
R (200) Ga3 1980 V-2

Water Resources Data for Hawaii and other Pacific Areas

Volume 2. Trust Territory of the Pacific Islands, Guam, American Samoa, and Northern Mariana Islands

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT HI-80-2
WATER YEAR 1980

Prepared in cooperation with the Trust Territory of the Pacific Islands, the Governments of Guam, American Samoa, and Northern Mariana Islands, and with other agencies

CALENDAR FOR WATER YEAR 1980

						20.80			1	9 7	9									
	0	C	го	В	ER			N	V	EN	В	E	2		D	E C	E	и в	E	R
5	М	Т	W	Т	F	S	5	М	T	W	T	F	5	S	М	Т	W	Т	F	5
	1	2	3	4	5	6					1	2	3							1
7	8	9	10	11	12	13	4	5	6	7	8	9	10	2	3	4	5	6	7	8
21	22	23	24	25	26	27	18	19	20	21	22	23	24	16	17	18	19	20	21	22
28	29	30	31				25	26	27	28	29	30		23	24	25	26	27	28	29
														30	31					
_									1	9 8	0		N. S.							
	J	A 1	1 U	A	RY			F	В	RU	A	RY	1		1	A N	R	СН		
S	M	Т	W	Т	F	S	S	М	Т	W	Т	F	S	S	M	Т	W	Т	F	S
			2	2		5							2							
6	7	8	9	10	11	12	3	4	5	6	7	8	9	2	3	4	5	6	7	1 8
13	14	15	16	17	18	19	10	11	12	13	14	15	16	9	10	11	12	13	14	15
20	21	22	23	24	25	26	17	18	19	20	21	22	23	16	17	18	19	20	21	22
21	20	23	30	31			24	23	20	21	20	29		30	31	23	20	21	20	29
											.,							_		
		AI	R	' '					,	A N	Y					, ,	אנ	E		
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
		1	2	3	4	5					1	2	3	1	2	3	4	5	6	7
6			9			12	4	5	6	7	8	9	10	8	9	10	11	12	13	14
13	14	15	16	17	18	19	11	12	13	14	15	16	17							
27	28	29	30	24	23	20	25	26	27	28	29	30	31			27	23	20	2,	20
		11	JL	Y				A	U	G U	S	Т			SE	P .	T E	MI	BE	R
S	M	T	W	T	F	S	S	М	T	W	T	F	S	S	M	Т	W	Т	F	S
			2									1	2				3			
			9							6										
			16											14						
			30														-		20	-
							31													

Water Resources Data for Hawaii and other Pacific Areas

Volume 2. Trust Territory of the Pacific Islands, Guam, American Samoa, and Northern Mariana Islands

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT HI-80-2
WATER YEAR 1980

Prepared in cooperation with the Trust Territory of the Pacific Islands, the Governments of Guam, American Samoa, and Northern Mariana Islands, and with other agencies

UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary

GEOLOGICAL SURVEY

Doyle G. Frederick, Acting Director

For information on the water program in Hawaii and other Pacific Areas write to District Chief, Water Resources Division U.S. Geological Survey 6th Floor, Room 6110 300 Ala Moana Boulevard Honolulu, Hawaii 96850

PREFACE

This report was prepared by personnel of the Hawaii district of the Water Resources Division of the U.S. Geological Survey under the supervision of Benjamin L. Jones, District Chief, and J. D. Bredehoeft, Regional Hydrologist, Western Region.

This report is one of a series issued by State. General direction for the series is by Philip Cohen, Chief Hydrologist, U.S. Geological Survey, and R. J. Dingman, Assistant Chief Hydrologist for Scientific Publications and Data Management.

Data for Hawaii and other Pacific Areas are in two volumes as follows:

- Volume 1. State of Hawaii
- Volume 2. Trust Territory of the Pacific Islands, Guam, Mariana Islands, Tutuila, American Samoa, and Saipan, Northern Mariana Islands

50272 -10	01
-----------	----

REPORT DOCUMENTATION PAGE	1. REPORT NO. USGS/WRD/HD-81/055	2.	3. Recipient's Accession No.
4. Title and Subtitle Water Resources Da	5. Report Date July 1981		
Volume 2.	6.		
7. Author(s)	8. Performing Organization Rept. No. USGS-WRD-HI-80-02		
 Performing Organization Name a U.S. Geological Su 	10. Project/Task/Work Unit No.		
6th Floor, Room 61 Honolulu, Hawaii	11. Contract(C) or Grant(G) No.(C)(G)		
12. Sponsoring Organization Name		7.0	13. Type of Report & Period Covered
그 [18] [18] [18] [18] [18] [18] [18] [18]	rvey, Water Resources Divis 10, 300 Ala Moana Blvd.	sion	Annual - Oct. 1, 1979 to Sept. 30, 1980
Honolulu, Hawaii	96850		14.

15. Supplementary Notes

Prepared in cooperation with the Trust Territory of the Pacific Islands, the Governments of American Samoa, Guam, Northern Mariana Islands, and with other agencies.

16. Abstract (Limit: 200 words)

Volume 2 of water resources data for the 1980 water year for other Pacific areas consist of records of stage, discharge, and water quality of streams; stage of a reservoir; and water levels in wells and springs. This report contains discharge records for 41 gaging stations; stage only record for 1 gaging station; water quality for 1 gaging station, 49 partial-record stations; water temperature for 23 gaging stations; water levels for 13 observation wells; tide level for 1 tide station; and 7 water level less tide level tables. Also included are 33 low-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Governments and Federal agencies in other Pacific areas.

17. Document Analysis a. Descriptors

*Pacific area, *Hydrologic data, *Surface water, *Ground water, Flow rate, Gaging stations, Reservoirs, Water temperatures, Sampling sites, Water levels.

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Availability Statement No restriction on distribution.

This report may be purchased from:

National Technical Information Service

Springfield, VA 22161

19. Security Class (This Report)

UNCLASSIFIED

20. Security Class (This Page)

UNCLASSIFIED

RCLASSIFIED 21. No. of Pages 158 158 22. Price

WATER RESOURCES DIVISION

Hawaii District

Benjamin L. Jones, District Chief

This report prepared by:

Reuben Lee, Assistant District Chief, Hydrologic Inventory Section Santos Valenciano, Chief, Hydrologic Information Unit Iwao Matsuoka, Hydrologist Johnson J. S. Yee, Hydrologist (Chemist) Charles J. Huxel, Chief, Guam Subdistrict Otto van der Brug, Hydrologist David A. Beck, Hydrologist Isao Yamashiro, Hydrologic Technician Rose M. Maruoka, Hydrologic Technician Akiko K. Tanaka, Hydrologic Technician (Typist)

Assisted by:

Tamio Ishibashi, Cartographic Technician
Pearl K. S. Tam, Physical Science Technician
Jose S. Quinata, Hydrologic Technician
Gregg N. Ikehara, Hydrologist
Joseph F. Zablan, Hydrologic Technician
Julane M. Wood, Secretary (Typist)
Cheryl Yamane, Data Transcriber (PT)
Amy E. Shinsato, Data Transcriber (PT)
Lodie T. Piniol, Data Transcriber (PT)

CONTENTS

	Page
Preface	III
List of gaging stations, in downstream order, for which records are	IX
published List of ground-water stations for which water-level records are	
published	X
Introduction	1
Cooperation	2
Definition of terms	2
Downstream order and station number	10
Numbering system for wells and miscellaneous sites	11
Special networks and programs	11
Explanation of stage and water-discharge records	11
Collection and computation of data	11
Accuracy of field data and computed results	14
Records of discharge collected by agencies other than the	
Geological Survey	15
Other data available	15
Publications	15
Explanation of water-quality records	15
Collection and examination of data	15
Water analysis	16
Water temperature	16
Sediment	16
Publications	17
Explanation of ground-water level records	17
Collection of the data	17
Hydrologic conditions	18
Publications of techniques of water-resources investigations	20
Gaging-station records	36
Discharge at partial-record stations and miscellaneous sites	84
Low-flow partial-record stations	84
Analyses of samples collected at water-quality partial-record stations.	88
Periodic determinations of water temperature at gaging stations	132
Ground-water records	137
Ground-water level records	137
Quality of ground-water records	154
Index	157

ILLUSTRATIONS

	.1	Page
Figure	Discharge during 1980 water year compared with median discharge for representative streams on Guam and Babelthuap	21
	Discharge during 1980 water year compared with median discharge for representative streams on Yap and Ponape	22
	Discharge during 1980 water year compared with median discharge for representative streams on Kosrae and Tutuila	23
	Map showing locations of the Trust Territory Pacific Islands	24
	Map of Saipan, Mariana Islands, showing locations of gaging stations	25
	Map of Guam, Mariana Islands, showing locations of gaging, water-quality, and partial-record stations	26
	Map of Guam, Mariana Islands, showing locations of observation wells, and ground-water-quality site	27
	Map of Babelthuap, Palau Islands, showing locations of gaging, water-quality, and partial-record stations	28
	Map of Arakabesan, Malakal, Palau Islands, showing locations of low-flow and water-quality partial-record stations	29
1	Map of Yap Islands, showing locations of gaging, low-flow and water-quality partial-record stations, and ground-water-quality site	30
1	Map of Moen, Truk Islands, showing locations of gaging, low-flow and water-quality partial-record stations, and ground-water-quality sites	31
1	Map of Ponape, showing locations of gaging, low-flow and water-quality partial-record stations	32
1	Map of Kosrae, showing locations of gaging, low-flow and water-quality partial-record stations	33
1	Map of Tutuila, Samoa Islands, showing locations of gaging, and water-quality stations	34
1	Sketch showing system for numbering wells and miscellaneous sites	35
1	Sketch showing local well numbering system	35

(Letter after station name designates type of data: (d) discharge, (c) chemical, (b) biological, (m) microbiological, (t) water temperature, (s) sediment)

	Page
MARIANA ISLANDS	
ISLAND OF SAIPAN	
Denni Spring (head of Denni Stream) (d)	36
South Fork Talofofo Stream (d)	37
Middle Fork Talofofo Stream (d)	38
ISLAND OF GUAM	2.5
Finile Creek at Agat (d)	39
La Sa Fua River near Umatac (d)	40
Inarajan River near Inarajan (d)	41
Tinaga River near Inarajan (d)	42
Tolaeyuus River (head of Talofofo River):	
Imong River (head of Fena River) near Agat (d)	43
Almagosa River near Agat (d)	44
Maulap River near Agat (d)	45
Fena Dam spillway near Agat (cts)	46
Ugum River above Talofofo Falls near Talofofo (dct)	47
Ylig River near Yona (d)	48
Pago River near Ordot (dcmbts)	49
CAROLINE ISLANDS	
PALAU ISLANDS	
Adeiddo River, Babelthuap (dct)	56
Tabagaten River, Babelthuap (dct)	57
Gaden River (head of Geriiki River), Babelthuap (dct)	58
Kumekumeyel River, Babelthuap (dct)	59
Ngardok River:	(0
South Fork Ngardok River, Babelthuap (dct)YAP ISLANDS	60
Aringel Stream, Yap (dct)	61
Dalolab Stream, Yap (dct)	62
Pemgoy Stream, Yap (dct)	63
Burong Stream, Yap (dct)	64
Mukong Stream, Gagil-Tomil (dct)	65
TRUK ISLANDS	0.5
Wichen River at altitude 55 m, Moen (dct)	66
Wichen River at altitude 18 m, Moen (dct)	67
ISLAND OF PONAPE	
Tawenjokola River:	
Nanepil River (dct)	68
Lui River (dct)	69
Lui River at mouth (dct)	70
Lupwor River (dct)	71
ISLAND OF KOSRAE	
Mutunte River (dct)	72
Okat River (head of Wukat River) (dct)	73
Melo River (dct)	74
Malem River (dct)	75
Tofol River (dct)	76
SAMOA ISLANDS	
ISLAND OF TUTUILA	
Pago Stream at Afono (dt)	77
Aasu Stream at Aasu (dt)	78
Atauloma Stream at Afao (dt)	79
Asili Stream at altitude 330 ft (100 m) near Asili (dt)	80
Leafu Stream at altitude 370 ft (113 m) near Leone (dt)	81
Afuelo Stream at Matuu (dt)	82
Leafu Stream near Auasi (dt)	83

	Page
MARIANA ISLANDS	
ISLAND OF GUAM	
Tide Gage at Pago Bay (2547340) 1325341444	74871 137
Government of Guam, Ordot (2645220) 1326241444	
Well 2645220 less Tide Gage at Pago Bay 1326241444	
Anna P. Diaz, Mangilao (2648400) 1326441444	
Well 2648400 less Tide Gage at Pago Bay 1326441444	
U.S. Navy Tamuning (2846541) 1328241444	
Well 2846541 less Tide Gage at Pago Bay 1328241444	
Public Utility Agency of Guam, Barrigada (2847120) 1328131444	
Well 2847120 less Tide Gage at Pago Bay 1328131444	
Public Utility Agency of Guam, Dededo (3049311) 1330321444	91871 146
Well 3049311 less Tide Gage at Pago Bay 1330321444	
Public Utility Agency of Guam, Dededo (3050400) 1330471445	00171 148
Well 3050400 less Tide Gage at Pago Bay 1330471445	
Government of Guam, Dededo (3148140) 1331151444	
Well 3148140 less Tide Gage at Pago Bay 1331151444	84973 151
Public Utility Agency of Guam, Inarajan (1845013) 1318091444	
Satellite Tracking Station, Inarajan (1845400) 1318421444	하느렇게 맛있다. 맛이게 되었다. 이 사람들은 그리고 말이 먹었다. 이 네
Father Duenas Memorial School, Ordot (2647100) 1326151444	34 THE STATE OF STATE
Agana Springs, Sinajana (2745420) 1327421444	
Well 147, Agana (2745500) 1327581444	
Marbo Well (M-11), Dededo (3050300) 13303414450	

WATER RESOURCES DATA FOR HAWAII AND OTHER PACIFIC AREAS, 1980

Volume 2

INTRODUCTION

Water resources data for the 1980 water year for Hawaii and other Pacific areas, Volume 2, consist of records of stage, discharge, and water quality of streams; stage of a reservoir; and water-levels of wells and springs. This report contains discharge records for 41 gaging stations; stage only records for 1 gaging station; water quality for 1 gaging station; 49 partial-record stations; water temperature for 23 stations; water levels for 13 observation wells; tide level for 1 tide station; and 7 water level less tide level tables. Also included are data for 33 low-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Governments and Federal agencies in other Pacific areas.

Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled, "Surface Water Supply of the United States." Through September 30, 1960 (June 30, 1960, for Hawaii and other Pacific Areas), these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. The records for other Pacific areas were contained in one volume entitled "Surface Water Supply of Mariana, Caroline, and Samoa Islands." Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled "Ground Water Levels in the United States." Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from the Branch of Distribution, U.S. Geological Survey, 1200 South Eads Street, Arlington, Virginia, 22202.

For water years 1961 through 1970, streamflow data were released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records.

Beginning with the 1971 water year, water data for streamflow, water quality, and ground water are published in official Survey reports on a State-boundary basis. These official Survey reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report HI-80-2." These water-data reports are for sale, in paper copy or in microfiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia, 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (808) 546-8331.

COOPERATION

The U.S. Geological Survey have had cooperative agreements for the systematic collection of streamflow records with the Territory of Guam since 1953, with the Territory of American Samoa since 1957, and with the Trust Territory of the Pacific Islands since 1968. Organizations that supplied data are acknowledged in station descriptions. Organizations that assisted in collecting data through cooperative agreement with the Survey are:

Trust Territory of the Pacific Islands, Adrian Winkle, high commissioner. Government of American Samoa, P. T. Coleman, governor.

Government of Guam, P. E. Calvo, governor.

Government of Northern Mariana Islands, C. S. Camacho, governor.

Assistance in the form of funds or services are given by the Corps of Engineers, U.S. Army, in collecting records for 1 gaging station, 1 water-quality station, and 2 partial-record stations.

DEFINITION OF TERMS

Definition of terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined as follows:

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet of 325,851 gallons or 1,233 cubic meters.

Algae are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

Bacteria are microscopic unicellular organisms, typically spherical, rod-like, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at $35\,^{\circ}\text{C}$. In the laboratory these bacteria are defined as all the organisms which produce colonies within 24 hours when incubated at $35\,^{\circ}\text{C} + 1.0\,^{\circ}\text{C}$ on M-Endomedium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal coliform bacteria are bacteria that are present in the intestines or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours when incubated at $44.5\,^{\circ}\text{C} \pm 0.2\,^{\circ}\text{C}$ on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal streptococcal bacteria are bacteria found also in the intestines of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at $35\,^{\circ}\text{C} + 1.0\,^{\circ}\text{C}$ on M-enterrococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Bed material is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Biomass is the amount of living matter present at any time, expressed as the weight per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500°C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in g/m^3 (grams per cubic meter), and periphyton and benthic organisms in g/m^2 (grams per square meter).

Dry mass refers to the mass of residue present after drying in an oven at $60\,^{\circ}\text{C}$ for zooplankton and $105\,^{\circ}\text{C}$ for periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash, and sediment, in the sample. Dry mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and the ash mass, and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash and dry mass.

Wet mass is the mass of living matter plus contained water.

Cells/volume refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

CFS-day is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.9835 acre-feet, or 646,317 gallons or 2,447 cubic meters.

Chlorophyll refers to the green pigments of plants. Chlorophyll \underline{a} and \underline{b} are the two most common pigments in plants.

Color unit is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Coliform organisms are a group of bacteria used as an indicator of the sanitary quality of the water. The number of coliform colonies per 100 milliliters is determined by the immediate or delayed incubation membrane filter method.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuing record station is a specified site which meets one or all conditions listed:

1. When chemical samples are collected daily or monthly for 10 or more months during the water year.

- 2. When water temperature records include observations taken one or more times daily.
- 3. When sediment discharge records include those periods for which sediment loads are computed and are considered to be representative of the runoff for the water year.

Control designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

Cubic foot per second (FT3/S, ft3/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

Discharge is the volume of water (or more broadly, volume of fluid plus suspended sediment), that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic average of individual daily mean discharges during a specified period.

Instantaneous discharge is the discharge at a particular instant of time. If this discharge is reported instead of the daily mean, the heading of the discharge column in the table is "DISCHARGE (CFS)."

Dissolved is that material in a representative water sample which passes through a 0.45 micrometer membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate. It is recognized that certain kinds of samples cannot be filtered; to provide for this, procedures that are considered equivalent to filtering through a 0.45-micrometer membrane filter will be identified and announced at a later date.

Suspended recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent.

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Total is the total amount of a given constituent in a representative water—suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total". (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample.)

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Total in bottom material is the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material".

Diversity index is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\frac{-}{d} = \sum_{i=1}^{S} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

Where $\mathbf{n_i}$ is the number of individuals per taxon, \mathbf{n} is the total number of individuals, and \mathbf{s} is the total number of taxa in the sample of the community. Diversity index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

<u>Drainage area</u> of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless noted.

Drainage basin is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded water.

 $\frac{\text{Gage height (G.H.)}}{\text{datum. Gage height is often used interchangeably with the more general term}}{\text{"stage," although gage height is more appropriate when used with a reading on a gage.}}$

Gaging station is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

Hardness of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate ($CaCO_3$).

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egglarva-adult or egg-nymph-adult.

Micrograms per gram (μ g/g) is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (gram) of sediment.

Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represent the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L, and is based on the mass of sediment per liter of water-sediment mixture.

 $\frac{\text{Organism}}{\text{plankter.}}$ is any living entity, such as an insect, phytoplankter, or zoo-plankter.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meters (m^2) , acres, or hectares. Periphyton benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliters (mL) or liters (L). Numbers of planktonic organisms can be expressed in these terms.

Total organism count is the total number of organisms collected and enumerated in any particular sample.

Partial-record station is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

Particle-size is the diameter, in millimeters (mm), of suspended sediment or bed material determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Particle-size classification used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology. The Classification is as follows:

Classification	Size (mm)	Method of analysis
Clay	0.00024 - 0.004	Sedimentation
Silt	.004062	Sedimentation.
Sand	.062 - 2.0	Sedimentation or sieve.
Gravel	2.0 - 64.0	Sieve.

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

Percent composition is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass, or volume.

Pesticides are chemical compounds used to control the growth of undesirable plants and animals. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

Picocurie (Pc,pCi) is one trillionth (1 x 10^{-12}) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 10^{-10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

Plankton is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

Phytoplankton is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae.

Blue-green algae are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

 $\underline{\text{Diatoms}}$ are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells/mL of sample.

Green algae have chlorphyll pigments similar in color to those of higher green plants. Some forms produce algal mats or floating "moss" in lakes. Their concentrations are expressed as number of cells/mL of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column, and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are grazers in the aquatic environment, the zooplankton are a vital part of the aquatic feed web. The zooplankton community is dominated by small crustaceans and rotifers.

Polychlorinated biphenyls (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time $[mg\ C/(m^2 \cdot time)]$ for periphyton and macrophytes and $mg\ C/m^3 \cdot time)]$ for phytoplankton are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method, and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time [mg $0_2/(m^2 \cdot time)$ for periphyton and macrophytes and mg $0_2/(m^3 \cdot time)$] for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

Suspended sediment is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

Suspended-sediment discharge (tons/day) is the rate at which dry weight of sediment passes a section of a stream or is the quantity of sediment, as measured by dry weight or volume, that passes a section in a given time. It is computed by multiplying discharge times milligrams per liter times 0.0027.

Suspended-sediment load is quantity of suspended sediment passing a section in a specified period.

 $ext{Total-sediment discharge (tons/day)}$ is the sum of the suspended-sediment discharge and the bedload discharge. It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time.

Mean concentration is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

Solute is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in micromhos per centimeter at $25\,^{\circ}\text{C}$. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height (stage) and volume of water per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.

Natural substrate refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lives.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multi-plate samplers (made of hardboard) for benthic organism collection, and plexi-glass strips for periphyton collection.

Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of the total concentration in a water-sediment mixture. The water-sediment mixture is associated with (or sorbed on) that material retained on a 0.45 micrometer filter.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, Hexagenia limbata, is the following:

Kingdom.....Animal
Phylum....Arthropoda
Class....Insecta
Order....Ephemeroptera
Family....Ephemeridae
Genus...Hexageria
Species...Hexagenia limbata

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136.

Tons per day is the quantity of substance in solution or suspension that passes a stream section during a 24-hour day.

Total load (tons) is the total quantity of any individual constituent, as measured by dry mass or volume, that is dissolved in a specific amount of water (discharge) during a given time. It is computed by multiplying the total discharge, times the mg/L of the constituent, times the factor 0.0027, times the number of days.

<u>Turbidity</u> of a sample is the reduction of transparency due to the presence of particulate matter. In this report it is expressed Jackson turbidity units (JTU).

 $\overline{\text{WDR}}$ is used as an abbreviation for "Water-Data Reports" in the summary RE-VISIONS paragraph to refer to previously published State annual basic-data reports.

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

WRD is used as an abbreviation for "Water-Resources Data" in the REVISED RECORDS paragraph to refer to State annual basic-data reports published before 1975.

 $\underline{\text{WSP}}$ is used as an abbreviation for "Water-Supply Paper" in references to previously published reports.

DOWNSTREAM ORDER AND STATION NUMBER

Records are listed in a downstream direction along the main stream, and stations on tributaries are listed between stations on the main stream in the order in which those tributaries enter the main stream. Stations on tributaries entering above all main-stream stations are listed before the first main-stream station. Stations on tributaries to tributaries are listed in a similar manner. In the lists of gaging stations and water-quality stations in the front of this report, the rank of tributaries is indicated by indention, each indention representing one rank.

As an added means of identification, each gaging station, partial-record station, and water-quality station has been assigned a station number. These are in the same downstream order used in this report. In assigning station numbers, no distinction is made between partial-record stations and continuous-record gaging stations; therefore, the station number for a partial-record station indicates downstream order position in a list made up of both types of stations. Water-quality stations located at or near gaging stations or partial-record stations have the same number as the gaging or partial-record station. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station, such as 16884600 which appears just to the left of the station name includes the 2-digit number "16" plus the 6-digit downstream order number "884600." In this report, the records are listed in downstream order by islands.

NUMBERING SYSTEM FOR WELLS AND MISCELLANEOUS SITES

Miscellaneous downstream order station numbers are not assigned to wells and miscellaneous sites where only random water-quality samples or discharge measurements are taken.

The well and miscellaneous site numbering system of the U.S. Geological Survey is based on the grid system of latitude and longitude. The system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, the next 7 digits denote degrees, minutes, and seconds of longitude, and the last 2-digit number is a sequential number for a well or a miscellaneous site within a 1-second grid. In the event that there are more than one data site with the same latitude-longitude coordinates, different sequential numbers are assigned to each, "70", "71", etc., to obtain unique numbers. See figure 15.

The local well-numbering system for Guam was structured to contain seven digits based on a non-arbitrary, unique one-minute grid and 10-second subgrid system. One-minute parallel lines for both latitude and longitude are drawn on the map resulting in one-minute grids. Each grid is designated by a four-digit number. The first two digits represent minutes of latitude for the grid and the second two digits represent minutes of longitude for that grid. This establishes unique minute-grid numbers within Guam.

To distinguish wells within a minute grid, 10-second parallel lines for both latitude and longitude are drawn and 10-second subgrids are established within each one-minute grid. Each subgrid is designated by a two-digit number. The first represents 10 seconds of latitude for that subgrid and the second represents 10 seconds of longitude for that subgrid. This establishes unique 10-second-subgrid numbers within a minute grid. The fifth and sixth digits of the local number are these unique 2-digit subgrid numbers. The seventh digit is a sequential number used to distinguish different wells within a 10-second subgrid. It is assigned chronologically with the oldest or the only well within the subgrid having a sequential number of zero. See figure 16.

SPECIAL NETWORKS AND PROGRAMS

National stream-quality accounting network is an accounting network designed by the U.S. Geological Survey to meet many of the information demands of agencies or groups involved in national or regional water-quality planning and management. Both accounting and broad-scale monitoring objectives have been incorporated in the network design. Areal configuration of the network is based on the riverbasin accounting units designated by the Office of Water Data Coordination in consultation with the Water Resources Council. Primary objectives of the network are (1) to depict areal variability of water-quality conditions nationwide on a year-by-year basis and (2) to detect and assess long-term changes in stream quality.

EXPLANATION OF STAGE AND WATER-DISCHARGE RECORDS

Collection and computation of data

The base data collected at gaging stations consist of records of stage and measurements of discharge of streams or canals, and stage, surface area, and contents of lakes or reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of stage are obtained from either direct

readings on a nonrecording gage or from a water-stage recorder that gives either a continuous graph of the fluctuations or a tape punched at selected time intervals. Measurements of discharge are made with a current meter, using the general methods adopted by the Geological Survey. These methods are described in standard text books, in Water-Supply Paper 888, and in U.S. Geological Survey Techniques of Water Resources Investigations, book 3, chapter A6.

For stream-gaging stations, rating tables giving the discharge for any stage are prepared from stage-discharge relation curves. If extensions to the rating curves are necessary to express discharge greater than measured, they are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements, computation of flow over dams or weirs), stepbackwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharges are computed from the daily figures. If the stagedischarge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is computed by the shifting-control method, in which correction factors based on individual discharge measurements and notes by engineers and observers are used in applying the gage heights to the rating tables. If the stage-discharge relation for a station is temporarily changed by the presence of aquatic growth or debris on the control, the daily mean discharge is computed by what is basically the shiftingcontrol method.

At some stream-gaging stations the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

For some gaging stations there are periods when no gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods the daily discharges are estimated on the bases of recorded range in stage, prior and subsequent records, discharge measurements, weather records, and comparison with records for other stations, in the same or nearby basins. Likewise daily contents may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information.

The data in this report generally comprise a description of the station and tabulations of daily and monthly figures. For gaging stations on streams or canals a table showing the daily discharge and monthly and yearly discharge is given. For gaging stations on lakes and reservoirs a monthly summary table of stage and contents or a table showing the daily contents is given. Tables of daily mean gage heights are included for some streamflow stations and for some reservoir stations. Records are published for the water year, which begins on October 1 and ends on September 30.

The description of the gaging station gives the location, drainage area, period of record, notations of revisions of previously published records, type and history of gages, general remarks, average discharge, and extremes of discharge or contents. The location of the gaging station and the drainage area are obtained from the most accurate maps available. River mileage, given under "LOCATION" for some stations, is that determined and used by the Corps of Engineers or other agencies. Periods for which there are published records for the present station or for stations generally equivalent to the present one are given under "PERIOD OF RECORD."

Previously published streamflow records of some stations have been found to be in error on the basis of data or information later obtained. Revisions of such records are usually published along with the current records in one of the annual or compilation reports. In order to make it easier to find such revised records, a paragraph headed "REVISED RECORDS" has been added to the description of all stations for which revised records have been published. Listed therein are all the reports in which revisions have been published, each followed by the water years for which figures are revised in that report. In listing the water years only one number is given; for instance, 1965 stands for the water year October 1, 1964, to September 30, 1965. If no daily, monthly, or annual figures of discharge are affected by the revision, the fact is brought out by notations after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the revised figures was first published is given.

The type of gage currently in use, the datum of the present gage above mean sea level, and a condensed history of the types, locations, and datums of previous gages used during the period of record are given under "GAGE." In references to datum of gage, the phrase "mean sea level" denotes "Sea Level Datum of 1929" as used by the Topographic Division of the Geological Survey unless otherwise qualified.

Information pertaining to the accuracy of the discharge records and to conditions which affect the natural flow of the gaging station is given under "REMARKS." For reservoir stations information on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir is given under "REMARKS."

The average discharge for the number of years indicated is given under "AVER-AGE DISCHARGE", it is not given for stations having fewer than 5 complete years of record or for stations where changes in water development during the period of record cause the figure to have little significance. In addition, the median of yearly mean discharges is given for stream-gaging stations having 10 or more complete years of record if the median differs from the average by more than 10 percent. Under "EXTREMES" are given first, the extremes for the period of record, second, information available outside the period of record, and last, those for the current year. Unless otherwise qualified, the maximum discharge (or contents) is the instantaneous maximum corresponding to the crest stage obtained by use of a water-stage recorder (graphic or digital), a crest-stage gage, or a nonrecording gage read at the time of the crest. If the maximum gage height did not occur on the same day as the maximum discharge (or contents), it is given separately. Similarly, the minimum is the instantaneous minimum unless otherwise qualified. For some stations peak discharges are listed with EXTREMES FOR THE CURRENT YEAR; if they are, all independent peaks, including the maximum for the year, above the selected base with time of occurrence and corresponding gage heights are published in tabular format. The base discharge, which is given in the table heading, is selected so that an average of about three peaks a year will be presented. Peak discharges are not published for any canals, ditches, drains, or for any stream for which the peaks are subject to substantial control by man. Time of day is expressed in 24-hour local standard time; for example, 12:30 a.m. is 0030, 1:30 p.m. is 1330. The minimums for these stations are published in a separate paragraph following the table of peaks.

The daily table for stream-gaging stations gives the mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also may be expressed in cubic feet per second per square mile (line headed "CFSM"),

or in inches (line headed "IN"), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion, if the drainage area includes large noncontributing areas, or if the average annual rainfall over the drainage basin is usually less than 20 inches. In the yearly summary below the monthly summary, the figures shown are the appropriate daily discharges for the calendar and water years.

Footnotes to the table of daily discharge are introduced by the word "NOTE." Footnotes are used to indicate periods for which the discharge is computed or estimated by special methods because of no gage-height record, backwater from various sources, or other unusual conditions. Periods of no gage-height record are indicated if the period is continuous for a month or more or includes the maximum discharge for the year. Periods of backwater from an unusual source, of indefinite stage relation, or of any other unusual condition at the gage site are indicated only if they are a month or more in length and the accuracy of the records is affected.

For most gaging stations on lakes and reservoirs the data presented comprise a description of the station and a monthly summary table of stage and contents. For some reservoirs a table showing daily contents or stage is given. A skeleton table of capacity at given stages is published for all reservoirs for which records are published on a daily basis, but is not published for reservoirs for which only monthly data are given.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. Occasionally, a series of discharge measurements are made within a short time period to investigate the seepage gains or losses along a reach of a stream or to determine the low-flow characteristics of an area. Such measurements are also given in special tables following the tables of partial-record stations.

Accuracy of field data and computed results

The accuracy of streamflow data depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements and (2) the accuracy of observations of stage, measurements of discharge, and interpretations of records.

The station description under "REMARKS" states the degree of accuracy of the records. "Excellent" means that about 95 percent of the daily discharges are within 5 percent; "good", within 10 percent; and "fair" within 15 percent. "Poor" means that daily discharges have less than "fair" accuracy.

Figures of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 cfs; to tenths between 1.0 and 10 cfs; to whole numbers between 10 and 1,000 cfs; and to 3 significant figures above 1,000 cfs. The number of significant figures used is based solely on the magnitude of the figure. The same rounding rules apply to discharge figures listed for partial-record stations.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes

incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Records of discharge collected by agencies other than the Geological Survey

The National Water Data Exchange, Water Resources Division, U.S. Geological Survey, National Center, Reston, Va 22092, maintains an index of water-data sites not published by the Geological Survey. Information on records available at specific sites can be obtained upon request.

Other data available

Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating tables is on file in the district office. Also most gaging-station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the district office.

Publications

In each water-supply paper entitled, "Surface Water Supply of the United States" there is a list of numbers of preceding water-supply papers containing streamflow information for the area covered by that report. In addition, there is a list of numbers of water-supply papers containing detailed information on major floods in the area. Records for stations in Hawaii and other Pacific areas for the period October 1959 to September 1965, are in Water-Supply Paper 1937.

Two series of summary reports entitled, "Compilation of Records of Surface Waters of the United States" have been published; the first series covers the entire period of record through September 1950 (June 1950, for Hawaii), and the second series covers the period October 1950 to September 1960 (July 1950 to June 1960, for Hawaii and other Pacific areas). These reports contain summaries of monthly and annual discharge and monthend storage for all previously published records, as well as some records not contained in the annual series of water-supply papers. All records were reexamined and revised where warranted. Estimates of discharge were made to fill short gaps whenever practical. The yearly summary table for each gaging station lists the numbers of the water-supply papers in which daily records were published for that station. Records for stations in Hawaii and other Pacific areas are compiled in Water-Supply Paper 1319 through June 1950, in 1739 and 1751 for July 1950 to June 1960, in 1937 for October 1959 to September 1965, and 2137 for October 1966 to September 1970.

Special reports on major floods or droughts or of other hydrologic studies for the area have been issued in publications other than water-supply papers. Information relative to these reports may be obtained from the district office.

EXPLANATION OF WATER-QUALITY RECORDS

Collection and examination of data

Surface water samples for analyses usually are collected at or near gaging stations. The water-quality records are given immediately following the discharge records at these stations.

The descriptive heading for water-quality records gives periods of record for the various types of water-quality data (chemical, specific conductance, biological determination, water temperatures, sediment discharge), period of record, and extremes of pertinent data, and general remarks.

For ground-water records, no descriptive statements are given; however, the well number, depth of well, date of sampling and/or other pertinent data are given in the table containing the chemical analyses of the ground water.

Water analysis

Most methods for collecting and analyzing water samples are described in the U.S. Geological Survey Techniques of Water-Resources Investigations listed on a following page.

One sample can define adequately the water-quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the district office.

Water temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diel temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of the quantities of suspended sediment, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included.

Publications

The annual series of water-supply papers that contain information on quality of surface waters in Hawaii and other Pacific areas are listed below.

Water year	WSP No.	Water _year	WSP No.	Water	WSP No.
1964	1966	1967	2016	1970	2160
1965	1966	1968	2016		
1966	1996	1969	2150		

EXPLANATION OF GROUND-WATER LEVEL RECORDS

Collection of the data

Only ground-water level data from a basic network of observation wells are published herein. This basic network contains observation wells so located that the most significant data are obtained from the fewest wells in the most important aquifers.

Each well is identified by means of (1) a 15-digit number that is based on latitude and longitude and (2) a local number that is provided for local needs. See figures 15 and 16.

Measurements are made in many types of wells, under varying conditions of access and at different temperatures, hence, neither the method of measurement nor the equipment can be standardized. At each observation well, however, the equipment and techniques used are those that will ensure that measurements at each well are consistent.

Water-level measurements in this report are given in feet with reference to either mean sea level (msl) or land-surface datum (lsd). Mean sea level is the datum plane on which the national network of precise levels is based; land-surface datum is a datum plane that is approximately at land surface at each well.

If known, the altitude of the land-surface datum above mean sea level is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported either for every fifth day and the end of each month (eom) or for each day. To show the intra-day variation in the ground-water levels caused by local pumping and tidal fluctuations, instantaneous maximum and minimum water levels are given with the mean water levels for the day.

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given only to a tenth of a foot or a larger unit.

HYDROLOGIC CONDITIONS

Based on available periods of records at 29 selected streams, monthly mean runoff during the 1980 water year in the area covered by this volume indicated a normal to excessive trend throughout the year. Annual mean runoff was mostly in the excessive range (flow in the upper 75 percent of record) on the islands of Guam, Yap, and Ponape. Annual mean runoff on the islands of Saipan, Babelthuap, Kosrae and Tutuila, was in the normal range (flow between 25 and 75 percent of record).

Streamflow at the South Fork Talofofo River, Saipan, Mariana Islands, was normal for 11 consecutive months and excessive in September. Annual mean runoff was in the normal range at 90 percent of the annual median.

At selected gaged rivers on Guam, Mariana Islands, monthly mean flow was predominantly in the excessive range throughout the year. Streamflow during October, February, and September was in the excessive range at all selected rivers and only at Imong River near Agat, streamflow was deficient (flow in the lower 25 percent of record) in January and August. Annual mean runoff at all selected rivers was in the excessive range and varied between 156 and 265 percent of the annual medians.

On February 26, 7.67 inches (195 mm) of rainfall was recorded in 12 hours at the Weather Service, Naval Air Station which caused considerable damage at two gaging stations on Guam. Maximum discharge for the three year period of record was exceeded at one gaging station, Ugum River above Talofofo Falls, near Talofofo.

Streamflow at the Ylig River near Yona Guam (fig. 1), was excessive for 6 of the 12 months and normal for the remainder of the year. Annual mean runoff was in the excessive range at 156 percent of the annual median.

On the island of Babelthuap, Caroline Islands, streamflow at selected gage rivers was predominantly in the normal range throughout the year. Monthly mean flow for February was excessive at all selected rivers and the maximum departure of 392 percent from the monthly median was recorded at the South Fork Ngardok River. There were no periods of deficient flow recorded during the year. At the Adeiddo River (fig. 1), monthly mean flow was normal for 10 months and excessive for 2 months. Annual mean runoff was normal and ranged between 84 to 113 percent of the annual medians.

On the island of Yap, Caroline Islands, streamflow was variable throughout the year. At all of the selected streams, streamflow was excessive in May and deficient in January. Annual mean runoff was mostly excessive and ranged between

111 and 124 percent of the annual medians. Streamflow at the Aringel Stream (fig. 2) was normal for 6 months, excessive for 4 months and deficient in January and August. Annual mean runoff was in the excessive range at 116 percent of the annual median.

Streamflow at three of the gaged rivers on the island of Ponape was mostly in the excessive range throughout the year. Monthly mean flows during January, February, May, and June were in the excessive range at all gaged rivers and the maximum departure of 259 percent from the monthly median occurred at the Lui River at mouth, in February. Annual mean runoff at all gaged rivers were mostly in the excessive range and varied between 134 to 143 percent of the annual medians. At the Nanepil River (fig. 2), streamflow was deficient for 3 months, normal for 5 months and excessive for 4 months. Annual mean runoff was in the normal range at 115 percent of the annual median.

On the island of Kosrae, streamflow at three selected streams indicated a normal to deficient trend throughout the year. Streamflow at all gaged streams were in the excessive range in June and in the deficient range in August and September. Annual mean runoff was in the normal range and varied between 85 and 126 percent of the annual medians. At the Okat River (fig. 3), monthly mean flow was normal for 7 months, excessive for 3 months and deficient in August and September. Annual mean discharge was in the normal range at 126 percent of the annual median.

At selected gaged streams in Tutuila, American Samoa, streamflow was mostly in the normal range during the year. Annual mean runoff was also in the normal at most of the gaged streams and ranged between 99 and 111 percent of the annual medians. Streamflow was deficient from December to February and the maximum deviation of 26 percent from the monthly median occurred at Atauloma Stream at Afao in January. Excessive streamflow occurred at most of the streams during October, May, and September. The maximum deviation of 460 percent from the monthly median occurred in September at Pago Stream at Afono. Streamflow at Aasu Stream at Aasu (fig. 3), was in the normal range for 6 months, excessive for 3 months and deficient during December to February. Annual mean runoff was in the normal range at 106 percent of the annual median.

Monthly and annual mean discharges are compared with medians at representative gaged streams in figures 1 to 3 in the area covered by this report. Thirty-four manuals by the U.S. Geological Survey have been published to date in the series on techniques describing procedures for planning and executing specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) is on surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. The reports listed below are for sale by the U.S. Geological Survey, Branch of Distribution, 1200 South Eads Street, Arlington, VA 22202 (authorized agent of the Superintendent of Documents, Government Printing Office).

NOTE: When ordering any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations".

- Water temperature -- influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages.
- Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS-TWRI Book 2, Chapter Dl. 1974. 116 pages. 2 - D1.
- 2-E1. Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS--TWRI Book 2, Chapter El. 1971. 126 pages.
- Ceneral field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter Al. 1967. 30 pages.

 Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages.

 Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages.

 Measurement of reak discharge at vidth contractions by indirect methods, by H. F.
- 3-A2.
- 3-A3
- Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 pages. 3-A4.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS --
- TWRI Book 3, Chapter A5. 1967. 29 pages. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI
- Book 3, Chapter A6. 1968. 13 pages.
- Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI 3-A7
- Book 3, Chapter A7. 1968. 28 pages.

 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS-TWRI Book 3, Chapter A8. 1969. 65 pages.

 3-A11. Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS-TWRI Book 3.
- TWRI Book 3, Chapter All. 1969. 22 pages.
- Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter Bl. 1971. 26 pages. 3-B1.
- 3-B2.
- Introduction to ground-water hydraulics, a programed text for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages.

 Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.

 Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 pages. 3-C1. 3-C2.
- Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages. 3-C3.
- 4-A1. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter Al. 1968. 39 pages.
- 4-A2.
- Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.

 Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages.

 Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4,

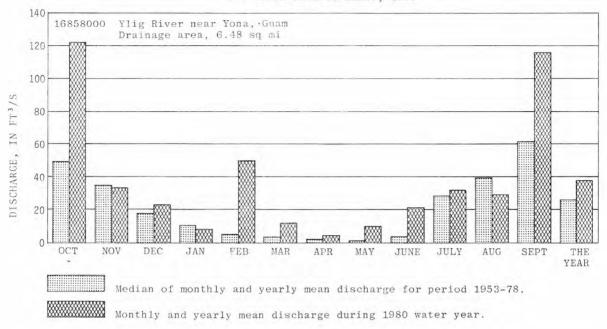
 Chapter B2. 1973. 20 pages.

 Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4,

 Chapter B3. 1973. 15 pages. 4-B1. 4-B2.
- 4-B3.
- Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS-TWRI Book 4, Chapter D1. 1970. 17 pages. 4-D1.
- Methods for determination of inorganic substances in water and fluvial sediments, by M. W. Skougstad and others, editors: USGS--TWRI Book 5, Chapter Al. 1979. 626 pages.

 Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C.
- 5-A2.
- Mallory, Jr.: USGS-TWRI Book 5, Chapter A2. 1971. 31 pages.

 Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown:
 USGS-TWRI Book 5, Chapter A3. 1972. 40 pages. 5 - A3
- Methods for collection and analysis of aquatic biological and microbiological samples, edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS-TWRI Book 5, Chapter A4. 1977. 332 pages.


 Methods for determination of radioactive substances in water and fluvial sediments, 5-A4.
- by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages.
- Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter Cl. 1969. 58 pages.
- Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chap-
- 8-A1.
- experiments, by P. C. Irescott, G. F. Pinder, and S. P. Larson: USGS--IWRI BOOK 7, Charter Cl. 1976. 116 pages.

 Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages.

 Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS--TWRI Book 8, Chapter Al. 1968. 23 pages.

 Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages. 8-B2.

WATER RESOURCES DATA FOR HAWAII AND OTHER PACIFIC AREAS, 1980

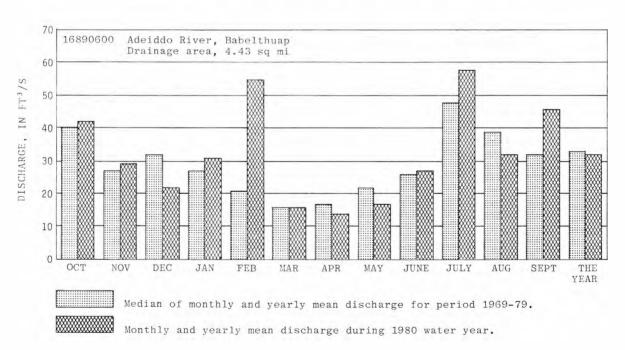


Figure 1.--Discharge during 1980 water year compared with median discharge for representative streams on Guam and Babelthuap.

WATER RESOURCES DATA FOR HAWAII AND OTHER PACIFIC AREAS, 1980

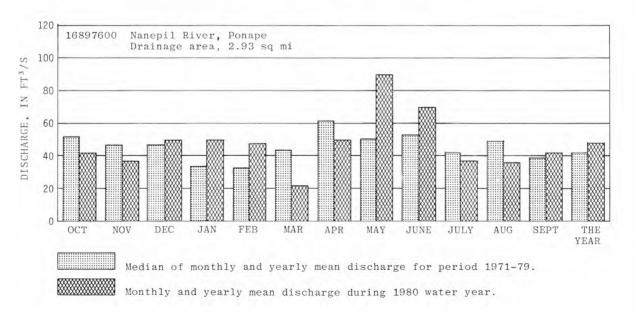
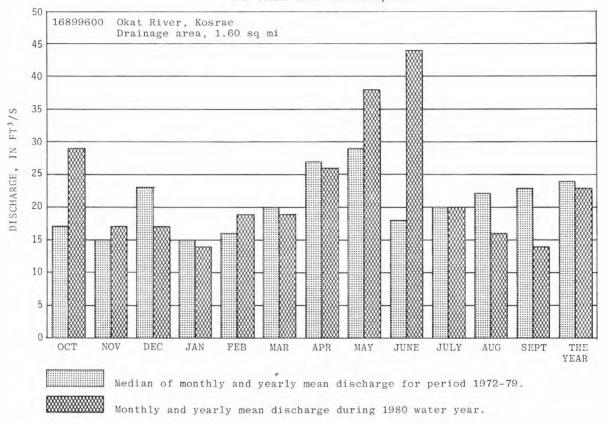



Figure 2.--Discharge during 1980 water year compared with median discharge for representative streams on Yap and Ponape.

WATER RESOURCES DATA FOR HAWAII AND OTHER PACIFIC AREAS, 1980

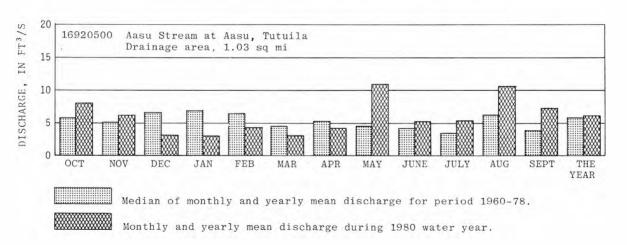


Figure 3.--Discharge during 1980 water year compared with median discharge for representative streams on Kosrae and Tutuila.

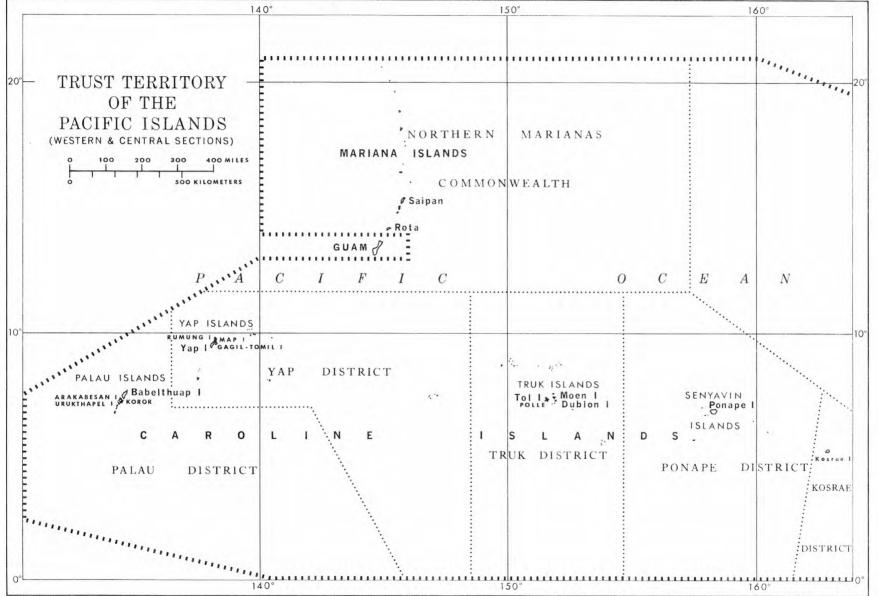


FIGURE 4. -- MAP SHOWING LOCATIONS OF THE TRUST TERRITORY PACIFIC ISLANDS.

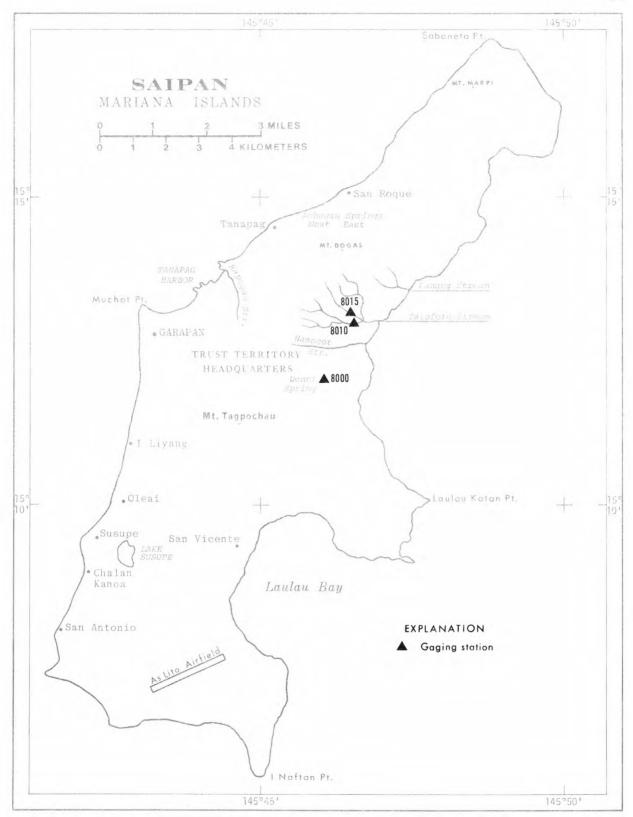


FIGURE 5. -- MAP OF SAIPAN, MARIANA ISLANDS, SHOWING LOCATIONS OF GAGING STATIONS.

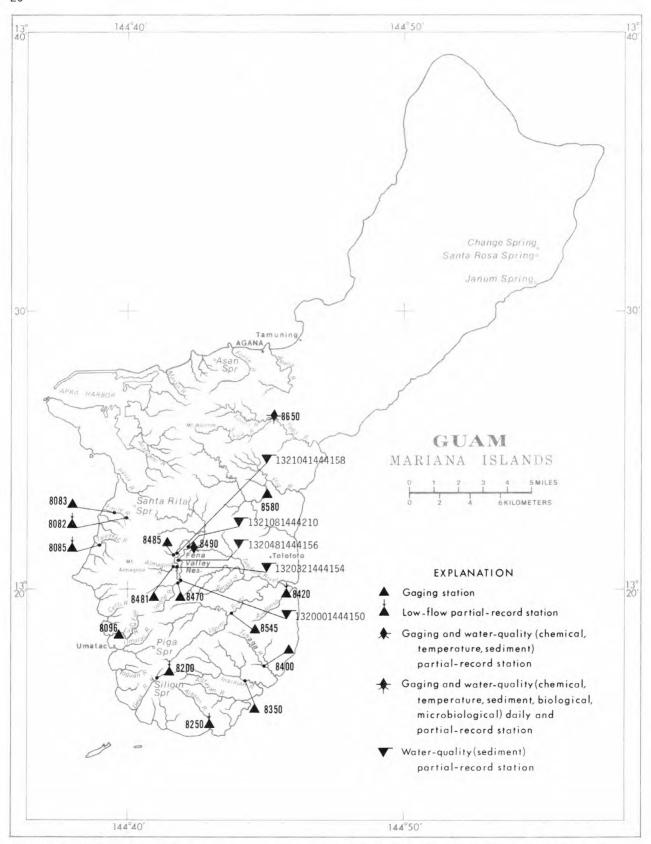


Figure 6.--Map of Guam, Mariana Islands, showing locations of gaging, water-quality, and partial-record stations.

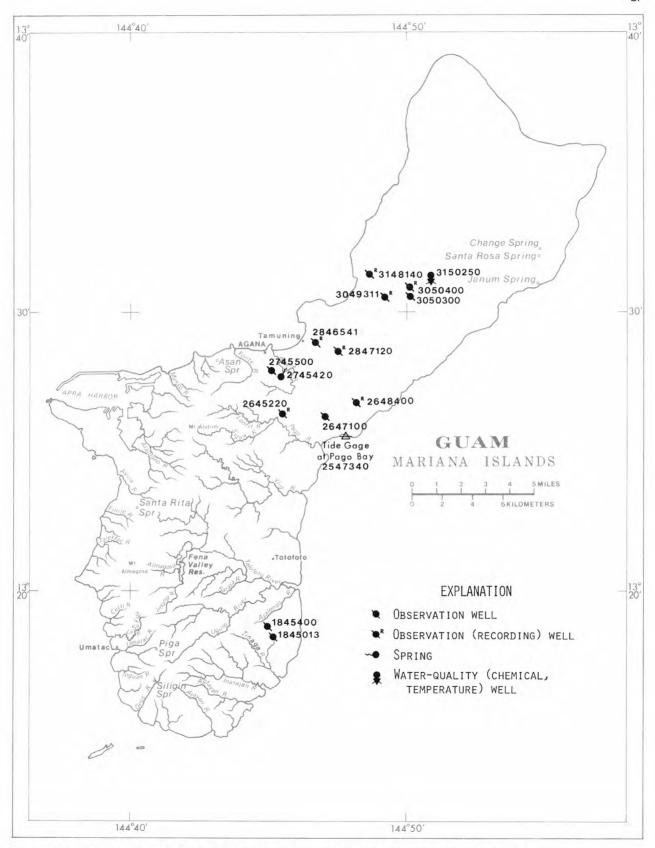


Figure 7.--Map of Guam, Mariana Islands, showing Locations of observation wells, and Ground-water-Quality site.

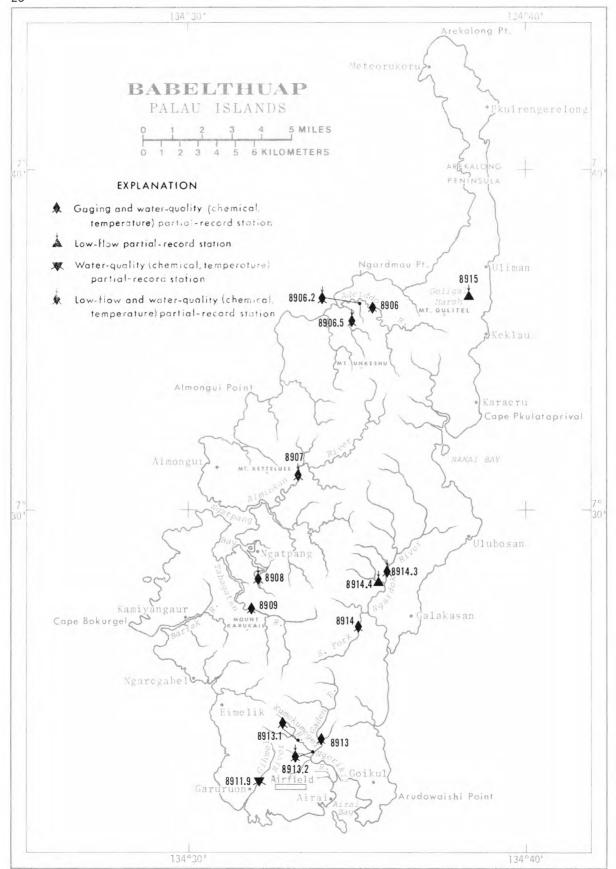


Figure 8.--Map of Babelthuap, Palau Islands, showing Locations of Gaging, water-quality, and partial-record stations.

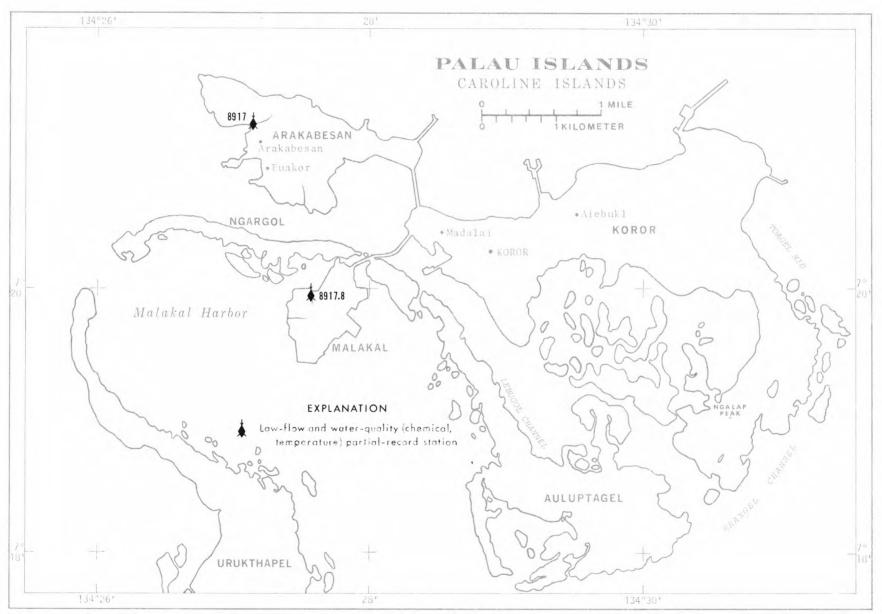


Figure 9. -- Map of Arakabesan, Malakal, Palau Islands, showing locations of low-flow and water-quality partial-record stations.

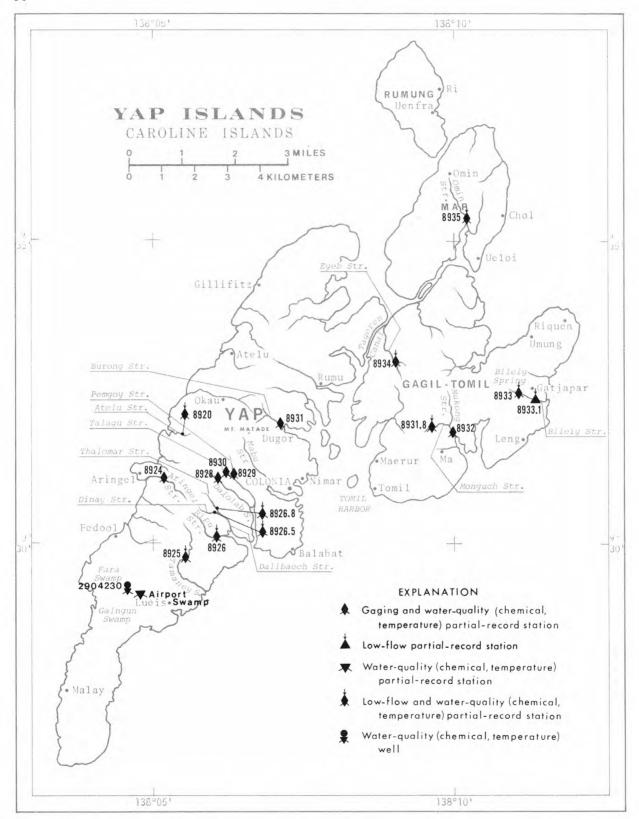


Figure 10.--Map of Yap Islands, showing locations of gaging, low-flow and water-quality partial-record stations, and ground-water-quality site.

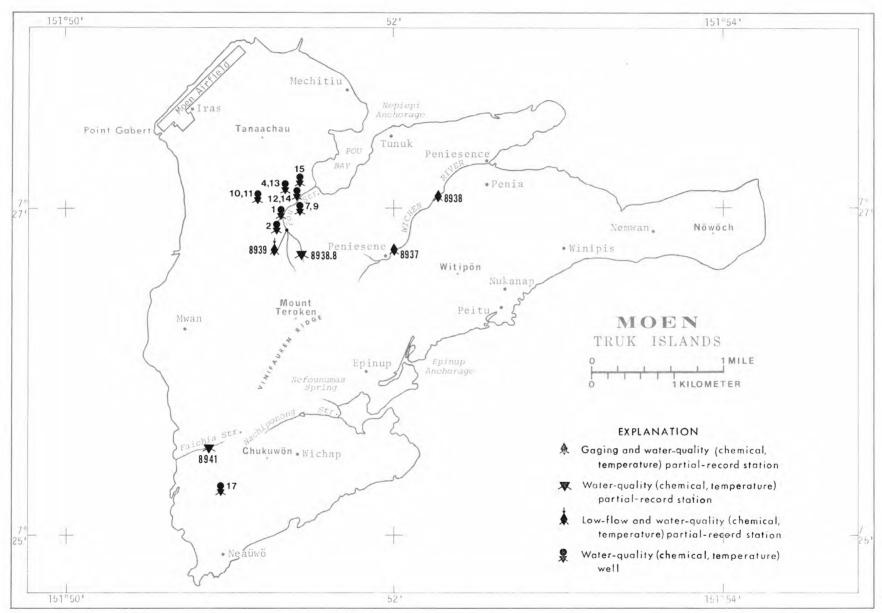


FIGURE 11.--MAP OF MOEN, TRUK ISLANDS, SHOWING LOCATIONS OF GAGING, LOW-FLOW AND WATER-QUALITY PARTIAL-RECORD STATIONS, AND GROUND-WATER-QUALITY SITES.

31

Figure 12. Map of Ponape, showing locations of gaging, low-flow and water-quality partial-record stations.

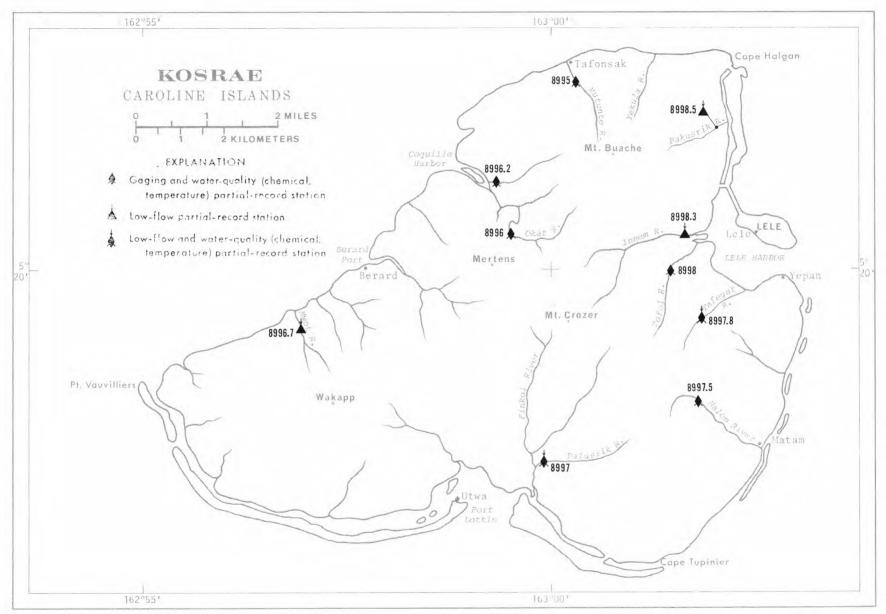
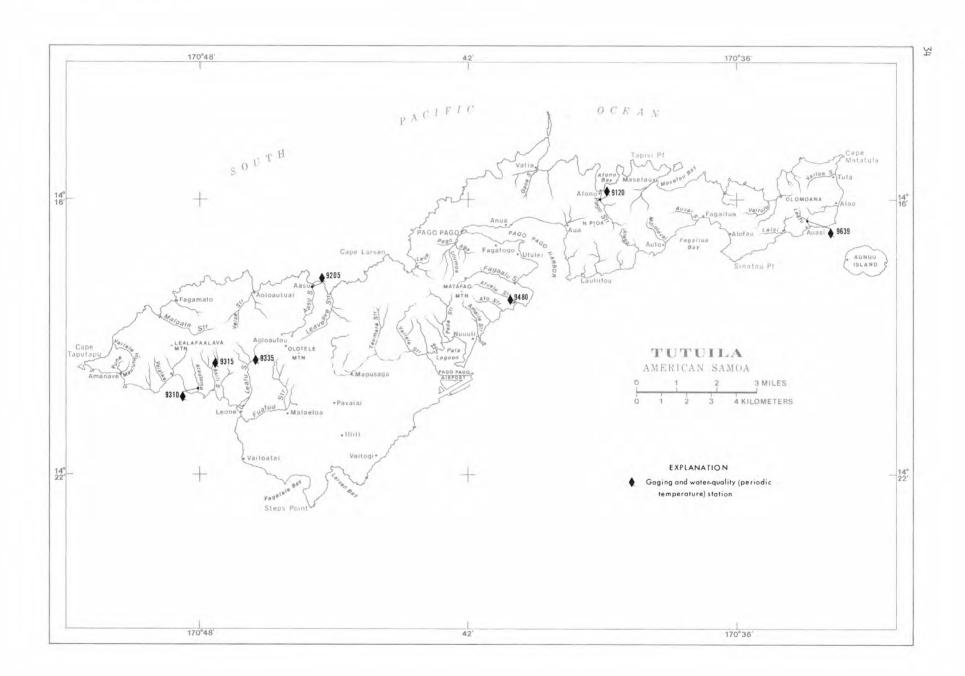



FIGURE 13.-- MAP OF KOSRAE, SHOWING LOCATIONS OF GAGING, LOW-FLOW AND WATER-QUALITY PARTIAL-RECORD STATIONS.

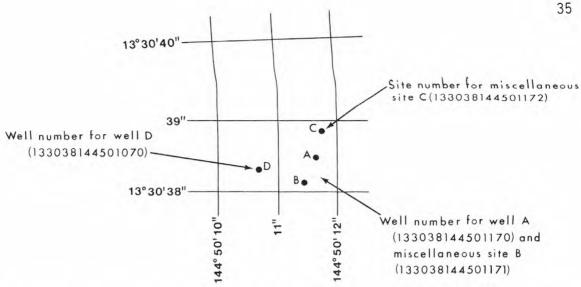


Figure 15. Sketch showing system for numbering wells and miscellaneous sites.

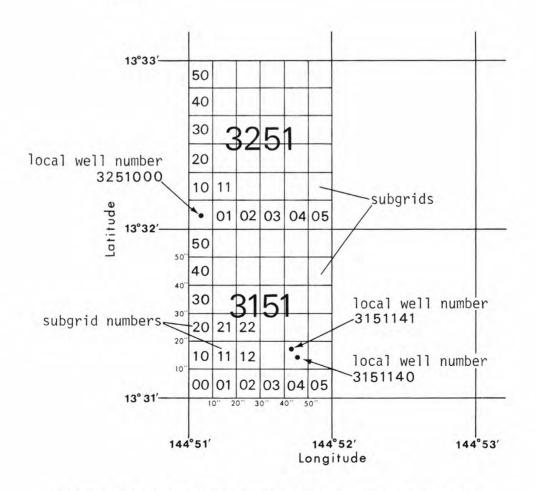


Figure 16. Sketch showing local well numbering system.

GAGING-STATION RECORDS

MARIANA ISLANDS, ISLAND OF SAIPAN

16800000 DENNI SPRING

LOCATION.--Lat 15°11'57" N., long 145°46'05" E., Hydrologic Unit 20100006, 2.8 mi (4.5 km) southeast of Tanapag, 3.1 mi (5.0 km) east of Garapan, and 5.6 mi (9.0 km) northeast of Chalan Kanoa.

PERIOD OF RECORD.--August 1952 to June 1954 (published as Donni Spring near Garapan), March 1968, January 1969 to current year.

GAGE. -- Water-stage recorder and sharp-crested weir. Altitude of gage is 261 ft (79.6 m) from U.S. Navy.

REMARKS. -- Records good except those above 2 ft3/s (0.057 m3/s) and those for May 29 to Aug. 17, which are poor.

AVERAGE DISCHARGE.--12 years (water years, 1953, 1970-80), 0.609 ft³/s (0.017 m³/s), 441 acre-ft/yr (544,000 m³/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily discharge, 8.5 ft 3 /s (0.24 m 3 /s) Aug. 13, 1978; minimum daily, 0.02 ft 3 /s (0.001 m 3 /s) Sept. 16, 17, 1969.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 3.5 ft 3 /s (0.10 m 3 /s) Sept. 12-14; minimum daily, about 0.12 ft 3 /s (0.003 m 3 /s) for some days during first week of July.

		DISC	HARGE . IN	CURIC FE		COND. WAT	ER YEAR O	CTOBER 19	79 IN SEP	TEMBER 19	80	
DAY	201	NOV	DEC	JAN	FER	MAR	APR	MAY	JUN	JUL	AUG	SEF
1	.96	1.1	.65	.53	.37	. 45	.29	.17	.20	.12	.17	. 45
2	1.1	1.0	.61	.53	.37	. 45	.26	.17	.20	.12	.17	. 41
3	1.2	.96	.61	.53	.37	. 45	-26	-17	.23	.12	.20	. 37
tı	1.3	.90	.61	.53	.37	. 41	.26	.17	-23	.14	.23	.3
5	1.2	.90	.57	.49	.37	- 41	.26	.17	.20	-14	.23	. 3
6	1.2	.85	.57	.49	.37	. 41	.26	.17	.17	.17	.20	.7
7	1.2	. 8 1	.57	.49	.37	. 37	.26	.20	.17	.17	.20	.85
8	1.2	. 81	.57	. 49	-41	. 37	.29	.20	.17	.20	.17	1.1
0	1.1	.77	.57	.49	-41	. 37	.29	.20	.17	.23	.17	1.5
10	1.0	.77	.61	. 49	.41	. 37	•29	.20	.17	.23	- 14	1.8
11	1.0	.77	.61	. 45	.41	.37	.29	.20	.20	.20	.14	2.0
12	1.1	.77	.61	. 45	.41	. 37	.29	.20	.20	.20	. 14	3.5
13	1.0	.77	.61	.45	.37	. 37	.29	.20	.20	-17	-14	3.5
14	1.0	.77	.65	. 45	.37	. 37	.29	.23	.20	-17	-17	3.5
15	1.1	.77	.65	. 45	.37	. 37	.24	. 23	.20	.20	.17	1.8
16.	1.1	.77	.65	. 45	.37	. 33	.26	.23	.17	.20	.20	1.6
17	1.1	.77	.65	. 45	.37	.33	.26	. 23	.17	.17	.20	1.4
18	1.1	.77	.61	. 45	.37	.33	.23	.23	.20	.17	.23	1.4
19	1.0	.73	.61	. 45	.37	.29	.23	.23	.20	.14	.23	1.4
20	1.0	.73	.61	. 45	.37	.29	.23	.23	.20	-14	.23	1.3
21	.96	.73	.61	. 45	.37	.29	.23	.23	.20	.17	.23	1.2
22	.90	.73	.61	- 45	.37	.29	.23	.23	.23	.17	.23	1.1
23	1.1	.73	.61	-41	.37	.29	.20	.20	.23	.17	.29	1.1
24	1.1	. 69	.57	. 41	.33	.29	.20	.20	.23	.20	.65	1.0
25	1.2	.69	.57	. 41	.37	.29	-50	.23	.23	.17	.69	.96
26	1.3	.69	.57	.41	.41	.29	.20	. 26	.23	.17	.65	.96
27	1.3	.69	.57	. 41	.41	.29	.17	. 25	.20	.17	.53	1.2
28	1.3	. 65	.57	. 41	.45	.29	.17	.23	-17	.20	. 49	1.8
29	1.3	.65	.57	. 37	.45	.29	-17	. 20	. 14	.20	.49	1.6
30	1.2	. 65	.57	.37		.29	-17	.20	. 1 a	.20	.45	1.6
31	1.1		.57	. 37	777	. 29		.20	777	.20	.45	
TOTAL	34.72	23.39	18.59	14.03	11.13	10.67	7.29	6.47	5.85	5.42	8.88	41.87
MEAN	1.12	.78	.60	. 45	.38	. 34	.24	.21	.20	.17	.29	1.40
MAX	1.3	1.1	.65	.53	.45	. 45	.29	.26	.23	.23	.69	3.5
MIN	.90	.65	.57	. 37	.33	.29	-17	-17	-14	.12	.14	. 37
AC-FI	69	46	37	28	22	21	14	13	12	11	18	8 5

AC-FT 374

CAL YR 1979 TOTAL 197.39 MEAN .54 MAX 1.3 MIN .20 WTR YR 1980 TOTAL 188.31 MEAN .51 MAX 3.5 MIN .12

NOTE. -- No gage-height record May 29 to Aug. 17.

16801000 SOUTH FORK TALOFOFO STREAM

LOCATION. -- Lat 15°12'58" N., long 145°46'31" E., Hydrologic Unit 20100006, on left bank 0.3 mi (0.5 km) upstream from confluence with Middle and North Forks, 1.4 mi (2.3 km) south of Ogso Dogas, and 2.2 mi (3.5 km) southeast of Tanapag.

DRAINAGE AREA. -- 0.69 mi² (1.79 km²). Area at site used prior to Mar. 31, 1971, 0.73 mi² (1.89 km²).

PERIOD OF RECORD. --October 1968 to current year. Low-flow records not equivalent prior to Mar. 31, 1971, due to undetermined amount of underflow between sites.

REVISED RECORDS. -- WDR HI-78-2: 1976-77(M).

GAGE.--Water-stage recorder. Concrete control since Mar. 31, 1971. Altitude of gage is 30 ft (9.1 m), from topographic map. Prior to Mar. 31, 1971, at site 0.2 mi (0.3 km) downstream at different datum.

REMARKS. -- Records good. No diversion above station.

AVERAGE DISCHARGE. -- 9 years, 1.42 ft 3 /s (0.040 m 3 /s), 1,030 acre-ft/yr (1.27 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,100 ft 3 /s (116 m 3 /s), Aug. 4, 1976, gage height, 8.15 ft (2.484 m), from rating curve extended above 59 ft 3 /s (1.67 m 3 /s) on basis of slope-area measurements at gage heights 7.30 and 8.15 ft (2.225 and 2.484 m); no flow at times prior to Mar. 31, 1971, at site then in use, and at present site, July 16, 17, 19, 20, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 468 ft 3 /s (13.3 m 3 /s) Sept. 9, gage height, 4.67 ft (1.423 m), from rating curve extended as explained above; minimum, 0.02 ft 3 /s (<0.001 m 3 /s) July 1, 2, 4, 5.

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980
MEAN VALUES

DAY OCT NOV DEC MAR APR JUN AUG SEP JAN FEB MAY JUL 4.2 . 34 .27 .08 . 05 .07 .03 .12 .24 1.1 .46 .16 13 .46 .34 .16 .08 . 04 .19 . 04 .19 .22 .20 4.2 .88 .50 . 30 .16 .24 .07 . 08 .05 . 04 .32 .05 .16 2.7 - 82 .50 . 24 . 22 .07 . 04 . 04 .12 .18 5 2-2 .82 .50 . 39 -16 . 22 .08 . 04 .04 .05 .08 10 2.0 .19 .82 .54 -24 .08 -16 . 22 - 04 .04 - 06 26 1.9 .24 9.8 .82 .46 .16 .22 .07 . 04 .04 .07 .04 1.8 .76 .46 .24 .14 .08 . 07 .04 27 .24 .06 .10 . 05 .04 1.8 .76 .85 .24 -14 .20 -07 .06 .10 38 10 6.2 -76 -58 -22 -14 .18 -07 - 04 -04 -11 - 05 41 11 3.4 -70 .54 .22 .14 .18 .07 . 05 .07 .04 .05 9.7 12 2.2 .66 .66 .22 .14 .08 . 04 .07 .04 .05 4.1 .18 1.8 .66 .88 .22 .14 .07 . 04 .06 .10 2.6 13 .18 .07 14 9.9 .62 .22 .14 .08 . 07 .07 .36 .14 2.0 .66 .16 15 2.9 . 58 .62 .22 -14 .16 .10 - 06 -07 -06 .21 1.7 2.0 .24 .14 . 07 16 .58 .10 -06 .06 .67 1.5 -16 .54 17 1.7 .50 .24 .14 .08 .10 .08 .08 .20 1.3 .16 1.5 . 54 .50 .22 .14 .08 . 08 .08 .06 18 .16 1.1 10 1.3 -54 .54 -20 .14 .18 .07 .10 .08 .06 .14 20 1.2 -50 -46 - 20 -14 .16 .06 . 11 .10 -08 .31 1.0 21 1.2 .50 .05 .42 .20 .14 . 14 .10 .08 .10 -18 .94 7.6 .58 .42 -14 1.5 .20 . 14 -11 .10 .08 .13 . 43 23 3.3 .50 .38 .18 2.7 .12 .11 .08 .11 .06 15 .94 .50 1.7 24 .38 .18 1.0 .12 .10 . 07 .12 .08 1.2 25 3.7 .50 .20 2.0 .38 .16 .08 . 08 .10 .08 .88 26 2.4 -50 -50 -07 - 20 1 .1 -12 - 07 .04 -08 -54 6.0 1.8 . 92 27 .62 . 18 -06 - 07 -46 -66 .11 -04 -10 20 2.2 28 .66 .62 .42 .06 . 06 .05 .12 .38 5.5 .18 .11 29 1.8 -50 .54 .18 .34 .10 .06 . 06 .03 .12 . 34 .10 .12 30 1.5 -46 -46 .18 .05 . 07 .04 .30 7.2 31 1.3 ---.38 .18 .08 ---. 06 ----12 .27 TOTAL 98.2 20.04 7.05 11 -44 2.29 2.03 2.13 2.78 23.57 227.72 16.35 5.26

.17

.27

- 08

10

.39

2.7

.14

23

.076

.11

.05

.071

.19

.03

4.2

.090

.36

.03

5.5

.065

.11

- 04

.76

15

. 04

47

7.59

41

.18

452

CAL YR 1979 TOTAL 279.00 MEAN .76 MAX 18 MIN .04 AC-FT 553 WTR YR 1980 TOTAL 418.86 MEAN 1.14 MAX 41 MIN .03 AC-FT 831

.23

.39

. 18

14

.53

.88

.38

32

3.17

13

1.2

195

. 67

1.1

.46

40

MEAN

MAX

MIN

AC-FT

MARIANA ISLANDS, ISLAND OF SAIPAN

16801500 MIDDLE FORK TALOFOFO STREAM

LOCATION.--Lat 15°13'05" N., long 145°46'36" E., Hydrologic Unit 20100006, on left bank 700 ft (213 m) upstream from confluence with South and North Forks, 2.2 mi (3.5 km) southeast of Tanapag, and 3.7 mi (6.0 km) east of Garapan.

