5 19.5 18.5 16.5 15.5	20.5 20.0 19.0 17.5 16.0
11 12 13 14 15	18.5 16.5 15.0 14.5 15.0	16.5 15.0 14.0 13.5 14.0	17.5 15.5 14.5 14.0 14.5	15.0 15.5 16.0 16.5 17.5	14.5 15.0 15.5 16.0 16.0	15.0 15.5 16.0 16.5 17.0	17.5 18.0 16.5 16.5 16.0	16.5 17.0 16.0 16.0 15.5	17.0 17.5 16.5 16.0 16.0	16.0 15.5 15.0 15.5 15.5	15.5 15.0 14.5 15.0 15.0	15.5 15.0 15.0 15.0 15.5
16 17 18 19 20	15.5 16.0 17.0 17.0 16.5	15.0 15.5 16.0 16.5 15.5	15.5 15.5 16.5 16.5 16.0	18.0 18.0 18.0 18.5 18.5	17.5 17.5 17.5 18.0 18.0	17.5 17.5 18.0 18.5 18.0	15.5 15.0 14.5 15.0 15.0	15.0 14.0 14.0 14.0 14.0	15.0 14.5 14.0 14.5 14.5	15.0 14.5 14.5 14.0 13.5	14.0 14.0 13.5 13.5 13.0	14.5 14.0 14.0 14.0 13.0
21 22 23 24 25	16.0 16.0 17.0 16.5 15.5	15.5 15.5 16.0 15.5 15.0	15.5 16.0 16.5 16.0 15.5	18.0 17.5 17.5 18.5 18.5	17.5 17.0 17.0 17.5 18.0	18.0 17.5 17.5 18.0 18.5	15.0 15.0 15.0 15.0	14.5 14.5 14.5 14.5 15.0	14.5 15.0 15.0 15.0	13.5 14.5 14.5 13.5 13.5	13.0 13.5 14.0 13.5 13.0	13.0 14.0 14.0 13.5 13.5
26 27 28 29 30	15.0 15.0 15.0 15.5 16.0	14.5 14.0 14.5 15.0 15.5	15.0 14.5 15.0 15.0	18.5 19.0 18.5 18.0	18.5 18.5 18.0 18.0	18.5 18.5 18.5 18.0	15.5 16.0 16.5 18.0 18.0	15.5 15.5 16.0 16.0	15.5 15.5 16.0 16.5	13.5 13.5 13.5 13.5 14.0	13.0 13.0 13.0 13.5 13.5	13.0 13.0 13.0 13.5 14.0
31 MONTH	18.5	13.5	16.0	18.0	17.5	17.5	17.5	16.5	17.0	21.5	13.0	15.0
			0.514.50	0.50		70.5		100	1.7.1			1000

01467000 NORTH BRANCH RANCOCAS CREEK AT PEMBERTON, NJ

LOCATION.--Lat 39°58'10", long 74°41'05", Burlington County, Hydrologic Unit 02040202, on right bank at downstream side of highway bridge at Pemberton, 12 mi (19 km) upstream from confluence with South Branch.

DRAINAGE AREA .-- 111 mi2 (287 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- September 1921 to current year.

REVISED RECORDS. -- WSP 1302: 1922-23. WSP 1382: 1933.

GAGE.--Water-stage recorder above concrete dams. Datum of gage is 31.19 ft (9.507 m) National Geodetic Vertical Datum of 1929. Prior to June 9, 1923, nonrecording gage and June 9, 1923 to Aug. 9, 1951, water-stage recorder at site 600 ft (183 m) downstream at datum 6.54 ft (1.993 m) lower.

REMARKS.--Water-discharge records good. Flow regulated occasionally by operation of gate in dam and by ponds above station.

AVERAGE DISCHARGE. -- 58 years, 173 ft3/s (4.899 m3/s), 21.17 in/yr (538 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,730 ft³/s (49.0 m³/s) Aug. 31, 1939, gage height, 4.23 ft (1.289 m), from high-water mark at former site, present datum; minimum daily, 9.0 ft³/s (0.25 m³/s) Sept. 29, 1932.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 600 ft³/s (17.0 m³/s) and maximum (*):

Date		Time	Discha (ft ³ /s)		Gage H	leight (m)	Date		Time	Discha (ft ³ /s)		Gage H	(m)
Jan.	22	1600	972	27.5	2.96	0.902	Mar.	8	0400	957	27.1	2.94	0.896
Jan.	26	0700	908	25.7	2.87	0.875	May	20	1645	649	18.4	2.50	0.762
Feb.	26	2315	*1660	47.0	3.79	1.155	May	25	1530	656	18.6	2.51	0.765

Minimum discharge, 86 ft3/s (2.43 m3/s) Oct. 12, Nov. 12, 13, 14, 15.

		DISC	HARGE, II	CUBIC F	EET PER S	ECOND, WAT	ER YEAR C	CTOBER 19	78 TO SEP	TEMBER 19	79	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1	94	101	180	218	384	860	230	224	341	164	110	230
2	105	105	164	267	313	538	230	202	313	170	105	185
3	114	110	155	481	313	496	230	191	280	164	159	175
4	118	98	191	481	287	461	327	218	348	150	411	230
5	118	94	224	377	248	440	300	202	454	150	503	320
6	114	90	242	320	230	580	230	159	447	150	287	517
7	105	90	236	307	218	860	202	159	447	145	185	545
8	101	105	213	440	224	929	196	155	467	140	155	489
9	98	110	293	566	218	789	213	1 40	433	131	136	
10	90	94	454	510	213	635	274	131	370	114	122	390 307
11	90	90	390	418	207	580	287	140	334	118	122	248
12	86	86	348	320	196	545	267	150	363	122	348	202
13	98	86	280	287	202	489	261	175	341	122	300	196
14	105	86	213	363	196	397	334	267	280	155	224	287
15	101	90	175	327	202	411	370	384	267	136	207	164
16	105	94	155	307	196	390	348	397	236	127	180	150
17	98	105	170	287	196	363	327	334	254	122	155	131
18	90	140	170	261	224	341	348	280	313	122	140	122
19	90	136	175	242	230	320	313	355	287	136	140	118
20	90	122	164	230	256	307	274	594	242	136	136	118
21	90	114	175	614	290	287	236	545	213	127	131	118
22	94	114	191	943	340	274	230	397	196	118	127	150
23	94	114	185	901	400	327	248	384	224	118	122	191
24	86	122	180	747	524	274	224	454	254	185	118	196
25	101	127	348	839	839	355	207	607	248	185	114	180
26	101	122	454	901	1480	300	224	552	218	155	118	164
27	101	118	363	817	1590	307	280	411	196	1.45	122	155
28	110	131	300	670	1250	300	300	348	175	131	218	140
29	110	155	274	538		267	300	320	170	122	341	160
30	101	185	230	467		248	261	341	164			
31	105		213	418		236		341	104	118 114	348 287	170
TOTAL	3103	3334	7505	14864	11466	13906	8071	9557	8875	4292		67110
MEAN	100	111	242	479	410	449	269	308			6171	6748
MAX	118	185	454	943	1590	929		607	296	1 38	199	225
MIN	86	86	155	218	196	236	370		467	185	503	545
CFSM	. 90	1.00	2.18	4.32	3.69	4.05	196	131	164	114	105	118
IN.	1.04	1.12	2.52	4.98	3.84	4.66	2.42	2.78 3.20	2.67	1.24	1.79	2.03

CAL YR 1978 TOTAL 90138 MEAN 247 MAX 1060 MIN 86 CFSM 2.23 IN 30.21 WTR YR 1979 TOTAL 97892 MEAN 268 MAX 1590 MIN 86 CFSM 2.41 IN 32.81

01467000 NORTH BRANCH RANCOCAS CHEEK AT PEMBERTON, NJ--Continued

145

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923-24, 1958, 1962-69, 1975 to current year.

COUPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE		TIME	STRI FLO INST TANI (CI	EAM- OW, CAN- EOUS (SPE- CIFIC CON- DUCT- ANCE MICRO- MHOS)	F (UNI		TEMPI ATUI (DEG	ER- RE	DI: SOL (MG	S- VED	OXYO DEMA BIO CHI ICA 5 DA (MG,	AND, O- EM- AL, AY	BRO	RM, CAL,	STF TOCO FEO (MI	CAL	HAR NES (MG AS CAC	S /L	CALCI DIS- SOLV (MG,	VED /L
OCT 05		1700		440							2.0		0		70		600		8		1.7
FEB		1300		118	41		4.7	16	5.0		8.8		.8		79						
15 APR		1030		196	55		4.3		.0	1.	2.1		1.2		<2		2		8	1	1.9
03 JUN		1055		236	48		4.2	11	1.0	3	9.1		1.2		330		.17		7	1	1.9
18 JUL		1000		307	45		4.3	23	3.0	4	7.2		2.2		540		70		7	1	1.7
26		1200		155	41		4.6	23	3.5		7.8		1.2		170		330		8	1	1.9
AUG 30		1000		363	43		3.9	23	3.5		5.4		3.8		920	2	400		7	1	1.6
	DATE	SO (N	AGNE- BIUM, DIS- DLVED MG/L B MG)	SODIUM DIS- SOLVE (MG/MAS N.	M, S D SO L (M	TAS- IUM, IS- LVED G/L K)	BICA BONA (MG A	TE /L S	CAR- BONAT (MG/ AS CO	E	ALK LINI (MG AS	TY /L	TO (M	FIDE TAL G/L S)	DI SO (M	FATE S- LVED G/L SO4)	CHL RID DIS SOL (MG AS	E, VED /L	FLU RID DI SOL (MG AS	E, S- VED /L	
	OCT 05		.9	2	.7	.7		1		0		1		.0		7.0		4.6		.0	
	FEB				. 6			0												.0	
	15 APR		.8			.7				0		0				10		4.7			
	03 JUN		.6		.7	.7		0		0		0				8.8		4.6		.0	
	18 JUL		.7	2	. 3	.7		0		0		0				6.9		4.0		.0	
	26 AUG	•	.8	2	.7	.8		1		0		1				7.3		4.5		.0	
	30		.7	2	. 3	.8		0		0		0		77		7.1		4.4		.0	
	DATE	D] SC (N	SICA, IS- DLVED IG/L IS IO2)	SOLID: RESID: AT 180 DEG. DIS- SOLV: (MG/	JÉ NI C NO2 - TO ED (M	TRO- EN, +NO3 TAL G/L N)	NIT GE AMMO TOT (MG	N, NIA AL /L	NITE GEN ORGAN TOTA (MG/ AS N	I, IIC L L	NIT GEN, MONI ORGA TOT (MG	AM- A + NIC AL /L	TO (M	TRO- EN, TAL G/L N)	PH TO (M	OS- ATE, TAL G/L PO4)	PHOS PHAS ORTI DIS SOL' (MG,	TE, HO, S- VED /L	CARB ORGA TOT (MG	NIC AL /L	
	ост																				
	05 FEB	•	4.7		34 <	1.0		.30	1.	2	1	.5				.04		.04		8.3	
	15 APR		4.4		36 <	1.0	<	.10				.80				.03		.03		5.3	
	03 JUN		2.5		30	1.4	<	.10	*			.20		1.6		.04		.04	1	1	
	18		3.7	1	32 <	1.0		.20	1.	4	1	.6				.18		.12	1	6	
	JUL 26		4.9		40 <	1.0		.20	1.	4	1	.6				.18		.13			
	AUG 30		4.3		36 <	1.0	<	.10			1	.0				.20		.09	1	4	

01467000 NORTH BRANCH RANCOCAS CREEK AT PEMBERTON, NJ--Continued

DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)
OCT 05	1300	560	3.0	4.1	140	1	0	0	<10	10	50	20
DATE	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
OCT 05	7	450	2200	21000	870	30	200	<.5	.00	8	200	0
DATE	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 05	30	220	0	23	.0	39	14	4.6	3.8	.0	1.4	.0
	TE (UG,	ON, CHI FAL TO BOT- IN I MA- TOM HIAL TER	LOR, CHI FAL EPO BOT - TOT MA- BOT RIAL MA	KIDE TOT IN IN E	AL TOT OT- IN B MA+ TOM IAL TER	ON, OXY AL CHL OT- TOT. MA- BOT	OR, THI IN TOT. TOM BOT	A- TR ON, THI IN TOT. TOM BOT TL. MA	IN IN B TOM TOM TL. TER	ON, THI AL TOT OT- IN B MA- TOM IAL TER	AL TOT OT- IN B MA- TOM IAL TER	NE, AL OT- MA- IAL
0CT 05		.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0

LOCATION.--Lat 39°59'22", long 74°47'06", Burlington County, Hydrologic Unit 02040202, at bridge on Pine Street in Mount Holly, 0.1 mi (0.2 km) north of Saint Andrews Cemetery in Mount Holly, and 0.3 mi (0.5 km) downstream from Mill Dam.

DRAINAGE AREA. -- 134 mi2 (347 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975 to 1979 (discontinued).

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Healtn, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

	DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)		CALCIUM DIS- SOLVED (MG/L AS CA)	
	ОСТ 05	0900	73	6.4	15.5	9.2	1.2	350	540	18	4.6	
	DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	TOTAL (MG/L	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
	ОСТ 05	1.5	4.8	1.3	5	0	4	.0	12	7.4	.1	
		DIS SOI (MO AS	J/L DI	DUE NIT	N, GE NO3 AMMO AL TOT	EN, GI ONIA ORGA PAL TOTA E/L (MO	PRO- GEN, MONIANIC ORGAL TOTAL TOTAL	A + PHO NIC PHA AL TOT L/L (MG	PHA OS- ORT OTE, DI PAL SOI	OS- ITE, CHO, CARE IS- ORGA VED TOT G/L (MG	NIC AL L	
	001		5.9		.0	.30	1.2 1	.5	.28	.28	7.3	
DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)
OCT 05	0900	4900	24	24	60	1	0	0	<10	<10	10	<10
DATE	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
ОСТ 05	6	<10	2800	8900	40	30	30	<.5	.00	10	<10	0
DATE	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)		PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT-	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT	NO ENT	NS ZN)	(00/L)	(Ud/kd)	(UU/KU)	(00/10)	(od/kd)	(UU/KU)	(od/kd)	(Ud/kd)	(od/kd)	(od/kg)
05	100	110	0	45	.0	44	29	18	11	.0	1.5	.0
DA	ETHI TOT IN E TOM TER	CON, CHI	LOR, CHL TAL EPOX BOT- TOT. MA- BOT	IN IN E	AL TOT OT- IN E MA- TOM	MA- BOT	Y- PAR LOR, THI . IN TOT. FTOM BOT	RA- TR CON, THI IN TOT. TOM BOT	ON, TOT IN IN E TOM TOM ATL. TER	ION, THI TAL TOT BOT- IN B MA- TOM RIAL TER	MA- TOM	NE, CAL SOT- MA-
ост 05		.0	.0	.0	.0	. 0	.0	.0	.0	.0	.0	0

01467060 DELAWARE RIVER AT PALMYRA, NJ

LOCATION.--Lat 40°01'05", long 75°02'16", Philadelphia County, PA, Hydrologic Unit 02040202, on right bank opposite Palmyra, 0.5 mi (0.8 km) upstream from Tacony-Palmyra Bridge, 3.5 mi (5.6 km) downstream from Rancocas Creek, and at channel mile 107.45 (172.89 km).

DRAINAGE AREA. -- 7,850 mi2 (20,330 km2).

PERIOD OF RECORD.--December 1962 to current year. Tidal volumes published from December 1962 to September 1970.

GAGE.--Water-stage recorder. Datum of gage is -10.00 ft (-3.048 m) National Geodetic Vertical Datum of 1929. Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum of 1929 for publication.

REMARKS.--Summaries for months with short periods of no gage-height record have been estimated with negligible or no loss of accuracy unless otherwise noted. Some periods cannot be estimated and are noted by dash (--) lines.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 8.31 ft (2.533 m) Feb. 26, 1979; minimum, -8.6 ft (-2.6 m) Dec. 31, 1962.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum elevation known since 1899, 8.9 ft (2.7 m) Aug. 24, 1933, from profile furnished by Corps of Engineers, U.S. Army.

EXTREMES FOR CURRENT YEAR.--Maximum elevation, 8.31 ft (2.533 m) Feb. 26; minimum recorded, -3.66 ft (-1.116 m) Jan. 27.

Summaries of tide elevations during current year are as follows:

TIDE ELEVATIONS, IN FEET, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

		OCT	NOV	DEC	JAN	FEB	MAR	A PR	MAY	JUN	JUL	AUG	SEP
Maximum	Elevation	5.70	5.65	5.69	7.54	8.31	6.16	7.18	6.34	6.00	5.82	5.94	7.11
high tide	Date	4	16	31	24	26	24	27	26	11	12	8	6
Minimum	Elevation	-3.10	-3.10	-3.52	-3.66	-3.51	-3.32	-3,50	-3.63	-3.45	-2.84	-2.65	-3.00
low tide	Date	11	25	26	27	16	15,16	7	17	25	5	15	8,16
Mean high t	ide	4.46	4.43	3.94			4.77	4.81	4.76	4.67		4.73	4.83
Mean water	level	1.33	1.35	0.64			1.52	1.42	1.39	1.29		1.44	1.51
Mean low ti	de	-2.06	-2,13	-2.55			-1.95	-2.16	-2,32	-2.45		-2.20	-2.16

NOTE. -- Missing or doubtful record on Dec. 4-8, Jan. 3 to Feb. 15, May 1 to Aug. 16.

149 01467069 NORTH BRANCH PENNSAUKEN CREEK NEAR MOORESTOWN, NJ

LOCATION.--Lat 39°57'07", long 74°58'10", Burlington County, Hydrologic Unit 02040202, at bridge on Kings Highway, 200 ft (61 m) downstream from outlet of Strawbridge Lake, 0.6 mi (1.0 km) northwest of Moorestown Mall, 0.8 mi (1.3 km) southeast of Lenola, and 1.8 mi (2.9 km) southwest of Moorestown.

DRAINAGE AREA. -- 12.8 m12 (33.2 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
OCT	2000	4.7	000	-			4.0	222	70	70	24
O4 FEB	0915	4.4	288	6.5	17.5	6.9	4.0	220	70	. 78	21
14 MAR	1300	15	399	6.4	1.0	11.8	1.7	<2	<2	93	25
30	0930	19	274	6.3	12.0	8.8	4.0	2	2	78	21
JUN 19 JUL	1030	8.7	256	6.7	22.5	7.2	4.6	210	22	77	21
30 AUG	1415	4.4	275	7.1	28.5	9.0	8.9	170	80	84	23
28	0900	4.4	268	6.6	25.0	7.2	4.2	50	94	79	22
		AGNE	- 2						211		ПО

DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
OCT 04	6.2	15	5.6	17	0	14	-	60	29	.2	
FEB								10.0	13.6		
14 MAR	7.5	29	5.2	20	0	16		78	52	.2	
30 JUN	6.2	16	4.3	17	0	14	22	63	29	1	
19	6.0	13	5.0	18	0	15	.0	62	25	.2	
JUL 30	6.4	13	5.9	17	0	14		59	26	.3	
AUG 28	5.9	14	5.4	21	0	17		56	23	.2	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)	
OCT O4 FEB	9.7	179	.90	.82	.38	1.2	2.1	.46	.31	7.8	
14	13	253	1.2	1.2	.60	1.8	3.0	1.1	.22	2.8	
MAR 30	11	171	<1.0	.50	1.3	1.8		.31	.25	3.5	
JUN 19	12	170	1.0	.60	2.8	3.4	4.4	.31	.13	7.9	
JUL 30	12	178	1.0	.60	1.5	2.1	3.1	.14	.10	11	
AUG 28	11	176	<1.0	.90	.40	1.3		.28	.06	6.0	

01467069 NORTH BRANCH PENNSAUKEN CREEK NEAR MOORESTOWN, NJ--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN								
19	1030	20	2	0	50	15	10	6
			MANGA-					
	IRON, TOTAL	LEAD, TOTAL	NESE, TOTAL	MERCURY TOTAL	NICKEL, TOTAL	SELE-	ZINC, TOTAL	
	RECOV-	RECOV-	RECOV-	RECOV-	RECOV-	NIUM,	RECOV-	
	ERABLE	ERABLE	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	PHENOLS
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
JUN								
19	4200	12	200	<.5	33	0	30	0

01467081 SOUTH BRANCH PENNSAUKEN CREEK AT CHERRY HILL, NJ

LOCATION.--Lat 39°56'30", long 75°00'05", Camden County, Hydrologic Unit 02040202, on left bank on downstream wingwall of bridge on Mill Road in Cherry Hill, 1.1 mi (1.8 km) south of Maple Shade and 3.8 mi (6.1 km) upstream from confluence with the North Branch.

DRAINAGE AREA. -- 9.16 mi2 (23.72 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1967 to September 1976, October 1977 to current year.

GAGE.--Water-stage recorder. Datum of gage is 8.12 ft (2.475 m) National Geodetic Vertical Datum of 1929.

REMARKS. -- Water-discharge records poor.

AVERAGE DISCHARGE.--11 years, (1968-76, 1978-79) 19.2 ft³/s (0.544 m³/s), 28.45 in/yr (723 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 868 ft³/s (24.6 m³/s) Aug. 28, 1978, gage height, 10.19 ft (3.106 m); maximum gage height, 11.34 ft (3.456 m) Aug. 28, 1971; minimum, 2.6 ft³/s (0.073 m³/s) Oct. 6, 9, 10, 11, 1970, gage height, 1.71 ft (0.521 m).

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 300 ft^3/s (8.50 m^3/s) and maximum (*):

Date		Time	Discha (ft³/s)	rge (m³/s)	Gage H	leight (m)	Date		Time	Discha (ft³/s)		Gage H	leight (m)
Dec.	9	1030	326	9.23	6.48	1.975	Feb.	25	0300	534	15.1	8.17	2.490
Jan.	21	0630	*629	17.8	8.80	2.682	May	25	0415	410	11.6	7.21	2.198
Jan.	24	2000	421	11.9	7.30	2.225	July	14	1500	400	11.3	6.88	2.097

Minimum daily discharge, $4.5 \text{ ft}^3/\text{s}$ (0.127 m³/s) Nov. 13, 14, 21, 22, 23, 25, 26.

		DISCHA	RGE, IN	CUBIC FEET		ND, WATER AN VALUES		OBER 1978	TO SEPTE	MBER 1979	i	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	13 13 12 10	7.0 7.0 7.5 7.5	12 11 9.9 44 56	21 112 59 17 15	17 17 15 16 15	23 22 20 19	13 18 17 17	11 10 10 10 9.9	14 12 24 45 28	8.5 8.0 8.0 8.5 8.8	9.0 12 20 28 12	9.2 8.9 9.0 9.6
6 7 8 9	12 10 9.5 9.5 9.5	7.5 7.0 7.0 7.0 5.5	16 12 14 202 52	15 45 171 28 18	15 14 14 14 16	114 48 23 19 17	14 13 12 28 35	9.2 9.2 8.6 8.4 8.6	19 14 12 10 35	7.6 7.3 6.7 7.0 7.3	9.0 8.5 9.0 12 25	90 14 10 9.6 9.5
11 12 13 14 15	9.5 9.0 9.0 8.5 8.5	5.5 5.0 4.5 4.5 5.0	21 17 16 14	15 14 29 35 18	14 14 14 14	50 21 18 21 17	16 15 15 52 21	9.0 12 17 15	95 30 15 13	7.3 7.3 7.9 75 35	50 80 30 13	9.5 9.5 9.1 16 15
16 17 18 19 20	8.0 14 8.0 8.0	6.0 8.0 13 6.0 5.0	14 17 16 15	15 14 14 12 26	13 13 13 13	15 15 14 14 14	12 12 11 11 11	11 11 28 52 17	11 13 12 11 9.5	17 60 70 30 12	10 9.5 11 12 9.0	9.1 9.2 9.1 9.2 8.9
21 22 23 24 25	7.0 7.0 7.0 7.0 7.0	4.5 4.5 5.0 4.5	35 17 15 32 113	461 41 22 124 99	18 42 33 212 323	13 13 13 64 30	9.5 8.0 9.0 11	12 8.4 29 74 188	9.5 10 17 14 11	11 10 12 14 12	10 9.7 9.4 14 9.9	12 35 23 11 10
26 27 28 29 30 31	7.0 8.0 7.0 6.5 6.5	4.5 17 27 17 39	20 16 14 12 12	26 22 22 21 18 17	271 38 26	19 15 14 15 14 14	24 36 14 13	22 17 15 18 15	9.5 9.0 9.5 8.5	11 10 9.5 9.5 9.5	9.6 11 33 18	9.7 10 11 17 56
TOTAL MEAN MAX MIN CFSM IN.	275.5 8.89 14 6.5 .97 1.12	260.5 8.68 39 4.5 .95	888.9 28.7 202 9.9 3.13 3.61	1566 50.5 461 12 5.51 6.36	1251 44.7 323 13 4.88 5.08	747 24.1 114 13 2.63 3.03	507.5 16.9 52 8.0 1.85 2.06	692.3 22.3 188 8.4 2.43 2.81	542.5 18.1 95 8.5 1.98 2.20	517.2 16.7 75 6.7 1.82 2.10	525.6 17.0 80 8.5 1.86 2.13	479.1 16.0 90 8.9 1.75 1.95

CAL YR 1978 TOTAL 8658.2 WTR YR 1979 TOTAL 8253.1

01467081 SOUTH BRANCH PENNSAUKEN CREEK AT CHERRY HILL, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DAT	E	TIME	STRE. FLO INST. TANE	AM- COL W, DUG AN- ANG OUS (MIC	FIC N- CT- CE CRO-	PH NITS)	TEMF ATU (DEG	PER- JRE	DIS DIS SOLV	DEI B EN, CI S- I	YGEN MAND IO- HEM- CAL, DAY G/L)	FOR FEC	M, AL, S TO TH F	TREP- COCCI ECAL MPN)	HAR NES (MG AS	S /L	CALCIUM DIS- SOLVED (MG/L AS CA)	
OCT O4.		1040	E1	0	358	7.0	1	6.5		5.0	3.	B 7	500	1300		82	22	
FEB 20.		1000	1		388	6.9		.0		3.2	15	5	<20	<20		81	21	
MAR 27.		1300	1		344	6.7		8.5		0.6	3.0		940	80		87	23	
JUN 07.		1215	1		287	6.9		9.0		7.3	3.		300	490		85	23	
JUL 05.		1200		9.3	293	7.0		7.5		5.7	13			24000		78	21	
AUG 20.		1130		7.9	328	6.9		21.0		1.7	10			24000		78	21	
20.		1170		1.9	720	0.9	-	.1.0			10	100	,000	24000		10	-,	
	DAT	£ (MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS SIUM DIS- SOLVE (MG/L AS K)	BONA BONA D (MC		CAR- BONAT (MG/ AS CO	L L	ALKA- LINITY (MG/L AS CACO3		ULFIDE TOTAL (MG/L AS S)	SULFAT DIS- SOLVE (MG/L AS SO4	E RI DI D SC (N	ILO- IDE, IS- DLVED IG/L IG/L	RI D SO: (M	UO- DE, IS- LVED G/L F)	
	OCT O4.		6.6	23	9.	0	83		0	6	8		53		23		.3	
	FEB 20.		6.9	24	7.		44		0	3			56		30		.1	
	MAR 27.		7.1	22	5.		28		0	2			55		39		.2	
	JUN 07.		6.7	15	6.		41		0	3		.0	52		24		.2	
	JUL 05.		6.2	18	6.	8	44		0	3	6		50		24		.2	
	AUG 20.		6.2	21	8.	В	61		0	5	0		44		26		.2	
	DAT	I S (ILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO GEN, NO2+NO TOTAL (MG/L AS N)	G1 3 AMM0 TO: (M0	TRO- EN, ONIA TAL G/L N)	NITE GEN ORGAN TOTA (MG/ AS N	NIC AL L	NITRO GEN, AM MONIA ORGANI TOTAL (MG/L AS N)	+ 1 C	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE TOTAL (MG/L AS PO4	PH OF I SO (N	IOS- IATE, RTHO, DIS- DLVED IG/L PO4)	TO (M	BON, ANIC TAL G/L C)	
	OCT O4.		14	194	2.2		.05	1.	. 4	1.5		3.7	2.1		2.1		5.9	
	FEB 20.		13	191	3.2	-	2.8		.80	3.6		6.8	2.5		1.9		6.0	
	MAR 27.		13	213	2.3		1.6	1.	.0	2.6		4.9	1.1		1.1		6.7	
	JUN 07.		14	188	2.7	3	1.4	1.	.8	3.2		5.9	1.5		.70		8.6	
	JUL 05.		11	206	2.5		.20	5	.8	6.0		8.5	3.0		1.5		13	
	AUG 20.	• •	13	207	3.0		3.6		20	3.8		6.8	2.5		2.2		9.5	
			DATE	TIME	ALUM- INUM, DIS- SOLVE (UG/L AS AL	D TO	ENIC FAL G/L AS)	BERY LIUM TOTA RECO ERAB (UG/ AS E	AL OV- BLE	BORON TOTAL RECOV ERABL (UG/L AS B)	- ! E	ADMIUM FOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV ERABL (UG/L AS CR	COF TC - RE E EF	PPER, OTAL CCOV- ABLE IG/L 3 CU)			
			JUN 07	1215	3	0	4		0	6	0	0	2	0	7			
			DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV ERABL (UG/L AS PB	NES TO: REC E ER/	NGA- SE, FAL COV- ABLE G/L MN)	MERCU TOTA RECO ERAB (UG/ AS I	AL OV- BLE /L	NICKEL TOTAL RECOV ERABL (UG/L AS NI	Ē	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV ERABL (UG/L AS ZN	E PHE	NOLS			
			JUN 07	2700	1	0	150		. 5	1	3	0	n	Ó	2			

DELAWARE RIVER BASIN

01467120 COOPER RIVER AT NORCROSS ROAD AT LINDENWOLD, NJ

LOCATION.--Lat 39°49'43", long 74°58'55", Camden County, Hydrologic Unit 02040202, at bridge on Norcross Road in Lindenwold, 50 ft (15 m) downstream from outflow of Linden Lake, 1.1 mi (1.8 km) southwest of Gibbstown, and 1.7 mi (2.8 km) south of Glendale.

DRAINAGE AREA .-- 1.13 mi2 (2.93 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	STRE FLO INST TANE (CF	GAM- CO OW, DU CAN- AN COUS (MI	E- FIC N- CT- CE CRO- OS) (PH UNITS)	TEMPER ATURE (DEG (R- D S SO:	GEN, IS- LVED	OXYGI DEMAN BIO- CHEN ICAI 5 DAY (MG/I	ND, C - F M- F L,	OLI- ORM, ECAL, EC ROTH MPN)	STF TOCO FEO (MF	REP- N OCCI (ARD- ESS MG/L AS ACO3)	CALCIU DIS- SOLVE (MG/I AS CA	D
FEB 14	1015			87	6.2		.5	12.6		.6	5		<2	22	6.	7
MAR 26	1000		. 4	78	6.4	10.		9.1			240		240	19	5.	
JUN								12.0								
JUL	0900	-	.0	55	6.4	18.		7.6		2.0	920		350	17	5.	
23 AUG	1000		.89	62	6.5	25.	.0	7.8	2	2.3	<20		130	19	6.	1
14 SEP	1045			66	6.4	22.	0	8.8	1	.7	50		20	19	5.	9
26	1015			66	6.0	18.	.0	8.4	2	2.0	20		33	19	5.	8
DAT	5	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	DIS- SOLV (MG/	M, BIC - BON ED (M	ATE G/L E AS	CAR- BONATE (MG/L AS CO3)	ALK LINI (MG AS CAC	TY /L	SULFID TOTAL (MG/L AS S)	E DI SO (M	FATE S- LVED (G/L SO4)	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	R: D S(LUO- IDE, DIS- DLVED MG/L S F)	
FEB		1.3	6.1	1	.5	10	0		8	_		14	10		.0	
MAR 26.		1.2	4.8		.5	10	0					11	8.		.0	
JUN									8	-						
JUL		.9	3.6		.0	11	0		9	. ()	7.7	5.		-1	
AUG		1.0	3.3	1	•1	11	0		9	-	-	8.4	5.	5	+1	
14. SEP		1.1	3.4	1	. 1	6	0		5	-	-	9.6	6.	1	.1	
26.		1.0	3.8	1	.7	11	0		9	• ()	7.1	7.	2	-1	
DAT	I S (LICA, DIS- SOLVED MG/L AS	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITROGEN NO2+NO TOTA (MG/	G 03 AMM L TO L (M	EN, ONIA C	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NIT GEN, MONI ORGA TOT (MG	AM- A + NIC AL /L	NITRO- GEN, TOTAL (MG/L AS N)	PH TO (M	OS- ATE, TAL G/L PO4)	PHOS- PHATE ORTHO DIS- SOLVE (MG/L AS PO4	ORC O TO	RBON, HANIC OTAL IG/L B C)	
FEB 14.		6.2	63		20	.20	.40		.60	.80	0	.02	.0:	2	3.5	
MAR 26.		3.4	60	<1.0)	.20	1.1	1	.3	_		.11	.1	1	7.0	
JUN 13.		2.4	55	<1.0		<.10		1	.1			.36	1.	4	7.2	
JUL 23.		1.7	62			<.10			.1			.16	-1		11	
AUG 14.		4.1	62			<.10			.60			.06	.00		12	
SEP 26.									. 00							
20.		2.3	48	<1.0	,	.40				-		.07	.0'	1	5.3	

01467120 COOPER RIVER AT NORCROSS ROAD AT LINDENWOLD, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN								
13	0900	120	4	0	40	0	10.	5
SEP 26	1015	40	0	10	30	0	20	2
	IRON, TOTAL RECOV-	LEAD, TOTAL RECOV-	MANGA- NESE, TOTAL RECOV-	MERCURY TOTAL RECOV-	NICKEL, TOTAL RECOV-	SELE- NIUM,	ZINC, TOTAL RECOV-	
	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	TOTAL (UG/L	ERABLE (UG/L	PHENOLS
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
JUN								
13	1800	8	30	<.5	18	0	50	0
SEP 26	1400	2	30	<.5	1	0	0	3

01467130 COOPER RIVER AT KIRKWOOD, NJ LOCATION.--Lat 39°50'11", long 75°00'06", Camden County, Hydrologic Unit 02040202, at outlet of Kirkwood Lake in Kirkwood, 100 ft (30 m) east of tracks of Pennsylvania-Reading Seashore Lines, and 1.0 mi (1.6 km) north of Laurel Springs.

