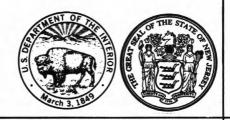

R (200) Ga3 New Jersey 1980 v. 1

Water Resources Data for New Jersey

Volume 1. Atlantic Slope Basins, Hudson River to Cape May


U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NJ-80-1

WATER YEAR 1980

Prepared in cooperation with the New Jersey Department of Environmental Protection and with other agencies

7 8 9 10 11 12 13																				
S M T W T F S S									1	9	7 9									
S M T W T F S S																				
1 2 3 4 5 6	C	C	TO	B	ER			N	V	E	и в	EI	R		DI	EC	EN	A B	E	R
1 2 3 4 5 6			111	_					-	***	-	-				_	11/	_	-	
7 8 9 10 11 12 13	5 N	1 1	W		F	5	5	M	1	W		r	2	5	M		W		F	
# 15 16 17 18 19 20 # 15 16 17 18 19 20 # 15 16 17 18 19 20 # 18 19 20 21 22 23 24 # 16 17 18 19 20 21 # 25 26 27 28 29 30 # 25 26 27 28 29 30 # 27 28 29 30 # 28 29 30 31 # 25 26 27 28 29 30 # 30 31	100										1	2	3							
1 22 23 24 25 26 27 18 19 20 21 22 23 24 16 17 18 19 20 21 28 29 30 25 26 27 28 29 30 21 22 23 24 25 26 27 28 29 30 21 22 23 24 25 26 27 28 29 30 21 22 23 24 25 26 27 28 29 30 21 28 29 30 31 1 9 8 0 The proof of the p									-			100								
1 9 8 0 1 9 8 0 1 9 8 0 1 9 8 0 1 9 8 0 1 2 3 4 5																				
1 9 8 0																				
JANUARY FEBRUARY MARCH 5 M T W T F S S M T W T F S S M T W T F S 6 7 8 9 10 11 12 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 17 18 19 20 21 22 23 24 25 26 27 28 29 23 24 25 26 27 28 29 23 24 25 26 27 28 29 23 24 25 26 27 28 29 23 24 25 26 27 28 29 20 30 31 APRIL MAY JUNE 6 M T W T F S S M T W T T S S M T W T F S S M T W T T S S M T W T T S S M T W T T S S M T W T T S S														30	31					
JANUARY FEBRUARY MARCH 5 M T W T F S S M T W T F S S M T W T F S 6 7 8 9 10 11 12 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 17 18 19 20 21 22 23 24 25 26 27 28 29 23 24 25 26 27 28 29 23 24 25 26 27 28 29 23 24 25 26 27 28 29 23 24 25 26 27 28 29 20 30 31 APRIL MAY JUNE 6 M T W T F S S M T W T T S S M T W T F S S M T W T T S S M T W T T S S M T W T T S S M T W T T S S																				
S M T W T F S S M T W T F S S M T W T F S 1 2 3 4 5 1 2 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 10 11 12 13 14 15 16 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 17 18 19 20 21 22 23 16 17 18 19 20 21 22 23 24 25 26 27 28 29 23 24 25 26 27 28 29 23 24 25 26 27 28 29 23 24 25 26 27 28 29 23 24 25 26 27 28 29 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 30 20 25 26 27 28 29 30 31 29 30 29 30 25 26 27 28 29 30 31 29 30 31 29 30 31 29 30 31 29 30 31 30 30 31 30 30 31 30 30 31 30 30 31 30 30 31 30 30 31 30 30 31 30 30 31 30 30 31 30 30 30 30 30 30 30 30 30 30 30 30 30									1	9 8	8 0									
S M T W T F S S M T W T F S S M T W T F S 1 2 3 4 5 1 2 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 10 11 12 13 14 15 16 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 17 18 19 20 21 22 23 16 17 18 19 20 21 22 23 24 25 26 27 28 29 23 24 25 26 27 28 29 23 24 25 26 27 28 29 23 24 25 26 27 28 29 23 24 25 26 27 28 29 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 30 20 25 26 27 28 29 30 31 29 30 29 30 25 26 27 28 29 30 31 29 30 31 29 30 31 29 30 31 29 30 31 30 30 31 30 30 31 30 30 31 30 30 31 30 30 31 30 30 31 30 30 31 30 30 31 30 30 31 30 30 30 30 30 30 30 30 30 30 30 30 30																				
1 2 3 4 5 1 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 17 18 19 20 21 22 23 16 17 18 19 20 21 22 23 24 25 26 27 28 29 23 24 25 26 27 28 29 23 24 25 26 27 28 29 23 24 25 26 27 28 29 23 24 25 26 27 28 29 20 30 31 A P R I L MAY JUNE 5 M T W T F S S S M T W T F S S S M T W T F S S M T W T F S S S M T W T T F S S S M T W T T T S T S T T T T T T T T T T T T	J	A	N U	AI	RY			F	ЕВ	RI	JA	R	4		1	AN	R (Н		
3	S N	1 T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	
1		1	2	3	4	5						1	2							
2 21 22 23 24 25 26										-										
7 28 29 30 31 24 25 26 27 28 29 23 24 25 26 27 28 29 30 31 A P R I L M A Y J U N E 5 M T W T F S S M T W T F S S M T W T F S 6 M T W T F S S M T W T F S S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 4 5 6 7 8 9 10 8 9 10 11 12 13 14 15 16 17 18 19 11 12 13 14 15 16 17 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 2 21 22 23 24 25 26 18 19 20 21 22 23 24 25 26 27 28 29 30 31 29 30 J U L Y A U G U S T S E P T E M B E I 6 M T W T F S S M T W T F S S M T W T F 6 M T W T F S S M T W T F S S M T W T F 6 M T W T F S S M T W T F S S M T W T F 6 M T W T F S S M T W T F S S M T W T F 6 M T W T F S S M T W T F S S M T W T F 6 T 8 9 10 11 12 3 4 5 6 7 8 9 7 8 9 10 11 12 3 4 5 6 7 8 9 7 8 9 10 11 12 3 14 15 16 17 18 19 12 13 14 15 16 17 18 19 19 10 11 12 13 14 15 16 17 18 19 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15																				
A P R I L M A Y J U N E M T W T F S S M T W T W T F S S M T W T W T F S S M T W T W T F S S M T W T W T F S S M T W T W T F S S M T W T W T W T W T W T W T W T W T W T																				
S M T W T F S S M T W T T F S S M T W T F S S M T W T T T S S M T W T T T S S M T W T T T S S M T W T T T S S M T W T T T S S M T W T T T S S M T W T T T S S M T W T T T S S M T W T T T S S M T W T T T S S M T W T T T S S M T W T T T S S M T W T T T S S M T W T T T S S M T W T T T S S M T W T T S S M T W T T T S S M T T W T T S S M T W T T S S M T W T T S S M T W T T S S M T W T T S S M T W T T S S M T W T T S S M T W																				
1 2 3 4 5 1 2 3 4 5 6 7 8 9 10 8 9 10 11 12 13 8 14 15 16 17 18 19 20 21 22 23 24 25 26 18 19 20 21 22 23 24 25 26 27 28 29 30 31 29 30 JULY AUGUST SEPTEMBER MTWTFS SMTWTFS SMTWTFS SMTWTF 1 2 3 4 5 7 8 9 10 11 12 3 4 5 6 7 8 9 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 29 30		A	PR	11					1	M A	Y					, ,	JN	E		
1 2 3 4 5 1 2 3 4 5 6 7 8 9 10 8 9 10 11 12 13 8 14 15 16 17 18 19 20 21 22 23 24 25 26 18 19 20 21 22 23 24 25 26 27 28 29 30 31 29 30 JULY AUGUST SEPTEMBER MTWTFS SMTWTFS SMTWTFS SMTWTF 1 2 3 4 5 7 8 9 10 11 12 3 4 5 6 7 8 9 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 29 30	5 N	. т	W	Т	F	S	S	М	Т	W	Т	F	S	S	М	Т	w	Т	F	
6 7 8 9 10 11 12 13 14 15 16 17 18 19 11 12 13 14 15 16 17 18 19 20 21 22 23 24 22 23 24 25 26 27 28 29 30 31 29 30 JULY AUGUST SEPTEMBE SMTWTFS SMTWTFS SMTWTFS SMTWTFS SMTWTFS SMTWTFS SMTWTFS SMTWTFS 12 1 2 3 4 5 7 8 9 10 11 12 12 1 2 3 4 5 7 8 9 10 11 12 12 1 2 3 4 5 6 7 8 9 10 11 <td></td>																				
3 14 15 16 17 18 19	. 7					100		-	-	7	120									
1 2 2 2 3 2 4 2 5 2 6										-									-	
JULY AUGUST SEPTEMBE MTWTFS SMTWTFS SMTWTF 1 2 3 4 5 1 2 3 4 5 5 7 8 9 10 11 12 3 4 5 6 7 8 9 7 8 9 10 11 12 3 14 15 16 17 18 19 10 11 12 13 14 15 16 14 15 16 17 18 19 10 0 21 22 23 24 25 26 17 18 19 20 21 22 23 21 22 23 24 25 26							18	19	20	21	22	23	24							
1 2 3 4 5 3 7 8 9 10 11 12 12 3 4 5 3 1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16 17 18 19 10 11 12 13 14 15 16 14 15 16 17 18 19 0 21 22 23 24 25 26 17 18 19 20 21 22 23 24 25 26	7 28	29	30				25	26	27	28	29	30	31							
1 2 3 4 5 3 7 8 9 10 11 12 12 3 4 5 3 1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16 17 18 19 10 11 12 13 14 15 16 14 15 16 17 18 19 0 21 22 23 24 25 26 17 18 19 20 21 22 23 24 25 26																				
1 2 3 4 5 1 2 1 2 3 4 5 5 7 8 9 10 11 12 3 4 5 5 7 8 9 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 21 22 23 24 25 26 17 18 19 20 21 22 23 24 25 26 1		1	JL	Y				A	U	G U	S				SE	P -	ΓE	ME	3 E	1
3 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 14 15 16 17 18 19 19 19 10 11 12 13 14 15 16 17 18 19 19 19 10 11 12 13 14 15 16 17 18 19 19 19 19 19 10 11 12 13 14 15 16 17 18 19 19 19 19 19 19 10 11 12 13 14 15 16 17 18 19 19 19 12 12 23 21 22 23 24 25 26 26 17 18 19 20 21 22 23 24 25 26 26 24 25 26 26 24 25 26 26 26 26	5 M	Т	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	
3 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 14 15 16 17 18 19 19 19 10 11 12 13 14 15 16 17 18 19 19 19 10 11 12 13 14 15 16 17 18 19 19 19 19 19 10 11 12 13 14 15 16 17 18 19 19 19 19 19 19 10 11 12 13 14 15 16 17 18 19 19 19 12 12 23 21 22 23 24 25 26 26 17 18 19 20 21 22 23 24 25 26 26 24 25 26 26 24 25 26 26 26 26		1	2	3	4	5						1	2		1	2	3	4	5	
21 22 23 24 25 26							3	4	5	6	7	8	9	7	8	9	10	11	12	1
							10	11	12	13	14	15	16							
					25	20											24	25	26	-

31

Water Resources Data for New Jersey

Volume 1. Atlantic Slope Basins, Hudson River to Cape May

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NJ-80-1
WATER YEAR 1980

Prepared in cooperation with the New Jersey Department of Environmental Protection and with other agencies

UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, Secretary

GEOLOGICAL SURVEY

Doyle G. Frederick, Acting Director

For additional information write to
District Chief, Water Resources Division
U.S. Geological Survey
Room 430, Federal Building
402 East State Street
Trenton, New Jersey 08608

PREFACE

This report was prepared by the U.S. Geological Survey in cooperation with the State of New Jersey and with other agencies by personnel of the New Jersey district of the Water Resources Division under the supervision of D. E. Vaupel, District Chief, and J. E. Biesecker, Regional Hydrologist, Northeastern Region.

This report is one of a series issued State by State under the general direction of Philip Cohen, Chief Hydrologist, U.S. Geological Survey and R. J. Dingman, Assistant Chief Hydrologist for Scientific Publications and Data Management.

Data for New Jersey are in two volumes as follows:

Volume 1. Atlantic Slope Basins, Hudson River to Cape May Volume 2. Delaware River Basin and Tributaries to Delaware Bay

5	02	72	-1	01

REPORT DOCUMENTATION 1. REPORT NO. USGS/WRD/HD-81-057	2.	3. Recipient's Accession No.
4. Title and Subtitle Water Resources Data for New Jersey, Water Yes	ar 1979	5. Report Date June 1981
Volume 1. Atlantic Slope Basins, Hudson River	r to Cape May	6.
7. Author(s)		8. Performing Organization Rept. No. USGS-WRD-NJ80-1
9. Performing Organization Name and Address U.S. Geological Survey, Water Resources Divis	ion	10. Project/Task/Work Unit No.
Room 430 Federal Building Trenton, New Jersey 08608		11. Contract(C) or Grant(G) No. (C)
		(G)
12. Sponsoring Organization Name and Address U.S. Geological Survey, Water Resources Divis Room 430 Federal Building	ion	13. Type of Report & Period Covered Annual - Oct. 1, 1979 to Sept. 30, 1980
Trenton, New Jersey 08608		14.

15. Supplementary Notes

Prepared in cooperation with the New Jersey Department of Environmental Protection and with other agencies.

16. Abstract (Limit: 200 words)

Water resources data for the 1980 water year for New Jersey consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This volume of the report contains discharge records for 75 gaging stations; tide summaries for one (1) station; stage and contents for 15 lakes and reservoirs; water quality for 84 surface-water sites and 108 wells; and water levels for 34 observation wells. Also included are data for 43 crest-stage partial-record stations; 22 tidal crest-stage gages; and 47 low-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data represent that part of the national water data system operated by the U.S. Geological Survey and cooperating State and Federal agencies in New Jersey.

17. Document Analysis a. Descriptors

*New Jersey, *Hydrologic data, *Surface water, *Ground water, *Water quality, Flow rate, Gaging stations, Lakes, Reservoirs, Chemical analyses, Sediments, Water temperatures, Sampling sites, Water Levels, Water Analyses.

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Availability Statement No restriction on distribution. This report may be purchased from: National Technical Information Service, Springfield, VA 22161

19. Security Class (This Report) Unclassified	21. No. of Pages 362	
20. Security Class (This Page) Unclassified	22. Price	

CONTENTS

		Page
List of List of Introdu Coopera Acknowl Hydrolo Definit Downstr Numberi Special Explana Collee Accur Publi Collee Water Sedim Remar Publi Explana Collee Uster Publi Selectee Publi Selectee Collee Co	surface-water stations, in downstream order, for which records are published ground-water stations, by county, for which records are published iction tion edgments gic conditions ion of terms eam order and station number ing system for wells and miscellaneous sites networks and programs. tion of stage and water-discharge records ection and computation of data. actions. data available ds of stage or discharge collected by agencies other than the Geological Survey tion of water-quality records. ection and examination of data temperatures. ent k codes for water-quality data cations. tion of ground-water level records. ection of the data cations. tion of ground-water level records. ection of the data cations. tion on techniques of water-resources investigations year at partial-record stations and miscellaneous sites low partial-record stations and miscellaneous sites low partial-record stations solva partial-record stations	III VIII 11 11 12 22 88 88 99 99 99 111 111 111 112 123 133 133 133 134 146 296 296 302 213 335 235 352 352 355 355 355 355 355 35
	ILLUSTRATIONS	
Figure	1. Well locations system 2. Monthly streamflow at key gaging stations. 3. Annual mean discharge at key gaging stations. 4. Monthly ground-water levels at key observation wells. 5. Map showing location of gaging stations, and surface-water quality stations. 6. Map showing location of low-flow and crest-stage partial-record stations. 7. Map showing location of ground-water stations quality stations and observation wells.	8 17 18 19 20 22
	TABLES	
Table	 Degrees Celsius (°C) to degrees Fahrenheit (°F)	12 13 14

[Letter after station name designates type of data: (d) discharge, (c) chemical, (b) biological, (m) microbiological,(e) elevation, gage height or contents, (t) water temperature, (s) sediment]

Section of Edward Control	Page
HUDSON RIVER BASIN	
Rondout Creek: Wallkill River at outflow of Lake Mohawk, at Sparta (cm)	26
wallkill River at outflow of Lake Monawk, at Sparta (cm)	26
Wallkill River at Franklin (cm)	28
Wallkill River near Sussex (cm)	30
Wallkill River near Unionville, NY (d)	32
Walikili kiver near Unionville, Ni (d) Black Creek (head of Poohuck Creek) near Vernon (cm)	34
	35
HACKENSACK RIVER BASIN	
Hackensack River at West Nyack, NY (d)	37
Hackensack River at Rivervale (dom)	38
Pascack Brook at Westwood (d)	40
Hackensack River at New Milford (d)	41
Reservoirs in Hackensack River basin (e)	42
Diversions in Hackensack River basin	43
PASSAIC RIVER BASIN	
Passaic River near Millington (dem)	44
Passaic River near Chatham (dom)	47
Rockaway River above reservoir, at Boonton (d)	50
Rockaway River below reservoir, at Boonton (d)	51
Rockaway River at Pine Brook (cm)	52
Whippany River at Morristown (dcm)	54
Whippany River near Pine Brook (cm)	57
Passaic River at Pine Brook (d)	59
Passaic River at Two Bridges (cm)	60
Pompton River:	
Pequannock River (head of Pompton River) at Macopin intake dam (d)	62
Wanaque River at Awosting (d)	63
Wanaque River at Monks (d)	64
Wanaque River at Wanaque (domt)	65
Ramapo River at Suffern, NY (d)	69
Mahwah River near Suffern, NY (d)	71
Ramapo River near Mahwah (dom)	72
Ramapo River at Pompton Lakes (d)	75
Pompton River at Pompton Plains (d)	76
	77
Passaic River at Rt. 46 at Singac (cm)	79 80
Passaic River at Little Falls (dbcmts)	88
Fassale river at Ridgewood (d).	
Hohokus Brook at Hohokus (d).	89
Saddle River at Fair Lawn (cm).	90
Saddle River at Lodi (dom)	91
Third River at Passaic (d)	93
Reservoirs in Passaic River basin (e)	96 97
Diversions in Passaic River basin	100
ELIZABETH RIVER BASIN	100
Elizabeth River at Ursino Lake, at Elizabeth (dcm).	101
RAHWAY RIVER BASIN	101
Rahway River near Springfield (dom)	104
Rahway River at Rahway (dcm)	107
Rahway River at Rahway (dcm)	110
RARITAN RIVER BASIN	
South Branch Raritan River at outlet Budd Lake (cm)	113
South Branch Raritan River at Middle Valley (cm).	115
South Branch Raritan River near High Bridge (d)	117
South Branch Raritan River at Arch Street, at High Bridge (cm)	118
Spruce Run at Glen Gardner (d)	119
Spruce Run near Glen Gardner (cm)	120
Mulhockaway Creek at Van Syckel (dcm)	122
Spruce Run at Clinton (dcmt)	125
South Branch Raritan River at Stanton (d)	128
Prescott Brook at Round Valley (cm)	129
South Branch Raritan River:	
Bushkill Brook at Rockefellows Mills (cm)	131
South Branch Raritan River at Three Bridges (cm)	133
Neshanic River at Reaville (dcm)	135
Back Brook:	
Back Brook tributary near Ringoes (d)	138
South Branch Raritan River at South Branch (cm)	139
Holland Brook at Readington (d)	141
North Branch Raritan River near Chester (cm)	142
North Branch Raritan River near Far Hills (dom)	144
North Branch Raritan River at Burnt Mills (cm)	146
Lamington (Black) River at Succasunna (d)	148
Lamington (Black) River near Ironia (dcm)	149
Lamington (Black) River near Pottersville (dcm)	152
Upper Cold Brook near Pottersville (d)	155
Lamington (Black) River tributary No. 2 near Pottersville (d)	156
Lamington (Black) River at Lamington (cm)	157
South Branch Rockaway Creek:	
South Branch Rockaway Creek tributary at Lebanon (cm)	159
South Branch Rockaway Creek at Whitehouse (d)	161
Rockaway Creek at Whitehouse (dcm)	162
Lamington (Black) River at Burnt Mills (cm)	165
NOT OF DESIGN DELIGION DIVER AL NOTED DESIGN (D)	107

SURFACE WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED	VII
	Page
RARITAN RIVER BASINContinued North Branch Raritan River near Raritan (d). Raritan River at Raritan (cm) Peters Brook near Raritan (d) Raritan River at Manville (dcm) Millstone River at Applegarth (cm) Millstone River at Grovers Mill (cm) Stony Brook at Princeton (dcm) Heathcote Brook at Kingston (cm) Millstone River at Kingston (cm) Beden Brook near Rocky Hill (cm) Pike Run at Belle Mead (d) Millstone River at Blackwells Mills (d) Millstone River at Weston (cm)	168 169 171 172 175 177 179 182 184 186 188 189
Royce Brook: Royce Brook tributary near Belle Mead (d)	192 193
West Branch Middle Brook near Martinsville (d)	194
Green Brook at Seeley Mills (d)	195 196
East Branch Stony Brook at Watchung (d)	197 198 199 206 207 208
Matchaponix Brook (head of South River) near Englishtown (cm). Barclay Brook near Englishtown (cm). Matchaponix Brook at Mundy Avenue, at Spotswood (cm). Manalapan Brook at Federal Road near Manalapan (cm). Manalapan Brook at Spotswood (d). Manalapan Brook at Bridge Street at Spotswood (cm). South River at Old Bridge (d). South River below Duhernal Dam at Old Bridge (cm). Reservoirs in Raritan River basin (e).	209 211 213 215 217 218 220 221 222 223
NAVESINK RIVER BASIN Swimming River: Hop Brook: Willow Brook near Holmdel (cm)	224 226 228
Shark River near Neptune City (dom)	231 234
Manasquan River near Georgia (cm)	236 238 240
North Branch Metedeconk River near Wyckoff Mills (cm)	241 243
Toms River near Toms River (dcbmts)	244
Oyster Creek near Brookville (d)	253
Westecunk Creek at Stafford Forge (d)	254 255 257 258
Hammonton Creek at Wescoatville (cm). Batsto River at Batsto (dcm). Batsto River at Pleasant Mills (e). West Branch Wading River near Jenkins (dc). West Branch Wading River at Maxwell (dcbmts). Oswego River at Harrisville (dcm). Bass River: East Branch Bass River near New Gretna (dcm).	260 261 264 265 270 275
ABSECON CREEK BASIN Absecon Creek at Absecon (d)	281
GREAT EGG HARBOR RIVER BASIN Great Egg Harbor River near Blue Anchor (cm). Great Egg Harbor River near Blue Anchor (cm). Great Egg Harbor River at Folsom (dct) Great Egg Harbor River at Weymouth (cm).	282 284 286 292
TUCKAHOE RIVER BASIN Tuckahoe River at Head of River (dcm)	294

GROUND-WATER LEVEL RECORDS		
Atlantic County	 	
Burlington County	 	
Camden County	 	
Cumberland County	 	
Ssex County		
Mercer County	 	
Middlesex County		
onmouth County	 	
orris County	 	
Ocean County	 	
Passaic County	 	
Dnion County		
miton country	 	
MIALTTY OF CROUND WATER RECORDS		
UALITY OF GROUND WATER RECORDS tlantic County		
tlantic county	 	
Cape May County		
iddlesex County	 	
Monmouth County	 	
Ocean County		

INTRODUCTION

Water resources data for the 1980 water year for New Jersey consist of records of stage, discharge, and water quality of streams; stage, and contents of lakes and reservoirs; and water levels and water quality of ground water. This volume of the report contains discharge records for 75 gaging stations; tide summaries for 1 station; stage and contents for 15 lakes and reservoirs; water quality for 84 surface water sites and 108 wells; and water levels for 34 observation wells. Also included are data for 43 crest-stage partial-record stations, 22 tidal crest-stage gages and 51 low-flow partial-record stations. Locations of these sites are shown in figures 5, 6, and 7. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in New Jersey.

Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled, "Surface Water Supply of the United States." Through water year 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled, "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled "Ground-Water Levels in the United States." Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from Branch of Distribution, U.S. Geological Survey, 1200 South Eads Street, Arlington, VA 22202.

For water years 1961 through 1970, streamflow data were released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records.

Beginning with the 1971 water year, water data for streamflow, water quality, and ground water are published as an offical Survey report on a State-boundary basis. These offical Survey reports carry an identification number consisting of the two letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume of the report is identified as "U.S. Geological Survey Water-Data Report NJ-80-1." These water-data reports are for sale, in paper copy or in microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the district chief at the address given on the back of the title page or by telephone (609) 989-2162.

COOPERATION

This report was prepared by the U.S. Geological Survey under cooperative agreement with the following organizations:

New Jersey Department of Environmental Protection, Jerry F. English, commissioner.
Division of Water Resources, Arnold Schiffman, director.
Division of Fish, Game and Wildlife, Russell A. Cookingham, director.
New Jersey Department of Agriculture, Phillip Alampi, secretary.
Division of Rural Resources, Richard D. Chumney, director.
Delaware River Basin Commission, Gerald M. Hansler, executive director.
North Jersey District Water Supply Commission, Dean C. Noll, chief engineer.
Passaic Valley Water Commission, W.E. Inhoffer, general superintendent and chief engineer.
County of Bergen, V.J. Nunno, director of Public Works and E.R. Ranuska, county engineer.
County of Camden, Joseph T. Patermo, director of Camden County Planning Board.
County of Morris, James Plante, chairman of Morris County Municipal Utilities Authority.
County of Somerset, Thomas E. Decker, county engineer, and Thomas Harris, administrative engineer.
Township of West Windsor, Larry Ellery, chairman of Environmental Commission.

Assistance in the form of funds was given by the Corps of Engineers, U.S. Army, in collecting records for 50 surface water stations, and for the collection of sediment records at four stream-sampling stations, and by the U.S. Environmental Protection Agency for the collection of chemical analyses at four stream-sampling stations. In addition, several stations were operated fully or partially from funds appropriated directly to the Geological Survey. Assistance was also furnished by the National Weather Service and the National Ocean Survey.

The following organizations aided in collecting records:

Municipalities of Atlantic City, Jersey City, Newark, New Brunswick and Spotswood; American Cyanamid Co.; Commonwealth Water Co.; Elizabethtown Water Co.; Ewing-Lawrence Sewerage Authority; Hackensack Water Co.; Johns-Manville Products Corp.; and Monmouth Consolidated Water Co.

Organizations that supplied data are acknowledged in station descriptions.

ACKNOWLEDGMENTS

The water resources data for New Jersey were processed and prepared for publication under the supervision of John J. Murphy Chief, Hydrologic Records Section, by R. D. Schopp, G. R. Kish, E. W. Moshinsky, F. L. Schaefer, E. A. Pustay, S. J. Perry, and I. C. H. Santana. The data were collected, computed and processed by other personnel as follows:

к.	C.	Angebrandt	М.	J.	DeLuca	C.	E.	Gurney	W.	J.	Pisch
н.	Bi	vens	E.	Do	rr	D.	Α.	Harriman	G.	J.	Pheasant
J.	В.	Campbell	J.	F.	Dudek	J.	J.	Hochreiter	C.	L.	Qualls
G.	L.	Centinaro	J.	T.	Fisher	W.	D.	Jones III	N.	Ri	vera
T.	Α.	Chepiga	Т.	V.	Fusillo	P.	D.	Kammler	Α.	J.	Velnich
R.	S.	Cole	В.	D.	Gillespie	Α.	A.	Meng	R.	L.	Walker

,

HYDROLOGIC CONDITIONS

Water year 1980 began with streamflow above the normal range throughout New Jersey. February precipitation was only 35 percent of normal causing streams to drop below normal. Above normal rainfall during March and April kept runoff normal or above normal through May. Starting in May, precipitation was below average for the rest of the water year for most of the State. Runoff declined steadily from May through September. On September 27 the Governor of New Jersey ordered mandatory water rationing in 114 northern New Jersey communities due to declining reservoir levels.

Monthly and annual discharges are compared with medians at three representative gaging stations in figures 2 and 3. The streamflow stations chosen for illustration were South Branch Raritan River near High Bridge and Great Egg Harbor River at Folsom, which reflect runoff conditions in the northern and southern parts of the State, respectively, and Delaware River at Trenton in which there is widespread interest.

Streamflow at South Branch Raritan River near High Bridge for the year averaged 140 ft 3 /s (3.96 m 3 /s), 116 percent of normal. The average flow for Great Egg Harbor River at Folsom was 90.0 ft 3 /s (2.55 m 3 /s), 103 percent of normal. The observed annual mean discharge on the Delaware River at Trenton was 11,500 ft 3 /s (325.7 m 3 /s), 90 percent of normal. The natural flow at Trenton (adjusted for diversion and storage upstream) was 93 percent of normal for the year.

Storage in the 13 major water-supply reservoirs in New Jersey decreased from 67.9 billion gallons (90 percent of capacity) on October 1 to 35.2 billion gallons (47 percent of capacity) on September 30. Storage in Wanaque Reservoir decreased from 24.2 billion gallons (86 percent of capacity) on October 1 to 12.3 billion gallons (44 percent of capacity) on September 30. Pumped storage in Round Valley Reservoir decreased from 54.5 billion gallons (99 percent of capacity) on October 1 to 45.4 billion gallons (83 percent of capacity) on September 30.

Water levels in water-table aquifers in the Coastal Plain portion of the State generally were above normal from October to April and near-normal during the remainder of the water year. Water levels in the heavily stressed artesian aquifers; however, continued to be lower than normal in the Coastal Plain. Declines in water levels were most notable in the Englishtown aquifer and aquifers in the Potomao-Raritan-Magothy aquifer system. Data for 32 wells which tap these artesian aquifers were published this year. Water levels in 18 of the wells in this group established new lows of record. In the northern portion of the State, north of the Fall Line, water levels in water-table, semi-artesian, and artesian aquifers varied from near normal to moderately below normal.

Monthly water levels are compared with long-term averages at two representative observation wells in figure 4. The wells chosen for illustration were Whites Lab. 3 in Union County and Crammer in Ocean County. Ten-year hydrographs for other selected wells also are included in these reports under the ground-water level records for the specific wells.

DEFINITION OF TERMS

Terms related to streamflow, water-quality and other hydrologic data, as used in this report, are defined below. See also the table for converting Inch-pound Units to Metric Units on the inside of the back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Adenosine triphosphate (ATP) is the primary energy donor in cellular life processes. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measure of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample.

 $\frac{\text{Algae}}{\text{roots}}$ are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Aquifer codes and geologic names:

The following list shows the aquifer codes and geologic names of the formations in which the sampled wells are finished. The aquifer codes also appear in the column "Geologic Unit" in the ground-water quality tables:

CAPE MAY FORMATION, UNDIFFERENTIATED CAPE MAY FORMATION, ESTUARINE SAND FACIES PLEISTOCENE-COHANSEY SAND, UNDIFFERENTIATED 112ESRNS , 112PLCC 112TILL GLACIAL TILL 1120TS4 STRATIFIED DRIFT COHANSEY SAND COHANSEY SAND-KIRKWOOD FORMATION, UNDIFFERENTIATED 121CNSY 121CKKD KIRKWOOD FORMATION, UPPER SAND KIRKWOOD FORMATION 122KRKDU 122KRKD 122KRKDI. KIRKWOOD FORMATION, LOWER SAND MANASQUAN-VINCENTOWN FORMATION, UNDIFFERENTIATED PINEY POINT FORMATION
MOUNT LAUREL SAND-WENONAH FORMATION 124PNPN 211MLRW 211EGLS ENGLISHTOWN FORMATION POTOMAC-RARITAN-MAGOTHY AQUIFER SYSTEM 211MGRR MAGOTHY FORMATION, OLD BRIDGE SAND MEMBER RARITAN FORMATION, FARRINGTON SAND MEMBER BRUNSWICK SHALE OR FORMATION STOCKTON FORMATION 2110DBG 231BRCK 231SCKN

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer, tapped by the well. A flowing artesian well is one in which the water level is above land surface.

Bacteria are microscopic unicellular organisms, typically spherical, rod-like, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, other perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as all the organisms which produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35°C \pm 0.5°C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 ml of sample.

Fecal coliform bacteria are bacteria that are present in the intestines or feces of warmblooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours when incubated at 44.5°C \pm 0.2°C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 ml of sample.

Fecal streptococcal bacteria are bacteria found also in the intestines of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at 35° C ± 0.5° C on KF streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 ml of sample.

Bedload is the sediment which moves along in essentially continuous contact with the streambed by rolling, sliding, and making brief excursions into the flow a few diameters above the bed.

Bed material is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, used for the decomposition of organic matter by microorganisms, such as bacteria.

 $\underline{\text{Biomass}}$ is the amount of living matter present at any given time, expressed as the weight per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of $500\,^{\circ}\text{C}$ for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m³) and periphyton and benthic organisms in grams per square meter (g/m²).

 $\underline{\text{Dry mass}}$ refers to the mass of residue present after drying in an oven at 60°C for zooplankton and 105°C for periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and the ash mass, and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

Bottom material: See Bed material.

Cells/volume refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

 $\frac{\texttt{Cfs-day}}{\texttt{descended}} \text{ is the volume of water represented by flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, about 646,000 gallons or 2,447 cubic meters.}$

Chemical oxygen demand (COD) is a measure of the quantity of organic matter which can be chemically oxidized in the presence of a strong oxidant.

<u>Chlorophyll</u> refers to the green pigments of plants. Chlorophyll \underline{a} and \underline{b} are the two most common pigments in plants.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuing record station is a specified site which meets one or all conditions listed:

- 1. When chemical samples are collected daily or monthly for 10 or more months during the water year.
- 2. When water temperature records include observations taken one or more times daily.
- When sediment discharge records include periods for which sediment loads are computed and are considered to be representative of the runoff for the water year.

Control designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, and artificial structure, or a uniform cross section over a long reach of the channel.

Control structure as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

 $\frac{\text{Cubic foot per second}}{\text{passing a given point during 1 second and is equivalent to 7.$\%8 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.}$

Depth of well:

Total depth of well is the maximum depth in feet below land surface datum (lsd) at which the well was originally finished. This depth may be slightly deeper than "depth to the bottom of sample interval" because many wells have a "tailpiece" or short length of casing installed below the well screen.

 $\underline{\text{Total depth of hole}} \ \ \text{is the total depth in feet below land surface datum to which the hole was drilled, regardless of the finished depth of the well.}$

Depth to the top of water-bearing zone is the depth in feet, based on the best available information which indicates the top of the water-bearing zone that is furnishing water to the well.

Depth to bottom of water-bearing zone is the depth in feet, based on the best available information which indicates the bottom of the water-bearing zone that is furnishing water to the well.

Depth to the top of sample interval is the uppermost point in a fully cased well at which water can enter the well. In bedded sediments this is usually the uppermost part of the screened interval. In some wells the top of the well screen is installed inside and a few feet above the bottom of the casing. Under these conditions the bottom of the casing is considered to be the top of the sample interval.

Discharge is the volume of water (or more broadly, volume of fluid plus suspended sediment), that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

Instantaneous discharge is the discharge at a particular instant of time.

 $\frac{\text{Diversity index}}{\text{for mula}} \text{ is a numerical expression of the evenness of distribution of aquatic organisms.} \quad \text{The formula}$

$$\overline{d} = -\sum_{i=1}^{8} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

Where n_s is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Diversity index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

Drainage area of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

 $\frac{\text{Drainage basin}}{\text{sts of a surface stream or body of impounded surface water together with all tributary surface stream and bodies of impounded surface water.}$

 $\frac{\text{Gage height}}{\text{used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.}$

Gaging station is a particular site on a stream, canal, lake, or reservoir where systematic observations of gage height or discharge are obtained. When used in connection with a discharge record, the term is applied only to those gaging stations where a continuous record of discharge is obtained.

<u>Hardness</u> of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate ($CaCO_3$).

High tide is the maximum height reached by each rising tide.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

<u>Instantaneous flow rate</u> is the flow rate at which water is removed from the well. Used with pump or flow period prior to sampling (see below) so that the exact volume of water pumped prior to sampling can be determined.

Land-surface datum is a datum plane that is approximately at the land surface at the well.

Low tide is the minimum height reached by each falling tide.

Mean high or low tide is the average of all high or low tides, respectively, over a specified period.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Methylene blue active substance (MBAS) is a measure of apparent detergents. This determination depends on the formation of a blue color when methylene blue dye reacts with synethetic detergent compounds.

Micrograms per gram (UG/G) is a unit expressing the concentration of a chemical element as the weight (micrograms) of the element sorbed per unit weight (gram) of sediment.

Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in solution as weight (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represents the weight of solute per unit volume of water. Milligrams or micrograms per liter may be converted to milliequivalents (one thousandth of a gram-equivalent weight of a constituent) per liter by multiplying by the factors in Hem (1970).

National Geodetic Vertical Datum of 1929 (NGVD of 1929). A geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada, formerly called "Mean Sea Level."

Organism is any living entity, such as an insect, phytoplankter, or zooplankter.

 $\frac{\text{Organism count/area}}{\text{to the number per area}} \text{ refers to the number of organisms collected and enumerated in a sample and adjusted} \\ \text{to the number per area} \text{ habitat, usually square meters (m}^2\text{), acres, or hectares.} \\ \text{Periphyton, benthic organisms, and macrophytes are expressed in these terms.} \\$

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliters (mL) or liters (L). Numbers of planktonic organisms can be expressed in these terms.

Total organism count is the total number of organisms collected and enumerated in any particular sample.

Partial-record station is a particular site where limited streamflow data are collected systematially over a period of years for use in hydrologic analyses.

Particle size is the diameter, in millimeters (mm), of suspended sediment or bed material determined either by sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in active water (the river water at the time and point of sampling).

<u>Particle-size classification</u> used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay	0.00024 -	0.004	Sedimentation.
Silt	.004 -	.062	Sedimentation.
Sand	.062 -	2.0	Sedimentation or sieve.
Gravel	2.0 -	64.0	Sieve.

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

Percent composition is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass or volume.

Periphyton is the assemblage of microorganisms attached to and growing upon solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton is a useful indicator of water quality.

Pesticides are chemical compounds used to control the growth of undesirable plants and animals. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. Since the first application of DDT as an insecticide in the early 1930's there have been almost 60,000 pesticide formulations registered, each containing at least one of the approximately 800 different basic pesticide compounds. The United States annually produces about 1 billion pounds of these compounds. Although efforts are being made to substitute many of the chlorinated hydrocarbon pesticides with more specific, fast-acting, and easily degradable compounds, chlorinated hydrocarbon pesticides are still commonly used in many areas of the country.

Picocurie (PCI, pCi) is one trillionth (1 x 10^{-12}) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 10^{10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

Plankton is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

Phytoplankton is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae.

 $\frac{\text{Blue-green algae}}{\text{green pigment called chlorophyll.}} \text{ are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll.} \text{ Blue-green algae often cause nuisance conditions in water.}$

Diatoms are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter of sample.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algal mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column, and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

Polychlorinated biphenyls (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time $[mg\ C/m^2/time\ for\ periphyton\ and\ macrophytes\ and\ mg\ C/m^3/time\ for\ phytoplankton]$ are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity that the oxygen light and dark bottle method, and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time [mg $0_2/m^2/t$ time for periphyton and macrophytes and mg $0_2/m^2/t$ time for phytoplankton] are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Pump or flow rate prior to sampling is used in conjunction with the instantaneous flow rate so that the exact volume of water pumped prior to sampling can be determined.

Radioisotopes are isotope forms of an element that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight, but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus. For example: ordinary chlorine is a mixture of isotopes having atomic weights 35 and 37, with the natural mixture having an atomic weight of 35.453.

Radioisotopes that are determined in this report are natural uranium in $\mu g/L$ (micrograms per liter), radium as radium-226 in PCI/L, (pCi/L, piccouries per liter), gross beta in PCI/L, and gross alpha radiation as micrograms of uranium equivalent per liter ($\mu g/L$). Gross alpha and beta radioactivity associated with the fine grained (silt and clay sized) sediments in the samples are also determined.

River mile as used herein, is the distance above the mouth of Delaware Bay, measured along the center line of the navigation channel or the main stem of the Delaware River. River mile data were furnished by the Delaware River Basin Commission.

Runoff in inches (IN, in) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

Supended sediment is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

Suspended-sediment discharge (tons) is the rate at which dry weight of sediment passes a section of a stream or is the quantity of sediment, as measured by dry weight, or by volume, that is discharged in a given time. It is computed by multiplying discharge times mg/L times 0.0027.

Suspended-sediment load is quantity of suspended sediment passing a section in a specified period.

 $\frac{\text{Mean concentration}}{\text{during a }24-\text{hour}} \text{ is the time-weighted concentration of suspended sediment passing a stream section during a }24-\text{hour}$

Solute is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current and is expressed in micromhos per centimeter at 25°C. Because the specific conductance is related to the number and specific chemical types of ions in solution, it can be used for approximating the dissolved-solids content of the water. Commonly, the amount of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos per cm at 25°C). This relation is not constant from stream to stream or from well to well, and it may even vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height and the amount of water flowing in a channel, expressed as volume per unit of time.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff." Streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physcial surface upon which an organism lived.

Natural substrate refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lived.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization by organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multi-plate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection.

Surface area of a lake is that area outlined on the latest U.S.G.S. topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made.

Surficial bed material is that part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series $\overline{\text{Bed-Material Samplers}}$.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) $\underline{\text{dissolved}}$ and (2) $\underline{\text{total}}$ recoverable concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent.

 $\frac{Taxonomy}{Taxonomy}$ is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, $\frac{1}{16}$ Hexagenia limbate is the following:

Kingdom ...Animal
Phylum ...Arthropoda
Class ...Insecta
Order ...Ephemeroptera
Family ...Ephemeridae
Genus ...Hexageria
Species ...Hexagenia limbata

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Thermograph is a thermometer that continuously and automatically records, on a chart, the water temperatures of a stream. "Temperature recorder" is the term used to indicate the location of the thermograph or a digital mechanism that automatically records water temperature on paper tape.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136.

Tons per day is the quantity of a substance in solution or suspension that passes a stream section during a $24-hour\ day$.

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total" (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample).

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analytical results.

Total in bottom material is the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

Total load (tons) is the total quantity of any individual constituent, as measured by dry mass or volume, that is being transported in a specific amount of water (discharge) during a given time. It is computed by multiplying the total discharge, times the mg/L of the constituent, times the factor 0.0027, times the number of days.

Unique well number is a hyphenated, 6-digit identification number which is assigned to all New Jersey wells $\overline{\text{in}}$ the Ground Water Site Inventory (GWSI) System. This numbering system was developed in 1978 to simplify identification of wells. The first two digits are a code for the county in which the well is located, and the last four digits are a sequence number. These unique well numbers are being used now in the ground-water level descriptions, wells sampled for water-quality analyses, and on the corresponding location maps in these reports.

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

WDR is used as an abbreviation for "Water-Data Report" in the summary REVISIONS paragraph to refer to previously published State annual basic-data reports. Prior to 1975, WRD was used, which was the abbreviation for "Water-Resources Data."

WSP is used as an abbreviation for "Water-Supply Paper" in reference to previously published reports.

DOWNSTREAM ORDER AND STATION NUMBER

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two main-stream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of triburtaries. The rank of any tributary on which a station is situated with respect to the stream to which it is immediately tributary is indicated by an indention in a list of stations in front of the report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

As an added means of identification, each hydrologic station and partial-record station has been assigned a station number. These are in the same downstream order used in this report. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station such as 01463500, which appears just to the left of the station name, includes the 2-digit part number "01" plus the 6-digit downstream order number "463500."

NUMBERING SYSTEM FOR WELLS AND MISCELLANEOUS SITES

The 8-digit downstream order station numbers are not assigned to wells and miscellaneous sites where only random water-quality samples or discharge measurements are taken.

The wells and miscellaneous site numbering system of the U.S. Geological Survey is based on the grid system of latitude and longitude. The system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, the next 7 digits denote degrees, minutes, and seconds of longitude, and the last 2 digits is a sequential number for wells within a 1-second grid. In the event that the latitude-longitude coordinates for a well and a miscellaneous site are the same, they are assigned sequential numbers "01", "02", etc. as one would for wells. See figure 1 below.

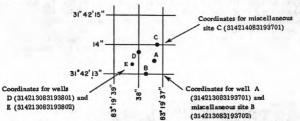


Figure 1. System for numbering wells and miscellaneous sites (latitude and longitude)

SPECIAL NETWORKS AND PROGRAMS

Some of the stations for which data are published in this report are included in special networks and programs. These stations are identified by their title, set in parentheses, under the station name.

Hydrologic bench-mark station is one that provides hydrologic data for a basin in which the hydrologic regimen will likely be governed solely by natural conditions. Data collected at a bench-mark station may be used to separate effects of natural from manmade changes in other basins which have been developed and in which the physiography, climate, and geology are similar to those in the undeveloped bench-mark basin.

National stream-quality accounting network (NASQAN) is a data collection network designed by the U.S. Geological Survey to meet many of the information demands of agencies or groups involved in national or regional water-quality planning and management. Both accounting and broad-scale monitoring objectives have been incorporated into the network design. Areal configuration of the network is based on river-basin accounting units (identified by 8-digit hydrologic-unit numbers) designated by the Office of Water Data Coordination in consultation with the Water Resources Council. Primary objectives of the network are (1) to depict areal variability of streamflow and water-quality conditions nationwide on a year-by-year basis and (2) to detect and assess long-term changes in streamflow and stream quality.

Pesticide program is a network of regularly sampled water-quality stations where samples are collected to determine the concentration and distribution of pesticides in stream where potential contamination could result from the application of the commonly used insecticides and herbicides. Operation of the network is a Federal interagency activity.

Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

EXPLANATION OF STAGE AND WATER-DISCHARGE RECORDS

Collection and computation of data

The base data collected at gaging stations consist of records of stage and measurements of discharge of streams or canals, and stage, surface area, and contents of lakes or reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records, and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of stage are obtained from either direct readings on a nonrecording gage or from a water-stage recorder that gives either a continuous graph of the fluctuations or a tape punched at selected time intervals. Measurements of discharge are made with a current meter, using the general methods adopted by the Geological Survey. These methods are decribed in standard text-books, in Water-Supply Paper 888, and in U.S. Geological Survey Techniques of Water Resources Investigations, book 3, chapter A6.

For stream-gaging stations, rating tables giving the discharge for any stage are prepared from stage-discharge relation curves. If extensions to the rating curves are necessary to express discharge greater than measured, they are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements, computation of flow over dams or weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharge are computed from the daily figures. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is computed by the shifting-control method, in which correction factors based on individual discharge measurements and notes by engineers and observers are used in applying the gage heights to the rating tables. If the stage-discharge relation for a station is temporarily changed by the presence of aquatic growth or debris on the control, the daily mean discharge is computed by what is basically the shifting-control method.

At some stream-gaging stations the stage-discharge relation is affected by backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in determining discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in determining discharge.

At some northern stream-gaging stations the stage-discharge relation is affected by ice in the winter, and it becomes impossible to compute the discharge in the usual manner. Discharge for periods of ice effect is computed on the basis of the gage-height record and occasional winter discharge measurements, consideration being given to the available information on temperature and precipitation, notes by gage observers and hydrologists, and comparable records of discharge for other stations in the same or nearby basins.

For a lake or reservoir station, capacity tables giving the contents for any stage are prepared from stage-area relation curves defined by surveys. The application of the stage to the capacity table gives the contents, from which the daily, monthly, or yearly change in contents is computed. Discharge over spillways is computed from a stage-discharge relation curve defined by discharge measurements.

If the stage-capacity curve is subject to changes because of deposition of sediment in the reservoir, periodic resurveys of the reservoir are necessary to define new stage-capacity curves. During the period between reservoir surveys the computed contents may be increasingly in error due to the gradual accumulation of sediment.

For some gaging stations there are periods when no gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods the daily discharge are estimated on the basis of recorded range in stage, adjoining good record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise daily contents may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information.

The data in this report generally comprise a description of the station and tabulations of daily and monthly figures. For gaging stations on streams or canals a table showing the daily discharge and monthly and yearly discharge is given. For gaging stations on lakes and reservoirs a monthly summary table of stage and

contents or a table showing the daily contents is given. Tables of daily mean gage height are included for some streamflow stations and for some reservoir stations. Records are published for the water year, which begins on October 1 and ends on September 30.

The description of the gaging station gives the location, drainage area, period of record, notations of revisions of previously published records, type and history of gages, general remarks, average discharge, and extremes of discharge or contents. The location for the gaging station and the drainage area are obtained from the most accurate maps available. River mileage, given under "LOCATION" for some stations, is that determined and used by the Corps of Engineers or other agencies. Periods for which there are published records for the present stations or for stations generally equivalent to the present one are given under "PERIOD OF RECORD."

Previously published streamflow records of some stations have been found to be in error on the basis of data or information later obtained. Revisions of such records are usually published along with the current records in one of the annual or compilation reports. In order to make it easier to find such revised records, a paragraph headed "REVISED RECORDS" has been added to the description of all stations for which revised records have been published. Listed therein are all the reports in which revisions have been published, each followed by the water years for which figures are revised in that report. In listing the water years only one number is given; for instance, 1965 stands for the water year October 1, 1964, to September 30, 1965. If no daily, monthly, or annual figures of discharge are affected by the revision, the fact is brought out by notations after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the revised figure was first published is given. It should be noted that for all stations for which cubic feet per square mile and runoff in inches are published, a revision of the drainage area necessitates corresponding revision of all figures based on the drainage area. Revised figures of cubic feet per second per square mile and runoff in inches resulting from a revision of the drainage area only are usually not published in the annual series of reports.

The type of gage currently in use; the datum of the present gage referred to National Geodetic Vertical Datum; and a condensed history of the types, locations, and datums of previous gages used during the period of record are given under "GAGE." National Geodetic Vertical Datum is explained in "DEFINITION OF TERMS."

Information pertaining to the accuracy of the discharge records and to conditions which affect the natural flow of the gaging station is given under "REMARKS."

The average discharge for the number of years indicated is given under "AVERAGE DISCHARGE"; it is not given for stations having fewer than 5 complete years of record or for stations where changes in water development during the period of record cause the figure to have little significance. In addition, the median of yearly mean discharges is given for stream-gaging stations having 10 or more complete years of record if the median differs from the average by more than 10 percent. Under "EXTREMES" are given first the extremes for current year, second, the extremes for the period of record, and last information available outside the period of record. Unless otherwise qualified, the maximum discharge (or contents) is the instantaneous maximum corresponding to the crest-stage obtained by use of a water-stage recorder (graphic or digital), a crest-stage gage, or a nonrecording gage read at the time of the crest. If the maximum gage height did not occur on the same day as the maximum discharge (or contents), it is given separately. Similarly, the minimum is the instantaneous minimum unless otherwise qualified. For some stations peak discharges are listed with EXTREMES FOR THE CURRENT YEAR; if they are, all independent peaks, including the maximum for the year, above the selected base with the time of occurrence and corresponding gage heights are published in tabular format. The base discharge, which is given in the table heading, is selected so that an average of about three peaks a year will be presented. Peak discharges are not published for any canals, ditches, drains, or for any stream for which the peaks are subject to substantial control by man. Time of day is expressed in 24-hour local standard time; for example, 12:30 a.m. is 0030, 1:30 p.m. is 1330. The minimums for these stations are published in a separate paragraph following the table of peaks.

Skeleton rating tables are published, immediately following EXTREMES, for stream-gaging stations where they serve a useful purpose and the dates of applicability can be easily identified.

The daily table for stream-gaging stations gives the mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also may be expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion, if the drainage area includes large noncontributing areas, or if the average annual rainfall over the drainage basin is usually less than 20 inches. In the yearly summary below the monthly summary, the figures shown are the appropriate daily discharges for the calendar and water years.

Footnotes to the table of daily discharge are introduced by word "NOTE." Footnotes are used to indicate periods for which the discharge is computed or estimated by special methods because of no gage-height record, backwater from various sources, or other unusual conditions. Periods of no gage-height record are indicated if the period is continuous for a month or more or includes the maximum discharge for the year. Periods of backwater from an unusual source, of indefinite stage-relation, or of any other unusual condition at the gage site are indicated only if they are a month or more in length and the accuracy of the records is affected. Days on which the stage-discharge relation is affected by ice are not indicated. The methods used in computing discharge for various unusual conditions have been explained in preceding paragraphs.

For most gaging stations on lakes and reservoirs the data presented comprise a description of the station and a monthly summary table of stage and contents. For some reservoirs a table showing daily contents or stage is given. A skeleton table of capacity at given stages is published for all reservoirs for which records are published on a daily basis, but is not published for reservoirs for which only monthly data are given.

Data collected at partial-record stations follow the information for continuous record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. Occasionally, a series of discharge measurements are made within a short time period to investigate the seepage gains or losses along a reach of a stream or to determine the low-flow characteristics of an area. Such measurements are also given in special tables following the tables of partial-record stations.

Accuracy of field data and computed results

The accuracy of streamflow data depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements, and (2) the accuracy of observations of stage, measurements of discharge, and interpretation of records.

The station description under "REMARKS" states the degree of accuracy of the records. "Excellent" means that about 95 percent of the daily discharges are within 5 percent; "good" within 10 percent; and "fair" within 15 percent. "Poor" means that daily discharges have less than "fair" accuracy.

Figures of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 cfs; to tenths between 1.0 and 10 cfs; to whole numbers between 10 and 1,000 cfs; and to 3 significant figures above 1,000 cfs. The number of significant figures used is based solely on the magnitude of the figure. The same rounding rules apply to discharge figures listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Publications

Each volume of the 1960 series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States" contains a listing of the numbers of all water-supply papers in which records of surface-water data were published for the area covered by the individual volumes. Each volume also contains a list of water-supply papers that give detailed information on major floods for the area. A new series of water-supply papers containing surface-water record for the 5-year period October 1, 1965 to September 30, 1970, also will include lists of annual and special reports published as water-supply papers.

Records through September 1950 for the area covered by this report have been compiled and published in Water-Supply Paper 1302; records for October 1950 to September 1960 have been compiled and published in Water-Supply Paper 1722; records for October 1960 to September 1965 have been compiled and published in Water-Supply Paper 1902; records for October 1965 to September 1970 have been compiled and published in Water-Supply Paper 2102. These reports contain summaries of monthly and annual discharge and month-end storage for all previously published records, as well as some records not contained in the annual series of water-supply papers. All records were reexamined and revised where warranted. Estimates of discharge were made to fill short gaps whenever practical. The yearly summary table for each gaging station lists the numbers of the water-supply papers in which daily records were published for that station.

Special reports on major floods or droughts or of other hydrologic studies for the area have been issued in publications other than water-supply papers. Information relative to these reports may be obtained from the district office.

Other data available

Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating tables is on file in the district office. Also most gaging-station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the district office.

Records of stage or discharge collected by agencies other than the Geological Survey

Records of stage or discharge not published by the Geological Survey were collected in New Jersey at 30 sites during the water years October 1960 to current year by the following agencies: records at 4 sites were collected by the North Jersey District Water Supply Commission; at 14 sites by Passaic County, at 1 sites by the National Weather Service; at 3 sites by the National Ocean Survey; at 3 sites by the Corps of Engineers, and 5 sites by Delaware River Joint Toll Bridge Commission. The National Water Data Exchange, Water Resources Division, U.S. Geological Survey, National Center, Reston, VA 22092, maintain an index of such sites. Information on records available at specific sites can be obtained upon request.

EXPLANATION OF WATER-QUALITY RECORDS

Collection and examination of data

Water samples for analyses usually are collected at or near gaging stations. The discharge records at these stations are used in conjunction with the computations of the chemical constituents and sediment loads.

The data in this report include a description of the sampling station and tabulations of the samples analyzed. The description of the sampling station gives the location, drainage area, periods of record for water-quality data, extremes of the pertinent data, and general remarks. For ground-water sampling stations, no descriptive statements are presented. However, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of ground water.

Water-quality information is presented for chemical, biological, and microbiological quality, water temperature, and fluvial sediment. Chemical quality includes the concentrations of individual constituents and certain properties such as hardness, specific conductance, and pH. The biological information includes qualitative and quantitative analyses of plankton, bottom organisms, and particulate inorganic and amorphous matter present. Microbiological information includes quantitative identifications of certain bacteriological indicator organisms. Water-temperature data represent once-daily observations except for stations where a water-quality noncontinuous-digital monitor furnishes hourly temperature readings that provide daily maximum, minimum, and mean temperature data summaries. Fluvial-sediment information is given for suspended-sediment discharges and concentrations and for particle-size distribution of suspended sediment.

Prior to the 1968 water year, data for chemical constituents and concentrations of suspended sediment were reported in parts per million (ppm) and water temperatures were reported in degrees Fahrenheit (°F). In October 1967, the U.S. Geological Survey began reporting data for chemical constituents and concentrations of suspended sediment in milligrams per liter (mg/L) and water temperatures in degrees Celsius (°C). In waters with a density of 1.000 g/ml (grams per milliliter), parts per million and milligrams per liter can be considered equal. In waters with a density greater than 1.000 g/ml, values in parts per million should be multiplied by the density to convert to milligrams per liter. Temperatures reported in degrees Celsius may be converted to degrees Fahrenheit by using table 1 below.

In October 1968, the Geological Survey began reporting many of the chemical constituents as well as the minor elements in micrograms per liter instead of milligrams per liter. (See "Definitions of Terms," and table for converting Inch-pound Units to International System Units, inside back cover).

Table 1.--Degrees Celsius (°C) to degrees Fahrenheit (°F)* (Temperature reported to nearest 0.5°C)

°C	°F	°C	°F	°C	°F	°C	°F	°C	°F
0.0	32	10.0	50	20.0	68	30.0	86	40.0	104
0.5	33	10.5	51	20.5	69	30.5	87	40.5	105
1.0	34	11.0	52	21.0	70	31.0	88	41.0	106
1.5	35	11.5	53	21.5	71	31.5	89	41.5	107
2.0	36	12.0	54	22.0	72	32.0	90	42.0	108
2.5	36	12.5	54	22.5	72	32.5	90	42.5	108
3.0	37	13.0	55	23.0	73	33.0	91	43.0	109
3.5	38	13.5	56	23.5	74	33.5	92	43.5	110
4.0	39	14.0	57	24.0	75	34.0	93	44.0	111
4.5	40	14.5	58	24.5	76	34.5	94	44.5	112
5.0	41	15.0	59	25.0	77	35.0	95	45.0	113
5.5	42	15.5	60	25.5	78	35.5	96	45.5	114
6.0	43	16.0	61	26.0	79	36.0	97	46.0	115
6.5	44	16.5	62	26.5	80	36.5	98	46.5	116
7.0	45	17.0	63	27.0	81	37.0	99	47.0	117
7.5	45	17.5	63	27.5	81	37.5	99	47.5	117
8.0	46	18.0	64	28.0	82	38.0	100	48.0	118
8.5	47	18.5	65	28.5	83	38.5	101	48.5	119
9.0	48	19.0	66	29.0	84	39.0	102	49.0	120
9.5	49	19.5	67	29.5	85	39.5	103	49.5	121

*C = 5/9 (°F - 32) or °F = 9/5 (°C) + 32.

Most methods for collecting and analyzing water samples to determine the kinds and concentrations of solutes are described in the U.S. Geological Survey Techniques of Water-Resources Investigations listed at the end of this section. Analysis of pesticides, herbicides, and organic substances in water are described by Goerlitz and Brown. The collection and analysis of aquatic, biological and microbiological samples are described by Greeson and others.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through many vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis.

For chemical-quality stations equipped with noncontinuous-digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 10100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the U.S. Geological Survey district office (for address see Page IV).

The quality of ground water normally does not change significantly during short periods of time; infrequent sampling and analysis of ground water adequately defines ground-water quality at a given site. Water samples from wells are collected after prepumping the well and are analyzed individually.

Water temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for surface-water stations. For daily stations, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges. Influential factors, field measurement, and data representation of temperature are described by Stevens, Ficke and Smoot.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross-section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross section.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of

observations, such data are useful in establishing seasonal relations between quality and streamflow in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of the quantities of suspended sediment, records of the periodic measurements of the particle-size distribution of the suspended sediment are included.

Remark codes for water-quality data

PRINTE	D REMARK	PRINTED OUTPUT	REMARK
E	ESTIMATED VALUE	<	ACTUAL VALUE IS KNOWN TO BE LESS THAN THE VALUE SHOWN
>	ACTUAL VALUE IS KNOWN TO BE GREATER THAN THE VALUE SHOWN	ND	MATERIAL SPECIFICALLY ANALYZED FOR BUT NOT DETECTED
К	RESULTS BASED ON COLONY COUNT OUTSIDE THE ACCEPTABLE RANGE (NON-IDEAL COLONY COUNT)		

Publications

Table 2 below, shows the annual series of water-supply papers that give information on quality of surface waters in New Jersey.

Table 2.--Water-supply paper (WSP) numbers, water years, 1945-70

Year	WSP	Year	WSP	Year	WSP
1945	1030	1954	1350	1963	1947
1946	1050	1955	1400	1964	1954
1947	1102	1956	1450	1965	1961
1948	1132	1957	1520	1966	1991
1949	1162	1958	1571	1967	2011
1950	1186	1959	1641	1968	2091
1951	1197	1960	1741	1969	2141
1952	1250	1961	1881	1970	2151
1953	1290	1962	1941		

EXPLANATION OF GROUND-WATER LEVEL RECORDS

Collection of the data

Only ground-water level data from a basic network of observation wells are published herein. This basic network contains observation wells so located that the most significant data are obtained from the fewest wells in the most important aquifers.

Each well is identified by means of (1) a 15-digit number that is based on latitude and longitude (see figure 1) and (2) a local name and a unique well number that are provided for local needs.

Water-level measurements in this report are given in feet with reference to land-surface datum (LSD, lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. The altitude of the land-surface datum above NGVD 1929, and the height of the measuring point (MP) above or below land-surface datum is given in each well description.

Measurements are made in many types of wells, under varying conditions of access and at different temperatures, hence, neither the method of measurement nor the equipment can be standardized. At each observation well, however, the equipment and techniques used are those that will ensure that measurements at each well are consistent.

Water-level data in these reports were obtained from water-level recorders, water-level extremes recorders, and from periodic manual measurements. The equipment used at each well is described in the well description under the listing "Instrumentation." Water levels in wells equipped with water-level recorders are reported for every fifth day and the end of each month (eom). Beginning in the 1977 water year, water-level recorders were removed from some wells and replaced by water-level extremes recorders. The extremes are read from these recorders at about three month intervals, but the actual dates of occurrance of the extremes (highest and lowest water levels) are unknown. In these reports the extreme water levels are given along with the interim dates in the well descriptions, and the manual only measurements are tabulated below the well descriptions and also plotted in hydrographs where provided.

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, wheareas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given only to a tenth of a foot or a larger unit.

Publications

Table 3 on next page, shows the series of water-supply papers that give ground-water level data for New Jersey, 1935 to 1974. No water-level data were published in 1975. Beginning in 1976, ground-water level data for New Jersey have been published in these annual water data reports.

Table 3.--Water-supply paper (WSP) numbers, water years, 1935-74

Year	WSP	Year	WSP	Year	WSP
1935	777	1944	1016	1953	1265
1936	817	1945	1023	1954	1321
1937	840	1946	1071	1955	1404
1938	845	1947	1096	1956-57	1537
1939	866	1948	1126	1958-62	1782
1940	906	1949	1156	1963-67	1977
1941	936	1950	1165	1968-72	2140
1942	986	1951	1191	1973-74	2164
1943	986	1952	1221	.,,,,,,,,	

SELECTED REFERENCES

- Anderson, P. W., 1970, Occurrence and distribution of trace elements in New Jersey streams; New Jersey Division of Water Policy and Supply, Water Resources Circular 24, 24 p.
- Anderson, P.W., and Faust, S. D., 1973 Characteristics of water quality and streamflow, Passaic River basin above Little Falls, New Jersey: U.S. Geological Survey Water-Supply Paper 2026, 80 p.
- 1974, Water-quality and streamflow characteristics, Raritan River basin, New Jersey: U.S. Geological Survey Water Resources Investigations 14-74, 82 p.
- Anderson, P. W., and George, J. R., 1966, Water-quality characteristics of New Jersey streams: U . S . Geological Survey Water-Supply Paper 1819-G, 48 p.
- Barnett, P. R., and Mallory, Jr., E. C., 1971, Determination of minor elements in water by emission spectroscopy: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, Chapter A2, 31 p.
- Carter, R. W., and Davidian, Jacob, 1968, General procedure for gaging streams: U.S. Geological Survey Techniques Water-Resources Investigations, Book 3, Chapter A6, 13 p.
- Corbett, D. M., and others, 1943, Stream-gaging procedure, a manual describing methods and practices of the Geological Survey: U.S. Geological Survey Water-Supply Paper 888, 245 p.
- Goerlitz, D. F., and Brown, Eugene, 1972, Methods for analysis of organic substances in water: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A3, 40 p.
- Greeson, P. E., Ehlke, T. A., Irwin, G. A., Lium, B. W., and Slack, K. V., 1977, Methods for collection and analysis of aquatic biological and microbiological samples: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A4, 332 p.
- Guy, H. P., 1969, Laboratory theory and methods for sediment analysis: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter C1, 58 p.
- _____1970, Fluvial sediment concepts: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C1, 55 p.
- Guy, H. P., and Norman, V. W., 1970, Field methods for measurement of fluvial sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C2, 59 p.
- Hem, J. D., 1970, Study and interpretation of the chemical characteristics of natural water, 2d ed.: U.S. Geological Survey Water-Supply Paper 1473, 363 p.
- Langbein, W. B., and Iseri, K. T., 1960, General introduction of hydrologic definitions: U.S. Geological Survey Water-Supply Paper 1541-A, 29 p.
- Laskowski, S. L., 1970, Statistical summaries of New Jersey streamflow records: New Jersey Division of Water Policy and Supply, Water Resources Circular 23, 264 p.
- Lohman, S. W., and other, 1972, Definitions of selected ground-water terms-revisions and conceptual refinements: U.S. Geological Survey Water-Supply Paper 1988, 21 p.
- Mansue, L. J., and Anderson, P. W., 1974, Effect of landuse and retention practices on sediment yields in the Stony Brook basin, New Jersey: U.S. Geological Survey Water-Supply Paper 1798-L.
- McCall, J. E., and Lendo, A. C., 1970, A modified streamflow data program for New Jersey: U.S. Geological Survey Open-File Report, 46 p.
- Porterfield, George, 1972, Computations of fluvial-sediment discharge: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C3, 66 p.
- Schornick, J. C., and Ram, N. M., 1978, Nitrification in four acidic streams in southern New Jersey: U.S. Geological Survey Water-Resources Investigations, 77-121, 51 p.
- Schopp, R. D., and Gillespie, B. D., 1979, Selected streamflow data for the Delaware River basin: U.S. Geological Survey Open-File Report 79-347, 16 p.
- Schopp, R. D., and Velnich, A. J., 1979, Flood of November 3-10, 1977 in Northeastern and Central New Jersey: U.S. Geological Survey Open-File Report 79-559, 32 p.
- Seaber, P. R., 1963, Chloride concentrations of water from wells in the Atlantic Coastal Plain of New Jersey, 1923-61: New Jersey Division of Water Policy and Supply, Special Report 22, 250 p.
- Skougstad, N. W., Fishman, M. J., Friedman, L. C., Erdmann, D. E., and Duncan, S. S., 1978, Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A1, 626 p.

- Stankowski, S. J., 1972, Floods of August and September 1971 in New Jersey: New Jersey Division of Water Resources, Special Report 37, 329 p.
- Stankowski, S. J., and Velnich, A. J., 1974, A summary of peak stages and discharges for the flood of August 1973 in New Jersey: U.S. Geological Survey Open-File Report, 12 p.
- Stankowski, S. J., 1974, Magnitude and frequency of floods in New Jersey with effects of urbanization: New Jersey Department of Environmental Protection, Division of Water Resources, Special Report 38, 46 p.
- Stankowski, S. J., Schopp, R. D., and Velnich, A. J., 1975, Flood of July 21, 1975 in Mercer County, New Jersey: U.S. Geological Survey Water-Resources Investigations 51-75, 52 p.
- Stevens, Jr., Herbert H., Ficke, John F., and Smoot, George F., 1975, Water temperature-influential factors, field measurement, and data representation: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 1, Chapter D1, 65 p.
- U.S. Environmental Protection Agency, 1976, National Interim Primary Drinking Water Regulations: U.S. Environmental Protection Agency report EPA 570/9-76-003, 159 p.
- U.S. Geological Survey, 1976, Surface water supply of the United States, 1966-70, Part 1. North Atlantic Slope basins, Volume 2. Basins from New York to Delaware: U.S. Geological Survey Water-Supply Paper 2102, 985 p., (most recent volume).
- ____1977, Ground-water levels in the United States, 1973-74, Northeastern States: U.S. Geological Survey Water-Supply Paper 2164, 126 p., (most recent volume).
- Vecchioli, John, and Miller, E. G., 1973, Water Resources of the New Jersey part of the Ramapo River basin: U.S. Geological Survey Water-Supply Paper 1974, 77 p.
- Velnich, A.J., and Laskowski, S.L., 1979, Technique for estimating depth of 100-year flood in New Jersey: U.S. Geological Survey Open-File Report 79-419, 17 p.
- Vickers, A. A., and McCall, J. E., 1968, Surface water supply of New Jersey, Streamflow records 1961-65: New Jersey Division of Water Policy and Supply, Special Report 31, 351 p., (most recent volume).
- Vickers, A. A., 1980, Flood of August 31 September 1, 1978, in Crosswicks Creek Basin and vicinity, Central New Jersey: U.S. Geological Survey Water-Resources Investigations 80-115, 20 p.

Thirty-four manuals by the U.S. Geological Survey have been published to date in the series on techniques describing procedures for planning and executing specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) is on surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. The reports listed below are for sale by the U.S. Geological Survey, Branch of Distribution, 1200 South Eads Street, Arlington, VA 22202 (authorized agent of the Superintendent of Documents, Government Printing Office).

- When ordering any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations".
- 1-D1.
- Water temperature--influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages.
- G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter Dl. 1974. 116 pages.

 Application of borehole geophysics to water-resources investigations, by W. S. Keys and
 L. M. MacCary: USGS--TWRI Book 2, Chapter El. 1971. 126 pages.

 General field and office procedures for indirect discharge measurements, by M. A. Benson
 and Tate Dalrymple: USGS--TWRI Book 3, Chapter Al. 1967. 30 pages.

 Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A.

 Benson: USGS--TWRI Book 3, Chapter Al. 1967. 12 pages.

 Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS-TWRI Book 3, Chapter Al. 1968. 60 pages.

 Measurement of peak discharge at width contractions by indirect methods, by H. F.

 Matthai: USGS--TWRI Book 3, Chapter Al. 1967. 44 pages.

 Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS-TWRI Book 3, Chapter Al. 1967. 29 pages.

 General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI
 Book 3, Chapter A6. 1968. 13 pages.

 Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI

- 3-A4.

- Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 pages.

- Book 3, Chapter A7. 1968. 28 pages.

 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS-TWRI Book 3, Chapter A8. 1969. 65 pages.

 3-A1. Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS-TWRI Book 3, Chapter A11. 1969. 22 pages.

 3-B1. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS-TWRI Book 3, Chapter B1. 1971. 26 pages.

 3-B2. Introduction to ground-water hydraulies, a programed test for self-instruction, by G. D.
- 3-C1.
- 3-C3.
- 3, Chapter B1. 1971. 26 pages.
 Introduction to ground-water hydraulics, a programed text for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages.
 Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.
 Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS-TWRI Book 3, Chapter C2. 1970. 59 pages.
 Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3,
 Chapter C3. 1972. 66 pages.
 Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter A1. 1968. 39 pages.
- 4-A2.
- Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.

 Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages.

 Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4,

 Chapter B2. 1973. 20 pages.

 Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4,

 Chapter B3. 1973. 15 pages. 4-B2.
- 4-B3.
- 4-D1.

- Chapter B3. 1973. 15 pages.

 Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS-TWRI Book 4, Chapter D1. 1970. 17 pages.

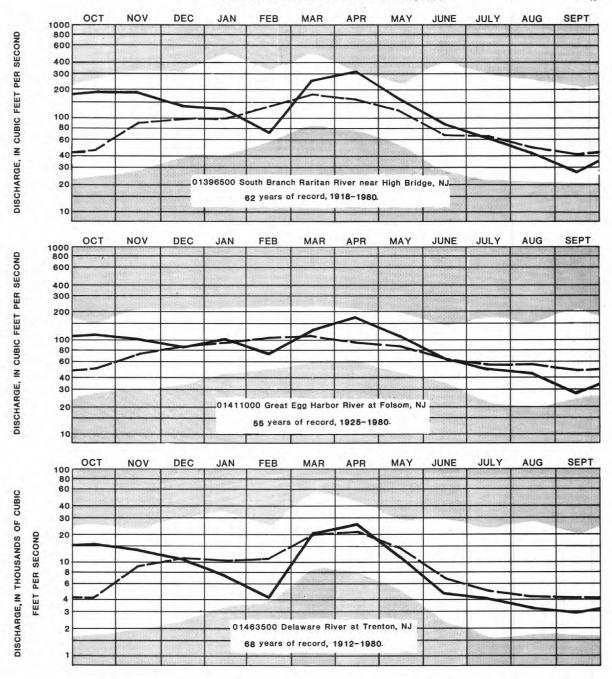
 Methods for determination of inorganic substances in water and fluvial sediments, by M. W.

 Skougstad and others, editors: USGS--TWRI Book 5, Chapter A1. 1979. 526 pages.

 Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C.

 Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages.

 Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown:

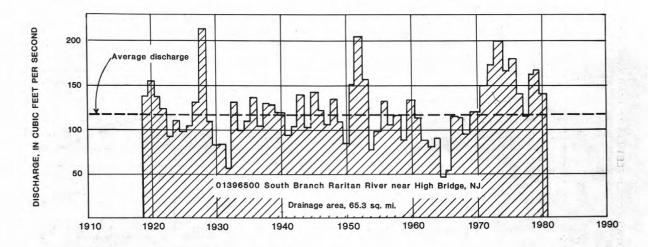

 USGS--TWRI Book 5, Chapter A3. 1972. 40 pages.

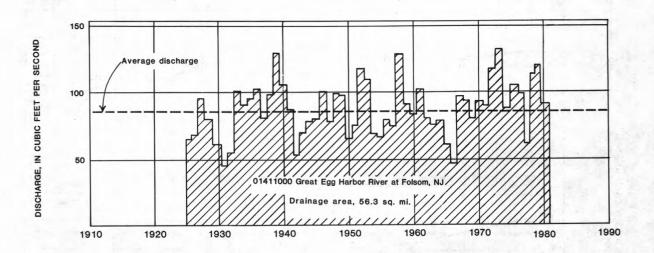
 Methods for collection and analysis of aquatic biological and microbiological samples,
 edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS-TWRI Book 5, Chapter A4. 1977. 332 pages.

 Methods for determination of radioactive substances in water and fluvial sediments,
 by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977.

 95 pages.

 Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5,
- 5-C1.
- 95 pages.
 Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58 pages.
 Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages.
 Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages.
 Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS--TWRI Book 8, Chapter A1. 1968. 23 pages.
 Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages.
- 7-C2.

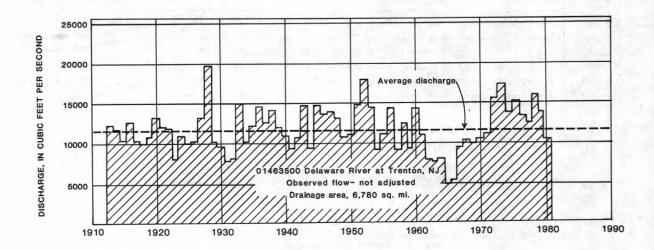



Unshaded area.--Indicates range between highest and lowest mean recorded for the month, prior to 1980 water year.

Dashed line.--Indicates normal (median of the monthly means) for the standard reference period, 1941-1970.

Solid line.--Indicates observed monthly mean flow for the 1980 water year.

FIGURE 2.--MONTHLY STREAMFLOW AT KEY GAGING STATIONS.



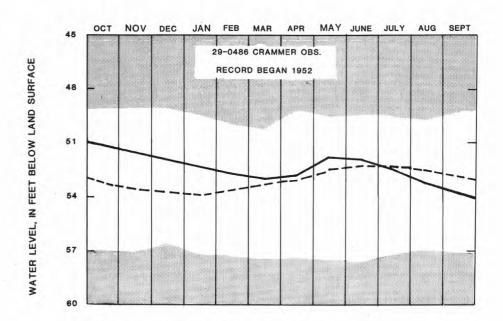
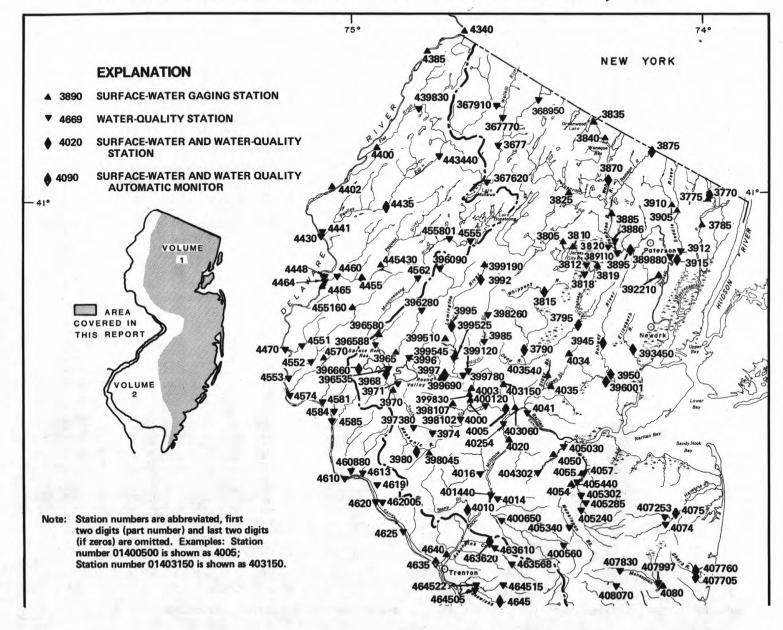


FIGURE 3.--ANNUAL MEAN DISCHARGE AT KEY GAGING STATIONS


Unshaded area.--Indicates range between highest and lowest recorded monthly minimum water levels, prior to the current year.

Dashed line.--Indicates average of the monthly minimum water levels, prior to current year.

Solid line.--Indicates monthly minimum water level for the current year.

FIGURE 4.--MONTHLY GROUND - WATER LEVELS AT KEY OBSERVATION WELLS.

WATER RESOURCES DATA FOR NEW JERSEY, 1980

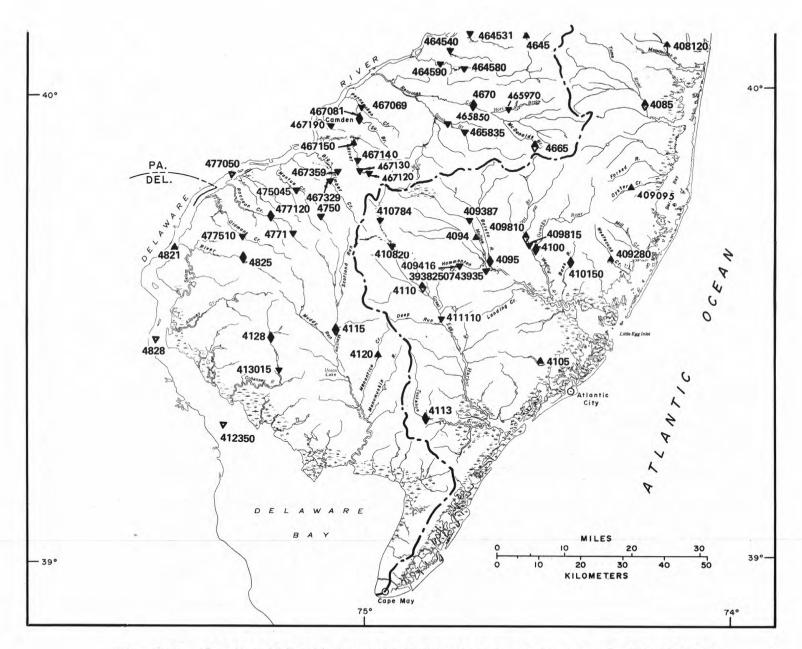
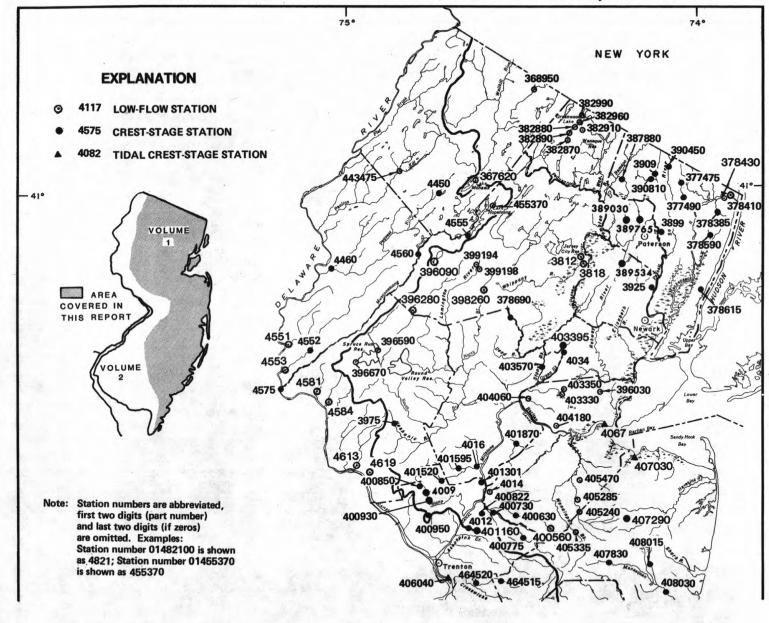



Figure 5.--Location of surface-water gaging stations and water-quality stations.

WATER RESOURCES DATA FOR NEW JERSEY, 1980

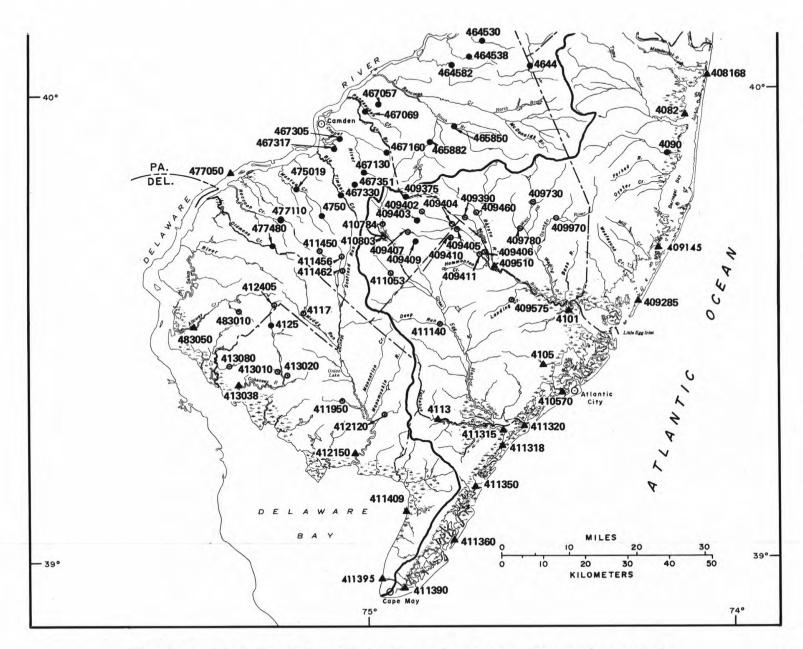
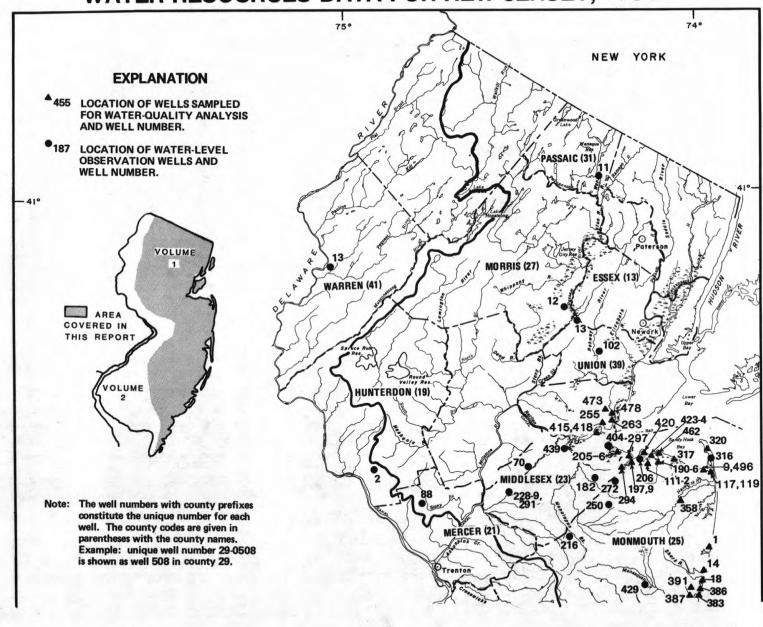



Figure 6.--Location of low-flow and crest-stage partial record stations.

WATER RESOURCES DATA FOR NEW JERSEY, 1980

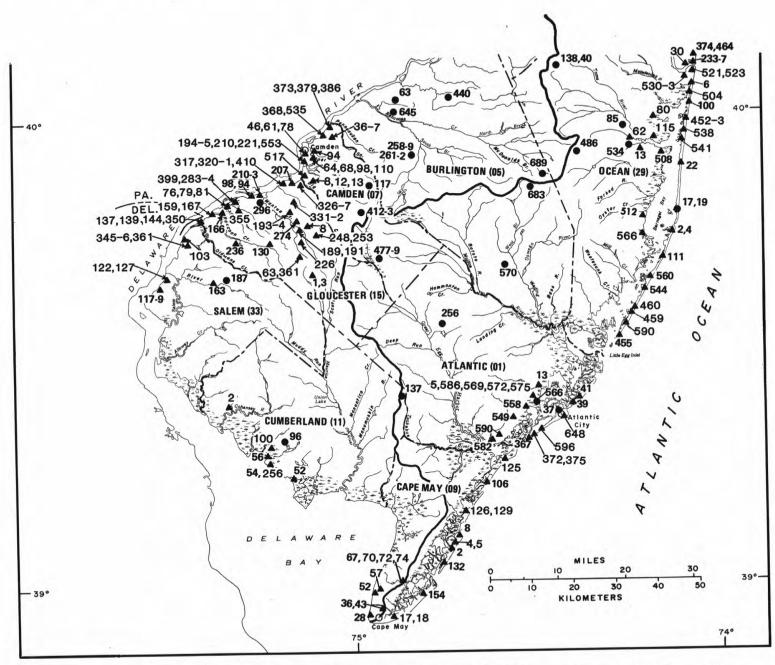


Figure 7.--Map showing location of ground-water quality stations and observation wells.

HYDROLOGIC-DATA STATION RECORDS

HUDSON RIVER BASIN

01367620 WALLKILL RIVER AT OUTFLOW OF LAKE MOHAWK AT SPARTA, NJ

LOCATION.--Lat 41°01'59", long 74°37'36", Sussex County, Hydrologic Unit 02020007, at bridge in Sparta, 200 ft (61 m) downstream from outflow of Lake Mohawk, and 1.2 mi (1.9 km) southwest of Sparta Station.

DRAINAGE AREA. -- 4.38 mi2 (11.34 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT								100	
O1	1330	360	8.2	17.0	8.7		790	350	100
12 13 MAY	1100 0915	428	8.3	4.0	13.0	E2.3	<20	2	130
06	1200 1245	378 372	8.2 8.3	19.0	11.8	2.2	<20 <20	7 <2	130 130
JUL 01	0945	352	8.8	23.5	6.3	<1.0	<20	17	110
AUG 04	1015	342	9.1	28.0	9.2	18	<20	1600	100
SEP 23	1015		8.7	23.5	5.4	E3.3	130	220	100
25***		MAGNE-		POTAS-		25.5		CHLO-	FLUO-
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED' (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)
OCT	AD CA)	AS NO,	AS NA)	AD K)	CACCS	NO 57	ND 504)	AD CL)	AD I'
01 MAR	21	12	24	1.1	74		4.5	50	.1
12	30	13	29	1.0	100		10	55	.1
13 MAY									-
19	29 29	13	27 28	1.0	95 100	.0	9.3	50 51	:1
O1	23	13	27	1.1	87		8.0	51	.1
04 SEP	20	13	30	1.2	110		5.3	53	.2
23	20	13	28	1.3	71		9.1	56	.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT									
01 MAR	.0	183	<1.0	. 100	. 29	.39		.09	7.3
12 13	.1	233	.13	.120	1.3	1.4	1.5	==	4.5
06	.1	215 208	.11	.100	.70 .56	.80 .61	.91 .67	.26	7.1 6.1
JUL 01	•3	204	. 05	.110	. 46	.57	.62	.03	7.7
AUG 04	.1	205	<.05	. 120	9.9	10		1.4	26
SEP 23	.1	221	. 05	.040	1.6	1.6	1.6	.37	9.3

01367620 WALLKILL RIVER AT OUTFLOW OF LAKE MOHAWK AT SPARTA, NJ--Continued

DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
MAY 19 SEP	1245				40	29		0	30	0	_
23	1015	2400	3.8	13			0				<10
DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
MAY 19	10			4		100		2		100	
SEP 23		<10	<10		30		5200		20		170
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE - NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
MAY							13				
19 SEP	<.1		2		0		20		2		
23		.00		<10		0		90		0	.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
MAY											
19 SEP		2						.0	.0	.0	.0
23	.0	2	.5	. 7	1.1	.0	. 1	.0	.0	.0	• 0
DATE	HE PTA - CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
MAY			-						-		
19 SEP											
23	.0	.0	.0	.0	.0	.0	.0	.0	.00	0	.0

01367700 WALLKILL RIVER AT FRANKLIN, NJ

LOCATION.--Lat 41°06'43", long 74°35'21", Sussex County, Hydrologic Unit 02020007, at bridge 120 ft (37 m) downstream from dam at outlet of Franklin Pond in Franklin, and 0.8 mi (1.3 km) upstream from Wildcat Brook.

DRAINAGE AREA. -- 29.4 mi2 (76.1 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1959-63, 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

		0.00							
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT	1120	200	7 1	15.0	7.1		220	70	100
O1		300	7.4	15.0	7.1		330	70	100
13 MAY	0945	335	7.8	1.0	12.2	E3.0	<20	220	100
05	1130 1130	256 340	8.5	15.0 15.0	9.3 7.8	2.0	330 940	920	96 120
JUL									
O1	1045	393	8.3	19.5	5.0	<1.1	5400	>2400	140
O4 SEP	1145	418	7.7	28.5	4.0	3.4	170	33	150
23	1130	440	8.8	18.0	6.3	E3.6	20	4	160
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 01	25	9.7	16	1.2	78	.0	8.8	31	.1
MAR									
13 MAY	25	10	19	1.3	76		17	34	.1
19	23 28	9.4	17	.8	70 95		16 13	25 34	:1
JUL 01	32	15	22	2.0	110		18	39	.2
AUG	200								
O4 SEP	35	15	24	2.2	130		14	42	.2
23	36	18	28	3.8	110		35	53	.2
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 01	6.6	171	<1.0	.300	.03	•33		. 16	4.0
MAR 13	4.9	174	.63	.120	.99	1.1	1.7	E.09	3.8
MAY									3.0
05 19	2.8 3.8	146 179	.05	.100	.63	·73	·78	.40	4.7
JUL 01	4.9	232	. 65	. 160	.68	. 84	1.5	.07	9.6
AUG 04	8.2	255	. 65	. 190	.71	.90	1.5	. 15	4.5
SEP				47					
23	7.7	298	. 80	.030	1.3	1.3	2.1	. 18	8.8

01367700 WALLKILL RIVER AT FRANKLIN, NJ--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 01	1130	20	4	10	30	1	20	0
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)
OCT 01	340	2	70	<.5	1	0	10	2

01367770 WALLKILL RIVER NEAR SUSSEX, NJ

LOCATION.--Lat 41°11'38", long 74°34'32", Sussex County, Hydrologic Unit 02020007, at bridge on Glenwood Road, 0.8 mi (1.3 km) upstream of Papakating Creek, 1.7 mi (2.7 km) southwest of Independence Corner, 2.0 mi (3.2 km) southeast of Sussex, and 2.1 mi (3.4 km) northwest of McAfee.

DRAINAGE AREA.--60.8 mi2 (157.5 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME T	TREAM- CO FLOW, DO NSTAN- A ANEOUS (M		PH A	TURE, ATER S	KYGEN, DIS- SOLVED	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT										
10 MAR	1130	126	365		9.0	10.0	<1.0	700	540	130
06 MAY	1115		499	8.2	2.0	14.1	<.5	<20	14	180
05	1000	160	331	7.9	14.5	8.2	1.6	>24000	>2400	140
19 JUL	1000	78	420		15.0	8.1	.9	1300	170	170
01 AUG	1215	54	440	8.1	19.0	7.6	<1.0	16000	1600	180
04 SEP	1245	36	432	8.1	28.0	7.5	2.4	490	350	180
23	1130	18	505	8.2	23.0	8.2	<1.0	120	240	230
DATE	CALCIU DIS- SOLVE (MG/L AS CA	DIS- D SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY	SULF: TOT: (MG.	AL SOLY	- DIS VED SOL /L (MG	E, RII - DI VED SOI /L (MC	DE, IS- LVED G/L
OCT	2.6	1000	1					1 1	17.	
10 MAR	. 32	13	15	1.5	110)	.0 15	5 2	5	.1
06 MAY	. 40	19	20	1.9	160)	26	5 3	7	.1
05	. 32	14	16 17	1.2			16 17		2	:1
JUL 01		19	16	1.8			32		9	.2
AUG 04		20	18	2.2			17		0	.2
SEP 23		26	23	3.0			.0 29	107	2	.2
2500				. 5.0					100	
DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	D DEG. C DIS- SOLVED	TOTAL (MG/L	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	GEN,	MONI	AM- A + NITH NIC GEN AL TOTA /L (MG/	N, OSPH AL TOT /L (MG	US, OPH CARE ATE ORGA AL TO:	BON, ANIC TAL G/L C)
OCT 10	. 8.	3 197	<1.0	. 260	.0	7	. 33	_	. 15	3.8
MAR 06	. 4.	2 266			-			-		5.5
MAY 05	. 3.	3 186	. 15	. 120	.0	1	. 13	. 28	.06	
19 JUL				.100				.1	.16	4.7
01 AUG	. 7.	7 284	.56	. 150	.5	3	.68 1.	. 2	. 16	12
04 SEP	. 9.	7 265	.78	. 170	. 4	9	.66 1	. 4	. 18	7.2
23	. 8.	3 335	1.0	.240	4	2	.66 1.	.7	.31	2.9

HUDSON RIVER BASIN

01367770 WALLKILL RIVER NEAR SUSSEX, NJ--Continued

DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 10 SEP	1130				70	2		- 0	50	0	
23	1130	2500	2.8	24	30	3	0	0	60	0	<10
DATE	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT	20					9.0					
10 SEP	20			3	- 7	230		4		40	
23	20	10	<10	4	<10	520	6500	3	<10	110	510
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT					•		20				
10 SEP	.2		2		0		20		1		
23	<.1	.00	9	<10	0	0	40	420	5	82	.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HE PTA - CHLOR, TOTAL IN BOT - TOM MA - TERIAL (UG/KG)
OCT											
10 SEP											
23	.0	3	1.2	1.4	.0	.0	.0	.0	.0	.0	.0
DATE	HE PTA - CHLOR E POXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA - THION, TOTAL IN BOT - TOM MA - TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA - PHENE, TOTAL IN BOT - TOM MA - TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT											
10 SEP	==				77		77				
23	.0	.0	. 0	.0	. 0	.0	.0	. 0	.00	0	.0

01367910 PAPAKATING CREEK AT SUSSEX, NJ

LOCATION.--Lat 41°12'02", long 74°35'59", Sussex County, Hydrologic Unit 02020007, at bridge on State Route 23 in Sussex, 0.7 mi (1.1 km) downstream from Clove Brook, 2.6 mi (4.2 km) southwest of Independence Corner, and 3.4 mi (5.6 km) northwest of McAfee.

DRAINAGE AREA .-- 59.4 mi2 (153.8 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	FLO INST	EAM- OW, TAN- EOUS (SPE- CIFIC GON- DUCT- ANCE MICRO- MHOS)	PH FIELD (UNITS)	ATWA	IPER- CURE, LTER CG C)	D SO	GEN, IS- LVED G/L)	DEM BIO UNI	GEN AND, CHEM NHIB DAY /L)	COLI- FORM, FECAL EC BROTH (MPN)	, S'	TREP- COCCI ECAL MPN)	NE:	G/L
OCT 10	1015		266	215			9.0				1.0	170	00	1600		70
MAR 06	1000		44	290	7.4		.5		12.6		<1.0	<2	20	<2		91
MAY 05 19	0845 1115		120 52	182 227	7.7 7.1		14.5 16.0		8.2		2.4	>2400	00	2400		64 86
O1	1130		55	230	7.0		20.0		5.9		E2.4	920	00	2400		84
04	0945		33	245	7.7		15.0		1.5		3.5	920	00	430		88
SEP 23	1015		22	318	7.4		23.5		4.7		E2.4	1600	00	350		110
DAT	DIS SOI (MC	CIUM S- LVED G/L CA)	MAGNE SIUM DIS- SOLVE (MG/L AS MG	DIS- D SOLVE (MG/	JM, S D D D SO L (M	TAS- IUM, IS- LVED G/L K)	ALKA LINIT (MG/ AS CACO	r Y /L	SULF TOTA (MG,	AL /L	SULFA DIS- SOLV (MG/ AS SO	TE F ED S L (HLO- IDE, DIS- OLVED MG/L IS CL)	FLU RID DI SOL (MG AS	E, S- VED /L	
OCT 10.	:	22	3.	6 11	1	2.1		45			21		18		.1	
MAR 06. MAY		29	4.	5 13	3	2.3		58			30		24		.1	
05. 19. JUL		20 27	3. 4.			1.5		33 52		.0	21 22		14 17		:1	
O1.	:	27	4.	1 12	2	2.4		41			31		18		.1	
04. SEP	:	28	4.	3 11	1	2.8		66			22		18		.1	
23.	••	37	5.	3 15	5	4.2		60		.0	39		25		.1	
DAT	DIS SOI (MC	LVED G/L	SOLIDS RESIDU AT 180 DEG. DIS- SOLVE (MG/L	E NITH GEN C NO2+N TOTA D (MG/	N, G NO3 AMM AL TO /L (M	TRO- EN, ONIA TAL G/L N)	NITE GEI ORGAI TOTA (MG,	N, NIC AL /L	NITRO GEN, MONIA ORGAN TOTA (MG, AS 1	AM- A + NIC AL /L	NITR GEN TOTA (MG/ AS N	0- OF , OS L 7	PHOS- IORUS, THOPH PHATE COTAL MG/L PO4)	CARB ORGA TOT (MG AS	NIC AL /L	
OCT 10.		7.5	12	4 <1.	. 0	. 210		. 63		. 84			.26		5.0	
MAR 06.		5.3	16	5 1.	5	. 460	1.	.1	1	. 6	3.	1	. 24		3.5	
MAY 05. 19.		4.9	10 13			.300		. 43		. 73 . 45	1:		.07		3.4	
JUL 01. AUG		5.8	14	9	. 61	. 180		. 49		. 67	1.	3	. 19		8.1	
04. SEP	••	6.4	15	7	45	. 130		. 69		. 82	1.	3	.58		8.3	
23.		7.2	20	8 .	. 55	.510	1.	. 5	2	. 0	2.	5	1.4		8.5	

01367910 PAPAKATING CREEK AT SUSSEX, NJ--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
MAY								
19 SEP	1115	40	3	0	10	0	10	3
23	1015	40	2	0	60	0	10	10
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)
MAY								
19 SEP	830	4	110	. 2	1	0	20	2
23	1700	14	360	<.1	4	0	20	5

01368000 WALLKILL RIVER NEAR UNIONVILLE, NY

LOCATION.--Lat 41°15'36", long 74°32'56", Sussex County, New Jersey, Hydrologic Unit 02020007, on right bank on downstream side of bridge on the Bassetts Bridge Road, 0.6 mi (1.0 km) upstream from small tributary, 2.0 mi (3.2 km) south of the New York-New Jersey State line, and 3.0 mi (4.8 km) south of Unionville.

DRAINAGE AREA. -- 140 mi2 (363 km2).

PERIOD OF RECORD .-- September 1937 to current year.

REVISED RECORDS .-- WSP 2102: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 379.28 ft (115.605 m) National Vertical Geodetic Datum of 1929 (levels by Corps of Engineers). Prior to Nov. 16, 1949, nonrecording gage at same site and datum.

REMARKS.—Records fair except those for winter periods, which are poor, and periods of recession above 600 ft³/s (17 m³/s), which may be as much as 35 percent in error. Water diverted from Morris Lake, upstream from station, by the Newton Water and Sewer Authority for municipal use in New Jersey. After use, the water is released into Paulins Kill (Delaware River basin). Diversion records available from the Delaware River Basin Commission.

AVERAGE DISCHARGE.--43 years, 217 ft³/s (6.145 m³/s), 21.05 in/yr (535 mm/yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 6,880 ft³/s (195 m³/s) Aug. 19, 1955, gage height, 13.35 ft (4.069 m); minimum daily, 4.2 ft³/s (0.12 m³/s) Aug. 8-10, 1966.

EXTREMES FOR CURRENT YEAR.--Peak discharge above base of 1,200 ft3/s (34.0 m3/s):

Date Time Discharge Gage height (ft) (m)

Mar. 23 1745 1,420 40.2 8.19 2.496

Minimum daily discharge, 13 ft^3/s (0.37 m^3/s) Sept. 13, 14; minimum gage height, 2.89 ft (0.881 m), Sept. 13, 14, 15, 16, 17.

		DISCHARGE	, IN	CUBIC FEET	PER SE	COND, WATER MEAN VALUES	YEAR OCT	TOBER 1979	TO SEPTE	MBER 1980		
DAY	OCT	NOV	DEC	JAN	FEB	MAR MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4	221 518 536 471 390	117 110 274 476 415	263 230 205 194 188	194 184 175 150 140	64 62 60 58 58	56 52 54	764 833 780 700 766	800 613 434 359 304	84 94 110 150 118	155 83 83 74 64	46 36 69 74 45	16 16 15 16 16
6 7 8 9	410 375 290 239 271	315 249 215 200 226	180 211 222 199 175	130 122 128 116 102	56 56 54 54	74	640 541 445 459 674	268 245 238 230 206	84 77 83 89 94	185 134 76 59 51	34 30 27 24 24	17 19 17 15
11 12 13 14 15	356 333 304 265 226	297 302 288 260 238	165 163 177 243 211	120 334 317 243 211	54 52 52 52 52 50	175 121 82	804 660 540 482 556	192 214 251 236 196	97 81 69 61 56	44 59 65 43 35	22 30 33 25 23	14 14 13 13
16 17 18 19 20	206 190 180 168 156	215 197 185 176 166	175 222 170 140 137	206 179 169 193 194	52 52 54 56 60	117 485 791	555 465 391 343 310	169 151 138 139 138	52 49 45 44 43	34 47 48 39 32	24 22 22 21 21	19 25 62 53 29
21 22 23 24 25	144 137 131 130 132	163 158 153 153 148	146 163 165 207 328	165 147 146 128 100	62 66 70 74 80	997 1340 1300	285 263 237 217 203	139 178 149 126 113	49 57 40 36 34	28 27 47 87 50	26 24 22 21 20	21 20 19 18 17
26 27 28 29 30 31	120 111 116 169 152 130	197 458 497 416 321	437 351 282 247 228 211	94 90 86 82 78 72	76 72 70 66	820 700 600 704	194 187 311 713 946	98 86 77 70 65 70	33 30 29 31 207	36 29 26 29 85 72	19 19 18 17 17	17 16 16 15 15
TOTAL MEAN MAX MIN CFSM IN.	7577 244 536 111 1.74 2.01	253 497 110 1.81	6635 214 437 137 1.53 1.76	4795 155 334 72 1.11 1.27	1746 60.2 80 50 .43	433 1340 52 3 3.09	15264 509 946 187 3.64 4.06	6692 216 800 65 1.54 1.78	2126 70.9 207 29 .51 .56	1926 62.1 185 26 .44	871 28.1 74 16 .20 .23	592 19.7 62 13 .14 .16

CAL YR 1979 TOTAL 112661 MEAN 309 MAX 2730 MIN 31 CFSM 2.21 IN 29.94 WTR YR 1980 TOTAL 69247 MEAN 189 MAX 1340 MIN 13 CFSM 1.35 IN 18.40

01368950 BLACK CREEK NEAR VERNON, NJ

LOCATION.--Lat 41°13'21", long 74°28'33", Sussex County, Hydrologic Unit 02020007, at bridge on Maple grange road, 0.6 mi (1.0 km) upstream of confluence with Wawayanda Creek, 0.7 mi (1.1 km) northwest of Maple Grange, and 1.7 mi (2.7 km) northeast of Vernon.

DRAINAGE AREA. -- 17.3 mi2 (44.8 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEM PER ATURE WATER (DEG C	E, 1	YGEN, DIS- DLVED MG/L)	OXYGI DEMAI BIOCI UNINI 5 DI (MG/I	ND, F HEM F HIB AY B	OLI- ORM, ECAL, EC ROTH MPN)	STR TOCO FEC.	EP- CCI AL	HARD- NESS (MG/L AS CACO3)
OCT 01	1000	28	550	7.3	14.	5	6.4		42	790		110	220
MAR			371					_					
13 APR	0930	12	520	7.4		5	9.9	E	2.0	130		240	210
24 MAY	1130	39	428	7.6	13.	0	9.8		2.7	330		5	200
19	0930	20	520	7.4	15.	5	5.1		1.3	130		46	220
JUL 01	0945	14	490	7.4	18.	5	4.0	<	1.0	3500	>2	400	190
AUG 04	1215	12	525	7.8	19.	0	1.4		2.1	220		240	190
SEP 23	1045	5.2	745	7.3	22.	0	4.5	E	1.3	490		920	250
DATE	CALCI DIS- SOLV (MG/ AS (VED SOL	UM, SODIU S- DIS- VED SOLVE /L (MG/	M, SI DI D SOL L (MG	S- LI VED (LKA- NITY MG/L AS	SULF: TOT: (MG: AS:	IDE AL /L	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO RID DIS SOL (MG	E, VED /L	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	D
OCT	-												
O1					1.6	190			6.4	4			2
13 APR	. 48	3 2	2 26		1.9	180			20	5	1	•	2
24 MAY	. 48	3 2	0 20	l	1.5	170			17	4	0		2
19	. 52	2 2	3 26		.7	200		.0	13	45	5		2
JUL 01	. 46	5 1	9 27		1.7	150			29	4	5		2
AUG 04	. 41	4 2	0 28		2.4	170			16	5	1		3
SEP 23	. 56	5 2	6 49		3.0	200		.0	23	9	5		4
					3.0				-3				
DATE	SILIC DIS- SOLV (MG/ AS SIO2	VED DEG	DUÉ NITR BO GEN . C NO2+N S- TOTA VED (MG/	GE 03 AMMO L TOT L (MG	N, NIA OF AL I	GEN, GANIC OTAL MG/L S N)	NITRO GEN, MONIA ORGAN TOTA (MG	AM- A + NIC AL /L	NITRO- GEN, TOTAL (MG/L AS N)	PHOS PHOR ORTHO OS PHO TOTA (MG. AS PO	US, OPH (ATE (AL /L	CARBON ORGANI TOTAL (MG/L AS C)	ć
OCT 01	. 9	9.7	299 <1.	0.	200	. 25		. 45			. 14	5.	9
MAR 13	. (5.5	314 1.	3 .	210	. 89	1.	. 1	2.3		. 15	3.	5
APR 24		3.4	284 .	67 .	300	. 23		.53	1.2		. 22	3.	6
MAY 19					120	. 48		.60	1.3		. 24	7.	
JUL 01					160						.23	15	
AUG													_
SEP					070	. 63		.70	1.7		. 37	4.	
23		3.8	437 1.	5 .	100	.60		.70	2.2		. 64	6.	1

HUDSON RIVER BASIN

01368950 BLACK CREEK NEAR VERNON, NJ--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
MAY								
19 SEP	0930	30	3	0	30	0	10	2
23	1045	30	2	0	40	0	40	4
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)
MAY 19	1000	0	280	.2	1	0	10	4
SEP 23	810	2	460	.1	1	0	20	3

01376800 HACKENSACK RIVER AT WEST NYACK, NY

LOCATION.--Lat 41°05'44", long 73°57'52", Rockland County, Hydrologic Unit 02030103, on right bank 20 ft (6 m) downstream from Penn Central Transportation Co. railroad bridge at West Nyack, 1,000 ft (305 m) upstream from State Highway 59, and 1.0 mi (1.6 km) downstream from DeForest Lake.

DRAINAGE AREA . -- 29.4 mi2 (76.1 km2).

PERIOD OF RECORD .-- December 1958 to current year.

GAGE.--Water-stage recorder and stop-log control. Datum of gage is 53.50 ft (16.307 m) National Geodetic Vertical Datum of 1929 (levels by Hackensack Water Co.).

REMARKS.--Records fair. Flow regulated by DeForest Lake (see Reservoirs in Hackensack River Basin). Diversion from gaging station pool for municipal supply for village of Nyack (see Diversions in Hackensack River Basin). Discharge given for this station represents the flow of Hackensack River downstream from this diversion.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 1,550 ft³/s (43.9 m³/s) Feb. 3, 1973, gage height, 9.38 ft (2.859 m), from floodmarks, from rating curve extended above 840 ft³/s (23.8 m³/s); minimum daily, 2.6 ft³/s (0.074 m³/s) June 12, 1965, Sept. 25, 26, 30, 1966; minimum gage height, 1.70 ft (0.518 m) Oct. 22, 1960.

EXTREMES FOR CURRENT YEAR.—Maximum discharge, 1,060 ft³/s (30.0 m³/s) Apr. 10, gage height, 9.78 ft (2.981 m), no flow for part of Feb. 8, as a result of construction work above station; minimum gage height, 2.18 ft (0.664 m), Feb. 8.

		DISCHAF	RGE, IN	CUBIC FEET	PER SECO ME	ND, WATER AN VALUES	YEAR OCT	OBER 1979	TO SEPTE	MBER 1980		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	29 23 28 21 45	20 14 60 76 30	45 46 33 21 21	34 35 32 31 31	18 18 18 18	19 18 18 17	222 118 92 178 146	110 78 71 69 38	17 18 27 23 19	21 23 23 20 22	19 21 21 18 18	60 59 59 59 59
6 7 8 9	65 19 22 21 38	26 24 23 21 23	22 35 36 37 35	25 18 23 23 23	17 17 14 18 18	18 18 19 21 23	83 68 64 258 808	45 42 110 66 40	14 18 19 17 18	29 20 20 20 20	18 17 17 17 17	60 59 62 76 76
11 12 13 14 15	124 49 48 51 59	31 65 60 59 47	32 30 43 56 49	33 124 106 76 63	17 18 18 19 17	42 21 20 27 26	267 147 111 144 185	38 54 84 58 32	15 15 14 16 17	17 17 18 18	17 17 17 17 17	86 86 85 85
16 17 18 19 20	46 15 16 17 17	40 31 28 26 23	43 40 36 36 38	49 22 27 36 31	18 18 18 18	24 27 45 42 45	118 80 70 63 53	24 19 25 40 76	17 18 21 19 21	18 17 17 17 17	24 25 56 119 86	84 84 86 72 70
21 22 23 24 25	17 17 16 17 16	23 20 20 19 18	27 26 27 28 95	20 21 23 21 18	20 20 22 22 21	288 842 339 150 205	52 51 35 37 38	83 75 37 24 19	21 20 21 21 23	16 17 23 16 17	53 58 65 56 56	70 68 68 68 68
26 27 28 29 30 31	14 14 20 23 23	99 326 139 71 50	146 110 78 32 32 32	17 17 17 19 19	20 19 20 17	139 94 70 111 181 178	29 34 311 504 145	20 20 17 17 16 17	21 22 21 23 35	17 17 17 17 17 17	56 56 57 61 65	68 67 66 65 59
TOTAL MEAN MAX MIN	951 30.7 124 14	1512 50.4 326 14	1368 44.1 146 21	1054 34.0 124 17	533 18.4 22 14	3106 100 842 17	4511 150 808 29	1464 47.2 110 16	591 19.7 35 14	586 18.9 29 16	1224 39.5 119 17	2119 70.6 86 59

CAL YR 1979 TOTAL 20349 MEAN 55.8 MAX 808 MIN 12 WTR YR 1980 TOTAL 19019 MEAN 52.0 MAX 842 MIN 14

HACKENSACK RIVER BASIN

01377000 HACKENSACK RIVER AT RIVERVALE, NJ

LOCATION.--Lat 40°59'55", long 73°59'27", Bergen County, Hydrologic Unit 02030103, on upstream right bank at bridge on Westwood Avenue in Rivervale, 1.5 mi (2.4 km) upstream from Pascack Brook, 4.6 mi (7.4 km) upstream from Oradell Dam, and 27.2 mi (43.8 km) upstream from mouth.

DRAINAGE AREA .-- 58.0 mi2 (150.2 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1941 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 22.51 ft (6.861 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Flow regulated by De Forest Lake and Lake Tappan (see Hackensack River Basin, reservoirs in). Diversions from De Forest Lake and West Nyack, NY, for municipal water supply (see Hackensack River Basin, diversions).

COOPERATION .-- Gage-height record collected in cooperation with Hackensack Water Co.

AVERAGE DISCHARGE .-- 39 years, 90.5 ft3/s (2.562 m3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 2,160 ft³/s (61.2 m³/s) revised, Sept. 27, 1975, gage height, 7.15 ft (2.179 m); no flow part of Jan. 16, 1970 and May 30, 1979.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,670 ft³/s (47.3 m³/s) Mar. 22, gage height, 5.89 ft (1.795 m); minimum, 26 ft³/s (0.74 m³/s) Mar. 3, gage height, 1.65 ft (0.503 m).

REVISIONS. -- The maximum discharges for some water years have been revised, as shown in the following table. They supersede figures published in WSP 2102 and state reports for water years 1968 through 1979.

Water year	Date	Disch (ft3/s)		ge height t) (m)		Water year	Date	Discharge (ft ³ /s) (m ³ /s)	Gage h	eight (m)
1968 1969 1970 1971 1972 1973	May 29, 1968 May 9, June 17 Apr. 4, 1970 Sept. 12, 14, June 19, 1973 Feb. 5, 1973	, 1969 302 0 829 1971 976 2 1780	8.55 2 23.5 3 27.6 4 50.4 6	1.899 .71 0.826 .86 1.177 .21 1.283 .18 1.884 .10 1.250	3	1974 Mar. 1975 Sept. 1976 Jan. 1977 Mar. 1978 Jan. 1979 May	21, 1974 27, 1975 28, 1976 23, 1977 26, 1978 25, 1979	675 19.1 2160 61.2 1070 30.3 1400 39.6 1370 38.8 1450 41.1	3.49 7.15 4.43 5.22 5.17 5.34	1.064 2.179 1.350 1.591 1.576 1.628
		DISCHARGE, I	N CUBIC FEET		ND, WATER		OBER 1979 TO	SEPTEMBER 1980		
DAY	OCT	NOV DEC	JAN	FEB	MAR	APR	MAY JU	N JUL	AUG	SEP
1 2 3 4 5	78 61 61 39 48	41 41 39 41 61 40 41 40 37 39	50 54 47 45 48	32 31 31 31 31	32 32 32 33 33	484 280 180 287 324		4 126	76 84 78 61 60	124 99 80 68 64
6 7 8 9	112 39 35 36 55	36 39 36 50 36 41 36 40	43 36 35 34 35	31 31 31 31 31	32 32 33 42 38	183 120 105 311 1510	71 4 202 4 145 4	8 142 1 122 4 121 1 120 3 119	60 59 59 58 58	66 66 65 64 68
11 12 13 14 15	44 38 37 36 36	40 40 62 39 42 64 46 108 39 75	258 157 119 102	31 31 31 31 31	268 62 45 108 78	1060 451 224 209 295	65 82 3 144 3 126 3 73	7 118 6 116 6 115	58 59 69 95	72 77 81 83 84
16 17 18 19 20	37 37 37 37 37	37 65 36 78 36 56 36 52 36 54	80 52 43 93 65	38 42 34 32 32	58 71 200 95 79	230 141 115 102 89	53 3 51 3 48 3 45 3 96 3	5 112 5 111 5 111 5 107 5 101	99 106 115 171 166	84 84 100 97 91
21 22 23 24 25	37 37 37 37 39	36 47 36 39 36 45 36 53 36 192	46 39 44 42 35	35 47 55 55 52	400 1460 1220 546 388	84 79 66 58 62	131 3 135 3 85 7 48 12 44 12	8 99	164 160 156 152 148	84 78 75 73 73
26 27 28 29 30 31	39 39 45 44 42	89 222 61 135 42 38 40 35 40 38	35 33 34 33 34 32	48 38 34 33	292 184 126 171 314 335	61 62 380 1000 603	39 12 37 12 36 12 35 12 35 14 36	6 95 4 95 7 92 9 79	144 138 134 137 160	74 73 71 71 71
TOTAL MEAN MAX MIN		265 1930 2.2 62.3 89 222 36 35	1847 59.6 258 32	1041 35.9 55 31	6838 221 1460 32	9155 305 1510 58	2682 186 86.5 62. 241 14 35 3	0 110		2360 78.7 124 64
CAL YE		35035 MEAN 37095 MEAN	96.0 MAX 101 MAX		MIN 35 MIN 31					

01377000 HACKENSACK RIVER AT RIVERVALE, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962, 1964 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
FEB 05	1240	31	345	7.7	1.0	14.1	2.0	23	4	110
A PR 01	1030	490	282	7.8	7.5	12.0	1.7	130	79	85
JUN 03	0950	490			19.0			490	>2400	88
JUL 15	1010		295	7.6		7.2	2.5			
AUG		116	288	8.0	24.0	6.9	2.5	230	13	91
14	1015	94	278	8.2	26.0	7.0	3.2	80	140	94
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
FEB 05	35	6.4	20	1.9	100	0	82	122	26	34
APR 01	25	5.4	19	1.8	68	0	56		16	34
JUN 03	26	5.5	17	1.5	90	0	66	.2	21	26
JUL 15	28		18	1.8	88	0	72		16	30
AUG		5.1								
14	29	5.3	18	2.0	88	0	72		16	32
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	'NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
FEB 05	.1	3.1	176	.90	.110	. 64	.75	1.6	<.01	7.8
APR 01	.1	2.2	169	1.1	E. 160		1.4	2.5	. 0.7	3.6
JUN 03	.1	3.9	184	. 95	.290	. 64	.93	1.9	. 17	12
JUL 15	.1	1.6	160	. 15	.110	.73	. 84	.99	.37	6.5
AUG 14	.1	1.2	181	. 12	.040	1.5	1.5	1.6	. 40	5.4
272.5		1,2	101	. 12	.040	1.5	1.5	1.0	. 40	5.4
	DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	
	JUN	0.575				100		446		
	03	0950	0	1	0	80	0	<10	4	
	DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)	
	JUN									
		530	5	210	.1	5	0	10	0	

01377500 PASCACK BROOK AT WESTWOOD, NJ

LOCATION.--Lat 40°59'33", long 74°01'19", Bergen County, Hydrologic Unit 02030103, on right bank 75 ft (23 m) upstream from Harrington Avenue in Westwood, 500 ft (150 m) downstream from Musquapsink Brook, and 2.3 mi (3.7 km) upstream from mouth.

DRAINAGE AREA .-- 29.6 mi2 (76.7 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1934 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 28.62 ft (8.723 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Flow regulated by Woodcliff Lake 3.0 mi (4.8 km) above station (see Hackensack River Basin, reservoirs in). Water diverted for municipal supply by Spring Valley Water Co., by pumpage from well fields in headwater area of Pascack Brook in vicinity of Spring Valley, NY, and by Park Ridge Water Department by pumping from wells above Woodcliff Lake probably reduces flow past this station.

COOPERATION. -- Gage-height record collected in cooperation with Hackensack Water Co.

AVERAGE DISCHARGE .-- 46 years, 55.3 ft3/s (1.566 m3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,440 ft³/s (69.1 m³/s) Sept. 12, 1971, gage height, 7.57 ft (2.307 m); minimum, 5.6 ft³/s (0.16 m³/s) June 29, 1965.

EXTREMES FOR CURRENT YEAR .-- Peak discharge above base of 400 ft3/s (11.3 m3/s) and maximum (*):

Date		Time	Disch (ft3/s)	arge (m³/s)	Gage h	eight (m)	Date		Time	Discha (ft3/s)		Gage h	eight (m)
Oct. Oct. Mar.	5 6 22	2030 0130 0930	640 559 414	18.1 15.8 11.7	4.00 3.79 3.38	1.219 1.155 1.030	Apr.	10 28	0545 1815	*683 *683	19.3	4.11 4.11	1.253

Minimum discharge, 8.9 ft3/s (0.25 m3/s) Aug. 28, 29, Sept. 10.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 72 86 120 130 51 55 53 53 77 54 4.1 53 118 39 38 55 57 79 56 13 46 39 275 49 TOTAL MEAN 44.8 51.8 90.2 62.0 60.9 38.3 16.3 MAY 38 52 MIN

CAL YR 1979 TOTAL 26283 MEAN 72.0 MAX 683 MIN 17 WTR YR 1980 TOTAL 21968 MEAN 60.0 MAX 506 MIN 10

01378500 HACKENSACK RIVER AT NEW MILFORD, NJ

LOCATION.--Lat 40°56'52", long 74°01'34", Bergen County, Hydrologic Unit 02030103, on right bank upstream from two masonry dams and two lift gates at pumping plant of Hackensack Water Co., New Milford, 4.0 mi (6.4 km) downstream from Pascack Brook, and 21.8 mi (35.1 km) upstream from mouth.

DRAINAGE AREA . -- 113 mi2 (293 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1921 to current year. Monthly discharge only for October 1921, published in WSP 1302.

REVISED RECORDS: WSP 601: Drainage area. WSP 711: 1927-28(M). WRD-NJ 1970: 1969. WRD-NJ 1977: 1975(M).

GAGE.--Water-stage recorder above south dam. Datum of gage is 6.25 ft (1.905 m) National Geodetic Vertical Datum of 1929. October 1921 to November 23, 1923, nonrecording gage and Nov. 23, 1923, to Sept. 25, 1934, water-stage recorder at same site at datum 0.05 ft (0.015 m) lower.

REMARKS.--Water-discharge records good except those below 1.0 ft³/s (0.028 m³/s), which are poor. Records given herein do not include diversion at gage. Flow regulated by De Forest Lake, Lake Tappan, Woodcliff Lake 9.0 mi (14.5 km) upstream from station, and Oradell Reservoir 0.6 mi (1.0 km) upstream from station (see Hackensack River Basin, reservoirs in). Water diverted at gage, De Forest Lake, and West Nyack, NY, for municipal supply (see Hackensack River Basin, diversions).

COOPERATION .-- Gage-height record collected in cooperation with Hackensack Water Co.

AVERAGE DISCHARGE. -- 59 years, 105 ft3/s (2.974 m3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,500 ft³/s (127 m³/s) Nov. 9, 1977, gage height, 7.95 ft (2.423 m) from high-water mark; no flow many days during most years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,920 ft³/s (82.7 m³/s) Apr. 10, gage height, 5.34 ft (1.628 m); no flow part or all of many days during the year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

						MEAN VA			,,,			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.38 .47 .63 1.4 1.1	.89 1.7 1.2 .91 1.2	1.0 1.8 1.3 .71	2.6 2.4 2.4 1.3 1.4	23 19 18 17	.10 .29 .44 .13	550 421 288 728 498	355 175 148 86 41	18 18 20 21 22	.18 .18 .22 .21	.18 .20 .23 .27	.19 .22 .17 .18
6 7 8 9	200 11 .60 .55	.94 .58 .96 1.1 .68	1.2 .62 1.8 1.0 .43	2.3 1.4 1.1 1.2 .99	18 17 17 18 17	.15 .07 .24 .21	256 133 67 1230 2660	22 22 313 144 57	20 21 17 17 18	.20 .19 .20 .19 .21	.20 .17 .20 .17 .20	.23 .18 .17 .20
11 12 13 14 15	109 2.2 .45 .39 .74	.55 .45 .56 .64	1.0 2.3 1.0 .48 2.0	1.6 .93 11 73 65	19 18 7.5 .10	.84 .32 .96 1.1	1390 843 509 592 268	34 59 301 153 66	19 17 17 18 19	.27 .23 .24 .21 .21	.21 .20 .18 .18	.20 .16 .19 .20 .23
16 17 18 19 20	.58 .60 2.6 54 137	1.4 .70 1.2 .45 .70	1.2 .96 2.6 1.1 1.2	52 33 28 61 53	.06 .05 .31 .24	.11 .44 .40 .22 .71	374 127 119 557 388	36 20 15 18 15	19 18 14 15	.21 .22 .21 .22 .20	.19 .17 .17 .18 .16	.19 .27 .23 .21
21 22 23 24 25	88 .41 .79 .44 1.4	1.0 1.1 1.7 .22 .94	1.4 2.0 2.2 .30 2.9	29 24 27 27 27	.03 .14 .19 .14	690 2360 1440 662 713	29 21 21 18 15	18 52 46 28 19	16 19 12 .19 .45	.22 .23 .21 .29 .25	.17 .17 .18 .22 .18	.18 .20 .18 .17
26 27 28 29 30 31	2.0 .78 1.1 1.5 1.6	1.9 .68 2.7 1.0 1.4	2.0 1.6 1.7 1.5 3.1 2.5	27 28 27 23 23 20	.19 .27 .06 .42	310 217 125 367 574 758	17 15 892 1540 859	19 21 18 17 18 20	1.6 .19 .19 .19 .18	.30 .23 .24 .49 .19	.17 .18 .19 .21 .19	.20 .18 .19 .17 .19
TOTAL MEAN MAX MIN	699.01 22.5 200 .38	30.45 1.02 2.7 .22	45.26 1.46 3.1 .30	677.62 21.9 73 .93	228.00 7.86 23 .03	8223.73 265 2360 .07	15425 514 2660 15	2356 76.0 355 15	414.99 13.8 22 .18	7.08 .23 .49 .18	5.90 .19 .27 .16	5.81 .19 .27 .16

CAL YR 1979 TOTAL 33432.85 MEAN 91.6 MAX 1910 MIN .18 WTR YR 1980 TOTAL 28118.85 MEAN 76.8 MAX 2660 MIN .03

RESERVOIRS IN HACKENSACK RIVER BASIN, NJ

01376700 DE FOREST LAKE.--Lat 41°06', long 73°57', Rockland County, NY, Hydrologic Unit 02030103, at dam on Hackensack River, 0.85 mi (1.37 km) north of West Nyack, NY. DRAINAGE AREA, 26.6 mi² (68.9 km²). PERIOD OF RECORD, February 1956 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

Reservoir is formed by earthfill dam with sheet piling cutoff and concrete spillway; dam completed and storage began in February 1956. Total capacity at crest of dam 4,068,000,000 gal (15.40 hm³), elevation, 80.00 ft (24.384 m). Crest of dam topped by two 50-foot (15.24 m) Bascule gates 5 ft (1.5 m) high. Flow regulated by 12-inch (0.3 m) Howell-Bunger valve at elevation, 59.25 ft (18.059 m) and 24-inch Howell-Bunger valve at elevation, 61.25 ft (18.669 m). Reservoir used for storage and water released by Hackensack Water Co., for municipal water supply. Record of elevation and contents furnished by Hackensack Water Co.

- 01376950 LAKE TAPPAN.--Lat 41°01'05", long 74°00'05", Bergen County, Hydrologic Unit 02030103, at dam on Hack-ensack River, 0.50 mi (0.80 km) north of Old Tappan. DRAINAGE AREA, about 49 mi² (127 km²). PERIOD OF RECORD, October 1966 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of
 - Reservoir is formed by earthfill dam, completed in 1966. Capacity at spillway level, 3,378,000,000 gal (12.79 hm³), elevation, 55.00 ft (16.764 m). Flow regulated by four Bascule gates and one sluice gate. Water is released by Hackensack Water Co., for municipal water supply. Record of elevation and contents furnished by Hackensack Water Co.
- 01377450 WOODCLIFF LAKE.--Lat 41°01', long 74°03', Bergen County, Hydrologic Unit 02030103, at dam on Pascack Brook, 0.75 mi (1.21 km) north of Hillsdale. DRAINAGE AREA, 19.4 mi² (50.2 km²). PERIOD OF RECORD, December 1929 to current year. Monthend contents only, prior to September 1953, published in WSP 1302, 1722. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

 Reservoir is formed by earthfill dam, completed about 1905. Capacity at spillway level, 835,000,000 gal (3.160 hm³), elevation, 94.33 ft (28.752 m). Flow is regulated by flashboards and one 36-inch (0.9 m) gate in center of dam. Water is released for diversion at New Milford by Hackensack Water Co., for municipal supply. Record of elevation and contents furnished by Hackensack Water Co.

01378480 ORADELL RESERVOIR.--Lat 40°57', long 74°02', Bergen County, Hydrologic Unit 02030103, at dam on Hackensack River at Oradell. DRAINAGE AREA, 113 mi² (293 km²). PERIOD OF RECORD, December 1922 to current year. Monthend contents only, prior to September 1953, published in WSP 1302, 1722. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

Reservoir is formed by hollow concrete dam, completed in 1922. Capacity at spillway level, 2,850,000,000 gal (10.79 hm³), elevation, 22.66 ft (6.907 m). Flow regulated by seven sluice gates (7 by 9 ft or 2.1 by 2.7 m). Water is released for diversion by Hackensack Water Co., 1 mi (2 km) downstream from dam for municipal supply. Record of elevation and contents furnished by Hackensack Water Co.

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Date		Elevation (feet)	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)
		01376700	DE FOREST	LAKE +	01376950	LAKE TA	APPAN †	01377450	WOODCLIFF	LAKE +
Sept. Oct. Nov. Dec.	30 31 30 31	83.29 85.03 85.10 85.09	5,095 5,664 5,687 5,684	+28.4 +1.2 -0.1	48.09 51.33 54.72 55.01	1,495 2,358 3,389 3,484	+43.1 +53.2 +4.7	84.88 86.78 88.84 87.82	375 455 550 502	+4.0 +4.9 -2.4
CAL	YR	1979 -	-	+7.5	-	-	+9.1		-	+.9
Jan. Feb. Mar. Apr. May June July Aug. Sept.	31 29 31 30 31 30 31 31 30	84.84 84.45 85.24 85.15 84.82 84.00 82.46 78.37	5,601 5,472 5,734 5,704 5,594 5,325 4,832 3,628 1,995	-4.1 -6.9 +13.1 -1.5 -5.5 -13.9 -24.6 -60.1 -84.2	55.00 55.08 55.08 55.03 54.86 53.49 47.61 39.20	3,480 3,480 3,507 3,490 3,435 3,000 1,379	2 0 +1.3 9 -2.7 -22.4 -80.9 -65.3 -3.6	85.74 81.29 90.04 92.30 91.61 89.06 84.27 67.00	411 245 608 725 688 560 351 6	-4.5 -8.9 +18.1 +6.0 -1.8 -6.6 -10.4 -17.2 -3
WTR	YR	1980 -	-	-13.1	-	-	-6.3	-	-,	-1.6
		01378480	ORADELL F	RESERVOIR +						
Sept. Oct. Nov. Dec.	30 31 30 31	19.93 20.25 20.60 21.92	2,514 2,584 2,661 2,964	+3.5 +4.0 +15.1						
CAL	YR	1979 -	-	+4.0						
Jan. Feb. Mar. Apr. May June July Aug. Sept.	31 29 31 30 31 30 31 31 30	21.86 19.11 22.93 23.13 21.84 19.43 19.45 16.86 14.66	2,949 2,340 3,208 3,259 3,945 2,408 2,372 1,888 1,478	7 -32.5 +43.3 +2.6 +15.7 -27.7 -1.8 -24.2 -21.1	*					

[†] Elevation at 0800 on first day of following month.

-4.4

WTR YR 1980

HACKENSACK RIVER BASIN

DIVERSIONS FROM HACKENSACK RIVER BASIN, NJ

- 01376699 Spring Valley Water Co., diverts water at De Forest Lake for municipal supply in Rockland County, NY. Records furnished by Spring Valley Water Co.
- 01376810 Village of Nyack, NY, diverts water from Hackensack River 100 ft (30 m) downstream from gaging station on Hackensack River at West Nyack, NY (sta 01376800) for municipal supply. Records furnished by Board of Water Commissioners of Nyack, NY.
- 01378490 Hackensack Water Co., diverts water for municipal supply from Oradell Reservoir at Haworth pumping station 2.0 mi (3.2 km) upstream from gaging station on Hackensack River at New Milford and from Hackensack River about 50 ft (15 m) above gaging station on Hackensack River at New Milford, NJ (sta 01378500).
- 01378520 Hackensack Water Co., diverts water from Hirshfeld Brook, a tributary of the Hackensack River, below the gaging station on Hackensack River at New Milford, NJ, for municipal supply. Records furnished by Hackensack Water Co.

DIVERSIONS, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Month	01376699 SPRING VALLEY WATER CO.	01376810 WEST NYACK, NY	01378490 HACKENSACK WATER CO.
October	5.36	2.18	138
November	7.04 5.88	2.13 2.11	141 137
CAL YR 1979	10.4	2.31	149
January	8.30	2,12	135
February	5.40	2.12	135 138
March	7.83	2.09	138
April	8.69	2.18	139
May	11.3	2.22	153
June	13.2	2.43	179
July	14.0	2.68	189
August	19.0	2.67	193
September	11.7	2.35	136
WTR YR 1980	9.83	2.27	151

Tabulation of diversion by pumpage from sources other than the Hackensack River into Oradell Reservoir. These figures are included in diversions from Hackensack River as noted above.

DIVERSIONS, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

		01378520		
	SPARKILL CREEK	HIRSHFELD BROOK	SADDLE RIVER	WELLS TO SURFACE
Month	(HUDSON RIVER BASIN)	(HACKENSACK RIVER BASIN)	(PASSAIC RIVER BASIN)	SUPPLY
October	0	0	3.30	0.27
November	0	0	0	0
December	0	0	.26	0
CAL YR 1979.	0	.28	5.86	.47
January	0	.38	18.0	0
February	0	.78	18.9	0
March	0	1.72	13.7	.29
April	0	0	0	0
May	0	0	1.10	0
June	0	0	20.8	0
July	0	0	14.6	0
August	0	0.52	5.69	.64
September	.01	0.95	4.38	1.57
WTR YR 1980.	0	0.36	8.36	.24

01379000 PASSAIC RIVER NEAR MILLINGTON, NJ

LOCATION.--Lat 40°40'48", long 74°31'45", Somerset County, Hydrologic Unit 02030103, on right bank 200 ft (60 m) downstream from Davis Bridge, 0.7 mi (1.1 km) northwest of Millington, and 1.8 mi (2.9 km) downstream from Black

DRAINAGE AREA. -- 55.4 mi2 (143.5 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- November 1903 to June 1906 (published as "at Millington"), October 1921 to current year. Monthly discharge only for some periods published in WSP 1302.

REVISED RECORDS .-- WSP 781: Drainage area. WSP 1552: 1905(M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 215.60 ft (65.715 m) National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Nov. 25, 1903 to July 15, 1906, nonrecording gage at bridge 0.8 mi (1.3 km) downstream at different datum. Nov. 10, 1921 to Sept. 1, 1923, nonrecording gage at site 200 ft (60 m) downstream at present datum. Oct. 31, 1923 to July 3, 1925, nonrecording gage and concrete control at present site and datum.

REMARKS.--Water-discharge records good except those after July 11, which are fair. No gage-height record Mar. 18-27. Diversion from Osborn Pond by Commonwealth Water Co., Bernards Division, was discontinued in April 1979 and the installation dismantled.

AVERAGE DISCHARGE. -- 60 years (water years 1905, 1921-80) 90.3 ft3/s (2.557 m3/s), 22.12 in/yr (562 mm/yr), adjusted for diversion water years 1970-1979.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,000 ft³/s (56.6 m³/s) Jan. 9, 1905, gage height, 7.8 ft (2.38 m) from graph based on gage readings, site and datum then in use, from rating curve extended above 1,400 ft³/s (39.6 m³/s) on basis of velocity-area study; maximum gage height, 9.73 ft (2.966 m) Aug. 29, 1971; minimum discharge, 0.2 ft³/s (0.006 m³/s) Sept. 12, 13, 1966, gage height, 3.76 ft (1.146 m).

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 500 ft3/s (14.2 m3/s) and maximum (*):

Date	Time	Discharge (ft ³ /s) (m ³ /s)	Gage height (ft) (m)	Date	Time	Discharge (ft ³ /s) (m ³ /s)	Gage height (ft) (m)
Mar. 2	5 Unknown 2 0115	*740 21.0 625 17.7	Unknown 7.05 2.149	Apr. 10	1445	695 19.7	7.24 2.207

Minimum daily discharge, 1.4 ft3/s (0.040 m3/s) Sept. 12.

		DISCHA	RGE, IN	CUBIC FI	EET PER SEC	OND, WA	ATER YEAR	OCTOBER 1	979 TO SEP	TEMBER 19	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	119 174 163 143	36 36 82 152 122	99 80 64 56 52	63 54 54 ·39 39	23 22 21 22 22	24 24 22 25 29	572 602 497 437 437	388 283 202 134 92	48 39 39 51 37	28 18 18 20 20	16 20 67 32 23	8.7 8.4 8.1 8.6 8.0
6 7 8 9	99 79 63 56 100	107 95 79 68 72	52 108 119 98 87	35 32 34 31 27	22 23 22 23 24	32 32 42 113 104	350 273 216 304 663	78 71 115 134 104	34 37 39 35 56	36 28 21 19	29 22 19 19	8.1 5.8 4.3 3.8 3.8
11 12 13 14 15	170 166 162 151 123	90 150 164 140 123	73 63 75 121 105	239 258 190 181	24 24 23 24 25	162 149 113 55 80	642 518 362 278 309	85 99 195 171 125	46 35 33 31 29	16 15 14 13	16 16 15 15	2.7 1.4 2.2 2.6 3.7
16 17 18 19 20	103 81 68 60 52	103 86 74 65 58	93 100 77 58 49	158 123 100 141 147	28 30 26 26 28	115 126 350 450 430	275 237 192 141 115	100 87 77 73 62	25 26 22 20 20	11 12 12 11 10	12 11 10 12 22	3.7 4.2 21 7.9 5.2
21 22 23 24 25	47 43 39 37 36	53 48 46 46 41	46 49 58 94 178	121 98 86 67 52	33 37 48 81 72	480 620 680 640 700	104 92 83 77 72	67 76 62 51 44	19 18 16 15	9.3 10 14 12 9.9	15 12 12 11 11	4.7 4.7 3.9 3.5 3.9
26 27 28 29 30 31	34 33 34 47 40 36	82 198 178 152 127	236 185 147 118 94 77	46 40 40 36 30 27	68 47 39 31	480 347 279 253 310 359	73 72 213 480 464	37 33 31 30 28 29	13 13 13 13 45	8.8 10 9.4 17 57 22	9.9 9.7 10 9.6 9.5 9.2	5.0 5.1 4.0 3.7 3.7
TOTAL MEAN MAX MIN CFSM IN.	2680 86.5 174 33 1.56 1.80	2873 95.8 198 36 1.73 1.93	2911 93.9 236 46 1.70 1.95	2632 84.9 258 27 1.53 1.77	938 32.3 81 21 .58 .63	7625 246 700 22 4.44 5.12	9150 305 663 72 5.51 6.14	3163 102 388 28 1.84 2.12	881 29.4 56 13 .53	530.4 17.1 57 8.8 .31	525.9 17.0 67 9.2 .31 .35	164.4 5.48 21 1.4 .10
CAL YR WTR YR				141 93.1	MAX 1240 MAX 700	MIN MIN		SM 2.55 SM 1.68	IN 34.45 IN 22.88			

01379000 PASSAIC RIVER NEAR MILLINGTON, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923-25, 1962 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

	DATE	TIME	STRE FLO INST TANE (CF	AM- C W, I AN- A OUS (N	SPE- CIFIC CON- DUCT- ANCE MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVEI (MG/L)	UNIN	ND, F HEM F HIB AY E	COLI- FORM, FECAL, EC BROTH	STREP- TOCOCCI FECAL (MPN)	HARI NESS (MG, AS	S /L
	FEB													
	14	0920	2	0	255	7.3	1.0	13.6	5	.2	2	5		82
	MAR 26	1100	49	4	122	7.1	5.5	9.8	3	2.0	23	240		33
	JUN 02	1250	4	1	182	7.3	22.5	4.5	5	2.0	490	1600		48
	JUL 17	1210	2	3	215	7.5	25.5	5.2		2.1	210	920		66
	AUG 11	1045			263			2.2			20	16000		85
	SEP				77.7	7.3	25.0			1.7				
	24	1030		3.6	309	7.3	20.0	5.2	2	1.9	80	240		89
	DATE	CALCIU DIS- SOLVE (MG/L AS CA	D SOL (MG	UM, SC S- I VED SC /L (DDIUM, DIS- DLVED MG/L IS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA LINI (MG, AS, CAC	ry su /L I	ULFIDE TOTAL MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLC RIDE DIS- SOLY (MG/ AS (E, - VED /L
	FEB													
	14 MAR	20		7.8	15	1.8	71	()	58		30	23	3
	26 JUN	8.	1	3.2	8.5	1.5	24	()	20		14	1	1
	02 JUL	11		5.0	11	. 9	59	0)	48	.2	17	13	3
	17 AUG	16		6.4	13	1.1	76	C)	62		11	17	7
	11	21		7.8	16	1.4	98	C)	80		8.8	22	2
	SEP 24	22		8.3	23 .	2.6	76	C		62		37	32	2
	DATE	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	DIS SOL D (MG	CA, RE - AT VED D /L	DLIDS, CSIDUE 180 DEG. C DIS- GOLVED MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	MONIA	AM- A + N NIC AL T /L (IITRO- GEN, 'OTAL MG/L S N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBO ORGAN TOTA (MG/ AS C	NIĆ AL /L
	FEB						200							
	14 MAR		1 1	1	143	E.77	.230	. 22		. 45		.21	2	2.7
	26 JUN		1	6.8	86	• 55	.240	. 19	. 6	. 43	.98	. 05	9	9.8
	02 JUL		1 1	2	119	. 24	.110	. 43		. 54	.78	.72	9	5.1
	17		1 1	5	111	1.0	.220	. 54		.76	1.8	. 52	5	5.8
	AUG 11		1 2	1	157	. 10	.340	. 86	1.	. 2	1.3	1.0	13	3
	SEP 24		1 1	8	190	. 10	. 130	. 32		. 45	.55	. 43	8	8.8
DAT		GE + TO BO IME (CARBON, INOR- GANIC, FOT IN BOT MAT (G/KG AS C)	ORGAN TOT.	+ ALU IC INU IN DI AT SOL G (UG	M, S- ARSI VED TOTAL	TO IN ENIC TOM TAL TE	BENIC DTAL BOT- I MA- CRIAL IG/G AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BOR TOTA REC ERAL	AL TOT OV- REC BLE ERA /L (UG	IUM AL F OV- I BLE	CADMIUM RECOV. FM BOT- FOM MA- TERIAL (UG/G AS CD)
JUN														
O2. SEP		250					0	1		0		100	2	
24.	1	030 6	400	. 0	27				0					<10

01379000 PASSAIC RIVER NEAR MILLINGTON, NJ--Continued

DATE JUN	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
02	10			3		1400		4		150	
SEP 24		20	30		30		20000		30		190
24		. 20	30		30		20000		30	7-	1,50
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JUN											
02 SEP	<.1		2		0		10		1		
24		.00		<10		0		70		0	.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA - CHLOR, TOTAL IN BOT - TOM MA- TERIAL (UG/KG)
JUN 02											
SEP									77	-	-
24	.0	1	6.8	2.1	.6	. 0	. 1	.0	.0	.0	.0
DATE	HE PTA - CHLOR E POXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TO XA - PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JUN											
02 SEP											
24	.0	.0	.0	.0	.0	.0	.0	.0	.00	0	.0

01379500 PASSAIC RIVER NEAR CHATHAM, NJ

LOCATION.--Lat 40°43'31", long 74°23'23", Morris County, Hydrologic Unit 02030103, on left bank 150 ft (46 m) downstream from Stanley Avenue bridge in Chatham, and 3.0 mi (4.8 km) upstream from Canoe Brook.

DRAINAGE AREA . -- 100 mi2 (259 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- February 1903 to December 1911, October 1937 to current year. Monthly discharge only for some periods, published in WSP 1302.

GAGE.--Water-stage recorder and concrete control since Sept. 19, 1938. Datum of gage is 193.51 ft (58.982 m)

National Geodetic Vertical Datum of 1929. Prior to Dec. 31, 1911, nonrecording gage at bridge 150 ft (46 m)

upstream at different datum.

REMARKS.--Water-discharge records good. Diversion from Osborn Pond by Commonwealth Water Co., Bernards Division, was discontinued in April 1979 and the installation dismantled.

AVERAGE DISCHARGE.--51 years (water years 1904-11, 1938-80), 171 ft³/s (4.842 m³/s), 23.22 in/yr (590 mm/yr), adjusted for diversion water years 1970-79.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,380 ft 3 /s (95.7 m 3 /s) Aug. 2, 1973, gage height, 9.36 ft (2.853 m) from floodmark; minimum, 2.0 ft 3 /s (0.057 m 3 /s) many days in May and June 1903, August and October 1905, September and October 1906, and September 11, 1944.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 800 ft3/s (22.7 m3/s) and maximum (*):

		Discha	arge	Gage h	eight				Disch	arge	Gage h	eight	
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date		Time	(ft ³ /s	(m^3/s)	(ft)	(m)
Mar.	25	0315	*1370	38.7		1.926	Apr.	9	2400	977	27.7	5.65	1.722
Apr.	1	1800	931	26.4	5.57	1-698							

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum discharge, 8.2 ft3/s (0.23 m3/s) Sept. 14, gage height, 3.05 ft (0.930 m).

MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 74 70 55 126 35 41 25 316 9.4 116 142 90 71 19 79 76 28 135 120 36 18 75 68 259 70 547 16 ---TOTAL 577.4 MEAN 40.3 26.8 19.2 63.2 MAX 9.4 MIN CFSM .19 1.58 1.68 .63 4.59 5.07 1.82 . 66 TN. 1.97 1.94 1.78 5.29 5.66 2.15 . 46 .31

CAL YR 1979 TOTAL 92426.0 MEAN 253 MAX 1700 MIN 28 CFSM 2.53 IN 34.38 WTR YR 1980 TOTAL 61685.4 MEAN 169 MAX 1280 MIN 9.4 CFSM 1.69 IN 22.95

01379500 PASSAIC RIVER NEAR CHATHAM, NJ -- Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962 to current year.

PERIOD OF DAILY RECORD. -WATER TEMPERATURES: October 1966 to September 1968.
SUSPENDED-SEDIMENT DISCHARGE: July 1963 to September 1968.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

		STREAM- FLOW, INSTAN-	SPE- CIFIC CON- DUCT- ANCE	РН	TEMPER-	OXYGEN, DIS-	OXYGEN DEMAND, BIOCHEM UNINHIB	COLI- FORM, FECAL, EC	STREP- TOCOCCI	HARD- NESS (MG/L
DATE	TIME	TANEOUS (CFS)	(MICRO- MHOS)	FIELD (UNITS)	WATER (DEG C)	SOLVED (MG/L)	5 DAY (MG/L)	BROTH (MPN)	FECAL (MPN)	AS CACO3)
FEB 07	1150	43	495	7.6	1.0	14.0	2.7	130	50	110
MAR 26 JUN	1240	1070	138	7.0	5.5	9.7	1.7	180	170	36
02 JUL	1030	76	310	7.4	22.5	3.8	6.0	1600	1600	68
22 AUG	1250	21	575	7.7	29.0	5.9	6.8	790	70	110
11 SEP	1300	23	840	7.6	27.0	3.9	5.3	1300	>24000	120
24	1245	16	760	7.5	21.0	5.1	7.9	1300	700	120
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
FEB 07	29	9.8	46	2.3	102	0	84		40	61
MAR 26 JUN	8.7	3.4	11	1.4	24	0	20	- 11	16	14
02 JUL	16	6.8	24	1.7	85	0	70	ever 2 4 -	31	27
22 AUG	28	9.4	65	3.5	112	0	92		44	82
11 SEP	30	12	110	3.7	115	0	94	245	71	150
24	31	10	94	4.3	120	0	98	.0	56	120
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIĆ TOTAL (MG/L AS C)
FEB 07	.2	17	280	E1.5	2.300	• 33	2.6	1000	2.2	5.6
MAR 26	.1	8.2	100	.84	. 140	2.1	2.2	3.0	.23	8.3
JUN 02	.2	12	197	1.3	.900	1.0	1.9	3.2	1.5	5.2
JUL 22	.2	16	344	1.9	1.200	1.7	2.9	4.8	2.5	6.8
AUG 11	.2	18	462	1.6	.700	.90	1.6	3.2	2.0	7.0
SEP 24	.3	17	416	1.8	. 190	2.1	2.3	4.1	3.5	7.7
	DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	
	SEP 24	1245	20	2	0	290	1	10	9	

01379500 PASSAIC RIVER NEAR CHATHAM, NJ--Continued

	IRON, TOTAL RECOV-	LEAD, TOTAL RECOV-	MANGA- NESE, TOTAL RECOV-	MERCURY TOTAL RECOV-	NICKEL, TOTAL RECOV-	SELE- NIUM.	ZINC, TOTAL RECOV-	
	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	TOTAL (UG/L	ERABLE (UG/L	PHENOLS
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
SEP 24	1700	12	330	.2	13	0	30	12

01380500 ROCKAWAY RIVER ABOVE RESERVOIR, AT BOONTON, NJ

LOCATION.--Lat 40°54'06", long 74°24'40", Morris County, Hydrologic Unit 02030103, on right bank at Morris Avenue in Boonton, 1.8 mi (2.9 km) upstream from dam at Boonton Reservoir.

DRAINAGE AREA .-- 116 mi2 (300 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1937 to current year. Monthly discharge only for October 1937, published in WSP 1302.

REVISED RECORDS.--WRD-NJ 1974: 1938(m). WDR NJ-78-1: 1949(m), 1952(m), 1968(m), 1971(m), 1973(p), 1974(m), 1977(m).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 364.47 ft (111.090 m) National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Water-discharge records fair. Flow regulated by Splitrock Reservoir 14.5 mi (23.3 km) above station (see Passaic River Basin, reservoirs in). Town of Boonton diverts water for municipal supply from Taylortown Reservoir on Stony Brook, capacity, 75,000,000 gal (283,900 m³) and by pumping from wells in vicinity of Boonton. The mean diversion during the water year from Taylortown Reservoir was 0.14 ft³/s (0.004 m³/s). Rockaway Valley trunk sewer bypasses the station (see station 01381000).

COOPERATION. -- Gage-height record collected in cooperation with Jersey City, Bureau of Water.

AVERAGE DISCHARGE. -- 43 years, 225 ft3/s (6.372 m3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,430 ft³/s (154 m³/s) Jan. 25, 1979, gage height, 7.06 ft (2.152 m); minimum daily, 10 ft³/s (0.28 m³/s) Aug. 10, 1966.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 950 ft3/s (26.9 m3/s) and maximum (*):

Date		Time	Discha (ft³/s)		Gage h	eight (m)	Date		Time	Disch (ft3/s)		Gage h	eight (m)
Nov.	26	2115	965	27.3	3.97	1.210	Apr.	10	0600	2100	59.5	5.32	1.622
Jan. Mar.	12	0700 0630	1100 *2670	31.2 75.6	4.16 5.81	1.268	Apr.	29	0230	1920	54.4	5.14	1.567

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum discharge, 20 ft 3 /s (0.57 m 3 /s) Sept. 28-30, gage height, 1.72 ft (0.524 m).

						MEAN VA	LUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	260	158	305	186	113	84	825	745	160	77	40	42
2	380	156	287	189	119	90	766	581	135	60	78	41
3	320	453	263	184	105	80	620	497	196	54	149	41
4	344	450	244	172	107	81	719	423	213	51	67	45
5	293	328	231	165	106	85	760	368	144	56	54	49
6 7 8 9	272 253 231 219 295	285 266 251 238 262	226 302 265 230 217	156 148 147 140 130	104 102 105 98 97	92 93 103 130 122	556 475 423 848 1880	310 285 382 329 264	117 112 116 121 156	166 74 56 53 50	86 56 44 38 32	59 52 48 46 45
11	358	280	208	199	95	184	1230	237	127	46	29	44
12	330	354	198	866	95	147	897	293	109	65	29	42
13	307	304	249	409	92	122	705	444	97	46	29	41
14	270	266	286	301	90	134	629	345	90	41	29	42
15	243	237	234	279	91	145	763	263	85	40	41	47
16	223	224	214	260	107	125	626	227	79	71	50	46
17	209	209	234	237	102	142	501	207	72	54	48	45
18	202	192	189	229	103	557	428	202	69	47	47	59
19	197	185	186	284	101	460	364	212	66	43	51	53
20	193	185	180	252	107	309	338	196	68	39	103	34
21	192	177	178	222	115	723	316	216	64	36	64	34
22	184	162	176	206	131	2300	291	212	57	34	59	29
23	163	158	182	203	141	1580	270	176	55	55	57	38
24	169	153	224	191	155	1100	255	162	54	43	52	41
25	161	163	355	172	153	1090	245	153	52	36	49	27
26 27 28 29 30 31	146 141 163 192 173 164	530 747 482 408 351	332 256 226 211 202 192	165 153 151 144 131 125	136 118 111 98	909 674 546 548 623 620	234 233 678 1680 1010	137 124 113 106 102 104	50 49 45 44 129	36 34 33 47 56 45	48 47 45 43 43	27 24 20 20 20
TOTAL	7247	8614	7282	6796	3197	13998	19565	8415	2931	1644	1650	1201
MEAN	234	287	235	219	110	452	652	271	97.7	53.0	53.2	40.0
MAX	380	747	355	866	155	2300	1880	745	213	166	149	59
MIN	141	153	176	125	90	80	233	102	44	33	29	20

CAL YR 1979 TOTAL 125014 MEAN 343 MAX 4220 MIN 58 WTR YR 1980 TOTAL 82540 MEAN 226 MAX 2300 MIN 20

01381000 ROCKAWAY RIVER BELOW RESERVOIR, AT BOONTON, NJ

LOCATION.--Lat 40°53'47", long 74°23'36", Morris County, Hydrologic Unit 02030103, on right bank 2,000 ft (610 m) downstream from Boonton Reservoir Dam at Boonton.

DRAINAGE AREA . -- 119 mi2 (308 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--March to December 1903; January, February 1904 (gage height only); January 1906 to September 1950 (monthly discharge only, published in WSP 1302) October 1950 to current year (figures of daily discharge for October 1950 to September 1954 published in Special Report 16 of New Jersey Department of Environmental Protection). Published as "near Boonton" 1903-4, and as "at Boonton" 1906-37.

REVISED RECORDS.--WSP 1902: 1951-54. WDR NJ-79-1: 1949(M), 1952(M), 1968(M), 1970-74(M), 1977(M).

GAGE..-Water-stage recorder. Concrete control since Nov. 5, 1936. Datum of gage is 195.68 ft (59.643 m) National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Mar. 15, 1903 to Feb. 2, 1904, nonrecording gage at site 1.9 mi (3.1 km) downstream at different datum. Jan. 1, 1906 to Mar. 3, 1918, nonrecording gage on Boonton Dam 2,000 ft (610 m) upstream at datum 305.25 ft (93.040 m) National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Water-discharge records good. Records represent flow in river only. Sewage effluent enters river about 600 ft (183 m) below station (records given herein). Flow regulated by Boonton Reservoir (see Passaic River Basin, reservoirs in) 2,000 ft (610 m) above station, and by Splitrock Reservoir (see Passaic River Basin, reservoirs in) 16.5 mi (26.5 km) above station. Water diverted from Boonton Reservoir for municipal supply of Jersey City (see Passaic River Basin, diversions).

COOPERATION.--Gage-height records for station and records of sewage effluent furnished by Jersey City, Bureau of

AVERAGE DISCHARGE.--74 years (water years 1907-80), 137 ft³/s (3.880 m³/s), adjusted for sewage effluent since October 1930.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 7,560 ft³/s (214 m³/s), Oct. 10, 1903; no flow for many days in some years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,350 ft 3 /s (66.6 m 3 /s) Mar. 22, gage height, 6.40 ft (1.951 m); minimum, 3.3 ft 3 /s (0.094 m 3 /s) June 18, gage height, 1.36 ft (0.415 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES DAY OCT NOV DEC JUL AUG SEP JAN FEB MAR MAY JUN 9.3 93 8.6 8.4 8.4 8.6 8.8 54 9.2 9.9 9.9 9.7 323 13 9.6 9.3 9.9 9.6 9.6 12 9.7 8.4 8.5 53 55 13 9.0 9.0 9.1 TOTAL 403.4 10924.8 329.7 13.9 675 29.2 MEAN 13.0 12.3 11.0 MAX 9.3 8.4 11.8 11.8 11.8 11.6 13.7 18.0 14.3 12.3 10.3 10.1 9.7

CAL YR 1979 TOTAL 84654.0 MEAN 232 MAX 3460 MIN 12 + 13.3 WTR YR 1980 TOTAL 56399.9 MEAN 154 MAX 2020 MIN 8.4 + 12.2

t Sewage effluent, in cubic feet per second.

01381200 ROCKAWAY RIVER AT PINE BROOK, NJ

LOCATION.--Lat 40°51'29", long 74°20'53", Morris County, Hydrologic Unit 02030103, at bridge on U.S. Route 46 at intersection with New Road in Pine Brook, and 1.1 mi (1.8 km) upstream of mouth.

DRAINAGE AREA . -- 136 mi2 (352 km2).

52

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT										2 2 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
17 FEB	1015	227	193	7.1	13.0	8.5	5.1	110	20	62
26 APR	1315	75	318	7.6	4.0	11.2	2.8	20	80	89
02 MAY	1045	932	164	7.3	6.0	11.7	1.4	260	110	41
29 JUL	1000	54	330	7.5	17.5	6.0	4.4	220	94	94
16 AUG	1005	59	380	7.5	23.0	4.1	9.9	1700	2700	100
07	1000	43	365	7.5	24.0	2.7	7.0			120
SEP 17	0945	41	407	7.5	19.0	4.1	7.1	1300	2400	120
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT										
17 FEB	16	5.4	12	1.6	56	0	46	.0	16	19
26 APR	23	7.6	21	2.8	81	0	66		23	34
02 MAY	10	3.8	13	1.1	34	0	28	=	15	21
29 JUL	24	8.3	25	2.9	81	0	66	.0	25	36
16 AUG	27	9.1	25	4.5	• 98	0	80	_	28	38
07	30	9.9	26	4.2	102	0	84		27	38
SEP 17	30	. 11	29	4.5	110	0	90	.0	29	43
DATE	FLUO- RIDE, DIS- SOL VED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 17	.1	9.4	121	<1.0	. 400	.59	.99		.70	5.7
FEB 26	.2	10	171	E1.4	1.810	. 41	2.2		1.9	4.9
APR 02		7.0	106	.60		. 47	.60		.07	2.6
MAY	.1				. 130	10		1.2	W 11.3	
29 JUL	.2	12	202	. 25	. 440	1.2	1.6	1.8	1.6	4.6
16 AUG	.2	11	225	2.1	1.200	1.4	2.6	4.7	2.6	5.9
07 SEP	•3	14	224	2.5	.310	1.4	1.7	4.2	2.0	6.0
17	.2	14	260	2.7	1.400	1.2	2.6	5.3	3.7	4.9

01381200 ROCKAWAY RIVER AT PINE BROOK, NJ--Continued

DATE	TIM	E	NITRO- GEN, NH 4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	INORGATOT.	G + NIC IN MAT	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENT TOTAL (UG/I AS AS	II IC TO	RSENIC FOTAL N BOT- OM MA- FERIAL (UG/G AS AS)	BERYLLIUM, TOTAL RECOVERABL (UG/L AS BE	BORG TOTA - RECC E ERAI	AL DV - I BLE I	ADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 17	101	5	2700	.1			40		1	0		0	60	0	<10
MAY 29	100	0					10		2			0 .	110	Ó	- 22
SEP 17	094	5					30		1			0 .	70	2	
DATE	CHROMIUM TOTAL RECO ERAB (UG/I AS CI	L V- LE	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPI TOTA RECO ERAI	ER, AL F OV- T BLE 'L	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAI RECOV ERABI (UG/I AS FE	/ FN /- T(IRON, RECOV. M BOT- DM MA- FERIAL (UG/G AS FE)	LEAD, TOTAL RECOVERABLI (UG/L AS PB	E TER	DÝ. DT – 1 MA – 1 MA L MG	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 17		20	<10	<10		11	20	72	20	7900		9	10	70	120
MAY 29	<	10				7		62	20		- 1	4		120	
SEP 17		10				10		81	0			5		160	
DATE	MERCUI TOTAL RECO ERABI (UG/I AS HO	L V- LE	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	TOM N TER:	OV. OT - MA - MA L	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT TOM MA TERIA (UG/O	7 - F	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOVE FM BOT TOM MA- TERIAL (UG/G AS ZN)	- - - PHENC	LS TO	PCB, FOTAL N BOT- OM MA- FERIAL UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 17		. 2	.00	2		10	0		0	0	60)	2	64	.0
MAY 29		. 1		5			0			20			1		
SEP 17		. 2		5			0		_	50	2.	_	0		
														•	
DATE	ALDRII TOTAL IN BOT TOM MA TERIA	L T- A- AL	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOM N	AL DT - I MA - T MAL	DDT, TOTAL N BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN TOTAL IN BOT TOM MA TERIA (UG/KO	I, SU I IN I TO IL I	ENDO- JLFAN, TOTAL N BOT- DM MA- TERIAL JG/KG)	ENDRIN TOTAL IN BOT- TOM MA- TERIAI (UG/KG)	TOTA IN BO TOM N TERI	ON, OL IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	HEPTA- CHLOR, FOTAL N BOT- OM MA- FERIAL JG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)
OCT 17		.0	23	10		1.8	3.1	3.	2	.0		0	.0	.0	.0
29									-						
SEP 17									-		-				
1		TO' IN I TOM TE	DANE THE TAL TO BOT - IN MA - TOM RIAL TE	HION, COTAL COMPANDED TO THE PROPERTY OF THE P	ETH- XY- HLOR, T. IN OTTOM MATL. G/KG)	METHY PARA THIO TOT. BOTT MAT	N- THE TOTAL COM BOTTL.	HION, F. IN D DTTOM T MATL.	MIREX TOTAL IN BOT OM MA TERIA	C, TH L TO C- IN A- TOM A- TE	BOT- MA- BO	PER- THANE IN OTTOM ATERIL JG/KG)	TOXA- PHENI TOTAL IN BOT TOM MA TERIA	E, TH L TO I- IN A- TOM AL TE	RI- ION, TAL BOT- MA- RIAL /KG)
	CT 17		.0	.0	.0		.0	.0		. 0	.0	.00		0	.0
M	AY 29													-	
	EP 17									-					

01381500 WHIPPANY RIVER AT MORRISTOWN, NJ

LOCATION.--Lat 40°48'21", long 74°27'22", Morris County, Hydrologic Unit 02030103, on left bank at Morristown sewage-disposal plant, 0.8 mi (1.3 km) downstream from Morristown, and 9.0 mi (14.5 km) upstream from mouth.

DRAINAGE AREA .-- 29.4 mi2 (76.1 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1921 to current year.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1552: 1922-23(M), 1924, 1925-27(M) 1928-29, 1930-32(M), 1933-34. WRD-NJ 1974: 1965.

GAGE.--Water-stage recorder and crest-stage gage. Concrete control since July 1, 1936. Datum of gage is 260.01 ft (79.251 m) National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to July 16, 1930, nonrecording gage at same site and datum.

REMARKS.--Water-discharge records good except those prior to July 25, which are poor. Flow occasionally regulated by operation of gates in Pocahontas Dam, 2.5 mi (4.0 km) above station.

AVERAGE DISCHARGE .-- 59 years, 52.3 ft3/s (1.481 m3/s) 24.16 in/yr (614 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,280 ft³/s (64.6 m³/s) Aug. 28, 1971, gage height, 7.60 ft (2.316 m); minimum, 2.8 ft³/s (0.08 m³/s) Aug. 27, 1932, gage height, 0.73 ft (0.223 m).

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 450 ft3/s (12.7 m3/s) and maximum (*):

Date		Time	Discha (ft³/s)		Gage h	neight (m)	Date		Time	Discha (ft3/s)		Gage h	eight (m)
Jan. Mar.	12	Un known Un known	600 *1100	17.0 31.2	Un k	nown 1.667	Apr.	28	Un known 1630	875 963	24.8	a4.94 a5.15	1.506
Apr.	10	0100	967	27.4	a5.16	1.573				-		1000	

a - from crest-stage gage

Minimum discharge, 12 ft3/s (0.34 m3/s) Sept. 12, 13, 26, 27, 28, gage height, 1.76 ft (0.536 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980
MEAN VALUES JUN DAY OCT NOV DEC JAN FEB MAR APR MAY JUL. AUG SEP 161 42 27 21 87 120 33 30 171 62 55 33 TOTAL 30.4 15.0 MEAN 61.5 134 36 62.6 57.9 64.4 35.4 81.6 42.3 MAX MIN 2.78 CFSM 2.09 2.13 1.97 2.19 3.98 5.92 1.03 1.20 2.37 1.30 6.62 3.20 1.61 .57

CAL YR 1979 TOTAL 33190 MEAN 90.9 MAX 1130 MIN 24 CFSM 3.09 IN 41.99 WTR YR 1980 TOTAL 23314 MEAN 63.7 MAX 640 MIN 13 CFSM 2.17 IN 29.50

01381500 WHIPPANY RIVER AT MORRISTOWN, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923-24, 1926, 1962 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

		STREAM-	SPE- CIFIC CON-				OXYGEN DEMAND,	COLI- FORM,		HARD-
DATE	TIME	FLOW, INSTAN- TANEOUS (CFS)	DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	BIOCHEM UNINHIB 5 DAY (MG/L)	FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	NESS (MG/L AS CACO3)
OCT	22.5		2.20			10.0				
16 FEB	1300	51	240	7.2	11.5	11.4		410	170	78
14 APR	1155	26	285	8.3	4.0	17.0	.9	490	49	84
02 MA Y	1310	181	200	7.5	7.0	12.5	1.3	>2400	1600	47
22	1250	68	221	8.1	18.0	11.2	2.3	7900	490	64
JUL 16	1300	44	314	8.2	26.5	9.8	4.0	11000	3300	90
AUG 18	1045	16	342	8.5	21.5	12.4	2.3	1700	200	110
SE P 23	1000	14	380	7.8	22.0	9.5	1.9	2400	3500	120
						10.5	133			
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
	AS CA)	AS MG)	AS NA)	AS K)	nco3)	AS (03)	CACOS	HS 5)	AS 304)	AS CL)
OCT 16	20	6.9	16	1.6	62	0	51	.0	21	25
FEB 14	21	7.7	20	1.8	68	0	56		25	32
APR 02	12	4.1	16	1.3	37	0	30		16	28
MAY 22	16	5.9	14	1.3	56	0	46	.2	18	22
JUL 16	23	8.0	20	2.5	80	0	66		21	33
AUG 18	29	8.0	22	2.6	90	1	75		26	35
SEP 23	29	11	27	3.0	102	0	84	.0	28	42
23	29	3.0	21	3.0	102	U	04	.0	20	42
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT		17	1117	1 1	600	211	0.11	2.2	1.4	2 11
16 FEB	.1	17	147	1.4	.600	.24	.84	2.2		3.4
14 APR	.1	18	157		.350	.31	.66		1.3	2.3
02 MA Y	. 1	12	130	1.2	.070	.31	.38	1.6	.24	4.0
22 JUL	.1	16	140	1.3	.260	•59	. 85	2.1	1.0	. 4
16 AUG	.1	14	197	1.5	.240	.96	1.2	2.7	1.3	5.4
18 SEP	.1	17	232	1.8	.040	.79	.83	2.6	.64	1.3
23	.1	16	238	2.2	.080	•55	.63	2.8	2.0	7.3

01381500 WHIPPANY RIVER AT MORRISTOWN, NJ--Continued

DATE	TIME	NITRO- GEN, NH 4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV - ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 16	1300	800	. 4	4.7	20	1	0	0	40	0	<10
22	1250				10	1		0	60	0	
SE P 23	1000	320	.6	9.2	30	1	0	0	90	0	<10
DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 16	20	<10	<10	6	20	480	9300	2	60	60	260
MAY 22	10			6		730		4		70	
SEP 23	20	20	<0	5	20	540	16000	5	130	80	260
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE - NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 16	.2	.00	0	<10	0	0	10	70	3	- 4	
MA Y 22	.1		2		0		0		0		-
SE P 23	.2	.00	3	<10	0	0	20	100	5	7	.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HE PTA - CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 16											
MAY 22											
SE P 23	.0	7	9.0	8.0	220	.0	•3	.0	.0	.0	.0
DATE	HE PTA - CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA - PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT				(4)							
16 MAY 22										- 1	
SE P 23	.0	.0	.0	.0	.0	.0	.0	.0	.00	0	.0

01381800 WHIPPANY RIVER NEAR PINE BROOK, NJ

LOCATION.--Lat 40°50'42", long 74°20'51", Morris County, Hydrologic Unit 02030103, at bridge on New Road, 0.3 mi (0.5 km) southwest of overpass of Interstate 280, 2,000 ft (610 m) upstream of Rockaway River, and 1.4 mi (2.3 km) southwest of Pine Brook.

DRAINAGE AREA. -- 68.5 m12 (177.4 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1963 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 03	1220	336	258	7.2	18.5	4.6	3.0	3500	3500	78
FEB 04	1345	45	490	8.1	1.0	10.7	7.5	3300	17000	120
MAR 17	1315	88	485	7.2	4.5	10.8	5.7	13000	790	110
MAY 29	1145	60	455	7.7	20.5	3.6	>8.3	>24000	700	130
JUL 16	1125	63	415	7.6	25.5	4.4	10	17000	2300	120
AUG 07	1130	56	339	7.4	25.0	4.2	5.7			120
SEP 17	1200	34	495	7.7	18.5	5.7	7.8	3300	700	160
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT 03	21	6.1	16	2.5	76	0	62	.0	25	20
FEB 04	30	10	44	2.4	134	0	110		61	37
MAR 17	28	8.9	47		98	0	80		29	77
MAY	188			2.2						
JUL	34	10	50	2.5	149	0	122	. 1	51	38
16 AUG	30	11	28	2.8	124	0	102		45	33
O7 SEP	31	9.5	19	2.4	100	0	82		36	28
17	39	15	30	3.9	144	0	118	.0	43	41
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 03 FEB	.1	13	161	1.4	.480	.00	.48	1.9	.83	9.8
04	.1	19	282	E2.6	3.800	.20	4.1		2.3	
17 MAY	.1	11	273	1.0	1.200	.60	1.8	2.8	1.2	8.4
29 JUL	.2	16	286	1.9	1.300	1.9	3.2	5.1	1.8	6.3
16	.1	13	252	1.2	1.100	1.9	3.0	4.2	2.5	7.9
AUG 07	.2	16	217	1.1	. 490	1.3	1.8	2.9	1.5	9.4
SEP 17	.1	17	312	2.0	1.900	1.4	3.3	5.3	3.3	7.5

01381800 WHIPPANY RIVER NEAR PINE BROOK, NJ--Continued

		WAIEN	QUALITI	DAIA, WAI	EN IEAN C	CIUDEN 19	19 10 361	I EMBER 19	80		
DATE	TIME	NITRO- GEN, NH 4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT	1220	10900		22	20	1	0	10	90	0	<10
03 MAY	1220	10900	.1	32	20						(10
29 SEP	1145				20	3		0	220	1	
17	1200	1400	.0	23	30	1	0	0	160	1	<10
DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT											
03 MAY	20	30	20	8	70	1500	13000	12	120	90	200
29 SEP	<10			18		2000		19		220	
17	20	40	<1	24	<10	1100	1200	9	30	130	85
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 03	<.5	.00	3	20	0	. 0	20	180	1	220	.0
MAY 29	.1		7		0		30		0	4	
SEP 17	.5	.00	6	<10	1	0	80	60	0	24	.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT											
03 MAY	.0	58	19	5.4	3.7	.0	2.4	.0	.0	.0	.0
29 SEP				-					1.5		
17	.0	5	2.5	.3	.0	.0	.3	.0	.0	.0	.0
DATE	HE PTA - CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 03	.5	.0	.0	0	0	.0	0		.00	0	
MAY	• • •	.0		.0	.0		.0	.0		Ü	.0
29 SEP				-					-		· ·
17	.0	.0	.0	.0	.0	.0	.0	.0	.00	0	.0

LOCATION.--Lat 40°51'45", long 74°19'18", Morris County, Hydrologic Unit 02030103, on downstream left wingwall of bridge on U.S. Route 46, 0.5 mi (0.8 km) east of Pine Brook, and 1.3 mi (2.1 km) downstream from Rockaway River.

DRAINAGE AREA . -- 349 mi2 (904 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1963-69, 1973, and annual maximum, water years 1966-75, 1978-79. October 1979 to September 1980. Feb. 19 to Aug. 24, 1939 in files of U.S. Army Corps of Engineers, New York District.

REVISED RECORDS .-- WDR NJ-77-1: 1967(M).

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 149.26 ft (45.494 m) National Geodetic Vertical Datum of 1929. December 1965 to September 1979, crest-stage gage at same site at datum 10.00 ft (3.048 m) higher. Feb. 19 to Aug. 24, 1939, water-stage recorder at present NJ Route 506 bridge, 1,600 ft (488 m) upstream from gage, operated by U.S. Army Corps of Engineers, New York District to datum 13.05 ft (3.978 m) higher.

REMARKS.--Water-discharge records good except those for periods of no gage-height record, Oct. 1 to Dec. 4, and Apr. 16 to May 7, and winter months, which are fair. Flow regulated by Boonton and Splitrock Reservoirs (see Passaic River Basin, reservoirs in) and many small lakes. Water diverted from Boonton Reservoir for municipal supply of Jersey City (see Passaic River Basin, diversions).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,800 ft³/s (136 m³/s) Sept. 12, 1971, gage height, 21.84 ft (6.657 m) present datum; minimum observed, 70 ft³/s (1.98 m³/s) Sept. 29, 1980, gage height, 10.15 ft (3.094 m).

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1810, according to State Geologist in 1904, 23.2 ft (7.07 m) Oct. 10, 1903, present datum, from King Survey of highwater marks at present NJ Route 506 bridge, 1,600 ft (488 m) upstream from gage. Floods of Mar. 13, 1936 and Sept. 24, 1938 reached stages of 20.8 ft (6.34 m) and 19.4 ft (5.91 m) respectively, at present NJ Route 506 bridge and present datum. Flood of July 23, 1945 reached a stage of 22.3 ft (6.80 m) at present site and datum according to U.S. Army Corps of Engineers; minimum observed, 41.1 ft³/s (1.16 m³/s) Sept. 22, 1964.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 2,000 ft3/s (56.6 m3/s) and maximum(*):

2 .		Disch	arge	Gage h	eight			-3	Disch	arge	Gage h	eight	
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Mar.		1700		117			Apr.	11	1815	3700	105	19.53	5.953
Apr.	2	1230	2590	73.3	18.53	5.648							

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum discharge, 70 ft 3 /s (1.98 m 3 /s) Sept. 29, gage height, 10.15 ft (3.094 m).

		DISC	JARGE, II	COBIC FE	EI PER SI	MEAN VA		OCTOBER 19	79 10 SEP	TEMBER 19	00	
DA Y	OCT	NOV	DEC	JA N	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	600	250	900	470	220	220	2460	2100	312	313	165	88
2	800	230	750	410	210	200	2580	1800	312	209	157	89
2 3 4	1050	500	600	363	200	180	2500	1550	365	167	265	101
4	980	800	470	343	195	170	2470	1300	519	152	183	100
5	800	850	426	318	190	178	2520	1150	415	140	176	94
6	700	760	411	296	190	186	2400	950	294	322	293	92 87
7	580	650	578	277	185	178	2140	858	274	326	186	87
8	480	540	626	268	185	191	1860	831	271	217	143	79
9	400	480	537	261	180	314	1830	851	247	169	128	80
10	500	450	443	238	180	324	2760	785	348	150	115	82
11	750	490	409	264	180	552	3580	672	315	142	111	81
12	950	660	405	810	176	597	3530	606	264	150	127	82
13	880	740	450	1170	173	488	3070	789	223	140	127	80
14	780	700	629	1240	168	375	2610	971	196	126	114	75
15	700	610	609	1110	169	408	2380	987	181	124	110	75
16	620	540	521	919	165	399	2260	826	174	163	111	77
17	530	450	523	734	165	420	2000	646	173	165	102	78
18	470	400	474	588	165	879	1700	508	165	140	96	189
19	410	370	406	650	170	1300	1500	463	161	125	100	163
20	370	340	356	683	192	1480	1300	438	160	119	134	101
21	350	330	357	615	203	1700	1150	435	158	114	124	92
22	330	310	366	514	225	2980	1000	494	148	118	114	90
23	290	290	369	462	266	4010	870	452	143	210	109	91
24	290	280	414	431	352	3990	750	385	143	178	100	86
25	280	270	1000	379	332	3800	660	331	145	128	94	81
26	260	500	1200	337	322	3580	620	289	139	114	97	86
27	230	1200	1050	303	285	3190	600	256	132	115	98	86
28	230	1400	900	290	251	2710	900	233	125	107	97	77
29	280	1200	750	276	232	2350	1500	212	123	142	98	72
30	290	1000	650	250		2230	2200	197	355	231	95	75
31	270		540	230		2210		196		189	91	
TOTAL	16450	17590	18119	15499	6126	41789	57700	22561	6980	5205	4060	2729
MEAN	531	586	584	500	211	1348	1923	728	233	168	131	91.0
MAX	1050	1400	1200	1240	352	4010	3580	2100	519	326	293	189
MIN	230	230	356	230	165	170	600	196	123	107	91	72

WTR YR 1980 TOTAL 214808 MEAN 587 MAX 4010 MIN 72

01382000 PASSAIC RIVER AT TWO BRIDGES, NJ

LOCATION.--Lat 40°53'40", long 74°16'23", Passaic County, Hydrologic Unit 02030103, at bridge on Two Bridges Road in Two Bridges, 50 ft (15 m) upstream from Pompton River.

DRAINAGE AREA. -- 361 mi2 (935 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962 to current year.

PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: June 1969 to September 1974.
pH: June 1969 to September 1974.
WATER TEMPERATURES: October 1962 to September 1974.
DISSOLVED OXYGEN: June 1969 to September 1974.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
OCT 15 FEB	1315	248	6.9	10.5	8.2	4.2			73	19
04	1050	570	7.6	.5	10.6	5.2	540	1600	130	34
APR 10	1010	147	7.2	11.0	9.3	1.9	540	350	37	9.8
MAY 22	1035	380	7.4	17.5	3.9	7.5	490	540	93	24
JUL 17	1010	575	7.5	25.0	2.1	6.8	<200	110	130	34
AUG 13	1230	575	7.6	26.0	3.5	6.5	80	50	140	35
SEP 22	1000	465	7.4	21.5	2.4	5.2	4900	17	110	29
				25		3.2	.,,,,		1,0	
	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	POTAS- SIUM, DIS- SOLVED (MG/L	BICAR- BONATE (MG/L AS	CAR- BONATE (MG/L	ALKA- LINITY (MG/L AS	SULFIDE TOTAL (MG/L	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L
DATE	AS MG)	AS NA)	AS K)	HC03)	AS CO3)	CACO3)	AS S)	AS SO4)	AS CL)	AS F)
ОСТ 15	6.2	19	2.2	66	0	54	.0	25	25	.1
FEB 04	12	44	3.6	129	0	106		47	59	.2
APR 10	3.1	10	1.1	32	0	26		14	15	.1
MAY 22	8.1	34	2.2	93	0	76	.0	33	41	.1
JUL 17	12	53	4.5	132	0	108		47	66	.2
AUG 13	12	54	4.6	129	0	106		52	67	.2
SEP 22	9.7	38	4.8	100	0	94	.0	40	50	.2
	3.1	30	4.0	. 115	·	,,,		70	,,,	100
DAT	SILI DIS SOL (MG AS	- AT 1 VED DEC /L DI SOL	DUÉ NI 180 G G. C NO2 IS- TO VED (M		EN, GE ONIA ORGA TAL TOT G/L (MC	AL TOT	AM- AA + NIT NIC GE AL TOT G/L (MG	AL TOTA	JS, DPH CARE ATE ORGA AL TOT /L (MC	NIĆ AL I/L
ОСТ		3	156	E.94 E1.	100		. 9	E1.	•	7.6
15. FEB		8					7.5			
O4. APR					. 800		. 0		. 4	
10. MAY		4.6	94		. 120		. 72		. 26	4.6
JUL		2							. 7	4.7
17. AUG	1	6	314	2.5 2.	600 1	.5 4	.1 6	. 6 2.	. 8	5.8
13. SEP	1	8	341	2.7 1.	600 2	2.0 3	. 6 6	. 3	. 0	7.6
22.	1	4	287	1.6 2.	200 2	2.4 4	. 6 6	. 2 3.	. 0	8.1

01382000 PASSAIC RIVER AT TWO BRIDGES, NJ--Continued

	NITRO- CARBON,				ER TEAR C	OLODEN 13	ARSENIC	BERYL-		CADMIUM	
DATE	TIME	GEN, NH 4 + ORG. TOT IN BOT MAT (MG/KG AS N)	INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT					7.5						
15 MAY	1315		- 55		10	1	0	0	100	0	<10
22 SEP	1035	1,57		- 5	0	1		0	170	0	77
22	1000	20	.0	3.0	20	2	0	0	200	0	<10
DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT											
15 MAY	10	10		11	20	1100	9700	4	20	80	180
22 SEP	20			12		2400		19		230	
22	10	<10	<10	7	<10	1100	3200	7	20	90	15
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 15	.2	.00	6		0	0	20	90	8	75	.0
MAY 22	.2		8		0		20		12		
SEP 22	.2	.00	5	<10	0	0	20	20	6	29	.0
										274	
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
ост		20	22				11 0				
15 MAY	.0	38	33	6.5	.0	.0	4.2	.0	.0	.0	.0
SEP						-	100				
22	.0	19	.0	.0	1.2	.0	.3	.0	.0	. 0	.0
DATE	HE PTA - CHLOR E POXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA - PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT											
15	.0	.0	.0	.0	.0	.0	.0	.0	.00	0	.0
15 MAY 22	.0	.0	.0	.0	.0	.0	.0	.0	.00	0	.0

PASSATC RIVER BASTN

01382500 PEQUANNOCK RIVER AT MACOPIN INTAKE DAM. NJ

LOCATION.--Lat 41°01'00", long 74°23'47", Morris County, Hydrologic Unit 02030103, on left bank at Macopin intake dam of Newark water-works, 0.4 mi (0.6 km) downstream from Macopin River, and 3.0 mi (4.8 km) northwest of Butler.

DRAINAGE AREA.--63.7 mi² (165.0 km²).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- January 1898 to current year. Monthly discharge only for some periods, published in WSP 1302.

Records for January 1892 to December 1897, published in WSP 541, have been found to be unreliable and should not be used.

GAGE.--Water-stage recorder above dam. Datum of gage is 570.00 ft (173.736 m) National Geodetic Vertical Datum of 1929 (levels by New Jersey Geological Survey). Prior to May 22, 1970, at datum 13.55 ft (4.130 m) higher.

REMARKS.--Water-discharge records fair except those below 50 ft³/s (1.42 m³/s), which are poor. Records given herein represent flow over intake dam only. Flow regulated by Canistear, Oak Ridge, Clinton, Charlotteburg Reservoirs, and Echo Lake (see Passaic River Basin, reservoirs in). Water diverted above intake dam for municipal supply of city of Newark (see Passaic River Basin, diversions).

COOPERATION. -- Gage-height record collected in cooperation with the Department of Public Affairs, Division of Water Supply, city of Newark. Prior to May 22, 1970, discharge figures furnished by city of Newark.

AVERAGE DISCHARGE. -- 82 years, 51.4 ft3/s (1.456 m3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, about 6,100 ft³/s (173 m³/s) Oct. 10, 1903, gage height, 17.4 ft (5.30 m) present datum; no flow over dam during several months of most years.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 1,180 ft3/s (33.4 m3/s) Apr. 10, gage height, 14.92 ft (4.548 m); no flow part or all of some days during the year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DA Y	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	22 17 18 12 11	1.5 1.3 48 22 16	9.5 8.4 8.0 11	6.0 5.3 4.7 4.6 4.1	3.1 3.0 2.9 2.9 2.8	2.7 2.3 2.1 2.4 3.1	422 381 310 402 393	382 257 194 136 82	2.5 4.6 7.1 6.0 3.2	1.3 1.3 1.3 1.3	1.3 4.7 13 15	.57 .57 1.3 2.1 1.3
6 7 8 9	9·3 7·4 4·8 5·1 7·7	16 16 13 13 20	11 11 11 11 6.6	3.9 3.8 3.6 3.5	2.8 2.7 2.7 2.6 2.5	2.8 3.4 4.2 5.0 4.3	280 227 195 603 973	55 39 41 32 25	2.5 2.9 3.6 4.1 4.2	3.9 1.3 .48 .38	4.6 6.3 8.3 8.3 6.3	1.3 .57 .46 .57 .70
11 12 13 14 15	11 9.7 16 14 13	20 27 18 8.1 .17	6.2 5.7 11 8.8 6.3	8.3 8.5 8.0 6.9	2.5 2.4 2.4 2.4	6.5 3.6 3.5 3.2 3.0	671 457 348 335 403	19 23 42 85 52	2.9 2.1 2.1 1.8 1.7	.37 .08 .02 .03	8.3 11 6.3 4.6 8.3	.58 1.2 1.3 1.7
16 17 18 19 20	13 14 13 14 15	.00 .00 .00	6.3 4.3 4.7 4.6 4.7	6.3 10 8.0 6.4 6.3	2.5 2.7 2.7 2.6 2.7	3.3 5.7 42 13	315 216 159 124 98	18 15 13 13	1.7 1.4 1.3 1.3	.05 .01 .01 .00	11 .57 1.3 1.3 3.2	1.3 1.6 1.4 .90
21 22 23 24 25	15 4.0 4.8 1.9	.00 .00 .00 .00	10 5.6 5.4 8.3 23	6.3 5.5 4.7 4.3 4.2	2.8 2.9 3.2 3.5 3.8	228 164 124 144 212	72 47 65 55 26	17 17 12 10 8.2	.78 1.0 1.0 1.1 1.3	.07 .02 .67 .84	11 13 16 6.3 6.3	.57 .43 .25 .04
26 27 28 29 30 31	.62 .69 1.8 2.1 1.5	42 39 18 14 12	9. 4 5. 8 4. 6 5. 5 6. 2	3.9 3.7 3.6 3.5 3.3	3.9 3.1 4.6 3.3	176 116 174 345 385 401	23 22 300 823 568	6.8 5.1 3.9 3.2 2.9 2.2	1.3 .80 .57 1.2 2.1	.80 .36 .46 1.2 1.3	11 13 6.3 8.3 11 8.3	.30 .00 .02 .14 .57
TOTAL MEAN MAX MIN	281.58 9.08 22 .62	365.07 12.2 48 .00	250.4 8.08 23 4.3	212.4 6.85 47 3.2	84.4 2.91 4.6 2.4	2595.1 83.7 401 2.1	9313 310 973 22	1624.3 52.4 382 2.2	69. 12 2. 30 7. 1 .57	21.39 .69 3.9 .00	249.17 8.04 16 .57	24.42 .81 2.1 .00

CAL YR 1979 TOTAL 14987.33 MEAN 41.1 MAX 669 MIN .00 WTR YR 1980 TOTAL 15090.35 MEAN 41.2 MAX 973 MIN .00

01383500 WANAQUE RIVER AT AWOSTING, NJ

LOCATION.--Lat 41°09'31", long 74°20'00", Passaic County, Hydrologic Unit 02030103, on right bank 700 ft (210 m) downstream from dam at outlet of Greenwood Lake at Awosting.

DRAINAGE AREA .-- 27.1 mi2 (70.2 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1919 to current year. Prior to October 1940, published as "at Greenwood Lake".

REVISED RECORDS.--WSP 781: Drainage area. WSP 1552: 1922(M), 1928(M), 1936. WDR NJ-79-1: 1933(M), 1936(M), 1945(M), 1948(P), 1951(P), 1952(P), 1953(M), 1955(P), 1956(M), 1957(M), 1958(M), 1960(P), 1961(M), 1968(P), 1969(P).

GAGE.--Water-stage recorder. Concrete control since Oct. 31, 1938. Datum of gage is 601.32 ft (183.282 m) National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to Apr. 1, 1926, nonrecording gage and Apr. 1, 1926, to Oct. 31, 1938, water-stage recorder at site 100 ft (30 m) upstream at same datum.

REMARKS.--Water-discharge records good. Flow completely regulated by Greenwood Lake (see Passaic River Basin, reservoirs in).

COOPERATION .-- Gage-height record collected in cooperation with North Jersey District Water Supply Commission.

AVERAGE DISCHARGE.--61 years, 53.8 ft^3/s (1.524 m^3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,160 ft³/s (61.2 m³/s) Mar. 22, 1980, gage height, 6.26 ft (1.908 m), from rating curve extended above 750 ft³/s (21.24 m³/s) based on theoretical weir formula; no flow at times when gates at Greenwood Lake were closed and water below the spillway.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 200 ft3/s (5.66 m3/s) and maximum (*):

Date	Date		Discha (ft³/s)		Gage h	eight (m)	Date		Time	Discha (ft ³ /s)		Gage h	eight (m)
Nov. Mar.	27 22	1230 1030	254 *2160	7.19 61.2	3.18 6.26	0.969	Apr.	10 29	1000	902 300	25.5 8.50	4.45	1.356

Minimum discharge, 0.44 ft3/s (0.012 m3/s) Aug. 20, 21, gage height, 1.33 ft (0.405 m).

REVISIONS.--The revised peak discharge published for Feb. 26, 1960 in WDR NJ-79-1 was actually the annual maximum discharge for Feb. 26, 1961.

		DISC	HARGE, IN	CUBIC FE	ET PER SE	COND, WAT	ER YEAR LUES	OCTOBER 19	79 TO SE	TEMBER 19	980	
DAY	OCT	NOV	DEC	JA N	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	65 98 105 108 101	25 24 77 116 114	144 124 101 84 72	67 65 59 53 49	24 22 20 17 16	16 15 13 11	264 240 211 221 234	260 210 169 138 104	9.0 11 25 31 23	14 14 18 17 16	2.5 2.6 3.3 2.7 2.4	3.6 3.5 3.5 3.3
6 7 8 9	111 120 109 93 97	103 94 81 71 73	66 72 66 57 52	29 36 34 31 29	14 14 13 12 12	13 11 13 16 16	195 161 140 344 846	86 73 68 60 48	17 17 20 17	41 30 23 20 17	2.4 2.4 2.4 2.4 2.4	3.4 3.4 3.4 3.4
11 12 13 14 15	97 92 89 80 68	74 80 75 70 58	47 45 53 59 53	37 107 112 105 99	11 11 11 11 10	31 27 29 49 45	692 483 353 276 258	42 43 41 38 31	15 13 10 9.2 7.5	14 12 8.3 6.3 4.6	2.4 2.5 2.5 2.2 1.8	3.4 3.4 3.4 3.4
16 17 18 19 20	62 56 52 46 42	55 47 45 40 38	51 62 48 47 46	88 76 70 73 67	17 19 17 16 15	36 35 86 125 128	227 169 138 113 95	25 20 17 20 24	8.5 6.0 3.5 3.3 2.8	4.5 4.7 4.7 3.9 3.6	1.7 1.6 1.5 1.4	3.4 3.5 3.4 3.4
21 22 23 24 25	40 38 35 42 37	37 34 33 31 31	41 39 39 43 71	60 54 52 47 43	15 18 20 21 21	505 2010 1430 951 745	86 73 59 51 46	29 28 24 22 21	3.5 2.2 2.2 2.2 2.2	3.0 2.7 8.3 9.4 5.8	1.4 3.4 3.2 2.9 3.0	3.4 3.5 3.6 3.6
26 27 28 29 30 31	32 28 28 32 30 28	84 241 245 213 172	94 94 92 79 67 61	39 36 34 31 29 26	21 19 19 18	548 394 297 268 267 258	43 42 94 275 292	17 11 7.8 5.8 4.4 4.9	2.2 2.2 2.2 3.0	4.7 3.8 2.9 2.9 2.9 2.6	3.9 3.0 3.3 3.4 3.4	3.6 3.5 3.4 3.4
TOTAL MEAN MAX MIN	2061 66.5 120 28	2481 82.7 245 24	2069 66.7 144 39	1737 56.0 112 26	474 16.3 24 10	8399 271 2010 11	6721 224 846 42	1691.9 54.6 260 4.4	304.7 10.2 31 2.2	325.6 10.5 41 2.6	76.82 2.48 3.4 .82	103.3 3.44 3.6 3.3

CAL YR 1979 TOTAL 33957.10 MEAN 93.0 MAX 1110 MIN 4.5 WTR YR 1980 TOTAL 26444.32 MEAN 72.3 MAX 2010 MIN .82

01384000 WANAQUE RIVER AT MONKS, NJ

LOCATION.--Lat 41°07'14", long 74°17'41", Passaic County, Hydrologic Unit 02030103, on left bank just upstream from Wanaque Reservoir and 0.3 mi (0.5 km) downstream from bridge on Stonetown Road at Monks.

DRAINAGE AREA .-- 40.4 mi2 (104.6 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1934 to current year. Monthly discharge only for October to December 1934, published in WSP 1302.

GAGE.--Water-stage recorder and concrete dam. Datum of gage is 303.17 ft (92.406 m) National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Water-discharge records good. Records given herein include flow over spillway, through ports in dam, and down fish ladder in dam. Flow regulated by Greenwood Lake (see Passaic River Basin, reservoirs in).

COOPERATION. -- Gage-height record collected in cooperation with North Jersey District Water Supply Commission.

AVERAGE DISCHARGE. -- 46 years, 82.4 ft3/s (2.334 m3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,910 ft³/s (111 m³/s) Mar. 21, 1980, gage height, 4.30 ft (1.292 m) from high-water mark; no flow part of day in some years just after waste gate was closed and water was below intake to ports.

EXTREMES FOR CURRENT YEAR. -- Peak discharge above base of 400 ft3/s (11.3 m3/s) and maximum (*):

Date	Time	Discharge (ft ³ /s) (m ³ /s)	Gage height (ft) (m)	Date Time	Discharge (ft ³ /s) (m ³ /s)	Gage height (ft) (m)
Nov. 26	2045	540 15.3	1.66 0.506	Apr. 9 1515	1515 41.1	2.67 0.814
Mar. 21	Unknown	*3910 111	a4.30 1.311	Apr. 28 1915	625 17.5	1.78 0.543

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

a - from high-water mark

Minimum discharge, 1.6 ft 3 /s(0.045 m 3 /s) Aug. 22, gage height, 0.06 ft (0.018 m).

						MEAN VA	LUES					
DA Y	OCT	NO V	DEC	JA N	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	105 142 142 148 141	41 40 158 182 160	171 149 125 108 95	83 78 69 67	32 28 28 26 24	19 20 18 17 16	318 284 250 289 278	290 242 201 169 136	16 30 43 47 36	25 20 29 26 21	3.5 3.5 4.6 5.0 3.9	3.1 3.2 3.5 3.3
6 7 8 9	167 155 143 122 136	143 130 115 102 103	86 99 87 78 69	45 46 49 43 46	22 21 21 21 20	16 17 17 18 20	233 199 173 742 987	114 99 96 86 71	29 23 26 30 27	59 43 33 30 25	3.5 3.4 3.1 3.1 3.0	3.5 3.5 3.3 3.1 3.1
11 12 13 14 15	146 135 129 116 99	108 124 111 104 89	65 61 71 90 74	61 197 142 131 125	18 17 15 14 13	26 33 33 64 56	622 453 352 306 315	62 64 63 58 49	26 22 20 17 15	21 19 14 11 7.8	2.8 2.8 2.8 2.8 2.8	3.1 3.1 3.1 3.1 3.1
16 17 18 19 20	90 83 80 72 65	83 73 69 63 61	68 83 82 60 62	98 90 98 88	15 20 23 26 26	47 45 153 176 164	266 211 176 150 130	42 36 30 35 40	13 13 9.2 7.2 6.2	6.2 6.7 6.2 5.2	2.5 2.1 2.0 1.9 1.9	3.1 3.3 9.7 4.6 4.3
21 22 23 24 25	61 56 53 62 57	58 55 53 50 49	82 57 57 62 130	79 71 69 62 63	24 22 24 27 30	1050 1920 1090 728 631	117 101 87 77 69	45 41 37 34 30	5.7 5.7 4.8 4.8 4.3	4.8 3.9 12 18	1.9 2.0 3.5 3.5 3.1	4.3 4.3 4.1 3.9 3.9
26 27 28 29 30 31	50 44 46 54 49	206 360 289 247 203	141 127 121 108 92 84	53 49 47 43 38 34	29 28 27 26	479 375 305 297 308 301	65 61 239 415 337	22 16 11 9.0 7.4	4.3 3.9 3.9 3.5 30	7.8 6.2 5.2 4.3 4.8	3.1 3.1 3.1 3.1 3.1 3.1	4.2 3.9 3.9 3.9
TOTAL MEAN MAX MIN	2993 96.5 167 44	3629 121 360 40	2844 91.7 171 57	2359 76.1 197 34	667 23.0 32 13	8459 273 1920 16	8302 277 987 61	2245.4 72.4 290 7.4	526.5 17.6 47 3.5	497.1 16.0 59 3.9	93.6 3.02 5.0 1.9	113.6 3.79 9.7 3.1
CAI VD	1070 TOT	11 116622	1 MEAN	129	MAY 1220	MTN O	0					

CAL YR 1979 TOTAL 46623.1 MEAN 128 MAX 1230 MIN 8.0 WTR YR 1980 TOTAL 32729.2 MEAN 89.4 MAX 1920 MIN 1.9

65

01387000 WANAQUE RIVER AT WANAQUE, NJ

LOCATION.--Lat 41°02'33", long 74°17'36", Passaic County, Hydrologic Unit 02030103, on left bank 750 ft (229 m) downstream from Raymond Dam in Wanaque, and 50 ft (15 m) upstream from bridge on State Highway 511.

DRAINAGE AREA.--90.4 mi² (234.1 km²), considered as 94 mi² (243 km²) Oct. 1, 1928, to Sept. 30, 1934.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- December 1903 to December 1905 (gage heights only), September 1912 to April 1915, May 1919 to

GAGE.--Water-stage recorder and concrete control. Datum of gage is 210.00 ft (64.008 m) National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Dec. 16, 1903, to Dec. 31, 1905, nonrecording gage on highway bridge at site 50 ft (15 m) downstream at different datum. Sept. 15, 1912, to Apr. 1, 1922, nonrecording gage at site 200 ft (61 m) downstream from present concrete control at different datum. Apr. 1, 1922 to Mar. 14, 1931, water-stage recorder at site 400 ft (122 m) downstream from present concrete control at present datum.

REMARKS.--Water-discharge records good. Flow regulated by Greenwood Lake (see Passaic River Basin, reservoirs in)
11 mi (17.7 km) above station, and since 1928 by Wanaque Reservoir (see Passaic River Basin, reservoirs in).
North Jersey Water Supply Commission diverts water for municipal supply from Wanaque Reservoir. Water is diverted to Wanaque Reservoir from Post Brook at Wanaque and from Ramapo River at Pompton Lakes (see Passaic River Basin, diversions) .

COOPERATION. -- Gage-height record collected in cooperation with North Jersey District Water Supply Commission.

AVERAGE DISCHARGE.--63 years, (water years 1913, 1914, 1920-80), 79.1 ft3/s (2.240 m3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,470 ft³/s (240 m³/s) Mar. 31, 1951, gage height, 9.12 ft (2.780 m), from rating curve extended above 4,300 ft³/s (122 m³/s); minimum daily, 0.5 ft³/s (0.014 m³/s) Dec. 11, 12, 14-23, 1949, Sept. 11, 12, 1965.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,450 ft³/s (97.7 m³/s) Apr. 10, gage height, 7.33 ft (2.234 m); minimum, 2.1 ft³/s (0.059 m³/s) Sept. 26, gage height, 1.01 ft (0.308 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	OCT	NOV	DEC	JA N	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	19 25 20 20 19	18 18 20 19	38 39 32 24 26	21 21 21 21 21	20 19 18 19	18 18 18 18	699 592 473 463 597	640 451 352 305 199	19 19 19 20 20	19 18 18 18	17 17 17 17 17	16 16 16 16 14
6 7 8 9	19 19 19 19	19 19 18 18	23 20 20 19	20 20 20 20 19	18 18 18 18	18 18 18 18	431 333 260 938 2920	151 113 129 125 69	19 18 18 18	18 18 17 17 18	17 16 16 16 16	10 10 8.5 7.3 7.2
11 12 13 14 15	19 19 19 19	19 19 19 19	19 19 20 21 19	22 21 21 21 27	18 18 18 18	18 18 18 18	1670 1060 774 647 756	46 59 73 78 45	18 18 18 18	19 19 19 19	16 16 16 16 16	7.2 7.3 7.2 7.2 7.6
16 17 18 19 20	18 53 71 71 71	18 18 19 19	19 26 20 20 20	22 20 20 28 26	18 18 18 18	18 18 19 18	683 473 373 278 214	30 21 21 21 20	17 18 19 18	17 17 17 17 17	16 16 16 16 16	8.1 7.8 7.2 7.2 7.2
21 22 23 24 25	71 49 20 18 18	21 24 24 24 24	20 20 20 20 21	22 20 21 21 20	18 18 18 18	23 25 174 1110 1380	182 141 114 88 53	22 20 19 19	18 18 18 18	16 17 16 16	16 16 16 16	7.2 7.2 5.7 3.8 4.1
26 27 28 29 30 31	18 18 19 18 18	25 24 24 24 29	22 22 23 22 24 21	21 20 19 19 20	18 18 18 18	1250 922 629 495 606 560	44 37 254 1210 911	22 20 19 20 19	18 18 18 18	16 16 16 16 16	16 16 16 16 16	3.5 3.0 3.0 3.0
TOTAL MEAN MAX MIN	862 27.8 71 18	616 20.5 29 18	698 22.5 39 19	654 21.1 28 19	526 18.1 20 18	7535 243 1380 18	17668 589 2920 37	3166 102 640 19	549 18.3 20 17	537 17.3 19	502 16.2 17 16	238.5 7.95 16 3.0

CAL YR 1979 TOTAL 28100.0 WTR YR 1980 TOTAL 33551.5 MEAN 77.0 MEAN 91.7 MAX 1600 MIN 16 MAX 2920 MIN 3.0

01387000 WANAQUE RIVER AT WANAQUE, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1963 to current year.

PERIOD OF DAILY RECORD. --

66

WATER TEMPERATURE: October 1963 to current year.

COOPERATION. --Once daily water temperature records provided by North Jersey District Water Supply Commission.

Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURE: Maximum daily, 24.5°C Aug. 19, 20, 1965; minimum daily, 0.5°C Feb. 12, Mar. 1, 1980.

EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURE: Maximum daily, 22.0°C on several days during July and August; minimum daily, 0.5°C Feb. 12,

			SPE-							
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
JAN 29 APR	1025	19	98	7.1	3.0	13.7	. 9	33	2	27
07	1330	328	89	7.2	6.5	12.8	.5	5	<2	26
JUN 10	1125	18	88	7.4	8.5	11.9	1.1	<20	14	26
JUL 09	1300	17	88	7.2	13.0	10.4	1.1	<20	33	26
AUG 12	1130	16	89	7.1	11.0	10.6	1.1	11	79	27
SEP 15	1200	7.6	95	6.9	13.0	9.8	1.8	110	33	29
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
JAN 29	7.2	2.3	6.1	.6	22	0	18		12	9.0
APR 07	6.5	2.3	5.2	.7	17	0	14		11	8.0
JUN 10	6.9	2.1	4.8	. 6	22	0	18	.2	11	7.8
JUL 09	6.8	2.1	4.9	.7	20	0	16		10	7.8
AUG 12	6.9	2.3	5.3	.7	20	0	16		11	7.7
SEP 15	7.6	2.5	5.1	.7	24	0	20	.0	9.1	7.9
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
JAN 29 APR	.1	3.5	54	.06	E.030		. 48	.54	.02	1.9
07 JUN	.1	3.0	56	• 75	. 160	. 10	.26	1.0	. 15	2.9
10 JUL	.1	4.4	80	. 45	. 160	. 15	.31	.76	.08	.9
09 AUG	.1	4.9	56	.25	. 150	. 10	.25	.50	. 16	1.0
12 SEP	.1	6.3	68	. 25	.230	. 18	. 41	.66	.03	5.4
15	.1	6.0	57	.30	E.140		.58	.88	.09	

01387000 WANAQUE RIVER AT WANAQUE, NJ--Continued

SEP 15	TO IN TOM TE	DANE THE TO BOT IN MA TOMERIAL TE	HION, OX DTAL CH BOT- TOT MA- BO ERIAL M	Y- PA ILOR, TH ILOR, TOT TOTOM BO IATL. M	RA- THOM, THOM TOTOM BO	ION, TO . IN IN TTOM TOM ATL. TE	REX, THE TO BOT - IN MA - TOM RIAL TE	DTAL THE BOT- I MA- BOT CRIAL MAT	R- PH IANE TO IN IN TOM TOM CERIL TE	ENE, TH TAL TO BOT- IN MA- TOM RIAL TE	RI- ION, TAL BOT- MA- RIAL /KG)
DATE JUN 10	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA - CHLOR, TOTAL IN BOT - TOM MA - TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)
JUN 10 SEP 15	.7	1	20	0	 0	10 60	 330	0	350	.0	.0
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JUN 10 SEP 15	<10 10	20	 <10	2	 50	250 350	11000	0	250	430 1200	 790
DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
JUN 10 SEP 15	1125 1200	 5700	 3.1	38	20 20	0		0	30 40	0	 <10
DATE	TIME	NITRO- GEN, NH 4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)

01387000 WANAQUE RIVER AT WANAQUE, NJ--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

						ONCE-D	AILY					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	18.5 15.5 15.0 15.0 16.0	13.0 14.0 16.0	12.0 10.0 10.0	6.0 5.0 6.0	2.0 2.0 2.0 3.0	.5 3.0 3.0 3.0	5.0 5.0 5.0	10.0 10.0 10.0	14.0 16.0 16.0 16.0	18.0 18.0 18.0 18.0	20.0	19.5 21.0 21.0 21.0 20.0
6 7 8 9 10	18.0 17.0	14.5 13.0 13.5	10.0 9.0 9.0 10.0	4.0 4.0 4.0 4.0	2.0 2.0 1.0 1.0	3.0 3.0 3.0	6.5 7.0 7.0 6.0	11.0 10.0 12.0 12.0 12.0	16.0 16.0 15.0	17.0 18.0 19.0 18.0 19.0	21.0 21.0 21.0	19.5 19.5 20.0 20.0
11 12 13 14 15	16.5 18.0 17.0 14.0	14.0 12.0 12.0	9.0 9.0 10.0 10.0	4.0 8.0	2.0 .5 2.5 3.0 2.0	3.5 3.0 3.0	6.0 6.0 6.0 7.0 8.0	12.0 12.0 11.0 11.0 12.0	15.0 15.0 15.0 16.0	19.0 19.0 19.0	21.0 20.0 22.0 20.0	19.0
16 17 18 19 20	13.0 13.5 13.0 13.0	12.0 10.0 12.0 10.0	8.0 8.5 9.0 9.0	5.0 4.0 4.0 4.0	2.0	3.5 4.0 4.0 3.5	8.0 8.0 9.0	12.0 12.5 15.0	16.0 16.0 16.0 14.0 15.0	19.0 19.0 19.0 18.0	21.0 20.0 20.0	21.0 20.0 19.0 20.0
21 22 23 24 25	13.0 13.0 13.0 13.0	12.0	9.0 7.0	3.0 3.0 4.0 3.0 3.0	3.0 2.0 3.0	5.0 3.0 4.5 5.0	7.5 10.0 10.0 10.0	15.0 16.0 16.0 16.5	15.0 16.0 16.0	20.0 20.0 22.0 22.0 22.0	20.0 21.0 20.0	20.0 20.0 20.0 21.0
26 27 28 29 30 31	16.0 13.0 14.0 15.0 13.0	12.0 13.0 12.0 12.0	7.0 6.0 7.0 8.0 	3.0 3.0 3.0 2.0	2.0 3.0 3.0 2.0	5.0 4.0 4.0 4.0 5.0	9.0 10.0 10.0	16.0 16.0 16.0 15.0 15.0	18.0 19.0 18.0	21.0 20.0 20.0 20.0	21.0 21.0 21.0 21.0 19.5	20.0 19.0 19.0 19.0
MEAN	15.0	12.5	9.0	4.0	2.0	3.5	7.5	13.0	16.0	19.0	20.5	20.0

01387420 RAMAPO RIVER AT SUFFERN, NEW YORK

LOCATION.--Lat 41°07'06", long 74°09'38", Rockland County, Hydrologic Unit 02030103, on left bank, 145 ft (44.2 m) downstream from highway bridge on New York State Thruway at Suffern, and 1.1 mi (1.77 km) upstream from Mahwah River.

DRAINAGE AREA .-- 93.0 mi2 (241 km2).

a About.

PERIOD OF RECORD .-- June 1979 to current year.

GAGE. -- Water-stage recorder. Concrete control. Datum of gage is 264.44 ft (80.601 m) National Geodetic Vertical Datum of 1929.

REMARKS. -- Records fair. Flow affected by diversion from Spring Valley Water Company well field upstream from station and by occasional regulation by Lake Sebago.

COOPERATION .-- Figures of pumpage from well field furnished by Spring Valley Water Company.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 5,160 ft³/s (146 m³/s) Mar. 22, 1980 (gage height about 11.1 ft or 3.38 m) from rating curve extended above 1,800 ft³/s (51 m³/s) on basis of runoff comparison with station 1.5 mi (2.4 km) upstream; minimum 6.9 ft³/s (0.20 m³/s) Sept. 8, 1980, gage height, 1.29 ft (0.393 m).

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 1,100 ft3/s (31.2 m3/s) and maximum(*):

Date	Time	Discha (ft ³ /s)	arge (m ³ /s)	Gage (ft)	height (m)	Date	Time	Discha (ft ³ /s)	arge (m ³ /s)	Gage (ft)	height (m)
Nov. 27	0630	1,470	41.6	5.97	1.820	Apr. 10	a ₀₇₀₀	4,600	130	a _{10.5}	3.20
Mar. 22	a ₀₅₀₀	*a5,160	146	*a _{11.1}	3.38	Apr. 29	a ₀₈₀₀	1,310	37.1	a _{5.6}	1.71

Minimum discharge, 6.9 ft 3 /s (0.20 m 3 /s) Sept. 8, gage height 1.29 ft (0.393 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979 MEAN VALUES

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1													
3	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
3	1										41	13	29
3	2										35	12	26
6	3										30	13	40
6	й										28	64	311
6	5										28	62	27
11											20	03	
11	6										23	39	997
11	7										22	27	1280
11	8										18	22	460
11	9										17	18	226
11	10										16	16	164
14											10		104
14	11										15	16	135
14	12										14	54	115
14	13										13	140	100
16 — 16 52 102 17 — 70 38 85 18 — 48 32 58 19 — 44 41 50 20 — 34 39 44 21 — 26 32 46 22 — 23 28 220 23 — 21 26 210 24 — 19 25 120 25 — 19 24 96 26 — 18 28 86 27 — 16 25 80 28 25 15 23 74 29 25 14 21 72 30 34 14 40 80 31 — 13 39 — TOTAL — 740 1189 5298 MEAN — 23.9 38.4 177	14										111	105	
16 — 16 52 102 17 — 70 38 85 18 — 48 32 58 19 — 44 41 50 20 — 34 39 44 21 — 26 32 46 22 — 23 28 220 23 — 21 26 210 24 — 19 25 120 25 — 19 24 96 26 — 18 28 86 27 — 16 25 80 28 25 15 23 74 29 25 14 21 72 30 34 14 40 80 31 — 13 39 — TOTAL — 740 1189 5298 MEAN — 23.9 38.4 177	15										16	71	100
21	15										10	14	133
21	16									-	16	52	102
21	17										70	38	85
21	18										48	32	58
21	19									1000	11.11	41	50
21	20										211	20	11.11
26 27 28 28 29 29 29 29 29 20 21 29 20 21 29 20 21 29 21 20 21 21 22 22 23 24 29 25 25 26 27 29 29 29 20 21 21 22 25 27 29 29 20 21 21 22 25 21 21 21 22 22 25 25 21 21 21 22 25 25 21 21 21 22 25 25 21 21 21 22 25 25 21 21 21 22 23 28 28 28 28 28 28 28 28 28 28 28 28 28	20										34	39	77
26 27 28 28 29 29 29 29 29 20 21 29 20 21 29 20 21 29 21 20 21 21 22 22 23 24 29 25 25 26 27 29 29 29 20 21 21 22 25 27 29 29 20 21 21 22 25 21 21 21 22 22 25 25 21 21 21 22 25 25 21 21 21 22 25 25 21 21 21 22 25 25 21 21 21 22 23 28 28 28 28 28 28 28 28 28 28 28 28 28	21										26	32	46
26 27 28 28 29 29 29 29 29 20 21 29 20 21 29 20 21 29 21 20 21 21 22 22 23 24 29 25 25 26 27 29 29 29 20 21 21 22 25 27 29 29 20 21 21 22 25 21 21 21 22 22 25 25 21 21 21 22 25 25 21 21 21 22 25 25 21 21 21 22 25 25 21 21 21 22 23 28 28 28 28 28 28 28 28 28 28 28 28 28	22										23	28	220
26 27 28 28 29 29 29 29 29 20 21 29 20 21 29 20 21 29 21 20 21 21 22 22 23 24 29 25 25 26 27 29 29 29 20 21 21 22 25 27 29 29 20 21 21 22 25 21 21 21 22 22 25 25 21 21 21 22 25 25 21 21 21 22 25 25 21 21 21 22 25 25 21 21 21 22 23 28 28 28 28 28 28 28 28 28 28 28 28 28	23										21	26	210
26 27 28 28 29 29 29 29 29 20 21 29 20 21 29 20 21 29 21 20 21 21 22 22 23 24 29 25 25 26 27 29 29 29 20 21 21 22 25 27 29 29 20 21 21 22 25 21 21 21 22 22 25 25 21 21 21 22 25 25 21 21 21 22 25 25 21 21 21 22 25 25 21 21 21 22 23 28 28 28 28 28 28 28 28 28 28 28 28 28	24										10	25	
26 27 28 28 29 29 29 29 29 20 21 29 20 21 29 20 21 29 21 20 21 21 22 22 23 24 29 25 25 26 27 29 29 29 20 21 21 22 25 27 29 29 20 21 21 22 25 21 21 21 22 22 25 25 21 21 21 22 25 25 21 21 21 22 25 25 21 21 21 22 25 25 21 21 21 22 23 28 28 28 28 28 28 28 28 28 28 28 28 28	25										10	211	120
30 34 14 40 80 31 31 39 13 39 TOTAL 740 1189 5298 MEAN 23.9 38.4 177	2)										19	24	90
30 34 14 40 80 31 31 39 13 39 TOTAL 740 1189 5298 MEAN 23.9 38.4 177	26										18	28	86
30 34 14 40 80 31 31 39 13 39 TOTAL 740 1189 5298 MEAN 23.9 38.4 177	27										16	25	80
30 34 14 40 80 31 31 39 13 39 TOTAL 740 1189 5298 MEAN 23.9 38.4 177	28									25	15	23	711
30 34 14 40 80 31 31 39 13 39 TOTAL 740 1189 5298 MEAN 23.9 38.4 177	20									25	111	21	70
TOTAL 740 1189 5298 MEAN 23.9 38.4 177	20									20	14	21	90
TOTAL 740 1189 5298 MEAN 23.9 38.4 177	30									34	14	40	
TOTAL 740 1189 5298 MEAN 23.9 38.4 177 MAX 70 140 1280 MIN 13 12 26	31										13	39	
MEAN 23.9 38.4 177 MAX 70 140 1280 MIN 13 12 26	TOTAL										740	1189	5298
MAX —— 70 140 1280 MIN —— 13 12 26	MEAN										23.9	38.4	177
MIN 13 12 26	MAX										70	140	1280
13 12 20											13	12	26
											13	15	20

PASSAIC RIVER BASIN

01387420 RAMAPO RIVER AT SUFFERN, NY--Continued

		DISCHA	RGE, IN	CUBIC FEET	PER SECO	ND, WATER AN VALUES	YEAR OCT	OBER 1979	TO SEPTE	EMBER 1980		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	100 140 200 300 260	90 88 358 594 338	251 218 190 173 159	146 135 119 109 106	61 57 52 52 50	37 35 33 32 32	638 616 533 598 672	554 404 325 281 232	45 51 78 72 50	65 40 49 43 31	12 13 24 21 15	9.4 9.4 8.5 8.1 8.5
6 7 8 9	560 450 330 230 260	251 218 200 175 171	152 178 166 142 131	97 93 92 85 83	48 47 46 45 45	37 38 48 74 72	508 404 328 1160 3870	210 190 180 192 178	37 37 51 53 51	102 75 48 37 31	13 11 11 13 14	8.5 8.5 8.1 8.1
11 12 13 14 15	290 270 240 220 190	183 237 237 213 190	139 146 164 213 185	125 464 266 200 190	. 44 43 42 41 40	113 106 77 88 92	1820 990 693 559 625	164 164 164 152 152	44 36 31 27 24	25 22 18 17 16	14 13 13 13	7.7 8.1 44 22 13
16 17 18 19 20	170 150 140 135 125	178 161 150 137 131	166 178 175 180 178	166 150 142 152 144	48 44 42 42 45	74 75 464 598 296	537 386 322 281 251	144 131 95 106 115	21 20 17 15 14	14 13 13 11 13	13 13 11 11	9.9 11 33 20 17
21 22 23 24 25	120 110 110 105 100	125 117 111 102 104	178 175 166 150 254	129 119 117 109 104	48 57 62 71 68	1010 4540 2520 1330 1070	237 221 203 185 175	113 121 106 95 87	14 12 11 11 13	14 14 37 31 23	11 11 11 10 9.9	15 13 9.4 14 15
26 27 28 29 30 31	96 90 96 110 98 88	682 1320 745 441 306	309 226 195 178 168 157	100 93 92 87 80 75	65 54 43 40	824 611 472 426 546 537	157 146 397 1220 854	75 66 59 54 42 39	9.9 8.5 10 90	17 14 11 15 18	9.9 9.9 9.4 9.4	17 16 17 18 18
TOTAL MEAN MAX MIN #	5883 190 560 88 4.6	8353 278 1320 88 1.5	5640 182 309 131 3.0	4169 134 464 75 1.8	1442 49.7 71 40 4.6	16307 526 4540 32 4.5	19586 653 3870 146 3.0	4990 161 554 39 3.8	972.4 32.4 90 8.5 7.1	892 28.8 102 11 5.7	383.3 12.4 24 9.4 0.7	423.7 14.1 44 7.7 5.2

WTR YR 1980 TOTAL 69041.4 MEAN 189 MAX 4540 MIN 7.7

Diversion, in cubic feet per second, by pumpage from well field upstream of station.

01387450 MAHWAH RIVER NEAR SUFFERN, NY

LOCATION.--Lat 41°08'27", long 74°07'01", Rockland County, Hydrologic Unit 02030103, on left bank 13 ft (4 m) upstream from bridge on U.S. Highway 202, 2.5 mi (4.0 km) northeast of Suffern, and 4.8 mi (7.7 km) upstream from mouth.

DRAINAGE AREA .-- 12.3 mi2 (31.9 km2).

PERIOD OF RECORD. -- August 1958 to current year.

REVISED RECORDS .-- WRD NY-79-1: 1977.

GAGE.--Water-stage recorder. Datum of gage is 321.57 ft (98.015 m) National Geodetic Vertical Datum of 1929.

Prior to Nov. 18, 1976, water-stage recorder at site on right bank 13 ft (4 m) downstream, at present datum.

REMARKS.—Records fair except those below 10 $\rm ft^3/s$ (0.28 $\rm m^3/s$), which are poor. Occasional regulation from unknown source.

AVERAGE DISCHARGE. -- 22 years, 25.0 ft3/s (0.708 m3/s).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 1,840 ft³/s (52.1 m³/s) Nov. 8, 1977, gage height, 9.91 ft (3.021 m), from rating curve extended above 850 ft³/s (24.1 m³/s) on basis of contracted-opening measurements at gage heights 8.52 ft (2.597 m) and 9.91 ft (3.021 m); minimum 0.05 ft³/s (0.001 m³/s) Oct. 20, 21, 1970, result of temporary pumping from gage pool.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 200 ft3/s (5.67 m3/s) and maximum (*):

Date	Time	Disch (ft ³ /s)	(m ³ /s)	Gage (ft)	height (m)	Date	Time	Disch (ft ³ /s)		Gage (ft)	height (m)
Oct. 6 Nov. 26 Mar. 21	0045 1800 1945	402 253 927	11.4 7.2 26.3	4.63 4.00 6.26	1.411 1.219 1.908	Apr. 10 Apr. 28	0045 2145	*966 561	27.4 15.9	*6.39 5.16	1.948 1.573

Minimum daily discharge, 0.40 ft 3 /s (0.01 m 3 /s) Sept. 16; minimum gage height 1.24 ft (0.378 m), Sept. 23, 24, 25.

		DISCHA	RGE, IN	CUBIC FEET	PER SEC	OND, WATER EAN VALUES	YEAR OCT	OBER 1979	TO SEPTE	MBER 1980		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	23 27 45 44 58	11 11 57 50 37	34 29 25 23 21	19 18 17 15	8.5 8.0 7.6 7.6 7.4	6.0 6.0 5.7 5.7 6.1	90 74 62 89 75	76 59 49 41 36	11 10 20 14 10	5.9 5.1 6.2 4.9	2.9 2.0 5.0 2.5 2.0	.51 .46 .46 .47
6 7 8 9	158 75 50 38 42	29 25 22 19 21	20 29 22 18 17	13 12 13 12 11	7.2 7.1 7.1 7.1 7.2	6.6 7.1 7.7 9.7 9.2	59 50 44 301 587	32 29 47 34 26	7.9 8.3 9.0 8.3 9.1	13 6.2 4.3 3.7 3.2	4.1 2.0 1.5 1.2	.78 .71 .70 .70 .73
11 12 13 14 15	44 38 36 29 25	22 40 30 27 24	16 15 25 27 19	36 74 39 29 28	7.1 7.0 6.7 6.6 6.6	19 12 9.8 11	205 117 86 88 94	24 28 30 23 18	7.6 6.7 6.1 5.6 5.3	3.1 2.8 2.2 2.0 2.0	.85 .87 .82 .72 .77	.76 .75 .75 .63
16 17 18 19 20	22 20 18 17 16	22 20 19 17 17	17 20 15 14 14	24 21 20 23 20	7.6 7.1 6.6 6.6 6.7	9.7 12 111 66 47	70 57 49 43 39	16 15 16 19 23	5.1 4.7 4.2 4.1 4.0	2.0 2.2 2.5 1.9 1.7	.80 .81 .73 .78	.40 .80 1.1 .71 .63
21 22 23 24 25	15 14 13 14 13	16 16 15 14 14	14 14 16 18 59	18 16 16 14 13	7.5 8.5 8.8 11	325 602 227 124 119	35 31 28 25 23	23 21 15 13 12	3.9 3.6 3.5 3.3 3.2	1.6 1.5 5.2 3.3 2.2	.76 .71 .70 .66	.67 .63 .59 .59
26 27 28 29 30 31	12 11 14 15 13	116 124 73 53 41	47 35 28 24 22 20	12 12 11 11 9.8 9.2	10 8 • 3 7 • 5 6 • 6	85 68 58 65 72 77	22 21 166 227 113	10 9.8 9.1 8.6 8.3 8.6	3.0 2.9 2.9 3.2 14	1.7 1.6 1.4 1.9 2.6 3.7	.55 .51 .51 .47 .50	.71 1.0 .80 .87 .94
TOTAL MEAN MAX MIN	971 31.3 158 11	1002 33.4 124 11	717 23.1 59 14	601.0 19.4 74 9.2	222.6 7.68 11 6.6	2200.3 71.0 602 5.7	2970 99.0 587 21	779.4 25.1 76 8.3	204.5 6.82 20 2.9	105.9 3.42 13 1.4	38.59 1.24 5.0 .47	20.49 .68 1.1 .40

CAL YR 1979 TOTAL 12885.30 MEAN 35.3 MAX 498 MIN 1.7 WTR YR 1980 TOTAL 9832.78 MEAN 26.9 MAX 602 MIN .40

01387500 RAMAPO RIVER NEAR MAHWAH, NJ

LOCATION.--Lat 41°05'51", long 74°09'48", Bergen County, Hydrologic Unit 02030103, on left bank 350 ft (107 m) downstream from State Highway 17, 0.6 mi (1.0 km) downstream from Mahwah River, and 1.0 mi (1.6 km) west of Mahwah. Water-quality samples collected at bridge 350 ft (107 m) upstream from gage at high flows.

DRAINAGE AREA .-- 118 mi2 (306 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1902 to December 1906, September 1922 to current year (October 1902 to February 1905 monthly discharge only, published in WSP 1302). Figures of daily discharge Feb. 10, 1903, to Dec. 31, 1904, published in WSP 97, 125, are unreliable and should not be used.

REVISED RECORDS.--WSP 781: 1904(M). WSP 1031: 1938, 1940. WSP 1552: 1923(M), 1924, 1925-26(M), 1927-28, 1933, 1937. WRD-NJ 1971: 1968(M).

GAGE.--Water-stage recorder. Datum of gage is 253.10 ft (77.145 m) National Geodetic Vertical Datum of 1929. Prior to Dec. 31, 1906, nonrecording gage on former bridge at site 250 ft (76 m) downstream at different datum. Sept. 1, 1922 to Dec. 23, 1936, water-stage recorder just below former bridge at present datum.

REMARKS .-- Water-discharge records fair. Occasional regulation from lakes and ponds upstream from the station.

AVERAGE DISCHARGE. -- 62 years (water years 1903-06, 1923-80), 231 ft3/s (6.542 m3/s), 26.54 in/yr (674 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 12,400 ft³/s (352 m³/s) Oct. 9, 1903, gage height, 11.0 ft (3.35 m) from graph based on gage readings, site and datum then in use, from rating curve extended above 1,400 ft³/s (39.6 m³/s); maximum gage height, 12.44 ft (3.792 m) Nov. 8, 1977; minimum discharge, 7 ft³/s (0.20 m³/s) Dec. 16, 1930, Sept. 12, 1932; minimum daily discharge, 8 ft³/s (0.23 m³/s) Aug. 25, 1929, Sept. 5, 12, 1932.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,400 ft3/s (39.6 m3/s) and maximum (*):

Date		Time	Discha (ft ³ /s)		Gage h	eight (m)	Date		Time	Disch (ft3/s)		Gage h	eight (m)
Nov. Mar.	27 22	0845 0700	1720 *6520	48.7 185	7.55 10.70	2.301 3.261	Apr.	10 29	0545 0400	5880 1940	167 54.9		3.179 2.396

DISCUADOS IN CUDIO SEST DED SECOND. MATER VEAD OCTOBER 1070 TO SERTEMBER 1090

Minimum discharge, 12 ft3/s (0.33 m3/s) Sept. 3, 4, 10-12; minimum gage height, 2.91 ft (0.887 m) Mar. 1.

		DISCH	ARGE, IN	CUBIC FEE	T PER S	ECOND, WA MEAN V	TER YEAR C ALUES	OCTOBER 19	79 TO SEP	TEMBER 19	80	
DA Y	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	187	107	373	203	80	52	877	729	82	75 58	22	14
2	311	105	320	187	81	51	803	553	91		25	14
2 3 4	351	477	276	167	77	45	670	445	135	63	37	14
	471	701	244	153	75	47	814	375	112	53	31 33	13 14
5	432	458	226	142	72	50	843	320	82	59	33	14
6	809	343	214	131	69	53	649	286	69	145	29	14
7	578	294	269	124	68	56	518	260	74	78	22	13
8	411	257	242	122	66	63	447	336	84	54	21	14
9	324	228	199	118	66	89	1660	282	85	46	20	14
10	358	240	179	110	65	88	4860	231	84	40	20	13
11	415	273	190	206	64	162	2210	208	74	35	20	13
12	382	370	201	679	65	129	1280	233	66	31	21	13
13	352	320	252	416	62	95	921	251	60	29	21	37
14	299	280	325	298	60	110	817	213	53 47	27 26	20	17
15	257	244	269	273	58	113	910	220	47	26	21	17
16	228	219	229	241	65	92	728	202	46	24	20	14
17	206	199	259	211	71	119	575	187	43	25	19	15
18	188	184	246	197	63	702	480	149	41	26	19	38 23
19	174	172	251	223	61	691	425	164	38	24	19	23
20	161	163	247	201	63	406	377	184	37	24	18	19
21	151	155	239	178	66	1760	341	182	36	23	17	19
22	139	148	240	163	76	5630	304	186	34	26	16	18
23	131	142	231	158	83	2740	276	153	31	64	16	15
24	130	138	211	151	92	1550	253	136	30	42	15	18
25	127	138	402	140	95	1350	235	122	33	31	15	20
26	116	703	472	134	88	1050	223	108	36	26	15	22
27	106	1580	345	126	77	799	222	96	29	22	15	20
28	119	923	288	121	70	649	830	90	26	20	15	22
29 30	142	601	256	116	56	655	1690	85	33	34	14	23
30	129	452	237	104		761	1090	77	143	29	14	24
31	115		220	95		763		76		25	14	
TOTAL	8299	10614	8152	5888	2054	20920	26328	7139	1834	1284	624	549
MEAN	268	354	263	190	70.8	675	878	230	61.1	41.4	20.1	18.3
MAX	809	1580	472	679	95	5630	4860	729	143	145	37	38
MIN	106	105	179	95	56	45	222	76	26	20	14	13
CFSM	2.27	3.00	2.23	1.61	.60	5.72	7.44	1.95	.52	.35	. 17	. 16
IN.	2.62	3.35	2.57	1.86	.65	6.60	8.30	2.25	.58	.40	.20	.17
CAI VD	1070 TOT			336 MAY		MTN 10	CESM 2 RE					

CAL YR 1979 TOTAL 122555 MEAN 336 MAX 4240 MIN 19 CFSM 2.85 IN 38.64 WTR YR 1980 TOTAL 93685 MEAN 256 MAX 5630 MIN 13 CFSM 2.17 IN 29.53

01387500 RAMAPO RIVER NEAR MAHWAH, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

PERIOD OF DAILY RECORD.--SUSPENDED-SEDIMENT DISCHARGE: February 1964 to June 1965.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	
JAN 28	1100	122	290	7.6	2.0	14.0	1.1	20	4	78	
APR 14	1220	806	185	7.4	10.5	10.7				51	
JUN		-									
JUL	0915	85	358	7.7	14.5	8.4	1.6	40	350	100	
09 AUG	1040	48	352	7.7	20.5	6.8	3.0	230	140	95	
06 SEP	1000	30	424	7.4	23.0	3.2	7.8	>2400	>2400	120	
16	1100	15	442	7.5	18.0	5.8	5.4	230	79	100	
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	
JAN 28	21	6.3	22	1.0	68	0	56		20	33	
APR 14	14	3.8	13	.9	41	0	34		15	21	
JUN 10	28	7.7	27	1.4	95	0	78	. 4	17	* 44	
JUL 09	26	7.2	26	1.7	88	0	72		20	45	
AUG											
O6 SEP	31	9.4	39	2.5	109	0	89		22	57	
16	28	8.1	40	2.6	93	0	76	.0	25	67	
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)	
JAN 28	.1	7.4	143	. 92					. 49	3.2	
APR 14	.1	5.6	104				. 43		. 54	2.6	
JUN 10	.1	7.0	216	1.5	.300	.54	. 84	2.3	. 40	4.3	
JUL 09	.1	6.9	192	1.0	.350	.53	.88	1.9	. 29	3.7	
AUG 06	.2	8.5	259	1.0	.600	1.4	2.0	3.0	1.0	6.7	
SEP 16	.2	10	242				2.6				
10	.2	10	242	1.2	1.300	1.3	2.0	3.8	1.7	5.2	
	DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)		
	JUN 10	0915	30	0	0	50	0	<10	6		
	SEP										
	16	1100	20	1	0	120	0	10	8		

01387500 RAMAPO RIVER NEAR MAHWAH, NJ--Continued

DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)
JUN					S value			
10 SEP	590	4	140	.1	4	0	20	0
16	550	3	250	.2	47	0	30	0

01388000 RAMAPO RIVER AT POMPTON LAKES, NJ

LOCATION.--Lat 40°59'33", long 74°16'44", Passaic County, Hydrologic Unit 02030103, on right end of dam at pumping station in Pompton Lakes and 2.0 mi (3.2 km) upstream from mouth.

DRAINAGE AREA .-- 160 mi2 (414 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1921 to current year.

REVISED RECORDS.--WSP 1552: 1922(M), 1924-25, 1929-31(M), 1934-35(M). WRD-NJ 1970: 1968-69.

GAGE.--Water-stage recorder and concrete dam. Datum of gage is 201.08 ft (61.289 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Diversion by North Jersey Water Supply Commission to Wanaque Reservoir since December 1953, for municipal supply (records given herein). Slight regulation by Pompton Lake, capacity, 300,000,000 gal (1.136 hm³).

AVERAGE DISCHARGE.--59 years, 303 ft³/s (8.581 m³/s), 25.72 in/yr (653 mm/yr), adjusted for diversion since Dec. 1, 1953.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 12,300 ft³/s (348 m³/s) Mar. 12, 1936, gage height, 3.56 ft (1.085 m), from rating curve extended above 7,000 ft³/s (198 m³/s) on basis of theoretical weir formula; maximum gage height, 4.40 ft (1.341 m) Oct. 16, 1955; no flow part of September 30, 1980.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 1,600 ft3/s (45.3 m3/s) and maximum (#):

Date	Time	Discha (ft3/s)	arge (m³/s)	Gage h	eight (m)	Date		Time	Discha (ft3/s)		Gage h	eight (m)	
Nov. Mar.	27 22	1230 1415	1770 *6700	50.1 190	1.37 3.13	0.418 0.954	Apr.	10 29	1015 0215	6120 2740	173 77.6	2.96	0.902

No flow part of Sept. 30.

		DISC	CHARGE, IN	CUBIC FEE	T PER SI	ECOND, WAT MEAN VA	ER YEAR LUES	OCTOBER 19	79 TO SEP	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	270 419 459 617 528	145 141 449 856 638	524 457 406 359 329	276 269 244 220 200	116 113 106 114 104	60 77 60 54 71	1160 1040 897 996 1040	1040 796 642 543 462	127 150 181 198 134	116 75 78 76 69	35 38 45 46 58	16 16 19 18 18
6 7 8 9	931 825 574 453 469	467 400 351 315 310	314 370 345 288 253	181 170 165 165 152	98 92 90 90 88	71 77 83 97 111	900 719 580 1240 5400	409 374 481 439 358	110 110 117 120 134	186 145 94 78 67	64 44 37 34 30	22 18 15 15
11 12 13 14 15	566 527 493 424 358	340 466 439 382 336	245 260 308 416 369	205 880 661 448 391	85 86 77 77 77	209 174 130 145 158	3290 1710 1140 967 1090	317 348 417 348 334	115 99 87 77 70	59 52 46 43 40	30 30 28 27 30	17 31 30 40 32
16 17 18 19 20	321 295 272 252 235	300 271 253 236 223	313 328 316 310 308	350 311 291 325 307	88 89 83 83	135 145 735 958 604	931 735 639 549 472	315 298 260 247 286	66 63 61 58 55	42 38 37 35 32	30 28 27 30 29	25 23 33 38 30
21 22 23 24 25	223 212 198 189 197	213 201 194 186 179	304 308 310 293 474	267 245 237 222 204	82 85 104 118 118	1410 5920 4010 2120 1720	413 369 332 311 292	280 308 257 225 199	52 51 45 43 42	31 30 50 64 47	26 26 26 23 22	27 25 23 20 21
26 27 28 29 30 31	174 153 159 194 181 161	529 1670 1280 835 621	610 471 384 337 312 290	194 182 179 165 152 140	126 111 104 83	1390 1060 843 815 985 995	275 270 1010 2470 1600	175 151 139 130 122 117	45 42 36 36 119	40 34 31 39 47 40	23 22 20 20 20 18	22 20 23 22 11
TOTAL MEAN MAX MIN (†) MEAN‡ CFSM‡ IN‡	11329 365 931 153 0 365 2.28 2.63	13226 441 1670 141 0 441 2.76 3.07	10911 352 610 245 0 352 2.20	8398 271 880 140 0 271 1.69	2768 95.4 126 77 0 95.4 .60	25422 820 5920 54 0 820 5•12 5•91	32837 1095 5400 270 0 1095 6.84 7.63	10817 349 1040 117 0 349 2.18 2.51	2643 88.1 198 36 0 88.1 .55	1861 60.0 186 30 0 60.0 .38 .43	966 31.2 64 18 0 31.2 .20	685 22.8 40 11 1.2 24.0 .15

CAL YR 1979 TOTAL 159910 MEAN 438 MAX 4380 MIN 35 MEAN 448 CFSM# 2.80 IN# 38.15 WTR YR 1980 TOTAL 121863 MEAN 333 MAX 5920 MIN 11 MEAN# 333 CFSM# 2.08 IN# 28.33

[†] Diversion, in cubic feet per second, at station to Wanaque Reservoir for municipal supply. Records of diversion furnished by North Jersey District Water Supply Commission.

‡ Adjusted for diversion.

01388500 POMPTON RIVER AT POMPTON PLAINS, NJ

LOCATION.--Lat 40°58'09", long 74°16'56", Passaic County, Hydrologic Unit 02030103, 800 ft (240 m) below confluence of Pequannock and Ramapo Rivers, 100 ft (30 m) upstream from Jackson Avenue Bridge, and 0.7 mi (1.1 km) east of Pompton Plains.

DRAINAGE AREA . - - 355 mi2 (919 km2) .

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--March 1903 to December 1904, May 1940 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS .-- WSP 1202: 1945(M) .

CAL YR 1979 TOTAL 249984 WTR YR 1980 TOTAL 218967 MEAN 685

MEAN 598

MAX

MIN 67

GAGE.--Water-stage recorder above concrete dam. Datum of gage is 160.00 ft (48.768 m) corrected, National Geodetic Vertical Datum of 1929. March 1903 to December 1904, nonrecording gage on main spillway of dam 2,000 ft (610 m) upstream at different datum. May 1940 to September 1964 two water-stage recorders, each above a concrete dam about 2,000 ft (610 m) upstream at datum 14.46 ft (4.407 m) higher.

REMARKS.--Water-discharge records poor. Water diverted from reservoirs on Pequannock and Wanaque Rivers and from Pompton River to Point View Reservoir for municipal supply (see Passaic River Basin, diversions). Flow regulated by Canistear, Oak Ridge, Clinton, Charlotteburg and Echo Lake Reservoirs on Pequannock River and by Greenwood Lake on Wanaque River (see Passaic River Basin, reservoirs in). Some diurnal fluctuations at low flow caused by powerplant on Wanaque River.

COOPERATION .-- Gage-height record collected in cooperation with Passaic Valley Water Commission.

AVERAGE DISCHARGE.--41 years, (water years 1904, 1941-80), 486 ft3/s (13.76 m3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 28,340 ft³/s (803 m³/s) Oct. 10, 1903, gage height, 14.3 ft (4.36 m) site and datum then in use, by computation of peak flow over dam; no flow Aug. 18-20, 1904.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 3,200 ft3/s (90.6 m3/s) and maximum (*):

Date	Time	Discharge (ft ³ /s) (m ³ /s)	Gage height (ft) (m)	Date	Time	Discharge (ft ³ /s) (m ³ /s)	Gage height (ft) (m)
Mar. 22 Apr. 10	1400 1415	9300 263 *12000 340	17.74 5.407 19.56 5.962	Apr. 29	0945	6380 181	15.64 4.767

Minimum discharge, 21 ft 3 /s (0.59 m 3 /s) Sept. 30; gage height, 7.00 ft (2.134 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES OCT DAY NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 504 680 400 188 68 48 281 207 13 14 53 62 589 367 1380 985 133 2830 786 139 18 268 ---___ TOTAL 62.5 MEAN 46.7 MAX

01388600 POMPTON RIVER AT PACKANACK LAKE, NJ

LOCATION.--Lat 40°56'36", long 74°16'47", Morris County, Hydrologic Unit 02030103, at bridge on State Highway 504 in Packanack Lake, and 2.2 mi (3.3 km) downstream from confluence of Pequannock and Wanaque Rivers.

DRAINAGE AREA. -- 361 mi2 (935 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- February 1979 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 11	1450	696	175	6.8	11.0	11.2	2.0			55
FEB 26	1040	191	320	7.5	3.5	13.2	3.9	22	31	88
MAR 17	1035	205	285	7.3	3.5	14.0	3.8	130	17	73
JUN 09	1315	178	280	7.7	19.0	8.1	4.2	220	110	69
JUL 10	1145	104	297	7.8	25.0	6.4	4.3	330	33	82
AUG							100			
13 SEP	1030	58	290	7.4	24.0	4.3	4.5	2200	110	86
18	1200	63	290	7.4	20.0	6.4	7.1	5400	840	80
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT										4520
11 FEB	15	4.2	14	1.0	48	0	39	.0	15	19
26 MAR	24	6.7	26	1.3	73	0	60		21	43
17 JUN	20	5.7	24	1.2	63	0	52		19	39
09 JUL	20	4.6	18	1.3	76	0	62	.2	17	29
10 AUG	22	6.6	23	1.8	73	0	60		19	34
13	23	6.9	21	2.0	66	0	54		21	35
SEP 18	21	6.6	22	2.1	68	0	56	.0	24	34
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 11	.1	8.9	107				E.96			2.5
FEB 26	. 1	6.1	167	E1.1	.540	.60	1.1		1.0	1.9
MAR 17	.1	5.4	154	.78	.550	.55	1.1	1.9	. 18	4.6
JUN 09	.1	4.8	164	1.4	. 450	. 65	1.1	2.5	.33	4.2
JUL 10	.1	5.5	168.	1.0	.300	.80	1.1	2.1	.51	4.1
AUG 13	.1	4.9	184	.99	.300	1.1	1.4	2.4	.74	5.7
SEP 18	.1	5.2	157	1.1	.560	1.3	1.9	3.0	1.2	4.7

01388600 POMPTON RIVER AT PACKANACK LAKE, NJ--Continued

DATE	TIME	NITRO- GEN, NH 4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 11	1450	900	.2	5.0	40	1	0	0	30	0	<10
JUN 09	1315				30	0		0	60	0	
SEP 18	1200	580	.0	9.9	30	1	0	0	110	0	<10
		-			,						
DATE	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 11	20	<10	<10	6	10	490	6900	6	40	50	140
JUN 09	10			6		480		5		130	
SEP 18	10	<10	<10	12	<10	610	3100	8	<10	180	160
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 11	.2	.00	7	10	0	1	0	90	2	27	.0
JUN 09	<.1		2		0		10		0		
SEP 18	.2	.00	3	<10	0	0	20	20	2	1	.0
10	• 2	.00	3	(10	U	U	20	20	2		.0
DATE .	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 11	.0	11	1.2	1.0	.6	.0	. 4	.0	.0	.0	.0
JUN 09										1	
SEP 18	.0	1	.3	.0	.0	.0	.0	.0	.0	.0	.0
DATE	HE PTA - CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA-	METH-	METHYL	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)		PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TO XA - PHENE, TO TAL IN BOT - TOM MA - TERIAL (UG/KG)	TRI-
OCT									00		
11 JUN	.0	.0	.0	.0	.0	.0	.0	.0	.00	0	.0
09 SEP									-		-
18	.0	.0	.0	.0	.0	.0	.0	.0	.00	0	.0

01389110 PASSAIC RIVER AT RT. 46 AT SINGAC, NJ

LOCATION.--Lat 40°53'32", long 74°15'58", Passaic County, Hydrologic Unit 02030103, at bridge on U.S. Route 46 at Singac, and 0.6 mi (1.0 km) downstream from Pompton River.

DRAINAGE AREA. -- 745 mi2 (1,930 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1974 to current year.

REMARKS.--Operated as part of the USGS-EPA paired station network. Instantaneous water discharge estimated on the basis of water discharge for 01389500 Passaic River at Little Falls, drainage area relationships, and known diversions.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)		OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)
OCT 24	1430	E680	220	7.2	15 5	6.2	22			30	1 2
NOV			320	7.3	15.5	6.3					1.3
13 DEC	1510	E 1500	240	7.3	9.5	8.9	23	3400		13	.90
11	1405	E800	275	7.5	5.5	10.2	11	K20		2	1.2
JAN 22 FEB	1410	E960	270	7.2	3.0	11.5	21	270		9	1.1
12	1535	E350	440	7.5	2.5	11.2	:				
MAR 19 APR	1320	E2400	245	7.4	4.5	11.9	17	200		33	.97
23 MAY	1420	E 1500	250	7.4	15.5	9.0	37	4800		34	.69
14	1425	E 1600	230	7.5	18.0	6.8	29	1600		21	1.2
JUN 17 JUL	1525	E330	435	7.8	23.5	6.1	41	470		15	1.9
21	1530	E200	490	8.1	28.0	9.8		250			22
AUG 27 SEP	1400	E 170	475	7.6	26.5	7.2	31	1200	55	8	2.4
09	1410	E 150	535	7.7	23.0	7.8	38	360		7	2.1
DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MQNIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	CYANIDE TOTAL (MG/L AS CN)	SEDI- MENT, SUS- PENDED (MG/L)
OCT 24	1.000	1.2	.90	1.9	3.2	.370	4	0		.00	34
NO V 13	.600	.73	.60	1.2	2.1	.250	4	0		.01	21
DEC 11	1.200	1.5	.70	1.9	3.1	.300	4	0	10	.00	10
JAN 22	.920	1.1					3	1	20	.01	8
FEB		1.1	.78	1.7	2.8	.300	3		20	.01	
12 MAR											7
19 APR	.560	.68	.00	.56	1.5	.220	4	0		.01	32
23 MAY	•540	. 65	• 35	.89	1.6	.220	4	0		.00	
14	.230	.28	. 41	.64	1.8	.300	3	1	20	.00	
JUN 17 JUL	1.900	2.3	1.6	3.5	5.4	.620	3	0	20	.01	
21											
AUG 27 SEP	2.800	3.4	. 40	3.2	5.6	.930				.01	
09	3.600	4.4	1.0	4.6	6.7	1.000	4	0	10	.00	

01389500 PASSAIC RIVER AT LITTLE FALLS, NJ

LOCATION.--Lat 40°53'05", long 74°13'35", Passaic County, Hydrologic Unit 02030103, on left bank 0.6 mi (1.0 km) downstream from Beattie's Dam in Little Falls, and 1.0 mi (1.6 km) upstream from Peckman River. Daily dissolved oxygen and water temperature data collected 0.5 mi (0.8 km) upstream from gaging station.

DRAINAGE AREA .-- 762 mi2 (1,974 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1897 to current year. Monthly discharge only for September 1897, published in WSP 1302. Published as "at Paterson" September 1897 to September 1955.

GAGE.--Water-stage recorder. Datum of gage is 120.00 ft (36.576 m) National Geodetic Vertical Datum of 1929 (levels by Passaic Valley Water Commission). Prior to Jan. 8, 1933, nonrecording gage and Jan. 8, 1933, to Sept. 30, 1955, water-stage recorder, at site 3.7 mi (6.0 km) downstream, National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Water-discharge records good. Diurnal fluctuation at medium and low flow caused by hydroelectric plant at Beattie's Dam. Flow regulated by reservoirs in Rockaway, Pequannock, Wanaque, and Pompton River Basin (see Passaic River Basin, reservoirs in). Large diversions for municipal supply from Passaic River above Beattie's Dam, and from Rockaway, Pequannock, and Wanaque Rivers (see Passaic River Basin, diversions). In addition, the Commonwealth Water Co., diverts from Canoe Brook near Summit and from Passaic River (see Passaic River Basin, diversions); that company and the city of East Orange also divert water for municipal supply by pumping wells.

COOPERATION. -- Gage-height record collected in cooperation with the Passaic Valley Water Commission.

AVERAGE DISCHARGE. -- 83 years, 1,169 ft3/s (33.11 m3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 31,700 ft³/s (898 m³/s) Oct. 10, 1903, present site; no flow July 3-5, 1904, July 16, 23, 1905.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 4,400 ft3/s (125 m3/s) and maximum (*):

200			Disch	arge	Gage h	eight				Disch	arge	Gage h	eight
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Mar.	23	1815	8700	246	8.48	2.585	Apr.	11	1700	*9870	279	9.06	2.761
Apr.	1	0115	5140	146	6.44	1.963	Apr.	30	1530	5800	164	6.86	2.091
Apr.	5	0145	4960	140	6.32	1.926		1.50					

Minimum discharge, 37 ft 3 /s (1.06 m 3 /s) Sept. 30, gage height, 0.13 ft (0.040 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980
MEAN VALUES

DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	1010 1350	522 486	1850 1570	840 775	387 374	312 298	5120 4950	5410 4640	477 519	511 348	195 214	70 65
4	1530 1700	975 1670	1260 1050	746 690	347	280 270	4680 4750	3880 3280	636 804	276 240	393 259	81 89
5	1680	1770	927	648	330 334	286	4930	2760	674	201	216	87
6	1830	1550	865	602	328	304	4600	2280	484	480	368	110
7	1820 1450	1310 1100	1100 1180	551 535	333	299	4090	1870	434 454	530 361	273 185	86 67
9	1140	964	1070	511	329 304	320 436	3560 3960	1820 1710	429	255	134	63
10	1230	917	878	487	304	516	6970	1480	522	221	126	66
11	1540	1000	774	553	325	867	9580	1270	511	189	117	55 56
12	1570	1400	762	1860	308	933	9210	1200	396	174	123	56
13 14	1560 1440	1490 1430	876 1170	2010 1890	284 305	791 684	7510 6060	1530 1590	348 294	181 142	136 118	74 76
15	1260	1280	1170	1810	293	682	5390	1560	285	133	115	76
15	1200	1200	1170	1010	293	002	2390	1500	205	133	115	10
16	1070	1090	1020	1650	329	665	4870	1440	263	189	115	68
17	948	915	1030	1390	367	696	4180	1180	244	214 .	101	67
18	918	821	956	1150	342	1840	3530	942	235	170	94	183
19	843	751	845	1220	331	2360	3020	823	218	145	93	214
20	760	699	784	1230	338	2280	2600	775	217	132	147	119
21	702	667	753	1120	346	3200	2200	794	215	126	137	83
22	665	636	769	943	395	6150	1800	876	183	131	115	74 86
23	585	598	784	844	446	8420	1470	800	180	240	107	86
24	584	569	854	781	551	8490	1220	663	179	270	96	93 69
25	571	556	1290	705	558	8080	1060	597	180	177	85	69
26	533	1060	1690	633	559	7390	945	535	181	141	85	60
27	484	2430	1670	578	457	6400	896	453	158	127	84	55 47
28	483	2760	1500	542	412	5410	1990	384	142	121	83	
29	578	2430	1280	520	369	4800	4720	362	145	180	80	44
30 31	595 569	2120	1060 927	460 432		4720 4720	5680	338 328	484	273 231	80 78	41
31	509		921	432		4/20		320		231	10	
TOTAL	32998	35966	33714	28706	10685	82899	125541	47570	10491	7109	4552	2424
MEAN	1064	1199	1088	926	368	2674	4185	1535	350	229	147	80.8
MAX	1830	2760	1850	2010	559	8490	9580	5410	804	530	393	214
MIN	483	486	753	432	284	270	896	328	142	121	78	41

CAL YR 1979 TOTAL 590656 MEAN 1618 MAX 10200 MIN 153 WTR YR 1980 TOTAL 422655 MEAN 1155 MAX 9580 MIN 41

01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

PERIOD OF DAILY RECORD. --

WATER TEMPERATURES: October 1962 to current year.
DISSOLVED OXYGEN: October 1970 to current year.
SUSPENDED-SEDIMENT DISCHARGE: August 1963 to July 1965.

COOPERATION.--Once daily dissolved-oxygen and water-temperature records provided by the Passaic Valley Water Commission. Selected analyses of fecal coliform and fecal streptococci by the MPN method, were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURES: Maximum daily, 28.5°C July 21, 22, 1963 and July 19, 1968; minimum daily, 0.0°C on many days
during winter months.
DISSOLVED OXYGEN: Maximum daily, 14.4 mg/L Jan. 7, 1973; minimum daily, 1.7 mg/L June 23, 1976.

EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURES: Maximum daily, 27.0°C Aug. 9; minimum daily, 0.5°C on several days during February and March. DISSOLVED OXYGEN: Maximum daily, 12.8 mg/L Dec. 21; minimum daily, 2.3 mg/L Sept. 28.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
OCT 25	1010	581	325	7.6	14.5	9.0	8.0	4.6	450	220
NOV 14	1040	1440	238	7.4	9.0	6.0	10.4	4.3	1700	440
DEC 12	1025	764	280	7.4	6.0	3.0	10.6	4.2	410	480
JAN 23	1050	842	265	7.4	3.0	. 80	11.8	3.6	100	К38
FEB 13	1020	297	465	7.6	2.0	1.0	11.1	4.6	260	K1200
MAR 20	1110	2280	225	7.3	5.5	. 35	12.2	3.5	310	88
APR 24	1045	1220	252	7.5	14.5	12	8.4	3.6	190	K35
MAY 15	0910	1570	227	7.7	17.5	21	7.2	4.7	900	170
JUN 18	1145	234	446	7.4	21.5	.50	4.0	6.2	450	K 55
JUL 22	0925	122	445	8.2	28.5	5.6	6.7	7.7	730	360
AUG 06	1115	391	400	7.5	27.0	11	4.0	7.4	1600	560
SEP 10	1105	73	500	8.1	22.5	.40	7.2	8.5	K310	K 170
	1105	,,,	500	0.1	22.7			0.5	5,10	
DATE	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
OCT	91	24	7.6	25	2.3	53	30	34	.2	12
25 NOV						- 13				
DEC DEC	71	19	5.7	17	1.9	48	23	23	.1	11
12 JAN	76	20	6.3	18	2.0	49	25	27	.1	11
23 FEB	79	21	6.5	20	1.4	48	28	29	. 1	11
13 MAR	120	31	9.4	37	2.9	76	38	55	.2	13
13 MAR 20 APR	54	14	4.5	19	1.4	29	17	31	.1	6.7
13 MAR 20 APR 24 MAY	54 68	14 18				29 39	17 24	31 26		6.7 7.3
13 MAR 20 APR 24 MAY 15 JUN	54 68 60	14 18 15	4.5 5.6 5.5	19 17 19	1.4 1.6 1.3	29 39 42	17 24 20	31 26 22	.1	6.7 7.3 8.4
13 MAR 20 APR 24 MAY 15 JUN 18 JUL	54 68 60 110	14 18 15 29	4.5 5.6 5.5 9.0	19 17 19 36	1.4	29 39 42 69	17 24 20 38	31 26 22 51	.1 .1 .1	6.7 7.3 8.4
13 MAR 20 APR 24 MAY 15 JUN 18	54 68 60	14 18 15	4.5 5.6 5.5	19 17 19	1.4 1.6 1.3	29 39 42	17 24 20	31 26 22	.1	6.7 7.3 8.4
13 MAR 20 APR 24 MAY 15 JUN 18 JUL 22	54 68 60 110	14 18 15 29	4.5 5.6 5.5 9.0	19 17 19 36	1.4 1.6 1.3 3.0	29 39 42 69	17 24 20 38	31 26 22 51	.1 .1 .1	6.7 7.3 8.4

PASSAIC RIVER BASIN
01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued

DAT	1	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. FINER THAN	NITRO- GEN, NO2+NO3 TOTAL (MG/L	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)
OCT	L	(MG/L)	(MG/L)	(1/DA1)	.002 MM	AS N)	AS N)	AS N	AS N	AS N	AD II)
25. NOV		194	25	39	91	1.5	1.5	1.100	1.000	.90	.90
14.		142	18	70	83	. 87	.87	.520	.520	.58	.58
DEC 12.		161	7	14	74	1.3	1.3	1.400		. 40	
JAN 23.		166	8	18	52	1.0	.96	.880	.760	.62	.54
FEB 13.		244	4	3.2		1.8	1.7	3.500	3.100	.40	. 40
MAR 20.		136	28	172	66	.78	.78	.520	.510	.29	.00
APR 24.		179	1000			.81	.80	.690	.650	. 41	.00
MAY 15.		137	46	195	88	1.3	1.3	.340	.340	. 35	.35
JUN					84						
18. JUL		252	21	13		1.8	1.8	1.900	1.900	1.2	1.1
AUG		275	19	6.3	84	1.8	1.6	1.800	1.700	.60	.40
06. SEP		245	22	23	74	1.4	1.4	1.100	1.100	.60	.60
10.	• •	274	11	2.2	93	2.0	1.9	3.000	3.000	.30	.30
DAT	1	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, NH4 + ORG. SUSP. TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, DIS- SOLVED (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED (MG/L AS C)
OCT											
NOV		2.0	.10	1.9	3.4	3.5	. 390	.230	4.7		
14. DEC	••	1.1	.00	1.1	2.0	2.0	.260	. 150		7.0	.6
12. JAN	••	1.8	.00	1.8	3.1	3.1	.380	.270	5.8		T-
23. FEB		1.5	.20	1.3	2.3	2.5	.280	.200	6.5		-7
13. MAR	• •	3.9	. 40	3.5	5.2	5.7	.790	.720		5.0	•3
20. APR		.81	.30	.51	1.3	1.6	.200	.090	5.6		
24. MAY		1.1	. 45	. 65	1.4	1.9	.320	.080	3.9		
15.		.69	.00	.69	2.0	2.0	. 430	. 120		6.0	.7
JUN 18.		3.1	. 10	3.0	4.8	4.9	.580	. 440	5.7		
JUL 22.		2.4	.30	2.1	3.7	4.2	.640	. 470	7.9	10.44	
AUG 06.		1.7	.00	1.7	3.1	3.1	.830	.570		106	1.3
SEP 10.		3.3	.00	3.3	5.2	5.3	.790	.630	8.5		4-
			ARSE	-	BARI	BARI	CUM,	CAD	CADM	IUM	CHRO-
DATE	TIM		NIC PEN AL TOT	JS- ARSE NDED DI TAL SOL G/L (UC	INIC TOT IS- REC IVED ERA	TAL PENI COV- REC ABLE ERA G/L (UC	DED BARD COV- DIS ABLE SOLV	CUM, TO: S- REC VED ERA G/L (UC	COV- REC	BLE SOL	S- RECOV- VED ERABLE
NO V	104	n	1	0	1	30	0	30	1	0	1 20
14 FEB											
13 MAY	102		1	0	1	<50	<20	30	0	0	0 30
AUG	091		1	0	1	<50	7	20	2	0	2 10
06	111	5	2	0	2	100	80	20	2	0	2 10

01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued

DATE	1	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO MIUN DIS- SOLV (UG/ AS (VED	COBALT TOTAL RECOV ERABL (UG/L AS CO	, SU PEN - RE E ER (U	ALT, S- DED COV- ABLE G/L CO)	COBALT DIS- SOLVED (UG/L AS CO	RI RI E	PPER, OTAL ECOV- RABLE UG/L S CU)	COPP SUS PEN REC ERA (UG AS	DED OV- BLE /L	COPPE DIS- SOLV (UG/ AS C	R, ED L	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDE RECOV ERABL (UG/L AS FE	D E	IRON, DIS- SOLVED (UG/L AS FE)
NOV 14 FEB		10		10		2	2		0	8		3		5	900	75	0	150
13		10		20		0	0		0	9		3		6	580	45	0	130
MAY 15				<10		0	0		0	11		7		4	1600	150	0	60
AUG 06				<10		0	0		0	6		2		4	990	95	0	40
	1	LEAD, TOTAL RECOV- ERABLE	LEAD SUS PEND RECO	D, S- DED OV- BLE	LEAD, DIS- SOLVE	MA NE TO RE D ER	NGA- SE, TAL COV- ABLE	MANGA NESE, SUS- PENDE RECOV	M. NI	ANGA- ESE, DIS- OLVED	MERC TOT REC ERA	URY AL OV- BLE	MERCU SUS PEND RECO ERAB	RY - ED M V- LE	ERCURY DIS- SOLVED	NICKEL TOTAL RECOV ERABL	, - E	NICKEL, SUS- PENDED RECOV- ERABLE
DATE		(UG/L IS PB)	AS I		(UG/L AS PB		G/L MN)	(UG/L		UG/L S MN)	(UG AS		(UG/ AS H		(UG/L AS HG)	(UG/L AS NI		(UG/L AS NI)
NOV 14 FEB		12		11		1	90	2	0	70		.3		. 1	.2		3	0
13		3		3		0	130	1	0	120		. 1		. 0	. 1		3	0
MAY 15		12		12		0	140	8	0	60		.2		. 0	.2		6	6
AUG 06		7		7		0	190	9	0	100		. 1			<.1		5	5
	DATI	D: Sc (I	CKEL, IS- DLVED JG/L S NI)	SELI NIUN TOTA (UG,	E- M, AL /L	SELE- NIUM, SUS- PENDED TOTAL (UG/L AS SE)	NI D SOI (U	UM, IS- LVED G/L	ILVER TOTAL RECOV- ERABLI (UG/L AS AG	PE ER	VER, SUS- NDED CCOV- ABLE G/L AG)	SOI (U	VER, IS- LVED G/L AG)	ZINC TOTA RECO ERAB (UG/ AS Z	, S L PE V- RE LE ER L (U	COV- ABLE G/L	ZING DIS SOLV (UG/ AS Z	S- VED /L
	0 V	. 4	3		1	0		1		0	0		0		20	0		20
	EB 13.		3		0	0		0		0	0		0		30	0		30
	15.		0		0	0		0		1	1		0		20	10		10
	UG 06.		0		0	0		0	(0	0		0		30	27		3
				DA	L	ENGTH OF EXPO- SURE (DAYS)	PE: PH' BIO TO' DI WE	RI- YTON MASS TAL B RY IGHT	PERI- PHYTON IOMASS ASH WEIGHT	CHL PE N PH S CHR GRA	OR-A RI- YTON OMO- PHIC OROM /M2)	PEI PHY CHRO	OR-B RI- YTON OMO- PHIC OROM	BIOMA CHLOR PHYL RATI PERI PHYT (UNIT	SS O- L O			•
				FEB 13.		19		. 1	25.0	0	.640		.000	1719				
				MAY 15		20	15	. 8	14.7		. 2		650	90.	2			
				AUG 06.			15	. 8	10.0	35	. 4	6.	.51	164				

01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued

			TEMPERATUR	E, WATER		WATER Y		ER 1979	TO SEPTEMBER	1980		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1 2 3 4 5	19.0 18.0 18.5 18.0 18.0	10.0 10.5 10.0 10.0	6.5 6.0 4.0 5.0	5.0 4.5 4.5 3.5 3.0	.5 .5 .5 1.0	1.5 .5 1.0 3.0 4.5	7.0 9.0 9.5 10.5	14.0 15.0 15.0 16.5 16.5	20.5 21.5 22.0 21.5 21.0	24.0 24.5 23.0 23.0 24.0	25.5 25.5 25.5 26.0 26.0	26.0 26.0 26.0 25.0 25.0
6 7 8 9	17.0 15.5 16.5 14.5 14.0	10.5 10.0 10.0 10.5 11.0	5.5 6.0 5.0	2.0 3.0 3.0 3.5 3.5	1.5 1.5 2.0 1.5	5.0 4.5 8.0 8.0	10.5 10.5 12.0 13.0 12.0	18.0 18.0 18.0 16.0 15.5	20.5 20.0 20.5 19.0 18.5	24.0 23.5 22.0 23.0 24.0	26.0 26.0 26.0 27.0 26.5	24.0 24.5 23.0 21.5 21.5
11 12 13 14 15	11.5 11.5 11.5 12.0 11.0	11.5 11.5 11.0 10.5 10.0	5.5 6.5 6.5 6.0 5.0	4.0 4.5 3.5 4.0 4.0	1.0 3.0 2.0 2.0 2.0	6.0 6.0 4.5 3.5 3.0	11.0 13.0 13.5 14.0 14.0	16.0 16.0 17.0 18.5 19.5	17.0 17.0 18.5 25.5 26.0	25.0 24.5 24.0 24.5 24.5	26.5 26.0 25.0 25.0 24.5	21.0 21.0 21.0 21.5 21.5
16 17 18 19 20	11.0 11.0 11.5 13.5 14.0	9.0 8.5 8.5 8.5 9.5	5.0 3.5 2.0 1.5	4.0 5.0 4.5 6.0 6.0	2.0 .5 .5 2.0 2.0	3.0 5.5 6.5 5.5 6.5	13.5 10.5 10.0 11.0 13.5	17.0 18.0 18.5 18.5	22.0 21.0 21.0 22.0 21.5	25.0 24.0 26.0 26.0 26.0	23.5 21.5 21.5 22.0 23.0	20.5 19.5 19.5 19.5 21.0
21 22 23 24 25	15.0 15.5 17.0 17.0	9.5 9.5 9.5 10.5 11.5	1.5 1.5 4.5 6.0 6.5	5.0 5.0 3.0 3.0	4.5 5.0 6.0 6.0	3.5 6.0 5.5 6.0 6.0	15.0 14.0 14.0 14.0 15.5	19.5 18.5 20.0 20.5 21.5	20.5 21.0 23.5 23.5 25.0	26.5 26.0 26.0 26.0 26.0	21.5 21.5 21.5 22.0 23.0	21.5 21.0 23.0 21.0 20.5
26 27 28 29 30 31	14.0 13.0 11.5 12.0 10.5 9.5	14.0 11.0 11.5 10.0 8.5	7.0 6.0 3.5 5.0 5.0	3.0 2.0 3.0 3.5 2.0 2.0	4.0 4.5 4.5 2.0	5.5 5.5 8.5 8.5	16.0 16.0 14.0 13.0 11.5	20.5 20.5 19.0 19.5 20.5 20.5	24.5 26.0 26.0 26.0 25.0	25.0 25.5 25.5 25.5 24.5 25.5	23.0 24.0 24.5 25.0 25.0 25.0	19.5 16.5 16.5 16.5
MEAN	14.0	10.0	4.5	3.5	2.5	5.5	12.5	18.0	22.0	24.5	24.5	21.5
WTR YR	1980	MEAN	13.5	MAX	27.0	М	IIN	.5				
			OXYGEN, DIS	SOLVED ((DO), MG/L,	WATER Y	EAR OCTOBE	ER 1979	TO SEPTEMBER	1980		
DAY	OCT	NOV	DEC									
1 2		,,-,	DEC	JAN	FEB	MAR	A PR	MAY	JUN	JUL	A UG	SEP
3 4 5	7.4 6.3 6.8 6.9	10.1 9.8 7.7 7.8 9.1	9.5 9.7 10.7 11.1	11.2 11.4 11.2 10.8 10.5	11.9 11.7 11.9 10.6 10.1	10.0 10.0 10.8 10.3 9.6	10.9 10.6 9.9 10.1 10.2	9.4 9.7 7.7 7.0 7.6	JUN 4.0 4.0 4.0 3.8 4.1	3.5 3.7 3.0 3.7 4.1	3.0 7.7 4.1 3.5 4.3	5.0 5.2 4.8 3.0 3.8
3 4	6.3 6.8 6.9	10.1 9.8 7.7 7.8	9.5 9.7 10.7 11.1	11.2 11.4 11.2 10.8	11.9 11.7 11.9 10.6	10.0 10.0 10.8 10.3	10.9 10.6 9.9 10.1	9.4 9.7 7.7 7.0	4.0 4.0 4.0 3.8	3.5 3.7 3.0 3.7	3.0 7.7 4.1	5.0 5.2 4.8
3 4 5 6 7 8	6.3 6.8 6.9 6.6 6.8 7.1 7.3	10.1 9.8 7.7 7.8 9.1 9.3 8.7 8.8	9.5 9.7 10.7 11.1 11.0 10.7	11.2 11.4 11.2 10.8 10.5	11.9 11.7 11.9 10.6 10.1 10.1 10.0 9.9	10.0 10.8 10.3 9.6	10.9 10.6 9.9 10.1 10.2 10.1 9.6 9.9	9.4 9.7 7.7 7.6 6.9 6.0 7.2	4.0 4.0 3.8 4.1 3.8 4.8 4.8	3.5 3.7 3.0 3.7 4.1 5.1 4.6 4.3	3.0 7.7 4.1 3.5 4.3 3.2 3.3 3.7	5.0 5.2 4.8 3.0 3.8
3 4 5 6 7 8 9 10 11 12 13 14	6.3 6.8 6.9 6.8 7.3 6.8 7.4 8.4 8.9 9.1	10.1 9.8 7.7 7.8 9.1 9.3 8.7 8.8 8.7 8.6	9.5 9.7 10.7 11.1 11.0 10.7 10.4 10.7	11.2 11.4 11.2 10.8 10.5 10.7 11.4 10.4 10.2 10.6 10.5 11.1	11.9 11.7 11.9 10.6 10.1 10.1 10.0 9.5 10.4 10.1 10.0 9.6	10.0 10.8 10.3 9.6 10.0 9.1 9.2 9.0 8.5 9.1 9.5 10.8	10.9 10.6 9.9 10.1 10.2 10.1 9.6 9.9 9.6 10.4	9.4 9.7 7.7 7.0 7.6 6.9 6.6 7.2 7.5 7.4 7.1 7.4 7.1	4.0 4.0 3.8 4.1 3.88 4.5 7 4.7 5.0 5.1	3.70 3.71 5.63 4.67 4.99 4.92 5.6	3.0 7.7 4.1 3.5 4.3 3.2 3.3 3.7 3.7 7.7 7.7 7.9 8.3	5.28 08 25508 9720 3.33 3.54 5.76.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	6.38 6.89 6.81 7.38 7.4 8.91 28.8 9.75 9.77 9.77	9.8 7.7 7.8 9.1 9.37 8.8 8.6 8.1 9.0 8.5 9.5 9.5 9.3	9.5 9.7 10.7 11.1 11.0 10.7 10.4 10.7 10.5 10.3 9.9 10.0 10.2	11.2 11.4 11.2 10.5 10.7 11.0 10.4 10.2 10.6 10.5 11.1 11.4 10.2	11.9 11.7 11.9 10.6 10.1 10.0 9.9 9.5 10.4 10.1 10.0 9.6 9.2 7.5 9.5 11.8 9.3	10.0 10.0 10.8 10.3 9.6 10.0 9.1 9.2 9.0 8.5 10.2 10.4 10.0 9.7 10.2	10.9 10.6 9.9 10.1 10.2 10.1 9.6 9.9 9.6 10.4 10.2 9.7 9.7 9.7 9.7 9.7	9.4 9.7 7.7 7.6 6.9 6.0 7.5 7.4 6.3 6.7 6.2 6.2	4.0 4.0 3.1 3.8 4.5 7 5.5 5.0 1 4.3 4.3	3333.4 544.67 992.66 588.0 445.55 43334.0	3.0 7.7 4.1 3.5 4.3 3.3 3.7 3.7 3.7 7.7 7.9 8.3 4.3 4.7 4.3 5.8 5.8	5.02 4.80 3.08 3.55 5.88 5.77 6.4 5.54 5.57 6.4 6.54 6.54 6.54 6.54 6.54 6.54 6.54
3 4 5 6 7 8 9 10 112 133 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	6.8.9.6 8.1.3.8.4 4.9.1.2.8 0.7.5.7.9 4.9.5.9.7 2.9.5.6.7.7.7.6.6.5.5 6.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	10.1 7.7 7.8 9.1 9.37 8.8 8.7 8.6 8.15 9.5 8.8 8.9 9.31 8.8 8.9 9.31 8.8 8.9 9.31 8.8 8.9 9.31 8.8 8.9 9.31 8.8 8.9 9.9 9.9 9.9 9.9 9.9 9.9	9.5 9.7 10.7 11.1 11.0 10.7 10.4 10.7 10.5 10.3 9.9 10.0 10.2 10.1 11.0 11.3 12.0 12.2 12.8 12.7 11.7 10.6 10.7	11.2 11.4 11.2 10.5 10.5 10.7 11.0 10.4 10.6 10.5 11.1 11.4 10.8 10.6 10.6 10.6 10.5 11.1 11.4 11.0 11.0 11.0 11.0	11.9 11.7 11.9 10.6 10.1 10.1 10.0 9.9 9.5 10.4 10.1 10.0 9.6 9.2 7.5 11.8 9.3 9.8 9.9 10.0 9.8 8.9 9.5 10.2	10.0 10.8 10.3 9.6 10.1 9.2 9.5 9.5 10.2 9.8 10.2 9.7 10.6 9.7 10.6 10.3 11.0 10.4 11.2 10.4 11.2 10.4 11.2 10.4 11.2 10.4 11.2 10.4 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	10.9 10.6 9.9 10.1 10.2 10.1 9.6 9.9 9.6 10.4 10.2 9.7 9.5 9.7 10.0 9.8 9.7 10.8 9.7 10.8 9.9 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8	9.47 77.706 66.60 77.77 66.60 77.77 66.60 66.60 77.77 66.60	4.00 4.00 3.1 8.8577 30018 63036 43487 95127 4.55554 4.63036 445.45 4555555	333334 54444 445555 43343 55437	3.77 4.1 3.3 3.3 3.75 7.77 8.3 3.3 3.75 7.77 8.3 4.73 8.27 5.3 3.4.9 6.63 4.9 6.65 5.1	5.2.8.08 2.5.5.08 9.7.2.04 0.5.4.7.2 5.3.8.8.7 0.8.3.3.5.4 5.5.7.6.5 5.4.4.3.4 3.3.3.3.3.3.5.4 4.3.3.3.3.3.3.4.1
3 45 67 8 9 10 11 12 13 14 15 16 17 18 19 20 22 23 42 25 26 27 28 29	6.8.9.6.8.1.3.8.4.4.9.1.2.8.0.7.5.7.9.4.9.5.9.7.6.5.5.6.6.7.7.6.7.7.6.7.7.7.6.7.7.7.6.7	10.1 7.7 7.8 9.1 9.37 8.8 8.6 8.5 9.5 9.3 8.8 8.9 9.3 9.3 9.4 9.4 9.4 9.4	9.5 9.7 10.7 11.1 11.0 10.7 10.4 10.7 10.5 10.3 9.9 10.0 10.2 10.1 11.0 11.3 12.0 12.2 12.8 12.7 11.7 10.6 10.7	11.2 11.4 11.2 10.5 10.7 11.0 10.4 10.2 10.6 10.5 11.1 11.2 11.0 10.8 10.6 9.8 10.6 10.8 11.0	11.9 11.7 11.9 10.6 10.1 10.0 9.9 9.5 10.1 10.0 9.0 9.6 9.2 7.5 11.8 9.8 9.9 10.0 9.8 9.5 11.8 9.9 9.5	10.0 10.8 10.3 9.6 10.1 9.2 9.5 10.2 9.5 10.2 9.7 10.6 9.6 10.3 11.0 10.4 11.2	10.9 10.6 9.9 10.1 10.2 10.1 9.6 9.9 9.6 10.4 10.2 9.7 9.7 9.7 9.7 10.8 9.7 10.8 9.7	9.4777.06 9.66.025 77.77.66.8 66.60.25 55.77.4.17 0.880.66 5.87 8.77 9.880.66 9.880.60 9.880.66 9.880.66 9.880.66 9.880.66 9.880.66 9.880.66 9.880.60 9.880.66 9.800.60 9.800.60 9.800.60 9.800.60 9.800.60 9.800.60 9.800.60 9.800.	4.00 4.00 4.00 8.85 77 3.00 1.8 6.30 3.6 4.34 4.5 4.5 5.5 5.5 5.5 5.5 5.5 5.5 5.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7	333334 54444 445555 43343 555559 70	3.77 4.1 3.3 3.3 3.3 3.7 7.7 7.7 8.3 3.3 3.7 5.8 4.7 5.8 4.9 6.5 5.1	5.28.08 2.55.08 9.77.20.4 0.54.72 5.38.88.7 0.83.0 3.35.4 5.57.65.5 5.4.4.3.3 3.32.4.

01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

DATE TIME		14,79 040		20,80 110		15,80 910		18,80 145
TOTAL CELLS/ML	3	100	2	500	2	600	12	000
DIVERSITY: DIVISION .CLASSORDERFAMILYGENUS		1.3 1.3 1.8 2.0 2.2		0.7 0.7 1.6 2.6 3.0		1.5 1.5 2.4 2.9 3.2		1.1 1.1 1.8 2.6 3.1
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALES								
CHARACIACEAE SCHROEDERIA COELASTRACEAE	*	0		-		-		0
COELASTRUM HYDRODICTYACEAE		-		-		-	3300#	27
PEDIASTRUM MICRACTINIACEAE		-		-		-		-
MICRACTINIUM OOCYSTACEAE		-		-		-		-
ANKISTRODESMUS	.27	1	17	1	39	1	*	0
CHLORELLA CHODATELLA		-	17	1	*	0	1700	14
DICTYOSPHAERIUM		-		2	52	2		-
KIRCHNERIELLA	*	0		-		-	100 250	1 2
OOC YST IS SELENASTRUM		-	100	4	*	0	150	1
TETRAEDRON		-		-		-	*	0
SCENEDESMACEAEACTINASTRUM		-		_		-		_
CRUCIGENIA		-		-		-		-
SCENEDESMUS TETRASPORALES	210	7	100	4	52	2	1000	8
PALMELLACEAE								
SPHAEROCYSTIS		-		-		-	810	7
VOL VOCALES CHLAM YDOM ONA DA CEAE								
CHLAM YDOM ONAS	41	1	67	3	64	2	760	6
CHLOROGONIUM VOL VOCACEAE		-		-		-		-
GONIUM		-		-	52	2		-
CHR YSO PH YTA .BACILLARIO PH YCEAE								
CENTRALES								
COSCINODISCACEAE CYCLOTELLA	220	7	850#	34	350	13	2600#	21
MELOSIRA	120	7	130	5	52	2	560	5
PENNALES			4.5					
ACHNANTHACEAEACHNANTHES	*	0			*	0		2
COCCONEIS	*	Ö		-		-		-
RHOICOS PHENIA	*	0		-		-		-
CYMBELLA			33	1		-		_
DIATOMACEAE								
DIATOMA FRAGILARIACEAE		-	17	1		-		-
ASTERIONELLA		-	300	12	240	9		-
FRAGILARIA SYNEDRA	27	1	17 84	1	64 26	2		7
GOM PHONEMATACEAE	21		04	3	20		-	
GOM PHONEMA	27	1	17	1		-		-
NA VICULACEAE NA VICULA	210	7	130	5	64	2		-
NITZSCHIACEAE								
NITZSCHIASURIRELLACEAE	69	2	550#	22	100	4	*	0
SURIRELLA		_	33	1		-		-
TABELLARIACEAE	624		- 22		52	2		-
				100	12	-		- 07
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAE								
AGMENELLUM		-		-		-		-
ANACYSTIS	110	4		-	370	14	250	2
HORMOGONALES OSCILLATORIACEAE								
OSCILLATORIA	1900#	63		-	900#	35	500	4

01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER - CENT	CELLS /ML	PER- CENT
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALESEUGLENACEAEEUGLENACEAE		_	50	2	39	1		_
TRACHELOMONAS	27	1		-	26	1		-

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

DATE TIME		22, 80 925	A UG	6,80 115		10,80	
TOTAL CELLS/ML	40	000	49	000	38	000	
DIVERSITY: DIVISION .CLASSORDERFAMILYGENUS		1.2 1.2 1.7 2.6 3.3	20	1.3 1.3 1.4 2.0 2.5		1.1 1.1 1.3 1.9 2.3	
	CELLS	PER-	CELLS	PER-	CELLS	PER-	
ORGANISM	/ML	CENT	/ML	CENT	/ML	CENT	
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESCHARACIACEAE							
SCHROEDERIA COELASTRACEAE		-		-			
COELASTRUM HYDRODICTYACEAE		-		-		-	
PEDIASTRUM	3100	8		-		-	
MICRACTINIACEAEMICRACTINIUM	5900	15	1200	2	2400	6	
OOCYSTACEAEANKISTRODESMUS	400	1	600	1	670	2	
CHLORELLA		-		-		-	
CHODATELLADICTYOS PHAERI UM	*	0	300	1		-	
KIRCHNERIELLA		-		- 1		-	
OOCYSTIS SELENASTRUM		0	6000	12	540	0	
TETRAEDRON	*	0	300	1	270	1	
SCENEDESMACEAEACTINASTRUMCRUCIGENIASCENEDESMUS	810 3200 13000#	.2 .8 32	1500 21000#	3	3200 20000#	9 - 53	
TETRASPORALES	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-					
SPHAEROCYSTIS	1600	4		Wale.		12	
VOL VOCA LES CHLAM YDOM ON A DA CEA E							
CHLAM YDOM ONAS	710	2	300	1	810	2	
CHLOROGONIUMVOLVOCACEAE	*	0				-	
GONIUM		-		-		-	
CHRYSOPHYTA .BACILLARIOPHYCEAECENTRALES							
COSCINODISCACEAE	3400	9	2600	5	1900	5	
MELOSIRA PENNALES	2200	6	600	1	*	0	
ACHNANTHACEAE							
COCCONEIS			==	2	===	-	
RHOICOS PHENIA		-				-	
CYMBELLACEAE				-			
DIATOMACEAE	-	270					
FRAGILARIACEAE		11/4					
FRAGILARIA	400	1		4.5	1200	3	
SYNEDRAGOMPHONEMATACEAE		-		•	-		
GOM PHONEMA		-				-	
NAVICULACEAE	*	0					
NITZSCHIACEAE	1100		HEA		270	74.50	
NITZSCHIA SURIRELLACEAE	1100	3	450	4.1 1	270	1	

01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
SURIRELLA TABELLARIACEAE		-		-		-
TABELLARIA		-		-		-
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAE						
AGMENELLUM	810	2	1200	2		_
ANACYSTIS HORMOGONALES	2400	6	12000#		6200#	16
OSCILLATORIACEAE		-		-		-
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALESEUGLENACEAE						
EUGLENA	710	2		-		-
TRACHELOMONAS		-	600	1		-

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15\$
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2\$

01389880 PASSAIC RIVER AT ROUTE 46 AT ELMWOOD PARK, NJ

LOCATION.--Lat 40°53'37", long 74°07'46", Passaic County, Hydrologic Unit 02030103, at bridge on U.S. Route 46 at Elmwood Park, and 0.8 mi (1.3 km) upstream from Dundee Dam.

DRAINAGE AREA. -- 803 mi2 (2,080 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1974 to current year.

REMARKS.--Operated as part of the USGS-EPA paired station network. Instantaneous water discharge estimated on the basis of water discharge for 01389500 Passaic River at Little Falls, drainage area relationships, and known diversions.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)
OCT 24	1130	E630	340	7.4	16.5	7.4	18			19	1.9
NO V 13	1235	E 1600	265	7.5	9.5	11.2	25	3000		16	1.1
DEC											
11 JAN	1045	E820	282	7.5	3.5	12.9	12	1300		2	1.3
22 FEB	1050	E960	295	7.3	3.0	14.4	22	400	32	- 11	1.2
12 MAR	1315	E320	445	7.7	1.0	13.4					
19 APR	1025	E2500	288	7.3	4.5	13.1	35	460		11	1.0
23	1040	E 1600	252	7.7	14.5	10.2	24	3800		15	. 81
MAY 14	1230	E 1700	255	7.7	18.0	8.8	31	1600		23	1.4
JUN 17	1220	E290	520	7.5	22.5	.5	59	E800000		10	. 15
JUL 21	1310	E 150	480	8.8	30.5			K300			12
AUG 27	1045	E 100	492	8.9	25.5	9.4	34	10000	68	3	2.8
SEP 09	1220	E80	485	8.5	23.5	12.8	35	4000		13	2.7
DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	CYANIDE TOTAL (MG/L AS CN)	SEDI- MENT, SUS- PENDED (MG/L)
OCT		0.0									
24 NO V	.660	.80	1.2	1.9	3.8	. 390	3	0		.00	27
13 DEC	.600	.73	.60	1.2	2.3	.300	4	0		.01	24
11 JAN	1.100	1.3	.70	1.8	3.1	.310	4	0	20	.01	7
22 FEB	.880	1.1	.92	1.8	3.0	.270	7	1	20	.01	7
12 MAR											4
19	.790	.96	. 41	1.2	2.2	.420	4	1		.01	59
APR 23	.430	.52	.36	.79	1.6	.200	3	0		.00	22
MAY 14	.390	. 47	. 42	.81	2.2	.230	3	1	30	.00	
JUN 17	2.100	2.5	2.3	4.4	4.6	.810	2	0	80	.01	-
JUL 21											1 1 1 1 L
AUG 27	.270	•33	.67	.94	3.7	.520			1/	.01	
SEP 09	.320	.39	1.3	1.6	4.3	.730	4	0	30	.00	

01390500 SADDLE RIVER AT RIDGEWOOD, NJ

LOCATION.--Lat 40°59'05", long 74°05'30", Bergen County, Hydrologic Unit 02030103, on left bank 15 ft (4.6 m) upstream from bridge on State Highway 17 in Ridgewood and 2.8 mi (4.5 km) upstream from Hohokus Brook.

DRAINAGE AREA .-- 21.6 mi2 (55.9 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1954 to September 1974, October 1977 to current year. Operated as a maximum-stage gage water years 1975-77.

REVISED RECORDS .-- WRD-NJ 1974: 1971.

GAGE.--Water-stage recorder. Datum of gage is 71.74 ft (21.866 m) National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Water-discharge records fair. The flow past this station is affected by pumpage from wells by Hackensack Water Co. and others.

AVERAGE DISCHARGE.--23 years (water years 1955-74, 1978-80), $36.3 \text{ ft}^3/\text{s}$ (1.028 m³/s), 22.82 in/yr (580 mm/yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 4,650 ft 3 /s (132 m 3 /s) Nov. 8, 1977, gage height, 12.25 ft (3.734 m); minimum daily, 0.2 ft 3 /s (0.006 m 3 /s) Sept. 17, 18, 1966.

EXTREMES OUTSIDE OF PERIOD OF RECORD.--Flood on July 23, 1945, reached a discharge of 6,400 ft³/s (181 m³/s), at site 1.6 mi (2.6 km) upstream, drainage area, 19.1 mi² (49.5 km²), by slope-area measurement.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 380 ft3/s (10.8 m3/s) and maximum (*):

Acres and			Discha	rge	Gage h	eight				Disch	arge	Gage h	eight
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Oct.	5	2345	825	23.4	5.14	1.567	Mar.	21	Unknown	952	27.0	5.45	1.661
Nov.	26	1615	481	13.6	4.17	1.271	Apr.	10	0200	1120	31.7	5.82	1.774
Jan.	11	2330	417	11.8	3.96	1.207	Apr.	28	2200	*1490	42.2	6.66	2.030

Minimum discharge, 1.3 ft 3 /s (0.037 m 3 /s) Aug. 27.

		DISC	HARGE, IN	CUBIC FE	ET PER S	ECOND, WAT MEAN VA		CTOBER 19	79 TO SE	PTEMBER 19	980	
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	65 44 65 35 130	15 13 97 41 21	30 27 25 25 24	23 23 22 20 19	13 11 11 11 11	8.1 7.3 6.5 10	142 87 73 150 94	94 81 74 66 61	23 37 50 28 16	11 8.3 12 9.7	4.3 9.4 8.5 5.0 4.3	2.3 1.9 1.9 1.9 2.1
6 7 8 9	166 35 23 23 53	18 17 15 15	26 49 29 24 23	18 17 17 17 16	10 10 10 9.5 9.8	11 13 20 28 25	71 63 59 457 428	57 55 109 62 51	13 23 22 24 27	59 11 8.1 7.1 6.8	4.0 3.5 3.2 3.0 2.7	2.3 2.3 2.0 2.5 2.0
11 12 13 14 15	44 30 27 21 18	22 68 26 22 18	22 21 49 46 28	66 128 39 31 28	10 9.5 9.3 9.0 9.1	70 30 22 34 31	135 109 97 124 129	48 62 89 54 41	15 12 11 10 9.5	6.3 5.7 5.2 5.0 4.8	2.8 3.3 3.0 2.9 2.9	2.1 1.9 2.2 2.1 3.0
16 17 18 19 20	17 16 15 15	17 15 15 15 14	25 33 23 21 20	24 22 23 39 22	12 12 11 11 10	28 35 140 60 40	88 76 69 64 61	36 32 31 33 35	9.4 8.6 8.2 8.1 8.0	4.7 5.0 4.6 4.3 3.8	2.9 2.7 2.7 3.0 3.1	2.1 2.4 9.3 2.7 1.9
21 22 23 24 25	14 13 13 15 13	14 13 13 13 12	20 20 24 30 121	19 17 17 16 15	13 16 17 20 19	310 290 110 80 120	57 52 50 47 43	52 39 28 25 22	7.9 7.1 6.7 6.6 6.2	3.7 4.3 14 8.1 5.1	2.9 2.9 2.7 2.6 2.4	2.2 1.8 2.1 1.7 2.0
26 27 28 29 30 31	13 13 20 21 16 16	209 104 50 39 33	52 35 29 27 27 27	13 13 13 12 12 12	15 12 11 9.5	71 63 58 99 111 146	41 45 483 273 117	19 18 17 15 15	5.9 5.8 5.5 6.7 48	4.2 3.8 3.5 7.8 7.0 4.7	2.0 1.8 2.1 1.9 1.9	1.9 1.8 2.0 1.9
TOTAL MEAN MAX MIN CFSM IN.	1023 33.0 166 13 1.53 1.76	1001 33.4 209 12 1.55 1.72	980 31.6 121 20 1.46 1.69	773 24.9 128 12 1.15 1.33	341.7 11.8 20 9.0 .55 .59	2086.9 *67.3 310 6.5 3.12 3.59	3784 126 483 41 5.83 6.52	1437 46.4 109 15 2.15 2.47	469.2 15.6 50 5.5 .72 .81	259.6 8.37 59 3.5 .39 .45	102.4 3.30 9.4 1.8 .15	70.2 2.34 9.3 1.7 .11

CAL YR 1979 TOTAL 17781.8 MEAN 48.7 MAX 736 MIN 8.1 CFSM 2.26 IN 30.62 WTR YR 1980 TOTAL 12328.0 MEAN 33.7 MAX 483 MIN 1.7 CFSM 1.56 IN 21.23

01391000 HOHOKUS BROOK AT HOHOKUS, NJ

LOCATION.--Lat 40°59'52", long 74°06'48", Bergen County, Hydrologic Unit 02030103, on left bank 500 ft (150 m) upstream from bridge on Maple Avenue in Hohokus, and 3.5 mi (5.6 km) upstream from mouth.

DRAINAGE AREA .-- 16.4 mi2 (42.5 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1954 to September 1973, October 1977 to current year. Operated as a crest-stage partial-record station, water years 1974-77.

REVISED RECORDS .-- WDR NJ-77-1: 1955(M), 1968(M), 1976(M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 120.09 ft (36.603 m) National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Water-discharge records good except those above 100 ft³/s (2.8 m³/s), which are poor. Some regulation at low and medium flows caused by unknown sources.

AVERAGE DISCHARGE.--22 years, (water years 1955-73, 1978-80) 32.6 ft³/s (0.923 m³/s), 26.99 in/yr (686 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,700 ft³/s (105 m³/s) Nov. 8, 1977, gage height, 7.06 ft (2.152 m), from rating curve extended above 750 ft³/s (212 m³/s) by computation of peak flow over dam; minimum, 1.9 ft³/s (0.054 m³/s) Aug. 2, 1966.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 450 ft3/s (12.7 m3/s) and maximum (#):

Date		Time	Discha (ft³/s)		Gage h	eight (m)	Date		Time	Discharge (ft3/s)		Gage h	eight (m)
Mar. Apr.	21	1700 2300	776 820	22.0	3.26	0.994	Apr.	28	2115	*881	24.9	3.40	1.036

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum discharge, 3.0 ft3/s (0.085 m3/s) July 13, gage height, 1.16 ft (0.354 m).

MEAN VALUES OCT JUN JUL AUG SEP DAY NOV JAN FEB MAR APR MAY 52 133 84 33 9.0 9.0 52 9.5 8.9 8.9 8.6 8.6 62 292 15 7.1 8.4 8.6 9.0 8.8 8.8 28 8.8 26 24 24 58 56 38 38 43 19 15 9.5 24 23 22 13 12 15 19 9.7 9.2 9.0 9.3 8.7 8.6 9.4 28 88 248 8.9 8.7 8.4 ---------547.9 TOTAL 356.6 336.3 25.5 MEAN MAX 36.5 38.5 32.3 29.9 15.3 65.4 376 45.8 17.7 11.5 11.2 7.1 8.4 MIN 8.4 2.35 1.97 3.99 6.34 2.79 1.56 .70 . 68 CFSM 2.23 1.82 1.00 1.08 IN.