DRAINAGE AREA. -- 0.35 mi 2 (0.91 km2).

PERIOD OF RECORD. -- March 1968 to June 1980.

REVISED RECORDS. -- WDR HI-76-1: 1968-69(P), 1970-71(M), 1972(P), 1973-75(M).

GAGE.--Water-stage recorder. Concrete control since Feb. 28, 1971. Altitude of gage is 25 ft (7.6 m), from topographic map.

REMARKS.--Records fair except those for periods of no gage-height record, which are poor. No diversion above

AVERAGE DISCHARGE.--11 years, 0.682 ft3/s (0.019 m3/s), 494 acre-ft/yr (609,000 m3/s).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 840 ft 3 /s (23.8 m 3 /s) Aug. 12, 1978, gage height, 6.58 ft (2.006 m), from rating curve extended above 5.3 ft 3 /s (0.150 m 3 /s) on basis of slope-area measurements at gage heights 5.38 ft (1.640 m) and 6.58 ft (2.006 m); minimum, 0.05 ft 3 /s (0.001 m 3 /s) July 5, 6, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period October 1979 to June 1980, 83 ft 3 /s (2.35 m 3 /s) Oct. 14, gage height 3.38 ft (1.030 m), no peak above base of 100 ft 3 /s (2.83 m 3 /s); minimum, about 0.10 ft 3 /s (0.003 m 3 /s) for some days of last week of May.

DISCHARGE, IN CUBIC FEET PER SECOND, OCTOBER 1979 TO JUNE 1980 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.4	.50	.50	.33	.24	.33	24	.12	.12			
2	4.6	. 45	.45	.33	.24	.30	.21	.11	.30			
3	1.9	. 45	.50	.33	.27	.30	.21	.24	.25			
4	1.1	.40	.50	.30	.24	.30	.21	. 24	.20			
5	.84	.40	.55	.30	.21	.27	.26	. 24	-20			
6	.72	.40	.55	. 30	.21	.24	.24	.24	.20			
7	.55	. 41	.55	.30	.21	.24	.27	.27	-18			
8	.66	. 41	.45	. 30	.24	.27	.27	.24	-27			
9	.55	. 45	.50	.30	.24	.30	.27	. 15	.21			
10	2.2	.51	. 45	.30	.21	.33	.27	.13	.18			
11	2.2	.50	.41	. 30	.24	.33	.24	.12	•21			
12	.90	.50	.50	. 30	.21	.30	-24	.11	.27			
13	.66	.50	.55	.30	.24	.30	.21	.11	.24			
14	2.8	. 45	.50	.30	.24	.30	.21	.15	.18			
15	1.0	. 45	.45	.27	.18	.30	.18	.13	.21			
16	. 84	. 45	.41	.27	.16	.33	.24	.15	.21			
17	.78	. 45	.41	.27	.16	. 33	.18	.20	.21			
18	.60	.45	. 41	.27	.14	•33	.18	.15	.18			
19	.55	.45	.45	.30	.18	.33	.19	.20	.21			
50	.55	. 45	.45	. 30	.16	.30	.16	.20	.21			
21	.60	. 45	.41	.30	.16	• 33	.16	.20	.18			
22	2.5	.50	.37	.30	.16	.30	.24	.20	.24			
23	1.2	. 45	.37	.27	1.8	.27	.20	. 15	.24			
24	1.5	.50	.37	.27	.73	.24	.19	.12	.21			
25	1.5	.50	.37	.30	1.4	. 33	.18	.15	.16			
26	1.0	.50	.41	. 30	.72	.30	.17	.12	.24			
27	.80	.72	.37	.27	.50	.27	.16	.12	.21			
28	1.0	.55	.37	.30	.41	.24	.15	.10	.24			
29	.80	.50	.37	.30	.33	.24	.14	.10	.16			
30	.70	.50	.37	.27		.24	.13	.12	.21			
31	.60		.37	.24			-17					
/1	• 60		• 31	•24		.24		.10				
TOTAL	37.60	14.20	13.69	9.09	10.43	9.03	6.20	4.98	6.33			
MEAN	1.21	.47	. 4 4	.29	.36	•29	.21	.16	•21			
MAX	4.6	.72	.55	.33	1.8	• 33	.27	.27	.30			
MIN	.55	.40	.37	.24	.14	.24	.13	.10	.12			
AC-FT	75	28	27	18	21	18	12	9.9	13			

CAL YR 1979 TOTAL 198.48 MEAN .54 MAX 8.1 MIN .16 AC-FT 394

NOTE. -- No gage-height record May 8 to June 7, July 1 to Sept. 30.

16808300 FINILE CREEK AT AGAT

LOCATION.--Lat 13°22'39" N., long 144°39'26" E., Hydrologic Unit 20100003, on right bank 0.4 mi (0.6 km) upstream from estuary and 0.4 mi (0.6 km) south of Agat School.

DRAINAGE AREA. -- 0.28 mi2 (0.73 km2).

PERIOD OF RECORD. -- April 1960 to current year. Prior to October 1969, published as Finile River at Agat.

REVISED RECORDS. -- WSP 2137: Drainage area.

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 20 ft (6.1 m), from topographic map.

REMARKS.--Records good, except those for periods of no gage-height record, which are poor. No diversion above station.

AVERAGE DISCHARGE.--20 years, 1.43 ft^3/s (0.040 m^3/s), 1,040 acre-ft/yr (1.28 hm^3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 326 ft 3 /s (9.23 m 3 /s) May 21, 1976, gage height, 3.88 ft (1.183 m), from rating curve extended above 68 ft 3 /s (1.93 m 3 /s) on basis of slope-area measurement at gage height 3.66 ft (1.116 m); minimum, 0.04 ft 3 /s (0.001 m 3 /s) July 2-4, 6, 8, 9, 1973.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 170 ft 3 /s (4.81 m 3 /s) and maximum (*), from rating curve extended as explained above:

		Discha	arge	Gage	height
Date	Time	(ft^3/s)	(m^3/s)	(ft)	height (m)
Oct. 5	0300	206	5.83	2.75	0.838
Feb. 26	1000	*232	6.57	*2.99	. 911

Minimum discharge, 0.32 ft³/s (0.009 m³/s) Apr. 29 to May 10, May 13, 14.

1 2.1 2.0 1.3 1.1 .60 1.F .7C .77 1.1 1.1 1.1 .70 .2 2 2.5 2.0 1.0 1.2 .60 1.F .7C .77 1.5 .52 .70 .3 3 2.0 2.0 1.0 1.1 .50 1.4 .7C .77 1.5 .52 .70 .3 3 2.0 2.0 1.0 1.1 .50 1.4 .70 .77 1.5 .52 .70 .70 .5 .5 .50 1.7 1.5 1.0 .60 1.4 .65 .7C .77 .70 .P1 .60 3.5 .50 1.7 1.0 1.0 1.0 .60 1.4 .65 .37 .70 2.2 .60 3. 6 5.0 5.5 1.5 1.5 .92 .60 1.4 .65 .37 .70 2.2 .60 3. 7 3.0 8.0 5.6 .52 .60 .92 .60 1.7 .65 .77 .70 4.1 .60 2. 8 2.5 5.5 6.0 .92 .60 1.7 .65 .77 .70 4.1 .60 2. 9 20 2.5 2.0 .81 .51 1.1 .80 .37 .60 1.5 .51 2. 10 30 2.0 5.5 .81 .51 1.1 .80 .37 .60 1.5 .51 2. 11 40 2.0 1.7 .81 .51 1.0 .85 .37 .51 .92 .51 6. 11 40 2.0 1.7 .81 .51 1.0 .75 .70 .51 3.7 .70 3. 12 7.5 7.0 1.6 .81 .60 1.1 .86 .51 1.0 .75 .70 .51 3.7 .70 3. 13 5.0 8.0 1.5 .81 .60 1.1 .86 .51 .81 1.F 1.3 2. 14 10 2.0 1.5 .81 .60 1.1 .86 .51 .75 .37 .92 1.4 .60 2. 15 5.0 2.0 1.5 .81 .50 1.5 .75 .70 .80 1.1 .70 2.0 16 3.5 1.7 1.4 .70 .60 1.0 .70 .51 1.3 1.7 .70 2. 17 3.0 1.7 1.4 .70 .60 1.0 .60 .92 .70 1.5 .51 1.3 2.7 2.9 2.0 1.5 1.3 .70 .70 1.1 .55 .70 .60 1.1 .70 1.6 .51 1. 2.7 2.7 2.0 1.5 1.3 .70 .70 1.1 .55 .70 .60 1.1 .70 1.6 .51 1. 2.7 2.0 1.5 1.5 1.3 .70 .70 .60 .95 .60 .60 1.1 .70 1.5 .51 1. 2.7 2.0 1.5 1.5 1.3 .70 .70 .60 .95 .60 .60 .00 1.7 .91 1.5 .51 1.0 2.7 2.0 1.5 1.5 1.3 .70 .70 .60 .95 .60 .60 .00 1.7 .91 1. 2.0 2.0 2.0 2.9 .70 .60 .95 .60 .60 .51 .60 1.1 .70 1.6 .51 1. 2.0 2.0 2.0 2.9 .70 .60 .95 .60 .60 .51 .60 1.1 .70 1.0 .92 2. 2.6 5.0 2.0 1.5 1.5 1.6 .60 .70 .90 .95 .60 .60 .10 .70 .91 1.0 .92 2. 2.6 5.0 2.0 1.1 .60 35 .70 .60 .95 .60 .60 .11 .70 .92 2. 2.6 5.0 2.0 1.1 .60 35 .70 .60 .90 .60 .51 .60 1.1 .70 .90 .92 2. 2.6 5.0 2.0 1.1 .60 35 .70 .60 .90 .60 .51 .60 1.1 .70 .70 .81 .20 .70 .70 1.0 .92 2. 2.7 2.5 1.5 1.3 .70 .70 .60 .90 .65 .95 .90 .60 .60 1.1 .90 .90 .90 .90 .90 .90 .90 .90 .90 .90			DISC	HARGE . I	CUBIC FE		ECCND. WAT		CTCEER 19	79 TC SEF	IFMPER 1	980	
1 2.1 2.0 1.3 1.1 .60 1.F .7C .77 1.1 1.1 1.1 .7D						ME	AN VALUES						
2 2.5 2.0 1.6 1.2 .60 1.4 .70 .77 1.5 .62 .70	DAY	0.01	NOV	DEC	JAN	FER	MAR	APR	MAY	JUN	JUL	AUG	SFF
3 2.0 2.0 1.0 1.1 .00 1.6 1.6 .70 .37 .81 .02 .70 .35 .50 1.7 1.5 1.0 .60 1.5 .70 .37 .70 .2.2 .60 35 .50 1.7 1.0 1.0 .60 1.4 .65 .37 .70 2.2 .60 360 37 3.0 .8.0 5.5 1.5 1.5 .92 .60 1.7 .65 .37 .70 2.2 .60 360 37 3.0 .8.0 5.0 .5.5 1.5 .92 .60 1.7 .65 .37 .70 2.2 .60 37 3.0 .8.0 5.0 .5.0 .52 .60 1.7 .65 .37 .70 4.4 .60 37 3.0 8.0 5.0 .52 .60 1.7 .65 .37 .70 4.4 .60 37 3.0 8.0 5.0 .92 .51 1.1 .65 .37 .50 1.5 .51 49 20 2.5 2.0 .81 .51 1.1 .85 .37 .50 1.5 .51 49 20 2.5 2.0 .81 .51 1.1 .85 .37 .60 1.5 .51 49 20 2.5 2.0 .81 .51 1.0 .85 .37 .50 1.5 .51 49 2.5 1.5 1.0 .30 2.0 5.5 .81 .51 1.0 .85 .37 .51 .92 .51 611 40 2.0 1.7 .81 .51 1.0 .85 .37 .51 .92 .51 611 40 2.0 1.7 .81 .60 1.5 .75 .37 .50 1.1 .9 2.51 611 40 2.0 1.5 .81 .60 1.5 .75 .37 .92 1.4 .60 214 .50 1.5 .51 .91 1.0 .85 .37 .51 .92 .51 611 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9	1	2.1	2.0	1.3	1.1	.60	1.8	.70	. 77	1.1	1.1	.70	.60
4 10 1.7 1.5 1.0 .60 1.4 .65 .70 .77 .70 .2.1 .60 3.5 50 1.7 1.0 1.0 .60 1.4 .65 .37 .70 2.2 .60 3.5 5 50 1.7 1.0 1.0 .60 1.4 .65 .37 .70 2.2 .60 3.5 .5 1.5 .92 .60 1.3 .65 .37 .70 4.4 .60 3.7 3.0 8.0 5.5 1.5 .92 .60 1.3 .65 .37 .70 4.1 .60 2.8 2.4 2.5 5.5 6.0 .92 .51 1.1 .65 .37 .70 4.1 .60 2.8 2.9 2.0 .81 .51 1.1 .65 .37 .60 1.5 .51 4.0 2.0 1.5 .51 4.0 3.0 2.0 5.5 .81 .51 1.0 .85 .37 .60 1.5 .51 4.0 1.5 1.0 1.0 1.5 1.0 1.0 1.5 1.0 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2	2.5	2.0	1.0	1.3	.60	1.4	.7C	. 77	1.5	. 92	.70	.60
5 50 1.7 1.0 1.0 1.0 60 1.4 .65 .37 .70 2.2 .60 3. 6 5.0 5.5 1.5 .92 .60 1.3 .65 .37 .70 2.2 .60 3. 7 3.0 8.0 5.0 .72 .60 1.1 .65 .37 .70 4.1 .60 2. 8 2.5 5.5 6.0 .92 .51 1.1 .65 .37 .70 4.1 .60 2. 8 2.5 5.5 6.0 .92 .51 1.1 .65 .37 .60 1.1 .55 .51 4. 9 20 2.5 2.0 .61 1.1 .65 .37 .60 1.1 .51 .51 28 10 30 2.0 5.5 .81 .51 1.0 .85 .37 .51 .92 .51 6. 11 40 2.0 1.7 .81 .51 1.0 .85 .37 .51 .92 .51 6. 11 40 2.0 1.7 .81 .51 1.0 .75 .70 .51 3.7 .70 3. 12 7.5 2.0 1.6 .61 .60 1.1 .85 .51 .81 1.6 1.6 1.1 .85 .51 .81 1.6 1.6 1.3 2. 13 5.0 8.0 1.5 .81 .60 1.5 .75 .37 .92 1.4 .60 2. 14 10 2.0 1.5 .81 .60 1.1 .70 .70 .81 1.3 1.3 .70 .70 2.1 51 1.3 1.3 1.3 .51 2. 16 3.5 1.7 1.4 .70 .60 1.0 .70 .51 1.3 1.3 1.3 .51 2. 16 3.5 1.7 1.4 .70 .60 1.0 .65 .81 .70 .70 .70 .51 1.3 1.3 1.3 .51 2. 17 3.0 1.7 1.4 .70 .60 1.0 .65 .81 .70 .70 .70 .70 .70 .70 .70 .70 .70 .70	3	2.0	2.0	1.0	1.1	. 50	1.6	. 70	. 37	. 81	. 92	.70	.51
6 5.0 5.5 1.5 .92 .60 1.3 .65 .37 .70 u.u a .60 3. 7 3.0 8.6 5.6 .52 .60 1.3 .65 .37 .70 u.u a .60 3. 8 2.5 5.5 6.0 .92 .51 1.1 .65 .37 .60 1.5 .51 u.u .65 .37 .60 1.5 .51 u.u .65 .37 .60 1.1 .51 28 10 30 2.0 5.5 .81 .51 1.0 .85 .37 .51 .92 .51 6. 11 40 2.0 1.7 .81 .51 1.0 .85 .37 .51 .92 .51 6. 11 40 2.0 1.7 .81 .51 1.0 .75 .70 .51 3.7 .70 3. 12 7.5 2.0 1.6 .81 .60 1.1 .85 .51 .81 1.6 1.8 1.8 1.8 1.3 2. 13 5.0 8.0 1.5 .81 .60 1.5 .81 .60 1.5 .75 .77 .92 1.4 .60 2. 14 10 2.0 1.5 .70 .60 1.1 .70 .71 .81 1.2 .70 2. 15 5.0 2.0 1.4 .70 .60 1.0 .70 .51 1.3 1.3 .51 2. 16 3.5 1.7 1.4 .70 .60 1.0 .70 .51 1.3 1.3 1.3 .51 2. 16 3.5 1.7 1.4 .70 .60 1.0 .65 .81 .70 .70 1.6 .51 1. 17 3.0 1.7 1.4 .70 .60 1.0 .60 .92 .70 1.5 .51 1. 18 2.5 1.5 1.3 .70 .70 .10 .60 .95 .60 .60 .92 .70 1.5 .51 1. 20 2.0 4.0 1.5 .70 .60 .95 .60 .60 .92 .70 1.5 .51 1. 21 2.0 2.0 2.9 .70 .60 .95 .60 .60 .60 .60 .60 1.1 .60 1.1 .60 1.1 .81 1.7 .70 2.1 1.2 2.2 2	4	10	1.7	1.5	1.0	.50	1.5	.70	. 27	.70	. 21	.60	3.7
7	5	50	1.7	1.0	1.0	• 60	1.4	.65	. 37	.70	2.2	.60	3.0
R 2.5 5.5 6.0 .92 .51 1.1 .65 .37 .80 1.5 .51 4. 9 20 2.5 2.0 .81 .51 1.1 .8C .37 .60 1.1 .51 28 10 30 2.0 5.5 .81 .51 1.0 .85 .37 .51 .92 .51 6. 11 40 2.0 1.7 .81 .51 1.0 .75 .70 .51 3.7 .70 3. 12 7.5 2.0 1.6 .81 .60 1.1 .85 .51 .81 1.6 1.5 .75 .37 .92 1.4 .60 2.2 1.5 .70 .60 1.1 .75 .37 .92 1.4 .60 2.2 .75 .37 .91 1.4 .60 .2 .75 .37 .92 1.4 .60 .2 .2 .81		5.0	5.5	1.5	.92	. 60	1.3	.65	. 37	.70	4.4	.60	3.0
9 20 2.5 2.0 .81 .51 1.1 .8C .27 .60 1.1 .51 28 10 30 2.0 5.5 .81 .51 1.0 .85 .37 .51 .92 .51 6. 11 40 2.0 1.7 .81 .51 1.0 .85 .37 .51 .92 .51 6. 12 7.5 7.0 1.6 .81 .60 1.1 .85 .51 .81 1.8 1.8 1.8 1.8 1.9 1.3 2. 13 5.0 8.0 1.5 .81 .60 1.5 .75 .37 .92 1.4 .60 2. 14 10 2.0 1.5 .70 .60 1.1 .70 .37 .81 1.3 2. 15 5.0 2.0 1.4 .70 .60 1.0 .70 .51 1.3 1.3 .51 2. 16 3.5 1.7 1.4 .70 .60 1.0 .70 .51 1.3 1.3 .51 2. 17 3.0 1.7 1.4 .70 .60 1.0 .65 .81 .70 .70 .70 .70 .70 .70 .70 .70 .70 .70			8 . C	5 . C		.60	1.7	.65	. 77	.70	4.1	.60	2.4
10 30 2.0 5.5 .81 .51 1.0 .85 .37 .51 .92 .51 6. 11 40 2.0 1.7 .81 .51 1.0 .75 .70 .51 3.7 .70 3. 12 7.5 2.0 1.6 .81 .60 1.1 .85 .51 .81 1.F 1.3 2. 13 5.0 8.0 1.5 .81 .60 1.5 .75 .37 .92 1.4 .60 2. 14 10 2.0 1.5 .70 .60 1.1 .70 .71 .81 1.3 .70 2. 15 5.0 2.0 1.4 .70 .60 1.0 .70 .51 1.3 1.3 .70 2. 16 3.5 1.7 1.4 .70 .60 1.0 .70 .51 1.3 1.3 .51 2. 16 3.5 1.7 1.4 .70 .60 1.0 .65 .81 .70 .70 .70 1.1 .70 .70 .70 .70 1.1 .70 .70 .70 .70 1.1 .70 .70 .70 .70 .70 .70 .70 .70 1.1 .70 .70 .70 .70 .70 .70 .70 1.0 .70 .70 1.0 .70 .70 1.0 .70 .70 1.0 .70 .70 1.0 .70 .70 1.0 .70 .70 1.0 .70 1.0 1.5 .51 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.		2.5	5.5	6.0	.92	. 51	1.1	. 65	.37	. 50	1.5	.51	4.4
11		20	2.5	2.0	. 81	. 5 1	1.1	.80	.37	.60	1.1	.51	28
12	10	30	2.0	5.5	. 81	. 51	1.0	. 85	. 37	. 51	. 92	.51	6.8
13 5.0 8.0 1.5 .81 .60 1.5 .75 .37 .92 1.4 .60 2. 14 10 2.0 1.5 .70 .60 1.1 .70 .77 .81 1.7 .70 2. 15 5.0 2.0 1.4 .70 .60 1.0 .70 .51 1.3 1.3 .51 2. 16 3.5 1.7 1.4 .70 .60 1.0 .65 .81 .70 .70 .60 .51 1.3 1.3 .51 2. 16 3.5 1.7 1.4 .70 .60 .95 .70 1.7 .70 .70 .51 1.3 1.3 .51 1.3 .51 2. 18 2.5 1.5 1.3 .70 .70 1.0 .60 .92 .70 1.5 .51 1. 19 2.3 1.5 2.4 .81 .70 1.1 .55 .70 .60 1.7 .81 1.2	11	40	2.0	1.7	.81	. 51	1.0	. 75	.70	. 51	3.7	.70	3.2
14	12	7.5	2.0	1.6	.81	.60	1.1	.85	.51	.81	1.5	1.3	2.6
15 5.0 2.0 1.4 .70 .60 1.0 .70 .51 1.3 1.3 .51 2. 16 3.5 1.7 1.4 .70 .60 1.0 .65 .81 .70 1.6 .51 1. 17 3.0 1.7 1.4 .70 .60 .95 .70 1.7 .70 7.2 .51 1. 18 2.5 1.5 1.3 .70 .70 1.0 .60 .92 .70 1.5 .51 1. 20 2.3 1.5 2.4 .81 .70 1.1 .55 .70 .60 .92 .70 1.5 .51 1. 20 2.0 4.0 1.5 .70 .60 .95 .60 .60 .60 1.1 .60 1.7 .81 1. 21 2.0 2.0 2.0 2.9 .70 .60 .95 .60 .60 .60 1.1 .51 1. 22 2.0 1.5 1.5 1.4 .60 .70 .90 .55 .51 .60 1.7 .60 1. 23 1.7 1.5 1.4 .60 1.1 .80 .55 .60 .60 .60 1.1 2.4 1. 24 1.7 5.0 1.4 .60 1.1 .80 .55 .60 .51 .60 1.1 2.4 1. 25 1.7 1.5 1.1 .60 1.8 .75 .50 1.9 .70 1.0 .90 .92 .70 1.0 .90 .90 .90 .90 .90 .90 .90 .90 .90 .	13	5.0	8.0	1.5	.81	. 60	1.5	. 75	.37	. 92	1.4	.60	2.4
16	14	10	2.0	1.5	.70	.60	1.1	.70	. 37	.81	1.3	.70	2.2
17	15	5.0	2.0	1.4	.70	. 60	1.0	.70	.51	1.3	1.3	.51	2.1
17	16	3.5	1.7	1.4	.70	. 60	1.0	- 65	. 91	.70	1.6	.51	1.9
18 2.5 1.5 1.3 .70 .70 1.0 .60 .92 .70 1.5 .51 1. 19 2.3 1.5 2.4 .P1 .70 1.1 .55 .70 .60 1.7 .P1 1. 20 2.0 4.0 1.5 .70 .60 .95 .60 .60 .60 1.1 .60 1.1 .60 1. 21 2.0 2.0 2.9 .70 .60 .90 .60 .51 .60 1.1 .51 1. 22 2.0 1.5 1.5 .60 .70 .90 .55 .51 .60 1.7 .60 1. 23 1.7 1.5 1.4 .60 1.1 .80 .55 .60 .60 1.1 2.4 1. 24 1.7 5.0 1.4 .60 .97 .75 .50 .51 .70 1.4 .81 2. 25 1.7 1.5 1.1 .60 35 .70 <t< td=""><td>17</td><td>3.0</td><td>1.7</td><td>1.4</td><td>. 70</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.6</td></t<>	17	3.0	1.7	1.4	. 70								1.6
19	18	2.5	1.5	1.3		. 70	1.0						1.6
21	19	2.3	1.5	2.4	.81	.70	1.1	.55	.70	.60			1.5
22	50	2.0	4.0	1.5	.70	. 60	.95	.60	.60	. 50	1.1	.60	1.4
23	21	2.0	2.0	2.9	.70	. 60	.90	.60	.51	.60	1.1	.51	1.4
23	22	2.0	1.5	1.5	. 60	.70	. 90	.55	.51	.60	1.7		1.3
25 1.7 1.5 1.1 .60 1.8 .75 .50 1.9 .70 1.0 .92 2. 26 5.0 2.0 1.1 .60 35 .70 .45 .70 1.3 1.0 .81 3. 27 2.5 1.5 1.3 .70 2.8 .65 .50 1.9 2.2 .92 .81 4. 28 7.0 5.0 1.1 .70 2.0 .65 .45 .92 2.2 .81 .60 1. 29 7.0 1.5 1.1 .70 2.0 .65 .45 .92 2.2 .81 .60 1. 30 2.5 1.5 1.0 .6070 .37 .60 1.0 .81 .81 4. 31 2.0 1.0 .606570 .37 .60 1.0 .81 .60 1. 10TAL 243.0 82.3 56.4 24.22 58.76 22.55 18.77 19.84 26.97 47.22 22.25 106.	23	1.7	1.5	1.4	.60	1.1	.80	. 55	.60	.60	1.1		1.1
26 5.0 2.0 1.1 .60 35 .70 .45 .70 1.3 1.0 .81 3. 27 2.5 1.5 1.3 .70 2.8 .65 .50 1.9 2.2 .92 .81 4. 28 7.0 5.0 1.1 .70 2.0 .65 .45 .92 2.2 .81 .60 1. 29 7.0 1.5 1.1 .70 2.0 .70 .40 .60 1.5 .81 .81 4. 30 2.5 1.5 1.0 .6070 .37 .60 1.0 .81 .60 10 31 2.0 1.0 .60657070 .60 10TAL 243.0 82.3 56.4 24.22 58.76 22.55 18.77 19.84 26.97 47.22 22.25 106.	24	1.7	5.0	1.4	.60	.97	.75	.50	.51	.70	1.4	.81	2.2
27	25	1.7	1.5	1.1	.60	1.8	.75	.50	1.9	.70	1.0	.92	2.6
28	26	5.0	2.0	1.1	.60	35	.70	. 45	.70	1.3	1.0	.81	3.3
29 7.0 1.5 1.1 .70 2.0 .70 .4C .6C 1.5 .P1 .R1 4. 30 2.5 1.5 1.0 .60 .70 .37 .60 1.0 .R1 .60 10 31 2.0 1.0 .60 .65 .70 .70 .60 - 1CTAL 243.0 82.3 56.4 24.32 58.76 32.55 18.77 19.84 26.97 47.22 22.25 106.	27	2.5	1.5	1.3	.70	2.8	. 45	.50	1.9	2.2	. 92	. 81	4.6
30 2.5 1.5 1.0 .6070 .37 .60 1.0 .81 .60 10 31 2.0 1.0 .60657070 .60	28	7.0	5.0	1.1	.70	2.0	.65	. 45	.92	2.2	.81	.60	1.9
30 2.5 1.5 1.0 .6070 .37 .60 1.0 .81 .60 10 .71 .70 .70 .70 .70 .70 .70 .70 .70 .70 .70	29	7.0	1.5	1.1	.70	2.0	.70	.4 C	. 6 C	1.5	. 11	.81	4.7
ICTAL 243.0 82.3 56.4 24.32 58.76 32.55 18.77 19.84 26.97 47.22 22.25 106.	30	2.5	1.5	1.0	.60		.70	. 37	. 50	1.0	. 81	.60	10
	31	2.0	755	1 . C	.60		. 55		.7C		.70	.60	
	TOTAL	243.0	82.3	56.4	24.32	58.76	32.55	18.77	19.84	26.97	47.22	22.25	106.61
	MEAN	7.84	2.74	1.82	.78	2.03	1.05	. 63	.64	. 90	1.52	.72	3.55
그녀들은 그는 그리고 그는	XAM	50	8.0	6.0									28
	MIN	1.7	1.5	1.0	.50	. 51	. 45						.51
	AC-FI	482	163	112	48		45	37	7 9				211

CAL YR 1979 TOTAL 568.91 MEAN 1.56 MAX 50 MIN .09 AC-FT 1130 WIR YR 1980 TOTAL 738.99 MEAN 2.02 MAX 50 MIN .37 AC-FT 1470

NOTE. -- No gage-height record Oct. 2 to Dec. 10, Mar. 12 to Apr. 29.

16809600 LA SA FUA RIVER NEAR UMATAC

LOCATION.--Lat 13°18'23" N., long 144°39'45" E., Hydrologic Unit 20100003, on left bank 0.6 mi (1.0 km) north of Sanchez School in Umatac and 0.8 mi (1.3 km) upstream from mouth.

DRAINAGE AREA. -- 1.06 mi² (2.75 km²).

PERIOD OF RECORD. -- April 1953 to July 1960, October 1976 to current year.

GAGE. -- Water-stage recorder. Altitude of gage is 120 ft (36.6 m), from topographic map.

REMARKS.--Records good. Water is diverted through 2-in (5.1-cm) pipe at coast highway above station for consumption in nearby homes.

AVERAGE DISCHARGE.--10 year (water years 1954-59, 1977-80), 4.44 ft 3 /s (0.126 m 3 /s), 3,220 acre-ft/yr (3.97 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,440 ft 3 /s (40.8 m 3 /s) Sept. 27, 1978, gage height, 6.05 ft (1.844 m), from rating curve extended above 109 ft 3 /s (3.09 m 3 /s) by test on model of station site; minimum, 0.12 ft 3 /s (0.003 m 3 /s) June 13, 1979, during short regulation of flow at diversion upstream.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 500 ft³/s (14.2 m³/s) and maximum (*), from rating curve extended as explained above:

Date	e	Time	Disch (ft³/s)	arge (m³/s)	Gage (ft)	height (m)	Date		Time	Disch (ft ³ /s)		Gage (ft)	height (m)
Oct.	5	0100	978	27.7	5.38	1.640	Aug.	23	0230	686	19.4	4.79	1.460
Oct.	11	1430	670	19.0	4.75	1.448	Sept.	6	2230	694	19.6	4.81	1.466
Feb.	26	1000	*1090	30.9	*5.57	1.698	Sept.	9	0800	765	21.7	4.97	1.515
June	1	1500	690	19.5	4.80	1.463	Sept.	30	0900	730	20.7	4.90	1.494
Tuno	27	2300	020	26 0	5 29	1 600							

DISCHAUSE. IN CIRIL SEET DED SECOND. LATED VENS COTOSES 1076 TO SERIEMSES 1080

Minimum discharge, 0.39 ft3/s (0.011 m3/s) Feb. 18.

						AN VALUES	FR YEAR					
DAY	n c 1	NOV	DEC	JAN	FER	MAR	APR	MAY	ZUN	JUL	AUG	SEP
1	2.9	3.0	1.8	2.2	.82	3.0	.97	. 8 5	8.3	5.0	1.6	1.6
2	8.1	2.6	1.7	4.1	1.1	2.0	. 93	.52	33	3.0	1.7	1.5
3	3.5	2.3	1.6	3.0	.89	1.8	.82		7.0	2.5	3.3	1.9
4	5.7	2.1	1.6	1.9	. 79	1.9	1.2	. 55	3.5	2.2	3.1	24
5	134	1.0	1.4	1.7	.76	1.7	.82	. 49	2.7	59	5.1	26
6	10	8.8	2.4	1.5	.73	1.5	.73	. 49	5.2	116	2.1	45
7	5.4	29	8.8	1.5	. 73	1.3	.70	. 55	2.1	20	1.7	25
8	4.2	3.1	6.3	1.4	-61	1.2	.67	. = 7	1.8	9.2	9.6	23
9	5.5	5.2	3.7	1.4	. 61	1.1	1.1	.75	2.1	4.8	2.7	217
10	9.5	3.6	3.4	1.5	.61	1.0	1.1	. 52	1.9	3.4	2.4	4 1
11	96	3.3	2.2	1.6	.61	1.0	.85	2.2	1.5	1 8	6.0	11
12	12	5.6	2.0	1.3	- 61	.97	1.3	17	1.7	12	2.4	6.7
13	7.0	8.4	1.8	1.3	. 55	1.9	1.1	2.4	2.2	8.5	1.9	6.3
14	37	4.2	1.8	1.2	.53	1.1	.82	1.2	1.7	7.1	1.7	19
15	8.1	3.4	1.6	1.2	• 51	.97	.76	1.1	19	8.7	1.5	5.9
16	5.5	2.8	1.5	1.2	. 48	1.0	.76	14	2.5	26	1.4	3.5
17	4.3	2.4	1.4	1.2	.48	. 93	.79	40	2.4	48	1.5	3.0
18	3.5	2.7	1.5	1.1	. 44	.97	. 73	42	2.6	11	6.0	4.4
19	3.0	2.0	14	1.4	.46	1.2	.67	4 . 5	1.9	5.6	4.1	2.7
50	3.0	6.3	2.4	1.1	. 53	1.1	. 70	2.9	1.7	4 . 8	2.4	2.5
21	2.4	3.0	41	1.0	. 53	1.0	.70	3.2	1.5	3.9	2.0	2.3
22	2.2	2.8	₹.8	1.1	1.1	1.0	.61	2.7	1.5	3.6	1.7	2.2
23	2.0	2.2	2.6	1.0	35	.93	. 58	4.3	1.5	9.6	42	2.4
24	2.1	6.5	2.2	. 57	7.8	. 89	.67	2.9	1.4	3.3	3.9	12
25	2.1	3.2	2.1	1.1	27	. 99	.73	48	4.2	2.9	6.4	8.6
26	19	4.5	2.5	.97	205	.85	. 61	9.2	51	2.5	3.3	21
27	4.7	2.9	2.0	.93	7.2	. 85	.64	10	39	2.2	2.4	36
28	18	2.4	1.8	. 89	3.9	. 89	.55	3.5	4 7	2.0	2.1	8.9
29	28	2.1	1.8	1.0	4.0	.93	. 52	2.5	15	1.9	2.3	38
30	6.2	1.9	1.8	.89		. 97	.52	2.1	4 . 6	1.8	1.9	84
31	4.0		1.6	.85		.85		38		1.7	1.7	
TOTAL	545.7	162.1	126.2	43.50	304.38	37.69	23.65	279.35	339.7	380.2	131.9	686.4
MEAN	20.8	5.40	4.07	1.40	10.5	1.22	.79	9.01	11.3	12.3	4.25	22.9
MAX	134	31	41	4.1	205	3.0	1.3	48	83	116	42	217
MIN	2.0	1.9	1.4	. 85	. 4 4	. 85	.52	. 49	1.4	1.7	1.4	1.5
AC-FT	1280	322	250	86	504	75	47	554	674	754	262	1360

CAL YR 1979 TOTAL 1749.20 MEAN 4.79 MAX 134 MIN .23 AC-FT 3470 WTR YR 1980 TOTAL 3160.77 MEAN 8.64 MAX 217 MIN .44 AC-FT 6270

16835000 INARAJAN RIVER NEAR INARAJAN

LOCATION.--Lat 13°16'41" N., long 144°44'15" E., Hydrologic Unit 20100003, on right bank 0.6 mi (1.0 km) northwest of Inarajan and 4.9 mi (7.9 km) east of Merizo.

DRAINAGE AREA. -- 4.42 mi2 (11.45 km2).

PERIOD OF RECORD .-- September 1952 to current year.

REVISED RECORDS. -- WSP 2137: Drainage area.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 15 ft (4.6 m), from topographic map.

REMARKS.--Records good. Stage-discharge relation not determined above gage height 11.0 ft (3.35 m) owing to ungaged overbank flow. During dry periods water is diverted upstream for irrigation.

AVERAGE DISCHARGE.--28 years, 17.5 ft³/s (0.496 m³/s), 12,680 acre-ft/yr (15.6 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 12.90 ft (3.932 m) Oct. 11, 1963 (discharge not determined); minimum discharge, 0.42 ft 3 /s (0.012 m 3 /s) June 21, 22, 1975.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 1,700 ft 3/s (48.1 m3/s) and maximum (*):

Date	Time	Discharge (ft ³ /s) (m ³ /s)	Gage h	eight (m)	Date	Time	Discharge (ft³/s) (m³/s)	Gage h	eight (m)
Oct. 5	0215	Unknown	12.11	3.691	Sept. 9	0545	Unknown	*12.59	3.837
Oct. 26	1930	Unknown	11.09	3.380	Sept. 13	1630	1780 50.4	10.84	3.304
Feb. 26	1130	Unknown	12.57	3.831	Sept. 14	1345	Unknown	12.28	3.743
Sept. 6	2300	Unknown	11.56	3.523	Sept. 30	0830	Unknown	11.51	3.508

Minimum discharge recorded 2.4 ft 3 /s (0.068 m 3 /s) Apr. 19, 22, 24, but may have been lower during period of no gage-height record May 4-19.

DISCURDED IN CORP. SEEL ARE SEELED.

		DIS	CHARGE. I	N CURIC FI	EET PER S	ECCAD. WATE	ER YEAR	OCTOBER 19	79 TC SEF	TEMPER 1	9.80	
DAY	0 C T	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	11	15	10	9.8	4.7	25	6.8	4.4	3.0	14	9.6	10
2	13	13	10	9.9	5.2	20	5.8	3.8	16	9.8	9.6	9.7
3	11	13	10	9.5	5.0	18	F.1	12	10	P . P	14	10
4	7.7	11	17	8.3	4.5	19	7.0	4.0	P . 5	8.3	13	26
5	351	10	9.9	7.9	4.3	16	A.7	3.5	P . C	27	12	60
6	33	26	11	7.5	4.1	14	6.0	3.5	P.0	106	10	214
7	23	73	26	7.4	4.6	13	E . P	3.5	7.2	3 C	9.1	164
8	22	72	18	7.3	4.1	12	5.6	3.0	5.8	19	37	100
0	137	26	13	7.1	4.0	11	6.1	3.C	7.7	1 4	12	1190
10	330	21	12	7.1	4.0	11	7.0	3.0	7.4	12	10	235
11	196	19	11	7.2	4.1	10	7.2	17	6.5	29	12	58
12	52	18	9.9	6.6	3.9	9.8	9.5	14	P.0	28	9.6	46
13	44	24	10	6.4	3.8	11	6.4	7.5	7.4	20	8.9	183
14	257	19	9.6	6.2	3.8	9.5	5.7	5.5	6.9	15	R.5	424
15	48	16	9.1	6.1	3.6	9.0	5.3	5.0	21	18	9.2	49
16	37	15	8.8	6.0	3.5	10	5.4	7.0	8.2	104	26	34
17	32	14	9.0	5.8	3.5	8.8	5.3	15	9.1	107	11	29
18	28	13	8.6	5.7	3.4	8.6	5.0	20	8.0	27	15	41
19	25	13	47	8.3	3.4	9.2	4.7	10	6.9	19	50	1,7
20	23	18	12	6.2	3.8	9.1	5.2	9.6	7.2	19	15	24
21	21	17	150	5.7	3.8	8.7	4.8	8.8	5.7	18	11	21
22	20	13	18	5.6	4.5	8.3	4.5	7.6	6.3	17	12	
23	18	12	13	5.4	70	7.6	4.4	11	5.9	47	232	20 18
24	20	36	12	5.3	21	7.3	5.0	8.7	7.3	17	25	
25	19	17	11	5.8	28	7.5	5.7	27	13	15	26	60 21
26	151	18	11	5.3	121	7.0	4.4	13	24	13	17	125
27	28	14	10	4.9	44	6.7	4.7	9.7	20	12	14	162
28	42	13	10	4.7	26	6.7	4.3	9.5	28	12	13	32
29	66	12	9.8	5.2	37	7.4	4.1	7.5	30	11	13	243
30	26	11	10	4.7		7.2	4.1	6.8	14	11	11	449
31	19		9.6	4 . 8		6.4		7.3	777	10	10	
TCTAL	2180	612	536.3	203.7	941.6	338.8	169.6	271.6	755 .	017.0		*****
MEAN	70.3	20.4	17.3	5.57	32.5	10.9	5.65	8.76	355.1	P17.9	684.5	4080.7
MAX	351	73	150	9.9	626	29	8.5		11.8	26.4	22.1	136
MIN	11	10	8.6	4.7	3.4			27	30	107	232	1190
AC-FT	4320	1210	1060	404	1870	6.4	4.1 336	3.0 539	6.3 704	8.3	1360	9.7 8090

CAL YR 1979 TOTAL 5614.5 MEAN 15.4 MAX 351 MIN 1.0 AC-FT 11140 WTR YR 1980 TOTAL 11191.8 MEAN 30.6 MAX 1190 MIN 3.0 AC-FT 22200

16840000 TINAGA RIVER NEAR INARAJAN

LOCATION.--Lat 13°17'10" N., long 144°45'04" E., Hydrologic Unit 20100003, on right bank 0.3 mi (0.5 km) upstream from mouth, 0.9 mi (1.4 km) northeast of Inarajan, and 4.5 mi (7.2 km) south of Talofofo.

DRAINAGE AREA. -- 1.89 mi2 (4.90 km2).

PERIOD OF RECORD. -- October 1952 to current year. Prior to October 1969, published as Pauliluc River near Inarajan.

REVISED RECORDS. -- WSP 2137: Drainage area.

GAGE .- - Water-stage recorder and concrete control. Altitude of gage is 15 ft (4.6 m), from topographic map.

REMARKS. -- Records good. No diversion above station.

AVERAGE DISCHARGE.--28 years, 5.74 ft^3/s (0.163 m^3/s), 4,160 acre-ft/yr (5.13 hm^3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,980 ft 3 /s (84.4 m 3 /s) Oct. 15, 1953, gage height, 13.11 ft (3.996 m), from rating curve extended above 210 ft 3 /s (5.95 m 3 /s); minimum, 0.15 ft 3 /s (0.004 m 3 /s) May 16, 21-23, 29, 1966, June 13, 29, 30, 1973.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 400 ft 3 /s (11.3 m 3 /s) and maximum (*), from rating curve extended as explained above:

		Disch	arge	Gage h	eight			Discha		Gage h	eight
Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Oct. 5	0415	566	16.0	5.11	1.558	Sept. 9	0530	a500	14.2		4.2
Feb. 26	1115	*1380	39.1	*8.93	2.722	Sept. 14	1600	541	15.3	4.97	1.515
Sept. 7	0030	414	11.7	4.21	1.283	Sept. 30	1130	422	12.0	4.26	1.298

DISCHARGE. IN CUPIC FEET PER SECOND. WATER YEAR OCTOPER 1975 TO SEPTEMPER 1980

Minimum discharge, 0.58 ft3/s (0.016 m3/s) Feb. 19-22, May 10.

MEAN 4.80

MAX 139

MAX 400

MIV

MIN .52

AC-FT 3470

AC-F I 7250

a About.

CAL YR 1979 TOTAL 1750.66

WTR YR 1980 TOTAL 3658.41 MEAN 10.0

						AN VALUES	ER TEAR (
DAY	001	NOV	DEC	JAN	FEP	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	4.3	7.2	3.5	3.5	1.1	6.8	1.5	1.1	51	3.8	3.1	3.6
2	4.5	6.6	7.3	3.5	1.1	5.3	1.6	.93	12	3.1	3.1	3.4
3	4.7	5.9	3.3	3.5	1.1	5.0	1.5	.93	4.0	2.6	4.0	3.6
4	14	5.3	4.0	3.2	1.1	5.2	1.6	. 87	2.9	2.3	5.3	8.0
5	1 39	5.0	3.6	2.9	1.1	5.1	1.5	.87	2.5	4 - 4	3.8	15
6	11	8.5	3.6	2.6	1.1	4.4	1.4	.81	2.5	12	4.2	49
7	7.4	13	4.8	2.4	1.1	4.2	1.4	.71	2.3	6.9	3.4	102
R	6.8	22	5.6	2.3	1.0	4 - 1	1.2	. 66	2.1	4.7	6.1	40
9	37	8.5	5.3	2.2	1.0	4.0	1.4	.62	2.2	3.8	4.5	400
10	99	6.4	9.2	2.3	•97	3.4	1.5	. 62	5.0	3.1	3.6	80
11	84	6.0	5.3	2.3	.93	2.9	1.6	4.5	1.8	4.8	3.4	28
12	20	5.4	4.1	2.3	. 87	2.6	2.1	4.1	1.8	8.2	3.4	35
13	19	7.2	4.9	2.2	.87	2.8	1.9	2 . 4	2.1	6.6	2.9	31
14	106	6.7	4.3	2.0	. 81	2.8	1.5	1.6	2.0	5.0	2.8	99
15	20	5.5	3.9	1.9	.76	2.7	1.5	1.5	4.0	4.3	2.5	24
1.5	13	4.8	3.6	1.8	.71	2.7	1.6	2.3	2.4	11	4.0	19
17	10	4.3	3.3	1.8	. 71	2.5	1.5	4.3	2.2	39	3.4	11
18	9.2	4.0	3.2	1.7	.66	2.3	1.3	5.7	2.1	7.8	3.6	10
19	8.4	3.0	16	2.7	. 62	2.3	1.1	2.9	2.1	5.3	6.7	8.6
50	8.0	4.4	5.4	2.4	.62	2.3	1.1	2.4	2.1	4.5	4.3	9.1
21	7.3	4.9	30	2.1	.62	2.2	1.0	2.5	1.9	4.7	3.8	7.5
22	6.8	4.4	7.1	2.0	.66	2.2	1.0	2.5	1.8	5.3	4.6	7.5
23	6.1	4.3	4.9	1.9	5.9	2.0	. 93	2.5	1.8	8.6	75	6.9
24	6.4	6.5	4.2	1.6	9.5	1.8	1.1	2.5	1.8	4.7	9.7	17
25	6.2	5.0	3.9	1.6	7.5	1.8	1.1	5.7	2.5	4.3	9.5	8.2
26	33	4.7	3.7	1.5	273	1.7	. 93	3.8	5.0	3.8	7.2	33
27	18	4.9	3.7	1.5	16	1.6	1.0	2.8	4.2	3.4	5.3	53
28	14	4.4	3.6	1.3	8.3	1.5	.07	2 . P	16	3.1	4.5	18
29	31	4.1	3.5	1.2	6.3	1.6	. 93	2.2	9.1	2.9	4.2	68
30	13	3.8	3.6	1.1		1.5	1.0	2 . C	4.0	2.8	4.2	151
31	8.2		3.7	1.1	4	1.4		1.8		2.9	3.8	
TOTAL	775.3	187.7	181.1	56.5	345.97	92.7	39.82	70.92	154.4	189.7	209.9	1344.4
MEAN	25.0	6.26	5.84	7.15	11.9	2.99	1.33	2.29	5.15	6.12	6.77	44.8
MAX	139	22	39	3.5	273	6.8	2.1	5.7	51	39	75	400
MIN	4.3	3.8	3.2	1.1	.62	1.4	.93	.62	1.8	2.3	2.5	3.4
AC-FT	1540	372	359	132	686	184	79	141	306	376	416	2670

16847000 IMONG RIVER NEAR AGAT

LOCATION.--Lat 13°20'17" N., long 144°41'55" E., Hydrologic Unit 20100003, on left bank 500 ft (152 m) upstream from Fena Valley Reservoir, 1.4 mi (2.3 km) south of Fena Dam spillway, and 4.1 mi (6.6 km) southeast of Agat School.

DRAINAGE AREA. -- 1.95 mi² (5.05 km²).

PERIOD OF RECORD. -- March 1960 to March 1971. October 1971 to current year.

REVISED RECORDS. -- WSP 2137: Drainage area.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 120 ft (37 m), from topographic map.

REMARKS. -- Records fair. No diversion above station.

AVERAGE DISCHARGE. -- 19 years (water years, 1961-70, 1972-80), 10.3 ft3/s (0.292 m3/s), 7,460 acre-ft/yr (9.20

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 6,100 ft 3 /s (173 m 3 /s) Sept. 27, 1978, gage height, 11.3 ft (3.444 m), from outside floodmarks, and from rating curve extended above 58 ft 3 /s (1.64 m 3 /s) on basis of slope-area measurement of peak flow; minimum, 0.37 ft 3 /s (0.010 m 3 /s) May 21, 22, 26, 1966.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,400 ft³/s (39.6 m³/s) and maximum (*), from rating curve as explained above:

			harge	Gage h	eight				Disch		Gage h	eight
Date	Time	(ft ³ /s)	(m^3/s)	(ft)	(m)	Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Oct. 5	0130	2480	70.2	7.32	2.231	Sept.	6	2215	1410	39.9	5.42	1.652
Oct. 11	1400	1620	45.9	5.85	1.783	Sept.	9	0715	2010	56.9	6.53	1.990
Feb. 26	0845	*2930	83.0	*7.95	2.423	Sept.	14	1800	2010	56.9	6.54	1.993
June 1	1430	1860	52.7	6.28	1.914	Sept.	30	0800	1700	48.1	6.01	1.832

Minimum discharge, 2.0 ft 3 /s (0.057 m 3 /s) May 2, 3.

		DISC	HARGE. IN	CUBIC		SECOND. WAT MEAN VALUES		OCTOBER 19	79 TO SEF	TEMBER 19	980	
DAY	OCT	NOV	DEC	JAN	FER	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	11	13	6.8	5.1	2.8	7.7	3.4	2.5	94	7.8	4.7	3.8
2	11	9.7	8.8	6.0	3.8	6.1	3.1	2.1	23	6.8	6.2	3.8
3	9.2	9.2	8.8	6.8	3.0	5.5	2.9	2.2	6.0	6.0	10	4.7
4	73	8.8	6.3	4.8	3.0	5.8	3.5	2.2	5.5	5.7	8.1	27
5	221	8.3	5.1	4 - 4	2.8	5.2	3.1	2.2	4.5	14	8.5	25
6	20	20	7.8	4.1	2.8	4.9	2.9	2.2	4.0	99	5.7	65
7	13	38	17	3.8	2.8	4.7	2.8	2.3	3.5	55	5.0	41
A	11	38	14	3.5	2.8	4.4	2.8	2.4	3.5	30	15	39
9	81	20	9.2	3.2	2.8	4 . 4	3.6	2.6	4.5	13	6.8	300
10	162	13	15	3.2	5.8	4.1	3.2	2.3	4.0	8.3	5.4	100
11	142	9.7	6.3	3.5			2.9	6.5	3.5	69	6.1	26
12	60	12	5.7	3.5			4.1	5.4	0.0	F 9	5.2	12
13	64	24	5.7	3.5			3.2	3.0	4.5	36	4.8	12
14	105	14	5.4	3.2			2.8	2.6	4.0	3.5	4.6	115
15	52	12	5.1	3.2	5.6	3.7	2.7	2.5	7.5	23	4.3	60
16	31	11	4 . 8	3.2			2.6	5.7	4.0	33	4.1	32
17	18	12	4.8	3.2	2.4	3.5	5.8	1.3	3.5	93	5.0	18
18	13	14	5.1	3.2			2.7	12	3.5	79	6.2	15
19	10	12	5.5	3.5			2.5	8.2	3.5	15	7.3	10
20	R . P	18	6.3	3.2	2.2	3.7	2.7	4.9	3.8	10	5.1	8.3
21	8.8	13	32	3.2	2.2	3.8	2.6	4.2	3.2	8.3	4.5	7.8
2.2	8.3	9.7	8.3	3.0			2.4	3.6	3.2	7.8	4.6	7.3
23	7.8	9.2	6.0	3.0	20	3.5	2.4	5.2	3.5	18	26	6.8
24	10	17	5.7	3.0	11	3.2	2.5	4.5	3.8	9.2	7.7	14
25	8.3	11	5.7	3.2	24	3.0	2.6	15	6.6	£ . 7	12	13
26	33	16	6.0	3.0	30 C	2.8	2.3	7.7	23	6.0	6.9	81
27	15	13	5.7	3.0	29	2. R	2.3	5.4	55	5.7	5.5	129
28	30	11	6.0	2.8	10	2.8	2.3	4 . 4	42	5.5	4.8	45
29	40	9.2	5.4	3.0	9.8	3.0	2.2	3.6	19	5.3	4.5	63
30	23	8.8	5.1	2.8		3.3	2.2	3.2	9.7	5.2	4.3	184
31	16		4.8	2.8		3.2		4 . C		4.9	4.0	
TCTAL	1316.2	434.6	260.7	110.9		127.1	84.1	148.6	363.3	740.2	212.9	1468.5
MEAN	42.5	14.5	8.41	3.58	16.0	4.10	2.80	4.79	12.1	23.9	6.87	49.0
MAX	221	38	32	6.8	300		4.1	15	94	99	26	300
MIN	7.8	8.3	4.8	2.8	2.2	2.8	2.2	2.1	3.2	4.9	4.0	3.8
AC-FT	2610	862	517	220	919	252	167	295	721	1470	422	2910
CAL YR	1979 TOTA	L 4063.	5 MEAN	11.1	MAX 221	MIN . 52	AC-FT	8050				
WTR YR	1980 TOTA	L 5730.	SC MEAN	15.7	MAX 300	MIN 2.1	AC-FT	11370				

16848100 ALMAGOSA RIVER NEAR AGAT

LOCATION.--Lat 13°20'43" N., long 144°41'36" E., Hydrologic Unit 20100003, on right bank 400 ft (122 m) upstream from Fena Valley Reservoir and 3.5 mi (5.6 km) southeast of Agat.

DRAINAGE AREA. -- 1.32 mi² (3.42 km²).

PERIOD OF RECORD. -- April 1972 to current year.

REVISED RECORD. -- WDR HI-75-1: Drainage area. WDR HI-76-1: 1972(P), 1973(M), 1974-75(P).

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 155 ft (47 m), from topographic map.

REMARKS.--Records good, except those for periods of no gage-height record, which are poor. Up to 3.9 $\rm ft^3/s$ (0.11 $\rm m^3/s$) diverted upstream for domestic use.

AVERAGE DISCHARGE. -- 8 years, 6.48 ft³/s (0.184 m³/s), 4,690 acre-ft/yr (5.78 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,650 ft 3 /s (75.0 m 3 /s) Sept. 27, 1978, gage height, 7.78 ft (2.371 m), from rating curve extended above 81 ft 3 /s (2.29 m 3 /s) on basis of slope-area measurement at gage height 7.32 ft (2.231 m); minimum, 0.13 ft 3 /s (0.004 m 3 /s) June 27, July 11, 12, 14, 16, 17, 1979.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 700 ft3/s (19.8 m3/s) and maximum (*), from rating curve extended as explained above:

Date	Time	Disch (ft ³ /s)		Gage h	eight (m)	Date		Time	Disch (ft³/s)	arge (m³/s)	Gage he	eight (m)
Oct. 5 Oct. 11	a0300 a1400	*a2090 a1200	59.2 34.0	*a7.2	2.194	June Sept.	1	a1345 a1615	915 966	25.9 27.4	/5.51 /5.61	1.679
Feb. 26	a0900	1540	43.6	46.50	1.981	Sept.		a1800	865	24.5	₹5.41	1.649

Minimum discharge, 0.24 ft 3 /s (0.007 m 3 /s) May 2, 3, 5.

a About.

From floodmarks.

		DISC	HARGE. IN	CURIC F		ECOND. WAT		OCTORER 19	79 TO SEP	TEMBER 19	80	
DAY	OCT	NOV	NEC	NAL	FER	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	11	11	6.2	4.7	. 43	7.3	. 74	. 31	40	5.8	1.9	1.8
2	14	9.3	5.8	6.0	.6 P	5 . C	-68	. 24	9.5	4.5	2.1	1.6
3	11	8.5	5.8	5.3	. 63	5.3	. 58	. 24	4.5	4.0	2.5	2.4
4	62	7.9	4.0	4 . 4	.58	£ . C	.68	.27	4.0	4.0	2.8	25
5	170	7.1	3.5	4.2	. 47	5.3	- 68	.24	4.0	15	3.7	15
6	12	15	4.5	4.1	. 47	4.8	.68	.27	3.5	40	2.2	40
7	7.0	24	12	3.9	. 52	4.2	. 63	.27	3.0	20	1.8	20
R	6.0	33	15	3.8	.47	2.4	.47	. 4 2	3.0	10	10	30
9	70	16	9.6	3.8	. 43	1.5	. 63	. 58	4.0	7.5	3.6	200
10	110	12	17	3.7	.43	1.3	.74	. 47	7.0	5.5	2.1	40
11	130	9.0	10	3.8	.47	1.2	.63	1.7	2.5	15	2.1	10
12	30	8.5	7.9	3.4	. 47	1.0	. 95	.79	3.5	11	2.8	5.0
1 3	25	16	7.1	3.3	. 43	1.6	. 68	. 47	4.5	9.6	2.2	5.0
14	50	8.5	4.2	3.2	. 4 3	1.0	.58	.35	7.5	10	2.0	60
15	30	7.9	5.6	3.0	. 39	.89	. 52	. 35	6.0	11	1.8	20
16	15	7.1	5.0	2.9	. 35	.79	. 52	.95	3.5	18	1.6	10
17	10	6.4	5.0	2.9	.31	. 74	.52	2.4	3.0	45	1.8	7.5
18	R . 0	6.6	4.7	2.6	.31	. 74	.47	7.1	2.0	25	2.2	10
19	7.0	5.8	17	2.9	. 31	. 84	. 43	3.8	1.5	13	2.9	7.5
20	6.5	12	5.0	1.9	.31	.79	.47	2.1	1.6	9.3	2.4	6.0
21	6.0	8.5	18	.79	.39	. 64	.47	1.7	1.2	6.8	2.2	5.5
2.2	5.5	6.4	7.7	. 74	. 52	.79	. 39	1.2	1.0	5 . 8	2.2	5.0
23	5.0	6.0	6.6	.63	3.5	. 84	. 3 9	3 . C	1.0	6.4	17	5.0
24	5.5	13	5.8	. 58	5.0	.95	. 39	2.9	1.1	4.2	5.3	10
25	5.0	7.1	5.5	.63	16	. 89	• 4 3	6.5	2.5	4.1	8.8	15
26	16	9.0	5.7	.58	250	. 99	.39	6.2	12	3.4	5.3	50
27	10	7.3	5.8	. 47	25	. 99	. 39	15	12	3.0	4 - 4	60
28	22	11	6 . C	. 43	15	. 94	.43	12	2.5	2.8	3.4	20
29	33	8.2	4.7	. 43	10	. R 4	. 43	3.0	13	2.5	2.9	40
30	21	7.1	4.5	.43		.79	.31	2.E	7.9	2.2	2.7	100
31	14	===	4.4	. 43		.74		3.0		2.0	2.2	
TOTAL	927.5	315.2	233.6	79.94	334.30	52.29	16.30	80.14	183.8	326.4	110.9	827.3
MEAN	29.9	10.5	7.54	2.58	11.5	2.01	.54	2.59	6.17	10.5	3.58	27.6
MAX	170	33	18	6.0	250	7.3	.95	15	40	45	17	200
MIN	5.0	5.8	3.5	. 43	. 31	. 74	. 31	. 24	1.0	2.0	1.6	1.6
AC-FI	1840	625	463	159	663	124	32	1 5 9	365	£47	220	1640

MAX 170 WTR YR 1980 TOTAL 3497.67 MEAN 9.56 MAX 250 MIN . 24 AC-FT 6940

NOTE. -- No gage-height record Oct. 5-25.

16848500 MAULAP RIVER NEAR AGAT

LOCATION.--Lat 13°21'14" N., long 144°41'44" E., Hydrologic Unit 20100003, on right bank 100 ft (30 m), from Fena Valley Reservoir and 3.2 mi (5.1 km) southeast of Agat.

DRAINAGE AREA. -- 1.15 mi2 (2.98 km2).

PERIOD OF RECORD. -- January 1972 to current year.

REVISED RECORDS. -- WRD Hawaii 1973: 1972. WRD HI-75-1: Drainage area.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 130 ft (40 m), from topographic map.

REMARKS. -- Records good. No diversion above station.

AVERAGE DISCHARGE. -- 8 years, 5.32 ft³/s (0.151 m³/s), 3,850 acre-ft/yr (4.75 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,420 ft 3 /s (68.5 m 3 /s) Sept. 27, 1978, gage height, 9.2 ft (2.804 m), from rating curve extended above 23 ft 3 /s (0.65 m 3 /s), on basis of slope-area measurements at gage heights 8.21 ft (2.502 m) and 9.2 ft (2.804 m); minimum, 0.33 ft 3 /s (0.009 m 3 /s) June 10-12, 1975.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 600 ft 3 /s (17.0 m 3 /s) and maximum (*), from rating curve extended as explained above:

Date	Date Ti		Discha (ft³/s)	arge (m³/s)	Gage h	neight (m)	Date		Time	Disch (ft³/s)		Gage h	height (m)
Oct.	5	0300	1600	45.3	7.80	2.377	June	1	1345	696	19.7	5.62	1.713
Oct.	9	2230	681	19.3	5.57	1.698	Sept.	9	1615	754	21.4	5.81	1.771
Oct.	11	1400	1050	29.7	6.55	1.996	Sept.	14	1745	1126	31.9	6.74	2.054
Feb.	26	0900	*1700	48.1	*8.00	2.438	•						

Minimum discharge, 1.0 ft 3 /s (0.028 m 3 /s) Feb 19.

		0150	HARBE 1 IN	CONTC PE		AN VALUES		CTUBER 19	79 In SEP	FEMBER 19	980	
DAY	oct	NOV	DEC	JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP
1	4.1	4.4	2.9	2.7	1.4	4.9	1.9	1.6	35	4.2	2.4	2.4
2	6.0	4.1	2.7	3.4	1.6	4.0	2.0	1.4	8.7	3.4		
3											2.8	2.3
4	3.8	4.3	2.7	3.5	1.5	3.7	1.9	1.4	4.1	3.1	4.4	2.7
	42	4.2	3.2	2.4	1.4	5.3	2.1	1 . 4	3.6	3.1	4.0	30
5	152	4.0	2.6	2.3	1.3	3.8	2.1	1.2	3.3	12	4.9	12
6	11	15	3.6	2.1	1.*	3.4	2.0	1.2	3.0	30	2.9	26
7	6.7	24	12	2.0	1.4	3.1	1.9	1.4	2.6	13	2.7	12
8	5.6	15	17	2.0	1.3	2.9	1.9	1.4	2.5	6.3	21	25
9	62	5.9	4.6	2.0	1.3	2.7	2.4	1 . 4	3.2	4 . 9	3.0	166
10	96	4.7	14	1.9	1.3	2.6	2.6	1.1	2.7	4 . 1	2.6	23
11	119	4.1	4.0	2.3	1.3	2.5	2.3	2.3	2.3	17	3.1	5.0
12	21	4.8	3.6	2.1	1.7	2.5	2.6	1.9	3.0	7.4	9.8	3.5
13	13	23	3.3	1.9	1.3	3.2	2.3	1.3	4.0	8.2	3.0	3.6
14	42	4.8	3.1	1.8	1.2	2.5	2.2	1.3	3.0	7.4	2.8	43
15	12	4.4	2.9	1.8	1.2	2.3	2.1	1.4	5.0	7.4	2.5	8.0
16	8.7	3.9	2.8					2.8	4.1			4.2
17	8.2			1.8	1.1	2.3	2.0		3.0	14	2.4	3.1
		3.7	2.7	1.8	1.1	2.1	2.2	5 . C	3.0	2.6	3.2	3.1
18	6.4	3.7	2.6	1.7	1.1	2.2	2.0	4 . 5	2.5	7.8	2.8	6.9
19	5.8	3.3	17	1.8	1.1	2.4	1.9	4.2	2.2	5.8	5.1	3.2
20	5.3	9.3	3.4	1.7	1.1	2.2	5 • C	2 . 6	2.0	5.1	2.7	3.1
21	4.8	4.2	14	1.6	1.2	2.2	2.0	3 . C	2.1	4.6	2.7	3.2
22	4.4	3.8	3.3	1.6	1.7	2.2	1.9	2.4	2.1	4.5	3.2	3.8
23	4.2	3.4	3.0	1.6	5.2	2.0	1.8	4.0	2.0	5.4	20	3.8
24	4.3	13	2.8	1.5	3.5	1.9	1.8	2.9	2.7	3 . 8	3.1	9.5
25	4.0	3.8	2.7	1.6	14	1.9	1.8	7.5	4.4	3.8	8.0	18
26	10	4.8	2.8	1.6	249	1.8	1.7	4.1	9.8	3.3	3.2	41
27	5.5	3.8	5.6	1.4	17	1.7	1.8	11	9.0	3.1	2.7	46
28	18	13	2.7	1.4	7.6	1.7	1.7	4.0	8.8	2.9	2.6	10
29	18	3.6	2.6	1.5	6.5	1.8	1.6	3 . C	9.7	2.9	2.4	37
30	6.0	3.1	2.4	1.5		1.8	1.5	2.5	4.7	2.8	2.3	75
31	5.0		2.3	1.4		1.7		2.9		2.6	2.3	
TCTAL	714.8	207.1	154.9	59.7	331.3	01 7		00 1	157 5	271 6	100	471.0
MEAN	23.1	6.90	5.00	1.93	11.4	81.3	60.C	88.1	153.2	2 31 . 9	149.6	631.2
MAX	152	24				2.62	5.0C	2.84	5.11	7.48	4.83	21.0
MIN	3.8	3.1	17	3.5	249	5.3	2.6	11	35	30	29	166
AC-FT	1420	411	2 • 3 30 7	1.4	1.1	1.7	1.5	1.1	2.0	2.6	2.3	2.3
AC-PI	1420	411	307	118	657	161	119	175	304	450	297	1250

CAL YR 1979 TOTAL 1717.92 MEAN 4.71 MAX 152 MIN .39 AC-FT 3410 WIR YR 1980 TOTAL 2863.10 MEAN 7.82 MAX 249 MIN 1.1 AC-FT 5680

16849000 FENA DAM SPILLWAY NEAR AGAT

LOCATION.--Lat 13°21'28" N., long 144°42'12" E., Hydrologic Unit 20100003, on left bank 3.5 mi (5.6 km) southeast of Agat and 5.8 mi (9.3 km) southwest of Yona.

DRAINAGE AREA. -- 5.88 mi2 (15.23 km2).

PERIOD OF RECORD.--September 1951 to July 1952, November 1952 to current year. Daily mean gage heights published since October 1973.

REVISED RECORDS. -- WSP 2137: Drainage area. WDR HI-78-2: 1977(M, m).

GAGE.--Water-stage recorder and concrete-dam control. Datum of gage is 111.35 ft (33.939 m) above mean sea level (from U.S. Navy construction plans).

REMARKS.--Gage-height records good. About 10 ft 3 /s (0.28 m 3 /s) is diverted from Fena Valley Reservoir and tributary springs for military and civilian use. Discharge records represent flow over spillway only. Water-quality records for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--20 years (1953-73), 17.9 $\rm ft^3/s$ (0.507 $\rm m^3/s$), 12,970 acre-ft/yr (16.0 $\rm hm^3/yr$).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, not determined, occurred Oct. 15, 1953 (gage height, at least 4.5 ft or 1.37 m); no flow for many days each year. Minimum recorded gage height, -21.36 ft (-6.51 m), Aug. 14, 1977.

EXTREMES FOR CURRENT YEAR. -- Maximum gage height, 3.15 ft (0.960 m), Oct. 5; minimum, -3.32 ft (-1.012 m) May 16.

GAGE HEIGHT (FEET ABOVE DATUM). WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

					ME	AN VALUES						
DAY	201	VCN	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	06	.02	.04	01	-1.07	.12	73	-2.42	79	.12	.05	.05
2	.01	.00	.04	.02	-1.09	.08	75	-2.52	.20	.08	.06	.03
3	.03	.00	.05	.04	-1.11	.07	83	-2.52	.10	.07	.13	.05
4	.27	01	.03	02	-1.15	.08	86	-2.70	.00	.05	.22	.38
5	1.03	02	.04	04	-1.20	.08	90	-2.80	04	. 14	. 19	. 42
6	. 24	.09	.07	07	-1.28	.06	96	-2.90	06	. 35	.18	.37
7	.12	.27	.15	09	-1.33	.02	-1.02	-2.98	08	. 30	.13	.66
8	.07	.33	. 23	11	-1.40	.00	-1.06	-3.03	10	.23	.18	. 47
9	. 24	.20	.12	13	-1.48	01	-1.12	-3.10	10	.16	. 27	1.56
10	1.04	.13	.19	15	-1.56	02	-1.14	-3.17	10	.12	.16	.87
11	.97	.11	.12	15	-1.64	03	-1.17	-3.14	11	. 24	. 15	. 48
12	. 38	.11	.07	18	-1.73	07	-1.17	-3.14	11	. 27	.17	.37
13	.22	.28	.07	21	-1.83	03	-1.19	-3.17	05	.20	.17	. 33
14	. 44	.13	.05	26	-1.91	03	-1.24	-3.23	07	.19	.13	.66
15	.21	.10	.05	28	-2.01	09	-1.29	-3.27	05	.20	.08	. 47
16	.13	.08	.04	31	-2.11	13	-1.36	-3.25	05	. 24	.04	.33
17	.09	.07	.03	35	-2.19	16	-1.35	-3.13	07	.57	.04	.28
18	.08	.06	.01	39	-2.28	20	-1.49	-2.78	10	. 32	.09	. 30
19	.05	.06	. 24	44	-2.37	20	-1.57	-2.67	14	. 23	.13	.31
50	.05	.09	.08	47	-2.44	20	-1.63	-2.57	16	.19	. 14	.27
21	.04	. 1 4	.24	52	-2.52	18	-1.57	-2.54	20	.18	.11	.26
22	.01	.06	.10	57	-2.60	19	-1.74	-2.53	23	.17	.13	. 25
23	.01	.05	.07	61	-2.51	26	-1.83	-2.51	27	.20	. 42	.24
24	.01	.13	.04	67	-2.05	32	-1.90	-2.42	25	. 17	. 26	. 34
25	.00	.06	.03	69	-1.60	35	-1.97	-2.25	19	.16	. 25	.35
26	.11	.08	.04	73	.99	41	-2.02	-2.00	.15	. 15	.24	.53
27	•12	.06	.06	80	. 47	46	-2.11	-1.89	.22	.12	. 19	.78
28	. 19	.08	.03	85	. 20	50	-2.18	-1.59	. 38	.10	.15	.50
29	. 25	.09	.02	90	.15	54	-2.27	-1.49	. 26	.10	.13	.58
30	. 14	.03	.01	95		61	-2.36	-1.47	-16	.08	.09	1.07
31	.06		01	-1.01		67		-1.48		.06	.06	
MEAN	.21	.10	.08	38	-1.47	17	-1.43	-2.61	06	.19	.15	. 45
MAX	1.04	. 33	. 24	.04	. 99	.12	73	-1.47	. 38	.57	. 42	1.56
MIN	06	02	01	-1.01	-2.50	67	-2.34	-3.27	79	.05	.04	.03

WTR YR 1980 MEAN -. 41 MAX 1.56 MIN -3.27

16854500 UGUM RIVER ABOVE TALOFOFO FALLS, NEAR TALOFOFO, GUAM

LOCATION.--Lat 13°19'16" N., long 144°44'01" E., Hydrologic Unit 20100003, about 300 ft (91 m) upstream from Talofofo Falls, 0.9 mi (1.4 km) north of NASA Tracking Station, and 3.5 mi (5.6 km) southwest of main intersection in Talofofo village.

DRAINAGE AREA. -- 5.76 mi² (14.92 km²).

PERIOD OF RECORD .-- June 1977 to current year.

GAGE. -- Water-stage recorder. Altitude of gage is 130 ft (40 m), from topographic map.

REMARKS.--Records good except those for period of no gage-height record, which are poor. No diversion above station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,890 ft 3 /s (167 m 3 /s) Feb. 26, 1980, gage height, 14.2 ft (4.328 m), from floodmarks, from rating curve extended above 350 ft 3 /s (9.91 m 3 /s); on basis of slope-area measurement at gage height 14.2 ft (4.328 m); minimum, 3.4 ft 3 /s (0.10 m 3 /s), June 27, 1978, July 14, 18, 19, 1979.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 850 ft³/s (24.1 m³/s) and maximum (*), from rating curve extended as explained above:

Dat	e	Time	Disch (ft ³ /s)	arge (m³/s)	Gage h	eight (m)	Date	Time	Disch (ft³/s)		Gage h	eight (m)
Oct.	5	0230 2330	4340 1260	123	12.29	3.746	Sept. 6	2300	2250	63.7	9.13	2.783
Oct.	26	2030	1010	35.7 28.6	7.04 6.43	2.146 1.960	Sept. 9 Sept. 14	0600 1815	4370 3260	124 92.3	12.32 10.82	3.755
Feb. June		a1200 1300	*5890 1250	167 35 4	*14.2	4.328	Sept. 30	0845	2140	60.6	8.92	2.719

Minimum discharge, 9.0 ft 3 /s (0.25 m 3 /s) May 9.

a About.

		ntsc	HARGE. IN	CUBIC F	EET PER S	FAR VALUES	ER YEAR	OCTOBER 197	9 TO SEP	TEMBER 19	8.0	
DAY	001	NOV	DEC	JAN	FER	MAR	APR	MAY	JUN	JUL	AUG	SEF
1	15	37	20	23	12	50	14	12	85	25	21	17
2	19	32	20	23	12	40	16	9.8	38	20	20	16
3	17	31	20	25	12	35	14	9.8	19	17	38	18
4	103	29	22	18	11	35	14	9.8	16	16	32	78
5	448	28	19	17	11	30	16	9.4	14	73	34	51
6	70	56	22	16	10	27	13	9.4	14	104	23	187
7	60	101	38	16	11	25	13	9.8	13	48	20	167
8	50	101	32	15	10	25	13	9.6	13	34	37	112
9	150	45	25	15	10	20	14	10	14	26	25	950
10	381	35	37	15	10	20	16	9.4	13	21	21	207
11	265	32	22	16	10	20	13	44	12	50	24	85
12	80	35	20	15	10	20	1 4	31	13	53	20	68
17	45	48	22	14	10	25	17	16	18	45	18	129
14	258	33	19	14	10	20	14	12	13	37	18	333
15	5.5	30	18	14	9.8	50	17	11	3.8	73	17	75
16	25	27	18	14	5.6	20	12	22	16	76	18	56
17	20	26	17	14	9.6	17	12	3.6	15	167	19	50
18	17	26	17	13	5.4	17	12	49	15	5.4	28	48
19	18	24	83	15	5.4	20	12	22	14	3.5	32	4.3
2.0	17	34	23	14	9.4	20	11	17	1 4	31	21	42
21	18	32	159	13	9.8	20	12	16	13	33	18	40
22	17	26	29	13	12	17	11	15	13	71	1 0	39
23	17	24	22	13	62	1.5	11	18	13	5.8	94	37
24	17	45	21	13	44	16	11	16	17	70	28	99
25	25	27	20	1 3	48	16	11	37	19	28	38	44
26	87	36	20	12	1000	16	10	25	48	25	26	118
27	50	27	19	12	10 C	15	11	17	41	24	21	187
58	77	25	19	12	50	15	10	16	50	23	21	63
29	112	2.3	19	12	50	15	9.0	14	50	22	23	211
30	50	21	20	12		15	10	1 3	30	22	19	387
31	40		18	12		1 4		13		21	17	
TOTAL	2623	1096	880	463	1582.0	581	379.8	559.0	697	1242	809	3957
MEAN	84.6	36.5	28.4	14.9	54.4	22.0	12.7	18 . C	27.2	40.1	26.1	132
MAX	448	101	159	25	1000	50	17	49	85	167	94	950
MIN	15	21	17	12	9.4	14	9.9	9.4	12	16	17	16
AC-FT	5200	2170	1750	918	3140	1350	753	111C	1380	2440	1600	7850
CAL YR	1979 1014	L 7971	.4 MEAN	21.8	844 XAM	MIN 3.5	AC-FT	1581C				

MTN 9.4

AC-FT 29690

WTR YR 1980 TOTAL 14968.8 MEAN 40.9 MAX 1000 NOTE.--No gage-height record Feb. 26 to Mar. 21.

16858000 YLIG RIVER NEAR YONA

LOCATION.--Lat 13°23'28" N., long 144°45'06" E., Hydrologic Unit 20100003, on right bank 2.2 mi (3.5 km) upstream from mouth, 1.9 mi (3.1 km) southwest of Yona, and 5.6 mi (9.0 km) south of Agana.

DRAINAGE AREA. -- 6.48 mi2 (16.78 km2).

PERIOD OF RECORD .-- June 1952 to current year.

REVISED RECORDS. -- WSP 1937: 1957-58. WSP 2137: Drainage area.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 20 ft (6.1 m), from topographic map.

REMARKS. -- Records good. No diversion above station.

AVERAGE DISCHARGE. -- 28 years, 28.7 ft3/s (0.813 m3/s), 20,790 acre-ft/yr (25.6 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,900 ft 3 /s (139 m 3 /s) Sept. 9, 1963, gage height, 19.77 ft (6.026 m), from floodmarks, from rating curve extended above 620 ft 3 /s (17.6 m 3 /s) on basis of slopearea measurements at gage heights 11.24 ft (3.426 m) and 15.87 ft (4.837 m), maximum gage height, 22.80 ft (6.949 m) Feb. 26, 1980; minimum, 0.07 ft 3 /s (0.002 m 3 /s) May 20, 1973, but may have been less during period of diversion from gage pool May 15 to June 20, 1966.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 2,000 ft 3 /s (56.6 m 3 /s) and maximum (*), from rating curve extended above 155 ft 3 /s:

		Discha		Gage h	eight
Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Oct. 5	0500	3620	103	18.99	5.788
Feb. 26	a1100	*4760	135	*/22.80	6.949
Sept. 9	1815	2660	75.3	15.81	4.819

Minimum discharge, 2.2 ft3/s (0.062 m3/s), May 2-4.