DRAINAGE AREA. -- 5.14 mi2 (13.31 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1964, 1967, 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-pnase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
ОСТ 05	0930	390	7.2	17.5	8.4	9.3	20	130	52	15
FEB 13	1300	349	6.9	2.0	11.4	7.6	<2	<2	50	15
MAR 22	0945	285	7.1	12.0	10.5		<2	11	44	13
JUN 11	1315	272	7.2	23.0	7.8	8.1	920	920	78	27
JUL 23	1200	258	7.1	26.5		6.8	33	330	46	14
AUG	85.35				7.7	343		170		
14 SEP	1245	172	6.8	21.5	6.5	4.8	1600	10.45	37	11
26	1215	276	6.8	19.5	7.3	5.1	20	<2	46	14
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
ОСТ 05	3.5	32	9.6	78	0	64	.0	23	54	.1
FEB 13	3.0	26	7.0	68		56		24	49	.1
MAR 22	2.8	24		56	0	46		22	35	.1
JUN			5.7		- 1				36	
JUL OZ	2.5	19	5.5	63	0	52		18	- 35	.1
23 AUG	2.6	20	5.7	68	0	56		15	29	-1
14 SEP	2.2	12	3.5	44	0	36		16	16	.1
26	2.6	20	6.0	62	0	51	.0	17	32	•1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 05	2.7	176	<1.0	13	.00	13		1.2	.54	8.3
FEB 13	8.3	165	.20	9.0	1.5	10	11	1.2	.60	11
MAR 22	6.0	1 40	<1.0	6.6	1.8	8.4		1.4	.86	12
JUN 11	5.2	148	<1.0	6.7	1.9	8.6		2.9	.14	9.6
JUL 23	6.7	1 38	.15	6.8	1.8	8.6	8.7	.90	.81	11
AUG 14	5.5	54	<1.0	3.3	.50	3.8		1.3	.73	14
SEP 26	4.8	163	<1.0	6.4			122	1.5	.65	6.1
	4.0	, 3)		0.4			-	,	.0)	0.1

01467130 COOPER RIVER AT KIRKWOOD, NJ--Continued

DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)
OCT 05	0930	350	3.2	4.8	130	4	0	0		
SEP 26	1215				20	6		20	150	0
DATE	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)
OCT 05	<10	<10	<10	<10	7	<10	1900	2800		190
SEP 26		10			6		1700		10	
DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (JG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)
OCT 05	70	20	<.5	.00	8	<10	0	20	60	0
SEP 26	50		<.5		1		0	30		2
DATE	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 05	24	.0	18	7.7	.0	3.7	.0	.0	.0	.0
SEP 26										
DATE	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOXA - PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 05	.0	.0	.0	.0	.0	.0	.0	.0	.0	0
SEP 26										

01467140 COOPER RIVER AT LAWNSIDE, NJ

LOCATION.--Lat 39°52'14", long 75°00'59", Camden County, Hydrologic Unit 02040202, at bridge on Woodcrest Road in Lawnside, 0.2 mi (0.3 km) upstream from the New Jersey Turnpike, and 1.7 mi (2.7 km) upstream from Tindale Run. DRAINAGE AREA. -- 12.8 mi2 (33.2 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1964-65, 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	E	TIME	STRE FLO INST TANE (CF	AM- CAN- A	SPE- CIFIC CON- OUCT- INCE HICRO- HOS)	F (UNI		TEMPE ATUR (DEG	R- E	YGEN DIS- SOLVE	DEM BI , CH IC D 5 I	GEN MAND, IO- IEM- CAL, DAY	COL FOR FEC EC BRO (MF	M, AL, TH	STR. TOCOO FEC. (MP)	CCI ·	HAR NES (MG AS CAC	S /L	CALCIU DIS- SOLVE (MG/L AS CA	ED
OCT 05		1130		10	361		7.0	18	.0	3.	7	16	17	000		500		58	16	
FEB 13		1000		30	328		6.9		.5	10.	9	11		5		2		52	15	
MAR 22		1230		27	295		6.9	14		7.				350		<20		56	16	
JUN 13		1200		29	220		7.0		.5	6.		9.6	.1	300		330		49	14	
JUL 19		1115		41	218		6.8			5.		7.2		200		240		44	13	
AUG		0.00		-					.0											
16		1300		19	274		7.0	21	•5	5.	9	7.8		700		790		52	16	
	DATE	Š	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVEI (MG/I AS NA) SO (M	TAS- IUM, IS- LVED G/L K)	BICA BONA (MG A	TE /L S	CAR- BONATH (MG/I AS CO3	L	ALKA- INITY (MG/L AS CACO3)	TO (M	FIDE TAL G/L S)	SULF DIS- SOL (MG,	VED /L	CHLO RIDI DIS- SOLI (MG,	E, VED /L	RI D SO (M	UO- DE, IS- LVED G/L F)	
	OCT 05		4.4	26		9.0		90		0	75			2	0	36	6		.2	
	FEB									0				3		38			.1	
	13 MAR		3.6	23		6.6		60			49			- 3						
	22 JUN		3.8	23		7.0		81		0	66			3		29			.2	
	13 JUL		3.3	15		5.2		61		0	50		.0	2.		1 9			.2	
	19 AUG		2.9	14		5.6		52		0	43	5		2	3	19	9		.2	
	16	•	3.0	14		7.1		68		0	56	5		2'	7	2	1		.2	
	DATE	I	ILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS RESIDU AT 180 DEG. DIS- SOLVI (MG/I	JÉ NI G G C NO2 TO	TRO- EN, +NO3 TAL G/L N)	NIT GE AMMO TOT (MG AS	N, NIA AL /L	NITRO GEN, ORGANI TOTAL (MG/L	O- G M IC O	NITRO- EN, AM- ONIA - RGANIO TOTAL (MG/L AS N)	NI G TO	TRO- EN, TAL G/L N)	PHO: PHA TOT: (MG,	TE, AL /L	PHOS PHAS ORTS DIS SOL' (MG,	TE, HO, S- VED /L	ORG. TO (M	BON, ANIC TAL G/L C)	
	OCT																			
	05 FEB		11	17		1.0	12			00	12		3		.0		.6		14	
	13 MAR		12	16	52	.60	7	.2	1.1		8.3		8.9	3	.5	2	.9		14	
	22 JUN		11	15	51 <	1.0	6	.6	2.7	7	9.3			3	.5	3	. 4		16	
	13 JUL		9.9	12	23 <	1.0	4	,5	1.4	1	5.9			2	.7	2	. 4		21	
	19		8.4	11	9	.64	4	.5	2.4	+	6.9		7.5	2	.0	1	.6		8.6	
	AUG 16		11	14	16	1.9	<	.10			7.0		8.9	2	.8	2	.2		13	

				DE	CLAWARE KI	VER BASIN				
			01467140	COOPER	RIVER AT	LAWNSIDE,	NJCont	inued		
		WATER QU	ALITY DAT	A, WATER	YEAR OCTO	BER 1978	TO SEPTEM	BER 1979		
DATE	TIME	NITRO- GEN, NH4 + ORG, TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)		ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)
OCT 05	1130	700	1.7	1.7			. 0			-
JUN 13	1200				40	7		0	90	. 0
	1200			7.7	40				,,,	
DATE	CADMIUM RECOV. FM BOT- IOM MA- TERIAL (UG/G AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	MIUM, RECOV.	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON. RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)
OCT 05	<10		10	<10		<10		9400		20
JUN 13		20		110	20		4300	,,,,,	15	
13	V	20			20		4300		15	
DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)		NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)
OCT 05		20		.00		<10	10		70	
JUN 13	70		<.5		13		0	40		7
13	10						·	40		
DATE	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 05	0	.0	9	6.0	2.6	.0	.0	. 8	.0	.0
JUN 13										
							- "			
DATE	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 05	.0	.0	.0	.0	.0	.0	. 0	.0	.0	0
JUN 13										

LOCATION.--Lat 39°54'11", long 75°01'19", Camden County, Hydrologic Unit 02040202, on right bank of Wallworth Lake in Pennypacker Park, 200 ft (61 m) upstream from bridge on State Highway 41 (Kings Highway) in Haddonfield, 0.6 mi (1.0 km) upstream from North Branch Cooper River, and 7.7 mi (12.4 km) upstream from mouth.

DRAINAGE AREA .-- 17.4 mi2 (45.1 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1963 to current year.

REVISED RECORDS .-- WRD-NJ 1969: 1967(M).

GAGE.--Water-stage recorder above concrete dam. Datum of gage is 9.29 ft (2.832 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Occasional regulation at low flow from Kirkwood Lake, other small lakes and wastewater treatment plants.

AVERAGE DISCHARGE.--16 years, 35.8 ft3/s (1.014 m3/s), 27.94 in/yr (710 mm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 3,300 ft 3 /s (93.5 m 3 /s) Aug. 28, 1971, gage height, 5.46 ft (1.664 m); minimum, 0.8 ft 3 /s (0.023 m 3 /s) Nov. 13, 1972, gage height, 1.07 ft (0.326 m) regulation from unknown source; minimum daily, 1.2 ft 3 /s (0.034 m 3 /s) June 27, 1964.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 500 ft3/s (14.2 m3/s) and maximum (*);

Date		Time	(ft ³ /s)		Gage H	leight (m)	Date		Time	Discha (ft ³ /s)		(ft)	(m)
Jan. Jan.	21 24	0815 2330	*1080 554	30.6 15.7	3.50 2.80	1.067 0.853	Feb. May	25 25	0300 0215	811 573	23.0 16.2	3.17	0.966 0.863
Mini	mum	discharge	e, 17 ft ³ /s	(0.481	m³/s) 00	t. 8.							

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979
MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 31 30 30 107 27 75 33 31 3.4 31 59 97 52 36 33 28 33 64 56 30 26 81 144 23 24 25 174 118 54 28 29 26 26 26 ---38.7 226 TOTAL 76.1 38.8 156 21 2.23 2.57 MEAN 22.5 27.4 88.6 52.1 42.2 53.6 42.2 38.9 MAX MIN 4.37 2.43 2.24 CFSM 5.09 3.08 2.43 3.55 2.48 1.49 1.76 3.02 5.87 4.56 3.45 2.71 2.58

CAL YR 1978 TOTAL 15864 MEAN 43.5 MAX 743 MIN 16 CFSM 2.50 IN 33.91 WTR YR 1979 TOTAL 17193 MEAN 47.1 MAX 711 MIN 19 CFSM 2.71 IN 36.76

01467150 COOPER RIVER AT HADDONFIELD, NJ -- Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1968 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURES: March to September 1969. SUSPENDED-SEDIMENT DISCHARGE: March 1968 to May 1970.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 12	0920	19	385	7.2	15.5	7.6	8.8	5400	230	61
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 12	17	4.4	30	9.2	85	0	70	33	43	.2
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 12	13	186	1.3	7.7	2.8	10	12	2.9	2.8	10

01467181 NORTH BRANCH COOPER RIVER AT ERLTON, NJ

LOCATION.--Lat 39°54'31", long 75°01'32", Camden County, Hydrologic Unit 02040202, at bridge on Cooper River Drive in Erlton, 600 ft (183 m) upstream from mouth, 2.3 mi (3.7 km) south of Cherry Hill Mall, and 1.2 mi (1.9 km) southeast of Garden State Park.

DRAINAGE AREA. -- 11.1 mi2 (28.7 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to 1979 (discontinued).

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

	DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	
	OCT 04	1210	358	7.3	16.0	6.4	7.8	1700	540	76	21	
	DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
	OCT 04	5.7	24	9.4	98	0	80	.0	45	27	.6	
	DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)	
	OCT 04	20	193	1.3	.07	2.6	2.7	4.0	2.3	2.2	1.1	
DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)
OCT 04	1210	1200	4.8	5.1	40	2	0	0	<10	<10	10	<10
DATE	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
OCT 04	44	30	1900	11000	30	130	50	<.5	.00	21	<10	0
DATE	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM AT TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 04	30	40	3	64	.0	29	7.1	.0	2.5	.0	2.6	.0
DA		ON, CHL TOT OT IN E MA- TOM HAL TER	OR, CHL FAL EPOX OT TOT. MA- BOT	IN IN E	AL TOT OT- IN B MA- TOM IAL TER	ON, OXY AL CHL OT- TOT. MA- BOT IAL MA	- PAR OR, THI IN TOT. TOM BOT	A- TR ON, THI IN TOT. TOM BOT TL. MA	IN IN B TOM TOM TL. TER	ON, THI CAL TOT OT- IN B MA- TOM HAL TER	CAL TOT SOT- IN E MA- TOM HIAL TER	NE, AL OT- MA- IAL
OCT 04		.0	.0	, 0	.0	.0	.0	.0	.0	.0	.0	0

01467190 COOPER RIVER AT CAMDEN, NJ

LOCATION.--Lat 39°55'35", long 75°05'03", Camden County, Hydrologic Unit 02040202, at bridge on U.S. Routes 130 and 30 in Camden, 3.4 mi (5.5 km) upstream from mouth, 3.5 mi (5.6 km) northwest of Haddonfield, and 3.7 mi (6.0 km) downstream from North Branch Cooper River.

DRAINAGE AREA .-- 35.2 mi2 (91.2 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1970-71, 1976 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
OCT 12 FEB	1120	370	7.4	16.0	6.3	7.0	<200	20	68	19
27	1145	107	6.8	.0	12.9	4.4	>2400	>2400	27	7.5
MAR 27 JUN	0900	228	7.0	8.5	6.3	5.6	540	70	48	13
11	1015	255	7.3	23.0	7.4	9.6	9200	>2400	60	17
19 AUG	0900	170	6.6	25.0	2.9	3.7	9200	1600	43	12
29	1030	302	7.2	25.5	8.8	4.0	130	70	65	18
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT										
12 FEB	5.1	26	9.2	90	0	74	.0	37	33	.3
27 MAR	1.9	8.2	2.4	15	0	12		16	13	.1
27 JUN	3.8	16	5.1	45	0	37		30	23	.1
11	4.3	15	5.6	62	0	51	.0	31	23	.2
19	3.2	10	4.7	35	0	29		24	14	.2
AUG 29	4.8	22	7.8	73	. 0	60		32	26	.3
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
0CT 12	13	187	1.1	7.6	2.9	10	12	1.1	.88	8.2
FEB 27	3.3	61	1.0	.80	1.3	2.1	3.1	1.0	.95	7.6
MAR 27	8.2	123	<1.0	3.6	.70	4.3		1.3	1.1	10
JUN 11	10	151	1.0	3.4	1.8	5.2	6.2	1.4	.38	18
JUL 19	7.1	65	.75	2.2	1.5	3.7	4.4	1.2	-57	5.6
AUG 29	12	160	1.1	4.8	1.7	6.5	7.6	2.1	.38	8.0

DELAWARE RIVER BASIN

01467190 COOPER RIVER AT CAMDEN, NJ--Continued

L V- LE L	TOTA RECO ERAB (UG/I AS C	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	ARSENIC TOTAL (UG/L AS AS)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	TIME	DATE
5		10	22.5	· ·				1120	OCT .
9		10			U		40	1120	
9		30	1	90	0	7	60	1015	11
	PHE NO	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	SELE- NIUM, TOTAL (UG/L AS SE)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	DATE
1		10	1	10	<.5	110		1400	OCT 12
3		60	0	18	<.5	80	30	1800	11
)	PHENC	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	SELE- NIUM, TOTAL (UG/L AS SE)	90 NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	DATE OCT 12 JUN 11

01467329 SOUTH BRANCH BIG TIMBER CREEK AT BLACKWOOD, NJ

LOCATION.--Lat 39°48'05", long 75°04'27", Gloucester County, Hydrologic Unit 02040202, at bridge on Blackwood-Clementon Road at Blackwood, 1,000 ft (305 m) upstream from Bull Run, and 2.0 mi (3.2 km) northeast of Fairview.

DRAINAGE AREA. -- 19.1 mi2 (49.5 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

				WATER	QUAL	ITY DAT	ra, Wa	TER !	YEAR O	CTOE	BER 19	78	TO SE	PTEM.	BER 19	179					
DAT	E	TIME	FLO INS		SPE- CIFIC CON- DUCT- ANCE MICRO MHOS)	- I		TEMPI ATUI (DEG	ER- RE	XYGI DIS SOLV (MG)	EN, S-VED 5	XYG EMA BIO CHE ICA DA MG/	ND,)- IM- IL,	COL FOR FEC EC BRO (MP	M, AL, TH	STRI OCOO FEC	CCI AL	HAR NES (MG AS CAC	S /L	CALC DIS SOL (MG AS	VED /L
FEB 15.		1000		34	13	2	6.9		1.5	14	4.8		3.0		350		13		40	1	1
MAR 21.		1015		34	13		7.2		9.5		0.4		1.3		300		8		39	1	1
JUN 12.		0930		99		18	6.9		7.5		3.0		3.1		300	0	400		30		8.2
JUL										1											
17.		1130		204	10		6.8		7.5		5.9		6.2		300	>240			31		8.5
22.	••	0900)	38	11	4	6.8	20	0.0		7.5		1.2	1	100	-	270		35		9.7
	DAT	13	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIU DIS- SOLVI (MG,	JM, ED L	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICA BONA (MG A	TE /L S	CAR- BONAT (MG/ AS CO	E	ALKA LINIT (MG/ AS CACO	Y L	SULF TOT (MG AS	AL /L	SULFA DIS- SOLV (MG/ AS SO	ED L	CHL RID DIS SOL (MG AS	E, VED /L	RI D SO (M	UO- DE, IS- LVED G/L F)	
	FEB	E .	AS MG)	AS I	NA)	AS K)	HUU	2)	AS CO	101	CAGO	21	AS	5)	AS SU	14)	AD	оп)	AD	Γ)	
	15. MAR		3.0	1	7.0	2.4		22		0		18			19)	1	2		.0	
	21. JUN		2.8	6	5.9	2.3		21		0		17			16	5	1	3		.1	
	12.		2.2	4	1.2	1.9		24		0	- 3	20		.0	14	1		6.4		.1	
	JUL 17.		2.4		5.1	2.6		21		0		17			13	5		8.6		.1	
	AUG 22.		2.6	6	5.1	2.4		22		0		18			12	2	1	1		.1	
	DAT		SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLII RESII AT 18 DEG DIS SOLY (MG,	OUE BO C N B- VED	NITRO- GEN, IO2+NO3 TOTAL (MG/L AS N)	GE	NIA AL /L	NITR GEN ORGAN TOTA (MG/ AS N	I, IIC L L	NITR GEN,A MONIA ORGAN TOTA (MG/ AS N	M- + IC L L	NIT GE TOT (MG AS	N, AL /L	PHOS PHAT TOTA (MG,	E, L	ORT	TE, HO, S- VED /L	ORG TO (M	BON, ANIC TAL G/L C)	
	FEB 15.		7.4		89	1.7		.30		60		90	2	.6		25		.25		2.4	
	MAR 21.		5.8		78	1.5		.20		90	1.			.6		49		.24		4.7	
	JUN 12.		4.6		68	<1.0		.20	2.		2.					39		.34		9.4	
	JUL				70	.80								.2		36		.13		6.7	
	AUG		3.8					.30	3.		3.										
	22.		4.8	TI	68 ME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSE TOT	AL	BERY LIUM TOTA RECC ERAE (UG/ AS E	AL OV- BLE /L	BORO TOTA RECO ERAB (UG/ AS B	L V- LE L	CADM TOT REC ERA	AL OV- BLE	CHR MIUI TOT: REC ERA (UG	AL OV- BLE /L	COPF	AL OV- BLE /L		4.6	
			JUN 12	09	30	80		3		0		30		0		10		4			
			DATE	IRO TOT REC ERA (UG AS	AĹ OV- BLE /L	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	NES TOT REC ERA	GA- GAL GOV- ABLE G/L MN)	MERCU TOTA RECO ERAN (UG,	AL OV- BLE /L	NICKE TOTA RECO ERAE (UG/ AS N	V- BLE	TOT (U)	JM,	ZIN TOT REC ERA (UG AS	AL OV- BLE /L	PHEN (UC	IOLS			
			JUN		47.0																
			12	1	800	9		30		<.5		7		0		20		1			

01467359 NORTH BRANCH BIG TIMBER CREEK AT GLENDORA, NJ

LOCATION.--Lat 39°50'04", long 75°04'02", Camden County, Hydrologic Unit 02040202, at bridge on State Route 168 in Glendora, 0.5 mi (0.8 km) downstream from Otter Brook, 1.0 mi (1.6 km) southeast of Clements Bridge, and 1.6 mi (2.6 km) north of Mechanicsville.

DRAINAGE AREA. -- 18.8 mi2 (48.7 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPFR- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
OCT 10	0930	213	6.6	10.5	5.0	1.8	80	490	51	15
FEB 15	1230	202	7.0	.0	12.4	5.5	<2400	49	50	15
MAR 21	1230	190	7.3	13.0	9.5	6.2	79	130	47	14
JUN 12	1300	114	6.6	18.5	4.0	4.4	790	7900	33	10
JUL 17	1315	139	6.6	25.0	2.5	7.8	1300	7900	39	12
AUG 22	1045	177	6.7	20.5	4.3	3.4	50	5400	47	14
	MAGNE-		POTAS-						CHLO-	FLUO-
DATE	SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)
OCT	7 0		1.5	46	0	70	,	0.7	16	
10 FEB	3.2	1.5	4.9	46	0	38		23		-1
15 MAR	3.1	14	4.2	61	0	50		27	17	.1
21 JUN	3.0	13	3.9	44	0	36		25	17	.1
12 JUL	2.0	6.6	2.6	27	0	22	.0	17	8.4	-1
17 AUG	2.3	8.4	3.6	33	0	27	77	19	11	-1
22	2.8	13	4.2	45	0	37		21	13	.2
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
0CT 10	8.0	120	2.1	.99	1.3	2.3	4.4	1.5	1.3	3.5
FEB 15	9.9	124	.90	2.1	.80	2.9	3.8	2.0	1.3	6.7
MAR 21	8.1	108	1.0	1.5	1.3	2.8	3.8	1.1	1.0	6.2
JUN 12	5.8		<1.0	.40	2.2	2.6		1.0	.80	14
JUL 17	5.6	84	.56	.30	1.5	1.8	2.4	1.4	1.3	8.1
AUG 22			3.5		10.5					
22	7.9	107	1.3	<.10		1.6	2.9	1.1	.38	9.6

01467359 NORTH BRANCH BIG TIMBER CREEK AT GLENDORA, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPIEMBER 1979

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN								
12	1300	60	6	0	90	0	20	10
			MANGA-					
	IRON,	LEAD,	NESE,	MERCURY	NICKEL,		ZINC,	
	TOTAL RECOV-	TOTAL RECOV-	TOTAL RECOV-	TOTAL RECOV-	TOTAL RECOV-	SELE- NIUM.	TOTAL RECOV-	
	ERABLE	ERABLE	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	PHENOLS
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
JUN								
12	4700	25	60	<.5	10	0	40	0

01467369 ALMONESSON CREEK AT RUNNEMEDE, NJ

LOCATION.--Lat 39°50'44", long 75°05'43", Gloucester County, Hydrologic Unit 02040202, at bridge on State Route 42 in Runnemede, 200 ft (61 m) upstream from mouth, 0.7 mi (1.1 km) south of State Route 42 overpass and NJ Turnpike, and 0.7 mi (1.1 km) northwest of Clements Bridge.

DRAINAGE AREA. -- 3.79 mi² (9.82 km²).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975 to 1979 (discontinued).

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979 OXYGEN CIFIC DEMAND COLT-BIO-CHEM-CALCIUM FORM, HARD-CON-STREP-DIS-SOLVED DUCT-OXYGEN. FECAL NESS ANCE PH TEMPER-DIS-SOLVED ICAL, TOCOCCI (MG/L BROTH TIME (MICRO-ATURE (DEG C) 5 DAY (MG/L) FECAL AS (MG/L DATE MHOS) (UNITS) (MG/L) CACO3) AS CA) OCT 10 ... 1110 272 6.7 13.5 4.3 2.7 <200 330 63 17 MAGNE-CHLO-FLUO-POTAS-SILICA. SIUM, DIS-SODIUM. SIUM, BICAR-ALKA-LINITY SULFATE RIDE, RIDE, DIS-SOLVED CAR-DIS-BONATE DIS-SOLVED DIS-DIS-SOLVED BONATE (MG/L SOLVED SOLVED SOLVED (MG/L (MG/T SOLVED (MG/L (MG/L (MG/L AS SIO2) (MG/I (MG/L AS AS DATE AS MG) AS NA AS K) HCO3) AS C03) CACO3) AS SO4) AS CL) AS F) OCT 10 ... 5.0 18 5.0 59 0 48 31 22 .2 7.3 SOLIDS NITRO-PHOS-RESIDUE NITRO-NITRO-NITRO-GEN.AM-PHATE, GEN, NO2+NO3 GEN, AMMONIA GEN, ORGANIC MONIA + ORGANIC AT 180 NITTRO-PHOS-ORTHO. CARBON ORGANIC DEG. C GEN, TOTAL PHATE, DIS-SOLVED TOTAL (MG/L DIS-TOTAL TOTAL TOTAL TOTAL TOTAL SOLVED (MG/L (MG/L (MG/L (MG/L DATE AS POA) AS C) (MG/L) AS N) (N RA AS N) AS N) AS N) AS POA) OCT 10 ... 150 1.8 2.0 .60 2.6 4.4 1.5 .76 6.4 NITRO-CARBON, CARBON. ARSENTC CADMIUM CHRO-COBALT. COPPER. IRON. LEAD. MANGA -GEN, NH4 INOR-INORG + RECOV. MIUM, RECOV. RECOV. TOTAL RECOV. RECOV. NESE, RECOV. + ORG. GANTC ORGANIC IN BOT-FM BOT-RECOV. FM BOT-TOM MA-FM BOT-FM BOT-FM BOT-TOT IN BOT MAT TOT IN FM BOT-TOM MA-TOM MA-TOM MA-TOT. IN BOT MAT TOM MA-TERIAL FM BOT TERIAL TERIAL TOM MA-TIME (MG/KG (G/KG (G/KG AS C) (UG/G AS AS) (UG/G AS CD) TERIAL (UG/G) (UG/G AS CO) (UG/G AS CU) (UG/G (UG/G TERTAL DATE AS C) (UG/G) AS FE AS PB) OCT 10... 1110 11000 48 48 0 <10 30 <10 30 13000 80 120 NICKEL, ZINC CHLOR-DI-DI-RECOV. FM BOT-PCB, TOTAL DANE, RECOV ALDRIN, DDD, DDE, DDT AZINON ELDRIN ENDRIN, FM BOT-TOTAL. TOTAL TOTAL. TOTAL. TOTAL. TOTAL. TOTAL. TOTAL. IN BOT-IN BOT-TOM MA-IN BOT-TOM MA-IN BOT-IN BOT-TOM MA-TOM MA-IN BOT-IN BOT TERIAL TERIAL TOM MA-TOM MA-TOM MA-TOM MA-TERIAL (UG/G (UG/G AS ZN) TERTAL. TERTAL TERIAL (UG/KG) TERIAL TERIAL (UG/KG) TERIAL (UG/KG) TERIAL (UG/KG) TERIAL (UG/KG) DATE (UG/KG) (UG/KG) (UG/KG) (UG/KG) OCT 10... 20 170 . 0 330 210 110 73 5.2 . 0 14 . 0 HEPTA-HEPTA-MALA-METH-METHYL METHYL PARA-TRI-TOXA -ETHION, OXY-CHLOR TRI-CHLOR. CHLOR LINDANE THION, PARA-THION, THION PHENE, TOTAL IN BOT-TOTAL EPOXIDE TOTAL TOTAL THION TOTAL TOTAL TOTAL TOT. IN BOTTOM TOT. IN TOT. IN IN BOT-TOT. IN IN BOT-IN BOT-IN BOT-IN BOT-IN BOT-TOM MA-TOM MA-BOTTOM TOM MA-TOM MA-TOM MA-TOM MA-TERIAL TERIAL MATL TERIAL TERIAL. MATL. MATI. MATI. TERTAL. TERTAL TERTAL. DATE (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) OCT 10... .0 . 0 . 0 . 0 .0 . 0 .0 . 0 . 0 0

01474500 SCHUYLKILL RIVER AT PHILADELPHIA, PA

LOCATION.--Lat 39°58'00", long 75°11'20", Philadelpnia County, PA, Hydrologic Unit 02040203, on right bank 150 ft (46 m) upstream from Fairmount Dam, 1,500 ft (457 m) upstream from Spring Garden Street Bridge, in Philadelphia, and 8.7 mi (14.0 km) upstream from mouth.

DRAINAGE AREA. -- 1,893 mi2 (4,903 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1931 to current year. Records for January 1898 to December 1912, published in WSP 35, 48, 65, 82, 97, 125, 166, 202, 241, 261, 281, 301, 381, have been found to be unreliable and should not be used.

REVISED RECORDS.--WSP 756: Drainage area. WSP 1302: 1936(M). WSP 1432: 1945. See also PERIOD OF RECORD.

GAGE.--Water-stage recorder and concrete control. Water-quality recorder located at Belmont raw-water pumping station on west side of river near Columbia Bridge. Datum of gage is 5.74 ft (1.750 m) National Geodetic Vertical Datum of 1929. Prior to Nov. 25, 1956, water-stage recorder at site on right bank just upstream from Fairmount Dam at same datum. Nov. 26, 1956 to Oct. 6, 1966, water-stage recorder at site on left bank 40 ft (12 m) upstream from Fairmount Dam at same datum.

REMARKS.--Records good. Some regulation by reservoirs above station. Records of daily discharge do not include diversion above station by city of Philadelphia for municipal water supply. Refer to U.S. Geological Survey Water Resources Data Report PA-79-1 for water-quality data.

AVERAGE DISCHARGE.--48 years, 2,967 ft3/s (84.03 m3/s), 21.28 in/yr (541 mm/yr), adjusted for diversion.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 103,000 ft 3 /s (2,920 m 3 /s) June 23, 1972, gage height, 14.65 ft (4.465 m); no flow over dam at times; minimum daily, 0.6 ft 3 /s (0.02 m 3 /s) Sept. 2, 1966.

EXTREMES OUTSIDE PERIOD OF RECORD. --Flood of Oct. 4, 1896, reached a stage of 17.0 ft (5.18 m), discharge, 135,000 ft 3 /s (3,820 m 3 /s), from rating curve extended above 46,000 ft 3 /s (1,300 m 3 /s). Flood of Mar. 1, 1902, reached a stage of 14.8 ft (4.511 m), discharge, 98,000 ft 3 /s (2,780 m 3 /s).

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 18,000 ft3/s (510 m3/s) and maximum (*):

Date		Time	Disch (ft³/s)	arge (m³/s)	Gage H	(m)	Date		Time	Disch (ft ³ /s)		Gage H	(m)
Dec.	9	2215	21200	600	8.88	2.707	Feb.	26	1100	52300	1480	11.54	3.517
Jan.	3	0130	26200	742	9.38	2.859	Mar.	6	2230	18600	527	8.59	3.517
Jan.	8	1515	30400	861	9.78	2.984	Sept.	7	Unknown	21500	609	Un kn	own
Jan.	21	2130	36800	1040	10.35	3.155	Sept.	22	1245	35400	1000	10.23	3.118
Jan.	25	1000	*74100	2100	12.07	3.053				100			

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

Minimum discharge, $427 \text{ ft}^3/\text{s}$ (12.1 m³/s) Sept. 5, minimum gage height, 5.86 ft (1.786 m) Nov. 13, 14, 15, 16, 17.

		17.11	dante, The	Conte re		EAN VALUES	En TEAN OCT	Onen 1977	, 10 01 11	a-inch 1		
DAY	oct	HUV	DEC	JAN	FEB	MAH	APR	MAY	Jun	Juli	AUG	SEP
1	734	651	2070	2760	6150	8930	1940	2560	5620	1310	1310	522
2	598	675	1610	11400	5020	7600	1890	2420	5070	1350	1280	447
3	572	598	1380	18500	4100	6450	1850	2240	4660	1350	1210	469
4	572	572	1850	10300	3540	5480	2020	2110	4540	1350	1210	448
5	598	547	4250	7420	3190	5850	2330	2020	4360	1350	1210	445
6	946	572	3470	5830	2570	12400	2900	1980	4190	1310	1100	13500
7	1350	577	2470	5310	2550	14700	3160	1850	4020	1240	1070	12600
8	1910	547	2150	21100	2630	9600	3010	1730	3740	1210	1010	4010
9	734	572	11000	15900	2550	6860	2800	1610	3520	1140	946	2330
10	678	547	13600	8970	2270	5010	3260	1490	3210	1070	843	1660
11	625	530	6860	6786	2000	6330	4020	1420	3060	1010	822	1320
12	598	510	4890	5330	1940	6070	3850	1350	3010	946	822	1100
13	598	490	3960	4700	1690	5500	3630	1280	2900	914	1140	1040
14	598	490	3310	5260	1720	5560	3520	1240	2760	852	1420	1100
15	1070	490	2800	5200	1810	4950	4250	1280	2610	822	1380	1420
10	1310	517	2420	3920	2300	4070	4360	1240	2470	822	1170	1350
17	1310	600	2200	3370	2240	3310	4190	1210	2290	977	1070	946
1 8	1240	1000	2020	3020	2110	3060	3850	1170	2150	1140	946	763
19	1010	2000	1810	2600	1580	2760	3520	1240	2020	1140	883	706
20	8 6 8	1240	1650	2540	1350	2610	3210	1570	1940	1140	852	625
21	472	884	2070	22600	1850	2470	2900	1730	1810	1070	822	678
5.2	163	760	3060	25600	2360	2200	2660	1690	1690	1040	792	22500
23	134	700	2290	10700	2790	2070	2520	1610	1610	1040	734	9160
29	651	791	1890	15300	8250	2110	2330	3420	1610	1010	678	5010
25	651	1000	9040	62100	32300	4020	2150	6730	1570	1010	551	3160
26	625	850	6790	22900	44300	3690	2020	8080	1490	977	625	2760
27	734	791	4660	10800	22600	2760	2070	8360	1450	946	625	2380
28	914	884	3580	9570	10400	2330	2330	7730	1380	946	625	1650
29	R22	1040	2850	8800		2110	2610	7050	1.310	914	598	1490
30	106	1940	2420	8040		2110	2610	6530	1310	914	572	3420
31	578		2330	6930		2070		6130		1210	547	
TOTAL	25134	23310	116790	353550	178170	154940	87760	92070	43380	33520	29003	99059
MEAN	H11	777	3767	11400	6363	4998	2925	2970	2779	1081	936	3302
MAX	1350	2000	13600	62100	44300	14700	4360	8360	5670	1350	1420	22500
MIN	572	490	1380	2540	1350	2070	1850	1170	1310	822	547	445
(+)	255	250	252	257	271	263	247	238	238	289	290	269
MEAN ‡	1066	1027	4019	11660	6634	5261	3172	3208	3017	1370	1226	3571
CFSM ‡	0.56	0.54	2.12	6.16	3.50		0.68	1.69	1.59	0.72	0.65	1.89
IN. ‡	0.65	0.61	2.45	7.10	3.65		0.87	1.95	1.79	0.83	0.75	2.10
CAL YR	1974 TOTA	ь 130	9873 ME	AN 3589	MAX 4	6400 MIN	490 MEAN	‡ 3863	CFSM ‡	2.04	IN. ‡	27.71
MTR YE	1979 1017	127	hoah ME	AN 349H	MAX b	2100 MIN	445 MEAN	‡ 3758	CFSH ‡	1.99	IN. I	26.95

[†] Diversion, equivalent in cubic feet per second, for municipal water supply, furnished by city of Philadelphia ‡ Adjusted for diversion

01475000 MANTUA CREEK AT PITMAN, NJ

LOCATION.--Lat 39°44'14", long 75°06'53", Gloucester County, Hydrologic Unit 02040202 at bridge on Delsea Drive in Pitman, and 2.0 mi (3.2 km) upstream from Porch Branch.

DRAINAGE AREA. -- 6.05 mi2 (15.67 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1958-59, 1962, 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

				, "	121111 0011	,,,,,	10 001 101			
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FEC AL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
FEB										
14 MAR	. 0915	12	116	6.6	.0	14.6	.8	33	2	38
20 JUN	. 0900	13	106	6.9	8.5	11.5	1.2	70	<2	33
14	. 0900	14	77	6.7	18.5	8.4	.8	490	33	26
JUL 16	. 0945	8.8	101	6.8	25.5	8.0	2.1	230	110	34
AUG 15		11	95	6.9	20.0				230	31
SEP	133.5					8.5	1.2	140		
25	. 1015	11	103	6.7	18.5	9.2	1.3	490	130	34
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
FEB										
14 MAR	8.5	4.1	4.1	2.3	10	0	8	21	9.5	.0
20 JUN	. 7.8	3.4	3.9	2.2	9	0	7	18	8.0	.0
14	6.1	2.7	2.8	1.8	12	0	10	12	5.8	.1
JUL 16	7.5	3.6	3.8	2.2	17	0	14	14	7.7	.1
AUG 15	7.1	3.2	3.5	2.2	15	0	12	13	7.5	-1
SEP 25						0			20.50	
29	. 7.7	3.5	4.5	2.7	16	0	13	16	9.5	.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
FEB 14	6.0	86	2.3	<1.0		.80	3.1	.03	.01	1.7
MAR										
20 JUN		60	1.9	<.10		.60	2.5	.09	.09	3.2
JUL	4.1	58	<1.0	<.10		1.6		.17		7.6
16	4.8	82	.85	<.10		2.2	3.0	.06	<.01	5.8
15	4.4	70	<1.0	.70	.80	1.5		.33	.12	6.0
SEP 25		61	<1.0	.20				.08	.04	7.3

01475045 MANTUA CREEK AT MANTUA, NJ

LOCATION.--Lat 39°47'42", long 75°10'21", Gloucester County, Hydrologic Unit 02040202, at bridge on State Route 45 in Mantua, 0.9 mi (1.4 km) downstream from Chestnut Branch, 1.3 mi (2.1 km) east of Gates of Heaven Memorial Park, and 2.4 mi (3.9 km) northwest of Barnsboro.

DRAINAGE AREA. -- 41.5 mi2 (107.5 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1975 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
OCT 10	1330	218	7.2	15.0	9.8	1.3	1300	330	54	15
FEB 14	1245	194	6.9	.0	14.0	1.6	700	200	57	16
MAR 20	1230	182	7.1	11.0	11.0	1.4	800	50	50	14
JUN 14	1150	155	7.0	17.5	8.2	1.0	490	>2400	46	13
JUL 16	1130	179	6.9	24.5	4.8	2.8	2300	500	51	14
AUG 15	1400	189	7.2	20.5	7.9	1.6	2200	11000	49	14
SEP 25	1230	189	6.9	19.0	8.6	2.0	3500	800	50	14
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT		,								
10 FEB	3.9	18	2.8	55	0	45	.0	23	19	.2
14 MAR	4.2	12	3.3	32	0	26		29	18	.1
20 JUN	3.7	12	3.1	28	0	23		28	17	.2
14 JUL	3.4	9.4	2.8	30	0	25		23	12	.2
16 AUG	3.8	12	3.3	40	0	33		19	15	.2
15 SEP	3.5	16	3.3	45	0	37		20	17	.2
25	3.6	13	3.5	39	0	32		24	20	.2
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 10	10	122	1.0	.08	.72	.80	1.8	.50	.44	2.7
FEB 14	9.5	124		.30	1.9	2.2		.13	.13	2.3
MAR 20 JUN 14	8.5	107	1.7	<.10		.54	2.2	.31	.23	4.3
	7.9	91	<1.0	.20	.90	1.1		-54	.25	7.6
JUL 16	7.9	115	.68	<.10		1.5	2.2	.28	.02	5.4
AUG 15	9.3	120	1.0	1.2	.00	1.2	2.2	.65	.51	5.6
SEP 25	9.8	111	<1.0	.30				.47	.28	4.6
	,									

01475045 MANTUA CREEK AT MANTUA, NJ--Continued

DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)		CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)
OCT 10	1330	2000	6.3	6.9	40	2	0	0	<10	10	10	<10
DATE	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
OCT 10	4	20	2000	11000	80	60	80	<.5	.00	25	20	0
DATE	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)		PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 10	30	70	0	70	.0	37	28	9.1	7.5	.0	.0	.0
DA	ETHI TOT IN E TOM TER	CON, CH CAL TO BOT- IN MA- TOM RIAL TE	LOR, CH TAL EPO BOT- TOT MA- BO RIAL M	XIDE TO	TAL TOT BOT- IN E MA- TOM	TON, OXY TAL CHL BOT- TOT. MA- BOT	OR, THI IN TOT. TOM BOT	A- TR ON, THI IN TOT. TOM BOT	ON, TOT IN IN B TOM TOM TL. TER	ON, THI AL TOT OT- IN E MA- TOM	AL TOTOM A- TOM IAL TER	NE, AL OT- MA- IAL
OCT	5	.0	.0	.0	.0	.0	.0	.0	.0	. 0	.0	0

01477100 RACCOON CREEK NEAR MULLICA HILL, NJ

LOCATION.--Lat 39°42'31", long 75°12'05", Gloucester County, Hydrologic Unit 02040202, at bridge on Cedar Grove-Richwood Grove Road, 0.6 mi (1.0 km) upstream from Miery Run, 1.0 mi (1.6 km) downstream from outflow of Ewan Lake, 2.5 mi (4.0 km) southeast of Mullica Hill, and 4.0 mi (6.4 km) southwest of Pitman.