CAL YR 1979 TOTAL 16383.0 MEAN 44.9 MAX 431 MIN 13 CFSM 2.74 IN 37.16 WTR YR 1980 TOTAL 13217.8 MEAN 36.1 MAX 376 MIN 7.1 CFSM 2.20 IN 29.98

01391200 SADDLE RIVER AT FAIR LAWN, NJ

LOCATION.--Lat 40°56'30", long 74°05'36", Bergen County, Hydrologic Unit 02030103, at bridge on Century Road in Fair Lawn, and 0.8 mi (1.3 km) downstream from Hohokus Brook.

DRAINAGE AREA. -- 45.2 mi2 (117.1 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- February 1979 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
JAN 30 APR	1000	640	7.6	3.0	11.0	. 3.5	2	5	180	48
10	1230	212	7.5	12.5	10.0	3.8	540	1600	55	16
JUN 09	1050	550	7.8	16.5	7.3	7.0	80	79	150	42
JUL 10 AUG	0950	555	7.6	22.5	5.1	7.1	80	49	150	40
28	1100	653	7.7	26.0	7.7	5.2	50	<2	180	46
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
JAN 30	14	45	4.8	161	0	132		41	62	.1
APR 10	3.7	14	1.7	51	0	42		16	22	.1
JUN 09	12	36	4.1	161	0	132	.0	32	53	.1
JUL 10	12	45	5.0	142	0	116		40	58	.1
AUG 28	15	54	6.9	159	0	130		48	75	.2
DAT	(MG AS	- AT 1 VED DEC /L DI SOL	DUE NIT	N, GE NO3 AMMO AL TOT /L (MG	N, GE NIA ORGA AL TOT L (MG	NÍC ORGA AL TOT. /L (MG	AM- A + NITH NIC GEN AL TOTA /L (MG/	N, OSPH	US, OPH CARB ATE ORGA AL TOT /L (MG	NIĆ AL /L
JAN 30.	1	5	340 6	.2 2.	620	.23 2	.9 9.	.0 5	. 2	9.0
APR 10.		6.3							.49	6.6
JUN 09.		4							.3	9.3
JUL 10.	1	4	333 4	.8 1.	100 1	.9 3	.0 7.	. 8 5	. 6	7.9
AUG 28.		8.7					. 4 10			0
	DATE JUN 09	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	

01391200 SADDLE RIVER AT FAIR LAWN, NJ--Continued

	IRON, TOTAL RECOV- ERABLE	LEAD, TOTAL RECOV- ERABLE	MANGA- NESE, TOTAL RECOV- ERABLE	MERCURY TOTAL RECOV- ERABLE	NICKEL, TOTAL RECOV- ERABLE	SELE- NIUM, TOTAL	ZINC, TOTAL RECOV- ERABLE	PHENOLS	
DATE	(UG/L AS FE)	(UG/L AS PB)	(UG/L AS MN)	(UG/L AS HG)	(UG/L AS NI)	(UG/L AS SE)	(UG/L AS ZN)	(UG/L)	
JUN 09	400	4	180	.1	2	0	20	2	

01391500 SADDLE RIVER AT LODI, NJ

LOCATION.--Lat 40°53'25", long 74°04'51", Bergen County, Hydrologic Unit 02030103, on left bank 560 ft (171 m) upstream from bridge on Outwater Lane in Lodi and 3.2 mi (5.1 km) upstream from mouth. Water-quality samples collected at bridge on Outwater Lane at high flows.

DRAINAGE AREA .-- 54.6 mi2 (141.4 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1923 to current year.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1031: 1940(M). WSP 1552: 1929(M), 1936(M), 1938. WRD-NJ 1969: 1967. WRD-NJ 1970: 1968, 1969.

GAGE.--Water-stage recorder. Concrete control since Nov. 2, 1938. Datum of gage is 25.00 ft (7.620 m) National Geodetic Vertical Datum of 1929. Prior to Nov. 2, 1938, at site 560 ft (171 m) downstream at datum 2.54 ft (0.774 m) lower.

REMARKS.--Water-discharge records good. Occasional regulation at low flow by mills above station. Diversion above station by Hackensack Water Co., for municipal supply (records given herein).

AVERAGE DISCHARGE.--57 years, 101 ft3/s (2.860 m3/s), 25.12 in/yr (638 mm/yr), adjusted for diversion since 1966.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 4,500 ft 3 /s (127 m 3 /s) Nov. 9, 1977, gage height, 12.36 ft (3.767 m), from high-water mark in gage house; minimum, 1.0 ft 3 /s (0.028 m 3 /s) May 25, 1938, gage height, 1.03 ft (0.314 m), site and datum then in use; minimum daily, 6.0 ft 3 /s (0.17 m 3 /s) Aug. 23, 1934.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 1,200 ft3/s (34.0 m3/s), and maximum (#):

			Discharge		Gage h					arge	Gage h	eight	
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Oct.	5	2315	1450	41.1	5.07	1.545	Apr.	10	0115	*2470	70.0	7.31	2.228
Mar.	22	0030	1840	52.1	5.80	1.768	Apr.	29	0215	2370	67.1	7.06	2.152

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum discharge, 12 ft 3 /s (0.34 m 3 /s) Sept. 30, gage height, 1.61 ft (0.491 m).

						MEAN VA	LUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	202 161 164 123 294	61 57 240 138 82	88 86 78 75 76	57 55 53 50 50	36 38 37 38 35	29 31 29 29 35	400 232 196 410 263	206 172 157 146 137	83 89 132 74 45	48 37 42 36 36	23 64 82 29 24	30 49 36 29 28
6 7 8 9	593 147 109 112 204	69 65 61 60 87	81 138 92 79 76	47 46 45 43 41	34 35 34 35 36	33 31 42 48 53	187 164 154 903 1370	127 123 227 155 139	44 65 59 60 74	91 39 35 36 33	27 23 22 20 20	36 25 25 23 20
11 12 13 14 15	172 126 117 98 88	98 194 97 101 79	72 71 130 127 87	118 352 99 76 68	35 35 33 33 34	204 59 38 92 77	341 263 230 265 300	132 167 222 158 127	48 43 41 47 44	31 23 20 25 23	21 19 17 23 25	19 19 18 19
16 17 18 19 20	82 78 76 74 72	71 68 68 65 60	81 102 77 73 72	60 57 75 118 98	50 42 35 36 37	58 75 270 110 86	211 185 176 166 158	116 113 110 114 107	44 39 38 38 40	24 21 20 19 16	29 26 25 26 26	16 19 100 27 20
21 22 23 24 25	70 72 66 63 60	60 63 61 59	70 73 77 96 257	64 58 57 54 50	43 56 49 51 47	671 1070 309 217 376	152 141 135 132 127	145 125 99 87 80	39 34 34 34 34	20 25 63 33 22	26 26 27 24 23	18 17 16 16 15
26 27 28 29 30 31	59 59 87 90 66 63	468 268 129 107 96	143 99 86 81 79 73	49 47 46 44 41 39	39 32 31 28	222 180 166 253 299 365	125 132 809 1050 271	73 70 66 62 55 48	33 28 23 24 118	21 19 21 80 32 22	22 22 29 29 28 27	18 16 16 16 14
TOTAL MEAN MAX MIN (†) Mean‡ CFSM‡ IN‡	3847 124 593 59 3.3 127 2.33 2.68	3192 106 468 57 0 106 1.95 2.17	2895 93.4 257 70 0.3 93.7 1.72	2157 69.6 352 39 18.0 87.6 1.60	1104 38.1 56 28 18.9 57.0 1.04 1.13	5557 179 1070 29 13.7 193 3.53 4.07	9648 322 1370 125 0 322 5.89 6.56	3865 125 227 48 1.1 126 2.30 2.65	1548 51.6 132 23 20.8 72.4 1.33 1.48	1013 32.7 91 16 14.6 47.3 0.87	854 27.5 82 17 5.7 33.4 0.61 0.70	739 24.6 100 14 4.4 29.0 0.53 0.59
CAL YR WTR YR	1979 TOTAL		MEAN MEAN	135	MAX 2090 MAX 1370	MIN 27 MIN 14	MEAN‡ MEAN‡	139 CFSM:		IN‡ 34. IN‡ 26.		

[†] Diversion, equivalent in cubic feet per second, above station by Hackensack Water Co. Records of diversion furnished by Hackensack Water Co. ‡ Adjusted for diversion.

01391500 SADDLE RIVER AT LODI, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT	0045	460						5400		118512
02 JAN	0915	162	292	7.5	17.0	7.6	7.0	5400	>2400	98
30 APR	1225	33	650	7.8	1.0	12.0	3.0	540	2	190
01 JUN	1350	418	312	7.6	9.0	11.2	2.8	110	34	90
03 JUL	1210	238	278	7.5	21.5	6.0	>9.0	24000	>2400	75
15 AUG	1145	17	670	7.8	23.5	6.1	6.2	28000	2300	200
14	1200	18	653	7.8	22.5	4.7	8.1	1700	490	200
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT						-				
02 JAN	28	6.7	17	2.5	88	0	72	.0	21	23
30 APR	52	14	44	4.4	181	0	. 148		40	62
01 JUN	25	6.8	21	1.9	80	0	66		21	35
03 JUL	21	5.4	17	2.0	78	0	64	.0	20	24
15 AUG	54	15	47	5.2	176	0	1 44		43	77
14	53	16	49	5.4	178	0	146		44	77
DATE	FLUO- RIDE, DIS- SOL VED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 02	.1	8.0	170	1.7	.500	1.1	1.7	3.3	1.1	7.0
JAN 30	.1	15	348	4.7	2.710	. 19	2.9	7.6	4.0	8.0
APR		8.4	187			. 19			.42	
01 JUN	.1		1 - 1	2.0			1.1	3.1	1,25	3.8
JUL 03	.1	5.9	166	1.5	.990	1.8	2.8	4.3	1.8	16
15 AUG	.1	13	410	3.5	2.200	1.9	4.1	7.6	5.1	7.3
14	.1	15	406	3.9	1.900	1.3	3.2	7.1	5.6	4.3
	DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	
	OCT 02 JUN 03	0915 1210	30	2	10	70 70	1	10	12 27	
	-3		5	-	9	10		. 0	-1	

PASSAIC RIVER BASIN

01391500 SADDLE RIVER AT LODI, NJ--Continued

DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA - NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS
OCT 02 JUN	1400	24	140	<.5	3	0	30	1
03	4200	330	340	. 1	6	0	90	4

01392210 THIRD RIVER AT PASSAIC, NJ

LOCATION.--Lat 40°49'47", long 74°09'46", Passaic County, Hydrologic Unit 02030103, on right bank 400 ft (122 m) upstream from bridge on State Highway 3, 0.8 mi (1.3 km) south of Passaic, 1.2 mi (1.9 km) upstream from Passaic River.

DRAINAGE AREA .-- 11.8 mi2 (30.6 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1977 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 22.15 ft (6.75 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records poor. Some regulation from ponds upstream.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,300 ft³/s (65.1 m³/s) Nov. 8, 1977, gage height, 8.25 ft (2.515 m), from rating curve extended above 300 ft³/s) (8.50 m³/s) on basis of contracted-opening measurement of peak flow; minimum, 3.4 ft³/s (0.10 m³/s) Sept. 23, 1977.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 550 ft3/s (15.6 m3/s) and maximum (*):

Date		Time	Discha (ft³/s)		Gage h	eight (m)	Date		Time	Discha (ft3/s)		Gage (ft)	height (m)
Oct.	5	1920	674	19.1	4.82	1.469	June	30	0040	642	18.2	4.74	1.445
Mar.	21	1645	558	15.8	4.52	1.378	Sept.			700	19.8		
Apr.	28	1620	*720	20.4	4.93	1.503	20.5						

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum discharge, 3.5 ft3/s (0.099 m3/s) Aug. 10, 13, 14, 15, gage height, 1.77 ft (0.530 m).

						MEAN VAI	LUES					
DA Y	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	106 25 41 17 75	8.2 8.5 65 15 9.9	9.9 9.7 9.3 9.4 9.5	8.7 8.5 8.2 8.1 8.4	7.4 7.1 7.3 7.3 8.2	7.1 6.9 7.5 7.3 9.2	90 43 34 93 41	32 26 24 22 21	24 27 81 22 12	8.9 8.7 10 4.6	5.4 36 14 5.8 23	4.7 14 9.5 6.3 5.9
6 7 8 9	29 15 13 27 61	9.2 9.0 8.5 8.4	19 29 10 9.7 9.6	7.9 7.7 7.2 6.9 7.5	7.7 6.9 6.8 6.6 6.3	8.0 7.4 23 17 36	33 29 30 209 105	18 25 54 19 17	11 32 18 23 24	7.1 6.1 6.2 5.8	9.0 5.8 5.0 4.6 4.2	10 7.0 6.0 5.5 5.0
11 12 13 14	24 21 17 13	25 42 13 25	9.5 9.8 37 14 9.7	60 40 9.9 9.4 9.1	6.7 7.2 7.0 7.3	84 11 9.7 36 23	47 37 33 59 46	17 32 45 20 18	12 11 10 9.7	5.7 6.3 5.1 5.2 4.9	4.6 6.0 4.4 4.3 4.1	4.7 4.5 4.3 4.1 4.0
16 17 18 19 20	12 12 11 11	11 11 10 9.7 9.4	11 17 9.0 9.0 8.9	9.0 8.1 18 32	39 19 8.0 8.8 8.4	16 33 66 21 14	32 28 27 25 24	17 15 18 16 15	18 18 8.9 9.4	12 8.2 5.8 4.8 4.5	5.6 7.2 6.7 8.2 28	3.9 120 60 30 20
21 22 23 24 25	11 11 11 9.8 9.2	9.5 9.4 10 11 14	8.3 8.7 9.1 13	9.3 9.5 9.7 11 8.7	9.7 27 18 12 7.8	184 126 43 35 78	23 21 19 19	36 16 14 14 13	8.5 7.7 7.8 7.4 6.4	4.4 35 27 6.9 5.6	8.2 7.9 7.0 6.2 6.1	16 12 14 11
26 27 28 29 30 31	9.0 9.2 22 11 8.9 8.7	120 25 14 12 11	13 10 9.5 9.4 9.2 8.9	8.4 8.3 8.3 8.1 7.6 7.4	7.8 7.5 7.6 6.9	30 24 22 59 44 93	17 21 218 98 40	13 12 12 11 11 11	5.8 5.8 6.1 6.7	5.7 4.9 4.7 44 7.4 5.7	6.6 6.1 5.8 5.5 5.2 4.9	13 10 8.0 6.5 5.0
TOTAL MEAN MAX MIN	674.8 21.8 106 8.7	574.7 19.2 120 8.2	410.1 13.2 51 8.3	380.9 12.3 60 6.9	302.3 10.4 39 6.3	1181.1 38.1 184 6.9	1559 52.0 218 17	635 20.5 54 11	553.2 18.4 99 5.8	304.2 9.81 44 4.4	261.4 8.43 36 4.1	438.9 14.6 120 3.9

CAL YR 1979 TOTAL 9356.3 MEAN 25.6 MAX 495 MIN 6.2 WTR YR 1980 TOTAL 7275.6 MEAN 19.9 MAX 218 MIN 3.9

RESERVOIRS IN PASSAIC RIVER BASIN

01379990 SPLITROCK RESERVOIR.--Lat 40°57'40", long 74°27'45", Morris County, Hydrologic Unit 02030103, at dam on Beaver Brook, 2 mi (3 km) northeast of Hibernia, NJ. DRAINAGE AREA, 5.50 mi² (14.2 km²). PERIOD OF RECORD, September 1925 to September 1931, December 1948 to September 1950, October 1953 to current year. Monthend contents only 1925-31, 1948-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, water-stage recorder. Datum of gage is National Geodetic

Vertical Datum of 1929.
Reservoir is formed by a concrete gravity dam with earth embankment; present dam constructed 1946-48 and Reservoir is formed by a concrete gravity dam with earth embankment; present dam constructed 1946-48 and sluice gate first closed Dec. 22, 1948. Prior to 1946, reservoir was formed by earthfill dam with crest about 20 ft (6 m) lower. Capacity of spillway level, 3,310,000,000 gal (12.53 hm³), elevation, 835 ft (254 m). Flow is regulated by two 30-inch (0.8 m) sluice gates. Flow is released for diversion for municipal supply of Jersey City. Records furnished by Jersey City, Bureau of Water.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 3,652,500,000 gal (13.82 hm³) Apr. 5, 1973, elevation, 836.75 ft (255.04 m); minimum 1,522,800,000 gal (5.76 hm³) Jan. 4, 1954, elevation, 824.20 ft (251.22 m).

EXTREMES FOR CURRENT YEAR: Maximum contents, 3,484,000,000 gal (13.19 hm³) Apr. 10, elevation, 835.90 ft (254.78 m); minimum, 2,368,000,000 gal (8.96 hm³) Sept. 30, elevation, 829.90 ft (252.95 m).

01380900 BOONTON RESERVOIR.--Lat 40°53'. long 74°24', Morris County, Hydrologic Unit 02030103, at dam on Rockaway River at Boonton, NJ. DRAINAGE AREA, 119 mi² (308 km²). PERIOD OF RECORD, April 1904 to September 1950, October 1953 to current year. Monthend contents only 1904-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, hook gage. Datum of gage is National Geodetic Vertical Datum of 1929.

is National Geodetic Vertical Datum of 1929.

Reservoir is formed by a cyclopean masonry dam with earth wings; dam completed and storage began in 1904. Total capacity at spillway level, 7,620,000,000 gal (28.84 hm³) elevation, 305.25 ft (93.040 m) of which 7,366,000,000 gal (27.88 hm³) is usable contents above elevation 259.75 ft (79.172 m), sill of lowest outlet gate. Flow regulated by flashboards, 3 outlets in gatehouse at head of conduit and by two 48-inch (1.22 m) pipes (bottom of sluice pipes at elevation 205 ft or 62 m). Water is diverted from reservoir for municipal supply of Jersey City. Records furnished by Jersey City, Bureau of Water.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 8,273,000,000 gal (31.31 hm²) Aug. 24, 1960, elevation, 307.76 ft (93.805 m); minimum, 1,792,000,000 gal (6.78 hm²) Oct. 6, 1957, elevation 277.72 ft (84.649 m).

EXTREMES FOR CURRENT YEAR: Maximum contents, 8,041,000,000 gal (30.44 hm²) Apr. 10, elevation, 306.87 ft (93.534 m); minimum, 2,721,000,000 gal (10.30 hm²) Sept. 30, elevation, 283.57 ft (86.432 m).

01382100 CANISTEAR RESERVOIR.--Lat 41°06'30", long 74°29'30", Sussex County, Hydrologic Unit 02030103, at dam on Pacock Brook, 1.8 mi (2.9 km) northeast of Stockholm, NJ. DRAINAGE AREA, 5.6 mi² (14.5 km²). PERIOD OF RECORD, October 1923 to September 1950, October 1953 to current year. Monthend contents 1923-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, stage gage. Datum of gage is National Geodetic Vertical Datum of 1929.

Reservoir is formed by earth-embankment type dam, completed about 1896. Capacity at spillway level, 2,407,000,000 gal (9.110 hm²), elevation, 1,086.0 ft (331 m). Reservoir used for storage and water released for diversion at Macopin intake dam on Pequannock River prior to May 21, 1961, and for diversion at Charlotteburg Reservoir on Pequannock River since May 21, 1961, for municipal supply for City of Newark. Outflow is controlled mostly by operation of gates in pipes through dam. Records furnished by City of Newark, Division of Water Supply.

Water Supply.

01382200 OAK RIDGE RESERVOIR.--Lat 41°02'30", long 74°30'10", Passaic County, Hydrologic Unit 02030103, at dam on Pequannock River, 0.9 mi (1.4 km) southwest of Oak Ridge, NJ. DRAINAGE AREA, 27.3 mi² (70.7 km²). PERIOD OF RECORD, October 1923 to September 1950, October 1953 to current year. Monthend contents only 1924-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, staff gage. Datum of gage is National Geodetic Vertical Datum of 1929.

Reservoir is formed by earthfill dam with concrete-core wall and ogee overflow section; dam constructed between 1880-92; dam raised 10 ft (3 m) during 1917-19. Capacity at spillway level, 3,895,000,000 gal (14.74 hm³), elevation, 846.0 ft (257.86 m). Reservoir used for storage and water released for diversion at Macopin intake dam on Pequannock River prior to May 21, 1961, and diversion at Charlotteburg Reservoir on Pequannock River since May 21, 1961, for municipal supply of City of Newark. Outflow is controlled mostly by operation of gates in pipes through dam. Records furnished by City of Newark, Division of Water Supply.

01382300 CLINTON RESERVOIR.--Lat 41°04'30", long 74°27'00", Passaic County, Hydrologic Unit 02030103, at dam on Clinton Brook, 2.0 mi (3 km) north of Newfoundland, NJ. DRAINAGE AREA, 10.5 mi² (27.2 km²). PERIOD OF RECORD, October 1923 to September 1950, October 1953 to current year. Monthend contents only 1923-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, staff gage. Datum of gage is National Geodetic Vertical Datum of 1929.

Reservoir is formed by earthfill dam constructed between 1889-92. Capacity at spillway level,

3,518,000,000 gal (13.32 hm³), elevation, 992.0 ft (302.36 m). Reservoir used for storage and water released for diversion at Macopin intake dam on Pequannock River prior to May 21, 1961, and for diversion at Charlotteburg Reservoir since May 21, 1961, for municipal supply of City of Newark. Outflow is controlled mostly by operation of gates in pipes through dam. Records furnished by City of Newark, Division of Water

01382380 CHARLOTTEBURG RESERVOIR.--Lat 41°01'34", long 74°25'30", Passaic County, Hydrologic Unit 02030103, at dam on Pequannock River, 1.1 mi (1.8 km) upstream from Macopin River, and 1.5 mi (2.4 km) southeast of Newfoundland, NJ. DRAINAGE AREA, 56.2 mi² (145.6 km²). PERIOD OF RECORD, May 1961 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

Reservoir is formed by concrete-masonry dam and earth embankment, with concrete spillway at elevation 738.00 ft (224.942 m); storage began May 19, 1961. Spillway equipped with Bascule gate 5 ft (1.5 m) high. Capacity, 2,964,000,000 gal (11.22 hm²), elevation, 743.00 ft (226.466 m), top to Bascule gate. No dead storage. Outflow is controlled by sluice and automatic Bascule gates. Water diverted from reservoir since May 21, 1961, for municipal supply of City of Newark. Records furnished by City of Newark, Division of Water Supply. Supply.
REVISION.--WRD-NJ 1974: Station number.

RESERVOIRS IN PASSAIC RIVER BASIN -- Continued

01382400 ECHO LAKE.--Lat 41°03'00", long 74°24'30", Passaic County, Hydrologic Unit 02030103, at Echo Lake Dam on Macopin River, 1.6 mi (2.6 km) north of Charlotteburg, NJ, and 1.9 mi (3.1 km) upstream from mouth. DRAINAGE AREA, 4.35 mi² (11.27 km²). PERIOD OF RECORD, October 1927 to September 1950, October 1953 to current year. Monthend contents only 1928-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, staff gage. Datum of gage is National Geodetic Vertical Datum of 1929.

Lake is formed by earth-embankment type dam completed about 1925. Capacity at spillway level, 1,583,000,000 gal (5.99 hm³), elevation, 893.0 ft (272.19 m), with provision for additional storage of 180,000,000 gal (0.681 hm³) at elevation 894.9 ft (272.77 m) with flashboards. Usable contents, 1,045,000,000 gal (3.96 hm³) above elevation 880.0 ft (268.22 m). Lake used for storage and water released for diversion at Macopin intake dam on Pequannock River prior to May 21, 1961, and water diverted to Charlotteburg Reservoir on Pequannock River since May 21, 1961, for municipal supply of City of Newark. Outflow to Macopin River controlled by operation of gates in gatehouse at dam and water released through pipe and canal to Charlotteburg Reservoir. Records furnished by City of Newark, Division of Water Supply.

01383000 GREENWOOD LAKE.--Lat 41°09'36", long 74°20'03", Passaic County, Hydrologic Unit 02030103, in gatehouse near right end of Greenwood Lake Dam on Wanaque River at Awosting. DRAINAGE AREA, 27.1 mi² (7.02 mi²). PERIOD OF RECORD, June 1898 to November 1903, June 1907 to current year (gage heights only prior to October 1953). GAGE, water-stage recorder. Datum of gage is 608.86 ft (185.58 m) National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to Oct. 1, 1931, staff gage on former railroad bridge at site 100 ft (30 m) upstream at datum 89.75 ft (27.36 m) lower.

Reservoir is formed by earthfill dam with concrete spillway; dam completed about 1837 and reconstruction completed in 1928 with crest of spillway 0.25 ft (0.08 m) lower. Usable capacity, 6,860,000,000 gal (25.96 hm³) between gage heights -4.00 ft (-1.22 m), sill of gate, and 10.00 ft (3.0 m), crest of spillway. Dead storage, 7,140,000,000 gal (27.02 hm³). Outflow mostly regulated by two gates, 3.5 by 5.0 ft (1.1 m by 1.5 m). Records given herein represent usable capacity. Lake used for recreation.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 9,528,000,000 gal (36.07 hm³) Oct. 9-14, 1903, gage height, 14.25 ft (4.343 m), present datum; minimum, 3,160,000,000 gal (11.96 hm³) several days in November 1900, gage height, 3.50 ft (1.067 m), present datum.

EXTREMES FOR CURRENT YEAR: Maximum contents, 7,663,000,000 gal (29.004 hm³) Apr. 10, gage height, 11.29 ft (3.441 m); minimum, 6,421,000,000 gal (24.30 hm³) Sept. 30, gage height, 9.28 ft (2.83 m).

01386990 WANAQUE RESERVOIR.--Lat 41°02'33", long 74°17'36", Passaic County, Hydrologic Unit 02030103, at Raymond Dam on Wanaque River at Wanaque. DRAINAGE AREA, 90.4 mi² (234.1 km²). PERIOD OF RECORD, February 1928 to September 1950, October 1953 to current year. Monthend contents only 1928-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, waterstage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by North Jersey District

Water Supply Commission).

Reservoir is formed by earthfill with concrete-core wall main dam and seven secondary dams; dams completed in Reservoir is formed by earthfill with concrete-core wall main dam and seven secondary dams; dams completed in 1927 and storage began in March 1928. Total capacity of spillway level, 28,010,000,000 gal (106.02 hm³) elevation, 300.3 ft (91.5 m). Capacity available by gravity at spillway level, 26,230,000,000 gal (99.28 hm³). Outflow mostly controlled by sluice gates in intake conduits in gage house. Water is diverted from reservoir for municipal supply. Diversion to reservoir from Post Brook and Ramapo River (see Passaic River Basin, diversions). Records furnished by North Jersey District Water Supply Commission. EXTREMES FOR PERIOD OF RECORD: Maximum contents, 30,814,000,000 gal (1,166.63 hm³) Mar. 31, 1951, elevation 303.93 ft (92.638 m); minimum, 5,110,000,000 gal (19.34 hm³) Dec. 26, 1964, elevation, 256.06 ft (78.047 m). EXTREMES FOR CURRENT YEAR: Maximum contents, 30,640,000,000 gal (115.97 hm³) Apr. 10, elevation, 303.70 ft (92.568 m); minimum, 14,285,000,000 gal (54.07 hm³) Sept. 30, elevation, 278.63 ft (84.926 m).

1951, elevation.

MONTHEND ELEVATION AND CONTENTS. WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Date	Elevation (feet)	Contents (million gallons)	(equivalent	Elevation (feet)	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)	Contents (million gallons)	(equivalent
	01379990	SPLITROCK	RESERVOIR *	01380900	BOONTON RE	SERVOIR *	01382100	CANISTEAR	RESERVOIR +
Sept. 30 Oct. 31 Nov. 30 Dec. 31	835.20 835.15 835.40 835.05	3,346 3,336 3,385 3,316	-0.5 +2.5 -3.4	306.52 305.42 305.79 305.45	7,950 7,664 7,760 7,672	-14.3 +5.0 -4.4	1,086.10 1,086.10 1,086.20 1,086.10	2,417 2,417 2,427 2,417	- 0 +.5 5
CAL YR 197	9 -	-	. +4.5	-	-	+5.7	-		+8.8
Jan. 31 Feb. 29 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	835.05 835.40 835.70 835.70 834.80 834.60 832.60 829.90	3,316 3,316 3,385 3,444 3,306 3,266 3,226 2,838 2,368	0 0 +3.4 +3.0 -6.9 -2.1 -19.4 -24.2	305.29 305.29 305.97 306.54 305.17 303.25 297.61 291.31 283.57	7,630 7,630 7,807 7,955 7,599 7,101 5,706 4,283 2,721	-2.1 0 +8.8 +7.6 -17.8 -25.7 -69.6 -71.0 -80.5	1,086.10 1,086.30 1,086.30 1,086.30 1,086.10 1,086.00 1,085.90 1,083.50	2,417 2,437 2,437 2,437 2,417 2,417 2,407 2,396 2,151	0 0 +1.0 0 -1.0 0 5 5
WTR YR 198	0 -	-	-4.1		_	-22.1	-11	-	-1.1

RESERVOIRS IN PASSAIC RIVER BASIN--Continued

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Date	Elevation (feet)	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)	Contents (million gallons)	Change in contents (equivalent in ft3/s)	Elevation (feet)	Contents (million gallons)	(equivalent
	01382200	OAK RIDGE	RESERVOIR +	01382300	CLINTON RES	SERVOIR +	01382380 CH	ARLOTTEBUR	G RESERVOIR +
Sept. 30 Oct. 31 Nov. 30 Dec. 31	831.10 835.60 840.80 844.40	1,969 2,504 3,177 3,669	+26.7 +34.7 +24.6	985.70 986.30 990.10 990.00	2,692 2,768 3,275 3,262	+3.8 +26.1 6	733.30 732.35 735.50 732.90	1,952 1,868 2,158 1,916	-4.2 +15.0 -12.1
CAL YR 197	9 -	-	+10.6	-	-	+8.4	-	-	+.5
Jan. 31 Feb. 29 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	841.60 836.50 846.40 846.30 846.10 838.50 830.60 813.40 802.60	3,285 2,618 3,953 3,938 3,909 2,875 1,913 509	-20.0 -35.6 +66.6 8 -1.4 -53.3 -48.0 -70.1 -19.5	990.70 985.80 992.40 992.40 992.00 989.90 982.30 979.10 969.90	3,352 2,704 3,569 3,569 3,518 3,249 2,302 1,964 1,100	+4.5 -34.6 +43.2 0 -2.5 -13.9 -47.3 -16.9 -44.6	732.30 730.90 743.25 743.30 737.05 732.40 732.30 730.40 728.20	1,863 1,742 2,996 3,002 2,308 1,872 1,864 1,700 1,516	-2.6 -6.5 +62.6 +.3 -34.6 -22.5 4 -8.2 -9.5
WTR YR 198	0 -	-	-7.8	-	-	-6.7	-	-	8
Date	Elevation (feet)	Contents (million gallons)	Change in contents (equivalent in ft3/s)	Gage height	Contents (million gallons)	Change in contents (equivalent in ft3/s)	Elevation (feet)	Contents (million gallons)	(equivalent
	01382	2400 ECHO	LAKE +	01383000	GREENWOOI	LAKE **	01386990	WANAQUE	RESERVOIR +
Sept. 30 Oct. 31 Nov. 30 Dec. 31	891.20 888.50 887.20 888.40	1,423 1,193 1,088 1,184	-11.5 -5.4 +4.8	10.25 10.15 10.53 10.28	7,015 6,953 7,189 7,034	-3.1 +12.2 -7.7	297.65 298.82 301.21 301.90	26,045 26,886 28,708 29,240	+42.0 +94.0 +26.5
CAL YR 197	9 -	-	+1.6	-	-	+0.3	,-	-	+67.3
Jan. 31 Feb. 29 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	889.40 889.50 893.30 893.40 892.90 892.00 888.80 886.00 883.40	1,268 1,276 1,611 1,622 1,574 1,493 1,218 992 788	+4.2 +.4 -16.7 +.6 -2.4 -4.2 -13.7 -10.5	10.10 10.06 10.72 10.72 10.03 10.10 9.96 9.58 9.28	6,922 6,897 7,306 7,306 6,879 6,922 6,836 6,604 6,421	-5.6 -1.3 +20.4 0 -21.3 +2.2 -4.3 -11.6 -9.4	301.44 298.24 302.83 303.10 301.15 297.13 292.17 285.72 278.63	28,892 26,468 29,961 30,170 28,665 25,671 22,242 18,180 14,285	-17.4 -129.3 +174.3 +10.8 -75.1 -154.4 -171.1 -202.7 -200.8
WTR YR 198	0 -	-	-2.7	-	-	-2.5	-	-	-49.7

[#] Elevation at 0900.
Gage height at 2400.
† Elevation at 0800 on first day of following month.

PASSAIC RIVER BASIN

DIVERSIONS IN PASSAIC RIVER BASIN

- 01379510 Commonwealth Water Company diverts water from Passaic River, 1.2 mi (1.9 km) upstream from Canoe Brook for municipal supply. These figures also include water diverted from the Passaic River by the Bernards Division of the Commonwealth Water Company. Records furnished by Commonwealth Water Company.
- 01379530 Commonwealth Water Company diverts water from Canoe Brook near Summit, 0.5 mi (0.8 km) from mouth, for municipal supply. Records furnished by Commonwealth Water Company.
- 01380800 Jersey City diverts water from Boonton Reservoir on Rockaway River at Boonton for municipal supply. Records furnished by Jersey City, Bureau of Water.
- 01382370 City of Newark diverts water from Charlotteburg Reservoir on Pequannock River since May 21, 1961 for municipal supply. Prior to May 21, 1961 water was diverted from reservoir formed by Macopin intake dam on Pequannock River (former diversion 01382490). Records furnished by City of Newark, Division of Water Supply.

 CORRECTION.--The station number for the diversion from Charlotteburg Reservoir has been corrected to 01382370.
- 01386980 North Jersey District Water Supply Commission diverts water for municipal supply from Wanaque Reservoir on Wanaque River. Records furnished by North Jersey District Water Supply Commission.
- 01387020 North Jersey District Water Supply Commission diverts water from Post Brook near Wanaque into Wanaque Reservoir. Records no longer available.
- 01387990 North Jersey District Water Supply Commission diverts water from Ramapo River by pumping from Pompton Lakes into Wanaque Reservoir. Records furnished by North Jersey District Water Supply Commission.
- 01388490 Passaic Valley Water Commission supplements the dependable yield of its supply at Little Falls by diverting water at high flows at the Jackson Avenue Pumping Station into Point View Reservoir on Haycock Brook for release as required to sustain minimum flow requirements. Also water may be released into Haycock Brook for maintenance of flow in that stream. These diversions and releases occur upstream of Pompton Plains gaging station. Records furnished by Passaic Valley Water Commission. No diversion or release during the year.

 CORRECTION.--The station number for diversions to and releases from Point View Reservoir at the Jackson Avenue Pumping station on the Pompton River has been changed to differentiate it from the gaging station at Jackson Avenue.
- 01389490 The Passaic Valley Water Commission diverts water from Passaic River above Beattie's Dam at Little Falls for municipal supply. Records furnished by Passaic Valley Water Commission.

DIVERSIONS, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

						FROM	
	COMMONWEALTH WATER COMPANY	COMMONWEALTH WATER COMPANY	JERSEY		FROM WANAQUE	RAMAPO RIVER TO WANAQUE	PASSAIC VALLEY WATER
MONTH	FROM PASSAIC RIVER 01379510	FROM CANOE BROOK 01379530	01380800	NEWARK 01382370	01386980	RESERVOIR 01387990	COMMISSION 01389490
October	43.1	4.86	96.2	127	146	0	94.1
November	48.1	2.19	90.1	128	154	0	70.7
December	44.4	1.75	89.0	119	156	0	57.9
CAL YR 1979	23.0	4.58	94.9	125	169	11.6	80.8
January	36.8	1.82	92.1	130	156	0	62.4
February	3.31	0	89.3	120	167	0	75.1
March	60.8	12.7	93.4	110	167	0	74.8
April	16.5	11.2	91.8	127	125	0	88.1
May	18.6	1.05	90.0	119	142	0	90.8
June		- 1.75	89.8	139	174	0	93.8
July	2.60	0.86	93.3	139	186	0	92.7
August	2.07	. 45	89.3	118	191	0	93.8
September	15.0	1.71	96.7	103	198	1.15	93.6
WTR YR 1980	24.6	3.38	91.8	123	164	.1	82.3

01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, NJ

LOCATION.--Lat 40°40'30", long 74°13'20", Union County, Hydrologic Unit 02030104, on left bank at Ursino Lake Dam in Elizabeth, 75 ft (23 m) upstream of bridge on Trotters Lane and 3.8 mi (6.1 km) upstream from mouth.

DRAINAGE AREA .-- 16.9 mi2 (43.8 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1921 to current year.

REVISED RECORDS.--WSP 1552: Drainage area, 1922-23, 1927-29(M), 1932, 1933-34(M), 1938(P), 1942(M) 1944(P), 1945(M), 1948(P), 1952-53(M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Oct. 1, 1922, nonrecording gage at site 2,800 ft (850 m) downstream at datum 4.14 ft (1.262 m) higher and Oct. 1, 1922 to May 18, 1923, at same site at datum 5.23 ft (1.594 m) higher. May 19, 1923 to Dec. 27, 1972, at site 2,800 ft (850 m) downstream at datum 5.23 ft (1.594 m) higher and published as "Elizabeth River at Elizabeth" (station 01393500).

REMARKS.--Water-discharge records good. Diversion by pumpage from Hammock Well Field in Union, for municipal supply by Elizabethtown Water Co., probably reduces the flow past the station.

AVERAGE DISCHARGE. -- 59 years, 25.8 ft3/s (0.731 m3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,110 ft³/s (116 m³/s) Aug. 28, 1971, gage height, 18.7 ft (5.70 m) from floodmark, site and datum then in use, from rating curve extended above 1,100 ft³/s (31.2 m³/s) on basis of contracted-opening measurement of peak flow; no flow many times.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 1,500 ft3/s (42.5 m3/s) and maximum (*):

			Disch	arge	Eleva	tion
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Oct.	1	1815	1620	45.9	21.35	6.507
Apr.	28	1600	*2080	58.0	22.57	6 870

Minimum discharge, 0.31 ft 3 /s (0.009 m 3 /s) Mar. 1, elevation, 12.85 ft (6.776 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

							7.7.7.					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1 2 3 4 5	276 42 87 20 73	8.9 8.9 129 13 9.5	8.7 7.5 8.4 8.9 8.6	6.7 7.4 7.6 7.4 8.0	7.5 6.0 6.0 6.9 7.1	5.4 4.4 5.4 5.7	174 44 25 145 30	27 19 16 15	21 11 141 17 11	14 11 20 7.7	8.4 30 13 9.3 9.1	5.9 17 13 6.2 6.3
6 7 8 9 10	23 16 12 53 128	9.3 8.8 8.7 8.3	39 37 10 7.4 8.0	6.9 7.6 7.6 7.6 7.5	7.0 7.0 7.3 6.2 5.4	6.7 6.0 55 19 86	19 17 16 410 125	15 32 91 18 13	11 83 32 46 23	38 8.2 7.7 7.5 7.5	8.3 8.0 7.9 6.4 5.2	4.8 3.7 4.7 5.0 5.1
11 12 13 14 15	28 35 16 11 12	55 64 14 32 11	8.6 8.7 65 14 9.1	103 62 12 10 9.5	6.2 6.6 6.3 6.6	140 17 12 58 36	35 22 17 97 35	12 86 58 20 15	11 10 10 9.1 9.0	7.4 6.3 5.6 7.0 7.9	9.0 32 7.5 6.8 8.6	5.2 5.7 4.2 5.2
16 17 18 19 20	11 11 11 10 9•3	9.8 8.8 7.7 8.3 8.8	9.0 27 9.3 8.9 9.4	8.6 8.6 35 46 9.5	61 10 6.5 7.1 6.9	19 40 79 19	20 17 16 14 13	14 11 20 14 14	9.4 9.2 9.2 9.5	9.9 8.3 6.7 6.7	5.8 4.6 5.1 7.8 6.2	5.2 11 257 20 8.9
21 22 23 24 25	8.2 9.4 9.3 9.8 9.2	8.3 7.2 7.1 6.8 9.4	8.6 10 8.7 20 88	9.1 12 10 8.7 8.5	6.8 40 16 8.3 7.2	328 159 36 38 157	14 15 15 14 14	60 16 13 11	7.8 6.9 8.1 8.6 9.5	10 52 32 9.9 8.2	5.8 6.0 5.4 4.7 5.4	5.8 6.5 6.4 5.5 6.6
26 27 28 29 30 31	8.7 8.2 30 10 9.1 8.7	174 27 14 11 9.7	14 11 9.2 8.7 7.5 7.1	7.4 6.5 7.4 7.6 7.5	6.7 6.4 6.4 6.0	26 19 16 119 35 301	12 15 560 132 36	9.3 11 11 11 10 16	9.2 9.6 7.8 7.0 129	7.2 10 6.8 116 14 9.0	5.9 6.0 6.1 6.0 4.7 7.7	17 4.8 3.7 4.4 5.2
TOTAL MEAN MAX MIN	1004.9 32.4 276 8.2	745.3 24.8 174 6.8	505.3 16.3 88 7.1	470.7 15.2 103 6.5	293.7 10.1 61 5.4	1872.6 60.4 328 4.4	2118 70.6 560 12	703.3 22.7 91 9.3	696.9 23.2 141 6.9	490.5 15.8 116 5.6	262.7 8.47 32 4.6	471.0 15.7 257 3.7

CAL YR 1979 TOTAL 12842.1 MEAN 35.2 MAX 867 MIN 6.8 WTR YR 1980 TOTAL 9634.9 MEAN 26.3 MAX 560 MIN 3.7

ELIZABETH RIVER BASIN

01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- February 1979 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
	OCT										Page 15
	02 FEB	1230	39 .	290	7.3	19.0	7.3		>2400	>2400	100
	25 MAR	1115	7.9	720	7.9	6.5	10.8	3.0	790	230	190
	18 MAY	0915	135	215	7.1	9.5	10.2	5.7	16000	240	49
	28	1145	11	645	8.8	18.5	17.4	2.8	80	230	220
	JUL 14	1100	5.9	655	8.4	24.0	12.8	1.9	24000	800	220
	AUG 26	1045	4.9	691	8.2	24.0	13.2	2.5	500	7900	270
	DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
	OCT 02	32	5.0	15	2.2	71	0	58	.0	39	19
	FEB										
	25 MAR	61	9.6	61	2.9	166	0	136		52	110
	18 MAY	16	2.2	21	1.3	44	0	36		16	27
	28 JUL	67	12	44	2.1	137	6	112	.0	65	78
	14 AUG	69	12	36	3.1	163	1	134		60	73
	26	82	17	33	2.3	161	0	132		69	95
	DATE	FLUO- RIDE, DIS- SOL VED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
	OCT		0 11	177	1.0	200	1.0	4.2	2.2	21	12
	FEB	.1	9.4	177	1.0	. 300	1.0	1.3	2.3	.31	13
	25 MAR	.1	12	414				.72		.33	7.1
	18 MAY 28	.1	4.6 15	118	2.8	. 120	.75	.84	3.0	.36	9.2
	JUL			1							
	14 AUG 26	.1	15 16	453	2.5	. 120	.78	.90	1.8	.37	3·3 4·5
	20	- 74	10	512	1.1	.090	.02	.,,	1.0	I'm	4.5
DAT		GEN, + OR TOT BOT	G. GAN IN TOT MAT BOT KG (G/	R- INOF IC, ORGA IN TOT. MAT BOT KG (G/	RG + ALU ANIC INU IN DI MAT SOL YKG (UG	M, S- ARSE VED TOT	AL TER	TAL LIU BOT- TOT MA- REC LIAL ERA	M, BOR AL TOT OV- REC BLE ERA /L (UG	AL TOT OV- REC BLE ERA /L (UG	AL FM BOT- OV- TOM MA- BLE TERIAL /L (UG/G
OCT 02.	12	30 110	10	.5	4.1	50	2	0	0	70	4 <10
MAY 28.		45				10	1			130	2
20.								Law.	,		3 1 1 1

ELIZABETH RIVER BASIN

01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, NJ--Continued

DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
OCT 02	10	50	10	61	80	1200	7900	26	210	170
MAY 28	20			83		380		4		100
DATE	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)
OCT								Decre		
02 MAY	80	<.5	.00	50	60	0	0	210	290	0
28		. 1		54		1		120		5
DATE	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT O2 MAY	41	.0	20	6.7	1.1	7.9	.0	. 4	.0	.0
28										
DATE	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HE PTA - CHLOR E PO XIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TO XA - PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 02	.0	1.3	.0	.0	.0	.0	.0	.0	0	.0
MAY 28										
				-		-	100			

RAHWAY RIVER BASIN

01394500 RAHWAY RIVER NEAR SPRINGFIELD, NJ

LOCATION.--Lat 40°41'11", long 74°18'44", Union County, Hydrologic Unit 02030104, on left bank 50 ft (15 m) downstream from bridge on U.S. Highway 22, 100 ft (30 m) downstream from Pope Brook, and 1.5 mi (2.4 m) south of Springfield.

DRAINAGE AREA .-- 25.5 mi2 (66.0 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1938 to current year.

REVISED RECORDS. -- WSP 1622: 1945. WRD-NJ 1973: 1938(M), 1968(M), 1971(M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 66.17 ft (20.169 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records fair. Water for municipal supply diverted from river by city of Orange. The flow past this station is affected by diversions by pumpage from wells by Orange, South Orange, Short Hills Water Co., and Springfield station of Elizabethtown Water Co.

AVERAGE DISCHARGE .-- 42 years, 28.5 ft3/s (0.807 m3/s).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 5,430 ft³/s (154 m³/s) Aug. 2, 1973, gage height, 9.76 ft (2.975 m) from floodmark, from rating curve extended above 1,600 ft³/s (35.2 m³/s) on basis of slope-area measurement of peak flow; minimum, 0.1 ft³/s (0.003 m³/s) Sept. 11, 1966.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 1,000 ft3/s (28.3 m3/s) and maximum (#):

			Disch		Gage	height
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Mar.	21	1730	*1250	35.4	6.10	1.859

Minimum discharge, 2.2 ft³/s (0.062 m³/s) Sept. 7, 8, 9, 10, 27, 28, 29, gage height, 1.18 ft (0.360 m).

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1979	TO	SEPTEMBER	1980	
					MEA	M WATIII	25						

DA Y	OCT	NO V	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	196 75 55 23 46	7.8 8.2 67 8.6 9.8	9.3 8.6 8.1 8.7 8.8	11 15 13 11 10	5.0 5.2 4.9 5.1 4.7	5.6 6.3 7.1 8.2 9.7	230 89 46 166 65	45 34 28 25 22	24 11 86 27 11	7.5 6.5 14 6.8 13	4.9 34 11 4.9 8.5	7.6 6.3 10 2.8 3.1
6 7 8 9	39 14 12 31 123	7.2 6.8 6.4 6.4 39	21 46 12 9.1 8.3	9.9 9.3 10 8.2 6.0	4.5 4.3 4.2 4.6 4.4	12 13 13 57 41	35 27 24 487 333	20 32 100 29 21	9.8 54 22 34 33	36 6.3 6.0 6.1 6.1	7.3 4.0 3.8 3.7 3.4	3.1 2.7 2.6 2.6 2.7
11 12 13 14 15	47 35 25 14 11	29 80 18 32 14	8.2 8.2 46 24 12	56 97 18 12	4.3 4.6 4.4 4.2 5.1	453 123 34 55 93	66 42 33 80 66	19 65 68 30	9.2 8.9 8.4 8.7	6.7 6.0 5.6 5.1 4.7	4.6 15 4.2 3.8 4.9	2.7 2.8 3.1 3.9 7.5
16 17 18 19 20	10 9.6 10 9.1 8.9	9.8 9.2 9.0 8.9	10 23 9.8 8.6 8.5	11 9.9 19 53 16	35 9.0 5.7 5.9 6.3	70 78 172 40 26	33 26 22 20 19	16 15 20 18 15	9.6 8.0 7.9 7.7 6.7	5.6 7.8 5.6 4.6 5.5	5.0 4.0 4.0 5.3 4.7	3.0 11 201 5.4 4.1
21 22 23 24 25	8.4 8.9 9.5 11	8.3 7.9 8.7 7.4 7.1	8.0 8.8 9.1 16 348	11 10 9.3 9.1 8.4	6.5 26 23 9.3 7.1	492 361 87 52 199	21 23 23 21 20	48 19 14 12	7·3 7·3 7·2 7·4 7·3	4.6 27 38 6.1 4.8	4.7 4.4 4.2 3.7 4.0	3.8 3.5 3.2 2.7 3.6
26 27 28 29 30 31	10 10 21 9.3 8.3 8.6	197 57 19 14	144 54 22 17 13	7.8 7.3 6.7 6.3 5.8 5.4	6.9 6.6 6.4 6.3	49 31 24 112 83 277	19 25 460 218 68	11 10 9.8 9.4 9.2	6.8 7.4 7.2 8.3 117	4.3 8.1 4.6 60 7.0 4.7	3.9 3.5 3.5 3.5 5.1	6.2 2.5 2.2 2.5 2.9
TOTAL MEAN MAX MIN	908.6 29.3 196 8.3	725.5 24.2 197 6.4	950.1 30.6 348 8.0	494.4 15.9 97 5.4	229.5 7.91 35 4.2	3083.9 99.5 492 5.6	2807 93.6 487 19	808.4 26.1 100 9.2	581.1 19.4 117 6.7	334.7 10.8 60 4.3	185.0 5.97 34 3.4	321.1 10.7 201 2.2

CAL YR 1979 TOTAL 15627.6 MEAN 42.8 MAX 1010 MIN 4.1 WTR YR 1980 TOTAL 11429.3 MEAN 31.2 MAX 492 MIN 2.2

01394500 RAHWAY RIVER NEAR SPRINGFIELD, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1978 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

	DATE		TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH - FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DIS	EN, E S- U VED	DXYGEN DEMAND, BIOCHEM JNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
	OCT					100000000000000000000000000000000000000							
	11.		1040	44	228	7.1	9.5	10	0.9	2.0			77
	JAN 31.		1015	5.4	540	7.9	1.0	1 1	4.0	1.2	330	<20	180
	MAR 18.		1225	181	365	7.3	6.5	1:	1.8	4.2	>2400	>2400	65
	MAY 28.		0930	9.9	500	7.6	15.5		5.2	1.6	400	790	160
	JUL 14		1255	5.0	515		22.5		7.2	2.6	800	200	170
	AUG 26.		1245	4.1						2.0	<200	<200	190
	20.	•	1245	4.1	514	7.8	22.5		9.8	2.0	1200	1200	190
	DATE		CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	DIS- SOLVED (MG/L	BICAR- BONATE (MG/L AS HCO3)	CAR- BONAT (MG/ AS CO	ΓE /L	ALKA- INITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
	OCT		22	F 2	17	1 7	F.6		0	46	0	22	27
	JAN		22	5.3	17	1.7					.0		27
	MAR.		55	11	33	1.5	122		0	100		39	69
	18 MAY	•	18	4.8	41	1.5	39		0	32		20	71
	28 JUL		49	10	31	1.6	122		0	100	.0	40	62
	14 AUG		51	9.7	29	2.1	124		0	102		40	65
	26		56	11	29	1.9	129		0	106		43	62
	DATE		FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. (DIS- SOLVEI (MG/L)	MITRO- GEN, NO2+NO3 TOTAL (MG/L	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	GEN	RO- G N, M NIC C L L 'L	IITRO- GEN, AM- IONIA + DRGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
	OCT		***	,	(, 2		,			25.00			
	11		. 1	11			044						5.2
	JAN 31		.1	15	302	1.9	<.030			<.03		. 29	5.5
	MAR 18		.1	5.9	207	1.0	.070		47	.54	1.5	.62	7.1
	MAY 28		.1	14	323	1.6	. 150		42	.57	2.2	. 47	2.1
	JUL 14		. 1	10	326		. 120		50	.62	1.6	.21	2.7
	AUG 26		.1	9.6	338		. 120		58	.70	1.5	•33	3.0
						1.50							***
DAT	E	TIME	NITT GEN, + ORO TOT BOT I (MG, AS I	NH4 INC G. GAN IN TOT MAT BOT /KG (G/	IC, ORO IN TOT MAT BOT KG (G	ANIC INC. IN DE MAT SOI	IS- ARS LVED TO	I	RSENI TOTAL IN BOT TOM MA TERIA (UG/G AS AS	LIUM TOTA RECO L ERAB (UG/	, BOR L TOT V- REC LE ERA L (UG	AL TOTA OV- REC BLE ERAI /L (UG	AL FM BOT- OV- TOM MA- BLE TERIAL /L (UG/G
OCT 11.		1040	1000)	.0	4.1	60	2		0	10	50	1 <10
MAY 28.		0930					0	2	_	-	0	60	0

RAHWAY RIVER BASIN

01394500 RAHWAY RIVER NEAR SPRINGFIELD, NJ--Continued

	CHRO- MIUM, TOTAL	CHRO- MIUM, RECOV.	COBALT, RECOV. FM BOT-	COPPER, TOTAL	COPPER, RECOV. FM BOT-	IRON, TOTAL	IRON, RECOV. FM BOT-	LEAD, TOTAL	LEAD, RECOV. FM BOT-	MANGA- NESE, TOTAL
	RECOV - ERABLE	FM BOT- TOM MA-	TOM MA- TERIAL	RECOV- ERABLE	TOM MA- TERIAL	RECOV- ERABLE	TOM MA- TERIAL	RECOV- ERABLE	TOM MA- TERIAL	RECOV- ERABLE
DATE	(UG/L AS CR)	TERIAL (UG/G)	(UG/G AS CO)	(UG/L AS CU)	(UG/G AS CU)	(UG/L AS FE)	(UG/G AS FE)	(UG/L AS PB)	(UG/G AS PB)	(UG/L AS MN)
	AS Ch)	(00/0)	AS (0)	AS CO)	AS CO)	AS FE)	AS FE)	AS PD)	AS PD)	AS MN)
OCT 11	20	10	<10	11	10	560	4000	16	80	50
MAY		10	110		10		4000		00	50
28	10			5		380		5		110
	MANCA		MEDGURY		NICKET		SELE-		ZINC,	
	MANGA- NESE,	MERCURY	MERCURY RECOV.	NICKEL,	NICKEL, RECOV.		NIUM,	ZINC,	RECOV.	axa
	RECOV.	TOTAL	FM BOT-	TOTAL	FM BOT-	SELE-	TOTAL	TOTAL	FM BOT-	
	FM BOT- TOM MA- TERIAL	RECOV- ERABLE (UG/L	TOM MA- TERIAL (UG/G	RECOV- ERABLE (UG/L	TOM MA- TERIAL (UG/G	NIUM, TOTAL (UG/L	IN BOT- TOM MA- TERIAL	RECOV- ERABLE (UG/L	TOM MA- TERIAL (UG/G	PHENOLS
DATE	(UG/G)	AS HG)	AS HG)	AS NI)	AS NI)	AS SE)	(UG/G)	AS ZN)	AS ZN)	(UG/L)
OCT										
11 MAY	100	.2	.00	. 6	. 20	0	0	30	50	4
28		. 1		2		0		10	100	3
			aur on							
	PCB,	ALDRIN.	CHLOR- DANE.	DDD,	DDE,	DDT,	DI- AZINON,	DI- ELDRIN,	ENDRIN.	ETHION.
	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	IN BOT- TOM MA-	IN BOT- TOM MA-	IN BOT- TOM MA-	IN BOT- TOM MA-	IN BOT- TOM MA-	IN BOT- TOM MA-	IN BOT-	IN BOT-	IN BOT-	IN BOT-
	TERIAL	TERIAL	TERIAL	TERIAL	TERIAL	TERIAL	TERIAL	TERIAL	TERIAL	TERIAL
DATE	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)
OCT										
11 MAY	0	.0	28	3.3	1.9	11	.0	• 9	.0	.0
28		×								
	HE DOM	HC DTA		WAT 4	мети	MEMUNI	мрения	DADA	TOVA	mn T
	HEPTA- CHLOR, TOTAL	HE PTA - CHLOR E POXIDE	LINDANE	MALA- THION, TOTAL	METH- OXY- CHLOR,	METHYL PARA- THION,	METHYL TRI- THION.	PARA- THION, TOTAL	TOXA - PHENE, TOTAL	TRI- THION, TOTAL
	IN BOT-	TOT. IN	IN BOT-	IN BOT-	TOT. IN	TOT. IN	TOT. IN	IN BOT-	IN BOT-	IN BOT-
	TOM MA-	BOTTOM	TOM MA-	TOM MA-	BOTTOM	BOTTOM	BOTTOM	TOM MA-	TOM MA-	TOM MA-
DATE	TERIAL (UG/KG)	MATL. (UG/KG)	TERIAL (UG/KG)	TERIAL (UG/KG)	MATL. (UG/KG)	MATL. (UG/KG)	MATL. (UG/KG)	TERIAL (UG/KG)	TERIAL (UG/KG)	TERIAL (UG/KG)
OCT										
11 MAY	.0	.0	.0	.0	.0	.0	.0	.0	0	.0
28										

01395000 RAHWAY RIVER AT RAHWAY, NJ

LOCATION.--Lat 40°37'05", long 74°17'00", Union County, Hydrologic Unit 02030104, on left bank 100 ft (30 m) upstream from St. Georges Avenue bridge in Rahway and 0.9 mi (1.4 km) upstream from Robinsons Branch.

DRAINAGE AREA .-- 40.9 mi2 (105.9 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1908 to April 1915 (gage heights and discharge measurements only), October 1921 to current year.

REVISED RECORDS. -- WSP 781: Drainage area. WSP 1552: 1922-23(M), 1924, 1930-31(M), 1937. WDR NJ-79-1: 1978.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 8.77 ft (2.673 m) National Geodetic Vertical Datum of 1929. Prior to Aug. 25, 1934, nonrecording gage at site 40 ft (12 m) downstream from Church Street and 1,500 ft (460 m) downstream from present site at datum 2.77 ft (0.844 m) lower.

REMARKS.--Water-discharge records fair. Water for municipal supply diverted from river by Rahway and Orange. The flow past this station is affected by diversions by pumpage from wells by Orange, South Orange, Short Hills Water Co., and Springfield station of Elizabethtown Water Co.

AVERAGE DISCHARGE.--59 years (water years 1922-80), 47.1 ft3/s (1.331 m3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 5,420 ft³/s (153 m³/s) Aug. 2, 1973, gage height, 7.88 ft (2.402 m), from rating curve extended above 3,000 ft³/s (85 m³/s); no flow part or all of some days in many years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 600 ft3/s (17.0 m3/s) and maximum (*):

Date		Time	Discha (ft3/s)	arge (m³/s)	Gage h	eight (m)	Date		Time	Discha (ft³/s)	arge (m³/s)	Gage h	eight (m)
Oct. Mar.	1 22	1700 0145	703 1560	19.9	3.27	0.997	Apr.	28	1445 0045	*1860 623	52.7 17.6	4.82	1.469
Apr.	1	0300	882 1850	25.0	3.56	1.085	July Sept.	18	0430	750	21.2	3.35	1.021

No flow Aug. 28, Sept. 9-14.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980
MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	325 271 90 57 44	9.3 7.8 112 44 15	16 15 12 21 24	10 12 10 9.8	8.1 7.8 7.5 6.8 7.5	5.1 5.3 5.9 6.6	641 199 84 296 144	74 51 39 34 29	28 14 71 69 20	29 11 7.2 2.6 37	5.1 44 55 17 17	.01 .13 6.3 .90 .31
6 7 8 9	108 28 19 24 197	15 12 11 10 58	2.9 97 24 16 12	9.8 8.2 9.0 7.3 6.1	7.6 6.6 5.8 7.0 6.8	11 11 26 83 26	62 47 41 538 1090	28 33 170 48 30	7.7 69 32 29 72	152 24 3.9 .38 .76	12 4.9 2.7 1.6 5.6	.27 .18 .22 .00
11 12 13 14 15	159 49 59 27 19	38 160 48 55 28	12 13 59 69 24	34 234 46 22 20	5.8 6.7 6.5 7.1	377 55 23 55 75	131 74 58 105 145	26 102 135 49 29	19 12 10 10 9.3	3.3 3.3 1.6 .94	20 30 10 1.7 5.0	.00 .00 .00 .00
16 17 18 19 20	22 15 14 14 12	19 15 14 13 24	17 38 19 15	20 24 15 108 35	48 52 12 9.9 8.7	53 63 390 98 47	61 44 39 36 33	21 20 26 27 22	9.3 10 9.3 8.0 7.9	16 3.2 8.7 5.8 4.6	3.0 1.0 .60 .40	.79 1.7 361 25 7.0
21 22 23 24 25	11 9.5 8.4 13 11	28 12 9.6 2.0 .63	13 14 17 21 150	22 20 22 15 13	2.2 9.4 56 25 14	474 1050 284 86 401	32 27 25 23 23	76 34 22 22 14	6.0 12 7.9 6.4 21	3.5 12 107 12 5.5	.01 .01 .15 .19	3.1 1.1 1.3 .53 2.7
26 27 28 29 30 31	8.3 10 22 27 11 9.7	154 224 51 23 21	98 28 20 17 13	13 11 11 11 9.7 9.2	8.7 8.5 7.7	111 59 42 170 204 458	22 26 806 742 110	13 11 6.2 10 12	5.0 2.9 1.7 .84 327	3.5 3.0 3.8 151 24 6.6	.01 .11 .00 .08 .01	13 3.1 .37 .19 .08
TOTAL MEAN MAX MIN	1693.9 54.6 325 8.3	1233.33 41.1 224 .63	919.9 29.7 150 2.9	807.1 26.0 234 6.1	397.7 13.7 56 2.2	4764.9 154 1050 5.1	5704 190 1090 22	1229.2 39.7 170 6.2	907.24 30.2 327 .84	648.58 20.9 152 .38	237.72 7.67 55 .00	430.88 14.4 361 .00

CAL YR 1979 TOTAL 26305.73 MEAN 72.1 MAX 1700 MIN .63 WTR YR 1980 TOTAL 18974.45 MEAN 51.8 MAX 1090 MIN .00

RAHWAY RIVER BASIN

01395000 RAHWAY RIVER AT RAHWAY, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1923-24, 1952, 1962, 1967-70, and February 1979 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
	OCT										
	01 FEB	1035	29	262	7.5	18.5	8.6	2.8	5400	5400	93
	06	0925	7.6	545	8.1	1.5	14.7	1.8	49	34	200
	MAR 24	1040	87	315	7.2	8.0	11.8	2.3	>2400	920	78
	MAY 21	0930	78	410	7.8	18.5	8.3	4.3	4600	9200	130
	JUL 24	0930	8.2	298	7.6	24.5	6.4	3.9	1700	200	110
	AUG 20	1030	. 48	427	7.7	22.0	6.0	3.3	200	500	170
	20	1030	.40	721	1.1	22.0	0.0	3.3	200	500	170
	DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
	OCT	no on,	no no,	AD MA)	AD K)	110037	ND 0037	OROUS	NO O7	110 0047	NO 027
- 1	01	29	5.0	12	2.0	. 73	0	60	.0	24	24
	FEB 06	59	12	27	1.5	149	0	122		54	53
	MAR 24	23	5.1	28	1.6	51	0	42		26	43
	MAY 21	38	8.4	25	1.8	105	0	86	. 0	39	40
	JUL 24	33	5.9	14	2.4	78	0	64		32	26
	AUG 20	52			2.0		0	106		48	40
	20	52	9.4	19	2.0	129	U	100		40	40
	DATE	FLUO- RIDE, DIS- SOL VED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
	OCT										
	O1 FEB	.1	7.7	158	. 87	.200	. 28	. 48	1.4	. 14	4.6
	06 MAR	.1	12	317		.060	.21	. 27		<.01	3.8
	24 MAY	.1	9.8	201	1.5	.220	3.2	3.4	4.9	.20	5.2
	21	.1	11	231	1.0	. 100	. 85	. 95	2.0	.29	4.3
	JUL 24	.1	7.2	194	.80	.390	. 81	1.2	2.0	.37	9.2
	AUG 20	.2	11	288	. 45	.090	.78	. 87	1.3	.24	3.3
DAT		GEN, + OR TOT BOT	G. GAN IN TOT MAT BOT G/KG (G/	R- INOR IC, ORGA IN TOT. MAT BOT KG (G/	G + ALUNIC INUIN DI MAT SOL	JM, IS- ARSI JVED TOT G/L (UC	TOT IN E ENIC TOM TAL TER G/L (UC	TAL LIU BOT - TOT MA - REC RIAL ERA G/G (UC	TAL TOT	OV- RECABLE ERA	AL FM BOT- OV- TOM MA- BLE TERIAL /L (UG/G
OCT					0.0	20		•		70	
MAY		35 120	10	.2	8.8	30	3	0	0	70	0 <10
21.	09	30				30	1		0	50	0

01395000 RAHWAY RIVER AT RAHWAY, NJ--Continued

DATE	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
OCT O1	<10	10	<10	11	40	790	11000	15	230	50
21	10			13		930		25		320
DATE	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS
OCT 01	200	<.5	.00	4	20	0	0	30	110	3
MAY 21		.2		6		0		30		3
DATE	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 01	30	.0	31	3.3	1.6	9.3	.0	.9	.0	.0
21										
DATE	HE PTA - CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HE PTA - CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT O1	.0	.3	.0	.0	.0	.0	.0	.0	0	.0
21										

01396001 ROBINSONS BRANCH RAHWAY RIVER AT MAPLE AVENUE AT RAHWAY, NJ

LOCATION.--Lat 40°36'26", long 74°17'40", Union County, Hydrologic Unit 02030104, on right upstream abutment of bridge on Maple Avenue in Rahway, 2,000 ft (610 m) downstream from Milton Lake, 1.0 mi (1.6 km) downstream from Middlesex Reservoir dam, and 1.2 mi (1.9 km) upstream from mouth.

DRAINAGE AREA .-- 21.6 mi2 (55.9 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1939 to current year. Prior to October 1, 1978, published as "Robinsons Branch Rahway River at Rahway, NJ" (sta 01396000).

REVISED RECORDS .-- WDR-NJ-75-1: 1973(P).

GAGE.--Water-stage recorder. Datum of gage is 11.3 ft (3.44 m) National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to Sept. 26, 1978, water-stage recorder above Milton Dam at datum 8.69 ft (2.649 m) higher.

REMARKS.--Water-discharge records good. Water diverted for municipal supply by Middlesex Water Co., from Middlesex Reservoir, capacity, 300,000,000 gal (1.136 hm³), 1.0 mi (1.6 km) above station. No diversion during the year.

AVERAGE DISCHARGE. -- 41 years, 25.3 ft3/s (0.716 m3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 3,110 ft³/s (88.1 m³/s) July 15, 1975, gage height, 5.85 ft (1.783 m), from rating curve extended above 750 ft³/s (21 m³/s) on basis of flow over dam computation (site and datum then in use); maximum gage height, 6.02 ft (1.835 m) Aug. 15, 1969 (site and datum then in use); no flow many times.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 450 ft3/s (12.7 m3/s) and maximum (*);

Date		Time	Discha (ft³/s)	arge (m³/s)	Gage h	eight (m)	Date		Time	Discha (ft3/s)		Gage h	eight (m)
Oct.	1	1800	638	18.1	3.71	1.131	Apr.	9	2230	730	20.7	4.04	1.231
Mar.	21	1645	842	23.8	4.47	1.362	Apr.	28	1430	*1290	36.5	6.33	1.929
Mar.	31	1315	507	14.4	3.22	0.981	July	6	0045	593	16.8	3.51	1.070

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

No flow part or all of some days in September.

		DISC	mande, in	CODIC IL	EI FER S	MEAN VAI	LUES	CIODEN 19	19 10 55	I I LINDER 13		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	213 166 48 21 30	7.1 8.0 56 24 10	12 12 7.8 8.7 8.9	10 10 12 9.3 9.2	7.8 7.8 7.8 7.8 7.8	13 13 10 7•7	342 111 41 158 76	45 28 20 16 13	9.6 6.9 21 17 6.3	13 5.8 4.6 4.8	5.0 6.8 7.9 4.8	.31 .22 .72 .27 .12
6 7 8 9	42 16 9.6 22 145	8.9 8.6 7.0 7.8 25	12 41 17 9.8 9.5	8.2 8.9 8.4 7.6	7.8 7.3 6.6 6.2 6.7	11 8.1 20 42 26	32 25 22 290 358	13 15 64 23 14	4.8 36 22 13 29	217 33 8.3 5.7 4.1	11 3.1 1.7 2.4 .70	.02 .12 .22 .13
11 12 13 14 15	74 31 28 15	24 85 25 31 16	9.9 9.7 42 35 16	31 127 27 18 18	6.3 6.9 6.3 6.4 6.8	160 36 20 36 42	92 35 27 45 64	12 25 44 21 13	9.0 5.9 4.9 4.9 5.1	4.6 4.7 2.0 1.4 2.3	.71 7.4 2.0 .66 1.5	.10 .01 .01 .01
16 17 18 19 20	9.7 9.2 8.5 8.3	9.4 8.9 8.6 9.0	13 25 11 12 9•3	15 11 17 65 25	34 21 11 8.6 8.7	41 62 137 43 26	30 20 17 16 14	10 8.9 15 13	5.2 4.1 5.0 4.1 5.0	13 5.8 2.7 .90 2.4	3.2 .45 .24 .69	.11 2.2 125 8.3 2.5
21 22 23 24 25	8.2 8.2 9.1 13 9.1	9.4 8.9 8.8 9.4 9.8	8.9 12 19 27 86	16 15 20 13	9.0 21 35 21 16	290 348 126 43 256	17 14 13 14	43 19 11 9.0 8.9	4.2 2.2 3.1 3.9 3.9	1.5 9.9 44 7.7 2.0	1.2 1.3 .92 .83	1.5 1.3 2.0 .67 2.4
26 27 28 29 30 31	8.4 7.2 16 16 8.5 7.4	112 64 22 15 12	37 19 14 12 12	9.6 8.7 9.2 8.8 7.9 7.5	17 8.8 10 13	75 31 23 115 119 301	12 18 491 401 119	7.8 5.7 6.4 5.5 9.4	3.2 3.9 3.2 3.3	.84 .84 1.7 87 23 4.7	.32 .29 .44 .38 .27	12 3.5 1.3 1.0 .80
TOTAL MEAN MAX MIN	1026.8 33.1 213 7.2	662.6 22.1 112 7.0	578.5 18.7 86 7.8	572.5 18.5 127 7.5	340.4 11.7 35 6.2	2491.8 80.4 348 7.7	2927 97.6 491 12	554.0 17.9 64 5.4	404.7 13.5 155 2.2	549.28 17.7 217 .84	80.90 2.61 13 .24	166.95 5.57 125 .01

CAL YR 1979 TOTAL 15232.97 MEAN 41.7 MAX 752 MIN .10 WTR YR 1980 TOTAL 10355.43 MEAN 28.3 MAX 491 MIN .01

01396001 ROBINSONS BRANCH RAHWAY RIVER AT MAPLE AVENUE, AT RAHWAY, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- February 1979 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	DUCT- ANCE	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DIS- SOLVE	DEN BIG UNI D 5	YGEN MAND, OCHEM INHIB DAY G/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
	OCT 01	1320	49	180	7.5	19.0	9.0	n	3.8	16000	16000	60
	FEB 06	1135	7.8						3.4	8	9	110
	MAR											
	24 MAY	1210	33	145					2.4	170	280	43
	21 JUL	1120	73	270	7.9	19.0	8.0	6	4.7	790	3500	93
	24 AUG	1100	7.3	216	7.9	27.5	7.	3	2.6	500	<200	77
	20	1215	1.1	247	8.0	23.0	9.2	2	2.4	<200	350	100
	DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	LIN ()	LKA- NITY S MG/L AS ACO3)	BULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
	OCT 01	19	3.1	8.1	2.5	46	()	38	.0	21	14
	FEB 06	35	6.4	18	2.0	78		1	64		41	27
	MAR 24	13	2.5	9.2		29			24		19	11
	MAY 21	28	5.5	15	1.7	78)	64	.0	36	17
	JUL											
	24 AUG	24	4.2	7.6		56)	46		35	11
	20	31	5.6	10	2.2	78)	64	-	37	15
	DATĘ	FLUO- RIDE, DIS- SOL VED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	GEN MON ORO TO	TRO- N, AM- NIA + GANIC DTAL MG/L S N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
	OCT				ć li	200						
	O1 FEB	. 1	5.3	112		.300	.90		1.2	1.8	. 61	
	06 MAR	.1	7.5	188	1.2	.060	. 36		. 42	1.6	<.01	8.5
	24 MAY	.1	5.8	98	1.2	. 150	2.4		2.6	3.8	1.0	6.2
	21 JUL	. 1	3.6	150	. 69	.090	. 78	3	. 87	1.6	. 22	7.1
	24 AUG	. 1	6.2	142	. 10	. 150	. 75	5	.90	1.0	.21	6.8
	20	.2	3.9	173	. 16	.030	.71	1	.77	• 93	. 21	3.8
DATE	T IN	GEN, + OR TOT BOT	G. GAI IN TOT MAT BOT /KG (G.	OR- INON NIC, ORGA IN TOT MAT BOT /KG (G.	RG + ALI ANIC IN IN DO MAT SOI /KG (UC	LVED TO	IN ENIC TOM TAL TE G/L (U	SENIC DTAL BOT- MA- ERIAL IG/G B AS)	BERYL LIUM, TOTAL RECOV ERABL (UG/L AS BE	BOR TOT REC E ERA	AL TOT. OV- REC BLE ERA /L (UG	AL FM BOT- OV- TOM MA- BLE TERIAL /L (UG/G
OCT 01	. 132	20 290	0	.1	1.4	30	5	0	1	0	70	2 <10
MAY 21						50	2			0	60	0
2100	. 112					50	4				30	

O1396001 ROBINSONS BRANCH RAHWAY RIVER AT MAPLE AVENUE, AT RAHWAY, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT - TOM MA - TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
OCT										
01	20	10	<10	13	30	1200	1100	16	70	110
MAY 21	10			27		1000		18		270
	11.75									-10
DATE	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS
OCT										
01 MAY	220	<.5	.00	3	20	0	0	30	90	2
21	Section -	.2		4		0		30		3
DATE	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT										
01 MAY	24	.0	58	14	5.0	2.8	.0	1.1	.0	.0
21										
DĄTE	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HE PTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TO XA - PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 01	.0	.8	.0	.0	.0	.0	.0	.0	0	.0
MAY 21		- 42					10 4 10		6-7-7	
			-				110 - 120	25.14		

RARITAN RIVER BASIN 113 01396090 SOUTH BRANCH RARITAN RIVER AT OUTLET OF BUDD LAKE, NJ

LOCATION.--Lat 40°51'38", long 74°45'38", Morris County, Hydrologic Unit 02030105, at bridge on Smithtown Road, 200 ft (60 m) northwest of U.S. Route 46 and 0.5 mi (0.8 km) downstream from Budd Lake dam.

DRAINAGE AREA. -- 5.03 mi2 (13.03 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1964, 1977 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE		TIME	FL INS TAN	EAM- COW, I	SPE- CIFIC CON- DUCT- NCE MICRO- MHOS)	PH FIELD (UNITS)	A'	MPER- TURE, ATER EG C)	SC	GEN, DIS- DLVED G/L)	DEN BIC UNI	GEN IAND, OCHEM INHIB DAY	COLI FORM FECA EC BROT (MPN	L, T	STRE OCOC FECA (MPN	P- CI L	HARD- NESS (MG/L AS CACO3	
OCT 04		1030		22	151	7.8		17.0		7.7		5.0		80	3	50	1	16
JAN 30		1000			161	7.8		.5		11.5		2.0		20		4	1	14
MAR 25		0930			152	7.7		4.0		11.2		2.8		50	>24	00	3	36
MAY 20		1300		8.6	152	7.6		19.0		9.1		4.5		20	5	40	1	11
JUL 02 AUG		0930			148	6.9		22.0		4.4		4.5	2	30	2	40	4	13
07 SEP		0930			153	7.0		19.0		4.5		4.1					5	50
18		0930			182	6.2		18.0		3.0		E2.6	2	30	1	40	5	54
	DATE	CALC DIS SOL (MG AS	VED /L	MAGNE- SIUM, DIS- SOLVEI (MG/L AS MG)	SODI DIS SOLV (MG	UM, S - D ED SO /L (M	TAS- IUM, IS- LVED G/L K)	ALK LINI (MG AS CAC	ΓY /L	SULF TOT (MG AS	AL /L	SULFAT DIS- SOLVE (MG/I AS SO	TE ED	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	D	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	D	
	O4	,	2	3.9) 1		.9		24		.0	6.	6	20				
J	AN 30		1	3.9			.8		28			12	. 0	19				
M	AR 25		9.1	3.2			.9		18			12		22				
M	AY 20		9.9	4.0			.8		20		. 1	12		21				
J	UL 02		1	3.7			1.0		28				2	21				
	UG 07	1	3	4.3		1	1.0		38				2	20				
	EP 18	1	4	4.7	1	4	1.2		38			5.	6	23			0	
	DATE	SILI DIS SOL (MG AS	VED /L	SOLIDS, RESIDUE AT 180 DEG. O DIS- SOLVED (MG/L)	NIT GE NO2+	N, GI NO3 AMM AL TO' /L (M	TRO- EN, ONIA TAL G/L N)	NIT GE ORGA TOT (MG	N, NIC AL /L	NITRO GEN, MONIA ORGA TOTA (MG, AS 1	AM- A + NIC AL /L	NITRO GEN, TOTAL (MG/L AS N)	P 0	PHOS-HORUS RTHOP SPHAT TOTAL (MG/L S PO4	H C E O	ARBON RGANI TOTAL (MG/L AS C)	Ċ	
	CT 04		1.7	87	<1	0	. 500		. 60	1	. 1			. 2	1	11		
J	AN 30		3.8	91			. 120		. 00					.0		4.	7	
M	AR 25		2.9	82			. 120	1	. 0	1	. 1	1.4		. 4	7	-		
M	AY 20		.9	96			. 120		. 66		.78	. 9		.0		6.		
J	UL 02		5.7	103			720		. 68		. 4	1.6		.1		6.		
A	UG 07		9.6	108			. 180		. 2		. 4	1.5		. 4		8.		
	EP 18	1	5	119		. 15	. 130		. 86		. 99	1.1		.3	1	5.	7	

RARITAN RIVER BASIN

01396090 SOUTH BRANCH RARITAN RIVER AT OUTLET OF BUDD LAKE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	NITRO- GEN, NH 4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENJC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 04	1030	700	5.6	12	10	28	0	0	30	0	<10
MAY 20	1300				30	10		10	50	0	
SEP	0030	2000	1.0	6.0	30	10	11		30		/10

		30 10		3.0		10				30	THE PERSON	1
•••	13	00				30	10		10	50	0	
• • •	09	30 290	0	1.0	6.9			4			-	<
DA	ATE	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	
OCT	1	10	<10	<10	3	20	920	8500	7	120	160	
MAY 20		<10			2		720		4		140	
SEP 18	3		<10	<10		10		11000		30	-	
DA	ATE	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	
OCT											Some	
MAY		200	<.5	.00	2	20	. 0	0	10	50	2	
SEP			.1		2		0		0	-	3	
18	3	500		.00		<10		0		40		
DA	NTE	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT	1	14	.0	2	.0	.1	. 9	.0	.0	.0	.0	
MAY		14	.0	-	.0		• 9		.0			
SEF			.0	5		.0	.6	.0	.0	.0	.0	
10		4	. 0	,	3.0	.0	.0	.0			.0	
DA	ATE	HE PTA - CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TO XA - PHE NE, TO TAL IN BOT - TOM MA - TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT	·	.7	.0	.0	.0	.0	.0	.0	.0	0	.0	
MAY		• 1	.0	.0	.0	.0	.0	.0	.0		.0	
SEF								Pag T				

01396280 SOUTH BRANCH RARITAN RIVER AT MIDDLE VALLEY, NJ

LOCATION.--Lat 40°45'40", long 74°49'18", Morris County. Hydrologic Unit 02030105, at bridge on Middle Valley Road in Middle Valley, 6.9 mi (11.1 km) downstream from Drakes Brook.

DRAINAGE AREA. -- 47.6 mi2 (123.3 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1964-65, 1967, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 04	1230	146	8.0	23.0	9.9	1.0	490	240	52
JAN 30	1115	214	7.2	.0	14.1	1.0	130	<2	78
MAR 25	1100	122	6.8	3.0	12.5	2.4	330	>2400	33
MAY 20	1130	168	8.5	15.5	10.9	1.8	170	240	62
JUL 02	1030	214	7.2	18.0	9.1	.1	270	170	85
AUG 07	1045	215	8.3	16.0	9.9	<1.5			92
SEP 18	1045	222	7.0	16.0	9.6	<1.2	330	>2400	86
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 04	42	5.3	7.6	1.4	30	.0	12	12	. 1
JAN 30	17	8.6	9.7	1.1	58		11	14	. 1
MAR 25	7.8	3.2	8.7	1.2	17		11	14	.1
MAY 20	13	7.2	9.7	1.0	45		11	14	. 1
JUL 02	19	9.2	11	1.5	66	24	11	14	. 1
AUG 07	21	9.6	9.9	1.6	73		9.4	13	. 1
SEP 18	18	10	9.2	1.6	77		9.1	11	.0
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 04	12	93	<1.0	.700	. 05	.75		. 18	4.0
JAN 30	13	125	1.8	. 170				.26	1.6
MAR 25	7.7	86	.94	. 160	.76	.92	1.9	. 10	
MAY 20	11	116	1.3	. 120	.33	. 45	1.8	. 17	1.9
JUL 02	12	131	2.4	.300	. 10	. 40	2.8	. 40	.5
AUG 07	13	137	1.6	.210	.39	.60	2.2	.52	2.5
SEP 18	9.6	121	2.0	.080	. 41	. 49	2.5	.71	2.5

RARITAN RIVER BASIN

01396280 SOUTH BRANCH RARITAN RIVER AT MIDDLE VALLEY, NJ--Continued

DA	TE	TIME	GEN, + OR TOT BOT	NH4 IN G. GA IN TOT MAT BOT G/KG (G	NOR- INOI ANIC, ORGA I IN TOT I MAT BOT G/KG (G	ANIC II IN II MAT SO	LUM- NUM, DIS- A OLVED UG/L S AL)	ARSENIC TOTAL (UG/L AS AS)	TEI (UC	TAL LI BOT - TO MA - RE RIAL ER G/G (U	TAL TO COV- RE ABLE ER G/L (U	TAL TO COV- REG ABLE ER G/L (U	MIUM RITAL FM COV- TO ABLE TG/L (DMIUM ECOV. BOT- M MA- ERIAL UG/G S CD)
OCT 04		1230	110	00	.7	5.4	40	1		0	0	30	0	<10
SEP		1045	62	20	.2	5.3				0				<10
10	•••	1042	, 02	.0	• •	J. 3				Ü				1916
	DATE		CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	TOM MA- TERIAL (UG/G	COPPER TOTAL RECOV- ERABLI (UG/L AS CU	FM BC TOM N E TERI	OV. II OT - TO MA - RI MA - E	RON, OTAL ECOV- RABLE UG/L S FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	RECOV- ERABLE (UG/L		MANGA NESE, TOTAL RECOV ERABL (UG/L AS MN	Ē
	OCT 04		<10	<10	<10		3 <	(10	600	9000	5	10	2	0
	SEP 18.			<10				(10		6900		<10		
	10	•		110	, (10			.10		0900		110	-	
	DATE	1	MANGA- NESE, RECOV. M BOT- OM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	FM BOT- TOM MA- TERIAL (UG/G	NICKEL, TOTAL RECOV- ERABLI (UG/L AS NI	FM BC TOM N E TERI	OV. OT - SI MA - N MAL TO 'G (1)	ELE- IUM, OTAL UG/L S SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ERABLE (UG/L		PHENOL:	
	OCT													
	04.	•	240	<.5	.00		2 ((10	0	0	10	30		2
	18.		270		.00		- <	(10		0		30	-	-
	DATE	Т	PCB, TOTAL IN BOT- OM MA- TERIAL UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL IN BOT- TOM MA- TERIAL	DDD, TOTAL IN BOT- TOM MA- TERIAI (UG/KG)	TOM M	IL TO DT - IN IA - TO IAL TI	DDT, OTAL BOT- M MA- ERIAL G/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOM MA- TERIAL	TOM MA-	ETHION TOTAL IN BOT TOM MA TERIA (UG/KG	
	OCT 04		0	.0	3		4	.5	1.1	.0	.9	.0		0
	SEP 18	•	7	.0	32	2.0	0	.0	2.5	.0	.0	.0		0
	DATE	Т	HEPTA - CHLOR, TOTAL N BOT - OM MA - TERIAL UG/KG)	HE PTA- CHLOR E POXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLC TOT. BOTT L MAT	OR, THE TOTAL OF T	THYL ARA- HION, T. IN OTTOM MATL. G/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	THION, TOTAL IN BOT- TOM MA- TERIAL	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION TOTAL IN BOT TOM MA TERIA (UG/KG	- L
	OCT 04		.0	.0	.0	. (0	.0	. 0	.0	.0	0		0
	SEP 18		.0	.0		. (.0	.0	.0				
								100						

117

RARTTAN RIVER BASTN

LOCATION.--Lat 40°40'40", long 74°52'46", Hunterdon County, Hydrologic Unit 02030105, on left bank 1.0 mi (1.6 km) northeast of High Bridge, and 4.4 mi (7.1 km) upstream from Spruce Run.

DRAINAGE AREA. -- 65.3 mi2 (169.1 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1918 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS.--WSP 601: 1924. WSP 781: Drainage area. WSP 1552: 1919(M), 1920(M), 1921, 1923, 1924(M), 1927-28(M), 1934(M), 1941(M).

GAGE.--Water-stage recorder. Concrete control since Sept. 28, 1930. Datum of gage is 282.10 ft (85.984 m) National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to Sept. 30, 1921, reference point at same site and datum.

REMARKS.--Water-discharge records good except those below 30 ft^3/s (0.845 m^3/s), which are fair. Slight diurnal fluctuation caused by small powerplant above station.

AVERAGE DISCHARGE. -- 62 years, 121 ft 3 /s (3.427 m 3 /s), 25.17 in/yr (639 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,910 ft 3 /s (196 m 3 /s) Jan. 25, 1979, gage height, 12.07 ft (3.679 m); maximum gage height, 12.23 ft (3.728 m) Feb. 24, 1979 (ice jam); minimum discharge, 6.6 ft 3 /s (0.19 m 3 /s) Oct. 11, 1930; minimum daily 13 ft 3 /s (0.37 m 3 /s) Aug. 11, 1966.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 1,000 ft3/s (28.3 m3/s) and maximum (*):

Date		Time	Discha (ft³/s)		Gage h	eight (m)	Date		Time	Discha (ft ³ /s)		Gage h	eight (m)
Nov. Nov. Jan.	3 27 12	1300 0115 0445	1010 1230 1020	28.6 34.8 28.9	8.45 8.71 8.46	2.576 2.655 2.579	Mar. Apr.	21 9	2200 2115	*3090 1460	87.5 41.3	10.22	3.115 2.731

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR 1979 TO SEPTEMBER 1980

Minimum discharge, 22 ft3/s (0.62 m3/s) Sept. 28, 29.

			DIDONANGE	, IN CODIC	J I EEI IE	MEAN VA	LUES	An 1919 1	J DETTEMB	Lit 1900		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	410 372 272 248 233	101 99 613 265 184	156 149 138 135 132	112 109 106 99 100	75 73 70 72 70	56 60 62 60 63	457 377 298 467 337	234 212 196 179 165	158 116 141 159 105	74 62 61 62 59	47 64 76 58 52	30 29 29 29 29
6 7 8 9	280 199 191 176 284	161 151 140 134 157	133 218 151 130 125	94 94 95 90 86	68 66 64 64	64 66 77 102 83	267 243 232 731 697	156 150 184 155 139	94 98 102 100 135	232 85 69 65 60	99 56 48 45 43	31 30 28 28 28
11 12 13 14 15	294 239 224 186 167	172 250 170 151 136	120 117 161 184 129	167 581 177 151 154	69 66 63 61 62	113 85 75 78 82	370 313 286 322 445	135 217 473 224 170	105 91 84 81 78	60 62 56 52 51	42 44 42 39 39	26 26 26 27 28
16 17 18 19 20	156 147 142 135 130	130 123 120 116 113	121 144 108 107 108	139 127 128 183 137	77 72 72 73 73	80 93 703 243 171	288 245 224 213 202	148 137 139 144 143	76 72 69 67 71	50 57 54 49 47	39 36 36 37 36	27 28 35 30 26
21 22 23 24 25	126 122 118 124 116	112 109 107 105 105	105 111 118 162 306	119 116 115 105 96	79 90 100 119 106	1130 1190 413 365 559	192 180 171 161 153	178 157 127 118 112	69 63 62 60 59	44 45 58 54 46	37 35 35 34 33	25 24 25 24 24
26 27 28 29 30 31	109 104 125 143 113	454 559 223 189 169	197 148 134 127 123 117	97 93 94 89 82 84	88 74 70 60	348 295 252 326 321 375	147 153 445 494 298	104 98 96 93 91 94	57 56 56 56 127	44 42 40 50 77 50	32 31 30 30 30	26 24 23 23 23
TOTAL MEAN MAX MIN CFSM IN.	5789 187 410 104 2.86 3.30	5618 187 613 99 2.86 3.20	4414 142 306 105 2.18 2.51	4019 130 581 82 1.99 2.29	2161 74.5 119 60 1.14 1.23	7990 258 1190 56 3.95 4.55	9408 314 731 147 4.81 5.36	4968 160 473 91 2.45 2.83	2667 88.9 159 56 1.36 1.52	1917 61.8 232 40 .95 1.09	1335 43.1 99 30 .66	811 27.0 35 23 .41 .46

CAL YR 1979 TOTAL 70612 MEAN 193 MAX 3340 MIN 54 CFSM 2.96 IN 40.23 WTR YR 1980 TOTAL 51097 MEAN 140 CFSM 2.14 TN 29.11 MAX 1190 MTN 23

01396535 SOUTH BRANCH RARITAN RIVER AT ARCH STREET AT HIGH BRIDGE, NJ

LOCATION.--Lat 40°39'49", long 74°53'52", Hunterdon County, Hydrologic Unit 02030105, at bridge on Arch Street in High Bridge, 0.9 mi (1.4 km) northeast of Mariannes Corner, 1.0 mi (1.6 km) downstream from Lake Solitude dam, and 4.3 mi (6.9 km) northeast of Norton.

DRAINAGE AREA. -- 68.8 mi2 (178.2 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 11	1100	235	150	8.1	7.0	11.8	1.0	5400	1300
JAN 31	1145	109	210	6.8	.0	13.6	<1.0	330	<2
MAR 25	1230	611	138	6.8	4.5	11.7	2.7	230	1600
MAY 20	1000	131	176	8.0	16.0	9.4	1.1	230	350
JUL									
AUG	1130	79	202	7.5	20.5	9.0	.1	790	240
SEP SEP	1130	73	194	8.0	19.0	8.1	<.9		
18	1200		222	7.1	17.0	8.4	<.3	1300	>2400
DATE	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT									
11 JAN	52	12	5.3	7.2	1.4	31	13	11	.1
31 MAR	84	18	9.4	8.8	1.1	62	14	13	. 1
25 MAY	36	8.5	3.6	8.4	1.3	32	12	13	. 1
20	67	14	7.7	9.0	1.0	48	13	12	. 1
JUL 02	77	17	8.4	7.6	1.6	57	12	12	.1
AUG 07	76	17	8.2	8.2	1.6	65	11	11	.1
SEP 18	93	19	11	7.7	1.5	78	12	12	.0
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT									
11 JAN	12		<1.0	.400	.00	. 40	-	. 15	·
31 MAR	13	126	1.9	<.030				. 16	1.6
25 MAY	8,2	89	1.0	.090	1.7	1.8	2.8	.09	
20 JUL	12	116	1.1	. 120	. 19	.31	1.4	. 14	2.6
02 AUG	12	131	1.6	. 130	. 46	.59	2.2	.29	.7
07	1.1	121	1.1	. 150	. 45	.60	1.7	.28	3.3
SEP 18	7.2	120	1.0	. 120	.29	. 41	1.4	. 37	1.8

RARITAN RIVER BASIN 119

01396580 SPRUCE RUN AT GLEN GARDNER, NJ

LOCATION.--Lat 40°41'29", long 74°56'15", Hunterdon County, Hydrologic Unit 02030105, on right downstream wingwall of bridge on Sanatorium Road in Glen Gardner, 0.8 mi (1.3 km) downstream from Alpaugh Brook, and 2.0 mi (3.2 km) upstream from Spruce Run Reservoir.

DRAINAGE AREA .-- 12.3 mi2 (31.9 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March 1978 to current year.

GAGE.--Water-stage recorder. Datum of gage is 389.10 ft (118.598 m) National Geodetic Vertical Datum of 1929. REMARKS.--Water-discharge records good.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 1,820 ft³/s (51.5 m³/s) Jan. 24, 1979, gage height, 7.60 ft (2.316 m), from high-water mark, from rating curve extended above 200 ft³/s (5.66 m³/s) on basis of slope-conveyance computation; minimum, 1.3 ft³/s (0.037 m³/s) Sept. 8, 1980, gage height, 1.76 ft (0.536 m).

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 300 ft3/s (8.50 m3/s) and maximum (*):

Date		Time	Discha (ft³/s)		Gage h	eight (m)	Date		Time	Discha (ft³/s)		Gage h	eight (m)
Oct.	1 5	1430 1830	393 *644	11.1	4.02 4.81	1.225	Nov. Mar.	3 21	0515 1445	337 609	9.54	3.83	1.167

Note.--Peak discharges were determined from rating curve extented above 200 ft³/s (5.66 m³/s) on basis of slope-conveyance computation.

Minimum discharge, 1.3 ft3/s (0.037 m3/s) Sept. 8, gage height 1.76 ft (0.536 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES DAY OCT NOV DEC JUN JUI. SEP JA N FEB MAR APR MAY AUG 14 20 29 43 36 29 15 133 38 27 19 17 18 15 15 13 13 25 23 20 234 10 10 54 17 6.1 4.8 1.6 8.8 9.0 43 86 39 25 6.1 7.1 1.5 6.0 5 18 8.0 8.2 48 19 13 6.1 6.8 1.6 39 35 34 113 6 67 38 24 8.2 8.0 12 4.8 18 12 18 15 6.1 1.8 39 18 12 11 1.5 30 8 20 12 24 8.6 5.2 11 14 3.8 1.4 20 17 9.0 19 18 1.4 10 66 28 16 13 8.4 12 85 16 28 4.7 3.0 1.5 55 3.0 30 16 60 8.2 28 49 16 14 7.5 54 72 34 12 12 51 16 75 8.4 14 42 11 3.6 1.5 29 5.5 13 40 35 26 8.2 8.5 39 55 9.7 3.1 1.6 30 15 27 20 19 24 8.0 14 79 23 4.3 2.9 2.1 16 25 19 17 20 18 19 17 41 8.4 4.2 2.0 8.4 3.1 23 22 20 17 18 22 18 5.2 2.6 2.5 9.2 34 7.5 32 18 18 15 19 12 158 32 19 7.3 4.6 2.4 6.6 19 17 14 37 10 40 30 21 7.3 4.0 2.5 2.4 20 20 16 16 21 9.2 20 2.6 1.7 30 29 8.5 3.9 21 19 16 17 17 10 218 27 31 3.6 3.9 7.6 7.4 2.3 1.7 16 17 25 6.6 16 11 97 23 19 15 23 64 24 16 6.2 2.3 13 1.6 19 15 34 18 19 56 22 14 6.1 4.8 2.0 25 59 5.9 13 102 21 13 3.8 2.1 1.6 26 27 16 97 52 28 13 12 50 20 12 5.5 1.9 2.2 15 22 12 11 41 24 11 5.3 3.1 1.9 1.8 28 26 32 3.2 19 12 10 37 89 11 1.8 1.6 23 29 25 18 11 64 10 5.8 6.8 1.8 30 9.7 22 18 11 49 36 21 6.9 1.8 1.8 31 15 16 10 ---4.1 ---85 ---1.7 ---TOTAL 674 667.7 21.5 72 1057 891 604 288.1 174.6 56.3 1326.0 1393 362.7 103.9 MEAN 21.7 34.1 29.7 19.5 46.4 9.93 5.63 15 3.35 12 42.8 12.1 1.88 MAX 218 39 6.6 MIN 15 14 14 10 8.0 7.7 20 9.7 5.0 3.1 1.7 1.4 CFSM 2.77 2.42 1.76 1.59 .81 3.48 3.77 1.75 -46 .27 .15 2.69 . 87 .53 . 31

CAL YR 1979 TOTAL 11814.1 MEAN 32.4 MAX 570 MIN 3.6 CFSM 2.63 IN 35.73 WTR YR 1980 TOTAL 7598.3 MEAN 20.8 MAX 218 MIN 1.4 CFSM 1.69 IN 22.98

01396588 SPRUCE RUN NEAR GLEN GARDNER, NJ

LOCATION.--Lat 40°40'41", long 74°55'06", Hunterdon County, Hydrologic Unit 02030105, at site 800 ft (244 m) downstream of Rocky Run, 0.3 mi (0.5 km) above Van Syckel Road bridge, 1.5 mi (2.4 km) northwest of High Bridge, and 1.6 mi (2.6 km) southeast of Glen Gardner.

DRAINAGE AREA. -- 15.5 mi2 (40.1 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- February 1979 to current year.

COOPERATION. -- Field data and smaples for laboratory analyses supplied by the New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 11	1300	141	8.3	10.0	7.0	<1.0	490	330	45
A PR 07	1115	132	6.9	10.5	10.8	.7	170	140	45
MAY 20	0900	137	8.4	14.5	9.9	.8	490	240	44
JUL 02	1230	155	7.0	20.0	9.4	<.1	2400	350	53
AUG 07	1230	155	7.4	18.0	9.3	<1.3			-4
SEP 18	0930	142	7.6	17.0	8.2	<1.5	5400	>2400	51
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 11 APR	11	4.3	8.1	1.2	18	.0	19	9.6	.1
07 MAY	11	4.2	6.9	1.2	32		21	11	.1
20 JUL	9.9	4.6	9.3	1.0	21		19	11	.1
02 AUG	13	5.1	7.9	1.4	30		20	11	.1
07 SEP					37				
18	12	5.0	7.6	1.9	26	.0	22	9.4	.2
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 11	16	91	<1.0	.800	. 16	.96	-	. 16	2.3
A PR 07 MA Y	14	93	1.2	.060	. 19	. 25	1.4	.75	1.2
20 JUL	16	101	.50	.100	. 12	.22	.72	.05	2.1
02 AUG	16	100	.90	.200	.23	. 43	1.3	. 10	. 4
07 SEP		104	.56	. 130	. 47	.60	1.2	. 25	2.1
18	17	90	.86	. 120	.70	. 82	1.7	. 25	4.4

01396588 SPRUCE RUN NEAR GLEN GARDNER, NJ--Continued

DATE	TIME	NITRO- GEN, NH 4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 11	1300				30	0	0	0	20	0	<10
SEP 18	0930	530	.9	8.1	330	1	. 0	0	20	1	<10
DATE	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 11	20	10	- 22	3	10	330	8500	0	<10	10	200
SEP 18	10	10	<10	5	10	1600	97000	8	10	120	180
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 11	.1	.00	6		0	0	20	90	5	11	.0
SEP 18	<.1	.00	3	<10	0	0	30	40	1	38	
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA - CHLOR, TOTAL IN BOT - TOM MA - TERIAL (UG/KG)
OCT 11	.0	0	.0	.0	.0	.0	.0	.0	.0	.0	.0
SEP 18	.0	3	.0	.0	.0	.0	.0		.0	.0	.0
DATE	HE PTA - CHLOR E PO XIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TO XA - PHENE, TOTAL IN BOT-TOM MA-TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 11	.0	.0	.0	.0	.0	.0	.0	.0	.00	0	.0
SEP 18	.0	.0	.0	.0	.0	.0		.0		0	.0

01396660 MULHOCKAWAY CREEK AT VAN SYCKEL, NJ

LOCATION.--Lat 40°38'51", long 74°58'09", Hunterdon County, Hydrologic Unit 02030105, at bridge on Jutland Road, 0.2 mi (0.3 km) south of Van Syckel, 0.8 mi (1.3 km) north of Perryville, and 0.3 mi (0.5 km) upstream from Spruce Run Reservoir.

DRAINAGE AREA .-- 11.8 mi2 (30.6 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- Occasional low-flow measurements, water years 1973-77. July 1977 to current year.

GAGE.--Water-stage recorder. Altitude of gage is 280 ft (85.3 m), from topographic map.

REMARKS .-- Water-discharge records good .

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 3,950 ft³/s (112 m³/s) Jan. 24, 1979, gage height, 6.48 ft (1.975 m), from rating curve extended above 200 ft³/s (5.66 m³/s); minimum, 1.1 ft³/s (0.031 m³/s) Sept. 23, 1980, gage height, 0.66 ft (0.201 m).

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 300 ft3/s (8.50 m3/s) and maximum (*):

Date	12.	Dischar		Gage h		2.73			Discha		Gage h		
Date		Time	(ft^3/s)	(m³/s)	(ft)	(m)	Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Nov. Jan.	11	0445	333 323	9.43	2.92	0.890 0.881	Mar.	21	1415	*950	26.9	4.09	1.247

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum discharge, 1.1 ft^3/s (0.031 m^3/s) Sept. 23, gage-height, 0.66 ft (0.201 m).

						MEAN VAL	LUES	ne openio				
DA Y	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	55 43 36 34 32	15 14 108 28 22	17 17 16 16	15 15 14 13	8.7 8.3 8.4 8.9 8.8	7.3 6.7 6.5 7.4 8.9	62 40 35 84 40	29 27 27 24 23	19 19 22 18 12	7.5 6.7 7.0 6.5 8.7	4.0 4.5 4.3 3.3	1.8 1.6 1.6 1.7 2.2
6 7 8 9	40 29 26 24 33	20 19 18 17 25	19 28 18 16	12 12 12 11 11	8.5 9.1 9.1 9.2 9.4	8.7 8.5 12 15	34 32 31 85 62	22 22 26 22 20	11 11 24 23 25	11 5.7 5.5 5.3 4.9	3.9 3.0 3.2 3.4 2.6	2.2 1.7 1.6 1.6 1.7
11 12 13 14 15	41 33 28 25 23	28 40 23 21 19	15 15 32 23 17	58 52 20 19 20	9.7 9.9 9.4 9.4	22 10 8.2 15	37 34 32 44 56	21 38 50 27 22	16 12 11 11	8.0 11 5.3 4.8 4.4	2.7 3.0 2.5 2.4 4.5	1.6 1.5 1.6 1.8 2.2
16 17 18 19 20	21 19 18 18 17	18 17 17 17 16	18 20 14 14 15	17 16 23 25 18	12 10 9.5 10	15 36 87 25 21	34 30 29 27 27	20 19 21 23 21	9.3 8.5 8.3 8.0	4.4 6.1 4.4 4.0 3.7	3.5 2.5 2.4 2.6 2.5	1.8 5.9 20 3.6 2.8
21 22 23 24 25	17 16 16 17	16 15 15 15	15 16 22 30 40	16 16 15 13	13 14 23 25 19	210 69 39 38 83	26 25 24 23 23	33 22 19 17 16	8.0 7.4 7.0 6.7 6.4	3.4 3.7 7.6 4.1 3.4	2.3 2.4 2.4 2.1 1.9	2.6 2.5 2.1 2.0 2.5
26 27 28 29 30 31	15 15 23 19 16 15	78 32 23 20 18	23 19 17 17 16 15	12 12 12 11 9.4 9.2	9.8 9.0 6.8	36 31 29 57 39 81	22 32 97 48 33	14 13 12 12 12 12	6.1 5.9 5.6 6.8 20	3.2 3.1 3.0 12 7.1 4.3	1.8 1.8 1.7 1.9 2.0 2.0	3.9 2.3 2.3 2.3 2.5
TOTAL MEAN MAX MIN CFSM IN.	779 25.1 55 15 2.13 2.46	749 25.0 108 14 2.12 2.36	591 19.1 40 14 1.62 1.86	533.6 17.2 58 9.2 1.46 1.68	320.7 11.1 25 6.8 .94 1.01	1057.2 34.1 210 6.5 2.89 3.33	1208 40.3 97 22 3.42 3.81	690 22.3 50 12 1.89 2.18	368.0 12.3 25 5.6 1.04 1.16	179.8 5.80 12 3.0 .49	88.0 2.84 4.9 1.7 .24	85.5 2.85 20 1.5 .24 .27

CAL YR 1979 TOTAL 10894.6 MEAN 29.8 MAX 567 MIN 4.6 CFSM 2.53 IN 34.34 WTR YR 1980 TOTAL 6649.8 MEAN 18.2 MAX 210 MIN 1.5 CFSM 1.54 IN 20.96

01396660 MULHOCKAWAY CREEK AT VAN SYCKEL, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Selected field data and samples for laboratory analyses supplied by the New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

TIM DATE	STREAM- FLOW, INSTAN- E TANEOUS (CFS)		PH A	TURE, ATER SO	YGEN, BI DIS- UN DLVED 5	MAND, FOCHEM FOR INHIB	EC TO	STREP- OCOCCI FECAL	HARD- NESS (MG/L AS CACO3)
OCT 03 123 JAN	0 . 25	170		11.0	8.1	1.0	1700	>2400	57
31 104	5 18	164	7.0	.0	13.7	<1.0	490	8	70
APR 07 101	5 33	138	7.0	9.5	10.8	7	20	31	54
MAY 20 100	0 22	158	7.6	14.5	10.2	1.1	790	1600	53
JUL 02 093	0 7.3	205	7.7	17.0	9.1	<.9	2400	220	70
AUG 07 101	0 3.3	210	6.9	19.0	7.6	<.1			90
SEP 18 094	0 12	146	7.4	17.0	8.3	E2.7	9200	>2400	62
1	ALCIUM SI DIS- DI SOLVED SOI (MG/L (MG	GNE- IUM, SODIUM IS- DIS- LVED SOLVED G/L (MG/L MG) AS NA	DIS- SOLVED (MG/L	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLVEI (MG/L	(MG/L	
OCT 03	15	4.8 5.	7 1.7	39	.0	18	7.9		1
JAN 31	18	6.0 6.		46			7.0		
APR 07	14	4.5 5.		37			7.2		
MAY 20	13	5.0 7.		34	.0		7.0		
JUL 02	18	6.1 5.		49			7.3		
AUG 07	23			70			7.2		
SEP									
18	16	5.4 6.	6 2.4	34	.0	25	7.2		,
1 2 0	MG/L DI AS SOL	DUE NITRO	GEN,	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO-	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ORGANIC TOTAL (MG/L	
OCT 03	14	107 <1.0	.500	.04	.54		. 08	7.	3
JAN 31	16	109 1.5	<.030					1.	5
A PR 07	13	94 1.1	.070	.24	. 31	1.4	.02		
MAY 20	15	103 .83		.00	.11	. 94			
JUL 02								-	
	15	120 1.1	. 170	.23	. 40	1.5			5
AUG 07 SEP	15 16	120 1.1 124 1.0	.170	.23	. 40		.03		

RARITAN RIVER BASIN

01396660 MULHOCKAWAY CREEK AT VAN SYCKEL, NJ--Continued

DATI	E	TIME	NIT GEN, + OR TOT BOT (MG AS	G. GA IN TOT MAT BOT /KG (G	OR- IN NIC, OR IN TO MAT BO	GANIC I T. IN T MAT S G/KG (LUM- NUM, DIS- OLVED UG/L S AL)	ARSEI TOTA (UG/ AS	AL TER	TAL LIBOT- TO MA- RIAL EIG/G (U	OTAL T ECOV- R RABLE E UG/L (OTAL TECOV- FRABLE EUG/L	DMIUN COTAL RECOV- ERABLE (UG/L	FM I FM I TOM	BOT-
OCT 03.		1230					50		4		10	10	()	
MAY 20.		1000					40		1		0	4	(
SEP 18.		0940	65	0	. 1	6.3	30		1	0	0	30			<10
10.		0,10	0,5		• •	0.5	30			Ů		30			
	DATE	M: TO RI EI	HRO- IUM, DTAL ECOV- RABLE JG/L S CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	TOM MA	COPPER TOTAL RECOV L ERABL (UG/L	FM E F TOM E TER	COV.	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOVE FM BOT TOM MA- TERIAL (UG/G AS FE	TOTAL RECOV L ERABL (UG/L	- TOM MA E TERIA (UG/O	/. ! [-] - F L E	MANGA- NESE, OTAL RECOV- RABLE UG/L S MN)	
	OCT		4.0						252						
	03		10		-		2		350	-		1 -	-	20	
	20 SEP		<10	-	-	-	1		300	-				30	
	18		10	<10	<1	0	4	<10	1400	3300	0	9 <1	0	70	
	DATE	NI RI FM TON	ANGA- ESE, ECOV. BOT- MA- ERIAL JG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	FM BOT TOM MA TERIA (UG/G	NICKEL TOTAL RECOV LERABL (UG/L	FM E F TOM E TER	COV.	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT TOM MA- TERIAL (UG/G	ERABL (UG/L	- TOM MA E TERIA (UG/O	/. :- iL Ph	IENOLS	
	OCT 03			<.5	_		3		0		- 1	0 -		2	
	MAY 20.			.5			0		0					3	
	SEP 18.		240	<.5		n	3	<10	0		0 3		20	2	
	10.		240		• • •		,	110				19.1		_	
	DATE	IN TON TI	PCB, DTAL BOT- MA- ERIAL G/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL IN BOT TOM MA	DDD, TOTAL IN BOT TOM MA L TERIA	TOT I IN E I TOM	BOT- MA- RIAL	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON TOTAL IN BOT TOM MA- TERIAL (UG/KG)	TOTAL IN BOT TOM MA L TERIA	TOTAL IN BOT TOM MA	- IN - TO L T	CHION, COTAL BOT- OM MA- CERIAL IG/KG)	
	OCT														
	03				-	-	-			-	-		-		
	20 SEP			-	-		-			-			-		
	18		0	.0	d .	•	0	.0	.0		0 .	0 .	0	.0	
	DATE	IN TON	EPTA- HLOR, DTAL BOT- M MA- ERIAL G/KG)	HE PTA- CHLOR E POXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDAN TOTAL IN BOT TOM MA TERIA	TOTAL IN BOT TOM MA L TERIA	CHL CHL TOT. BOT L MA	COR, IN TOM ATL.	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYI TRI- THION TOT. II BOTTON MATL (UG/KG)	THION TOTAL N IN BOT TOM MA TERIA	, PHENE TOTAL - IN BOT - TOM MA L TERIA	- IN - IN - TO	TRI- THION, TOTAL I BOT- DM MA- TERIAL IG/KG)	
	OCT														
	03					-	-			7				9	
	SEP				-	-	-			-			-		
	18	•	.0	.0		0 .	0	.0	.0	. (0 .	0	0	.0	

01396800 SPRUCE RUN AT CLINTON, NJ

LOCATION.--Lat 40°38'21", long 74°54'58", Hunterdon County, Hydrologic Unit 02030105, 1,800 ft (550 m) downstream from dam at Spruce Run Reservoir, 0.2 mi (0.3 km) north of Clinton, 0.3 mi (0.5 km) upstream from mouth, and 2.2 mi (3.5 km) southwest of High Bridge.

DRAINAGE AREA .-- 41.3 mi2 (107.0 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1959 to current year.

GAGE.--Water-stage recorder. Concrete control since Mar. 15, 1964. Datum of gage is 193.5 ft (58.98 m) revised, National Geodetic Vertical Datum of 1929. May to Nov. 24, 1959, nonrecording gage; Nov. 25, 1959 to July 23, 1961, water-stage recorder at site 1,800 ft (550 m) upstream and at datum 1.41 ft (0.430 m) lower; July 24, 1961 to Mar. 14, 1964, water-stage recorder at site 1,500 ft (460 m) upstream at datum 1.41 ft (0.430 m) lower.

REMARKS.--Water-discharge records poor. No gage-height record Apr. 18 to May 18. Flow regulated by Spruce Run Reservoir (see Raritan River Basin, reservoirs in).

AVERAGE DISCHARGE. -- 21 years, 62.2 ft3/s (1.762 m3/s) unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum, 6,410 ft³/s (182 m³/s) Apr. 2, 1970, gage height, 5.17 ft (1.576 m); no flow Aug. 22 to Sept. 17, 1963, Sept. 19, 1963 to Mar. 14, 1964, Mar. 19, 1964, result of filling Spruce Run Reservoir.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,160 ft 3 /s (32.9 m 3 /s) Mar. 21, gage height, 3.06 ft (0.933); minimum, 1.1 ft 3 /s (0.031 m 3 /s) Mar. 9, gage height, 1.12 ft (0.341 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980
MEAN VALUES DAY OCT NOV DEC JAN FEB MAY JUN JUL AUG SEP 8.3 7.7 7.6 7.6 54 44 6.8 86 6.6 7.6 7.6 7.6 6.8 60 56 7.6 1.5 3.0 7.6 6.0 61 5.6 7.6 6.1 7.6 60 9.0 7.6 78 58 68 8.1 7.6 7.6 57 9.7 95 43 123 72 7.6 7.6 9.3 52 7.6 8.1 24 8.2 8.0 7.9 58 76 89 88 7.9 55 124 7.8 9.0 ------TOTAL 1572.8 379.2 4026.9 1959.3 MEAN 97.5 367 70.5 60.5 50.7 13.1 63.2 59.7 97 78.7 63.2 81.9 MAX 6.6 7.6 1.5 9.0

CAL YR 1979 TOTAL 34731.5 MEAN 95.2 MAX 1300 MIN 5.9 WTR YR 1980 TOTAL 28211.2 MEAN 77.1 MAX 560 MIN 1.5

RARITAN RIVER BASIN

01396800 SPRUCE RUN AT CLINTON, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1960-62, 1967 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: October 1968 to September 1969, January 1971 to current year.
SUSPENDED-SEDIMENT DISCHARGE: October 1960 to April 1961.

REMARKS. -- Water temperatures taken at outflow of dam.

COOPERATION. --Once daily water temperatures supplied by New Jersey Water Supply Facilities Element. Selected field data and samples for laboratory analyses supplied by the New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURES: Maximum daily, 24.5°C July 31, 1973; minimum daily, 0.0°C on many days during winter months.

EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURES: Maximum daily, 23.0°C Sept. 23; minimum daily, 0.0°C Feb. 4, 5.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	""	ILI QUAL.	LII DAIA,	WALEN I	EAR OU	TODER	119 10	DE		,00			
DATE		STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMP ATU WAT (DEG	RE, ER S	YGEN, DIS- OLVED MG/L)	OXYGEN DEMANI BIOCHE UNINHI 5 DAY (MG/L)	O, FO	COTH F	STREP- DCOCCI FECAL (MPN)	HARI NES (MG AS CAC	S /L
OCT 03	1330	98	150		1	9.0	9.2	1.	0	230	23		49
JAN 31	0930	55	146	7.8		.0	13.7	<1.	0	20	49	- : .	53
APR 07	0915	128	143	7.1		8.0	9.2	1.		<20	<2		52
MAY 20	1115	9.0	152	7.8	1	6.5	10.8	1.	9	110	2		51
JUL 02	1030	84	144	7.5	1	7.5	9.6	<.	.1	<20	23		48
AUG 07	1050	20	155	6.4	1	8.5	8.2	<.	.7				60
SEP 18	1130	14	138	7.1	1	9.0	8.1	<1.	4	130	920		49
DATE	CALCI DIS- SOLVI (MG/I AS CA	DIS ED SOLV	JM, SODI S- DIS VED SOLV /L (MG	UM, S - D VED SO I/L (M	TAS- IUM, IS- LVED G/L K)	ALKA- LINITY (MG/L AS CACO3)	SULF TOT (MG AS	IDE I	ULFATE DIS- SOLVED MG/L S SO4)	CHLO- RIDE, DIS- SOLVEI (MG/L AS CL)	(MG	E, S- VED /L	
OCT O3 JAN	. 12		4.6	6.1	1.3	29		.0	16	8.8	3	.1	
31	. 13		4.9	6.6	1.3	38	1		17	9.0)	.1 .	
A PR 07	. 13		4.8	5.8	1.3	26	,		18	9.	4	.1	
MAY 20	. 12		5.2	7.2	1.2	33		.0	17	8.1	7	. 1	
JUL 02	. 12	- 4	4.4	5.7	1.0	33			17	9.0)	.1	
AUG 07	. 15		5.5	6.6	1.5	43			15	8.1	3	.1	
SEP 18	. 12		4.7	6.4	1.5	31			16	8.	5	.0	
DATE	SILIC DIS- SOLVI (MG/I AS SIO2	AT 18 ED DEG L DIS SOL	DUÉ NIT BO GE . C NO24 B- TOT VED (MC	N, G NO3 AMM TAL TO	TRO- EN, ONIA TAL G/L N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	MONI	AM- A + M NIC AL I	GEN, COTAL (MG/L	PHOS- PHORUS, ORTHOPH OS PHATE TOTAL (MG/L AS PO4)	TOTA (MG	NIC AL /L	
ОСТ													
03 JAN		. 7		.0	. 300	. 42		.72		.08		6.6	
31 APR	7	. 8	90	• 35								3.5	
07		. 6	91	.52	. 100	. 44		. 54	1.1	• 3		4.8	
20 JUL	. 6.	. 7	91	. 38	. 270	.00)	. 27	. 65	. 02	2	2.5	
02 AUG	. 6	. 1	84	. 25	.200	. 41		. 61	. 86	. 10)	. 9	
07 SEP	. 8	. 1	86	. 15	.210	. 41		. 62	.77	.03	3	2,1	
18	. 9	. 0	80	. 15	. 160	. 50		. 66	.81	.09	9	3.8	

RARITAN RIVER BASIN

01396800 SPRUCE RUN AT CLINTON, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	
OCT									
03	1330	30	4	0	7	0	20	5	
MAY 20	1115	30	1	0	10	0	<10	1	
			MANGA-						
	IRON, TOTAL RECOV-	LEAD, TOTAL RECOV-	NESE, TOTAL RECOV-	MERCURY TOTAL RECOV-	NICKEL, TOTAL RECOV-	SELE- NIUM,	ZINC, TOTAL RECOV-		
	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	TOTAL (UG/L	ERABLE (UG/L	PHENOLS	
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)	
OCT									
03 MAY	170	0	50	<.5	3	0	10	1	
20	180	4	150	<.5	0	0	90	1	

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 ONCE-DAILY

DA Y	OCT	NO V	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	17.0 17.0 17.0 17.5 17.0	12.0 12.5 12.5 12.0 12.0	9.0 9.0 9.0 9.5 8.0	4.0 4.0 4.0 3.5 2.5	.5 1.0 .5 .0	2.0 2.5 2.0 2.0 3.0	5.5 5.5 6.0 6.0 7.0	10.0 10.0 10.0 10.0 11.0	14.0 15.0 14.0 14.0 12.0	16.5 18.0 15.5 17.0	19.0 19.5 19.0 19.5 19.5	21.0 22.0 21.5 21.0 21.0
6 7 8 9	17.0 17.0 16.5 17.0 15.0	11.5 11.5 11.0 11.5	7.5 8.0 7.5 7.0 7.0	1.5 2.5 2.0 2.0 2.0	1.5 2.0 2.0 1.0	3.0 2.5 4.0 4.0	7.0 7.0 7.0 7.0 9.0	11.5 11.0 11.0 11.0	12.0 14.0 14.0 14.0 10.5	18.0 18.5 15.0 18.0 18.0	19.5 22.0 21.0 20.0 19.0	21.0 21.5 21.0 21.5 21.5
11 12 13 14 15	15.0 15.0 15.0 14.0 13.5	11.0 11.0 11.0 11.0	7.0 7.0 7.0 6.5 6.0	2.5 2.0 1.5 2.5 3.0	1.5 1.5 1.5 1.5	3.0 2.0 2.0 3.0 2.0	9.0 9.0 10.0 9.0	12.0 12.5 13.0 12.5 12.0	10.5 10.5 10.5 14.5 15.0	17.0 18.0 18.5 18.5	19.0 19.0 20.0 19.0 19.5	21.0 21.0 21.0 21.5 21.5
16 17 18 19 20	13.5 14.0 13.0 13.0	10.5 11.0 11.0 11.0	6.0 5.0 4.5 4.0 4.0	2.5 2.0 2.0 2.0 2.0	2.0 1.5 1.5 2.0 2.5	2.0 2.0 3.0 4.0 4.0	10.0 9.5 10.0 10.0	12.0 10.5 11.0 10.5 10.5	15.0 13.0 13.0 14.5 15.0	19.0 20.0 19.5 18.5 18.0	19.0 19.0 19.0 19.5	20.0 20.0 21.0 21.0 20.5
21 22 23 24 25	14.0 14.0 13.5 14.0 14.0	10.0 10.0 11.0 11.0	4.5 4.5 5.0 4.5 5.0	2.0 2.0 2.5 1.0 1.5	2.5 2.0 3.0 3.0 3.0	5.0 4.0 5.0 4.0 4.5	10.0 10.0 10.0 10.0 10.5	10.5 10.5 10.5 13.0	16.0 16.0 16.0 16.0	18.0 19.5 22.5 17.0 17.5	19.5 19.5 20.0 20.0	21.0 22.5 23.0 21.5 21.0
26 27 28 29 30 31	13.0 13.0 12.5 12.5 12.5 12.5	10.5 10.5 10.0 10.0 9.5	4.5 4.0 4.0 4.0 4.0	1.0 1.0 1.0 1.0 1.0	2.5 3.0 2.5 1.5	4.5 5.0 5.5 5.5	10.0 10.0 10.0 10.0	12.5 12.5 12.5 12.5 13.0	17.0 17.0 17.0 17.5 16.5	19.0 19.0 20.0 19.0 19.0 20.0	22.0 20.5 20.0 20.5 21.0 21.0	21.5 20.0 19.0 19.0 20.0
MEAN	14.5	11.0	6.0	2.0	1.5	3.5	9.0	11.5	14.5	18.5	20.0	21.0
WTR YR	1980	MEAN	11.0	MAX	23.0	М	IN	.0				

01397000 SOUTH BRANCH RARITAN RIVER AT STANTON, NJ

LOCATION.--Lat 40°34'21", long 74°52'10", Hunterdon County, Hydrologic Unit 02030105, on right bank at downstream side of highway bridge at Stanton, and 0.4 mi (0.6 km) upstream from Prescott Brook.

DRAINAGE AREA . -- 147 mi2 (381 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1903 to December 1906, July 1919 to current year. Monthly discharge only for some periods published in WSP 1302.

REVISED RECORDS.--WSP 561: Drainage area. WSP 1552: 1904, 1922-24(M), 1928-29(M), 1933-35(M).

GAGE.--Water-stage recorder. Datum of gage is 125.01 ft (38.103 m) National Geodetic Vertical Datum of 1929. Prior to Aug. 17, 1925, nonrecording gage on downstream side of highway bridge at same site and datum.

REMARKS.--Water-discharge records good except those for December and February, which are fair. Flow regulated by Spruce Run Reservoir since September 1963 (see Raritan River Basin, reservoirs in). Occasional regulation at low flows by ponds above station. Slight diurnal fluctuation caused by small powerplants above station. Water diverted by Handen Pumping Station, 4.0 mi (6.4 km) upstream, into Round Valley Reservoir since February 1966 (see Raritan River Basin, diversions).

AVERAGE DISCHARGE. --64 years (water years 1904-06, 1920-80) $243 \text{ ft}^3/\text{s}$ (6.882 m³/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 18,000 ft³/s (510 m³/s) Aug. 19, 1955, gage height, 15.22 ft (4.639 m), from rating curve extended above 6,400 ft³/s (180 m³/s) on basis of computation of flow over Clinton Dam, 6.5 mi (10.5 km) upstream, at gage height 10.72 ft (3.269 m) contracted-opening measurement 1.7 mi (2.7 km) downstream, and slope-area measurement 0.4 mi (0.6 km) downstream, at gage height 15.22 ft (4.639 m), adjusted to present site; minimum, 9 ft³/s (0.25 m³/s) Nov. 7, 1931; minimum daily, 12 ft³/s (0.34 m³/s) Oct. 18, 1963.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,330 ft³/s (123 m³/s) Mar. 22, gage height, 8.30 ft (2.530 m); minimum, 53 ft³/s (1.50 m³/s) Sept. 22.

						MEAN VA	LUES					
DA Y	OCT	NOV	DEC	JAN	. FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	782	219	303	243	165	282	1130	445	260	123	129	131
	943	217	300	210	157	266	889	381	201	143	138	130
2 3 4	503	988	285	167	150	261	671	357	214	115	139	128
4	540	603	271	154	150	230	1000	339	326	154	116	128
5	759	377	264	156	150	131	819	276	182	149	101	130
6	1050	329	265	160	143	132	565	264	143	315	145	132
7	544	320	377	189	138	130	512	250	160	118	112	129
8	443	294	311	208	138	143	481	321	221	125	73	127
9	387	274	260	201	138	170	1140	292	185	151	116	133
10	705	301	250	204	135	134	1510	234	248	138	112	150
11	717	332	244	309	140	177	807	222	200	123	111	148
12	567	507	239	930	135	144	647	307	157	161	109	144
13	537	363	297	355	130	127	583	846	141	130	110	135
14	421	346		307	125	156	618	468	164	131	98	136
			355									
15	355	297	266	305	118	168	894	311	160	160	116	140
16	325	291	252	283	135	138	632	304	147	194	115	133
17	308	274	307	264	138	192	458	328	118	195	110	147
18	299	258	237	267	137	1230	420	288	125	172	108	140
19	282	249	235	376	141	633	395	199	124	166	109	65
20	270	244	230	296	128	430	373	203	145	139	109	109
21	260	239	231	267	126	1810	362	265	144	160	109	108
22	273	234	236	250	152	2680	331	291	134	162	109	87
23	272	230	247	254	191	957	296	233	128	129	108	84
24	304	225	303	254	207	823	283	207	122	85	106	84
25	268	223	518	235	174	1250	271	197	141	104	116	106
26	246	596	394	225	147	817	266	182	139	132	120	96
27	233	930	309	226	126	668	280	161	144	157	114	90
28	254	443	289	210	142	529	754	138	143	171	130	76
29	301	384	273	203	203	555	948	125	143	129	130	76 84
30	195	339	263	185		671	597	132	231	105	131	91
30 31	183		253	175		919		159		92	131	
TOTAL	13526	10926	8864	8068	4259	16953	18932	8725	5090	4528	3580	3521
MEAN	436	364	286	260	147	547	631	281	170	146	115	117
MAX	1050	988	518	930	207	2680		846		315	145	150
							1510		326			65
MIN	183	217	230	154	118	127	266	125	118	85	73	05

CAL YR 1979 TOTAL 154434 MEAN 423 MAX 6880 MIN 81 WTR YR 1980 TOTAL 106972 MEAN 292 MAX 2680 MIN 65

01397100 PRESCOTT BROOK AT ROUND VALLEY, NJ

LOCATION.--Lat 40°36'28", long 74°50'54", Hunterdon County, Hydrologic Unit 02030105, at bridge on unnamed road at Round Valley, 3.3 mi (5.3 km) west of Whitehouse Station, and 4.1 mi (6.6 km) upstream from mouth.

DRAINAGE AREA.--4.61 mi² (11.94 km²).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1959-62, 1977 to current year.

DATE SEP 18..

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

Di	ATE	TIM	1E	STREA FLOW INSTA TANEO	AM- C W, D AN- A OUS (M	PE- IFIC ON- UCT- NCE ICRO- HOS)	PH FIEL (UNIT	D W	MPER- TURE, ATER EG C)	SO	GEN, IS- LVED G/L)	OXYO DEMA BIO UNII 5 1 (MG	AND, CHEM NHIB DAY	COI FOI FEC BRC (MI	RM, CAL, CTH	STR TOCO FEO (MF	AL	
FE	B 7	101	-		2	165	7	. 0	7.0		12.0				<20		<2	
MAI	R				. 3												2	
MA		101			. 2	171		.0	8.0		11.9		<.9		<20			
JUI		130	00		. 79	180	7	. 0	10.5		10.1		1.4		130		130	
A U	2	115	50	14		160	6	. 7			10.3		. 1		<20		8	
	7	121	15		.51	180	6	. 7	15.0		10.2		(1.2					
18	8	110	00		. 51	154	7	. 4	12.5		11.0		3.3		70		130	
DA	ATE	HARE NESS (MG/ AS CACO	L L	CALCI DIS- SOLV (MG/ AS (IUM - VED S /L (AGNE- SIUM, DIS- OLVED MG/L S MG)	SODIU DIS- SOLVE (MG/ AS N	M, 1 D SC L (1	OTAS- SIUM, DIS- OLVED MG/L S K)	LIN: (MC	G/L		S- LVED G/L	RII DIS SOI (MC	VED	FLU RID DI SOL (MG AS	E, S- VED /L	
FEI	B 7		63	17	7	5.1	-	. 7	.7		51		20		6.9		. 1	
MAI	K		65	17		5.5		. 6	. 8		46		19		5.1			
MA																	.1	
JUI			65	16		6.0		. 5	. 7		48		18		6.9		. 1	
AUC	2		53	13	3	5.0	5	. 1	1.3		34		18		7.6		.1	
O'SEI	7		76	20	0	6.3	6	• 3	. 9		56		18		7.2		. 1	
	8		71	18	3	6.3	6	. 7	1.1		51		18		7.2		.0	
DA	ATE	SILIC DIS- SOLV (MG/ AS SIO2	ED L	SOLII RESII AT 18 DEG. DIS SOLV (MG/	DUÉ N BO C NO B- T VED (ITRO- GEN, 2+NO3 OTAL MG/L S N)	NITR GEN AMMON TOTA (MG/	IA ORO L TO L (1	ITRO- GEN, GANIC OTAL MG/L S N)	MON OR GA	AM – IA +	NIT GE TOT (MC	TA L G/L	PHOPORTH ORTH OSPH TOT (MC	US, IOPH IATE IAL	CARB ORGA TOT (MG	NIC AL /L	
FEE								11.0	40		22							
MAF			. 0		101		.1		. 19		. 33			•	.01			
MAY		8	3.7		99	- 37	. 1	40	.09		. 23		. 60		.06		1.7	
JUL	0	7	. 6	1	105	. 26	. 0	70	. 11		. 18		. 44		. 02		1.8	
AUC	2	1	. 2		91	. 10	. 1	20	. 22		. 34		. 44		.02		.9	
	7	7	. 5	1	102	. 10	. 1	10	. 18		. 29		. 39				1.4	
	3	6	. 2		96	<.05	. 1	30	• 33		. 46				.06		1.6	
TIME	GEN, + OF TOT BOT (MC	NH4	CARB INC GAN TOT BOT (G/ AS	R- IIC, IN MAT	CARBON INORG ORGANI TOT. I BOT MA (G/KG AS C)	+ TO C IN N TOM T TE (U	TAL BOT-	CADMIUM RECOV. FM BOT- IOM MA- TERIAL (UG/G AS CD)	MI REFM FM TOM	IRO- IUM, ICOV. BOT- I MA- IRIAL	FM TOM	ALT, COV. BOT- MA- RIAL G/G CO)	TOM TEI	PER, COV. BOT- MA- RIAL G/G CU)	FM TOM	ON, COV. BOT- MA- RIAL G/G FE)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, RÉCOV. FM BOT- TOM MA- TERIAL (UG/G)
1100	380	00		.0	16		0	<10)	20		<10		<10		4100	<10	250

RARITAN RIVER BASIN

01397100 PRESCOTT BROOK AT ROUND VALLEY, NJ--Continued

DATE	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
SEP 18	.00	<10	0	30	4	.0	3	.0	1.0	.0	.0	.0
DATE	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA - CHLOR, TOTAL IN BOT - TOM MA - TERIAL (UG/KG)	HE PTA - CHLOR E POXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TO XA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
SEP 18	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0	.0

01397380 BUSHKILL BROOK AT ROCKEFELLOWS MILLS, NJ

LOCATION.--Lat 40°31'15", long 74°49'40", Hunterdon County, Hydrologic Unit 02030501, at bridge on unnamed road in Rockefellows Mills, 200 ft (61 m) upstream from mouth, and 1.5 mi (2.4 km) west of Three Bridges.

DRAINAGE AREA .-- 4.31 mi2 (11.16 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1977 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 02	1115	365		16.0	7.6		9200	>2400	120
FEB 06	0845	690	6.8	9.0	9.2	<1.1	<20	<2	300
APR							50		. 220
MAY	0900	520	7.2	8.0	8.2	1.3		33	
20 JUL	1000	262	7.4	16.5	5.1	2.6	220	170	110
02 AUG	1045	335	7.9	18.0	4.9	<1.0	1400	79	180
07 SEP	0915	925	7.7	24.5	7.4	<.1			470
18	1245	675	7.5	19.0	5.7	E2.6	9200	>2400	250
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT		1							
02 FEB	34	7.8	21	3.2	65	.0	. 41	24	. 1
06 APR	100	13	24	1.8	110		200	22	.2
08 MAY	68	11	21	2.0	82		130	22	.1
20	28	8.7	12	1.3	58	.0	47	14	.1
JUL 02	58	9.5	14	1.7	75		110	16	.2
AUG 07	160	17	27	1.9	120		330	24	• 3
SEP 18	79	13	32	3.6	70	.0	190	43	.2
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N·)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 02	13	218	2.8	.500	1.0	1.5	4.3	.77	5.6
FEB 06	16	492		. 440	.40	. 84		1.0	5.7
APR 08	13	338	2.5	.300	. 41	.71	3.2	.58	3.3
MAY 20	11	182	1.7	.160	. 19	- 35	2.0	.24	4.1
JUL 02	11	312	1.3	.270	. 21	.48	1.8	.50	.8
AUG 07	19	750				17.55		1.5	
SEP 18			2.0	. 120	.67	.79	2.8		•5 10
10	13	472	2.0	.260	1.2	1.5	3.5	1.6	10

RARITAN RIVER BASIN

01397380 BUSHKILL BROOK AT ROCKEFELLOWS MILLS, NJ--Continued

			GEN, + OR TOT	RO- CAR NH4 IN G. GA IN TOT	OR- INC NIC, ORC	RBON, DRG + A GANIC I	LUM- INUM, DIS-	ARSE	NIC TOM	ENIC I	BERYL- LIUM, FOTAL RECOV-	BOR TOT REC	AL TO	OMIUM OTAL CCOV-	FM E	OV. BOT- MA-
DA	TE	TIME	BOT (MG AS	/KG (G	/KG ((G/KG (SOLVED (UG/L AS AL)	TOT. (UG AS	/L (UC	G/G	ERABLE (UG/L AS BE)	ERA (UG AS	/L (L	RABLE IG/L IG/L	(UC	RIAL G/G CD)
		1115	440	0	1.9	29	50		1	0	0		70	0		<10
MAY 20		1000					70		1		0		50	0		
SEP		1245	530	0	1.1	31	30		4	1	0		280	0		<10
		M T R E	HRO- IUM, OTAL ECOV- RABLE UG/L	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL	TOM MA-	COPPER TOTAL RECOVE	FM I I TOM LE TEI	COV.	IRON, TOTAL RECOV- ERABLE (UG/L	IRON RECO FM BO TOM M TERI	V. LE T - TO A - RE AL ER	AD, TAL COV- ABLE G/L	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G	NE TO RE	NGA- SE, TAL COV- ABLE	
	DATI		S CR)	(UG/G)				CU)	AS FE)	AS F		PB)	AS PB)		MN)	
	OCT O2. MAY		10	20	10	o 2	28	140	800	160	00	7	180		110	
	20. SEP		10			-	3		340			1			70	
	18.		20	20	<10	0 2	20	190	690	110	00	10	130)	130	
	DATI	N R FM TO	ANGA- ESE, ECOV. BOT- M MA- ERIAL UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	FM BOT- TOM MA- TERIAI (UG/G	NICKEL TOTAL RECOVERABL (UG/L	FM F FM F F TOM LE TER (U)	COV.	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM TOTAL IN BOO TOM MA TERIA (UG/O	ZI L TO I = RE A = ER AL (U	NC, TAL COV- ABLE G/L ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	. PHE	NOLS	
	OCT 02.		780	<.5	.00)	3	30	0		0	30	370)	0	
	MAY 20.			. 2			0		0			0			1	
	SEP 18.		350	<.1			4	<10	0		0	30	190		2	-
	10.		350		.00	,	7	(10	Ü		0	30	190		2	
	DATI	IN TO	PCB, OTAL BOT- M MA- ERIAL G/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL IN BOT- TOM MA- TERIAL	DDD, TOTAL IN BOT TOM MA	TO T		DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINO TOTAL IN BOTOM MA TERIA (UG/KO	N, ELD L TO T- IN A- TOM AL TE	I- RIN, TAL BOT- MA- RIAL /KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TO IN TOM TE	ION, TAL BOT- MA- RIAL /KG)	
	OCT 02.		13	.0	, .	3 1.	6	.0	1.0			.0	. 0)		
	MAY 20.										_	-				
	SEP 18.		92	.0			. 0	.0	.0		. 0	2.3	.0		.0	
			,_	••								2.3	•			
	DATI	IN TO	EPTA- HLOR, OTAL BOT- M MA- ERIAL G/KG)	HE PTA - CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL	TOTAL IN BOT TOM MA TERIA	CHI C TOT. BOT L MA	Y- LOR, IN TTOM ATL.	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METH TRIC THIO TOT. BOTTO MATI	TH TO	RA- ION, TAL BOT- MA- RIAL /KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TH TO IN TOM TE	RI- ION, TAL BOT- MA- RIAL /KG)	
	OCT 02.		.0	2.0) -	-	.0			-		0	i-		
	MAY 20.				_								16	9 "	1	
	SEP 18.		.0	.0)	0	.0	.0		. 0	.0	0		.0	
							-									

01397400 SOUTH BRANCH RARITAN RIVER AT THREE BRIDGES, NJ

LOCATION.--Lat 40°31'01", long 74°48'12", Hunterdon County, Hydrologic Unit 02030105, at bridge on Main Street in Three Bridges, 0.4 mi (0.7 km) northeast of Voorhees Corner, 1.3 mi (2.1 km) downstream of Bushkill Brook, and 2.2 mi (3.6 km) southeast of Darts Mills.

DRAINAGE AREA. -- 181 mi2 (469 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAT	re	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO MHOS)	- FI	PH ELD IITS)	TEMP ATU WAT (DEG	RE, ER	SOI	GEN, IS- LVED	DEN BIO UNI	MAND, OCHEM INHIB DAY	COLI- FORM, FECAL, EC BROTH (MPN)	TOO	REP- COCCI CCAL IPN)	HARD- NESS (MG/L AS CACO3	
FEB																	
06. APR	•••	1015	137	27	0	7.1		.0	1	4.6		E.8	20		2	9	6
O8.	•••	1030	442	18	0	7.0		7.0	1	1.8		.3	20		23	6	5
20.		1100	211	20	8	7.4	1	7.0		9.2		1.6	700		920	7	7
JUL 02. AUG		1200	176	21	9	8.3	2	2.0		9.6		<1.0	3500		170	7	8
07. SEP		1030	146	22	6	8.4	2	5.0		8.6		<.7				9	7
18.		1100	176	20	4	8.8	2	1.0		8.9		<2.0	3500		920	7	9
	DATE	CALCI DIS- SOLV (MG/ AS C	DI VED SOL 'L (MG	UM, SO S- D VED SO /L (DIUM, IS- LVED MG/L S NA)	POTA SIU DIS SOLV (MG/ AS K	M, ED L	ALKA LINIT (MG/ AS CACO	Y L	SULF TOT (MG AS	AL /L	SULFAT DIS- SOLVE (MG/L AS SO4	E RI DI D SO (M	LO- DE, S- LVED G/L CL)	FLUC RIDE DIS SOLV (MG/ AS F	ED L	
	FEB 06	24		8.7	13	1	. 6		67			33		15		. 1	
	APR 08	16	5	6.0	9.3	1	. 4		42			14		13		. 2	
	MAY 20	18	3	7.8	11	1	. 2		51		.5	23		14		.1	
	JUL 02	19)	7.4	8.6	1	. 6		56			22		13		. 1	
	AUG 07	21		9.0	8.9		. 6		72			22		11		. 1	
	SEP 18																
	10	20		5.8	19	2	. 6		44			26		18		. 0	
	DATE	SILIO DIS- SOLV (MG/ AS SIO2	AT 1 VED DEG 'L DI SOL	DUÉ N 80 . C NO S- T VED (ITRO- GEN, 2+NO3 OTAL MG/L S N)	NITR GEN AMMON TOTA (MG/ AS N	ÏA L L	NITR GEN ORGAN TOTA (MG/	ic L L	NITR GEN, MONI ORGA TOT (MG AS	AM- A + NIC AL /L	NITRO GEN, TOTAL (MG/L AS N)	PHO ORT OSP TO (M	OS- RUS, HOPH HATE TAL G/L PO4)	CARBO ORGAN TOTA (MG/ AS C	IIĆ L 'L	
	FEB																
	06 APR	13	3	153	2.3	. 1	00		44		.54	2.8		. 27	6	. 9	
	08 MAY	9	. 8	86	1.6	. 3	50		39		.74	2.3		. 17	4	. 2	
	20 JUL	11		140	1.6	. 1	10		43		.54	2.1		.23	5	. 0	
	02	8	8.8	142	1.1	. 1	20		30		. 42	1.5		. 22	- 3	3.0	
	AUG 07	9	. 2	143	. 15	. 1	20		65		. 77	.9	2	. 25	1	. 2	
	SEP 18	2	2.5	122	.68	. 1	20		58		.70	1.4		. 40	3	. 6	

RARITAN RIVER BASIN

01397400 SOUTH BRANCH RARITAN RIVER AT THREE BRIDGES, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

				BERYL-			CHRO-		
		ALUM-		LIUM.	BORON,	CADMIUM	MIUM,	COPPER,	
		INUM.		TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	
		DIS-	ARSENIC	RECOV -	RECOV -	RECOV-	RECOV -	RECOV -	
		SOLVED	TOTAL	ERABLE	ERABLE	ERABLE	ERABLE	ERABLE	
	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE		AS AL)	AS AS)	AS BE)	AS B)	AS CD)	AS CR)	AS CU)	
MAY									
20	1100	40	2	0	30	0	<10	15	
			MANGA						
	IRON.	LEAD.	MANGA- NESE.	MEDGURY	NICKEL		ZINC.		
	TOTAL	TOTAL	TOTAL	MERCURY TOTAL	NICKEL, TOTAL	SELE-	TOTAL		
	RECOV-	RECOV-	RECOV-	RECOV-	RECOV-	NIUM.	RECOV-		
	ERABLE	ERABLE	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	PHENOLS	
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	THENOLD	
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)	
	,		10 11117	no no,	NO 1127		,	(00/0/	
MAY									
20	3200	3	180	. 4	5	0	20	.5	
	-								

01398000 NESHANIC RIVER AT REAVILLE, NJ

LOCATION.--Lat 40°28'18", long 74°49'42", Hunterdon County, Hydrologic Unit 02030105, on left bank 50 ft (15 m) downstream from highway bridge, 0.6 mi (1.0 km) southwest of Reaville, 1.5 mi (2.4 km) downstream from Third Neshanic River, and 2.2 mi (3.5 km) upstream from Back Brook.

DRAINAGE AREA .-- 25.7 mi2 (66.6 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- June 1930 to current year.

REVISED RECORD. -- WSP 1552: 1933, 1934(M), 1936(M), 1938, 1940(M), 1942(M), 1945-46, 1951, 1952(M).

GAGE.--Water-stage recorder. Concrete control since Sept. 26, 1935. Datum of gage is 109.46 ft (33.363 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records fair except those for periods of no gage-height record, Mar. 13 to May 15 and May 20 to Jun. 12, which are poor.