DISCHARGE .	IN	CUPIC	FEET	PER	SECCND.	WATER	YEAR	CCTCPER	1979	TC	SEPTEMBER	1980
					ME AN VAL	UES						

DAY	n c T	NOV	DEC	JAN	FER	MAR	APR	мач	JUN	JUL	AUG	SEP
1	28	26	14	12	4.6	28	5.8	2.5	191	16	11	13
2	37	23	13	22	4.8	24	6.2	2.4	44	13	12	12
3	28	23	13	19	5.2	22	5.3	2.5	20	14	13	12
4	97	21	22	12	4.6	23	5.5	2.7	16	17	17	111
5	1050	18	13	11	4.1	20	5.7	2.7	14	36	39	73
6	62	27	20	10	4.0	17	5.2	2.4	12	85	15	85
7	45	182	33	9.4	4 . 4	16	4.8	2.4	11	33	12	78
8	40	76	69	9.0	3.9	15	4 . 6	2.6	11	27	12	123
9	195	36	34	8.9	3.7	1 4	5.0	3.4	11	21	13	1140
10	556	30	22	8.7	3.4	13	A . 4	2 . 6	1 C	18	10	167
11	446	26	19	8.8	7.4	12	5.0	7.1	11	96	22	64
12	107	25	17	8.2	3.4	11	5.9	6.1	16	69	12	69
13	77	111	17	7.7	3.4	11	5.5	4.5	12	35	11	46
14	330	31	15	7.4	3.4	10	4.5	2.9	1.1	32	11	59
15	72	27	14	7.1	3.1	9.7	4.1	5.0	23	32	10	85
16	53	24	13	7.0	2.9	9.5	4.1	8.5	12	37	9.3	36
17	50	22	12	6.8	2.9	8.9	4.8	27	11	99	9.7	32
18	40	22	11	6.5	2.8	8.8	4.1	36	10	39	15	30
19	35	19	86	6.9	2.8	9.3	3.6	12	9.1	30	171	26
20	31	39	18	6.7	2. A	8.5	7.9	9.2	8.3	26	20	24
21	28	27	76	6.1	2.9	0.8	4.1	8.6	7.8	24	22	22
22	27	5.0	50	5.7	3.8	7.9	3.4	16	7.5	27	44	21
23	24	18	17	5.7	13	7 - 4	3.3	16	7.3	25	219	25
24	23	2.2	15	5.5	16	7.2	3.1	14	8.0	20	32	164
25	21	19	15	5.7	32	7.1	3.2	49	12	19	26	29
2.5	3.3	17	14	5.7	1160	7.1	3.1	18	16	18	21	80
27	26	20	18	5.2	67	6.4	3.0	13	12	16	19	202
28	65	19	13	4.9	3 9	6.2	2.8	12	32	15	17	52
5.9	100	16	12	4.7	36	5.9	2.5	9.4	43	14	17	194
70	35	15	12	4.7	***	6.1	2.5	8 . 3	19	13	15	405
31	28		11	4.5	***	5.9		7.8		12	13	
TTTAL	3782	1001	698	253.5	1443.5	366.9	131.0	316.6	128.1	978	890.0	3479
MEAN	122	33.4	22.5	8.18	49 . R	11.8	4.37	10.2	20.9	31.5	28.7	116
MAX	1050	182	8.6	22	1160	58	4.4	49	191	99	219	1140
MIN	21	15	11	4.5	2.8	5.9	2.5	2.4	7.3	12	9.3	12
AC-FI	7500	1990	1380	503	28 60	728	260	628	1250	1940	1770	6900

CAL YR 1979 TOTAL 7992.31 MEAN 21.9 MAX 1050 MIN .46 AC-FT 15850 WTR YR 1980 TOTAL 13967.60 MEAN 38.2 MAX 116C MIN 2.4 AC-FT 277CC

[/] From floodmarks.

a About.

16865000 PAGO RIVER NEAR ORDOT (National stream-quality accounting network station)

LOCATION.--Lat 13°26'08" N., long 144°45'14" E., Hydrologic Unit 20100003, on left bank 0.8 mi (1.3 km) south of Ordot, 2.6 mi (4.2 km) south of Agana, and 3.6 mi (5.8 km) southeast of Asan.

DRAINAGE AREA. -- 5.67 mi2 (14.69 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- September 1951 to current year.

REVISED RECORDS. -- WSP 1937: 1954(M), 1958(M). WSP 2137: Drainage area.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 25 ft (7.6 m), from topographic map. Prior to Apr. 10, 1972, at datum 1.00 ft (0.305 m) higher.

REMARKS.--Records good except those for periods of no gage-height record, which are poor. No diversion above station.

AVERAGE DISCHARGE.--29 years, 26.2 ft 3 /s (0.742 m 3 /s), 18,980 acre-ft/yr (23.4 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,090 ft 3 /s (286 m 3 /s) May 21, 1976, gage height, 20.15 ft (6.142 m), from floodmarks, from rating curve extended above 320 ft 3 /s (9.06 m 3 /s) on basis of slopearea measurements at gage heights 13.22 ft (4.029 m), 15.07 ft (4.593 m), and 18.87 ft (5.752 m); no flow for many days in 1959 and 1966.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 2,700 ft 3 /s (76.5 m 3 /s) and maximum (*), from rating curve extended as explained above:

Date	Time	Discha (ft³/s)	arge (m³/s)	Gage he	eight (m)	Date	Time	Discha (ft³/s)	arge (m³/s)	Gage he	eight (m)
Oct. 5	0100	6580	186	18.20	5.547	June 1	a1600	3990	113	<i>/</i> 14.86	4.529
Oct. 9	2345	3600	102	13.93	4.246	Aug. 19	1130	2740	77.6	11.61	3.539
Feb. 26	1000	*9800	278	*20.02	6.102	Sept. 9	2030	3630	103	13.99	4.264

Minimum daily discharge, about 1.5 ft³/s (0.042 m³/s) May 1-3, 6, 7.

DISCHARGE. IN CURIC FEET PER SECOND. WATER YEAR OCTUBER 1979 TO SEPTEMBER 1980
MEAN VALUES

DAY	OCT	VCM	DEC	JAN	FER	MAR	APR	MAY	NUL	JUL	AUG	SEP
1	22	18	7.8	5.7	2.7	19	3.4	1.5	200	19	9.4	22
2	23	15	7.5	15	2.9	14	4.4	1.5	50	1 4	8.8	14
3	27	18	7.0	7.8	3.0	12	3.2	1.5	25	17	9.4	11
4	247	14	7.9	6.1	2.6	16	3.1	1.7	20	17	11	24
5	1360	12	6.7	5.7	2.4	13	3.3	1.7	18	74	22	72
6	106	17	13	5.4	2.3	11	3.1	1.5	17	51	10	94
7	69	211	24	4 . 7	2.4	9.6	2.8	1.5	1 4	3.5	7.4	75
R	105	96	101	4.7	2.3	8.7	2.7	5.0	19	27	7.1	151
9	390	34	30	4.7	2.3	7.7	10	2.5	26	20	7.1	1310
10	892	25	16	4.1	2.1	7.1	5.1	2.0	17	1 7	6.8	191
11	579	21	1 3	4.1	2.1	6.7	3.5	6.0	15	90	18	87
12	130	19	11	4 - 1	2.1	6.1	6.6	5.5	1 5	79	17	64
13	88	4.8	9.7	3.9	2.1	6.3	4.0	4.5	20	39	0.4	51
14	386	26	9.0	3.9	7.1	5.6	3.2	2.5	16	32	7.8	39
15	87	21	8.3	3.9	1.9	5.0	2.9	4.5	19	25	9.9	92
1.6	47	17	7.7	4.0	1.8	5.5	2.9	7.5	1 4	65	7.4	36
17	8.8	15	7.1	3.7	1.7	4 . 6	7.4	25	12	1 4 5	10	39
18	39	15	5.8	3.5	1.5	4.4	2.8	35	11	39	36	39
19	30	13	33	3.5	1 . 6	4 . 4	2.5	15	10	35	218	27
50	25	24	10	3.5	1.6	4.3	2.4	8 • C	9.1	2.6	26	28
21	21	19	9.8	3.4	1.6	4.2	2.8	7.5	8.8	23	32	24
5.5	19	14	16	3.3	1.8	4.3	2.3	15	8.5	40	60	21
23	17	13	12	3.2	5.4	4.0	7.1	15	P . 5	27	25 9	51
24	15	12	10	3.1	11	3.7	1.0	10	9.3	2.6	42	195
25	14	12	9.5	3.2	2 (3.7	2.1	50	12	19	34	32
26	18	10	8.6	3.1	1 +4 (3.8	2.1	20	19	1 6	26	129
27	16	10	8.7	2.9	1570	3.3	2.4	15	12	15	23	233
28	20	11	8.2	2.7	33	3.3	7.3	10	94	12	19	65
29	100	9.4	7.4	3.2	23	3.6	1.7	8.5	56	11	25	210
30	28	8.3	6.7	2.8		3.3	1.6	7.5	5 3	10	16	385
31	21		6 - 4	2.7		3.4	555	6.5		9.9	1 4	
TCTAL	5029	787.7	528.0	136.6	3355.4	211.6	94.6	295.9	798.2	1044.9	1008.5	3811
MEAN	162	26.3	17.0	4.41	116	6.83	3.22	9.55	26.5	33.7	32.5	127
MAX	1360	211	101	15	1640	19	10	5.0	200	145	259	1310
MIN	14	8.3	6.4	2.7	1.6	3.3	1.6	1.5	8.5	4.9	6.8	11
AC-FI	9980	1540	105C	271	6 6 6 0	420	192	5 8 7	1580	2070	2000	7560

CAL YR 1979 IDIAL 9192.65 MEAN 25.2 MAX 136C MIN .37 AC-FI 1823C WTR YR 1980 TOTAL 17103.60 MEAN 46.7 MAX 1640 MIN 1.5 AC-FI 33920

NOTE. -- No gage-height record May 1 to June 4.

f From floodmark.

a About.

16865000 PAGO RIVER NEAR ORDOT--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1978 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

			SPE-					COLI-	STREP-		
			CIFIC					FURM.	TCCOCCI		HARD-
		STREAM-	CON-					FECAL.	FECAL.	HARD-	NESS,
		FLOW,	DUCT-		TEMPER-	TUR-	OXYGEN.	0.7	KF AGAR	NESS	NONCAR-
		INSTAN-	ANCE	PH	ATURE.	BID-	DIS-	UM-MF	(COLS.	(MG/L	RONATE
	TIME	14 NEQUS	(MICRO-		WATER	IIY	SOLVED	(COLS./	PER	AS	(MG/L
DATE	TARC	(CFS)	MHOS)	(UNITS)	(DEG C)	(NTU)	(MG/L)	100 ML)	100 ML)	CACOR	CACO3)
OCI											
16	1200	54	300	7.9	24.0	1.9	7.8		120	120	0
NOV	1200	24	300	17	26.0	1.7	,		120	120	U
28	1000	9.4	360	8.1	24.0	.30	7.8	35	200	150	0
DEC	1000	7.9	360	0.1	20.0	. 70		3.3	200	150	U
19	1200	24	225	7.9	25.0	11	7.8	K1600	5800	83	0
JAN	1200	2.4	123		2	11	7.0	KINGL	3400	6.5	U
16	1200	3.7	385	7.9	24.8	1.0	8.2	K26	180	150	0
FER		2.00	317.2	1,000	2			1, 2 11	100	1 70	O
21	1230	1.8	365	7.9	24.0	.30	8.7	12	97	170	0
MAR				1.54	2.0.					1.0	v
24	1330	4.3	14-	8.0	28.0	.50	7.6	42	210	150	0
APR	2	43.00		2.43		3.13	-2.7.5			200	137
22	1230	2.3	385	8.0	27.0	. 65	h . 4	5	150	150	0
JUN				0.40	0.000	*****			17.53	27.2	
04	1000	23	360	7.7	26.5	3.1	5.3			120	0
JUL											
01	1030	18	300	8.0	27.0	3.1	7.2	82	860	120	0
22	1230	28	325	8.0	28.0	9.8	7.8	670	4400	96	0
AUG											
26	1015	24	340	7.8	21.5	2.6	7.2			130	0
26	1030							92			
SEP											
09	1100	1270	150	8.1	25.5	95		>12000	>100000	3.6	0
DATE	CAL CIUM DIS- SOLVED (MG/L	MAGNF- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM. DIS- SOLVED (MG/L	SODIUM	SODIUM AD- SORP- TION RATIO	SODIUM+ POTAS- SIUM DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE+ DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
DATE	DIS- SOLVED	STUM. DIS- SOLVED	DIS- SOLVED	SODIUM PERCENT	AD- 50 RP- 1 IO N	POTAS - SIUM DIS - SOLVED	SIUM. DIS- SOLVED	LINITY (MG/L	DIS- SOLVED	RIDE . DIS- SOLVED	RIDE: DIS- SOLVED
DATE	DIS- SOLVED (MG/L	SIUM. DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	PERCENT	-CA - SO RP - - I IO N - O II AR	POTAS - SIUM DIS - SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE + DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L
oct 16	DIS- SOLVED (MG/L	SIUM. DIS- SOLVED (MG/L	DIS- SOLVED (MG/L		AD- 50 RP- 1 IO N	POTAS - SIUM DIS - SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L	LINITY (MG/L AS	DIS- SOLVED (MG/L	RIDE + DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L
OCT 16	DIS- SOLVED (MG/L AS CA)	STUM. DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	PERCENT 19	AD- SORP- TION RATIO	POTAS- SIUM DIS- SOLVED (MG/L AS NA)	SIUM. DIS- SOLVED (MG/L AS K)	LINITY (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE+ DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)
OCT 16 NOV 28	DIS- SOLVED (MG/L AS CA)	STUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	PERCENT	-CA - SO RP - - I IO N - O II AR	POTAS - SIUM DIS - SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE + DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)
9CT 16 NOV 28 DEC	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	PERCENT 19 21	AD- SORP- TION RATIO	POTAS - SIUM DIS - SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY (MG/L AS CACO3) 120	DIS- SOLVED (MG/L AS SD4) 6.2	RIDE+ DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)
0CT 16 NOV 28 DEC 19	DIS- SOLVED (MG/L AS CA)	STUM. DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	PERCENT 19	AD- SORP- TION RATIO	POTAS- SIUM DIS- SOLVED (MG/L AS NA)	SIUM. DIS- SOLVED (MG/L AS K)	LINITY (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE+ DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)
DCT 16 NOV 28 DEC 19	DIS- SOLVED (MG/L AS CA) 35 44	STUM. DIS- SOLVED (MG/L AS MG) 6.7 8.8	DIS- SOLVED (MG/L AS NA) 13 18	19 21 22	AD- 50 RP- 110 N RA 110	POTAS - SIUM DIS - SOLVED (MG/L AS NA) 15 20	SIUM, DIS- SOLVED (MG/L AS K) 1.9 1.7	LINITY (MG/L AS CACO3) 120 160	DIS- SOLVED (MG/L AS SO4) 6.2 10	RIDE. DIS- SOLVED (MG/L AS CL) 15	RIDE, DIS- SOLVED (MG/L AS F)
DET 16 NOV 28 DEC 19 JAN 16	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	PERCENT 19 21	AD- SORP- TION RATIO	POTAS - SIUM DIS - SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY (MG/L AS CACO3) 120	DIS- SOLVED (MG/L AS SD4) 6.2	RIDE+ DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)
OCT 16 NOV 28 DEC 19 JAN 16 FEB	DIS- SOLVED (MG/L AS CA) 35 44 25	STUM. DTS- SOLVED (MG/L AS MG) 6.7 8.8 5.1	DIS- SOLVED (MG/L AS NA) 13 18 11	19 21 22 20	AD- SORP- IION RAIIO	POTAS - SIUM DIS - SOLVED (MG/L AS NA) 15 20 12	SIUM. DIS- SOLVED (MG/L AS K) 1.9 1.7 1.3	LINITY (MG/L AS CACO3) 120 160 91 170	DIS- SOLVEN (MG/L AS SD4) 6.2 10 6.4 1.4	RIDE + DIS- SOLVED (MG/L AS CL) 15 15 10	RIDE, DIS- SOLVED (MG/L AS F)
OCT 16 NOV 28 DEC 19 JAN 15 FEB 21	DIS- SOLVED (MG/L AS CA) 35 44	STUM. DIS- SOLVED (MG/L AS MG) 6.7 8.8	DIS- SOLVED (MG/L AS NA) 13 18	19 21 22	AD- 50 RP- 110 N RA 110	POTAS - SIUM DIS - SOLVED (MG/L AS NA) 15 20	SIUM, DIS- SOLVED (MG/L AS K) 1.9 1.7	LINITY (MG/L AS CACO3) 120 160	DIS- SOLVED (MG/L AS SO4) 6.2 10	RIDE. DIS- SOLVED (MG/L AS CL) 15	RIDE, DIS- SOLVED (MG/L AS F)
OCT 16 NOV 28 DEC 19 JAN 16 FEB 21	DIS- SOLVED (MG/L AS CA) 35 44 25 45	STUM. DTS- SOLVED (MG/L AS MG) 6.7 8.8 5.1 8.2 9.3	DIS- SOLVED (MG/L AS NA) 13 18 11 17	19 21 22 20 20	AD- SORP- IION RAIIO .5	POTAS - SIUM DIS - SOLVED (MG/L AS NA) 15 20 12	SIUM. DIS- SOLVED (MG/L AS K) 1.9 1.7 1.3	LINITY (MG/L AS CACO3) 120 160 91 170 180	DIS- SOLVEN (MG/L AS SO4) 6.2 10 6.4 1.4	RIDE + DIS - SOLVED (MG/L AS CL) 15 15 10 14	RIDE, DIS- SOLVED (M6/L AS F)
OCT 16 NOV 28 DEC 19 JAN 16 FER 21 MAR 24	DIS- SOLVED (MG/L AS CA) 35 44 25	STUM. DTS- SOLVED (MG/L AS MG) 6.7 8.8 5.1	DIS- SOLVED (MG/L AS NA) 13 18 11	19 21 22 20	AD- SORP- IION RAIIO	POTAS - SIUM OIS - SOLVED (MG/L AS NA) 15 20 12 18	SIUM. DIS- SOLVED (MG/L AS K) 1.9 1.7 1.3	LINITY (MG/L AS CACO3) 120 160 91 170	DIS- SOLVEN (MG/L AS SD4) 6.2 10 6.4 1.4	RIDE + DIS- SOLVED (MG/L AS CL) 15 15 10	RIDE, DIS- SOLVED (MG/L AS F)
OCT 16 NOV 28 DEC 19 JAN 16 FEB 21 MAR 24 APR	DIS- SOLVED (MG/L AS CA) 35 44 25 45	STUM. DTS- SOLVED (MG/L AS MG) 6.7 8.8 5.1 8.2 9.3	DIS- SOLVED (MG/L AS NA) 13 18 11 17 20 18	19 21 22 20 20	AD- 50 RP- IIDN RA II 0	POTAS - SIUM OIS - SOLVED (MG/L AS NA) 15 20 12 18	SIUM. DIS- SOLVED (MG/L AS K) 1.9 1.7 1.3 1.4 1.6	LINITY (MG/L AS CACO3) 120 160 91 170 180 150	DIS- SOLVEN (MG/L AS SO4) 6.2 10 6.4 1.4 7.4 2.8	RIDE + DIS - SOLVED (MG /L AS CL) 15 10 14 17	RIDE, DIS- SOLVED (MG/L AS F) -1 -1 -1 -1
OCT 16 NOV 28 DEC 19 JAN 16 FEB 21 MAR 24 APR	DIS- SOLVED (MG/L AS CA) 35 44 25 45	STUM. DTS- SOLVED (MG/L AS MG) 6.7 8.8 5.1 8.2 9.3	DIS- SOLVED (MG/L AS NA) 13 18 11 17	19 21 22 20 20	AD- SORP- IION RAIIO .5	POTAS - SIUM OIS - SOLVED (MG/L AS NA) 15 20 12 18 22	SIUM. DIS- SOLVED (MG/L AS K) 1.9 1.7 1.3	LINITY (MG/L AS CACO3) 120 160 91 170 180	DIS- SOLVEN (MG/L AS SO4) 6.2 10 6.4 1.4	RIDE + DIS - SOLVED (MG/L AS CL) 15 15 10 14	RIDE, DIS- SOLVED (M6/L AS F)
OCT 16 NOV 28 DEC 19 JAN 16 FER 21 MAR 24 APR 22 JUN	DIS- SOLVED (MG/L AS CA) 35 44 25 45 52	STUM. DTS- SOLVED (MG/L AS MG) 6.7 8.8 5.1 8.2 9.3 8.7	DIS- SOLVED (MG/L AS NA) 13 18 11 17 20 18	19 21 22 20 20 21 22	AD- SORP- IION RAIIO .5 .6 .5 .6 .7	POTAS - SIUM OIS - SOLVED (MG/L AS NA) 15 20 12 18 22	SIUM. DIS- SOLVED (MG/L AS K) 1.9 1.7 1.3 1.4 1.6	LINITY (MG/L AS CACO3) 120 160 91 170 180 150	DIS- SOLVEN (MG/L AS SD4) 6.2 10 6.4 1.4 7.4 2.8	RIDE + DIS - SOLVED (MG /L AS CL) 15 10 14 17	RIDE, DIS- SOLVED (MG/L AS F) -1 -1 -1 -2 -1
OCT 16 NOV 28 DEC 19 JAN 16 FER 21 MAR 24 APR 22 JUN 04	DIS- SOLVED (MG/L AS CA) 35 44 25 45	STUM. DTS- SOLVED (MG/L AS MG) 6.7 8.8 5.1 8.2 9.3	DIS- SOLVED (MG/L AS NA) 13 18 11 17 20 18	19 21 22 20 20	AD- 50 RP- IIDN RA II 0	POTAS - SIUM DIS - SOLVED (MG/L AS NA) 15 20 12 18 22	SIUM. DIS- SOLVED (MG/L AS K) 1.9 1.7 1.3 1.4 1.6	LINITY (MG/L AS CACO3) 120 160 91 170 180 150	DIS- SOLVEN (MG/L AS SO4) 6.2 10 6.4 1.4 7.4 2.8	RIDE + DIS- SOLVED (MG/L AS CL) 15 15 10 14 17	RIDE, DIS- SOLVED (MG/L AS F) -1 -1 -1 -1
OCT 16 NOV 28 DEC 19 JAN 16 FER 21 MAR 24 APR 22 JUN 04 JUL	DIS- SOLVED (MG/L AS CA) 35 44 25 45 52	STUM. DTS- SOLVED (MG/L AS MG) 6.7 8.8 5.1 8.2 9.3 8.7 8.7	DIS- SOLVED (MG/L AS NA) 13 18 11 17 20 18	19 21 22 20 20 21 22	AD- SORP- IION RAIIO .5 .6 .5 .6 .7 .6	POTAS - SIUM DIS - SOLVED (MG/L AS NA) 15 20 12 18 22	SIUM. DIS- SOLVED (MG/L AS K) 1.9 1.7 1.3 1.4 1.6	LINITY (MG/L AS CACO3) 120 160 91 170 180 150 160 140	DIS- SOLVEN (MG/L AS SD4) 6.2 10 6.4 1.4 7.4 2.8	RIDE + DIS- SOLVED (MG/L AS CL) 15 15 10 14 17	RIDE, DIS- SOLVED (MG/L AS F) -1 -1 -1 -2 -1
OCT 16 NOV 28 DEC 19 JAN 16 FER 21 MAR 24 APR 22 JUN 04	DIS- SOLVED (MG/L AS CA) 35 44 25 45 45 45	STUM. DTS- SOLVED (MG/L AS MG) 6.7 8.8 5.1 8.2 9.3 8.7 8.7 7.7	DIS- SOLVED (MG/L AS NA) 13 18 11 17 20 18 19	PERCENT 19 21 22 20 20 21 22 22	AD- SORP- IION RAIIO .5 .6 .5 .6 .7 .6	POTAS - SIUM DIS - SOLVED (MG/L AS NA) 15 20 12 18 22	SIUM. DIS- SOLVED (MG/L AS K) 1.9 1.7 1.3 1.4 1.6 1.8	LINITY (MG/L AS CACO3) 120 160 91 170 180 150	DIS- SOUSEN (MG/L AS SO4) 6.2 10 6.4 1.4 7.4 2.8 1.0	RIDE + DIS - SOLVED (MG /L AS CL) 15 15 10 14 17 15 15	RIDE, DIS- SOLVED (MG/L AS F) -1 -1 -1 -2 -1 -1
OCT 16 NOV 28 DEC 19 JAN 16 FEB 21 MAR 24 APR 22 JUN 04 JUN 01	DIS- SOLVED (MG/L AS CA) 35 44 25 45 52 45 45 37	STUM. DTS- SOLVED (MG/L AS MG) 6.7 8.8 5.1 8.2 9.3 8.7 8.7	DIS- SOLVED (MG/L AS NA) 13 18 11 17 20 18 19	PERCENT 19 21 22 20 20 21 22 22 20	AD- SORP- IION RAIIO .5 .6 .5 .6 .7 .6	POTAS - SIUM DIS - SOLVED (MG/L AS NA) 15 20 12 18 22	SIUM. DIS- SOLVED (MG/L AS K) 1.9 1.7 1.3 1.4 1.6 1.8 1.9 1.5	LINITY (MG/L AS CACO3) 120 160 91 170 180 150 160 140	DIS- SOLVEN (MG/L AS SO4) 6.2 10 6.4 1.4 7.4 2.8 1.0	RIDE + DIS- SOLVED (MG/L AS CL) 15 15 10 14 17 15 15	RIDE, DIS- SOLVED (M6/L AS F) -1 -1 -1 -2 -1 -1
OCT 16 NOV 28 DEC 19 JAN 16 FER 21 MAR 24 APR 22 JUN 04 JUL 01 22	DIS- SOLVED (MG/L AS CA) 35 44 25 45 52 45 45 37	STUM. DTS- SOLVED (MG/L AS MG) 6.7 8.8 5.1 8.2 9.3 8.7 8.7 7.7	DIS- SOLVED (MG/L AS NA) 13 18 11 17 20 18 19	PERCENT 19 21 22 20 20 21 22 22 20	AD- SORP- IION RAIIO .5 .6 .5 .6 .7 .6	POTAS - SIUM DIS - SOLVED (MG/L AS NA) 15 20 12 18 22	SIUM. DIS- SOLVED (MG/L AS K) 1.9 1.7 1.3 1.4 1.6 1.8 1.9 1.5	LINITY (MG/L AS CACO3) 120 160 91 170 180 150 160 140	DIS- SOLVEN (MG/L AS SO4) 6.2 10 6.4 1.4 7.4 2.8 1.0	RIDE + DIS- SOLVED (MG/L AS CL) 15 15 10 14 17 15 15	RIDE, DIS- SOLVED (MG/L AS F) -1 -1 -1 -2 -1 -1
OCT 16 NOV 28 DEC 19 JAN 16 FER 21 MAR 24 APR 22 JUN 04 JUL 01 22 AUG 26	DIS- SOLVED (MG/L AS CA) 35 44 25 45 52 45 45 37	STUM. DTS- SOLVED (MG/L AS MG) 6.7 8.8 5.1 8.2 9.3 8.7 7.7	DIS- SOLVED (MG/L AS NA) 13 18 11 17 20 18 19 16	PERCENT 19 21 22 20 20 21 22 22 20 21	AD- SORP- IION RAIIO .5 .6 .5 .6 .7 .6 .7	POTAS - SIUM OIS - SOLVED (MG/L AS NA) 15 20 12 18 22	SIUM. DIS- SOLVED (MG/L AS K) 1.9 1.7 1.3 1.4 1.6 1.8 1.9 1.5 1.5	LINITY (MG/L AS CACO3) 120 160 91 170 180 150 160 140 140 100	DIS- SOLVEN (MS/L AS SO4) 6.2 10 6.4 1.4 7.4 2.8 1.0 .7	RIDE + DIS - SOLVED (MG / L AS CL) 15 15 10 14 17 15 15 14 14 11	RIDE, DIS- SOLVED (MG/L AS F) -1 -1 -1 -1 -2 -1 -1 -1
OCT 16 NOV 28 DEC 19 JAN 16 FEB 21 MAR 24 APR 22 JUN 04 JUN 01 22 AUG	DIS- SOLVED (MG/L AS CA) 35 44 25 45 52 45 45 37 35 29	STUM. DTS- SOLVED (MG/L AS MG) 6.7 8.8 5.1 8.2 9.3 8.7 7.7	DIS- SOLVED (MG/L AS NA) 13 18 11 17 20 18 19 16	PERCENT 19 21 22 20 20 21 22 20 21 22 20 21 22	AD- SORP- IION RAIIO .5 .6 .5 .6 .7 .6 .6 .5	POTAS - SIUM DIS - SOLVED (MG/L AS NA) 15 20 12 18 22	SIUM. DIS- SOLVED (MG/L AS K) 1.9 1.7 1.3 1.4 1.6 1.8 1.9 1.5 1.5	LINITY (MG/L AS CACO3) 120 160 91 170 180 150 160 140 140 100	DIS- SOLVEN (MG/L AS SO4) 6.2 10 6.4 1.4 7.4 2.8 1.0 .7 2.0 2.5	RIDE + DIS - SOLVED (MG / L AS CL) 15 15 10 14 17 15 15 14 14 11	RIDE, DIS- SOLVED (M6/L AS F) -1 -1 -1 -1 -2 -1 -1

K Results based on colony count outside the acceptable range (non-ideal colony count). Actual value is known to be greater than the value shown.

MARIANA ISLANDS, ISLAND OF GUAM 16865000 PAGO RIVER NEAR ORDOT--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	SILICA, DIS-	SOLIDS. RESIDUE AT 180	SOLIDS: SUM OF CONSTI-	SCLIDS.	SULICS, DIS-	NITRO- GEN:	N1TR0- GEN+ N02+N03	NITRC- GEN:	NITEG- GEN: AMMONIA	NITRO- GEN:	NITRU- GEN, AMMONIA
	(MG/L	DEG. C	DIS-	SOLVED	SOLVED	NO2+NO3	DIS- SOLVED	TOTAL	SCL VED	TOTAL	DIS- SOLVED
DATE	AS 5102)	SOLVED (MG/L)	SOLVED (MG/L)	PER AC-FT)	PER DAY)	(MG/L AS N)	(MG/L AS N)	(MG/L	(MG/L AS N)	(MG/L AS NH4)	(MG/L AS NH4)
001											
16 NOV	34	196	184	. 27	28 .6	. 03	•05	. 19	•20	•23	.26
28 DEC	38	216	232	.29	5.48	.03	.03	• C 2	.00	.02	.00
19 JAN	25	136	139	.19	8.81	.13	-13	.03	.02	.04	.03
16 FEB	37	228	226	. 31	2.31	• 05	.01	• O C	•00	.00	• 0 0
21 MAR	34	238	250	.32	1.16	.06	.03	. C C	.02	.00	.03
24 APR	36	218	217	.30	2.53	.08	.08	.04	.04	.05	.05
22 JuN	33	230	550	. 31	1.48	.01	.03	.04	.08	.05	.10
04	33	202	195	.27	12.5	.11	.16	.70	.33	. 36	.43
01	33	195	191	.27	9.48	.00	.00	. 06	.06	.07	.08
22 AUG	30	173	153	.24	13.1	.10	.09	.19	.13	.23	.17
26	35	205	205	.28	13.3	.01	.00	-46	. 45	. 56	.58
26 SEP							7.7	7.5		7.7	
09	13	66	67	.09	226	.38	.30	. C 1	.03	.01	-04
	NITRO- GEN, ORGANIC INTAL	NITRO- GEN, ORGANIC DIS- SOLVED	NITRO- GEN. DIS- SOLVED	NITRU- GEN.AM- AINGM+ ORGANIC TOTAL	NIT?U- GEN.NH4 + ORG. SUSP. IDTAL	NITRO- GEN.AM- MONIA + JRGANIC DIS.	NITRO- GEN. TOTAL	NITRO- GEN. TUTAL	PHOS- PHORUS. TOTAL	PHOS- PHORUS, TOTAL	PHOS- PHORUS: DIS- SOL VED
DATE	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS NO3)	(MG/L AS P)	(MG/L AS PO4)	(MG/L AS P)
16 NOV	. 33	.19	. 4 4	•52	. 1 3	.39	. 55	2.4	.010	.03	.000
28 DEC	• 50	.52	.55	.52	.00	.52	. 55	2.4	.000	.00	.000
19 JAN	. 94	.80	.95	.97	. 15	.82	1.1	4.9	.010	.03	.010
16 FEB	. 61	.60	.61	.61	.01	.60	. 63	2.8	.010	.03	.010
21 MAR	.00	.00	.03	.00	. 00	.00	.05	.27	.010	.03	.000
24 APR	• 52	• 52	. 54	.56	.00	.56	. 64	2.8	.020	.06	.020
22 JUN	. 51	. 41	•52	• 5 5	. 05	.49	• 56	2.5	• 0 4 0	.12	.000
04	.62	.28	.77	.92	. 31	.61	1.0	4.6	• 0 3 0	.09	.010
JUL											
JUL 01	.73	.14	. 20	.79	. 59	.20	. 79	3.5	.010	.03	.010
JUL 01 22 AUG	. 78	.84	1.1	.97	.00	.97	1.1	4.7	.020	.05	.020
JUL 01 22											

16865000 PAGO RIVER NEAR ORDOT--Continued

WATER QUALITY DATA: WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	ARSE TOT (UG AS	NIC P	SENIC SUS- ENDED OTAL UG/L S AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM TOTAL RECOV ERABL (UG/L AS BA	PEND - REC E ERA	5-	BARIUM DIS- SOLVED (UG/L AS BA	REC ERA (UG	IUM S AL PE OV- RE BLE ER /L (U	CCV- D ABLE SO G/L (U	MIUM IS- LVED IG/L CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
DEC 19	1200		0	0	0	10	0	90		5	(1	0	<1	0
MAR 24	1330		1	0	1		9	0		9	1	0	<1	20
JUL 01	1030		1	0	1	1	0	0	1	0	1	0	1	20
SEP 09	1100		1	0	1	-	-		3	7		- 44	<1	
DATE	CHRO-MIUM, SUS-PENDED RECOV. (UG/L AS CR)	SOL	M. T - R VED E /L (BALT, OTAL ECOV- RABLE UG/L S CO)	COBALT, SUS- PENDED RECOV- ERABLE (UG/L AS CO)	COBALT DIS- SOLVED (LG/L AS CO	ERA (UC	PER, TAL COV- ABLE S/L CU)	COPPER SUS- PENDEI RECOV- ERABLE (UG/L AS CU	D COPP - DIS E SOL	ER. IC - RE VEC ER /L (L	ON DE SE	ON. US- NDED COV- ABLE IG/L FE)	IRON, DIS- SOLVED (UG/L AS FE)
DEC 19	0		0	43	0	<	3	0		0	С	540	480	60
MAR 24	20		0	2	0			3		3	C	120	100	20
JUL 01	0		20	3			3	19	1		3	240	190	50
SEP	U		20	-		`	.2	17	1.	0	3	240	140	50
09			0	**		<	3				4			40
עם	R E	EAD. OTAL ECOV- RABLE UG/L S PB)	LEAD, SUS- PENDE RECOV ERABL (UG/L AS PB	D LE	AD. TIS- RILVED EIGEL (I	ESE. CTAL ECCV- RABLE JG/L	MANGA- NESE. SLS- PENDED RECOV. (UG/L AS MN)	NES DI SOL (UG	SE: IS-	ERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY SUS- PENDED RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)	REI ERI	KEL + IAL COV- ABLE G/L NI)
DEC		5		5	0	20	20		0					
MAF						50			40	.0	.0			0
JUL		2		2	0	30	20		10	.0	.0	•0		1
SEF	9	26		6	0	50	20		2	• 1	.1	•0		20
0.	7			-	· ·	75/	-		2	• 0	• 0	•0		
0.0	P R E	CKEL. SUS- ENDED ECOV- RABLE UG/L S NI)	NICKEL DIS- SOLVE (UG/L AS NI	D TO	N LE- UM. P TAL T G/L (SUS- ENDED ETAL UG/L	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	PEN REC ERA (UC	US- NDED S: COV- ABLE :	ILVER, DIS- SOLVED (UG/L AS AG)	ZINC, TOTAL RECCV- ERABLE (UG/L AS ZN)	ZINC. SUS- PENDFO RECOV- ERABLE (UG/L AS ZN)	501 (UI	NC, IS- LVEO G/L ZN)
DE C 19	7	0		0	0	0	0		0	0	7	0		7
	4	1		0	0	0	0		1	0	60	5.7		<3
	1	18		2	0	0	0		2	0	100	90)	10
	9			1	0	0	0			0				6

< Actual value is known to be less than the value shown.

16865000 PAGO RIVER NEAR ORDOT--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

				171-100				22,022			
				SILVER . TCTAL RECCV-				SILVER. ICTAL RECCV-			
		DATE	TIME	ERABLE (UG/L		DATE	TIME	ERABLE (UG/L			
				AS AG)		DATE		AS AG)			
		28 DEC	1 000	0		JUN 04 JUL	1000	0			
		19 FEB	1200	0		01 AUG	1030	2			
		21 MAR	1230	0		26	1015	0			
		24	1330	1							
DATE	TIME	CARHON. ORGANIC TOTAL (MG/L AS C)	CARRON. URGANIC DIS- SOLVED (MG/L AS C)	CARBONA ORGANIC SUS- PENDED (MG/L AS C)		DATE	TIME	CARBON+ CRGANIC TCTAL (MG/L AS C)	CARBON. GRGANTC DIS- SOLVED (MG/L AS C)	CARBON. ORGANIC SUS- PENDED (MG/L AS C)	
001	1200	2.2				APR 22	1230	5.5			
16 NOV						JUN					
28 DEC	1000	6.8				04 JUL	1000	5.4			
19 JAN	1200		4.6	. 3		22	1030	4.0	5 • 7	.1	
16 FFB	1200	3.8				AUG 26	1015	4.0			
21 MAR	1230	•8	144	-+		SEP 09	1100		6.1	2.1	
24	1330		3.2	.1		0 7	1100		6.1	2.1	
	DATE	TIME	PHYTO- PLANK- ICN, TOTAL (CELLS PER ML)	PERI- PHYION BIOMASS TCTAL DRY WEIGHT G/SO M	PERI- PHYION BIOMASS ASH LEIGHT G/SQ M	CHLOR-A PERI- PHYTON CHROMU- GRAPHIC FLUOROM (MG/M2)	CHLOR-B PERI- PHY TON CHROMO- GRAPHIC FLUOROM (MG/M2)	P1CMASS CHLORO- PHYLL RATIO PERI- PHYTON (UNITS)	LENGTH OF EXPO- SURE (DAYS)		
	0CT 16	1200	360	24	42	22	44	44	122		
	NOV 28	1000	30	12			14		144		
	DFC 19	1200	86	.630	.550	.040	.000	2000	- 1		
	JAN 16	1200	55					227			
	FEB										
	21 MAR	1230	200								
	24 APR	1330	130						-		
	22 JUN	1230	13								
	04	1000	0	**		1					
	01 22	1600 1230	1600 170	2.21	1.73	1.07	.260	449	21		
	AUG 26 SEP	1015	13								
	09	1100	260						- 75		
TIME	STREAM- FLOW. INSTAN- TANEOUS (CFS)	SEDI- MENT. SUS- PENDED (MG/L)	SECI- MENI DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE CIAM. & FINER THAN .062 MM		DATE	TIME	STREAM- FLOW. INSTAN- TANEOUS (CFS)	SEDI- MENT. SUS- PENDFD (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
	22.5	12	122	223		APR		1.0	_		322
1200	9.4	9	.29	100		22 JUN 04	1000	2.7	7	.04	100
1200	24	19	1.2	100		JUL	1030	18	4	.19	100
1200	3.7	2	*02	100		01 22 AUG	1230	28	23	1.7	100
1230	1.8	2	.01	100		26	1015	24	5		100
1330	4.3	3	.03	100		SEP 09	1100	1270		1710	67

DATE OCT

16... NOV 28... DEC 19... JAN 16... FER 21...

24 . . .

16865000 PAGO RIVER NEAR ORDOT

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA

PHYTOPLANKTON ANALYSES. OCTOBER 1979 TO SEPTEMBER 1980

	PHYTOPLANKI	ON ANA	LYSES. 0	CTOBER	1979 TO	SEPTE	MBER 198	0				
DATE		16,79		28,79		19,79		16.80		21.80		24,80
TOTAL CELLS/ML		360		30		86		55		200		130
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		0.6 0.6 0.6 0.6		0.6 0.6 0.6 2.0 2.1		0.7 0.7 0.7 2.4 2.6		0.0 0.0 0.0 0.8		1.2 1.3 1.7 2.4 2.4		1.1 1.1 1.1 2.6 2.7
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) •CHLOROPHYCEAE •CHLOROCCCCALES ••OCCYSTACEAE												
ANKISTRODESMUS		_	5 H	15	15#	10		-	5	2	20#	
KIRCHNERIELLA		2		-	194	10		3		2	20#	
OEDOGONIALESDEDOGONIACEAE					-				-		5	4
OEDOG ONIUMVOLV7CALESCHLAMYDOMONADACEAE		-		Ö		-		-		-		-
CHLAMYDOMONAS		-		-	4-2	-		-	5	2		-
CHRYSOPHYTA BACILLARIOPHYCEAE .CENTRALES COSCINODISCACEAE												
CYCLOTELLAPENNALES	51	1 4		112		2		-	25	13		-
ACHNANTHACE AE												
COCCONEISCYMBELLACEAE		-	1	4	25 # 5	6	14#	25	5	2	45#	35
CYMBELLA		121	22	121	1.22	2.		_		_		
EPITHEMIA	22	2	- 20	-		_					5	4
RHOPALODIA FRAGILARIACEAE		-		9		-		-	10	5		2
SYNEDRAGOMPHONEMATACEAE		-	6#	19	15#	18	**	3	15	7	5	4
GOMPHONEMA		-	1 4 #	46	5	6	41#	75		-	10	8
NAVICULACEAE												
NAVICULA NITZSCHTACEAE		-	3	12	10	12		-	5	2	5	4
NITZSCHIA .CHRYSOPHYCEAE	72	-	27	-	10	12		-		-	25#	19
CHRYSOMONADALES												
OCHROMONADACEAE		D-				-	**	-	5	2		4
CRYPTOPHYTA (CRYPTOMONADS) -CRYPTOPHYCE AECRYPTOMONADALEScRYPTOMONADACEAE												
CRYP TOMONAS		-	120	-		-		-		-50	10	8
CYANOPHYTA (BLUE-GREEN ALGAE) -CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAE												
AG MENELLUM		-		-		-		7-7	44	-		-
ANACYSTISHORMOGONALES		•		-		-		17	77	-		-
ANABAENA	111	-2	22	-		_				4		
DSCILLATORIACEAE			35						15	7		-
OSCILLATORIA	310#	8.6		-		-		-	110#	52		-

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - DBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/24

16865000 PAGO RIVER NEAR ORDOT

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA

PHYTOPLANKTON ANALYSES. OCTOBER 1979 TO SEPTEMBER 1980

DATE TIME		22.80 1230		4 • 8 0 1 0 0 0		1.80 1030		22,80	SEP	9.80
TOTAL CELLS/ML		13		0	-	1600		170		260
DIVERSITY: DIVISION		0.0		0.0		0.1		1.1		0.3
•CLASS		0.0		0.0		0.1		1.1		0.3
• • OR DER		0.0		0.0		0.2		1.1		0.3
FAMILY		0.0		0.0		0.2		1.4		0.3
GENUS		0.0		0.0		0.2		1.7		0.3
	CELLS	PER-	CELLS	PER-	CELLS	PER-	CELLS	PER-	CELLS	PER-
ORGANISM	/ML	CENT	/ML	CENT	/ML	CENT	/ML	CENT	/ML	CENT
CHLOROPHYTA (GREEN ALGAE) -CHLOROPHYCEAE										
CHLOROCOCCALES										
OOCYSTACEAE										
ANKISTRODESMUS		-		-	13	1		-	14	6
KIRCHNERIELLA		-		-		-		-		-
OFDOGONIALES										
OEDOGONIACEAE	4.5		1.54	1.2.		12.		8		
		-		_		-	13	6		-
CHLAMYDOMONADACEAE										
CHLAMYDOMONAS		-		-		-		-		-
CHRYSOPHYTA BACILLARIOPHYCEAE										
CENTRALESCOSCTNODISCACEAE										
CYCLOTELLA										
	.57	7		7		-	7.7	-		-
PENNALES										
ACHNANTHACEAE	142	-				-	2.2			
····COCCONEIS	22	- 3			33	-	13	8	- 22	2
CYMBELLACEAE			-		-		1.3	0		
CYMBELLA		-		-	22	2		-		-
EPITHEMIA		-		-		-		-		-
RHOPAL DOIA		-		_		4		-		12
FRAGILARIACEAE										
SYNEDRA		-		-		-	26#	15		121
GOMPHONEMATACEAE										
GOMPHONE MA		-		-		-		-		-
NAVICULACE AE										
NAVICULA		-		-		-		-		-
NITZSCHIACEAE										
NIIZSCHIA	13#	11 CO		-		-		-		-
. CHRYSOPHYCE AE										
CHRY SCMONADALES										
O CHROMONADACE AE										
OCHROMONAS		-		-		-		-		-
CRYPTOPHYTA (CRYPTOMONADS)										
· CRYP TOPHY CEAE										
CRYPTOMONADALES										
CRYP TOMONADACEAE										
CRYP TOMONAS		100		-		-		-		-
CYANOPHYTA (BLUE-GREEN ALGAE)										
-CY ANDPHYCE AE										
CHROOCOCCALES										
CHROOCOCCACEAE										
AGMENELLUM		-		-		· ·	100#	62	2.4	-47
AN ACYSTIS		-		-	39	2	13	8		_
HORMOGONALES										
NOSTOCACEAE										
ANABAENA		-		-		0=0		-		-
OSCILLATORIACEAE										
OSCILLATORIA		-		-	1500#	97		-	240#	94

NOTF: # - DOMINANT ORGANISM; EQUAL TO OR EREATER THAN 15% * - DBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

CAROLINE ISLANDS, PALAU ISLANDS

16890600 ADEIDDO RIVER, BABELTHUAP

LOCATION.--Lat 07°36'01" N., long 134°35'38" E., Hydrologic Unit 20100006, on right bank at Ngardmau, 0.3 mi (0.5 km) upstream from left-bank tributary, and 0.6 mi (1.0 km) northwest of Mount Megilon.

DRAINAGE AREA. -- 4.43 mi 2 (11.47 km2).

PERIOD OF RECORD. -- October 1969 to current year.

REVISED RECORDS. -- WDR HI-75-1: 1970(M), 1972-73(P).

GAGE .- Water-stage recorder. Altitude of gage is 15 ft (4.6 km), from topographic map.

REMARKS.--Records good. No diversion above station. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 11 years, 33.1 ft 3/s (0.937 m3/s), 23,980 acre-ft/yr (29.6 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,310 ft 3 /s (65.4 m 3 /s) Jan. 22, 1975, gage height, 15.44 ft (4.706 m), from rating curve extended above 410 ft 3 /s (11.6 m 3 /s) on basis of field estimate at gage height 15.44 ft (4.706 m); minimum, 2.7 ft 3 /s (0.076 m 3 /s) Mar. 24, 25, 31, Apr. 1, 1973, Apr. 28, 29, 1977.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 600 ft³/s (17.0 m³/s) and maximum (*), from rating curve extended as explained above:

		Disch		Gage h	neight			Disch		Gage he	eight
Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Nov. 7	1200	763	21.6	8.10	2.469	July 3	3 0530	*1660	47.0	*12.62	3.847
Jan. 29	0630	834	23.6	8.47	2.582	July 22	2 1100	842	23.8	8.51	2.594
Feb. 17	1330	795	22.5	8.27	2.521	Sept. 25	5 0300	663	18.8	7.56	2.304

Minimum discharge, 7.8 ft3/s (0.22 m3/s) Apr. 14.

CORRECTIONS.--Apr. 28, 29, 1977 were not included in the 1977-79 data reports as days with minimum discharge for the period of record.

DISCHARGE. IN CHAIC FEET PER SECOND. WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

					M	EAN VALUES	5					
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	117	17	20	23	49	27	9.5	15	13	36	28	40
2	125	16	20	21	43	25	9.7	14	12	83	36	30
3	71	17	19	20	39	23	9.7	14	12	405	23	25
4	56	20	18	20	36	21	12	13	12	121	20	67
5	47	18	18	19	39	20	11	17	12	92	42	107
6	43	50	17	32	35	20	10	16	12	79	24	106
7	43	117	17	25	30	19	12	35	12	72	23	95
8	58	40	17	21	31	19	11	24	15	60	22	74
9	47	38	17	19	79	16	9.2	19	15	50	20	60
10	49	29	16	19	5.5	16	9.2	17	20	44	32	51
11	41	26	16	19	4.6	18	10	16	42	61	30	45
12	39	25	15	19	40	16	8.4	16	59	51	22	40
13	48	23	15	22	34	16	8.2	17	28	34	51	36
14	4.8	22	14	19	34	17	8.0	17	22	32	82	33
15	43	2.2	14	17	30	14	8.4	14	20	29	41	30
16	39	21	26	17	28	13	12	15	20	28	36	29
17	36	22	17	19	295	12	18	14	19	28	4 1	26
18	38	24	31	27	9.8	12	18	16	19	26	34	25
19	31	20	28	24	99	18	9.9	14	18	33	30	30
20	31	19	41	21	72	18	9.0	50	21	24	27	25
21	29	17	27	19	61	14	8.6	14	49	22	26	22
22	27	16	25	18	53	15	8.4	13	40	135	24	20
23	25	15	39	16	49	14	39	14	33	41	23	20
24	23	15	39	22	49	15	1 4	14	51	34	24	23
25	22	15	27	16	40	12	12	13	35	30	24	110
26	21	78	23	20	36	12	12	39	30	29	62	58
27	22	43	21	28	3.4	12	67	25	30	28	25	47
28	21	31	20	37	31	11	23	17	34	26	26	34
29	19	25	19	229	28	11	18	15	39	25	22	31
30	20	22	31	77		10	16	14	57	23	22	48
31	20		31	58		9.7		14		22	35	
TOTAL	1299	863	698	963	1593	495.7	431.2	5 3 5	801	1803	977	1387
MEAN	41.9	28.8	22.5	31.1	54.9	16.0	14.4	17.3	26.7	58.2	31.5	46.2
MAX	125	117	41	229	295	27	67	39	59	405	82	110
MIN	19	15	14	16	28	9.7	8.0	13	12	22	20	20
AC-FT	2580	1710	1380	1910	3160	983	855	1060	1590	3580	1940	2750

CAL YR 1979 TOTAL 12744.0 MEAN 34.9 MAX 604 MIN 6.1 AC-FT 25280 WTR YR 1980 TOTAL 11845.9 MEAN 32.4 MAX 405 MIN 8.0 AC-FT 23500

CAROLINE ISLANDS, PALAU ISLANDS

16890900 TABAGATEN RIVER, BABELTHUAP

LOCATION.--Lat 07°27'00" N., long 134°32'05" E., Hydrologic Unit 20100006, on left bank 0.3 mi (0.5 km) downstream from unnamed tributary, 0.7 mi (1.1 km) northeast of Mount Karukail, and 1.0 mi (1.6 km) south of Ngatpang.

DRAINAGE AREA. -- 6.34 mi² (16.42 km²).

PERIOD OF RECORD .-- October 1970 to current year.

GAGE .- Water-stage recorder. Altitude of gage is 20 ft (6.1 m), from topographic map.

REMARKS.--Records fair except those above 150 ft 3 /s (4.25 m 3 /s), which are poor. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 10 years, 48.7 ft3/s (1.379 m3/s), 35,280 acre-ft/yr (43.5 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,580 ft 3 /s (101 m 3 /s) Dec. 23, 1973, gage height, 8.79 ft (2.679 m), from rating curve extended above 124 ft 3 /s (3.51 m 3 /s); minimum, 0.80 ft 3 /s (0.023 m 3 /s) Mar. 23, 24, 1973.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 900 ft 3 /s (25.5 m 3 /s), and maximum (*), from rating curve extended above 124 ft 3 /s (3.51 m 3 /s):

122	31.	Disch		Gage h	eight				harge	Gage he	eight
Date	Time	(ft ³ /s)	(m^3/s)	(ft)	(m)	Date	Time	(ft³/s	(m^3/s)	(ft)	(m)
Oct. 14	1530	1100	31.2	6.45	1.966	Feb. 17	1100	*2120	60.0	*7.70	2.347
Nov. 8	0030	975	27.6	6.19	1.887	Apr. 17	1900	1140	32.3	6.49	1.978
Dec. 23	2030	1100	31.2	6.44	1.963	Aug. 13	2330	970	27.5	6.14	1.871

Minimum discharge, 8.5 ft³/s (0.24 m³/s) Mar. 31, Apr. 1.

CORRECTIONS.--The peak above base Jan. 16, 1974: 1,580 ft 3 /s (44.7 m 3 /s) gage height, 7.15 ft (2.179 m) was not previously published.

		DISC	HARGE , IN	CUBIC FE		COND, WA	TER YEAR O	CTOBER 19	79 TO SEP	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
-1	231	46	22	36	19	24	9.1	40	22	74	20	100
2	249	37	21	34	18	22	25	34	18	210	24	50
3	135	3.3	22	30	17	22	19	30	18	294	20	45
a	91	29	19	28	19	20	23	29	18	143	20	85
5	68	27	17	27	21	20	21	113	17	97	22	130
6	55	60	19	31	18	23	19	77	17	82	18	90
7	54	119	20	24	18	1.8	39	205	17	67	44	70
R	52	182	17	21	17	17	20	100	34	56	51	60
9	63	162	16	20	94	15	14	70	28	45	32	45
10	143	83	15	19	5.0	14	18	52	114	42	26	40
11	81	56	14	18	142	18	17	45	52	107	85	35
12	54	46	13	17	79	21	12	42	39	50	40	30
13	47	42	13	27	41	42	12	37	34	40	* 85	30
14	293	38	13	20	36	17	11	39	25	36	256	25
15	123	37	25	17	30	14	12	33	25	49	80	25
16	76	31	70	15	35	12	15	31	22	34	55	20
17	58	₹0	28	18	536	11	198	28	22	30	77	25
18	69	34	27	33	154	12	74	50	25	30	66	50
19	46	37	60	35	108	13	33	28	125	42	45	25
50	43	31	36	27	66	79	26	41	117	28	39	60
21	37	29	26	20	50	24	22	58	76	26	36	35
22	36	23	23	17	4.5	18	22	34	72	159	82	170
23	63	20	169	15	39	15	265	27	63	42	41	60
24	37	20	130	27	4 1	14	94	25	53	34	34	50
25	31	18	54	20	34	14	55	25	43	30	32	120
26	28	39	41	22	32	13	44	75	30	48	69	120
27	27	51	34	18	31	12	147	31	56	38	36	115
28	26	63	31	18	32	11	60	26	122	27	40	60
29	24	31	29	46	27	10	45	23	100	25	90	48
30	151	25	46	26		10	40	22	185	22	40	58
٦1	110		86	50		9.4		26		22	130	
TOTAL	2601	1479	1156	747	1949	584 .4	1416.1	1496	1599	2029	1835	1876
MEAN	83.9	49.3	37.3	24.1	67.2	18.9	47.2	48.3	53.3	65.5	59.2	62.5
MAX	293	182	169	46	636	79	265	205	185	294	256	170
MIN	24	18	13	15	17	9.4	9.1	22	17	22	18	20
AC-FT	5160	2930	2290	1480	3870	1160	2810	2970	3170	4020	3640	3720

CAL YR 1979 TOTAL 18754.2 MEAN 51.4 MAX 1280 MIN 6.5 AC-FT 37200 WTR YR 1980 TOTAL 18767.5 MEAN 51.3 MAX 636 MIN 9.1 AC-FT 37230

16891300 GADEN RIVER, BABELTHUAP

LOCATION.--Lat 07°22'56" N., long 134°33'42" E., Hydrologic Unit 20100006, on left bank 1,000 ft (305 m) upstream from confluence with Kumekumeyel River, 1.0 mi (1.6 km) southwest of Mount Kabekobekushi, and 1.8 mi (2.9 km) north of Airai.

DRAINAGE AREA. -- 4.23 mi2 (10.96 km2).

PERIOD OF RECORD. -- October 1969 to current year.

REVISED RECORDS. -- WDR HI -79-2: 1970-72(P), 1973(M), 1974-78(P).

GAGE.--Water-stage recorder. Altitude of zero of gage is 2 ft (0.6 m), from stadia survey. Prior to Dec. 9, 1974, at site 300 ft (91 m) downstream at datum 0.30 ft (0.09 m) lower.

REMARKS.--Records good. Small amount of water is pumped from site 300 ft (91 m) upstream from station for irrigation 0.5 mi (0.8 km) downstream. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report. Continuous record of rainfall is obtained near station.

AVERAGE DISCHARGE. -- 11 years, 32.3 ft 3/s (0.915 m3/s), 23,400 acre-ft/yr (28.9 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,850 ft 3 /s (52.4 m 3 /s) Apr. 13, 1979, gage height, 18.2 ft (5.54 m), from rating curve extended above 118 ft 3 /s (3.34 m 3 /s) on basis of measurement at gage height 13.0 ft (3.962 m); minimum, 1.6 ft 3 /s (0.045 m 3 /s) Mar. 23, 24, 1973.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 800 ft³/s (22.7 m³/s), and maximum (*), from rating curve extended as explained above:

Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)	Date	Time	Disch (ft³/s)	arge (m³/s)	Gage he	eight (m)
Oct. 14 Nov. 9	1530 1430	824 800	23.3	11.20 11.00	3.414 3.353	Feb. 17 Aug. 13	1200 2400	*1390 930	39.4 26.3	*15.15 12.04	
Dec. 23	2100	904	25.6	11.84	3.609						

DISCHARGE. IN CHRIC EFFT DER SECOND. WATER YEAR OCTORER 1979 TO SEPTEMBER 1980

Minimum discharge, 9.0 ft 3/s (0.25 m3/s) Apr. 1, 14.

		DISC	HARGE IN	CORIC FE		AN VALUES	ER YEAR O	CIUBER 19	14 10 SEP	IEMBER 19	но	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	92	18	19	22	13	18	9.6	27	14	38	18	43
2	103	16	22	23	12	16	23	22	12	138	19	26
3	56	1.6	19	21	12	17	16	19	11	145	16	23
4	4 4	14	16	20	12	15	21	19	12	73	16	38
5	37	14	16	18	13	14	15	47	11	53	21	52
6	36	39	15	18	13	20	13	28	11	46	42	41
7	34	3.8	17	16	11	14	16	118	14	40	36	32
8	34	72	15	15	11	13	18	52	20	34	24	28
9	34	129	1 4	14	55	12	13	36	12	30	20	24
10	53	4 1	13	14	30	12	13	31	25	33	22	22
11	36	30	13	13	72	18	12	28	21	94	21	21
12	30	26	12	13	42	18	10	25	23	41	18	20
13	29	23	11	24	24	26	10	23	15	31	90	18
14	162	21	11	15	21	14	9.6	23	13	30	170	18
15	60	20	17	13	18	12	11	20	13	43	42	17
16	42	19	21	12	20	11	10	19	12	28	32	16
17	37	18	15	15	462	10	63	20	12	25	48	17
18	5.3	30	24	16	92	15	32	40	11	28	34	44
19	33	21	26	21	63	17	17	20	23	30	27	20
20	31	19	17	19	44	64	14	21	50	44	25	34
21	28	18	14	14	36	20	13	21	37	26	23	23
5.5	32	17	14	12	32	16	12	17	34	48	30	54
23	28	16	133	12	28	14	87	16	29	28	24	26
24	25	16	108	17	28	13	27	16	26	25	20	22
25	22	15	36	13	24	13	20	16	21	23	19	36
26	21	43	27	14	22	12	20	19	19	26	28	38
27	20	55	23	12	21	13	89	15	27	24	19	36
28	20	24	21	11	23	11	32	14	68	20	29	25
29	18	32	20	38	19	11	25	13	93	19	24	22
30	25	24	25	17		10	28	13	80	18	19	33
31	24		38	14		10		20		17	60	
TOTAL	1299	884	792	516	1 27 3	499	699.2	818	769	1298	1036	869
MEAN	41.9	29.5	25.5	16.6	43.9	16.1	23.3	26 . 4	25.6	41.9	33.4	29.0
MAX	162	129	133	38	462	64	89	118	93	145	170	54
MIN	18	14	11	11	11	10	9.6	13	11	17	16	16
AC-FI	2580	1750	1570	1020	2520	990	1390	1620	1530	2570	2050	1720

CAL YR 1979 TOTAL 12133.1 MEAN 33.2 MAX 1000 MIN 4.7 AC-FT 24070 WTR YR 1980 TOTAL 10752.2 MEAN 29.4 MAX 462 MIN 9.6 AC-FT 21330

16891310 KUMEKUMEYEL RIVER, BABELTHUAP

LOCATION.--Lat 07°23'15" N., long 134°33'05" E., Hydrologic Unit 20100006, 0.75 mi (1.2 km) upstream from confluence with Gaden River and 1.6 mi (2.6 km) west of Mount Kabekobekushi.

DRAINAGE AREA. -- 1.27 mi2 (3.29 km2).

PERIOD OF RECORD. -- September 1978 to current year. Low-flow partial-record station operated "at mouth" 1970-78.

GAGE.--Water-stage recorder. Altitude of gage is 96.44 ft (29.39 m), from stadia survey.

REMARKS.--Records good. No diversion above gage. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,560 ft 3 /s (44.2 m 3 /s) Apr. 13, 1979, gage height, 10.53 ft (3.210 m), from rating curve extended above 106 ft 3 /s (3.00 m 3 /s) on basis of slope-area measurement at gage height 10.53 ft (3.210 m); minimum, 1.1 ft 3 /s (0.031 m 3 /s) Feb. 26, 1979.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 350 ft³/s (99.1 m³/s) and maximum (*), from rating curve as explained above:

		Discharge		Gage height				Discharge		Gage height	
Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Oct. 14	1430	559	15.8	6.87	2.094	Dec. 23	2000	409	11.6	6.07	1.850
Nov. 7	2330	434	12.3	6.21	1.893	Feb. 17	1100	*840	23.8	*8.15	2.484
Nov. 9	1300	409	11.6	6.07	1.850	Aug. 13	2300	595	16.9	7.05	2.149
Nov. 27	1300	391	11.1	5.97	1.820	9.					

DISCHARGE, IN CURIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum discharge, 2.2 ft³/s (0.062 m³/s) Mar. 30 to Apr. 1.

		2.5		1271250	M	EAN VALUE	5	- CIONEN I	, , , , o 3L,	TEMBER 1	,,,,	
DAY	001	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1	24	7.0	6.2	6.8	3.7	4.6	2.2	8.0	3.7	16	4.3	16
2	24	6.0	5.8	7.0	3.5	4.3	4.6	6.2	3.4	59	4.3	9.1
3	14	5.6	5.4	6.2	3.2	4 . 4	3.4	5.2	3.2	55	3.7	8.2
4	11	5.2	4.6	6.2	3.2	3.7	6.9	6.3	3.0	28	3.4	16
5	9.4	4.6	4.3	5.2	3.5	3.5	7.9	12	2.7	50	4.2	20
6	9.5	12	4.1	5.6	3.2	5.0	3.9	8.8	2.7	16	9.4	15
7	8.2	25	4.6	4.4	2.8	3.4	4.1	36	4.8	13	11	12
8	8.8	23	3.9	4.3	2.7	3.0	5.8	16	5.8	11	17	9.4
9	6.6	51	3.7	4.1	22	2.8	3.7	14	3.4	8.6	7.8	8.2
10	13	18	3.5	3.7	9.2	2.7	3.5	9.5	16	9.7	8.5	7.3
11	8.9	13	3.4	3.7	19	4.5	4.3	8.2	5.4	36	6.0	6.4
12	7.3	10	3.2	3.5	15	4.3	3.0	6.8	6.0	13	5.2	6.0
13	7.3	8.4	3.2	7.6	7.7	7.5	2.7	6.4	4.1	8.9	31	5.4
14	48	7.5	2.8	3.9	6.8	3.2	2.6	6.8	3.5	8.5	42	5.0
15	17	6.8	6.1	3.4	5.2	2.8	2.8	5 . 6	3.5	12	12	4.3
16	1.1	6.2	A . 6	3.2	7.9	2.6	2.7	5.0	4.6	7.3	9.6	3.9
17	9.4	5.8	4 . 4	4 . 4	163	2.4	10	5.6	3.7	6.4	14	4.1
18	14	9.0	7.4	4 . 4	31	3.0	9.2	19	4 . 4	9.9	9.4	9.0
19	8.4	7.2	8.7	6.3	21	4.9	5.0	6.8	4.5	9.5	7.5	9.2
20	8.2	6.2	5.6	4.8	1 4	20	4.1	5.8	16	9.3	7.6	6.4
21	7.0	5.9	4.6	3.7	1 1	5.0	3.9	6.4	15	6.4	6.2	5.2
22	9.0	4 . 4	4 - 1	3.4	9.4	3.9	3.5	5.2	13	12	9.8	36
23	11	4.1	33	3.2	8.2	3.4	27	4.6	11	6.8	7.5	11
24	7.7	4 . 1	37	4.3	8.2	3.0	8.0	4.3	8.7	6.0	5 . 8	7.5
25	6.2	3.7	12	3.4	6.8	2.8	5.8	4 - 4	7.0	5.6	5.2	13
26	5.6	13	8.9	3.7	6.0	2.7	5.8	6.8	6.0	7.0	10	15
27	5.6	32	7.3	3.4	5.8	3.0	36	4.3	14	6.3	5.6	12
28	5.6	10	6.4	3.4	6.1	2.4	11	3.7	33	4.6	8.8	8.4
29	4.8	7.3	6.2	12	5.0	2.4	8.2	3.7	40	4 . 4	7.9	7.7
30	23	6.8	6.8	5.0		2.2	7.5	3.5	30	5.6	5.8	11
31	11		11	3.9		2.2		5.6		3.9	20	
TOTAL	364.5	328.8	236.8	148.1	414.1	125.6	214.1	250.6	282.1	425.7	310.5	307.7
MEAN	11.8	11.0	7.64	4.78	14.3	4 . 05	7.14	8.08	9.40	13.7	10.0	10.3
MAX	4 8	51	37	12	163	50	36	36	40	59	42	36
MIN	4.8	3.7	2.8	3.2	2.7	2.2	2.2	3.5	2.7	3.9	3.4	3.9
AC-FT	723	652	470	294	821	249	425	497	560	8 4 4	616	610

CAL YR 1979 TOTAL 3672.3 MEAN 9.92 MAX 397 MIN 1.2 AC-FT 7180 WTR YR 1980 TOTAL 3408.6 MEAN 9.31 MAX 163 MIN 2.2 AC-FT 6760

16891400 SOUTH FORK NGARDOK RIVER, BABELTHUAP

LOCATION.--Lat 07°26'15" N., long 134°35'03" E., Hydrologic Unit 20100006, on right bank 0.3 mi (0.5 km) from left-bank tributary, 0.6 mi (1.0 km) northwest of Garasho Mountain, and 1.3 mi (2.1 km) west of village of Ngarsul.

DRAINAGE AREA. -- 2.26 mi² (5.85 km²).

PERIOD OF RECORD. -- March 1971 to current year.

REVISED RECORDS. -- WDR HI-75-1: 1971(M), 1972, 1973(P), 1974.

GAGE. -- Water-stage recorder. Altitude of gage is 65 ft (20 m), from topographic map.

REMARKS.--Records good. No diversion above station. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 9 years, 19.5 ft3/s (0.552 m3/s), 14,130 acre-ft/yr (17.4 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,750 ft 3 /s (163 m 3 /s), Dec. 13, 1974, gage height, 9.19 ft (2.801 m), from rating curve extended above 65 ft 3 /s (1.84 m 3 /s) on basis of field estimate at gage height 7.57 ft (2.307 m); minimum, 0.55 ft 3 /s (0.016 m 3 /s) Mar. 9, 1973.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 750 ft³/s (21.2 m³/s), revised, and maximum (*), from rating curve extended as explained above:

		Discharge		Gage height				Discharge		Gage height	
Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Oct. 14	1500	1660	47.0	5.38	1.640	Apr. 17	1800	770	21.8	3.98	1.213
Nov. 9	1330	982	27.8	4.37	1.332	June 19	1500	770	21.8	3.98	1.213
Dec. 23	2000	2020	57.2	5.83	1.777	July 22	1030	904	25.6	4.24	1.292
Feb. 17	1030	*2160	61.2	*5.99	1.826	Aug. 13	2300	1320	37.4	4.90	1.494

Minimum discharge, 2.6 ft3/s (0.074 m3/s) June 6-8.

CORRECTIONS.--The peak above base Jan. 17, 1974: 1,510 ft³/s (42.8 m³/s) gage height, 5.17 ft (1.576 m) was not previously published. The date of the minimum discharge for period of record is Mar. 9, 1973. The date published in WDR HI-76, 77-2, 78-2, 79-2 was incorrect. The date of peak above base Dec. 29, 1975 was published as Dec. 30 in WRD HI-75. The discharge and gage height of peak above base of Dec. 20, 1975 are 1,130 ft³/s (32.0 m³/s) 4.62 ft (1.408 m). The previously published figures were incorrect.

DISCHARGE. IN CURIC FEET PER SECOND. WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980
MEAN VALUES

DAY	0.01	NOA	DEC	JAN	FER	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	60	10	8.7	13	6.2	9.3	4.4	20	4.0	23	11	38
2	70	9.9	9.9	12	5.7	8.0	11	12	3.2	79	11	19
3	40	8.7	R . 0	10	5.2	8.0	7.9	10	3.6	113	9.3	16
4	30	8.0	7.4	9.9	6.2	7.4	8.0	15	3.2	43	8.7	28
E.	25	7.4	6.2	9.9	6.8	6.8	6.2	59	2.9	30	9.3	57
6	23	15	8.0	11	5.2	8.4	4.8	19	2.9	28	11	32
7	5.5	23	6.8	8.0	4.8	6.2	12	70	2.9	21	35	27
8	24	35	6.2	8.7	4.8	6.2	7.4	31	6.6	18	13	20
9	36	95	6.2	8.0	39	5.2	5.2	20	4.6	14	12	17
10	113	21	5.2	7 • 4	22	5.2	6.8	17	10	1 4	11	15
11	41	15	4.8	7.4	8.5	8.2	4.8	14	10	37	30	13
12	28	13	4.8	6.8	29	10	4.4	12	11	18	15	12
13	25	10	4.8	11	16	15	4.4	12	6.2	12	136	11
14	239	9.9	4.0	7.4	13	6.8	4.0	11	4.4	15	140	10
15	54	9.3	8.5	6.2	10	5.7	5.2	9.9	4.4	23	32	9.9
16	36	8.7	11	5.2	1.3	5.2	4.8	8.7	4.0	1 4	23	9.3
17	27	8.7	7.4	6.2	463	4 . 8	105	8.0	3.6	10	54	10
18	31	9.3	11	8.7	5 4	6.2	2 4	11	4.0	11	25	18
19	20	8.7	16	15	38	10	11	7.4	60	15	18	10
20	19	8.0	9.3	9.9	2 4	40	9.3	6.8	31	25	16	28
21	17	8.0	7.4	7.4	19	12	A. 0	6.8	23	12	14	14
22	20	6.2	6.8	5.2	17	8.7	8.0	6.2	32	90	16	55
23	15	5.7	184	5.7	14	6.8	109	5.7	20	21	13	20
24	14	5.7	60	11	1 4	6.2	20	5.2	17	18	11	19
25	12	5.7	26	7.5	12	5.7	14	7.4	1 4	15	10	40
26	10	37	22	6.8	10	5.2	13	9.9	15	20	20	40
27	10	2.8	12	6.2	10	5.7	5.8	6.2	16	16	12	31
28	10	11	10	5.2	11	4 . 4	20	4.8	40	12	12	18
29	9.3	22	9.9	20	9.3	4.8	14	4.8	58	11	19	15
30	28	9.9	18	9.3		4.4	20	4.8	61	10	11	21
31	1 4		34	6.8		4.4		4.4		9.9	54	2
TOTAL	1122.3	472.8	544.3	272.8	967.2	250.9	534.6	440.0	478.5	797.9	812.3	673.2
MEAN	36.2	15.8	17.6	8.80	33.4	8.09	17.8	14.2	16.0	25.7	26.2	22.4
MAX	239	95	184	50	463	40	109	70	61	113	140	57
MIN	9.3	5.7	4.0	5.2	4.8	4.4	4.0	4 . 4	2.9	9.9	8.7	9.3
AC-FI	2230	938	1080	541	1920	4 98	1060	873	949	1580	1610	1340

CAL YR 1979 TOTAL 7818.0 MEAN 21.4 MAX 923 MIN 2.0 AC-FI 15510 WTR YR 1980 TOTAL 7366.8 MEAN 20.1 MAX 463 MIN 2.9 AC-FI 14610

16892400 ARINGEL STREAM, YAP

LOCATION.--Lat 09°31'01" N., long 138°05'11" E., Hydrologic Unit 20100006, on right bank at Aringel and 0.3 mi (0.5 km) upstream from mouth.

DRAINAGE AREA. -- 0.24 mi² (0.62 km²).

PERIOD OF RECORD. -- April 1968 to current year.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 35 ft (10.7 m), from topographic map.

REMARKS.--Records fair. No diversion above station. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 12 years, 1.08 ft3/s (0.031 m3/s), 782 acre-ft/yr (965,000 m3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 520 ft³/s (14.7 m³/s) Sept. 14, 1978, gage height, 7.05 ft (2.149 m), from floodmark in well, from rating curve extended above 20 ft³/s (0.57 m³/s); no flow for many days most years.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 200 ft³/s (5.66 m³/s) and maximum (*), from rating curve extended above 20 ft³/s (0.57 m³/s):

Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)	Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)
Oct. 1 May 22	2400 1000	202 240	5.72 6.80	4.93 5.23	1.503	July 1 July 4	0100 0400		10.56 10.59	6.12 *6.13	1.865

No flow for many days.

DISCHARGE.	IN	CUBIC	FEET	PER	SECOND.	WATER	YEAR	OCTOBER	1979	10	SEPTEMBER	1980
					MEAN VA	LUES						

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.4	.19	.03	.04	.00	. 02	.28	.04	.65	24	.03	.14
2	21	1.0	.02	.10	.00	.01	2.1	.02	.47	1.3	.03	.08
3	1.4	9.3	.01	.04	.00	. 01	11	.01	-16	1.4	2.2	.07
4	.29	5.3	.01	.04	.00	.00	.53	. 01	.06	16	.21	5.5
5	-19	. 44	.01	.04	.00	.00	.17	.01	.04	.65	-10	9.5
6	7.1	.21	.01	.04	.00	.00	.07	.01	.03	.87	. 05	2.6
7	6.0	2.0	.01	.03	.00	.00	.04	.01	.02	2.3	.06	1.9
8	6.8	.93	.01	.02	.01	.00	.03	.01	.13	. 93	.05	.65
9	2.0	.53	.01	.01	1.1	.00	.02	1.6	.23	1.3	.03	.27
10	3.3	. 4 1	.03	.01	.70	.00	.01	1.3	.14	•53	.02	.14
11	.65	.21	.06	.01	-11	.00	.01	.27	.45	.33	.02	.07
12	.31	.10	.03	.01	.06	.00	.01	.85	.16	.19	.03	.08
13	-16	.06	.01	.01	.03	.00	.00	. 85	.06	.11	.03	2.1
14	.10	.04	.01	.00	-02	.00	.00	.19	.03	15	.02	. 44
15	.07	.02	-01	.00	.02	• 00	.00	. 10	.03	.73	.01	. 39
16	.04	.02	.01	.00	.01	.00	.01	.10	.08	2.3	.01	.23
17	.03	.01	.01	.00	.01	• 00	.00	.11	.08	7.4	.23	3.6
18	.02	.01	12	.00	.01	.51	.00	. 06	.04	5.1	.21	1.2
19	.02	.01	14	.00	.00	4 . R	.00	.03	.04	. 73	5.1	.29
20	.01	.01	.77	.00	.00	9.2	.00	.02	. 24	R.2	.77	. 1 4
21	.01	.01	. 44	.00	-00	2.0	.00	.02	3.6	8.0	2.7	.61
55	.01	.00	2.1	.00	.00	.29	.00	28	1.8	4.0	-69	.54
23	.01	.00	6.8	.00	.66	.13	.00	.65	.37	. 44	.37	.63
24	.01	.01	22	.00	. 44	. 06	.00	.17	3.2	.25	.19	1.1
25	.01	.01	.69	.00	•21	. 03	.00	.10	1.5	.11	9.1	.53
26	.01	.01	.25	.00	.08	. 02	.00	.08	.53	.11	1.1	1.1
27	.03	2.4	.14	.00	.04	.02	.01	.08	3.1	.08	3.3	3.5
28	.02	. 41	.10	.00	.02	.01	.01	.05	7.9	.22	-61	2.2
29	.14	.13	.07	.00	.02	.01	.01	.03	4.6	.13	1.7	- 41
30	5.7	.05	.04	.00		.01	-14	.03	.86	.06	1.4	16
31	.65	0	.04	.00		.01		.23		.04	. 4 4	
TOTAL	58.49	23.83	59.73	.40	3.55	17.14	14.45	35.04	30.60	103.81	25.81	56.01
MEAN	1.89	.79	1.93	.013	.12	. 55	-48	1.13	1.02	3.35	.83	1.87
MAX	21	9.3	22	.10	1.1	9.2	11	28	7.9	24	5.1	16
MTN	.01	.00	.01	.00	.00	.00	.00	.01	.02	- 04	.01	.07
AC-FT	116	47	118	.8	7.0	34	29	70	61	206	51	111

CAL YR 1979 TOTAL 391.81 MEAN 1.07 MAX 26 MIN .00 AC-FT 777 WTR YR 1980 TOTAL 428.86 MEAN 1.17 MAX 28 MIN .00 AC-FT 851

16892800 DALOLAB STREAM, YAP

LOCATION.--Lat 09°31'04" N., long 138°06'04" E., Hydrologic Unit 20100006, on left bank at Talagu and 0.9 mi (1.4 km) upstream from mouth.