DRAINAGE AREA .-- 10.1 m12 (26.2 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1953-63, 1975 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
OCT 03	1055	143	7.0	16.0	8.9	1.0	49	230	52	14
FEB 13	1000	142	6.5	.0		.9	5	<2	51	13
MAR 19	1230	136	6.7	9.5	11.3	1.1	<2	79	47	12
JUN 04	1000	122	6.7	17.0	8.9	1.6	270	1300	42	11
JUL 10	1315	137	7.0	22.0	8.4	2.1			50	13
AUG 21	1130	1.32	7.0	21.0	7.8	. 9	240	790	44	12
SEP 27	1145	138	6.6	19.0	8.4	,2	350	490	49	13
	MAGNE-		POTAS-						CHLO-	FLUO-
DATE	SIUM, DIS+ SOLVED (MG/L AS MG)	SODIUM; DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)
OCT	4.2	3.4	3.6	27	0	22		26	-10	.1
FEB 13	4.5	3.1	3.1	7	. 0	6		30	9.7	.1
MAR 19	4.2	3.3	2.9	7	0	6		29	8.5	.1
JUN 04	3.6	2.8	2.8	12	. 0	10		25	8.6	21
JUL 10	4.2	3.4	2.3	15	0	12		26	11	41
AUG 21	3.4	2.6	3.1	17	0	14		23	9.5	1
SEP 27	3.9	3.2	3.4	15	0	12	.1.	24	9.6	.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO-GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT .03	4.6	97	1.4	.41	1.9	2.3	3.7	.13	.10	1.9
FEB 13	7.4	104	3.0	<.10		.70	3.7	.03	.03	1.7
MAR 19	6.0	82	2.2	<.10		.40	2.6	.06	.06	5.1
JUN 04	6.5	92	1.7	K.10		2.6	4.3	.18		9.5
JUL 10	4.5	91						1_		11
AUG 21	4.4	76	1.4	<.10		<.03		.03	<.01	6.1
SEP 27	5.9	102	1.4	.20				.03	.03	2.9

DELAWARE RIVER BASIN

01477100 RACCOON CREEK NEAR MULLICA HILL, NJ--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
SEP 27	1145	30	1	10	10	0	10	1
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)
SEP 27	390	0	20	<.5	1	0	0	. 4

01477120 RACCOON CREEK NEAR SWEDESBORO, NJ

LOCATION.--Lat 39°44'28", long 75°15'33", Gloucester County, Hydrologic Unit 02040202, on right bank 25 ft (8 m) downstream from county bridge No. 5-F-3 on Harrisonville-Gibbstown Road, 1.8 mi (2.9 km) west of Mullica Hill, and 2.8 mi (4.5 km) east of Swedesboro.

DRAINAGE AREA .-- 29.9 mi2 (77.4 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1966 to current year.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to July 28, 1969, at datum 7.96 ft (2.426 m) higher. July 28, 1969 to Sept. 30, 1969, at datum 5.96 ft (1.817 m) higher.

REMARKS .-- Water-discharge records fair .

AVERAGE DISCHARGE .-- 13 years, 43.8 ft3/s (1.240 m3/s), 19.89 in/yr (505 mm/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 3,530 ft³/s (100 m³/s) Aug. 10, 1967, elevation, 17.44 ft (5.316 m) present datum; minimum daily, 2.9 ft³/s (0.082 m³/s) July 14, Aug. 27, 28, Sept. 10, 1966.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 300 ft³/s (8.50 m³/s) and maximum (*):

Cogo Vaight

Date		Time	(ft3/s)		(ft)	(m)		Date		Time		(m³/s)	(ft)	(m)
Jan. Feb.		Un known 0700	994 *1100	28.2 31.2	13.39 13.67	4.081 4.167		June Sept.	12 6	0030 1345	524 383	14.8	11.78 10.98	3.591 3.347
Min	imum	discharge,	11 ft3/	s (0.312	2 m³/s) No	. 6.								
			DISCHAR	GE, IN	CUBIC FEET		OND, WATE	R YEAR	остов	ER 1978	TO SEPTE	MBER 1979		
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR		MAY	JUN	JUL	A UG	SEP
1 2	٠,	16 16	18 18	31 26	131 93	47	82 73	45 52		42 40	47 46	32 34	25 30	28 29
3		16	18	24	47	42	64	54		40	47	32	44	28

Cose Height

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1 , 2 3 4 5	16 16 16 16 17	18 18 18 18	31 26 24 50 72	131 93 47 42 43	47 44 42 42 39	82 73 64 58 52	45 52 54 54 53	42 40 40 41 42	47 46 47 82 62	32 34 32 31 34	25 30 44 39 30	28 29 28 30 42
6 7 8 9	19 16 16 16 16	16 20 18 18 17	42 33 30 91 84	132 175 62 50 44	39 39 40 38 40	74 130 82 67 60	49 45 41 50 56	40 39 38 37 37	57 50 59 39 38	29 27 26 26 25	26 24 23 22 22	255 88 45 37 34
11 12 13 14 15	16 16 16 16 16	17 18 17 17 18	37 35 33 31	45 84 110 76 54	43 43 43 43	109 80 63 62 57	52 48 43 82 68	39 47 52 43 40	195 257 75 60 41	25 24 22 23 26	33 79 64 34 28	28 32 29 28 31
16 17 18 19 20	16 34 22 20 18	20 22 36 26 23	30 35 32 29 26	48 46 43 42 900	42 41 41 45 51	52 51 50 45 46	53 48 45 42 40	38 37 36 130 96	41 57 65 46 41	26 57 107 42 31	26 25 26 32 27	28 28 26 26 25
21 22 23 24 25	18 18 18 18 18	22 21 21 22 22	44 35 30 42 112	300 160 84 120 344	52 76 68 290 867	43 42 45 62 84	38 36 35 39 56	70 50 88 200 346	38 37 39 48 38	31 30 28 89 96	25 27 25 25 25	26 68 57 37 32
26 27 28 29 30	18 20 19 18 18	21 26 37 32 46	50 41 35 33 32 35	90 64 63 62 52 48	709 193 111 	70 57 46 45 44	84 71 62 51 45	93 58 50 47 44 42	34 32 32 33 30	37 31 28 26 26 25	29 28 50 48 62 33	30 29 28 45
TOTAL MEAN MAX MIN CFSM IN.	555 17.9 34 16 .60	663 22.1 46 16 .74 .82	1304 42.1 112 24 1.41 1.62	3654 118 900 42 3.95 4.55	3211 115 867 38 3.85 3.99	1938 62.5 130 42 2.09 2.41	1537 51.2 84 35 1.71 1.91	2042 65.9 346 36 2.20 2.54	1766 58.9 257 30 1.97 2.20	1126 36.3 107 22 1.21 1.40	1036 33.4 79 22 1.12 1.29	1363 45.4 255 25 1.52 1.70

CAL YR 1978 TOTAL 16207 MEAN 44.4 MAX 800 MIN 14 CFSM 1.49 IN 20.16 WTR YR 1979 TOTAL 20195 MEAN 55.3 MAX 900 MIN 16 CFSM 1.85 IN 25.12

NOTE .-- No gage-geight record form Apr. 22 to May 24.

DELAWARE RIVER BASIN

01477120 RACCOON CREEK NER SWEDESBORO, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

	TIME	STREAM- FLOW, INSTAN- TANEOUS	SPE- CIFIC CON- DUCT- ANCE (MICRO-	РН	TEMPER-	OXYGEN, DIS- SOLVED	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY	COLI- FORM, FECAL, EC BROTH	STREP- TOCOCCI FECAL	HARD- NESS (MG/L AS
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	(MG/L)	(MG/L)	(MPN)	(MPN)	CACO3)
FEB 13	1245	43	169	6.8	.0	14.1	1.0	4	<2	60
MAR 29	1245	45	158	7.0	11.5	10.6	1.4			55
JUN 04	1300	93	141	6.9	17.0	9.4	2.2	3500	2400	51
JUL 12	1200		171	7.1	21.5	10.1	1.4	920	350	.61
AUG 28	1215	43	159	7.0	22.0	8.2	1.8	>2400	16000	58
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
FEB 13	17	4.2	4.5	3.1	20	0	16		30	12
MAR 29	16	3.7	4.3	3.1	16	0	13		31	11
JUN 04	15	3.2	4.3	3.0	21	0	17	.0	24	13
JUL 12	18	3.8	5.2	3.5	32	0	26		25	14
AUG 28	18	3.2	4.1	3.6	29	0	24		24	11
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
FEB	AS F)	5102)	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS PU4)	AS P04)	AS C)
13 MAR	.1	9.9	111	2.7	<.10	.80	3.5	.21	.12	1.8
29 JUN	.1	8.1	95	44						
04 JUL	.2	9.3	109	2.7	<.10	1.7	4.4		.13	6.7
12 AUG	.2	9.0	123	1.5	<.10	.20	1.7	.40	.40	7.5
28	.2	9.2	115	1.2	<.10	.50	1.7	.38	.22	8.2
	DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	
	JUN	1000						2.0		
	04	1300	50	4	0	20	0	30	7	
	DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)	
	JUN 04	3400	13	80	<.5	13	0	40	9	
	04	3400	13	00	1.3	13	0	40	,	

01477510 OLDMANS CREEK AT PORCHES MILL, NJ

LOCATION.--Lat 39°41'57", long 75°20'01", Salem County, Hydrologic Unit 02040206, at bridge on Kings Highway in Porches Mill, 150 ft (46 m) downstream of tributary from outflow of lake at Porches Mill, 1.0 mi (1.6 km) north of Seven Stars, and 2.1 mi (3.3 km) southeast of Auburn.

DRAINAGE AREA. -- 21.0 mi2 (54.4 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT O3 FEB	1235		200	7.1	15.5	8.4	1.4	330	260	65
12 MAR	1215		200	6.8	.0	12.7	.9	E33	E22	72
19 JUN	0915		170	7.0	6.5	11.6	1.1	20	<200	64
06	1145	44	158	7.0	19.5	9.5	1.0	240	170	61
JUL 10	1015		186	7.1	20.0	8.8	1.3			76
AUG 21	0930		186	7.1	20.0	7.6	.8	490	330	70
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
00T	19	4.2	3.7	3.3	45	0	37	25	15	.2
FEB 12	20	5.3	4.2	3.3	24	0	20	33	14	.2
MAR 19	18	4.7	3.8	3.0	20	0	16	30	13	.2
JUN 06	17	4.4	3.4	3.1	24	0	20	25	11	.2
JUL 10	22	5.1	4.3	2.5	34	0	28	25	15	.2
AUG 21	21	4.2	3.3	3.9	39	0	32	24	14	.2
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 03	12	124	1.6	.08			3.1	.21	.17	2.6
FEB					1.4	1.5				
12 MAR	11	135	3.7	.10	.80	.90	4.6	.33	.16	1.5
19 JUN	9.0	99	2.8	<.10		.60	3.4	.18	.15	3.5
06	10	122	1.8	<.10		1.9	3.7	.36	.17	7.1
AUG	10	117								7.9
21	10	129	1.8	<.10		.50	2.3	.12	.07	4.8

01482100 DELAWARE RIVER AT DELAWARE MEMORIAL BRIDGE, AT WILMINGTON, DE

LOCATION.--Lat 39°41'21", long 75°31'19", New Castle County, Hydrologic Unit 02040205, on pier of right tower of downstream bridge of dual bridges at Wilmington, 2.0 mi (3.2 km) downstream from Christina River and at channel mile 67.70 (107.64 km).

DRAINAGE AREA. -- 11,030 mi2 (28,570 km2).

TIDE ELEVATION DATA

PERIOD OF RECORD. -- July 1967 to current year. Tidal volumes published from July 1967 to September 1973.

GAGE.--Water-stage recorder and water-quality monitor. Datum of gage is -10.00 ft (-3.048 m) National Geodetic Vertical Datum of 1929. Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum 1929 for publication.

REMARKS.--Refer to U.S. Geological Survey Water Resources Data Report PA-79-1 for water-quality data.

EXTREMES FOR PERIOD OF RECORD.--Maximum, 7.45 ft (2.271 m) Dec. 2, 1974; minimum, -5.86 ft (-1.786 m) Apr. 4, 1975.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum elevation known, 8.4 ft (2.56 m) Nov. 23, 1950, furnished by Corps of Engineers, U.S. Army; minimum, -9.1 ft (-2.77 m) Dec. 31, 1962.

EXTREMES FOR CURRENT YEAR.--Maximum elevation recorded, 6.74 ft (2.054 m) Sept 6; minimum recorded, -4.83 ft (1.472 m) Jan 18.

Summaries of tide elevations during current year are as follows:

TIDE	ELEVATIONS,	IN	FEET.	WATER	YEAR	OCTOBER	1978	TO	SEPTEMBER	1979
* * * * *	DDD THE LUND,	* **	,	HU T PI	Thum	OOLODEN	1210	10	001 10001.	

		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Maximum	Elevation	5.13	5.18	4.76	6.11			6.62	5.44	5.52	5.41	5.43	6.74
high tide	Date	4	17	31	24			27	26	11	12	8	6
Minimum	Elevation	-2.47	-2.48	-4.17	-4.83			-4.11	-2.62	-2.66	-2.43	-2.86	-2.73
low tide	Date	27	29	17	18			7	17	16	5,7	15	19
Mean high t	Mean high tide		3.89	3.23	3.70			4.04	4.18	4.30	4.19	4.07	4.26
Mean water	level	1.27	1.32	0.58	0.95			1.06	1.25	1.35	1.33	1.27	1.42
Mean low ti	de	-1.49	-1.37	-2.11	-1.88			-1.89	-1.79	-1.70	-1.67	-1.66	-1.56

NOTE. -- No gage-height record Feb. 8-28, Mar. 3 to Apr. 1.

01482500 SALEM RIVER AT WOODSTOWN, NJ

LOCATION.--Lat 39°38'36", long 75°19'52", Salem County, Hydrologic Unit 02040206, on right end of Memorial Lake Dam at Woodstown, 0.2 mi (0.3 km) upstream from small brook, and 0.3 mi (0.5 km) downstream from Pennsylvania-Reading Seashore Lines bridge.

DRAINAGE AREA .-- 14.6 mi2 (37.8 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--March to September 1940, December 1941 to current year. Prior to October 1952, published as "Salem Creek at Woodstown".

REVISED RECORDS. -- WSP 1432: 1951(M). WSP 1702: 1959.

GAGE.--Water-stage recorder above concrete dam. Datum of gage is 19.49 ft (5.941 m) National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1977 at datum 10.00 ft (3.048 m) higher.

REMARKS. -- water-discharge records good except those from Oct 1 to Feb. 28, which are fair.

AVERAGE DISCHARGE.--37 years (1942-79), 19.3 ft3/s (0.547 m3/s), 17.95 in/ yr (456 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 22,000 ft³/s (623 m³/s) Sept. 1, 1940 (gage height, 17.98 ft or 5.480 m, present datum, from floodmark in gage house) from rating curve extended above 220 ft³/s (6.23 m³/s) on basis of slope-area measurement of peak flow at site 0.5 mi (0.8 km) downstream; no flow for short periods during many years just after waste gate was closed and water was below spillway.

EXTREMES FOR CURRENT YEAR. --Maximum discharge, 929 ft 3 /s (26.3 m 3 /s) Jan. 21, gage height, 12.44 ft (3.792 m 3 /s), no other peaks above base of 350 ft 3 /s (9.91 m 3 /s); minimum daily, 4.5 ft 3 /s (0.13 m 3 /s) May 31.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

		5150.	inkob, in	00010 111	ME	AN VALUES	in IDAN O	01000. 1)	10 10 00.		' '	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1 2 3 4 5	13 13 11 11 13	14 14 14 14 14	22 18 16 35 57	25 118 90 32 22	22 22 18 18 16	44 41 32 29 27	18 20 20 25 27	18 16 16 16	6.4 7.4 13 47 41	14 14 13 11	11 16 32 54 29	17 16 18 18 22
6 7 8 9	13 11 11 9.6	14 14 14 14 14	29 20 18 61 57	22 41 181 57 29	14 14 16 16	109 94 44 32 27	22 18 16 22 41	16 14 14 13	32 25 22 20 20	13 11 11 9.6 9.6	19 15 14 12 9.9	162 51 25 17 17
11 12 13 14 15	11 11 11 11 11	14 14 14 14 14	27 20 18 16 16	25 20 29 57 32	14 14 14 14 14	65 41 29 27 25	27 22 22 41 35	14 16 38 61 27	65 94 35 22 20	9.6 9.6 9.6 9.6	18 69 50 21	14 15 16 15 14
16 17 18 19 20	11 27 20 14 11	14 14 25 18 14	16 18 18 16	25 22 22 18 27	16 14 14 14 14	22 22 20 20 20	25 22 20 18 18	18 14 14 25 22	18 20 25 20 18	11 27 66 32 18	13 12 11 14 14	14 14 15 18 17
21 22 23 24 25	13 13 13 11	9.6 8.5 9.6 8.5	27 22 18 27 94	518 85 38 73 113	14 25 35 155 187	20 18 18 41 54	16 16 16 16	18 16 14 38 104	16 14 16 50 20	16 15 14 21 25	13 13 14 14 16	17 56 46 27
26 27 28 29 30 31	13 14 14 13 13	8.5 13 22 22 25	32 22 18 16 16	44 32 29 32 25 22	187 94 54	29 22 18 18 18	22 65 32 27 20	8.5 6.4 5.4 5.4	16 13 13 13	17 14 17 17 13	18 24 43 35 36 20	18 18 18 34 84
TOTAL MEAN MAX MIN CFSM IN.	396.6 12.8 27 9.6 .88 1.01	432.7 14.4 25 8.5 .99 1.10	824 26.6 94 16 1.82 2.10	1905 61.5 518 18 4.21 4.85	1063 38.0 187 14 2.60 2.71	1044 33.7 109 18 2.31 2.66	725 24.2 65 16 1.66 1.85	641.2 20.7 104 4.5 1.42 1.63	754.8 25.2 94 6.4 1.73 1.92	503.2 16.2 66 9.6 1.11 1.28	693.9 22.4 69 9.9 1.53 1.77	852 28.4 162 14 1.95 2.17

CAL YR 1978 TOTAL 8740.1 MEAN 23.9 MAX 648 MIN 3.7 CFSM 1.64 IN 22.27 WTR YR 1979 TOTAL 9835.4 MEAN 26.9 MAX 518 MIN 4.5 CFSM 1.84 IN 25.06

01482500 SALEM RIVER AT WOODSTOWN, NJ--Continued

WATER-QUALITY RECORDS

179

PERIOD OF RECORD. -- Water years 1973 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

				WAIDH &	UALITI DA	ITA, WA	IEN IEAN	OCTOB	BK 1910	, TO DE	I TEMPE	1 1919				
DAT	E	TIME	STRE FLO INST TANE (CF	AM- COM W, DUM AN- AND OUS (MI	FIC N- CT- CE CRO-		TEMPER- ATURE (DEG C)	OXYGE DIS SOLV (MG/	DEM BI N, CH - IC ED 5 D	GEN IAND, O- IEM- IAL, OAY	COLI- FORM, FECAL, EC BROTH (MPN)	STR TOGO FEC (MP	EP- N CCI (AL	ARD- ESS MG/L AS ACO3)	CALCIUM DIS- SOLVE (MG/L AS CA	D
OCT 11.		0945	1	1	231	7.6	15.0	8	.5	3.8	20		20	87	19	
FEB 12.		1000	1	3	237	6.9	1.5	13	3	1.4	E33	5	E2	79	17	
MAR 28.		1045		8									7	65	14	
JUN					190	7.2	10.0	11		3.1	540		234		1 11	
O5. JUL	• •	1245	4	1	196	7.1	18.5	10	. 4	5.6	>2400	>5	400	69	15	
09. AUG		1215		9.6	211	7.4	25.0	7	.8	3.9	130)	49	53	9.8	В
09.		1130	1	1	199	7.7	29.0	7	.9	4.8	23	3	49	72	16	
SEP 27.		0900	1	8	201	6.8	19.5	8	,8	3.5	920)	240	69	15	
	DAT	E A	AGNE- SIUM, DIS- OLVED MG/L S MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVEI (MG/L AS K)	BICAL BONAS O (MG, AS HCO)	TE CA /L BON S (M		ALKA- LINITY (MG/L AS CACO3)		IDE I	JLFATE DIS- SOLVED (MG/L S SO4)	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	D SO	UO- DE, IS- LVED (G/L F)	
	FEB 12.		8.8	6.4	4.0		20	0	16			40	18		.1	
	MAR															
	28. JUN		7.4	5.6	4.0)	18	0	15			37	16		.1	
	O5. JUL		7.7	4.7	6.8	3	34	0	28	3		31	17		.2	
	O9.		6.9	20	4.1		37	0	30)		22	36		.1	
	09.		7.9	6.0	6.2	2	39	0	32			25	16		.2	
	SEP 27.		7.7	5.8	6.3	5	29	0	24		.1	31	17		.1	
	DAT	E S	LICA, IS- OLVED MG/L AS IO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GEI	N, G NIA ORG AL TO /L (M	EN,	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NIT	AL 1	PHOS- PHATE, TOTAL (MG/L B PO4)	PHOS- PHATE ORTHO DIS- SOLVE (MG/L AS PO4	ORG D TO	BON, ANIC TAL G/L C)	
	OCT 11.	. ,	.5	1 35	1.0	1	.08	3.3	3.4	4	.4	.25	.1	8	4.8	
	12.		9.1	144	4.3		.30	.70	1.0	5	.3	.16	.1	1	3.2	
	MAR 28.		6.8	143	2.5			1.3	1.5		.0	.33	.1		6.5	
	JUN 05.		7.1	148	2.1							.90	.2		12	
	JUL							2.3	2.9		.0					
	O9.		6.5	150	1.5	<.	.10		1.0	2	•5	.25	-	-	5.9	
	O9. SEP	• •	4.6	144	1.0		- 3.5	2.1	2.5	3	-5	.42	.1	1	6.5	
	27.		7.6	142	1.5		.40					.45	.2	3	5.3	

01482500 SALEM RIVER AT WOODSTOWN, NJ--Continued

				BERYL-			CHRO-	
	TIME	ALUM- INUM, DIS- SOLVED (UG/L	ARSENIC TOTAL (UG/L	LIUM, TOTAL RECOV- ERABLE (UG/L	BORON, TOTAL RECOV- ERABLE (UG/L	CADMIUM TOTAL RECOV- ERABLE (UG/L	MIUM, TOTAL RECOV- ERABLE (UG/L	COPPER, TOTAL RECOV- ERABLE (UG/L
DATE		AS AL)	AS AS)	AS BE)	AS B)	AS CD)	AS CR)	AS CU)
SEP								
27	0900	20	2	0	30	1	10	4
	IRON, TOTAL RECOV-	LEAD, TOTAL RECOV-	MANGA- NESE, TOTAL RECOV-	MERCURY TOTAL RECOV-	NICKEL, TOTAL RECOV-	SELE-	ZINC, TOTAL RECOV-	
	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	TOTAL (UG/L	ERABLE (UG/L	PHENOLS
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
SEP								
27	1500	2	100	< .5	3	0	40	6

01482537 SALEM RIVER AT COURSES LANDING, NJ

LOCATION.--Lat 39°39'38", long 75°24'34", Salem County, Hydrologic Unit 02040206, at bridge on Pointers-Auburn Road at Courses Landing, 1.6 mi (2.6 km) north of Halltown, 2.0 mi (3.2 km) northeast of Slapes Corner, and 2.1 mi (3.4 km) downstream of Major Run.

DRAINAGE AREA .-- 35.8 mi2 (92.7 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975 to 1979 (discontinued).

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

	DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	
	OCT 11	1200	284	7.3	13.0	5.8	2.5	270	1 30	94	26	
					- 4							
	DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
	0CT 11	7.0	14	4.8	72	0	59	.0	25	24	.3	
	DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)	
	11	9.2	165	2.0	.25		3.8		.54	.54	3.8	
DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM RECOV, FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV, FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)
OCT 11,	1200	3300	38	38	40	2	1	0	<10	10	10	<10
DATE	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
OCT 11	4	10	2300	9000	10	130	110	<.5	.00	10	10	0
DATE	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM A- TERIAL (UG/G AS ZN)	PHENOLS	TOTAL	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	IN BOT- TOM MA- TERIAL	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL IN BOT-
OCT 11,	30	50	1	130	.0	22	53	45	19	.0	4.8	.0
	30			1,30	.0	22	23	43	1,3		7.0	
	IN E TOM TER TE (UG/	AL TOT BOT- IN B MA- TOM	PTA- HEF OR, CHL 'AL EPOX OT- TOT. MA- BOT (IAL MA 'KG) (UG/	PTA- OR LINE (IDE TOT IN IN E TTOM TOM ITL. TER (KG) (UG/	DANE THI TAL TOT SOT- IN B MA- TOM SIAL TER (KG) (UG/	A- MET ON, OXY 'AL CHL OT- TOT. MA- BOT (IAL MA (KG) (UG/	H- METH - PAR OR, THI IN TOT. TOM BOT ITL. MA KG) (UG/	IYL MET A- TR ON, THI IN TOT. TOM BOT ITL. MA KG) (UG/	HYL PAR II THI ON, TOT IN IN E TOM TOM ITL. TER (KG) (UG)	A- TROON, THI TOT OT IN B MA- TOM TIAL TER	I- TOX ON, PHE AL TOT OT- IN B MA- TOM IAL TER KG) (UG/	A- NE, AL OT- MA- IAL KG)
OCT 11		. 0	.0	. 0	.0	.0	.0	.0	. 0	.0	.0	0

RESERVOIRS IN DELAWARE RIVER BASIN

01416900 PEPACTON RESERVOIR.--Lat 42°04'38", long 74°58'04", Delaware County, NY, Hydrologic Unit 02040102, near release chamber at Downsville Dam on East Branch Delaware River, and 1.6 mi (2.6 km) east of Downsville, NY. DRAINAGE AREA, 371 mi² (961 km²). PERIOD OF RECORD, September 1954 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Board of Water Supply, City of

New York).

Reservoir is formed by an earthfill rockfaced dam; storage began Sept. 15, 1954. Usable capacity
140,190 mil gal (530.6 hm²) between minimum operating level, elevation, 1,152.0 ft (351.13 m) and crest of
spillway, elevation, 1,280.0 ft (390.14 m). Capacity: at crest of spillway 149,700 mil gal (566.6 hm²); at
minimum operating level, 9,609 mil gal (36.37 hm²); at still of diversion tunnel, elevation, 1,143.0 ft
(348.39 m), 6,098 mil gal (23.08 hm²); in dead storage below release outlet, elevation, 1,126.50 ft (343.357 m),
1,898 mil gal (7.184 hm²). Figures given herein represent total contents. Reservoir impounds water for
diversion through East Delaware Tunnel to Rondout Reservoir on Rondout Creek, in Hudson River basin (see
Delaware River Basin, diversions), for water supply to City of New York; for release during periods of low flow
in the lower Delaware River basin, as directed by the Delaware River Master; and for conservation release. No
diversion prior to Jan. 6, 1955. Records furnished by Bureau of Water Resources Development and Department of
Environmental Protection, City of New York.

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 151,932 mil gal (575.1 hm²) May 27, elevation,
1,281.15 ft (390.495 m); minimum observed, 95,703 mil gal (362.2 hm²) Jan. 1, elevation, 1,246.92 ft

1,281.15 ft (390.495 m), minimum observed, 75.15 m (380.061 m).

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 154,027 mil gal (583.0 hm³) Apr. 5, 1960, elevation, 1,282.27 ft (390.836 m); minimum observed (after first filling), 9,575 mil gal (36.24 hm³) Dec. 26, 1964, elevation, 1,151.92 ft (351.105 m).

Dec. 26, 1964, elevation, 1,151.92 ft (351.105 m).

01424997 CANNONSVILLE RESERVOIR.--Lat 42°03'46", long 75°22'29", Delaware County, NY, Hydrologic Unit 02040101, in emergency gate tower at Cannonsville Dam on West Branch Delaware River, and 1.8 mi (2.9 km) southeast of Stilesville, NY. DRAINAGE AREA, 454 mi² (1,176 km²). PERIOD OF RECORD, October 1963 to current year. REVISED RECORDS, WRD-NY 1972: 1966. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Board of Water Supply, City of New York).

Reservoir is formed by an earthfill rockfaced dam; storage began Sept. 30, 1963, usable capacity 95,706 mil gal (362.2 hm²) between minimum operating level, elevation, 1,040.0 ft (316.99 m) and crest of spillway, elevation, 1,150.0 ft (350.52 m). Capacity, at crest of spillway, 98,618 mil gal (373.3 hm²); at minimum operating level, 2,912 mil gal (11.02 hm²); at mouth of inlet channel to diversion tunnel, elevation, 1,035.0 ft (315.47 m), 1,892 mil gal (7.161 hm²); in dead storage below release outlet elevation, 1,020.5 ft (311.05 m), 328 mil gal (1.241 hm²). Figures given herein represent total contents. Impounded water is diverted for New York City water supply via West Delaware Tunnel to Rondout Reservoir in Hudson River basin (see Delaware River Basin, diversion); is released for conservation flow in the Delaware River. No diversion prior to Jan. 29. 1964. Records furnished by Bureau of Water Resources Development, City of New York.

EXTREMES FOR CURRENT YEAR: Maximum contents, 107,177 mil gal (405.7 hm²) Mar. 6, elevation, 1,155.30 ft (325.135 m); minimum observed, 50,192 mil gal (190.0 hm²) Dec. 4, 8, elevation, 1,113.42 ft (339.370 m).

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 108,116 mil gal (409.2 hm²) Mar. 15, 1977, elevation, 1,155.85 ft (352.303 m); minimum observed (after first filling), 11,901 mil gal (45.05 hm²)

Nov. 7, 1968, elevation, 1,066.24 ft (324.990 m).

Nov. 7, 1906, elevation, 1,006.24 ft (324.990 m).

01428900 PROMPTON RESERVOIR.—Lat 41°35'18", long 75°19'39", Wayne County, PA, Hydrologic Unit 02040103, at dam on West Branch Lackawaxen River, 0.3 mi (0.5 km) north of Prompton, 0.4 mi (0.6 km) upstream from highway bridge and 0.5 mi (0.8 km) upstream from Van Auken Creek. DRAINAGE AREA, 59.6 mi² (154 km²). PERIOD OF RECORD, December 1960 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).

Reservoir formed by an earth and rockfill dam with ungaged bedrock spillway at elevation 1,205.00 ft (367.284 m); storage began July 1960. Capacity at elevation 1,205.00 ft (367.284 m) is 51,700 acre-ft (63.7 ma³). Ordinary minimum (conservation) pool elevation, 1,125.00 ft (342.900 m) capacity, 3,420 acre-ft (4.22 hm²). Reservoir is used for flood control and recreation. Figures given herein represent total contents. Regulation is accomplished by discharge through an ungated tunnel. Records furnished by Corps of Engineers.

EXTREMES FOR CURRENT YEAR: Maximum contents, 5,990 acre-ft (7.38 hm²) Mar. 6, elevation, 1,132.60 ft (345.216 m); minimum, 3,560 acre-ft (4.39 hm²) Aug. 10, elevation, 1,125.22 ft (342.967 m).

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 8,170 acre-ft (10.1 hm²) June 29, 1973, elevation, 1,138.40 ft (346.984 m); minimum (after first filling), 2,920 acre-ft (3.60 hm²) Sept. 27, 1964, elevation, 1,123.20 ft (342.351 m).

01429400 GENERAL EDGAR JADWIN RESERVOIR.--Lat 41°36'44", long 75°15,55", Wayne County, PA, Hydrologic Unit 02040103, at dam on Dyberry Creek, 0.45 mi (0.72 km) upstream from unnamed tributary, 2.4 mi (3.9 km) north of Honesdale, and 2.9 mi (4.7 km) upstream from mouth. DRAINAGE AREA, 64.5 mi² (167.1 km²). PERIOD OF RECORD, October 1959 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).

Reservoir formed by an earth and rockfill dam with ungated, concrete spillway at elevation, 1,053.00 ft (320.954 m); storage began in October 1959. Capacity at elevation 1,053.00 ft (320.954 m) is 24,500 acre-ft (30.2 hm²). Reservoir is used for flood control. Figures given herein represent total contents. Regulation is accomplished by discharge through an ungated tunnel. Records furnished by Corps of Engineers.

EXTREMES FOR CURRENT YEAR: Maximum contents, 3,060 acre-ft (3.77 hm²) Mar. 6, elevation, 1,005.25 ft (306.400 m); no storage many times.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 6,520 acre-ft (8.04 hm³) June 19, 1973, elevation 1,017.40 ft (310.104 m); no storage many times.

1,017.40 ft (310.104 m); no storage many times.

01431700 LAKE WALLENPAUPACK.--Lat 41°27'35", long 75°11'10", Wayne County, PA, Hydrologic Unit 02040103, at dam on Wallenpaupack Creek at Wilsonville, 1.2 mi (1.9 km) south of Hawley and 1.5 mi (2.4 km) upstream from mouth. DRAINAGE AREA, 228 mi² (591 km²). PERIOD OF RECORD, January 1926 to current year. GAGE, vertical staff. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Pennsylvania Power and Light Co.).

Reservoir formed by concrete gravity-type and earthfill dam with concrete spillway at elevation 1,176.00 ft (358.445 m) in two sections. Spillway equipped with roller gate, 14 ft high (4.267 m) on each section. Storage began Nov. 3, 1925; water in reservoir first reached minimum pool elevation in January 1926. Total capacity at elevation 1,190.00 ft (362.712 m), top of gates, is 209,300 acre-ft (258 hm²) of which 157,800 acre-ft (195 hm²) is controlled storage above elevation 1,160.00 ft (353.568 m), minimum pool. Reservoir is used for generation of hydrolelectric power. Figures given herein represent usable contents. Records furnished by Pennsylvania Power and Light Co. Power and Light Co

Power and Light Co.

EXTREMES FOR CURRENT YEAR: Maximum contents, 128,080 acre-ft (157.9 hm³) May 28, elevation, 1,184.80 ft (361.127 m); minimum, 77,980 acre-ft (96.1 hm³) Feb. 23, elevation, 1,175.60 ft (358.323 m).

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 178,200 acre-ft (220 hm³) Aug. 19-21, 1955, elevation, 1,193.45 ft (363.764 m); minimum (after first filling), 12,280 acre-ft (15.1 hm³) Mar. 28, 1958, elevation, 1,162.60 ft (354.360 m).

183 DELAWARE RIVER BASTN RESERVOIR IN DELAWARE RIVER BASIN -- Continued

01433000 SWINGING BRIDGE RESERVOIR.—Lat 41°34'25", long 74°47'00", Sullivan County, NY, Hydrologic Unit 02040104, at dam on Mongaup River, and 1.8 mi (2.9 km) northwest of Fowlersville, NY. DRAINAGE AREA, 118 mi² (306 km²) excluding Cliff Lake, Lebanon Lake, and Toronto Reservoir. PERIOD OF RECORD, January 1930 to current year. REVISED RECORDS, WSP 1552: 1951-54. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Orange and Rockland Utilities, Inc.). All capacity figures given herein are based on zero storage at minimum operating pool level, 1,010 ft (308 m).

Reservoir is formed by an earthfill dam; storage began Jan. 19, 1930. Usable capacity, 1,436.6 mil ft³ (40.7 km³) between elevations 1,010.0 ft (307.85 m), minimum operating pool, and 1,071.2 ft (326.50 m), top of flashboards. Capacity below elevation 1,010.0 ft (307.85 m), minimum operating pool, about 212.7 mil ft³ (6.02 km³). Reservoir is used for storage of water for power. Figures given herein represent contents above 1,010.0 ft (307.85 m). Water is received from Cliff Lake, Lebanon Lake, and Toronto Reservoir. Records furnished by orange and Rockland Utilities, Inc.

1,010.0 ft (307.85 m). Water is received from Cliff Lake, Lebanon Lake, and Toronto Reservoir. Records furnished by Orange and RockLand Utilities, Inc.

EXTREMES FOR CURRENT YEAR: Maximum contents, 1,396 mil ft³ (39.5 hm³) Jan. 3, elevation, 1,070.2 ft (326.20 m); minimum, 922 mil ft³ (26.1 hm³) Mar. 2, elevation, 1,057.4 ft (322.30 m).

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 1,461.6 mil ft³ (41.4 hm³) Mar. 14, 1977, elevation, 1,071.8 ft (326.68 m); minimum (after first filling), 141.4 mil ft³ (4.00 hm³) Dec. 2, 1938, elevation, 987.5 ft (300.99 m).

01433100 TORONTO RESERVOIR.--Lat 41°37'15", long 74°49'55", Sullivan County, NY, Hydrologic Unit 02040104, at dam on Black Lake Creek, and 2.5 mi (4.0 km) southeast of village of Black Lake, NY. DRAINAGE AREA, 23.2 mi² (60.1 km²). PERIOD OF RECORD, January 1926 to current year. REVISED RECORDS, WSP 1552: 1951-54. WSP 1702: 1959(M). Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Orange and

(60.1 km²). PERIOD OF RECORD, January 1926 to current year. REVISED RECORDS, WSP 1552: 1951-54. WSP 1702: 1959(M). Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Orange and Rockland Utilities, Inc.). All capacity figures given herein are based on zero storage at minimum operating pool level, 1,165.0 ft (355.09 m).