AVERAGE DISCHARGE. -- 50 years, 36.2 ft3/s (1.025 m3/s), 19.11 in/yr (485 mm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 15,900 ft³/s (450 m³/s) Aug. 28, 1971, gage height, 13.84 ft (4.218 m) from high-water mark in gage house, from rating curve extended above 1,700 ft³/s (48 m³/s) on basis of slope-area measurement 0.7 mi (1.1 km) downstream (adjusted to present site) at gage height 11.90 ft (3.627 m); no flow many days 1965, 1966, and part of July 17, 1968.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 1,600 ft3/s (45.3 m3/s) and maximum (*):

Date Time Discharge Gage height $(ft^3/s)(m^3/s)$ (ft) (m)

Mar. 21 Unknown *2820 79.9 8.61 2.624

Minimum discharge, 0.04 ft3/s (0.001 m3/s) Sept. 13-14, gage height, 2.02 ft (0.616 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980
MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 12 31 10 5.7 224 44 5.5 2.6 2.6 .17 9.6 9.0 9.0 5.2 5.8 2 152 12 27 22 7.2 142 2.2 1.6 . 15 36 .18 94 232 23 21 18 8.4 76 145 1.8 27 2.0 5.7 5 63 52 21 18 8.6 6.8 97 17 1.9 2.2 . 15 6 56 43 24 16 8.0 4.2 3.2 3.3 .13 56 1.5 37 32 28 58 29 24 43 13 8.3 24 43 13 4.0 1.1 8 36 4.7 16 36 . 17 13 16 252 10 45 23 7.6 17 233 16 6.4 1.3 . 86 . 13 130 45 21 91 45 5.4 1.0 .78 .08 7.2 79 13 12 94 144 21 158 6.9 21 54 42 5.0 . 84 .06 1.1 66 53 42 13 79 56 54 53 47 6.2 20 43 145 4.7 1.1 .85 .06 49 . 92 6.3 45 55 4.3 15 46 35 47 65 28 4.1 .71 8.1 57 16 39 33 30 28 1.0 37 .77 4.8 33 35 11 70 36 23 4.0 . 62 17 37 26 22 9.0 3.4 .50 32 .63 30 284 30 19 28 26 23 3.0 1.6 .44 101 6.4 8.1 18 257 20 18 20 23 6.4 23 50 20 3.2 . 84 16 .53 .69 58 21 24 21 .43 22 40 7.5 574 19 37 2.7 .83 .54 22 22 20 23 20 . 45 35 207 16 33 1.3 . 52 23 2.3 7.4 20 19 28 36 51 14 .43 .43 86 17 22 53 25 20 13 1.6 44 25 18 16 131 24 10 218 12 11 1.9 1.0 .42 .56 26 16 171 67 20 8.9 92 11 9.2 . 31 1.5 7.5 6.4 5.7 27 15 89 50 18 6.9 60 1.9 .79 .25 .75 28 19 59 41 17 6.4 132 122 1.8 5.0 .35 .44 35 30 14 36 32 13 130 48 9.3 2.1 . 15 . 43 31 13 28 12 ---290 ---5.2 1.2 -18 TOTAL 1556 1114 294.3 124.9 26.57 27.54 1963 1075 2991.6 56.60 2176 785.3 MEAN 63.3 51.9 35.9 34.7 10.1 96.5 72.5 25.3 145 4.16 1.83 .92 8.1 .86 MAX 3.3 MIN 12 21 12 5.6 5.7 5.2 1.6 .71 .05 2.46 2.02 1.35 .39 3.76 2.82 .07 .03 .04 CFSM 1.40

CAL YR 1979 TOTAL WTR YR 1980 TOTAL 26530.50 MEAN 72.7 1760 MIN 2.5 CFSM 38.40 MEAN 33.3 12190.81 CFSM IN MAX 574 MIN .05 1.30

RARITAN RIVER BASIN

01398000 NESHANIC RIVER AT REAVILLE, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1957, 1962, and 1979.

COOPERATION.--Selected field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

D	ATE	TIME	FLO INS: TANI	EAM- COW, DIAN- AEOUS (M	PE - IF IC ON - UCT - NCE ICRO - HOS)	PH FIELD (UNITS)	A T W A	MPER- TURE, ATER EG C)	D SO	GEN, IS- LVED G/L)	OXYO DEMA BIOC UNIN 5 I	ND, CHEM CHIB	COLI- FORM, FECAL, EC BROTH (MPN)	TOC	REP- N OCCI (CAL	ARD- ESS MG/L AS ACO3)	
AP		4005			065										40		
MA		1245		56	265	7.2		13.0		11.8		• 9	<20		13	79	
2 JU	0 L	0845	. 1	16	248	7.2		17.0		8.6		1.7	2400		70	83	
	2	0930	-	2.2	438	7.6		21.5		5.9		<.1	2400		540	130	
0	7	0850		1.1	319	6.7		23.0		4.0		<.6				110	
SE:	8	0915		9.6		6.9		20.0		3.3		8.4	>2400	>:	2400	120	
	DATE	DIS SOI (MC	CIUM S- LVED G/L CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODI	UM, S - D ED SO /L (M	TAS- IUM, IS- LVED G/L K)	ALK LINI (MG AS CAC	TY /L	SULFI TOTA (MG/ AS S	L L	SULFAT DIS- SOLVE (MG/L AS SO4	D SOI	DE,	FLUO- RIDE, DIS- SOLVED (MG/L AS F)		
	A PR 07		20	7.1	1	9	1.6		31			31	3	34	1		
	20	. 2	20	8.1	1	7	1.4		48		.0	33	2	22	. 1		
	JUL 02	. 3	34	11	3	0	2.6		75			45		52	.1		
	AUG 07		29	9.7	1	4	2.9		63			39		25	.2		
	SEP 18		34	9.4		8	10		27		.0	40		00	.1		
	10		, ,	9.4	3	0	10		-1		. 0	40		,,			
	DATE	DIS	LVED G/L	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	TOT	N, G NO3 AMM AL TO /L (M	TRO- EN, ONIA TAL G/L N)	NIT GE ORGA TOT (MG	NIC AL /L	NITRO GEN, A MONIA ORGAN TOTA (MG/ AS N	M- HIC L L	NITRO GEN, TOTAL (MG/L AS N)	OS PH TOT (MC	RUS, HOPH HATE TAL G/L	CARBON, ORGANIC TOTAL (MG/L AS C)		
	APR													38			
	07 MAY		11	167		. 10	.080		.06		14	.2		.28	1.1		
	20 JUL		8.8	171	2	. 1	. 120		. 31		43	2.5		.09	2.3		
	02 AUG	e	8.4	284		. 41	. 170		. 63		80	1.2		.09	3.6		
	07		6.6	192		. 90	.200		.70		90	1.8		. 40	4.3		
	SEP 18		4.1	321	1	. 1	.210	3	. 3	3.	5	4.6		1.1	12		
DATE	TIME	GEN, + OF TOT BOT	IN MAT G/KG	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	(G/	G + AL NIC IN IN D MAT SO KG (U	UM- UM, IS- LVED G/L AL)	ARSE TOT (UG	AL /L	ARSEN TOTA IN BO TOM N TERI (UG/ AS A	IL OT - MA - IAL	BERYL LIUM, TOTAL RECOV ERABL (UG/L AS BE	BOI TOT = REC E ERA	RON, TAL COV- ABLE G/L B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	TOM TEI (U	OV.
MAY 20	0845					4	30		1				0	30	0		
SEP 18	0915	670	00	.1	1	9	40		2		2		0	80	1		<10
	-,.,	-10				-			-		-		5				

01398000 NESHANIC RIVER AT REAVILLE, NJ--Continued

DA	TE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
MAY 20 SEP		20			. 2		210		2		40
		10	20	<10	10	20	1500	13000	12	30	520
DA	TE	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)
MAY		(00/0)	no no,	ab no,	AD NI)	AU NI,	NO DE,	(00/0/	no zn,	,	(00/2)
			.2		0		0		0		1
	• • •	380	.2	.00	4	<10	0	0	40	110	2
DA	TE	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
MAY 20		324									
SEP 18		15	.0	9	1.2	.0	.0	.0	1.0	.0	.0
DA	TE	HEPTA - CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TO XA - PHENE, TOTAL IN BOT-TOM MA-TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
MAY 20											
SEP											

01398045 BACK BROOK TRIBUTARY NEAR RINGOES, NJ

LOCATION.--Lat 40°25'41", long 74°49'52", Hunterdon County, Hydrologic Unit 02030105, on right upstream wingwall of bridge on Wertsville Road, 2.1 mi (3.4 km) east of Ringoes, 1.3 mi (2.1 km) upstream from Back Brook, and 2.3 mi (3.7 km) southwest of Wertsville.

DRAINAGE AREA .-- 1.98 mi2 (5.13 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1977 to current year.

GAGE. -- Water-stage recorder. Elevation of gage is 156 ft (47.5 m), from topographic map.

REMARKS .-- Water-discharge records fair .

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1290 ft³/s (36.5 m³/s) Aug. 3, 1979, gage height, 5.05 ft (1.539 m), from rating curve extended above 200 ft³/s (5.66 m³/s) on basis of contracted-opening measurement at gage height 4.64 ft (1.414 m); minimum daily, 0.01 ft³/s (0.001 m³/s) Feb. 19, 1979.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 436 ft³/s (12.3 m³/s) Mar. 21, gage height, 2.99 ft (0.911 m), no peak above base of 500 ft³/s (14.2 m³/s); minimum daily, 0.03 ft³/s (0.001 m³/s) Aug. 10, Sept. 16.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES DAY OCT NO V DEC APR JUN JUL AUG SEP FEB MAY 147 .98 2.7 .76 . 66 32 10 .21 . 05 2.3 3.0 90 2.0 .16 .13 .05 1.1 .89 .65 .10 26 .12 3 33 1.7 .91 .57 5.4 . 41 . 05 8.7 6.7 .12 4 5 9.2 1.6 1.9 1.0 .51 2.1 .21 3.3 .05 .10 . 05 2.6 .07 6 7.1 1.6 .62 .55 4.1 1.7 .12 .10 .08 8 3.3 2.0 6.1 1.4 .60 5.3 2.7 4.0 .08 .04 .06 1.9 3.7 .85 49 2.3 .15 . 04 .06 6.4 .08 10 146 .07 .03 .06 . 04 11 14 12 24 .56 7.8 1.7 .13 .05 81 1.5 5.6 .08 40 32 3.9 .04 1.3 . 84 .08 2.6 19 8.3 .57 2.3 .11 .07 .04 .06 13 11 14 7.9 5.2 5.0 4.2 .52 6.2 3.5 .12 .07 .04 .08 .06 . 82 .05 . 10 3.9 3.2 2.4 3.0 2.3 2.1 1.3 1.1 .60 .55 .41 .51 16 3.4 2.1 4.3 2.6 .12 .05 .03 17 3.0 1.5 2.2 42 . 11 . 24 - 04 37 .10 .07 .04 .35 2.0 .42 .07 .05 .04 19 7.5 .52 6.6 1.8 .10 21 1.4 1.6 1.6 2.3 56 82 14 1.6 1.8 .10 .07 .05 .04 .76 1.5 3.2 6.0 23 1.3 1.4 1.5 2.4 3.1 . 41 .09 .13 .05 .04 2.0 2.7 7.3 1.3 .09 .05 .04 25 08 1.4 1.3 1.3 1.0 . 27 08 .05 . 05 33 15 10 26 1.2 65 1.5 .81 .20 .09 .08 .05 .07 5.8 1.3 27 1.2 36 1.3 3.9 1.6 .10 .08 .05 .05 .17 16 8.5 4.3 .83 3.1 .16 .09 .08 .05 1.5 .14 .18 .05 7.0 4.7 3.4 1.2 .94 .83 .06 29 30 31 18 . 61 .16 .07 .05 43 621.05 358.31 3.03 1.96 TOTAL 266.78 200.4 5.59 111.57 27.15 218.9 60.28 3.92 20.0 8.89 MEAN 6.46 3.60 7.30 .13 1.94 .18 . 94 11.6 56 3.2 49 21 3.3 MAX 147 65 24 82 .24 .35 .95 .98 .03 MIN .83 .52 .08 .06 .03 3.26 1.82 .48 5.86 3.69 .05 .09 CFSM .98 -07 11.66 5.01 .51 6.73 4.11 .07 .06 .04 IN. 2.10 .10 1.13

CAL YR 1979 TOTAL 4883.13 MEAN 13.4 MAX 335 MIN .08 CFSM 6.77 IN 91.70 WTR YR 1980 TOTAL 1878.94 MEAN 5.13 MAX 147 MIN .03 CFSM 2.59 IN 35.28

01398102 SOUTH BRANCH RARITAN RIVER AT SOUTH BRANCH, NJ WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

LOCATION.--Lat 40°32'48", long 74°41'48", Somerset County, Hydrologic Unit 02030105, at bridge on Studdiford Drive in South Branch, 0.8 mi (1.3 km) upstream from mouth, and 2.7 mi (4.3 km) southeast of Readington.

DRAINAGE AREA.--265 mi² (686 km²).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	1	STREAM- (FLOW, INSTAN- INSTAN- (INSTAN- INSTAN- INSTAN		PH A	EMPER- CATURE,	DXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 09	1100	497	205		12.0	10.1	2.0	230	49	70	0
FEB 13	1030		268	7.0	.0	13.7		<20	<2	90	6
APR 08	1145	712	184	7.1	8.0	11.2	1.5	50	23	65	5
MAY 20	1230	363	208	7.4	18.5	9.4	2.6	490	49	7	
JUL 02	1330	243	249	8.4	25.0	9.2	<.1	49	130	90	
AUG 07	1145	232	225	8.4	26.5	8.4	<.1	24.		89	
SEP 18	1215	370	187	8.6	21.5	9.0	E1.8	3500	920	72	
		510	.01			,	20	5,500	,,,,		
DATE	CALCIU DIS- SOLVE (MG/I AS CA	DIS- ED SOLVEI (MG/L	SODIUM, DIS- SOLVED (MG/L	POTAS- SIUM, DIS- SOLVEI (MG/L AS K)	ALKA- LINITY	SULF TOT (MG	AL SOL /L (MG	VED SOL'	E, RID DI VED SOL /L (MG	E, S- VED /L	
OCT											
09 FEB		6.6	8.9	1.7	7 5	3	.0 2	2 12	2	. 1	
13 APR		8.1	1 4	1.1	+ 6	50	2	9 20)	. 1	
08 MAY	. 16	6.	8.3	1.4	1 3	37	2	1 12	2	- 1	
20 JUL	. 17	7.	11	1.3	3 4	8	.2 2	4 13	3	. 1	
02 AUG	. 22	8.5	10	1.8	3 6	2	2	5 1	7	. 1	
07 SEP	. 22	8.3	3 10	1.8	3 6	6	2	4 1:	3	.2	
18	. 18	6.6	9.5	2.0) 4	7	2	6 1:	3	.0	
DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	AT 180 DEG. 0 DIS- SOLVEI	GEN, GEN, NO2+NO3 TOTAL (MG/L	GEN,	GEN,	MONÍ. C ORGA TOT.	AM- A + NIT NIC GE AL TOT. /L (MG	N, OSPHAL TOTA	JS, DPH CARB ATE ORGA AL TOT /L (MG	NIĆ Al /L	
OCT 09	. 12	122	1.5	.300		00	.30 1	. 8	.08	1.8	
FEB 13				. 300						3.0	
A PR 08				.360						9.8	
MAY 20				. 100						5.6	
JUL 02				. 120				13.	27	. 8	
AUG											
07 SEP				. 150						3.6	
18	. 2.	5 106	.75	. 110	.3	88	.49 1	.2	. 40	3.6	

01398102 SOUTH BRANCH RARITAN RIVER AT SOUTH BRANCH, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT O9	1100	50	1	2	0	30	0	<10	10	10
20	1230	110	1		10	20	0		<10	1 <u>12</u> 1411 - 1
DATE	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)
OCT 09	3	20	360	16000	1	10	20	910	<.5	.00
MAY 20	4		260		2		40		<.5	
DATE	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT-TOM MA-TERIAL (UG/KG)
OCT 09	1	0	0	0	70	0	4	.0	.0	4
20	0	0		0		. 2				
DATE	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA - CHLOR, TOTAL IN BOT - TOM MA - TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)
OCT 09	.8	.0	.0	.0	.0	.0	.0	.0	.0	.0
MAY 20									- '4	
DATE	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TO XA - PHENE, TOTAL IN BOT - TOM MA - TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 09	.0	.0	.0	.0	.0	.0	.0	.00	0	.0
20										55%

01398107 HOLLAND BROOK AT READINGTON, NJ

LOCATION.--Lat 40°33'30", long 74°43'50", Somerset County, Hydrologic Unit 02030105, on right bank 15 ft (4.6 m) downstream from bridge on Old York Road, 0.9 mi (1.4 km) southeast of Readington, and 2.5 mi (4.0 km) upstream from mouth.

DRAINAGE AREA. -- 9.51 mi2 (24.63 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1978 to current year.

GAGE.--Water-stage recorder above a concrete parking-block control. Datum of gage is 77.65 ft (23.668 m) National Geodetic Vertical Datum of 1929 (levels by Somerset County).

REMARKS .-- Water-discharge records fair.

COOPERATION .-- Gage-height record collected in cooperation with Somerset County.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 895 ft^3/s (25.3 m^3/s) revised, Jan. 24, 1979, gage height, 6.47 ft (1.972 m); minimum, 0.22 ft^3/s (0.006 m^3/s) Aug. 28, 1980, gage height, 1.61 ft (0.491 m).

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 400 ft3/s (11.3 m3/s) and maximum (*):

			Disch	arge	Gage height		
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)	
Oct.	1	1600	446	12.6	4.61	1.405	
Mar.	21	1510	*843	23.9	6.26	1.908	

Minimum discharge, 0.22 ft3/s (0.006 m3/s) Aug. 28, gage height, 1.61 ft (0.491 m).

REVISIONS.--The peak discharges and annual maximum (*) for water years 1978 and 1979 have been revised as shown in the following table. They supersede figures published in the reports for 1978 and 1979.

Water year	Date	Time	Discharge (ft ³ /s) (m ³ /s)	Gage height (ft) (m)	Water year	Date	Time	Discharge (ft ³ /s) (m ³ /s)	Gage height (ft) (m)
1978a 1979	Aug. 11, 1978 Jan. 8, 1979 Jan. 21, 1979	1050 0640	814 23.1 449 12.7 703 19.9 *895 25.3	6.14 1.871 4.54 1.384 5.65 1.722 6.47 1.972	1979	Feb. 26, 1979 May 25, 1979 Sept. 22, 1979	0545	435 12.3	5.17 1.576 4.48 1.366 4.43 1.350

a Period June 7 to Sept. 30, 1978; maximum for year probably occurred January 26, 1978.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	98 53 44 32 30	5.5 5.4 50 31 22	11 9.8 8.4 7.8 7.0	8.9 8.3 7.4 6.5 6.5	5.0 4.7 4.4 4.5 4.2	4.1 3.9 3.8 4.0 4.4	96 47 34 59 38	24 19 16 14 12	6.0 3.9 7.0 3.8 3.3	2.9 2.5 2.6 2.3 2.3	2.0 1.7 1.7 1.6 1.7	.78 .80 .82 1.6 1.5
6 7 8 9	24 20 16 16 49	18 15 12 10 13	7.7 12 8.4 7.8 7.8	5.6 5.8 5.3 4.9	3.8 4.0 3.7 3.7 3.7	4.1 3.9 12 16 10	28 23 20 94 73	12 11 16 12 11	3.7 5.0 6.5 8.0 6.0	2.9 2.0 2.0 2.0 1.9	1.6 1.3 1.6 1.8 1.5	1.5 1.1 .77 .76
11 12 13 14 15	43 33 25 20 17	15 39 28 22	7.3 6.9 14 14	25 42 25 20 17	3.5 3.5 3.2 3.4	17 12 11 13 11	37 27 22 23 22	10 12 70 40 15	5.5 4.3 3.7 3.5 3.3	1.8 2.0 1.6 1.3 1.1	1.4 1.6 1.4 1.6	.75 .68 .61 1.1
16 17 18 19 20	14 12 10 9.1 8.5	15 12 11 9.3 8.5	13 13 10 9.6 8.4	13 11 14 30 22	4.6 3.8 3.2 3.2 3.3	14 45 93 41 30	18 15 14 13	11 11 11 11 11	3.3 3.3 2.6 2.6 2.8	.96 1.1 .86 .62 .54	2.0 1.6 1.5 1.5	1.2 2.0 6.6 1.3 1.1
21 22 23 24 25	8.0 7.4 7.0 7.9 6.9	7.9 6.8 5.4 5.2 4.8	7.7 7.4 8.0 12	18 15 14 10 9.4	3.7 7.2 14 7.9 6.6	271 89 38 30 65	11 10 9.5 9.0 8.6	18 9.4 8.6 6.4 5.0	3.1 2.9 2.6 2.4 2.2	.47 .52 .95 .75	1.3 1.1 1.1 1.0 .77	1.1 .97 .83 .60
26 27 28 29 30 31	6.4 6.0 7.3 6.6 5.8 5.6	34 31 24 18 14	31 22 17 14 12	8.1 7.4 7.0 6.2 5.7 5.4	5.5 5.4 4.9 4.1	34 26 23 40 41 130	8.3 8.7 44 44 32	4.0 3.5 3.0 2.7 2.6 3.5	2.0 2.0 2.5 7.6	.69 .82 .77 4.3 3.0 2.2	.74 .67 .37 .66 .93	1.1 .58 .54 .55
TOTAL MEAN MAX MIN CFSM IN.	648.5 20.9 98 5.6 2.20 2.54	509.8 17.0 50 4.8 1.79 1.99	379.0 12.2 40 6.9 1.28 1.48	388.8 12.5 42 4.4 1.31 1.52	135.9 4.69 14 3.2 .49	1140.2 36.8 271 3.8 3.87 4.46	900.1 30.0 96 8.3 3.16 3.52	415.7 13.4 70 2.6 1.41 1.63	117.4 3.91 8.0 2.0 .41 .46	50.44 1.63 4.3 .47 .17 .20	41.88 1.35 2.0 .37 .14 .16	35.10 1.17 6.6 .54 .12 .14

CAL YR 1979 TOTAL 9876.30 MEAN 27.1 MAX 504 MIN 1.0 CFSM 2.85 IN 38.63 WTR YR 1980 TOTAL 4762.82 MEAN 13.0 MAX 271 MIN .37 CFSM 1.37 IN 18.63

01398260 NORTH BRANCH RARITAN RIVER NEAR CHESTER, NJ

LOCATION.--Lat 40°46'16", long 74°37'34", Morris County, Hydrologic Unit 02030105, at bridge on State Route 24, 0.8 mi (1.3 km) upstream from Burnett Brook, and 3.8 mi (6.1 km) east of Chester.

DRAINAGE AREA. -- 7.57 mi2 (19.61 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1964-65, 1967, 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

			*.							
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	
OCT 09	1030	155	7.5	11.5	9.8	5.0	80	170	53	
FEB 20	1100	232	6.8	1.0	12.9		<20	<2	61	
APR 09	0930	123	6.8	10.0	10.8	2.4	3500	540	32	
MAY 21	1030	160	7.4	14.0	12.0	2.3	1300	280	46	
JUL 07	1030	205	6.1	15.5	9.0	2.8	170	1600	62	
AUG 06	1000	184	6.8	21.5	7.7	4.8	2400	>2400	55	
SEP 17	0940	358	7.3	15.0	5.1	<.3	80	2400	100	
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
OCT 09	13	4.9	10	1.5	35		15	16	.1	
FEB 20	15	5.8	16	1.4	31		17	28	.1	
APR 09	8.3	2.8	8.2	1.1	26		11	14	.1	
MAY 21	.11	4.5	12	1.1	26	.9	14	17	.1	
JUL 07	15	5.9	12	2.0	45.		16	19	.1	
AUG 06	15	4.2	6.2	2.1	33		13	21	.1	
SEP 17	24	9.7	25	4.1	61	.0	24	26	.1	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)	
OCT 09	17	111	1.2	.670	.32	.99	2.2	.57	1.6	
FEB 20	18	129	1.8	1.230				1.0	1.6	
A PR 09	9.4	82	.80	. 160	.72	.88	1.7	.50	4.5	
MAY 21	15	108	1.1	. 220	.66	.88	2.0	.40	4.3	
JUL 07	16	134	1.7	. 190	.50	.69	2.4	1.0	2.8	
AUG 06	13	145	1.2	. 170	.61	.78	2.0	.74	4.2	
SEP 17	23	222	2.9	2.300	.10	2.4	5.3	4.6	5.1	
	23	222	2.7	2.300	. 10	2.4	3.3	7.0	2.1	

01398260 NORTH BRANCH RARITAN RIVER NEAR CHESTER, NJ--Continued

DATE	TIME	NITRO- GEN, NH 4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV - ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT											
09	1030	500	.0	2.6			0				<10
MAY 21	1030				30	1		0		0	
SEP 17	0940	700	.7	7.2	20	0	0	0	150	0	<10
DATE	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 09		0	<10		<10		9500	<u></u>	10		190
MAY 21	10			3		530		2		40	
SEP 17	20	10	<10	5	<10	500	5600	1	80	40	310
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM ACT TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 09		.00		<10		0		30		30	
MAY 21	.2		1		0		30			2.0	
SEP 17	. 1	.00	46	<10	0	0	80	50	0	54	.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 09	.0	0	1.0	1.0	3.6	.0	.0	1 1	.0	.0	.0
MAY 21							122				
SEP 17	.0	9	1.7	8.1	.0	.0	. 4	.0	.0	.0	.0
31556		,		0.1			• •				
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 09	.0	.0	.0	.0	.0	.0		.0		0	.0
MAY 21											
SEP 17	.0	.0	.0	.0	.0	.0	.0	.0	.00	0	.0
2131											5.5

01398500 NORTH BRANCH RARITAN RIVER NEAR FAR HILLS, NJ

LOCATION.--Lat 40°42'30", long 74°38'11", Somerset County, Hydrologic Unit 02030105, on left bank 75 ft (23 m) upstream from Ravine Lake Dam, 1.6 mi (2.6 km) north of Far Hills, and 2.3 mi (3.7 km) upstream from Peapack Brook. Water-quality samples collected at bridge 900 ft (274 m) downstream from gage.

DRAINAGE AREA .-- 26.2 mi2 (67.9 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1921 to September 1975, October 1977 to current year. Operated as crest-stage gage water years 1976-77. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1552: 1922-23, 1924-25(M), 1935(M). WSP 1902: 1954.

GAGE.--Water-stage recorder above masonry dam. Datum of gage is 224.49 ft (68.425 m) National Geodetic Vertical Datum of 1929 (New Jersey Geological Survey bench mark). Prior to June 18, 1925, nonrecording gage in stilling box at left end of dam at same datum.

REMARKS.--Water-discharge records fair. Records given herein include diversion by small turbine at dam and returned to river 1,000 ft (300 m) downstream from Ravine Lake Dam. Flow regulated occasionally by operation of waste gate in dam.

COOPERATION .-- Gage-height record collected in cooperation with Somerset County.

AVERAGE DISCHARGE.--57 years (water years 1922-75, 1978-80) 48.0 ft3/s (1.359 m3/s), 24.88 in/yr (632 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,390 ft³/s (181 m³/s) Aug. 28, 1971, gage height, 7.28 ft (2.219 m), from rating curve extended above 2,000 ft³/s (57 m³/s) on basis of computation of peak flow over dam; no flow at times when Ravine Lake was filling.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Stage of 7.6 ft (2.3 m), from floodmark, occurred July 23, 1919, discharge about 7,000 ft³/s (200 m³/s).

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 700 ft3/s (19.8 m3/s) and maximum (*):

			Discha		Gage h	eight				Disch		Gage h	eight
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Jan. Mar.	11	2230 1645	1030 * 2500	29.2	3.82	1.164	Apr.	9 28	1415 1530	1030 753	29.2	3.76	1.146
riai .		10.5	2,000	10.0	3.01	1.545	Apr .	20	1330	123	-1.5	3. 13	

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum discharge, 3.2 ft3/s (0.091 m3/s) Sept. 14, 15, 20, 22, gage height, 1.79 ft (0.546 m).

			,			MEAN VAI	LUES	0.000	, , , , , , , , , , , , , , , , , , , ,			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	105 67 59 54 50	40 40 183 59 47	45 43 41 41 41	42 41 40 38 38	26 31 29 31 29	17 25 25 25 24	330 210 174 293 168	88 79 75 70 65	68 50 62 60 42	26 20 20 20 18	12 17 25 16 15	5.6 5.3 5.1 5.0 5.0
6 7 8 9	51 46 45 45 81	43 42 41 40 46	45 80 48 45 44	36 36 36 34 31	29 28 28 27 27	24 23 28 38 30	143 128 120 393 259	63 63 102 70 64	38 44 42 40 58	53 24 19 17 16	41 20 13 11 10	5.7 5.3 4.7 4.6 4.8
11 12 13 14 15	70 59 57 48 47	48 79 48 44 42	43 42 62 55 43	152 212 55 51 52	28 28 26 26 27	41 30 27 30 36	157 139 125 148 151	61 87 198 88 74	42 36 32 31 29	16 16 15 13	9.2 11 9.7 8.3 8.4	4.5 4.4 4.5 3.8 3.5
16 17 18 19 20	46 45 44 43 43	41 40 40 40	43 51 43 41 40	48 45 45 66 50	33 29 25 26 29	33 42 387 88 68	112 99 92 92 89	68 66 67 67 64	28 27 26 25 24	13 16 15 13	8.5 7.7 7.2 7.4 8.6	3.5 3.5 5.7 4.3 3.4
21 22 23 24 25	43 46 46 53 48	39 38 37 37 37	38 39 41 50 119	46 44 45 42 39	33 36 42 43 36	692 255 146 124 235	85 72 66 63 60	70 63 54 52 48	23 22 20 19	11 11 19 17 14	9.2 8.0 7.7 7.0 6.3	3.4 6.0 14 7.7 5.3
26 27 28 29 30	46 44 56 59 42	186 84 54 50 47	59 46 46 44 43	38 37 37 36 32 31	31 27 27 21	147 136 127 188 171 261	60 69 282 160 103	43 41 40 39 38 43	17 17 17 17 52	13 12 12 12 20 14	6.0 5.9 5.7 5.7 5.7	5.7 5.2 4.8 4.8 5.1
TOTAL MEAN MAX MIN CFSM IN.	1633 52.7 105 42 2.01 2.32	1652 55.1 186 37 2.10 2.35	1510 48.7 119 38 1.86 2.14	1575 50.8 212 31 1.94 2.24	858 29.6 43 21 1.13 1.22	3523 114 692 17 4.35 5.00	1442 148 393 60 5.65 6.31	2110 68.1 198 38 2.60 3.00	1027 34.2 68 17 1.31 1.46	530 17.1 53 11 .65	338.9 10.9 41 5.7 .42 .48	154.2 5.14 14 3.4 .20

CAL YR 1979 TOTAL 26218.0 MEAN 71.8 MAX 968 MIN 15 CFSM 2.74 IN 37.22 WTR YR 1980 TOTAL 19353.1 MEAN 52.9 MAX 692 MIN 3.4 CFSM 2.02 IN 27.48

01398500 NORTH BRANCH RARITAN RIVER NEAR FAR HILLS, NJ -- Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

COOPERATION.--Selected field data and samples for laboratory analyses supplied by the New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 09	1230	46	153	7.7	13.0	10.2	2.0	50	.5
MAR 05	0945	23	204	7.0	3.5	13.0	<.5	<20	<2
APR 09	1045	255	138	6.8	10.0	9.4	1.2	20	12
MAY 21	1230	73	153	7.7	15.5	10.7	3.8	40	2
JUL 07	0920	25	140	7.8	20.0	8.2	2.8	130	920
AUG 06	1115	47	190	7.6	25.0	7.8	5.4	<20	2400
SEP 17	1130	3.5	205	7.4	19.0	7.2	<.1	50	240
DATE	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO - RIDE, DIS- SOLVED (MG/L AS F)
OCT 09	53	13	4.9	7.2	1.3	33	15	12	. 1
MAR 05	55	13	5.4	14	1.2	37	19	25	. 1
A PR 09	41	10	3.9	. 7.5	1.0	34	15	13	. 1
MAY 21	48	11	5.0	9.5	.9	30	16	12	.1
JUL 07	56	14	5.2	8.1	1.5	43	16	13	. 1
AUG 06	61	15	5.7	8.8	1.7	47	15	15	.2
SEP 17	72	18	6.5	10	1.7	51	16	15	.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 09	16	100	- 22		22			. 10	1.7
MAR 05	15	125	1.3	.300	.33	.63	1.8	.20	3.2
A PR 09	14	95	1.0	.110	• 33	. 44	1.4	<.01	2.4
MAY 21	16	105	.92	.090	.30	:39	1.3	.11	2.6
JUL 07	15	112	.76	. 160	.68	. 84	1.6	. 18	5.2
AUG 06	15	121	. 44	. 160	.83	.99	1.4	. 37	4.4
SEP 17	15	133	.20	. 170	3.1	3.3	3.5	. 18	3.0

01399120 NORTH BRANCH RARITAN RIVER AT BURNT MILLS, NJ

LOCATION.--Lat 40°38'09", long 74°40'56", Somerset County, Hydrologic Unit 02030105, at bridge on Burnt Mills Road in Burnt Mills, 0.1 mi (0.2 km) upstream from Lamington River, and 4.0 mi (6.4 km) southwest of Far Hills.

DRAINAGE AREA .-- 63.8 mi2 (165.2 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1964, 1977 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	DUG ANG (MIG	FIC N- CT-	PH FIEL (UNIT	D W	EMPER- TURE, VATER DEG C)	SC	GEN, OIS- OLVED G/L)	DEM BIO UNI	AND, CHEM NHIB DAY	COLI- FORM, FECAL, EC BROTH (MPN)	TOC	REP- COCCI CCAL IPN)	HARI NESS (MG/ AS CACO	S /L
OCT 09	1400	38		200	. 8	. 3	13.0		11.5		1.0	130		130		69
MAR 05	1100	38		238	7	. 0	1.5		14.5		<.5	<20		33		70
A PR 14	1150	340		163	7	.0	10.5		10.7		. 9	630		540		49
MAY 21	1400	164		204		. 6	15.0		10.5		2.2	3500	,	2400		63
JUL 07	1230	38		195		. 0	20.0		11.6		2.1	1300		350		65
AUG																
O6 SEP	1215	62		200		. 7	24.0		8.0		2.7	9200	,	2400		69
17	1220			273	7	• 9	18.0		10.4		5.2	1700		920		100
DATE	CALCI DIS- SOLV (MG/ AS C	TUM S TED SOI 'L (MC	GNE- IUM, IS- LVED G/L MG)	SODIU DIS- SOLVE (MG/ AS N	D L	POTAS- SIUM, DIS- SOLVEI (MG/L AS K)	ALK LINI	TY /L	SULF TOT (MG AS	AL /L	SULFAT DIS- SOLVE (MG/L AS SO4	D SOI	DE, S- LVED	FLUC RIDE DIS SOLV (MG/ AS F	E, ED L	
OCT 09	17	,	6.4		. 9	1.7	,	44			21		12		.1	
MAR											9,-					
05 A PR	17		6.7	15		1.2		48			21		24		.1	
14 MAY	12	2	4.6	8	. 4	1.1	1	30			18		13		. 1	
21 JUL	15	5	6.3	14		1.0)	43		.0	18	1	18		. 1	
07 AUG	16	5	6.1	9	. 5	1.6	5	54			18	1	14		. 1	
06 SEP	17	,	6.4	9	. 3	1.9)	50			15	1	15		. 2	
17	25	5	9.5	14		2.	1	72		.0	22		19		. 2	
1										3.1						
DATE	SILIC DIS- SOLV (MG/ AS SIO2	A, RES AT VED DE 'L D SO	IDS, IDUE 180 G. C IS- LVED*	NITR GEN NO2+N TOTA (MG/ AS N	03 A L L	MITRO- GEN, MMONIA TOTAL (MG/L AS N)	GE	NÍC AL /L	NITR GEN, MONI ORGA TOT (MG AS	AM- A + NIC AL /L	NITRO GEN, TOTAL (MG/L AS N)	OSPH TOT	RUS, HOPH HATE TAL G/L	CARBO ORGAN TOTA (MG/ AS C	NIĆ L 'L	
OCT 09	13	3	110	<1.	0	. 280)	. 17		. 45			.10		1.9	
MAR 05	12	2	137	1.	4	.210)	. 27		. 48	1.9		. 21		1.9	
APR 14	13	3	93	1.	0	.080)	.33		. 41	1.4		. 26		1.2	
MAY 21	13		135	1.		. 320		. 17		. 49	1.5		.11		3.3	
JUL 07			120		76	. 120		.00		. 12	. 8		. 16			
AUG 06			121	1.		. 160		.66		. 82	1.8		.58	1	1.9	
SEP 17			181	1.		. 110		.71		. 82	2.0		. 49		3.5	

01399120 NORTH BRANCH RARITAN RIVER AT BURNT MILLS, NJ--Continued

		WAILN	QUALITI	DAIA, WAI	EN IEAN	CIUBER 19	19 10 361	TEMBER 15	900		
DATE	TIME	NITRO- GEN, NH 4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
MAY	1400				10	1		0	6	0	
SEP							-				
17	1220	1600	.0	13	20	1	0	0	80	0	<10
DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
MAY 21	20	22		4		350		11		60	
SEP	20	30	(10		/10		2500	1	10		270
17	20	30	<10	3	<10	300	3500	4	10	30	210
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
MAY											
21 SEP	.2		1		0		30				
17	<.1	.00	42	10	0	0	30	40	0	7	.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)		HEPTA CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
MAY											
SEP	100							- 5		55	
17	.0	3	.0	. 0	.0	. 0	.0	.0	.0	.0	.0
DATE	HE PTA - CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TO XA - PHENE, TOTAL IN BOT - TOM MA - TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
MAY											
SEP							-	- 7			
17	.0	.0	.0	.0	.0	.0	.0	.0	.00	0	.0

01399190 LAMINGTON (BLACK) RIVER AT SUCCASUNNA, NJ

LOCATION.--Lat 40°51'03", long 74°38'02", Morris County, Hydrologic Unit 02030105, on right bank, 10 ft (3 m) upstream from bridge on Righter Road, 0.7 mi (1.1 km) south of Succasunna, and 0.4 mi (0.6 km) upstream from Succasunna Brook.

DRAINAGE AREA. -- 7.37 mi2 (19.09 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1976 to current year.

GAGE.--Water-stage recorder above prefabricated concrete bumper-block control. Altitude of the gage is 695 ft (212 m), from topographic map.

REMARKS. -- Water-discharge records good.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 176 ft³/s (4.98 m³/s) Jan. 24, 1979, gage height, 5.20 ft (1.585 m); minimum discharge 1.2 ft³/s (0.034 m³/s) Sept. 11, 12, 1980, gage height, 2.27 ft (0.692 m).

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 40 ft3/s (1.13 m3/s) and maximum (*):

Date		Time	Discha (ft³/s)		Gage h	eight (m)	Date		Time	Discha (ft ³ /s)		Gage h	eight (m)
Nov. Jan.	26	1745 2145	45 50	1.27	3.88	1.183	Apr.	9	1515 0945	54 51	1.53	4.03 3.98	1.228
Mar.	21	1800	*68	1.93	4.24	1.292	npi .	29	0,77			3.70	

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum discharge, 1.2 ft3/s (0.03 m3/s) Sept. 11, 12, gage height, 2.27 ft (0.692 m).

					MEAN VA	LUES						
OCT	NO V	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
18 22 23 22 19	9.8 9.4 27 26 21	18 16 14 13	12 11 11 11	8.6 8.3 8.0 8.0	6.7 6.4 6.1 6.1 6.2	34 33 29 34 34	38 32 28 25 23	12 10 12 12 9.6	6.0 5.2 5.3 5.6 6.5	3.3 4.4 5.3 4.4 3.7	2.0 1.9 1.6 1.5	
18 16 15 15 20	17 15 13 12 14	13 18 16 15 13	10 10 9.9 9.6 9.4	7.8 7.8 7.7 7.6 7.5	6.4 6.2 6.6 7.2 6.7	30 26 24 39 50	21 20 22 20 19	8.3 8.4 8.2 9.1	8.9 7.0 5.7 5.3 4.9	4.6 3.7 3.3 3.1 3.1	1.6 1.7 1.7 1.5 1.4	
22 21 20 18 16	16 19 17 14	12 11 15 15 14	19 36 26 21 19	7.4 7.4 7.3 7.3	7.6 7.2 6.9 13 7.8	44 38 33 31 34	18 20 25 22 18	8.6 7.7 7.0 6.8 6.7	4.8 5.0 5.0 4.7 4.2	2.9 2.6 2.5 2.4 2.4	1.3 1.3 1.4 1.5	
14 13 13 12 13	11 11 11 9.7 9.1	13 14 11 12 12	17 15 14 17 15	7.9 7.9 7.4 7.3 7.3	7.2 8.9 22 20 16	32 28 25 24 23	16 14 14 13	6.2 5.6 5.1 5.0 5.2	5.5 5.6 5.1 4.8 4.8	2.4 2.5 2.4 2.1 2.4	1.9 1.8 2.7 1.8 1.7	
13 12 11 12 11	9.0 9.4 9.1 8.5 8.9	11 11 11 13 21	13 12 12 11 10	7.3 7.8 8.5 8.7 8.6	37 52 41 33 37	22 20 19 19 19	14 14 13 12	5.2 5.2 4.8 4.3 4.2	4.6 4.0 4.5 4.1 3.7	2.3 2.2 2.1 2.3 2.3	1.7 1.6 1.5 1.4 1.5	
10 10 13 13 12	26 35 29 23 20	20 16 14 13 12	10 10 10 9.8 9.4 9.1	8.1 7.5 7.4 7.4	31 26 23 25 25 28	19 19 34 47 44	9.9 8.8 7.7 7.5 7.3 8.5	4.0 3.9 3.9 4.1 8.3	3.5 3.5 3.2 3.3 3.7 3.4	2.0 1.8 1.8 1.8 1.8	1.6 1.4 1.4 1.3 1.4	
478 15.4 23 10 2.09 2.41	471.9 15.7 35 8.5 2.13 2.38	432 13.9 21 11 1.89 2.18	420.2 13.6 36 9.1 1.85 2.12	225.0 7.76 8.7 7.2 1.05 1.14	539.2 17.4 52 6.1 2.36 2.72	907 30.2 50 19 4.10 4.58	533.7 17.2 38 7.3 2.33 2.69	209.7 6.99 12 3.9 .95 1.06	151.4 4.88 8.9 3.2 .66 .76	85.8 2.77 5.3 1.8 .38 .43	48.6 1.62 2.7 1.3 .22 .25	
	18 22 23 22 19 18 166 15.5 20 22 21 20 18 16 14 13 13 12 11 11 12 11 11 12 11 14 78 15.4 4 23 12.09	18 9.8 22 9,4 23 27 22 26 19 16 15 13 15 12 20 14 22 16 21 19 20 17 18 11 13 11 11 12 9.7 13 9.1 13 9.1 14 11 13 11 12 9.7 13 9.1 14 8.5 11 8.9 10 26 10 35 11 8.9 10 26 10 35 11 8.9 10 26 10 35 11 8.9 10 26 10 35 11 8.9 10 26 10 35 11 8.9 10 26 10 35 11 8.9 10 26 10 35 11 8.9 10 26 10 35 11 8.9 10 26 10 35 11 8.9 10 26 10 35 11 8.9 10 26 10 35 11 8.9 10 26 10 35 11 8.9	18	18 9.8 18 12 22 9.4 16 11 23 27 14 11 22 26 13 11 19 21 13 11 18 17 13 10 16 15 18 10 15 13 16 9.9 15 12 15 9.6 20 14 13 9.9 22 16 12 19 21 19 11 36 20 14 13 6 20 14 13 9.4 21 19 11 36 20 17 15 26 21 19 11 36 20 17 15 26 21 19 11 13 14 11 13 17 13 11 14 15 13 11 14 15 13	18 9.8 18 12 8.6 22 9.4 16 11 8.3 23 27 14 11 8.0 22 26 13 11 8.0 19 21 13 11 8.0 18 17 13 10 7.8 16 15 18 10 7.8 16 15 18 10 7.8 15 13 16 9.9 7.7 15 12 15 9.6 7.6 20 14 13 9.4 7.5 22 16 12 19 7.4 21 19 11 36 7.4 20 17 15 26 7.3 18 14 15 21 7.3 16 12 19 7.4 20 17 15 26 7.3 18 14 15 21 7.3 18 14 15	OCT NOV DEC JAN FEB MAR 18 9.8 18 12 8.6 6.7 22 9.4 16 11 8.3 6.4 23 27 14 11 8.0 6.1 22 26 13 11 8.0 6.1 19 21 13 11 8.0 6.2 18 17 13 10 7.8 6.4 16 15 18 10 7.8 6.4 15 13 16 9.9 7.7 6.6 15 12 15 9.6 7.6 7.2 20 14 13 9.4 7.5 6.7 22 16 12 19 7.4 7.6 21 19 11 36 7.4 7.2 20 17 15 26 7.3 6.9 18 14	18 9.8 18 12 8.6 6.7 34 22 9.4 16 11 8.3 6.4 33 23 27 14 11 8.0 6.1 29 22 26 13 11 8.0 6.1 34 19 21 13 11 8.0 6.1 34 18 17 13 10 7.8 6.4 30 16 15 18 10 7.8 6.2 26 15 13 16 9.9 7.7 6.6 24 15 12 15 9.6 7.6 7.2 39 20 14 13 9.4 7.5 6.7 50 22 16 12 19 7.4 7.6 44 21 19 11 36 7.4 7.2 38 20 17 15 26 7.3 6.9 33 18 14 15 21 7.3 13	NOV DEC JAN FEB MAR APR MAY	OCT NOV DEC JAN FEB MAR APR MAY JUN 18 9.8 18 12 8.6 6.7 34 38 12 22 9.4 16 11 8.3 6.4 33 32 10 23 27 14 11 8.0 6.1 29 28 12 22 26 13 11 8.0 6.2 34 23 9.6 18 17 13 10 7.8 6.4 30 21 8.3 16 15 18 10 7.8 6.2 26 20 8.3 15 13 16 9.9 7.7 6.6 24 22 8.4 15 12 15 9.6 7.6 7.2 39 20 8.2 20 14 13 9.4 7.5 6.6 24 22 8.4 15 12 15 9.6 7.6 7.2 39 20 8.2 20 14 13 9.4 7.5 6.6 24 22 8.4 15 12 15 9.6 7.6 7.2 39 20 8.2 20 17 15 26 7.3 6.9 33 25 7.0 18 14 15 72 38 20 7.7 20 17 15 26 7.3 6.9 33 25 7.0 18 14 11 13 17 7.9 7.2 38 20 7.7 21 14 11 13 17 7.9 7.2 38 34 18 6.7 14 11 13 17 7.9 7.2 32 16 6.2 13 9.0 11 13 7.3 37 22 14 5.2 13 9.0 11 12 7.3 36 37 22 14 5.2 13 9.0 11 12 7.8 52 20 14 5.2 13 9.0 11 13 7.3 37 22 14 5.2 13 9.0 11 12 7.8 52 20 14 5.2 13 9.0 11 13 8.7 3 37 22 14 5.2 11 9.1 11 12 7.8 52 20 14 5.2 13 9.0 11 13 7.3 37 22 14 5.2 11 9.1 11 12 7.8 52 20 14 5.2 11 9.1 11 12 7.8 52 20 14 5.2 11 9.1 11 12 8.7 3 37 22 14 5.2 11 9.1 11 12 7.8 52 20 14 5.2 11 9.1 11 12 8.7 3 37 22 14 5.2 11 9.1 11 12 8.7 3 37 22 14 5.2 12 9.4 11 12 7.8 52 20 14 5.2 13 9.0 11 13 7.3 37 22 14 5.2 13 9.0 11 13 8.7 3 37 22 14 5.2 11 9.1 11 12 8.7 3 37 19 11 4.2 10 26 20 10 8.1 31 19 9.9 4.0 10 35 16 10 7.4 23 34 7.7 3.9 11 8.9 21 10 8.6 37 19 11 4.2 10 26 20 10 8.1 31 19 9.9 4.0 10 35 16 10 7.4 23 34 7.7 3.9 13 23 13 9.8 7.4 25 47 7.5 4.1 24 25 26 47 7.5 4.1 25 26 7.0 38 7.4 25 47 7.5 4.1 26 27 9.4 7.5 4.1 27 9.4 7.5 4.1 28 471.9 432 420.2 225.0 539.2 907 533.7 209.7 15.4 471.9 432 420.2 225.0 539.2 907 533.7 209.7 15.4 471.9 432 420.2 225.0 539.2 907 533.7 209.7 15.4 471.9 432 420.2 225.0 539.2 907 533.7 209.7 15.4 471.9 432 420.2 225.0 539.2 907 533.7 209.7 15.4 471.9 432 420.2 225.0 539.2 907 533.7 209.7 15.4 471.9 432 420.2 225.0 539.2 907 533.7 209.7 15.5 471.9 432 420.2 225.0 539.2 907 533.7 209.7 15.6 471.9 432 420.2 225.0 539.2 907 533.7 209.7	OCT NOV DEC JAN FEB MAR APR MAY JUN JUL 18 9.8 18 12 8.6 6.7 34 38 12 6.0 22 9.4 16 11 8.3 6.4 33 32 10 5.2 23 27 14 11 8.0 6.1 29 28 12 5.3 19 21 13 11 8.0 6.1 29 28 12 5.3 19 21 13 11 8.0 6.1 34 25 12 5.6 19 21 13 10 7.8 6.4 30 21 8.3 8.9 16 15 18 10 7.8 6.4 30 21 8.3 8.9 16 15 18 10 7.8 6.4 30 21 8.3 7.0 15	OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 18 9.8 18 12 8.6 6.7 34 38 12 6.0 3.3 22 9.4 16 11 8.3 6.4 33 32 10 5.2 4.4 23 27 14 11 8.0 6.1 29 28 12 5.3 5.3 22 26 13 11 8.0 6.1 34 25 12 5.6 4.4 19 21 13 11 8.0 6.2 34 25 12 5.6 4.4 16 15 18 10 7.8 6.2 26 20 8.3 7.0 3.7 15 13 16 9.9 7.7 6.6 24 22 8.4 5.7 3.3 15 12 19 4.6 7.2 </td <td>OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 18 9.8 18 12 8.6 6.7 34 38 12 6.0 3.3 2.0 22 9.4 16 11 8.3 6.4 33 32 10 5.2 4.4 1.9 23 27 14 11 8.0 6.1 29 28 12 5.3 5.3 1.6 22 26 13 11 8.0 6.1 34 25 12 5.6 4.4 1.5 19 21 13 11 8.0 6.2 34 25 12 5.6 4.4 1.5 19 21 13 10 7.8 6.4 30 21 8.3 8.9 4.6 1.6 16 15 18 10 7.8 6.2 26 20 8.3</td>	OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 18 9.8 18 12 8.6 6.7 34 38 12 6.0 3.3 2.0 22 9.4 16 11 8.3 6.4 33 32 10 5.2 4.4 1.9 23 27 14 11 8.0 6.1 29 28 12 5.3 5.3 1.6 22 26 13 11 8.0 6.1 34 25 12 5.6 4.4 1.5 19 21 13 11 8.0 6.2 34 25 12 5.6 4.4 1.5 19 21 13 10 7.8 6.4 30 21 8.3 8.9 4.6 1.6 16 15 18 10 7.8 6.2 26 20 8.3

CAL YR 1979 TOTAL 6150.1 MEAN 16.8 MAX 108 MIN 5.7 CFSM 2.28 IN 31.04 WTR YR 1980 TOTAL 4502.5 MEAN 12.3 MAX 52 MIN 1.3 CFSM 1.67 IN 22.72

01399200 LAMINGTON (BLACK) RIVER NEAR IRONIA, NJ

LOCATION.--Lat 40°50'07", long 74°38'40", Morris County, Hydrologic Unit 02030105, on left bank 15 ft (4.5 m) upstream from bridge on Ironia Road, 1.0 mi (1.6 km) below Succasunna Brook, 1.3 mi (2.1 km) northwest of Ironia, and 4.4 mi (7.1 km) northeast of Chester.

DRAINAGE AREA .-- 10.9 mi2 (28.2 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1975 to current year.

GAGE.--Water-stage recorder above prefabricated concrete bumper-block control. Altitude of gage is 681 ft (208 m), from topographic map.

REMARKS.--Water-discharge records poor. Water for municipal supply pumped from wells upstream of gage by Morris County Municipal Utilities Authority.

AVERAGE DISCHARGE. -- 5 years, 20.8 ft3/s (0.589 m3/s), 25.92 in/yr (658 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 348 ft³/s (9.86 m³/s) Jan. 25, 1979, gage height, 5.27 ft (1.606 m); minimum daily discharge, 1.6 ft³/s (0.045 m³/s) Sept. 11, 12, 1980.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 80 ft3/s (2.27 m3/s) and maximum(*):

Date		Time	Discha (ft³/s)		Gage h	eight (m)	Date		Time	Discha (ft³/s)		Gage h	neight (m)
Jan. Mar.	12	0900 0145	88 *149	2.35	3.65 4.01	1.113	Apr.	10	0045	99 85	2.80	3.53	1.076

Minimum daily discharge, 1.6 ft³/s (0.045 m³/s) Sept. 11, 13.

		DISC	HARGE, IN	CUBIC FE	ET PER S	ECOND, WAT MEAN VA	ER YEAR C	CTOBER 19	79 TO SE	TEMBER 19	080	
DA Y	OCT	NO V	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	19 33 28 29 25	11 11 30 39 30	26 24 23 21 21	20 18 17 16 16	14 14 13 13	11 9.9 9.6 8.6 9.1	62 62 51 56 59	55 48 42 38 34	25 17 21 27 15	12 8.0 7.3 7.1 7.1	8.1 11 20 16 13	3.3 3.2 2.5 2.1 2.3
6 7 8 9	23 20 19 18 22	23 20 17 16 18	22 30 28 25 22	17 15 15 14 14	12 12 13 13	9.6 9.6 11 15	49 43 38 60 89	29 28 37 33 27	11 11 12 11 17	22 12 7.6 6.4 5.6	20 16 11 9.0 8.1	2.7 2.6 2.7 2.1 1.8
11 12 13 14 15	29 28 26 24 21	22 27 26 21 18	20 19 24 30 25	22 75 70 57 35	12 12 12 12 12	16 14 10 18 14	67 57 51 49 55	25 32 51 41 29	14 10 8.5 7.7 7.5	5.3 6.1 5.9 5.4 4.3	7.5 6.6 5.6 4.7 4.7	1.6 1.6 1.7 1.8 2.1
16 17 18 19 20	18 16 15 15	15 14 13 13	22 25 20 18 20	30 27 26 32 29	14 15 14 13	11 13 65 54 30	51 44 39 36 35	24 21 21 21 19	6.8 5.7 5.2 5.0 5.7	9.7 11 8.9 7.2 6.9	4.8 4.2 4.0 3.3 3.4	2.1 2.0 4.2 3.7 3.2
21 22 23 24 25	13 13 12 13 12	11 11 12 11 11	19 18 19 26 37	24 23 23 22 18	14 15 17 20 20	63 124 78 60 64	33 29 28 28 28	23 23 19 17 16	5.5 5.1 4.8 4.0 3.9	6.3 5.2 9.1 9.1 6.7	3.9 3.5 3.6 3.8	3.0 2.9 2.3 2.0 1.9
26 27 28 29 30 31	11 10 13 19 15	28 58 41 34 29	38 30 24 22 21 20	18 17 17 17 16 15	18 16 15 14	56 45 39 41 46 47	27 29 52 83 68	13 11 9.5 9.2 8.9	3.8 3.8 3.8 4.4	5.4 5.6 5.6 6.3 11 9.4	3.2 2.8 2.5 2.7 2.8 3.0	2.2 1.9 1.9 1.9
TOTAL MEAN MAX MIN CFSM IN.	585 18.9 33 10 1.73 2.00	642 21.4 58 11 1.96 2.19	739 23.8 38 18 2.18 2.52	775 25.0 75 14 2.29 2.64	408 14.1 20 12 1.29 1.39	1014.4 32.7 124 8.6 3.00 3.46	1458 48.6 89 27 4.46 4.98	814.6 26.3 55 8.9 2.41 2.78	300.2 10.0 27 3.8 .92 1.02	245.5 7.92 22 4.3 .73 .84	216.3 6.98 20 2.5 .64	71.0 2.37 4.2 1.6 .22 .24

CAL YR 1979 TOTAL 10146.0 MEAN 27.8 MAX 241 MIN 8.0 CFSM 2.55 IN 34.62 WTR YR 1980 TOTAL 7269.0 MEAN 19.9 MAX 124 MIN 1.6 CFSM 1.83 IN 24.81

01399200 LAMINGTON (BLACK) RIVER NEAR IRONIA, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1977 to current year.

COOPERATION.--Selected field data and samples for laboratory analyses supplied by the New Jersey Department of Environmental Protection Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were preformed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE		STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGE DIS SOLVI (MG/I	N, BIO	MAND, FOCHEM FINHIB DAY E	EC TO	STREP- DCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
01	1030	15	298	7.2	16.5	6	. 1		80	49	84
FEB 20	0945	12	370	7.3	.0	11	. 5	2.2	<20	5	100
APR 10	0930	92	212	6.8	8.0		. 8	1.0	330	130	50
MAY 21	1000	21	310	7.0	15.5		. 4	5.0	790	32	79
JUL 07	0915	13	290	7.2	18.0		. 1	3.2	490	240	92
AUG 06	0930	21	288	7.0	18.0		. 9	3.0	3500	700	72
SEP 17	0945	1.4	455	6.2	17.0		. 2	E5.7	330	350	110
DATE	CALCI DIS- SOLVI (MG/I	MAGN UM SIU DIS ED SOLV	NE- UM, SODI S- DIS VED SOLV	POT. UM, SI DISED SOL	AS- UM, ALE S- LINI VED (MC	CA- ITY SI G/L	ULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVE:	FLUO RIDE DIS D SOLV (MG/	- - ED L
OCT 01	. 21	7	.7 2	4	2.3	66		15	30		.1
FEB 20	. 25		.8 3	1	2.2	83		25	39		.2
APR 10	. 12		1,8 1	9	1.5	47		. 13	25		. 1
MAY 21			3.3 3		1.6	63	.1	19	38		. 1
JUL 07			0.5 3		2.1	76		22	33		.1
AUG 06			7.7 2		2.0	60		19	32		.1
SEP 17		11				75	.0	29	. 47		.1
	. 25	10.0	4		5.8	15	.0	29	- 41		•
DATE	SILIC DIS- SOLVI (MG/I AS SIO2	AT 18 ED DEG. L DIS SOLV	0UÉ NIT 30 GE C NO2+ 5- TOT 7ED (MG	N, GE NO3 AMMO AL TOTA /L (MG	N, GE NIA ORGA AL TOT /L (MC	RO- GI N, MO NIC OI TAL	ITRO- EN, AM- ONIA + RGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS ORTHOPI OSPHATI TOTAL (MG/L AS PO4	H CARBO E ORGAN TOTA (MG/	IĆ L L
ОСТ				4.6							777
O1 FEB				, 6 .	600	. 30	.90	2.5	1.1	200	. 2
20 APR		2	206 2	. 8	340				1.2	4	. 7
10 MAY	. 7	.0 1	126 1	. 0	460	. 17	.63	1.6	. 8!	5 5	.0
JUL 21	. 9	.2 1	172 1	. 4 .	290 1	1.1	1.4	2.8	1.3	7	. 9
07 AUG	. 8	. 4 1	183 1	. 2	260	.60	.86	2.1	1.0	3	. 9
06 SEP	. 8	.7 1	170 1	.0 .	250	.37	.62	1.6	. 8:	3 5	.1
17.,	. 16	2	273 6	.0 1.	300	1.1	2.4	8.4	6.7		

01399200 LAMINGTON (BLACK) RIVER NEAR IRONIA, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	NITRO- GEN, NH 4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM AL TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
MAY 21 SEP	1000				30	0		0	30	0	
17	0945	110	.0	2.3	20	0	0	0	220	0	<10
DATE	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
MAY 21	10	- 22	120	6		720		7		280	
SEP 17	10	40	<10	5	<10	250	640	1	<10	50	19
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
MAY 21	.2		1		0		20				
SEP 17	.6	.00	17	<10	0	0	20	10	2	2	.0
17	.0	.00	11	110	U	U	20	10	2	2	.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
MAY 21		1212									
SEP 17	.0	0	.0	.0	.0	.0	.0	.0	.0	.0	.0
.,,,,,				••		.0	.0			••	••
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
MAY											
21 SEP											
17	.0	.0	.0	.0	.0	.0	.0	.0	.00	0	.0

01399500 LAMINGTON (BLACK) RIVER NEAR POTTERSVILLE, NJ

LOCATION.--Lat 40°43'39", long 74°43'50", Morris County, Hydrologic Unit 02030105, on right bank 1.1 mi (1.8 km) upstream from bridge on State Highway 512, 1.2 mi (1.9 km) northwest of Pottersville, and 5.5 mi (8.8 km) upstream from Cold Brook. Water-quality sample collected at bridge 1.1 mi (1.8 km) downstream from gage at high flows. DRAINAGE AREA.--32.8 mi² (85.0 km²). PERIOD OF RECORD.--October 1921 to current year. Monthly discharge only for October and November 1921, published in WSP 1302. Prior to October 1952, published as "Black River near Pottersville". REVISED RECORDS.--WSP 741: 1932. WSP 781: Drainage area. WSP 1552: 1922, 1924-29(M), 1931(M), 1933-34(M), 1938(P), 1939(M), 1940, 1941(M), 1942-46(P), 1947(M), 1948-49(P), 1951-52(P), 1953(M). GAGE.--Water-stage recorder. Concrete control since July 1, 1937. Datum of gage is 284.14 ft (86.606 m) National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to July 1, 1922, nonrecording gage on downstream side of highway bridge at Pottersville, 1.1 mi (1.8 km) downstream at different datum. datum.

REMARKS. -- Water-discharge records good. No gage-height record July 22 to Sept. 4. Flow regulated occasionally by

pond above station.

AVERAGE DISCHARGE.--59 years, 56.2 ft³/s (1.592 m³/s), 23.25 in/yr (591 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,700 ft³/s (76.5 m³/s) Aug. 28, 1971, gage height, 5.39 ft (1.643 m), from rating curve extended above 380 ft³/s (10.8 m³/s) on basis of slope-area measurement at gage height 4.71 ft (1.436 m); minimum, 1.3 ft³/s (0.037 m³/s) Oct. 4, 1930.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 380 ft³/s (10.8 m³/s) and maximum (*):

Date	,	Time	Discha (ft ³ /s)		Gage h	eight (m)	Date		Time	Discha (ft ³ /s)		Gage h	eight (m)
Oct.		1430	493	14.0			Mar.	21	1315	*620	17.6	3.47	1.058
Nov	3	0500	403	11.4	3.12	0.951	Apr.	9	1130	482	13.7	3.24	0.988
Jan.		2000	384	10.9		0.930							
Mi	nimum	discharge,	5.2 ft	/s (0.15	$m^3/s)$ S	ept. 12-17,	gage height,	1.37	ft (0.4	18 m).			

Corrections. -- The AVERAGE DISCHARGE and EXTREMES published in the report for Water Year 1979 were actually those for Water Year 1978. The correct EXTREMES for Water Year 1979 are shown below:

EXTREMES FOR 1979 WATER YEAR .-- Peak discharges above base of 380 ft3/s (10.8 m3/s) and maximum (*):

Date		Time	Discha (ft³/s)		Gage h	eight (m)		Date		Time	Discha (ft3/s)		Gage h	eight (m)
Jan.	8	0245	435	12.3		0.960		Feb.	26	0430	1600	45.3		1.393
Jan. Jan.	21	1600 1915	711 *2620	20.1 74.2	3.60 5.30	1.097		Sept.	6	0700	1070	30.3	4.06	1.237
Mini	mum	discharge.	13 ft3/s	(0.37 m	/s) Nov	. 13. gage	height.	1.53	ft. (0.	466 m).				

DISCHARGE, IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES DAY OCT NOV DEC JAN FEB JUN JUL. AUG SEP MAR APR MAY 9.0 8.5 7.5 6.4 177 77 56 38 164 64 7.2 7.3 6.6 31 6.3 6.1 19 17 13 12 5.8 5.5 5.2 67 110 70 5.2 5.2 77 5.2 123 17 7.8 7.4 7.4 257 7.2 6.9 9.5 6.3 9.0 6.9 8.5 6.0 5.9 8.0 6.2 ---9.0 TOTAL 201.2 404.5 82.7 75.7 70.3 38.7 37.7 21.4 13.0 MEAN 79.8 83.1 6.71 MAX MIN 8.0 5.2 4.48 2.52 2.31 2.14 .40 CFSM 2.43 1.18 3.32 2.53 1.15 .21 2.81 2.81 IN. 2.66 2.47 5.01 .75 .46 .23 1.27 3.83 2.92 1.28

CFSM 2.78 IN 37.72 CAL YR TOTAL. 33258.0 MEAN 91.1 MAX 905 MIN 22 WTR YR 1980 TOTAL 23374.7 MEAN 63.9 MAX 338 MIN 5.2 CFSM 1.95 TN 26.51

01399500 LAMINGTON (BLACK) RIVER NEAR POTTERSVILLE, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1977 to current year.

COOPERATION.--Selected field data and samples for laboratory analyses supplied by the New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DAT	E	TIME	FL INS TAN	EAM- OW, TAN- EOUS FS)	CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS	A W	MPER- TURE, ATER EG C)	S	GEN, DIS- DLVED MG/L)	DEN BIG UN:	YGEN MAND, OCHEM INHIB DAY G/L)	FORM, FECAL EC BROTH (MPN)	, S TO F	TREP- COCCI ECAL MPN)	HARI NESS (MG/ AS CACO	S /L
OCT 01.		1230		76	146	8.	1	16.0		9.1			350	0	1600		46
FEB 27.		0845		63	220	7.	2	.0		14.1		<1.0	7		79		55
APR 10.		1050		32	130	6.		8.0		10.4		.5	33		49		34
MAY 21.		1130		92	171	7.		15.5		9.3		1.7	49		240		49
JUL 07.		1045		41	162	7.		18.5		8.2		1.2	110		>2400		51
AUG 06.		1045		25	208	7.		18.0		8.2		1.4	17		540		58
SEP 17.		1130		5.9	234	7.		17.0		10.6		E2.9	<2		540		70
		1130		3.,	234	,.		17.0		10.0		22.9	12	0	540		10
	DATE	(MG	VE D	MAGN SIU DIS SOLV (MG/ AS M	M, SODI - DIS ED SOLV L (MG	UM, ED S /L (1	OTAS- SIUM, DIS- OLVED MG/L S K)	ALK LINI (MG AS CAC	TY /L	SULF TOT (MG	AL /L	SULFAT DIS- SOLVE (MG/L AS SO ⁴	E R D D S	HLO- IDE, IS- OLVED MG/L S CL)	FLUC RIDE DIS SOLV (MG/ AS F	E, B- VED 'L	
	OCT																
	01 FEB	1	11	4	. 4	9.8	1.5		29			7.	8	14		. 1	
	27 APR	1	13	5	.5 1	6	1.9		36			18		23		. 1	
	10		8.2	3	. 3	8.9	1.2		23			13		13		.1	
	21 JUL	1	1	5	. 3 1	4	1.0		36			13		15		.1	
	07 AUG	1	2	5	.0 1	2	1.4		34			19		15		. 1	
	06 SEP	. 1	14	5	.7 1	4	1.6		43			17		19		.0	
	17	1	16	7	. 3 1	8	2.2		51		.1	17		22		. 1	
	DATE	SILI DIS SOL (MG AS	VED	SOLID RESID AT 18 DEG. DIS SOLV (MG/	UÉ NIT O GE C NO2+ - TOT ED (MG	N, NO3 AM AL T	ITRO- GEN, MONIA DTAL MG/L S N)	NITI GEI ORGAI TOTA (MG,	N, NIC AL /L	NITRO GEN, MONIA ORGA TOTA (MG.	AM- A + NIC AL /L	NITRO GEN, TOTAL (MG/L AS N)	- OR OS	HOS- ORUS, THOPH PHATE OTAL MG/L PO4)	CARBO ORGAN TOTA (MG/ AS C	IIĆ L L	
	OCT								12.0								
	O1 FEB		0			.0	. 400		. 60	1	. 0	-	-	. 27		7.4	
	27 APR		3			• 9						7	-	. 32	2	2.7	
	10		6.4		76	. 65	. 160		. 60		.76	1.4		. 77	Ц	1.9	
	21 JUL		2		1	. 0	.080		. 33		. 41	1.4		. 34	1	1. 1	
	07 AUG	1	2	1	13	. 43	. 110		. 47		.58	1.0		. 45	9	9.9	
	06 SEP	1	2	1	22	. 81	. 240		. 46		.70	1.5		. 40	1	1.2	
	17	1	5	1	47 1	. 2	. 100	4	. 5	4	. 6	5.8		.28	2	2.2	

01399500 LAMINGTON (BLACK) RIVER NEAR POTTERSVILLE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
SEP								
17	1130	30	0	0	60	0	20	1
	IRON,	LEAD,	MANGA- NESE,	MERCURY	NICKEL,		ZINC,	
	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL	
	RECOV- ERABLE (UG/L	RECOV- ERABLE (UG/L	RECOV- ERABLE (UG/L	RECOV- ERABLE (UG/L	RECOV- ERABLE (UG/L	NIUM, TOTAL (UG/L	RECOV- ERABLE (UG/L	PHENOLS
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
SEP								
17	220	2	20	.1	19	0	10	0

01399510 UPPER COLD BROOK NEAR POTTERSVILLE, NJ

LOCATION.--Lat 40°43'16", long 74°45'09", Hunterdon County, Hydrologic Unit 02030105, on right bank along a private dirt road, 400 ft (122 m) downstream from the Pottersville Reservoir, and 1.5 mi (2.4 km) west of Pottersville.

DRAINAGE AREA .-- 2.18 mi2 (5.65 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1972 to current year.

GAGE.--Water-stage recorder above a rock outcrop control. Datum of gage is 451.57 ft (137.639 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good except those above 50 ft³/s (1.42 m³/s) and those for period of no gage-height record, Oct. 4-Nov. 5, which are poor. Flow regulated by Pottersville Reservoir 400 ft (122 m) above station.

AVERAGE DISCHARGE. -- 8 years, 4.04 ft3/s (0.114 m3/s).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 197 ft³/s (5.58 m³/s) July 20, 1975, gage height, 2.85 ft (0.869 m); maximum gage height, 3.17 ft (0.966 m) Jan. 24, 1979, minimum daily discharge, 0.03 ft³/s (0.001 m³/s) Aug. 28, 29, Sept. 3, 8, 1980.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 125 ft³/s (3.54 m³/s) Mar. 21, gage height, 2.78 ft (0.847 m); minimum daily, 0.03 ft³/s (0.001 m³/s) Aug. 28, 29, Sept. 3, 8.

		DISC	CHARGE, IN	CUBIC FE	ET PER SI	ECOND, WAT MEAN VA	TER YEAR O	OCTOBER 19	79 TO SEI	PTEMBER 19	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	17 6.2 4.9 5.0 5.3	2.3 3.0 7.6 5.0 4.1	4.4 4.2 3.8 3.9 3.8	3.4 3.1 2.7 2.5 2.6	1.8 1.8 1.7 1.8	1.6 1.5 1.9 1.6	18 12 9.2 19	7.9 6.8 6.0 5.3 5.0	3.4 2.8 4.6 2.7 2.1	1.5 1.4 1.5 1.3 2.4	.59 1.3 .81 .53 .82	.08 .04 .03 .05
6 7 8 9	4.6 4.1 3.8 3.8 5.1	3.9 3.8 3.5 3.4	5.0 6.6 4.1 3.7 3.6	2.2 2.3 2.4 2.3 2.3	1.8 1.9 1.8 1.8	1.7 1.7 2.3 2.5 2.0	8.5 7.3 7.2 30	4.7 5.0 9.0 5.0 4.3	2.0 2.2 3.5 4.6 3.9	2.3 1.1 .96 .82 .77	.77 .58 .47 .49	.19 .09 .03 .04
11 12 13 14 15	4.9 4.8 4.5 4.3	5.2 6.7 4.1 3.7 3.4	3.5 3.4 7.0 4.6 3.7	12 9.4 4.0 4.0	1.8 1.8 1.8 1.7	3.1 2.0 1.7 2.1 1.9	12 11 9.3 13	4.4 11 12 5.9 4.5	2.3 2.0 1.9 1.9	.84 .99 .67 .57	.35 .77 .37 .34 .45	.06 .08 .08 .12 .15
16 17 18 19 20	3.7 3.5 3.2 3.0 2.8	3.2 3.1 3.0 2.9 2.9	3.8 4.2 3.2 3.2 3.2	3.3 3.2 4.1 5.0 3.2	2.1 1.9 1.8 1.8	1.9 5.6 20 4.0 3.3	8.7 7.4 6.9 6.4 6.0	4.0 3.6 4.4 4.1 3.6	1.8 1.6 1.6 1.6	.58 .97 .63 .57	.45 .28 .24 .24	.12 .23 1.1 .25 .23
21 22 23 24 25	2.7 2.6 2.5 2.4 2.4	2.8 2.8 2.8 2.8 2.7	3.3 3.5 4.2 5.0	2.8 2.6 2.7 2.2 2.2	2.2 2.1 5.3 3.1 2.4	39 18 11 9.5	5.5 5.1 5.0 4.7 4.6	5.5 3.7 2.9 2.8 2.6	1.5 1.4 1.3 1.3	.46 .58 .99 .58	.22 .19 .18 .13	.20 .17 .15 .10
26 27 28 29 30 31	2.3 2.2 2.7 2.5 2.4 2.3	8.4 6.0 5.1 4.6	5.2 4.3 4.0 3.8 3.8 3.6	2. 1 2. 1 2. 1 2. 1 1. 9 1. 8	2.0 2.0 1.8 1.6	8.5 7.0 6.3 13 9.2	4.4 6.0 22 21 10	2.3 2.2 2.2 2.1 2.1 2.6	1.3 1.3 1.3 1.7 4.8	.39 .37 .37 1.3 .87 .53	.10 .07 .03 .03 .09	.29 .14 .15 .15 .19
TOTAL MEAN MAX MIN	125.5 4.05 17 2.2	139.2 4.64 22 2.3	135.6 4.37 12 3.2	102.6 3.31 12 1.8	58.9 2.03 5.3 1.6	218.6 7.05 39 1.5	324.2 10.8 30 4.4	147.5 4.76 12 2.1	67.2 2.24 4.8 1.3	27.82 .90 2.4 .37	11.74 .38 1.3 .03	4.89 .16 1.1 .03

CAL YR 1979 TOTAL 1886.57 MEAN 5.17 MAX 66 MIN .84 WTR YR 1980 TOTAL 1363.75 MEAN 3.73 MAX 39 MIN .03

01399525 LAMINGTON (BLACK) RIVER TRIBUTARY NO. 2 NEAR POTTERSVILLE, NJ

LOCATION.--Lat 40°41'40", long 74°43'05", Somerset County, Hydrologic Unit 02030105, on right upstream wingwall of bridge on Black River Road, 1.3 mi (2.1 km) south of Pottersville, and 0.3 mi (0.5 km) upstream from mouth.

DRAINAGE AREA .-- 1.22 mi2 (3.60 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1977 to current year.

GAGE.--Water-stage recorder. Altitude of gage is 180 ft (54.9 m), from topographic map.

REMARKS. -- Water-discharge records poor.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 773 ft³/s (21.9 m³/s) Sept. 6, 1979, gage height, 4.98 ft (1.518 m); no flow many days in July, August, and September, 1980.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 200 ft3/s (5.66 m3/s) revised, and maximum (#):

Jan. 11 1945 233 6.60 3.21 0.978 Mar. 21 1445 *563 15.9 4.38 1.335	Date	Time	Discharge (ft ³ /s) (m ³	/s)	Gage h	eight (m)	Date		Time	Discha (ft ³ /s)	(m³/s)	Gage h	eight (m)
	Jan. 11	1945	233	6.60	3.21	0.978	Mar.	21	1445	*563	15.9	4.38	1.335

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

No flow many days in July, August, and September.

						MEAN V	ALUES					
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	15 3.1 7.8 2.8 6.4	.92 .94 19 2.9 1.7	1.1 1.0 .97 .98	1.2 1.1 .89 .82 .84	.50 .49 .47 .48	.37 .39 .40 .42	15 4.0 2.7 13 3.5	1.4 1.1 .93 .78 .73	.51 .34 .68 .44	.16 .13 .15 .15	.05 .08 .12 .05	.00 .00 .00
6 7 8 9	2.8 1.8 1.4 2.9	1.5 1.2 1.2 1.1 1.7	3.2 3.8 1.3 1.2	.76 .77 .75 .68	. 47 . 46 . 45 . 44 . 43	.46 .57 3.3 1.7	1.8 1.3 1.2 26 7.6	.67 .66 1.4 .69	.26 .35 .43 .70	.35 .12 .11 .10	.22 .07 .02 .01	.00 .00 .00
11 12 13 14 15	4.2 4.1 3.1 1.9 1.6	3.9 6.5 2.2 1.7 1.3	1.0 1.0 5.4 1.9 1.2	8.4 2.0 2.0 2.1	.42 .41 .40 .51	2.3 .62 .53 .77	2.5 1.4 1.1 4.1 3.2	.59 3.1 5.5 1.4	.41 .34 .29 .27	.08 .09 .05 .03	.00 .01 .01 .00	.00 .00 .00 .00
16 17 18 19 20	1.3 1.2 1.2 1.1	1.2 1.2 1.2 1.1	1.6 1.9 1.8 1.4 1.2	1.4 1.2 2.8 5.0 1.8	.69 .64 .52 .63	1.2 20 11 4.7 2.5	1.2 .97 .90 .81	.85 .75 .84 .78	.26 .21 .21 .21	.01 .06 .03 .01	.00 .00 .00 .00	.00 .00 .00
21 22 23 24 25	1.1 1.1 1.6 1.2	1.0 1.0 .99 .99	1.1 1.4 1.6 4.2	1.3 1.2 1.3 .99	.88 1.5 5.0 1.2 .85	87 10 3.8 4.1	.70 .63 .61 .58	.91 .59 .48 .43	.22 .18 .17 .15	.00 .01 .14 .06	.00 .00 .00	.00 .00 .00
26 27 28 29 30 31	1.1 1.0 1.8 1.2 .98	17 3.6 2.1 1.5 1.2	8.3 3.1 2.4 1.8 1.5	.68 .66 .61 .60 .56	.70 .49 .46 .42	3.1 1.8 1.2 9.0 4.7	.54 .66 12 8.9 2.7	.34 .31 .30 .29	.12 .13 .12 .13 .50	.00 .00 .00 .10 .15	.00 .00 .00 .00	.00 .00 .00 .00
TOTAL MEAN MAX MIN CFSM IN	91.92 2.97 15 .94 2.43 2.80	83.93 2.80 19 .92 2.30 2.56	71.71 2.31 11 .96 1.89 2.19	66.29 2.14 22 .53 1.75 2.02	21.65 .75 5.0 .40 .61	210.82 6.80 87 .37 5.57 6.43	120.92 4.03 26 .54 3.30 3.68	29. 15 .94 5. 5 .29 .77 .89	9.33 .31 .75 .12 .25	2.39 .077 .35 .00 .06	.68 .022 .22 .00 .02	.00 .000 .00 .00

CAL YR 1979 TOTAL 1314.05 MEAN 3.60 MAX 109 MIN .06 CFSM 2.95 IN 40.06 WTR YR 1980 TOTAL 708.79 MEAN 1.94 MAX 87 MIN .00 CFSM 1.59 IN 21.61

01399545 LAMINGTON RIVER AT LAMINGTON, NJ

LOCATION.--Lat 40°39'38", long 74°43'46", Somerset County, Hydrologic Unit 02030105, at bridge on State Route 523 in Lamington, 0.4 mi (0.6 km) downstream from Cold Brook, and 3.8 mi (6.1 km) south of Potterstown.

DRAINAGE AREA. -- 53.6 mi2 (138.8 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1977 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal colliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 01	1330	865	148	7.4	16.0	9.1			
FEB			4.00						
27 APR	1000		230	7.4	.0	13.8	<1.0	50	79
10 MAY	1200	366	128	6.9	11.0	10.8	1.7	230	350
21 JUL	1245	171	168	7.1	15.5	9.7	2.6	5400	350
07 AUG	1145	96	168	7.5	18.5	6.9	1.1	9200	220
06 SEP	1145	96	194	7.8	19.0	7.6	1.9	1700	>2400
17	1245		250	7.2	18.0	10.9	<.3	790	220
DATE	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 01	53	13	5.1	7.3	2.0	37	9.6	11	.1
FEB 27	63	15	6.3	14	1.7	44	19	21	.1
A PR 10	35	8.7		7.3	1.2	20	13	10	.1
MAY			3.3						
JUL JUL	53	12	5.5	11	1.0	39	13	15	.1
07 AUG	55	13	5.5	11	1.4	40	18	15	.1
06 SEP	63	14	6.7	15	1.6	49	15	17	.1
17	96	22	10	13	1.7	75	18	16	. 1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 01 FEB	10	97	<1.0	. 400	. 14	.54		1.0	11
27	12	132	1.8					. 17	2.2
A PR 10	7.4	74	.74	.080				. 19	3.9
MAY 21	11	92	.95	.060	. 15	.21	1.2	.36	3.9
JUL 07	12	115	.55	. 150	.34	. 49	1.0	.36	6.6
AUG 06	13	127	.89	.200	. 41	.61	1.5	. 31	4.1
SEP 17	12	160	. 95	. 100	• 39	. 49	1.4	. 15	1.9

01399545 LAMINGTON RIVER AT LAMINGTON, NJ--Continued

DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)
SEP 17	1245	3200	.0	15	0	<10	40	<10	<10	1500
DATE	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT-TOM MA-TERIAL (UG/KG)
SEP 17	10	53	.00	<10	0	40	3	.0	.0	0
				DI-	DI-	ENDO-			HE PTA -	HE PTA-
DATE	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)
SEP										
17	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
DATE	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
SEP 17	.0	.0	.0	.0	.0	.0	.0	.00	0	.0

01399600 SOUTH BRANCH ROCKAWAY CREEK TRIBUTARY AT LEBANON, NJ

LOCATION.--Lat 40°38'05", long 74°49'58", Hunterdon County, Hydrologic Unit 02030105, at bridge on unnamed road in Lebanon, 0.5 mi (0.8 km) upstream from mouth, and 1.8 mi (2.9 km) west of Potterstown.

DRAINAGE AREA .-- 1.02 mi2 (2.64 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1960-63, 1977 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by the New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
FEB		,,,,,,,		(0,1210)	(22/		,,		3,55
07	. 0915	.82	162	7.6	7.5	10.8		<20	<2
26	. 0900	. 87	174	7.0	8.0	11.0	<1.3	<20	8
MAY 21	. 1000	.77	157	7.0	9.5	9.0	1.5	230	540
JUL 07	. 0945	. 87	164	7.5	12.5	9.9	. 4	80	49
AUG 06	. 0930	.77	165	7.0	12.5	9.5	.6	90	23
SEP 17	. 0930	.68		7.2	11.0	10.1	<.1	<20	540
DATE	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
FEB 07	. 60	16	4.9	6.0	.3	46	19	7.8	.1
MAR 26		17	5.7	7.0	.5	48	18	7.9	.1
MAY 21		15	5.6	6.5	.5	44	19	7.0	.1
JUL 07		16	5.5	5.7	. 4	51	20	7.8	.1
AUG 06		18	5.7	5.7	. 4	48	19	7.9	.1
SEP 17									
	. 10	18	6.0	6.5	.6	47	18	7.6	•1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
FEB									
07 MAR		100		.070	.11	. 18		<.01	7.3
26 MAY	. 17	123	. 48	. 140	1.8	1.9	2.4	<.01	1.5
JUL 21		93	. 10	.040	.03	.07	. 17	.08	1.7
07 AUG	. 14	108	.09	. 120	- 54	.66	. 75	.03	2.0
06 SEP	. 14	114	<.05	.240	. 05	.29		<.03	. 8
17	. 16	118	<.05	. 100	.23	•33		.06	.7
DATE	GEN + C TOI BOI TIME (N	I, NH4 IN ORG. GA IN TOT MAT BOT IG/KG (G	OR- INO NIC, ORG IN TOT MAT BOT KG (G	RG + TO ANIC IN IN TOM MAT TE /KG (U	BOT - FM MA - TOM RIAL TE G/G (U	BOT- RE MA- FM RIAL TOM G/G TE	COV. FM BOT- TOM MA- TE	BOT- FM I MA- TOM ERIAL TE	PER, IRON, COV. RECOV. BOT- FM BOT- MA- TOM MA- RIAL TERIAL G/G (UG/G CU) AS FE)
SEP 17	0930 27	00	.2	20	0	<10	20	<10	10 3100

RARITAN RIVER BASIN

01399600 SOUTH BRANCH ROCKAWAY CREEK TRIBUTARY AT LEBANON, NJ--Continued

WATER	OHAL TTY	DATA.	WATER	YFAR	OCTOBER	1070	TO	SEPTEMBER	1980

DATE	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT-TOM MA-TERIAL (UG/KG)
SEP 17	<10	35	.00	<10	0	20	240	.0	.0	0
DATE	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA - CHLOR, TOTAL IN BOT - TOM MA - TERIAL (UG/KG)	HE PTA - CHLOR E PO XIDE TOT. IN BOTTOM MATL. (UG/KG)
SEP 17	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
DATE	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
SEP 17	.0	.0	.0	.0	.0	.0	.0	.00	0	.0

01399690 SOUTH BRANCH ROCKAWAY CREEK AT WHITEHOUSE, NJ

LOCATION.--Lat 40°37'24", long 74°46'01", Hunterdon County, Hydrologic Unit 02030105, on right upstream wingwall of bridge on U.S. Route 22, 0.6 mi (1.0 km) north of Whitehouse Station, 0.9 mi (1.5 km) west of Whitehouse, and 0.3 mi (0.5 km) upstream from mouth.

DRAINAGE AREA. -- 13.2 mi2 (34.2 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- Occasional low-flow measurements, water years 1964-67. March 1977 to current year.

GAGE.--Water-stage recorder. Datum of gage is 113.52 ft (34.60 m) revised, National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records fair. Releases from Round Valley Reservoir enter stream 3,000 ft (910 m) upstream of gage (see Raritan River basin, reservoirs in).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1480 ft 3 /s (41.9 m 3 /s) Jan. 24, 1979, gage height, 12.82 ft (3.908 m); minimum, 2.8 ft 3 /s (0.11 m 3 /s) Sept. 15, 16, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 944 ft 3 /s (26.7 m 3 /s) Mar. 21, gage height, 10.60 ft (3.231 m); minimum daily, 7.9 ft 3 /s (0.22 m 3 /s) Mar. 24.

		DISCHA	RGE, IN	CUBIC	FEET PER	SECOND, WAT MEAN VA		OCTOBER 1	979 TO SEP	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	168 55 49 33 35	51 33 151 36 47	61 60 58 58 58	16 37 50 33 14	45 44	8.4 7.9 8.4 7.9 8.9	101 45 36 84 40	27 23 21 19	15 11 13 13 9.7	57 56 57 56 56	96 96 96 95 96	151 152 147 164 159
6 7 8 9 10	32 24 21 25 82	61 58 56 40 25	42 32 19 16 39	13 12 34 48 48	45 32 9.1	8.6 8.3 22 25 14	31 28 26 155 86	17 17 26 17 15	9.2 9.4 16 12 18	59 55 55 55 54	49 63 121 132 130	161 161 159 156 156
11 12 13 14 15	46 36 34 26 36	29 56 28 24 21	54 53 45 47 52	84 82 26 24 25	9.0 8.7 8.5	25 13 8.5 13	42 34 30 39 48	15 24 42 21 16	9.5 8.8 8.5 8.0	54 57 61 80 67	133 138 136 136 136	156 155 155 155 108
16 17 18 19 20	59 39 39 54 54	39 54 52 52 51	52 57 51 52 38	41 54 45 44 23	9.6 9.7	18 36 85 30 25	29 25 24 22 21	14 13 15 15	30 48 48 47 48	61 63 61 60	136 136 136 135 136	150 118 78 30 120
21 22 23 24 25	52 52 37 41 51	37 15 15 14 14	16 17 22 32 67	40 39 19 16 15	14 30 18	336 94 46 38 87	21 19 18 18 17	33 19 14 13	48 47 57 66 66	68 77 80 69 55	135 135 135 134 140	152 159 159 159 159
26 27 28 29 30 31	51 51 56 54 51 50	102 45 29 43 59	31 24 21 20 19	14 13 34 47 28 27	9.8 9.5 16	37 30 26 60 46 133	17 19 106 71 35	11 10 10 10 9.8	66 68 73 79 80	54 59 64 29	146 146 163 175 157 155	160 159 157 157 157
TOTAL MEAN MAX MIN	1493 48.2 168 21	1337 44.6 151 14	1230 39.7 67 16	1045 33.7 84 12	20.4	1318.9 42.5 336 7.9	1287 42.9 155 17	542.8 17.5 42 9.8	1044.1 34.8 80 8.0	1843 59.5 80 29	3953 128 175 49	4369 146 164 30
CAL YR WTR YR			MEAN MEAN	36.5 54.8	MAX 506 MAX 336	MIN 7.1 MIN 7.9						

01399700 ROCKAWAY CREEK AT WHITEHOUSE, NJ

LOCATION.--Lat 40°37'49", long 74°44'11", Hunterdon County, Hydrologic Unit 02030105, on right bank at bridge on Lamington Road, 1.4 mi (2.3 km) northeast of Whitehouse, and 1.8 mi (2.9 km) upstream from mouth.

DRAINAGE AREA. -- 37.1 mi2 (96.1 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- Occasional low-flow measurements, water years 1959-62, 1964-65, 1973. April 1977 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 99.64 ft (30.370 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records fair. Releases are made from Round Valley Reservoir to South Branch Rockaway Creek, 2.6 mi (4.2 km) upstream of gage (see Raritan River basin, reservoirs in).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,510 ft³/s (99.4 m³/s) Jan. 24, 1979, gage height, 9.55 ft (2.911 m); minimum, 6.3 ft³/s (0.18 m³/s) Aug. 7, 1980.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 1,200 ft3/s (34.0 m3/s) revised, and maximum (*):

Date		Time	Discha (ft³/s)		Gage h	eight (m)	Date		Time	Discha (ft³/s)		Gage h	eight (m)
Oct. Mar.	1 21	1730 1900	1550 *2370	43.9 67.1	5.97 7.42	1.820 2.262	Apr.	9	1400	1470	41.6	5.79	1.765

Minimum discharge, 6.3 ft3/s (0.18 m3/s) Aug. 7.

		DISCH	ARGE, I	N CUBIC FE	ET PER SE	COND, WATE		CTOBER 19	79 TO SEP	TEMBER 19	80		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1	442	77	101	47	62	31	314	97	48	37	99	160	100
2	141	65	98	67	66	38	156	83	39	61	99	158	
3	130	442	94	82	67	38	124	76	51	61	102	152	
4	89	104	94	63	66	38	278	68	48	61	96	171	
5	99	94	93	41	65	37	143	64	32	61	94	164	
6 7 8 9	96 65 59 66 224	105 101 96 79 73	80 105 58 51 72	49 57 60 76 73	65 65 60 51 42	29 23 49 72 39	109 97 92 463 284	60 59 97 62 54	29 31 52 39 73	73 60 60 60 59	59 62 123 138 137	166 164 161 158 158	
11	128	83	88	206	41	70	150	53	41	59	141	158	
12	99	164	87	248	30	36	126	91	32	63	147	158	
13	96	76	116	70	50	43	112	169	29	64	146	158	
14	70	66	103	67	39	113	146	77	27	81	145	158	
15	75	60	95	70	25	55	174	59	25	71	146	158	
16	96	75	93	79	37	55	104	52	40	65	147	155	
17	75	89	109	90	58	105	88	48	56	69	145	123	
18	70	87	86	87	52	296	82	53	56	66	145	83	
19	85	85	86	125	46	83	77	55	55	64	146	35	
20	84	84	73	65	48	67	74	56	56	64	146	125	
21	82	69	58	75	33	913	70	101	56	69	145	157	
22	82	45	48	76	40	316	64	64	54	77	145	162	
23	70	45	61	54	85	164	61	48	61	85	145	164	
24	79	44	90	55	57	133	58	43	69	73	145	164	
25	88	42	196	63	42	295	57	40	68	60	150	164	
26 27 28 29 30 31	85 83 97 93 80 78	316 135 81 88 101	85 66 59 56 54 50	54 63 60 74 57	35 35 43 47	129 105 92 197 158 385	55 63 355 267 128	36 34 33 32 31 34	68 75 82 82 83	59 59 64 69 33 54	157 158 174 193 168 166	166 166 164 164 164	
TOTAL	3206	3071	2605	2426	1452	4204	4371	1929	1557	1961	4208	4512	
MEAN	103	102	84.0	78.3	50.1	136	146	62.2	51.9	63.3	136	150	
MAX	442	442	196	248	85	913	463	169	83	85	193	171	
MIN	59	42	48	41	25	23	55	31	25	33	59	35	
CAT VD	1070 TOTAL	27505	MEAN	102 M	AV 4HHA	MTN 10							

CAL YR 1979 TOTAL 37505 MEAN 103 MAX 1440 MIN 19 WTR YR 1980 TOTAL 35502 MEAN 97.0 MAX 913 MIN 23

01399700 ROCKAWAY CREEK AT WHITEHOUSE, NJ -- Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1977 to current year.

PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: April 1977 to September 1978 (discontinued).
WATER TEMPERATURES: April 1977 to September 1978 (discontinued).
SEDIMENT ANALYSES: October 1976 to September 1978 (discontinued).

COOPERATION.--Selected field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATI	E	TIME	STRE FLO INST TANE (CF	AM- C W, D AN- A OUS (M	PE- IFIC ON- UCT- NCE ICRO- HOS)	PH FIELD (UNITS	A W	MPER- TURE, ATER EG C)	SC	GEN, IS- LVED G/L)	DEM BIO UNI 5	GEN AND, CHEM NHIB DAY /L)	COLI- FORM, FECAL, EC BROTH (MPN)	TO	TREP- COCCI ECAL MPN)	HAR NES (MG AS	S /L
FEB																	
27. APR	• •	1115		24	195	7.	7	.0		15.1		<1.0	170		920		72
14.		0930		147	145	7.	1	10.0		10.2		1.0	490		540		49
MAY																	
21. JUL	• •	1130		171	160	7.	6	15.0		8.6		4.9			>2400		61
07.		1130		60	168	8.	1	21.0		9.3		1.2	490		350		62
AUG 06.		1045		107	152	7.	6	23.5		8.7		1.4	330		1600		60
SEP		100															
17.	• •	1030		162		8.	8	16.5		9.3		<.1	80		240		58
	DATE	CALC DIS SOL (MG AS	VED /L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIU DIS- SOLVE (MG/	IM, ID S	OTAS- SIUM, DIS- OLVED MG/L S K)	LINI	TY /L	SULF TOT (MG AS	AL /L	SULFAT DIS- SOLVE (MG/L AS SO4	E RI DI D SO (M	LO- DE, S- LVED G/L CL)	FLUC RIDE DIS SOLV (MG/ AS F	ED L	
	FEB													2 11			
	27 A PR	1	7	7.1	7	.7	1.4		51			20		12		. 1	
,	14	1	2	4.6	5	. 6	1.2		33			19		6.9		. 1	
	21	1	4	6.2	9	. 6	1.1		44		.2	17		7.8		. 1	
	JUL 07	1	5	5.9	5	. 8	1.4		49			19		7.8		. 1	
	AUG 06	1	4	6.0	6	. 2	1.4		42			17		7.8		. 2	
5	SEP																
	17	1	4	5.6			1.3		43		.0	18		7.6		. 1	
	DATE	SILIO DIS SOL (MG AS	VED	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	GEN NO2+N TOTA (MG/	, 103 AM L T L (ITRO- GEN, MONIA OTAL MG/L S N)	NIT GE ORGA TOT (MG	N, NIC AL /L	NITRO GEN, MONIA ORGA TOTA (MG.	AM- A + NIC AL /L	NITRO GEN, TOTAL (MG/L AS N)	PHO ORT OSP TO (M	OS- RUS, HOPH HATE TAL G/L PO4)	CARBO ORGAN TOTA (MG/ AS C	IIĆ L L	
		- 10		,,			,		.,			,		,		1.1	
	27 27	1	3	120	1.	9						-	-	.05	1	. 9	
	14	1	3	86	1.	2	. 220		. 27		. 49	1.7		. 45	2	. 1	
	21 JUL	1	2	111		68	.070	1	. 0	1	. 1	1.8		. 37	5	.0	
	07		4.5	94		32	. 160		. 19		. 35	.6	7	.04	5	. 2	
	06		2.5	102		32	. 190		. 47		.66	.9	8	<.03	2	. 6	
	3EP 17		1.4	100	<.	05	.080		. 37		. 45	-	-	.09	5	. 0	

RARITAN RIVER BASIN

01399700 ROCKAWAY CREEK AT WHITEHOUSE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
MAY								
21	1130	30	1	0	10	0	10	7
SEP 17	1030	30	0	0	40	0	20	1
			MANGA-					
	IRON, TOTAL RECOV-	LEAD, TOTAL RECOV-	NESE, TOTAL RECOV-	MERCURY TOTAL RECOV-	NICKEL, TOTAL RECOV-	SELE- NIUM.	ZINC, TOTAL RECOV-	
	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	TOTAL (UG/L	ERABLE (UG/L	PHENOLS
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
MAY								
21 SEP	2800	10	280	.1	5	0	20	2
17	110	5	10	.3	3	0	10	2

01399780 LAMINGTON (BLACK) RIVER AT BURNT MILLS, NJ

LOCATION.--Lat 40°38'04", long 74°41'13", Somerset County, Hydrologic Unit 02030105, at bridge on Burnt Mills Road in Burnt Mills, 1,400 ft (427 m) upstream from mouth, and 2.4 mi (3.9 km) southwest of Greater Cross Roads.

DRAINAGE AREA.--100 mi² (259 km²).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1964, 1976 to current year.

COOPERATION.--Selected field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE		TIME T	TREAM- FLOW, NSTAN- ANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO MHOS)		PH IELD VITS)	ATWA	PER- URE, TER G C)	SO	GEN, IS- LVED G/L)	UNI	AND, CHEM NHIB DAY	COLI- FORM, FECAL, EC BROTH (MPN)	TOO	TREP- COCCI ECAL IPN)	HARD NESS (MG/ AS CACO	L L
OCT 02		0915	435	12	4	7.0		15.0		8.9			9200		2400		41
MAR 05		1200	74	21	2	6.9		.5		13.1		<.1	20	1	17		71
APR 14 MAY		1045	445	15	1	7.0		11.0		9.8		.9	490	i.	240		49
21 JUL		1300	375	17	1	7.6		15.0		8.5		3.7	9200		350		57
07 AUG		1245	118	16	5	8.5		21.0		10.1		1.1	790		130		58
06 SEP		1145	175	16	7	8.3		24.5		9.3		1.7	1300		920		63
17		1130	190	-	-	8.8		17.0		9.7		<.1	210		23		61
1	DATE	CALCIU DIS- SOLVE (MG/L AS CA	D SOL	JM, SO S- D VED SO /L (DIUM, IS- LVED MG/L S NA)	POTA SI DI: SOL (MG AS	UM, S- VED /L	ALK LINI (MG AS CAC	TY /L	SULF TOT (MG AS	AL /L	SULFAT DIS- SOLVE (MG/L AS SO4	E RI DI D SC	LO- DE, S- DLVED G/L CL)	FLUC RIDE DIS SOLV (MG/ AS F	E, B- /ED /L	
	СТ																
M	02 Ar			3.9	5.5		2.0		23			13		8.3		. 1	
A	05 PR	17		7.0	12		1.3		56			21		16		. 1	
M	14 AY	12		4.5	8.4		1.2		37			17		10		. 1	
J	21 UL	13		6.0	10		1.1		44		.0	16		11		. 1	
A	07 UG	14		5.6	7.9		1.5		47			18		11		. 1	
SI	06 EP 17	15 15		5.3	8.6		1.5		47			17		11		. 2	
	17	15		5.8	5.6		1.3		41			18		8.2		. 1	
1	DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	D DEG	DUÉ N BO NO B- T VED (TRO- GEN, 2+NO3 DTAL MG/L S N)	NIT	N, NIA AL /L	NIT GE ORGA TOT (MG	N, NIC AL /L	NITR GEN, MONII ORGA TOT (MG	AM- A + NIC AL /L	NITRO GEN, TOTAL (MG/L AS N)	PHO ORT OSF TO	OS- RUS, HOPH HATE TAL IG/L PO4)	CARBO ORGAN TOTA (MG/ AS C	NIĆ L L	
	CT 02	11		95	(1.0		200		. 80	1	. 1	_	-	. 30	5	5.2	
	05 PR	11		132	1.9		110					-	-		1	1.1	
	14 AY	9.	0	96	. 87		070		. 33		. 40	1.3		.60	1	1.4	
	21 UL	11		117	.77	10.	110		. 33		. 44	1.2		.24	1	1.0	
A	07 UG	7.	6	100	. 43	6.	110		. 61		.72	1.2		. 10	7	7.7	
SI	06 EP	5.	5	118	. 50		600		. 15		. 75	1.2		. 25	2	2.6	
	17	1,	6	103	. 14		140		. 19		• 33	. 4	7	.06	3	3.8	

01399780 LAMINGTON (BLACK) RIVER AT BURNT MILLS, NJ--Continued

DATE	TIME	NITRO- GEN, NH 4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
MAY 21 SEP	1300				20	1		0	10	0	1807 <u>-</u>
17	1130	1600	.0	3.7			0	The state of the s	-		<10
DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
MAY	10			4		2000				180	
SEP	10			4		2000		9		180	132
17		30	<10		<10		5200		30		430
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
MAY											
21 SEP	. 1		3		0		10		2		
17		.00		<10		0		30		6	.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
MAY 21									1.33		
SEP									French C		
17	.0	3	.0	.0	.0	.0	.0	.0	.0	.0	.0
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TO XA - PHE NE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
MAY 21								+			
SEP			-								- 100
17	.0	.0	.0	.0	.0	.0	.0	.0	.00	0	.0

01399830 NORTH BRANCH RARITAN RIVER AT NORTH BRANCH, NJ

LOCATION.--Lat 40°36'00", long 74°40'27", Somerset County, Hydrologic Unit 02030105, on right bank 5 ft (1.5 m) upstream from bridge on State Highway 28 in North Branch, 0.1 mi (0.16 km) south of River Brook, and 3.6 mi (5.8 km) upstream from confluence with South Branch Raritan River.

DRAINAGE AREA . -- 174 mi2 (451 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1977 to current year.

GAGE .-- Water-stage recorder. Datum of gage is 56.94 ft (17.356 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records fair except those below 200 ft³/s (5.66 m³/s), which are poor. Some regulation by Round Valley Reservoir.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 14,100 ft³/s (399 m³/s) Jan. 25, 1979, gage height, 16.62 ft (5.065 m); minimum, 20 ft³/s (0.57 m³/s) Sept. 19, 1980, gage height, 3.14 ft (0.957 m).

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 28, 1971, reached an elevation of 75.6 ft (23.04 m), from high-water mark.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 5,000 ft3/s (142 m3/s) and maximum (*):

			Discha (ft³/s)	arge	Gage height (ft) (m)		
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)	
Mar.	21	2115	*9360	265	13.80	4.206	

Minimum discharge, 20 ft 3 /s (0.57 m 3 /s) Sept. 19, gage height, 3.14 ft (0.957 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES DAY OCT NOV DEC FEB MAR APR MAY JUN JUL AUG SEP 1110 130 964 163 179 144 125 654 123 173 18 261 265 260 642 259 160 119 158 178 235 184 67 540 865 173 30 271 249 158 TOTAL. MEAN MAX MIN

CAL YR 1979 TOTAL 176011 MEAN 482 MAX 6760 MIN 82 WTR YR 1980 TOTAL 124719 MEAN 341 MAX 3800 MIN 61

01400000 NORTH BRANCH RARITAN RIVER NEAR RARITAN, NJ

LOCATION.--Lat 40°34'10", long 74°40'45", Somerset County, Hydrologic Unit 02030105, on right bank, 400 ft (120 m) upstream from U.S. Highway 202, 1.4 mi (2.3 km) upstream from confluence with South Branch, and 2.7 mi (4.3 km) west of Raritan.

DRAINAGE AREA. -- 190 mi2 (492 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1923 to current year. Monthly discharge only for June 1923, published in WSP 1302. Prior to October 1943, published as "at Milltown".

REVISED RECORDS.--WSP 1552: 1924-26, 1928-35. WDR NJ-79-1: 1971-78(P).

GAGE.--Water-stage recorder. Concrete control since Sept. 1, 1936. Datum of gage is 50.43 ft (15.371 m) National Geodetic Vertical Datum of 1929. Prior to Oct. 17, 1936, nonrecording gage at site 30 ft (9.1 m) downstream at same datum.

REMARKS .-- Water-discharge records good. Some regulation by Round Valley Reservoir.

AVERAGE DISCHARGE. -- 57 years, 305 ft3/s (8.638 m3/s).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 28,600 ft³/s (810 m³/s) Aug. 28, 1971, gage height, 15.47 ft (4.715 m), from high-water mark in gage house, from rating curve extended above 15,000 ft³/s (420 m³/s); minimum observed, about 3 ft³/s (0.08 m³/s) Nov. 28, 1930, gage height, 1.72 ft (0.524 m) result of freezeup, minimum daily, 7.5 ft³/s (0.21 m³/s) Sept. 26, 27, 1964.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 5,000 ft3/s (142 m3/s) and maximum (*):

			Discha	arge	Gage h	eight
Date		Time	Discha (ft ³ /s)	(m^3/s)	Gage h	(m)
Mar.	21	2230	*11,600	329	10.68	3.255

Minimum discharge, 28 ft 3 /s (0.79 m 3 /s) Mar. 1, gage height, 2.40 ft (0.732 m) but may have been lower during the period of no gage-height record, Sept. 19-30.

		DISC	HARGE, IN	CUBIC FE	ET PER SE	COND, WAT MEAN VA	ER YEAR	OCTOBER 19	79 TO SEP	TEMBER 1980		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1290 807 580 501 509	235 227 1380 548 389	365 341 315 306 296	259 261 273 251 219	172 227 242 248 208	106 128 124 134 142	1810 1030 820 1440 934	637 532 470 415 376	279 222 245 303 207	137 151 149 149 136	158 156 219 164 165	187 185 174 200 191
6 7 8 9	533 365 329 317 984	380 360 331 305 327	289 559 319 271 277	254 205 283 308 244	189 194 187 153 149	142 134 186 417 226	716 632 579 2140 1720	347 333 546 380 332	188 189 222 181 315	278 186 155 147 136	205 110 180 210 200	197 192 187 182 181
11 12 13 14	703 504 516 386 348	353 829 409 352 316	292 281 454 468 337	474 1530 464 417 440	142 146 134 140 144	387 232 194 239 345	973 803 698 773 920	313 416 983 530 416	219 180 162 147 135	128 130 119 124 146	200 220 210 200 200	181 180 180 182 166
16 17 18 19 20	354 325 296 303 291	308 307 297 284 276	321 405 314 280 283	387 365 357 689 381	174 156 135 149 161	274 501 1980 678 525	634 544 504 468 443	359 323 319 323 316	136 152 148 145 148	108 124 128 116 114	197 195 190 188 192	189 161 192 65 205
21 22 23 24 25	281 272 260 263 263	262 225 220 215 210	254 254 275 394 960	336 331 302 276 259	178 219 360 327 239	4170 3270 1110 870 1560	416 380 351 334 317	409 358 282 258 241	149 137 133 144 140	109 119 148 144 106	188 186 184 182 180	200 195 207 200 198
26 27 28 29 30 31	249 242 273 314 256 239	1100 826 451 416 395	506 386 346 322 302 279	279 245 226 254 256 183	206 166 192 155	828 668 582 949 963 1760	308 334 1470 1500 821	213 197 188 180 172 175	135 136 155 149 326	99 98 94 172 147 87	187 184 192 224 197	202 196 197 197 197
TOTAL MEAN MAX MIN	13153 424 1290 239	12533 418 1380 210	11051 356 960 254	11008 355 1530 183	5492 189 360 134	23824 769 4170 106	24812 827 2140 308	11339 366 983 172	5527 184 326 133	4184 135 278 87	5860 189 224 110	5566 186 207 65

CAL YR 1979 TOTAL 183120 MEAN 502 MAX 9110 MIN 91 WTR YR 1980 TOTAL 134349 MEAN 367 MAX 4170 MIN 65

01400120 RARITAN RIVER AT RARITAN, NJ

LOCATION.--Lat 40°33'52", long 74°38'10", Somerset County, Hydrologic Unit 02030105, at bridge on South Branch-Raritan Road in Raritan, 1.7 mi (2.7 km) upstream from Peters Brook, 3.5 mi (5.6 km) northeast of South Branch, and 3.6 mi (5.8 km) southeast of North Branch.

DRAINAGE AREA. -- 474 mi2 (1,228 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1977 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 09 JAN	1150	763	182	6.8	13.5	10.0	1.1	170	230	67
16 APR	0945	836	188	6.9	3.5	12.6	1.0	790	130	65
10	1000		120	7.4	11.0	11.0	2.0	1600	>2400	38
JUN 04	0930	694	220	7.9	20.0	8.2	1.5	2400	330	72
JUL 24	1000	267	209		25.0	7.7	1.6	800	<200	76
AUG 19	0845	286	142		22.0	8.4	1.4	<200	200	73
SEP 30	1300	273	201	8.3	16.5	10.2	1.1	20	22	78
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT	45						11.5		4.0	4.0
09 JAN	17	6.0	7.8	1.3	55	0	45		18	13
16 APR	16	6.2	11	1.5	52	0	43		23	14
10 JUN	9.6	3.5	5.7	1.5	32	0	26		15	7.8
O4 JUL	18	6.6	10	1.5	63	0	52	.2	21	13
24 AUG	19	6.9	9.2	1.6					25	12
19 SEP	18	6.9	8.4	1.6	66	0	==	2-	22	10
30	20	6.9	8.6	1.5	67	0	55	.0	23	11
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 09	.1	14	113	2.0	.300	4.1	4.4	6.4	. 10	2.3
JAN 16	.1	12	109	1.9			4.3	6.2	. 62	2.5
A PR 10	.1	8.1	82	1.2	.230				1.1	9.1
JUN 04	.1	10	120	1.4	. 120	. 39	.51	1.9	. 27	4.4
JUL 24	- 1	6.6	126	. 96	. 140	.30	. 44	1.4	.31	3.0
AUG 19	.1	4.7	111	. 26	.070	. 43	.50	.76	.28	1.5
SEP 30	.1	2.5	116	. 25	.260	. 29	.55	.80	.18	2.6
50		2.5	110	• 25	. 200			. 00	. 10	2.0

RARITAN RIVER BASIN

01400120 RARITAN RIVER AT RARITAN, NJ--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN								
SEP	0930	10	1	0	40	0	20	3
30	1300	20	1	0	30	0	10	1
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)
JUN								
O4 SEP	910	4	80	.2	2	0	20	1
30	140	0	30	.3	1	0	10	10

01400300 PETERS BROOK NEAR RARITAN, NJ

LOCATION.--Lat 40°35'35", long 74°40'00", Somerset County, Hydrologic Unit 02030105, on left bank 12 ft (3.7 m) upstream from bridge on Garretson Road, 1.5 mi (2.4 km) north of Raritan, and 2.5 mi (4.0 km) from mouth.

DRAINAGE AREA.--4.19 mi² (10.85 km²).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1978 to current year.

REVISED RECORD. -- WDR NJ-79-1: 1978(P).

GAGE.--Water-stage recorder. Datum of gage is 68.713 ft (20.944 m) National Geodetic Vertical Datum of 1929 (levels by Somerset County).

REMARKS. -- Water-discharge records good except those below 1.0 ft3/s (0.03 m3/s), which are fair.

COOPERATION .-- Gage-height record collected in cooperation with Somerset County.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 814 ft³/s (23.1 m³/s) Mar. 21, 1980, gage height, 6.92 ft (2.109 m); no flow part or all of some days in most years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 500 ft3/s (14.2 m3/s) and maximum (*):

		Disch	arge	Gage h	eight
Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Mar. 21	1450	*814	23.1	6.92	2.109
Apr. 9	1245	639	18.1	6.11	2.109

No flow many days during August and September.

		DIS	CHARGE, I	N CUBIC FE	ET PER S	ECOND, WAT MEAN VA		OCTOBER 19	79 TO SEF	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	6.0 6.5 2.8 3.5	.77 .80 32 3.4 1.8	1.1 1.0 .93 .94	1.1 1.1 .98 .91	.68 .65 .69	.55 .58 .55 .61	30 6.8 4.7 34 6.6	4.9 3.6 3.1 2.8 2.4	1.7 1.1 3.7 1.2 .72	.42 .36 .45 .31 2.0	.09 .05 .03 .02	.00 .00 .00
6 7 8 9	2.6 1.6 1.2 3.2	1.4 1.2 1.0 .97 4.5	5.3 11 1.9 1.3 1.2	.85 .89 .91 .78 .66	.67 .72 .71 .73	.78 .70 3.4 3.7 3.7	4.0 3.3 3.0 122 26	2.2 2.6 11 3.1 2.4	.50 .56 1.4 1.5 1.8	3.0 .46 .35 .26	.02 .67 .07 .05	.00 .00 .00
11 12 13 14 15	5.9 5.6 4.1 2.2 1.7	11 26 3.1 2.7 1.8	1.1 1.1 17 3.9 1.9	43 22 2.3 2.1 2.2	.67 .71 .66 .68	18 1.8 1.0 2.5 4.3	6.7 4.7 3.9 8.9 8.2	2.4 7.2 12 6.0 3.0	.81 .60 .47 .43	.22 .27 .18 .15	.01 .02 .01 .01	.00 .00 .00
16 17 18 19 20	1.4 1.2 1.1 1.2 1.1	1.5 1.3 1.1 1.0	1.9 4.3 1.4 1.1	1.6 1.4 8.5 17 2.6	4.5 1.5 .65 .59	6.6 48 42 4.1 3.2	4.0 3.3 3.1 2.8 2.6	2.2 1.9 2.7 2.7 2.6	.37 .26 .27 .27	.18 .37 .14 .09	.01 .00 .00 .03	.00 2.4 20 .21 .05
21 22 23 24 25	1.1 1.1 1.0 1.4 1.1	.98 .96 .96 .96	1.1 1.5 3.7 6.6 31	1.8 1.7 2.0 1.4 1.2	.74 9.6 4.5 2.0 1.5	184 31 9.8 9.0 52	2.6 1.9 2.4 2.3 2.4	8.5 3.0 2.0 1.8 1.7	.19 .21 .19 .21 .20	.05 .38 .32 .08	.00 .00 .00	.03 .01 .01 .00
26 27 28 29 30 31	.96 .90 2.3 1.3 .90	43 4.4 2.2 1.6 1.3	3.7 2.2 1.7 1.6 1.5	1.1 .98 .99 .90 .80	1.1 .95 .89 .70	7.1 4.9 4.1 29 12 96	2.0 2.8 66 28 7.6	1.5 1.3 1.2 1.0 .92	.18 .59 .28 1.3	.03 .02 4.6 .66	.00 .00 .00 .00	.19 .00 .00 .01
TOTAL MEAN MAX MIN CFSM IN.	153.77 4.96 44 .81 1.18 1.36	155.66 5.19 43 .77 1.24 1.38	116.20 3.75 31 .93 .90 1.03	125.48 4.05 43 .66 .97	40.23 1.39 9.6 .59 .33	585.97 18.9 184 .55 4.51 5.20	406.6 13.6 122 1.9 3.25 3.61	104.92 3.38 12 .92 .81 .93	35.72 1.19 14 .18 .28 .32	15.95 .51 4.6 .02 .12 .14	1.19 .038 .67 .00 .009	22.93 .76 20 .00 .18

CAL YR 1979 TOTAL 3191.33 MEAN 8.74 MAX 400 MIN .15 CFSM 2.09 IN 28.33 WTR YR 1980 TOTAL 1764.62 MEAN 4.82 MAX 184 MIN .00 CFSM 1.15 IN 15.66

01400500 RARITAN RIVER AT MANVILLE, NJ

LOCATION.--Lat 40°33'18", long 74°35'02", Somerset County, Hydrologic Unit 02030105, on left bank at downstream side of highway bridge at Manville, and 1.4 mi (2.2 km) upstream from Millstone River.

DRAINAGE AREA . - 490 mi2 (1,269 km2).

172

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1903 to March 1907 (published as "at Finderne"), August 1908 to April 1915 (gage heights only, published in WSP 521), August 1921 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS.--WSP 1552: 1904, 1906, 1922, 1923(M), 1924-25, 1926-29(M), 1930, 1932-33(M), 1924-54. WDR-NJ-75-1: 1964(M), 1969(M), 1970(P), 1972(P), 1973(P).

GAGE.--Water-stage recorder. Datum of gage is 20.61 ft (6.282 m) National Geodetic Vertical Datum of 1929. Prior to Aug. 15, 1923, nonrecording gage on downstream side of highway bridge at same site and datum. From Oct. 1, 1952 to Sept. 30, 1966, water-stage recorder at station at Bound Brook, above Calco Dam (station 01403000) used as auxiliary gage when stage is above 5.0 ft (1.52 m). Since Oct. 1, 1966, water-stage recorder at station at Bound Brook, used as auxiliary gage, was moved downstream to present site (station 01403060). Between June 9, 1978 and June 7, 1979 gage temporarily relocated at site 1.4 mi (2.2 km) downstream, just upstream of Millstone River, because of reconstruction of highway bridge.

REMARKS.--Records fair except those over 3,000 ft³/s (85.0 m³/s), which are poor. Records given herein represent flow at gage only. Slight diurnal fluctuation at low flow. Flow regulated by Spruce Run and Round Valley Reservoirs (see Raritan River Basin, reservoirs in). Diversion to Round Valley Reservoir (see Raritan River Basin, diversions). Water diverted 1,500 ft (457 m) upstream from station and returned to river 0.6 mi (1.0 km) downstream from station by Johns-Manville Corporation (see Raritan River Basin, diversions).

AVERAGE DISCHARGE. -- 62 years, (water years 1904-06, 1922-80), 763 ft3/s (21.61 m3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 36,300 ft³/s (1,030 m³/s) Aug. 28, 1971, gage height, 23.8 ft (7.25 m), from floodmark (backwater from Millstone River), from rating curve Extended above 14,000 ft³/s (396 m³/s) on basis of slope-area measurements at gage heights, 14.9 and 20.42 ft (4.54 and 6.224 m); minimum daily discharge, 17 ft³/s (0.48 m³/s) Sept. 19, 1964 (does not include water diverted to Johns-Manville Plant).

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 10,000 ft3/s (283 m3/s) and maximum (*):

Date Time Discharge Gage height (ft³/s) (m³/s) (ft) (m)

Mar. 22 0345 *17700 501 16.63 5.069

Minimum daily discharge, 182 ft3/s (5.15 m3/s) Sept. 19.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2890	544	948	663	507	417	5820	1570	527	371	272	319
2	4420	547	876	635	566	479	3350	1270	542	323	309	314
3	1990	2540	816	573	566	489	2170	1100	542	311	391	295
4	1770	2060	769	516	574	466	3110	979	746	320	311	318
5	1380	1240	749	484	532	363	2640	876	516	346	269	314
6 7 8 9	2390 1410 1140 996 2520	1060 973 902 811 889	738 1270 901 745 701	441 428 522 513 463	485 440 468 413 360	310 293 345 801 483	1770 1500 1330 3830 6120	795 769 1210 964 779	396 378 460 481 623	636 462 309 318 320	331 264 279 291 313	326 323 311 299 313
11	2770	990	710	668	371	896	2780	723	518	289	302	328
12	1810	2180	680	3570	330	585	1930	880	403	321	318	327
13	1760	1420	900	1360	329	467	1650	2320	350	277	307	322
14	1320	1150	1310	1070	323	477	1610	1530	339	281	292	319
15	1100	991	898	1060	320	630	2120	1070	344	302	293	316
16	1020	888	813	940	373	659	1590	882	334	327	312	310
17	922	840	973	851	408	1060	1260	897	305	358	295	309
18	833	788	745	824	346	5010	1090	889	299	355	284	603
19	803	723	660	1670	338	2370	1020	779	309	323	282	182
20	753	689	670	1110	338	1520	952	727	320	292	290	259
21	716	664	605	913	331	4890	903	967	345	278	284	300
22	680	607	666	848	435	13100	825	1010	324	316	282	293
23	693	589	679	809	770	3740	748	740	307	426	283	276
24	682	569	935	682	771	2280	701	643	302	298	280	272
25	697	556	2090	650	529	4390	662	579	311	242	274	278
26 27 28 29 30 31	621 595 624 781 629 526	1760 2860 1430 1200 1060	1590 1110 948 861 790 717	604 561 568 546 471 503	454 356 341 336	2580 1850 1560 1990 2690 4170	646 675 2850 3680 2170	501 441 387 348 318 367	311 329 350 356 793	245 275 289 396 360 208	297 293 294 352 334 328	307 278 266 253 261
TOTAL	41241	33520	27863	25516	12710	61360	61502	27310	12460	10174	9306	9191
MEAN	1330	1117	899	823	438	1979	2050	881	415	328	300	306
MAX	4420	2860	2090	3570	771	13100	6120	2320	793	636	391	603
MIN	526	544	605	428	320	293	646	318	299	208	264	182

CAL YR 1979 TOTAL 502724 MEAN 1377 MAX 20300 MIN 224 WTR YR 1980 TOTAL 332153 MEAN 908 MAX 13100 MIN 182

<10

01400500 RARITAN RIVER AT MANVILLE, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923-25, 1959, 1962-73, 1976 to current year.

30...

1100

1100

.2

8.5

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DA '	TE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 09		1420	923	188	7.0	14.0	10.2	1.0	330	200	69
FEB 20		1300	301	260	8.0	.5	14.6	1.2	23	4	90
APR		0945	1485	167	7.8	12.5	11.0	.6	110	79	57
JUN		1100	508	213	7.9	22.0	8.1	1.5	790	230	65
JUL		0930	307	222		25.0	8. 1	2.0	80	5	83
AUG											
SEP	• • •	1030	283	192	-	23.0	8.4	1.2	50	20	51
30.	• • •	1100	260	205		16.0	10.2	1.4	80	49	78
DA.		ALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT			2.0								
FEB	• • •	17	6.5	9.2	1.7	61	0	50		22	12
APR		22	8.4	15	1.3	67	0	55		28	23
14. JUN	• • •	14	5.4	7.9	1.3	45	0	37		20	10
JUL 03.		15	6.6	10	1.3	67	0	55	.2	21	13
15. AUG	• • •	21	7.3	9.8	1.5					24	14
19. SEP	• • •	14	3.9	6.9	1.2					18	8.5
30.		20	6.9	8.8	1.5					23	11
DAT		FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L S C)
ОСТ											
O9. FEB	• • •	. 1	13	112	2.0	.210	. 27	. 48	2.5	. 21	2.2
APR		.2	11	135	1.9	. 100	1.3	1.4	3.3	. 19	. 8
14. JUN	• • •	. 1	10	100	1.5	.090	.57	.66	2.2	.79	1.9
03. JUL		. 1	8.1	146	1.2	.290	. 29	.58	1.8	.21	1.2
15. AUG		. 1	4.5	141	. 35	. 120	. 41	• 53	.88	. 46	4.5
19.		. 1	1.7	88	.26	.030	. 83	. 86	1.1	.21	1.7
SEP 30.		.1	2.4	108	. 29	.210	. 41	.62	.91	. 15	4.2
DATE	TIME	NIT GEN, + OR TOT BOT I (MG	NH4 INO G. GAN IN TOT MAT BOT /KG (G/	R- INOR IC, ORGA IN TOT. MAT BOT KG (G/	G + ALU NIC INU IN DI MAT SOL KG (UG	M, S- ARSE VED TOT /L (UG	AL TER	AL LIU OT- TOT MA- REC IAL ERA	M, BOR AL TOT. OV- REC BLE ERAI /L (UG.	AL TOTA OV- RECO BLE ERAI /L (UG.	AL FM BOT- OV- TOM MA- BLE TERIAL /L (UG/G
JUN	1100					10				11.0	
03 SEP	1100					10	1		0	40	0
30	1100	110	U	. 2	8.5			0			<10

01400500 RARITAN RIVER AT MANVILLE, NJ--Continued

	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G	COPPER, TOTAL RECOV- ERABLE (UG/L	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G	IRON, TOTAL RECOV- ERABLE (UG/L	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G	LEAD, TOTAL RECOV- ERABLE (UG/L	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL
DATE	AS CR)	(UG/G)	AS CO)	AS CU)	AS CU)	AS FE)	AS FE)	AS PB)	AS PB)	AS MN)	(UG/G)
JUN 03 SEP	<10		. <u></u>	3		550		3	-	60	-
30		<10	<10		<10		3900		<10	- :	740
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JUN 03	.2	1	0		0	A Lead	20		4		
SEP	• •		· ·		U		20	72	100	4 1	
30		.00		<10		0		74	4-2	4	.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HE PTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JUN 03											
SEP											
30	.0	5	.7	.0	.0	.0	.0	.0	.0	.0	.0
DATE	HE PTA - CHLOR E PO XI DE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TO XA - PHENE, TOTAL IN BOT - TOM MA - TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JUN											
03 SEP									-	-	-
30	.0	.0	.0	.0	.0	.0	.0	.0	.00	0	.0

01400560 MILLSTONE RIVER AT APPLEGARTH, NJ

LOCATION.--Lat 40°16'28", long 74°28'22", Middlesex County, Hydrologic Unit 02030105, at bridge on Prospect Plains-Applegarth Road in Applegarth, 2.7 mi (4.3 km) east of Hightstown, and 5.2 mi (8.4 km) upstream from Rocky Brook.

DRAINAGE AREA. -- 15.0 mi2 (38.8 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1960-62, 1964, 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
	СТ		(0.07	1111007	(0,110)	(200 0)	(11072)	(110727	· · · · · · · ·		0003,
	02	1230		78	6.0	17.5	7.3		1600	>2400	27
	AN 17	1150	11	124	5.3	3.5			<2	33	34
	PR 02	0930		93	6.0	6.5	10.7	.5	5	17	24
	UN 02	1030		101	6.6	20.0	7.1	1.1	310	460	25
J	UL 17	0830	8.5	138	6.2	22.0	5.6	3.8	1700	35000	30
A	UG	1000		10.70							
	21	1000		94	6.6	19.5	7.3	1.1	260	<200	25
	DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
	CT										
J.	02 AN	6.2	2.8	3.9	3.5	9	0	7	.0	17	8.2
A	17 PR	7.7	3.6	5.1	2.2	4	0	3		25	10
J	02 UN	5.5	2.5	3.7	2.1	2	0	2		21	6.9
	02 UL	5.1	2.9	5.1	2.0	11	0	9		17	9.7
	17 UG	6.5	3.4	4.5	4.2	7	0	6		21	9.7
	21	4.6	3.3	5.0	2.2	15	0	12	14-	12	9.7
	DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS-PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
	CT			-				- 22			
J	02 AN	.2	11	67	<1.0	.300	. 27	.57		. 27	13
A	17 PR	.2	11	75	1.5	. 160	. 38	. 54	1.9	. 23	1.4
	02 UN	.2	6.4	58	1.3	.090	. 45	. 54	1.8	. 29	2.3
	02 UL	.2	8.4	84	1.2	. 260	. 17	. 43	1.6	• 53	4.5
	17 UG	.2	7.2	85	1.3	. 340	. 96	1.3	2.6	2.0	5.7
	21	.2	9.5	67	. 65	.070	. 44	.51	1.2	• 55	1.3
DATE	TIM	GEN, + OR TOT BOT	G. GAN IN TOT MAT BOT KG (G/	OR- INOR IIC, ORGA IN TOT. MAT BOT 'KG (G/	G + ALU NIC INU IN DI MAT SOL KG (UG	M, S- ARSE VED TOT	AL TER	AL LIU OT - TOT MA - REC IAL ERA	M, BOR AL TOT OV- REC BLE ERA /L (UG	AL TOT OV- REC BLE ERA /L (UG	AL FM BOT- OV- TOM MA- BLE TERIAL /L (UG/G
OCT			,	, AU	·, no	, 40	,	,	, no	2, 10	, NO 0D)
02	123	0 1010	0	1.9 6	6	80	2	0	10	20	0 <10

RARITAN RIVER BASIN

01400560 MILLSTONE RIVER AT APPLEGARTH, NJ--Continued

DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G)	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
OCT 02	10	40	20	3	90	3300	38000	13	40	70
	MANGA- NESE, RECOV. FM BOT-	MERCURY TOTAL RECOV-	MERCURY RECOV. FM BOT- TOM MA-	NICKEL, TOTAL RECOV-	NICKEL, RECOV. FM BOT- TOM MA-	SELE- NIUM,	SELE- NIUM, TOTAL IN BOT-	ZINC, TOTAL RECOV-	ZINC, RECOV. FM BOT- TOM MA-	
	TOM MA- TERIAL	ERABLE (UG/L	TERIAL (UG/G	ERABLE (UG/L	TERIAL (UG/G	TOTAL (UG/L	TOM MA- TERIAL	ERABLE (UG/L	TERIAL (UG/G	PHENOLS
DATE	(UG/G)	AS HG)	AS HG)	AS NI)	AS NI)	AS SE)	(UG/G)	AS ZN)	AS ZN)	(UG/L)
OCT										
02	110	<.5	.00	6	20	0	0	30	80	0
DATE	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT										
02	12	.0	3	9.4	7.7	. 9	.0	.6	.0	.0
	HEPTA - CHLOR, TOTAL IN BOT - TOM MA -	HE PTA - CHLOR E POXIDE TOT. IN BOTTOM	LINDANE TOTAL IN BOT- TOM MA-	MALA- THION, TOTAL IN BOT- TOM MA-	METH- OXY- CHLOR, TOT. IN BOTTOM	METHYL PARA- THION, TOT. IN BOTTOM	METHYL TRI- THION, TOT. IN BOTTOM	PARA- THION, TOTAL IN BOT- TOM MA-	TOXA- PHENE, TOTAL IN BOT- TOM MA-	TRI- THION, TOTAL IN BOT- TOM MA-
	TERIAL	MATL.	TERIAL	TERIAL	MATL.	MATL.	MATL.	TERIAL	TERIAL	TERIAL
DATE	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)
OCT 02	1.1	. 6	.0	.0	.0	.0	.0	.0	0	.0

01400650 MILLSTONE RIVER AT GROVERS MILL, NJ

LOCATION.--Lat 40°19'19", long 74°36'31", Mercer County, Hydrologic Unit 02030105, at bridge on Millstone Road in Grovers Mill, 0.3 mi (0.5 km) upstream from Cranbury Brook, and 2.7 mi (4.4 km) north of Dutch Neck.

DRAINAGE AREA. -- 43.4 mi2 (112.4 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	NESS (MG/L AS	ALCIUM DIS- SOLVED (MG/L AS CA)
	OCT 03	1030	129	6.4	18.5	5.0	1.4	3500	700	36	8.4
	JAN 17	1315	188	6.5	5.0		1.5	2	<2	44	9.7
	APR 08	0930	160	6.4	13.0	8.5	2.6	5	49	42	9.7
	JUN 02	1330	184	7.0	22.0	5.9	5.2	170	130	38	8.2
	JUL										
	17 AUG	1230	170	6.8	25.0	3.9	3.0	700	16000	41	9.3
	21	1200	180	6.8	21.5	6.1	1.2	230	<20	44	10
	DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
	OCT 03	3.7	6.5	4.7	15	0	12	.0	16	12	.2
	JAN 17	4.7	13	3.3	18	0	15		26	20	.2
	APR 08	4.2	9.4	2.9	16	0	13		25	15	• 3
	JUN 02	4.3	12	2.8	24	0	20	. 0	22	20	• 3
	JUL 17	4.2	12	3.8	29	0	24		19	16	• 3
	AUG 21	4.6	14	3.7	24	0	20		17	19	. 4
	DAT	SILI DIS SOL (MG AS	- AT 1 VED DEC /L DI SOL	DUÉ NI 80 GI G. C NO2- S- TO	EN, GE +NO3 AMMO TAL TOT G/L (MO	IN, GE ONIA ORGA CAL TOT G/L (MG	NÍC ORGA AL TOT G/L (MG	AM- A + NIT NIC GE AL TOT	AL TOTA	PH CARBON TE ORGANI L TOTAL L (MG/L	Ċ
	OCT		-,	, , , ,,	.,	37			.,		
	03. JAN		7.5	90	1.5 .	300 1	.2 1	.5 3	.0 .	57 5.	2
	17.		9.1	104	2.7	990	.00	.99 3	.7 .	74 4.	3
	08. JUN		6.3	176	2.2 .	520	. 48 1	.0 3	.2 .	65 4.	2
	02. JUL		7.0	123	2.7	210 1	.6 1	. 8 4	.5 1.	2 7.	7
	17. AUG		4.1	112	2.4 .	640	.66 1	. 3	.7 1.	4 -	-
	21.		5.9 •	112	3.1 .	040	.59	.63 3	.7 3.	8 2.	3
DAT	TIM	GEN, + OR TOT BOT	G. GAN IN TOT MAT BOT /KG (G/	OR- INOI IIC, ORGA IN TOT MAT BOT KG (G.	ANIC INC ANIC INC IN DI MAT SOL /KG (UC	M, S- ARSE VED TOT G/L (UG	AL TER	AL LIU OT- TOT MA- REC IAL ERA	M, BORC AL TOTA OV- RECC BLE ERAB /L (UG/	L TOTAL OV- RECOV LE ERABL L (UG/L	FM BOT- TOM MA- E TERIAL (UG/G
OCT 03.	103				39	50	2	0	10		0 <10
JUN 02.						0	2		0		1
	.55	3.0				-	-			-55	,

01400650 MILLSTONE RIVER AT GROVERS MILL, NJ--Continued

DATE	CHRO- MI UM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
OCT										
03	20	30	<10	4	30	1300	19000	4	30	20
02	10			3		2000		10		90
2.74	MANGA- NESE, RECOV. FM BOT-	MERCURY TOTAL RECOV-	MERCURY RECOV. FM BOT- TOM MA-	NICKEL, TOTAL RECOV-	NICKEL, RECOV. FM BOT- TOM MA-	SELE- NIUM,	SELE- NIUM, TOTAL IN BOT-	ZINC, TOTAL RECOV-	ZINC, RECOV. FM BOT- TOM MA-	194.8
	TOM MA- TERIAL	ERABLE (UG/L	TERIAL (UG/G	ERABLE (UG/L	TERIAL (UG/G	TOTAL (UG/L	TOM MA- TERIAL	ERABLE (UG/L	TERIAL (UG/G	PHENOLS
DATE	(UG/G)	AS HG)	AS HG)	AS NI)	AS NI)	AS SE)	(UG/G)	AS ZN)	AS ZN)	(UG/L)
ост 03	180	<.5	.00	3	<10	0	0	30	120	5
JUN 02		<.5		3		0		30		1
02		1.5		3		0		30	400	
DATE	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT	15		17	20	4.11	2 11	0	6 7	2	
03 JUN	15	.0	17	29	14	2.4	.0	6.7	• 3	.0
02										
DATE	HEPTA - CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HE PTA - CHLOR E POXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TO XA - PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 03 JUN	•									
	.0	.0	.0	.0	. 0	.0	.0	.0	0	.0

01401000 STONY BROOK AT PRINCETON, NJ

LOCATION.--Lat 40°19'59", long 74°40'56", Mercer County, Hydrologic Unit 02030105, at bridge on U.S. Highway 206, 1.6 mi (2.6 km) southwest of Princeton, and 4.0 mi (6.4 km) upstream from Carnegie Lake.

DRAINAGE AREA .-- 44.5 mi2 (115.3 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1953 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 62.23 ft (18.968 m) National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Water-discharge records fair. Since July 1959 some regulation by several small reservoirs, combined capacity, 49,800,000 gal (188,500 m $^3)$.

AVERAGE DISCHARGE.--27 years, 64.8 ft3/s (1.835 m3/s), 19.78 in/yr (502 mm/yr), unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,960 ft³/s (254 m³/s) Aug. 28, 1971, gage height, 14.26 ft (4.346 m), from rating curve extended above 4,000 ft³/s (110 m³/s) on basis of contracted-opening measurement of peak flow; no flow many days in August and September 1966.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 1,800 ft3/s (51.0 m3/s) and maximum (*):

Date		Time	Discha (ft ³ /s)		Gage h	neight (m)	Date		Time	Discha (ft³/s)	arge (m³/s)	Gage h	eight (m)
Oct. Mar.	1 21	1845 2000	1950 *3980	55.2 113	6.81 9.95	2.076	Mar. Apr.	25 9	0530 1630	1870 2210	53.0 62.6		2.027

Minimum discharge, 0.23 ft3/s (0.007 m3/s) Sept. 13, 14, gage height, 1.16 ft (0.354 m).

	4	DISC	HARGE, IN	CUBIC FE	ET PER SE	COND, WAT		OCTOBER 19	79 TO SEE	TEMBER 19	080	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	645 314 186 138 112	21 21 176 126 58	47 43 37 35 34	37 36 32 26 29	17 19 17 15	12 12 11 12 14	601 259 154 350 204	91 61 45 36 29	9.6 9.1 10 19	6.1 4.1 3.3 2.7 2.0	2.2 2.2 4.4 2.1	.57 .50 .43 .39
6 7 8 9	144 79 61 59 607	45 41 36 34 95	35 95 56 37 34	24 27 27 23 20	14 14 13 13	15 14 24 162 66	115 86 70 705 504	25 22 69 45 26	7.3 7.0 8.2 8.1	3.2 1.9 1.7 1.4	30 8.6 4.7 3.5 2.0	1.1 .54 .37 .32
11 12 13 14 15	295 170 161 103 77	110 292 126 104 77	33 30 65 127 59	68 452 111 80 80	12 12 11 11 12	271 84 52 94 121	171 113 87 83 136	22 72 339 114 58	9·3 7·0 5·8 5·0 4·7	1.1 1.0 .82 .68	1.5 2.1 2.6 1.9 1.4	.25 .26 .25 .47 5.1
16 17 18 19 20	62 53 48 41 39	63 53 47 42 39	48 56 37 32 40	60 49 54 224 101	21 23 16 13 12	147 288 618 178 123	76 52 45 40 35	39 30 32 35 27	5.0 4.4 3.9 3.3 3.0	2.2 3.7 1.8 1.5	1.3 .86 .77 .76 .83	4.5 1.9 35 11 4.7
21 22 23 24 25	36 34 30 33 33	36 34 33 31 29	35 37 49 95 220	71 59 73 49 40	14 28 95 53 33	1540 571 240 156 730	33 28 24 23 21	64 57 30 22 19	2.7 2.6 2.0 2.1 1.9	.99 1.3 3.2 1.5 1.1	.77 .73 .71 .65	2.7 1.8 1.4 1.2 2.5
26 27 28 29 30 31	26 23 25 34 28 23	257 199 99 72 56	130 80 61 53 47 42	33 31 30 25 22 20	27 19 18 13	193 126 96 306 287 602	20 25 255 197 98	16 13 11 9.8 9.2 9.0	1.5 1.5 1.6 1.3	.93 .71 .60 16 5.7 3.3	. 48 . 52 . 53 . 53 . 52	6.1 6.7 3.0 1.8 1.4
TOTAL MEAN MAX MIN CFSM IN.	3719 120 645 23 2.70 3.11	2452 81.7 292 21 1.84 2.05	1829 59.0 220 30 1.33 1.53	2013 64.9 452 20 1.46 1.68	592 20.4 95 11 .46 .49	7165 231 1540 11 5.19 5.99	4610 154 705 20 3.46 3.85	1477.0 47.6 339 9.0 1.07 1.23	178.9 5.96 19 1.3 .13	77.64 2.50 16 .60 .06	96.23 3.10 30 .48 .07	96.91 3.23 35 .25 .07

CAL YR 1979 TOTAL 42106.90 MEAN 115 MAX 2300 MIN 4.3 CFSM 2.58 IN 35.20 WTR YR 1980 TOTAL 24306.68 MEAN 66.4 MAX 1540 MIN .25 CFSM 1.49 IN 20.32

01401000 STONY BROOK AT PRINCETON, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1956-75, 1978 to current year.

PERIOD OF DAILY RECORD. -WATER TEMPERATURES: October 1956 to September 1962, October 1963 to September 1964, October 1965 to June 1970.
SUSPENDED-SEDIMENT DISCHARGE: January 1956 to June 1970.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 16	1000	62	176	7.4	9.0	11.6		80	50	57
JAN 16		58	181	6.5	5.5		1.7	170	90	58
APR 08		69	153	7.7	12.0	11.1	1.0	170	22	52
MAY 28		11	207	8.0	17.0	10.2	1.4	49	79	66
JUL 16	1200	• 57	312	8.0	26.0	4.5	2.0	350	240	96
AUG 14	1200	2.0	252	7.9	23.0	7.5	1.1	33	17	77
DATE	CALCIUM DIS- SOLVEI (MG/L AS CA)	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT 16	13	5.9	9.8	1.9	43	0	35	.0	26	11
JAN 16		6.3	12	1.8	43	0	35		28	14
A PR 08	12	5.3	8.6	1.6	34	0	28		23	9.6
MAY 28	15	6.9	14	1.7	59	0	48		27	13
JUL 16	22	9.9	22	2.4	93	0	76		28	30
AUG 14	. 18	7.8	17	3.0	76	0	62		24	21
DATE	FLUO- RIDE, DIS- SOLVEI (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 16		1 14	111	1.5	. 400	. 47	. 87	2.4	. 12	2.9
JAN 16			112	1.5	.080	3.8	3.9	5.4	.13	2.8
APR 08			94	1.5	. 140	.66	. 80	2.3	.61	2.2
MAY 28		1 4.7	120	. 85	.120	• 39	.51	1.4	. 15	2.1
JUL 16		3 1.8	186	<.05	. 100	.51	. 61		.12	4.9
AUG 14		3 4.6	143	<.05	<.030		. 69		. 15	2.6
ATE	GE1 + (TO: BO:	N, NH 4 INC DRG. GAS T IN TOT T MAT BOT MG/KG (G	BON, CARE OR- INOF NIC, ORGA IN TOT. MAT BOT /KG (G/	IG + ALU INIC INU IN DI MAT SOL 'KG (UG	JM, S- ARSE VED TOT	AL TER	AL LIU OT - TOT MA - REC IAL ERA	OV- REC	COV- RECABLE ERA	AL FM BOT- OV- TOM MA- BLE TERIAL
T 6	1000 1	400	.2	3.0	30	1	0	0	50	0 <10

01401000 STONY BROOK AT PRINCETON, NJ--Continued

DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
OCT 16	20	40	20	3	20	210	39000	0	20	10
	MANGA- NESE, RECOV. FM BOT-	MERCURY TOTAL RECOV-	MERCURY RECOV. FM BOT- TOM MA-	NICKEL, TOTAL RECOV-	NICKEL, RECOV. FM BOT- TOM MA-	SELE- NIUM,	SELE- NIUM, TOTAL IN BOT-	ZINC, TOTAL RECOV-	ZINC, RECOV. FM BOT- TOM MA-	
	TOM MA- TERIAL	ERABLE (UG/L	TERIAL (UG/G	ERABLE (UG/L	TERIAL (UG/G	TOTAL (UG/L	TOM MA- TERIAL	ERABLE (UG/L	TERIAL (UG/G	PHENOLS
DATE	(UG/G)	AS HG)	AS HG)	AS NI)	AS NI)	AS SE)	(UG/G)	AS ZN)	AS ZN)	(UG/L)
OCT 16	1000	.2	.00	0	30	0	0	20	120	2

01401400 HEATHCOTE BROOK AT KINGSTON, NJ

LOCATION.--Lat 40°22'10", long 74°36'59", Middlesex County, Hydrologic Unit 02030105, at bridge on Mapleton Road in Kingston, 0.3 mi (0.4 km) east of Delaware and Raritan Canal at Kingston, 0.7 mi (1.1 km) downstream from Carters Brook, and 3.8 mi (6.1 km) northwest of Scotts Corners.

DRAINAGE AREA, -- 9.0 mi2 (23.3 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
11	1000	47	128	6.7	7.5	9.8	2.4			41
FEB 19	1420	4.4	360	6.8	4.5	14.4		33	6	110
MAR 31	1115	180	87	7.0	6.0	11.0	3.0	920	1600	25
MAY 27	1245	3.0	284	7.0	15.0	10.1	1.5	1100	110	100
JUL 16	0830	1.5	159	6.9	19.0	7.0	1.1	1300	920	48
AUG 14	0900	1.5	210	6.7	17.0	7.9	. 4	230	1600	70
SEP 25	0900	1.5	186	6.6	15.0	8.2	1.6	330	790	61
-2,	CALCIUM DIS-	MAGNE- SIUM, DIS-	SODIUM,	POTAS- SIUM, DIS-	BICAR- BONATE	CAR-	ALKA- LINITY	SULFIDE	SULFATE DIS-	CHLO- RIDE, DIS-
4	SOL VED	SOL VED (MG/L	SOLVED (MG/L	SOL VED (MG/L	(MG/L	BONATE (MG/L	(MG/L AS	TOTAL (MG/L	SOL VED (MG/L	SOL VED
DATE	AS CA)	AS MG)	AS NA)	AS K)	HC03)	AS C03)	CACO3)	AS S)	AS SO4)	AS CL)
OCT 11	10	3.8	7.2	2.1	18	0	15	.0	30	7.6
FEB	25	12	14	2.2		0			96	18
19 MAR					28		23	•		
31	5.0	3.0	3.9	1.6	12	0	10	-	18	5.0
27 JUL	22	11	12	2.1	30	0	25		71	12
16 AUG	11	5,1	8.3	2.1	27	0	22		15	11
14 SEP	17	6.8	8.8	2.2	24	0	20		34	11
25	15	5.7	9.2	2.2	22	0	18		26	12
DATE	FLUO- RIDE, DIS- SOL VED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT										
FEB	,1	12	92	<1.0	1.200	.00	1.2		.07	9.0
19 MAR	.1	13	211	3.2	4.110	2.0	6.1	9.3	.03	2.6
31 MAY	.1	6.7	68	. 40	. 250	1.3	1.6	2.0	<.01	6.4
27 JUL	.1	12	192	4.0	.090	. 54	.63	4.6	.03	5.5
16 AUG	.1	9.2	111	4.5	.090	. 20	. 29	4.8	.06	1.6
14 SEP	.1	11	139	4.5	.030	. 35	. 38	4.9	.09	. 4
25	.1	12	112	5.1	.070	. 22	.29	5.4	.09	1.7

RARITAN RIVER BASIN

01401400 HEATHCOTE BROOK AT KINGSTON, NJ--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 11	1000	120	1	0	60	0	20	24
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)
OCT 11	860	2	80	.2	11	0	50	1

01401440 MILLSTONE RIVER AT KINGSTON, NJ

LOCATION.--Lat 40°22'24", long 74°37'15", Middlesex County, Hydrologic Unit 02030105, at bridge on Lincoln Highway in Kingston, 0.2 mi (0.4 km) downstream from the outflow of Carnegie Lake, and 3.0 mi (4.9 km) northwest of Plainsboro.

DRAINAGE AREA.--172 mi² (445 km²), includes 8.0 mi² (20.7 km²) which drains into Delaware and Raritan Canal.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 15 FEB	1230	E310	132	7.0	10.5	10.6	1.7	700	49	42
19 APR	1230	E 106	200	7.3	5.0	11.2		<20	2	53
08	1400	E310	137	7.1	13.0	10.6	1.3	20	13	40
27 JUL	1000	E117	159	7.3	20.5	9.2	5.2	20	20	48
16 AUG	1000	E7.8	190		26.0	4.3	5.6	20	<20	56
14 SEP	1015	E 14	190		27.0	6.4	3.9	5400	1300	56
25	1100		203		21.0	4.6	6.8	2400	3500	65
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT 15	10	4.1	6.9	3.0	22	0	18	.0	23	11
FEB	12					0	22		25	20
19 APR	9.4	5.7	13	2.9	. 27	0		-		
MAY		3.9	7.3	2.3	21		17		20	11
27 JUL	11	5.0	9.9	2.4	29	0	24		21	13
16 AUG	13	5.8	13	3.0					20	19
14 SEP	13	5.7	11	3.3				-	19	17
25	16	6.0	12	3.8				.2	23	19
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 15	.2	10	89	1.5	. 460	1.0	1.5	3.0	.38	6.2
19	.2	8.1	123	3.4	.500	1.5	2.0	5.4	.54	3.6
A PR 08	.1	7.5	102	1.7	.210	.57	.78	2.5	.50	3.7
MAY 27	.2	7.0	. 108	1.5	. 130	.68	. 81	2.3	. 13	5.9
JUL 16	•3	4.0	120	.37	. 140	1.5	1.6	2.0	.58	6.4
AUG 14	•3	5.6	111	<.05	.160	1.0	1.2	-	. 43	4.1
SEP 25	•3	1.9	118	. 25	. 180	1.4	1.6	1.8	1.6	7.6

01401440 MILLSTONE RIVER AT KINGSTON, NJ--Continued

DATE	TIME	NITRO- GEN, NH 4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 15	1230		- 1		30	1	0	0	50	0	<10
SEP 25	1100	1800	.8	11	20	3	0	0	70	1	<10
DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 15	20	10		6	10	1300	6700	2	20	60	110
SEP 25	30	<10	<10	8	<10	2400	6700	26	90	450	630
25	30	(10	(10	0	(10	2400	6700	20	90	450	030
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT											
15 SEP	.2	.00	5		0	0	20	50	7	6	.0
25	<.1	.01	4	<10	0	0	40	100	0	16	.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA - CHLOR, TOTAL IN BOT - TOM MA - TERIAL (UG/KG)
OCT 15 SEP	.0	11	15	5.8	6.9	.0	.6	.0	.0	.0	.0
25	.0	16	32	.0	16	.0	2.0	.0	.0	.0	.0
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT		-		1	4				00		
15 SEP	.0	.0	.0	.0	.0	.0	.0	.0	.00	0	.0
25	.0	.0	.0	.0	.0	.0	.0	.0	.00	0	.0

01401600 BEDEN BROOK NEAR ROCKY HILL, NJ

LOCATION.--Lat 40°24'52", long 74°39'02", Somerset County, Hydrologic Unit 02030105, at bridge on U.S. Route 206 at State Route 533, 0.7 mi (1.1 km) upstream from Pike Run, 1.2 mi (1.9 km) northwest of Rocky Hill, and 4.6 mi (7.4 km) north of Princeton.