DRAINAGE AREA. -- 0.07 mi2 (0.18 km2).

PERIOD OF RECORD. -- April 1968 to current year.

REVISED RECORDS. -- WDR HI - 79 - 2: Drainage area.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 150 ft (46 m), from topographic map.

REMARKS.--Records fair. No diversion above station. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 12 years, 0.364 ft3/s (0.010 m3/s), 264 acre-ft/yr (326,000 m3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 180 ft 3 /s (5.10 m 3 /s) Sept. 15, 1973, gage height, 4.80 ft (1.463 m), from floodmark in well, from rating curve extended above 17 ft 3 /s (0.48 m 3 /s); no flow for many days each year.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 75 ft 3 /s (2.12 m 3 /s) and maximum (*), from rating curve extended as explained above:

Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)	Date	Time	Discha (ft³/s)		Gage he	eight (m)
Oct. 1	2230	*128	3.62	*4.24	1.292	July 1	0100	114	3.23	4.06	1.237
Oct. 30	1600	79	2.24	3.55	1.082	July 4	0430	116	3.29	4.08	1.244
May 22	0930	89	2.52	3.70	1.128						

No flow for many days.

DISCHARGE .	IN	CURIC	FEET	PER	SECOND.	WATER	YEAR	OCTOBER	1979	10	SEPTEMBER	1980
					MEAN WA	LUCC						

DAY	001	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	4.3	.02	.00	.01	.00	.01	.01	.00	.17	8.7	.01	.04
2	5.9	. 45	.00	.01	.00	. 01	.08	.00	.14	. 49	.01	.02
3	.22	3.2	.00	.00	.00	.00	2.7	.00	.03	.83	1.6	.01
4	.03	1.4	.00	.00	.00	.00	.12	.00	.03	6.5	.05	2.0
5	.01	.10	.00	.00	.00	.00	.02	.00	.02	.22	.02	2.5
6	2.6	.03	.00	.00	.00	.00	.01	.00	.01	.27	.01	1.2
7	2.0	1.0	.00	.00	.00	.00	.00	.00	.01	.96	.02	1.0
8	1.9	.24	.00	.00	.00	.00	.00	.00	.04	. 33	.02	.25
9	.49	.17	.00	.00	.18	.00	.00	. 78	.04	.56	.02	.08
10	.46	.05	.00	.00	.08	.00	.00	. 40	.03	-14	.01	.04
11	.12	.02	.00	.00	.01	.00	.00	.02	.08	.06	.01	.02
12	.02	.01	.00	.00	.01	.00	.00	.51	.03	.03	.01	.10
13	.01	.02	.00	.00	.01	.00	.00	.12	.02	.01	.01	1.0
14	.01	. 0.5	.00	.00	.00	.00	.00	.02	.01	4.8	.01	.30
15	.00	.01	.00	.00	•00	.00	.00	.01	.01	•19	.01	.20
16	.00	.01	.00	.00	.00	.00	.00	.02	.08	. 78	.01	.05
17	.00	.01	.00	.00	.00	.00	.00	.02	.10	3.1	.02	1.0
18	.00	.01	3.1	.00	.00	.26	.00	.01	.03	2.4	.01	.36
10	.00	.01	4.4	.00	.00	1.6	.00	.00	.03	.22	1.4	.05
20	.00	.00	.24	.00	.00	3.4	.00	.00	.59	5.4	-12	.03
21	.00	.00	.19	.00	.00	.76	.00	.00	1.3	2.2	.41	.18
22	.00	.00	.70	.00	.00	- 04	.00	9.1	.40	1.4	.12	.19
23	.00	.00	6.6	.00	.14	. 02	.00	.12	.1?	.08	.04	.17
24	.00	.00	5.4	.00	.10	.01	.00	.02	1.1	.04	.02	.04
25	.00	.00	.14	.00	.04	.01	•00	.02	.54	.02	3.8	.04
26	.00	.00	.01	.00	•02	.00	.00	.01	.22	.02	-3.0	.15
27	.01	.27	.01	.00	.01	.00	.00	.01	.98	.03	1.5	. 30
28	.00	.04	.01	.00	.01	.00	.00	. 01	2.4	.06	.22	.03
29	.01	.01	.00	.00	.01	.00	.00	.01	2.3	.03	.81	.02
30	2.9	.00	.00	.00		.00	.00	.01	.48	.02	1.3	2.4
31	-14		.00	.00		.00		. 11		.02	-14	
TOTAL	21.13	7.10	21.80	.02	.62	6.12	2.94	10.33	11.01	37.11	12.04	13.77
MEAN	.68	. 24	.70	.001	. 021	.20	.098	. 73	.37	1.20	.39	. 46
MAX	5.9	3.2	6.6	.01	-18	3.4	2.7	8.1	2.4	8.7	3.8	2.5
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.01	.01	.01	.01
		14	43			12		20			24	

CAL YR 1979 TOTAL 127.90 MFAN .35 MAX 9.0 MIN .00 AC-FT 254 WTR YR 1980 TOTAL 143.99 MFAN .39 MAX 8.7 MIN .00 AC-FT 286

16892900 PEMGOY STREAM, YAP

LOCATION.--Lat 09°31'07" N., long 138°06'18" E., Hydrologic Unit 20100006, on right bank at Talagu, 100 ft (30 m) upstream from Talagu Stream, and 0.8 mi (1.3 km) upstream from mouth.

DRAINAGE AREA. -- 0.14 mi2 (0.36 km2).

PERIOD OF RECORD. -- April 1968 to current year.

REVISED RECORDS. -- WDR HI-79-2: Drainage area.

GAGE.--Water-stage recorder. Concrete control since Mar. 30, 1974. Altitude of gage is 100 ft (30 m), from topographic map.

REMARKS.--Records fair. No diversion above station. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--12 years, 0.585 ft3/s (0.017 m3/s), 424 acre-ft/yr (523,000 m3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 314 ft³/s (8.89 m³/s) Sept. 14, 1978, gage height, 5.26 ft (1.603 m), from floodmarks, from rating curve extended above 15 ft³/s (0.42 m³/s); no flow for many days most years.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 70 ft³/s (1.98 m³/s) and maximum (*), from rating curve extended as explained above:

Date	Time	Disch (ft ³ /s)	arge	Gage h		Dode		Time	Discha (ft ³ /s)		Gage h	
Date	rime	(11-75)	(m-/s)	(11)	(m)	Date		lime	(It'/S)	(m-/s)	(IL)	(m)
Oct. 1	2300	*234	6.63	*4.68	1.426	July	1	a0100	a150	4.25		
Oct. 30	1500	90	2.55	3.28	1.000	July	4	a0400	179	5.07	4.22	1.286
May 22	0830	88	2.49	3.25	. 991							

No flow Feb. 2.

a About.

		DISC	HARGE, IN	CUBIC FE		AN VALUES		CTOBER 19	79 TO SEF	TEMBER 19	980	
DAY	001	NOV	DEC	JAN	FER	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	7.6	.09	.01	.02	.01	.01	.02	.01	.18	14	.03	.08
2	9.9	.66	.01	.02	.00	.01	-10	.01	.09	.75	.03	.05
3	1.4	4.5	.01	.01	.01	.01	3.1	.01	.03	1.0	2.8	.04
4	.14	2.7	.01	.01	.01	.01	.32	.01	.02	10	.10	2.6
5	.07	. 24	.01	.02	.01	.01	.03	.01	.02	.35	.05	5.6
6	3.6	.08	.01	.02	.01	.01	.02	.01	.02	.40	.04	2.1
7	3.7	1.9	.01	.01	.01	. 01	.01	.01	.01	1.5	-04	1.5
8	3.2	.75	.01	.01	.01	.01	.01	.01	.06	.50	.04	.38
O	2.1	.38	.01	.01	.15	.01	.01	. 75	.06	.90	.03	-11
10	1.1	.11	.01	.01	.16	.01	-01	.89	.03	.20	.03	.06
11	.42	.06	.03	.01	.02	. 01	.01	.03	.12	.10	.02	.03
12	.11	.04	.02	.01	.01	.01	.01	.69	.05	.05	.03	.15
13	-07	.03	.01	.01	.01	. 01	.01	-50	-03	.03	.03	1.7
14	.05	.03	.01	.01	.01	. 01	.01	. 04	.02	7.5	.03	.64
15	• 0 4	.02	.01	.01	.01	.01	.01	.02	.02	. 30	.02	. 34
16	.03	.02	.01	.01	.01	.01	.02	.02	.12	1.2	.02	.11
17	.03	.01	.01	.02	.01	. 01	.01	.02	.15	5.0	.09	1.9
18	.03	.01	4.3	.01	.01	.29	.01	.01	.05	3.5	.08	1.2
19	.03	.01	6.3	.01	.01	2.5	-01	.01	.05	.35	1.9	.16
20	•02	.01	.65	.01	.01	3.4	.01	.01	. 40	4.0	.34	.09
21	.02	.01	.94	.01	.01	1.8	.01	.01	2.0	3.5	.34	.12
22	.02	.01	1.2	.01	.01	.08	.01	13	.65	2.0	.24	-12
23	.01	.01	2.2	.02	.29	. 03	.01	. 34	.20	.10	.07	.21
24	.01	.01	11	.01	-16	. 02	.01	.03	1.8	.08	.05	.11
25	.01	.02	.38	.01	.05	.01	.01	.02	.85	.07	4.9	.09
26	.01	.03	.04	.01	.02	.01	.01	.03	.35	.05	.94	.12
27	.05	.27	.03	.01	.01	.01	.01	.02	1.5	.05	2.0	. 34
28	.02	.09	.02	.01	.01	.01	.02	.01	3.5	. 84	.56	.09
29	.11	.03	.01	.01	.01	.01	.02	.01	3.5	.12	1.3	.06
30	4.1	.02	.01	.01		. 01	.01	.01	.75	.07	2.0	2.6
31	.71		.01	.01		. 01		.11		.05	.34	
TOTAL	38.71	12.15	27.29	.37	1.06	8.36	3.86	16.66	16.63	58.56	18.49	22.70
MEAN	1.25	. 4 1	.88	.012	. 037	.27	-13	.54	.55	1.89	.60	.76
MAX	9.9	4.5	11	.02	.29	3.4	3.1	13	3.5	14	4.9	5.6
MIN	.01	.01	.01	.01	.00	. 01	.01	.01	.01	.03	.02	.03
AC-FI	77	24	54	.7	2.1	17	7.7	7.3	33	116	37	45

CAL YR 1979 TOTAL 219.42 MEAN .60 MAX 15 MIN .00 AC-FT 435 WTR YR 1980 TOTAL 224.84 MEAN .61 MAX 14 MIN .00 AC-FT 446

NOTE. -- No gage-height record June 4 to July 24.

16893100 BURONG STREAM, YAP

LOCATION.--Lat 09°31'59" N., long 138°07'05" E., Hydrologic Unit 20100006, on left bank at Dugor and 0.1 mi (0.2 km) upstream from mouth.

DRAINAGE AREA. -- 0.23 mi2 (0.60 km2).

PERIOD OF RECORD. -- April 1968 to current year.

REVISED RECORDS. -- WDR HI-79-2: Drainage area, 1968-78(P).

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 15 ft (4.6 m), from topographic map.

REMARKS.--Records good. No diversion above station. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE, -- 12 years, 0.924 ft³/s (0.026 m³/s), 669 acre-ft/yr (825,000 m³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 505 ft 3 /s (14.3 m 3 /s) July 4, 1980, gage height, 5.30 ft (1.615 m), from rating curve extended above 15 ft 3 /s (0.42 m 3 /s); no flow for many days most years.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 100 ft 3 /s (2.83 m 3 /s), and maximum (*), from rating curve extended as explained above:

Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)	Date	Time	Discha (ft³/s)	arge (m³/s)	Gage he	eight (m)
Oct. 1	2200	256	7.25	4.36 3.48	1.329	July 1	0100	150	4.25	3.77	1.149
Dec. 24	0130	110	3.12		1.061	July 4	0330	*505	14.3	*5.30	1.615

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1979 TO SEPTEMBER 1990

No flow for many days.

		0130	CHARGE I IN	COBIC PE		FAN VALUES		CTOBER 1	17 TO 3E	It onen 1	,	
DAY	001	NOV	DEC	NAL	FER	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	13	. 14	.06	.08	.00	.01	.01	.00	.27	22	.07	.34
2	22	. 74	.03	.08	.00	.00	.63	.00	.20	1.9	.05	.22
3	3.0	4.1	.02	.04	.00	.00	11	.00	.07	2.1	2.8	.18
4	.57	2.6	.01	.02	.00	.00	.90	.00	.03	25	.30	5.5
5	.27	. 44	.01	.06	.00	.00	.20	.00	.02	. 85	. 14	7.6
6	5.4	. 18	.01	.08	.00	.00	.09	.00	.02	.50	.09	3.6
7	3.0	1.4	.01	.04	.00	.00	.05	.00	.01	1 - 4	.07	2.5
8	2.4	1.1	.01	.02	.00	.00	.02	.00	.05	1.2	.06	.85
9	3.6	.80	.01	•02	.11	.00	.01	.29	.04	.78	.05	.37
10	.80	.30	.05	.01	-14	.00	.01	1.0	.02	.53	.05	.18
11	.47	. 14	.20	.01	.02	.00	.00	. 09	.39	.24	.03	.13
12	.27	. 1 1	.08	.01	.01	.00	.00	5.6	.13	.14	.03	.70
13	-18	.07	.03	.01	.01	.00	.00	1.4	.06	.10	.04	2.2
14	.13	.05	.02	.01	.00	.00	.00	. 20	.02	9.6	.05	4.1
15	• 0 9	.05	.02	.00	•00	•00	•00	. 11	.03	1.1	.04	.98
16	.07	.03	.04	.00	.00	.00	.00	.09	.02	.53	.03	.30
17	.06	.02	.10	.00	.00	.00	.00	.06	.05	5.9	.07	4.0
18	. 0 4	.02	12	.00	.00	. 32	.00	.04	.02	5.4	.08	2.4
19	.03	.01	15	.00	.00	3.5	.00	.02	.15	1.2	1.8	. 40
20	.02	.01	1.8	.00	.00	10	.00	.02	.75	.28	• 95	.20
21	.02	.01	3.2	.00	.00	2.9	.00	.01	1.0	6.7	.73	.16
22	.01	.01	2.8	.00	.00	. 24	.00	18	1.1	4.3	.53	.13
23	.01	.01	4.0	.00	.20	.40	.00	.85	.40	.65	.18	.10
24	.01	.01	55	.00	.22	. 13	.00	.22	3.5	.30	.10	. 26
25	.00	.03	1.1	.00	-11	. 06	•00	. 14	1.0	•18	9.3	. 30
26	.00	.59	.30	.00	.06	.03	.00	.09	.70	.16	1.6	.18
27	.01	1.2	.16	.00	.04	. 02	.00	. 05	3.0	.13	2.6	.60
28	.01	. 37	.13	.00	•05	.01	.00	.03	4 . 8	.24	.90	.18
29	.50	-16	.11	.00	.01	.00	.00	.02	7.6	.18	1.2	.09
30	.93	.11	.10	.00		.00	.00	.01	1.7	. 54	1.0	2.6
31	.40		.09	.00		.00		.02		.11	.75	
TOTAL	57.30	14.41	63.50	.49	.95	17.62	12.92	28.36	26.65	94.24	25.69	41.35
MEAN	1.85	.48	2.05	.016	.033	.57	.43	.91	.89	3.04	.83	1.38
MAX	22	4.1	22	.08	.22	10	11	18	7.6	25	9.3	7.6
MIN	.00	.01	.01	.00	.00	.00	.00	.00	.01	.10	.03	.09
AC-F1	114	5.9	126	1.0	1.9	35	26	56	53	187	51	82
AC-FI	114	24	126	1.0	1.9	35	26	56	5 3	187	51	

C4L YR 1979 TOTAL 355.09 MFAN .97 MAX 22 MIN .00 AC-FT 704 WTR YR 1980 TOTAL 383.48 MFAN 1.05 MAX 25 MIN .00 AC-FT 761

16893200 MUKONG STREAM, GAGIL-TOMIL

LOCATION.--Lat 09°32'06" N., long 138°09'59" E., Hydrologic Unit 20100006, on right bank 0.2 mi (0.3 km) upstream from mouth and 1.6 mi (2.6 km) southwest of Gatjapar.

DRAINAGE AREA. -- 0.50 mi2 (1.29 km2).

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1972-75, December 1974 to June 1978, July to September 1978, stage-discharge relation indefinite due to blocked control. October 1978 to current year.

REVISED RECORDS. -- WDR HI-79-2: Drainage area.

GAGE. -- Water-stage recorder. Altitude of gage is 5 ft (1.5 m), from topographic map.

REMARKS.--Records fair to poor. At times some water is pumped from above station for village use. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 39 ft 3 /s (1.10 m 3 /s) Jan. 22, 1975, gage height, 2.69 ft (0.820 m), from rating curve extended above 11 ft 3 /s (0.31 m 3 /s); maximum gage height, 3.40 ft (1.036 m), from floodmark, Sept. 14, 1978; minimum discharge, 0.07 ft 3 /s (0.002 m 3 /s) Apr. 9, 1979, Mar. 15, 1980.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 25 ft 3 /s (0.71 m 3 /s), and maximum (*), from rating curve extended above 11 ft 3 /s (0.31 m 3 /s):

		Disch	arge	Gage h	neight				narge	Gage h	eight
Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date	Time	(ft3/s)	(m^3/s)	(ft)	(m)
Dec. 24	0500	25	0.71	3.27	0.997	July 1	0430	29	0.82	3.43	1.045
Mar. 20	2400	29	. 82	3.37	1.027	July 4	0630	*35	.99	*3.80	1.158
May 22	1000	26	. 74	3.28	1.000	10 10 10 10 10 10 10 10 10 10 10 10 10 1					

Minimum discharge, 0.07 ft3/s (0.002 m3/s) Mar. 15.

CORRECTIONS.--The phrase, minimum daily discharge, published in the 1979 report under extremes for period of record and current year was in error. The word, daily, should be omitted.

DISCHARGE. IN CURIC FEET PER SECOND. WATER YEAR OCTGRER 1979 TO SEPTEMBER 1980

		0120	HAR DE . IN	CORIC FE		EAN VALUES		CTORER 19	14 10 SEF	TEMMER 19	NO NO	
DAY	0.01	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
UAI	01.1	NOV	DEL	JAN	FEB	MAR	APR	MAT	JUN	300	AUG	SEP
1	4.1	.63	1.2	.93	.33	.55	1.4	. 43	1.4	18	1.5	1.3
2	11	1.0	.87	. 75	.33	.59	2.2	. 39	1.6	5.0	1.4	1.2
3	6.3	4.7	.67	.67	.30	.51	8 . 4	. 35	.87	3.9	2.3	1.1
4	2.2	3.4	.59	.59	.30	.51	2.6	. 30	.87	16	1.7	6.6
5	1.4	1.6	.55	.93	.28	. 47	1.5	. 30	.75	3.2	2.0	4.6
6	4.0	1.2	.55	.87	.25	.43	1.1	.30	1.1	2.9	2.5	3.4
7	2.9	2.2	. 47	.81	.28	.47	1.0	.28	1.0	2.9	1.7	3.6
R	2.5	1.5	.39	.81	.39	.47	.93	.28	1.4	2.6	1.8	2.3
9	2.7	1.4	. 47	.81	.85	.43	.75	.22	1.6	2.4	1.7	1.9
10	1.2	1.4	1.3	. 75	.99	. 47	.71	3.3	1.3	1.8	1.4	1.6
11	1.0	1.2	1.2	.71	.47	. 39	.71	.71	1.7	1.7	1.2	1.6
12	. 93	1.1	.71	.67	.39	.28	.71	1.2	1.0	1.7	1.1	1.7
13	.81	.99	.63	.63	.35	.22	.71	.51	.67	1.6	2.5	2.8
14	.75	.93	.55	.59	.33	.20	.75	. 30	.55	5.7	1.4	9.4
15	.71	. 87	.47	.55	.33	.18	.71	. 28	.47	2.6	1.2	3.6
16	. 67	.81	.82	.51	.35	.20	1.0	.72	.59	1.8	1.0	2.4
17	.63	.75	1.2	.51	.33	.20	.71	. 47	.67	5.3	1.9	4.0
18	. 59	.67	8.6	.51	.30	. 65	.63	. 30	.59	3.9	1.4	3.8
19	.55	.63	10	. 60	.28	4 . 1	.59	. 25	1.0	2.3	3.0	2.4
50	.55	.59	4.2	.55	.25	5.2	.55	.22	2.1	1.8	5.0	2.2
21	.47	.55	4.9	.55	.22	8.1	.51	.20	2.3	2.9	4.2	1.8
22	. 43	. 47	4 . 7	. 50	.25	1.8	.48	11	2.2	3.2	2.3	1.6
23	. 43	.51	3.5	.51	1.6	1.6	.43	2.1	2.3	1 .8	1.5	1.7
24	. 43	.51	12	. 47	1.3	. 93	.43	.87	4.9	1.6	1.0	1.6
25	.39	• 59	2.2	.39	.93	.81	.47	.87	4.3	1 . 4	5.0	1.6
26	.35	1.1	1.2	.39	.75	.67	.47	1.2	2.4	1.4	2.5	1.8
27	. 59	2.3	.99	. 35	+63	. 59	.43	.81	4.9	1.2	3.0	1.9
28	. 47	1.0	.81	.35	.59	.59	.43	.55	5.1	1 . 4	2.0	1.5
29	1.8	1.8	.71	. 39	.59	.59	.39	.59	6.9	1.8	2.5	1.4
30	1.2	1.7	.67	.40		.67	.55	.55	3.3	2.3	3.0	2.3
31	1.4		.67	. 39		.71		1.3		1.8	1.6	
TOTAL	53.45	38.10	67.79	18.44	14.54	33.58	32.25	31.15	59.83	107.9	66.3	78.7
MEAN	1.72	1.27	2.19	.59	•50	1.08	1.08	1.00	1.99	3.48	2.14	2.62
MAX	11	4.7	12	.93	1.6	8.1	P.4	11	6.9	18	5.0	9.4
MIN	.35	.47	.39	.35	.22	.18	.39	.20	.47	1.2	1.0	1.1
AC-FT	106	76	134	37	29	67	64	62	119	214	132	156

CAL YR 1979 TOTAL 531.26 MEAN 1.46 MAX 12 MIN .09 AC-FT 1050 WIR YR 1980 TOTAL 602.03 MEAN 1.64 MAX 18 MIN .18 AC-FT 1190

16893700 WICHEN RIVER AT ALTITUDE 55 M, MOEN

LOCATION.--Lat 07°26'45" N., long 151°52'02" E., Hydrologic Unit 20100006, on left bank at Peniesence, 1.0 mi (1.6 km) upstream from mouth, and 1.6 mi (2.6 km) west of Saint Xaviers Academy.

DRAINAGE AREA. -- 0.21 mi2 (0.54 km2), revised.

PERIOD OF RECORD .-- June 1968 to September 1978, October 1979 to January 1980, May to September 1980.

REVISED RECORDS. -- WDR HI-77-2: 1974-76(P).

GAGE .-- Water-stage recorder and concrete control. Altitude of gage is 180 ft (55 m), from topographic map.

REMARKS.--Records poor. No diversion above station. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--10 years, 1.03 ft3/s (0.029 m3/s), 746 acre-ft/yr (920,000 m3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 338 ft 3 /s (9.57 m 3 /s) Sept. 27, 1978, gage height, 4.25 ft (1.295 m), from floodmark, from rating curve extended above 4.6 ft 3 /s (0.13 m 3 /s); minimum, 0.01 ft 3 /s (<0.001 m 3 /s) Mar. 29-31, 1969, for several days in March and April 1973, for many days in February and March 1975, in February, March, April 1977, Jan. 14, 15, and Mar. 27 to Apr. 10, 1978.

EXTREMES FOR CURRENT YEAR.--Peak discharges recorded above base of 70 ft³/s (1.98 m³/s) and maximum (*) during period October 1979 to Jan. 1980 and May to September 1980, from rating curve extended above 4.6 ft³/s (0.13 m³/s):

			Discha	arge	Gage	height
Dat	е	Time	(ft^3/s)	(m^3/s)	(ft)	
Oct.	6	0800	80	2.27	2.66	0.811
Nov	26	2100	*02	2 60	*2 77	811

Minimum recorded discharge, about 0.15 ft3/s (0.004 m3/s) Dec. 30.

DISCHARGE ,	IN	CUBIC	FEET	PER	SECOND.	WATER	YEAR	OCTOBER	1979	10	SEPTEMBER	1980
					MEAN VA	LUES						

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.0	2.3	2.4	.70				1.0	5.0	3.0	1.2	.67
2	1.1	1.6	1.8	2.5				.80	3.4	5.0	4.0	.83
3	3.2	1.1	2.3	2.5				.70	2.3	7.5	2.0	.92
4	7.4	.92	1.8	1.5				1.5	1.6	5.0	2.4	1.1
5	4.9	1.2	3.2	1.0				3.0	1.3	12	2.8	2.8
	100			444								
6	18	3.8	5.2	2.0				1.8	1.1	5.5	2.3	1.4
7	10	3.2	2.6	1.2				1.1	1.0	3.0	1.7	2.0
8	7.6	2.0	1.8	4.5				.83	1.1	2.5	3.2	1.6
9	8.8	1.4	1.1	2.5				.67	.83	1.7	4.1	1.1
10	6.4	1.3	.92	1.5				.59	.67	1.5	4.5	.83
11	4.5	1.1	.67	5.0				3.8	.75	1.3	4.9	.75
12	2.9	6.4	.59	3.0				4.7	.59	3.5	4.1	.67
13	2.0	2.8	.52	2.0				4.9	.59	2.8	3.4	.67
14	1.4	1.8	.59	1.3				4.3	1.7	5.0	2.4	.59
15	1.4	1.3	.46	2.0				2.4	1.0	4.5	1.8	.46
• 1	***	• • • •	• 10	2.0					1.0			• 10
16	5.3	1.0	.40	2.0				1.7	.75	2.5	1.3	.52
17	2.3	.83	.52	1.7				5.9	.92	2.0	1.1	.46
18	1.4	2.9	-46	1.3				3.1	.83	1.7	.92	2.1
19	1.1	1.3	-40	1.0				2.1	.59	8.0	1.0	1.0
20	.75	.92	.40	.80				4.5	.59	4.5	1.0	-59
21	.67	.75	.83	.60				2.3	.52	2.5	.75	.59
22	.52	.75	.75	8.0				1.7	.46	1.7	1.8	.57
23	.46	.59	.90	2.5				1.4	1.5	1.3	1.0	.55
24	.34	. 46	.65	1.5				1.4	2.1	2.5	.75	.53
25	.29	1.1	.45	1.0				1.4	1.1	4.0	.59	.50
26	.34	3.4	.35	.80				4.3	3.3			
										5.0	•52	.40
27	.25	7.6	.30	.60				2.3	2.0	1.5	.52	. 35
28	.25	4.1	.25	1.5				1.6	1.5	1.7	1.0	.30
29	3.5	7.3	.20	.80				1.2	2.0	1.5	.67	.25
30	7.0	3.6	.15	• 60				1.1	3.2	1.0	.52	.20
31	3.9		.30	• 50				1.1		.80	• 46	
TOTAL	108.97	68.82	33.26	58.40				69.19	44.29	103.00	58.70	25.30
MEAN	3.52	2.29	1.07	1.88				2.23	1.48	3.32	1.89	.84
MAX	18	7.6	5.2	8.0				5.9	5.0	12	4.9	2.8
MIN	.25	.46	.15	• 50				.59	-46	.80	.46	.20
AC-FT	216	137	66	116				137	88	204	116	50

NOTE. -- No gage-height record Dec. 22 to Apr. 30, June 27 to July 31.

CAROLINE ISLANDS, TRUK ISLANDS

16893800 WICHEN RIVER AT ALTITUDE 18 M, MOEN

LOCATION.--Lat 07°27'05" N., long 151°52'18" E., Hydrologic Unit 20100006, on left bank at Peniesence and 0.5 mi (0.8 km) upstream from mouth.

DRAINAGE AREA. -- 0.57 mi2 (1.48 km2).

PERIOD OF RECORD.--April 1955 to March 1956 (published as "at Peniesence"), June 1968 to January 1980, May to September 1980. All figures of discharge above 3 ft³/s (0.085 m³/s) prior to April 1956, published in WSP 1751, are unreliable and should not be used.

REVISED RECORDS. -- WSP 2137, WDR-HI-79-2: Drainage area.

GAGE.--Water-stage recorder and concrete control since Mar. 29, 1973. Altitude of gage is 60 ft (18 m), from topographic map. Prior to Apr. 1, 1956, nonrecording gage at site 100 ft (30 m) downstream at different datum.

REMARKS.--Records fair to poor. No diversion above station. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 11 years, 2.98 ft3/s (0.084 m3/s), 2,160 acre-ft/yr (2.66 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 910 ft³/s (25.8 m³/s) June 4, 1972, gage height, 6.80 ft (2.073 m), from rating curve extended above 28 ft³/s (0.79 m³/s); minimum, 0.01 ft³/s (<0.001 m³/s) Apr. 16-19, 1977.

EXTREMES FOR CURRENT YEAR.--Peak discharges recorded above base of 200 ft 3 /s (5.66 m 3 /s) and maximum (*), during period October 1979 to January 1980 and May to September 1980, from rating curve extended above 28 ft 3 /s (0.79 m 3 /s):

Date	Time	Discha (ft³/s)	arge (m³/s)	Gage h	neight (m)	Date	Time	Discha (ft³/s)		Gage h	eight (m)
Oct.	0800 0100	414 248	11.7 7.02	4.63 3.51	1.411 1.070	Nov. 26 May 14	2130 0730	*414 288	11.7 8.16	*4.66 3.82	1.420 1.164

Minimum recorded discharge, 0.37 ft3/s (0.010 m3/s) Dec. 30.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980
MEAN VALUES

DAY	OCT	NOA	DEC	JAN	FER	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5.0	8.0	6.5	1.5				3.0	20	8.4	2.3	1.6
2	5.0	5.6	4.3	6.4				2.5	10	12	12	2.0
3	14	4.5	5.8	6.0				2.0	5.6	20	4.3	2.1
11	34	3.3	4.8	3.6				5.0	4.3	14	5.3	3.1
5	18	4.8	1 P	3.0				10	3.3	29	6.8	7.1
6	78	20	18	5.7				6.0	3.1	15	5.6	3.6
7	42	11	6.5	3.3				3.3	2.8	7.7	4.0	6.2
R	26	5.6	4.3	12				2.4	2.4	6.8	8.8	4.0
9	30	4.3	2.8	6.8				1.8	2.1	4.5	11	3.1
10	21	4.0	2.3	4.0				1.7	1.8	4.0	12	2.1
11	13	3.3	1.8	14				21	2.0	3.6	10	
12	7.7	29	1.5	7.7				18	1.6	9.6	12	1.8
13	5.6	8.0	1.5	4.8				18			9.2	1.8
14	4.5	5.0	1.5	3.3				16	1.8	7.1	7.4	1.8
15	5.1	3.8	1.2	5.9					4.5	13	5.3	1.6
1	7.1	2.0	1.2	9.7				7.3	2.6	12	3.8	1.3
16	1 R	2.8	.88	5.0				4.6	2.1	7.1	3.1	1.5
17	7.1	2.3	1.3	4.3				35	2.3	4 . 8	2.4	1.6
18	4 . B	8.0	1.0	3.6				11	2.3	4.5	2.1	5.0
19	3.8	3.8	.88	2.4				6.8	2.0	21	2.1	3.6
20	2.8	2.6	1.2	5.0				19	2.1	-0	2.3	2.3
21	2.4	2.3	2.3	1.6				7.7	1.5	6.2	1.6	2.1
22	2.1	2.4	2.0	21				5.3	1.5	4.5	4.0	2.1
23	2.0	2.1	2.4	5.5				4 . 8	4.8	3.3	2.4	2.0
24	1.5	1.6	2.0	3.6				4.3	5.0	6.6	1.8	2.1
25	1.3	3.7	1.3	2.8				3.3	3.3	11	1.3	1.6
26	1.6	40	.88	2.0				11	10	4.5	1.2	1.3
27	1.3	30	.88	1.6				5.0	5.5	4.3	1.3	1.2
28	1.2	12	.65	4.3				3.8	4.0	4.5	3.1	1.0
29	12	29	.55	2.1				2.8	5.0	3.8	2.0	.80
30	30	10	. 45	1.5				2.4	8.8	2.6	1.5	.66
31	1 4		.65	1.3				2.6		2.4	1.6	
TOTAL	414.8	272.8	100.12	152.7				247.4	129.2	268.8	143.6	72.06
MEAN	13.4	9.09	3.23	4.93				7.98	4.31	8.67	4.63	2.40
MAX	78	40	18	21				35	20	29	12	7.1
MIN	1.2	1.6	.45	1.3				1.7	1.5	2.4	1.2	
AC-FT	823	541	199	303				491	256	533	285	.66
			1.7.	.003				441	230	223	285	143

CAL YR 1979 TOTAL 1789.60 MEAN 4.90 MAX 78 MIN .09 AC-FT 3550

NOTE. -- No gage-height record Jan. 30 to May 5.

16897600 NANEPIL RIVER

LOCATION.--Lat 06°55'11" N., long 158°12'36" E., Hydrologic Unit 20100006, on left bank 1.4 mi (2.3 km) northeast of Mount Tamatamansakir and 1.4 mi (2.3 km) southeast of Rekisau.

DRAINAGE AREA. -- 2.93 mi2 (7.59 km2).

PERIOD OF RECORD .-- March 1970 to current year.

REVISED RECORDS. -- WDR HI-76-1: 1970(M), 1971-72(P), 1973(M), 1974(P), 1975(M).

GAGE.--Water-stage recorder. Altitude of gage is 390 ft (119 m), from topographic map.

REMARKS.--Records fair. No diversion above station. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 10 years, 49.1 ft 3/s (1.391 m3/s), 35,570 acre-ft/yr (43.9 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $8,820~{\rm ft}^3/{\rm s}$ (250 m³/s) Aug. 4, 1976, gage height, 9.68 ft (2.950 m), from rating curve extended above 168 ft $^3/{\rm s}$ (4.76 m³/s) on basis of slope-area measurement at gage height 9.68 ft (2.950 m); minimum, 1.6 ft $^3/{\rm s}$ (0.045 m³/s) Nov. 17-23, 1972, Feb. 6, Oct. 21, 22, 1973.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 3,200 ft 3/s (90.6 m 3/s) and maximum (*), from rating curve extended as explained above:

Date		Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)	Date	Time	Disch (ft ³ /s)	arge (m³/s)	Gage h	eight (m)
Dec.	2	1700	4500	127	8.36	2.548	May 8	1015	3800	108	8.05	2.454
Jan.	9	1245	3600	102	7.95	2.420	May 12	0545	*4700	133	*8.44	2.573
Feb.	4	1930	3660	104	7.96	2.414	June 3	1045	3260	92.3	7.81	2.380

Minimum discharge, 3.8 ft3/s (0.108 m3/s) Apr. 10.

DISCHARGE.	IN	CUBIC	FEET	PER	SECOND.	WAIFR	YEAR	OCTOBER	1979	10	SEPTEMBER	1980	
					MEAN VA	LUFS							

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	72	53	36	100	12	12	121	121	102	61	19	48
2	78	34	413	88	9.0	27	57	27	190	49	36	96
3	102	53	95	45	7.0	19	22	17	251	33	20	46
4	119	44	147	26	249	15	12	29	47	99	19	29
5	32	26	66	32	59	10	12	22	55	36	64	25
6	3 3	30	28	91	20	7.6	7.6	206	77	25	41	41
7	89	25	19	42	44	6.8	6.5	136	4.6	18	23	50
8	42	2.9	12	56	320	5 - 6	5.4	329	315	28	17	43
0	25	46	9.4	187	40	5.1	350	94	41	28	23	22
10	16	5.7	7.3	57	7.8	11	4.2	59	24	147	37	17
11	10	47	6.2	33	61	15	9.4	191	24	32	34	16
12	7.8	51	17	25	30	46	1 4	330	31	22	20	16
13	6.9	23	13	20	18	31	40	41	23	37	14	15
14	6.4	27	8.3	72	13	113	15	188	179	57	17	37
15	6.8	60	6.5	113	4.6	68	27	133	59	34	40	19
16	130	50	F . 4	79	22	29	164	37	72	19	38	28
17	25	19	4.8	39	13	53	37	26	33	15	40	181
18	12	5.7	55	46	21	44	20	93	34	83	4.4	33
19	9.7	27	13	66	1 4	24	28	84	4.8	32	4.8	25
20	7.6	18	9.4	48	137	12	149	33	31	20	18	53
21	6.1	17	24	47	56	21	89	28	31	49	131	51
22	33	87	52	56	17	28	113	52	75	23	36	90
23	12	25	130	23	17	15	32	91	109	14	33	41
24	25	3.3	113	15	9.4	10	19	34	38	14	19	21
25	22	22	121	10	9.4	8.0	14	39	23	31	25	14
26	5.5	16	25	59	7.6	7.6	12	192	16	33	22	26
27	20	31	19	18	40	12	1 3	43	13	30	124	76
28	54	73	19	11	9.4	10	54	48	19	26	58	64
. 29	73	24	17	13	8.3	7.3	23	26	59	19	22	18
30	90	13	18	10		8.0	17	19	22	15	32	13
31	33		35	29		17		25		12	17	
TOTAL	1312.3	1117	1544.3	1556	1387.1	698.0	1487.1	2793	2087	1141	1131	1254
MEAN	42.3	37.2	49.8	50.2	47.8	22.5	49.6	90.1	69.6	36.8	36.5	41.8
MAX	130	P 7	413	187	320	113	350	330	315	147	131	181
MIN	6.1	13	4.8	10	7.0	5.1	4.2	17	13	12	14	13
AC-FI	2600	2220	3060	3090	2750	1380	2950	5540	4140	2260	2240	2490

C4L YR 1979 TOTAL 15872.0 MEAN 43.5 MAX 413 MIN 3.9 AC-FT 31480 WTR YR 1980 TOTAL 17507.8 MEAN 47.8 MAX 413 MIN 4.2 AC-FT 34730

16897900 LUI RIVER

LOCATION.--Lat 06°55'36" N., long 158°12'55" E., Hydrologic Unit 20100006, on right bank 300 ft (91 m) upstream from right-bank tributary and 1.3 mi (2.1 km) southeast of Rekisau.

DRAINAGE AREA, -- 0.47 mi² (1.22 km²).

PERIOD OF RECORD .-- March 1970 to current year.

GAGE.--Water-stage recorder. Altitude of gage is 270 ft (82 m), from topographic map.

REMARKS.--Records good. No diversion above station. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 10 years, 5.59 ft3/s (0.158 m3/s), 4,050 acre-ft/yr (4.99 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,190 ft 3 /s (33.7 m 2 /s) Aug. 4, 1976, gage height, 5.92 ft (1.804 m), from rating curve extended above 37 ft 3 /s (1.05 m 3 /s), on basis of slope-area measurement at gage height 5.92 ft (1.804 m); minimum, 0.13 ft 3 /s (0.004 m 3 /s) Feb. 2-4, 1973.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 500 ft³/s (14.2 m³/s) and maximum (*), from rating curve extended as explained above:

Date		Time	Disch (ft ³ /s)	arge (m³/s)	Gage h	eight (m)	Date	Time	Discha (ft³/s)	arge (m³/s)	Gage (ft)	height (m)
Dec. May	2	1900 1015	644 *692	18.2 19.6	4.58	1.396	May 12 May 26	0600 1100	531 612	15.0 17.3	4.24	1.292

Minimum discharge, 0.38 ft3/s (0.011 m3/s) Mar. 30, 31.

						AN VALUE	TER YEAR ! S		77 10 321			
DAY	001	NOV	DEC	NAL	FER	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	9.1	4.3	4.7	8.6	1.1	1.5	14	13	13	8.1	2.8	7.3
2	12	3.8	82	7.8	.81	3.7	7.0	3.2	3.0	8.4	2.1	8.8
3	15	8.4	10	5.5	.65	2.8	2.4	2.1	37	15	2.6	5.7
4	19	7.0	21	2.6	32	2.0	1.3	12	5.9	15	1.6	3.4
5	4 . 4	4.2	9.9	3.6	8 .4	1.1	.97	5.7	5.9	7.0	10	3.2
6	5.4	4.0	5.3	9.4	2.3	.89	.66	41	9.0	3.9	5.0	5.2
7	9.3	3.0	3.8	4 . 5	2.7	. 73	.60	27	5.3	3.3	3.1	7.9
R	7.8	4 . 8	2.8	7.3	64	-66	.60	68	59	5.7	2.1	7.0
9	12	6.1	2.2	73	5.5	.60	.60	10	5.7	7.3	3.1	3.4
10	2.6	5.7	1.7	8.4	6.1	.97	.60	5.7	3.7	17	4.9	2.5
11	1.7	11	1.5	4.4	9.8	1.2	1.1	28	3.1	5.1	3.4	2.1
12	1.2	5.7	2.8	3.1	3.9	2.0	1.4	46	2.3	2.7	2.0	1.8
13	1.2	4.0	2.2	2.5	2.3	2.7	2.2	5.5	1.8	4 . 4	1.5	2.3
14	1.3	13	1.5	6.6	1.7	11	1.1	21	18	3.9	1.3	1.7
15	1 . 1	7.8	.97	11	2.7	7.6	1.5	22	5.9	2.7	3.2	1.2
16	12	9.1	.89	15	2.0	4.5	19	5.1	9.0	2.8	5.3	3.0
17	4 - 4	3.4	.72	5.3	1.2	5.3	4.0	3.4	5.5	2.1	5.0	3.6
18	2.1	17	1.0	6.7	1.6	2.3	2.6	13	3.4	12	10	3.0
19	1.6	4 . 8	.81	5.1	1.1	1.6	3.2	13	5.5	4.4	7.4	2.3
20	1.2	3.2	.73	4.0	16	1.1	20	4 . 8	7.6	2.5	2.6	5.1
21	.89	4.4	1.0	4.2	7.3	1.8	11	5.3	4.0	7.3	14	4.8
22	1.3	16	4.7	5.3	2.3	2.5	21	8.7	6.1	3.9	5.0	7.4
23	.81	5.2	18	2.6	12	1.3	5.0	7.6	10	2.2	2.5	5.0
24	6.2	5.9	17	1.7	2.3	.89	3.7	5.5	5.5	2.5	1.7	2.5
25	3.1	3.0	15	1.4	2.3	.66	2.3	4.2	3.3	6.7	1.5	1.6
26	15	2.2	2.8	4.6	1.5	.54	1.6	35	2.2	4.0	1.4	5.1
27	3.7	4.5	2.5	2.0	1.4	.66	1.5	6.1	1.6	2.6	11	4.6
28	13	9.8	2.2	1.2	1.2	.60	7.5	12	2.2	2.5	3.A	5.3
29	11	4.7	1.8	1.3	1.1	.48	2.6	4 . 4	8.4	2.6	2.0	2.4
30	9.9	3.0	1.7	1.0		. 43	1.7	2.8	3.1	2.8	1.7	1.6
31	4.8		2.8	2.5		3.1		4.4		2.0	1.8	
TOTAL	194.10	189.0	226.02	182.3	197.27	67.31	142.73	445.5	280.0	172.4	125.4	120.8
MEAN	6.26	6.30	7.29	5.88	6.80	2.17	4.76	14.4	9.33	5.56	4.05	4.03
MAX	19	17	82	33	64	11	21	68	59	17	14	8.8
MIN	.81	2.2	.72	1.0	.66	.43	.60	2.1	1.6	2.0	1.3	1.2
AC-FT	385	375	448	362	391	134	283	884	555	342	249	240

CAL YR 1979 TOTAL 2199.16 MEAN 6.03 MAX 103 MIN .48 AC-FT 4360 WIR YR 1980 TOTAL 2342.83 MEAN 6.40 MAX 82 MIN .43 AC-FT 4650

16898200 LUI RIVER AT MOUTH

LOCATION.--Lat 06°57'07" N., long 158°13'16" E., Hydrologic Unit 20100006, on right bank 0.4 mi (0.6 km) upstream from mouth and 1.3 mi (2.1 km) west of Tolenot Peak.

DRAINAGE AREA. -- 2.06 mi2 (5.34 km2).

PERIOD OF RECORD. -- March 1970 to current year.

REVISED RECORDS. -- WDR HI-76-1: 1970(P), 1971-75.

GAGE. -- Water-stage recorder. Altitude of gage is 40 ft (12 m), from topographic map.

REMARKS.--Records good. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 10 years, 25.8 ft3/s (0.731 m3/s), 18,690 acre-ft/yr (23.0 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,360 ft³/s (180 m³/s) Aug. 4, 1976, gage height, 8.91 ft (2.716 m), from rating curve extended above 288 ft³/s (8.16 m³/s) on basis of slope-area measurement at gage height 8.91 ft (2.716 m); minimum, 0.26 ft³/s (0.007 m³/s) Jan. 20, 1973, during short regulation of flow.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 2,000 ft³/s (56.6 m³/s) and maximum (*), from rating curve extended as explained above:

			Disch	arge	Gage h	eight
Dat	е	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Dec.	2	1800	*2260	64.0	*5.91	1.801
May	8	1100	2110	59.8	5.76	1.756

Minimum discharge, 1.1 ft3/s (0.031 m3/s) Apr. 4 during short regulation of flow.

DISCHARGE.	IN	CUBIC	FEET	PER	SECOND.	WATER	YEAR	OCTOBER	1979	TO	SEPTEMBER	1990
					MEAN VA	LUFS						

DAY	OCI	NUA	DEC	JAN	FER	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.6	19	20	24	7.3	7.0	32	4.8	49	36	14	24
2	35	50	338	29	5.2	12	26	24	142	45	12	27
3	57	26	52	24	5.6	11	12	20	138	71	19	22
4	81	29	83	15	114	8.6	7.5	26	35	91	12	19
5	23	23	39	14	4 5	5.8	6.7	33	35	36	34	19
6	24	21	23	40	16	6.0	5.7	143	42	24	25	22
7	37	16	18	24	15	5.4	5.1	114	29	20	18	25
8	21	19	13	32	32 3	5.0	4.6	351	291	22	15	31
9	63	25	11	105	33	4 . 6	4.4	55	38	28	18	20
10	18	25	9.9	47	28	5.2	4.2	44	23	60	2 4	18
11	13	50	R . 4	26	38	6.0	5.4	136	18	28	20	13
12	10	24	10	19	22	6.8	6.2	115	15	20	15	12
13	9.4	2.2	10	15	1.6	8.9	7.0	33	12	5.5	12	13
14	13	6.8	8.3	16	12	31	5.6	126	53	20	12	10
15	11	40	7.2	40	1 4	28	6.2	113	32	20	16	8.8
16	31	4.2	6.6	48	12	23	54	32	29	15	18	14
17	19	22	6.2	28	10	21	19	23	24	13	19	48
18	12	82	6.0	31	10	12	12	50	19	42	38	23
19	10	29	5.8	24	7.9	9.9	1 4	70	22	25	41	14
20	8.6	20	5.8	21	4 5	7.7	82	30	18	18	18	19
21	7.3	22	6.9	18	34	8.1	49	27	18	40	42	18
22	7.0	70	14	22	15	9.4	94	40	22	26	26	22
23	6.2	26	72	15	3 4	7.0	26	36	67	18	18	21
24	20	34	66	11	1 4	6.0	22	28	31	16	13	14
25	12	19	84	9.4	13	5.2	17	22	20	24	11	11
26	8.9	14	21	17	10	4.8	12	120	15	20	11	44
27	17	21	16	11	8.7	4.5	12	37	12	16	61	47
28	42	37	14	8.2	7.9	4.5	35	84	12	14	23	33
29	53	20	12	7.7	6.7	3.9	19	30	30	13	16	19
30	34	14	10	6.9		3.8	13	21	17	15	13	14
31	21		10	11		6.4		23		12	12	
TOTAL	760.4	899	1007.1	759.2	923.3	289.5	618.6	2054	1308	870	646	644.8
MEAN	24.5	30.0	32.5	24.5	31.8	9.34	20.6	66.3	43.6	28.1	20.8	21.5
MAX	81	82	338	105	323	31	94	351	291	91	61	48
MIN	6.2	14	5.8	6.9	5.6	3.8	4.2	20	12	12	11	8.8
AC-FI	1510	1780	2000	1510	1830	5 74	1230	4070	2590	1730	1280	1280

CAL YR 1979 TOTAL 9301.2 MEAN 25.5 MAX 394 MIN 2.8 AC-FT 18450 WTR YR 1980 TOTAL 10779.9 MEAN 29.5 MAX 351 MIN 3.8 AC-FT 21380

16898600 LUPWOR RIVER

LOCATION.--Lat 06°54'15" N., long 158°09'45" E., Hydrologic Unit 20100006, on left bank about 300 ft (91 m) upstream from 50-ft (15-m) waterfall, 1.8 mi (2.9 km) above mouth, and 2.1 mi (3.4 km) west of Mount Tamatamansakir.

DRAINAGE AREA. -- 1.12 mi2 (2.90 km2).

PERIOD OF RECORD. -- September 1972 to current year.

GAGE .- Water-stage recorder. Altitude of gage is 100 ft (30 m), from topographic map.

REMARKS.--Records good except those for period of no gage-height record, which are poor. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 8 years, 9.19 ft3/s (0.260 m3/s), 6,660 acre-ft/yr (8.21 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,090 ft 3 /s (87.5 m 3 /s) Aug. 4, 1976, gage height, 8.26 ft (2.518 m), from rating curve extended above 47 ft 3 /s (1.33 m 3 /s), on basis of estimate of peak flow; minimum, 0.40 ft 3 /s (0.011 m 3 /s) Feb. 18, 19, 1973.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 750 ft³/s (21.2 m³/s) and maximum (*), from rating curve extended as explained above:

			Discha	arge	Gage	height			Discha	arge	Gage he	eight
Dat	е	Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Dec.	2	1900	1140	32.3	6.30	1.920	May 26	1115	775	21.9	5.67	1.728
Jan.	9	a1300	a1000	a28.3	>6.0	>1.83	June 2	0445	1090	30.9	6.22	1.896
Feb.	4	a1930	a1000	a28.3	>6.0	>1.83	June 3	1115	800	22.7	5.72	1.743
May	8	1000	846	24.0	5.81	1.771	June 14	1415	1090	30.9	6.22	1.896
May	12	0530	*1760	49.8	*7.15	2.179	Aug. 21	1130	800	22.7	5.72	1.743

Minimum discharge, 1.3 ft 3 /s (0.037 m 3 /s) Feb. 3.

a About.

		DISC	CHARGE, I	V CUBIC FE		ECOND, WATE		TOBER 19	79 TC SEP	TEMBER 1	980	
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	12	11	10	13	2.0	2.8	19	18	19	21	4.7	27
2	15	7.8	142	10	1.5	3.3	8.0	5.5	55	13	22	41
3	30	13	22	6.9	1.3	3.0	4.5	4 . 1	57	7.6	6.3	16
4	34	10	33	5.2	5.0	2.7	3.2	3.8	11	19	5.1	14
5	11	7.1	19	7.1	10	2.2	3.0	3.9	10	8.6	17	8.2
6	11	6.8	6.8	14	3.5	1.9	2.4	48	13	6.4	23	7.7
7	22	5.2	5.1	6.9	8.0	1.6	2.1	27	8.0	5.1	8.2	12
8	8.8	8.0	3.9	10	6.0	1.5	1.9	83	97	5.1	6.6	11
9	22	9.4	3.3	40	7.0	1.4	1.7	20	12	4.5	9.0	6.2
10	6.6	16	3.0	10	15	2.2	1.6	13	7.7	24	14	6.8
11	5.1	11	2.8	6.0	10	2.2	1.8	37	6.5	6.9	8.1	6.1
12	4.3	7.8	4.0	4.5	5.5	5.0	2.4	96	6.3	5.3	5 .6	5.2
13	3.7	5.7	3.7	3.5	3.5	4.5	3.8	9.8	5.2	10	4.6	7.3
14	3.4	4.7	3.0	10	2.5	24	2.3	30	64	11	6.0	8.1
15	3.3	7.2	2.6	20	6.7	15	4.4	24	12	7.6	6.3	4.8
16	10	12	2.6	15	4.5	6.0	35	8.6	10	5.9	13	8.5
17	4.2	5.9	2.3	7.0	3.4	8.8	7.3	7 - 1	7.3	5.8	16	53
18	2.9	15	24	8.0	3.7	5.8	5.1	16	6.0	22	17	9.6
19	3.7	7.8	5.0	10	3.0	4.5	5.1	14	9.6	9.2	12	8.0
20	3.1	6.4	3.6	8.5	33	3.4	19	7.1	6.2	6.0	5.8	7.5
21	2.9	6.7	4.7	8.5	12	3.5	12	11	6.0	8.3	53	12
22	7.3	16	6.1	10	5.2	4.7	18	16	24	5.9	9.7	11
23	4.1	8.3	28	4.0	3.9	3.5	6.9	32	28	4 . 6	26	8.0
24	13	8.8	25	2.5	3.1	2.6	5.6	9.5	9.8	4.4	7.6	5.6
25	6.4	6.6	26	2.0	2.9	2.3	4.2	8.2	6.8	8.8	5.8	4.6
26	19	5.3	7.1	10	2.6	2.0	3.4	56	5.3	6.8	5.0	4.6
27	6.5	7.4	5.3	3.0	2.4	2.3	3.4	11	4.6	9.4	33	14
28	11	18	4.6	2.5	2.2	2.0	7.3	8.2	5.5	6.6	21	11
29	25	8.2	3.9	2.0	2.7	1.8	4.2	6.3	11	5.9	7.5	5.1
30	22	5.7	3.5	2.0		1.8	3.2	5.1	5.7	4.7	9.1	4.1
31	9.3		4.2	5.0		4.6		5.1		3.9	5.7	
TOTAL	342.6	268.8	420.1	267.1	271.1	132.9	201.8	644.3	530.5	273.3	393.7	348.0
MEAN	11.1	8.96	13.6	8.62	9.35	4.29	6.73	20.8	17.7	8.82	12.7	11.6
MAX	34	18	142	40	60	24	35	96	97	24	53	53
MIN	2.9	4.7	2.3	2.0	1.3	1.4	1.6	3.8	4.6	3.9	4 .6	4.1
AC-FT	680	533	R33	530	538	264	n 0 0	1280	1050	542	781	690

CAL YR 1979 TOTAL 3887.40 MEAN 10.7 MAX 142 MIN .80 AC-FT 7710 WTR YR 1980 TOTAL 4094.20 MEAN 11.2 MAX 142 MIN 1.3 AC-FT 8120

NOTE. -- No gage-height record Jan. 8 to Feb. 14.

> Greater than.

16899500 MUTUNTE RIVER

LOCATION.--Lat 05°22'25" N., long 163°00'24" E., Hydrologic Unit 20100006, on left bank at dam, 0.3 mi (0.5 km) upstream from mouth, and 1.1 mi (1.8 km) northwest of Mount Buache.

DRAINAGE AREA. -- 0.60 mi2 (1.55 km2).

PERIOD OF RECORD. -- May 1971 to current year.

GAGE .- - Water-stage recorder and concrete control. Altitude of gage is 46 ft (14.0 m) from stadia survey.

REMARKS.--Records fair. Water is diverted from diversion dam above station through a 12-in (0.30-m) pipe for domestic use in Tafunsak. Water-quality analyses for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 9 years, 5.71 ft3/s (0.162 m3/s), 4.140 acre-ft/yr (5.10 hm3/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 1,430 ft 3 /s (40.5 m 3 /s) July 16, 1976, gage height, 2.94 ft (0.896 m), from rating curve extended above 140 ft 3 /s (3.96 m 3 /s); minimum, 0.15 ft 3 /s (0.004 m 3 /s) Feb. 15, 1980, during short regulation of flow.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 600 ft 3 /s (17.0 m 3 /s) and maximum (*), from rating curve extended above 140 ft 3 /s (3.96 m 3 /s):

				harge	Gage	height
Dat	е	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Oct.	6	1730	695	19.7	2.55	0.777
May	9	0115	*932	26.4	*2.67	0.814

Minimum discharge, 0.15 ft³/s (0.004 m³/s) Feb. 15, during short regulation of flow.

		DISC	CHARGE. IN	CUBIC F		SECOND. WA		CTEPER 19	79 TC SEF	PTFMPER 19	0.8	
DAY	001	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.3	2.5	2.1	1.6	3.5	2.4	2.7	1.7	2.3	2.1	2.1	6.2
2	2.0	20	2.0	1.8	1.5	.82	12	1.4	2.1	3.2	1.7	2.7
3	1.6	8.5	1.8	8.5	5.6	3.6	1.5	1.7	7.8	3.8	2.5	2.7
4	1.8	4.5	50	3.6	2.1	15	.95	1.7	25	8.4	3.0	3.4
5	3.4	4.0	12	6.6	1.5	6.3	. 78	1.6	7.0	2.5	2.0	10
6	56	3.5	7.0	4.9	1.3	26	. 71	4.1	3.0	3.8	2.0	7.1
7	7.9	3.0	2.7	3.8	5.6	3 . F	.71	2 • 1	2.7	2.3	1.8	4.7
Я	3.8	2.0	9.8	2.7	7.5	. 95	.71	3.0	47	2.0	1.7	2.7
9	2.3	2.5	3.5	2.1	3. 2	5.0	1.2	78	5.6	4.1	3.0	1.6
10	2.1	3.5	2.1	1.6	2 . ?	2.1	1.5	11	11	5.4	2.7	1.8
11	8.2	1.5	1.8	2.0	1.8	1.3	1.1	6.3	21	4.0	5.4	1.5
12	12	1.0	4.5	2.0	1.5	4.7	. 95	9.9	23	7.5	2.0	1.3
13	5.7	1.0	11	1.8	1.2	6.0	2.1	11	0.9	3.7	1.5	1.2
14	4.7	.90	3 . C	4.5	1.1	1.7	1.4	4.7	22	7.8	1.5	1.3
15	3.8	20	2.0	3.4	. 71	1.4	8.9	7.0	12	10	1.6	. 95
16	2.7	3.5	1.7	2.1	. 86	1.2	8.4	1 4	4.9	7.0	6.4	2.4
17	3.6	2.5	1.4	2.3	1.0	1.1	1.7	19	3.7	4.0	17	2.0
18	2.5	1.5	1.3	3.8	. 86	9.5	1.1	7.8	12	4.1	3.6	1.5
19	2.3	1.5	1.5	11	1.2	2.3	.86	4.1	6.3	4.0	2.3	1.5
50	2.1	5.0	3.0	7.0	6.0	.51	. 71	3.0	4.0	3.8	2.0	3.3
21	2.5	15	2.3	3.6	12	.35	.95	2.3	2.7	4.3	3.7	5.0
22	2.1	6.5	1.7	2.5	4.2	11	12	3.2	4 - 1	2.1	6.3	4.6
23	5.4	4.0	1.5	2.1	42	16	2.7	3.0	3.7	4.5	4.6	2.2
24	6.4	3.0	2.5	1.8	7.0	1.7	.86	2.7	14	3.0	2.1	1.6
25	3.8	4.0	6.3	1.5	2.1	19	25	6.7	3.5	2.0	1.6	1.4
26.	3.8	1.5	2.9	1.3	. 95	1.5	1.5	8.4	3.2	1.8	1.5	1.3
27	3.0	1.4	7.5	1.3	.64	1.1	1.1	2.5	2.7	1.5	3.5	1.5
28	7.1	1.4	3.4	1.2	. 57	.57	3.5	2.1	4.9	4.1	2.3	1.4
29	7.0	1.3	2.5	1.2	. 40	.57	3.7	2.1	5.4	4.9	2.1	1.4
70	4.0	2.3	1.8	1.2		.64	1.5	2.0	2.7	2.0	2.1	1.1
31	3.0		1.6	1.4		.95		3.2		1.7	1.5	7-5
TOTAL	178.9	129.80	124.2	96.2	120.28	146.06	102.79	245.3	278.2	125.4	97.1	81.35
MEAN	5.77	4.33	4.01	3.10	4 . 1 5	4.71	3.43	7.91	9.27	4.05	3.13	2.71
MAX	56	20	20	11	42	26	25	7 8	47	10	17	10
MIN	1.6	.90	1.3	1.2	. 49	. 35	.71	1.4	2.1	1.5	1.5	. 95
AC-FI	355	257	246	191	239	2 9 0	204	4 2 7	552	249	193	161

CAL YR 1979 TOTAL 2072.44 MEAN 5.68 MAX 56 MIN .78 AC-FT 4110 WTR YR 1980 TOTAL 1725.58 MEAN 4.71 MAX 78 MIN .35 AC-FT 3420

16899600 OKAT RIVER

LOCATION.--Lat 05°20'32" N., long 162°59'30" E., Hydrologic Unit 20100006, on left bank 1.6 mi (2.6 km) upstream from mouth and 1.9 mi (3.1 km) northwest of Mount Crozer.

DRAINAGE AREA. -- 1.60 mi2 (4.14 km2).

PERIOD OF RECORD, -- July 1971 to current year.

REVISED RECORDS. -- WDR Hawaii 1974: 1971-72(P), 1973(M).

GAGE .- Water-stage recorder. Altitude of gage is 10 ft (3.0 m), from topographic map.

REMARKS.--Records fair to poor. No diversion above station. Water-quality analyses for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 9 years, 21.4 ft3/s (0.606 m3/s), 15,500 acre-ft/yr (19.1 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,060 ft 3 /s (30.0 m 3 /s) Aug. 2, 1976, gage height, 8.22 ft (2.505 m), from rating curve extended above 230 ft 3 /s (6.51 m 3 /s); minimum, 1.4 ft 3 /s (0.040 m 3 /s) Mar. 11, 1977.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 700 ft 3 /s (19.8 m 3 /s) and maximum (*), from rating curve extended above 230 ft 3 /s (6.51 m 3 /s):

Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	neight (m)	Date	Time	Disch (ft ³ /s)	arge (m³/s)	Gage h	neight (m)
Oct. 6	1800	788	22.3	7.04	2.146	June 8	0230	754	21.4	6.95	2.118
May 9	0130	*805		*7.12	2.170	June 12	2130	701	19.9	6.68	2.036

Minimum discharge, 4.3 ft3/s (0.122 m3/s) Nov. 14.

DISCHARGE .	IN	CUEIC	FEET	PER	SECCND.	WATER	YEAR	OCTCRER	1979	TC	SEPTEMPER	1980
					ME AN VAI	HES						

DAY	001	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	14	10	8.5	9.3	9.6	11	35	10	16	12	10	17
2	12	76	7.0	6.7	9.7	32	64	9.3	15	13	8.2	9.3
3	9.0	30	7.4	42	29	17	13	9.6	42	14	22	7.8
tı	8.6	18	R1	14	12	3.0	10	8.2	89	71	23	14
5	16	1 4	40	17	12	16	8.2	65	32	14	10	61
6	122	12	39	12	9.3	57	6.3	14	19	19	14	40
7	5.3	11	27	12	31	17	5.4	9.3	18	13	10	22
8	58	9.6	30	8.5	2 6	8.9	4.8	14	190	12	8.5	13
9	30	11	16	6.3	17	10	6.0	190	54	18	5 R	9.6
10	25	12	12	5.7	1 3	8.5	17	79	65	71	36	13
11	6.8	6.3	10	5.7	11	7.4	10	44	99	16	39	14
12	69	5.4	32	5.7	10	21	6.0	56	94	25	14	9.6
13	48	5.4	27	5.1	8.9	17	7.8	4.8	59	16	11	8.9
14	40	4.6	14	13	8.5	7.8	5 . 4	33	87	37	11	8.2
15	26	71	10	6.7	8.2	7.4	53	32	45	30	10	7.8
16	23	12	8.2	5.1	8.5	5.4	56	45	27	18	20	7.0
17	32	10	17	5.7	8.2	4 . 8	1 6	55	23	12	11	10
18	19	8.5	7.8	16	8.2	30	15	40	30	20	8.9	7.4
19	16	8.5	7.C	68	5.6	17	20	27	58	22	8.2	8.2
20	14	8.9	11	48	24	7.0	19	22	22	21	7.4	27
21	13	47	11	21	54	5.7	9.3	18	17	13	16	14
22	19	24	7.0	20	2 5	41	57	3.0	4.5	9.6	40	16
23	32	15	9.6	1 3	76	41	35	25	2.8	22	16	9.3
54	5.5	13	17	10	4 4	19	16	19	32	23	9.3	7.8
25	16	16	13	11	21	7 C	158	117	50	16	8.2	10
26	19	8.5	8.5	11	14	19	32	48	27	17	7.8	7.8
27	12	7.8	8.9	11	13	14	20	26	19	9.6	13	10
28	21	7.4	17	9.3	1 C	11	39	23	3.8	73	7.8	7.0
29	25	6.3	12	8.9	10	9.3	22	17	25	29	7.8	6.3
3.0	16	11	6.3	8.5		8.2	13	14	14	13	12	6.0
31	11		5.7	8.5	1111	10		17		10	9.6	
TOTAL	908.4	500.2	527.9	444.7	-4 C . ?	58C.4	775.2	1164.4	1719	629.2	487.7	409.0
MEAN	29.3	16.7	17.0	14.3	18.6	18.7	25.8	37.6	44.0	20.3	15.7	13.6
MAX	122	76	81	6.8	74	70	158	19C	190	73	58	61
MIN	8.6	4.6	5.7	5.1	8.2	4.8	4.8	8.2	1 4	9.6	7.4	6.0
AC-FT	1800	992	1050	882	1 07 0	1150	1540	231C	2620	1250	967	811

CAL YR 1979 TOTAL 9943.3 MEAN 27.2 MAX 265 MIN 4.6 AC-FT 19720 WTR YR 1980 TOTAL 8286.6 MEAN 22.6 MAX 190 MIN 4.6 AC-FT 16440

16899620 MELO RIVER

LOCATION.--Lat 05°21'06" N., long 162°59'29" E., Hydrologic Unit 20100006, on left bank 0.35 mi (0.56 km) upstream from mouth and 1.7 mi (2.7 km) southwest of Mount Buache.

DRAINAGE AREA. -- 0.48 mi² (1.24 km²).

PERIOD OF RECORD .-- October 1974 to September 1979, June to September 1980.

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 20 ft (6.1 m), from topographic map.

REMARKS.--Records fair. Water-quality analyses for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 5 years, 7.01 ft3/s (0.199 m3/s), 5,080 acre-ft/yr (6.26 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 784 ft 3 /s (22.2 m 3 /s) Mar. 22, 1976, gage height, 5.78 ft (1.762 m), from rating curve extended above 17 ft 3 /s (0.48 m 3 /s); minimum, 0.65 ft 3 /s (0.018 m 3 /s) about Mar. 10, 1977.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 300 ft 3 /s (8.50 m 3 /s) and maximum (*) during period June to September, from rating curve extended above 17 ft 3 /s (0.48 m 3 /s):

Date	Time	Disc (ft³/s	charge s) (m³/s)	Gage h	neight (m)	Date	Time	Dis (ft³/	charge s) (m³/s)	Gage h	neight (m)
June 8	0230	476	13.5	4.32	1.317	July 10	1200	*678	19.2	*4.97	1.515
June 12	2030	488	13.8	4.36	1.329	Aug. 17	1000	334	9.46	3.77	1.149
June 14	0030	386	10.9	3.98	1.213	Sept. 5	1800	449	12.7	4.28	1.304

Minimum discharge, 0.91 ft 3 /s (0.026 m 3 /s) Sept. 30.

		DIS	CHARGE, IN	CUBIC F	EET PER S MEA	ECOND, JUI N VALUES	NE 1980 T	O SEPTEME	BER 1980	3.		
DAY	0 C T	NOV	DEC	JAN	FER	MAR	APR	MAY	NUL	JUL	AUG	SEP
1									4.8	4.8	2.9	6.3
2									4.3	5.6	2.2	3.1
2 3 4 5									12	5.3	5.5	2.9
4									26	9.3	6.3	5.1
5									9.1	4.6	2.8	32
6									5.8	5.1	4.0	14
7									6.1	3.6	2.4	8.4
R									50	3.4	2.2	5.0
9									8.8	9.4	8.1	3.6
10									1 4	50	5 . 4	4.6
11									21	6.7	10	3.3
12									24	8.5	3.3	2.6
13									1 3	5.3	2.6	2.2
14									3.1	12	2.2	1.9
15									15	9.2	2.1	1.8
16									8.8	5.8	3.6	2.0
17									7.6	4 . 6	11	2.9
18									14	4.1	3.7	1.6
19									8.7	3.4	2.4	2.2
20									6.3	4.0	2.4	5.2
21									5.3	3.8	4.4	3.8
22									8.3	2.8	9.7	4.1
23									6.4	6.9	4.6	2.2
24									11	4.0	2.9	1.8
25									5.0	3.3	2.4	2.4
26									12	2.8	2.2	1.6
27									5.3	2.4	4.0	2.3
28									12	13	2.8	1.6
29									7.2	5.8	3.8	1.2
30									4.8	3.1	4.0	1.1
31										2.6	2.4	211
TOTAL									367.6	185.2	128.3	132.8
MEAN									12.3	5.07	4.14	4.43
MAX									50	20	11	32
MIN									4.3	2.4	2.1	1.1
AC-FT									729	367	254	263

NOTE. -- No gage-height record Oct. 1 to May 31.

16899750 MALEM RIVER

LOCATION.--Lat 05°18'21" N., long 163°01'46" E., Hydrologic Unit 20100006, on left bank 1.2 mi (1.9 km) upstream from mouth and 1.8 mi (2.9 km) southeast of Mount Crozer.

DRAINAGE AREA. -- 0.48 mi 2 (1.24 km2).

PERIOD OF RECORD. -- July 1971 to current year.

GAGE. --Water-stage recorder and concrete control. Altitude of gage is 95 ft (29 m) from stadia survey.

REMARKS.--Records fair. Water is diverted through 6-in (0.2-m) pipe from dam above station for domestic use in village of Malem. Water-quality analyses for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 9 years, 7.17 ft3/s (0.203 m3/s), 5,190 acre-ft/yr (6.40 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,550 ft 3 /s (43.9 m 3 /s) Mar. 22, 1976, gage height, 6.20 ft (1.890 m), from rating curve extended above 110 ft 3 /s (3.12 m 3 /s); minimum, 0.14 ft 3 /s (0.004 m 3 /s) Nov. 20, 1974, during flushing at dam upstream.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 350 ft 3 /s (14.2 m 3 /s), revised, and maximum (*), from rating curve extended above 110 ft 3 /s (3.12 m 3 /s):

DISCHARGE. IN CHAIR EFFT PER SECOND. WATER YEAR OCTORED 1979 TO SEPTEMBED 1980

Date	Time	Disch (ft³/s)		Gage (ft)	height (m)
Date	TIME	(10 /3)	(11 /3)	(10)	(m)
May 10	1500	368	10.4	4.62	1.408
June 12	2030	*396	11.2	*4.69	1.430
June 13	1700	356	10.1	4.59	1.399

Minimum discharge, 0.31 ft³/s (0.009 m³/s) Feb. 20, during short regulation of flow.

		0150	CHARGE . IN	CURIC F		EAN VALUES		OCTOBER 1	779 TO SEF	PIFMBER 19	980	
DAY	ост	NOV	DEC	JAN	FER	MAR	APR	MAY	מטנ	JUL	AUG	SEP
1	2.5	2.5	3.5	3.5	1.9	2.6	15	5.3	6.1	3.8	2.6	1.9
2	2.4	30	3.0	2.4	1.6	4.6	29	4 . 3	5.5	4.0	2.4	1.8
3	2.0	10	2.6	16	3.8	3.0	6.7	20	14	3.6	9.3	1.6
4	2.8	6.5	39	3.6	2.6	16	4.7	6.7	3.8	7.1	6.9	1.4
5	4.8	5.0	19	2.8	1.9	6.1	3.9	19	13	3.3	3.0	1.3
6.	38	4.0	11	3.3	1.4	25	3.3	8.4	7.2	4.7	3.9	2.0
7	11	3.5	6.0	3.3	5.2	6.9	3.0	5.5	5.9	3.0	3.3	7.8
8	4.6	2.5	5.5	2.8	7.5	4.3	2.6	6.6	31	2.8	3.4	3.3
9	5.1	2.5	4.3	2.1	3.5	6.1	2.5	77	9.7	2.5	1 4	1.6
10	3.3	4.0	3.3	1.8	4.4	4.9	2.5	50	19	2.5	8.3	5.5
11	5.8	2.5	3.0	1.9	2.8	3.9	3.7	16	25	2.5	9.3	3.9
12	15	1.5	9.4	1.8	1.5	9.0	2.4	24	31	8.5	4.1	2.0
13	14	1.5	9.0	1.7	1.6	7.4	2.8	1.5	16	12	2.9	1.6
14	7.9	1.3	4 . 4	4.2	1.5	3.9	2.0	11	22	8.6	2.6	1.5
15	5.1	25	3.5	2.1	1.4	3.0	1 P	8 . 5	11	9.2	2.3	2.8
16	4.4	4.0	2.9	1.7	2.4	2.8	19	16	7.9	7.4	2.0	3.7
17	4.7	2.5	7.2	2.0	1.4	2.4	6.5	17	7.9	4.1	3.5	5.1
18	3.5	2.0	3.2	3.0	1.5	7.5	6 . C	12	10	3.5	2.1	1.9
19	2.9	2.0	2.8	22	1.7	3.9	4.9	8.6	14	2.9	1.7	1.6
20	3.1	2.5	4.2	20	1.8	2.8	4.7	7.2	R. 9	3.0	1.7	5.1
21	2.4	20	3.0	5.1	14	2.3	3.3	5.5	5.9	2.8	4.6	14
22	4.1	9.0	2.9	3.6	5.3	11	9.6	13	9.2	2.4	6.9	10
23	7.6	5.0	2.5	2.8	12	18	5.9	7.4	8.9	9.9	3.9	3.5
24	7.6	4.0	4 . 4	2.4	14	7.8	7.9	7.2	12	3.6	2.1	2.5
25	7.5	5.5	4.7	2.5	4.3	31	34	37	5.9	2.6	1.8	2.1
26	4.9	2.0	2.8	2.0	2.9	5.5	7.6	15	4.7	3.6	2.4	2.8
27	3.6	1.9	3.7	1.9	2.6	4.7	5.1	7.4	4.1	2.5	8.0	2.3
28	9.1	1.7	5.2	1.8	2.0	4.1	5.6	6.1	11	21	3.2	1.6
29	10	1.6	3.0	1.6	2.0	3.3	6.1	5.7	8.4	9.5	2.5	1.5
30	5.5	2.4	2.1	1.6		2.9	3.6	5.1	7.9	3.9	1.9	1.3
31	3.5		1.9	1.6		13		6.5		2.9	1.6	
TOTAL	208.7	168.4	183.0	128.9	110.8	230.7	227.9	455.4	378.1	163.7	128.2	99.0
MEAN	6.73	5.61	5.90	4.16	3.82	7.44	7.60	14.7	12.6	F.28	4.14	3.30
MAX	38	30	39	22	14	31	34	77	38	21	14	14
MIN	2.0	1.3	1.9	1.6	1.4	2.3	2.0	4.3	3.9	2.4	1.6	1.3
AC-FI	414	334	363	256	220	458	452	9 C 3	750	325	254	196

CAL YR 1979 TOTAL 2722.5 MEAN 7.46 MAX 69 MIN 1.1 AC-FT 5400 WTR YR 1980 TOTAL 2482.8 MEAN 6.78 MAX 77 MIN 1.3 AC-FT 4920

16899800 TOFOL RIVER

LOCATION.--Lat 05°19'53" N., long 163°01'25" E., Hydrologic Unit 20100006, on left bank 25 ft (7.6 m) downstream from right-bank tributary, 0.7 mi (1.1 km) upstream from mouth, and 1.2 mi (1.9 km) northeast of Mount Crozer.

DRAINAGE AREA. -- 0.44 mi2 (1.14 km2).

PERIOD OF RECORD. -- June 1971 to September 1979, March to September 1980.

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 98 ft (29.9 m) from stadia survey.

REMARKS.--Records fair to poor. Water is diverted through 8-in (20-cm) pipe from dam above station for domestic use. Water-quality analyses for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 8 years, 5.94 ft3/s (0.168 m3/s), 4,300 acre-ft/yr (5.30 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,270 ft³/s (36.0 m³/s) Mar. 22, 1976, gage height, 5.56 ft (1.695 m), from rating curve extended above 79 ft³/s (2.24 m³/s); minimum, 0.70 ft³/s (0.020 m³/s) Aug. 21, 22, Dec. 12, 1977, during short regulation of flow at dam upstream.

EXTREMES FOR CURRENT YEAR.--Peak discharges during period March to September above base of 450 ft 3 /s (12.7 m 3 /s), and maximum (*), from rating curve extended above 79 ft 3 /s (2.24 m 3 /s):

			Discha	arge	Gage	height
Date		Time	(ft^3/s)		(ft)	(m)
May	9	a0130	*a800	22.7		
June	8	0200	770	21.8	4.78	1.457
Tune	12	2100	548	15 5	4 32	1 317

Minimum discharge, 1.1 ft3/s (0.03 m3/s), Sept. 19.

a About.

