
R (200) Ga3 NewYork 1980 v, 2

Water Resources Data for New York

Volume 2. Long Island

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NY-80-2


WATER YEAR 1980

Prepared in cooperation with the State of New York and with other agencies

> 619-E-32 I19.53/2

CALENDAR FOR WATER YEAR 1980

_									1	9	7 9									
	0	c -	го	В	E R			N C) V	EN	и в	EI	R		D	E C	EI	м в	E	R
S	M	Т	W	Т	F	S	S	M	Т	W	Т	F	S	S	M	Т	W	Т	F	S
	1	2	3	4	5	6					1	2	3							1
	8	9	10	11				5			8	9	10	2			5		7	
														9						
															17					
28	29	30	31				25	26	21	28	29	30			24 31	25	26	21	28	29
									1	9 8	8 0									
	J	AN	N U	AI	RY			FE	В	RU	JA	R	4		1	M A	R	СН		
S	M	Т	W	Т	F	S	S	M	Т	W	Т	F	S	S	M	Т	W	Т	F	S
		1	2	3	4	5						1	2							1
6	7	23 000					3	4	5	6	7			2	3	4	5	6	7	8
														9						
															17					
27	28	29	30	31			24	25	26	27	28	29			24	25	26	27	28	29
														30	31					
		A F	R	1 1					٨	A N	Y					11	N	E		
S	M	Т	W	Т	F	S	S	M	Т	W	Т	F	S	S	М	Т	W	Т	F	S
		1	2	3	4	5					1	2	3	1	2	3	4	5	6	7
6	7	8					4	5	6	7		9			9					
13	14	15	16	17	18	19	11	12	13	14	15	16	17	15	16					
20	21	22	23	24	25	26	18	19	20	21	22	23	24	22 29	23	24	25	26	27	28
27	28	29	30				25	26	27	28	29	30	31	29	30					
		, ,	JL	Y				A	U	G U	S				SE	P	ГЕ	M E	3 E	R
						c								S						
		1	2	3	4	5						1	2	7	1	2	3	4	5	6
6	7	8	9	10	11	12	3	4	5	6	7	8	9	7	8	9	10	11	12	13
20	21	22	10	2/	18	19	10	10	12	13	14	15	16	14	15	16	17	18	19	20
27	28	29	30	31	23	20	24	25	26	27	28	29	30	21 28	29	30	24	23	20	21
BUTCH STATE	1		BALA				31		-		-			20						

Water Resources Data for New York

Volume 2. Long Island

Prepared in cooperation with the State of New York and with other agencies

UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, Secretary

GEOLOGICAL SURVEY

Doyle G. Frederick, Acting Director

For information on the water program in New York write to
District Chief, Water Resources Division
U.S. Geological Survey
U.S. Post Office and Courthouse
P.O. Box 1350
Albany, New York 12201

or
For information on the water program in Long Island write to
Hydrologist-in-Charge, Long Island Program
Water Resources Division
U.S. Geological Survey
5 Aerial Way
Syosset, New York 11791

1980

PREFACE

This report was prepared by personnel of the New York district of the Water Resources Division of the U.S. Geological Survey under the supervision of L. A. Martens, District Chief, and J. E. Biesecker, Regional Hydrologist, Northeastern Region. It was done in cooperation with the State of New York and with other agencies.

This report is one of a series issued by State. General direction for the series is by Philip Cohen, Chief Hydrologist, U.S. Geological Survey, and R. J. Dingman, Assistant Chief Hydrologist for Scientific Publications and Data Management.

Data for New York are in three volumes as follows:

Volume 1. Eastern New York excluding Long Island

Volume 2. Long Island Volume 3. Western New York

REPORT DOCUMENTATION PAGE 1. REPORT NO. USGS/WRD/HD-80/	031	3. Recipient's Accession No.			
4. Title and Subtitle Water Resources Data for New York, Wat	5. Report Date April 1981				
Volume 2. Long Island		6.			
7. Author(s)	*	8. Performing Organization Rept. No. USGS-WDR-NY-80-2			
 Performing Organization Name and Address U.S. Geological Survey, Water Resource 	10. Project/Task/Work Unit No.				
U.S. Post Office and Courthouse	11. Contract(C) or Grant(G) No.				
P.O. Box 1350		(C)			
Albany, New York 11201		(G)			
12. Sponsoring Organization Name and Address	CALL TO STATE OF THE STATE OF T	13. Type of Report & Period Covered			
U.S. Geological Survey, Water Resource	Annual - Oct. 1, 1979				
U.S. Post Office and Courthouse	to Sept. 30, 1980				
P.O. Box 1350		14.			
Albany, New York 11201					

15. Supplementary Notes

Prepared in cooperation with the State of New York and other agencies.

16. Abstract (Limit: 200 words)

Water resources data for the 1980 water year for New York consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; water quality of precipitation; and water levels and water quality of ground water wells. This volume contains records for water discharge at 17 gaging stations; water quality at 17 gaging stations, 602 wells, and 3 precipitation stations; and water levels at 128 observation wells. Also included are data for 80 low-flow partial-record stations. Additional water data were collected at various sites not involved in the systematic data collection program, and are published as miscellaneous measurements and analyses. These data together with the data in Volumes 1 and 3 represent that part of the National Water Data System operated by the U.S. Geological Survey in cooperation with State, Federal, and other agencies in New York.

17. Document Analysis a. Descriptors

*New York, *Hydrologic data, *Groundwater, *Surface waters, *Water quality, Gaging stations, Streamflow, Flow rates, Lakes, Reservoirs, Chemical analysis, Sediments, Water temperature, Water analysis, Water levels, Water wells, Data collections, Sites.

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Availability Statement 19. Security Class (This Report) 21. No. of Pages 350 This report may be purchased from: UNCLASSIFIED National Technical Information Service 20. Security Class (This Page) 22. Price UNCLASSIFIED Springfield, VA 22161

CONTENTS

		Page
List of gag Introductic Cooperation Acknowledgn Significant Definition Definition Downstream Numbering s Special net Explanation Collectic Accuracy Other dat Explanation Classific Arrangeme Descripti Water ana Water tem Sediment. Explanation Collectic Publication Caging stat Discharge a Low-flow Analyses of Ground-wate Ground-wate Ground-wate Ground-wate Ground-wate Quality of Quality of Minor ele Pesticide	ging stations, in downstream order, for which records are published	III VI 1 2 3 4 111 12 12 12 12 14 15 15 15 15 15 15 16 16 16 16 16 17 31 100 100 100 108 111 111 207 221 221 221 221 221 221 221 221 221 22
	ILLUSTRATIONS	
Figure 1. 2. 3. 4.	System for numbering wells	11 18 19
5.	well S 4271 at Riverhead	20 21
6A.	Map showing location of surface-water data collection stations in Kings	
6B.	Queens, and Nassau Counties Map showing location of surface-water data collection stations in west	22
	half of Suffolk County	23
	Map showing location of surface-water data collection stations in east half of Suffolk County	24
7A.	Map showing location of water-level data collection stations in Kings, Queens, and Nassau Counties	25
7B.	Map showing location of water-level data collection stations in west	10.7
7C.	half of Suffolk County Map showing location of water-level data collection stations in east	26
8A.	half of Suffolk County	27
	in Kings, Queens, and Nassau Counties	28
	Map showing location of quality of ground-water data collection stations in west half of Suffolk County	29
8C.	Map showing location of quality of ground-water data collection stations in east half of Suffolk County	30
	TABLE	
		inside
Table 1.	Factors for converting inch-pound units to International System Units (SI)	of back cover
	Programme States and Management of the programme and the states and desired to the states and the states are a	1000000
	V	

VI CAGING STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED

[Letter after station name designates type of data: (d) discharge (e) contents and/or elevation,

(c) chemical, (b) biological, (m) microbiological, (t) water temperature, (s) sediment]

STREAMS ON LONG ISLAND	Page
Glen Cove Creek at Glen Cove (dct)	31
Mill Neck Creek at Mill Neck (dct)	33
Cold Spring Brook at Cold Spring Harbor (d)	35
Nissequogue River near Smithtown (dcbts)	36
Peconic River at Riverhead (dcbts)	50
Carmans River at Yaphank (dcbts)	. 65
Swan River at East Patchogue (dct)	77
Patchogue River at Patchogue (ct)	79
Connetquot Brook at Central Islip (d)	80
Connetquot Brook near Central Islip (d)	81
Connetquot River near Oakdale (dct)	82
Champlin Creek at Islip (ct)	84
Penataquit Creek at Bay Shore (ct)	85
Sampawans Creek at Babylon (dct)	86
Carlls River at Babylon (dct)	88
Santapogue Creek at Lindenhurst (ct)	90
Massapequa Creek at Massapequa (dct)	91
Bellmore Creek at Bellmore (dct)	93
East Meadow Brook at Freeport (dct)	95
Pines Brook at Malverne (dct)	97
Valley Stream at Valley Stream (d)	99

WATER RESOURCES DATA FOR NEW YORK, 1980 Volume 2.--Long Island

INTRODUCTION

Water resources data for the 1980 water year for New York consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; water quality of precipitation; and water levels and water quality of ground water wells. This volume contains records for water discharge at 17 gaging stations; water quality at 17 gaging stations, 602 wells, and 3 precipitation stations; and water levels at 128 observation wells. Also included are data for 80 low-flow partial-record stations. Locations of these sites are shown on pages 22-30. Additional water data were collected at various sites not involved in the systematic data collection program, and are published as miscellaneous measurements and analyses. These data together with the data in Volumes 1 and 3 represent that part of the National Water Data System operated by the U.S. Geological Survey in cooperation with State, Federal, and other agencies in New York.

Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States." Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled "Ground-Water levels in the United States." Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from Branch of Distribution, U.S. Geological Survey, 1200 South Eads Street, Arlington, VA 22202.

For water years 1961 through 1974, streamflow data were released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1974 were similarly released either in separate reports or in conjunction with streamflow records.

Beginning with the 1975 water year, water data for streamflow, water quality, and ground water are published in official Survey reports on a State-boundary basis. These official Survey reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report NY-80-2". For archiving and general distribution, the reports for water years 1971-74 are also identified as water-data reports. These water-data reports are for sale, in paper copy or in microfiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the district chief at the address given on the back of the title page or by telephone (518) 472-2457.

COOPERATION

The U.S. Geological Survey and organizations of the State of New York and other agencies have had cooperative agreements for the systematic collection of water records since 1900. Organizations that assisted in collecting the data included in Volume 2 through cooperative agreements with the Survey are:

New York State Department of Environmental Conservation, Robert F. Flacke, commissioner. County of Nassau, Department of Public Works, M. R. Pender, commissioner. County of Suffolk, Department of Health Services, Dr. David Harris, commissioner. County of Suffolk, Water Authority, R. J. Flynn, chairman.

The following organizations aided in collecting records:

Nassau County Department of Health, Nassau County Department of Public Works, Suffolk County Department of Health Services and Suffolk County Water Authority.

ACKNOWLEDGMENT

Preparation of the Long Island volume of the New York Water Resources Data Report was supervised by Anthony G. Spinello. Others who contributed significantly were James G. Carcaci, James H. Nakao, William J. Flipse, Jr. and Elizabeth A. Montano.

SIGNIFICANT HYDROLOGIC EVENTS

At the beginning of the 1980 water year, streamflow and ground-water levels were above average, but by early March they had declined. A large storm in April, in combination with above-average precipitation in March, resulted in above-average streamflow and ground-water levels that continued into May (figs. 2, 3, 4, 5). During the remainder of the water year, streamflow and ground-water levels were near normal.

During the first half of the water year, several lakes had close to record-high water levels that flooded many houses and left nearby roads impassable. Lake Ronkonkoma is one such lake, and its water level fluctuations were reflected by water levels in nearby well S1811 (page 160). This well, located on the "normal" shoreline of the lake, was partly submerged during most of the year. High water levels continued through May but declined thereafter.

The highest peak discharges of the 1980 water year in most Long Island streams occurred during the storm on April 10. A storm on July 29, however, caused the highest peak discharges on record at Massapequa Creek and East Meadow Brook and caused the maximum peak and daily discharges for the year at Pines Brook and Bellmore Creek. Maximum monthly stream discharge in all streams on Long Island was in April; minimum monthly discharge was in September.

The concentration of inorganic constituents in precipitation, surface water, and ground water during the 1980 water year showed no significant change from previous years. Although concentrations of dissolved constituents in ground water are generally greatest in the upper glacial aquifer, significant concentrations have been detected in the upper part of the Magothy aquifer. Ground-water data from a 1-square mile area surrounding a proposed artificial-recharge site in Nassau County showed no significant changes in concentrations of organic compounds since water year 1979. Pesticide analyses of water from 43 wells in this area are presented on pages 336-342. Water from 26 wells contained Dieldrin (an organochloride insecticide), and water from 6 wells contained PCB's (polychlorinated biphenyls).

DEFINITION OF TERMS

Terms related to streamflow, water quality, and other hydrologic data, as used in this report, are defined below. See also the table for converting inch-pound system units to International System of units (SI) on the inside of the back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

 $\underline{\text{Algae}}$ are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

 $\underline{\text{Algal growth potential}}$ (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present as stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

 $\underline{\text{Aquifer}}$ is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

<u>Total coliform bacteria</u> are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or faculative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as the organisms which produce colonies within 24 hours when incubated at 35°C \pm 1.0°C on M-endo median (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal coliform bacteria are bacteria that are present in the intestines or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours when incubated at $44.5^{\circ}\text{C} \pm 0.2^{\circ}\text{C}$ on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal streptococcal bacteria are bacteria found also in intestines of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at 35°C \pm 1.0°C on KF Streptococcus agar (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Bed material: See Bottom material.

Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

 $\underline{\text{Biomass}}$ is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500°C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²).

 $\underline{\text{Dry mass}}$ refers to the mass of residue present after drying in an oven at 60°C for zooplankton and 105°C for periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and ash mass, and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

Biomass pigment ratio is an indicator of the total proportion of periphyton which are autotrophic (plants). This is also called the Autotrophic Index.

Bottom material is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Total in bottom material is the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material".

 $\frac{\text{Cells/volume}}{\text{conscipe}} \text{ refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).}$

 $\frac{\text{Cfs-day}}{\text{It}} \text{ is equivalent to 86,400 cubic feet,} \quad \text{approximately 1.9835 acre-feet, about 646,000 gallons or 2,447 cubic meters.}$

<u>Chemical oxygen demand</u> (COD) is a measure of the chemically oxidizable material in the water, and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with natural water color or with carbonaceous organic pollution from sewage or industrial wastes.

<u>Chlorophyll</u> refers to the green pigments of plants. Chlorophyll \underline{a} and \underline{b} are the two most common pigments in plants.

Colloid is any substance with particles in such a fine state of subdivision dispersed in a medium, for example water, that they do not settle out; but not in so fine a state of subdivision that they can be said to be truly dissolved.

 ${\hbox{\tt Color\ unit}}$ is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

 $\underline{\text{Contents}}$ is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

 $\underline{\text{Control}}$ designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

 $\frac{\text{Cubic foot per second}}{\text{foot passing a given point during 1 second and is equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.}$

<u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment), that passes a given point within a given period of time.

 $\frac{\text{Mean discharge}}{\text{during a specific period.}} \text{ (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.}$

Instantaneous discharge is the discharge at a particular instant of time.

 $\underline{\text{Dissolved}}$ is that material in a representative water sample which passes through a 0.45 μm membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

Diversity index is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\bar{d} = -\sum_{i=1}^{s} \frac{\vec{n_i}}{n} \log_2 \frac{n_i}{n}$$

Where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Diversity index values range from zero when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

Drainage area of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontribution areas, within the area unless otherwise noted.

 $\frac{\text{Gage height (G.H.)}}{\text{is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.}$

 $\underline{\text{Gaging station}}$ is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

<u>Hardness</u> of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate ($CacO_3$).

 $\underline{\text{Hydrologic unit}} \text{ is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.}$

Methylene blue active substance (MBAS) is a measure of apparent detergents. This determination depends on the formation of a blue color when methylene blue dye reacts with synthetic detergent compounds.

Micrograms per gram $(\mu g/g)$ is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (gram) of sediment.

Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

 $\label{eq:milligrams} \begin{array}{lll} \underline{\text{Milligrams per liter}} & (\text{MG/L}, \ \text{mg/L}) \ \text{is a unit for expressing the concentration} & \text{of chemical constituents in solution.} & \underline{\text{Milligrams per liter represent the mass of solute per unit volume} \\ \text{(liter) of water.} & \underline{\text{Concentration of suspended sediment also is expressed in mg/L, and is based on the mass of sediment per liter of water-sediment mixture.} \end{array}$

National Geodetic Vertical Datum of 1929 (NGVD) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

 $\frac{\text{Organic carbon}}{\text{suspension.}} \text{ (OC)} \quad \text{is a measure of the organic matter present in aqueous solution and (or)} \quad \text{May be reported in any of three categories (DOC, dissolved organic carbon; SOC, suspended organic carbon; TOC, total organic carbon).}$

Organism is any living entity, such as an insect, phytoplankter, or zooplankter.

 $\frac{\text{Organism count/area}}{\text{sample and adjusted}} \text{ refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meters (m²), acres, or hectares. Periphyton benthic organisms, and macrophytes are expressed in these terms.}$

 $\frac{\text{Organism count/volume}}{\text{count moder}}$ refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliters (mL) or liters (L). Numbers of planktonic organisms can be expressed in these terms.

Total organism count is the total number of organisms collected and enumerated in any particular sample.

Partial-record station is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

<u>Particle-size</u> is the diameter, in millimeters (mm), of suspended sediment or bed material determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Particle-size classification used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology.

The classification is as follows:

Classification	Size	(mm)	Method of analysis
Clay		- 0.004 062	Sedimentation.
Sand		- 2.0	Sedimentation or sieve.
Gravel		- 64.0	Sieve.

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

 $\frac{\text{Percent composition}}{\text{population to the total sample or population, in terms of types, numbers, mass or volume.}$

 $\underline{\text{Periphyton}}$ is the assemblage of algae, fungi, and bacteria which are attached to or live upon $\overline{\text{submerged}}$ objects in lakes or rivers.

 $\frac{\text{Pesticides}}{\text{categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.} \\ \text{Insecticides and herbicides, which control insects and plants respectively, are the two categories reported.} \\$

<u>Picocurie</u> (PC, pCi) is one trillionth (1 x 10^{12}) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7×10^{10}) radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

<u>Plankton</u> is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

<u>Phytoplankton</u> is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae.

Blue-green algae are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

<u>Diatoms</u> are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells/mL of sample.

 $\underline{\text{Euglenoids}}$ (Euglenophyta) are a group of algae that are usually free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark.

 $\frac{\text{Fire algae}}{\text{spot.}}$ (Pyrrhophyta) are free-swimming unicells characterized by a red

<u>Green-algae</u> have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algal mats or floating "moss" in lakes. Their concentrations are expressed as number of cells/mL of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column, and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

 $\frac{\text{Polychlorinated biphenyls}}{\text{chlorinated biphenyl compounds}} \hspace{0.2cm} \text{(PCBs)} \hspace{0.2cm} \text{are industrial chemicals that are mixtures of chlorinated biphenyl compounds}} \hspace{0.2cm} \text{having various percentages of chlorine.} \hspace{0.2cm} \text{They are similar in structure to organochlorine insecticides.}}$

Polychlorinated napthalenes (PCNs) are industrial chemicals that are mixtures of chlorinated napthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time [mg $C/(m^2 \cdot time)$ for periphyton and macrophytes and mg $C/(m^3 \cdot time)$] for phytoplankton are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method, and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

 $\frac{\text{Milligrams of oxygen per area or volume per unit time } {\text{Img } 0_2/(\text{m}^2 \cdot \text{time})} \text{ for periphyton}}{\text{macrophytes and mg } 0_2/(\text{m}^3 \cdot \text{time})} \text{ for phytoplankton}} \text{ are the units for expressing primary productivity.} They define production and respiration rates as estimated from changes in the measured dissolved oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.}$

Runoff in inches (IN., in.) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

Suspended sediment is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

Suspended-sediment discharge (tons/day) is the rate at which dry weight of sediment passes a section of a stream or is the quantity of sediment, as measured by dry weight or volume, that passes a section in a given time. It is computed by multiplying discharge times mg/L times 0.0027.

 $\frac{\text{Total sediment discharge}}{\text{the bed-load discharge.}} \text{ (tons/day)} \quad \text{is the sum of the suspended-sediment discharge} \\ \text{It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time.}$

 $\underline{\text{Mean concentration}}$ is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

 $\underline{\text{Solute}}$ is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in micromhos per centimeter at 25°C. Specific conductance is related to the type and concentrations of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height (stage) and volume of water per unit of time, flowing in a channel.

 $\frac{Streamflow}{discharge} \ is \ the discharge \ that \ occurs \ in \ a \ natural \ channel. \ Although \ the \ term \\ "discharge" \ can \ be \ applied \ to \ the \ flow \ of \ a \ canal, \ the \ word "streamflow" \ uniquely \ describes \\ the \ discharge \ in \ a \ surface \ stream \ course. \ The \ term "streamflow" \ is \ more \ general \ than "runoff" \\ as \ streamflow \ may \ be \ applied \ to \ discharge \ whether \ or \ not \ it \ is \ affected \ by \ diversion \ or \\ regulation.$

Substrate is the physical surface upon which an organism lived.

Natural substrates refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lived.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multi-plate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection.

Surface area of a lake is that area outlined on the latest U.S.G.S. topographic map as a boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made.

Surficial bed material is that part (0.1 to 0.2 ft) of the bed material that is sampled using $\overline{\text{U.S. Series Bed-Material Samplers.}}$

Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of the total concentration in a water-sediment mixture. The water-sediment mixture is associated with (or sorbed on) that material retained on a 0.45 μ m filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 μm membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) $\underline{\text{dissolved}}$ and (2) $\underline{\text{total}}$ $\underline{\text{recoverable}}$ concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 $\,\mu m$ membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total".

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) $\underline{\text{dissolved}}$ and (2) $\underline{\text{total}}$ concentrations of the constituent.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, Hexagenia limbata is the following:

Kingdom Animal
Phylum Arthropoda
Class Insecta
Order Ephemeroptera
Family Ephemeridae
Genus Hexageria
Species Hexagenia limbata

<u>Time-weighted average</u> is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

 $\underline{\text{Tons per acre-foot}}$ indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136.

Tons per day is the quantity of substance in solution or suspension that passes a stream section during a 24-hour day.

Total (as used in tables of chemical analyses):

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total". (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample).

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

When virtually all of a constituent is present in the dissolved phase, the reported value for the dissolved constituent may appear slightly greater than that for the total determination. The difference is within the standard laboratory error for the analytical methods used.

 $ext{Total load}$ (tons) is the total quantity of any individual constituent, as measured by dry mass or volume, that is dissolved in a specific amount of water (discharge) during a given time. It is computed by multiplying the total discharge, times the mg/L of the constituent, times the factor 0.0027, times the number of days.

 $\underline{\text{Total organic carbon}}$ (TOC) is a measure of all organic matter present in aqueous solution and suspension.

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

 ${
m WRD}$ is used as an abbreviation for "Water Resources Data" in the REVISED RECORDS paragraph to refer to State annual basic-data reports published before 1975.

 $\underline{\text{WSP}}$ is used as an abbreviation for "Water-Supply Paper" in references to previously published reports.

DOWNSTREAM ORDER AND STATION NUMBERS

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two main-stream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is situated with respect to the stream to which it is immediately tributary is indicated by an indention in a list of stations in the front of the report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

As an added means of identification, each hydrologic station, partial-record station, and miscellaneous site has been assigned a station number. These are in the same downstream order used in this report. In assigning station numbers, no distinction is made between partial-record stations, miscellaneous sites, and other stations; therefore, the station number for a partial-record station or a miscellaneous site indicates downstream-order position in a list made up of all types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station such as 01300500 includes the 2-digit part number "01" plus the 6-digit downstream order number "300500". (In a few instances where no gaps were left in the 8-digit numbering sequence it was necessary to add one or two digits for identification; hence, there are a few stations or miscellaneous sites with 9-or 10-digit numbers.) (If random water-quality samples are taken at a miscellaneous site where a 9-or a 10-digit downstream order identification number is used, that site is assigned a latitude-longitude number.)

NUMBERING SYSTEM FOR WELLS

The 8-digit downstream order station numbers are not assigned to wells. The well-numbering system of the U.S. Geological Survey is based on the grid system of latitude and longitude. The system provides the geographic location of the well and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, the next 7 digits denote degrees, minutes, and seconds of longitude, and the last 2 digits (assigned sequentially) identify the wells within a 1-second grid. See figure 1 below.

A local well-numbering system is also used. It is a 2-part identifier, assigned by the New York State Department of Environmental Conservation, consisting of the abbreviation of county name and the serial number of the well within the county.

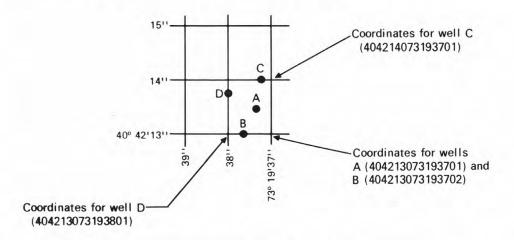


Figure 1. System for numbering wells (latitude and longitude).

SPECIAL NETWORKS AND PROGRAMS

Hydrologic bench-mark station is one that provides hydrologic data for a basin in which the hydrologic regimen will likely be governed solely by natural conditions. Data collected at a bench-mark station may be used to separate effects of natural from manmade changes in other basins which have been developed and in which the physiography, climate, and geology are similar to those in the undeveloped bench-mark basin.

National stream-quality accounting network (NASQAN) is a data collection network designed by the U.S. Geological Survey to meet many of the information demands of agencies or groups involved in national or regional water-quality planning and management. Both accounting and broad-scale monitoring objectives have been incorporated into the network design. Areal configuration of the network is based on river-basin accounting units (identified by 8-digit hydrologic-unit numbers) designated by the Office of Water Data Coordination in consultation with the Water Resources Council. Primary objectives of the network are (1) to depict areal variability of streamflow and water-quality conditions nationwide on a year-by-year basis and (2) to detect and assess long-term changes in streamflow and stream quality.

Pesticide program is a network of regularly sampled water-quality stations where samples are collected to determine the concentration and distribution of pesticides in streams where potential contamination could result from the application of the commonly used insecticides and herbicides. Operation of the network is a Federal interagency activity.

 $\frac{\text{Radiochemical program}}{\text{samples are collected to}} \text{ is a network of regularly sampled water-quality stations where samples are collected to} \text{ be analyzed for radioisotopes.} \text{ The streams that are sampled represent major drainage basins in the conterminous United States.}$

EXPLANATION OF STAGE AND WATER-DISCHARGE RECORDS

Collection and Computation of Data

The base data collected at gaging stations consist of records of stage and measurements of discharge of streams or canals, and stage, surface area, and contents of lakes or reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records, and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of stage are obtained from either direct readings on a nonrecording gage or from a water-stage recorder that gives either a continuous graph of the fluctuations or a tape punched at selected time intervals. Measurements of discharge are made with a current meter, using the general methods adopted by the Geological Survey. These methods are described in standard textbooks, in Water-Supply Paper 888, and in U.S. Geological Survey Techniques of Water Resources Investigations, book 3, chapter A6.

For stream-gaging stations, rating tables giving the discharge for any stage are prepared from stage-discharge relation curves. If extensions to the rating curves are necessary to express discharge greater than measured, they are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements, computation of flow over dams or weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharges are computed from the daily figures. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is computed by the shifting-control method, in which correction factors based on individual discharge measurements and notes by engineers and observers are used in applying the gage heights to the rating tables. If the stage-discharge relation for a station is temporarily changed by the presence of aquatic growth or debris on the control, the daily mean discharge is computed by what is basically the shifting-control method.

At some stream-gaging stations the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

At some stream-gaging stations the stage-discharge relation is affected by ice in the winter, and it becomes impossible to compute the discharge in the usual manner. Discharge for periods of ice effect is computed on the basis of gage-height record and occasional winter discharge measurements. Consideration is given to the available information on temperature and precipitation, notes by gage observers and hydrologists, and comparable records of discharge for other stations in the same or nearby basins.

For a lake or reservoir station, capacity tables giving the contents for any stage are prepared from stage-area relation curves defined by surveys. The application of the stage to the capacity table gives the contents, from which the daily, monthly, or yearly change in contents is computed.

If the stage-capacity curve is subject to changes because of deposition of sediment in the reservoir, periodic resurveys of the reservoir are necessary to define new stage-capacity curves. During the period between reservoir surveys the computed contents may be increasingly in error due to the gradual accumulation of sediment.

For some gaging stations there are periods when no gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods the daily discharges are estimated on the basis of recorded range in stage, prior and subsequent records, discharge measurements, weather records, and comparison with records for other stations in the same or nearby basins. Likewise daily contents may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information.

The data in this report generally comprise a description of the station and tabulations of daily and monthly figures. For gaging stations on streams or canals a table showing the daily discharge and monthly and yearly discharge is given. For gaging stations on lakes and reservoirs a monthly summary table of stage and contents or a table showing the daily contents is given. Tables of daily mean gage heights are included for some streamflow stations and for some reservoir stations. Records are published for the water year, which begins on October 1 and ends on September 30.

The description of the gaging station gives the location, drainage area, period of record, notations of revisions of previously published records, type and history of gages, general remarks, average discharge, and extremes of discharge or contents. The location of the gaging station and the drainage area are obtained from the most accurate maps available. River mileage, given under "LOCATION" for some stations, is that determined and used by the Corps of Engineers or other agencies. Periods for which there are published records for the present station or for stations generally equivalent to the present one are given under "PERIOD OF RECORD."

Previously published streamflow records of some stations have been found to be in error on the basis of data or information later obtained. Revisions of such records are usually published along with the current records in one of the annual or compilation reports. In order to make it easier to find such revised records, a paragraph headed "REVISED RECORDS" has been added to the description of all stations for which revised records have been published. Listed therein are all the reports in which revisions have been published, each followed by the water years for which figures are revised in that report. In listing the water years only one number is given; for instance, 1965 stands for the water year October 1, 1964, to September 30, 1965. If no daily, monthly or annual figures of discharge are affected by the revision, the fact is brought out by notations after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the revised figure was first published is given. It should be noted that for 11 stations for which cubic feet per second per square mile and runoff in inches are published, a revision of the drainage area necessitates corresponding revision of all figures based on the drainage area. Revised figures of cubic feet per second per square mile and runoff in inches resulting from a revision of the drainage area only are usually not published in the annual series of reports.

The type of gage currently in use; the datum of the present gage referred to National Geodetic Vertical Datum; and a condensed history of the types, locations, and datums of previous gages used during the period of record are given under "GAGE." National Geodetic Vertical Datum is explained in "DEFINITION OF TERMS" on page 6.

Information pertaining to the accuracy of the discharge records and to conditions which affect the natural flow of the gaging station is given under "REMARKS." For reservoir stations information on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir is given under "REMARKS."

The average discharge for the number of years indicated is given under "AVERAGE DISCHARGE"; it is not given for stations having fewer than 5 complete years of record or for stations where changes in water development during the period of record cause the figure to have little significance. In addition, the median of yearly mean discharges is given for stream-gaging stations having 10 or more complete years of record if the median differs from the average by more than 10 percent. Under "EXTREMES" are given first, the extremes for the period of record, second, information available outside the period of record, and last, those for the current year. Unless otherwise qualified, the maximum discharge (or contents) is the instantaneous maximum corresponding to the crest stage obtained by use of a water-stage recorder (graphic or digital), a crest-stage gage, or a nonrecording gage read at the time of the crest. If the maximum gage height did not occur on the same day as the maximum discharge (or contents), it is given separately. Similarly, the minimum is the instantaneous minimum

unless otherwise qualified. For some stations peak discharges are listed with "EXTREMES FOR THE CURRENT YEAR"; if they are, all independent peaks, including the maximum for the year, above the selected base with the time of occurrence and corresponding gage heights are published in tabular format. The base discharge, which is given in the table heading, is selected so that an average of about three peaks a year will be presented. Peak discharges are not published for any canals, ditches, drains, or for any stream for which the peaks are subject to substantial control by man. Time of day is expressed in 24-hour local standard time; for example, 12:30 a.m. is 0030, 1:30 p.m. is 1330. The minimums for these stations are published in a separate paragraph following the table of peaks.

The daily table for stream-gaging stations gives the mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum discharges, respectively, for the month. Discharge for the month also may be expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN."). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion, if the drainage area includes large noncontributing areas, or if the average annual rainfall over the drainage basin is usually less than 20 inches. In the yearly summary below the monthly summary, the figures shown are the appropriate daily discharges for the calendar and water years.

Footnotes to the table of daily discharge are introduced by the word "NOTE." Footnotes are used to indicate periods for which the discharge is computed or estimated by special methods because of no gage-height record, backwater from various sources, or other unusual conditions. Periods of no gage-height record are indicated if the period is continuous for a month or more or includes the maximum discharge for the year. Periods of backwater from an unusual source, of indefinite stage-relation, or of any other unusual condition at the gage site are indicated only if they are a month or more in length and the accuracy of the records is affected. Days on which the stage-discharge relation is affected by ice are not indicated. The methods used in computing discharge for various unusual conditions have been explained in preceding paragraphs.

For most gaging stations on lakes and reservoirs the data presented comprise a description of the station and a monthly summary table of stage and contents. For some reservoirs a table showing daily contents or stage is given. A skeleton table of capacity at given stages is published for all reservoirs for which records are published on a daily basis, but is not published for reservoirs for which only monthly data are given.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous records or partial-record stations. Occasionally, a series of discharge measurements are made within a short time period to investigate the seepage gains or losses along a reach of a stream or to determine the loy-flow characteristics of an area. Such measurements are also given in special tables following the tables of partial-record stations.

Accuracy of Field Data and Computed Results

The accuracy of streamflow data depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements, and (2) the accuracy of observations of stage, measurements of discharge, and interpretations of records.

The station description under "REMARKS" states the degree of accuracy of the records. "Excellent" means that about 95 percent of the daily discharges are within 5 percent; "good," within 10 percent; and "fair," within 15 percent. "Poor" means that daily discharges have less than "fair" accuracy.

Figures of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 $\rm ft^3/s$; to tenths between 1.0 and 10 $\rm ft^3/s$; to whole numbers between 10 and 1,000 $\rm ft^3/s$; and to 3 significant figures above 1,000 $\rm ft^3/s$. The number of significant figures used is based solely on the magnitude of the figure. The same rounding rules apply to discharge figures listed for partial-record stations.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where large adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Data Available

Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating tables is on file in the district office. Also most gaging-station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the district office.

EXPLANATION OF WATER-OUALITY RECORDS

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A continuing record station is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites. Data for precipitation-quality stations appears next. The table of ground-water quality follows ground-water level records. Data for quality of ground water is listed alphabetically by County, and is identified by well number.

Descriptive Headings

For continuing record stations, data is preceded by information pertinent to the history of station operation. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Headings for precipitation-quality records include location information and a description of the sample collector.

Water Analysis

Most methods for collecting and analyzing water samples are described in the U.S. Geological Survey Techniques of Water-Resources Investigations listed on a following page.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

Terminology used in reporting chemical constituents is an indication of whether all or only part of a constituent associated with the solids in a water-quality sample is determined by a chemical analysis. (See preceding section, "Definition of Terms.") The "recoverable" in the terms "Suspended, recoverable", "Total, recoverable", and "Recoverable from bottom material" indicates that the constituent was digested by a method that results in the dissolution of only readily soluble substances. Thus, the determination may not represent all of the constituent actually present in the sample. The "total" in the terms "Total", "Suspended, total", and "Total in bottom material" is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the district office.

Water Temperatures

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures and/or maximum and minimum temperatures for each day are published.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross-section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

At NASQAN stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow in predicting long-term sediment-discharge characteristics of the stream.

Measurements of particle-size distribution for suspended sediment have not been made for Long Island streams. Based on visual inspection of samples, the proportion of suspended sediment finer than 0.062 mm has been assumed to be greater than 95%.

EXPLANATION OF GROUND-WATER LEVEL RECORDS

Collection of Data

Only ground-water level data from a basic network of observation wells are published herein. This basic network contains observation wells so located that the most significant data are obtained from the fewest wells in the most important aquifers.

Each well is identified by means of (1) a 15-digit number that is based on latitude and longitude and (2) a local number that is provided for local needs. See figure 1.

Measurements are made in many types of wells, under varying conditions of access and at different temperatures, hence, neither the method of measurement nor the equipment can be standardized. At each observation well, however, the equipment and techniques used are those that will ensure that measurements at each well are consistent.

Water-level measurements in this report are given in feet in reference to National Geodetic Vertical Datum of 1929. National Geodetic Vertical Datum of 1929 is the datum plane on which the national network of precise levels is based; land-surface datum is a datum plane that is approximately at land surface at each well. If known, the altitude of the land-surface datum in reference to National Geodetic Vertical Datum of 1929 is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (eom).

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given to a tenth of a foot.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

Thirty-four manuals by the U.S. Geological Survey have been published to date in the series on techniques describing procedures for planning and executing specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) is on surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. The reports listed below are for sale by the U.S. Geological Survey, Branch of Distribution, 1200 South Eads Street, Arlington, VA 22202 (authorized agent of the Superintendent of Documents, Government Printing

- When ordering any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations". NOTE: When
- Water temperature-influential factors, field measurement, and data presentation, by H. H. Stevens Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages.
- 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages.
- Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages. 2-D1.
- Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS--TWRI Book 2, Chapter E1. 1971. 126 pages.
- 3-A1. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter A1. 1967. 30 pages.
- 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages.
- Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI 3-A3. Book 3, Chapter A3. 1968. 60 pages.
- 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 pages.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages.
- General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages. 3-A6.
- Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 pages. 3-A7.
- 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages.
- 3-A11. Measurement of discharge by moving-boat method, G. F. Smoot and C. E. Novak: USGS-TWRI Book 3, Chapter A11. 1969. 22 pages.
- 3-B1. Aguifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter B1. 1971. 26 pages.
- 3-B2. Introduction to ground-water hydraulics, a programed text for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-C1. Fluvial sediment concepts, by H. P. Guy: USGS-TWRI Book 3, Chapter C1. 1970. 55 pages.
 3-C2. Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS-TWRI Book 3, Chapter C2. 1970. 59 pages.
- Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages. 3-C3.
- 4-A1. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter Al. 1968. 39
- 4-A2. Frequency curves, by H. C. Riggs: USGS-TWRI Book 4, Chapter A2. 1968. 15 pages.
 4-B1. Low-flow investigations, by H. C. Riggs: USGS-TWRI Book 4, Chapter B1. 1972. 18 pages.
 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS-TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages. 4-D1.
- Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS--TWRI Book 4, Chapter D1. 1970. 17 pages.
- 5-A1. Methods for determination of inorganic substances in water and fluvial sediments, by M. W. Skougstad and others, editors: USGS--TWRI Book 5, Chapter A1. 1979. 626 pages.
- Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages. 5-A2.
- Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown: USGS--TWRI Book 5, Chapter A3. 1972. 40 pages. 5-A3.
- Methods for collection and analysis of aquatic biological and microbiological samples, edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS--TWRI Book 5, Chapter A4. 1977. 332 pages. 5-A4.
- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages.
 5-C1. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58 pages.
- 7-C1. Finite-difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages.
- Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USCS--TWRI Book 7, Chapter C2. 1978. 90 pages.

 Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman:
 USCS--TWRI Book 8, Chapter Al. 1968. 23 pages. 7-C2.
- 8-B2. Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages.

Figure 2.--Hydrographic Comparisons, East Meadow Brook at Freeport.

Figure 3.--Hydrographic Comparisons, Nissequogue River near Smithtown.

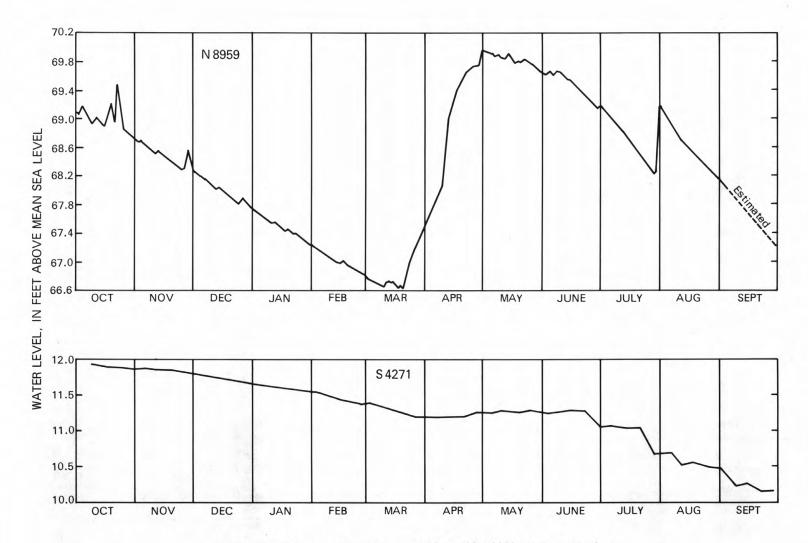


Figure 4.--Hydrographs of water-table well N8959 at East Meadow and water-table well S4271 at Riverhead.

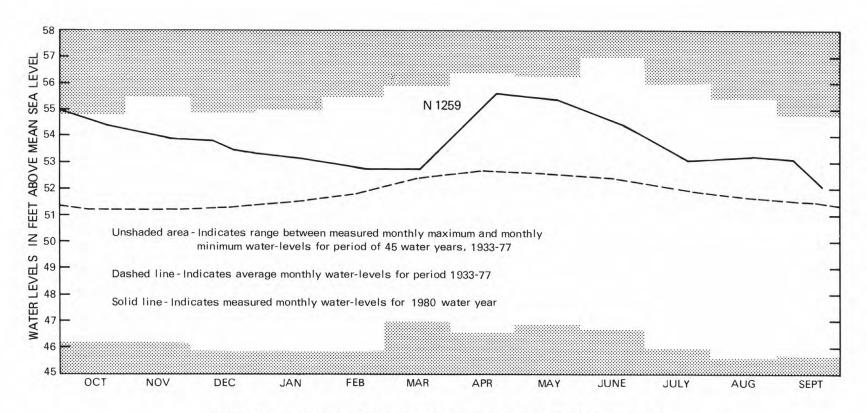


Figure 5.--Hydrograph of water-table observation well N1259 at Plainedge.

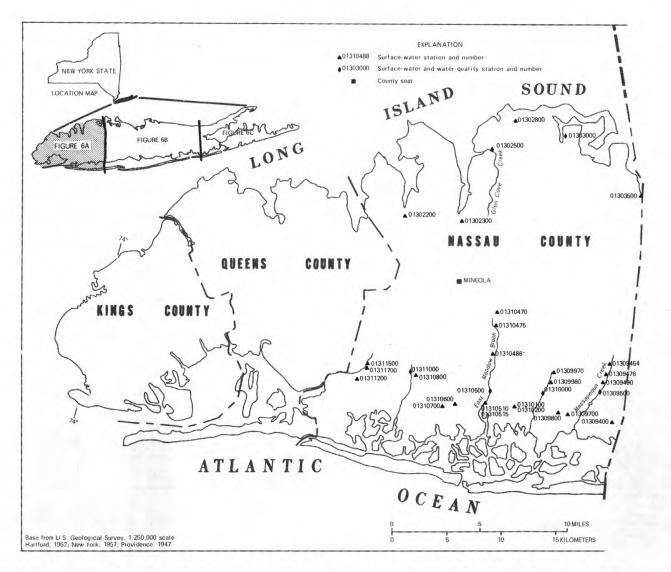


FIGURE 6A.-- LOCATION OF SURFACE-WATER DATA COLLECTION STATIONS

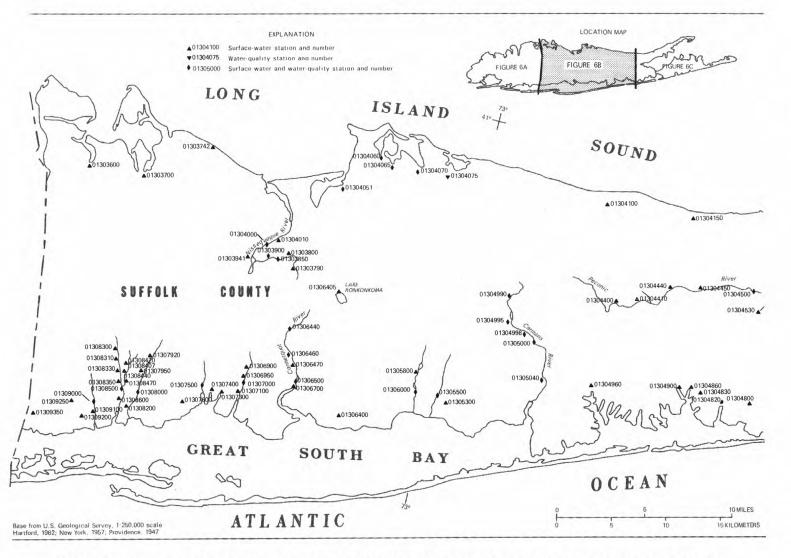


FIGURE 6B.-- LOCATION OF SURFACE-WATER DATA COLLECTION STATIONS

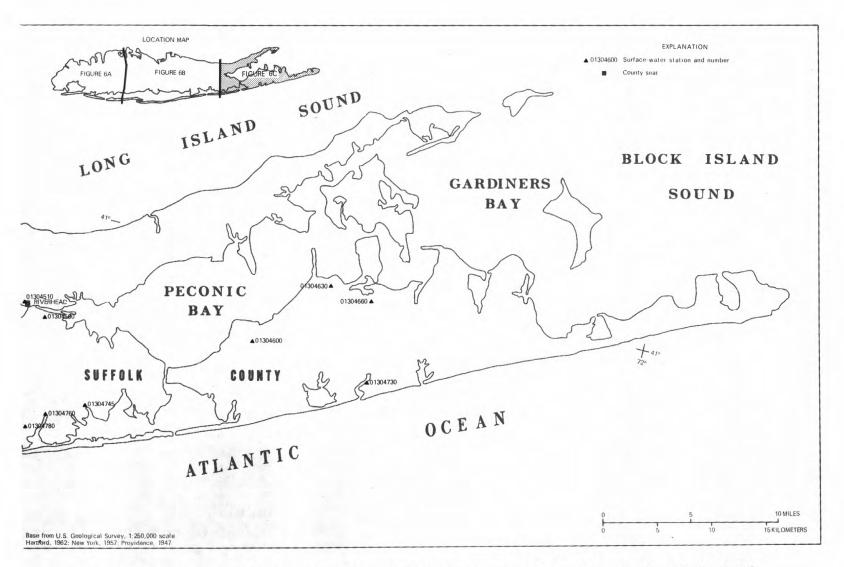


FIGURE 6C .-- LOCATION OF SURFACE-WATER DATA COLLECTION STATIONS

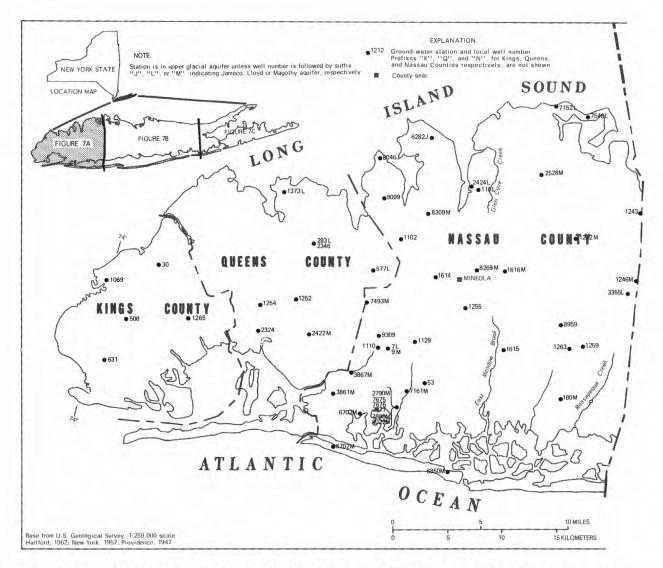


FIGURE 7A.-- LOCATION OF WATER-LEVEL DATA COLLECTION STATIONS

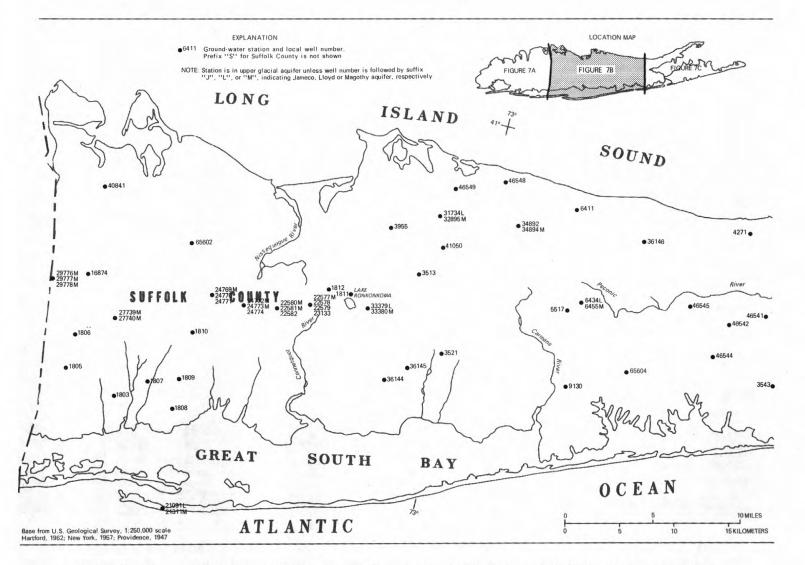


FIGURE 7B.-- LOCATION OF WATER-LEVEL DATA COLLECTION STATIONS

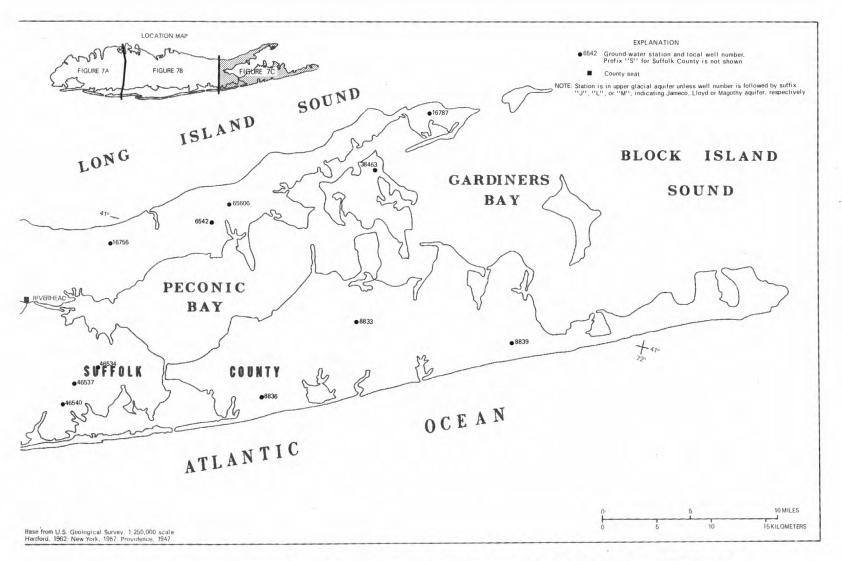


FIGURE 7C .-- LOCATION OF WATER-LEVEL DATA COLLECTION STATIONS

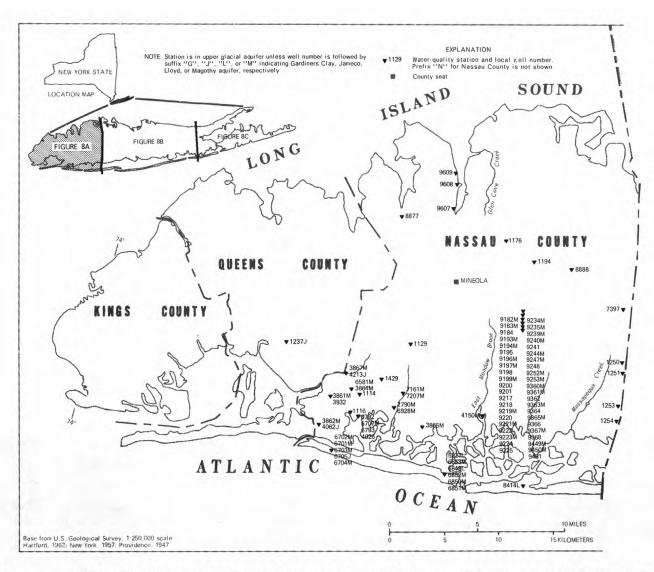


FIGURE 8A.-- LOCATION OF QUALITY OF GROUND-WATER DATA COLLECTION STATIONS

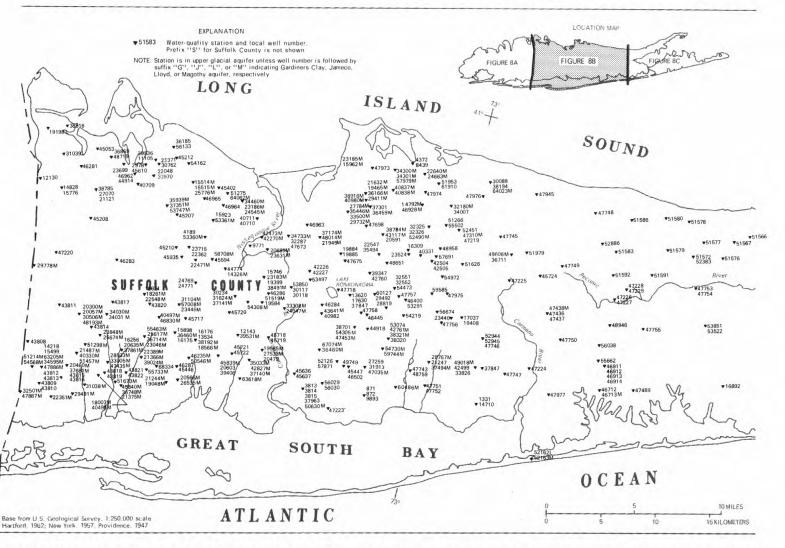


FIGURE 8B.-- LOCATION OF QUALITY OF GROUND-WATER DATA COLLECTION STATIONS

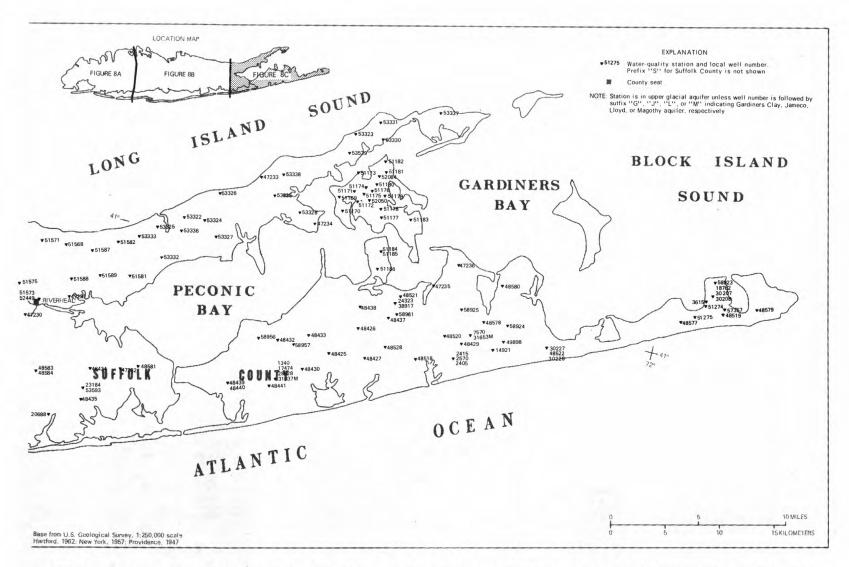


FIGURE 8C .-- LOCATION OF QUALITY OF GROUND-WATER DATA COLLECTION STATIONS

01302500 GLEN COVE CREEK AT GLEN COVE, NY

LOCATION.--Lat 40°51'48", long 73°38'05", Nassau County, Hydrologic Unit 02030201, on right bank just downstream from Glen Cove Road, at 8- by 10-foot concrete culvert in Pratt Park, one block west of post office, in Glen Cove. Water-quality sampling site at discharge station.

DRAINAGE AREA .-- About 11 mi2 (28 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1938 to current year. Prior to October 1967, published as Cedar Swamp Creek.

REVISED RECORDS (WATER YEARS) .-- WSP 971: 1939-42.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 15.68 ft (4.780 m) National Geodetic Vertical Datum of 1929. Prior to Oct. 31, 1977, at datum 0.14 ft (0.044 m) higher. Prior to June 17, 1965, at datum 0.19 ft (0.59 m) higher.

REMARKS.--Records good except those above 300 ft 3/s (8.50 m3/s), which are fair.

AVERAGE DISCHARGE .-- 42 years, 7.19 ft3/s (0.204 m3/s).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,860 ft³/s (52.7 m³/s) Sept. 12, 1960, gage height, 7.12 ft (2.170 m), from rating curve extended above 220 ft³/s (6.23 m³/s); minimum, 2.1 ft³/s (0.059 m³/s) Oct. 15, 1967; minimum gage height, 0.52 ft (0.158 m) Oct. 22, 1959, Oct. 15, 1967.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,057 ft 3 /s (29.9 m 3 /s) Apr. 9, gage height, 5.66 ft (1.725 m), from rating curve extended above 220 ft 3 /s (6.23 m 3 /s); minimum, 4.0 ft 3 /s (0.113 m 3 /s) Jan. 3, 4, gage height, 0.67 ft (0.204 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MFAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	19	8.3	7.8	7.6	4.2	4.4	21	7.2	8.5	9.5	8.6	7.8
2	11	8.5	7.6	7.6	4.2	4.4	10	6.1	11	11	9.9	9.4
3	15	19	7.7	6.0	4.1	4.4	7.5	5.5	20	10	8.1	8.1
4	10	9.2	7.8	4.2	5.8	4.4	27	5.1	10	9.4	8.1	7.6
5	16	9.1	7.8	4.3	5.6	5.0	11	5.3	9.0	14	8.1	7.6
6	10	8.7	12	4.1	4.3	4.5	7.5	5.1	8.3	9.9	8.3	7.6
7	9.2	8.3	9.8	4.3	4.3	4.4	6.4	6.7	16	9.1	8.1	7.6
8	8.7	8.2	8.1	4.2	4.2	10	6.1	14	21	8.5	8.1	7.6
9	12	8.1	7.9	4.2	4.3	6.5	115	6.6	22	8.4	7.8	7.6
10	23	8.6	7.8	4.3	4.3	12	116	5.6	13	9.4	7.8	7.6
11	13	15	7.7	14	4.3	33	31	5.2	10	9.1	12	7.6
12	11	16	7.6	9.7	4.3	9.0	18	5.7	9.0	7.9	8.6	7.6
13	9.3	10	14	5.6	4.3	6.3	12	8.5	8.4	7.8	8.1	7.6
14	8.7	9.9	8.2	5.5	4.3	12	35	9.0	8.1	8.7	8.1	7.6
15	8.6	9.0	8.1	5.5	4.7	8.4	17	6.2	8.1	8.5	8.1	7.6
16	8.4	8.5	8.3	5.3	12	6.9	9.7	7.6	8.2	8.1	7.8	7.6
17	8.4	8.2	9.1	5.1	4.6	11	7.6	8.6	8.1	8.9	7.8	10
18	8.4	8.1	7.7	7.6	5.1	21	6.7	8.8	8.1	8.2	8.1	14
19	8.3	9.4	7.6	8.3	5.1	8.5	6.1	9.0	8.1	8.1	8.1	8.2
20	8.1	9.2	7.7	5.7	5.0	6.5	5.9	9.1	8.2	7.9	8.1	8.1
21	8.1	8.3	7.8	5.3	5.1	72	6.3	16	8.1	8.4	8.1	8.1
25	8.3	7.7	7.7	6.3	7.3	59	5.9	11	8.0	15	8.1	8.3
23	8.4	7.5	7.8	5.1	6.0	17	5.9	9.7	8.1	9.4	8.1	8.1
24	8.4	7.4	9.7	5.0	5.0	11	6.3	9.2	8.2	8.4	7.8	8.1
25	8.2	7.7	27	4.7	4.8	28	6.1	8.8	8.4	8.4	8.3	8.1
26	8.2	24	11	4.2	4.6	10	5.7	8.6	8.4	9.4	8.1	11
27	7.8	11	11	4.4	4.5	7.7	7.4	8.6	8.7	8.8	8.3	7.6
28	8.9	9.8	10	4.2	4.4	6.3	40	8.6	8.8	8.6	8.1	7.6
29	8.1	8.6	8.0	4.2	4.4	15	20	8.5	16	26	8.1	7.7
30	8.2	8.0	7.8	4.2		11	9.7	8.6	15	11	8.1	7.8
31	8.3		7.6	4.2		37		8.6		9.4	9.1	
TOTAL	317.0	299.3	285.7	174.9	145.1	456.6	589.8	251.1	320.8	305.2	257.9	246.8
MEAN	10.2	9.98	9.22	5.64	5.00	14.7	19.7	8.10	10.7	9.85	8.32	8.23
MAX	23	24	27	14	12	72	116	16	55	26	12	14
MIN	7.8	7.4	7.6	4.1	4.1	4.4	5.7	5.1	8.0	7.8	7.8	7.6

CAL YR 1979 TOTAL 4812.3 MEAN 13.2 MAX 455 MIN 5.5 WTR YR 1980 TOTAL 3650.2 MEAN 9.97 MAX 116 MIN 4.1

01302500 GLEN COVE CREEK AT GLEN COVE, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

33

01303000 MILL NECK CREEK AT MILL NECK, NY

LOCATION.--Lat 40°53'15", long 73°33'51", Nassau County, Hydrologic Unit 02030201, on right bank at Beaver Lake, 30 ft (9 m) upstream from Feeks Lane (Cleft Road) bridge in Mill Neck, and 1.5 mi (2.4 km) southwest of Bayville. Water-quality sampling site at discharge station.

DRAINAGE AREA .-- About 11.5 mi2 (29.8 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- January 1937 to current year.

REVISED RECORDS. -- WSP 1141: Drainage area.

GAGE.--Water-stage recorder and steel sheet-piling control. Datum of gage is 6.49 ft (1.978 m) National Geodetic Vertical Datum of 1929. Prior to June 23, 1965, at datum 0.06 ft (0.018 m) higher.

REMARKS.--Records good. Slight regulation by ponds above station.

AVERAGE DISCHARGE .-- 43 years, 9.21 ft3/s (0.261 m3/s).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 137 ft 3 /s (3.88 m 3 /s) Sept. 12, 1960, gage height, 1.60 ft (0.488 m), from rating curve extended above 70 ft 3 /s (1.98 m 3 /s); maximum gage height, 4.85 ft (1.478 m) Sept. 21, 1938 (hurricane wave); minimum discharge, 0.09 ft 3 /s (0.003 m 3 /s) Dec. 11, 1941 (result of freezeup); minimum gage height, 0.14 ft (0.043 m) Sept. 8, 1939 (result of wind action).

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 32 ft 3 /s (0.91 m 3 /s) and maximum (*):

		Disch	narge	Gage	height				narge		
Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date	Time	(ft^3/s)			
Mar. 21	2030	40	1.13	0.83	0.253	Apr. 10	0130	a*94	2.66	*1.31	0.399

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

a From rating curve extended above 70 ft3/s (1.98 ft3/s).

Minimum discharge, 6.6 ft³/s (0.19 m³/s) July 17, Sept. 9, 10, 11, 12, gage height, 0.27 ft (0.082 m).

		5130	MANOL 1	CODIC TE	MF	AN VALUES	i ILAN	CTOBER 12	12 10 32	16-10-11		
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	14	8.8	8.4	8.4	7.3	7.4	18	13	9.9	12	9.1	9.0
2	13	9.0	8.4	8.4	7.3	7.4	13	11	11	10	9.1	8.0
3	13	13	8.4	8.4	7.3	7.3	11	11	14	10	9.5	7.9
4	12	12	8.5	8.3	7.4	7.5	15	10	13	9.5	8.7	7.6
5	11	9.9	8.6	8.7	7.4	8.1	14	10	10	9.1	8.4	7.5
6	11	9.4	9.0	8.7	7.6	8.0	11	10	9.8	10	8.2	7.7
7	9.9	9.2	11	8.5	7.7	8.0	9.7	10	13	9.0	8.1	7.4
8	9.0	8.9	9.6	8.5	7.7	9.1	9.6	14	13	8.7	8.0	7.3
9	9.5	8.9	8.8	8.4	7.7	11	19	13	14	8.5	7.9	7.1
10	13	9.2	8.4	8.1	7.9	9.3	60	11	15	8.4	7.6	7.0
11	14	10	8.6	9.6	7.7	21	22	10	12	8.5	7.7	6.9
12	11	15	8.6	15	7.7	12	14	11	10	8.2	9.5	7.0
13	11	12	11	10	7.7	9.6	12	12	9.7	7.5	8.5	7.3
14	9.5	10	11	9.2	7.7	13	13	13	9.6	8.1	8.1	7.5
15	9.2	9.6	9.5	8.8	7.9	11	20	11	9.6	8.1	8.3	7.6
16	9.2	9.2	9.0	8.4	11	9.8	13	10	9.2	8.0	7.9	7.5
17	9.2	9.2	9.5	8.6	11	9.7	11	9.8	9.1	9.1	7.7	7.7
18	9.2	8.8	8.9	8.8	8.6	15	11	10	9.0	8.7	7.6	12
19	8.9	8.8	9.0	11	8.0	11	10	11	9.0	8.3	7.7	9.4
50	9.2	8.8	9.0	9.3	8.0	9.4	10	11	9.1	8.2	7.7	8.3
21	9.2	8.8	8.8	8.4	8.1	20	11	13	8.9	8.0	7.8	7.8
22	9.2	9.0	9.0	8.4	8.9	32	11	14	9.0	8.3	8.1	7.7
23	9.1	9.2	8.8	9.2	10	18	10	11	8.8	11	7.9	7.5
24	8.6	9.1	9.2	8.6	9.4	14	10	11	8.7	9.2	7.7	7.2
25	8.4	8.9	15	8.1	8.7	17	10	9.9	8.6	8.3	7.7	7.4
26	8.3	14	13	7.8	8.3	13	10	9.4	8.4	8.0	7.6	9.3
27	8.4	14	10	7.8	8.1	11	11	9.0	8.6	8.3	7.3	8.1
28	9.3	10	9.0	7.9	8.1	9.7	21	9.2	8.7	7.9	7.2	7.7
29	9.5	9.1	8.8	7.7	7.8	11	23	9.2	8.9	15	7.0	7.6
30	9.1	8.7	8.7	7.6		13	15	9.2	18	15	7.3	7.7
31	8.8		8.5	7.5		15		9.6		11	7.9	
TOTAL	313.7	300.5	292.0	272.1	238.0	378.3	448.3	336.3	315.6	287.9	248.8	235.7
MEAN	10.1	10.0	9.42	8.78	8.21	12.2	14.9	10.8	10.5	9.29	8.03	7.86
MAX	14	15	15	15	11	32	60	14	18	15	9.5	12
MIN	8.3	8.7	8.4	7.5	7.3	7.3	9.6	9.0	8.4	7.5	7.0	6.9

CAL YR 1979 TOTAL 4226.8 WTR YR 1980 TOTAL 3667.2 MEAN 11.6 MAX 75 MIN 7.9 MEAN 10.0 MAX 60 MTN 6.9

01303000 MILL NECK CREEK AT MILL NECK, NY--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

SPE-

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

11.8 48 21 12 4.3 10
6.9 39 18 9.6 3.6 16
41 17 10 4.0 12
7. 5 43 23 10 4. 3 9. 9
SOLIDS NITRO- GEN NITRATE DIS- NITRITE SOLVED TOTAL SOLVED TOTAL SOLVED TOTAL MG/L MG/
S-
000 520 400 120 10 .00
010 490 310 180 40 .10
020 500 80 .00
000 270 200 70 20 .00
BULL A F

35

01303500 COLD SPRING BROOK AT COLD SPRING HARBOR, NY

LOCATION.--Lat 40°51'26", long 73°27'50", Nassau County, Hydrologic Unit 02030201, on left bank 270 ft (82 m) upstream from State Highway 25A, at Cold Spring Harbor State Fish Hatchery, and 1.0 mi (1.6 km) southwest of village of Cold Spring Harbor.

DRAINAGE AREA . -- About 7.3 mi2 (19 km2).

PERIOD OF RECORD. -- July 1950 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 5.38 ft (1.640 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except those above 80 ft 3 /s (2.27 m 3 /s), which are fair. Flow occasionally regulated at outlet of pond 40 ft (12 m) above station. Prior to October 1978, diversion from this pond by New York State Fish Hatchery bypassed station.

AVERAGE DISCHARGE.--28 years (1951-78), 2.49 ft^3/s (0.071 m^3/s) (unadjusted).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 418 ft³/s (11.8 m³/s) Jan. 21, 1979, gage height, 1.99 ft (0.607 m) (result of regulation), from rating curve extended above 50 ft³/s (1.42 m³/s); maximum gage height, 5.34 ft (1.628 m) Aug. 31, 1954 (backwater from high tide), from high-water mark; minimum discharge, 0.20 ft³/s (0.006 m³/s) Jan. 24-27, 1967, gage height, 0.07 ft (0.021 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 100 ft³/s (2.83 ft³/s) Apr. 10, gage height, 1.30 ft (0.396 m) (result of regulation), from rating curve extended above 50 ft³/s (1.42 m³/s); maximum gage height, 2.21 ft (0.674 m) Mar. 22 (backwater from high tide); minimum discharge 1.6 ft³/s (0.045 m³/s) Feb. 23, gage height, 0.20 ft (0.061 m) (result of regulation).

					MF	AN VALUES						
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	7.8	6.0	6.0	5.7	5.1	4.0	7.6	5.9	4.2	5.1	4.9	3.0
2	8.5	8.4	5.7	5.7	5.1	4.0	6.3	5.4	4.7	4.6	4.8	3.0
3	5.7	18	5.7	5.7	5.1	4.0	5.5	5.2	7.2	4.5	5.1	3.0
3	6.0	3.7	5.7	5.7	5.3	4.0	6.9	5.0	7.9	4.5	5.1	3.1
5	6.0	4.8	5.7	5.8	5.4	4.2	6.8	4.9	5.8	4.3	4.4	3.2
6	5.1	5.4	5.8	5.8	5.4	4.4	5.9	4.8	5.0	4.3	4.2	3.4
7	4.8	5.7	6.6	6.1	5.4	4.5	5.4	4.8	5.6	4.5	4.2	3.5
8	5.8	5.7	6.2	6.8	5.4	4.2	5.4	5.5	6.3	4.4	4.2	3.5
9	6.1	5.7	6.0	6.2	5.4	4.5	18	5.5	5.3	4.3	4.2	3.4
10	7.7	5.7	5.7	5.8	5.7	4.2	29	5.1	3.9	4.6	4.2	3.4
11	7.6	6.2	5.7	5.9	5.8	6.4	5.9	4.8	4.7	5.5	4.2	3.2
12	6.4	7.0	5.5	6.6	5.4	5.4	6.5	4.8	4.4	5.1	4.2	3.2
13	6.0	6.6	6.1	6.2	5.4	4.5	6.1	5.1	4.2	4.8	4.2	3.1
14	5.8	6.2	6.4	5.9	5.4	5.4	8.0	5.1	4.2	4.5	4.2	2.8
15	5.9	6.0	6.0	5.8	5.4	4.8	8.9	5.0	4.3	4.2	4.2	2.8
16	5.6	5.8	5.7	5.7	6.4	4.5	6.9	4.8	4.1	4.1	4.2	2.6
17	5.4	5.7	5.8	5.7	6.8	4.2	6.1	4.7	4.2	4.0	4.2	4.3
18	5.4	5.7	5.7	5.7	6.2	6.0	5.8	4.6	3.8	4.0	4.0	4.8
19	5.4	5.7	5.7	6.0	5.8	5.4	5.7	4.8	3.5	4.0	2.9	3.8
20	8.5	5.7	5.7	6.0	5.7	4.8	5.5	5.5	3.1	4.0	5.0	3.3
21	7.3	5.7	5.7	5.7	5.7	15	5.2	5.7	3.6	4.0	2.3	3.2
55	5.1	5.7	5.7	5.5	5.8	18	5.1	5.8	4.0	3.7	2.5	3.2
23	4.9	5.7	5.7	5.7	4.7	4.9	4.8	5.2	4.0	3.5	2.7	3.2
24	5.0	5.7	5.9	5.4	2.7	2.2	4.2	4.8	4.0	3.5	2.8	3.2
25	5.1	6.0	7.7	5.4	4.0	3.8	4.4	4.5	3.9	3.5	3.0	3.5
26	5.4	6.7	7.2	5.2	4.1	5.2	4.8	4.1	3.9	3.5	3.1	3.3
27	5.4	7.0	6.3	5.1	4.0	4.7	5.0	3.7	4.0	3.5	3.2	3.3
28	5.7	6.4	5.8	5.1	4.1	4.5	7.0	3.7	4.0	3.2	3.2	3.4
29	5.7	6.0	5.7	5.1	4.0	4.7	8.1	3.6	4.2	6.0	3.2	3.6
30	5.7	6.0	5.7	5.1		6.1	6.8	3.2	5.4	7.5	3.2	3.7
31	5.7		5.7	5.1		6.4		3.7		5.4	3.2	
TOTAL	186.5	190.6	184.5	177.2	150.7	168.9	217.6	149.3	137.4	136.6	116.0	100.0
MEAN	6.02	6.35	5.95	5.72	5.20	5.45	7.25	4.82	4.58	4.41	3.74	3.33
MAX	8.5	18	7.7	6.8	6.8	18	29	5.9	7.9	7.5	5.1	4.8
MIN	4.8	3.7	5.5	5.1	2.7	2.2	4.2	3.2	3.1	3.2	2.0	2.6

CAL YR 1979 TOTAL 2424.4 WTR YR 1980 TOTAL 1915.3 MEAN 6.64 MAX QA MTN 2.3 MEAN 5.23 MAX 29 MTN 2.0

01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY

(National stream-quality accounting network station)

LOCATION.--Lat 40°50'58", long 73°13'29", Suffolk County, Hydrologic Unit 02030201, on left bank 0.5 mi (0.8 km) downstream from New Mill Pond, 1.0 mi (1.6 km) southwest of Smithtown, and 1.5 mi (2.4 km) southwest of village of Smithtown Branch. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 27 mi² (70 km²).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1943 to current year.

REVISED RECORDS. -- WSP 1141: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 9.59 ft (2.923 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Occasional regulation caused by cleaning of fish screens and trash racks at outlets of New Mill Pond on main stream and ponds on tributaries above station.

AVERAGE DISCHARGE. -- 37 years, 41.7 ft3/s (1.181 m3/s).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 952 ft³/s (27.0 m³/s) Jan. 22, 1979, gage height, 3.22 ft (0.981 m) (result of dam failure), from rating curve extended above 600 ft³/s (17.0 m³/s); minimum, 16 ft³/s (0.45 m³/s) June 5, 6, 1967; minimum gage height, 0.46 ft (0.140 m) Feb. 9, 1951; minimum daily, 19 ft³/s (0.54 m³/s) June 6, 1967.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 121 ft³/s (3.43 m³/s) Apr. 10, gage height, 1.14 ft (0.347 m) minimum, 29 ft³/s (0.82 m³/s) Oct. 27, gage height, 0.58 ft (0.177 m) (result of temporary construction upstream).

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND.	WATER	YEAR	OCTOBER	1979	TO	SEPTEMBER	1980
					MEAN VAL	HES						

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	64	45	45	45	41	41	76	64	47	53	49	38
2	60	46	45	45	42	41	68	60	51	52	47	37
3	61	57	45	45	43	41	61	58	58	54	47	37
4	66	59	46	45	43	38	66	45	58	50	44	36
5	59	52	47	46	44	37	67	45	53	47	43	36
6	53	49	48	46	40	40	62	48	50	47	41	36
7	50	48	54	46	39	41	58	51	54	45	40	36
8	49	48	47	46	41	43	56	61	55	45	40	35
9	50	48	47	45	42	44	63	60	53	44	40	35
10	67	48	47	45	43	44	115	57	58	44	39	35
11	69	53	47	46	43	59	96	55	55	42	41	36
12	61	67	47	54	43	52	77	56	53	42	45	36
13	57	60	44	49	43	48	67	58	49	41	43	36
14	52	53	48	47	43	52	64	56	47	41	43	36
15	50	50	48	46	43	50	64	54	47	41	42	36
16	49	48	48	45	49	48	61	53	46	41	40	36
17	49	48	47	45	49	47	60	52	46	41	39	36
18	49	48	47	45	46	64	59	52	45	41	39	46
19	48	48	47	48	44	58	58	52	44	41	39	42
20	48	47	46	46	43	53	58	52	44	41	39	39
21	48	47	45	45	43	72	57	57	44	40	40	38
22	54	47	46	46	44	97	56	58	43	40	40	37
23	77	47	47	49	45	80	55	55	43	40	39	36
24	52	42	48	46	45	62	55	53	43	40	39	36
25	48	43	59	45	39	66	55	51	42	40	39	36
26	39	50	56	44	38	64	64	50	42	39	39	41
27	34	52	51	44	40	58	61	49	43	39	38	39
28	41	49	48	44	41	55	81	47	45	38	38	38
29	46	47	47	44	41	55	86	46	44	67	37	37
30	41	46	46	43		58	74	45	62	78	38	37
31	43		46	40		61		47		59	38	
TOTAL	1634	1492	1479	1415	1240	1669	2000	1647	1464	1413	1265	1115
MEAN	52.7	49.7	47.7	45.6	42.8	53.8	66.7	53.1	48.8	45.6	40.8	37.2
MAX	77	67	59	54	49	97	115	64	62	78	49	46
MIN	34	42	44	40	38	37	55	45	42	38	37	35

CAL YR 1979 TOTAL 21022 MEAN 57.6 MAX 334 MIN 34 WTR YR 1980 TOTAL 17833 MEAN 48.7 MAX 115 MIN 34

01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- February 1967 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: December 1978 to current year. WATER TEMPERATURES: January 1978 to current year.

CDE-

INSTRUMENTATION.--Water-quality monitor and temperature recorder since December 1978.

REMARKS.--In addition to the water-quality monitor record, samples were collected approximately once a month. Prior to October 1978, water temperature measurements were made daily by a local observer. Interruptions in the record were due to malfunctions of the instrument. Unpublished records of specific conductance and water temperatures are available in files of the Long Island Sub-district office.

COOPERATION.--Some water-quality analyses for this station were collected and analyzed by Suffolk County Department of Health Services. They are identified in the table by an asterisk (*).

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

COL I-

STREP-

		STREAM- FLOW, INSTAN-	SPE- CIFIC CON- DUCT- ANCE	РН	TEMPER-	TUR- BID-	OXYGEN, DIS-	FORM, FECAL, O. 7 UM-MF	TOCOCCI FECAL, KF AGAR (COLS.	HARD- NESS (MG/L	HARD- NESS, NONCAR- BONATE
	TIME	TANEOUS	(MICRO-	FIELD	WATER	ITY	SOLVED	(COLS. /	PER	AS	(MG/L
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	(NTU)	(MG/L)	100 ML)	100 ML)	CACO3)	CACO3)
NOV											
27	1000	52	128	7.0	12.0	1.0	9.4	38	30	25	17
DEC										92.5	1
11	1000	47	95	5.8	5. 5	1.0	11.8	30	K9	24	0
12. *.	1510	47	112	6.7	6.0		11.5			22	12
JAN 30	1300	44	128	6. 5	4. 0	. 30	12. 9	K1	<1	25	13
FEB	1500	77	120	0. 0	4.0	. 50	14. /	1,2			
27	1245	41	150	6. 3	3. 5	. 50	12.0	кз	K6	24	8
MAR		112			2.1						
05. *.	0900	37	140	6. 5	4. 0		11.4			27	14
APR											
22	1030	56	160	6. 2	15.5	1.0	10.4	K4	K2	28	12
MAY	22.2	25	422	1 2 2		4.4			***		10
13	0900	58	139	5. 8	15. 5	1.1		51	K12	28	12
JUN 04	0900	60	128	6. 4	18.0	. 25	8.8	170	60	24	8
05. *.	1400	51	106	6. 5	19.0	. 23	8. 5	170		21	8
26	1030	42	122	6. 7	21.0	. 50	8.7	K10	48	25	15
JUL	1000			G. 7		. 00	-		12		
16	0930	41	118	6.6	21.0		8. 8	K32	800		
30	0830	83	120	6. 5	20.0	1.2	6.7	220	320	26	8
AUG											
13	0900	42	115	6.0	21.0	. 60	7. 9	K26	330	23	5
SEP											
09. *.	1300	36	113	6.6	18.0		7. 7			25	12
17	0845	36	115	6. 5	16.0	. 25	8. 6	69	K5000	55	11

K Results based on colony counts outside the acceptable range (non-ideal colony count).