DRAINAGE AREA .-- 27.6 mi2 (71.5 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1959-63, 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

			SPE- CIFIC				OXYGEN	COLI-		
	TIME	STREAM- FLOW, INSTAN- TANEOUS	CON- DUCT- ANCE	PH FIELD	TEMPER- ATURE, WATER	OXYGEN, DIS- SOLVED	DEMAND, BIOCHEM UNINHIB 5 DAY	FORM, FECAL, EC BROTH	STREP- TOCOCCI FECAL	HARD- NESS (MG/L AS
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	(MG/L)	(MG/L)	(MPN)	(MPN)	CACO3)
OCT										
16 JAN	1300	58	182	7.3	12.0	11.9		350	8	61
16 MAR	1245	57	164	6.3	4.5		1.1	210	80	57
31	1345	76	85	7.0	6.0	11.6	1.5			28
MAY 28 JUL	0930	80	203	8.0	15.5	9.5		240	130	70
10	1000	18	295		24.0	6.8	2.2	800	790	97
AUG 18	1300	19	399		21.0	9.0	2.7	<200	230	140
	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	POTAS- SIUM, DIS- SOLVED (MG/L	BICAR- BONATE (MG/L AS	CAR- BONATE (MG/L	ALKA- LINITY (MG/L AS	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L
DATE	AS CA)	AS MG)	AS NA)	AS K)	HCO3)	AS CO3)	CACO3)	AS SO4)	AS CL)	AS F)
OCT 16 JAN	14	6.4	10	1.6	41	0	34	29	10	.1
16	13	6.0	9.6	1.4	34	0	28	26	11	.1
MAR 31	5.6	3.3	4.0	1.4	15	0	12	18	3.8	.1
MAY 28	16	7.2		1.7	62	0	51	28	10	.1
JUL 10	23	9.7	20	1.8				38	20	.1
AUG										
18	34	13	22	4.4				74	28	.1
	SILI DIS SOL (MG AS	CA, RES - AT VED DE /L D	180 G G. C NO2 IS- TO	TRO- NIT EN, GE +NO3 AMMO TAL TOT G/L (MG	N, GE NIA ORGA AL TOT	NÍC ORGA AL TOT	AM- A + NIT NIC GE AL TOT	AL TOT	OPH CARBO ATE ORGAN AL TOTA	IIĆ L
DA	TE SIO	2) (M	G/L) AS	N) AS	N) AS	N) AS	N) AS	N) AS P	04) AS C)
OCT 16		4	114	1.9 .	400 1	.0 1	.4 3	.3	. 15	.5
	1	3	88	2.2		5	.4 7	.6	.20 1	. 8
		8.6	70	1.2 .	030 1	.2 1	.2 2	.4 <	.01 5	5.3
		5.5	124	1.5 .	140	. 27	.41 1	. 9	.31 1	.6
		6.2	180	.46 .	180	. 74	.92 1	. 4	.56	. 3
AUG 18		8.5	271	.72 <.	030		.64 1	.4 1	.1 2	2.5

01401600 BEDEN BROOK NEAR ROCKY HILL, NJ--Continued

DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)
OCT 16	1300	2400	.2	9.8	0	<10	30	20
DATE	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)
OCT 16	20	24000	20	720	.00	30	0	100

01401650 PIKE RUN AT BELLE MEAD, NJ

LOCATION.--Lat 40°28'05", long 74°38'57", Somerset County, Hydrologic Unit 02030105, on right bank 20 ft (6.1 m) upstream of Township Line Road, 0.7 mi (1.1 km) east of Belle Mead, 0.8 mi (1.3 km) upstream of Cruser Brook, and 1.0 mi (1.6 km) downstream of bridge on U.S. Route 206.

DRAINAGE AREA. -- 5.36 mi2 (13.88 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July to September 1980.

GAGE.--Water-stage recorder and parking bumper control. Datum of gage is 60.3 ft (18.38 m) National Gedetic Vertical Datum of 1929.

REMARKS.--Water-discharge records fair.

COOPERATION. -- Gage-height record collected in cooperation with Somerset County.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1810, 12.1 ft (3.69 m) from floodmark, present datum, Aug. 28, 1971.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 50 ft³/s (1.42 m³/s) and maximum (*) for period July to September:

		Discharge (ft ³ /s) (m ³ /s)	Gage height (ft) (m)
Date	Time	(ft^3/s) (m^3/s)	(ft) (m)
Sept. 18	0435	52 1.47	3.90 1.189

No flow Aug. 20 to Sept. 17.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	ост	non	I DI	C JA	N F	EB M	IAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5											1.0 .28 .27 .27 .19	.08 .05 .25 .09	.00 .00 .00
6 7 8 9											1.6 .22 .13 .11	2.4 .18 .07 .04	.00 .00 .00
11 12 13 14 15											.07 .10 .06 .04	.04 .02 .01 .01	.00 .00 .00
16 17 18 19 20						+14	1.2				.04 .06 .07 .04	.01 .01 .01 .01	.00 .00 10 .53
21 22 23 24 25		t				+80	0.5				.03 .02 1.4 .26	.00 .00 .00	.07 .05 .03 .01
26 27 28 29 30 31											.03 .01 .01 4.0 .57	.00 .00 .00 .00	4.9 2.2 .26 .04 .03
TOTAL MEAN MAX MIN CFSM IN											11.23 .36 4.0 .01 .07	5.13 .17 2.4 .00 .03	18.86 .63 10 .00 .11

[†] Result of discharge measurement.

01402000 MILLSTONE RIVER AT BLACKWELLS MILLS, NJ

LOCATION.--Lat 40°28'30", long 74°34'34", Somerset County, Hydrologic Unit 02030105, on left bank 30 ft (9 m) downstream from highway bridge at Blackwells Mills, and 0.3 mi (0.5 km) downstream from Six Mile Run.

DRAINAGE AREA .-- 258 mi2 (668 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1903 to December 1904 (gage heights only), August 1921 to current year. Monthly discharge only for some periods, published in WSP 1302. Published as "at Millstone" 1903-04.

REVISED RECORDS. -- WSP 1552: 1924-25(M), 1926.

GAGE.--Water-stage recorder. Concrete control since Nov. 18, 1933. Datum of gage is 26.97 ft (8.220 m) National Geodetic Vertical Datum of 1929. June 27, 1903 to Dec. 31, 1904, nonrecording gage at bridge 2.0 mi (3.2 km) downstream at Millstone at different datum. Aug. 4, 1921 to Aug. 16, 1928, nonrecording gage at present site and datum.

REMARKS.--Water-discharge records good except those above 1,200 ft³/s (34.0 m³/s), which are poor. Inflow from and losses to Delaware and Raritan Canal above station. Flow slightly regulated by Carnegie Lake, capacity, 310,000,000 gal (1,173,000 m³) and several smaller reservoirs, combined capacity, 49,800,000 gal (188,500 m³).

AVERAGE DISCHARGE.--59 years, 378 ft3/s (10.70 m3/s), 19.89 in/yr (505 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 22,200 ft 3 /s (629 m 3 /s) Aug. 28, 1971, gage height, 18.68 ft (5.694 m) from high-water mark; minimum, about 5 ft 3 /s (0.14 m 3 /s) Sept. 16, 1923.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 3,000 ft3/s (85.0 m3/s) and maximum (*):

2.5		Discharge		Gage h	Gage height					arge	Gage height		
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Oct. Mar.	2 22	0100 0815	3470 *5600	98.3 159	8.87 11.15	2.704 3.399	Apr.	10	1945 0915	3390 3330	96.0 94.3		2.667

Minimum discharge, 7.9 ft3/s (0.22 m3/s) Sept. 12, 13, gage height, 1.19 ft (0.363 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3000	169	297	232	149	131	3070	794	108	83	69	15
2	3150	165	267	218	136	126	2840	566	113	64	76	12
3	1840	403	243	208	125	118	1790	447	142	48	63	11
4	832	600	230	190	123	117	1510	366	181	39	50	12
5	642	360	223	189	120	128	1740	316	136	36	50	14
6	621	327	218	184	112	137	1020	259	116	56	165	16
7	402	279	373	177	109	136	652	231	104	50	96	17
8	327	243	333	186	108	169	612	374	94	46	47	15
9	301	219	278	175	110	545	1280	365	87	40	27	15
10	1390	292	246	163	115	366	3180	292	114	33	18	16
11	2050	390	222	216	115	1200	2590	247	101	30	16	15
12	1440	1060	216	1490	117	613	1310	281	89	29	15	12
13	917	694	317	973	114	426	679	1110	80	26	14	8.2
14	616	578	527	642	114	466	600	850	77	25	14	9.1
15	469	471	370	500	115	625	831	506	76	24	24	22
16	361	379	318	367	145	703	591	347	61	23	26	15
17	291	327	306	314	179	1010	506	269	54	26	18	9.9
18	259	284	255	294	150	2140	417	246	52	57	14	80
19	245	258	225	790	138	1530	366	268	57	51	14	35
20	238	241	214	593	129	685	344	235	59	39	13	45
21	229	226	210	469	131	1610	322	325	58	28	12	36
22	219	214	214	372	165	4900	296	368	51	20	12	26
23	206	209	254	378	375	2730	278	279	51	43	12	19
24	173	202	366	325	328	1350	259	227	49	66	11	15
24 25	152	193	762	275	280	2200	245	192	47	56	9.9	16
26	159	600	718	242	233	2120	237	164	42	49	10	28
27	158	1230	496	213	194	1080	260	144	40	35	9.8	24
28	165	611	384	211	167	667	1170	131	40	26	9.8	18
29	194	595	318	194	151	1040	2020	119	32	147	10	16
30	181	406	282	176		1790	1530	98	128	104	12	15
31	164		254	166		1880		100		67	11	
TOTAL	21391	12225	9936	11122	4547	32738	32545	10516	2439	1466	948.5	607.2
MEAN	690	408	321	359	157	1056	1085	339	81.3	47.3	30.6	20.2
MAX	3150	1230	762	1490	375	4900	3180	1110	181	147	165	80
MIN	152	165	210	163	108	117	237	98	32	20	9.8	8.2
CFSM	2.67	1.58	1.24	1.39	.61	4.09	4.21	1.31	.32	.18	.12	.08
IN.	3.08	1.76	1.43	1.60	.66	4.72	4.69	1.52	.35	.21	.14	.09
TW.	3.00	1.70	1.43	1.00	.00	4.12	4.09	1.52	. 35	.21	. 14	.09
CAL YR	1979 TOT	AL 22349	5.0 MFA	N 612 M	AX 7770	MIN 61	CESM	2.37 IN	32.22			

CAL YR 1979 TOTAL 223495.0 MEAN 612 MAX 7770 MIN 61 CFSM 2.37 IN 32.22 WTR YR 1980 TOTAL 140480.7 MEAN 384 MAX 4900 MIN 8.2 CFSM 1.49 IN 20.26

01402540 MILLSTONE RIVER AT WESTON, NJ

LOCATION.--Lat 40°31'47", long 74°35'19", Somerset County, Hydrologic Unit 02030105, at bridge on Wilhouski Street in Weston, 50 ft (15 m) upstream from Royce Brook, 0.8 mi (1.2 km) southwest of Alma White College, and 1.9 mi (3.0 km) north of Millstone.

DRAINAGE AREA.--271 \min^2 (702 \ker^2), includes approximately 13 \min^2 (34 \ker^2) which drains into Delaware and Raritan canal.

WATER-QUALITY RECORD

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT								A Table		
11 FEB	1330	1590	149	7.1	10.0	9.6	1.9			47
20	1000	E64	245	7.3	2.0	11.8	4.0	<20	<2	70
APR 10	1245	E 4050	115	7.1	13.0	9.0	1.8	3500	1600	33
JUN										
03 JUL	1300	E64	216	7.9	22.5	7.8	5.2	170	230	59
15	1115		278		25.0	12.4	4.6	140	20	88
AUG 19	1200		300		23.0	8.2	5.7	20	<20	96
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT	- 11	4.8	8.9	2.6	33	0	27	.0	21	9.8
FEB								.0		
20 APR	17	6.8	15	2.7	39	0	32		33	23
10	8.1	3.2	6.0	1.8	21	0	17		17	7.9
JUN 03	14	5.9	14	2.5	45	0	37	.1	30	16
JUL 15	23	7.4	18	3.8					35	25
AUG 19	25	8.2	18	4.2		- 22	- 23		42	24
19	23	0.2	10	4.2						-
DATE	FLUO- RIDE, DIS- SOL VED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 11	.1	12	98	1.8			2.0	3.8	.33	5.0
FEB									7.7	
20 APR	.2	9.0	140	3.4	.580	1.5	2.1	5.5	.70	2.9
10 JUN	.1	7.5	75	1.4	. 120				.50	5.1
03	.2	3.4	151	2.0	. 250	2.2	2.5	4.5	1.5	6.4
JUL 15 AUG	• 3	4.2	164	1.2	. 120	.98	1.1	2.3	1.1	
19	• 3	8.9	189	.30	.030	. 10	.13	. 43	1,1	3.0

01402540 MILLSTONE RIVER AT WESTON, NJ--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
11 15	1330 1030	40	1		0		0	<10	20	20
JUN 03	1300	10	2		0	70	0		<10	
DATE	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)
0CT 11 15	11	20	1400	17000	6	40	60	400	.2	.00
JUN 03	4		580		3		110		.2	
36000										
DATE	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 11	10	0		30		1	-			
15 JUN			0		120		15	.0	.0	0
03	2	0		20		2				-
DATE	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)
OCT 11										
15 JUN	20	16	3.3	.0	. 4	.0	.0	.0	.0	.0
03										
DATE	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 11										
15 JUN	.0	.0	.0	.0	.0	.0	.0	.00	0	.0
03										

01402600 ROYCE BROOK TRIBUTARY NEAR BELLE MEAD, NJ

LOCATION. --Lat 40°29'56", long 74°39'05", Somerset County, Hydrologic Unit 02030105, on right bank 25 ft (7.6 m) upstream from bridge on State Highway 514 (Amwell Road), 1,200 ft (370 m) upstream from mouth, and 2.0 mi (3.2 km) north of Belle Mead.

DRAINAGE AREA .-- 1.20 mi2 (3.11 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1966 to September 1974, January to September 1980.

REVISED RECORDS .-- WRD-NJ 1969: 1967, 1968.

GAGE.--Water-stage recorder and concrete control. Datum of gage is about 68 ft (20.7 m) National Geodetic Vertical Datum of 1929. Prior to September 1974 at same site at datum of 67.77 ft (20.623 m).

REMARKS. -- Water-discharge records fair. Storm-water detention basin completed above station in summer of 1980.

AVERAGE DISCHARGE.--8 years (water years 1967-74), 2.39 ft3/s (0.0677 m3/s), 27.05 in/yr (687 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,450 ft³/s (41.1 m³/s) Aug. 28, 1971, gage height, 7.01 ft (2.137 m) datum then in use, from high-water mark, from rating curve extended above 140 ft³/s (3.96 m³/s) on basis of slope-area measurement of peak flow; no flow on some days in most years.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 100 ft³/s (2.83 m³/s) and maximum (*) for period January to September:

Date		Time	Dischar (ft ³ /s)		Gage h	eight (m)	Date		Time	Discha (ft ³ /s)		Gage h	eight (m)
Mar. Apr.	21 9	1420 1210	*208 127	5.89 3.60	4.32 3.59	1.317 1.094	Apr.	28	1315	142	4.02	3.72	1.134

No flow June 25, 26.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

						MEAN V	LUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5				===	.24 .25 .27 .30	.30 .30 .30 .01	20 4.3 2.4 11 3.5	2.9 1.6 1.2 .87 .73	.21 .87 .68 .29	.69 .27 .22 .16 .78	.19 .16 .47 .16 .84	.02 .02 .01 .01
6 7 8 9				==	.35 .31 .32 .40	.41 .29 1.3 2.2 4.2	1.8 1.3 1.1 31	.62 .86 3.6 1.0	.12 .30 .34 .94 .73	1.1 .24 .21 .16 .14	.62 .21 .16 .14	02 .01 .01 .01
11 12 13 14 15				==	.36 .34 .31 .37	10 2.4 1.4 2.6 3.9	3.1 2.1 1.6 4.5 5.2	.55 1.7 6.1 1.5	.25 .15 .12 .10	.13 .23 .11 .08 .15	.10 .22 .14 .10 .52	.01 .01 .01 .01
16 17 18 19 20				==	1.6 .81 .43 1.0	6.2 13 14 3.2 2.0	1.7 1.1 .91 .73 .67	.71 .54 .97 .47	.24 .09 .04 .28	.14 .15 .09 .08	.22 .10 .08 .09	.02 .67 2.4 .16
21 22 23 24 25				1.5 1.3 .84 .64	1.1 2.5 1.8 .99	53 13 4.3 4.0 21	.63 .54 .47 .41	2.5 .91 .52 .45 .43	.11 .02 .01 .01	.07 .49 4.1 .51	.05 .05 .08 .10	.11 .11 .08 .07
26 27 28 29 30 31				.59 .51 .49 .42 .35	.55 .43 .39 .35	3.4 2.0 1.5 12 6.1 26	.38 1.1 33 22 4.7	.31 .21 .29 .15 .15	.00 .18 .14 .70 3.4	.18 .13 .10 2.0 .43	.05 .03 .03 .03 .03	.17 .05 .05 .05
TOTAL MEAN MAX MIN CFSM IN.				===	19.96 .69 2.5 .24 .58 .62	214.67 6.92 53 .01 5.77 6.65	172.64 5.75 33 .38 4.79 5.35	33.73 1.09 6.1 .15 .91 1.04	10.87 .36 3.4 .00 .30	13.70 .44 4.1 .05 .37 .42	5.35 .17 .84 .02 .14 .17	4.42 .15 2.4 .01 .13

01403060 RARITAN RIVER BELOW CALCO DAM, AT BOUND BROOK, NJ

LOCATION.--Lat 40°33'05", long 74°32'54", Somerset County, Hydrologic Unit 02030105, on right bank 1,000 ft (305 m) downstream from Calco Dam and Cuckold Brook, 1,400 ft (427 m) upstream of bridge on Interstate 287 1.2 mi (1.9 km) downstream from Millstone River, and 1.2 mi (1.9 km) southwest of Bound Brook.

DRAINAGE AREA. -- 785 mi2 (2.033 km2), includes 11 mi2 (28 km2) which drains into the Delaware and Raritan Canal.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1903 to March 1909, October 1944 to current year. Monthly discharge only for some periods, published in WSP 1302. Prior to October 1966 published as "Raritan River at Bound Brook" (station 01403000).

REVISED RECORDS. -- WSP 1552: 1903-07. 1946(M). 1949. 1952(P).

CAL YR 1979 TOTAL WTR YR 1980 TOTAL

MEAN

MEAN

MAX

MIN 199

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Sept. 12, 1903 to Mar. 31, 1909, nonrecording gages at highway bridge, 1.2 mi (1.9 km) downstream at different datum. October 1944 to Sept. 30, 1966, water-stage recorder and concrete control at site 1,120 ft (341 m) upstream at datum 18.06 ft (5.505 m) higher.

REMARKS.--Water-discharge records good. Water diverted 1.9 mi (3.0 km) above station by Elizabethtown Water Co. for municipal supply (see Raritan River Basin, diversions). Flow regulated by Spruce Run and Round Valley Reservoirs (see Raritan River Basin, reservoirs in). Diversions to Round Valley Reservoir (see Raritan River Basin, diversions). Slight diurnal fluctuations at low flow.

AVERAGE DISCHARGE.--41 years, (water years 1904-08, 1945-80), 1,289 ft³/s (36.52 m³/s), adjusted for diversion by Elizabethtown Water Co. since 1944, and change in contents in Spruce Run Reservoir since 1964 and Round Valley Reservoir since 1966.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $46,100 \text{ ft}^3/\text{s}$ (1.310 m³/s) Aug. 28, 1971, elevation, 37.47 ft (11.421 m), from floodmark; minimum daily, 37 ft³/s (1.05 m³/s) Sept. 6, 1964.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 12,000 ft3/s (340 m3/s) and maximum (*):

			Disch		Eleva	tion				Discha		Eleva	tion
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Oct. Mar.	22	0115 0615	12800 *25300	362 176	25.19 29.80	7.678 9.083	Apr.	10	0645 0100	12000 13800	340 391		7.580 7.800

Minimum discharge, 52 ft3/s (1.47 m3/s) Sept. 19, 20, elevation, 16.26 ft (4.956 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES DAY OCT NOV DEC JUI. SEP JA N FEB MAR APR MAY JUN AUG 142 686 230 231 Ŕ 313 2680 318 175 368 770 738 976 123 ---TOTAL. 1591 1214 378 MEAN MAX MIN

01403150 WEST BRANCH MIDDLE BROOK NEAR MARTINSVILLE, NJ

LOCATION.--Lat 40°36'44", long 74°35'28", Somerset County, Hydrologic Unit 02030105, on left bank 150 ft (45.7 m) upstream from bridge on Crim Road, 1.4 mi (2.3 km) northwest of Martinsville, and 1.8 mi (2.9 km) upstream from confluence with East Branch Middle Brook.

DRAINAGE AREA .-- 1.99 mi2 (5.15 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- June 1979 to current year.

GAGE.--Water-stage recorder. Datum of gage is 240.48 ft (73.30 m) National Geodetic Vertical Datum of 1929 (levels by Somerset County).

REMARKS. -- Water-discharge records fair.

COOPERATION. -- Gage-height record collected in cooperation with Somerset County.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 439 ft³/s (12.4 m³/s) Mar. 21, 1980, gage height, 4.96 ft (1.512 m); no flow Sept. 19-30, 1980.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 150 ft3/s (4.25 m3/s) and maximum(*):

Date		Time	Discha (ft ³ /s)		Gage h	eight (m)	Date		Time	Discharge (ft ³ /s)		Gage h	eight (m)
Jan. Mar.	11 21	2000 1425	153 *439	4.33	4.01 4.96	1.222	Apr.	9 28	1230 1250	286 168	8.10 4.77		1.378

No flow Sept. 19-30, 1980.

		DISC	HARGE, IN	CUBIC FE	ET PER S	ECOND, WAT MEAN VA		OCTOBER 19	79 TO SEP	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1 2 3 4 5	11 2.8 2.9 1.6 1.8	1.9 2.1 15 2.8 1.7	1. 1 1. 0 . 94 . 98	1.0 .99 .88 .91	.64 .66 .62 .64	.65 .54 .52 .55	18 6.6 4.8 18 5.9	3.4 2.6 2.2 1.8 1.6	.61 .54 1.2 .60 .47	.08 .05 .05 .05	.02 .02 .02 .02 .02	.12 .09 .07 .08 .12
6 7 8 9	1.4 1.1 .90 1.8	1.5 1.3 1.2 1.1 3.5	2.9 5.6 1.8 1.4	.91 .85 .74 .68	.62 .64 .66 .68	.66 .69 2.1 2.1 2.9	4.2 3.6 3.3 54	1.6 1.7 6.3 2.4 1.8	.41 .36 .50 .58 .63	.34 .03 .03 .02	.04 .05 .11 .11	. 12 . 05 . 05 . 05 . 04
11 12 13 14 15	4.1 3.3 2.6 1.5 1.3	4.5 11 2.8 2.5 1.8	1.2 1.1 6.3 2.6 1.6	16 9.5 1.8 1.8	.61 .53 .49 .50	10 1.7 1.9 3.9 1.7	4.8 3.8 3.3 7.4 6.8	1.6 3.8 6.9 3.3 1.9	.40 .34 .26 .26	.02 .02 .01 .01	.12 .14 .10 .12 .16	.04 .03 .03 .04
16 17 18 19 20	1.1 .98 .90 .90	1.7 1.5 1.3 1.1	1.7 2.5 1.1 1.3 1.1	1.5 1.2 3.4 6.8 2.1	2.0 1.2 .59 .55	2.1 16 28 4.3 3.4	3.6 2.9 2.6 2.3 2.2	1.5 1.2 1.7 1.5 1.3	.23 .19 .17 .13	.03 .03 .02 .02	.14 .12 .10 .24 .24	.04 1.2 1.1 .00
21 22 23 24 25	1.0 1.2 1.9 3.4 2.7	.99 .99 .99 .98	1.0 1.3 2.4 3.7	1.6 1.4 1.5 1.3	.61 2.1 3.8 1.5	83 14 5.9 5.6 21	2.2 1.8 1.7 1.6 1.5	4.2 1.8 1.2 .95 .81	.12 .09 .09 .07	.04 .13 .10 .07	.25 .23 .22 .20 .17	.00 .00 .00 .00
26 27 28 29 30 31	2.4 2.3 3.7 2.9 2.2 2.1	17 3.4 2.1 1.6 1.3	2.9 1.8 1.5 1.3 1.2	.94 .84 .78 .88 .71	.94 .87 1.1 .79	5.4 4.1 3.6 15 8.0	1.4 1.8 33 10 4.6	.62 .57 .51 .50 .47	.05 .19 .23 1.3 1.8	.07 .08 .07 .52 .03	.12 .10 .11 .10 .10	.00 .00 .00 .00
TOTAL MEAN MAX MIN CFSM IN.	83.70 2.70 15 .90 1.36 1.56	91.72 3.06 17 .97 1.54 1.71	68.65 2.21 12 .93 1.11 1.28	66.00 2.13 16 .68 1.07 1.23	26.80 .92 3.8 .49 .46	288.02 9.29 83 .52 4.67 5.38	230.7 7.69 54 1.4 3.86 4.31	62.25 2.01 6.9 .47 1.01 1.16	12.25 .41 1.8 .05 .21	2.57 .083 .52 .01 .04	3.72 .12 .25 .02 .06	3.32 .11 1.2 .00 .06

WTR YR 1980 TOTAL 939.70 MEAN 2.57 MAX 83 MIN .00 CFSM 1.29 IN 17.56

01403400 GREEN BROOK AT SEELEY MILLS, NJ

LOCATION.--Lat 40°39'53", long 74°24'10", Somerset County, Hydrologic Unit 02030105, on right bank at Seeley Mills, 250 ft (76.2 m) downstream from Blue Brook, 300 ft (91.4 m) downstream from bridge on Diamond Hill Road, and 0.5 mi (0.8 km) northwest of Scotch Plains.

DRAINAGE AREA .-- 6.23 mi2 (16.14 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1959-64, 1969: annual maximum, water years 1969-79. June 1979 to current year. Fragmentary records 1944-53 in the files of the Geological Survey. Crest-stage data 1927-38, 1958-68 in files of Union County Park Commission.

GAGE.--Water-stage recorder. Datum of gage is 184.44 ft (56.217 m) National Geodetic Vertical Datum of 1929. From 1944 to 1953, water-stage recorder and masonry dam about 400 ft (122 m) downstream above lower Seeley Mills dam at different datum. From July 1969 to May 1979, crest-stage gage about 450 ft (137 m) downstream below lower Seeley Mills dam (washed out May 29, 1968) at different datum.

REMARKS .-- Water-discharge records fair .

COOPERATION .-- Gage-height record collected in cooperation with Somerset County.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,240 ft³/s (177 m³/s) Aug. 2, 1973, gage height, 16.1 ft (4.91 m), on basis of slope-area measurement of peak flow, site and datum then in use; minimum, 0.07 ft³/s (0.002 m³/s) Sept. 7, 8, 12, 13, 1980, gage height, 1.08 ft (0.329 m).

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of July 23, 1938 reached an elevation of 196.5 ft (59.893 m) New Jersey Geological Survey datum, above lower Seeley Mills dam.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 250 ft3/s (7.08 m3/s) and maximum (#):

Date		Time	Discha (ft ³ /s)		Gage h	eight (m)	Date		Time	Discha (ft ³ /s)		Gage h	eight (m)
Mar. Apr.	21	1600 1305	*667 381	18.9	3.92 3.15	1.195 0.960	Apr. June	28 30	1300 0010	576 286	16.3		1.125

Minimum discharge, 0.07 ft 3 /s (0.002 m 3 /s) Sept. 7, 8, 12, 13, gage height, 1.08 ft (0.329 m).

		DISC	HARGE, IN	CUBIC FE	ET PER SE	COND, WAT		OCTOBER 19	79 TO SEP	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	42 21 17 12 11	5.0 5.2 20 8.1 6.1	6.5 6.1 5.6 5.6 5.3	6.9 6.8 6.3 5.8 6.2	2.8 2.7 2.6 2.5 2.5	1.9 1.9 1.8 2.0 2.6	69 35 24 53 27	20 15 11 8.8 7.4	2.9 2.6 3.5 3.0 2.4	1.9 1.6 1.8 1.7	1.2 3.0 1.8 1.3	1.8 1.3 1.2 1.1 1.3
6 7 8 9	11 7.7 6.1 9.7	5.5 5.5 5.3 5.2	9.1 18 9.3 8.2 7.9	5.5 5.5 5.3 4.9 4.7	2.5 2.5 2.4 2.5 2.5	2.4 2.3 5.2 5.2 13	20 17 15 160 81	6.5 7.4 21 8.4 5.9	2.2 3.5 3.2 3.4 3.7	5.0 1.6 1.6 1.9 2.0	1.4 1.5 1.7 2.1 2.2	1.0 .27 .39 .98 .84
11 12 13 14 15	22 18 14 10 7.6	13 24 11 10 7.6	7.4 7.1 18 13 9.4	23 34 11 8.9 8.5	2.4 2.9 2.4 2.2 2.2	48 9.0 5.1 9.7 7.5	27 21 18 26 29	5.5 16 19 9.8 6.5	2.5 2.0 1.9 1.8	1.9 1.7 1.4 1.5	2.2 2.6 1.2 1.3 1.6	.49 .12 .43 .67
16 17 18 19 20	6.9 6.4 6.1 5.9 5.7	7.0 6.6 6.5 6.0 5.4	9.2 12 8.5 8.0 8.0	7.0 7.0 9.0 19	5.9 3.2 2.4 2.3 2.3	7.1 30 76 21 14	17 14 12 11 10	5.6 5.2 5.7 5.3 4.9	2.0 1.6 1.6 1.5	1.6 2.0 2.1 1.3 1.2	1.4 1.5 1.5 1.6 1.8	1.2 3.1 19 1.7 1.5
21 22 23 24 25	5.5 5.6 6.5 6.3	5.2 4.9 4.9 4.7	7.6 8.0 9.8 13	7.7 7.4 7.5 6.5 5.1	2.4 4.2 8.2 3.9 3.3	200 102 38 28 84	9.1 7.4 6.9 6.6 6.3	8.5 5.3 4.3 3.9 3.5	1.4 1.4 1.4 1.4	1.2 3.1 2.9 1.3	1.6 1.3 1.3 1.4 1.3	1.4 .73 .93 1.8 1.7
26 27 28 29 30 31	6.0 5.8 7.6 6.2 5.4	17 10 8.5 7.3	15 10 8.3 7.7 7.6 7.4	4.6 3.9 3.7 3.6 3.3	2.8 2.5 2.4 2.1	27 20 17 44 33	5.9 6.6 141 50 25	3.1 2.9 2.7 2.6 2.5	1.5 1.4 1.4 2.6 21	1.2 1.1 1.0 3.8 1.5	1.4 1.3 1.2 1.3 1.2	2.2 1.6 2.0 2.3 2.6
TOTAL MEAN MAX MIN CFSM IN.	334.6 10.8 42 5.1 1.73 2.00	286.2 9.54 44 4.7 1.53 1.71	310.6 10.0 34 5.3 1.61 1.85	251.0 8.10 34 3.1 1.30 1.50	85.5 2.95 8.2 2.1 .47 .51	949.7 30.6 200 1.8 4.91 5.67	950.8 31.7 160 5.9 5.09 5.68	236.9 7.64 21 2.5 1.23 1.41	83.5 2.78 21 1.4 .45	58.7 1.89 5.0 1.0 .30	48.8 1.57 3.0 1.2 .25	57.55 1.92 19 .12 .31

WTR YR 1980 TOTAL 3653.85 MEAN 9.98 MAX 200 MIN .12 CFSM 1.60 IN 21.81

01403500 GREEN BROOK AT PLAINFIELD, NJ

LOCATION.--Lat 40°36'53", long 74°25'55", Union County, Hydrologic Unit 02030105, on left bank 20 ft (6 m) downstream from bridge on Sycamore Avenue in Plainfield, and 1.0 mi (1.6 km) upstream from Stony Brook.

DRAINAGE AREA .-- 9.75 mi2 (25.25 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1938 to current year.

REVISED RECORDS.--WSP 921: 1938-40. WRD-NJ 1969: 1966-68. WRD-NJ 1973: 1968(M), 1969(M), 1971(M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 70.37 ft (21.449 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good except those from Dec. 18 to Mar. 18, which are poor. Water diverted from Baltusrol well field by Commonwealth Water Co., and from wells in vicinity of Mountainside and Sootch Plains by Plainfield-Union Water Co., for municipal supply and from private and industrial wells in Plainfield and vicinity. Diurnal fluctuations at low flow caused by pumping from wells near brook in Plainfield. During extreme high stages there is some overflow above gage from Green Brook basin to adjacent Cedar Brook basin.

AVERAGE DISCHARGE .-- 42 years, 12.8 ft3/s (0.362 m3/s).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 2,890 ft³/s (81.8 m³/s) July 23, 1938, gage height, 5.82 ft (1.774 m), from rating curve extended above 1,300 ft³/s (36.8 m³/s) on basis of contracted-opening measurement of peak flow (an unknown additional amount probably overflowed out of the basin); no flow part or all of some days in most years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 380 ft3/s (10.8 m3/s) and maximum (*):

Date	Time	Discha (ft³/s)	rge (m³/s)	Gage h	eight (m)	Date		Time	Discha (ft ³ /s)		Gage h	eight (m)
Mar. 21 Apr. 9 Apr. 28	1745 1245 1245	525 391 *699	14.9 11.1 19.8	2.78 2.44 3.20	0.847 0.744 0.975	June July	30 5	0015 2230	593 505	16.8 14.3	2.94 2.73	0.896 0.832

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

No flow part of Sept. 16, 17.

						MEAN V	ALUES		,,,		,,,,	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	79 26 18 11	2.8 3.1 28 8.0 6.0	6.7 6.2 6.1 5.9 5.3	6.6 6.2 5.7 4.5 4.7	2.4 2.3 2.2 2.1 2.1	3.1 2.1 2.0 2.1 2.3	114 51 31 79 35	23 17 15 12 11	4.7 3.7 7.4 4.5 2.8	2.8 2.0 2.0 2.0 2.0	2.0 2.4 3.2 2.2 1.8	.75 .44 .23 .19
6 7 8 9	12 8.2 6.2 15	6.1 6.9 7.5 7.6 21	6.0 25 10 7.4 6.7	4.1 4.5 4.7 4.1 3.6	2.1 2.1 3.3 2.1 2.1	3.1 2.9 3.6 9.3 7.7	23 18 15 153 102	11 12 31 12 9•3	2.4 8.6 5.8 6.4 7.3	16 2.1 1.9 1.5	1.1 .88 .78 .75	.45 .23 .11 .11
11 12 13 14	21 16 13 8.2 6.6	17 44 12 12 8.7	6.3 5.9 12 19	6.7 36 19 13	2.1 2.4 2.0 1.9 2.2	31 17 12 18 15	39 27 22 32 40	8.5 26 33 16 11	3.2 2.4 2.1 2.0 1.9	1.4 1.3 .79 .65	.59 2.3 .69 .38 .83	.29 .10 .08 .15
16 17 18 19 20	6.0 5.3 4.7 4.3 4.1	7.7 6.9 6.6 6.8 5.9	10 11 8.7 6.9 5.9	9.1 7.4 7.4 18	6.8 5.6 3.1 2.7 2.6	11 23 84 26 17	21 16 14 13 12	9.0 7.9 9.6 8.5 7.4	2.0 1.8 1.7 1.6	1.8 2.1 1.8 1.2 .52	.75 .29 .55 .95	3.5 75 2.4 1.6
21 22 23 24 25	3.7 3.5 3.2 4.0 3.5	5.0 4.4 4.4 4.1 3.9	5.5 6.3 7.3 11 42	8.9 8.4 6.8 6.0	2.8 4.2 7.3 7.8 7.3	203 137 62 35 58	9.7 9.0 8.4 7.7	9.3 6.9 6.0 5.5	1.5 1.4 1.4 1.4	.40 8.8 6.6 1.4	.69 .47 .24 .22	1.4 .99 .43 1.1 2.1
26 27 28 29 30 31	3.1 2.7 7.0 4.8 3.4 2.9	83 24 12 9.2 7.6	20 12 10 8.4 7.4 7.1	5.8 5.1 4.8 4.1 3.6 2.5	6.8 3.7 3.5 3.2	38 25 19 68 49	7.0 9.4 187 66 30	4.4 4.0 3.7 3.6 3.4 4.2	1.8 1.9 1.6 9.0 62	1.0 1.0 .81 17 2.5 1.2	.29 .46 .27 .32 .39	3.6 .97 .95 .95
TOTAL MEAN MAX MIN	368.4 11.9 79 2.7	382.2 12.7 83 2.8	321.0 10.4 42 5.3	258.3 8.33 36 2.5	100.8 3.48 7.8 1.9	1136.2 36.7 203 2.0	1202.2 40.1 187 7.0	361.2 11.7 33 3.4	157.5 5.25 62 1.4	112.05 3.61 26 .40	27.43 .88 3.2 .17	102.38 3.41 75

CAL YR 1979 TOTAL 6890.11 MEAN 18.9 MAX 321 MIN .81 WTR YR 1980 TOTAL 4529.66 MEAN 12.4 MAX 203 MIN .08

01403535 EAST BRANCH STONY BROOK AT BEST LAKE AT WATCHUNG, NJ

LOCATION.--Lat 40°38'25", long 74°26'52", Somerset County, Hydrologic Unit 02030105, 700 ft (213 m) upstream of dam on Best Lake in Watchung, 1,400 ft (427 m) upstream of mouth, and 2.5 mi (4.0 km) west of Plainfield railroad station.

DRAINAGE AREA. -- 1.57 mi2 (4.07 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July to September 1980.

GAGE.--Water-stage recorder above concrete dam. Datum of gage is 194.5 ft (59.28 m) National Geodetic Vertical Datum of 1929.

REMARKS .-- Water-discharge records fair. Records given herein represent flow over dam and leakage.

COOPERATION .-- Gage-height record collected in cooperation with Somerset County.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of August 3, 1973, reached a stage of 4.76 ft (1.451 m) present datum, from floodmarks, discharge, 2,840 ft³/s (80.4 m³/s) by computation of flow over dam, embankment and road.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 30 ft³/s (0.85 m³/s) and maximum (*) for period July to September:

			Disch	arge	Gage h	eight
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)
July	5	2305	42	1.19	1.46	0.445
Sept.	18	0035	57	1.61	1.52	0.463

No flow Aug. 30, Sept. 3-14.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

						MEAN VAL	UES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5								+4.15		.60 .35 .30 .27	.27 .21 .19 .18 .20	.02 .01 .00 .00
6 7 8 9										1.6 .35 .30 .26 .23	.21 .12 .08 .06	.00 .00 .00
11 12 13 14 15										.20 .17 .13 .11	.06 .13 .08 .06	.00 .00 .00 .00
16 17 18 19 20										.13 .16 .13 .11	.08 .05 .05 .07	.03 1.0 5.0 .29 .18
21 22 23 24 25						†29.1 †10.0				.07 .26 .69 .25	.07 .06 .06 .08	.18 .18 .15 .09
26 27 28 29 30 31										.15 .18 .12 1.1 .40	.14 .11 .03 .01 .00	.26 .15 .13 .13
TOTAL MEAN MAX MIN CFSM IN.										11.14 .36 1.9 .07 .23	2,95 .095 .27 .00 .06	8.09 .27 5.0 .00 .17

[†] Result of discharge measurement.

01403540 STONY BROOK AT WATCHUNG, NJ

LOCATION.--Lat 40°38'12", long 74°27'06", Somerset County, Hydrologic Unit 02030105, on right bank at Watchung Borough Administration Building, 150 ft (45.7 m) downstream from Watchung Avenue Bridge, and 2.9 mi (4.7 km) upstream from confluence with Green Brook.

DRAINAGE AREA .-- 5.51 mi2 (14.27 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1974 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 172.24 ft (52.499 m) National Geodetic Vertical Datum of 1929.

REMARKS .-- Water-discharge records good. Some regulation from Watchung and Best Lakes directly upstream from station.

AVERAGE DISCHARGE.--6 years, 11.3 ft^3/s (0.320 m^3/s), 27.85 in/yr (707 mm/yr), unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,420 ft³/s (125 m³/s) July 14, 1975, gage height, 10.40 ft (3.170 m), from rating curve extended above 500 ft³/s (14.2 m³/s) on basis of slope-area measurements of peak flow; minimum, 0.34 ft³/s (0.010 m³/s) Aug. 3, 4, 1978, gage height, 0.92 ft (0.280 m).

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of Aug. 2, 1973, reached a stage of 14.5 ft (4.42 m), from floodmark, discharge, 11,400 ft³/s (323 m³/s) from slope-area measurements of peak flow.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 250 ft3/s (7.08 m3/s) and maximum (*):

Date	Time	Discharge (ft ³ /s) (m ³ /s)	Gage height (ft) (m)	Date	Time	Discharge (ft ³ /s) (m ³ /s)	Gage height (ft) (m)
Mar. 21 Apr. 9	1445 1230	*793 22.5 391 11.1	5.46 1.664 4.19 1.277	Apr. 28	1250	726 20.6	5.23 1.594

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum discharge, 0.68 ft3/s (0.019 m3/s) several days in August and September.

						MEAN VA	LUES		,				
DAY	OCT	NOV	DEC	JA N	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	33 12 8.1 5.2 4.3	3.3 3.2 26 9.5 6.5	6.1 5.7 5.3 5.1 4.9	5.7 5.5 5.2 4.7 4.9	3.6 3.5 3.3 3.2 3.2	3.1 3.0 2.9 2.9 3.2	80 39 26 62 29	21 13 3.6 3.3	2.1 1.9 2.7 2.1 1.7	1.7 1.3 1.3 1.3	1. 1 1. 0 . 98 . 91 . 91	.73 .72 .72 .72 .73	
6 7 8 9	3.7 3.6 4.7 7.5	5.9 5.8 5.3 4.9	6.7 18 7.2 6.1 5.8	4.5 4.3 4.1 3.9 3.7	3.2 3.1 3.0 3.0	3.1 2.9 6.4 9.6	20 16 14 151 65	15 12 8.9 2.4 2.1	1.6 2.7 2.5 2.3 3.1	1.8 1.5 1.4 1.3	.92 .87 .83 .82 .78	.70 .70 .70 .71 .73	
11 12 13 14 15	20 16 13 10 8.5	10 36 12 11 8.3	5.5 5.2 16 9.7 7.0	21 32 8.6 7.7 7.5	2.9 2.9 2.7 2.7 2.7	55 9.2 7.0 9.0 7.9	31 23 18 31 33	2.0 3.5 12 6.7 4.6	2.0 1.8 1.7 1.6	1.3 1.2 1.1 1.1	.81 .90 .87 .83	.73 .73 .73 .74	
16 17 18 19 20	6.8 6.1 4.6 4.5 4.4	7.4 6.8 6.3 5.9 5.6	6.8 8.5 6.0 5.8 5.6	6.5 5.9 7.3 21 8.6	5.5 4.1 3.1 2.9 2.9	7•9 35 75 19	17 13 12 10 9.6	3.9 3.4 3.9 3.7 3.1	1.5 1.4 1.4 1.4	1.1 1.3 1.1 .97	.86 .80 .79 .80	.76 1.5 21 1.3	
21 22 23 24 25	4.1 3.9 3.8 4.2 3.8	5.2 5.1 4.9 4.6 4.5	5.3 5.5 6.9 9.8	7.2 6.9 7.2 5.9 5.4	3.0 4.3 8.4 5.5 4.4	186 84 38 32 87	9.0 7.6 6.9 6.3 6.0	7.9 3.4 1.5 1.8 2.5	1.3 1.3 1.2 1.2	.84 1.6 1.7 1.1	.85 .81 .78 .80	.85 .84 .86 .80	
26 27 28 29 30 31	3.6 3.4 4.6 4.6 3.7	43 16 9.6 7.8 6.7	9.3 7.8 7.1 6.6 6.2	5.0 4.7 4.6 4.3 4.0 3.8	4.0 3.6 3.5 3.2	30 22 17 57 39	5.5 7.0 145 48 25	2.2 2.1 2.0 1.9 1.8 2.0	1.1 1.1 1.2 1.1 19	.88 .86 .87 2.4 1.4	.78 .75 .72 .73 .71	.99 .74 .72 .73 .73	
TOTAL MEAN MAX MIN CFSM IN.	253.1 8.16 34 3.4 1.48 1.71	301.1 10.0 43 3.2 1.82 2.03	258.5 8.34 35 4.9 1.51 1.74	231.6 7.47 32 3.7 1.36 1.56	104.4 3.60 8.4 2.7 .65	981.1 31.6 186 2.9 5.74 6.62	965.9 32.2 151 5.5 5.84 6.52	177.2 5.72 21 1.5 1.04 1.20	68.1 2.27 19 1.1 .41	60. 19 1. 94 22 .84 .35	25. 92 .84 1. 1 .71 .15	44.52 1.48 21 .70 .27 .30	

CAL YR 1979 TOTAL 5079.98 MEAN 13.9 MAX 235 MIN .62 CFSM 2.52 IN 34.29 WTR YR 1980 TOTAL 3471.63 MEAN 9.49 MAX 186 MIN .70 CFSM 1.72 IN 23.43

01404100 RARITAN RIVER NEAR SOUTH BOUND BROOK, NJ (National stream-quality accounting network and Pesticide program station)

LOCATION.--Lat 40°30'47", long 74°32'24", Somerset County, Hydrologic Unit 02030105, at bridge on Interstate Route 287, 0.2 mi (0.3 km) downstream from Fieldsville Dam, and 1.5 mi (2.4 km) southeast of South Bound Brook.

DRAINAGE AREA .-- 862 mi2 (2,233 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1966 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: May 1969 to March 1977. pH: May 1969 to March 1977. WATER TEMPERATURES: May 1969 to March 1977. DISSOLVED OXYGEN: May 1969 to March 1977.

REMARKS.--Instantaneous water discharge estimated from discharge at 01403060, Raritan River below Calco Dam, at Bound Brook, 01403900 Bound Brook at Middlesex, and drainage area relationship.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
OCT 22	1230	E870	293	7.1	17.0	4.0	8.6	3.0	440	78
NO V 15	1320	E 1550	253	6.8	7.0	6.0	11.8	1.2	300	62
DEC 05	1220	E960	212	7.0	4.0	2.0	12.5	1.1		23
JAN 15	1305	E 1720	243	6.7	4.5	2.6		2.1	180	120
FEB 06		E420	440			1.0	14.0	4.8	K1	<2
MAR	1315			7.6	.5			100		
26 A PR	1320	E5700	162	7.1	5.5	50	11.6	2.3	250	920
23 MAY	1300	E 1190	263	7.9	16.0	2.8	10.4	2.1	К6	К8
20 JUN	1035	E960	282	7.6	19.0	4.8	7.9	5.2	92	K16
18 JUL	1045	E 195	510	7.4	22.0	• 35	7.2	7.0	210	820
21 AUG	1100	E 138	478	7.8	29.0	2.0	5.2	3.9	150	3300
05	1015	E 180	432		27.5	7.0	6.0	5.7	960	1000
SEP 09	1100	E 129	537	7.1	22.0	2.6	5.6	6.0	K59	960
	HARD- NESS (MG/L	CALCIUM DIS- SOLVED	MAGNE- SIUM, DIS- SOLVED	SODIUM, DIS- SOLVED	POTAS- SIUM, DIS- SOLVED	ALKA- LINITY	SULFATE DIS- SOLVED	CHLO- RIDE, DIS-	FLUO- RIDE, DIS-	SILICA, DIS- SOLVED
DATE	CACO3)	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	(MG/L AS K)	(MG/L AS CACO3)	(MG/L AS SO4)	SOLVED (MG/L AS CL)	SOLVED (MG/L AS F)	(MG/L AS SIO2)
OCT 22	AS	(MG/L	(MG/L	(MG/L	(MG/L	AS	(MG/L	(MG/L	(MG/L	AS
ост	AS CACO3)	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	(MG/L AS K)	AS CACO3)	(MG/L AS SO4)	(MG/L AS CL)	(MG/L AS F)	AS SIO2)
OCT 22 NOV 15 DEC	AS CACO3) 80 73	(MG/L AS CA) 21 19	(MG/L AS MG) 6.8 6.2	(MG/L AS NA) 19	(MG/L AS K) 2.4 2.4	AS CACO3) 31 33	(MG/L AS SO4) 40 38	(MG/L AS CL) 28 22	(MG/L AS F) .1	AS SIO2) 11
OCT 22 NOV 15 DEC 05 JAN	AS CACO3) 80 73 85	(MG/L AS CA) 21 19 22	(MG/L AS MG) 6.8 6.2 7.3	(MG/L AS NA) 19 17 23	(MG/L AS K) 2.4 2.4 2.6	AS CACO3) 31 33 43	(MG/L AS SO4) 40 38 39	(MG/L AS CL) 28 22 30	(MG/L AS F) .1 .1	11 13 13
OCT 22 NOV 15 DEC 05 JAN 15 FEB	AS CACO3) 80 73 85 69	(MG/L AS CA) 21 19 22 18	(MG/L AS MG) 6.8 6.2 7.3 5.9	(MG/L AS NA) 19 17 23 16	(MG/L AS K) 2.4 2.4 2.6 2.3	AS CACO3) 31 33 43	(MG/L AS SO4) 40 38 39 35	(MG/L AS CL) 28 22 30 25	(MG/L AS F) .1 .1 .2	11 13 13
OCT 22 NOV 15 DEC 05 JAN 15 FEB 06 MAR	AS CACO3) 80 73 85 69 110	(MG/L AS CA) 21 19 22 18 30	(MG/L AS MG) 6.8 6.2 7.3 5.9 8.9	(MG/L AS NA) 19 17 23 16 32	(MG/L AS K) 2.4 2.4 2.6 2.3 3.3	AS CACO3) 31 33 43 41 60	(MG/L AS SO4) 40 38 39 35 52	(MG/L AS CL) 28 22 30 25 44	(MG/L AS F) .1 .1 .2 .1	AS S102) 11 13 13 11 12
OCT 22 NOV 15 DEC 05 JAN 15 FEB 06 MAR 26 APR	AS CACO3) 80 73 85 69 110 48	(MG/L AS CA) 21 19 22 18 30	(MG/L AS MG) 6.8 6.2 7.3 5.9 8.9	(MG/L AS NA) 19 17 23 16 32	(MG/L AS K) 2.4 2.4 2.6 2.3	AS CACO3) 31 33 43 41 60 31	(MG/L AS SO4) 40 38 39 35 52 21	(MG/L AS CL) 28 22 30 25 44	(MG/L AS F) .1 .1 .2	AS SIO2) 11 13 13 11 12 9.9
OCT 22 NOV 15 DEC 05 JAN 15 FEB 06 MAR 26	AS CACO3) 80 73 85 69 110	(MG/L AS CA) 21 19 22 18 30	(MG/L AS MG) 6.8 6.2 7.3 5.9 8.9	(MG/L AS NA) 19 17 23 16 32	(MG/L AS K) 2.4 2.4 2.6 2.3 3.3	AS CACO3) 31 33 43 41 60	(MG/L AS SO4) 40 38 39 35 52	(MG/L AS CL) 28 22 30 25 44	(MG/L AS F) .1 .1 .2 .1	AS S102) 11 13 13 11 12
OCT 22 NOV 15 DEC 05 JAN 15 FEB 06 MAR 26 APR 23 MAY 20	AS CACO3) 80 73 85 69 110 48	(MG/L AS CA) 21 19 22 18 30	(MG/L AS MG) 6.8 6.2 7.3 5.9 8.9	(MG/L AS NA) 19 17 23 16 32	(MG/L AS K) 2.4 2.6 2.3 3.3	AS CACO3) 31 33 43 41 60 31	(MG/L AS SO4) 40 38 39 35 52 21	(MG/L AS CL) 28 22 30 25 44	(MG/L AS F) .1 .1 .2 .1	AS SIO2) 11 13 13 11 12 9.9
OCT 22 NOV 15 DEC 05 JAN 15 FEB 06 MAR 26 APR 23 MAY 20 JUN 18	AS CACO3) 80 73 85 69 110 48 76	(MG/L AS CA) 21 19 22 18 30 12	(MG/L AS MG) 6.8 6.2 7.3 5.9 8.9 4.4 6.3	(MG/L AS NA) 19 17 23 16 32 11	(MG/L AS K) 2.4 2.6 2.3 3.3 1.8 2.0	AS CACO3) 31 33 43 41 60 31 43	(MG/L AS SO4) 40 38 39 35 52 21 35	(MG/L AS CL) 28 22 30 25 44 13 26	(MG/L AS F) .1 .1 .2 .1 .2	AS SIO2) 11 13 13 11 12 9.9
OCT 22 NOV 15 DEC 05 JAN 15 FEB 06 MAR 26 APR 23 MAY 20 JUN 18 JUN 18 JUL 21	AS CACO3) 80 73 85 69 110 48 76 73	(MG/L AS CA) 21 19 22 18 30 12 20	(MG/L AS MG) 6.8 6.2 7.3 5.9 8.9 4.4 6.3 6.7	(MG/L AS NA) 19 17 23 16 32 11 18	(MG/L AS K) 2.4 2.6 2.3 3.3 1.8 2.0	AS CACO3) 31 33 43 41 60 31 43 30	(MG/L AS SO4) 40 38 39 35 52 21 35 38	(MG/L AS CL) 28 22 30 25 44 13 26 27	(MG/L AS F) -1 -1 -2 -1 -2 -1 -1	AS SIO2) 11 13 13 11 12 9.9 9.1
OCT 22 NOV 15 DEC 05 JAN 15 FEB 06 MAR 26 APR 23 MAY 20 JUN 18 JUL	AS CACO3) 80 73 85 69 110 48 76 73 120	(MG/L AS CA) 21 19 22 18 30 12 20 18 36	(MG/L AS MG) 6.8 6.2 7.3 5.9 8.9 4.4 6.3 6.7	(MG/L AS NA) 19 17 23 16 32 11 18 24	(MG/L AS K) 2.4 2.6 2.3 3.3 1.8 2.0 2.0	AS cACO3) 31 33 43 41 60 31 43 30 27	(MG/L AS SO4) 40 38 39 35 52 21 35 38 81	(MG/L AS CL) 28 22 30 25 44 13 26 27 57	(MG/L AS F) .1 .1 .2 .1 .2 .1 .1	AS SIO2) 11 13 13 11 12 9.9 9.1 10 7.0

RARITAN RIVER BASIN

01404100 RARITAN RIVER NEAR SOUTH BOUND BROOK, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	DATE	RE AT D	LIDS, SIDUE 180 EG. C DIS- OLVED MG/L)	SEDI- MENT, SUS- PENDED (MG/L)	SII DI F	EVE IAM. NO INER T HAN (GEN, 02+NO3 OTAL (MG/L AS N)	NO2- DI SOI	LVED G/L	NITRO GEN AMMON TOTA (MG/I	O- , AM IA L S L (ITRO- GEN, MONIA DIS- OLVED MG/L S N)	OR G	TRO- EN, ANIC TAL G/L N)	ORGA D: SO: (MC	TRO- EN, ANIC IS- LVED G/L N)	MITTE GEN, MONI ORGA TOT (MC	AM- IA + ANIC TAL G/L
	OCT 22		173	5		89	1.7		1.7	1.9	00	1.900		.50		.50	2	2.4
	NOV 15		146	8		91	1.7		1.7	1.0	00	1.000		.60		.00		1.6
	DEC 05		167	3		90	1.9		1.9	1.9	00	1.900		. 40				2.3
	JAN 15		143	14		82	2.0		2.0	1.2	00	1.100		.30		.30		1.5
	FEB 06		239	6		37	2.4		2.3	3.3		3.300		.40		.30		3.7
	MAR 26		116	45		87	1.9		. 87									
	APR 23		161	20		47	1.4		1.3	1.4	00	1.400		.20		.00		1.6
	MAY 20		164	13		78	1.5		.90	1.4	00	1.300		.50		.50		1.9
	JUN 18		303	13		69	7.1		2.7			3.500				1.0		
	JUL 21		306	3		60	2.7		2.5	3.8		3.800		.20		.20	1	4.0
	AUG 05		284	21		82	2.8		2.8	2.1		2.100		1.2		.30		3.3
	SEP 09		290	10		68	2.5		2.5	4.9		4.900		5.1		.00	10	
	OO NO D J J A A S S	DATE CT 222 DATE CT 222 DOWN ECC 055 AN 15 EB 066 AN 226 UN 188 UN 188 US UG 055 EEP 009	NITR GEN, N + OR SUSP TOTA (MG/AS N	0- NITH4 GEN	TRO- , AM- IA + ANIC	NITRO- GEN, DIS- SOLVEI (MG/L AS N) 4.1 2.7 3.4 5.9 1.3 2.7 7.2 6.5 5.2 7.4	NIT GE TOT (MG AS 3 4 4 3 3 6 6	RO-N, AL (/L) (/N) (/N) (/N) (/N) (/N) (/N) (/N) (/N	PHOS-PHORUS TOTAL (MG/I AS P) . 119 . 120 . 119 . 120 . 119 . 120 . 119 . 130 . 310 . 340 . 350 . 360	550 220 220 000 660 660 660 6770	PHOS- HORUS, DIS- SOL VED (MG/L AS P) .110 .080 .100 .070 .160 .050 .080 .110 .270 .320 .330	CARBORGA TOT (MG AS	ON, NIC AL /L	CARB ORGA DIS SOLV (MG AS	NIC ED /L	CARB ORGA SUS PEND (MG	ON, NIC ED	
DAT	E	TIME	ARSEN TOTA (UG/ AS A	IC PEI L TO	ENIC US- NDED TAL G/L AS)	ARSENIC DIS- SOLVEI (UG/L AS AS)	REC ERA (UG	AL OV- BLE	BARIUI SUS - PENDEI RECO ERABI (UG/I AS BA	D B	ARIUM, DIS- OLVED (UG/L AS BA)	ERA (UG	AL OV- BLE	CADM SU PEN REC ERA (UG	S- DED OV- BLE /L	CADM DI SOL (UG	S- VED /L	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
NOV		1220		2		A. Y		110		•	11.0						^	40
15. FEB 06.		1320		2	0			100		40	60		0		1		0	10
MAY		1315		2	0						60				0		1	<10
AUG		1035					2	60					1					
05.	••	1015		4	0	1	1	100		40	60		0		0		0	10

01404100 RARITAN RIVER NEAR SOUTH BOUND BROOK, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CHRO-COBALT, COPPER, IRON, SUS-MIUM, CHRO-COBALT, COPPER, IRON, TOTAL SUS-SUS-COPPER, SUS-MIUM, TOTAL PENDED COBALT, TOTAL PENDED PENDED IRON, PENDED DIS-RECOV-RECOV-DIS-RECOV-RECOV-DIS-RECOV-RECOV-DIS-RECOV. SOLVED ERABLE ERABLE SOLVED ERABLE ERABLE SOLVED ERABLE ERABLE SOLVED (UG/L AS CR) DATE AS CR) AS CO) AS CO) AS CO) AS CU) AS CU) AS CU) AS FE) AS FE) AS FE) NOV 5 430 90 15 ... 0 10 3 3 0 6 1 520 FEB 7 06... 0 <10 0 9 2 300 270 30 MAY 20... <10 0 0 0 0 490 370 -120 AUG 0 0 8 2 470 440 05. . . <10 0 6 30 MERCURY NICKEL, LEAD, MANGA-MANGA-NICKEL, LEAD, SUS-NESE, TOTAL NESE, SUS-MANGA-MERCURY SUS-SUS-NESE, TOTAL PENDED LEAD, TOTAL PENDED MERCURY TOTAL PENDED RECOV-RECOV-DIS-RECOV-PENDED DIS-RECOV-RECOV-DIS-RECOV-RECOV-SOLVED SOLVED ERABLE ERABLE SOLVED ERABLE ERABLE ERABLE ERABLE ERABLE RECOV. (UG/L (UG/L (UG/L (UG/L (UG/L (UG/L (UG/L (UG/L DATE AS PB) AS PB) AS PB) AS MN) AS MN) AS MN) AS HG) AS HG) AS HG) AS NI) AS NI) NOV 15. . . 10 10 0 50 10 40 . 2 . 1 . 1 4 2 FEB 06... 3 3 0 90 0 90 . 1 .0 . 1 6 3 MAY . 2 2 20 ... 3 3 0 90 40 50 . 0 . 2 1 AUG 05... 3 3 0 190 60 130 . 1 .0 . 1 7 7 SELE-SILVER, ZINC, NIUM, SELE-SILVER, SUS-ZINC, TOTAL SUS-NICKEL, SILVER, SELE-NIUM, DIS-ZINC, DIS-SUS-TOTAL. PENDED PENDED DIS-SOL VED (UG/L NIUM, PENDED DIS-RECOV-SOL VED TOTAL (UG/L TOTAL (UG/L SOL VED (UG/L SOL VED (UG/L ERABLE ERABLE ERABLE ERABLE PCB TOTAL (UG/L (UG/L (UG/L (UG/L DATE AS NI) AS SE) AS SE) AS SE) AS AG) AS AG) AS AG) AS ZN) AS ZN) AS ZN) (UG/L) NOV ND 15... 2 0 0 0 0 0 0 20 10 6 FEB 3 0 0 0 0 0 100 0 100 ND 06. . . 0 MAY 20... 0 0 0 0 0 0 20 0 20 AUG 0 05 ... 0 0 0 0 0 0 30 10 20 HE PTA-CHLOR-DI-DI-HE PTA -CHLOR DANE, TOTAL ALDRIN, DDD, DDE, DDT, AZINON, ELDRIN ENDRIN, ETHION, CHLOR, EPOXIDE TOTAL TOTAL (UG/L) TOTAL. TOTAI. TOTAL TOTAL TOTAI. TOTA I. TOTAL TOTAL. DATE (UG/L) NOV 15. . . ND FEB 06... ND MAY 20 ... AUG 05... METH-METHYL METHYL TOX-TOTAL MALA-OXY-CHLOR, PARA-PARA-THION, TRI-LINDANE THION, THION, THION, APHENE, TRI-2,4-D, 2, 4,5-T SILVEX, TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL THION TOTAL TOTAL TOTAL DATE (UG/L) (UG/L) (UG /I.) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) NOV ND ND 15 ... ND ND ND ND ND ND ND ND ND FEB 06... ND ND ND ND ND ND ND ND MAY 20 ... AUG 05. . .

RARITAN RIVER BASIN

01404100 RARITAN RIVER NEAR SOUTH BOUND BROOK, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	OF EXPO- SURE (DAYS)	PERI- PHYTON BIOMASS TOTAL DRY	PERI- PHYTON BIOMASS ASH	CHLOR-A PERI- PHYTON CHROMO- GRAPHIC	CHLOR-B PERI- PHYTON CHROMO- GRAPHIC	BIOMASS CHLORO- PHYLL RATIO PERI-
		WEIGHT	WEIGHT	FLUOROM	FLUOROM	PHYTON
DATE		G/SQ M	G/SQ M	(MG/M2)	(MG/M2)	(UNITS)
NOV						
15 FEB	23	2.21	1.97	3.07	. 420	78.2
06	20	1.26	1.10	4.02	.000	39.8
MAY						
20 AUG	26	4.25	3.54	5.36	2.13	132
05	14	5.04	4.17	1.85	. 470	470

01404100 RARITAN RIVER NEAR SOUTH BOUND BROOK, NJ--Continued PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

DATE TIME	NOV	15,79 1320	FEB	6,80	MAR	26, 80 320		20, 80 035
TOTAL CELLS/ML		770		100		1600		000
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		1.4 1.5 1.7 1.9 2.0		1.7 1.7 1.9 2.0 2.6		1.4 1.4 1.8 2.4 3.0		0.7 0.7 1.3 1.4
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALES								
CHARACIACEAE								
SCHROEDERIA		-		-		-		=
COELASTRACEAE		-		-		-	180	2
PE DIASTRUM	72	9						
MICRACTINIACEAE	12	9		-	-	-	-	
GOLENKINIA MICRACTINIUM		-		-		-		-
OOC YSTACEAE								
CHLORELLA			990#	24	52	3	78	1
CHODATELLA	'	-	*	0		0		0
DICT YOS PHAERI UMKIRCHNER IELLA		-	38	1	23	1		-
OOC YST IS		-	30		11	Ξ.		Ξ.
SELENASTRUM		-		-		-		0
TETRAEDRONSCENEDESMACEAE		-		-		0		-
ACTINASTRUM	- 22	_		_	4-		100	1
CRUCIGENIA		-		-		-		-
SCENEDESMUS		-		-	23	1	230	2
TETRASTRUM TETRASPORALES PALMELLACEAE		-		-	-			
SPHAEROCYSTIS		-		-		-		-
CHLAM YDOM ONA DA CEAE								
CHLAM YDOM ON ASCHLOROGONIUM		-	57	1	12	1	65	1
CUD VC O DU VT A								
CHRYSOPHYTA .BACILLARIOPHYCEAECENTRALES								
COSCINODISCACEAE	ouo.		240		120	•	1170	11
CYCLOTELLA MELOSIRA	240# 29	4	340	8	120 29	8	470	0
PENNALES								
ACHNANTHACEAE	14	2		_				4
RHO ICOS PHEN IA	22	_		-		0		-
CYMBELLACEAE AM PHORA								
C YMBELLA		-			*	0		ō
FRAGILARIACEAE								
ASTERIONELLA		-	96	2	120	8	*	0
FRAGILARIA SYNEDRA	14	2	*	ō	210	13		0
NA VICULACEAE		-						
NA VICULA	29	4	76	2	110	7	78	1
NITZSCHIACEAE		-	57	1	120	7		0
. CHR YSO PH YCEAE		17701		,	120			
CHR YS OM ONA DA LES								
CHROMULINACEAE CHRYSOCOCCUS	14	2		- 4				-
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAECRYPTOMONADALES								
CRYPT OM ONA DA CEAE								
CRYPT OM ON AS		-		-		-		-

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15\$
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2\$

01404100 RARITAN RIVER NEAR SOUTH BOUND BROOK, NJ--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

DATE TIME		15,79 320		6, 80 15	MAR 1	26,80 320	MAY 2	20,80 035
ORGANISM	CELLS /ML	PER- CENT		PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE CHROOCOCCALES								
CHROOCOCCACEAE		_		-		100	1200	11
GOM PHOS PHAERIAHORM OGONA LESNOST OCACEAE		-		-		-		•
ANABAENA	360	# 46		-		-		-
OSCILLATORIACEAEOSCILLATORIA		_	1600#	39	640	# 41	8400	# 76
SCHIZOTHRIX		-	480	12	81	5		-
RIVULARIACEAE RAPHIDIOPSIS		-		-,,,,			M	-
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALES								
EUGLENACEAE					12			•
EUGLENA TRACHELOMONAS		-	340	8	12	1	*	0
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEGYMNODINIALES								
GYMNODINIACEAE								
GYM NODINIUM		-		- CENT	AC. 1	0		-
NOTE: # - DOMINANT ORGANISM; EQ # - OBSERVED ORGANISM, MA	QUAL TO OF	R GREAT VE BEEN	ER THAN COUNTED	15% ; LESS	THAN 1	/2%		
DATE TIME		18,80 1045		21,80 100	AUG	5,80 1015	SEP	9,80 1100
TOTAL CELLS/ML	20	0000	14	000	230	0000		460
DIVERSITY: DIVISION		1.1		1.5		0.2		1.0
. C LASS . OR DE R		1.1		1.5		0.2		1.0
FAMILY		2.3		2.4		0.5		2.3
GENUS		2.9		2.9		0.6		3.0
	CELLS	PER-	CELLS	PER-	CELLS	PER-	CELLS	PER-
ORGANISM	/ML	CENT	/ML	CENT	/ML	CENT	/ML	CENT
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALES								
CHARACIACEAE				•				
SCHROEDERIA COELASTRACEAE		-		0				-
COELASTRUMHYDRODICTYACEAE		-		-77	1700	1		•
PE DIASTRUM		-	-	- 10		0		-
MICRACTINIACEAEGOLENKINIA	100	1	247			-		
MICRACTINIUM	200	1		11-166	*	0		-
OOC YSTACEAEANKISTRODESMUS	400	2	380	3	*	0	26	6
CHLORELLA CHODATELLA	200 100	1	190 130	1		-	13	3
DICTYOS PHAERIUM		-	130	-	*	0		-
KIRCHNERIELLA	400	2	12	-		0	- :	-
SELENASTRUM		y -	1300	9		0	13	3 3
TETRAEDRON SCENEDESMACEAE	100	1	*	0		-	13	3
ACTINASTRUM		-	1005	-		0		-
CR UCIGENIA SCENE DESM US	2600	13	1000 2200#	7	2400	1	180	# 39
TETRASTRUM TETRASPORALES	400	2		-			51	11
PA LMELLACEAE								
SPHAEROCYSTIS	400	2		-		-		-
CHLAM YDOM ON A DA CEAE								
		11.			30	7.00	THE RESERVE	
CHLAM YDOM ON A S CHLOROGON I UM	700	4	-	-	*	0	13 13	3

205

01404100 RARITAN RIVER NEAR SOUTH BOUND BROOK, NJ--Continued PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

PHILOPLANKION	ANALISES,	OCTOBER	1919	10	SEPIEMBER	1900

CHRYSOPHYTA										
.BACILLARIOPHYCEAE										
CENTRALES										
COSCINODISCACEAE										
CYCLOTELLA	3200#		950	7	*	0		39	8	
MELOSIRA	6000#	30	190	1	*	0			-	
PENNALES										
ACHNANTHACEAE										
ACHNANTHES		-		-		-			-	
RHOICOS PHENIA		-		-		-			-	
CYMBELLACEAE										
AM PHORA		-		-		-	-	13	3	
CYMBELLA		-		-		-			-	
FRAGILARIACEAE										
ASTERIONELLA	4300#	22		-		-			-	
FRAGILARIA		-		-		-			-	
SYNEDRA		-		-		-			-	
NA VICULACEAE										
NA VICULA		-		-		-		13	3	
NITZSCHIACEAE										
NITZSCHIA	200	1	570	4	*	0		64	14	
. CHR YSOPH YCEAE										
CHR YS OM ON A DA LES										
CHROMULINACEAE										
CHR YS OC OC C US		-		-		-			-	
CRYPTOPHYTA (CRYPTOMONADS)										
. CRYPTOPHYCEAE										
CRYPT OMONA DALES										
CRYPT OM ONA DA CEAE										
CRYPT OM ONAS	100	1	130	1		-			-	
	1.55									

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

DATE TIME		18,80 045		21,80 100		5,80 015	SEP 9,80 1100		
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAE									
ANACYSTIS	400	2	5000	# 37	3500	2		-	
GOM PHOS PHAER IAHORM OGONA LESNOST OCACEAE		-		-	210000#	∮ 92		-	
ANABAENA		_		-		_		_	
OSCILLATORIACEAE									
OSCILLATORIA		-	1500	11	6000	3		-	
SCHIZOTHRIX		-		-		-		-	
RIVULARIACEAE									
RA PHIDIOPSIS		-		-	1500	1		-	
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALES									
EUGLENACEAE									
EUGLENA	100	1		-		-		-	
TRACHELOMONAS		-		-		-	13	3	
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEGYMNODINIALESGYMNODINIACEAE									
GYM NODINIUM		_		-		4		4	

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

01404302 LAWRENCE BROOK AT DAVIDSONS MILL ROAD NEAR PATRICKS CORNER, NJ

LOCATION.--Lat 40°24'58", long 74°29'38", Middlesex County, Hydrologic Unit 02030105, at bridge on Davidsons Mill Road, 1,000 ft (304 m) upstream of Oakeys Brook, 1.0 mi (1.6 km) southwest of Patricks Corner, 1.5 mi (2.5 km) west of Paulas Corners, and 2.3 mi (3.8 km) south of Adams.

DRAINAGE AREA. -- 12.4 mi2 (32.1 km2).

206

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

										4-1 (99)
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	DUCT-	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 03	1350	30	68	3 5.8	18.0	8.6	2.0	540	540	16
JAN 17	0925	15	99			7.5	1.8	5	49	23
APR								150	3 1/1	
02 JUN	1315	52	80	6.1	10.0	11.8	1.1	100	79	15
04 JUL	1300	15	110	6.9	23.0	8.5	1.4	50	170	27
17 AUG	1030	E2.4	16	7.0	25.0	4.4	1.8	40	110	32
28	1345		232	2 7.1	25.5	6.2	8.2	790	230	35
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS-	SODIUM, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	BICAR- BONATE	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT			no m	,	110037	,	0.10037	,	02,	
03	3.6	1.6	4.9	9 1.5	6	0	5	15	4.5	.1
JAN 17	4.8	2.7	7.9	9 1.4	7	0	6	17	9.8	.1
A PR 02	3.4	1.5	7.	2 1.2	5	0	4	14	9.6	.1
JUN 04	5.6	3.1	7.	2 1.4	16	0	13	15	10	.1
JUL 17	6.5	3.9	16	1.9	27	0	22	28	12	.1
AUG 28	7.0			2.6		0	32		13	.1
20	1.0	4.5	30	2.0	39	U	32	77	13	• 1
DA	DI SO (M	ICA, RESS- AT LVED DE G/L DS SC	180 C G. C NO: IS- TO LVED (1	GEN, G 2+NO3 AMM DTAL TO MG/L (M	EN, GI ONIA ORGA TAL TO:		AM- IA + NIT ANIC GI TAL TOT G/L (MO	PHO PHOR TRO- ORTH EN, OSPH TAL TOT G/L (MG N) AS P	US, OPH CARBO ATE ORGA AL TOTA /L (MG	NIĆ AL /L
OCT										9.0
JAN		8.5		(1.0	. 400	. 44	.84			5
APR		9.6	62	1.1	.090	. 24		1.4		4.0
JUN		5.6	36	.70	.030	. 41	. 44	1.1		6.2
O4 JUL	•••	4.1	66	.13	. 120	.61	•73	.86 <	.03	7.0
		.6	93	1.1	. 160	.61	.77	1.9	. 31	4.0
		2.0	131	.40	. 130	1.8	1.9	2.3	.43 1	0

01405000 LAWRENCE BROOK AT FARRINGTON DAM, NJ

LOCATION.--Lat 40°27'00", long 74°27'05", Middlesex County, Hydrologic Unit 02030105, on left bank 300 ft (90 m) upstream from Farrington Dam, 0.7 mi (2.1 km) southwest of Milltown, and 5.4 mi (8.7 km) upstream from mouth. DRAINAGE AREA .-- 34.4 mi2 (89.1 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1927 to current year.

REVISED RECORDS. -- WSP 781: Drainage area. WSP 1432: 1959(P).

GAGE.--Water-stage recorder above concrete dam. Datum of gage is 25.73 ft (7.843 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records fair. Records given herein include flow over dam and through blowoff gates. Gates open Sept. 2-22. Flow regulated by Farrington Reservoir, capacity, 655,250,000 gal (2.48 hm³).

COOPERATION .-- Water-stage recorder inspected by and records of gate openings furnished by employees of City of New

AVERAGE DISCHARGE. -- 53 years, 39.4 ft3/s (1.116 m3/s), 15.56 in/yr (395 mm/yr), adjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,920 ft³/s (139 m³/s) July 21, 1975, gage height, 26.93 ft (8.208 m), from rating curve extended above 1,100 ft³/s (31 m³/s) on basis of weir formula; no flow at times when gates in dam were closed and water was below spillway.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 450 ft3/s (12.7 m3/s) and maximum (#):

			Discha	arge	Gage h	eight				Discha	arge	Gage h	eight
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Oct.	1	2000	514	14.6	25.27	7.702	Apr.	10	0100	*757	21.4		7.736
Mar.	21	2000	466	13.2	25.21	7.684	Apr.	28	1700	495	14.0	25.22	7.687

Minimum daily discharge, 2.0 ft3/s (0.057 m3/s) many days during January, February, August and September.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1979	TO	SEPTEMBER	1980
					MEA	N VALUE	S					

DAY	OCT	NOV	DEC	JA N	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1 2 3 4 5	268 169 81 63 53	21 20 47 54 40	26 24 21 21 20	21 21 20 19 21	2.0 2.0 2.0 2.0 2.0	14	279 173 73 163 123	85 70 60 53 51	19 19 30 34 8.4	18 14 13 13	15 13 15 13 14	2.0 10 15 15 14
6 7 8 9	46 43 34 35 168	28 22 20 19 29	26 48 40 30 24	19 19 19 19	2.0 2.0 2.0 2.0 2.0		59 37 55 255 384	48 48 66 60 52	11 15 16 15 21	14 13 12 11	17 13 10 8.1 6.5	14 11 25 31 31
11 12 13 14 15	124 65 57 47 39	41 94 68 64 53	21 21 40 58 45	34 142 63 47 44	2.0 2.0 2.0 2.0 2.0	45	108 76 67 68 87	48 60 169 92 64	17 16 15 14 14	10 4.0 3.1 2.9 2.6	5.6 5.2 4.7 4.2 4.5	31 30 30 30 12
16 17 18 19 20	31 25 24 21 21	48 40 36 32 28	40 38 26 23 22	38 30 30 73 53	2.0 2.0 2.0 2.0 2.0	78	67 57 55 54 51	55 46 46 46 43	13 13 12 12 12	3.3 4.8 5.7 6.1 6.6	6.6 6.4 6.0 5.7 5.2	3.3 3.3 3.3 3.3
21 22 23 24 25	21 21 20 20 21	24 25 25 24 21	21 24 37 45 71	42 37 42 29 5•3	2.0 2.0 2.7 5.2	180 259 123 73 214	51 48 47 46 46	59 54 45 40 37	11 11 11 11	7.2 11 43 27 16	4.8 4.3 4.2 4.0 3.5	3.3 3.1 3.0 3.0 3.0
26 27 28 29 30 31	21 21 28 35 27 24	67 75 51 42 34	62 46 39 34 25 23	2.0 2.0 2.0 2.0 2.0 2.0	18 17 16	100 65 50 50 108 162	46 52 246 225 109	31 20 19 19 19	10 12 15 14 43	11 8.9 6.8 56 53 20	3.3 2.8 2.2 2.0 2.0	3.0 3.0 3.0 3.0
TOTAL MEAN MAX MIN (†) MEAN‡ CFSM‡ IN‡	1673 54.0 268 20 -1.8 52.3 1.52	1192 39.7 94 19 0 39.7 1.15	1041 33.6 71 20 0 33.6 .98 1.13	917.3 29.6 142 2.0 -3.8 25.8 .75	4.58 18 2.0 +3.7 8.3	2361 76.2 259 14 +1.9 78.1 2.27 2.61	3207 107 384 37 -1.2 106 3.08 3.42	1623 52.4 169 18 6 51.8 1.51	475.4 15.8 43 8.4 0 15.8 .46	439.0 14.2 56 2.6 2 14.0 .41	213.8 6.90 17 2.0 -1.7 5.2 .15	347.9 11.6 31 2.0 -9.7 1.9 .06
CAL YR WTR YR		TAL 22153. TAL 13623.		60.7 37.2	MAX 116 MAX 38		MEAN‡ MEAN‡	60.8 36.1	CFSM‡ CFSM‡		IN‡ 23.98 IN‡ 14.30	

Change in contents, in cubic feet per second, in Farrington Reservoir. Adjusted for change in contents.

RARITAN RIVER BASIN

01405030 LAWRENCE BROOK AT WESTONS MILLS, NJ

LOCATION.--Lat 40°28'59", long 74°24'45", Middlesex County, Hydrologic Unit 02030105, at bridge on Burnet Street in Westons Mills, 200 ft (61 m) downstream from outflow of Westons Mill Pond, and 0.5 mi (0.8 km) northwest of Interchange 9 of the New Jersey Turnpike.

DRAINAGE AREA. -- 42.0 mi2 (108.8 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

			SPE-															
			CIFIC CON- DUCT- ANCE	PH	A'	APER- TURE,	OXYG	EN,	BIO	GEN AND, CHEM NHIB	FOR FEC EC	M, AL,	TOCC		NES (MC	G/L	DI	CIUM S- LVED
DA	TE	TIME	(MICRO- MHOS)	FIELI (UNITS		ATER EG C)		VED	5 (MG	DAY /L)	BRC (MP		FEC (MF		CAC	303)		G/L CA)
OCT																		
04 FEB	• • •	1300	94	6.	. 7	19.0		8.6		1.0		490		33		24		5.8
21		1000	210	7.	2	4.0	1	3.0		1.0		8		50		42	200	10
MAR 27		0930	148	6.	. 5	7.0	1	2.4		1.1		70		540		30		7.2
		0945	142	7.	3	20.0		8.8		1.5		20		70		33		7.8
		1215	150	7.	. 3	26.5		7.1		2.8		170		110		37		8.9
AUG 19		1245	147	7.	1	25.0		7.3		2.6		20		20				
	DATE	MAGNI SIUI DIS SOLVI (MG/I	M, SODI - DIS ED SOLV L (MG	UM, - ED S	POTAS- SIUM, DIS- SOLVED	BICAL BONAT (MG/	ΓE /L S	CAR- BONAT	E L	ALKA LINIT (MG/	Y L	SULFA DIS- SOLV (MG/	ED L	CHLO RIDE DIS- SOLV (MG/	ED L	FLU RID DI SOL (MG	E, S- VED /L	
	DATE	AS M	G) AS	NA) I	AS K)	HCO:	3)	AS CO)3)	CACO	3)	AS SC	14)	AS C	L)	AS	,	
	OCT 04 FEB	. 2	. 2	7.6	2.3		12		0		10	14		9	. 7		. 1	
	21	. 4	.2 1	9	2.2		18		0		15	25	581	33			.1	
	MAR 27	. 2	. 8 1	4	1.9		13		0		11	19		19	THE		. 1	
	MAY 29	. 3	.4 1	2	1.7		18		0		15	19		18			.1	
	JUL 14	. 3	.6 1	2	2.4		24		0		20	18		18	6		.1	
	AUG 19						29		0		24							
	DATE	SILIC DIS- SOLV (MG/ AS SIO2	AT 1 ED DEG L DI SOL	DUÉ 1 80 . C NO S- 1 VED	NITRO- GEN, D2+NO3 TOTAL (MG/L AS N)	NITE GET AMMON TOTA (MG, AS N	N, NIA AL /L	NITE GEN ORGAN TOTA (MG/ AS N	I, IIC L 'L	NITRO GEN, A MONIA ORGAN TOTA (MG/ AS N	M- IC L L	NITR GEN TOTA (MG/ AS N	L L	PHOSU PHORU ORTHO OSPHA TOTA (MG/ AS PO	PH TE L	CARBORGA TOT (MG	NIĆ AL /L	
	ОСТ																	
	04 FEB	. 5	. 7	66	<1.0	.:	200		49		69				31		6.4	
	21	. 4	. 8	118	1.2		110	-	16		27	1.	5	8.	08			
	27	. 6	. 5	92	. 85	51	150		21		36	1.	2		02		6.1	
	MAY 29	. 2	. 9	87	. 89		100		39		49	1.	4		10		4.5	
	JUL 14	1	. 5	93	. 35		210		56		77	1.	1		28		7.3	
	AUG 19	ET .			<.05	. (040		53		57				15		3.1	
				6					-						100		1	

01405240 MATCHAPONIX BROOK NEAR ENGLISHTOWN, NJ

LOCATION.--Lat 40°19'21", long 74°21'35", Monmouth County, Hydrologic Unit 02030105, at bridge on Union Hill Road, 1.9 mi (3.1 km) north of Englishtown, 2.4 mi (3.8 km) southwest of Redshaw Corner, 2.8 mi (4.6 km) northwest of Gordons Corner, and 3.9 mi (6.3 km) upstream of Barclay Brook.

DRAINAGE AREA .-- 29.1 mi2 (75.4 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	A' W	MPER- TURE, ATER EG C)	D SO	GEN, IS- LVED G/L)	OXYG DEMA BIOG UNIN 5 D (MG/	ND, HEM HIB	COLI- FORM, FECAL, EC BROTH (MPN)	TOC	REP- OCCI CAL PN)	HARD NESS (MG/ AS CACO	L L
OCT 03	0915	48	203			17.0		8.0		2.0	23		540		43
JAN 31	0900	26	265	7.2		.0		12.6		2.0	<20		<2		50
MAR 24	0910	69	190	6.5		5.0		11.4		. 4	<20		22		41
MAY 22	0930	55	177	6.5		15.0		9.5		2.0	460		540		40
JUL 09	0915	18	270	6.8		19.5		7.0		4.4	20		350		49
AUG 11	0930	17	174	6.8		24.0		6.4		5.1	50		70		51
SEP 16	0940	22	310	7. 1		18.0		7.0		4.3	170		22		57
10	0940	22	310	1.		10.0		7.0		4.3	170		22		31
DATE	CALCI DIS- SOLV (MG/ AS C	ED SOLV	JM, SODI S- DIS VED SOLV 'L (MG	UM, S S- I VED SC G/L (M	OTAS- SIUM, DIS- DLVED IG/L S K)	ALK LINI (MG AS CAC	TY /L	SULF TOT (MG AS	AL /L	SULFAT DIS- SOLVE (MG/L AS SO4	E RI	LO- DE, S- LVED G/L CL)	FLUC RIDE DIS SOLV (MG/ AS F	, , , , , , , , , ,	
OCT															
03 JAN	. 12	3	3.1	10	3.9		5		.0	34		15		.2	
31 MAR	. 14	1	3.7	8	3.8		31			42		21		. 2	
24 MAY	. 11	3	3.2	3	2.8		2			38		16		. 2	
22 JUL	. 11		3.1	13	2.3		8			29		18		. 2	
09 AUG	. 14	3	3.3	9	4.6		21			35		23		. 2	
11 SEP	. 15	3	3.2	20	4.7		47			45		25		. 2	
16	. 17		3.5 2	22	6.7		3		.0	40		29		. 2	
DATE	SILIC DIS- SOLV (MG/ AS SIO2	ED DEG. L DIS SOLV	DUÉ NIT 30 GE C NO24 3- TOT /ED (MC	EN, G NO3 AMM TAL TO G/L (N	TRO- EN, IONIA TAL IG/L	NIT GE ORGA TOT. (MG	N, NIC AL /L	NITRO GEN, MONIA ORGA TOTA (MG	AM- A + NIC AL /L	NITRO GEN, TOTAL (MG/L AS N)	- ORT OSP TO	OS- RUS, HOPH HATE TAL G/L PO4)	CARBO ORGAN TOTA (MG/ AS C	IIĆ L L	
OCT					600					2 0				. 8	
03 JAN					.600	- 1	. 1		. 7	3.8		.59		. 4	
31 MAR				. 8				13	. 7	5.5		.93			
24 MAY				. 2	.900		. 5		. 4	3.6		1.0		. 9	
JUL 22			15	. 90	.610		. 69		. 3	2.2		1.0	2	. 6	
09 AUG					.900		. 1		. 0	7.5		1.6			
11 SEP	. 12	1	150	.40 3	. 800	2	. 5	6	. 3	6.7		. 43	Ц	. 4	
16	. 13	1	162 . 1	. 4 4	.900		. 50	5	. 4	6.8		2.0	5	. 9	

RARITAN RIVER BASIN

01405240 MATCHAPONIX BROOK NEAR ENGLISHTOWN, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	
OCT	2245								
03 SEP	0915	50	1	10	40	0	20	58	
16	0940	20	1	0	120	0	10	4	
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)	
OCT 03 SEP	3300	3	170	<.5	7	0	40	0	
16	2400	9	160	<.5	40	0	30		

211

01405285 BARCLAY BROOK NEAR ENGLISHTOWN, NJ

LOCATION.--Lat 40°20'53", long 74°21'27", Middlesex County, Hydrologic Unit 02030105, at bridge on Old Bridge-Englishtown Road, 0.6 mi (1.0 km) southwest of Redshaw Corner, 0.8 mi (1.3 km) upstream of mouth, 2.3 mi (3.6 km) southwest of Moerls Corner, and 3.5 mi (5.6 km) north of Englishtown.

DRAINAGE AREA. -- 4.94 mi2 (12.79 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	FL INS TAN	EAM- CO OW, D TAN- A EOUS (M	PE- IFIC ON- OUCT- NCE ICRO- HOS)	PH FIELD (UNITS)	TEMPER ATURE WATER (DEG C	, 1	(GEN, DIS- DLVED MG/L)	OXYG DEMA BIOC UNIN 5 D (MG/	ND, I HEM I HIB AY I	COLI- FORM, FECAL, EC BROTH (MPN)	TOC	REP- DCCI CAL PN)	HARD- NESS (MG/L AS CACO3)
OCT 03	1045		16	173		16.	5	7.0		1.0	170		240	19
JAN	1030			278	4.2		0	15.2		1.0	<20		<2	28
MAR	1030		24	187	3.9	4.		12.5			<20		23	20
MAY										• 3				
JUL	1030		17	179	3.5	13.		9.3		. 6	20		130	18
AUG	1000		1.0	375	3.2	19.	0	7.1		1.4	<20		79	33
11 SEP	1100		1.0	374	3.5	24.	0	7.2		<.4	<20		140	36
	1050		1.0	380	3.4	17.	0	6.4		3.8	140		79	42
DATE	CALC DIS SOL (MG AS	VED /L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIU DIS- SOLVE (MG/	DI SOL	UM, A S- LI VED (LKA- NITY MG/L AS ACO3)	SULFI TOTA (MG/ AS S	DE AL /L	SULFAT DIS- SOLVE (MG/L AS SO4	DIS D SOL (MG	E, VED /L	FLUORIDE DIS SOLV (MG/I AS F	ED L
OCT														
03 JAN		4.6	2.2	2 3	. 9	1.8	0		.0	36		8.6		. 1
31 MAR		6.2	3.0	5	. 3	1.6	0			54		9.5		. 1
24 MAY		4.6	. 2.0) 4	. 0	1.5	0			39		6.0		. 1
22		4.2	1.8	4	. 0	1.3	0			37		5.4		. 1
JUL 09		7.9	3.2	2 4	. 7	2.6	0			69		8.1		. 1
AUG 11		8.1	3.8	3 4	. 7	2.4	0			81		8.5		. 1
SEP 16	1	0	4.2	2 5	.5	5.7	0		. 4	71	1	1		. 1
DATE	SILI DIS SOL (MG AS SIO	VED /L	SOLIDS, RESIDUE AT 180 DEG. O DIS- SOLVED (MG/L)	GEN NO2+N TOTA (MG/	GE O3 AMMO L TOT L (MG	N, NIA OF AL I	ITRO- GEN, GANIC OTAL MG/L S N)	NITRO GEN, MONIA ORGAN TOTA (MG/ AS N	AM- A + NIC AL /L	NITROGEN, TOTAL (MG/L AS N)	PHO PHOR ORTH OSPH TOT (MG AS P	US, OPH ATE AL /L	CARBO ORGAN TOTA (MG/I	IĆ L L
OCT														
03 JAN		9.3	74			500	. 19		. 69	-		.08		. 7
31 MAR	1	2	101		17 .	540	.00		.54	.7	1		6	. 5
24 MAY		6.8	76		20 .	300	1.8	2.	. 1	2.3		. 11	5	. 4
22 JUL		7.0	78		10 .	300	.62	-	.92	1.0		. 04		
09	1	2	129		08 .	990	. 41	1.	. 4	1.5		. 12	5	. 0
AUG 11	1	6	143	<.	05 .	990	.51	1.	. 5	_	-	.06	2	. 9
SEP														

RARITAN RIVER BASIN

01405285 BARCLAY BROOK NEAR ENGLISHTOWN, NJ--Continued

DAT	E	TIME	GEN, + OR TOT BOT	NH4 IN G. GA IN TOT MAT BOT /KG (G	NIC, ORGA IN TOT. MAT BOT /KG (G.	RG + AI ANIC II IN II MAT SO	LUM- NUM, DIS- DLVED UG/L S AL)	ARSE TOT (UG AS	AL TER	TAL LIBOT TO MA RIAL EIGG (1	DTAL TO ECOV- RE RABLE EF JG/L (U	COV- REGABLE ER	MIUM REITAL FM COV- TOM ABLE TE	MIUM COV. BOT- MA- RIAL G/G CD)
OCT		4045					4400				4.0	11.0		
O3. SEP		1045	640	10	• 3	49	1400		1	0	10	40	0	<10
16.	••	1050					1700		0		10	50	0	
	DATE	M T R E	HRO- IUM, OTAL ECOV- RABLE UG/L S CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	TERIAL (UG/G	COPPER TOTAL RECOVERABLI (UG/L AS CU	FM E TOM TEF (UC	COV.	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV FM BOT TOM MA TERIAL (UG/G AS FE	LEAD, TOTAL RECOV- ERABLE (UG/L	TERIAL (UG/G		
	OCT 03		10	10	<10		9	20	4200	37000) 7	70	160	
	SEP 16.		10				5		3000	3,000			500	
	10.	•	. 10	100	-		,		3000	-		7	500	
	DATE	N R FM TO	ANGA- ESE, ECOV. BOT- M MA- ERIAL UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	FM BOT- TOM MA- TERIAL (UG/G	NICKEL TOTAL RECOVERABLI (UG/L AS NI	FM E TOM E TEF (UC	OV.	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT TOM MA- TERIAL (UG/G	ERABLE (UG/L	TERIAL (UG/G		
	OCT													
	03 SEP	•	20	<.5	.00		8	<10	0		50	40	1	
	16.	•		.1		1	6		0		- 120			
	DATE	IN TO	PCB, OTAL BOT- M MA- ERIAL G/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOM MA-	DDD, TOTAL IN BOT TOM MA TERIA (UG/KG	TOT IN F TOM L TEF	MA- RIAL	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON TOTAL IN BOT TOM MA- TERIAL (UG/KG)	TOTAL IN BOT- TOM MA- TERIAL	TOTAL IN BOT- TOM MA- TERIAL	TOM MA-	
	OCT													
	03 SEP	•	6	.0	3		0	.0	.0	•	.1	.0	.0	
	16.	•				-	•			-				
	DATE	IN TO	EPTA- HLOR, OTAL BOT- M MA- ERIAL G/KG)	HE PTA - CHLOR E POXIDE TOT. IN BOTTOM MATL. (UG/KG)	IN BOT-	MALA- THION TOTAL IN BOT TOM MA TERIA (UG/KG	CHI - TOT. - BOT L MA	OR,	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYI TRI- THION TOT. II BOTTOM MATL (UG/KG	THION, TOTAL N IN BOT- 1 TOM MA- TERIAL	TOTAL IN BOT- TOM MA- TERIAL	TOM MA-	
	OCT 03.		.0	.0	.0		0	.0	.0		· · · · ·	0	.0	
	16.					-	-			_				

01405302 MATCHAPONIX BROOK AT MUNDY AVENUE AT SPOTSWOOD, NJ

LOCATION.--Lat 40°23'22", long 74°22'55", Middlesex County, Hydrologic Unit 02030105, at bridge on Mundy Avenue in Spottswood, 0.2 mi (0.3 km) upstream from mouth, 0.5 mi (0.8 km) east of De Voe Lake dam, and 3.4 mi (5.5 km) southeast of Tanners Corners.

DRAINAGE AREA. -- 44.1 mi2 (114.2 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO MHOS)	-)- F	PH IELD	EMPER- ATURE, WATER DEG C)	SC	GEN, DIS- DLVED MG/L)	DEM BIO UNI 5	GEN AND, CHEM NHIB DAY /L)	COLI- FORM, FECAL, EC BROTH (MPN)	TOO	TREP- COCCI ECAL MPN)	HARD- NESS (MG/L AS CACO3)
OCT 03	1230	101	15	55		17.0		7.3		1.0	2200		540	34
MAR 13	1200	66	15	55	6.5	2.0		12.0		E2.0	<20		8	36
APR 17	1030	90	15		6.3	7.0		9.8		<1.1	<20		<2	38
MAY 22	1045	99		19	6.4	15.0		7.8		3.8	700		1600	35
JUL											48			- 300
09 AUG	1100	E23	2		6.9	21.0		4.7		3.5	80		920	43
11 SEP	1100	E 17	21	10	4.8	24.0		4.8		E2.0	20		540	49
16	1030		26	50	7.5	19.0		5.2		3.6	230		350	59
DATE	CALCI DIS- SOLV (MG/ AS C	TUM SI DI VED SOI 'L (MC	IS- I LVED SO	DIUM, DIS- DLVED MG/L S NA)	POTAS SIUM DIS- SOLVE (MG/L AS K)	, ALK LINI D (MG AS	TY /L	SULF TOTA (MG/ AS S	AL /L	SULFAT DIS- SOLVE (MG/L AS SOL	TE RI DI D SO	LO- DE, S- LVED G/L CL)	FLUC RIDE DIS SOLV (MG/ AS F	; ;- /ED 'L
OCT														
03 MAR	. 9	0.0	2.7	7.1	3.	3	4		.0	30		13		. 1
13 APR	. 9	. 3	3.2	10	2.	2	2			37		15		. 1
17 MAY	. 10)	3.2	8.5	2.	5	4			35		12		. 1
22 JUL	. 9	. 2	3.0	9.7	2.	3	2		.1	33		16		.1
09	. 12	2	3.1	17	4.	1	3			36		22		.2
AUG 11	. 12	1	3.4	17	4.	3	2			43		21		.2
SEP 16	. 17	,	4.0	20	5.	2	2			54		26		.1
DATE	SILIO DIS- SOLV (MG/ AS SIO2	AT TED DEC	IDUÉ 1 180 G. C NO IS- T LVED (IITRO- GEN, D2+NO3 COTAL MG/L	NITRO GEN, AMMONI TOTAL (MG/L AS N)	GE A ORGA TOT	NIC AL L	NITRO GEN, A MONIA ORGAN TOTA (MG,	AM- A + NIC AL /L	NITRO GEN, TOTAI (MG/L AS N)	PHO ORT OSP TO	OS- RUS, HOPH HATE TAL G/L PO4)	CARBO ORGAN TOTA (MG/ AS C	IIĆ L 'L
OCT			400											
03 MAR		0.7	100	<1.0	.80		.0		. 8		-	.21		. 8
13 APR		3.9	96	. 86	1.23	0 1	• 3		. 5	3.1	1	. 20	2	2.0
17 MAY	. 8	3.5	89	.92	. 66	0	. 25		. 91	1.8	3	.21	2	2.9
22 JUL	. 8	3.2	108	. 75	• 53	0	. 87	1.	. 4	2.2	2	1.0	2	. 5
09 AUG	. 10)	130	3.5	. 47	0 1	. 1	1.	. 6	5.1		. 29	3	. 3
11	. 12	2	145	3.5	. 40	0	.80	1.	. 2	4.7	1	. 21	3	3.2
SEP 16	. 12	2	171	3.1	.71	0	. 24		. 95	4.0)	. 28	4	. 6

RARITAN RIVER BASIN

01405302 MATCHAPONIX BROOK AT MUNDY AVENUE AT SPOTSWOOD, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	
OCT		1.							
03 MAY	1230	70	1	10	40	0	20	3	
22	1045	20	1	0	90	0	20	4	
	IRON, TOTAL RECOV-	LEAD, TOTAL RECOV-	MANGA- NESE, TOTAL RECOV-	MERCURY TOTAL RECOV-	NICKEL, TOTAL RECOV-	SELE- NIUM.	ZINC, TOTAL RECOV-		
	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	TOTAL (UG/L	ERABLE (UG/L	PHENOLS	
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)	
OCT 03	3400	4	150	<.5	6	0	30	1	
22	4400	10	170	<.1	6	0	20	0	

01405340 MANALAPAN BROOK AT FEDERAL ROAD NEAR MANALAPAN, NJ

LOCATION.--Lat 40°17'46", long 74°23'53", Middlesex County, Hydrologic Unit 02030105, at bridge on Federal Road, 2.6 mi (4.2 km) north of Manalapan, 3.1 mi (5.0 km) southwest of Matchaponix, 3.3 mi (5.3 km) downstream of Still House Brook, and 4.1 mi (6.7 km) northeast of Applegarth.

DRAINAGE AREA .-- 20.9 mi2 (54.1 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPE ATUR WATE (DEG	E, 1 R S	YGEN, I DIS- U	DXYGEN DEMAND, BIOCHEM JNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT	4000		400						li a a	400	
04 JAN	1330		132		17	. 0	8.7	3.0	490	130	33
31 MAR	1220	33	140	6.4		.0	15.5	<1.0	<20	<2	37
24 MAY	1140	52	120	5.7	6	. 0	12.4	• 3	20	540	30
22	1110	37	108	6.3	16	. 0	8.5	1.0	230	180	30
JUL 09 AUG	1040	14	118	6.7	20	. 0	8.7	1.4	330	>2400	33
11	1215	12	108	7.4	24	.0	9.1	E2.5	40	540	31
SEP 16	1200	14	114	6.8	18	. 0	9.0	<.8	5400	1600	31
DATE	CALC DIS SOL (MG	IUM SI - DI VED SOL /L (MG	S- DIS VED SOL	IUM, S: S- D: VED SOI G/L (MC	IS- L LVED G/L	ALKA- INITY (MG/L AS CACO3)	SULFII TOTAI (MG/I AS S)	SOLVE (MG/L	D SOL (MG	E, RII - DI VED SOL /L (MG	DE, S- VED
OCT 04		7.7	3.4	4.9	3.2	6		.0 21	1	0	.2
JAN											
31 MAR		8.1	4.0	4.9	2.2	4		24	1		.2
24 MAY		6.8	3.1	4.5	2.2	2		25		8.5	. 2
22 JUL		6.5	3.3	5.1	1.9	12		- 20		9.0	. 2
09		7.4	3.6	4.5	2.5	8		19	1	0	.2
AUG 11 SEP		5.5	3.5	4.7	2.5	12		- 18	1	0	• 3
16		6.3	3.8	5.1	2.6	17		16	1	2	. 2
DATE	SILIO DIS- SOL' (MG, AS SIO:	- AT 1 WED DEG /L DI SOL	DUÉ NII 80 GE . C NO2- S- TOI VED (MO	EN, GE +NO3 AMMO TAL TO: G/L (MO	EN, ONIA O TAL G/L	NITRO- GEN, RGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM MONIA ORGANI TOTAL (MG/L AS N)	+ NITRO C GEN, TOTAL (MG/L	OS PH. TOTA (MG	US, OPH CARB ATE ORGA AL TOT /L (MO	NIC AL J/L
OCT											
04 JAN	1:	2	76 <	1.0	300	.00	• 3	30 -	-	. 20	2.9
31 MAR	1	1	79	1.9	180	.09	. 2	27 2.2		. 15	3.0
24 MAY		3.7		1.4	260				-	. 15	2.9
22 JUL		7.4	81	1.1	. 120	.72	. 8	1.9	1	. 1	3.9
09		7.9	71	.68	320	. 14	. 1	16 1.1		. 20	5.6
AUG 11	1	1	72	. 46	270	. 26	.5	.9	9	. 31	4.2
SEP 16	1	1	77	. 29	170	1.7	1.9	2.2		.21	3.3
			1.5		1.512	-					7.5

RARITAN RIVER BASIN

01405340 MANALAPAN BROOK AT FEDERAL ROAD NEAR MANALAPAN, NJ--Continued

DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 04 SEP	1330				50	1		0	0	0	1
16	1200	1600	. 4	6.0			1				<10
DATE	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 04	<10			3		2500		6		80	
SEP 16		20	20	4.6	10		7000		20		330
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)		PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT	, -		6				20		2		
O4 SEP	<.5		0		0		20		3		
16		.00		<10		0		70		7	.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)		DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA - CHLOR, TOTAL IN BOT - TOM MA - TERIAL (UG/KG)
OCT 04									14		
SEP 16	.0	2	7.3	1 2.8	2.5	.0	.2	.0	1.0	.0	.0
DATE	HE PTA - CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT											
SEP			117	-	26.		-		-	1 7 5	-
16	.0	.0	.0	.0	.0	.0	.0	.0	.00	0	.0

RARITAN RIVER BASIN

LOCATION.--Lat 40°23'22", long 74°23'27", Middlesex County, Hydrologic Unit 02030105, on right bank of De Voe Lake Dam in Spotswood, 0.1 mi (0.2 km) upstream from Cedar Brook, and 0.6 mi (1.0 km) upstream from confluence with Matchaponix Brook.

01405400 MANALAPAN BROOK AT SPOTSWOOD, NJ

217

DRAINAGE AREA .-- 40.7 mi2 (105.4 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- January 1957 to current year.

REVISED RECORDS .-- WSP 1722: 1957-60.

GAGE.--Water-stage recorder above concrete dam. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Duhernal Water System). January 1957 to September 1966 at datum 17.72 ft (5.401 m) higher.

REMARKS.--Water-discharge records good except those for periods when the waste gates were open, which are fair.
Discharge given herein include flow over dam and through waste gates. Waste gates open Mar. 31-Apr. 1,
Apr. 10-12, Apr. 23-May 1, July 23-24. Some regulation by Lake Manalapan, Helmetta Pond, and De Voe Lake.

AVERAGE DISCHARGE.--23 years, 66.9 ft^3/s (1.895 m^3/s), 22.32 in/yr (567 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,650 ft³/s (46.7 m³/s) May 30, 1968, elevation, 19.90 ft (6.066 m), waste gates open; no flow part or all of some days in many years when gates were closed and water was below spillway.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 712 ft^3/s (20.2 m^3/s) Apr. 11, elevation, 19.00 ft (5.791 m) waste gates open; no flow parts of July 24, 25 after waste gates were closed and water level was below dam.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

		DIDO	intion, in	CODIC PE	EI FER SE	MEAN VA	LUES	CIODER 19	79 10 551	I EMDER 19	00	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	115 160 117 81 68	39 39 75 122 86	54 51 48 47 47	48 47 47 44 44	36 36 36 36 36	34 36 35 36 38	236 266 161 166 209	107 102 84 73 66	47 44 47 51 46	29 26 25 30 30	50 38 35 28 27	18 14 14 14 14
6 7 8 9	95 86 61 55 158	60 52 48 46 45	48 69 68 55 49	44 43 49 47 43	36 36 38 39 39	44 43 48 65 59	143 121 111 149 405	62 61 81 89 70	39 36 39 38 46	30 28 26 26 24	27 25 24 22 20	17 17 15 13 12
11 12 13 14 15	269 171 110 86 67	51 106 117 83 70	47 47 56 92 69	52 178 173 89 72	38 39 38 38 39	106 95 62 99 165	536 181 129 119 125	62 69 155 148 94	45 40 35 33 31	23 23 22 21 20	18 34 34 27 26	11 11 11 13 23
16 17 18 19 20	58 53 51 48 48	58 53 50 48 47	56 55 50 47 47	64 57 57 110 112	46 56 46 43 41	131 98 119 114 71	113 101 80 71 65	69 60 60 67 63	31 33 29 28 28	19 26 37 28 23	24 22 21 21 23	24 20 33 31 25
21 22 23 24 25	47 46 42 44 42	45 44 44 44 43	47 48 58 69 96	75 63 71 65 54	41 50 74 72 63	109 210 184 112 169	63 63 72 65 66	75 93 71 57 53	27 26 25 24 25	22 41 113 28 24	23 23 23 20 19	21 19 17 13 15
26 27 28 29 30 31	40 39 40 44 42 40	78 179 130 75 61	110 75 60 55 52 50	50 48 47 47 43 40	54 48 43 39 	182 67 118 133 193 230	66 94 131 180 114	48 42 40 39 38 39	24 25 25 24 33	25 22 21 42 127 97	18 17 17 17 18	23 21 19 18 17
TOTAL MEAN MAX MIN CFSM IN.	2423 78.2 269 39 1.92 2.21	2038 67.9 179 39 1.67 1.86	1822 58.8 110 47 1.45 1.67	2023 65.3 178 40 1.60 1.85	1276 44.0 74 36 1.08 1.17	3205 103 230 34 2.53 2.93	4401 147 536 63 3.61 4.02	2237 72.2 155 38 1.77 2.04	1024 34.1 51 24 .84	1078 34.8 127 19 .86	760 24.5 50 17 .60	533 17.8 33 11 .44 .49

CAL YR 1979 TOTAL 32120 MEAN 88.0 MAX 1100 MIN 27 CFSM 2.16 IN 29.36 WTR YR 1980 TOTAL 22820 MEAN 62.3 MAX 536 MIN 11 CFSM 1.53 IN 20.86

01405440 MANALAPAN BROOK AT BRIDGE STREET AT SPOTSWOOD, NJ

LOCATION.--Lat 40°23'26", long 74°23'26", Middlesex County, Hydrologic Unit 02030105, at bridge on Bridge Street in Spotswood, 150 ft (46 m) downstream from Cedar Brook, and 400 ft (120 m) below DeVoe Lake Dam.

DRAINAGE AREA . -- 43.9 mi2 (113.7 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- February 1979 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 03	1345	107		17.0	8.1	2.0	1300	>2400	26
FEB 07	0930	138	5.9	2.0	12.5		80	110	29
APR 17	0900	112	5.6	8.0	10.4	<.7	70	49	23
MAY 22	0915	104	6.1	16.0	8.1	1.2	70	14	26
JUL 09	0930	108	6.7	20.0	7.7	1.6	490	240	27
AUG 11	1140	110	5.3	23.0	7.1	3.0	1100	350	24
SEP 16	0915	93	6.7	18.0	7.7	<.7	1100	540	23
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 03	5.7	2.8	4.2	3.1	6	.0	23	10	.1
FEB 07	6.0	3.3	7.1	1.9	5		24	11	.1
APR 17	4.6	2.9	4.6	2.0	2		23	8.9	.1
MAY 22	5.5	2.9	5.7	1.7	3	.1	22	10	.1
JUL 09	5.4	3.2	6.1	2.1	7		18	11	.1
AUG 11	4.6	3.1	6.5	2.7	9		19	11	.1
SEP 16	4.2	3.1	7.5	2.6			18	11	.1
10	4.2	3. 1	1.5	2.0	3	.1	10	3	Sec. Sec.
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 03	7.7	72	<1.0	.300	.60	.90	# <u>11</u>	36	4.8
FEB 07	8.3	75		. 410	.04	. 45		<.01	7.8
A PR 17	7.2	66	1.1	. 190	.34	•53	1.6	1.5	5.8
MAY 22	6.0	80	. 75	.220	.38	.60	1.4	. 31	2.8
JUL 09	5.5	71	. 84	.310	. 43	.74	1.6	. 25	10
AUG 11	7.0	71	.79	.300	.58	.88	1.7	.34	4.1
SEP 16	5.5	77	1.2	.300	2.4	2.7	3.9	.28	2.9

01405440 MANALAPAN BROOK AT BRIDGE STREET AT SPOTSWOOD, NJ--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 03	1345	120	1	10	30	0	20	4
MAY	13.5	120			50	·		
22 SEP	0915	50	1	0	60	0	10	3
16	0915	30	1	10	50	0	10	2
DÁTE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)
OCT 03	3500	8	70	<.5	4	0	20	0
MAY 22 SEP	2200	7	70	<.5	4	0	10	2
16	1600	7	50	<.5	5	0	40	0

01405500 SOUTH RIVER AT OLD BRIDGE, NJ

LOCATION.--Lat 40°24'22", long 74°22'08", Middlesex County, Hydrologic Unit 02030105, on right abutment of Duhernal Dam, 0.6 mi (1.0 km) south of Old Bridge, 2.3 mi (3.7 km) upstream from Deep Run, and 9.1 mi (14.6 km) upstream from mouth.

DRAINAGE AREA .-- 94.6 mi2 (245.0 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- August 1939 to current year.

REVISED RECORDS .-- WSP 1902: 1957.

GAGE .-- Water-stage recorder above concrete dam. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records fair. The flow past this station is affected by pumpage from well fields for industrial use by Duhernal Water System. Some regulation by Duhernal Lake, capacity, 138,000,000 gal (522,300 m³), Lake Manalapan, De Voe Lake, and several small ponds in headwater tributaries.

AVERAGE DISCHARGE. -- 41 years, 142 ft3/s (4.021 m3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,250 ft³/s (120 m³/s) Sept. 15, 1944, elevation, 11.71 ft (3.569 m), waste gates open; maximum gage height, 11.73 ft (3.575 m) Aug. 28, 1971; no flow on days when waste gates were closed and water was below spillway.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,040 ft³/s (57.8 m³/s) Apr. 10, elevation, 11.05 ft (3.368 m); minimum daily, 19 ft³/s (0.54 m³/s) Sept. 12, 13.

MEAN VALUES DAY OCT NOV DEC JUN JUL AUG SEP JAN FEB MAY 425 95 63 248 60 56 72 533 164 145 66 1 4 4 153 1530 436 164 62 284 184 193 161 58 55 51 52 56 33 11 11 114 620 11 11 97 81 TOTAL MEAN 65.0 73.5 44.8 MAX 68 19

CAL YR 1979 TOTAL 80440 MEAN 220 MAX 2900 MIN 31 WTR YR 1980 TOTAL 55764 MEAN 152 MAX 1530 MIN 19

01405700 SOUTH RIVER BELOW DUHERNAL DAM AT OLD BRIDGE, NJ

LOCATION.--Lat 40°25'00", long 74°21'43", Middlesex County, Hydrologic Unit 02030105, at bridge on Old Bridge-South Amboy Road in Old Bridge, 0.5 mi (0.8 km) upstream of Deep Run, and 7.4 mi (11.9 km) upstream from mouth.

DRAINAGE AREA.--95.9 mi² (248.4 km²).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976-77, January 1979 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	1	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	P FIE (UNI	H A'	MPER- IURE, ATER EG C)	D SO	GEN, IS- LVED G/L)	DEM BIO UNI 5	GEN AND, CHEM NHIB DAY /L)	COI FOR FEC BRC	RM, CAL, CTH	FEC	REP- OCCI CAL PN)	NE (M	G/L	DI SO (M	CIUM S- LVED G/L CA)
OCT 04		1120	113		6.1	18.5		8.2		. 1		90		790		29		7.3
FEB 21		1230	368		6.3	2.5		11.2		.5		4		4		50		9.5
MAR 27		1230	. 116		5.6	7.0		11.7		4.4		5		540		27		6.7
MAY 29		1130	157		6.7	20.0		7.8		1.5		130		1300		33		7.6
JUL 14	(930	1700		7.0	26.0		8.0		4.7		330		170		160		17
AUG 19		1045	301		6.4	22.5		5.9		1.5		130		330		49		10
DI	ATE	MAGNE SIUM DIS- SOLVE (MG/I AS MG	A, SODI DIS ED SOLV	ED.	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAL BONA: (MG. AS	TE /L S	CAR BONA (MG	TE /L	ALKA LINIT (MG/I AS CACO		SULFA DIS- SOLVI (MG/I AS SO	E D	CHLO RIDE DIS- SOLV (MG/ AS C	, ED L	FLUC RID DISOL (MG	E, S- VED /L	
	4	2.	. 7	6.8	3.1		7		0		6	24		11			.1	
	1	6.	.5 3	8	3.6		7		0		6	36		74			. 1	
MAI 2	R 7	2.	. 5	7.1	2.8		4		0		3	25		9	. 6		. 1	
MA 3	9	3.	.4 1	3	2.2		10		0		8	26		18			.2	
JUI	4	29	28	80	13		20		0		16	83		450			. 2	
AUC 1	G 9	5.	9 3	4	4.1		12		0		10	31		57			. 1	
D <i>i</i>	ATE	SILICA DIS- SOLVE (MG/I AS SIO2)	AT 1 ED DEC DI SOL	DUÉ 80	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITI GEI AMMOI TOTA (MG,	N, NIA AL /L	NIT GE ORGA TOTA (MG	N, NIC AL /L	NITROGEN, AN MONIA ORGANITOTAL (MG/IAS N	1- ic	NITRO GEN TOTAL (MG/I AS N		PHOS PHORU ORTHO OSPHA TOTA (MG/ AS PO	S, PH TE L	CARBO ORGA TOTA (MG,	NIĆ AL /L	
	4	7.	3	71	<1.0		400		.00		40				32		4.3	
FEI 2	1	7.	7	190	1.4		770	-	. 23	1.	1	2.	4		08			
MAI 2' MAI	7	6.	3	70	. 94		400	1	. 0	1.	4	2.	3		07		5.5	
	9	7.	. 0	95	1.4		220		.98	1.	2	2.	6		10		4.1	
	4	2.	6 1	020	1.3		120	1.	. 2	1.	3	2.	5		80		9.6	
	9	5.	5	183	1.8	. (090		.59		58	2.	5		31		1.8	

RESERVOIR IN RARITAN RIVER BASIN

01396790 SPRUCE RUN RESERVOIR. --Lat 40°38'30", long 74°55'19", Hunterdon County, Hydrologic Unit 02030105, at dam on Spruce Run, 0.5 mi (0.8 km) north of Clinton, and 0.6 mi (1.0 km) upstream from mouth. DRAINAGE AREA, 41.3 mi² (107.0 km²). PERIOD OF RECORD, November 1963 to current year. Nonrecording gage read daily. Datum of gage is National Geodetic Vertical Datum of 1929.

Reservoir is formed by earthfill dam with concrete spillway; dam completed in October 1963 with crest of spillway at elevation 273.00 ft (83.210 m). Usable capacity, 11,000,000,000 gal (41.635 hm³). Dead storage 300,000 gal (1,136 m³). Reservoir used for water supply and recreation. Outflow mostly regulated by gates. Water is released to maintain minimum flow on the South Branch Raritan River and, at times, for municipal supply. Records given herein represent usable capacity. Records furnished by New Jersey Department of Environmental Protection.

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 11,400,000,000 gal (43.15 hm³) Jan. 24, 1979, elevation, 274.72 ft (83.735 m); minimum observed, 6,700,000,000 gal (25.36 hm³) Sept. 30, 1980, elevation, 261.21 ft (79.617 m).

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 11,200,000,000 gal (42.39 hm³) Oct. 6, elevation, 273.40 ft (83.332 m); minimum observed, 6,700,000,000 gal (25.36 hm³) Sept. 30, elevation, 261.21 ft (79.617 m).

01397050 ROUND VALLEY RESERVOIR.--Lat 40°36'39", long 74°50'42", Hunterdon County, Hydrologic Unit 02030105, at main dam on Prescott Brook, 1.8 mi (2.9 km) south of Lebanon, 3.2 mi (5.1 km) upstream from mouth, and 4.5 mi (7.2 km) west of Whitehouse. DRAIMAGE AREA, 5.7 mi² (14.8 km²). PERIOD OF RECORD, March 1966 to current year. Nonrecording gage read daily. Datum of gage is National Geodetic Vertical Datum of 1929.

Reservoir is formed by earthfill dam at main dam on Prescott Brook and two dams on South Branch Rockaway River at Lebanon; storage began in March 1966. Capacity at spillway level, 55,000,000,000 gal (208.175 hm²), elevation, 385.00 ft (117.348 m). Reservoir is used primarily for storage and is filled by pumping from South Branch Raritan River at Hamden Pumping Station (see following page). Outflow is controlled by operation of gates in pipe in dams. Water is released into South Branch Rockaway Creek and Prescott Brook. Records furnished by New Jersey Department of Environmental Protection.

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 55,400,000,000 gal (209.69 hm³) June 15, 1975, elevation, 385.63 ft (117.540 m); minimum observed (after first filling), 45,400,000,000 gal (171.84 hm³) Sept. 30, 1980, elevation, 372.35 ft (113.492 m).

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 53,800,000,000 gal (203.63 hm³) Oct. 10, elevation, 383.63 ft (116.930 m); minimum observed, 45,400,000,000,000 gal (171.84 hm³) Sept. 30, elevation, 372.35 ft (113.492 m).

(113, 492 m).

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Date			Elevation* (feet)	Contents (million gallons)	Change in contents (equivalent in ft3/s)	Elevation* (feet)	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)
			01396790 S	PRUCE RUN RI	ESERVOIR	013970500	ROUND VALLEY	RESERVOIR
Nov.	30 31 30 31		273.02 272.72 272.87 272.34	11,000 10,800 10,900 10,600	-10.0 +5.2 -15.0	383.47 383.03 382.83 382.21	54,500 53,400 53,200 52,700	-54,9 -10.3 -25.0
CAL	YR	1979	-	-	+0.8	-	-	+2.1
Feb. Mar. Apr. May June July Aug.	31 29 31 30 31 30 31 31		272.18 272.87 273.18 273.17 272.99 271.91 269.04 265.71 261.21	10,600 10,900 11,000 11,000 11,000 10,500 9,300 8,100 6,700	0 +16.0 +5.0 0 0 -25.8 -59.9 -59.9 -72.2	381.86 381.51 382.15 382.76 383.00 382.25 380.50 376.68 372.35	52,400 52,100 52,600 53,100 53,400 52,700 51,600 48,900 45,400	-15.0 -16.0 +25.0 +25.8 +15.0 -36.1 -54.9 -134.7 -180.5
WTR	YR	1980	-	-	-18.2	-	-	-38.5

^{*} Elevation at 0800 on first day of following month.

DIVERSIONS IN RARITAN RIVER BASIN

- 01396920 Water is diverted 4.0 mi (6.4 km) upstream from the gaging station on South Branch Raritan River at Stanton (see sta 01397000), at the Hamden Pumping Station, for storage in Round Valley Reservoir. Records furnished by New Jersey Department of Environmental Protection.
- 01400490 Johns-Manville Products Corporation diverts water 1,500 ft (457 m) upstream from the gaging station on Raritan River at Manville (see sta 01400500) for cooling purposes and returns the water to the river 0.6 mi (1.0 km) below the station. Records furnished by the Johns-Manville Products Corporation.
- 01400509 Elizabethtown Water Company diverts water from the Raritan and Millstone Rivers just upstream from the mouth of the Millstone River. Records given herein represent the total diversion from both rivers. Records furnished by the Elizabethtown Water Company.

DIVERSIONS, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Month	HAMDEN PUMPING STATION 01396920	JOHNS-MANVILLE PRODUCTS CORPORATION 01400490	ELIZABETHTOWN WATER COMPANY 01400509
October	. 0	8.4	143
November	0	7.8	128
December	0	8.0	142
CAL YR 1979	0	7.5	143
January	0	7.6	148
February	0	7.4	126
March	0	6.8	139
April	0	5.6	146
May	0	5.2	154
June	0	4.9	170
July	0	5.0	174
August	0	4.9	178
September	0	5.1	177
WTR YR 1980	0	6.4	152

01407253 WILLOW BROOK NEAR HOLMDEL, NJ

LOCATION.--Lat 40°19'47", long 74°10'26", Monmouth County, Hydrologic Unit 02030104, at bridge on Willow Brook Road, 0.6 mi (1.0 km) upstream of Big Brook, 1.2 mi (1.9 km) southeast of Holmdel, 1.3 mi (2.1 km) northeast of Vanderburg, and 1.6 mi (2.6 km) northwest of Sugar Loaf Hill.

DRAINAGE AREA. -- 7.52 mi2 (19.48 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME TA	TREAM- CO FLOW, DI ISTAN- AN		PH I	EMPER- ATURE, WATER DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 04	0930	12	208		16.0	9.1	1.0	1300	1600	72
FEB 13	1100	23	255	7.0	.0			80	70	82
APR 08	1030	22	200	7.0	8.5	10.8	1.2	20	49	65
MAY 27 JUL	0930	14	211	7.0	12.5	9.6	1.5	490	350	68
08 AUG	0945	12	211	7.1	17.0	8.3	.7	1100	1600	76
05 SEP	0930	7.9	225	7.1	14.0	9.7	.7	230		76
22	0945	9.7	248	6.9	19.0	8.8	E1.8	490	>2400	81
DATE	CALCIUM DIS- SOLVEI (MG/L AS CA)	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM DIS- SOLVEI (MG/L AS K)	, ALKA LINIT	Y SULF: L TOT: (MG:	AL SOLV	DIS- ED SOLVE L (MG/I	RIDE DIS ED SOLV	ED L
OCT	22	2.5	0.5	2 .	_	26	0 20	18		
04 FEB		3.5	9.8	3.5		36	.0 30			.3
13 APR		3.5				31				
08 MAY		3.7	8.8	2.		25	30	17		.2
27 JUL		3.7	9.3	1.8		27	30	17		.3
08 AUG		3.9	10	2.0		33	31	19		.3
05 SEP		4.0	10	3.0		46	29	20		. 4
22	20	3.8	9.6	3.		39	32	18		.4
DATE	SILICA, DIS- SOLVEI (MG/L AS SIO2)	AT 180	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	GEN	, MONÍA IC ORGA L TOTA L (MG	AM- A + NITR NIC GEN AL TOTA /L (MG/	, OSPHAT L TOTAL L (MG/I	PH CARBO TE ORGAN TOTA (MG/	IĆ L L
OCT 04 FEB	. 11	129	<1.0	.200		19	.39	-	32 1	. 8
13 APR	11	134	.96	.200)	E1	. 3		27 1	. 2
08 MAY	9.1		1.5	.110		28	.39 1.	9 .0	55 1	.7
27 JUL	11	130	1.1	.080	2.	4 2	.5 3.	6 .:	24 18	
08 AUG	12	135	.82	.130		26	.39 1.	2 .	17 6	.5
05 SEP	13	157	.73	.110		59	.70 1.	4 .2	25 2	.6
22	. 15	166	.52	.040		41	.45	97 .:	31 5	. 8

01407253 WILLOW BROOK NEAR HOLMDEL, NJ--Continued

DATE	TIME	NITT GEN,1 + ORC TOT : BOT I	NH4 INO G. GAN IN TOT MAT BOT /KG (G/	R- INORIC, ORGA IN TOT. MAT BOT KG (G/	G + ALU NIC INU IN DI MAT SOI KG (UG	JM, IS- ARSE LVED TOTAL	TAL TER	TAL LIU BOT- TOT MA- REC RIAL ERA	AL TOTOR	OV- REC BLE ERA /L (UG	AL FM BOT- OV- TOM MA- BLE TERIAL
OCT 04	0930	50	0	.0	3.1	30	1	0	0	20	0 <10
DATI	E	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)		COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
OCT 04.		10	20	<10	3	<10	1800	25000	5	10	110
DATI	1	MANGA- NESE, RECOV. FM BOT- FOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)
OCT 04.		170	<.5	.00	5	10	0	0	0	40	2
DATE	1	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT-TOM MA-TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 04.		25	.0	3	4.3	.9	4.1	.0	2.0	.0	.0
DATE	1	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TO XA - PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 04.		.0	.5	.0	.0	.0	.0	.0	.0	0	.0

01407400 YELLOW BROOK AT COLTS NECK, NJ

LOCATION.--Lat 40°17'47", long 74°10'16", Monmouth County, Hydrologic Unit 02030104, at bridge on Creamery Road in Colts Neck, and 0.3 mi (0.5 km) upstream from Mine Brook.

DRAINAGE AREA. -- 9.71 mi2 (25.15 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 04	1115	126		15.5	9.2	1.0	1100	>2400	38
FEB 13	1000	107	6.5	.0			<20	<2	27
APR 08	1230	132	7.0	12.0	11.0	.6	20	33	38
MAY 27	1030	131	6.9	14.0	9.3	1.4	490	350	38
JUL 08	1045	131	7.0	18.0	8.0	.7	790	920	42
AUG 05	1030	130	7.0	15.0	8.3	1.6	3500	3500	42
SEP 22	1045	142	6.7	20.0	8.1	E1.8	330	920	41
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 04	10	3.2	5.9	1.9	12		12	13	.2
FEB					13	.0		W.	
13 APR	7.0	2.4	4.4	1.6	9		12	11	.2
08 MAY	10	3.2	6.1	1.5	21		20	12	.1
27 JUL	9.9	3.3	6.0	1.3	15		13	13	.2
08 AUG	11	3.5	7.8	1.6	24		9.7	14	.3
05 SEP	11	3.5	6.8	2.0	19		10	14	.3
22	11	3.3	6.1	2.0	21	7-	9.0	12	.3
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 04	13	81	1.0	.200	.01	.21	1.2	.19	3.1
13	11	56	1.1	.100		E.57		.11	2.9
APR 08	12		1.8	.140				.71	1.7
MAY 27	13	92	1.4	.87	.00	.87	2.3	.26	2.9
O8	13	92	1.3	.190	.36	.55	1.8	.05	.5
05 SEP	14	94	1.0	.200	.50	.70	1.7	.43	3.2
22	16	89	.77	.140	.64	.78	1.6	.12	5.7

01407400 YELLOW BROOK AT COLTS NECK, NJ--Continued

DATE	TIMI	GEN, + OR TOT BOT	NH4 IN RG. GA IN TOT MAT BOT KG (G	OR- INON NIC, ORGA IN TOT MAT BOT /KG (G.	ANIC IN IN D MAT SO /KG (U	LVED G/L	RSENIC TOTAL (UG/L AS AS)	TOM TOM TEI	TAL LI BOT- TO MA- RE RIAL ER G/G (U	TAL TO COV- RE ABLE ER G/L (U	TAL TO COV- RE ABLE ER G/L (U	MIUM RE TAL FM COV- TOM ABLE TE G/L (U	MIUM COV. BOT- MA- RIAL G/G CD)
OCT													
04	1115	5 40	00	.2	3.3	20	1		0	0	0	0	<10
DAT	E	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	FM BO	V. IF I - TO A - RE AL ER G (U	RON, OTAL ECOV- RABLE IG/L S FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	TOTAL RECOV- ERABLE (UG/L	TERIAL (UG/G	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	
OCT 04.		10	20	<10	2	<	10	2800	24000	4	20	60	
DAT	1	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKE RECO FM BO TOM M TERIA (UG/C AS N	V. I- SE A- NI AL TO	CLE- TUM, OTAL IG/L S SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ERABLE (UG/L	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS	
OCT 04.		110	<.5	.00	4		20	0	0	20	30	1	
DAT	1	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE TOTAL IN BO TOM MA TERIA (UG/KO	T- IN A- TOM AL TE	DT, DTAL BOT- MA- CRIAL (KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL IN BOT- TOM MA- TERIAL	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 04.		5	.0	15	.0		. 4	1.3	.0	.0	.0	.0	
DAT	1	HEPTA- CHLOR, TOTAL IN BOT- OM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOI TOT. BOTTO MATI	PAR, THIN TOTOM BOL. M	HYL RA- ION, IN OTTOM IATL.	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	THION, TOTAL IN BOT- TOM MA- TERIAL	TO XA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
ОСТ		ou/ku/	(00/10)	(UU/KU)	(UU/KU)	(UU/K	, (00	, Ku)			(00/10/	(00/10/	
04.		.0	.0	.0	.0	1 10	.0	.0	.0	.0	0	.0	

01407500 SWIMMING RIVER NEAR RED BANK, NJ

LOCATION.--Lat 40°19'10", long 74°06'55", Monmouth County, Hydrologic Unit 02030104, on left bank, 50 ft (15 m) upstream from dam at Swimming River Reservoir, 3.3 mi (5.3 km) southwest of Red Bank, and 4.8 mi (7.7 km) upstream from mouth. Water-quality samples collected at bridge on Swimming River Road, 800 ft (244 m) downstream from gaging station.

DRAINAGE AREA .- 48.5 mi2 (125.6 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1922 to current year.

REVISED RECORDS. -- WSP 781. Drainage area. WSP 891: 1939.

GAGE.--Water-stage recorder above dam. Datum of gage is 30.00 ft (9.144 m) National Geodetic Vertical Datum of 1929. Prior to Jan. 19, 1962, at site 800 ft (240 m) upstream at datum 17.67 ft (5.386 m) lower. Jan. 19 to Mar. 30, 1962, nonrecording gage, 700 ft (210 m) upstream at datum 13.87 ft (4.228 m) lower.

REMARKS.--Water-discharge records poor. No gage-height record Aug. 20 to Sept. 30. Records given herein represent flow over spillway and flow or leakage through blowoff gates (no gate opening during the year). Diversion above station for municipal supply. Flow regulated by Swimming River Reservoir.

COOPERATION .-- Water-stage recorder inspected by and record of diversion furnished by Monmouth Consolidated Water Co.

AVERAGE DISCHARGE. -- 58 years, 81.1 ft3/s (2.297 m3/s), 22.70 in/yr (577 mm/yr), adjusted for storage and diversion.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 8,910 ft³/s (252 m³/s) Oct. 27, 1943, gage height, 8.96 ft (2.731 m) site and datum then in use, from rating curve extended above 1,000 ft³/s (28.3 m³/s) on basis of weir formula; no flow some days in many years.

EXTREMES OUTSIDE PERIOD OF RECORD.--A flood in July 1919 reached a stage of 7.84 ft (site and datum then in use), from floodmark, discharge about 11,800 ft 3 /s (334 m 3 /s).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,040 ft3/s (57.8 m3/s) Apr. 10, gage height, 6.33 ft (1.929 m); no flow many days in summer months.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES OCT NOV DAY DEC JAN FEB MAR APR MAY JUN JIII. AUG SEP .06 .00 .01 18 .00 1.1 .00 3.2 .00 4.1 .00 3.1 .00 .55 .00 .00 1.3 . 25 .00 .01 3.1 .00 .00 .00 .00 .00 .00 8.3 .00 .00 4 . 8 .00 .00 .00 36 2.8 .00 .00 .00 .72 .00 .00 .08 .00 8.4 .00 .00 .00 30 39 45 5.9 .00 .00 .00 .00 .00 .00 .00 .00 1.8 .00 .00 .00 . 44 .00 .00 27 678 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .13 .00 237.60 TOTAL 488.78 462.63 37.8 .000 MEAN 54.1 46.3 38.0 51.3 68.5 16.3 14.9 7.66 .00 MAX .00 .00 .00 MIN .00 27.9 39.6 35.7 40.8 52.9 33.7 29.4 29.2 MFAN± 89.7 78.0 67.2 68.0 57.1 1.85 0.61 1.61 1.63 1.40 2.22 1.18 1.40 CFSM# 3.56 5.05 1.51 4.09 1.61 0.98 0.68

CAL YR 1979 TOTAL 32120.80 MEAN 88.0 MAX 1740 MIN .60 MEAN# 125 CFSM# 2.58 IN# 35.07 WTR YR 1980 TOTAL 20623.01 MEAN 56.3 MAX 1100 MIN .00 MEAN# 91.9 CFSM# 1.89 IN# 25.80

[†] Diversion and change in contents in Swimming River Reservoir, in cubic feet per second.

[#] Adjusted for diversion and change in contents.

01407500 SWIMMING RIVER NEAR RED BANK, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Selected field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 24	1330	122		16.0	9.1	2.0	20	9	48
FEB 13	1215	215	7.2	3.0	· · ·		20	2	59
APR									7.5
08 MAY	1140	162	7.1	19.0	11.0	1.8	20	23	51
27 JUL	1200	192	7.0	21.5	8.0	2.3	50	33	48
08 AUG	1115	166	7.0	19.0	3.7	1.4	50	70	55
05 SEP	1115	198	7.5	18.0	7.2	2.2	50	33	58
22	1145	500	6.7	22.0	5.9	<1.5	790	110	70
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT				1.2			40	45	
FEB	14	3.1	7.7	2.7	18		18	15	.2
13 APR	18	3.3	9.9	2.4	24		23	21	.2
08 MAY	16	2.7	9.5	2.2	24		24	17	.2
27 JUL	14	3.1	8.6	1.9	17	.0	22	16	.3
08 AUG	16	3.6	9.8	2.3	30		20	18	.3
05	17	3.8	11	2.4	38		21	19	. 4
SEP 22	14	8.4	53	4.6	25	.0	18	100	.2
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 24	8.1	102	.64	.100	1.2	1.3	1.9	.06	3.0
FEB 13	9.2	111	1.2	.120		E.45		.05	4.6
APR 08	7.2	108	1.3	.210	.38	.59	1.9		3.6
MAY 27	6.6	99	1.1	.720		E.80		.13	8.1
JUL 08	7.1	118	.65	.150	.84	.99	1.6	.03	2.5
AUG									
05	7.1	120	.29	.130	.49	.62	.91	.06	3.8

01407500 SWIMMING RIVER NEAR RED BANK, NJ--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
MAY 27	1200	70	1	0	2	0	<10	3
SEP		20	2	0				5
22	1145	20	2	0	70	0	10	,
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)
MAY 27 SEP	460	4	50	. 4	2	0	10	0
22	1200	2	160	.2	3	0	20	0

01407705 SHARK RIVER NEAR NEPTUNE CITY, NJ

LOCATION.--Lat 40°11'56", long 74°04'14", Monmouth County, Hydrologic Unit 02030104, on left bank 100 ft (30 m) upstream from bridge on Remsen Mill Road, 0.3 mi (0.5 km) downstream from Robins Swamp Brook, and 1.7 mi (2.7 km) west of Neptune City.

DRAINAGE AREA .-- 9.96 mi2 (25.80 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1966 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 7.05 ft (2.149 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Diversion above station by Monmouth Consolidated Water Co. for municipal supply and by farmers for irrigation.

COOPERATION. -- Water-stage recorder inspected by Monmouth Consolidated Water Co.

AVERAGE DISCHARGE.--14 years, 15.2 ft3/s (0.430 m3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 580 ft³/s (16.4 m³/s) Dec. 26, 1969, gage height, 7.94 ft (2.420 m); no flow part of Aug. 20, 21, 22, 1978 and Feb. 16, Mar. 1, 2, July 1, 4, 5, Aug. 24, 25, Sept. 12, 15, 18, 19, 1980.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 290 ft³/s (8.21 m³/s) Apr. 10, gage height, 5.68 ft (1.731 m); no flow part of Feb. 16, Mar. 1, 2, July 1, 4, 5, Aug. 24, 25, Sept. 12, 15, 18, 19; minimum daily discharge, 0.68 ft³/s (0.019 m³/s) Aug. 24.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

MEAN VALUES OCT APR SEP DAY NOV DEC JAN FEB MAR MAY JUN JUL AUG 35 28 12 15 15 12 3.7 126 38 31 8.0 6.5 13 7.6 12 2 11 11 47 9.3 6.3 34 15 12 1.4 28 22 8.6 12 4.7 9.7 35 11 5 31 15 11 15 7.7 2.2 34 6.5 8.8 6.7 2.1 13 7.0 15 15 16 2.6 2.3 5.5 6.4 8.5 6 93 13 12 . 99 22 11 1.8 18 1.5 6.5 17 10 2.2 15 56 212 3.1 4.9 8.7 3.0 2.7 2.6 6.5 6.5 6.5 19 13 3.6 16 11 14 17 10 12 4.9 2.0 87 9.7 13 1.6 6.4 5.5 6.3 6.9 13 33 3.0 11 72 26 22 5.1 58 11 3.1 2.0 13 8.3 1.9 12 28 65 6.8 18 86 34 15 13 28 2.4 27 28 26 6.3 33 19 26 103 28 2.6 15 22 25 19 18 3.4 34 35 16 6.0 9.5 2.5 4.8 16 21 24 17 16 7.6 19 24 14 6.9 14 2.5 7.3 17 21 22 18 15 9.0 18 15 13 6.2 20 1.9 7.1 18 21 16 15 3.6 31 5.6 9.5 2.9 9.5 22 13 16 22 20 20 22 16 23 3.0 15 10 9.2 7.3 7.2 7.0 21 20 4.8 8.3 21 17 17 3.7 55 9.5 29 1.6 22 4.3 20 20 19 107 8.5 1.4 16 25 9.1 44 23 116 23 20 20 26 20 13.8 8.5 16 13 13.5 1.2 6.7 1.0 25 20 20 56 8.6 6.7 12 3.9 8.0 3.3 3.9 31 21 5.6 2.3 26 19 53 8.0 37 8.3 9.9 2.8 8.9 8.1 27 19 47 23 10 8.8 4.3 8.6 7.2 7.3 6.9 7.4 7.3 28 19 19 18 6.9 2.0 15 50 6.7 5.3 8.9 3.4 29 19 15 13 18 49 150 1.9 41 7.2 1.4 3.5 30 48 31 11 16 70 21 7.6 1.9 8.3 TOTAL 871 693 576.7 169.59 474.3 157.8 536.5 949.2 1179.6 326.2 174.78 192.0 15.3 18.6 56 9.7 5.85 MEAN 23.1 17.3 5.26 10.5 5.64 28.1 30.6 6.40 39.3 93 116 9.5 MAX 8.0 1.9 1.8 2.4 .68 1.9 .99 1.1

CAL YR 1979 TOTAL 8752.00 MEAN 24.0 MAX 213 MIN 3.9 WTR YR 1980 TOTAL 6300.67 MEAN 17.2 MAX 212 MIN .68

SHARK RIVER BASIN

01407705 SHARK RIVER NEAR NEPTUNE CITY, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Selected field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

				SPE-						OWN	001	201.7				
DA	TE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	CIFI CON- DUCT ANCE (MICF MHOS	- 10- F	PH	TEMPER- ATURE, WATER (DEG C)	S	GEN, DIS- DLVED MG/L)	BIO	AND, CHEM NHIB DAY	FORM, FECAL, EC BROTH (MPN)	TOC	REP- OCCI CAL PN)	HARI NES (MG AS CAC	S /L
OCT 24	45.	0930	20	400	32		13.0		8.7		3.0	230		540		37
FEB		1015	1.2		54	6.9	1.0				<.3	50		8		38
APR		1040	28		42	6.9	10.0		10.2		<1.1	70		79		29
MAY		1045	9.4		51	7.1	13.5		9.3		2.9	20		920		36
JUL		0945	3.4		51						1.7	110		350		40
AUG						7.2	16.5		7.0							
SEP	• • • •	0930	3.1	1	57	6.8	20.0		7.6		1.5	130				42
22	• • •	0930	7.1			7.1	18.0	1	8.2		E1.4	210		280		42
	DATE	CALCI DIS- SOLV (MG/ AS C	UM SI DI ED SOL L (MG	S- VED S	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS SIUM DIS- SOLVE (MG/I	A, AL LINED (M	KA- ITY IG/L S .CO3)	SULF TOT (MG AS	AL /L	SULFAT DIS- SOLVI (MG/I	TE RI	LO- DE, S- LVED G/L CL)	FLUC RIDE DIS SOLV (MG/AS F	E, S- VED /L	
	OCT			0.0			•	25		•			17			
	FEB			2.3	12		. 0	25		.0	19		17		.1	
	14 APR			1.9	11		. 3	16			21		16		.1	
	16 MAY	. 8	3.3	2.0	9.3	3.	. 5	16			18		13		.1	
	27 JUL	. 11		2.0	11	2.	. 8	17		.0	18		16		.1	
	08	. 13		1.9	9.6	2.	6	19			20		17		.1	
	05 SEP	. 13		2.3	11	3.	.1	16			21		17		.2	
	22	. 14		1.8	9.2	2.	.5	21		.0	19		15		.1	
	DATE	SILIO DIS- SOLV (MG/ AS SIO2	ED DEC	DUÉ 80	NITRO- GEN, IO2+NO3 TOTAL (MG/L AS N)	NITRO GEN AMMONI TOTAI (MG/I AS NI	GA ORG	TRO- EN, ANIC TAL IG/L N)	NITR GEN, MONI ORGA TOT (MG	AM- A + NIC AL /L	NITRO GEN TOTAL (MG/I AS N	PHO ORTI	HOPH	CARBO ORGAN TOTA (MG/ AS (NIC AL /L	
	OCT 24	. 13		135	.39	. 40	00	2.5	2	. 9	3.:	3	.25	12	2	
	14 APR	. 12		101	E.35	. 49	90	. 17		.66		-	.12	4	1.2	
	16	. 7	. 7	92	.62	. 46	50	.74	1	. 2	1.	8	.40	(5.3	
	27	. 12		99	.54	. 41	10	.52		.96	1.9	5	.17		5.0	
	JUL 08	. 12	- 65	98	.29	.19	90	.39		.58		87	.08	19	3.9	
	AUG 05	. 14		100	.29	.20	00	.46		.66		95	.18	1	1.1	
	SEP 22	. 16		102	.13	.08	30	.37		. 45	. 9	58	.18		2.8	

01407705 SHARK RIVER NEAR NEPTUNE CITY, NJ--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 24	0930	400	2	0	0	60	1	<10	<10	<10
MAY 27	1045	30	0		0	10	0		<10	
SEP 22	0930	40	0		0	40	0		30	
DATE	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)
OCT 24	55	<10	6300	8400	7	30	50	10	.2	.00
MAY 27	2		3200		14		40		<.1	
SEP 22	2		1700		1		30		<.1	
DATE	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT	2				70		_			
24 MAY	3	0	0	20	70	0	5	.0	.0	14
27 SEP	1	0		20		0				
22	3	0	-	30		2				
DATE	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)
OCT 24	1.7	1.3	1.6	.0	1.1	.0	.0	.0	.0	.0
MAY 27							44			
SEP 22										
DATE	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 24	.0	.0	.0	.0	.0	.0	.0	.00	0	.0
MAY 27										
SEP 22	194									

SHARK RIVER BASIN

01407760 JUMPING BROOK NEAR NEPTUNE CITY, NJ

LOCATION.--Lat 40°12'13", long 74°03'58", Monmouth County, Hydrologic Unit 02030104, on left bank 50 ft (15 m) downstream from dam on Jumping Brook Reservoir, 0.85 mi (1.37 km) upstream from mouth, and 1.4 mi (2.3 km) west of Neptune City. Water-quality samples collected at bridge 600 ft (183 m) downstream from gage at high flows.