DISCHARGE, IN CUBIC FEET PER SECOND, MARCH 1980 TO SEPTEMBER 1980
MEAN VALUES

OCT.	NOV	DEC	JAN	FEB	MAR 3.0 5.4 3.3 8.4 4.8	APR 15 30 7.0 5.0 4.0	MAY 5.5 4.5 20 6.5	Jun 6.1 5.5 13 26	3.5 4.5 3.6 7.4 3.3	2.5 2.5 9.0 7.0 3.0	2.9 2.2 1.9
					5 • 4 3 • 3 8 • 4 4 • 8	7.0 5.0	4.5 20 6.5	5.5 13 26	4.5 3.6 7.4	2.5 9.0 7.0	2.2 1.9 1.9
					3 • 3 8 • 4 4 • 8	7.0 5.0	20 6.5	13 26	3.6 7.4	9.0 7.0	1.9
					8.4	5.0	6.5	26	7.4	7.0	1.9
					4.8						
					4.8						
					1.8					3.0	1.9
						3.5	8.5	7.1	4.2	3.1	2.3
					5.9	3.0	5.5	6.2	2.8	2.7	7.7
					4.2	2.5	6.5	42	2.6	2.6	2.7
					6.0	2.5	80	12	2.3	9.0	1.9
					4.7	2.5	50	18	2.5	6.4	5.9
					4.7	2.5	30	10	2.7	0.4	3.4
					3.6	3.5	15	24	2.5	7.4	3.3
											2.0
											1.8
					3.8	2.0			8.5	2.3	1.5
					3.2	20	8.3	13	9.0	2.1	1.2
					2.7	20	11	10	7.5	2.2	1.2
						6.6	16	9.3			2.7
					7.4	5.9	11	9.7	3.5	1.9	1.3
											1.5
					3.0	4.7	6.6	7.8	3.0	1.6	3.7
					2.5	3.8	5-5	5.5	3.0	2.7	9.2
											7.7
											2.7
											2.0
					30	31	26	4.8	2.5	1.9	1.9
											20.2
											1.9
											2.1
											1.6
											1.5
											1.5
					15		6.5		3.0	2.7	
					214.4	243.3	425.5	367.9	161.7	105.2	83.6
					6.92	8.11					2.79
					30		80	42	20	9.0	9.2
											1.2
											166
						7.8 5.9 3.8 3.2 2.7 2.5 7.4 3.8 3.0 2.5 10 20 8.0 30 6.5 4.5 4.0 3.5 3.0 15	7.8 2.5 5.9 3.0 3.8 2.0 3.2 20 2.7 20 2.5 6.6 7.4 5.9 3.8 5.2 3.0 4.7 2.5 3.8 10 14 20 6.8 8.0 4.8 30 31 6.5 8.6 4.5 6.8 4.0 7.5 3.5 6.8 3.0 4.7	7.8 2.5 25 5.9 3.0 15 3.8 2.0 8.9 3.2 20 8.3 2.7 20 11 2.5 6.6 16 7.4 5.9 11 3.8 5.2 8.1 3.0 4.7 6.6 2.5 3.8 5.5 10 14 8.3 20 6.8 6.2 8.0 4.8 5.9 30 31 26 6.5 8.6 12 4.5 6.8 7.1 4.0 7.5 6.6 3.5 6.8 5.2 3.0 4.8 4.3 15 6.5 214.4 243.3 425.5 6.92 8.11 13.7 30 31 80 2.5 2.0 4.3	7.8 2.5 25 28 5.9 3.0 15 17 3.8 2.0 8.9 27 3.2 20 8.3 13 2.7 20 11 10 2.5 6.6 16 9.3 7.4 5.9 11 9.7 3.8 5.2 8.1 10 3.0 4.7 6.6 7.8 2.5 3.8 5.5 5.5 10 14 8.3 10 20 6.8 6.2 8.8 8.0 4.8 5.9 9.8 30 31 26 4.8 6.5 8.6 12 4.2 4.5 6.8 7.1 3.8 4.0 7.5 6.6 8.0 3.5 6.8 5.2 6.7 3.0 4.8 4.3 3.6 15 6.5 214.4 243.3 425.5 367.9 6.92 8.11 13.7 12.3 30 31 80 42 2.5 2.0 4.3 3.6	7.8	7.8 2.5 25 28 8.5 3.3 5.9 3.0 15 17 12 2.6 3.8 2.0 8.9 27 8.5 2.3 3.2 20 8.3 13 9.0 2.1 2.7 20 11 10 7.5 2.2 2.5 6.6 16 9.3 4.0 2.5 7.4 5.9 11 9.7 3.5 1.9 3.8 5.2 8.1 10 3.0 1.7 3.0 4.7 6.6 7.8 3.0 1.6 2.5 3.8 5.5 5.5 3.0 2.7 10 14 8.3 10 2.5 4.5 20 6.8 6.2 8.8 10 3.2 8.0 4.8 5.9 9.8 3.5 1.9 3.2 8.0 4.8 5.9 9.8 3.5 1.9 3.2 8.0 4.8 5.9 9.8 3.5 1.9 3.5 6.8 7.1 3.8 2.5 3.5 1.9 3.5 6.8 7.1 3.8 2.5 3.5 1.0 3.5 6.8 5.2 6.7 9.0 2.8 3.0 4.8 4.3 3.6 4.0 3.0 1.7 3.0 4.8 4.3 3.6 4.0 3.0 1.7 3.0 4.8 4.3 3.6 4.0 3.0 2.7 214.4 243.3 425.5 367.9 161.7 105.2 6.92 8.11 13.7 12.3 5.22 3.39 30 31 80 42 20 9.0 2.5 2.0 4.3 3.6 2.3 1.6 42 20 9.0

NOTE. -- No gage-height record Oct. 1 to Feb. 29, May 1-13.

SAMOA ISLANDS, ISLAND OF TUTUILA

16912000 PAGO STREAM AT AFONO

LOCATION.--Lat $14^{\circ}16^{\circ}03^{\circ}$ S., long $170^{\circ}39^{\circ}02^{\circ}$ W., Hydrologic Unit 20100001, on left bank 0.2 mi (0.3 km) south of Afono and 0.3 mi (0.5 km) upstream from mouth.

DRAINAGE AREA. -- 0.60 mi2 (1.55 km2).

PERIOD OF RECORD. -- October 1958 to current year. Prior to July 1960, published as Afono Stream at Afono.

REVISED RECORDS. -- WSP 1937: Drainage area.

GAGE .- - Water-stage recorder and concrete control. Altitude of gage is 30 ft (9 m), from topographic map.

REMARKS.--Records fair except for periods of backwater and no gage-height record, which are poor. About $0.06 \, \mathrm{ft^3/s} \, (0.002 \, \mathrm{m^3/s})$ is diverted above station for domestic use in Afono. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--21 years (water years 1960-80), 3.38 ft³/s (0.096 m³/s), 2,450 acre-ft/yr (3.02 hm³/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 1,350 ft 3 /s (38.2 m 3 /s) July 5, 1969, gage height, 5.49 ft (1.673 m), from rating curve extended above 52 ft 3 /s (1.47 m 3 /s); minimum, 0.15 ft 3 /s (0.004 m 3 /s) Oct. 25, 1976.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 210 ft 3 /s (5.95 m 3 /s), from rating curve extended above 52 ft 3 /s (1.47 m 3 /s), and maximum (*):

Date	Time	Discharge (ft³/s)(m³/s)	Gage h	eight (m)	Date	Time	Discharge (ft ³ /s)(m ³ /s)	Gage he	eight (m)
Oct. 8	0800	210 5.95	3.28	1.000	Sept. 18	0800	321 9.09	3.67	1.119
May 8	2400	*474 13.4	*4.06	1.237	Sept. 24	0300	258 7.31	3.46	1.055

Minimum discharge, 0.28 ft3/s (0.008 m3/s) Oct. 19.

		DIS	CHARGE . I	V CUBIC FE		ECOND. WAT		OCTOBER 19	79 TO SE	PTEMBER 19	80	
DAY	oct	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
			000	O.A.I.	, 20		-1.11		Suiv	OUL	H 00	361
1	.87	7.6	1.2	2.2	1.2	.71	4.5	.87	2.3	1.9	1.4	1.4
2	.87	4.2	1.1	4.1	1.3	.63	6.0	.79	2.2	1.5	1.3	1.4
3	1.1	3.4	1.1	4.8	1.1	. 63	28	.87	2.0	3.6	2.0	1.5
4	.71	2.9	1.0	2.4	.95	.63	6.5	.79	1.9	2.7	1.8	1.3
5	.63	2.4	.95	1.8	.87	.63	4.2	.79	1.8	2.0	2.3	1.3
6	2.6	1.9	.87	1.5	.87	8.9	3.1	.79	1.6	1.4	1.9	1.3
7	1.3	4.2	.87	1.3	2.3	7.5	2.6	17	1.5	1.2	3.1	1.4
8	.79	4.0	.79	1.9	8 .6	1.9	2.3	22	1.3	1.1	1.8	1.3
9	.71	26	1.1	1.4	12	1.2	2.0	81	1.8	1.0	1.4	1.3
10	.55	21	4.5	1.2	4.0	1.0	1.8	9.8	3.7	1.0	11	1.3
11	.50	12	3.8	1.1	2.0	1.0	1.6	6.4	5.2	1.0	3.8	1.2
12	.50	7.2	2.3	1.0	1.4	.79	1.5	4.9	3.6	. 95	9.3	1.1
13	. 44	4.7	1.4	1.7	1.5	1.0	1.5	45	3.4	1.1	16	1.1
14	. 44	3.6	1.1	2.8	1.2	. 95	1.5	6.5	3.1	15	4.2	1.5
15	. 44	3.4	.95	3.4	1.0	1.1	1 . 4	4.9	3.2	4.7	2.6	1.9
16	. 4 4	6.1	.87	1.8	1.3	1.1	1.4	4.5	2.7	3.R	3.5	1.8
17	.38	1.3	.79	1.3	1.1	2.3	1.2	4.0	2.3	2.2	2.3	1.9
18	.38	1.4	.79	1.1	1.2	5.9	1.1	9.9	2.0	4.0	2.3	35
19	.38	1.6	.71	1.2	1.2	4.4	1.1	5.7	1.9	4.2	2.2	4.9
20	9.2	1.2	.71	1.2	1.0	2.4	1.2	5.4	1.7	2.3	2.0	4.5
21	5.9	1.1	.71	1.0	.87	1.8	1.4	4.9	1.5	5.2	2.0	4.2
22	11	. 95	.71	.79	-87	1.3	1.2	4.7	1.5	30	1.9	11
23	11	1.2	4.7	2.3	.79	2.3	3.8	3.8	1.5	7.5	2.0	5.2
24	5.2	1.0	3.1	3.4	.79	2.7	1.6	3.1	1.4	2.6	1.9	77
25	3.6	5.0	3.1	5.0	1.0	18	1.2	2.9	1.3	2.3	2.0	7.5
26	9.9	9.2	2.4	1.2	1.0	5.7	1.2	8.5	1.4	1.9	1.8	5.4
27	9.5	3.8	1.6	1.1	.79	11	1.2	3.8	1.3	1.5	1.6	4.9
28	48	2.3	3.1	1.4	.79	7.2	1.1	3.1	1.3	2.3	1.5	4.9
29	21	1.6	6.4	1.0	.71	4.5	1.1	2.6	2.3	2.0	1.4	4.6
30	18	1.5	4.0	1.4		2.9	1.0	3.8	2.2	1.6	1.4	4.2
31	19		2.0	1.5		2.4		2.4		1.5	1.4	
TOTAL	185.33	147.75	58.72	56.29	53.70	104.47	89.3	275.50	65.0	115.05	95.1	197.3
MEAN	5.98	4.93	1.89	1.82	1.85	3.37	2.98	8.89	2.17	3.71	3.07	6.58
MAX	48	26	6.4	4.8	12	18	28	81	5.2	30	16	77
MIN	.38	. 95	.71	.79	.71	.63	1.0	.79	1.3	. 95	1.3	1.1
AC-FI	368	293	116	112	107	207	177	546	129	228	189	391

CAL YR 1979 TOTAL 1265.67 MEAN 3.47 MAX 56 MIN .34 AC-FT 2510 WTR YR 1980 TOTAL 1443.51 MEAN 3.94 MAX 81 MIN .38 AC-FT 2860

SAMOA ISLANDS, ISLAND OF TUTUILA

16920500 AASU STREAM AT AASU

LOCATION.--Lat 14°17'51" S., long 170°45'30" W., Hydrologic Unit 20100001, on right bank at Aasu and 200 ft (61 m) upstream from mouth.

DRAINAGE AREA. -- 1.03 mi2 (2.67 km2).

PERIOD OF RECORD .-- October 1958 to current year.

REVISED RECORDS. -- WSP 1937: Drainage area. WSP 2137: 1959-60(P), 1961(M), 1962-65(P).

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 5 ft (1.5 m) by hand levels from high-tide mark.

REMARKS.--Records good. Small diversion above station for domestic use. Recording rain gage located at station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 21 years (water years 1960-80), 6.01 ft³/s (0.170 m³/s), 4,350 acre-ft/yr (5.36 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 498 ft 3 /s (14.1 m 3 /s) Sept. 7, 1972, gage height, 5.16 ft (1.573 m), from rating curve extended above 20 ft 3 /s (0.57 m 3 /s) on basis of slope-area measurement at gage height 4.57 ft (1.393 m); minimum, 0.12 ft 3 /s (0.003 m 3 /s) Oct. 21, 23, 24, 27, 1974.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 390 ft 3 /s (11.0 m 3 /s) Oct. 28, gage height, 4.71 ft (1.436 m), no other peak above base of 180 ft 3 /s (5.10 m 3 /s); minimum, 0.95 ft 3 /s (0.027 m 3 /s) Mar. 22.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

		0130	HAROLY IN	00010 70		AN VALUES		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	17 10 321	TEMPEN 2		
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.5	13	3.6	3.0	2.4	2.4	13	3.2	9.9	3.8	3.8	4.9
2	2.2	11	3.4	4.9	2.1	2.2	8.5	2.1	8.1	3.2	3.6	4.3
3	2.8	9.2	3.2	3.8	2.1	1.9	11	1.9	7.1	6.0	6.1	3.8
4	1.9	8.1	3.2	3.2	3.1	1.8	8.1	1.9	6.4	5.1	4.9	3.8
5	1.8	7.1	3.0	2.8	3.6	1.8	6.7	1.8	5.8	3.8	4.6	3.6
6	6.0	6.1	2.7	2.8	3.4	2.5	6.1	2.4	5.2	3.6	7.1	3.0
7	2.7	5.5	2.7	2.7	12	3.9	5.5	15	4.5	3.2	8.5	12
8	2.2	4.6	2.5	3.0	9.5	2.5	4.6	13	4.1	3.0	5.8	8.1
9	1.9	8.2	3.6	4 . 1	9.5	1.8	4.6	33	9.2	2.8	4.6	4.9
10	1.8	6.5	6.7	3.0	6.4	1.7	3.8	17	8 - 1	2.7	20	3.8
11	1.7	6.4	4.3	2.7	5.2	1.6	3.4	28	9.9	2.7	12	3.6
12	1.6	4.9	7.4	2.5	5.7	1.7	3.2	21	8.1	2.5	16	3.4
13	1.5	3.8	2.8	2.5	6.1	1.6	3.2	17	5.8	2.5	26	3.2
14	1.4	3.4	2.7	2.4	4.6	1.7	3.0	14	5.2	7.6	25	3.4
15	1.4	3.2	2.5	2.2	3.8	1.6	2.8	12	5.8	4 - 1	20	4.8
16	1.4	3.2	2.2	2.1	3.6	1.4	2.7	12	4.9	3.2	17	6.9
17	1.3	3.0	2.1	3.6	3.6	1.4	2.5	12	4 . 1	2.8	13	6 - 4
18	1.3	4.5	2.1	2.5	5.3	1.3	2.2	20	4.3	5.4	13	12
19	1.2	11	1.9	2.5	4.6	1.3	2.1	14	3.8	3.4	11	8.8
20	3.2	5.8	1.9	2.2	3.4	1.1	2.1	11	3.6	3.2	13	7.8
21	5.2	4.6	1.9	2.2	3.0	1.1	2.1	11	3.6	5.0	11	7.8
22	4.9	4.3	1.9	3.4	2.8	1.0	1.8	8.8	3.6	22	9.5	11
23	5.3	5.2	8.6	5.8	2.8	1.3	3.5	8.1	3.2	13	13	8.8
24	7.1	4.3	3.6	4.9	2.8	1.1	2.1	11	2.8	9.5	13	19
25	3.6	7.6	3.2	3.2	3.0	14	1.8	8.5	2.7	7.8	9.9	13
26	22	10	2.8	2.7	3.0	14	1.9	12	2.8	7.1	8.8	11
27	15	7.1	3.0	2.4	2.7	9.5	2.2	9.9	2.8	6.1	8.1	11
28	72	6.1	3.6	3.0	2.5	6.1	1.7	8.1	3.0	5.8	7.1	9.5
29	30	4.9	3.0	2.5	2.5	5.5	4.7	7.4	6.1	6.4	6.4	8.5
30	22	4.1	2.5	2.4		4.9	3.6	13	4.9	5.2	5.8	7.4
31	17		3.2	2.2		5.2		14		4 -1	5.5	
TOTAL	246.9	186.7	97.8	93.2	125.1	100.9	124.5	364.1	159.5	166.6	333.1	219.5
MEAN	7.96	6.22	3.15	3.01	4.31	3.25	4.15	11.7	5.32	5.37	10.7	7.32
MAX	72	13	8.6	5.8	12	14	13	33	9.9	22	26	19
MIN	1.2	3.0	1.9	2.1	2.1	1.0	1.7	1.8	2.7	2.5	3.6	3.0
AC-FT	490	370	194	185	248	200	247	722	316	330	661	435

CAL YR 1979 TOTAL 1903.15 MEAN 5.21 MAX 72 MIN .95 AC-FT 3770 WTR YR 1980 TOTAL 2217.90 MEAN 6.06 MAX 72 MIN 1.0 AC-FT 4400

SAMOA ISLANDS, ISLAND OF TUTUILA 16931000 ATAULOMA STREAM AT AFAO

LOCATION.--Lat 14°20'10" S., long 170°48'02" W., Hydrologic Unit 20100001, on left bank at Afao, 100 ft (30 m) upstream from highway bridge, and 300 ft (91 m) upstream from mouth.

DRAINAGE AREA. -- 0.24 mi2 (0.62 km2).

PERIOD OF RECORD. -- October 1958 to current year.

REVISED RECORDS. -- WSP 1937: Drainage area.

GAGE .- Water-stage recorder. Altitude of gage is 20 ft (6 m) by hand levels from high-tide mark.

REMARKS.--Records fair. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--21 years (water years 1960-80), 1.42 ft³/s (0.040 m³/s), 1,030 acre-ft/yr (1.27 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $815 \text{ ft}^3/\text{s}$ (23.1 m³/s) Oct. 28, 1979, gage height, 4.47 ft (1.362 m), from rating curve extended above 30 ft³/s (0.85 m³/s); minimum, 0.04 ft³/s (0.001 m³/s) Oct. 24-26, Oct. 28-31, Nov. 1, 1974.

accompany to a real rest fee feether to be a feether to be a feether and the feether f

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 160 ft 3 /s (4.53 m 3 /s), from rating curve extended above 30 ft 3 /s (0.85 m 3 /s), and maximum (*):

		Disch		Gage h	eight
Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Oct. 28	0800	*815	23.1	*4.47	1.362
Feb. 7	0700	285	8.07	3.08	.939
May 11	1415	225	6.37	2.84	. 866

Minimum discharge, 0.08 ft3/s (0.002 m3/s) Oct. 13-20.

		DISC	PARGE . IN	CUFIC FE		AN VALUES		CICPER 19	79 TC SEP	TEMPER 19	P 0	
DAY	0.01	NOV	DEC	IAL	FER	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.16	1.4	.39	. + 2	.18	.14	3.1	.75	1.0	.52	.18	.52
2	.14	1.1	. 32	.87	. 16	.16	2.3	.23	.80	. 48	.18	.39
3	.32	.93	.32	1.3	.38	.12	2.3	. 23	.68	1.7	1.1	.32
4	.14	.74	. 29	.68	. 35	.28	1.2	.20	. 68	2.3	.52	. 35
5	.16	.68	.29	.57	.20	. 14	.87	.18	.57	1.1	.57	.43
6	.48	.62	.26	.39	1.1	.20	.62	2.1	.57	. + 8	3.9	.29
7	.18	. 57	.23	. 35	12	. 46	.52	8.4	. 57	.52	1.4	1.5
А	.14	. 52	.2C	. 27	1.3	.29	.43	6 - 1	.52	. 48	.74	.62
9	.14	1.1	. 64	.87	. 74	.18	. 39	12	4.8	. 39	.68	. 48
10	.12	.57	1 . 4	. 87	.57	.16	.35	2.5	1.8	.35	5.0	.35
11	.10	.73	.68	.57	.52	.20	.32	17	1.6	.32	3.5	.32
12	.10	.52	. 48	. 39	. 55	.18	. 35	4.3	1.2	.32	6.0	.29
13	.09	. 48	.35	.35	.48	.14	.35	3 . C	.87	.29	17	.23
14	. 08	.43	.29	. 35	. 35	.23	. 39	1.7	. 74	.51	8.0	.23
15	.08	. 39	.26	.32	.32	.16	.39	2.4	.74	.29	3.8	.64
16	.08	.43	.23	.26	.30	.14	.43	4.7	.84	.26	2.8	.52
17	.08	.57	. 23	.29	. 59	.16	. 32	2.2	. 62	. 26	1.7	.68
18	.08	1.8	.20	.26	.80	.14	.23	7.9	.60	.48	2.0	.87
19	.08	3.3	.18	.26	. 52	.14	. 20	3.0	. 54	.29	1.4	. 87
50	.37	1.3	.18	.23	.29	.12	.32	1.7	.48	. 5 7	1.3	.57
21	.74	. 93	.19	.29	.20	.12	.23	1.5	.52	.57	1.2	.73
22	.20	.80	.18	.20	. 32	.27	. 20	1.2	. 48	1.5	1.0	1.7
23	.14	. 80	1.4	.56	.23	.23	.39	1.1	. 43	. 93	2.0	1.0
24	.15	.74	.52	.26	. 16	.20	. 23	1.3	. 39	.68	1.7	4.8
25	.14	1.8	.75	.20	.19	4.7	.18	1.4	.35	.48	1.2	2.5
26	5.0	1.9	.52	.18	.20	7.2	2.3	1.5	.48	. 75	. 94	1.5
27	2.1	. 93	.43	.20	.1+	7.7	.4 4	1.7	.62	. 72	. 88	1.3
28	73	.62	.72	. 38	. 14	5.5	. 26	1.0	. 62	. 26	.62	.80
29	6.3	. 48	.52	.20	.14	3.9	.6P	. 97	1.2	.29	.52	.57
30	3.7	. 39	. 35	.20		1.4	. 48	1.4	. 62	. 26	. 48	.62
31	2.2		1.7	.18		1.7		1.4		.20	.39	
TOTAL	95.82	27.57	14.69	13.52	23.52	31.76	20.79	90.00	25.93	17.55	72.70	25.99
MEAN	3.12	.92	. 47	. 44	.81	1.02	.69	2.90	.86	.57	2.35	.87
MAX	73	3.3	1.7	1.3	12	7.2	3.1	17	4 . R	2.3	17	4.8
MIN	.08	. 39	.18	.18	.14	.12	.18	.18	.35	.20	.18	.23
AC-FT	192	55	29	27	47	63	41	179	51	35	144	52

CAL YR 1579 TOTAL 508.98 MFAN 1.39 MAX 73 MIN .CF AC-FT 1010 WTR YR 1980 TOTAL 460.84 MFAN 1.25 MAX 73 MIN .08 AC-FT 914

SAMOA ISLANDS, ISLAND OF TUTUILA

16931500 ASILI STREAM AT ALTITUDE 330 FT (100 M) NEAR ASILI

LOCATION.--Lat 14°19'34" S., long 170°47'38" W., Hydrologic Unit 20100001, on right bank 1.3 mi (2.1 km) northwest of Leone, 1.5 mi (2.4 km) southwest of Aoloaufou and 0.8 mi (1.2 km) upstream from mouth.

DRAINAGE AREA. -- 0.32 mi² (0.83 km²).

PERIOD OF RECORD. -- October 1977 to current year.

GAGE. -- Water-stage recorder. Altitude of gage is 330 ft (100 m), from topographic map.

REMARKS.--Records fair. Periodic determinations of water temperature for the current year are published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 635 ft 3 /s (18.0 m 3 /s), Oct. 28, 1980, gage height, 4.73 ft (1.442 m), from rating curve extended above 14 ft 3 /s (0.40 m 3 /s); minimum, 0.48 ft 3 /s (0.014 m 3 /s) July 19, 20, 1978.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 110 ft³/s (3.11 m³/s), and maximum (*), from rating curve extended above 14 ft³/s (0.40 m³/s):

Date	Time	Discha (ft³/s)	arge (m³/s)	Gage h	neight (m)	Date	Time	Discha (ft³/s)	arge (m³/s)	Gage h	eight (m)
Oct. 28 Feb. 7	0700 0700			*4.73		May 11 Aug. 13	1420 1820		6.37	3.58	1.091

Minimum discharge, 0.56 ft3/s (0.016 m3/s) Oct. 19-20.

		0150	CHARGE . IN	CUBIC FE		ECOND, WATEAN VALUES		OCTOBER 19	79 TO SEF	TEMBER 19	780	
DAY	001	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.84	4.0	1.6	1.3	.81	. 84	6.2	1.2	2.7	1.6	1.3	1.4
2	.81	3.1	1.6	2.0	.78	. 88	7.2	1.1	2.2	1.5	1.3	1.2
3	.91	2.2	1.5	7.3	.93	. 81	7.1	1.0	1.9	2.4	2.8	1.2
4	.74	1.9	1.5	1.5	.91	1.1	5.3	.08	1.7	2.6	1.9	1.1
5	.93	1.7	1.6	1 . 4	.88	. 74	3.8	.91	1.5	1.8	1.7	1.2
6	1.5	1.6	1.5	1.2	2.0	.88	2.9	3.1	1.4	1.6	3.5	.91
7	. 84	1.5	1.4	1.2	11	1.3	2.3	10	1.2	1.4	3.2	5.1
R	.78	1.4	1.4	1.7	4 . 4	.91	1.9	8.3	1.2	1.3	2.2	1.7
9	.78	2.4	2.4	1.7	3.1	. 74	1.7	12	4.4	1.2	1.9	1.3
10	. 74	1.6	3.1	1.2	2.4	.71	1.5	7.1	2.7	1.1	8.5	1.1
11	.71	2.1	1.7	.98	3.0	.71	1.4	17	3.0	1.0	5.5	1.0
12	.71	1.5	1.8	. 95	2.2	.67	1.4	9.3	2.2	. 98	9.5	.98
13	.67	1.4	1.5	.88	2.1	.67	1.3	6.7	1.8	.94	25	.91
14	. 64	1.2	1.4	.84	1.7	.71	1 -4	4.8	1.6	2.2	12	.91
15	-64	1.2	1.3	.84	1.5	1.1	1.3	4 . 4	1.6	1.4	7.1	2.0
16	.64	1.2	1.3	.84	1.4	. 71	1.4	5.5	1.8	1.3	7.6	1.8
17	.61	1.3	1.2	.88	2.1	.67	1.1	4.7	1.3	1.2	4.5	1.7
18	•58	3.0	1.1	.88	3.3	.64	.95	9.1	1.3	1.8	,4.9	2.4
19	.58	3.4	1.0	.81	2.2	.61	.88	6.7	1.3	1.2	3.0	1.8
20	1.5	1.6	.98	.78	1.6	.58	1.3	5.2	1.2	1.3	3.5	1.5
21	1.7	1.5	.98	.91	1.5	• 58	.91	3.8	1.3	1.7	3.8	2.6
22	.81	1.4	.98	. 78	1.6	.66	.84	2.7	1.2	6.0	3.2	5.3
23	1.2	1.4	3.4	1.3	1.3	.64	1.3	2.2	1.1	3.5	6.4	3.7
24	1.0	1.2	1.2	.88	1.2	.60	.91	3.8	1.0	2.9	5.9	8.8
25	1.0	2.9	1.9	.81	1.1	5.6	.81	2.8	1.0	2.3	4.2	5.3
26	7.3	2.8	1.5	.78	1.1	6.7	1.2	3.9	1.1	1.9	3.2	4.0
27	5.6	1.9	1.2	.81	.98	5.3	1.0	2.6	1.3	1.8	2.6	3.7
28	53	1.8	2.0	2.2	.91	4.5	1.1	2.2	1.5	1.7	2.1	2.6
29	11	1.7	1.5	.95	.88	3.6	2.8	1.9	3.2	1.8	1.8	2.2
30	8.2	1.6	1.2	.91		2.7	1.5	3.8	1.7	1.6	1.6	1.8
31	7.3		1.7	.81		2.8		4.1		1.4	1.5	
TOTAL	114.26	57.5	48.44	35.32	58 .88	49.66	64.70	152.89	52.4	56.42	147.2	71.21
MEAN	3.69	1.92	1.56	1.14	2.03	1.60	2.16	4.93	1.75	1.82	4.75	2.37
MAX	53	4.0	3.4	2.3	11	6.7	7.2	17	4.4	6.0	25	8.8
MIN			.98	.78	.78	.58	.81	.91	1.0	.94	1.3	.91
AC-FT	•58 227	1.2		70		99	128		104	112	292	141
AC-FI	221	114	96	10	117	44	128	303	104	112	245	141

CAL YR 1979 TOTAL 804.84 MEAN 2.21 MAX 53 MIN .58 AC-FT 1600 WTR YR 1980 TOTAL 908.88 MEAN 2.48 MAX 53 MIN .58 AC-FT 1800

16933500 LEAFU STREAM AT ALTITUDE 370 FT (113 M) NEAR LEONE

LOCATION.--Lat 14°19'31" S., long 170°46'50" W., Hydrologic Unit 20100001, on left bank 900 ft (274 m) upstream from village stream intake, 1.1 mi (1.8 km) north of Leone, and 1.0 mi (1.6 km) southwest of Aoloaufou.

DRAINAGE AREA. -- 0.31 mi2 (0.80 km2).

PERIOD OF RECORD. -- October 1977 to current year.

REVISED RECORDS. -- WDR HI-79-2: 1978 (P).

GAGE. -- Water-stage recorder. Altitude of gage is 370 ft (113 m), from topographic map.

REMARKS.--Records fair. Periodic determinations of water temperature for the current year are published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 188 ft 3 /s (5.04 m 3 /s) Sept. 1, 1978, gage height, 4.58 ft (1.396 m) revised, from rating curve extended above 48.0 ft 3 /s (1.36 m 3 /s); minimum, 0.71 ft 3 /s (0.020 m 3 /s) July 18-20, 1978.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 120 ft³/s (3.40 m³/s) revised, and maximum (*) from rating curve extended as explained above:

Date	Time	Disch (ft³/s)	narge (m³/s)	Gage h	neight (m)	Date	Time	Disch (ft³/s)	arge (m³/s)	Gage (ft)	height (m)
Oct. 28 May 11	0700 1400	*183 181	5.18	*4.53 4.51	1.381	Aug. 6 Aug. 13	1700 1700	146 176	4.13	4.15	1.265

DISCHARGE. IN CHRIC EET DED SECOND. MATER VEAR OCTOBER 1070 TO SERTEMBER 1080

Minimum discharge, 0.78 ft3/s (0.022 m3/s) Mar. 22.

		0130	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	conte it		COND, WAT	LK ILAK (CIONE N 17	77 10 36	ichien 1		
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.3	7.0	2.1	2.1	1.3	1.3	9.4	1.5	4.4	2.7	1.7	2.6
2	1.2	5.8	1.9	4.5	1.1	1.5	R.9	1.4	3.8	2.5	1.6	2.1
3	1.3	4.6	1.8	3.0	1.3	1.3	10	1.4	3.4	4.4	3.9	2.0
4	1.2	3.7	1.7	2.3	1.3	1.4	6.6	1.3	3.0	4.8	2.5	1.9
5	1.3	3.1	1.7	2.1	1.3	1.2	5.1	1.3	2.6	3.2	2.2	2.0
6	2.1	2.6	1.5	2.0	13	1.3	4.1	5.7	2.4	2.8	6.8	1.7
7	1.3	2.3	1.4	2.0	12	2.0	3.4	21	2.1	2.5	4.6	9.1
8	1.2	1.9	1.3	2.4	4.2	1.3	2.8	16	2.0	2.3	3.2	3.2
9	1.1	4.1	3.4	2.4	3.4	1.1	2.4	34	7.8	2.0	2.9	2.4
10	1.1	2.7	4.3	1.8	2.9	1.1	2.1	17	4.5	1.9	16	2.1
11	1.0	3.6	2.6	1.7	3.8	1.1	2.0	38	4.7	1.8	8.0	2.1
12	1.0	2.1	2.1	1.6	3.2	1.1	2.1	26	3.7	1.7	16	2.0
13	.99	2.0	1.9	1.5	2.9	.99	1.9	16	3.0	1.6	44	1.9
14	.96	1.7	1.7	1.4	2.4	1.1	1.8	9.8	3.0	2.6	29	1.8
15	. 92	1.6	1.6	1.3	2.1	1.0	1.8	7.5	3.3	1.7	16	4.3
16	.92	1.8	1.6	1.3	2.0	.92	1.9	9.3	2.9	1.4	14	3.1
17	.88	2.0	1.5	2.6	4.1	. 92	1.5	7.2	2.4	1.4	7.7	3.0
18	.85	6.4	1.4	1.5	4.3	.88	1.5	17	2.4	2.3	10	6.8
19	.85	7.3	1.3	1.4	3.3	.85	1.3	13	2.2	1.5	6.3	4.4
20	2.3	3.8	1.3	1.3	2.5	.82	1.6	8.8	2.0	1.9	6.2	3.7
21	2.0	3.2	1.2	1.8	2.3	.82	1.2	6.5	2.2	2.4	5.6	4.7
22	1.8	2.8	1.3	1 - 4	2.3	. 92	1.2	4.7	2.0	11	4.8	8.6
23	2.1	2.6	7.7	2.5	2.0	. 92	1.6	3.8	1.8	5.3	9.3	4.7
24	2.0	2.3	1.9	1.6	1.9	. 85	1.3	6.6	1.7	4 . 4	8.1	17
25	2.0	4.4	3.5	1.6	1.8	8.1	1.1	6.0	1.5	3.7	6.0	9.0
26	17	3.7	2.4	1.3	1.7	10	1.7	13	1.7	3.1	4.8	7.0
27	11	2.7	2.1	1.4	1.6	6.0	1.3	7.0	2.1	2.7	4 - 1	6.9
28	64	2.6	2.4	1.9	1.5	5.2	1.7	5.1	2.6	2 . 4	3.5	4.8
29	26	2.3	2.0	1.3	1.4	3.9	3.3	4.9	5.6	2.6	3.0	4.0
30	19	2.1	1.8	1.4		3.4	2.0	6.7	2.9	2 -1	2.6	3.4
31	12		3.0	1.3		4.2		6.3		1 .8	2.5	
TOTAL	182.67	98.8	67.4	57.7	88.9	67.49	88.6	323.8	89.7	88.5	256.9	132.3
MEAN	5.89	3.29	2.17	1.86	3.07	2.18	2.95	10.4	2.99	2.85	8.29	4.41
MAX	64	7.3	7.7	4.5	13	10	10	38	7.8	11	44	17
MIN	.85	1.6	1.2	1.3	1.1	.82	1.1	1.3	1.5	1 -4	1.6	1.7
AC-FT	362	196	134	114	176	134	176	642	178	176	510	262

CAL YR 1979 TOTAL 1307.54 MEAN 3.58 MAX 64 MIN .82 AC-FT 2590 WTR YR 1980 TOTAL 1542.76 MEAN 4.22 MAX 64 MIN .82 AC-FT 3060

SAMOA ISLANDS, ISLAND OF TUTUILA

16948000 AFUELO STREAM AT MATUU

LOCATION.--Lat 14°18'07" S., long 170°41'07" W., Hydrologic Unit 20100001, on left bank 0.2 mi (0.3 km) northwest of Matuu and 0.3 mi (0.5 km) upstream from mouth.

DRAINAGE AREA. -- 0.25 mi2 (0.65 km2).

PERIOD OF RECORD. -- March 1958 to current year. Prior to July 1960, published as Matuu Stream at Matuu.

REVISED RECORDS. -- WSP 1937: Drainage area. WSP 2137: 1958-65.

GAGE .- - Water-stage recorder. Altitude of gage is 80 ft (24.4 m), from topographic map.

REMARKS.--Records good. Small diversion above station for domestic use since September 1972. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 22 years, 1.46 ft3/s (0.041 m3/s), 1,060 acre-ft/yr (1.31 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 502 ft 3 /s (14.2 m 3 /s) Apr. 29, 1975, gage height, 4.59 ft (1.399 m), from rating curve extended above 26 ft 3 /s (0.74 m 3 /s) on basis of slope-area measurement of peak flow; minimum, 0.01 ft 3 /s (<0.001 m 3 /s) Sept. 16, 17, 20-26, 28, 29, 1975, Apr. 5-7, 1976.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 160 ft 3 /s (4.53 m 3 /s) and maximum (*), from rating curve extended as explained above:

Date	Time		harge)(m³/s)	Gage h	neight (m)	Date		Time	Disc (ft³/s	harge)(m³/s)	Gage h	meight (m)
Oct. 26	1230	166	4.70	2.94	0.896	Aug.	16	0230	268	7.59	3.53	1.076
Mar. 6	0700	183	5.18	3.05	0.930	Sept.		0600	225	6.37	3.30	1.006
May 9	0030	*332	9 40	*3 86	1 177	2						

DISCHARGE. IN CURIC FEET DED SECOND. WATER VEAD OCTOBER 1070 TO SECURITION 1000

Minimum discharge, 0.05 ft3/s (0.001 m3/s) Oct. 11, Dec. 21.

		DIS	CHARGE + II	N CUBIC FE		EAN VALUES		OCTOBER 19	79 TO SEF	PIEMBER 19	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 30	1.1	.18	.33	.12	.13	9.4	.12	1.1	.28	.12	.20
2	.18	.63	.18	1.9	.11	-17	1.8	.12	.72	.28	.11	.17
3	.17	.42	.17	.78	.11	.11	5.2	.13	.53	.53	.99	.18
4	- 13	.30	.15	.45	.37	.23	1.7	.11	.45	.95	. 45	.18
5	.12	.33	.13	.33	.23	. 44	.84	. 10	.42	-42	. 49	.18
6	1.4	.28	.12	.28	.70	11	.58	.12	.36	. 42	2.0	.13
7	. 25	.50	.11	. 20	13	4.9	.45	6.6	.30	.25	1.5	1.1
8	.13	. 45	.11	.22	.90	. 84	.36	7.0	.28	.18	.42	.30
9	.11	3.2	.67	. 45	.58	.39	.39	31	8 . 8	.13	.20	.12
10	.11	4.5	2.3	1.5	.30	.28	.28	5.3	12	-11	5.0	.09
11	.06	.72	1.1	1.1	.22	.28	.20	3.0	8.1	.10	3.4	.10
12	.07	.42	.49	.91	.40	.20	.20	2.5	1.8	.10	8.0	.08
13	.08	. 28	.30	1.7	.18	.15	.22	9.5	1.1	.12	8.1	.07
14	-10	.20	-17	2.1	.15	.15	.43	2.6	.98	.55	2.5	.33
15	.12	.18	.13	1.8	.13	. 31	.25	5.2	1.6	.13	1.1	1.7
16	.12	.40	.12	.58	.51	.22	.22	3.7	1.1	.12	15	1.7
17	.08	.43	.10	.42	.20	.13	.20	1.5	.67	.10	1.4	2.2
18	.07	1.6	.09	. 30	.63	. 44	-18	6.0	2.6	.26	.98	21
19	.08	2.2	.08	.58	.45	.88	.17	2.2	1.8	.12	-63	1.2
20	.98	.91	.07	.42	.18	.40	-17	1.8	.78	.17	.78	.84
21	.87	.39	.07	.20	.15	.20	.15	1.7	.67	.52	.67	.58
22	3.2	.22	.09	.17	.22	. 25	.15	.78	.36	5.2	.58	5.6
23	5.5	.20	3.7	.63	.33	-78	.39	.53	.30	1.2	7.1	1.3
24	1.3	.20	.84	.21	.33	.72	.36	.91	.12	.42	4 . 4	25
25	.40	2.4	1.6	.16	.28	18	.17	4.1	.10	.20	-91	2.6
26	13	3.3	.91	.13	.25	3.0	.20	18	.10	.12	.53	1.2
27	3.2	1.1	.36	.18	.17	2.8	2.3	4.3	.09	.17	.33	2.2
28	18	.58	2.8	.39	.18	2.6	.33	1.8	.20	-18	.28	.98
29	6.7	.33	2.6	.17	.13	1.4	.30	1.2	.80	1.5	.20	.58
30	8.9	.28	1.1	.15		.78	.18	4.6	.33	. 45	.20	. 45
31	2.5		.45	. 14		1.9		2.1		.20	.20	
TOTAL	68.23	28.05	21.29	18.88	21.51	54.08	28.77	128.62	48.56	15.48	68.57	72.36
MEAN	2.20	.94	.69	.61	.74	1.74	.96	4.15	1.62	.50	2.21	2.41
MAX	18	4.5	3.7	2.1	13	18	9.4	31	12	5.2	15	25
MIN	.06	.18	.07	.13	-11	.11	.15	.10	.09	.10	-11	.07
AC-FT	135	56	42	37	4 3	107	57	255	96	31	136	144

CAL YR 1979 TOTAL 515.51 MEAN 1.41 MAX 32 MIN .06 AC-FT 1020 WTR YR 1980 TOTAL 574.40 MEAN 1.57 MAX 31 MIN .06 AC-FT 1140

SAMOA ISLANDS, ISLAND OF TUTUILA

16963900 LEAFU STREAM NEAR AUASI

LOCATION.--Lat 14°16'27" S., long 170°34'26" W., Hydrologic Unit 20100001, on right bank 35 ft (11 m) upstream from upper village intake, 0.1 mi (0.2 km) north of Auasi, and 0.2 mi (0.3 km) upstream from mouth.

DRAINAGE AREA. -- 0.11 mi2 (0.28 km2).

PERIOD OF RECORD. -- February 1972 to current year.

REVISED RECORDS. -- WDR HI-75-1: 1972(P), 1973-74.

GAGE. -- Water-stage recorder. Altitude of gage is 120 ft (37 m), from topographic map.

REMARKS.--Records fair. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--8 years, 0.33 ft3/s (0.009 m3/s), 239 acre-ft/yr (295,000 m3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 134 ft 3 /s (3.79 m 3 /s) Nov. 12, 1979, gage height, 3.71 ft (1.131 m), from recorded range in stage, from rating curve extended above 19 ft 3 /s (0.54 m 3 /s); minimum, 0.02 ft 3 /s (0.001 m 3 /s) Sept. 17-19, 26-30, 1976.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 25 ft³/s (0.71 m³/s) and maximum (*), from rating curve extended above 19 ft³/s (0.54 m³/s):

Date	Time	Discha (ft³/s)		Gage 1	height (m)	Date		Time	Discha (ft³/s)		Gage h	neight (m)
Oct. 30 Apr. 2 May 7	1000 2400 0300	*39 32 26	1.10 .91	*2.41 2.28 2.16	0.735 .695 .658	May Sept.	13 18	1000 0900	26 37	0.74 1.05	2.16 2.39	0.658 0.728

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980
MEAN VALUES

Minimum discharge, 0.06 ft3/s (0.002 m3/s) Sept. 14-15.

					III E	MIN ANTOES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.08	.45	.12	.09	.16	. 08	.18	.12	.30	.09	.16	.09
2	.08	.22	.12	.12	.12	. 08	.92	.12	.22	.09	.14	.09
3	.08	-14	.10	.21	.10	.09	2.8	.12	.18	.09	-16	.09
4	.08	- 14	-10	-12	-10	- 09	-70	-14	.18	-12	-14	.12
5	.08	.12	-10	.10	.10	.08	.30	. 14	.16	-10	.14	.14
6	.12	.12	.10	.12	.10	. 52	.22	.18	-16	.10	.35	.12
7	.08	.12	-10	.10	+16	. 14	.16	5.4	.16	-10	.26	.08
8	.08	-12	.10	-18	.16	. 09	-14	.65	. 14	.10	. 16	.07
9	.08	.28	.12	-18	.12	.09	.12	4 . 1	.26	.10	.52	.07
10	.08	. 14	.18	.14	.10	.08	•10	1.1	•51	.10	1.4	.07
11	.08	.12	.22	.12	.10	.08	.09	2.1	.35	•10	.76	.07
12	.08	.12	.10	.10	.10	.08	.09	1.7	.26	.10	.76	.07
13	.08	.09	.12	.10	.12	. 08	-10	6.8	.18	.14	1.9	.07
14	.09	.09	.12	.10	-10	.08	.09	3.5	.18	1.0	.70	.08
15	.08	.09	.10	.12	.10	. 08	.09	2.7	.34	-16	.30	-16
16	80.	.09	.10	.10	-12	.08	.09	2.4	.18	.14	.22	.08
17	-08	.10	.09	.10	-10	. 08	.09	.76	.16	.12	-16	.12
18	.09	.12	.12	.10	-14	- 14	.09	2.0	.14	.30	-16	4.3
19	-09	-10	.12	. 14	.12	.09	.09	.76	-14	-14	.12	1.7
20	.14	.10	•14	.10	.10	. 08	.09	. 45	. 14	.16	.12	1.2
21	.18	.10	.16	.10	.10	.09	.09	.40	-16	1.0	.12	1.1
22	.22	-10	.22	.10	.09	. 09	.09	. 30	.14	2.5	.10	1.3
23	.16	.10	.18	.37	.09	- 14	-43	.26	. 14	.76	.99	1.0
24	- 1 4	.12	.12	3.3	.08	.10	.12	.22	+12	.35	.57	3.4
25	- 14	. 47	.12	.16	.09	1.4	.10	.22	.12	.18	.22	2.9
26	.16	.63	.10	. 14	.09	. 45	.28	.22	.12	.16	.16	2.0
27	.22	.30	.09	- 14	.08	1.2	.30	.18	-10	.14	.12	2.6
28	2.4	.16	.38	. 14	.08	.63	-14	.18	-10	.50	.10	2.0
5 9	3.3	. 14	-18	-10	.08	. 35	.12	.18	.10	. 96	.10	1.7
30	4.0	. 14	.10	.12		.18	.12	1.2	.10	.35	.10	1.1
31	1.3		.09	.16		.16		.57		.18	.09	
TOTAL	13.95	5.13	4.11	7.27	3.10	7.00	8.34	39.17	5.54	10.43	11.30	27.89
MEAN	. 45	-17	-13	.23	.11	.23	.28	1.26	.1R	. 34	.36	.93
MAX	4.0	.63	.38	3.3	-16	1.4	2.8	6.8	-51	2.5	1.9	4.3
MIN	-08	.09	.09	.09	.08	.08	-09	.12	-10	.09	.09	.07
AC-FT	28	10	8 . 2	14	6.1	14	17	78	11	21	22	55

CAL YR 1979 TOTAL 129.70 MEAN .36 MAX 4.4 MIN .07 AC-FT 257 WTR YR 1980 TOTAL 143.23 MEAN .39 MAX 6.8 MIN .07 AC-FT 284

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partialrecord station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at partial-record stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. Discharge measurements made at miscellaneous sites for both low flow and high flow are at crest-stage stations. given in a third table.

Low-flow partial-record stations

Measurements of streamflow in the area covered by this report made at low-flow partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will give a picture of the low-flow potentiality of the stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same, site.

Discharge measurements made at low-flow partial-record stations during water year 1980

			Drainage area	Period	Measur	ements
Station No.	Station name	Location	mi ² (km ²)	of record	Date	Discharge (ft³/s)
		Mariana Islands, Island of G	uam			
16808200	Faata Springs at Agat	Lat 13°22'35" N., long 144°39'47" E., 0.7 mi (1.1 km) south of Agat Junior High School and 0.8 mi (1.3 km) southwest of Santa Rita Catholic Church.		1963-73, 1975-78, 1980	8-14-80	0.18
16808500	Taleyfac River Agat	Lat 13°21'35" N., long 144°38'57" E., 800 ft (244 m) upstream from bridge on Highway 2 at Biyae and 1.7 mi (2.7 km) south of Mount Carmel School in Agat.	1.96 (5.08)	1959-70, 1972-73, 1975-77, 1980	8-14-80	1,7
16820000	Geus River above Siligin Spring trib- utary, near Merizo	Lat 13°16'38" N., long 144°40'56" E., 100 ft (30 m) upstream from Siligin Spring tributary, 0.1 mi (0.2 km) upstream from dam, and 1.5 mi (2.4 km) northeast of Merizo School.	.51 (1.32)	1960-80	8-12-80	1.0
16825000	Ajayan River near Inarajan	Lat 13°15'16" N., long 144°42'56" E., 0.4 mi (0.6 km) upstream from mouth and 2.4 mi (3.9 km) southwest of Inarajan Catholic Church.	1.16 (3,00)	1962-73, 1975-78, 1980	8-21-80	1.4
16842000	Asalonso River Talofofo	Lat 13°19'43" N., long 144°45'34" E., 10 ft (3.0 m) downstream from left-bank tributary, 500 ft (152 m) downstream from bridge on Highway 4, and 1.6 mi (2.6 km) south of Talofofo	1.85 (4.79)	1952, 1961-73, 1975-77, 1980	9-21-80	.57
		Caroline Islands, Palau Isla	nds			
16890620	Ngechutrong River, Babelthuap	Lat 07°36'08" N., long 134°35'25" E., 300 ft (91 m) upstream from Adeiddo River and 0.9 mi (1.4 km) northwest of Mount Megilon.	(.62)	1974-80	10 - 5 - 79 12 - 4 - 79 1 - 10 - 80 3 - 20 - 80 4 - 28 - 80 6 - 5 - 80 8 - 25 - 80 9 - 25 - 80	3.4 .73 1.3 .83 1.1 .62 1.2 2.9
16890650	Galkatan River, Babelthuap	Lat 07°35'45" N., long 134°34'49" E., 0.9 mi (1.4 km) upstream from Adeiddo River and 1.5 mi (2.4 km) west of Mount Megilon.	1.50 (3.88)	1974-77, 1980	1-29-80 2-29-80 4-2-80 5-7-80 6-17-80 7-22-80 9-25-80	67 11 10 11 8.6 62 27
16890700	Almiokan River, Babelthuap	Lat 07°31'12" N., long 134°33'51" E., 0.5 mi (0.8 km) upstream from unnamed tributary and 4.6 mi (7.4 km) northeast of Ngatpang village.	7.05 (18.26)	1973-80	10 - 8 - 79 1 - 4 - 80 1 - 17 - 80 1 - 25 - 80 2 - 28 - 80 4 - 1 - 80 5 - 6 - 80 7 - 21 - 80	72 38 32 23 46 17 83 31

Discharge measurements made at low-flow partial-record stations during water year 1980--Continued

			Drainage area	Period	Measur	ements
Station No.	Station name	Location	mi ² (km ²)	of record	Date	Discharge (ft3/s)
		Caroline Islands, Palau Islands0	Continued			
16890800	Ngatpang River, Babelthuap	Lat 07°27'40" N., long 134°32'15" E., 0.2 mi (0.3 km) upstream from unnamed tributary and 0.4 mi (0.6 km) southeast of Ngatpang village.	.35 (.91)	1973-80	10 - 4 - 79 1 - 15 - 80 1 - 24 - 80 2 - 21 - 80 3 - 18 - 80 4 - 25 - 80 5 - 3 - 80 7 - 2 - 80 8 - 29 - 80	3.8 .62 1.2 2.2 .49 2.8 .76 6.4 7.0
16891430	North Fork Ngardok River, Babelthuap	Lat 07°27'50" N., long 134°35'49" E., 500 ft (152 m) upstream from right-bank tributary, 1.4 mi (2.3 km) upstream from confluence with South Fork Ngardok River, and 2.5 mi (4.0 km) upstream from mouth.	9.37 (24.27)	1975-80	10 - 7 - 79 1 - 3 - 80 1 - 18 - 80 1 - 23 - 80 2 - 27 - 80 3 - 27 - 80 6 - 13 - 80 7 - 18 - 80 9 - 24 - 80	114 44 56 24 55 19 76 37 60
16891440	North Fork Ngardok River tributary, Babelthuap	Lat 07°27'49" N., long 134°35'47" E., 5 ft (1.5 m) upstream of North Fork Ngardok River and 2.4 mi (3.9 km) north of Ngarsol mountain.	1.73 (4.48)	1975-80	10 - 7 - 79 1 - 3 - 80 1 - 18 - 80 1 - 23 - 80 2 - 27 - 80 3 - 27 - 80 6 - 16 - 80 7 - 18 - 80 9 - 24 - 80	10 7.2 16 5.1 9.2 4.2 8.9 8.6
16891500	Geligal Marsh outlet, Babelthuap	Lat 07°36'07" N., long 134°38'08" E., 0.7 mi (1.1 km) northeast of Mount Gulitel and 1.6 mi (2.6 km) southwest of Uliman village.	(.88)	1971-75, 1977, 1980	3- 6-80 4- 8-80 6-19-80 7-25-80	1.1 .58 .90 1.6
16891700	Unnamed west coast stream, Arakabesan	Lat 07°21'14" N., long 134°27'10" E., 0.1 mi (0.2 km) upstream from mouth and 0.15 mi (0.24 km) north of village of Arakabesan.	.03 (.08)	1970-80	1-24-80	.03
16891780	Unnamed north coast stream, Malakal	Lat 07°19'51" N., long 134°27'33" E., 0.2 mi (0.3 km) upstream from mouth and 1.3 mi (2.1 km) southwest of Malakal.	.02 (.05)	1971-80	1-21-80 9-22-80	No flow
		Caroline Islands, Yap Islan	ds			
16892000	Atelu Stream	Lat 09°32'56" N., long 138°06'17" E., 2.6 mi (4.2 km) northwest of Colonia Village and 1.2 mi (1.9 km) north of Mt. Matada.	.31 (.80)	1980	9-20-80	.18
16892500	Tamaney Stream, Yap	Lat 09°29'45" N., long 138°05'34" E., at abandoned German dam, 0.5 mi (0.8 km) northwest of Inuf, and 2.3 mi (3.7 km) southwest of Colonia.	.17 (.44)	1968-80	12-27-79 9-17-80	1.4
16892600	Ripu Stream, Yap	Lat 09°30'05" N., long 138°06'02" E., 1,000 ft (305 m) upstream from mouth and 1.6 mi (2.6 km) southwest of Colonia.	.29 (.75)	1968-80	12-27-79 9-17-80	.09 1.5
16892650	Dinay Stream, Yap	Lat 09°30'29" N., long 138°06'02" E., 0.5 mi (0.8 km) northwest of Water Treatment Plant and 1.5 mi (2.4 km) southwest of Colonia Village.	.04 (.10)	1980	9-18-80	.14
16892680	Thalomar Stream, Yap	Lat 09°30'32" N., long 138°06'03" E., 0.5 mi (0.8 km) northwest of Water Treatment Plant and 1.4 mi (2.3 km) southwest of Colonia Village.	.10 (.26)	1965, 1968-74, 1980	9-18-80	. 43
16893180	Monguch Stream, Gagil-Tomil	Lat 09°31'54" N., long 138°09'34" E., 1.0 mi (1.6 km) southwest of Coast Guard Loran Station.	.18 (.47)	1980	9-16-80	1.3

Discharge measurements made at low-flow partial-record stations during water year 1980--Continued

			Drainage area	Period	Measur	ements
Station No.	Station name	Location	mi ² (km ²)	of record	Date	Discharge (ft3/s)
		Caroline Islands, Yap Islands0	Continued			
16893300	Bileiy Spring, Gagil-Tomil	Lat 09°32'19" N., long 138°10'59" E., on right bank at Binau, 200 ft (61 m) downstream from main spring, and 0.6 mi (1.0 km) upstream from mouth.		1968-74≠, 1975-80	12-27-79 9-16-80	0.18
16893310	Bileiy Stream, Gagil-Tomil	Lat 09°32'15" N., long 138°11'11" E., 0.3 mi (0.5 km) downstream from Bileiy Spring, 0.4 mi (0.6 km) upstream from mouth, and 0.4 mi (0.6 km) south of Gatjapar.	(.39)	1968-80	12-27-79	.18
16893400	Eyeb Stream, Gagil-Tomil	Lat 09°33'02" N., long 138°09'03" E., 1.2 mi (1.9 km) northwest of Coast Guard Loran Station, 0.6 mi (1.0 km) southeast of Tageren Canal bridge.	.22 (.57)	1980	9-19-80	1.9
16893500	Amin Stream, Map	Lat 09°35'30" N., long 138°10'05" E., 1.1 mi (1.8 km) northwest of Chol and 1.5 mi (2.4 km) northeast of Mt. Orile.	(.78)	1980	9-19-80	.49
		Caroline Islands, Island of	Truk			
16893900	Pou Stream, Moen	Lat 07°26'53" N., long 151°51'21" E., 0.6 mi north of Mount Teroken and 0.4 mi upstream from mouth.	.17	1968-70, 1972, 1980	5- 7-80	.19
		Caroline Islands, Island of F	onape			
16897550	Meitik River	Lat 06°56'24" N., long 158°13'58" E., 0.3 mi (0.5 km) upstream from mouth and 1.4 mi (2.2 km) south of Tolenot Peak.		1971, 1973, 1977, 1980	5-20-80	1.1
16899000	Senpen River	Lat 06°52'33" N., long 158°16'53" E., 0.1 mi (0.2 km) downstream of confluence of two branches 0.6 mi (1.0 km) southeast of Tolemarawi Peak, and 1.4 mi (2.3 km) southwest of Retau.	6.13 (15.88)	1971, 1973, 1976-77, 1980	5-20-80	194
16899100	Lataw River	Lat 06°53'04" N., long 158°16'52" E., 0.1 mi (0.2 km) upstream from left-bank tributary, 0.5 mi (0.8 km) northeast of Tolemarawi Peak, and 1.3 mi (2.1 km) west of Retau.	2.54 (6.58)	1971, 1973, 1976-77, 1980	5-22-80	76
		Caroline Islands, Island of K	osrae			
16899670	Mwot River	Lat 05°19'12" N., long 162°56'52" E., 0.4 mi (0.6 km) southeast of Insief Village and 1.3 mi (2.1 km) west- northwest of Mount Wakapp.	.57 (1.48)	1980	5-17-80	9.7
16899700	Palusrik River	Lat 05°17'38" N., long 163°00'06" E., 50 ft (15 m) downstream from diversion dam, 0.7 mi (1.1 km) northeast of Utwe Village, and 2.0 mi (3.2 km) south of Mount Crozer.	.56 (1.45)	1971-72≠, 1980	5-16-80	16
16899780	Tafeyat River	Lat 05°19'20" N., long 163°01'45" E., 100 ft (30 m) downstream from former Japanese dam, 1.0 mi (1.6 km) upstream from mouth, and 1.4 mi (2.2 km) east of Mount Crozer.	.47 (1.22)	1974-75, 1977-80	1-28-80 2-8-80 2-20-80 3-18-80 4-17-80 5-12-80 6-26-80 8-21-80	1.2 5.4 1.6 4.2 3.5 8.5 1.6

[#] Operated as a continuous-record gaging station.

Discharge measurements made at low-flow partial-record stations during water year 1980--Continued

			Drainage area	Period	Measur	ements
Station No.	Station name	Location	mi ² (km ²)	of record	Date	Discharge (ft³/s)
		Caroline Islands, Island of Kosrae	Continued			
16899830	Innem River	Lat 05°20'25" N., long 163°01'43" E., at concrete road bridge, 0.3 mi (0.48 km) upstream from mouth, and (1.9 mi (3.1 km) northeast of Mount Crozer.	2.51 (6.50)	1971-74, 1978-80	1-29-80 2-11-80 2-20-80 4-17-80 5-13-80 6-26-80 7-8-80 8-7-80 8-19-80	4.7 6.8 9.5 20 25 12 7.3 8.1 5.9
16899850	Pakusrik River	Lat 05°21'40" N., long 163°01'45" E., 20 ft (6.1 m) upstream from diversion dam, 0.5 mi (0.8 km) upstream from mouth, 0.9 mi (1.4 km) east of Mount Buacha.	(1.04)	1974-75, 1980	1-28-80 2-13-80 3-18-80 4-18-80 5-13-80 8-7-80	.16 .15 5.5 .69 3.2 .75

Water-quality partial-record stations are particular sites where chemical-quality, biological and or sediment data are collected systematically over a period of years for use in hydrologic analyses. The data are collected usually less than quarterly.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

MARIANA ISLANDS, ISLAND OF GUAM

16849000 FENA DAM SPILLWAY NEAR AGAT

LOCATION.--Lat 13°21'28" N., long 144°42'12" E., Hydrologic Unit 20100003, on left bank 3.5 mi (5.6 km) southeast of Agat and 5.8 mi (9.3 km) southwest of Yona.

DRAINAGE AREA. -- 5.88 mi2 (25.23 km2).

PERIOD OF RECORD. -- Water year 1980.

		SAMP-		TEMPER -			SAMP-		TEMPER-
		LING	FH	ATURE .			LING	PF	ATURE .
	TIME	DEPTH		WATER		TIME	CEPTH		WATER
DATE		(FT)	CUNTISI	(DEC C)	DATE		(FT)	(UNITS)	(DEG C)
NOV					NOV				
20	1110	60	7.2	26.3	20	1455	18	7.9	27.4
20	1111	.0	8.3	29.2	20	1456	. 0	8.6	30.1
20	1116	.0	8.3	29.2	20	1457	3.0	7.6	26.5
20	1117	19	7.7	24.9	20	1548	30	7.6	26.6
20	1118	27	7.5	24.5	20	1549	15	8.2	27.9
20	1119	4 =	7 . 3	26.4	20	1555	• C	8.6	30.1
20	1121	9.6	8 - 1	28.2	20	1556	30	7.5	26.6
20	1325	• Ü	H - 4	29.5	20	1557	15	8.1	27.9
20	1326	45	7.3	26.7	50	1558	• C	8.4	30.1
20	1327	50	7.2	24.3	20	-1550	.0	8.7	30.1
20	1328	9.0	8.3	28.7	20	1640	.0	8.5	29.7
20	1330	15	8.1	27.7	20	1641	. C	8.5	29.7
20	1332	.0	8.4	29.5	20	1542	9.0	8.4	28.9
20	1450	.0	8.5	30.1					
20	1453	9.0	9.5	28.0					

DATE	TIME	SAMP- LING DEPTH (FT)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BUNATE (MG/L CACC3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM; DIS- SGL VED (MG/L AS MG)	SOUTUM, DIS- SOLVEC (MG/L AS NA)	SCCIUM PERCENT	SOCIUM AD- SORP- TION PATIO
NOV									
20	1110	60							
20	1111	. 0							
20	1116	.0	74	0	23	3.9	8.3	19	. 4
20	1117	18							
20	1118	27							
20	1119	45							
20	1121	9.0							
20	1325	. 0	77	0	24	4.2	9.1	20	.5
20	1326	45							
20	1327	60							
20	1328	9.0							
20	1330	15							
20	1332	. 0							
20	1450	. 0							
20	1453	9.0				(
20	1455	18							
20	1456	. 0	75	0	23	4.3	9.1	20	. 5
20	1457	30							
20	1548	30							
20	1549	15							
20	1555	. 0							
20	1556	30							
20	1557	15							
20	1558	.0	76	0	23	4.5	9.4	20	. 5
20	1559	. 0							
20	1640	.0		0					
20	1641	.0	64	0	19	4.0	9.1	23	.5
20	1642	9.0							

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

MARIANA ISLANDS, ISLAND OF GUAM--Continued

16849000 FENA DAM SPILLWAY NEAR AGAT--Continued

DATE	SODIUM+ POTAS- SIUM DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUD- RIDE * DIS- SOLVED (MG/L AS F)	SILICA. DIS- SOLVED (MG/L AS SIO2)	SOLIDS+ SUM OF CONSTI- TUENTS+ DIS- SOLVED (MG/L)	SOLIDS. DIS- SOLVED (TONS PER AC-FI)
		49.07	47,442		75 25 5				
NOV		22							
20									
20	11	2.7	83	4.2	10	.0	12	114	. 16
20									
20					11				
20									
20	12	2.8	80	4.1	9.8	.1	13	115	.16
20									
20									0
20	32								
20		22							
20					-				1.44
20									
20							1.7	113	. 15
20	12	2.6	80	2.8	10	-1	13	113	.15
20		-2			22.				
20									
20									
20									
20	12	2.7	81	5.6	14	.1	14	122	-17
20									
20					10		13	108	. 15
20	12	2.8	82	. 4	10	• 0	13		.19
20									
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN. AMMONIA DIS- SOLVED (MG/L AS NH4)	NITRO- GEN, CRGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN+ DIS- SOLVED (MG/L AS N)	NITRO- GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SCL VED (MG/L AS P)	CARRON+ ORGANIC TOTAL (MG/L AS C)
NOV									
20	.01	.00	.00	.46	.47	-46	.029	.009	
20	.01	.00	.00	.51	.52	.51	.009	.000	8.2
20	.01								4.9
20		11					.019		9.4
20							.021		8.0
20							.018		9.6
20	.01	.09	.12	.25	.41	.34	.013	.012	7.9
20					==		.02C		6.4
20	.05	.02	.03	.24	.31	.26	.008	.002	4.8
20	.02	.02	.03	.34	.38	.36	.008	.004	6.0
20	.03	.03	.04	.34	.40	.37	.004	.000	4.0
20	.01	.01	.01	.49	.51	.50	.003	.000	5.2 7.8
20	.01	.00	.00	.39	.40	•39	.002		
20	.02	1	- 12						
20							.007		6.3
20	.02	.01	.01	.42	. 45	• 4 3		.011	
20	.02	.01	+01	.39	. 42	- 40	.011	.015	4.8
20							.206	- 22	5.7
20		==	100				.008		7.8
20	.02								
20	.02	.02	.03	.31	• 35	.33		.006	4.1
20	.01	-01	.01	.42	• 4 4	.43		.004	4.1
20	.02	.01	.01	-61	-64	.62	.008	.000	5.8

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

MARIANA ISLANDS, ISLAND OF GUAM--Continued

16849000 FENA	DAM	SPILLWAY	NEAR	AGAT	-Continued
---------------	-----	----------	------	------	------------

		NIIKO-	MITRO-	MITRO-	PHOS-	CARPUN.	CARBON,	CARBON.
		GEN.	GEN . NH4	GEN. TOT	PHORUS.	ORGANIC	INUR-	INORG +
		N02+N03	+ 086.	IN BUT-	TOTAL	TOT. IN	GANIC:	DRGANIC
		TOT. IN	TOT IN	TOM MA-	IN BOT.	MOTTOM	TOT IN	TOI. IN
		BOT MAT	TAM TEH	TERTAL	MAT.	MAT.	BUT MAT	BOT MAT
	TIME	(MG/KG	(MG/KG	(MG/KG	(MG/VG	(G/KG	(G/KG	(G/KG
DATE		AS NI	AS NI	A5 N1	AS P)	AS C)	AS CI	AS CI
DEC								
05	1030	13	2310	2330	700	44	. 0	44
06	1045	23	3500	3520	630	40	. 9	41
06	1100	7.9	1 81 00	18100	700	45	1.3	46
06	1115	8.8	3050	3070	700	31	13	44
06	1130	19	3250	3270	5 3 0	22	. 4	22

132000144415070 FENA RESERVOIR BELOW IMONG RIVER NEAR AGAT (LAT 13°20'00" N. LONG 144°41'50" E.)

```
RED
                             BED
                                       BED
                                                 BED
                    MAT.
                             MAT.
                                       MAT .
                                                 MAT .
                    FALL
                             FALL
                                       FALL
                                                FALL
                  DIAM.
                            DIAM.
                                      DIAM.
                                               DIAM.
                 * FINER
                           * FINER
                                     & FINER
                                              & FINER
          TIME
                    THAN
                             THAN
                                       THAN
                                                THAN
DATE
                           -062 MM
                  -004 MM
                                     -125 MM
                                              - 250 MM
VCM
20 ...
          1710
                    13
                                89
                                       99
```

132032144415470 FENA RESERVOIR BELOW ALMAGOSA RIVER NEAR AGAT (LAT 13°20'32" N. LONG 144°41'54" E.)

```
BED
                              BED
                                        BED
                     MAT.
                              MAT.
                                        MAT.
                     FAL1
                              FALL
                                        FALL
                   DIAM .
                             DIAM.
                                       CIAM.
                  & FINER
                            % FINER
                                      # FINER
                     THAN
                              THAN
DATE
                   .004 MM
                            .062 MM
                                      .125 MM
NOV
           1620
                        45
 20 ...
                                          100
```

132048144415670 FENA RESERVOIR BETWEEN MAULAP AND ALMAGOSA RIVER NEAR AGAT (LAT 13°20'48" N. LONG 144°41'56" E.)

```
BED
                            BED
                   MAT.
                             MAT.
                   FALL
                            FALL
                  DTAM.
                            DIAM.
                 & FINER
                          * FINER
          TIME
                   THAN
                             THAN
DATE
                 .004 MM
                           .062 MM
NOV
20 ...
          1510
                    79
                           100
```

132104144415870 FENA RESERVOIR BELOW MAULAP RIVER NEAR AGAT (LAT 13°21'04" N. LONG 144°41'58" E.)

BED MAT. MAT. FALL FALL DIAM . DIAM. * FINER & FINER TIME THAN THAN DATE .004 MM .062 MM VCM 20 ... 1430 81 10C

132108144421070 FENA RESERVOIR ABOVE SCREENHOUSE NEAR AGAT (LAT 13°21'08" N. LONG 144°42'10" E.)

RED BED MAT. MAT -FALL FALL DIAM. DIAM. * FINER * FINER TIME THAN DATE . CC4 MM .062 MM 1 30 0 96 20 ... 100

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 CAROLINE ISLANDS, PALAU ISLANDS

16890600 ADEIDDO RIVER, BABELTHUAP

LOCATION.--Lat 07°36'01" N., long 134°35'38" E., Hydrologic Unit 20100006, on right bank at Ngardmau, 0.3 mi (0.5 km) upstream from left-bank tributary, and 0.6 mi (1.0 km) northwest of Mount Megilon.

DRAINAGE AREA. -- 4.43 mi² (11.47 km²).

PERIOD OF RECORD .-- Water years 1979 to current.

		STREAM-	SPE- CIFIC CON-					HARE-	HARD- NESS+
		FLOW,	DUCT-		TEMPER-	TUR-	CXYGEN.	NESS	NONCAR-
		INSTAN-	ANCE	PF	ATURE.	BID-	DIS-	(MG/L	BONATE
	TIME	TANEOUS	IMICRC-	FIELD	WATER	11 4	SOLVED	AS	IMG/L
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	(NTU)	(MG/L)	CACC3)	CACO3)
JAN									
29 SEP	1155	350	31	6.7	25.5			9	1
25	1430	44	40		26.0	4.6	7.6	16	4
						SODIUM+			
		MAGNE-			SODILM	POTAS -	POTAS-		
	CALCIUM	SIUM.	SCDIUM.		AD-	SIUM	SIUM,	ALKA-	SULFATE
	DIS-	DIS-	DIS-		SORP-	DIS-	DIS-	LINITY	DIS-
	SOLVED	SOLVED	SOLVED		TION	SCLVED	SOLVED	(MG/L	SOLVED
	(MG/L	(MG/L	(MG/L	SODILM	RATIO	(MG/L	(MG/L	AS	(MG/L
DATE	AS CA)	AS MG)	AS NA)	PERCENT		AS NA)	AS K)	CACC3)	AS 504)
JAN									
29 SEP	2.0	1.0	2.1	33	.3	2.4	• 3	8	1.1
25	4.0	1.5	2.3	.23	•2		•3	12	-6
				SOLICS,			NITRC-		
	CHLO-	FLUO-	SILICA.	SUM CF	SOLIDS.	SOLIDS.	GEN.		MANGA-
	RIDE.	RIDE.	DIS-	CONSTI-	DIS-	DIS-	NO2+NC3	IRON.	NESE.
	DIS-	DIS-	SOLVED	TUENTS.	SOLVED	SCLVED	DIS-	DIS-	DIS-
	SOLVED	SOLVED	(MG/L	DIS-	ITONS	(TONS	SOLVEC	SCLVED	SOLVED
	(MG/L	tMG/L	AS	SCLVED	PER	PER	(MG/L	(UG/L	(UG/L
DATE	AS CL)	AS F)	2105)	(MG/L)	AC-FT)	DAY)	AS N)	AS FE)	AS MN)
JAN									
29 SEP	2.9	• 0	6.8	22	.03	20.8	.12	90	9
25	3.9	.0	9.6	29	.04	3.45	. C 1	100	10

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, PALAU ISLANDS -- Continued

16890620 NGECHUTRONG RIVER, BABELTHUAP

LOCATION.--Lat 07°36'08" N., long 134°35'25" E., Hydrologic Unit 20100006, 300 ft (91 m) upstream from Adeiddo River and 0.9 mi (1.4 km) northwest of Mount Megilon.

DRAINAGE AREA. -- 0.24 mi² (0.62 km²).

PERIOD OF RECORD. -- Water year 1980.

DATE	Ţ	IME	STRE FLO INST TANE (CF	AN-	SPE CIF CON DUC ANC (MIC MHO	IC - T- E RO-	TEMP ATU WAT (DE G	RE. ER			SOL	E N. S- VEO	HARE NESS (MG/ AS CACE	, L	HAR NES NONC BONA (MG	S. AR-	(MG	VED
JAN		2.70					2	6.0				12		6		0		1.4
29	1.	230					-	0.0								.,		
25	1	530		2.9		30	2	25.0	1	. 9		7.2		7				1.5
									SODI	UM+								
	MA	GNE-						MUII	POT	A5-		A5-					CHI	
		TUM.	5001					C -		UM		UM.	ALKA		SULF		RII	
		15-	DIS				50 F			5-		5-	LINI (MG		DIS	VED	DIS	VED
		LVED	SOLV				RAI	ON	(MG	VED	(ME	VED	AS	L	(MG			3/L
DATE		G/L MG)	(MG	NA)	SODI		RAI	10		NA)	AS		CAC	131	AS S			CLI
DAIL	AS	(113)	A 3	IV A J	FERG	LIVI				14.7			ono.					
JAN																		
29		. 7		2.2		42		- 4		2.4		. 2		6		. 7		3.6
SEP																0		3.0
25		. 9		2.2		39		. 4				. 1				. 8		3.0
						Sal	IDS.					NT	TRO-					
		EI	un-	STI	ICA.		OF	501	IDS.	5.01	IDS.		EN.			MA	NGA-	
			DE.		5-		STI-		15-		15-		+NU3	IR	ON.	NE	SE .	
			IS-		LVED		NTS.	50	LVED	So	LVED	0	IS-	0	IS-		15-	
			LVED	(M	G/L	0	IS-	(1	ONS	(1	ONS		LVED		LVED		LVED	
		(*	G/L	А	5	50	LVED		ER		ER		G/L		IG/L		16/L	
	DATE	ΔS	F)	51	151	(M	G/L)	A C	-FI)	0	AY)	AS	N)	AS	FE)	AS	MN)	
	JAN												.01		50		20	
	29 EP		. 0		6.3		19						.01					
	25		.0		9.4		1						77		150		20	

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, PALAU ISLANDS -- Continued

16890650 GALKATAN RIVER, BABELTHUAP

LOCATION.--Lat 07°35'45" N., long 134°34'49" E., Hydrologic Unit 20100006, 0.9 mi (1.4 km) upstream from Adeiddo River and 1.5 mi (2.4 km) west of Mount Megilon.

DRAINAGE AREA. -- 1.50 mi 2 (3.88 km2).

PERIOD OF RECORD .-- Water year 1980.

DATE	TIME	STREAM- FLOW: INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRC- MHCS)	PF FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN. DIS- SOLVED	HARE- NESS (MG/L AS CACC3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
JAN									
29									22
29 SEP	1025	65	30	6.4	25.5			8	0
25	1000	27	30		26.0	4.5	7.3	9	
						SODIUM+			
		MAGNE-			SODILM	POTAS-	POTAS-		
	CALCIUM	SIUM.	SCDIUM.		AD-	SIUM	SIUM.	ALKA-	SULFATE
	DIS-	DIS-	DIS-		SCRP-	DIS-	DIS-	LINITY	DIS-
	SOLVED	SOLVED	SCLVED		TION	SOLVED	SCLVED	(MG/L	SOLVED
3155	(MG/L	(MG/L	(MG/L	SOCILM	RATIO	(MG/L	(MG/L	AS	(MG/L
DATE	AS CA)	AS MG)	AS NA)	PERCENT		AS NA)	AS K)	CACC3)	AS SO4)
JAN									
29									
29	1.7	.9	2.2	37	.3	2.5	. 3	8	.5
SEP									
25	1.8	1.1	2.1	33	.3		• 2	-75	1.4
				SOLIOS.			NITRC-		
	CHLO-	FLU0-	SILICA.	SUM CF	SOLIES.	SOLIDS.	GEN.		MANGA-
	RIDE+	RIDE .	DIS-	CONSTI-	DIS-	DIS-	N02+NC3	IRON,	NESE.
	DIS-	DIS-	SOLVED	TUENTS .	SOLVED	SCLVED	DIS-	015-	DIS-
	SOLVED	SOLVED	(MG/L	015-	ITONS	ITONS	SOLVEC	SCLVED	SOLVED
	(MG/L	(MG/L	AS	SCLVED	PER	PER	(MG/L	(UG/L	(UG/L
DATE	AS CL)	AS F)	21CS1	(MG/L)	AC-FT)	DAY)	AS N)	AS FE)	AS MN)
JAN									
29				14					
29 SEP	3.3	• 0	7.1	21	.03	3.69	. C 1	100	10
25	4 . 1	.0	8.9	20	.03	1.46	.01	70	10

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, PALAU ISLANDS -- Continued

16890700 ALMIOKAN RIVER, BABELTHUAP

LOCATION.--Lat 07°31'12" N., long 134°33'51" E., Hydrologic Unit 20100006, 0.5 mi (0.8 km) upstream from unnam tributary and 4.6 mi (7.4 km) northeast of Ngatpang village.

DRAINAGE AREA. -- 7.05 mi2 (18.26 km2).

PERIOD OF RECORD. -- Water year 1980.

	DATE	111	I I	TREAM- FLOW+ NSTAM- ANEOUS (CFS)	CO OU AN (MI	FIC N- CI-	FI	PH ELD IIS)	MAI	PER- JRE. TER G C)	OX Y G D I S O L (M G	S- VED	NE (M	G/L	NON NON NOS	RD- SS. CAR- AIE G/L CO3)	
	AN 25	103	.0	23		73		7.2		25.5		6.8		24		0	
	27	10	,0	23		13		1.2		27.0		0.0		24		Ü	
										cont							
			MAGNE					COD	÷	SODI							
								SOD			AS-	PUT				2 105 1	
		CIUM	SIUM		IUM.				0-		UM	SI		ALK			ATE
	DIS		DIS-	DI				SOR			S-	DI		LINI		DI	
		VED	SOLVE						NC		VED	SUL		(MG			LVED
2744	(M		(MG/L		3/L	2001		RAT	10	(MG		(MG		AS			G/L
DATE	AS	CAI	AS MG) AS	NA)	PERC	ENT			AS	NA)	AS	K)	CAC	031	AS	5041
100																	
NAL		2.13.	100		12.12				12.		900				40		
25		4.3	3.	2	4.3		28		. 4		4.5		. 2		25		. 4
							SOL	IDS.									
		CHL)-	FLUO-	SIL	ICA.	SUM	OF	SOL	IDS+	SOLI	DS.			MA	NGA-	
		RIDE		RIDE.	DI	5-	CON	STI-	D	IS-	DI	S-	IR	ON.	NE	SE .	
		DIS-		DIS-	SO	LVED	TUE	NIS.	501	LVED	SOL	VED	D	IS-	D	15-	
		SOLV	ED	SOLVED	(M	G/L	D	IS-	(Te	ONS	(10	NS	50	LVED	SO	LVED	
		(MG/		(MG/L	A		50	LVED	PE	R	PE		(U	G/L	10	G/L	
	DATE	AS C	L)	AS F)	SI	02)	(M	G/L)	AC-	-FT)	DA	Y)	AS	FE)	AS	MNI	
- i	AN																
	25	· u	. 7	.0		20		56		.08	3	. 48		240		10	
				. 0						300	-						

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, PALAU ISLANDS -- Continued

16890800 NGATPANG RIVER, BABELTHUAP

LOCATION.--Lat 07°27'40" N., long 134°32'15" E., Hydrologic Unit 20100006, 0.2 mi (0.3 km) upstream from unnamed tributary and 0.4 mi (0.6 km) southeast of Ngatpang village.