Reservoir is formed by an earthfill dam completed July 24, 1926; storage began Jan. 13, 1926. Usable capacity, 1,098.2 mil ft³ (31.1 hm³) between elevations 1,165.0 ft (355.09 m), minimum operating pool, and operating pool, about 26.8 mil ft³ (0.759 hm³). Reservoir is used for storage of water for power. Figures given herein represent contents above 1,165.0 ft (355.09 m). Records furnished by Orange and Rockland Utilities, Inc.

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 818 mil ft³ (23.2 hm³) June 4, elevation, 1,211.3 ft (369.20 m); minimum observed, 0.0 mil ft³ (0.0 hm³) Sept. 30, elevation, 1,165.0 ft (355.09 m).

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 1,171.2 mil ft³ (33.2 hm³) July 20, 1945, elevation, 1,222.0 ft (372.47 m). minimum observed (after first filling), 26.8 mil ft³ (0.759 hm³) Nov. 15, 1928, elevation, 1,144.5 ft (348.84 m).

01433200 CLIFF LAKE.--Lat 41°35'00", long 74°47'40", Sullivan County, NY, Hydrologic Unit 02040104, at dam on Black Lake Creek, and 2.5 mi (4.0 km) northwest of Fowlersville, NY. DRAINAGE AREA, 6.46 mi² (16.7 km²) excluding area above Toronto Reservoir. PERIOD OF RECORD, January 1939 to current year. REVISED RECORDS, WSP 1552: 1951-54. WRD-NY 1975: 1974(m). Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Orange and Rockland Utilities, Inc.). All capacity figures given herein are based on zero storage at minimum operating pool level, 1,043.3 ft (318.0 m).

Reservoir is formed by a concrete gravity-type dam; storage began Jan. 6, 1939. Usable capacity, 136.06 mil ft³ (3.85 hm²) between elevations 1,043.3 ft (318.00 m), minimum operating pool, and 1,072.0 ft (326.75 m), top of permanent flashboards. Capacity below elevation 1,043.3 ft (318.00 m), minimum operating pool, about 6.54 mil ft³ (0.185 hm³). Reservoir is used for storage of water for power. Water is received from Toronto and Lebanon Lake reservoirs and is discharged through a tunnel into Swinging Bridge Reservoir. Figures given herein represent contents above 1,043.3 ft (318.00 m). Records furnished by Orange and Rockland Utilities, Inc.

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 127.8 mil ft³ (3.62 hm³) Jan. 2, elevation, 1,071.0 ft

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 127.8 mil ft³ (3.62 hm²) Jan. 2, elevation, 1,071.0 ft (326.44 m); minimum observed, 43.7 mil ft³ (1.24 hm²) Mar. 5, elevation, 1,057.9 ft (322.45 m).

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 145.44 mil ft³ (4.12 hm²) July 30, 31, 1945, elevation, 1,073.1 ft (327.08 m); minimum observed (after first filling), about 6.54 mil ft³ (0.185 hm²) Mar. 16, 1963, elevation, 1,038.0 ft (316.38 m).

01435900 NEVERSINK RESERVOIR.--Lat 41°49'40", long 74°38'21", Sullivan County, NY, Hydrologic Unit 02040104, at a gate-house at Neversink Dam on Neversink River, and 2 mi (3 km) southwest of Neversink, NY. DRAINAGE AREA, 91.8 mi² (238 km²). PERIOD OF RECORD, June 1953 to current year. GAGE, nonrecording gage read daily at 0900. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Board of Water Supply, City of New York). Reservoir is formed by an earthfill rockfaced dam; storage began June 2, 1953. Usable capacity 34,941 mil gal (132.25 hm²) between minimum operating level, elevation, 1,319.0 ft (402 m) and crest of spillway, elevation, 1,440.0 ft (438.9 m). Capacity at crest of spillway, 37,146 mil gal (140.6 hm²); at minimum operating level, 2,205 mil gal (8.35 hm²); dead storage below diversion sill and outlet sill at elevation 1,314.0 ft (400.5 m), 1,680 mil gal (6.36 hm²). Figures given herein represent total contents. Reservoir impounds water for diversion through Neversink-Grahamsville Tunnel to Rondout Reservoir on Rondout Creek, in Hudson River basin, for water supply of City of New York (see Delaware River Basin, diversions); for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master; and for conservation release. No diversion prior to Dec. 3, 1953. Records furnished by Bureau of Water Resources Development and Department of Environmental Protection, City of New York.

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 37,161 mil gal (140.7 hm²) May 27, elevation, 1,440.03 ft (438.921 m); minimum observed, 12,677 mil gal (48.0 m²) Nov. 13, elevation, 1,375.04 ft

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 37,978 mil gal (143.7 hm³) Apr. 25, 1961, elevation, 1,441.67 ft (439.421 m); minimum observed (after first filling), 1,985 mil gal (7.513 hm³) Nov. 25, 1964, elevation, 1,316.98 ft (401.415 m).

01447780 FRANCIS E. WALTER RESERVOIR (formerly published as Bear Creek Reservoir).--Lat 41°06'45", long 75°43'15", Luzerne County, PA, Hydrologic Unit 02040106, at dam on Lehigh River, 2,200 ft (670 m) downstream from Bear Creek and 5 mi (8 km) northwest of White Haven. DRAINAGE AREA, 289 mi² (749 km²). PERIOD OF RECORD, February 1961 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).

Reservoir formed by an earthfill embankment covered with a rock shell, with concrete spillway at elevation 1,450.0 ft (441.96 m); storage began Feb. 17, 1961; water in reservoir first reached conservation pool elevation in June 1961. Total capacity at elevation 1,450.0 ft (441.96 m) is 110,700 acre-ft (136 hm³) of which 108,700 acre-ft (134 hm³) is controlled storage above elevation 1,300.0 ft or 396.24 m (conservation pool). Dead storage is 2,000 acre-ft (2.47 hm²). Reservoir is used for flood control and recreation. Figures given herein represent total contents. Flow regulated by three gates and low flow by-pass system. Records furnished by Corps of Engineers.

EXTREMES FOR CURRENT YEAR: Maximum contents, 19,660 acre-ft (24.2 hm³) Jan. 26, elevation, 1,366.83 ft (416.610 m); minimum, 1,560 acre-ft (1.92 hm³) Sept. 10, elevation, 1,295.60 ft (394.899 m).

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 42,600 acre-ft (52.5 hm³) June 26, 1972, elevation, 1,398.20 ft (426.171 m); minimum (after establishment of conservation pool), 1,390 acre-ft (1.71 hm³) Dec. 4, 1977, elevation, 1,293.70 ft (394.320 m).

DELAWARE RIVER BASTN 184 RESERVOIRS IN DELAWARE RIVER BASIN -- Continued 01449400 PENN FOREST RESERVOIR.—Lat 40°55'45", long 75°33'45", Carbon County, PA, Hydrologic Unit 02040106, at dam on Wild Creek near Hatchery, PA, 0.7 mi (1.1 km) upstream from Hatchery, 2.6 mi (4.2 km) upstream from Wild Creek Dam, 4.4 mi (7.1 km) upstream from mouth, and 10 mi (16 km) northeast of Palmerton. DRAINAGE AREA, 16.5 mi² (42.7 km²). PERIOD OF RECORD, October 1958 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by city of Bethlehem).

Reservoir formed by an earthfill dam, with ungated concrete spillway at elevation 1,000.00 ft (304,800 m); storage began in October 1958. Capacity at elevation 1,000.00 ft (304.800 m) is 19,980 acre-ft (24.6 hm²). Reservoir is used for municipal water supply. Figures given herein represent total contents. Regulation is done by valves on pipe through dam. Records furnished by city of Bethlehem. Figures given herein include diversion, since October 1969, from Tunkhannock Creek basin into Wild Creek basin.

EXTREMES FOR CURRENT YEAR: Maximum contents, 20,420 acre-ft (25.2 hm³) Mar. 27, elevation, 1,000.75 ft (305.029 m); minimum, 13,050 acre-ft (16.1 hm³) Sept. 30, elevation, 983.09 ft (299.646 m).

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 20,520 acre-ft (25.3 hm³) Mar. 28, 1978, elevation, 1,000.92 ft (305.080 m); minimum, 176 acre-ft (0.217 hm²) Oct. 6, 1965, elevation, 902.40 ft (275.052 m). 01449700 WILD CREEK RESERVOIR.--Lat 40°53'50", long 75°33'50", Carbon County, PA, Hydrologic Unit 02040106, at dam on Wild Creek near Hatchery, PA, 1.6 mi (2.6 km) upstream from mouth, 2.4 mi (3.9 km) south of Hatchery, and 7.5 mi (12 km) northeast of Palmerton. DRAINAGE AREA, 22.2 mi² (57.5 km²). PERIOD OF RECORD, January 1941 to current year. Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by city of Bethlehem).

Reservoir formed by earthfill dam, with concrete ungated spillway at elevation 820.00 ft (249.936 m); storage began January 27, 1941; water in reservoir first reached minimum pool elevation in February 1941. Total capacity at elevation 820.00 ft (249.936 m) is 12,500 acre-ft (15.4 hm³) of which 12,000 acre-ft (15 hm³) is controlled storage. Reservoir is used for municipal water supply. Figures given herein represent usable contents. Regulation is accomplished by valves on pipe through dam. Records furnished by city of Bethlehem. Since October 1969 the basin upstream has received diversion from Tunkhannock Creek basin.

EXTREMES FOR CURRENT YEAR: Maximum contents, 12,240 acre-ft (15.1 hm³) Mar. 7, elevation, 820.81 ft (250.183 m); minimum, 11,540 acre-ft (14.2 hm³) Oct. 1, elevation, 818.03 ft (249.336 m).

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 12,880 acre-ft (15.9 hm³) May 23, 1942, elevation, 822.93 ft (250.829 m); minimum (after first filling), 2,680 acre-ft (3.30 hm³) Nov. 15, 1966, elevation, 774.10 ft (235.946 m). Bethlehem).

01449790 BELTZVILLE LAKE.--Lat 40°50'56", long 75°38'19", Carbon County, PA, Hydrologic Unit 02040106, at dam on Pohopoco Creek, 0.45 mi (0.72 km) upstream from gaging station on Pohopoco Creek, 0.55 mi (0.88 km) upstream from Sawmill Run and 2.3 mi (3.7 km) northeast of Parryville. DRAINAGE AREA, 96.3 mi² (249.4 km²). PERIOD OF RECORD, February 1971 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical RECORD, February 1971 to current year. GAGE, Datum of 1929 (levels by Corps of Engineers).

Reservoir formed by an earth and rockfill dam with ungated, partially lined spillway at elevation 651.00 ft (198.425 m); storage began Feb. 8, 1971. Capacity at elevation 651.00 ft (198.425 m) is 68,300 acre-ft (84.2 hm³). Ordinary minimum (conservation) pool elevation, 628.00 ft (191.414 m), capacity, 41,250 acre-ft (50.9 hm³). Dead storage is 1,390 acre-ft (1.71 hm³). Reservoir is used for recreation, flood control, low flow augmentation and water supply. Figures given herein represent total contents. Regulation is accomplished by a multi-level water-quality outlet system and two flood-control gates. Records furnished by Corps of Regulation is accomplished Engineers.

EXTREMES FOR CURRENT YEAR: Maximum contents 45,980 acre-ft (56.7 hm³) Jan. 26, elevation, 632.80 ft (192.877 m); minimum, 34,090 acre-ft (42.0 hm²) Nov. 14, elevation, 619.90 ft (188.946 m).

EXTREMES FOR PERIOD OF RECORD: Maximum contents 49,730 acre-ft (61.3 hm³) Jan. 29, 1976, elevation, 636.30 ft (193.944 m); minimum, 136 acre-ft (0.168 hm²) Feb. 8, 1971, elevation, 516.20 ft (157.338 m).

455400 LAKE HOPATCONG.--Lat 40°55'00", long 74°39'50", Morris County, Hydrologic Unit 02040105, in gatehouse of Lake Hopatcong Dam on Musconetcong River at Landing. DRAINAGE AREA, 25.6 mi² (66.3 km²). PERIOD OF RECORD, February 1887 to current year. Monthend contents only prior to October 1950, published in WSP 1302. GAGE, water-stage recorder. Prior to June 24, 1928, daily readings obtained by measuring from high-water mark to water surface converted to gage height, present datum. Datum of gage is 914.57 ft (278.761 m). Lake is formed by concrete spillway earthfill dam completed about 1828. Crest of spillway was lowered 0.11 ft (0.034 m) in 1925. Usable capacity, 7,459,000,000 gal (28.23 hm³) between (gage height -2.6 ft or -0.792 m, sills of gates and 9.00 ft or 2.743 m, crest of spillway). Flow regulated by four gates (3 by 5 ft or 0.914 by 1.524 m), also by one 24-inch (0.610 m) pipe with gate valve to recreation fountain 250 ft (76.2 m) downstream from dam. Dead storage, about 8,117,000,000 gal (30.72 hm³). Figures given herein represent usable capacity. Lake used for recreation.

0.914 by 1.524 m), also by one 24-inch (0.510 m) pipe with gate valve to recreation fountain 250 ft (70.2 m) downstream from dam. Dead storage, about 8,117,000,000 gal (30.72 hm³). Figures given herein represent usable capacity. Lake used for recreation.

EXTREMES FOR CURRENT YEAR: Maximum contents, 8,066,000,000 gal (30.53 hm³) Sept 7, 8, gage height, 9.72 ft (2.963 m); minimum contents, 5,396,000,000 gal (20.42 hm³) Dec. 4, gage height, 6.44 ft (1.963 m).

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 8,532,000,000 gal (32.29 hm³) June 24, 1972, gage height, 10.27 ft (3.130 m); minimum, 1,525,000,000 gal (5.77 hm³) Dec. 29, 1960, gage height, 0.65 ft (0.198 m).

01469200 STILL CREEK RESERVOIR.--Lat 40°51'25", long 75°59'30". Schuylkill County, PA, Hydrologic Unit 02040106, at dam on Still Creek, 1 mi (1.6 km) upstream from mouth and 2.3 mi (3.7 km) north of Hometown, PA. DRAINAGE AREA, 8.5 mi² (22.0 km²). PERIOD OF RECORD, January'1933 to current year. Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Panther Valley Water Co.).

Reservoir formed by earth fill dam, with ungated concrete spillway at elevation 1,182.00 ft (360.274 m); storage began in February 1933. Capacity at elevation, 1,182.00 ft (360.274 m) is 8,290 acre-ft (10.2 hm²). Reservoir is used for municipal water supply. Figures given herein represent total contents. Regulation is accomplished by valves on pipe through dam. Records furnished by Panther Valley Water Co.

EXTREMES FOR CURRENT YEAR: Maximum contents, 8,446 acre-ft (7.5 hm²) Jan. 26, elevation, 1,182.50 ft (360.426 m); minimum, 6,620 acre-ft (8.16 hm²) NOv. 30, elevation, 1,176.08 ft (359.078 m).

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 8,570 acre-ft (10.6 hm²) Oct. 15, 1955, elevation, 1,182.92 ft (360.554 m), but may have been greater during 1950 and 1951 water years; minimum (after initial filling), 588 acre-ft (0.725 hm²) Dec. 8, 1944, elevation, 1,136.70 ft (346.466 m).

01472200 GREEN LANE RESERVOIR.--Lat 40°20'30", long 75°28'45", Montgomery County, PA, Hydrologic Unit 02040203, at dam on Perkiomen Creek at Green Lane, PA, 0.4 mi (0.6 km) west of Green Lane and 2.1 mi (3.4 km) upstream from Unami Creek. DRAINAGE AREA, 70.9 mi² (183.6 km²). PERIOD OF RECORD, December 1956 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Philadelphia

water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Philadelphia Suburban Mater Co.).

Reservoir formed by concrete, gravity-type dam, with ungated spillway at elevation 286.00 ft (87.173 m); storage began December 21, 1956. Capacity at spillway level, elevation 286.00 ft (87.173 m), 13,430 acre-ft (16.6 hm³). Reservoir is used for municipal water supply. Figures given herein represent total contents. Regulation is accomplished by valves on pipe through dam. Records furnished by Philadelphia Suburban Water Co. EXTREMES FOR CURRENT YEAR: Maximum contents, 16,980 acre-ft (20.9 hm²) May 5, elevation, 289.99 ft (88.389 m); minimum, 12,500 acre-ft (15.4 hm³) Nov. 16, elevation, 284.94 ft (86.850 m).

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 17,030 acre-ft (21.0 hm²) June 23, 1972, elevation, 290.05 ft (88.407 m); minimum (after first filling), 1,270 acre-ft (1.57 hm²) Aug. 25, 1957, elevation, 251.60 ft (76.688 m).

RESERVOIRS IN DELAWARE RIVER BASIN -- Continued

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

Date	Elevation (feet)	Contents (million gallons)	Change in contents (equivalent in ft3/s)	Elevation (feet)	Contents (million gallons)	Change in contents (equivalent in ft3/s)	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)
	01416900 P	EPACTON RE	SERVOIR #	01424997 CA	NNONSVILLE	RESERVIOR #	01428900	PROMPTON RE	SERVOIR +
Sept. 30 Oct. 31 Nov. 30 Dec. 31	1,257.75 1,254.22 1,248.73 1,246.92	111,898 106,449 98,300 95,703	272 420 -130	1,128.60 1,122.44 1,114.04 1,113.79	68,473 60,762 50,881 50,604	385 -510 -13.8	1, 125. 35 1, 126. 33 1, 125. 50 1, 128. 38	3,520 3,790 3,560 4,420	+4.4 -3.9 +14.0
CAL YR 197	8 -	-	-230	-	-	-212	-,	-	+1.2
Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	1,265.35 1,264.75 1,280.37 1,280.42 1,280.46 1,276.69 1,268.75 1,260.22 1,255.70	124,154 123,160 150,484 150,557 150,651 143,765 129,898 115,805 108,714	+1,420 -54.9 +1,360 +4.80 -3.69 -355 -694 -702 -366	1,142.38 1,149.08 1,151.27 1,151.13 1,152.95 1,147.95 1,140.80 1,129.35 1,128.62	87,225 97,219 100,662 100,436 101,918 95,500 84,942 69,428 68,498	+1,830 +552 +172 -11.7 -74.0 -331 -527 -774 -48.0	1,126.25 1,127.48 1,127.23 1,126.82 1,128.23 1,125.50 1,125.30 1,125.36	3,770 4,130 4,050 3,930 4,370 3,560 3,500 3,490 3,580	-10.6 +6.5 -1.3 -2.0 +7.2 -13.6 -1.0 2 +1.5
WTR YR 197	9 -	-	-13.5	-		+0.11	*	-	+0.1
Date	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft3/s)		Contents (acre- feet)	Change in contents (equivalent in ft3/s)	Elevation (feet)	Contents (million cu ft)	Change in contents (equivalent in ft ³ /s)
01429400	GENERAL EDG	GAR JADWIN	RESERVOIR +	01431700	LAKE WALLEN	PAUPACK +	01433000 SWI	NGING BRIDG	E RESERVOIR +
Sept. 30 Oct. 31 Nov. 30 Dec. 31	974.68 975.34 975.75 976.22	0 0 0	0 0 0	1,178.90 1,178.60 1,178.20 1,178.20	95,660 94,040 91,880 91,880	-26.3 -36.3 0.	1,065.0 1,066.9 1,064.3 1,068.9	1,191 1,264 1,165 1,343	-27.1 -38.2 +66.4
CAL YR 197	8 -		0	-	-	-26.2	-		+6.9
Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	977.22 978.26 977.88 978.23 978.78 975.34 974.73 974.75 974.98	0 5 0 5 0 0	0 +.1 1 +.1 1 0 0	1,181.70 1,177.10 1,180.90 1,182.80 1,183.90 1,181.80 1,181.50 1,181.40 1,178.90	110,850 85,940 106,460 116,900 123,040 111,400 109,750 109,200 95,660	+308.5 -435.5 +333.7 +175.5 +99.9 -195.6 -26.8 -8.9 -227.6	1,069.6 1,057.5 1,068.7 1,066.5 1,060.0 1,060.8 1,065.0	1,371 926 1,323 1,335 1,249 1,081 1,021 1,038 1,191	+10.5 -184 +148 +4.8 -32.4 -64.7 -22.4 +6.4 -59.1
WTR YR 197	9 -		0	-	-	0	-	-	0.0
Date	Elevation (feet)	Contents (million cu ft)	Change in contents (equivalent in ft3/s)	Elevation (feet)	Contents (million cu ft)	Change in contents (equivalent in ft3/s)	Elevation (feet)	Contents (million cu ft)	(equivalent
	01433100	TORONTO RE	SERVOIR +	01433200	CLIFF LAKE	RESERVOIR +	01435900	NEVERSINK	RESERVOIR #
Sept. 30 Oct. 31 Nov. 30 Dec. 31	1,177.2 1,177.8 1,178.3 1,183.0	94.9 103 109 179	+2.9 +2.6 +26.0	1,064.9 1,066.7 1,064.3 1,067.7	83.0 95.1 79.2 102	+4.5 -6.1 +8.6	1,387.89 1,377.28 1,379.62 1,392.80	16,353 13,282 13,926 17,908	-153 +33.2 +199
CAL YR 197	8 -	-	-14.1		-	+0.5	-	-	-61,6
Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	1,198.1 1,195.4 1,205.6 1,208.4 1,210.5 1,207.2 1,192.8 1,179.8 1,178.7	470 411 660 750 795 703 353 130	+109 -24.6 +93.1 +34.5 +16.8 -35.4 -131 -83.3 -5.9	1,070.6 1,059.0 1,070.0 1,068.7 1,066.9 1,068.0 1,064.1 1,061.6 1,065.0	124 48.9 120 110 96.5 104 78.0 63.0 83.7	+8.3 -31.2 +26.4 -3.9 -4.9 +3.0 -9.9 -5.6 +8.0	1,420.72 1,417.41 1,438.86 1,439.38 1,428.60 1,415.56 1,402.73 1,408.12	28,344 26,969 36,565 34,658 36,767 26,216 21,313 23,306	+521 -76.0 +469 -98.4 +109 -262 -277 -245 +103
WTR YR 197	9 -	-	+0.6	+	7	0.0	-	-	+29.5

RESERVOIRS IN DELAWARE RIVER BASIN--Continued

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

Date	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft3/s)	Elevation (feet)		Change in contents (equivalent in ft3/s)		(acre-	Change in contents (equivalent in ft ³ /s)
	01447780 FRA	NCIS E. WAI	TER LAKE \$	01449400	PENN FOREST	RESERVOIR +	01449700	WILD CREEK	RESERVOIR +
Sept. 30 Oct. 31 Nov. 30 Dec. 31	1,298.44 1,300.75 1,301.77 1,299.81	1,830 2,080 2,180 1,980	+4.1 +1.7 -3.3	994.26 990.44 987.32 988.63	17,420 15,820 14,610 15,110	-26.0 -20.3 +8.1	818.02 818.50 818.23 818.21	11,540 11,670 11,600 11,590	+2.1 -1.2 2
CAL YR 19	78 -	-	2	-	-	-7.0	-	-	+.7
Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	1,306.60 1,335.65 1,299.99 1,300.67 1,303.64 1,305.41 1,299.74 1,300.30 1,304.96	2,690 7,690 2,000 2,070 2,360 2,560 1,970 2,030 2,510	+11.6 +90.0 -92.5 +1.2 +4.7 +3.4 -9.6 +1.0 +8.1	1,000.46 1,000.43 1,000.25 1,000.29 1,000.36 999.51 991.15 986.20 983.09	20,250 20,230 20,120 20,150 20,190 19,760 16,120 14,180 13,050	+83.6 -1.8 +.5 +.7 -7.2 -59.2 -31.5 -19.0	820.42 820.42 820.22 820.34 820.41 820.12 820.36 818.96 819.50	12,130 12,130 12,070 12,100 12,120 12,100 11,790 11,900	+8.8 0 -1.0 +.5 +.3 -1.3 -1.0 -5.0 +1.8
WTR YR 19	79 -	-	+.9	-	-	-6.0	-	12	+.5
Date	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft3/s)	Gage Height (feet)		Change in contents (equivalent in ft ³ /s)		(acre-	Change in contents (equivalent in ft3/s)
	01449790 BE	LTZVILLE L	KE+	01455400	LAKE HOPAT	CONG +	01469200 8	STILL CREEK	RESERVOIR +
Sept. 30 Oct. 31 Nov. 30 Dec. 31	627.28 626.53 626.20 625.82	40,570 39,850 39,540 39,190	-11.7 -5.2 -5.7	8.75 8.59 6.59 6.51	7,252 7,120 5,513 5,451	-6.6 -82.9 -3.1	1,178.58 1,178.08 1,176.08 1,177.17	7,310 7,170 6,620 6,920	-2.3 -9.2 +4.9
CAL YR 19	78 -	-	-1.9	-	-	+0.6	-	-	-1.9
Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	627.28 630.53 626.55 628.71 629.00 627.77 628.20 627.40 628.12	40,180 43,530 39,870 41,920 42,200 41,030 41,440 40,680 41,360	+16.1 +60.3 -59.5 +34.4 +4.5 -19.7 -6.7 -12.4 +11.4	8.25 7.34 8.52 9.34 8.05 9.12 8.93 9.08 9.31	6,840 6,104 7,062 7,745 6,677 7,560 7,401 7,526 7,719	+69.3 -40.7 +47.8 +35.2 -53.3 +45.5 -7.9 +6.2 +9.9	1,182.25 1,182.17 1,182.04 1,182.04 1,182.77 1,181.75 1,181.25 1,180.17 1,181.33	8,360 8,340 8,300 8,300 8,340 8,210 8,070 7,750 8,090	23.4 -0.4 -0.7 0 +0.7 -2.2 -2.3 -5.2 +5.7
WTR YR 19	79 -	-	+1.1	-	-	+2.0			+1.1

			Change in
	Elevation	(million	(equivalent
	(feet)	gallons)	in ft3/s)
	01472200	GREEN LANE R	ESERVOIR +
30	285.65	13,120	-
31	285.35	12,850	-4.4
30	285.95	13,390	+9.1
31	286.13	13,560	+ 2.8
R 19	978 -		+.1
31	286.10	13,520	7
28	286.24	13,640	+2.2
31	286.04	13,470	-2.8
			0
			+ .3
			-1.5
			-1.5
			-1.1
			+1.7
3.		.5, .50	
R 19	979 -	-	+.4
	31 30 31 31 28 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 30 30 30 30 30 30 30 30 30 30 30 30	(feet) 01472200 30 285.65 31 285.35 30 285.95 31 286.13 3 1978 - 31 286.04 31 286.04 31 286.07 30 285.96 31 285.96 31 285.96	(feet) gallons) 01472200 GREEN LANE R 30 285.65 13,120 31 285.35 12,850 30 285.95 13,390 31 286.13 13,560 8 1978 31 286.10 13,520 28 286.24 13,640 31 286.04 13,470 30 286.04 13,470 31 286.07 13,490 31 286.96 13,400 31 285.96 13,400 31 285.96 13,400 31 285.96 13,400 31 285.96 13,400 31 285.96 13,400 31 285.96 13,400 31 285.96 13,400 31 285.96 13,400 31 285.96 13,400 31 285.96 13,400

Elevation at 0900 hours on first day of following month.
 Elevation or gage height at 2400 hours.
 Observed.
 Estimated.
 Elevation at 0900 hours.

DIVERSIONS AND WITHDRAWALS

WITHDRAWALS FROM THE DELAWARE RIVER BASIN

- 01415200 Diversion from Pepacton Reservoir, NY, on East Branch Delaware River to Rondout Reservoir on Rondout Creek, in Hudson River basin, for municipal supply of city of New York. No diversion prior to Jan. 6, 1955. Records furnished by Board of Water Supply and Department of Water Resources, city of New York. REVISIONS (Water Years).--WRD-NY 1972: 1970.
- 01423900 Diversion from Cannonsville Reservoir, NY, on West Branch Delaware River to Rondout Reservoir on Rondout Creek, in Hudson River basin, for municipal supply of city of New York. No diversion prior to Jan. 29, 1964. Records furnished by Board of Water Supply, city of New York.
- 01435800 Diversion from Neversink Reservoir, NY, on Neversink River to Rondout Reservoir on Rondout Creek, in Hudson River basin, for municipal supply of city of New York. No diversion prior to Dec. 3, 1953. Records furnished by Board of Water Supply and Department of Water Resources, city of New York.
- 01436520 Village of Woodridge, NY, diverts water from East Pond Reservoir, tributary to Neversink River, for municipal supply outside of basin. Records furnished by village of Woodridge.
- 01437360 Diversion from Bear Swamp Reservoir, NY, tributary to Neversink River, by the New York State Training School, Otisville, NY, for water supply outside of basin. Records furnished by Delaware River Basin Commission.
- 01447750 Diversion from Bear Creek, PA, tributary to Lehigh River, by Bear Creek Gas and Water Company for water supply outside of basin. Records furnished by Delaware River Basin Commission.
- 01448830 Diversion from Hazle Creek Watershed by Hazelton Joint Sewerage Authority for municipal water supply. Waste effluent from the municipal water system is released to the Susquehanna River. Records furnished by Delaware River Basin Commission.
- 01460500 Diversion by Delaware and Raritan Canal from Delaware River at Raven Rock, for municipal and industrial use. Water is discharged into the Raritan River at New Brunswick. Records of discharge are collected on the Delaware and Raritan Canal at Kingston, (see station 01460500).
- 01467480 Diversion from Mud Run, PA, tributary to Schuylkill River, discontinued about Oct. 1, 1978. Records furnished by Delaware River Basin Commission.

WITHDRAWALS BY CITY OF NEW YORK
DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

Month	PEPACTON RESERVOIR	CANNONSVILLE RESERVOIR	NEVERSINK RESERVOIR
October	576 446	275	170
November	750	748 733	41.6
CAL YR 1978	645	214	249
January	586 523	554	58.5 214
MarchApril	720 561	87.9 172	288 457
MayJune	452 614	368 127	216 386
JulyAugust	744 746	0	313 303
September	743	178	251
WTR VR 1070	622	272	2211

MISCELLANEOUS WITHDRAWALS FROM BASIN

	EAST POND RESERVOIR	BEAR SWAMP RESERVOIR	BEAR CREEK	HAZLE CREEK	DELAWARE & RARITAN CANAL	MUD RUN
October	.5	.5	0	3.9	77.2	0
November	.5	.5	0	3.9	92.9	0
December	.5	.5	0	3.9	110	0
CAL YR 1978	.5	.5	0	3.9	89.9	.6
January	.5	.5	0	3.9	115	0
February	.5	.3	0	3.9	104	0
March	.5	.5	6.8	3.9	105	0
April	.5	.5	16.1	3.9	110	0
May	.5	.5	7.0	3.9	73.2	0
June	.5	.5	0	3.9	87.5	0
July	.5	.5	0	3.9	78.1	0
August	. 5	.5	0	3.9	84.9	0
September	.5	.5	0	4.6	79.0	0
WTR YR 1979	.5	.5	2.5	3.9	93.0	0

DIVERSIONS AND WITHDRAWALS -- Continued

DIVERSIONS WITHIN THE DELAWARE RIVER BASIN

- 01463480 Diversion from the Delaware River at the Morrisville Filtration Plant for municipal supply, by the Borough of Morrisville, PA. The water withdrawn at this site is returned to the basin after treatment, only slightly diminished by consumptive uses and losses in transmission. Records furnished by the Borough of Morrisville, PA.
- 01463500 Diversion from the Delaware River just above the Trenton gaging station for municipal supply by the city of Trenton, NJ. The water being withdrawn is returned to the basin after treatment only slightly diminished by consumptive uses and losses in transmission. Records furnished by the city of Trenton.
- 01467030 Diversion from the Delaware River at the Torresdale Intake for municipal supply, by the city of Philadelphia, PA. The water being withdrawn at this intake is returned to the basin after treatment only slightly diminished by consumptive uses and losses in transmission. Records furnished by the Delaware River Basin Commission.
- 01474500 Diversion from the Schuylkill River at the Belmont and Queen Lanes Intakes for municipal supply, by the city of Philadelphia, PA. The water being withdrawn at these intakes is returned after treatment within the Delaware River basin only slightly diminished by consumptive uses and losses in transmission. Records furnished by the Delaware River Basin Commission.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

	WITHDRAWAL BOROUGH OF MORRISVILLE	WITHDRAWAL CITY OF TRENTON		WITHDRA CITY OF PHILADEL	F
Month			SCHUYL BELMONT	KILL RIVER QUEEN LANE	DELAWARE RIVER TORRESDALE
October	6.9 6.5 6.4	48.6 50.1 48.6	98.1 100.5 99.1	149.1 149.4 153.0	333.5 321.0 311.1
CAL YR 1978	7.1	51.1	100.5	150.9	316.8
January February March April May June July August September	6.2 6.0 6.4 6.1 6.6 6.9 7.0 7.3	50.0 51.4 50.9 47.1 49.0 50.7 51.2 50.3 49.5	101.2 107.4 106.9 86.3 92.7 108.6 121.6 119.4	156.1 164.0 156.2 161.1 146.6 129.0 167.2 170.6 166.1	327 354 346.4 337 332.6 361.2 367.7 367.6 336.5
WTR YR 1979	6.6	49.7	67.0	100.6	220.6

DIVERSIONS IMPORTED INTO BASIN

- 01367630 Water diverted from Morris Lake, tributary to the Wallkill River (Hudson River basin), by the Newton Water and Sewer Authority for municipal use. After use the water is released into the Paulins Kill (Delaware River basin). Records furnished by the Delaware River Basin Commission.
- 01578420 Water diverted from West Branch Octoraro Creek (Susquehanna River basin) at the McCray Plant of the Octoraro Water Co., for municipal use. After use the water is released into the Delaware River basin. Records furnished by the Delaware River Basin Commission.
- 01578450 Water diverted from Octoraro Lake (Susquehanna River basin) by Chester Water Authority for municipal use. After use the water is released into the Delaware River basin. Records furnished by the Delaware River Basin Commission.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

W	MORRIS LAKE	OCTORARO CREEK				
Month		OCTORARO WATER CO.	CHESTER WATER AUTHORITY			
October	1.2	2.3	29.2			
November	1.1	2.0	29.6			
December	1.2	2.2	29.1			
CAL YR 1978	1.3	2.0	41.3			
January	1.2	2.3	28.9			
February	1.4	2.2	29.6			
March	1.4	2.3	29.1			
April	1.5	2.2	28.3			
May	1.5	2.2	28.0			
June	1.4	2.2	28.4			
July	1.4	2.5	29.1			
August	1.5	2.5	29.6			
September	1.4	2.3	29.1			
WTR YR 1979	1.4	2.3	29.0			

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at partial-record stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. Discharge measurements made at miscellaneous sites for both low flow and high flow are given in a third table.

Low-flow partial-record stations

Measurements of streamflow in New Jersey made a low-flow partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will give a picture of the low-flow potentiality of a stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same, site.