DRAINAGE AREA .-- 6.43 mi2 (16.65 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Selected field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	FIN	REAM- CO LOW, DO STAN- A	PE- IFIC ON- UCT- NCE ICRO- F	PH	EMPER- ATURE, WATER	OXYGEN, DIS- SOLVED	OXYGE DEMAN BIOCH UNINH 5 DA	D, FO EM FE IB E	DLI- DRM, ECAL, EC	STREF TOCOCO FECAL	- N	ARD- ESS MG/L AS
DATE					DEG C)	(MG/L)	(MG/L		(PN)	(MPN)		ACO3)
OCT												
24 FEB	1130	4.2	142		14.0	8.4	1	.0	490	92	20	31
14	1100	3.9	230	6.2	.5		<	. 4	<20		(2	30
APR 16	1140	19	147	6.0	10.0	5.4	<	.5	20		7	29
MAY 27 JUL	1230	4.9	154	6.6	16.5	9.3	2	.0	490	13	30	35
08	1130	2.4	143	6.9	18.5	7.4	2	.0	490	13	30	30
AUG 05	1100	5.7	138	6.4	23.0	6.6	1	.8	330			31
SEP 22	1100	2.2	126	6.5	20.0	7.3	E2	.0	20	17	0	30
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS SIUM DIS- SOLVE (MG/L AS K)	, ALKA	Y SULF L TOT (MG	IDE AL /L	ULFATE DIS- SOLVED (MG/L S SO4)	CHLO RIDE DIS- SOLV (MG/ AS C	ED S	CLUO- RIDE, DIS- SOLVED MG/L IS F)	
OCT												
24 FEB		2.3	11	2.	5	7	.0	25	18		.1	
14 APR	. 8.3	2.3	11	2.	0	6		27	18		.1	
16 MAY	. 8.4	2.0	9.0	2.	0	5		25	15	916	.1	
27	9.9	2.4	12	2.	2	10	-	27	18		.1	
JUL 08	. 8.3	2.3	11	2.	5	4		24	19		.1	
AUG 05	. 8.2	2.5	11	2.	5	9		24	18		.1	
SEP 22	. 8.2	2.3	9.9	2.	8	7	.0	24	15		.1	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	AT 180	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONI TOTAL (MG/L AS N)	GEN	, MONÍ IC ORGA L TOT L (MO	AM- A + NIC AL	NITRO- GEN, TOTAL (MG/L AS N)	PHOS PHORU ORTHO OSPHA TOTA (MG/ AS PO	S, PH CA TE OF L T	RBON, RGANIC OTAL MG/L S C)	
OCT 24	. 8.1	110	.20	.10	0 .	92 1	.0	1.2		12	9.9	
FEB 14	. 8.3	78	.39	.30	0 .	03	.33	.72		21	1.5	
APR 16	. 4.7	84	.95	.24	0 .	38	.62	1.6	1	53	7.4	
MAY 27	. 6.2	100	.39	.80	0.	30 1	.1	1.5	-	24	8.7	
JUL 08	. 7.9	84	.29	.24	0.	51	.75	1.0		11	3.1	
AUG 05	. 8.7	96	.29	. 16	0.	46	.62	.91		12	5.1	
SEP 22	. 10	87	.13	.10	0.	27	.37	.50		64	3.3	

01407760 JUMPING BROOK NEAR NEPTUNE CITY, NJ--Continued

DATE	TIME	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 24 SEP	1130	800	.0	6.7	190	1	0	0	40	1	<10
22	1100	410	.2	2.7	30	0	0	0	40	0	<10
DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 24	<10	<10	<10	10	<10	2900	1900	7	10	60	<10
SEP 22	10	<10	<10	3	10	1900	11000	5	180	60	120
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT				P							
24 SEP	.2	.00	3	<10	0	0	30	10	0	45	
22	•3	.00	. 6	<10	0	0	70	60	3	10	.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT											
SEP	.0	9	.0	.0	1.4	.0	.0		.0	.0	.0
22	.0	5	3.5	.0	.7	.0	. 4	.0	.0	.0	.0
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT											•
SEP	.0	.0	.0	.0	.0	.0	.0	.0		. 0	.0
22	.0	.0	.0	.0	.0	.0	.0	.0	.00	0	.0

MANASQUAN RIVER BASIN

01407830 MANASQUAN RIVER NEAR GEORGIA, NJ

LOCATION.--Lat 40°12'36", long 74°16'41", Monmouth County, Hydrologic Unit 02040301, at bridge on Jacksons Mill Road, 0.5 mi (0.8 km) upstream from Debois Creek, 0.9 mi (1.4 km) southwest of intersection of Jacksons Mill Road with State Route 524, 1.3 mi (2.1 km) southwest of Adelphia, and 1.6 mi (2.6 km) north of Georgia.

DRAINAGE AREA. -- 10.6 mi2 (27.5 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1970-74, 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 22	1115	210	5.4	15.5	7.1		60	130	51
JAN 30	1200	233	6.8	1.0		2.0	<20	2	51
APR 02	1030	152	6.7	6.0	11.0	5.2	330	79	39
MAY 27	1100	205	7.0	14.0	8.8	8.2	220	350	48
JUL 08	1000	260	6.7	16.0	5.1	3.2	330	920	56
AUG	1020	230				4.0		920	53
05 SEP			6.3	21.0	5.5		230		
22	1100	286	7.0	20.0	4.8	3.9	9200	920	55
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT								- 1	
22 JAN	14	4.0	11	4.8	18	.0	27	17	.3
30 APR	14	3.8	12	3.7	17		29	16	•3
02 MAY	9.7	3.5	8.3	3.7	7		24	12	.2
27 JUL	. 13	3.8	11	4.2	17	.0	26	17	.3
08	17	3.4	14	4.8	49		26	23	.5
05 SEP	15	3.8	16	5.4	17		31	22	.4
22	17	3.0	18	6.1	16	.0	26	22	.5
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 22	24	137	1.2	2.200	1.0	3.2	4.4	1.0	4.8
JAN	23	125	1.5	2.500	.00	2.5	4.0	.90	6.6
30 APR									
02 MAY	14	110	2.3	.540	1.1	1.6	3.9	.35	4,4
27 JUL	22	128	.96	1.800	1.4	3.2	4.2	1.2	6.9
08 AUG	21	136	.33	3.200	2.9	6.1	6.4	1.0	5.6
05 SEP	24	141	.45	1.300	2.1	3.4	3.8	.98	5.5
22	25	152	. 15	4.900	.90	5.8	6.0	2.4	5.8

01407830 MANASQUAN RIVER NEAR GEORGIA, NJ--Continued

DATE	TIME	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 22	1115			22	40	1		0	60	0	
MAY 27	1100				20	1		0	40	0	
SEP											
22	1100	2300	1.0	10	10	2	0	0	130	0	<10
DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 22	10			9		6700		2		90	
MAY 27	10			5		6100		3		70	
SEP			***								
22	10	90	<10	7	10	2500	62000	3	30	110	110
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 22	.1		7		0		20		2	-	
MAY									0		
27 SEP	.2	-	9		0		20				
22	<.1	.00	3	<10	0	0	30	120	4	5	.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 22	-22	1	(22)	22				- 22			22
MAY											
SEP								-		-	
22	.0	11	5.1	3.3	2.7	.0	.6	.0	.0	.0	.0
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TO XA - PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT	1.25	5.0							.2.5.		4.5
22 MAY											
SEP											
22	.0	.0	.0	.0	.0	.0	.0	.0	.00	0	.0

01407997 MARSH BOG BROOK AT SQUANKUM, NJ

LOCATION.--Lat 40°10'01", long 74°09'33", Monmouth County, Hydrologic Unit 02040301, at bridge on Squankum-Yellow Brook Road in Squankum, and 0.2 mi (0.3 km) upstream from mouth.

DRAINAGE AREA .-- 4.91 mi2 (12.72 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1971-74, 1976 to current year.

COOPERATION. --Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMP ATU WAT (DEG	RE,	XYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIE 5 DAY (MG/L)	FO FE BR	LI- RM, CAL, C OTH PN)	STR TOCO FEC (MP	CCI	HARD- NESS (MG/L AS CACO3)	
OCT 22	1000	4.2	146	5.9	1	4.5	5.7			330		170	32	
JAN		4.5										17	30	
30 APR	1030		160	6.2		.0		1.0		<20			1116	
02 MA Y	1200	34	85	5.8		6.0	11.6	<1.3	3	<20		33	14	
27 JUL	1200	3.8	114	6.4	. 1	3.5	8.8	.7	,	70		130	30	
08 AUG	1240	E1.1	136	6.3	1	7.0	8.7	1.1	1	170	>2	400	35	
05	1115	2.5	185	6.0	2	2.0	7.2	2.2	2	310	>2	400	31	
SEP 22	1230		210	6.8	2	20.0	7.9	E2.		120		540	49	
DATE	CALCI DIS- SOLV (MG/ AS C	CUM SI DI VED SOL 'L (MG	VED SOLY	IUM, S S- D VED SO G/L (M	OTAS- IUM, IS- LVED G/L K)	ALKA- LINITY (MG/L AS CACO3	SULF TOT (MG	IDE DI AL SC	FATE S- OLVED IG/L SO4)	RID DIS SOL (MG AS	VED /L	FLUC RIDE, DIS- SOLVE (MG/L AS F)	D	
OCT . 22	. 9	. 9	1.7	13	3.7		8	.0	18	1	7		1	
JAN 30	. 9	. 4	1.6	8.4	2.3	1	0		21	1	3		.1	
APR 02	. 4	.1	1.0	6.7	2.0		3		15	1	0		.1	
MAY 27			1.6	6.8	2.3		7		18	1	1		.1	
JUL													2	
O8			1.8	7.1	2.9		8		19	1				
05 SEP				16	3.8		5		21	2	1		.2	
22	. 16		2.1	16	4.5	2	5	.0	20	2	3		.2	
DATE	SILIO DIS- SOLV (MG/ AS SIO2	ED DEG L DI SOL	DUE NIT 80 GI . C NO2- S- TOT VED (MO	EN, G +NO3 AMM FAL TO G/L (M	TRO- EN, ONIA TAL G/L N)	NITRO GEN, ORGANI TOTAL (MG/L AS N)	MONI C ORGA TOT (MG	AM- A + NI NIC C AL TO	TRO- GEN, OTAL MG/L S N)	PHOR PHOR ORTHO OSPH TOT (MG AS PO	US, OPH ATE AL /L	CARBON ORGANI TOTAL (MG/L AS C)	ić	
OCT 22	. 13		106 <	1.0	.700	1.3	2	. 0		1	.0	12		
JAN 30	6.9		88		.960	.0		.96	1.3		.22	4.	6	
APR 02		. 9	35		.180	. 4		.64	1.3		.14	6.		
MAY			88								. 42	14	-	
JUL			3.7		.360	. 4		. 85	1.1					
08 AUG			85		.340	.3		.72	1.1		.67	4.		
O5 SEP	. 13		114	.29	.480	. 9	2 1	. 4	1.7		.74	3.	2	
22	. 13		130	.52	.210	.5	7	.78	1.3		. 25	5.	8	

01407997 MARSH BOG BROOK AT SQUANKUM, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT								100
22 SEP	1000	110	1	0	40	0	30	30
22	1230	20	0	0	50	0	10	4
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)
OCT								
22 SEP	4800	1	50	.2	4	0	20	0
22	1400	1	20	.1	3	0	30	7

01408000 MANASQUAN RIVER AT SQUANKUM, NJ

LOCATION.--Lat 40°09'47", long 74°09'21", Monmouth County, Hydrologic Unit 02040301, on right bank 20 ft (6.1 m) downstream from bridge on State Highway 547 (Squankum Park Road) in Squankum, and 0.4 mi (0.6 km) downstream from Marsh Bog Brook.

DRAINAGE AREA .-- 43.4 mi2 (112.4 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1931 to current year. Monthly discharge only for July 1931, published in WSP 1302.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 18.82 ft (5.736 m) National Geodetic Vertical Datum of 1929. Prior to Aug. 13, 1940, water-stage recorder at site 80 ft (24 m) upstream at same datum.

REMARKS.--Water-discharge records good except those for period of no gage-height record, May 29 to June 30, which are fair.

AVERAGE DISCHARGE.--49 years, 76.0 ft3/s (2.152 m3/s), 23.78 in/yr (604 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,940 ft³/s (83.3 m³/s) Sept. 21, 1938, gage height, 12.45 ft (3.795 m), from floodmark, site then in use, from rating curve extended above 900 ft³/s (25.5 m³/s) on basis of contracted-opening measurement of peak flow; minimum, 12.9 ft³/s (0.37 m³/s) Sept. 10, 1932.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 600 ft3/s (17.0 m3/s) and maximum (*):

			Discha		Gage h	eight				Disch	arge	Gage h	eight
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Mar.	22	0245	600	17.0	5.60	1.707	Apr.	28	2145	668	18.9	5.92	1.804
Mar.	25	1515	799	22.6	6.48	1.975	July	30	0515	1080	30.6	7.46	2.274
Apr.	10	1130	*1360	38.5	8.41	2.563							

Minimum discharge, 23 ft3/s (0.65 m3/s) Sept. 8, 11, 12, 13, 14, 15, gage height, 2.49 ft (0.759 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	OCT	NOV	DEC	JA N	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	79 115 70 63 99	51 52 94 88 63	64 61 58 58 57	57 56 56 54 56	50 48 47 48 48	43 45 44 45 49	519 243 159 250 200	147 125 109 96 88	51 50 62 58 55	38 34 62 54	74 57 48 46 74	28 28 28 26 26	
6 7 8 9	262 87 70 62 258	57 54 52 52 53	59 86 66 58 56	55 54 58 55 54	48 49 49 49	50 49 56 62 53	139 120 110 224 1080	85 81 103 97 82	49 48 48 49 56	50 37 35 36 33	122 60 48 43 39	27 26 25 25 25	
11 12 13 14 15	251 114 107 86 75	71 163 91 84 71	58 55 82 98 67	65 258 105 85 78	48 49 47 48 49	122 72 64 378 178	313 182 149 143 203	76 89 136 98	60 52 47 44 45	32 32 29 29	37 90 53 43 41	25 24 24 24 38	
16 17 18 19 20	70 67 65 63 61	65 60 58 56 55	61 64 55 55 56	70 65 66 155 95	66 65 51 50 50	110 91 133 95 81	137 117 108 101 97	72 68 74 77 69	48 46 45 43 42	32 106 41 34 31	39 35 34 35 35	29 27 59 36 34	
21 22 23 24 25	59 58 57 56 55	54 54 53 53 52	56 61 79 86 149	78 73 92 72 65	51 61 80 67 61	206 450 242 138 521	96 91 88 86 86	98 93 73 65 62	40 40 39 38 37	29 29 45 44 32	35 34 33 31 30	32 31 31 30 32	
26 27 28 29 30 31	53 52 52 54 52 51	151 193 95 79 70	105 80 69 65 62 59	62 59 60 57 54 52	57 51 51 48	206 139 117 196 318 284	84 97 367 377 169	56 53 52 52 51 52	37 36 36 39 56	30 28 27 258 583 129	30 29 29 29 30 28	49 31 28 27 29	
TOTAL MEAN MAX MIN CFSM IN.	2723 87.8 262 51 2.02 2.33	2244 74.8 193 51 1.72 1.92	2145 69.2 149 55 1.59 1.84	2321 74.9 258 52 1.73 1.99	1535 52.9 80 47 1.22 1.32	4637 150 521 43 3.46 3.97	6135 205 1080 84 4.72 5.26	2559 82.5 147 51 1.90 2.19	1396 46.5 62 36 1.07 1.20	2048 66.1 583 27 1.52 1.76	1391 44.9 122 28 1.04 1.19	904 30.1 59 24 .69	
CAI VR	1070 TOTAL	JI2105	MFAN	115 N	MAY 1260	MTN 28	CESM 2	65 TN 3	6.00				

CAL YR 1979 TOTAL 42105 MEAN 115 MAX 1260 MIN 38 CFSM 2.65 IN 36.09 WTR YR 1980 TOTAL 30038 MEAN 82.1 MAX 1080 MIN 24 CFSM 1.89 IN 25.75

01408070 NORTH BRANCH METEDECONK RIVER NEAR WYCKOFF MILLS, NJ

LOCATION.--Lat 40°10'52", long 74°17'17", Monmouth County, Hydrologic Unit 02040301, at bridge on Jackson Mills Road in Wyckoff Mills, 0.4 mi (0.7 km) southwest of Georgia, 3.1 mi (4.9 km) southwest of Adelphia, and 4.0 mi (6.0 km) upstream from outflow of Aldrich Lake.

DRAINAGE AREA. -- 5.52 mi2 (14.30 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	1	TREAM- FLOW, NSTAN- CANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	
	1230	6.7	67	5.4	15.0	6.0	22	110	350) 22
MAR 13	0840	4.9	68	6.5	1.5	12.0	E2.0	<20	2	1 17
APR 02	0915	38	61	4.4	5.0	10.0	E2.0	<20	11	7
MAY 27	0930	3.0	71	6.2	12.0	7.6	1.1	80	350	21
JUL 08	0910	E1.2	108	6.2	15.0	7.7	.9	220	>2400	38
AUG	0920	E1.6	100	6.0	19.5	6.2	.7	130		
SEP	1000	E1.2	137	6.9	16.5	7.0	<1.1	790		
DATE	CALCIU DIS- SOLVE (MG/L AS CA	DIS D SOLV	M, SODIU - DIS- ED SOLVE L (MG/	DISD SOL	UM, ALK S- LINI VED (MG /L AS	TY SULF /L TOT (MG	TAL SOL	ATE RI - DI VED SO /L (M	DE, RI S- I LVED SO G/L (N	UO- IDE, DIS- DIVED IG/L B F)
OCT 22	7.	5	.8 4	.7	1.6	8		9.9	7.7	.1
MAR 13	5.	3	.9 3	. 8	1.3	10	1	3	5.9	.1
APR 02	1.			.5	.8	0		8.9	3.4	.1
MAY 27	6.				1.2	9	. 4	9.0	6.2	.1
JUL 08	13				1.8	25		1	6.3	.2
AUG 05	11				1.9	15		6	6.7	.2
SEP 22	18				2.2	29		6	5.5	.2
DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	SOLID RESID AT 18 D DEG. DIS SOLV	S, UE NITR O GEN C NO2+N TOTA ED (MG/	O- NIT GE O3 AMMO L TOT	RO- NIT N, GE NIA ORGA AL TOT. /L (MG	NITR RO- GEN, N, MONI NIC ORGA AL TOT /L (MG	AM- A + NIT NIC GE AL TOT	PHO PHO NO ORT NO OSP AL TO /L (M	OS- RUS, HOPH CAF HATE ORG TAL TO	BON, ANIC TAL IG/L S C)
OCT 22	11		86 <1.	0 .	300 1	.4 1	. 7		.56	21
MAR 13	8.	9	62 .					.2	.13	5.0
APR 02	3.	7				.80		. 2	.19	10
MAY 27	10					.50	.62		2.2	22
JUL 08	12					.34	.64	.69	.20	11
AUG										
05	13		86 .	11 .	180	.40	.58	.69	.43	5.1

METEDECONK RIVER BASIN

01408070 NORTH BRANCH METEDECONK RIVER NEAR WYCKOFF MILLS, NJ--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 22	1230	1	- in	0			- 15	<10		10
MAY 27	0930	210	1		0	60	0		10	
SEP 22	1000	20	1		0	60	1		10	
		-								- 10
DATE	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)
OCT 22		<10		12000		20		10		.00
MAY 27	6		8900		2		40		.4	
SEP 22	2		3100		7		30		.1	
DATE	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT-TOM MA-TERIAL (UG/KG)
OCT 22	1		0		30		. 5	.0	.0	4
MAY 27	1	0	0	180	30	0	. ,			
SEP 22	2	0		40		1				
22				40				10.		
DATE	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)
OCT 22	2.6	2.0	.5	.0	.0	.0	.0	.0	.0	.0
MAY 27										
SEP 22				2						
		- NEW 20								
DATE	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 22	.0	.0	.0	.0	.0	.0	.0	.00	0	.0
27 SEP									7 / =-	
22										

01408120 NORTH BRANCH METEDECONK RIVER NEAR LAKEWOOD, NJ

LOCATION.--Lat 40°05'30", long 74°09'10", Ocean County, Hydrologic Unit 02040301, on upstream right bank at bridge on State Route 549, 1.0 mi (1.6 km) upstream from confluence with South Branch Metedeconk River, and 2.3 mi (3.7 km) east of Lakewood.

DRAINAGE AREA .-- 34.9 mi2 (90.4 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1972 to current year.

GAGE.--Water-stage recorder. Datum of gage is 3.89 ft (1.186 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good except those for periods of no gage-height record, Oct. 11 to Nov. 15 and Dec. 5 to Jan. 15, which are fair.

AVERAGE DISCHARGE. -- 8 years, 69.9 ft3/s (1.980 m3/s), 27.20 in/yr (691 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,370 ft³/s (38.7 m³/s) Nov. 8, 1977, gage height, 9.28 ft (2.829 m), from rating extended above 500 ft³/s (14.2 m³/s); minimum, 14 ft³/s (0.40 m³/s) July 6, 1977, gage height, 2.35 ft (0.716 m).

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 250 ft3/s (7.08 m3/s) and maximum (*):

			Disch	arge	Gage h	eight
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Apr.	1	1530	257	7.28	6.28	1.914
Apr.	10	1515	*577	16.3	7.56	2.304

Minimum discharge, 16 ft3/s (0.45 m3/s) Sept. 12, 13, gage height, 2.48 ft (0.756 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES OCT NOV DEC JIIN JIII. AUG SEP DAY JAN FFR MAR APR MAY 1 2 29 27 37 37 63 32 26 70 75 38 17 85 97 17 52 57 64 172 66 22 === ------TOTAL 34.7 29.8 25.0 MEAN 66.2 71.8 60.5 62.8 42.7 97.7 65.9 34.5 MAX MIN CFSM 2.06 1.90 1.80 2.80 3.78 1.89 1.15 1.73 1.22 .99 . 85 .72 2.37 2.18 2.00 2.07 1.32 3.23 1.10 .98 .80

CAL YR 1979 TOTAL 31849 MEAN 87.3 MAX 838 MIN 31 CFSM 2.50 IN 33.95 WTR YR 1980 TOTAL 22095 MEAN 60.4 MAX 437 MIN 17 CFSM 1.73 IN 23.55

TOMS RIVER BASIN

• 01408500 TOMS RIVER NEAR TOMS RIVER, NJ (National stream quality accounting network station)

LOCATION.--Lat 39°59'10", long 74°13'29", Ocean County, Hydrologic Unit 02040301, on left bank 1.9 mi (3.1 km) downstream from Union Branch, and 2.6 mi (4.2 km) northwest of Toms River.

DRAINAGE AREA .-- 124 mi2 (321 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1928 to current year. Monthly discharge only for October, November 1928, published in WSP 1302.

REVISED RECORDS. -- WSP 1702: 1938. WDR-NJ-76-1: 1975(M). WDR-NJ-77-1: 1976.

GAGE. -- Water-stage recorder. Datum of gage is 8.10 ft (2.469 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Diversions by Toms River Chemical Co., 800 ft (240 m) upstream; the effluent is returned by pipeline directly into the Atlantic Ocean, thus bypassing station.

AVERAGE DISCHARGE. -- 52 years, 217 ft3/s (6.145 m3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,000 ft³/s (56.6 m³/s) Sept. 23, 1938, gage height, 12.50 ft (3.810 m), from floodmark, from rating curve extended above 1,500 ft³/s (42 m³/s); minimum, 46 ft³/s (1.30 m³/s) many days in August and September 1966, gage height, 2.70 ft (0.823 m).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 844 ft³/s (23.9 m³/s) Apr. 11, gage height, 8.32 ft (2.536 m); minimum, 61 ft³/s (1.73 m³/s) Sept. 12, gage height, 2.90 ft (0.884 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES JUL AUG SEP DAY OCT NOV DEC FEB MAR MAY JUN JAN APR 180 169 443 344 157 74 184 152 297 176 156 155 74 175 158 173 258 156 339 311 308 153 461 138 88 249 245 120 129 86 82 239 176 ---80 141 TOTAL MEAN 85.5 260 106 MIN CFSM 2.06 1.97 1.87 1.65 1.73 1.36 2.37 3.53 1.14 .93 . 69 1.07 1.07 .77 1.27 IN. 2.27 2.09 1.91 2.00 2.73 3.94 2.37 1.47

CAL YR 1979 TOTAL 113445 MEAN 311 MAX 1730 MIN 134 CFSM 2.51 IN 34.03 WTR YR 1980 TOTAL 76523 MEAN 209 MAX 794 MIN 65 CFSM 1.69 IN 22.96

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCT OBE	R		NO VEMBE	R		DECEMBE	R		JAN UAR	Y
1 2 3 4 5	17.5 17.5 18.0 18.0	17.0 17.0 17.5 17.0	17.5 17.5 18.0 17.5 17.5	9.5 11.0 9.5	8.0 9.5 8.5	9.0 9.0	6.5 6.0 5.5 5.6	5.5 5.0 4.5 4.5 4.5	6.0 5.5 5.0 5.0	5.5 6.0 5.5 4.5 4.0	4.0 4.5 4.5 4.0 3.5	5.0 5.0 5.0 4.0 3.5
6 7 8 9	17.0 15.0 13.5 13.5	15.0 13.5 12.0 12.5 10.0	15.5 14.5 13.0 13.0	9.0 9.5 10.0	8.0 8.5 8.0	8.5 	7.5 8.5 7.5 6.0 6.5	5.5 7.5 6.0 5.5 5.0	6.5 8.0 7.0 6.0 6.0	3.5 4.0 5.0 5.0 4.5	2.0 1.5 4.0 4.0 3.0	3.0 3.0 4.5 4.5 3.5
11 12 13 14 15	9.5 9.5 10.0 9.5 9.5	8.5 8.5 9.5 8.5 8.0	9.0 9.0 9.5 9.0 8.5	===	===	===	7.5 9.0 9.5 9.0 6.5	5.5 6.5 9.0 6.5 5.0	6.5 8.0 9.0 8.0 5.5	8.5 9.0 5.0 5.0 7.0	3.5 5.0 3.5 3.0 5.0	5.5 7.0 4.0 4.0 6.0
16 17 18 19 20	10.0 10.5 12.0 12.0 13.0	8.5 9.0 10.0 11.0	9.0 10.0 10.5 11.5 12.0	8.5	7.0	 8.0	6.5 6.5 4.0 3.5 4.0	4.5 3.5 2.5 2.5 2.0	5.5 5.0 3.5 3.0 3.5	6.0 5.5 6.5 6.5	5.0 5.0 5.0 6.0 4.5	5.5 5.0 5.5 6.5 5.5
21 22 23 24 25	14.0 15.5 16.0 16.0 12.5	12.5 13.5 14.5 13.0 10.5	13.0 14.0 15.5 14.0 11.5	==	===	==	5.5 6.5 7.5 8.5 10.5	4.0 5.5 6.0 7.0 8.5	5.0 6.0 6.5 7.5	4.5 4.0 5.0 3.5 3.0	3.5 3.0 4.0 2.0 2.0	4.0 3.5 4.5 2.5 2.5
26 27 28 29 30 31	10.5 9.0 8.0 9.0 9.0	9.5 8.0 7.5 7.5 8.0 7.5	10.0 8.0 8.0 8.0 8.5 8.5	15. 0 13. 5 12. 0 8. 5	13.5 12.0 9.0 6.5	13.0 10.5 7.5	9.5 7.5 6.5 7.0 7.0	8.0 6.5 5.5 5.5 5.0	9.0 7.0 6.0 6.0 6.0 5.5	3.5 4.5 4.5 3.0 3.0	2.0 2.0 3.0 3.5 2.5 2.0	2.5 2.5 4.0 3.5 2.5 2.5
MONTH	18.0	7.5	12.0	15.0	6.5	9.5	10.5	2.0	6.0	9.0	1.5	4.0
		FEBRUAR	Y		MARCH			APRIL			MAY	
1 2 3 4 5	3.0 2.0 2.5 3.5 4.0	1.5 1.5 1.0 1.5 2.0	2.0 1.5 1.5 2.5 3.0	2.5 3.0 4.0 5.0 6.5	1.0 1.5 1.5 2.5 4.5	1.5 2.0 3.0 4.0 6.0	8.5 9.5 11.5 12.0	6.0 7.5 8.5 10.5	7.5 8.5 10.5 11.5 11.0	14.0 16.5 18.5 19.5 21.0	12.5 13.5 15.5 17.0 17.5	13.0 15.0 17.0 18.5 19.5
6 7 8 9	3.5 4.5 4.5 4.5	2.5 3.5 3.0 3.5 3.5	3.0 4.0 4.0 4.0	7.5 8.0 10.0 10.5 10.0	6.0 6.0 7.5 7.5 7.0	6.5 7.0 9.0 9.0 8.5	12.5 14.0 15.5 15.5 16.5	10.0 11.0 13.0 14.0 14.0	11.5 12.5 14.5 14.5 15.0	21.5 21.5 20.0 17.0 17.5	19.5 19.5 16.5 15.0 14.0	20.5 20.5 18.0 16.0 16.0
11 12 13 14 15	4.5 5.0 4.5 5.0 6.0	3.0 4.0 3.0 3.5 4.0	3.5 4.5 3.5 4.0 5.0	9.0 6.5 4.5 4.0 4.5	5.5 4.5 3.5 3.0 2.5	8.0 5.5 4.0 3.5 3.5	17.0 17.0 19.0 17.5 16.5	15.0 15.0 16.0 14.5 14.5	16.0 16.0 17.5 16.0	17.0 18.5 21.0 22.0 20.5	15.5 16.5 17.5 19.5 18.5	16.5 17.5 19.5 20.5 19.5
16 17 18 19 20	6.0 3.5 3.5 4.5 6.0	4.0 2.5 1.5 2.0 3.5	5.0 3.0 2.5 3.5 4.5	5.0 8.5 10.0 10.0	3.0 4.5 8.5 8.0 8.5	4.0 6.5 9.5 9.0 9.5	15.5 12.5 14.0 15.0 16.0	11.5 10.0 11.0 12.5 13.5	14.0 11.5 12.5 14.0 15.0	19.5 20.0 19.0 21.0 20.0	16.5 16.5 17.0 16.5 18.5	18.0 18.0 17.5 18.5 19.5
21 22	7.0	4.5	5.5	10.5	9.0	10.0 7.5 7.5	18.0 17.0 16.5	15.0 15.0 14.0	16.5 16.0 15.5	20.0 20.5 22.5	17.5 17.0 19.5	18.5 18.5 21.0
23 24 25	6.5 7.0 7.0 5.5	6.0 5.5 5.5 4.5	6.0 6.5 6.0 5.0	8.5 8.0 8.0	5.5 7.0 6.5	8.0	17.0 17.0	14.5 15.5	16.0 16.5	22.0	21.0	21.5
23 24 25 26 27 28 29 30	6.5 7.0 7.0 5.5 5.5 3.5 4.0 3.0	5.5 5.5 4.5 3.0 2.5 2.5 1.0	6.5 6.0 5.0 4.0 3.5 2.5	8.5 8.0 8.0 9.0 8.5 9.0	7.0 6.5 6.5 6.5 7.0 8.5 9.0	8.0 7.5 7.5 8.0 8.0 9.0	17.0 17.0 16.5 14.5 13.5 13.0	14.5 15.5 14.5 13.5 12.5 12.0 12.5	16.0 16.5 15.5 14.0 13.0 12.5 13.0	23.0 20.5 20.0 20.5 19.5	21.0 21.0 20.5 18.0 18.0 18.5	21.5 21.5 21.0 19.5 19.0 19.5 19.0
23 24 25 26 27 28 29	6.5 7.0 7.0 5.5 5.5 3.5 4.0 3.0	5.5 5.5 4.5 3.0 2.5 2.5	6.5 6.0 5.0 4.0 3.0 3.5 2.5	8.5 8.0 8.0 9.0 8.5 9.0	7.0 6.5 6.5 7.0 8.5	8.0 7.5 7.5 8.0 8.0 9.0	17.0 17.0 16.5 14.5 13.5 13.0	14.5 15.5 14.5 13.5 12.5 12.0	16.0 16.5 15.5 14.0 13.0 12.5	23.0 22.0 20.5 20.0 20.5	21.0 21.0 20.5 18.0 18.0 18.5	21.5 21.5 21.0 19.5 19.0 19.5

TOMS RIVER BASIN

01408500 TOMS RIVER NEAR TOMS RIVER, NJ--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

			TEMPERAT	URE, WATER	(DEG. C), WATER Y	EAR OCTOBE	1979 1	O SEPTEMBE	1980			
DA Y	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	
		JUNE			JULY			AUGUST			SEPTEMB	ER	
1 2 3 4 5	22.5 23.5 24.0 23.0 21.5	18.5 21.0 21.5 21.0 19.5	20.5 22.0 22.5 22.0 20.5	23.5 24.0 23.0 24.5 23.5	20.5 21.0 21.5 21.0 21.5	21.5 22.5 22.0 22.5 22.5	24.0 25.0 26.5 26.0 24.5	22.0 22.5 23.0 23.0 23.0	23.0 23.5 24.5 24.5 23.5	24.0 25.0 25.5 24.5 23.0	21.0 22.0 22.5 21.0 21.0	22.0 23.5 24.0 22.5 22.0	
6 7 8 9	22.0 21.5 22.5 20.0 18.5	19.0 19.5 20.0 18.5 17.0	20.5 20.5 21.0 19.5 18.0	24.0 23.0 22.0 23.0 22.5	22.0 20.0 20.5 20.0 21.0	23.0 22.0 21.0 21.5 22.0	26.0 25.5 25.5 26.0 25.0	22.5 22.5 22.5 23.5 22.5	24.0 24.0 24.0 24.5 24.5	22.5 22.0 21.5 21.0 21.5	20.0 20.0 19.0 19.0	21.5 21.5 20.5 20.0 20.5	
11 12 13 14 15	19.5 20.0 19.0 20.0 21.0	15.5 16.0 16.5 17.0 18.5	17.0 18.0 18.0 18.5 19.5	24.5 24.5 23.0 24.5 24.5	21.5 22.0 20.0 20.0 21.0	23.0 23.0 22.0 22.0 23.0	25.5 25.0 24.5 23.5 22.0	22.5 23.0 21.5 21.0 21.5	24.0 24.0 23.0 22.0 22.0	20.5 20.5 20.5 21.5 21.0	18.5 18.5 18.0 19.0 19.5	19.5 19.5 19.0 20.0 20.0	The second second
16 17 18 19 20	20.0 20.5 20.0 20.5 20.5	19.0 17.5 19.0 18.0 19.0	20.0 19.0 19.5 19.0	25.5 25.0 25.5 24.0 27.0	22.0 22.5 22.5 22.0 22.5	24.0 24.0 24.0 23.0 24.0	22.0 21.0 20.0 20.0 20.0	20.0 18.5 18.5 18.5 19.0	21.0 20.0 19.5 19.5	19.5 19.5 21.0 20.0 19.5	18.5 18.0 19.5 18.5 17.5	19.0 19.0 20.0 19.0 18.5	The second second
21 22 23 24 25	20.5 21.5 22.5 22.5 23.5	17.0 18.5 19.5 19.5 21.0	19.0 20.0 20.5 21.0 22.5	28.0 27.5 26.0 24.5 24.5	24.0 24.5 23.0 21.5 21.0	26.0 26.0 24.0 23.0 22.5	20.0 19.5 20.5 21.0 21.5	18.5 18.5 18.0 18.5 19.0	19.0 19.0 19.0 20.0 20.0	21.0 23.0 23.0 21.5 19.5	19.0 20.0 21.5 19.5 18.5	20.0 21.5 22.5 20.0 19.0	
26 27 28 29 30 31	22.5 25.0 23.5 23.5 23.5	20.5 21.0 22.0 21.5 21.5	21.5 23.0 22.5 22.0 22.5	23.5 23.0 24.0 23.0 24.0 24.0	21.0 21.0 20.5 22.0 21.5 21.5	22.5 22.0 22.5 22.0 22.5 22.5	22.0 24.0 24.0 22.5 22.5 23.0	19.5 20.0 21.5 21.0 20.5 20.5	20.5 *22.0 22.5 21.5 21.5 22.0	19.5 17.5 16.0 16.0	18.0 15.0 13.5 14.5	18.5 15.5 15.0 15.5 16.0	
MONTH	25.0	15.5	20.5	28.0	20.0	23.0	26.5	18.0	22.0	25.5	13.5	20.0	
YEAR	28.0	1.0	13.5										

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DA Y	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	1	MAX	MIN	MEAN
		ОСТОВЕ	R		NOVEMBE	:R		DECEMBE	R			JANUAR	Y
1 2 3 4 5	71 70 72 70 70	69 68 68 68	70 69 69 69	67 68	 65 66	66 67	67 63 80 67 68	61 62 64 62 62	63 65 64 63		57 62 69 75 68	54 56 55 55 54	56 57 58 61 56
6 7 8 9	66 79 134 70	65 66 67 67 65	65 68 71 69	73 80 73	67 66 65	67 68 	120 110 79 60 64	61 60 59 60	66 64 63 60 61		56 57 63 68 73	53 52 55 55 55	54 58 58 58
11 12 13 14 15	67 66 69 69 71	63 64 65 67 66	64 65 66 68 69	=	===		79 91 94 89 72	60 61 61 60 58	63 64 65 63 60		66 70 55 50	53 52 45 45	57 55 51
16 17 18 19 20	71 80 74 72 73	68 69 67 70 70	69 70 70 71 71	63	57	60	58 69 81 65 59	57 57 57 57 56	58 60 59 58 56		60 56 60 50 58	45 49 50 48 50	51 52 49 51
21 22 23 24 25	72 79 82 121 176	70 70 71 72 68	71 72 72 76 79	=	===		59 88 61 58 56	56 59 58 56 53	58 61 59 57 54		87 72 80 125 91	52 53 50 56 57	57 57 56 62 61
26 27 28 29 30	70 74 67 98 93	67 66 64 64 65	68 67 65 68	60 64 105 74	58 59 60 62	61 64 64	89 57 62 56 57	55 54 54 54 54 55	58 55 56 55 56 56		70 61 66 77 110 62	57 58 58 59 62 60	60 59 62 63 66 62
MONTH	176	60	69	105	57	65	120	53	60		125	45	57

01408500 TOMS RIVER NEAR TOMS RIVER, NJ--Continued SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	S	S PECIFIC	CONDUCTANCE	(MICROMH)	JS/CM AT	25 DEG.	C), WATER	TEAR OCT	BER 1979 TO	SEPTEMBER	1980	
DA Y	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBR UAR	Y	*	MARCH			APRIL			MAY	
1 2 3 4 5	73 63 63 68 102	60 58 61 62 62	64 62 62 64 68	74 67 68 74 64	59 60 62 59	62 62 64 64 61	56 61 62 61 61	53 54 55 56 59	54 56 58 58	59 58 64 63 63	53 55 57 57 56	55 57 59 60 59
6 7 8 9	88 103 275 64 67	62 63 62 60 61	66 68 68 62 63	92 64 60 63 78	60 58 56 55 56	64 60 58 58 59	60 61 79 60 59	57 54 57 54 49	59 59 60 57 53	71 111 185 134 131	59 57 57 55 55	62 63 67 63 61
11 12 13 14 15	84 76 214 70 77	62 62 64 64 64	66 66 77 65 66	77 61 81 63 64	57 57 56 56 58	59 59 60 60 62	61 61 59 62 64	51 54 55 54 58	55 57 57 59 60	59 175 72 63 63	55 54 56 58 55	57 68 63 60 58
16 17 18 19 20	66 68 66 91 136	63 62 62 63	65 65 64 65 68	63 64 74 65 67	60 61 61 61 62	62 62 63 63 64	69 69 61 61 59	54 54 55 54 55	58 58 57 58 57	140 58 59 139 146	53 54 55 58 59	64 57 57 67 71
21 22 23 24 25	147 70 66 63 63	63 62 60 60	70 63 63 62 61	110 95 64 60 69	59 57 56 58	65 60 59 59	94 83 73 74 150	54 53 54 56 56	60 60 60 60	71 58 122 59 58	55 55 54 54 56	59 56 61 57 57
26 27 28 29 30 31	135 66 67 79	60 60 60	66 61 62 63	74 68 75 88 75 76	57 58 58 57 55 53	59 59 61 60 57	67 59 74 73 60	55 54 55 53 52	57 57 58 56 55	61 172 111 93 112 61	57 55 56 57 57 58	59 68 60 61 62 59
MONTH	275	58	65	110	53	61	150	49	58	185	53	61
DAY	MAX	MIN	MEAN									
DAI	I'I A A	M TM	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAI	пал	JUNE	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	M IN SEPTEME	MEAN BER
1 2 3 4 5	247 62 152 91 66		67 60 73 63 61	67 71 64 67 67		64 64 61 62 65	94 74 66 230 93			69 70 73 110		
1 2	247 62 152	JUNE 58	67 60 73	67 71 64 67	JULY 63 62 60 60	64 64 61 62	94 74 66 230	AUGUST 72 66 59 56	80 70 62 74	69 70 73 110	55 61 61 62	3ER 59 64
1 2 3 4 5	247 62 152 91 66 71 65 63 131	JUNE 58 59 59 58 59	67 60 73 63 61 61 62 61	67 71 64 67 67 65 66 62 63	JULY 63 62 60 64 60 59 59	64 64 61 62 65 62 62 60 60	94 74 66 230 93 71 104 63 60	AUGUST 72 66 59 56 48 52 59 56	80 70 62 74 59 58 66 59	69 70 73 110 111 64 62 91	55 61 62 61 58 58 60 60	59 64 65 69 68
1 2 3 4 5 6 7 8 9 10 11 12 13 14	247 62 152 91 66 71 65 63 131 74	JUNE 589 558 59 5558 558 558	67 60 73 63 61 61 62 61 65 62 65 62 65	67 71 64 67 67 65 66 62 63 63 205 61 61	JULY 63 62 60 60 64 60 59 59 59 59 57 57	64 64 61 62 65 62 60 60 60 60 59 59	94 74 66 230 93 71 104 63 60 62 125 158 167 94	AUGUST 72 66 59 56 48 52 59 56 55 55 56 55 56	80 70 62 74 59 58 66 59 57 58 63 68 67 61	69 70 73 110 111 64 62 91 77 93	55 61 62 61 58 58 60 60 61 61 61 65 95 88	59 64 65 69 68 61 60 65 66 66 66 61 61 61 62
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	247 62 152 91 66 71 65 63 131 74 102 71 63 62 64 120 74 71	JUNE 559855 55555 55886 67	67 60 73 63 61 61 62 61 65 62 65 61 60 62 64 65 67 72	67 71 64 67 67 65 66 62 63 63 205 61 61 61 153 145 1859	JULY 63 62 60 60 64 60 59 59 59 58 57 56 57 60 60 61	64 64 61 62 65 62 60 60 60 66 59 59 59 69	94 74 66 230 93 71 104 63 60 62 125 158 167 94 109	AUGUST 72 66 59 56 48 52 59 55 55 55 55 57	80 70 62 74 59 58 66 57 58 63 68 67 61 63	69 70 73 110 111 64 62 91 77 93 103 71 64 65 104	55 61 62 61 58 58 60 60 61 61 659 58 58 57 61	59 64 65 69 68 61 60 65 66 66 66 61 61 62 69
1 2 3 4 5 6 7 8 9 10 11 2 3 1 4 1 5 6 6 7 8 9 2 1 2 2 3 4 5 2 6 6 7 8 9 2 1 2 2 3 4 5 6 6 7 8 9 10 11 2 3 1 4 1 5 6 6 7 8 9 10 11 2 3 1 4 1 5 6 6 7 8 9 10 11 2 3 1 4 1 5 6 6 7 8 9 10 11 2 3 1 4 1 5 6 6 7 8 9 10 11 2 3 1 4 1 5 6 6 7 8 9 10 11 2 3 1 4 1 5 6 7 8 9 10 11 2 3 1 4 1 5 6 7 8 9 10 1 1 2 3 1 4 1 5 6 7 8 9 10 1 1 2 3 1 4 1 5 6 7 8 9 10 1 1 2 3 1 4 1 5 6 7 8 9 10 1 1 2 3 1 4 1 5 6 7 8 9 10 1 1 2 3 1 4 1 5 6 7 8 9 10 1 1 2 3 1 4 1 5 6 7 8 9 10 1 1 2 3 1 4 1 5 6 7 8 9 10 1 1 2 3 1 4 1 5 6 7 8 9 10 1 1 2 3 1 4 1 5 6 7 8 9 10 1 1 2 3 1 4 1 5 6 7 8 9 10 1 1 2 3 1 4 1 5 6 7 8 9 10 1 1 1 2 3 1 4 1 5 6 7 8 9 10 1 1 1 2 3 1 4 1 5 6 7 8 9 10 1 1 1 2 3 1 4 1 5 6 7 8 9 10 1 1 1 2 3 1 4 1 5 6 7 8 9 10 1 1 1 2 3 1 4 1 5 6 7 8 9 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	247 62 91 66 71 65 63 131 74 102 71 62 64 120 74 71 114 120	JUNE 559989 99998 988880 08675 56676 66676	67 60 73 63 61 61 62 65 62 65 60 60 62 64 65 72 71	67 71 64 67 67 65 66 62 63 63 205 61 61 153 145 189 64 179 78 136 72 117 60 86 86 102 79	JULY 632 660 664 609 559 58 557 660 661 555 660 654 8555 755 8555 755 8555 755 8555 755	644 661 662 665 660 660 665 677 663 665 665 678 678 678 678 678 678 678 678 678 678	94 74 66 230 93 71 104 63 60 62 125 158 167 94 109 59 67 65 102 87 135 59 60 84	AUGUST 72659 556 48 5295555 5564555 5555555 55647556 557555 557658 557658 557658 557658	80 762 759 5669 5578 66713 5559992 661672 641 6609	69 70 73 110 111 64 62 91 77 93 103 71 64 65 104 105 91 141 70 71 169 67 78 78 79 66 77 78	55 61 62 61 62 61 62 61 62 61 62 61 62 61 62 61 62 61 62 61 62 64 62 63 63	59 64 65 69 68 61 60 65 66 66 61 62 69 68 72 69 68
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 26 27 27 28 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	247 62 152 91 66 71 65 63 131 74 102 71 63 664 120 71 71 70 84 114 1168 124 186 67 68	JU 555555 55555 65666 55352 55555 55555 65666 66666 66666 66666 66666 66666 66666 6666	67 67 63 63 61 61 62 65 65 60 60 62 64 65 67 70 75 78 74 72 65 63	67 71 64 67 67 65 66 62 63 63 205 61 61 153 145 136 78 64 62 179 78 136 78 117 60 60 80 81 81 81 81 81 81 81 81 81 81 81 81 81	JULY 63 62 60 60 64 60 59 59 58 57 56 57 60 61 65 64 58 55 57	644 641 662 665 660 660 660 665 77 71 71 71 71 72 72 73 73 75 75 75 75 75 75 75 75 75 75 75 75 75	94 74 66 230 93 71 104 63 60 62 125 158 167 94 109 57 64 65 102 87 135 59 60 84	AUGUST 7266 599 548 529556 5564 557 5564 557 5566 557 5566 557 5566 557 5566 557 5566	80 70 62 74 59 58 66 55 57 8 68 67 63 55 55 69 67 63 55 67 62 67 67 67 67 67 67 67 67 67 67 67 67 67	69 70 73 110 111 64 62 91 77 93 103 71 64 65 104 105 91 141 70 71 66 67 106 72 78 78	55 61 62 61 62 63 63 63 62 61 62 61	594 655 669 68 61 605 666 666 667 67 67 67 67 67 67 67 67 67

TOMS RIVER BASIN

01408500 TOMS RIVER NEAR TOMS RIVER, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: November 1974 to current year.
WATER TEMPERATURES: November 1963 to May 1966, November 1974 to current year.

INSTRUMENTATION. -- Temperature recorder November 1963 to May 1966, water-quality monitor since November 1974.

REMARKS. -- Missing continuous water-quality records are the result of malfunction of the instrument.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 445 micromhos Sept. 15, 1977; minimum, 32 micromhos July 26, 1979.
WATER TEMPERATURES: Maximum, 28.0°C July 21, 1980; minimum 0.0°C on several days during winter months.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 275 micromhos Feb. 8; minimum, 45 micromhos Jan. 13, 14, 16.
WATER TEMPERATURES: Maximum, 28.0°C July 21; minimum 1.0°C Feb. 3, 29 and Mar. 1.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	
OCT 25	0830	192	87	5.0	11.5	5.0	9.0	.3	27	410	
NOV	-						-				
19 DEC	1100	211	61	5.5		2.0	11.2	1.4	K15	96	
04 JAN	1200	190	58	4.9	4.5	4.0	12.5	3.0	16	10/	
23 FEB	1100	243	59	4.8	4.5	1.0	10.4	2.1	K18	K 69	
29	1030	168	57	5.4	2.0	.80	13.1	.0	10	79	
MAR 20	1100	273	59	4.9	9.0	1.0	9.9	1.9	K4	94	
APR 22	0930	280	60	4.9	14.5	1.5	9.0	1.1	к8	360	
MAY 14	1200	267	59	5.1		2.8	8.7	.7	190	1200	
JUN 17	1100	146	58	5.4	18.0	1.5	7.9	1.7	95	1000	
JUL 22	1030	84	62	5.7	24.0	2.9	7.5	1.2	K110	2200	
AUG 06	1200	248	54		24.0	14	7.2	2.1	E2600	2700	
SEP 18	1100	128	62	5.4	20.0	1.8	8.5	.9	460	1800	
DATE	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	
OCT	22	7.0	1.0		4 11		0.6	17			
25 NOV		7.2	1.0	5.5	1.4	2	9.6	17	.1	5.2	
19 DEC	11	2.9	. 9	4.6	1.2	2	9.7	8.9	.0	5.1	
04 JAN	10	2.2	1.0	4.3	1.1	1	10	7.2	.0	5.1	
23 FEB	10	2.2	1.1	4.6	.9	4	12	6.6	.0	4.6	
29 MAR	10	2.3	1.0	4.7	1.2	4	10	7.2	.0	4.7	
20 APR	10	2.2	1.0	4.6	1.1	0	10	6.5	.1	3.7	
22 MAY	8	2.0	.8	4.6	1.0	2	10	7.1	.0	2.0	
14	9	2.1	.8	4.1	.9	2	8.7	4.6	.1	2.5	
JUN 17	10	2.5	1.0	4.7	1.0	1	8.8	8.4	.0	4.4	
JUL 22	10	2.2	1.2	5.6	1.3	2	8.9	8.3	1	5.2	
AUG 06	12	2.9	1.2	4.8	1.2	2	12	7.1	.1	4.7	
SEP 18	13	3.4	1.1	5.0	1.4	4	10	9.3	.0	16	

TOMS RIVER BASIN

01408500 TOMS RIVER NEAR TOMS RIVER, NJ--Continued

		W	ATER QUAL				ER 1979 TO					
. DA	TE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. FINER THAN .062 MM	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	
OCT		74	17	8.8	45	.29	.29	.080	.080	. 63	. 24	
NOV		44	16	9.1	24	.39	.39	.090	.080	.30	.29	
DEC		39	28	14	27	.39	.39	. 140	. 140	. 48	.30	
JAN		44	9	5.9	17	.31	.30	.100	. 100	.31	.31	
FEB		42	14	6.4	17	.35	.35	.120	. 120	.28	.28	
MAR 20		42	11	8.1	41	.32	.31	.110	.110	.08	.07	
		38	147	111	6	.31	.31	.050	.050	.30	.30	
		45	15	11	45	.27	.27	.070	.070	-39	.38	
JUN 17		45	11	4.3	62	.54	.53	.110	.110	.27	. 25	
		47	7	1.6	29	.55	.50	.080	.080	. 40	. 26	
		50	20	13	72	. 37	.37	.040	.000	.36	. 25	
SEP 18		50	7	2.4	67	.60	•55	.060	.040	. 19	.01	
		NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L	NITRO- GEN, NH4 + ORG. SUSP. TOTAL (MG/L	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L	NITRO- GEN, DIS- SOLVED (MG/L	NITRO- GEN, TOTAL (MG/L	PHOS- PHORUS, TOTAL (MG/L	PHOS- PHORUS, DIS- SOL VED (MG/L	CARBON, ORGANIC TOTAL (MG/L)	CARBON, ORGANIC DIS- SOLVED (MG/L	CARBON, ORGANIC SUS- PENDED (MG/L	
OCT	TE	AS N)	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS C)	AS C)	AS C)	
		.71	.39	.32	.61	1.0	.060	.010	12			
		.39	.02	.37	.76	.78	.030	.010		5.2		
		.62	. 18	. 44	.83	1.0	.040	.010	5.4			
		. 41	.00	. 41	.71	.72	.020	.010	6.3			
		.40	.00	. 40	.75	.75	.030	.010		2.6		
		. 19	.01	. 18	.49	.51	.030	.010	5.3	440		
		. 35	.00	. 35	.66	.66	.020	. 02.0	7.4			
		.46	.01	. 45	.72	.73	.050	.010		15	2.0	
		.38	.02	.36	.89	.92	.060	.010	5.9	-		
		. 48	. 14	.34	. 84	1.0	.070	.000	7.7			
		. 40	. 15	. 25	.62	.77	.090	.010		7.0	1.8	
18	• • •	. 25	.20	.05	.60	. 85	.030	.000	5.0			
DATE	TIM		NIC PEN AL TOT	IS- ARSE IDED DI CAL SOL	S- REC	TAL PEND COV- REC ABLE ERA G/L (UC	S- DED BARI COV- DIS BLE SOLV G/L (UG	S- REC VED ERA	CAL PEN COV- REC BLE ERA	DED CADM OV- DI BLE SOL	S- REC VED ERA /L (UG	M, AL OV- BLE /L
NOV												
19 FEB	110		3	1	2	20	0	20	0	0		<10
29 MAY	103		3	3	0	100	70	30	8	0		<10
AUG	120		2	1	1	<50		30	0	0	0	10
06 SEP	120		1	0	1	100	60	40	2	0	2	10
18	110	U										

TOMS RIVER BASIN

01408500 TOMS RIVER NEAR TOMS RIVER, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	CHR MIU SU PEN REC (UG AS	M, S- DED OV. /L	CHRO-MIUM, DIS- SOLVE (UG/L AS CR	TO RE	ALT, TAL COV- ABLE G/L CO)	COBALT SUS- PENDED RECOV ERABL (UG/L AS CO	COB DI E SOL	ALT, S-	COPPEI TOTAL RECOV ERABI (UG/I AS CU	R, SI	PPER, US- ENDED ECOV- RABLE UG/L S CU)	COPP DIS SOL (UG	VED /L	IRON TOTA RECO ERAB (UG/ AS F	L V – LE L	IRO SU PEN REC ERA (UG AS	S- DED OV- BLE /L	IRO DI SOL (UG AS	S- VED
NOV 19		0	<1		4		0	4		2	1		1		20		430		290
FEB 29		<10	<1	0	0		0	0		2	1		1	11	50		200		250
MAY																			
14		0	,	0	0		0	0		1	0		1		00		880		320
06 SEP		0	1	0	0		0	0		4	0		4	18	00	1	600		240
18			-	-		-	-												
DATE	LEA TOT REC ERA (UG AS	AL OV- BLE /L	LEAD, SUS- PENDE RECOV ERABL (UG/L AS PE	D LE LE SO	AD, IS- LVED G/L PB)	MANGA NESE, TOTAL RECOV ERABL (UG/L AS MN	NE S PE E RE	NGA- SE, US- NDED COV. G/L MN)	MANGA NESE, DIS- SOLVE (UG/I	TO RED E	RCURY OTAL ECOV- RABLE UG/L S HG)	PEN	S- DED OV- BLE /L	MERCU DIS SOLV (UG/ AS H	ED L	NICK TOT REC ERA (UG	AL OV- BLE /L		DED OV- BLE
NOV 19		18	1	7	1	и	0	0	1	10	<.1		<.1	<	. 1		3		1
FEB 29		6		6	0		0	0		10	. 1		.0		.1		6		6
MAY 14		2		1	1		0	0		20	. 1		.0		. 1		4		0
AUG 06		3		1	2		0	10		10	.1				.1		2		1
SEP		3			2												-		
18				-			-												1
DA	TE	(UG	VED	SELE- NIUM, TOTAL (UG/L AS SE)	PEN TOT	M, S- DED AL	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILV TOT REC ERA (UG	ER, AL OV- BLE /L	SILVER SUS- PENDE RECOV ERABL (UG/L AS AG	D SIL D D E SO	VER, IS- LVED G/L AG)	ERA (U)		PEI RE ER.	NC, US- NDED COV- ABLE G/L ZN)	SOI (U	NC, IS- LVED G/L ZN)	
NOV																			
FEB			2	0		0	0		0		0	0		30		0		30	
29 MAY	• • •		0	0		0	0		0		0	0		250		160		90	
14 AUG	• • •		4	0		0	0		0		0	0		20		0		20	
			1	0		0	0		0		0	0		20		0		20	
									0	-	- "			30		10		20	
				DATE		O- B RE YS)	PERI- PHYTON IOMASS TOTAL DRY WEIGHT G/SQ M	PHY BIOM AS: WEI	I- TON ASS (H (GHT F	CHLOR- PERI- PHYTO CHROMO GRAPHI FLUORO MG/M2	PE N PH - CHR C GRA M FLU	OR-B RI- YTON OMO- PHIC OROM /M2)	RA?	ORO- YLL TIO RI- YTON					
				NOV		O.II	4 40		620		•	000	005						
				19 DEC		24	1.10		630	. 20		.000	2350	,					
				04 MAY		14	.790		470	.00	0	.000							
				14		20	7.64	4.	65	53.0		.000	56	5.4					
				AUG 06		14	.079		079	. 04	0	.000		.00					

TOMS RIVER BASIN

01408500 TOMS RIVER NEAR TOMS RIVER, NJ--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

INITIOI EANKION ANALISES	, OUTOBE	1919	TO DELLE		. , 00			
DATE TIME		19,79 100		20,80		14,80		17,80 100
TOTAL CELLS/ML		390	- 0	100		210		100
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		0.4 0.4 0.4 0.4		1.0 1.4 1.8 2.5 2.5		1.0 1.5 1.5 2.1 2.2		1.1 1.1 2.0 2.0 2.0
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE .CHLOROCOCCALESCOELASTRACEAECOELASTRUM		_		_				
OOCYSTACEAE ANKISTRODESMUS	29	7				_		-
SCENEDESMACEAE SCENEDESMUS VOLVOCALES		-	26#	25		-	52#	50
CHLAMYDOMONADACEAE CHLAMYDOMONAS ZYGNEMATALES		-	13	13	13	6	13	13
DESMIDIACEAE STAURASTRUM		-		-		-	13	13
CHRYSOPHYTA .BACILLARIOPHYCEAECONTRALESCOSCINODISCACEAECYCLOTELLAPENNALES		-		-		-		_
ACHNANTHACEAE ACHNANTHES		-				-		-
DIATOMA		-	13	13		-		-
FRAGILARIACEAE ASTERIONELLA FRAGILARIA		-	 26#	25	26 13	13		
NAVICULACEAE NAVICULA		_	13	13		_		_
NITZSCHIACEAE		_		-				_
TABELLARIACEAE		-		-	100#	50	,	-
. CHRYSOPHYCEAE CHRYSOMONADALES MALLOMONADACEAE								
MALLOMONAS SYNURACEAE		-		-		-	13	13
SYNURA CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAE			13	13	26	13		-
CRYPTOMONADALES CRYPTOMONADACEAE CRYPTOMONAS		-	-	-	13	6	13	13
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAEANACYSTISHORMOGONALES		2		- 2		-		-
ANABAENA	122	_	44	-				-
OSCILLATORIACEAE LYNGBYA	360#	-		-		-		-
OSCILLATORIA EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAE .EUGLENALES	300#	73		-	.==	-		-
EUGLENACEAE	44	-		-	13	6		-

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

TOMS RIVER BASIN

01408500 TOMS RIVER NEAR TOMS RIVER, NJ--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

PHYTOPLANKTON ANALYSES, OCTOBER	R 1979	ro sepi	TEMBER 1	980		
DATE TIME		22,80 030		6,80 200	SEP 1	18,80 100
TOTAL CELLS/ML		260		100	1;	300
DIVERSITY: DIVISION		1.5		1.0		0.9
.CLASS		1.5		1.0		0.9
FAMILY		2.0 2.0		1.0		1.7
GENUS		2.0		1.0		2.5
						N
	CELLS	PER-	CELLS	PER-	CELLS	PER-
ORGANISM	/ML	CENT	/ML	CENT	/ML	CENT
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE						
CHLOROCOCCALES COELASTRACEAE						
COELASTRUM		-	52#	50		-
OOCYSTACEAE ANKISTRODESMUS	12	-				
SCENEDESMACEAE	13	5	-	-		
SCENEDESMUS		-		-		-
VOLVOCALESCHLAMYDOMONADACEAE						
CHLAMYDOMONAS	90#	35		-	39	3
ZYGNEMATALES DESMIDIACEAE						
STAURASTRUM		-		-		-
CHRYSOPHYTA						
.BACILLARIOPHYCEAE						
CENTRALESCOSCINODISCACEAE						
CYCLOTELLA		-		-	52	4
PENNALESACHNANTHACEAE						
ACHNANTHES		-		-	26	2
DIATOMACEAE		_		_		_
FRAGILARIACEAE						
ASTERIONELLA FRAGILARIA		-	52#	50	140	11
NAVICULACEAE	13	5			26	2
NITZSCHIACEAE	13	,		_		
NITZSCHIA TABELLARIACEAE		-		-	26	2
TABELLARIA		-		-		-
. CHRYSOPHYCEAE CHRYSOMONADALES						
MALLOMONADACEAE						
MALLOMONAS SYNURACEAE		-		-		
SYNURA		-		-		3-
CRYPTOPHYTA (CRYPTOMONADS)						
.CRYPTOPHYCEAE						
CRYPTOMONADALES CRYPTOMONADACEAE						
CRYPTOMONAS	13	5 .		-		-
CYANOPHYTA (BLUE-GREEN ALGAE)						
.CYANOPHYCEAE						
CHROOCOCCALES CHROOCOCCACEAE						
ANACYSTIS	26	10		-	260#	20
HORMOGONALES NOSTOCACEAE						
ANABAENA	100#	40		-		-
OSCILLATORIACEAE LYNGBYA		-		-	370#	29
OSCILLATORIA		-		•	350#	27
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALES						
EUGLENACEAE						
EUGLENA		5.4		-		-

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

01409095 OYSTER CREEK NEAR BROOKVILLE, NJ

LOCATION.--Lat 39°47'54", long 74°15'02", Ocean County, Hydrologic Unit 02040301, on left bank 100 ft (30 m) upstream from bridge on State Highway 532, 1.5 mi (2.4 km) downstream from reservoir at Wells Mill, and 3.2 mi (5.1 km) northeast of Brookville.

DRAINAGE AREA .-- 7.43 mi2 (19.24 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1965 to current year.

GAGE.--Water-stage recorder. Datum of gage is 24.74 ft (7.541 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records fair except those for period of no gage-height record, Jan. 30 to Mar. 6, which are poor. Flow probably contains considerable ground-water inflow from other surface drainage basins. Some minor regulation possible from small reservoirs and cranberry bogs upstream.

AVERAGE DISCHARGE.--15 years, 29.3 ft3/s (0.830 m3/s), 53.55 in/yr (1,360 mm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 284 ft 3 /s (8.04 m 3 /s) July 4, 1978, gage height, 7.93 ft (2.417 m); minimum, 6.8 ft 3 /s (0.19 m 3 /s) Aug. 13, 1981.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 75 ft3/s (2.12 m3/s) and maximum (*):

Date		Time	Dischar (ft³/s)		Gage h	eight (m)	Date		Time	Dischar (ft³/s) (Gage h	eight (m)
Oct.	1	0015 0715	78 *168	2.21	5.21	1.588	May	1	1515	75	2.12	5.16	1.573

DISCHARGE IN CURIC FEFT PER SECOND WATER YEAR OCTOBER 1070 TO SEPTEMBER 1080

Minimum discharge, 6.8 ft3/s (0.19 m3/s) Aug. 13.

		DISC	HARGE, IN	CUBIC FE	ET PER SE	MEAN VA	ER YEAR O LUES	CTOBER 19	79 TO SEP	TEMBER 19	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	72 54 40 34 32	28 28 33 38 34	28 28 28 28 28	29 28 28 28 28	29 29 30 29 28	29 27 28 27 27	69 54 41 48 63	70 62 47 42 39	29 29 29 31 29	23 17 17 18 16	20 19 17 16 13	25 24 25 24 24
6 7 8 9	45 41 35 32 37	30 29 28 28 28	28 33 32 29 28	28 28 29 29 28	28 28 28 28 29	27 28 28 28 28	46 40 37 49 130	36 34 34 35 34	28 29 31 27 26	14 12 11 11 12	11 10 11 38 21	23 22 21 20 20
11 12 13 14 15	54 46 41 44 40	30 44 44 38 34	28 28 28 31 30	29 45 46 38 35	30 29 28 28 27	35 33 30 56 49	71 51 45 44 48	32 32 34 35 35	26 24 23 22 22	12 11 11 15 23	11 20 18 12 8.4	19 20 20 21 25
16 17 18 19 20	36 34 36 37 36	31 30 29 29 28	29 29 28 28 29	33 32 31 31 32	28 29 32 32 30	35 32 37 36 35	45 41 40 39 38	35 34 36 40 38	23 23 21 19 18	20 14 17 16 20	7·3 18 19 21 20	22 21 22 22 21
21 22 23 24 25	35 31 29 29 28	28 28 28 28 28	30 30 32 34 36	32 31 31 32 31	29 29 30 34 37	38 50 43 36 55	38 37 37 37 37	41 44 36 33 32	17 18 17 17	24 16 14 14 12	20 21 22 17 16	21 21 20 20 22
26 27 28 29 30 31	28 29 28 28 28	31 37 34 31 29	39 35 32 31 30 30	31 30 30 29 29	35 33 30 29	54 40 35 40 57 51	37 38 55 66 53	31 29 29 28 28 28	18 18 19 21 30	13 18 17 18 19	23 22 23 25 24 24	24 21 22 23 21
TOTAL MEAN MAX MIN CFSM IN.	1147 37.0 72 28 4.98 5.74	943 31.4 44 28 4.23 4.72	937 30.2 39 28 4.07 4.69	970 31.3 46 27 4.21 4.86	865 29.8 37 27 4.01 4.33	1154 37.2 57 37 5.01 5.78	1474 49.1 130 28 6.61 7.38	1144 36.9 70 17 4.97 5.73	703 23.4 31 11 3.15 3.52	494 15.9 24 7.3 2.14 2.47	567.7 18.3 38 19 2.46 2.84	656 21.9 22 2.95 3.28

CAL YR 1979 TOTAL 13503.0 MEAN 37.0 MAX 158 MIN 20 CFSM 4.98 IN 67.60 WTR YR 1980 TOTAL 11054.7 MEAN 30.2 MAX 130 MIN 7.3 CFSM 4.07 IN 55.34

254 WESTECUNK CREEK BASIN

01409280 WESTECUNK CREEK AT STAFFORD FORGE, NJ

LOCATION.--Lat 39°40'00", long 74°19'12", Ocean County, Hydrologic Unit 02040301, 30 ft (9 m) downstream from dam, 0.2 mi (0.3 km) south of Stafford Forge, 1.2 mi (1.9 km) downstream from Log Swamp Branch, and 2.0 mi (3.2 km) west of Staffordville.

DRAINAGE AREA .-- 16.0 mi2 (41.4 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1973 to current year. Occasional low-flow measurements, water years 1969-73, at site 500 ft (150 m) downstream.

GAGE. -- Water-stage recorder and wooden control. Datum of gage is 15.78 ft (4.810 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records fair except those for period of no gage-height record, Oct. 4 to Nov. 18, which are poor.

AVERAGE DISCHARGE. -- 7 years, 35.3 ft3/s (1.000 m3/s), 29.96 in/yr (761 mm/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 256 ft³/s (7.25 m³/s) July 4, 1978, gage height, 3.70 ft (1.128 m); no flow part of May 17, 1974, Sept. 7, 1978.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 75 ft3/s (2.04 m3/s) and maximum (*):

Date		Time	Dischar (ft ³ /s) (Gage h	neight (m)	Date		Time	Dischar (ft ³ /s)		Gage h	eight (m)
Apr.	1	1945 1630	93 141	2.63 3.99	2.88		July Sept.	24 7	1830 1130	125 *155	3.54	2.76 3.03	0.841
May	1	1800	96	2.72	2.91	0.887							

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum discharge, 5.4 ft3/s (0.15 m3/s) Feb. 29, Mar. 1, gage height, 1.87 ft (0.570 m).

MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 26 25 77 54 32 35 22 37 35 54 30 34 37 37 38 41 31 28 35 34 32 31 hh 37 36 35 34 31 31 64 34 34 65 ---TOTAL MEAN 37.3 34.2 35.7 34.3 29.7 42.5 62.6 46.2 35.6 31.2 21.5 20.3 MAX MIN 2.23 CFSM 2.33 1.86 2.66 3.91 2.89 2.23 1.95 1.34 1.27 2.25 1.41 IN. 2.69 2.39 2.57 2.47 2.00 3.06 4.37 3.33 2.48 1.55

CAL YR 1979 TOTAL 16141 MEAN 44.2 MAX 218 MIN 22 CFSM 2.76 IN 37.53 WTR YR 1980 TOTAL 13149 MEAN 35.9 MAX 125 MIN 18 CFSM 2.24 IN 30.57

01409387 MULLICA RIVER AT OUTLET OF ATSION LAKE, AT ATSION, NJ

LOCATION.--Lat 39°44'25", long 74°43'37", Burlington County, Hydrologic Unit 02040301, at bridge on U.S. Route 206 in Atsion, at outlet of Atsion Lake, and 0.2 mi (0.3 km) upstream from Wesickaman Creek.

DRAINAGE AREA .-- 26.7 mi2 (69.2 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

FEB 20 1230 9.2 46 4.9 4.0 12.8 E1.3 <20 <2 88 APR 01 1215 142 52 4.4 7.0 11.0 .7 <20 5 5 MAY 28 1300 32 44 4.6 20.0 8.4 1.2 20 14 5 JUL 10 1200 20 37 5.0 22.0 7.7 E.2 50 <2 7 AUG 12 0930 16 32 5.5 27.0 6.9 1.7 110 >2400 68 SEP	DATE	TIME	FL INS TAN	EAM- COW, DOTAN- AEOUS (M	PE- IFIC ON- UCT- NCE ICRO- HOS)	PH FIELD (UNITS)	ATWA	PER- URE, TER G C)	SO	GEN, IS- LVED G/L)	DEM BIO UNI 5	GEN AND, CHEM NHIB DAY /L)	COL FOR FEC BRC	M, CAL, CTH	TOC	REP- OCCI CAL PN)	HARI NESS (MG AS CACO	S /L
20 1230 9.2 46 4.9 4.0 12.8 E1.3 <20 <2 88 APR 01 1215 142 52 4.4 7.0 11.0 .7 <20 5 MAY 28 1300 32 44 4.6 20.0 8.4 1.2 20 14 5 JUL 11 1200 20 37 5.0 22.0 7.7 E.2 50 <2 7 12 0930 16 32 5.5 27.0 6.9 1.7 110 >2400 6 SEP 24 1330 12 35 4.8 21.0 7.2 <.9 <20 8 6 CALCIUM SIUM, DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-		1030			34	4.5		13.5		9.7		1.0		<20		2		6
1215	20	1230		9.2	46	4.9		4.0		12.8		E1.3		<20		<2		8
28 1300 32 44 4,6 20.0 8.4 1.2 20 14 5 JUL 10 1200 20 37 5.0 22.0 7.7 E.2 50 C2 7 AUG 12 0930 16 32 5.5 27.0 6.9 1.7 110 >2400 6 SEP 24 1330 12 35 4.8 21.0 7.2 C.9 C20 8 6 CALCIUM DIST SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED AS NA) AS NA) AS NA SOLVED SOLVE	01	1215	1	42	52	4.4		7.0		11.0		.7		<20		5		5
10 1200 20 37 5.0 22.0 7.7 E.2 50 C2 7 AUG 12 0930 16 32 5.5 27.0 6.9 1.7 110 >2400 6 SEP 24 1330 12 35 4.8 21.0 7.2 <.9 <20 8 6 MAGNE-SIUM, DIS-SIUM, DIS-SOLVED (MG/L) TOTAL SOLVED (MG/L) AS (MG/L) (MG/L) DATE AS CA) AS MG	28	1300		32	44	4.6		20.0		8.4		1.2		20		14		5
12 0930 16 32 5.5 27.0 6.9 1.7 110 >2400 6 SSEP 24 1330 12 35 4.8 21.0 7.2 <.9 <20 8 6 MAGNE-SIUM, DIS-DIS-DIS-DIS-SOLVED SOLVED (MG/L (MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	10	1200		20	37	5.0		22.0		7.7		E.2		50		<2		7
24 1330 12 35 4.8 21.0 7.2 <.9 <20 8 6 CALCIUM SIUM, SODIUM, DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-	12	0930		16	32	5.5		27.0		6.9		1.7		110	>	2400		6
CALCIUM DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-		1330		12	35	4.8		21.0		7.2		<.9		<20		8		6
TOOL 1.3	DATE	DIS SOI (MC	VED	SIUM, DIS- SOLVED (MG/L	SODIU DIS- SOLVE (MG/	M, SI D SOL L (MG	UM, S- VED /L	LINIT (MG/ AS	Y L	TOT.	AL /L	DIS- SOLVE	ED	RIDE DIS- SOLV (MG/	E, /ED	RIDE DIS SOLV	E, S- VED /L	
FEB 20 1.8 8 3.1 8 2 7.3 4.6 .1 APR 01 1.0 .7 2.1 .8 0 7.0 3.6 .1 MAY 28 1.1 .6 3.1 .5 2 .4 4.2 3.9 .1 JUL 10 1.6 .7 1.8 .6 2 5.1 3.8 .0 AUG 12 1.4 .7 2.1 .7 5 5.1 3.6 .1 SEP 24 1.3 .6 2.0 .5 3 4.7 3.0 .0 SILICA, RESIDUE DEG. C NO2+NO3 AMMONIA ORGANIC			1.3	. 6	2	. 4	.7		0		. 0	3.	4		5.3		.0	
APR 01 1.0	FEB								2									
MAY 28 1.1	APR		1.0						0					3	3.6		.1	
10 1.6 .7 1.8 .6 2 5.1 3.8 .0 AUG 12 1.4 .7 2.1 .7 5 5.1 3.6 .1 SEP 24 1.3 .6 2.0 .5 3 4.7 3.0 .0 SOLIDS, SILICA, DIS- AT 180 GEN, SOLVED DEG. C NO2+NO3 AMMONIA ORGANIC ORGANIC GEN, AS OLVED (MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L			1.1	.6	3	. 1	.5		2		. 4	4.	2	3	3.9		.1	
12 1.4 .7 2.1 .7 5 5.1 3.6 .1 SEP 24 1.3 .6 2.0 .5 3 4.7 3.0 .0 SILICA, RESIDUE NITRO- NITRO- NITRO- GEN, AM- MONIA + NITRO- GEN, AM- MONIA + NITRO- ORTHOPH CARBON, ORGANIC GEN, ORHOPH CARBON, ORGANIC GEN, ORTHOPH CARBON, ORGANIC GEN, ORTHOPH CARBON, ORGANIC GEN, ORGANIC GEN	10		1.6	.7	1	. 8	.6		2			5.	. 1	3	3.8		.0	
SOLIDS, SILICA, RESIDUE NITRO- NITRO- GEN, MONIA + NITRO- ORTHOPH CARBON, SOLVED DEG. C NO2+NO3 AMMONIA ORGANIC ORGANIC GEN, AS SOLVED (MG/L DIS- TOTAL TOTA	12		1.4	.7	2	. 1	.7		5			5.	. 1	3	3.6		.1	
SILICA RESIDUE NITRO- NITRO- GEN AM- GEN GEN GEN GEN GEN MONIA + NITRO- ORGANIC GEN ORGANIC TOTAL	24		1.3	.6	2	. 0	.5		3			4.	. 7	3	3.0		.0	
10 4.0 37 <1.0 .550 .65 1.2 <.01 6.4 FEB 20 4.7 28 .50 .360 .63 .99 1.5 .10 2.8 APR 01 2.2 40 .04 .050 .11 .16 .20 <.01 5.6 MAY 28 3.1 24 .37 .090 .17 .26 .63 <.03 8.3 JUL 10 4.515 .210 .89 1.1 1.2 .08 13 AUG 12 4.4 30 .14 .300 1.0 1.3 1.4 .18 11 SEP	DATE	DIS SOI (MC	VED	RESIDUÉ AT 180 DEG. C DIS- SOLVED	GEN NO2+N TOTA (MG/	GE O3 AMMO L TOT L (MG	N, NIA AL /L	GEN ORGAN TOTA (MG/	I, IIC L 'L	GEN, MONIA ORGA TOTA (MG	AM- A + NIC AL /L	GEN, TOTAL (MG/L)-	PHORU ORTHO OSPHA TOTA (MG/	JS, OPH ATE L L	ORGAN TOTA (MG/	NIĆ L /L	
FEB 20 4.7 28 .50 .360 .63 .99 1.5 .10 2.8 APR 01 2.2 40 .04 .050 .11 .16 .20 <.01 5.6 MAY 28 3.1 24 .37 .090 .17 .26 .63 <.03 8.3 JUL 10 4.515 .210 .89 1.1 1.2 .08 13 AUG 12 4.4 30 .14 .300 1.0 1.3 1.4 .18 11 SEP	OCT		4.0	37	<1.	0	550		65	1	2			(01	,	5.4	
APR 01 2.2 40 .04 .050 .11 .16 .20 <.01 5.6 MAY 28 3.1 24 .37 .090 .17 .26 .63 <.03 8.3 JUL 10 4.515 .210 .89 1.1 1.2 .08 13 AUG 12 4.4 30 .14 .300 1.0 1.3 1.4 .18 11 SEP	FEB													100				
MAY 28 3.1 24 .37 .090 .17 .26 .63 <.03 8.3 JUL 10 4.515 .210 .89 1.1 1.2 .08 13 AUG 12 4.4 30 .14 .300 1.0 1.3 1.4 .18 11 SEP	APR																	
10 4.515 .210 .89 1.1 1.2 .08 13 AUG 12 4.4 30 .14 .300 1.0 1.3 1.4 .18 11 SEP	MAY 28		3.1	24										۲.	03	8	3.3	
12 4.4 30 .14 .300 1.0 1.3 1.4 .18 11 SEP	10		4.5			15 .	210		89	1.	. 1	1.2	2		08	13	3	
SEP	12		4.4	30		14 .	300	1.	0	1.	. 3	1.1	4		18	11	ı	
	SEP		2.9	19		15 .	110	,	58		.69	. 8	34		06	6	5.3	

01409387 MULLICA RIVER AT OUTLET OF ATSION LAKE, AT ATSION, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT								
10	1030	140	1	0	230	0	20	3
MAY 28	1300	140	1	0	40	0	10	8
	IRON, TOTAL RECOV- ERABLE	LEAD, TOTAL RECOV- ERABLE	MANGA- NESE, TOTAL RECOV- ERABLE	MERCURY TOTAL RECOV- ERABLE	NICKEL, TOTAL RECOV- ERABLE	SELE- NIUM, TOTAL	ZINC, TOTAL RECOV- ERABLE	PHENOLS
DATE	(UG/L AS FE)	(UG/L AS PB)	(UG/L AS MN)	(UG/L AS HG)	(UG/L AS NI)	(UG/L AS SE)	(UG/L AS ZN)	(UG/L)
	10 127	NO ID,	AU IIII /	AD IId /	NO NI	NO DL/	NO ZN,	(00/1/
OCT 10	1300	18	10	.3	0	0	20	0
28	1800	14	20	<.1	2	0	60	3

01409400 MULLICA RIVER NEAR BATSTO, NJ

LOCATION.--Lat 39°40'28", long 74°39'55", Atlantic County, Hydrologic Unit 02040301, on light bank 2.4 mi (3.9 km) upstream from Sleeper Branch, and 2.5 mi (4.0 km) north of Batsto.

DRAINAGE AREA .-- 46.1 mi2 (119.4 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1957 to current year.

REVISED RECORDS. -- WRD-NJ 1969: 1958(M), 1960(M), 1967-68(M).

GAGE.--Water-stage recorder. Datum of gage is 11.93 ft (3.636 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Some regulation from upstream cranberry bogs and Atsion Lake. Diversions from Sleeper Branch enter river upstream of gage.

AVERAGE DISCHARGE. -- 23 years, 113 ft3/s (3.200 m3/s).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,840 ft 3 /s (52.1 m 3 /s) Feb. 26, 1975, gage height, 6.14 ft (1.871 m); minimum, 7.0 ft 3 /s (0.20 m 3 /s) Sept. 6-8, 1966, gage height, 0.28 ft (0.085 m).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 380 ft³/s (10.8 m³/s) Apr. 11, gage height, 3.43 ft (1.045 m); minimum daily, 15 ft³/s (0.42 m³/s) Sept. 24, 29, 30.

		DISCH	HARGE, IN	CUBIC FE	ET PER SE	COND, WAT MEAN VA		CTOBER 19	79 TO SEP	TEMBER 19	80	
DA Y	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	77 84 90 103 110	74 73 87 100 105	110 103 96 91 95	98 98 98 90 77	99 93 86 82 79	79 77 77 76 81	364 344 318 330 359	223 240 238 231 213	73 70 70 77 77	65 61 62 65 59	90 73 53 51 47	23 22 24 24 22
6 7 8 9	95 107 102 96 111	111 119 120 113 111	101 109 108 104 98	78 81 83 84 83	75 75 75 77 78	81 79 82 83 85	338 279 229 219 346	195 175 150 133 128	69 69 80 87 90	55 49 47 47 48	37 33 33 31 29	22 22 21 20 20
11 12 13 14 15	155 193 204 230 223	114 137 164 193 177	75 61 75 92 98	103 151 154 164 215	80 75 64 60	98 96 97 142 169	363 369 318 264 248	122 127 139 132 123	66 65 65 64 63	47 43 39 38 37	26 43 36 34 32	19 18 20 17 17
16 17 18 19 20	191 172 149 112 118	161 132 124 118 100	108 104 94 91 89	208 174 143 135 132	70 69 68 68 69	198 163 144 140 136	221 198 180 165 152	114 89 99 107 103	71 67 65 62 59	35 35 39 40 36	31 29 29 29 29	17 17 22 21 19
21 22 23 24 25	124 112 98 91 85	82 86 88 88	87 89 97 99	130 148 158 144 139	69 74 83 83 84	154 218 234 228 300	141 132 110 75 71	108 119 126 137 125	56 54 50 48 47	34 33 38 38 36	29 29 29 27 26	18 17 16 15 22
26 27 28 29 30 31	82 79 76 75 74 74	99 115 125 119 114	110 109 106 103 101	132 126 122 116 108 103	88 92 89 85	325 287 237 230 254 288	85 106 120 141 168	112 86 75 77 75 74	46 45 43 46 73	33 31 28 43 62 87	26 25 24 24 24 24	21 20 16 15 15
TOTAL MEAN MAX MIN	3692 119 230 74	3435 115 193 73	3007 97.0 110 61	3875 125 215 77	2249 77.6 99 60	4938 159 325 76	6753 225 369 71	4195 135 240 74	1912 63.7 90 43	1410 45.5 87 28	1082 34.9 90 24	582 19.4 24 15

CAL YR 1979 TOTAL 58527 MEAN 160 MAX 1630 MIN 47 WTR YR 1980 TOTAL 37130 MEAN 101 MAX 369 MIN 15

393825074393500 MULLICA RIVER AT PLEASANT MILLS, NJ

LOCATION.--Lat 39°38'25", long 74°39'35", Burlington County, Hydrologic Unit 02040301, at bridge at Pleasant Mills, 0.3 mi (0.5 km) upstream from confluence with outflow from Nescochague Lake, and 0.6 mi (1.0 km) southwest of Batsto.

DRAINAGE AREA. -- 127 mi2 (329 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 10	1220	48	4.8	11.5	9.0	1.0	210.	350	10
FEB 06	1130	51	5.1	.0	14.8	<.8	<20	2	12
MAR 26	1130	63		6.0	11.0	1.2	<20	7	9
MAY 28	1100	52	5.3	16.5	8.1	.9	<20	540	10
JUL 10	1000	44	5.5	21.0	7.7	E.3	50	240	9
AUG 12	1245	47	5.8	23.5	6.9	1.8	1600	>2400	9
SEP 24	1050	46	5.6	18.5	7.5	<1.1	<20	48	8
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 10	2.2	1.0	3.0	1.5	0		7.1	6.1	.1
FEB 06	2.5	1.3	3.4	1.3	2		10	6.1	.0
MAR 26	2.0	.9	2.8	1.1	1		10	4.4	.1
MAY 28	2.0	1.1	4.1	.9	3	.3	6.4	5.5	.1
JUL 10	1.8	1.0	3.4	.9	5		6.8	5.3	.1
AUG 12	1.9	1.1	2.7	1.2	2		8.4	4.5	.1
SEP 24	1.8	.8	3.0	1.0	. 6	10	5.8	5.2	.0
24	1.0	.0	3.0	1.0			3.0		Trans.
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT	4.6	36	-	.340	1.3	1.7		.04	7.9
10 FEB		39	.56	.140	.49	.63	1.2	<.01	6.3
06 MAR	5.0								
26 MAY	2.6	38	.20	.120	.12	.24	.44	<.01	8.9
28 JUL	3.8	36	.22	.070	.19	.26	.48	<.03	8.7
10 AUG	4.7		.23	.120	.65	.77	1.0	.14	9.0
12 SEP	5.5	37	.25	.380	.34	.72	.97	.25	10
24	4.6	27	. 15	.130	.40	.53	.68	.09	7.7

393825074393500 MULLICA RIVER AT PLEASANT MILLS, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	GEN, + OR TOT BOT	G. GAI IN TOT MAT BOT /KG (G.	OR- INOF NIC, ORGA IN TOT MAT BOT /KG (G/	RG + A ANIC I IN MAT S /KG (LUM- NUM, DIS- OLVED UG/L S AL)	ARSE TOT (UG AS	IN I	TAL L BOT- T MA- R RIAL E G/G (ERYL- IUM, OTAL ECOV- RABLE UG/L S BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	ERA (UG	IUM RECAL FM	DMIUM ECOV. BOT- M MA- ERIAL UG/G S CD)
OCT 10	1220	70	0	.1	2.5				1					<10
MAY													•	
28	1100					90		1		0	50		0	-
DAT	E	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER TOTAL RECOV ERABL (UG/L AS CU	FM B - TOM E TER (UG	OV. BOT- MA- RIAL	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV FM BOT TOM MA TERIA (UG/G AS FE	- TOTA - RECO L ERAB (UG/	L FM V- TON LE TH L (U	EAD, ECOV. BOT- M MA- ERIAL JG/G S PB)	MANGA- NESE, TOTAL RECOV- ERABLI (UG/L AS MN	E
OCT 10.			<10	<10		_	<10		870	0		<10	-	
MAY 28.		10	122	122		3		2800			7		20	0
20.	• •	10				3		2000		7	1.		20	
DAT	F	MANGA- NESE, RECOV. M BOT- OM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL TOTAL RECOV ERABL (UG/L AS NI	FM B - TOM E TER (UG	OV. OT- MA- NAL	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT TOM MA TERIA (UG/G	ZINC TOTA - RECO - ERAB L (UG/	L FM V- TON LE TE L (U	ENC, ECOV. BOT- M MA- ERIAL JG/G S ZN)	PHENOL:	
OCT														
10. MAY	• •	<10		.00	-	-	<10			0		10	-	-
28.	• •		.1			4		0	-	-	20			5
DAT	T	PCB, TOTAL N BOT- OM MA- TERIAL UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT TOM MA TERIA (UG/KG	TOT IN E TOM L TER	MA- RIAL	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON TOTAL IN BOT TOM MA TERIA (UG/KG	TOTA - IN BC - TOM M L TERI	N, ENI L TO T- IN A- TO AL TI	DRIN, DTAL BOT- M MA- ERIAL G/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	L
OCT 10.		2	.0	1		7	2	1.2		0	.0	.0	. (n
MAY		2	.0			'	.3	1.2		0	.0	.0	•	
28.	• •				-	-		355				-		
DAT	I	HEPTA- CHLOR, TOTAL N BOT- OM MA- TERIAL UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION TOTAL IN BOT TOM MA TERIA (UG/KG	CHL TOT. BOT L MA	OR, IN TOM	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHY TRI- THION TOT. I BOTTO MATL (UG/KG	THIO TOTA N IN BO M TOM M TERI	N, PH L TO T- IN A- TO AL TH	OXA- HENE, OTAL BOT- M MA- ERIAL G/KG)	TRI- THION TOTAL IN BOT- TOM MA- TERIAL (UG/KG	
OCT														
10. MAY		.0	.0	.0		0	.0	.0		0	.0	0	. (0
28.	• •				-	-			-	-			-	•

01409416 HAMMONTON CREEK AT WESCOATVILLE, NJ

LOCATION.--Lat 39°38'02", long 74°43'05", Atlantic County, Hydrologic Unit 02040301, at bridge on Chestnut Road in Wescoatville, 1.1 mi (1.8 km) southwest of Nesco, 1.7 mi (2.7 km) upstream from Norton Branch, and 3.8 mi (6.1 km) southwest of Batsto.

DRAINAGE AREA. -- 9.60 mi2 (24.86 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1974 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREA FLOW INSTA TANEO	AM- C W, D AN- A OUS (M	PE- IFIC ON- UCT- NCE ICRO- HOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
FEB 05	1100		12	128	6.4	2.5	6.5	4.9	<2	2	18
MAR 24	1100		83	123	6.1	8.0	6.3	1.6	<2	2	24
MAY 20	1100		33	125	6.4	18.5	2.2		80	1300	19
JUL 08	1200		36	115	6.4	21.0	1.5	4.8	50	7	15
SEP 02	1130		14	145	6.6	23.5	1.5	4.6	40	80	18
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGN SIU DIS SOLV (MG	UM, SO S- D VED SO /L (DIUM, IS- LVED MG/L S NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
FEB 05	4.3		1.8	12	2.8	10	0	8	14	12	.2
24	5.8	2	2.2	7.6	3.2	17	0	14	18	10	.2
MAY 20 JUL	4.3		1.9	11	2.6	24	0	20	12	11	.1
08 SEP	3.5		1.6	12	2.7	17	0	14	10	12	.3
02	4.4		1.8	13	3.4	20	0	16	11	15	.2
DA	DIS SOI (MO	ICA, I S- A LVED G/L	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITR GEN NO2+N TOTA (MG/	GEN O3 AMMON L TOTA L (MG)	N, GE NIA ORGA LL TOT /L (MG	N, MONÍ NÍC ORGA AL TOT /L (MG	AM- A + NIT NIC GE AL TOT	N, OSPH AL TOTA /L (MG	US, OPH CARBO ATE ORGAI AL TOTA /L (MG/	NIĆ AL /L
FEB 05		7.9	69	2.	1 E2.3	300	2	.5 4	.6 2	.0 18	3
MAR 24		6.1	67					3 -1			4.6
		6.2	76	1.	2 2.6	500 7	.0 9	.6 .11	2	.5	4.5
		6.2	68		90 1.3	300 2	.0 3	. 3 4	.2 2	.8	7.1
SEP 02	•••	8.7	92	1.	8 .8	880 1	.1 2	.0 3	. 8 3	.0	3.7

01409500 BATSTO RIVER AT BATSTO, NJ

LOCATION.--Lat 39°38'33", long 74°39'00", Burlington County, Hydrologic Unit 02040301, on right bank 30 ft (9 m) downstream from bridge on State Highway 542 at Batsto, and 1.0 mi (1.6 km) upstream from mouth.

DRAINAGE AREA .-- 70.5 mi2 (182.6 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1927 to current year. Monthly discharge only for April to September 1939, published in WSP 1302.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1432: 1930, 1933, 1936, 1938.

GAGE.--Water-stage recorder. Concrete control since Oct. 12, 1939; prior to Mar. 24, 1939, wooden control at site 50 ft (15 m) downstream. Datum of gage is 1.4 ft (0.43 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good except those for period of no gage-height record, Oct. 1 to Nov. 27, which are fair. Considerable regulation at times by sluice gates prior to December 1954 and by automatic Bascule and sluice gates since July 1959 at Batsto Lake, 300 ft (91 m) upstream, capacity, about 60,000,000 gal (227,000 m³).

AVERAGE DISCHARGE. -- 53 years, 126 ft3/s (3.568 m3/s), 24.27 in/yr (616 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 1,310 ft³/s (37.1 m³/s) Aug. 24, 1933; maximum gage height, 8.7 ft (2.65 m) Aug. 20, 1939, from floodmark; minimum daily discharge, 5.7 ft³/s (0.16 m³/s) Oct. 4, 1959.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 443 ft 3 /s (12.5 m 3 /s) Apr. 11, maximum gage height, 3.96 ft (1.207 m) Apr. 11; minimum daily discharge, 49 ft 3 /s (1.39 m 3 /s) many days in September.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES DAY OCT NOV DEC MAR JUN JUL AUG SEP FEB MAY 51 54 132 71 73 118 69 180 252 129 72 72 137 24 131 56 TOTAL 317 MEAN 85.9 72.8 71.2 51.4 MAX 59 MIN CESM 1.90 1.77 1.89 1.43 2.45 1.97 1.03 1.01 IN. 2.20 1.97 1.98 2.17 1.54 2.83 3.67 2.27 1.36 1.19 1.16 . 81

CAL YR 1979 TOTAL 63586 MEAN 174 MAX 1100 MIN 71 CFSM 2.47 IN 33.55 WTR YR 1980 TOTAL 43893 MEAN 120 MAX 443 MIN 49 CFSM 1.70 IN 23.16

01409500 BATSTO RIVER AT BATSTO, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1925, 1956, 1962-63, 1976 to current year.

COOPERATION.--Selected field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

6

9

			SP	E- FIC						OVV	CEN		LI-				
		STREAM- FLOW, INSTAN-	DU A N	N - CT - CE	PH	AT	PER-	D	GEN, IS-	DEM BIO UNI	GEN AND, CHEM NHIB	FO FE E	RM, CAL, C	TOC	REP- OCCI	HARI NESS (MG.	S /L
DATE	TIME	TANEOUS (CFS)			FIELD UNITS)		TER G C)		LVED G/L)		DAY /L)		OTH PN)		CAL PN)	CAC	
OCT 10	1320	E 132		31	5.0		12.0		9.8		1.0		<20		8		
JAN 24	1100	148		58	4.6		1.0		13.4		2.0		20		<2		(
MAR 26	1030	303		62	4.4		6.0		10.8		<.1		80		49		
MAY 28	0915	103		39	5.4		17.0		8. 1		. 8		<20		23		3
JUL																	•
10 AUG	1100	72		29	5.5		21.0		8.0		E. 1		70		9		
12 SEP	1330	92		31	6.2		24.0		7.5		. 8		130	>	2400		
24	0930	49		25	5.4		18.5		7.8		<.5		<20		220		1.1
DATE	CALCI DIS- SOLV (MG/ AS C	UM SI DI ED SOL L (MG	NE- UM, S- VED /L MG)	SODIUM DIS- SOLVED (MG/L AS NA	, SI DI SOL (MG		ALK LINI (MG AS CAC	ry /L	SULF TOT (MG AS	AL /L	SULFA DIS- SOLV (MG,	/E D	CHL RID DIS SOL (MG AS	E, VED /L	FLUO RIDE DIS SOLV (MG/ AS F	ED L	
OCT	AS C	A) AS	MG)	AS NA) AS	κ)	CAC	03)	AS	3)	AS S	,4)	A S	CL)	AS F	,	
10	. 1	. 3	. 7	2.	3	. 3		0			1	1.3		4.2		. 0	
JAN 24	. 2	. 1	. 8	2.	3	. 9		2				3.8		4.2		. 0	
MAR 26	. 2	. 1	1.0	2.	3	. 8		0			9	2.0		4.0		.0	
MAY 28	. 1	. 8	. 9	3.	1	. 6		2		. 0		5.2		4.4		. 0	
JUL 10		. 0	.5	1.		. 4		4				3.7		3.4		. 0	
AUG								4						1031			
SEP		. 5	. 8	2.		. 7						1.9		4.2		. 1	
24		. 9	. 4	2.	1	. 6		3		. 0	3	3.0		3.1		.0	
DATE	SILIC DIS- SOLV (MG/ AS SIO2	AT 1 ED DEG L DI SOL	DUÉ	NITRO GEN, NO2+NO TOTAL (MG/L AS N)	GE	NÍA AL /L	NIT GE ORGA TOT (MG AS	N, NIC AL /L	NITR GEN, MONI ORGA TOT (MG	AM- A + NIC AL /L	NITE GET TOTA (MG,	N, LL /L	PHOR PHOR ORTH OS PH TOT (MG	US, OPH ATE AL	CARBO ORGAN TOTA (MG/ AS C	IĊ L L	
OCT																	
10 JAN	. 5	. 0	27	<1.0		340		. 32		. 66			<	.01	4	. 6	
24 MAR	. 4	. 1	28	. 2	4 .	140		. 58		. 72	-	96	<	.01	8	. 3	
26 MAY	. 3	. 1	34	. 1	6.	170		. 69		. 86	1.	. 0	<	.01	7	. 3	
28 JUL	. 4	. 4	34	<.0	5.	070		. 26		. 33			<	.03	6	.7	
10	. 4	. 3		. 0	5.	120		. 42		. 54	- 3	59		. 06	4	. 2	
AUG 12	. 5	. 2	38	<.0	5.	220		. 27		. 49				. 12	5	. 6	
SEP 24	. 5	. 2	15	<.0	5.	120		. 17		. 29				. 03	4	. 9	

01409500 BATSTO RIVER AT BATSTO, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
MAY	0015	400			11.0	•		2
28 SEP	0915	120	1	0	40	0	10	3
24	0930	20	1	0	20	0	10	3
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)
MAY 28 SEP	2000	20	20	.1	2	0	60	7
24	1200	13	20	<.1	2	0	60	6

01409510 BATSTO RIVER AT PLEASANT MILLS, NJ

LOCATION.--Lat 39°37'55", long 74°38'40", Burlington County, Hydrologic Unit 02040301, on right bank, 0.5 mi (1.6 km) southeast of Pleasant Mills.

DRAINAGE AREA .-- 73.6 mi2 (190.6 km2).

PERIOD OF DAILY RECORD. -- July 1958 to current year. Annual maximum only published for 1958 to 1965.

GAGE.--Water-stage recorder. Datum of gage is -8.6 ft (-2.62 m) National Geodetic Vertical Datum of 1929.

Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum of 1929 for publication.

REMARKS.--Summaries for months with short periods of no gage-height record have been estimated with negligible or no loss of accuracy unless otherwise noted. Some periods cannot be estimated and are noted by dash (--) lines.

EXTREMES FOR PERIOD OF RECORD. --Maximum elevation recorded, 7.2 ft (2.19 m) Mar. 7, 1962; minimum (1967-79), -0.40 ft (-0.122 m) Oct 18, 1970.

EXTREMES FOR CURRENT YEAR.--Maximum elevation recorded, 4.15 ft (1.265 m) Jan. 17; minimum, -0.02 ft (-0.006 m) July 14.

Summaries of tide elevations during year are as follows:

TIDE	ELEVATIONS,	IN	FEET,	WATER	YEAR	OCTOBER	1979	TO	SEPTEMBER	1980	

		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Maximum	Elevation	3.10	3.36	3.71	4.15	3.24	3.55	3.77	3.37	3.04			
high tide	Date	11	26	20	17	16	31	1	3	30			
Minimum	Elevation	0.31	0.46	0.34	0.34	0.03	0.07	0.52	0.22	0.01	-0.02		
low tide	Date	9	25	18,19, 30	4	15	6	22,23,	28	25	14		
Mean high t	ide		2.56	2.32	2.53	2.33	2.15	2.77	2.66	. 2.45			
Mean water	level		1.61	1.33	1.65	1.28	1.44	1.98	1.67	1.30			
Mean low ti	de		0.72		0.87	0.34	0.70	1.18	0.63	0.22			

NOTE.--Missing on doubtful record or Oct. 1-8, July 16 to Aug. 18, Aug. 23 to Sept. 30.

01409810 WEST BRANCH WADING RIVER NEAR JENKINS, NJ

LOCATION.--Lat 39°41'17", long 74°32'54", Burlington County, Hydrologic Unit 02040301, on right bank 900 ft (274 m) downstream from Godfrey Bridge, 2.2 mi (3.5 km) downstream from Little Hospitality Brook, and 1.2 mi (1.9 km) southwest of Jenkins.

DRAINAGE AREA .-- 84.1 mi2 (217.8 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1974 to current year.

REVISED RECORDS .-- WDR NJ-77-1: 1976.

GAGE.--Water-stage recorder. Datum of gage is 29.09 ft (8.87 m) National Geodetic Vertical Datum of 1929.

REMARKS .-- Water-discharge records good. Some regulation by cranberry bogs and small ponds.

AVERAGE DISCHARGE. -- 6 years, 166 ft3/s (4.701 m3/s), 26.80 in/yr (681 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,320 ft 3 /s (37.4 m 3 /s) Feb. 26, 1979, gage height, 16.14 ft (4.919 m); minimum, 22 ft 3 /s (0.62 m 3 /s) July 24, 1977, gage height 10.16 ft (3.097 m).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 622 ft³/s (17.6 m³/s) Mar. 27, gage height, 14.24 ft (4.340 m); minimum, 32 ft³/s (0.91 m³/s) Sept. 12, gage height, 10.19 ft (3.106 m).

		DISC	HARGE, IN	CUBIC FE	ET PER SE	COND, WAT MEAN VA	ER YEAR O	CTOBER 19	79 TO SEP	TEMBER 19	80	
DAY	OCT	NO V	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	147	97	113	116	114	96	588	373	78	98	161	41
2	168	103	99	113	111	100	573	373 403	76	80	112	41
3	180	151	87	109	109	101	464	358	76	70	85	43 43
4	146	195	77	108	105	101	441	315	88	85	80	43
5	129	187	75	119	102	108	507	259	79	79	70	42
6	165	175	74	120	101	131	434	203	76	75	65	42
7 8	146	143	94	121	102	118	358	162	89	67	62	40
8	119	128	90	128	101	107	287	152	95	63	58	37
10	116	120	83	126	101	124	302	146	90	61	55	36 36
10	187	121	77	121	103	142	519	149	87	60	53	30
11	288	147	79	130	109	156	563	230	83	60	52	35 33 34 35 36
12	294	253	81	283	104	140	538	276	86	57	91	33
13	278	277	91	281	99	178	435	294	109	55	89	34
14	329	263	105	228	97	238	348	215	104	53	70	35
15	299	233	97	224	97	285	351	154	95	52	64	30
16	220	189	93 98	215	115	248	306	111	114	50	61	36 38 45
17	212	169	98	195	124	214	228	133	110	51	56	38
18	195	160	102	179	113	267	192	165	93	56	54	45
19 20	174	150	99 106	213	108	254	188	158	83 76	57 52	55 55	41 48
20	168	139	106	203	107	205	219	155	76	52	55	48
21	153	130	109	181	107	224	159	166	71	49	54	48
22	152	120	115	170	114	336	127	174	63	53	53	42
23	144	117	133	199	128	342	128	146	60	71	52	38 35
24	127	112	141	178	125	328	147	127	58	68	50	35
25	116	112	157	164	122	418	152	116	56	. 59	48	41
26	104	141	167	154	122	513	130	103	56	54	46	58 52 53
27	98	202	153	146	113	506	139	80	57	50	44	52
28	123	190	137	141	108	341	175	90	56	49	46	53
29 30	138	160	129	135	103	369	201	136	61	93 255	46	58
30	105 89	113	124 119	127 122		464 487	231	93 88	125	236	42 42	51
TOTAL	5309	4797	3304	5049	3164	7641	9430	5730	2450	2318	1971	1258
MEAN	171	160	107	163	109	246	314	185	81.7	74.8	63.6	41.9
MAX	329 89	277	167	283	128	513	588	403	125 56	255 49	161 42	58
CFSM	2.03	1.90	74 1.27	108 1.94	97	96	127	80 2.20	.97	.89	.76	.50
IN.	2.35	2. 12	1.46	2.23	1.30	2.93 3.38	3.73 4.17	2.53	1.08	1.03	. 87	.56
-14.	2.33	2.12	1. 40	2.23	1. 40	3. 30	4.11	2. 33	1.00	1.03	.01	. 50

CAL YR 1979 TOTAL 79197 MEAN 217 MAX 1260 MIN 67 CFSM 2.58 IN 35.03 WTR YR 1980 TOTAL 52421 MEAN 143 MAX 588 MIN 33 CFSM 1.70 IN 23.19

01409810 WEST BRANCH WADING RIVER NEAR JENKINS, NJ -- Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1978 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: May 1978 to current year. WATER TEMPERATURES: May 1978 to current year.

INSTRUMENTATION. -- Water-quality monitor since May 1978.

REMARKS .-- Missing continuous water-quality records are the result of malfunction of the instrument.

EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURES: Maximum, 27°C July 23, 1978, July 26, 27, 1979; minimum, 0.0°C on several days during winter months.

EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURES: Maximum, 26.5°C July 21, Aug. 3; minimum, 1.0°C on several days during winter months.

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	N	1AX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBE	R			DECEMBE	R		JANUAR	Y
1								. 0	4.0	4.5	4.5	2.5	3.5
								1.5	3.5	4.0	4.5	4.0	4.0
2								1.0	3.0	3.5	4.0	3.5	4.0
4								5.0	3.0	4.0	3.0	2.5	2.5
5								. 5	3.5	4.5	2.0	1.5	2.0
6											2.0	1.5	2.0
6											2.5	1.0	2.0
8											3.5	2.5	3.0
9											3.0	2.0	2.5
10							-				2.0	1.0	1.5
											2.5	1.5	
11											2.5	1.5	
12													
13 14													
												2.5	5.0
15							-				6.0	2.5	5.0
16											4.5	1.0	2.5
17											3.0	1.5	2.0
18											6.0	3.0	5.0
19								2.0	1.0		7.0	5.0	6.0
20								2.5	1.5	2.0	6.0	4.0	4.5
20							4	2.5	1.5	2.0	0.0	4.0	4.5
21								3.5	2.0	3.0	5.0	4.5	4.5
22								5.0	3.5	4.0	5.5	5.0	5.5
23							6	. 0	4.5	5.0	6.0	4.0	5.0
24								7.0	5.5	6.0	5.0	2.5	4.0
25								.5	7.0	8.5	3.5	2.0	2.5
												0.5	2.5
26								3.5	7.0	7.5	4.0	2.5	3.5
27				14.0	11.0	12.5		. 5	5.0	5.5	4.5	1.0	3.0
28				11.5	10.0	11.0		0.0	4.0	4.5	2.0	1.0	1.5
29				10.5	7.0	9.0	5	.5	4.0	4.5	2.5	1.5	
30 31				6.5	5.0	6.0		5.5	4.0	5.0			
31								1.5	3.5	4.0			
MONTH				14.0	5.0	9.5		.5	1.0	4.5	7.0	1.0	3.5

01409810 WEST BRANCH WADING RIVER NEAR JENKINS, NJ--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

			TEMPERATURE,	WATER	(DEG.	C), WATER	YEAR OCTOBER	1979 TO	SEPTEMBER	1980		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARC	СН		APRIL			MAY	
1 2 3 4 5	===	===		3.0 2.5 3.5 4.5 6.0	1.0 1.0 1.0 1.5 4.0	2.0 2.0 2.0 3.0 5.0	9.5 10.5 12.5 12.5 12.0	6.0 7.0 8.5 11.5 10.5	7.5 9.0 10.5 11.5 11.0	12.5 16.0 18.0 19.5 20.0	11.5 11.5 13.0 15.5 15.5	12.0 13.5 15.5 17.5 18.0
6 7 8 9	===	===	==	7.0 8.0 10.5 11.0 10.5	4.5 7.5 9.0 7.0	5.5 6.0 9.0 10.0 8.5	13.5 14.0 15.5 14.0 16.0	9.0 10.5 12.0 13.0 12.5	11.0 12.5 13.5 13.5	21.0 21.0 19.0 16.0 17.0	17.5 18.0 15.0 13.0 12.5	19.5 19.5 17.0 14.5 15.0
11 12 13 14	4.0 5.0 5.5	2.5 2.5 3.5	4.0 4.5	9.5 6.5 5.5 3.5 5.5	7.0 5.0 4.0 4.0 2.0	8.5 6.0 4.5 4.0	16.5 16.0 18.0 16.5 16.5	13.5 13.5 15.0 13.5 13.5	15.0 15.0 16.5 14.5	17.5 19.0 21.5 21.0 19.5	15.0 16.5 18.0 19.0 17.0	16.5 17.5 19.5 20.0 18.0
16 17 18 19 20	5.0 3.5 3.5 4.5 6.0	4.0 2.0 1.5 2.0 3.0	5.0 3.0 3.0 3.5 4.5	6.5 9.0 11.0 9.5 10.0	3.0 5.5 9.0 7.5 8.0	4.5 7.0 10.0 8.5 9.0	14.5 12.0 13.5 15.5 16.0	10.5 8.0 9.5 10.5 12.5	12.5 10.0 11.5 13.0 14.5	18.5 18.5 18.0 19.5 19.0	15.0 15.0 16.5 16.0 18.0	17.0 17.0 17.0 18.0 18.5
21 22 23 24 25	7.5 6.5 8.5 8.5 7.5	4.5 6.0 6.0 7.5 6.0	6.0 6.0 7.0 8.0 6.5	10.5 9.5 8.5 8.0 7.5	9.5 6.0 4.5 6.5 7.0	10.0 7.5 6.5 7.0 7.0	18.0 16.5 16.0 17.0 18.0	14.0 12.5 11.5 12.5 15.0	15.5 14.5 14.0 15.0 16.5	18.0 20.0 21.5 21.5 22.0	16.5 15.5 18.0 19.5 19.5	17.0 17.5 20.0 20.5 21.0
26 27 28 29 30 31	6.0 4.5 4.0 3.5	4.0 2.5 2.5 2.0		8.0 9.0 9.0 9.0 10.5	6.0 6.5 6.5 8.5 9.0 7.0	7.0 8.0 8.0 7.5 9.5	16.0 13.5 13.0 13.0	13.5 13.0 12.5 12.0 12.0	15.0 13.0 12.5 12.5 12.5	20.5 19.0 18.5 20.0 19.0	18.0 15.5 15.0 17.5 17.0	19.5 17.5 17.0 18.5 18.0 18.5
MONTH	8.5	1.5	4.5	11.0	1.0	6.5	18.0	6.0	13.0	22.0	11.5	17.5
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY	t		AUGUST			SEPTEMB	ER
1 2 3 4 5	22.0 22.5 22.5 21.0 20.0	18.0 20.0 20.0 18.5 17.0	21.0	21.5 23.0 22.5 24.0 24.0	19.0 19.0 20.5 20.0 21.0	20.5 21.0 21.0 22.0 22.5	26.0 26.0 26.5 26.0 26.5	23.5 23.0 23.5 23.0 23.5	24.5 24.5 25.0 24.5 25.0	24.0 24.5 24.0 22.5 21.5	21.0 21.5 21.5 19.5 19.5	22.5 23.0 22.5 21.0 20.5
6 7 8 9	19.0 21.0 21.5 19.0 17.0	16.0 17.5 19.0 16.0 15.5	19.0	24.0 22.0 21.0 23.0 22.5	21.5 19.0 19.0 19.0 20.5	22.5 20.5 20.0 21.0 21.5	26.0 25.0 25.0 25.5 24.5	23.5 22.5 22.0 23.0 22.0	25.0 24.0 23.5 24.0 23.5	22.5 22.5 20.5 20.0 20.5	19.5 20.0 17.5 17.0 18.5	21.0 21.0 19.0 18.5 19.0
11 12 13 14	17.5 18.0 19.0 19.0 20.5	13.5 14.0 15.0 15.5 17.0	16.0 17.0	23.5 24.0 22.5 23.0 23.5	20.5 21.0 19.0 19.0 19.5	22.0 22.5 21.0 21.0 21.5	24.5 24.0 24.0 23.0 22.5	21.5 22.0 21.5 20.5 21.5	23.0 23.0 23.0 22.0 22.0	===	-1-	===
16 17 18 19 20	19.5 19.5 19.0 19.5 19.0	17.5 16.0 16.5 15.5 16.0	18.5 17.5 17.5 17.5 17.5	25.0 24.0 24.0 24.0 25.5	21.0 21.5 21.5 21.5 22.0	22.5 23.0 23.0 23.0 23.5	22.5 21.5 20.0 20.5 21.5	20.5 18.5 18.5 18.5 19.5	21.5 20.0 19.0 19.5 20.5	19.5 19.5	17.0 16.5	18.0 18.0
21 22 23 24 25	20.0 20.0 20.5 20.5 22.0	16.5 17.0 17.0 17.5 18.5	18.5 18.5 18.5 19.0 20.0	26.5 25.5 24.0 24.0 25.5	23.0 23.0 22.5 21.0 20.0	25.0 24.0 23.0 22.5	20.0 19.5 20.5 21.0 21.0	19.0 18.5 17.0 18.0 18.5	19.5 19.0 19.0 19.5 20.0	21.0 22.5 22.5 20.5 18.0	18.0 19.5 20.5 18.0 17.5	19.5 21.0 21.5 19.5 17.5
26 27 28 29 30 31	20.5 22.5 22.0 22.5 22.5	18.5 19.0 20.0 19.5 19.5	19.5 20.5 21.5 21.0 21.0	23.5 23.5 23.5 23.5 25.0 25.5	21.0 21.0 21.5 22.0 23.0	22.5 22.0 22.5 23.0 24.0	22.0 22.5 23.0 23.0 23.0 23.5	18.5 19.5 20.0 21.0 20.5 20.5	20.5 21.0 21.5 22.0 21.5 22.0	20.0 18.0 16.0 17.0 18.0	18.0 15.0 13.0 14.5 15.5	18.5 16.5 14.5 16.0 16.5
MONTH	22 5	12.5	19 5	26 E	10.0	22.0	26 5	17.0	22.0	211 5	12.0	10 5

MONTH

22.5 13.5 18.5

26.5 19.0

22.0

26.5 17.0 22.0 24.5 13.0 19.5

MULLICA RIVER BASIN

01409810 WEST BRANCH WADING RIVER NEAR JENKINS, NJ--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MA	K MIN	MEAN	MAX	MIN	MEAN
		OCTOBER	2		NOVEMBE	R		DECEME	BER		JANUAR	Y
1 2 3 4 5					===	===	49 40 38 3'	40 39 3 36	44 41 39 37 36	43 43 42 42 41	42 41 41 41 40	42 42 42 41 41
6 7 8 9				===	==	===		===	===	41 41 42 42 42	40 40 40 40 41	41 41 41 41 41
11 12 13 14				===	===	===	===		===	41 44	40 40	 41
16 17 18 19 20				===	===	===	 4 4	40	 41	45 45 45 45	41 44 41 41 44	44 44 44 44
21 22 23 24 25				===	===	===	41 41 45 45	41 5 41 5 44	42 43 44 45 45	44 44 45 45	41 41 44 41 40	44 43 44 44 41
26 27 28 29 30 31			•	54 54 53 50	47 53 50 45	52 53 51 46	45 46 46 44 41	5 44 5 43 4 43	44 45 45 44 43	43 44 43 43	40 40 41 41	41 42 43
MONTH				54	45	51	40	36	42	45	40	42
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MA	K MIN	MEAN	MAX	MIN	MEAN
DAY		MIN FEBRUARY		MAX	M IN MARCH	MEAN	MA	K MIN		MAX	MIN MAY	MEAN
DAY 1 2 3 4 5				38 37 38 39 39		MEAN 37 36 37 37 37 38	MA. 56 56 49 56	A PR I 48 49 48 48 48		MAX 47 47 47 47 46		MEAN 45 46 46 45
1 2 3		FEBRUARY	 	38 37 38 39	MARCH 37 36 36 36	37 36 37 37	50 50 49	APRI 10 48 10 48 10 48 10 48 10 48 10 48 10 48 10 48 10 48 10 48 10 47 10 47	1L 49 49 49	47 47 47 47	MAY 44 45 45 45	45 46
1 2 3 4 5 6 7 8 9		FEBRUARY	=======================================	38 37 38 39 39 39	37 36 36 36 37 38 38 37 38	37 36 37 37 38 39 38	51 55 44 51 55 51	A PRI 48 49 48 49 48 49 48 49 48 48 47 49 48 49 48 49 49 48	49 49 49 49 49 49 49	47 47 47 46 46 44 43	MAY 44 45 45 45 44 43 42 40	45 46 46 45 45 43
1 2 3 4 5 6 7 8 9 10 11 12 13 14	 40 40	FEBRUARY		38 37 38 39 39 39 39 39 39 39 39 39	MARCH 37 36 36 37 38 38 37 38 37 37 37 41	37 36 37 38 39 38 38 38 38 38 38	50 50 50 50 50 50 50 50 50 50 50 50 50 5	A PRI 48 49 48 49 48 49 48 48 48 47 48 49 49 48 49 47 48 47 48 47 48 48 47 48 48 48 49 49 49 48 48 49 49 49 48 48 49 49 49 48 48 49 49 49 48 48 49 49 49 49 48 48 49 49 49 49 49 49 49 49 49 48 49 49 49 49 49 49 49 49 49 49 49 49 49	49 49 49 49 49 49 49 48 48 49 50 50	477476 47746 4644334 44324 44324	MAY 44 45 45 44 43 42 40 39 41 41 41	4665 4665 453311 411 43322
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	40 40 40 40 40	FEBRUARY		3378 3378 3399 3399 3399 411 3468 488 487	MARCH 37 36 336 337 38 38 38 37 37 41 46 47 45	37 36 37 38 39 38 38 38 38 38 38 47 46 46	50 50 50 50 50 50 50 50 50 50 50 50 50 5	A PRI 48 49 48 49 48 47 47 47 48 41 49 48 47 48 47 48 48 48 48 48 48 48 48 48 48 48 48 48	49 49 49 49 49 49 48 49 500 49 48 47 47 45 44	47776 64334 43222 1332 44444 4444 4444	MAY 44 45 45 44 43 42 40 39 41 41 40 359 40	456465 455 4533411 411 4332221 411 390241
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 223 224 25 26 7 28	40 40 40 40 40 40 40 40 40 40 40 40 40 4	FEBRUARY	40 40 40 40 40 40 40 40 40 40 40 40 40 4	878999 999999 111868 488747 7 489999 499999	MARCH 376663367 3887836 377716 45553 4467846 478748	376778 338888 33888 47 76666 447899 48889 497 488889	555545 555545 555544 44444 44444 44444	A PRI 48 49 48 49 48 49 47 47 48 47 48 47 48 47 48 47 48 47 48 47 48 48 47 48 48 48 48 48 48 48 48 48 48 48 48 48	11	77776 64334 43222 13322 21100 08141	MA 445554 32209 12110 559001 099998 555528 4333333 333348	46665 4533111 433221 411 410039
1 2 3 4 5 6 7 8 9 10 11 2 13 14 5 16 7 18 19 0 21 22 3 4 2 5 2 6 2 7	40 40 40 40 40 40 40 40 40 40 40 40 40 4	FEBRUARY	40 40 40 40 40 40 40 40 40 40 40 40 40 4	878999 9999999 111868 4887747 489994 499949	MARCH 3766337 8887836 777146 47553 446 448747	376778 37878 378888 378888 378888 47746666 447489 447489 447489 448848	55 55 55 55 55 55 55 55 55 54 54 54 54 5	A PRI 48 49 48 49 48 49 47 47 47 48 47 48 47 48 47 48 47 48 47 48 47 48 47 48 47 48 47 48 47 48 48 48 48 48 48 48 48 48 48 48 48 48	11	77776 64334 43222 13322 21100 0814 44444 4444 4444 4444 4444 4444 4444	MAY 44554 44554 44209 41210 33908 55552	46665 433111 433221 902111 1110

01409810 WEST BRANCH WADING RIVER NEAR JENKINS, NJ--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMB	ER
1 2 3 4 5	38 38 39 40 38	35 35 34 38 34	36 37 37 39 37	48 42 37 36 36	42 37 35 34 34	46 39 36 35 35	57 47 40 36 29	47 40 35 29 25	53 44 37 33 28	29 29 30 31 31	23 23 25 29 29	26 26 28 30 30
6 7 8 9	37 39 40 39 38	35 36 38 35 36	36 39 39 37 36	34 31 31 30 30	31 30 30 29 29	32 31 31 30 30	28 24 24 23 23	24 23 22 21 22	26 23 23 22 22	31 32 32 32 32	29 30 28 28 28	30 31 31 29 31
11 12 13 14 15	37 39 44 43	34 34 39 41 41	36 36 42 42 42	30 30 30 30 29	29 29 29 29 28	30 30 29 29	23 33 34 33 26	18 22 32 26 25	21 29 33 29 26	===	===	===
16 17 18 19 20	43 41 41 38 37	40 40 37 33 33	41 41 39 36 34	29 29 32 33 33	28 28 28 32 29	29 30 32 31	26 26 27 26 26	25 25 26 25 25	25 26 26 26 26	===	===	===
21 22 23 24 25	33 33 33 33 33	32 32 32 32 32	32 33 33 33 32	29 30 39 38 34	27 27 28 34 31	28 28 36 36	26 27 27 28 26	25 26 25 22 22	26 26 26 25 24	==	===	===
26 27 28 29 30 31	33 32 32 41 48	32 31 31 31 41	33 31 31 32 44	28 26 39 62 65	24 22 22 41 57	26 23 29 57 61	28 26 26 35 33 30	22 22 23 23 28 27	25 23 24 31 31 29		===	===
MONTH	48	31	37	65	22	33	57	18	28	32	23	29

01409815 WEST BRANCH WADING RIVER AT MAXWELL, NJ (National stream-quality accounting network station)

LOCATION.--Lat 39°40'30", long 74°32'28", Burlington County, Hydrologic Unit 02040301, at bridge on State Highway 563 in Maxwell, 1.6 mi (2.6 km) southeast of Washington, 1.8 mi (2.9 km) southwest of Jenkins, and 2.2 mi (3.5 km) upstream from confluence with Oswego River.

DRAINAGE AREA. -- 85.9 mi2 (222.5 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to current year.

REMARKS.--Water-stage recorder and water-quality monitor located at station 01409810.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
OCT	1030	141	40	4.5	0.0	2.0	0.0	1.0	47	74
29 NOV	-				9.0		9.9		41	14
27 DEC	1100	207	45	4.3	12.5	3.0	8.9	>.2		
06	1100	72	36	4.5	5.5	2.0	11.2	1.0		44
JAN 29	1100	134	41	4.5	2.5	1.5	9.2	.5		K34
FEB 28	1300	108	36	4.7	3.0	1.5	12.5	1.0	<1	
MAR 19	1000	259	42	4.2	7.5	1.0	10.0	2.3	<1	130
APR 23	1000	116	38	4.6	12.5	2.4	8.9	.5	<1	230
MAY 15	1100	161	41	4.5	18.0	3.5	7.9	1.3	6	1200
JUN 18	1030	93	38	4.5	18.5	2.5	8.3	1.2	16	270
JUL 23	0945	69	32	4.5	22.5	6.0	7.0	•7	140	1000
AUG										
07 SEP	1130	62	26		24.0	5.6	7.1	.8	K13	520
16	1300	36	29	4.7	18.0	2.5	8.7	.9	K 18	190
	HARD- NESS (MG/L	CALCIUM DIS- SOLVED	MAGNE- SIUM, DIS- SOLVED	SODIUM, DIS- SOLVED	POTAS- SIUM, DIS- SOLVED	ALKA- LINITY (MG/L	SULFATE DIS- SOLVED	CHLO- RIDE, DIS- SOLVED	FLUO- RIDE, DIS- SOLVED	SILICA, DIS- SOLVED (MG/L
DATE	CACO3)	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	(MG/L AS K)	AS CACO3)	(MG/L AS SO4)	(MG/L AS CL)	(MG/L AS F)	AS S102)
OCT	CACO3)	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	(MG/L AS K)	CACO3)	AS SO4)	AS CL)	(MG/L AS F)	S102)
OCT 29 NO V	CAC03)	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	(MG/L AS K)	CACO3)	AS SO4)	AS CL)	(MG/L AS F)	\$102) 4.0
OCT 29 NOV 27 DEC	CACO3) 3 3	(MG/L AS CA)	(MG/L AS MG) .4	(MG/L AS NA) 2.1 2.2	(MG/L AS K)	0 0	4.1 5.0	3.8 4.2	(MG/L AS F)	4.0 4.5
OCT 29 NOV 27 DEC 06	CAC03)	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	(MG/L AS K)	CACO3)	AS SO4)	AS CL)	(MG/L AS F)	\$102) 4.0
OCT 29 NOV 27 DEC 06 JAN 29	CACO3) 3 3	(MG/L AS CA)	(MG/L AS MG) .4	(MG/L AS NA) 2.1 2.2	(MG/L AS K)	0 0	4.1 5.0	3.8 4.2	(MG/L AS F)	4.0 4.5
OCT 29 NOV 27 DEC 06 JAN 29 FEB 28	3 3 3	(MG/L AS CA) .5 .6	(MG/L AS MG) .4 .3	(MG/L AS NA) 2.1 2.2 2.0	(MG/L AS K) .5 .6	0 0	4.1 5.0 4.7	3.8 4.2 3.2	(MG/L AS F) .1 .0	4.0 4.5 5.5
OCT 29 NOV 27 DEC 06 JAN 29 FEB 28 MAR 19	3 3 3 3	(MG/L AS CA) .5 .6 .6	(MG/L AS MG) .4 .3 .4	(MG/L AS NA) 2.1 2.2 2.0 2.1	(MG/L AS K) .5 .6 .5	0 0 1	4.1 5.0 4.7 6.8	3.8 4.2 3.2 4.0	(MG/L AS F) .1 .0 .0	4.0 4.5 5.5 4.7
OCT 29 NOV 27 DEC 06 JAN 29 FEB 28 MAR 19 APR 23	3 3 3 3 3	(MG/L AS CA) .5 .6 .6 .7	(MG/L AS MG) .4 .3 .4 .4	(MG/L AS NA) 2.1 2.2 2.0 2.1	(MG/L AS K) .5 .6 .5 .5	0 0 1 0	4.1 5.0 4.7 6.8 6.1	3.8 4.2 3.2 4.0 3.4	(MG/L AS F) .1 .0 .0	4.0 4.5 5.5 4.7
OCT 29 NOV 27 DEC 06 JAN 29 FEB 28 MAR 19 APR 23 MAY 15	3 3 3 3 3 3	(MG/L AS CA) .5 .6 .6 .7 .7	(MG/L AS MG) .4 .3 .4 .4 .4	(MG/L AS NA) 2.1 2.2 2.0 2.1 1.9	(MG/L AS K) .5 .6 .5 .5	0 0 1 0	4.1 5.0 4.7 6.8 6.1 5.8	3.8 4.2 3.2 4.0 3.4 3.6	(MG/L AS F) .1 .0 .0 .0	4.0 4.5 5.5 4.7 4.7
OCT 29 NOV 27 DEC 06 JAN 29 FEB 28 MAR 19 APR 23 MAY 15 JUN 18	3 3 3 3 3 3 3	(MG/L AS CA) .5 .6 .6 .7 .7	(MG/L AS MG) .4 .3 .4 .4 .4 .3	(MG/L AS NA) 2.1 2.2 2.0 2.1 1.9 2.1	(MG/L AS K) .5 .6 .5 .5 .5	CACO3) 0 0 1 0 0 0 1 0 0 0	4.1 5.0 4.7 6.8 6.1 5.8	3.8 4.2 3.2 4.0 3.4 3.6 3.7	(MG/L AS F) .1 .0 .0 .0	4.0 4.5 5.5 4.7 4.7 3.3
OCT 29 NOV 27 DEC 06 JAN 29 FEB 28 MAR 19 APR 23 MAY 15 JUN 18 JUN 18 JUN 23	3 3 3 3 3 3 3 3	(MG/L AS CA) .5 .6 .6 .7 .7 .7	(MG/L AS MG) .4 .3 .4 .4 .4 .3 .3	(MG/L AS NA) 2.1 2.2 2.0 2.1 1.9 2.1 1.9	(MG/L AS K) .5 .6 .5 .5 .5	CACO3) 0 0 1 0 0 0 0 0 0 0	4.1 5.0 4.7 6.8 6.1 5.8 5.2	3.8 4.2 3.2 4.0 3.4 3.6 3.7	(MG/L AS F) -1 .0 .0 .0 .1 .0	4.0 4.5 5.5 4.7 4.7 3.3 3.4
OCT 29 NOV 27 DEC 06 JAN 29 FEB 28 MAR 19 23 APR 23 MAY 15 JUN 18 JUL 23 AUG 07	CACO3) 3 3 3 3 3 3 3 2	(MG/L AS CA) .5 .6 .6 .7 .7 .7 .6 .5	(MG/L AS MG) .4 .3 .4 .4 .4 .3 .3	(MG/L AS NA) 2.1 2.2 2.0 2.1 1.9 2.1 1.9 2.3	(MG/L AS K) .5 .6 .5 .5 .6 .5 .4	CACO3) 0 0 1 0 0 0 0 0 0 0	4.1 5.0 4.7 6.8 6.1 5.8 5.2 3.9	3.8 4.2 3.2 4.0 3.4 3.6 3.7 3.5	(MG/L AS F) .1 .0 .0 .0 .1 .0	4.0 4.5 5.5 4.7 4.7 3.3 3.4 3.5
OCT 29 NOV 27 DEC 06 JAN 29 FEB 28 MAR 19 APR 23 MAY 15 JUN 18 JUL 23 AUG	CACO3) 3 3 3 3 3 3 3 3 3 3 3 3	(MG/L AS CA) .5 .6 .6 .7 .7 .7 .6 .5 .5	(MG/L AS MG) .4 .4 .4 .3 .3 .3	(MG/L AS NA) 2.1 2.2 2.0 2.1 1.9 2.1 1.9 2.3 1.8	(MG/L AS K) .5 .6 .5 .5 .6 .5 .4 .3	CACO3) 0 0 1 0 0 0 0 0 0 5	4.1 5.0 4.7 6.8 6.1 5.8 5.2 3.9 4.7 3.4	3.8 4.2 3.2 4.0 3.4 3.6 3.7 3.5 3.7	.1 .0 .0 .0 .1 .0 .0	4.0 4.5 5.5 4.7 4.7 3.3 3.4 3.5 4.1

01409815 WEST BRANCH WADING RIVER AT MAXWELL, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

		W	AIER QUA	LIII DAIA	, WAIER I	EAR OCTOB	ER 19/9	O SEPIEM	DER 1900		
DA	ATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. FINER THAN .062 MM	(MG/L	NO2+NO	NITRO GEN, AMMONI	AMMONÍA A DIS- SOLVEI (MG/L	NITRO- GEN, ORGANIC	ORGANIC
ост											
NOV		24	11	4.2	56	.02	. 02	.03	.030	.28	.25
	7	21	23	13	21	.01	.0	.01	0 .010	.35	.22
06	5	20	6	1.2	43	.02	.0	. 04	.040	.28	.28
		25	6	2.2	11	.02	. 02	. 04	0 .040	.11	.10
	3	19	7	2.0	7		. 02	. 26	0 .030	.34	.34
		23	11	7.7	4	.03	. 03	. 04	0 .040	.06	.05
APR 23	3	24	8	2.5	52	.01	.0	.02	0 .020	.13	.07
MAY 15	5	21	12	5.2	57	.01	.00	.00	0 .000	.29	.01
JUN	3	20	10	2.5	41						
JUL		22	15	2.8	59						4
AUG		28	9	1.5	54						
SEP	5	20	9	. 87	50						
10		20	,	.01	50	. 02	.02			, , , , ,	.00
DA	TE	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, NH4 + ORG. SUSP. TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, DIS- SOLVED (MG/L AS N)	NITRO- GEN,	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOL VE (MG/L AS P)	, CARBON, ORGANIO D TOTAL (MG/L	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED (MG/L AS C)
ОСТ		24	0.2		20	22	044				
NOV		.31	.03	.28	. 30						77
DEC		.36	. 13	. 23							
JAN		.32	.00	• 32	• 33						
FEB		. 15	.01	. 14	. 16						
MAR		.60	.23	• 37	. 39		.020	.01			.1
19 APR		.10	.01	.09	. 12	.13	.010	.01	0 7.8		
23 MAY	3	. 15	.06	.09	. 10	. 16	.020	.00	0 5.2		
15 JUN		.29	.28	.01	.01	.30	.040	.00	0	7.3	1.2
	3	.30				.31	.020	.00	0 5.6		
	3	• 37	. 10	. 27	.28	. 38	.070	.00	0 10		
		. 16	. 13	.03	.05	. 18	.040	.00	0		E5.0
	· · · ·	. 12	.05	.07	.09	. 14	.000	.00	0		
	TIN		NIC PER AL TOT /L (UC	JS- ARSI NDED DI TAL SOI G/L (U	ENIC TO IS- RE LVED ER G/L (U	IUM, SU TAL PEN COV- RE ABLE ER G/L (U	DED BAR COV- DI ABLE SOL G/L (U	IUM, T S- R VED E G/L (DMIUM SOTAL PE ECOV- RE RABLE ER UG/L (U	COV- D ABLE SOI G/L (U	CHRO-MIUM, MIUM TOTAL IS- RECOV- LVED ERABLE G/L (UG/L
DATE		AS									CD) AS CR)
10 V 27 EB	110	00	2	0	2	20	0	20	0	0	0 10
28	130	00	3	1	2	<50	<30	20	8	0	8 <10
15 UG	110	00	1	0	1	<50		20	7	0	7 <10
07	113	30	3	1	2	200	100	100	3	3	0 20

01409815 WEST BRANCH WADING RIVER AT MAXWELL, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAT	E		M, S- DED OV. /L	CHRO- MIUM, DIS- SOLVEI (UG/L AS CR	D ERA	LT, CAL COV- ABLE CO)	SUS- PENDE RECC ERAF (UG, AS (ED OV- BLE /L	COBALT DIS- SOLVEI (UG/I AS CO	r, i	OPPER TOTAL RECOV- ERABLI (UG/L AS CU	, SU PE RI E EI	PPER, US- UNDED ECOV- RABLE UG/L S CU)	(UG	VED	ERA (UC	ON, TAL COV- ABLE G/L FE)	PEN REC ERA (UC	IDED OV-	IRO DI SOL (UG AS	S- VED /L
NOV 27.			0	10	0	0		0		0		4	0		4		1800		300		520
FEB 28.			0	<10	0	2		0		2	:	2	1		1		800		270		530
MAY 15.				<10	0	0		0		0		2	0		2	:	2300		800		460
AUG 07.			10	10	0	3		3		0		0	0		0		3600	3	300		270
DAT	E	ERA (UG	AL OV- BLE	LEAD, SUS- PENDE! RECOV- ERABL! (UG/L AS PB	E SOI	ID, IS- VED G/L PB)	MANO NESI TOTA RECO ERAH (UG/ AS N	E, AL OV- BLE /L	MANGA NESE, SUS- PENDE RECOV (UG/L AS MN	ED . S	MANGA NESE, DIS- SOLVEI (UG/L AS MN	TO RI D EI (U	RCURY OTAL ECOV- RABLE IG/L B HG)	PEN REC ERA (UG	DED OV- BLE	SOI (U	CURY IS- VED G/L HG)	ERA (UC	OV-	PEN REC ERA (UG	DED OV- BLE
NOV																					
FEB			2		1	1		20		0	2		. 1		.0		<.1		3		2
MAY			3		3	0		10		0	1		<.1		.0		<.1		1		0
15. AUG 07.			3 12	1:	3	0		10		0	10		.1				<.1		33		32
	DA	TE	(U(S- I LVED S	SELE- NIUM, TOTAL (UG/L AS SE)	NIU SU PEN TOT	JS- NDED TAL	SOL (UG	M, S- VED	TOTAL RECO ERABI (UG/I	R, L I V- I LE I	ILVER, SUS- PENDEI RECOV- ERABLI (UG/L AS AG	SIL E SO	VER, DIS- DLVED IG/L S AG)	TO RE ER (U	NC, TAL CCOV- ABLE G/L ZN)	PE RE ER (U	NC, US- NDED COV- ABLE G/L ZN)	SO (U	NC, IS- LVED G/L ZN)	
	NOV 27			1	0		0		0		0	() .	0		20		20		0	
	FEB			1	0		0		0		0			0		120		0		120	
	MAY			0	0		0		0		0			0		20		0		20	
	AUG			1	0		0		0		0)	0		10		0		10	
					DATE			BIOM TOT DR WEI	TON ASS AL E Y GHT	PERIA PHYTO BIOMAS ASH WEIGH	ON I	HLOR - A PERI - PHYTOM HROMO- RAPHIC LUOROM MG/M2)	PE PH CHR GRA	OR-B CRI- IYTON OMO- PHIC JOROM G/M2)	PH RA PE PH	OMASS ORO- IYLL ITIO CRI- IYTON IITS)					
				1	DEC 06		36		630	.0	70	1.88		. 150	29	18					
				1	MAY 15		21		315	. 1		.030)	.000	526						
				1	AUG 07		14		551	. 3		.090		.000	174						
					01				55.	• 3	, ,	. 090		. 000							

01409815 WEST BRANCH WADING RIVER AT MAXWELL, NJ--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

DATE TIME			27,79 100		19,80		15,80 100		18,80 030
TOTAL CELLS	S/ML		350		0		52		170
DI VERSITY:	DIVISION .CLASS .ORDERFAMILYGENUS		0.9 0.9 1.4 1.5		0.0 0.0 0.0 0.0		0.8 0.8 0.8 0.8		1.8 1.8 2.2 2.4 2.4
ORGANISM		CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
ORGANISM		/HL	CENI	/ ML	CENT	/ HL	CENT	/ HL	CENT
CHLOROPHYO CHLOROCOO OOCYSTAG	CCALES CEAE							12	•
ANKIST		95#	28		-			13	8
SELENAS		95#	-				_		_
SCENEDE:	SMACEAE								
SCENED	ES		-		-		-	26#	15
	OM ON A DA CEAE	-				124	25	20#	22
CHLAM Y	DOMONAS	5	1		-	13#	25	39#	23
CHR YSO PH YTA BACILLARIO CENTRALES COSCINOS	OPHYCEAE S DISCACEAE	210#	61		_		-	13	8
PENNALES									
COCCON		5	1		-		-		/-
EUNOTIA		25	7		_		-		_
NA VICUL									
NA VICUI		5	1		-		-		-
PINNUL			-		-		-		-
NITZSCI .CHR YSO PH YO CHR YSO MOI	HIA CEAE NA DA LES		-		-		-		•
DINOBR			-		-		-		-
CRYPTOPHYT. CRYPTOPHYC. CRYPTOMOL CRYPTOM	NA DA LES ONA DA CEAE				_		_	39#	23
C YA NO PH YT A C YA NO PH YT A C HROOCOC CHROOCOC HOROGON HORMOGON	CALES CCACEAE FIS		-		÷	39#	75	39#	23
OSCILLA									
OSCILL			-		-		-		-
PHORMI	DI OH		-		-	155	-		-

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

01409815 WEST BRANCH WADING RIVER AT MAXWELL, NJ--Continued PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

DATE TIME	JUL 2	23,80 945	AUG 1	7,80 130		16,80 300
TOTAL CELLS/ML	1	100	1	400		230
DIVERSITY: DIVISION .CLASSORDERFAMILYGENUS	(0.4		1.2 1.3 1.8 1.9 2.4		1.1 1.1 1.2 1.2
ORGANISM	ELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE .CHLOROCOCCALESOOCYSTACEAE						
ANKISTRODESMUS		-				
SELENASTRUM		_	==		13	6
SCENEDESMACEAE		_				-
VOL VOCALES CHLAM YDOM ON A DA CEAE						
CHLAM YDOM ONAS		-	260#	19	39#	17
CHR YSO PH YTA .BACILLARIO PH YCEAE .CENTRALESCOSCINODISCACEAE						
CYCLOTELLAPENNALESACHNANTHACEAE		-		-		-
COCCONEIS		-		-		-
EUNOTIACEAE	14	1		-		-
NAVICULACEAE	4.0	1				
NA VICULA PINNULARIA	14	1	14	1	==	
NITZSCHIACEAE						
NITZSCHIA .CHR YSO PH YCEAE CHR YSOM ONA DA LES		-	14	1		-
OCHROMONA DACEAE DINOBRYON		-	160	12		-
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAECRYPTOMONADALES						
CRYPT OM ONA DA CEAE						
CRYPT OM ONAS	43	4		-	13	6
CYANOPHYTA (BLUE-GREÉN ALGAE) .CYANOPHYCEAE CHROOCOCCALES CHROOCOCCACEAE						
ANACYSTISHORMOGONALESOSCILLATORIACEAE		Ţ	210#	15	-	-
OSCILLATORIA		-	270#	20	170#	72
PHORMIDIUM	1100#	94	430#			•

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

01410000 OSWEGO RIVER AT HARRISVILLE, NJ

LOCATION.--Lat 39°39'47", long 74°31'26", Burlington County, Hydrologic Unit 02040301, and right bank 50 ft (15 m) downstream from bridge on State Highway Spur 563 at Harrisville, and 0.5 mi (0.8 km) upstream from confluence with West Branch Wading River.

DRAINAGE AREA .-- 64.0 mi2 (165.8 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1930 to current year. Monthly discharge only for some periods, published in WSP 1302. Prior to October 1955, published as "East Branch Wading River at Harrisville".

GAGE.--Water-stage recorder. Concrete control since June 23, 1939. Datum of gage is 4.62 ft (1.408 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good except those above 200 ft³/s (5.7 m³/s), which are fair. Figures given herein represent flow over main spillway and through bypass channel. Flow regulated by Harrisville Pond 200 ft (61 m) above station, capacity, about 30,000,000 gal (114,000 m³) and by ponds and cranberry bogs 5 to 10 mi (8 to 16 km) upstream.

AVERAGE DISCHARGE. -- 50 years, 89.0 ft3/s (2.520 m3/s), 18.88 in/yr (480 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,390 ft³/s (39.4 m³/s) Aug. 20, 1939, gage height, 9.54 ft (2.908 m), from high-water mark in gage house, from rating curve extended above 640 ft³/s (18.1 m³/s); no flow part of Oct. 26, 1932, June 10, 1970, and May 29, 30, 1974, while pond was filling.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 344 ft³/s (9.74 m³/s) Apr. 11, gage height, 4.12 ft (1.256 m); minimum, 22 ft³/s (0.62 m³/s) Sept. 25, gage height, 2.77 ft (0.844 m).

		DISCH	HARGE, IN	CUBIC FE	ET PER SE	COND, WA	TER YEAR O	CTOBER 19	79 TO SEP	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	197 176 160 129 116	73 73 92 106 106	101 90 82 78 76	100 97 93 90 95	75 69 63 81 82	65 71 67 68 72	280 284 244 253 280	221 233 213 181 150	70 67 75 75 65	80 78 67 73 67	73 70 62 63 58	31 30 32 26 27
6 7 8 9	121 119 108 95 114	96 86 81 75 73	75 86 83 77 74	95 94 97 92 87	74 69 67 67	74 72 76 77 78	244 200 173 187 296	134 123 121 122 116	70 58 67 61 74	63 57 54 54 65	61 45 47 50 45	27 27 26 26 41
11 12 13 14 15	157 166 164 172 162	80 125 135 136 129	72 73 80 85 80	94 153 147 129 121	66 66 65 65	95 91 95 176 184	332 301 271 229 214	123 152 168 153 118	72 67 76 68 70	45 50 53 50 45	42 65 72 68 63	24 25 26 27 32
16 17 18 19 20	134 120 113 105 97	114 107 97 89 86	76 81 78 77 79	113 107 102 116 113	74 80 75 72 72	156 139 150 144 131	188 152 142 120 98	95 83 110 113 118	85 71 70 68 65	41 49 52 55 55	58 49 45 44 43	28 27 33 30 31
21 22 23 24 25	92 84 77 71 67	87 92 90 77 78	78 84 94 105 132	104 101 112 108 101	73 77 85 87 87	147 184 195 165 221	104 109 102 102 101	121 121 113 100 93	60 58 54 55 45	55 50 50 51 51	41 40 38 37 35	29 31 25 24 26
26 27 28 29 30 31	67 66 65 65 68 71	90 106 110 109 107	138 128 118 112 109 105	96 91 89 86 82 79	87 82 78 75	243 251 180 186 218 230	99 106 128 149 164	87 79 83 70 71 73	47 49 55 58 99	49 46 41 74 98 84	35 34 33 35 34 38	28 25 24 24 23
TOTAL MEAN MAX MIN CFSM IN.	3518 113 197 65 1.77 2.04	2905 96.8 136 73 1.51 1.69	2806 90.5 138 72 1.41 1.63	3184 103 153 79 1.61 1.85	2145 74.0 87 63 1.16 1.25	4301 139 251 65 2.17 2.50	5652 188 332 98 2.94 3.29	3858 124 233 70 1.94 2.24	1974 65.8 99 45 1.03 1.15	1802 58.1 98 41 .91	1523 49.1 73 33 .77 .89	835 27.8 41 23 .43

CAL YR 1979 TOTAL 52406 MEAN 144 MAX 834 MIN 57 CFSM 2.25 IN 30.46 WTR YR 1980 TOTAL 34503 MEAN 94.3 MAX 332 MIN 23 CFSM 1.47 IN 20.05

01410000 OSWEGO RIVER AT HARRISVILLE, NJ -- Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962-63, 1976 to current year.

COOPERATION.--Selected field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 10	1030	103	40	4.4	12.0	9.5	1.0	<20	6
FEB 06	0900	73	48	4.3	1.5		E1.1	<20	<2
A PR 01	0840	278	59	4.4	5.0	11.4	1.0	<20	2
MAY 28	0945	87	36	4.6	18.5	8.9	.9	<20	5
JUL 10	1045	70	37	4.9	23.5	6.7	.7	<20	2
AUG									540
12 SEP	0900	70	39		24.5	7.6	1.3	<20	
24	1030	24	36	4.4	21.0	8.2	<1.1	<20	14
DATE	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT									
10 FEB	4	.8	. 4	3.5	. 6	0		3.5	3.9
06 APR	4	.8	• 5	2.8	. 9	0		6.5	4.3
01 MAY	4	.8	.5	2.0	.6	0		5.6	3.3
28 JUL	4	1.0	. 4	3.5	.5	0	.0	4.2	3.8
10 AUG	4	.6	.5	2.2	.6	0		5.0	4.5
12 SEP	3	.7	. 4	2.4	.8	0		4.8	3.6
24	4	.8	.6	3.0	• 9	0	.0	7.5	16
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 10	.0	4.9	24	<1.0	. 280	.38	.66	.01	4.5
FEB 06	.0	6.4	29	E. 10	.080	.28	.36	<.01	6.9
A PR 01	.0	2.8	32	<.02	.030			<.01	5.7
MAY 28	.0	4.9	22	<.05	.070	.10	. 17	.07	4.9
JUL 10	.0	6.2		<.05	.110	. 28	.39	.11	4.6
AUG			26		.260	. 16	.42		
12 SEP	.1	7.9		<.05				.06	5.7
24	.0	9.0	60	<.05	. 100	. 25	• 35	.06	2.1

277

MULLICA RIVER BASIN

01410000 OSWEGO RIVER AT HARRISVILLE, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	NIT GEN, + OR TOT BOT (MG AS	G. GAN IN TOT MAT BOT /KG (G/	OR- INOR NIC, ORGA IN TOT. MAT BOT 'KG (G.	BON, RG + AL ANIC IN IN D MAT SO /KG (U	LVED T	SENIC TO OTAL I	TOTAL N BOT- DM MA- TERIAL (UG/G	TOTAL RECOV- ERABLE (UG/L	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	FM BOT- TOM MA- TERIAL (UG/G
OCT 10	1030	40	0	.0	1.8	22	-	0				<10
MAY 28	0945					110	1		0	20	C	
SEP 24	1030					120	1		0	20	C	
DA	M T R E	HRO- IUM, OTAL ECOV- RABLE UG/L S CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	FM BOT TOM MA TERIA (UG/G	IRON, TOTAL RECOV L ERABI (UG/L	FM BO V TOM M LE TERI L (UG/	V. LEAD T- TOTA A- RECO AL ERAB G (UG/	L FM B OV- TOM LE TER L (UC	OV. NOT- TMA- RIAL E	IANGA- IESE, OTAL IECOV- CRABLE UG/L S MN)
ост			410	410			•	21	00		410	
MAY	3	10	<10	<10	2	<1	- 120	21	00	4	<10	10
SEP		10			2					3		20
DA	R FM TC T	ANGA- ESE, ECOV. BOT- M MA- ERIAL UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	FM BOT TOM MA TERIA (UG/G	SELE- NIUM, L TOTAI	IN BO TOM M TERI	, ZINC L TOTA T- RECO A- ERAB AL (UG/	L FM B V- TOM LE TER L (UC	OV. OT- MA- IAL PH	UG/L)
)	<10		.00		<1	0 -		0		10	- 22
	3		<.1		. 1	-	_	0		10		6
SEP 24	1		<.1		3	-	-	0		20		3
DA	IN TC	PCB, OTAL BOT- M MA- ERIAL G/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOM MA	- IN BOT - TOM MA L TERIA	TOTA I IN BO A TOM M AL TERI	N, ELDRI L TOTA T- IN BO A- TOM M AL TERI	N, ENDR L TOT T- IN B A- TOM AL TER	AL TO IN MA- TO IAL T	CHION, COTAL BOT- M MA- ERIAL G/KG)
OCT	·	0	.0	0	. 6		9 1.	2	.0	.0	.0	.0
	3			4-		-		-				
SEP 24	· · · ·				-	4						
DA	C T IN TC	EPTA- HLOR, OTAL BOT- M MA- ERIAL G/KG)	HE PTA - CHLOR E POXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	BOTTO MATL	PARA- THION N TOT. I M BOTTO MATI	TRI N, THIO IN TOT. OM BOTT L. MAT	THION, TOTA IN IN BOOM TOM M L. TERI	N, PHE L TOT T- IN E A- TOM AL TER	NE, TO TO THE TOTAL TOTA	TRI- CHION, OTAL BOT- M MA- CERIAL G/KG)
MAY		.0	.0	.0	.0		ο .	. 0	.0	.0	0	.0
SEP					-	-	-	-		77		
24	1				7.7	-	-			77		

01410150 EAST BRANCH BASS RIVER NEAR NEW GRETNA, NJ

LOCATION.--Lat 39°37'23", long 74°26'30", Burlington County, Hydrologic Unit 02040301, on left bank upstream of bridge on Stage Road, 0.7 mi (1.1 km) west of Lake Absegami, 2.2 mi (3.5 km) north of New Gretna, and 5.3 mi (8.5 km) upstream from mouth.