DRAINAGE AREA. -- 0.35 mi² (0.91 km²).

PERIOD OF RECORD .-- Water year 1980.

DATE	+ TIME	STREAM- FLOW+ INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRC- MHCS)	PH FIELL (UNITS	D WAT	IRE.	OXYGEN, DIS- SCLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARCH NESS. NCNCAR- BCNATE (MG/L CACC3)	CALCIUM DIS- SOLVED (MG/L AS CA)
JAN 24	1205	1.2	68	7.	.0 2	25.0	7.2	22	0	4.4
	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIUM. DIS- SOLVED (MG/L	SCOIUM	SOD IN AD- SORP- TIC! RATIO	UM POT - SI - DI N SOL	IUM+ IAS- IUM IS- VED	POTAS- SIUM, DIS- SOLVED (MG/L	ALKA- LINITY (MG/L AS	SULFATE DIS- SCL VED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L
DATE	AS MG)	AS NA)	PERCENT		AS	NA)	AS K)	(EODA)	AS SC4)	AS CL)
24	2.6	5.1	33		• 5	5.5	. 4	26	1.0	4.7
	FL	un- SIL		LIDS.	SOL IDS.	SOLI		TRO-	M	ANGA-
	RI	DE. DI		NSTI-	DIS-					SE.
				ENTS.	SOLVED	SOL			IS- I	015-
				CIS-	ITCNS	110				OLVED
				CLVED	PER	PE				JG/L
DA	TE AS	F) SI	(5)	MG/L)	AC-FT)	DA	Y) AS	N) AS	FE) A	> MN)
JAN				1.61					20.0	
24		•0	24	58	.08		.19	.01	260	20

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, PALAU ISLANDS -- Continued

16890900 TABAGATEN RIVER, BABELTHUAP

LOCATION.--Lat 07°27'00" N., long 134°32'05" E., Hydrologic Unit 20100006, on left bank 0.3 mi (0.5 km) downstream from unnamed tributary, 0.7 mi (1.1 km) northeast of Mount Karukail, and 1.0 mi (1.6 km) south of Ngatpang.

DRAINAGE AREA. -- 6.34 mi² (16.42 km²).

PERIOD OF RECORD. -- Water years 1979 to current year.

			SPE-						
			CIFIC						HARD-
		STRE AM-	CON-					HARD-	NESS+
		FLOW	DUCT-		TEMPER-	TUR-	DXYGEN.	NESS	NONCAR-
		INSTAN-	ANCE	PH	ATURE	BID-	DIS-	(MG/L	BONATE
	TIME	TANEDUS	(MICRO-	FIELD	WATER	ITY	SOL VED	AS	I MG /L
DATE		(CFS)	MHOSI	(UNITS)	(DEG C)	(NTU)	(MG/L)	CACTE	CAC 03)
JAN									
24	1010	30	7.6	7.4	25.0	100	8.0	24	0
SEP	1010	30	10	1.4	25.0		8.0	24	0
27	1000	1 30	45		25.5	6.6	8.2	14	0
61000	1000	1 30	45		23.3	0.0	84.2	14	U
						SODIUM+			
		MAGNE-			SODIUM	POTAS-	PUTAS-		
	CALCIUM	SIUM.	SODIUM		AD-	SIUM	SI UM.	ALKA-	SULFATE
	DIS-	DIS-	018-		SORP-	DIS-	DIS-	LINITY	DIS-
	SOLVED	SOLVED	SOLVED		LION	SOLVED	SOLVED	(MG/L	SOLVED
	(MG/L	(MG/L	(MG/L	SODIUM	RATIO	(MG/L	(MG/L	AS	(MG /L
DATE	AS CA)	AS MG)	AS NA)	PERCENT		AS NA)	AS KI	CACO 31	AS SO4)
JAN									
24	4.3	3.3	4.1	27	. 4	4.4	. 3	27	. 3
SEP									
27	2.2	2.0	2.9	31	. 3		. 3	14	3.8
				SOL IDS.			NITRO-		
	CHL0-	FLU0-	SILICA.	SUM OF	SOLIDS .	SOLIDS.	GE N.		MANGA-
	RIDE.	RIDE.	DIS-	CONSTI-	DIS-	DIS-	N02+N03	IRON.	VESE .
	DIS-	DIS-	SOLVED	TUENTS:	SOLVED	SOLVED	DIS-	DIS-	DIS-
	SOLVED	SOLVED	(MG/L	015-	CTONS	(TONS	SOLVED	SOLVED	SOLVED
	(MG/L	(MG/L	AS	SOLVED	PER	PER	(MG/L	(UG/L	(UG/L
DATE	AS CL 1	AS F)	2105)	(MG/L)	AC-FT)	DAY	AS NI	AS FET	AS MN)
JAN									
24 SFP	3.9	.0	5.5	55	.07	4.46	.01	190	7
27	3.7	.0	14	37	.05	13.0	.00	90	7

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, PALAU ISLANDS -- Continued

16891190 GIHMEL RESERVOIR, BABELTHUAP

LOCATION.--Lat 07°22'01" N., long 134°32'09" E., Hydrologic Unit 20100006, on right bank at Garuruon, at dam and 0.5 mi (0.8 km) upstream from coast road.

, D	ATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHCS)	PH FIELD (UNITS)	TEMPER- ATLRE, WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS+ NONCAR- BONATE (MG/L CACO3)
JA 2 SE	7	0905	76	7 . 4	29.5		7.4	28	0
	3	1500	65	(55	30.0	6.2	6.9	22	1
	CALCIUM DIS- SOLVEI	015	M. SCDI		SOD A SOR TI	0- SI P- DI	AS- POT	JM, ALK 5- LINI	TY DIS-
DATE	(MG/L AS CA)	(MG/	L (MG.	/L SODI	LM RAT	10 (MG		L AS	
JAN 27 SEP 23	5.8			4 • 2 3 • 7	25	.3	4.5	.3	29 .3 21 5.5
23	***		• *	3,	2.6	• 3		• 0	21 7.5
D	F C S	CHLD- CIDE. DIS- COLVED MG/L	FLUO- RIDE, DIS- SCLVED (MG/L AS F)	SILICA. DIS- SCLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS + DIS- SOLVED (TONS PER AC-FI)	NITRO- GEN+ NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SCLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
SE	7 P	4.9	•0	21	58	.08	.16	260	2
2	3	4.8	•0	17	52	.07	.00	300	40

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, PALAU ISLANDS -- Continued

16891300 GADEN RIVER, BABELTHUAP

LOCATION.--Lat 07°22'56" N., long 134°33'42" E., Hydrologic Unit 20100006, on left bank 1,000 ft (305 m) upstream from confluence with Kumekumeyel River, 1.0 mi (1.6 km) southwest of Mount Kabekobekushi, and 1.8 mi (2.9 km) north of Airai.

DRAINAGE AREA. -- 4.23 mi 2 (10.96 km2).

DATE	TIME	STRE AM- FLOW. INSTAN- TANE OUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNIIS)	TEMPER- ATURE, WATER (DEG C)	(NIU) 8 ID - 1 UR -	OXYGEN. DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CAC23)	HARD- NESS+ NONCAR- BONATE (MG/L CACO3)
JAN									
22 SEP	1335	1 3	83	7.9	25.5		7.0	30	0
23	1100	29	65		26.5	4.1	7.4	21	1
23	1100	2,	0,		20.9	7	1353		
						SOD IUM+			
		MAGNE-	2222		SODIUM	POTAS-	PUTAS-		
	CALCIUM	SIUM,	SODIUM.		AD-	SIUM	SI UM.	ALKA-	SULFATE DIS-
	DIS- SOLVED	DIS- SOLVED	DIS- SOLVED		SORP- TION	DIS- SOLVED	DIS- SOL VED	LINITY (MG/L	SOLVED
	(MG/L	(MG/L	(MG/L	SODIUM	RATIO	(MG/L	(MG/L	AS	(MG/L
DATE	AS CA)	AS MG)	AS NA)	PERCENT	0.11	AS NA)	AS KI	CACO31	AS 504)
JAN									
22	5.8	3.8	3.5	20	. 3	3.7	. 2	34	. 2
SEP									
23	4.1	2.5	3.0	24	. 3		. 3	20	5.2
				SOL ID Se			NITRO-		
	CHLO-	FLU0-	SILICA.	SUM OF	SOLIDS .	SOLIDS.	GE N.		MANGA-
	RIDE.	RIDE.	DI S-	CONSTI-	DIS-	DIS-	N92+N03	IRON.	NESE .
	DIS-	DIS-	SOLVED	TUENTS.	SOLVED	SOLVED	DIS-	DIS-	DIS-
	SOLVED	SOLVED	(MG/L	015-	(TONS	CTONS	SULVED	SOLVED	SOLVED
	(MG/L	(MG/L	AS	SOLVED	PER	PER	(MG/L	(UG/L	(UG/L
DATE	AS CL)	AS F)	2105)	(MG/L)	AC-FT)	DAY	AS NI	AS FET	AS MN)
JAN									
22 SEP	5.1	.0	21	60	.08	2.11	.03	150	5
23	4.0	.0	15	46	.06	3.60	.01	110	7

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 CAROLINE ISLANDS, PALAU ISLANDS--Continued

16891310 KUMEKUMEYEL RIVER, BABELTHUAP

LOCATION.--Lat 07°23'01" N., long 134°33'34" E., Hydrologic Unit 20100006, 100 ft (30 m) upstream from confluence with Gaden River, 1.1 mi (1.8 km) west of Mount Kabekobekushi, and 1.9 mi (3.1 km) north of Airai.

DRAINAGE AREA. -- 1.55 mi 2 (4.02 km2).

23	4.6	.0	17	53	.07	1.42	• C C	80	10
22 SEP	4.4	.0	25	6.6	.09	.66	. C 1	500	10
JAN									
DATE	AS CL)	AS F)	5102)	(MG/L)	AC-F 1)	DAY)	AS N)	AS FE)	AS MN)
	(MG/L	(MG/L	AS	SCLVED	PER	PER	(MG/L	(UG/L	IUG/L
	SOL VED	SOLVED	SCLVED (MG/L	TUENTS.	SOLVED	SOLVED	DIS- SGLVED	DIS- SOLVED	DIS- SOLVED
	RIDE, DIS-	RIDE.	DIS-	CONSTI-	015-	DIS-	N02+NC3	IRON,	NE SE .
	CHLO-	FLU0-	SILICA	SOLIDS, SUM CF	SOLIDS.	SOLIDS.	NITRC- GEN•	2431	MANGA-
								5.	
23	6.1	2.6	3.2	21	.3		.3	24	4.9
JAN 22 SEP	7.2	4.0	4.0	20	•3	4.3	.3	34	.6
DATE	AS CA)	AS MG)	AS NA)	PERCENT		AS NA)	AS K)	CACC3)	AS SO4)
	(MG/L	(MG/L	(MG/L	SOCIUM	RATIO	(MG/L	(MG/L	AS	(MG/L
	SOLVED	SOLVED	SCLVED		TION	SOLVED	SOLVED	(MG/L	SOLVED
	DIS-	015-	DIS-		SORP-	DIS-	DIS-	LINITY	DIS-
	CALCIUM	MAGNE- SIUM.	SCDIUM.		SODIUM AD-	POTAS-	POTAS-	ALKA-	SULFATE
		WAGNE			5057.4	SODIUM+			
23	1330	9.9	70		26.0	5.1	8.2	26	2
JAN 22 SEP	0950	3.7	8.6	7.5	25.0		8 • C	34	0
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	(NTU)	(MG/L)	CACC3)	CACO3)
	TIME	TANEOUS	(MICRO-	FIELD	WATER	ITY	SOLVED	AS	(MG/L
		INSTAN-	ANCE	PF	ATURE.	BID-	DIS-	(MG/L	BONATE
		FLOW.	DUCT-		TEMPER-	TUR-	CXYGEN.	NESS	NONCAR-
		STREAM-	CON-					HARD-	NESS.
			SPE- CIFIC						HARD-

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, PALAU ISLANDS -- Continued

16891400 SOUTH FORK NGARDOK RIVER, BABELTHUAP

LOCATION.--Lat 07°26'15" N., long 134°35'03" E., Hydrologic Unit 20100006, on right bank 0.3 mi (0.5 km) from left-bank tributary, 0.6 mi (1.0 km) northwest of Garasho Mountain, and 1.3 mi (2.1 km) west Ngarsul village.

DRAINAGE AREA.--2.26 mi² (5.85 km²).

DATE	TIME	STRE AM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE: WATER (DEG C)	TUR- BID- ITY (NTU)	UXYGEN, DIS- SOLVEO (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS+ NONCAR- BONATE (MG/L CACU3)
23 SEP	1100	5.8	61	7 . 3	25.0		7.8	23	0
24	1100	13	45		26.0	1.5	8.1	1 5	0
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SOD IUM PERCENT	SODIUM AD- SORP- IION RATIO	SODIUM+ POTAS- SIUM DIS- SOLVED (MG/L AS NA)	POTAS- SIUM+ DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
JAN 23 SEP	4.6	2.9	3.1	22	. 3	3.3	• 2	23	.3
24	2.7	2.0	2.9	29	. 3	-	. 1	15	3.1
	CHLO- RIDE+ DIS- SOLVED (MG/L	FLUN- RIDE, DIS- SOLVED (MG/L	SILICA. DIS- SOLVED (MG/L AS	SOLIDS, SUM OF CONSTI- TUENIS, DIS- SOLVED	SOLIDS, DIS- SOLVED (TONS PER	SOLIDS. DIS- SOLVED (TONS PER	NITRO- GEN+ NO2+NO3 DIS- SOL VED	IRON. DIS- SOLVED	MANGA- NESE + DIS- SOLVED
DATE	AS CL)	AS F)	SI 021	(MG/L)	AC-FT)	DAY)	AS NI	AS FE)	AS MN)
JAN 23 SEP	4.2	.0	18	47	.06	.74	.01	190	6
24	3.8	.0	15	39	.05	1.37	.01	120	6

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, PALAU ISLANDS-Continued

16891430 NORTH FORK NGARDOK RIVER, BABELTHUAP

LOCATION.--Lat 07°27'50" N., long 134°35'49" E., Hydrologic Unit 20100006, 500 ft (152 m) upstream from right-bank tributary, 1.4 mi (2.3 km) upstream from confluence with South Fork Ngardok River, and 2.5 mi (4.0 km) upstream from mouth.

DRAINAGE AREA. -- 9.37 mi² (24.27 km²).

			SPE-						
			CIFIC						HARD-
		STREAM-	CON-					HARC-	NESS.
		FLOW.	DUCT-		TEMPER-	TUR-	OXYGEN.	NESS	NONCAR-
		INSTAN-	ANCE	PF	ATURE,	BID-	DIS-	(MG/L	BONATE
0.500	TIME	TANEOUS	(MICRC-	FIELD	WATER	ITY	SOLVEC	AS	(MG/L
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	(NIU)	(MG/L)	CACC3)	CACO3)
JAN									
23	1310	24	60	7.4	26.0		8 . C	21	0
SEP									
24	1530	60			26.0	3 .4	7.2	16	0
						SOUIUM+			
		MAGNE-			SODILM	POTAS -	POTAS-		
	CALCIUM	SIUM.	SODIUM.		AU-	SIUM	SIUM,	ALKA-	SULFATE
	DIS-	DIS-	DIS-		SORP-	DIS-	C15-	LINITY	DIS-
	SOLVED	SOLVED	SCLVED		IION	SCLVED	SCLVEC	(MG/L	SOLVED
	(MG/L	(MG/L	(MG/L	SOCIUM	RATIO	(MG/L	(MG/L	AS	(MG/L
DATE	AS CA)	AS MG)	AS NA)	PERCENT		AS NA)	AS K)	CACC3)	AS 504)
JAN									
23	3.8	2.8	4.4	31	. 4	4.5	-1	23	.2
SEP	2.0			3.1			**	23	• • •
24	2.8	2.2	4 . 8	39	.5		-1	21	3.1
74	2.00	2.02	4.0	33	. 7	1.37		21	3.1
				11.722			4.525.50		
	21	4270		SOLIDS.	400 551	47112550	NITRC-		2010
	CHLO-	FLUO-	SILICA,	SUM CF	SOLIDS.	SOLIDS.	GEN.	45.50	MANGA-
	RIDE,	RIDE.	D15-	CONSTI-	DIS-	D15-	NO5+NC3	IRON.	NE SE .
	DIS-	015-	SOLVED	TUENTS .	SOLVED	SOLVED	DIS-	DIS-	D15-
	SOLVED	SOLVED	(MG/L	DIS-	CTONS	CTONS	SOLVEC	SCLVED	SOLVED
	(MG/L	MG/L	AS	SCLVED	PER	PER	(MG/L	(UG/L	(UG/L
DATE	AS CL)	AS FI	5102)	(MG/L)	AC-FT)	DAY)	AS NI	AS FE)	AS MN)
JAN									
23 SEP	4.4	.0	17	47	.06	3.05	- C 1	350	20
24	4.0	.0	14	4 4	. 06	7.10		160	20

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, PALAU ISLANDS -- Continued

16891700 UNNAMED WEST COAST STREAM, ARAKABESAN

LOCATION.--Lat 07°21'14" N., long 134°27'10" E., Hydrologic Unit 20100006, 0.1 mi (0.2 km) upstream from mouth and 0.15 mi (1.0 km) southeast of Arakabesan village.

DRAINAGE AREA. -- 0.03 mi² (0.08 km²).

0	ATE	1	IME	FL INS TAN	EAM- OW. TAN- EOUS FS)	SPE CIF COM DUC AND (MIC	IC V- IT- E RO-	FI	PH ELD ITS)	AT	PER- URE, TER G C)	NE (M	RD- SS G/L S C03)	NE NON BON (M	RD- SS. CAR- ATE G/L CO3)	DI SO	CIUM S- LVED G/L CA)
JA 2	N 4	1	545		.03		73		6.7		25.0		20		1		4.4
									SODI	um+							
		GNE-						IUM		AS-		AS-					CHL 0-
		IUM,	5001					D -		UM		UM.	ALK		SULF		RIDE.
		15-	DIS				SOR			15-		5-	LINI		DIS		UI2-
		LVED	SOLV					0 N		VED		VED	(MG			VED	SOLVED
		G/L	(MC		SODI		RAT	10	(ME		(MG		AS		CMG		MG/L
DATE	AS	MG	AS	NA)	PERC	ENT			AS	NA)	AS	K)	CAC	031	AS S	50 41	AS CL)
JAN																	
24		2.2		5.9		39		. 6		6.2		.3		19		2.9	8.6
						SOLI							TRO-				
			uo-		ICA.	SUM			IDS,		IDS.		EN.				NGA-
			DE.	DI		CONS			IS-		IS-		+N03		JN.		SE.
			115-		LVED	TUEN			LVED		LVED		IS-		IS-		15-
			LVED		G/L	100	5-		ONS		ONS		LVED		LVED		LVED
	5-0		G/L	A			VED	P			ER		G/L		G/L		G/L
D	ATE	AS	F)	SI	05)	(MG	/L)	A C	-FI)	0	AYI	AS	N)	AS	FE)	AS	MNI
JA	N																
2	4		.0		21		57		.08		.00		.08		150		8

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, PALAU ISLANDS -- Continued

16891780 UNNAMED NORTH COAST STREAM, MALAKAL

LOCATION.--Lat $07^{\circ}19^{\circ}51^{\circ}$ N., long $134^{\circ}27^{\circ}35^{\circ}$ E., Hydrologic Unit 20100006, 0.2 mi (0.3 km) upstream from mouth and 1.3 mi (2.1 km) southwest of Madalai.

DRAINAGE AREA. -- 0.02 mi2 (0.05 km2).

				SPE-						
				CIFIC					HARD-	
			STREAM-	CEN-				FARD-	NESS.	
			FL CW .	DUCT-	TEMPER-	TUR-	OXYGEN.	NESS	NONCAR	-
			INSTAN-	ANCE	ATLRE .	BID-	DIS-	(MG/L	BONATE	
		TIME	TANECUS	(MICRO-	WATER	ITY	SOLVED	AS	(MG/L	
	DATE		(CFS)	MHOS	(DEG C)	(NTU)	(MG/L)	CACO31	CACOR)
	P									
	22	1600	<.01	65	27.0	2.4	7.2	20		0
		1000		0 /	21.0	2.4	,	20		
		***			can	TIM DOT	AS-			HLO-
	C41 C111		NE-		SOD			- SULF		IDE.
	DIS-		UM. SODI		SOR		UM, ALKA			IS-
	SOLVE		VED SOLV				VED (MG/			OLVED
	(MG/L							(MG		MG/L
DATE	AS CA			NA) PERC		AS			77	S CL)
SEP										
22	4.	5	2.2	5.0	34	.5	. 4	21	• 2	8.7
				SOLIDS.			NITRO-			
		FLUO-	SILICA.	SUM CF	SOL IDS.	SOLIDS.	GEN.		MANGA	-
		RIDE.	DIS-	CONSTI-	DIS-	DIS-	N02+N03	IRON.	NESE .	
		DIS-	SCLVED	TUENTS .	SOLVED	SOLVED	DIS-	DIS-	DIS-	
		SOLVED	(MG/L	CIS-	CTCNS	ITONS	SOLVED	SCLVEC	SOLVE	
		(MG/L	AS	SCLVED	PER	PER	(MG/L	(UG/L	(UG/L	
(DATE	AS F)	21(5)	(MG/L)	AC-FT)	DAYI	AS NI	AS FE)	AS MN)
SE	P									
	22	.0	19	53	<.07	<.01	.00	60		0
	7 90	1								

< Actual value is known to be less than the value shown.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, YAP ISLANDS

16892000 ATELU STREAM, YAP

LOCATION.--Lat 09°32'56" N., long 138°06'19" E., Hydrologic Unit 20100006, 2.6 mi (4.2 km) northwest of Colonia and 1.2 mi (1.9 km) northwest of Mount Matade.

DRAINAGE AREA. -- 0.31 mi² (0.80 km²).

D	ATE	TIME	STREAM- FLOW+ INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	TEMPER- ATURE, WATER (DEG C)	TUR- 810- 11Y (NTU)	OXYGEN. DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	
SE 2	P 0	1230	.18	125	25.5	5.4	7.0	47	0	
DATE	CALCII DIS- SOLVI (MG/I	UM S1 D1 ED SOL L (MG	SNE- (UM+ SOD) (S- DIS (VED SOL) (MG) AS	S- VED	SOR TI UM RAT	D- S1 P- D1 ON SOL IO (MG	IAS- IUM. ALKA IS- LINIT LVED (MG/	Y DIS	VED SOL	DE . S- LVEC
SEP 20	5	. 6	8.1	5.8	24	. 4	. 3	51	.7 1	1 1
D	ATE	FLUO- RIDE: DIS- SOLVED (MG/L AS F)	SILICA. DIS- SOLVED (MG/L AS SIO2)	SOLIDS: SUM OF CONSTI- TUENTS: DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS+ DIS- SOLVED (TONS PER DAY)	NITRO- GEN• NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
SE 2	P 0	.0	23	86	.12	.04	.03	360	6	

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTMEBER 1980 CAROLINE ISLANDS, YAP ISLANDS--Continued

16892400 ARINGEL STREAM, YAP

LOCATION.--Lat 09°31'01" N., long 138°05'11" E., Hydrologic Unit 20100006, on right bank at Aringel and 0.3 mi (0.5 km) upstream from mouth.

DRAINAGE AREA. -- 0.24 mi2 (0.62 km2).

AS CL)	AS F)	25	147	<.20	<.01	3.9	90	3
AS CL)	AS F)	21021	(FOYL)				72	
			1 MC 41 3	AC-FT1	DAY)	AS N)	AS FF)	AS MN)
								(UG/L
SOLVED	SOLVED	(MG/L	DIS-	CTONS	ITONS	SCLVEC	SCLVED	SOLVED
DIS-	DIS-	SCLVED	TUENTS .	SOLVED	SOLVED	DIS-	015-	DIS-
RIDE.	RIDE .	DIS-	CONSTI-	DIS-	DIS-	N02+NC3	IRON.	NESE .
CHLO-	FLU0-	SILICA.	SUM CF	SCLIDS.	SOLIDS.	GEN.		MANGA-
			SOLIDS.			NITRC-	-	
4.0	5.9	5.1	24	•4	~ ~	• 2	36	.3
0.0	1.	1.7	23	• *	1.0	• 0	0.0	2.,
9.0	13	17	7.7	0	1.0		4.4	2.9
AS CA)	AS MG)	AS NA)	PERCENT		AS NA)	AS K)	CACC3)	AS 5041
(MG/L	(MG/L	(MG/L	SODILM	RATIO	(MG/L	(MG/L	AS	(MG/L
		SOLVED		TION	SOLVED	SCLVEC	(MG/L	SOLVED
								DIS-
CALCIUM		SCOTUM-					AIKA-	SULFATE
	MAGNE-			SODILM	SODIUM+	POTAS-		
1430	. 47	95	7.8	27.0	9 . 3	7.3	34	0
0900	< .01	220	6.8	24.5		5 . C	74	8
Title			(UNITS)	(DEG C)	(NTU)	(MG/L)	CACCE	CAC03)
TIME								(MG/L
			DL					BONATE
				TEMBER	Tub	CVVCCA		NESS,
								HARD-
		SPE-						1,022
	CALCTUM DIS- SOLVED (MG/L AS CA) 8.0 4.0 CHLO- RIDE, DIS- SOLVED (MG/L	CFS) 0900 <.01 1430 .47 MAGNE- SIUM- DIS- SOLVED SOLVED (MG/L AS CA) AS MG) CHLO- RIDE, DIS- SOLVED DIS- SOLVED OHER- DIS- SOLVED SOLVED SOLVED SOLVED (MG/L (MG/L AS CA)	STREAM-	CIFIC CON- FLUO- SILICA, SOLIED CONSTI- CONS	CIFIC CGM- FLOW. DUCT- TEMPER- ATURE, MATER MA	SIREAM- CCFIC CGN- FLOW, DUCT- TEMPER- TUR- BID- INSTAN- ANCE PH ATURE, BID- TANEOUS (MICRO- FIELD WATER ITY CCFS) MHGS) (UNITS) (DEG C) (NIU) 0900 <.01 220 6.8 24.5 1430 .47 95 7.8 27.0 9.3 MAGNE- SODILM AD- SIUM- AD- SIUM- DIS- DIS- DIS- SORP- SIUM- DIS- DIS- SORP- SIUM- AD- SIUM- DIS- DIS- SORP- SOLVED TION SOLVED (MG/L (MG/L SODILM RATIO (MG/L AS NA) R.O 13 17 33 .9 18 4.0 5.9 5.1 24 .4 CHLO- FLUO- SILICA, SUM CF SOLIDS, SOLIOS, RIDE, RIDE, DIS- CONSTI- DIS- DIS- DIS- DIS- SCLVED TUENTS, SOLVED SOLVED SOLVED SOLVED TUENTS, SOLVED SOLVED SOLVED SOLVED SOLVED TUENTS, SOLVED SOLVED SOLVED SOLVED SOLVED TUENTS, SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED TUENTS, SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED	CIFIC SIREAM	SIREAM- CGM- FLOW, DUCT- TEMPER- TUR- GXYGEN, NESS INSTAN- ANCE P

< Actual value is known to be less than the value shown.

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, YAP ISLANDS -- Continued

16892500 TAMANEY STREAM, YAP

LOCATION.--Lat 09°29'45" N., long 138°05'34" E., Hydrologic Unit 20100006, at abandoned German dam, 0.5 mi (0.8 km) northwest of Inuf, and 2.3 mi (3.7 km) southwest of Colonia.

DRAINAGE AREA. -- 0.21 mi² (0.54 km²).

			STREAM-	SPE- CIFIC CON-				HARD-	HARD- NESS+
			FLOW.	DUCT-	IEMPER-	BID-	DIS-	NESS (MG/L	NONCAR- BONATE
		TIME	TANEOUS	(MICRO-	WATER	IIY	SOLVED	AS	(MG/L
D	ATE		(CFS)	MHOSI	(DEG C)	(NTU)	(MG/L)	CACO31	CACOTI
SE	P								
1	7	1630	1 - 4	138	27.0	12	6.4	62	0
		MAG	NE-		500	IUM PO	TAS-		CHL 0-
	CALCIU	M 51	UM+ SOD!	IUM.	Δ	D- S	IUM. ALKA	- SULF	
	DIS-		S- DIS		SOR		IS- LINIT		
	SOLVE		VED SOL		1		LVED (MG/		VED SOLVED
	(MG/L			S/L S00:			G/L AS	(MG	
DATE	AS CA) AS	MG) AS	NA) PER	CENT	AS	K) CACO	131 AS S	04) AS CL)
SEP					4.5		4.50	5	500
17	13		7.2	4.3	13	• 2	•1	66	.6 5.4
				SOLIDS.			NITRO-		
		FLU0-	SILICA.	SUM OF	SOLIDS.	SOLIDS.	GEN.		MANGA-
		RIDE.	DIS-	CONSTI-	DI 5-	DIS-	NO2+NO3	IRON.	NESE .
		DIS-	SOLVED		SOLVED	SOLVED	012-	015-	DIS-
		SOLVED	(MG/L	D15-	(TONS	CTONS	SOLVED	SOLVED	SOLVED
		(MG/L	AS	POLAED	PER	PER	(MG/L	(UG/L	(UG/L
D	ATE	AS F)	21051	(MG/L)	AC-FT)	DAYI	AS NI	AS FEI	AS MN)
SE	Р								
1	7	.0	18	89	.12	. 34	.12	330	20

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, YAP ISLANDS -- Continued

16892600 RIPU STREAM, YAP

LOCATION.--Lat 09°30'05" N., long 138°06'02" E., Hydrologic Unit 20100006, 1,000 ft (305 m) upstream from mouth and 1.6 mi (2.6 km) southwest of Colonia.

DRAINAGE AREA. -- 0.24 mi² (0.62 km²).

				SPE-						
				CIFIC					HAR	D-
			STREAM-	CCN-				HARD-	NES	5.
			FL CW .	DUCT-	TEMPER-	TLR-	OXYGEN.	NESS	NONC	AR-
			INSTAN-	ANCE	ATLRE,	BID-	DIS-	(MG/L	BONA	
		TIME	TANEGUS	(MICRO-	WATER	ITY	SOLVED	AS	(MG	
D	ATE		(CFS)	MHOS)	(DEG C)	(NTU)	(MG/L)	CACO3)	CAC	
			10157	0.5.		1111111	100.0			5.00
SE	P									
	7	1530	1.5	112	27.0	19	7.7	48		0
		MAG	NE-		son	ILM POT	AS-			CHLO-
	CALCIU		UM. SCDI	Li M .			UM. ALK	A- SULF	ATE	PIDE.
	DIS-		S- DIS		SOR		S- LINI			DIS-
	SOLVE		VED SOLV				VED (MG		VED	SOLVED
	(MG/L	CMC						(MG		(MG/L
DATE	AS CA			NA) PERC		AS				AS CL)
SEP			- 4		4.4			2.7	_	
17	6.	9	7.4	5.2	19	.3	. 4	51	. 9	6.7
				SOLIDS.			NITRO-			
		FLUN-	SILICA,	SUM CF	SOLIDS.	SOLIDS.	GEN.			G A -
	F	SIDE.	DIS-	CONSTI-	DIS-	015-	N02+N03	IRON.	NES	
		DIS-	SCLVED	TUENTS.	SOLVED	SOLVED	DIS-	DIS-	DI	
		SOLVED	(MG/L	CIS-	ITCNS	ITONS	SOLVED	SCLVED	SOL	VED
		MG/L	AS	SCLVED	PER	PER	(MG/L	(UG/L	tug	
D	ATE A	S F)	SIC2)	(MG/L)	AC-FT)	DAY)	AS N)	AS FET	AS	MNI
SE	P									
	7	.0	20	79	.11	.32	.22	250		20

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, YAP ISLANDS -- Continued

16892650 DINAY STREAM, YAP

LOCATION.--Lat 09°30'29" N., long 138°06'02" E., Hydrologic Unit 20100006, 0.5 mi (0.8 km) northwest of the water treatment plant and 1.5 mi (2.4 km) southwest of Colonia.

DRAINAGE AREA. -- 0.04 mi² (0.10 km²).

ſ	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	TEMPER- ATURE: WATER (DEG C)	108- 810- 117 (NIU)	OXYGEN. DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS: NONCAR- BONATE (MG/L CACO3)
S E	P 8	1530	. 14	92	26.0	22	7.5	35	2
DATE SEP 18	CALCII DIS- SOLVI (MG/I AS C	DM S1 D1 ED S0L (MC		5- /ED	SOR TI UM RAT	0- 51 P- 01 ON SOL		Y DIS L SOL	VED SOLVED
	DATE	FLU1- RIDE, DIS- SOLVED (MG/L AS F)	SILICA. DIS- SOLVED (MG/L AS SIN2)	SOLIDS+ SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS: DIS- SOLVED (IONS PER AC-FI)	SOLIDS. DIS- SOLVED (TONS PER DAY)	NITRO- GEN: N92+N03 DIS- SOLVED (MG/L AS N)	IRON. DIS- SOLVED (UG/L AS FE)	MANGA- NESE • DIS- SOL VED (UG/L AS MN)
SE	8	. 1	20	64	.09	.02	.07	450	30

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, YAP ISLANDS -- Continued

16892680 THALOMAR STREAM ABOVE RESERVOIR, YAP

LOCATION.--Lat 09°30'32" N., long 138°06'03" E., Hydrologic Unit 20100006, 0.5 mi (0.8 km) northwest of the water treatment plant and 1.4 mi (2.3 km) southwest of Colonia.

DRAINAGE AREA. -- 0.10 mi2 (0.26 km2).

		200.2	STREAM- FLCW+ INSTAN-	SPE- CIFIC CCN- DUCT- ANCE	TEMPER-	TUR- BID-	OXYGEN. DIS-	FARD- NESS (MG/L	HARD- NESS+ NGNCAR- BGNATE
	ATE	TIME	(CFS)	(MICRO- MHOS)	(DEG C)	(NTU)	SOLVED (MG/L)	CACC3)	CACO3)
SE	P								
-	8	1500	.43	130	26.5	27	7.6	44	0
		FAC	SNE-		500	TUM POT	AS-		CHLO-
	CALCIU		IUM . SOD	TuM.			UM. ALKA	- SULF	
	DIS-		IS- DIS		SOR		S- LINIT		
	SOLVE	D SOL	VED SOL	ED	TI		VED (MG/		
	(MG/L	CMC	5/L (M	S/L SODI	LM RAT	10 (MG	IL AS	(MG	/L (MG/L
DATE	AS CA) AS	MG) AS	NA) PERC	ENT	AS	K) CACI	13) AS S	(4) 45 CL)
SEP									
18	6.	4	6.9	6.2	23	.4	• 3	5 C	.2 8.7
				SOLIOS.			NITRO-		
		FLUO-	SIL ICA.	SUM CF	SOL IDS.	SOLIDS.	GEN.		MANGA-
		RIDE.	DIS-	CONSTI-	DIS-	DIS-	N02+N03	IRON.	NESE.
		DIS-	SOLVED	TUENTS,	SOLVED	SOLVED	DIS-	DIS-	DIS-
		SOLVED	(MG/L	CIS-	CTONS	(TONS	SOLVED	SCLVEC	SOLVED
		(MG/L	AS	SCLVED	PER	PER	(MG/L	(UG/L	(UG/L
D	ATE	AS F)	SIC2)	(MG/L)	AC-FT)	DAY)	AS NI	AS FE)	AS MN)
SE	P								
1	8	.0	19	7.8	.11	.09	.00	240	10

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, YAP ISLANDS -- Continued

16892800 DALOLAB STREAM, YAP

LOCATION.--Lat 09°31'04" N., long 138°06'04" E., Hydrologic Unit 20100006, on left bank at Talagu and 0.9 mi (1.4 km) upstream from mouth.

DRAINAGE AREA. -- 0.07 mi2 (0.18 km2).

			SPE-						
			CIFIC						HARD-
		STRE AM-	CON-					HARD-	NESS.
		FLOW,	DUCT-		TEMPER-	TUR-	OXYGEN.	NE SS	NONCAR-
		INSTAN-	ANCE	PH	ATURE .	BID-	DIS-	(MG/L	BONATE
	TIME	TANEOUS	(MICRO-	FIELD	WATER	ITY	SOLVED	AS	(MG/L
DATE		(CFS)	MHOSI	(UNITS)	(DEG C)	(NTU)	(MG/L)	CACO31	CACO3)
JAN									
31	1015	<.01	210	7.0	25.5	2.2	1.6	81	1
SEP	,	01	210	,	23.3			.01	
17	1400	.56	112	4-	26.0	30	7.5	39	5
						SODIUM+			
		MAGNE-			SODIUM	POTAS-	POTAS-		
	CALCIUM	SIUM.	SODIUM.		AD-	SIUM	SI UM.	ALKA-	SULFATE
	DIS-	DIS-	DIS-		SORP-	DIS-	DIS-	LINITY	DIS-
	SOLVED	SOLVED	SOLVED		TION	SOLVED	SOLVED	(MG/L	SOLVED
	(MG/L	(MG/L	(MG/L	MUICCE	RATIO	(MG/L	(MG/L	AS	(MG/L
DATE	AS CA)	AS MG)	AS NA)	PERCENT		AS NA)	AS K)	CACO3)	AS 504)
JAN									
31	9.2	14	10	21	. 5	10	. 2	80	. 7
SEP									
17	4.7	6.7	6.1	25	. 4		. 3	34	1.3
				SOL IDS.			NITRO-		
	CHLO-	FLU0-	SILICA.	SUM OF	SOLIDS.	SOL IDS.	GE N.		MANGA-
	RIDE.	RIDE.	DIS-	CONSTI-	DIS-	DIS-	N02+N03	IRON.	NESE .
	DIS-	DIS-	SOLVED	TUE NIS.	SOLVED	SOLVED	DIS-	DIS-	DIS-
	SOLVED	SOLVED	(MG/L	015-	(TONS	(TONS	SOLVED	SOLVED	SOLVED
	(MG/L	(MG/L	AS	SOLVED	PER	PER	(MG/L	(UG/L	(UG/L
DATE	AS CL)	AS F)	2105)	(MG/L)	AC-FT)	DAY	AS NI	AS FE	AS MN)
JAN		1.0		555		7. 22.	77.5	4.5	
31 SEP	16	.0	28	127	< • 17	< .01	.13	150	20
17	13	.0	16	69	.09	.10	.11	370	10
	• •		• •		• 4 ,				. 0

< Actual value is known to be less than the value shown.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, YAP ISLANDS -- Continued

16892900 PEMGOY STREAM, YAP

LOCATION.--Lat 09°31'07" N., long 138°06'18" E., Hydrologic Unit 20100006, on right bank at Talagu, 100 ft (30 m) upstream from Talagu Stream, and 0.8 mi (1.3 km) upstream from mouth.

DRAINAGE AREA. -- 0.14 mi² (0.36 km²).

			SPE-						
			CIFIC						FARD-
		STREAM-	CON-					HARC-	NESS.
		FLOW.	DUCT-		TEMPER-	TUR-	CXYGE N .	NESS	NONCAR-
		INSTAN-	ANCE	PF	ATURE.	BID-	DIS-	(MG/L	BONATE
	TIME	TANEOUS	(MICRC-	FIELD	WATER	ITY	SOLVED	AS	(MG/L
DATE		(CFS)	MHCS)	(UNITS)	(DEG C)	(NTU)	(MG/L)	CACC3)	(EDDA)
FFB									
01	0915	<.01	345	7.5	25.5		4 . 6	140	0
SEP								3.50	
17	1000	.27	118	7.5	26.5	8.4	7.9	41	0
						SODIUM+			
	41.62	MAGNE -	2222.02		SODILM	POTAS-	POTAS-		
	CALCIUM	SIUM.	SCDIUM.		AD-	SIUM	SIUM,	ALKA-	SULFATE
	015-	DIS-	DIS-		SORP-	DIS-	DIS-	LINITY	nis-
	SOLVED	SOLVED	SOLVED		TION	SOLVED	SOLVED	(MG/L	SOLVED
128.20	(MG/L	(MG/L	(MG/L	SODILM	RATIO	(MG/L	(MG/L	AS	(MG/L
DATE	AS CA)	AS MG)	AS NA)	PERCENT		AS NA)	AS K)	EACC3)	AS 5041
FEB									
01	15	25	13	17	.5	1 4	. 5	150	.4
SEP									
17	5.2	6.9	6.3	25	.4		- 4	54	•2
				SOLIES.			NITRC-		
	CHLO-	FLUO-	SILICA.	SUM CF	SCLIDS.	SOLIDS.	GEN.		MANGA-
	RIDE.	RIDE.	DIS-	CONSTI-	DIS-	DIS-	NO2+NC3	IRON.	NESE .
	DIS-	DIS-	SCLVED	TUENTS.	SOLVED	SOLVED	DIS-	DIS-	D15-
	SOLVED	SOLVED	IMG/L	DIS-	ITONS	CTONS	SCLVEC	SCLVED	SOLVED
	(MG/L	(MG/L	AS	SOLVED	PER	PER	(MG/L	(UG/L	(UE/L
DATE	AS CL)	AS F)	SIC2)	(MG/L)	AC-FT)	DAY)	AS N)	AS FE)	AS MN)
FEB									
01	14	.0	51	210	<.29	<.01	.29	260	30
SEP									
17	10	.0	18	79	.11	.06	• C C	150	10

< Actual value is known to be less than the value shown,

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, YAP ISLANDS -- Continued

16893000 TALAGU STREAM, YAP

LOCATION.--Lat 09°31'08" N., long 138°06'13" E., Hydrologic Unit 20100006, on left bank at Talagu, 300 ft (91 m) upstream fom mouth, and 0.9 mi (1.4 km) upstream from mouth of Pemgoy Stream.

DRAINAGE AREA. -- 0.08 mi² (0.21 km²).

			5.00.00							
			SPE-							
			CIFIC						HARD-	
		STRE AM-	COM-		220222	2.01		HARD-	NESS.	
		FLOW.	DUCT-		TEMPER-	TUR-	OXYGEN.	NESS	NONCAR-	
		INSTAN-	ANCE	PH	ATURE .	B I D -	DIS-	(MG/L	BONATE	
	TIME	TANEOUS	(MICRO-	FIELD	WATER	I TY	SOL VED	AS	(MG/L	
DATE		(CFS)	MHOSI	(UNITS)	(DEG C)	(NTU)	(MG/L)	CACO3)	CAC 03)	
FEB	0.070	< .01		4.4	25.5				-	
01 SEP	0830	< . 01	134	5.6	25.5		1.6	46	3	
17	1100	.56	112	7.1	26.5	5.9	7.4	40	0	
1 /	1100	• 20	112	/ - 1	20.7	5. 7	7 - 4	40	U	
						SODIUM+				
		MAGNE-			SODIUM	POTAS-	PUTAS-			
	CALCIUM	SIUM.	SODIUM.		A0-	SIUM	SIUM.	ALKA-	SULFATE	
	DIS-	015-	DIS-		SORP-	DIS-	DIS-	LINITY	DIS-	
	SOLVED	SOLVED	SOLVED		TION	SOLVED	SOLVED	(MG/L	SOLVED	
	(MG/L	(MG/L	(MG/L	500 IUM	RATIO	(MG/L	(MG/L	AS	(MG/L	
DATE	AS CA)	AS MG)	AS NA)	PERCENT	777	AS NA)	AS K)	CACO31	AS S041	
FEB										
01	5.4	7.8	7.0	25	. 5	7.1	+ 1	43	. 3	
SEP										
17	4.4	7.0	5.8	24	. 4		- 4	43	. 6	
				SOLIDS.			NITRO-			
	CHL U-	FLUO-	SILICA	SUM OF	SOLIDS .	SOL IDS.	GE N.		MANGA-	
	RIDE.	RIDE.	DIS-	CONSTI-	DIS-	DIS-	N02+N03	IRON.	NESE.	
	DIS-	DIS-	SOLVED	TUE NIS.	SOLVED	SOLVED	DIS-	DIS-	DIS-	
	SOLVED	SOLVED	(MG/L	015-	CLONS	CLONE	SOLVED	SOLVED	SOLVED	
	(MG/L	(MG/L	AS	SOLVED	PER	PER	(MG/L	(UG/L	(UG/L	
DATE	45 CL)	AS F)	2105)	(MG/L)	AC-FT)	DAY	AS NI	AS FE)	AS MN)	
UNIE	43 027	43 , ,	31 1/2/	1 Gr L/	40-11/	UALI	. 3 . 47	43 121	-3 1114/	
FEB										
01	14	.0	21	82	<.11	< .01	.15	30	4	
SEP										
17	11	.0	20	75	.10	.11	.01	140	10	

< Actual value is known to be less than the value shown.

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 CAROLINE ISLANDS, YAP ISLANDS--Continued

16893100 BURONG STREAM, YAP

LOCATION.--Lat 09°31'59" N., long 138°07'05" E., Hydrologic Unit 20100006, on left bank at Dugor and 0.1 mi (0.2 km) upstream from mouth.

DRAINAGE AREA. -- 0.23 mi² (0.60 km²).

			4.64						
			SPE-						HADD
			CIFIC						HARD-
		STREAM-	CON-		*****	7110		HARE-	NESS.
		FLOW.	DUCT-	-	TEMPER-	TUR-	OXYGEN.	NESS	NONCAR-
	2000	INSTAN-	ANCE	PF	ATURE.	BID-	DIS-	(MG/L	BONATE
	TIME	TANEOUS	(MICRC-	FIELD	WATER	ITY	SCLVEC	AS	(MG/L
DATE		(CFS)	MHCS)	(UNITS)	(DEG C)	(NTU)	(MG/L)	CACC3)	CACO3)
FEB									
01	1645	< .01	154	7.0	26.5			55	3
SEP									
18	1030	2.0	105	1.5	26.0	26	7.4	39	0
						SODIUM+			
		MAGNE-			SODILM	POTAS-	PCTAS-		
	CALCIUM	SIUM.	SCDIUM.		AD-	SIUM	SIUM,	ALKA-	SULFATE
	DIS-	DIS-	DIS-		SORP-	DIS-	DIS-	LINITY	DIS-
	SOLVED	SOLVED	SOLVED		TION	SOLVED	SOLVED	(MG/L	SOLVED
	(MG/L	(MG/L	IMG/L	SODILM	RATIO	(MG/L	(MG/L	AS	(MG/L
DATE	AS CA)	AS MG)	AS NA)	PERCENT		AS NA)	AS K)	CACC3)	AS 504)
FEB						7.0			
01	8.0	8.4	7.3	22	.4	7.8	• 5	52	. 4
SEP					-				
18	5.2	6.2	5.6	24	.4		•3	43	1.1
				SOLIDS.			NITRC-		
	CHLO-	FLU0-	SILICA,	SUM CF	SCLIDS.	SOLIDS.	GEN.		MANGA-
	RIDE,	RIDE,	DIS-	CONSTI-	DIS-	DIS-	NO2+NC3	IRON.	NESE .
	DIS-	DIS-	SCLVED	TUENTS.	SOLVED	SOLVED	DIS-	DIS-	DIS-
	SOLVED	SOLVED	(MG/L	DIS-	(TONS	LIONS	SOLVED	SCLVED	SOLVED
	(MG/L	(MG/L	AS	SCLVED	PER	PER	(MG/L	(UG/L	(UG/L
DATE	AS CL)	AS F)	\$102)	(MG/L)	AC-FT)	DAY)	AS N)	AS FE)	AS MN)
FEB									
01	13	.0	20	94	<.13	< .01	1.7	60	20
SEP									100
18	8.2	.0	5.6	60	.08	.32	.36	380	10

< Actual value is known to be less than the value shown.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, YAP ISLANDS -- Continued

16893180 MONGUCH STREAM, GAGIL-TOMIL

LOCATION.--Lat 09°31'54" N., long 138°09'34" E., Hydrologic Unit 20100006, 1.0 mi (1.6 km) southwest of the Coast Guard Loran Station, 0.62 mi (1.0 km) northwest of Ma village.

DRAINAGE AREA. -- 0.18 mi² (0.47 km²).

		STREAM- FLOW: INSTAN-	SPE- CIFIC CON- DUCT- ANCE	Рн	TE MF		UR-	UXYGEN. DIS-	HARD- NESS (MG/L	HARD- NESS+ NONCAR- BONATE
	TIME	TANEOUS	(MICRO-	FIEL			TY	SOLVED	AS	(MG/L
DATE		(CFS)	MHOSI	(UNIT	S) (DE	C) (N	10)	(MG/L)	CACO31	CAC 031
SEP										
16	1430	1.3	33	5	.9	28.0	2.3	5.2	7	0
		W. 1202			73.		-:-			2.072
	CALCIUM	MAGNE-	SODIUM.				TAS-	ALKA-	SULFATE	CHLO-
	DIS-	DIS-	DIS-		SOF			LINITY	OIS-	DIS-
	SOLVED	SOLVED	SOLVED				LVED	(MG/L	SOLVED	
	(MG/L	IMG/L	(MG/L	SODIU			G/L	AS	(MG/L	(MG/L
DATE	AS CA)	AS MG)	AS NA)	PERCE	NT	AS	K)	CACO3)	AS 50 41	45 CL)
SEP										
16	. 8	1.1	3.7		53	. 6	. 6	8	1.8	6.3
		120 220		LIDS.		20000		R0-		1000
					SOLIDS.	SOLIDS,	GE			ANGA-
				NSTI- ENTS.	DIS- SOLVED	DIS-	N72+		ON. 1	DIS-
				DIS-	(TONS	(TONS				OL VED
				DLVED	PER	PER	(MG			UG/L
D				MG/L)	AC-FT)	DAY	AS			S MN)
SE	P									
	6	.0	6.7	26	.04	.09		.00	1000	110

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, YAP ISLANDS -- Continued

16893200 MUKONG STREAM, GAGIL-TOMIL

LOCATION.--Lat 09°32'06" N., long 138°09'59" E., Hydrologic Unit 20100006, on right bank 0.2 mi (0.3 km) upstream from mouth and 1.6 mi (2.6 km) southwest of Gatjapar.

DRAINAGE AREA. -- 0.50 mi² (1.29 km²).

			505						
			SPE- CIFIC						HARD-
		STREAM-	CON-					HARC-	NESS.
		FLOW	DUCT-		TEMPER-	TUR-	OXYGEA.	NESS	NONCAR-
		INSTAN-	ANCE	PH	ATURE	BID-	DIS-	(MG/L	BONATE
	TIME	TANEOUS	(MICRC-	FIELD	WATER	III	SOLVED	AS	(MG/L
DATE	LINE	(CFS)	MHCS)	(UNITS)	(DEG C)	(NTU)	(MG/L)	CACC3)	CACO3)
DATE		16737	minus /	10/1/37	TULG C	· NIO	INGILI	CACCA	CACOST
FEB									
01	1510	.32	81	t.7	28.0		5.6	25	0
SEP		,,,,							
16	0930	2.5	72	6.8	26.0	3.6	6.3	29	0
						SODIUM+			
		MAGNE-			SODILM	POTAS-	POTAS-		
	CALCIUM	SIUM.	SODIUM.		AD-	SIUM	SIUM.	ALKA-	SULFATE
	DIS-	DIS-	DIS-		SORP-	DIS-	DIS-	LINITY	DIS-
	SOLVED	SOLVED	SOLVED		TION	SOLVED	SCLVEC	(MG/L	SOLVED
	(MG/L	(MG/L	(MG/L	SODILM	RATIO	(MG/L	IMG/L	AS	(MG/L
DATE	AS CA)	AS MG)	AS NA)	PERCENT		AS NA)	AS KI	CACC3)	AS 504)
FEB									
01	4 - 1	3.6	5.2	31	.5	5.3	.1	30	-4
SEP									
16	4.2	4.4	4.6	26	.4		.3	28	4.0
				SULIUS.			NITRC-		
	CHLO-	FLU0-	SILICA.	SUM CF	SCLICS.	SOLIDS.	GEN.		MANGA-
	RIDE.	RIDE .	DIS-	CONSTI-	DIS-	015-	N02+NC3	IRON,	NESE .
	DIS-	DIS-	SCLVED	TUENTS.	SOLVED	SOLVED	DIS-	DIS-	DIS-
	SOLVED	SOLVED	(MG/L	DIS-	ITONS	(TONS	SCLVEC	SOLVED	SOLVED
	(MG/L	(MG/L	AS	SOLVED	PER	PER	(MG/L	(UG/L	(UE/L
DATE	AS CL)	AS F)	2105)	(MG/L)	AC-F 1)	DAY)	AS NI	AS FE)	AS MN)
FEB									
01 SEP	6.6	.0	9.3	4.8	.07	.04	• C6	290	560
16	6.1	.1	9.3	5 0	.07	.34	.23	950	200
SEP									

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, YAP ISLANDS -- Continued

16893300 BILEIY SPRING, GAGIL-TOMIL

LOCATION.--Lat 09°32'19" N., long 138°10'59" E., Hydrologic Unit 20100006, on right bank at Binau, 200 ft (61 m) downstream from main spring, and 0.6 mi (1.0 km) upstream from mouth.

DATE	TIME	STRE AM- FLOW, INSTAN- TANE OUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGENI DIS- SOLVE (MG/L)	(MG/L AS	HARD- NESS+ NONCAR- BONATE (MG/L CACO3)
SEP 16	1130	.40	105	5.5	27.0	• 5	6. 2	31	5
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM. DIS- SOLVED (MG/L AS NA)	SOD IUM PERCENT	SODIUM AD- SORP- TION RATIO	POTAS SIUM DIS- SOLVEI (MG/L AS K)	LINITY	SULFATE DIS- SOLVER (MG/L AS SO41	DIS- SOLVED (MG/L
SEP 16	3.1	6.3	6.3	29	. 5		4 29		9.7
n	RI D SO (M	DE. DI IS- SC LVED (N G/L A	ICA. SUI S- COI DEVED TUI IG/L	NSTI- ENIS, S DIS- (DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-	IDS. DIS- NO DLVED DNS SER	DIS- SOLVED S	DIS- OLVED S UG/L	ANGA- IESE + DIS- OL VED UG/L S MN)
SE 1	P 5	.0	15	63	.09	.07	.88	100	20

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 CAROLINE ISLANDS, YAP ISLANDS--Continued

16893400 EYEB STREAM, GAGIL-TOMIL

LOCATION.--Lat 09°33'02" N., long 138°09'03" E., Hydrologic Unit 20100006, 1.2 mi (1.9 km) northwest of the Coast Guard Loran Station and 0.6 mi (0.97 km) southeast of the Tageren Canal.

DRAINAGE AREA. -- 0.22 mi 2 (0.57 km2).

D	ATE	TIME	STREAM- FLCW+ INSTAN- TANEOUS (CFS)	SPE- CIFIC CCN- DUCT- ANCE (MICRO- MHOS)	TEMPER- ATLRE, WATER (DEG C)	TLR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	MARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
SE 1	P 9	1130	1.9	69	26.5	1.4	6.9	21	5
DATE	CALCIU DIS- SOLVE (MG/L AS CA	M 51 D1 D SOL (M6		E D	SOR TI LM RAT	D- SI P- DI ON SGL		TY CIS /L SCL (MG	- DIS- VED SOLVED /L (MG/L
SEP 19	5.	6	1.7	4.1	29	.4	.3	16	5.9 6.0
D		FLUO- RIDE. DIS- SOLVED (MG/L AS F)	SILICA, DIS- SCLVED (MG/L AS SIC2)	SOLIDS. SUM CF CONSTI- TUENTS. EIS- SCLVED (MG/L)	SCLIDS, DIS- SOLVED (ICNS PER AC-FI)	SOLIDS PER DAY)	NITRO- GEN: NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SCLVED (UG/L AS FE)	MANGA- NESE+ DIS- SOLVED (UG/L AS MN)
SE 1	P 9	.0	7.2	44	.06	.23	.43	390	40

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, YAP ISLANDS -- Continued

16893500 OMIN STREAM, YAP

LOCATION.--Lat 09°35'30" N., long 138°10'05" E., Hydrologic Unit 20100006, 0.8 mi (1.3 km) northwest of Chol and 0.7 mi (1.1 km) southeast of Omin.

DRAINAGE AREA. -- 0.30 mi² (0.78 km²).

PERIOD OF RECORD. -- Water year 1980.

				SPE-						
				CIFIC					HAR	D-
			STREAM-	CON-				HARD-	NES	
			FLOW.	DUCT-	TEMPER-	TUR-	OXYGEN.	NESS	NONO	
			INSTAN-	ANCE	A TURE .	810-	DIS-	(MG/L	BONA	
		TIME	TANEOUS	(MICRO-	WATER	ITY	SOLVED	AS	(MG	
r	DATE	Tine	(CFS)	MHOSI	(DEG C)	(NTU)	(MG/L)	CACO3)		031
			1,5,43,54					7.17.77		
SF	P									
1	19	1600	.49	1 31	27.0	15	6.4	42		0
		MAG	SNE-		SOF	IUM PO	TAS-			CHLO-
	CALCI			IUM.			IUM. ALK	A- SULF	ATE	RIDE .
	DIS-		IS- DI		SOF		IS- LINI			DIS-
	SOLV		VED SOL				LVED (MG		VED	SOLVED
	(MG/			G/L SODI			S/L AS			(MG/L
DATE	AS C	A) AS	MG) AS	NA) PERC	ENT	AS	K) CAC			AS CL)
SEP										
19	6	. 8	6.1	9.5	33	. 6	. 3	43	5.0	15
				SOL IDS.			NITRO-			
		FLU0-	SILICA.	SUM OF	SOLIDS.	SOLIDS.	GEN.		MAN	GA-
		RIDE.	DIS-	CONSTI-	DIS-	DIS-	NO2+NO3	IRON.	NES	E.
		DIS-	SOLVED	TUENTS	SOLVED	SOLVED	DIS-	DIS-	DI	S-
		SOLVED	(MG/L	015-	(TONS	(TONS	SOLVED	SOLVED	SOL	VED
		(MG/L	AS	SOLVED	PER	PER	(MG/L	(UG/L	1 UG	11
	STAC	AS F)	SI02)	(MG/L)	AC-FT)	DAY	AS NI	AS FE	AS	MNI
SF	P									
1	19	.0	19	83	.11	.11	.12	320		20

092910138045070 AIRPORT SWAMP, YAP

LOCATION.--Lat 09°29'10" N., long 138°04'50" E., Hydrologic Unit 20100006, at Yap Airport, 0.5 mi (0.8 km) northwest of Lueis, and 0.5 mi (0.8 km) northeast of Lamer.

DATE	TIME	AT	PER- URE, TER (SPE- CIFIC CON- DUCT- ANCE MICRO- MHOS)	FH (UNITS	NE (M	RD- SS N G/L B S	HARD- NESS, ONCAR- ONATE (MG/L CACO3)	CALCIL DIS- SOLVE (MG/L AS CA	IM S	IS-	CDIUM, CIS- CLVED (MG/L AS NA)	SCD IUM PERCENT	SODIUM AD- SORP- TION RATIO	SODIUM+ POTAS- SIUM DIS- SULVED (MG/L AS NA)
FEB						3		10			2.1		22	.4	6.0
02 SEP	0930		26.0	125	,	. 7	4 1	1	13		2.1	5.5	22	.,	0.0
20	1030		33.0	110	1	-	43	2	14		2.0	4.5	18	.3	
DATE	S D SO (M	TAS- IUM, IS- LVED G/L K)	ALKA- LINITY (MG/L AS CACO3	DIS- SOL V	TE !	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUT- RIDE. DIS- SOLVE (MG/L AS F)	DIS- SOLV	CA SU CA SU VED TU VL	DLIDS. IM OF DNSTI- JENTS. DIS- BOLVED (MG/L)	SOLIDS DIS- SOLVE (TONS PER AC-FI	. GE NO2+ D DI SOL	S- D: VED SOI	ON • NE IS - D LVED SO G/L (U	NGA- SE+ IS- LVED G/L MN)
FEB 02		.5	4	0 4	1.7	9.2		0 :	2.3	61	.0	18	.01	50	9
SEP 20		.7	4	1	3.3	7.8		1 :	2.3	61	.0	8	.36	70	10

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, TRUK ISLANDS

16893700 WICHEN RIVER AT ALTITUDE 55 M, MOEN

LOCATION.--Lat 07°26'45" N., long 151°52'02" E., Hydrologic Unit 20100006, on left bank at Peniesence, 1.0 mi (1.6 km) upstream from mouth, and 1.6 mi (2.6 km) west of Saint Xaviers Academy.

DRAINAGE AREA. -- 0.23 mi² (0.60 km²).

			SPE-						
			CIFIC						HARD-
		STREAM-	CON-					HARE-	NESS.
					******	70.5			
		FLOW.	DUCT-		TEMPER-	TUR-	GXYGE .	NESS	NONCAR-
		INSTAN-	ANCE	PF	ATURE.	BID-	DIS-	(MG/L	BONATE
	TIME	TANEOUS	(MICRO-	FIELD	WATER	ITY	SOLVED	AS	(MG/L
DATE		(CFS)	MHCS)	(UNITS)	(DEG C)	(NTU)	(MG/L)	CACCSI	CACO3)
OCT									
31	1230	3.3	40	7.3	26.0		7.6	7	2
MAY									
05	1530	8.1	52	7.0	26.5	17	8.1	9	0
						SODIUM+			
		MAGNE -			SODILM	POTAS -	POTAS-		
	CALCIUM	SIUM	SODIUM,		AD-	SIUM	SIUM,	ALKA-	SULFATE
	DIS-	DIS-	DIS-		SORP-	DIS-	DIS-	LINITY	DIS-
	SOLVED	SOLVED	SOLVED		TION	SOLVED	SCLVEC	(MG/L	SOLVED
	(MG/L	(MG/L	(MG/L	SODILM	RATIO	(MG/L	(MG/L	AS	(MG/L
DATE	AS CA)	AS MG)	AS NA)	PERCENT	0.00	AS NA)	AS KI	CACC3)	AS S04)
OCT									
31	1.4	.9	4 . 6	57	.7	4.8	. 2	5	5.0
MAY									
05	1.7	1.1	5.1	54	.8		. 4	9	1.3
				SOLIES.			NITRC-		
	CHLO-	FLUO-	SILICA,	SUM CF	SCLIDS.	SOLIDS,	GEN.		MANGA-
	RIDE.	RIDE.	DIS-	CONSTI-	DIS-	DIS-	N02+NC3	IRON.	NE SE .
	DIS-	DIS-	SOLVED	TUENTS.	SOLVED	SOLVED	DIS-	DIS-	D15-
	SOLVED	SULVED	(MG/L	DIS-	ITONS	(TONS	SOLVEC	SOLVED	SOLVED
	(MG/L	(MG/L	AS	SOLVED	PER	PER	(MG/L	(UG/L	(UG/L
DATE	AS CL)	AS FI	SIDE	(MG/L)	AC-FI)	DAY	AS N)	AS FE)	AS MN)
HAIL	AS CLI	A3 F1	27/121	(MG/L)	AC-F 17	UATI	AS NI	AS PE	AS MINI
OCT									
31	6.3	.1	10	32	.04	.29	. C4	130	9
MAY									
05	7.4	•1	11	34	. 05	.74	. C7	150	8

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, TRUK ISLANDS -- Continued

16893800 WICHEN RIVER AT ALTITUDE 18 M, MOEN

LOCATION.--Lat 07°27'05" N., long 151°52'18" E., Hydrologic Unit 20100006, on left bank at Peniesence and 0.5 mi (0.8 km) upstream from mouth.

DRAINAGE AREA. -- 0.57 mi² (1.48 km²).

PERIOD OF RECORD. -- Water years 1979 to current year.

CIFIC STREAM- COM-	HARD-	HARD-
STREAM- CON-		
		NESS.
FLOW: DUCT- FEMPER- TUR- OXYGEN:		NONCAR-
INSTAN- ANCE PH ATURE, BID- DIS-	(MG/L	BONATE
TIME TANEOUS (MICRO- FIELD WATER ITY SOLVED	AS	(MG /L
DATE (CFS) MHOS) (UNITS) (DEG C) (NTU) (MG/L)	CACO31	CAC 031
001		
31 1000 11 39 7.2 26.5 7.6	R	1
MAY		
05 1200 43 6.9 26.5 24 7.5	8	0
SOD [UM+		
		C.111 E 4 TE
CALCIUM SIUM, SODIUM, AD- SIUM SIUM,		SULFATE
DIS- DIS- DIS- SORP- DIS- DIS-	LINITY	DIS-
SOLVED SOLVED SOLVED TION SOLVED SOLVED	0.000	SOLVED
(MG/L (MG/L (MG/L SODIUM RATIO (MG/L (MG/L	45	(MG/L
DATE AS CA) AS MG) AS NA) PERCENT AS NA) AS K)	CACD31	AS 504)
OC I		
31 1.4 1.0 4.2 54 .7 4.4 .2	7	5.3
MAY		
05 1.5 1.0 13 77 2.05	23	2.0
SOLIDS: NITRO-		
CHLD- FLUO- SILICA: SUM DF SOLIDS: SOLIDS: GEN:		MANGA-
RIDE: RIDE: DIS- CONSTI- DIS- DIS- NO2+NO3		NESE .
DIS- DIS- SOLVED TUENTS: SOLVED SOLVED DIS-	DIS-	DT S-
SOLVED SULVED (MG/L DIS- (TONS (TONS SOLVED		SOLVED
(MG/L (MG/L AS SOLVED PER PER (MG/L	(UG/L	(ne \r
DATE AS CL) AS F) SIO2) (MG/L) AC-FT) DAY) AS N)	AS FEI	AS MN)
OCT		
	170	7
31 5.8 -1 10 33 .04 .98 .04	110	

16893880 POU RESERVOIR (OUTFLOW), MOEN

LOCATION.--Lat 07°26'44" N., long 151°51'22" E., Hydrologic Unit 20100006, 0.5 mi (0.8 km) north of Mount Teroken and 0.6 mi (1.0 km) west of Peniesene.

DATE	TIME	IUR- BIO- ITY	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM PERCENT	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
MAY										
07	1500	7.4	17	5	4.5	1.3	5.3	4.1	• 6	. 2
					SCL IDS.			NTTRO-		
		CHLO-	FL UO-	SILICA.	SUM OF	SOLIDS .		GEN.		MANGA-
	SULFATE	RIDE.	RIDE .	DIS-	CONSTI-	DIS-	ALKA-	NO2+NU3	IR ON .	NESF.
	DIS-	DIS-	D 15 -	SOLVED	TUENTS.	SOLVED	LINITY	DIS-	DIS-	DIS-
	SOLVED	SOLVED	SOLVED	(MG/L	015-	(TONS	(MG/L	SOLVED	SOLVED	SOLVED
	(MG/L	(MG/L	(MG/L	AS	SOLVED	PER	45	(MG/L	(UG/L	(UG/L
DATE	AS 504)	AS CL)	AS F)	21051	(MG/L)	AC-FI)	CACO3)	AS N)	AS FF)	AS MN)
MAY										
07	. 3	11	. 1	11	41	.06	12	.06	140	3

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, TRUK ISLANDS -- Continued

16893900 POU STREAM, MOEN

LOCATION.--Lat 07°26'53" N., long 151°51'21" E., Hydrologic Unit 20100006, 0.6 mi (1.0 km) north of Mount Teroken and 0.4 mi (0.6 km) above mouth.

DRAINAGE AREA. -- 0.17 mi² (0.44 km²).

D	ATE	TIME	STREAM- FLCW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CCN- DUCT- ANCE (MICRO- MHOS)	TEMPER- ATLRE+ WATER (DEG C)	IUR- BID- IIY (NTU)	DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS (ACO3)	HARD- NESS+ NONCAR- BONATE (MG/L CACOT)
M A O	Y 7	1530	.19	8 9	28.5	4.3	7.8	28	1
DATE MAY 07	CALCIU DIS- SOLVE (MG/L AS CA	M 51 D 50L (MC		5 -	SOR TI LM RAT	D- SI P- DI ON SOL IO (MG AS	K) CACO	Y CIS	- DIS- VED SOLVED /L (MG/L
D		FLUO- RIDE+ DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIC2)	SOLIDS. SUM CF CONSTI- TUENTS, CIS- SCLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS + DIS - SOLVED (IONS PER DAY)	NITRO- GEN. NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SCLVEC (UG/L AS FE)	MANGA- NESE+ DIS- SOLVED (UG/L AS MN)
MA	Y 7	.1	17	60	.08	.03	.23	80	3

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, TRUK ISLANDS -- Continued

16894100 FAICHIA STREAM, MOEN

LOCATION.--Lat 07°25'36" N., long 151°50'52" E., Hydrologic Unit 20100006, 100 ft (30 m) upstream from road and 0.4 mi (0.6 km) west of Mount Chukuwon.

DRAINAGE AREA. -- 0.05 mi² (0.13 km²).

PERIOD OF RECORD. -- Water year 1980.

DATE	TIME	STREAM- FLOW+ INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE: WATER (DEG C)	11A BID-	DIS- SOL VE	(MG/L D AS	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
MAY 07	1000	.03	53	7.5	27.5	6.5	8.	0 15	2
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM. DIS- SOLVED (MG/L AS MG)	SODIUM. DIS- SOLVED (MG/L AS NA)	SOD IUM PERCENT	SODIUM AD- SORP- TION RATIO	POTAS SIUM DIS- SOLVE (MG/L AS K)	ALKA- LINITY D (MG/L AS	DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAY 07	2.6	2.1	4.5	39	. 5		1 1	3 1.1	5.7
D	R I 0 50 (M	DE DI IS- SO LVED (M	ICA+ SUI S- COI DLVED TUR IG/L I	NSTI- ENTS, SO DIS- (DIS- DLVED S TONS (PER	LIDS	DIS- SOLVED (MG/L	IRON, NE DIS- E SOLVED SO (UG/L (E	ANG A - ESE + DIS - DL VED JG /L G MN)
MA	Y 7	-1	17	42	.06	.00	.05	310	2

CAROLINE ISLANDS, ISLAND OF PONAPE

16897550 MEITIK RIVER

LOCATION.--Lat 06°56'24" N., long 158°13'58" E., Hydrologic Unit 20100006, 0.3 mi (0.5 km) upstream from mouth and 1.4 mi (2.3 km) south of Tolenot Peak.

DRAINAGE AREA. -- 5.27 mi² (13.65 km²).

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE: WATER (DEG C)	TUR- BID- ITY (NTU)	CXYGEN. CIS- SCLVED (MG/L)	HARD- NESS (ME/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SCLVED (MG/L AS MG)	SGDIUM. DIS- SOLVED (MG/L AS NA)	SODIUM PERCENT	SODIUM AD- SORP- TION RATIO
MAY												
20	1630	55	27.5	1.0	7.8	16	0	1.9	2.8	2.3	23	•2
	POTAS-			CHLO-	FLUC-	SILICA,	SOLIDS.	SCLIDS.	SCLIDS,	NITRO- GEN•		MANGA-
	SIUM.	ALKA-	SULFATE	RIDE .	RIDE.	DIS-	CONSTI-	D15-	DIS-	NC2+N03	IRON.	NE SE .
	DIS-	LINITY	DIS-	DIS-	CIS-	SOLVED	TUENTS .	SOLVED	SCLVEC	DIS-	DIS-	DIS-
	SOL VED	MG/L AS	SOL VED	SOLVED (MG/L	SCLVED	(MG/L	DIS-	(TONS	(TONS	SOLVED	SOLVED	SOLVED
DATE	AS K)	CACO3)	AS S04)	AS CL)	(MG/L AS F)	SIC2)	(MG/L)	PER AC-FT)	DAY)	AS N)	(UG/L AS FE)	(UG/L AS MN)
MAY												
20	.2	17	. 1	3.6	. 1	12	33	.04	4.90	.02	110	5

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 to SEPTEMBER 1980

CAROLINE ISLANDS, ISLAND OF PONAPE -- Continued

16897600 NANEPIL RIVER

LOCATION.--Lat 06°55'11" N., long 158°12'36" E., Hydrologic Unit 20100006, on left bank 1.4 mi (2.3 km) northeast of Mount Tamatamansakir and 1.4 mi (2.3 km) southeast of Rekisau.

DRAINAGE AREA. -- 2.93 mi 2 (7.59 km2).

			SPE-						
			CIFIC						HARD-
		STREAM-	CON-					HARC-	NESS.
		FLOW,	DUCT-		TEMPER-	TUR-	OXYGEN.	NESS	NONCAR-
		INSTAN-	ANCE	PF	ATURE.	BIN-	DIS-	(MG/L	BONATE
	TIME	TANEOUS	(MICRC-	FIELD	WATER	ITY	SOLVED	AS	(MG/L
DATE		(CFS)	MHOS	(UNITS)	(DEG C)	(NTU)	(MG/L)	CACCES	CACO3)
DAIL		10131		10,11137	1000 07	11107	11.07.27	CACCO	CACOST
OCT									
27	1030	21	21	7.5	25.0		7.6	6	2
MAY							1		
20	1100	26			25.0	.60	8.9	8	4
						SODIUM+			
		MAGNE -			SODIUM	POTAS-	POTAS-		
	CALCIUM	SIUM,	SODIUM.		AD-	SIUM	SIUM.	ALKA-	SULFATE
	DIS-	DIS-	DIS-		SORP-	DIS-	DIS-	LINITY	nis-
	SOLVED	SOLVED	SOLVED		TION	SOLVED	SOLVEC	(MG/L	SOLVED
	IMG/L	(MG/L	(MG/L	SODILM	RATIO	(MG/L	(MG/L	AS	(MG/L
DATE	AS CA)	AS MG)	AS NA)	PERCENT		AS NA)	AS K)	CACCED	AS 504)
OCT									
27	1.0	.8	2.1	44	.4	2.2	.1	4	3.9
MAY									
20	2.0	.8	1.9	33	•3		.2	4	.1
	2000	2000		SOLIDS.		20.022	NITRC-		
	CHLO-	FLUO-	SILICA,	SUM CF	SOLIDS.	SOLIDS.	GEN.	med.	MANGA-
	RIDE.	RIDE.	D15-	CONSTI-	DIS-	DIS-	N02+NC3	IRON.	NE SE .
	DIS-	DIS-	SOLVED	TUENTS .	SOLVED	SOLVED	DIS-	DIS-	D15-
	SOLVED	SOLVED	(MG/L	DI 5-	(TONS	ITONS	SOLVED	SCL VED	SOLVED
	(MG/L	(MG/L	AS	SCLVED	PER	PEP	(MG/L	(UG/L	INEVE
DATE	AS CL)	AS F)	\$102)	(MG/L)	AC-FT)	DAY)	AS N)	AS FE)	AS MN)
OCT									
27	2.9	.0	5.3	19	. 03	1.08	.01	60	2
MAY									
20	4.9	.1	4.9	17	.02	1.19	* C 5	40	<3

< Actual value is known to be less than the value shown.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 to SEPTEMBER 1980

CAROLINE ISLANDS, ISLAND OF PONAPE--Continued

16897900 LUI RIVER

LOCATION.--Lat 06°55'36" N., long 158°12'55" E., Hydrologic Unit 20100006, on right bank 300 ft (91 m) upstream from right-bank tributary and 1.3 mi (2.1 km) southeast of Rekisau.

DRAINAGE AREA. -- 0.47 mi² (1.22 km²).

	TIME	STREAM- FLOW. INSTAN- TANEOUS	SPE- CIFIC CON- DUCT- ANCE (MICRO-	PH FIELD	TEMPER- ATURE:	TUR- BIN- ITY	OXYGEN. DIS- SOLVED	HARD- NESS (MG/L AS	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
DATE		(CFS)	MH75)	(UNITS)	(DEG C)	(NTU)	(MG/L)	CACD31	CACUSI
oct									
27	1 330	3.3	30	5.6	26.5	77	7.5	10	3
MAY 20	1300	4.2			26.5	2.4	7.8	10	0
20	1300	***			2003	2.			
						SODIUM+			
	CN0 32333	MAGNE-	Deuesio :		SODIUM		PUTAS-		
	CALCIUM	SIUM.	SODTUM		AU-	SIUM	SI UM.	ALKA-	SULFATE
	DIS-	015-	DIS-		SORP-	DIS-	DIS- SULVED	LINITY (MG/L	DIS- SOLVED
	SOLVED	SOLVED	SOLVED	SODIUM	RATIO	SOLVED (MG/L	(MG/L	AS	(MG/L
DATE	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	PERCENT	RAIIU	AS NA)	AS K)	CACO31	45 5041
DATE	AS CAT	AS MGI	AS NAI	PERCENT		AS WAT	43 47	CACITY	43 3047
oct									
27	1.5	1.5	2.1	31	. 3	2.2	- 1	7	4.9
MAY			200	25	0.2				
20	1.4	1.5	2.1	32	. 3		. 1	10	1.0
				SOL IDS.			NITRO-		
	CHLO-	FLUN-	SILICA	SUM OF	SOLIDS .	SOLIDS.	GE N.		MANGA-
	RIDE .	RIDE.	DIS-	CONSTI-	DIS-	DIS-	N02+N03	IRON.	NESE .
	DIS-	015-	SOLVED	TUENTS.	SOLVED	SOLVED	DIS-	DIS-	DIS-
	SOLVED	SOLVED	(MG/L	015-	(TONS	(TONS	SOLVED	SOLVED	SOLVED
	(MG/L	(MG/L	AS	SOLVED	PER	PER	(MG/L	(UG/L	(UG/L
DATE	AS CL)	AS F)	2105)	(MG/L)	AC-FT)	DAY	AS NI	AS FE	AS MN)
001									
27	3.1	.0	8.1	26	.04	.23	.01	90	3
MAY									
20	3.3	.1	7.9	23	.03	. 26	.05	60	3

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 to SEPTEMBER 1980

CAROLINE ISLANDS, ISLAND OF PONAPE--Continued

16898200 LUI RIVER AT MOUTH

LOCATION.--Lat 06°57'07" N., long 158°13'16" E., Hydrologic Unit 20100006, on right bank 0.4 mi (0.6 km) upstream from mouth and 1.3 mi (2.1 km) west of Tolenot Peak.