	Discharge measuremen	ts made at low-flow partial-record stat	ions during Trainage	water year Period	1979 Measur	amants
Station number	Station name	Location	area (mi²)	of record	Date	Discharge (ft ³ /s)
		Maurice River basin				
01411450	Still Run at Aura, NJ	Lat 39°40'23", long 75°07'50", Gloucester County, at bridge on Aura-Glassboro Road, 0.4 mi (0.6 km) east of Aura, 1.0 mi (1.6 km) upstream of Silver Lake, and 2.6 mi (4.2 km) southeast of Glassboro.	3.21 (8.31 km ²)	1966, 1976-79	9-11-79	3.8
01411456	Little Ease Run near Clayton, NJ	Lat 39°39'32", long 75°04'04", Gloucester County, at bridge on Academy Road, 0.9 mi (1.4 km) west of Fries Mill, 1.3 mi (2.1 km) east of Clayton, and 1.4 mi (2.3 km downstream from Beaverdam Branch.		1966, 1976-79	9-11-79	9.5
01411462	Scotland Run at Franklinville, NJ	Lat 39°37'05", long 75°03'36", Gloucester County, at bridge on State Route 538, 0.9 mi (1.4 km) east of Franklinville, 2.7 mi (4.3 km) upstream of Malaga Lake, and 2.8 mi (4.5 km) southeast of Clayton.	14.8 (38.3 km ²)	1976-79	9-11-79	20
01411700	Muddy Run at Centerton, NJ	Lat 39°31'28", long 75°10'09", Salem County, 180 ft (55 m) downstram of unnamed right bank tributary, 200 ft (60 m) downstream of bridge on New Jersey Routes 540 and 553 in Centerton, and 4.7 mi (7.6 km) south of Elmer.	37.7 (97.6 km ²)	1976-79	9-11-79	43
01411850	Mill Creek near Millville, NJ	Lat 39°25'33", long 75°05'11", Cumberland County, at bridge on dirt road, 1.2 mi (1.9 km) up- stream from mouth, 3.3 mi (5.3 km) northwest of Millville.	15.1 (39.1 km ²)	1973-79	9-12-79	13
01412120	Muskee Creek near Port Elizabeth, NJ	Lat 39°18'56", long 74°57'31", Cumberland County, at bridge on State Route 548, 1.3 mi (2.1 km) east of Port Elizabeth, 1.9 mi (3.1 km) upstream from mouth, and 2.8 mi (4.5 km) northeast of Mauricetown.	13.1 (33.9 km ²)	1969, 1976-79	9-12-79	24
******	Galleton et Lauren	Cohansey River basin	20 7031	1000 21	50.230.240	
01412405	Cohansey River near Beals Mill, NJ	Lat 39°31'29", long 75°15'59", Cumberland County, at bridge on Beals Mill Road, 1,300 ft (4,000 m) downstream of Beals Mill and Bostwick Lake, and 1.6 mi (3.0 km) west of Deerfield Street.	9.44 (24.45 km²)	1976-79	9-11-79	7.9

Discharge measurements made at low-flow partial-record stations during water year 1979--Continued

DI	scharge measurements mad	de at low-llow partial-record station	is dui till water je	a. 17/7	
Station number	Station name	Location	Drainage Per area o (mi²) rec	f	ements Discharge (ft³/s)
		Cohansey River basinContinu	ied		
01413010	Barrett Run near Bridgeton, NJ	Lat 39°26'58", long 75°15'42", Cumberland County, at bridge on Mary Elmer Drive, 1,800 ft (550 m) upstream from Mary Elmer Lake, and 2.1 mi (3.4 km) north- west of the intersection of State Routes 49 and 77 in Bridge	(18.18 km²) 197	66, 9-12-79 6-79	4.6
01413020	Indian Fields Branch at Bridgeton, NJ	Lat 39°26'04", long 75°13'08", Cumberland County, at bridge on Manheim Avenue in Bridgeton, 1,300 ft (4,000 m) upstream of East Lake.	4.64 197 (12.02 km²)	6-79 9-12-79	7.1
		Delaware River basin			
01439830	Big Flat Brook at Tuttles Corner, NJ	Lat 41°12'00", long 74°48'56", Sussex County, at bridge on State Route 521, 0.7 mi (1.1 km) west of intersection with U.S. Route 206 at Tuttles Corner, 1.2 mi (1.9 km) south of Layton, and 2.0 mi (3.2 km) above Little Flat Brook.	(73.0 km²) 1970	63, 12-07-78 -73, 8-01-79 79	24 7.7
01443450	Paulins Kill near Newton, NJ	Lat 41°04'59", long 74°46'57", Sussex County, at bridge at inlet of Paulins Kill Lake, 2.4 mi (3.9 km) northwest of Newton.	69.0 197 (178.7 km ²)	3-79 9-11-79	81
01443460	Paulins Kill at Paulins Kill, NJ	Lat 41°03'08", long 74°49'42", Sussex County, at bridge on Paulins Kill Lake Road, 300 ft (90 m) downstream from Paulins Kill Lake, 0.45 mi (0.72 km) southwest of Paulins Kill.	72.9 197 (188.8 km²)	3-79 9-11-79	80
01443475	Trout Brook near Middleville, NJ	Lat 41°03'03", long 74°51'23", Sussex County, at bridge on County Highway 612, 0.4 mi (0.6 km) upstream from mouth, 0.5 mi (0.8 km) southeast of Middleville, and 5.1 mi (8.2 km) west of Newton.	24.0 19 (62.2 km²)	979 4-19-79 9-11-79	64 39
*01445000	Pequest River at Huntsville, NJ	Lat 40°58'49", long 74°46'38", Sussex County, on right bank 20 ft (6 m) upstream from highway bridge in Huntsville, 0.4 mi (0.6 km) downstream from East Branch.	(81.3 km ²) 1963	0-62‡, 1-31-79 1-74, 6-22-79 6-79	3.5 42
*01446000	Beaver Brook near Belvidere, NJ	Lat 40°50'40", long 75°02'48", Warren County, on right bank, 2,000 ft (610 m) upstream from mouth and 2.0 mi (3.2 km) east of Belvidere.	36.2 1922- (93.7 Km²) 1963-	-61‡, (a) -79	b6.2
01455100	Lopatcong Creek at Phillipsburg, NJ	Lat 40°40'38", long 75°10'13", Warren County, at bridge on alternate U.S. Route 22 in Phillipsburg, 100 ft (30 m) upstream from tracks of Central Railroad of New Jersey, and 3,000 ft (910 m) above mouth.		3-64, 4-13-79 7-13-79	17 7.9
01455300	Pohatcong Creek at Carpenter- sville, NJ	Lat 40°37'30", long 75°11'10", Warren County, at bridge on Carpentersville-Riegelsville Road, 2,000 ft (610 m) above mouth, and 0.7 mi (1.1 km) south of Carpentersville.	(147.9 km²) 1958	932, 7-20-79 8-64, · 979	44
01455370	Weldon Brook at Hurdtown, NJ	Lat 40°58'10", long 74°35'56", Morris County, at bridge on Union Turnpike at Hurdtown, 500 ft (150 m) downstream from Lake Shawnee Dam.	8.10 197 (20.98 km²)	73-79 9-11-79	26
01458100	Hakihokake Creek at Milford, NJ	Lat 40°34'06", long 75°05'44", Hunterdon County, at highway bridge in Milford, 4,000 ft (1,200 m) upstream from mouth.	(44.5 km ²) 1958	944, 4-13-79 8-64, 7-30-79 979	32 32
01458400	Harihokake Creek near Frenchtown, NJ	Lat 40°32'53", long 75°04'09", Hunterdon County, at bridge on Frenchtown-Milford Road, 1,600 ft (490 m) upstream from mouth, and 1.5 mi (2.4 km) north of Frenchtown.	(25.3 km²) 1958	944, 4-12-79 8-65, 7-30-79 979	19 15

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

Discharge measurements made at low-flow partial-record stations during water year 1979--Continued

Station	Station name	Location	Drainage area (mi²)	Period of record	Measure Date	Discharge (ft ³ /s)
		Delaware River basinContinu	ed			
01461300	Wickecheoke Creek at Stockton, NJ	Lat 40°24'41", long 74°59'13", Hunterdon County, at bridge on State Route 29 at Stockton, and 900 ft (270 m) above mouth.	26.5 (68.9 km ²)	1944, 1958-64, 1979	4-12-79 7-12-79	31 3.7
01461900	Alexauken Creek near Lambert- ville, NJ	Lat 40°22'51", long 74°56'54", Hunterdon County, at bridge on State Route 29, 0.4 mi (0.6 km) upstream from mouth, and 1.1 mi (1.8 km) north of Lambertville.	14.9 (38.6 km ²)	1944, 1958-64, 1979	4-12-79 7-12-79	26 2.8
01467140	Cooper River at Lawnside, NJ	Lat 39°52'14", long 75°00'59", Camden County, at Lawnside, 300 ft (90 m) downstream of Lawnside Sewage Treatment Plant, and 0.2 mi (0.3 km) upstream of New Jersey Turnpike.	12.8 (32.9 km²)		3-22-79 6-13-79 8-16-79	26.9 32.8 18.8
01483010	Deep Run near Alloway, NJ	Lat 39°32'34", long 75°21'18", Salem County, at bridge on Telegraph Road, 0.8 mi (1.3 km) upstream from Elkinton Mill Pond, 1.3 mi (2.1 km) south of Alloway, and 2.5 mi (4.0 km) northwest of Pecks Conner.		1979	9-11-79	7.9

Also a crest-stage partial-record station.

Operated as a continuous-record gaging station.

Occurred during period Aug. 7 to Sept. 21, 1979.

Minimum recorded during year; computed from minimum gage reading and rating, discharge may have been lower at some time during year when gage was not operating.

CREST-STAGE PARTIAL RECORD STATIONS

The following table contains annual maximum discharges for crest-stage stations. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained, and discharge measurements may have been made for purposes of establishing the stage-discharge relation, but these are not published herein. The years given in the period of record represent water years for which the annual maximum has been determined. The gage heights are heights on the upstream side of the bridge, above the dam or at the discontinued continuous-record gaging station unless otherwise noted.

ANNUAL MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS

			4		Ann	nual max	imum
Station No.	Station name	Location	Drainage area (mi²)	Period of record		Gage height (feet)	Discharge
		Cohansey River basi	n			(1000)	,,,,,,
01412500	West Branch Cohansey River at Seeley, NJ	Lat 39°29'06", long 75°15'33", Cumberland County, on right bank 15 ft (4.6 m) upstream from county bridge, Highway 31, at Seeley, 450 ft (137 m) upstream from mouth and 4.1 m (6.6 km) northwest of Bridget Datum of gage is 42.23 ft (12 National Geodetic Vertical Da 1929.	1	1952-67‡, 1968-79	2-26-79	3.70	160
		Delaware River basi	.n				
*01445000	Pequest River at Huntsville, NJ	Lat 40°58'49", long 74°46'38", Sussex County, on right (bank, 20 ft (6.1 km) upstream from highway bridge in Hunts- ville, and 0.4 mi (0.6 km) downstream from East Branch. Datum of gage is 553.81 ft (168.801 m) National Geodetic Vertical Datum of 1929.	1	1940-62‡, 1963-79	1-25-79	5.44	640
*01446000	Beaver Brook near Belvidere, NJ	Lat 40°50'40", long 75°02'48, Warren County, on right (9 bank, 2,000 ft (610 m) upstream from mouth, and 2 mi (3 km) east of Belvidere. Datum of gage is 303.36 ft (92.464 m) National Geodetic Vertical Datum of 1929.	36.2 33.8 km ²)	1922-61‡, 1963-79	1-25-79	5,43	1,350
01455200	Pohatoong Creek at New Village, NJ	Lat 40°42'57", long 75°04'20", Warren County, at bridge (8 on Edison Road, 0.4 mi (0.6 km) southeast of New Village, and 4.3 mi (6.9 km) upstream from Merrill Creek. Datum of gage is 308.32 ft (93.976 m) National Geodetic Vertical Datum of 1929.	33.4 86.5 km ²)	1960-69‡, 1972-79	1-25-79	8.10	3,570
01455500	Musconetcong River at outlet of Lake Hopatcong, NJ	Lat 40°55'00", long 74°39'55", Morris County, on left bank (just upstream of highway bridge 300 ft (91 m) down- stream from Lake Hopatcong Dam in Landing. Datum of gage is 904.99 ft (275.841 m) National Geodetic Vertical Datum of 1929.	(66.3 km ²)	1929-75‡, 1976-79	1-08-79	3.21	188
01456000	Musconetcong River at Hackettstown, NJ	Lat 40°53'10", long 74°48'00", Warren County, on right (16 bank 75 ft (23 m) upstream from Saxton Falls Dam, 0.5 mi (0.8 km) upstream from Erie-Lackawanna Railway bridge, and 3.0 mi (4.8 km) northeast of Hackettstown. Datum of gage is 630.93 ft (192.307 m) National Geodetic Vertical Datum of 1929.		1921-73‡, 1974-79	1-25-79	3.79	2,000
01457500	Delaware River at Riegelsville, NJ	Lat 40°35'36", long 75°11'17", Warren County, at suspen- ('sion bridge at Riegels- ville, 600 ft (183 m) up- stream from Musconetcong River (flow of which is included in the records for this station since Oct. 1, 1931). Datum of gage is 125.12 ft (38.137 m) National Geodetic Vertical Datum of 1929.	6,328 16,390 km²)	1906-71‡, 1972-79	1-25-79	20.93	106,000

CREST-STAGE PARTIAL-RECORD STATIONS

ANNUAL MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS--Continued

		4	D	D	Ann	nual max	imum
Station No.	Station name	Location	Drainage area (mi²)	Period of record	Date	Gage height	Discharge
		Delaware River basinCont	inued				
01464400	Crosswicks Creek at New Egypt, NJ	Lat 40°04'03", long 74°31'57", Ocean County, at upstream side of bridge on State Route 528 in New Egypt, and 300 ft (91 m) downstream from Oakford Lake Dam. Datum of gage is 43.46 ft (13.247 m) National Geodetic Vertical Datum of 1929.	(97.1 km ²)	1968-79	1-22-79	e24.6	1,650
01464515	Doctors Creek at Allentown, NJ	Lat 40°10'37", long 74°35'57", Monmouth County, at bridge (10°00 Breza Road in Allentown, and 0.8 mi (1.3 km) downstream from Cornines Millpond dam. Datum of gage is National Geodetic Vertical Datum of 1929.	14.6 km ²)	1968-79	1-22-79	b57.78	t
01464520	Doctors Creek at Groveville, NJ	Lat 40°10'21", long 74°39'33", Mercer County, at bridge (69 on Groveville-Allentown road at Groveville, 0.7 mi (1.1 km) southeast of Yard- ville, and 1.5 mi (2.4 km) upstream of mouth. Datum of gage is 14.23 ft (4.337 m) National Geodetic Vertical Datum of 1929.	25.3 5.5 km ²)	1968-79	1-22-79	b8.86	1,550
01464530	Blacks Creek at Mansfield Square, NJ	Lat 40°07'02", long 74°41'58", Burlington County, at bridge on Mansfield Square-Crosswick Road, 0.4 mi (0.6 km) east of Mansfield Square, and 3.4 mi (5.5 km) upstream from mouth. Datum of gage is 12.44 ft (3.792 m) National Geodetic Vertical Datum of 1929.	d19.7 (51.0 km ²)	1978-79	8-31-78 1-21-79		
01464538	Crafts Creek at Columbus, NJ	Lat 40 °04'44", long 74°43'07", Burlington County, at bridge on Columbus-Mansfield road, 0.4 mi (0.6 km) north of Columbus, and 6.0 mi (9.6 km) northeast of Mount Holly. Datum of gage is 33.71 ft (10.275 m) National Geodetic Vertical Datum of 1929.	(13.93 km ²	1978 - 79	8-31-78 1-21-79		e550 467
01464582	Assiscunk Creek near Columbus, NJ	Lat 40°03'13", long 74°44'34", Burlington County, at bridge on Jacksonville Road, 1.7 min (2.7 km) southwest of Columbus 4.0 mi (6.4 km) northeast of Mount Holly, and 0.1 mi (0.2 the downstream from Assiscunk Brar	(28.2 km²) , (m)	1978-79	8-31-78 1-21-79	be11.1 b7.31	1,480 490
01465850	South Branch Rancocas Creek at Vincentown, NJ	Lat 39 °56'22", long 74°45'50", Burlington County, on left ('bank 150 ft ('46 m) down- stream from highway bridge on Lumberton-Vincentown road, 0.8 mi (1.3 km) west of Vincentown, 2.9 mi (4.7 km) southeast of Lumberton, and 3.1 mi (5.0 km) upstream from Southwest Branch. Datum of gage is 13.17 ft (4.014 m) National Geodetic Vertical Datum of 1929.	138.0 km ²)	962-75‡, 1976-79	2-25-79	7.82	1,250
01465882	Southwest Branch Rancocas Creek at Medford, NJ	Lat 39°54'16", long 74°48'47", Burlington County, at (12 bridge on State Route 70, 0.6 mi (1.0 km) northeast of Medford and 4.2 mi (6.8 km) upstrem from mouth. Datum of gage is 20.72 ft (6.315 m) National Geodetic Vertical Datum of 1929.	Revised)	1975-79	1-21-79	b7.33	4,800

CREST-STAGE PARTIAL-RECORD STATIONS

ANNUAL MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS--Continued

Station	Station name	Location	Drainage	Period	Annual maximum		
Station No.	Station name	Location	area (mi²)	of record	Date	Gage height	Discharge
		Delaware River basinCont	tinued				
01467057	Pompeston Creek at Cinnaminson, NJ	Lat 40°00'11", long 74°59'00", Burlington County, at U.S. Route 130 bridge, 0.7 mi (1.1 km) northwest of Cinna- minson, 1.7 mi (2.7 km) up- stream from mouth, and 2.1 mi (3.4 km) east of Palymra. Datum of gage is 11.36 ft (3.463 m) National Geodetic Vertical Datum of 1929.	5.75 (14.89 km ²)	1975 - 79)	1-21-79	b6.39	+*
01467069	North Branch Pennsauken Creek near Moorestown, NJ	Lat 39°57'10", long 74°58'10", Burlington County, at bridge on Route 41 (Kings Highway) 1.7 mi (2.8 km) southwest of Moorestown. Datum of gage is 5.9 ft (1.80 m) National Geodetic Vertical Datum of 1929.	12.8 (33.2 km ²)	1975-79	1-21-79	6.20	1,010
*01467130	Cooper River at Kirkwood, NJ	Lat 39°50'11", long 75°00'06", Camden County, 5 ft (1.5 m) upstream from dam at Kirk- wood Lake in Kirkwood, and 1.0 mi (1.6 km) north of Laurel Springs. Datum of gage is 57.82 ft (17.624 m) National Geodetic Vertical Datum of 1929.	5.14 (13.3 km ²)	1964-79	1-21-79	1.77	200
*01467160	North Branch Cooper River near Marlton, NJ	Lat 39°53'20", long 74°58'08", Camden County, at bridge on blacktop road to Spring- dale, 2.5 mi (4.0 km) west of Marlton. Datum of gage is 36.36 ft (11.083 m) National	5.33 (13.80 km ²	1964-79	1-21-79	b3.99	285
		Geodetic Vertical Datum of 1929.			2 . (20 7	
*01467305	Newton Creek at Collingswood, NJ	Lat 39°54'30", long 75°03'13", Camden County, at bridge on Park Avenue in Collingswood, 0.3 mi (0.5 km) east of Cuthbert Avenue. Datum of gage is 18.74 ft (5.712 m) National Geodetic Vertical Datum of 1929.	1.32 (3.42 km ²	1964-79	8-12-79	3.26	152
01467317	South Branch Newton Creek at Haddon Heights, NJ	Lat 39°52'45", long 75°04'26", Camden County, at bridge on Haddon Heights Park in Haddon Heights, and 2.6 mi (4.2 km) south of Collingswood. Datum of gage is 23.34 ft (7.114 m) National Geodetic Vertical Datum of 1929.		1964 - 79	9-06-79	2.43	15
*01467330	South Branch Big Timber Creek at Blackwood, NJ	Lat 39°48'17", long 75°03'13", Camden County, at bridge on Lower Landing Roaod in Black- wood, and 3.0 mi (4.8 km) upstream from mouth. Datum o gage is 8.41 ft (2.563 m) National Geodetic Vertical Datum of 1929.	(49.5 km ²)	1964-79	1-21-79	b4.99	620
01467351	North Branch Big Timber Creek at Laurel Road at Laurel Springs, NJ	Lat 39°49'07", long 75°00'56", Camden County, at bridge on Laurel Road in Laurel Springs and 2.5 mi (4.0 km) upstream from confluence with the Sout Branch. Datum of gage is 26.89 ft (8.196 m) National Geodetic Vertical Datum of 1929.		1976 - 79	1-21-79	1.93	+
01475000	Mantua Creek at Pitman, NJ	Lat 39°44'14", long 75°06'53", Gloucester County, on left (1 abutment of Wadsworth Dam, 0.9 mi (1.4 km) east of Pitman, and 2.0 mi (3.2 km) upstream from Porch Branch. Datum of gage is 68.51 ft (20.882 m) National Geodetic	6.75 1 7.48 km ²)	940-76‡, 1977-79	5-25-79	1.83	145
		Vertical Datum of 1929.					

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

CREST-STAGE PARTIAL-RECORD STATIONS

ANNUAL MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS--Continued

					Anı	nual max	imum
Station No.	Station name	Location	Drainage area (mi²)	Period of record	Date	Gage height	Discharge
		Delaware River basinCont	inued				
01475019	Mantua Creek at Salina, NJ	Lat 39°46'13", long 75°05'59", Gloucester County, at bridge on Salina-Sewell Road, 0.2 mi (0.3 km) downstream of Bees Branch, and 0.5 mi (0.8 km) west of Salina. Datum of gage is 11.67 ft (3.557 m) National Geodetic Vertical Datum of 1929.	14.2 (36.8 km ²)	1975-79	1-21-79	a6.3	5.50
01477110	Raccoon Creek at Mullica Hill, NJ	Lat 39°44'10", long 75°13'30", Gloucester County, at bridge State Routes 45 and 77 in Mullica Hill, 1,200 ft (370 m) downstream of Mullica Hill Pond and 5.5 mi (8.8 km) west of Pitman. Datum of gage is 21.91 ft (6.678 m) National Geodetic Vertical Datum of 192	(40,4 km ²)	1978-79	1-22-79	b3.43	†
01477480	Oldmans Creek near Harrisonville, NJ		13.6 (35.2 km ²)	1975-79	1-21-79	5.98	600

^{*} Also a low-flow partial-record station.
† Discharge not determined.
† Operated as a continuous-record gaging station.
Estimated.
b Downstream side of bridge.
c Not previously published.
d Revised.
e Peak may have been higher on Feb. 25, 1979.

DISCHARGE MEASUREMENT AT MISCELLANEOUS SITES

Measurements of streamflow at points other than gaging stations are given in the following table. Those that are measurements of base flow are designated by an asterisk (*); measurements of peak flow by a dagger (†).

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1979

				Measured	Measu	rements		
Stream	Tributary to	Location	Drainage area (mi²)	previously (water years)	Date	Discharge (ft³/s)		
Delaware River basin								
01443440 Paulins Kill	Delaware River	Lat 40°06'20", long 74°45'19", Sussex County, at bridge in Balesville, 2.3 mi (3.7'km) upstream from Paulins Kill Lake, and 3.0 mi (4.8 km) north of Newton.	67.1 (173.8 km ²)	-	4-29-79 8-01-79	*162 *28		
01444100 Paulins Kill	Delaware River	Lat 40°55'14", long 75°05'18", Warren County, at bridge on U.S. Route 46 at Columbia, 2.3 mi (3.7 km) southwest of Polkville, and 3.2 mi (5.2 km) southeast of Knowlton.	177 (458 km ²)	1978	12-14-78 7-31-79	300 *75		
01446400 Pequest River	Delaware River	Lat 40°49'45", long 75°04'44", Warren County, at bridge on State Route 519, in Belvidere, 1,400 ft (430 m) upstream of mouth.	158 (409 km²)	1950, 53, 1955, 74, 1977-78	10-17-78 12-06-78 4-19-79 6-27-79 7-31-79 8-14-79 9-28-79	*72 *125 369 *155 78 110 *131		
01455801 Musconetcong River	Delaware River	Lat 40°55'10", long 74°44'07", Sussex County, at bridge at Lockwood 0.2 mi (0.3 km) downstream from Lubbers Run, and 1.5 mi (2.4 km) northwest of Stanhope.	60.5 (156.7 km ²)	-	4-19-79 8-01-79	*138 *31		
01456200 Musconetcong River	Delaware River	Lat 40°48'48", long 74°50'32", Warren County, at bridge in Beatyestown, 2.1 mi (3.4 km) northeast of Stephensburg, and 3.0 mi (4.8 km) south of Hacketts town.	90.7 (234.9 km ²)	÷	5-25-79 7-31-79	508 *67		
01457400 Musconetcong River	Delaware River	Lat 40°35'32", long 75°11'20", Warren County, at bridge on State Highway 13 at Riegels- ville, 0.2 mi (0.4 km) north of Mount Joy, and 0.2 mi (0.3 km) upstream from mouth.	156 (404 km ²)	1940-55, 1973, 1977-78	12-21-78 4-13-79 7-20-79	285 346 *186		
01460880 Lockatong Creek	Delaware River	Lat 40°24'58", long 75°01'05", Hunterdon County, at bridge on Raven Rock-Rosemont Road, and 0.7 mi (1.1 km) upstream from mouth.	22.9 (59.3 km ²	1978	8-22-78 4-12-79 7-03-79 7-12-79	64.9 23 4.6 1.5		
01462005 Swan Creek	Delaware River	Lat 40°21'51", long 74°56'41", Hunterdon County, at bridge in Lambertville, 250 ft (76 m) upstream from Delaware and Raritan Canal feeder, 350 ft (107 m) downstream from State Route 29, and 500 ft (150 m) upstream from mouth.	3.28 (8.50 km	2)	4-12-79 5-24-79 7-12-79	*3.4 42 *0.27		
01463568 Assunpink Creek	Delaware River	Lat 40°13'05", long 74°33'08", Mommouth County, at bridge at Carsons Mills, 0.1 mi (0.2 km) upstream from New Sharon Branch, and 1.3 mi (2.1 km) northeast of Pages Corner.	12.5 (32.4 km ²)	3-29-79 5-07-79 5-24-79 8-07-79	*25 *13 56 *29		
01463625 Assunpink Creek	Delaware River	Lat 40°16'06", long 74°42'07", Mercer County, at bridge on Basin Road, midway between U.S. Route 1 and Penn Central railroad tracks, 0.5 mi (0.8 km) southeast of Bakersville, and 1.4 mi (2.3 km) southeast of Franklin Corner.	38.6 (100.0 km ²	1977-78	1-04-79 3-29-79 5-09-79 5-24-79	131 *67 *29 185		
01464375 North Run	Crosswicks Creek	Lat 40°02'21", long 74°35'20", Burlington County, at bridge on McGuire AFB access Road, 1.6 mi (2.6 km) southwest of Cookstown and 2.7 mi (4.3 km) upstream from South Run.	4.66 (12.06 km	2)	a8-31-78	+1860		

DISCHARGE AT PARTIAL-RECORD STAIONS AND MISCELLANEOUS SITES

DISCHARGE MEASUREMENTS AT MISCELLANEOUS SITES

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1979--Continued

			Drainage	Measured	Meas	urements
Stream	Tributary to	Location	area (mi²)	(water years)	Date	Discharge (ft³/s)
		Delaware River basinContinu	ied			
01464405 Crosswicks Creek tributary No. 2	Crosswicks Creek	Lat 40°04'38", long 74°31'00", Ocean County, at bridge on Lakewood Road, 1 mi (1.6 km) northwest of New Egypt and 1.4 mi (2.3 km) upstream from mouth.	1.02 (2.64 km ²	-	a8-31-79	+340
01465835 South Branch Rancocas Creek	Rancocas Creek	Lat 39°55'23", long 74°43'05", Burlington County, at bridge on light-duty Road, downstream from Friendship Creek, 0.5 mi (0.8 km) northwest of Retreat, and 2.0 mi (3.2 km) southwest of Vincentown.	44.4' (115.0 km²)	-	3-28-79 5-22-79 5-24-79	*104 177 188
01465970 North Branch Rancocas Creek	Rancocas Creek	Lat 39°58'04", long 74°34'48", Burlington County, at bridge on Lakehurst Road in Browns Mills, at outflow of Mirror Lake, 5.0 mi (8.0 km) east of Pemberton.	19.5 50.5 km ²	-	5-22-79	*75
01467120 Cooper River	Delaware River	Lat 39°49'43", long 74°58'55", Camden County, at bridge on Morcross Road in Lindenwold 50 ft (15 m) downstream from outflow of Linden Lake, 1.1 mi (1.8 km) southwest of Gibbsboro, and 3.7 mi (6.0 km) northeast of Berlin.	1.13 (2.93 km²	-	3-26-79 5-25-79 6-13-79 7-23-79	2.4 7.4 2.0 *0.89
01467329 South Branch Big Timber Creek	Delaware River	Lat 39°48'05", long 75°04'27", Gloucester County, at bridge on Blackwood-Clementon Road in Blackwood, at Blackwood Lake 3.5 mi (5.6 km) west of Linden- wold.	19.1 (49.5 km ²	-	3-21-79 5-25-79 6-12-79 7-17-79	*35 222 92 206
01477510 Oldmans Creek	Delaware River	Lat 39°41'57", long 75°20'01", Salem County, at bridge on Kings Highway in Porches Mill, 1.0 mi (1.6 km) north of Seven Stars, and 3.1 mi (4.8 km) north of Woodstown.	21.0 (54.4 km ²)	5-25-79 6-06-79	232 *44

Base flow.
 Not previously published.
 Incorrectly published at sta. 01460900 in state report for 1978.

The following table contains annual maximum stages for tidal crest-stage stations. The information is obtained from a crest-stage gage or a water-stage recorder located at each site. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. All stages are elevations above National Geodetic Vertical Datum of 1929 unless otherwise noted. Only the maximum stage is given. Information on some other high stages may have been obtained but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined.

ANNUAL MAXIMUM STAGES AT TIDAL CREST-STAGE PARTIAL-RECORD STATIONS

Station No.	Station name	Location	Period of record	Date	el maximum Elevation NGVD* (feet)
01411395	Cape May Canal at North Cape May, NJ	Lat 38°58'02", long 74°57'25", Cape May County, on Cape May Canal on slip of Cape May, New Jersey to Lewes, Delaware, ferry, 0.5 mi (0.8 km) east of west end of Cape May Canal, and 0.8 mi (1.3 km) south of North Cape May.	1965-79	-	112
01411409	Delaware Bay at Reeds Beach, NJ	Lat 39°06'32", long 074°53'39", Cape May County, at boat ramp in Cooks Beach, 0.2 mi (0.3 km) south of Reeds Beach, 4.8 mi (7.7 km) northwest of Cape May Court House, and 5.8 mi (9.3 km) north of Villa.	1979	2-26-79	6.37
01412150	Maurice River at Bivalve, NJ	Lat 39°13'42", long 75°02'12", Cumberland County, on right bank on bulkhead piling on the south side of Bivalve, and 1.3 mi (2.1 km) south of Port Norris.	1965-79	4-04-73 12-09-73 12-04-74 9-26-76 2-26-79	a5.96 a6.61 a6.60 a6.36 a6.57
01413038	Cohansey River at Greenwich, NJ	Lat 39°23"02", long 075°20'58" Cumberland County, at Greenwich Pier, 0.7 mi (1.1 km) southwest of Greenwich, and 5.8 mi (9.3 km) southwest of Shi	1979	2-26-79	5.89
01464040	Delaware River at Marine Terminal, Trenton, NJ	Mercer County, on left bank 1	921-46‡, 951-54‡, 957-79‡	-	÷
01477050	Delaware River at Chester, PA	Lat 39°50'12", long 75°22'00", Delaware County, Hydrologic Unit 02040202, at end of Reynolds Aluminum Company pier 0.5 mi (0.8 km) downstream from Chester Creek, and at channel mile d2.30 (132.42 km).	1972 - 77‡, 1979	2-26-79	7.53
01482705	Delaware River at Oakwood Beach, NJ	Lat 39°33'18", long 75°31'11", Salem County, on left bank on bulkhead piling at Oakwood Beach, 1.3 mi (2.1 km) south of mouth of Salem River, 2.4 mi (3.9 km) east of Reedy Point, Delaware, and 3.0 mi (4.8 km) southwest of Salem.	1965-79	7-29-65 10-07-65 5-24-67 6-13-68 7-01-69 11-10-69 12-13-70 2-19-72 2-04-73 12-09-73 12-02-74 a 10-20-75 10-09-76 12-21-77 2-26-79	d5.33 d6.51 d6.25 d6.18 d5.76 d5.92 d5.73 d6.01 d6.65 d6.41 d6.54 ad5.81 d6.18

Unavailable at time of publication National Geodetic Vertical Datum of 1929 (NGVD). Operated as a continuous-record gaging station.

Revised.

Gage datum; not National Geodetic Vertical Datum of 1929 datum. Furnished by National Ocean Survey.
Adjusted to National Geodetic Vertical Datum of 1929.

SUSPENDED SEDIMENT DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

				PERT
				SEDI-
				MENT
		STREAM-	SEDI-	DIS-
		FLOW,	MENT,	CHARGE,
		INSTAN-	SUS-	SUS-
	TIME	TANEOUS	PENDED	PENDED
DATE		(CFS)	(MG/L)	(T/DAY)

01411880 - MAURICE R AT SHARP ST AT MILLVILLE NJ (LAT 39 24 01 LONG 075 03 15)

OCT , 1978 12... 1130 -- 3 --

01412000 - MENANTICO C NR MILLVILLE NJ (LAT 39 25 12 LONG 074 58 00)

OCT , 19				
24	1400	20	3	.16
NOV				
24	1610	24	4	.26
JAN , 19	179		5.00	
19	1220	37	3	.30
FEB				
26	1530	449	15	18
MAR				
09	0940	150	15	6.1
MAY				
03	1050	46	24	3.0
JUN			-	
06	0915	106	5	1.4
JUL				
19	0915	61	65	11
SEP	4000	2.2	0	
14	1220	33	8	.71

01412800 - COHANSEY R AT SEELEY NJ (LAT 39 28 21 LONG 075 15 21)

FEB , 19	79			
14	1045	28	57	4.3
26	1810	532	137	197
APR				
05	1030	47	9	1.1
MAY				
22	1145	40	5	.54
JUL				
09	1100	30	8	.65
25	1100	36	6	.58
26	0905	33	21	1.9
AUG				
09	1100	26	8	.56
30	1030	E50	5	
SEP				
27	1330	32	44	3.8
28	1125	31	4	.33

'01413015 - COHANSEY R AT BRIDGETON NJ (LAT 39 25 54 LONG 075 14 11.01)

FEB , 19	179		
14	1215	 11	
APR			
05	1240	 25	
JUN			
11	1030	 43	
JUL			
09	1245	 58	
AUG			
09	1245	 42	

				SEDI-
				MENT
		STREAM-	SEDI-	DIS-
		FLOW,	MENT,	CHARGE,
		INSTAN-	SUS-	SUS-
	TIME	TANEOUS	PENDED	PENDED
DATE		(CFS)	(MG/L)	(T/DAY)

01438500 - DELAWARE R AT MONTAGUE NJ (LAT 41 18 30 LONG 074 47 50)

OCT , 19	1510	2890	1	7.8
DEC				
11	1255	6800	11	202

01439830 - BIG FLAT BK AT TUTTLES CORNER NJ (LAT 41 12 00 LONG 074 48 56)

JAN , 19	79			
30	1115	115	2	. 62
MAR				
29	1115	85	11	2.5
MAY				
23	1050	41	4	. 4.4
AUG				
28	0930		3	

01440000 - FLAT BK NR FLATBROOKVILLE NJ (LAT 41 06 24 LONG 074 57 09)

OCT , 19	78			
03	1330	14	1	.04
05	1630	18	1	.05
NOV				
02	1040	15	1	.04
DEC				
07	1125	51	1	. 14
JUN , 19				
26	1720	46	12	1.5
AUG				
17	1310	. 27	2	. 15

01440200 - DELAWARE R NR DELAWARE WATER GAP, PA. (LAT 41 00 42 LONG 075 05 09)

OCT , 19	78			
19	1420	1970	2	11
27	1500	2000	3	16
APR , 19	1625	14600	3	118
JUL	******		1	
10	1730	1750	2	9.4
SEP 12	1300	3620	. 4	39

01443000 - DELAWARE R AT PORTLAND PA (LAT 40 55 30 LONG 075 05 55)

OCT , 19	1100		2	
MAR , 19	1100	-	21	4.5
APR				
30	1030		16	
JUN 04	1015		23	

01443440 - PAULINS KILL AT BALESVILLE NJ (LAT 41 06 20 LONG 074 45 19.01)

JAN , 19	79			
30	1310		11	
MAR 29	1310		4	
MAY 23	1250	92	10	2.5

			SEDI- MENT,	SEDI- MENT DIS- CHARGE,			
DATE	TIME	INSTAN- TANEOUS	SUS- PENDED (MG/L)	SUS- PENDED (T/DAY)			
- PAULINS	KILL AT	BLAIRSTOWN	NJ (LAT	40 58 44	LONG	074 5	7 15)
OCT , 19	78						

01443500

OCT , 19	78			
03	1100	32	2	. 17
05	1350	52	3	. 42
NOV				
02	1515	50	1	.13
DEC				
14	1445	E 171	4	1.8
FEB , 19	79			
27	1100	E700	28	53
MAR				
30	1630	297	4	3.2
APR	5.032	4.7.5		
24	1030	219	5	3.0
MAY				
24	0930	E400	78	84
JUN				
21	1715	130	17	6.0
AUG				
15	1240	92	4	.99

01443900 - YARDS C NR BLAIRSTOWN NJ (LAT 40 58 51 LONG 075 02 25)

OCT , 19	78			
05	1030	1.1	3	.01
NOV				
03	1110	1.3	1	.00
DEC				
14	1210	8.6	1	.02
APR , 19	79			
03	1415	91	30	7.4
JUN				
21	1330	1.5	15	. 06

01444100 - PAULINS KILL AT MOUTH AT COLUMBIA NJ (LAT 40 55 14 LONG 075 05 18)

OCT , 19			3		
FEB , 19	1300	1.111.0	20	100	
27 APR	1300	1440	28	109	
24	1150	1070	5	14	
MAY 24	1145	710	29	56	

01444800 - DELAWARE R NR RICHMOND PA (BELVIDERE NJ) (LAT 40 49 44 LONG 075 05 06)

00m .0				
OCT , 19	1315	2020	2	11
MAR , 19	1315	15200	22	903
APR 30	1245	15500	13	544
JUN 04	1230	13100	21	743

01445430 - PEQUEST RIVER AT TOWNSBURY, NJ (LAT 40 51 06 LONG 074 56 02)

NOV , 19	78			
03	1425	25	3	.20
DEC				
13	1630	120	9	2.9
	79			
30	1225	174	19	8.9
JUN				
15	1715	196	66	35
AUG				
07	1900	2,9	5	.39
SEP				
06	1130	405	734	803

		STREAM-	SEDI-	SEDI- MENT DIS-	
		FLOW,	MENT,	CHARGE,	
	TIME	INSTAN- TANEOUS	SUS- PENDED	SUS - PENDED	
DAT	E	(CFS)	(MG/L)		
01445500 -	PEQUEST R A	T PEQUEST	NJ (LAT	40 49 43 LONG	074 58 45)
NOV	. 1978				
07. DEC	, 1978 1600	51	1	. 14	
07.	1640	74	2	.40	
MAR 29.	, 1979 1750	277	22	16	
JUN		241		48	
15. AUG			73		
07.	1330	48	5	.65	
01446000 - B	EAVER BK NR	BELVIDERE	NJ (LAT	40 50 40 LONG	075 02 48)
JAN	, 1979				
18.	1100	90	8	1.9	
MAR 26.	1030	112	7	2.1	
MAY 15.	1000	57	7	1.1	
AUG 09.			3		
٠,٠	1015		3		
01446400 - P	EQUEST R AT	BELVIDERE	NJ (LAT	40 49 45 LONG	075 04 44)
ост	, 1978				
02.	, 1978 1030 , 1979		4		
18.	1300	355	73	70	
MAR 26.	1250		158		
MAY 15.			36		
AUG					
09.	1115		8		
01446500 - DE	LAWARE R AT	BELVIDERE	NJ (LAT	40 49 36 LONG	075 05 02)
OCT	, 1978				
17.	0900	3070	115		
26. DEC		2120	115	658	
06.	1415	3590	2	19	
01447000 - DELAWARE	R AT NORTHA	MPION ST A	T EASTON	PA (LAT 40 41	30 LONG 075 12 1
OCT	. 1978				
04.	, 1978 1100 , 1979		3		
06.	1015		230		
MAY 01.	1000		10		