DRAINAGE AREA .-- 8.11 mi2 (21.00 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- Occasional low-flow measurements, water years 1969 to 1974. January 1978 to current year.

GAGE. -- Water-stage recorder. Altitude of gage is 5 ft (1.5 m), from topographic map.

REMARKS .-- Water-discharge records fair. Some regulation by Lake Absegami.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 260 ft³/s (7.36 m³/s) July 4, 1978, gage height, 5.87 ft (1.789 m); minimum, 8.3 ft³/s (0.24 m³/s) Aug. 11, 1980, gage height, 3.86 ft (1.177 m).

EXTREMES FOR CURRENT YEAR.--Maximum discharge 67 ft 3 /s (1.90 m 3 /s) Apr. 10, gage height, 5.26 ft (1.603 m); minimum, 8.3 ft 5 /s (0.24 m 3 /s) Aug. 11, gage height, 3.86 ft (1.177 m).

		DISC	HARGE, IN	CUBIC FE	T PER SE	COND, WAT		CTOBER 19	79 TO SEP	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	27 23 20 17 17	15 15 20 24 20	15 14 14 14 14	17 17 16 15 16	12 11 12 14 15	9.9 10 9.9 9.9	43 36 30 34 41	54 43 35 31 29	17 16 16 20 17	27 18 15 17 15	13 12 11 12 11	12 12 11 10
6 7 8 9	22 20 17 16 24	17 16 15 15	14 18 17 15	16 17 16 16	14 14 13 13 12	11 10 11 11	34 29 27 34 63	28 27 27 27 26	15 15 27 35 27	13 13 12 12 15	9.9 9.7 9.3 9.1 8.8	9.6 9.4 9.2 9.2 9.0
11 12 13 14 15	31 26 27 29 25	19 30 28 23 19	14 13 15 17 15	20 27 24 19 16	11 11 11 11	15 14 14 34 31	46 36 33 32 34	25 25 25 24 23	23 19 17 16 15	15 13 12 11	8.8 16 18 12 10	10 11 9.8 9.0 9.6
16 17 18 19 20	21 20 19 19 18	18 17 17 16 16	14 14 13 13	15 15 15 21 20	13 14 12 11	21 17 23 22 18	32 29 27 27 26	21 21 23 26 25	21 21 17 16 15	11 11 12 11	9.5 9.1 8.9 9.0 8.9	10 11 10 11 12
21 22 23 24 25	18 18 17 16 16	16 16 15 15	13 14 15 16 18	16 15 19 17 15	11 12 13 13 12	23 28 25 21 35	25 25 24 24 25	25 25 23 20 19	14 14 13 13	10 10 17 16 12	9.8 11 13 15 14	11 10 9.8 8.8 9.4
26 27 28 29 30	16 16 15 16 15	20 22 19 16 15	21 20 19 19 18 18	15 14 14 14 13	12 11 10 10	33 26 22 28 36 35	24 27 34 38 38	18 17 16 16 16	13 13 13 15 31	11 10 10 13 21	13 12 12 11 11	11 10 9.4 9.1 9.0
TOTAL MEAN MAX MIN CFSM IN.	616 19.9 31 15 2.45 2.83	544 18.1 30 15 2.23 2.49	480 15.5 21 12 1.91 2.20	518 16.7 27 13 2.06 2.38	350 12.1 15 10 1.49 1.61	625.7 20.2 36 9.9 2.49 2.87	977 32.6 63 24 4.02 4.48	776 25.0 54 16 3.08 3.56	537 17.9 35 13 2.21 2.46	422 13.6 27 10 1.68 1.94	348.8 11.3 18 8.8 1.39 1.60	303.3 10.1 12 8.8 1.25 1.39

CAL YR 1979 TOTAL 8001.0 MEAN 21.9 MAX 117 MIN 11 CFSM 2.70 IN 36.70 WTR YR 1980 TOTAL 6497.8 MEAN 17.8 MAX 63 MIN 8.8 CFSM 2.20 IN 29.80

MULLICA RIVER BASIN

01410150 EAST BRANCH BASS RIVER NEAR NEW GRETNA, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.-Selected field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE		STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPE ATUR WATE (DEG	E, I	GEN, DIS- DLVED G/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	
OCT 10	1230	24	45	4.2	11	. 0	7.7	1.0	700	1600	0
FEB 06	1015	11	49			.0	14.0	<.9	20	2	3
APR 01	1030	44	51	4.4	6	.0	10.4	1.2	<20	9	4
MAY 28	1115	16	37	4.6	16	.0	7.6	.6	<20	<2	3
JUL 10	1145	16	44	5.2	19	. 0	7.5	.8	310	130	3
AUG 12	0950	17	44	3.3	21	. 0	5.3	1.4	2800	920	4
SEP 24	1145	8.8	32	4.6	16	.5	7.0	<.9	<24000	<2400	3
DATE	CALCI DIS- SOLV (MG/ AS C	DI ED SOL L (MG	UM, SOD S- DI VED SOL /L (M	IUM, S S- D VED SO G/L (M	IS- L LVED G/L	ALKA- INITY (MG/L AS CACO3)	SULFI TOTA (MG/ AS S	DE DIS L SOI L (MC	FATE RI S- DI: LVED SO: G/L (MG	DE, RI S- D LVED SO G/L (M	UO- DE, IS- LVED G/L F)
OCT 10						0			3.6	5.4	.0
FEB 06		.5	9.5	3.0	.6	1			5.4	5.0	.0
APR 01		.6	.7	2.8	.6	2			5.2	4.9	.0
MAY 28		.5	.5	3.5	. 4	2		. 4	3.6	5.1	.0
JUL 10 AUG		. 4	. 4	3.3	.5	0			3.3	5.1	.0
12 SEP		.7	.6	2.0	.6	0			4.8	4.9	.1
24		.5	.5	3.2	.6	2		.0	2.9	4.8	.0
DATE	SILIC DIS- SOLV (MG/ AS SIO2	AT 1 ED DEG L DI SOL	DUE NI 80 G . C NO2 S- TO VED (M	EN, G +NO3 AMM TAL TO G/L (M	EN, ONIA O TAL G/L	NITRO- GEN, RGANIC TOTAL (MG/L AS N)	NITRO GEN, A MONIA ORGAN TOTA (MG/ AS N	M- + NIT IC GE L TOT L (MC	PHO TRO- ORTI	HOPH CAR HATE ORG FAL TO G/L (M	BON, ANIC TAL G/L C)
OCT 10			28 <	1.0	.490	1.4	1.	9		.05	
FEB 06		. 7			.080	.13		21		<.01	6.5
APR 01		. 6			.030			03		<.01	5.8
MAY 28	. 5	. 9	20	<.05	.070	.00		07		.06	7.8
JUL 10	. 6	. 9		.05	.120	.29		41	.46	.07	5.2
AUG 12	. 8	. 5	30	.06	.200	.27		47	.53	.06	12
SEP 24	. 9	. 9	22	<.05	.110	.10		21		.03	2.7
	DATE MAY	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ERAB!	L TO V- RE LE ER L (U	RON, TAL COV- ABLE G/L B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	
	28 EP	1115	100	1		0	30	0	20	1	
	24	1145	90	1		0	30	0	10	2	

MULLICA RIVER BASIN

01410150 EAST BRANCH BASS RIVER NEAR NEW GRETNA, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)
MAY 28	370	8	10	<.1	2	0	10	4
SEP 24	360	6	10	<.1	3	0	20	3

01410500 ABSECON CREEK AT ABSECON, NJ

LOCATION.--Lat 39°25'45", long 74°31'16", Atlantic County, Hydrologic Unit 02040302, on right bank 30 ft (9 m) downstream from Doughty Pond Dam of Atlantic City Water Department, 1.0 mi (1.6 km) west of Absecon, and 3.4 mi (5.5 km) upstream from mouth.

DRAINAGE AREA .-- 16.6 mi2 (43.0 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--December 1923 to April 1929 and June 1933 to December 1938 (monthly discharge only, published in WSP 1302; figures of daily discharge published in previous water-supply papers included diversions above station), May 1946 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to May 1946, water-stage recorder and wooden control at same site at datum 0.16 ft (0.049 m) lower.

REMARKS.--Water-discharge records fair. Records represent flow at gage only. Diversion from Doughty Pond for municipal supply at Atlantic City (records given herein). Flow regulated by Doughty Pond, capacity, 245,000,000 gal (927,300 m³), and by Kuehule Reservoir, capacity, 250,000,000 gal (946,200 m³), 1.5 mi (2.4 km) above station.

AVERAGE DISCHARGE.--43 years (water years 1925-28, 1934-38, 1947-80), 27.1 ft³/s (0.767 m³/s), adjusted for diversion.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 295 ft³/s (8.35 m³/s) Sept. 6, 1935; no flow several days in many years.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 105 ft³/s (2.97 m³/s) Apr. 10; minimum daily, 4.2 ft³/s (0.119 m³/s) Aug. 10.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980
MEAN VALUES OCT DAY NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 8.0 15 15 7.2 7.2 4.7 18 15 9.6 8.8 7.2 18 30 11 7.2 12 8.0 4.2 8.8 31 30 5.3 9.6 13 14 13 12 28 27 8.8 8.8 25 25 38 7.2 21 22 30 30 22 23 24 23 20 18 28 8.8 9.6 8.0 8.0 8.0 38 44 15 7.2 25 9.6 6.5 5.3 6.5 TOTAL 411.6 339.5 355.3 33.9 27.4 20.1 21.3 20.3 29.0 43.0 15.0 MAX 4.2 4.7 MIN 8.0 .9 2.1 3.1 2.2 2.2 (+) .5 .5 .9 .9

CAL YR 1979 TOTAL 11866.1 MEAN 32.5 MAX 265 MIN 6 + 5.5 WTR YR 1980 TOTAL 8268.4 MEAN 22.6 MAX 105 MIN 4.2 + 1.3

[†] Diversion, in cubic feet per second, above station from Doughty Pond for municipal supply by Atlantic City.

GREAT EGG HARBOR RIVER BASIN

01410784 GREAT EGG HARBOR RIVER NEAR SICKLERVILLE, NJ

LOCATION.--Lat 39°44'02", long 74°57'05", Camden County, Hydrologic Unit 02040302, at bridge on Sicklerville-New Freedom Road (Spur 536), 1.5 mi (2.4 km) northeast of Sicklerville, and 2.7 mi (4.3 km) upstream of New Brooklyn Lake dam.

DRAINAGE AREA.--15.1 mi2 (39.1 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 02	1030	57	66	4.8	17.5	4.3	1.8	330	790	13
JAN 24	1230	19	95	6.0	2.0	8.7	2.4	11	8	16
MAR 18	1230	23	98	5.7	9.0	8.4	3.5	5	<2	16
MAY 28	1300	8.1	101	6.2	15.5	6.4	2.5	20	540	19
JUL 15	1300	E2.7	167	6.5	22.0	4.6	1.5	230	1300	23
AUG 13	1000	3.3	144	6.8	21.5	4.7	1.4	80	220	25
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT 02 JAN	3.2	1.1	5.0	1.6	2	0	2	.0	8.4	7.3
24 MAR	4.0	1.4	8.1	1.6	5	0	4		13	11
18	4.0	1.5	10	2.0	4	0	3		12	15
28 JUL	4.7	1.8	10	2.1	12	0	10	.3	- 11	11
15 AUG	5.9	2.1	19	4.5	27	0	22		11	20
13	6.1	2.3	13	3.3	20	0	16		17	15
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 02	.1	5.7		<1.0	.600	.39	.99		.73	23
JAN 24	.1	6.1	61	.42	E.690		E.69		.80	8.5
MAR 18	.1	5.6	74	. 85	.520	.38	.90	1.8	E.78	8.8
MAY 28	.1	6.5	75	2.1	.340	.66	1.0	3.1	1.0	4.8
JUL 15	.1	5.8	104	2.2	.200	.60	.80	3.0	3.2	3.9
AUG 13	.1	5.9	98	1.8	.090	.67	.76	2.6	2.0	5.3

01410784 GREAT EGG HARBOR RIVER NEAR SICKLERVILLE, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE		TIME	GEN, + OR TOT BOT	NH4 IN G. GA IN TOT MAT BOT /KG (C	IOR- INC INIC, ORC IN TOT MAT BOT	GANIC : I. IN I MAT :	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSE TOT (UG AS	TO IN ENIC TOM	TAL L BOT- T MA- R RIAL E G/G (OTAL TO ECOV- RE RABLE EF UG/L (U	COV- REGABLE ER	MIUM RE TAL FM COV- TOM ABLE TE G/L (U	MIUM COV. BOT- MA- RIAL G/G CD)
OCT 02 MAY		1030	50	0	.5	6.1	350		4	0	0	140	0	<10
28		1300				144	110		1		0	90	0	
	DATE	M T R E	HRO- IUM, OTAL ECOV- RABLE UG/L S CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAI (UG/G)	TOM MA- TERIAL (UG/G	COPPEI TOTAL RECOVERABI	R, RE L FM V- TOM LE TE	PER, COV. BOT- MA- RIAL G/G CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	TERIA (UG/G	- TOTAL - RECOV- L ERABLE (UG/L	TERIAL (UG/G	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	
	CT 02		10	<10	<10		5	<10	1100	130	0 13	30	30	
M	AY 28		10				3		620	-	- 1		20	
	DATE	N R FM TO	ANGA- ESE, ECOV. BOT- M MA- ERIAL UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	FM BOT- TOM MA- TERIAL (UG/G	NICKEI TOTAI RECOV ERABI	FM V- TOM LE TE	KEL, COV. BOT- MA- RIAL G/G NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT TOM MA TERIA (UG/G	RECOV-ERABLEL (UG/L	TERIAL (UG/G	PHENOLS	
	CT 02		<10	<.5	.00		2	<10	0		0 40	10	1	
M	AY 28						1		0		- 20		3	
ì	DATE	IN TO T	PCB, OTAL BOT- M MA- ERIAL G/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOM MA- TERIAL	DDD, TOTAL IN BOT TOM MA	TO IN A- TOM	DE, TAL BOT- MA- RIAL /KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOM MA	TOTAL IN BOT- TOM MA- L TERIAL	TOM MA- TERIAL	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
	CT 02		1	. (2	3.	. 9	1.3	8.4		0 .0	.0	.0	
	AY 28			۷.			-			-				
	DATE	IN TO T	EPTA- HLOR, OTAL BOT- M MA- ERIAL G/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL	TOTAL IN BOT TOM MA TERIA	N, OX CH CH TOT N- BO NL M	TH- Y- LOR, . IN TTOM ATL. /KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	BOTTO	THION, TOTAL N IN BOT- M TOM MA- TERIAL	TOM MA- TERIAL	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
	CT 02		.0	.0	.0		. 0	.0	.0		0.0	0	.0	
	28						-			_			- 22	

GREAT EGG HARBOR RIVER BASIN

01410820 GREAT EGG HARBOR RIVER NEAR BLUE ANCHOR, NJ

LOCATION.--39°40'09", long 74°54'49", Camden County, Hydrologic Unit 02040302, downstream side of bridge on Broad Lane Road, 2.1 mi (3.4 km) downstream from confluence of Fourmile Branch, and 1.9 mi (3.1 km) southwest of Blue Anchor.

DRAINAGE AREA. -- 37.3 mi2 (96.6 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

COOPERATION.--Selected field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 09	1100	63	114	6.1	13.5	8.6	.9	79	350	17
JAN 24	1100	73	71	5.7	2.0	9.0	1.5	80	240	14
MAR 18	1030	82	70	5.6	9.0	9.4	3.1	230	23	14
MAY 28	1030	39	71	6.2	14.5	8.4	1.5	40	1300	14
JUL 14	1200	24	87	6.6	19.0	7.4	1.3	130	790	15
AUG 13	1140	32			20.0		1.0	220	700	
13	1140	32	79	6.7	20.0	7.4	1.0	220	700	
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT 09	2.8	2.4	6.4	1 7		0		.0	7.0	22
JAN				1.7						
MAR	3.1	1.5	5.8	1.2	2	0	2		8.9	9.1
18 MAY	3.0	1.5	6.6	1.4	4	0	3		9.1	9.6
28 JUL	2.9	1.7	6.8	1.4	12	0	10		6.1	8.1
14 AUG	3.0	1.7	7.5	2.0	12	0	10		6.5	10
13			7.6	2.0	12	0	10		6.9	9.4
DATE	FLUO- RIDE, DIS- SOL VED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 09	.1	6.9	81	1.1	.290	.22	.51	1.6	.74	8.0
JAN 24	.1	5.6	50	.55	E.310		.51	1.1	.22	11
MAR 18	.1	4.8	56		.090	.27	.36	1.3	.43	8.7
MAY				.93					14)	
28 JUL	.1	6.1	48	1.6	.220	1.5	1.7	3.3	1.2	4.5
14 AUG	.0	6.1	60	1.3	.120	.43	.55	1.8	1.2	2.9
13	.1	6.5	59	1.1	.070	. 43	.50	1.6	1.1	4.1
DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G)
OCT 09	1100	190	1	0	0	90	0	<10	20	<10

01410820 GREAT EGG HARBOR RIVER NEAR BLUE ANCHOR, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)
OCT 09	4	<10	560	2700	7	<10	20	190	<.5	.00
DATE	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 09	2	0	0	20	10	0	0	.0	.0	0
DATE	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)
ост 09	2.4	.0	.0	.0	.0	.0	.0	.0	.0	.0
DATE	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 09	.0	.0	.0	.0	.0	.0	.0	.00	0	.0

GREAT EGG HARBOR RIVER BASIN

01411000 GREAT EGG HARBOR RIVER AT FOLSOM, NJ

LOCATION.--Lat 39°35'42", long 74°51'06", Atlantic County, Hydrologic Unit 02040302, on left bank, 25 ft (7.6 m) upstream from bridge on State Highway 54, 1.0 mi (1.6 km) south of Folsom, and 2.0 mi (3.2 km) upstream from

DRAINAGE AREA .-- 56.3 mi2 (145.8 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1925 to current year. Prior to October 1947, published as "Great Egg River at Folsom".

REVISED RECORDS.--WSP 781: Drainage area. WSP 1432: 1928(M), 1933.

GAGE.--Water-stage recorder. Concrete control since Nov. 26, 1934. Datum of gage is 53.32 ft (16.252 m) National Geodetic Vertical Datum of 1929. Prior to Mar. 6, 1941, water-stage recorder at site 100 ft (30 m) downstream at same datum. Mar. 6 to Oct. 5, 1941, nonrecording gage at site 145 ft (44 m) downstream at datum 0.25 ft (0.076 m)

REMARKS. -- Water-discharge records good.

AVERAGE DISCHARGE. -- 55 years, 87.1 ft3/s (2.467 m3/s), 21.01 in/yr (534 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,440 ft³/s (40.8 m³/s) Sept. 3, 1940, gage height, 9.09 ft (2.771 m); minimum, 15 ft³/s (0.42 m³/s) Sept. 6, 1957, Aug. 28-30, 1966; minimum gage height, 3.42 ft (1.042 m) Aug. 28-30, 1966.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 312 ft³/s (8.84 m³/s) Apr. 11, gage height, 5.31 ft (1.618 m); minimum, 24 ft³/s (0.68 m³/s) Sept. 12-16, gage height, 3.51 ft (1.070 m).

						MEAN V	ALUES					
DA Y	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	110 140 154 154 141	74 74 80 96 114	97 89 84 81 79	76 75 74 73 73	75 73 72 70 70	71 69 68 68 70	243 275 257 238 234	176 209 208 182 153	64 62 62 64 67	99 87 75 78 72	44 67 65 64 59	29 28 29 28 28
6 7 8 9	125 106 94 87 95	117 107 97 90 86	79 84 92 95 90	74 74 75 75 74	69 68 70 70 70	74 75 76 80 83	218 189 163 153 210	126 110 102 103 106	63 62 75 81 77	65 58 54 51 57	52 48 46 43 40	28 28 27 25 25
11 12 13 14 15	130 184 203 202 184	89 108 135 155 145	85 82 82 89 96	75 106 159 193 170	70 70 68 67 67	85 89 88 104 149	296 302 250 203 177	104 99 97 101 102	78 75 69 63 61	57 53 48 45 42	40 67 65 54 48	25 25 24 24 25
16 17 18 19 20	155 130 112 100 93	132 119 107 98 92	96 91 87 82 80	142 117 103 106 121	71 80 79 75 73	182 167 146 126 113	163 151 138 126 118	98 90 89 91 81	73 78 74 69 64	41 42 52 48 43	46 42 40 40	25 25 35 37 33
21 22 23 24 25	87 83 80 78 81	90 87 85 83 81	79 79 82 86 90	126 116 111 114 108	73 76 84 91 92	113 149 192 189 201	113 108 102 97 95	93 96 100 94 85	60 57 54 51 49	41 40 53 53 49	39 39 38 36 34	31 30 28 27 29
26 27 28 29 30 31	83 81 79 78 77 75	84 94 108 114 107	95 97 92 85 81 78	99 92 88 85 83 79	88 83 77 74	213 208 180 163 167 194	95 98 107 124 143	79 74 70 68 65	48 47 47 51 88	46 43 40 41 41	33 32 31 29 29	35 33 31 30 29
TOTAL MEAN MAX MIN CFSM IN.	3581 116 203 75 2.06 2.37	3048 102 155 74 1.81 2.01	2684 86.6 97 78 1.54 1.77	3136 101 193 73 1.79 2.07	2165 74.7 92 67 1.33 1.43	3952 127 213 68 2.26 2.61	5186 173 302 95 3.07 3.43	3316 107 209 65 1.90 2.19	1933 64.4 88 47 1.14 1.28	1654 53.4 99 40 .95 1.09	1379 44.5 67 29 .79	856 28.5 37 24 .51
CAL YR WTR YR	1979 TOTAL 1980 TOTAL		MEAN MEAN	123 89.9	MAX 751 MAX 302	MIN 52 MIN 24	CFSM 2.19 CFSM 1.60	IN 29.	66 73			

GREAT EGG HARBOR RIVER BASIN

01411000 GREAT EGG HARBOR RIVER AT FOLSOM, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1961 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: April 1969 to April 1975, April 1977 to May 1980 (discontinued).
WATER TEMPERATURES: October 1960 to April 1975, April 1977 to May 1980 (discontinued).
SUSPENDED-SEDIMENT DISCHARGE: December 1965 to September 1970, October 1978 to September 1979. Record for 1980 is unpublished and is available in files of New Jersey District Office.

INSTRUMENTATION. -- Temperature recorder since October 1960, water-quality monitor April 1969 to April 1975, and April 1977 to May 1980.

 ${\tt REMARKS.--Interruptions} \ \ {\tt in} \ \ {\tt the} \ \ {\tt record} \ \ {\tt were} \ \ {\tt due} \ \ {\tt to} \ \ {\tt malfunctions} \ \ {\tt of} \ \ {\tt the} \ \ {\tt instrument.}$

EXTREMES FOR PERIOD OF RECORD .--

SPECIFIC CONDUCTANCE: Maximum, 163 micromhos Aug. 25, 1977; minimum, 41 micromhos July 14, 1972. WATER TEMPERATURES: Maximum, 24.0°C July 23-24, 1972, Aug. 17, 1978; minimum, 0.0°C on many days during winter

months.
SEDIMENT CONCENTRATIONS: Maximum daily, 46 mg/L July 31, 1969; minimum daily, less than 0.5 mg/L on many days from 1965 to 1970. SEDIMENT LOADS: Maximum daily 59 tons (54 Mg) April 17, 1970; minimum daily 0.03 ton (0.03 Mg) Sept. 19, 1968.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: For period October 1979 to May 1980, maximum, 118 micromhos Jan. 9; minimum, 50 micromhos TEMPERATURE: For period November 1979 to May 1980, maximum, 19.5°C May 6, 7; minimum, 0.5°C Feb. 2.

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

										20 10 20 20 20		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBE	ER		DECEMBE	R		JANUAR	Y
1 2 3 4 5				10.5 12.0 12.0 10.5 8.5	8.5 10.0 11.0 8.5 7.0	9.5 11.0 11.5 9.5 7.5	5.0 5.0 4.5 5.5 6.0	3.5 3.5 3.5 4.0 4.5	4.0 4.0 4.0 4.5 5.0	5.5 5.5 6.0 5.0 4.0	4.0 5.0 5.0 4.0 3.0	5.0 5.0 5.5 4.5 3.0
6 7 8 9				8.0 9.0 8.5 10.0 10.5	6.0 7.0 6.5 8.0 9.5	7.0 8.0 7.5 8.5 10.0	7.5 8.0 7.5 5.5	6.0 7.5 6.0 4.0	6.5 7.5 7.0 4.5 4.5	3.5 4.0 5.0 4.5 4.0	2.5 2.5 4.0 4.0 3.0	3.0 3.0 4.5 4.5 3.5
11 12 13 14 15				11.0 9.0 10.0 9.5 8.0	8.5 7.5 7.5 9.0 7.0	10.0 8.5 9.0 9.0 7.5	7.0 8.5 9.0 9.0 6.0	3.5 6.5 8.5 6.5 4.5	5.5 7.5 9.0 7.5 5.0	7.0 7.5 4.0 5.0 7.0	3.5 4.0 3.0 2.5 5.0	4.5 6.0 3.5 5.5
16 17 18 19 20				8.0 7.5 8.5 9.0	6.5 6.0 6.5 7.0 8.5	7.0 6.5 7.5 8.0 9.0	6.0 6.0 3.0 4.0	4.0 3.5 2.5 3.0	5.0 5.0 3.5	6.5 5.5 6.0 6.5 5.5	4.5 4.0 5.0 6.0 4.0	5.5 4.5 5.5 6.0 5.0
21 22 23 24 25				9.5 9.5 11.0 12.5 13.0	8.0 7.5 9.0 10.5 12.0	8.5 8.5 10.0 11.5 12.5	5.0 6.5 7.5 8.5 9.5	3.5 5.0 6.5 7.5 8.5	4.0 5.5 7.0 8.0 9.0	4.5 4.0 5.0 3.5 2.5	3.0 2.5 3.5 2.0 1.0	3.5 3.0 4.5 2.5 2.0
26 27 28 29 30 31				14.5 13.5 11.5 10.5 6.5	13.0 11.0 10.0 7.0 5.0	14.0 12.5 11.0 9.0 6.0	9.0 7.5 6.0 6.5 6.5	7.5 6.0 5.0 5.5 5.5	8.5 6.5 5.5 6.0 6.0 5.5	3.5 3.5 4.5 3.5 3.0	2.0 2.0 3.5 3.5 2.5 2.0	2.5 3.0 4.0 4.0 2.5 2.5
MONTH				14.5	5.0	9.0	9.5	2.5	6.0	7.5	1.0	4.0

GREAT EGG HARBOR RIVER BASIN

01411000 GREAT EGG HARBOR RIVER AT FOLSOM, NJ--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBE	R		DECEMBE	R		JAN UAR	Y
1 2 3 4 5	52 57 59 60 60	50 52 55 58 58	52 55 57 59	84 85 85 71 69	80 84 72 68 68	83 84 78 70 68	68 72 76 77 78	68 67 71 74 76	68 69 72 76 77	90 90 91 91 91	88 88 89 90 88	89 89 90 91 90
6 7 8 9	59 62 67 73 73	59 59 62 68 57	59 61 65 71 66	69 68 69 70 72	68 67 67 69 70	68 67 68 69 71	83 77 72 72 72	77 69 70 70 71	81 73 71 71 71	92 101 98 118 117	88 90 91 97 104	90 93 93 104 108
11 12 13 14 15	56 58 62 60 66	52 53 58 59 59	53 56 60 60 63	71 61 60 64 65	62 56 56 60 64	67 58 57 63 65	76 81 81 77 75	71 76 77 72 71	73 78 79 74 74	112 107 87 95 96	103 77 79 87 90	106 84 82 92 94
16 17 18 19 20	69 69 70 73 74	66 69 68 70 72	68 69 69 71 73	66 67 68 69	65 66 67 68 68	65 66 67 68 69	77 79 81 84 85	75 77 78 81 83	76 78 80 82 84	91 87 86 82 81	87 85 82 77 78	89 86 85 80 79
21 22 23 24 25	74 74 75 76 75	73 72 73 73 72	74 73 74 75 73	71 72 77 77 77	69 70 72 75 76	70 71 74 76 77	88 102 102 88 85	83 88 87 84 80	84 94 91 85 83	85 84 79 80 84	81 79 76 78 78	84 82 77 78 82
26 27 28 29 30 31	74 75 77 77 80 81	71 73 75 76 77 79	73 74 76 76 78 80	77 70 68 69 69	71 66 67 68 68	74 68 67 69 68	83 83 85 88 91	79 82 84 85 87 88	81 83 85 87 89	84 87 90 90 93 93	81 84 87 89 89	83 86 89 90 91
MONTH	81	50	67	85	56	70	102	67	79	118	76	89
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DA Y	MAX	M IN FEBRUAR		MAX	MIN MARCH		MAX	MIN APRIL	MEAN	MAX	M.IN MAY	MEAN
DAY 1 2 3 4 5	100 108 108 112 113			106 107 108 112			89 86 91 92 93		MEAN 84 83 89 92 92	91 86 91 93		88 85 88 92 95
1 2 3	100 108 108 112	94 89 104 107	97 101 106 110	106 107 108 112	MARCH 101 102 104 106	104 105 106 108	89 86 91 92	81 82 86 91	84 83 89 92	91 86 91 93	MAY 84 84 87 91	88 85
1 2 3 4 5 6 7 8	100 108 108 112 113 113 110 104 106	94 89 104 107 107 107	97 101 106 110 110 110 107 101	106 107 108 112 111 109 113 109	MARCH 101 102 104 106 105	104 105 106 108 109 104 109 107	89 86 91 92 93 96 98	81 82 86 91 92 92 96 97	84 83 89 92 92	91 86 91 93 99	MAY 84 87 91 93 98	88 85 88 92 95 99
1 2 3 4 5 6 7 8 9 10 11 12 13 14	100 108 108 112 113 113 110 104 106 107	94 89 104 107 107 107 107 109 105 105 105 103 102	97 101 106 110 110 110 110 107 101 101 106 106 106 105 104	106 107 108 112 111 109 113 109 104 105	MARCH 101 102 104 106 105 101 103 103 100 99 100	104 105 106 108 109 104 109 107 101 103 102 99 100 88	89 86 91 92 93 96 98 98 98 98 99 99 94	81 82 86 91 92 96 97 90 81 82 85 91	84 83 89 92 94 97 98 95 84 83 88 93	91 86 91 93 99 101 102 103 103 113 115 109	84 84 87 91 93 98 100 102 102 101 101 101	88 85 88 92 95 91 101 102 102 102 104 1102
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	100 108 108 112 113 113 110 104 106 107 108 109 107 105 102	94 89 104 107 107 107 107 109 105 105 103 102 98 97 90 106	97 101 106 110 110 110 110 107 101 101 106 106 106 106 109 99 97 108	106 107 108 112 111 109 113 109 104 105 106 100 102 94 95	MARCH 101 102 104 106 105 101 103 99 100 97 98 94 83 83	104 105 106 108 109 104 109 107 101 103 102 99 100 88 89 98 100 98 96	89 86 91 92 93 96 98 98 89 85 90 94 97 97 97	81 82 86 91 92 96 97 90 81 82 85 91 96 96 96 96 99	84 83 89 92 94 97 95 84 83 88 93 97 97 97 97	91 86 91 93 99 101 102 105 103 102 103 115 109 110	84 84 87 91 93 98 100 102 101 101 101 101 107 107	88 85 88 92 95 99 101 104 102 102 102 104 112 107 109
1 2 3 4 5 6 7 8 9 1 0 1 1 2 3 1 4 5 1 6 7 8 9 1 0 1 1 2 2 3 4 2 5 2 6 7 8 9 3 0	100 108 108 112 113 113 110 104 106 107 105 102 103 110 111 109 107 106 100 100 100 100 93	94 89 104 107 107 107 107 109 105 105 105 105 106 106 106 106 106 101 97 90 90 90 90 90 90 90 90 90 90 90 90 90	97 101 106 110 110 110 110 101 101 101 106 106	106 107 108 112 111 109 113 1045 106 100 102 94 95 100 101 100 98 97 97 98 99 99 99 99 99 99 99 99 99 99 99 99	MARCH 101 102 104 106 105 101 103 99 100 97 98 94 83 83 83 95 96 96 97 80 99 80 99 82 81 86 93 88	104 105 106 108 109 104 109 107 101 103 102 99 100 88 89 98 96 96 97 80 86 93 87 82 93 93 93 93	89 86 91 92 93 96 98 98 98 98 97 97 97 97 98 100 101 103 100 101 103 103 104 100 100 101 103 104 106 106 106 106 106 106 106 106 106 106	81 82 86 91 92 96 97 90 81 82 85 91 95 96 98 99 100 99 100 95 100 95 99 100 95 99 99	84 83 89 92 92 94 97 98 95 84 83 88 93 96 97 97 99 99 100 101 102 103 103 98 95 95	91 86 91 93 99 101 102 105 103 102 113 115 109 110	84 84 87 91 93 98 100 102 101 101 101 101 1107 110 1110 1	88 85 88 92 95 99 101 104 102 102 104 112 107 109 111 113
1 2 3 4 5 6 7 8 9 10 11 2 13 4 15 16 17 18 9 20 21 22 34 25 26 27 28 9	100 108 108 112 113 110 104 106 107 108 109 107 105 102 103 110 111 111 109 107 107 107 108 109 107 107 109 107 109 109 109 109 109 109 109 109 109 109	FEBRUAR 94 899 104 107 107 107 108 109 105 105 105 103 102 98 97 90 106 106 105 104 101 97 92 90 91 94 96 97	97 101 106 110 110 110 110 107 101 101 101 106 106 105 104 99 97 108 108 106 105 104 99 97 108 108 109 109 109 109 109 109 109 109 109 109	106 107 108 112 111 109 113 109 104 105 106 100 102 94 95 100 101 100 98 97 97 83 91 94 90 85 93 93	MARCH 101 102 104 106 105 101 103 103 109 100 97 98 94 83 83 95 100 96 96 97 80 98 98 98 98 98 98 98 98 98 98 98 98 98	104 105 106 108 109 104 107 101 103 102 99 100 88 89 96 96 96 97 80 86 98 98 98 96 96 97 87 88 98 99 99 99	89 86 91 92 93 96 98 98 98 98 97 97 97 98 100 101 103 100 101 103 104 100 95	81 82 86 91 92 96 97 90 81 82 85 91 96 98 99 99 101 100 101 102 95 94	84 83 89 92 92 94 97 98 83 83 83 96 97 97 97 99 99 100 101 100 101 102 103 103 98 98	91 86 91 93 99 101 102 105 103 102 103 115 109 110 112 114 	84 84 87 91 93 98 100 102 101 101 101 107 107	88 85 88 92 95 99 101 104 102 102 107 107 109 111 113

01411000 GREAT EGG HARBOR RIVER AT FOLSOM, NJ--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCH			APRIL			MAY	
1 2 3 4 5	100 108 108 112 113	94 89 104 107 107	97 101 106 110 110	106 107 108 112 111	101 102 104 106 105	104 105 106 108 109	89 86 91 92 93	81 82 86 91 92	84 83 89 92 92	91 86 91 93 99	84 84 87 91 93	88 85 88 92 95
6 7 8 9	113 110 104 106 107	107 104 100 99 105	110 107 101 101 106	109 113 109 104 105	101 103 103 99 100	104 109 107 101 103	96 98 98 98 98	92 96 97 90 81	94 97 98 95 84	101 102 105 103 102	98 100 102 102 101	99 101 104 102 102
11 12 13 14 15	108 109 107 105 102	105 105 103 102 98	106 106 105 104 99	106 100 102 94 95	97 98 94 83	102 99 100 88 89	85 90 94 97 97	82 85 91 95 96	83 88 93 96	103 113 115 109 110	101 101 109 107 107	102 104 112 107 109
16 17 18 19 20	103 110 111 109 107	97 90 106 106 105	99 97 108 108 106	100 101 100 98 97	95 100 96 95 96	98 100 98 96 96	98 98 100 100	96 96 98 99	97 97 99 99	112 112 114	110 110 111 	111 111 113
21 22 23 24 25	107 106 100 100 93	104 101 97 92 90	105 104 98 95	97 83 91 94 90	84 79 80 90 82	91 80 86 93 87	102 103 100 101 103	101 100 99 100 101	102 101 100 101 102	==	===	===
26 27 28 29 30 31	94 97 100 101	91 94 96 97	93 96 98 99	85 93 94 93 89	81 86 93 89 86 86	82 90 93 91 87 88	103 104 100 95 95	102 100 95 94 90	103 103 98 95 93	===	=======================================	=======================================
MONTH	113	89	102	113	79	96	104	81	95	115	84	101

GREAT EGG HARBOR RIVER BASIN

01411000 GREAT EGG HARBOR RIVER AT FOLSOM, NJ--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBE	R		DECEMBE	R		JANUAR	Y
1 2 3 4 5				10.5 12.0 12.0 10.5 8.5	8.5 10.0 11.0 8.5 7.0	9.5 11.0 11.5 9.5 7.5	5.0 5.0 4.5 5.5 6.0	3.5 3.5 3.5 4.0 4.5	4.0 4.0 4.5 5.0	5.5 5.5 6.0 5.0 4.0	4.0 5.0 5.0 4.0 3.0	5.0 5.0 5.5 4.5 3.0
6 7 8 9				8.0 9.0 8.5 10.0 10.5	6.0 7.0 6.5 8.0 9.5	7.0 8.0 7.5 8.5	7.5 8.0 7.5 5.5 5.5	6.0 7.5 6.0 4.0 4.0	6.5 7.5 7.0 4.5 4.5	3.5 4.0 5.0 4.5 4.0	2.5 2.5 4.0 4.0 3.0	3.0 3.0 4.5 4.5 3.5
11 12 13 14 15				11.0 9.0 10.0 9.5 8.0	8.5 7.5 7.5 9.0 7.0	10.0 8.5 9.0 9.0 7.5	7.0 8.5 9.0 9.0 6.0	3.5 6.5 8.5 6.5 4.5	5.5 7.5 9.0 7.5 5.0	7.0 7.5 4.0 5.0 7.0	3.5 4.0 3.0 2.5 5.0	4.5 6.0 3.5 5.5
16 17 18 19 20				8.0 7.5 8.5 9.0	6.5 6.0 6.5 7.0 8.5	7.0 6.5 7.5 8.0 9.0	6.0 6.0 3.0 4.0	4.0 3.5 2.5 3.0	5.0 5.0 3.5	6.5 5.5 6.0 6.5 5.5	4.0 5.0	5.5 4.5 5.5 6.0 5.0
21 22 23 24 25				9.5 9.5 11.0 12.5 13.0	8.0 7.5 9.0 10.5 12.0	8.5 8.5 10.0 11.5 12.5	5.0 6.5 7.5 8.5 9.5	3.5 5.0 6.5 7.5 8.5	4.0 5.5 7.0 8.0 9.0	4.5 4.0 5.0 3.5 2.5	3.5	3.5 3.0 4.5 2.5 2.0
26 27 28 29 30 31				14.5 13.5 11.5 10.5 6.5	13.0 11.0 10.0 7.0 5.0	14.0 12.5 11.0 9.0 6.0	9.0 7.5 6.0 6.5 6.5	7.5 6.0 5.0 5.5 5.5	8.5 6.5 5.5 6.0 6.0	3.5 3.5 4.5 3.5 3.0	2.0 2.0 3.5 3.5 2.5 2.0	2.5 3.0 4.0 4.0 2.5 2.5
MONTH				14.5	5.0	9.0	9.5	2.5	6.0	7.5	1.0	4.0
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DA Y	MAX	MIN FEBRUAR		MAX	MIN MARCH		MAX	MIN APRIL		MAX	MIN	MEAN
DAY 1 2 3 4 5	MAX 2.0 1.5 2.5 3.5 3.5			3.0 3.0 4.0 5.5	MARCH		9.0			12.5 14.5 16.0 17.0 18.5		12.0 13.5 14.5 16.0 16.5
1 2 3	2.0 1.5 2.5 3.5	1.5 .5 1.0 2.0	2.0 1.5 1.5 2.5	3.0 3.0 4.0 5.5	MARCH 2.0 2.0 2.0 3.0	2.5 2.5 3.0 4.5 6.0	9.0 10.0 11.5 12.0	APRIL 6.0 7.0 8.5 10.5	7.5 8.5 10.0 11.0	12.5 14.5 16.0 17.0	MAY 11.5 12.0 13.5 15.0	12.0 13.5 14.5 16.0 16.5
1 2 3 4 5 6 7 8 9	055555 55550 501 21.233 344.5 4.5	1.5 .5 1.0 2.0 2.5 2.5 3.0 3.5 4.0	2.0 1.5 1.5 2.5 3.0 3.5 4.0 4.5 4.5	3.0 3.0 4.0 5.5 7.0 8.0 8.5 10.0 10.0	MARCH 2.0 2.0 2.0 3.0 5.5 6.5 6.0 8.5 7.5	2.5 2.5 3.0 4.5 6.0 7.0 7.5 9.0 10.0 9.0	9.0 10.0 11.5 12.0 12.0 13.0 13.5 14.5	APRIL 6.0 7.0 8.5 10.5 10.5 10.0 11.0 13.0 13.5 13.5	7.5 8.5 10.0 11.0 11.5 12.5 13.5 14.0	12.5 14.5 16.0 17.0 18.5 19.5 18.5 18.5 15.0	MAY 11.5 12.0 13.5 15.0 15.0 16.5 17.0 13.5 12.0 13.5 14.5 14.5 16.0 17.0	12.0 13.5 16.0 16.5 18.0 18.5 14.5 14.5 15.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	055555 55550 501 21.233 344.5 4.5	1.5 .5 1.0 2.0 2.5 2.5 3.0 3.5 4.0	2.0 1.5 1.5 2.5 3.0 3.5 4.0 4.5 4.5	3.0 3.0 4.0 5.5 7.0 8.0 8.5 10.0 10.0	MARCH 2.0 2.0 3.0 5.5 6.5 6.9 7.5 7.5 4.5	2.5 2.5 3.0 4.5 6.0 7.0 7.5 9.0 10.0 9.0	9.0 10.0 11.5 12.0 12.0 13.5 14.5 15.0	APRIL 6.0 7.0 8.5 10.5 10.5 10.0 11.0 13.0 13.5 13.5	7.5 8.5 10.0 11.0 11.5 12.5 13.5 14.0	12.5 14.5 16.0 17.0 18.5 19.5 18.5 15.0 15.0	MAY 11.5 12.0 13.5 15.0 15.0 16.5 17.0 13.5 12.0 13.5 14.5 14.5 16.0 17.0	12.0 13.5 16.0 16.5 18.5 14.5 13.5 15.5 17.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	055555 55550 50505 0500 21.233 34.45 45.45.5 64.60	FEBRUAR 1.5 1.0 2.05 2.5 3.05 3.0 3.0 4.0 3.0 3.0 4.5 5.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Y 2.00 1.55 2.30 0.50 4.05 4.00 4.5 4.00 5.0 5.00 3.00 4.5 4.00 5.0 5.00 3.00	3.0 3.0 3.0 4.0 5.5 7.0 8.0 8.5 10.0 9.5 7.0 5.5 5.5 6.5 9.0 10.0	MARCH 2.0 2.0 3.0 5.5 6.5 6.5 7.5 7.5 5.5 3.0 4.0 6.0 9.5 7.5	2.5 2.5 3.0 4.5 6.0 7.0 7.5 9.0 10.0 9.0 8.5 6.0 5.0 4.5	9.0 10.5 12.0 12.0 13.5 14.5 15.5 16.0 15.5 14.0 13.5 15.5	APRIL 6.0 7.0 8.5 10.5 10.5 10.0 11.0 13.0 13.5 13.0 14.0 14.0 10.5 9.0 11.5	7.5 8.5 10.0 11.0 11.5 12.5 13.5 14.0 14.5 14.5 16.0 14.5 14.5 10.5 11.5	12.5 14.5 16.0 17.0 18.5 19.5 19.5 15.0 15.0 15.0 19.0 19.0 18.0	MAY 11.5 12.0 13.5 15.0 15.0 15.0 16.5 17.0 13.5 14.5 16.0 17.0 16.0	12.0 13.5 16.0 16.5 18.0 18.5 14.5 13.5 14.5 17.0 16.0 15.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	055555 55550 50505 05000 50500 0050- 21233 34445 45455 64456 777887 6544-	FEBRUAR 1.5 1.00 2.5 2.50 3.50 3.05 3.05 3.05 3.05 3.05 3.05 3	Y 2.55.50 0.55.50 0.55.50 0.55.50 44.55 4.50 5.50 0.55.50 6.77.00.55 54.00 5.50 5.50 6.77.65 54.00 5.50 6.77.65 54.00 5.50 6.77.65 54.00 55.50 6.77.65 54.00 55.50 6.77.65 54.00 55.50 6.77.65 54.00 55.50 6.77.65 54.00 55.50 6.77.65 54.00 55.50 6.77.65 54.00 55.50 6.77.65 54.00 55.50 6.77.65 54.00 55.50 6.77.65 54.00 55.50 6.77.65 54.00 55.50 6.77.65 54.00 55.50 6.77.65 6.7	3.0050 3.0050 8.500 8.500 9.5050 9.5050 10.00 9.5050 10.00 9.5050 10.00 9.5050 10.00 9.5050 10.00 9.5050 10.00 9.5050 10.00 9.5050 10.00 9.5050 10.00 9.5050 10.00 9.5050 10.00 10	MARCH 2.0 2.0 2.0 3.0 5.5 6.50 8.55 7.55 4.0 9.55 7.55 8.0 9.50 7.55 8.0 9.50 7.55 8.0	2.5 2.5 3.5 6.0 7.0 7.5 10.0 9.0 10.0 9.0 8.5 6.0 7.5 9.0 9.0 9.0 10.0 9.0 7.5 9.0 9.0	9.0 10.5 12.0 13.5 13.5 15.5 16.5 15.5 16.5 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	A PRIL 6.0 7.0 8.5 10.5 10.0 11.5 10.0 11.5 13.0 13.5 15.0 14.0 10.0 11.5 12.5 13.0 14.0 13.5 12.5 13.0 14.0 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	7.5 8.5 10.0 11.0 11.5 13.5 13.5 14.5 14.5 14.5 10.5 14.5 11.5 14.5 14.5 14.5 14.5 14.5 14	12.5 14.5 16.0 17.0 18.5 19.5 19.5 19.0 15.0 17.0 19.0 19.0 16.5 16.0	MAY 11.5 12.0 13.5 15.0 15.0 16.5 17.0 13.5 12.0 13.5 14.5 16.0 17.0 14.5 15.5	12.0 13.5 16.0 16.5 18.0 18.5 14.5 14.5 17.0 16.5 17.5 18.0 15.5 17.5 18.0 15.5 17.5 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	055555 55550 50505 05000 50500 0050 21.233 344.5 4.54.55 644.56 777.87 654.4	FEBRUAR 1.55 1.00 2.5 5005500 3.05500 4.5 500555 4.0 500555 4.0 500550 4.0 50050 3.0 50050 4.0	Y 2.550 05.550 0.5	3.00 3.00 3.00 45.50 8.50 101.00 9.50 5.05 10.50 10.55	MARCH 2.0 2.0 3.0 5.5 6.5 6.0 8.5 7.5 5.5 3.0 4.0 9.5 7.5 8.0 9.5 7.5 6.5 7.5 8.0 9.5 7.5 8.0	2.5 2.5 3.0 4.5 6.0 7.0 7.5 9.0 10.0 9.0 8.5 6.0 7.0 9.0 9.0 9.0 10.0 9.0 7.5 9.0 9.0	9.0 10.5 12.0 13.5 15.0 13.5 15.5 15.5 16.0 15.5 16.0 17.0 16.0 15.5 16.5 16.0 17.0 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5	APRIL 6.0 7.0 8.5 10.5 10.0 11.0 11.5 13.0 13.5 15.0 14.0 10.5 12.0 14.5 13.5 12.0 14.5 12.0 14.5 12.5 12.5 12.5	7.5 8.5 11.0 11.0 11.5 12.5 13.5 14.0 14.5 14.5 14.5 11.5 14.5 14.5 14.5 14.5	12.5 14.5 16.0 17.0 18.5 19.5 19.5 15.0 15.0 15.0 17.0 19.0 16.5 16.0	MAY 11.5 12.0 13.5 15.0 15.0 16.5 17.0 13.5 12.0 13.5 14.5 16.0 17.0 16.0	12.0 13.5 16.0 16.5 18.0 18.5 14.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17

GREAT EGG HARBOR RIVER BASIN

01411000 GREAT EGG HARBOR RIVER AT FOLSOM, NJ--Continued

TEMPERATURE	WATER	(DEC	CI	WATER	VEAR	OCTOBER	1070	TO	SEPTEMBER	1980

Tebruary							10,000,000						
1 2.0 1.5 2.0 3.0 2.0 2.5 9.0 6.0 7.5 12.5 11.5 2 1.5 .5 1.5 3.0 2.0 2.5 10.0 7.0 8.5 14.5 12.0 3 2.5 1.0 1.5 4.0 2.0 3.0 11.5 8.5 10.0 16.0 13.5 4 3.5 2.0 2.5 5.5 3.0 4.5 12.0 10.5 11.0 17.0 15.6 5 3.5 2.5 3.0 7.0 5.5 6.0 12.0 10.5 11.0 17.0 15.5 6 3.5 2.5 3.0 8.0 6.5 7.0 13.0 10.0 11.5 19.5 16.0 7 4.5 3.0 3.5 8.5 6.0 7.5 13.5 11.0 12.5 19.5 17.0 8 4.5 3.5 4.0 11.0 8.0 9.0 14.5 12.5 19.5 17.0 10 5.0 4.0<	DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
2 1.5			FEBRUAR	Y		MARCH			APRIL			MAY	
7 4.5 3.0 3.5 8.5 6.0 7.5 13.5 11.0 12.5 19.5 17.6 8 4.5 3.5 4.0 10.0 8.0 9.0 14.5 12.5 13.5 18.5 15.0 9 4.5 3.5 4.0 11.0 9.5 10.0 13.5 13.0 13.5 15.0 13.5 10 5.0 4.0 4.5 10.0 7.5 9.0 15.0 13.0 14.0 15.0 13.5 11 4.5 3.0 4.0 9.5 7.5 8.5 15.5 13.5 14.5 17.0 14.5 12 5.0 4.0 5.5 7.5 8.5 15.5 13.5 14.5 17.0 14.5 13 4.5 3.5 4.0 5.5 4.5 5.0 16.5 15.5 13.5 14.5 17.0 14.5 13 4.5 3.0 4.0 5.0 3.5 4.5 5.0 16.5 15.5 13.5 14.5 17.0 14.5<	2 3 4	1.5 2.5 3.5	.5 1.0 2.0	1.5 1.5 2.5	3.0 4.0 5.5	2.0 2.0 3.0	2.5 3.0 4.5	10.0 11.5 12.0	7.0 8.5 10.5	8.5 10.0 11.0	14.5 16.0 17.0	11.5 12.0 13.5 15.0	12.0 13.5 14.5 16.0 16.5
12 5.0 4.0 4.5 7.0 5.5 6.0 15.5 13.5 14.5 17.0 14.5 13 4.5 3.5 4.0 5.5 4.5 5.0 16.5 15.0 16.0 19.0 17.0 15 5.0 3.0 4.0 5.0 3.5 4.5 16.0 14.0 14.5 19.0 17.0 15 5.5 4.5 5.0 5.5 3.0 4.0 15.5 14.0 14.5 19.0 17.0 16 6.0 5.0 5.5 6.5 4.0 5.0 14.0 10.5 12.5 17.0 14.5 17 4.5 3.0 4.0 9.0 6.0 7.0 12.0 9.0 10.5 16.5 14.5 18 4.0 2.5 3.0 10.5 9.0 9.5 13.5 10.0 11.5 16.5 14.5 19 5.0 3.0 4.0 10.0 7.5 9.0 15.0 11.5 13.0	7 8 9	4.5 4.5 4.5	3.0 3.5 3.5	3.5 4.0 4.0	8.5 10.0 11.0	6.0 8.0 9.5	7.5 9.0 10.0	13.5 14.5 13.5	11.0 12.5 13.0	12.5 13.5 13.5	19.5 18.5 15.0	16.5 17.0 15.0 13.5 12.0	18.0 18.5 16.5 14.5 13.5
17 4.5 3.0 4.0 9.0 6.0 7.0 12.0 9.0 10.5 16.5 14.5 18 4.0 2.5 3.0 10.5 9.0 9.5 13.5 10.0 11.5 16.0 15.5 19 5.0 3.0 4.0 10.0 7.5 9.0 15.0 11.5 13.0 16.5	12 13 14	5.0 4.5 5.0	4.0 3.5 3.0	4.5 4.0 4.0	7.0 5.5 5.0	5.5 4.5 3.5	6.0 5.0 4.5	15.5 16.5 16.0	13.5 15.0 14.0	14.5 16.0 14.5	17.0 19.0 19.0	13.5 14.5 16.0 17.0 16.0	14.5 15.5 17.5 18.5 17.0
22 7.0 7.0 7.0 9.5 7.0 8.0 16.0 13.5 14.5 16.5 14.0 15.5 15.5 13.5 14.5	17 18 19	4.5 4.0 5.0	3.0 2.5 3.0	4.0 3.0 4.0	9.0 10.5 10.0	6.0 9.0 7.5	7.0 9.5 9.0	12.0 13.5 15.0	9.0 10.0 11.5	10.5 11.5 13.0	16.5 16.0	14.5 14.5 15.5	16.0 15.5 15.5
27 5.0 3.0 4.0 9.0 7.0 8.0 13.5 12.5 13.0 28 4.5 3.5 4.0 9.0 7.5 8.5 13.0 12.5 12.5 29 4.0 3.0 3.5 9.5 8.5 9.0 13.0 12.0 12.5 30 10.0 9.0 9.5 12.5 11.5 12.0 31 10.0 7.0 8.5	22 23 24	7.0 7.5 8.0	7.0 6.0 6.5	7.0 7.0 7.0	9.5 9.0 8.0	7.0 6.0 7.0	8.0 7.5 7.5	16.0 15.5 16.5	13.5 12.5 13.0	14.5 14.0 14.5	===	===	===
MONTH 8.0 .5 4.0 11.0 2.0 7.0 17.0 6.0 13.0 19.5 11.5	27 28 29 30	5.0 4.5 4.0	3.0 3.5 3.0	4.0 4.0 3.5	9.0 9.0 9.5 10.0	7.0 7.5 8.5 9.0	8.0 8.5 9.0 9.5	13.5 13.0 13.0 12.5	12.5 12.5 12.0 11.5	13.0 12.5 12.5 12.0	===	=======================================	=======================================
	MONTH	8.0	.5	4.0	11.0	2.0	7.0	17.0	6.0	13.0	19.5	11.5	16.0

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAY	MAX	MIN	MEAN		MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R			NOVEMBE	R		DECEMBE	R		JANUAR	Y
1 2 3 4 5	52 57 59 60 60	50 52 55 58 58	52 55 57 59		84 85 85 71 69	80 84 72 68 68	83 84 78 70 68	68 72 76 77 78	68 67 71 74 76	68 69 72 76 77	90 90 91 91 91	88 88 89 90 88	89 89 90 91 90
6 7 8 9	59 62 67 73 73	59 59 62 68 57	59 61 65 71 66	1	69 68 69 70 72	68 67 67 69 70	68 67 68 69 71	83 77 72 72 72	77 69 70 70 71	81 73 71 71 71	92 101 98 118 117	88 90 91 97 104	90 93 93 104 108
11 12 13 14 15	56 58 62 60 66	52 53 58 59	53 56 60 60 63		71 61 60 64 65	62 56 56 60 64	67 58 57 63 65	76 81 81 77 75	71 76 77 72 71	73 78 79 74 74	112 107 87 95 96	103 77 79 87 90	106 84 82 92 94
16 17 18 19 20	69 69 70 73 74	66 69 68 70 72	68 69 69 71 73		66 67 68 69	65 66 67 68 68	65 66 67 68 69	77 79 81 84 85	75 77 78 81 83	76 78 80 82 84	91 87 86 82 81	87 85 82 77 78	89 86 85 80 79
21 22 23 24 25	74 74 75 76 75	73 72 73 73 73	74 73 74 75 73		71 72 77 77 77	69 70 72 75 76	70 71 74 76 77	88 102 102 88 85	83 88 87 84 80	84 94 91 85 83	85 84 79 80 84	81 79 76 78 78	84 82 77 78 82
26 27 28 29 30 31	74 75 77 77 80 81	71 73 75 76 77 79	73 74 76 76 78 80		77 70 68 69 69	71 66 67 68 68	74 68 67 69 68	83 83 85 88 91	79 82 84 85 87 88	81 83 85 87 89	84 87 90 90 93 93	81 84 87 89 89	83 86 89 90 91
MONTH	81	50	67		85	56	70	102	67	79	118	76	89

GREAT EGG HARBOR RIVER BASIN

01411110 GREAT EGG HARBOR RIVER AT WEYMOUTH, NJ

LOCATION.--Lat 39°30'50", long 74°46'47", Atlantic County, Hydrologic Unit 02040302, at bridge on U.S. Route 322 in Weymouth, 0.5 mi (0.8 km) upstream from Deep Run, and 20.9 mi (33.6 km) upstream from mouth.

DRAINAGE AREA.--154 mi2 (399 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SPE	HARD-NESS TOCOCCI (MG/L FECAL AS (MPN) CACO3)
OCT	
04 1030 358 49 4.8 18.0 7.2 .0 24 FEB	0 23 9
06 1030 175 96 5.6 2.0 1.0 -	10
MAR 26 1330 533 52 4.7 8.0 9.4 .6 -	9
MAY 21 1130 231 52 5.5 17.0 8.4 2.0 13	0 80 9
JUL 10 1130 148 53 5.6 21.0 9.8 17	0 330 9
AUG 28 1045 93 54 6.2 21.5 7.9 2.2 5	
MAGNE- CALCIUM SIUM, SODIUM, SIUM, BICAR- DIS- SOLVED SOLVED SOLVED SOLVED (MG/L BONATE CAR- (MG/L (MG/L (MG/L AS (MG/L DATE AS CA) AS MG) AS NA) AS K) HCO3) AS CO3) CACO3) AS S)	CHLO- SULFATE RIDE, E DIS- DIS-
	0 5.9 6.8
FEB 06 2.1 1.1 5.0 1.2 4 0 3 -	- 8.4 8.3
MAR 26 1.9 1.0 3.6 1.0 2 0 2 -	- 8.8 5.8
MAY 21 1.8 1.1 5.2 1.0 5 0 4 .	1 5.9 7.2
JUL 10 1.8 1.0 4.5 1.0 5 0 4 -	- 5.9 7.2
AUG 28 1.9 1.0 4.4 1.2 5 0 4 -	- 6.4 7.5
SOLIDS, FLUO- SILICA, RESIDUE NITRO- NITRO- GEN, AM- RIDE, DIS- AT 180 GEN, GEN, GEN, MONIA + NITRO- DIS- SOLVED DEG. C NO2+NO3 AMMONIA ORGANIC ORGANIC GEN, SOLVED (MG/L DIS- TOTAL TOTAL TOTAL TOTAL (MG/L AS SOLVED (MG/L (MG/L (MG/L (MG/L DATE AS F) SIO2) (MG/L) AS N) AS N) AS N) AS N) AS N)	PHOS- PHORUS, ORTHOPH CARBON, OSPHATE ORGANIC TOTAL TOTAL (MG/L (MG/L AS PO4) AS C)
OCT 041 6.0 48 <1.0 .200 .49 .69 -	14 14
FEB	
061 6.6 35 E.98 .150 .12 .27 -	
261 3.7 45 .27 .230 E.78 -	
211 5.1 46 .44 .090 .44 .53 .9 JUL	
101 6.3 38 .46 .140 .46 .60 1.1	.16 9.7
281 6.7 37 .45 .080 .41 .49 .9	4 .13 6.1
+ ORG. GANIC, ORGANIC INUM, IN BOT- TOTAL TO TOT IN TOT IN TOT. IN DIS- ARSENIC TOM MA- RECOV- R BOT MAT BOT MAT BOT MAT SOLVED TOTAL TERIAL ERABLE E TIME (MG/KG (G/KG (G/KG (UG/L (UG/L (UG/L (UG/L)	ORON, CADMIUM RECOV. OTAL TOTAL FM BOT- ECOV- RECOV- TOM MA- RABLE ERABLE TERIAL UG/L (UG/L (UG/G S B) AS CD) AS CD)
OCT 04 1030 400 .0 10 310 1 0 0	70 0 <10
MAY 21 1130 210 0 0	30 0

01411110 GREAT EGG HARBOR RIVER AT WEYMOUTH, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
DAIL	AS CRY	(00/0/	A5 CO)	A5 (0)	AS CO)	AS FE	AS FE	AS IB)	KS IB)	AS MAY
OCT O4	10	<10	<10	32	<10	1200	1000	15	10	20
21	20			44		1400		4		30
	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL	MERCURY TOTAL RECOV- ERABLE (UG/L	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G	NICKEL, TOTAL RECOV- ERABLE (UG/L	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G	SELE- NIUM, TOTAL (UG/L	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL	ZINC, TOTAL RECOV- ERABLE (UG/L	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G	PHENOLS
DATE	(UG/G)	AS HG)	AS HG)	AS NI)	AS NI)	AS SE)	(UG/G)	AS ZN)	AS ZN)	(UG/L)
OCT 04	<10	<.5	.00	8	<10	0	0	20	<10	3
21		.2		15	:	0		20		1
DATE	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 04	1	.0	2	2.2	.7	1.5	.0	.0	.0	.0
21	150									
DATE	HEPTA - CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TO XA - PHENE, TOTAL IN BOT-TOM MA-TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT O4	.0	.0	.0	.0	.0	.0	.0	.0	0	.0
21										::

294 TUCKAHOE RIVER BASIN

01411300 TUCKAHOE RIVER AT HEAD OF RIVER, NJ

EOCATION.--Lat 39°18'25", long 74°49'15", Cape May County, Hydrologic Unit 02040302, on right bank at highway bridge on State Route 49, 0.2 mi (0.3 km) upstream from McNeals Branch, 0.4 mi (0.6 km) southeast of Head of River, and 3.7 mi (6.0 km) west of Tuckahoe.

DRAINAGE AREA .-- 30.8 mi2 (79.8 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- December 1969 to current year.

REVISED RECORDS. -- WDR NJ-78-1: 1975(M), 1976(M).

GAGE. -- Water-stage recorder and wooden control. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good except those below 5.0 ft^3/s (0.14 m^3/s), which are fair. Occasional regulation by ponds above station.

AVERAGE DISCHARGE.--10 years, 47.1 ft3/s (1.334 m3/s), 20.77 in/yr (528 mm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 385 ft 3 /s (10.9 m 3 /s) Mar. 7, 1979, elevation, 6.23 ft (1.899 m); minimum daily, 1.3 ft 3 /s (0.037 m 3 /s) Sept. 3, 13, 1980.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 210 ft 3 /s (5.95 m 3 /s) Jun. 16, elevation, 5.20 ft (1.585 m); minimum daily, 1.3 ft 3 /s (0.037 m 3 /s) Sept. 13.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980
MEAN VALUES SEP DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 1.9 1.4 30 31 18 1.3 2.1 6.3 5.0 33 32 38 32 71 3.3 1.7 75 2.3 1.5 1.3 3.2 5.9 3.8 68 9.1 6.6 7.8 7.4 5.3 24 33 34 34 13 8.2 7.4 27 27 33 32 31 31 6.3 6.3 5.9 TOTAL 517.0 211.1 34.3 16.7 44.1 7.04 MEAN 38.9 36.6 46.4 74.9 66.8 53.1 36.5 MAX 5.9 1.3 MIN 1.26 1.43 2.43 2.17 CFSM 1.51 3.34 1.19 1.11 1.46 1.60 1.20 2.80 2.50

CAL YR 1979 TOTAL 23693.0 MEAN 64.9 MAX 376 MIN 19 CFSM 2.11 IN 28.62 WTR YR 1980 TOTAL 17020.1 MEAN 46.5 MAX 195 MIN 1.3 CFSM 1.51 IN 20.56

TUCKAHOE RIVER BASIN

01411300 TUCKAHOE RIVER AT HEAD OF RIVER, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
FEB 26	1100	43	96	5.6	5.0	12.0	1.9	9	6	4
APR 08	1100	88	43	4.5	14.0	9.6	1.1	5	2	4
MAY 29	1100	42	50	4.6	17.0	9.7	.7	23	7	4
JUL 17	1400	27	29	5.5	24.0	6.3	1.6	-5		4
AUG	1000	12						2110	000	4
26	1000	12	27	5.9	19.5	7.5	.9	240	920	4
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
FEB			2.4	- 2		1.0			12.2	
26 APR	.9	.5	2.6	.7	2	. 0	2		5.2	5.0
08 MAY	.7	.5	2.2	.5	0	0	0		6.4	4.2
29 JUL	.6	.6	2.4	. 4	2	0	2	.2	3.7	4.4
17 AUG	.8	.5	2.4	.6	5	0	4		3.2	4.4
26	.9	.5	2.3	1.1	6	0	5		2.3	4.1
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONÍA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
FEB 26	.0	6.7	26	E.30	.110	.19	.30		<.01	3.9
APR 08	.0	3.3	26	1.6	.260	.60	.86	2.5	.03	8.1
MAY 29	.1	6.5	25	.14	.130	.30	.43	.57	<.03	6.5
JUL 17	.0	5.8	22	<.05	.200	.27	.47	.51	.15	4.4
AUG										4.4
26	. 1	8.3	23	<.05	.110	.43	.54		.12	
	DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	
	MAY	1100	160			0.0		10		
	29	1100	160	1	0	80	0	10	1	
	DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)	
	MAY	hlic		4.0		-		10		
	29	440	1	10	<.1	5	0	10	0	

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at partial-record stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. Discharge measurements made at miscellaneous sites for both low flow and high flow are given in a third table.

Low-flow partial-record stations

Measurements of streamflow in New Jersey made a low-flow partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will give a picture of the low-flow potentiality of a stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same, site.

Station number	Station name	Location	Drainage area (mi²)	Period of record	Measur o	Discharge (ft³/s)
		Hudson River basin				
01367620	Wallkill River at outflow of Lake Mohawk at Sparta, NJ	Lat 41°01'59", long 74°37'36", Sussex County, at bridge on West Shore Trail, at Sparta, 200 ft (61 m) downstream from outflow of Lake Mohawk, and 1.2 mi (1.9 km) southwest of Sparta Station.	4.38 (11.34 km ²)	1979-80	7-02-80 9-02-80	.62
01368950	Black Creek near Vernon, NJ	Lat 41°13'21", long 74°28'33", Sussex County, at bridge on Maple Grange Road, 0.6 mi (1.0 km) upstream of con- fluence with Wawayanda Creek, 0.7 mi (1.1 km) northwest of Maple Grange, and 1.7 mi (2.7 km) northeast of Vernon.	17.3 (44.8 km ²)	1980	12-19-79 9-02-80	23 2.3
		Hackensack River basin				
01378410	Dwars Kill at Norwood, NJ	Lat 40°59'01", long 73°57'35", Bergen County, at bridge on Blanche Avenue at Norwood, 0.2 mi (0.3 km) upstream from mouth.	4.23 (10.96 km ²)	1973-80	7-02-80	1.2
01378430	Tenakill Brook tributary at Norwood, NJ	Lat 40°59'06", long 73°57'39", Bergen County, at Blanche Avenue at Norwood, 1.0 mi (1.6 km) east of Harrington Park, 1.5 mi (2.4 km) up- stream from Oradell Reservoir.	2.03 (5.26 km ²)	1973 - 78, 1980	7-02-80	1,1
		Passaic River basin				
01381200	Rockaway River at Pine Brook, NJ	Lat 40°51'29", long 74°20'53", Morris County, at bridge on U.S. Route 46, 0.9 mi (1.4 km) west of Pine Brook, and 1.1 mi (1.8 km) upstream from Whippany River.	136 (352 km ²)	1963-70, 1972-73, 1979-80	2-26-80	75
01381800	Whippany River near Pine Brook, NJ	Lat 40°50'42", long 74°20'51", Morris County, at bridge on Edwards Road, 0.3 mi (0.5 km) above mouth, and 1.4 mi (2.1 km) southwest of Pine Brook.	68.5 (177.4 km ²)	1963-68, 1973, 1979-80	2-04-80 2-26-80	45 79
01382870	Belcher Creek at Stowaway Road at West Milford, NJ	Lat 41°07'27", long 74°22'48", Passaic County, at bridge on Stowaway Road in West Milford, at entrance to Pinecliff Lake, 2.8 mi (4.5 km) upstream from mouth.	2.44 (6.32 km ²)	1973-80	7-02-80	5.2
01382880	Belcher Creek tributary at West Milford, NJ	Lat 41°08'06", long 74°22'34", Passaic County, at bridge on Bearfort Road in West Milford, 150 ft (46 m) upstream from mouth, and 3.9 mi (6.3 km) west of Hewitt.	0.61 (1.58 km ²)	1973-77, 1979-80	7-09-80	.09

Station number	Station name	Location	Drainage area (mi²)	Period of record	Measur Date	ements Discharge (ft³/s)
		Passaic River basinCont	inued			
01382890	Belcher Creek at West Milford, NJ	Lat 41°08'15", long 74°22'04", Passaic County, at bridge on Union Valley Road, 150 ft (46 m) downstream from Pinecliff Lake Dam, 0.4 mi (0.6 km) from West Milford, 1.6 mi (2.6 km) from mouth.	7.27 (18.83 km ²)	1973-80	7-09-80	1.8
01382910	Morsetown Brook at West Milford, NJ	Lat 41°08'13", long 74°21'18", Passaic County, at bridge on Lincoln Avenue, 0.4 mi (0.6 km) upstream from mouth, 0.9 mi (1.4 km) northeast of West Milford.	1.31 (3.39 km ²)	1973-80	7-02-80	.08
01382960	Green Brook near West Milford, NJ	Lat 41°09'09", long 74°21'34", Passaic County, at bridge on Union Valley Road, 0.4 mi (0.6 km) upstream from mouth, 1.6 mi (2.6 km) north of West Milford. Note: Diversions from Upper Greenwood Lake (Hudson River basin) enter stream above gage.	2.03 (5.26 km ²) Revised)	1973-80	7-09-80	2.3
01382990	Cooley Brook near West Milford, NJ	Lat 41°09'16", long 74°21'27", Passaic County, at bridge on Union Valley Road, 0.1 mi (0.2 km) upstream from mouth, 1.8 mi (2.9 km) north of West Milford.	1.34 (3.47 km ²)	1973-80	7-09-80	1.1
		Rahway River basin				
01396030	South Branch Rahway River at Colonia, NJ	Lat 40°34'57", long 74°18'04", Middlesex County, at bridge on Dover Road in Colonia, 0.7 mi (1.1 km) northeast of Iselin, and 3.5 mi (5.6 km) northeast of Metuchen.	9.41 (24.37 km ²)	1979-80	9-04-80	1.3
		Raritan River basin				
01396090	South Branch Raritan River at outlet of Budd Lake, NJ	Lat 40°51'38", long 74°45'38", Morris County, at bridge on Smithtown Road, 200 ft (60 m) northwest of U.S. Route 46 and 0.5 mi (0.8 km) downstream from Budd Lake Dam at Budd Lake.	5.03 (13.03 km ²)	1964, 1973-77, 1980	4-26-80	12
01396280	South Branch Raritan River at Middle Valley, NJ	Lat 40°45'40", long 74°49'18", Morris County, at bridge on Middle Valley Road in Middle Valley Road in Middle Valley, 6.9 mi (11.1 km) downstream from Drakes Brook.	47.7 (123.5 km ²)	1964-67, 1973-76, 1980	4-26-80	107
01396590	Spruce Run near High Bridge, NJ	Lat 40°40'26", long 74°55'04", Hunterdon County, at bridge on Van Syckels Corner Road, at inlet to Spruce Run Reservoir, 1.3 mi (2.1 km) northwest of High Bridge.	15.5 (40.1 km ²)	1973-80	7-09-80	7.9
01396670	Mulhockaway Creek tributary at Van Syckel, NJ	Lat 40°39'05", long 74°58'13", Hunterdon County, at bridge on secondary road at Van Syckel, 0.4 mi (0.6 km) upstream from mouth.	2.76 (7.15 km ²)	1973-80	7-09-80	1.5
01398260	North Branch Raritan River near Chester, NJ	Lat 40°46'16", long 74°37'34", Morris County, at bridge on State Route 24, 0.8 mi (1.3 km) upstream from Burnett Brook, and 3.8 mi (6.1 km) east of Chester.	7.57 (19.61 km ²)	1964 - 67, 1980	4-26-80	13
01399194	Succasunna Brook at Succasunna, NJ	Lat 40°51'02", long 74°38'25", Morris County, at extension of Midland Road in Succasunna, 0.3 mi (0.5 km) upstream from Lamington River, 2.2 mi (3.5 km) north of Ironia, and 3.4 mi (5.5 km) east of Flanders.	1.72 (4.45 km ²)	1977-80	7-09-80 9-02-80	.93

	2200 mar go modour omorro	o made at 100 1100 partitud 10001 a boat	20110 441 2118 1			
Station number	Station name	Location	Drainage area (mi²)	Period of record	Measur e Date	Discharge (ft ³ /s)
		Raritan River basinCont	inued			
01399198	Lamington River tributary near Ironia, NJ	Lat 40°50'28", long 74°38'16", Morris County, at bridge 0.4 mi (0.6 km) upstream from Lamington River, 1.6 mi (2.6 km) north of Ironia, and 2.4 mi (3.9 km) south of Succasunna.	0.64 (1.66 km ²)	1977-80	7-09-80 9-02-80	.34
01400560	Millstone River at Applegarth, NJ	Lat 40°16'28", long 74°28'22, Middlesex County, at bridge on Prospect Plains-Apple- garth Road in Applegarth, 2.7 mi (4.3 km) east of Hightstown, and 5.2 mi (8.4 km) upstream from Rocky Brook.	15.0 (38.8 km ²)	1960-62, 1964, 1971-72, 1980	5-05-80	8.5
*01400850	Woodsville Brook at Woodsville, NJ	Lat 40°22'37", long 74°49'33", Mercer County, at bridge on Secondary Road, 0.3 mi (0.5 km) southeast of Wcods- ville, 0.8 mi (1.3 km) above mouth, and 3.4 mi (5.5 km) west of Hopewell.	1,78 (4.61 km ²)	1957-59, 1965-73, 1980	8-15-80	0
01401400	Heathcote Brook at Kingston, NJ	Lat 40°22'10", long 74°36'59", Middlesex County, at bridge on Mapleton Road, at Penn Central railroad bridge, 0.3 mi (0.5 km) south of Kingston, and 0.4 mi (0.6 km) upstream from mouth.	9.00 (23.31 km ²)	1979-80	12-06-79 9-08-80	6.2 1.5
01403330	Bound Brook at South Plainfield, NJ	Lat 40°34'43", long 74°24'45", Middlesex County, at bridge on Hamilton Road in South Plainfield, 0.5 mi (0.8 km) upstream from Cedan Brook, and 1.9 mi (3.1 km) east of New Market.		1979-80	7-02-80 9-04-80	6.9 3.4
01403350	Cedar Brook at South Plainfield, NJ	Lat 40°34'57", long 74°24'53", Middlesex County, at bridge on Lakeview Road in South Plainfield, 0.4 mi (0.6 km) upstream from mouth, and 2.0 mi (3.2 km) east of Dunellen.	7.10 (18.39 km ²)	1979-80	7-02-80 9-04-80	.37 .03
01404060	Ambrose Brook at Middlesex, NJ	Lat 40°34'03", long 74°31'02", Middlesex County, at dam, 900 ft (270 m) upstream from bridge on State Route 18 in Middlesex, and 0.7 mi (1.1 km) upstream from mouth.	13.9 (36.0 km ²)	1979-80	7-02-80 9-04-80	4.7 .96
01404180	Mill Brook at Highland Park, NJ	Lat 40°30'23", long 74°25'51", Middlesex County, at bridge on Harrison Street in Highland Park, 0.7 mi (1.1 km) upstream from mouth, and 0.9 mi (1.4 km) northeast of New Brunswick.	1.41 (3.65 km ²)	1979-80	7-02-80 9-04-80	.66
01405240	Matchaponix Brook near Englishtown, NJ	Lat 40°19'21", long 74°21'35", Middlesex County, at bridge on Union Hill Road, 1.7 mi (2.7 km) north of Englishtown, and 2.8 mi (4.6 km) northwest of Gordons Corner.	29.1 (75.4 km²)	1979-80	7-11-80 9-08-80	15 9.9
01405285	Barclay Brook near Englishtown, NJ	Lat 40°20'53", long 74°21'27", Middlesex County, at bridge on State Route 527 (Old Bridge- Englishtown Road), 0.6 mi (1.0 km) south of Redshaw Corner, 0.9 mi (1.4 km) upstream from mouth, and 3.5 mi (5.6 km) north of Englishtom	4.94 (12.80 km²)	1979-80	7-11-80 9-09-80	.64 .22
01405335	Manalapan Brook near Manalapan, NJ	Lat 40°16'45", long 74°22'53", Monmouth County, at bridge on South Main Street, 1.8 mi (2.9 km) northeast of Manalapan, 1.8 mi (2.9 km) southwest of Englishtown, and 5.6 mi (9.0 km) southeast of Jamesburg.	16.0 (43.8 km ²)	1979-80	7-11-80 9-08-80	7.8 5.1

Station number	Station name	Location	Drainage area (mi²)	Period of record	Measure Date	Discharge (ft³/s)
		Raritan River basinCont	inued			
01405470	Iresick Brook at East Spotswood, NJ	Lat 40°23'35", long 74°21'36", Middlesex County, at bridge on Route 527 in East Spots- wood, 0.6 mi (1.0 km) above mouth, and 1.4 mi (2.3 km) south of Old Bridge.	2.29 (5.93 km ²)	1973 - 77, 1980	7-11-80	.13
		Manasquan River basin	+			
*01407830	Manasquan River near Georgia, NJ	Lat 40°12'36", long 74°16'41", Monmouth County, at bridge on Jacksons Mill Road, 0.5 mi (0.8 km) upstream from DeBois Creek, 0.9 mi (1.4 km) south- west of intersection of Jacksons Mill Road with State Route 524, 1.3 mi (2.1 km) southwest of Adelphia, and 1.6 mi (2.6 km) north of Georgia.	10.6 (27.5 km ²)	1966, 1969-74, 1980	1-24-80 5-02-80	19 21
		Mullica River basin				
*01409375	Mullica River near Atco, NJ	Lat 39°47'08", long 74°51'38", Camden County, 50 ft (15 m) downstream from Jackson- Medford Road and 1.8 mi (2.9 km) northeast of Pennsylvania- Reading Seashore Lines railroad and Atco Street in Atco.	3.22 (8.34 km ²)	1975-80	7-03-80 9-03-80	2.5 .39
01409390	Mullica River at Atsion, NJ	Lat 39°44'19", long 74°43'20", Burlington County, at Central Ratlroad of New Jersey bridge in Atsion, 500 ft (152 m) downstream from Wesickaman Creek, and 0.3 mi (0.5 km) southeast of Atsion.	33.1 (85.7 km ²)	1975-80	7-02-80 9-03-80	32 12
01409402	Hays Mill Creek near Chesilhurst, NJ	Lat 39°45'02", long 74°50'28", Camden County, at bridge on Tremont Avenue, 0.5 mi (0.8 km) upstream from Cooper Branch, 2.0 mi (3.2 km) northeast of Chesilhurst and 2.8 mi (4.5 km) southeast of Atco.	7.13 (18.47 km ²)	1974-80	7-03-80	12
*01409403	Wildcat Branch at Chesilhurst, NJ	Lat 39°44'04", long 74°51'33", Camden County, at culvert on Old White Horse Pike, 0.6 mi (1.0 km) north of Chesilhurst, 1.5 mi (2.4 km) upstream from mouth, and 2.9 mi (4.6 km) southeast of Atco.	1.03 (2.67 km ²)	1974-80	7-03-80	.36
01409404	Sleeper Branch near Atsion, NJ	Lat 39°42'46", long 74°44'36", Atlantic County, at bridge on U.S. Route 206, 0.1 mi (0.2 km) upstream from Clark Branch, 0.6 mi (1.0 km) south of Dutchtown, and 2.1 mi (3.4 km) south of Atsion.	18.2 (47.1 km ²)	1975-80	7-02-80	5.0
01409405	Clark Branch near Atsion, NJ	Lat 39°42'42", long 74°44'39", Atlantic County, at bridge on U.S. Route 206, 0.1 mi (0.2 km) upstream from Sleeper Branch, 0.7 mi (1.1 km) south of Dutchtown, and 2.2 mi (3.5 km) south of Atsion.	7.12 (18.44 km²)	1975-80	7-02-80	19
01409406	Sleeper Branch at Batsto, NJ	Lat 39°38'48", long 74°39'39", Atlantic County, at footbridge 600 ft (180 m) upstream from Mullica River, and 0.6 mi (1.0 km) northwest of Batsto.	36.1 (93.5 km ²)	1975-80	7-02-80	7.4
01409407	Pump Branch near Blue Anchor, NJ	Lat 39°42'22", long 74°53'04", Camden County, at highway bridge, 0.4 mi (0.6 km) upstream from Hobb Lake, and 1.2 mi (1.9 km) north of Blue Anchor.	6.20 (16.06 km ²)	1974-80	7-03-80	4.9

Station number	Station name	Location	Drainage area (mi²)	Period of record	Measure Date	Discharge (ft³/s)
		Mullica River basinCont	inued			
*01409409	Blue Anchor Brook near Blue Anchor, NJ	Lat 39°41'17", long 74°51'00", Camden County, on upstream left side of bridge on Spring Garden Road, 1.8 mi (2.9 km) east of Blue Anchor, 1.8 mi (2.9 km) north of Winslow, and 2.2 mi (3.5 km) upstream from Albertson Brook.	3.01 (7.80 km²)	1974-80	7-03-80	2.0
01409410	Albertson Brook near Hammonton, NJ	Lat 39°41'41", long 74°45'21", Atlantic County, at bridge on U.S. Route 206, 3.1 mi (5.0 km) downstream from confluence of Pump Branch and Blue Anchor Brook, 3.5 mi (5.6 km) south of Atsion, and 5.2 mi (8.4 km) northeast of Hammonton.	19.3 (50.0 km ²)	1975-80	7-02-80 9-03-80	26 14
01409411	Nescochague Creek at Pleasant Mills, NJ	Lat 39°38'28", long 74°39'43", Atlantic County, at bridge on sand road in Pleasant Mills, 0.2 mi (0.3 km) upstream from Mullica River, and 0.6 mi (1.0 km) west of Batsto.	43.8 (113.4 km ²)	1975-80	7-02-80 9-03-80	63 24
01409460	Springers Brook near Atsion, NJ	Lat 39°44'26", long 74°41'02", Burlington County, at site 110 ft (34 m) upstream from unnamed left-bank tributary, 700 ft (213 m) downstream from Deep Run, and 2.8 mi (4.5 km) east of Atsion.	21.2 (54.9 km ²)	1975-77, 1980	7-02-80 9-03-80	6.7 1.5
01409575	Landing Creek at Philadelphia Avenue at Egg Harbor City, NJ	Lat 39°32'52", long 74°37'33", Atlantic County, at bridge on Philadelphia Avenue (State Route 563), 0.1 mi (0.2 km) upstream from Union Creek, 1.7 mi (2.7 km) northeast of intersection of Routes 30, 563, and 50 in Egg Harbor City, and 6.1 mi (9.8 km) upstream from mouth.	4.86 (12.59 km²)	1974, 1976-80	7-02-80 9-03-80	6.8
01409730	West Branch Wading River near Chatsworth, NJ	Lat 39°45'43", long 74°32'27", Burlington County, at bridge on County Route 563, 0.6 mi (1.0 km) downstream from Pole Branch, and 2.9 mi (4.7 km) south of Chatsworth.	44.8 (116.0 km ²)	1975-80	7-03-80	21
01409780	Tulpehocken Creek near Jenkins, NJ	Lat 39°42'51", long 74°33'58", Burlington County, at bridge on Maxwell-Friendship Road, 0.2 mi (0.3 km) upstream from mouth, and 2.3 mi (3.7 km) northwest of Jenkins.	21.9 (56.7 km ²)	1975-80	7-03-80 9-04-80	12 6.1
01409970	Oswego River at Oswego Lake, NJ	Lat 39°43'53", long 74°29'21", Burlington County, at bridge on Little Hawkin Road at outlet of Oswego Lake, 0.6 mi (1.0 km) downstream from Breeches Branch, and 3.0 mi (4.8 km) northwest of Jenkins.	64.4 (116.7 km ²)	1975-80	7-03-80 9-04-80	46 18
		Great Egg Harbor River b	pasin			
01410784	Great Egg Harbor River near Sicklerville, NJ	Lat 39°44'02", long 74°57'05", Camden County, at bridge on Sicklerville-New Freedom Road (Spur 536), 1.5 mi (2.4 km) northeast of Sicklerville.	15.1 (39.1 km ²)	1971-80	9-11-79 2-20-80 3-24-80 7-02-80	a11 11 29 11
01410803	Fourmile Branch at Winslow Crossing, NJ	Lat 39°42'07", long 74°58'11", Camden County, at bridge on Andrews Road in Winslow Crossing, 1.4 mi (2.2 km) northeast of Williamstown, and 2.1 mi (3.4 km) upstream from Great Egg Harbor River.	6.22 (16.11 km ²)	1972-80	7-02-80	5.8

Station number	Station name	Location	Drainage area (mi²)	Period of record	Measur o	Discharge (ft³/s)
		Great Egg Harbor River basin	Continued			
01411053	Hospitality Branch at Berryland, NJ	Lat 39°36'31", long 74°54'34", Gloucester County, at bridge on Piney Hollow Road, 0.3 mi (0.5 km) southwest of Berryland, 1.2 mi (1.9 km) upstream of Oak Branch and 3.4 mi (5.5 km) west of Folsom.	20.0 (51.8 km ²)	1976-80	7-02-80 9-04-80	36 9.2
01411140	Deep Run at Weymouth, NJ	Lat 39°30'26", long 74°46'56", Atlantic County, at bridge on State Highway 559, 0.3 mi (0.5 km) upstream of mouth, and 0.5 mi (0.8 km) southwest of Weymouth.	20.0 (51.8 km ²)	1976-80	7-02-80 9-03-80	48 11

 $[\]cdot$ Also a crest-stage partial-record station. Not previous published.

CREST-STAGE PARTIAL RECORD STATIONS

The following table contains annual maximum discharges for crest-stage stations. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained, and discharge measurements may have been made for purposes of establishing the stage-discharge relation, but these are not published herein. The years given in the period of record represent water years for which the annual maximum has been determined. The gage heights are heights on the upstream side of the bridge, above the dam or at the discontinued continuous-record gaging station unless otherwise noted.

Station	Station name	Location	Desiros	Period	Annu	al maximu	n
No.	Station name	Location	Drainage area (mi²)	of record	Date	Gage height (feet)	Discharge (ft³/s)
		Hackensack River	basin				
*01377475	Musquapsink Brook near Westwood, NJ	Lat 40°59'41", long 74°03'42", Bergen County, at bridge on Pascack Road in Washington Borough, 1.5 mi (2.4 km) west of Westwood, and 5.3 mi (8.5 km) above mouth. Datum of gage before 1973 was 69.67 ft (21.235 m) National Geodetic Vertical Datum of 1929.	2.16 (5.59 km ²)	1965+80	11-26-79	b2.41	267
01377490	Musquapsink Brook at Westwood, NJ	Lat 40°59'11", long 74°02'03", Bergen County, at footbridge at Bogert Pond, 8 ft (2 m) upstream from dam near in- tersection of Mill Street and First Avenue in Westwood. Datum of gage is 47.67 ft (14.530 m) National Geodetic Vertical Datum of 1929.		1966-80	11-26-79, 4-28-80	1.47	255
*01378385	Tenakill Brook at Closter, NJ	Lat 40°58'29", long 73°58'06, Bergen County, at bridge on High Street in Closter, 0.7 m (1.1 km) upstream from mouth. Datum of gage is 23.85 ft (7.270 m) National Geodetic Vertical Datum of 1929.	i	1965-80	4-10-80	b4.52	880
*01378590	Metzler Brook at Englewood, NJ	Lat 40°54'32", long 73°59'40", Bergen County, at bridge on Lantana Avenue in Englewood, and 1.6 mi (2.6 km) upstream from mouth. Datum of gage is 43.10 ft (13.137 m) National Geodetic Vertical Datum of 1929.	1.54 (3.99 km ²)	1965-80	4-10-80	b2.07	170
#01378615	Wolf Creek at Ridgefield, NJ	Lat 40°49'45", Long 74°00'14", Bergen County, at bridge on Clark Avenue in Ridgefield and 0.9 mi (1.4 km) upstream from mouth. Datum of gage is 12.1 ft (3.69 m) National Geodetic Vertical Datum of 1929.	1.18 (3.06 km ²)	1965-80	9-06-79, 8-04-80	bd5.52 b6.13	
		Passaic River b	asin				
01378690	Passaic River near Bernardsville, NJ	Lat 40°44'03", long 74°32'26", Somerset County, at bridge on U.S. Route 202, 1.8 mi (2.9 k northeast of Bernardsville, and 3.0 mi (4.8 km) upstream from Great Brook. Datum of gage is 238.07 ft (72.564 m) National Geodetic Vertical Datum of 1929.		1968-80	3-21-80	b13.72	740

CREST-STAGE PARTIAL-RECORD STATIONS

Station	Station name	Location Drainage			Annu	al maximum	n
No.		200401011	area (mi²)	of record	Date	Gage height (feet)	Discharge (ft ³ /s)
		Passaic River basin	Continued				
01387880	Pond Brook at Oakland, NJ	Lat 41°01'36", long 74°14'04", Bergen County, at bridge on NJ Route 208 in Oakland, 0.2 mi (0.3 km) upstream from former site at Franklin Avenue (prior to October 1975), 0.6 mi (1.0 km) up- stream from mouth, and 1.5 m (2.4 km) northwest of Frankl Lakes. Datum of gage is 276.97 ft (84.420 m) Nationa Geodetic Vertical Datum of 1929.	(17.51 km²) i	1968-71, 1976-80	4-21-80	2.39	304
01389030	Preakness (Signac) Brook near Preakness, NJ	Lat 40°56'55", long 74°13'25", Passaic County, at bridge on Ratzer Road, 1.0 mi (1.6 km) north of Preakness, and 2.0 (3.2 km) upstream from Naach punkt Brook.	(8.39 km ²)	1979-80	4-28-80	ab4.3	t
01389534	Peckman River at Ozone Avenue at Verona, NJ	Lat 40°50'42", long 74°14'09", Passaic County, at bridge on Ozone Avenue in Verona, 4.0 (6.4 km) west of Clifton and 1.0 mi (1.6 km) southwest o Cedar Grove Reservoir.	(10.07 km ²)	1979-80	4-28-80	b3.66	820
01389765	Molly Ann Brook at North Haledon, NJ	Lat 40°57'11", long 74°11'07", Passaic County, at bridge on Overlook Avenue in North Haledon, 1.5 mi (2.4 km) wes of Hawthorne and 0.5 mi (0.8 upstream from Oldham Pond Da	(11.52 km ²) t km)	1979-80	4-28-80	7.62	,
01389900	Fleischer Brook at Market Street, Elmwood Park, NJ	Lat 40°53'57", long 74°06'54" Bergen County, at culvert on Market Street in Elmwood Par (formerly East Paterson), an 2.0 mi (3.2 km) upstream fro mouth. Datum of gage is 35. (10.762 m) National Geodetic Vertical Datum of 1929.	(3.55 km ²) k d m 31 ft	1967-80	11-26-79	3.28	161
*01390450	Saddle River at Upper Saddle River, NJ	Lat 41°03'32", long 74°05'44", Bergen County, at culvert on Lake Street in Upper Saddle River, and 1.3 mi (2.1 km) downstream from Pine Brook. Datum of gage is 186.11 ft (56.726 m) National Geodetic Vertical Datum of 1929.	(28.2 km ²)	1966-80	4-28-80	b4.51	1,550
01390810	Hohokus Brook at Allendale, NJ	Lat 41°01'37", long 74°08'44", Bergen County, at bridge on Brookside Avenue in Allen- dale, and 0.2 mi (0.3 km) downstream from Valentine Brook. Datum of gage is 277.46 ft (84.570 m) Nationa Geodetic Vertical Datum of 1929.	(23.60 km²)	1969-80	4-28-80	5.97	530
01390900	Ramsey Brook at Allendale, NJ	Lat 41°01'45", long 74°08'06", Bergen County, at bridge on Brookside Avenue in Allen- dale and 0.6 mi (1.0 km) upstream from Hohokus Brook. Datum of gage is 270.79 ft (82.537 m) National Geodetic Vertical Datum of 1929.	(6.60 km ²)	1975-80	4-28-80	b3.19	332
01392500	Second River at Belleville, NJ	Lat 40°47'17", long 74°10'19", Essex County, on Mill Street in Branch Brook Park at Belleville, 300 ft (91 m) downstream from Franklin Avenue, and 1,100 ft (335 m) downstream from Hendricks Pond dam. Datum of gage is 62.6 ft (19.08 m) National Geo- detic Vertical Datum of 1929	30.04 km ²)	1937-64‡, 1963-80	6-30-80	6.53	2,750

CREST-STAGE PARTIAL-RECORD STATIONS

Station	Station name	Location	Drainage	Period	Annu	al maximu	n
No.	Station name	Location	area (mi²)	of record	Date	Gage height (feet)	Discharge (ft³/s)
		Raritan Riv	er basin				
01397500	Walnut Brook near Flemington, NJ	Lat 40°30'55", long 74°52'5 Hunterdon County, on righ bank 1.2 mi (1.9 km) nort west of Flemington, and 2.3 mi (3.7 km) upstream from mouth. Datum of gag is 267.33 ft (81.482 m) National Geodetic Vertica Datum of 1929.	t (5.80 km²) h- e	1936-61‡, 1965-80	d8-03-79 4-10-80	3.71 2.82	900 390
01400630	Millstone River at Southfield Road near Grovers Mill, NJ	Lat 40°18'12", long 74°34'3 Mercer County, at bridge Southfield Road, 0.2 mi (0.3 km) southeast at Gro Mill, 3.5 mi (5.6 km) southwest of Cranbury, an 3.0 mi (4.8 km) upstream Bear Brook. Datum of gag 62.63 ft (19.09 m) Nation Geodetic Vertical Datum o 1929.	on (106.2 km²) vers d of e is al	1971, 1975 1979-80	9-27-75 9-06-79 4-10-80	7.4 +5.7 5.06	e940 e635 520
01400730	Millstone River at Plainsboro, NJ	bank 30 ft (9 m) upstream from bridge on Penn Centr railroad, 100 ft (30 m) downstream from Cranbury Brook, 0.2 mi (0.3 km) up stream from Bear Brook, a 0.9 mi (1.4 km) southwest	(170.4 km²) al - nd	1965-75‡, 1976-80	4-10-80	4.88	1,100
		of Plainsboro. Datum of is 53.41 ft (16.279 m) Na Geodetic Vertical Datum o	tional				
01400775	Bear Brook at Route 535 near Locust Corner, NJ	Lat 40°16'04", long 74°34'3 Mercer County, at bridge State Route 535, 0.9 mi (1.4 km) southwest of Loc Corner, 2.0 mi (3.2 km) e Hightstown, and 4.2 mi (6 above mouth. Datum of ga 73.75 ft (22.479 m) Natio Geodetic Vertical Datum o	on (17.33 km²) ust east of .8 km) ge is nal	1971, 1975 1979-80	9-06-79 4-10-80	b5.43 b5.53	
01400822	Little Bear Brook at Penns Neck, NJ	Lat 40°19'21", long 74°37'3 Mercer County, at downstr side of bridge on Alexand Road, 0.9 mi (1.4 km) sou of Penns Neck, 2.8 mi (4. southwest of Plainsboro a (1.6 km) above mouth. Da is 53.96 ft (16.447 m) Na Geodetic Vertical Datum o	eam (4.77 km²) er theast 5 km) nd 1.0 mi tum of gage tional	1971,1975 1979-80	4-10-80	b3.02	•
*01400850	Woodsville Brook at Woodsville, NJ	Lat 40°22'37", long 74°49'3 Mercer County, at bridge secondary road, 0.3 mi (0.5 km) southeast of Woo ville, and 0.8 mi (1.3 km upstream from mouth. Dat of gage is 226.7 ft (69.1 National Geodetic Vertica Datum of 1929.	on (4.61 km ²) ds-) um 0 m)	1957-58, 1964-80	3-21-80	2.89	230
01400900	Stony Brook at Glenmoore, NJ	Lat 40°21'55", long 74°47'1 Mercer County, at highway bridge on Spur State Rout 518, 200 ft (61 m) east o tracks of CONRAIL, at Glenmoore, and 2.0 mi (3.2 km) southwest of Hop well. Datum of gage is 159.1 ft (48.49 m) Nation Geodetic Vertical Datum o 1929.	(44.03 km²) e f e- al	1957-80	3-21-80	b7.33	2,550

CREST-STAGE PARTIAL-RECORD STATIONS

Station	Station name	Location	Drainage	Period	Annu	al maximu	m
No.	Station name	Location	area (mi²)	of record	Date	Gage height (feet)	Discharge (ft³/s)
		Raritan River basin	Continued				
*01400930	Baldwin Creek at Pennington, NJ	Lat 40°20'18", long 74°47'50", Mercer County, at bridge on State Route 31, 0.8 mi (1.3 km) north of Pennington, and 0.9 mi (1.4 km) upstream from Baldwin Lake dam. Datum of gage is 161.69 ft (49.283 m National Geodetic Vertical Datum of 1929.	(5.15 km ²)	1960-80	3-21-80	5.55	325
01400950	Hart Brook near Pennington, NJ	Lat 40°19'17", long 74°45'38", Mercer County, at culvert on Federal City Road, 1.6 mi (2.6 km) upstream of mouth, and 1.7 mi (2.7 km) southeast of Pennington. Datum of gage after July 1, 1975 is 163.32 f (49.780 m) National Geodetic Vertical Datum of 1929.		1968-80	3-21-80	3.55	137
01401160	Duck Pond Run near Princeton Junction, NJ	Lat 40°17"47", long 74°38'47", Mercer County, on right bank upstream from bridge on Clarksville Road, 1.5 mi (2.4 km) southwest of Princeto Junction and 4.0 mi (6.4 km) south of Princeton. Datum of gage is 72.50 ft (22.098 m) National Geodetic Vertical Dat of 1929.	n	1980	3-21-80	3.81	+
01401200	Duck Pond Run at Clarksville, NJ	Lat 40°18'24", long 74°40'06", Mercer County, at bridge on (U.S. Route 1, 0.5 mi (0.8 km) upstream from Delaware and Raritan Canal, and 0.9 mi (1.4 km) northeast of Clarks- ville. Datum of gage is 54.14 ft (16.502 m) National Geodetic Vertical Datum of 1929.	5.21 13.49 km ²)	1965-80	3-21-80	3.45	135
01401301	Millstone River at Carnegie Lake at Princeton, NJ	Lat 40°22'11", long 74°37'15", 1 Middlesex County, at right end of Carnegie Lake dam, 2.5 mi (4.0 km) northeast of Princeton. Datum of gage is 50.00 ft (15.240 m) National Geodetic Vertical Datum of 1929.	59 412 km ²)	1926-74‡, 1977-80	3-22-80	4.71	5,200
*01401520	Beden Brook near Hopewell, NJ	Lat 40°23'02", long 74°44'28", Mercer County, at bridge on Aunt Molly Road, 0.8 mi (1.3 km) upstream from Pro- vince Line Road, 1.1 mi (1.8 km) southeast of Hope- well, and 2.6 mi (4.2 km) southwest of Blawenburg. Datum of gage is 116.43 ft (35.488 m) National Geodetic Vertical Datum of 1929.	6.07 15.72 km ²)	1967-80	3-21-80	6.47	1,470
01401595	Rock Brook near Blawenburg, NJ	Lat 40°25'47", long 74°41'05", Somerset County, at bridge on Burnt Hill Road, 0.7 mi (1.1 km) upstream from mouth, 1.0 mi (1.6 km) northeast of Blawenburg, and 2.8 mi (4.5 km northwest of Rocky Hill. Datu of gage is 63.45 ft (19.340 m) National Geodetic Vertical Datum of 1929.) m	1967-80	3-21-80	5.89	1,100

CREST-STAGE PARTIAL-RECORD STATIONS

Station	Station name	Location	Drainage	Period	Annu	al maximum	1
No .	Station name	bocación	area (mi²)	of record	Date	Gage height (feet)	Discharge (ft ³ /s)
		Raritan River basin	Continued				
01401600	Beden Brook near Rocky Hill, NJ	Lat 40°24'52", long 74°39'02", Somerset County, at bridge on U.S. Route 206, 0.7 mi (1.1 km) upstream from Pike Run, 1.2 mi (1.9 km) northwest of Rocky Hill, and 4.6 mi (7.4 km) north of Princeton. Datum of gage is 38.09 ft (11.610 m) National Geodetic Vertical Datum of 1929.	(71.5 km ²)	1967-80	3-21-80	b10.65	3,900
01401870	Six Mile Run near Middlebush, NJ	Lat 40°28'12", long 74°32'42", Somerset County, at bridge on South Middlebush Road, 1.6 mi (2.6 km) upstream from mouth, and 2.1 mi (3.4 km) south of Middlebush. Datum of gage is 39.91 ft (12.165 m) National Geodetic Vertical Datum of 1929.		1966-80	4-28-80	6.39	465
01403395	Blue Brook at Seeleys Pond Dam near Berkely Heights, NJ	Lat 40°40'02", long 74°24'13", Union County, on wall on right bank, upstream from Seeleys Pond spillway, 1.0 mi (1.6 km) north of Scotch Plain 1.0 mi (1.6 km) west of mounta side, and 300 ft (91 m) above mouth.		1980	6-30-80	g4.22	82
01403400	Green Brook at Seeley Mills, NJ		6.28 16.27 km ²)	1969-80	4-02-70 8-28-71 11-29-71 12-21-73 7-14-75 4-01-76 3-22-77 11-08-77 3-21-80	12.32 8.15 9.51	c270 c4,900 c196 c1,400 c3,900 c420 c860 c960 740
01403570	Stony Brook at North Plainfield, NJ	Lat 40°37'19", long 74°26'11", Somerset County, at bridge on Green Brook Road, in North Plainfield, 100 ft (30 m) downstream of Crab Brook, and 1.4 mi (2.3 km) upstream of mouth. Datum of gage is 71.59 ft (21.821 m) National Geodetic Vertical Datum of 1929.	6.88 (17.82 km ²)	1975-80	3-21-80	b4.20	700
01407290	Big Brook at Marlboro, NJ	Lat 40°19'10", long 74°12'52", Monmouth County, downstream (side of bridge on Hillsdale Road, 1.7 mi (2.7 km) east of Marlboro and 3.0 mi (4.8 km) northwest of Colts Neck.		1980	4-10-80	7.17	†
		Manasquan River b	asin				
*01407830	Manasquan River near Georgia, NJ	Lat 40°12'36", long 74°16'41", Monmouth County, at culvert (on Jacksons Mill Road near Georgia, and 0.5 mi (0.8 km) upstream from Debois Creek. Datum of gage is 70.47 ft (21.479 m) National Geodetic Vertical Datum of 1929.		1969-80	4-10-80	9.39	225
*01408015	Mingamahone Brook at Farmingdale, NJ	Lat 40°11'38", long 74°09'42", Monmouth County, at bridge (on Belmar Road in Farmingdale, and 3.0 mi (4.8 km) upstream from mouth. Datum of gage is 48.64 ft (14.825 m) National Geodetic Vertical Datum of 1929.	6.22 16.11 km ²)	1969-80	4-10-80	5.89	245

CREST-STAGE PARTIAL-RECORD STATIONS

Station '	Station name	Location	Drainage	Period	Annu	al maximu	m.
No .			area (mi²)	of record	Date	Gage height (feet)	Discharge (ft³/s)
		Raritan River b	pasinContinued				
*01408030	Manasquan River at Allenwood, NJ	Lat 40°08'35", long 74°07 Monmouth County, at brid on Hospital Road at Alle wood, and 1.5 mi (2.4 kr downstream from Mill Rur	dge (165.5 km ²) en- n)	1969-80	9-18-80	b10.95	3,450
		Mullica R:	iver basin				
**01409000	Cedar Creek at Lanoka Harbor, NJ	Lat 39°52'03", long 74°10 Ocean County, at bridge State Route 9 in Lanoka Harbor, 0.6 mi (1.0 km) south of Toms River, and 2.0 mi (3.2 km) upstream from mouth. Datum of gi is National Geodetic Vertical Datum of 1929.	on (145.0 km²)	1932-58‡, 1970-71‡, 1979-80	2-26-79 4-10-80	de4.24 3.18	
*01409375	Mullica River near Atco, NJ	Lat 39°47'08", long 74°51 Burlington County, on 10 bank of small lake 50 f' (15 m) downstream from 1 on Jackson-Medford Road, (1.1 km) north of inter; of Route 534 with Jackso Medford Road, and 1.6 m; east of Atco. Datum of 102.90 ft (31.364 m) Na Geodetic Vertical Datum	eft (8.34 km²) toridge , 0.7 mi section on- i (2.6 km) gage is tional	1975-80	4-28-80	ъ4.48	32
*01409403	Wildcat Branch at Chesilhurst, NJ	Lat 39°44'04", long 74°51 Camden County, at culver Old White Horse Pike, 0. (0.8 km) east of Chesili and 0.9 mi (1.4 km) nor Waterford Works. Datum gage is 98.98 ft (30.170 National Geodetic Vertice Datum of 1929.	rt on (2.67 km ²) .5 mi th of of 0 m)	1975-80	10-14-79	4.51	5,1
*01409409	Blue Anchor Brook near Blue Anchor, NJ	Lat 39°41'17", long 74°51 Camden County, at bridge Spring Garden Road, 4,00 (1,220 m) upstream of R 30 highway bridge, 1.8 m (2.9 km) east of Blue Am and 2.2 mi (3.5 km) upst from mouth. Datum of ga 84.94 ft (25.890 m) Nati Geodetic Vertical Datum 1929.	e on (7.80 km²) 00 ft boute mi nchor cream age is lonal	1975-80	4-10-80	4.19	12.4
		Great Egg Hart	oor River basin				
01410810	Four Mile Branch at New Brooklyn, NJ	Lat 39°41'47", long 74°56 Camden County, on left North (21 m) upstream from the last of Northeast of Northeast of North (0.5 km) northeast of North (0.5 km) stream from mouth. Dating age is 101.04 ft (30.7) National Geodetic Vertice Datum of 1929.	rom 0.3 mi New n) up- um of 97 m)	1972-79‡, 1980	4-10-80	3.90	69

Also a low-flow partial-record station.

^{**}

a

Also a low-flow partial-record station.
Also a tidal crest-stage station
Discharge not determined.
Operated as a continuous-record gaging station.
Estimated.
Downstream side of bridge.
Not previously published.
Revised.
Backwater from tide
Peak may have been higher on Jan. 25, 1979; prior to operation of recording gage.
Peak may have been higher on Mar. 21, 1980; prior to installation of gage.

DISCHARGE MEASUREMENT AT MISCELLANEOUS SITES

Measurements of streamflow at points other than gaging stations are given in the following table. Those that are measurements of base flow are designated by an asterisk (*); measurements of peak flow by a dagger (†).

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1980

			Destara	Measured	Measu	urements
Stream	Tributary to	Location	Drainage area (mi²)	previously (water years)	Date	Discharge (ft ³ /s)
		Hudson River basin	1			
01367770 Wallkill River	Rondout Creek	Lat 41°11'38", long 74°34'32", Sussex County, at bridge 0.6 mi (1.0 km) upstream of Papakating Creek, 1.7 mi (2.7 km) southwest of Inde- pendence Corner, 2.0 mi (3.2 km) southeast of Sussex, and 2.1 mi (3.4 km) northwest of McAfee.	60.8 (157.5 km ²)	1977-79	12-19-79 2-27-80 5-22-80	*62 *48 *95
01367910 Papakating Creek	Wallkill River	Lat 41°12'02", long 74°35'59" Sussex County, at bridge on State Highway 23, 0.6 mi (1.0 km) south of Sussex, 2.0 mi (3.2 km) upstream from mouth, 2.6 mi (4.2 km) southwest of Independence Corner, and 3.4 mi (5.6 km) northwest of McAfee.	59.4 (153.8 km²)	1977-79	12-19-79	*42
		Raritan River basin	1			
01396535 South Branch Raritan River	Raritan River	Lat 40°39'49", long 74°53'52", Hunterdon County, at bridge on Arch Street in High Bridge, 0.9 mi (1.4 km) northeast of Mariannes Corner, and 4.3 mi (6.9 km) northeast of Norton.	68.8 (178.2 km ²)	1978-79	10-31-79 12-11-79 4-26-80	*113 *122 *165
01397380 Bushkill Brook	South Branch Raritan River	Lat 40°31'15", long 74°49'40", Hunterdon County, at bridge on River Road in Rockefellows Mills, 200 ft (60 m) upstream from mouth and 1.5 mi (2.4 km) west of Three Bridges.	4.31 (11.16 km ²)	1978-79	4-25-80	*4.1
01397400 South Branch Raritan River	Raritan River	Lat 40°31'01", long 74°48'10", Hunterdon County, at bridge on Main Street in Three Bridges, 1.4 mi (2.3 km) downstream from Bushkill Brook, and 3.0 mi (4.8 km) northeast of Flemington.	181 (469 km ²)	1969, 1975–76, 1978–79	11-29-79 3-12-80 4-28-80	425 *175 805
01398102 South Branch Raritan River	Raritan River	Lat 40°32'48", long 74°41'48", Somerset County, at bridge on South Branch Road in South Branch, and 2.0 mi (3.2 km) north of Flagtown.	265 (686 km ²)	1975-79	12-01-79 3-12-80 5-15-80	*454 *261 450
01399545 Lamington River	North Branch Raritan River	Lat 40°39'38", long 74°43'46", Somerset County, at bridge on State Route 523, 0.4 mi (0.6 km) downstream from Cold Brook, 0.6 mi (1.0 km) west of Lamingtor and 3.8 mi (6.1 km) south of Potterstown.	53.6 (138.8 km ²)	1978-79	11-18-79 3-11-80 4-04-80 5-13-80	*91 *77 344 250
01400120 Raritan River	Raritan Bay	Lat 40°33'52", long 74°38'10", Somerset County, at bridge on South Branch-Raritan road in Raritan, 3.5 mi (5.6 km) northeast of South Branch, and 3.6 mi (5.8 km) southeast of North Branch.	474 (1228 km²)	1975-79	11-12-79 3-12-80 4-12-80 5-15-80	*612 *465 1960 921
01402540 Millstone River	Raritan River	Lat 40°31'47", long 74°35'19", Somerset County, at bridge on Wilhouski Street in Weston, 0.8 mi (1.3 km) southwest of Alma White College, and 1.9 mi (3.1 km) north of Millstone.	271 (702 km²)	1979	12-04-79 3-24-80 4-13-80 4-28-80	*255 1190 694 1750
01404302 Lawrence Brook	Raritan River	Lat 40°24'58", long 74°29'38", Middlesex County, at bridge on Davidsons Mill Road, at inflow to Farrington Lake, 1.5 m: (2.4 km) west of Paulas Corners, and 2.3 mi (3.7 km) south of Adam		1979	11-27-79 3-21-80 3-22-80 5-07-80	34 26 100 *14

DISCHARGE MEASUREMENTS AT MISCELLANEOUS SITES

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1980--Continued

			Drainage	Measured previously	Meas	urements
Stream	Tributary to	Location	area (mi²)	(water years)	Date	Discharge (ft³/s)
		Raritan River basinCom	ntinued			
01405302 Matchaponix Brook	South River	Lat 40°23'22", long 74°22'55", Middlesex County, at bridge on Mundy Avenue in Spotswood, 0.2 mi (0.3 km) upstream from mouth, 0.5 mi (0.8 km) east of DeVoe Lake Dam, and 3.4 mi (5.5 km) southeast of Tanners Corners.	44.1 (114.2 km²)		11-27-79 12-12-79 3-21-80 3-22-80 5-01-80	317 *49 106 540 141
01405340 Manalapan Brook	South River	Lat 40°17'46", long 74°23'53", Middlesex County, at bridge on Federal Road, 4.1 mi (6.6 km) northeast of Applegarth, and 3.1 mi (5.0 km) southwest of Matchaponix.	20.9 (54.1 km ²)	1979	11-28-79 3-21-80 5-05-80	39 217 *31
		Navesink River basin				
01407253 Willow Brook	Hop Brook	Lat 40°19'47", long 74°10'26", Monmouth County, at bridge on Willow Brook Road, 1.2 mi (1.9 km) southeast of Holmdel, 1.3 mi (2.1 km) northeast of Vanderburg, and 1.6 mi (2.6 km) northwest of Sugar Loaf Hill.	7.56 (19.48 km ²)	1979	1-29-80 3-21-80 3-22-80 3-31-80 5-02-80	*11 34 59 64 21
		Manasquan River basi	in			
01407997 Marsh Bog Brook	Manasquan River	Lat 40°10'01", long 74°09'33", Monmouth County, at bridge on Squankum-Yellow Brook Road at Squankum, 0.2 mi (0.3 km) upstream from mouth.	4.91 (12.72 km ²)	1966, 1972,74, 1978-79	2-21-80 5-02-80	*3.3 21
		Metedeconk River bas	sin			
01408070 North Branch Metedeconk River	Metedeconk River	Lat 40°10'52", long 74°17'17", Monmouth County, at bridge on Georgia-Jackson Mills road and 2.0 mi (3.2 km) southwest of Wyckoff Mills.	5.52 (14.30 km ²)	1966, 1978 - 79	2-24-80 5-22-80	*12 *6.1
		Mullica River basin	1			
01409387 Mullica River	Great Bay	Lat 39°44'25", long 74°43'37", Burlington County, at bridge on U.S. Route 206 in Atsion, at outlet of Atsion Lake, and 0.2 mi (0.3 km) upstream from Wesickaman Creek.	26.7 (69.2 km ²)		1-28-80 5-01-80	*58 86
01409416 Hammonton Creek	Mullica River	Lat 39°38'02", long 74°43'05", Atlantic County, at bridge on Chestnut Road, 0.4 mi (0.6 km) south of Wescoatville, 1.1 mi (1.8 km) southwest of Nesco, 1.6 mi (2.6 km) upstream from Norton Branch and 3.8 mi (6.1 km) southwest of Batsto.	9.60 (24.86 km ²)	1974, 1978-79	2-05-80 5-01-80	*11 56
		Great Egg Harbor River	basin			
01411110 Great Egg Harbor River	Great Egg Harbor Bay	Lat 39°30'50", long 74°46'47", Atlantic County, at bridge on U.S. Route 322 in Weymouth, 0.5 mi (0.8 km) upstream from Deep Run, and 20.9 mi (33.6 km) upstream from mouth.	154 (399 km²)	1978-79	4-30-80	357

^{*} Base flow.

The following table contains annual maximum stages for tidal crest-stage stations. The information is obtained from a crest-stage gage or a water-stage recorder located at each site. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. All stages are elevations above National Geodetic Vertical Datum of 1929 unless otherwise noted. Only the maximum stage is given. Information on some other high stages may have been obtained but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined.

ANNUAL MAXIMUM STAGES AT TIDAL CREST-STAGE PARTIAL-RECORD STATIONS

Station No.	Station name	Location	Period of record	Annu	al maximum Elevation NGVD* (feet)
01406700	Raritan River at Perth Amboy, NJ	Lat 40°30'31", long 74°17'30", Middlesex County, on down- stream left bank, 20 ft (6 m) downstream of Victory Bridge on State Route 35 in Perth Amboy, 0.5 mi (0.8 km) downstream from Garden State Parkway bridge, and 1.5 mi (2.4 km) upstream from mouth of Raritan River.	1967-70‡, 1980	12-20-79	b0.32
01407030	Luppatatong Creek at Keyport, NJ	Lat 40°26'08", long 74°12'27", Monmouth County, on left bank upstream side of Front Street bridge in Keyport, 0.1 mi (0.2 km) upstream from mouth, and 2.0 mi (3.2 km) northwest of Matawan.	1980	1-17-80	5.97
01408168	Barnegat Bay at Mantoloking, NJ	Lat 40°42'24", long 74°03'25", Ocean County, at east end of Herbert Street (Mantoloking Road) bridge in Mantoloking and 2.0 mi (3.2 km) south of Bay Head.	1979-80	12-20-79	3.44
01408200	Barnegat Bay at Bay Shore, NJ	Lat 39°56'56", long 74°06'52", Ocean County, at west end of State Route 37 bridge over Barnegat Bay at Bay Shore, 2.2 mi (3.5 km) west of Sea- side Heights, and 4.5 mi (7.2 km) east of Toms River.	1965-80	12-20-79	2.92
01409000	Cedar Creek at Lanoka Harbor, NJ	Lat 39°52'03", long 74°10'10", Ocean County, at bridge on U.S. Route 9 in Lanoka Harbor, 0.6 mi (1.0 km) south of Toms River, and 2.0 mi (3.2 km) upstream from mouth.	1932-58‡, 1970-71‡, 1979-80	1-17-80	2.75
01409125	Barnegat Bay at Barnegat Light, NJ	Lat 39°45'37", long 74°06'39", Ocean County, at north side of pier of U.S. Coast Guard boat basin on 7th Street (extended) in Barnegat Light Borough, 0.35 mi (0.56 km) southwest of Barnegat Lighthouse and 9.1 mi (14.6 km) northeast of Ship Bottom.	1965-80	1-17-80	4.34
01409145	Manahawkin Bay near Manahawkin, NJ	Lat 39°40'13", long 74°12'54", Ocean County, at west end of State Route 72 bridge over Manahawkin Bay, 2.5 mi (4.0 km) northwest of Ship Bottom, and 3.1 mi (5.0 km) southeast of Manahawkin.	1965-80	1-17-80	3.50
01409285	Little Egg Harbor at Beach Haven, NJ	Lat 39°33'10", long 74°15'07", Ocean County, in Beach Haven at U.S. Coast Guard station, 6.0 mi (9.7 km) southeast of Tuckerton and 7.4 mi (11.9 km) southeast of Ship Bottom.	1979-80	9-25-80	4.12
01409290	Tuckerton Cove near Tuckerton, NJ	Lat 39°34'35", long 74°19'50", Ocean County, on bulkhead piling of Tuckerton Cove at the southern end of State Route 539, 0.4 mi (0.6 km) east of mouth of Tuckerton Creek, and 1.9 mi (3.1 km) south of Tuckerton.	1965-73, 1974-80	1-17-80	4.23

Station No.	Station name	Location	Period of		maximum Elevation NGVD*
01409510	Batsto River at Pleasant Mills, NJ	Lat 39°37'55", long 74°38'40", Ocean County, on right bank, 0.5 mi (0.8 km) upstream from mouth, and 1.0 mi (1.6 km) southeast of Pleasant Mills.	record 1958-80‡	Date 1-17-80	(feet) 4.15
01410100	Mullica River near Port Republic, NJ	Lat 39°33'12", long 74°27'46", Atlantic County, on right bank on bulkhead piling at south end of U.S. Route 9 and Garden State Parkway bridge over Mullica River, 2.8 mi (4.5 km) northeast of Port Mepublic, and 2.8 mi (4.5 km) south of New Gretna.	1965-80	1-17-80	4.09
01410500	Absecon Creek at Absecon, NJ	Lat 39°25'45", long 74°31'16", Atlantic County, on right bank 30 ft (9.1 m) down- stream from Doughty Pond Dam of Atlantic City Water Depart- ment, 1 mi (1.6 km) west of Absecon, and 3.4 mi (5.5 km) upstream from mouth.	1923-29‡, 1933-38‡, 1946-80‡	1-17-80	4.74
01410570	Beach Thorofare at Atlantic City, NJ	Lat 39°21'56", long 74°26'44", Atlantic County, on west abutment south side of Pennsylvania-Reading Sea- shore Lines railroad swivel bridge, in Atlantic City, 0.5 mi (0.8 km) northeast of Bader Field airport and 2.7 mi (4.3 km) northeast of Ventnor City.	1978‡, 1979-80	1-17-80	5.15
01411300	Tuckahoe River at Head of River, NJ	Lat 39°18'25", long 74°49'15", Cape May County, on right bank at highway bridge on State Route 49, 0.2 mi (0.3 km) up- stream from McNeals Branch, 0.4 mi (0.6 km) southeast of Head of River, and 3.7 mi (6.0 km) west of Tuckahoe.	1979-80‡	1-17-80	†
01411315	Great Egg Harbor Bay at Beesleys Point, NJ	Lat 39°17'18", long 74°37'50", Cape May County, at Atlantic City Electric Company's B. L. England Generating Station intake, 0.1 mi (0.2 km) west of south end of Route 9 bridge over Great Egg Harbor Bay, 0.7 mi (1.1 km) north of Beesleys Point, and 3.0 mi (4.8 km) west of Ocean City.	1963-78‡, 1979-80	1-17-80	4.90
01411318	Crook Horn Creek at Ocean City, NJ	Lat 39°15'09", long 74°37'44", Cape May County, at dock on property of county maintenance yard, 100 ft (30 km) south of Roosevelt Boulevard, 1.3 mi (2.1 km) southeast of Marmora, and 3.3 mi (5.3 km) southwest of city hall in Ocean City.	1979-80	1-17-80	4.04
01411320	Great Egg Harbor Bay at Ocean City, NJ	Lat 39°17'03", long 74°34'41", Cape May County, on bulkhead at west end of 7th Street (prior to October 1974, gage was located at Fifth Street), Ocean City, and 2.5 mi (4.0 km) southeast of Somers Point (revi		1-17-80	5.49
01411350	Ludlam Thorofare at Sea Isle City, NJ	Lat 39°09'24", long 74°42'00", Cape May County, on bulkhead at west end of 44th Street in Sea Isle City.	1978‡, 1979-80	1-17-80	5.17
01411355	Ingram Thorofare at Avalon, NJ	Lat 39°06'37", long 74°44'04", Cape May County, on bulkhead 200 ft (60 m) southwest of east end of Old Avalon Road, 1.0 mi (1.6 km) west of Avalon and 1.0 mi (1.6 km) south of Townsends Inlet.	1978‡, 1979-80	1-17-80	5,24

TIDAL CREST-STAGE STATIONS

Station No.	Station name	Location	Period of record	Annual Date	maximum Elevation NGVD* (feet)
01411360	Great Channel at Stone Harbor, NJ	Lat 39°03'26", long 74°45'53", Cape May County, on bulkhead piling at east end of bridge at west end of Borough of Stone Harbor, 3.7 mi (6.0 km) southeast of Cape May Court House, and 3.9 mi (6.3 km) southwest of Avalon.	1965-80	1-17-80	5.17
01411380	Grassy Sound at West Wildwood, NJ	Lat 39°00'25", long 74°49'47", Cape May County, on bridge piling near northeast end of Glenwood Avenue at northern tip of West Wildwood, 1.2 mi (1.9 km) northwest of Wild- wood, and 2.9 mi (4.7 km) east of Rio Grande.	1965-80	1-17-80	5.31
01411390	Cape May Harbor at Cape May, NJ	Lat 38°56'54", long 74°53'26", Cape May County, on grounds of U.S. Coast Guard Receiving Center in Cape May, and 0.7 mi (1.1 km) southeast of east end of Cape May Canal.	1965-80	1–17–80	5.35

National Geodetic Vertical Datum of 1929 (NGVD). Not determined. Operated as a continuous record gaging station. Revised. Gage datum; not National Geodetic Vertical Datum of 1929 datum.

	***		DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)				
01367620	- WALLKILL	R AT	OUTFLOW	OF LK M	OHAWK AT SI	PARTA NJ	(LAT 41 01	59 LONG	074	37	36)
			OCT , 19	1330		5					
			MAR , 19 12 MAY	1100		2					
			06 19	1200 1245	==	10	==				
			JUL 01	0945		6					
			AUG 04	1015		88					
	01367700	- WA	I.I.KTI.I. R	AT FRAN	IKI.TN N.I (I.A	T 41 06	43 LONG 07	4 35 21)			
	01301100				MDIN NO (D.		ij neme er	, 35 -17			
			OCT , 19	979 1130		7					
			MAR , 19		22	5					
			MAY 05	1130		5					
			19	1130		6					
			JUL 01	1045		17					
			AUG 04	1145		7					
	01367770) - W	ALLKILL F	R NR SUS	SEX NJ (LAT	41 11 :	38 LONG 074	34 32)			
			DEC , 19			_	0.0				
			19 MAR , 19		62	5	. 84				
			06 MAY	1115		5					
			05 19	1000	160 78	14 14	6.0 2.9				
			JUL 01	1215	54	15	2.2				
			AUG 04	1245	36	6	.58				
	01367910	- PA	PAKATING	C AT SU	SSEX NJ (LA	T 41 12	02 LONG 07	4 35 59)			
			MAR , 19			25	0.2				
			06 MAY	1000	44	21	2.5				
			05 19	0845 1115	120 52	28 18	9.1 2.5				
			JUL 01	1130	55	46	6.8				
			AUG 04	0945	33	48	4.3				
	0136895	io – 1	BLACK C N	IR VERNO	N NJ (LAT 4	1 13 21	LONG 074 28	3 33)			
			OCT , 19	979		_					
			01 MAR , 19		28	7	.53				
			13 APR	0930	12	11	. 36				
			24 MAY	1130	39	11	1.2				
			19	0930	20	17	.92				
			JUL 01	0945	14	24	.91				
			AUG	1215	12	8	26				

. 26

8

12

AUG 04...