DRAINAGE AREA. -- 2.06 mi² (5.34 km²).

			SPE-						
			CIFIC						HARD-
		STREAM-	CON-					HARE-	NESS.
		FLOW.	DUCT-		TEMPER-	TUR-	OXYGEN.	NESS	NONCAR-
		INSTAN-	ANCE	PF	ATURE.	BID-	DIS-	(MG/L	BONATE
	TIME	TANEOUS	(MICRC-	FIELD	WATER	ITY	SCLVEC	AS	(MG/L
DATE	1100	(CFS)	MHCS)	(UNITS)	(DEG C)	(NTU)	(MG/L)	CACC3)	CACU3)
DATE		ILFSI	WHC21	(UNI 15)	THE G CI	(NIU)	(MG/L)	CACEST	LACUST
OCT									
26	1500	10	53	7.6	26.5		7.9	20	4
26	1600	223		6.8	25.0			9	5
MAY									
10	1330	51		12.0	26.5	4.3	8.2	10	5
	1,500				2007		0.1		
						SODIUM+			
		MAGNE -			SODIUM	POTAS-	POTAS-		
	CALCIUM	SIUM	SCDIUM.		AD-	SIUM	SIUM	ALKA-	SULFATE
	DIS-	DIS-	DIS-		SORP-	DIS-	DIS-	LINITY	DIS-
	SOLVED	SOLVED	SOLVED		TION	SOLVED	SOLVEC	(MG/L	SOLVED
	(MG/L	(MG/L	(MG/L	SODILM	RATIO	(MG/L	(MG/L	AS	(MG/L
DATE	AS CA)	AS MG)	AS NA)	PERCENT	64110	AS NA)	AS K)	CACC3)	AS 504)
MAIL	AS CAT	AS MOI	AS NA)	FERCENT		AS NA)	AS N	CACCSI	A5 3047
OCT									
26	3.0	3.1	3.3	26	.3	3.5	. 2	16	5.7
26	1.4	1.3	1.9	30	.3	2.5	.6	4	6.1
MAY									4.47
10	1.5	1.5	2.0	30	.3		. 2	5	4.2
				FOLTOL			NITE		
				SOLIDS,		221222	NITRC-		Carrier.
	CHLO-	FLU0-	SILICA,	SUM OF	SOLIDS,	SOLIDS,	GEN,	22.70	MANGA-
	RIDE.	RIDE .	D15-	CONSTI-	DIS-	DIS-	NO2+NC3	IRON.	NE SE .
	DIS-	DIS-	SOLVED	TUENTS.	SOLVED	SOLVED	DIS-	DIS-	DIS-
	SOLVED	SOLVED	(MG/L	DIS-	ITONS	(TONS	SOLVED	SOLVED	SOLVED
	(MG/L	(MG/L	AS	SOLVED	PER	PER	(MG/L	(UG/L	(UG/L
DATE	AS CL)	AS F)	2105)	(MG/L)	AC-FT)	DAY)	AS N)	AS FET	AS MN)
OCT									
26	4 . 4	.1	13	43	.06	1.16	. 02	110	5
26	2.8	.0	4.3	21	.03	12.6	.02	170	ź
MAY		.0			• 35		. 02	1,0	
10	3.0	.1	6.2	22	.03	3.03	. 05	90	4

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 to SEPTEMBER 1980

CAROLINE ISLANDS, ISLAND OF PONAPE -- Continued

16898600 LUPWOR RIVER

LOCATION.--Lat 06°54'15" N., long 158°09'45" E., Hydrologic Unit 20100006, on left bank about 300 ft (91 m) upstream from 50-ft (15-m) waterfall, 1.8 mi (2.9 km) above mouth, and 2.1 mi (3.4 km) west of Mount Tamatamansakir.

DRAINAGE AREA. -- 1.12 mi2 (2.90 km2).

PERIOD OF RECORD. -- Water years 1978 to current year.

DATE	TIME	STRE AM- FLOW; INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE + WATER (DEG C)	1 UR - B ID - I TY (N IU)	OXYGEN. DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS+ NONCAR- BONATE (MG/L CACO3)
29 MAY	1030	11	36	7.6	26.0	-	6.1	1 4	3
21	1100	5.6		77	27.0	1.0	8.4	1 4	0
	CALCIUM DIS- SOLVED	MAGNE- SIUM, DIS- SOLVED	SODIUM, DIS- SOLVED		SODIUM AD- SORP- TION	SODIUM+ POTAS- SIUM DIS- SOLVED	POTAS- SIUM. DIS- SOLVED	ALKA- LINITY (MG/L	SULFATE DIS- SOLVED
	(MG/L	(MG/L	(MG/L	SODIUM	RATIO	(MG/L	(MG/L	AS	(MG/L
DATE	AS CA)	AS MG)	AS NA)	PERCENT		AS NA)	AS K)	CAC031	AS 504)
0C I 29	2.9	1.7	2.0	23	. 2	2.1	.1	11	4.7
21	2.8	1.8	2.5	27	. 3	22	. 2	14	1.3
				SOL ID S.			NITRO-		
	CHLU- RIDE, DIS- SOLVED (MG/L	FLUO- RIDE. DIS- SOLVED (MG/L	SILICA, DIS- SOLVED (MG/L AS	SUM OF CONSTI- TUENTS, DIS- SOLVED	SOLIDS. OIS- SOLVED (TONS PER	SOLIDS. DIS- SOLVED (TONS PER	GEN+ NO2+NO3 DIS- SOL VED (MG/L	IRON. DIS- SOLVED (UG/L	MANGA- NESE + DIS- SOLVED
DATE	AS CL)	AS F)	\$102)	(MG/L)	AC-FT)	DAY)	AS NI	AS FE	AS MN)
001		•		7.0	2.0	20			
29 MAY	2.7	.0	8.8	30	.04	. 89	-01	100	4
21	3.0	.1	12	32	.04	. 48	.02	100	8

16899000 SENPEN RIVER

LOCATION.--Lat 06°52'33" N., long 158°16'53" E., Hydrologic Unit 20100006, 0.6 mi (1.0 km) southeast of Tolemarawi Peak and 1.4 mi (2.3 km) southwest of Retau.

DRAINAGE AREA. -- 6.13 mi² (15.88 km²).

DATE	TIME	FL INS IAN	EAM- OW. TAN- EOUS	MA	PER- URE. (ER (C)	TU BI IT (NT	R – D – Y	HARD- NESS (MG/L AS CACC3)	NE NON BON (M	RD- SS. CAR- ATE G/L CO3)	DI 50	CIUM S- LVED G/L CA)	SO (M	GNE- IUM, IS- LVED G/L MG)	SCL (M		SCD I		SODIO AD- SORP- TION RATIO		POTAS- SIUM, DIS- SOLVED (MG/L AS K)
MAY																					
22	1230		195		27.0	2	.6	7		1		1.2		1.0		2.0		17		3	•2
										SOLI	DS.					NIT	RO-				
					CHLO	-	FLU0-	SILI	CA,	SUM (DF	SOLIC	15.	SOLI	05.	GE	N.			ANG	1 -
	ALI	KA-	SULF	ATE	RIDE	,	RIDE.	DIS	-	CONS	II-	DIS	-	DI	S-	NC2+	NC3	IRON	, N	ESE	
	LIN	TY	DIS	-	DIS-		DIS-	SOL	VED	TUEN	15.	SOLV	ED	SOL	VEC	DI	S-	015	-	DIS	-
	(MI	3/L	SOL	VED	SOLV	ED	SOLVE	D (MG	11	DIS	5-	ITON	IS	(10	NS	SCL	VED	SOLV	ED S	OLVE	0
	A:	S	(MG.	/L	(MG/		(MG/L	AS		SOL	VED	PER	1	PE	R	(MG	1	(UG/	L (UG/I	
DATE	CA	03)	AS S	04)	AS C	_)	AS F)	510	2)	(MG	/L)	A C -F	1)	DA	Y)	AS	N)	AS F	E) A	S MI	()
MAY																					
22		6		1.9	2	. 7		1	6.7		19		03	1	0 . C		.02		80		4

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 to SEPTEMBER 1980

CAROLINE ISLANDS, ISLAND OF PONAPE--Continued

16899100 LATAW RIVER

LOCATION.--Lat 06°53'04" N., long 158°16'52" E., Hydrologic Unit 20100006, 0.5 mi (0.8 km) northeast of Tolemarawi Peak and 1.3 mi (2.1 km) west of Retau.

DRAINAGE AREA. -- 2.54 mi² (6.58 km²).

PERIOD OF RECORD. -- Water year 1980.

DATE		STREAM- FLOW: INSTAN- TANEOUS (CFS)	TEMPER- ATURE: WATER (DEG C)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACC3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM: DIS- SOLVED (MG/L AS MG)		9	AD- S SORP- D TION SO RAITO (M	DTAS- SIUM, DIS- DLVED MG/L S K)
MAY 22	1130	77	25.0	2.6	6	С	1.1	.9	1.9	38	•3	.3
DATE	ALKA LINIT (MG/ AS CACO	Y DIS L SOL (MG	VED SOL	DE		CONS VED TUEN VL DIS SOL	OF SOLID TI- DIS TS, SOLV S- (TON VED PER	- DI: ED SOL: S (10) PEI	S- NC2+N VEC DIS NS SOLVI R (MG/	O3 IRON, DIS- ED SOLVED L (UG/L	(UG/L	
MAY 22		6	.5	2.8	.1	5.5	17 .	02 3	.53 .	05 80	9	

CAROLINE ISLANDS, ISLAND OF KOSRAE

16899500 MUTUNTE RIVER

LOCATION.--Lat 05°22'25" N., long 163°00'24" E., Hydrologic Unit 20100006, on left bank at dam, 0.3 mi (0.5 km) upstream from mouth, and 1.1 mi (1.8 km) northwest of Mount Buache.

DRAINAGE AREA. -- 0.60 mi² (1.55 km²).

DATE	TIME	STREAM- FLOW- INSTAN- TANEOUS (CFS)	TEMPER- ATURE. WATER (DEG C)	TUR- BID- ITY (NTU)	CXYGEN. DIS- SCLVED (MG/L)	HARD- NESS (MG/L AS CACG3)	HARD- NESS + NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SCLVED (MG/L AS MG)	SODIUM. DIS- SOLVEN (MG/L AS NA)	SODIUM PERCENT	SODIUM AD- SORP- TION RATIO
MAY												
14	1400	4.9	26.0	1.6	8.0	23	5	3.5	3.5	3.1	22	.3
	POTAS-	********		CHLO-	FLUC-	SILICA.	SOLIDS.	SOLIDS.	SCLIDS.	NITRO- GEN,		MANGA-
	SIUM.	ALKA- LINITY	DIS-	RIDE. DIS-	RIDE, CIS-	DIS- SOLVED	CONSTI-	DIS- SOLVED	DIS- SCLVED	NC2+NO3	IRON. DIS-	NESE+
	SOLVED	(MG/L	SOLVED	SOLVED	SCLVED (MG/L	(MG/L	DIS- SOLVED	(TONS PER	(TONS PER	SOL VED	SOLVED	SULVED
DATE	AS K)	CACO3)	AS 504)	AS CL)	AS F)	SIC2)	(MG/L)	AC-FT)	DAY)	AS N)	AS FE)	AS MN)
MAY												
14	.3	18	2.5	4.4	.0	15	43	.06	.57	.00	20	<3
MAY	AS K)	CACO3)	AS S04)	AS CL)	AS F)	\$1(2)	(MG/L)	AC-FT)	DAY)	AS N)	AS FE)	AS MN)

< Actual value is known to be less than the value shown.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, ISLAND OF KOSRAE -- Continued

16899600 OKAT RIVER

LOCATION.--Lat 05°20'32" N., long 162°59'30" E., Hydrologic Unit 20100006, on left bank 1.6 mi (2.6 km) upstream from mouth and 1.9 mi (3.1 km) northwest of Mount Crozer.

DRAINAGE AREA. -- 1.60 mi² (4.14 km²).

PERIOD OF RECORD .-- Water years 1979 to current year.

DATE	TIME	STREAM- FLOW. INSTAN- TANEOUS (CFS)	TEMPER- ATURE: WATER (DEG C)	TUR- BID- ITY (NTU)	CXYGEN. CIS- SCLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVEC (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM PERCENT	SODIUM AD- SURP- TION RATIO
MAY 15	0800	29	26.0	4.4	7.6	27	0	5.4	3.3	3.0	19	.3
	6135			200.20	110.2	1000	SOLIDS.	Validation.	12, 141	NITRO-		
	POTAS-	A1 V A	CHICATE	CHLO-	FLUC-	SILICA,	SUM OF	SCLIDS.	SCLIDS,	GEN, NC2+NO3	IRON.	MANGA- NESE,
	SIUM, DIS-	ALKA- LINITY	DIS-	RICE. DIS-	RIDE.	DIS-	CONSTI-	SOLVED	DIS- SCLVED	DIS-	DIS-	DIS-
	SOLVED	(MG/L	SOLVED	SCLVED	SCLVED	(MG/L	DIS-	CTONS	(TONS	SOLVED	SOLVED	SOLVED
	(MG/L	AS	(MG/L	(MG/L	(MG/L	AS	SOLVED	PER	PER	(MG/L	(UG/L	(UG/L
DATE	AS KI	CACO3)	AS 504)	AS CL)	AS F)	51(5)	(MG/L)	AC-FT)	DAY	AS NI	AS FE)	AS MN)
MAY												
15	.7	27	4.0	3.8	. 1	15	52	.07	4.07	.03	280	20

16899620 MELO RIVER

LOCATION.--Lat 05°21'06" N., long 162°59'29" E., Hydrologic Unit 20100006, on left bank 0.35 mi (0.56 km) upstream from mouth and 1.7 mi (2.7 km) southwest of Mount Buache.

DRAINAGE AREA. -- 0.48 mi² (1.24 km²).

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE. WATER (DEG C)	TUR- BID- ITY (NTU)	CXYGEN, DIS- SCLVED (MG/L)	FARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM. DIS- SCLVED (MG/L AS MG)	SCDIUM+ DIS- SOLVED (MG/L AS NA)	SODIUM PERCENT	SODIUM AD- SORP- TION RATIO
MAY												
15	1100	8.6	27.0	2.3	8.0	36	8	7.0	4.4	3.3	17	• 2
	POTAS-			CHLO-	FLUC-	SILICA.	SOLIDS.	SOLIDS,	SCLIDS,	NITRO- GEN•		MANGA-
	SIUM.	ALKA-	SULFATE	RIDE.	RIDE.	DIS-	CONSTI-	DIS-	DIS-	NC2+NO3	IRON.	NE SE .
	DIS-	LINITY	DIS-	DIS-	CIS-	SOLVED	TUENTS .	SOLVED	SCLVED	D15-	DIS-	DIS-
	SOLVED	(MG/L	SOLVED	SOLVED	SCLVED	(MG/L	DIS-	ITONS	ITONS	SOLVED	SOLVED	SOLVED
	(MG/L	AS	IMG/L	(MG/L	(MG/L	AS	SOLVED	PER	PER	(MG/L	(UG/L	(UG/L
DATE	AS K)	CACO3)	AS 504)	AS CL)	AS F)	21(5)	(MG/L)	AC-FT)	DAY	AS N)	AS FE)	AS MN)
MAY												
15	-6	28	8 . 6.	3.5	.1	17	62	.08	1.44	.00	150	6

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, ISLAND OF KOSRAE--Continued

16899700 PALUSRIK RIVER

LOCATION.--Lat 05°17'38" N., long 163°00'06" E., Hydrologic Unit 20100006, on right bank 0.4 mi (0.6 km) upstream from Finkol River, 0.7 mi (1.1 km) northeast of Utive village, and 2.0 mi (0.3 km) south of Mount Crozer.

DRAINAGE AREA. -- 0.56 mi² (1.45 km²).

PERIOD OF RECORD. -- Water year 1980.

DATE	TIME	STREAM- FLOW+ INSTAN- TANEOUS (CFS)	TEMPER- ATURE. WATER (DEG C)	TUR- BID- ITY (NTU)	CXYGEN. CIS- SCLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NO NCAR- BO NATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SCLVED (MG/L AS MG)	SCDIUM. DIS- SOLVED (MG/L AS NA)	SODIUM PERCENT	SODIUM AD- SURP- TION RATIO
MAY 16	1230	16	25.0	5.4	8.2	12	3	2.0	1.8	2.4	29	.3
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUC- RIDE. CIS- SCLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIC2)	SOLIDS. SUM OF CONSTI- TUENTS. DIS- SOLVED (MG/L)	SCLIDS, DIS- SOLVED (IONS PER AC-FT)	SCLIDS, DIS- SCLVED (TONS PER DAY)	NITRO- GEN+ NC2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAY 16	•2	9	2.2	3.9	.0	8.9	27	.04	1.17	.00	140	9

16899750 MALEM RIVER

LOCATION.--Lat 05°18'21" N., long 163°01'46" E., Hydrologic Unit 20100006, on left bank 1.2 mi (1.9 km) upstream from mouth and 1.8 mi (2.9 km) southeast of Mount Crozer.

DRAINAGE AREA. -- 0.48 mi² (1.24 km²).

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, CIS- SCLVED (MG/L)	FARD- NESS (MG/L AS CACO3)	HARD- NESS+ NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM. DIS- SOLVED (MG/L AS MG)	SCDIUM, DIS- SGLVED (MG/L AS NA)	SODIUM PERCENT	SUDIUM AD- SORP- TIUN RATIO
MAY	17007											
12	1500	26	26.5	9.2	8.2	23	7	4 - 1	3.0	2.9	21	.3
	Table						SOLIDS.			NI TRO-		
	POTAS-	1777	4.024420	CHLO-	FLUC-	SILICA	SUM OF	SOLIDS.	SCLIDS.	GEN.	52300	MANGA-
	SIUM,	ALKA-	SULFATE	RIDE.	RIDE.	DIS-	CONSTI-	DIS-	DIS-	N02+N03	IRON.	NE SE .
	DIS-	LINITY	DIS-	DIS-	DIS-	SOLVED	TUENTS .	SOLVED	SOLVED	DIS-	DIS-	DIS-
	SOLVED	(MG/L	SOLVED	SOLVED	SCLVED	(MG/L	DIS-	ITONS	(TONS	SOLVED	SOLVED	SOLVED
	(MG/L	AS	(MG/L	(MG/L	(MG/L	AS	SOLVED	PER	PER	(MG/L	(NE)F	(UG/L
DATE	AS K)	CACO3)	AS 504)	AS CL)	AS F)	SIC2)	(MG/L)	AC-FT)	DAY)	AS N)	AS FE)	AS MN)
MAY												
12	.6	16	5.6	5.0	.0	12	43	.06	3.02	.00	120	6

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAROLINE ISLANDS, ISLAND OF KOSRAE--Continued

16899780 TAFEYAT RIVER

LOCATION.--Lat 05°19'20" N., long 163°01'45" E., Hydrologic Unit 20100006, 100 ft (30 m) downstream from former Japanese dam, 1.0 mi (1.6 km) upstream from mouth, and 1.4 mi (2.2 km) east of Mount Crozer.

DRAINAGE AREA. -- 0.47 mi² (1.22 km²).

PERIOD OF RECORD, -- Water year 1980.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE * WATER (DEG C)	TUR- BID- ITY (NTU)	CXYGEN, DIS- SCLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SCLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM PERCENI	SODIUM AD- SORP- TION RATIO
MAY 12	1630	8.5	26.5	4.3	8.2	57	10	13	6.0	4.7	15	.3
							SOLIDS .			NITRO-		
	POTAS-	-92 2	ENVEYED.	CHLO-	FLUC-	SILICA	SUM OF	SOLIDS.	SCLIDS.	GEN.	2034.4	MANGA-
	SIUM,	ALKA-	SULFATE	RIDE.	RIDE.	015-	CONSTI-	DIS-	DIS-	NC2+NO3	IRON.	NE SE +
	DIS-	LINITY	DIS-	DIS-	EIS-	SOLVED	TUENTS .	SOLVED	SCLVED	DIS-	DIS-	DIS-
	SOL VED	(MG/L	CMG/L	SOLVED	SCLVED	(ME)L	DIS-	TONS	CTONS	SOLVED	SOLVED	SOLVED
DATE	AS K)	CACO3)	AS 504)	AS CL)	(MG/L AS F)	SI (2)	(MG/L)	PER AC-FT)	PER DAY)	(MG/L AS N)	AS FET	(UG/L AS MN)
DATE	AS KI	CACOSI	AS 5041	MS CEI	AS F,	51021	(MB/L/	#L-F17	DATI	45 117	AS FE	AS MN
MAY												
12	1.1	47	9.2	5.1	. 1	21	88	.12	2.02	.01	230	20

16899800 TOFOL RIVER

LOCATION.--Lat 05°19'53" N., long 163°01'25", Hydrologic Unit 20100006, on left bank 25 ft (7.6 m) downstream from right-bank tributary, 0.7 mi (1.1 km) upstream from mouth, and 1.2 mi (1.9 km) northeast of Mount Crozer.

DRAINAGE AREA. -- 0.44 mi² (1.14 km²).

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SCLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS+ NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE - SIUM, DIS- SCLVED (MG/L AS MG)	SCDIUM, DIS- SCLVED (MG/L AS NA)	SODIUM PERCENT	SODIUM AD- SORP- TION RATIO
MAY 13	1000	9.9	26.5	1.6	8.2	40	9	8.1	4.7	4.3	19	.3
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE + DIS- SOLVED (MG/L AS CL)	FLUC- RIDE, CIS- S(LVED (MG/L AS F)	SILICA, DIS- SCLVED (MG/L AS SIC2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS. DIS- SOLVED (IONS PER AC-FT)	SCLIDS+ DIS- SCLVED (TONS PER DAY)	NITRO- GEN+ NG2+NO3 DIS- SOLVFD (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE + DIS- SOLVED (UG/L AS MN)
MAY 13	.8	31	9.8	4.4	.1	24	75	.10	2.00	.03	90	4

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 CAROLINE ISLANDS, ISLAND OF KOSRAE--Continued

16899830 INNEM RIVER

LOCATION.--Lat 05°20'25" N., long 163°01'43" E., Hydrologic Unit 20100006, at concrete road bridge 0.3 mile upstream from mouth and 1.9 mi northeast of Mount Crozer.

DRAINAGE AREA. -- 2.51 mi 2 (6.50 km2).

PERIOD OF RECORD .-- Water year 1980.

DATE	TIME	STREAM- FLOW, INSTAN- IANEOUS (CFS)	TEMPER- ATURE, WATER (DEG C)	TUR- BID- ITY (NTU)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS+ NONCAR- BONATE (MG/L CAC 33)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM. DIS- SOLVED (MG/L AS MG)	SODIUM. DIS- SOLVED (MG/L AS NA)	SODIUM PERCENT	SODIUM AD- SORP- IION RATIO
MAY 13	1100	25	24.5	34	8.2	35	11	5.7	4.4	3.8	19	.3
							SOLIDS.			NITRO-		
	POTAS-	40.03	200 2000	CHF 0-	FLUN-	SILICA	SUM OF	SOLIDS.	SOLIDS.	GEN.		MANGA-
	SIUM.	ALKA-	SULFATE	RIDE.	RIDE.	DIS-	CONSTI-	DIS-	DIS-	NO 2+NO 3	IRON.	NESE .
	DIS-	LINITY	nrs-	DIS-	015-	SOLVED	TUENTS.	SOLVED	SOLVED	DIS-	DIS-	DIS-
	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED	(MG/L	nis-	CTONS	CTONS	SOLVED	SOLVED	SOLVED
DATE			(MG/L	(MG / I	(MG/L	AS	SOLVED	PER	PER	(MG/L	(UG/L	(UG/L
D a 15.	AS K)	CACUE	AS 5041	AS CL)	AS F)	51121	(MG/L)	AC-FT)	DAY	AS NI	AS FE)	AS MN)
MAY												
13	. 7	24	10	4.6	.1	18	63	.09	4.25	.05	190	20

16899850 PAKUSRIK RIVER

LOCATION.--Lat $05^{\circ}21^{\circ}40^{\circ}$ N., long $163^{\circ}01^{\circ}45^{\circ}$ E., Hydrologic Unit 20100006, 80 ft (24 m) downstream from new diversion dam, 0.5 mi (0.8 km) upstream from mouth, 0.9 mi (1.4 km) east of Mount Buache.

DRAINAGE AREA. -- 0.40 mi² (1.04 km²).

DATE	TIME	STREAM- FLOW+ INSTAN- TANEOUS (CFS)	TEMPER- ATURE, WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN. DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACU3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM OIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM PERCENT	SODIUM AD- SORP- IION RATIO
MAY												
13	1500	3.2	25.0	3.1	8.2	39	9	6.5	5.5	4.7	20	. 3
							SOLIDS.			NIIRO-		
	POTAS-			CHL 0-	FLU0-	SILICA.	SUM OF	SOLIDS.	SOLIDS.	GEN.		MANGA-
	SIUM.	ALKA-	SULFATE	RIDE.	RIDE.	DIS-	CONSTI-	DIS-	DIS-	NO2+NO3	IRON.	NESE .
	DIS-	LINITY	nts-	DIS-	DIS-	SOLVED	TUENTS.	SOLVED	SOLVED	DIS-	DIS-	DIS-
	SALVED (MG/L	(MG/L	SOL VED	SOL VED	CMG/L	(MG/L	DIS-	PER	PER	SOLVED (MG/L	SOL VED	SOL VED
DATE	AS K)	CACOTI	AS 504)	AS CL)	AS F)	51121	(MG/L)	AC-FT)	DAY)	AS NI	AS FE)	AS MN)
MAY												
13	- 5	30	4.9	6.2	. 1	19	66	.09	.57	.00	90	4

PERIODIC DETERMINATIONS OF TEMPERATURES

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW. INSTAN- TANEOUS (CFS)	TEMPER- ATURE. AIR (DEG C)	TEMPER- ATURE, WATER (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURF • AIR (DEG C)	TEMPER- ATURE, WATER (DEG C)
				CAROLINE IS	LANDS, PALAU IS	SLANDS			
	1689	0600 - AD	EIDDO RIV	ER. BABEL THUAP	. PALAU ISLAND	S (LAT (76 01 L	ONG 134 3	5 38)
OCT . 19				40.5	APR + 19		62	22.12	
05 NOV	1230	51	29.5		28 • • • JUN	1325	23	27.0	25.0
08 DEC	1210	39	29.0		05 JUL	1340	13	28.0	25.5
04 JAN . 1	1140	19	28.0	25.5	17 AUG	1425	29	26.0	25.5
29 FEB	1155	350		25.5	25 SEP	1200	25	27.5	25.5
26	1430	32	28.0	26.0	25	1430	44	27.5	24.0
	16890	900 - TAB	AGATEN RI	VER. BABELTHUA	P. PALAU ISLAN	S (LAT	07 27 00	LONG 134	32 05)
oct , 19				100	APR , 1			100	
04 NOV	0840	93	28.0	26.0	25 JUN	1105	57	27.0	25.0
06 JAN , 19	1020	76	27.0	25.5	03 AUG	1055	17	28.5	25.0
15	1025 1010	17	27.5	25.0 25.0	21 SEP	1055	35	27.0	25.0
FEB		53			27	1000	130	26.5	25.5
21 MAR 18	1020	12	28.0	25.0					
10	1020	12	23.3	24.7					
	168	91300 - 6	ADEN RIVER	R. BABELTHUAP.	PALAU ISLANDS	(LAT 07	22 56 LO	NG 134 33	421
OCT , 19	1200	19	28.0	25.0	MAR . 19	1110	10	27.0	24.5
NOV 29	1120	20	27.0	25.5	APR 15	1020	9.1	28.0	26.0
JAN . 19	089	13		25.5	AUG 05	1455	50	27.0	25.0
22	1335	13	27.0	25.5	SEP				
13	1055	26	27.0	25.0	23	1230	22	28.0	25.5
	168913	10 - KUMF	KUMEYEL R	TVFR . BABFITHU	AP. PALAU ISLA	NDS (LA)	07 23 15	10NG 134	33 05)
		TO NOME	woneree w	TYCHY ONDE ETHO				2010 2	
09	1615	6.9	27.0	26.0	APR . 1	1245	5.5	28.0	26.0
21	1020	7.8	28.0	26.0	JUN 25	1220	7.4	28.0	26.0
JAN . 1	1010	3.7	27.0	25.0	AUG 06	1200	3.4	28.0	26.0
FER 13	1325	8.1	27.0	25.0	SEP 18	1105	3.5	28.0	25.0
MAR 17	1335	2.6	28.0	25.0					
	168914	00 - SOUT	H FORK NG	ARDOK PIVER, B	ABELTHUAP, PALA	U IS (L	T 07 26 1	5 LONG 13	4 35 03)
NOV . 1	979				JUN . 1	980			
15 JAN , 1	1125	11	30.0	26.5	10 JUL	1300	9.3	29.0	26.0
16	0950	5.4	27.0		18	1155	11	26.0	25.0
23 FEB	1100	5.8		25.0	A U G 28	1155	12	26.0	25.
27 MAR	1150	10	29.0	26.0	SEP 24	1100	13	28.5	26.0
27	1250	7.4	₹0.0	25.0					
MAY									

PERIODIC DETERMINATIONS OF TEMPERATURES

DATE	TIME	STREAM- FLOW: TNSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER - ATURE + WATER (DEG C)	DATE	TIME	STREAM- FLOW. INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE + WATER (DEG C)
				CAROLINE I	SLANDS, YAP IS	SLANDS			
		16892400 -	- ARINGEL	STREAM, YAP,	YAP ISLANDS (LAT 09 31	01 LONG	138 05 11)
DEC + 19	70				JUL ,	1980			
26	1010	.21	27.0	25.0	24		.26	25.5	
JAN + 19	0900	.00		24.5	31 SEP	1055	-05	30.0	25.5
31 MAY	0400	.00		24.5	02	0940	.07	27.0	25.5
19 JUN	1025	.07	27.5	26.0	15	1430	.47	30.0	27.0
03	1405	.17	30.0	26.5					
30	1030	.35	27.5	25.5					
		16892800	- DALOLAB	STREAM, YAP,	YAP ISLANDS (LAT 09 31	04 LONG	138 06 04) :
OCT : 19	79				JUL .	1980			
10	0925	.12	27.5	26.5	23		.08	29.0	
DEC 26	1055	.02	26.5	25.0	31 SEP	1020	.02	29.0	26.0
JAN + 19	80				02	0940			
31 JUN	1015	.00		25.5	02	1025	.03 .56	2.	-
03	1500	.03	30.5	27.0	17	1400	• 20		20.0
30	1020	.07	29.0	26.0					
		16892900	- PEMGNY	STREAM, YAP,	YAP ISLANDS (LAT 09 31	07 LONG :	138 06 18	,
OCI , 19	79				JUN ,	1980			
05	1130	.08	28.0	25.5	04		.02	26.5	
30 DEC	1000	.05	27.0	25.5	30 JUL	1225	.30	30.5	
28 FEB • 19		.03	27.0	25.0	24 SEP	1000	.12	27.0	25.0
01	0915	.01	27.0	25.5	02	1145	.04	26.5	25.5
23	1010	.03	27.0	23.7	17	1000	•27		20.5
		16893100	- BURGNG	STREAM, YAP.	YAP ISLANDS (LAT 09 31	59 LONG	138 07 05)."
3CT • 19			1,555		JUN .		5.25		
30 DEC	1520	.10	27.5	25.0	30 JUL	0900	. 44	27.5	25.5
27 FFB : 19	1135	.07	32.0	24.0	23 AUG	0925	.42	28.5	26.0
01 MAR	1645	.00		26.5	30 SEP	1310	2.1	27.0	25.0
26 MAY	1010	.04	28.5	25.5	18	1030	2.0	22	26.0
20	1445	.03	35.0	27.5					
	16	893200 - MI	JKONG STR	EAM. GAGIL-IN	MIL. YAP ISLAN	DS (LAT 0	9 32 06 L	DNG 138 0	9 59)
OCT . 19	79				APR .	1980			
10 NOV	1415	1.5	27.0	26.0	23 MAY	0930	- 46	30.0	
19 DEC	1410	.60	33.0	28.0	16 JUN		1.2	31.0	
05 JAN , 19		•56	29.5		19 JUL		.52	32.5	
22 FEB	1420	•51	32.5		24 AUG	1305	1.5	32.0	
01 MAR	1510	.32	28.0		30 SEP		7.1	27.0	
28	1110	.58	29.5	26.0	16	0930	2.5	28.0	26.0

PERIODIC DETERMINATIONS OF TEMPERATURES

DATE	TIME	STREAM- FLOW+ TNSTAN- TANEOUS (CFS)	TEMPER- ATURE: AIR (DEG C)	TEMPER - ATURE, WATER (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- A TURE + WA TER (DEG C)
				CAROLINE IS	LANDS, TRUK ISL	ANDS			
	168937	00 - WICHE	N R AT AL	TITUDE 55M. M	DEN. TRUK ISLAN	IDS (LAT	07 26 45	LONG 151	52 021
oct , 19	79				JUL • 19	80			
31	1205	3.3		26.0	31	1100	. 87		25.0
31 MAY , 19	1230	3.3		26.0					
05	1530	8.1	27.0	26.5					
	16893	800 - WICH	EN RIVER	AT ALT 18M. M	DEN. TRUK ISLAM	DS (LAT	07 27 05	LONG 151	52 18)
OCT . 19	79				MAY , 19	80			
31	1000	11		26.5	05	1200	43		26.5
31 MAY , 19	1015	13		26.5	JUL 31	1230	2.2	32.0	28.0
05	1145	19	26.5	25.5					
			(CAROLINE ISLAN	DS, ISLAND OF 1	PONAPE			
		1689	7600 - NAI	NEPIL RIVER. F	ONAPE ILAT 06	55 11 L	ONG 158 12	36)	
OCT , 19	79				MAY . 19	80			
02	1220	70	27.0	25.0	20	1045	26	30.0	25.0
27 DEC	1030	21		25.0	20 JUN	1100	26		25.0
17	1410	5.3	27.0	25.0	04	1305	33	28.0	24.0
JAN . 19	1255	10	28.0	24.0	JUL 03	1235	23	31.0	24.0
FEB					AUG				
27 MAR	1420	5.5	30.0	25.0	14 SEP	1150	13	30.0	24.5
11 APR	1150	1 4	29.0	24.5	10	1320	16	29.0	24.0
10	1220	4.4	29.0	25.0					
		1.61	897900 -	LUI RIVER + POI	APE (LAT 06 55	36 LON	G 158 12 5	5)	
OCT , 19	79				MAY . 19	8.0			
02	1000	16	27.0	24.0	20	1300	4.2		26.5
27 NOV	1330	3.3		26.5	20 JUN	1320	4.2	29.0	26.5
15	1215	9.5	27.0	26.0	18	1045	3.0	29.0	25.0
DF C 27	1205	2.7	28.0	25.0	03	1030	4.2	29.0	25.0
JAN , 19		2.07	, , , ,	2. 2. 0	A UG	1030	7.6	2700	
30 FEB	1430	.87	28.0	24.0	14 SEP	0945	1.1	31.5	24.0
27	1230	1.2	30.0	25.0	25	1030	1.7	29.0	24.0
10	1015	.68	29.0	24.0					
		1689820	o - LUI R	IVER AT MOUTH	PONAPE (LAT O	6 57 07	LONG 158	13 16)	
OCT + 19	79				APR . 19	80			
05	1420	24	27.0	26.0	08	1050	4.8	32.0	24.0
26	1500 1600	10 223	11	26.5 25.0	MAY 10	1330	51	27.5	26.5
NOV	1000				JUN				
20	1335	20	29.0	27.0	05 JUL	1440	42	28.0	26.0
13	1450	10	28.0	26.0	01	1120	14	31.0	26.0
JAN , 19	1300	7.8	29.0	26.0	AUG 29	0930	16	29.0	24.0
FER			71.0		SEP 29	0950	20	29.0	25.0
28 MAR	1350	7.5		26.0	27	9730	2.0	27.0	27.0
12	1400	5.4	29.0	26.0					

135

PERIODIC DETERMINATIONS OF TEMPERATURES

DATE	TIME	STREAM- FLOW+ INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE, WATER (DEG C)	DATE	TIME	STREAM- FLOW: INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE, WATER (DEG C)
						C+:			-
					ISLAND OF PONAPE				
		1689	8600 - LUI	PWOR RIVE	R. PONAPE (LAT 06 '	54 15 LO	NG 158 09	451	
OCT . 1					MAY . 19				
29	1235	10	27.0	25.0	21	1100	5.6	28.0	27.0
NOV	1030	1.1		20.0	JUN	1130	***	2.000	2
14 DEC	1420	4.5	29.0	27.0	09 JUL	1150	1 4	31.0	25.0
11	1300	2.8	29.0	27.0	02	1330	6.2	30.0	24.0
FEB . 1	980 1415	2.5	29.0	26.0	AUG 15	1500	6.9	29.0	24.0
MAR					SEP				
APR	1430	4.9	29.0	25.0	24	1200	6.0	31.0	26.0
09	1340	1.8	30.0	26.0					
			S	AMOA ISLA	NDS, ISLAND OF TUT	UILA			
		16912000	- PAGO S	TREAM AT	AFOND. TUTUILA (LA	T 14 16	03 LONG 17	0 39 02)	
OCT . 1	979				APR + 1	980			
10 NOV	0715	.66	25.0	24.0	02 JUN	0730	2.7	24.0	23.0
20	0820	1.2	25.0	24.0	23	1450	1.4	29.0	26.0
JAN + 1	1025	4.8	26.0	24.0	AUG 01	0805	1.6	24.0	24.0
FEB			25.0	24.0	25	1055	2.1	24.5	23.5
06 MAR	0800	.64	23.0	24.0					
07	0740	8.9	24.0	23.5					
		16920500	- AASU S	TREAM AT	AASU, TUTUILA (LAT	14 17 5	1 LONG 170	45 301	
OCT . 1	979				JUL + 1	980			
12	1015	1.7	25.5	25.0	07	1005 1435	3.2 2.5	24.0 30.5	23.0
NOV 30	0945	3.9	27.0	23.0	10	1435	2.0	30.3	2.0.20
APR + 1	0930	5.0	25.5	23.5					
		16931000 -	- ATAULOMA	STREAM	AT AFAO, TUTUILA (L		10 LONG 1	70 48 02	,
10	1230	.12	25.5	25.0	MAY + 1	1135	7.7	23.0	23.0
NOV	1230	•12	53.3	25.0	21	1015	1.5	25.0	24.0
01	1050	1.5	27.0	25.0	JUN				
29 FEB . 1	1030	.53	27.0	24.0	24 JUL	1110	. 37	26.0	25.0
08	1110	1.4	27.0	24.0	31	0855	.50	23.0	23.0
26 APR	0930	.20	26.5	24.0	AUG 29	1045	.62	27.0	25.0
01	1100	2.7	26.0	24.0	27	1047	•02	2100	2
	169315	00 - ASIL	I STREAM A	I ALT 33	O FT (100M) NR ASIL	I TU (LA	T 14 19 34	LONG 17	0 47 38)
OCT . 1	979				MAR + 1	980			
18	0850	.51	22.5	20.5	26	0915	2.0	23.0	23.0
NOV 06	1130	1.7	25.0	23.0	MAY 02	0935	1.1	24.0	23.0
DEC 12	1130	1.7	25.0	23.0	JUN 10	0955	2.6	26.5	24.0
JAN , 1					JUL				
15 FEB		.79	24.0	23.0	14 AUG	1040	2.4	24.0	23.0
20	0935	1.8	24.5	23.0	18	0940	5.2	24.0	24.0

PERIODIC DETERMINATIONS OF TEMPERATURES

		STREAM-					STREAM-		
		FLOW.	TEMPER-	TEMPER-			FLOW.	TEMPER-	TEMPER
		INSTAN-	ATURE .	ATURE.			INSTAN-	ATURE .	ATURE
	TIME	TANEOUS	AIR	WATER		TIME	TANEOUS	AIR	WATER
DATE		(CFS)	(DEG C)	(DEG C)	DATE		(CFS)	(DEG C)	(DEG C
			500 100 100						
			SAMOA	SLANDS, IS	LAND OF TUTUILAC	ontinue	d		
	1693350	O - LEAFU	STREAM A	T ALT 370F1	(113M) NR LEONE	TU (LAT	14 19 31	LONG 170	46 50)
OCT . 19	79				MAR . 19	3 0			
					18	0810	.87	23.0	23 .
16	0900	1.1	25.0	24.0	APR				
VOV					23	0740	2.1	24.5	23.
14	0905	1.6	24.0	22.0	MAY				
29	0920	2.6	25.0	24.0	28	1010	5.5	26.5	24.
JAN , 19	80				AUG				
04	0835	2.4	24.0	23.0	11	1035	1.6	24.0	24.
FEB									
11	0925	2.7	24.0	23.0					
		16948000	- AFUELO	STREAM AT N	MATUU, TUTUILA (LA	T 14 18	07 LUNG 1	70 41 071	
NOV + 19	79				MAR . 19	8.0			
16	0730	.34	24.0	23.0	20	1005	.49		
								25.0	24.
29	1125							25.0	24.
29 IAN . 19	1125	.38	25.0	24.0	APR				
JAN . 19	80	.38	25.0	24.0	APR 29	0940	1.1	25.0	24.
JAN , 19					A PR 29 AUG	0940	1.1	27.0	25.
JAN . 19	80	.38	25.0 25.0	24.0	APR 29				
JAN . 19 08	1010	.38	25.0 25.0 26.0	24.0 23.0 24.0	A PR 29 AUG	0940	1.1	27.0 26.0	25. 25.
JAN , 19 08 EB 13	1010 1100	.38 .30	25.0 25.0 26.0	24.0 23.0 24.0	APR 29 AUG 12	0940 0950	1.1	27.0 26.0	25. 25.
JAN , 19 08 EB 13	80 1010 1100	.38 .30 .21	25.0 25.0 26.0 LEAFU ST	24.0 23.0 24.0 REAM NEAR A	APR 29 AUG 12 LUASI, TUTUILA (LA APR , 19	0940 0950 1 14 16	1.1 1.9 27 LONG 1	27.0 26.0 70 34 261	25.
JAN , 19 08 EB 13	80 1010 1100 1	.38 .30 .21 .6963900 -	25.0 26.0 26.0 LEAFU ST	24.0 23.0 24.0 REAM NEAR A	APR 29 AUG 12 AUASI, TUTUILA (LA APR , 19: 16 JUL	0940 0950 1 14 16 80 0900	1.1 1.9 27 LONG 1	27.0 26.0 70 34 261 26.0	25. 25.
JAN , 19 08 EB 13	1010 1100 1100 179 0910 1045	.38 .30 .21	25.0 25.0 26.0 LEAFU ST	24.0 23.0 24.0 REAM NEAR A	APR 29 AUG 12 AUASI, TUTUILA (LA APR , 19: 16 JUL 01	0940 0950 1 14 16	1.1 1.9 27 LONG 1	27.0 26.0 70 34 261	25.
JAN , 19 08 EB 13 DCT , 19 10 JAN , 19	1010 1100 1100 179 0910 1045	.38 .30 .21 6963900 -	25.0 25.0 26.0 LEAFU ST 25.0 24.0	24.0 23.0 24.0 REAM NEAR A 24.5 24.0	APR 29 AUG 12 AUASI, TUTUILA (LA APR , 19. 16 JUL 01 AUG	0940 0950 I 14 16 80 0900 0940	1.1 1.9 27 LONG 1 .08	27.0 26.0 70 34 26) 26.0 25.0	25. 25. 24.
JAN , 19 08 EB 13 0CT , 19 10 10V 15 JAN , 19 03	1010 1100 1100 179 0910 1045	.38 .30 .21 .6963900 -	25.0 26.0 26.0 LEAFU ST	24.0 23.0 24.0 REAM NEAR A	APR 29 AUG 12 AUG 12 APR . 19. 16 JUL 01 AUG 14	0940 0950 T 14 16 80 0900 0940	1.1 1.9 27 LONG 1 .08 .07	27.0 26.0 70 34 261 26.0 25.0 27.0	25. 25. 24. 24.
JAN , 19 08 EB 13 DCT , 19 10 10 15 JAN , 19 03	1010 1100 1100 179 0910 1045 80 0845	.38 .30 .21 6963900 - .05 .06	25.0 25.0 26.0 LEAFU ST 25.0 24.0	24.0 23.0 24.0 REAM NEAR A 24.5 24.0	APR 29 AUG 12 AUASI, TUTUILA (LA APR , 19. 16 JUL 01 AUG	0940 0950 I 14 16 80 0900 0940	1.1 1.9 27 LONG 1 .08	27.0 26.0 70 34 26) 26.0 25.0	25. 25.
JAN , 19 08 EB 13 DCT , 19 10 NOV 15 JAN , 19	1010 1100 1100 179 0910 1045	.38 .30 .21 6963900 -	25.0 25.0 26.0 LEAFU ST 25.0 24.0	24.0 23.0 24.0 REAM NEAR A 24.5 24.0	APR 29 AUG 12 AUG 12 APR . 19. 16 JUL 01 AUG 14	0940 0950 T 14 16 80 0900 0940	1.1 1.9 27 LONG 1 .08 .07	27.0 26.0 70 34 261 26.0 25.0 27.0	25. 25. 24. 24.

GROUND-WATER LEVELS

MARIANA ISLANDS, ISLAND OF GUAM

132534144474871. Local number, 2547340 Tide Gage, Pago Bay.
LOCATION.--Lat 13°25'34" N., long 144°47'48" E., Hydrologic Unit 20100003, at University of Guam Marine Laboratory, Pago Bay, Mangilao, Guam. Owner: University of Guam Marine Laboratory.
WELL CHARACTERISTICS.--Concrete wet pit, 18 ft (5.5 m) deep.
DATUM--Altitude of land-surface datum is 7.70 ft (2.347 m). Measuring point: Edge of wet pit manhole, 8.80 ft (2.682 m) above mean sea level.
REMARKS.--The wet pit is connected to the open ocean through an inlet pipe which terminates at the edge of the

reef.
PERIOD OF RECORD.--April to September 1976 records available in subdistrict office. October 1976 to current

year.
EXTREMES FOR CURRENT YEAR.--Highest recorded tide level, 0.72 ft (0.219 m) above mean sea level, July 3, 1979; lowest recorded, -0.59 ft (-0.180 m) Feb. 11, 1979.

ELEVATION (FEET NGVD). WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

					le F	AN VALUES						
DAY	001	NOV	DEC	JAN	FER	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.16	02	19	13	12	08	.04	. C8	.08	.28	.07	01
2	. 26	.11	21	20	29	12	. 07	.09	.11	.28	.16	.05
3.	.32	.07	15	10	21	06	.03	.16	.04	.29	.10	.08
4	. 31	.09	15	25	10	11	.10	.14	.15	.28	.15	.14
5	.22	.06	09	24	08	C7	04	. 12	.09	.43	.10	.34
6	.15	.13		27	12	14	-04	.18	.09	.54	.11	.20
7	-13	.15		17	10	-,13	- 04	.12	.16	. 26	.23	.36
8	.09	05		39	15	C9	.1 C	. 12	. 18	.13	.29	.21
9		03		34	15	11	. 05	. 30	. 20	.05	. 31	.09
10		12		31	08	12	.06	. 35	.12	. 10	. 18	04
11		06		37	06	13	.14	.33	03	.07	. 22	07
12	.15	06		47	13	15	.18	. 35	.02	.06	.24	13
1 3	03	19		34	12	01	. 30	. 42	10	.07	.21	03
14	26	26	36	30	17	.03	.29	. 43	09	.08	.23	.06
15	39	23	40	28	13	.13	. 55	. 38	09	.06	.16	.02
1.6	41	09	47	27	09	.15	. 14	.33	02	.06	. 24	04
17	41	10	50	17	12	.27	.13	. 49	.02	.36	.25	10
18	42	10	38	15	06	.32	.12	.35	.03	.13	. 26	04
19	43	15	36	19	07	.15	.13	. 19	.02	.05	.23	.00
20	40	10	34	12	05	.05	.12	.15	.00	.13	. 21	08
21	37	06	31	08	05	.09	. 24	.21	.03	.16	. 21	08
5.5	36	04	22	16	.01	· C5	.25	.12	. 0 4	.09	.17	03
23	30	01	15	21	.02	06	. 24	.28	.02	.00	. 15	.09
24	43	.08	18	29	.01	07	.2P	- 12	.06	09	.20	.01
25	37	.04	23	26	06	12	.13	. 17	.13	09	.18	.08
26	26	.01	26	28	.15	07	.17	.1C	.17	26	.14	.19
27	27	.07	28	21	07	12	.12	.08	. 1 4	14	.09	.19
28	22	.03	32	14	04	09	.12	.21	-19	•17	.10	.17
54	16	.06	27	10	13	03	.10	.22	. 23	.20	.11	.01
30	10	15	20	11		.02	. 09	. 24	.19	. 20	.06	.08
31	03		24	15		.14		. C7		.07	.00	
MEAN	++-	03		23	09	02	.17	.22	.07	.13	.17	.06
MAX	444	.15		08	. 15	. 32	. 30	. 49	.23	.54	. 31	.36
MIN		26		47	29	15	04	. C7	10	26	.00	13

132624144452771. Local number, 2645220 Ordot well A-20.
LOCATION.--Lat 13°26'24" N., long 144°45'27" E., Hydrologic Unit 20100003, at Ordot School, 1.4 mi (2.3 km)
west of junction of Routes 4 and 10, Ordot, Guam. Owner: Government of Guam.
AQUIFER.--Mariana Limestone and Alutom formation.
WELL CHARACTERISTICS.--Drilled parabasal water-table well, diameter 6 in (0.2 m), depth reported 120 ft (36.6 m).
DATUM.--Altitude of land-surface datum is 137 ft (41.8 m). Measuring point: Top of casing, 141.74 ft (43.202

m), revised, above mean sea level.

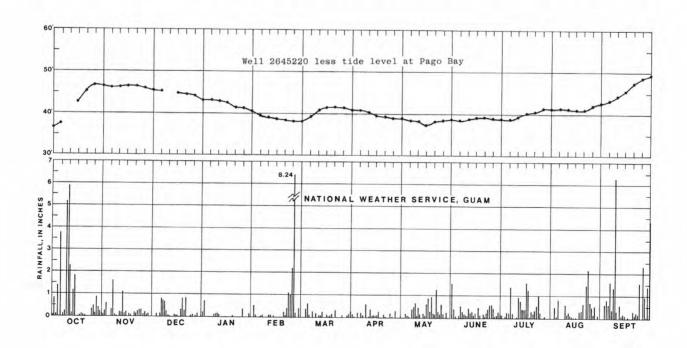
REMARKS.--Recording gage installed January 1974.

PERIOD OF RECORD.--January 1974 to September 1976 records available in files of district office; October 1976

to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 53.15 ft (16.200 m), revised, above mean sea level, Aug. 25-26, 1976; lowest, 33.03 ft (10.068 m), revised, above mean sea level, June 15-16, 1978.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	36.30	46.30	45.74	43.54	40.30	38.20	40.95	38.98	38.67	39.31	41.39	43.10
2	36.59	46.30	45.66	43.44	40.09	38.47	40.87	38.93	38.63	39.37	41.41	43.20
3	36.83	46.27	45.58	43.35	39.98	38.86	40.80	38.86	38.68	39.41	41.42	43.25
4	37.06	46.24	45.47	43.25	39.87	39.30	40.72	38.80	38.75	39.46	41.43	43.30
5	37.32	46.20	45.34	43.15	39.75	39.74	40.63	38.75	38.81	39.49	41.44	43.40
6	37.84	46.13	45.27	43.08	39.67	40.16	40.55	38.7C	38.86	39.53	41.47	43.50
7	38.23	46.04	45.20	42.97	39.57	40.50	40.47	38.64	38.90	39.58	41.49	43.60
8	38.48	45.97	45.12	42.89	39.46	40.81	40.37	38.58	38.94	38.68	41.49	43.70
9	38.69	46.03	44.97	42.77	39.35	41.06	40.27	38.52	38.97	39.76	41.44	43.90
10	38.94	46.11	44.87	42.67	79.25	41.27	40.19	38.47	39.02	39.82	41.38	44.18
11	39.06	46.16	44.84	42.56	39.15	41.43	40.14	38.41	39.08	39.87	41.32	44.58
12	40.34	45.20	44.82	42.45	39.08	41.55	40.10	38.37	39.14	39.92	41.26	44.92
13	40.95	46.21	44.78	42.36	38.98	41.64	40.08	38.32	39.19	40.02	41.24	45.26
14	41.43	46.21	44.74	42.23	38.88	41.71	40.06	38.31	39.21	40.21	41.23	45.64
15	42.14	46.24	44.66	42.07	38.79	41.77	40.04	38.31	39.31	40.26	41.22	45.98
16	42.94	46.26	44.58	42.00	38.71	41.80	40.01	38.31	39.37	40.36	41.25	46.33
17	43.59	46.31	44.49	41.90	38.62	41.83	39.94	38.30	38.63	40.44	41.29	46.71
18	44.18	46.32	44.41	41.76	38.55	41.84	39.86	38.29	39.46	40.55	41.29	47.09
19	44.73	46.29	44.32	41.66	38.45	41.82	39.79	38.29	39.47	40.70	41.31	47.43
20	45.27	46.29	44.21	41.55	38.37	41.78	39.70	38.33	39.45	40.79	41.37	47.73
21	45.70	45.21	44.13	41.44	38.28	41.76	39.64	38.37	39.41	40.91	41.48	47.98
- 22	46.01	46.19	44.10	41.33	38.21	41.72	39.58	38.40	39.36	40.97	41.61	48.23
23	46.22	46.17	44.07	41.21	38.13	41.66	39.51	38.43	79.31	41.05	41.75	48.39
24	46.34	46.14	44.04	41.11	38.06	41.58	39.44	38.47	39.27	41.13	41.96	48.56
25	46.41	46.13	44.01	40.98	37.98	41.53	39.36	38.53	39.23	41.19	42.19	48.70
26	46.42	46.11	43.98	40.87	37.91	41.45	39.28	38.60	39.20	41.27	42.33	48.88
27	46.39	46.08	43.91	40.75	37.82	41.37	39.23	38.67	39.19	41.30	42.46	49.00
28	46.34	46.03	43.85	40.65	37 .84	41.29	39.16	38.72	39.19	41.31	42.68	49.19
29	46.32	45.93	43.77	40.55	37.98	41.22	39.11	38.75	39.20	41.32	42.77	49.43
30	46.31	45.83	43.69	40.43		41.13	39.05	38.74	39.25	41.35	42.90	49.64
31	46.29		43.60	40.30		41.04		38.71		41.37	43.04	
MEAN	42.25	46.15	44.59	41.98	38.87	41.01	39.96	38.54	39.11	40.35	41.69	46.16
MAX	46.42	46.32	45.74	43.54	40.30	41.84	40.95	38.98	29.47	41.37	43.04	49.64
MIN	36.30	45.83	43.60	40.30	37.82	38.20	39.05	38.29	38.63	38.68	41.22	43.10

MEAN 41.72 MIN 36.30

132624144452773. Well 2645220 less Tide Gage, Pago Bay. PERIOD OF RECORD.--Current year.

ELEVATION (FEET NGVD). WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	MEAN VALUES													
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP		
1	36.14	46.32	45.93	43.67	40.42	38.28	40.91	38.90	38.59	39.03	41.32	43.11		
2	36.33	46.19	45.87	43.64	40.38	38.59	40.80	38.84	38.52	39.09	41.25	43.15		
3	36.51	46.20	45.73	43.45	40.19	38.92	40.77	38.7C	38 - 64	39.12	41.32	43.17		
4	36.75	46.15	45.62	43.50	39.97	39.41	40.62	38.66	38.59	39.18	41.28	43.16		
5	37.10	46.14	45.43	43.39	39.83	39.81	40.67	38.63	38.72	39.06	41.34	43.06		
6	37.69	46.00		43.35	39.79	40.30	40.51	38.52	38.77	38.99	41.36	43.30		
7	38.10	45.89		43.14	39.67	40.63	40.43	38.52	38.74	39.32	41.26	43.24		
8	38.39	46.02		43.28	39 .61	40.90	40.27	38.46	38.76	38.55	41.20	43.49		
9		46.06		43.11	39.50	41.17	40.22	38.22	38.77	39.71	41.13	43.81		
10		46.23		42.98	39.33	41.39	40.13	38.12	38.90	39.72	41.20	44.22		
11		46.22		42.93	39.22	41.56	40.0C	38.08	39.11	39.80	41.10	44.65		
12	40.19	46.26		42.92	39.21	41.70	39.92	38.02	39.12	39.86	41.02	45.05		
13	40.98	46.40		42.70	39.10	41.65	39.78	37.90	39.29	39.95	41.03	45.29		
14	41.69	46.47	45.10	42.53	39.05	41.68	39.77	37.88	39.30	40.13	41.00	45.58		
15	42.53	46.47	45.04	42.35	38.92	41.64	39.82	37.93	39.40	40.20	41.06	45.96		
16	43.35	46.35	45.05	42.27	38.80	41.65	39.87	37.98	39.39	40.30	41.01	46.37		
17	44.00	46.41	44.99	42.07	38.74	41.56	39.81	37.F1	38.61	40.08	41.04	46.81		
18	44.60	46.42	44.79	41.92	38.61	41.52	39.74	37.94	39.43	40.42	41.03	47.13		
19	45.16	46.44	44.68	41.85	38.52	41.67	39.66	38.1C	39.45	40.65	41.08	47.43		
20	45.67	46.39	44.55	41.67	38.42	41.73	39.58	38.18	39.45	40.56	41.16	47.81		
21	46.07	46.27	44.44	41.52	38 . 33	41.67	39.4C	38.16	39.38	40.75	41.27	48.06		
22	46.37	46.23	44.32	41.49	38.20	41.67	39.33	38.28	39.32	40.88	41.44	48.26		
23	46.52	46.18	44.22	41.42	38.11	41.72	39.27	38.15	39.29	41.C5	41.60	48.30		
24	46.77	45.05	44.22	41.40	38.05	41.65	39.16	38.35	39.21	41.22	41.76	48.55		
25	46.78	46.09	44.24	41.24	28.04	41.65	39.23	38.36	39.10	41.28	42.01	48.62		
26	46.68	46.10	44.24	41.15	37.76	41.52	39.11	38.5C	39.03	41.53	42.19	48.69		
27	46.66	46.01	44.19	40.96	37.89	41.49	39.11	38.59	39.05	41.44	42.37	48.81		
28	46.56	46.00	44.17	40.79	37.88	41.38	39.04	38.51	39.00	41.14	42.58	49.02		
29	46.48	45.87	44.04	40.65	38.11	41.25	39.01	38.53	38.97	41.12	42.66	49.42		
30	46.41	45.98	43.89	40.54		41.11	38.96	38.50	39.06	41.15	42.84	49.56		
31	46.32		43.84	40.45		40.90		38.44		41.30	43.04			
MEAN		46.19		42.20	38.95	41.02	39.83	38.32	39.03	40.22	41.51	46.10		
MAX		46.47		43.67	40.42	41.73	40.91	38.90	39.45	41.53	43.04	49.56		
MIN		45.87		40.45	37.76	38.28	38.96	37.81	38.52	38.55	41.00	43.06		

132644144480871. Local number, 2648400 BPM Well 1.
LOCATION.--Lat 13°26'44" N., long 144°48'08" E., Hydrologic Unit 20100003, on lot number 2287, 0.2 mi (0.3 km) southeast of junction of Routes 15 and 10, Mangilao, Guam. Owner: Ana P. Diaz.
AQUIFER.--Coralline Limestone, probably Miocene age.
WELL CHARACTERISTICS.--Drilled basal water-table well, diameter 12 in (0.30 m), depth reported 235 ft (71.6 m), DATUM.--Altitude of land-surface datum is 210 ft (64.0 m). Measuring point: Top edge of casing, 209.90 ft (63.978 m) above mean sea level.
REMARKS.--Recording gage installed January 1974.
PERIOD OF RECORD.--February 1972 to September 1977 records available in files of district office; October 1977 to current year.

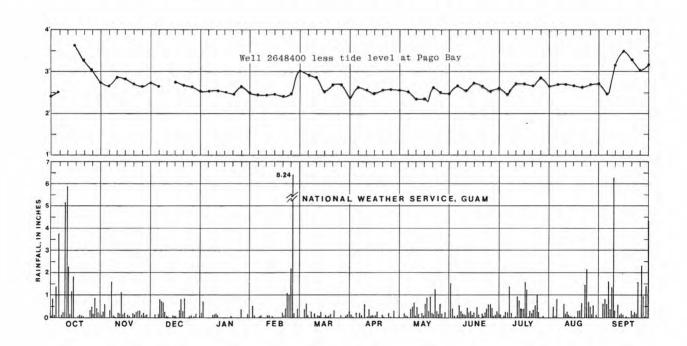
to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 4.45 ft (1.356 m) above mean sea level, May 22, 1976; lowest recorded, 2.20 ft (0.671 m) above mean sea level, Jan. 12, 1980.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

nct	NOV	DEC	JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP
2.56	2.67	2.57	2.34	2.33	2.93	2.55	2.64	2.71	2.81	2.73	2.75
2.61	2.69	2.54	2.33	2.32	2.92	2.55	2.63	2.71	2.82	2.74	2.75
2.66	2.69	2.53	2.33	2. 31	2.91	2.56	2.64	2.71	2.84	2.76	2.76
2.68	2.68	2.53	2.33	2.33	2.87	2.58	2.66	2.72	2. 25	2.77	2.77
2.72	2.68	2.53	2.33	2.35	2,85	2.58	2.65	2.72	2.86	2.77	2.80
2.79	2.68	2.52	2.34	2. 36	2.82	2.57	2.44	2.71	2.88	2.77	2.84
2.85	2.71	2.53	2.34	2.35	2.78	2.58	2.66				2.85
2.88	2.71	2.56	2.30	2.34		2.61					2.85
2.91	2.73	2.58	2.26	2.34		2.63					2.86
3.16	2.74	2.53	2.26	2.35	2.73	2.64	2.70	2.59	2.81	2.85	3.11
3.24	2.73	2.47	2.25	2.36	2.70	2.65	2,70	2.69	2.80	2.87	3.33
3.32	2.72	2.41	2.21	2.35	2.68						3.40
3.31	2.68	2.37	2.22	2.34	2.57	2.67		2.69			3.47
3.28	2.63	2.37	2.24	2.32	2.66	2.70		2.68			3.51
3.22	2.59	2.37	2.23	2. 31	2.66	2.71	2.73	2.67	2.77	2.82	3,53
3.19	2.59	2.36	2.23	2.31	2.67	2.71	2.75	2.66	2.75	2.80	3.49
3.11	2.59	2.33	2.26	2.31	2.69	2.70					3.38
3.05	2.61	2.32	2.29								3.30
2.94	2.60	2.33	2.32								3.25
2.87	2.60	2.33	2.33	2.35	2.74	2.69	2.76	2.65	2.79	2.83	3.22
2.83	2.60	2.33	2.35	2.37	2.71	2.69	2.73	2.54	2.81	2.83	3.16
2.79	2.60	2.35	2.36	2.39	2.68	2.69		2.64			3.13
2.76	2.62	2.38	2.34	2.42	2.65	2.70					3.12
2.72	2.54	2.39	2.33	2.42	2.62						3.11
2.68	2.67	2.40	2.36	2.41	2.56	2.71	2.67	2.66	2.74	2.89	3.09
2.66	2.68	2.41	2.34	2.47	2.52	2.70	2.67	2.68	2.72	2.90	3.09
2.65	2.69	2.41	2.33								3.11
2.64	2.68	2.39	2.35	2.88		2.66					3.18
2.64	2.66	2.37	2.37	2.93		2.65					3.22
2.65	2.60	2.36	2.38		2.50	2.65	2.71	2.80	2.73		3.25
2.66		2.35	2.36	***	2.53	***	2.71		2.73	2.76	
2.87	2.66	2.43	2.31	2.40	2.69	2.65	2.69	2.69	2.79	2.82	3.12
3.32	2.74	2.58	2.38	2.93	2.93	2.71	2.77	2.80	2.88	2.90	3.53
2.56	2.59	2.32	2.21	2.31	2.49	2.55	2.63	2.64	2.71	2.73	2.75
	2.56 2.61 2.66 2.68 2.72 2.79 2.85 2.81 3.16 3.24 3.31 3.28 3.27 2.94 2.87 2.87 2.87 2.87 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.7	2.56 2.67 2.61 2.69 2.68 2.72 2.68 2.72 2.68 2.71 2.91 2.91 2.73 3.16 2.74 3.24 2.73 3.32 2.72 3.31 2.68 3.28 3.29 3.19 2.59 3.11 2.59 3.11 2.59 3.11 2.59 3.12 2.60 2.87 2.60 2.87 2.60 2.61 2.94 2.60 2.87 2.60 2.61 2.94 2.60 2.87 2.60 2.61 2.94 2.60 2.87 2.60 2.61 2.64 2.65 2.67 2.68 2.67 2.68 2.67 2.68 2.69 2.64 2.68 2.69 2.64 2.68 2.66 2.67 2.68 2.66 2.67 2.68 2.66 2.67 2.68 2.67 2.68 2.69 2.64 2.68 2.66 2.67 2.68 2.69 2.64 2.68 2.66 2.67 2.68 2.69 2.64 2.68 2.66 2.67 2.66 2.67 2.68 2.69 2.64 2.68 2.69 2.64 2.68 2.69 2.64 2.68 2.66 2.67 2.66 2.67 2.66 2.67 2.68 2.69 2.64 2.68 2.69 2.64 2.68 2.69 2.64 2.68 2.66 2.67 2.66 2.67 2.66 2.67 2.68 2.69 2.64 2.68 2.69 2.64 2.68 2.69 2.64 2.68 2.69 2.69 2.64 2.68 2.69 2.69 2.69 2.69 2.69 2.69 2.69 2.69	2.56	2.56 2.67 2.57 2.34 2.61 2.69 2.54 2.23 2.66 2.69 2.53 2.33 2.68 2.68 2.53 2.33 2.79 2.68 2.52 2.34 2.85 2.71 2.56 2.30 2.91 2.73 2.58 2.26 3.16 2.74 2.53 2.26 3.24 2.73 2.47 2.25 3.31 2.68 2.37 2.22 3.31 2.68 2.37 2.23 3.28 2.63 2.37 2.24 3.22 2.59 2.36 2.23 3.11 2.59 2.36 2.23 3.11 2.59 2.36 2.23 2.94 2.60 2.33 2.32 2.94 2.60 2.33 2.32 2.97 2.60 2.33 2.35 2.79 2.60 2.33 2.35 2.79 2.60 2.33 2.35 2.79 2.60	2.56 2.67 2.57 2.34 2.33 2.61 2.69 2.54 2.33 2.31 2.66 2.69 2.53 2.33 2.31 2.68 2.68 2.53 2.33 2.33 2.72 2.68 2.53 2.33 2.35 2.70 2.68 2.52 2.34 2.36 2.85 2.71 2.53 2.34 2.35 2.88 2.71 2.56 2.30 2.34 2.91 2.73 2.58 2.26 2.34 2.91 2.73 2.58 2.26 2.34 3.16 2.74 2.53 2.26 2.34 3.16 2.74 2.53 2.26 2.34 3.31 2.68 2.37 2.22 2.34 3.28 2.63 2.37 2.22 2.34 3.28 2.63 2.37 2.24 2.32 3.28 2.63 2.37 2.24 2.32 3.11 2.59 2.36 2.23 2.31	2.56 2.67 2.57 2.34 2.33 2.93 2.61 2.69 2.54 2.33 2.32 2.92 2.66 2.69 2.53 2.33 2.31 2.91 2.68 2.68 2.53 2.33 2.33 2.87 2.72 2.68 2.53 2.33 2.35 2.87 2.79 2.68 2.52 2.34 2.36 2.82 2.85 2.71 2.53 2.34 2.35 2.78 2.88 2.71 2.56 2.30 2.34 2.76 2.91 2.73 2.58 2.26 2.34 2.75 3.16 2.77 2.47 2.53 2.35 2.73 3.24 2.73 2.47 2.25 2.36 2.73 3.31 2.68 2.37 2.22 2.34 2.57 3.32 2.72 2.41 2.21 2.35 2.67 3.31 2.68 2.37 2.22 2.34 2.67 3.28 2.63 2.37 2.22	2.56 2.67 2.57 2.34 2.33 2.93 2.55 2.61 2.69 2.54 2.33 2.31 2.91 2.56 2.66 2.69 2.53 2.33 2.31 2.91 2.56 2.68 2.68 2.53 2.33 2.33 2.87 2.58 2.72 2.68 2.53 2.33 2.35 2.85 2.58 2.70 2.68 2.52 2.34 2.36 2.82 2.57 2.85 2.71 2.53 2.34 2.36 2.82 2.57 2.88 2.71 2.56 2.30 2.34 2.76 2.61 2.91 2.73 2.58 2.26 2.34 2.75 2.61 2.91 2.73 2.58 2.26 2.34 2.75 2.63 3.16 2.74 2.53 2.26 2.34 2.75 2.63 3.12 2.73 2.47 2.25 2.36 2.70 2.65 3.31 2.68 2.37 2.22 2.34 2.67 <td>2.56 2.67 2.57 2.34 2.33 2.93 2.55 2.64 2.61 2.69 2.54 2.33 2.32 2.92 2.55 2.62 2.66 2.69 2.53 2.35 2.31 2.91 2.56 2.44 2.68 2.68 2.53 2.33 2.33 2.37 2.58 2.58 2.55 2.70 2.68 2.52 2.34 2.36 2.82 2.57 2.44 2.85 2.71 2.53 2.34 2.35 2.78 2.58 2.65 2.70 2.68 2.52 2.34 2.36 2.82 2.57 2.44 2.85 2.71 2.53 2.34 2.35 2.78 2.58 2.64 2.81 2.71 2.53 2.26 2.34 2.75 2.61 2.68 2.91 2.73 2.58 2.26 2.34 2.75 2.63 2.70 3.16 2.73 2.47 2.25 2.36 2.70 2.65 2.70 3.32 2.72<!--</td--><td>2.56</td><td>2.56</td><td>2.56</td></td>	2.56 2.67 2.57 2.34 2.33 2.93 2.55 2.64 2.61 2.69 2.54 2.33 2.32 2.92 2.55 2.62 2.66 2.69 2.53 2.35 2.31 2.91 2.56 2.44 2.68 2.68 2.53 2.33 2.33 2.37 2.58 2.58 2.55 2.70 2.68 2.52 2.34 2.36 2.82 2.57 2.44 2.85 2.71 2.53 2.34 2.35 2.78 2.58 2.65 2.70 2.68 2.52 2.34 2.36 2.82 2.57 2.44 2.85 2.71 2.53 2.34 2.35 2.78 2.58 2.64 2.81 2.71 2.53 2.26 2.34 2.75 2.61 2.68 2.91 2.73 2.58 2.26 2.34 2.75 2.63 2.70 3.16 2.73 2.47 2.25 2.36 2.70 2.65 2.70 3.32 2.72 </td <td>2.56</td> <td>2.56</td> <td>2.56</td>	2.56	2.56	2.56

WTR YR 1980 MEAN 2.68 MAX 3.5? MIN 2.21


141

MARIANA ISLANDS, ISLAND OF GUAM

132644144480873. Well 2648400 less Tide Gage, Pago Bay. PERIOD OF RECORD.--Current year.

ELEVATION (FEET NGVC). LATER YEAR OCTOBER 1979 TC SEPTEMBER 1980

	MEAN VALUES													
DAY	OCT	NOV	DEC	JAN	FER	MAR	APR	MAY	JUN	JUL	AUG	SEP		
1	2.40	2.69	2.76	2.47	2.45	3.01	2.51	2.56	2.63	2.53	2.66	2.76		
2	2.35	2.58	2.75	2.53	2.61	3.04	2.48	2.54	2.60	2.54	2.58	2.70		
3	2.34	2.62	2.68	2.43	2.52	2.97	2.53	2.48	2.67	2.55	2.66	2.68		
4	2.37	2.59	2.68	2.58	2.43	2.98	2.48	2.52	2.56	2.57	2.62	2.63		
5	2.50	2.62	2.62	2.57	2.43	2.92	2.62	2.53	2.63	2.43	2.67	2.46		
6	2.64	2.55		2.61	2.48	2.96	2.53	2.46	2.62	2.34	2.66	2.64		
7	2.72	2.56		2.51	2.45	2.91	2.54	2.54	2.54	2.61	2.56	2.49		
8	2.79	2.76		2.69	2.49	2.85	2.51	2.56	2.51	2.72	2.53	2.64		
9		2.76		2.60	2.49	2.86	2.58	2.40	2.49	2.78	2.53	2.77		
10		2.86		2.57	2.43	2.85	2.58	2.35	2.57	2.71	2.67	3.15		
11		2.79		2.62	2.42	2.83	2.51	2.37	2.72	2.73	2.65	3.40		
12	3.17	2.78		2.68	2.48	2.83	2.47	2.34	2.67	2.73	2.62	3.53		
1 3	3.34	2.87		2.56	2.46	2.68	2.37	2.28	2.79	2.73	2.64	3.50		
14	3.54	2.89	2.73	2.54	2.49	2.63	2.41	2.27	2.77	2.71	2.62	3.45		
15	3.61	2.82	2.77	2,51	2.44	2.53	2.49	2.35	2.76	2.71	2.66	3.51		
16	3.60	2.68	2.83	2.50	2.40	2.52	2.57	2.42	2.68	2.69	2.56	3.53		
17	3.52	2.69	2.83	2.43	2.43	2.42	2.57	2.26	2.64	2.44	2.56	3.48		
18	3.47	2.71	2.70	2.45	2.37	2.39	2.57	2.42	2.62	2.69	2.56	3.34		
19	3.37	2.75	2.69	2.51	2.40	2.59	2.56	2.58	2.63	2.75	2.60	3.25		
50	3.27	2.70	2.67	2.45	2.40	2.69	2.57	2.61	2.65	2.66	2.62	3.30		
21	3.20	2.66	2.64	2.43	2.42	2.62	2.45	2.52	2.61	2.65	2.62	3.24		
22	3.15	2.64	2.57	2.52	2.38	2.63	2.44	2.59	2.60	2.72	2.65	3.16		
23	3.06	2.63	2.53	2.55	2.40	2.71	2.46	2.41	2.62	2.78	2.67	3.03		
24	3.15	2.56	2.57	2.62	2.41	2.69	2.43	2.55	2.59	2.86	2.65	3.10		
25	3.05	2.63	2.63	2.62	2.47	2.68	2.58	2.50	2.53	2.83	2.71	3.01		
26	2.92	2.67	2.67	2.62	2.32	2.59	2.53	2.57	2.51	2.98	2.76	2.90		
27	2.92	2.62	2.69	2.54	2.80	2.63	2.56	2.59	2.56	2.86	2.79	2.92		
28	2.86	2.65	2.71	2.49	2.92	2.59	2.54	2.46	2.55	2.55	2.75	3.01		
2.9	2.80	2.60	2.64	2.47	3.05	2.52	2.55	2.47	2.54	2.51	2.71	3.21		
30	2.75	2.75	2.56	2.49		2.48	2.56	2.47	2.61	2.53	2.74	3.17		
31	2.69		2.59	2.51		2.39		2.64		2.66	2.76			
MEAN		2.69		2.54	2.49	2.71	2.52	2.47	2.62	2.66	2.65	3.07		
MAX		2.89		2.69	3.06	3.04	2.62	2.64	2.79	2.98	2.79	3.53		
MIN		2.55		2.43	2.32	2.39	2.37	2.26	2.49	2.34	2.53	2.46		

142 GROUND-WATER LEVELS

MARIANA ISLANDS, ISLAND OF GUAM

132824144464271. Local number, 2846541 ACEORP Tunnel.
LOCATION.--Lat 13°28'24" N., long 144°46'42" E., Hydrologic Unit 20100003, behind Navy Telephone Exchange, 0.35 mi (0.56 km) southwest of junction of Routes 1 and 14, Tamuning, Guam. Owner: U. S. Navy, Public Works Department.

AQUIFER. -- Mariana Limestone.
WELL CHARACTERISTICS. -- Dug basal water-table well consisting of an inclined shaft, three skimming tunnels, and a large pump room. Tunnels 1 and 2 are 150 ft (45.7 m) each and tunnel 3 is 700 ft (213 m) in length.

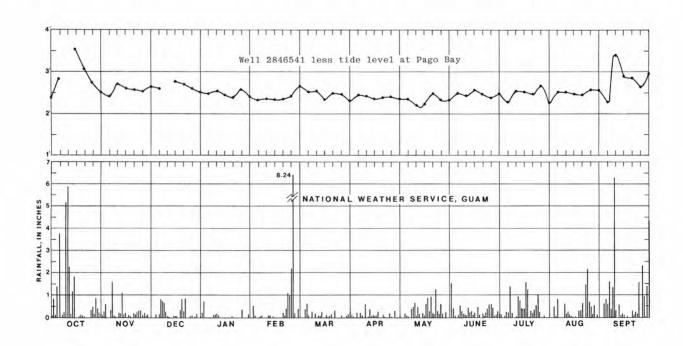
DATUM. -- Altitude of land-surface datum is 180 ft (54.9 m). Measuring point: Top of wooden recorder shelf,

DATUM.--Altitude of land-surface datum is 180 ft (54.9 m). Measuring point: Top of wooden recorder sneir, 9.28 ft (2.829 m) above mean sea level.

REMARKS.--Recording gage installed October 1954.

PERIOD OF RECORD.--October 1954 to December 1959, September 1960 to May 1965, March 1973 to September 1977 records available in files of district office; October 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 4.95 ft (1.509 m) above mean sea level, May 22, 1976; lowest recorded, 1.98 ft (0.604 m) above mean sea level, Feb. 23, 1979.


WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FER	MAR	APR	MAY	NUL	JUL	AUG	SEP
1	2.56	2.46	2.42	2.25	2.24	2.59	2.42	2.45	2.60	2.67	2.58	2.55
2	2.61	2.46	2.41	2.24	2.23	2.57	2.42	2.45	2.63	2.68	2.61	2.56
3	2.62	2.47	2.42	2.23	2.28	2.55	2.42	2.47	2.61	2.71	2.66	2.57
4	2.66	2.47	2.47	2.24	2.30	2.48	2.44	2.49	2.61	2.72	2.69	2.57
5	3.06	2.48	2.51	2.25	2.27	2.47	2.42	2.49	2.60	2.71	2.64	2.62
6	3.08	2.52	2.51	2.26	2.24	2.48	2.42	2.48	2,56	2.74	2.63	2.68
7	2.94	2.55	2.50	2.28	2.21	2.46	2.47	2.51	2.55	2.76	2.65	2.71
8	2.84	2.70	2.51	2.26	2.22	2.45	2.50	2.53	2.53	2.72	2.67	2.70
9	2.80	2.62	2.50	2.23	2.28	2.45	2.50	2.54	2.54	2.68	2.69	2.90
10	3,33	2.58	2.46	2.26	2.30	2.45	2.49	2.55	2.55	2.67	2.72	3.36
11	3.50	2.55	2.40	2.23	2.29	2.46	2.49	2.58	2.54	2.66	2.72	3.29
12	3.44	2.53	2.38	2.14	2.28	2.46	2.50	2.57	2.54	2.70	2.73	3.16
13	3.32	2.49	2.37	2.14	2.30	2.47	2.55	2.55	2,55	2.69	2.70	3.09
14	3.24	2.41	2.37	2.20	2.27	2.49	2.62	2.58	2.51	2.66	2.67	3.00
15	3.19	2.37	2.38	2.19	2.24	2.51	2.60	2.50	2.49	2.60	2.63	2.92
16	3.03	2.45	2.43	2.18	2.24	2.53	2.56	2.61	2.48	2.59	2.60	2.83
17	2.93	2.50	2.40	2.22	2.24	2.51	2.54	2.62	2.48	2.67	2.62	2.75
18	2.80	2.51	2.38	2.26	2.23	2.54	2.54	2.71	2.50	2.68	2.64	2.74
19	2.73	2.49	2.36	2.27	2.28	2.58	2.53	2.70	2.49	2.64	2.64	2.80
20	2.68	2.47	2.36	2.28	2.33	2.55	2.52	2.65	2.49	2.62	2.64	2.76
21	2.68	2.50	2.38	2.34	2.34	2.51	2.55	2.60	2.48	2.64	2.64	2.70
22	2.64	2.52	2.39	2.33	2.33	2.50	2.57	2.56	2.47	2.63	2.66	2.69
23	2.56	2.55	2.39	2.29	2.33	2.45	2.56	2.54	2.48	2.62	2.71	2.70
24	2.47	2.56	2.38	2.28	2.36	2.40	2.55	2.50	2.49	2.59	2.76	2.69
25	2.41	2.58	2.37	2.33	2.37	2.36	2.54	2.53	2.52	2.56	2.76	2.70
26	2.38	2.59	2.37	2.31	2.78	2.37	2.52	2.53	2.56	2.54	2.74	2.73
27	2.39	2.57	2.38	2.27	2.99	2.36	2.48	2.52	2,59	2.55	2.68	2.83
28	2.39	2.57	2.36	2.28	2.84	2.35	2.46	2.53	2.63	2.56	2.65	2.93
29	2.38	2.52	2.35	2.29	2.69	2.35	2.46	2.57	2.66	2.57	2.63	2.96
30	2.43	2.48	2.34	2.31		2.35	2.47	2.58	2.67	2.57	2.60	3.06
31	2.44		2.32	2.27		2.41		2.59		2.58	2.57	
MEAN	2.79	2.52	2.41	2.26	2.36	2.47	2.50	2.55	2.55	2.64	2.66	2.82
MAX	3.50	2.70	2.51	2.34	2.99	2.59	2.62	2.71	2.67	2.76	2.76	3.36
MIN	2.38	2.37	2.32	2.14	2.21	2.35	2.42	2.45	2.47	2.54	2.57	2.55

MIN 2.14 WIR YR 1980 MFAN 2.54 MAX 3.50

132824144464273. Well 2846541 less Tide Gage, Pago Bay. PERIOD OF RECORD.--Current year.

					ME.	AN VALUES						
DAY	001	NOV	DEC	JAN	FER	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.40	2.48	2.61	2.39	2.36	2.67	2.38	2.37	2.52	2.39	2.51	2.56
2	2.35	2.35	2.62	2.44	2.52	2.69	2.35	2.36	2.52	2.40	2.45	2.51
3	2.30	2.40	2.57	2.33	2.49	2.61	2.39	2.31	2.57	2.42	2.56	2.49
4	2.35	2.38	2.62	2.49	2.40	2.59	2.34	2.35	2.45	2.44	2.54	2.43
5	2.84	2.42	2.60	2.49	2.35	2.54	2.46	2.37	2.51	2.28	2.54	2.28
6	2.93	2.39		2.53	2.36	2.62	2.38	2.30	2.47	2.20	2.52	2.48
7	2.81	2.40		2.45	2.31	2.59	2.43	2.39	2.39	2.50	2.42	2.35
8	2.75	2.75		2.65	2.37	2.54	2.40	2.41	2.35	2.59	2.38	2.49
9		2.65		2.57	2.43	2.56	2.45	2.24	2.34	2.63	2.38	2.81
10		2.70		2.57	2.38	2.57	2.43	2.20	2.43	2.57	2.54	3.40
11		2.61		2.60	2.35	2.59	2.35	2.25	2.57	2.59	2.50	3.36
12	3.29	2.59		2.61	2.41	2.61	2.32	2.22	2.52	2.64	2.49	3.29
13	3.35	2.68		2.48	2.42	2.48	2.25	2.13	2.65	2.62	2.49	3.12
14	3.50	2.67	2.73	2.50	2.44	2.46	2.33	2.15	2.60	2.58	2.44	2.94
15	3.58	2.60	2.78	2.47	2.37	2.38	2.38	2.22	2.58	2.54	2.47	2.90
16	3.44	2.54	2.90	2.45	2.33	2.38	2.42	2.28	2.50	2.53	2.36	2.87
17	3.34	2.60	2.90	2.39	2.36	2.24	2.41	2.13	2.46	2.31	2.37	2.85
18	3.22	2.61	2.76	2.42	2.29	2.22	2.42	2.36	2.47	2.55	2.38	2.78
19	3.16	2.64	2.72	2.46	2.35	2.43	2.40	2.51	2.47	2.59	2.41	2.80
20	3.08	2.57	2.70	2.40	2.38	2.50	2.4C	2.5C	2.49	2.49	2.43	2.84
21	3.05	2.56	2.69	2.42	2.39	2.42	2.31	2.39	2.45	2.48	2.43	2.78
22	3.00	2.56	2.61	2.49	2.32	2.45	2.32	2.44	2.43	2.54	2.49	2.72
23	2.86	2.56	2.54	2.50	2.31	2.51	2.32	2.26	2.46	2.62	2.56	2.61
24	2.90	2.48	2.56	2.57	2.35	2.47	2.27	2.38	2.43	2.68	2.56	2.68
25	2.78	2.54	2.60	2.59	2.43	2.48	2.41	2.36	2.39	2.65	2.58	2.62
26	2.64	2.58	2.63	2.59	2.63	2.44	2.35	2.43	2.39	2.80	2.60	2.54
27	2.66	2.50	2.66	2.48	3.06	2.48	2.36	2.44	2.45	2.69	2.59	2.64
28	2.61	2.54	2.68	2.42	2.88	2.44	2.34	2.32	2.44	2.39	2.55	2.76
29	2.54	2.46	2.62	2.39	2.82	2.38	2.36	2.35	2.43	2.37	2.52	2.95
30	2.53	2.63	2.54	2.42		2.33	2. 38	2.34	2.48	2.37	2.54	2.98
31	2.47		2.56	2.42		2.27		2.52		2.51	2.57	
MEAN		2.55		2.48	2.44	2.48	2.37	2.33	2.47	2.51	2.49	2.76
MAX		2.75		2.65	3.06	2.69	2.46	2.52	2.65	2.80	2.60	3.40
MIN		2.35		2.33	2.29	2.22	2.25	2.13	2.34	2.20	2.36	2.28

GROUND-WATER LEVELS

MARIANA ISLANDS, ISLAND OF GUAM

132813144472771. Local number, 2847120 Barrigada Well 2 (A-16).

LOCATION.--Lat 13°28'13" N., long 144°47'27" E., Hydrologic Unit 20100003, at Carbullido School, 0.60 mi (0.97 km) west of junction of Routes 8 and 10, Barrigada, Guam. Owner: Public Utility Agency of Guam.

AQUIFER.--Mariana Limestone, probably Pliocene age.

WELL CHARACTERISTICS.--Drilled basal water-table well, diameter 12 in (0.30 m), depth reported 215 ft (65.5 m).

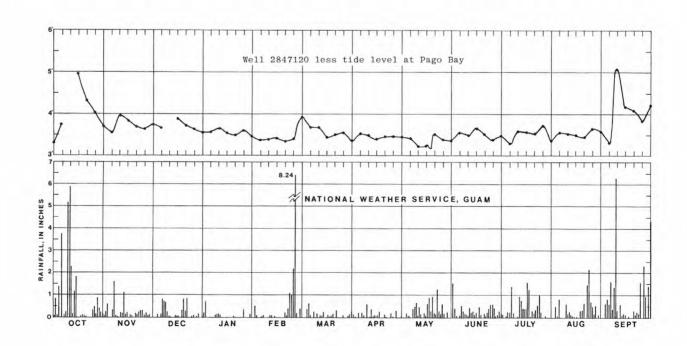
DATUM.--Altitude of land-surface datum is 207 ft (63.1 m) above mean sea level. Measuring point: Top of casing, 208.00 ft (63.398 m) above mean sea level.

REMARKS.--Recording gage installed June 1974.

PERIOD OF RECORD.--June 1974 to September 1977 records available in files of district office; October 1977 to

current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 6.71 ft (2.045 m) May 22, 1976; lowest recorded, 3.09 ft (0.942 m) above mean sea level, Dec. 7, 8, 1974.


WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.47	3.60	3.55	3.35	3.29	3.86	3.45	3.51	3.62	3.66	3.59	3.60
2	3.52	3.61	3.54	3.33	3.28	3.79	3.45	3.50	3.67	3.67	3.61	3.59
3	3.55	3.61	3.55	3.32	3.30	3.72	3.46	3.52	3.67	3.70	3.64	3.61
4	3.57	3.62	3.58	3.32	3.32	3.66	3.48	3.53	3.66	3.71	3.68	3.61
5	3.98	3.62	3.59	3.33	3.31	3.64	3.48	3.53	3.65	3.71	3.66	3.64
6	4.23	3.64	3.59	3.34	3.30	3.64	3.47	3.53	3.62	3.73	3.65	3.70
7	4.10	3.68	3.58	3.34	3.28	3.62	3.50	3.55	3.63	3.77	3.65	3.72
8	3.98	3.95	3.59	3.34	3.27	3.61	3.54	3.56	3.63	3.74	3.68	3.73
9	3.90	3.94	3.59	3.32	3.30	3.60	3.55	3.56	3.62	3.70	3.69	3.94
10	4.59	3.85	3.55	3.32	3.31	3.58	3.55	3.57	3.61	3.69	3.71	5.05
11	5.11	3.79	3.50	3.32	3.32	3.57	3.54	3.59	3.60	3.68	3.73	4.87
12	4.98	3.76	3.44	3.25	3.30	3.56	3.54	3.60	3.60	3.70	3.73	4.57
13	4.73	3.70	3.40	3.23	3.31	3.55	3.58	3.58	3.59	3.70	3.72	4.41
14	4.63	3.63	7.40	3.25	3.30	3.55	3.61	3.59	3.57	3.68	3.70	4.31
15	4.60	3.59	3.48	3.26	3.28	3.55	3.62	3.60	3.55	3.64	3.66	4.21
16	4.39	3.60	3.50	3.25	3.28	3.56	3.62	3.61	3.55	3.61	3.64	4.13
17	4.25	3.62	3.45	3.27	3.26	3.55	3.59	3.63	3.55	3.67	3.64	4.03
18	4.11	3.64	3.40	3.30	3.25	3.56	3.59	3.67	3.53	3.71	3.64	4.00
19	4.02	3.63	3.39	3.31	3.27	3.58	3.58	3.7C	3.53	3.69	3.68	4.05
20	3.93	3.60	3.39	3.32	3.31	3.57	3.58	3.68	3.52	3.66	3.68	4.02
21	3.91	3.60	3.40	3.34	3.31	3.54	3.59	3.65	3.51	3.66	3.68	3.99
22	3.90	3.63	3.42	3.35	3.32	3.52	3 . 6 C	3.61	3.50	7.66	3.70	3.94
23	3.84	3.64	3.41	3.34	3.32	3.51	3.61	3.59	3.50	3.66	3.74	3.90
24	3.78	3.66	3.41	3.33	3.33	3.46	3.60	3.57	3.51	3.65	3.82	3.91
25	3.68	3.68	3.40	3.34	3.34	3.44	3.59	3.56	3.52	3.62	3.83	3.91
26	3.63	3.68	3.39	3.34	3.84	3.43	3.57	3.57	3.54	3.59	3.81	3.91
27	3.61	3.67	3.40	3.32	4.67	3.41	3.54	3.56	3.57	3.57	3.76	4.02
28	3.60	3.67	3.39	3.32	4.28	3.40	3.52	3.57	3.61	3.57	3.71	4.11
29	3.59	3.65	3.37	3.32	4.02	3.39	3.52	3.59	3.65	3.57	3.69	4.15
30	3.58	3.61	3.36	3.34		3.39	3.53	3.61	3.66	3.58	3.65	4.28
31	3.58		3.36	3.33		3.43		3.61		3.59	3.62	
MEAN	4.01	3.67	3.46	3.31	3. 42	3.56	3.55	3.58	3.58	3.66	3.69	4.03
MAX	5.11	3.95	3.59	7.35	4.67	3.86	3.62	3.7C	3.67	3.77	3.83	5.05
MIN	3.47	3.59	3.36	3.23	3.25	3.39	3.45	3.50	3.50	3.57	3.59	3.59

WTR YR 1980 MEAN 3.63 MAX 5.11 MIN 3.23

 $132813144472773.\ \mbox{Well 2847120 less Tide Gage, Pago Bay.}$ PERIOD OF RECORD.--Current year.

			ELEVAT	ION (FEET		ATER YEAR AN VALUES	OCTOBER	1979 TC S	EPIEMBER	1980		
DAY	0 C T	NOV	DEC	JAN	FER	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.31	3.62	3.74	7.48	3.41	3.94	3.41	3.43	3.54	3.38	3.52	3.61
2	3.26	3.50	3.75	3.53	3.57	3.91	3.38	3.41	3.56	3.39	3.45	3.54
3	3.23	3.54	3.70	3.42	3.51	3.78	3.43	3.36	3.63	3.41	3.54	3.53
4	3.26	3.53	3.73	3.57	3.42	3.77	3.38	3.39	3.50	3.43	3.53	3.47
5	3.76	3.56	3.68	3.57	3.39	3.71	3.52	3.41	3.56	3.28	3.56	3.30
6	4.08	3.51	444	3.61	3.42	3.78	3.43	3.35	3.53	3.19	3.54	3.50
7	3.97	3.53		3.51	3.38	3.75	3.46	3.43	3.47	3.51	3.42	3.36
8	3.89	4.00		3.73	3.42	3.70	3.44	3.44	3.45	3.61	3.39	3.52
9		3.97		3.66	3.45	3.71	3.5C	3.26	3.42	3.65	3.38	3.85
10		3.97		3.63	3.39	3.70	3.49	3.22	3.49	3.59	3.53	5.09
11		3.85		3.69	3.38	3.70	3.40	3.26	3.63	3.61	3.51	4.94
12	4.83	3.82		3.72	3.43	3.71	3.36	3.25	3.58	3.64	3.49	4.70
13	4.76	3.89		3.57	3.43	3.56	3.28	3.16	3.69	3.63	3.51	4.44
14	4.89	3.89	3.76	3.55	3.47	3.52	3.32	3.16	3.66	3.60	3.47	4.25
15	4.99	3.82	3.88	3.54	3.41	3.42	3.4C	3.22	3.64	3.58	3.50	4.19
16	4.80	3.69	3.97	3.52	3.37	3.41	3.48	3.28	3.57	2.55	3.40	4.17
17	4.66	3.72	3.95	3.44	3.38	3.28	3.46	3.14	3.53	3.31	3.39	4.13
18	4.53	3.74	3.78	3.46	3.31	3.24	3.47	3.32	3.50	3.58	3.38	4.04
19	4.45	3.78	3.75	3.50	3.34	3.43	3.45	3.51	3.51	3.64	3.45	4.05
20	4.33	3.70	3.73	3.44	3.36	3.52	3.46	3.53	3.52	3.53	3.47	4.10
21	4.28	3.66	3.71	3.42	3.36	3.45	3.35	3.44	3.48	3.50	3.47	4.07
22	4.26	3.67	3.64	3.51	3.31	3.47	3. 35	3.49	3.46	3.57	3.53	3.97
23	4.14	3.65	3.56	3.55	3.30	3.57	3.37	3.31	3.4R	3.66	3.59	3.81
24	4.21	3.58	3.59	3.62	3.32	3.53	3. 32	3.45	3.45	3.74	3.62	3.90
25	4.05	3.64	3.63	3.60	3.40	3.56	3.46	3.39	3.39	3.71	3.65	3.83
26	3.89	3.67	3.65	3.62	3.69	3.50	3.40	3.47	3.37	3.85	3.67	3.72
27	3.88	3.60	3.68	3.53	4.74	3.53	3.42	3.48	3.43	3.71	3.67	3.83
28	3.82	3.64	3.71	3.46	4.32	3.49	3.40	3.36	3.42	3.40	3.61	3.94
29	3.75	3.59	3.64	3.42	4.15	3.42	3.42	3.37	3.42	3.37	3.58	4 - 1 4
30	3.68	3.76	3.56	3.45		3.37	3.44	3.37	3.47	3.38	3.59	4.20
31	3.61		3.60	3.48		3.29		3.54		3.52	3.62	
MEAN		3.70		3.54	3.51	3.57	3.42	3.76	3.51	3.53	3.52	3.97
MAX		4.00		3.73	4.74	3.94	3.52	3.54	3.69	3.85	3.67	5.09
MIN		3.50		3.42	3.30	3.24	3.28	3.14	3.37	3.19	3.38	3.30

146 GROUND-WATER LEVELS

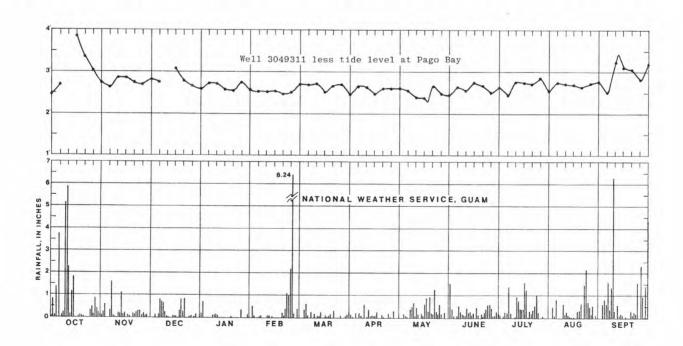
MARIANA ISLANDS, ISLAND OF GUAM

133032144491871. Local number, 3049311 Harmon Loop School Well M-10A.
LOCATION.--Lat 13°30'32" N., long 144°49'18" E., Hydrologic Unit 20100003, at Harmon Loop School, Dededo, Guam.
Owner: Public Utility Agency of Guam.
AQUIFER.--Mariana or Barrigada Limestone of Miocene or Pliocene age.
WELL CHARACTERISTICS.--Drilled basal water-table well, diameter 8 in (0.2 m), depth reported 288 ft (87.8 m).
DATUM.--Altitude of land-surface datum is 227 ft (69.2 m) above mean sea level. Measuring point: Top edge
of shelter floor, 228.70 ft (69.708 m) above mean sea level.
REMARKS.--Well was abandoned in 1973 because of oil taste and high iron content. Recording gage installed
January 1974.
PERIOD OF RECORD.--January 1974 to September 1977 records available in files of district office; October 1977

to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 4.61 ft (1.405 m) above mean sea level, May 23, 1976; lowest recorded, 2.27 ft (0.692 m) above mean sea level, Feb. 23, 24, 1979.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES


DAY	0 C T	NOV	DEC	JAN	FER	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.63	2.66	2.63	2.34	2.44	2.63	2.57	2.68	2.75	2.85	2.78	2.79
2	2.68	2.67	2.61	2.36	2.43	2.63	2.58	2.67	2.74	2.86	2.83	2.78
3	2.72	2.68	2.64	2.37	2.47	2.64	2.58	2.68	2.73	2.87	2.87	2.79
4	2.80	2.69	2.67	2.37	2.48	2.63	2.60	2.68	2.73	2.P8	2.88	2.80
5	2.92	2.68	2.68	2.48	2.46	2.53	2.61	2.69	2.74	2.89	2.87	2.85
6	3.06	2.71	2.68	2.39	2.45	2.63	2.60	2.49	2.72	2.89	2.85	2.89
7	3.03	2.70	2.65	2.39	2.42	2.63	5.65	2.72	2.71	2.89	2.86	2.90
8	2.96	2.74	2.65	2.38	2.41	2.62	2.66	2.75	2.71	2.88	2.88	2.92
9	2.92	2.74	2.64	2.38	2.43	2.62	2.67	2.74	2.71	2.87	2.89	2.94
10	3.03	2.72	2.59	2.39	2.45	2.62	2.68	2.75	2.71	2.87	2.90	3.21
11	3.38	2.72	2.52	2.36	2.44	2.63	2.68	2.77	2.71	2.86	2.90	3.30
12	3.57	2.71	2.48	2.30	2.43	2.62	2.68	2.76	2.72	2.86	2.90	3.28
13	3.57	2.70	2.45	2.31	2.44	2.53	2.70	2.75	2.72	2.86	2.89	3.27
14	3.48	2.64	2.53	2.32	2.43	2.65	2.70	2.76	2.70	2.84	2.88	3.22
15	3.46	2.60	2.65	2.31	2.41	2.56	2.70	2.77	2.69	2.81	2.86	3.12
16	3.36	2.62	2.63	2.34	2.39	2,67	2.73	2.77	2.69	2.77	2.85	3.08
17	3.28	2.66	2.56	2.38	2.38	2.67	2.72	2.77	2.69	2.83	2.85	3.01
18	3.15	2.67	2.48	2.40	2.38	2.67	2.73	2.79	2.69	2.86	2.86	2.96
19	3.07	2.66	2.46	2.42	2.39	2.70	2.73	2.80	2.71	2.85	2.85	2.98
20	2.98	2.64	2.45	2.45	2.42	2.72	2.72	2.79	2.70	2.85	2.85	2.97
21	2.97	2.66	2.42	2.47	2.46	2.70	2.74	2.79	2.70	2.85	2.84	2.91
22	2.91	2.69	2.41	2.50	2.47	2.65	2.75	2.78	2.70	2.85	2.85	2.90
23	2.82	2.70	2.40	2.47	2.46	2.62	2.74	2.77	2.69	2.84	2.87	2.90
24	2.73	2.72	2.40	2.46	2.46	2.61	2.74	2.73	2.69	5.80	2.90	2.90
25	2.66	2.73	2.41	2.48	2.46	2.57	2.73	2.71	2.70	2.77	2.92	2.89
26	2.62	2.74	2.42	2.49	2.52	2.54	2.71	2.70	2.72	2.75	2.92	2.90
27	2.61	2.74	2.43	2.46	2.58	2.53	2.70	2.69	2.75	2.75	2.89	2.96
28	2.60	2.74	2.42	2.45	2.64	2.52	2.69	2.71	2.78	2.75	2.87	3.09
29	2.59	2.70	2.41	2.46	2.63	2.51	2.68	2.73	2.83	2.76	2.86	3.16
30	2.62	2.66	2.40	2.47		2.50	2.69	2.75	2.84	2.76	2.84	3.27
31	2.63		2.38	2.45		2.55		2.76		2.77	2.82	
MEAN	2.96	2.69	2.52	2.41	2.46	2.62	2.68	2.74	2.72	2.83	2.87	3.00
MAX	3.57	2.74	2.68	2.50	2.64	2.72	2.75	2.80	2.84	2.89	2.92	3.30
MIN	2.59	2.60	2.38	2.30	2.38	2.50	2.57	2.67	2.69	2.75	2.78	2.78

WTR YR 1980 MEAN 2.71 MAX 3.57 MIN 7.30

133032144491873. Well 3049311 less Tide Gage, Pago Bay. PERIOD OF RECORD.--Current year.

ELEVATION (FEET NGVC). WATER YEAR OCTOBER 1979 TC SEPTEMBER 1980

					ME	AN VALUES						
DAY	001	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.47	2.68	2.82	2.47	2.56	2.71	2.53	2.60	2.67	2.57	2.71	2.80
2	2.42	2.56	2.82	2.56	2.72	2.75	2.51	2.58	2.63	2.58	2.67	2.73
3	2.40	2.61	2.79	2.47	2.68	2.70	2.55	2.52	2.69	2.58	2.77	2.71
4	2.49	2.60	2.82	2.62	2.58	2.74	2.50	2.54	2.57	2.60	2.73	2.66
5	2.70	2.62	2.77	2.72	2.54	2.70	2.65	2.57	2.65	2.46	2.77	2.51
6	2.91	2.58		2.66	2.57	2.77	2.56	2.51	2.63	2.35	2.74	2.69
7	2.90	2.55		2.56	2.52	2.76	2.58	2.60	2.55	2.63	2.63	2.54
8	2.87	2.79		2.77	2.56	2.71	2.56	2.64	2.53	2.75	2.59	2.71
9		2.77		2.72	2.58	2.73	2.62	2.44	2.51	2.82	2.58	2.85
10		2.84		2.70	2.53	2.74	2.62	2.4C	2.59	2.77	2.72	3.25
11		2.78		2.73	2.50	2.76	2.54	2.44	2.74	2.79	2.68	3.37
12	3.42	2.77		2.77	2.56	2.77	2.50	2.41	2.70	2.80	2.65	3.41
13	3.60	2.89		2.65	2.56	2.64	2.40	2.33	2.82	2.79	2.68	3.30
14	3.74	2.90	2.89	2.62	2.60	2.62	2.41	2.33	2.79	2.76	2.65	3.16
15	3.85	2.83	3.05	2.59	2.54	2.53	2.48	2.39	2.78	2.75	2.70	3.10
16	3.77	2.71	3.10	2.61	2.48	2.52	2.59	2.44	2.71	2.71	2.61	3.12
17	3.69	2.76	3.06	2.55	2.50	2.40	2.59	5.58	2.67	2.47	2.60	3.11
18	3.57	2.77	2.86	2.56	2.44	2.35	2.61	2.44	2.65	2.73	2.60	3.00
19	3.50	2.81	2.82	2.61	2.46	2.55	2.60	2.61	2.69	2.80	2.62	2.98
20	3.38	2.74	2.79	2.57	2.47	2.67	2.60	2.64	2.70	2.72	2.64	3.05
21	3.34	2.72	2.73	2.55	2.51	2.61	2.50	2.58	2.67	2.69	2.63	2.99
22	3.27	2.73	2.63	2.66	2.46	2.60	2.50	2.56	2.56	2.76	2.68	2.93
23	3.12	2.71	2.55	2.68	2.44	2.68	2,50	2.49	2.67	2.84	2.72	2.81
24	3.16	2.64	2.58	2.75	2.45	2.68	2.46	2.61	2.63	2.89	2.70	2.89
25	3.03	2.69	2.64	2.74	2.52	2.69	2.60	2.54	2.57	2.86	2.74	2.81
26	2.88	2.73	2.68	2.77	2.37	2.61	2.54	2.60	2.55	3.01	2.78	2.71
27	2.88	2.67	2.71	2.67	2.65	2.65	2.58	2.61	2.61	2.89	2.80	2.77
28	2.82	2.71	2.74	2.59	2.68	2.61	2.57	2.50	2.59	2.58	2.77	2.92
5.8	2.75	2.64	2.68	2.56	2.76	2.54	2.58	2.51	2.60	2.56	2.75	3.15
30	2.72	2.81	2.60	2.58		2.48	2.60	2.51	2.65	2.56	2.78	3.19
31	2.66		2.62	5.60		2.41		2.69		2.70	2.82	
MEAN		2.72		2.63	2.54	2.63	2.55	2.52	2.65	2.70	2.69	2.94
MAX		2.90		2.77	2.76	2.77	2.65	2.69	2.82	3.01	2.82	3.41
MIN		2.55		2.47	2.37	2.35	2.40	2.28	2.51	2.35	2.58	2.51

133047144500171. Local number, 3050400 Well M-11.
LOCATION.--Lat 13°30'47" N., long 144°50'01" E., Hydrologic Unit 20100003, at intersection of Harmon Loop School Road and Route 1 at Dededo, Guam. Owner: Public Utility Agency of Guam.

Road and Route I at Dededo, Guam. Owner: Fublic Offlitty Agency of Guam.

AQUIFER.-Barrigada Limestone.

WELL CHARACTERISTICS.--Drilled basal water-table well, diameter 8 in (0.2 m), depth reported 325 ft (99.1 m).

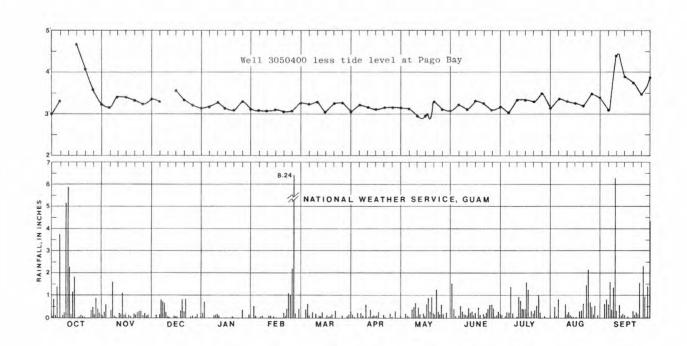
DATUM.--Altitude of land-surface datum is 294 ft (89.6 m) above mean sea level. Measuring point: Top of casing, 295.82 ft (90.166 m) above mean sea level.

REMARKS.--Recording gage installed July 1977.

PERIOD OF RECORD.--July 1977 to September 1977 records available in files of district office; October 1977 to

current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level recorded, 4.67 ft (1.423 m) above mean sea level, Sept. 10, 1980; lowest recorded, 2.78 ft (0.847 m) above mean sea level, Feb. 19, 1979.


WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	ост	NOV	DEC	JAN	FER	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.16	3.21	3.17	2.92	2.97	3.16	3.13	₹.23	3.32	3.38	3.38	3.40
2	3.22	3.23	3.16	2.91	2.94	3.16	3.14	3.23	3.30	3.40	3.40	3.39
3	3.26	3.24	3.18	2.93	3.00	3.17	3.14	3.24	3.30	3.42	3.44	3.39
4	3.39	3.26	3.20	2.93	3.02	3.15	3.16	3.24	3.29	2.44	3.47	3.39
5	3.56	3.24	3.22	2.94	3.00	3.14	3.17	3.25	3.30	3.45	3.45	3.42
4	3.76	3.28	3.21	2.94	2.97	3.15	3.16	3.25	3.29	3.46	3.43	3.45
7	3.73	3.27	3.19	2.96	2.95	3.15	3.18	3.26	3.27	2.46	3.42	3.48
R	3.64	3.32	3.18	2.95	2.94	3.15	3.22	3.28	3.26	3.45	3.45	3.50
9	3.58	3.32	3.18	2.94	2.97	3.16	3.23	3.29	3.24	3.43	3.46	3.53
10	3.73	3.29	3.14	2.95	2.98	3.16	3.24	7.29	3.27	3.43	3.48	4.35
11	4.40	3.29	3.07	2.96	2.98	3.17	3.24	3.30	3.24	2.41	3.48	4.38
12	4.57	3.28	3.03	2.90	2.95	3.16	3.24	3.30	3.25	3.41	3.47	4.13
13	4.46	3.27	3.00	2.86	2.98	3.17	3.25	3.29	3.27	2.41	3.45	4.05
1 4	4.31	3.19	3.04	2.88	2.97	3.19	3.31	3.31	3.21	3.40	3.44	3.97
15	4.29	3.18	3.15	2.89	2.96	3.20	3.32	3.33	3.20	3.38	3.42	3.90
16	4.13	3.18	3.17	2.87	2.94	3.22	3.30	3.34	3.20	3.35	3.40	3.83
17	4.03	3.21	3.10	2.89	2.93	3.22	3.28	3.35	3.20	3.38	3.41	3.74
18	3.87	3.23	3.03	2.94	2.93	3.23	3.29	3.43	3.22	3.42	3.42	3.67
19	3.78	3.22	3.01	2.95	2.94	3.27	3.29	3.45	3.22	3.44	3.42	3.67
20	3.67	3.21	2.99	2.96	2.99	3.28	3.28	3.42	3.23	7.43	3.40	3.66
21	3.62	3.21	2.98	7.01	3.01	3.24	3.29	3.39	3.22	7.44	3.39	3.62
22	3.55	3.24	2.97	3.03	3.01	3.23	3.30	3.34	3.21	3.43	3.39	3.57
23	3.43	3.25	2.97	3.00	3.01	3.21	3.31	3.30	3.22	3.42	3.41	3.56
24	3.30	3.26	2.97	2.98	3.01	3.17	3.30	3.26	3.22	3.38	3.60	3.55
25	3.22	3.27	2.97	3.01	3.01	3.12	3.29	3.26	3.23	3.37	3.64	3.54
24	3.15	3.28	2.95	3.03	3.05	3.11	3.28	7.26	3.25	3.36	3.61	3.53
27	3.15	3.28	2.99	2.99	3.16	3.09	3.27	3.25	3.28	3.36	3.56	3.58
28	3.13	3.26	2.99	2.98	3.20	3.08	3.25	3.26	3.31	3.36	3.51	3.75
29	3.11	3.24	2.97	2.99	3.18	3.07	3.24	3.27	3.34	7.37	3.48	3.87
30	3.15	3.21	2.94	3.00		3.07	3.25	3.30	3.37	3.37	3.45	3.95
31	3.17		2.93	3.00	277	3.10		3.32		3.37	3.43	
MEAN	3.63	3.25	3.07	2.95	3.00	3.17	3.25	3.30	3.26	3.41	3.46	3.69
MAX	4.57	3.32	3.22	3.03	3.20	3.28	3.32	3.45	3.37	3.46	3.64	4 . 38
MIN	3.11	3.18	2.93	2.86	2.93	3.07	3.13	3.23	3.20	3.35	3.38	3.39

WTR YR 1980 MFAN 3.29 MAX 4.57 MIN 2.86

133047144500173. Well 3050400 less Tide Gage, Pago Bay. PERIOD OF RECORD.--Current year.

			ELEVAT	ION (FEET	NG VD) . W	ATER YEAR AN VALUES	OCTOBER	1979 TO S	EPTEMBER	1980		
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1	3.00	3.23	3.36	3.05	3.09	3.24	3.09	3.15	3.24	3.10	3.31	3.41
2	2.96	3.12	3.37	3.11	3.25	3.28	3.07	3 - 14	3.19	3.12	3.24	3.34
3	2.94	3.17	3.33	3.03	3.21	3.23	3.11	3.08	3.26	3.13	3.34	3.31
4	3.08	3.17	3.35	3.18	3.12	3.26	3.06	3.10	3.13	3.16	3.32	3.25
5	3.34	3.18	3.31	3.18	3.08	3.21	3.21	7.13	3.21	3.02	3.35	3.08
6	3.61	3.15		3.21	3.09	3.29	3.12	3.C7	3.20	2.92	3.32	3.25
7	3.60	3.12		3.13	3.05	3.28	3.14	3.14	3.11	3.20	3.19	3.12
8	3.55	3.37		3.34	3.09	3.24	3.12	3-16	3.08	3.32	3.16	3.29
9		3.35		3.28	3.12	3,27	3.18	2.99	3.04	3.38	3.15	3.44
10		3.41		3.26	3.06	3.28	3.18	2.94	3.11	3.33	3.30	4.39
11		3.35		3.33	3.04	3.30	3.10	2.97	3.27	3.34	3.26	4.45
12	4.42	3.34		3.37	3.09	3.31	3.06	2.95	3.23	3.35	3.23	4.26
13	4.49	3.46		3.20	3.10	3.18	2.95	2.87	3.33	3.34	3.24	4.08
14	4.57	3.45	3.40	3.18	3.14	3.16	3.02	2.88	3.30	3.32	3.21	3.91
15	4.68	3.41	3.55	3.17	3.09	3.07	3.10	2.95	3.29	3.32	3.26	3.88
16	4.54	3.27	3.64	3.14	3.03	3.07	3.15	3.01	3.22	3.29	3.16	3.87
17	4.44	3.31	3.60	3.06	3.05	2.95	3.15	2.87	3.19	3.02	3.16	3.84
18	4.29	3.33	3.41	3.10	2.99	2.91	3.17	3.08	3.19	3.29	3.16	3.71
19	4.21	3.37	3.37	3.14	3.01	3.12	3.16	3.26	3.20	3.39	3.19	3.67
20	4.07	3.31	3.33	3.08	3.04	3.23	3.16	3.27	3.23	3.30	3.19	3.74
21	3.99	3.27	3.29	3.09	3.06	3.15	3.05	3.18	3.19	3.28	3.18	3.70
22	3.91	3.28	3.19	3.19	3.00	3.18	3.05	3.22	3.17	3.34	3.22	3.60
23	3.73	3.26	3.12	3.21	2.99	3.27	3.07	3.02	3.20	3.42	3.26	3.47
24	3.73	3.18	3.15	3.27	3.00	3.24	3.02	3.14	3.16	3.47	3.40	3.54
25	3.59	3.23	3.20	3.27	3.07	3.24	3.16	3.09	3.10	3.46	3.46	3.46
26	3.41	3.27	3.21	3.31	2.90	3.18	3.11	3.15	3.08	3.62	3.47	3.34
27	3.42	3.21	3.27	3.20	3.23	3.21	3.15	3.17	3.14	3.50	3.47	3.39
28	3.35	3.23	3.31	3.12	3.24	3.17	3.13	3.05	3.12	3.19	3.41	3.58
29	3.27	3.18	3.24	3.09	3. 31	3.10	3.14	3.05	3.11	3.17	3.37	3.86
30	3.25	3.36	3-14	3.11		3.05	3.16	3.06	3.18	7.17	3.30	3.87
31	3.20		3.17	3,15		2.96	1===	3.25		3.30	3.43	
MEAN		3.28		3.18	3.09	3.18	3.11	3.08	3.18	3.28	3.28	3.64
MAX		3.46		7.37	3.31	3.31	3.21	3.27	3.33	3.62	3.47	4.45
MIN		3.12		3.03	2.90	2.91	2.95	2.87	3.04	2.92	3.15	3.08

133115144484971. Local number, 3148140 Harmon Well 1 (107).
LOCATION.--Lat 13°31'15" N., long 144°48'49" E., Hydrologic Unit 2010003, 500 ft (150 m) north of junction of Routes 1 and 16, Dededo, Guam. Owner: Government of Guam.
AQUIFER.--Mariana Limestone.

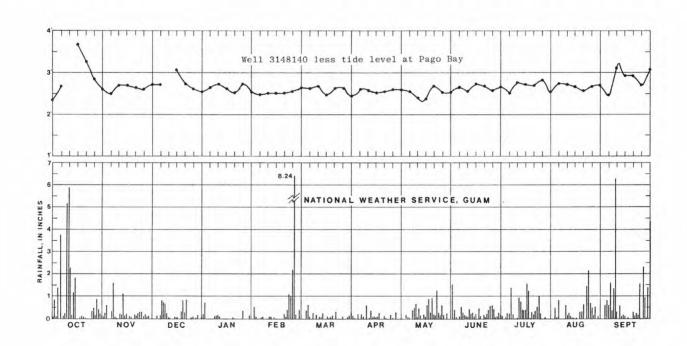
WELL CHARACTERISTICS.--Drilled basal water-table well, diameter 10 in (0.25 m), depth measured 289 ft (88.1 m). DATUM.--Altitude of land-surface datum is 268 ft (81.7 m) above mean sea level. Measuring point: Top of casing, 267.96 ft (81.674 m) above mean sea level.

REMARKS.--Recording gage installed March 1973.

PERIOD OF RECORD.--March 1973 to September 1977 records available in files of district office; October 1977

to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level recorded, 4.34 ft (1.323 m) above mean sea level, May 22, 1976; lowest recorded, 2.17 ft (0.661 m) above mean sea level, Feb. 23, 24, 26, 27, 1979.


WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.54	2.56	2.53	2.35	2. 38	2.58	2.54	2.66	2.76	2.86	2.78	2.73
2	2.58	2.57	2.55	2.34	2.38	2.61	2.55	2.66	2.74	2.88	2.83	2.73
3	2.62	2.57	2.59	2.37	2.45	2.61	2.56	2.67	2.73	2.91	2.90	2.74
4	2.73	2.58	2.62	2.37	2.45	2.57	2.58	2.69	2.74	2.94	2.92	2.76
5	2.91	2.58	2.63	2.39	2.41	2.57	2.56	2.68	2.75	2.95	2.86	2.80
6	2.94	2.60	2.61	2.40	2.39	2.58	2.57	2.59	2.72	2.95	2.85	2.88
7	2.86	2.59	2.57	2.41	2.36	2.57	2.62	2.72	2.71	2.94	2.87	2.89
8	2.82	2.63	2.58	2.42	2.37	2.58	2.54	2.75	2.70	2.91	2.91	2.92
9	2.88	2.58	2.56	2.38	2.45	2.58	2.65	2.74	2.70	2.89	2.90	2.92
10	2.98	2.59	2.48	2.42	2.45	2.57	2.65	2.75	2.70	2.89	2.93	3.07
11	3.20	2.58	2.43	2.40	2.43	2.59	2.65	2.76	2.70	2.87	2.92	3.12
12	3.40	2.58	2.39	2.28	2.41	2.58	2.66	2.73	2.71	2.88	2.90	3.10
13	3.41	2.56	2.40	2.29	2 . 4 5	2.60	2.71	2.73	2.70	2.85	2.88	3.12
14	3.30	2.49	2.54	2.35	2.41	2.61	2.78	2.76	2.68	2.85	2.86	3.04
15	3.28	2.49	2.68	2.33	2.39	2.62	2.75	2.77	2.66	2.80	2.82	2.96
16	3.17	2.53	2.60	2.32	2.38	2.64	2.72	2.78	2.66	2.80	2.81	2.91
17	3.09	2.58	2.47	2.36	2.37	2.62	2.70	2.81	2.66	2.85	2.82	2.84
18	2.96	2.58	2.42	2.38	2.37	2.67	2.71	2.89	2.68	2.85	2.83	2.83
19	2.89	2.56	2.40	2.39	2.42	2.69	2.69	2.90	2.68	2.83	2.81	2.89
20	2.87	2.55	2.41	2.40	2.47	2.67	2.69	2.84	2.70	2.84	2.80	2.84
21	2.88	2.57	2.38	2.49	2.47	2.64	2.72	2.81	2.69	2.85	2.78	2.80
2.5	2.79	2.62	2.39	2.45	2.47	2.63	2.73	2.75	2.69	2.84	2.79	2.78
23	2.65	2.62	2.38	2.42	2.48	2.58	2.74	2.72	2.69	2.81	2.81	2.80
24	2.56	2.64	2.38	2.43	2.50	2.55	2.73	2.69	2.70	2.75	2 - 84	2.79
25	2.50	2.64	2.38	2.49	2.50	2.51	2.73	2.70	2.72	2.73	2.85	2.78
26	2.48	2.66	2.39	2.46	2.58	2.53	2.71	2.68	2.76	2.71	2.84	2.80
27	2.47	2.65	2.47	2.41	2.66	2.50	2.67	2.68	2.79	2.72	2.79	2.88
28	2.47	2.65	2.42	2.40	2.67	2.48	2.66	2.71	2.81	2.73	2.79	3.03
29	2.47	2.60	2.39	2.42	2.62	2.47	2.67	2.74	2.84	2.74	2.78	3.10
30	2.50	2.57	2.38	2.44		2.47	2.68	2.76	2.85	2.75	2.76	3.17
31	2.53		2.35	2.40		2.53		2.77		2.77	2.74	
MEAN	2.83	2.59	2.48	2.39	2.45	2.58	2.67	2.74	2.72	2.84	2.84	2.90
MAX	3.41	2.66	2.68	2.49	2.67	2.69	2.78	2.90	2.85	2.95	2.93	3.17
MIN	2.47	2.49	2.35	2.28	2.36	2.47	2.54	2.66	2.66	2.71	2.74	2.73

WTR YR 1980 MEAN 2.67 MAX 3.41 MIN 2.28

 $133115144484973.\ \mbox{Well}\ 3148140$ less Tide Gage, Pago Bay. PERIOD OF RECORD.--Current year.

			ELEVAT	ION (FEET		ATER YEAR AN VALUES		1979 TO	SEPTEMBER	1980		
DAY	oct	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.38	2.58	2.72	2.48	2.50	2.66	2.50	2.58	2.68	2.58	2.71	2.74
2	2.32	2.46	2.76	2.54	2.57	2.73	2.48	2.57	2.63	2.60	2.67	2.68
3	2.30	2.50	2.74	2.47	2.66	2.67	2.53	2.51	2.69	2.62	2.80	2.66
4	2.42	2.49	2.77	2.62	2.55	2.68	2.48	2.55	2.58	2.66	2.77	2.62
5	2.69	2.52	2.72	2.63	2.49	2.64	2.60	2.56	2.66	2.52	2.76	2.46
6	2.79	2.47		2.67	2.51	2.72	2.53	2.51	2.63	2.41	2.74	2.68
7	2.73	2.44		2.58	2.46	2.70	2.58	2.60	2.55	2.68	2.64	2.53
8	2.73	2.68		2.81	2.52	2.67	2.54	2.63	2.52	2.78	2.62	2.71
9		2.61		2.72	2.60	2.69	2.60	2.44	2.50	2.84	2.59	2.83
10		2.71		2.73	2.53	2.59	2.59	2.40	2.58	2.79	2.75	3.11
11		2.64		2.77	2.49	2.72	2.51	2.43	2.73	2.80	2.70	3.19
12	3.25	2.64		2.75	2.54	2.73	2.48	2.78	2.69	2.82	2.66	3.23
1.3	3.44	2.75		2.63	2.57	2.61	2.41	2.31	2.80	2.78	2.67	3.15
14	3.56	2.75	2.90	2.65	2.58	2.58	2.49	2.33	2.77	2.77	2.63	2.98
15	3.67	2.72	3.0R	2.61	2.52	2.49	2.53	2.39	2.75	2.74	2.66	2.94
16	3.58	2.62	3.07	2.59	2.47	2.49	2.58	2.45	2.68	2.74	2.57	2.95
17	3.50	2.68	2.97	2.53	2.49	2.35	2.57	2.32	2.64	2.49	2.57	2.94
18	3.38	2.68	2.80	2.54	2.43	2.35	2.59	2.54	2.65	2.72	2.57	2.87
19	3.32	2.71	2.76	2.58	2.49	2.54	2.56	2.71	2.66	2.78	2.58	2.89
20	3.27	2.65	2.75	2.52	2.52	2.62	2.57	2.69	2.70	2.71	2.59	2.92
21	3.25	2.63	2.69	2.57	2,52	2.55	2.48	2.50	2.66	2.69	2.57	2.88
5.5	3.15	2.66	2.61	2.61	2.46	2.58	2.48	2.63	2.65	2.75	2.62	2.81
23	2.95	2.63	2.53	2.63	2.46	2.64	2.50	2.44	2.67	2.81	2.66	2.71
24	2.99	2.56	2.56	2.72	2.49	2.62	2.45	2.57	2.64	2.84	2.64	2.78
25	2.87	2.60	2.61	2.75	2.56	2.63	2.60	2.53	2.59	2.82	2.67	2.70
26	2.74	2.65	2.65	2.74	2.43	2.50	2.54	2.58	2.59	2.97	2.70	2.61
27	2.74	2.58	2.75	2.62	2.73	2.62	2.55	2.60	2.65	2.86	2.70	2.69
28	2.69	2.62	2.74	2.54	2.71	2.57	2.54	2.50	2.62	2.56	2.69	2.86
29	2.63	2.54	2.66	2.52	2.75	2.50	2.57	2.52	2.61	2.54	2.67	3.09
30	2.60	2.72	2.58	2.55		2.45	2.59	2.52	2.66	2.55	2.70	3.09
31	2.56		2.59	2.55		2.39		2.70		2.70	2.74	
MEAN	444	2.62		2.62	2.54	2.60	2.53	2.52	2.65	2.71	2.66	2.84
MAX		2.75		2.81	2.75	2.73	2.60	2.71	2.80	2.97	2.80	3.23
MIN		2.44		2.47	2.43	2.35	2.41	2.31	2.50	2.41	2.57	2.46

131809144451671. Local number, 1845013 Malojloj Well 2.
LOCATION.--Lat 13°18'09" N., long 144°45'16" E., Hydrologic Unit 20100003, at Malojloj well field, 1.7 mi (2.7 km) north of Inarajan Bay, Inarajan, Guam. Owner: Public Utility Agency of Guam.
AQUIFER.--Umatac Formation, Maemong limestone member.
WELL CHARACTERISTICS.--Drilled perched water-table well, diameter 8 in (0.2 m), depth 110 ft (33.5 m).
DATUM.--Altitude of land-surface datum is 253 ft (77.1 m). Measuring point: Top of casing 254.40 ft (77.541 m)

above mean sea level.
PERIOD OF RECORD, -- October 1972 to September 1976 records available in files of district office; October 1976

to current year EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 219.53 ft (66.913 m) above mean sea level, Nov. 4, 1978; lowest measured, 168.33 ft (51.307 m) above mean sea level, May 7, 1979, Apr. 24, 1980.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1979 to SEPTEMBER 1980

WATER DATE LEVEL

168 33 APR 24

131842144450571. Local number, 1845400 Dan Dan Test Well. LOCATION.--Lat 13°18'42" N., long 144°45'05" E., Hydrologic Unit 20100003, on road to N.A.S.A. Satellite Tracking

Station, Inarajan, Guam.

AQUIFER.--Umatac Formation, probably the Bolanos pyroclastic member.

WELL CHARACTERISTICS.--Drilled water-table-test well, diameter 8 in (0.2 m), cased to 50 ft (15 m), drilled depth 365 ft (111 m), measured depth, 238.8 ft (72.79 m) in 1975.

DATUM.--Altitude of land-surface datum is 314 ft (95.7 m). Measuring point: Top of casing 316.00 ft (96.317 m)

above mean sea level.
REMARKS.--Well was abandoned because of extremely low yield.

PERIOD OF RECORD. -- April 1972 to September 1976 records available in files of district office; October 1976

to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 200.69 ft (61.170 m) above mean sea level, Oct. 7, 1976, lowest measured, 185.56 ft (56.559 m) above mean sea level, July 3, 1973.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

WATER DATE LEVEL.

APR 24 193.11

132615144470571. Local number, 2647100 Father Duenas Well. LOCATION.--Lat 13°26'15" N., long 144°47'05" E., Hydrologic Unit 20100003, at Father Duenas Memorial School, Chalan Pago-Ordot, Guam.

AQUIFER.--Mariana Limestone.
WELL CHARACTERISTICS.--Drilled parabasal water-table well, diameter 8 in (0.2 m).
DATUM.--Altitude of land-surface datum is 179 ft (54.6 m). Measuring point: Top of casing, 179.86 ft (54.821 m) above mean sea level.

PERIOD OF RECORD. -- March 1973 to May 1976 records available in files of district office; June 1976 to current

year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 10.0 ft (3.05 m) above mean sea level, Sept. 3, 1976; lowest measured, 6.08 ft (1.853 m) above mean sea level, Aug. 5, 1980.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 14	8.42	JAN 2	7.14	MAR 4	7.93	MAY 8	7.35	AUG 5	6.08
NOV 16	6.78	FEB 1	7.06	APR 15	7.51	JUN 19	7.27	SEP 25	9.16

132742144452971. Local number, 2745420 Agana Springs. LOCATION.--Lat 13°27'42" N., long 144°45'29" E., Hydrologic Unit 20100003, near Sinajana on the edge of Agana Swamp.

AQUIFER. -- Mariana Limestone.

WELL CHARACTERISTICS. -- Basal ground water issues from an opening in the Mariana Limestone. The water level

is measured in a pool with a concrete spillway.

DATUM.--Altitude of land-surface datum is 10 ft (3.0 m) above mean sea level. Measuring point: Edge of concrete spillway, 8.80 ft (2.682 m), revised, above mean sea level.

REMARKS.--Spring supplied Agana with up to one million gallons per day. Not in use at present.

PERIOD OF RECORD.--April 1974 to September 1976 records available in files of district office; October 1976

to current year.

EXTREMES FOR PERIOD OF RECORD.--Lowest water level measured, 6.95 ft (2.118 m), revised, above mean sea level, July 2, 1975.
REVISIONS, -- Water levels for 1978-79 published in WDR HI-77-2. HI-79-2 have been revised as follows:

WATER YEAR	DATE	WATER LEVEL								
1977	MAR 16	8.44	APR 7	8.21	MAY 2	7.73	MAY 24	7.63	JUN 9	7.41
1978	FEB 2	8.59	MAR 16	7.96	APR 20	7.36	JUN 20	7.11	JUL 21	7.84
1979	APR 3	8.52	MAY 7	7.88	JUN 22	7.04	JUL 26	7.05	SEP 5	7.69

WATER LEVEL. IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29 NOV 16	j i	JAN 2 FEB 1	j 8.80	APR 15 MAY 8	8.61 8.19	JUN 19 JUL 24	8.40 j	AUG 6	8.77	SEP 25	j

132758144450571. Local number, 2745500 Agana 147 Well.
LOCATION.--Lat 13°27'58" N., long 144°45'05" E., Hydrologic Unit 20100003, on Route 4, 0.65 mi (1.0 km) south of junction of Routes 1 and 4 in Agana, Guam.

AQUIFER. -- Mariana Limestone.

WELL CHARACTERISTICS. -- Drilled basal water-table test well, casing diameter 6 in (0.2 m), depth when drilled, 186 ft (56.7 m), when measured in May 1973, 29 ft (8.8 m).

DATUM. -- Altitude of land-surface datum is 33 ft (10 m). Measuring point: Top rim of casing, 33.22 ft (10.125 m)

REMARKS. -- Water levels in this well reflect changes in the regional fresh water head of the discharge area sur-

rounding Agana Swamp.

PERIOD OF RECORD. --August 1955 to May 1960, January 1972 to September 1976 records available in files of district office; October 1976 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 31.42 ft (9.577 m) above mean sea level, Oct. 14, 1955; lowest measured, 6.83 ft (2.082 m) above mean sea level, June 20, 1978.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 14 OCT 19	15.48	OCT 29 NOV 16	10.92	JAN 3 FEB 1	9.07	MAR 3 APR 15	9.97 8.58	MAY 8 JUN 19	9.75 9.48	AUG 6 SEP 25	9.71 11.29

133034144500871. Local number 3050300 Well M-11A. LOCATION.--Lat 13°30'34" N., long 144°50'08" E., Hydrologic Unit 20100003, in Macheche area, Dededo. AQUIFER.--Barrigada Limestone. WELL CHARACTERISTICS.--Drilled basal ground-water test well. Uncased hole diameter 12 in (0.30 m). Sounded

depth 407 ft (124 m).

depth 407 ft (124 m).

DATUM.--Altitude of land-surface datum is 309 ft (94.2 m) above mean sea level. Measuring point: Top of 5 ft (2 m) long metal casing set in hole 310.44 ft (94.622 m), revised, above mean sea level.

REMARKS.--Well yield insufficient for development.

PERIOD OF RECORD.--February 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.09 ft (1.247 m), revised, above mean sea level, Aug. 16, 1978; lowest measured 3.13 ft (0.954 m), revised, above mean sea level, Feb. 26, 1979.

REVISIONS.--Water levels for 1978-79 published in WDR HI-79-2 have been revised as follows:

WATER YEAR		DATE		WATER LEVEL (ft)
1978	May	9,	1978	3.63
1978	June	20,	1978	3.60
1978	July	21.	1978	3.87
1978	Aug.		1978	4.09
1978	Sep.	19,	1978	3.65
1979	Feb.	26,	1979	3.13
1979	Apr.	3.	1979	3.47
1979	May	7,	1979	3.47

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 16 JAN 3	3.15	FEB 1 MAR 3	2.98 3.22	MAR 25 MAY 8	3.15 3.32	JUN 18	3.31	AUG 6	3.43	SEP 29	3.62

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MARIANA ISLANDS, ISLAND OF GUAM

	LOCAL IDENT- I- FIER		LAT- I- TUDE	LONG- I- TUCE	SED.	STATION	NUMBER	DATE CF SAMPLE	TIME	SAMP- LING DEPTH (FI)	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)
3150250 G	HURA-DEDED	O MONITOR	13 31 20	144 50 5	4 71	1331501/	4505471	79-10-17	1335	475	785	2050
	The second	0 1 10111 1011	13 31 70	144 0 3		1331201	14303413	79-10-17	1445	525	785	8 900
								79-10-18	1415	550	785	43000
								79-10-18	1520	600	785	48 000
								79-10-19	1305	750	785	45500
								80-04-04	1100	420	785	
								80-04-04	1200	475	785	44
								80-04-04	1300	530	785	
								80-04-04	1400	570	785	
								80-04-04	1515	620	785	
								80-08-21	1315	530	785	
			HARD-	HARC- NESS,	CALCIUM	MAGNE- SILM.	SODILM.		5001UM -04	PCTAS- SIUM,	ALKA-	SULFATE
DATE		TEMPER-	NESS	NONCAR-	CIS-	DIS-	DIS-		SCRP-	UIZ-	LINITY	DIS-
OF	PH	ATURE.	(MG/L	RONATE	SCLVED	SCLVED	SOLVED		TION	SCLVED	(MG/L	SOLVED
SAMPLE	FIELD	WATER	AS	(MG/L	(ME/L	(MG / L	(MG/L	SOCIUM	RATIO	(MG/L	AS	(MG/L
	(UNITS)	(DEC C)	CA CO3)	CACCE	AS CA)	AS PG)	AS NA)	PERCENT		AS K)	CACO31	AS 504)
79-10-17							-				210	69
79-10-17				1		**				7.7	230	390
70-10-18		28.5									190	2300
79-10-18	3.	28.0				2.2	35		22		140	2700 2500
74-10-14		21.00	-			7.7			-	1.7	1+0	2500
80-04-04	7.6	27.0									200	19
80-04-04	7.4	27.0									210	27
80-04-04	7.3	26.5									250	36 0
80-04-04	7.2	26.0									200	2600
80-04-04	7.0	26.0	77								150	2600
80-08-21		/55	1000	78 C	170	15 C	1300	72	18	55	260	370
			200.0	TEG. 2.	10.15.0	sourcs.		NITRO-				
			CHLO-	FLUC-	SILICA		SOLIDS.	GEN.	1000	MANGA-		
		6475	RIDE,	RIDE.	DIS-	CONSTI-	015-	V05+V03	IRCN.	NESE+		
		DATE	DIS-	DIS-	SCLVED	TUENTS.	SOLVED		CIS-	DIS-		
		SAMPLE	SOLVED	SOLVED	(ME/L	015-	PER	SCLVED	SCLVEC			
		SAMPLE	(MG/L AS CL)	(MG/L AS F)	AS 51(2)	SCL VED	AC-FT)	(MG/L AS N)	IUG/L	(UG/L AS MN)		
		21 12										
		79-10-17 79-10-17	480 2800	.1	2.0	- ::		1.5				
		79-10-17	16000	.9	R . 3	1.2	22					
		79-10-18	19000	1.1	9.5		12		- 25			
		79-10-19		1.1	8.0	122		.13		- 22		
		00 04 04	• • • •							2		
		80-04-04	120	.1	1.4	2.5		1.2	7.7			
		80-04-04	2400	. 2	2.7			.73				
		80-04-04	19000	.5	8.0			.64				
		80-04-04		. 6	8.5			.21				
		80-08-21	2400	.3	2.2	4 é 1 C	6.27	.38	130	100		

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 CAROLINE ISLANDS, YAP ISLANDS

	LOCAL IDENT- I- FIER			I - I - DE	LON I- TUD			SEQ.	STATION	NUMBER	DATE OF SAMPLE	TIME	CIFIC CON- DUCI- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE+ WATER (DEG C)
2904230 CC	OMMUNICATIO	ON BLDG	09 2	9 20	138 0	4 3	5	70	09292013	8043570	80-02-02	1100	81	7.7	26.0
DATE OF SAMPLE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAK- BONATE (MG/L CACO3)	DI SO	CIUM S- LVED G/L CA)	MAGN SIU DIS SOLV (MG/	M, ED L	SOL (M	IUM. S- VED G/L NA)	SODIUM PERCENT	SODIUM AD- SORP- TION RATIO	SODIUM+ POTAS- SIUM DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACU3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHL O- RIDE, DIS- SOL VED (MG/L AS CL)
80-02-02	25	0		4.4	3	. 4		6.3	35	.5	6.7	. 4	30	1.2	8.2

			SOLIDS.		NITRO-		
	FLU0-	SILICA	SUM OF	SOLIDS.	GEN,		MANGA-
	RIDE .	DIS-	CONSTI-	DIS-	NO2+NO3	IRON.	NESE.
DATE	DIS-	SOLVED	TUENTS.	SOLVED	DIS-	DIS-	DIS-
OF	SOLVED	(MG/L	DIS-	ITONS	SOLVED	SOLVED	SOL VED
SAMPLE	(MG/L	AS	SOLVED	PER	(MG/L	(UG/L	(UG/L
	AS F)	SIn2)	(MG/L)	AC-FT)	AS N)	AS FE)	AS MN
80-02-02	.0	29	72	.10	.11	60	10

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 CAROLINE ISLANDS, TRUK ISLANDS

	LOCA IDENT I- FIER				LAT I TUD	-		ONG I – UDE		SEQ.	STATION	NUMBER	DATE OF SAMPLE	TIME	SPE- CIFIC CON- DUCI- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)
	MOEN .				26		151			70	07265815		80-05-06	0900	194	6.3	28.5
	MOEN.				26		151			70	07265415		80-05-06	1000	165		28.5
	4 MOEN.				27		151			70	07270715		80-05-06	1600			29.0
	7 MOEN.				27		151			70	07270215		80-05-06	1500			29.0
WELL	9 MOEN.	IKU	K 15.	0 /	27	01	151	21	21	70	07270115	1512770	80-05-06	1050	1450		29.0
WELL 1	MOEN.	TRU	K IS.	07	27	04	151	51	10	70	07270415	1511070	80-05-06	1625			28.5
WELL 1	1 MDEN.	TRU	K IS.		27		151			70	07270715	1511070	80-05-06	1640			28.0
	MOEN.				27		151			70	07270615		80-05-06	1510			29.0
	MOEN,				27		151			70	07270815		80-05-06	1540			29.0
WELL 1	4 MOEN,	TRU	K IS.	07	27	05	151	51	26	70	07270515	1512670	80-05-06	1430	379		29.0
WELL 1	MOEN.	TRU	K IS.	07	27	10	151	51	25	70	07271015	1512570	80-05-06	1400		122	29.0
	7 MOEN .				25		151			70	07251715		80-05-08	0900			
DATE OF	HARD NESS		HARD- NESS, NONCAR- BONATE		ALC DIS	-	S	GNE IUM IS-	•	SODIUM, DIS- SOLVED		SODIUM AD- SORP- TION	POTAS- SIUM, DIS- SOLVED	ALKA- LINITY (MG/L	SULFATE DIS- SOLVED	CHLO- RIDE+ DIS- SOLVED	FLUO- RIDE, DIS- SOLVED
SAMPLE	AS		(MG/L		(MG			G/L		(MG/L	SODIUM	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L
34111-22	CACO	3)	CACO31		AS			MG)	AS NA)	PERCENT		AS K)	CACO3)	AS 504)	AS CL)	AS F)
80-05-06		62	0		1	0		9.		13	31	.7					
80-05-06		62	2			9.8		9.		8.9	24	.5		68	3.5	11	.1
80-05-06		20	34		1	COLUMN TOWN		18		14	20	.6		83	3.2	38	.1
80-05-06		50	24		2			21		13	15	.5		130	2.3	31	.1
80-05-06		40	210		6			43		160	50	3.8		130	49	370	.1
00 05 04		80	20		1			11		0.7	19					25	
80-05-06		56	0			8.9		8.	,	8.7	19	-4		60 56	6.R 1.2	25 7.7	.1
80-05-06		40	42		2			21	1	11	14	.4		99	5.7	41	.1
80-05-06		00	15		1			15		8.3	15	.4		87	5.0	17	.1
80-05-06		50	57		2			22		12	15	-4		89	7.6	49	.1
80-05-06		84	13		1:			13		7.7	17	.4		71	7.3	13	.1
80-05-08		66	0		1	0		9.	9	7.5	20	.4	.7	66	1.1	8.6	•1
							SIL	ICA		SOLIDS.	SOLIDS,	NI TRO- GEN:		MANGA-			

		SOLIDS.		NI TRO-		
	SILICA.	SUM DF	SOLIDS,	GEN		MANGA-
	DIS-	CONSTI-	DIS-	NO2+NO3	IRON.	NESE.
DATE	SOLVED	TUENTS.	SOLVED	DIS-	DIS-	DIS-
OF	(MG/L	DIS-	(TONS	SOLVED	SOLVED	SOLVED
SAMPLE	AS	SOLVED	PER	(MG/L	(UG/L	(UG/L
	2105)	(MG/L)	AC-FT)	AS NI	AS FE)	AS MN)
80-05-06	33	122	.17	.86	10	<1
80-05-06	28	109	.15	.41	10	3
80-05-06	29	175	.24	.60	690	10
80-05-06	35	211	.29	.47	60	20
80-05-06	28	802	1.09	.36	320	40
80-05-06	27	1 31	.18	.27	<10	<1
80-05-06	29	96	.13	.25	<10	(1
80-05-06	30	194	.26	.47	40	<1
80-05-06	33	151	-21	.69	<10	<1
80-05-06	24	192	.26	.19	20	110
80-05-06	28	126	.17	.46	20	<1
80-05-08	36	114	.16	.16	<10	<1

< Actual value is known to be less than the value shown.

INDEX

	Page		Page
Aasu, Tutuila, Aasu Stream at	78	Fena Reservoir above screenhouse near Agat,	rage
Aasu Stream at Aasu, Tutuila	78,135	Guam	90
Accuracy of field data and computed results	14-15	below Almagosa River near Agat, Guam	90
Acre-foot, definition of	2	below Imong River near Agat, Guam	90
Adeiddo River, Babelthuap, Palau Islands56	,91,132	below Maulap River near Agat, Guam	90
Afao, Tutuila, Atauloma Stream at	79,135	between Maulap and Almagosa Rivers	90
Afono, Tutuila, Pago Stream at	77	Finile Creek at Agat, Guam	39
Afuelo Stream at Matuu, Tutuila	82,136	Gaden River, Babelthuap, Palau Islands58	,98,132
Agat, Guam, Almagosa River near	44	Gage height, definition of	
Fena Dam spillway near	46 90	Gaging station, definition of	84,93
Fena Reservoir above screenhouse near below Almagosa River near	90	Galkatan River, Babelthuap, Palau Islands	04,50
below Imong River near	90	Geligal Marsh outlet, Babelthuap, Palau Islands	85
below Maulap River near	90	Geus River, above Siligin Spring tributary,	0.
between Maulap and Almagosa Rivers	90	near Merizo, Guam	84
Finile Creek at	39	Gihmel River, Babelthuap, Palau Islands	97
Imong River near	43	Green algae, definition of	7
Maulap River near	45	Ground-water records	137-156
Airport Swamp, Yap, Yap Islands	118	Guam, island of, gaging-station records in	39-55
Ajayan River near Inarajan, Guam	84	ground-water records in	137-153
Algae, definition of	. 2	low-flow partial-record stations in	84
Almagosa River near Agat, Guam	44	map of	26-27
Almiokan River, Babelthuap, Palau Islands	84,94	water-quality records, at ground-water sites	154 156
Amin Stream, Map, Yap Islands	86,118	in	154-150
Aquifer, definition of	105 173	water-quality records at partial-record	88-90
Aringel Stream, Yap, Yap Islands	2	stations	00-30
Artificial substrate, definition of	9	Hardness, definition of	6
Asalonso River near Talofofo, Guam	84	Hydrologic conditions	18-19
Ash mass, definition of	3	Hydrologic unit, definition of	(
Asili Stream, at altitude 330 ft (100 m)		nyarozogie anie, aozinieron ozivitiviti	
near Asili, Tutuila	80,135	Illustrations	21-35
Atauloma Stream at Afao, Tutuila	79,135	Imong River near Agat, Guam	43
Atelu Stream, Yap, Yap Islands	85,104	Inarajan, Guam, Inarajan River near	41
Auasi, Tutuila, Leafu Stream near	83	Tinaga River near	4.2
		Inarajan River near Inarajan, Guam	41
Bacteria, definition of	2	Innem River, Kosrae	87,131
Bed material, definition of	3	Instantaneous discharge, definition of	4
Bileiy Spring, Gagil-Tomil, Yap Islands	86,116	Introduction	
Bileiy Stream, Gagil-Tomil, Yap Islands	86	Vegree island of gaging station records in	72-76
Blue-green algae, definition of	7	Kosrae, island of, gaging-station records in low-flow partial-record station in	86-87
Burong Stream, Yap, Yap Islands64,	113.133	map of	33
,,	,	water quality records at partial-record	
Cells/volume, definition of	3	stations	127-130
Cfs-day, definition of	3	Kumekumeyel River, Babelthuap, Palau Islands.59	,99,132
Chlorophyll, definition of	3		
Coliform organisms, definition of	3	La Sa Fua River near Umatac, Guam	40
Collection and computation of data	11-14	Lataw River, Ponape	86,127
Collection and examination of data	15-16	Leafu Stream, Tutuila, near Auasi	83,136
Collection of the data	17-18	at altitude 370 ft (274 m), near Leone	81,136
Color unit, definition of	3	Leone, Tutuila, Leafu Stream at altitude	0.1
Contents, definition of	3-4	370 ft (274 m), near	124 174
Continuing record station, definition of Control, definition of	J-4 A	Lui River, Ponape	125 134
Control structure, definition of	4	at mouth, Ponape70, Lupwor River, Ponape71,	126 135
Cooperation	2	Edpwor Kiver, Fonape	140,100
Cubic foot per second, definition of	4	Malem River, Kosrae	75,129
		Matuu, Tutuila, Afuelo Stream at	82
Dalolab Stream, Yap, Yap Islands62,	110,133	Maulap River near Agat, Guam	4.5
Definition of terms	2-10	Mean concentration, definition of	9
Denni Spring, Saipan	36	Mean discharge, definition of	4
Diatoms, definition of	7	Meitik River, Ponape	86,122
Dinay Stream, Yap, Yap Islands	85,108	Melo River, Kosrae	74,128
Discharge, definition of	4	Metamorphic stage, definition of	
Dissolved, definition of	4 5	Micrograms per gram, definition of	0
Diversity index, definition of	10	Micrograms per liter, definition of	6
Drainage area, definition of	5	Milligrams of carbon per area, definition	8
Drainage basin, definition of	6	Milligrams of oxygen per area, definition of Milligrams per liter, definition of	6
Dry mass, definition of	3	Monguch Stream, Gagil-Tomil, Yap Islands	85,114
		Mukong Stream, Gagil-Tomil, Yap Islands65,	115.133
Explanation of ground-water level records	17-18	Mutunte River, Kosrae	72,127
Explanation of stage and water-discharge		Mwot River, Kosrae	86
records	11-15		
Explanation of water-quality records	15-17	Nanepil River, Ponape	
Eyeb Stream, Gagil-Tomil, Yap, Yap Islands	86,117	National Stream-quality accounting network	11
Easts Chrings at Asst Co	0.4	Natural substrate, definition of	9
Faata Springs at Agat, Guam	122	Ngardok River, North Fork, Babelthuap,	101
Fecal coliform bacteria, definition of	122	Palau Islands	100
Fecal streptococcal bacteria, definition of	3	South Fork, Babelthuap, Palau Islands60,	85,95
Fena Dam spillway near Agat, Guam46		Ngatpang River, Babelthuap, Palau Islands Ngechutrong River, Babelthuap, Palau Islands	
			UT . JL

158 INDEX

	Page		Page
North Fork Ngardok River, Babelthuap, Palau	8-	Suspended-sediment load, definition of	8
Islands	85,101	Suspended, total, definition of	4 - 5
Numbering system for wells and miscellaneous sites	11	Tabagaten River, Babelthuap, Palau Islands57	06 171
31.63	11	Tafeyat River, Kosrae	86,130
Okat River, Kosrae	73,128	Talagu Stream, Yap, Yap Islands	112
Omin Stream, Yap Islands	118	Taleyfac River near Agat, Guam	84
Ordot, Guam, Pago River near	49	Talofofo Stream, Middle Fork, Saipan	38
Organic mass, definition of	3	South Fork, Saipan	37
Organism count/area, definition of	6	Tamaney Stream, Yap, Yap Islands	85,106
Organism count/volume, definition of	6	Taxonomy, definition of	9
Organism, definition of	6	Thalomar Stream above reservoir, Yap	05 100
Other data available	15	Islands	85,109
Pago River near Ordot, Guam	49-55	Time-weighted average, definition of Tinaga River near Inarajan, Guam	42
Pago Stream at Afono, Tutuila	77,135	Tofol River, Kosrae	76,130
Pakusrik River, Kosrae	87,131	Tons per acre-foot, definition of	10
Palau Islands, gaging-station records in	56-60	Tons per day, definition of	10
low-flow partial-record stations in	84-85	Total, coliform bacteria, definition of	2
map of	28-29	Total, definition of	5
water-quality records at partial-record	01 107	Total in bottom material, definition of	5
stations in	91-103	Total load, definition of	10
water-temperature records in	132	Total organism count, definition of	0
Palusrik River, Kosrae	86,129	Total, recoverable, definition of	8
Particle-size, definition of	7	Total-sediment discharge, definition of Turbidity, definition of	10
Particle-size, classification, definition of	7	Truk Islands, gaging-station records in	66-67
Pemgoy Stream, Yap, Yap Islands63	,111,133	map of	31
Percent composition, definition of	7	water-quality records, at ground-water	
Pesticides, definition of	7	sites in	156
Phytoplankton, definition of	7	water-quality records at partial-record	
Picocurie, definition of	7	stations in	
Plankton, definition of	/	water-temperature records in	134
Polychlorinated biphenyls, definition of Ponape, island of, gaging-station records in	68-71	Trust Territory, map of	77-83
map of	32	map of	34
water-quality records at partial-record	-	water-temperature records in	
stations in	122-127		
water-temperature records in.,		Ugum River above Talofofo Falls, near	
Pou Reservoir (outflow), Moen, Truk Islands	120	Talofofo, Guam	47
Pou Stream, Moen, Truk Islands	86,121	Umatac, Guam, La Sa Fua River near	40
Primary productivity, definition of	8	Unnamed north coast stream, Malakal, Palau	05 107
Publications,	15,17	Islands	85,103
investigations	20	Unnamed west coast stream, Arakabesan, Palau Islands	85,102
Invostigacions	20	13141143	05,102
Records of discharge collected by agencies		Water analysis	16
other than the Geological Survey,	15	Water temperature	16
Recoverable from bottom material,		Water temperature, periodic determination of	132-136
definition of	5	WDR, definition of	10
Ripu Stream, Yap, Yap Islands	85,107	Weighted average, definition of	10
0-1	76 70	Wet mass, definition of	3
Saipan, island of, gaging-stations records in.	36-38	Wichen River, at altitude 18 m, Moen,	120 174
map of Sediment	25 16-17	Truk Islands	110,134
Sediment, definition of	8	WRD, definition of	119,134
Senpen River, Ponape	86,126	WSP, definition of	10
Solute, definition of	9	221X 2221121221 22211111111111111111111	
Special networks and programs,	11	Yap Islands, gaging-station records in	61-65
Specific conductance, definition of	9	low-flow partial-record stations in	85-86
Stage-discharge relation, definition of	9	map of	30
Streamflow, definition of	9	water-quality records, at ground-water site.	155
Substrate, definition of	9	water-quality records at partial-record	104 115
Suspended, definition of	9	stations in	
Suspended, recoverable, definition of	4	water-temperature records in	133
Suspended-sediment concentration, definition of	8	Ylig River near Yona, GuamYona, Guam, Ylig River near	48
Suspended sediment, definition of	8	. som) summ) tire wither medititititititititititititi	÷ 0
Suspended-sediment discharge, definition of	8	Zooplankton, definition of	8

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI). This report contains both the inch-pound and SI unit equivalents in the station manuscript descriptions.

Multiply inch-pound units	Ву	To obtain SI units
	Length	
inches (in)	2.54x10 ¹	millimeters (mm)
	2.54x10 ⁻²	meters (m)
feet (ft)	3.048x10 ⁻¹	meters (m)
miles (mi)	1.609x10°	kilometers (km)
	Area	
acres	4.047x10 ³	square meters (m ²)
	4.047x10 ⁻¹	square hectometers (hm²)
	4.047×10^{-3}	square kilometers (km ²)
square miles (mi ²)	2.590x10°	square kilometers (km²)
	Volume	
gallons (gal)	3.785x10°	liters (L)
	3.785x10°	cubic decimeters (dm³)
	3.785x10 ⁻³	cubic meters (m ³)
million gallons	3.785×10^3	cubic meters (m ³)
	3.785×10^{-3}	cubic hectometers (hm³)
cubic feet (ft ³)	2.832x10 ¹	cubic decimeters (dm³)
	2.832x10 ⁻²	cubic meters (m ³)
cfs-days	2.447×10^3	cubic meters (m ³)
F+ (F4)	2.447×10^{-3}	cubic hectometers (hm³)
acre-feet (acre-ft)	1.233×10^3	cubic meters (m ³)
	1.233x10 ⁻³ 1.233x10 ⁻⁶	cubic hectometers (hm³)
	1.255X10 °	cubic kilometers (km³)
	Flow	
cubic feet per second (ft ³ /s)	2.832x10 ¹	liters per second (L/s)
	2.832x10 ¹	cubic decimeters per second (dm ³ /s)
	2.832x10 ⁻²	cubic meters per second (m³/s)
gallons per minute (gal/min)	6.309x10 ⁻²	liters per second (L/s)
	6.309x10 ⁻²	cubic decimeters per second (dm³/s)
	6.309x10 ⁻⁵	cubic meters per second (m³/s)
million gallons per day	4.381x10 ¹	cubic decimeters per second (dm ³ /s)
	4.381x10 ⁻²	cubic meters per second (m³/s)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

POSTAGE AND FEES PAID U.S. DEPARTMENT OF THE INTERIO INT 413

U.S. DEPARTMENT OF THE INTERIOR Geological Survey P.O. Box 50166 Honolulu, HI 96850

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300
SPECIAL 4TH CLASS BOOK RATE