01455100 -	LOPATCONG	AT	PHILLIPSBURG	NJ	(LAT	40	40	38	LONG	075	10	13)

JAN , 19	79		
24	1215	 2680	
MAR			
20	1150	 5	
MAY			
16	1130	 8	
24	1610	 57	
AUG			
07	1145	 29	
SEP			
26	1300	 2	

1010 1315

				SEDI- MENT
		STREAM-	SEDI-	DIS-
		FLOW.	MENT.	CHARGE,
		INSTAN-	SUS-	SUS-
	TIME	TANEOUS	PENDED	PENDED
DATE		(CFS)	(MG/L)	(T/DAY)

01455160 - BRASS CASTLE C NR WASHINGTON NJ (LAT 40 45 55 LONG 075 01 07)

OCT , 19	78			
25		.30	1	.00
DEC				
20	1310	. 85	1	.00
MAR , 19	179			
28	1730	3.9	2	.02

01455200 - POHATCONG C AT NEW VILLAGE NJ (LAT 40 42 57 LONG 075 04 20)

79			
1030	155	40	17
1015	54	6	.87
0950	35	9	.85
1015	17	11	.50
1000	25	27	1.8
	1030	1030 155 1015 54 0950 35 1015 17	1030 155 40 1015 54 6 0950 35 9 1015 17 11

01455300 - POHATCONG C AT CARPENTERSVILLE NJ (LAT 40 37 30 LONG 075 11 10)

JAN , 19	79		
24	1350	 1210	
MAR			
20	1330	 8	
MAY			
16	1300	 6	
AUG			
07	1315	 19	

01455500 - MUSCONETCONG R AT OUT OF LAKE HOPATCONG NJ (LAT 40 55 00 LONG 074 39 55)

179			
1030		2	
1030		1	
1000		5	
	1030	1030	1030 2 1030 1

01455801 - MUSCONETCONG R AT LOCKWOOD NJ (LAT 40 55 10 LONG 074 44 07)

JAN , 19	79		
23	1210	 5	
MAR 27	1145	 6	
MAY	1145	 33	

01456200 - MUSCONETCONG R AT BEATTYSTOWN (LAT 40 48 48 LONG 074 50 32)

JAN , 19	79		
23	1345	 51	
MAR			
27	1320	 8	
MAY			
24	1310	 228	

						- 1	
	100				SEDI-		
					MENT		
	3		STREAM-	SEDI-	DIS-		
			FLOW, INSTAN-	MENT, SUS-	CHARGE,		
		TIME	TANEOUS	PENDED	PENDED		
	DATE		(CFS)	(MG/L)	(T/DAY)		
				,,,,,,			
01457000 -	anadolla	700HC P H	n nt courn	mir 41 /		10 1040 0	26 02 1101
01457000 -	MUSCONE	ICONG K N	K BLOOMSBU	NI NO (L	A1 40 40	20 LUNG U	15 03 401
	OCT , 1	978					
	25	1540	87	3	.70		
	DEC		214	6			
	20	1630	214	. 0	3.5		
	MAR , 1	1245	323	14	12		
	JUN		3-3				
1	14	1315	375	46	47		
	AUG						
	03	1130	103	. 5	1.4		
01457400 -	MUSCONET	CONG R AT	RIEGELSVI	LLE N.I C	LAT 40 35	32 LONG	075 11 20)
			NILODED VI	LEED NO (30 0000	
					9.0		
	FEB , 1	979				1	
	28	1010		. 45	**		
1	APR 16	1015		. 55			
	MAY	1015	1				
	29	1010		62			
	JUL						
	25	1030		29			
	OCT , 1	978		. 4			
	04	1300		. 4			
01458100	- HAKIH	OKAKE C A	T MILFORD	NJ (LAT	40 34 06	LONG 075	05 44)
	eed 1	070				13	
	FEB , 1	1145		9			
	APR	.,				V	
	16	1155		. 3			
	MAY	1000					
	29	1230		11			
	25	1230		. 2			
				_		Ca Table	
01458400	- HARIHO	KAKE C NE	FRENCHTO	WN NJ. (LA	T 40 32 5	3 LONG 07	5 04 09)
	FF0 1	070					
	FEB , 1	1340	44	17			
	APR						
	16	1330		2			
1 11 11	MAY			1			
- 12	29	1345		. 5			
	25	1330		6			
11.7				1			
1, 21, 1.	The same of						20 202
01458500	- DELAW	ARE R AT	FRENCHTOW	N NJ (LA	r 40 31 31	LONG 075	03 55)
	OCT .	1978				7	
	02	1000	***	6			
	MAR .	1979					

312

7

26

MAR , 1979 06... 1300

1245

1250

SUSPENDED SEDIMENT DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

				SEDI- MENT
		STREAM-	SEDI-	DIS-
		FLOW.	MENT.	CHARGE,
		INSTAN-	SUS-	SUS-
	TIME	TANEOUS	PENDED	PENDED
DATE		(CFS)	(MG/L)	(T/DAY)

01460500 - DELAWARE AND RARITAN CA AT KINGSTON NJ (LAT 40 22 24 LONG 074 37 08)

MAR , 19	179			
30	1330	110	13	3.9
MAY 30	1330	84	16	3.6
SEP 26	1345	85	19	4.4

01460880 - LOCKATONG C AT RAVEN ROCK NJ (LAT 40 24 58 LONG 075 01 05.01)

MAR , 19	79		
01	0950	 17	
APR			
26	0915	 12	
JUN			
07	0940	 1	
SEP			
27	0945	 4	

01461000 - DELAWARE R AT LUMBERVILLE PA (LAT 40 24 27 LONG 075 02 16)

OCT , 19	78		
02		 6	
MAR , 19			
07	0945	 287	
MAY			
02	0915	 11	
JUN			
06	0930	 21	

01461300 - WICKECHEOKE C AT STOCKTON NJ (LAT 40 24 41 LONG 074 59 13)

OCT , 19	78		
05	1415	 3	
MAR , 19	79		
01	1110	 9	
APR			
26	1020	 4	
JUN			
07	1100	 7	
SEP			
27	1145	 2	

01461900 - ALEXAUKEN C NR LAMBERTVILLE NJ (LAT 40 22 51 LONG 074 56 54)

MAR . 19	79		
01	1250	 23	
APR 26	1130	 1	
JUN			
07 SEP	1300	 4	7.7
27	1345	 6	
27	1500	 3	

01462000 - DELAWARE R AT LAMBERTVILLE NJ (LAT 40 21 53 LONG 074 56 57)

		4.	
OCT , 19	78		
05	1300	 7	
MAR , 19	79		
07	1130	 330	
MAY			
02	1115	 11	
JUN			
06	1130	 23	

STREAM		INSTAN- TANEOUS	SUS- PENDED	CHARGE, SUS- PENDED	
--------	--	--------------------	----------------	---------------------------	--

01462005 - SWAN CK AT LAMBERTVILLE NJ (LAT 40 21 51 LONG 074 56 41)

APR , 19	179		
26	1300	 7	
MAY	4445		
24 JUN	1115	 20	
07	1410	 5	

01462500 - DELAWARE R AT WASHINGTON CROSSING NJ (LAT 40 17 20 LONG 074 52 08)

MAR , 19	79		
07	1345	 276	
MAY			
02	1345	 10	
JUN			
06	1345	 19	

01463568 - ASSUNPINK C AT CARSONS MILLS NJ (LAT 40 13 05 LONG 074 33 38)

FEB , 19	179			
08	1030		13	
MAR				
29	0900	25	181	12
MAY				
07	1430	13	30	1.1
24	1220	56	14	2.1
JUN				•.
13	1345		4	
JUL				
17	1130		81	
AUG				
07	1130	29	12	. 94
SEP				
19	1315		14	

01463610 - ASSUNPINK C AT EDINBURG NJ (LAT 40 15 28 LONG 074 37 05)

AUG , 1979 09... 1130 -- 8 --

01463620 - ASSUNPINK C NR CLARKSVILLE NJ (LAT 40 16 11 LONG 074 40 20)

OCT , 19	78			
17	1350	25	9	.61
NOA				
12	1200	18	6	.29
DEC 19	1215	56	21	3.2
JAN , 19			7.5	
23	1115	216	90	52
MAR			1	
29	1220	59	28	4.5
MAY				
09	1535	30	8	.65
JUN				
13	1000	92	11	2.7
25	1415	38	20	2.1
JUL				
30	1100	9.5	34	. 87
AUG				
14	1100	70	17	3.2
30	1510	41	15	1.7
SEP				
19	0915	56	18	2.7

		DATE		TI	МЕ	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SED: MEN: SUS- PENI	r, DED	ME DIS CHA SUS	S- RGE S- NDE	D
463625	-	ASSUN	PINK	С	AT	BAKERSVILLE	NJ	(LAT	40	16	0

014 06 LONG 074 42 07)

> MAY , 1979 09... 1125 24... 1015 10 .78 45 22 185

01464000 - ASSUNPINK C AT TRENTON NJ (LAT 40 13 27 LONG 074 44 58)

OCT , 1978 03... 1120 04... 0900 APR , 1979 24... 1230 2.7 66 13 116 16 5.0 MAY 07... JUN 25... AUG 10... 1140 95 12 3.1 1030 81 85 19 1100 22 6.6 111

01464500 - CROSSWICKS C AT EXTONVILLE (LAT 40 08 15 LONG 074 36 02)

OCT , 1978 04... 1245 10... 1215 70 68 23 4.3 10... .55 3 20... 1240 92 10. 2.5 JAN , 1979 18... 1115 144 7 2.7 18... APR 04... MAY 15... JUN 11... 0900 155 17 7.1 1625 35 14 152 1000 101 39 11 JUL 24... 27 1245 100 99 AUG 06... 1330 205 134 74 0845 68 10 10... 1.8 3.0 23... 30... SEP 108 32 1115 68 14 2.6

01464505 - CROSSWICKS C AT GROVEVILLE NJ (LAT 40 10 26 LONG 074 40 48)

OCT , 1978 04... 1500 FEB , 1979 08... 1100 38 1 MAR 22... 25 0930 JUN 07... 0930 30 JUL 17... 1445 43

01464515 - DOCTORS C AT ALLENTOWN NJ (LAT 40 10 37 LONG 074 35 57)

FEB , 1979 08... 1330 8 MAR 23... 0845 7 JUN 11... 1300 35 JUL 17... 1300 20 AUG 07... 1415 11 SEP 20... 0845 6

				SEDI- MENT
		STREAM-	SEDI-	DIS-
		FLOW,	MENT,	CHARGE,
		INSTAN-	SUS-	SUS-
	TIME	TANEOUS	PENDED	PENDED
DATE		(CFS)	(MG/L)	(T/DAY)

01464520 - DOCTORS C AT GROVEVILLE NJ (LAT 40 10 21 LONG 074 39 33)

AUG , 1979 09... 1440 -- 7 --

01464522 - DOCTORS C AT RT 130 AT YARDVILLE NJ (LAT 40 10 31 LONG 074 40 33)

OCT . 19	78		
06	0915	 86	
FEB , 19	79		
08	1230	 13	
MAR	A - 100 - 2		
22	1145	 6	
JUN			
07	1245	 20	
JUL			
18	0900	 22	
AUG 06	1015	27	
SEP	1015	 21	
20	1500	 6	

01464530 - BLACKS C AT MANSFIELD SQUARE NJ (LAT 40 07 02 LONG 074 41 58)

FEB , 19 26	1720	535	254	367
JUN 27	1500	29	68	5.3
AUG 14	1430	22	10	.59

01464531 - BLACKS CK AT BORDENTOWN NJ (LAT 40 08 14 LONG 074 42 42)

OCT , 19	78		
02	1415	 13	
FEB , 19	79		
20	1315	 10	
MAR	4400		
26	1120	 16	
JUN 06	1400	 59	
JUL	, ,,,,	,,,	7.7
18	1030	 32	
AUG			
08	1300	 13	

01464538 - CRAFTS C AT COLUMBUS NJ (LAT 40 04 44 LONG 074 43 07)

FEB , 19	79				
26	1525	135	79	29	
JUL					
03	1005	1.9	83	. 43	
AUG					
15	1535	3.4	5	.05	

01464540 - CRAFTS C AT HEDDING NJ (LAT 40 06 01 LONG 074 45 23)

JAN , 19	179	1 .		
31	1045		11	
MAR				
27	0830		10	
JUN				
05	1300		18	
JUL				
18	1215		20	

				SEDI- MENT
		STREAM- FLOW, INSTAN-	SEDI- MENT, SUS-	DIS- CHARGE, SUS-
DATE	TIME	TANEOUS (CFS)	PENDED (MG/L)	PENDED (T/DAY)

01464580 - ASSISCUNK C AT COLUMBUS NJ (LAT 40 03 25 LONG 074 43 27)

FEB , 197	79			
06	1400		26	
MAR 26	0920	42	13	
JUN 06	1030		24	
JUL 19	1445		17	
AUG 17	1000		12	

01464582 - ASSISCUNK C NR COLUMBUS NJ (LAT 40 03 13 LONG 074 44 34)

FEB , 19 26	1325	370	56	56
JUL 03	1510	4.4	63	.75
AUG 15	1100	9.4	14	. 36

01464590 - ASSISCUNK C NR BURLINGTON NJ (LAT 40 04 19 LONG 074 47 57)

OCT , 19	78		
04	0930	 6	44
FEB , 19	79		
06	1030	 6	
MAR			
27	1245	 27	
JUN			
19	1330	 23	
JUL			
18	1330	 45	
AUG			
17	0800	 7	

01465835 - SB RANCOCAS C AT RETREAT (LAT 39 55 23 LONG 074 43 05)

JAN , 19	79			
31	1205		1	
MAR				
28	1030		13	
MAY				
22	1605	177	26	12
24	1520	188	29	15
JUN				
14	1300		4	
JUL				
19	1.100		15	
AUG	2223			
30	1330		9	

01465850 - SB RANCOCAS C AT VINCENTOWN NJ (LAT 39 56 22 LONG 074 45 50)

JAN , 19	79			
31	1005	168	1	. 45
MAR		1703		
28	0845	126	5	1.7
MAY				
29	1120	142	11	4.2
JUN 14	1000	106		0 11
JUL	1000	126	7	2.4
19	1245	82	28	6.2
AUG	1245	02	20	0.2
30	0915	490	25	33
SEP	0,.5	.,,0		33
26	0900	82	12	2.7
	- T-			

				SEDI- MENT
		STREAM-	SEDI-	DIS-
		FLOW,	MENT,	CHARGE,
	m T.4.D	INSTAN-	SUS-	SUS-
D. M.	TIME	TANEOUS	PENDED	PENDED
DATE		(CFS)	(MG/L)	(T/DAY)

01465882 - SWB RANCOCAS C AT RT 70 AT MEDFORD NJ (LAT 39 54 16 LONG 074 48 47)

FEB , 1979 27... 1445 205 25 14

01465900 - SWB RANCOCAS C AT EAYRESTOWN NJ (LAT 39 56 49 LONG 074 47 58)

OCT , 1978 04... 1230 -- 9 --

01465970 - NB RANCOCAS C AT BROWNS MILLS NJ (LAT 39 58 04 LONG 074 34 48)

FEB , 1979
15... 1445 -- 2 -MAR .
28... 1330 -- 55 -JUN
18... 1300 -- 5 -JUL
19... 0915 -- 8 -AUG
30... 1445 -- 8 --

01467000 - NB RANCOCAS C AT PEMBERTON NJ (LAT 39 58 10 LONG 074 41 05)

OCT , 1978 05... 1300 18... 1300 FEB , 1979 15... 1030 118 2.2 90 196 3 1.6 APR 03... 1055 236 69 44 JUN 18... 1000 307 9 7.5 JUL 26... 1200 155 18 7.5 AUG 30... 1000 363 13 13

01467006 - NB RANCOCAS C AT PINE ST AT MT HOLLY NJ (LAT 39 59 22 LONG 074 47 06)

OCT , 1978 05... 0900 -- 8 --

01467069 - NB PENNSAUKEN C NR MOORESTOWN NJ (LAT 39 57 07 LONG 074 58 10)

OCT , 1978 04... 0915 FEB , 1979 14... 1300 4.4 . 23 15 12 . 49 MAR 30... 0930 JUN 19... 1030 26... 1015 19 21 1.1 8.7 15 . 35 6.0 JUL 30... 1415 4.4 .02 AUG 28... 0900 4.4

STRI FLU INST TIME TANK	CAM- SEDI- W, MENT, C CAN- SUS- COUS PENDED	SEDI- MENT DIS- HARGE, SUS- PENDED
DATE (CE	'S) (MG/L) (T/DAY)

01467081 - SB PENNSAUKEN C AT CHERRY HILL NJ (LAT 39 56 30 LONG 075 00 05)

OCT , 19	978			
04	1040	E 10	11	
17	1750	E 14	19	
JAN , 19	979			
12	1335	13	16	.56
FEB				
20	1000	17	15	.69
MAR				
08	1315	23	27	1.7
27	1300	16	19	. 82
APR				
24	1700	16	19	. 82
JUN				
07	1215	15	21	. 85
JUL				
05	1200	9.3	53	1.3
AUG				
20	1130	7.9	12	. 26

01467120 - COOPER R AT NORCROSS RD AT LINDENWOLD NJ (LAT 39 49 43 LONG 074 58 55)

FEB . 19	79			
14	1015		2	
MAR				
26	1000	2.4	6	.04
MAY				
25	1440	7.4	2720	54
JUN	Lista	5.1		15.0
13	0900	2.0	4	.02
JUL	1222	4.0		
23	1000	.89		
AUG				
14	1045		3	0.00
SEP				
26	1015		3	

01467130 - COOPER R AT KIRKWOOD NJ (LAT 39 50 11 LONG 075 00 06)

OCT . 19	78		
05	0930	 29	
FEB , 19	79		
13	1300	 8	
MAR			
22	0945	 17	
JUN			
11	1315	 14	
AUG			
14	1245	 1.4	
SEP			
26	1215	 19	

01467140 - COOPER R AT LAWNSIDE NJ (LAT 39 52 14 LONG 075 00 59)

OCT , 19	78 1130	10	25	. 67
	79			
13	1000	30	26	2.1
MAR				
22	1230	27	34	2.5
MAY				
25	1240	175	101	48
JUN				
13	1200	29	26	2.0
JUL				
19	1115	41	97	11
AUG				
16	1300	19	14	. 72

				SEDI- MENT
		STREAM-	SEDI-	DIS-
		FLOW,	MENT,	CHARGE,
		INSTAN-	SUS-	SUS-
	TIME	TANEOUS	PENDED	PENDED
DATE		(CFS)	(MG/L)	(T/DAY)

01467150 - COOPER R AT HADDONFIELD NJ (LAT 39 54 11 LONG 075 01 19)

OCT . 19	78			
12	0920	19	29	1.5
17	1305	33	32	2.9
DEC				
01	1705	27	26	1.9
JAN , 19	79			
17	1520	33	22	2.0
APR				
03	1035	36	30	2.9
JUN				
19	1105	28	20	1.5

01467181 - NB COOPER R AT ERLTON NJ (LAT 39 54 31 LONG 075 01 32)

OCT , 1978 04... 1210 -- 13 --

01467190 - COOPER R AT CAMDEN NJ (LAT 39 55 35 LONG 075 05 03)

OCT , 19	78		
12	1120	 27	
FEB , 19	79		
27	1145	 60	
MAR			
27	0900	 90	
JUN			
11	1015	 16	
AUG			
29	1030	 22	

01467329 - SB BIG TIMBER C AT BLACKWOOD TERRACE NJ (LAT 39 48 05 LONG 075 04 27)

FEB , 19	79			
15	1000	34	5	. 46
MAR				
21	1015	34	19	1.7
MAY		1.12		
25	1630	197	43	23
JUN				
12	0930	99	10	2.7
JUL				
17	1130	204	220	121
AUG	0000	0.0		
22	0900	38	19	1.9

01467359 - NB BIG TIMBER C AT GLENDORA NJ (LAT 39 50 04 LONG 075 04 02)

OCT , 19	70			
10	0930		10	
	79			
15	1230	77	36	
MAR 21	1230		61	
JUN				
12	1300		25	
AUG	1045		45	

01467369 - ALMONESSON C AT RUNNEMEDE NJ (LAT 39 50 44 LONG 075 05 43)

OCT , 1978 10... 1110 -- 19 --

STREAM- SEDI- DISS- FLOW. MEMT, CHARGE, SUS- TIME TANEOUS PEADED PEADED O1475000 - MANTUA C AT PITMAN NJ (LAT 39 44 14 LONG 075 06 53) FEB , 1979 14 0915 12 3 .10. MAR. 20 0900 13 5 .18 JUH. 0900 14 2 .08 JUH. 0905 8.8 2 .05 AUG. 15 1215 11 14 .42 SEP. 25 1015 11 4 .12 O1475045 - MANTUA C AT MANTUA NJ (LAT 39 47 42 LONG 075 10 21) OCT , 1978 10 1215 11 4 EFB , 1979 14 1400 29 SEP. 25 1230 22 O1477100 - RACCOON C NR MULLICA HILL NJ (LAT 39 42 31 LONG 075 12 05) OCT , 1978 03 1055 1 SEP. 25 1230 26 14 13 13 13 15 14 13 13 15 14 13 15 14 15 14 15 15 16 1979 13 1000 26 17 1978 03 1780 15 18 13 13 15 19 13 15 19 13 15 19 13 15 19 13 1545 1 19 13 1545 1 19 13 13 15 19 13 13 15 15 19 13 13 15 19 13 13 15 19 13 1545 1 19 13 1245 43 24 2.8 MAR. 29 1545 45 13 1.6 19 13 1245 43 24 2.8 MAR. 29 1245 45 13 1.6 19 1300 93 32 8.0 19 1215 43 35 4.1 O1477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT , 1978 02 1979 13 1215 5 1979 14 1215 5 1979 14 1215 5 1979 14 1215 5 1979 14 1215 5 1979 14 1215 5 1979 14 1215 20						SEDI-	
TIME TANEOUS PENDED PENDED DATE TIME TANEOUS PENDED PENDED (CFS) (MG/L) (T/DAY) 01475000 - MANTUA C AT PITMAN NJ (LAT 39 44 14 LONG 075 06 53) FEB , 1979 14 0915 12 3 .10. MAR 0900 13 5 .18 JUL. 16 0945 8.8 2 .05 AUG. 15 1215 11 14 .42 SEP. 25 1015 11 4 .12 01475045 - MANTUA C AT MANTUA NJ (LAT 39 47 42 LONG 075 10 21) OCT , 1978 10 1245 7 AUG. 1245 7 AUG. 15 1245 7 AUG. 15 1245 7 AUG. 15 1245 7 AUG. 15 1200 29 SEP. 1230 22 01477100 - RACCOON C NR MULLICA HILL NJ (LAT 39 42 31 LONG 075 12 05) OCT , 1978 03 1055 1 FEB , 1979 13 1230 26 MAR 13 1230 26 19 1230 26 19 1245 1 OTHER COOK C NR SWEDESBORO NJ (LAT 39 44 28 LONG 075 15 33) NOV , 1978 29 1445 1 01477120 - RACCOON C NR SWEDESBORO NJ (LAT 39 44 28 LONG 075 15 33) NOV , 1978 29 1545 1 01477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT , 1978 03 1235 5 FEB , 1979 1215 20					MENT.	CHARGE.	
O1475000 - MANTUA C AT PITMAN NJ (LAT 39 44 14 LONG 075 06 53) FEB , 1979 14 0915 12 3 .10. MAR 20 0900 13 5 .18 JUN 0900 14 2 .08 JUN 0905 18.8 2 .05 AUG. 15 1215 11 14 .42 SEP. 25 1015 11 4 .12 O1475045 - MANTUA C AT MANTUA NJ (LAT 39 47 42 LONG 075 10 21) OCT , 1978 10, 1245 7 AUG. 1245 7 AUG. 1978 11 1245 7 AUG. 1978 25 1230 22 O1477100 - RACCOON C NR MULLICA HILL NJ (LAT 39 42 31 LONG 075 12 05) OCT , 1978 03 1055 1 FEB , 1979 13 1230 26 MAR 13 1230 26 13 1230 26 13 1230 3 O1477120 - RACCOON C NR SWEDESBORO NJ (LAT 39 44 28 LONG 075 15 33) NOV , 1978 29 1145 1 O1477120 - RACCOON C NR SWEDESBORO NJ (LAT 39 44 28 LONG 075 15 33) NOV , 1978 29 1545 29 6 .47 FEB , 1979 13 1245 43 24 2.8 MAR 29 1245 45 13 1.6 JUN 04 1300 93 32 8.0 AUG. 1215 43 35 4.1 O1477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT , 1978 03 1235 5 FEB , 1979 1215 20			TIME	TANEOUS	PENDED	PENDED	
FEB , 1979 14 0915 12 3 .10 MAR 20 0900 13 5 .18 JUN 14 0900 14 2 .08 JUL 16 0945 8.8 2 .05 AUG 15 1215 11 14 .42 SEP 25 1015 11 4 .12 01475045 - MANTUA C AT MANTUA NJ (LAT 39 47 42 LONG 075 10 21) OCT , 1978 10 1330 14 FEB , 1979 14 1245 7 AUG 15 1400 29 SEP 25 1230 22 01477100 - RACCOON C NR MULLICA HILL NJ (LAT 39 42 31 LONG 075 12 05) OCT , 1978 03 1055 1 FEB , 1979 13 1230 15 JUN 04 1000 26 MAR 19 1230 15 JUN 04 1000 1 AUG 21 1130 8 SEP 27 1145 1 01477120 - RACCOON C NR SWEDESBORO NJ (LAT 39 44 28 LONG 075 15 33) NOV , 1978 29 1545 29 6 .47 FEB , 1979 13 1245 43 24 2.8 MAR 29 1245 45 13 1.6 JUN 04 1300 93 32 8.0 AUG 28 1215 43 35 4.1 01477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT , 1978 03 1235 5 FEB , 1979 12 1215 20		DATE		(CFS)	(MG/L)	(T/DAY)	
FEB , 1979 14 0915 12 3 .10 MAR 20 0900 13 5 .18 JUN 14 0900 14 2 .08 JUL 16 0945 8.8 2 .05 AUG 15 1215 11 14 .42 SEP 25 1015 11 4 .12 01475045 - MANTUA C AT MANTUA NJ (LAT 39 47 42 LONG 075 10 21) OCT , 1978 10 1330 14 FEB , 1979 14 1245 7 AUG 15 1400 29 SEP 25 1230 22 01477100 - RACCOON C NR MULLICA HILL NJ (LAT 39 42 31 LONG 075 12 05) OCT , 1978 03 1055 1 FEB , 1979 13 1230 15 JUN 04 1000 26 MAR 19 1230 15 JUN 04 1000 1 AUG 21 1130 8 SEP 27 1145 1 01477120 - RACCOON C NR SWEDESBORO NJ (LAT 39 44 28 LONG 075 15 33) NOV , 1978 29 1545 29 6 .47 FEB , 1979 13 1245 43 24 2.8 MAR 29 1245 45 13 1.6 JUN 04 1300 93 32 8.0 AUG 28 1215 43 35 4.1 01477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT , 1978 03 1235 5 FEB , 1979 12 1215 20	014750	000 - MAN	TUA C AT	PTTMAN N.	(LAT 39	44 14 LON	G 075 06 53)
14 0915 12 3 .10 MAR 20 0900 13 5 .18 JUN 14 0900 14 2 .08 JUL 16 0945 8.8 2 .05 AUG 15 1215 11 14 .42 SEP 25 1015 11 4 .12 O1475045 - MANTUA C AT MANTUA NJ (LAT 39 47 42 LONG 075 10 21) OCT , 1978 10 1245 7 AUG 15 1400 29 SEP 25 1230 22 O1477100 - RACCOON C NR MULLICA HILL NJ (LAT 39 42 31 LONG 075 12 05) OCT , 1978 03 1055 1 FEB , 1979 13 1230 26 MAR 19 1230 26 MAR 19 1230 15 JUN 04 1000 26 AUG 21 1130 8 SEP 27 1145 1 O1477120 - RACCOON C NR SWEDESBORO NJ (LAT 39 44 28 LONG 075 15 33) NOV , 1978 29 1545 29 6 .47 FEB , 1979 13 1245 43 24 2.8 MAR 29 1245 45 13 1.6 JUN 04 1300 93 32 8.0 AUG 28 1215 43 35 4.1 O1477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT , 1978 03 1235 5 FEB , 1979 12 1215 20	014130	700 + 11411		TIMAN NO	, ,44. 32		4 013 00 333
20 0900 13 5 18 JUN 14 0900 14 2 .08 JUL 16 0945 8.8 2 .05 AUG 15 1215 11 14 .42 SEP 25 1015 11 4 .12 O1475045 - MANTUA C AT MANTUA NJ (LAT 39 47 42 LONG 075 10 21) OCT , 1978 10 1330 14 FEB , 1979 14 1245 7 AUG 15 1400 29 SEP 25 1230 22 O1477100 - RACCOON C NR MULLICA HILL NJ (LAT 39 42 31 LONG 075 12 05) OCT , 1978 03 1055 1 FEB , 1979 13 1230 15 JUN 04 1000 26 15 JUN 04 1000 1 AUG 21 1130 8 SEP 27 1145 1 O1477120 - RACCOON C NR SWEDESBORO NJ (LAT 39 44 28 LONG 075 15 33) NOV , 1978 29 1545 29 6 .47 FEB , 1979 13 1245 43 24 2.8 MAR 29 1245 45 13 1.6 JUN 04 1300 93 32 8.0 AUG 28 1215 43 35 4.1 O1477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT , 1978 03 1235 5 FEB , 1979 12 1235 5 FEB , 1979 12 1215 5 5 5 FEB , 1979 12 1215 5 5 5 5 5 5 5		FEB , 19	79			9.	
20 0900 13 5 .18 JUN 14 0900 14 2 .08 JUL 16 0945 8.8 2 .05 AUG 15 1215 11 14 .42 SEP 25 1015 11 4 .12 O1475045 - MANTUA C AT MANTUA NJ (LAT 39 47 42 LONG 075 10 21) OCT , 1978 10 19330 14 FEB , 1979 14 1245 7 AUG 15 1400 29 SEP 25 1230 22 O1477100 - RACCOON C NR MULLICA HILL NJ (LAT 39 42 31 LONG 075 12 05) OCT , 1978 03 1055 1 FEB , 1979 13 1000 26 MAR 19 1230 15 JUN 04 1000 1 AUG 21 1130 8 SEP 27 1145 1 O1477120 - RACCOON C NR SWEDESBORO NJ (LAT 39 44 28 LONG 075 15 33) NOV , 1978 29 1545 49 6 .47 FEB , 1979 13 1245 43 24 2.8 MAR 29 1245 45 13 1.6 JUN 04 1300 93 32 8.0 AUG 28 1215 43 35 4.1 O1477510 - OLDMANS C AT FORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT , 1978 03 1235 5 FEB , 1979 12 1215 5 FEB , 1979 12 1215 5 FEB , 1979 12 1215 5		14 MAR		12			
14 0900 14 2 .08 JUL 16 0945 8.8 2 .05 AUG 15 1215 11 14 .42 SEP 25 1015 11 4 .12 01475045 - MANTUA C AT MANTUA NJ (LAT 39 47 42 LONG 075 10 21) OCT , 1978 10 1330 14 FEB , 1979 14 1245 7 AUG 15 1400 29 SEP 25 1230 22 01477100 - RACCOON C NR MULLICA HILL NJ (LAT 39 42 31 LONG 075 12 05) OCT , 1978 03 1055 1 FEB , 1979 13 1000 26 MAR 19 1230 15 JUN 04 1000 1 AUG 21 1130 8 SEP 27 1145 1 01477120 - RACCOON C NR SWEDESBORO NJ (LAT 39 44 28 LONG 075 15 33) NOV , 1978 29 1545 29 6 .47 FEB , 1979 13 1245 43 24 2.8 MAR 29 1545 43 24 2.8 MAR 29 1245 45 13 1.6 JUN 04 1300 93 32 8.0 AUG 28 1215 43 35 4.1 01477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT , 1978 03 1235 5 FEB , 1979 12 1215 20		20	0900	13	5	.18	
16 0945 8.8 2 .05 AUG 15 1215 11 14 .42 SEP 25 1015 11 4 .12 01475045 - MANTUA C AT MANTUA NJ (LAT 39 47 42 LONG 075 10 21) OCT , 1978 10 1245 7 AUG 15 1400 29 SEP 25 1230 22 01477100 - RACCOON C NR MULLICA HILL NJ (LAT 39 42 31 LONG 075 12 05) OCT , 1978 03 1055 1 FEB , 1979 13 1000 26 MAR 19 1230 15 JUN 04 1000 1 AUG 21 1130 8 SEP 27 1145 1 01477120 - RACCOON C NR SWEDESBORO NJ (LAT 39 44 28 LONG 075 15 33) NOV , 1978 29 1545 29 6 .47 FEB , 1979 13 1245 43 24 2.8 MAR 29 1545 43 24 2.8 MAR 29 1245 45 13 1.6 JUN 04 1300 93 32 8.0 AUG 28 1215 43 35 4.1 01477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT , 1978 03 1235 5 FEB , 1979 12 1215 20		14	0900	14	2	.08	
15 1215 11 14 .42 SEP 25 1015 11 4 ,12 01475045 - MANTUA C AT MANTUA NJ (LAT 39 47 42 LONG 075 10 21) OCT , 1978		16.,.	0945	8.8	5	.05	
SEP 25 1015 11 4 ,12 01475045 - MANTUA C AT MANTUA NJ (LAT 39 47 42 LONG 075 10 21) OCT , 1978		AUG 15	1215	11	14	. 42	
O1475045 - MANTUA C AT MANTUA NJ (LAT 39 47 42 LONG 075 10 21) OCT , 1978		SEP			h		
OCT , 1978 10, 1330 14 FEB , 1979 14 1245 7 AUG 15 1400 29 SEP 25 1230 22 01477100 - RACCOON C NR MULLICA HILL NJ (LAT 39 42 31 LONG 075 12 05) OCT , 1978 03 1055 1 FEB , 1979 13 1000 26 MAR 19 1230 15 JUN 04 1000 1 AUG 21 1130 8 SEP 27 1145 1 01477120 - RACCOON C NR SWEDESBORO NJ (LAT 39 44 28 LONG 075 15 33) NOV , 1978 29 1545 29 6 .47 FEB , 1979 13 1245 43 24 2.8 MAR 29 1245 45 13 1.6 JUN 04 1300 93 32 8.0 AUG 28 1215 43 35 4.1 D1477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT , 1978 03 1235 5 FEB , 1979 12 1215 20		23.,,	1015			, 12	
TOO 1350 14 FEB., 1979 14 1245 7 AUG 15 1400 29 SEP 25 1230 22 01477100 - RACCOON C NR MULLICA HILL NJ (LAT 39 42 31 LONG 075 12 05) OCT , 1978 03 1055 1 FEB. 1979 13 1000 26 MAR 19 1230 15 JUN 04 1000 1 AUG 21 1130 8 SEP 27 1145 1 01477120 - RACCOON C NR SWEDESBORO NJ (LAT 39 44 28 LONG 075 15 33) NOV , 1978 29 1545 29 6 .47 FEB., 1979 13 1245 43 24 2.8 MAR 29 1245 45 13 1.6 JUN 04 1300 93 32 8.0 AUG 28 1215 43 35 4.1 01477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT , 1978 03 1235 5 FEB., 1979 12 1215 20	014750	045 - MAN	TUA C AT	MANTUA NO	(LAT 39	47 42 LON	G 075 10 21)
TOO 1350 14 FEB., 1979 14 1245 7 AUG 15 1400 29 SEP 25 1230 22 01477100 - RACCOON C NR MULLICA HILL NJ (LAT 39 42 31 LONG 075 12 05) OCT , 1978 03 1055 1 FEB. 1979 13 1000 26 MAR 19 1230 15 JUN 04 1000 1 AUG 21 1130 8 SEP 27 1145 1 01477120 - RACCOON C NR SWEDESBORO NJ (LAT 39 44 28 LONG 075 15 33) NOV , 1978 29 1545 29 6 .47 FEB., 1979 13 1245 43 24 2.8 MAR 29 1245 45 13 1.6 JUN 04 1300 93 32 8.0 AUG 28 1215 43 35 4.1 01477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT , 1978 03 1235 5 FEB., 1979 12 1215 20							
FEB. 1979 14 1245		OCT , 19	78				
AUG 15 1400 29 SEP 25 1230 22 01477100 - RACCOON C NR MULLICA HILL NJ (LAT 39 42 31 LONG 075 12 05) OCT , 1978 03 1055 1 FEB , 1979 13 1000 26 NAR 19 1230 15 JUN 04 1000 1 AUG 21 1130 8 SEP 27 1145 1 01477120 - RACCOON C NR SWEDESBORO NJ (LAT 39 44 28 LONG 075 15 33) NOV , 1978 29 1545 29 6 .47 FEB , 1979 13 1245 43 24 2.8 MAR 29 1245 45 13 1.6 JUN 04 1300 93 32 8.0 AUG 28 1215 43 35 4.1 01477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT , 1978 03 1235 5 FEB , 1979 12 1215 20		FEB . 19	79				
15 1400 29 SEP 25 1230 22 01477100 - RACCOON C NR MULLICA HILL NJ (LAT 39 42 31 LONG 075 12 05) OCT , 1978 03 1055 1 FEB , 1979 13 1000 26 NAR 19 1230 15 JUN 04 1000 1 AUG 21 1130 8 SEP 27 1145 1 01477120 - RACCOON C NR SWEDESBORO NJ (LAT 39 44 28 LONG 075 15 33) NOV , 1978 29 1545 29 6 .47 FEB , 1979 13 1245 43 24 2.8 MAR 29 1245 45 13 1.6 JUN 04 1300 93 32 8.0 AUG 28 1215 43 35 4.1 01477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT , 1978 03 1235 5 FEB , 1979 12 1215 20		14	. 1245	**	7		
25 1230 22 01477100 - RACCOON C NR MULLICA HILL NJ (LAT 39 42 31 LONG 075 12 05) OCT , 1978 03 1055 1 FEB , 1979 13 1000 26 MAR 19 1230 15 JUN 04 1000 1 AUG 21 1130 8 SEP 27 1145 1 01477120 - RACCOON C NR SWEDESBORO NJ (LAT 39 44 28 LONG 075 15 33) NOV , 1978 29 1545 29 6 .47 FEB , 1979 13 1245 43 24 2.8 MAR 29 1245 45 13 1.6 JUN 04 1300 93 32 8.0 AUG 28 1215 43 35 4.1 01477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT , 1978 03 1235 5 FEB , 1979 12 1215 20		15	1400		29		
OCT , 1978			1230	7-	22		
FEB , 1979 13 1000 26 MAR 19 1230 15 JUN 04 1000 1 AUG 21 1130 8 SEP 27 1145 1 01477120 - RACCOON C NR SWEDESBORO NJ (LAT 39 44 28 LONG 075 15 33) NOV , 1978 29 1545 29 6 .47 FEB , 1979 13 1245 43 24 2.8 MAR 29 1245 45 13 1.6 JUN 04 1300 93 32 8.0 AUG 28 1215 43 35 4.1 01477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT , 1978 03 1235 5 FEB , 1979 12 1215 20	01477100	OCT , 19	78	LLICA HILL			LONG 075 12 05)
13 1000 26 MAR 19 1230 15 JUN 04 1000 1 AUG 21 1130 8 SEP 27 1145 1 01477120 - RACCOON C NR SWEDESBORO NJ (LAT 39 44 28 LONG 075 15 33) NOY, 1978 29 1545 29 6 .47 FEB, 1979 13 1245 43 24 2.8 MAR 29 1245 45 13 1.6 JUN 04 1300 93 32 8.0 AUG 28 1215 43 35 4.1 01477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT, 1978 03 1235 5 FEB, 1979 12 1215 5 FEB, 1979 12 1215 20		FEB , 19	79			7.	
19 1230 15 JUN 04 1000 1 AUG 21 1130 8 SEP 27 1145 1 01477120 - RACCOON C NR SWEDESBORO NJ (LAT 39 44 28 LONG 075 15 33) NOY , 1978 29 1545 29 6 .47 FEB , 1979 13 1245 43 24 2.8 MAR 29 1245 45 13 1.6 JUN 04 1300 93 32 8.0 AUG 28 1215 43 35 4.1 01477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT , 1978 03 1235 5 FEB , 1979 12 1215 50 FEB , 1979 12 1215 20		13 MAR	1000		26		
04 1000 1 21 1130 8 5EP 27 1145 1 1 1 1 1 1 1 145 1145 1		19	1230		15		
21 1130 8 SEP 27 1145 1 01477120 - RACCOON C NR SWEDESBORO NJ (LAT 39 44 28 LONG 075 15 33) NOV, 1978 29 1545 29 6 .47 FEB, 1979 13 1245 43 24 2.8 MAR 29 1245 45 13 1.6 JUN 04 1300 93 32 8.0 AUG 28 1215 43 35 4.1 01477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT, 1978 03 1235 5 FEB, 1979 12 1215 20		04	1000	7-	. 1		
27 1145 1 01477120 - RACCOON C NR SWEDESBORO NJ (LAT 39 44 28 LONG 075 15 33) NOV, 1978 29 1545 29 6 .47 FEB, 1979 13 1245 43 24 2.8 MAR 29 1245 45 13 1.6 JUN 04 1300 93 32 8.0 AUG 28 1215 43 35 4.1 01477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT, 1978 03 1235 5 FEB, 1979 12 1215 20		21	1130		. 8		
01477120 - RACCOON C NR SWEDESBORO NJ (LAT 39 44 28 LONG 075 15 33) NOV , 1978 29 1545 29 6 .47 FEB , 1979 13 1245 43 24 2.8 MAR 29 1245 45 13 1.6 JUN 04 1300 93 32 8.0 AUG 28 1215 43 35 4.1 01477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT , 1978 03 1235 5 FEB , 1979 12 1215 20		SEP 27	1145		1		
NOY , 1978 29 1545 29 6 .47 FEB , 1979 13 1245 43 24 2.8 MAR 29 1245 45 13 1.6 JUN 04 1300 93 32 8.0 AUG 28 1215 43 35 4.1 O1477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT , 1978 03 1235 5 FEB , 1979 12 1215 20							
29 1545 29 6 .47 FEB , 1979 13 1245 43 24 2.8 MAR 29 1245 45 13 1.6 JUN 04 1300 93 32 8.0 AUG 28 1215 43 35 4.1 01477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT , 1978 03 1235 5 FEB , 1979 12 1215 20	01477120	- RACCOO	N C NR S	SWEDESBORO	NJ (LAT	39 44 28 L	ONG 075 15 33)
29 1545 29 6 .47 FEB , 1979 13 1245 43 24 2.8 MAR 29 1245 45 13 1.6 JUN 1300 93 32 8.0 AUG 28 1215 43 35 4.1 01477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT , 1978 93 1235 5 FEB , 1979 12 1215 20			78	-24			
13 1245 43 24 2.8 MAR 29 1245 45 13 1.6 JUN 04 1300 93 32 8.0 AUG 28 1215 43 35 4.1 01477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT , 1978 03 1235 5 FEB , 1979 12 1215 20		29		29	6	.47	
29 1245 45 13 1.6 JUN 04 1300 93 32 8.0 AUG 28 1215 43 35 4.1 01477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT , 1978 03 1235 5 FEB , 1979 12 1215 20		13,,,		43	24	2.8	
OUT , 1978 O3 1275 FEB , 1979 12 1215 03 1215 03 1235 FEB , 1979 12 1215 03 1215 03 1215 03 1215 03 1215 03 1215 03 1215 03 1215 03 1215 03 1215 03 1215 03 1215 03 1215 03 1215		29	1245	45	13	1.6	
AUG 28 1215 43 35 4.1 01477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT , 1978			1300	93	32	8.0	
O1477510 - OLDMANS C AT PORCHES MILL NJ (LAT 39 41 57 LONG 075 20 01) OCT , 1978 03 1235 5 FEB , 1979 12 1215 20							
OCT , 1978 03 1235 5 FEB , 1979 12 1215 20		-51			33		
03 1235 5 FEB , 1979 12 1215 20	01477510	- OLDMANS	C AT PO	ORCHES MILI	NJ (LAT	39 41 57	LONG 075 20 01)
03 1235 5 FEB , 1979 12 1215 20			78				
12 1215 20	6 6	03	1235		. 5		
		12	1215	**	2,0		