01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY--Continued

DATE	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
NOV					1.7		_				0.0
27 DEC		6.6		2. 1	11	1.4	8	8. 8	16	. 0	8. 3
11		6. 3		2. 1	12	1.5	25	9. 2	16	. 0	8. 8
12 JAN	5. 3	5. 3	2. 2	2. 2	9. 6	1.5	10	4. 6	15		-
30		6. 4		2. 3	11	1.2	12	11	16	. 1	8. 1
FEB 27		6. 1		2.2	13	1.4	16	8. 4	19	. 0	8. 1
MAR											
05 APR	6, 2	6. 2	2. 8	2. 8	12	1. 1	13	5. 6	18	<. 5	
22		7. 1		2. 4	13	1.5	16	9.8	19	. 0	6.8
MAY 13		7. 2		2. 5	15	1.1	16	9. 8	19	. 0	7. 3
JUN											
04	5. 2	6. 1 5. 2	2. 0	2. 2	13 9. 0	1.1	16	11 5. 2	16 15	. 0	6. 5
26		6. 4		2. 3	12	1.1	10	7.8	17	. 0	6. 4
JUL 16			44								
30		6. 3		2. 5	12	1.2	18	8. 9	15	. 1	6.8
AUG 13		5. 5		2. 3	11	1.1	18	7. 1	14	. 1	8. 2
SEP											
09	6. 0	6. 0 5. 5	2. 4	2.4	10 9. 9	1.0	13	5. 3 8. 2	15 14	. 1	7.6
DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, ND2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, DRGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + DRGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)
NOV	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L AS P)
	RESIDUE AT 180 DEG. C DIS- SOLVED	SUM OF CONSTI- TUENTS, DIS- SOLVED	GEN, NITRATE TOTAL (MG/L	GEN, NITRITE TOTAL (MG/L	GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, TOTAL (MG/L	PHORUS, TOTAL (MG/L	PHORUS, DIS- SOLVED (MG/L
NOV 27 DEC 11	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, ND2+ND3 TOTAL (MG/L AS N) 1.6	GEN, AMMONIA TOTAL (MG/L AS N) . 070	GEN, DRGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + DRGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N) 1.8	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L AS P)
NOV 27 DEC	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, ND2+ND3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, DRGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + DRGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L AS P)
NOV 27 DEC 11 12 JAN 30	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, ND2+ND3 TOTAL (MG/L AS N) 1.6	GEN, AMMONIA TOTAL (MG/L AS N) . 070	GEN, DRGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + DRGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N) 1.8	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L AS P)
NOV 27 DEC 11 12 JAN 30 FEB 27	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, ND2+NO3 TOTAL (MG/L AS N) 1.6 1.7	GEN, AMMONIA TOTAL (MG/L AS N) . 070 . 030 . 040	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + DRGANIC TOTAL (MG/L AS N) . 23 . 27 . 20	GEN, TOTAL (MG/L AS N) 1.8 2.0	PHORUS, TOTAL (MG/L AS P) . 010 . 000 . 009	PHORUS, DIS- SOLVED (MG/L AS P) . 000 . 010 . 012
NOV 27 DEC 11 12 JAN 30 FEB 27 MAR	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 82 77 76	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 66 79 	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, ND2+ND3 TOTAL (MG/L AS N) 1.6 1.7 	GEN, AMMONIA TOTAL (MG/L AS N) . 070 . 030 . 040	GEN, DRGANIC TOTAL (MG/L AS N) .16 .24 .14	GEN. AM- MONIA + ORGANIC TOTAL (MG/L AS N) . 23 . 27 . 20 . 28	GEN, TOTAL (MG/L AS N) 1.8 2.0	PHORUS, TOTAL (MG/L AS P) .010 .000 .009	PHORUS, DIS- SOLVED (MG/L AS P) . 000 . 010 . 012
NOV 27. DEC 11. 12. JAN 30. FEB 27. MAR 05. APR	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 82 77 76	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 66 79 71 70	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N) 1. 6 1. 7 1. 4 1. 3	GEN, AMMONIA TOTAL (MG/L AS N) . 070 . 030 . 060 . 040 . 040	GEN, DRGANIC TOTAL (MG/L AS N) .16 .24 .14 .24 .09	GEN. AM- MONIA + DORGANIC TOTAL (MG/L AS N) . 23 . 27 . 20 . 28 . 13	GEN, TOTAL (MG/L AS N) 1. 8 2. 0 1. 7 1. 4	PHORUS, TOTAL (MG/L AS P) . 010 . 000 . 007 . 010 . 010	PHORUS, DIS- SOLVED (MG/L AS P) .000 .010 .012 .010 .010
NOV 27. DEC 11. 12. JAN 30. FEB 27. MAR 05. APR 22. MAY	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 82 77 76 77	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 66 79 71 70 76	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, ND2+ND3 TOTAL (MG/L AS N) 1. 6 1. 7 1. 4 1. 3	GEN, AMMONIA TOTAL (MG/L A5 N) . 070 . 030 . 060 . 040	GEN, DRGANIC TOTAL (MG/L AS N) .16 .24 .14 .24 .09	GEN. AM- MONIA + DRGANIC TOTAL (MG/L AS N) . 23 . 27 . 20 . 28 . 13 . 20 . 24	GEN, TOTAL (MG/L AS N) 1. 8 2. 0 1. 7 1. 4 1. 5	PHORUS, TOTAL (MG/L AS P) .010 .000 .007 .010 .010 .009	PHORUS, DIS- SOLVED (MG/L AS P) .000 .010 .012 .010 .003
NOV 27 DEC 11 12 JAN 30 FEB 27 MAR 05 APR 22 MAY 13	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 82 77 76	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 66 79 71 70	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N) 1. 6 1. 7 1. 4 1. 3	GEN, AMMONIA TOTAL (MG/L AS N) . 070 . 030 . 060 . 040 . 040	GEN, DRGANIC TOTAL (MG/L AS N) .16 .24 .14 .24 .09	GEN. AM- MONIA + DORGANIC TOTAL (MG/L AS N) . 23 . 27 . 20 . 28 . 13	GEN, TOTAL (MG/L AS N) 1. 8 2. 0 1. 7 1. 4	PHORUS, TOTAL (MG/L AS P) . 010 . 000 . 007 . 010 . 010	PHORUS, DIS- SOLVED (MG/L AS P) .000 .010 .012 .010 .010
NOV 27DEC 11JAN 30FEB 27MAR 05APR 22MAY 13JUN	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 82 77 76 77 87 77	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 66 79 71 70 76	GEN, NITRATE TOTAL (MG/L AS N) 2.3 3.0	GEN, NITRITE TOTAL (MG/L AS N)009008	GEN, NO2+NO3 TOTAL (MG/L AS N) 1. 6 1. 7 1. 4 1. 3	GEN, AMMONIA TOTAL (MG/L AS N) . 070 . 030 . 060 . 040 . 040 . 010 . 030	GEN, DRGANIC TOTAL (MG/L AS N) .16 .24 .14 .24 .09 .14 .23 .24	GEN. AM- MONIA + DORGANIC TOTAL (MG/L AS N) . 23 . 27 . 20 . 28 . 13 . 20 . 24 . 27	GEN, TOTAL (MG/L AS N) 1. 8 2. 0 1. 7 1. 4 1. 5	PHORUS, TOTAL (MG/L AS P) .010 .000 .007 .010 .009 .020 .020	PHORUS, DIS— SOLVED (MG/L AS P) .000 .010 .012 .010 .003 .010
DEC 11	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 82 77 76 77 87 77 87	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 66 79 71 70 76 77	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)009008008	GEN, ND2+ND3 TOTAL (MG/L AS N) 1. 6 1. 7 1. 4 1. 3 1. 3 1. 1	GEN, AMMONIA TOTAL (MG/L AS N) . 070 . 030 . 060 . 040 . 040 . 060 . 010 . 030 . 090 . 120	GEN, DRGANIC TOTAL (MG/L AS N) .16 .24 .14 .24 .09 .14 .23 .24	GEN. AM- MONIA + DORGANIC TOTAL (MG/L AS N) . 23 . 27 . 20 . 28 . 13 . 20 . 24 . 27 . 39 . 80	GEN, TOTAL (MG/L AS N) 1. 8 2. 0 1. 7 1. 4 1. 5 1. 4	PHORUS, TOTAL (MG/L AS P) .010 .000 .007 .010 .007 .020 .020	PHORUS, DIS— SOLVED (MG/L AS P) . 000 . 010 . 010 . 010 . 010 . 010 . 010 . 010
NOV 27DEC 11JAN 30FEB 27MAR 05APR 22MAY 13JUN 040405JUL	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 82 77 76 77 87 77	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 66 79 71 70 76 77 71 65	GEN, NITRATE TOTAL (MG/L AS N) 2. 3 3. 0 1. 5	GEN, NITRITE TOTAL (MG/L AS N)009008	GEN, NO2+NO3 TOTAL (MG/L AS N) 1. 6 1. 7 1. 4 1. 3 1. 3 1. 1 1. 2 1. 3	GEN, AMMONIA TOTAL (MG/L AS N) .070 .030 .060 .040 .040 .010 .030 .090 .120 .040	GEN, DRGANIC TOTAL (MG/L AS N) .16 .24 .14 .24 .09 .14 .23 .24 .30 .68 .22	GEN. AM- MONIA + DORGANIC TOTAL (MG/L AS N) . 23 . 27 . 20 . 28 . 13 . 20 . 24 . 27 . 39 . 80 . 26	GEN, TOTAL (MG/L AS N) 1. 8 2. 0 1. 7 1. 4 1. 5 1. 4	PHORUS, TOTAL (MG/L AS P) .010 .000 .007 .010 .009 .020 .020	PHORUS, DIS— SOLVED (MG/L AS P) .000 .010 .010 .010 .010 .010 .010 .01
NOV 27 DEC 11 12 JAN 30 FEB 27 MAR 22 MAY 13 JUN 04 05 26 JUL	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 82 77 76 77 87 77 87 83	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 66 79 71 70 76 77 71 65	GEN, NITRATE TOTAL (MG/L AS N) 2.3 3.0	GEN, NITRITE TOTAL (MG/L AS N) 009 008 019	GEN, ND2+ND3 TOTAL (MG/L AS N) 1. 6 1. 7 1. 4 1. 3 1. 3 1. 1 1. 2 1. 3	GEN, AMMONIA TOTAL (MG/L AS N) . 070 . 030 . 060 . 040 . 060 . 010 . 030 . 090 . 120 . 040	GEN, DRGANIC TOTAL (MG/L AS N) .16 .24 .14 .24 .09 .14 .23 .24 .30 .68 .22	GEN. AM- MONIA + DORGANIC TOTAL (MG/L AS N) .23 .27 .20 .28 .13 .20 .24 .27 .39 .80 .26	GEN, TOTAL (MG/L AS N) 1. 8 2. 0 1. 7 1. 4 1. 5 1. 4	PHORUS, TOTAL (MG/L AS P) .010 .000 .009 .010 .007 .020 .020 .010 .007 .020	PHORUS, DIS— SOLVED (MG/L AS P) . 000 . 010 . 010 . 010 . 010 . 010 . 010 . 010
NOV 27 DEC 11 12 JAN 30 FEB 27 MAR 22 MAY 13 JUN 04 05 26 JUL 16 30 AUG	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 82 77 76 77 87 77 83 83	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 66 79 71 70 76 77 71 65	GEN, NITRATE TOTAL (MG/L AS N) 2. 3 3. 0 1. 5	GEN, NITRITE TOTAL (MG/L AS N)009008019019	GEN, NO2+NO3 TOTAL (MG/L AS N) 1. 6 1. 7 1. 4 1. 3 1. 3 1. 1 1. 2 1. 3	GEN, AMMONIA TOTAL (MG/L AS N) .070 .030 .060 .040 .040 .010 .030 .090 .120 .040	GEN, DRGANIC TOTAL (MG/L AS N) .16 .24 .14 .24 .09 .14 .23 .24 .30 .68 .22 .36	GEN. AM- MONIA + DORGANIC TOTAL (MG/L AS N) . 23 . 27 . 20 . 28 . 13 . 20 . 24 . 27 . 39 . 80 . 26 46	GEN, TOTAL (MG/L AS N) 1. 8 2. 0 1. 7 1. 4 1. 5 1. 4 1. 6 1. 6	PHORUS, TOTAL (MG/L AS P) .010 .000 .007 .010 .010 .020 .020 .020 .020 .020	PHORUS, DIS— SOLVED (MG/L AS P) .000 .010 .010 .010 .010 .010 .010 .01
NOV 27 DEC 11 12 JAN 30 FEB 27 MAR 22 MAY 13 JUN 04 05 26 JUL 16 30 AUG 13	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 82 77 76 77 87 77 87 83	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 66 79 71 70 76 77 71 65	GEN, NITRATE TOTAL (MG/L AS N) 2. 3 3. 0 1. 5	GEN, NITRITE TOTAL (MG/L AS N) 009 008 019	GEN, ND2+ND3 TOTAL (MG/L AS N) 1. 6 1. 7 1. 4 1. 3 1. 3 1. 1 1. 2 1. 3	GEN, AMMONIA TOTAL (MG/L AS N) . 070 . 030 . 060 . 040 . 060 . 010 . 030 . 090 . 120 . 040	GEN, DRGANIC TOTAL (MG/L AS N) .16 .24 .14 .24 .09 .14 .23 .24 .30 .68 .22	GEN. AM- MONIA + DORGANIC TOTAL (MG/L AS N) .23 .27 .20 .28 .13 .20 .24 .27 .39 .80 .26	GEN, TOTAL (MG/L AS N) 1. 8 2. 0 1. 7 1. 4 1. 5 1. 4	PHORUS, TOTAL (MG/L AS P) .010 .000 .009 .010 .007 .020 .020 .010 .007 .020	PHORUS, DIS— SOLVED (MG/L AS P) . 000 . 010 . 010 . 010 . 010 . 010 . 010 . 010
NOV 27 DEC 11 12 JAN 30 FEB 27 MAR 22 MAY 13 JUN 04 05 26 JUL 16 30 AUG	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 82 77 76 77 87 77 83 83	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 66 79 71 70 76 77 71 65	GEN, NITRATE TOTAL (MG/L AS N) 2. 3 3. 0 1. 5	GEN, NITRITE TOTAL (MG/L AS N)009008019019	GEN, NO2+NO3 TOTAL (MG/L AS N) 1. 6 1. 7 1. 4 1. 3 1. 3 1. 1 1. 2 1. 3	GEN, AMMONIA TOTAL (MG/L AS N) .070 .030 .060 .040 .040 .010 .030 .090 .120 .040	GEN, DRGANIC TOTAL (MG/L AS N) .16 .24 .14 .24 .09 .14 .23 .24 .30 .68 .22 .36	GEN. AM- MONIA + DORGANIC TOTAL (MG/L AS N) . 23 . 27 . 20 . 28 . 13 . 20 . 24 . 27 . 39 . 80 . 26 46	GEN, TOTAL (MG/L AS N) 1. 8 2. 0 1. 7 1. 4 1. 5 1. 4 1. 6 1. 6	PHORUS, TOTAL (MG/L AS P) .010 .000 .007 .010 .010 .020 .020 .020 .020 .020	PHORUS, DIS— SOLVED (MG/L AS P) .000 .010 .010 .010 .010 .010 .010 .01

01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY--Continued

DATE	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COBALT, DIS- SOLVED (UG/L AS CO)
2		110 1107	no no	NO DAY	HO DHY	HO CD7	no up,	no our	110 0117	110 007	
NOV											
27											
DEC 11		0	0	100	20	0	1	20	10	0	0
12	<. 002										
JAN											
30											
FEB 27		-	- Contract				- 22				
MAR		100-			-		77	-		11.2	
05	C. 002	-			-						
APR											
22			0	<50	20	0	0	30	20	0	2
13					22						
JUN											
04											
05	<. 002							77			
26 JUL		0	0	<50	40	0	0	10	<10	0	0
16								24	4		
30											
AUG											
13			2	<50	0	0	0	20	<10	0	0
SEP 09	<. 002	22									
17	C. 002										
DATE	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)
NOV	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	NESE, TOTAL RECOV- ERABLE (UG/L	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L
NOV 27	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	NESE, TOTAL RECOV- ERABLE (UG/L	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L
NOV 27 DEC	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)
NOV 27	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L
NOV 27 DEC 11 12 JAN	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)
NOV 27 DEC 11 12 JAN 30	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)
NOV 27 DEC 11 12 JAN 30 FEB	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (VG/L AS FE)	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)
NOV 27 DEC 11 12 JAN 30 FEB 27	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)
NOV 27 DEC 11 12 JAN 30 FEB	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (VG/L AS FE)	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)
NOV 27 DEC 11 12 JAN 30 FEB 27 MAR 05 APR	TOTAL RECOV- REABLE (UG/L AS CU) 1	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE) 110 110 <50	DIS- SOLVED (UG/L AS FE) 50 70 <50	TOTAL RECOV- ERABLE (VG/L AS PB) O	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, D1S- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (VG/L AS HG) <.1	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI) 1
NOV 27DEC 1112JAN 30FEB 27MAR 05APR 22	TOTAL RECOV- ERABLE (UG/L AS CU) 1	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UG/L AS FE) 50 70	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)
NOV 27 DEC 11 JAN 30 FEB 27 MAR 05 APR 22 MAY	TOTAL RECOV- REABLE (UG/L AS CU) 1	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE) 110 110 <50	DIS- SOLVED (UG/L AS FE) 50 70 <50	TOTAL RECOV- ERABLE (VG/L AS PB) O	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, D1S- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (VG/L AS HG) <.1	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI) 1
NOV 27DEC 11JAN 30FEB 27MAR 05APR 22MAY JUN	TOTAL RECOV- ERABLE (UG/L AS CU) 1 3	DIS- SOLVED (UG/L AS CU) 1 3	TOTAL RECOV- ERABLE (UG/L AS FE) 110 110 <50 260	DIS- SOLVED (UG/L AS FE) 50 70 <50 140	TOTAL RECOV- ERABLE (VG/L AS PB) O	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (VG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN) 30 40 130	TOTAL RECOV- REABLE (UG/L AS HG) 1	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI) 1 0
NOV 27. DEC 11. 12. JAN 30. FEB 27. MAR 05. APR 22. MAY 13. JUN 04.	TOTAL RECOV- REABLE (UG/L AS CU) 1 1 3	DIS- SOLVED (UG/L AS CU) 1 3	TOTAL RECOV-ERABLE (UG/L AS FE) 110 110 <50 260	DIS- SOLVED (UG/L AS FE) 50 70 <50 140	TOTAL RECOV- ERABLE (VG/L AS PB) O	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (VG/L AS MN)	NESE, D1S- SOLVED (UG/L AS MN) 30 40 130	TOTAL RECOV- ERABLE (UG/L AS HG) 1 1	DIS- SOLVED (UG/L AS HG) <.1 .1	TOTAL RECOV- ERABLE (UG/L AS NI) 1 0
NOV 27. DEC 11. 12. JAN 30. FEB 27. MAR 05. APR 22. MAY 13. JUN 04. 05.	TOTAL RECOV- REABLE (UG/L AS CU) 1 33	DIS- SOLVED (UG/L AS CU) 1 3	TOTAL RECOV-ERABLE (UG/L AS FE) 110 110 <50 260 350	DIS- SOLVED (UG/L AS FE) 50 70 <50 140 250	TOTAL RECOV-ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 30 30 50 160 80	NESE, D1S- SOLVED (UG/L AS MN) 30 40 130 60	TOTAL RECOV- ERABLE (VG/L AS HG) <.111	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI) 1 0
NOV 27 DEC 11 12 JAN 30 FEB 27 MAR 05 APR 22 MAY 13 JUN 04 05 26	TOTAL RECOV- REABLE (UG/L AS CU) 1 1 3	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV-ERABLE (UG/L AS FE) 110 110 <50 260	DIS- SOLVED (UG/L AS FE) 50 70 <50 140	TOTAL RECOV- ERABLE (UG/L AS PB) 0 2	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (VG/L AS MN)	NESE, D1S- SOLVED (UG/L AS MN) 30 40 130	TOTAL RECOV- ERABLE (UG/L AS HG) 1 1	DIS- SOLVED (UG/L AS HG) <.1 .1	TOTAL RECOV- ERABLE (UG/L AS NI) 1 0
NOV 27 DEC 11 12 JAN 30 FEB 27 MAR 05 APR 22 MAY 13 JUN 04 05 26 JUL	TOTAL RECOV- REABLE (UG/L AS CU) 1 1 3 1	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV-ERABLE (UG/L AS FE) 110 110	DIS- SOLVED (UG/L AS FE) 50 70 <50 140 250 100	TOTAL RECOV- ERABLE (UG/L AS PB) 0 2 1	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (VG/L AS MN) 30 30 50 160 80 70	NESE, D1S- SOLVED (UG/L AS MN) 30 40 130 60 50	TOTAL RECOV- REABLE (UG/L AS HG) -1 -1 -	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI) 1 0
NOV 27. DEC 11. 12. JAN 30. FEB 27. MAR 05. APR 22. MAY 13. JUN 04. 05. 26. JUL 16.	TOTAL RECOV- REABLE (UG/L AS CU) 1 33	DIS- SOLVED (UG/L AS CU) 1 3	TOTAL RECOV-ERABLE (UG/L AS FE) 110 110 <50 260 350	DIS- SOLVED (UG/L AS FE) 50 70 <50 140 250	TOTAL RECOV-ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 30 30 50 160 80	NESE, D1S- SOLVED (UG/L AS MN) 30 40 130 60	TOTAL RECOV- ERABLE (VG/L AS HG) <.111	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI) 1 0
NOV 27. DEC 11. 12. JAN 30. FEB 27. MAR 05. APR 22. MAY 13. JUN 04. 05. 26. JUL 16. 30. AUG	TOTAL RECOV- REABLE (UG/L AS CU) 1 3 1 1 1	DIS- SOLVED (UG/L AS CU) 1 3 1	TOTAL RECOV-ERABLE (UG/L AS FE) 110 110 < 50 260 350 220	DIS- SOLVED (UG/L AS FE) 50 70 <50 140 250 100	TOTAL RECOV-ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (VG/L AS MN) 30 30 50 160 80 70	NESE, D1S- SOLVED (UG/L AS MN) 30 40 130 60 50	TOTAL RECOV- REABLE (UG/L AS HG) -1 -1 -	DIS- SOLVED (UG/L AS HG) .1 .1	TOTAL RECOV- ERABLE (UG/L AS NI) 1 0 3
NOV 27. DEC 11. 12. JAN 30. FEB 27. MAR 05. APR 22. MAY 13. JUN 04. 05. 26. JUL 16. 30. AUG 30. AUG 30.	TOTAL RECOV- REABLE (UG/L AS CU) 1 3 1 1	DIS- SOLVED (UG/L AS CU) 1 3 1	TOTAL RECOV-ERABLE (UG/L AS FE) 110 110 < 50 260 350 220	DIS- SOLVED (UG/L AS FE) 50 70 <50 140 250 100	TOTAL RECOV-ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (VG/L AS MN) 30 30 50 160 80 70	NESE, D1S- SOLVED (UG/L AS MN) 30 40 130 60 50	TOTAL RECOV- REABLE (UG/L AS HG) -1 -1 -	DIS- SOLVED (UG/L AS HG) .1 .1	TOTAL RECOV- ERABLE (UG/L AS NI) 1 0 3
NOV 27. DEC 11. 12. JAN 30. FEB 27. MAR 05. APR 22. MAY 13. JUN 04. 05. JUL 16. 30. AUG 13. SEP	TOTAL RECOV- REABLE (UG/L AS CU) 1 3 1 1 1	DIS- SOLVED (UG/L AS CU) 1 3 1 1	TOTAL RECOVERABLE (UG/L AS FE)	DIS- SOLVED (UG/L AS FE) 50 70 <50 140 250 100	TOTAL RECOV-ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 30 30 50 160 80 70 140	NESE, D1S- SOLVED (UG/L AS MN) 30 40 130 40 130 40 40	TOTAL RECOV- REABLE (UG/L AS HG) -1 -1 -	DIS- SOLVED (UG/L AS HG) (.1 .1	TOTAL RECOV-ERABLE (UG/L AS NI)
NOV 27. DEC 11. 12. JAN 30. FEB 27. MAR 05. APR 22. MAY 13. JUN 04. 05. 26. JUL 16. 30. AUG 30. AUG 30.	TOTAL RECOV- REABLE (UG/L AS CU) 1 3 1 1 3	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV-ERABLE (UG/L AS FE) 110 110 <50 260 350 220	DIS- SOLVED (UG/L AS FE) 50 70 <50 140 250 100	TOTAL RECOV- ERABLE (UG/L AS PB) 0 2 1	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (VG/L AS MN) 30 30 50 160 80 70	NESE, D1S- SOLVED (UG/L AS MN) 30 40 130 60 50	TOTAL RECOV- REABLE (UG/L AS HG) -1 -1 -	DIS- SOLVED (UG/L AS HG) (.1 .1	TOTAL RECOV- ERABLE (UG/L AS NI) 1 0 3

01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY--Continued

DATE	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED (MG/L AS C)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
NOV											
27					22		100	1.5			5.2
DEC								1. 5		77	
11	0	O	0	0	0	50	30		3. 3	. 1	
12 JAN											<. 02
30				0		-		. 5			
FEB											
27								1.4			
MAR											
05 APR											<. 02
22 MAY	0		0	0	0	10	10		2. 5	. 8	
13			22	0				2. 9			
JUN				v				2. 7			
04								. 8			
05											. 02
26	0	0	0	0	0	10	20		2.0	. 6	
JUL											
16											
30								2. 9			
AUG											
13 SEP	1		0	0	0	10	10				
09											<. 02
17				1				1.3			

41

STREAMS ON LONG ISLAND 01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C). WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAY	мдх	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	RY		MARCH			APRIL			MAY	
1												5.53
2												
4												
5												
6										1000		
7												
8												
10												
11												
12												
13												
14										150	145	148
15										146	142	144
16										144	141	142
17 18										146	143	145
19										146	145	145
20										145 146	141	143
21												
22										144	135	140
23										142	137 139	138
24										145	140	143
25										142	131	137
26										136	131	133
27 28										131	130	131
29										132	130	131
30										132 131	130 129	131 130
31										132	128	129
MONTH										154	128	139
DAY	MAX	MIN	MEAN									
		JUNE			JULY			AUGUST			SEPTEMA	FR
1	128	122	124			222	100					
1 2 3 4 5	129	123	126 127	122	119 118	120 120	120 116	116	118	120	112	115
3	130	118	127	118	112	115	118	113 114	115 115	117 115	108	110 110
4	128	122	124	112	109	110	119	116	118	108	103	105
	122	118	120	114	109	111	118	114	116	102	97	99
6 7	120	117	118	112	107	109	118	115	117	101	98	99
8	155	114	120	108	106	107	120	115	117	102	97	100
9	119	115	121 117	108 108	105 105	106	125 120	119 113	122	96	94	95
10	155	119	121	121	108	115	119	113	115 116	101 98	94	95 96
11	121	117	119	122	117	119						
12	119	114	117	155	116	119	115 116	112	114 114	97 100	93	95 95
13	123	119	121	117	115	116	116	113	114	107	98	103
14 15	123 121	121 119	122 120	118 118	114 116	116 117	119	113	115	117	107	111
		1.2					118	114	116	118	115	116
16 17	120 117	117	118 117	117 117	115	116	113	107	109	120	116	117
18	119	117	118	117	116 115	116 116	107 111	105 107	106	119 119	113	115 117
19	121	118	119	118	116	117	110	108	109	118	115	117
20	121	117	120	118	116	117	109	106	108	118	114	116
21	118	115	116	118	116	117	106	104	105	117	113	114
55	118	115	116	117	115	116	106	104	105	121	116	118
23 24	120 123	118 119	118 120	115 114	114	114	105	103	104	123	115	118
25	124	120	122	114	112	113	109 111	103 107	105 109	118 118	114	116 117
26	124	122	123	114	112	113						
27	155	117	120	114	113	113	116 121	109 111	112	124 127	115 123	118 125
28 29	120	117	118	113	112	113	140	119	133	122	115	118
30	118 124	107	117 120	122 128	101 121	113 124	139	135	136	116	114	115
31				125	119	122	135 123	123 115	130 118	116	115	115
MONTH	130	103	120									
	130	103	150	128	101	115	140	103	115	127	92	110
									17-2		1-	

01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY--Continued

TEMPERATURE, WATER (DEG. C). WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAY	MAX	MIN	MEAN	мах	MIN	MEAN	MAX	MIN	MFAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCH			APRIL			MAY	
1												
1												
3												
5												
6												
7												
9												
10												
10											100	
11												
12												
13										18.0	15.5	17.0
14										18.5	16.0	17.0 16.5
13										10.0	15.5	10.5
16										18.5	15.0	16.5
17										19.5	15.0	17.0
18										17.0	16.0	16.5
19										18.5	16.0	17.0
20										19.0	16.5	18.0
21										18.0	16.0	16.5
5.5										18.0	15.5	17.0
23										19.0	16.5	18.0
24 25										20.0	18.0	19.0
73										19.5	17.5	18.5
26										18.5	16.0	17.5
27										18.5	15.5	17.0
28										18.0	15.5	17.0
29										19.0	16.0	17.5
30 31										18.0	16.0	17.0
.71										17.5	16.0	17.0
MONTH										20.0	15.0	17.0
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX		MEAN	MAX		MEAN	MAX			MAX		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	AUGUST		MAX	MIN SEPTEMA	ER
1	18.5	JUNE 16.0	17.5	21.5	JULY 19.0	20.0	22.5	AUGUST	21.0	22.5	SEPTEMA 20.0	21.5
1	18.5 19.0	JUNE 16.0 17.5	17.5 18.5	21.5	JULY 19.0 19.5	20.0	22.5 22.5	AUGUST 20.0 20.5	21.0 21.5	22.5 23.0	20.0 20.5	21.5 22.0
1 2 3	18.5 19.0 20.0	JUNE 16.0 17.5 17.5	17.5 18.5 18.5	21.5 22.0 20.0	JULY 19.0 19.5 20.0	20.0 20.5 20.0	22.5 22.5 24.0	20.0 20.5 21.0	21.0 21.5 22.5	22.5 23.0 22.0	20.0 20.5 20.5	21.5 22.0 21.0
1 2 3	18.5 19.0 20.0 18.5	JUNE 16.0 17.5 17.5 17.5	17.5 18.5 18.5 18.0	21.5 22.0 20.0 21.5	JULY 19.0 19.5 20.0 19.5	20.0 20.5 20.0 20.5	22.5 22.5 24.0 24.0	AUGUST 20.0 20.5 21.0 21.5	21.0 21.5 22.5 22.5	22.5 23.0 22.0 22.0	20.0 20.5 20.5 19.5	21.5 22.0 21.0 20.5
1 2 3 4 5	18.5 19.0 20.0 18.5 18.5	JUNE 16.0 17.5 17.5 17.5	17.5 18.5 18.5 18.0 17.5	21.5 22.0 20.0 21.5 23.5	JULY 19.0 19.5 20.0 19.5 19.5	20.0 20.5 20.0	22.5 22.5 24.0	AUGUST 20.0 20.5 21.0 21.5 21.5	21.0 21.5 22.5 22.5 23.0	22.5 23.0 22.0 22.0 20.5	20.0 20.5 20.5 19.5 19.5	21.5 22.0 21.0 20.5 20.0
1 2 3 4 5	18.5 19.0 20.0 18.5 18.5	JUNE 16.0 17.5 17.5 17.5 17.0	17.5 18.5 18.5 18.0 17.5	21.5 22.0 20.0 21.5 23.5	JULY 19.0 19.5 20.0 19.5 19.5	20.0 20.5 20.0 20.5 21.5	22.5 22.5 24.0 24.0 25.0	20.0 20.5 21.0 21.5 21.5	21.0 21.5 22.5 22.5 23.0 23.5	22.5 23.0 22.0 22.0 20.5	20.0 20.5 20.5 19.5 19.5	21.5 22.0 21.0 20.5 20.0
1 2 3 4 5	18.5 19.0 20.0 18.5 18.5	JUNE 16.0 17.5 17.5 17.5 17.0	17.5 18.5 18.5 18.0 17.5	21.5 22.0 20.0 21.5 23.5	JULY 19.0 19.5 20.0 19.5 19.5	20.0 20.5 20.0 20.5 21.5	22.5 22.5 24.0 24.0 25.0 25.0	AUGUST 20.0 20.5 21.0 21.5 21.5 22.5 22.0	21.0 21.5 22.5 22.5 23.0 23.5 23.0	22.5 23.0 22.0 22.0 20.5	20.0 20.5 20.5 19.5 19.5	21.5 22.0 21.0 20.5 20.0
1 2 3 4 5	18.5 19.0 20.0 18.5 18.5	JUNE 16.0 17.5 17.5 17.5 17.0 16.0 17.0 15.5	17.5 18.5 18.5 18.0 17.5	21.5 22.0 20.0 21.5 23.5 22.0 21.5 21.5	JULY 19.0 19.5 20.0 19.5 19.5 20.0 19.5 19.5	20.0 20.5 20.0 20.5 21.5 21.0 20.0 20.0	22.5 22.5 24.0 24.0 25.0 25.0 24.5 24.5	AUGUST 20.0 20.5 21.0 21.5 21.5 22.5 22.0 22.0	21.0 21.5 22.5 22.5 23.0 23.5 23.0 23.0	22.5 23.0 22.0 22.0 20.5 21.0 20.5 20.0	20.0 20.5 20.5 19.5 19.5 19.0 19.0 18.5	21.5 22.0 21.0 20.5 20.0 20.0
1 2 3 4 5 6 7 8	18.5 19.0 20.0 18.5 18.5 19.5 18.0 15.5	JUNE 16.0 17.5 17.5 17.5 17.0 16.0 17.0 15.5 14.0	17.5 18.5 18.5 18.0 17.5	21.5 22.0 20.0 21.5 23.5 22.0 21.5 21.0 22.5	JULY 19.0 19.5 20.0 19.5 19.5 20.0 19.5 19.5	20.0 20.5 20.0 20.5 21.5 21.0 20.0 20.0	22.5 22.5 24.0 24.0 25.0 24.5 24.5	AUGUST 20.0 20.5 21.0 21.5 21.5 22.5 22.0 22.0 22.0	21.0 21.5 22.5 22.5 23.0 23.5 23.0 23.0 23.0	22.5 23.0 22.0 22.0 20.5 21.0 20.5 20.0	20.0 20.5 20.5 19.5 19.5 19.0 19.0 18.5 17.5	21.5 22.0 21.0 20.5 20.0
1 2 3 4 5 6 7 8 9	18.5 19.0 20.0 18.5 18.5 19.5 18.0 15.5 15.5	JUNE 16.0 17.5 17.5 17.5 17.0 16.0 17.0 15.5 14.0 14.5	17.5 18.5 18.5 18.0 17.5 18.0 17.5 17.0 15.0	21.5 22.0 20.0 21.5 23.5 22.0 21.5 21.5 21.5 22.5	JULY 19.0 19.5 20.0 19.5 19.5 20.0 19.5 19.0 20.0	20.0 20.5 20.0 20.5 21.5 21.0 20.0 20.0 20.5 21.0	22.5 22.5 24.0 24.0 25.0 25.0 24.5 24.5 24.0 24.0	AUGUST 20.0 20.5 21.5 21.5 22.5 22.0 22.0 22.0 21.0	21.0 21.5 22.5 22.5 23.0 23.5 23.0 23.0 23.0 23.0	22.5 23.0 22.0 22.0 20.5 21.0 20.5 20.0 20.0	20.0 20.5 20.5 19.5 19.5 19.0 19.0 18.5 17.5	21.5 22.0 21.0 20.5 20.0 20.0 19.5 19.0
1 2 3 4 5 6 7 8 9 10	18.5 19.0 20.0 18.5 18.5 18.5 19.5 18.0 15.5 15.5	JUNE 16.0 17.5 17.5 17.0 16.0 17.0 15.5 14.0 14.5	17.5 18.5 18.5 18.0 17.5 18.0 17.5 17.0 15.0	21.5 22.0 20.0 21.5 23.5 22.0 21.5 21.0 22.5 22.5	JULY 19.0 19.5 20.0 19.5 19.5 20.0 19.5 19.0 20.0 20.0	20.0 20.5 20.0 20.5 21.5 21.0 20.0 20.0 20.5 21.0	22.5 22.5 24.0 24.0 25.0 24.5 24.5 24.0 24.0	20.0 20.5 21.0 21.5 21.5 22.5 22.0 22.0 21.0	21.0 21.5 22.5 22.5 23.0 23.0 23.0 23.0 23.0 23.0	22.5 23.0 22.0 20.5 21.0 20.5 20.0 20.0 19.5	SEPTEMB 20.0 20.5 20.5 19.5 19.5 19.0 19.0 19.0 18.5 17.5 17.5	21.5 22.0 21.0 20.5 20.0 20.0 19.5 19.0 18.5 19.0
1 2 3 4 5 6 7 8 9 10	18.5 19.0 20.0 18.5 18.5 18.5 19.5 18.0 15.5 15.5	JUNE 16.0 17.5 17.5 17.0 16.0 17.0 15.5 14.0 14.5	17.5 18.5 18.5 18.0 17.5 17.0 15.0 15.0	21.5 22.0 20.0 21.5 23.5 22.0 21.5 21.0 22.5 22.5	JULY 19.0 19.5 20.0 19.5 19.5 20.0 19.0 20.0 20.0	20.0 20.5 20.0 20.5 21.5 21.0 20.0 20.0 20.5 21.0	22.5 22.5 24.0 24.0 25.0 25.0 24.5 24.5 24.5 24.0 23.5	AUGUST 20.0 20.5 21.0 21.5 21.5 22.5 22.0 22.0 21.0 21.5	21.0 21.5 22.5 22.5 23.0 23.0 23.0 23.0 27.0	22.5 23.0 22.0 22.0 20.5 21.0 20.5 20.0 20.0 19.5	SEPTEMA 20.0 20.5 20.5 19.5 19.5 19.5 19.0 19.0 18.5 17.5 17.5	21.5 22.0 21.0 20.5 20.0 19.5 19.0 18.5 19.0
1 2 3 4 5 6 7 8 9 10	18.5 19.0 20.0 18.5 18.5 19.5 18.0 15.5 15.5	JUNE 16.0 17.5 17.5 17.5 17.0 16.0 15.5 14.0 14.5	17.5 18.5 18.5 18.0 17.5 17.0 15.0 15.0 15.0	21.5 22.0 20.0 21.5 23.5 22.0 21.5 21.0 22.5 22.5 22.5	JULY 19.0 19.5 20.0 19.5 19.5 20.0 19.5 19.0 20.0 20.0 20.0 20.0	20.0 20.5 20.0 20.5 21.5 21.0 20.0 20.0 20.5 21.0 21.5 21.0	22.5 22.5 24.0 24.0 25.0 24.5 24.5 24.5 24.0 24.5 24.0 23.5 23.5	AUGUST 20.0 20.5 21.0 21.5 21.5 22.5 22.0 22.0 21.0 21.5 21.5 20.5	21.0 21.5 22.5 22.5 23.0 23.0 23.0 23.0 27.0 29.5 22.5	22.5 23.0 22.0 22.0 20.5 21.0 20.5 20.0 20.0 19.5	SEPTEMA 20.0 20.5 20.5 19.5 19.5 19.0 19.0 18.5 17.5 17.5 17.5	21.5 22.0 21.0 20.5 20.0 20.5 20.0 19.5 19.0 18.5 19.0 18.0 18.5
1 2 3 4 5 6 7 8 9 10	18.5 19.0 20.0 18.5 18.5 18.5 19.5 18.0 15.5 15.5	JUNE 16.0 17.5 17.5 17.0 16.0 17.0 15.5 14.0 14.5	17.5 18.5 18.5 18.0 17.5 17.0 15.0 15.0	21.5 22.0 20.0 21.5 23.5 22.0 21.5 21.0 22.5 22.5	JULY 19.0 19.5 20.0 19.5 19.5 20.0 19.5 19.0 20.0 20.0 20.0 20.0	20.0 20.5 20.0 20.5 21.5 21.0 20.0 20.0 20.5 21.0 21.5 21.0 20.5 21.5	22.5 22.5 24.0 24.0 25.0 24.5 24.0 24.5 24.0 23.5 23.5 23.5 23.0 22.0	20.0 20.5 21.5 21.5 21.5 22.0 22.0 22.0 21.0 21.5	21.0 21.5 22.5 22.5 23.0 23.0 23.0 23.0 23.0 27.0	22.5 23.0 22.0 22.0 20.5 21.0 20.5 20.0 20.0 19.5	SEPTEMA 20.0 20.5 20.5 19.5 19.5 19.5 19.0 19.0 18.5 17.5 17.5	21.5 22.0 21.0 20.5 20.0 19.5 19.0 18.5 19.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	18.5 19.0 20.0 18.5 18.5 19.5 18.0 15.5 15.5	JUNE 16.0 17.5 17.5 17.0 16.0 17.0 14.0 14.5 13.5 13.5 14.5 16.5	17.5 18.5 18.5 18.0 17.5 17.0 15.0 15.0 15.0 17.0 17.5	21.5 22.0 20.0 21.5 23.5 22.0 21.5 22.5 22.5 22.5 22.5 22.0 23.0 23.0	JULY 19.0 19.5 20.0 19.5 19.5 20.0 19.5 19.0 20.0 20.0 20.0 19.5 19.5 20.0	20.0 20.5 20.0 20.5 21.5 21.0 20.0 20.0 20.5 21.0 21.5 21.0 20.5 21.5 21.5	22.5 22.5 24.0 24.0 25.0 24.5 24.5 24.5 24.0 24.0 23.5 23.5 23.0 22.0	AUGUST 20.0 20.5 21.0 21.5 21.5 22.0 22.0 22.0 21.0 21.5 21.5 20.5 20.5	21.0 21.5 22.5 22.5 23.0 23.0 23.0 23.0 23.0 27.0 29.5 21.5 21.5 21.5	22.5 23.0 22.0 22.0 20.5 21.0 20.5 20.0 20.0 19.5 19.0 19.0	SEPTEMB 20.0 20.5 20.5 19.5 19.5 19.0 18.5 17.5 17.5 16.5 17.0 18.0 18.0	21.5 22.0 21.0 20.5 20.0 20.5 20.0 19.5 19.0 18.5 19.0 18.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	18.5 19.0 20.0 18.5 18.5 18.0 15.5 15.5 16.0 17.0 19.0 18.0 18.0	JUNE 16.0 17.5 17.5 17.0 16.0 17.0 16.0 17.0 14.0 14.5 13.5 14.5 16.5	17.5 18.5 18.5 18.0 17.5 17.0 15.0 15.0 15.0 17.5 17.0 17.5	21.5 22.0 20.0 21.5 23.5 22.5 21.0 22.5 22.5 22.5 22.5 22.0 23.0 23.0	JULY 19.0 19.5 20.0 19.5 19.5 20.0 19.5 19.5 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20	20.0 20.5 20.0 20.5 21.5 21.0 20.0 20.0 20.5 21.0 21.5 21.0 20.5 21.5 21.5 21.5	22.5 22.5 24.0 24.0 25.0 25.0 24.5 24.0 24.0 23.5 23.5 23.5 23.0 22.0 22.0	20.0 20.5 21.5 21.5 21.5 22.0 22.0 22.0 21.0 21.5 21.5	21.0 21.5 22.5 22.5 23.0 23.0 23.0 23.0 23.0 27.0 22.5 22.5 21.5 21.5 21.0	22.5 23.0 22.0 20.5 21.0 20.5 20.0 20.0 19.5 19.0 19.0 19.5 19.0	SEPTEMB 20.0 20.5 20.5 19.5 19.0 19.0 19.0 18.5 17.5 17.5 17.0 18.0 18.0	21.5 22.0 21.0 20.5 20.0 20.5 19.5 19.0 18.5 19.0 18.5 19.0 18.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	18.5 19.0 20.0 18.5 18.5 18.5 18.0 15.5 15.5 16.0 17.0 19.0 18.0 18.0	JUNE 16.0 17.5 17.5 17.5 17.0 16.0 17.0 15.5 14.0 14.5 13.5 14.5 15.5 16.5	17.5 18.5 18.5 18.0 17.5 17.0 15.0 15.0 15.0 17.5 17.0 17.5	21.5 22.0 20.0 21.5 23.5 21.5 21.0 22.5 22.5 22.5 22.5 22.5 22.5 23.0 23.0	JULY 19.0 19.5 20.0 19.5 19.5 20.0 19.5 19.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2	20.0 20.5 20.0 20.5 21.5 21.0 20.0 20.0 20.5 21.5 21.5 21.5 21.5 21.5 21.5	22.5 22.5 24.0 24.0 25.0 25.0 24.5 24.5 24.5 24.0 23.5 23.5 23.0 22.0 20.5	AUGUST 20.0 20.5 21.0 21.5 21.5 22.0 22.0 22.0 21.0 21.5 20.5 20.5 20.5	21.0 21.5 22.5 22.5 23.0 23.0 23.0 23.0 23.0 22.5 21.5 21.5 21.5 21.5	22.5 23.0 22.0 22.0 20.5 21.0 20.5 20.0 20.0 19.5 19.0 19.0 19.5	20.0 20.5 20.5 19.5 19.5 19.5 17.5 17.5 17.5 17.0 17.0 18.0 18.0	21.5 22.0 21.0 20.5 20.0 20.5 20.0 19.5 19.0 18.5 19.0 18.5 19.0 18.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	18.5 19.0 20.0 18.5 18.5 19.5 18.0 15.5 15.5 16.0 17.0 19.0 18.0 19.0	JUNE 16.0 17.5 17.5 17.5 17.0 16.0 15.5 14.0 14.5 13.5 14.5 15.5 16.5	17.5 18.5 18.5 18.0 17.5 17.0 15.0 15.0 15.0 17.0 17.5 17.0 17.5 17.0 17.5	21.5 22.0 20.0 21.5 23.5 22.0 21.5 22.5 22.5 22.5 22.5 22.5 22.0 23.0 23.0 23.5	JULY 19.0 19.5 20.0 19.5 19.5 20.0 19.5 19.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2	20.0 20.5 20.0 20.5 21.5 21.0 20.0 20.0 20.5 21.0 21.5 21.0 20.5 21.5 21.5 21.5 21.5 22.0	22.5 22.5 24.0 25.0 25.0 24.5 24.5 24.5 24.0 24.0 23.5 23.0 22.0 22.0 22.0 21.0	AUGUST 20.0 20.5 21.0 21.5 21.5 22.0 22.0 22.0 21.0 21.5 20.5 20.5 20.5 20.5 19.0 18.0	21.0 21.5 22.5 22.5 23.0 23.0 23.0 23.0 27.0 22.5 21.5 21.5 21.5 21.5 21.5	22.5 23.0 22.0 22.0 20.5 21.0 20.5 20.0 20.0 19.5 19.0 19.0 19.5 19.0	SEPTEMA 20.0 20.5 20.5 19.5 19.5 19.0 19.0 18.5 17.5 17.5 16.5 17.0 18.0 18.0 17.0 18.0	21.5 22.0 21.0 20.5 20.0 20.5 20.0 19.5 19.0 18.5 19.0 18.5 19.0 18.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	18.5 19.0 20.0 18.5 18.5 18.5 18.0 15.5 15.5 16.0 17.0 19.0 18.0 18.0	JUNE 16.0 17.5 17.5 17.5 17.0 16.0 17.0 15.5 14.0 14.5 13.5 14.5 15.5 16.5	17.5 18.5 18.5 18.0 17.5 17.0 15.0 15.0 15.0 17.5 17.0 17.5	21.5 22.0 20.0 21.5 23.5 21.5 21.0 22.5 22.5 22.5 22.5 22.5 22.5 23.0 23.0	JULY 19.0 19.5 20.0 19.5 19.5 20.0 19.5 19.5 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20	20.0 20.5 20.0 20.5 21.5 21.0 20.0 20.5 21.0 21.5 21.5 21.5 21.5 21.5 22.0 22.0 22.0	22.5 22.5 24.0 24.0 25.0 25.0 24.5 24.5 24.5 24.0 23.5 23.5 23.0 22.0 20.5	AUGUST 20.0 20.5 21.0 21.5 21.5 22.0 22.0 22.0 21.0 21.5 20.5 20.5 20.5	21.0 21.5 22.5 22.5 23.0 23.0 23.0 23.0 23.0 22.5 21.5 21.5 21.5 21.5	22.5 23.0 22.0 22.0 20.5 21.0 20.5 20.0 20.0 19.5 19.0 19.0 19.5	20.0 20.5 20.5 19.5 19.5 19.5 17.5 17.5 17.5 17.0 17.0 18.0 18.0	21.5 22.0 21.0 20.5 20.0 20.5 20.0 19.5 19.0 18.5 19.0 18.5 19.0 18.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	18.5 19.0 20.0 18.5 18.5 18.0 15.5 15.5 16.0 17.0 19.0 18.0 19.0 19.0 19.0 19.5 18.5	JUNE 16.0 17.5 17.5 17.0 16.0 17.5 14.0 14.5 13.5 14.5 15.5 16.5 17.0 16.5 17.0	17.5 18.5 18.5 18.0 17.5 17.0 15.0 15.0 15.0 17.0 17.5 17.0 17.5 17.5 18.0 18.0 18.0 18.0	21.5 22.0 20.0 21.5 23.5 22.0 21.5 22.5 22.5 22.5 22.5 22.0 23.0 23.0 23.5 23.5 23.5 24.0	JULY 19.0 19.5 20.0 19.5 19.5 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20	20.0 20.5 20.0 20.5 21.5 21.0 20.0 20.0 20.5 21.0 21.5 21.0 20.5 21.5 21.5 21.5 21.5 22.0 22.0 22.0 22.0 22.0	22.5 22.5 24.0 25.0 25.0 24.5 24.5 24.5 24.0 24.0 23.5 23.5 23.0 22.0 22.0 21.0 20.5 19.5	AUGUST 20.0 20.5 21.0 21.5 21.5 22.0 22.0 22.0 21.0 21.5 20.5 20.5 20.5 20.5 19.0 18.0 18.0 19.0	21.0 21.5 22.5 22.5 23.0 23.0 23.0 23.0 27.0 29.5 21.5 21.5 21.5 21.0	22.5 23.0 22.0 22.0 20.5 21.0 20.5 20.0 20.0 19.5 19.0 19.0 19.5 19.0 18.0 18.0	SEPTEMA 20.0 20.5 19.5 19.5 19.0 19.0 19.0 17.5 17.5 17.5 17.5 17.5 17.5 17.0 18.0 18.0 17.0 18.0 18.0 18.0	21.5 22.0 21.0 20.5 20.0 20.5 20.0 19.5 19.0 18.5 19.0 18.5 17.5 17.5 17.5 18.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	18.5 19.0 20.0 18.5 18.5 18.5 18.0 18.0 15.5 15.5 16.0 17.0 19.0 19.0 19.0 19.5 18.5	JUNE 16.0 17.5 17.5 17.0 16.0 17.0 16.0 17.0 14.5 13.5 14.5 14.5 16.5 17.0 16.5 17.0	17.5 18.5 18.5 18.0 17.5 17.0 15.0 15.0 15.5 17.0 17.5 17.5 18.0 18.0 18.0 18.0 17.5	21.5 22.0 20.0 21.5 23.5 21.5 21.0 22.5 22.5 22.5 22.5 22.5 22.5 23.0 23.0 23.5 23.5 23.5 24.0	JULY 19.0 19.5 20.0 19.5 19.5 20.0 19.5 19.5 20.0 20.0 20.0 20.0 20.0 20.0 20.5 20.5	20.0 20.5 20.0 20.5 21.5 21.0 20.0 20.0 20.5 21.0 20.5 21.5 21.5 21.5 21.5 22.0 22.0 22.0 22.5	22.5 22.5 24.0 24.0 25.0 25.0 24.5 24.5 24.5 24.0 23.5 23.5 23.0 22.0 22.0 21.0 21.0 21.0 21.0 21.0	20.0 20.5 21.5 21.5 22.5 22.0 22.0 22.0 21.0 21.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5	21.0 21.5 22.5 22.5 23.0 23.0 23.0 23.0 27.0 27.0 27.5 21.5 21.5 21.5 21.0 20.0 19.0 19.0	22.5 23.0 22.0 22.0 20.5 21.0 20.5 20.0 20.0 19.5 19.0 19.0 19.5 19.0	20.0 20.5 20.5 19.5 19.5 19.0 18.5 17.5 17.5 17.0 17.0 18.0 17.0 18.0 17.0 18.5 17.5 17.5	21.5 22.0 21.0 20.5 20.0 20.5 20.0 19.5 19.0 18.5 19.0 18.5 17.5 17.5 17.5 18.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	18.5 19.0 20.0 18.5 18.5 19.5 18.0 15.5 15.5 16.0 17.0 19.0 18.5 18.5 19.5	JUNE 16.0 17.5 17.5 17.5 17.0 16.0 15.5 14.0 14.5 13.5 15.5 16.5 17.0 16.5 17.0 16.5 17.0 16.5	17.5 18.5 18.5 18.0 17.5 17.0 15.0 15.0 15.0 17.0 17.0 17.0 17.5 17.0 17.5 17.0 17.5	21.5 22.0 20.0 21.5 23.5 22.0 21.5 21.0 22.5 22.5 22.5 22.5 22.5 23.0 23.0 23.5 23.5 24.0	JULY 19.0 19.5 20.0 19.5 19.5 20.0 19.5 19.0 20.0 20.0 20.0 20.0 20.0 20.0 20.5 20.5	20.0 20.5 20.0 20.5 21.5 21.0 20.0 20.0 20.5 21.5 21.5 21.5 22.0 22.0 22.0 22.0 22.0 22.5	22.5 22.5 24.0 24.0 25.0 25.0 24.5 24.5 24.5 24.0 24.0 23.5 23.5 22.0 20.0 21.0 20.5 19.5	AUGUST 20.0 20.5 21.0 21.5 21.5 22.0 22.0 21.0 21.5 20.5 20.5 20.5 20.5 19.0 18.0 19.0 18.0 19.0 18.5	21.0 21.5 22.5 22.5 23.0 23.0 23.0 23.0 22.0 22.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	22.5 23.0 22.0 22.0 20.5 21.0 20.5 20.0 20.0 20.0 19.5 19.0 19.0 19.0 18.0 19.0 19.0	20.0 20.5 20.5 19.5 19.5 19.5 17.5 17.5 17.5 17.0 17.0 18.0 18.0 17.5 16.5 17.5 16.5 17.5	21.5 22.0 21.0 20.5 20.0 20.5 19.0 18.5 19.0 18.5 19.0 18.5 17.5 17.5 18.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	18.5 19.0 20.0 18.5 18.5 19.5 18.0 15.5 15.5 16.0 17.0 19.0 18.0 19.0 19.0 19.5 18.5	JUNE 16.0 17.5 17.5 17.0 16.0 17.5 14.0 14.5 13.5 14.5 16.5 17.0 16.5 17.0 16.5 17.0	17.5 18.5 18.5 18.0 17.5 17.0 15.0 15.0 15.0 17.0 17.0 17.5 17.0 17.5 17.5 18.0 18.0 18.0 17.5	21.5 22.0 20.0 21.5 23.5 22.0 21.5 22.5 22.5 22.5 22.5 23.0 23.0 23.5 23.5 24.0 24.5 24.5	JULY 19.0 19.5 20.0 19.5 19.5 20.0 20.0 20.0 20.0 20.0 20.5 20.5 20	20.0 20.5 20.0 20.5 21.5 21.0 20.0 20.0 20.5 21.0 21.5 21.0 20.5 21.5 21.5 22.0 22.0 22.0 22.0 22.0 22.5 21.0	22.5 22.5 24.0 25.0 25.0 24.5 24.5 24.5 24.0 24.0 23.5 23.0 22.0 22.0 22.0 21.0 20.5 19.5	AUGUST 20.0 20.5 21.0 21.5 21.5 22.0 22.0 21.0 21.5 20.5 20.5 20.5 20.5 19.0 18.0 18.0 19.0 18.5 17.5 17.5	21.0 21.5 22.5 22.5 23.0 23.0 23.0 23.0 27.0 22.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	22.5 23.0 22.0 22.0 20.5 21.0 20.5 20.0 20.0 19.5 19.0 19.0 19.5 19.0	SEPTEMA 20.0 20.5 19.5 19.5 19.0 19.0 19.0 17.5 17.	21.5 22.0 21.0 20.5 20.0 20.5 20.0 19.5 19.0 18.5 19.0 18.5 17.5 17.5 17.5 18.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	18.5 19.0 20.0 18.5 18.5 19.5 18.0 15.5 15.5 16.0 17.0 19.0 18.5 18.5 19.5	JUNE 16.0 17.5 17.5 17.5 17.0 16.0 15.5 14.0 14.5 13.5 15.5 16.5 17.0 16.5 17.0 16.5 17.0 16.5	17.5 18.5 18.5 18.0 17.5 17.0 15.0 15.0 15.0 17.0 17.0 17.0 17.5 17.0 17.5 17.0 17.5	21.5 22.0 20.0 21.5 23.5 22.0 21.5 21.0 22.5 22.5 22.5 22.5 22.5 23.0 23.0 23.5 23.5 24.0	JULY 19.0 19.5 20.0 19.5 19.5 20.0 19.5 19.0 20.0 20.0 20.0 20.0 20.0 20.0 20.5 20.5	20.0 20.5 20.0 20.5 21.5 21.0 20.0 20.0 20.5 21.5 21.5 21.5 22.0 22.0 22.0 22.0 22.0 22.5	22.5 22.5 24.0 24.0 25.0 25.0 24.5 24.5 24.5 24.0 24.0 23.5 23.5 22.0 20.0 21.0 20.5 19.5	AUGUST 20.0 20.5 21.0 21.5 21.5 22.0 22.0 21.0 21.5 20.5 20.5 20.5 20.5 19.0 18.0 19.0 18.0 19.0 18.5	21.0 21.5 22.5 22.5 23.0 23.0 23.0 23.0 22.0 22.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	22.5 23.0 22.0 22.0 20.5 21.0 20.5 20.0 20.0 19.5 19.0 19.0 19.5 19.0 18.0 19.0 18.5 19.0	20.0 20.5 20.5 19.5 19.5 19.5 17.5 17.5 17.5 17.0 17.0 18.0 18.0 17.5 16.5 17.5 16.5 17.5	21.5 22.0 21.0 20.5 20.0 20.5 20.0 20.0 19.5 19.0 18.5 19.0 18.5 17.5 17.5 17.5 18.0 18.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	18.5 19.0 20.0 18.5 18.5 19.5 18.0 15.5 15.5 16.0 17.0 19.0 19.0 19.0 19.5 18.5	JUNE 16.0 17.5 17.5 17.0 16.0 15.5 14.0 14.5 13.5 14.5 14.5 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0	17.5 18.5 18.5 18.0 17.5 17.0 15.0 15.0 15.5 17.0 17.5 17.5 18.0 18.0 18.0 17.5	21.5 22.0 20.0 21.5 23.5 22.0 21.5 22.5 22.5 22.5 22.5 23.0 23.0 23.0 23.5 24.0 24.5 24.0 24.5 24.5 24.0 24.5 24.0 24.5 24.0 24.5 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0	JULY 19.0 19.5 20.0 19.5 19.5 20.0 20.0 20.0 20.0 20.5 20.5 20.5 20	20.0 20.5 20.0 20.5 21.5 21.0 20.0 20.0 20.5 21.0 20.5 21.5 21.5 21.5 22.0 22.0 22.0 22.5 23.0 22.5 21.0	22.5 22.5 24.0 25.0 25.0 25.0 24.5 24.5 24.5 24.0 24.0 23.5 23.0 22.0 22.0 20.5 19.5 19.5 19.5 19.5	AUGUST 20.0 20.5 21.0 21.5 21.5 22.0 22.0 22.0 21.0 21.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20	21.0 21.5 22.5 22.5 23.0 23.0 23.0 23.0 27.0 27.0 27.5 21.5 21.5 21.5 21.0 20.0 19.0 19.0 19.0 19.0	22.5 23.0 22.0 22.0 20.5 21.0 20.5 20.0 20.0 19.5 19.0 19.5 19.0 18.0 19.0 19.5 19.0	20.0 20.5 20.5 19.5 19.5 19.0 18.5 17.5 17.5 17.0 17.0 18.0 17.0 18.0 17.0 18.5 17.5 17.5 16.5 17.5 16.5 17.5 17.5 18.0	21.5 22.0 21.0 20.5 20.0 20.5 20.0 20.0 19.5 19.0 18.5 19.0 18.5 19.0 18.5 19.5 17.5 17.0 18.5 19.5 19.5 19.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	18.5 19.0 20.0 18.5 18.5 19.5 18.0 15.5 16.0 17.0 19.0 18.0 19.0 19.0 19.0 19.0 19.5 18.5 18.5 20.5 22.5	JUNE 16.0 17.5 17.5 17.5 17.0 16.0 15.5 14.0 14.5 13.5 15.5 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5	17.5 18.5 18.0 17.5 18.0 17.5 17.0 15.0 15.0 17.5 17.0 17.5 17.5 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	21.5 22.0 20.0 21.5 23.5 22.0 21.5 21.0 22.5 22.5 22.5 22.5 22.5 22.5 22.5 23.0 23.0 23.5 23.5 23.5 24.0 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5	JULY 19.0 19.5 20.0 19.5 19.5 20.0 20.0 20.0 20.0 20.5 20.5 20.5 20	20.0 20.5 20.0 20.5 21.5 21.0 20.0 20.0 20.5 21.0 20.5 21.5 21.5 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22	22.5 22.5 24.0 24.0 25.0 25.0 24.5 24.5 24.5 24.5 22.0 20.5 21.0 20.5 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	AUGUST 20.0 20.5 21.0 21.5 21.5 22.5 22.0 22.0 21.0 21.5 20.5 20.5 20.5 19.0 18.0 19.0 19.0 19.0 19.0	21.0 21.5 22.5 22.5 22.5 23.0 23.0 23.0 23.0 22.0 22.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	22.5 23.0 22.0 22.0 20.5 21.0 20.5 20.0 20.0 19.0 19.0 19.0 19.0 18.0 19.0 18.0 19.0 19.0 19.0 19.0	20.0 20.5 20.5 19.5 19.5 19.5 17.5 17.5 17.5 17.5 17.0 18.0 17.0 18.0 17.0 18.0 17.5 16.5 17.5 16.5 17.5	21.5 22.0 21.0 20.5 20.0 20.5 20.0 19.5 19.0 18.5 19.0 18.5 17.5 18.5 17.5 18.5 17.5 18.5 17.5 18.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	18.5 19.0 20.0 18.5 18.5 18.0 15.5 15.5 16.0 17.0 19.0 19.0 19.0 19.0 19.5 18.5 22.5 22.5 22.5 22.5	JUNE 16.0 17.5 17.5 17.0 16.0 17.5 14.0 14.5 13.5 14.5 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 18.5	17.5 18.5 18.0 17.5 18.0 17.5 17.0 15.0 15.0 17.0 17.0 17.5 17.5 18.0 18.0 18.0 18.0 18.0 19.0 20.0 21.0	21.5 22.0 20.0 21.5 23.5 22.0 21.5 22.5 22.5 22.5 22.5 23.0 23.0 23.5 23.5 24.0 24.5 24.5 21.5 21.5 21.5 21.5 21.5 21.5 22.5	JULY 19.0 19.5 20.0 19.5 19.5 20.0 20.0 20.0 20.0 20.5 20.5 20.5 20	20.0 20.5 20.0 20.5 21.5 21.0 20.0 20.0 20.5 21.0 21.5 21.5 21.5 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22	22.5 22.5 24.0 25.0 25.0 24.5 24.5 24.5 24.0 24.0 23.5 23.0 22.0 20.5 21.0 20.5 19.5 19.5 19.5 20.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	AUGUST 20.0 20.5 21.0 21.5 21.5 22.0 22.0 21.0 21.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20	21.0 21.5 22.5 22.5 22.5 23.0 23.0 23.0 23.0 23.0 23.0 27.0 20.0 20.0 19.0 19.5 20.0 19.5 20.0 19.0 19.0 19.5 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20	22.5 23.0 22.0 22.0 20.5 21.0 20.5 20.0 20.0 19.5 19.0 19.5 19.0 18.5 19.0 18.5 19.0 19.5 19.0 18.5 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0	20.0 20.5 20.5 19.5 19.5 19.0 19.0 19.0 17.5 17.5 17.5 17.5 17.5 17.0 18.0 17.0 18.0 17.0 18.0 17.0 18.0 18.0 17.0 18.5 17.5 16.5 17.5 16.5 17.5 16.5 17.5 16.5 17.5 16.5 17.5 16.5 17.5 16.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17	21.5 22.0 21.0 20.5 20.0 20.5 20.0 20.0 19.5 19.0 18.5 19.0 18.5 17.5 17.5 17.5 18.0 18.5 17.5 17.5 17.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	18.5 19.0 20.0 18.5 18.5 19.5 18.0 15.5 15.5 16.0 17.0 19.0 19.0 19.0 19.0 19.5 18.5 20.5 22.5 22.5 22.5 22.5 22.0 21.0	JUNE 16.0 17.5 17.5 17.0 16.0 17.0 15.5 14.0 14.5 13.5 14.5 15.5 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5	17.5 18.5 18.0 17.5 18.0 17.5 17.0 15.0 15.0 17.5 17.5 17.5 18.0 18.0 18.0 18.0 19.0 21.0 21.0	21.5 22.0 20.0 21.5 23.5 22.5 21.0 22.5 22.5 22.5 22.5 22.5 22.5 23.0 23.0 23.5 23.5 24.0 21.5 24.0 21.5 24.0 21.5 21.5 22.5 23.5	JULY 19.0 19.5 20.0 19.5 19.5 20.0 20.0 20.0 20.0 20.0 20.5 20.5 21.5 20.5 21.5 20.5 21.5 20.5 21.5 20.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21	20.0 20.5 20.0 20.5 21.5 21.0 20.0 20.0 20.5 21.5 21.5 22.0 22.0 22.0 22.0 22.5 21.5 21.5 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.5 21.0 20.0	22.5 22.5 24.0 24.0 25.0 25.0 24.5 24.5 24.5 24.5 23.5 23.5 23.0 22.0 20.5 19.5 19.5 19.5 19.5 20.0 21.0 21.0 21.0	AUGUST 20.0 20.5 21.0 21.5 21.5 22.0 22.0 22.0 21.0 21.5 20.5 20.5 20.5 19.0 18.0 18.0 18.0 18.0 19.0 18.0 19.0 19.0 19.0 19.0	21.0 21.5 22.5 22.5 23.0 23.0 23.0 23.0 23.0 27.0 22.5 21.5 21.5 21.5 21.0 20.0 19.5 20.0 19.5 20.0 20.0	22.5 23.0 22.0 22.0 20.5 21.0 20.5 20.0 20.0 19.5 19.0 19.5 19.0 18.5 19.0 20.0 20.0 20.0 19.5	20.0 20.5 20.5 19.5 19.5 19.0 19.0 18.5 17.5 17.5 17.0 17.0 18.0 17.0 18.0 17.0 18.0 17.5 17.5 16.5 17.5 16.5 17.5 16.5 17.5 16.5 17.5 16.5 17.5 16.5 17.5 16.5 17.5 16.5 17.5 16.5 17.5 17.5 16.5 17.5 17.5 17.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18	21.5 22.0 21.0 20.5 20.0 20.5 20.0 20.5 19.0 18.5 19.0 18.5 19.5 17.5 17.5 17.5 17.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30	18.5 19.0 20.0 18.5 18.5 19.5 18.0 15.5 16.0 17.0 19.0 19.0 19.0 19.0 19.5 20.5 22.5 22.5 22.5 22.0 21.5	JUNE 16.0 17.5 17.5 17.5 17.0 16.0 15.5 14.0 14.5 13.5 15.5 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 19.5	17.5 18.5 18.0 17.5 18.0 17.5 17.0 15.0 15.0 17.5 17.0 17.5 17.5 18.0 18.0 18.0 18.0 18.0 18.0 19.0 20.0 21.0	21.5 22.0 20.0 21.5 23.5 22.0 21.5 21.0 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22	JULY 19.0 19.5 20.0 19.5 19.5 20.0 20.0 20.0 20.0 20.0 20.5 20.5 20	20.0 20.5 20.0 20.5 21.0 20.0 20.0 20.0 20.5 21.0 20.5 21.5 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 20.0	22.5 22.5 24.0 24.0 25.0 24.5 24.5 24.5 24.5 22.0 20.5 22.0 20.5 21.0 21.0 21.5 22.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	AUGUST 20.0 20.5 21.0 21.5 21.5 22.5 22.0 22.0 21.0 21.5 20.5 20.5 20.5 19.0 18.0 19.0 18.0 19.0 19.0 19.0 19.0 20.0	21.0 21.5 22.5 22.5 22.5 23.0 23.0 23.0 23.0 22.0 22.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	22.5 23.0 22.0 22.0 20.5 21.0 20.5 20.0 20.0 19.0 19.0 19.0 19.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	20.0 20.5 20.5 19.5 19.5 19.5 17.5 17.5 17.5 17.0 18.0 17.0 18.0 17.0 18.0 17.0 18.0 17.5 16.5 16.5 17.5 16.5 17.5	21.5 22.0 21.0 20.5 20.0 20.5 20.0 19.5 19.0 18.5 19.0 18.5 17.5 18.5 17.5 18.5 17.5 18.5 17.5 18.5 17.5 18.5 17.5 18.5 17.5 18.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	18.5 19.0 20.0 18.5 18.5 19.5 18.0 15.5 15.5 16.0 17.0 19.0 19.0 19.0 19.0 19.5 18.5 20.5 22.5 22.5 22.5 22.5 22.0 21.0	JUNE 16.0 17.5 17.5 17.0 16.0 17.0 15.5 14.0 14.5 13.5 14.5 15.5 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5	17.5 18.5 18.0 17.5 18.0 17.5 17.0 15.0 15.0 17.5 17.5 17.5 18.0 18.0 18.0 18.0 19.0 21.0 21.0	21.5 22.0 20.0 21.5 23.5 22.5 21.0 22.5 22.5 22.5 22.5 22.5 22.5 23.0 23.0 23.5 23.5 24.0 21.5 24.0 21.5 24.0 21.5 21.5 22.5 23.5	JULY 19.0 19.5 20.0 19.5 19.5 20.0 20.0 20.0 20.0 20.0 20.5 20.5 21.5 20.5 21.5 20.5 21.5 20.5 21.5 20.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21	20.0 20.5 20.0 20.5 21.5 21.0 20.0 20.0 20.5 21.5 21.5 22.0 22.0 22.0 22.0 22.5 21.5 21.5 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.5 21.0 20.0	22.5 22.5 24.0 24.0 25.0 25.0 24.5 24.5 24.5 24.5 23.5 23.5 23.0 22.0 20.5 19.5 19.5 19.5 19.5 20.0 21.0 21.0 21.0	AUGUST 20.0 20.5 21.0 21.5 21.5 22.0 22.0 22.0 21.0 21.5 20.5 20.5 20.5 19.0 18.0 18.0 18.0 18.0 19.0 18.0 19.0 19.0 19.0 19.0	21.0 21.5 22.5 22.5 23.0 23.0 23.0 23.0 23.0 23.0 23.0 20.0 20.0 20.0 19.5 20.0 19.5 20.0 19.5 20.0	22.5 23.0 22.0 22.0 20.5 21.0 20.5 20.0 20.0 19.5 19.0 19.5 19.0 18.5 19.0 20.0 20.0 20.0 19.5	20.0 20.5 20.5 19.5 19.5 19.0 19.0 18.5 17.5 17.5 17.0 17.0 18.0 17.0 18.0 17.0 18.0 17.5 17.5 16.5 17.5 16.5 17.5 16.5 17.5 16.5 17.5 16.5 17.5 16.5 17.5 16.5 17.5 16.5 17.5 16.5 17.5 17.5 16.5 17.5 17.5 17.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18	21.5 22.0 21.0 20.5 20.0 20.5 20.0 20.5 19.0 18.5 19.0 18.5 17.5 17.5 17.5 17.5 17.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19

01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY--Continued

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)
NOV , 19	979			
27 DEC	1000	52	1	. 14
11	1000	47	4	. 51
	780			
30	1300	44	2	. 24
APR				
22	1030	56	2	. 30
MAY				-
13	0900	58	3	. 47
JUN				100
04	0900	60	3	. 49
26	1030	42	1	. 11
JUL				
16	0930	41	5	. 55
30	0830	83	4	. 90
AUG				
13	0900	42	2	. 23
SEP	2002	- 27		
17	0845	36	2	. 19

43

01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY--Continued

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 PHYTOPLANKTON

TIME		5, 79 ‡ 700		29,79 ‡ 900		11,79 000
TOTAL CELLS/ML		52		430		600
DIVERSITY: DIVISION . CLASS . ORDER FAMILY GENUS		1.5 1.5 1.5 1.5 2.0		1. 5 1. 5 1. 6 2. 2 2. 4		1. 0 1. 0 1. 9 2. 7 2. 7
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER-
CHLOROPHYTA (GREEN ALGAE) . CHLOROPHYCEAE CHLOROCOCCALES COELASTRACEAE						
COELASTRUM ODCYSTACEAE		-		-		-
ANKISTRODESMUS	13#	25	5	1	20	3
CHLORELLA KIRCHNERIELLA		_	160#	38	5	1
OOCYSTIS		_		-		-
SELENASTRUM		-		-		-
TETRAEDRON	13#	25	5	1		-
TREUBARIA SCENEDESMACEAE		-				-
SCENEDESMUS		-	50	12	30	5
VOLVOCALES						
CHLAMYDOMONADACEAE						
CHLAMYDOMONAS		-		-	25	4
ZYGNEMATALES DESMIDIACEAE						
COSMARIUM		_		_		-
CHRYSOPHYTA BACILLARIOPHYCEAE CENTRALES COSCINODISCACEAE CYCLOTELLA PENNALES ACHNANTHACEAE ACHNANTHES COCCONEIS RHOICOSPHENIA CYMBELLACEAE	=	-	10 15 20 5	2 4 - 5	270# 66 10	46
CYMBELLA EUNOTIACEAE		-	3	1	10	~
EUNOTIA		-		-	5	1
FRAGILARIACEAE		-	5	1	30	5
GOMPHONEMATACEAE		-		-	5	1
NAVICULACEAE			10	2	56	9
NAVICULA NITZSCHIACEAE			10	_		
NITZSCHIA	13#	25		-	5	1
SURIRELLA		-			5	1
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAE .CRYPTOMONADALESCRYPTOCHRYSIDACEAE						
CHROOMONASCRYPTOMONADACEAE		-		-		-

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%

‡ Not previously published.

01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY--Continued

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 PHYTOPLANKTON

DATE TIME		5, 79 ‡ 900		AUG 29,79 ‡ 0900		11,79 000
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHRODCOCCALESCHRODCOCCACEAE ANACYSTIS						
ANACYSTIS HORMOGONALES OSCILLATORIACEAE		-	-	-		-
OSCILLATORIA						-
SCHIZOTHRIX		-	140#	32	61	10
EUGLENOPHYTA (EUGLENDIDS) .EUGLENOPHYCEAEEUGLENALESEUGLENACEAE						
EUGLENA	22	_				-
TRACHELOMONAS		-				-
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAE .PERIDINIALESGLENODINIACEAE						
GLENODINIUM		_	5	1		-

NOTE: # - DOMINANT ORGANISM; EGUAL TO OR GREATER THAN 15%

‡ Not previously published.

01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY--Continued

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980
PHYTOPLANKTON

DATE TIME		22,80 030		13,80 900		4,80		26, 80 030
TOTAL CELLS/ML		77		120		90		130
DIVERSITY: DIVISION . CLASS . ORDER . FAMILY GENUS		1.3 1.3 1.3 1.3		1.8 1.8 1.8 2.3 2.3		1.8 1.8 1.8 2.5 2.5		1.3 1.3 1.3 1.6
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER-
CHLOROPHYTA (GREEN ALGAE) CHLOROPHYCEAE CHLOROCOCCALES COELASTRACEAE COELASTRUM		_		-		_		-
DOCYSTACEAE								
ANKISTRODESMUS		_		2	13	14		_
CHLORELLA KIRCHNERIELLA		7	52#		13	-		_
OOCYSTIS		_		_		-		-
SELENASTRUM		-		-		-		-
TETRAEDRON TREUBARIA		-		_		_	==	_
SCENEDESMACEAE		-						
SCENEDESMUS		-		-		-	78#	60
CHLAMYDOMONADACEAE CHLAMYDOMONAS ZYGNEMATALES	52#	67		-		-		-
DESMIDIACEAECOSMARIUM		-		-		-		-
CHRYSOPHYTA .BACILLARIOPHYCEAE .CENTRALESCOSCINODISCACEAECYCLOTELLA .PENNALES	22			-		, -		-
ACHNANTHACEAE								
ACHNANTHES		_	13	11	13	14	13	10
COCCONEIS	==	_		_		_		-
CYMBELLACEAE								
CYMBELLA		-		-		-		-
EUNOTIACEAE		_		_		_		_
FRAGILARIACEAE								
SYNEDRA		-		-	13	14		-
GOMPHONEMA		-		-		-		-
NAVICULACEAE	22	-	13	11	13	14		_
NITZSCHIACEAE			10		10			
NITZSCHIA	13#	17	13	11		-	13	10
SURIRELLACEAE		_		-		-		20
CRYPTOPHYTA (CRYPTOMONADS) CRYPTOPHYCEAE CRYPTOMONADALES								
CRYPTOCHRYSIDACEAE						2727		
CRYPTOMONAS		-		-	13	14		-
CRYPTOMONADACEAE								

01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY--Continued QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 PHYTOPLANKTON

DATE TIME	APR 2	30 22, 80	MAY 13,80 0900		JUN 4,80 0900			26, 80 1030
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHRODCOCCALESCHRODCOCCACEAE								
ANACYSTIS HORMOGONALES	13#	17	13	11	26#	29		-
OSCILLATORIACEAE								
SCHIZOTHRIX		=		-		-	===	-
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAE .EUGLENALESEUGLENACEAEEUGLENATRACHELOMONAS	22	1.1	12	-		_	13	10 _
PYRRHOPHYTA (FIRE ALGAE) DINOPHYCEAE PERIDINIALES GLENODINIACEAE GLENODINIUM		-	13	11	-	_		

01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY--Continued

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980
PHYTOPLANKTON

DATE TIME		16, 80 930		30,80		13,80 900		17,80 845
TOTAL CELLS/ML		100	1	500	1	700		670
DIVERSITY: DIVISION		0. 5		0.7		1.8		1.2
. CLASS		0. 5		0.7		1.8		1.2
. ORDER		1. 1		1.1		2.2		1.4
FAMILY		1. 1		2.3		2. 7		1.9
GENUS		1. 1		2.6		3. 1		2. 1
	0511.0	nen	65116	DED	CELLS	PER-	CELLS	PER-
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	/ML	CENT	/ML	CENT
CHLOROPHYTA (GREEN ALGAE) . CHLOROPHYCEAE								
CHLOROCOCCALES								
COELASTRACEAE								
COELASTRUM		-	620#	41		-		_
ODCYSTACEAE								
ANKISTRODESMUS		_	13	1	26	2		-
CHLORELLA		-		-		-		-
KIRCHNERIELLA	77#	75	26	2	160	9	140#	21
OOCYSTIS		-	26	2		-		-
SELENASTRUM		-	170	11	140	8	52	8
TETRAEDRON		-		-	13	1		-
TREUBARIA		-		-		-		-
SCENEDESMACEAE					F 4 0 1			10
SCENEDESMUS VOLVOCALES		-	360‡	+ 24	540#	32	130#	17
CHLAMYDOMONADACEAE								
CHLAMYDOMONAS	13	13	130	8	65	4	26	4
ZYGNEMATALES			100	-	-		1.32	
DESMIDIACEAE								
COSMARIUM		-		-		-		-
CHRYSOPHYTA								
. BACILLARIOPHYCEAE CENTRALES								
COSCINODISCACEAE								
CYCLOTELLA		_		-	190	11		_
PENNALES								
ACHNANTHACEAE								
ACHNANTHES		-		-		-		-
COCCONEIS		-		-		-		-
RHOICOSPHENIA		-		-		-		-
CYMBELLACEAE								
CYMBELLA		-		-		-		-
EUNOTIACEAE		2	2.5	- 2	-			_
FRAGILARIACEAE								
SYNEDRA		_		_		-	13	2
GOMPHONEMATACEAE								
GOMPHONEMA	13	13		-		-	13	2
NAVICULACEAE								
NAVICULA		-		-		-		-
NITZSCHIACEAE			-		100			
NITZSCHIA		-	26	2	13	1		-
SURIRELLACEAE		_		-	-4	-		_
CRYPTOPHYTA (CRYPTOMONADS) . CRYPTOPHYCEAE								
CRYPTOMONADALES								
CRYPTOCHRYSIDACEAE								
CHROOMONAS		-		-		-		-
CRYPTOMONADACEAE								54
CRYPTOMONAS		-		1 5				-

01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY--Continued

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

PHYTOPLANKTON

DATE		16,80	JUL 30,80		AUG 13,80		SEP 17,80	
TIME	C	930	C	830	C	900	O	845
	CELLS	PER-	CELLS	PER-	CELLS	PER-	CELLS	PER-
ORGANISM	/ML	CENT	/ML	CENT	/ML	CENT	/ML	CENT
CYANDPHYTA (BLUE-GREEN ALGAE)								
CYANDPHYCEAE								
CHRODCOCCALES								
CHROOCOCCACEAE								
ANACYSTIS	-	-	65	4	140	8	300#	44
HORMOGONALES								
OSCILLATORIACEAE								
OSCILLATORIA		-		-	180	11		-
SCHIZOTHRIX		-		-		-		-
EUGLENOPHYTA (EUGLENDIDS)								
. EUGLENOPHYCEAE								
EUGLENALES								
EUGLENACEAE								
EUGLENA		-	26	2	13			-
TRACHELOMONAS		-	39	3	78	5		-
PYRRHOPHYTA (FIRE ALGAE)								
DINOPHYCEAE								
PERIDINIALES								
GLENODINIACEAE								
GLENODINIUM	1-2-	-	26	2	130	8		-

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%

PERIPHYTON

	I anoth of aureaus	Biomass	(g/m ²)	Chlorophyll	Chlorophyll	Complina
Date	Length of exposure (days)	Dry weight	Ash weight	(mg/m ²)	(mg/m ²)	Sampling method
Dec. 11 to Jan. 15	35	0.000	0.000	0.000	0.000	Polyethylene strip
May 13 to June 4	22	.236	.000	.200	.070	Polyethylene strip
June 26 to July 30	34	1.89	1.02	4.07	1.14	Polyethylene strip
Aug. 13 to Sept. 17	35	1.26	.630	1.48	.410	Polyethylene strip

01304500 PECONIC RIVER AT RIVERHEAD, NY

(National stream-quality accounting network station)

LOCATION.--Lat 40°54'49", long 72°41'14", Suffolk County, Hydrologic Unit 02030202, on right bank 200 ft (61 m) downstream from Long Island Lighting Co. dam, 0.4 mi (0.6 km) west of Riverhead, and 1.2 mi (1.9 km) upstream from outlet of Sweezy Pond. Water-quality sampling site at discharge station.

DRAINAGE AREA . -- About 75 mi2 (194 km2).

50

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- June 1942 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 6.54 ft (1.993 m) National Geodetic Vertical Datum of 1929.

REMARKS .-- Records good. Flow regulated by ponds above station.

AVERAGE DISCHARGE. -- 38 years, 37.0 ft3/s (1.048 m3/s).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 225 ft³/s (6.37 m³/s) Jan. 30, 1978, gage height, 1.20 ft (0.366 m) (result of regulation); minimum, 1.4 ft³/s (0.040 m³/s) Jan. 9, 1966, Jan. 31, 1967, Dec. 6, 1969, Jan. 27, 1972, Dec. 10, 11, 1977; minimum gage height, 0.10 ft (0.030 m) Jan. 31, 1967 (result of freezeup), Dec. 6, 1969, Jan. 27, 1972 (result of freezeup); minimum daily, 3.7 ft³/s (0.10 m³/s) Aug. 2, 1944.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 79 ft 3 /s (2.24 m 3 /s) Apr. 10, gage height, 0.73 ft (0.223 m) (result of regulation); minimum, 1.8 ft 3 /s (0.051 m 3 /s) Mar. 1, gage height, 0.10 ft (0.030 m) (result of freezeup); minimum daily, 15 ft 3 /s (0.42 m 3 /s) Aug. 21, 22, 24.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MFAN VALUES

DAY	ncT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	42	43	47	44	37	26	68	72	45	38	26	19
2	44	43	46	44	35	34	70	70	45	38	26	19
3	46	49	45	44	35	34	68	69	49	39	26	18
4	52	54	45	44	35	34	72	67	49	39	25	17
5	54	56	45	45	35	37	72	65	47	38	25	21
6	54	58	44	44	35	35	70	63	47	38	26	21
7	52	56	45	44	36	37	68	62	49	37	27	19
8	50	55	45	43	38	38	6.8	62	47	36	25	18
9	50	54	46	43	38	38	66	62	47	35	23	18
10	65	54	47	43	38	38	77	61	49	34	50	18
11	66	52	47	44	38	42	74	60	47	32	21	18
12	63	55	46	48	37	40	72	59	47	31	24	18
13	56	58	45	46	35	37	72	60	45	29	23	18
14	50	58	45	45	35	43	71	59	45	28	23	18
15	58	58	45	45	37	45	72	58	44	27	23	18
16	62	58	45	45	37	43	71	58	43	28	23	18
17	59	58	45	45	40	45	69	57	42	28	23	18
18	58	56	45	44	42	54	67	56	42	27	23	20
19	56	56	43	44	42	54	66	56	41	26	55	19
20	55	56	43	45	43	52	66	56	41	26	50	18
21	54	54	43	45	43	56	60	59	40	26	15	18
22	53	54	4.3	43	43	66	60	60	38	26	15	19
23	51	53	43	43	43	64	60	58	37	26	16	17
24	50	53	45	43	43	62	58	58	38	26	15	16
25	47	52	50	31	43	66	60	56	37	25	17	19
26	46	54	48	40	43	68	60	54	37	24	19	21
27	45	55	46	40	43	66	60	52	37	24	19	19
28	44	52	45	40	42	66	66	49	35	24	19	21
29	45	50	45	40	40	66	74	45	35	26	50	20
30	45	48	45	40		68	74	47	38	27	50	19
31	43		45	40		66		45		26	50	
TOTAL	1615	1612	1402	1334	1131	1520	2031	1815	1283	934	669	560
MEAN	52.1	53.7	45.2	43.0	39.0	49.0	67.7	58.5	42.8	30.1	21.6	18.7
MAX	66	58	50	48	43	68	77	72	49	39	27	21
MIN	42	43	43	31	35	26	58	45	35	24	15	16

CAL YR 1979 TOTAL 25161 MEAN 68.9 MAX 173 MTN 32 WTR YR 1980 TOTAL 15906 MEAN 43.5 MAX 77 MIN 15

01304500 PECONIC RIVER AT RIVERHEAD, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1966 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: June 1975 to September 1980 (discontinued). WATER TEMPERATURES: June 1975 to September 1980 (discontinued).

INSTRUMENTATION .-- Water-quality monitor and temperature recorder since June 1975.

REMARKS.--In addition to the water-quality monitor record, samples were collected approximately once a month.

Unpublished records of daily specific conductance and water temperatures are available in files of Long Island Sub-district office.

COOPERATION.--Some water-quality samples were collected and analyzed by Suffolk County Department of Health Services. They are identified in the table by an asterisk (*).

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum recorded, 215 micromhos July 12, 1977; minimum recorded, 44 micromhos Mar. 10,

WATER TEMPERATURES: Maximum, 29.0°C Aug. 2, 1975, July 21, 1980; minimum, 0.0°C on several days during winter periods.

EXTREMES FOR CURRENT YEAR.--SPECIFIC CONDUCTANCE: Maximum, 164 micromhos Aug. 21; minimum, 82 micromhos Sept. 4, 19. WATER TEMPERATURES: Maximum, 29.0°C July 21; minimum, 0.0°C Feb. 29, Mar. 1.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TUR- BID- ITY (NTU)	DXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, FECAL, O. 7 UM-MF (COLS. / 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
NOV											
28 DEC	1230	52	100	6. 7	11.0	1.0	9. 2	86	K7	24	10
11. *.	0940	47	106	6. 5	4. 0		11.0	-		24	13
12	1230	47	105	6. 1	6. 5	2. 0	12.0	K14	K1	25	18
JAN	4325	0.5					4.5	15.2	1.0	0.5	2.2
30 FEB	1030	40	108	6. 1	1.5	. 50	13. 6	кз	<1	24	11
27 MAR	1000	43	117	6. 7	2. 0	. 50	13. 2	КЗ	K2	26	9
05. *. APR	1100	37	114	6.8	3. 0		12. 2			25	11
23	1300	60	106	6. 1	14. 5	1.8	10. 2	K10	K2	22	0
MAY 14	1030	60	92	6. 0	18. 5	1.8	9. 0	1000		23	9
JUN 03	1200	49	102	6. 1	21.5	. 35	7. 8	630	48	31	16
04. *.	0900	49	100	6.4	21.0	. 33	7.6			22	8
25	0900	38	92	6.4	24. 0	. 80	7. 4		K10	26	10
JUL											
15	0900	28	107	6. 9	24.0	1.3	7.6	K30	K4	27	10
29	0900	26	103	6.7	25. 0	1.5	5. 3	100	40	29	9
AUG								777	0.00		20
12 SEP	0830	24	107	6.6	24. 5	1. 1	6. 5	2900	60	27	8
09. *.	0800	19	115	6.6	20.0		7.0			27	7
16	0900	18	103	6.6	19.0	. 25	6. 9	23	кз	30	12

K Results based on colony counts outside the acceptable range (non-ideal colony count).

01304500 PECONIC RIVER AT RIVERHEAD, NY--Continued

DATE	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
NOV 28		6. 3		2. 0	6. 9	1.6	14	12	11	. 0	3. 7
DEC 11	6. 4	6. 4	2.0	2.0	8. 1	2. 1	11	11	13		
12 JAN		6. 5		2. 1	8. 0	1.8	7	13	12	. 0	4. 8
30 FEB		6. 4		2.0	7. 6	1.3	13	14	12	. 1	5. 4
27		6.7		2. 2	7. 9	1.6	17	13	12	. 0	4. 9
MAR 05	6. 5	6. 5	2. 2	2. 2	7. 7	1.8	14	12	14	<. 5	
APR 23		5. 5		1.9	7. 3	1.3	26	12	11	. 0	3. 7
MAY 14		5. B		2. 1	8. 4	1. 1	14	11	11	. 0	3. 5
JUN		6. 3		3. 7	6.2	1.0	15	12	11	. 0	3.6
04	5. 7	5. 7	2.0	2.0	7.6	1.4	14	9.8	14		
25 JUL		6.8		2. 2	7. 9	. 9	16	10	12	. 1	1.7
15 29		6. 8 7. 4	===	2.4	8. 2 8. 5	1.0	17	10	11 13	. 1	3. 3 2. 5
AUG		7. 4		2. 6	8. 5	1.3	20	10			
12 SEP		6. 7		2. 5	7. 7	1.3	19	8. 5	12	. 1	2. 2
09	7. 2	7. 2 7. 8	2. 3	2.3	9. 0 8. 8	1.7	20 18	8. O 10	14 13	. 1	3. 0
DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, ND2+ND3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)
NOV	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NITRATE TOTAL (MG/L	GEN, NITRITE TOTAL (MG/L	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L
NOV 28 DEC	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L AS P)
NOV 28 DEC 11	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NITRATE TOTAL (MG/L	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L AS P)
NOV 28 DEC 11 12 JAN 30	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N) . 170	GEN, DRGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + DRGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L AS P)
NOV 28 DEC 11 12 JAN 30 FEB 27	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N) .170 .140 .100	GEN, ORGANIC TOTAL (MG/L AS N) . 55	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) . 72 . 40 . 43	GEN, TOTAL (MG/L AS N) 1.1	PHORUS, TOTAL (MG/L AS P) . 080 . 052 . 050	PHORUS, DIS- SOLVED (MG/L AS P) . 060 . 040 . 030
NOV 28 DEC 11 12 JAN 30 FEB	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 54 54 58	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, ND2+ND3 TOTAL (MG/L AS N) . 36 	GEN, AMMONIA TOTAL (MG/L AS N) . 170 . 140 . 100	GEN, ORGANIC TOTAL (MG/L AS N) . 55 . 26 . 33	GEN. AM- MONIA + DRGANIC TOTAL (MG/L AS N) . 72 . 40 . 43 . 28	GEN, TOTAL (MG/L AS N) 1. 1 . 85	PHORUS, TOTAL (MG/L AS P) . 080 . 052 . 050	PHORUS, DIS- SOLVED (MG/L AS P) . 060 . 040 . 030
NOV 28 DEC 11 12 JAN 30 FEB 27 MAR 05 APR 23	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 64 65 64	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 54 54 58	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, ND2+ND3 TOTAL (MG/L A5 N) . 36 . 42 . 30 . 23	GEN, AMMONIA TOTAL (MG/L AS N) . 170 . 140 . 100 . 040	GEN, ORGANIC TOTAL (MG/L AS N) . 55 . 26 . 33 . 24	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) . 72 . 40 . 43 . 28	GEN, TOTAL (MG/L AS N) 1. 1 	PHORUS, TOTAL (MG/L AS P) . 080 . 052 . 050 . 050	PHORUS, DIS- SOLVED (MG/L AS P) . 060 . 040 . 030 . 040
NOV 28 DEC 11 12 JAN 30 FEB 27 MAR 05 APR 23 MAY	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 64 65 64 70	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 54 54 58 60	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N) .006 	GEN, ND2+ND3 TOTAL (MG/L AS N) . 36 . 42 . 30 . 23	GEN, AMMONIA TOTAL (MG/L AS N) . 170 . 140 . 100 . 040 . 020 . 050 . 150	GEN, ORGANIC TOTAL (MG/L AS N) .55 .26 .33 .24 .43 .15	GEN. AM- MONIA + DRGANIC TOTAL (MG/L AS N) . 72 . 40 . 43 . 28 . 45 . 20 . 46	GEN, TOTAL (MG/L AS N) 1. 1 	PHORUS, TOTAL (Me/L AS P) . 080 . 052 . 050 . 050 . 040 . 040	PHORUS, DIS- SOLVED (MG/L AS P) . 060 . 040 . 030 . 040
NOV 28. DEC 11. 12. JAN 30. FEB 27. MAR 05. APR 23. MAY 14. JUN	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 64 65 64 70 56	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 54 54 58 60 43 53	GEN, NITRATE TOTAL (MG/L AS N) . 53 . 40	GEN, NITRITE TOTAL (MG/L AS N) 006005	GEN, ND2+ND3 TOTAL (MG/L AS N) . 36 . 42 . 30 . 23 	GEN, AMMONIA TOTAL (MG/L AS N) . 170 . 140 . 100 . 040 . 020 . 050 . 150	GEN, ORGANIC TOTAL (MG/L AS N) .55 .26 .33 .24 .43 .15	GEN. AM- MONIA + URGANIC TOTAL (MG/L AS N) . 72 . 40 . 43 . 28 . 45 . 20 . 46	GEN, TOTAL (MG/L AS N) 1. 1 	PHORUS, TOTAL (MG/L AS P) .080 .052 .050 .050 .040 .040 .160	PHORUS, DIS- SOLVED (MG/L AS P) . 060 . 040 . 030 . 040 . 020 . 024 . 080 . 060
NOV 28. DEC 11	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 64 65 64 70	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 54 54 58 60	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N) 006 005	GEN, ND2+ND3 TOTAL (MG/L AS N) . 36 . 42 . 30 . 23	GEN, AMMONIA TOTAL (MG/L AS N) . 170 . 140 . 100 . 040 . 020 . 050 . 150	GEN, ORGANIC TOTAL (MG/L AS N) .55 .26 .33 .24 .43 .15	GEN. AM- MONIA + DORGANIC TOTAL (MG/L AS N) . 72 . 40 . 43 . 28 . 45 . 20 . 46 . 65	GEN, TOTAL (MG/L AS N) 1. 1 	PHORUS, TOTAL (Me/L AS P) . 080 . 052 . 050 . 050 . 040 . 040	PHORUS, DIS- SOLVED (MG/L AS P) . 060 . 040 . 020 . 024 . 080 . 060 . 070 . 101
NOV 28 DEC 11 12 JAN 30 FEB 27 MAR 05 APR MAR 23 MAY 14 JUN 03 04 25	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 64 65 64 70 56	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 54 54 58 60 43 53	GEN. NITRATE TOTAL (MG/L AS N) .53 .40 	GEN, NITRITE TOTAL (MG/L AS N) 006 005	GEN, NO2+ND3 TOTAL (MG/L AS N) . 36 .42 . 30 . 23 .24 .29	GEN, AMMONIA TOTAL (MG/L AS N) . 170 . 140 . 100 . 040 . 020 . 050 . 150 . 150	GEN, ORGANIC TOTAL (MG/L AS N) .55 .26 .33 .24 .43 .15 .31	GEN. AM- MONIA + DRGANIC TOTAL (MG/L AS N) . 72 . 40 . 43 . 28 . 45 . 20 . 46 . 65	GEN, TOTAL (MG/L AS N) 1. 1 	PHORUS, TOTAL (Me/L AS P) . 080 . 052 . 050 . 040 . 040 . 160 . 070 . 100	PHORUS, DIS- SOLVED (MG/L AS P) . 060 . 040 . 030 . 040 . 020 . 024 . 080 . 060
NOV 28. DEC 11	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 64 65 64 70 56 80 64	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 54 54 58 60 43 53 54 52	GEN, NITRATE TOTAL (MG/L AS N) 53 40 20	GEN, NITRITE TOTAL (MG/L AS N) 006005005	GEN, NO2+NO3 TOTAL (MG/L AS N) .36 .42 .30 .23 .24 .29 .18 .07	GEN, AMMONIA TOTAL (MG/L AS N) . 170 . 140 . 100 . 040 . 050 . 150 . 150 . 240 . 050	GEN, ORGANIC TOTAL (MG/L AS N) .55 .26 .33 .24 .43 .15 .31 .50 .32 .56 .35	GEN. AM- MONIA + DORGANIC TOTAL (MG/L AS N) . 72 . 40 . 43 . 28 . 45 . 20 . 46 . 65 . 47 . 80 . 40 . 42	GEN, TOTAL (MG/L AS N) 1. 1 	PHORUS, TOTAL (MG/L AS P) .080 .052 .050 .050 .040 .040 .160 .090 .109 .060	PHORUS, DIS- SOLVED (MG/L AS P) . 060 . 040 . 020 . 024 . 080 . 060 . 070 . 101 . 050
NOV 28 DEC 11 12 JAN 30 FEB 27 MAR 05 APR 23 MAY 14 JUN 03 04 25 JUL 15 29 AUG	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 64 65 64 70 56 58 80 64 64	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 54 54 58 60 43 53 54 52 52	GEN. NITRATE TOTAL (MG/L AS N) 53 40 20 20	GEN, NITRITE TOTAL (MG/L AS N) 006 005 012 012	GEN, ND2+ND3 TOTAL (MG/L AS N) .3642 .30 .2324 .29 .1807 .09 .10	GEN, AMMONIA TOTAL (MG/L AS N) .170 .140 .100 .040 .020 .050 .150 .150 .240 .050 .050 .050 .050	GEN, ORGANIC TOTAL (MG/L AS N) .55 .26 .33 .24 .43 .15 .31 .50 .32 .56 .35 .37	GEN. AM- MONIA + DROANIC TOTAL (MG/L AS N) . 72 . 40 . 43 . 28 . 45 . 20 . 46 . 65 . 47 . 80 . 40 . 42 . 43	GEN, TOTAL (MG/L AS N) 1. 1 	PHORUS, TOTAL (MG/L AS P) .080 .052 .050 .040 .040 .160 .070 .100 .109 .060 .210 .110	PHORUS, DIS- SOLVED (MG/L AS P) .060 .040 .030 .040 .020 .024 .080 .060 .070 .101 .050 .070
NOV 28 DEC 11 12 JAN 30 FEB 27 MAR 05 APR 42 MAY 14 JUN 03 O4 25 JUL 15 27 AUG 12 SEP AUG 12	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 64 65 64 70 56 80 64	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 54 54 58 60 43 53 54 52	GEN, NITRATE TOTAL (MG/L AS N) 53 40 20	GEN, NITRITE TOTAL (MG/L AS N) 006 005 012 012	GEN, NO2+NO3 TOTAL (MG/L AS N) .36 .42 .30 .23 .24 .29 .18 .07	GEN, AMMONIA TOTAL (MG/L AS N) . 170 . 140 . 100 . 040 . 050 . 150 . 150 . 240 . 050	GEN, ORGANIC TOTAL (MG/L AS N) .55 .26 .33 .24 .43 .15 .31 .50 .32 .56 .35	GEN. AM- MONIA + DIRGANIC TOTAL (MG/L AS N) . 72 . 40 . 43 . 28 . 45 . 20 . 46 . 65 . 47 . 80 . 40 . 42 . 43 . 34	GEN, TOTAL (MG/L AS N) 1. 1 	PHORUS, TOTAL (MG/L AS P) .080 .052 .050 .050 .040 .040 .160 .090 .109 .060	PHORUS, DIS- SOLVED (MG/L AS P) . 060 . 040 . 030 . 040 . 020 . 024 . 080 . 060 . 070 . 101 . 050 . 070 . 070 . 110
NOV 28. DEC 11. 12. 12. 13AN 30. FEB 27. MAR 23. APR 23. MAY 14. JUN 03. 04. 25. JUL 15. 29. AUG 12.	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 64 65 64 70 56 58 80 64 64	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 54 54 58 60 43 53 54 52 52	GEN. NITRATE TOTAL (MG/L AS N) 53 40 20 20	GEN, NITRITE TOTAL (MG/L AS N) 006 005 012 012	GEN, ND2+ND3 TOTAL (MG/L AS N) .3642 .30 .2324 .29 .1807 .09 .10	GEN, AMMONIA TOTAL (MG/L AS N) .170 .140 .100 .040 .020 .050 .150 .150 .240 .050 .050 .050 .050	GEN, ORGANIC TOTAL (MG/L AS N) .55 .26 .33 .24 .43 .15 .31 .50 .32 .56 .35 .37	GEN. AM- MONIA + DROANIC TOTAL (MG/L AS N) . 72 . 40 . 43 . 28 . 45 . 20 . 46 . 65 . 47 . 80 . 40 . 42 . 43	GEN, TOTAL (MG/L AS N) 1. 1 	PHORUS, TOTAL (MG/L AS P) .080 .052 .050 .040 .040 .160 .070 .100 .109 .060 .210 .110	PHORUS, DIS- SOLVED (MG/L AS P) .060 .040 .030 .040 .020 .024 .080 .060 .070 .101 .050 .070

01304500 PECONIC RIVER AT RIVERHEAD, NY--Continued

21.55	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L	ARSENIC TOTAL (UG/L	ARSENIC DIS- SOLVED (UG/L	BARIUM, TOTAL RECOV- ERABLE (UG/L	BARIUM, DIS- SOLVED (UG/L	CADMIUM TOTAL RECOV- ERABLE (UG/L	CADMIUM DIS- SOLVED (UG/L	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L	CHRO- MIUM, DIS- SOLVED (UG/L	COBALT, TOTAL RECOV- ERABLE (UG/L	COBALT, DIS- SOLVED (UG/L
DATE	AS P)	AS AS)	AS AS)	AS BA)	AS BA)	AS CD)	AS CD)	AS CR)	AS CR)	AS CO)	AS CO)
NOV 28								- 222		- 22	
DEC											
11	. 034	0	0	100	20		0	20	10	0	0
JAN				100	20				10		
30 FEB			-57					77		77	
27 MAR				-							
05 APR	. 009										
23		1	0	<50	20	0	6	<10	<10	0	0
MAY 14	42								54		-
03			22								
04	. 067					4-					
25 JUL		1	1	<50	20	0	1	10	10	0	0
15		==									
29 AUG							===				
12 SEP		1	2	100	100	0	4	<10	<10	0	0
09	. 048										100 500
16											
DATE	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)
DATE	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	NESE, TOTAL RECOV- ERABLE (UG/L	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L
NOV 28	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	NESE, TOTAL RECOV- ERABLE (UG/L	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L
NOV 28 DEC 11	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)
NOV 28 DEC 11	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS NI)
NOV 28 DEC 11 12 JAN 30	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)
NOV 28 DEC 11 12 JAN 30 FEB 27	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)
NOV 28 DEC 11 12 JAN 30 FEB 27 MAR 05	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)
NOV 28 DEC 11 12 JAN 30 FEB 27 MAR 05 APR 23	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB) 0	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)
NOV 28 DEC 11 12 JAN 30 FEB 27 MAR 05 APR	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE) 330 370 380	DIS- SOLVED (UG/L AS FE) 180 210 230	TOTAL RECOV- ERABLE (UG/L AS PB) 0	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 40 40 40	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <. 1	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)
NOV 28. DEC 11. 12. JAN 30. FEB 27. MAR 05. APR 23. MAY 14. JUN	TOTAL RECOV- ERABLE (UG/L AS CU) 1 5	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE) 330 370 380	DIS- SOLVED (UG/L AS FE) 180 210 230 520	TOTAL RECOV- ERABLE (UG/L AS PB) 0	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) (. 1 1	DIS- SOLVED (UG/L AS HG) <. 1 <. 1	TOTAL RECOV- ERABLE (UG/L AS NI) 1 0
NOV 28. DEC 11. 12. JAN 30. FEB 27. MAR 05. APR 23. MAY 14. JUN 03.	TOTAL RECOV- REABLE (UG/L AS CU) 1 5	DIS- SOLVED (UQ/L AS CU)	TOTAL RECOV-ERABLE (UG/L AS FE) 330 370 380 1000	DIS- SOLVED (UG/L AS FE) 180 210 230 520	TOTAL RECOV- ERABLE (UG/L AS PB) 0	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 40 40 90 170	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <.11	DIS- SOLVED (UG/L AS HG) <.1	TOTAL RECOV- ERABLE (UG/L AS NI) 1 0
NOV 28. DEC 11. 12. JAN 30. FEB 27. MAR 05. APR 23. MAY 14. JUN 03. 04. 25. JUL	TOTAL RECOV- ERABLE (UG/L AS CU) 1 5	DIS- SOLVED (UQ/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE) 330 370 380	DIS- SOLVED (UG/L AS FE) 180 210 230 520	TOTAL RECOV- ERABLE (UG/L AS PB) 0	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <. 1 1	DIS- SOLVED (UG/L AS HG) <.1 <.1	TOTAL RECOV- ERABLE (UG/L AS NI) 1 0
NOV 28. DEC 11	TOTAL RECOV- ERABLE (UG/L AS CU) 1 5	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV-ERABLE (UG/L AS FE) 330 370 380 1000 850	DIS- SOLVED (UG/L AS FE) 180 210 230 520	TOTAL RECOV- ERABLE (UG/L AS PB) 0	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 40 40 90 170	NESE, DIS- SOLVED (UG/L AS MN) 40 90 140 70 30	TOTAL RECOV- ERABLE (UG/L AS HG) 1	DIS- SOLVED (UG/L AS HG) <.1	TOTAL RECOV- ERABLE (UG/L AS NI) 1 0 0
NOV 28. DEC 11. 12. JAN 30. FEB 27. MAR 05. APR 23. MAY 14. JUN 03. 04. 25. JUL 15. 29. AUG	TOTAL RECOV- ERABLE (UG/L AS CU) 1 5 1 1	DIS- SOLVED (UQ/L AS CU)	TOTAL RECOV-ERABLE (UG/L AS FE) 330 370 380 1000 850 500	DIS- SOLVED (UG/L AS FE) 180 210 230 520 620 270	TOTAL RECOV- ERABLE (UG/L AS PB) 0 2 1	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 40 40 90 170 90 	NESE, DIS- SOLVED (UG/L AS MN) 40 90 140 70 30	TOTAL RECOV- ERABLE (UG/L AS HG) <.111111	DIS- SOLVED (UG/L AS HG) <.1 <.1	TOTAL RECOV- ERABLE (UG/L AS NI) 1 0 0
NOV 28 DEC 11 12 JAN 30 FEB 27 MAR 05 APR 23 MAY 14 JUN 03 04 25 JUL 15 27	TOTAL RECOV- ERABLE (UG/L AS CU) 1 5	DIS- SOLVED (UQ/L AS CU)	TOTAL RECOV-ERABLE (UG/L AS FE) 330 370 380 1000 850 500	DIS- SOLVED (UG/L AS FE) 180 210 230 520 420 270	TOTAL RECOV- ERABLE (UG/L AS PB) 0 2 1	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 40 40 90 170 90	NESE, DIS- SOLVED (UG/L AS MN) 40 90 140 70 30	TOTAL RECOV- ERABLE (UG/L AS HG) 1	DIS- SOLVED (UG/L AS HG) <.1	TOTAL RECOV- ERABLE (UG/L AS NI) 1 0 0