1215

				SEDI- MENT
		STREAM-	SEDI-	DIS-
		FLOW,	MENT,	CHARGE,
		INSTAN-	SUS-	SUS-
	TIME	TANEOUS	PENDED	PENDED
DATE		(CFS)	(MG/L)	(T/DAY)

01377000 - HACKENSACK R AT RIVERVALE NJ (LAT 40 59 55 LONG 073 59 27)

OCT , 19	79			
02	1320	55	22	3.3
NOV				
28	1730	42	6	. 68
FEB , 19	80			
05	1240	31	3	. 25

01377500 - PASCACK BK AT WESTWOOD NJ (LAT 40 59 33 LONG 074 01 19)

OCT , 19	179			
02 NOV	1135	64	21	3.6
28	1525	46	5	. 62

01378500 - HACKENSACK R AT NEW MILFORD NJ (LAT 40 56 52 LONG 074 01 34)

NOV , 1979 29... 1335 .38 6 .01

01379000 - PASSAIC R NR MILLINGTON NJ (LAT 40 40 48 LONG 074 31 45)

DEC , 1979 28... 0845 170 3 1.4 FEB , 1980 14... 0920 20 3 .16

01379500 - PASSAIC R NR CHATHAM NJ (LAT 40 43 31 LONG 074 23 23)

DEC , 1979 28... 1100 269 7 5.1 FEB , 1980 07... 1150 43 4 .46

01379530 - CANOE BK NR SUMMIT NJ (LAT 40 44 40 LONG 074 21 20)

DEC , 1979 27... 1200 12 3 .10

01381000 - ROCKAWAY R BL RE AT BOONTON NJ (LAT 40 53 47 LONG 074 23 36)

OCT , 1979 09... 1025 125 3 1.0

01381200 - ROCKAWAY R AT PINE BROOK NJ (LAT 40 51 29 LONG 074 20 53)

OCT , 1979 17... 1015 227 20 12 DEC 18... 1215 148 4 1.6 FEB , 1980 26... 1315 75 6 1.2

01381500 - WHIPPANY R AT MORRISTOWN NJ (LAT 40 48 21 LONG 074 27 22)

OCT , 1979 16... 1300 51 7 .96 DEC 12... 0945 40 3 .32 FEB , 1980 14... 1155 26 3 .21

ANALYSES OF SAMPLES COLLECTED AT SEDIMENT PARTIAL-RECORD STATIONS--Continued SUSPENDED SEDIMENT DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

					EDI-	
			STREAM-		IENT DIS-	
			FLOW,	MENT, CH	ARGE,	
		TIME	INSTAN- TANEOUS		US- PENDED	
	DATE		(CFS)	(MG/L) (7	(YDAY)	
01381800 - W	HIPPANY R NE	PINE	BROOK NJ (L	AT 40 50 42	LONG 07	4 20 51)
	OCT , 197	79				
	03	1220	336	22	20	
	DEC 18	1540	91	12	2.9	
	FEB , 198	30	115	10		
	O4 MAR	1345	45	10	1.2	
	17	1315	88	19	4.5	
01381900 - P	ASSAIC R AT	PINE B	ROOK NJ (LA	T 40 51 45	LONG 074	19 18)
				2 17 21 12	2402021	110
	JAN , 198			120	4.0	
	03	1300	376	6	6.1	
01382000 - P	ASSAIC R AT	TWO BR	IDGES NJ (L	AT 40 53 50	LONG 07	4 16 23)
	OCT , 197			26		
	15 FEB , 198	1315		26		
	04	1050		7		
01382500 - PEQUANI	NOCK R AT MA	COPIN	INTAKE DAM	NJ (LAT 41	01 00 LO	NG 074 23 47)

	OCT , 197	9		•	00	
	22	1800	4.0	2	.02	
01383500 - 1	VANAQUE R AT	AWOST	ING NJ (LAT	41 09 31 L	ONG 074	20 00)
	OCT , 197	1200	25		00	
	23 MAR , 198		35	1	.09	
	04	1500	11	1	.03	
01384000	- WANAQUE R	AT MON	KS NJ (LAT	41 07 14 LO	NG 074 1	7 41)
	OCT , 197	9				
	23 MAR , 198	1445	51	2	. 28	
	05	1315	16	2	.09	
01387000 -	WANAQUE R A	T WANA	OUF N.I (LAT	11 02 33 I	ONG 074	17 36)
					, .	
	OCT , 197	9 .			-	
	23 JAN , 198	1700	18	7	. 34	
	29	1025	19	4	.21	
01387500 - RA	MADO DIVED	NEAD M	AUDIAU NT /I	AT 11 OF 51	LONG OF	u 00 h0)
01301300 = 11	MALO KIAEK	NEAR PL	HIWAH NJ (L	MI 41 05 51	LONG U/	4 09 46)
	JAN , 198	0				
	28	1100	122	2	.66	
01388000 - RAM	MAPO R AT PO	MPTON	LAKES NJ (L	AT 40 59 33	LONG 07	4 16 44)
				,, 55		
	OCT , 197	9	0.3	1.5		
	22	1535	209	6	3.4	

				SEDI- MENT
		STREAM- FLOW,	SEDI- MENT,	DIS- CHARGE,
	TIME	INSTAN- TANEOUS	SUS- PENDED	SUS- PENDED
 DATE		(CFS)	(MG/L)	(T/DAY)

01388500 - POMPTON R AT POMPTON PLAINS NJ (LAT 40 58 09 LONG 074 16 56)

OCT , 19	79			
22		328	7	6.2
DEC				
11	1400	355	3	2.9

01388600 - POMPTON R AT PACKANACK LAKE NJ (LAT 40 56 36 LONG 074 16 47)

OCT , 19	79			
11		696	10	19
FEB , 19	80			
26	1040	191	4	2.1
MAR				
17	1035	205	3	1.7

01389110 - PASSAIC R AT RT 46 AT SINGAC NJ (LAT 40 53 32 LONG 074 15 58)

OCT , 19	79			
24	1430	E680	34	
NOV				
13	1510	E 1500	21	
DEC				
11	1405	E800	10	
JAN , 19	80			
22	1410	E960	8	
FEB				
12	1535	E350	7	
MAR				
19	1320	E2400	32	
	3			

01389880 - PASSAIC R AT RT 46 AT ELMWOOD PARK NJ (LAT 40 53 37 LONG 074 07 46)

OCT , 19	79			
24	1130	E630	27	
NOA				
13	1235	E 1600	24	
DEC				
11	1045	E820	7	
	80	7		
22	1050	E960	7	
FEB				
12	1315	E320	4	
MAR				
19	1025	E2500	59	

01390500 - SADDLE R AT RIDGEWOOD NJ (LAT 40 59 05 LONG 074 05 30)

MAR , 1980 04... 1145 7.7 1 .02

01391000 - HOHOKUS BK AT HOHOKUS NJ (LAT 40 59 52 LONG 074 06 48)

MAR , 1980 04... 1500 16 4 .17

01391200 - SADDLE RIVER AT FAIR LAWN, NJ (LAT 40 56 30 LONG 074 05 36)

JAN , 1980 30... 1000 -- 10 --

				SEDI- MENT
		STREAM- FLOW,	SEDI- MENT,	DIS- CHARGE,
	m =14 m	INSTAN-	SUS-	SUS-
	TIME	TANEOUS	PENDED	PENDED
DATE		(CFS)	(MG/L)	(T/DAY)

01391500 - SADDLE R AT LODI NJ (LAT 40 53 25 LONG 074 04 51)

OCT , 19	179			
02	0915	162	36	16
NOV				
06	1350	66	6	1.1
DEC				
27	0915	94	8	2.0
JAN , 19	180			
30	1225	33	6	.53

01392210 - THIRD RIVER AT PASSAIC, NJ (LAT 40 49 47 LONG 074 09 46)

NOV , 19	179			
05	1605	9.3	2	. 05
DEC				
27	1300	9.8	3	.08

01393450 - ELIZABETH R AT URSINO LAKE AT ELIZABETH NJ (LAT 40 40 33 LONG 074 13 22)

OCT , 19	179			
02	1230	39	18	1.9
JAN , 19	80			
09	1620	8.5	4	. 09
FEB				
25	1115	7.9	5	. 11
MAR				
18	0915	135	47	17

01394500 - RAHWAY R NR SPRINGFIELD NJ (LAT 40 41 11 LONG 074 18 44)

OCT , 19	79			
11		44	11	1.3
JAN , 19	80			
09	1335	8.2	3	.07
31	1015	5.4	2	.03
MAR				
18	1225	181	37	18

01395000 - RAHWAY R AT RAHWAY NJ (LAT 40 37 05 LONG 074 17 00)

OCT , 19	79			
01	1035	29	16	1.3
15	1115	17	16	.73
JAN , 19	980			
08	1225	8.8	10	. 24
FEB				
06	0925	7.6	4	.08
11	1015	4.7	3	.04

01396001 - ROBINSONS BRANCH AT MAPLE AVE AT RAHWAY NJ (LAT 40 36 26 LONG 074 17 40)

OCT , 19	79			
01	1320	49	52	6.9
NOV				
15	1500	14	7	. 26
23	1240	9.2	8	.20
JAN , 19	080			
08	1425	8.8	3	.07
FEB				
06	1135	7.8	5	. 11
11	1140	6.1	4	.07

				SEDI- MENT
		STREAM-	SEDI-	DIS-
		FLOW.	MENT,	CHARGE,
		INSTAN-	SUS-	SUS-
	TIME	TANEOUS	PENDED	PENDED
DATE		(CFS)	(MG/L)	(T/DAY)

01396090 - SB RARITAN R AT OUTLET OF BUDD LAKE NJ (LAT 40 51 38 LONG 074 45 38)

OCT , 19	79			
04	1030	22	15	.90
JAN , 19	80			
30	1000		6	
MAR				
25	0930		9	
MAY				
20	1300	8.6	27	. 63
JUL				
02	0930		17	
AUG				
07	0930		29	

01396280 - SB RARITAN R AT MIDDLE VALLEY NJ (LAT 40 45 40 LONG 074 49 18)

OCT , 19	79		
04	1230	 8	
JAN , 19	080		
30	1115	 3	
MAR			
25	1100	 27	
MAY			
20	1130	 3	
JUL			
02	1030	 11	
AUG			
07	1045	 6	

01396500 - SB RARITAN R NR HIGH BRIDGE NJ (LAT 40 40 40 LONG 074 52 45)

OCT , 19	179			
26	1140	108	4	1.2
DEC				
11	1140	119	1	. 32
JAN , 19	80			
28	1200	93	2	.50
FEB				
25	1230	100	4	1.1

01396535 - SB RARITAN R ARCH ST AT HIGH BRIDGE NJ (LAT 40 39 49 LONG 074 53 52)

OCT , 19	79			
11	1100	235	8	5.1
DEC				
11	1330	122	1	• 33
JAN , 19	1145	109	2	.59
31 MAR	1145	109	2	• 59
25	1230	611	30	49
MAY				
20	1000	131	7	2.5
JUL		The Line		
02	1130	79	9	1.9
AUG	4400		00	
07	1130	73	22	4.3

01396580 - SPRUCE RUN AT GLEN GARDNER, NJ (LAT 40 41 29 LONG 074 56 15)

FEB , 19	80			
20	1655	9.2	6	. 15
MAR				
21	1015	125	22	7.4

				SEDI- MENT
		STREAM-	SEDI-	DIS-
		FLOW,	MENT,	CHARGE,
		INSTAN-	SUS-	SUS-
	TIME	TANEOUS	PENDED	PENDED
DATE		(CFS)	(MG/L)	(T/DAY)

01396588 - SPRUCE RUN NR GLEN GARDNER NJ (LAT 40 40 41 LONG 074 55 06)

OCT , 19	79		
11	1300	 7	
APR , 19	80		
07	1115	 11	
MAY			
20	0900	 7	
JUL			
02	1230	 5	
AUG			
07	1230	 79	

01396660 - MULHOCKAWAY C AT VAN SYCKEL NJ (LAT 40 38 51 LONG 074 58 09)

OCT . 19	79			
03	1230	25	4	. 27
JAN , 19	80			
31	1045	18	5	. 24
FEB	12249		14.2	1.2
20	1320	15	12	. 49
APR	4045			
07	1015	33	3	. 27
MAY	1000	22	2	10
20 JUL	1000	22	3	. 18
02	0930	7.3	3	.06
AUG	0,50	1	3	
07	1010	3.3	5	.04

01396800 - SPRUCE RN AT CLINTON NJ (LAT 40 38 21 LONG 074 54 58)

OCT , 19	79			
03	1330	98	2	.53
JAN , 19	80			
31	0930	55	5	.74
APR				
07	0915	128	5	1.7
MAY				
20	1115	9.0	4	. 10
JUL				
02	1030	84	2	. 45
AUG				
07	1050	20	5	. 27

01397000 - SB RARITAN R AT STANTON NJ (LAT 40 34 21 LONG 074 52 10)

DEC , 19	79			
11 FEB , 19		243	2	1.3
25		168	4	1.8

01397100 - PRESCOTT BK AT ROUND VALLEY NJ (LAT 40 36 28 LONG 074 50 54)

FEB , 19	80			
07	1015	1.3	12	.04
MAR				
26	1015	1.2	1	.00
MAY				
20	1300	. 79	2	.00
JUL				
02	1150	14	1	.04
AUG				
07	1215	.51	1	.00

		STREAM- FLOW,	SEDI- MENT,	SEDI- MENT DIS- CHARGE,
		INSTAN-	SUS-	SUS-
	TIME	TANEOUS	PENDED	PENDED
DATE		(CFS)	(MG/L)	(T/DAY)

01397380 - BUSHKILL BK AT ROCKEFELLOWS MILL NJ (LAT 40 31 15 LONG 074 49 40)

OCT , 19	79		
02	1115	 27	
FEB , 19	80		
06	0845	 7	
APR			
08	0900	 10	
MAY			
20	1000	 9	
JUL			
02	1045	 14	
AUG			
07	0915	 2	

01397400 - SB RARITAN R AT THREE BRIDGES NJ (LAT 40 31 01 LONG 074 48 12)

FEB , 19	80			
06	1015	137	4	1.5
APR				
08	1030	442	7	8.4
MAY				
20	1100	211	132	75
JUL				
02	1200	176	10	4.8
AUG				
07	1030	146	4	1.6

01398000 - NESHANIC R AT REAVILLE NJ (LAT 40 28 18 LONG 074 49 42)

MAR , 19	80			
10	1220	16	13	. 56
APR	10115	F.6	-	76
07 MAY	1245	56	5	.76
20	0845	16	7	.30
JUL				
02	0930	2.2	7	.04
AUG 07	0850	1.1	34	. 10
01	0050	1.1	34	. 10

01398045 - BACK BK TRIB NEAR RINGOES NJ (LAT 40 25 41 LONG 074 49 52)

JAN , 19	80			
22	1300	2.1	1	.01
MAR				
10	1535	2.2	9	. 05
21	1605	117	760	240

01398102 - SB RARITAN R AT SOUTH BRANCH NJ (LAT 40 32 48 LONG 074 41 48)

OCT , 19	70			
09	1100	497	12	16
FEB , 19	80			
13	1030		4	
APR				
08	1145	712	6	12
MAY				
20	1230	363	6	5.9
JUL				
02	1330	243	11	7.2
AUG				
07	1145	232	9	5.6

01398107 - HOLLAND BK AT READINGTON NJ (LAT 40 33 30 LONG 074 43 50)

NOV,	1979			
09		10	41	1.1
DEC 18	1500	11	8	. 24

SUSPENDED SEDIMENT DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

					SEDI-	
		TIME	STREAM- FLOW, INSTAN- TANEOUS	SEDI- MENT, SUS- PENDED	MENT DIS- CHARGE, SUS- PENDED	
	DATE		(CFS)	(MG/L)	(T/DAY)	
01398260 - N	IB RARITAN R	NR CHES	STER NJ (L	AT 40 46	16 LONG 074	37 34)
	OCT , 19	79				
	09 FEB , 19	1030		3		
	20 APR	1100		3		
	09 MAY	0930		223		
	21 JUL	1030		13		
	07 AUG	1030		6		
	06	1000		24		
01398500 - NB	RARITAN R	NR FAR I	HILLS NJ (LAT 40 42	30 LONG 07	4 38 11)
	OCT , 19					
	09 DEC	1230	46	11	1.4	
	20 MAR , 19	1300 80	40	3	• 32	
	05 APR	0945	23	2	. 12	
	09 MAY	1045	255	5	3.4	
	21 JUL	1230	73	. 3	• 59	
	07 AUG	0920	25	18	1.2	
	06	1115	47	6	.76	
01399120 - NB	OCT , 19			(LAT 40 38	3 09 LONG 0'	74 40 56)
01399120 - NB	OCT , 19 09 MAR , 19	79 1400 80	38	4	.41	74 40 56)
01399120 - NB	OCT , 19 09 MAR , 19 05	79 1400 80 1100	38 38	4 2	.41	74 40 56)
01399120 - NB	OCT , 19 09 MAR , 19 05 APR 14 MAY	79 1400 80 1100	38 38 340	4 2 7	.41 .21 6.4	74 40 56)
01399120 - NB	OCT , 19 09 MAR , 19 05 APR 14 MAY 21 JUL	79 1400 80 1100 1150 1400	38 38 340 164	4 2 7 10	.41 .21 6.4 4.4	74 40 56)
01399120 - NB	OCT , 19 09 MAR , 19 05 APR 14 MAY 21 JUL 07 AUG	79 1400 80 1100 1150 1400 1230	38 38 340 164 38	4 2 7 10 29	.41 .21 6.4 4.4 3.0	74 40 56)
01399120 - NB	OCT , 19 09 MAR , 19 05 APR 14 MAY 21 JUL 07	79 1400 80 1100 1150 1400	38 38 340 164	4 2 7 10	.41 .21 6.4 4.4	74 40 56)
01399120 - NB 01399190 - LAMI	OCT , 19 09 MAR , 19 05 APR 14 MAY 21 JUL 07 AUG 06	79 1400 80 1100 1150 1400 1230 1215	38 38 340 164 38 62	4 2 7 10 29 44	.41 .21 6.4 4.4 3.0 7.4	
	OCT , 19 09 MAR , 19 05 APR 14 MAY 21 JUL 07 AUG 06	79 1400 80 1100 1150 1400 1230 1215	38 38 340 164 38 62	4 2 7 10 29 44 J (LAT 40	.41 .21 6.4 4.4 3.0 7.4	
	OCT , 19 09 MAR , 19 05 APR 14 MAY 21 JUL 07 AUG 06	79 1400 80 1100 1150 1400 1230 1215 AT SUCC	38 38 340 164 38 62	4 2 7 10 29 44 J (LAT 40	.41 .21 6.4 4.4 3.0 7.4	
	OCT , 19 09 MAR , 19 05 APR 14 MAY 21 JUL 07 AUG 06 ENGTON RIVER JAN , 19 04 MAR 03	79 1400 1100 1150 1400 1230 1215 AT SUCC	38 38 340 164 38 62 CASUNNA, N.	4 2 7 10 29 44 J (LAT 40	.41 .21 6.4 4.4 3.0 7.4 51 03 LONG	074 38 02
01399190 – LAMI	OCT , 19 09 MAR , 19 05 APR 14 MAY 21 JUL 06 NGTON RIVER JAN , 19 04 MAR 03	79 1400 80 1100 1150 1400 1230 1215 AT SUCC	38 38 340 164 38 62 ASUNNA, N.	4 2 7 10 29 44 J (LAT 40 4 7	.41 .21 6.4 4.4 3.0 7.4 51 03 LONG .12 .12	074 38 02
01399190 – LAMI	OCT , 19 09 MAR , 19 05 APR 14 MAY 21 JUL 07 AUG 06 NGTON RIVER JAN , 19 04 MAR O3	79 1400 80 1100 1150 1400 1230 1215 AT SUCC 80 1215 1520 K) R NR	38 38 340 164 38 62 CASUNNA, N.	4 2 7 10 29 44 J (LAT 40 4 7 (LAT 40 5	.41 .21 6.4 4.4 3.0 7.4 51 03 LONG .12 .12	074 38 02
01399190 – LAMI	OCT , 19 09 MAR , 19 05 APR 14 MAY 21 JUL 07 AUG 06 ENGTON RIVER JAN , 19 04 MAR 03	79 1400 80 1100 1150 1400 1230 1215 AT SUCC	38 38 340 164 38 62 ASUNNA, N.	4 2 7 10 29 44 J (LAT 40 4 7	.41 .21 6.4 4.4 3.0 7.4 51 03 LONG .12 .12	074 38 02
01399190 – LAMI	OCT , 19	79 1400 80 1100 1150 1400 1230 1215 AT SUCC 80 1215 1520 K) R NR	38 38 340 164 38 62 ASUNNA, N. 11 6.2 IRONIA NJ	4 2 7 10 29 44 J (LAT 40 4 7 (LAT 40 5	.41 .21 6.4 4.4 3.0 7.4 51 03 LONG .12 .12	074 38 02
01399190 – LAMI	OCT , 19	79 1400 80 1100 1150 1400 1230 1215 AT SUCC	38 38 340 164 38 62 ASUNNA, N. 11 6.2 IRONIA NJ	4 2 7 10 29 44 J (LAT 40 4 7 (LAT 40 5	.41 .21 6.4 4.4 3.0 7.4 51 03 LONG .12 .12 50 07 LONG (074 38 02
01399190 – LAMI	OCT , 19 09 MAR , 19 05 APR 14 MAY 21 JUC AUG 06 INGTON RIVER JAN , 19 04 MAR 03 NGTON (BLACK) OCT , 19 01 JAN , 19 04 JAN , 19 04 MAR	79 1400 80 1100 1150 1400 1230 1215 AT SUCC	38 38 340 164 38 62 ASUNNA, N. 11 6.2 IRONIA NJ 15 15	4 2 7 10 29 44 J (LAT 40 4 7 (LAT 40 5	.41 .21 6.4 4.4 3.0 7.4 51 03 LONG .12 .12 .50 07 LONG (074 38 02
01399190 – LAMI	OCT , 19	79 1400 80 1100 1150 1400 1230 1215 AT SUCC 80 1215 1520 K) R NR 79 1030 80 1545 0945 1130	38 38 340 164 38 62 ASUNNA, N. 11 6.2 IRONIA NJ 15 15 12 12	4 2 7 10 29 44 J (LAT 40 4 7 (LAT 40 5	.41 .21 6.4 4.4 3.0 7.4 51 03 LONG .12 .12 .12 50 07 LONG 0	074 38 02
01399190 – LAMI	OCT , 19	79 1400 1150 1400 1230 1215 AT SUCC 80 1215 1520 K) R NR 79 1030 80 1545 0945 1130 0930	38 38 340 164 38 62 CASUNNA, N. 11 6.2 IRONIA NJ 15 15 12 12 92	4 2 7 10 29 44 J (LAT 40 4 7 (LAT 40 5	.41 .21 6.4 4.4 3.0 7.4 51 03 LONG .12 .12 50 07 LONG 0	074 38 02)

				SEDI-
		STREAM-	SEDI-	MENT DIS-
		FLOW.	MENT.	CHARGE.
		INSTAN-	SUS-	SUS-
	TIME	TANEOUS	PENDED	PENDED
DATE		(CFS)	(MG/L)	(T/DAY)

01399500 - LAMINGTON (BLACK) R NR POTTERSVILLE NJ (LAT 40 43 39 LONG 074 43 50)

OCT , 19	79			
01	1230	76	61	13
JAN , 19	80			
02	1420	59	2	. 32
FEB				
27	0845	63	4	.68
27	1410	44	6	.71
APR				
10	1050	232	10	6.3
MAY				
21	1130	92	28	7.0
JUL		V.		
07	1045	41	19	2.1
AUG				
06	1045	25	8	.54

01399510 - UPPER COLD BK NR POTTERSVILLE NJ (LAT 40 43 16 LONG 074 45 09)

JAN , 19	80			
02	1200	3.3	1	.01
MAR 11	1125	2.6	8	.06
	1123	2.0	0	

01399525 - LAMINGTON TRIB NO.2 NR POTTERSVILLE NJ (LAT 40 41 40 LONG 074 43 05)

JAN , 1980 21... 1705 1.3 4 .01

01399545 - LAMINGTON R AT LAMINGTON NJ (LAT 40 39 38 LONG 074 43 46)

OCT , 19	79			
01	1330	865	115	269
FEB , 19	80			
27	1000		. 3	
APR				
10	1200	366	23	23
MAY				
21	1245	171	22	10
JUL				
07	1145	96	11	2.9
AUG				
06	1145	96	20	5.2

01399600 - SB ROCKAWAY C TR AT LEBANON NJ (LAT 40 38 05 LONG 074 49 58)

FEB , 19	980			
07	0915	. 82	1	.00
MAR				
26	0900	. 87	1	.00
MAY				
21	1000	.77	2	.00
JUL				
07	0945	. 87	1	.00
AUG				
06	0930	. 77	1	.00

01399690 - SB ROCKAWAY C AT WHITEHOUSE NJ (LAT 40 37 24 LONG 074 46 01)

FEB , 19	80			
11	1310	9.9	4	. 11
MAR 12	1600	13	21	.74

SUSPENDED SEDIMENT DAT	A, WATER	R YEAR OCTO	DBER 1979	TO SEPTEMB	ER 1980
•					
				SEDI- MENT	
		STREAM-	SEDI-	DIS-	
		FLOW,	MENT,	CHARGE,	
	TIME	INSTAN-	SUS-	SUS- PENDED	
DATE	TIME	TANEOUS (CFS)	PENDED (MG/L)	(T/DAY)	
01399700 - ROCKAWAY C A	T WHITEH	HOUSE NJ (I	AT 40 37	49 LONG 07	4 44 11)
FEB , 19	90				
19	1350	35	4	.38	
27	1115	24	5	.32	
A PR 14	0930	147	25	9.9	
MAY	0930	147	25	9.9	
21	1130	171	109	50	
JUL 07	1130	60	7	1.1	
AUG	1130	00	,		
06	1045	107	4	1.2	
01399780 - LAMINGTON (BLACK)	R AT RI	IRNT MILIS	N.I (IAT 4	0 38 04 10	NG 074 41 13)
Olygon - Emiliation (BEROK)	N AI DO	MAI MILLO	NO (LAI 4	0 30 04 10	MG 0/4 41 137
OCT , 19	79				
02	0915	435	34	40	
MAR , 19	80 1200	74	11	2.2	
APR	1200				
14	1045	445	18	22	
MAY 21	1300	375	89	90	
JUL				-	
07 AUG	1245	118	8	2.5	
06	1145	175	6	2.8	
01399830 - NB RARITAN R A	r NORTH	BRANCH NJ	(LAT 40 3	6 00 LONG	074 40 27)
FFR 10	9.0				
FEB , 19	1650	144	2	.78	
01400000 - NB RARITAN R	NR RARI	TAN NJ (LA	T 40 34 1	0 LONG 074	40 45)
FEB , 19		404	2		
13	1530	194	3	1.6	
01400120 - RARITAN R	AT DADIT	AN NI /IAT	10 22 52	LONG OTH	28 10)
01400120 - RARITAN R	AI NANII	AN NO (LAI	40 33 32	LONG 014	30 107
OCT , 19	70				
09	1150	763	10	21	
JAN , 19	80				
16	0945	836	7	16	
APR 10	1000		121		
01400300 - PETERS BK	R RARIT	AN NJ (LAT	40 35 35	LONG 074	40 00)
DEC , 19	79				
18	1200	1.3	8	.03	
OTHORSO DARTER PA	P MANUTT	IE NI /II	10 22 10	LONG OFF	25 02)
01400500 - RARITAN R A	MANVIL	LE NJ (LAT	40 33 18	LUNG 074	35 02)
OCT 40	70				
OCT , 19'	1420	923	12	30	
JAN , 198	30				
02 FEB	1615	616	4	6.7	

ANALYSES OF SAMPLES COLLECTED AT SEDIMENT PARTIAL-RECORD STATIONS--Continued SUSPENDED SEDIMENT DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

				SEDI- MENT
		STREAM-	SEDI-	DIS-
		FLOW.	MENT,	CHARGE,
		INSTAN-	SUS-	SUS-
	TIME	TANEOUS	PENDED	PENDED
DATE		(CFS)	(MG/L)	(T/DAY)

01400560 - MILLSTONE R AT APPLEGARTH NJ (LAT 40 16 28 LONG 074 28 22)

OCT , 19	79			
02	1230		19	
JAN , 19	80			
17	1150	11	5	. 15

01400650 - MILLSTONE R AT GROVERS MILL NJ (LAT 40 19 19 LONG 074 36 31)

OCT , 1979			
03 1	030	 16	
JAN , 1980			
17 1	315	 8	

01401000 - STONY BK AT PRINCETON NJ (LAT 40 19 59 LONG 074 40 56)

TO ANO OCT ,	1979			
16		62	6	1.0
JAN ,	1980			
03	1150	34	2	. 18
16	1450	58	5	.78
MAR				
04	1750	16	1	.04

01401400 - HEATHCOTE BK AT KINGSTON NJ (LAT 40 22 10 LONG 074 36 59)

OCT , 19	79			
11	1000	47	18	2.3
DEC				
06	1550	5.0	3	.04
FEB , 19	80			
19		4.4	5	.06

01401440 - MILLSTONE R AT KINGSTON NJ (LAT 40 22 24 LONG 074 37 15)

OCT , 19	79			
15		E310	27	
FEB , 19				
19	1230	E 106	6	

01401600 - BEDEN BK NR ROCKY HILL NJ (LAT 40 24 52 LONG 074 39 02)

OCT , 1979			
16 1300	58	4	. 63
JAN , 1980			
16 1245	5 57	3	. 46

01402000 - MILLSTONE R AT BLACKWELLS MILLS NJ (LAT 40 28 30 LONG 074 34 34)

OCT , 197	9				
23	1420	199	10	5.4	
DEC					
06		209	4	2.3	
FEB , 198	30				
26	1/150	224	Q	5.4	

01402540 - MILLSTONE R AT WESTON NJ (LAT 40 31 47 LONG 074 35 19)

OCT , 19	79			
11	1330	1590	35	150
FEB . 19	80			
20	1000	E64	5	
APR				
10	1245	E 4050	53	,

	TIME	STREAM- FLOW, INSTAN- TANEOUS	SEDI- MENT, SUS- PENDED	SEDI- MENT DIS- CHARGE, SUS- PENDED
DATE		(CFS)	(MG/L)	(T/DAY)

01403060 - RARITAN R BL CALCO DAM AT BOUND BROOK NJ (LAT 40 33 05 LONG 074 32 54)

MAR , 1980 05... 1355 372 7 7.0

01403150 - WB MIDDLE BK NR MARTINSVILLE NJ (LAT 40 36 44 LONG 074 35 28)

DEC , 1979 20... 1100 1.2 5 .02

01403400 - GREEN BK AT SEELEY MILLS NJ (LAT 40 39 53 LONG 074 24 10)

DEC , 1979 27... 1515 9.2 2 .05

01403500 - GREEN BK AT PLAINFIELD NJ (LAT 40 36 53 LONG 074 25 55)

FEB , 1980 13... 1110 2.0 3 .02 MAR 12... 1300 17 6 .28

01403540 - STONY BK AT WATCHUNG NJ (LAT 40 38 12 LONG 074 27 06)

FEB , 1980 19... 1750 3.0 1 .01

01404302 - LAWRENCE BK, DAVIDSONS MILL RD NR PATRICKS CORNER (LAT 40 24 58 LONG 074 29 38)

OCT , 1979 03... 1350 30 6 .49 JAN , 1980 17... 0925 15 6 .24

01405000 - LAWRENCE BK AT FARRINGTON DAM NJ (LAT 40 27 00 LONG 074 27 05)

JAN , 1980 29... 1615 <1.0 6 --MAR 05... 0940 15 4 .16

01405030 - LAWRENCE BK AT WESTONS MILLS NJ (LAT 40 28 59 LONG 074 24 45)

OCT , 1979 04... 1300 -- 13 --FEB , 1980 21... 1000 -- 4 --

01405240 - MATCHAPONIX BK NR ENGLISHTOWN NJ (LAT 40 19 21 LONG 074 21 35)

OCT , 1979 03... 0915 JAN , 1980 48 18 2.3 31... MAR 0900 26 27 1.9 24... 0910 69 17 3.2 MAY 22... JUL 09... 0930 55 17 2.5 0915 18 8 .39 AUG 0930 11... 17 7 . 32

				SEDI-
				MENT
		STREAM-	· SEDI-	DIS-
		FLOW,	MENT,	CHARGE,
		INSTAN-	SUS-	SUS-
	TIME	TANEOUS	PENDED	PENDED
DATE		(CFS)	(MG/L)	(T/DAY)

01405285 - BARCLAY BK NR ENGLISHTOWN NJ (LAT 40 20 53 LONG 074 21 27)

OCT , 19	1045	16	12	.52
	80			• >-
31	1030		16	
MAR				
24	1030	24	11	.71
MAY				
22	1030	17	11	. 50
JUL				
09	1000	1.0	14	. 04
AUG				
11	1100	1.0	2	.01

01405302 - MATCHAPONIX BK AT MUNDY AVE AT SPOTSWOOD NJ (LAT 40 23 22 LONG 074 22 55)

OCT , 19	79			
03	1230	101	18	4.9
DEC				
12	1425	49	4	.53
12	1515	49	5	.53
	080			
13	1200	66	10	1.8
APR				
17	1030	90	25	6.1
MAY				
22	1045	99	29	7.8
JUL				
09	1100	E23	14	
AUG				
11	1100	E 17	6	

01405340 - MANALAPAN BK AT FEDERAL RD NR MANALAPAN NJ (LAT 40 17 46 LONG 074 23 53)

OCT . 19	79			
04	1330		8	
JAN , 19				
31	1220	33	11	. 98
MAR				
24	1140	52	23	3.2
MAY				
22	1110	37	13	1.3
JUL				
09	1040	14	8	.30
AUG				
11	1215	12	7	. 23

01405400 - MANALAPAN BK AT SPOTSWOOD NJ (LAT 40 23 22 LONG 074 23 27)

NOV , 19	79			
19	1205	47	7	. 89
DEC				
18	1050	49	12	1.6
FEB , 19	80			
25	1530	61	8	1.3

01405440 - MANALAPAN BK AT BRIDGE ST AT SPOTSWOOD NJ (LAT 40 23 26 LONG 074 23 26)

OCT , 19	79		
03	1345	 21	
FEB , 19			
07	0930	 23	
APR			
17 MAY	0900	 16	
MAY			
22	0915	 15	
JUL			
09	0930	 14	
AUG			
11	1140	 12	

				SEDI- MENT
		STREAM- FLOW.	SEDI- MENT.	DIS- CHARGE.
		INSTAN-	SUS-	SUS-
	TIME	TANEOUS	PENDED	PENDED
DATE		(CFS)	(MG/L)	(T/DAY)

01405500 - SOUTH R AT OLD BRIDGE NJ (LAT 40 24 22 LONG 074 22 08)

DEC , 19				
18	1500	114	2	. 62
FEB , 19				
25	1240	127	5	1.7

01405700 - SOUTH R BL DUHERNAL DAM AT OLD BRIDGE NJ (LAT 40 25 00 LONG 074 21 43)

OCT , 19	79		
04	1120	 12	
FEB , 19	80		
21	1230	 6	

01407253 - WILLOW BK NR HOLMDEL NJ (LAT 40 19 47 LONG 074 10 26)

OCT . 19	79			
04	0930	12	16	. 52
FEB , 19	80			
13	1100	23	35	2.2
APR				
08	1030	22	402	24
MAY				
27	0930	14	16	. 60
JUL				
08	0945	12	26	. 84
AUG				
05	0930	7.9	17	. 36

01407400 - YELLOW BK AT COLTS NECK NJ (LAT 40 17 47 LONG 074 10 16)

79			
1115		10	
80			
1000		10	
1230		22	
1030		12	
1045		6	
1030		43	
	1000 1230 1030 1045	1115 1000 1230 1030 1045	1115 10 1000 10 1230 22 1030 12 1045 6

01407500 - SWIMMING R NR RED BANK NJ (LAT 40 19 10 LONG 074 06 55)

OCT , 19	979		
24	1330	 11	
30	1205	 14	
FEB , 19	980		
13	1215	 6	
MAR			
10	1045	 7	
APR			
08	1140	 16	
MAY			
27	1200	 6	
JUL			
08	1115	 29	
AUG			
05	1115	 4	
	37.04.50		

ANALYSES OF SAMPLES COLLECTED AT SEDIMENT PARTIAL-RECORD STATIONS--Continued SUSPENDED SEDIMENT DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

				CEDI
				SEDI-
				MENT
		STREAM-	SEDI-	DIS-
		FLOW,	MENT,	CHARGE,
		INSTAN-	SUS-	SUS-
	TIME	TANEOUS	PENDED	PENDED
DATE		(CFS)	(MG/L)	(T/DAY)

01407705 - SHARK R NR NEPTUNE CITY NJ (LAT 40 11 56 LONG 074 04 14)

OCT , 19	79			
24	0930	20	19	1.0
30	0835	14	10	.38
FEB , 19	080			
14	1015	1.2	5	.02
MAR				
06	0910	2.8	39	. 29
APR				
16	1040	28	14	1.1
MAY				
27	1045	9.4	9	. 23
JUL				
08	0945	3.4	5	. 05
AUG				
05	0930	3.1	9	.08

01407760 - JUMPING BK NR NEPTUNE CITY NJ (LAT 40 12 13 LONG 074 03 58)

OCT , 19	79			
24	1130	4.2	17	. 19
30	0955	3.8	6	.06
FEB , 19				
14	1100	3.9	5	. 05
MAR	40115		4.0	
06 APR	1045	4.5	13	. 16
16	1140	19	8	. 41
MAY	1140	19	0	. 41
27	1230	4.9	8	. 11
JUL	50	,		• • • •
08	1130	2.4	11	.07
AUG				
05	1100	5.7	12	. 18

01407830 - MANASQUAN R NR GEORGIA NJ (LAT 40 12 36 LONG 074 16 41)

OCT , 19	79		
22	1115	 37	
JAN , 19	80		
30	1200	 24	
APR			
02	1030	 27	
MAY			
27	1100	 19	
JUL			
08	1000	 10	
AUG			
05	1020	 25	

01407997 - MARSH BOG BK AT SQUANKUM NJ (LAT 40 10 01 LONG 074 09 33)

OCT 10	70			
OCT , 19	1000	4.2	20	. 23
JAN , 19	80			
30	1030	4.5	. 12	. 15
APR				
02	1200	34	16	1.5
MAY				
27	1200	3.8	19	. 19
JUL				
08	1240	E1.1	7	
AUG				
05	1115	2.5	40	. 27

01408000 - MANASQUAN R AT SQUANKUM NJ (LAT 40 09 47 LONG 074 09 21)

NOV , 19	979			
NOV , 19	0925	57	13	2.0
JAN , 19	080			
JAN , 19	0900	70	53	10

SUSPENDED SEDIMENT DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

			SEDI-
			MENT
	STREAM-	SEDI-	DIS-
	FLOW,	MENT,	CHARGE,
	INSTAN-	SUS-	SUS-
TIME	TANEOUS	PENDED	PENDED
	(CFS)	(MG/L)	(T/DAY)
	TIME	FLOW, INSTAN- TIME TANEOUS	FLOW, MENT, INSTAN- SUS- TIME TANEOUS PENDED

01408070 - NB METEDECONK R NR WYCKOFF MILLS N. J. (LAT 40 10 52 LONG 074 17 17)

79			
1230	6.7	75	1.4
80			
0840	4.9	4	. 05
0915	38	7	.72
0930	3.0	9	.07
0910	E1.2	8	
0920	E1.6	12	
	1230 80 0840 0915 0930 0910	1230 6.7 80 0840 4.9 0915 38 0930 3.0 0910 E1.2	1230 6.7 75 80 0840 4.9 4 0915 38 7 0930 3.0 9 0910 E1.2 8

01408120 - NB METEDECONK R NR LAKEWOOD NJ (LAT 40 05 30 LONG 074 09 10)

NOV, 1979 06... 1125 58 5 .78 JAN, 1980 16... 1145 55 28 4.2

01409095 - OYSTER C NR BROOKVILLE NJ (LAT 39 47 54 LONG 074 15 02)

NOV , 1979 07... 1235 29 4 .31

01409280 - WESTECUNK C AT STAFFORD FORGE NJ (LAT 39 39 55 LONG 074 19 11)

NOV, 1979 19... 1150 31 2 .1'

01409387 - MULLICA R AT OUTLET OF ATSION LK AT ATSION NJ (LAT 39 44 25 LONG 074 43 37)

OCT , 1979 10... 1030 FEB , 1980 20... 1230 APR 01... 1215 9.2 . 17 142 2 .77 MAY 28... 1300 3 .26 JUL 10... 1200 20 36 1.9 AUG 12... 0930 16 8 . 35

01409400 - MULLICA R NR BATSTO NJ (LAT 39 40 28 LONG 074 39 55)

NOV, 1979 20... 1000 107 4 1.2

393825074393500 - MULLICA R AT PLEASANT MILLS NJ (LAT 39 38 25 LONG 074 39 35)

OCT , 19	79		
10	1220	 11	
	80		
06	1130	 8	
MAR			
26	1130	 20	
MAY			
28	1100	 1.4	
JUL			
10	1000	 13	
AUG			
12	1245	 25	

SUSPENDED SEDIMENT DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

			SEDI- MENT
	STREAM-	SEDI-	DIS-
	FLOW,	MENT,	CHARGE,
	INSTAN-	SUS-	SUS-
TIME	TANEOUS	PENDED	PENDED
	(CFS)	(MG/L)	(T/DAY)
	TIME	FLOW, INSTAN- TIME TANEOUS	FLOW, MENT, INSTAN- SUS- TIME TANEOUS PENDED

01409416 - HAMMONTON CK AT WESCOATVILLE NJ (LAT 39 38 02 LONG 074 43 05)

FEB , 1980 05... 1100 12 13 .42

01409500 - BATSTO R AT BATSTO NJ (LAT 39 38 33 LONG 074 39 00)

OCT , 19	79			
10	1320	E 132	4	
NOV			111	
28	1215	148	3	1.2
	80		_	
24	1100	148	8	3.2
MAR			4	
26	1030	303	. 3	2.5
MAY				
28	0915	103	7	1.9
JUL		3		
10	1100	72	2	. 39
AUG				
12	1330	92	4	1.0
	-	-		

01409810 - WEST BRANCH WADING RIVER NEAR JENKINS NJ (LAT 39 41 17 LONG 074 32 54)

NOV , 1979 09... 0840 121 4 1.3

01410000 - OSWEGO R AT HARRISVILLE NJ (LAT 39 39 47 LONG 074 31 26)

OCT , 19	79			
10	1030	103	4	1.1
NOV				
30	0855	107	10	2.9
FEB , 19				
06	0900	73	3	.59
APR				
01	0840	278	4	3.0
MAY				7.0
28	0945	87	4	.94
JUL				
10	1045	70	12	2.3
AUG				
12	0900	70	5	. 94

01410150 - EB BASS R NR NEW GRETNA NJ (LAT 39 37 23 LONG 074 26 30)

OCT , 19	1230	24	2	. 13
NOV 30		15	1	.04
JAN , 19 12 FEB	1400	27	2	. 15
06 APR	1015	11	8	. 24
01 MAY	1030	44	2	. 24
28 JUL	1115	16	4	. 17
10 AUG	1145	16	2	.09
12	0950	17	6	.28

01410500 - ABSECON C AT ABSECON NJ (LAT 39 25 45 LONG 074 31 16)

NOV , 1979 15... 1125 24 3 .19

ANALYSES OF SAMPLES COLLECTED AT SEDIMENT PARTIAL-RECORD STATIONS--Continued SUSPENDED SEDIMENT DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

		TIME	STREAM- FLOW, INSTAN- TANEOUS	MENT, SUS-	SEDI- MENT DIS- CHARGE, SUS- PENDED	
	DATE		(CFS)			
01410784 - GREAT	EGG HARBOR R	NR SIG	CKLERVILLE	NJ (LAT	39 44 02	LONG 074 57 05
	OCT , 197					
	02	1030	57	16	2.5	
	JAN , 198 24 MAR	1230	19	14	.72	
	18	1230	23	6	. 37	
01410820 - GREAT	EGG HARBOR R	NR BL	JE ANCHOR I	NJ (LAT 3	9 40 09 I	ONG 074 54 49)
	OCT , 197	9				
	09 DEC	1100	63	4	.68	
	04	0845	56	4	.60	
	JAN , 198 24 MAR	1100	73	6	1.2	
	18	1030	82	4	. 89	
01411110 - GRE	AT EGG HARBOR	R AT W	EYMOUTH N.	J (LAT 39	30 50 LC	NG 074 46 47)
	OCT , 197					
	04 FEB . 198	1030	358	5	4.8	
	06		175	6	2.8	

01411300 - TUCKAHOE R AT HEAD OF RIVER NJ (LAT 39 18 25 LONG 074 49 15)

66

43

3.0

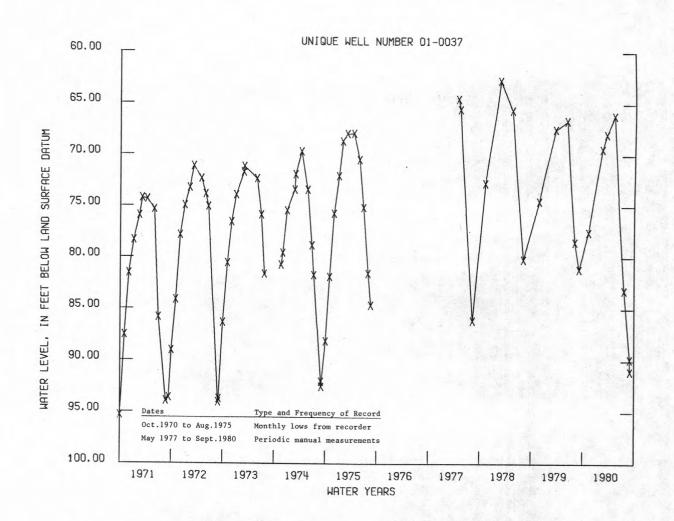
.81

17

NOV , 1979 14... 1140 FEB , 1980 26... 1100

ATLANTIC COUNTY

392153074250101. Local I.D., Galen Hall Obs. Unique Well Number, 01-0037.
LOCATION.--Lat 39°21'51", long 74°24'59", Hydrologic Unit 02040302, near the intersection of Pacific and Congress Avenues, Atlantic City.
Owner: Atlantic City Water Department.
AQUIFER.--Lower ("800-foot") sand in Kirkwood Formation of Miocene age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 837 ft (255.1 m), screened 782 to 837 ft (238.4 to 255.1 m).
INSTRUMENTATION.--Water-level extremes recorder. January 1949 to August 1975, water-level recorder.
DATUM.--Land-surface datum is 9.54 ft (2.908 m) National Geodetic Vertical Datum of 1929.
Measuring point: Front edge of cutout in recorder housing, 0.90 ft (0.274 m) above land-surface datum.
PERIOD OF RECORD.--January 1949 to August 1975, May 1977 to current year. Records for 1949 to 1975 are unpublished and are available in files of New Jersey District Office.


and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 52.58 ft (16.026 m) below land-surface datum, Mar. 7, 1962;
lowest water level, 96.96 ft (29.553 m) below land-surface datum, Sept. 23, 1970.

EXTREMES FOR CURRENT YEAR. --Highest water level, 65.31 ft (19.906 m) below land-surface datum, between Mar. 19 and May 6; lowest water level, 91.05 ft (27.752 m) below land-surface datum, between July 21 and Sept. 3.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 13	77.54	FEB 12	69.40	MAR 13	67.94	MAR 19	67.56	MAY 6	66.13	JUL 21	83.22
AUG 31	89.87	SEP 3	91.05								

ATLANTIC COUNTY

392436074303501. Local I.D., Atlantic City W.D. 600 Obs. Unique Well Number, 01-0566. LOCATION.--Lat 39°24'34", long 74°30'32", Hydrologic Unit 02040302, at the pumping station on Route 585 between Absecon and Pleasantville.

Owner: Atlantic City Water Department.

AQUIFER.--Lower ("800-foot") sand in Kirkwood Formation of Miocene age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in (203 mm), depth cased 692 ft (210.9 m), length of screen unknown.

INSTRUMENTATION. -- Water-level extremes recorder. 1925 to May 1940, February 1950 to August 1974, water-level

recorder.

PATUM.--Land-surface datum is 11.68 ft (3.560 m) National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 3.08 ft (0.939 m) above land-surface datum.

PERIOD OF RECORD.--1925 to May 1940, February 1950 to August 1974, May 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 14.83 ft (4.520 m) below land-surface datum, May 28, 1925; lowest water level, 61.88 ft (18.861 m) below land-surface datum, 0ct. 10, 1970.

EXTREMES FOR CURRENT YEAR.--Highest water level, 47.44 ft (14.460 m) below land-surface datum, between May 6 and Aug. 5; lowest water level, 55.55 ft (16.932 m) below land-surface datum, between Aug. 5 and Nov. 12, 1980.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 13	51.04	FEB 12	49.29	MAY 6	47.62	AUG 5	51.94

ATLANTIC COUNTY

393333074442401. Local I.D., Scholler Obs. 1. Unique Well Number, 01-0256. LOCATION.--Lat 39°33'33", long 74°44'26", Hydrologic Unit 02040302, about 1.5 mi (2.4 km) southeast of Route 30 at

Owner: Scholler Brothers Chemical Company.

AQUIFER.--Kirkwood Formation of Miocene age.

WELL CHARACTERISTICS.--Drilled artestian observation well, diameter 8 in (203 mm), depth 275 ft (83.8 m), screened

WELL CHARACTERISTICS.--Drilled artestian observation well, diameter 8 in (203 mm), depth 275 ft (83.8 m), screened 254 to 275 ft (77.4 to 83.8 m).

INSTRUMENTATION.--Water-level extremes recorder. April 1962 to August 1975, water-level recorder.

DATUM.--Land-surface datum is 93.19 ft (28.404 m) National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.95 ft (0.899 m) above land-surface datum.

PERIOD OF RECORD.--April 1962 to August 1975, May 1977 to current year. Records for 1962 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 27.18 ft (8.284 m) below land-surface datum, Mar. 20, 1963; lowest water level, 39.56 ft (12.058 m) below land-surface datum, Sept. 13, 1966.

EXTREMES FOR CURRENT YEAR.--Highest water level, 34.71 ft (10.580 m) below land-surface datum, between Mar. 11 and June 18; lowest water level, 37.27 ft (11.360 m) below land-surface datum, between June 18 and Oct. 20, 1980.

	WATER		WATER		WATER		
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL		
DEC 12	35.91	MAR 11	36.06	JUN 18	35.39		

BURLINGTON COUNTY

395122074301701. Local I.D., Butler Place 1 Obs. Unique Well Number, 05-0683. LOCATION.--Lat 39°51'22", long 74°30'17", Hydrologic Unit 02040301, in Lebanon State Forest, Woodland Township.

Owner: U.S. Geological Survey.

Owner: U.S. Geological Survey.

AQUIFER.--Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter top 8 in (203 mm), diameter bottom 6 in (152 mm), depth 2,117 ft (645.3 m), screened 2,102 to 2,117 ft (640.7 to 645.3 m).

INSTRUMENTATION.--Water-level recorder.

DATUM.--Land-surface datum is 140.70 ft (42.885 m) National Geodetic Vertical Datum of 1929.

Measuring point: Top of 8 in (203 mm) coupling, 2.8 ft (0.85 m) above land-surface datum.

PERIOD OF RECORD.--October 1964 to August 1975, March 1977 to current year. Records for 1964 to 1977 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 143.20 ft (43.647 m) below land-surface datum, Feb. 25, 1965; lowest water level, 172.20 ft (52.487 m) below land-surface datum, Sept. 29-30, 1980.

EXTREMES FOR CURRENT YEAR.--Highest water level, 169.69 ft (51.722 m) below land-surface datum, May 25, lowest water level, 172.20 ft (52.487 m) below land-surface datum, Sept. 29-30.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	171.12	171.57	171.19	.170.78	170.66	170.39	169.97	169.80	169.96	170.16		
10	171.23	171.24	171.29	171.12	170.48	170.34	169.94	169.94	169.83			
15	171.35	171.34	171.34	170.75	170.57	170.45	169.82	169.96	169.86			
20	171.39	171.44	171.26	170.73	170.47	170.45	170.07	169.90	169.96			171.97
25	171.22	171.43	170.72	170.43	170.40	170.11	169.92	169.71	170.14			172.02
EOM	171.58	171.28	170.91	170.59	170.51	170.07	169.84	169.99	169.99			172.14
MEAN	171.27	171.36	171.14	170.77	170.52	170.35	170.03	169.89	169.98			171.99
WTR YR	1980	MEAN 1	70.65	HIGH 169	9.71 MAY	25	LOW	172.19 SEP	29			

SEP

BURLINGTON COUNTY

DAY

5

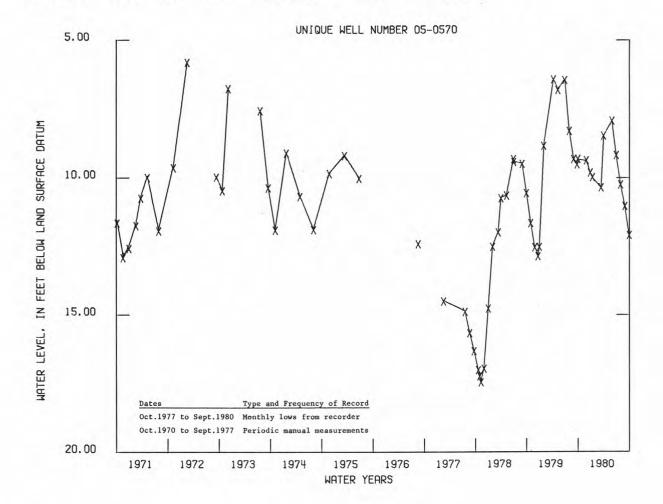
394106074362501. Local I.D., Mount at Mount Obs. Unique Well Number, 05-0570. LOCATION.--Lat 39°41'06", long 74°36'23", Hydrologic Unit 02040301, at Mount in Wharton State Forest. Owner: U.S. Geological Survey. AQUIFER.--Pleistocene-Cohansey Sand undifferentiated. WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 8 in (203 mm), depth 25 ft (7.6 m), open-end

WELL CHARACTERISTICS.--Drilled water-table observation well, diameter o in (20) mm, depth 20 in (10 mm), open and cement casing.

INSTRUMENTATION.--Water-level recorder.

DATUM.--Land-surface datum is 63.24 ft (19.276 m) National Geodetic Vertical Datum of 1929.

Measuring point: Top of cement casing, 0.6 ft (0.18 m) above land-surface datum.


PERIOD OF RECORD--September 1955 to July 1970, October 1977 to current year. Periodic manual measurements, October 1970 to September 1977. Records for 1955 to 1970 are unpublished and are available in files of New Jersey

District Office. EXTREMES FOR PERIOD OF RECORD. --Highest water level, 2.92 ft (0.890 m) below land-surface datum, Aug. 26, 1958; lowest water level, 18.51 ft (5.642 m) below land-surface datum, Oct. 2, 1966.

EXTREMES FOR CURRENT YEAR. --Highest water level, 6.40 ft (1.951 m) below land-surface datum, Apr. 15; lowest water level, 12.22 ft (3.725 m) below land-surface datum, Sept. 30.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES OCT NOV DEC JAN APR MAY JUN JUL AUG FEB MAR 9.25 9.23 9.41 10.50 9.45 9.85 7.73 8.31 11.32

10	9.18	9.32	9.62	10.08		10.33	7.11		8.51	9.58	10.62	11.48
15	8.84	9.42	9.75	9.85		10.49	6.46	7.43	8.67	9.76	10.74	11.67
20	8.49	9.32	9.84	9.52				7.58	8.86	9.96	10.86	11.87
25	8.60	9.39	9.75	9.33				7.70	9.09	10.15	10.99	12.04
EOM	9.05	9.48	9.91	9.31		8.68		8.04	9.26	10.37	11.15	12.21
MEAN	8.91	9.31	9.71	9.69			7.30	7.70	8.70	9.82	10.77	11.70
WTR YR	1980	MEAN	9.55	HTGH	6.46 APR	15	I.OW	12. 21 SEP	30			

CAMDEN COUNTY

394215074561702. Local I.D., New Brooklyn Park 2 Obs. Unique Well Number, 07-0477. LOCATION.--Lat 39°42'15", long 74°56'17", Hydrologic Unit 02040302, on eastern shore of New Brooklyn Lake approximately 900 ft (270 m) upstream of Route 536, Winslow Township.

U.S. Geological Survey.

AQUIFER.--Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 848 ft (258.5 m), screened
830 to 848 ft (253.0 to 258.5 m).
INSTRUMENTATION.--Water-level recorder.

INSTRUMENTATION. --water-level recorder.

DATUM. --Land-surface datum is 111.10 ft (33.863 m) National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 3.3 ft (1.01 m) above land-surface datum.

PERIOD OF RECORD. --January 1963 to August 1975, March 1977 to current year. Records for 1963 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 131.54 ft (40.093 m) below land-surface datum, Mar. 6, 1963; lowest water level, 186.55 ft (56.860 m) below land-surface datum, Sept. 16, 1980.

EXTREMES FOR CURRENT YEAR. --Highest water level, 174.12 ft (53.072 m) below land-surface datum, Apr. 15; lowest water level, 186.55 ft (56.860 m) below land-surface datum, Sept. 16.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	177.49	177.47 177.13	176.52 176.49	175.66 175.81	175.56 175.38	175.19 175.12	174.32	174.67 175.28	177.92 178.10	181.11	183.76 183.56	185.48 185.94
15 20	177.49 177.49	177.09 177.08	176.40 176.28	175.57 175.56	175.46 175.42	175.10 174.98	174.15 174.36	175.59 175.91	178.13 178.49	181.98	183.51 183.30	186.36 186.27
25 EOM	177.38 177.52	177.01 176.72	175.69 175.80	175.36 175.51	175.36 175.40	174.60 174.43	174.66 174.73	175.96 177.17	179.47 180.85	183.94 183.91	183.43	186.11 185.72
MEAN	177.47	177.10	176.25	175.60	175.44	174.97	174.46	175.64	178.59	182.19	183.65	185.91
WTR VR	1080	MEAN 1	78 02	HTGH 17	1 15 APR	15	I OW	186 54 SE	P 16			

CAMDEN COUNTY

394215074561703. Local I.D., New Brooklyn Park 3 Obs. Unique Well Number, 07-0478.
LOCATION.--Lat 39°42'15", long 74°56'17", Hydrologic Unit 02040302, on eastern shore of New Brooklyn Lake approximately 900 ft (270 m) upstream of Route 536, Winslow Township.

U.S. Geological Survey.

AQUIFER. --Mount Laurel Sand-Wenonah Formation undifferentiated of Cretaceous age.
WELL CHARACTERISTICS. --Drilled artesian observation well, diameter 6 in (152 mm), depth 530 ft (162 m), screened 520 to 530 ft (158 to 162 m).

INSTRUMENTATION. -- Water-level recorder.
DATUM. -- Land-surface datum is 111.50 ft (33.985 m) National Geodetic Vertical Datum of 1929.

DATUM.--Land-surface datum is 111.50 ft (33.985 m) National Geodetic Vertical Datum of 1929.

Measuring point: Top of 6 inch coupling, 2.1 ft (0.64 m) above land-surface datum.

PERIOD OF RECORD.--December 1962 to August 1975, March 1977 to current year. Records for 1962 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 58.53 ft (17.840 m) below land-surface datum, Dec. 18, 1962; lowest water level, 76.49 ft (23.314 m) below land-surface datum, May 17-18, 1979.

EXTREMES FOR CURRENT YEAR.--Highest water level, 74.15 ft (22.601 m) below land-surface datum, May 1, June 30; lowest water level, 75.60 ft (23.043 m) below land-surface datum, Oct. 31.

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	75.30	75.52			74.95	74.69	74.24	74.19	74.36	74.27	74.33	74.52
10	75.36	75.32	75.36	75.25	74.79	74.65	74.21	74.31	74.25	74.29	74.33	74.45
15	75.42	75.35			74.86	74.62	74.18	74.33	74.27	74.39	74.31	74.42
20	75.48	75.44	75.34		74.78	74.68	74.39	74.29	74.30	74.38	74.35	74.54
25	75.35	75.43	74.97	74.75	74.72	74.38	74.28	74.17	74.40	74.35	74.44	74.52
EOM	75.58	75.30		74.91	74.76	74.35	74.21	74.39	74.18	74.36	74.46	74.55
MEAN	75.38	75.38	75.26	75.00	74.82	74.61	74.33	74.28	74.33	74.32	74.37	74.49
WTR YR	1980	MEAN	74.71	HIGH 74	. 16 MAY	1 AND OTH	HERS	LOW	75.58	CT 31		

CAMDEN COUNTY

394215074561704. Local I.D., New Brooklyn Park 4 Obs. Unique Well Number, 07-0479.
LOCATION.--Lat 39°42'15", long 74°56'17", Hydrologic Unit 02040302, on eastern shore of New Brooklyn Lake approximately 900 ft (270 m) upstream of Route 536, Winslow Township.
Owner: U.S. Geological Survey.

AQUIFER. --Kirkwood Formation of Miocene age.
WELL CHARACTERISTICS. --Drilled artesian observation well, diameter 6 in (152 mm), depth 210 ft (64.0 m), screened
200 to 210 ft (61.0 to 64.0 m).

200 to 210 ft (61.0 to 64.0 m).

INSTRUMENTATION.--Water-level recorder.

DATUM.--Land-surface datum is 111.20 ft (33.894 m) National Geodetic Vertical Datum of 1929.

Measuring point: Top of 6 inch coupling, 2.3 ft (0.70 m) above land-surface datum.

PERIOD OF RECORD.--December 1962 to August 1975, March 1977 to current year. Records for 1962 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 0.41 ft (0.125 m) below land-surface datum, Feb. 27, 1979; lowest water level, 2.28 ft (0.695 m) below land-surface datum, Aug. 31, 1966.

EXTREMES FOR CURRENT YEAR.--Highest water level, 0.45 ft (0.137 m) below land-surface datum, Apr. 11-13; lowest water level, 1.18 ft (0.360 m) below land-surface datum, Sept. 29-30.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

					1112	MN VALUED						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10	.65	.74	.77	.76	.77	.77 .74	.46	.52	.77 .75	.79 .85	.92	1.13
15 20	.63	.65	.75	.64	.78	.65	.47	.65	.80 .79	.90	.96 1.01	1.16
25 EOM	.74	.77	.71	.61	.71	.56	.61 .57	.65	.86	.91	1.05	1.16
MEAN	.71	.72	.74	.70	.75	.68	.54	.64	.80	.87	.99	1.15
WTR YR		MEAN		IGH		2 AND OTHE		LOW	1.18 SE		.,,	1.15
	. , , , ,			- W 14	MIN I	- min Olin	***	~ 011				

CUMBERLAND COUNTY

392512074521206. Local I.D., Ragovin 2100. Unique Well Number 11-0137.
LOCATION.--Lat 39°25'12", long 74°52'12", Hydrologic Unit 02040302, in wooded area off Harriet Avenue, 1.5 mi (2.4 km) southeast of Milmay.
Owner: DeRosa (Formerly: W.H. Ragovin).

Owher: Denosa (Formerly: W.h. Ragovin).

AQUIFER.—Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.—Drilled artesian observation well, diameter 5 in (127 mm), depth 2,093 ft (637.9 m), screened 2,083 to 2,093 ft (634.9 to 637.9 m).

INSTRUMENTATION.—Water-level recorder.

DATUM.--Land-surface datum is 85.00 ft (25.908 m) National Geodetic Vertical Datum of 1929, revised; previously published as 91 ft (27.7 m).

published as 91 ft (27.7 m).

Measuring point: Top edge of recorder shelf, 2.4 ft (0.73 m) above land-surface datum.

PERIOD OF RECORD.--October 1974 to April 1975, February 1977 to current year. Records for 1974 to 1977 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 115.82 ft (35.302 m) below land-surface datum, Apr. 3, 1975; lowest water level, 124.95 ft (38.085 m) below land-surface datum, Sept. 28-29, 1980.

EXTREMES FOR CURRENT YEAR.--Highest water level, 123.05 ft (37.506 m) below land-surface datum, Oct. 5; lowest water level, 124.95 ft (38.085 m) below land-surface datum, Sept. 28-29.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	123.14	123.55	123.42	123.46	123.78	123.76	123.54	123.65	124.05	124.09	124.44	124.79
10	123.23	123.31	123.57	123.84	123.64	123.76	123.51	123.78	123.94	124.12	124.46	124.74
15	123.32	123.38	123.68	123.61	123.77	123.87	123.49	123.86	123.97	124.28	124.41	124.74
20	123.36	123.49	123.69	123.63	123.72	123.80	123.76	123.82	124.01	124.34	124.48	124.90
25	123.26	123.50	123.26	123.42	123.72	123.57	123.68	123.70	124.17	124.31	124.63	124.87
EOM	123.55	123.45	123.52	123.64	123.86	123.56	123.65	123.98	123.98	124.35	124.69	124.89
MEAN	123.27	123.41	123.53	123.61	123.74	123.76	123.68	123.80	124.04	124.23	124.51	124.81
WTR YR	1980	MFAN 1	123.87	HTGH 12	3 14 OCT	5 AND OT	HERS	I.OW	124.94	SEP 28 ANI	OTHERS	

ESSEX COUNTY

404452074211601. Local I.D., Canoe Brook 30 Obs. Unique Well Number, 13-0013.
LOCATION.--Lat 40°44'52", long 74°21'16", Hydrologic Unit 02030103, about 0.3 mi (0.5 km) north of Canoe Brook pumping station, near Chatham.

Owner: Commonwealth Water Company.

AQUIFER.--Stratified drift of Pleistocene age.

WELL CHARACTERISTICS .-- Drilled semi-artesian observation well, diameter 10 in (254 mm), depth 130 ft (39.6 m).

level, 75.31 ft (22.954 m) below land-surfacce datum, Oct. 4.

WELL CHARACTERISTICS.--Drilled semi-artesian observation well, diameter 10 in (254 mm), depth 130 ft (39.6 m).

INSTRUMENTATION.--Water-level recorder.

DATUM.--Land-surface datum is 170.00 ft (51.816 m) National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 6.6 ft (2.01 m) above land-surface datum.

REMARKS.--Water levels in this well are affected by pumpage.

PERIOD OF RECORD.--1925 to May 1975, April 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 7.25 ft (2.210 m) below land-surface datum, Aug. 25, 1931;

lowest water level, 86.70 ft (26.426 m) below land-surface datum, Oct. 23, 1977.

EXTREMES FOR CURRENT YEAR.--Highest water level, 68.71 ft (20.943 m) below land-surface datum, Feb. 26; lowest water level, 75.31 ft (22.954 m) below land-surface datum. Oct.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	73.62				70.54	70.45	70.84				71.92	73.42
10	74.55			74.14	70.74	71.08	71.42	70.94		71.43	72.65	74.44
15	74.04			72.73	71.42	71.70	70.24	71.26			71.56	74.35
	74.19			71.36	70.55	72.26	72.31	72.05		74.46	71.79	74.18
20 25	74.29			70.46	69.49	72.41	71.36	70.93		73.73	72.41	74.37
EOM	73.73		73.22	70.51		71.15	70.94	69.98		72.44	73.56	73.67
MEAN	74.18			72.10	70.46	71.42	71.38	71.09		73.29	72.15	74.08
WTD VD	1080	MEAN	72 26	нтсн 60	10 FFR 3	26	LOM	75 07 OCT	11			

MERCER COUNTY

402131074461201. Local I.D., Honey Branch 10 Obs. Unique Well Number, 21-0088.

LOCATION.--Lat 40°21'28", Long 74°46'13", Hydrologic Unit 02030105, on the lands of Stony Brook-Millstone Watershed Association, near Pennington.

Owner: Stony Brook-Millstone Watershed Association.

AQUIFER.--Brunswick Shale of Triassic age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), cased to approximately 20 ft

(6.1 m), depth 150 ft (45.7 m), open hole. INSTRUMENTATION. -- Water-level recorder.

DATUM.--Land-surface datum is 179.50 ft (54.712 m) National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 4.0 ft (1.22 m) above land-surface datum.

PERIOD OF RECORD.--June 1967 to August 1975, April 1977 to current year. Records for 1967 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD .-- Highest water level, 24.63 ft (7.507 m) below land-surface datum, July 21, 1967;

lowest water level, 27.87 ft (8.495 m) below land-surface datum, July 27, 1980.

EXTREMES FOR CURRENT YEAR.—Highest water level, 25.02 ft (7.626 m) below land-surface datum, Mar. 21; lowest water level, 27.87 ft (8.495 m) below land-surface datum, July 27.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	25.44	25.64	25.67	25.75	26.37	26.26	25.62				27.15	
10	25.27	25.56	25.71		26.38	25.92	25.50	26.04		27.38		
15	25.56	25.48	25.61		26.56	25.76	25.63	25.80		27.59		
20	25.68	25.66	25.74		26.51	25.66		25.86		27.49		
25	25.72	25.74	25.43		26.05	25.50	26.12	25.93		27.61		
EOM	25.82	25.59	25.68		26.12	25.50	25.73			27.54		
MEAN	25.56	25.60	25.64		26.34	25.82	25.74	25.89		27.46		
WTR YR	1980	MEAN	26.04	HIGH 2	25.25 OCT	1	LOW	27.77 JUL 28				

402553074271701. Local I.D., Robert Fischer Obs. Unique Well Number, 23-0070. LOCATION.--Lat 40°25'55", long 74°27'19", Hydrologic Unit 02030105, about 1,800 ft (548.6 m) southeast of Weber School on Hardenburg Lane, East Brunswick Township.

Owner: Robert D. Fischer.

AQUIFER.--Farrington Sand Member of the Raritan Formation of Cretaceous age.

WELL CHARACTERISTICS.--Dug water-table observation well, diameter 4.5 ft (1.37 m), depth 21 ft (6.4 m), well is cased

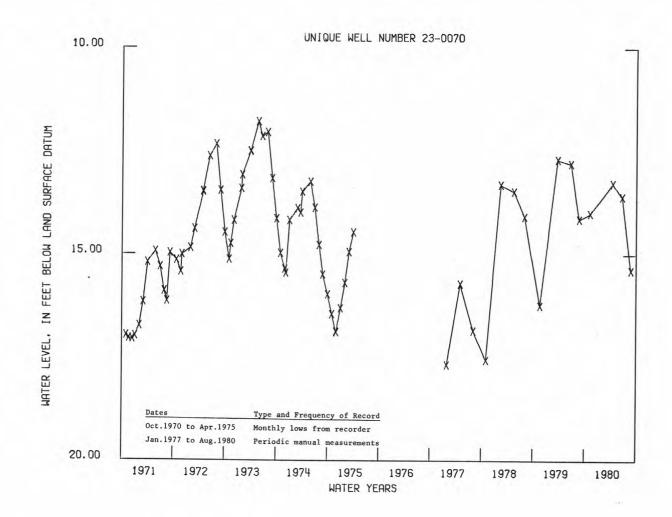
WELL CHARACTERISTICS.--Dug water-table observation well, diameter 4.5 ft (1.37 m), depth 21 ft (6.4 m), well is cased to 7 ft (5.2 m).

INSTRUMENTATION.--Water-level extremes recorder. June 1936 to April 1975, water-level recorder.

DATUM.--Land-surface datum is 73.00 ft (22.250 m) National Geodetic Vertical Datum of 1929.

Measuring point: Top of angle iron at bottom of shelter doors 1.70 ft (0.518 m) above land-surface datum.

REMARKS.--Well deepened Oct. 29, 1965 from 17 to 21 ft (5.18 to 6.40 m).


PERIOD OF RECORD.--June 1936 to April 1975, January 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 8.88 ft (2.707 m) below land-surface datum, Apr. 26, 27, 1939; lowest water level, 18.36 ft (5.596 m) below land-surface datum, Feb. 11, 1966, well was dry many times, 1963-1965 before deepening.

FYTERMES FOR CURRENT YEAR.--Highest water level, 12.80 ft (3.901 m) below land-surface datum, between Apr. 16 and

EXTREMES FOR CURRENT YEAR.--Highest water level, 12.80 ft (3.901 m) below land-surface datum, between Apr. 16 and June 23; lowest water level, 16.64 ft (5.072 m) below land-surface datum, between Aug. 25 and Oct. 16, 1980.

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
NOV 8	14.00	APR 16	13.27	TIIN 23	13.50	AUG 25	15.38

402450074181801. Local I.D., Browntown Obs. Unique Well Number, 23-0182. LOCATION.--Lat 40°24'49", long 74°18'19", Hydrologic Unit 02030105, on the east side of Route 9 about 1.0 mi (1.6 km) north of Browntown.

Owner: Old Bridge Municipal Utilities Authority (formerly Mr. Clyde Bowne).

AQUIFER.--Old Bridge Sand Member of the Magothy Formation of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 71 ft (21.6 m), perforated

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 71 ft (21.6 m), perforated pipe 66 to 71 ft (20.1 to 21.6 m).

INSTRUMENTATION.--Water-level extremes recorder. November 1932 to August 1975, water-level recorder.

DATUM.--Land-surface datum is 30.58 ft (9.321 m) National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing 3.17 ft (0.966 m) above land-surface datum.

PERIOD OF RECORD.--November 1932 to August 1975, January 1977 to current year. Records for 1932 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 2.44 ft (0.744 m) below land-surface datum, Apr. 9, 10, 1939; lowest water level, 14.75 ft (4.496 m) below land-surface datum, between Aug. 4, and Nov. 2, 1977.

EXTREMES FOR CURRENT YEAR.--Highest water level, 10.28 ft (3.113 m) below land-surface datum, between Mar. 10 and May 28; lowest water level, 12.90 ft (3.932 m) below land-surface datum, between May 28 and Aug. 25.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
NOV 9	11.97	MAR 10	12.72	MAY 28	10.51	AUG 25	12.89

MIDDLESEX COUNTY

402109074301301. Local I.D., Forsgate Obs. 1-1961. Unique Well Number, 23-0291. LOCATION.--Lat 40°21'09", long 74°30'13", Hydrologic Unit 02030105, about 0.4 mi (0.6 km) west of Route 130 on Friendship Road, South Brunswick Township.

Owner: Monroe Township Municipal Utilities Authority.

AQUIFER.--Farrington Sand Member of the Raritan Formation of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 203 ft (61.9 m), screened 192 to 203 ft (58.5 to 61.9 m).

INSTRUMENTATION.--Water-level extremes recorder. October 1961 to August 1975, water-level recorder.

DATUM.--Land-surface datum is 106.79 ft (32.550 m) National Geodetic Vertical Datum of 1929.

DATUM.--Land-surface datum is 106.79 ft (32.550 m) National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing 2.06 ft (0.628 m) above land-surface datum.

PERIOD OF RECORD.--October 1961 to August 1975, January 1977 to current year. Records for 1961 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 24.70 ft (7.529 m) below land-surface datum, July 5, 1973; lowest water level, 37.39 ft (11.396 m) below land-surface datum, between Nov. 1, 1977 and Feb. 13, 1978.

EXTREMES FOR CURRENT YEAR.--Highest water level, 30.53 ft (9.306 m) below land-surface datum, between Nov. 7 and Apr. 16; lowest water level, 34.00 ft (10.363 m) below land-surface datum, between Aug. 7 and Oct. 14, 1980.

DAT	E	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV	7	30.70	APR 16	31.42	JUN 23	31.61	AUG 7	32.58

402015074275701. Local I.D., Forsgate Obs. 3-1961. Unique Well Number, 23-0228.
LOCATION.--Lat 40°20'15", long 74°27'57", Hydrologic Unit 02030105, on Hanover Lane at Rossmoor, Monroe Township Municipal Utilities Authority.

AQUIFER.--Old Bridge Sand Member of the Magothy Formation of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 138 ft (42.1 m), screened 128 to 138 ft (39.0 to 42.1 m).
INSTRUMENTATION.--Water-level extremes recorder. October 1961 to August 1967, August 1968 to August 1975, water-

level recorder.

DATUM .-- Land-surface datum is 147.34 ft (44.909 m) National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing 1.40 ft (0.427 m) below land-surface datum. PERIOD OF RECORD.--October 1961 to August 1967, August 1968 to August 1975, January 1977 to current year. Records for 1961 to 1975 are unpublished and are available in files of New Jersey District Office. EXTREMES FOR PERIOD OF RECORD.—Highest water level, 70.32 ft (21.434 m) below land-surface datum, May 6, 1962; lowest water level, 84.85 ft (25.862 m) below land-surface datum, between Aug. 5 and Nov. 1, 1977. EXTREMES FOR CURRENT YEAR.—Highest water level, 77.98 ft (23.768 m) below land-surface datum, between Nov. 8 and Apr. 16; lowest water level, 80.97 ft (24.680 m) below land-surface datum, between May 21 and Aug. 7.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
NOV 8	78.60	APR 16	78.87	MAY 21	78.43	AUG 7	80.17

MIDDLESEX COUNTY

402015074275702. Local I.D., Forsgate Obs. 4-1961. Unique Well Number, 23-0229.
LOCATION.--Lat 40°20'15", long 74°27'57", Hydrologic Unit 02030105, on Hanover Lane at Rossmoor, Monroe Township.
Owner: Monroe Township Municipal Utilities Authority.
AQUIFER.--Farrington Sand Member of the Raritan Formation of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 330 ft (100.6 m), screened
319 to 330 ft (97.2 to 100.6 m). INSTRUMENTATION .-- Water-level extremes recorder. April 1965 to August 1967, August 1968 to August 1975, water-level

PATUM.--Land-surface datum is 147.34 ft (44.909 m) National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing 1.50 ft (0.457 m) below land-surface datum.

PERIOD OF RECORD.--April 1965 to August 1967, August 1968 to August 1975, January 1977 to current year. Records for 1965 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 80.09 ft (24.411 m) below land-surface datum, July 16, 1973; lowest water level, 93.24 ft (28.420 m) below land-surface datum, between Nov. 20, 1978 and Mar. 21, 1979.

EXTREMES FOR CURRENT YEAR.--Highest water level, 85.24 ft (25.981 m) below land-surface datum, between Nov 8 and Apr. 16; lowest water level, 90.79 ft (27.673 m) below land-surface datum, between Aug. 7 and Oct. 15, 1980.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAT	E	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV	8	86.30	APR 16	86.68	MAY 21	85.80	AUG 7	89.36

MIDDLESEX COUNTY

402633074220001. Local I.D., South River 2 Obs. Unique Well Number, 23-0439. LOCATION.--Lat 40°26'33", long 74°22'00", Hydrologic Unit 02030105, at the corner of Whitehead Avenue and Anne LOCATION.--Lat 40°26'33", long 74°22'00", Hydrologic Unit U2U3U107, at the corner of minor of Street, South River.

Owner: South River Borough Water Department.

AQUIFER.--Farrington Sand Member of the Raritan Formation of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 126 ft (38.4 m), screened. 121 to 126 ft (36.9 to 38.4 m).

INSTRUMENTATION.--Water-level extremes recorder. January 1968 to August 1975, water-level recorder.

DATUM.--Land-surface datum is 20.69 ft (6.306 m) National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing 2.55 ft (0.777 m) above land-surface datum.

PERIOD OF RECORD.--January 1968 to August 1975, January 1977 to current year. Records for 1968 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 39.37 ft (12.000 m) below land-surface datum, Jan. 30, 1968; lowest water level, 73.64 ft (22.445 m) below land-surface datum, between Aug. 25 and Oct. 16, 1980.

lowest water level, 73.64 ft (22.445 m) below land-surface datum, between Aug. 25 and Oct. 16, 1980.

EXTREMES FOR CURRENT YEAR.--Highest water level, 55.78 ft (17.002 m) below land-surface datum, between Nov. 21 and Mar. 10; lowest water level, 73.64 ft (22.445 m) below land-surface datum, between Aug. 25 and Oct. 16, 1980.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 8	58.10	NOV 21	57.36	MAR 10	62.06	MAY 28	62.69	AUG 25	71.54

402746074314501. Local I.D., Morgan 1 Obs. Unique Well Number, 23-0404.
LOCATION.--Lat 40°27'45", long 74°16'45", Hydrologic Unit 02030104, on north side of Ernston Road about 600 ft
(183 m) east of the Garden State Parkway, Sayreville.
Owner: Sayreville Water Department.

AQUIFER. --Farrington Sand Member of the Raritan Formation of Cretaceous age.
WELL CHARACTERISTICS. --Drilled artesian observation well, diameter 6 in (152 mm), depth 248 ft (75.6 m), screened
238 to 248 ft (72.5 to 75.6 m).
INSTRUMENTATION. --Water-level recorder.

INSTRUMENTATION. -- Water-level recorder.

DATUM. -- Land-surface datum is 23.35 ft (7.117 m) National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 3.0 ft (0.91 m) above land-surface datum.

REMARKS. -- Water levels in this well are affected by pumpage.

PERIOD OF RECORD. -- November 1973 to July 1975, March 1977 to April 1980 (discontinued). Records for 1973 to 1977 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 67.11 ft (20.455 m) below land-surface datum, Mar. 29, 1974; lowest water level, 110.08 ft (33.552 m) below land-surface datum, July 21, 1979.

EXTREMES FOR CURRENT YEAR. -- Highest water level, 82.29 ft (25.082 m) below land-surface datum, Mar. 4; lowest water Level, 102.04 ft (31.102 m) below land-surface datum, Oct. 1.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAY	ост	NOV	DEC	ĴAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	101.10	98.03		95.19	95.78	91.61	95.14					
10	101.20			95.63	95.43	95.07	94.73					
15	100.25		95.53	95.45	95.64	95.26						
20	101.19		95.92	97.02	95.26	95.66						
25	99.80		95.85	96.24	95.04	95.08						
EOM	99.09		95.50	95.97	95.22	95.17						
MEAN	100.38		95.75	95.85	95.43	94.49						

MONMOUTH COUNTY

402626074114204. Local I.D., Keyport Boro WD 4. Unique Well Number, 25-0206.
LOCATION.--Lat 40°26'26", long 74°11'42", Hydrologic Unit 02030104, at the unused Myrtle Avenue Water Plant, Keyport.
Owner: Keyport Borough Water Department.

AQUIFER. --Old Bridge Sand Member of the Magothy Formation of Cretaceous age.
WELL CHARACTERISTICS. --Drilled artesian observation well, diameter 8 in (203 mm), depth 289 ft (88.1 m), screened
229 to 289 ft (69.8 to 88.1 m).

229 to 289 ft (69.8 to 88.1 m).

INSTRUMENTATION.--Water-level recorder.

DATUM.--Land-surface datum is 14.50 ft (4.420 m) National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.3 ft (0.70 m) above land-surface datum.

REMARKS.--Water levels in this well are affected by tidal fluctuation.

PERIOD OF RECORD.--June 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 23.32 ft (7.108 m) below land-surface datum, Apr. 14, 1980;

lowest water level, 34.88 ft (10.631 m) below land-surface datum, July 22, 1980.

EXTREMES FOR CURRENT YEAR.—Highest water level, 23.32 ft (7.108 m) below land-surface datum, Apr. 14; lowest water level, 34.88 ft (10.631 m) below land-surface datum, July 22.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10	28.19 28.87	28.08 27.55	27.78		27.30 26.67	26.37 26.88	25.66 25.18	25.88 26.98	27.69 27.31	31.34 31.22	31.68 32.21	33.12 33.53
15 20	28.79	27.76 28.23			27.14	27.10 26.19	25.17	26.91	27.80 28.89	32.69 33.54	32.38	33.24
20 25 EOM	28.79	27.59 27.48	26.32		26.25	25.43 25.73	26.17 25.68	26.41	30.94	33.52	31.84	32.36
MEAN	28.62	27.84			26.90	26.36	25.74	26.60	28.77	32.50	32.12	32.93
										32.50	32.12	32.93
WTR YR	1980	MEAN	28.59	HIGH 25	.08 APR 1	14	LOW	34.01 JUL	23			

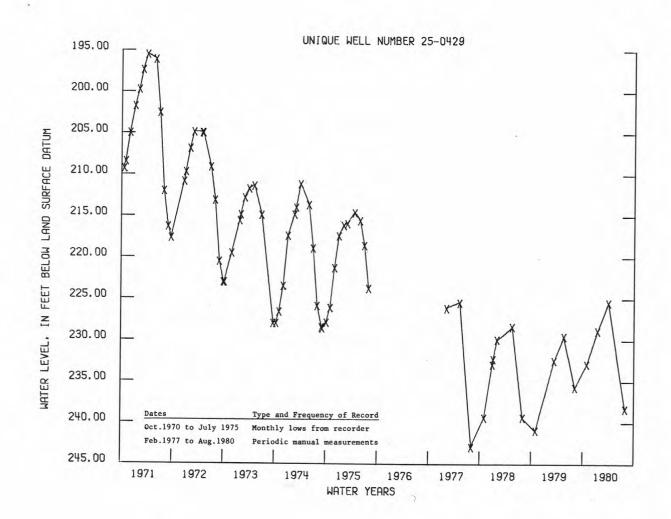
MONMOUTH COUNTY

400832074082101. Local I.D., Allaire State Park C Obs. Unique Well Number, 25-0429.
LOCATION.--Lat 40°08'34", long 74°08'34", Hydrologic Unit 02040301, approximately 1.3 mi (2.1 km) southeast of Lower Squankum, in Allaire State Park, Wall Township.
Owner: U.S. Geological Survey.
AQUIFER.--Englishtown Sand of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 715 ft (217.9 m), screened WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 715 ft (217.9 m), screened 623 to 633 ft (189.9 to 192.9 m).

INSTRUMENTATION.--Water-level extremes recorder. January 1964 to July 1975, water-level recorder.

DATUM.--Land-surface datum is 97.93 ft (29.849 m) National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing 1.64 ft (0.500 m) above land-surface datum.


PERIOD OF RECORD.--January 1964 to July 1975, February 1977 to current year. Records for 1964 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 141.05 ft (42.992 m) below land-surface datum, Apr. 8, 1964; lowest water level, 245.60 ft (74.859 m) below land-surface datum, between Aug. 1 and Oct. 22, 1980.

EXTREMES FOR CURRENT YEAR.--Highest water level, 225.73 ft (68.803 m) below land-surface datum, between Jan. 16 and Apr. 3; lowest water level, 245.60 ft (74.859 m) below land-surface datum, between Aug. 1 and Oct. 22, 1980.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31	233.18	JAN 16	229.14	APR 3	225.76	AUG 1	238.61

MONMOUTH COUNTY

401518074223001. Local I.D., Manalapan 1 Obs. Unique Well Number, 25-0216.
LOCATION.--Lat 40°15'18", long 74°22'30", Hydrologic Unit 02030105, on the north side of Route 33 about 0.3 mi (0.5 km) west of Woodward Road, Manalapan Township.

(0.5 km) west of Woodward Road, Manalapan Township.

Owner: Manalapan Township Water Department.

AQUIFER.--Englishtown Sand of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in (203 mm), depth 185 ft (56.4 m), screened 125 to 185 ft (38.1 to 56.4 m).

INSTRUMENTATION.--Water-level extremes recorder. April 1971 to July 1975, water-level recorder.

DATUM.--Land-surface datum is 122.11 ft (37.219 m) National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.28 ft (0.695 m) above land-surface datum.

PERIOD OF RECORD.--April 1971 to July 1975, January 1977 to current year. Records for 1971 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level 0.00 ft (0.000 m) below land-surface datum. May 19-20. 1973:

and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level, 0.00 ft (0.000 m) below land-surface datum, May 19-20, 1973; lowest water level, 3.65 ft (1.113 m) below land-surface datum, between Aug. 25 and Oct. 7, 1980.

EXTREMES FOR CURRENT YEAR.—Highest water level, 0.99 ft (0.302 m) below land-surface datum, between Mar. 10 and May 28; lowest water level, 3.65 ft (1.113 m) below land-surface datum, between Aug. 25 and Oct. 7, 1980.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

		WATER		WATER		WATER		WATER
DAT	E	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
NOV	9	1.86	MAR 10	2.02	MAY 28	1.22	AUG 25	3.03

MONMOUTH COUNTY

402536073590501. Local I.D., Sandy Hook SP Obs. 1. Unique Well Number, 25-0316.
LOCATION.--Lat 40°25'36", long 73°59'05", Hydrologic Unit 02030104, about 1.9 mi (3.1 km) north of the main entrance of Sandy Hook Park, Middletown Township.

Owner: National Park Service (formerly State of New Jersey).
AQUIFER.--Old Bridge Sand Member of the Magothy Formation of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in (203 mm), depth 397 ft (121.0 m), screened 371 to 397 ft (113.1 to 121.0 m).
INSTRUMENTATION.--Water-level extremes recorder. May 1965 to August 1975, water-level recorder.
DATUM.--Land-surface datum is 10.91 ft (3.325 m) National Geodetic Vertical Datum of 1929.
Measuring point: Front edge of cutout in recorder housing, 1.20 ft (0.366 m) above land-surface datum.
PERIOD OF RECORD.--May 1965 to August 1975, February 1977 to May 1978, November 1978 to current year. Records for 1965 to 1975 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 8.99 ft (2.740 m) below land-surface datum, Jan. 23, 1966; lowest water level, 20.12 ft (6.133 m) below land-surface datum, between Sept. 7 and Nov. 2, 1977.
EXTREMES FOR CURRENT YEAR.--Highest water level, 13.83 ft (4.215 m) below land-surface datum, between Apr. 3 and June 23; lowest water level, 19.18 ft (5.846 m) below land-surface datum, between Aug. 25 and Oct. 22, 1980.

	WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 29	16.64	JAN 15	16.23	APR 3	15.71	JUN 23	16.38	AUG 25	18.21

MONMOUTH COUNTY

401906074151401. Local I.D., Village 215 Obs. Unique Well Number, 25-0250.
LOCATION.--Lat 40°19'18", long 74°15'29", Hydrologic Unit 02030105, near intersection of River Drive and Newport
Road, about 0.6 mi (1.0 km) northwest of Route 79 in Marlboro.

Road, about 0.6 mi (1.0 km) northwest of Route 19 in marked.

Owner: Gordons Corner Water Company.

AQUIFER.-Englishtown Sand of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 215 ft (65.5 m), screened 186 to 215 ft (56.7 to 65.5 m).

INSTRUMENTATION.--Water-level extremes recorder. April 1971 to July 1975, water-level recorder.

DATUM.--Land-surface datum is 138.62 ft (42.251 m) National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.58 ft (0.786 m) above land-surface datum.

PERIOD OF RECORD.--April 1971 to July 1975, January 1977 to current year. Records for 1971 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 35.30 ft (10.759 m) below land-surface datum, Jan. 9-10, 1972; lowest water level, 39.09 ft (11.915 m) below land-surface datum, between Aug. 3 and Nov. 3, 1977.

EXTREMES FOR CURRENT YEAR.--Highest water level, 36.48 ft (11.119 m) below land-surface datum, between Mar. 10 and May 28; lowest water level, 38.63 ft (11.774 m) below land-surface datum, between Aug. 25 and Oct. 7, 1980.

DATE	WATER	DATE	WATER	DAME	WATER	DAME	WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
NOV 9	37.23	MAR 10	37.67	MAY 28	36.71	AUG 25	38.12

MONMOUTH COUNTY

402208074145201. Local I.D., Marlboro Obs 1. Unique Well Number, 25-0272. LOCATION.--Lat 40°22'08", long 74°14'52" (revised), Hydrologic Unit 02030104, on the west side of New Jersey Route 79, 0.9 mi (1.45 km) south of Morganville.

Owner: Marlboro Township Municipal Utilities Authority. Owner: mariboro lownship municipal utilities authority.

AQUIFER.--Farrington Sand Member of the Raritan Formation of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 680 ft (207 m), screened 670 to 680 ft (204 to 207 m).

INSTRUMENTATION.--Water-level recorder.

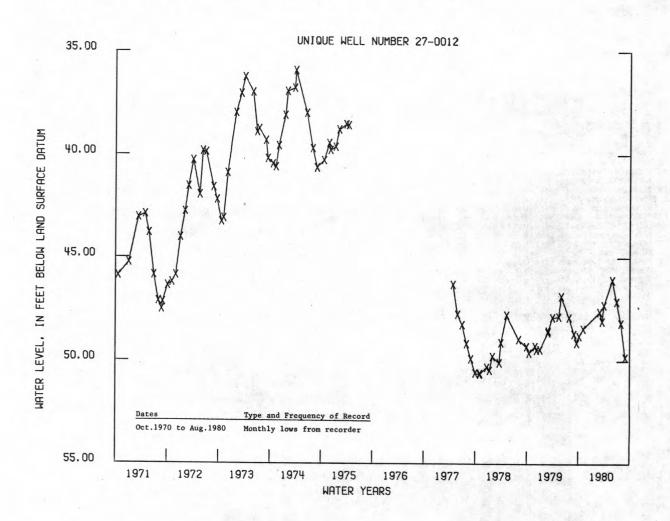
DATUM.--Land-surface datum is 116.93 ft (35.640 m) National Geodetic Vertical Datum of 1929. Measuring point: Top edge of recorder shelf, 2.5 ft (0.76 m) above land-surface datum.

REMARKS.--Water levels in this well are occasionally affected by pumpage.

PERIOD OF RECORD.--January 1973 to July 1975, March 1977 to current year. Records for 1973 to 1977 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level, 144.06 ft (43.910 m) below land-surface datum, Apr. 4, 1973; lowest water level, 184.57 ft (56.257 m) below land-surface datum, Sept. 14, 1980.

EXTREMES FOR CURRENT YEAR.—Highest water level, 157.23 ft (47.924 m) below land-surface datum, Jan. 5; lowest water level, 184.57 ft (56.257 m) below land-surface datum, Sept. 14.


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	163.29	160.76	158.57	157.47	157.82	158.29	159.87		167.97		179.11	183.55
10	162.59	160.76	158.35	157.95	157.72	158.40	160.41		168.65		180.44	183.75
15	162.24	160.15	158.34	157.91	157.92	159.03	160.28		171.43	178.45	179.83	183.72
20	161.71	159.39	158.52	157.71	157.88	159.51	161.03		172.73	180.18	178.96	181.94
25	161.57	159.05	158.06	157.57	158.06	159.57	162.58		175.50	180.20	180.20	181.64
EOM	161.06	158.91	157.85	157.75	158.31	159.75	162.00			179.30	182.08	179.37
MEAN	162.25	159.96	158.34	157.75	157.91	159.03	160.91		171.14	179.62	179.78	182.59
WTR YR	1980	MEAN 1	65.69	HIGH 15	7.44 JAN	23	LOW	184.45 SEP	14			

MORRIS COUNTY

404639074230001. Local I.D., Briarwood School Obs. Unique Well Number, 27-0012.
LOCATION.--Lat 40°46'39", long 74°23'00", Hydrologic Unit 02030103, at the Briarwood School near Florham Park.
Owner: U.S. Geological Survey.
AQUIFER.--Stratified drift of Pleistocene age.
WELL CHARACTERISTICS.--Drilled semi-artesian observation well, diameter 6 in (152 mm), depth 110 ft (33.5 m),
screened 100 to 110 ft (30.5 to 33.5 m).
INSTRUMENTATION.--Water-level recorder.
DATUM.--Land-surface datum is 196.00 ft (60.350 m) National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 3.0 ft (0.91 m) above land-surface datum.
PERIOD OF RECORD.--March 1967 to May 1975, April 1977 to current year. Records for 1967 to 1975 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 34.17 ft (10.415 m) below land-surface datum, June 3, 1968; lowest water level, 50.63 ft (15.432 m) below land-surface datum, Oct. 4, 31, 1977.
EXTREMES FOR CURRENT YEAR.--Highest water level, 45.37 ft (13.829 m) below land-surface datum, May 13-14; lowest water level, 49.92 ft (15.216 m) below land-surface datum, Sept. 2.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

							-					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	48.51	48.35	47.48			47.38	46.75	45.75	46.25	47.04	48.45	
10	48.62	48.18	47.49			47.70	46.41		46.42	47.17	48.69	
15		48.05			47.08	47.98	45.93	45.67	46.38	47.39	48.88	
	48.35	47.92			47.09	47.80	.46.02	45.54	46.62	47.65	49.23	
20 25	48.39	47.88				47.63	45.97	45.63	46.82	47.84	49.51	
EOM	48.37	47.86			47.48			46.00	46.99	48.11	49.77	
MEAN	48.46	48.04			47.21	47.63	46.38	45.68	46.53	47.50	49.00	·
WTR YR	1980	MEAN	47.46	HIGH	45.42 MAY	13	LOW	49.85 SEP	1			

395714074223401. Local I.D., Crammer Obs. Unique Well Number, 29-0486. LOCATION.--Lat 39°57'14", long 74°22'34", Hydrologic Unit 02040301, about 800 ft (244 m) east of Central Railroad of

New Jersey, Whiting. Owner: Mr. Frank Reynolds (formerly Mrs. William Crammer).

AQUIFER. -- Cohansey Sand of Miocene age.
WELL CHARACTERISTICS. -- Water-table observation well, diameter 8 in (203 mm), depth 69 ft (21.0 m), slotted steel casing gravel packed.
INSTRUMENTATION. -- Water-level recorder.

DATUM.-Land-surface datum is 179.00 ft (54.559 m) National Geodetic Vertical Datum of 1929.

Measuring point: Top of 8-inch coupling, 0.9 ft (0.27 m) above land-surface datum.

REMARKS.--Originally a dug well in which casing was inserted on March 31, 1966.

PERIOD OF RECORD.---1952 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level, 47.80 ft (14.569 m) below land-surface datum, June 9-14, 20-29, 1973; lowest water level, well dry, November 1957 to February 1958, December 1965.

EXTREMES FOR CURRENT YEAR.—Highest water level, 50.81 ft (15.487 m) below land-surface datum, Oct. 1; lowest water level, 53.77 ft (16.389 m) below land-surface datum, Sept. 30.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	50.87	51.22	51.55	51.99	52.40	52.71	52.85	51.52	51.42	51.90	52.54	53.18
10	50.93	51.23	51.63	52.09	52.45	52.76	52.76	51.42	51.47	51.97	52.63	53.30
15	51.00	51.28			52.51	52.82	52.58	51.35	51.53	52.08	52.73	53.43
20	51.05	51.36		52.21	52.56	52.89	52.35	51.31	51.61	52.19	52.84	53.55
15 20 25	51.08	51.44			52.61	52.91	52.02	51.29	51.70	52.30	52.95	53.66
EOM	51.15	51.50			52.65	52.91	51.74	51.36	51.78	52.44	53.07	53.76
MEAN	51.00	51.31	51.71	52.15	52.50	52.82	52.47	51.40	51.56	52.11	52.76	53.43
WTR YR	1980	MEAN	52.10	HIGH 5	0.82 OCT	1	LOW	53.76 SEF	30			

OCEAN COUNTY

400416074270101. Local I.D., Colliers Mills TW 1 Obs. Unique Well Number, 29-0138. LOCATION.--Lat 40°04'14", long 74°27'02", Hydrologic Unit 02040301, along western shore of Colliers Mills Pond, Jackson Township.

Owner: U.S. Geological Survey.

AQUIFER. -- Englishtown Sand of Cretaceous age.
WELL CHARACTERISTICS. -- Drilled artesian observation well, diameter 6 in (152 mm), depth 427 ft (130.2 m), screened WELL CHARACTERISTICS.--Drilled artesian observation well, diameter o in (152 mm), depth 427 it (150.2 m), screened 417 to 427 ft (127.1 to 130.2 m).

INSTRUMENTATION.--Water-level recorder.

DATUM.--Land-surface datum is 136.52 ft (41.611 m) National Geodetic Vertical Datum of 1929.

Measuring point: Top of 6 inch coupling, 2.2 ft (0.67 m) above land-surface datum.

PERIOD OF RECORD.--February 1964 to July 1975, March 1977 to current year. Records for 1964 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 52.02 ft (15.856 m) below land-surface datum, Feb. 19, 1964;

lowest water level, 73.06 ft (22.269 m) below land-surface datum, Sept. 29, 1980.

EXTREMES FOR CURRENT YEAR.—Highest water level, 71.12 ft (21.677 m) below land-surface datum, Apr. 4; lowest water level, 73.06 ft (21.269 m) below land-surface datum, Sept. 29.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	71.36	71.54			71.49	71.47	71.21	71.22	71.49	71.73	72.35	72.81
10 15		71.42	71.53	71.41	71.42	71.48	71.18	71.33	71.46 71.51	71.83	72.39 72.42	72.84
20 25	71.42	71.49			71.48	71.50	71.32	71.33	71.58	72.09	72.52	72.93
EOM	71.58	71.46			71.51	71.26	71.21	71.45	71.63	72.23	72.72	73.04
MEAN	71.44	71.47	71.46	71.42	71.47	71.45	71.28	71.32	71.57	71.98	72.48	72.89
WTR YR	1980	MEAN	71.70	HIGH 71	. 18 APR	4 AND OTH	HERS	LOW	73.06 \$	SEP 29		

400416074270103. Local I.D., Colliers Mills TW 3 Obs. Unique Well Number, 29-0140. LOCATION.--Lat 40°04'14", long 74°27'02", Hydrologic Unit 02040301, along western shore of Colliers Mills pond, Jackson Township.

Owner: U.S. Geological Survey.

AQUIFER.--Mount Laurel Sand-Wenonah Formation undifferentiated of Cretaceous age.

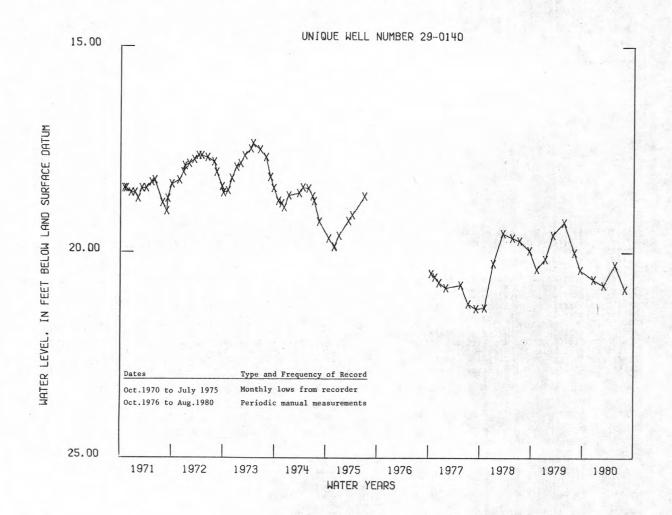
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 270 ft (82.3 m), screened 257

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 270 ft (82.3 m), screened 257 to 267 ft (78.3 to 81.4 m).

INSTRUMENTATION.--Water-level extremes recorder. January 1964 to July 1975, water-level recorder.

DATUM.--Land-surface datum is 135.15 ft (41.194 m) National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 3.49 ft (1.064 m) above land-surface datum.


PERIOD OF RECORD.--January 1964 to July 1975, October 1976 to current year. Records for 1964 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 15.72 ft (4.791 m) below land-surface datum, May 9, 1964; lowest water level, 21.61 ft (6.587 m) below land-surface datum, between Aug. 1 and Oct. 3, 1980.

EXTREMES FOR CURRENT YEAR.--Highest water level, 20.25 ft (6.172 m) below land-surface datum, between May 22 and Aug. 1; lowest water level, 21.61 ft (6.587 m) below land-surface datum, between Aug. 1 and Oct. 3, 1980.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 21	20.66	MAR 4	20.80	MAY 22	20.30	AUG 1	20.90

394829074053501. Local I.D., Island Beach 1 Obs. Unique Well Number, 29-0017.
LOCATION.--Lat 39°48'29", long 74°05'35", Hydrologic Unit 02040301, in Island Beach State Park about 6.6 mi (10.6 km) south of main entrance, Berkley Township.
Owner: U.S. Geological Survey.

AQUIFER. -- Kirkwood Formation of Miocene age.

AQUIFER.--Kirkwood Formation of Miocene age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 397 ft (121.0 m), screened
377 to 397 ft (114.9 to 121.0 m).
INSTRUMENTATION.--Water-level extremes recorder. July 1962 to March 1975, water-level recorder.
DATUM.--Land-surface datum is 8.50 ft (2.591 m) National Geodetic Vertical Datum of 1929.
Measuring point: Front edge of cutout in recorder housing, 3.40 ft (1.036 m) above land-surface datum.
PERIOD OF RECORD.--July 1962 to March 1975, February 1977 to current year. Records for 1962 to 1975 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 0.05 ft (0.015 m) below land-surface datum, Dec. 6, 1962; lowest water level, 6.14 ft (1.871 m) below land-surface datum, between Dec. 13, 1978 and Jan. 10, 1979.
EXTREMES FOR CURRENT YEAR.--Highest water level, 2.22 ft (0.677 m) below land-surface datum, between Apr. 18 and July 2; lowest water level, 5.52 ft (1.682 m) below land-surface datum, between Oct. 31 and Jan. 7. Dec. 6, 1962; lowest

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 31	4.97	JAN 7	3.43	APR 18	3.42	JUL 2	3.19

OCEAN COUNTY

394829074053503. Local I.D., Island Beach 3 Obs. Unique Well Number, 29-0019.
LOCATION.--Lat 39°48'29", long 74°05'35", Hydrologic Unit 02040301, in Island Beach State Park about 6.6 mi (10.6 km) south of main entrance, Berkley Township.
Owner: U.S. Geological Survey.

Owner: U.S. Geological Survey.

AQUIFER.--Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in (203 mm), depth 2,756 ft (840.0 m), screened 2,736 to 2,756 ft (833.9 to 840.0 m).

INSTRUMENTATION.--Water-level extremes recorder. November 1968 to March 1975, water-level recorder.

DATUM.--Land-surface datum is 9.02 ft (2.749 m) National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 5.11 ft (1.558 m) above land-surface datum.

PERIOD OF RECORD.--November 1968 to March 1975, February 1977 to current year. Records for 1968 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 5.95 ft (1.814 m) above land-surface datum, Apr. 23, 1969; lowest water level, 12.25 ft (3.734 m) below land-surface datum, between Aug. 6 and Oct. 31, 1979; lowest water level, 12.25 ft (3.734 m) below land-surface datum, between July 2 and Oct. 3, 1980.

	WATER		WATER		WATER		WATER	
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	
OCT 31	10.96	JAN 7	9.83	APR 18	10.10	JUL 2	10.09	

395930074142101. Local I.D., Toms River Chem 84 Obs. Unique Well Number, 29-0085. LOCATION.--Lat 39°59'29", long 74°14'20", Hydrologic Unit 02040301, on the lands of Toms River Chemical Company, Dover Township.

Dover Township.
Owner: Toms River Chemical Company.

AQUIFER.--Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in (203 mm), depth 1,480 ft (451 m), screened
1,460 to 1,480 ft (445 to 451 m).

INSTRUMENTATION.--Water-level recorder.

DATUM.--Land-surface datum is 66.70 ft (20.330 m) National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.7 ft (0.82 m) above land-surface datum.

PERIOD OF RECORD.--July 1968 to July 1975, March 1977 to current year. Records for 1968 to 1975 are unpublished and
are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 62.32 ft (18.995 m) below land-surface datum, July 19, 1968 and
February 9, 1969; lowest water level, 92.37 ft (28.154 m) below land-surface datum, Sept. 29, 1980.

EXTREMES FOR CURRENT YEAR.--Highest water level, 90.06 ft (27.450 m) below land-surface datum, Oct. 5; lowest water
level, 92.37 ft (28.154 m) below land-surface datum, Sept. 29.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	90.21	90.79	90.75	90.71	90.89	90.74	90.26	90.17	90.50	90.64		
10	90.29	90.59	90.90	91.06	90.74	90.73	90.19	90.36	90.41	90.73		
15	90.42	90.67	90.99	90.78	90.85	90.75	90.11	90.40	90.45	90.90		
20	90.52	90.80	90.98	90.79	90.78	90.73	90.37	90.36	90.55	91.00		92.13
25	90.43	90.85	90.54	90.60	90.74	90.43	90.30	90.21	90.71			92.20
EOM	90.77	90.75	90.76	90.78	90.85	90.38	90.19	90.48	90.54			92.30
MEAN	90.39	90.70	90.82	90.80	90.81	90.67	90.33	90.33	90.55	90.81		92.15
WTR YR	1980	MEAN	90.69	HIGH 90	0.11 APR	15	LOW	92.35 SEF	29			

OCEAN COUNTY

395609074124001. Local I.D., Toms River TW 2 Obs. Unique Well Number, 29-0534.
LOCATION.--Lat 39°56'09", long 74°12'40", Hydrologic Unit 02040301, about 200 ft (61.0 m) east of Double Trouble Road on the north side of Jakes Branch, South Toms River.
Owner: U.S. Geological Survey.
AQUIFER.--Englishtown Sand of Cretaceous age.

AQUIFER.--Englishtown Sand of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in (203 mm), depth 1,146 ft (349.3 m), screened 1,080 to 1,146 ft (329.2 to 349.3 m).

INSTRUMENTATION.--Water-level extremes recorder. December 1965 to March 1975, water-level recorder.

DATUM.--Land-surface datum is 18.34 ft (5.590 m) National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 1.70 ft (0.518 m) above land-surface datum.

PERIOD OF RECORD.--December 1965 to March 1975, February 1977 to current year. Records for 1965 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 48.37 ft (14.743 m) below land-surface datum, May 28, 1966; lowest water level, 100.62 ft (30.669 m) below land-surface datum, between July 2 and Oct. 3, 1980.

EXTREMES FOR CURRENT YEAR.--Highest water level, 97.34 ft (29.669 m) below land-surface datum, between Aug. 6 and Oct. 31, 1979; lowest water level, 100.62 ft (30.669 m) below land-surface datum between July 2 and Oct. 3, 1980.

di Tabah	WATER	-	WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 31	99.77	JAN 7	99.82	APR 18	99.37	JUL 2	99.08

351

PASSAIC COUNTY

410209074170801. Local I.D., Haskell Obs. Unique Well Number, 31-0011. LOCATION.--Lat 41°02'09", long 74°17'08", Hydrologic Unit 02030103, at well field at north end of 4th Avenue, Wanaque.

Owner: Wanaque Water Department.

AQUIFER.--Glacial till of Pleistocene age.

WELL CHARACTERISTICS.--Dug water-table observation well, diameter 16 ft (4.9 m), depth 26 ft (7.9 m).

WELL CHARACTERISTICS.--Dug water-table observation well, diameter 10 it (4.9 m), depth 20 it (7.9 m).

INSTRUMENTATION.--Water-level recorder.

DATUM.--Land-surface datum is 260.50 ft (79.400 m) National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of concrete pump base, 2.2 ft (0.67 m) above land-surface datum.

PERIOD OF RECORD.--May 1965 to August 1970, April 1977 to current year. Records for 1965 to 1970 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 1.64 ft (0.500 m) below land-surface datum, Apr. 10, 1980; lowest water level, 16.01 ft (4.880 m) below land-surface datum, Aug. 30, 1965.

EXTREMES FOR CURRENT YEAR.--Highest water level, 1.64 ft (0.500 m) below land-surface datum, Apr. 10; lowest water level, 14.66 ft (4.468 m) below land-surface datum, Sept. 13.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10	7.38 7.32	11.92	7.64	8.25 8.56	7.90 8.29	8.80	4.75	8.23 10.26	11.90	8.24	8.15 10.92	14.03
15	7.33	12.47	7.93	7.94	8.53	8.47	4.37	8.71	8.03	11.13	9.02	11.97
20 25	7.25	8.31	8.14	7.86	8.61	7.48	5.68	7.60	10.92	11.71	8.57	8.98
	9.24	7.87	8.14	7.53	8.57	3.79	8.12	8.17	12.58	11.13	10.04	8.53
EOM	11.96	7.38	8.05	7.80	8.68	4.67	4.34	10.73	11.35	9.04	13.25	8.42
MEAN	8.35	10.35	7.92	7.99	8.37	7.21	5.43	8.64	10.60	10.10	9.72	11.40
WTR YR	1980	MEAN	8.84	HIGH	1.97 APR 10		LOW	14.56 SEF	12			

UNION COUNTY

404027074164401. Local I.D., White Lab. 3 Obs. Unique Well Number, 39-0102.

LOCATION.--Lat 40°40'27", long 74°16'44", Hydrologic Unit 02030104, at north end of South 31st Street, Kenilworth. Owner: Schering Corporation.

AQUIFER.--Brunswick Shale of Triassic age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in (203 mm), cased to approximately 40 ft (12.2 m), depth 251 ft (76.5 m), open hole.

INSTRUMENTATION.--Water-level recorder.

DATUM.--Land-surface datum is 85.22 ft (25.975 m) National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf at land-surface datum.

REMARKS.--Land-surface datum prior to February 1974, 4.2 ft (1.28 m) lower.

PERIOD OF RECORD.--September 1952 to current year. Records for March to August 1952, published in WSP 1265, are unreliable and should not be used.

unreliable and should not be used.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 10.51 ft (3.203 m) below land-surface datum, Apr. 17, 1961; lowest water level, 30.70 ft (9.357 m) below land-surface datum, Oct. 7, 1977, revised. EXTREMES FOR CURRENT YEAR.--Highest water level, 20.57 ft (6.270 m) below land-surface datum, May 19; lowest water level, 27.95 ft (8.519 m) below land-surface datum, Mar. 12.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	22.57	23.91	25.50	24.90	26.18	26.65	23.97	21.73	24.38	23.36	23.47	25.22
10	22.98	23.86	25.02	24.16		27.54	23.32	21.38	22.01	23.64	23.50	25.40
15	23.24	25.36		25.78	26.31	27.02	22.11	22.01	21.96	23.70	24.13	25.19
20	23.11	25.26	22.56	25.27	25.87	27.16	22.21	21.47	24.37	22.81	24.66	25.75
25	22.24	24.89	22.34	25.33	27.19	26.12	23.27	21.69	23.68	23.07	23.27	25.38
EOM	24.07	25.19	24.90	25.19	26.61	24.80	23.14	22.46	22.40	22.98	23.40	24.67
MEAN	22.91	24.62	24.09	25.12	26.33	26.66	23.37	22.01	23.11	23.19	23.77	25.16
WTR YR	1980	MEAN	24.16	HIGH :	20.75 MAY 1	9	LOW	27.88 MAR	12			

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

ATLANTIC COUNTY

WELL NUMBER	LOCAL IDENT- I- FIER		LAT- I- TUDE	LONG- I- TUDE	SEQ.	GEO- LOGIC UNIT	DATE OF SAMPLE	TEMPER- ATURE, WATER (DEG C)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
367 582 590 372 375	LONGPORT BORO WD 2 NJWC-ATL CO-DOBBS NJWC-ATL CO-GROVEI MARGATE CITY WD 7 MARGATE CITY WD 4	AVE LAND	39 18 59 39 19 05 39 19 24 39 19 33 39 20 03	074 31 22 074 36 31 074 35 49 074 30 58 074 30 11	01 01 01 01 01	122KRKDL 121CNSY 121CNSY 122KRKDL 122KRKDL	80-08-28 80-08-28 80-09-03	20.0 15.0 14.0 20.0 19.5	163 124 285 142 152	7.5 4.8 4.5 7.4 7.3	7.1 19 77 4.2 6.5
596 648 549 39	VENTNOR CITY WD 4 BALLLY PARK PLACE RESORTS INTER. 1-8 NJWC-ATL CO-MILL E BRIGANTINE CITY WI	1-79 BO ROAD	39 20 30 39 21 25 39 21 37 39 21 58 39 23 24	074 28 54 074 26 04 074 25 24 074 33 17 074 23 14	01 01 01 01 01	122KRKDL 122KRKDL 122KRKDL 121CNSY 122KRKDL	80-09-03 80-08-28	20.0 20.0 14.0 19.0	162 166 172 121 266	7.3 7.4 4.9 7.0	6.5 4.7 7.1 14 36
558 41 5 569 572	NJWC-ATL CO-WOODLA BRIGANTINE CITY WI ATLANTIC CITY WD ATLANTIC CITY WD ATLANTIC CITY WD	0 1 - 25 2 13	39 23 33 39 24 31 39 24 36 39 24 41 39 24 46	074 31 44 074 21 53 074 30 33 074 30 49 074 30 32	01 01 01 01 01	121CNSY 122KRKDL 121CNSY 121CNSY 121CNSY	80-08-28 80-08-28 80-08-28 80-08-28 80-08-28	14.0 19.0 13.5 13.0 13.5	66 127 114 87 302	5.0 7.1 4.8 4.8 4.7	9.2 4.3 14 11 68
568 575 13	ATLANTIC CITY WD ATLANTIC CITY WD NJWC-ATL CO-ABSEC	12	39 24 48 39 25 48 39 25 51	074 30 28 074 31 08 074 30 23	01 01 01	122KRKDL 121CNSY 121CNSY	80-08-28 80-08-28 80-08-28	18.0 14.0 13.0	111 51 51	6.9 5.5 4.8	2.5 4.9 6.6
	LOCAL IDENT- I- FIER	DATE OF SAMPLE	ELEV. OF LAND SURFACE DATUM (FT. NGVD)	DEPTH OF HOLE, TOTAL (FEET)	DEPTH OF WELL, TOTAL (FEET)	DEPTH TO TOI OF WATER- BEARING ZONE (FT)	TOM OF WATER-	DEPTH TO TOP OF SAMPLE INTER- VAL (FT)	DEPTH TO BOT- TOM OF SAMPLE INTER- VAL (FT)	PUMP OR FLOW PERIOD PRIOR TO SAM- PLING (MIN)	FLOW RATE, INSTAN- TANEOUS (GPM)
NJWC-AT NJWC-AT MARGATE	RT BORO WD 2 PL CO-DOBBS AVE PL CO-GROVELAND E CITY WD 7 E CITY WD 4	80-09-03 80-08-28 80-08-28 80-09-03 80-09-03	10.00 20.00 19.00 5.00 10.00	818 188	800 99 159 800 795	739 127		750 79 129 760 745	800 99 159 800 795	15 1440 240 300 1440	475 650 1000 780 760
BALLLY RESORTS NJWC-AT	R CITY WD 4 PARK PLACE 1-79 S INTER. 1-80 FL CO-MILL ROAD FINE CITY WD 4-66	80-09-03 80-06-06 80-09-03 80-08-28 80-08-28	8.00 7.00 10.00 20.00 10.00	788	810 835 840 152 783	737	: ::	760 117 733	810 152 783	240 120 210	1000 1000
BRIGANT ATLANTI ATLANTI	CL CO-WOODLAND AVE TINE CITY WD 1-25 IC CITY WD 2 IC CITY WD 13 IC CITY WD 4A-68	80-08-28 80-08-28 80-08-28 80-08-28 80-08-28	50.00 9.00 11.00 8.00 8.00	118	157 829 116 90 105	70		769 67 60 75	829 97 90 105	300 720 900 	950 650 1300
ATLANTI	IC CITY WD 15-61 IC CITY WD 12 IL CO-ABSECON 1	80-08-28 80-08-28 80-08-28	8.00 5.00 30.00	263	636 195 205	160	204	583 145 177	633 195 205	400 180 1440	1000 1000 1000

Geologic unit (aquifer): 121CNSY - Cohansey Sand 122KRKDL - Kirkwood Formation, Lower Sand

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

CAPE MAY COUNTY

747

797

 600

WELL NUMBER	LOCAL IDENT- I- FIER		LAT- I- TUDE	LONG- I- TUDE	SEQ.	GEO- LOGIC UNIT	DATE OF SAMPLE	TEMPER- ATURE, WATER (DEG C)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
17 18 154 132 2	US COAST GUARD 1 US COAST GUARD 2 WILDWOOD WD PINE 2 STONE HARBOR WD 4 AVALON BORO WD 7-71		38 56 50 38 56 52 38 59 32 39 03 01 39 04 20	074 53 11 074 53 27 074 48 51 074 45 45 074 44 35	01 02 01	121CNSY 121CNSY	80-08-27 80-08-27 80-08-22 80-08-22 80-08-26	15.5 15.5 15.0 20.0 20.5	362 323 646 332 244	7.6 7.7 7.4 8.6 8.4	38 28 120 31 13
4 5 8 126 129	AVALON BORO WD 6-68 AVALON BORO WD 8-76 AVALON BORO WD 3-30 SEA ISLE CITY WD 5 SEA ISLE CITY WD 2		39 05 28 39 05 45 39 06 21 39 07 47 39 09 26	074 43 38 074 43 26 074 42 48 074 42 41 074 41 31	01	122KRKDL 122KRKDL 122KRKDL 122KRKDL 122KRKDL	80-08-26 80-08-26	20.5 20.0 19.5 19.5 19.0	361 239 323 235 232	8.5 8.4 8.4 8.2 8.1	44 11 37 11 12
106 125	NJWC-OCEAN CITY DIS NJWC-OCEAN CITY DIS		39 13 43 39 17 26	074 37 55 074 33 52		122KRKDL 122KRKDL		20.0	203 170	7.6 7.5	10 6.2
	LOCAL IDENT- I- FIER	DATE OF SAMPLE	ELEV. OF LAND SURFACE DATUM (FT. NGVD)		DEPTH OF WELL, TOTAL (FEET)	DEPTH TO TOP OF WATER- BEARING ZONE (FT)	TOM OF WATER-	DEPTH TO TOP OF SAMPLE INTER- VAL (FT)	DEPTH TO BOT- TOM OF SAMPLE INTER- VAL (FT)	PUMP OR FLOW PERIOD PRIOR TO SAM- PLING (MIN)	FLOW RATE, INSTAN- TANEOUS (GPM)
US COAS WILDWOO STONE H	ST GUARD 1 ST GUARD 2 DD WD PINE 2 IARBOR WD 4 BORO WD 7-71	80-08-27 80-08-27 80-08-22 80-08-22 80-08-26	11.00 10.00 10.00	364 965	332 325 364 880 861	279 820 807		292 295 304 830 821	322 325 354 880 861	10 10 200 180 1200	260 260 300 650 650
AVALON AVALON SEA ISL	BORO WD 6-68 BORO WD 8-76 BORO WD 3-30 E CITY WD 5 E CITY WD 2	80-08-26 80-08-26 80-08-26 80-08-26	8.00 10.00 7.00	982	922 839 925 802 864	870 777 739		880 784 845 731 744	920 839 925 802 861	1200 1200 10 180 10	650 650 250 500 500

8.00

797

Geologic unit (aquifer): 121CNSY - Cohansey Sand 122KRKDL - Kirkwood Formation, Lower Sand

NJWC-OCEAN CITY DIST 7 NJWC-OCEAN CITY DIST 11

80-08-26 80-08-26

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

MIDDLESEX COUNTY

WELL NUMBER	LOCAL IDENT- I- FIER	LAT- I- TUDE	LONG- I- TUDE	SEQ.	GEO- LOGIC UNIT	DATE OF SAMPLE	TEMPER- ATURE, WATER (DEG C)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	ELEV. OF LAND SURFACE DATUM (FT. NGVD)	
205	OLD BRIDGE TWP MUA-LH 1	40 27 00	074 14 59	01	2110DBG	79-10-24	12.5	64	4.0	60.00	
					2110DBG	80-09-19	12.5	54	4.3	60.00	
206	OLD BRIDGE TWP MUA-LH 2	40 27 00	074 14 59	02	21 1FRNG	80-09-19	13.5	59	1.9	60.00	
415	NL INDUSTRIES 4	40 28 31	074 18 15	01	211FRNG	79-10-24	12.0	80	2.8	109.00	
418	NL INDUSTRIES 3	40 28 42	074 18 11	01	21 1FRNG	79-10-24	12.0	710	55	120.00	
255	CARBORUNDUM CO 1	40 30 46	074 18 27	01	211FRNG	79-10-25	13.0	286	11	15.00	
263	CHEVRON OIL CO 2	40 32 00	074 16 20	01	211FRNG	79-10-25	13.0	325	8.3	45.00	
473	HAAGEN DAZS INC.	40 32 33	074 16 33	01	211FRNG	79-10-25	12.5	1060	220	30.00	
478	AMER CYANAMID CO 2A	40 32 36	074 16 16	01	211FRNG	79-10-25	14.0	1160	200	9.00	

LOCAL IDENT- I- FIER	DATE OF SAMPLE	DE PTH OF HOLE, TOTAL (FEET)	DEPTH OF WELL, TOTAL (FEET)	DEPTH TO TOP OF WATER- BEARING ZONE (FT)	DE PTH TO BOT - TOM OF WATER - BEARING ZONE (FT)	DE PTH TO TOP OF SAMPLE INTER- VAL (FT)	DEPTH TO BOT- TOM OF SAMPLE INTER- VAL (FT)	PUMP OR FLOW PERIOD PRIOR TO SAM- PLING (MIN)	FLOW RATE, INSTAN- TANEOUS (GPM)
OLD BRIDGE TWP MUA-LH 1	79-10-24		218	185		193	213	30	300
OLD BRIDGE TWP MUA-LH 2	80-09-19 80-09-19	400	218 400	185 355	397	193 360	213 395	180	300 730
NL INDUSTRIES 4	79-10-24		251			220	251	15	600
NL INDUSTRIES 3	79-10-24		270			240	270	15	600
CARBORUNDUM CO 1	79-10-25	76	71	36	69	57	67		
CHEVRON OIL CO 2	79-10-25		106			96	106		
HAAGEN DAZS INC.	79-10-25	59	59				39		
AMER CYANAMID CO 2A	79-10-25		60			45	60	1440	80

Geologic unit (aquifer): 2110DBG - Magothy Formation, Old Bridge Sand Member 211FRNG - Raritan Formation, Farrington Sand Member

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

MONMOUTH COUNTY

WELL NUMBER	LOCAL IDENT- I- FIER	LAT- I- TUDE	LONG- I- TUDE	SEQ.	GEO- LOGIC UNIT	DATE OF SAMPLE	TEMPER- ATURE, WATER (DEG C)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
30 233 234 235 237	BRIELLE BORO WD 2 MANASQUAN BORO WD 6 MANASQUAN BORO WD 3 MANASQUAN BORO WD 2R MANASQUAN BORO WD 5	40 06 45 40 07 10 40 07 12 40 07 12 40 07 14	074 03 45 074 03 29 074 03 28 074 03 28 074 03 29	01 02 01 02 01	21 1EGLS 122KRKD 122KRKD 122KRKD 122KRKD	80-08-14 80-08-14 80-08-14 80-08-14 80-08-14	20.0 13.0 13.0 13.0	186 63 94 85 69	8.0 4.9 4.6 4.8 5.0	1.1 9.4 14 13 10
464 374 383 387 391	SEA GIRT BORO WD 6 SEA GIRT BORO WD 5 SPRING LAKE BORO WD 1 SPRING LAKE HTS 1-53 SPRING LAKE HTS 4-74	40 08 01 40 08 04 40 08 49 40 08 58 40 09 29	074 02 31 074 02 27 074 02 07 074 03 09 074 02 11	01 01 01 01 01	122KRKD 211EGLS 211EGLS 211MLRW 211MLRW	80-08-14 80-08-14 80-08-14 80-08-19 80-08-19	13.5 19.0 19.5 17.5	76 184 184 198 175	5.8 7.9 7.8 8.1 8.1	9.9 1.0 .9 .8 1.5
386 - 26 14 1	SPRING LAKE BORO WD 4 BELMAR BORO WD 14-80 BELMAR BORO WD 4-ELEC AVON-BY-THE-SEA WD 1 ALLENHURST BORO WD 4	40 09 52 40 10 37 40 11 02 40 11 38 40 14 01	074 01 49 074 01 39 074 00 45 074 01 25 074 00 25	01 01 01 01 01	21 1EGLS 21 1EGLS 21 1EGLS 21 1MLRW 21 1EGLS	80-08-14 80-08-19 80-08-19 80-08-19 80-08-19	19.0 18.5 19.5 17.5 18.0	182 183 187 245 216	7.7 7.7 7.7 8.0 7.5	.8 .8 1.7 1.4
358 190 117 119 496	RED BANK BORO WD 1B-50 KEANSBURG BORO WD 4 HIGHLANDS BORO WD 4-73 HIGHLANDS BORO WD 3-73 ATL HIGHLANDS WD 4-80	40 20 47 40 26 21 40 24 01 40 24 03 40 24 41	074 04 20 074 07 38 073 59 20 073 59 53 074 02 33	01 01 01 01 02	21 1M GRR 21 10 DBG 21 1M GRR 21 1M GRR 21 10 DBG	80-08-20 80-09-18 80-08-20 80-08-20 80-08-20	17.0 13.5 19.5 20.5 16.5	104 98 105 108 100	6.4 6.4 6.5 6.4	1.5 6.9 1.1 1.3 1.2
9 284 195 111 112	ATL HIGHLANDS BORO WD 2 MATAWAN BORO WD 3 KEANSBURG BORO WD 5A W KEANSBURG WC-HAZLET 1 W KEANSBURG WC-HAZLET 2	40 24 41 40 25 15 40 26 21 40 25 33 40 25 37	074 02 34 074 14 50 074 07 43 074 09 32 074 09 33	01 01 01 01	21 1EGLS 21 10DBG 21 10DBG 21 10DBG 21 10DBG	80-08-20 80-09-18 80-09-18 80-09-18 80-09-18	13.5 12.5 14.0 13.5 13.5	183 77 74 67 70	6.8	5.6 3.2 1.9 1.5
197 199 297 294 317	KEYPORT BORO WD 7 KERR GLASS CO ABERDEEN TWP WD 1-56 MATAWAN BORO WD 1 SEA COAST PRODUCTS 1	40 25 35 40 25 42 40 26 03 40 24 27 40 26 12	074 12 14 074 12 20 074 14 22 074 13 45 074 05 11	01 01 01 01 01	2110DBG 2110DBG 211FRNG 2110DBG 2110DBG	80-09-18 80-09-18 80-09-18 80-09-18 80-08-20	13.5 13.5 14.0 13.0	61 70 61 84 108	=======================================	1.6 1.6 1.8 1.6 5.4
191 196 420 424 423	KEANSBURG BORO WD 6-68 KEANSBURG BORO WD 3 UNION BEACH BORO WD 2-69 INT FLAVOR FRAG 2 INT FLAVOR FRAG 1	40 26 20 40 26 28 40 26 34 40 26 41 40 26 41	074 07 42 074 07 44 074 10 52 074 09 11 074 09 19	01 01 01 01 01	2110DBG 2110DBG 2110DBG 2110DBG 2110DBG	80-09-18 80-09-18 79-10-24 80-09-19 80-09-19	13.5 13.5 13.0 13.5	139 78 66 65	=	18 1.9 950 1.6 1.6
320	NPS-SANDY HOOK 5A-70	40 27 05	073 59 59	02	211MGRR	80-08-20	19.0	121	6.7	5.3

2110DBG - Magothy Formation, Old Bridge Sand Member 211FRNG - Raritan Formation, Farrington Sand Member 211MGRR - Potomac-Raritan-Magothy aquifer system

Geologic unit (aquifer):
122KRKD - Kirkwood Formation
211MLRW - Mount Laurel Sand-Wenonah Formation
211EGLS - Englishtown Formation

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

MONMOUTH COUNTY--Continued

LOCAL IDENT- I- FIER	DATE OF SAMPLE	ELEV. OF LAND SURFACE DATUM (FT. NGVD)	DEPTH OF HOLE, TOTAL (FEET)	DEPTH OF WELL, TOTAL (FEET)	DEPTH TO TOP OF WATER- BEARING ZONE (FT)	DEPTH TO BOT- TOM OF WATER- BEARING ZONE (FT)	DEPTH TO TOP OF SAMPLE INTER- VAL (FT)	DEPTH TO BOT- TOM OF SAMPLE INTER- VAL (FT)	PUMP OR FLOW PERIOD PRIOR TO SAM- PLING (MIN)	FLOW RATE, INSTAN- TANEOUS (GPM)	
BRIELLE BORO WD 2 MANASQUAN BORO WD 6 MANASQUAN BORO WD 3 MANASQUAN BORO WD 2R MANASQUAN BORO WD 5	80-08-14 80-08-14 80-08-14 80-08-14 80-08-14	33.00 10.00 15.00 21.00 15.00	792 122 118	755 180 118 118 117	680 102 94	751 118 117	690 103 97	750 180 118 117	15 10 10 15 20	375 550 500 500 1000	
SEA GIRT BORO WD 6 SEA GIRT BORO WD 5 SPRING LAKE BORO WD 1 SPRING LAKE HTS 1-53 SPRING LAKE HTS 4-74	80-08-14 80-08-14 80-08-14 80-08-19 80-08-19	21.00 20.00 15.00 60.00 20.00	750	130 710 711 600 561	660 623	707 ==	80 660 631 	130 710 711 560	240 10 360 180 15	450 400 450 150	
SPRING LAKE BORO WD 4 BELMAR BORO WD 14-80 BELMAR BORO WD 4-ELEC AVON-BY-THE-SEA WD 1 ALLENHURST BORO WD 4	80-08-14 80-08-19 80-08-19 80-08-19 80-08-19	10.00 20.00 15.00 28.00 10.00	675 516 590	675 550 679 508 570	401 505	503 567	600 601 424 525	670 671 504 565	300 150 90 300 120	500 350 225 350 500	
RED BANK BORO WD 1B-50 KEANSBURG BORO WD 4 HIGHLANDS BORO WD 4-73 HIGHLANDS BORO WD 3-73 ATL HIGHLANDS WD 4-80	80-08-20 80-09-18 80-08-20 80-08-20 80-08-20	40.00 10.00 20.00 20.00 15.00	702 356 680	692 351 680 779 560	632 258 637	688 342	637 280 630 719	687 340 680 779	150 10 1440 1440 120	1000 1000 600 350 750	
ATL HIGHLANDS BORO WD 2 MATAWAN BORO WD 3 KEANSBURG BORO WD 5A W KEANSBURG WC-HAZLET 1 W KEANSBURG WC-HAZLET 2	80-08-20 80-09-18 80-09-18 80-09-18 80-09-18	15.00 90.00 10.00 59.00 44.00	352	200 271 350 367 352	220 249 	273 352	180 231 290 327 312	200 271 350 366 352	180 1440 10 360 360	130 325 1000 1000	
KEYPORT BORO WD 7 KERR GLASS CO ABERDEEN TWP WD 1-56 MATAWAN BORO WD 1 SEA COAST PRODUCTS 1	80-09-18 80-09-18 80-09-18 80-09-18 80-08-20	35.00 20.00 80.00 30.00 10.00	414 316 268	365 315 487 235 420	175 214	315 259	304 285 447 210	354 315 487 235	180 10 120 150 10	1000 200 700 350 650	
KEANSBURG BORO WD 6-68 KEANSBURG BORO WD 3 UNION BEACH BORO WD 2-69 INT FLAVOR FRAG 2 INT FLAVOR FRAG 1	80-09-18 80-09-18 79-10-24 80-09-19 80-09-19	10.00 12.00 10.00 10.00	307	362 355 294 326 328	306 260 265	354 290 331	302 308 262 302 298	362 348 289 326 328	720 10 10 15 720	1000 800 400 300 130	
NPS-SANDY HOOK 5A-70	80-08-20	10.00		878			838	878	10	500	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

OCEAN COUNTY

WELL NUMBER	LOCAL IDENT- I- FIER	LAT- I- TUDE	LONG- I- TUDE	SEQ.	GEO- LOGIC UNIT	DATE OF SAMPLE	TEMPER- ATURE, WATER (DEG C)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
455	LONG BEACH TWP WD 2	39 32 06	074 15 48	01	122KRKD	80-08-14	16.0	137	7.1	1.5
590	BEACH HAVEN BORO WD 9-75	39 33 42	074 14 31	01	122KRKD	80-08-14	17.0	64	6.2	3.0
459	LONG BEACH WC-TERRACE 2	39 35 10	074 13 30	02	122KRKD	80-08-14	17.0	55	5.9	3.2
460	LONG BEACH WC-BRANT 2	39 37 24	074 11 51	01	122KRKD	80-08-14	17.0	56	5.9	3.5
544	SHIP BOTTOM BORO WD 4	39 38 39	074 10 52	01	122KRKD	80-08-14	16.5	59	6.1	3.1
560	SURF CITY BORO WD 4	39 39 38	074 10 06	01	122KRKD	80-08-14	17.0	59	6.2	3.2
557	STAFFORD WC 3	39 40 42	074 14 11	01	122KRKD	80-08-19	14.0	49	5.8	3.4
111	HARVEY CEDARS BORO WD 4	39 41 34	074 08 32	01	122KRKD	80-08-15	17.0	68	6.5	2.8
566	UNION-UNKNOWN FLOWING	39 44 44	074 12 10	01	121CNSY	80-08-19	14.5	48	4.5	5.3
2	BARNEGAT LIGHT BORO WD 3	39 45 22	074 06 36	01	124M QVC	80-08-15	17.5	348	8.3	1.7
4	BARNEGAT LIGHT BORO WD 2	39 45 24	074 06 32	01	124MQVC	80-08-15	17.5	342	8.3	1.6
512	OCEAN TWP MUA 1-60	39 47 44	074 11 29	01	121CNSY	80-08-19	13.5	48	4.6	4.5
22	SHORE WATER CO 1	39 54 22	074 04 58	01	122KRKD	80-08-13	14.0	56	5.8	4.8
541	SEASIDE PARK BORO WD 2	39 54 51	074 04 55	01	124MQVC	80-08-13	15.0	196	7.9	9
13	BEACHWOOD BORO WD 4	39 55 30	074 12 21	01	12 ICNSY	80-08-20	13.5	48	4.5	7.5
508	OCEAN GATE BORO WD 3	39 55 28	074 08 26	01	121CNSY	80-08-20	14.0	48	5.2	6.0
F 20	SEASIDE PARK WD 6-77	39 55 47	074 04 34	02	124MQVC	80-08-13	16.0	244	8.7	1.1
538 115	SEASIDE HTS BORO WD 1R ISLAND HTS BORO WD 8	39 56 36	074 04 39 074 08 54	03	121CKKD	80-08-13	14.5	375	6.1	83
115	SEASIDE HTS BORO WD 5-78	39 56 39 39 56 52	074 08 54	01	124MQVC 121CKKD	80-08-20 80-08-13	13.5	94 73	6.3 5.8	7.8
_	SEASIDE HIS BORO WD 3-78	39 50 52	074 04 42	01	12 ICKKD	80-08-13	14.0	13		
62	TOMS RIVER WC 16	39 57 19	074 12 33	01	122KRKD	80-08-20	13.5	103	6.4	3.2
452	LAVALLETTE BORO WD 3	39 57 41	074 04 37	01	211EGLS	80-08-13	22.0	344	8.3	2.0
453	LAVALLETTE BORO WD 4	39 58 08	074 04 16	01	21 1MGRR	80-08-13	24.0	172	7.5	1.0
80	OCEAN CO COLLEGE 2-70	40 00 05	074 09 37	01	121CNSY	80-08-20	14.0	54	5.1	8. 1
100	OCEAN CO WC-NORMANDY 3	39 59 56	074 03 44	02	21 1MGRR	80-08-12	24.5	168	7.3	. 9
-	TOM'S RIVER WC-ANCHORAGE	40 00 02	074 08 37	01	122KRKD	80-08-20	14.0	74	6.3	3.9
504	OCEAN CO WC-MANTOLKING 7	40 02 10	074 03 10	02	21 1MGRR	80-08-12	25.0	160	7.3	. 9
6	OCEAN CO WC BAYHEAD 6	40 04 05	074 02 44	01	211EGLS	80-08-12	21.0	203	7.9	.8
530	PT PLEASANT BORO WD 6	40 04 54	074 04 13	01	21 1EGLS	80-08-12	21.0	187	8.0	. 9
531	PT PLEASANT BORO WD 5	40 04 54	074 04 14	01	211MGRR	80-08-12	25.0	144	6.9	1.0
533	PT PLEASANT BORO WD 4	40 05 01	074 04 55	01	121CKKD	80-08-12	13.5	198	5.2	19
521	PT PLEAS BCH BORO WD 9	40 05 36	074 02 52	01	121CKKD	80-08-12	14.5	620	6.6	170
523	PT PLEAS BCH BORO WD 10	40 05 51	074 02 43	01	121CKKD	80-08-12	14.0	712	6.4	180

Geologic unit (aquifer): 121CNSY - Cohansey Sand

121CKKD - Cohansey Sand-Kirkwood Formation, Undifferentiated 122KRKD - Kirkwood Formation

124MQVC - Manasquan-Vincentown Formations, Undifferentiated 211EGLS - Englishtown Formation

211MGRR - Potomac-Raritan-Magothy aquifer system

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

OCEAN COUNTY--Continued

LOCAL IDENT- I- FIER	DATE OF SAMPLE	ELEV. OF LAND SURFACE DATUM (FT. NGVD)	DEPTH OF HOLE, TOTAL (FEET)	DEPTH OF WELL, TOTAL (FEET)	DEPTH TO TOP OF WATER- BEARING ZONE (FT)	DEPTH TO BOT- TOM OF WATER- BEARING ZONE (FT)	DEPTH TO TOP OF SAMPLE INTER- VAL (FT)	DEPTH TO BOT- TOM OF SAMPLE INTER- VAL (FT)	PUMP OR FLOW PERIOD PRIOR TO SAM- PLING (MIN)	FLOW RATE, INSTAN- TANEOUS (GPM)
LONG BEACH TWP WD 2	80-08-14	10.00		458	420	456	425	458	60	240
BEACH HAVEN BORO WD 9-75	80-08-14	30.00		635			552	635	60	800
LONG BEACH WC-TERRACE 2	80-08-14	5.00	592	578	517	578	524	578	180	1000
LONG BEACH WC-BRANT 2	80-08-14	6.00	580	580	535		530	580	300	500
SHIP BOTTOM BORO WD 4	80-08-14	5.00	605	590	510	597	536	578	120	750
SURF CITY BORO WD 4	80-08-14	5.00	560	560	499	550	517	557	10	650
STAFFORD WC 3	80-08-19	8.00	436	428	386	428	384	427		M. Shares
HARVEY CEDARS BORO WD 4	80-08-15	5.00	508	503	400		465	500	45	500
UNION-UNKNOWN FLOWING	80-08-19	10.00		155						
BARNEGAT LIGHT BORO WD 3	80-08-15	7.00	657	657			597	654		
BARNEGAT LIGHT BORO WD 2	80-08-15	7.00	675	646	570	660	593	646		
OCEAN TWP MUA 1-60	80-08-19	10.00	160	160	125	160	140	160	10	200
SHORE WATER CO 1	80-08-13	10.00	203	203			177	200	60	550
SEASIDE PARK BORO WD 2	80-08-13	6.00	525	525	470	516	476	525	10	250
BEACHWOOD BORO WD 4	80-08-20	60.00		99			65	97	10	325
OCEAN GATE BORO WD 3	80-08-20	7.00		120					10	325
SEASIDE PARK WD 6-77	80-08-13	12.00		450					1440	400
SEASIDE HTS BORO WD 1R	80-08-13	5.00	175	175	138		144	175	1440	1100
ISLAND HTS BORO WD 8	80-08-20	17.00		292			115	292	720	450
SEASIDE HTS BORO WD 5-78	80-08-13	5.00		175					10	900
TOMS RIVER WC 16	80-08-20	8.00		226			196	226	720	725
LAVALLETTE BORO WD 3	80-08-13	7.00	1219	1180	1.110	1187	1120	1180	300	425
LAVALLETTE BORO WD 4	80-08-13	5.00	1642	1515	1337	1580	1358	1515	720	650
OCEAN CO COLLEGE 2-70	80-08-20	15.00	90	80			66	80	10	60
OCEAN CO WC-NORMANDY 3	80-08-12	8.00	1509	1479	1416	1486	1428	1479	120	360
TOMS RIVER WC-ANCHORAGE	80-08-20	5.00		233			203	233	1440	350
OCEAN CO WC-MANTOLKING 7	80-08-12	10.00	1456	1369	1219	1361	1263	1369	180	680
OCEAN CO WC BAYHEAD 6	80-08-12	10.00	825	818	775	819	778	818	1440	360
PT PLEASANT BORO WD 6	80-08-12	20.00	984	790	739	799	730	790	1440	400
PT PLEASANT BORO WD 5	80-08-12	18.00	1414	1342		1361	1256	1342	240	1200
PT PLEASANT BORO WD 4	80-08-12	13.00	178	75	28	75	45	75	180	300
PT PLEAS BCH BORO WD 9	80-08-12	11.00	168	134	95		96	134	1440	700
PT PLEAS BCH BORO WD 10	80-08-12	10.00		130			86	130	1440	700

	21000
PAGE	PAGE
Absecon Creek at Absecon281,311,330	Cedar Brook at South Plainfield
Accuracy of data and computed results	Cedar Creek at Lanoka Harbor307, 310
Acknowledgments	Cells/volume, definition of
Acre-foot, definition of	Charlotteburg Reservoir data
Albertson Brook near Hammonton	Chatham, Passaic River near
Algae, definition of	Chatsworth, West Branch Wading River near 300
Algal growth potential (AGP), definition of	Chemical oxygen demand, definition of
Ramsey Brook at	Wildcat Branch at
Allenwood, Manasquan River at 307	Chester, North Branch Raritan River near142,297,321
Ambrose Brook at Middlesex	Chlorophyll, definition of
Applegarth, Millstone River at	Clarks Branch near Atsion
Aquifer code list	Clarksville, Duck Pond Run at
Artesian, definition of	Clinton, Spruce Run at125,319
Ash mass, definition of	Closter, Tenakill Brook at
Atco, Mullica River near299,307	Collection and computation of data9
Atlantic City, Beach Thorofare at	Collection and examination of data
Ground-water quality	Color unit, definition of
Atsion, Clarks Branch near 299	Colts Neck, Yellow Brook at226, 327
Mullica River at	Common wealth Water Company, diversions
Mullica River at outlet of Atsion Lake at255,329 Sleeper Branch near	Computations, accuracy of results
Springers Brook near	Continuing record station, definition of
Avalon, Ingram Thorofare at	Control, definition of
Awosting, Wanaque River at	Control structure, definition of
Rook Prook tributary near Dingers	Cooley Brook near West Milford
Back Brook tributary near Ringoes	Cooperation
Baldwin Creek at Pennington	Crook Horn Creek at Ocean City
Barclay Brook near Englishtown211,298,326	Cubic feet per second per square mile, definition of. 4
Barnegat Bay at Barnegat Light	Cubic foot per second, definition of
at Bay Shore	Cumberland County, ground-water levels
at Mantoloking	Deep Run at Weymouth
Bass River, East Branch, near New Gretna278,330	Definition of terms 2
Batsto, Mullica River near257,329	De Forest Lake, NY
Sleeper Branch at	Depth of well, definition of4
Batsto River at Batsto	Diatoms, definition of
Bay Shore, Barnaget Bay at	Discharge, definition of
Beach Haven, Little Egg Harbor at	Dissolved, definition of4
Beach Thorofare at Atlantic City	Diversity index, definition of4
Bear Brook at Route 535 near Locust Corner 304	Downstream order and station number
Beden Brook near Hopewell	Drainage area, definition of
Bed material, definition of	Dry mass, definition of
Bedload, definition of	Duck Pond Run at Clarksville
Beesleys Point, Great Egg Harbor Bay at	near Princeton Junction
Belcher Creek at Stowaway Road at West Milford 296 Tributary at West Milford 296	Dwars Kill at Norwood
at West Milford	East Spotswood, Iresick Brook at
Belle Mead, Pike Run at	Echo Lake
Royce Brook tributary at	Egg Harbor, Landing Creek at Philadelphia Ave. at 300
Belleville, Second River at	Elizabeth, Elizabeth River at Ursino Lake at 101
Berkeley Heights, Elue Brook at Seeleys Pond Dam near 306 Bernardsville, Passaic River near 302	Elizabeth River at Ursino Lake at Elizabeth
Bernardsville, Passaic River near	Elizabethtown Water Company, diversions
Big Brook near Marlboro 306	Passaic River at Route 46 at 88,316
Biochemical oxygen demand, definition of	Englewood, Metzler Brook at
Biomass, definition of	Englishtown, Barclay Brook near211,298,326
Black Creek near Vernon	Matchaponix Brook near
Blackwells Mills, Millstone River at189,324	Explanation of ground-water level records
Blawenburg, Rock Brook near	Explanation of stage and water-discharge records 9
Blue Anchor, Blue Anchor Brook near	Explanation of water-quality records
Great Egg Harbor River near	Fair Lawn, Saddle River at
Blue Anchor Brook near Blue Anchor	Far Hills, North Branch Raritan River near144,321
Blue Brook at Seeleys Pond Dam near Berkeley Heights. 306	Farmingdale, Mingamahone Brook at
Blue green algae, definition of	Farrington Dam, Lawrence Brook at207, 325
Boonton Reservoir data	Fecal coliform bacteria, definition of
Boonton, Rockaway River above Reservoir, at	Fecal streptococcal bacteria, definition of
Bound Brook, Raritan River below Calco Dam, at193,325	Flemington, Walnut Brook near
at South Plainfield	Folsom, Great Egg Harbor River at
Brookville, Oyster Creek near	Fourmile Branch at New Brooklyn
Budd Lake, SB Raritan River at outlet of113,297,318 Burlington County, ground-water levels	at Winslow Crossing
Burnt Mills, Lamington River at	11 dintili, mattattt luvel ad
North Branch Raritan River at146,321	Gage height, definition of4
Bushkill Brook at Rockefellows Mills131,320	Gaging station, definition of
Comdon County ground_water levels 221 225	Georgia, Manasquan River near236,299,306,328
Camden County, ground-water levels	Glen Gardner, Spruce Run at
Canoe Brook near Summit	Glenmoore, Stony Brook at
Cape May, Cape May Harbor at	Grassy Sound at West Wildwood
Cape May County, ground-water quality	Great Channel at Stone Harbor
Cape May Harbor at Cape May	Great Egg Harbor Bay at Beesleys Point
	311

PAGE

Great Egg Harbor River at Folsom	286	at Succasunna148,3	321
at Weymouth292,		near Ironia149, 3	
near Blue Anchor284,		near Pottersville	
near Sicklerville282,300,	331		298
tributary at Sicklerville282,	300	tributary No. 2 near Pottersville156,3	
Green algae, definition of	6		300
Green Brook at Plainfield		Land surface datum, definition of	4
at Seeley Mills	325	Lanoka Harbor, Cedar Creek at307,3	310
	297	Lawrence Brook at Davidsons Mill Road near Patricks	
Greenwood Lake	98	Corner206, 3	
	330	at Farrington Dam207,3	
	350	at Westons Mills	325
Grovers Mill, Millstone River at		Lebanon, SB Rockaway Creek tributary at	304
Millstone River at Southfield Road near	304		310
Hackensack River at New Milford	314		80
at Rivervale			304
at West Nyack, NY	37		93
Hackensack River basin, diversions	43	Low-flow partial-record stations 2	296
Elevation	42	Low tide, definition of	4
Reservoirs in,	42		311
Hackensack Water Co., diversions	43	Luppatatong Creek at Keyport	310
	223	Managina Tatalan Dama Danasananala Bissan et 62 3	215
	300	Macopin Intake Dam, Pequannock River at	
Hammonton Creek at Wescoatville260, Hardness, definition of	220	Mahwah, Ramapo River near	71
Harrisville, Oswego River at275,	330		310
	305	Manalapan Brook at Bridge Street at Spotswood218,3	
	299	at Federal Road near Manalapan215,3	
Head of River, Tuckahoe River at294,311,		at Spotswood217.3	
Heathcote Brook at Kingston182,298,		near Manalapan 2	298
High Bridge, South Branch Raritan River near117,	318	Manalapan, Manalapan Brook at Federal Road near215,3	
SB Raritan River at Arch Street at118,			307
	297	at Squankum240,3	328
	298	near Georgia	
High tide, definition of	316	Mantoloking, Barnegat Bay at	310 323
그들은 사람들은 사람들은 그 아이들이 아니는 그는 그들이 모든 그를 가장하는 것이 되었다.	303		306
at Hohokus	316	Marsh Bog Brook at Squankum238,3	
Holland Brook at Readington141,		Martinsville, West Branch Middle Brook near194,3	325
Holmdel, Willow Brook near224,		Matchaponix Brook near Englishtown209, 298, 3	
	305 301	at Mundy Avenue at Spotswood213,3	320
Hospitality Branch at Berryland	301	Maxwell, West Branch Wading River at	6
	308	Mean discharge, definition of	4
Hydrologic bench-mark station, definition of	9	Mean high or low tide, definition of	4
Hydrologic conditions	2		336
Hydrologic unit, definition of	4	Metamorphic stage, definition of	5
T M A A. A	244	Metedeconk River, North Branch, near Lakewood243,3	
Ingram Thorofare at Avalon	311	near Wyckoff Mills241,3 Methylene blue active substance, definition of)27
Instantaneous flow rate, definition of	4		302
Introduction	1	Micrograms per gram, definition of	5
	299	Micrograms per liter, definition of	5
	321	Middle Brook, West Branch, near Martinsville194,3	325
Lamington River tributary near	298	Middle Valley, South Branch Raritan River at113,297,3	
			306
	300		298 2010
West Branch Wading River near	100	Middlesex County, ground-water levels337,3 ground-water quality	352
	223	Mill Brook at Highland Park	298
Jumping Brook near Neptune City234,		Milligrams per liter, definition of	5
	139	Millington, Passaic River near 44,3	314
Keyport, Luppatatong Creek at	310	Millstone River at Applegarth175,298,3	324
Kingston, Heathcote Brook at182,298,		at Blackwells Mills189,3	
Millstone River at184,	324	at Carnegie Lake at Princeton	305
Take Mohaute Wallkill Divon at autlat of at Charts	206	at Grovers Mill	324
Lake Mohawk, Wallkill River at outlet of, at Sparta Lakes and reservoirs	296		304
Boonton Reservoir	97	at Plainsboro304,3	
Canistear Reservoir	97		190
Charlotteburg Reservoir	97		306
Clinton Reservoir	97	Miscellaneous sites296,	
De Forest Lake	42		303
Echo Lake	98 207	Monks, Wanaque River at	340
Farrington Reservoir	98		353
Oak Ridge Reservoir	97		297
Oradell Reservoir	42	Morris County, ground-water levels	344
Osborn Pond, diversion	44	Morristown, Whippany River at 54,3	
Point View Reservoir	100	Mulhockaway Creek at Van Syckel122,	319
	222	tributary at Van Syckel	297
Splitrock Reservoir	97 222	Mullica River at Atsion	299
	228	at Pleasant Mills	
Tappan, Lake	42	near Atco299,3	307
Wanaque Reservoir	98	near Batsto257,3	
Woodcliff Lake	42	near Port Republic 3	311
Lakewood, North Branch Metedeconk River near243,			302
Lamington, Lamington (Black) River at		near Westwood	302
Lamington (Black) River at Burnt Mills		Neptune City. Jumping Brook near234.3	328

PAGE

INDEX		INDEA	001
	PAGE		PAGE
	INGL		
Shark River near231	.328	Pottersville, Lamington (Black) River near1	52,322
Nescochague Creek at Pleasant Mills	300	Lamington (Black) River tributary No. 2 near1	
Neshanic River at Reaville		Upper Cold Brook near	
Newark City of, diversions	100	Preakness (Signac) Brook near Preakness	303
New Brooklyn, Fourmile Branch at	307	Prescott Brook at Round Valley	
New Gretna, East Branch Bass River near278		Primary productivity, definition of	6
New Milford, Hackensack River at 41		Princeton Junction, Duck Pond Run near	305
North Branch, North Branch Raritan River at167		Princeton, Millstone River at Carnegie Lake at	305
North Haledon, Molly Anne Brook at		Stony Brook at1	
North Jersey District Water Supply Commission,	303	Publications, ground water	13
	100	water quality	13
North Plainfield, Stony Brook at	306	techniques of water-resources investigations	16
Norwood, Dwars Kill at	296	Pump Branch near Blue Ancora	299
Tenakill Brook tributary at	296	Tump & anoth freat brace falcon different falcon differen	-,,
Numbering system for wells and miscellaneous sites	8	Quality of ground-water records	352
numbering system for wells and miscellaneous sites	O	Quality of ground-water records	332
Onle Pidgo Pogonyoin data	07	Pediciantenes definition of	6
Oak Ridge Reservoir data	97 303	Radioisotopes, definition of	107
Cakland, Pond Brook at		Rahway, Rahway River at	110
Ocean City, Crook Horn Creek at	311	Robinsons Branch, Rahway River at	
Ocean City, Great Egg Harbor Bay at	311	Rahway River at Rahway	107 110
Ocean County, ground-water levels	345 355	Robinsons Branch, at Rahway	104
ground-water quality		near Springfield	297
Old Bridge, South River at220		South Branch at Colonia	
South River below Duhernal Lake at221			69
Oradell Reservoir data Organic mass, definition of	42	at Suffern, NYnear Mahwah	
			303
Organism, definition of	5	Ramsey Brook at Allendale	
Organism count/area, definition of Organism count/volume, definition of	5	Raritan, Peters Brook near	
	1000	Raritan River at1	
Oswego River at Harrisville275, at Oswego Lake	300	Raritan River at Manville1	
	7	at Perth Amboy	310
Other data available	11		
Oyster Creek near Brookville253	, 329	at Raritan1	
Bealemank Inka Beanton Birran et 77	216	below Calco Dam, at Bound Brook	
Packanack Lake, Pompton River at		near South Bound Brook	
Papakating Creek at Sussex		North Branch, at Burnt Mills	
Partial-record stations, crest-stage	302	at North Branch	
Definition of	5	near Chester142,2	
Low-flow	296	near Far Hills1	
Tidal Crest-stage	308	near Raritan	
Particle size, definition of	5	South Branch, at Arch Street at High Bridge1	
Particle-size classification	5	at Middle Valley115,2	
	,314	at outlet of Budd Lake113,2	
Passaic County, ground-water levels	349	at South Branch	
Passaic River at Little Falls	80	at Stanton1	
at Pine Brook		at Three Bridges	
at Route 46 at Elmwood Park		near High Bridge1	17,318
at Route 46 at Singac		Raritan River basin, discharge measurements at	200
at Two Bridges		miscellaneous sites	308
near Bernardsville	302	crest-stage partial-record stations in	304
	, 314	Diversions	223
near Millington44	, 314	Low-flow partial-record stations in	297
Passaic River basin, crest-stage partial-record	202	Reservoirs in,	222
stations in	302	Elevation	222
Diversions	100	Readington, Holland Brook at	41,320
Gaging-station records in	44	Reaville, Neshanic River at	35, 320
Reservoirs in,	97	Red Bank, Swimming River near2	
Elevation	99	Remark Codes for water-quality data	13
Passaic Valley Water Commission, diversions	100	Reservoirs: See Lakes and reservoirs	200
Passaic, Third River at	196	Ridgefield, Wolf Creek at	302
Patricks Corner, Lawrence Brook at Davidsions	205	Ridgewood, Saddle River at	
Mill Road near		Ringoes, Back Brook tributary near1	30, 320
Peckman River at Ozone Avenue at Verona	303	River mile, definition of	20 211
Pennington, Baldwin Creek at	305	Rivervale, Hackensack River at	
Hart Brook near	305	Robinsons Branch Rahway River at Rahway	110
Penns Neck, Little Bear Brook	304	Rock Brook near Blawenburg	305
Pequannock River at Macopin Intake Dam		Rockaway Creek at Whitehouse	
Percent composition, definition of	5	South Branch, tributary at Lebanon	
Periphyton, definition of	5	at Whitehouse1	
Perth Amboy, Raritan River at	310	Rockaway River above Reservoir, at Boonton	50
Pesticides, definition of	5	at Pine Brook52,2	
Peters Brook near Raritan171,		below Reservoir, at Boonton	
Phytoplankton, definition of	5	Rockefellows Mills, Bushkill Brook at	
Picocurie, definition of	5	Rocky Hill, Beden Brook near	20 210
Pike Run at Belle Mead	188	Round Valley, Prescott Brook at	
Pine Brook, Passaic River at	315	Round Valley Reservoir data	222 192
Whippany River near		Royce Brook tributary at Belle Mead	6
Plainfield, Green Brook at		Runoff in inches, definition of	U
Plainsboro, Millstone River at	304	Saddle River at Lodi	93
Plankton, definition of	5		91,316
Pleasant Mills, Batsto River at		at Ridgewood	
Mullica River at		at Upper Saddle River	303
Nescochague Creek at	300	Sea Isle City, Ludlam Thorofare at	311
	100	Second River at Belleville	303
Point View Reservoir	6		505
Polychlorinated biphenyls, definition of		Sediment, definition of	
Pompton Lakes, Ramapo River at		Seeleys Pond Dam near Berkeley Heights, Blue Brook at	306
Pompton River at Packanack Lake		Selected references	14
at Pompton Plains		Shark River near Neptune City2	
Pond Brook at Oakland	303	Sicklerville, Great Egg Harbor River near282,3	
Port Republic, Mullica River near	311	Great Egg Harbor River tributary at2	
o repuerzo, marraed naver near esternites esternites	511	a san rep har sor litter or tounary answers server	, 500

PAGE	
Singac, Passaic River at Route 46 at	
Sleeper Branch at Batsto	1
near Atsion	
South Bound Brook, Raritan River near	
Cedar Brook at	
South Branch, South Branch Raritan River at	
below Duhernal Lake at Old Bridge221,327 Sparta, Wallkill River at outflow of Lake Mohawk	
at	
Splitrock Reservoir data	
Manalapan Brook at	
Spring Valley Water Company, diversions 43	
Springers Brook near Atsion	
Spruce Run at Clinton	1
near Glen Gardner120, 319	
near High Bridge	
Squankum, Manasquan River at	
Stafford Forge, Westecunk Creek at	
Stanton, South Branch Raritan River at128,319	
Stone Harbor, Great Channel at	
at North Plainfield	
at Watchung	
Streamflow. definition of	
Succasunna, Lamington (Black) River at	
Suffern, NY, Mahwah River near	
Summit, Canoe Brook near	
Wallkill River near 31,313	
Suspended-sediment concentration, definition of 6	
Suspended sediment data	
Swimming River near Red Bank228,327	
Tappan, Lake	
Tenakill Brook at Closter	
Terms, definition of	
Third River at Passaic	
Tidal crest-stage stations	
Tons per day, definition of	
Total, definition of	
Total depth of hole, definition of	
Total organism count, definition of	
Tuckerton Cove near Tuckerton	
Tulpehocken Creek near Jenkins	
Union County, ground-water levels	
Unionville, NY, Wallkill River near 34 Upper Cold Brook near Pottersville	
Upper Saddle River, Saddle River at 303	
Ursino Lake, Elizabeth River at, at Elizabeth 101	
Van Syckel, Mulhockaway Creek at	
Vernon, Black Creek near	
Wading River, West Branch, at Chatsworth	
near Chatsworth	
Wallkill River at Franklin	
near Sussex 31,313	
near Unionville, NY	
Wanaque, Wanaque River at	

PAGE
Wanaque Reservoir data
Wanaque River at Awosting 63,315
at Monks 64,315
at Wanaque
Watchung, East Branch Stony Brook at 197
Stony Brook at
Water temperature
Wescoatville, Hammonton Creek at
West Milford, Belcher Creek at
Belcher Creek at Stowaway Road at
Belcher Creek Tributary at
Cooley Brook near
Green Brook near
Morsetown Brook at
West Nyack, NY, Hackensack River at
diversions
Westecunk Creek at Stafford Forge254,329
Weston, Millstone River at190,324
Westons Mills, Lawrence Brook at208,325
Westwood, Musquapsink Brook at
Musquapsink Brook near 302
Pascack Brook at
Wet mass, definition of
We ymouth, Deep Run at
Great Egg Harbor River at292, 331
Whippany River at Morristown
near Pine Brook
Whitehouse, Rockaway Creek at
South Branch Rockaway Creek at
Wildcat Branch at Chesilhurst299,307
Willow Brook near Holmdel224, 327
Winslow Crossing, Fourmile Branch at 300
Wolf Creek at Ridgefield
Woodcliff Lake data 42
Woodsville Brook at Woodsville298,304
WDR, definition of
WSP, definition of
Wyckoff Mills, NB Metedeconk River near241,329
Yellow Brook at Colts Neck226,327
Zooplankton, definition of

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI). This report contains both the inch-pound and SI unit equivalents in the station manuscript descriptions.

Multiply inch-pound units	Ву	To obtain SI units
	Length	
inches (in)	2.54x10 ¹	millimeters (mm)
feet (ft)	2.54x10 ⁻² 3.048x10 ⁻¹	meters (m) meters (m)
miles (mi)	1.609x10°	kilometers (km)
	Area	
acres	4.047x10 ³ 4.047x10 ⁻¹	square meters (m ²) square hectometers (hm ²)
square miles (mi ²)	4.047x10 ⁻³ 2.590x10 ⁰	square kilometers (km²) square kilometers (km²)
	Volume	
gallons (gal)	3.785x10° 3.785x10°	liters (L) cubic decimeters (dm³)
million gallons	3.785x10 ⁻³ 3.785x10 ³	cubic meters (m ³) cubic meters (m ³)
cubic feet (ft³)	3.785x10 ⁻³ 2.832x10 ⁻¹	cubic hectometers (hm³) cubic decimeters (dm³)
cfs-days	$\begin{array}{c} 2.832 \times 10^{-2} \\ 2.447 \times 10^{3} \\ 2.447 \times 10^{-3} \end{array}$	cubic meters (m ³) cubic meters (m ³)
acre-feet (acre-ft)	2.447x10 ⁻³ 1.233x10 ³	cubic hectometers (hm³) cubic meters (m³)
	1.233x10 ⁻³ 1.233x10 ⁻⁶	cubic hectometers (hm³) cubic kilometers (km³)
	Flow	
cubic feet per second (ft ³ /s)	2.832x10 ¹ 2.832x10 ¹	liters per second (L/s) cubic decimeters per second (dm³/s)
college non minute (col/min)	2.832x10 ⁻²	cubic meters per second (m³/s)
gallons per minute (gal/min)	6.309x10 ⁻² 6.309x10 ⁻²	liters per second (L/s) cubic decimeters per second (dm³/s)
million gallons per day	6.309x10 ⁻⁵ 4.381x10 ⁻¹	cubic meters per second (m³/s) cubic decimeters per second (dm³/s)
	4.381x10 ⁻²	cubic meters per second (m³/s)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF THE INTERIOR
INT 413

U.S. DEPARTMENT OF THE INTERIOR Geological Survey, 430 Federal Building 402 E. State Street Trenton, NJ 08607

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300
SPECIAL 4TH CLASS BOOK RATE