1.145

JUL 10... .95

				SEDI- MENT
		STREAM-	SEDI-	DIS-
		FLOW.	MENT.	CHARGE.
		INSTAN-	SUS-	SUS-
	TIME	TANEOUS	PENDED	PENDED
DATE		(CFS)	(MG/L)	(T/DAY)

01482500 - SALEM R AT WOODSTOWN NJ (LAT 39 38 36 LONG 075 19 52)

OCT , 19	78			
11	0945	11	12	. 36
20	1310	13	15	.53
NOV				
30	1245	38	5	.51
JAN , 19	79			
24	1250	41	30	3.3
FEB				
12	1000	13	8	.31
MAR				
09	1535	29	86	6.7
28	1045	18	29	1.4
JUN				
05	1245	41	26	2.9
JUL				
09	1215	9.6	87	2.3
AUG				
09	1130	11	23	.68
SEP				
27	0900	18	23	1.1

01482537 - SALEM R AT COURSES LANDING NJ (LAT 39 39 38 LONG 075 24 34)

OCT , 1978 11... 1200 -- 55 --

395150074284201. Local I.D., Lebanon State Forest 23-D Obs. Unique Well Number, 05-0689. LOCATION.--Lat 39°51'52", long 74°28'48", Hydrologic Unit 02040202, in Lebanon State Forest, in Woodland Township. AQUIFER.--Pleistocene-Cohansey Sand undifferentiated. WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 8 in (203 mm), depth 33 ft (10.06 m), with no

WELL CHARACTERISTICS.—Drilled water-table observation well, diameter of 18 (203 mm), depoil 35.0 (1.1.5 mm), screen.

INSTRUMENTATION.—Water-level recorder.

DATUM.—Land-surface datum is 152.0 ft (46.3 m) National Geodetic Vertical Datum of 1929.

Measuring point: Top of 8 inch casing, 0.7 ft (0.21 m) above land-surface datum.

PERIOD OF RECORD.—September 1955 to April 1975, current year beginning January 15. Records prior to the current year are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level, 15.09 ft (4.59 m) below land-surface datum, Sept. 11, 1958; lowest water level, 26.52 ft (8.083 m) below land-surface datum, Feb. 19-20, 1966.

EXTREMES FOR CURRENT YEAR.—Highest water level, 15.98 ft (4.871 m) below land-surface datum, June 23; lowest water level, 21.41 ft (6.526 m) below land-surface datum, Jan. 15.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979 MEAN VALUES

DAY	OCT	NO	OV D	EC J	AN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
5				-		19.29	18.25	16.75	17.09	16.49	16.22	16.99	17.86
10				-	44	19.16	17.87	16.81	17.15	16.41	16.33	17.13	17.62
15				-		19.10	17.29	16.78	17.23	16.13	16.44	17.29	17.48
20				20.	96	19.15	16.99	16.93	17.28	16.07	16.57	17.42	17.55
25				20.	60	19.12	16.83	16.98	16.71	16.07	16.69	17.55	17.68
EOM				19.	66	19.05	16.78	17.03	16.55	16.08	16.86	17.72	17.78
MEAN				20.	60	19.19	17.46	16.87	17.03	16.23	16.47	17.31	17.66
WTR YR 1	979	MEAN	17.46	HIGH	15.9	9 JUN	23	LOW	21.15 JAN	16			

BURLINGTON COUNTY

395524074502501. Local I.D., Medford 1 Obs. Unique Well Number, 05-0258. LOCATION.--Lat 39°55'24", long 74°50'25", Hydrologic Unit 02040202, at Medford Public Shooting Grounds, Medford

Township.
Owner: U.S. Geological Survey.

Township.

Owner: U.S. Geological Survey.

AQUIFER.—Potomac-Raritan-Magothy Aquifer system of Cretaceous Age.

WELL CHARACTERISTICS.—Drilled artesian observation well, diameter 6 in (152 mm), depth 410 ft (125.0 m), screened 400 to 410 ft (121.9 to 125.0 m).

INSTRUMENTATION.—Water-level extremes recorder. October 1963 to August 1975, water-level recorder.

DATUM.—Land-surface datum is 70.8 ft (21.58 m) National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing 2.87 ft (0.875 m) above land-surface datum.

PERIOD OF RECORD.—October 1963 to August 1975, February 1977 to current year. Records for 1963 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level, 85.22 ft (25.975 m) below land-surface datum, Feb. 16, 19, 1964; lowest water level, 127.96 ft (39.002 m) below land-surface datum, between July 14 and Sept. 28, 1977.

EXTREMES FOR CURRENT YEAR.—Highest water level, 120.10 ft (36.606 m) below land-surface datum, between Jan. 12 and Mar. 5; lowest water level, 125.46 ft (38.240 m) below land-surface datum, between June 22 and Aug. 16.

		WATER		WATER		WATER		WATER
DAT	E	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
FEB	4	118.21	MAY 13	119.70	JUL 14	126.17	SEP 28	124.10

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	WATER LEVEL	DATE	WATER	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
NOV 4	122 71	JAN 5	120 82	MAR 30	110 57	MAY 26	120 33	JIII. 17	123 85	SEP 21	123.60

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 6	122.61	JAN 12	121.14	MAR 5	120.54	APR 19	120.72	JUN 22	122.99	AUG 16	124.75

395524074502502. Local I.D., Medford 2 Obs. Unique Well Number, 05-0259. LOCATION.--Lat 39°55'24", long 74°50'25", Hydrologic Unit 02040202, at Medford Public Shooting Grounds, Medford

LOCATION.--Lat 39°55'24", long 74°50'25", Hydrologic Unit 02040202, at Medford Public Shooting Grounds, Medford Township.

Owner: U.S. Geological Survey.

AQUIFER.--Englishtown Sand of Cretaceous Age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 263 ft (80.2 m), screened 253 to 263 ft (77.1 to 80.2 m).

INSTRUMENTATION.--Water-level extremes recorder. October 1963 to August 1975, water-level recorder.

DATUM.--Land-surface datum is 72.9 ft (22.22 m) National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing 3.40 ft (1.036 m) above land-surface datum.

PERIOD OF RECORD.--October 1963 to August 1975, February 1977 to current year. Records for 1963 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 45.42 ft (13.844 m) below land-surface datum, April 27, 1973; lowest water level, 111.96 ft (34.125 m) below land-surface datum, July 9, 1964.

EXTREMES FOR CURRENT YEAR.--Highest water level, 46.09 ft (14.048 m) below land-surface datum, between Jan. 12 and Mar. 5; lowest water level, 51.10 ft (15.575 m) below land-surface datum, between June 22 and Aug. 16.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1976 TO SEPTEMBER 1977

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
FEB 4	48.65	MAY 13	47.79	JIII. 14	60.75	SEP 28	55.66

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LE VE L	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
NOV 4	50.00	JAN 5	47.72	MAR 30	46.60	MAY 26	46.30	Jul. 17	51.99

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER	DATE	WATER LEVEL	DATE	LEVEL
NOV 6	47.60	JAN 12	46.96	MAR 5	46.84	APR 19	46.47	JUN 22	46.38	AUG 16	47.73

395525074502601. Local I.D., Medford 4 Obs. Unique Well Number, 05-0262. LOCATION.--Lat 39°55'24", long 74°50'25", Hydrologic Unit 02040202, at Medford Public Shooting Grounds, Medford

LOCATION.—Lat 39°55'24", long 74°50'25", Hydrologic Unit 02040202, at Medford Public Shooting Grounds, Medford Township.

Owner: U.S. Geological Survey.

AQUIFER.—Potomac-Raritan-Magothy Aquifer system of Cretaceous Age.

MELL CHARACTERISTICS.—Drilled artesian observation well, diameter 6 in (152 mm), depth 1,145 ft (349.0 m), screened 1,125 to 1,145 ft (342.9 to 349.0 m).

INSTRUMENTATION.—Water-level extremes recorder. January 1968 to July 1975, water-level recorder.

DATUM.—Land-surface datum is 72.3 ft (22.04 m) National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing 2.56 ft (0.780 m) above land-surface datum,

PERIOD OF RECORD.—January 1968 to July 1975, February 1977 to current year. Records for 1968 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level, 94.24 ft (28.724 m) below land-surface datum, Mar. 13, 1968; lowest water level, 127.7ft (37.420 m) below land-surface datum, between July 24 and Sept. 28, 1977.

EXTREMES FOR CURRENT YEAR.—Highest water level, 117.39 ft (35.780 m) below land-surface datum, between June 22 and Aug. 16.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1976 TO SEPTEMBER 1977

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
FFR 4	114 08	MAV 12	116 80	101 14	121 ##	SEP 28	120 90

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 4	119.61	JAN 5	117.67	MAR 30	116.62	MAY 26	117.29	JUL 17	119.99

DATE	WATER	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER	DATE	WATER	
NOV 6	119.95	JAN 12	118.34	MAR 5	117.95	APR 19	117.66	JUN 22	119.29	AUG 16	121.07	

395525074502501. Local I.D., Medford 5 Obs. Unique Well Number, 05-0261. LOCATION.--Lat 39°55'25", long 74°50'25", Hydrologic Unit 02040202, at Medford Public Shooting Grounds, Medford

LOCATION.--Lat 39 35 25 , 10mg (4 50 25 , mystologic state of the stat

WELL CHARACTERISTICS. --Drilled artesian observation well, diameter 6 in (152 mm), depth 750 ft (229 m), screened 740 to 750 ft (226 to 229 m).

INSTRUMENTATION. --Water-level recorder.

DATUM. --Land-surface datum is 72.6 ft (22.13 m) National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 3.6 ft (1.10 m) above land-surface datum.

PERIOD OF RECORD. --January 1968 to March 1975, March 1977 to current year. Records for 1968 to 1977 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 94.46 ft (28.791 m) below land-surface datum, Mar. 1, 1968; lowest water level, 123.67 ft (37.695 m) below land-surface datum, Aug. 3, 1977.

EXTREMES FOR CURRENT YEAR. --Highest water level, 117.87 ft (35.927 m) below land-surface datum, Jan. 21; lowest water level, 121.74 ft (37.106 m) below land-surface datum, Aug. 17.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979 MEAN VALUES

DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
5	120.96	120.40	119.27	118.95	118.30	118.39	118.28	118.47	119.42		121.44	121.44
10	120.94	120.35	119.24	118.75	118.35	118.45	118.18	118.73	119.57	120.81	121.49	121.44
15	120.75	120.24	119.12	118.71	118.26	118.55	118.00	119.17		121.21	121.61	121.36
20	120.68	120.17	118.96	118.44	118.37	118.40	118.19	119.27		121.55	121.62	121.49
25	120.64	119.78	118.68	117.99	118.18	118.16	118.21	119.17	120.06	121.54	121.58	121.44
EOM	120.63	119.55	119.03	118.16	118.33	118.38	118.34	119.53	120.18	121.48	121.46	121.31
MEAN	120.78	120.15	119.14	118.50	118.30	118.42	118.23	119.02	119.77	121.19	121.54	121.40
WTR YR	1979	MEAN 1	19.70	HIGH 117	7.97 JAN	21	LOW.	121.70 AUG	17			

BURLINGTON COUNTY

400242074422301. Local I.D., Rhodia Corp. 1 Obs. Unique Well Number, 05-0440.
LOCATION.--Lat 40°02'42", long 74°42'23", Hydrologic Unit 02040201, on the lands of Rhodia Corporation near Jobstown.
Owner: Rhodia Corporation.

AQUIFER.--Potomac-Raritan-Magothy Aquifer system of Cretaceous Age.

WELL CHARACTERISTICS.--Drilled artestian observation well, diameter 8 in (203 mm), depth 613 ft (186.8 m), screened 603 to 613 ft (183.8 to 186.8 m).

INSTRUMENTATION.--water-level extremes recorder. December 1968 to March 1975, water-level recorder.

DATUM.--Land-surface datum is 71.6 ft (21.82 m) National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing 2.22 ft (0.677 m) above land-surface datum.

PERIOD OF RECORD.--December 1968 to March 1975, April 1977 to current year. Records for 1968 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 86.55 ft (26.380 m) below land-surface datum, Dec. 31, 1969; lowest water level, 104.13 ft (31.739 m) below land-surface datum, between Apr. 28 and Aug. 8, 1977.

EXTREMES FOR CURRENT YEAR.--Highest water level, 98.94 ft (30.157 m) below land-surface datum, between June 12 and Aug. 8, 1977.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1976 TO SEPTEMBER 1977

WATER WATER DATE DATE LEVEL APR 28 99.78 AUG 8 102.78

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

WATER WATER WATER WATER DATE LEVEL DATE LEVEL DATE DATE LEVEL NOV 10 101.20 FEB 16 99.71 MAY 9 99.26 AUG 4 101.32

DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 13	100.50	JAN 11	99.65	MAR 5	100.45	JUN 12	100.22	AUG 15	100.36

400213074510801. Local I.D., Willingboro 1 Obs. Unique Well Number, 05-0063.

LOCATION.--Lat 40°02'13", long 74°51'08", Hydrologic Unit 02040202, located along the west side of Rancocas Road about 2 mi (3.2 km) north of Rancocas.

Owner: Willingboro Municipal Utilities Authority.

AQUIFER,--Potomac-Raritan-Magothy Aquifer system of Cretaceous Age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 294 ft (89.6 m), screened 284 to 294 ft (86.6 to 89.6 m).

INSTRUMENTATION.--Water-level extremes recorder. March 1966 to September 1975, water-level recorder.

DATUM.--Land-surface datum is 45.4 ft (13.84 m) National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 0.76 ft (0.232 m) above land-surface datum.

PERIOD OF RECORD.--March 1966 to September 1975, February 1977 to current year. Records for 1966 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 46.25 ft (14.097 m) below land-surface datum, Mar. 19, 1966; lowest water level, 68.47 ft (20.870 m) below land-surface datum, between July 12 and Sept. 22, 1977.

EXTREMES FOR CURRENT YEAR.--Highest water level, 59.60 ft (18.166 m) below land-surface datum, between Jan. 11 and Mar. 5; lowest water level, 62.15 ft (18.943 m) below land-surface datum, between Sept. 29 and Nov. 6, 1978.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1976 TO SEPTEMBER 1977

DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER
FEB 4	63.27	MAY 6	63.44	JUL 12	66.83	SEP 22	64.78

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
NOV 4	62.74	JAN 3	60.22	APR 12	59.74	MAY 26	61.04	JUL 17	62.52	SEP 29	62.02

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
NOV 6	61.34	JAN 11	60.64	MAR 5	59 66	JUN 8	60.22

BURLINGTON COUNTY

400010074521601. Local I.D., Willingboro 2 Obs. Unique Well Number, 05-0645.
LOCATION.--Lat 40°00'10", long 74°52'16", Hydrologic Unit 02040202, at Bridge Street and Tiffany Lane, Willingboro.
Owner: Willingboro Municipal Utilities Authority.
AQUIFER.--Potomac-Raritan-Magothy Aquifer system of Cretaceous Age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 441 ft (134.4 m), screened
431 to 441 ft (131.4 to 134.4 m).
INSTRUMENTATION.--Water-level recorder.
DATUM.--Land-surface datum is 40.3 ft (12.28 m) National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder snelf, 2.0 ft (0.61 m) below land-surface datum.
PERIOD OF RECORD.--March 1966 to March 1975, March 1977 to current year. Records for 1966 to 1975 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 49.79 ft (15.176 m) below land-surface datum, June 21, 1967; lowest water level, 7.00 ft (24.079 m) below land-surface datum, July 29, 1977.
EXTREMES FOR CURRENT YEAR.--Highest water level, 67.74 ft (20.647 m) below land-surface datum, Jan. 25; lowest water level, 73.17 ft (22.302 m) below land-surface datum, July 15.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
5	71.42	70.87	69.52	69.19	68.59	69.03	68.60	69.63		70.93	70.96	71.38
10	71.23	70.85	69.29	68.98	68.77	68.82	68.55	70.21	69.98	71.53	72.48	
15	71.13	70.91	69.34		68.88	68.92	68.97	70.19	70.07	72.90	71.30	
20	70.95	70.63		68.54	68.89	68.82	70.14	69.97	70.94	71.48	71.20	
25	70.98	70.09		67.99	68.65	68.76	70.65	69.82	70.93	71.07	71.03	
EOM	71.01	69.74		68.34	68.95	68.84	70.28		70.90	70.82	71.03	
MEAN	71.16	70.59	69.35	68.65	68.75	68.90	69.47	70.02	70.59	71.40	71.29	71.19
WTR YR	1979	MEAN	70.04	HIGH 67	.99 JAN 29	5	LOW	72.90 JUL	. 15			

CAMDEN COUNTY

394922074563301. Local I.D., New Jersey Water Company, Elm Tree Farm 2 Obs. Unique Well Number, 07-0412. LOCATION.--Lat 39°49'22", long 74°56'30", Hydrologic Unit 02040202, about 200 ft (61.0 m) northeast of Thomas Road and about 2 mi (3.2 km) northwest of Berlin.

Owner: New Jersey Water Company.

AQUIFER.--Potomac-Raritan-Magothy Aquifer system of Cretaceous Age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 1,092 ft (332.8 m), screened 1,082 to 1,092 ft (329.8 to 332.8 m).

INSTRUMENTATION.--Water-level extremes recorder. January 1963 to June 1975, water-level recorder.

DATUM.--Land-surface datum is 148.7 ft (45.32 m) National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing 1.76 ft (0.536 m) above land-surface datum.

REMARKS.--Well was originally screened 1,217 to 1,227 ft (370.9 to 374.0 m). Rehabilitated August 1969.

PERIOD OF RECORD.--January 1963 to June 1975, February 1977 to current year. Records for 1963 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 166.06 ft (50.615 m) below land-surface datum, July 21, 1965; lowest water level, 218.02 ft (66.452 m) below land-surface datum, between July 14 and Septh 22, 1977.

EXTREMES FOR CURRENT YEAR.--Highest water level, 207.63 ft (63.286 m) below land-surface datum, between June 19 and Oct. 10, 1979.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1976 TO SEPTEMBER 1977

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
FEB 8	207.96	MAR 8	208.37	MAY 12	209.03	JUL 14	215.17	SEP 22	213.06

WATER LEVEL. IN FEET BELOW LAND SURFACE DATUM. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 9	209.56	JAN 9	207.68	MAR 29	207.52	MAY 17	208.69	JUL 17	213.54	SEP 21	213.32

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

	WATER		WATER		WATER		WATER		WATER	
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	
NOV 16	211.18	JAN 12	209.04	MAR 5	208.83	MAY 2	210.41	JUN 19	212.66	

CAMDEN COUNTY

394922074563302, Local I.D., NJ WC Elm Tree Farm 3 Obs. Unique Well Number, 07-0413.
LOCATION.--Lat 39°49'22°, long 74°56'30°, Hydrologic Unit 02040202, about 200 ft (60 m) northeast of Thomas Road and about 2 mi (3 km) northwest of Berlin.
Owner: New Jersey Mater Company.
AQUIFER.--Potomac-Raritan-Magothy Aquifer system of Cretaceous Age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 717 ft (218.5 m), screened 706 to 717 ft (215.2 to 218.5 m).
INSTRUMENTATION.--Water-level recorder.
DATUM.--Land-surface datum is 148.7 ft (45.32 m) National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 0.6 ft (0.18 m) above land-surface datum.
PERIOD OF RECORD.--December 1963 to April 1975, March 1977 to current year. Records for 1963 to 1977 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.---injghest water level, 174.21 ft (53.099 m) below land-surface datum, Feb. 6, 1964; lowest water level, 225.40 ft (68.702 m) below land-surface datum, Aug. 3-4, 1977.
EXTREMES FOR CURRENT YEAR.---Highest water level, 215.01 ft (65.535 m) below land-surface datum, Jan. 25-26; lowest water level, 223.30 ft (68.062 m) below land-surface datum, Aug. 3-4, 1977.

	DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
	5				216.86	11.	215.38	215.83	215.89	216.84	218.38	220.48	222.86	221.90
	10				216.68		215.39	215.75	215.78	217.30	218.50	221.18	223.07	221.54
	15				216.60	215.82	215.38	215.74	215.82	218.38	218.82	222.09	223.29	221.32
	20			217.91	216.45	215.74	215.47	215.89	215.84	218.69	219.12	223.05	222.96	221.29
	25			217.48		215.03	215.47	215.73	216.16	218.54	219.59	223.05	222.59	221.20
41	EOM			217.20		215.17	215.44	215.91	216.51	218.58	219.93	222.75	222.17	220.88
	MEAN			217.65	216.70	215.43	215.40	215.80	215.97	217.96	218.95	221.95	222.85	221.44
	WTR	YR 19	79	MEAN 2	18. 39	HIGH 21	NAL FO.	25 AND OT	HERS	L.OW	223.30	AUG 16	1.0	

GROUND-WATER LEVELS

CAMDEN COUNTY

395229074571201. Local I.D., Hutton Hill 1 Obs. Unique Well Number, 07-0117. LOCATION.--Lat 39°52'29", long 74°57'12", Hydrologic Unit 02040202, about 800 ft (243.8 m) northeast of the intersection Kresson and Cropwell Roads, Cherry Hill Township.

Owner: New Jersey Water Company.

Owner: New Jersey Water Company.

AQUIFER. --Potomac-Raritan-Magothy Aquifer system of Cretaceous Age.

WELL CHARACTERISTICS. --Drilled artesian observation well, diameter 6 in (152 mm), depth 562 ft (171.3 m), screened 552 to 562 ft (168.2 to 171.3 m).

INSTRUMENTATION. --Water-level extremes recorder. August 1967 to April 1975, water-level recorder.

DATUM.--Land-surface datum is 157.6 ft (48.04 m) National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing 1.89 ft (0.576 m) above land-surface datum.

PERIOD OF RECORD. --August 1967 to April 1975, February 1977 to current year. Records for 1967 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 200.77 ft (61.195 m) below land-surface datum, Mar. 23, 1968; lowest water level, 27.23 ft (75.356 m) below land-surface datum, between May 12 and Aug. 12, 1977.

EXTREMES FOR CURRENT YEAR.--Highest water level, 230.41 ft (70.229 m) below land-surface datum, between Nov. 17 and Mar. 5; lowest water level, 239.37 ft (72.960 m) below land-surface datum, between Aug. 15 and Nov. 17, 1978.

WATER LEVEL. IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1976 TO SEPTEMBER 1977

	WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
FEB 11	229.34	MAY 12	229.33	AUG 12	241.12

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
NOV 18	230.99	FFB 17	229.66	MAY 17	230 80	AUG 15	235.58

WATER LEVEL. IN FEET BELOW LAND SURFACE DATUM. WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
NOV 17	222 28	MAD 5	232 88	THM 12	226 29	SEB 30	228 26

CUMBERLAND COUNTY

391828075120902. Local I.D., Jones Island 2 Obs. Unique Well Number, 11-0096.
LOCATION.--Lat 39°18'29", long 75°12'08", Hydrologic Unit 02040206, about 1.7 mi (2.7 km) south of Cedarville at Jones Island, Lawrence Township.
Owner: Cumberland County.
AQUIFER.--Piney Point Formation of Ecoene Age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in (102 mm), depth 375 ft (114 m), screened.
365 to 375 ft (111 to 114 m).
INSTRUMENTATION.--Water-level recorder.
DATUM.--Land-surface datum is 10 ft (3.0 m) National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 1.9 ft (0.579 m) above land-surface datum.
PERTOD OF RECORD.--March 1977 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 19.99 ft (6.093 m) below land-surface datum, Mar. 22, 1977;
lowest water level, 26.57 ft (8.099 m) below land-surface datum, Sept. 16, 27, 1979.
EXTREMES FOR CURRENT YEAR.--Highest water level, 24.49 ft (7.465 m) below land-surface datum, Oct. 6; lowest water level, 26.57 ft (8.099 m) below land-surface datum, Sept. 16, 27.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
5	24.68	24.90	24.90	25.61	25.62	25.56	25.49	25.66	25.61	25.91		
10	24.92	25.04	25.09	25.55	25.67	25.47	25.58	25.70	25.72	25.96		
15	24.82	25.05	25.12	25.63	25.55	25.64	25.44	25.72	25.85	25.94		. 26.42
20	24.82	25.20	25.12		25.56	25.51	25.68	25.70	25.86			26.49
25	24.88	25.01	25.04	25.13	25.29	25.28	25.65	25.49	25.88			26.42
EOM	25.01	24.95	25.42		25.49	25.54	25.63	25.78	25.81			26.40
MEAN	24.84	25.01	25.15	25.42	25.54	25.54	25.58	25.69	25.77	25.94		26.42
WTR YR	1979	MEAN	25.49	HIGH 2	4.61 OCT 6		LOW	26.51 SEP	16 AND	OTHERS		

GLOUCESTER COUNTY

394942075131701. Local I.D., Shell Chemical 5 Obs. Unique Well Number, 15-0296. LOCATION.--Lat 39°49'42", long 75°13'17", Hydrologic Unit 02040202, near the intersection of Mantua Grove Road and

222

LOCATION.--Lat 39°49'42", long 75°13'17", Hydrologic Unit 02040202, near the intersection of Mantua Grove Road and Route 295, West Deptford Township.

Owner: Shell Chemical Company.

AQUIFER.--Potomac-Raritan-Magothy Aquifer system of Cretaceous Age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 327 ft (99.7 m), screened 322 to 327 ft (98.1 to 99.7 m).

INSTRUMENTATION.--Water-level recorder.

DATUM.--Land-surface datum is 20.8 ft (6.34 m) National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.9 ft (0.88 m) above land-surface datum.

REMARKS.--Water levels in this well are affected by nearby pumping.

PERIOD OF RECORD.--June 1962 to current year. Records for 1962 to 1977 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 27.75 ft (8.458 m) below land-surface datum, Dec. 6, 1962; lowest water level, 40.63 ft (12.384 m) below land-surface datum, July 21, 1977.

EXTREMES FOR CURRENT YEAR.--Highest water level, 33.32 ft (10.156 m) below land-surface datum, Mar. 11; lowest water level, 38.28 ft (11.668 m) below land-surface datum, Oct. 25.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
5 10	36.48 36.27	36.73 36.78	36.93 37.21	37.37 36.73	36.22 36.07	34.12	34.42 34.72	34.96 35.18	34.85	35.38 35.84	35.91	36.29 35.79
15 20	36.16 36.09	37.30 37.28	36.94 37.12	36.75 36.05	35.97 35.48	34.38	34.32	35.27 35.06	34.85 35.31	36.04 36.08	35.60 35.30	35.92 35.88
25 EOM	38.08 37.00	36.74 36.74	36.68 36.89	36.30 35.80	35.37 34.71	34.07	34.91	34.58	34.93 35.11	35.42 35.34	35.44 36.21	35.56 35.28
MEAN	36.59	36.87	37.02	36.48	35.74	34.27	34.61	34.92	34.95	35.64	35.62	35.87
WTR VR	1070	MEAN	35 72	HTGH 22	58 MAR 1	11	LOW	38 08 OCT	25			

HUNTERDON COUNTY

402644074563601. Local I.D., Bird Obs. Unique Well Number, 19-0002. LOCATION.--Lat 40°26'44", long 74°56'36", Hydrologic Unit 02040105, at U.S. Post Office, Sergeantsville. Owner: Phillip Fleming.

AQUIFER.--Stockton Formation of Triassic Age.

WELL CHARACTERISTICS. -- Dug water-table observation well, diameter 36 in (914 mm), depth 21 ft (6.4 m), lined with

stone.
INSTRUMENTATION. -- Water-level recorder

INSTRUMENTATION.--Water-level recorder.

DATUM.--Land-surface datum is 342 ft (104.2 m) National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 1.5 ft (0.46 m) above land-surface datum.

PERIOD OF RECORD.--June 1965 to July 1970, May 1977 to current year. Records for 1965 to 1970 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 6.91 ft (2.106 m) below land-surface datum, Mar. 28-29, 1978; lowest water level, 16.40 ft (4.999 m) below land-surface datum, Nov. 9, 1965.

EXTREMES FOR CURRENT YEAR.--Highest water level, 7.67 ft (2.318 m) below land-surface datum, May 27; lowest water level, 16.14 ft (4.919 m) below land-surface datum, Nov. 17-18.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	15.30	15.68	13.43	9.98	11.58	10.56	12.79	13.62	11.15		12.86	14.71
10	15.41	15.89	10.38	8.60	12.97	8.91	12.65	14.12	12.61		13.84	11.62
15	15.60	16.06	11.24	10.09	13.64	9.77	11.62	14.29	10.87		12.21	12.98
20	15.70	15.74	12.55	11.87	14.11	11.55	11.64	13.99			13.35	13.91
25	15.79	15.12		8.83	10.21	12.39	12.74	9.15			14.08	11.09
EOM	15.51	14.55	12.19		9.51	12.48	12.90	9.06			14.16	12.39
MEAN	15.53	15.59	12.19	9.98	12.41	10.71	12.36	12.53	11.23		13.42	12.68
WTR YR	1979	MEAN	12.64	HIGH	7.73 MAY	27	LOW	16.13 NOV	18			

SALEM COUNTY

394037075191501. Local I.D., Point Airy Obs. Unique Well Number, 33-0187.

LOCATION.--Lat 39°40'37", long 75°19'14", Hydrologic Unit 02040206, at intersection of Point Airy and WoodstownSwedesboro Roads, 1 mi (1.61 km) north of Woodstown Borough boundary.

Owner: U.S. Geological Survey.

AQUIFER.--Potomac-Raritan-Magothy Aquifer system of Cretaceous Age.

WELL CHARACTERISTICS.--Drilled artesian observtion well, diameter 6 in (152 mm), depth 672 ft (204.8 m), screened

664 to 672 ft (202.4 to 204.8 m).

INSTRUMENTATION.---Water-level recorder.

DATUM.--Land-surface datum is 73.0 ft (22.25 m) National Geodetic Vertical Datum of 1929.

Measuring point: Top of 6 inch casing, 1.8 ft (0.55 m) above land-surface datum.

PERIOD OF RECORD.--February 1959 to August 1975, March 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Hignest water level, 78.55 ft (23.942 m) below land-surface datum, Mar. 6, 1959;

lowest water level, 100.52 ft (30.638 m) below land-surface datum, Aug. 6-7, 1977.