STREAMS ON LONG ISLAND 01304500 PECONIC RIVER AT RIVERHEAD, NY--Continued

DATE	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED (MG/L AS C)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
NOV											
28 DEC								3. 6			
11											<. 02
12	0	0	0	0	0	50	10		2. 4	. 5	
JAN											
30				0				4.6			
27				-44				2.4			
MAR								-			
05											<. 02
APR											
23	1	0	0	0	0	10	50		5. 5		
MAY 14											
JUN				0	75			4. 3			77
03								2.5			
04											. 02
25	0	0	0	0	0		1		3.0	. 3	
JUL											
15				0				3. 3			
29								3. 7			
AUG							1.000				
12 SEP	4	0	0	0	0	20	50		7. 4	. 3	
09						-					<. 02
16	-			0				2.7			

01304500 PECONIC RIVER AT RIVERHEAD, NY--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C). WATER YEAR OCTORER 1979 TO SEPTEMBER 1980

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOR	ER		NOVEMB	ER		DECEMBI	ER		JANUA	
1	120	112	115	126	119	121						
2	122	118	119	122	118	121 119	126 124	120 120	123	110 108	106	107
3	122	116	119	150	116	118	123	111	118	108	106	107
5	128	116 120	120 124	120	118	118	112	108	110	106	106	106
				120	114	116	116	110	112	106	105	104
6	122	114	119	118	112	115	111	107	110	116	106	110
7 8	116 114	110	115	126 132	114	118	111	105	109	116	112	114
9	114	106	109	134	114 126	120 130	114	106	111	114	106	109
10	116	108	111	134	155	130	111	110 107	111	112	106	109
11	110	106	108	124						11-	1	110
12	110	104	107	124	114 116	119 119	117	109	113	112	104	109
13	106	102	104	126	110	118	112 110	104	108	106 108	102	104
14	106	102	104	116	110	114	110	106	109	108	104	106
15	108	102	105	114	110	112	114	106	110	108	104	106
16	108	98	104	112	110	112	108	104	107	110	100	100
17	106	102	105	116	112	113	116	108	113	110	108	108
18 19	115	102	106	116	112	114	114	108	110	108	104	106
50	114	110	109 112	114 116	112	113	110	108	109	108	102	104
				110	114	115	112	110	110	104	96	100
21	116	112	115	118	114	116	110	108	109	102	98	100
23	118 116	114	115 114	122	116	119	108	102	105	104	98	102
24	116	114	114	122	118 120	120	108	102	105	98	96	97
25	114	112	113				108	100	106 103	106 108	98 106	104 108
26	118	114	116								100	100
27	118	116	117				112	108	109	110	106	108
28	120	116	118				114	110 108	112 110	108 112	106	107
30 30	150	108	115	121	119	120	112	108	109	110	106	108
31	114 130	110	111 124	125	121	122	108	106	107	110	106	109
	130	114	124				110	108	108	112	110	112
MONTH	130	98	113	134	110	118	126	100	110	116	96	107
DAY												
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MFAN	MAX	MIN	MEAN
		FEBRUAR	Υ		MARCH			APRIL			MAY	
1	114	112	114	129	123	125	110	100	103	100		
2	116	114	116	129	123	125	104	102	103	102	96 96	99
3	118	116	117	125	121	124	104	98	101	107	99	103
5	122	118 120	120 122	125 121	119 117	122	107	97	101	103	93	98
			1	121	111	110	109	97	103	102	94	97
6	122	122	122	119	113	116	105	97	101	100	90	94
8	122	116	118	120	116	119	105	99	102	97	93	94
9				118	115	115 115	107 103	99 95	102 98	101	95	96
10				120	116	118	110	96	103	104	94 96	98 101
11				118	111	115	5345					
12				116	114	115 115	110 108	100 98	105 103	105 105	99	102
13				117	115	117	104	96	99	100	93	98 97
14				115		112	106	98	102	102	92	96
15				113	109	111	101	95	97	106	96	101
16				115	111	113	103	97	99	100	94	98
17				115	109	112	109	99	103	102	94	98
18 19				110	104	106	103	99	102	100	98	98
20				112	106	109	105 105	97 97	101	100	92	98
					100	107	105	91	101	102	96	98
21				106	102	105	106	96	101	104	96	100
23				108	104 98	105	108	100	106	98	96	97
24				109	101	104	110 108	100	104	110 106	96 100	103
25				111	99	103	107	99	102	102	94	103
26				101	97	99	105	99				
27				103	99	100	106	100	102 102	102 100	92	99 96
28	116	112	114	103	99	101	110	102	105	98	92	95
30	122	116	120	108	100	101	109	103	105	98	92	95
31				114	100 98	109 105	103	99	101	100 96	95	95
MONTH	122	110					275			90	92	94
MONTH	122	112	118	129	97	111	110	95	102	110	90	98

STREAMS ON LONG ISLAND
01304500 PECONIC RIVER AT RIVERHEAD, NY--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTORER 1979 TO SEPTEMBER 1980

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MFAN	мах	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMA	ED
	430	77.2						4,00031			See I Emi	
1	104	92	97	101	95	98	115	101	106	144	108	117
3	100	96	96	117	97	104	114	102	109	111	97	102
	110	98	102	107	99	103	115	105	111	97	83	88
4	106	96	100	111	99	104	106	106	106	104	82	93
5	105	95	99	105	99	102	126	106	114	118	96	106
6	107	97	103	107	99	102	119	107		120		
7	106	102	103	101	99	100	144	106	112	138	98	124
8	104	92	99	99	93	97	131	119	121	123	95	107
9	98	92	95	101	99	100	120	112	124	95	91	94
10	101	95	97	107	99	102			115	121	93	106
				10,	77	102	119	111	115	106	94	101
11	105	95	100	105	99	102	116	104	109	116	106	111
12	104	98	101	103	99	100	109	103	106	105	95	99
13	104	96	99	109	99	102	115	107	111	103	95	101
14	98	92	96	109	101	106	112	106	109	105	99	101
15	95	89	92	109	101	104	134	106	113	108	100	103
		2.0	2.0						2.5	2.00		
16	95	89	92	110	98	103	122	108	112	136	102	111
17	100	92	96	108	104	106	125	111	117	135	109	122
18	102	92	95	109	103	105	115	107	111	109	85	93
19	103	93	96	108	102	105	114	112	113	100	82	92
20	101	91	96	106	100	103	118	112	116	98	94	96
21	99	89	92	135	99	108	164	116		97		
55	104	96	98	126	122	124	139	131	141		95	95
23	100	94	96	122	114	118			135	113	95	102
24	97	93	95	113	109	111	137	109	121	110	98	102
25	95	91	93	115	109	111	111	105	107	99	95	95
				113	109	111	108	102	105	101	95	98
26	95	91	93	124	106	113	136	108	116	104	88	94
27	97	91	94	119	109	113	119	107	112	102	94	97
28	101	93	99	125	109	116	145	113	123	101	95	98
29	99	95	98	106	98	101	131	109	119	103	95	99
30	101	91	97	111	99	102	110	98	106	100	92	97
31				112	96	104	110	104	107			
MONTH	110	89	97	135	93	105	164	98	114	144	82	102
YEAR	164	82	107									1777

STREAMS ON LONG ISLAND 01304500 PECONIC RIVER AT RIVERHEAD, NY--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAD OCTOBER 1979 TO SEPTEMBER 1980

DAY	мдх	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTORE	: 4		NOVEMBE	P		DECEMBE	R		JANUAL	RY
-	17.0	14 0	14.0									
1 2	17.0 17.0	16.0	16.5				6.0	5.5	5.5	4.0	3.0	3.5
3	17.5	16.5	17.0				5.5	4.0	5.0	4.0	3.0	3.5
4	18.0	16.5	17.5				3.0	3.0 2.5	3.5	3.5 3.0	3.0	2.5
5	18.0	17.0	17.5				4.0	2.5	3.0	2.5	1.0	2.0
6							6.0	4.0	5.0	1.5	.5	1.0
7							7.5	6.0	7.0	2.5	2.0	2.5
8							7.0	4.5	6.0	2.5	2.0	2.0
10							4.5	3.5 3.0	3.5	2.5 3.0	2.5	2.5
11												
12							6.0 7.5	6.0	5.0 6.5	6.0	3.0	3.5
13							7.5	6.5	7.5	2.5	2.5	2.0
14							6.5	5.0	5.5	4.0	2.0	3.0
15							4.5	4.0	4.5	5.5	4.0	5.0
16							6.5	4.5	5.5	5.0	4.0	4.5
17							6.5	3.0	5.0	4.5	4.0	4.5
18							2.5	.5	1.5	5.0	4.5	4.5
19 20							1.0	1.0	1.0	5.5 5.0	5.0	5.0
											3.5	
21							2.0	1.5	2.0	3.5	2.0	2.5
23							3.0	5.0	2.5	3.0	5.0	2.5
24							5.0 5.5	3.0 5.0	5.5	3.0	3.0	3.5 1.5
25							8.0	5.5	7.0	2.0	.5	1.0
26							7.5	6.5	7.5	3.0	1.5	2.5
27							6.5	5.0	5.5	3.0	2.5	2.5
28							5.0	3.5	4.0	3.5	3.0	3.0
29				11.5	9.0	10.0	4.5	3.5	4.0	3.5	3.0	3.0
30 31		===		8.5	6.0	7.0	5.0	4.0	4.5	3.0	5.0	2.0
							4.0	3.5	4.0	2.5	1.5	2.0
MONTH	18.0	16.0	17.0	11.5	6.0	8.5	8.0	• 5	4.5	6.0	• 5	3.0
DAY	мдх	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCH			APRIL			MAY	
1	2.0	1.5	1.5	2.0	0	1.0	10.0	7.0	8.5	12.5	12.0	12.0
2	1.5	•5	1.0	3.0	2.0	2.5	9.5	8.0	9.0	14.0	12.0	13.0
3	1.5	.5	1.0	3.5	2.5	3.0	10.0	7.5	9.0	16.5	13.5	15.0
4	2.5	1.5	2.0	4.0	3.0	3.5	10.0	10.0	10.0	17.5	15.0	16.0
5	3.0	2.0	2.5	4.0	3.5	4.0	10.5	9.0	9.5	18.0	16.0	17.0
6	3.5	2.5	3.0	6.0	3.5	5.0	12.0	9.5	10.5	18.5	16.5	17.5
7	3.5	5.0	2.5	7.0	5.5	6.5	12.5	11.0	12.0	18.0	17.5	17.5
8	3.0	1.5	2.5	8.0	6.5	7.5	12.5	11.5	12.0	17.5	15.0	16.5
9	3.5 4.5	2.5 3.0	3.0 3.5	9.0 8.5	7.0 7.0	8.0	12.0	11.5	11.5	17.0	14.5	15.5
					7.0	8.0	13.0	12.0	12.5	17.5	15.5	16.5
11	4.0	3.0	3.5	8.0	6.0	7.5	14.5	12.5	13.5	16.5	15.0	15.5
12	4.0	3.5	4.0 3.5	6.0 3.5	3.5	4.5	14.5	13.5	14.0	16.5	15.0	15.5
14	5.0	3.5	4.0	3.0	2.5	3.0 2.5	15.5 15.0	13.5	14.5	18.5	16.0	17.0 18.5
15	4.5	3.5	4.0	4.5	2.0	3.0	15.5	12.5	13.5	19.0	17.5	18.5
16	4.5	3.0	4.0	4.5	2.0	3.5	14.5	11.5	13.5	19.5	16.5	18.0
17	3.0	1.5	2.0	7.0	4.5	5.5	12.0	9.5	11.0	19.5	17.0	18.5
18	2.5	1.0	2.0	8.5	7.0	8.0	13.0	11.0	12.0	19.0	17.0	18.0
19	4.0	2.5	3.5	8.0	6.0	7.0	14.5	12.0	13.0	20.0	17.0	18.0
20	5.5	4.0	4.5	9.5	7.5	8.5	15.5	13.0	14.0	20.5	19.0	19.5
21	6.0	4.5	5.5	10.0	9.5	9.5	17.0	14.5	15.5	20.0	16.5	18.0
22	5.5	4.0	5.0	9.5	6.5	8.0	16.0	14.5	15.5	20.0	16.0	18.0
23 24	5.5	4.0	5.0	9.0	6.0	7.5	15.0	13.0	14.0	22.0	19.0	20.5
25	5.5	5.5	5.5	9.0	8.0	9.0 8.5	16.0 15.5	14.0	15.0 15.0	23.0	20.5	21.5
26	5.0	2.5	4.0	9.5	7.5	8.5				21.0	19.5	20.5
27	2.5	2.0	2.0	10.5	8.5	9.5	14.5	14.0	14.5	20.5	19.5	20.5
28	2.0	1.0	1.5	10.5	9.0	10.0	13.0	11.0	12.0	21.0	19.0	50.0
29	1.5	.0	1.0	10.0	10.0	10.0	11.0	10.5	11.0	21.5	19.0	20.0
30				10.0	9.0	10.0	12.0	11.0	11.5	20.5	19.5	20.0
31				10.0	8.0	9.0				20.5	19.5	20.0
MONTH	6.5	• 0	3.0	10.5	• 0	6.5	17.0	7.0	12.5	23.0	12.0	18.0

01304500 PECONIC RIVER AT RIVERHEAD, NY--Continued

TEMPERATURE: WATER (DEG. C): WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAY	мах	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MFAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEME	FR
1	22.5	19.0	21.0	24.0	20.5	22.5	26.5	25.0	25.5	25.5	23.5	24.5
2	23.0	21.5	22.0	24.0	22.5	23.0	27.5	25.0	26.5	26.5	24.5	25.5
3	23.0	21.0	22.0	23.0	22.0	22.5	27.5	25.0	26.5	26.0	24.5	25.5
4	23.0	21.0	22.0	25.0	21.5	23.0	27.5	25.5	26.5	25.0	23.5	24.5
5	55.0	20.5	21.5	26.0	23.5	24.5	28.0	25.5	26.5	23.5	22.5	53.0
6	22.5	20.0	21.0	25.0	23.5	24.5	28.0	26.5	27.0	23.0	21.5	22.5
7	21.0	20.0	20.5	23.5	22.0	22.5	27.5	26.0	27.0	24.0	22.0	23.0
8	20.5	18.0	19.5	23.0	21.5	22.5	27.0	26.0	26.5	23.0	21.5	25.0
9	18.0	16.0	17.0	24.5	21.5	23.0	27.0	25.5	26.0	21.5	20.0	21.0
10	17.0	16.5	16.5	25.5	23.0	24.0	26.0	24.5	25.0	21.5	20.0	21.0
11	19.0	15.5	17.0	25.5	24.0	24.5	26.0	24.5	25.0	21.0	19.5	20.0
12	50.0	16.5	18.5	25.5	23.5	24.5	25.5	24.5	24.5	20.0	19.0	19.5
13	21.0	18.0	19.5	25.0	23.0	24.0	25.0	23.5	24.0	21.0	19.0	20.0
14	20.0	19.0	19.5	26.0	23.0	24.5	24.0	23.0	23.5	55.0	20.0	21.0
15	20.5	18.5	19.5	26.0	23.5	24.5	23.5	22.5	23.0	55.0	20.5	21.5
16	21.5	19.5	20.5	26.5	23.5	25.0	23.0	21.0	22.0	20.5	18.0	19.5
17	55.0	19.5	21.0	26.0	24.5	25.0	22.5	20.0	21.5	18.0	17.0	17.5
18	55.0	20.0	21.0	27.0	24.0	25.5	22.5	20.5	21.5	20.5	18.5	19.0
19	55.0	19.5	21.0	26.5	25.0	25.5	22.5	21.5	55.0	20.5	18.5	19.5
20	21.0	19.0	20.0	28.0	24.5	56.0	22.5	21.5	55.0	20.5	19.0	19.5
21	21.0	17.5	19.5	29.0	25.5	27.0	21.0	19.5	20.5	55.0	19.5	21.0
55	23.5	20.0	21.5	28.0	26.0	27.0	20.5	19.0	19.5	23.5	21.0	22.5
23	24.0	21.0	22.5	26.5	24.0	25.0	22.5	19.5	21.0	24.0	22.5	23.0
24	25.0	55.0	23.5	26.0	23.0	24.0	24.5	21.0	22.5	22.5	20.5	21.5
25	26.0	23.5	24.5	26.0	23.5	25.0	24.5	22.5	23.5	20.5	17.5	18.5
26	25.5	23.0	24.5	26.5	24.0	25.5	24.5	22.5	23.5	18.5	16.5	17.5
27	26.5	24.0	25.5	26.5	24.5	25.5	24.5	23.0	24.0	16.5	15.0	15.5
28	25.5	24.0	24.5	26.5	24.5	25.5	24.5	23.5	24.0	16.5	15.0	15.5
29	23.5	55.0	22.5	25.5	24.0	24.5	23.5	23.0	23.0	16.0	15.0	15.5
30	22.5	21.0	21.5	26.0	23.0	24.5	23.5	23.0	23.0	16.0	14.5	15.5
31				26.5	24.0	25.0	25.0	23.0	24.0			
MONTH	26.5	15.5	21.0	29.0	20.5	24.5	28.0	19.0	24.0	26.5	14.5	20.5
YEAR	29.0	.0	14.0									

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	TIME	STREAM- FLOW, INSTAN- TANEOUS		SEDI- MENT DIS- CHARGE, SUS- PENDED	SED. SUSP. SIEVE DIAM. % FINER THAN
DATE		(CFS)	(MG/L)	(T/DAY)	. 062 MM
NOV , 19	779				
28 DEC	1230	52	2	. 28	
12 JAN , 19	1230	47	3	. 38	
30 APR	1030	40	4	. 43	
23 MAY	1300	60	7	1. 1	
14 JUN	1030	60	5	. 81	
03	1200	49	5	. 66	
25 JUL	0900	38	2	. 21	
15	0900	28	3	. 23	
29 AUG	0900	26	4	. 28	
12 SEP	0830	24	5	. 32	
16	0900	18	22	1.1	56

01304500 PECONIC RIVER AT RIVERHEAD, NY--Continued

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	PHYTOPLANKT	ON				
DATE		6,79‡		28,79‡		12,79
TIME TOTAL CELLS/ML		26		300	1	780
TOTAL CLLLSTILL				300		760
DIVERSITY: DIVISION		0.0		1.2		1.5
. CLASS		0.0		1.2		1.5
FAMILY		0. 0		1.9		2.5
GENUS		0.0		0.0		2.8
		9.00				7.7
DRGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER-
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESCHARACIACEAESCHROEDERIA				_		
COELASTRACEAE						
COELASTRUM		-	7.7	-		-
PEDIASTRUM			570#	45		_
DOCYSTACEAE			370#	45		
ANK ISTRODESMUS		-	25	2	15	2
CHLORELLA		-	30	2	25	3
DICTYOSPHAERIUM		-		-		-
KIRCHNERIELLA	10	-		-	10	1
DOCYSTIS				-		-
TETRAEDRON		-		_		=
TREUBARIA		-		-		-
WESTELLA		-		-		-
SCENEDESMACEAE						
CRUCIGENIA	244	±100	20 71	2		-
TETRASTRUM		-	/1	6	25	3
TETRASPORALES						
PALMELLACEAE						
SPHAEROCYSTIS		191		-		-
. , VOLVOCALES						
CHLAMYDOMONADACEAE		_			240#	21
VOLVOCACEAE					270#	31
EUDOR INA		2		-		-
ZYGNEMATALES						
DESMIDIACEAE						
COSMARIUM		-	1 7 7	-		-
CHRYSOPHYTA						
BACILLARIOPHYCEAE						
CENTRALES						
COSCINODISCACEAE					O.F.	
CYCLOTELLA	1022				25 10	3
THALASSIDSIRA		_		-	5	1
PENNALES					7	
ACHNANTHACEAE					4.4	
COCCONEIS		-		-	20	3
DIATOMA		_		_	5	1
FRAGILARIACEAE					-	
FRAGILARIA		-		-	240#	31
SYNEDRA		-	10	1	20	3
GOMPHONEMATACEAE	1,02		*			
GOMPHONEMA	1022	-	440#	0		_
NAVICULA		-	20	2	20	3
NITZSCHIACEAE						
NITZSCHIA		-	10	1		-
SURIRELLACEAE						
SURIRELLA .CHRYSOPHYCEAE			*	0		-
CHRYSOMONADALES						
MALLOMONADACEAE						
MALLOMONAS		-		-		-
CRYPTOPHYTA (CRYPTOMONADS)						
. CRYPTOPHYCEAE						
. CRYPTOMONADALES						
CRYPTOCHRYSIDACEAE						
CHROOMONAS	U	-		-		-
CRYPTOMONADACEAE		_		2	5	
un ir i driuma			77	-	J	1
* W						

^{\$} Not previously published.
NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

01304500 PECONIC RIVER AT RIVERHEAD, NY--Continued

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980
PHYTOPLANKTON

DATE TIME		6,79 ‡ 200		28, 79 ‡ 930		12, 79 230
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE CHROOCOCCALES						
CHROOCOCCACEAE						
ANACYSTIS		-		-		-
COCCOCHLORIS HORMOGONALES NOSTOCACEAE		-		-		-
ANABAENA		-		_		-
ANABAENDPSIS		-		-		-
OSCILLATORIA		-		-		-
SCHIZOTHRIX		-	56	4	110	14
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAE .EUGLENALES EUGLENACEAE						
EUGLENA		_		_		_
TRACHELOMONAS		-		-		-
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAE .PERIDINIALESGLENODINIACEAE						
GLENODINIUM	-			_		_

^{*} Not previously published.

61

STREAMS ON LONG ISLAND

01304500 PECONIC RIVER AT RIVERHEAD, NY--Continued

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

PHYTO	PLAN	KTON
-------	------	------

DATE TIME		23,80		14,80		3,80		25, 80 900
TOTAL CELLS/ML		850		500		410		450
DIVERSITY: DIVISION . CLASS ORDER		1.4 1.5 1.8		0. 8 0. 8 1. 4		1.0 1.0 1.4		1.3 1.3 2.1
FAMILY		2.3		1.6		1.8		2. 6 2. 8
DRGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE)								
. CHLOROPHYCEAE CHLOROCOCCALES								
CHARACIACEAE			7/	-	1.2	0.00	52.	-
SCHROEDERIA		-	26	2		-		_
COELASTRUM		-		-		-		-
HYDRODICTYACEAE PEDIASTRUM		_		_			42	-
OOCYSTACEAE								
ANK ISTRODESMUS	10-2-2	-	26	2		-		-
CHLORELLA	13	2		-	==	_	13	3
DICTYDSPHAERIUM		2		_		-		_
DOCYSTIS		-	13	1	13	3	26	6
SELENASTRUM		-	39	3	78#			_
TETRAEDRON		Ξ	13	1	52	13	13	3
WESTELLA		_		-		=		-
SCENEDESMACEAE								
CRUCIGENIA		-		-		-		_
SCENEDESMUS	77	9	77	5	26	6		_
. TETRASPORALES								
PALMELLACEAE								
SPHAEROCYSTIS		-		-		-	100#	23
CHLAMYDOMONADACEAE								
CHLAMYDOMONAS	13	2	39	3	52	13	13	3
VOLVOCACEAE								
EUDORINA ZYGNEMATALES		=		-	-	-		-
DESMIDIACEAE								
COSMARIUM		-		-		-		-
CHRYSOPHYTA								
. BACILLARIOPHYCEAE								
CENTRALES								
COSCINODISCACEAE	124		26	2	122		39	9
MELOSIRA	52	6		-	44	_		_
THALASSIDSIRA		-		-		-		-
PENNALES								
COCCONEIS		_		_		-		_
DIATOMACEAE								
DIATOMA		-		-		-		-
FRAGILARIACEAE	300#	35	,	-	180#	44	170#	37
SYNEDRA	3001	-		-		77		-
GOMPHONEMATACEAE								
GOMPHONEMA		-		-		-	77	_
NAVICULACEAE	39	5		_		_	26	6
NITZSCHIACEAE	-							
NITZSCHIA	26	3	13	1	13	3	26	6
SUR I RELLACEAE		_		_	22	_		-
. CHRYSOPHYCEAE								
CHRYSOMONADALES								
MALLOMONADACEAE	13	2		_		-		-
I INCEDITIONS	13	-						
CRYPTOPHYTA (CRYPTOMONADS)								
. CRYPTOPHYCEAE CRYPTOMONADALES								
CRYPTOHONADALES								
CHROOMONAS		-		-		-		-
CRYPTOMONADACEAE		_		_		_	13	3
ON IT TORIONAS							13	-

01304500 PECONIC RIVER AT RIVERHEAD, NY--Continued

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 PHYTOPLANKTON

DATE TIME	APR 23,80 1300		MAY 14,80 1030		JUN 3,80 1200		JUN 25,80 0900	
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER-
CYANDPHYTA (BLUE-GREEN ALGAE) . CYANDPHYCEAE CHRODCOCCALES CHRODCOCCACEAE								
ANACYSTIS	310	36	1100#	# 69		-		-
COCCOCHLORIS HORMOGONALES NOSTOCACEAE	13	3 2		-		-	124	-
ANABAENA								
			-	-		120		
ANABAENOPSIS	-	_		-		_	-	
OSCILLATORIACEAE							100	
OSCILLATORIA			210	13		-	-	
SCHIZOTHRIX	-	-		-		1	35	
EUGLENOPHYTA (EUGLENOIDS) . EUGLENOPHYCEAE EUGLENALES EUGLENACEAE								
EUGLENA				-		-		-
TRACHELOMONAS	-			-		-		
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEFERIDINIALESGLENDDINIACEAE								
GLENODINIUM		-		4		-	13	3
							7.7	

O1304500 PECONIC RIVER AT RIVERHEAD, NY--Continued

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

63

PHYTOPLANKTON

	FILLOTEANK		ION					
DATE TIME	JUL 15,80 0900		JUL 29,80 0900		AUG 12,80 0830		SEP 16,80 0900	
TOTAL CELLS/ML	2400		650		670		800	
DIVERSITY: DIVISION .CLASSORDERFAMILYGENUS	1. 4 1. 4 1. 6 2. 6 2. 8		1. 5 1. 5 1. 7 1. 9 1. 9		1. 4 1. 4 2. 0 2. 2 2. 5		0. 7 0. 7 1. 0 1. 0 1. 1	
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE .CHLOROCOCCALES								
CHARACIACEAE SCHROEDERIA		-		<u>-</u>	39	6		-
COELASTRACEAE	290	12		-		-		-
PEDIASTRUM		_	-	-		-		-
ODCYSTACEAE	26	1		_		_		-
CHLORELLA		-		-		-		-
DICTYOSPHAERIUM	39	2		-		-		-
KIRCHNERIELLA	26	1		_	52	8		-
SELENASTRUM	26	1		-	91	13		_
TETRAEDRON		-		-		-		-
TREUBARIA		-		-		-		_
WESTELLA SCENEDESMACEAE		-		-				
CRUCIGENIA		_		-		-		-
SCENEDESMUS	230	10		-		-		-
TETRASTRUM		-		-		-		-
TETRASPORALES PALMELLACEAE								
SPHAEROCYSTIS		-	-	-		-		-
CHLAMYDOMONADACEAE				_				2
CHLAMYDOMONAS		_	13	2	13	2	13	2
EUDOR INA ZYGNEMATALES		-		-		-		-
DESMIDIACEAE								
COSMARIUM		-		-	13	2		-
CHRYSOPHYTA .BACILLARIOPHYCEAECENTRALESCOSCINODISCACEAE				130			- 25	
CYCLOTELLA	78	3	26	4	13 78	12	26 39	3
MELOSIRA		-		-		-		_
PENNALES								
ACHNANTHACEAE		_		-		-		-
DIATOMACEAE		_		-		121		=
FRAGILARIACEAE	100		100#	14	310#	44		-
FRAGILARIA	190	8		-		-		-
GOMPHONEMATACEAE								
GOMPHONEMA		-		-		-		-
NAVICULACEAE		12	39	6		_	13	2
NITZSCHIACEAE			٠,	•				0.00
NITZSCHIA	65	3		-		-	13	2
SURIRELLACEAE			-			_		
SUR IRELLA . CHRYSOPHYCEAE CHRYSOMONADALES	-			-				
MALLOMONADACEAE								
MALLOMONAS		-		-		-		-
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAECRYPTOMONADALESCRYPTOCHRYSIDACEAE								
CHROOMONAS		-		-		-		-
CRYPTOMONADACEAE	-	c <u>-</u>	13	2		-		_
Carrier Same				-				

01304500 PECONIC RIVER AT RIVERHEAD, NY--Continued

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980
PHYTOPLANKTON

DATE TIME	JUL 15,80 0700		JUL 29,80 0900		AUG 12,80 0830		SEP 16,80 0900	
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT		PER- CENT
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALES								
CHROOCOCCACEAE								
ANACYSTIS	26	1	400	# 62	52	8	13	2
COCCOCHLORIS		-		-		-		-
HORMOGONALES								
NOSTOCACEAE								
ANABAENA	230	10		-		-		-
ANABAENOPSIS	120	5		-		-		-
OSCILLATORIACEAE								
OSCILLATORIA	1000#	43		-		-	670#	ŧ 84
SCHIZOTHRIX		-		-		-		-
EUGLENOPHYTA (EUGLENOIDS) . EUGLENOPHYCEAEEUGLENALESEUGLENACEAE								
EUGLENA	13	1		_		_		_
TRACHELOMONAS		-	26	4	13	2		-
PYRRHOPHYTA (FIRE ALGAE) . DINOPHYCEAE . PERIDINIALES GLENDDINIACEAE								
GLENODINIUM	13	1	26	4		-	13	2
		•						_

PERIPHYTON

Date	Length of exposure (days)	Biomass Dry weight	(g/m ²) Ash weight	Chlorophyll a (mg/m²)	Chlorophyll b (mg/m²)	Sampling method
Dec. 12 to Jan. 18	37	0.080	0.080	0.210	0.000	Polyethylene strip
May 14 to June 3	20	.866	.394	.100	.000	Polyethylene strip
June 25 to July 29	34	2.05	1.34	.540	.140	Polyethylene strip
Aug. 12 to Sept. 16	35	1.02	.866	.130	.030	Polyethylene strip

65

01305000 CARMANS RIVER AT YAPHANK, NY

(National stream-quality accounting network station)

LOCATION.--Lat 40°49'49", long 72°54'24", Suffolk County, Hydrologic Unit 02030202, on left bank 50 ft (15 m) upstream from Long Island Railroad bridge, 0.2 mi (0.3 km) northeast of Yaphank Station, and 0.5 mi (0.8 km) southeast of Yaphank. Water-quality sampling site at discharge station.

DRAINAGE AREA .-- About 71 mi2 (184 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1942 to current year.

REVISED RECORDS. -- WSP 1141: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 17.95 ft (5.471 m) National Geodetic Vertical Datum of 1929. Prior to Feb. 2, 1967, at same site at datum 1.00 ft (0.30 m) higher.

REMARKS.--Records good. Some regulation by two lakes above station.

AVERAGE DISCHARGE. -- 38 years, 24.0 ft3/s (0.680 m3/s).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 110 ft 3 /s (3.12 m 3 /s) Jan. 26, 1978, gage height, 1.93 ft (0.588 m); minimum, 2.8 ft 3 /s (0.079 m 3 /s) Feb. 24, 1967, gage height, 0.73 ft (0.223 m); minimum daily, 6.2 ft 3 /s (0.18 m 3 /s) Feb. 28, Mar. 3, 1967 (result of temporary construction upstream).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 70 ft 3 /s (1.98 m 3 /s) Aug. 13, gage height, 1.72 ft (0.524 m) (result of regulation); minimum, 9.6 ft 3 /s (0.27 m 3 /s) Aug. 15, gage height, 0.97 ft (0.296 m) (result of regulation).

DISCHARGE. IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	40	35	34	33	31	26	38	38	31	32	29	25
2	38	35	34	33	30	30	35	37	37	31	29	25
3	45	44	34	33	30	29	33	36	37	34	59	25
4	45	41	34	32	30	29	39	35	34	32	29	24
2 3 4 5	40	37	34	34	30	29	38	34	32	31	58	24
6	39	37	35	33	30	29	36	34	31	32	28	25
7	38	36	40	32	31	29	37	35	33	30	27	26
8	37	36	36	33	31	29	37	37	34	29	27	37
9	37	36	35	32	31	30	37	36	32	29	27	28
6 7 8 9	47	36	35	32	31	29	54	34	34	29	56	28 25
11	45	39	35	33	31	32	42	34	32	29	31	25
12	42	44	34	39	31	29	38	34	32	29	31	25
13	42	39	37	35	30	29	37	35	31	29	41	25
14	40	38	37	34	30	34	38	34	31	29	46	23
14 15	38	37	35	33	30	32	38	33	30	29	23	25 25 25 23 22
16	37	37	35	32	33	30	38	32	30	29	21	21
17	37	36	35	32	32	29	37	32	30	29	25	55
18	37	36	34	32	30	37	37	33	29	29	27	29
19	37	36	34	34	30	32	37	34	29	29	23	26
50	37	36	34	32	29	31	37	33	30	29	21	23
21	37	35	34	32	29	35	37	37	30	28	27	26
22	37	35	34	32	30	40	37	35	29	29	36	26
23	37	35	34	34	31	36	37	33	29	29	55	25
24	37	35	35	32	30	33	37	32	29	29	20	19
25	36	35	40	32	30	37	37	32	30	30	25	18
26	36	36	38	32	29	35	37	32	29	35	25	21
27	35	37	35	32	29	33	37	31	30	31	25	55
28	36	35	34	32	29	32	43	31	29	27	25	22
29	36	35	34	32	29	33	49	31	29	32	25	22
30	36	35	34	31		37	41	31	34	32	25	22
31	35		33	31		37		31		30	25	
TOTAL	1196	1104	1086	1015	877	992	1155	1046	937	931	848	728
MEAN	38.6	36.8	35.0	32.7	30.2	32.0	38.5	33.7	31.2	30.0	27.4	24.3
MAX	47	44	40	39	33	40	54	38	37	35	46	37
MIN	35	35	33	31	29	26	33	31	29	27	50	18

CAL YR 1979 TOTAL 14517 WTR YR 1980 TOTAL 11915 MEAN 39.8 MEAN 32.6 MAX 54

01305000 CARMANS RIVER AT YAPHANK, NY -- Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE.--December 1979 to September 1980. WATER TEMPERATURES.--December 1979 to September 1980.

INSTRUMENTATION. -- Water-quality monitor and temperature recorder since December 1979.

REMARKS.--In addition to the water-quality monitor record, samples were collected approximately once a month. Interruptions in the record were due to malfunctions of the instrument. Unpublished records of daily specific conductance and water temperatures are available in files of Long Island Subdistrict office.

COOPERATION.--Some water-quality samples were collected and analyzed by Suffolk County Department of Health Services. They are identified in the table by an asterisk (*).

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE.--Maximum, 195 micromhos June 28; minimum, 99 micromhos June 6. WATER TEMPERATURES.--Maximum, 25.5°C July 21; minimum, 0.5°C Feb. 29.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TUR- BID- ITY (NTU)	DXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
NOV											
28	0930	35	111	6. 1	10. 5	1.0	9. 2	K11	K11	27	9
DEC											
11. *.	1055	35	116	6. 5	6.0		10.0			28	15
12	1000	34	112	5. 2	7.0	2.0	11.3	K11	K1	29	20
JAN											
29	1100	32	120	5. 6	5. 0	. 25	12.7	K15	K2	34	8
FEB											
28	1030	29	117	6. 4	3. 0	. 50	12.1	K2	<1	29	13
MAR	7444						72.2			22	
05. *.	1200	29	118	6.0	5. 0		10. 5			28	14
APR	4000										16
23 MAY	1030	36	140	6. 5	14. 0	1.5	12. 1	K7	K2	30	10
14	0830	34	121	6.2	15.5		9.8	K30			
JUN	0030	34	121	0. 2	13. 3		7. 0	NOO			
03	0900	34	112	6. 4	18.0	. 30	8.6	120	40	26	9
04. *.	1050	35	110	6.4	18.0		8.3			25	
24	1000	29	110	6.7	20. 5	. 70	9. 4	44	60	29	15
JUL			1755	1772							
15	1100	28		6.7	21.5	1.5	8. 1	11	92	29	13
29	1100	36	120	6. 4	21.0	2.0	5. 6	K5800	K7000	28	13
AUG											
12	1100	31	110	6. 5	22. 0	1.0	7. 7	60	80	28	11
SEP											
09. *.	0900	28	108	6. 4	17. 0		7. 3			26	11
16	1100	22	110	6.6	16.0	. 30	9. 1	180	100	29	12

K Results based on colony counts outside the acceptable range (non-ideal colony count).

STREAMS ON LONG ISLAND 67
01305000 CARMANS RIVER AT YAPHANK, NY--Continued

DATE	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
NOV 28		7. 0		2. 4	7.6	1.2	18	12	11	. 0	12
DEC								10			12
11	7. 0	7. 0 7. 4	2.5	2.5	8. 6 8. 8	1.7	13	13	13	. 0	12
JAN 29 FEB		8. 2		3. 4	8. 6	1.0	26	14	13	. 1	12
28		7. 1		2. 7	9. 0	1.0	16	12	13	. 0	12
MAR 05	6.8	6.8	2. 6	2.6	8.0	1.2	14	11	13	C. 5	
APR 23		7. 5		2. 7	8. 1	1. 1	14	14	13	. 0	11
MAY 14		1944							-		
JUN 03		6. 4		2. 5	9. 2	. 9	17	13	11	. 0	10
04 24	6. 2	6. 2 7. 3	2. 3	2.3	7. 7 8. 4	1.2	14	11 12	14	. 1	11
JUL 15		7. 2		2. 7	8. 3	. 9	16	13	11	. 1	11
29 AUG		6. 6		2. 7	8. 9	1. 5	15	12	13	. 1	9. 6
12 SEP		6. 6	177	2. 8	7. 9	. 8	17	12	12	. 1	12
09 16	6. 6	6. 6 7. 4	2. 4	2. 4	8. 0 8. 6	1.0	15 17	9. 9 13	12	. 1	13
DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, DRGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + DRGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)
NOV	RESIDUE AT 180 DEG. C DIS- SOLVED	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NITRATE TOTAL (MG/L	GEN, NITRITE TOTAL (MG/L	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L	GEN, AM- MONIA + DRGANIC TOTAL (MG/L	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L	PHORUS, DIS- SOLVED (MG/L
NOV 28 DEC	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + DRGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L AS P)
NOV 28 DEC 11	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, ND2+ND3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, DRGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + DRGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L AS P)
NOV 28 DEC 11 12 JAN 29	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, ND2+ND3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N) . 020 <. 040	GEN, DRGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + DRGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P) . 010	PHORUS, DIS- SOLVED (MG/L AS P)
NOV 28 DEC 11 12 JAN 29 FEB 28	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, ND2+ND3 TOTAL (MG/L AS N) . 94 1.1	GEN, AMMONIA TOTAL (MG/L AS N) . 020 C. 040 . 000	GEN, ORGANIC TOTAL (MG/L AS N) . 23 	GEN, AM- MONIA + DRGANIC TOTAL (MG/L AS N) . 25 . 10 . 37	GEN, TOTAL (MG/L AS N) 1.2	PHORUS, TOTAL (MG/L AS P) .010 .008	PHORUS, DIS- SOLVED (MG/L AS P) . 010 <. 002 . 000
NOV 28 DEC 11 12 JAN 29 FEB 28 MAR 05	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 74 79	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 68 69	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, ND2+ND3 TOTAL (MG/L AS N) .94 1.1	GEN, AMMONIA TOTAL (MG/L AS N) . 020 C. 040 . 000	GEN, DRGANIC TOTAL (MG/L AS N) .23 .37	GEN, AM- MONIA + DRGANIC TOTAL (MG/L AS N) . 25 . 10 . 37	GEN, TOTAL (MG/L AS N) 1.2 1.5	PHORUS, TOTAL (Mg/L AS P) . 010 . 008 . 000	PHORUS, DIS- SOLVED (Mg/L AS P) . 010 . 002 . 000 . 010
NOV 28 DEC 11 JAN 29 FEB 28 MAR 05 APR 23 MAY	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 74 79 76	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 68 69 81	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+ND3 TOTAL (MG/L AS N) . 94 1. 1 1. 1	GEN, AMMONIA TOTAL (MG/L AS N) . 020 . 040 . 000 . 010	GEN, DRGANIC TOTAL (MG/L AS N) . 23 	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) . 25 . 10 . 37 . 11 . 22	GEN, TOTAL (MG/L AS N) 1.2 1.5 1.2	PHORUS, TOTAL (MG/L AS P) .010 .008 .000 .010	PHORUS, DIS- SOLVED (Mg/L AS P) . 010 . 002 . 000 . 010
NOV 28 DEC 11 12 JAN 29 FEB 28 MAR 05 APR 23 MAY 14	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 74 79 76	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 68 69 81 72	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+ND3 TOTAL (MG/L AS N) .94 1.1 1.1	GEN, AMMONIA TOTAL (MG/L AS N) . 020 C. 040 . 000 . 010 . 010 C. 050	GEN, DRGANIC TOTAL (MG/L AS N) . 23 . 37 . 10 . 21	GEN, AM- MONTA + DRGANIC TOTAL (MG/L AS N) .25 .10 .37 .11 .22 .20	GEN, TOTAL (MG/L AS N) 1.2 1.5 1.2	PHORUS, TOTAL (MG/L AS P) . 010 . 008 . 000 . 010 . 020 . 015	PHORUS, DIS- SOLVED (MG/L AS P) . 010 . 002 . 000 . 010 . 015
NOV 28DEC 1112JAN 29FEB MAR 05APR 23MAY 14JUN 03	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 74 79 76 79	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 68 69 81 72 70 	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N) . 004 . 005	GEN, NO2+ND3 TOTAL (MG/L AS N) .94 1.1 1.1 .79 .90	GEN, AMMONIA TOTAL (MG/L AS N) . 020 . 040 . 000 . 010 . 010 . 050 . 010	GEN, ORGANIC TOTAL (MG/L AS N) .23 .37 .10 .21 .13	GEN, AM- MONTA + DRGANIC TOTAL (MG/L AS N) . 25 . 10 . 37 . 11 . 22 . 20 . 14	GEN, TOTAL (MG/L AS N) 1.2 	PHORUS, TOTAL (MG/L AS P) .010 .008 .000 .010 .020 .015 .010	PHORUS, DIS- SOLVED (MG/L AS P) . 010 . 010 . 010 . 010 . 010
NOV 28. DEC 11	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 74 79 76 79	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 68 69 81 72 70	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+ND3 TOTAL (MG/L AS N) . 94 1. 1 1. 1 . 79 . 90	GEN, AMMONIA TOTAL (MG/L AS N) . 020 . 040 . 000 . 010 . 010 . 050 . 010	GEN, DRGANIC TOTAL (MG/L AS N) . 23 . 37 . 10 . 21 . 13	GEN. AM- MONIA + DRGANIC TOTAL (MG/L AS N) . 25 . 10 . 37 . 11 . 22 . 20 . 14	GEN, TOTAL (MG/L AS N) 1.2 1.5 1.2 1.0	PHORUS, TOTAL (MG/L AS P) .010 .008 .000 .010 .020 .015	PHORUS, DIS- SOLVED (Mg/L AS P) . 010 . 002 . 000 . 010 . 010 . 015
NDV 28. DEC 11	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 74 79 76 79 79 89	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 68 69 81 72 70 66 67	GEN, NITRATE TOTAL (MG/L AS N) 1. 1 1. 1 70	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+ND3 TOTAL (MG/L AS N) .94 1. 1 1. 1 .79 .90 .85 .82	GEN, AMMONIA TOTAL (MG/L AS N) . 020 C. 040 . 000 . 010 . 010 . 050 . 010 . 050 . 020 . 060	GEN, DRGANIC TOTAL (MG/L AS N) .23 .37 .10 .21 .13 	GEN, AM- MONTA + DRGANIC TOTAL (MG/L AS N) .25 .10 .37 .11 .22 .20 .1438 .50 .22 .38	GEN, TOTAL (MG/L AS N) 1.2 	PHDRUS, TOTAL (MG/L AS P) .010 .008 .000 .010 .020 .015 .010 	PHORUS, DIS- SOLVED (MG/L AS P) . 010 . 010 . 010 . 015 . 010 . 010 . 010 . 010 . 010 . 010 . 010
NDV 28 DEC 11 12 JAN 29 FEB 28 MAR 05 APR 23 APR 23 JUL 15 29 JUL 15 29 AUG	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 74 77 76 79 79 89 73 86	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 68 67 81 72 70 66 67 66	GEN, NITRATE TOTAL (MG/L AS N) 1. 1 1. 1 70	GEN, NITRITE TOTAL (MG/L AS N) 004005005	GEN, N02+N03 TOTAL (MG/L AS N) .94 1.1 1.1 .79908582 .71	GEN, AMMONIA TOTAL (MG/L AS N) . 020 C. 040 .000 .010 .010 .010 .050 .010 .050 .020 .060 .110	GEN, ORGANIC TOTAL (MG/L AS N) .23 .37 .10 .21 .13 	GEN, AM- MONTA + DRGANIC TOTAL (MG/L AS N) . 25 . 10 . 37 . 11 . 22 . 20 . 14	GEN, TOTAL (MG/L AS N) 1.2 1.5 1.0 1.0	PHORUS, TOTAL (MG/L AS P) .010 .008 .000 .010 .020 .015 .010020 .017 .010 .130 .060	PHORUS, DIS- SOLVED (MG/L AS P) . 010 . 002 . 000 . 010 . 015 . 010 . 010 . 010 . 010 . 010 . 010 . 020
NDV 28 DEC 11 12 JAN 29. FEB 28 MAR 05 APR 14 JUN 03 04 24 JUL 15 29.	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 74 79 76 79 79 89	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 68 69 81 72 70 66 67	GEN, NITRATE TOTAL (MG/L AS N) 1. 1 1. 1 70	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+ND3 TOTAL (MG/L AS N) .94 1. 1 1. 1 .79 .90 .85 .82	GEN, AMMONIA TOTAL (MG/L AS N) . 020 C. 040 . 000 . 010 . 010 . 050 . 010 . 050 . 020 . 060	GEN, DRGANIC TOTAL (MG/L AS N) .23 .37 .10 .21 .13 	GEN, AM- MONTA + DRGANIC TOTAL (MG/L AS N) .25 .10 .37 .11 .22 .20 .1438 .50 .22 .38	GEN, TOTAL (MG/L AS N) 1.2 	PHDRUS, TOTAL (MG/L AS P) .010 .008 .000 .010 .020 .015 .010 	PHORUS, DIS- SOLVED (MG/L AS P) . 010 . 010 . 010 . 015 . 010 . 010 . 010 . 010 . 010 . 010 . 010

01305000 CARMANS RIVER AT YAPHANK, NY--Continued

DATE	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COBALT, DIS- SOLVED (UG/L AS CO)
NOV											
28 DEC											
11	. 003										
12 JAN		0	0	100	30	0	0	10	<10	0	0
29											
FEB 28											
MAR											
05 APR	. 003								55		
23		0	0	<50	20	0	0	40	10	0	1
MAY 14											
JUN											
03	. 004										
24		1	1	<50	20	0	1	10	10	0	0
JUL 15											22
29											
AUG 12		1	2	<50	0	0	0	<10	<10	0	0
SEP	000										
09 16	. 003										
DATE	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)
NOV	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)
	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	NESE, TOTAL RECOV- ERABLE (UG/L	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L
NOV 28 DEC 11	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UQ/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)
NDV 28 DEC	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)
NOV 28 DEC 11 12 JAN 29	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UQ/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)
NOV 28 DEC 11 12 JAN	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UQ/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)
NOV 28 DEC 11 12 JAN 29 FEB 28	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <.1	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)
NOV 28 DEC 11 12 JAN 29 FEB 28 MAR 05 APR	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)
NOV 28 DEC 11 12 JAN 29 FEB 28 MAR 05 APR 23	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <.1	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)
NOV 28 DEC 11 JAN 29 FEB 28 MAR 05 APR 23 MAY 14	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE) 180 190 220	DIS- SOLVED (UG/L AS FE) 110 110 60	TOTAL RECOV- ERABLE (VG/L AS PB) 0	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <.1	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI) 1
NOV 28 DEC 11 JAN 29 FEB 28 MAR 05 APR 23 MAY 14 JUN	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- REABLE (UG/L AS FE) 180 190 220 410	DIS- SOLVED (UG/L AS FE) 110 110 60 190	TOTAL RECOV- ERABLE (UG/L AS PB) 0 1	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI) 1
NOV 28 DEC 11 JAN 27 FEB 28 MAR 05 APR 23 MAY 14 JUN 03	TOTAL RECOV- REABLE (UQ/L AS CU) 1 3 3	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- REABLE (UG/L AS FE) 180 190 220 410 450	DIS- SOLVED (UG/L AS FE) 110 110 60 190 300	TOTAL RECOV-ERABLE (VG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 60 50 110 90 100	NESE, D1S- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <.11	DIS- SDLVED (UG/L AS HG) <.1	TOTAL RECOV- ERABLE (UG/L AS NI) 1 1 1
NOV 28 DEC 11 12 JAN 29 FEB 28 05 APR 23 MAY 14 JUN 03 04	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE) 180 190 220 410	DIS- SOLVED (UG/L AS FE) 110 110 60 190	TOTAL RECOV- ERABLE (UG/L AS PB) 0 1	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, D1S- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <.11	DIS- SOLVED (UG/L AS HQ) <.1 .1	TOTAL RECOV- ERABLE (UG/L AS NI)
NOV 28 DEC 11 JAN 27 FEB 28 MAR 05 APR 23 MY 14 JUN 03 04 24 JUL 15	TOTAL RECOV- REABLE (UG/L AS CU) 1 3 1 1	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- REABLE (UG/L AS FE) 180 190 220 410 450 380	DIS- SOLVED (UG/L AS FE) 110 110 60 190 300 200	TOTAL RECOV-ERABLE (VG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 60 50 110 90 100 40	NESE, D1S- SOLVED (UG/L AS MN)	TOTAL RECOV- REABLE (UG/L AS HG) <.11111	DIS- SOLVED (UG/L AS HG) <.1 .1	TOTAL RECOV- ERABLE (UG/L AS NI) 1 1 4
NOV 28 DEC 11 12 JAN 29 FEB 28 MAR 05 APR 23 MAY 14 JUL 15 27	TOTAL RECOV- REABLE (UG/L AS CU) 1 1 3 1	DIS- SOLVED (UG/L AS CU) 0 3 1	TOTAL RECOV- REABLE (UG/L AS FE) 180 190 220 410 450 380	DIS- SOLVED (UG/L AS FE) 110 110 60 190 300 200	TOTAL RECOV- ERABLE (UG/L AS PB) 0 1 1 0	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (VG/L AS MN) 60 50 110 90 100 40	NESE, D1S- SOLVED (UG/L AS MN)50 110 70 80 40	TOTAL RECOV- ERABLE (UG/L AS HG) <.11111	DIS- SOLVED (UG/L AS HG) <.1 .1	TOTAL RECOV- ERABLE (UG/L AS NI) 1 1 4
NOV 28 DEC 11 12 JAN 29 FEB 28 MAR 05 APR 23 MAY 14 JUN 03 04 24 JUL 15 27 AUG 12	TOTAL RECOV- REABLE (UG/L AS CU) 1 3 1 1	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- REABLE (UG/L AS FE) 180 190 220 410 450 380	DIS- SOLVED (UG/L AS FE) 110 110 60 190 300 200	TOTAL RECOV-ERABLE (VG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 60 50 110 90 100 40	NESE, D1S- SOLVED (UG/L AS MN)	TOTAL RECOV- REABLE (UG/L AS HG) <.11111	DIS- SOLVED (UG/L AS HG) <.1 .1	TOTAL RECOV- ERABLE (UG/L AS NI) 1 1 4
NOV 28 DEC 11 12 JAN 29 FEB 28 MAR 05 APR 23 MAY 14 JUN 03 04 24 JUL 15 AUG	TOTAL RECOV- REABLE (UQ/L AS CU) 1 1 1 1 1 1	DIS- SOLVED (UG/L AS CU) 0 3 1	TOTAL RECOV- REABLE (UG/L AS FE) 180 190 220 410 450 380	DIS- SOLVED (UG/L AS FE) 110 110 60 190 300 200	TOTAL RECOV-ERABLE (VG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 60 50 110 90 100 40	NESE, D1S- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <.1111111	DIS- SOLVED (UG/L AS HQ) <.1 .1	TOTAL RECOV- ERABLE (UG/L AS NI) 1 1 4 4

STREAMS ON LONG ISLAND 01305000 CARMANS RIVER AT YAPHANK, NY--Continued

DATE	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED (MG/L AS C)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
NOV											
28								1.2			
DEC											
11											. 02
12	0	0	0	0	0	10	30		1.9	. 1	
JAN											
29				0				. 8			
FEB								- 2			
28								. 7			
MAR 05		.22.	- 22							24	<. 02
APR	-										C. 02
23	0	0	0	0	0	10	180		1.5	. 8	
MAY			U	v	U	10	100		1. 0	. 0	
14											
JUN											
03								. 5			
04											<. 02
24	0	0	0	1	0	20	9		2. 0	. 3	
JUL											
15				0				1.6			
29								3. 7			
AUG											
12	1	0	0	0	0	20	10		2.0	. 3	
SEP											2.24
09											<. 02
16				1				2.8			

STREAMS ON LONG ISLAND 01305000 CARMANS RIVER AT YAPHANK, NY--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTORER 1979 TO SEPTEMBER 1980

DAY	MAX	MIN	MEAN									
		остов	ER		NOVEMB	FR		DECEMB			JANUA	
1										119	113	116
3										120	113	117
5										118 119	113	116 116
										118	114	116
6										120	115	118
8										119	116	117
9										118	116 115	118 116
										119	115	117
11										119	112	115
13							114	111	113	117 117	109	114
14 15							112	109	111	116	110	114
16							113	110	111	120	115	117
17							115	109	112	121	116	118
18							114 116	112	113 115	120	116	118
20							117	114	115	119	115	116
21							118	114	116	119	116	118
55							119	114	116	121	116	118
23							118 116	112	114 115	119	113	117 117
25							115	110	112	151	115	119
26							113	107	111	122	117	119
27							114 117	110	112	123	119	121
28 29							117	112	113	124	117	120 120
30							117 117	113	115	155	117	119
31							120	113	115 116	123 124	119	120
MONTH							120	107	114	124	109	117
DAY	мдх	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY	Y		MARCH			APRIL			MAY	
1	126	121	123	124	117	121	125	120	123	129	124	126
3				125 125	119	122	126	122	124	131	125	128
4				123	117	121	129 129	123	126 124	134 136	127	130 131
5				150	115	121	126	123	124	135	130	133
6				130	115	118	130	122	126	139	128	132
7 8				121	115	117 117	129 131	124	127	134	127	130
9				119	114	117	132	127	129 130	126 125	124	125 123
				119	115	117	128	118	155	124	119	122
11				121	115	119	125	119	123	124	119	122
13	129	124	126	122	118	119 119	128 129	122	125 127	123	119	121 121
14 15	128	122	125 125	123	115	119	131	128	130	155	118	120
				126	119	121	135	126	129	121	117	119
16 17	132	121	124 124	125 124	119 118	121	135	130	132	155	117	120
18	128	122	124	119	113	117	137 137	130 129	133 134	121	117 116	119 118
19	127 126	121 120	124 123	150	115 117	118 118	136	131	134	120	116	118
21							138	130	135	119	115	118
21	126	119 117	123 121	119 117	113 114	116 115	148	135	141	118	113	115
23 24	123	118	120	117	115	116	148 144	136 135	144	115 115	111	113
25	123	116 115	119 118	120	117	118 118	141 137	133	138	124	109	115
26	123	117							134	130	120	125
27	155	115	120 119	121 124	117 120	119 122	138 143	132 137	135 141	130 129	124	126 127
28	121	115	118 118	126	122	124	145	135	141	132	124 125	128
30				126 125	151	124 123	138 126	126	132	133 132	125	129 127
31				124	122	123				125	155	124
MONTH	132	115	122	150	113	119	148	118	131	139	109	123

STREAMS ON LONG ISLAND
01305000 CARMANS RIVER AT YAPHANK, NY--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C). WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAY	MAX	MIN	MEAN	MAX	MIN		25.2.5	100000				
				-150	WIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMB	FR
	245	12.0									SEP I EMB	Ln
1	124	114	118	126	112	117	114	112	113	111	108	109
5	114	111	112	115	112	114	114	111	113	110	108	109
3	114	107	110	118	113	116	114	110	112	109	105	107
4	110	106	108	135	119	126	113	110	111	109	106	108
5	116	109	110	142	135	139	112	109	111	109	104	106
6	115	99	108	142	137	141	111	108	110	107	1.05	
7	122	111	116	148	140	143	109	107	108	107	105	106
8	118	106	112	149	115	126					105	106
9	111	107	109	117	113	115				109	105	106
10	114	109	112	117	112	115				106 107	104	105 105
11	115	106	110									
12	112	105	109	131	114	123				109	107	108
13	116	103		143	129	134	111	108	109	110	108	109
14	122		109	138	126	133	109	104	107	110	108	109
15	131	117	120	142	124	133	106	104	105	110	108	109
15	131	121	126	148	116	129	109	104	106	110	107	109
16	143	131	137	118	115	116	106	104	105	110	106	109
17	140	115	127	117	115	116	108	105	107	110	108	109
18	151	113	118	118	115	116	111	109	110	111	107	109
19	127	114	119	117	115	117	110	109	109	107	104	
50	134	155	128	118	116	117	110	108	109	107	104	106 105
21	137	129	134	118	116	117	100		200			
22	143	131	137	119	116		111	109	110	107	104	106
23	146	130	138	120		118	111	107	110	108	105	107
24	158	146	153		118	119	108	104	106	108	105	107
25	166	156	160	121	118	120	110	105	107	107	103	105
	100	136	160	120	118	119	111	108	109	107	103	105
26	173	166	170	119	116	118	111	108	109	114	107	110
27	177	159	173	119	117	118	109	107	108	117	113	115
28	195	113	145	119	117	118	108	102	105	119	115	117
29	118	115	116	119	113	118	105	102	104	119	119	118
30	123	114	119	117	115	116	109	105	107	121	118	
31				115	112	114	110	109	109	121	116	119
MONTH	195	99	125	149	112	122	114	102	108	121	103	109
YEAR	195	99	119									246

01305000 CARMANS RIVER AT YAPHANK, NY--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		остове	н		NOVEMBE	P		DECEMBE	R		JANUAR	YY.
4							202			6.5	3.5	4.5
1 2										6.0	4.0	4.5
3										5.5	3.0	4.0
4										4.5	2.5	3.5
5										4.0	5.0	3.0
6										4.0	1.5	2.0
7										5.5	1.5	4.0
8										5.5	3.0	4.0
10										4.5 5.5	2.5	3.5
11										7.0	3.5	5.5 5.5
12							9.5	8.0	8.5	7.0 4.5	3.0	3.5
13							8.5 7.5	7.0 5.0	8.0 6.0	7.0	4.0	5.5
14 15							7.0	4.0	5.5	8.0	6.0	7.0
16							8.5	5.5	7.0	7.5	5.0	6.0
17							8.0	3.0	5.5	7.0	5.0	5.5
18							4.0	2.0	2.5	7.0	5.5	6.0
19 20							2.5 4.5	2.0	3.0	7.5 6.5	5.5	5.5
20												
21							4.5	3.0	4.0	6.0	3.0	4.0
22							6.0	4.5	5.0	5.0	2.5	4.0
23							8.0	5.5	7.0	6.5 3.5	4.0	2.5
24							8.5 10.5	7.5 8.5	9.5	3.5	1.5	2.5
21											2 5	2 5
26							10.0	7.0	8.5	5.5 6.0	2.5	3.5
27							8.0	5.0	6.5 5.0	6.5	3.0	4.0
28 29							6.5 7.0	4.0	5.5	5.0	2.5	3.5
30							7.0	5.0	5.5	4.0	1.5	2.5
31							6.5	4.0	4.5	3.5	1.5	2.0
MONTH							10.5	2.0	6.0	8.0	1.0	4.0
MONTH							10.5	2.0	0.0			
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCH			APRIL			MAY	
	0.2											
1	1.5	• 5	1.0	4.0	.5	2.0	12.5	6.5	9.0	13.5	11.0	12.0
3				6.0	2.0	3.5	9.0	7.5	8.5	16.0	11.0	13.5
4				7.0 8.0	2.5	4.0	13.5	6.5 9.5	9.5	18.5	12.5	15.0
5				6.0	4.0	5.0	13.0	8.5	10.0	20.0	14.0	16.5
6				9.0	4.5		15.0	8.0	11 0	20.0	14.5	17.0
7				9.0	5.0	7.0	15.0 15.5	9.5	11.0	19.5	15.0	16.5
8				8.5	7.0	8.0	14.0	11.0	12.0	15.0	12.5	14.5
9				11.0	6.5	8.0	12.0	11.0	11.5	17.0	11.5	13.5
10				11.5	5.5	8.0	14.0	11.0	12.0	18.0	11.5	14.5
11				10.5	5.5	8.0	16.0	11.0	13.0	15.5	13.0	14.0
12				8.0	3.5	5.0	16.0	11.5	13.0	15.5	13.0	14.0
13	7.0	3.5	5.0	5.5	1.5	3.5	17.0	12.0	13.5	18.5	13.5	15.5
14	7.5	3.0	5.0	5.5	2.5	4.0	13.0	11.5	12.0	19.0	15.0	17.0
15	7.5	4.0	5.0	8.0	2.5	4.5	16.5	11.0	13.0	18.0	14.0	15.5
16	5.5	3.0	4.5	8.5	2.5	5.0	13.0	9.5	11.5	19.5	13.5	15.5
17	5.5	1.5	3.0	9.0	5.0	7.0	13.5	8.0	10.0	19.5	13.5	16.5
18	6.0	1.5	3.0	10.5	6.5	8.5	15.0	8.5	11.5	16.5	14.5	15.5
19	7.5	2.5	4.5	11.5	5.5	8.0	16.0	10.0	12.5	18.5	14.5	16.0
20	8.0	3.5	5.0	11.5	7.0	9.0	17.0	11.0	13.5	19.0	16.0	17.0
21	9.0	4.0	6.0	10.0	9.5	9.5	18.0	13.0	14.5	16.5	14.5	15.5
22	5.5	4.5	5.0	9.5	6.5	8.0	16.5	12.0	14.0	19.5	14.0	16.5
23	8.0	4.5	6.0	11.5	5.5	8.0	16.5	11.0	13.0	21.0	15.5	18.0
24	9.0	5.5	6.5	12.5	7.0	9.0	17.0	12.0	14.0	20.0	16.5	18.0
25	7.0	5.0	6.0	9.5	8.0	8.5	15.0	12.5	13.5	21.5	16.5	18.5
26	7.5	2.5	5.0	11.5	7.5	9.0	14.5	12.0	13.0	21.0	15.5	17.5
27	4.5	2.5	3.0	13.0	7.5	9.5	13.0	11.0	12.0	20.5	15.0	17.0
28	4.5	1.5	2.5	13.0	7.5	10.0	11.0	10.0	10.5	20.0	14.5	17.0
29	4.0	•5	1.5	10.5	9.5	10.0	10.5	10.0	10.0	20.5	15.5	17.5
30 31	===			11.5 9.5	9.0 7.5	10.0 8.5	13.5	10.0	11.0	18.5 17.5	15.0	16.5
MONTH	9.0	•5	4.5	13.0	.5	7.0	18.0	6.5	12.0	21.5	11.0	16.0

73 01305000 CARMANS RIVER AT YAPHANK, NY--Continued

TEMPERATURE: WATER (DEG. C): WATER YEAD OCTOBER 1979 TO SEPTEMBER 1980

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	мах	MTN	MEAN
		JUNE			JULY			AUGUST			SEPTEME	FR
1	21.5	15.5	18.0	20.5	17.0	18.5	23.5	20.5	22.0	23.5	20.0	21.5
2	20.0	17.5	18.5	21.5	18.0	19.0	24.5	20.5	22.0	24.0	20.0	22.0
3	21.0	17.0	18.5	19.0	18.0	18.5	25.0	21.0	22.5	23.5	20.0	21.5
4	21.5	17.0	18.5	22.0	18.0	19.5	24.5	21.5	23.0	22.5	19.0	20.5
5	21.0	16.5	18.0	23.0	18.5	20.5	25.0	21.5	23.0	20.5	19.0	19.5
6	20.5	16.0	18.0	22.5	19.0	20.5	25.0	22.0	23.0	21.5	18.5	19.5
7	18.5	16.5	17.5	22.0	18.0	19.5	25.0	21.0	23.0	21.5	18.0	19.5
8	18.5	14.5	16.5	21.0	18.0	19.0				21.0	18.0	19.0
9	16.0	12.5	14.0	22.0	17.5	19.5				20.0	16.5	18.0
10	16.0	13.5	14.0	22.5	19.5	20.5				20.0	16.5	18.0
11	18.0	12.5	15.0	22.0	20.0	20.5				19.5	15.0	17.0
12	19.5	13.5	16.0	23.0	19.0	20.5	23.0	21.5	22.5	19.0	15.5	17.0
13	50.0	14.5	17.0	23.0	18.0	20.0	23.0	20.5	21.5	19.0	16.0	17.0
14	18.0	15.5	16.5	23.0	18.5	20.5	22.0	20.0	20.5	20.0	16.5	18.0
15	19.5	15.5	17.0	23.5	19.5	21.0	20.0	16.0	18.0	18.5	16.0	17.5
16	18.5	16.0	17.0	23.5	20.0	21.5	19.5	16.0	17.5	17.5	14.5	15.5
17	19.5	16.0	17.0	23.0	20.5	21.5	20.5	16.0	18.0	17.0	14.0	16.0
18	19.5	15.5	17.5	24.5	20.5	22.0	20.5	17.0	18.5	19.5	16.0	17.0
19	20.5	15.5	17.5	24.0	21.0	22.0	21.5	18.0	19.5	19.0	14.5	16.5
20	19.5	15.5	17.5	24.5	20.5	22.5	19.0	18.0	18.5	19.0	14.5	16.5
21	19.5	15.0	17.0	25.5	21.5	23.0	18.0	17.0	17.5	20.5	17.0	18.5
22	21.5	16.0	18.5	25.0	21.5	23.0	19.0	17.0	17.5	55.0	18.0	19.5
23	22.5	17.0	19.5	22.0	20.5	21.5	20.5	16.0	18.0	22.5	18.0	20.0
24	23.0	18.0	19.5	23.0	19.5	21.0	22.0	16.5	19.0	19.0	15.0	17.0
25	23.5	19.5	21.0	24.0	19.0	21.0	22.5	18.5	20.0	15.5	14.5	15.0
26	24.0	19.5	21.0	24.0	19.5	21.5	23.0	18.5	20.5	18.0	13.0	15.5
27	24.0	20.5	21.5	24.0	20.5	25.0	23.0	19.5	21.0	16.0	12.0	13.5
28	22.0	19.0	20.5	23.5	20.5	21.5	22.5	19.5	21.0	16.5	11.0	13.5
29	20.5	18.5	19.5	21.5	20.5	21.0	21.0	19.0	20.0	14.5	12.5	13.5
30	20.0	17.5	18.5	23.5	19.5	21.0	21.5	19.0	20.0	16.5	12.5	14.0
31				24.0	20.0	21.5	22.0	19.5	20.5			
MONTH	24.0	12.5	18.0	25.5	17.0	21.0	25.0	16.0	20.5	24.0	11.0	17.5
YEAR	25.5	.5	13.0									

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

		STREAM- FLOW, INSTAN-	SEDI- MENT, SUS-	SEDI- MENT DIS- CHARGE, SUS-
	TIME	TANEOUS	PENDED	PENDED
DATE		(CFS)	(MG/L)	(T/DAY)
NOV , 1	979			
28	0930	35	3	. 28
DEC				
12	1000	34	11	1.0
JAN , 1	980			
29	1100	32	3	. 26
FEB				
28	1030	29	8	. 63
APR				
23	1030	36	3	. 29
MAY				
14	0830	34	3	. 28
JUN				
03	0900	34	4	. 37
24	1000	29	2	. 16
JUL				
15	1100	28	5	. 38
29	1100	36	5	. 49
AUG				
12	1100	31	2	. 17
SEP				
16	1100	22	3	. 18

01305000 CARMANS RIVER AT YAPHANK, NY--Continued

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 PHYTOPLANKTON

OATE TIME			28,79 ‡ 145		12,79 000		33, 80 23, 80		14,80	JUN	3,80
OTAL CELL	5/ML		220	- 19	400	1	180		310		270
IVERSITY:	DIVISION . CLASS . ORDER . FAMILY GENUS		0. 2 0. 2 0. 2 0. 7 1. 1		1.3 1.3 1.4 2.2 2.6		1.6 1.6 1.6 2.1 2.5		0. 9 0. 9 1. 5 2. 4 2. 4		1. 1 1. 3 1. 4 1. 4
220.000		CELLS	PER-	CELLS	PER-	CELLS	PER-	CELLS	PER-	CELLS	PER-
ORGANISM		/ML	CENT	/ML	CENT	/ML	CENT	/ML	CENT	/ML	CENT
HLOROPHYT CHLOROPHY . CHLOROCO											
CHARACI											
CHARAC			-		-		-		-		-
ANKIST		25	12	39	10		-		-		-
CHLORE		20	9	150#		65#	36		-	26	10
KIRCHN			-	2	1		-		-		-
SCENEDE		170#	77	55	14		-	52#	17	22	_
. VOLVOCAL		170#	,,	33	14			JE#			
CHLAMYD	OMONADACEAE										
CHLAMY	DOMONAS		-	2	1		-		-		-
HRYSOPHYT	A										
BACILLARI	DPHYCEAE										
. CENTRALE											
COSCINO	DISCACEAE			42.	0.25		_		_	13	5
MELOSI			_		_		_	65#	21		_
PENNALES											
ACHNANT	HACEAE										
ACHNAN			-	11	3		-	13	4		_
COCCON			-	5	1		-		-		
DIATOM			-		_	13	7		_	13	5
EUNOTIA											
EUNOTI			-	9	2		-		-		-
FRAGILA			_	14	3	26	14	120#	38		2
SYNEDR			-	9	2	13	7		-		-
GOMPHON											
GOMPHO			-	5	1		-		-		_
NAVICU		5	2		_	13	7	26	8		-
NITZSCH			-			-			- 5		
NITZSC	HIA		-	7	2		-	26	8	26	10
VANDRHVTA	(BLUE-GREEN ALGAE)										
CYANDPHYC											
. CHROOCOC											
CHROOCO						204	-	12		190#	71
ANACYS	OCOCCOPSIS		_		_	13	21	13	4	170#	-
HORMOGON											
OSCILLA	TORIACEAE										
OSCILL	ATORIA		-	96#	24		-		-		-
	TA (EUGLENDIDS)										
EUGLENOPH											
. EUGLENAL											
EUGLEN			-		-		-		-		-
YRRHOPHYT	A (FIRE ALGAE)										
. PERIDINI	ALES										
GLENOD I			12								-
			_								-

01305000 CARMANS RIVER AT YAPHANK, NY--Continued QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

PHYTOPLANKTON

DATE		24, 80		15,80		29,80		12,80		16,80
TIME		000	1	100		100	1	100		
TOTAL CELLS/ML		590		65		100		65		260
DIVERSITY: DIVISION		0.9		0.0		0. 5		0.0		1.0
. CLASS	1	0. 9		0.0		0. 5		0.0		1.0
ORDER		1.6		0.0		0. 5		1.0		1.2
FAMILY		1.7		0.0		1.4		1.9		1.3
GENUS		1.7		0. 0		1. 4		1. 9		1.3
	CELLS	PER-	CELLS	PER-	CELLS	PER-	CELLS	PER-	CELLS	PER-
ORGANISM	/ML	CENT	/ML	CENT	/ML	CENT	/ML	CENT	/ML	CENT
CHLOROPHYTA (GREEN ALGAE)										
. CHLOROPHYCEAE CHLOROCOCCALES										
CHARACIACEAE										
CHARACIUM	100	4	12.2	2	-	- 2		_		-
DOCYSTACEAE										
ANKISTRODESMUS		_	45#	100	39#	38		2		_
CHLORELLA		_		_		_		-		_
KIRCHNERIELLA		_		_		_		-		-
SCENEDESMACEAE	-									
SCENEDESMUS		_		_	52#	50		_		_
VOLVOCALES					UE#	00				
CHLAMYDOMONADACEAE										
CHLAMYDOMONAS	13	2		-		-		-		-
CHRYSOPHYTA										
BACILLARIOPHYCEAE										
CENTRALES										
COSCINODISCACEAE										
CYCLOTELLA	1.227		122	_		- 2	26#	40	26	10
MELOSIRA							20#	40	20	10
. PENNALES										
ACHNANTHACEAE										
ACHNANTHES	52	9		_		_	13#	20		-
COCCONEIS				_		_		_		-
DIATOMACEAE										
DIATOMA		-		-		_		_		-
EUNOTIACEAE										
EUNOTIA		-		-		-		-		-
FRAGILARIACEAE										
FRAGILARIA		-		-		-		-		-
SYNEDRA		-		-		-	13#	20	13	5
GOMPHONEMATACEAE										
GOMPHONEMA		-		-		-		-		-
NAVICULACEAE										
NAVICULA	13	2		-		-		-	13	5
NITZSCHIACEAE										
NITZSCHIA		-		-	13	13	13#	20		-
CYANOPHYTA (BLUE-GREEN ALGAE)										
. CYANOPHYCEAE CHRODCOCCALES										
CHROOCOCCACEAE										
ANACYSTIS	140#	24		-		-		-		-
DACTYLOCOCCOPSIS		_		-		-		-		-
HORMOGONALES										
OSCILLATORIACEAE										
OSCILLATORIA	340#	58		-		-		-	200#	75
EUGLENOPHYTA (EUGLENOIDS)										
. EUGLENOPHYCEAE										
EUGLENALES										
EUGLENACEAE										
EUGLENA	26	4		-		-		-		-
PYRRHOPHYTA (FIRE ALGAE)										
. DINOPHYCEAE										
. PERIDINIALES GLENODINIACEAE										
	1.2	_				-		-	12	5
GLENODINIUM		-		-	1			-	13	3

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%

01305000 CARMANS RIVER AT YAPHANK, NY--Continued

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

PERIPHYTON

	Length of exposure	Biomass	(g/m²)	Chlorophyll	Chlorophyll	Sampling
Date	(days)	Dry weight	Ash weight	a (mg/m²)	(mg/m²)	method
Dec. 12 to Jan. 16	35	0.950	0.630	4.29	2.04	Polyethylene strip
May 14 to June 3	20	3.07	1.18	1.30	1.03	Polyethylene strip
June 24 to July 29	35	1.73	1.18	1.49	.420	Polyethylene strip
Aug. 12 to Sept. 16	35	2.28	1.65	2.26	.410	Polyethylene strip

01305500 SWAN RIVER AT EAST PATCHOGUE, NY

LOCATION.--Lat 40°46'01", long 72°59'39", Suffolk County, Hydrologic Unit 02030202, on left bank 94 ft (29 m) downstream from Montauk Highway in East Patchogue, 200 ft (61 m) downstream from outlet of Swan Lake, and 1.2 mi (1.9 km) upstream from mouth. Water-quality sampling site at discharge station.

DRAINAGE AREA .-- About 8.8 mi2 (23 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1946 to current year.

REVISED RECORDS. -- WSP 1622: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 2.84 ft (0.866 m) National Geodetic Vertical Datum of 1929.

REMARKS .-- Records fair. Flow regulated occasionally at outlet of Swan Lake.

AVERAGE DISCHARGE. -- 34 years, 12.6 ft 3/s (0.357 m3/s).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 155 ft 3 /s (4.39 m 3 /s) Aug. 12, 1978, gage height, 2.15 ft (0.655 m) (result of regulation), from rating curve extended above 26 ft 3 /s (0.74 m 3 /s); minimum, 0.06 ft 3 /s (0.002 m 3 /s) Sept. 2, 1964, gage height, 0.02 ft (0.006 m) (result of regulation); minimum daily, 4.3 ft 3 /s (0.12 m 3 /s) Oct. 13, 14, 1967.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 61 ft 3 /s (1.73 m 3 /s) Oct. 1, 3, gage height, 1.41 ft (0.430 m) result of regulation), from rating curve extended above 26 ft 3 /s (0.74 m 3 /s); minimum, 4.3 ft 3 /s (0.122 m 3 /s) Aug. 5, gage height, 0.33 ft (0.101 m) (result of regulation).

REVISIONS.--The maximum discharge for the water year 1979 has been revised to 71 ft 3 /s (2.01 m 3 /s) Sept. 30, 1979, gage height, 1.50 ft (0.457 m) (result of regulation), from rating curve extended above 26 ft 3 /s (0.74 m 3 /s), superseding figure published in the report for 1979.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	30	14	13	14	13	13	18	18	14	13	12	11
2	20	15	13	14	13	13	15	18	16	13	12	10
3	25	22	13	14	13	13	15	17	16	14	12	10
4	20	16	13	14	13	13	20	17	14	13	12	9.8
5	19	14	13	15	13	13	16	17	13	13	12	9.4
6	18	15	14	15	13	13	15	17	13	14	11	9.3
7	15	15	15	14	13	13	15	17	16	13	11	9.3
8	15	14	13	14	13	13	14	18	15	12	11	9.2
9	17	14	13	14	13	14	15	17	15	12	11	9.8
10	28	14	13	14	13	-13	31	17	15	12	11	9.8
11	21	18	14	14	13	14	17	17	14	12	12	9.7
12	19	21	14	18	13	12	15	17	14	13	12	9.8
13	18	16	15	14	13	12	15	18	14	13	11	9.8
14	17	16	15	14	13	16	16	17	- 14	13	12	10
15	16	15	14	14	13	13	16	16	14	12	12	9.7
16	16	15	14	14	15	13	16	16	14	12	11	9.4
17	16	15	14	14	13	13	16	16	13	12	12	9.4
18	16	15	14	14	13	16	16	16	13	11	12	12
19	15	14	14	15	13	13	16	16	13	11	12	11
20	15	14	14	14	13	13	17	16	13	11	17	11
21	15	14	13	14	13	18	17	18	13	11	12	10
22	15	14	13	14	14	19	18	16	13	11	11	11
23	15	14	14	14	14	15	18	15	13	11	11	11
24	14	14	15	14	14	14	18	15	12	11	11	9.8
25	15	14	21	14	14	18	18	15	12	10	11	10
26	15	15	16	14	14	14	18	14	12	10	11	12
27	14	15	14	14	13	14	18	14	12	10	11	11
28	14	14	14	14	13	14	28	14	12	10	10	10
29	15	13	14	14	13	15	22	14	12	14	10	9.9
30	14	13	14	14		17	18	14	14	12	10	10
31	14		14	14		17		14		12	11	
TOTAL	536	452	437	441	384	441	527	501	408	371	357	304.1
MEAN	17.3	15.1	14.1	14.2	13.2	14.2	17.6	16.2	13.6	12.0	11.5	10.1
MAX	30	22	21	18	15	19	31	18	16	14	17	15
MIN	14	13	13	14	13	12	14	14	12	10	10	9.2

CAL YR 1979 TOTAL 6412.0 MEAN 17.6 MAX 38 MIN 12 WTR YR 1980 TOTAL 5159.1 MEAN 14.1 MAX 31 MIN 9.2

01305500 SWAN RIVER AT EAST PATCHOGUE, NY--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

COOPERATION.--All water-quality samples were collected and analyzed by Suffolk County Department of Health Services.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	DUCT-	PH - FIELD	TEMPER- ATURE, WATER (DEG C)	DIS- SOLVED	SOLVED (MG/L	DIS-	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
DEC			-							
11 MAR	1140	14	1 10	0 6.5	7.0	10.8	5. 4	1.8	8. 2	1.7
06 JUN	1000	13	3 10	5 6.7	5. 0	11.6	5. 5	1. 9	7. 8	1.4
04 SEP	1130	14	1 10	2 6.3	17. 0	9.0	5. 4	1.8	8. 0	1.6
09	1000	10	9	8 6.5	18.0	8. 6	5.8	1.7	9. 0	1. 1
DATE	ALKA- LINITY (MG/L AS CACD3)	SULFATE DIS- SOLVEI (MG/L AS SO4	DIS- SOLVE (MG/L	RIDE, DIS- D SOLVED (MG/L	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRATE	NITRO- GEN, NITRITE	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
DEC										
11 MAR	11	7. (11		1.6	1. 6	. 010	. 010	. 060	. 070
06 JUN	14	7. 3	3 10	<. 5	1.6	1.6	. 008	. 008	. 120	. 110
04 SEP	12	7.	5 13		1.4	1. 4	. 019	. 020	. 100	. 090
09	12	6. 5	5 11		1.3	1, 3	. 012	. 012	. 170	. 160
D	GEN MON ORG TO (M	AM- GEI IA + MOI ANIC DRO TAL DI G/L (I	SANIC PH IS. T MG/L (HOS- PHO ORUS, DI OTAL SC MG/L (M	HOS- PHO DRUS, ORT IS- OSF DLVED DIS 16/L (N	THOPH TO PHATE RE SSOL. ER 16/L (U	COV- D ABLE SOI	ON, TO IS- REC LVED ER/ G/L (UC	SE, LI TAL BI COV- AC ABLE SI G/L ST	THY- ENE LUE TIVE UB- ANCE G/L)
DE	c									
1	1	. 10	. 20	. 009	. 015	. 009	90	50	30	c. 02
MAI O- JU	6	. 20	. 20	. 016	. 008	. 003	70	<50	110	c. 02
	4	. 50	. 40	. 030	. 018	. 006	400	250	120	c. 02
	9	. 20	. 30	. 019	. 004	. 005	120	100	30	c. 02

79

01306000 PATCHOGUE RIVER AT PATCHOGUE, NY

LOCATION.--Lat 40°45'56", long 73°01'16", Suffolk County, Hydrologic Unit 02030202, on left bank just downstream from Montauk Highway in Patchogue, and 1.0 mi (1.6 km) upstream from mouth.

DRAINAGE AREA. -- About 13.5 mi² (35.0 km²).

PERIOD OF RECORD .-- May 1966 to current year.

REMARKS.--Partial-record discharge data included in this report.

COOPERATION.--All water-quality samples were collected and analyzed by Suffolk County Department of Health Services.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	INST TANE	EAM- (DW, I TAN- (EOUS (I	SPE- CIFIC CON- DUCT- ANCE MICRO- MHOS)	PH FIELD (UNITS)	TEMP ATU WAT	JRE, TER	DXYG DI SOL (MG	S- VED	DI SO (M	CIUM S- ILVED IG/L CA)	SOI (M	ONE- IUM, IS- LVED G/L MG)		5-	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
DEC																
11	1410			165	6.8		5. 0	1	1. 1		9.0		3. 1		15	3.8
06 JUN	0900		20	180	6.8		3. 0	1	1.6		9.8		3. 1		15	3. 1
04 SEP	1250			175	6.8	2	21. 0		7. 6		8. 1		3. 1		15	3. 7
09	1100			160	7. 1	2	23. 0		7. 8		8. 4		3. 0		15	3. 1
DATE	ALKA- LINITY (MG/L AS CACO3)	SOL (MC	FATE B- LVED G/L	CHLO- RIDE, DIS- BOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)		AL 2/L	NIT GE NITR DI SOL (MG AS	N, ATE S- VED /L	NIT TO (M	TRO- EN, RITE TAL IG/L	NITI D SOI (M	TRO- EN, RITE IS- LVED G/L N)	AMM(TRO- EN, ONIA TAL G/L N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
DEC																
11	27		8.8	21		2	2. 0	2	. 0		. 034		033		880	. 890
MAR 06	29		10	21	<. 5		. 9		. 9		. 010		010	1	020	1. 020
JUN						1					. 010			•	020	
04 SEP	31		9. 4	24	-	1	1.7	1	. 7		. 076		078	1.	200	1. 200
09	24		8. 9	21		2	2. 0	2	. 0		. 010		011		190	. 160
De	GEN MON ORG TO (M	RO- IA + ANIC TAL IG/L	NITRO- GEN, AM- MONIA - ORGANIO DIS. (MG/L AS N)	- + PHOS-	S DIS SOL	US, - VED /L	PHOR PHOR ORTH OSPH DISS (MG AS	US, OPH ATE OL. /L	ERA (UG	AL OV-	IRO DI SOL (-UG AS	S- VED	NES TOT REC ERA (UG	AL OV-	MET LE BL ACT SU STA (MG	NE UE IVE B- NCE
DEC																
1:	1	1.1	1.0	. 0:	. 81	018		007		380		280		210		. 02
MAF Od JUN	5	1.2	1. 1	. 02	21 .	013		007		470		250		330	<	. 02
	4	1. 9	1.6	. 02	23 .	015		003		700		440		410		. 02
09	7	. 30	. 40	. 0:	. 01	004		002		300		250		100	<	. 02

01306440 CONNETQUOT BROOK AT CENTRAL ISLIP, NY

LOCATION.--Lat 40°47'33", long 73°09'58", Suffolk County, Hydrologic Unit 02030202, 200 ft (61 m) downstream from culvert on Veterans Memorial Highway, 2 miles (3 km) northeast of Central Islip, and 3.8 miles (6.1 km) upstream from gaging station 01306499.

DRAINAGE AREA .-- About 12 mi2 (31 km2).

PERIOD OF RECORD. -- Occasional low-flow measurements, water years 1968, 1971-78. May 1979 to current year.

GAGE.--Water-stage recorder and Parshall flume. Altitude of gage is 30 ft (9.14 m), from topographic map.

REMARKS . - - Records good .

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 40 ft 3 /s (1.13 m 3 /s) Aug. 4, 1979, gage height, 1.56 ft (0.475 m); minimum, 0.36 ft 3 /s (0.010 m 3 /s) July 15, 1980 (result of regulation), gage height, 0.12 ft (0.037 m).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 33 ft 3 /s (0.93 m 3 /s) Apr. 10, gage height, 1.37 ft (0.418 m); minimum, 0.36 ft 3 /s (0.010 m 3 /s) July 15 (result of regulation), gage height, 0.12 ft (0.037 m).

DISCHARGE. IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	12	9.4	9.2	8.7	7.5	6.4	14	14	11	9.5	7.0	4.9
2	11	9.5	9.1	8.7	7.5	6.4	12	14	12	9.1	7.0	4.8
3	14	13	9.0	8.5	7.4	6.4	11	13	12	10	7.3	4.6
4	13	12	9.0	8.5	7.3	6.3	15	13	12	9.2	6.8	4.5
5	12	10	9.0	8.6	7.3	6.3	13	13	11	8.8	6.7	4.5
6	11	10	9.5	8.4	7.3	6.2	12	13	10	8.9	6.6	4.5
7	11	10	11	8.4	7.3	6.1	12	13	12	8.4	6.4	4.4
8	11	9.8	9.5	8.4	7.2	6.5	11	14	12	8.4	6.2	4.3
9	11	9.7	8.9	8.2	7.1	6.5	13	13	12	8.3	6.1	4.3
10	15	9.8	8.8	8.0	7.1	6.2	26	13	12	8.2	6.0	4.2
11	14	11	8.7	8.3	7.0	8.1	18	12	11	8.4	6.4	4.2
12	13	13	9.0	10	7.0	6.6	16	13	11	8.0	7.4	4.1
13	13	11	10	8.4	7.0	6.4	15	13	10	7.7	6.5	4.1
14	12	11	9.9	8.2	6.9	7.6	15	13	10	7.6	6.2	4.2
15	12	11	9.2	8.2	6.9	7.2	15	12	10	7.4	6.3	4.2
16	12	10	9.0	8.0	8.3	6.9	15	12	10	7.6	6.2	4.1
17	11	10	9.0	7.8	7.6	6.9	14	12	9.9	7.4	6.0	4.2
18	11	10	9.0	7.8	7.1	10	14	12	9.7	7.3	5.6	6.2
19	11	9.9	9.0	8.7	6.9	8.1	14	12	9.6	7.2	5.6	4.8
20	11	9.7	8.7	8.1	6.9	7.8	13	12	9.6	7.2	5.7	4 . 4
21	11	9.7	8.7	7.8	6.8	11	13	12	9.3	7.0	5.7	4.3
55	11	9.6	8.7	8.0	7.0	14	13	12	9.1	6.9	5.7	4.2
23	10	9.6	8.8	8.6	7.3	11	13	12	8.9	6.9	5.5	4.1
24	10	9.5	9.1	8.0	7.1	11	13	11	8.8	6.8	5.4	4.0
25	10	9.6	11	7.8	6.9	13	13	11	8.6	6.7	5.3	4.1
26	9.9	9.6	10	7.7	6.8	11	13	11	8.5	6.5	5.2	4.8
27	9.7	9.9	9.5	7.8	6.7	10	13	11	8.8	6.4	5.1	4.3
28	9.9	10	9.2	7.8	6.6	10	19	11	8.8	6.3	5.0	4.1
29	9.9	9.5	9.0	7.6	6.6	10	17	11	8.5	9.0	4.9	4.1
30	9.6	9.3	9.0	7.5		11	15	10	12	8.8	5.5	4.1
31	9.5		8.8	7.5		11		11		7.3	4.9	
TOTAL	351.5	306.1	286.3	254.0	206.4	261.9	430	379	308.1	243.2	186.2	131.6
MEAN	11.3	10.2	9.24	8.19	7.12	8.45	14.3	12.2	10.3	7.85	6.01	4.39
MAX	15	13	11	10	8.3	14	26	14	12	10	7.4	6.2
MIN	9.5	9.3	8.7	7.5	6.6	6.1	11	10	8.5	6.3	4.9	4.0

WTR YR 1980 TOTAL 3344.3 MEAN 9.14 MAX 26 MIN 4.0

01306460 CONNETQUOT BROOK NEAR CENTRAL ISLIP, NY

LOCATION.--Lat 40°46'19", long 73°09'33", Suffolk County, Hydrologic Unit 02030202, 200 ft (61 m) upstream from bridge on dirt road in Connetquot River State Park Preserve, and 1.8 mi (2.9 km) upstream from gaging station 01306499.

DRAINAGE AREA .-- About 18 mi2 (47 km2).

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1968, 1973-77. November 1977 to current year.

GAGE.--Water-stage recorder and wooden stoplog control. Datum of gage is 15.10 ft (4.602 m) National Geodetic Vertical Datum of 1929.

REMARKS . - - Records good .

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 146 ft 3 /s (4.13 m 3 /s) Aug. 12, 1978, gage height, 2.78 ft (0.847 m) from flood marks; minimum, 18 ft 3 /s (0.51 m 3 /s) Sept. 12-17, 23-25, 1980, gage height, 2.00 ft (0.610 m).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 103 ft 3 /s (2.92 m 3 /s) Apr. 10, gage height, 2.57 ft (0.783 m); minimum, 18 ft 3 /s (0.51 m 3 /s) Sept. 12-17, 23-25 gage height, 2.00 ft (0.610 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MFAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	40	28	31	29	26	26	48	43	34	32	27	20
5	38	28	31	28	26	26	38	41	36	31	56	20
1 2 3 4	38	35	31	28	26	24	36	40	36	35	27	20
4	36	35	31	28	26	24	44	40	36	35	26	21
5	35	31	31	28	26	26	41	40	34	31	26	21
6	34	31	32	28	26	24	38	38	34	31	26	21
7	32	31	38	28	26	24	36	38	36	29	53	21
8	31	31	32	27	26	26	36	41	36	29	23	20
9	31	29	29	27	56	26	40	40	36	29	55	20
10	43	29	29	27	27	24	76	38	38	58	51	50
11	43	32	29	28	27	29	53	38	35	28	23	20
12	40	38	29	32	27	28	48	38	34	28	27	19
13	39	35	32	28	27	27	44	40	34	27	26	18
14	37	34	34	28	26	31	44	36	34	27	24	19
15	36	34	35	28	24	29	44	36	34	27	24	19
16	34	32	31	27	28	28	44	35	32	27	24	18
17	34	31	31	27	27	28	43	35	32	28	23	19
18	34	31	31	27	26	35	41	35	32	27	55	27
19	32	31	31	28	26	31	41	35	32	27	53	23
20	32	29	29	27	26	29	41	35	31	27	53	21
21	31	29	29	27	26	38	41	36	31	26	24	20
22	31	29	29	27	26	48	40	36	31	26	24	20
23	29	29	29	29	27	40	40	35	31	26	55	19
24	29	29	31	27	27	36	40	35	31	26	21	18
25	29	29	36	27	27	43	40	35	29	24	51	19
26	29	31	34	27	26	38	40	34	29	23	21	22
27	28	32	32	26	26	36	40	34	29	22	21	20
28	28	32	31	26	26	35	56	34	29	22	21	20
29	28	32	31	26	26	36	53	34	29	29	21	20
30	28	31	31	26		40	44	34	38	32	21	20
31	28		29	26		40		34		28	51	
TOTAL	1037	938	966	852	762	975	1310	1143	993	864	724	605
MEAN	33.5	31.3	31.2	27.5	26.3	31.5	43.7	36.9	33.1	27.9	23.4	20.2
MAX	43	38	38	32	28	48	76	43	38	35	27	27
MIN	28 .	28	29	26	24	24	36	34	29	22	21	18

CAL YR 1979 TOTAL 14766 MEAN 40.5 MAX 85 MTN 26 WTR YR 1980 TOTAL 11169 MEAN 30.5 MAX 76 MTN 18

01306500 CONNETQUOT RIVER NEAR OAKDALE, NY

LOCATION.--Lat 40°44'51", long 73°09'03", Suffolk County, Hydrologic Unit 02030202, on left bank just downstream from bridge on State Highway 27, 1.0 mi (1.6 km) west of Oakdale. Water-quality sampling site at base gage.

DRAINAGE AREA . -- About 24 mi2 (62 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1943 to current year (monthly means estimated October 1974 to September 1975).

REVISED RECORDS .-- WSP 1141: Drainage area.

GAGE.--Base gage (01306499): Water-stage recorder and wooden stoplog control. Datum of gage is 1.56 ft (0.475 m)
National Geodetic Vertical Datum of 1929.

Supplementary gage (01306495): Water-stage recorder with concrete control on left bank of secondary channel
0.25 mi (0.40 km) northeast of base gage at datum of 4.74 ft (1.445 m) National Geodetic Vertical Datum of 1929.
Prior to Aug. 10, 1965, at datum 1.0 ft (0.30 m) higher.

REMARKS.--Records fair. Flow at both gages occasionally regulated by cleaning operations at outlets of ponds above stations. Discharge figures are those of combined flows in main and secondary channels.

AVERACE DISCHARGE. -- 37 years, 38.8 ft3/s (1.099 m3/s).

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily discharge, 263 ft 3/s (7.45 m 3/s) Oct. 16, 1955; minimum daily, 16 ft³/s (0.45 m³/s) Oct. 13, 1966.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 132 ft³/s (3.74 m³/s) Apr. 10; minimum daily, 28 ft³/s (0.79 m³/s) Sept. 29.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	62	46	41	47	42	42	76	67	54	52	43	32
2	53	47	41	44	43	42	66	64	57	49	44	32
3	63	57	41	44	43	43	62	62	59	52	46	30
4	65	55	41	42	42	43	74	61	58	51	44	29
5	57	48	41	44	42	43	71	61	55	48	43	30
6	56	45	43	46	42	43	63	59,	54	49	41	30
7	53	45	51	46	44	43	60	59	58	47	41	30
8	49	43	45	44	44	43	61	63	59	47	39	32
	48	42	45	42	44	44	62	61	57	47	40	30
10	66	44	42.	42	44	43	132	58	59	46	39	31
11	66	45	41	43	44	49	88	57	55	47	43	31
12	61	55	42	52	44	45	77	58	53	46	45	31
13	59	51	45	45	43	44	73	61	51	45	41	32
14	54	49	48	44	43	53	71	60	51	44	40	34
15	52	48	45	44	43	48	72	57	52	44	39	33
16	50	47	46	45	48	47	68	54	51	44	38	34
17	49	45	42	47	48	47	64	54	50	45	36	36
18	48	45	41	45	45	58	. 63	54	49	44	36	41
19	46	44	42	47	43	52	62	54	50	42	36	38
50	45	45	43	45	43	51	61	55	51	42	37	35
21	45	44	43	43	44	62	61	58	48	41	38	36
55	44	46	44	44	44	83	59	57	49	41	38	35
23	49	43	44	47	45	69	60	55	49	41	36	33
24	52	42	45	44	45	62	60	54	46	40	35	33
25	47	43	53	43	44	69	58	54	47	40	33	33
26	44	47	51	43	44	63	57	54	46	39	34	36
27	46	48	46	43	44	59	57	54	47	41	34	31
28	47	44	45	43	44	58	88	54	50	40	34	29
29	45	43	44	42	43	59	90	53	47	44	33	28
30	45	42	44	44		63	74	53	59	50	33	29
31	46		44	43		62		54		45	33	
TOTAL	1612	1388	1369	1377	1271	1632	2090	1779	1571	1393	1192	974
MEAN	52.0	46.3	44.2	44.4	43.8	52.6	69.7	57.4	52.4	44.9	38.5	32.5
MAX	66	57	53	52	48	83	132	67	59	52	46	41
MIN	44	42	41	42	42	42	57	53	46	39	33	28

83

01306500 CONNETQUOT RIVER NEAR OAKDALE, NY--Continued

WATER-QUALITY

PERIOD OF RECORD. -- 01306499 (Base gage): May 1966 to current year.

COOPERATION.--All water-quality samples were collected and analyzed by Suffolk County Department of Health Services.

DATE DEC 12 MAR 06 JUN	TIME 1358 1130	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS) 6. 8	TEMPER- ATURE, WATER (DEG C) 8.0	OXYGEN, DIS- SOLVED (MG/L) 10.2	CALCIUM DIS- SOLVED (MG/L AS CA) 5. 1 5. 2	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 2. 4	SODIUM, DIS- SOLVED (MG/L AS NA) 7.3	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
O4 SEP	1355	44	99	7. 8	19. 0	12. 7	4. 8	2. 3	7. 4	1.2
09	1200	24	95	7. 0	17. 0	10. 5	5. 2	2. 4	7. 3	. 9
DATE	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
DEC 12	15	5. 0	11		1. 5	1. 5	. 010	. 010	. 110	. 100
MAR										
06 JUN	16	5. 4	9. 5	<. 5	1. 5	1.6	. 006	. 006	. 110	. 070
04 SEP	14	5. 1	12		1. 3	1.3	. 012	. 012	. 090	. 060
09	16	4. 3	10		1.3	1.3	. 012	. 012	. 180	. 150
DA	NITR GEN, MONI ORGA TOT (MG	AM- GEN, A + MONI NIC ORGA AL DIS	A + PHO NIC PHOR D TOT C/L (MG	AL SOL	OS- PHONO RUS, ORTH S- OSPN LVED DISS O/L (MC	HOPH TO HATE REG BOL. ERG BYL (U	ABLE SOL	NES ON, TOT IS- REC VED ERA	E, LE AL BL OV- ACT BLE SU ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	HY- NE UE IVE IB- NCE
DEC		. 40	. 30	043 .	036	015	190	120	50 <	. 02
MAR								<50		. 02
JUN		. 10				006	90	130		. 02
SEP										
09		. 20	. 40 .	021 .	012 .	006	180	150	30 <	. 02

01307000 CHAMPLIN CREEK AT ISLIP, NY

LOCATION.--Lat 40°44'13", long 73°12'08", Suffolk County, Hydrologic Unit 02030202, on right bank just upstream from Long Island Railroad bridge, 220 ft (67 m) downstream from Moffitt Boulevard, at Islip, and 1.8 mi (2.9 km) upstream from mouth.

DRAINAGE AREA. -- About 6.5 mi² (16.5 km²).

10. . .

. 90

. 80

. 012

. 005

. 002

PERIOD OF RECORD .-- Water years 1966 to current year.

REMARKS.--Partial-record discharge data included in this report.

COOPERATION. -- All water-quality samples were collected and analyzed by Suffolk County Department of Health Services.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

<. 02

550

100

130

TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DIS-	D (1)	S- DLVED 1G/L	SIUM, DIS- SOLVEI (MG/L	501 D: S01	DIUM, IS- LVED MG/L	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACD3)
1255	245	6. 1	12.0	7.	7	12	3. 6		21	4.2	23
			3.4				2.0				
1300	235	6. 2	11.0	8.	3	10	3. 2	2	20	3. 5	24
1300	220	5.9	14.0	9	4	10	3.8	3	20	3.6	
		-	2.00			-			-		
0700	235	6. 2	17. 0	5.	0	10	4. ()	22	2.8	16
DIS- SOLVI (MG/I AS SO- 22 21	TE RIDE DIS- ED SOLV (M9/4) AS 0	F. RIDE DIS DIS CHOCKET CHOCKET DIS CHOCKE	E, GE B- NITR VED TOT VL (MG F) AS 2 C. 5 3	RO- N, NI RATE FAL S F/L (N) A	GEN, TRATE DIS- DLVED MG/L	GEN NITRI TOTA (MG/ AS N	0- (0, NITTE II	SEN, FRITE DIS- DLVED 1G/L S N) . 009 . 008	GEN, AMMONI TOTAL (MG/L AS N) 1.70 2.00	0- GE AMMC AS	S- VED VL
GEN, AI MONIA ORGAN TOTAL (MG/I	H GEN, A + MONIA IC ORGAN DIS. (MG/	AM- A + PHOS VIC PHORU TOTA VL (MG/	S- PHOR US, DIS AL SOL 'L (MG	OS- PH RUS, OR S- OS VED DI	ORUS, THOPH PHATE SSOL. MG/L	TOTA RECO ERAB (UG/	L IF V- I LE SO L ((DIS- DLVED JG/L	NESE, TOTAL RECOV ERABL (UG/L	LE BL 2- ACT LE SU STA	THY- ENE LUE TIVE JB- ANCE S/L)
1.	7 1.	7 . (009 .	012	c. 002	2	00	130	110	00	. 04
				110			22				
2. (2.	1 . (002 <.	002	c. 002	3	00	200	120	0	. 02
	70 .	40 . (012	008	c. 002		80	<50	51	0	
				7.00			19	1000			
	1255 1300 1300 0700 SULFA' DIS- SOLVI (MG/I AS SOI 119 23 NITRD- GEN, AI MONIA ORGAN TOTAI (MG/I AS N	CIFIC CON- DUCT- ANCE TIME (MICRO- MHOS) 1255 245 1300 235 1300 220 0700 235 SULFATE RIDE DIS- SOLVED SOLV (MG/L (MG/L AS SO4)) AS CO 22 34 21 25 19 36 NITRO- GEN. AM- MONIA + MONIA CORGANIC ORGANIC TOTAL DIS- CORGAN TOTAL DIS- (MG/L (MG/L AS N) AS N 1.7 1. 2.0 2.	CIFIC CON- DUCT- ANCE PH TIME (MICRO- FIELD MHOS) (UNITS) 1255 245 6.1 1300 235 6.2 1300 220 5.9 0700 235 6.2 CHLO- FLUC FLUC FLUC FLUC FLUC FLUC FLUC FLUC	CIFIC CON- DUCT- ANCE PH ATURE, MICRO-FIELD WATER MHOS) (UNITS) (DEG C) 1255 245 6.1 12.0 1300 235 6.2 11.0 1300 220 5.9 14.0 0700 235 6.2 17.0 CHLO-FLUO-NIT SULFATE RIDE, RIDE, GE DIS-DIS-DIS-NITE SOLVED SOLVED SOLVED TOT (MG/L (MG/L (MG/L (MG/L AS SO4) AS CL) AS F) AS 22 34 23 19 30 3 NITRO-NITRO-GEN, AM-GEN, AM-MONIA + PHOS-PHOF ORGANIC ORGANIC PHORUS, TOTAL DIS. TOTAL SOL (MG/L (MG/L (MG/L (MG/L AS N) AS N) AS P) AS 1.7 1.7 0.009 C.	CIFIC CON- DUCT- ANCE PH ATURE, DIS- TIME (MICRO- FIELD WATER SOLVEI MHOS) (UNITS) (DEG C) (MG/L 1255 245 6.1 12.0 7.1 1300 235 6.2 11.0 8.3 1300 220 5.9 14.0 9.4 0700 235 6.2 17.0 5.0 CHLO- FLUO- NITRO- GEN, NITRO- GEN, AS P) AS	CIFIC CON- DUCT- ANCE PH ATURE, DIS- SCIVED (MICRO- FIELD WATER SOLVED (N MHOS) (UNITS) (DEG C) (MG/L) AS 1255 245 6.1 12.0 7.7 1300 235 6.2 11.0 8.3 1300 220 5.9 14.0 9.4 0700 235 6.2 17.0 5.0 CHLO- FLUO- NITRO- GEN, NITRATE DIS- DIS- DIS- NITRATE DIS- SOLVED SOLVED SOLVED TOTAL SOLVED (MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	CIFIC CON- DUCT- ANCE PH ATURE, DIS- SOLVED (MG/L) MHOS) (UNITS) (DEG C) (MG/L) AS CA) 1255 245 6.1 12.0 7.7 12 1300 235 6.2 11.0 8.3 10 1300 220 5.9 14.0 9.4 10 0700 235 6.2 17.0 5.0 10 CHLO- FLUO- NITRO- GEN, NITRATE DIS- NITRI DIS- DIS- DIS- NITRATE DIS- NITRATE DIS- NITRI SOLVED TOTAL (MG/L) (CIFIC CON- DUCT- PH TEMPER- DXYGEN, DIS- DIS- DIS- ANCE PH ATURE. DIS- SOLVED SOLVED MAGNE SOLVED (MG/L (MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	CIFIC CON- DUCT- ANCE PH ATURE, DIS- SOLVED	CIFIC CDN- DUCT- ANCE PH ATURE, DIS- SOLVED	CIFIC CON- DUCT- TEMPER- DXYGEN, DIS- DIS-

01307500 PENATAQUIT CREEK AT BAY SHORE, NY

LOCATION.--Lat 40°43'37", long 73°14'41", Suffolk County, Hydrologic Unit 02030202, on right bank just upstream from Union Avenue in Bay Shore, and 4,500 ft (1.372 m) upstream from mouth.

DRAINAGE AREA. -- About 5 mi² (13 km²).

PERIOD OF RECORD. -- May 1966 to current year.

REMARKS.--Partial-record discharge data included in this report.

COOPERATION. -- All water-quality samples were collected and analyzed by Suffolk County Department of Health Services.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)
DEC										
12 MAR	1150	260	6. 4	11.0	8. 2	15	3. 6	23	5. 5	55
06 JUN	1410	290	6. 5	12. 0	9. 0	10	3. 3	31	3. 0	24
05 SEP	1200	270	6. 1	14. 0	7.4	13	3. 1	27	3. 7	15
10	0800	290	6.2	16.0	5.8	14	3. 0	32	3. 1	20

DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
DEC									
12 MAR	28	34		3. 4	3. 4	. 026	. 013	. 810	. 790
06 JUN	22	43	<. 5	2. 7	2. 7	. 011	. 011	1. 300	1. 400
05 SEP	24	41		5. 0	4. 9	. 050	. 050	1.000	. 990
10	23	50		3. 4	3. 4	. 022	. 022	. 440	. 430
DATE	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
DEC							200		100
12 MAR	. 90	. 90	. 034	. 012	. 004	480	140	690	. 04
06 JUN	1.3	1.3	. 008	. 003	<. 002	250	130	910	. 03
05 SEP	1.2	1.2	. 015	. 016	. 003	200	120	890	. 05
10	. 80	. 70	. 021	. 002	. 003	600	200	800	

01308000 SAMPAWAMS CREEK AT BABYLON, NY

LOCATION.--Lat 40°42'15", long 73°18'52", Suffolk County, Hydrologic Unit 02030202, on left bank at upstream side of John Street Bridge in Babylon, 180 ft (55 m) downstream from Long Island Railroad, and 0.6 mi (1.0 km) upstream from mouth. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 23 mi2 (60 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1944 to current year (monthly means estimated December 1966 to November 1967).

REVISED RECORDS.--WSP 1141: Drainage area: WSP 1702: 1955(M), 1956(M). WRD NY 1974: 1970(P).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 6.36 ft (1.939 m) National Geodetic Vertical Datum of 1929. October 1944 to December 1966, water-stage recorder at site 100 ft (30 m) east at datum 0.34 ft (0.104 m) higher.

REMARKS.--Records good except those from July to September, which are fair. Flow regulated slightly by pumping operations at railroad and occasionally by ponds above station. Indeterminate effect caused by ground-water pumpage for water-supply purposes at Smith Street substation 0.2 mi (0.3 km) northwest of gage. Prior to November 1950, slight diurnal fluctuation caused by power operations.

AVERAGE DISCHARGE. -- 36 years, 9.71 ft3/s (0.275 m3/s).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 136 ft 3 /s (3.85 m 3 /s) Sept. 12, 1960, gage height, 2.11 ft (0.643 m) datum then in use; maximum gage height, 3.28 ft (1.000 m) Feb. 7, 1971; minimum discharge, 1.6 ft 3 /s (0.045 m 3 /s) June 28, 1963, gage height, 0.13 ft (0.040 m) datum then in use.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 55 ft³/s (1.56 m³/s) and maximum (*):

		Discharge		Gage height				Disc	harge	Gage 1	height
Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Nov. 3	1300	82	2.32	1.76	0.54	June 7	0630	64	1.81	1.48	0.45
Nov. 11	2100	58	1.64	1.32	.40	June 30	0045	80	2.27	2.00	.61
Apr. 10	0200	a*111	3.14	*2.35	.72						

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

a From rating extended above 80 ft3/s (2.27 m3/s).

Minimum discharge, 4.2 ft3/s (0.119 m3/s) Sept. 24; minimum gage height, 0.28 ft (0.085 m) Feb. 1.

DAY	ncT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	20	11	8.1	8.3	7.5	7.6	25	15	11	11	11	6.5
2	14	12	8.0	8.3	7.3	7.6	18	14	11	11	14	6.1
3	18	31	7.8	8.4	7.3	7.2	17	14	18	9.8	14	6.1
4	12	15	8.2	8.3	7.3	7.2	25	14	13	9.8	12	5.5
5	11	15	8.1	8.8	7.2	7.6	18	14	11	11	12	5.8
6	10	12	9.6	8.2	7.3	7.2	17	13	9.8	14	11	5.8
7	9.8	11	12	8.7	9.3	7.2	16	13	19	9.8	11	5.5
8	8.3	11	9.5	8.3	11	8.3	17	17	15	9.8	11	5.2
9	12	15	8.7	8.1	11	7.6	24	14	14	9.4	11	5.2
10	30	15	8.5	7.9	12	8.3	51	13	14	9.4	10	4.8
11	18	29	8.3	9.0	11	12	23	12	12	9.4	14	4.8
12	15	35	8.3	12	11	8.7	21	16	11	9.4	14	4.8
13	13	24	11	9.1	11	8.7	20	17	11	9.1	12	4.8
14	12	23	9.7	9.0	12	12	20	14	11	9.1	12	5.8
15	11	17	9.1	8.6	12	9.4	20	12	11	9.1	13	5.5
16	11	9.5	9.2	8.1	13	9.1	18	12	11	9.1	12	4.8
17	11	9.4	8.9	8.0	9.1	9.4	18	12	11	9.1	11	5.5
18	11	9.1	8.7	8.3	8.3	15	17	13	11	9.1	11	11
19	11	8.8	8.6	10	8.3	11	17	13	11	9.1	11	5.5
50	11	8.9	8.6	9.0	8.3	10	17	13	11	9.1	10	5.2
21	11	8.7	8.3	9.2	7.9	21	16	16	10	9.1	9.8	5.2
55	11	8.7	8.3	10	8.7	22	16	14	10	9.1	9.8	4.8
23	11	8.7	8.3	9.5	8.7	15	16	13	10	9.1	9.4	4.8
24	11	8.3	9.4	8.7	8.3	14	15	13	9.8	9.1	9.1	4.5
25	11	8.4	14	8.3	8.3	22	15	12	9.8	9.1	8.7	5.2
26	10	11	10	7.9	7.9	15	15	11	9.8	9.1	8.3	9.4
27	10	9.4	9.1	7.9	8.3	14	15	11	9.4	8.7	7.9	5.5
28	11	9.2	8.7	7.8	8.3	14	30	11	9.4	8.7	7.6	5.5
29	10	8.7	8.7	7.7	7.9	18	20	11	11	14	7.2	5.2
30	10	8.2	8.7	7.6		18	16	11	25	12	6.8	5.8
31	10		8.3	7.7		19		11		11	6.8	

373.1

12.0

22

593

51

19.8

409

17

13.2

361.0

12.0

25

328.4

10.6

14

305.6

9.86

14

8.7

170.1

5.67

4.5

CAL YR 1979 TOTAL 5218.4 MEAN 14.3 MAX 70 MIN 7.2 WTR YR 1980 TOTAL 4143.2 MEAN 11.3 MAX 51 MIN 4.5

280.7

9.05

14

7.8

266.7

8.60

12

265.5

9.16

13

TOTAL

MEAN

MAX

MIN

385.1

12.4

30

8.3

405.0

13.5

8.2

STREAMS ON LONG ISLAND 87 01308000 SAMPAWAMS CREEK AT BABYLON, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

COOPERATION. -- All water-quality samples were collected and analyzed by Suffolk County Department of Health Services.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER ATURE WATER (DEG C	SOL	SEN, IS- LVED S/L)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS-	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
DEC	7,50	4.5									
12 MAR	1100	8. 3	240	6. 2	9.	D	7. 0	12	3. 3	21	4. 2
07	0910	7. 2	250	6. 3	7.	0	7.2	12	3. 2	21	3.7
JUN 05	1100	11	220	6.2	17.	0	6.6	11	3. 1	18	3. 5
SEP			1000	0. 2	1/		0.0	•••	0. 1	10	0. 0
10	0940	5. 2	235	5. 9	17.	D	1.7	14	3. 0	22	3. 8
	ALKA- LINITY (MG/L AS	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L	NITRO- GEN, NITRATI TOTAL (MG/L	NITE DI SOL	TRO- EN, RATE IS- LVED	NITRO- GEN, NITRITE TOTAL (MG/L	NITRO- GEN, NITRITE DIS- SOLVED (MG/L	NITRO- GEN, AMMONIA TOTAL (MG/L	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L
DATE	CAC03)	AS SO4)	AS CL)	AS F)	AS N)	AS	N)	AS N)	AS N)	AS N)	AS N)
DEC											
12	24	24	28		3. 4		3. 4	. 024	. 024	1.600	1.600
MAR 07	29	26	28	<. 5	2. 9		2. 9	. 015	. 015	2. 300	2, 300
JUN		77						. 010	. 010	2.000	2. 000
05 SEP	26	24	27		2. 6	- 2	2. 6	. 057	. 054	1. 500	1. 500
10	19	25	30	-	3. 9		3. 9	. 014	. 014	. 540	. 550
DA	NITE	AM- GEN, IA + MONI ANIC DRGA IAL DIS	TRO- IAM- IA + PHO ANIC PHOR B. TOT G/L (MO	RUS, DIS	OS- PHO RUS, OR S- OSI LVED DIS	HOS- DRUS, THOPH PHATE BSOL. MG/L S P)	ERA (UG	AL IRO OV- DI BLE SOL	NE ON, TO IS- RE LVED ER	SE, LI TAL BI COV- AC ABLE SI G/L ST	FHY- ENE LUE FIVE JB- ANCE G/L)
DEC		147 113	N/ NO	r/ ns	r, n.	3 7 7	M3	LEY WO	FE/ NO	riiv, (iii	3/L/
12		.8	1.6 .	015 .	015	. 003		330	230	850	. 09
	2	2.2	2. 3 .	013 .	007	. 003		560	400	1300	. 08
	:	2. 1	1.9 .	025 .	017	. 003		700	400	1200	. 06
SEP 10)	. 80	. 80 <.	002 .	002	. 002		270	200	130	

01308500 CARLLS RIVER AT BABYLON, NY

LOCATION.--Lat 40°42'31", long 73°19'44", Suffolk County, Hydrologic Unit 02030202, on left bank 130 ft (40 m) downstream from outlet of Southards Pond in Babylon, and 0.9 mi (1.4 km) upstream from mouth. Water-quality sampling site at discharge station.

DRAINAGE AREA . -- About 35 mi2 (91 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1944 to current year.

REVISED RECORDS.--WSP 1141: Drainage area. WRD NY 1972: 1947(m), 1952(m), 1954(m), 1958(m), 1960-63(m).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 10.63 ft (3.240 m) National Geodetic Vertical Datum of 1929.

REMARKS. -- Records good. Occasional regulation at outlet of Southards Pond.

AVERAGE DISCHARGE. -- 36 years, 26.8 ft 3/s (0.759 m3/s).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 243 ft 3 /s (6.88 m 3 /s) Jan. 21, 1979, gage height, 2.26 ft (0.689 m); minimum, 0.05 ft 3 /s (0.001 m 3 /s) Sept. 4, 1963, July 6, 1966, Aug. 29, 1972 (result of regulation); minimum gage height, 0.03 ft (0.009 m) July 6, 1966, Aug. 29, 1972 (result of regulation); minimum daily, 4.5 ft 3 /s (0.13 m 3 /s) July 6, 1966.

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 200 ft³/s (5.66 m³/s) Apr. 10, gage height, 2.01 ft (0.613 m); minimum, 12 ft³/s (0.34 m³/s) Sept. 16, gage height, 0.50 ft (0.152 m).

MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR AUG SEP MAY JUN JUL ---TOTAL MEAN 31.5 28.4 27.5 26.0 24.0 15.5 39.2 57.4 38.5 31.0 25.0 19.8 MAX AR

CAL YR 1979 TOTAL 13813 MEAN 37.8 MAX 129 MTN 20 WTR YR 1980 TOTAL 11103 MEAN 30.3 MAX 148 MTN 12

01308500 CARLLS RIVER AT BABYLON, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

COOPERATION .-- All water-quality samples were collected and analyzed by Suffolk County Department of Health Services.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVEI (MG/L AS K)
DEC	1000	2.0				2/2		4.00	-0.7	
12 MAR	1000	24	225	6. 4	7. 0	8. 3	11	2. 8	21	4. 4
07 JUN	1020	22	255	6.7	5. 0	9. 8	11	2. 9	23	3. 5
05	1000	30	220	6.7	18.0	8. 0	12	2. 7	21	3. 7
SEP 10	1050	14	215	6. 4	21.0	6.8	12	2. 6	24	3. 4
	ALKA- LINITY (MG/L AS	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L	NITRO- GEN, NITRATE TOTAL (MG/L	NITRO- GEN, NITRATE DIS- SOLVED (MG/L	NITRO- GEN, NITRITE TOTAL (MG/L	NITRO- GEN, NITRITE DIS- SOLVED (MG/L	NITRO- GEN, AMMONIA TOTAL (MG/L	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L
DATE	CACO3)	AS S04)	AS CL)	AS F)	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)
DEC 12	20	25	28		2.0	2.0	. 020	000	1 400	1. 400
MAR	20	23	28		2. 8	2. 9	. 020	. 020	1. 400	1. 400
07 JUN	23	27	32	<. 5	2. 9	2. 9	. 013	. 013	1.700	1.700
05 SEP	24	25	29		2. 5	2. 5	. 041	. 041	1.300	1.300
10	15	25	31		2. 7	2. 7	. 014	. 014	. 180	. 190
DA	NITE GEN, MONI ORGA TOT (MG	AM- GEN, A + MONI NIC ORGA AL DIS	A + PHOS NIC PHORU D. TOTA C/L (MG/	JS, DIS AL SOL /L (MG	US, ORTH- - OSPH VED DISS	RUS, IRC HOPH TOT HATE REC BOL. ERA BYL (UG	TAL IRO COV- DI ABLE SOL	NES ON, TOT SS- REC VED ERA	E, LE AL BL OV- ACT BLE SU //L STA	HY- NE UE IVE B- NCE
	2	. 6 1	.6 .0	. 020	022 .	003	320	160	640	. 05
	1	. 8 1	. 9 . 0		. 800	002	380	100	920	. 05
	i 2	2. 2 2	2. 0 . 0	012 .	010 .	004	500	250	860	. 04
SEP 10		. 80	. 60 . 0		002 <.	002	200	150	200	

01309000 SANTAPOGUE CREEK AT LINDENHURST, NY

LOCATION.--Lat 40°41'30", long 73°21'20", Suffolk County, Hydrologic Unit 02030202, on left bank just upstream from East Hoffman Avenue bridge, 1.0 mi (1.6 km) east of Long Island Railroad station in Lindenhurst, and 1.5 mi (2.4 km) upstream from mouth.

DRAINAGE AREA. -- About 7 mi2 (18 km2).

PERIOD OF RECORD .-- Water years 1966 to current year.

REMARKS. -- Partial-record discharge data included in this report.

SPE-

COOPERATION. -- All water-quality samples were collected and analyzed by Suffolk County Department of Health Services.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	CIFIC CON- DUCT- ANCE (MICRO MHOS))- FI	PH A	MPER- TURE, ATER EG C)	OXYGEN, DIS- SOLVED (MG/L)	SOL.	IUM - VED S	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SOL (M	IUM, S- VED IG/L	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACD3)
DEC											22	2.0	
12	0900	36	0	6.4	9.0	5.8	1	9	4.6		34	9.7	58
MAR				4.4	-27	0.12		4			40	3 - 41	
07	1140	34	10	6.6	8.0	8. 4	1	4	4. 4		30	6.0	52
JUN				7.2		4.72	_	_	0.200				
05 SEP	0900	43		6. 7	15.0	6. 3	2	90	5. 5		45	12	91
10	1255	31	10	6. 4	16. 0	4. 3	2	20	3. 9		28	5. 6	51
DATE DEC 12 MAR 07 JUN 05 SEP 10	. 34	ATE F	CHLO- RIDE, DIS- SOLVED MM9/L AS CL) 44 40 56	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	(MG/ AS N 1. 1.	0- GE , NITR TE DI L SOL L (MG l) AS 6 1 6 1	S- VED /L	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	SOL (MG AS	S- VED	NITRO GEN. AMMONI TOTAL (MG/L AS N) 3. 80 3. 50 6. 20	O- GE AMMO A D. SOL (MC AS 00 3.	FRO- EN. DNIA DIS- VED S/L N) 800 500 200
DATE	NITRO GEN, A MONIA ORGAN TOTA (MG/ AS N	AM- GE A + MC NIC DE AL I	NITRO- EN, AM- ONIA + RGANIC DIS. (MG/L	PHOS- PHORUS, TOTAL (MG/L	PHOS PHORU DIS- SOLV (MG/	S, ORTH OSPH ED DISS L (MG	OPH ATE OL.	IRON, TOTAL RECOV- ERABLE (UG/L	E SOL	S- VED	MANGA NESE, TOTAL RECOV ERABL (UG/L AS MN	LE SU	THY- ENE LUE TIVE JB- ANCE G/L)
DATE	MO I	, ,	AS N)	AS P)	AS P) AS	г,	AS FE	, AS	FE)	MO MIN	, ,	3/ 1/
DEC													
12	. з.	9	3.8	. 030	. 0		004	120	0	610	240	00	. 07
07	. 3.	7	3. 4	. 018	. 0		003	110	0	910	250	00	. 07
JUN		_											
05 SEP		5	6.8	. 055	. 0		002	900	5	650	320	00	. 06
10	. З.	2	3. 3	. 014	. 0	. 200	004	210	0	600	370	00	

01309500 MASSAPEQUA CREEK AT MASSAPEQUA, NY

LOCATION.--Lat 40°41'20", long 73°27'19", Nassau County, Hydrologic Unit 02030202, on left bank 3000 ft (914 m) upstream from Clark Boulevard Bridge in Massapequa, and 350 ft (107 m) west of Lake Shore Drive at Garfield Street in Massapequa Park. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 38 mi2 (98 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June to October 1903, December 1936 to current year (monthly means estimated December 1959 to February 1961). Published as Massatayun Creek at Massapequa, December 1936 to September 1941.

REVISED RECORDS. -- WSP 1411: Drainage area. WRD NY 1970: 1966-69 (M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 18.31 ft (5.581 m) National Geodetic Vertical Datum of 1929. Prior to October 1903, non-recording gage at different datum. December 1936 to March 1961, at same site at datum 1.0 ft (0.30 m) higher.

REMARKS.--Records good. Discharge during part of the year was significantly supplemented by dewatering activities connected with sewer construction throughout the basin.

AVERAGE DISCHARGE. -- 43 years (1937-80), 11.6 ft3/s (0.329 m3/s).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 510 ft 3 /s (14.4 m 3 /s) July 29, 1980, gage height, 2.40 ft (0.732 m), from rating curve extended above 170 ft 1 /s (4.81 m 3 /s); minimum, 0.95 ft 3 /s (0.027 m 3 /s) Aug. 4, 1963, Nov. 2, 1965, Jan. 8, 1977 (result of freezeup); minimum gage height, 0.32 ft (0.098 m) Aug. 1, 1954, datum then in use.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 110 ft3/s (3.12 m3/s) and maximum (*):

			harge						Discl	narge	Gage	height
Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Dat	e	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Mar. 21	1800	115	3.26	1.52	0.463	June	30	0200	159	4.50	1.67	0.509
Apr. 10	0130	a295	8.35	2.01	.613	July	29	1630	a*510	14.4	*2.40	.732

a From rating extended above 170 ft3/s (4.81 m3/s).

Minimum discharge, 2.8 ft 3 /s (0.079 m 3 /s) Sept. 11-12; minimum gage height, 0.68 ft (0.207 m) Sept. 11, 12, 25, 30.

		DISC	HARGE. IN	CORIC LE		COND, WATE	R YEAR OC	TOBER 19	79 TO SEP	TEMBER 19	80	
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	16	11	8.6	8.6	7.7	7.2	31	26	17	9.5	11	3.7
2	14	11	8.1	8.6	7.7	7.2	20	22	17	9.5	12	3.7
3	19	19	8.1	8.6	7.7	7.2	18	22	28	10	10	3.4
4	13	12	8.1	8.6	7.7	7.2	35	22	18	8.1	8.1	3.4
5	12	11	7.7	8.6	7.7	7.2	20	21	14	9.0	7.7	3.4
6	12	11	9.2	8.1	7.7	7.2	18	21	14	15	7.2	3.4
7	12	11	13	8.6	7.7	6.7	17	50	32	9.0	6.7	3.4
8	12	11	8.6	8.1	7.7	7.7	17	32	50	8.6	6.3	3.1
9	17	10	8.1	8.1	7.7	8.1	53	55	21	8.1	6.3	3.1
10	36	10	8.1	7.7	7.2	9.2	117	20	17	7.7	5.8	3.1
11	18	17	8.1	9.1	6.7	31	37	18	14	7.2	5.8	2.8
12	16	20	8.1	15	6.3	9.5	31	32	13	7.2	7.7	3.1
13	14	15	13	8.6	5.8	8.6	30	29	13	6.7	5.8	3.1
14	13	11	9.5	8.6	5.8	17	37	23	13	6.7	5.4	3.1
15	12	10	8.6	8.6	5.8	11	32	20	12	6.3	5.4	3.1
16	12	10	8.6	8.1	16	9.5	27	18	12	6.3	5.4	3.1
17	12	9.5	9.5	7.7	8.6	9.5	25	17	12	6.3	4.9	3.1
18	12	9.5	8.1	8.1	7.7	55	25	17	12	5.8	4.6	8.1
19	12	9.0	8.1	15	7.7	11	24	17	11	5.4	4.6	4.3
50	12	9.0	7.7	8.6	7.7	10	24	16	10	5.4	4.9	4.3
21	11	9.0	7.7	8.6	7.2	43	24	26	9.5	5.4	4.9	4.0
55	11	9.0	7.7	11	8.1	36	23	18	8.6	4.9	4.9	3.7
23	11	9.0	7.7	10	8.6	18	55	16	8.1	5.4	4.9	3.4
24	11	8.6	10	8.6	7.7	16	21	16	7.7	5.4	4.6	3.4
25	11	8.1	29	8.1	7.7	39	22	16	7.7	4.9	4.6	3.1
26	11	13	11	8.1	7.7	17	22	16	7.2	4.6	4.0	8.6
27	11	10	10	7.7	7.7	15	23	16	6.7	4.6	4.0	4.9
28	11	9.0	9.5	7.7	7.7	14	68	17	6.3	4.6	4.0	4.3
29	11	8.6	9.5	7.7	7.2	24	34	17	7.6	155	4.0	3.7
30	11	8.6	9.0	7.7		50	28	18	39	39	4.0	3.4
31	11		9.0	7.7		26		18		16	3.7	
TOTAL	417	326.9	297.0	273.9	224.2	482.0	925	629	428.4	407.6	183.2	114.3
MEAN	13.5	10.9	9.58	8.84	7.73	15.5	30.8	20.3	14.3	13.1	5.91	3.81
MAX	36	50	29	15	16	43	117	32	39	155	12	8.6
MIN	11	8.1	7.7	7.7	5.8	6.7	17	16	6.3	4.6	3.7	2.8

01309500 MASSAPEQUA CREEK AT MASSAPEQUA, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

SPE-

TI	IN ME TA	LOW, ISTAN- ANEOUS	DUCT ANCE (MICR	- P O- FIE	LD	WATE	RE, ER	DIS-	NES (MG AS	D- N S NO 1/L BO	ESS, NCAR- NATE MG/L	DIS SOL (MG	IUM S - I VED SC	SIUM, DIS- DLVED MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)
08	140	7.7	3	50	6.2	5	5. 0	6.6		88	43	2	21	3. 7	30
09	10	10	3	10	6. 2	9	7. 0	5. 6		65	55	2	20	3. 7	26
11	15	11	2	80	7. 5	22	2. 0	5. 7		55	46	1	7	3. 1	26
06	30	4. 6	2	70	5. 4	15	5. 0	3. 6		62	45	1	8	4. 2	26
ATE C	SIUM DIS- SOLVE (MG/L AS K) 5.	LIN ALIN CAN	25 10 9	DIS- SOLVED (MG/L AS SO4) 39 39	RII DIS SOL (MC AS	DE, 5- LVED 9/L CL) 35	RIDE DIS SOLV (MG/ AS F	DI SO SI O . 0 . 1	9. 9 9. 0 7. 6	SUM OF CONSTI TUENTS DIS- SOLVE (MG/L	- NI - GE , NI TE , NI	EN, RATE TAL S/L N)	GEN, NITRATE DIS- SOLVEI (MG/L AS N) 6. 7 5. 1	NIT G	(TRO- JEN, RITE JITAL 16/L S N) . 020 . 020
ATE CO R O N 9	NITRE GEN, AMMONI TOTAL (MG/L AS NI 2. 30	D- NI GREAT OF TO AS	TRO- EN, ANIC TAL G/L N)	NITRO- GEN, TOTAL (MG/L AS N) 11 6.8 7.2	PHOP TO (MC AS	05- RUS, TAL 3/L P) 040 020	PHOSP PHORU ORTHO OSPHA TOTA (MG/ AS P	S, IR PH TO TE RE L (U) AS	ON, ITAL COV- ABLE G/L 500 330	IRON, SUS- PENDE RECOY ERABL (UG/L AS FE	D IRC	10 80	MANGANESE, TOTAL RECOVERABLE (UG/L AS MN: 2500	- ME B B ST ST (M	. 030 ETHY- ENE BLUE ETIVE SUB- FANCE IG/L) . 10
9	. 56	60	. 19	7. 0		020	. 0	000	240	16	0	80	1700)	. 10
	OE 05 05 05 05 05 05 05 05 05 05 05 05 05	OB40 O910 1115 O630 POTAS SIUM DIS-SOLVE (MG/L ATE AS K) C O 5. R O 4. N 9 4. P 9 4. NITRC GEN. AMMONJ TOTAL ATE AS N) C O 2. 30 R O 1. 50 N P 9 60 P	OB40 7.7 O910 10 1115 11 O630 4.6 POTAS- SIUM, ALI DIS- LIN SOLVED (MG/L A: ATE AS K) CAI C O 5.1 R O 4.6 NITRO- GEN, G AMMONIA ORG, TOTAL TO (MG/L AMMONIA O	STREAM- FLOW, FLOW, INSTAN- ANCE TIME TANEOUS (MICR MHOS) 0840 7.7 3 0910 10 3 1115 11 2 0630 4.6 2 POTAS-SIUM, ALKA-DIS-LINITY SOLVED (MG/L AS K) CACO3) C	FLOW, DUCT- ANCE P TANEOUS (MICRO- FIE MICRO- MICRO- FIE MICRO- FI	STREAM- CON- FLOW, DUCT- INSTAN- ANCE PH TANEOUS (MICRO- FIELD CCFS) MHOS) (UNITS)	STREAM- CON- FLOW, DUCT- TEMPE INSTAN- ANCE PH ATUR ATUR	STREAM- CON- FLOW, DUCT- TEMPER- DUCT- INSTAN- ANCE PH ATURE, MATER (CFS) MHOS) (UNITS) (DEG C)	STREAM-FLOW. DUCT- TEMPER- DXYGEN, INSTAN- ANCE PH ATURE, DIS- TIME TANEOUS (MICRO- FIELD WATER SOLVED (CFS) MHOS) (UNITS) (DEG C) (MG/L) 0840 7.7 350 6.2 5.0 6.6 0910 10 310 6.2 9.0 5.6 1115 11 280 7.5 22.0 5.7 0630 4.6 270 5.4 15.0 3.6 POTAS- SIUM. ALKA- SULFATE RIDE, RIDE, DIS- SOLVED (MG/L) SOLVED (MG/L SOLVED SOLVED SOLVED SOLVED (MG/L) ATE AS K) CACO3) AS SO4) AS CL) AS F) SI CO. 5.1 25 39 35 .0 R O. 4.6 10 39 34 .0 N P OTAS- SIUM AL A CACO3 (MG/L) AS CL) AS F) SI CO. 5.1 25 39 35 .0 R O. 4.6 10 39 34 .0 N O SOLVED (MG/L) AS CL) AS F) SI NITRO- SIL SOLVED SOLVED SOLVED SOLVED (MG/L) AS CL) AS F) SI NITRO- SIL SOLVED SOLVED SOLVED SOLVED (MG/L) AS CL) AS F) SI NITRO- SIL SOLVED SOLVED SOLVED SOLVED (MG/L) AS CL) AS F) SI NITRO- SIL SOLVED SOLVED SOLVED SOLVED SOLVED (MG/L) AS F) AS P) AS P	STREAM	STREAM- CDN- FLOW, DUCT- TEMPER- DXYGEN, NESS NO	STREAM	STREAM- CIN- FLOW, DUCT- PH TEMPER- DXYGEN, NESS NONCAR- DIS- CILC NONCAR- DIS- NONCAR- DIS- CILC NONCAR- DIS- CILC NONCAR- DIS- CILC NONCAR- DIS- CILC CIC NONCAR- DIS- CILC CIC CI	STREAM	STREAM

01310000 BELLMORE CREEK AT BELLMORE, NY

LOCATION.--Lat 40°40'43", long 73°30'58", Nassau County, Hydrologic Unit 02030202, on right bank 40 ft (12 m) east of intersection of Valentine Place and Mill Road, in Bellmore, 0.5 mi (0.8 km) north of Sunrise Highway, and 0.5 mi (0.8 km) northwest of Wantagh. Water-quality sampling site at base gage.

DRAINAGE AREA . -- About 17 mi² (44 km²).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June to October 1883 (fragmentary), July to October 1903, published in Professional Paper 44, September 1937 to current year. Prior to October 1957, published as Wantagh Stream at Wantagh. October 1957 to October 1967, published as Wantagh Stream at Bellmore.

GAGE.--Base gage (01309950): Water-stage recorder. Concrete control since July 24, 1974. Datum of gage is 15.06 ft (4.590 m) National Geodetic Vertical Datum of 1929. June to October 1883, determination of flow by various methods at different site and datum. July to October 1903, nonrecording gages on two channels near present site at different datum. Sept. 23, 1937, to Aug. 1, 1958, water-stage recorder with concrete control on right bank of present secondary channel about 1,000 ft (305 m) east at datum 1.88 ft (0.573 m) higher (used as supplementary gage since Aug. 1, 1958).

Supplementary gage (01309990): Water-stage recorder with concrete control on right bank of secondary channel about 1,000 ft (305 m) east of base gage at datum of 16.96 ft (5.169 m) National Geodetic Vertical Datum of 1929. Prior to July 28, 1965, at datum 2.00 ft (0.610 m) higher. From July 28, 1965 to Oct. 6, 1965, at datum 1.00 ft (0.305 m) higher.

REMARKS.--Records good. Prior to Nov. 4, 1955, flow at all stages regulated intermittently at outlet of Wantagh Reservoir, 1.0 mi (1.6 km) above station, and prior to November 1953 by Browning Pond, 0.5 mi (0.8 km) above station. Subsequent to Nov. 3, 1955, permanent diversion of a substantial portion of the flow through west branch of Bellmore Creek. Discharge figures given are those of combined flows in main and secondary channels. Discharge during the year was affected by dewatering activities connected with sewer construction.

AVERAGE DISCHARGE. -- 43 years (1937-80), 10.6 ft 3/s (0.300 m 3/s).

EXTREMES FOR PERIOD OF RECORD (1903 and SINCE 1937).--Maximum daily discharge, 162 ft³/s (4.59 m³/s) Sept. 12, 1960; maximum discharge prior to beginning of diversion in November 1955, 340 ft³/s (9.63 m³/s) June 1, 1952, adjusted to include flow bypassing station; maximum gage height, 4.57 ft (1.393 m) June 1, 1952; minimum daily, 0.73 ft³/s (0.021 m³/s) July 3, 1976 (affected by pumpage).

DISCHARGE. IN CUBIC FEFT PER SECOND. WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

EXTREMES FOR CURRENT YEAR. -- Maximum daily discharge, 124 ft3/s (3.51 m3/s) July 29; minimum daily, 1.9 ft3/s (0.054 m3/s) Sept. 11.

		0130	HARGE , IN	COBIC FE		AN VALUES	ER TEAR OF	CIONER 19	19 10 32	IEMPER 13	00	
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	12	7.2	7.1	7.9	7.3	6.4	33	20	12	9.6	11	2.8
2	9.5	7.3	6.8	8.1	6.8	6.5	25	19	12	11	9.7	2.5
3	14	14	8.6	7.6	6.8	6.2	55	20	19	9.6	9.0	2.5
4	8.6	7.8	11	7.6	6.8	6.4	36	19	13	6.5	7.1	2.4
5	8.3	7.2	9.9	8.1	6.8	8.7	24	20	12	14	6.6	2.5
6	7.7	7.6	13	7.5	6.8	8.8	22	21	12	25	6.6	2.5
7	7.8	7.6	14	7.8	7.2	8.6	23	21	23	9.2	6.3	2.4
8	7.5	7.3	6.9	7.5	6.9	8.5	23	29	14	9.4	6.0	5.2
9	13	8.0	6.3	7.1	6.9	7.5	55	55	19	9.9	5.6	2.2
10	25	8.0	8.4	7.1	6.9	13	59	23	17	11	5.1	5.5
11	11	13	8.0	9.6	6.5	28	29	23	13	11	5.5	1.9
12	12	16	8.8	12	6.8	11	26	35	12	10	6.3	2.1
13	10	11	13	7.3	6.4	11	25	29	12	9.7	5.1	2.1
14	9.1	11	7.9	7.8	6.5	17	31	25	12	9.4	4.9	2.2
15	8.8	9.9	7.1	7.7	6.8	9.2	26	23	12	8.3	5.2	5.1
16	8.7	10	7.2	7.3	16	8.5	23	22	12	5.3	4.8	2.1
17	8.6	7.9	8.4	7.3	7.6	8.8	19	21	11	4.8	4.3	2.4
18	8.6	7.4	7.2	9.6	6.8	16	16	22	12	4.4	4.3	5.4
19	8.3	8.8	7.2	13	6.8	9.0	16	22	12	4.6	4.1	2.6
20	8.3	11	6.8	7.8	6.9	9.0	16	20	11	4.2	4.5	2.7
21	8.1	10	7.4	7.8	6.8	31	15	25	11	4.1	4.2	2.7
22	8.1	6.9	7.4	9.8	7.9	30	16	18	11	3.7	4.3	2.5
23	7.9	6.6	7.2	9.3	7.6	14	19	18	11	4.1	4.1	2.2
24	8.0	6.5	9.6	7.8	6.8	16	18	16	10	4.4	3.9	2.1
25	7.7	6.9	21	7.8	6.5	36	18	16	8.3	4.4	3.7	2.3
26	7.2	14	9.0	7.5	6.5	21	16	15	8.0	4.6	3.5	5.5
27	7.4	11	8.3	7.6	6.3	21	17	15	7.8	3.3	3.6	2.7
28	8.1	11	7.9	7.6	6.4	21	47	14	7.6	3.7	3.3	2.4
29	7.4	11	7.9	7.2	6.2	31	24	14	10	124	5.9	2.3
30	7.2	11	7.9	7.2		26	20	12	26	55	3.1	2.4
31	7.1		7.9	7.6		34		12		14	2.8	
TOTAL	291.0	282.9	275.1	252.9	207.3	489.1	759	631	382.7	379.2	161.4	76.9
MEAN	9.39	9.43	8.87	8.16	7.15	15.8	25.3	20.4	12.8	12.2	5.21	2.56
MAX	25	16	21	13	16	36	59	35	26	124	11	5.5
MIN	7.1	6.5	6.3	7.1	6.2	6.2	15	12	7.6	3.3	2.8	1.9

CAL YR 1979 TOTAL 4810.3 MEAN 13.2 MAX 127 WTR YR 1980 TOTAL 4188.5 MEAN 11.4 MAX 124

01310000 BELLMORE CREEK AT BELLMORE, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--01309950 (Base gage): April 1966 to current year.

DATE	T	IME	STRE FLO INST TANE (CF	W, AN- DUS	DUC ANG	FIC N- CT-	FII (UN			EMP ATU WAT DEG	RE, ER	S	YGEN DIS- OLVI MG/L	- ED	HAR NES (MG AS CAC	S /L	HAR NES NONO BONA (MG CAC	S, AR-	D Si	_CIU IS- DLVE MG/L S CA	D S	AGNE SIUM DIS- OLVE MG/L S MG	, s	BODIUM, DIS- BOLVED (MG/L AS NA)
DEC																								
20	0	745		4.7		325		5.	9		5. 5	5	11.	8		69		42		22		3.	5	29
MAR 20		745		. =		335		6.	^		9. 5			2		64		45		20		3.		38
JUN	U	745		6. 5		333		0.	U		7. 3	2	4.	2		64		43		20		3.	4	30
19	1	020		5. 0		320		7.	6	2	0.0)	6.	3		61		36		19		3.	2	29
SEP		700				200		-	-				-	_								-	_	25
19	U	730		2. 0		300		5.	3	1	6. 5	7	3.	8		58		39		18		3.	4	25
Q M J S	DATE EC 20 AR 20 UN 19 EP 19	SO (M	TAS- IUM, IS- LVED G/L K) 4.6 4.1 4.1	LIN	LKA- NITY 16/L 4S 4C03) 27 19 25	DI SO (M AS	FATE S- LVED G/L S04) 36 37 37		CHLORIDE DIS- SOLV (MG/ AS C	ED L	5	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	D O O		VED /L 2)	CON TUE D SO	IDS, I OF ISTI- INTS, IS- ILVED IG/L) 177 190 181	NIT TC (M	(TRO- SEN, FRATIOTAL 16/L S N) 6. 3 4. 6	- N	NITRO GEN, NITRAT DIS- SOLVE (MG/L AS N) 4. 6 4. 1 6. 4	E N		N, ITE AL /L
	DATE	AMM TO (M	TRD- EN, ONIA TAL G/L N)	OR C	ITRO- SEN, SANIC DTAL 16/L S N)	G TD (M	TRO- EN, TAL G/L N)	F	PHOS HORU TOTA (MG/ AS P	IS, L	PH OF OS	PHOS- HORUS RTHOP SPHAT FOTAL (MG/L AS P)	, H E	IRON TOTA RECO ERAI (UG. AS I	AL DV- BLE /L	PE RE ER	ON, SUS- ENDED COV- ABLE IG/L FE)	SC	RON, DIS- DLVE JG/L G FE	D	MANGA NESE, TOTAL RECOV ERABL (UG/L AS MN	_ E	METH BLU ACT: SUI STAI (MG:	NE JE IVE 3- NCE
	EC		dec																					
	20 AR	1	. 700		1.0		9. 0		. 0	20		. 00	0		580		260		20	0	110	0	7	10
	20	1	100		. 30		6.0		. 0	20		. 00	0	:	290		240		5	0	100	0		10
	UN		220																					
	19 EP		. 330		. 18		7. 1		. 0	10		. 00	0		300				-	-	22	O		10
	19		360		. 02		3. 0		. 0	30		. 00	0	:	300		260		4	0	38	0		10

01310500 EAST MEADOW BROOK AT FREEPORT, NY

LOCATION.--Lat 40°39'56", long 73°34'13", Nassau County, Hydrologic Unit 02030202, on right bank 24 ft (7 m) upstream from bridge on Hempstead-Babylon Turnpike and 400 ft (122 m) west of Meadowbrook Parkway, in Freeport. Water-quality sampling site at discharge station.

DRAINAGE AREA . -- About 31 mi2 (80 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1851 to December 1852, June to October 1883, September and October 1885 (fragmentary), June to October 1903, published in Professional Paper 44, January 1937 to current year (monthly means estimated November 1962 to December 1963).

REVISED RECORDS .-- NY 1972: 1967-71 (P).

CAGE.--Water-stage recorder and concrete control. Datum of gage is 10.45 ft (3.185 m) National Geodetic Vertical Datum of 1929. Prior to October 1885, determinations of flow by various methods at different site and datum. June to October 1903, weir in swamp at head of Brooklyn waterworks supply pond. January 1937 to November 1962, water-stage recorder and concrete control at site 81 ft (25 m) east at datum 0.47 ft (0.143 m) higher.

REMARKS . - - Records good .

AVERAGE DISCHARGE .-- 43 years (1937-80), 15.0 ft3/s (0.425 m3/s).

EXTREMES FOR PERIOD OF RECORD (1903 AND SINCE 1937).--Maximum discharge, 848 ft 3 /s (24.0 m 3 /s) July 29, 1980, gage height, 3.57 ft (1.088 m) maximum gage height, 4.38 ft (1.335 m) Sept. 12, 1960 (datum then in use); no flow Aug. 26, 1971.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 250 ft³/s (7.08 m³/s) and maximum (*):

		Disc	harge	Gage 1	height			Discl	narge	Gage	height
Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date	Time	(ft^3/s)			
Apr. 10	0130	620	17.6	2.96	0.902	July 29	1700	*848	24.0	*3.57	1.088

Minimum, 2.2 ft³/s (0.062 m³/s) Sept.13, 15; minimum gage height, 0.25 (0.076 m) Sept. 13, 15, 29.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	ncT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	24	11	9.3	7.4	6.5	4.7	50	27	15	13	13	4.7
2	16	10	9.3	8.4	6.5	5.1	21	22	15	12	19	4.0
3	26	30	9.1	7.4	6.5	4.7	17	21	44	13	17	3.6
4	13	13	8.9	7.9	6.5	4.7	51	19	19	10	19	3.3
5	13	11	9.3	7.4	6.5	5.5	21	21	15	17	11	3.3
6	16	11	11	6.9	6.0	4.7	17	21	14	29	10	3.3
7	11	11	21	7.4	6.0	5.1	17	50	47	11	9.6	3.0
8	10	11	9.4	6.9	6.0	5.5	17	41	23	11	9.0	2.7
9	17	10	9.3	7.4	6.0	9.6	93	21	27	9.6	9.0	2.7
10	51	11	8.6	6.9	6.0	6.9	175	50	28	10	7.9	2.7
11	19	19	8.5	9.0	5.5	50	35	19	16	9.0	7.4	2.7
12	19	31	8.8	19	5.5	8.4	27	42	15	8.4	10	2.4
13	16	13	19	8.4	5.5	6.9	25	35	15	7.9	6.9	2.4
14	13	13	12	8.3	5.5	25	38	21	14	7.9	6.4	2.7
15	12	11	9.0	6.9	6.0	10	33	18	14	7.4	6.9	2.4
16	12	12	9.4	7.4	20	9.0	24	17	13	7.9	6.4	2.7
17	12	11	13	6.9	8.0	7.9	23	17	13	7.9	5.9	2.4
18	11	11	8.9	8.4	7.0	27	55	20	13	7.4	5.9	19
19	11	10	10	22	6.0	9.0	22	19	13	6.9	5.9	4.0
50	11	11	9.7	8.4	5.5	8.4	22	18	13	6.9	5.9	3.0
21	11	10	10	8.4	5.5	77	21	38	13	7.4	5.9	3.0
22	11	10	9.3	15	7.9	69	21	20	12	7.4	5.9	2.7
23	11	10	8.8	10	8.4	18	21	18	12	7.4	5.5	3.3
24	12	10	13	9.0	5.9	16	20	17	12	6.4	5.1	3.0
25	11	9.6	43	8.0	6.4	62	21	17	11	5.9	4.7	3.3
26	11	27	13	7.5	5.1	17	20	16	11	5.9	4.7	9.0
27	10	14	11	7.5	5.5	16	22	16	11	5.1	4.7	3.6
28	12	11	9.6	7.0	5.1	15	120	16	10	5.5	4.3	3.0
29	11	9.9	9.0	7.0	5.1	33	42	16	12	225	4.0	2.7
30	11	9.9	8.4	7.0		24	27	16	63	41	4.0	3.0
31	9.9		8.4	7.0		47		15		18	4.0	
TOTAL	453.9	392.4	357.0	272.1	191.9	612.1	1085	664	553	548.2	244.9	113.6
MEAN	14.6	13.1	11.5	8.78	6.62	19.7	36.2	21.4	18.4	17.7	7.90	3.79
MAX	51	31	43	22	20	77	175	42	63	225	19	19
MIN	9.9	9.6	8.4	6.9	5.1	4.7	17	15	10	5.1	4.0	2.4

01310500 EAST MEADOW BROOK AT FREEPORT, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- April 1966 to current year.

SPE-

DAT	E	TIME	STREA FLOO INSTA TANEA	W, AN- DUS	CIFI CON- DUCT ANCE (MICR MHOS	C - :-	PH FIEL UNIT	D		URE	,	DXYGI DIS SOL	S- VED	HAR NES (MG AS	SS F/L	HAR NES NONC BONA (MG CAC	S, AR- TE /L	CALC DIS SOL (MG AS	- VED /L	MAGI SII SOL (MG: AS I	JM, S- VED /L	SODIUM, DIS- SOLVED (MG/L AS NA)	
DEC																							
19.		1050		9.6			6	. 7		5.	0		7. 0		71		47	2	1		4. 5	43	
MAR																							
20.		0825	- 4	7.9	4	00	6	. 4		8.	5	3	5. 3		62		38	1	8		4. 1	56	
JUN		0945			_						_							_	_				
19. SEP		0945	1	3	2	90	/	. 1		19.	5		5. 8		82		62	2	5		4. 8	25	
19.		0805		4. 0	3	30	5	. 7		17.	0		4. 4		56		30	1	6		4. 0	34	
	DATE DEC 19.	S (OTAS- SIUM, DIS- OLVED MG/L S K)	ALK LINI (MG AS CAC	TY /L	SULFA DIS- SOLV (MG/ AS SO	ED L	RI DI SC	HLO- IDE, IS- OLVED 1G/L 3 CL)			S- VED	DI SO (M	LVED G/L	SUM CON TUE D SO	IDS, OF STI- NTS, IS- LVED G/L)	NITI TO (M	TRO- EN, RATE TAL G/L N)	NIT GE NITR DI SOL (MG AS	N, ATE S- VED /L	NITI TO (M	TRO- EN, RITE TAL G/L N)	
	20 JUN		4. 0		24	34			83			. 1		6. 5		233		2. 7	2	. 9		. 020	
	19 SEP		4. 5		20	48			32			. 0		8. 5		193		7. 2	7	. 4		. 120	
	19.		3. 2		26	23	-		52			. 1		5. 6		161		1. 9	1	. 7		. 040	
		AM T	ITRO- GEN, MONIA OTAL MG/L		AL	NITR GEN TOTA (MG/	ı, L	PHO	HOS- DRUS, DTAL 16/L	0	DRTH	RUS, HOPH HATE TAL	TO RE ER	ON, TAL COV- ABLE G/L	PE RE ER	ON, US- NDED COV- ABLE	SO	DN, IS- LVED G/L	MAN NES TOT REC ERA (UG	E, AL OV- BLE	B AC S	THY- ENE LUE TIVE UB- ANCE	
	DATE	A	S N)	AS	N)	AS N	1)	AS	6 P)		AS	P)	AS	FE)	AS	FE)	AS	FE)	AS	MN)	(M	G/L)	
	DEC 19.		. 980		. 00	5.	8		. 020			000		900		810		90		430		. 10	
	20 JUN		. 360		. 20	3.	3		. 020			000		530		340		190		510		. 10	
	19 SEP		. 600		. 40	8.	3		. 030			000		330		290		40		730		. 10	
	19.		. 310		. 18	2.	4		. 070			020		370		310		60		320		. 10	

01311000 PINES BROOK AT MALVERNE, NY

LOCATION.--Lat 40°39'59", long 73°39'35", Nassau County, Hydrologic Unit 02030202, on left bank 300 ft (91 m) downstream from Lakeview Avenue and southern boundary of Malverne. Water-quality sampling site at discharge station.

DRAINAGE AREA .-- About 10 mi2 (26 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--1851-52, 1856-57, 1885, 1894 (fragmentary in Professional Paper 44); December 1936 to current year (monthly means estimated March to September 1970).

REVISED RECORDS .-- WSP 1432: 1937, 1940.

GAGE.--Water-stage recorder with steel plate V-notch weir and concrete controls. Datum of gage is 7.11 ft (2.167 m) National Geodetic Vertical Datum of 1929 (Nassau County Bench mark). Prior to 1894, determinations of flow by various methods, at different sites and datums. December 1936 to Oct. 1, 1970, at site 200 ft (61 m) upstream at datum 2.31 ft (0.704 m) higher. Oct. 1, 1970 to May 31, 1972, supplementary gage on secondary channel 10 ft (3 m) downstream at same datum.

REMARKS.--Records good. Prior to Feb. 20, 1956, flow occasionally regulated by Pines Pond. Indeterminate diversion from Pines Pond for emergency municipal water supply for City of New York, August 1953 to September 1954.

AVERAGE DISCHARGE. -- 43 years (1937-80), 3.93 ft3/s (0.111 m3/s).

EXTREMES FOR PERIOD OF RECORD (SINCE 1936).--Maximum discharge, 386 ft³/s (10.9 m³/s) Jan. 18, 1978, gage height, 4.53 ft (1.381 m); no flow part of Sept. 12, 1963, and at times from 1964 to 1975, 1977, 1980.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 125 ft3/s (3.54 m3/s) and maximum (*):

		Disch	arge	Gage h	eight			Disch	arge	Gage 1	height
Date	Time	(ft^3/s)	(m ³ /s)	(ft)	(m)	Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Mar. 21	1545	128	3.62	3.73	1.14	Apr. 14	2000	148	4.19	3.84	1.17
Mar. 25	0245	140	3.96	3.79	1.16	Apr. 28	1315	168	4.76	3.92	1.19
Apr. 10	0030	282	7.99	4.29	1.31	July 29	0545	*292	8.27	*4.32	1.32

No flow for all or part of many days in August and September.

		DISC	HARGE . IN	CUBIC FE		ECOND, WAT		CTOBER 19	79 TO SEP	TEMBER 19	80	
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.9	.80	.59	•59	•59	•66	7.7	1.8	.91	•55	•18	.03
2	.75	.86	.54	.59	• 55	.59	1.3	1.7	.88	.56	1.0	.02
3	5.2	6.8	.54	.58	.59	•59	1.3	1.6	14	.43	• 95	.00
4	.64	.73	.54	.55	.59	.53	13	1.5	.92	.38	.39	.00
5	1.4	.67	•54	.57	.60	•52	1.3	1.4	.77	2.6	•16	.00
6	.94	.70	2.5	.54	.62	.49	1.2	1.5	.64	2.0	.14	.00
7	.58	.68	2.8	.56	.60	.49	1.2	1.5	11	.18	•12	.00
8	.54	.59	•58	.54	.62	.67	1.2	8.1	3.0	.18	.13	.00
9	4.6	.62	•56	.54	.64	.53	50	1.6	6.7	.14	-11	.00
10	15	.68	• 55	.54	•65	2.5	40	1.4	2.0	.16	.09	.00
11	.94	3.3	•55	3.3	.65	19	2.4	1.4	.76	.17	•11	.00
12	1.9	5.9	.54	4.3	.59	.78	2.1	13	.70	.14	•12	.00
13	.90	.70	2.6	.51	.57	.83	1.9	4.6	.70	.13	•09	.00
14	.68	.67	.64	.56	•56	6.2	20	1.7	.64	•16	• 08	.00
15	.64	.63	•54	•54	•52	•72	3.5	1.5	.59	.16	•09	.00
16	.64	.66	.57	.54	9.7	.70	2.0	1.4	.59	.14	.08	.00
17	.64	.64	•96	.54	.59	.91	1.9	1.3	.54	-14	.08	.00
18	.64	.58	.53	2.2	.54	6.0	1.8	1.5	.54	.13	.07	3.5
19	.64	.56	.54	4.0	•54	.92	1.8	1.4	. 44	.13	.07	.04
50	.64	•54	•52	•51	•53	1.0	1.7	1.3	.44	-14	.07	.02
21	.64	.54	•52	.53	.54	48	1.7	7.2	.39	.12	.06	.00
55	.63	.54	•54	1.6	.88	26	1.7	1.5	.35	•10	.08	.00
23	.64	.54	•54	.79	•61	1.7	1.6	1.3	.31	.14	.07	.00
24	.64	.49	.83	.53	•54	1.4	1.5	1.2	.27	•11	.07	.00
25	.62	•50	17	•55	•54	55	1.5	1.2	.27	•11	• 05	.00
26	.59	12	.81	.60	.52	1.3	2.1	1.3	.24	.09	.04	.04
27	.62	.83	.68	.59	.53	.98	3.5	1.1	.24	.13	.04	.00
28	.84	.59	.64	.51	.53	.94	46	.98	.55	.17	.03	.00
29	.75	.61	.62	.54	.58	9.9	3.0	.92	.27	42	• 02	.00
30	.72	.64	•60	•55		2.3	2.1	.92	1.8	.27	.03	.00
31	.81		•59	.60		19		.94		.19	.04	
TOTAL	48.31	44.59	41.10	29.99	26.11	178.15	222.0	69.76	51.12	52.05	4.66	3.65
MEAN	1.56	1.49	1.33	.97	•90	5.75	7.40	2.25	1.70	1.68	•15	.12
MAX	15	12	17	4.3	9.7	48	50	13	14	42	1.0	3.5
MIN	.54	.49	.52	.51	.52	.49	1.2	.92	.22	.09	.02	.00

CAL YR 1979 TOTAL 1149.68 MEAN 3.15 MAX 120 MIN .31 WTR YR 1980 TOTAL 771.49 MEAN 2.11 MAX 50 MIN .00

01311000 PINES BROOK AT MALVERNE, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

SPE-CIFIC

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DA	TE	TIME	STRE FLO INST TANE (CF	AM- CO W, DU AN- AN DUS (M)		PH FIELD UNITS)	WAT	RE, ER	SOL	EN, S- VED	HARD- NESS (MG/L AS CACO3	HAR NES NONC BONA (MG	SS, (CAR- NTE	ALCI DIS- SOLV (MG/ AS C	UM S ED SOI L (MC	ONE- IUM, IS- LVED O/L MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	
DEC																		
		1150		. 54	500	6. 4	1	3. 5	1	3. 4	8	9	55	24	•	5.8	23	
MAR 19		0910		. 94	220	6. 2	2	5. 0		4. 5	8	4	56	24		5.8	26	
JUN		0900		. 44	330	6. 7		5. 5		5. 5	8		57	24		5. 8	28	
SEP																		
19		0840		. 04	140	6. 1	. 1	7.0		6. 2	3	7	17	11		2.8	6. 7	
	DATE DEC 19. MAR 19. JUN 19. SEP 19.	E AS	0TAS- 6TUM, 0TS- 0LVED 16/L 6 K) 4. 6 3. 9 4. 8 3. 6	ALKA- LINITY (MG/L AS CACO3:	44 3 44 7 49	TE FIFE FIFE FIFE FIFE FIFE FIFE FIFE FI	CHLO-RIDE, DIS- OIS- MG/L AS CL) 31 34 40 8.6	RI D SO (M	.00- DE, IS- ILVED IG/L .F)	9	A, SI CI ED TI L	DLIDS, UM OF DNSTI- UENTS, DIS- BOLVED (MG/L) 177 181 190	6. 2.	ATE AL /L	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) 2.8 3.8 3.0	G NIT TO (M AS	TRO- EN, RITE TAL G/L N) . 050 . 030 . 080	
	DATE	MMA TO (1)	TRO- SEN, MONIA DTAL MG/L S N)	NITRO- GEN, ORGANI(TOTAL (MG/L AS N)	NITR	, PH L 1	PHOS- HORUS, FOTAL MG/L AS P)	ORT OSP TO	IOS- IRUS, HOPH HATE ITAL IG/L	IRON TOTA RECO ERAB (UG/ AS F	, L V- LE L	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON DIS SOLA (UG.	S- VED /L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	AC S ST	THY- ENE LUE TIVE UB- ANCE G/L)	
	DEC 19		. 340	1.2	5.	7	020		000		50	220		30	1200		. 10	
	MAR					,	. 030		. 000		50	320		30	1200			
	JUN		. 130	. 25	5 6.	6	. 010		. 010	2	90	180		110	1000		. 10	
	19.		. 820	. 38	3 4.	1	. 030		. 030	3	50	280		40	900		. 10	
	SEP 19.		. 270	. 00	5 1.	7	. 120		. 040	3	80	370		10	140		. 20	

99 01311500 VALLEY STREAM AT VALLEY STREAM, NY

LOCATION.--Lat 40°39'49", long 73°42'18", Nassau County, Hydrologic Unit 02030202, on right bank 40 ft (12 m) upstream from West Valley Stream Boulevard in Valley Stream.

DRAINAGE AREA . -- About 4.5 mi² (12 km²).

PERIOD OF RECORD.--1851-52, 1854, 1856-57, 1885, 1894 (fragmentary in Professional Paper 44), July 1954 to current year. Prior to October 1956, published as Watts Creek at Valley Stream.

REVISED RECORDS .-- WRD NY 1971: 1962-63(M), 1966-69(M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 7.49 ft (2.283 m) National Geodetic Vertical Datum of 1929. Prior to 1894, determinations of flow by various methods, at different sites and datums. July 1954 to July 16, 1964 at same site at datum 1.0 ft (0.30 m) higher.

REMARKS.--Records good except those above 110 ft 3 /s (3.12 m 3 /s), which are fair. Flow regulated occasionally by cleaning operations at outlet of Valley Stream Pond above station.

AVERAGE DISCHARGE. -- 26 years (1954-80), 2.58 ft3/s (0.073 m3/s).

EXTREMES FOR PERIOD OF RECORD (SINCE 1954).--Maximum discharge, 290 ft³/s (8.21 m³/s) Jan. 21, 1979, gage height, 5.62 ft (1.713 m), from rating curve extended above 110 ft³/s (3.12 m³/s); no flow at times each year since 1963.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 228 ft 3 /s (6.46 m 3 /s) Apr. 10, gage height, 3.95 ft (1.204 m), from rating curve extended above 110 ft 3 /s (3.12 m 3 /s); no flow for all or part of many days during year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.1	.00	.00	.00	.00	.00	6.2	.51	.25	.19	.00	.00
2	.43	.00	.00	.00	.00	.00	.32	.42	.25	.07	.00	.00
3	1.1	.00	.00	.00	.00	.00	.13	.37	5.0	.00	.03	.00
4	.31	.00	.00	.00	.00	.00	6.0	.34	1.4	.00	.00	.00
5	.00	.00	.00	.00	.00	.00	.62	.19	.16	3.8	•00	.00
6	.00	.00	•00	.00	.00	.00	.05	.56	.06	6.4	-00	.00
7	.00	.00	•00	.00	.00	.00	.05			•20		.33
8	.00	.00	•00	.00	.00	.00		1.8	5.6	.03	•00	.00
9	.06	.00		.00			.07			.05	•00	.00
10	2.3	.00	•00		.00	.00	25 48	.53	2.2		•00	
10	2.3	.00	•00	•00	•00	•00	48	.30	3.0	• 0 0	•00	.00
11	1.0	.00	-00	.00	.00	3.4	.99	.28	.36	.02	.00	.00
12	.19	.05	.00	.00	.00	.00	.50	6.1	.19	.00	.00	.00
13	.04	.00	.00	.00	.00	.00	.44	2.7	.14	.01	•08	.00
14	.00	.00	.00	.00	.00	.00	7.1	.58	.11	.01	.02	.00
15	.00	.00	•00	.00	.00	.00	4.3	.35	.13	.00	•01	.00
16	.00	.00	•00	.00	.00	.00	.69	.26	.10	.00	.00	.00
17	.00	.00	.00	.00	.00	.00	.43	.18	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.00	.43	.31	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	.00	.43	.37	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.00	.36	.24	.07	.00	.00	.00
21	.00	.00	.00	.00	.00	14	.36	1.8	.05	.00	•00	.00
22	.00	.00	.00	.00	.00	10	.36	.62	.02	.00	.00	.00
23	.00	.00	•00	.00	.00	.29	.36	.32	.01	.00	.00	.00
24	.00	.00	.00	.00	.00	.02	.29	.29	.00	.00	•00	.00
25	.00	.00	4.0	.00	.00	11	.18	.25	.00	.00	•00	.00
26	.00	.00		.00								
27	.00	.00	-14		•00	.21	.16	.12	.00	.00	•00	.00
28	.00	.00	•00	.00	.00	.00	.28	.08	.00	.00	•00	.00
29			•00	.00	•00	.00	28	.04	.00	•00	-00	.00
30	.00	.00	•00	.00	.00	1.5	3.2	.09	.53	13	•00	.00
31	.00	.00	•00	.00		1.7	.71	.14	9.1	1.1	•00	.00
31	.00		•00	.00		7.2		.18		• 05	•00	
TOTAL	6.53	.05	4.14	.00	.00	49.32	136.01	20.72	29.93	24.93	.14	.33
MEAN	.21	.002	.13	.000	.000	1.59	4.53	.67	1.00	.80	.005	.011
MAX	2.3	.05	4.0	.00	.00	14	48	6.1	9.1	13	.08	.33
MIN	.00	.00	.00	.00	.00	.00	.05	.04	.00	.00	.00	.00

CAL YR 1979 TOTAL 489.14 MEAN 1.34 MAX 133 MIN .00 WTR YR 1980 TOTAL 272.10 MEAN .74 MAX 48 MIN

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Low-flow partial-record stations

Measurements of streamflow in the area covered by this report made at low-flow partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, give a picture of the low-flow potentiality of the stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same, site. Where "Drainage area" column is blank, drainage area was not available at time of publication.

Discharge measurements made at low-flow partial-record stations during water year 1980

Station No.	Station name	Location	Drainage area (mi²)	Period of record	·Date	Measurements Discharge (ft³/s)
		Streams on Long Island		950000	4444	, == ,=,
01302200	Whitney Lake Outlet at Manhasset, N.Y.	Lat 40°47'30", long 73°42'32", Nassau County, at bridge on Creek Road, at Manhasset, 0.25 mi (0.40 km) north- west of State Highway 25A.	=	1953-80	10-25-79 2-12-80 6- 6-80 9- 4-80	1.2 1.6 1.7 1.2
01302300	Roslyn Brook at Roslyn, N.Y.	Lat 40°47'55", long 73°38'51", Nassau County, at Roslyn, 200 ft (61 m) downstream from dam in Roslyn Park.	**	1953-80	10-25-79 2-13-80 6- 6-80 9- 4-80	.10 .39 .25 .06
01302800	Island Swamp Brook at Lattingtown, N.Y.	Lat 40°53'25", long 73°37'10", Nassau County, at bridge on Lattingtown Road, 0.3 mi (0.5 km) southwest of Lattingtown, and 1.5 mi (2.4 km) northwest of Locust Valley.		1953-80	10-25-79 2-12-80 6- 6-80 9- 4-80	.71 .70 .82 .52
01303600	Mill Creek near Huntington, N.Y.	Lat 40°52'56", long 73°25'17", Suffolk County, at culvert on Creek Road, 300 ft (91 m) west on New York Ave., 1 mi (2 km) northeast of Huntington.	==	1953-80	10-25-79 2-19-80 6- 6-80 9- 4-80	3.0 3.0 3.2 2.8
01303700	Stony Hollow Run at Centerport, N.Y.	Lat 40°53'05", long 73°21'41", Suffolk County, at culvert on State Highway 25A, 0.25 mi (0.40 km) east of Centerport, and 1.5 mi (2.4 km) southwest of Northport.		1953-80	10-25-79 2-19-80 6- 6-80 9- 4-80	2.6 1.5 1.6 1.2
01303742	Fresh Pond Outlet at Fort Salonga, N.Y.	Lat 40°55'26", long 73°17'43", Suffolk County, 200 ft (61 m) downstream from Fresh Pond outlet, 0.75 mi (1.21 km) north of Fort Salonga.	49	1977-80	11- 8-79 7-24-80 9-16-80	.88 .55 .77
01303790	Northeast Branch Nissequogue River near East Hauppauge, N.Y.	Lat 40°50'27", long 73°10'41", Suffolk County, at culvert on State Highway 347, 1.5 mi (2.4 km) northwest of East Hauppauge, and 4.0 mi (6.4 km) upstream from gaging station near Smithtown.		1972-80	11- 8-79 7-16-80 9-11-80	.54 .49 .13
01303800	Northeast Branch Nissequogue River at Smithtown, N.Y.	Lat 40°51'05", long 73°11'15", Suffolk County, 300 ft (91 m) upstream from culvert on State Highway 111, 0.75 mi (1.21 km) southeast of Smith- town, and 3.0 mi (4.8 km) upstream from gaging station near Smithtown.		1948-49 1951-76 1979-80	11- 8-79 7-16-80 9-11-80	6.1 4.1 .97

			Dundanna	Dond od		Measurements
Station No.	Station name	Location	Drainage area (mi²)	Period of record	Date	Discharge (ft³/s)
Station No.	Scation mame	Streams on Long Island	(1111-)	record	Date	(10 /5)
01303850	Northeast Branch Nissequogue River near Hauppauge, N.Y.	Lat 40°50'43", long 73°11'50", Suffolk County, at culvert on Maple Avenue, 0.75 mi (1.21 km) south of Smithtown, and 2.5 mi (4.0 km) upstream from gaging station near Smithtown.	=	1972-80	11- 8-79 7-16-80 9-11-80	2.9 2.2 .95
01303900	Northeast Branch Nissequogue River near Smithtown, N.Y.	Lat 40°50'45", long 73°12'29", Suffolk County, 10 ft up- stream from culvert at Brooksite Drive, 0.75 mi (1.21 km) southwest of Smithtown, and 2.0 mi (3.2 km) upstream from gaging station near Smithtown.	4	1953-80	11- 8-79 7-16-80 9-11-80	5.9 3.3 2.3
01303941	Nissequogue River near Hauppauge, N.Y.	Lat 40°50'30", long 73°13'43", Suffolk County, 30 ft (9 m) downstream from dam at New Mill Road, 2 mi (3 km) northwest of Hauppauge, and 0.5 mi (0.8 km) upstream from gaging station near Smithtown.		1972-80	11- 8-79 9-11-80	23 22
01304010	Nissequogue River at Smithtown, N.Y.	Lat 40°51'48", long 73°12'05", Suffolk County, at culvert on Landing Ave., at Smithtown, and 1.5 mi (2.4 km) down- stream from gaging station near Smithtown.	==	1974-80	11- 8-79 7-16-80 9-11-80	86 43 44
01304051	Stony Brook at Stony Brook, N.Y.	Lat 40°54'53", long 73°08'52", Suffolk County, 100 ft (30 m) downstream from Harbor Road, at Stony Brook.		1977-80	11- 8-79 7-15-80 9-15-80	3.0 2.1 3.1
01304060	Unnamed tributary to Conscience Bay at Setauket, N.Y.	Lat 40°56'49", long 73°07'01", Suffolk County, 30 ft (9 m) downstream from pond below Old Field Road, at Setauket.	34	1977-80	11- 8-79 7-15-80 9-15-80	1.6 3.8 1.6
01304065	Unnamed tributary to Setauket Harbor at East Setauket, N.Y.	Lat 40°56'35", long 73°06'08", Suffolk County, at culvert on State Highway 25A, at East Setauket.		1977-80	11- 8-79 7-15-80 9-15-80	.14 .39 .26
01304070	Unnamed tributary to Port Jefferson Harbor at Port Jefferson, N.Y.	Lat 40°56'41", long 73°04'18", Suffolk County, at culvert on Barnum Ave., at Port Jefferson.	145	1977-80	11- 8-79 7-15-80 9-15-80	.41 .77 .47
01304100	Wading River at Wading River, N.Y.	Lat 40°57'20", long 72°51'19", Suffolk County, at pond outlet, 0.25 mi (0.40 km) west of Wading River.		1953-62 1964-80	10-31-79 7-17-80 9- 5-80	2.8 .62 1.5
01304150	Fresh Pond Outlet, at Baiting Hollow, N.Y.	Lat 40°57'43", long 72°46'17", Suffolk County, 25 ft (8 m) downstream from dirt road at outlet of Fresh Pond, 0.7 mi (1.1 km) northwest of Baiting Hollow.	75	1977-80	10-31-79 7-17-80 9- 5-80	.68 .83 .51
01304400	Peconic River at Manorville, N.Y.	Lat 40°52'38", long 72°49'42", Suffolk County, at bridge on Schultz Road, 1 mi (2 km) northwest of Manorville, and 8.5 mi (13.7 km) upstream from gaging station at Riverhead.	142	1953-62 1951-80	11- 1-79 7-17-80 9- 5-80	5.7 3.6 .35
01304510	Peconic River at Nugent Drive, at Riverhead, N.Y.	Lat 40°55'03", long 72°40'11", Suffolk County, at bridge on Nugent Drive, at Riverhead, and 1.4 mi (2.3 km) down- stream from gaging station at Riverhead.	**	1976-80	11- 1-79 7-17-80 9- 5-80	30 40 22

Discharge measurements made at low-flow partial-record stations during water year 1980--Continued

						Measurements
Station No.	Station name	Location	Drainage area	Period of record	Date	Discharge (ft³/s)
Station No.	Station name	Streams on Long Island	(mi²)	record	Date	(10-75)
01304530	Little River near Riverhead, N.Y.	Lat 40°53'52", long 72°40'30", Suffolk County, at Wildwood Lake outlet, 500 ft (152 m) east of Moriches-Riverhead Road, 1.5 mi (2.4 km) southwest of Riverhead.		1952-80	10-31-79 6-23-80 9- 5-80	7.1 4.2 1.8
01304560	White Brook at Riverhead, N.Y.	Lat 40°54'40", long 72°38'37", Suffolk County, at culvert on State Highway 24, 1 mi (2 km) southeast of Riverhead		1953-69 1973-80	11- 1-79 6-23-80 9- 5-80	3.1 3.2 1.8
01304600	Big Fresh Pond Outlet at North Sea, N.Y.	Lat 40°55'49", long 72°25'04", Suffolk County, at culvert on Noyack road, at North Sea, 3.5 mi (5.6 km) northwest of Southampton.		1951-69 1971-80	10-26-79 6-23-80 9- 9-80	.48 .96 .16
01304630	Mill Creek at Noyack, N.Y.	Lat 40°59'35", long 72°21'00", Suffolk County, 50 ft (15 m) upstream from culvert on Noyack Road, 0.25 mi (0.40 km) west of Noyack.		1958-80	10-26-79 6-23-80 9- 9-80	.63 .69 .58
01304660	Ligonee Brook at Sag Harbor, N.Y.	Lat 40°59'21", long 72°18'12", Suffolk County, at culvert on Brick Kiln Road, 0.75 mi (1.21 km) southwest of Sag Harbor.		1953-69 1973-80	10-26-79 6-23-80 9- 9-80	.13 .05 .01
01304730	Poxabogue Pond at Sagaponack, N.Y.	Lat 40°55'48", long 72°17'16", Suffolk County, at culvert on Sagg St., at Sagaponack, and 1 mi (2 km) southeast of Bridgehampton.		1953-78 1980	10-26-79 6-23-80	4.4 2.8
01304745	Weesuck Creek at East Quogue, N.Y.	Lat 40°50'52", long 72°34'42", Suffolk County, at culvert on State Highway 27A, 0.5 mi (0.8 km) northeast of East Quogue.	1 47.	1974-80	11- 1-79 6-23-80 9-15-80	1.7 1.9 1.3
01304760	Quantuck Creek at Quogue, N.Y.	Lat 40°49'57", long 72°37'06", Suffolk County, at culvert in Old Meeting House Road, 1 mi (2 km) northwest of Quogue.		1953-69 1974-80	11- 1-79 6- 5-80 9-15-80	1.4 2.3 1.3
01304780	Aspatuck Creek near Westhampton Beach, N.Y.	Lat 40°49'04", long 72°38'13", Suffolk County, at culvert on Brook Road, at Westhampton Beach.	-	1959-80	11- 1-79 6- 5-80	.51 2.0
01304800	Beaverdam Creek at Westhampton Beach, N.Y.	Lat 40°49'23", long 72°39'42", Suffolk County, at culvert on Old Country Road, 100 ft (30 m) northwest of State Highway 27, and 1 mi (2 km) northwest of Westhampton.		1953-80	11- 1-79 6- 5-80 9-12-80	1.4 2.2 1.6
01304820	Speonk River at Speonk, N.Y.	Lat 40°29'06", long 72°41'29", Suffolk County, at culvert on State Highway 27A, 0.75 mi (1.21 km) east of Speonk.		1974-80	6- 5-80	1.3
01304830	East River at Eastport, N.Y.	Lat 40°49'24", long 72°43'02", Suffolk County, 15 ft (5 m) upstream from culvert on Long Island Railroad, 200 ft (60 m) south of State Highway 27, 0.5 mi (0.8 km) east of Eastport.		1953-69 1973-80	6- 5-80 9-12-80	8.4 1.6
01304860	Seatuck Creek at Eastport, N.Y.	Lat 40°49'30", long 72°43'43", Suffolk County, 15 ft (5 m) downstream from culvert on State Highway 27, at Eastport		1953-80	6- 5-80 9-12-80	3.3 5.1

			Drainage	Period		Measurements
Station No.	Station name	Tanahian	Drainage area	of record	Date	Discharge (ft3/s)
Station No.	Station name	Location	(mi²)	record	Date	(10 /8)
01304900	Little Seatuck Creek at Eastport, N.Y.	Streams on Long Island Lat 40°49'12", long 72°44'23", Suffolk County, at culvert on Moriches Blvd., 0.75 mi	32	1955-69 1974-80	11- 1-79 6- 5-80 9-15-80	4.2 3.9 4.6
0120/060	P. D.	(1.21 km) southwest of Eastport.		10/0 50	11 7 70	F 0
01304960	Forge River at Moriches, N.Y.	Lat 40°48'22", long 72°50'00", Suffolk County, at culvert on State Highway 27, at Moriches.	7.7	1948-50 1952-80	11- 7-79 6- 5-80 9-12-80	5.9 8.0 6.5
01304990	Carmans River at Middle Island, N.Y.	Lat 40°51'47", long 72°56'35", Suffolk County, at culvert on East Bartlett Road, 0.75 mi (1.21 km) south of Middle Island, and 3.0 mi (4.8 km) upstream from gaging station at Yaphank.		1947-80	10-18-79 6-18-80 9- 5-80	4.1 3.7 1.4
01304995	Carmans River near Yaphank, N.Y.	Lat 40°50'29", long 72°56'13", Suffolk County, 25 ft down- stream from Mill Road, 1.2 mi (1.9 km) northwest of Yaphank, and 1.9 mi (3.1 km) upstream from gaging station at Yaphank.	==	1973-80	10-18-79 6-18-80 9- 5-80	16 16 10
01304998	Carmans River, below Lower Lake, At Yaphank, N.Y.	Lat 40°50'07", long 72°55'01", Suffolk County, at culvert on Yaphank Avenue, at Yaphank, and 0.7 mi (1.1 km) upstream from gaging station at Yaphank.	-	1973-80	10-18-79 6-18-80 9- 5-80	31 28 16
01305040	Carmans River at South Haven, N.Y.	Lat 40°48'09", long 72°53'09", Suffolk County, 50 ft (15 m) upstream from culvert on State Highway 27, at South Haven, and 2.6 mi (4.2 km) downstream from gaging station at Yaphank.	 1	1973-80	10-18-79 6-18-80	70 62
01305300	Mud Creek at East Patchogue, N.Y.	Lat 40°45'47", long 72°58'59", Suffolk County, at culvert on South Country Road, at East Patchogue, 2 mi (3 km) east of Patchogue.	44	1947-69 1971-80	11-20-79 2-14-80 6- 5-80 9- 9-80	4.3 3.7 5.2 3.7
01305800	Patchogue River near Patchogue, N.Y.	Lat 40°46'55", long 73°01'19", Suffolk County, at bridge on discontinued road, 300 ft (91 m) west of North Ocean Ave., and 1 mi (2 km) north of State Highway 27A and gaging station at Patchogue.	Ŧ	1945-50 1952-80	10-17-79 11-19-79 1-16-80 2-11-80 7-24-80 9- 8-80	12 9.1 8.5 5.3 13
01306000 <u>c</u> /	Patchogue River at Patchogue, N.Y.	Lat 40°45'56", long 73°01'16", Suffolk County, at State Highway 27A, at Patchogue.		1946-69 \$ 1970-73 1974-76 \$ 1977-80	10-17-79 11-18-79 12-12-79 1-16-80 2-11-80 3-6-80 4-7-80 5-12-80 7-24-80 8-25-80 9-8-80	22 14 22 30 15 20 12 22 23 22 23
01306400	Green Creek at West Sayville, N.Y.	Lat 40°43'51", long 73°05'32", Suffolk County, 30 ft (9 m) upstream from State Highway 27A at West Sayville.	10-4	1953-80	11-29-79 6- 5-80 9-12-80	3.0 6.7 3.4

 $[\]mbox{\begin{tabular}{ll} \updownarrow}$ Operated as a continuous-record gaging station. $\underline{c}/$ Water-quality data included in this report.

			Drainage	Period		Measurements
Station No.	Station name	Location	area (mi²)	of record	Date	Discharge (ft³/s)
		Streams on Long Island				
01306470	Connetquot Brook near Oakdale, N.Y.	Lat 40°45'47", long 73°09'10", Suffolk County, 100 ft (30 m) downstream from fish hatchery and 1.1 mi (1.8 km) up- stream from gaging station 10306499.		1968 1973-80	10-18-79 7-22-80 9-10-80	39 32 24
01306700	Rattlesnake Brook near Oakdale, N.Y.	Lat 40°44'52", long 73°08'45", Suffolk County, 50 ft (15 m) downstream from State High- way 27, 1.5 mi (2.4 km) northwest of Oakdale.		1944-69 1971-80	11-20-79 2-13-80 6- 5-80 7-22-80 9- 4-80	23 13 22 23 14
01307000 <u>c</u> /	Champlin Creek at Islip, N.Y.	Lat 40°44'13", long 73°12'08", Suffolk County, at Long Island Railroad bridge, 220 ft (67 m) downstream from Moffitt Boulevard, at Islip.		1948-69‡ 1970-80	4- 7-80 8- 5-80 9- 8-80	14 3.9 4.1
01307100	Champlin Creek at Montauk Highway, at Islip, N.Y.	Lat 40°43'50", long 73°12'12", Suffolk County, at Montauk Highway, at Islip, and 0.45 mi (0.72 km) downstream from gaging station at Islip.		1963 1967 1973 1975-80	2-28-80 9-10-80	2.8
01307300	Pardees Ponds Outlet at Islip, N.Y.	Lat 40°43'40", long 73°13'16", Suffolk County, at culvert on State Highway 27A, at Islip.		1948-72 1974-80	10-24-79 2-12-80 6-17-80 9- 4-80	7.8 8.6 5.2 6.0
01307400	Awixa Creek at Islip, N.Y.	Lat 40°43'39", long 73°13'51", Suffolk County, at culvert on State Highway 27A, 0.75 mi (1.21 km) west of Islip.	4-	1948-80	10-24-79 2-12-80 6-17-80 9- 4-80	.58 .96 2.4 .45
01307500 <u>c</u> /	Penataquit Creek at Bay Shore, N.Y.	Lat 40°43'37", long 73°14'41", Suffolk County, at Union Avenue, at Bayshore.		1945-76‡ 1977-80	10-17-79 11- 9-79 12-11-79 1-18-80 4- 1-80 7-28-80 8-25-80	6.6 8.4 5.9 6.5 8.7 3.8 3.9
01307600	Cascade Lakes Outlet at Brightwaters, N.Y.	Lat 40°42'40", long 73°15'38", Suffolk County, at culvert on Montauk Highway, at Brightwaters.	1 22	1958-80	11-27-79 2-28-80 6-17-80 9- 4-80	1.0 3.1 2.8 .68
01307920	Sampawans Creek near Deer Park, N.Y.	Lat 40°44'27", long 73°18'24", Suffolk County, 30 ft (9 m) downstream from Bay Shore Road, and 2.5 mi (4.0 km) upstream from gaging station at Babylon.	-1-	1965-66 1973-80	2-12-80 6-18-80 9- 8-80	1.5 3.7 .85
01307950	Sampawams Creek near North Babylon, N.Y.	Lat 40°43'37", long 73°18'46", Suffolk County, 120 ft (37 m) downstream from Hunter Ave- nue, and 1.6 mi (2.6 km) upstream from gaging station at Babylon.		1967 1971 - 80	10-30-79 2-12-80 6-18-80 9- 8-80	4.4 2.2 5.9 1.4
01308200	Sampawams Creek below Hawleys Lake, at Babylon, N.Y.	Lat 40°41'48"; long 73°19'04", Suffolk County at pond out- let, 200 ft (61 m) upstream from State Highway 27A, at Babylon, and 0.5 mi (0.8 km) downstream from gaging station at Babylon.	9	1953-67 1969-80	10-30-79 2-12-80 6-18-80 9- 8-80	9.5 12 9.7 4.2

^{\$} Operated as a continuous-record gaging station.
c/ Water-quality data included in this report.