EXTREMES FOR CURRENT YEAR.--Highest water level, 95.28 ft (29.041 m) below land-surface datum, Apr. 9; lowest water level, 97.87 ft (29.831 m) below land-surface datum, Nov. 10-11.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

					11	EAN VALUES	,					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10	97.72 97.70	97.51 97.75	97.12 97.20		96.08 96.24	95.95 95.91	95.71 95.59	95.56 95.68	95.67 96.05	96.29 96.60	96.83 97.01	97.09 97.04
15 20	97.67 97.76	97.65 97.57	97.15 96.91	96.53	96.14 96.35	95.99 95.72	95.52 95.73	95.76 95.75	96.17 96.34	96.75 96.76	96.99 97.13	97.17
25 EOM	97.70	97.40 97.32	96.61	96.07 96.08	95.94 96.02	95.53 95.82	95.63 95.59	95.51 95.83	96.43 96.30	96.82 96.98	97.23 97.29	96.99
MEAN	97.70	97.56			96.16	95.87	95.65	95.70	96.12	96.67	97.07	97.08
WTR YR	1979	MEAN	96.59	100000	5.40 APR	9 AND OTH		LOW	97.83		31.01	37.00

WARREN COUNTY

405050075033201. Local I.D., Hoffmann LaRoche 4 Obs. Unique Well Number, 41-0013. LOCATION.--Lat 40°50'50", long 75°03'32", Hydrologic Unit 02040105, 1 mi (1.6 km) northeast of Belvidere on Route 46. Owner: Hoffmann LaRoche, Inc. AQUIFER.--Glacial Till of Pleistocene Age.
WELL CHARACTERISTICS.--Drilled semi-artesian observation well, diameter 8 in (203 mm), depth 128 ft (39.0 m). TRSTRINGRATION.--Weter-lavel recorder.

WELL CHARACTERISTICS.-Drilled semi-artesian observation well, diameter 8 in (203 mm), depth 128 ft (39.0 m).

INSTRUMENTATION.--Water-level recorder.

DATUM.--Land-surface datum is 290 ft (88.4 m) National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.2 ft (0.67 m) above land-surface datum.

PERTOD OF RECORD,--1960 to current year.

EXTREMES FOR PERIOD OF RECORD,--Highest water level, 30.10 ft (9.174 m) below land-surface datum, July 5, 1972;

lowest water level, 46.59 ft (14.201 m) below land-surface datum, Sept. 18, 1977.

EXTREMES FOR CURRENT YEAR.--Highest water level, 35.37 ft (10.781 m) below land-surface datum, Feb. 2; lowest water level, 46.36 ft (14.131 m) below land-surface datum, Nov. 16-17.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
5	45.45	46.03	45.94	43.38	35.71	38.28	39.09	39.86	39.85	43.19	43.86	45.06
10	45.55	46.22	45.71	41.51	36.91	36.93	39.51	40.18	40.17	43.67	43.59	44.86
15	45.69	46.32	45.29	39.90	38.21	36.46	39.37	40.73	40.75	44.06	43.50	
20	45.81	46.30	45.22		39.45	36.72	39.30	41.35	41.41	44.31	43.69	
25	45.90	46.09	44.85			37.65	39.46		42.09	44.33	44.08	
EOM	45.80	46.23				38.49	39.74	40.39	42.67	44.13	44.68	45.17
MEAN	45.68	46.16	45.35	40.28	37.97	37.49	39.34	40.68	40.99	43.87	43.89	44.99
WTR YR	1979	MEAN	42.15	HIGH	35.39 FEB	2	LOW	46.35 NOV	1 16			

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

CAPE MAY COUNTY

WELL NUMBER	LOCAL IDENT- I- FIER		LAT- I- TUDE	LONG- I- TUDE	SEQ. NO.	GEO- LOGIC UNIT	DATE OF SAMPLE	TEMPER- ATURE (DEG C)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	
27 28 29 36 43	CAPE MAY CITY WD HARBESON-WALKER R HARBESON-WALKER R CAPE MAY CITY WD CAPE MAY CITY WD	EF CO 2 EF CO 1	38 56 43 38 56 43 38 56 45 38 57 01 38 57 24	074 55 33 074 57 55 074 58 03 074 55 28 074 55 21	01 01 01	121CNSY 121CNSY 121CKKD 121CNSY 121CNSY	79-08-30 79-08-30 79-08-30 79-08-30 79-08-30	15.0 15.0 15.0 15.0	679 608 995 408 302	7.4 7.5 7.8 7.5 7.6	150 180 200 51 18	
52 54 67 70 72	LOWER TWP MUA 1 LOWER TWP MUA 2 WILDWOOD WD RIO 0 WILDWOOD WD RIO 0 WILDWOOD WD RIO 0	RAND 38	38 58 53 38 59 05 39 01 35 39 01 37 39 01 38	074 57 12 074 56 25 074 53 52 074 53 52 074 53 50	01 01 01	121CNSY 121CNSY 122KRKD 112CPMY 112ESRNS	79-08-29 79-08-29 79-08-29 79-08-29 79-08-29	15.0 14.5 16.5 13.5 13.5	252 258 532 201 189	7.8 7.7 7.9 6.2 7.6	11 16 78 21 11	
74	WILDWOOD WD RIO	GRAND 29	39 01 39	074 53 49	02	121CNSY	79-08-29	14.0	157	7.5	10	
	LOCAL IDENT- I- FIER	DATE OF SAMPLE	ELEV. OF LAND SURFACE DATUM (FT. NGVD)	DEPTH OF HOLE, TOTAL (FEET)	DEPTH OF WELL, TOTAL (FEET)	DEPT TO TOP OF WATER- BEARING ZONE (FT)	TOM OF WATER-	DEPTH TO TOP OF SAMPLE INTER- VAL (FT)	DEPTH TO BOT- TOM OF SAMPLE INTER- VAL (FT)	PUMP OR FLOW PERIOD PRIOR TO SAM- PLING (MIN)	FLOW RATE, INSTAN- TANEOUS (GPM)	
HARBESO HARBESO CAPE MA	Y CITY WD 1 N-WALKER REF CO 2 N-WALKER REF CO 1 Y CITY WD 2 Y CITY WD 3	79-08-30 79-08-30 79-08-30 79-08-30 79-08-30	10.00 10.00 12.00	270 385 322	306 268 327 282 276	92 200 296		277 235 296 174	306 265 321 282 276	10 120 10 10 10	800 700 500 800 800	
LOWER T WILDWOO WILDWOO	WP MUA 1 WP MUA 2 D WD RIO GRAND 38 D WD RIO GRAND 36 D WD RIO GRAND 31	79-08-29 79-08-29 79-08-29 79-08-29 79-08-29	12.00 10.00 9.00	285 592 63 141	262 247 592 63 135	200	139	241 212 461 48 108	262 247 590 63 135	240 10 120 120 120	830 550 900 350 300	
WILDWOO	D WD RIO GRAND 29	79-08-29	8.00	258	244			191	231	120	700	

Geologic unit (aquifer): 112CPMY - Cape May Formation, Undifferentiated 112ESRNS - Cape May Formation, Estuarine Sand Facies 121CNSY - Cohansey Sand

121CKKD - Cohansey Sand-Kirkwood Formation, Undifferentiated 122KRKD - Kirkwood Formation

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

CUMBERLAND COUNTY

WELL	LOCAL IDENT- I- FIER	LAT- I- TUDE	LONG- I- TUDE	SEQ NO.	GEO- LOGIC UNIT	OF	TEMPER- ATURE (DEG C)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS) (U	PH SC	HLO- IDE, IS- DLVED 4G/L S CL)
116 123 52 255 54	MOORES BEACH FIRE DEPT NJDIA LEESBURG SP FARM 1 FORTESCUE REALTY 4 JOSEPH HETMANSKI M GANDYS BEACH	39 11 39 13 39 14 39 16 39 16	56 074 57 20 075 10 17 075 13	51 01 23 02 55 01	122KRKE 122KRKE 122KRKE 124PNPN 124PNPN	79-08-07 79-08-07 79-08-07	15.5	173 223 970 3000		3.3 3.4 5.5 220
256 257 56 92 61	H MYERS RICHARD A GONDOLF MONEY ISL MARINA 1 BAY PT ROD & GUN CLUB 2 SEA BREEZE TAVERN 2	39 16 39 16 39 17 6 39 17 6 39 19 3	20 075 14 04 075 14 46 075 15	10 01 15 01 10 02	124PNPN 124PNPN 124PNPN 124PNPN 124PNPN	79-08-07 79-08-08 79-08-08		610 660 710 760 680	8.0 8.0 8.1	55 60 75 79 66
	LOCAL IDENT- I- FIER	DATE OF SAMPLE	ELEV. OF LAND SURFACE DATUM (FT. NGVD)	DEPTH OF HOLE, TOTAL (FEET)	DEPTH OF WELL, TOTAL (FEET)	TO TOP OF WATER-	SAMPLE SAM INTER- INT VAL VA	OT OR FLOW OF PERIOD IPLE PRIOR ER- TO SAM-	FLOW RATE,	
	MOORES BEACH FIRE DEPT NJDIA LEESBURG SP FARM 1 FORTESCUE REALTY 4 JOSEPH HETMANSKI M GANDYS BEACH	79-08-07 79-08-07 79-08-07 79-08-07 79-08-07	4.00 13.00 8.00 5.00 5.00	315 270	315 268 303 440 402	250	295 315 248 268 283 303 378 402	10	200	
	H MYERS RICHARD A GONDOLF MONEY ISL MARINA 1 BAY PT ROD & GUN CLUB 2 SEA BREEZE TAVERN 2	79-08-07 79-08-07 79-08-08 79-08-08 79-08-08	5.00 5.00 4.00 5.00 4.00	417 354	400 400 370 417 354	330	350 370 397 417 281 354			

Geologic unit (aquifer): 122KRKD - Kirkwood Formation 124PNPN - Piney Point Formation

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

GLOUCESTER COUNTY

WELL NUMBER	LOCAL IDENT- I- FIER		LAT- I- TUDE	LONG- I- TUDE	SEQ. NO.	GEO- LOGIC UNIT	DATE OF SAMPLE	TEMPER- ATURE (DEG C)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
1 3 361 60 225	CLAYTON BORO WD 3 CLAYTON BORO WD 4 GLASSBORO BORO WD GLASSBORO BORO WD PITMAN BORO WD P1	39 5 39 3 39	9 40 13 9 41 41 9 42 05	075 05 22 075 05 58 075 07 10 075 07 53 075 07 45	01 01 01	21 1MGRR 21 1MGRR 21 1MGRR 21 1MGRR 21 1MGRR	79-08-17 79-08-17 79-08-17 79-08-17 79-08-14	20.5 20.0 19.0 18.5 17.0	1020 870 670 725 495	8.4 8.4 8.4 8.2	140 98 55 66 38
130 236 189 6 194	SO JERSEY WS CO 3 SWEDESBORO BORO WD SEWELL WC 1 WOODBURY CTY WD-SEW MANTUA WC 3	39	44 34 46 02 46 27	075 13 30 075 18 43 075 08 23 075 08 13 075 10 36	01 01 02	211MGRR 211MGRR 211MGRR 211MGRR 211MGRR	79-08-14 79-08-15 79-08-14 79-08-14 79-08-14	15.5 14.5 14.5 15.5	950 375 400 425 445	8. 1 7. 1 8. 1 7. 9 8. 1	150 41 26 34 38
274 166 210 212 79	WENONAH BORO WD 1 PENNS GROVE WC-BRI PAULSBORO WD 6-73 PAULSBORO WD 4-51 EI DUPONT REPAUNO	39 39	47 55 49 21 49 29	075 09 02 075 21 08 075 14 17 075 14 47 075 17 34	02 01 01	21 1MGRR 21 1MGRR 21 1MGRR 21 1MGRR 21 1MGRR	79-08-14 79-08-15 79-08-15 79-08-15 79-08-15	14.5 13.5 14.5 15.5 14.0	360 187 262 355 470	8.1 5.0 6.1 5.5	20 13 35 36 95
81 331 213 98 118	EI DUPONT REPAUNO POUDBURY WD RAILRON PAULSBORO WD 5-57 MOBIL OIL-GREENWICH MOBIL OIL-GREENWICH	AD 5 39 39 H 45 39	49 50 49 47 50 05	075 17 17 075 09 09 075 14 16 075 15 23 075 15 01	01 01 01	211MGRR 211MGRR 211MGRR 211MGRR 211MGRR	79-08-15 79-08-14 79-08-15 79-08-15 79-08-14	14.5 14.5 15.0 15.0 14.5	236 372 237 2180 500	5.7 7.8 4.6 5.2 6.0	32 46 19 140 120
207	NATIONAL PARK BORO	WD 2 39	51 56	075 10 53	01	211MGRR	79-08-15	13.5	325	7.0	27
	LOCAL IDENT- I- FIER		ELEV. OF LAND SURFACE DATUM (FT. NGVD)	DEPTH OF HOLE, TOTAL (FEET)	DEPTH OF WELL, TOTAL (FEET)	DEPTH TO TOP OF WATER- BEARING ZONE (FT)	TOM OF WATER-	DEPTH TO TOP OF SAMPLE INTER- VAL (FT)	DEPTH TO BOT- TOM OF SAMPLE INTER- VAL (FT)	PUMP OR FLOW PERIOD PRIOR TO SAM- PLING (MIN)	FLOW RATE, INSTAN- TANEOUS (GPM)
CLAYTO GLASSB GLASSB	N BORO WD 3 N BORO WD 4 ORO BORO WD 5 ORO BORO WD 3 BORO WD P1	79-08-17 79-08-17 79-08-17 79-08-17 79-08-14	133.00 140.00 138.00 150.00 140.00	1010 943 514	800 741 660 615 514	740 657 544 460	802 778 	746 670 600 562 468	80 0 7 4 0 65 7 6 1 2 5 1 4	210 15 1440 10 360	800 1250 1000 630 350
SWEDES SEWELL	RY CTY WD-SEWEL 1A	79-08-14 79-08-15 79-08-14 79-08-14 79-08-14	35.00 70.00 80.00 20.00 10.00	270 344 377 317 335	268 315 377 314 268	225 234 320 247	266 312 377 315	2 34 24 1 3 52 27 1 23 0	265 312 377 312 265	60	720 950
PENNS PAULSB PAULSB	H BORO WD 1 GROVE WC-BRIDGPT 2 ORO WD 6-73 ORO WD 4-51 ONT REPAUNO 6	79-08-14 79-08-15 79-08-15 79-08-15 79-08-15	80.00 20.00 15.00 15.00 10.00	321 127 	320 88 230 226 109	265 60		286 65 185 192 84	32 0 85 22 7 22 0 10 9	15 10 1440 15	140 95 700 700 325
WOODBU PAULSB MOBIL	ONT REPAUNO 5 RY WD RAILROAD 5 ORO WD 5-57 OIL-GREENWICH 45 OIL-GREENWICH 47	79-08-15 79-08-14 79-08-15 79-08-15 79-08-14	10.00 35.00 10.00 3.00 20.00	247	99 457 196 118 245	217		81 405 135 95 220	99 457 175 118 240	480 40 15 	200 600 700
NATION	AL PARK BORO WD 2	79-08-15	30.00	307	282	194	288	241	282	15	700

Geologic unit (aquifer): 211MGRR - Potomac-Raritan-Magothy Aquifer System

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979 SALEM COUNTY

WELL NUMBER	LOCAL IDENT - I - FIER	LAT- I- TUDE	LONG- I- TUDE	GEO- SEQ. LOGIC NO. UNIT	DATE OF SAMPLE	TEMPER - ATURE (DEG C)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
32 34 364 35 33	SALEM NUCLEAR GEN STA 3 SALEM NUCLEAR GEN STA 1 SALEM NUCLEAR GEN STA 5 SALEM NUCLEAR GEN STA 2 L ALLOWAY CR ELEM SCH 1	39 27 40 39 27 42 39 27 43 39 27 44 39 27 51	075 32 02 075 32 00 075 31 58 075 32 05 075 24 41	01 211MLRW 01 211MLRW 01 211MGRR 01 211MLRW 01 211MLRW	79-05-18 79-05-18 79-05-18 79-05-18 79-08-29	15.5 15.5 19.5 15.0	 505	 8.1	66 70 17 210 41
48 107 108	SALEM CITY WD-QUINTON ML MANNINGTON MILLS 2-67 NJ DEP-FT MOTT S P 1 US ARMY-FINNS POINT	39 32 53 39 34 51 39 36 20 39 36 41	075 24 25 075 27 18 075 33 10 075 33 22	02 211MLRW 01 211MLRW 01 211MGRR 01 211MGRR 211MGRR	79-08-17 79-08-17 78-10-05 78-10-05 79-08-29	15.5 14.5	345 340 510 630 600	7.7 7.0 6.7 6.9	10 21 91 140 110
112 354 362 163 117	PENNSVILLE TWP WD 4 WOODSTOWN BORO WD 2 WOODSTOWN BORO WD 3 RICHMAN ICE CREAM 1 PENNSVILLE TWP WD 3	39 37 54 39 39 04 39 39 27 39 39 28 39 39 54	075 31 48 075 19 46 075 19 27 075 21 47 075 30 13	01 211MGRR 02 211MGRR 01 211MGRR 01 211MGRR 01 211MGRR	79-08-30 79-08-29 79-08-29 79-08-29 78-10-05	14.0 18.0 18.0 14.0	188 1070 905 382 156	6.8 8.0 7.9 6.6	9.5 210 150 18 8.0
118	PENNSVILLE TWP WD 1	39 39 58	075 30 45	01 211MGRR 211MGRR	78-10-05 79-08-30	14.5 14.5	425 455	7.0	64 62
119	PENNSVILLE TWP WD 2 ATL CITY EL-DEEPWATER 3R	39 40 09 39 40 46	075 30 43 075 30 22	01 21 1MGRR 21 1MGRR 02 21 1MGRR	78-10-05 79-08-30 78-10-05	15.0 16.0 14.0	610 635 375	6.3 6.8 6.6	130 120 43
125	ATL CITY EL-DEEPWATER 5	39 40 50	075 30 30	211MGRR 01 211MGRR 211MGRR	79-08-30 78-10-05 79-08-30	14.5 15.0 15.5	370 432 450	7.1 6.6 6.8	44 70 65
127 137	ATL CITY EL-DEEPWATER 6 EI DUPONT-DRINKWATER 8	39 41 00 39 41 12	075 30 30 075 30 28	01 211MGRR 01 211MGRR	79-08-30 78-10-05	16.0 15.0	820 500	6.6	160 70
345	PENNS GROVE WC LAYTN1-79 PENNS GROVE WC 2B	39 42 04 39 42 47	075 26 59 075 27 14	21 1MGRR 01 21 1MGRR 01 21 1MGRR 21 1MGRR	79-08-30 79-08-30 78-10-05 79-08-30	15.0	515 238 207 213	7.5 6.5 6.3 5.2	74 13 15 12
346	PENNS GROVE WC-LAYNE 1	39 42 56	075 27 18	01 211MGRR	78-10-05	14.5	900	6.5	210
				21 1MGRR	79-08-30	15.5	935	7.5	200

Geologic unit (aquifer): 211MLRW - Mount Laurel Sand-Wenonah Formation 211MGRR - Potomac-Raritan-Magothy Aquifer System

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979 SALEM COUNTY--Continued

LOCAL IDENT- I- FIER	DATE OF SAMPLE	ELEV. OF LAND SURFACE DATUM (FT. NGVD)	DEPTH OF HOLE, TOTAL (FEET)	DEPTH OF WELL, TOTAL (FEET)	DEPTH TO TOP OF WATER- BEARING ZONE (FT)	DEPTH TO BOT- TOM OF WATER- BEARING ZONE (FT)	DEPTH TO TOP OF SAMPLE INTER- VAL (FT)	DEPTH TO BOT- TOM OF SAMPLE INTER- VAL (FT)	PUMP OR FLOW PERIOD PRIOR TO SAM- PLING (MIN)	FLOW RATE, INSTAN- TANEOUS (GPM)
SALEM NUCLEAR GEN STA 3	79-05-18	20.00		293			243	293		
SALEM NUCLEAR GEN STA 1	79-05-18	20.00		298			248	298		
SALEM NUCLEAR GEN STA 5	79-05-18	20.00								1 - X X
SALEM NUCLEAR GEN STA 2	79-05-18	20.00		281			230	280		
L ALLOWAY CR ELEM SCH 1	79-08-29	10.00		340					10	30
SALEM CITY WD-QUINTON ML	79-08-17	7.00		250						
MANNINGTON MILLS 2-67	79-08-17	10.00		128			87	127		
NJ DEP-FT MOTT S P 1	78-10-05	8.00		320	300		300	320		
US ARMY-FINNS POINT	78-10-05	7.00		319	302		282	319		
	79-08-29	7.00		319	302		282	319	15	20
PENNSVILLE TWP WD 4	79-08-30	10.00		137			117	137	1080	360
WOODSTOWN BORO WD 2	79-08-29	45.00	705	705	674		670	705	15	350
WOODSTOWN BORO WD 3	79-08-29	60.00		700					15	650
RICHMAN ICE CREAM 1	79-08-29	25.00	475	475	400		418	446	120	100
PENNSVILLE TWP WD 3	78-10-05	7.00		102	84		87	102	1440	430
PENNSVILLE TWP WD 1	78-10-05	8.00	248	248	212	238	213	238	120	150
	79-08-30	8.00	248	248	212	238	213	238	50	190
PENNSVILLE TWP WD 2	78-10-05	7.00	242	232	197	232	210	230	10	260
	79-08-30	7.00	242	232	197	232	210	230	60	150
ATL CITY EL-DEEPWATER 3R	78-10-05	10.00	285	236		243	165	235	1 80	500
	79-08-30	10.00	285	236		243	165	235		
ATL CITY EL-DEEPWATER 5	78-10-05	15.00	300	224	147	249	149	219	1440	500
	79-08-30	15.00	300	224	147	249	149	219		
ATL CITY EL-DEEPWATER 6	79-08-30	15.00	220	188	1 47	199	158	188		
EI DUPONT-DRINKWATER 8	78-10-05	14.00		361			317	361	720	300
	79-08-30	14.00		361			317	361		
PENNS GROVE WC LAYTN1-79	79-08-30	10.00		6.8			40	60	60	450
PENNS GROVE WC 2B	78-10-05	19.00		60			45	60	10	300
	79-08-30	19.00		60			45	60	180	275
PENNS GROVE WC-LAYNE 1	78-10-05	19.00	366	357	279		317	357	10	700
	79-08-30	19.00	366	357	279		317	357	60	550

	PAGE		PAGE
Accuracy of field data and computed results	11	Cliff Lake, NY	183, 185
Acknowledgments	2	Cohansey River at Bridgeton	37, 199
Acre-foot, definition of	2	at Greenwichat Seeley	198
Adenosine triphosphate, definition of	2	at Seeley	35,199
Alexauken Creek near Lambertville91,19	1,205	near Beals Mills	189
Algae, definition of	2	West Branch, at Seeley	192
Algal growth potential (AGP), definition of	3 207	miscellaneous sites	189
Alloway, Alloway Creek at inlet of Alloway Lake near.	3,201	Collection and computation of data	10
Deep Run near	191	Collection and examination of data	12
Almonesson Creek at Runnemede	7.212	Collection of the data	17
Aquifer code list	2	Collingswood, Newton Creek at	194
Aquifer, definition of	2	Color unit, definition of	1
Artesian, definition of	3	Columbia, Paulins Kill at Mouth at	53,200
Ash mass, definition of	3	Columbus, Assiscunk Creek at	127,209
Assiscunk Creek at Columbus	7,209	Assiscunk Creek near	193,209
near Burlington12	8,209	Crafts Creek at	
near Columbus	207	Computations, accuracy of results	11
at Carsons Mills	8 206	Continuing record station, definition of	1
at Edinburg	206	Control definition of	L
at Peace Street at Trenton		Control, definition of	L
at Trenton11	3,207	Cooper River at Camden	162,212
near Clarksville 11	0,206	at Haddonfield	159,212
Aura, Still Run at	189	at Kirkwood155,	194,211
		at Lawnside157.	191,211
Bacteria, definition of	3	at Norcross Road at Lindenwold	153, 211
Bakersville, Assunpink Creek atBalesville, Paulins Kill at4	207	North Branch at Erlton	
Barrett Run near Bridgeton 4	190	near Marlton	194
Beals Mills, Conansey River at	189	CooperationCourses Landing, Salem River at	181 211
Bear Creek, PA, diversions	187	Crafts Creek at Columbus	103 208
Bear Swamp Reservoir, NY, diversions	187	at Hedding	126, 208
Reattystown, Musconetcong River at	4,203	Crest-stage partial-record stations	192
Beaver Brook near Belvidere	2,202	Crosswicks Creek at Extonville	115,207
Beaver Brook near Belvidere	3	at New Egypt	193
Bedload, definition of	3	at Groveville	118,207
Beltzville Lake data	186	Cubic feet per second per square mile, definition of.	4
Belvidere, Beaver Brook near	2,202	Cubic foot per second, definition of	221
Peguest River at	0 202	Cumberland County, ground-water levels ground-water quality	225
Bethlehem, PA, Lehigh River at	65	8. cana nacc. quazzo, iiii	
Pequest River at	0,200	Deep Run near Alloway	191
at Glendora16	5,212	Defintion of terms	2
North Branch at Laurel Road at Laurel Springs	194	Delaware and Raritan Canal at Kingston	84,205
South Branch, at Blackwood	212	Delaware Memorial Bridge, Wilmington, DE,	177
South Branch, at Blackwood Terrace	212	Delaware River at	62,202
Biomass, definition of	3	at Burlington	130
Bivalve, Maurice River at	198	at Chester. PA	198
Blacks Creek at Bordentown	4,208	at Chester, PAat Delaware Memorial Bridge, Wilmington, DE	177
at Mansfield Square19	3,208	at Frenchtown	82,204
Blackwood, South Branch Big Timber Creek at16	4,194	at Lambertville	92,205
Blackwood Terrace, South BBranch Big Timber Creek at.	212	at Lumberville	87,205 198
Blairstown, Paulins Kill at	0,201	at Marine Terminal, Trentonat Montague	
lards creek near	2,201	at Northampton Street at Easton, PA	63,202
Bloomsbury, Musconetcong River near	0,204	at Oakwood Beach	198
Bordentown, Blacks Creek at	4.208	at Palmyra	148
Bordentown, Blacks Creek at	203	at Port Jervis. NY	38
Bridgeton, Barrett Run near	190	at Portland	47,200
Cohansey River at	7,199	at Riegelsville79,	
Indians Fields Branch at	190	at Trenton	96
Browns Mills, North Branch Rancocas Creek at13	6,199	at Washington Crossing	94,206
Burlington, Assiscunk Creek near12 Delaware River at	130	below Tocks Island Damsite, nr Delaware Water Gap near Richmond, PA	55 201
Burlington County, ground-water levels	215	Delaware River basin, discharge measurements at	33,201
Dai III 6 Ook Goding, 8. Galla-Wade. Icveloiii iiiiiiii	-13	miscellaneous sites	196
Camden County, ground-water levels	220	Diversions	187
Camden County, ground-water levels	2,212	Reservoirs in	182
Cannonsville Reservoir data18	5,187	Delaware Water Gap, PA, Delaware River below	
Cane May Canal at North Cane May	108	Tocks Island Damsite, near	46,200
Carpentarsville Pohatoons Crack at	0 202	Depth of well, definition of	4
Cape May County, ground-water quality	8,206	Depth to the bottom of sample interval, definition of Depth to the bottom of water-bearing zone,	4
Cells/volume, definition of	3,200	definition of	21
Centerton, Muddy Run at	189	definition of	4
CFS-day, definition of	3	Depth to the top of water-bearing zone, definition of	4
Chemical ovugen demand definition of	3	Diatoms, definition of	6
Cherry Hill, South Branch Pennsauken Creek at15	1,211	Discharge, definition of	100
Chester, PA, Delaware River at	198	Discharge measurements at miscellaneous sites	196
Chlorophyll, definition of	194	Dissolved, definition of	187
Cinnaminson, Pompeston Creek at		Diversity index, definition of	101
Clarity I that I have been all the second and the s	100		

PAGE	PAGE
Doctors Creek at Allentown	Pepacton Reservoir, NY. 182,185,187 Prompton Reservoir, PA 182,185 Still Creek Reservoir, PA 184,186 Swinging Bridge Reservoir, NY. 183,185
Drainage area, definition of. 4 Drainage basin, definition of 4 Dry mass, definition of 3	Toronto Reservoir, NY
East Pond Reservoir, NY, diversions	Wild Creek Reservoir, PA
Eayrestown, Southwest Branch Rancocas Creek at135,210 Edinburg, Assunpink Creek at	Swan Creek at. 93,20b Laurel Springs, NB Big Timber Creek at. 94 Lawnside. Cooper River at. 157,191,211
Explanation of ground-water level records	Lebanon State Forest, McDonalds Branch in
Extonville, Crosswicks Creek at115,207	Little Ease Run near Clayton
Fecal coliform bacteria, definition of	Low-flow partial-record stations
Flat Brook at near Flatbrookville. 44,200 Flatbrookville, Flat Brook near. 44,200 Fourmile, Gum Spring at. 44,200	Lumberville, Delaware River at
Franklinville, Scotland Run at	Mansfield Square, Blacks Creek at 193,208 Mantua Creek at Mantua 170,213 at Pitman 169,194,213 at Salina 195
Gage height, definition of	Mantua, Mantua Creek at
Records. 28 Glendora, North Branch Big Timber Creek at	Maurice River at Bivalve. 198 at Norma 28 at Sharp Street at Millville 33,199
ground-water quality.	McDonalds Branch in Lebanon State Forest
Green Lane Reservoir, PA	Mean high or low tide, definition of
Ground-water quality records	Metamorphic stage, definition of
Hackettstown, Musconetcong River near	Methylene blue active substance, definition of
Haddon Heights, SB Newton Creek at	Middleville, Trout Brook near. 190 Milford, Hakihokake Creek at. 80,199,204 Mill Creek near Millville. 189
Harihokake Creek near Frenchtown	Milligrams per liter, definition of
Hazel Creek, PA, diversions	Mill Creek near
High tide, definition of	Morris Lake, diversions
Hurdtown, Weldon Brook at	Muddy Run at Centerton
Hydrologic unit, definition of	Mullica Hill, Raccoon Creek near
Indian Fields Branch at Bridgeton	at Hackettstown. 192 at Hampton. 73,203 at Lockwood. 73,203 at outlet of Lake Hopatcong. 72,192,203
Introduction	at Riegelsville
Kingston, Delaware and Raritan Canal at 84,205	Muskee Greek near Port Elizabeth
Kirkwood, Cooper River at	Neversink Reservoir, NY
Lakes and reservoirs: Bear Swamp Reservoir, NY, diversions	Newton, Paulins Kill near
Cannonsville, NY, diversions 182,185,187 Cliff Lake, NY. 183,185 East Pond Reservoir, NY, diversions 187 Green Lane Reservoir, PA. 184,186	South Branch, at Haddon Heights
Green Lane Reservoir, PA	Numbering system for wells and miscellaneous sites
Hopatcong, Lake	Oakwood Beach, Delaware River at. 198 Octoraro Creek, PA, diversions. 188 Oldmans Creek at Porches Mill. 176,21
Penn Forest Reservoir, PA	near Harrisonville

	PAGE
Organic mass, definition ofOther data available	
Palmyra, Delaware River at	148
Definition	5
Low-flow	189
Tidal crest-stage	198
Particle size classification	5
Paulins Kill at Balesville	49,200
at Blairstownat Mouth at Columbia	50,201
near Newton	190
at Paulins Kill	190
Pemberton, North Branch Rancocas Creek at	144,210
Penn Forest Reservoir, PA Pennsauken Creek. North Branch near Moorestown14	9. 194. 210
Pennsauken Creek, North Branch near Moorestown14 South Branch at Cherry Hill	151,211
Pepacton Reservoir, NY	2, 185, 187
at Huntsville	190, 192
at Pequest	58,202
at TownsburyPeriphyton, definition of	57,201
Philadelphia, PA, City of Philadelphia, diversions.	188
Philadelphia, PA, City of Philadelphia, diversions. Schuylkill River at	168
Phillipsburg, Lopatcong Creek at	6, 190, 202
Picocurie, definition of	6
Pitman, Mantua Creek at	9,194,213
Plankton, definition of	6
Pohatcong Creek at Carpentersville	8. 192. 202
Polychlorinated biphenyls, definition of	6
Pompeston Creek at Cinnaminson	176 212
Porches Mill, Oldmans Creek at	189
Port Jervis, NY, Delaware River at	38
Portland, PA, Delaware River at	47,200
Muskee Creek near. Port Jervis, NY, Delaware River at. Portland, PA, Delaware River at Primary productivity, definition of Prompton Reservoir, PA.	182, 185
rubilcations, kround water	
Surface water	12
Water quality Techniques of water-resources investigations	21
Raccoon Creek near Mullica Hill	174.213
Radioisotopes, definition of	., 6
at Pemberton. at Pine Street at Mount Holly.	147, 210
at Vincentown	135, 210
at Medford	193. 210
Raven Rock, Lockatcong Creek near	86,205
Remark codes for water-quality data	14
Remark codes for water-quality data	
Retreat, South Branch Rancocas Creek at	131,209
Richmond, PA, Delaware River near	9.192.204
Musconetcong River at	77,204
River mile, definition of	167 213
River mile, definition of. Runnemede, Almonesson Creek at. Runoff in inches, definition of.	6
Salem County, ground-water levels	
Ground-water quality	227
Ground-water quality	181, 214
at Woodstown	
Schuylkill River at Philadelphia, PA	168
Scotland Run at Franklinville	
Sediment, definition of	35, 199
West Branch Cohansey River at	192
Selected references	17
Solute, definition of	7
Specific conductance, definition of	7
Stage-discharge relation, definition of	184. 186
	,

P	AGE
Still Run at Aura	189
Stockton, Wickecheoke Creek at	205
Streamflow, definition of	7
Suspended sediment data	199
Suspended sediment, definition of	6
Suspended sediment, definition of	6
Suspended-sediment concentration, definition of	6
Swan Creek at Lambertville	200
Swedesboro, Raccoon Creek near	213
Swinging Bridge Reservoir, NY, data183,	185
Terms, definition of	2
Thermograph, definition of	8
fidal crest-stage station	198
Timber Creek, South Branch, at Blackwood164,194,2	212
Tocks Island Damsite, Delaware River below, near	100
Delaware Water Gap, PA	46
Tons per day, definition of	8
tons per day, definition of	
Toronto Reservoir, NY183,	
Total, definition of	8
Total coliform bacteria, definition of	3
Total depth of hole, definition of	4
Total depth of well, definition of	4
Total sediment discharge, definition of	6
Townsbury, Pequest River at 57,2	201
Frenton, Assunpink Creek at113,	207
	188
Delaware River at	96
	198
Crout Brook near Middleville	190
futtles Corner, Big Flat Brook at	
Vincentown, South Branch Rancocas Creek at133,193,	209
Wallenpaupack, Lake, PA	185
Valter, Francis E., Reservoir, PA	186
Warren County, ground-water levels	223
	203
Washington Crossing, Delaware River at	206
Vater-quality criteria	14
	13
	190
Wet mass, definition of	3
Vickecheoke Creek at Stockton89,191,	205
Vild Creek Reservoir, PA184,	186
Vilmington, DE, Delaware River at Delaware	
	177
Vithdrawals from the Delaware River Basin	187
Woodstown, Salem River at	214
VDR, definition of	9
ISP, definition of	9
Yards Creek near Blairstown	201
(ardville, Doctors Creek at Route 130 near122,2	208
Cooplankton, definition of	6

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI). This report contains both the inch-pound and SI unit equivalents in the station manuscript descriptions.

Multiply inch-pound units	Ву	To obtain SI units
	Length	
inches (in)	2.54x10 ¹	millimeters (mm)
feet (ft)	2.54x10 ⁻² 3.048x10 ⁻¹	meters (m) meters (m)
miles (mi)	1.609x10°	kilometers (km)
	Area	
acres	4.047x10 ³ 4.047x10 ⁻¹	square meters (m ²)
	4.047x10 ⁻³	square hectometers (hm²) square kilometers (km²)
square miles (mi ²)	2.590x10°	square kilometers (km²)
	Volume	
gallons (gal)	3.785x10° 3.785x10°	liters (L) cubic decimeters (dm³)
million gallons	3.785x10 ⁻³	cubic meters (m ³)
	3.785×10^{3} 3.785×10^{3}	cubic meters (m ³) cubic hectometers (hm ³)
cubic feet (ft³)	2.832x10 ¹ 2.832x10 ⁻²	cubic decimeters (dm³) cubic meters (m³)
cfs-days	2.447x10 ³ 2.447x10 ⁻³	cubic meters (m ³) cubic hectometers (hm ³)
acre-feet (acre-ft)	1.233x10 ³ 1.233x10 ⁻³	cubic meters (m³) cubic hectometers (hm³)
	1.233x10 ⁻⁶	cubic kilometers (km³)
	Flow	
cubic feet per second (ft³/s)	2.832x10 ¹	liters per second (L/s)
	2.832x10 ¹ 2.832x10 ⁻²	cubic decimeters per second (dm ³ /s) cubic meters per second (m ³ /s)
gallons per minute (gal/min)	6.309x10 ⁻² 6.309x10 ⁻²	liters per second (L/s) cubic decimeters per second (dm³/s)
million gallons per day	6.309x10 ⁻⁵ 4.381x10 ¹	cubic meters per second (m³/s) cubic decimeters per second (dm³/s)
minor ganons per day	4.381x10 ⁻²	cubic meters per second (miles)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

POSTAGE AND FEES PAID U.S. DEPARTMENT OF THE INTERIOR INT 413

U.S. DEPARTMENT OF THE INTERIOR Geological Survey 402 East State Street, P.O. Box 1238 Trenton, NJ 08607

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300
SPECIAL 4TH CLASS BOOK RATE