			Drainage	Period		Measurements
Station No.	Station name	Location	area (mi²)	of record	Date	Discharge (ft³/s)
		Streams on Long Island				
01308600	Carlls River at Park Avenue, Babylon, N.Y.	Lat 40°42'06", long 73°19'43", Suffolk County, at culvert on Park Avenue, at Babylon, and 0.5 mi (0.8 km) down- stream from gaging station at Babylon.		1968-80	11-19-79 2-28-80 7-24-80 9- 8-80	33 34 38 14
01309000 <u>c</u> /	Santapogue Creek at Lindenhurst, N.Y.	Lat 40°41'30", long 73°21'20", Suffolk County, at culvert on East Hoffman Avenue, 1 mi (2 km) east of Long Island Railroad station at Lindenhurst.		1947-69‡ 1970-80	10-29-79 11-29-79 2-13-80 4- 7-80 6-17-80 8-25-80 9- 8-80	2.6 2.7 2.0 10 3.6 .75
01309100	Santapogue Creek at State Highway 27A, Lindenhurst, N.Y.	Lat 40°41'02", long 73°21'06", Suffolk County, at culvert on State Highway 27A, 0.5 mi (0.8 km) downstream from gaging station at Lindenhurst.	22	1953-69 1971-80	10-29-79 2-13-80 4- 7-80 6-17-80 9- 4-80	4.8 2.7 22 9.9 4.7
01309200	Neguntatogue Creek at Lindenhurst, N.Y.	Lat 40°40'47", long 73°21'40", Suffolk County, 20 ft (6 m) upstream from State Highway 27A, in Lindenhurst.	75	1948-50 1952-80	10-29-79 2-13-80 6-17-80 9- 4-80	8.6 4.2 4.7 3.0
01309250	Strongs Creek at Lindenhurst, N.Y.	Lat 40°40'22", long 73°22'40", Suffolk County, 30 ft (9 m) upstream from State Highway 27A, at Lindenhurst.	145	1953-69 1971-80	10-29-79 2-13-80 6-17-80 9- 4-80	3.5 2.3 2.7 1.2
01309350	Amityville Creek at Amityville, N.Y.	Lat 40°40'13", long 73°24'51", Suffolk County, 100 ft (30 m) upstream from State Highway 27A, at Amityville.	**	1953-80	10-29-79 2-13-80 6-17-80 9- 4-80	2.7 2.8 3.3 1.6
01309400	Carman Creek at Amityville, N.Y.	Lat 40°40'09", long 73°26"02", Nassau County, at bridge on State Highway 27A, 0.75 mi (1.21 km) west of Amityville.		1949 1953-69 1971-80	11-27-79 3-27-80 8- 6-80 9-19-80	4.6 6.7 4.3 3.2
01309454	Massapequa Creek at South Farmingdale, N.Y.	Lat 40°42'55", long 73°27'00", Nassau County, 75 ft (23 m) upstream from Tomes Avenue, 0.2 mi (0.3 km) south of South Farmingdale, and 1.9 mi (3.1 km) upstream from. gaging station at Massapequa.		1962-65 1973-78 1980	3-28-80 8- 6-80 9-17-80	.73 .53 .14
01309476	Massapequa Creek at Southern State Parkway, at South Farmingdale, N.Y.	Lat 40°42'21", long 73°27'05", Nassau County, 30 ft (9 m) upstream from culvert at Southern State Parkway, 0.8 mi (1.3 km) south of South Farmingdale, and 1.2 mi (1.9 km) upstream from gaging station at Massapequa.	é	1962-65 1973-80	3-28-80 8- 6-80 9-17-80	6.9 4.7 .85
01309490	Massapequa Creek at North Massapequa, N.Y.	Lat 40°41'55", long 73°27'08", Nassau County, opposite Franklin Street, at North Massapequa, and 0.55 mi (0.88 km) upstream from gaging station at Massapequa.	÷	1962 1964 1973-80	3-28-80 8- 6-80 9-17-80	10 6.9 2.8

 $[\]mbox{\ensuremath{\ddagger}}$ Operated as a continuous-record gaging station. $\mbox{\ensuremath{c'}}/$ Water-quality data included in this report.

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

						Measurements
Station No.	Station name	Location	Drainage area (mi²)	Period of record	Date	Discharge (ft³/s)
		Streams on Long Island				
01309700	Seaford Creek at Seaford, N.Y.	Lat 40°40'00", long 73°28'57", Nassau County, at bridge on State Highway 27A, in Seaford.	10-	1953-80	3-27-80 8- 6-80 9-19-80	4.0 1.2 .44
01309800	Seamans Creek at Seaford, N.Y.	Lat 40°39'56", long 73°29'37", Nassau County, at culvert on State Highway 27A, 0.2 mi (0.3 km) west of Seaford.		1953-67 1971-80	10-30-79 3-27-80 9-19-80	2.5 4.6 2.5
01309970	Bellmore Creek tributary near North Wantagh, N.Y.	Lat 40°41'52", long 73°30'33", Nassau County, at culvert on Duck Pond Drive North, 0.3 mi (0.5 km) north of North Wantagh, and 1.2 mi (1.9 km) upstream from gaging station station 01309990.		1973-80	3-27-80 8- 5-80 9-17-80	1.1 .13 .04
01309980	Bellmore Creek tributary at North Wantagh, N.Y.	Lat 40°41'20", long 73°30'37", Nassau County, at culvert on Beltagh Avenue, at North Wantagh, and 0.6 mi (1.0 km) upstream from gaging station 01309990.	-	1973-80	3-27-80 8- 5-80 9-17-80	3.4 1.4 .41
01310100	Newbridge Creek at Merrick, N.Y.	Lat 40°39'42", long 73°32'02", Nassau County, downstream from bridge on Merrick Road in Merrick.		1963-80	3-27-80 8- 5-80 9-16-80	1.1 .24 .08
01310200	Cedar Swamp Creek at Merrick, N.Y.	Lat 40°39'39", long 73°32'24", Nassau County, at bridge on State Highway 27A, in Merrick, 2.5 mi (4.0 km) east of Freeport.	+	1953-62 1965-80	10-29-79 3-27-80 8- 5-80 9-16-80	5.7 9.8 5.2 2.4
01310470	East Meadow Brook near Westbury, NY.	Lat 40°44'01", long 73°35'06", Nassau County, 50 ft (15 m) downstream from culvert on Meadowbrook State Parkway, 1.0 mi (1.6 km) south of Westbury, and 4.8 mi (7.7 km) upstream from gage at Freeport.	2-2	1973-80	3-28-80 8- 7-80 9-17-80	.91 .80 .56
01310475	East Meadow Brook at Uniondale, N.Y.	Lat 40°43'17", long 73°35'00", Nassau County, at bridge on Hempstead Turnpike, 0.9 mi (1.4 km) northeast of Union- dale, and 3.9 mi (6.3 km) upstream from gage at Freeport		1973-80	3-28-80 8- 7-80 9-17-80	5.0 3.7 1.3
01310488	East Meadow Brook at East Meadow, N.Y.	Lat 40°41'56", long 73°34'37", Nassau County, 300 ft (91 m) west of Luddington Road, 1.4 mi (2.3 km) southwest of East Meadow, and 2.3 mi (3.7 km) upstream from gage at Freeport.	25	1973-80	9-17-80	2.4

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

						Measurements
Station No.	Station name	Location	Drainage area (mi²)	Period of record	Date	Discharge (ft³/s)
		Streams on Long Island				
01310510	East Meadow Pond Outlet at Freeport, N.Y.	Lat 40°39'32", long 73°34'01", Nassau County, 50 ft (15 m) downstream from culvert at Sunrise Highway, and 0.5 mi (0.8 km) downstream from gaging station 01310500.	97	1975-80	3-28-80 8- 7-80 9-17-80	12 7.5 2.4
01310515	Freeport Creek at Freeport, N.Y.	Lat 40°39'28", long 73°34'22", Nassau County, 20 ft (6 m) upstream from culvert at Sunrise Highway, and 0.5 mi (0.8 km) downstream from gaging station 01310500.		1975-80	3-28-80 8- 7-80 9-17-80	4.1 3.9 2.3
01310600	Milburn Creek at Baldwin, N.Y.	Lat 40°39'04", long 73°36'13", Nassau County, 50 ft (15 m) downstream from bridge on State Highway 27A, 0.5 mi (0.8 km) east of Baldwin.	25	1953-80	10-29-79 3-27-80 8- 5-80 9-19-80	6.7 8.5 7.4 5.1
01310700	Parsonage Creek at Baldwin, N.Y.	Lat 40°38'48", long 73°36'59", Nassau County, 20 ft (6 m) downstream from bridge on Foxhurst Road, at Baldwin.		1953-69 1971-80	10-29-79 3-28-80 8- 5-80	2.1 2.5 2.6
01310800	South Pond Outlet at Rockville Centre, N.Y.	Lat 40°40'00", long 73°39'08", Nassau County, at bridge on Lakeview Ave., 0.75 mi (1.21 km) north of Rockville Centre.		1953-80	10-30-79 3-27-80 6-24-80 9-16-80	1.3 2.0 0
01311200	Motts Creek at Valley Stream, N.Y.	Lat 40°39'01", long 73°42'45", Nassau County, 50 ft (15 m) downstream from bridge on Rosedale Road, 1 mile (2 km) southwest of Valley Stream.		1954-80	9-16-80	0
01311700	Valley Stream, below West Branch, at Valley Stream, N.Y.	Lat 40°39'47", long 73°42'21", Nassau County, 200 ft (61 m) downstream from West Branch, 500 ft (152 m) downstream from bridge on West Valley Stream Blvd., at village park in Valley Stream, and 500 ft (152 m) downstream from gaging station.	-	1953-80	10-29-79 3-27-80 6-24-80 9-16-80	0 0 0

 $^{^{\}mathrm{a/}}\mathrm{Formerly}$ published as East Branch Freeport Creek at Freeport.

CHEMICAL QUALITY OF PRECIPITATION

LONG ISLAND

AT BAY PARK, NY

LOCATION.--Lat 40°38'02", long 73°39'55", Nassau County, at Bay Park Sewage Treatment Plant, Bay Park.

PERIOD OF RECORD. -- October 1978 to current year (monthly composite).

EQUIPMENT.--The sample collector is a straight-sided polyethelene funnel, approximately 6.0 in (0.15 m) in diameter, which drains into a 2-liter Teflon* receiving bottle. The receiving bottle is enclosed in an insulated box which is heated during the cold weather season to aid in full collection of snow. The opening for the collector is approximately 7 ft (2 m) above ground level.

REMARKS.--Inches of precipitation is that recorded by the U.S. Geological Survey for the period of sampling.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

PERIOD OF COLLECTION	INCHES OF PRECIPI- TATION	CAL- CIUM (CA) (MG/L)	MAGNE- SIUM (MG) (MG/L)	SODIUM (NA) (MG/L)	POTAS- SIUM (K) (MG/L)	SULFATE (SO4) (MG/L)	CHLO- RIDE (CL) (MG/L)	FLUO- RIDE (F) (MG/L)
79/10/02 TO 79/11/01	2.62	2.90	.78	1.30	.97	3,10	2.20	
79/11/01 TO 79/12/03	2.47	.92	.50	1.30	.11	2.10	2.50	
79/12/03 TO 80/01/03	2.10	1.00	.39	1.20	.11	2.10	2.00	
80/01/03 TO 80/02/01	1.57					5.30	6.80	
80/02/01 TO 80/03/03	1.10					8.30	2.60	
80/03/03 TO 80/03/26	6.41	.50	.36	1.60	.07	2.90	3.00	
80/03/26 TO 80/05/01	9.99	.61	.21	1.00	.04	1.80	1.50	
80/05/01 TO 80/06/02	2.60	1.20	.33	.39	.13	6.80	.72	
80/06/02 TO 80/07/01	4.90	.98	.33	•55	.14	3.70	.66	
80/07/01 TO 80/07/30	4.70	.89	.36	.78	.11	1.90	.92	
80/07/30 TO 80/09/02	.41					15.0	3.10	
80/09/02 TO 80/10/01	1.11	2.70	.61	1.70	.20	8.00	1.60	
	NIT-				SPE-			
	RITE+		AMMONIA		CIFIC			
PERIOD	NIT-		+ORGANIC	PHOS-	CON-			
OF	RATE	AMMONIA	NITROGEN	PHORUS	DUCTANCE	PH	ACIDITY	LEAD
COLLECTION	AS N	AS N	AS N	(P)	(MICRO-		AS H	(PB)
	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MHOS)	(UNITS)	(MG/L)	(UG/L)
79/10/02 TO 79/11/01	.677	.490		.032	27	4.30		29
79/11/01 TO 79/12/03	.426	.296		.003	15	5.50		28
79/12/03 TO 80/01/03	.700	.679		.036	21	4.60		20
80/01/03 TO 80/02/01	.790	.684		.009				
80/02/01 TO 80/03/03					59	4.57	.138	
80/03/03 TO 80/03/26	.407	.438		.027	18	5.30	.066	18
80/03/26 TO 80/05/01	.292	.368		.011	14	4.70	.112	8
80/05/01 TO 80/06/02	1.100	1.000		.035	48	4.27	.111	28
80/06/02 TO 80/07/01	•580	.600		.063	27	4.69	.068	11
80/07/01 TO 80/07/30	.430	.360	290	.067	16	5.76	.036	6
80/07/30 TO 80/09/02	.310	2.200	1.900	.198	81	6.03		
80/09/02 TO 80/10/01	1.100	.700		.039	45	5.70		

^{*} The use of the brand name in this report is for identification purposes only and does not imply endorsement by the U.S. Geological Survey.

CHEMICAL QUALITY OF PRECIPITATION

LONG ISLAND

AT EAST MEADOW, NY

LOCATION.--Lat 40°44'36", long 73°35'10", Nassau County, at the New York State Department of Environmental Conservation Air Quality Station on roof of trailer at Merrick Avenue, Eisenhower Park, East Meadow.

PERIOD OF RECORD.--Water years: August 1976 to current year (monthly composite).

EQUIPMENT.--The sample collector is a straight-sided polyethelene funnel, approximately 6.0 in (0.15 m) in diameter, which drains into a 2-liter Teflon* receiving bottle. The receiving bottle is enclosed in an insulated box which is heated during the cold weather season to aid in full collection of snow. The opening for the collector is approximately 12 ft (4 m) above ground level.

REMARKS.--Inches of precipitation is that recorded by the U.S. Geological Survey for the period of sampling.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

79/10/02 TO 79/11/01	1.90 2.50 2.20 9.20 11.0 2.70 1.40 .88 .44 .48	
79/12/03 TO 80/01/03	2.20 9.20 11.0 2.70 1.40 .88 .44	=======================================
## A0/01/03 TO ## ## A0/02/01	9.20 11.0 2.70 1.40 .88 .44	===
## AMMONIA SPECIFIC SPECIFIC	2.70 1.40 .88 .44 .48	===
B0/03/03 TO 80/03/25	2.70 1.40 .88 .44	===
80/03/25 TO 80/05/01	1.40 .88 .44 .48	
80/05/01 TO 80/06/02	.88 .44 .48	
80/06/02 TO 80/07/01	.44	
80/07/01 TO 80/08/04	.48	
80/08/04 TO 80/09/02		
NIT- RIFE AMMONIA CIFIC CIFI	2.10	
NIT-		
PERIOD NIT- OF RATE AMMONIA + ORGANIC PHOS- CON- COLLECTION AS N AS N (MG/L) (MHOS) (UNITS) 79/10/02 TO 79/11/01	1.60	
79/10/02 TO 79/11/01	ACIDITY	LEAD
79/11/01 TO 79/12/03	AS H (MG/L)	(PB) (UG/L)
79/11/01 TO 79/12/03		56
80/01/03 TO 80/02/01 64 5.30		15
		34
80/02/01 TO 80/03/03 100 5.92	.096	
	.089	
80/03/03 TO 80/03/25 .390 .190007 18 5.20	.127	28
80/03/25 TO 80/05/01 .283 .160006 12 5.51	.127	31
80/05/01 TO 80/06/02 .330 1.100018 45 4.70	.100	68
80/06/02 TO 80/07/01 .630 .340012 24 4.90	.053	52
80/07/01 TO 80/08/04 .460 .180 .200 .011 17 5.74		15
80/08/04 TO 80/09/02 2.300 .640032 91 4.39	.028	
80/09/02 TO 80/10/01 .980 .270035 30 6.40		

^{*} The use of the brand name in this report is for identification purposes only and does not imply endorsement by the U.S. Geological Survey.

CHEMICAL QUALITY OF PRECIPITATION

LONG ISLAND

AT UPTON, NY

LOCATION.--Lat $40^{\circ}52'16''$, long $72^{\circ}53'20''$, Suffolk County, at the Brookhaven National Laboratory weather tower, about 0.6 mi (1.0 km) north of main entrance, at Upton.

PERIOD OF RECORD. -- Water years: 1965 to 1973, 1975 to current year (monthly composite).

EQUIPMENT.--The sample collector is a straight-sided glass funnel, approximately 6.5 in (0.17 m) in diameter, which drains into a polyethylene receiving bottle. A fritted class disk is used as a filter between the collector and the receiving bottle and is replaced at the end of each collection period. The receiving bottle is enclosed in an insulated box which is heated during the cold weather season to aid in full collection of snow. The opening for the collector is approximately 4 ft (1.2 m) above ground level and is protected by a windshield.

REMARKS.--Inches of precipitation is that recorded by Brookhaven National Laboratory for the period of sampling.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	PERTOD OF COLLECTION	INCHES OF PRECIPI- TATION	CAL- CIUM (CA) (MG/L)	MAGNE- SIUM (MG) (MG/L)	SODIUM (NA) (MG/L)	POTAS- SIUM (K) (MG/L)	SULFATE (SO4) (MG/L)	CHLO- RIDE (CL) (MG/L)	FLUO- RIDE (F) (MG/L)
	79/09/25 TO 79/10/30	7.16	.37	.21	1.40	.16	2.00	2.20	
-	79/10/30 TO 79/11/30	4.06	.50	.18	1.20	.10	1.10	1.70	
	79/11/30 TO 80/01/31	5.47	1.00	.49	1.80	.09	2.60	2.70	
	80/01/31 TO 80/02/28	1.15					4.70	1.70	
	80/02/28 TO 80/03/28	3.97	.27	.22	1.70	.07	2.60	2.80	
	80/03/28 TO 80/05/02	10.55	.41	.18	1.00	.09	1.80	2.10	
	80/05/02 TO 80/06/04	4.18	•66	.17	.33	.17	6.10	.60	
	80/06/04 TO 80/06/30	2.83	•56	.25	.66	.39	3.30	.91	
	80/06/30 TO 80/07/31	2.18	.82	.21	.77	•55	4.80	.95	
	80/07/31 TO 80/09/05	1.67	.52	.15	.73	.14	4.80	.53	
	80/09/05 TO 80/10/02	.97					3.50	1.90	
		NIT-				SPE-			
		RITE+		AMMONIA		CIFIC			
	PERIOD	NIT-		+ORGANIC	PHOS-	CON-			
	OF	RATE	AMMONIA	NITROGEN	PHORUS	DUCTANCE	PH	ACIDITY	LEAD
	COLLECTION	AS N	AS N	AS N	(P)	(MICRO-		AS H	(PB)
		(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MHOS)	(UNITS)	(MG/L)	(UG/L)
	79/09/25 TO 79/10/30								
	79/10/30 TO 79/11/30	.463	.327		.028	7.7			
	79/11/30 TO 80/01/31	.296 .401	-082		.012	11	4.50		41
	80/01/31 TO 80/02/28	.401	.102		.018	18 45	6.00	172	34
	80/02/28 TO 80/03/28	.407	.120				4.14	.173	
		.407	.120		.014	24	4.30	.101	23
	80/03/28 TO 80/05/02	.392	.190		.012	15	4.40	.112	25
	80/05/02 TO 80/06/04	1.100	.570		.116	59	3.97	.163	65
	80/06/04 TO 80/06/30	•600	.691		.000	28	4.64	.072	22
	80/06/30 TO 80/07/31	.920	.760		.165	42	4.24	.104	
	80/07/31 TO 80/09/05	.920	.370		.000	57	3.89		
	80/09/05 TO 80/10/02	.330	.184	.670	.076	32	4.50		

KINGS COUNTY

404149073571202. Local number, K 30-2.

LOCATION. --Lat 40°41'49", long 73°57'12", Hydrologic Unit 02030201, at Sanford Street near Park Avenue,

Williamsburg. Owner: Williamsburg Industrial Development Enterprises, Inc. AGUIFER.—-Upper Glacial.

WELL CHARACTERISTICS. -- Driven observation water-table well, diameter 1.25 in (0.03 m), depth 18 ft (6 m), screened 13 to 18 ft (4 to 5 m).

DATUM. --Land-surface datum is 21.0 ft (6.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, O. 44 ft (O. 13 m) below land-surface datum.

PERIOD OF RECORD. --June 1935 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 7.38 ft (2.25 m) NGVD, Sept. 23, 1980; lowest measured, -29.75 ft (-9.07 m) NGVD, Nov. 8, 1941.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 18	5. 43	MAR 13	5. 13	JUN 19	5. 06	SEP 23	7. 38				

403852073582301. Local number, K 508.

LOCATION. --Lat 40° 38'52", long 73° 58'23", Hydrologic Unit 02030201, at 807 Caton Avenue, Kensington, Brooklyn. Owner: Atlantic Service Corporation.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. -- Drilled unused water-table well, 24 in (0.61 m), depth 116 ft (35 m), screened 72.5 to 116 ft (22 to 35 m).

DATUM. --Land-surface datum is 50.5 ft (15 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of steel plate, O. O4 ft (O. O1 m) above land-surface datum.

PERIOD OF RECORD. --October 1978 to current year. Unpublished records for August 1944 to September 1978 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured 13.55 ft (4.13 m) NGVD, Dec. 16, 1975; lowest measured, -26.32 ft (-8.02 m) NGVD, Aug. 21, 1944.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 18	10.69	MAR 13	10.17	JUN 19	11 29	SEP 23	10.74				

403639073590301. Local number, K 631.

LOCATION.--Lat 40°36′39", long 73°59′03", Hydrologic Unit 02030202, at 6817 Bay Parkway, New Utrecht, Brooklyn. Owner: Marboro Theater.

AQUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. --Drilled unused water-table well, 10 in (0.25 m), depth 97 ft (30 m), screened 72 to 97 ft (22 to 30 m).

DATUM --Land-surface datum is 31 ft (9.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Hole drilled in cap 0.08 ft (0.02 m) above land-surface datum.

PERIOD OF RECORD. --October 1978 to current year. Unpublished records for December 1949 to September 1978 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured 5.60 ft (1.71 m) NGVD, Dec. 22, 1978; lowest measured, 3.01 ft (0.92 m) NGVD, Dec. 13, 1949.

WATER			WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 17	5. 18	MAR 13	4. 68	SEP 23	5. 18						

KINGS COUNTY--Continued

404032074001401. Local number, K 1069. LOCATION. --Lat 40°40'32", long 74°00'14", Hydrologic Unit 02030201, 732 Henry Street, Red Hook, Brooklyn. Owner: Larsen Baking Company.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. --Drilled unused water-table well, 8 in (0.20 m), depth 60 ft (18 m), screened 41 to 51 ft (12 to 16 m).

DATUM. --Land-surface datum is 11 ft (3.4 m) National Geodetic Vertical Datum of 1929. Measuring point: MP 1, hole

in steel plate, 8.91 ft (2.72 m) below land-surface datum.
REMARKS.—Water-quality records for 1942 are available in files of Long Island Sub-district office.

PERIOD OF RECORD. --October 1978 to current year. Unpublished records for 1953-54, 1960-78, are available in files

of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 2.97 ft (0.91 m) NGVD, Apr. 4, 1978; lowest measured, -0.78 ft (-0.24 m) NGVD, Oct. 25, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	WATER		WATER		WATER		WATER		WATER		WATER	
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	
DEC 18	2.00	MAR 13	1.31									

403939073542901. Local number, K 1265.
LOCATION.—Lat 40°39'39", long 73°54'29", Hydrologic Unit 02030202, at Thatford and Riverdale Avenues, East New York, Brooklyn. Owner: City of New York.

AQUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. --Driven water-table well, 1.5 in (0.04 m), depth 43.2 ft (13 m), screen assumed at bottom. DATUM. --Land-surface datum is 23 ft (7.0 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 0.10 ft (0.03 m) above land-surface datum.

PERIOD OF RECORD. --October 1978 to current year. Unpublished records for 1933-35, 1941-78 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 16.99 ft (5.18 m) NGVD, Sept. 23, 1980; lowest

measured, -11.55 ft (-3.52 m) NGVD, Aug. 22, 1942.

WATER	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 18	15.62	MAR 13	12. 65	JUN 20	11.16	SEP 23	16. 99				

NASSAU COUNTY

404043073413001. Local number, N 7.

LOCATION. --Lat 40°40'43", long 73°41'30", Hydrologic Unit 02030202, at Corona Avenue and Remsen Street, Valley Stream. Owner: Long Island State Park Commission.

AQUIFER. -- Lloyd.

WELL CHARACTERISTICS --Drilled unused artesian well, diameter 10 in (0.25 m), depth 911 ft (278 m), screened 851 to 911 ft (259 to 278 m).

DATUM. --Land-surface datum is 20.8 ft (6.3 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of reducer, 2.16 ft (0.66 m) above land-surface datum.

PERIOD OF RECORD. --July 1936 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 12.75 ft (3.89 m) NGVD, Mar. 9, 1941; lowest

measured, -6.84 ft (-2.08 m) NGVD, Aug. 25, 1970.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 17	0.66	MAR 19	2. 53	JUN 16	2.66	SEP 22	-1.34				

404048073412501. Local number, N 9.

LOCATION. --Lat 40°40'48", long 73°41'25", Hydrologic Unit 02030202, at Corona Avenue and Remsen Street, Valley Stream. Owner: Long Island State Park Commission.

AQUIFER. -- Magothy.

WELL CHARACTERISTICS. -- Drilled unused artesian well, diameter 6 in (0.15 m) to 4 in (0.10 m), depth 138 ft (42 m), screened 98 to 138 ft (30 to 42 m).

DATUM. --Land-surface datum is 23.2 ft (7.07 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.48 ft (0.45 m) above land-surface datum. PERIOD OF RECORD. —July 1936 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 23.57 ft (7.18 m) NGVD, Sept. 23, 1938; lowest measured, 9.96 ft (3.03 m) NGVD, Dec. 19, 1974.

WATER		WATER		WATER		WATER		WATER		WATER	
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 17	13. 32	MAR 19	12. 13	JUN 16	14. 39	SEP 22	10. 65				

NASSAU COUNTY--Continued

403930073382901. Local number, N 53.
LOCATION. --Lat 40°39'30", long 73°38'29", Hydrologic Unit 02030202, at Maple and Morris Avenues, Rockville Centre.

Guner: Village of Rockville Centre.

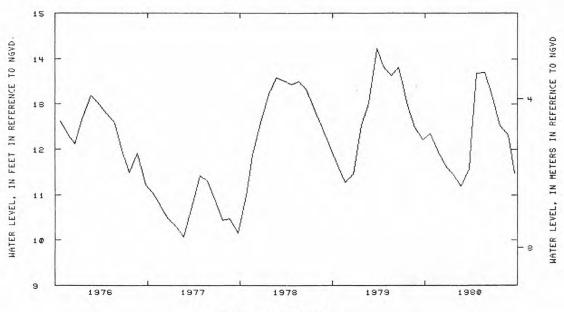
AGUIFER. --Upper Glacial.

MILLI CHARACTERISTICS --Dmilled characterism mater table well, diameter R in (0 20 m), depth 45 ft (14 m), screen

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 8 in (0.20 m), depth 45 ft (14 m), screen assumed at bottom.

DATUM. --Land-surface datum is 26.2 ft (8.0 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

casing, 5.13 ft (1.56 m) below land-surface datum.


PERIOD OF RECORD. --October 1975 to current year. Unpublished records for August 1934 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 16.49 ft (5.03 m) NGVD, Apr. 15, 1939; lowest

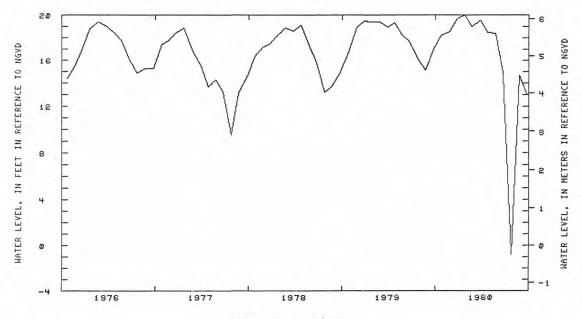
measured, 7.85 ft (2.39 m) NGVD, Aug. 30, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	WATER		WATER	WATER			WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 23	12.35	DEC 21	11.65	FEB 22	11 20	APR 23	13. 68	JUN 23	13. 20	AUG 25	12. 31
NOV 26	11. 95	JAN 22	11.47	MAR 24	11.59	MAY 23	13.70	JUL 23	12. 52	SEP 22	11.49

TIME, IN WATER YEARS

NASSAU COUNTY--Continued


404931073382001. Local number, N 110. LOCATION.—-Lat 40°49′31", long 73°38′20", Hydrologic Unit 02030201, at Scudders Lane and Motts Cove Road, Glenwood Landing. Owner: Jericho Water District. AQUIFER.—-Lloyd.

WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 16 in (0.41 m), depth 519 ft (158 m), screened 445 to 515 ft (136 to 157 m).

DATUM. --Land-surface datum is 56.1 ft (17.1 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of 4 in (0.10 m) nipple, 0.50 ft (0.15 m) above land-surface datum.
PERIOD OF RECORD. --October 1975 to current year. Unpublished records for 1946-48, 1952, 1955, 1961, 1965, 1970-75, .

are available in files of Long Island Sub-district office. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 27.99 ft (8.53 m) NGVD, Dec. 15, 1970; lowest measured, -9.05 ft (-2.76 m) NGVD, May 22, 1957.

WATER		WATER	WATER			WATER		WATER		WATER	
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 24	18. 21	DEC 26	19.66	FEB 24	19.01	APR 23	18. 47	JUN 24	14.84	AUG 25	14.70
NOV 26	18.52	JAN 23	19.98	MAR 25	19.55	MAY 26	18.41	JUL 23	-0.80	SEP 25	13.05

TIME, IN WATER YEARS

116

GROUND-WATER LEVELS

NASSAU COUNTY--Continued

404029073294201. Local number, N 180.

LOCATION .--Lat 40°40'29", long 73°29'42", Hydrologic Unit 02030202, at Sunrise Highway and Seamans Neck Road, Seaford. Owner: City of New York.

AQUIFER. -- Magothy.

WELL CHARACTERISTICS. -- Drilled unused artesian well, diameter 4 in (0.10 m) to 6 in (0.15 m), depth 762 ft (232 m), screen assumed at bottom.

DATUM. --Land-surface datum is 15.3 ft (4.7 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 14.39 ft (4.38 m) above land-surface datum.

PERIOD OF RECORD. --October 1945 to current year.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 21.08 ft (6.43 m) NGVD, June 6, 1952; lowest measured, 12.11 ft (3.69 m) NGVD, June 28, 1976.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

WATER		WATER		WATER		WATER		WATER		WATER	
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 6	15.79	MAR 17	15. 45	JUN 16	16. 24	SEP 22	13.49				

404609073421602. Local number, N 1102-2.

LOCATION. --Lat 40°46'09", long 73°42'16", Hydrologic Unit 02030201, at Long Island Expressway and Community Drive, Lake Success. Owner: Nassau County Department of Public Works. AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. -- Drilled observation water-table well, diameter 4 in (0.10 m), depth 166 ft (51 m), screened 161 to 166 ft (49 to 51 m).

DATUM. --Land-surface datum is 184.0 ft (56 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 0.32 ft (0.10 m) below land-surface datum.

PERIOD OF RECORD. -- April 1939 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 59 12 ft (18.02 m) NGVD, May 25, 1953; lowest measured, 29.08 ft (8.86 m) NGVD, Oct. 1, 1969.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 4	35. 68 G	MAR 17	36.45 G	MAY 27	36. 19	JUN 19	32. 84	SEP 4	36.04 G	SEP 26	29. 94

G MEASUREMENT BY ANOTHER AGENCY

404039073420001. Local number, N 1110.

LOCATION.—Lat 40°40'39", long 73°42'00", Hydrologic Unit 02030202, at Henry Street, near Southern State Parkway, North Valley Stream. Owner: Nassau County Department of Public Works.

AGUIFER.—Upper Glacial.

WELL CHARACTERISTICS. —Driven observation water-table well, diameter 1.25 in (0.03 m), depth 27 ft (8 m), screened 25 to 27 ft (7.6 to 8.2 m).

DATUM. --Land-surface datum is 30.9 ft (9.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.05 ft (0.02 m) below land-surface datum.

REMARKS. --Water-quality records for 1966 and 1968 are available in files of Long Island Sub-district office.

PERIOD OF RECORD. --April 1939 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 21.05 ft (6.42 m) NGVD, Apr. 21, 1939; lowest measured, 7.15 ft (2.18 m) NGVD, Dec. 21, 1976.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

WATER		WATER			WATER				WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 5	10. 10 G	DEC 17	9. 80	MAR 18	10. 10 G	MAR 19	9. 19	JUN 16	11.79	SEP 22	7. 88

G MEASUREMENT BY ANOTHER AGENCY

NASSAU COUNTY--Continued

404125073394802. Local number, N 1129-2.

LOCATION. --Lat 40°41'25", long 73°39'48", Hydrologic Unit 02030202, at Hawthorne Street and Euclid Avenue, West Hempstead. Owner: Nassau County Department of Public Works. AQUIFER. -- Upper Glacial.

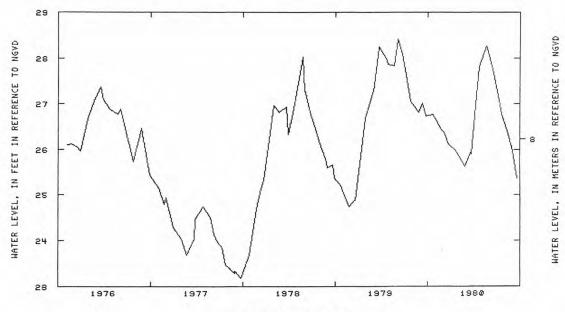
WELL CHARACTERISTICS.—Driven observation water-table well, diameter 1.25 in (0.03 m), depth 44 ft (13 m), screened 41 to 44 ft (12 to 13 m).

DATUM. --Land-surface datum is 50.8 ft (15.5 m) National Geodetic Vertical Datum of 1929. Measuring point: Top

of casing, 0.26 ft (0.08 m) below land-surface datum.

REMARKS. --Water-quality records for 1966, 1968, 1975-1978 are available in files of Long Island Sub-district

office; those for 1979 are published elsewhere in this report.


PERIOD OF RECORD. --October 1975 to current year. Unpublished records for August 1937 to September 1975 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 33.79 ft (10.30 m) NGVD, Sept. 28, 1938; lowest measured, 21.85 ft (6.66 m) NGVD, Sept. 20, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 22	26. 76	DEC 21	26. 12	MAR 18	25. 93	MAY 21	28. 26	JUL 21	26. 77	SEP 3	25. 97 G
NOV 26 DEC 5	26. 44 26. 38 G	JAN 22 FEB 25	25. 99 25. 64	21 APR 22	25. 90 27. 82	JUN 20	28. 13	AUG 20	26. 28	55	25. 37

TIME, IN WATER YEARS

G MEASUREMENT BY ANOTHER AGENCY

404840073311902. Local number, N 1212. LOCATION.—Lat 40°48′40", long 73°31′19", Hydrologic Unit 02030202, at Jericho Turnpike and Eileen Way, Locust Grove. Owner: Nassau County Department of Public Works. AQUIFER. -- Magothy.

WELL CHARACTERISTICS. --Driven observation artesian well, diameter 4 in (0.10 m), depth 185 ft (64 m), screened 179 to 185 ft (55 to 56 m).

DATUM, --Land-surface datum is 227.2 ft (69.6 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 0.54 ft (0.16 m) below land-surface datum. PERIOD OF RECORD. -- January 1943 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 93.27 ft (28.43 m) NGVD, June 22, 1979; lowest measured, 73.00 ft (22.25 m) NGVD, Apr. 25, 1967.

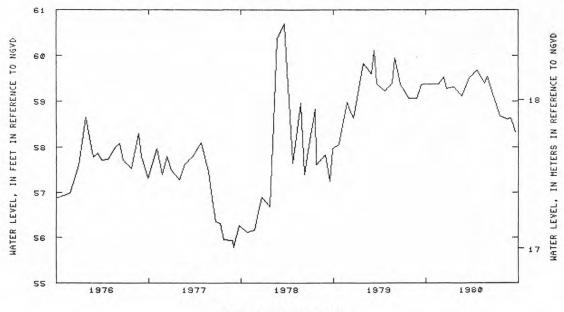
DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 19	93 19	MAR 27	88. 42	JUN 23	85. 93	SEP 26	87. 56				

NASSAU COUNTY--Continued

405027073272002. Local number, N 1243-5. LOCATION.—Lat 40°50′27", long 73°27′20", Hydrologic Unit 02030201, at Stillwell and Harbor Roads, Cold Spring. Owner: Nassau County Department of Public Works. AGUIFER.—Upper Glacial.

WELL CHARACTERISTICS. -- Driven observation water-table well, diameter 1.25 in (0.03 m), depth 28 ft (9 m), screened 25 to 28 ft (7.6 to 8.5 m).

DATUM. --Land-surface datum is 63.1 ft (19.2 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.10 ft (0.03 m) below land-surface datum.


REMARKS. -- Water-quality records for 1960 are available in files of Long Island Sub-district office.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for November 1939 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 61.95 ft (18.88 m) NGVD, Apr. 29, 1975; lowest measured, 48.03 ft (14.64 m) NGVD, Feb. 24, 1967.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL	DATE	WATER LEVEL								
OCT 22	59. 39	DEC 21	59. 29	MAR 20	59. 52	MAY 30	59. 55	JUL 21	58. 69	SEP 3	58. 63
NOV 21	59. 38	JAN 22	59.32	APR 22	59. 68	JUN 20	59. 22	AUG 20	58. 62	55	58.34
DEC 11	59. 54 G	FEB 21	59. 12	MAY 21	59. 40						

TIME. IN WATER YEARS

NASSAU COUNTY--Continued

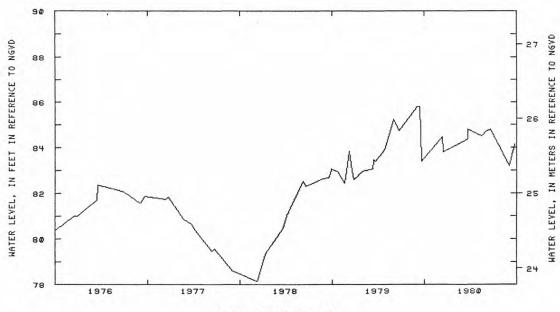
404704073264201. Local number, N 1246.

LOCATION. --Lat 40°47'04", long 73°26'42", Hydrologic Unit 02030202, at Round Swamp and Old Country Roads,

Plainview. Owner: Nassau County Department of Public Works.

AGUIFER. -- Magothy.

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 4 in (0.10 m), depth 125 ft (38 m), screen assumed at bottom.


DATUM. --Land-surface datum is 184.9 ft (56.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, O. OB ft (O. O2 m) above land-surface datum.

REMARKS.—Water—quality records for 1971 are available in files of Long Island Sub-district office.
PERIOD OF RECORD.—May 1940 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 85.81 ft (26.15 m) NGVD, Sept. 12, 1979; lowest measured, 68.29 ft (20.81 m) NGVD. Apr. 25, 1967.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 12	84. 46 G	MAR 19	84. 36	MAY 12	84. 51	JUN 18	84. 81	SEP 3	83. 20	SEP 24	84. 12
17	93 91	20	84 79 C	20	94 49 0						

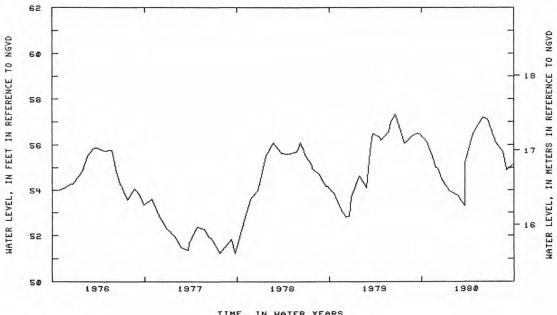
TIME, IN WATER YEARS

NASSAU COUNTY--Continued

404339073371403. Local number, N 1255-3. LOCATION.--Lat 40°43′39", long 73°37′14", Hydrologic Unit 02030202, at Clinton Road and Saint James Street, Garden City. Owner: Nassau County. Department of Public Works. AQUIFER.---Upper Glacial.

WELL CHARACTERISTICS. --Driven observation water-table well, diameter 1.25 in (0.03 m), depth 35 ft (11 m), screen assumed at bottom.

DATUM --Land-surface datum is 79.3 ft (24.1 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, O. 61 ft (O. 19 m) below land-surface datum. Prior to September 1, 1977, measuring point was O. 04 ft


(0.01 m) above land-surface datum.
PERIOD OF RECORD. --October 1975 to current year. Unpublished records for May 1913 to November 1918, June 1936 to

September 1975, are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured 65.59 ft (19.99 m) NGVD, Apr. 15, 1939; lowest measured 47. 48 ft (14. 47 m) NGVD, Feb. 24, 1967.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 22	56. 14	DEC 4	54. 97 G	FEB 21	53. 77	APR 22	56. 49	JUN 20	57. 11	SEP 3	54.89 G
NOV 21	55. 26	21 IAN 22	54. 42	MAR 20	53. 29	MAY 21	57.03	JUL 21	56. 11	30	55. 16

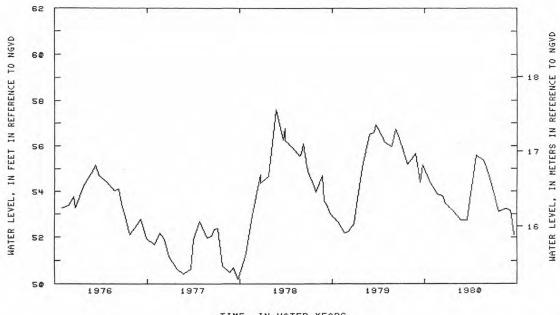
TIME, IN WATER YEARS

NASSAU COUNTY--Continued

404317073290901. Local number, N 1259-5.
LOCATION.—Lat 40°43′17", long 73°29′09", Hydrologic Unit 02030202, at Hicksville Road and Mary Lane, Plainedge.
Owner: Nassau County Department of Public Works.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS.—Driven observation water-table well, diameter 1.25 in (0.03 m), depth 41 ft (12 m), screened 38 to 41 ft (11.6 to 12.5 m).


DATUM. --Land-surface datum is 78.4 ft (23.9 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, O.32 ft (O.10 m) below land-surface datum. PERIOD OF RECORD. -- January 1909 to April 1910, January 1912 to December 1916, February 1930 to December 1935, March

1937 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 57.60 ft (17.56 m) NGVD, Feb. 21, 1978; lowest measured, 45. 61 ft (13. 90 m) NGVD, Aug. 25, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 22 NOV 21	54. 39 53. 88	DEC 21 JAN 22	53. 45 53. 15	MAR 18 APR 22	52. 75 G 55. 60	MAY 29 JUN 20	55. 18 G 54. 44	JUL 21 AUG 20	53. 09 53. 24	SEP 8	53. 15 G 52. 09
DEC 11	53 80 G	FFR 21	52 75		55 37	0014 20	04.44	HOU LU	00. E		ou. 07

TIME, IN WATER YEARS

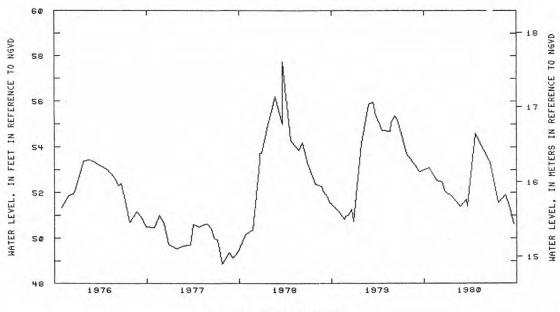
NASSAU COUNTY--Continued

404302073295704. Local number, N 1263-4.
LOCATION.—Lat 40°43′02", long 73°29′57", Hydrologic Unit 02030202, at Wantagh Avenue and Miller Place, Levittown.

Owner: Nassau County Department of Public Works.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. --Driven observation water-table well, diameter 1.25 in (0.03 m), depth 35 ft (11 m), screened 32 to 35 ft (9.8 to 10.7 m).


DATUM. --Land-surface datum is 67.0 ft (20.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, O. 41 ft (O. 12 m) below land-surface datum.

REMARKS.—Water-quality records for 1968, 1970, 1974—76, are available in files of Long Island Sub-district office. PERIOD OF RECORD.—October 1975 to current year. Unpublished records for June 1936 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 63.05 ft (19.22 m) NGVD, June 29, 1948; lowest measured, 44.01 ft (13.41 m) NGVD, Aug. 25, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 22	53. 09	DEC 21	52.07	MAR 18	51.71 G	MAY 21	53. 95	JUL 21	51.58	SEP 8	51.30 G
NOV 21	52. 52	JAN 22	51.84	20 APP 22	51.41	JUN 20	53. 33	AUG 20	51. 90	55	50. 62

TIME. IN WATER YEARS

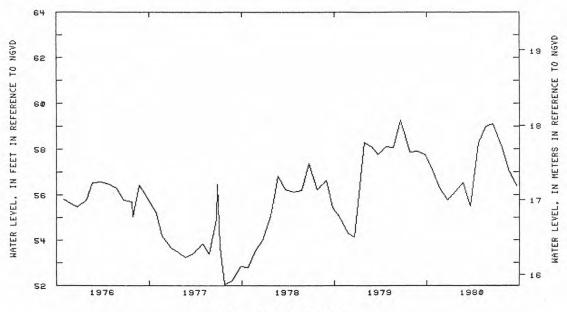
NASSAU COUNTY--Continued

404446073392904. Local number, N 1614-4
LOCATION. --Lat 40°44′46", long 73°39′29", Hydrologic Unit 02030202, at Herricks Road and Sally Place, Mineola.

Owner: Nassau County Department of Public Works.

AQUIFER. -- Upper Glacial. WELL CHARACTERISTICS. -- Driven observation water-table well, diameter 1.25 in (0.03 m), depth 53 ft (16 m), screen

assumed at bottom.


DATUM. --Land-surface datum is 100.1 ft (30.5 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.26 ft (0.08 m) below land-surface datum.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for January 1933 to September 1975 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —-Highest water level measured, 72.48 ft (22.09 m) NGVD, May 31, 1949; lowest measured, 48.42 ft (14.76 m) NGVD, Dec. 21, 1970.

DATE	WATER LEVEL										
OCT 22	57. 10	DEC 21	55. 78	FEB 21	56. 52	APR 22	58. 28	JUN 20	59. 09	AUG 20	57. 10
NOV 21	56. 31	JAN 22	56. 13	MAR 20	55. 49	MAY 21	59. 00	JUL 21	58. 16	SEP 22	56. 41

TIME. IN WATER YEARS

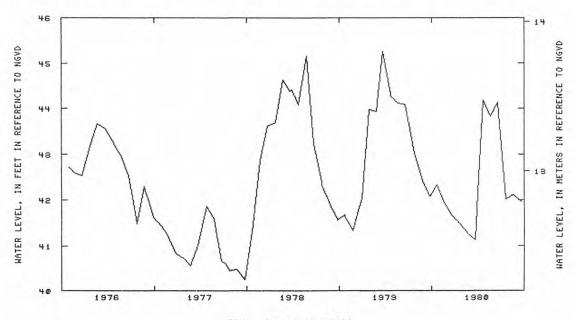
NASSAU COUNTY--Continued

404210073340702. Local number, N 1615-2. LOCATION. --Lat 40° 42′10", long 73° 34′07", Hydrologic Unit 02030202, at Merrick and Van Buren Avenues, East Meadow. Owner: Nassau County Department of Public Works.

AQUIFER. -- Upper Glacial. WELL CHARACTERISTICS -- Driven observation water-table well, diameter 1.25 in (0.03 m), depth 32 ft (10 m), screened 30 to 33 ft (9.1 to 10.1 m).

30 to 33 ft (9.1 to 10.1 m).

DATUM.—Land-surface datum is 61.0 ft (18.6 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.13 ft (0.04 m) below land-surface datum.


REMARKS.—Water-quality records for 1966-67, 1969, 1972, are available in files of Long Island Sub-district office.

PERIOD OF RECORD.—October 1975 to current year. Unpublished records for March 1913 to December 1915, June 1932 to September 1975, are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 47.17 ft (14.38 m) NGVD, Mar. 28, 1939; lowest

measured, 37.88 ft (11.55 m) NGVD, Aug. 25, 1966.

WATER		WATER	WATER			WATER		WATER		WATER	
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 22	42. 34	DEC 21	41.65	FEB 21	41.26	APR 22	44. 18	JUN 20	44. 14	AUG 20	42. 12
NOV 21	41.93	JAN 22	41.49	MAR 20	41.14	MAY 21	43. 83	JUL 21	42.01	SEP 22	41.97

TIME, IN WATER YEARS

NASSAU COUNTY--Continued

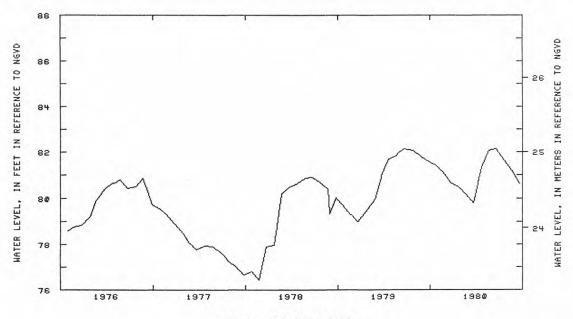
404554073351502. Local number, N 1616-2.

4040334073331302. Local number, N 1010-2. LOCATION.--Lat 40°45′54", long 73°35′15", Hydrologic Unit 02030202, at Post Avenue and Argyle Road, Westbury. Owner: Nassau County Department of Public Works.

AGUIFER. -- Magothy.

WELL CHARACTERISTICS. -- Driven observation water-table well, diameter 2 in (0.05 m), depth 68 ft (21 m), screened 65 to 68 ft (20 to 21 m).

DATUM. --Land-surface datum is 122.4 ft (37.3 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.32 ft (0.10 m) below land-surface datum.


REMARKS. -- Water-quality records for 1969 are available in files of Long Island Sub-district office.

REMAKKS.—Water-quality records for 1969 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.—March 1913 to December 1915, June 1932 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 85.42 ft (26.04 m) NGVD, June 1, 1939; lowest measured, 68.28 ft (20.81 m) NGVD, Feb. 28, 1967.

WATER		WATER		WATER		WATER		WATER		WATER	
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DCT 22	81.43	DEC 21	80. 68	FEB 21	80. 15	APR 22	81.32	JUN 20	82.14	AUG 20	81.19
NOV 21	81.14	JAN 22	80. 50	MAR 20	79.81	MAY 21	82 07	JUL 21	81.63	SEP 22	80. 63

TIME, IN WATER YEARS

NASSAU COUNTY--Continued

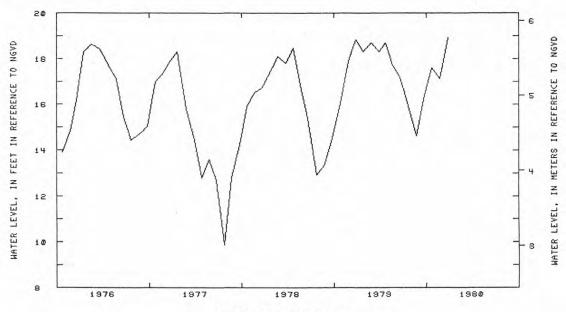
404935073384901. Local number, N 2424.

4043307330701. -Lat 40°49'35", long 73°38'49", Hydrologic Unit 02030201, at Long Island Lighting Company plant on Glenwood Road, Glenwood Landing. Owner: Long Island Lighting Company. AGUIFER. -- Lloyd.

WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 12 in (0.30 m), depth 461 ft (141 m), screened 427 to 459 ft (130 to 140 m)

DATUM. --Land-surface datum is 20.0 ft (6.1 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

casing, I. 80 ft (0.55 m) above land-surface datum.


PERIOD OF RECORD. —-October 1975 to current year. Unpublished records for February 1948 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —-Highest water level measured, 20.89 ft (6.37 m) NGVD, Mar. 14, 1961; lowest

measured, 2.13 ft (0.65 m) NGVD, Oct. 30, 1972.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DCT 24	17. 59	NOV 25	17. 14	DEC 26	18. 94						

TIME. IN WATER YEARS

405101073343202. Local number, N 2528-2. LOCATION. --Lat 40°51'01", long 73°34'32", Hydrologic Unit 02030201, at Chicken Valley and Wolver Hollow Roads, Upper Brookville. Owner: Nassau County Department of Public Works. AQUIFER. -- Magothy.

WELL CHARACTERISTICS. --Drilled observation artesian well, diameter 6 in (0.15 m) to 4 in (0.10 m), depth 328 ft (100 m), slotted 278 to 328 ft (85 to 100 m).

DATUM.—Land—surface datum is 93.1 ft (28.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

nipple, 0.76 ft (0.23 m) above land-surface datum.

REMARKS. --Water-quality records for 1972 are available in files of Long Island Sub-district office.

PERIOD OF RECORD. -- December 1947 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 79.92 ft (24.36 m) NGVD, July 25, 1957; lowest measured, 59.12 ft (18.02 m) NGVD, Feb. 24, 1967.

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 18	71.76	MAR 20	71.24	JUN 18	72. 64	SEP 25	71.75	31			

NASSAU COUNTY--Continued

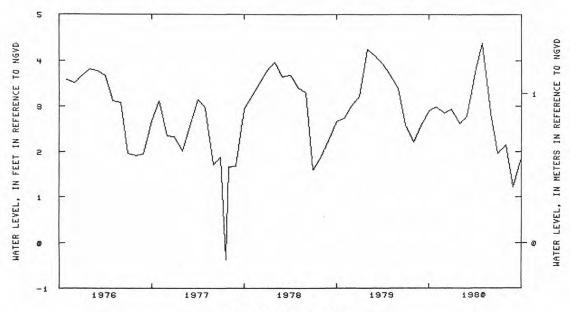
403805073395302. Local number, N 2790-2.
LOCATION.—Lat 40°38'05", long 73°39'53", Hydrologic Unit 02030202, at Bay Park Sewage Treatment Plant, Bay Park.
Owner: Nassau County Department of Public Works.

AGUIFER. -- Magothy.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in (0.15 m), depth 571 ft (174 m), screened 538 to 560 ft (164 to 171 m).

DATUM. --Land-surface datum is 6.0 ft (1.8 m) National Geodetic Vertical Datum of 1929. Measuring point: Base of recorder shelf, 3.82 ft (1.16 m) above land-surface datum.

REMARKS. --Water-quality records for 1964-66, 1968, 1971-74, are available in files of Long Island Sub-district office.


PERIOD OF RECORD. --October 1975 to current year. Unpublished records for July 1960 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 6.50 ft (1.98 m) NGVD, Apr. 6, 1958; lowest measured,

-0.36 ft (-0.11 m) NGVD, July 20, 1977.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL	DATE	WATER								
OCT 31	2. 99	DEC 31	2. 93	FEB 29	2. 78	APR 30	4. 38	JUN 30	1. 96	AUG 31	1. 21
NDV 30	2. 85	JAN 31	2.62	MAR 31	3. 75	MAY 31	2.85	JUL 31	2.15	SEP 30	1.87

TIME, IN WATER YEARS

404619073270602. Local number, N 3355.

LOCATION. --Lat 40°46'19", long 73°27'06", Hydrologic Unit 02030202, at Round Swamp Road, 0.7 mi (1.1 km) south of Old Country Road, Plainview. Owner: U.S. Geological Survey. AGUIFER. -- Lloyd.

WELL CHARACTERISTICS. --Drilled observation artesian well, diameter 8 in (0.20 m) to 4 in (0.10 m), depth 1,090 ft

(332 m), screened 1,070 to 1,090 ft (326 to 332 m).

DATUM. —Land—surface datum is 184.5 ft (56.2 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.78 ft (0.54 m) below land-surface datum.

REMARKS.—Water-quality records for 1951 are available in files of Long Island Sub-district office. PERIOD OF RECORD.—August 1951 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 36.17 ft (11.02 m) NGVD, Apr. 10, 1957; lowest measured, 23.18 ft (7.07 m) above NGVD, Apr. 11, 1972.

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 17	33. 72	MAR 19	32. 30	SEP 24	30. 80						

NASSAU COUNTY--Continued

403751073440201. Local number, N 3861.

**COSTION, --Lat 40°37'51", long 73°44'02", Hydrologic Unit 02030202, at Water Pollution Control Plant, Arlington Place, Cedarhurst. Owner: Village of Cedarhurst.

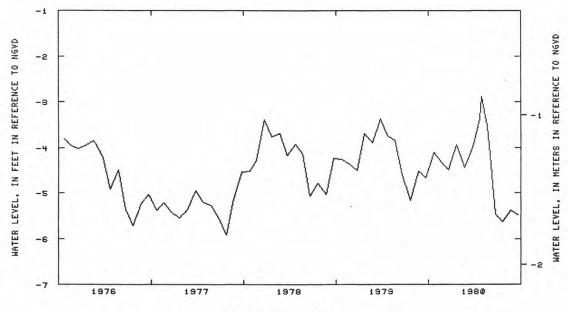
AQUIFER. -- Magothy.

WELL CHARACTERISTICS. --Drilled observation artesian well, diameter 6 in (0.15 m), depth 530 ft (162 m), screened 520 to 530 ft (158 to 162 m).

DATUM. --Land-surface datum is 7.0 ft (2.1 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.37 ft (0.72 m) above land-surface datum.

REMARKS. --Water-quality records for 1952-53, 1956, 1959, 1970, 1974, are available in files of Long Island

Sub-district office.


PERIOD OF RECORD. --October 1975 to current year. Unpublished records for April 1952 to September 1975 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, -2.88 ft (-0.88 m) NGVD, May 1, 1980; lowest

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, -2.88 ft (-0.88 m) NGVD, May 1, 1980; lowest measured, -7.57 ft (-2.31 m) NGVD, Aug. 7, 1955.

ATER EVEL D	ATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
	AN 20 EB 21	-3. 93 -4. 44	MAR 23 APR 22	-3. 99 -3. 36	MAY 1 22	-2. 88 -3. 52	JUN 23 JUL 21	-5. 47 -5. 64	AUG 22 SEP 21	-5. 39 -5. 48

TIME, IN WATER YEARS

NASSAU COUNTY--Continued

403911073432002. Local number, N 3867-2.

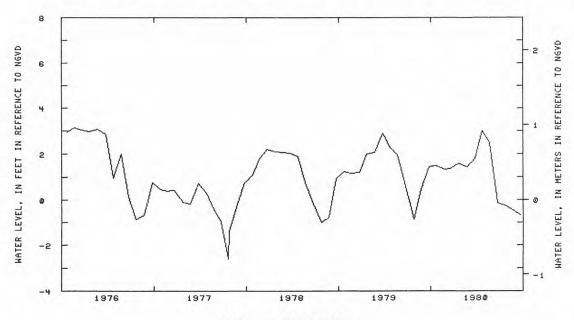
LOCATION.——lat 40°39'11", long 73°43'20", Hydrologic Unit 02030202, at Brook Road Park, at the end of Brook Road, Green Acres. Owner: Town of Hempstead.

AGUIFER. -- Magothy.

WELL CHARACTERISTICS. --Drilled observation artesian well, diameter 6 in (0.15 m), depth 517 ft (158 m), screened 506 to 517 ft (154 to 158 m).

506 to 517 ft (154 to 158 m).

DATUM. --Land-surface datum is 7.9 ft (2.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.30 ft (0.40 m) above land-surface datum.


REMARKS. --Water-quality records for 1971 are available in files of Long Island Sub-district office.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for December 1952 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 7.99 ft (2.44 m) NGVD, Jan. 28, 1953; lowest

measured, -2.61 ft (-0.80 m) NGVD, July 19, 1977.

DATE LEVEL	DATE	LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 23 1.51	DEC 20 JAN 21	1.36	FEB 22 MAR 24	1. 45	APR 23	2. 99	JUN 23 JUL 22	-0.12 -0.24	AUG 25 SEP 22	-0. 45 -0. 67

TIME, IN WATER YEARS

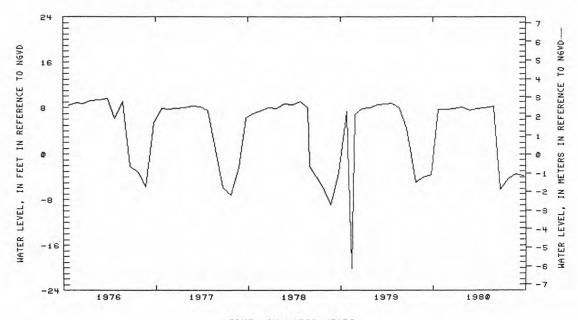
NASSAU COUNTY--Continued

405125073420702. Local number, N 6282-2.

LOCATION. --Lat 40°51'25", long 73°42'07", Hydrologic Unit 02030201, at Helen Keller National Center for Deaf-Blind Youths and Adults, Middle Neck Road, Sands Point. Owner: U.S. Geological Survey. AGUIFER. -- Jameco.

WELL CHARACTERISTICS.—Drilled observation artesian well, diameter 6 in (0.15 m), depth 396 ft (121 m), screened 378 to 388 ft (115 to 118 m).

DATUM.—Land-surface datum is 99.0 ft (30.2 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of flange, 3.22 ft (0.98 m) above land-surface datum.


REMARKS.—Water-quality records for 1976 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.—October 1975 to current year. Unpublished records for December 1960 to September 1975 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 10.58 ft (3.22 m) NGVD, Apr. 25, 1962; lowest measured, -20.09 ft (-6.12 m) NGVD, Nov. 15, 1978.

WATER			WATER	WATER			WATER		WATER	WATER	
DATE	LEVEL	DATE	LEVEL								
DCT 24	7. 73	DEC 27	7. 85	FEB 25	7. 60	APR 24	7. 99	JUN 24	-6. 13	AUG 24	-3. 40
NOV 27	7. 75	JAN 23	8. 08	MAR 25	7. 90	MAY 27	8, 24	JUL 24	-4. 33	SEP 23	-3.76

TIME, IN WATER YEARS

NASSAU COUNTY--Continued

403517073430702. Local number, N 6702.

LOCATION. --Lat 40°35'17", long 73°43'07", Hydrologic Unit 02030202, at Richard and Park Streets, Atlantic Beach.

Owner: Long Island Water Company.

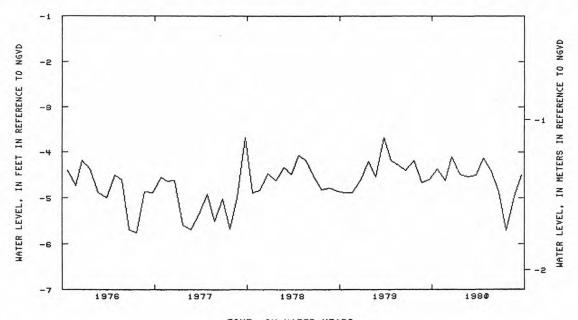
AGUIFER. --Magothy.

WELL CHARACTERISTICS - 2 1000

WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 4 in (0.10 m), depth 677 ft (206 m), screen assumed at bottom.

assumed at bottom.

DATUM. --Land-surface datum is 11.0 ft (3.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 1.05 ft (0.32 m) above land-surface datum.


REMARKS. ---Water-quality records for 1960 and 1970 are available in files of Long Island Sub-district office.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for August 1959 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, -2.50 ft (-0.76 m) NGVD, Apr. 13, 1961; lowest

measured, -8.50 ft (-2.59 m) NGVD, Jul. 23, 1974.

DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER
OCT 22	-4. 36	DEC 20	-4. 10	FEB 22	-4. 53	APR 23	-4. 13	JUN 23	-4. 86	AUG 24	-4. 96
NOV 25	-4.62	JAN 21	-4 4R	MAR DA	-4 50	MAY 22	-4 38	JUI 22	-5 70	SEP 22	-4 50

TIME, IN WATER YEARS

NASSAU COUNTY--Continued

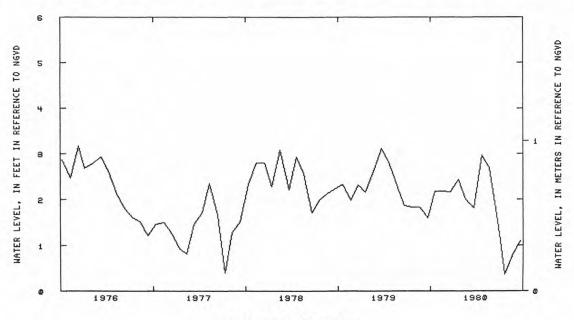
403713073415902. Local number, N 6707. LOCATION.—Lat 40°37'13", long 73°41'59", Hydrologic Unit 02030202, at end of Woodmere Boulevard, at the town dock, Woodsburgh. Owner: Nassau County Department of Public Works. AGUIFER. -- Magothy.

WELL CHARACTERISTICS.—Drilled observation artesian well, diameter 4 in (0.10 m), depth 503 ft (153 m), screened 494 to 503 ft (151 to 153 m).

494 to 503 ft (151 to 153 m).

DATUM.—Land-surface datum is 5.0 ft (1.5 m) National Geodetic Vertical Datum of 1929. Measuring Point: Top of coupling, 2.08 ft (0.63 m) above land-surface datum.

REMARKS.—Water-quality records for 1960, 1964, 1970—71, are available in files of Long Island Sub-district office.


PERIOD OF RECORD.——October 1975 to current year. Unpublished records for October 1959 to September 1975 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 4.52 ft (1.38 m) NGVD, Mar. 13, 1961; lowest measured, -1.18 ft (-0.36 m) NGVD, July 24, 1974.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

WATER			WATER		WATER				WATER		WATER
DATE	LEVEL										
DCT 20	2. 18	DEC 19	2. 16	FEB 19	2.00	APR 21	2. 97	JUN 21	1. 54	AUG 20	0.77
NOV 19	2.18	JAN 20	2.44	MAR 19	1.82	MAY 21	2.69	JUL 20	0.37	SEP 21	1.10

TIME, IN WATER YEARS

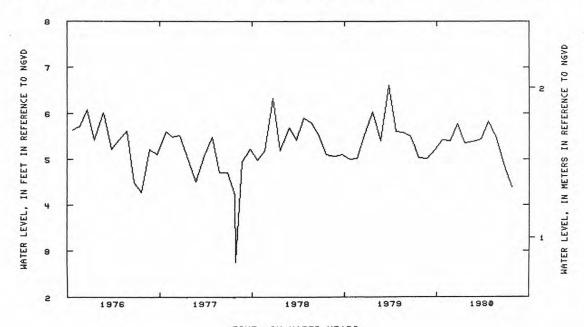
NASSAU COUNTY--Continued

403533073353202. Local number, N 6850.

LOCATION. --Lat 40°35′33", long 73°35′32", Hydrologic Unit 02030202, at Lido Boulevard, 0.3 mi (0.5 km) west of Loop Parkway, Lido Beach. Owner: U.S. Geological Survey.

AQUIFER. -- Magothy.

WELL CHARACTERISTICS. --Drilled observation artesian well, diameter 6 in (0.15 m), depth 913 ft (278 m), screened 899 to 910 ft (274 to 277 m).


DATUM. --Land-surface datum is 6.8 ft (2.1 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 2.40 ft (0.73 m) above land-surface datum. REMARKS.—Water-quality records for 1960 and 1975 are available in files of Long Island Sub-district office.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for 1960-75 are available in files of Long

Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 8.00 ft (2.44 m) NGVD, Apr. 13, 1961; lowest measured, 2.75 ft. (0.84 m) NGVD, July 28, 1977.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 22	5. 41 5. 40	DEC 21 JAN 21	5. 76 5. 35	FEB 22 MAR 24	5. 39 5. 44	APR 23	5. 82 5. 50	JUN 23	4. 90	JUL 23	4. 40

TIME, IN WATER YEARS

NASSAU COUNTY--Continued

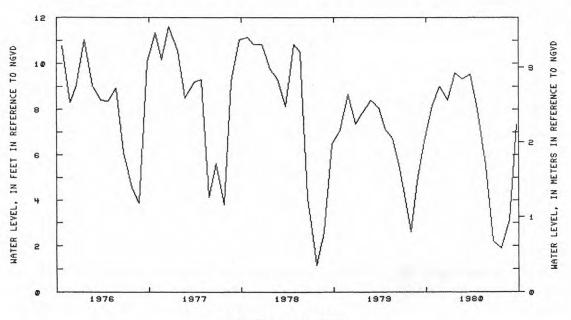
405432073345001. Local number, N 7152.

LOCATION. --Lat 40°54'32", Long 73°34'50", Hydrologic Unit 02030201, at Oak Neck Beach, Bayville. Owner: Town of Oyster Bay.

AGUIFER.—Lloyd.
WELL CHARACTERISTICS.—Drilled observation artesian well, diameter 6 in (0.15 m), depth 330 ft (101 m), screened
360 to 370 ft (110 to 113 m).

DATUM.—Land-surface datum is 15.0 ft (4.6 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of nipple, 3.13 ft (0.95 m) above land-surface datum.

REMARKS.—Water-quality records for 1970 are available in files of Long Island Sub-district office.


PERIOD OF RECORD.—October 1975 to current year. Unpublished records for September 1961 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 15.74 ft (4.80 m) NGVD, Feb. 5, 1962; lowest

measured, -2.54 ft (-0.77 m) NGVD, July 15, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

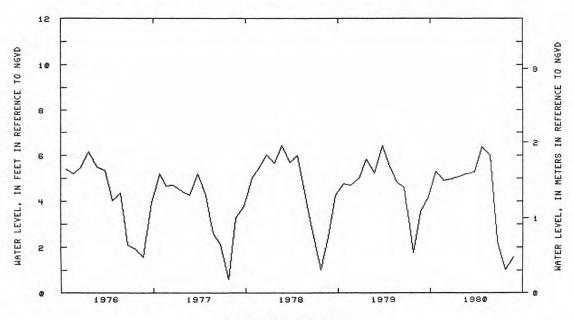
WATER			WATER								
DATE	LEVEL										
OCT 25	8. 16	DEC 27	8. 39	FEB 24	9. 32	APR 23	8. 00	JUN 23	2. 20	AUG 25	3. 15
NOV 26	9.00	JAN 23	9. 61	MAR 25	9. 53	MAY 26	5. 55	JUL 23	1.89	SEP 26	7. 32

TIME, IN WATER YEARS

NASSAU COUNTY--Continued

403856073392602. Local number, N 7161-2.
LOCATION.--Lat 40°38′56", long 73°39′26", Hydrologic Unit 02030202, at Village Dump, at end of Riverside Road,
Rockville Centre. Owner: Village of Rockville Centre.

AGUIFER. -- Magothy. WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 6 in (0.15 m), depth 666 ft (203 m), screened 611 to 666 ft (186 to 203 m).


DATUM.—Land-surface datum is 7.0 ft (2.1 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of base of recorder shelf, 2.78 ft (0.85 m) above land-surface datum.

REMARKS. --Water-quality records 1964-67 are available in files of Long Island Sub-district office.
PERIOD OF RECORD. --October 1975 to current year. Unpublished records for 1961-75 are available in files of Long

Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 8.03 ft (2.45 m) NGVD, Mar. 13, 1962; lowest measured, -2.81 ft (-0.86 m) NGVD, July 13, 1966.

WATER			WATER		WATER				WATER		WATER
DATE	LEVEL										
OCT 23	5. 29	DEC 21	4. 98	FEB 22	5. 21	APR 23	6. 37	JUN 23	2. 26	AUG 25	1. 56
NOU 24	4 89	LAN 22	5 04	MAR DA	5 29	MAY 23	6 01		1 03		

TIME, IN WATER YEARS

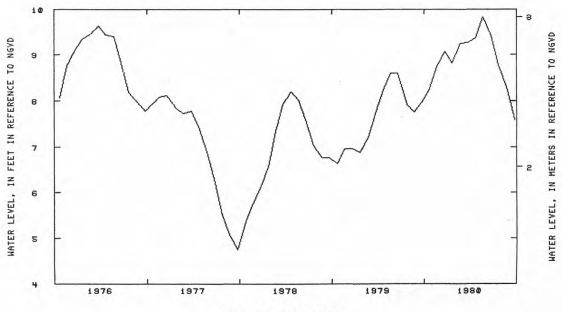
NASSAU COUNTY--Continued

404237073433701. Local number, N 7493.
LOCATION.—Lat 40°42′37", long 73°43′37", Hydrologic Unit 02030202, at Hempstead Turnpike and Cross Island Parkway, Elmont. Owner: Nassau County Department of Public Works. AQUIFER. -- Magothy.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 4 in (0.10 m), depth 353 ft (108 m), screened

348 to 353 ft (106 to 108 m).

DATUM.—Land-surface datum is 76.0 ft (23.2 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of flange, 1.59 ft (0.48 m) above land-surface datum.


REMARKS.—Water-quality records for 1964, 1967, 1972, are available in files of Long Island Sub-district office.

PERIOD OF RECORD.—October 1975 to current year. Unpublished records for 1964-75 are available in files of Long

Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 20.33 ft (6.20 m) NGVD, Apr. 30, 1964; lowest measured, 4.63 ft (1.41 m) NGVD, Sept. 18, 1977.

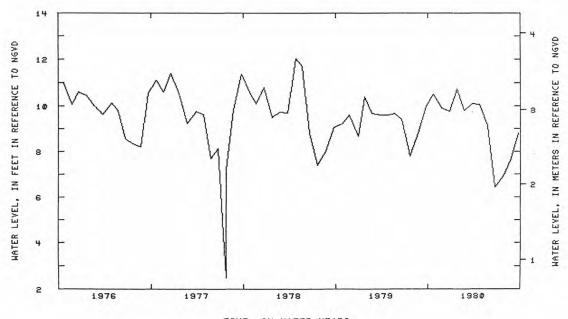
WATER			WATER		WATER		WATER		WATER	TER	
DATE	LEVEL										
DCT 22	8. 26	DEC 21	9. 07	FEB 21	9. 25	APR 22	9. 37	JUN 23	9. 42	AUG 22	8. 30
NOV 20	8.74	JAN 21	8. 81	MAR 24	9. 27	MAY 22	9.83	JUL 22	8.76	SEP 23	7. 60

TIME, IN WATER YEARS

NASSAU COUNTY--Continued

405418073323801. Local number, N 7546.
LOCATION.—Lat 40°54'18", long 73°32'38", Hydrologic Unit 02030201, at West Harbor Drive and Ludlum Avenue,
Bayville. Owner: Nassau County Department of Public Works.

AQUIFER. -- Lloyd.


WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 4 in (0.10 m), depth 364 ft (111 m), screened 359 to 364 ft (119 to 111 m).

DATUM. --Land-surface datum is 12.0 ft (3.7 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.87 ft (0.57 m) above land-surface datum.
PERIOD OF RECORD. --October 1975 to current year. Unpublished records for 1964-75 are available in files of Long

Island Sub-district office. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 13.15 ft (4.01 m) NGVD, Mar. 15, 1975; lowest

measured, 2.49 ft (0.76 m) NGVD, July 24, 1977.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL
DCT 24	10. 49	DEC 27	9. 78	FEB 23	9. 79	APR 23	10.08	JUN 24	6. 44	AUG 24	7. 61
NOV 25	9.89	JAN 23	10.75	MAR 25	10.11	MAY 25	9.12	JUL 23	6.89	SEP 24	8. 80

TIME, IN WATER YEARS

NASSAU COUNTY--Continued

403805073395303. Local number, N 7675. LOCATION. --Lat 40°38′05", long 73°39′53", Hydrologic Unit 02030202, at Bay Park Sewage Treatment Plant, Bay Park. Owner: Nassau County Department of Public Works.

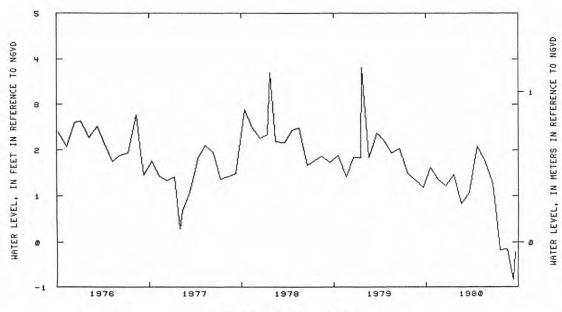
AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 4 in (0.10 m), depth 35 ft (11 m), screened 28 to 34 ft (9 to 10 m).

DATUM. --Land-surface datum is 6.0 ft (1.8 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

casing, 2.95 ft (0.90 m) above land-surface datum.

REMARKS.—Water-quality records for 1965 are available in files of Long Island Sub-district office.


PERIOD OF RECORD.—October 1975 to current year. Unpublished records for 1966-75 are available in files of Long

Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 3.82 ft (1.16 m) NGVD, Jan. 20, 1979; lowest measured, -0.83 ft (-0.25 m) NGVD, Sept. 12, 1980.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL										
DCT 18	1.62	JAN 20	1.47	MAR 19	1.06	MAY 21	1.78	JUL 20	-0. 17	SEP 12	-0. 83
NOV 19	1.35	FEB 19	0.83	APR 21	2. 08	JUN 21	1. 26	AUG 20	-0.15	21	-0. 21

TIME. IN WATER YEARS

NASSAU COUNTY--Continued

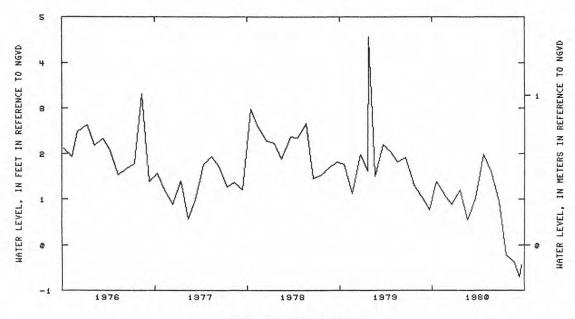
403805073395304. Local number, N 7676.
LOCATION.—Lat 40°38'05", long 73°39'53", Hydrologic Unit 02030202, at Bay Park Sewage Treatment Plant, Bay Park.
Owner: Nassau County Department of Public Works.

AQUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. --Driven observation water-table well, diameter 4 in (0.10 m), depth 10 ft (3 m), screened 7 to 10 ft (2.1 to 3.0 m).

DATUM. --Land-surface datum is 6.0 ft (1.8 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

casing, 3.33 ft (1.01 m) above land-surface datum.


REMARKS.—Water-quality records for 1965 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.—October 1975 to current year. Unpublished records for 1966-75 are available in files of Long

Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 4.56 ft (1.39 m) NGVD, Jan. 25, 1979; lowest measured, -0.70 ft (-0.21 m) NGVD, Sept. 13, 1980.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 19 NOV 19	1.39	JAN 21 FEB 20	1.20 0.55	MAR 20 APR 21	1. 01 1. 98	MAY 21 JUN 23	1.61	JUL 21 AUG 21	-0. 21 -0. 36	SEP 13	-0. 70 -0. 43
DEC 20	0.00	, LD EU	0. 55	HIN EI	1. 70	0014 23	0. 75	HUG ZI	-0. 50		0. 45

TIME, IN WATER YEARS

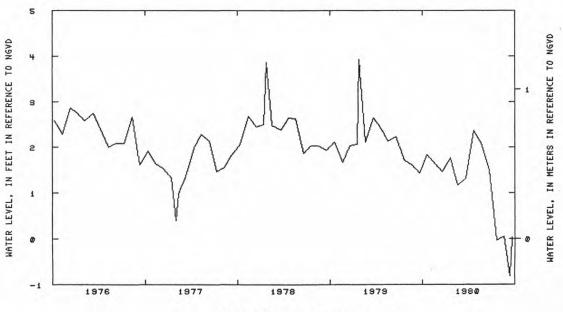
NASSAU COUNTY--Continued

403805073395503. Local number, N 7677.
LOCATION.——lat 40°38'05", long 73°39'55", Hydrologic Unit 02030202, at Bay Park Sewage Treatment Plant, Bay Park.

Owner: Nassau County Department of Public Works.

AQUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. -- Drilled observation water-table well, diameter 4 in (0.10 m), depth 89 ft (27 m), screened 84 to 89 ft (26 to 27 m).


DATUM. --Land-surface datum is 6.0 ft (1.8 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.66 ft (O.81 m) above land-surface datum.

REMARKS.—Water-quality records for 1965 and 1973 are available in files of Long Island Sub-district office.
PERIOD OF RECORD.—October 1975 to current year. Unpublished records for 1966-75 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 3.94 ft (1.20 m) NGVD, Jan. 25, 1979; lowest measured, -0.82 ft (-0.25 m) NGVD, Sept. 12, 1980.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL										
OCT 18	1.83	JAN 20	1.76	MAR 19	1. 31	MAY 21	2. 08	JUL 20	-0.04	SEP 12	-0.82
NOV 19	1.64	FEB 19	1.16	APR 21	2. 36	JUN 21	1.50	AUG 20	0.05	21	0.04
DEC 19	1.47										

TIME. IN WATER YEARS

NASSAU COUNTY--Continued

403803073395306. Local number, N 7888. LOCATION. --Lat 40°38'03", long 73°39'53", Hydrologic Unit 02030202, at Bay Park Sewage Treatment Plant, Bay Park. Owner: Nassau County Department of Public Works.

AQUIFER. -- Magothy.

WELL CHARACTERISTICS. --Drilled observation artesian well, diameter 4 in (0.10 m), depth 327 ft (100 m), screened 307 to 317 ft (94 to 97 m).

307 to 317 rt (74 to 77 m).

DATUM.—Land-surface datum is 6.0 ft (1.8 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 5.56 ft (1.69 m) above land-surface datum.

REMARKS.—Water-quality records for 1965-70, 1972-73, are available in files of Long Island Sub-district office.

PERIOD OF RECORD.—-October 1975 to current year. Unpublished records for 1966-75 are available in files of Long

Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 4.79 ft (1.46 m) NGVD, Feb. 6, 1978; lowest measured, 0.49 ft (0.15 m) NGVD, Sept. 13, 1980.

WATER WATER DATE LEVEL DATE LEVEL	WATER DATE LEVEL DATE	WATER LEVEL DATE	WATER LEVEL DATE	WATER
OCT 18 3.12 JAN 20 3.15	MAR 19 2.68 MAY 21	3. 62 JUL 20	1.32 SEP 13	0.49
NOV 19 2.95 FEB 20 2.88	APR 21 3.95 JUN 22	2. 24 AUG 20	1.66 21	1. 90

TIME, IN WATER YEARS

NASSAU COUNTY--Continued

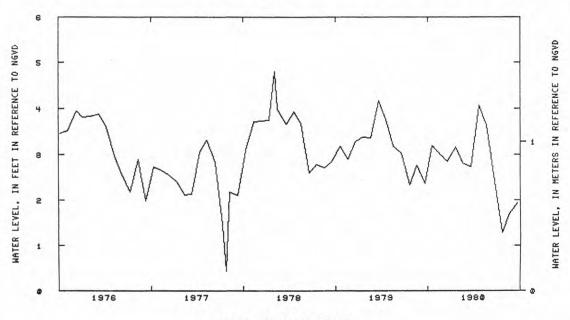
403804073395201. Local number, N 8022.
LOCATION. --Lat 40°38'04", long 73°39'52", Hydrologic Unit 02030202, at Bay Park Sewage Treatment Plant, Bay Park.
Owner: Nassau County Department of Public Works.

AQUIFER. -- Magothy. WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 6 in (0.15 m), depth 490 ft (149 m), screened 420 to 480 ft (128 to 146 m).

DATUM. --Land-surface datum is 6.0 ft (1.8 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

casing, 4.10 ft (1.25 m) above land-surface datum.

REMARKS.—Water-quality records for 1972-74 are available in files of Long Island Sub-district office.


PERIOD OF RECORD.—October 1975 to current year. Unpublished records for 1966-75 are available in files of Long

Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 4.80 ft (1.46 m) NGVD, Feb. 6, 1978; lowest measured, 0.43 ft (0.13 m) NGVD, July 23, 1977.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
OCT 18 NOV 19	3. 20	DEC 19 JAN 20	2. 85 3. 16	FEB 19 MAR 19	2. 82	APR 21 MAY 21	4. 07 3. 45	JUN 21 JUL 20	2. 42	AUG 20 SEP 21	1.70

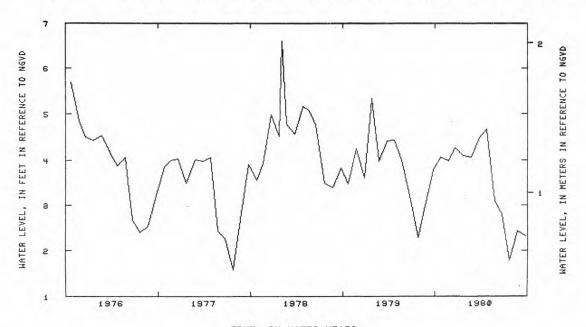
TIME, IN WATER YEARS

NASSAU COUNTY--Continued

404947073450301. Local number, N 8046. LOCATION.—-Lat 40°49'47", long 73°45'03", Hydrologic Unit 02030201, at Pond and Kings Point Roads, Kings Point, Owner: Nassau County, Department of Public Works. AGUIFER.—-Jameco.

WELL CHARACTERISTICS. -- Driven observation artesian well, diameter 4 in (0.10 m), depth 189 ft (58 m), screened 184 to 189 ft (56 to 58 m).

DATUM. -- Land-surface datum is 8.0 ft (2.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of


casing 3.66 ft (1.12 m) above land-surface datum.

REMARKS.—Hater-quality records for 1966 and 1976 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.—October 1975 to current year. Unpublished records for May 1966 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 6.60 ft (2.01 m) NGVD, Feb. 6, 1978; lowest measured, -1.20 ft (-0.37 m) NGVD, July 19, 1966.

DATE	WATER	DATE	WATER	DATE	WATER	DATE	WATER	DATE	WATER	DATE	WATER
OCT 23 NOV 25	4. 07 3. 98	DEC 20 JAN 22	4. 26 4. 10	FEB 24 MAR 25	4. 07 4. 49	APR 23 MAY 26	4. 66	JUN 23	2. 80 1. 78	AUG 23 SEP 23	2. 43 2. 31

TIME, IN WATER YEARS

NASSAU COUNTY--Continued

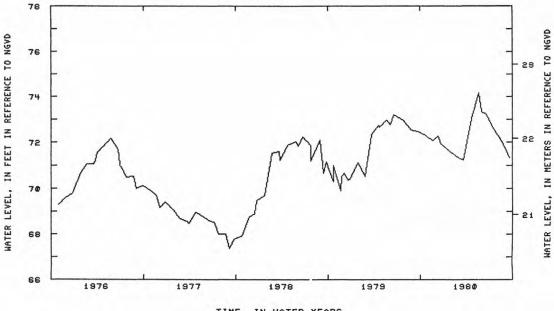
404537073370102. Local number, N 8269-2.

LOCATION. --Lat 40°45'37", long 73°37'01", Hydrologic Unit 02030202, at Hillside Avenue and Bacon Road, Old Westbury. Owner: Nassau County Department of Public Works.

AGUIFER. --Magothy.
WELL CHARACTERISTICS. --Driven observation water-table well, diameter 4 in (0.10 m), depth 86 ft (26 m), screened 81 to 86 ft (25 to 26 m).

DATUM. --Land-surface datum is 111.7 ft (34.0 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 0.15 ft (0.05 m) below land-surface datum.

REMARKS. --Prior to April 1976, well was in upper glacial aquifer, depth 63.7 ft (19.4 m). Replaced well N 1256,


April 1967.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for June 1936 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 80.97 ft (24.68 m) NGVD, May 20, 1939; lowest measured, 60.83 ft (18.54 m) NGVD, Sept. 29, 1971.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

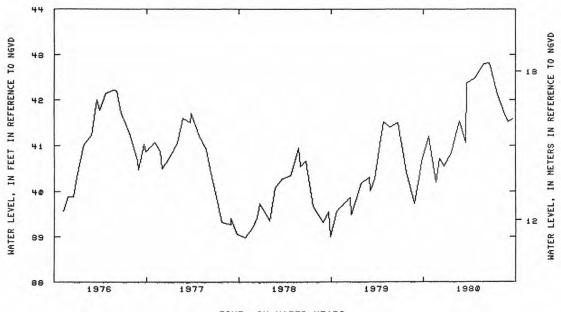
DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 22	72. 30	DEC 21	71. 92	MAR 20	71. 25	MAY 21	74. 18	JUN 20	73. 22	AUG 20	72. 08
NOV 21	72. 08	JAN 22	71. 65	APR 22	73. 02	30	73. 33 G	JUL 21	72. 55	SEP 22	71. 32

TIME, IN WATER YEARS

NASSAU COUNTY--Continued

404742073410301. Local number, N 8309.
LOCATION.—Lat 40°47′42", long 73°41′03", Hydrologic Unit 02030201, at Northern Boulevard and Manhasset Woods Road,
Munsey Park. Owner: Nassau County Department of Public Works. Munsey Park. C AQUIFER. --Magothy.

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 4 in (0.10 m), depth 199 ft (61 m), screened 194 to 199 ft (59 to 61 m).


DATUM.—Land-surface datum is 143.2 ft (43.6 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of pipe, 0.15 ft (0.05 m) below land-surface datum.

PERIOD OF RECORD.—October 1975 to current year. Unpublished records for March 1967 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 42.81 ft (13.05 m) NGVD, June 20, 1980; lowest

measured, 33.53 ft (10.22 m) NGVD, Sept. 23, 1968.

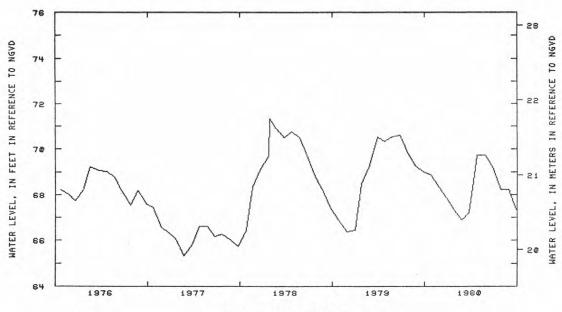
DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 22 NOV 21	41. 20 40. 20	DEC 21 JAN 22	40. 55 40. 85	MAR 18 21	41.07 G 42.36	MAY 28 JUN 20	42.80 G 42.81	JUL 21 AUG 20	42. 12 41. 69	SEP 2	41.52 G 41.58
DEC 5	40 72 0	EED 21	11 51	ADD 22	40 40						

TIME, IN WATER YEARS

NASSAU COUNTY--Continued

404404073305701. Local number, N 8959.
LOCATION.—Lat 40° 44′04", long 73° 30′57", Hydrologic Unit 02030202, at Meadowbrook Hospital Sewage Treatment Plant,
East Meadow. Owner: Nassau County Department of Public Works.

AGUIFER. —-Upper Glacial.


WELL CHARACTERISTICS. —-Drilled observation water-table well, diameter 2 in (0.05 m), depth 49 ft (15 m), screened 44 to 49 ft (13 to 15 m). DATUM. --Land-surface datum is 100.3 ft (30.6 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

paider, 2.87 ft (0.87 m) above land-surface datum.

PERIOD OF RECORD. —October 1975 to current year. Unpublished records for December 1972 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water-level measured, 71.35 ft (21.75 m) NGVD, Jan. 27, 1978; lowest measured, 64.87 ft (19.77 m) NGVD, Dec. 16, 1974.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL
OCT 26	68. 88 68. 33	DEC 27 JAN 28	67. 86 67. 30	FEB 25	66. 89 67. 21	APR 25	69.72 69.75	JUN 27	69. 22	AUG 28 SEP 29	68. 24 67. 34

TIME, IN WATER YEARS

147

NASSAU COUNTY--Continued

404758073440602. Local number, N 9099.

LOCATION. --Lat 40° 47′58", long 73° 44′06", Hydrologic Unit O2030201, at Middle Neck Road and Preston Road, Great Neck. Owner: Nassau County Department of Public Works.

AGUIFER. -- Upper Glacial. WELL CHARACTERISTICS. -- Drilled observation water-table well, diameter 4 in (0.10 m), depth 71 ft (22 m), screened 66 to 71 ft (20 to 22 m).

DATUM.—Land-surface datum is 59.7 ft (18.2 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 0.07 ft (0.02 m) below land-surface datum.

REMARKS.—Well N 9099 replaces N 1479. Prior to April 1976, water levels were measured in N 1479. Water-quality records for 1976 are available in files of Long Island Sub-district office.

PERIOD OF RECORD. --April 1976 to current year. Unpublished records for September 1944 to December 1975 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 27.32 ft (8.33 m) NGVD, June 15, 1949; lowest measured, 15.07 ft (4.59 m) above NGVD, Dec. 23, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER	DATE	WATER	DATE	WATER
OCT 22 NOV 21	21.85 21.48	DEC 21 JAN 22	21.36 20.88	FEB 21 MAR 21	20. 59 20. 45	APR 22 MAY 22	20. 33	JUN 20 JUL 21	21.10	AUG 21 SEP 22	21. 65

404112073421003. Local number, N 9309. LOCATION. --Lat 40°41′12", long 73°42′10", Hydrologic Unit 02030202, at Dutch Broadway and Fletcher Avenue, Elmont. Owner: Nassau County Department of Public Works. AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. -- Driven observation water-table well, diameter 4 in (0.10 m), depth 59 ft (13 m), screened 54 to 59 ft (16.4 to 18.0 m).

DATUM. --Land-surface datum is 42.7 ft (13.0 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.64 ft (0.21 m) below land-surface datum. REMARKS. -- Replaced Well N 1109-2, October, 1977.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for April 1939 to September 1975 are

available in files of Long Island Sub-district office. EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 30.04 ft (9.16 m) NGVD, Apr. 21, 1939; lowest measured, 9.50 ft (2.90 m) NGVD, July 26, 1977.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DCT 22	13.71	JAN 22	12. 92	APR 22	14. 13	MAY 27	14.87 G	JUL 21	13. 34	SEP 4	12.79 G
DEC 21	12. B1 13. 14	FEB 25 MAR 21	12. 48 12. 31	MAY 21	14. 76	JUN 20	14. 65	AUG 20	12. 87	22	11. 92

G MEASUREMENT BY ANOTHER AGENCY

QUEENS COUNTY

Lucal number, @ 283.

LOCATION. --Lat 40° 44′51", long 73° 47′50", Hydrologic Unit 02030201, at Underhill Avenue and 171st Street, Flushing.

Owner: City of New York, Department of Water Supply. @as and Flashmicity. AGUIFER. -- Lloyd.

WELL CHARACTERISTICS. -- Drilled unused artesian well, diameter 26 in (0.66 m), depth 409 ft (125 m), screened 309 to 352 ft (94 to 107 m), 367 to 409 ft (112 to 125 m).

DATUM. --Land-surface datum is 27.0 ft (8.23 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

iron plate, 0.37 ft (0.11 m) above land-surface datum.

PERIOD OF RECORD. -- June 1946 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 1.13 ft (0.34 m) NGVD, Mar. 28, 1961; lowest measured, -27.40 ft (-8.35 m) NGVD, Sept. 14, 1976.

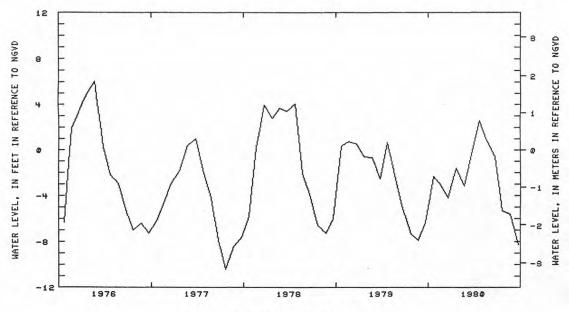
WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JAN 22	-7. 57	MAR 12	-19.09	JUN 27	-21.61	SEP 25	-22.68				

40441807344101. Local number, Q 577.

LOCATION. --Lat 40°44′18", long 73°43′41", Hydrologic Unit 02030201, at Creedmoor State Hospital, near the intersection of Hillside Avenue and Cross Island Parkway, Bellrose. Owner: State of New York.

AQUIFER. -- Lloyd. WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 12 in (0.30 m), depth 644 ft (196 m), screen assumed at bottom.


DATUM. --Land-surface datum is 113.1 ft (34.5 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

casing, 1.45 ft (0.44 m) above land-surface datum.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for February 1946 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 9.65 ft (2.94 m) NGVD, Mar. 13, 1959; lowest measured, -19.74 ft (-6.02 m) NGVD, Jul. 27, 1954.

DATE	WATER LEVEL										
OCT 22	-2.34	DEC 19	-4. 18	FEB 21	-3. 14	APR 22	2. 63	JUN 23	-0. 58	AUG 22	-5. 60
NOV 20	-3.06	JAN 21	-1. 59	MAR 24	-0. 07	MAY 22		JUL 22	-5. 30	SEP 23	-8. 26

TIME, IN WATER YEARS

QUEENS COUNTY--Continued

LOCATION. --Lat 40°41'57", long 73°48'01", Hydrologic Unit 02030202, at Liberty Avenue and 157th Street, Jamaica.

Owner: U.S. Geological Survey.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. -- Driven observation water-table well, diameter 1.25 in (0.03 m), depth 60 ft (18 m), screened 58 to 60 ft (17.7 to 18.3 m).

DATUM, --Land-surface datum is 31.2 ft (9.5 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 0.31 ft (0.09 m) above land-surface datum.

REMARKS. -- Well destroyed after December measurement.

PERIOD OF RECORD. --October 1940 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 13.92 ft (4.24 m) NGVD, Nov. 2, 1948; lowest measured, -2.81 ft (-0.86 m) NGVD, Feb. 9, 1971.

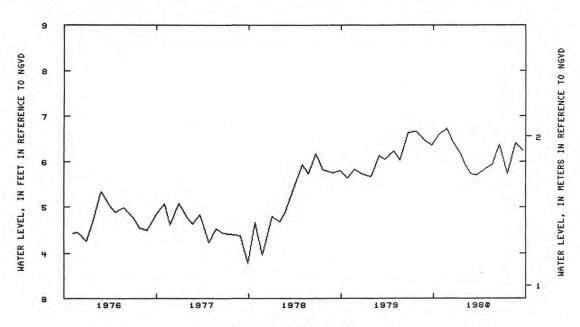
WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 17	0. 91										

404113073501101. Local number, @ 1254.

LOCATION. --Lat 40°41'13", long 73°50'11", Hydrologic Unit 02030202, at 108th Street and 101st Avenue, Woodhaven. Owner: New York City.

AGUIFER. -- Upper Glacial.


WELL CHARACTERISTICS. -- Driven observation water-table well, diameter 1.5 in (0.04 m), depth 65 ft (20 m), screened 63 to 65 ft (19 to 20 m).

DATUM.——Land-surface datum is 56.0 ft (17.1 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

coupling, 10.46 ft (3.19 m) below land-surface datum.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for October 1940 to December 1954, January 1956 to December 1957, March 1959 to September 1975, are available in files of Long Island Sub-district office. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 6.74 ft (2.05 m) NGVD, Nov. 23, 1979; lowest measured, -11.29 ft (3.44 m) NGVD, Sept. 2, 1966.

DATE	WATER LEVEL	DATE	WATER								
OCT 22	6. 60	JAN 22	6. 13	FEB 25	5. 73	APR 22	5. 84	JUN 20	6. 39	AUG 21	6. 42
NOV 23	6.74	30	5. 99	MAR 21	5. 70	MAY 21	5. 94	JUL 21	5.74	SEP 22	6. 25
DEC 18	6. 44										

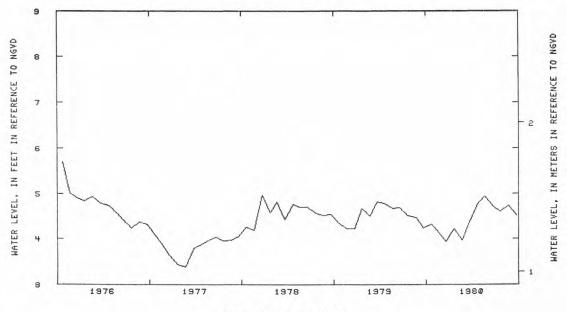
TIME, IN WATER YEARS

QUEENS COUNTY--Continued

404656073503701. Local number, Q 1373. LOCATION.—Lat 40°46′56″, long 73°50′37″, Hydrologic Unit 02030201, at 127th Street and 20th Avenue, College Point. Owner: Modulaire Components Corporation.

AQUIFER -- Lloud.

WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 6 in (0.15 m), depth 262 ft (80 m), screened 194 to 206 ft (59 to 63 m).


DATUM.—Land-surface datum is 50.3 ft (15.3 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 1.06 ft (0.32 m) below land-surface datum.

PERIOD OF RECORD.—October 1975 to current year. Unpublished records for 1947-48, 1950, 1952-53, 1962, 1968-73, are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 6.12 ft (1.87 m) NGVD, Jan. 10, 1973; lowest measured, -2.80 ft (-0.85 m) NGVD, Feb. 7, 1962.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER	DATE	WATER	DATE	WATER LEVEL
OCT 21	4. 32	DEC 18	3. 93	FEB 21	3. 96	APR 27	4. BO	JUN 21	4. 72	AUG 22	4. 74
NOV 19	4. 13	JAN 20	4. 21	MAR 22	4. 36	MAY 21	4. 93	JUL 20	4. 60	SEP 23	4. 51

TIME. IN WATER YEARS

403957073495002. Local number, Q 2324.

LOCATION. --Lat 40°39'57", long 73°49'50", Hydrologic Unit 02030202, at North Conduit Avenue and 114th Street, South Ozone Park. Owner: New York Racing Association, Inc. AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. -- Driven observation water-table well, diameter 2.5 in (0.06 m), depth 91 ft (28 m), screen assumed at bottom.

DATUM. --Land-surface datum is 22.0 ft (6.7 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, .04 ft (0.01 m) above land-surface datum.

REMARKS. --Water-quality records for 1970 are available in files of Long Island Sub-district office. PERIOD OF RECORD. --March 1959 to current year.

EXTREMES FOR PERIOD OF RECORD, --Highest water level measured, 3.56 ft (1.08 m) NGVD, Sept. 24, 1980; lowest measured, -3.40 ft (-1.04 m) NGVD, May 25, 1959.

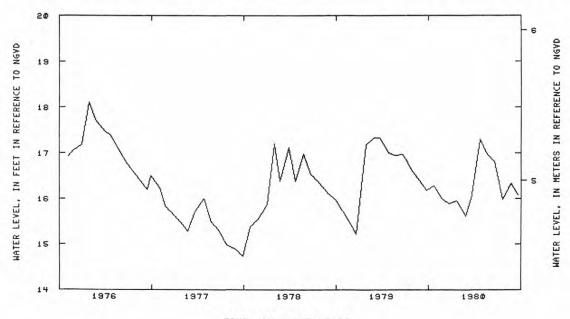
DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER	DATE	WATER LEVEL	
DEC 17	2. 65	MAR 12	2.21	JUN 12	3 46	SEP 24	3 56					

QUEENS COUNTY--Continued

404451073475002. Local number, Q 2346.

LOCATION. --Lat 40°44′51", long 73°47′50", Hydrologic Unit 02030201, at Underhill Avenue and Fresh Meadow Lane, Flushing. Owner: New York City.

AGUIFER. -- Upper Glacial. WELL CHARACTERISTICS. -- Driven observation well, diameter 1.25 in (0.03 m), depth 17.0 ft (5.2 m), screen assumed at


bottom.

DATUM.—Land-surface datum is 29.0 ft (8.8 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.98 ft (0.30 m) above land-surface datum.

PERIOD OF RECORD.—October 1975 to current year. Unpublished records for August 1960 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 21.99 ft (6.70 m) NGVD, Apr. 26, 1961; lowest measured, 13.96 ft (4.26 m) NGVD, Nov. 4, 1970.

DATE	WATER LEVEL										
DCT 22	16. 28	DEC 21	15.89	FEB 25	15. 62	APR 22	17. 30	JUN 20	16. 82	AUG 21	16. 34
NOV 23	16. 00	JAN 22	15.95	MAR 21	16. 09	MAY 21	16. 96	JUL 21	15. 98	SEP 22	16. 08

TIME, IN WATER YEARS

QUEENS COUNTY--Continued

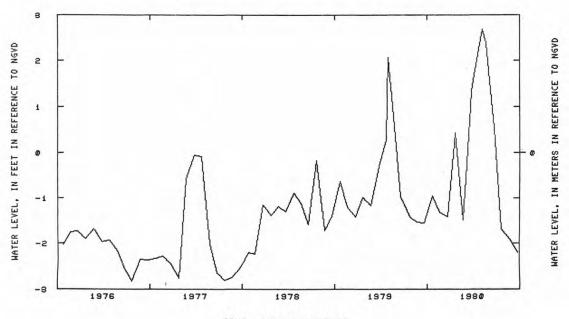
404025073463801. Local number, Q 2422.
LOCATION.—Lat 40°40'25", long 73°46'38", Hydrologic Unit 02030202, at New York Boulevard and 132nd Avenue,
Jamaica. Owner: Jamaica Water Supply Company.

AQUIFER. -- Magothy.

WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 8 in (0.20 m) depth 370 ft (113 m), screened 342 to 362 ft (104 to 110 m).

DATUM. --Land-surface datum is 21.0 ft (6.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

nipple, 1.21 ft (0.37 m) above land-surface datum.


REMARKS. --Water-quality records for 1970 are available in files of Long Island Sub-district office.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for 1964-75 are available in files of Long

Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 2.69 ft (0.82 m) NGVD, May 6, 1980; lowest measured,

DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
OCT 22	-0. 95	JAN 21	0. 43	MAR 24	1. 33	MAY 6	2. 69	JUN 23	0. 54	AUG 22	-1. 90
NOV 20 DEC 21	-1.32 -1.41	FEB 21	-1.48	APR 22	2. 25	22	2. 38	JUL 22	-1.69	SEP 23	-2. 20

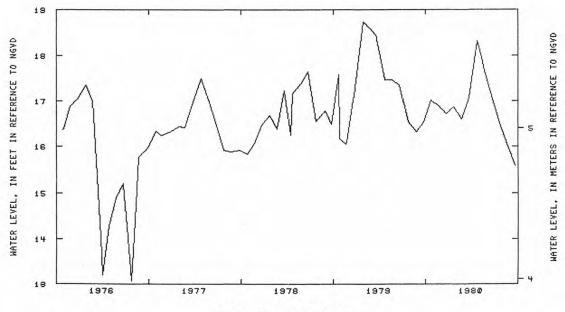
TIME. IN WATER YEARS

SUFFOLK COUNTY

404213073204001. Local number, 5 1803.
LOCATION.—Lat 40°42′13", long 73°20′40", Hydrologic Unit 02030202, at Little East Neck Road and State Highway 109,
Babylon. Owner: New York State Department of Transportation.

AQUIFER. -- Upper Glacial. WELL CHARACTERISTICS. --Driven observation water-table well, diameter 1.25 in (0.03 m), depth 19 ft (6 m), screened 16 to 19 ft (5 to 6 m).

DATUM. --Land-surface datum is 23.7 ft (7.2 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of


DATUM --Land-surface datum is 23.7 ft (7.2 m) National Geodetic Vertical Datum of 1727. The Soling points, op a casing, 0.08 ft (0.02 m) above land-surface datum.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for October 1912 to November 1914, August and September 1932, June 1936 to September 1975, are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 18.74 ft (5.71 m) NGVD, Jan. 29, 1979; lowest measured, 13.06 ft (3.98 m) NGVD, July 26, 1976.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

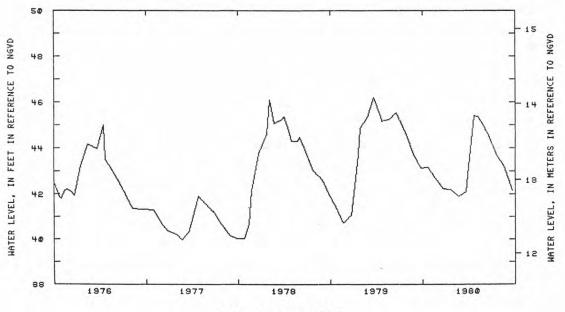
DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 22	17.01	JAN 22	16.86	MAR 20	17. 06	MAY 9	17. 95	JUN 20	17. 11	AUG 20	16.05
NOV 21	16. 90	FEB 21	16.60	APR 22	18. 32	21	17. 65	JUL 21	16.50	SEP 22	15. 59
DEC 21	16.72										

TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

404301073240904. Local number, S 1805-4.
LOCATION.—Lat 40°43'01", long 73°24'09", Hydrologic Unit 02030202, at State Highway 109 and Albany Road, Maywood.
Owner: New York State Department of Transportation.
AGUIFER.—Upper Glacial.

WELL CHARACTERISTICS. --Driven observation water-table well, diameter 2 in (0.05 m), depth 33 ft (10 m), screen assumed at bottom.


DATUM — Land-surface datum is 58.2 ft (17.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.22 ft (1.06 m) above land-surface datum.

PERIOD OF RECORD. — October 1975 to current year. Unpublished records for October 1912 to November 1914, February 1932 to September 1975, are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. — Highest water level measured, 46.19 ft (14.08 m) NGVD, Mar. 19, 1979; lowest

measured, 35.79 ft (10.91 m) NGVD, Dec. 28, 1966.

DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 22 NOV 21 DEC 21	43. 16 42. 70 42. 22	JAN 22 FEB 21	42. 19 41. 89	MAR 20 APR 22	42. 09 45. 40	MAY 6	45. 37 45. 14	JUN 20 JUL 21	44. 53 43. 68	AUG 20 SEP 22	43. 20 42. 18

TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

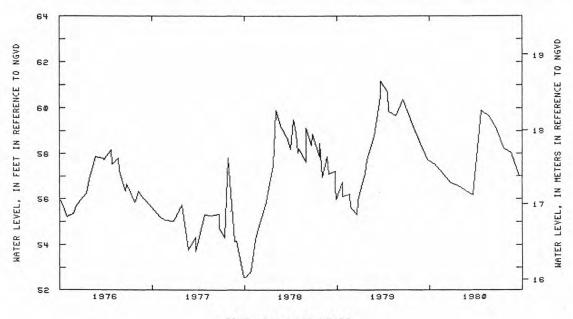
404442073240501. L'ocal number, S 1806. LOCATION. --Lat 40°44'42", long 73°24'05", Hydrologic Unit 02030202, at Conklin Street and Wellwood Avenue,

Pinelawn. Owner: Suffolk County Department of Public Works.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. --Driven observation water-table well, diameter 1.25 in (0.03 m), depth 44 ft (13 m), screened 41 to 44 ft (12 to 13 m).

DATUM. --Land-surface datum is 85.7 ft (26.1 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of


casing, 0.19 ft (0.06 m) below land-surface datum.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for October 1912 to November 1914, May 1932 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 61.68 ft (18.80 m) NGVD, Apr. 29, 1939; lowest

measured, 46.97 ft (14.32 m) NGVD, Jan. 25, 1967.

DATE	WATER LEVEL	DATE	WATER								
OCT 22	57. 52	DEC 21	56. 72	FEB 21	56. 35	APR 22	59. 91	JUN 20	59. 16	AUG 20	58. 04
NOV 21	57. 15	JAN 22	56. 60	MAR 20	56. 16	MAY 21	59. 67	JUL 21	58. 25	SEP 22	56. 99

TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

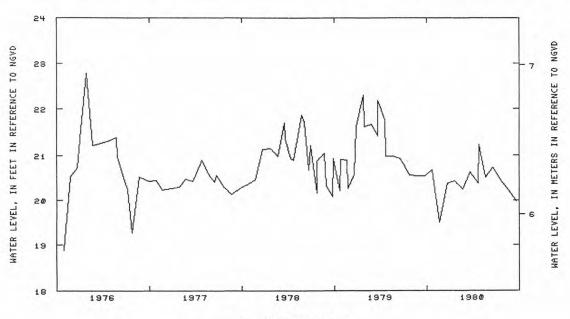
LOCATION. --Lat 40°43'19", long 73°18'46", Hydrologic Unit 02030202, at Higbie Lane and Martin Drive, West Islip.

Owner: Town of Islip.

OWNER. -- TOWN OF TRIED.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. -- Driven observation water-table well, diameter 1.25 in (0.03 m), depth 21 ft (6 m), screen assumed at bottom.


DATUM. --Land-surface datum is 23.0 ft (7.0 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, O. 21 ft (O. O6 m) above land-surface datum.

REMARKS.—Water-quality records for 1972-73 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.—October 1975 to current year. Unpublished records for October 1912 to November 1914, August
1932 June 1933, June 1936 to September 1975, are available in files of Long Island Sub-district office. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 23.06 ft (7.03 m) NGVD, Sept. 30, 1938; lowest measured, 17.27 ft (5.26 m) NGVD, July 23, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

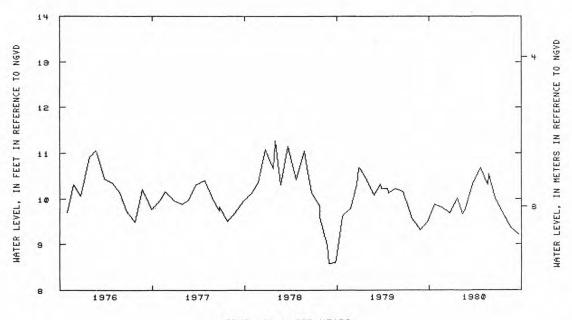
DATE	WATER LEVEL	DATE	WATER LEVEL								
OCT 22 NOV 21	20.69	JAN 22 FEB 21	20. 43	MAR 20 APR 22	20. 63	APR 25 MAY 21	21. 24	JUN 20 JUL 21	20. 73 20. 43	AUG 20 SEP 22	20. 24 19. 99
DEC 21	20. 39							2.75	0.7		= : : : : :

TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

404221073164805. Local number, S 1808-5.
LOCATION, --Lat 40° 42′21", long 73°16′48", Hydrologic Unit 02030202, at Manor and Bardolier Lanes, West Islip.
Owner: Town of Islip.
AGUIFER. --Upper Glacial.
WELL CHARACTERISTICS. --Driven observation water-table well, diameter 1.25 in (0.03 m), depth 11 ft (3 m), screen assumed at bottom.

DATUM. --Land-surface datum is 13.0 ft (4.0 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of


casing, O. 32 ft (O.10 m) above land-surface datum.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for October 1912 to November 1914, August 1932 to September 1975, are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 12.29 ft (3.75 m) NGVD, Feb. 23, 1949; lowest measured, 6.08 ft (1.85 m) NGVD, Aug. 27, 1974.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL										
OCT 22	9. 89	JAN 22	10.01	MAR 20	10.34	MAY 21	10. 32	JUN 20	10.02	AUG 20	9. 37
NOV 21	9.82	FEB 13	9.66	APR 22	10.68	25	10.55	JUL 21	9.66	SEP 22	9. 21
DEC 21	9. 68	21	9.79								

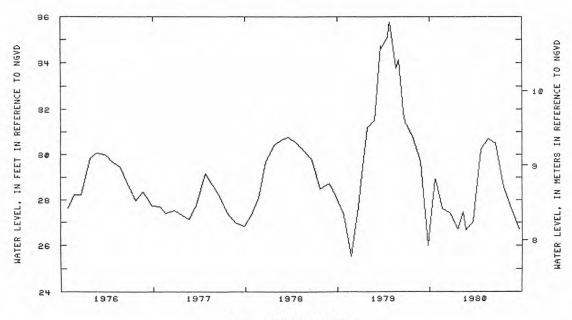
TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

404351073164903. Local number, S 1809-3. LOCATION.—Lat 40°43′51", long 73°16′49", Hydrologic Unit 02030202, at Manor Lane and Muncey Road, Bay Shore. Dumer: Town of Islip. Owner: Town of Islip. AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. — Driven observation water-table well, diameter 1.2 in (0.03 m), depth 29 ft (9 m), screened 26 to 29 ft (8 to 9 m).

DATUM. --Land-surface datum is 42.0 ft (12.8 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of


DATUM --Land-surface datum is 42.0 ft (12.0 m) National Geodesia (13.0 m) National Geodesia (13.0 m) Above land-surface datum.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for October 1912 to November 1914, August 1932 to September 1975, are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 35.77 ft (10.90 m) NGVD, Apr. 26, 1979; lowest

measured, 25.00 ft (7.62 m) NGVD, Nov. 2, 1932.

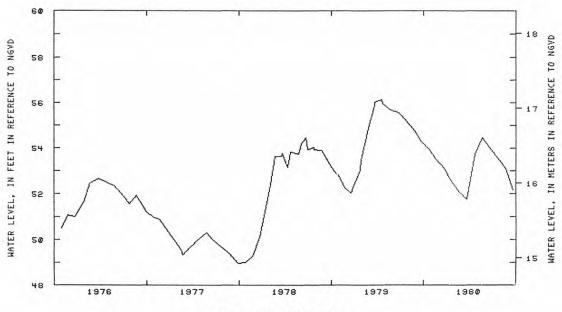
	WATER										
DATE	LEVEL										
OCT 22	28. 93	DEC 21	27. 41	FEB 21	26. 68	APR 22	30. 22	JUN 20	30. 50	AUG 20	27. 62
26	28, 85	JAN 22	26.69	MAR 20	27. 02	MAY 21	30.70	JUL 21	28. 58	SEP 22	26.69
MOU 21	27 42	FER 10	27 AE								

TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

404614073164403. Local number, S 1810-3.
LOCATION. --Lat 40°46′14", long 73°16′44", Hydrologic Unit 02030202, at Gardiner and Pine Aire Drives, Pine Aire.
Guner: U.S. Geological Survey.
AGUIFER. --Upper Glacial.

WELL CHARACTERISTICS.—Augered observation water-table well, diameter 2 in (0.05 m), depth 55 ft (17 m), screened 52 to 55 ft (16 to 17 m).


DATUM. --Land-surface datum is 90.8 ft (27.7 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 0.15 ft (0.05 m) below land-surface datum.

PERIOD OF RECORD. --October 1912 to November 1914, August 1932 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 56.19 ft (17.13 m) NGVD, Apr. 29, 1939; lowest

measured, 41.10 ft (12.53 m) NGVD, Nov. 27, 1945.

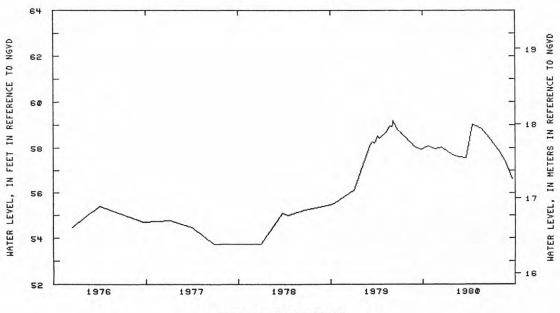
DATE	WATER LEVEL										
DCT 22	53. 95	DEC 21	53. 12	FEB 21	52.06	APR 22	53. 72	JUN 20	54. 05	AUG 21	53. 11
NOV 21	53 51	JAN 22	52. 52	MAR 20	51 76	MAY 21	54 45	.00 21	53 58	SEP 22	52 17

TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

404957073401. Local number, S 1811. LOCATION.—Lat 40*49′57", long 73*07′34", Hydrologic Unit 02030202, at Shore Road, Lake Ronkonkoma. Owner: U.S.

Geological Survey.


AGUIFER. — Upper Glacial.

WELL CHARACTERISTICS. — Drilled observation water—table well, diameter 2 in (0.05 m), depth 21.5 ft (7. m), screen

assumed at bottom. DATUM. --Land-surface datum is 58.15 ft (17.7 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

DAIOM.—Land-surface datum is 58.15 ft (17.7 m) National Geodetic Vertical Datum of 1929. Measuring point: casing, 1.08 ft (0.33 m) above land-surface datum. REMARKS.—Water-quality records for 1979 are published elsewhere in this report. PERIOD OF RECORD.—October 1978 to current year. Unpublished records for April 1937 to September 1978 are available in files of Long Island Sub-district office. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured 59.21 ft (18.05 m) NGVD, June 6, 1979, lowest measured, 50.63 ft (15.43 m) NGVD, Dec. 28, 1966.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 22	58. 10	JAN 2B	57. 70	MAR 20	57. 58	APR 30	58. 98	JUN 20	58. 45	AUG 26	57. 33
NOV 21 DEC 17	57. 97 58. 03	FEB 25	57. 60	APR 15	59. 03	MAY 21	58. 83	JUL 23	57. 93	SEP 22	56. 63

TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

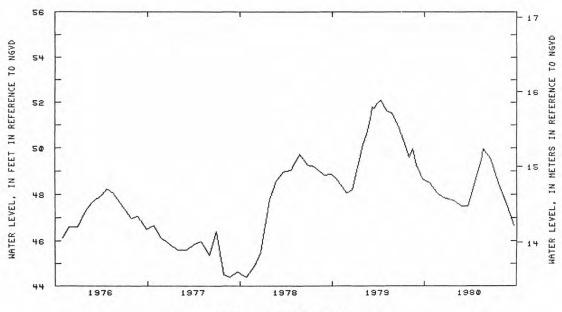
404959073084902. Local number, S 1812-2.

LOCATION .--Lat 40°49'59", long 73°08'49", Hydrologic Unit 02030202, at Smithtown Boulevard and Nichols Road, Ronkonkoma. Owner: U.S. Geological Survey.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. -- Driven observation water-table well, diameter 1.25 in (0.03 m), depth 44 ft (13 m), screen assumed at bottom.

DATUM. --Land-surface datum is 69.9 ft (21.3 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of


casing, 0.49 ft (0.15 m) below land-surface datum.

Casing, 0.49 ft (0.15 m) below land-surface datum.

PERIOD OF RECORD.——October 1975 to current year. Unpublished records for April 1937 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.——Highest water level measured, 52.10 ft (15.88 m) NGVD, Apr. 10, 1979; lowest measured, 40.09 ft (12.22 m) NGVD, Feb. 27, 1967.

DATE	WATER LEVEL										
DCT 22	48. 51	DEC 17	47. 88	FEB 25	47. 49	MAY 13	49. 46	JUN 20	49. 56	AUG 26	47. 46
NOV 21	48. 06	JAN 28	47. 72	MAR 20	47. 51		49. 95	JUL 23	48. 36	SEP 22	46. 68

TIME, IN WATER YEARS

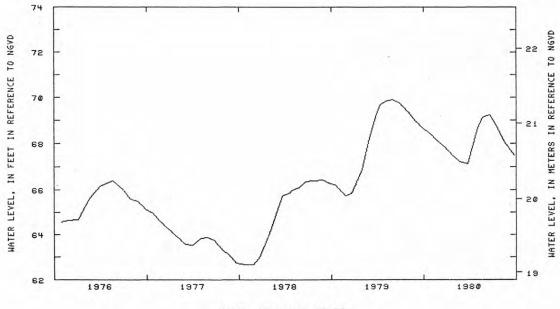
SUFFOLK COUNTY--Continued

40514607031801. Local number, S 3513.

LOCATION.—Lat 40°51′46", long 73°03′18", Hydrologic Unit 02030202, at State Highway 25 and High View Drive, Selden. Owner: New York Department of Transportation.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. -- Drilled unused water-table well, diameter 8 in (0.20 m), depth 65 ft (20 m), screened 63 to 65 ft (19 to 20 m).


DATUM. --Land-surface datum is 101.0 ft (30.8 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

reducer, 1.31 ft (0.40 m) above land-surface datum.

PERIOD OF RECORD. — April 1942 to current year.

EXTREMES FOR PERIOD OF RECORD. — Highest water level measured, 69.91 ft (21.31 m) NGVD, May. 29, 1979; lowest measured, 56.06 ft (17.09 m) NGVD, Mar. 1, 1967.

DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DCT 26	68. 44	DEC 18	67. 89	FEB 22	67. 23	APR 30	68. 57	JUN 20	69. 22	AUG 16	68. 07
NUN 33	68 14	JAN 28	47 A7	MAR DA	67 19	MAY 21	69 13	.1111 22	48 42	SEP 25	67 49

TIME, IN WATER YEARS

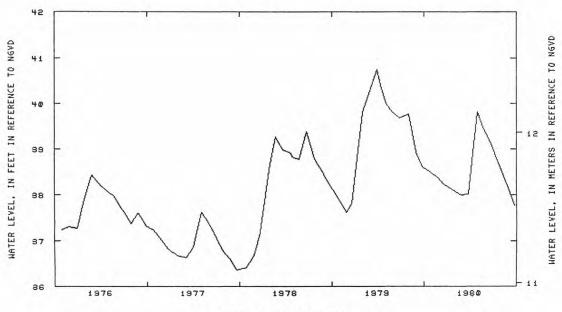
SUFFOLK COUNTY--Continued

404812073004101. Local number, S 3521.

4049120/3004101. Local number, 5 3521. LOCATION.--Lat 40°48'12", long 73°00'41", Hydrologic Unit 02030202, at Medford Avenue, near Cedar Avenue, Medford. Owner: Town of Brookhaven.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. -- Driven observation water-table well, diameter 2 in (0.05 m), depth 50 ft (15 m), screen assumed at bottom.


DATUM. --Land-surface datum is 72.0 ft (21.9 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

DATUM. --Land-surface datum is /2.0 ft (21.9 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, O. 57 ft (O. 17 m) above land-surface datum.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for January 1907 to July 1909, April 1942 to September 1975, are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 40.75 ft (12.42 m) NGVD, Mar. 27, 1979; lowest measured, 34.38 ft (10.48 m) NGVD, Oct. 26, 1966.

DATE	WATER		WATER	2,22	WATER		WATER		WATER		WATER
DATE	LEVEL										
DCT 26	38. 50	DEC 18	38. 24	FEB 26	38.00	APR 30	39. 82	JUN 23	39. 12	AUG 28	38. 15
NOV 23	38. 38	FEB 4	38.07	MAR 25	38. 02	MAY 22	39.49	JUL 21	38. 70	SEP 23	37.76

TIME, IN WATER YEARS

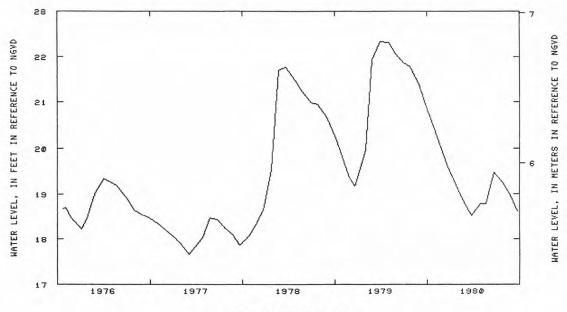
SUFFOLK COUNTY--Continued

405037072390301. Local number, S 3543.

LOCATION. --Lat 40° 50′37", long 72°39′03", Hydrologic Unit 02030202, at Old Riverhead Road and main entrance to Suffolk County Airport, Westhampton. Owner: City of New York.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. --Driven observation water-table well, diameter 2 in (0.05 m), depth 58 ft (18 m), screened 56


to 58 ft (17 to 18 m).

DATUM. --Land-surface datum is 64.4 ft (19.6 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing. 0.04 ft (0.01 m) above land-surface datum.

PERIOD OF RECORD. --March 1907 to December 1909. April 1942 to April 1943, January 1947 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 22.34 ft (6.81 m) NGVD, Mar. 27, 1979; lowest measured, 15.03 ft (4.58 m) NGVD, Jan. 26, 1967.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DCT 26	20. 47	DEC 19	19.65	FEB 26	18.82	APR 30	18. 79	JUN 23	19. 48	AUG 26	18. 96
NOV 23	20.03	FFR 4	19 06	MAR 25	18 51	MAY 22	18 78	.1111 24	19 26	SEP 23	18. 62

TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

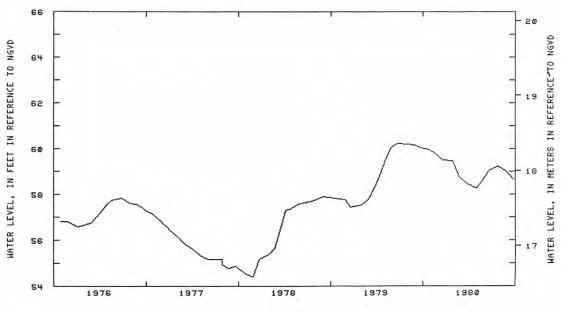
405343073055004. Local number, S 3955-4.

COCATION. --Lat 40°53'43", long 73°05'50", Hydrologic Unit 02030201, at Pond Path and Mark Tree Roads, Setauket.

Owner: U.S. Geological Survey.

AGUIFER. --Upper Glacial.

WELL CHARACTERISTICS. --Augered water-table observation well, diameter 2 in (0.05 m), depth 82 ft (25 m), screened 80 to 82 ft (24 to 25 m).


80 to 82 ft (24 to 25 m).

DATUM. --Land-surface datum is 122.8 ft (37.4 m) National Geodetic Vertical Datum of 1929. Measuring point: To coupling, 0.04 ft (0.01 m) below land-surface datum.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for September 1944 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. -Highest water level measured, 60.23 ft (18.36 m) NGVD, June 21, 1979; lowest measured, 48.01 ft (14.63 m) NGVD, Mar. 31, 1967. Measuring point: Top of

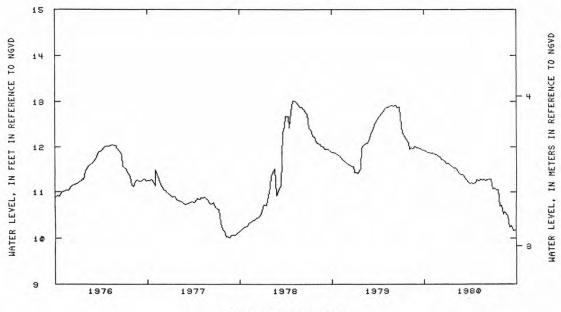
DATE LEVEL			WATER		WATER		WATER		WATER	-	WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 26	59. 98	DEC 18	59. 49	FEB 22	58. 77	APR 30	58. 28	JUN 20	59.05	AUG 26	59.00
NOV 21	59.77	JAN 29	59. 45	MAR 24	58. 46	MAY 21	58. 57	JUL 23	59. 24	SEP 25	58. 68

TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

405743072425701. Local number, S 4271.
LOCATION.--Lat 40°57'43", long 72°42'57", Hydrologic Unit 02030202, at Long Island Research Farm, Sound Avenue, Riverhead. Owner: U.S. Geological Survey. AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS.—Drilled observation water-table well, diameter 4 in (0.10 m), depth 105 ft (32 m), screened 100 to 105 ft (30 to 32 m).


DATUM. --Land-surface datum is 100.3 ft (30.6 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 1.14 ft (O.35 m) above land-surface datum.

PERIOD OF RECORD. --August 1945 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 13.07 ft (3.98 m) NGVD, July 23, 30, 1973; lowest measured, 8.16 ft (2.49 m) NGVD, Sept. 5, 1966.

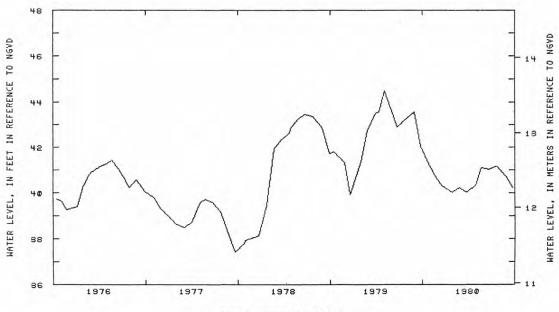
WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

		WATER		WATER		WATER		WATER		WATER		WATER
				WAIER		WAIER		WATER	7.1.2	WATER		
DAT	E	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DCT	8	11.92 0	DEC 9	11.74 G	FEB 11	11.46 G	APR 13	11.19 G	JUN 16	11.29 0	AUG 11	10. 52 G
	14	11.89 G	17	11.71 G	18	11.42 G	21	11.20 G	52	11.28 G	17	10.56 G
	22	11.88 G	23	11.68 G	25	11.38 G	27	11.26 G	30	11.06 G	25	10.50 G
	28	11.86 G	31	11.64 G	MAR 2	11.39 G	MAY 5	11.25 G	JUL 6	11.08 G	31	10.49 G
NOV	5	11.87 G	JAN 6	11.63 G	10	11.31 G	11	11.28 G	14	11.05 G	SEP 8	10.24 G
	11	11.85 G	14	11.60 G	16	11.26 G	19	11.26 G	20	11.05 G	14	10.27 G
	19	11.84 G	20	11.57 G	24	11.22 G	25	11.29 G	28	10.68 G	21	10.16 G
	27	11.80 G	28	11.54 G	30	11.19 G	JUN 2	11.25 G	AUG 6	10.70 G	28	10.17 G
DEC	3	11.78 G	FEB 3	11.54 G	APR 7	11 20 G	8	11 26 G				

TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

405149072532201. Local number, S 5517.
LOCATION.—Lat 40°51'49", long 72°53'22", Hydrologic Unit 02030202, at Upton Road and Princeton Avenue, Upton.
Owner: Brookhaven National Laboratory.


AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. -- Drilled observation water-table well, diameter 4 in (0.10 m), depth 91 ft (28 m), screened 85 to 91 ft (26 to 28 m).

DATUM. --Land-surface datum is 115.0 ft (35.1 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, O. 04 ft (O. 01 m) above land-surface datum. PERIOD OF RECORD. --April 1948 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 46.93 ft (14.30 m) NGVD, June 25, 1958; lowest measured, 33.34 ft (10.16 m) NGVD, Mar. 1, 1967.

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DCT 26	41. 26	DEC 19	40.30	FEB 26	40. 23	APR 30	40. 34	JUN 23	41.04	AUG 26	40. 73
NOV 23	40 65	JAN 29	40 02	MAR DA	40 04	MAY 21	41 09	.1111 21	41 14	SEP 25	40 24

TIME, IN WATER YEARS

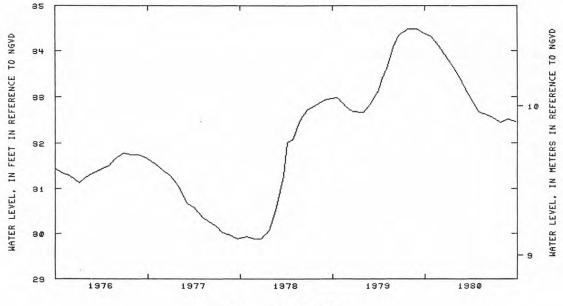
SUFFOLK COUNTY--Continued

40565072541801. Local number, S 6411.
LOCATION.—Lat 40°56′50", long 72°54′18", Hydrologic Unit 02030202, at State Highway 25 and Randall Road, Shoreham.
Owner: Brookhaven National Laboratory.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. -- Drilled observation water-table well, diameter 4 in (0.10 m), depth 149 ft (45 m), screened 143 to 149 ft (44 to 45 m).

DATUM. --Land-surface datum is 138.4 ft (42.2 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.73 ft (0.53 m) above land-surface datum.


PERIOD OF RECORD. --October 1975 to current year. Unpublished records for November 1948 to September 1975 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 34.49 ft (10.51 m) NGVD, July 26, Aug. 28, 1979; lowest measured, 25.15 ft (7.67 m) NGVD, Dec. 28, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
DCT 26	34. 31	DEC 19	33. 91	FEB 26	33. 32	APR 30	32. 69	JUN 23	32. 56	AUG 26	32. 51
NOV 23	34. 12	FEB 4	33. 54	MAR 24	33. 01	MAY 22	32. 63	JUL 24	32. 45	SEP 25	32. 46

TIME, IN WATER YEARS

405223072523401. Local number, S 6434.

LOCATION. --Lat 40°52'23", long 72°52'34", Hydrologic Unit 02030202, at 10th Street and 4th Avenue, Upton. Owner: Brookhaven National Laboratory.

AQUIFER -- Lloud.

WELL CHARACTERISTICS. --Drilled observation artesian well diameter 10 in (0.25 m), depth 1,395 ft (425 m), screened 1,312 to 1,392 ft (400 to 424 m).

DATUM.—Land-surface datum is 85.0 ft (25.9 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of 2 in (0.05 m) nipple, 2.21 ft (0.67 m) above land-surface datum.

REMARKS. -- Water-quality records for 1949 are available in files of Long Island Sub-district office.

PERIOD OF RECORD. -- August 1949 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 36.11 ft (11.01 m) NGVD, July 12, 1979; lowest measured, 28.74 ft (8.76 m) NGVD, Mar. 1, 1967.

WATER			WATER	WATER			WATER		WATER	WATER	
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 2	34.71	APR 2	32.70	SEP 30	32. 09						

169

SUFFOLK COUNTY--Continued

40522307523402. Local number, S 6455.

LOCATION. --Lat 40°52'23", long 73°52'34", Hydrologic Unit 02030202, at 10th Street and 4th Avenue, Upton. Owner: Brookhaven National Laboratory.

AQUIFER. -- Magothy.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 4 in (0.10 m), depth 962 ft (293 m), screened 952 to 962 ft (290 to 293 m).

DATUM. --Land-surface datum is 84.6 ft (25.8 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, O. 16 ft (O. 05 m) below land-surface datum.

PERIOD OF RECORD. --July 1949 to June 1952, January 1954 to current year.

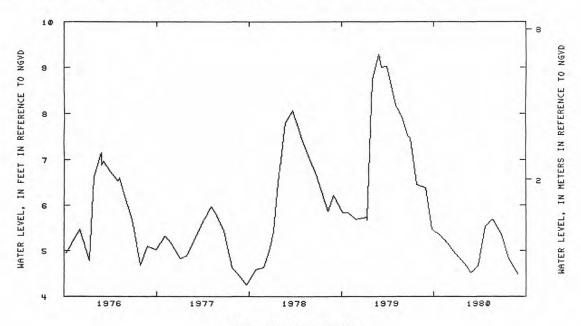
EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 47.15 ft (14.37 m) NGVD, May 31, 1949; lowest measured, 33.82 ft (10.31 m) NGVD, Dec. 27, 1966, Mar. 1, 1967.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

WATER			WATER		WATER				WATER	WATER	
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 2	40. 81	JAN 11	39. 86	MAR 24	39. 36	JUL 10	39. 74				

410100072292501. Local number, S 6542.

LOCATION --Lat 41°01'00", long 72°29'25", Hydrologic Unit 02030202, at Depot Lane, 0.4 mi (0.6 km) north of State Highway 25, Cutchogue. Owner: Cutchogue Fire Department.


AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. -- Drilled fire-protection water-table well, diameter 6 in (0.15 m), depth 36 ft (11 m), screen assumed at bottom.

DATUM. --Land-surface datum is 24.4 ft (7.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Bottom outside edge of hose connection, 1.79 ft (0.55 m) above land-surface datum. PERIOD OF RECORD. —July 1949 to current year.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 9.28 ft (2.83 m) NGVD, Feb. 27, 1979; lowest measured, 2.66 ft (0.81 m) NGVD, Aug. 31, 1966.

	WATER										
DATE	LEVEL										
DCT 26	5. 34	DEC 19	4. 99	FEB 26	4. 51	APR 24	5. 53	JUN 27	5. 36	AUG 28	4. 49
NOV 23	5. 17	FEB 8	4.67	MAR 25	4.66	MAY 22	5. 69	JUL 24	4.81		

TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

405756072173501. Local number, S 8833.

LOCATION. --Lat 40° 57'56", long 72° 17'35", Hydrologic Unit 02030202, at Toppings Path near Sag Harbor. Owner: Town of Southampton.

AQUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. --Driven observation water-table well, diameter 2 in (0.05 m), depth 13 ft (4.0 m), screened 10 to 13 ft (3.0 to 4.0 m).

DATUM. --Land-surface datum is 20.0 ft (6.1 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.63 ft (0.50 m) above land-surface datum.

REMARKS. —Water-quality records for 1974-76 are available in files of Long Island Sub-district office.

PERIOD OF RECORD. —October 1978 to current year. Unpublished records for October 1950 to September 1977 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 18.30 ft (5.58 m) NGVD, May 26, 1953; lowest

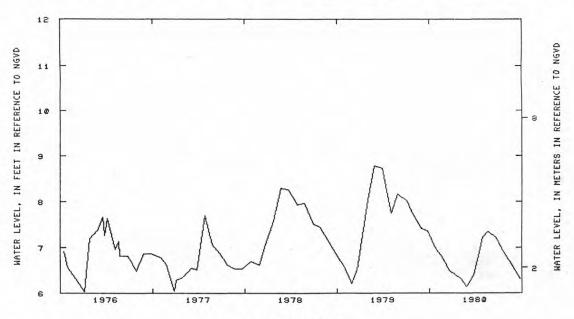
measured, 12.87 ft (3.92 m) NGVD, Oct. 27, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JAN 14	16. 16	MAR 28	15. 93	JUN 17	16. 44	SEP 24	15. 23				

405309072233101. Local number, S 8836.

LOCATION. --Lat 40°53'09", long 73°23'31", Hydrologic Unit 02030202, at Nugent Street and Windmill Lane, Southampton. Owner: Southampton Fire Department.


AGUIFER. -- Upper Glacial. WELL CHARACTERISTICS .- Drilled fire-protection water-table well, diameter 8 in (0.20 m), depth 37 ft (11 m), screen assumed at bottom.

DATUM. --Land-surface datum is 17.4 ft (5.30 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.47 ft (0.45 m) above land-surface datum.

REMARKS. -- Water-quality records for 1974-76 are available in files of Long Island Sub-district office; those for 1977 are published elsewhere in this report. PERIOD OF RECORD. -- July 1950 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 9.08 ft (2.77 m) NGVD, Mar. 29, 1973; lowest measured, 4.93 ft (1.50 m) NGVD, Aug. 30, 1968.

WATER			WATER	WATER			WATER		WATER		WATER
DATE	LEVEL										
DCT 26	6. 98	DEC 19	6. 50	FEB 26	6. 15	APR 30	7. 23	JUN 23	7. 22	AUG 28	6. 56
NOV 23	6.77	FEB 4	6. 32	MAR 25	6. 40	MAY 22	7. 35	JUL 24	6.86	SEP 24	6. 31

TIME, IN WATER YEARS

171

SUFFOLK COUNTY--Continued

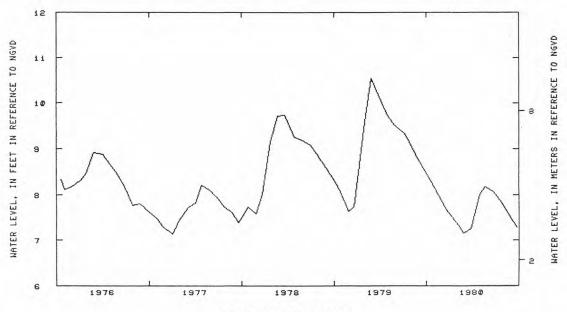
405840072082301. Local number, S 8839.

LOCATION. --Lat 40°58′40", long 72°08′23", Hydrologic Unit 02030202, at Windmill Lane and State Highway 27, Amagansett. Owner: D. Toler.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. -- Driven observation water-table well, diameter 1.25 in (0.03 m), depth 37 ft (11 m), screen assumed at bottom.

DATUM. --Land-surface datum is 39.1 ft (11.9 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.87 ft (0.27 m) above land-surface datum.


PERIOD OF RECORD. --October 1975 to current year. Unpublished records for August 1950 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 10.55 ft (3.22 m) NGVD, Feb. 27, 1979; lowest

measured, 6.10 ft (1.86 m) NGVD, Oct. 27, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL										
DCT 26	8. 24	DEC 19	7. 66	FEB 26	7. 15	APR 30	8. 01	JUN 23	8. 07	AUG 27	7. 52
NDV 23	7. 94	FEB 4	7. 33	MAR 25	7. 25	MAY 22	8. 19	JUL 24	7. 83	SEP 24	7. 28

TIME. IN WATER YEARS

404831072530501. Local number, S 9130.

LOCATION. --Lat 40°48'31", long 72°53'05", Hydrologic Unit 02030202, at River Road, Shirley. Owner: Town of Brookhaven.

AQUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 2 in (0.05 m), depth 28 ft (8.5 m), screened 25 to 28 ft (7.6 to 8.5 m).

DATUM.—Land-surface datum is 26.0 ft (7.9 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 100 ft (0.30 m) above land-surface datum.

PERIOD OF RECORD.—June 1953 to current year. Unpublished records for June 1953 to September 1977 are available in

files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 11.53 ft (3.51 m) NGVD, Mar. 29, 1978; lowest measured, 9.58 ft (2.92 m) NGVD, Feb. 26, 1954.

WATER			WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DCT 1	10.67	JAN 14	10.42	MAR 19	10. 25	JUN 23	10.80	SEP 23	10. 21		

SUFFOLK COUNTY--Continued

405843072352902. Local number, S 16756-2. LOCATION. --Lat 40°58'43", long 72°35'29", Hydrologic Unit 02030202, at Herricks Lane, 0.25 mi (0.4 km) south of Sound Avenue, Jamesport. Owner: Town of Riverhead. AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 2 in (0.05 m), depth 62 ft (19 m), screen assumed at bottom.

DATUM. --Land-surface datum is 61.0 ft (18.6 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.23 ft (0.07 m) below land-surface datum.

PERIOD OF RECORD. --October 1976 to current year. Unpublished records for September 1958 to September 1976 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 10.06 ft (3.07 m) NGVD, Mar. 30, 1979; lowest measured, 4.21 ft (1.28 m) NGVD, Aug. 31, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

WATER			WATER		WATER				WATER	WATER	
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DCT 3	7. 97	JAN 9	8 12	MAR 25	6 82	JUI 2	7 25				

410856072172001. Local number, S 16787.

LOCATION. --Lat 41°08'56", long 72°17'20", Hydrologic Unit 02030201, at State Highway Route 25, Orient. Owner: Suffolk County Department of Public Works.

AQUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. -- Driven observation water-table well, diameter 1.25 in (0.03 m), depth 44 ft (13 m) screened 41 to 44 ft (12 to 13 m).

DATUM. --Land-surface datum is 22.2 ft (6.8 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

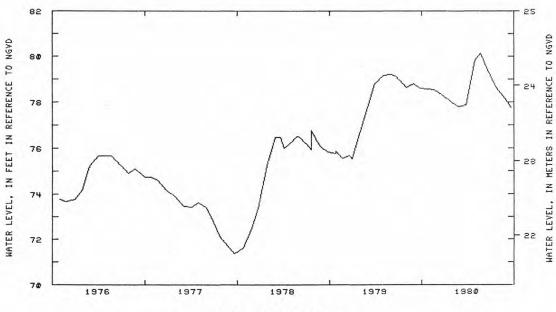
casing, O.24 ft (O.07 m) above land-surface datum.
PERIOD OF RECORD.—August 1958 to current year. Unpublished records for August 1958 to September 1977 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 4.57 ft (1.39 m) NGVD, Mar. 29, 1979; lowest measured, 1.12 ft (0.34 m) NGVD, Aug. 8, 1966

WATER		WATER		WATER			WATER			WATER		
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	
ост з	2. 52	JAN 9	2. 30	MAR 25	2. 40	JUN 27	2. 93					

404747073241501. Local number, S 16874.
LOCATION.—Lat 40°47′47″, long 73°24′15″, Hydrologic Unit 02030202, at Old Country Road and New York Avenue, Huntington. Owner: Town of Huntington.
AQUIFER.—Upper Glacial.
WELL CHARACTERISTICS.—Driven observation water—table well, diameter 1.25 in (0.03 m), depth 82 ft (25 m), screen assumed at bottom.


DATUM. --Land-surface datum is 141.2 ft (43.0 m) National Geodetic Vertical of 1929. Measuring point: Top of casing. 0.04 ft (0.01 m) below land-surface datum.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for July 1958 to May 1959, August 1971 to

September 1975, are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 80.14 ft (24.43 m) NGVD, May. 21, 1980; lowest measured, 66.95 ft (20.40 m) above NGVD, Oct. 20, 1971.

WATER			WATER		WATER			WATER		WATER	
DATE	LEVEL										
DCT 29	78. 57	DEC 18	78. 33	FEB 25	77. 79	APR 28	79. 82	JUN 20	79. 39	AUG 25	78. 16
NOV 21	78. 53	JAN 28	78. 01	MAR 24	77. 87	MAY 21	80.14	JUL 23	78. 60	SEP 22	77.76

TIME, IN WATER YEARS

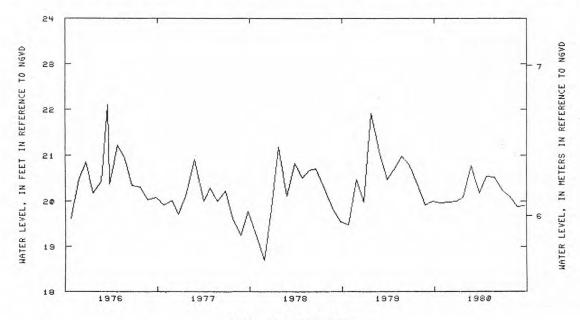
SUFFOLK COUNTY--Continued

403727073154602. Local number, S 21091.

LOCATION. --Lat 40°37'27", long 73°15'46", Hydrologic Unit 02030202, at Robert Moses State Park, Fire Island. Owner: Long Island State Park Commission. AQUIFER.—Lloyd.

WELL: CHARACTERISTICS. --Drilled observation artesian well, diameter 6 in (0.15 m), depth 1,921 ft (586 m), screened 1,918 to 1,921 ft (585 to 586 m).

DATUM. —Land-surface datum is 10.0 ft (3.0 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of flange. 13.68 ft (4.17 m) above land-surface datum.


REMARKS. —Water-quality records for 1965 and 1972 are available in files of Long Island Sub-district office.

PERIOD OF RECORD. —-October 1975 to current year. Unpublished records for June 1962 to September 1975 are available

in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 22.10 ft (6.74 m) NGVD, Mar. 16, 1976; lowest measured, 15.13 ft (4.61 m) NGVD, June 2, 1972.

DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DCT 27	19.97	DEC 28	20.00	FEB 26	20. 79	APR 27	20. 55	JUN 25	20. 25	AUG 25	19.89
NOV 28	19 99	JAN 25	20 10	MAR 27	20 19	MAY 28	20 53	.1111 24	20 11	SEP 25	19 90

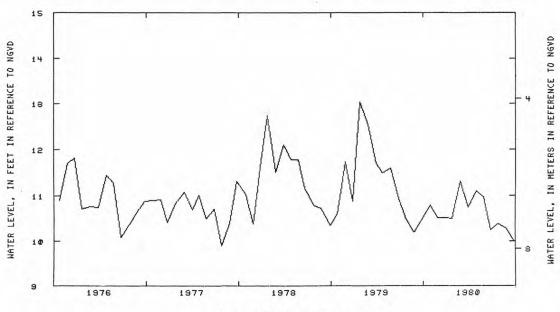
TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

403727073154601. Local number, S 21311.
LOCATION. --Lat 40°37'27", long 73°15'46", Hydrologic Unit 02030202, at Robert Moses State Park, Fire Island.
Owner: Long Island State Park Commission:
AQUIFER. --Magothy.

WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 6 in (0.15 m), depth 721 ft (220 m), screened 711 to 721 ft (217 to 220 m).

DATUM. --Land-surface datum is 10.0 ft (3.0 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 20.01 ft (6.0 m) above land-surface datum.


REMARKS. --Water-quality records for 1965 are available in files of Long Island Sub-district office.
PERIOD OF RECORD. --October 1975 to current year. Unpublished records for June 1962 to September 1975 are available

in files of Long Island Sub-district office. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 13.04 ft (3.97 m) NGVD, Jan. 25, 1979; lowest measured, 5.35 ft (1.63 m) above NGVD, Feb. 23, 1972.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

| WATER | | WATER | |
|-------|------|-------|------|-------|------|-------|------|-------|------|-------|--|
| LEVEL | DATE | LEVEL | |

DATE LEVE OCT 28 10.80 DEC 28 10.51 APR 28 JUN 25 10.25 AUG 26 10.29 FEB 26 11.32 11.10 NOV 28 10.51 JAN 25 10.50 MAR 27 10.75 MAY 27 10. 97 JUL 25 10.38 SEP 27 10.00

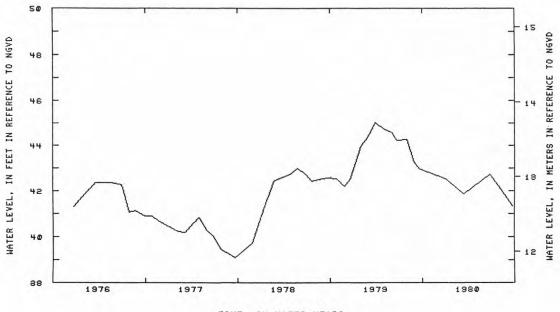
TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

404902073094001. Local number, S 22577. LOCATION.—Lat 40°49′02″, long 73°09′40″, Hydrologic Unit 02030202, at L. I. Motor Parkway, near Nichols Road, Hauppauge. Owner: U.S. Geological Survey.

AQUIFER. -- Magothy.

WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 4 in (0.10 m), depth 736 ft (224 m), screened 724 to 734 ft (221 to 224 m).


DATUM. --Land-surface datum is 60.0 ft (18.3 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

coupling, 2.63 ft (0.80 m) above land-surface datum.

REMARKS.—Water-quality records for 1964 are available in files of Long Island Sub-district office. PERIOD OF RECORD. --October 1975 to current year. Unpublished records for August 1964 to September 1975 are

available in files of Long Island Sub-district office. EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 45.04 ft (13.73 m) NGVD, Mar. 28, 1979; lowest measured, 36.19 ft (11.03 m) above NGVD, Mar. 2, 1967.

WATER I FUEL	WATER		WATER	WATER			WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JAN 2	42. 52	MAR 12	41.87	JUN 25	42. 75	SEP 26	41.33				

TIME, IN WATER YEARS

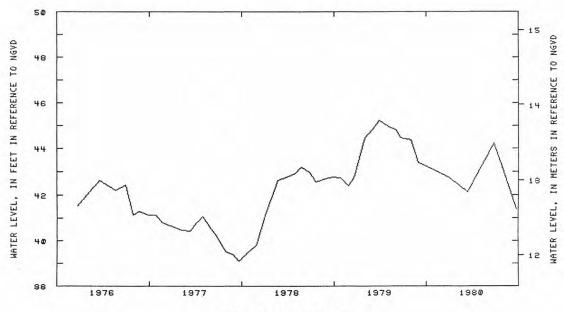
404902073094002. Local number, S 22578.

LOCATION. --Lat 40°49'02", long 73°09'40", Hydrologic Unit 02030202, at L. I. Motor Parkway, near Nichols Road, Hauppauge. Owner: U.S. Geological Survey.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 4 in (0.10 m), depth 402 ft (123 m), screened 392 to 402 ft (119 to 123 m).

DATUM.—Land-surface datum is 60.1 ft (18.3 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of 2 in (0.05 m) coupling, 2.79 ft (0.85 m) above land-surface datum.


REMARKS.—Water-quality records for 1964 and 1971 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.—October 1975 to current year. Unpublished records for August 1964 to September 1975 are in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 45.25 ft (13.79 m) NGVD, Mar. 28, 1979; lowest

measured, 36.35 ft (11.08 m) NGVD, Mar. 1, 1967.

DATE LEVEL		WATER		WATER		WATER		WATER		WATER	
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JAN 2	42 73	MAR 12	42 14	JUN 25	44 25	SEP 26	41 39				

TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

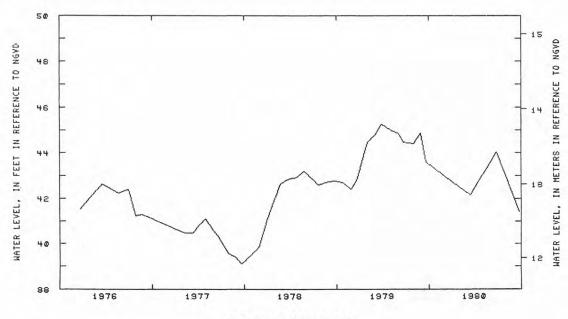
404902073094003. Local number, S 22579.

LOCATION. --Lat 40°49′02", long 73°09′40", Hydrologic Unit 02030202, at L. I. Motor Parkway, near Nichols Road, Hauppauge. Owner: U.S. Geological Survey.

AGUIFER .-- Upper Glacial.

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 4 in (0.10 m), depth 210 ft (64 m), screened 200 to 220 ft (61 to 67 m).

DATUM.—Land-surface datum is 60.1 ft (18.3 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of 2 in (0.05 m) coupling, 2.50 ft (0.76 m) above land-surface datum.


REMARKS.—Water-quality records for 1964 and 1971 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.—October 1975 to current year. Unpublished records for August 1964 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 45.26 ft (13.80 m) NGVD, Mar. 27, 1979, lowest measured, 34.40 ft (11.09 m) NGVD. Mar. 1, 1967

measured, 36.40 ft (11.09 m) NGVD, Mar. 1, 1967.

DATE LEVEL	WATER		WATER		WATER				WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JAN 2	42.75	MAR 12	42.15	JUN 25	44 04	SEP 26	41 43				

TIME. IN WATER YEARS

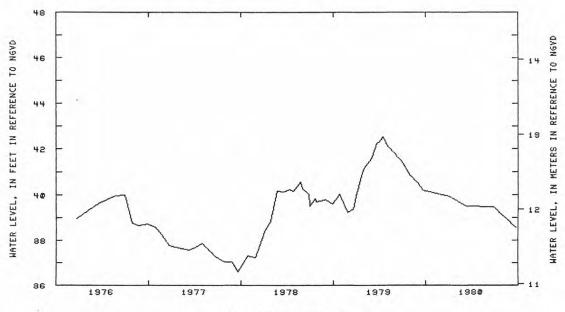
SUFFOLK COUNTY--Continued

404828073114002. Local number, S 22580. LOCATION.—Lat 40°48′28", long 73°11′40", Hydrologic Unit 02030202, at Long Island Expressway Service Road and L. I. Motor Parkway, Central Islip. Owner: U.S. Geological Survey.

AQUIFER. -- Magothy. WELL CHARACTERISTICS. -- Drilled observation water-table well, diameter 4 in (0.10 m), depth 802 ft (244 m), screened 440 to 450 ft (134 to 137 m)

A40 to 450 ft (134 to 137 m).

DATUM. -Land-surface datum is 123.0 ft (37.5 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 4.30 ft (1.31 m) above land-surface datum.


REMARKS. --Water-quality records for 1972 are available in files of Long Island Sub-district office.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for May 1964 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 42.55 ft (12.97 m) NGVD, Apr. 17, 1979; lowest

measured, 34.01 ft (10.37 m) NGVD, Jan. 27, 1967.

DATE LEVEL		WATER		WATER		WATER				WATER	
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JAN 2	39 92	MAR 11	20 50	IIIN 25	20 14	SER 24	20 55				

TIME, IN WATER YEARS

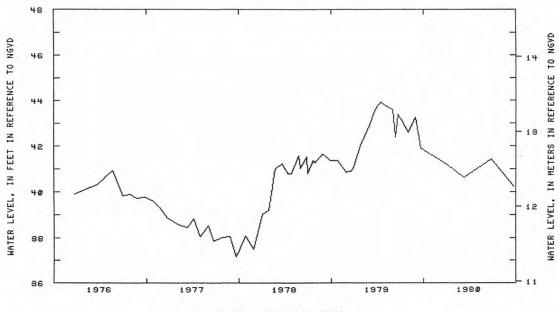
SUFFOLK COUNTY--Continued

404828073114003. Local number, S 22581.

LOCATION. --Lat 40°48'28", long 73°11'40", Hydrologic Unit 02030202, at Long Island Expressway Service Road and L. I. Motor Parkway, Central Islip. Owner: U.S. Geological Survey. AGUIFER. -- Magothy.

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 4 in (0.10 m), depth 450 (137 m), screened 440 to 450 ft (134 to 137 m).

DATUM. --Land-surface datum is 123.2 ft (37.6 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 4.08 ft (1.24 m) above land-surface datum.


PERIOD OF RECORD. --October 1975 to current year. Unpublished records for August 1964 to September 1975 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 43.93 ft (13.39 m) NGVD, Apr. 17, 1979; lowest measured, 34.21 ft (10.43 m) NGVD, Jan. 27, 1967.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

WATER LEVEL	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JAN 2	41 19	MAR 11	40 62	JUN 25	41 43	SEB 24	40 24				

TIME, IN WATER YEARS

181

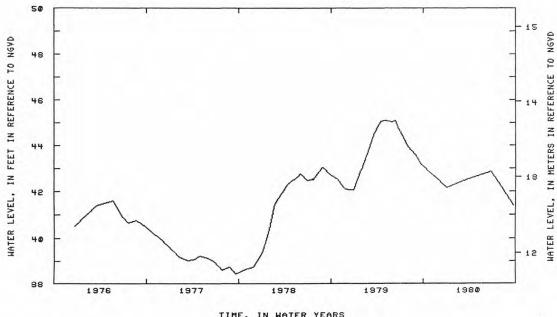
SUFFOLK COUNTY--Continued

404828073114004. Local number, S 22582.
LOCATION.—Lat 40°48′28″, long 73°11′40″, Hydrologic Unit 02030202, at Long Island Expressway Service Road and
L. I. Motor Parkway, Central Islip. Owner: U.S. Geological Survey. AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 2 in (0.05 m), depth 115 ft (35 m), screened 105 to 115 ft (32 to 35 m).

DATUM. --Land-surface datum is 123.7 ft (37.7 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

casing, 3.01 ft (0.92 m) above land-surface datum.


PERIOD OF RECORD. --October 1975 to current year. Unpublished records for August 1964 to September 1975 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 45.11 ft (13.75 m) NGVD, May 2 and June 12, 1979; lowest measured, 34.74 ft (10.59 m) NGVD, Jan. 27, 1967.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
IAN 2	49 14	MAR 11	42 44	IIIN 25	42 00	GED 24	41 41				

TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

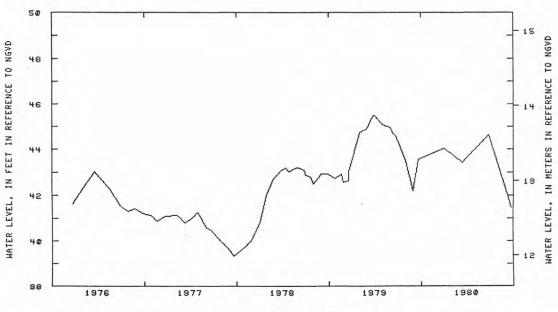
404902073094004. Local number, S 23133. LOCATION. --Lat 40°49′02", long 73°09′40", Hydrologic Unit 02030202, at L. I. Motor Parkway, near Nichols Road,

Hauppauge. Owner: U.S. Geological Survey.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. -- Driven observation water-table well, diameter 2 in (0.05 m), depth 29 ft (9 m), screened 26 to 29 ft (8 to 9 m).

DATUM. --Land-surface datum is 60.3 ft (18.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.59 ft (0.18 m) above land-surface datum.


REMARKS.—Water-quality records for 1964 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.—October 1975 to current year. Unpublished records for August 1964 to September 1975 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 45.50 ft (13.87 m) NGVD, Mar. 28, 1979; lowest measured, 35.66 ft (10.87 m) NGVD, Nov. 30, 1966.

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JAN 2	44 03	MAR 12	43 44	JUN 25	44 62	SEP 26	41 46				

TIME, IN WATER YEARS

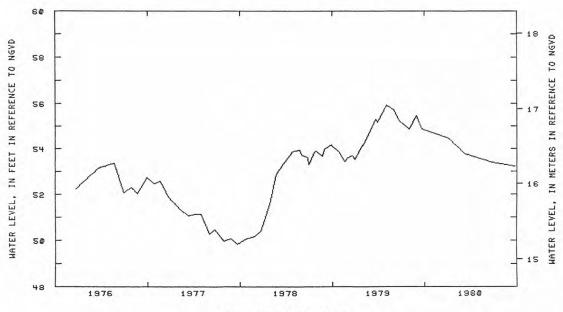
404809073160301. Local number, S 24769.
LOCATION.—Lat 40°48′19", long 73°16′03", Hydrologic Unit 02030202, at Vanderbilt Parkway and Wicks Road,
Brentwood. Owner: U.S. Geological Survey.

AGUIFER. -- Magothy.

WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 4 in (0.10 m), depth 810 ft (247 m), screened

800 to to 810 ft (244 to 247 m). DATUM.—Land-surface datum is 139.0 ft (42.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

DATUM.—Land-surface datum is 139.0 ft (42.4 m) National Geodetic Vertical Datum of 1927. Reasuring points casing, 1.98 ft (0.60 m) above land—surface datum.


REMARKS.—Water—quality records for 1965 and 1972 are available in files of Long Island Sub—district office.

PERIOD OF RECORD.—October 1975 to current year. Unpublished records for August 1965 to September 1975 are available in files of Long Island Sub—district office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 55.93 ft (17.05 m) NGVD, May 2, 1979; lowest

measured, 45.31 ft (13.81 m) NGVD, Mar. 7, 1966.

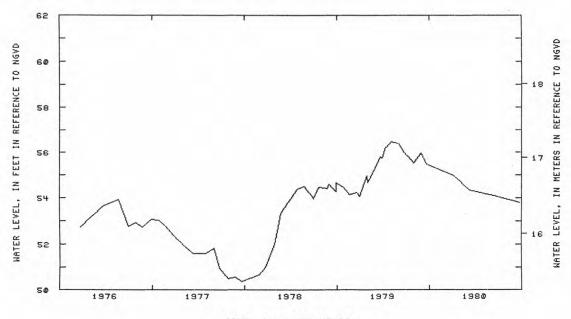
DATE LEVEL		WATER		WATER				WATER		WATER	
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JAN 2	54. 45	MAR 11	53. 78	JUN 26	53. 39	SEP 26	53. 22				

TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

404819073160304. Local number, S 24770. LOCATION.—Lat 40° 48'19", long 73° 16'03", Hydrologic Unit 02030202, at Vanderbilt Parkway and Wicks Road, Brentwood. Owner: U.S. Geological Survey. AGUIFER.—Upper Glacial.

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 4 in (0.10 m), depth 434 ft (132 m), screened 424 to 434 ft (129 to 132 m).


DATUM --Land-surface datum is 139.0 ft (42.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.01 ft (0.61 m) above land-surface datum.

REMARKS. --Water-quality records for 1965 are available in files of Long Island Sub-district office.
PERIOD OF RECORD. --October 1975 to current year. Unpublished records for August 1965 to September 1975 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 56.48 ft (17.22 m) NGVD, May 2, 1979; lowest measured, 45.66 ft (13.92 m) NGVD, Mar. 7, 1966.

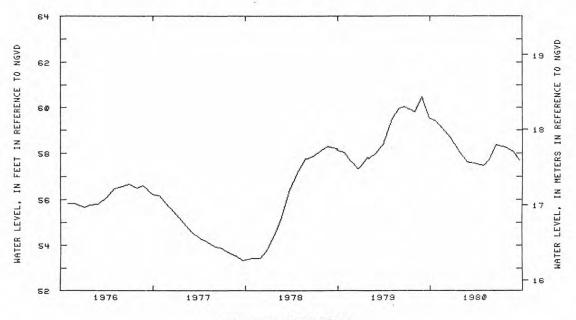
DATE	WATER LEVEL	DATE	WATER	DATE	WATER	DATE	WATER	DATE	WATER	DATE	WATER
JAN 2	54.99	MAR 11	54 32	JUN 26		SEP 26					

TIME, IN WATER YEARS

404820073160303. Local number, S 24771.
LOCATION.--Lat 40°48′20", long 73°16′03", Hydrologic Unit 02030202, at Vanderbilt Parkway and Wicks Road,
Brentwood. Owner: U.S. Geological Survey.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 4 in (0.10 m), depth 127 ft (39 m), screened 117 to 127 ft (36 to 39 m).


DATUM. --Land-surface datum is 139.0 ft (42.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.86 ft (0.57 m) above land-surface datum.

REMARKS. --Water-quality records for 1964-65 and 1972 are available in files of Long Island Sub-district office. PERIOD OF RECORD. -- August 1965 to current year. Unpublished records for August 1965 to September 1975 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 60.46 ft (18.43 m) NGVD, Aug. 28, 1979; lowest measured, 43.50 ft (13.26 m) NGVD, Nov. 30, 1966.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER
OCT 22	59. 39	DEC 18	58. 70	FEB 25	57. 63	APR 29	57. 46	JUN 20	58. 36	AUG 25	58. 06
NOV 21	59.06	JAN 28	58.04	MAR 24	57. 56	MAY 21	57. 69	JUL 24	58. 26	SEP 22	57.70

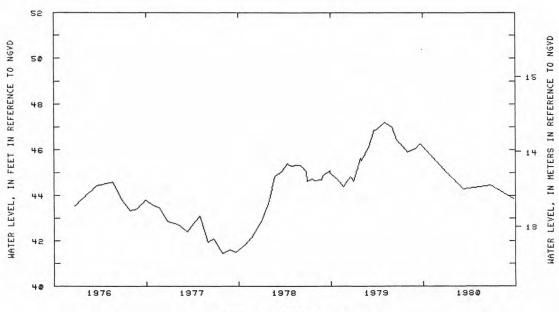
TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

404818073135802. Local number, S 24772.
LOCATION.—Lat 40° 48'18", long 73° 13'58", Hydrologic Unit 02030202, at Long Island Motor Parkway and Highland Road, Brentwood. Owner: U.S. Geological Survey.

AGUIFER.—Magothy.

WELL CHARACTERISTICS.—Drilled observation artesian well, diameter 4 in (0.10 m), depth 838 ft (255 m), screened 828 to 838 ft (252 to 255 m).


DATUM.—Land-surface datum is 117.0 ft (35.7 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.37 (1.03 m) above land-surface datum.

REMARKS.—Water—quality records for 1965 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.—October 1975 to current year. Unpublished records for March 1966 to September 1975 are available in files of Long Island Sub-district office.

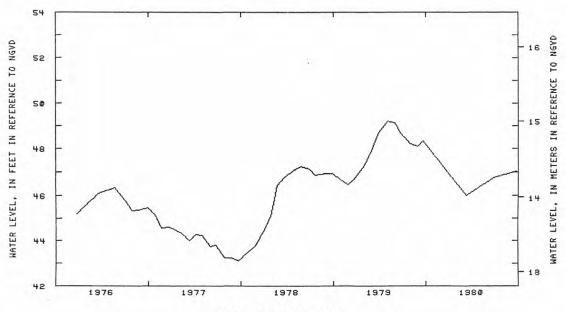
EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 47.21 ft (15.36 m) NGVD, May 2, 1979; lowest measured, 38.80 ft (11.83 m) NGVD, Mar. 7, 1966.

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JAN 2	45 02	MAR 11	44 31	.IUN 25	44 44	SEP 26	43 87				

TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

404818073135904. Local number, S 24773. LOCATION.—Lat 40°48′18", long 73°13′59", Hydrologic Unit 02030202, at Long Island Motor Parkway and Highland Road, Brentwood. Owner: U.S. Geological Survey.


AQUIFER. -- Magothy.

WELL CHARACTERISTICS. --Drilled water-table observation well, diameter 4 in (0.10 m), depth 423 ft (129 m), screened 412 tp 423 ft (126 to 129 m).

DATUM. --Land-surface datum is 118.0 ft (36.0 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

DATUM. --Land-surface datum is 118.0 ft (36.0 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.35 ft (0.72 m) above land-surface datum. REMARKS. --Water-quality records for 1965 are available in files of Long Island Sub-district office. PERIOD OF RECORD. --March 1966 to current year. Unpublished records for March 1966 to September 1975 are available in files of Long Island Sub-district office. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 49.20 ft (15.00 m) NGVD, May 2, 1979; lowest measured, 40.05 ft (12.21 m) NGVD, Mar. 7, 1966.

DATE	WATER	DATE	WATER	DATE	WATER	DATE	WATER LEVEL	DATE	WATER	DATE	WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JAN 2	44 89	MAR 11	45 99	JUN 25	AA 77	SEP 26	47 02				

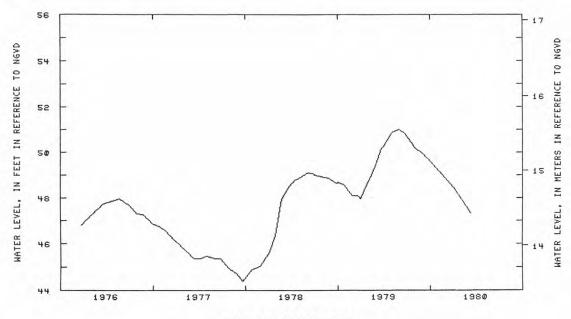
TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

404818073135906. Local number, S 24774. LOCATION.—Lat 40°48'18", long 73°13'59", Hydrologic Unit 02030202, at Long Island Motor Parkway and Highland Road, Brentwood. Owner: U.S. Geological Survey.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. -- Drilled observation water-table well, diameter 4 in (0.10 m), depth 110 ft (34 m), screened 100 to 110 ft (30 to 36 m).


DATUM. --Land-surface datum is 118.0 ft (36.0 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.32 ft (0.71 m) above land-surface datum.

REMARKS. --Water-quality records for 1965 are available in files of Long Island Sub-district office. PERIOD OF RECORD. --March 1966 to current year. Unpublished records for March 1966 to September 1975 are available

in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 50.99 ft (15.54 m) NGVD, May 30, 1979; lowest measured, 41.35 ft (12.60 m) NGVD, Mar. 7, 1966.

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
IAN 2	48 48	MAR 11	47 34								

TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

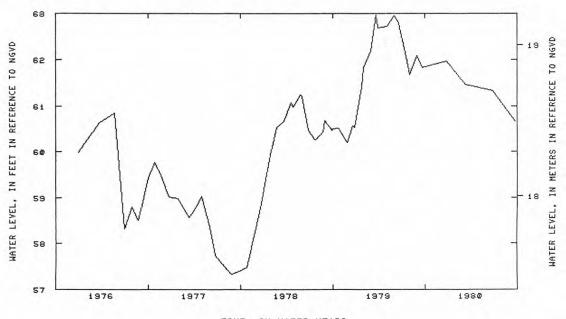
404603073214803. Local number, S 27739.

LOCATION.—Lat 40°46′03", long 73°21′48", Hydrologic Unit 02030202, at Landscape Drive, near Seamans Road, Wyandanch. Owner: U.S. Geological Survey.

AQUIFER. -- Magothy.

WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 4 in (0.10 m), depth 850 ft (259 m), screened 840 to 850 ft (256 to 259 m).

DATUM. --Land-surface datum is 139.0 ft (42.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of


casing, 2.37 ft (0.72 m) above land-surface datum.

REMARKS.—Water-quality records for 1966 and 1974 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.—May 1966 to current year. Unpublished records for May 1966 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 62.97 ft (19.19 m) NGVD, Mar. 20, 1979; lowest measured, 50.85 ft (15.50 m) NGVD, Feb. 15, 1967.

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 27	41 97	MAD 11	41 47	IIIN 25	41 24	CCD 24	40 47				

TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

404603073214804. Local number, S 27740.

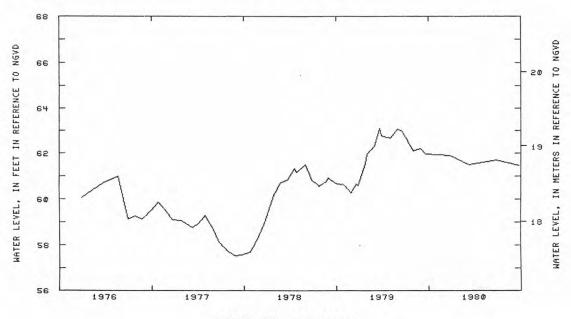
LOCATION --Lat 40°46′03", long 73°21′48", Hydrologic Unit O2O3O2O2, at Landscape Drive, near Seamans Road,

Wyandanch. Owner: U.S. Geological Survey.

AGUIFER. -- Magothy.

WELL CHARACTERISTICS. -- Drilled observation water-table well, diameter 4 in (0.10 m), depth 429 ft (131 m), screened 419 to 429 ft (128 to 131 m)

DATUM. --Land-surface datum is 139.0 ft (42.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of


casing, 2.85 ft (0.87 m) above land-surface datum.

REMARKS.—Water-quality records for 1966 and 1974 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.—October 1975 to current year. Unpublished records for July 1966 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 63.09 ft (19.23 m) NGVD, Mar. 20, 1979; lowest measured, 51.08 ft (15.57 m) NGVD, Feb. 15, 1967.

DATE LEVEL			WATER				WATER		WATER		
DATE L	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 27	61 91	MAR 11	61 51	.IIIN 25	41 71	SEP 24	61 47				

TIME, IN WATER YEARS

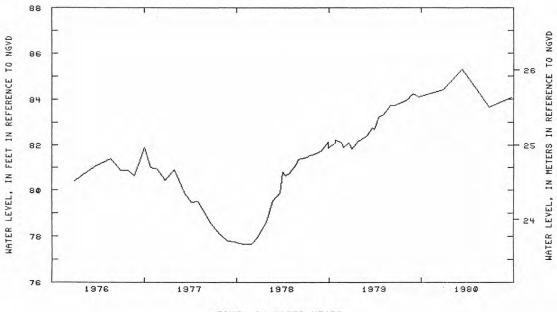
SUFFOLK COUNTY--Continued

404703073264201. Local number, S 29776.
LOCATION.—Lat 40°47′03", long 73°26′42", Hydrologic Unit 02030202, at Round Swamp Road, near Long Island Expressway, Melville. Owner: U.S. Geological Survey.

AGUIFER. -- Magothy.

WELL CHARACTERISTICS. -- Drilled observation water-table well, diameter 4 in (0.10 m), depth 720 ft (219 m), screened

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 4 in (0.10 m), depth 720 ft (219 m), screened 710 to 720 ft (216 to 219 m).


DATUM. --Land-surface datum is 193.0 ft (58.8 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.44 ft (0.74 m) above land-surface datum.

REMARKS. --Water-quality records for 1974 and 1976 are available in files of Long Island Sub-district office.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for May 1967 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 85.29 ft (26.00 m) NGVD, Mar. 11, 1980; lowest measured, 67.64 ft (20.62 m) NGVD, June 27, 1967.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER	DATE	WATER	
DEC 27	84 39	MAR 11	85 29	JUN 25	83 47	SEP 26	84 06					

TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

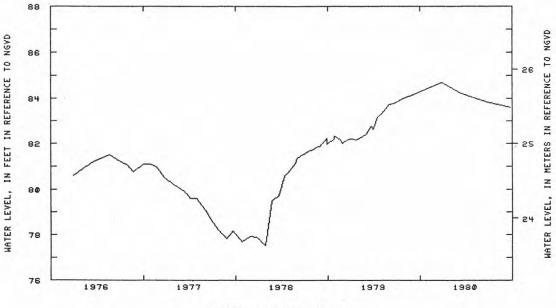
404703073264202. Local number, S 29777.
LOCATION.—Lat 40°47′03", long 73°26′42", Hydrologic Unit 02030202, at Round Swamp Road, near Long Island Expressway, Melville. Owner: U.S. Geological Survey.

AQUIFER. -- Magothy.

WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 4 in (0.10 m), depth 397 ft (121 m), screened 387 to 397 ft (118 to 121 m).

DATUM.--Land-surface datum is 193.0 ft (58.8 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

casing, 1.80 ft (0.55 m) above land-surface datum.


REMARKS.—Water-quality records for 1967, 1974, 1976 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.—October 1975 to current year. Unpublished records for May 1967 to September 1975 are available

in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 84.70 ft (25.82 m) NGVD, Dec. 27, 1979; lowest measured, 67.90 ft (20.70 m) NGVD, May 1, 1967.

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 27	BA 70	MAR 11	84 25	IUN 25	02 05	SEP 24	92 41				

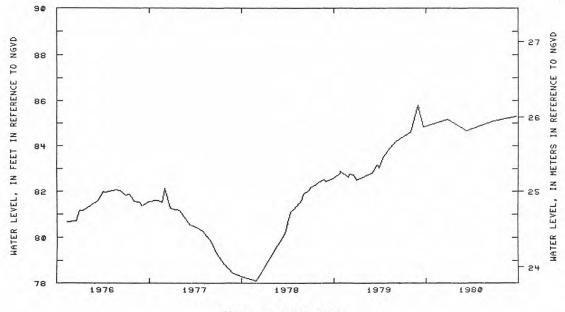
TIME, IN WATER YEARS

404703073264205. Local number, S 29778.

LOCATION. --Lat 40° 47′03", long 73° 26′42", Hydrologic Unit 02030202, at Round Swamp Road, near Long Island Expressway, Melville. Owner: U.S. Geological Survey.

AGUIFER. -- Magothy.

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 4 in (0.10 m), depth 168 ft (51 m), screened 158 to 168 ft (48 to 51 m).


DATUM. --Land-surface datum is 193.0 ft (58.8 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.17 ft (0.66 m) above land-surface datum.

REMARKS.—Water-quality records for 1967, 1972, 1974-78, are available in files of Long Island Sub-district office; those for 1979 are published elsewhere in this report.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for May 1967 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 85.79 ft (26.15 m) NGVD, Aug. 28, 1979; lowest measured, 68.27 ft (20.81 m) NGVD, June 27, 1967.

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 27	85 17	MAR 11	84 45	JUN 25	85 10	SED DA	85 31				

TIME, IN WATER YEARS

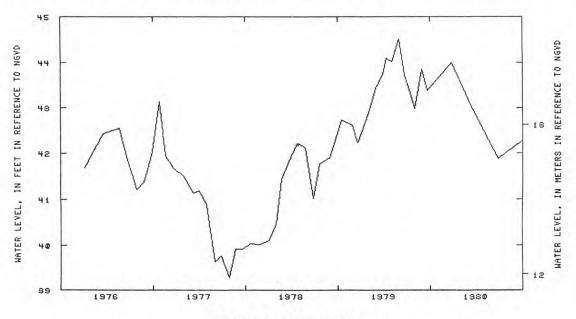
SUFFOLK COUNTY--Continued

405455073025802. Local number, S 31734.
LOCATION.--Lat 40°54′55", long 73°02′58", Hydrologic Unit 02030202, at Jayne Boulevard, 0.7 mi (1.1 km) south of State Highway 347, Terryville. Owner: Suffolk County Water Authority. AQUIFER. -- Lloud.

WELL CHARACTERISTICS. --Drilled observation artesian well, diameter 6 in (0.15 m), depth 1,095 ft (334 m), screened 1,069 to 1,090 ft (326 to 332 m).

DATUM. --Land-surface datum is 165.0 ft (50.3 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

1.25 in (0.03 m) hole in reducer 1.74 ft (0.53 m) above land-surface datum.


REMARKS.—Water-quality records for 1972 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.—October 1975 to current year. Unpublished records for December 1970 to September 1975 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 44.52 ft (13.57 m) NGVD, May 30, 1979; lowest measured, 37.41 ft (11.40 m) NGVD, Mar. 20, 1972.

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 27	44 00	MAR 13	43 01	JUN 26	41 89	SEP 29	42 26				

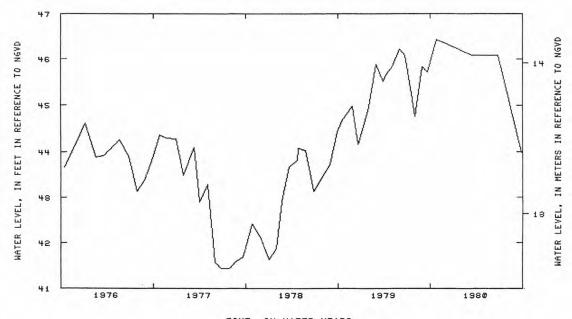
TIME, IN WATER YEARS

405452073025702. Local number, S 32895.

LOCATION. --Lat 40°54′52", long 73°02′57", Hydrologic Unit 02030202, at Jayne Boulevard, 0.7 mi (1.1 km) south of State Highway 347, Terryville. Owner: Suffolk County Water Authority. AGUIFER. -- Magothy.

WELL CHARACTERISTICS. --Drilled observation artesian well, diameter 4 in (0.10 m), depth 845 ft (258 m), screened 840 to 845 ft (2356 to 258 m).

840 to 845 ft (2306 to 208 m).


DATUM. --Land-surface datum is 165.0 ft (50.3 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 1.92 ft (0.58 m) above land-surface datum.

PERIOD OF RECORD. --October 1975 to current year. Unpublished records for March 1970 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water-level measured, 46.43 ft (14.15 m) NGVD, Oct. 27, 1979; lowest

measured, 38.88 ft (11.85 m) NGVD, July 26, 1971.

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DCT 27	46 43	MAR 13	46 08	JUN 26	46 08	SEP 29	43 98				

TIME. IN WATER YEARS

SUFFOLK COUNTY--Continued

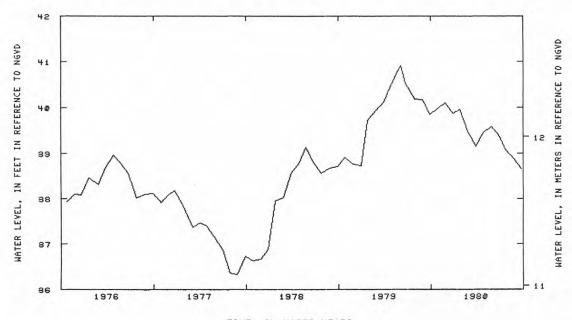
404932073055901. Local number, S 33379.
LOCATION. --Lat 40°49′32″, long 73°05′59″, Hydrologic Unit 02030202, at Duncun Avenue and Portion Road, Lake Ronkonkoma. Owner: Suffolk County Water Authority.

AQUIFER. --Lloyd.

WELL CHARACTERISTICS. --Drilled observation artesian well, diameter 4 in (0.10 m), depth 1,305 ft (398 m), screened 1,290 to 1,300 ft (393 to 396 m).

DATUM. --Land-surface datum is 134.0 ft (40.8 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.34 ft (0.71 m) above land-surface datum.

REMARKS. --Water-quality records for 1968 are available in files of Long Island Sub-district office.


PERIOD OF RECORD. --October 1975 to current year. Unpublished records for October 1968 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 40.92 ft (12.47 m) NGVD, Jun. 5, 1979; lowest

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

measured, 34.13 ft (10.40 m) NGVD, Oct. 11, 1968.

WATER		WATER	WATER			WATER		WATER		WATER	
DATE	LEVEL										
DCT 29	39. 99	DEC 28	39. 87	FEB 26	39. 49	APR 25	39. 45	JUN 26	39. 40	AUG 27	38. 88
NOV 28	40.10	JAN 24	39. 96	MAR 27	39. 15	MAY 28	39. 58	JUL 25	39. 07	SEP 26	38. 67

TIME, IN WATER YEARS

404932073055902. Local number, S 33380.

LOCATION. --Lat 40° 49'32", long 73°05'59", Hydrologic Unit 02030202, at Duncun Avenue and Portion Road, Lake Ronkonkoma. Owner: Suffolk County Water Authority.

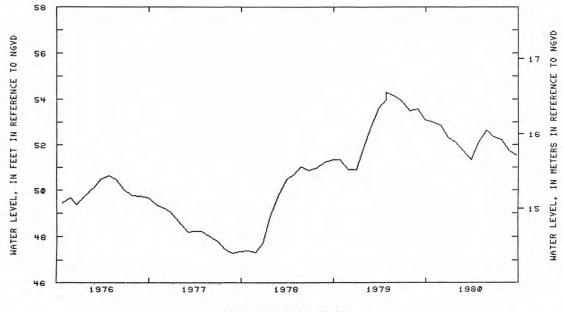
AGUIFER. -- Magothy.

WELL CHARACTERISTICS.—Drilled observation artesian well, diameter 4 in (0.10 m), depth 850 ft (259 m), screened 840 to 850 ft (256 to 259 m).

DATUM.—Land-surface datum is 133.5 ft (40.7 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

casing, 2.13 ft (0.65 m) above land-surface datum.

REMARKS.—Water-quality records for 1968 and 1976 are available in files of Long Island Sub-district office.


PERIOD OF RECORD.—October 1975 to current year. Unpublished records for October 1968 to September 1975 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. — Highest water level measured, 54.30 ft (16.55 m) NGVD, Apr. 27, 1979; lowest measured, 45.16 ft (13.76 m) above NGVD, Dec. 5, 1969.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER	DATE	WATER	DATE	WATER	DATE	WATER	DATE	WATER	DATE	WATER
OCT 29	53. 01 52. 86	DEC 28 JAN 24	52. 31 52. 13	FEB 26	51. 73 51. 33	APR 25	52. 11 52. 63	JUN 26 JUL 25	52. 32 52. 25	AUG 27 SEP 26	51.73 51.53

TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

405517072574902. Local number, S 34892.
LOCATION.--Lat 40°55'17", long 72°57'49", Hydrologic Unit 02030202, at Radio Avenue, 1.3 mi (2.1 km) south of State Highway 25A, Rocky Point. Owner: Suffolk County Water Authority. AQUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. -- Drilled observation water-table well, diameter 6 in (0.15 m), depth 138 ft (42 m), screened

124 to 138 ft (38 to 42 m).

DATUM.--Land-surface datum is 122.5 ft (37.3 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.68 ft (0.21 m) above land-surface datum.

PERIOD OF RECORD.--October 1975 to current year. Unpublished records for July 1970 to September 1975 are available

in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 52.35 ft (15.96 m) NGVD, May 30, 1979; lowest

measured, 42.17 ft (12.85 m) NGVD, Mar. 21, 1972.

	WATER		WATER		WATER WATER					WATER	
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DCT 2	51.49	DEC 26	51.63	MAR 18	49.39	JUN 25	50.48	SEP 4	49.84 G		

TIME, IN WATER YEARS

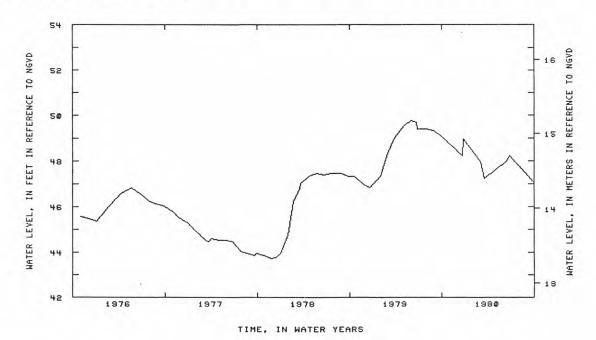
405517072574903. Local number, S 34894.

LOCATION .-Lat 40°55'17", long 72°57'49", Hydrologic Unit 02030202, at Radio Avenue, 1.3 mi (2.1 km) south of State Highway 25A, Rocky Point. Owner: Suffolk County Water Authority.

AQUIFER. -- Magothy.

WELL CHARACTERISTICS. --Drilled observation artesian well, diameter 12 in (0.30 m), depth 745 ft (227 m), screened 698 to 745 ft (213 to 227 m).

DATUM. --Land-surface datum is 124.0 ft (37.8 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of 2 in (0.05 m) nipple, 3.82 ft (1.16 m) above land-surface datum.


PERIOD OF RECORD. --October 1975 to current year. Unpublished records for March 1970 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 49.78 ft (15.17 m) NGVD, May 30, 1979; lowest

measured, 40.56 ft (12.36 m) NGVD, Mar. 15, 1972.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER
DCT 2 DEC 21	49. 06 48. 24	DEC 26 MAR 3	48. 96 47. 95 G	MAR 18	47. 24	JUN 13	47. 95 G	JUN 25	48. 22	SEP 30	47. 07

G MEASUREMENT BY ANOTHER AGENCY

404640073050201. Local number, S 36144.

LOCATION. --Lat 40°46'40", long 73°05'02", Hydrologic Unit 02030202, at Lincoln Avenue, Bohemia. Owner: Town of Islin.

AQUIFER .-- Upper Glacial.

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 2 in (0.05 m), depth 52.5 ft (16.0 m) screen assumed at bottom. DATUM.--Land-surface datum is 54.0 ft (16.5 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

casing, 1.84 ft (0.56 m) above land-surface datum.
PERIOD OF RECORD. --November 1970 to September 1977 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 39.96 ft (12.18 m) NGVD, Mar. 29, 1979; lowest measured, 33.07 ft (10.08 m) NGVD, Dec. 16, 1971.

WATER	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DCT 27	37. 84	MAR 25	36 35	JUN 25	37 91	SEP 29	35 75				

SUFFOLK COUNTY--Continued

4047073023302 Local number, S 36145-2

LOCATION. --Lat 40°47'07", long 73°02'33", Hydrologic Unit O2030202, at Patchogue-Holbrook Road and Waverly Avenue, near Islip-Brookhaven Town line, Holbrook. Owner: Suffolk County Department of Environmental Control. AQUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 2 in (0.05 m), depth 43 ft (13 m), screened 30 to 43 ft (9 to 13 m).

DATUM --Land-surface datum is 44.6 ft (13.6 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 0.30 ft (0.09 m) below land-surface datum.

REMARKS. -- Water-quality records for 1972 are available in files of Long Island Sub-district office.

PERIOD OF RECORD. --October 1976 to current year. Unpublished records for 1970-76 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 33.90 ft (10.33 m) NGVD, Apr. 10, 1979; lowest measured, 30.14 ft (9.19 m) NGVD, Dec. 20, 1971.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

WATER	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 27	32. 08	MAR 25	32. 09	JUN 25	32. 67	SEP 29	31. 27				

405551072501601. Local number, S 36146.

LOCATION. --Lat 40°55'51", long 72°50'16", Hydrologic Unit 02030202, at Wading River Road, Wading River. Owner: Suffolk County Department of Public Works.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. -- Drilled observation water-table well, diameter 2 in (0.05 m), depth 86.6 ft (26.4 m) screen assumed at bottom.

DATUM. --Land-surface datum is 100.0 ft (30.5 m) National geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.51 ft (0.76 m) above land-surface datum.

PERIOD OF RECORD. --October 1970 to current year. Unpublished records for October 1970 to September 1977 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 39.70 ft (12.10 m) NGVD, Apr. 12, 1979; lowest measured, 32.24 ft (9.83 m) NGVD, Oct. 29, 1969.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 1	38. 58	JAN 9	37. 63	MAR 27	36. 81	JUL B	37. 91	SEP 30	36. 15		

410524072194201. Local number, S 38463.

LOCATION. --Lat 41°05'24", Long 72°19'42", Hydrologic Unit 02030202, at Cobbets Lane, east of Manhasset Road, Shelter Island. Owner: Mr. Hines.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. -- Drilled domestic water-table well, 4 in (0.10 m), depth 56 ft (17 m), screen assumed at

DATUM. --Land-surface datum is 59.9 ft (18.3 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

casing, in well pit 5.45 ft (1.66 m) below land-surface datum.

PERIOD OF RECORD. --October 1976 to current year. Unpublished records for 1971-76 are available in files of Long

Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 4.52 ft (1.38 m) NGVD, Mar. 5, 1979; lowest measured, -1.89 ft (0.58 m) NGVD, June 25. 1971.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	WATER		WATER	WATER			WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JAN 11	2.85	MAR 25	1.49	JUN 14	2 40 6	.111 2	2 59				

G MEASUREMENT BY ANOTHER AGENCY

GROUND-WATER I FUELS

SUFFOLK COUNTY--Continued

405153073241101. Local number, S 40841.

LOCATION. --Lat 40°51′53", long 73°24′11", Hydrologic Unit 02030201, Park Avenue and Dunlop Road, Huntington.

Owner: Suffolk County Department of Public Works.

AQUIFER. -- Upper Glacial. WELL CHARACTERISTICS. --Drilled observation water-table well, 2 in (0.05 m), depth 65.8 ft (20.1 m), screen assumed at bottom.

DATUM. --Land-surface datum is 108.0 ft (32.9 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

coupling, 0.30 ft (0.09 m) below land-surface datum.

PERIOD OF RECORD. --August 1971 to current year. Unpublished records for October 1971 to September 1977 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 69.55 ft (21.20 m) NGVD, Mar. 20, June 20, 1979; lowest measured, 62.42 ft (19.03 m) NGVD, Mar. 27, 1972.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JAN 2	69. 01	MAR 24	68. 34	JUN 24	68. 98	SEP 25	68. 05				

405323073021201. Local number, S 41050. LOCATION. --Lat 40°53'23", long 73°02'12", Hydrologic Unit 02030202, at Dare Road, 190 ft (58 m) south of Pine Street, North Selden. Owner: Suffolk County Water Authority. AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. -- Drilled observation water-table well, diameter 8 in (0.20 m), depth 71 ft (22 m), screened 67 to 69 ft (20 to 21 m), sump bottom below screen.

DATUM. --Land-surface datum is 89.4 ft (27.3 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of 2 in (0.05 m) reducer plug, 0.78 ft (0.24 m) above land-surface datum.

REMARKS. --Water-quality records for 1978 are available in files of the Long Island Sub-district office; those for 1979 are published elsewhere in this report.

PERIOD OF RECORD. -- October 1976 to current year. Unpublished records for February 1972 to September 1976 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 75.18 ft (22.91 m) NGVD, Apr. 10, 1979; lowest

measured, 60.29 ft (18.38 m) NGVD, July 11, 1972.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	WATER		WATER	WATER			WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JAN 3	72. 34	MAR 25	72. 18	JUN 30	73. 82	SEP 29	71.74				

405222073021301. Local number, S 46531. LOCATION.—Lat 40°52′22", long 73°02′13", Hydrologic Unit 02030202, at Tuckahoe Road, 189 ft (58 m) north of Route 27, Southampton. Owner: Town of Southampton. AQUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. -- Drilled observation water-table well, diameter 2 in (0.05 m), depth 42 ft (13 m), screen assumed at bottom.

DATUM. --Land-surface datum is 36.4 ft (11.1 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

coupling, O. 13 ft (O. 04 m) below land-surface datum.

PERIOD OF RECORD. --October 1976 to current year. Unpublished records for November 1972 to September 1976 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 6.01 ft (1.83 m) NGVD, May 8, 1973; lowest measured, 3.85 ft (1.17 m) NGVD, Sept. 24, 1980.

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JAN 9	4. 11	MAR 25	4. 11	JUN 18	4. 68	SEP 24	3, 85				

GROUND-WATER I FUELS

SUFFOLK COUNTY--Continued

405231072341901. Local number, S 46534.

LOCATION. --Lat 40° 52'31", long 72° 34'19", Hydrologic Unit 02030202, at Route 27, 2.5 miles (4.0 km) east of Route 113, and 2.25 miles (3.62 km) west of Hampton Bays, South Flanders. Owner: New York State Department of Transportation.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. -- Drilled observation water-table well, diameter 2 in (0.05 m), depth 84 ft (26 m), screened 81 to 84 ft (25 to 26 m).

DATUM. --Land-surface datum is 82.0 ft (25.0 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.70 ft (0.52 m) above land-surface datum.

PERIOD OF RECORD. --October 1976 to current year. Unpublished records for January 1973 to September 1976 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 14.69 ft (4.38 m) NGVD, Apr. 4, 1979; lowest

measured, 10.75 ft (3.28 m) above NGVD, June 26, 1980.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	DATE LEVEL		WATER		WATER				WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JAN 9	13. 30	MAR 28	11.64	JUN 26	10.75	SEP 23	11.45				

405130072353101. Local number, S 46537.

LOCATION. --Lat 40°51'30", long 72°35'31", Hydrologic Unit 02030202, at Spinney Road, 0.6 mi (1.0 km) south of Hampton Bays Road, East Quoque. Owner: Town of Southampton.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 2 in (0.05 m), depth 50 ft (15 m), screen assumed at bottom.

DATUM. --Land-surface datum is 56.20 ft (17.1 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 0.21 ft (0.06 m) below land-surface datum.

PERIOD OF RECORD. --October 1976 to current year. Unpublished records for December 1972 to September 1976 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 16.02 ft (4.88 m) NGVD, July 2, 1980; lowest

measured, 11.79 ft (3.59 m) NGVD, Dec. 27, 1974.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JAN 9	13. 39	MAR 28	13. 64	JUL 2	16.02	SEP 23	11.88				

405021072355801. Local number, 5 46540

LOCATION. --Lat 40° 50′21", long 72° 35′58", Hydrologic Unit 02030202, at intersection of Railroad and Midhampton Avenues, Quogue. Owner: Town of Southampton. Avenues, Quogue. Owner:

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 2 in (0.05 m), depth 41 ft (12 m), screen assumed at bottom.

DATUM: --Land-surface datum is 38 ft (12 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, O. 24 ft (O. 08 m) below land-surface datum.

PERIOD OF RECORD. --November 1972 to current year. Unpublished records for November 1972 to September 1977 are available in files of Long Island Sub-district office. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 11.64 ft (3.55 m) NGVD, Apr. 2, 1979; lowest

measured, 6.74 ft (2.05 m) NGVD, Oct. 4, 1978.

WATER		WATER		WATER		WATER		WATER		WATER	
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JAN 9	8. 63	MAR 28	B. 61	JUN 19	9. 56	SEP 23	8. 34				

405353072403801. Local number, S 46541.

LOCATION. --Lat 40°53'53", long 72°40'38", Hydrologic Unit 02030202, at intersection County Road 51 and County Road 63, Wildwood Lake. Owner: Suffolk County Department of Public Works.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. -- Drilled observation water-table well, diameter 2 in (0.05 m), depth 34 ft (10 m), screen assumed at bottom.

DATUM.—Land-surface datum is 27.0 ft (8.2 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 0.26 ft (0.08 m) above land-surface datum.

PERIOD OF RECORD. --October 1976 to current year. Unpublished records for December 1972 to September 1976 are available in files of Long Island Sub-District office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 19.07 ft (5.81 m) NGVD, Feb. 2, 1979; lowest measured, 16.02 ft (4.88 m) NGVD, Nov. 28, 1977.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	WATER ATE LEVEL D		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JAN 9	17.40	MAR 19	17.36	JUN 20	17.52	SEP 23	16 62				

405302072415101. Local number, S 46542.

LOCATION. --Lat 40°53'02", long 72°41'51", Hudrologic Unit 02030202, at Speonk Road and County Road 51, Riverhead. Suffolk County Department of Public works. Owner: AQUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 2 in (0.05 m), depth 149 ft (45 m), screen assumed at bottom.

DATUM. --Land-surface datum is 163.0 ft (49.7 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, O. 15 ft (O. 05 m) above land-surface datum.

PERIOD OF RECORD. --October 1976 to current year. Unpublished records for December 1972 to September 1976 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 30.42 ft (9.27 m) NGVD, June 29, 1979; lowest measured, 26.05 ft (7.94 m) NGVD, March 24, 1975.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

WATER	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LÈVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JAN 9	29. 11	MAR 19	27. 97	JUN 20	28. 58	SEP 23	27. 15				

405140072432501. Local number, S 46544. LOCATION. --Lat 40°51'40", long 72°43'25", Hydrologic Unit 02030202, at County Road 51 and Service Road for Recharge Basin 34, Calverton. Owner: Suffolk County Department of Public Works.

AGUIFFR --Unner Glacial WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 2 in (0.05 m), depth 107 ft (33 m), screen

assumed at bottom. DATUM. --Land-surface datum is 103.0 ft (31.4 m) National Geodetic Vertical Datum of 1927. Measuring point: Top of

coupling, 0.29 ft (0.09 m) below land-surface datum.

PERIOD OF RECORD. —October 1976 to current year. Unpublished records for December 1972 to September 1976 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 31.28 ft (9.53 m) NGVD, June 28, 1979; lowest measured, 26.91 ft (8.20 m) NGVD, Aug. 17, 1974.

WATER		WATER		WATER		WATER		WATER		WATER	
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JAN 9	29. 81	MAR 31	29. 16	JUL 2	29. 33	SEP 23	28. 16				

SUFFOLK COUNTY--Continued

405330072443701. Local number, S 46545

LOCATION --Lat 40°53'30", long 72°44'37", Hydrologic Unit 02030202, at Toppings Path, 0.9 mi (1.4 km) south of Nugget Drive, Calverton. Owner: Town of Brookhaven.

AQUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 2 in (0.05 m), depth 73 ft (22 m), screen 70 to 73 ft (21 to 22 m)

DATUM. --Land-surface datum is 107.0 ft (32.6 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.14 ft (0.65 m) above land-surface datum.

PERIOD OF RECORD. --October 1976 to current year. Unpublished records for December 1972 to September 1976 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 43.83 ft (13.36 m) NGVD, June 28, 1979; lowest measured, 37.22 ft (11.34 m) NGVD, Oct. 7, 1977.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

WATER		WATER		WATER		WATER		WATER		WATER	
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JAN 9	41.01	MAR 31	40.17	JUN 26	41 34	SEP 23	40 15				

405716072591601. Local number, S 46548. LOCATION.—Lat 40°57′16", long 72°59′16", Hydrologic Unit 02030201, at Woodhull Landing Road and Old Rocky Point Road, Miller Place. Owner: Town of Brookhaven.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. -- Drilled observation water-table well, diameter 2 in (0.05 m), depth 84 ft (26 m), screen assumed at bottom.

DATUM. --Land-surface datum is 71.0 ft (21.6 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

coupling, O.27 ft (O.08 m) below land-surface datum.
PERIOD OF RECORD.——October 1976 to current year. Unpublished records for December 1972 to September 1976 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 12.14 ft (3.70 m) NGVD, June 22, 1979; lowest

measured, 9.06 ft (2.76 m) NGVD, Apr. 4, 1977.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE'	WATER LEVEL
OCT 2	11.78	DEC 26	11.33	MAR 17	10.81	JUN 25	11.06	SEP 30	10.62		

405621073022001 Local number, 5 46549

LOCATION. --Lat 40° 56'21", long 73°02'20", Hydrologic Unit 02030201, at Crystal Brook Hollow Road, 0.2 mi (0.3 km) north of North County Road, Port Jefferson. Owner: Town of Brookhaven.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 2 in (0.05 m), depth 101 ft (31 m), screened 97 to 101 ft (30 to 31 m).

DATUM.—Land-surface datum is 97.0 ft (29.6 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 0.39 ft (0.12 m) below land-surface datum.

PERIOD OF RECORD. --October 1976 to current year. Unpublished records for December 1972 to September 1976 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 29.06 ft (8.86 m) NGVD, Oct. 26, 1979; lowest

measured, 23.81 ft (7.26 m) NGVD, Dec. 20, 1972.

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DCT 2	28. 28	DCT 26	29.06	MAR 17	26. 94	JUN 25	27. 41				

205

SUFFOLK COUNTY--Continued

404813073084101. Local number, S 65601. LOCATION. --Lat 40°48'13", long 73°08'41", Hydrologic Unit 02030202, at Johnson Avenue and Terry Road, Ronkonkoma. Owner: U.S. Geological Survey.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in (0.05 m), depth 41 ft (12 m), screened 38 to 41 ft (11 to 12 m).

DATUM. --Land-surface datum is 62.6 ft (19.1 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of

coupling, 0.20 ft (0.06 m) below land-surface datum.

REMARKS. — This well replaces S 1813-2. Prior to September 1978, water levels were measured in S 1813-2.

PERIOD OF RECORD. —September 1978 to current year.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 42.10 ft (12.83 m) NGVD, Apr. 10, 1979; lowest measured, 36.46 ft (11.11 m) NGVD, Jan. 25, 1951.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	WATER LEVEL										
OCT 22	40.74	JAN 28	40.01	MAR 20	39. 81	MAY 21	41. 19	JUL 23	39. 70	SEP 22	39. 64
NOV 21	40. 54	FEB 25	39. 80	APR 28	41.03	JUN 20	40. 97	AUG 26	40.10	30	39. 27
DEC 17	40.35										

405030073180601. Local number, S 65602.

LOCATION.—Lat 40°50'30", long 73°18'06", Hydrologic Unit 02030202, at Wiltshire Drive and Renee Place, Commack.

Owner: U.S. Geological Survey.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 2 in (0.05 m), depth 96 ft (29 m), screened 91 to 96 ft (28 to 29 m).

DATUM.—Land-surface datum is 146 ft (44 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 0.19 ft (0.06 m) below land-surface datum.

REMARKS.—This well replaces S 3514.

PERIOD OF RECORD. --October 1978 to current year.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 76.41 ft (32.29 m) NGVD, Aug. 28, 1979, lowest measured, 73.23 ft (22.41 m) NGVD, Mar. 24, 1980.

WATER	WATER		WATER								
DATE	LEVEL										
DCT 29	74. 81	DEC 18	74. 21	FEB 25	73. 91	APR 28	73. 40	JUN 20	74. 05	AUG 25	73. 79
NOV 21	74. 54	JAN 28	73. 71	MAR 24	73. 23	MAY 21	73. 60	JUL 23	73. 86	SEP 22	73. 36

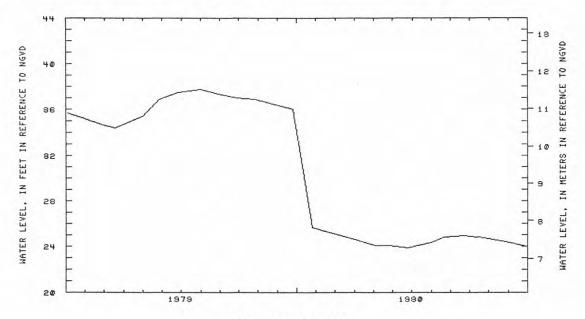
SUFFOLK COUNTY--Continued

404836072483401. Local number, S 65604.

4048360/2483401. Local number, a cooks. LOCATION.--Lat 40°48′36°4, long 72°48′34", Hydrologic Unit 02030202, at Chichester Avenue near Sunrise Highway, Manorville. Qwner: U.S. Geological Survey.

AGUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 2 in (0.05 m), depth 56 ft (17 m), screened 51 to 56 ft (16 to 17 m).


DATUM .-Land-surface datum is 64 ft (19.5 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling (0.05 m) below land-surface datum.

PERIOD OF RECORD. --October 1978 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 38.79 ft (11.82 m) NGVD, Aug. 28, 1979, lowest measured, 23.84 ft (7.27 m) NGVD, Mar. 25, 1980.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

WATER		WATER		WATER				WATER		WATER	
DATE	LEVEL										
OCT 26	25. 64	DEC 19	24. 80	FEB 26	24. 07	APR 30	24. 34	JUN 23	24. 96	AUG 28	24. 42
NOV 23	25, 20	FEB 4	24. 07	MAR 25	23. 84	MAY 22	24.77	JUL 24	24.71	SEP 29	23. 98

TIME. IN WATER YEARS

410226072283801. Local number, S 65606.

LOCATION .--Lat 41°02'26", long 72°28'38", Hydrologic Unit 02030201, at Sound Avenue, near Peconic. Owner: U.S. Geological Survey.

AQUIFER. -- Upper Glacial.

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 2 in (0.05 m), depth 51 ft (15.5 m), screened 46 to 51 ft (14 to 15.5 m).

DATUM.—Land-surface datum is 37.3 ft (11.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 0.30 ft (0.09 m) below land-surface datum.

REMARKS.—This well replaces S 16777-2. Prior to October 1978, water levels were measured in S 16777.

PERIOD OF RECORD. -- September 1978 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 8.61 ft (2.62 m) NGVD, Feb. 1, 1979; lowest measured, 2.27 ft (0.67 m) NGVD, Aug. 31, 1966.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
ост з	5. 67	JAN 10	4. 26	MAR 25	3. 74	JUN 27	5. 31				

QUALITY OF GROUND WATER 207

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 NASSAU COUNTY

All samples were collected and analyzed by U.S. Geological Survey.

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)
4038180	73421501		N 1114		112GLCLU	79-12-06 80-06-18 80-09-15	29 29 29	480 380	6. 7 6. 7 6. 6	15. 0 15. 0 17. 5	2. 2 	82 98 100
4037160	73423101		N 1116		112GLCLU	79-12-06 80-06-18 80-09-15	18 18 18	325 300 260	5. 9 5. 9 5. 6	14. 0 14. 5 18. 5	1.6	99 86 96
4041230	73394802		N 1129		112GLCLU	79-12-06 80-06-18 80-09-15	44 44 44	275 175	5. 6 6. 4 5. 4	14. 0 15. 0 16. 0	2. 9 	94 94 64
4047360	73353101		N 1176			79-11-15 80-09-11	198 198	70 35	5. 9 5. 4	11. 0 12. 0	=	7 6
4046570	73332201		N 1194			79-11-15 80-09-11	100 100	340 275	5. 9 5. 5	12. 0 11. 5	Ξ	89 74
DATE OF SAMPLE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)
79-12-06 80-06-18 80-09-15	27 32 33	3. 6 4. 4 4. 8	41 32 31	2. 9 3. 0 2. 0	67 96 76	4. 8 . 4 3. 1	74 61 57	. 0 . 0 . 0	7. 0 6. 5 6. 4	204 219 200	. 29 . 11 . 32	. 52 . 11 . 18
79-12-06 80-06-18 80-09-15	32 27 30	4. 6 4. 6 5. 1	15 17 12	3. 7 3. 7 3. 7	40 19 15	50 45 41	30 26 22	. 0	4. 9 5. 0 5. 8	184 160 151	4. 0 4. 6 4. 8	4. 4 4. 6 5. 1
79-12-06 80-06-18 80-09-15	31 30 21	4. 0 4. 7 2. 8	8. 6 10 7. 3	2. 3 3. 2 3. 8	5 8 23	56 48 35	13 25 8. 5	. 0	10 9. 3 8. 6	161 171 109	9. 3 8. 3 2. 0	7. 4. 7. 9 1. 8
79-11-15 80-09-11	1. 6 1. 3	.7	3. 4 3. 5	. 7	7 11	. i	3. 5 3. 7	. 0	8. 9 9. 8	29 33	1.2 1.5	1. 2 1. 4
79-11-15 80-09-11	25 20	6. 5 5. 9	26 23	1.8 1.6	20 21	15 19	63 53	. 0	12 13	175 161	2. 6 2. 9	2. 6 2. 7
	DATE OF SAMPLE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-12-06 80-06-18 80-09-15	. 000 . 010 . 000	. 000 . 000	1. 600 1. 500 . 550	. 30	.010 .010 .020	13000 33000	1300 21000 16000	310 350	2. 7 6. 4	.00 .10 .10	
	79-12-06 80-06-18 80-09-15	. 000 . 000 . 000	.000 .020 .010	. 090 . 070 . 040	. 58 . 00 . 04	. 000 . 000 . 000	560 450 700	350 300 30	80 70 70	1. 5 8. 4 	. 10 . 10 . 00	
	79-12-06 80-06-18 80-09-15	. 000 . 000 . 000	. 000 . 000 . 000	. 000 . 020 . 000	. 29 . 00 . 17	. 000 . 000 . 020	5000 2900 100	700 610 420	90 70 49 0	1. 4 6. 2	. 00 . 10 . 00	
	79-11-15 80-09-11	. 000	. 000	. 010	. 17	. 000	640 1700	300 370	20 20	. 8 3. 4	. 00	
	79-11-15 80-09-11	. 000	. 000	. 030	. 56 . 12	. 010 . 040	2300 3700	2000 420	40 50	1. 2 3. 3	. 00	

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY--Continued

All samples were collected and analyzed by U.S. Geological Survey.

								SPE-				
STATION	NUMBER	LOCAL IDENT- I- FIER			GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL	CIFIC CON- DUCT- ANCE (MICRO-	PH FIELD	TEMPER- ATURE, WATER	OXYGEN, DIS- SOLVED	HARD- NESS (MG/L AS
01H120K	HOLDER		TEN		ONLI	SHITEE	(FEET)	MHOS)	(UNITS)	(DEG C)	(MG/L)	CACO3)
404310073261001		*	N 1250		112GLCLU	79-11-16 80-06-19 80-09-09	34 34 34	245 250 250	5. 8 6. 8 5. 6	13. 5 15. 0 14. 5	1. 4	40 73 64
404239073255201			N 1251		112GLCLU	79-11-16 80-06-19 80-09-09	19 19 19	200 175 175	5. 8 6. 9 5. 6	15. 0 14. 5 18. 5	. 7	28 50 40
404059073254101			N 1253		112GLCLU	79-11-16 80-06-19 80-09-09	29 29 29	575 350 375	6. 3 6. 0 6. 1	14. 0 12. 0 13. 5	. 8	71 42 68
404015073252701			N 1254			80-06-19 80-09-09	29 29	350 425	6. 0 6. 5	18. 5 23. 0	=	91 94
403920073410701			N 1429		112GLCLU	79-12-06 80-06-18 80-09-15	24 24 24	260 175	6. 3 6. 8 5. 8	18. 0 17. 0 19. 0	1. 3	97 91 60
403805073395301			N 2790		211MGTY	80-06-27	571	44		14. 0		3
DATE OF SAMPLE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS— SIUM, DIS— SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)
79-11-16 80-06-19	13 23	1. B 3. 7	20 26	3. 5 4. 5	7 26	43	24 37	. 0	6. 1 8. 0	124 190	5. 4 6. 3	5. 2 6. 3
80-09-09	20	3. 4	25	4. 3	16	40	31	. 0	8.8	176	7. 4	7.6
79-11-16 80-06-19 80-09-09	10 16 13	2. 5 1. 9	18 21 16	1. 4 3. 0 3. 0	27 29 21	28 33 26	12 14 11	.0	9. 8 9. 8 11	100 141 117	. 90 5. 5 4. 8	5. 5 4. 9
79-11-16	23	3. 3	74	5. 8	66		110	. 0	12	298	. 56	. 52
80-06-19 80-09-09	13 21	2. 3 3. 7	59 39	5. 1 4. 7	66 52	52 52	63 74	. 0	11	217 211	. 15	. 44
80-06-19 80-09-09	30 28	5. 0 4. 7	33 26	4. 8 5. 4	31 26	57 52	41 47	. 0	9. 1 8. 9	226 216	6. 4 5. 8	6. 5 5. 7
79-12-06 80-06-18	33	3. 6 4. 0	6. 9 13	3. 9 4. 1	65 53	30 44	8. 1 14	. 0	7. 2 8. 2	136 160	. 02 2. 1	. 48 2. 3
80-09-15	19	3. 1	10	2. 8	14	48	13	. 0	11	135	4. 0	4. 3
80-06-27	. 5	. 4	6. 3	1.8	9	4. 0	6. 5	. 0	7.6	36	. 11	. 17
	DATE OF SAMPLE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-11-16 80-06-19	. 000	. 050	1. 700 1. 200	. 40		1300 1100	400 840	810 1500	1.3	. 10	
	80-09-09	. 000	. 000	1. 500	. 00		800	590	960	8. 0	. 10	
	79-11-16 80-06-19	. 000	. 000	1.000	. 20		1500 720	780 330	480 20	1.5	. 00	
	80-09-09	. 000	. 000	. 000	. 24		520	340	40	9. 4	. 00	
	79-11-16	. 000	. 000	. 980	2. 7	. 010	610	250	5600	2.3	. 00	
	80-06-19 80-09-09	. 000	. 000	5. 200 4. 500	. 00		580 160	200 70	3000	6. 1 8. 4	. 00	
	80-06-19 80-09-09	. 000	. 000	3. 000 2. 700	. 00		2000 1700	1100 680	2200 2100	5. 2 12	. 10 . 10	
	79-12-06	. 000	. 000	. 030	. 28		3100	2500	670	3. 7	. 00	
	80-06-18	. 000	. 000	. 110	. 00	. 010	1900	480	730	. 9	. 00	
	80-09-15	. 010	. 000	. 010	. 00		4100	380	70		. 00	
	80-06-27	. 010	. 000	. 060	. 23	. 000	2700	2500	10		. 00	

^{*} Revision.--The pH (units) for Dec. 5, 1978 has been revised to 6.2, superseding figure previously published.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL	SPE- CIFIC CON- DUCT- ANCE (MICRO-	PH FIELD	TEMPER- ATURE, WATER	DXYGEN, DIS- SOLVED	HARD- NESS (MG/L AS
							(FEET)	MHOS)	(UNITS)	(DEG C)	(MG/L)	CACO3)
40375107			N 3861		211MGTY	80-06-12	530	40500		13. 0		1900
40362107	73441801		N 3862		211MGTY	80-06-11	311	59800		15.0		1200
40382707	73494202		N 3864		211MGTY	80-07-03	470	55		15.0		6
40373407	73374801		N 3865		211MGTY	80-07-31	565	100		15.0		5
40391107	73432701		N 3867		211MGTY	80-06-20	550	75		15.0		9
40375107	73440202		N 3932		112GLCLU	80-06-12	176	50		13. 5		7
40371307	73415901		N 4026		112GLCLU	80-07-07	197	95		15.0	7-	26
40362107	73441702		N 4062		112JMC0	80-06-11	142	2500		17. 0		
40384407	73340801		N 4150		211MGTY	80-07-14	765	44		16. 0		3
40391107	73432001		N 4213		112JMC0	80-08-01	135	250		16. 0	-	19
DATE OF SAMPLE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)
80-06-12	220	330	8400	290	8	. 7	17000	. 3	. 6	26200		. 06
80-06-11	180	170	600	13	0	130	2500	. 0	8. 1	3700		. 05
80-07-03	1.1	. 8	7. 4	1.3	15	3. 3	5. 7	. 0	6. 1	39	. 02	. 19
80-07-31	. 9	. 6	4. 8	. 6	10	. 0	6.6	. 0	. 5	26	. 01	. 49
80-06-20	1.3	1.4	9. 6	1.4	9	. 3	16	. 0	2. 8	51	. 01	. 06
80-06-12	1.3	. 8	5. 3	1.3	13	2. 0	2. 0	. 0	12	35		. 03
80-07-07	5. 8	2.8	9. 6	1. 9	33	2.3	9. 0	. 0	10	63	. 02	. 12
80-06-11							85					
80-07-14	. 6	. 3	6. 3	1.8	12	. 6	8. 4	. 0	. 4	27	. 03	. 16
80-08-01	2. 5	3. 2	17	2. 9	20	5. 6	25	. 1	12	85	. 01	. 54
	DATE OF SAMPLE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	80-06-12	-	. 000				7400	370	340			
	80-06-11		. 000				100000	98000	2000			
	80-07-03	. 000	. 000	. 020	. 13	. 030	5100	3900	80	1,22	. 00	
	80-07-31	. 000	. 010	. 010	. 00	. 020	6000	3400	20		. 00	
	80-06-20	. 000	. 000	. 070	. 17	. 020	19000	13000	170	-	. 00	
	80-06-12	-	. 000				11000	2800	70			
	80-07-07	. 000	. 000	. 090	. 49	. 050	38000	1300	120		. 00	
	80-06-11											
	80-07-14	. 000	. 000	. 120	. 65	. 050	4400	610	40		. 00	
	80-08-01	. 000	. 020	. 010	. 00	. 060	7900	2300	20		. 40	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3
4035320	73353401	N	5227		211LLYD	80-07-11	1265	85				
4038270	73424903	N	6581		211MGTY	80-08-28	584	>20000	5. 8	15. 0		490
4035170	73430701	N	6701		211MGTY	80-05-05	857					_
4035170	73430702	N	6702		211MGTY	80-07-09	681					-
4035170	73430703	N	6703		211MGTY	80-06-24	482	14000		18. 0		250
4035170	73430704	N	6704		211MGTY	80-06-30	295	2000		14.0		1
4035170	73430705	N	6705		112JMC0	80-08-01	163	33000		- 22		320
4037130	73415902	N	6707		211MGTY	80-06-26	503	4500	-	14. 0		81
4037130	73415904	N	6792		112GLCLU	80-06-26	50	1800		15. 0		10
4037130	73415905	N	6793		112GLCLU	80-07-10	11	4000		20. 0		75
DATE OF SAMPLE	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS-	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO GEN, NITRAT DIS- SOLVE (MG/L AS N)
80-07-11	1. 1	1.3	8. 8	1. 2	10	15	14	. 1	8. 4	67	. 28	1.7
90-08-28	320	1000	6200	92	0	1200	8300	. 0	5. 7	17300	. 13	. 0
30-05-05			77				940					-
80-07-09							7100					
30-06-24	240	470	2600	53	31	530	5200	. 0	10	9190	. 30	. 0
80-06-30	3. 2	1.2	6. 5	3. 2	19	5. 9	8. 6	. 0	7. 9	51	. 02	. 0
30-08-01	200	650	7500	190	24	1400	11000	. 0	. 4	21000	. 04	. 0
80-06-26	110	130	790	14	7	170	1600	. 0	8. 7	2890	. 05	. 1
30-06-26	30	6. 1	39	2. 5	91	3. 7	60	. 1	41	239	. 02	. 3
90-07-10	150	90	730	33	18	41	1900	. 1	. 2	2970	. 07	. 8
	DATE OF SAMPLE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	80-07-11	. 000	. 000	. 090	. 26	. 010	3400	3300	80		. 00	
	80-08-28	. 000	. 010	. 330	. 00	. 020	140000	170000	3400	-	. 50	
	80-05-05											
	80-07-09											
	80-06-24	. 010	. 010	. 610	. 34	. 300	63000	68000	2000	-	. 40	
	80-06-30	. 000	. 000	. 070	. 22	. 120	3500	3100	60		. 00	
	80-08-01	. 040	. 040	1.000	. 00	. 060	9300	310	270		. 00	
	80-06-26	. 000	. 010	. 100	. 07	. 030	38000	58000	1300		. 20	
	80-06-26	. 000	. 000	. 370	. 28	. 270	2800	890	70		. 00	

211

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)
40353307	73353201		N 6849		211LLYD	80-07-14	1042	525		18.0		1
40353307	73353202		N 6850		211MGTY	80-07-01	913	800		16.0		26
40353307	73353203		N 6851		211MGTY	80-07-01	557	80		15. 0	10 <u>V-2</u>	27
40353307	73353204		N 6852		211MGTY	80-08-20	265	20800	7. 4	16.0		3400
40353307	73353205		N 6853		211MGTY	80-07-02	136	175		14. 0		62
40380507	73395302		N 6928		211MGTY	80-06-23	571	2000				48
40385607	73392601		N 7161		211MGTY	80-06-13	700	50				
40385507	73392402		N 7207		211MGTY	80-08-20	98	120	5. 6	16.0	1.22	9
40454407	73265603		N 7397		112GLCLU	79-11-15 80-05-23 80-09-11	102 102 102	140 130 100	5. 5 4. 9	12. 5 12. 0 12. 0	=	25 19 22
DATE OF SAMPLE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL. (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)
80-07-14	. 3	. 1	120	4. 3	190	3. 5	51	. 4	. 0	294	. 71	. 07
80-07-01	10	. 2	150	7. 4	110	76	110	. 2	13	433	. 02	. 07
80-07-01	9. 3	. 8	5. 1	3. 0	28	8. 0	4. 9	. 1	7. 5	56	. 04	. 06
80-08-20	380	600	3900	88	12	580	7400	. 0	. 1	13000	. 03	. 91
80-07-02	24	. 5	4. 6	1.6	38	21	11	. 0	9. 0	95	. 02	. 05
80-06-23	19	. 1	31	3. 1	75	4.6	25	. 1	10	138	. 03	. 07
80-06-13							4. 4					
80-08-20	1. 9	1. 1	5. 1	. 5	17	9, 9	92	. 0	7. 2	132	. 02	. 36
79-11-15	4. 4	3. 3	9. 2	1.3	3		37	. 0	5. 6	81	3. 2	3. 8
80-05-23 80-09-11	3. 1	2.7	9. B 10	2. 1 1. 3	2		23 22	. 0	5. 4 6. 3	56 64	2. 0 3. 2	2. 1 2. 7
	DATE OF SAMPLE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, DRGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	CARBON, DRGANIC DIS- SOLVED (MG/L AS C)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	80-07-14	. 040	. 000	. 000	. 00	. 040	320	40	0		. 00	
	80-07-01	. 000	. 000	. 050	. 23	. 090	340	200	0		. 00	
	80-07-01	. 010	. 000	. 110	. 28	. 010	340	30	0		. 00	
	80-08-20	. 000	. 090	. 760	. 00	. 010	1300	130	170		. 40	
	80-07-02	. 000	. 000	. 040	. 15	. 010	260	10	0		. 00	
	80-06-23	. 020	. 000	. 070	. 36	. 200	140	10	10		. 00	
	80-06-13	-										
	80-08-20	. 000	. 000	. 150	. 00	. 020	4200	2200	40		. 00	
	79-11-15 80-05-23 80-09-11	. 000 . 000 . 000	. 000 . 000 . 000	. 050 . 000 . 000	. 01	. 000	2000 850 830	920 340 310	80 30 50	1. 1 3. 0	. 00 . 00 . 00	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GED- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACD3)
40355907	73302701		N 8414		211LLYD	80-07-08	1080	185		18.0		5
40473007	73423101		N 8877		112GLCLU	79-12-06 80-06-17 80-09-15	76 76 76	190 130	6. 8 5. 9 7. 5	8. 5 9. 0 14. 0	1. 1	51 49 52
40470207	73305601		N 8888			79-11-15 80-09-11	112 112	325 350	5. 9 5. 4	14. 0 14. 0	=	68 80
DATE OF SAMPLE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)
80-07-08	. 7	. 7	34	3. 9	37	28	13	. 1	7. 6	113	. 69	. 52
79-12-06 80-06-17 80-09-15 79-11-15 80-09-11	10 9. 1 9. 8 21 24	6. 4 6. 3 6. 8 3. 8 4. 8	6. 5 6. 3 6. 3	1. 6 3. 2 1. 8 5. 8 6. 1	30 33 33 25 16	20 22 18 36 41	7. 2 8. 5 6. 8 28 43	. 1 . 1 . 0 . 0	21 20 21 14 16	97 103 95 202 236	. 20 . 01 . 00	. 06 . 01 . 00
	DATE OF SAMPLE 80-07-08 79-12-06 80-06-17 80-09-15 79-11-15 80-09-11	NITRO- GEN, NITRITE TOTAL (MG/L AS N) . 000 . 000 . 000 . 000	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) .000 .000 .000 .000	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) . 060 . 000 . 010 . 000	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) . 17 . 12 . 00 . 02	PHOS- PHORUS, TOTAL (MG/L AS P) . 020 . 010 . 000 . 030	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 5800 11000 6400	IRON, DIS- SOLVED (UG/L AS FE) 400 5500 8000 4700 630 120	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L) .00 .00	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY--Continued

All samples were collected and analyzed by U.S. Geological Survey. Additional analyses in Minor Element and Pesticide analyses of ground water.

STATION	NUMBER			ID	OCA ENT I- IER				GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DÍS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACD3)
4044070	73331501	N	9182	CDR	CK	OB	WL	9A	211MGTY 211MGTY 211MGTY	79-10-17 80-01-23 80-05-05	195 195 195	300 335	5. 4 5. 6	14.0 14.0	3.8	65 66 68
4044070	73331502	N	9183	CDR	СК	OB	WL	9B	211MGTY 211MGTY 211MGTY	79-10-17 80-01-23 80-05-05	105 105 105	360 420 	5. 4 5. 1	14. 0 14. 0	4. 5 2. 5	77 68 71
4044070	73331503	N	9184	CDR	CK	OB	WL	90	112GLCLU	79-10-17 80-01-23 80-05-05	45 45 45	360 440 	5. 3 5. 3	14. 0 13. 5	6. 1 2. 8	110 100 90
40440407	73330401	N	9193	CDR	CK	OB	WL	10A	211MGTY 211MGTY	79-11-28 80-03-04	205 205	320 363	5. 1 4. 6	14. 0 13. 5	3. 5 2. 7	72 73
4044040	73330402	N	9194	CDR	CK	OB	WL	10B	211MGTY 211MGTY	79-11-28 80-03-04	105 105	420 505	6. 2 4. 6	14. 0 13. 5	1. 8 4. 4	47 45
40440407	73330403	N	9195	CDR	CK	OB	WL	100		79-11-28 80-03-06	45 45	390 420	5. 6	15. 0 13. 5	2. 0 7. 2	84 84
DATE OF SAMPLE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	5	ALCIUM DIS- SOLVED MG/L AS CA)	S	AGNI SIUI DIS- OLVI MG/I S MG	M, ED	SO	DIUM, IS- LVED MG/L S NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)
79-10-17 80-01-23 80-05-05	58 59 61		16 16 16		6.	2 3 8		29 29 35	1.7 1.6 1.4	7 7 7	34 33 35	42 48 51	. 0	11 11 11	193 198 203	16 9. 5
79-10-17 80-01-23 80-05-05	69 61 65		23 20 20		4.	7 3 1		33 33 42	5. 4 5. 9 4. 7	8 7 6	39 43 41	41 36 39	. 0	10 9.3 10	232 227 245	16 17
79-10-17 80-01-23 80-05-05	100 84 73		34 31 27		6.	2 0 5		23 29 28	6. 2 6. 5 6. 0	8 18 17	47 45 45	32 35 31	. 0 . 0 . 0	11 11 11	164 245 235	16 16
79-11-28 80-03-04	67 67		18 18		6.			25 24	1. 6 5. 8	5 6	16 20	21 21	. 0	12 12	214 204	25 21
	0		15		2.			65	5. 9 6. 9	52 54	35 36	60 48	. 0	14	270 263	8. 9 11
79-11-28 80-03-04	ő		14		2.	ס		00	J. 7						1	

	NITRO-			NITRO-			PHOS-		
	GEN,	NITRO-	NITRO-	GEN, AM-			PHORUS,	CARBON,	CARBON,
	NITRATE	GEN,	GEN,	MONIA +	NITRO-	PHOS-	ORTHOPH	DRGANIC	DRGANIC
DATE	DIS-	AMMONIA	DRGANIC	DRGANIC	GEN,	PHORUS,	OSPHATE	DIS-	SUS-
OF	SOLVED	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	SOLVED	PENDED
SAMPLE	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
	AS N)	AS N)	AS N)	AS N)	AS N)	AS P)	AS PO4)	AS C)	AS C)
79-10-17	11					. 000		1.9	. 0
80-01-23	11	. 020	. 35	. 37	16	. 000	. 03	3. 3	. 2
80-05-05	9.6	. 000	. 14	. 14	9.6	. 010	. 00	4. 9	
79-10-17	16					. 000		3. 5	1.6
80-01-23	16	. 010	. 40	. 41	16	. 000	. 00	3. 9	. 2
80-05-05	18	. 000	. 06	. 06	17	. 000	. 00	4. 4	
79-10-17						. 030		3.7	. 1
80-01-23	16	. 010	. 70	. 71	17	. 030	. 03	3. 3	. 2
80-05-05	16	. 000	. 16	. 16	16	. 010	. 00	5. 0	
79-11-28	25	. 030	. 12	. 15	25	. 000	. 00	1.5	. 1
80-03-04	21	. 000	. 05	. 05	21	. 000	. 00	. 4	, 1
79-11-28	9.2	. 670	. 26	. 93	9.9	. 000	. 00	2.0	. 1
80-03-04	11	. 800	1. 1	1. 9	13	. 040	. 00	3. 2	. 1
79-11-28	14	. 020	. 47	. 49	15	. 550	1.5	2. 9	. 1
80-03-06	11	. 010	. 59	. 60	13	. 550	1.5	2.8	. 1

80-01-21

8.2

. 020

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY--Continued

All samples were collected and analyzed by U.S. Geological Survey. Additional analyses in Minor Element and Pesticide analyses of ground water.

1100201011					o dilo i			maryses of	9,00								
STATION	NUMBER		LDC IDEN I- FIE	т-		GE LDG UN	IC	DATE OF SAMPLE	DEP OF WEL TOT (FE	L,	SPE- CIFI CON- DUCT ANCE (MICR MHOS	- - FIE		TEMPE ATUR WATE (DEG	RE, ER	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACD3)
40440407	3325301	N 9196	5 CDR C	K OB	WL 114	211MG 211MG 211MG	TY	79-10-05 80-01-16 80-05-07	205 205 205	,	1	B0	5. 0 5. 4		4. 5 3. 0	4. 5 2. 4	20 29 16
40440407	3325302	N 919	7 CDR C	K OB	WL 111	211MG 211MG 211MG	TY	79-10-05 80-01-16 80-05-07	95 95 95	5		20	5. 4 6. 3		5. 0 3. 5	2. 5 1. 3	91 97 90
40440407	3325303	N 9198	3 CDR C	к ов	WL 110	112GL	CLU	79-10-05 80-01-16 80-05-07	45 45	5		75	5. 1 5. 6		4. 5 4. 0	5. 6 1. 5	92 83 79
40440707	3331601		N 91	99		211MG 211MG		79-11-07 80-02-11	105			60 20	5. 8 5. 7		4. 0 4. 0	2. 4 1. 5	41 32
40440707	3331602	N 920	D CDR C	K OB	WL 81			79-11-13 80-02-11	45 45			50 70	5. 2 4. 6		3. 5	6. 7 6. 9	91 75
40432707	3335901		N 92	01		112GL	CLU	80-01-21	45	5	2	20	5. 5	1:	3. 5	5. 2	54
DATE OF SAMPLE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVEM (MG/L AS CA	DI SOL (MG	UM, S- VED	SODIUM DIS- SOLVEI (MG/I AS NA	DI DI SOL		ALKA- LINITY (MG/L AS CACO3)	SULF DIS SOL (MG	S- VED 3/L	CHLO RIDE DIS- SOLV (MG/ AS C	, RII DI ED SOL L (MC	DE, IS- LVED G/L	SILIO DIS- SOLO (MG AS- SIO	VED /L	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)
79-10-05 80-01-16 80-05-07	17 28 14	5. : 8. : 3. :	7	1.7 1.8 1.4	7. 7. 7.	5	. 7 1. 0 . 7	1		. 0 . 4 . 7	21	. 6	.0		7. 1 6. 2 5. 9	59 74 59	5. 8 6. 1 5. 5
79-10-05 80-01-16 80-05-07	75 72 74	31 32 29		3. 4 4. 1 4. 2	28 28 32		7. 8 8. 6 8. 4	25	3	14 38 12	26 41 38		. 0	1 1 1	5	249 244 249	20 15 15
79-10-05 80-01-16 80-05-07	81 73 72	30 28 26		4. 1 3. 1 3. 3	28 27 31		8. 9 5. 6 6. 7	11 10 7	3	13 38 38	39 29 25		. 0 . 1 . 1	1 1 1	3	238 212 232	15 14 19
79-11-07 80-02-11	29 24	11		3. 4	27 21		1.5			29 25	33		. 0		7.7	138 111	3. 9 1. 9
79-11-13 80-02-11	75 64	28 23		5. 1 4. 2	74 77		5. 7 5. 6	16 11		38 12	120		. 0	1		339 316	7. 5 7. 7
80-01-21	46	17		2. 8	9.	6	3. 5	8	5	31	11		. 0	8.5	7. 7	124	8. 3
	0	N TE IF IPLE	NITRO- GEN, ITRATE DIS- SOLVED (MG/L AS N)	AMM TC	TRO- EN, MONIA OTAL MG/L S N)	NITRO- GEN, DRGANIC TOTAL (MG/L AS N)	GE MO OR T	GANIC OTAL TO	ITRO- GEN, OTAL MG/L S N)	PHO TO (M	05-	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ORG DI SOL	RBON, PANIC (S- LVED 16/L 3 C)	ORG SU PEN (M		
	80-0	0-05 01-16 05-07	5. 8 6. 1 6. 5		.000	. 38 . 01 . 26		. 38 . 02 . 26	6. 2 6. 1 5. 8		. 000 . 000 . 000	. 00 . 00 . 00		. 6 4. 3 7. 3		. 0 . 2 . 1	
	80-0	0-05 1-16 05-07	19 14 16		. 570 . 140 . 080	. 14 . 00 . 14		. 05	21 15 15		. 010 . 000 . 000	. 00		3. 4 4. 7		. 4	
	80-0	0-05 1-16 05-07	14 14 19		. 300 . 030 . 090	. 16 . 05 . 17		. 08	15 14 19		. 010 . 010 . 000	. 00 . 00		1.3 5.1 2.4		. 3	
		1-07 02-11	4. 0 2. 1		. 000	. 17		. 17 . 15	4. 1 2. 1		. 000	. 00		4. 9 4. 2		. 0 . 1	
		1-13)2-11	11 5. 9		. 000	. 20		. 20 . 00	7. 7 7. 7		. 000	. 00		5. 1 3. 3		. 0	

. 000

. 00

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY--Continued

All samples were collected and analyzed by U.S. Geological Survey. Additional analyses in Minor Element and Pesticide analyses of ground water.

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)
40442507	73324301		N 9217			79-10-22 80-03-10	50 50	280 355	5. 5 5. 6	14. 5 13. 0	3. 6	65 66
40441407	3324001		N 9218		112GLCLU	79-10-22	45	325 370	4. 8 4. 7	14. 5 13. 0	2. 8	64 56
40435307	3331801		N 9219		211MGTY	80-03-10 79-11-06	45 95		5. 7	13. 5	5. 1	56
					211MGTY	80-02-05	95	350	5. 8	14.0	3. 2	
40435307	3331802	N 9220	CDR CK OB	WL 14B	112GLCLU 112GLCLU	79-11-06 80-02-05	45 45	340	6. 3 6. 6	13. 5 13. 0	7. 4 4. 1	61 61
40435107	3332701		N 9221		211MGTY 211MGTY	79-11-07 80-02-06	95 95	335 290	5. 5 4. 4	13. 0 12. 5	3. 2 3. 0	84 75
40435107	3332702		N 9222			79-11-07 80-02-06	45 45	285 300	5. 3 3. 6	13. 0 12. 5	3. 8 3. 9	69 66
40434607	3332001		N 9223		211MGTY 211MGTY	79-10-31 80-01-30	105 105	240 205	5. 5 5. 5	13. 5 13. 0	5. 4 5. 2	60 57
DATE OF SAMPLE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)
79-10-22 80-03-10	52 50	21 21	3. 0 3. 2	30 27	6. 6 6. 2	13 16	41 42	22 21	. 0	16 16	205 195	12 13
79-10-22 80-03-10	62 54	21 18	2. 8 2. 6	22 25	6. 3 5. 9	2	42 41	20	. 4	18 16	158 194	12 14
79-11-06 80-02-05	50	17	3. 2	34	2. 3	6	28 27	60 67	. 0	8. 4	168 109	2. 4 1. 4
79-11-06 80-02-05	46 53	19 19	3. 4 3. 3	32 29	3. 8 4. 0	15 8	29 29	40 47	. 0	7. 3 7. 3	173 188	7. 5 10
79-11-07 80-02-06	72 66	20 23	6. 4 6. 2	22 22	4. 1 4. 6	12 9	29 29	20 21	. 0	11 11	207 203	19 19
79-11-07 80-02-06	64 59	22 21	3. 4 3. 4	18 17	5. 7 6. 0	5 7	31 34	17 19	. 0	13 13	180 184	15 15
79-10-31 80-01-30	53 50	15 14	5. 4 5. 3	16 15	1.6	7 7	23 25	23 24	. 0	9. B 9. 4	137 136	9. 0 8. 4

	GEN, NITRATE	NITRO-	NITRO-	GEN, AM-		PHOS-	PHOS- PHORUS,	CARBON, DRGANIC	CARBON, ORGANIC
DATE	DIS-	GEN, AMMONIA	GEN, DRGANIC	MONIA + ORGANIC	GEN,	PHORUS,	ORTHOPH	DIS-	SUS-
OF	SOLVED	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	SOLVED	PENDED
SAMPLE	(MG/L	(MG/L				(MG/L		(MG/L	(MG/L
SAMPLE			(MG/L	(MG/L	(MG/L		(MG/L		
	AS N)	AS N)	AS N)	AS N)	AS N)	AS P)	AS PO4)	AS C)	AS C)
79-10-22	13	. 000	. 21	. 21	12	. 110	. 18	1.0	. 1
80-03-10	11	. 020	. 07	. 09	13	. 080	1.5	1.4	. 2
79-10-22	5. 4	. 350	. 53	. 88	13	. 010	. 00	13	. 1
80-03-10	13	. 060	. 04	. 10	14	. 010	. 00	. 7	. 3
79-11-06	2.5	. 010	. 27	. 28	2.7	. 010	. 00	2. 5	. 3
80-02-05	2.6	. 030	. 00	. 00	1.4	. 010	. 03	9. 4	
79-11-06	6.7	. 020	. 00	. 01	7. 5	. 010	. 00	1.7	. 3
80-02-05	10	. 010	. 26	. 27	10	. 000	. 03	12	. 3
79-11-07	19	. 000	. 19	. 19	19	. 000	. 00	4. 3	. 1
80-02-06	19	. 020	. 04	. 06	19	. 000	. 00	1.0	. 2
79-11-07	15	. 010	. 15	. 16	15	. 010	. 00	4. 2	. 0
80-02-06	15	. 030	. 00	. 00	15	. 000	. 00	5. 3	. 2
79-10-31	8.8	. 000	. 19	. 19	9. 2	. 000	. 00	5. 0	. 1
80-01-30	8. 5	. 000	. 10	. 10	8. 5	. 000	. 00	3. 1	. 3

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY--Continued

All samples were collected and analyzed by U.S. Geological Survey. Additional analyses in Minor Element and Pesticide analyses of ground water.

			LDCAL IDENT-		GEO-	DATE	DEPTH OF	SPE- CIFIC CON- DUCT-		TEMPER-	OXYGEN,	HARD- NESS
STATION	NUMBER		I- FIER		LOGIC	OF SAMPLE	WELL, TOTAL (FEET)	ANCE (MICRO- MHOS)	FIELD (UNITS)	WATER (DEG C)	DIS- SOLVED (MG/L)	(MG/L AS CACD3)
40434607	3332002		N 9224			79-11-06 80-01-30	45 45	280	5. 6 5. 6	13. 0 13. 0	4. 2 4. 9	62 57
40433107	3330801		N 9225		112GLCLU	80-01-21	45	390	5. 2	14. 0	1.6	78
40443007	3331001		N 9234		211MGTY	79-12-17	205	340	6. 0	13. 0	1.7	32
40443007	3331002		N 9235		211MGTY	79-12-17	105	300	5. 9	13. 5	4. 5	68
40441007	3333201		N 9239		211MGTY	79-12-03	205	75	5. 2	13. 5	3. 0	14
40441007	3333202		N 9240		211MGTY	79-12-05	105	350	5. 7	14. 0	2. 0	85
40441007	3333203		N 9241		112GLCLU	79-12-05	45	335	4. 6	14. 5	2. 2	76
40440207	3323901		N 9244		211MGTY	79-11-19	205	300	4. 5	14. 0	3. 2	70
40434507	3324301		N 9247		211MGTY	79-11-13	95	375	5. 3	13. 0	2. 6	81
					211MGTY	80-02-13	95	375	5. 0		1. 8	78
DATE OF SAMPLE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS-	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACD3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)
79-11-06	54	19	3. 6		4. 0	8	35	28	. 0	7. 7	205	7.6
80-01-30	50	17	3. 5		3. 8	7	34	30	. 0	7. 5	151	8. 7
80-01-21	67	26	3. 2	23	6. 9	11	38	27	. 1	13	210	15
79-12-17	0	10	1. 6	55	3. 4	32	26	46	. 0	4. 4	201	8. 1
79-12-17	42	21	3. 8	39	4. 3	26	32	38	. 0	11	218	12
79-12-03	12	4. 0	. 9	4. 6	. 5	2	. 0	7. 0	. 0	6. 8	37	2.7
79-12-05	83	26	4. 8	25	5. 3	2	36	29	. 1	9. 9	144	16
79-12-05	66	21	5. 6	22	5. 9	10	34	30	. 0	14	209	16
79-11-19	68	18	6. 2	17	2. 8	2	43	22	. 0	8. 2	172	11
79-11-13 80-02-13	77 71	24 23	5. 0 5. 1		4. B 4. 9	4 7	43 51	28 27	. 0	8. 9 9. 4	209 216	10 15
	0	NITE I IF SC IPLE (N	RATE DIS- AM DLVED T 1G/L (GEN, MONIA OR OTAL T MG/L (ITRO- GE GEN, MO GANIC OR OTAL T MG/L (GANIC CONTAL TO	DEN, PHO DTAL TO 16/L (I	PHI HOS- OR' DRUS, OSI DTAL TO MG/L (1	THOPH OR PHATE D DTAL SO MG/L (GANIC ORG IS- SU LVED PEN MG/L (N	RBON, GANIC US- NDED 1G/L S C)	
		1-06 1-30	8 6. 8	. 010	. 25 . 30	. 26 . 30	7. 9 9. 0	. 000	. 00	5. 4 2. 3	. 4	
	80-0	1-21 1	5	. 140	. 00	. 14	15	. 010	. 00	2. 0	1. 1	

DATE OF SAMPLE	GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, DRGANIC SUS- PENDED (MG/L AS C)	
79-11-06 80-01-30	18 6. 8	. 010	. 25 . 30	. 26 . 30	7. 9 9. 0	. 000	. 00	5. 4 2. 3	. 4	
80-01-21	15	. 140	. 00	. 14	15	. 010	. 00	2. 0	1. 1	
79-12-17	7. 9	. 010	. 18	. 19	8.3	. 010	. 00	2. 5	. 2	
79-12-17	12	. 010	. 02	. 03	12	. 010	. 00	6. 2	. 2	
79-12-03	2.7	. 010	. 06	. 07	2.8	. 000	. 00	1.5	. 3	
79-12-05	1.6	. 000	. 03	. 03	16	. 020	. 00	1.6	. 2	
79-12-05	16	. 020	. 05	. 07	16	. 000	. 00	1.2		
79-11-19	12	. 010	. 40	. 41	11	. 010	. 03	4. 2	. 1	
79-11-13 80-02-13	15 14	. 010	. 00 . 20	. 01 . 21	10 15	. 010	. 03	1. 9 10	. 0	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY--Continued

All samples were collected and analyzed by U.S. Geological Survey.

Additional analyses in Minor Element and Pesticide analyses of ground water.

	al analys											nd wat	er.					
STATION	NUMBER			LOCA IDENT I- FIER				GEO- LOGIC UNIT	DATI OF SAMPI		DEPT OF WELL TOTA	TH (SPE- CIFIC CON- DUCT- ANCE MICRO- MHOS)	P FIE (UNI	LD	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)
40434507	3324302	N 9	248 C	DR CK	OB	WL 1	5B	112GLCLU			45 45		360 350		5. 1 4. 8	13. 0 13. 5	3. 9 2. 1	52 50
40433107	3324701		N	925	2			211MGTY	80-01	-14	195				5. 5	14. 0	1.6	30
40433107	3324702		N	925	3			211MGTY	80-01	-14	95				5. 2	14. 0	5. 1	68
40441007	3331201		N	936	0			211MGTY 211MGTY	79-11- 80-02-		205 205		115		5. 4 5. 2	13. 0 13. 5	2. 0 1. 6	17
40441007	3331202	N 9	361 C	DR CK	ОВ	WL	3B	211MGTY 211MGTY 211MGTY	79-11- 79-11- 80-02-	-14	100 100 100		310 310		6. 0 6. 0 5. 9	14. 5 14. 5 14. 0	1. 9 1. 9 4. 0	51 32
40441007	3331203		N	936	2			112GLCLU	79-11	-14	45 45		400		5. 3 5. 1	13. 5 13. 5	5. 3 2. 6	95 83
40441207	3331305	N 9	363 C	DR CK	ОВ	WL	4A	211MGTY 211MGTY	79-11	-19	103		280 275		5. 8 6. 7	14. 5 13. 5	1. 9 2. 3	57 46
DATE OF SAMPLE	HARD- NESS, NONCAR- BONATE (MG/L CACD3)	CALC DIS SOL (MG AS	VED	MAGN SIU DIS SOLV (MG/ AS M	M, - ED L	SODI DIS SOLV (MG AS	ED /L	POTAS- SIUM, DIS- SOLVEI (MG/L AS K)	LINI	TY /L	SULFA DIS- SOLV (MG.	ATE - ! VED !	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLU RID DI SOL (MG AS	E, S- VED /L	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)
79-11-13 80-02-13	49 46		7		. 3	3		4. 3		3	25		47 47		. 1	9. 4 10	189 194	6. 7 9. 4
80-01-14	10		9. 9		. 4	1		. •		20	17	7	16		. 0	9. 3	81	. 02
80-01-14	61	2	2	3	. 1	2	6	5. 7	7	7	34	9	29		. 0	13	184	9. 6
79-11-14								-										
80-02-19 79-11-14	13		4. 3		. 4		9. 5	. 8		4		1.7	20		. 0	7. 2	164	2. 1 9. 2
79-11-14 80-02-19	32 20		7 9. 0		. 8	3		1. 5	-	19	17		27		. 0	7. 3 6. 9	107	3. 0
79-11-14	88		9		. 4	3		7. 3		7	44		38		. 0	13	262	19
80-02-19	78		5		o	2		7. 0		5	34		36		. 0	13	228	18
79-11-19 80-02-21	42 34		4		. 4	3		2. (15 12	18		37 35		. 0	5. 3 5. 8	165 148	9. 7 7. 5
		TE F PLE	NIT GE NITR DI SOL (MG AS	N, ATE S- VED /L	NIT GE AMMO TOT (MG AS	N, NIA AL /L	OR T	ITRO- GE GEN, MC GANIC OF OTAL MG/L	ITRO- EN, AM- DNIA + RGANIC FOTAL (MG/L AS N)	TC	TRO- SEN, DTAL 1G/L S N)	PHOS- PHORUS TOTAL (MG/I	PHO ORI S, OSF L TO L (M	HOS- DRUS, FHOPH PHATE DTAL 16/L PO4)	DI SOL (M	ANIC ORC S- SI VED PEI	RBON, GANIC US- NDED MG/L S C)	
	79-1 80-0	1-13 2-13	10	. 4		000		. 31 . 10	. 31		7. 0 9. 5	. 0		. 00		3. 5 3. 4	. 0	
	80-0	1-14		. 17		000		. 16	. 16		. 19	. 0	00	. 03		6.8	. 3	
	80-0	1-14	9	. 4		000		. 04	. 04		9.6	. 00	00	. 06		3. 1	. 2	
	79-1 80-0		1	. 9		030		. 14	. 17		2. 3	. 00	00	. 06		8. 6	. 0	
	79-1	1-14		. 0		080		. 29	. 37		9. 7	. 0	20	. 03		8. 8	. 1	
	79-1 80-0		2	. 8		080		. 16	. 24		3. 3	. 0	20	. 06		3. 9	. 1	3

. 07

. 03

. 23

. 00

. 010

. 040

. 000

1. 400

79-11-14 80-02-19

79-11-19

80-02-21

20 16

10 7. 0 . 08 . 07

. 23

19

18

9. 9 7. 6 2. 8 6. 5

1.8

. 2

. 1

. 03

. 06

. 12

.010

. 010

. 010

79-10-31 80-01-28 80-02-25 80-02-25

80-03-24

80-03-24

80-01-02

80-03-06

80-01-02

80-03-06

8.9

7.7 10 9.9 9.7

9.7

2.5 4.7

18

12

. 000

. 160 . 000 . 050 . 000

. 050

. 290

. 140

. 060

. 010

. 06 . 14

. 38

. 44

. 12

. 07

. 43

. 01 . 56 9. 1

9.0

10

10

12

12

17

12

2.8 5.2

. 06

. 30

. 49

. 17

. 36

. 57

. 07

. 000

. 000

. 010

. 010

. 010

. 010

. 000

. 000

. 00

. 03

. 03

. 03

. 03

. 06

. 03

4. 2

2.6 2.9 2.2 2.3

1.8

1.6

1.2

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY--Continued

All samples were collected and analyzed by U.S. Geological Survey. Additional analyses in Minor Element and Pesticide analyses of ground water.

Addition	al analys	es i	in Mir	nor E	Eleme	nt a	nd Pe	sticide a	nalyses	of	round w	ater.					
STATION	NUMBER			IDE	DCAL ENT- I- IER			GEO- LOGIC UNIT	DATE OF SAMPL		DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)		H	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)
40441207	3331306	N	9364	CDR	CK C	B WL	. 4B	1120LCLU			45 45	40		5. 1 6. 4	14. 0 13. 5	7. 2 1. 7	87 82
40435107	3330901			N	9365			211MGTY 211MGTY	79-10- 80-01-		95 95	150		5. 6 5. 7	14. 0 14. 0	1. 9 1. 6	30 28
40435107	73330902	N	9366	CDR	CK	DB WL	. 19B	112GLCLU 112GLCLU 112GLCLU 112GLCLU 112GLCLU	80-01- 80-02- 80-02-	-28 -25 -25	45 45 45 45 45	13 27 26 26 26	5 3 3	5. 7 5. 9 5. 6 5. 6 5. 9	14. 0 13. 0 13. 0 13. 0 13. 0	4. 9 2. 2 . 8 . 8 1. 7	59 51 59 60 60
								112GLCLU	80-03-	-24	45	26	5	5. 9	13. 0	1.7	60
40440107	3324801	N	9367	CDR	CK (B WL	. 12A	211MGTY 211MGTY	80-01-		105 105	36 33		5. 2	13. 0 13. 0	3. 4 3. 7	71 68
40440107	73324802	N	9368	CDR	CK (DB WL	. 12B	112GLCLU 112GLCLU			45 45	14 17		6. 0	16. 5 13. 5	4. 6 3. 1	20 26
DATE OF SAMPLE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	SC	LCIUM IS- DLVED MG/L S CA)	Si	AGNE- SIUM, DIS- OLVEI MG/L S MG:) SC	DIUM,)IS- DLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA LINIT (MG/ AS CACO	ry /L	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	D SOL	S- VED	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)
79-11-19 80-02-21	78 77		27 25		4. 5		29 32	7. 2 7. 4		9 5	40 39	40 38		. 1	12 13	245 242	17 19
79-10-31 80-01-28	15 8		8. 3 7. 5		2. 3		48 54	2. 9 2. 3		15 20	53 56	36 36		. 0	9. B 9. 9	182 191	2. 7 2. 9
79-10-31 80-01-28 80-02-25 80-02-25 80-03-24	45 36 45 46 44		18 15 18 18		3. 5 3. 5 3. 6 3. 7	5	27 20 17 16 17	5. 2 4. 3 5. 2 4. 8 4. 7		14 15 14 14	36 30 29 30 25	21 16 17 17		. 1 . 1 . 1 . 1	8. 1 7. 4 6. 8 6. 8 7. 2	167 139 149 149 145	9. 0 8. 7 9. 8 9. 8
80-03-24	44		18		3.	5	17	4. 7		16	25	17		. 1	7. 2	145	12
80-01-02 80-03-06	60 62		22 23		3.		27 24	7. 0 6. 2		11	46 40	29 30		. 1 . 0	15 15	237 197	17 11
80-01-02 80-03-06	11 16		6. 0 7. 7		1.		11 11	1. 6 1. 6		9 11	9. 1 8. 8	12 15		. 1 . 0	3. 6 3. 8	61 77	2. 7 4. 6
	(ATE OF MPLE	NI S	ITRO GEN, TRAT DIS- OLVE MG/L S N)	E Al	GEN. MMON: FOTAL (MG/L	IA OR - T	GEN, MO GEN, MO GANIC DR TOTAL T	TRO- N, AM- NIA + GANIC OTAL MG/L S N)	NIT GE TOT (MG AS	N, PHO AL TO /L (M	PHOS- O DRUS, O DTAL 1G/L	PHOS- HORUS, RTHOPH SPHATE TOTAL (MG/L S PO4)	CARB DRGA DIS SOLV (MG AS	NIC DRG	RBON, BANIC US- UDED 16/L S C)	
		11-1		18 18		1.40		. 21	. 22	17 19		. 000	. 03		6. 2 2. 5	: 1 : 1	
		10-3 01-2		2. 9 2. 5		. 00		. 16 . 15	. 16		. 9 . 1	. 000	. 00		2. 3 1. 8	. 1	

. 1

. 1

. 3

. 2

. 2

. 3

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY--Continued

All samples were collected and analyzed by U.S. Geological Survey. Additional analyses in Minor Element and Pesticide analyses of ground water.

									SPE-					
STATION	NUMBER					GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTI OF WELL TOTAL	DUC* ANCE	- T- E P RO- FIE	H AT	IPER- TURE, ATER EG C)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)
40441407	3325301		N 9	449		211MGTY	79-10-29	198		360	5. 8	14.0	3. 9	100
40441407	3325302		N 9	450		211MGTY	79-10-29	105		60	5. 8	14.0	4. 1	4
40441407	3325303		N 9	451		112GLCLU	79-10-29	45		400	6. 4	14. 0	3. 8	120
DATE OF SAMPLE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIU DIS- SOLVE (MG/L AS CA	D SO	GNE- IUM, IS- LVED G/L MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFA DIS- SOLV (MG/ AS SO	DIS- ED SOLV	F, RID - DI VED SOL /L (MG	DE, DI S- SC VED (N	ICA, (S- OLVED 1G/L AS (O2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)
79-10-29	75	30		6.8	30	2.6	26	43	48	2	. 0	10	188	16
79-10-29	0	1.	0	. 3	3. 7	. 4	6	2	6	7. 3	. 0	6. 6	27	. 03
79-10-29	70	44		2. 3	32	5. 8	49	45	3:	1	. 2	14	211	1.5
	79-1	NTE OF IPLE	NITRO- GEN, VITRATE DIS- SOLVED (MG/L AS N) 1.5	NI GI AMMI TO (MI AS	EN, ONIA OR TAL T G/L (ITRO- GE GEN, MO GANIC OR OTAL T MG/L (GANIC DTAL T MG/L (S N) A	IITRO- GEN, OTAL MG/L S N) 17	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	ORG SU PEN (M AS	RBON, SANIC US- UDED UG/L S C)	
	79-1	0-29	1.3		340	. 08	. 42	2.2	. 020	. 00	3. 6	•	. 1	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY--Continued

All samples were collected and analyzed by U.S. Geological Survey.

STATION NUMBER	LOCAL IDENT- I- FIER	GEO- DATE LOGIC OF UNIT SAMPL	WELL,	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	TEMPER- ATURE, WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
404832073392101 N	9607	112GLCLU 79-12-	-07 191	66	12. 4	5. 9
404944073393601 N	9608	112GLCLU 79-12-	-07 161	17600	13. 5	9800
405016073395402 N	9609	112GLCLU 79-12-	-07 148	245	12.3	51

QUEENS COUNTY

All samples were collected and analyzed by U.S. Geological Survey.

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
403959073	3474401	0 1237			112JMC0	80-08-26	227	390	7. 3	14. 5	320	80
DATE OF SAMPLE 80-08-26	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)
		DATE OF SAMPLE	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)		
		80-08-26	. 00	. 37	. 00	. 190	2900	680	690	. 00		

Geological unit (aquifer):

112GLCLU — Upper glacial aquifer, Pleistocene age.

112GRDR — Gardiners clay, Pleistocene age.

112JMCO — Jameco gravel, Pleistocene age.

211LLYD — Llyod aquifer, Cretaceous age.

211MGTY — Magothy aquifer, Cretaceous age.

SUFFOLK COUNTY

WELL INDEX

Quality of ground-water records for Suffolk County are divided into three sections according to the agency that collected and analyzed the samples. The following list indicates the page number where data for each well may be found.

Number Page Number Page Number Page	ge Number Page
	27062
871 271 20300 282 29732 29 872 271 20460 282 29778 20 1331 271 20479 282 30088 29	3 37963 305 3 38192 305 3 38194 305
872 271 20460 282 29778 201331 271 20479 282 30088 29	3 38192 303
872 271 20460 282 29778 20479 1331 271 20479 282 30088 29479 1340 271 20530 282 30117 29479	3 38192 305 3 38194 305 3 38320 305
2405 271 20566 283 30118 29	4 38321 305
2405 271 20566 283 30118 29 2415 271 20591 283 30207 29	4 38321 305 4 38491 306
2405 271 20566 283 30118 29 2415 271 20591 283 30207 29 2570 272 20603 283 30208 29	4 38701 306
2978 272 20635 283 30227 29	4 38784 306
3615 272 20688 283 30228 29	4 38785 306
872 271 20460 282 29778 26 1331 271 20479 282 30088 29 1340 271 20530 282 30117 29 2405 271 20566 283 30118 29 2415 271 20591 283 30207 29 2570 272 20603 283 30208 29 2978 272 20635 283 30227 29 3615 272 20688 283 30228 29 3813 272 20689 284 30234 29 3814 272 20955 284 30506 29	4 38916 306
2978 272 20635 283 30227 25 3615 272 20688 283 30228 25 3813 272 20689 284 30234 25 3814 272 20955 284 30506 25 3815 273 21121 284 30762 25 4184 273 21244 284 31037 25 4372 273 21247 284 31038 25 7570 273 21366 284 31039 25	38917 306
3815 273 21121 284 30762 29 4184 273 21244 284 31037 29 4372 273 21247 284 31038 29 7570 273 21366 284 31039 29	5 39024 306
4184 273 21244 284 31037 29	5 39347 307
4184 273 21244 284 31037 29 4372 273 21247 284 31038 29 7570 273 21366 284 31039 29	5 39406 307 5 39531 307
7570 273 21366 284 31039 29 8439 273 21375 285 31104 29	5 39536 307
8439 273 21375 285 31104 29 9771 273 21487 285 31624 29 9893 274 21632 285 31653 29	6 40161 307
9893 274 21632 285 31653 20	6 40330 307
8439 273 21375 285 31104 29 9771 273 21487 285 31624 29 9893 274 21632 285 31653 29 11105 274 21945 285 31913 29	5 39536 307 6 40161 307 6 40330 307 6 40331 308
11891 274 22048 285 32180 29	6 40497 308
9771 273 21487 285 31624 29893 274 21632 285 31653 2911105 274 21945 285 31913 29111891 274 22048 285 32180 29112130 274 22351 285 32287 29112143 274 22362 286 32325 291	6 40498 308 7 40709 308
11105 274 21945 285 31913 22 11891 274 22048 285 32180 29 12130 274 22351 285 32287 29 12143 274 22362 286 32325 29	7 40709 308
13534 274 22389 286 32326 29 13620 275 22471 286 32501 29	7 40710 308
4184 273 21244 284 31037 25 4372 273 21247 284 31038 25 7570 273 21366 284 31039 26 8439 273 21375 285 31104 22 9771 273 21487 285 31624 29 9893 274 21632 285 31653 29 11105 274 21945 285 31913 25 11891 274 22048 285 32180 29 12130 274 22351 285 32287 29 12143 274 22362 286 32325 25 13534 274 22389 286 32326 29 13620 275 22471 286 32501 29 14218 275 22547 286 32551 29 14326 275 22548 286	7 40711 309 7 40837 309
14218 275 22547 286 32551 29 14326 275 22548 286 32552 29	7 40837 309 7 40838 309
14326 275 22548 286 32552 29 14710 275 22640 286 33005 29	8 40980 309
14792 275 23046 287 33006 29	8 40982 309
14792 275 23046 287 33006 29 14828 275 23183 287 33308 29 14921 275 23184 287 33500 29	8 42226 309
14921 275 23184 287 33500 29	8 42227 310
15499 276 23185 287 33820 29	8 42270 310 9 42473 310 9 42499 310
15514 276 23186 287 33826 29 15515 276 23371 288 33970 29	9 42473 310
15515 276 23371 288 33970 29	9 42499 310
15746 276 23440 288 34007 29	9 42504 310 9 42505 310
15776 276 23445 288 34030 29 15898 276 23524 288 34031 29	9 42505 310 9 42760 311
15923 277 23631 288 34300 29	9 42761 311
15962 277 23699 289 34301 30	42762 311
15962 277 23699 289 34301 30 16129 277 23715 289 34460 31 16175 277 23832 289 34595 34 16176 277 23848 289 34733 30	42827 311
16129 277 23715 289 34460 30 16175 277 23832 289 34595 30 16176 277 23848 289 34733 30	43001 311
16176 277 23848 289 34733 30	0 43117 311
16256 278 24047 289 35033 30	0 43641 312
16309 278 24323 289 35446 30	0 43808 223
16309 278 24323 289 35446 36 16892 278 24545 290 35494 36 16893 278 24663 290 35939 36	1 43809 223 1 43810 224
15514 276 23186 287 33826 25 15515 276 23371 288 33970 25 15746 276 23440 288 34007 25 15776 276 23445 288 34030 25 15898 276 23524 288 34031 25 15923 277 23631 288 34301 25 15962 277 23699 289 34301 30 16129 277 23715 289 34460 30 16175 277 23832 289 34595 31 16176 277 23848 289 34733 31 16256 278 24047 289 35033 30 16309 278 24323 289 35446 30 16892 278 24545 290 35494 30 16893 278 24663 290 <td>0 43641 312 0 43808 223 11 43809 223 11 43810 224 11 43811 224</td>	0 43641 312 0 43808 223 11 43809 223 11 43810 224 11 43811 224
17474 279 24771 223 36185 30	11 43812 224
17474 279 24771 223 36185 30 17630 279 25617 290 36459 30	11 43812 224 11 43813 225
17689 279 25674 290 36460 30 18003 279 25776 290 36711 30 18261 279 26535 291 36714 30 18566 280 27070 291 36748 30	2 43814 225
18003 279 25776 290 36711 31 18261 279 26535 291 36714 30 18566 280 27070 291 36748 30	2 43815 225 2 43816 226 2 43817 226
18261 279 26535 291 36714 30	2 43816 226
18566 280 27070 291 36748 30	2 43817 226
18621 280 27192 291 36791 30 18762 280 27259 291 36869 30	2 43818 226
18621 280 27192 291 36791 36 18762 280 27259 291 36869 36 19048 280 27533 291 36976 36 19198 280 27784 291 37140 36	2 43819 227
19048 280 27533 291 36976 30 19198 280 27784 291 37140 30	3 43820 227 3 43821 227
19399 281 28408 292 37141 30	3 43822 227
19408 281 28503 292 37174 30	3 44774 312
19465 281 28767 292 37301 30	3 44774 312 3 44914 228 4 44918 228
19565 281 28819 292 37351 30	4 44918 228
19584 281 28928 292 37494 30 19884 281 29411 293 37681 30	4 45053 228
19465 281 28767 292 37301 30 19565 281 28819 292 37351 30 19584 281 28928 292 37494 30 19884 281 29411 293 37681 30 19885 282 29491 293 37847 30	4 45207 228
19885 282 29491 293 3/84/ 30	4 45208 229
20057 282 29492 293 37861 30	4 45210 229

SUFFOLK COUNTY

WELL INDEX

				WELL INDEX			
Local Well Number	Page	Local Well Number	Page	Local Well Number	Page	Local Well Number	Page
45212	229 229	47743	239 239	51169	248	53322	259
45402	229	47745 47746	239	51169 51170 51171 51172 51173 51174 51175 61176 51177 51178 51179 51180 51181 51182 51183 51184 51185 51266 51274 51274 51274 51275 51566 51577 51566 51577 51568 51577 51578 51578 51577 5151588 51581 51588 51589 51581 51588 51589 51581 51588 51589 51591 51592 51673 51588 51589 51591 51592 51673 51591 51592 51673 51591 51592 51673 51591 51592 51673 51593 52084 52126	249	53323 53324 53325 53326	259 259 259 259
45446	230	47746	239	51171	249	53324	259
45447	230	47747	239	51172	249	53325	259
45594	230	47748	239	51173	249	53326	259
45594 45610	230 230 312	47749	240	51174	249	53327	259
45636	230	47750	240	51175	250	53327 53328 53330	260
45637	231	47751	240	61176	250	53330	260
45717	231	47752	240	51177	250	53331	260
45637 45717 45718	230 231 231 231 231 231 232 232 232	47747 47748 47749 47750 47751 47752 47753 47754 47755 47756 47757	241	51178	250	53332	260
45719	231	47754	241	51179	250	53333	260
45720	232	47755	241	51180	251	53335	260
45721 45722	232	47756	242	51181	251	53336	260
45/22	232	4//5/	239 239 240 240 240 241 241 241 241 242 242	51182	249 249 250 250 250 250 250 251 251 251 251	53330 53331 53332 53333 53335 53336 53337 53338 53360 53361	259 260 260 260 260 260 260 260 261 261 320 321
45839	312	47758	242	51183	251	53338	201
45840	312	47886	315	51184	251	53360	320
46235 46281	312 312 232	47887	315 315 242	51185	251 252 252	53/07	221
46283	232	47945 47973	242	51016	232	53497 53522	321
46263	233	4/9/3	242	51214	217	53539	321 321 261
46284 46286	233 233 233	47974	242 242 243	51276	318	53593	321
46287	233	47973	243	51274	310	53747	321
46400	313	47974 47975 47976 47977 48014	243	51298	318	53593 53747 53850	321 321 322 322
46502	313 234	48014	316	51457	318	53851 54162 54305	322
46502 46712	313	48193	316	51519	318	54162	322
46713	313	48425	243	51566	252	54305	322
46830	313	48426	243	51567	252	54308	322
46830 46911 46912	313 313 234	48426 48427 48428	243 243 316 316 243 243 244	51568	253	54308 54473 54568 54730 55028 55463 55502	322 322 322 322 323 323 323 323 323 323
46912	234	48428	244	51571	253	54568	323
46913	234,264 234,265 313	48429 48430	244	51572	253	54730	323
46914	234,265	48430	244	51573	253	55028	323
46928	313	48432	244	51575	254	55463	323
46962	235	48433	244	51576	254	55502	323
46963	235 235 235 235	48434 48435 48437	244 245 245	51577	254	55733	324
46964	235	48435	245	51578	254	56038	324
46965	235	48437	245	515/9	255	56133	324
47024 47035	313 314	48438	245	51580	255	57009	324 324 324 324
47219	314	48438 48439 48440 48441	245	51581	255	57000	324
47220	314 235	48440	245	51502	255 269	57871	325
47223	236	48517	245	51584	255,209	57979	325
47224	236	48518	246	51586	256	57980	325
47225	236	48519	245 245 245 245 245 245 246 246	51587	256	58708	325
47226	236,266	48520	246	51588	256	58761	326
47227	233 236 236 236 236,266 237,267 237 237	48517 48518 48519 48520 48521 48522 48577 48578	246 246 246	51589	317 317 318 318 318 318 318 252 252 253 253 253 253 253 253 254 254 254 254 255 255 255 255 255 255	55733 56038 56133 56674 57035 57871 57871 57979 57980 58708 58761 58923 58924 58925 58925	325 325 325 325 325 326 261
47228 47229	237	48522	246	51591	257	58924	261
47229	237	48577	246	51592	257,270	58925	261
47230	231	48578	246	51673	319	58956	261
47231	237	48579	247	51953	319	58957	261
47232 47233	238	48580	247	52050	257	58961	262
47233	238 238 238	48581	247	52084	258	58957 58961 59347 59744 60127	326 326 326
47234	238	48583	247	52126	319	59/44	326
47235	238 238	48584	247	52128	258	60127	326
47236 47310 47435	238 314	48579 48580 48581 48583 48584 48651 48719 48759	246 247 247 247 247 247 247 316 248 248, 268 248 316 316	52162	319 257 258 319 258 258 258 258 258 319 319 319 329	60186 60812 61910 62022 62855 63205 63618 64023	327
47310	314	40/19	310	52103	258	61910	327
47436	314	48946	248 268	52/40	258	62022	327 327 327 327 327 327 327 328 328
47437	314 315 315 315	48946 48958 49018 49422	240,200	52451	319	62855	327
47437 47438 47453	315	49018	316	52490	319	63205	327
47453	315	49422	316	52886	259	63618	327
47673	315	49606		52944	320	64023	328
47675	238	49898	248 317	52128 52162 52162 52183 52383 52449 52451 52490 52886 52944 52945 53074	320 320	04002	328
47698	238	49606 49898 50546	317	53074	320	67074	328
47718	239	50630	317	53291	320	68334	262

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40481907	3160301 S	24769			1126LCLU	80-08-26	810	50	5. 7	12.0	2. 2	
40482007	3160303 5	24771			112GLCLU	80-08-26	125	95	5. 6	14. 0	. 8	
40432307	3253401 S	43808			112GLCLU 112GLCLU	80-01-09 80-04-14 80-06-02 80-08-13	54 54 54 54	190 205 235 250	5. 7 5. 8 6. 3 5. 8	13. 0 13. 0 13. 0 13. 0	.3 .5 .8	5. 9
40412407	3241601 S	43809			112GLCLU 112GLCLU 112GLCLU	79-11-08 80-01-08 80-02-04 80-03-07 80-04-11	34 34 34 34 34	280 295 190 225 270	5. 6 5. 0 5. 4 5. 1 5. 0	13. 0 14. 5 14. 0 14. 0 13. 0	5. 2 2. 7 1. 7 1. 4 . 1	16 7. 7 5. 4 7. 0 13
						80-05-12 80-08-13	34 34	295 450	5. 1 5. 1	12. 0 12. 0	. 4	
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
80-08-26		3. 7		10		4. 0						<100
80-08-26	44	6. 9		15		7. 0						<100
80-01-09 80-04-14 80-06-02 80-08-13	. 9 	25 24 25 26	3. B 	23 24 22	28 82 31 30	18 23 24 24	1. 2	. 002	=	1.000	<. 002 	<100 <100 <100
79-11-08 80-01-08 80-02-04 80-03-07 80-04-11	3. 8 1. 2 . 8 1. 7 2. 2	17 41 26 26 32	5. 2 2. 7 2. 1 2. 0 2. 2	12 3 5 5 5	45 39 33 28 23	23 47 25 29 43	5. 6 4. 2 3. 0 4. 6 6. B	.006 .002 .001 .010	=	2.600 1.000 .600 .420 .270	<. 002 <. 002 <. 002 <. 002 <. 002	=
80-05-12 80-08-13	=	37 56	=	6 5	26 34	53 82	=	=	=	=	Ξ	<100 <100
				DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)				
				80-08-26	260	50	4400	<. 10				
				80-08-26	190	<50	1900	<. 10				
				80-01-09 80-04-14 80-06-02 80-08-13	230 560 1260 1280	310 510 610 620	<400 <400 <400	. 02 C. 10 C. 10 C. 10				
				79-11-08 80-01-08 80-02-04 80-03-07 80-04-11	1300 <10 120 300 230	480 340 230 420 510	E	. 04 <. 02 . 02 <. 02				
				80-05-12 80-08-13	230 300	580 330	<400 <400	<. 10 <. 10				

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

All samples were collected and analyzed by Suffolk County Department of Health Services.

STATION	NUMBER		LOCAL IDENT- I- FIER		GED- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40412407	3241602 S	43810			112GLCLU 112GLCLU 112GLCLU	79-11-08 80-01-08 80-02-04 80-03-07 80-04-11	71 71 71 71 71	600 240 220 230 225	5. 0 5. 2 5. 9 5. 6 5. 5	15. 0 12. 0 13. 0 13. 0 13. 0	4. 2 1. 9 2. 2 . 2	14 15 15 13
						80-05-12 80-08-13	71 71	215 260	5. 6 5. 5	13. 0 13. 0	. 8 . 1	=
40453007	3241101 S	43811			112GLCLU	80-01-10 80-04-14 80-08-18	85 85 85	550 560 560	5. 4 5. 6 5. 6	12. 0 12. 0 13. 0	7. 6 5. 2 4. 8	52
40415807	3225801 S	43812			112GLCLU 112GLCLU 112GLCLU	79-11-08 80-01-07 80-02-04 80-04-14 80-05-12	30 30 30 30	490 755 430 480 420	6. 1 6. 0 6. 4 6. 1 6. 4	16. 0 15. 0 15. 0 14. 0 13. 0	4. 1 3. 2 1. 7 . 3 . 4	26 28 26
					112GLCLU	80-08-13	30	500	6. 2	15. 0	. 1	30
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
79-11-08 80-01-08 80-02-04 80-03-07 80-04-11	2. 0 3. 4 3. 2 3. 0 3. 0	87 16 15 15	5. 3 4. 3 4. 5 4. 3 4. 3	2 9 14 11 13	26 45 43 42 40	130 22 21 20 22	2. 9 4. 9 4. 0 3. 6 3. 7	. 002 . 002 . 005 . 002 . 003	=	1. 200 2. 150 2. 100 2. 000 1. 800	<. 002 <. 002 <. 002 <. 002 <. 002	=======================================
80-05-12 80-08-13	==	14		10 13	42 48	19 21		=		==	==	<100 <100
80-01-10 80-04-14 80-08-18	19 	18 17 18	2. 2	- 7	96 126 102	31 29 32	27 	. 005	Ξ	. 060	<. 002 	<100 <100
79-11-08 80-01-07 80-02-04 80-04-14 80-05-12	4. 9 5. 0 4. 7	30 35 35 37 35	9. 6 9. 8 10 	95 102 109 105	47 53 49 46 37	50 47 47 64 60	<. 02 . 05 2. 4 	. 004 . 001 . 006 	=	6. 600 7. 400 <. 002	<. 002 <. 002 2. 500	<100 <100
80-08-13	4. 5	35	8. 8	104	36	57	. 05	. 002		8. 700	<. 002	
				DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)				
				79-11-08 80-01-08 80-02-04 80-03-07 80-04-11	160 300 980 620 1100	460 340 350 330 330	=======================================	. 03 . 03 . 02 <. 02				
				80-05-12 80-08-13	530 1440	320 460	<400 <400	. 20 C. 10				
				80-01-10 80-04-14 80-08-18	40 130 <100	40 80 80	<400 <400	<. 02 <. 10 <. 10				
			3	79-11-08 80-01-07 80-02-04 80-04-14 80-05-12	3700 1100 3200 1740 1120	9200 8800 8700 7300 7700	 <400 <400	. 11 . 16 . 09 . 30 . 30				

. 11

80-08-13

1900

10000

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

All samples were collected and analyzed by Suffolk County Department of Health Services.

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40415807	3225802 9	6 43813			112GLCLU 112GLCLU 112GLCLU	79-11-08 80-01-07 80-02-04 80-04-14 80-05-12	73 73 73 73 73	310 295 295 310 295	5. 8 5. 4 6. 2 5. 4 5. 7	15. 0 14. 0 14. 0 14. 0 14. 0	4. 7 2. 4 . 7 . 1 . 4	10 11 11
					112GLCLU	80-08-13	73	390	6. 4	15. 0	. 1	14
40445507	3215001 8	3 43814			112GLCLU 112GLCLU	80-01-09 80-04-11 80-05-14 80-08-19	45 45 45 45	260 260 235 235	5. 0 4. 9 5. 3 5. 4	12. 5 12. 0 12. 0 12. 0	. 2 . 0 . 5 . 1	11 13
40423707	3220601 5	43815			112GLCLU 112GLCLU	80-01-03 80-04-17 80-05-13 80-08-18	30 30 30	305 310 295 340	5. 5 5. 7 5. 8 5. 6	15. 0 12. 0 12. 0 14. 0	<.3 .3 1.5	17 19 18
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
79-11-08 80-01-07 80-02-04 80-04-14 80-05-12	6. 3 6. 5 6. 6	25 26 25 29 27	3. 6 3. 6 3. 6	28 18 28 20	50 54 49 61 63	32 32 34 35 38	2. 8 2. 4 <. 02	.011	= =	2. 500 2. 600 7. 000	<. 002 <. 002 <. 002	 <100 <100
80-08-13	7. 3	33	3. 5	67	47	41	1. 1	. 008		2. 100	<. 002	
80-01-09 80-04-11 80-05-14 80-08-19	2. 4 2. 3	26 24 22 21	3. 9 4. 0 	3 5 5 9	39 40 45 35	35 35 27 22	4. 5 4. 1	. 004	=======================================	2. 600 2. 500 	<. 002 <. 002	 <100 <100
80-01-03 80-04-17 80-05-13 80-08-18	3. 2 3. 0 2. 9	25 30 29 32	5. 4 5. 8 5. 7	19 21 20 18	41 42 35 39	34 38 35 42	6. 6 7. 2 6. 5	.003	=======================================	3. 200 3. 100 3. 100	<. 002 . 002 <. 002	 <100
				DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)				
				79-11-08 80-01-07 80-02-04 80-04-14 80-05-12	4700 1300 3700 3050 1830	260 310 260 610 340	 <400 <400	. 08 . 06 . 20 . 20 . 30				
				80-08-13	15000	400		. 13				
				80-01-09 80-04-11 80-05-14 80-08-19	290 710 630 2890	1300 1300 1610 230	 <400 <400	. 04 <. 10 <. 10				
				80-01-03 80-04-17 80-05-13 80-08-18	100 <100 60	1100 1100 1180 1200	<400	. 09 . 10 . 06				

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40423707	3220602 5	43816			112GLCLU 112GLCLU	80-01-03 80-04-15 80-05-13 80-08-18	75 75 75 75	168 190 172 205	5. 5 5. 5 5. 5 5. 4	13. 0 13. 0 14. 0 14. 0	1. 4 1. 3 1. 5	9. 7 12
40461807	3205001 5	43817			112GLCLU 112GLCLU	80-01-09 80-04-16 80-05-13 80-08-19	51 51 51 51	245 245 205 190	5. 5 5. 8 5. 7 5. 4	13. 0 13. 0 13. 0 13. 0	3. 5 5. 3 5. 7 7. 0	12 12
40425707	3202401 S	43818			112GLCLU 112GLCLU 112GLCLU	80-01-07 80-01-22 80-04-17 80-05-13 80-08-18	30 30 30	285 245 280 260 325	5. 7 5. 4 5. 7 5. 9 5. 7	14. 5 15. 0 12. 0 12. 0 15. 0	2. 3 1. 2 . 4 . 6 . 1	15 15 16 ———————————————————————————————
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACD3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
80-01-03 80-04-15 80-05-13 80-08-18	4. 7 4. 6	12 12 12 12	2. 7 3. 6	7 6 7 7	32 36 35 35	15 15 14 18	3. 5 4. 6	. 004	=======================================	. 270 . 350	<. 002 <. 002	<100 <100
80-01-09 80-04-16 80-05-13 80-08-19	8. 8 8. 5 	15 15 15 15	1. 5 1. 5 	16 27 18 19	8. 9 14 20 24	32 26 18 11	9. 0 7. 8 	. 003	=======================================	<. 050 . 140 	<. 002 . 002 	<100 <100
80-01-07 80-01-22 80-04-17 80-05-13 80-08-18	2. 8 2. 7 2. 6 2. 8	23 23 27 25 26	5. 1 4. 9 5. 5 —	23 22 27 25 28	34 34 34 37 37	28 28 33 27 31	5. 9 5. 9 6. 2 6. 3	. 003 . 006 . 002 . 004	=======================================	3. 800 3. 800 3. 700 3. 900	<. 002 <. 002 . 002 <. 002	 <100
				DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)				
				80-01-03 80-04-15 80-05-13 80-08-18	440 640 320 600	220 230 240 320	<400 <400	. 02 <. 10 <. 10 . 02				
				80-01-09 60-04-16 80-05-13 80-08-19	490 900 810 810	200 300 220 70	<400 <400	<. 02 <. 10 <. 10				
				80-01-07 80-01-22 80-04-17 80-05-13 80-08-18	40 70 170 <100 110	1200 1200 1200 1330 1400	 (400	. 05				

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40425007	3202302 5	43819			112GLCLU 112GLCLU 112GLCLU	80-01-07 80-01-22 80-04-15 80-05-13 80-08-18	73 73 73 73 73	235 220 230 215 245	5. 6 5. 2 5. 4 5. 6 5. 5	12. 5 13. 0 13. 0 13. 0 14. 0	2. 0 . 7 . 0 . 6 . 1	9. 5 9. 6 10
40464907	3184001 5	43820			112GLCLU	80-01-09 80-04-18 80-08-19	92 92 92	205 148 300	5. 4 5. 6 5. 4	11. 5 12. 0 12. 0	1.8 .3 .1	9. 5 9. 0
40430207	3185501 S	43821			112GLCLU	80-04-16 80-06-02 80-08-18	31 31 31	600 380 530	6. 1 6. 6 6. 2	12. 0 12. 0 13. 0	. 2 6. 0 1. 9	28 3. 6
40430207	3185502 9	43822			112GLCLU	80-04-15 80-06-02 80-08-18	69 69 69	128 106 93	6. 0 6. 5 6. 0	12. 0 13. 0 13. 0	. 1 . 6 . 6	4. 0
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACD3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
80-01-07 80-01-22 80-04-15 80-05-13 80-08-18	6. 3 6. 2 6. 2	22 22 23 23 22	2. 0 2. 0 2. 2	11 10 10 10	26 28 31 33 30	26 26 25 22 25	7. 2 7. 8 6. 9	. 003 . 003 . 004	=	. 160 . 210 . 200	<. 003 <. 002 	<100 <100
80-01-09 80-04-18 80-08-19	4. 6 2. 9	14 9. 5 20	4. 8 4. 0	5 7 10	25 25 15	12 8. 5 19	9. 8 4. 6 	. 012 . 031	=	. 960 . 870	<. 002 <. 002	 <100
80-04-16 80-06-02 80-08-18	4. 0 3. B	80 43 72	4. 7 4. 5	82 62 84	28 30 21	88 48 84	1. 3 . 49	. 005	Ξ	3. 000 3. 500	. 003	<100
80-04-15 80-06-02 80-08-18	1.0	13 11 8.8	. 7	18 17 12	28 22 17	9. 0 4. 0 5. 3	. 02	. 002	=	. 120	. 040	<100 <100
				DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)				

		MANGA-		HE IMY-
	IRON,	NESE,	ZINC,	LENE
	TOTAL	TOTAL	TOTAL	BLUE
DATE	RECOV-	RECOV-	RECOV-	ACTIVE
OF	ERABLE	ERABLE	ERABLE	SUB-
SAMPLE	(UG/L	(UG/L	(UG/L	STANCE
	AS FE)	AS MN)	AS ZN)	(MG/L)
80-01-07	280	70		. 03
80-01-22	540	80		
80-04-15	500	<50	<400	<. 10
80-05-13	370	80	<400	<. 10
80-08-18	1200	90		. 04
80-01-09	520	330		C. 02
80-04-18	160	360		
80-08-19	570	910	<400	<. 10
80-04-16	1400	3000		
80-06-02	1450	2020	400	<. 10
80-08-18	2500	2200		. 09
80-04-15	1530	150	400	. 20
80-06-02	2580	200	<400	. 10
80-08-18	2000	160		. 07

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

All samples were collected and analyzed by Suffolk County Department of Health Services.

			LOCAL IDENT-		GED-	DATE	DEPTH OF	SPE- CIFIC CON- DUCT-		TEMPER-	OXY G EN,	CALCIUM TOTAL RECOV-
STATION	NUMBER		I- FIER		LOGIC	OF SAMPLE	WELL, TOTAL (FEET)	ANCE (MICRO- MHOS)	PH FIELD (UNITS)	ATURE, WATER (DEG C)	DIS- SOLVED (MG/L)	ERABLE (MG/L AS CA)
40525407	3214201 9	6 44914 CE	NTERPORT		112GLCLU	79-11-15 80-01-22 80-08-26	22 22 22	116 120 120	5. 4 5. 3 5. 4	12. 0 9. 0 14. 0	9. 4 10. 4 9. 4	8. 5 6. 5
404812073	3041201 5	6 44918			112GLCLU 112GLCLU 112GLCLU	79-10-02 79-10-17 80-01-14 80-04-18 80-08-25	82 82 82 82 82	62 65 66 70 125	5. 5 5. 6 5. 3 5. 6 5. 3	12. 0 12. 0 11. 0 11. 0 11. 0	11. 1 10. 6 12. 8 11. 2 11. 1	1.8 1.9 2.0 2.2 4.9
405330073	3242401 5	45053			112GLCLU 112GLCLU	79-11-14 80-01-23 80-07-01 80-08-27	114 114 114 114	220 190 210 205	6. 1 6. 0 6. 6 6. 1	12. 0 12. 0 12. 0 12. 0	8. 0 9. 2 8. 6 8. 5	14 14
40513207	3181401 5	45207			112GLCLU 112GLCLU	79-11-15 80-06-16 80-07-01 80-08-27	142 142 142 142	235 245 250 240	5. 7 5. 7 6. 1 5. 7	12. 0 12. 0 12. 0 12. 0	8. 5 8. 5 7. 9 8. 3	19
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
79-11-15 80-01-22 80-08-26	2. 9 3. 0 	9. 0 9. 2 9. 8	1. 5 1. 3	6 5 5	6. 0 6. 3	16 14 14	4. 1 4. 2	. 004	=	. 080	. 002 <. 002	 <100
79-10-02 79-10-17 80-01-14 80-04-18 80-08-25	1.6 1.6 1.8 2.0 2.6	5. 1 5. 1 5. 2 5. 6 11	. 5 . 5 . 4 . 5	4 4 3 4 3	6. 9 6. 5 7. 1 4. 8 5. 9	8. 3 9. 3 9. 3 12 25	. 14 . 16 . 13 . 19 . 31	. 002 . 002 . 002 . 002	=======================================	<. 040 <. 040 . 050 . 050 <. 050	<. 002 <. 002 <. 002 . 002 <. 002	=
79-11-14 80-01-23 80-07-01 80-08-27	6. 5 6. 3 	12 12 12 13	1. 7 1. 5	26 25 28 25	17 18 21	18 18 16 18	3. 1 5. 8	. 002	=	. 050 <. 050 	. 003	 <100 <100
79-11-15 80-06-16 80-07-01 80-08-27	5. 1 	13 15 15 14	2. 8 	15 15 16 13	29 28 30	17 17 16 15	8. 4 	. 007 	=======================================	. 080 	<. 002 	<100 <100 <100
				DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)				
				79-11-15 80-01-22 80-08-26	250 40 540		 <400	 <. 10				
				79-10-02 79-10-17 80-01-14 80-04-18 80-08-25	150 150 50 110 130	20 20 <10	=======================================	<. 02 <. 02 				
				79-11-14 80-01-23 80-07-01 80-08-27	400 110 160 390	<50	 <400 <400	<. 01 <. 10				

<400 <400 <400

40 <50 <50 80

350

830 140 580

79-11-15 80-06-16 80-07-01 80-08-27

. 50 <. 10 <. 10

WATER GUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40500507	3233701 S	45208			112GLCLU	79-11-14 80-01-23 80-08-26	133 133 133	300 390	5. 5 5. 4 5. 4	14. 0 13. 0 13. 0	7. 3 7. 5 6. 0	27 31
404945073	3174501 S	45210			112GLCLU 112GLCLU	79-11-20 80-01-2 4 80-07-02 80-08-27	107 107 107 107	320 295 295 300	6. 1 6. 2 6. 9 6. 1	13.0 12.0 12.5 13.0	10.3 10.6 10.0 10.0	27 29 28
405356073	3192001 S	45212				80-01-24 80-08-27	111 111	245 260	5. 6 5. 8	11.0 12.0	9. 4 9. 0	16 17
405259073	3162201 S	45402			112GLCLU	80-01-16 80-07-01 80-08-27	170 170 170	201 195 190	6. 0 6. 5 6. 1	11. 0 11. 5 12. 0	9. 5 8. 3 8. 9	12 11 12
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
79-11-14 80-01-23 80-08-26	10 11 	26 24 23	2. 4 2. 1	26 24 24	42 50 	24 24 21	19 20 	. 038	=	. 120	<. 002 <. 002	<100
79-11-20 80-01-24 80-07-02 80-08-27	10 11 10	7. 8 7. 9 8. 6 9. 3	1. 5 1. 4 1. 7	29 29 31	33 34 34 	16 15 16 14	14 14 14	. 002 . 007 . 005	=======================================	. 060 . 060 . 050	. 006 . 002 . 004	 <100
80-01-24 80-08-27	6. B 7. 0	17 20	2. 1 2. 3	21 22	23 23	25 25	9. 8 8. 9	. 001 . 002		. 060 <. 050	. 002	
80-01-16 80-07-01 80-08-27	4. 6 4. 2 3. 9	16 15 16	1.5 1.8 1.7	16 18 16	23 25 24	19 21 19	4. 6 3. 4 2. 7	. 001 . 002 . 002	 	. 070 . 180 . 050	. 003 . 002 C. 002	=
				DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)				
			8	79-11-14 30-01-23 30-08-26	700 800 420	190 190 180	 <400	 <. 10				
			8	79-11-20 80-01-24 80-07-02 80-08-27	230 300 100 450	<10 30 20 <50	 <400	 <. 10				
				30-01-24 30-08-27	780 400	<20 <10	=	=				
			8	80-01-16 80-07-01 80-08-27	160 240 400	10 50 20	<u></u>	==				

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

All samples were collected and analyzed by Suffolk County Department of Health Services.

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
404400073	3154402 S	45446			112GLCLU 112GLCLU 112GLCLU	79-10-15 80-01-08 80-04-18 80-06-03 80-08-19	38 38 38 38	290 285 280 310 265	4. 7 4. 7 4. 8 5. 1 4. 7	14. 0 14. 0 13. 0 13. 5 14. 0	.3 .9 .2 .5	14 15 18
40460607	3050001 S	45447			112GLCLU 112GLCLU	79-10-02 79-10-17 80-01-11 80-08-25	79 79 79 79	290 280 300 410	5. 6 5. 6 5. 6 5. 4	12.0 12.0 12.0 12.0	4. 3 4. 5 4. 4 4. 3	11 11 12 20
40492007	3150901 S	45594			112GLCLU	80-01-18 80-07-02 80-09-02	80 80	94 97 97	5. 5 6. 2 5. 5	10. 5 11. 5 11. 0	12. 0 10. 2 9. 9	7. 2 6. 8 6. 4
40450807	3080902 5	45636			112GLCLU 112GLCLU	79-10-16 80-01-11 80-04-16 80-08-20	26 26 26 26	155 155 135 155	5. 2 5. 0 5. 1 4. 9	12. 0 11. 0 10. 0 12. 0	4. 6 4. 8 3. 6 5. 2	7. 0 7. 5 — 7. 5
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
79-10-15 80-01-08 80-04-18 80-06-03 80-08-19	2. 4 2. 5 2. 6	22 22 22 22 20	4. 4 5. 0 6. 5	2 1 3 4 2	43 47 32 43 39	24 23 24 23 10	10 10 12 	. 020 . 019 . 012	=======================================	2. 100 2. 600 2. 200	<. 002 <. 002 <. 002	 <100 <100
79-10-02 79-10-17 80-01-11 80-08-25	2. 2 2. 3 2. 7 3. 6	31 29 32 52	4. 1 3. 9 4. 1 4. 6	7 8 7 6	20 20 23	48 49 57 86	3. 3 3. 3 3. 1 2. 4	. 003 . 004 . 002 . 003	=	. 040 . 050 . 060 . 060	<. 002 <. 002 <. 002 <. 002	==
80-01-18 80-07-02 80-09-02	3. 0 2. 6 2. 6	4. 1 4. 2 5. 0	1. 1 1. 3 1. 2	5 5	24 22 23	5. 2 6. 6 6. 6	. 57 . 51 . 50	<.001 .002 .002	Ξ	<. 050 . 060 . 050	<. 002 . 003 . 003	Ξ
79-10-16 80-01-11 80-04-16 80-08-20	2. 1 2. 3 2. 1	13 14 11 14	2. 6 2. 7 3. 0	5 4 4 3	13 11 16 12	18 16 13 20	4. 7 5. 4 4. 8	. 002	 	<. 040 <. 050 <. 050	<. 002 <. 002 <. 002	 <-100
				DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)				
				79-10-15 80-01-08 80-04-18 80-06-03 80-08-19	200 80 400 310 400	1140 1300 1100 1220 1400	 <400 <400	. 03 . 03 <. 10 <. 10				
				79-10-02 79-10-17 80-01-11 80-08-25	300 300 260 600	200	=======================================	. 02 <. 02				
				80-01-18 80-07-02 80-09-02	60 90 250	10 <10	=	=				
				79-10-16 80-01-11 80-04-16 80-08-20	100 30 260 160	170 180	<400	. 03 <. 02 <. 10				

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 SUFFOLK COUNTY--Continued

			LOCAL IDENT- I-		GEO- LOGIC	DATE OF	DEPTH OF WELL,	SPE- CIFIC CON- DUCT- ANCE	РН	TEMPER-	DXYGEN, DIS-	CALCIUM TOTAL RECOV- ERABLE
STATION	NUMBER		FIER		UNIT	SAMPLE	(FEET)	(MICRO- MHOS)	(UNITS)	(DEG C)	SOLVED (MG/L)	(MG/L AS CA)
40450807	3080901 5	45637			112GLCLU 112GLCLU	79-10-16 80-01-11 80-04-16 80-08-20	79 79 79 79	68 67 75 68	7. 0 6. 2 7. 1 6. 2	11. 0 11. 0 11. 0 11. 0	9. 2 8. 1 9. 3 8. 9	4. 7 4. 9 4. 8
40461807	3164501 8	45717			1126LCLU 1126LCLU 1126LCLU	79-10-15 80-01-04 80-04-18 80-06-16 80-08-19	73 73 73 73 73	45 43 44 44 46	5. 3 5. 9 5. 7 6. 0 5. 5	11. 0 10. 5 11. 0 11. 0 11. 0	14. 6 10. 0 11. 5 11. 6 11. 2	1. 2 1. 2 1. 5
40463507	3101602 8	45718			112GLCLU 112GLCLU	79-10-16 80-01-15 80-04-21 80-08-20	24 24 24 24	240 230 210 280	5. 2 5. 2 5. 1 5. 0	13. 0 12. 0 10. 0 13. 0	3. 3 3. 1 4. 0 3. 3	13 13
40463507	3101601 9	6 45719			112GLCLU 112GLCLU	79-10-16 80-01-15 80-04-21 80-08-20	78 78 78 78	120 114 135 125	5. 9 5. 8 6. 2 5. 9	12. 0 11. 5 12. 0 12. 0	7. 2 7. 2 6. 5 6. 4	7. 3 7. 6
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
79-10-16 80-01-11 80-04-16 80-08-20	2. 4 2. 5 2. 3	3. 4 3. 5 5. 0 3. 6	. 4 . 4 	22 23 24 23	1. 0 1. 1 <4. 0 1. 0	2. 9 4. 2 6. 0 4. 8	. 23 . 45 . 26	. 002 . 002 <. 001	 . 90	. 040 . 050 <. 040 <. 050	. 029 . 032 . 031	<100
79-10-15 80-01-04 80-04-18 80-06-16 80-08-19	1. 4 1. 5 1. 4	3. 0 3. 1 3. 1 3. 2 3. 3	. 4 . 6 . 4	5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6. 4 6. 6 6. 1 7. 0 8. 0	3. 8 4. 0 4. 7 4. 0 3. 5	. 03 . 07 . 29 	. 003	=======================================	<. 040 <. 050 . 060 	<. 002 <. 002 . 003	 <100 <100
79-10-16 80-01-15 80-04-21 80-08-20	3. 2 3. 4 	15 16 16 19	6. 7 8. 2	4 3 4 7	20 22 21	23 25 22 29	9. 5 8. 8 	. 002	=======================================	<. 040 . 060 	<. 002 <. 002	 <100 <100
79-10-16 80-01-15 80-04-21 80-08-20	3. 1 3. 1 	7. 8 8. 0 9. 4 9. 1	. 7 . 7 	16 16 19 18	4. 5 5. 4 8. 0	10 9. 9 11 11	3. 8 3. 8 	. 002 . 002 	=	<. 040 . 060 	. 006 . 005 	<100 <100
					IRON,	MANGA- NESE,	ZINC,	METHY- LENE				

	IRON,	NESE,	ZINC,	LENE
	TOTAL	TOTAL	TOTAL	BLUE
DATE	RECOV-	RECOV-	RECOV-	ACTIVE
OF	ERABLE	ERABLE	ERABLE	SUB-
SAMPLE	(UG/L	(UG/L	(UG/L	STANCE
	AS FE)	AS MN)	AS ZN)	(MG/L)
79-10-16	100	<10		C. 02
80-01-11	<20	<10		C. 02
80-04-16	220	<50	<400	<. 10
80-08-20	<50	<10		
79-10-15	200	90		c. 02
80-01-04	40	<20		<. 02
80-04-18	250	<10		
80-06-16	150	<50	<400	C. 10
80-08-19	150	<50	<400	<. 10
79-10-16	100	730		C. 02
80-01-15	40	660		<. 02
80-04-21	200	680	<400	<. 10
80-08-20	170	910	<400	C. 10
79-10-16	150	<10		c. 02
80-01-15	60	<10		<. 02
80-04-21	380	50	<40	<. 10
80-08-20	110	<50	10400	<. 10

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

All samp	les were	collected	and anal	yzed by S	Suffolk C	ounty Depa	rtment of	Health S	ervices.			
STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40471607	3131602 9	6 45720			1120LCLU 1120LCLU	79-10-15 80-01-10 80-04-22 80-08-25	78 78 78 78	148 150 160 200	5. 9 5. 2 5. 8 5. 6	13. 0 12. 0 12. 0 13. 0	11. 8 9. 8 9. 4 9. 1	8. 7 7. 7 11
40451607	3122802 9	6 45721			112GLCLU 112GLCLU	80-01-14 80-04-21 80-06-03 80-08-20	34 34 34	270 480 410 580	5. 7 5. 4 6. 0 5. 4	14. 0 13. 0 12. 0 13. 0	. 7 . 8 1. 0 1. 5	7. 0
40451607	3122801 9	6 45722			112GLCLU	80-01-14 80-04-27 80-06-03 80-08-20	87 87 87 87	124 150 173 200	5. 4 5. 7 6. 3 5. 6	11.5 12.0 12.0 12.0	4. 6 4. 6 4. 4 2. 2	5. 1
40523107	3250500 8	6 46281			112GLCLU 112GLCLU	79-11-14 80-01-23 80-07-01 80-08-27	47 47 47 47	240 225 250 255	6. 3 6. 2 6. 8 6. 2	11. 0 12. 0 11. 5 12. 0	8. 4 9. 2 8. 8 8. 7	19 20
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS-	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
79-10-15 80-01-10 80-04-22 80-08-25	4. 6 5. 2 6. 4	7. 6 7. 8 8. 1 10	1. 5 1. 7 2. 4	17 11 19 12	9. 9 10 12	9. 5 9. 9 10 17	6. 0 6. 8 9. 9	.012	=	. 280 . 070 . 130	. 003 <. 002 <. 002	<100
80-01-14 80-04-21 80-06-03 80-08-20	1. 1 	40 63 50 85	1.8	13 8 13 10	40 25 24	40 116 81 155	1.3	. 002	=	. 100	. 003	<100 <100 <100
80-01-14 80-04-27 80-06-03 80-08-20	3. 6 	11 17 15 19	. 7 	9 14 18 18	3. 0 10 10	10 11 10 18	7. 2 	. 002	=======================================	<. 050 	<. 002	<100 <100 <100
79-11-14 80-01-23 80-07-01 80-08-27	7. 8 7. 8 	11 11 12 11	1.8 1.6 	38 38 40 40	15 16 19 	15 15 15 17	8. 5 8. 7 	. 004	=	. 070 <. 050 	. 009	<100 <100
				DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)				
				79-10-15 80-01-10 80-04-22 80-08-25	800 490 260 900	120 220	 <400	<. 02 <. 02 <. 10				
				80-01-14 80-04-21 80-06-03 80-08-20	1200 700 750 1170	520 170	<400 <400 <400	<. 02 <. 10 <. 10 <. 10				
				80-01-14 80-04-27 80-06-03 80-08-20	120 580 1030 840	<50 50	<400 <400 <400	<. 02 <. 10 <. 10 <. 10				

79-11-14 80-01-23 80-07-01

80-08-27

10 <20 <50 <50

<400 <400

<. 10 <. 10

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

All samples were collected and analyzed by Suffolk County Department of Health Services.

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40482307	3211800 5	46283				79-11-15 80-01-04	235 235	53 47	5. 4 5. 4	13. 0 11. 0	9. 4 10. 1	1.8 1.9
40484807	3073401 S	46284			112GLCLU 112GLCLU	79-10-17 80-01-15 80-04-22 80-08-25	104 104 104 104	260 245 250 260	5. 7 5. 4 5. 5 5. 5	13.0 12.0 12.0 12.0	8. 1 9. 1 8. 3 8. 2	13 12 14
40483607	3110901 S	46286			112GLCLU	79-10-11 80-01-10 80-04-22 80-08-28	103 103 103 103	320 300 235 145	5. 7 5. 2 5. 7 5. 5	14. 0 13. 0 13. 0 14. 0	7. 7 5. 4 3. 3 4. 5	22 21 11
40440007	3154401 S	46287			112GLCLU 112GLCLU 112GLCLU	79-10-15 80-01-08 80-04-22 80-06-03 80-08-19	85 85 85 85 85	200 210 215 220 215	5. 4 5. 7 5. 4 6. 0 5. 4	13. 0 12. 0 12. 0 12. 0 13. 0	. 9 1. 5 . 4 . 9 . 1	8. 9 9. 6
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACD3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
79-11-15 80-01-04	. 6	4. 6 4. 6	. 6	6 5	. 3 <. 5	8. 7 8. 0	. 74 . 89	. 004	==	. 050 <. 050	<. 002 <. 002	
79-10-17 80-01-15 80-04-22 80-08-25	6. 6 6. 4 6. 0	19 20 19 22	3. 9 3. 4 3. 5	17 13 16 15	23 25 23	24 22 22 27	9. 6 9. 6 10	. 012 . 003 	=======================================	. 040	<. 002 <. 002 	<100
79-10-11 80-01-10 80-04-22 80-08-28	8. 0 7. 5 3. 4	18 18 17 14	1.3 1.4 1.3	20 17 21 19	2. 8 1. 7 12	27 27 22 14	21 19 	. 005 . 002 		. 070 . 100 . 150	<. 002 <. 002 	 <100
79-10-15 80-01-08 80-04-22 80-06-03 80-08-19	4. 6 5. 0 	17 19 19 19 20	1. 3 1. 3 	11 15 18 17 19	. 8 . 6 <4. 0 <4. 0	20 20 19 19 19	11 13 	. 006	=	. 070	. 002 . 004 	<100 <100 <100
				DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)				
				79-11-15 80-01-04	1000 370	60 30		<. 02				
				79-10-17 80-01-15 80-04-22 80-08-25	500 110 310 200	70 30 70 60	 <400 	<. 02 <. 02 <. 10				
				79-10-11 80-01-10 80-04-22 80-08-28	550 90 810 1100	30 30 100 60	 <400	<. 02 <. 10				
				79-10-15 80-01-08 80-04-22 80-06-03 80-08-19	800 350 770 590 840	30 30 50 <50 <50	 <400 <400 <400	. 07 . 06 . 10 <. 10 . 10				

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

All samples were collected and analyzed by Suffolk County Department of Health Services.

						200						3
STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
404606073	3050002 9	3 46502			112GLCLU 112GLCLU 112GLCLU	79-10-02 79-10-17 80-01-11 80-04-16 80-08-25	40 40 40 40 40	500 500 595 650 520	6. 3 6. 1 5. 9 6. 2 5. 8	12. 0 13. 0 13. 0 12. 0 12. 0	5. 4 5. 4 6. 8 6. 9 6. 0	19 19 22 24 20
404920072	2484502 5	3 46911			112GLCLU	79-11-27 80-05-30 80-09-15	31 31 31	86 61 64	5. 5 5. 6 5. 7	15. 0 9. 0 15. 0	9. 1 4. 4 7. 2	1. 0 1. 2 1. 8
40491907	2484501 S	46912				79-11-27 80-09-15	21 21	420 235	5. 2 5. 1	16. 0 13. 0	3. 9 7. 9	8. 6 9. 0
404920072	2484602 5	46913			112GLCLU	79-11-27 80-05-30 80-09-15	19 19 19	49 73 240	5. 8 6. 1 6. 1	12. 0 12. 0 18. 0	6. 8 5. 2 3. 8	3. 7 4. 9 10
404917072	2484501 5	3 46914				79-11-27 80-09-15	33 33	51 125	5. 5 5. 8	16. 0 19. 0	3. 2 5. 3	1. 3 5. 7
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
79-10-02 79-10-17 80-01-11 80-04-16 80-08-25	2.3 2.3 2.6 2.8 2.0	55 60 88 98 68	15 15 10 12 9. 0	33 32 31 42 32	17 17 24 29 19	85 86 125 145 107	. 93 . 91 . 78 . 86 . 70	. 001 . 002 . 002 . 001 . 002	=======================================	<. 040 <. 040 <. 050 <. 050 . 050	<. 002 <. 002 <. 002 <. 002 <. 002	=
79-11-27 80-05-30 80-09-15	. 4	12 9. 0 8. 6	1. 2 . 7 . 9	3 6 4	4. 9 2. 8 2. 1	15 9.8 12	. 57 . 4 2 . 36	. 003 . 001 . 002	=	. 050 <. 050 . 080	<. 002 . 003 <. 002	Ξ
79-11-27 80-09-15	1.7 1.3	68 34	3. 5 1. 6	11 7	15 15	93 48	1.8 1.4	. 005 . 002		. 080	<. 002 <. 002	=
79-11-27 80-05-30 80-09-15	. 5 . 8 1. 8	2. 0 5. 8 33	2. 5 2. 0 3. 5	10 15 28	5. 7 2. 6 11	1. 8 8. 7 42	. 29 . 56 . 97	. 003 . 003 . 005	=	. 060 . 050 . 090	. 007 . 010 . 011	=
79-11-27 80-09-15	. 3 1. 4	7. 5 25	1.3 1.6	11 9	4. 3 5. 7	3. 5 37	1.0	. 004	=	. 070 . 0 9 0	. 002	=
				DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)				
				79-10-02 79-10-17 80-01-11 80-04-16	200 200 110 350	10 10 20	=	<. 02 <. 02				
				80-08-25 79-11-27 80-05-30 80-09-15	20 250 100	<20 <10	=	=				
				79-11-27 80-09-15	1300	350	=	=				
				79-11-27 80-05-30 80-09-15	40 70 180	<20 <10	=	Ξ				

20 30

150 200

79-11-27 80-09-15

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

			LOCAL IDENT- I-		GEO- LOGIC	DATE OF	DEPTH OF WELL,	SPE- CIFIC CON- DUCT- ANCE	РН	TEMPER-	OXYGEN, DIS-	CALCIUM TOTAL RECOV- ERABLE
STATION	NUMBER		FIER		UNIT	SAMPLE	TOTAL (FEET)	(MICRO- MHOS)	(UNITS)	WATER (DEG C)	SOLVED (MG/L)	(MG/L AS CA)
40525407	3214202	5 46962				79-11-15	62	155	6. 1	11.0	7. 8	10
						80-01-22 80-08-26	62 62	145 170	6. 0 5. 7	11. 0 11. 0	8. 0 6. 8	10
40522607	3095701	5 46963			112GLCLU	80-01-16	128	165	6. 0	11.5	9.6	7. 8
						80-07-02	128	160	6.0	12.0	9. 7	6. 0
					112GLCLU	80-09-02	128	155	5. 6	12.0	10. 2	6. 0
40522507	3152200	5 46964				80-01-16	101	97	5. 4	11.5	8. 2	3. 8
						80-07-01	101	100	5. 7	12.0	7. 2	4. 0
					112GLCLU	80-09-02	101	104	5. 3	12.0	7. 5	4. 0
40523007	3164400	5 46965				80-01-18	147	440	5. 9	11.0	10. 4	21
						80-07-01	147	440	6. 1	12.0	8. 5	
					112GLCLU	80-09-02	147	500	5. 6	12. 0	9. 0	22
40475907	3251600	5 47220			112GLCLU	79-11-14	92	25	5. 1	11.0	11.4	. 2
						80-01-23 80-08-26	92 92	30 26	5. 3 5. 5	11. 0 11. 0	11.0	. 2
	MAGNE-		POTAS-			CHLO-	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,	PHOS- PHORUS,	COPPER,
DATE	TOTAL RECOV-	SODIUM, DIS-	SIUM, DIS-	ALKA- LINITY	SULFATE DIS-	RIDE, DIS-	NITRATE DIS-	NITRITE DIS-	NO2+NO3 DIS-	AMMONIA DIS-	ORTHOPH	TOTAL RECOV-
OF	ERABLE	SOLVED	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	DISSOL.	ERABLE
SAMPLE	(MG/L	(MG/L	(MG/L	AS	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(UG/L
	AS MG)	AS NA)	AS K)	CACO3)	AS SO4)	AS CL)	AS N)	AS N)	AS N)	AS N)	AS P)	AS CU)
79-11-15	4. 2	9. 5	1.3	21	11	14	3.7	. 006	22	. 070	. 003	
80-01-22	4. 2		1. 2	20	12	12	3.8	. 003		<. 050	<. 002	
80-08-26		10	77	22		13						<100
80-01-16	4. 3	15	1. 1	11	11	26	2.7	. 001		<. 050	. 003	
80-07-02	3. 0	16	1.3		16	19	3. 3	. 003		. 060	. 003	-
80-09-02	3. 0	16	1. 1	9	3. 0	18	4. 4	. 003		. 050	. 002	
80-01-16	3. 1	7.8	. 9	14	. 6	10	3.1	. 001		<. 050	<. 002	
80-07-01	2. 8	7. 4	1. 1	17	1.2	12	2.8	. 004		. 090	. 004	
80-09-02	2. 7	7. 8	1.0	16	. 7	12	2. 5	. 003		. 080	<. 002	
80-01-18	9.8	50	1.8	17	13	104	1.1	. 001		<. 050	<. 002	
80-07-01		62		26	19	120						<100
80-09-02	9. 5	59	2. 1	22	17	112	1.2	. 003		. 070	. 002	
79-11-14	. 4		. 4	1	. 1	5. 8	. 09	. 002		. 040	C. 002	
80-01-23	. 3		. 4	1	<. 5		. 04	. 001		. 430	<. 002	
80-08-26	-	3. 3		3		5. 0						<100
					IRON,	MANGA- NESE,	ZINC,	METHY- LENE				
				DATE	TOTAL RECOV-	TOTAL RECOV-	TOTAL RECOV-	BLUE ACTIVE				

		MANGA-		WEIHA-
	IRON,	NESE,	ZINC,	LENE
	TOTAL	TOTAL	TOTAL	BLUE
DATE	RECOV-	RECOV-	RECOV-	ACTIVE
OF	ERABLE	ERABLE	ERABLE	SUB-
SAMPLE	(UG/L	(UG/L	(UG/L	STANCE
	AS FE)	AS MN)	AS ZN)	(MG/L)
79-11-15	400	10		
80-01-22	480	<20		
80-08-26	500	60	<400	<. 10
80-01-16	320	10		
80-07-02	16000	20		
80-09-02	600	20		
80-01-16	390	30		
80-07-01	880	50		
80-09-02	1200	60		
80-01-18	260	40		
80-07-01	480	<50	<400	<. 10
80-09-02	600	60		
79-11-14	100	20		
80-01-23	50	30		
80-08-26	320	100	<400	C. 10

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GED- LDGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40435107	3054101 S	47223			112GLCLU 112GLCLU	79-10-02 80-01-14 80-04-24 80-06-03	26 26 26 26	190 205 180 180	5. 7 5. 3 5. 5 6. 1	13.0 12.5 10.0 10.0	4. 5 5. 8 4. 4 4. 8	15 14 14
40481707	2532500 S	47224			112GLCLU 112GLCLU	80-02-22 80-03-05 80-07-21 80-09-16	33 33 33	61 64 59 62	5. 9 5. 2 5. 8 5. 5	10.0 6.0 9.5 11.0	5. 0 10. 0 4. 9 3. 3	2. 7 1. 9
40521807	2561101 S	47225			112GLCLU 112GLCLU	80-02-22 80-03-05 80-07-08 80-09-16	30 30 30	190 205 180 185	5. 5 5. 4 5. 2 5. 3	10. 0 10. 0 10. 0 10. 0	8. 3 8. 7 5. 6 7. 3	23 15
40524007	2491402 S	47226			112GLCLU	79-10-09 80-02-07 80-03-21	27 27 27	75 71 73	6. 1 7. 0 6. 7	11.0 11.0 11.0	. 3 1. 5 . 2	4. 5 4. 4 4. 1
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
79-10-02 80-01-14 80-04-24 80-06-03	2. 0 2. 0 1. 9	12 18 13 11	1.5 1.6 1.4	14 13 13 14	14 19 16 19	24 29 21 17	3. 3 3. 4 4. 4	. 002	=	<. 040 . 060 . 060	<. 002 <. 002 . 015	 <100
80-02-22 80-03-05 80-07-21 80-09-16	1. 4 1. 3	4. 9 4. 5 4. 2 4. 2	1.7 1.6 	4 5 5 6	6. 6 6. 0 7. 0 6. 0	8. 0 6. 5 7. 0 7. 0	. 57 . 60 	. 002	=======================================	. 070 <. 050 	<. 002 <. 002 	 <100 <100
80-02-22 80-03-05 80-07-08 80-09-16	3. 1 3. 1	5. 4 4. 9 4. 8 14	3. 8 3. 9 	7 2 5 7	51 52 45 45	13 10 10 13	2. 6 2. 3 	. 002	=	. 070 <. 050 	<. 002 <. 002 	 <100 180
79-10-09 80-02-07 80-03-21	. 7 . 8 . 7	3. 8 4. 2 4. 2	. 4 . 5 . 4	18 21 22	8. 7 7. 9 6. 7	7. 0 6. 6 7. 1	<. 02 . 22 <. 02	. 001 . 002 . 002	Ξ	. 160 . 150 . 190	. 150 . 123 . 112	Ξ
				DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)				
				79-10-02 80-01-14 80-04-24 80-06-03	100 30 310 190	10 20 20 <50	 <400	<. 02 <. 10				
				80-02-22 80-03-05 80-07-21 80-09-16	420 410 <100 1020	160 160 230 110	<400 <400	<. 10 <. 10				
				80-02-22 80-03-05 80-07-08 80-09-16	<50 450 550 250	20 40 50 150	 <400 1000	<. 10 <. 10				
				79-10-09 80-02-07 80-03-21	5400 5800 5100	100 230 110	Ξ	Ξ				

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 SUFFOLK COUNTY--Continued

All samples were collected and analyzed by Suffolk County Department of Health Services.

								SPE-				CALCIUM
STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL	CIFIC CON- DUCT- ANCE (MICRO-	PH FIELD	TEMPER- ATURE, WATER	OXYGEN, DIS- SOLVED	TOTAL RECOV- ERABLE (MG/L
							(FEET)	MHOS)	(UNITS)	(DEG C)	(MG/L)	AS CA)
40524007	2491401 S	47227			112GLCLU	79-10-09 80-02-07 80-03-21	100 100 100	114 107 108	7. 3 6. 7 7. 6	10. 0 10. 0 10. 5	. 0	11 12 13
40530607	2482701 5	47228			112GLCLU 112GLCLU	80-02-07 80-03-25 80-08-11 80-09-03	101 101 101 101	73 68 91 95	5. 8 6. 4 6. 2 6. 1	11.0 11.0 12.0 12.0	. 2 . 1	. 7 . 9 1. 0
40530607	2482702 5	47229			112GLCLU 112GLCLU	80-02-07 80-03-25 80-08-11 80-09-03	25 25 25 25	112 100 122 110	5. 8 5. 8 5. 4 5. 5	13.0 10.5 13.0 13.0	3. 6 4. 2 4. 0 4. 3	3. 8 3. 9 5. 0
40541707	2402300 5	47230			112GLCLU	80-04-07	32	65	4. 7	11.0	3. 9	1.6
40554107	2375300 8	47231				80-03-18 80-07-23	39 39	118 126	5. 3 5. 4	12. 0 11. 5	4. 5 3. 1	6. 6 6. 2
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
79-10-09	2. 4	4. 7	. 4	41	4. 7	5. 0	<. 02	. 001		. 100	. 240	
80-02-07 80-03-21	2. 6	4. 6 4. 8	. 4	42 43	5. 4 3. 8	5. 6 5. 5	. 06 <. 02	. 002		. 110	. 194	Ξ
80-02-07	. 2	5. 4	1.3	20	2. 2	11	<. 02	. 002		<. 050	. 002	
80-03-25 80-08-11	. 3	5. 5 6. 2	. 3	20	2.3	11	<. 02 . 04	<. 001 . 004	==	<. 050 . 060	. 008	
80-09-03		6. 0		28		10						<100
80-02-07 80-03-25	2.0	12	3. 9 1. 2	13 10	13 13	16 13	1.1	. 002	==	. 070	<. 002	
80-08-11	1.5	12	1.5	5	13	16 15	. 95	. 001		. 080	. 002	<100
80-04-07	. 9	5. 7	. 9	0	8. 0	11	. 03	. 002		<. 050	<. 002	
80-03-18	1.7	8. 0	1. 1	4	16	15	1.7	. 002		. 050	c. 002	
80-07-23	1. 7	12	1. 2	5	15	18	2. 0	. 002		. 080	<. 002	
				DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)				
				79-10-09	600	250						
				80-02-07 80-03-21	580 650	230 260	==	===				
				80-02-07	11000	150						
				80-03-25 80-08-11	9600 13000	140 200		===				
				80-09-03	>13600	240	<400	<. 10				
				80-02-07 80-03-25	1700 910	210 210						
				80-08-11	770	210						
				80-09-03	930	210	<400	<. 10				
				80-04-07	270	100						

80-03-18 80-07-23

250 380

250 280

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
405248072	2332700 S	47232				80-01-10 80-04-08	56 56	96 86	6. 0 6. 1	12. 0 12. 0	2. 2	1. 8 2. 7
410348072	2272900 S	47233			112GLCLU 112GLCLU	79-10-09 80-03-13	51 51	360 348	6. 0 6. 3	11.0 10.5	9. 1 8. 3	21 24
410213072	2232700 S	47234				79-10-05 80-03-13	27 27	>1000 7950	6. 3 6. 5	13. 0 10. 5	. 3 3. 9	95
410037072	2145101 S	47235			112GLCLU	79-11-07	22	270	6. 2	19. 0	4. 4	5. 0
410156072	2133601 5	47236			112GLCLU	79-11-07	57	90	5. 9	11.0	10. 4	2. 0
405111073	3065801 S	47675			1126LCLU	80-06-18	90	210	6. 1	12. 0	9. 8	
405307073	3060901 S	47698			112GLCLU	80-02-19 80-06-17 80-07-08	103 103 103	49 59 57	6. 1 5. 8 6. 0	10.0 10.0 10.5	10. 8 11. 8 6. 6	1.8
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
80-01-10	1.4	6. 6	. 5	22	<. 6	11	. 05	. 001		. 470	. 014	
80-04-08	1. 5	6. 6	. 4	23	. 5	13	. 06	. 004		. 500	. 011	-
79-10-09 80-03-13	14 16	14 17	1. 4 2. 0	14 14	71 71	24 25	7. 3 7. 7	. 001		. 040	. 005	==
79-10-05 80-03-13	250	2150	75 	48 43	590 	3800 2530	. 31	. 010	=	6. 000 3. 700	. 016	=
79-11-07	6. 0	29	2. 9	24	3.0	60	. 06	. 002		. 470	. 009	
79-11-07	2. 1	10	. 7	9	8. 3	11	. 65	. 002		1.600	<. 002	
80-06-18		19		34	10	23					-	<100
80-02-19	1.2	4. 8	. 5	5	2. 5	6.0	. 74	. 003		. 090	. 003	
80-06-17 80-07-08		5. 1 4. 8		6	<4. 0 4. 0	7. 0 7. 0		=	=	=		<100 <100
AL STATE OF		100										

DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
80-01-10	6600	100		C. 50	
80-04-08	5100	80			
79-10-09	200	<10			
80-03-13	220	<10			
79-10-05	19000	1030			
80-03-13					
79-11-07	6300	310			
79-11-07	100	10			
80-06-18	390	<50	<400	<. 10	
80-02-19	80	<10			
80-06-17	380	180	<400	C. 10	
80-07-08	260	<50	<400	<. 10	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40494107	3065400 9	47718				80-02-22 80-07-07	51 51	175 240	6. 2 6. 2	11. 0 12. 5	4.0	14
40464207	3005801 S	47743			112GLCLU	80-02-14 80-04-24 80-07-21	100 100 100	73 75 72	6. 1 6. 4 7. 0	12.0 12.0 11.5	7. 5 1. 2 . 7	6. 1 6. 6
40541707	2572701 S	47745			112GLCLU	80-02-25 80-07-08 80-09-18	32 32	92 118 150	5. 8 5. 0 5. 0	11.0 10.5 11.0	3. 5 1. 3 1. 4	3. 1 5. 0
40484707	2571300 5	47746			112GLCLU	80-02-25	84	57	6. 0	10. 5	11.8	3. 1
40474007	2545200 S	6 47747				80-02-15 80-09-16	32 32	55 69	5. 4 5. 4	10. 5 11. 0	7. 8 6. 9	1.2
40563807	2514700 S	6 47748			112GLCLU 112GLCLU	80-01-25 80-07-14 80-08-12 80-09-17	115 115 115 115	40 43 45 44	6. 1 6. 3 5. 6 6. 0	10.0 11.0 11.0 11.0	11. 4 8. 6 10. 7 11. 1	1. 1
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
80-02-22 80-07-07	4. 0	16 18	3. 0	62 41	5. 6 17	18 33	c. 02	. 001		. 240	. 002	<100
80-02-14 80-04-24 80-07-21	1.8 1.6	4. 7 4. 1 4. 3	. 7 . 6	26 25 25	2. 2 1. 5 4. 0	4. 0 5. 3 4. 0	<. 02 . 08	. 002		<. 050 . 060	. 017	 <100
80-02-25 80-07-08 80-09-18	1. 4 2. 0	12 10 18	. 7 1. 2	4 2 2	12 12 10	10 15 29	3. 0 1. 5	. 004		. 110	. 002	<100
80-02-25	1.4	4. 0	1. 3	5	8. 4	7. 0	. 36	. 002	- 44	<. 050	<. 002	
80-02-15 80-09-16	1.4	5. 5 8. 4	. 8	2	5. 3 7. 0	10 12	<. 02	. 002	==	<. 050 	<. 002	<100
80-01-25 80-07-14 80-08-12 80-09-17	1. 0 	4. 2 4. 2 4. 5 16	. 4	5 5 6 3	3. 8 6. 0 41 5. 0	5. 0 7. 0 6. 0 9. 0	. 02 	. 001	=	. 080	<. 002 	<100 <100 <100
						MANCA-		METHY-				

DATE RECOV-REABLE (UG/L AS FE) AS MN) 80-02-22 1700 360 80-02-24 900 170 80-04-24 420 120 80-07-21 650 120 <400 80-02-25 <50 50 80-07-08 380 90 <400 80-09-18 180 60 80-02-25 <50 <10 80-02-25 <50 <10	BLUE ACTIVE SUB- STANCE (MG/L)
OF SAMPLE (UG/L (UG/L (UG/L AS FE) AS MN) AS ZN) 80-02-22 1700 360 80-07-07 2050 400 <400 80-02-14 900 170 80-04-24 420 120 80-07-21 650 120 <400 80-02-25 <50 50 80-07-08 380 90 <400 80-09-18 180 60	SUB- STANCE (MG/L)
SAMPLE (Ug/L AS FE) (Ug/L AS MN) (Ug/L AS ZN) 80-02-22 80-07-07 1700 2050 360 400 80-02-14 80-04-24 900 420 170 120 80-07-21 650 120 120 400 80-07-25 80-07-08 50 380 380 380 380 390 80-09-18 180 380 380 380 380 380 380 380 380 380 3	STANCE (MG/L)
80-02-22 1700 360 80-07-07 2050 400 <400 80-02-14 900 170 80-04-24 420 120 80-07-21 650 120 <400 80-02-25 <50 50 80-07-08 380 90 <400 80-09-18 180 60	(MG/L)
80-07-07 2050 400 <400	C. 10
80-02-14 700 170 80-04-24 420 120 80-07-21 650 120 <400 80-02-25 <50 50 80-07-08 380 90 <400 80-09-18 180 60	C. 10
80-04-24 420 120 80-07-21 650 120 <400	
80-07-21 650 120 <400 80-02-25 <50 50 80-07-08 380 90 <400 80-09-18 180 60	
80-02-25 <50 50 80-07-08 380 90 <400 80-09-18 180 60	
80-07-08 380 90 <400 80-09-18 180 60	<. 10
80-09-18 180 60	
	<. 10
80-02-25 <50 <10	
80-02-15 <30 10	
80-09-16 120 <50 <400	<. 10
80-01-25 70 20	
80-07-14 250 80 <400	<. 10
80-08-12 400 <50 <400	<. 10
80-09-17 180 <50 <400	<. 10

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

All samples were collected and analyzed by Suffolk County Department of Health Services.

80-02-15 80-07-21 80-09-16

All samp	les were	collected	and anal	yzed by S	Suffolk C	ounty Depa	rtment of	Health S	ervices.			
STATION	NUMBER		LOCAL IDENT- I- FIER		GED- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40533807	2530401 S	47749			112GLCLU 112GLCLU 112GLCLU	80-01-25 80-06-17 80-07-14 80-08-12 80-09-17	32 32 32 32 32	320 390 360 330 310	5. 1 5. 1 5. 5 5. 2 5. 2	13. 0 12. 0 12. 0 13. 0 13. 0	8. 0 7. 9 8. 2 7. 5 8. 7	15
40500407	2515400 S	47750			112GLCLU 112GLCLU 112GLCLU	80-01-25 80-02-13 80-07-09 80-08-12 80-09-16	95 95 95 95 95	48 55 48 51 51	6. 6 5. 8 6. 4 5. 6 5. 8	10. 0 11. 0 11. 0 11. 0 11. 0	10.8 11.3 10.0 11.4 11.2	2. 2 2. 1 2. 4
40460707	2594702 S	47751			112GLCLU	80-02-15 80-07-21 80-09-16	38 38	230 230 220	4. 8 5. 4 5. 0	13. 0 12. 0 13. 0	. 6 3. 5 2. 6	12
40460707	2594701 S	47752			112GLCLU	80-02-15 80-07-21 80-09-16	100 100 100	73 80 80	6. 2 7. 2 6. 4	12. 0 12. 0 12. 0	1.6 1.9 1.3	5. 4
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
80-01-25 80-06-17 80-07-14 80-08-12 80-09-17	3. 9 	42 45 45 34 39	2. 6 	7 10 12 10	46 35 44 6. 0	63 74 62 53 53	1. 9 	. 002	=======================================	. 090 	<. 002 	<100 <100 <100 <100
80-01-25 80-02-13 80-07-09 80-08-12 80-09-16	1. 0 1. 0 1. 0	4. 4 4. 6 4. 4 4. 5 5. 7	. 4	7 6 8 6	4. 1 5. 2 4. 0 14 7. 0	5. 6 6. 0 6. 6 7. 0 5. 0	. 02 C. 02 C. 02	. 001 <. 001 . 001	=======================================	. 060 <. 050 <. 050 	. 004 . 002 . 006 	 <100 <100
80-02-15 80-07-21 80-09-16	2.8	25 18 19	3. 6	3 4 4	26 27 24	28 20 25	9. <u>1</u> 	. 005 	Ξ	. 210	<. 002 	<100 <100
80-02-15 80-07-21 80-09-16	3. 0	4. 7 4. 3 7. 2	. 6 	31 28	2. 3 4. 0 4. 0		. 03	. 002	Ξ	<. 050 	. 022	<100 <100
				DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)				
				80-01-25 80-06-17 80-07-14 80-08-12 80-09-17	300 1110 1190 1500 910	480 710 680 670 420	<400 <400 <400 <400	C. 10 C. 10 C. 10 C. 10				
				80-01-25 80-02-13 80-07-09 80-08-12 80-09-16	100 140 50 250 <100	<10 <50	 <400 <400	 <. 10 <. 10				
				80-02-15 80-07-21 80-09-16	80 <100 150	180 150 <60	<400 <400	<. 10 <. 10				

<10 <50 130

<400 <400 <. 10 <. 10

140 120 170

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL	SPE- CIFIC CON- DUCT- ANCE (MICRO-	PH FIELD	TEMPER- ATURE, WATER	OXYGEN, DIS- SOLVED	CALCIUM TOTAL RECOV- ERABLE (MG/L
STATION	HOUBER		FIER		ONIT	SMIIILE	(FEET)	MHOS)	(UNITS)	(DEG C)	(MG/L)	AS CA)
40541207	2441401 5	47753			112GLCLU 112GLCLU 112GLCLU	80-01-08 80-01-24 80-05-29 80-07-09 80-09-03	100 100 100 100 100	60 61 66 67 64	5. 7 5. 9 5. 5 6. 2 5. 6	11. 0 10. 0 10. 0 11. 0	9. 0 10. 0 2. 1 9. 0 9. 6	1.5 1.6 2.1 2.2
40541207	2441402 5	47754			112GLCLU 112GLCLU 112GLCLU	80-01-08 80-01-24 80-05-29 80-07-09 80-09-03	39 39 39 39 39	54 47 73 49 50	4, 6 5, 1 4, 7 5, 5 4, 8	12. 0 11. 0 10. 0 10. 5 11. 0	8. 3 9. 0 6. 2 9. 5 8. 6	1. 5 1. 5 1. 7 1. 8
40513607	2464500 S	47755			112GLCLU 112GLCLU 112GLCLU	80-01-24 80-05-29 80-06-16 80-07-09 80-09-03	58 58 58 58 58	48 53 53 52 52	5. 8 5. 3 5. 4 6. 0 5. 5	12. 5 12. 0 11. 0 12. 0 12. 0	6. 5 7. 2 7. 3 7. 6 7. 9	1.8 2.1 2.0
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, ND2+ND3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
80-01-08 80-01-24 80-05-29 80-07-09 80-09-03	. 7 . 7 . 8 . 9	8. 2 8. 5 7. 6 7. 3 7. 4	. 5 . 5 . 6 . 7	5 7 6 7 5	8. 8 6. 6 8. 7 8. 3	7. 0 7. 8 8. 7 7. 9 8. 0	. 08 . 08 . 11 . 10	. 002 . 001 . 001 . 002	 <. 40	. 070 . 070 . 050 <. 050 . 040	. 160 . 150 . 135 . 079	 <100
80-01-08 80-01-24 80-05-29 80-07-09 80-09-03	. 9 1. 0 . 9 . 8	4. 2 4. 1 7. 6 3. 6 3. 9	. 5 . 5 . 5	0 1 1 2 0	7. 8 7. 4 7. 9 7. 8	5. 0 6. 1 13 5. 6 5. 0	. 02 <. 02 . 10 <. 02	. 002 . 001 <. 001 <. 001	=======================================	<. 050 . 090 <. 050 <. 050	<.002 <.002 .002	 <100
80-01-24 80-05-29 80-06-16 80-07-09 80-09-03	1. 1 1. 1 — 1. 1	4. 2 4. 3 4. 7 4. 2 4. 1	. 8 . 8 . 9	4 3 3 4 3	4. 7 5. 9 7. 0 6. 2	6. 1 7. 2 5. 0 6. 7 5. 0	. 08	. 001	=======================================	. 040 . 050 <. 050	. 059 . 042 . 038	<100 <100 <100
				DATE OF SAMPLE	IRON, TOTAL RECOV— ERABLE (UG/L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L	ZINC, TOTAL RECOV- ERABLE (UG/L AS 7N)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)				

DATE OF	IRON, TOTAL RECOV- ERABLE	NESE, TOTAL RECOV- ERABLE	ZINC, TOTAL RECOV- ERABLE	LENE BLUE ACTIVE SUB-
SAMPLE	AS FE)	(UG/L AS MN)	(UG/L AS ZN)	(MG/L)
80-01-08	180	<20		
80-01-24	130	<20		
80-05-29	350	30		
80-07-09	120	40		
80-09-03	640	<50	<400	<. 10
80-01-08	90	80		
80-01-24	70	70		
80-05-29	230	80		
80-07-09	110	70		
80-09-03	550	60	<400	<. 10
80-01-24	80	<20		
80-05-29	120	<10		
80-06-16	300	<50	<400	<. 10
80-07-09	70	10		
80-09-03	270	70	<400	<. 10

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GED- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40492207	2595001 S	47756				80-02-15 80-06-16	69 69	84 112	5. 5 5. 3	10.5	9. 9 10. 5	3. 1
						80-07-14	69	102	5. 9	11.5	9. 3	
40500807	3025500 S	47757				80-02-19 80-07-07	138 138	212 245	5. 7 5. 5	13. 0 13. 0	4. 4 4. 7	15
40485207	3050400 S	47758				80-02-14 80-04-24	102 102	190 240	5. 3 5. 4	.12. 0 12. 0	9. 0 9. 8	6. 3 7. 0
40564807	2555101 S	47945				80-02-21	142	71	6. 0	10. 5	9. 9	3. 6
						80-06-17	142	82	5. 8	11.0	9. 6	
						80-07-14 80-09-18	142	83	6. 6 5. 7	10. 5 11. 0	9. 5 10. 0	
40E (0407	20/4201 0	47070			440010111	00 00 10	90	220	6. 1	11.5	8. 2	22
40380407	3064301 S	4/7/3				80-02-19 80-07-07	90	230 290	5. 9	12.0	7. 0	
40553207	3025701 S	47974			112GLCLU	80-02-20	149	136	5. 7	11.5	9. 2	4. 9
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS-	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
80-02-15	2. 1	8. 0	1.1	5	9.6	14	. 05	. 002		. 050	<. 002	
80-06-16		11		4	8.0	20			<. 40	<. 040		<100
80-07-14		10		6	7. 0	21						<100
80-02-19	6. 0	16	1.4	32	5. 9	34	2.9	. 007		. 090	. 003	
80-07-07		20		33	11	37						<100
80-02-14	2.8	25	1.7	8	5. 7	40	3.3	. 002		. 050	<. 002	
80-04-24	3. 6	25	1.7	9	4. 6		2. 9	. 002		<. 050	<. 002	
80-02-21	1.6	4.6	. 6	8	7.3	8. 5	. 90	. 002		. 060	<. 002	
80-06-17		5. 1		7	11	7.0						<100
80-07-14		5. 5		8	13	8.0						<100
80-09-18		5. 7		6	12	7. 0						<100
80-02-19	5. 7	10	1.3	20	66	10	2.8	. 004		. 070	. 012	
80-07-07		9. 9		21	73	10						<100
80-02-20	2. 9	16	1.4	12	9. 6	21	1.7	. 002		<. 050	. 004	
					IRON,	MANGA- NESE,	ZINC,	METHY- LENE				

	521277	MANGA-	201.0	METHY-	
	IRON,	NESE,	ZINC,	LENE	
2020	TOTAL	TOTAL	TOTAL	BLUE	
DATE	RECOV-	RECOV-	RECOV-	ACTIVE	
OF	ERABLE	ERABLE	ERABLE	SUB-	
SAMPLE	(UG/L	(UG/L	(UG/L	STANCE	
	AS FE)	AS MN)	AS ZN)	(MG/L)	
80-02-15	150	20			
80-06-16	420	<50	<400	<. 10	
80-07-14	650	<50	<400	<. 10	
80-02-19	1400	160			
80-07-07	2860	390	<400	. 20	
80-02-14	190	30			
80-04-24	580	40			
80-02-21	840	70			
80-06-17	2920	130	<400	<. 10	
80-07-14	1040	<50	<400	C. 10	
80-09-18	1150	70	<400	<. 10	
80-02-19	130	<10			
80-07-07	280	<50	<400	<. 10	
80-02-20	290	50			

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

			LOCAL IDENT- I-		GED-	DATE	DEPTH OF	SPE- CIFIC CON- DUCT- ANCE	РН	TEMPER-	OXYGEN, DIS-	CALCIUM TOTAL RECOV- ERABLE
STATION	NUMBER		FIER		LOGIC	OF SAMPLE	WELL, TOTAL (FEET)	(MICRO- MHOS)	FIELD (UNITS)	WATER (DEG C)	SOLVED (MG/L)	(MG/L AS CA)
40505007	2595301 S	47975				80-02-21 80-07-08	129 129	190 265	6. 4 6. 0	11.5 12.0	8. 6 8. 1	18
40560507	2591501 S	47976			112GLCLU	80-02-20 80-07-08 80-09-18	138 138 138	195 210 210	5. 8 5. 5 5. 6	11.0 11.0 12.0	7. 7 3. 0 7. 5	13
40471107	2515000 5	47977			112GLCLU	80-02-22 80-07-14 80-09-15	55 55 55	116 142 155	5. 2 5. 5 5. 1	12. 0 12. 0 12. 0	12. 4 9. 0 8. 2	5. 2 6. 2
40560607	2202701 S	48425			112GLCLU 112GLCLU	79-11-29 80-01-08 80-04-03 80-08-11	44 44 44	395 310 400 400	5. 5 5. 4 5. 9 5. 7	12.0 12.0 11.0 11.0	8. 6 8. 7 8. 4 8. 7	53 53 52 47
40574007	2190001 5	48426			112GLCLU	79-11-23	121	108	6. 0	11, 0	10. 4	6. 9
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SDDIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
80-02-21 80-07-08	7. 2	6. 0 7. 1	1.1	53 52	13 24	12 15	3. 3	. 003	=	. 060	. 002	<100
80-02-20 80-07-08 80-09-18	5. 7 	16 13 21	1. 4	22 19 24	22 21 22	18 17 18	5. 4 	. 002 	<u></u>	<. 050 	. 004	100 <100
80-02-22 80-07-14 80-09-15	2. 7 2. 8	10 14 14	1.6	2 6 4	15 17 18	19 20 20	1. 5 2. 7	. 003	=======================================	<. 050 . 100	<. 002 <. 002	<100
79-11-29 80-01-08 80-04-03 80-08-11	8. 3 7. 9 6. 5 7. 4	8. 0 7. 6 7. 5 7. 5	3. 3 2. 7 2. 8 2. 8	8 7 8 9	114 105 98 95	27 24 28 26	8. 0 7. 8 7. 6 7. 6	. 002 . 002 . 003	=	. 040 <. 050 <. 050 <. 050	<. 002 <. 002 <. 002 <. 002	=
79-11-23	2. 0	8. 6	1. 1	17	6. 5	12	. 94	. 002		. 040	. 004	-
				DATE OF	IRON, TOTAL RECOV- ERABLE	MANGA- NESE, TOTAL RECOV- ERABLE	ZINC, TOTAL RECOV- ERABLE	METHY- LENE BLUE ACTIVE SUB-				

DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	LENE BLUE ACTIVE SUB- STANCE (MG/L)
80-02-21	320	30		
80-07-08	840	60	<400	<. 10
80-02-20	110	20		
80-07-08	900	50	400	<. 10
80-09-18	690	<50	<400	<. 10
80-02-22	290	70		
80-07-14	1110	<50	<400	C. 10
80-09-15	590	100		
79-11-29	290	20		
80-01-08	230	<20		
80-04-03	240	20		
80-08-11	500	<10		
79-11-23	150	10	12	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40561807	2180501 S	48427			112GLCLU	79-11-29	52	175	6.3	11.0	8. 1	12
						80-01-09 80-03-11	52 52	158 290	6. 4	12. 0 12. 0	9. 2 9. 2	12 14
40570407	2165901 5	48428			112GLCLU	79-11-29	71	64	5. 8	11.0	10.6	1.2
					112GLCLU	80-03-11	71	67	5. 7	11.0	11.2	1.0
40580707	2121001 S	48429			112GLCLU	79-11-07	66	330	6. 0	12. 0	10. 6	37
40550107	2215501 S	48430			112GLCLU	79-11-02	39	63	5. 7	11.0	9. 7	1. 1
					112GLCLU	80-03-11	39	60	5. 4	11.0	10.6	. 9
					112GLCLU	80-04-03	39	60	5. 5	11.0	10. 2	1. 1
40560607	2235701 S	48432			112GLCLU	80-01-09	63	72	5. 7	11.0	10.8	2. 2
						80-04-03	63	80	6. 0	11.0	10. 0	2. 8
40564407	2220101 S	48433			112GLCLU	80-01-09	135	59	5. 6	11.0	9. 9	1.6
40522707	2352301 S	48434			112GLCLU	80-01-10	187	98	6. 1	10.0	10. 2	5. 5
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L)	SODIUM, DIS- SOLVED (MG/L	POTAS- SIUM, DIS- SOLVED (MG/L	ALKA- LINITY (MG/L AS	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L	NITRO- GEN, NITRATE DIS- SOLVED (MG/L	NITRO- GEN, NITRITE DIS- SOLVED (MG/L	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
	AS MG)	AS NA)	AS K)	CACO3)	AS SO4)	AS CL)	AS N)	AS N)	AS N)	AS N)	AS P)	
79-11-29	4. 7	9.8	1.3	22	25	16	1.8	. 001		<. 040	. 004	
80-01-09	4. 9	10	. 8	22	22	16	2.0	. 002		<. 050	. 002	
80-03-11	8. 0	20	1. 4	34	33	27	4. 6	. 003	77	<. 050	. 006	
79-11-29	1.5	6. B	. 9	4	5. 1	12	. 05	. 001		<. 040	<. 002	
80-03-11	1.6	7. 2	. 6	4	4. 8	11	. 02	. 002		<. 050	<. 002	
79-11-07	6. 0	10	. 9	22	76	21	4. 3	. 002		. 040	<. 002	
79-11-02	1.4	5. 6	. 9	2	5. 9	9.8	. 04	. 001		. 040	<. 002	
80-03-11	1.5	6.0	. 9	2	5. 7	9.4	. 03	. 003		<. 050	<. 002	
80-04-03	1.4	5. 7	. 8	2	5. 4	11	. 05	. 001		<. 050	<. 002	
80-01-09	1.5	7.4	. 7	6	5.7	10	. 05	. 002		< .050	. 003	
80-04-03	1. 7	7. 5	. 7	10	5. 8	15	. 05	<. 001		<. 050	<. 002	
80-01-09	1.2	5. 6	. 7	4	4. 9	8. 0	. 04	. 002		. 060	<. 002	
80-01-10	2. 4	9. 6	. 7	24	5. 1	10	. 36	. 002		. 040	<. 002	

DATE OF SAMPL	E	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
79-11-	29	250	30		
80-01-	09	180	<20		
80-03-	11	260	<10		
79-11-	29	100	20		
80-03-	11	80	20		
79-11-	07	500	30		
79-11-	02	200	10		
80-03-	11	100	<10		
80-04-	03	160	10	7	
80-01-	09	150	<20		
80-04-	03	150	20		
80-01-	09	840	90		
80-01-	10	220	<10		

SUFFOLK COUNTY--Continued

								SPE-				
STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40505107	2052101 0	48435 E.	OHDOHE			DO 01 10					8. 9	7. 5
40303107	2353101 5	48433 E.	GODGOE			80-01-10 80-04-08	56 56	236 185	5. 1 5. 5	12. 0 12. 0	9. 2	5. 6
405831072	2171201 S	48437			112GLCLU	79-11-23	69	62	5. 6	11.0	10. 2	1. 9
40584407	2191601 5	48438			112GLCLU	79-12-23	78	87	5. 6	10.0	10.2	3. 8
		15.155				80-03-10	78	88	5. 9	9.0	10.7	4. 1
					112GLCLU	80-04-02	78	88	5. 8	9. 0	10.8	4. 7
405325072	2262702 5	48439			112GLCLU	79-11-02	51	280	6.7	14.0	9. 2	15
						80-04-04	51	195	6. 3	13. 0	8. 6	10
405325072	2262701 5	48440			112GLCLU	79-11-02	102	85	7. 1	13.0	10.4	3. 7
						80-04-04	102	85	7. 0	12.0	9. 0	4. 0
405349072	2234801 5	48441			112GLCLU	79-11-02	61	215	6. 4	13.0	9.8	17
						80-04-04	61	170	6. 1	12.0	9. 4	16
405838072	2154001 S	48517			112GLCLU	79-11-07	71	68	6. 3	11.0	11.8	2. 9
	MAGNE- SIUM, TOTAL	SODIUM,	POTAS- SIUM,	ALKA-	SULFATE	CHLO- RIDE,	NITRO- GEN, NITRATE	NITRO- GEN, NITRITE	NITRO- GEN, NO2+NO3	NITRO- GEN, AMMONIA	PHOS- PHORUS, ORTHOPH	COPPER, TOTAL
DATE	RECOV-	DIS-	DIS-	LINITY	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	OSPHATE	RECOV-
OF SAMPLE	ERABLE (MG/L	SOLVED (MG/L	SOLVED (MG/L	(MG/L AS	SOLVED	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	DISSOL.	ERABLE (UG/L
SMITTLE	AS MG)	AS NA)	AS K)	CACO3)	(MG/L AS SO4)	AS CL)	AS N)	AS N)	AS N)	AS N)	AS P)	AS CU)
80-01-10	2.0	38	2. 0	4	17	58	1.2	. 002		<. 050	<. 002	
80-04-08	1.3	26	1.8	5	16	37	2. 1	. 003		. 060	<. 002	
79-11-23	1. 3	5. 8	. 7	6	4. 9	8. 3	. 02	. 002		. 040	. 002	
79-12-23	1.8	6.5	1.2	6	8. 2	10	1.0	. 002		. 060	. 002	
80-03-10	1.8	7. 3	. 8	8	7. 5	9. 5	1.2	. 002		<. 050	. 003	
80-04-02	1. 9	6.8	. 8	7	7. 9	12	1.2	. 001		<. 050	. 002	
79-11-02	5. 0	22	1.7	15	4. 2	56	2. 5	. 002		. 050	<. 002	
80-04-04	3. 0	22	1.2	13	7. 2	39	1.5	. 002		<. 050	<. 002	
79-11-02	1. 9	7.4	. 6	15	4. 5	9. 9	. 44	. 001		. 050	. 002	
80-04-04	1. 9	7. 8	. 6	13	5. 3	11	. 48	. 001		<. 050	. 006	
79-11-02	4. 2	8.0	2. 5	11	51	14	1.5	. 001		. 040	<. 002	
80-04-04	3. 2	6.8	2. 5	9	46	12	1.0	. 001		<. 050	c. 002	
79-11-07	1.3	6. 5	. 5	9	4. 4	9. 2	. 20	. 002		. 050	. 003	-
					IRON, TOTAL	MANGA- NESE, TOTAL	ZINC, TOTAL	METHY- LENE BLUE				

		MANGA-		ME IHY-
	IRON,	NESE,	ZINC.	LENE
	TOTAL	TOTAL	TOTAL	BLUE
DATE	RECOV-	RECOV-	RECOV-	ACTIVE
OF	ERABLE	ERABLE	ERABLE	SUB-
SAMPLE	(UG/L	(UG/L	(UG/L	STANCE
	AS FE)	AS MN)	AS ZN)	(MG/L)
80-01-10	380	60		
80-04-08	420	60	==	
79-11-23	100	20		
79-12-23	250	40		
80-03-10	300	40		
80-04-02	200	30		
79-11-02	1200	120		
80-04-04	260	40		
79-11-02	100	20		
80-04-04	200	<10		
79-11-02	200	20		
80-04-04	230	<10		
79-11-07	100	10		

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

								SPE- CIFIC				CALCIUM
STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DIS- SOLVED (MG/L)	TOTAL RECOV- ERABLE (MG/L AS CA)
40565007	2145201 5	48518			112GLCLU	79-11-13	71	79	5. 2	12. 0	9. 5	2. 8
41024307	1560101 S	48519			112GLCLU	79-10-31 80-02-07 80-03-24	82 82 82	245 205 240	6. 4 6. 3 6. 4	12. 0 11. 0 12. 0	7. 8 12. 8 7. 2	10 11 10
40581807	2132101 5	48520			112GLCLU	79-11-05	59	190	5. 8	11.0	9. 9	7. 6
405940072	2164701 5	48521			112GLCLU	79-12-13	75	100	5. 9	11.0	10. 2	4. 0
40585807	2062401 S	48522				79-11-01 80-03-17	92 92	160 155	6. 3 6. 3	13. 0 11. 0	9. 1 10. 5	4. 1 4. 0
41014907	1583201 S	48577				79-10-31 80-03-24	186 186	155 146	6. 8 6. 7	12. 0 12. 0	8. 9 8. 7	6. 0 5. 4
405928072	2110401 5	48578				79-11-05 80-03-18	32 32	220 167	6. 0 5. 8	14. 0 12. 0	. 3 1. 2	4. 7 4. 5
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACD3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
79-11-13	1. 9	6. 5	1.0	4	7. 9	12	. 26	. 003		. 040	c. 002	
79-10-31 80-02-07 80-03-24	5. 6 6. 0 6. 2	22 23 28	3. 8 3. 5 3. 1	35 40 34	10 10 9. 5	36 35 40	2. 3 2. 4 2. 5	. 002 . 006 . 004	Ξ	<. 040 <. 050 . 060	. 009 . 004 . 004	=
79-11-05	4. 3	15	5. 6	8	6. 4	28	6. 4	. 002		. 060	<. 002	
79-12-13	2. 3	10	. 8	8	5. 2	13	3. 2	. 002		. 050	<. 002	
79-11-01 80-03-17	3. 5 3. 5	16 17	1.3 1.3	11 12	11 9. 5	29 30	. 28	. 001	==	. 040	<. 002 . 002	
79-10-31 80-03-24	3. 2	15 14	1. 4 1. 3	18 18	4. 3 3. 2		1. 0 . 95	. 002	==	<. 040 . 060	. 016	==
79-11-05 80-03-18	1.4 1.5	26 20	3. 0 2. 0	15 15	21 15	27 23	4. 0 2. 9	. 006	Ξ	3. 000	<. 002 <. 002	==
				DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)				

DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	LENE BLUE ACTIVE SUB- STANCE (MG/L)
79-11-13	400	240		
79-10-31	100	70		
80-02-07	130	50		
80-03-24	340	50		
79-11-05	300	70		
79-12-13	150	<10		
79-11-01	150	10		
80-03-17	140	<10		144
79-10-31	200	20		
80-03-24	120	<10		
79-11-05	400	70		
80-03-18	580	100		-

247

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
41031607	1535501 S	48579			112GLCLU	79-10-30 80-02-07 80-03-20	66 66 66	235 218 238	5. 8 5. 6 5. 5	13. 0 12. 0 12. 0	7. 4 7. 8 6. 3	6. 8 6. 9 6. 0
41002407	2103201 5	48580				79-11-05 80-03-17	46 46	120 105	5. 4 5. 5	11.0 11.0	8. 0 8. 0	2. 8 2. 5
40530807	2322201 5	48581			112GLCLU	80-01-10	76	59	6. 2	10.0	11.0	1. 9
40513907	2385001 8	48583	WESTHAMPTON			79-11-20 80-04-07	139	48 44	6. 0 6. 9	11.0 11.0	10. 3 10. 2	1.7 1.8
					TIEGECEO	80-04-07	137	44	0. 7	11.0	10. 2	1.0
40513907	2385002 5	48584	WESTHAMPTON			79-11-20 80-04-07	89 89	50 48	5. 7 6. 2	11. 0 11. 0	11.8 11.6	1.3 1.6
40513607	3041601 5	48651				80-02-19 80-07-07	64 64	167 285	6. 0 5. 9	12. 0 12. 0	4. 8 4. 0	10
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM DIS- SOLVED (MG/L AS NA	DIS- SOLVED (MG/L	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
79-10-30	4.6	26	2. 8	24	14	41	. 69	. 003		. 040	. 003	
80-02-07	4. 0	16	2. 1	25	7. 1	22	. 13	. 003		<. 050	. 006	
80-03-20	4. 5	28	2. 9	23	12	40	. 69	. 003		. 060	. 003	
79-11-05	3. 9	10	1.0	5	13	17	1.5	. 002		. 040	<. 002	
80-03-17	3. 4	10	. 9	6	10	15	1.2	. 002		. 050	<. 002	
80-01-10	1.4	5.	8 . 6	7	5. 1	7. 4	. 04	. 002		<. 050	<. 002	E
79-11-20	1.0	4.	2 .3	6	3. 0	5. 9	. 05	. 002		. 040	. 005	
80-04-07	. 9	4.		6	2. 7	6. 2	<. 02	. 001		<. 050	. 004	
79-11-20	1. 1	4.	2 .7	3	4.3	7.4	. 05	. 002		. 050	. 002	
80-04-07	1. 1	4.		4	3. 7	8. 7	. 02	. 002		<. 050	<. 002	
80-02-19 80-07-07	2. 2	17 16	2. 1	16 18	8. 4 11	26 24	3. 4	. 004	==	. 240	. 003	<100

DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
79-10-30	1000	90			
80-02-07	120	30			
80-03-20	630	80			
79-11-05	150	10	44		
80-03-17	330	70			
80-01-10	100	<10			
79-11-20	300	10			
80-04-07	90	20			
79-11-20	80	10			
80-04-07	60	10			
80-02-19	190	10			
80-07-07	330	60	<400	<. 10	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

All samples were collected and analyzed by Suffolk County Department of Health Services.

All samp	les were	collected	and anal	yzed by S	Suffolk C	ounty Depa	irtment of	Health S	Services.			
STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40464107	3005402 \$	6 48759			112GLCLU	80-02-14 80-04-24 80-07-21	33 33	230 240 260	5. 3 5. 5 6. 0	12. 5 12. 0 12. 0	2. 8 1. 4 1. 0	14 14
40512107	2490601 9	5 48946			112GLCLU	80-01-25 80-02-13 80-07-09	41 41 41	205 215 240	6. 0 5. 4 6. 2	11.0 12.0 12.5	7. 4 8. 3 7. 1	17 17 20
40525907	3010301	3 48958			112GLCLU	80-02-21 80-07-08 80-09-18	81 81 81	144 160 165	5. 7 5. 6 5. 7	11.0 12.0 11.0	11. 0 9. 2 10. 6	10
40584607	2093001 \$	6 49898				79-11-01 80-03-18	64 64	108 102	5. 6 5. 7	11.0 11.0	8. 0 7. 5	3. 5 1. 8
41034907	2222201 \$	5 51169 SHI	ELTER ISL	AND	112GLCLU	79-10-22 80-02-25 80-05-06	54 54 54	155 146 138	5. 6 5. 8 6. 1	12. 0 11. 0 11. 0	9. 1 8. 7 9. 1	9. 0 10
DATE OF OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
80-02-14 80-04-24 80-07-21	2. 3 2. 0 	24 23 22	4. 0 4. 2	10 11 13	15 15 20	24 23 22	11 12 	. 002 . 003	=	. 070 <. 050 —	<. 002 	 <100
80-01-25 80-02-13 80-07-09	4. 2 4. 2 4. 8	9.7 11 10	4. 3 4. 2 4. 8	7 7 11	31 28 32	21 20 20	6. 2 6. 2 8. 3	. 002 . 002 . 008	Ξ	. 080 <. 050 . 130	. 019 . 004 . 006	=
80-02-21 80-07-08 80-09-18	4. 6 5. 2	6. 8 7. 5 7. 2	1.0	11 11 11	17 15 10	12 14 14	4. 8 6. 5	. 003	=	. 060	. 002	<100
79-11-01 80-03-18	2. 8 2. 6	8. 1 8. 0	. 9 1. 1	22 19	4. 5 5. 8	14 14	. 05	. 002	==	. 070	<. 002 . 003	==
79-10-22 80-02-25 80-05-06	5. 4 5. 4	7. 2 7. 4 7. 6	. 8 . 9 	19 21 18	20 19 21	12 13 12	1. 4 1. 5	. 002 . 002	=	. 050 <. 050 	. 005	 <100
				DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)				
				80-02-14 80-04-24 80-07-21	80 70 130	70 100 120	 <400	 <. 10				
				80-01-25 80-02-13 80-07-09	100 120 860	60 80 190	==	Ξ				
				80-02-21 80-07-08 80-09-18	130 610 200	10 60 <10	<400	<. 10				

120 60

20 20 <50 <400

--<. 10

2900 3900

> 250 240 270

79-11-01 80-03-18

79-10-22 80-02-25 80-05-06

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
41031107	2215501 S	51170 S	HELTER ISL	AND		79-10-22 80-02-25 80-05-06	43 43 43	135 125 118	5. 9 5. 9 6. 0	13. 0 12. 0 11. 0	4. 4 7. 1 4. 2	4. 0 4. 0
41041007	2214701 S	51171 S	HELTER ISL	AND		79-10-24 80-02-26 80-05-06	55 55 55	230 230 187	5. 9 6. 0 6. 0	11.0 11.0 11.5	8. 2 9. 1 9. 2	13 10
41035007	2210601 S	51172			112GLCLU	79-10-24 80-02-26 80-04-29	37 37 37	270 260 225	5. 7 5. 8 6. 1	12.0 12.0 11.0	6. 4 5. 0 5. 2	18 19
41051007	2212301 S	51173 S	HELTER ISL	AND	112GLCLU	79-10-23 80-02-1 4 80-05-05	51 51 51	146 135 126	6. 2 5. 8 6. 1	14. 0 13. 0 13. 5	10. 1 10. 6 9. 5	7. 9 7. 4
41043707	2205601 S	51174 S	HELTER ISL	AND	112GLCLU	79-10-23 80-02-20 80-04-30	63 63 63	195 175 160	6. 0 5. 8 6. 3	13. 0 13. 0 12. 0	8. 9 10. 1 9. 2	9. 0 8. 6
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS-CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
79-10-22 80-02-25 80-05-06	2. 3 2. 3 	13 13 13	. 9 . 9	9 9 8	4. 8 5. 2 7. 0	26 26 23	. 19 . 32	. 001	Ξ	. 050	. 003	 <100
79-10-24 80-02-26 80-05-06	5. 3 6. 0	13 13 12	4. 9 6. 5	16 21 16	26 25 24	21 22 19	5. 7 5. 7	. 002	=======================================	. 050	. 003 <. 002	 <100
79-10-24 80-02-26 80-04-29	4.3 4.2	14 15 13	10 10 	11 16 14	31 31 26	26 26 10	8. 1 7. 7	. 002	==	. 060	. 002 <. 002	 <100
79-10-23 80-02-14 80-05-05	3. 0 2. 9	11 12 11	1. 3 1. 3	18 19 17	14 13 14	17 15 14	1.3 1.2	. 002	=	. 050 <. 050 	. 002 <. 002	 <100
79-10-23 80-02-20 80-04-30	3. 4 3. 4	19 18 16	1. 4 1. 4 —	18 19 18	50 50 55	24 21 19	1. 9 1. 6	. 002	Ξ	. 050 C. 050	. 003	<100

	TRON	MANGA-	7710	METHY-
	IRON, TOTAL	NESE, TOTAL	ZINC, TOTAL	BLUE
DATE	RECOV-	RECOV-	RECOV-	ACTIVE
OF	ERABLE	ERABLE	ERABLE	SUB-
SAMPLE	(UG/L	(UG/L	(UG/L	STANCE
SHIFLE	AS FE)	AS MN)	AS ZN)	
	HO FE	MO MM/	MO ZNI	(MG/L)
79-10-22	100	10		
80-02-25	260	40		
80-05-06	190	<50	<400	<. 10
79-10-24	200	10		
80-02-26	270	20	7	
80-05-06	530	<50	<400	<. 10
79-10-24	200	<10		
80-02-26	140	<10		
80-04-29	160	<50	<400	<. 10
79-10-23	400	10		
80-02-14	400	20		
80-05-05	460	<50	<400	<. 10
79-10-23	100	40		
80-02-20	130	40		
80-04-30	210	<50	<400	<. 10

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

			LOCAL IDENT- I-		GEO-	DATE OF	DEPTH OF WELL,	SPE- CIFIC CON- DUCT- ANCE	PH	TEMPER-	DXYGEN, DIS-	CALCIUM TOTAL RECOV- ERABLE
STATION	NUMBER		FIER		UNIT	SAMPLE	TOTAL (FEET)	(MICRO- MHOS)	FIELD (UNITS)	WATER (DEG C)	SOLVED (MG/L)	(MG/L AS CA)
41041607	2205101 S	51175 S	HELTER ISL	AND	112GLCLU	79-10-24 80-02-28 80-04-29	60 60	185 175 170	6. 0 6. 1 6. 3	12.0 11.0 11.0	9. 0 8. 9 9. 2	9. 4 9. 8
41043007	2202301 S	51176			112GLCLU	79-10-26 80-02-21 80-04-30	59 59 59	210 190 233	5. 8 5. 1 6. 0	12. 0 12. 0 12. 0	9. 3 10. 3 9. 4	9. 3 8. 4
41031607	2192901 S	51177 S	HELTER ISL	.AND	112GLCLU 112GLCLU	79-10-29 80-02-29 80-04-28	27 27 27	120 118 109	5. 7 5. 7 5. 8	12. 0 12. 0 11. 5	2. 4 1. 2 1. 8	4. 5 5. 6
41034407	2193201 S	51178 S	HELTER ISL	AND	112GLCLU 112GLCLU	79-10-18 80-02-14	45 45	160 150	5. 9 6. 0	12. 0 11. 0	6. 9 5. 9	9. 7 10
41042407	2192801 S	51179 S	HELTER ISL	AND	112GLCLU 112GLCLU	80-04-28 79-10-29 80-02-28 80-04-30	45 58 58 58	135 165 155 135	6. 2 6. 6 6. 6	13. 0 13. 0 15. 0	6. 2 7. 1 9. 1 8. 7	9. B 9. 6
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACD3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
79-10-24 80-02-28 80-04-29	4. 7 4. 4	14 14 10	1. 6 1. 8	15 7 17	25 24 26	19 18 10	2. 7 2. 8	. 003	Ξ	. 060 <. 050	. 003	<100
79-10-26 80-02-21 80-04-30	5. 7 5. 0	16 16 20	2. 6 2. 3	19 15 19	10 11 8. 0	36 33 52	1.3 1.2	. 002	Ξ	. 030 . 070	<. 002 <. 002	 <100
79-10-29 80-02-29 80-04-28	1.3 1.9	15 10 10	. 9 1. 0	19 22 20	7. 3 6. 8 24		. 04	. 001	Ξ	<. 040 <. 050	. 004 <. 002	150
79-10-18 80-02-14 80-04-28	4. 6 4. 3	8. 8 10 9. 6	1.2	20 19 19	24 24 <4. 0	14 11 12	. 68 . 86	. 002	=	. 040 <. 050	. 003 <. 002	<100
79-10-29 80-02-28 80-04-30	6. 3 5. 6	7. 3 7. 0 6. 9	1.2	17 17 15	39 31 	12 11 10	. 15 . 21 —	. 002	Ξ	<. 040 <. 050	. 008 . 009	 <100
				DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L	ZINC, TOTAL RECOV- ERABLE (UG/L	METHY- LENE BLUE ACTIVE SUB- STANCE				

DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	LENE BLUE ACTIVE SUB- STANCE (MG/L)
79-10-24	250	10		
80-02-28	200	20		
80-04-29	<100	50	<400	<. 10
79-10-26	700	40		
80-02-21	400	50		
80-04-30	420	<50	<400	<. 10
79-10-29	700	20		-
80-02-29	2500	40		
80-04-28	630	<50	<400	<. 10
79-10-18	200	10		
80-02-14	310	10		
80-04-28	220	<50	<400	<. 10
79-10-29	1150	20		
80-02-28	160	<10		
80-04-30	330	<50	<400	<. 10

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

			LOCA I DENT			GEO-	DATE	DEPTH OF	SPE- CIFIC CON- DUCT-		TEMPER-	OXYGEN,	CALCIUM TOTAL RECOV-
STATION	NUMBER		I- FIER			LOGIC	OF SAMPLE	WELL, TOTAL (FEET)	ANCE (MICRO- MHOS)	PH FIELD (UNITS)	WATER (DEG C)	DIS- SOLVED (MG/L)	(MG/L AS CA)
41045207	2200201 5	51180	SHELTER	ISL	AND	112GLCLU	79-10-26 80-02-20 80-05-07	51 51 51	155 160 155	6. 1 5. 8 6. 1	12.0 12.0 11.5	8. 4 9. 6 8. 6	8. 0 8. 5
41053407	2194601 5	51181	SHELTER	ISL	AND		79-10-18 80-02-19	62 62	210 195	5. 7 5. 9	13. 0 4. 0	9. 2 7. 4	13 12
41060207	2195801 5	51182	SHELTER	ISL	AND	112GLCLU	79-10-19 80-02-15 80-05-05	64 64 64	68 61 58	5. 8 5. 9 6. 1	12.0 11.0 11.0	9. 6 9. 4 8. 9	2. 4 1. 8
41033407	2172701 5	51183	SHELTER	ISL	AND	112GLCLU	79-10-18 80-02-14 80-05-07	39 39 39	115 110 98	6. 3 6. 0 6. 3	12. 0 11. 0 11. 0	9. 7 10. 8 10. 4	5. 5 4. 8
41014707	2184101 S	51184				112GLCLU 112GLCLU	79-11-13 80-01-07 80-02-29 80-04-02	32 32 32 32	800 720 700 625	5. 6 5. 4 5. 7 5. 6	14. 0 13. 0 12. 0 12. 0	2. 8 1. 1 1. 1 1. 1	5. 2 5. 3 5. 0 5. 7
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM DIS- SOLVED (MG/L AS NA	DIS SOLV (MG/	M, - ED L	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
79-10-26 80-02-20 80-05-07	4. 4 4. 8 —	11 12 11	1	. 2	24 24 24	8. 4 8. 9 9. 0	19 20 21	1. 7 1. 4	. 002	=======================================	, 050 <. 050 	<. 002 . 003 	<100
79-10-18 80-02-19	6. 4 5. 7	12 12		. 4	10 12	33 34	20 19	4. 3 4. 5	. 001	==	. 050	. 003 <. 002	==
79-10-19 80-02-15 80-05-05	2. 2 2. 0 	5. 5. 11	3	. 7	11 11 12	5. 1 5. 1 6. 0	7. 9 6. 0 6. 0	. 13 . 12 	. 002 . 003 	=======================================	. 040 . 070 	<. 002 <. 002 	<100
79-10-18 80-02-14 80-05-07	2. 7 2. 4	9. 11 9.		. 8	18 17 16	11 8. 1 11	12 12 , 11	. 49	. 001	Ξ	<. 040 <. 050 	. 003	<100
79-11-13 80-01-07 80-02-29 80-04-02	9. 1 9. 7 10 9. 0	130 118 120 102	4	. 5	14 11 12 12	65 55 54 54	170 185 160 146	1. 3 1. 4 1. 4 1. 3	. 003 . 002 . 002 . 002	=======================================	. 040 <. 050 <. 050 <. 050	<. 002 <. 002 <. 002 <. 002	Ξ
					DATE OF	IRON, TOTAL RECOV- ERABLE	MANGA- NESE, TOTAL RECOV- ERABLE	ZINC, TOTAL RECOV- ERABLE	METHY- LENE BLUE ACTIVE SUB- STANCE				

		MANGA-		ME IHY-
	IRON,	NESE,	ZINC,	LENE
	TOTAL	TOTAL	TOTAL	BLUE
DATE	RECOV-	RECOV-	RECOV-	ACTIVE
OF	ERABLE	ERABLE	ERABLE	SUB-
SAMPLE	(UG/L	(UG/L	(UG/L	STANCE
	AS FE)	AS MN)	AS ZN)	(MG/L)
79-10-26	500	110		
80-02-20	340	40		
80-05-07	680	70	<400	<. 10
79-10-18	100	10		
80-02-19	80	40		
79-10-19	250	<10		
80-02-15	350	60		
80-05-05	150	<50	<400	. 10
79-10-18	300	10		
80-02-14	220	10		
80-05-07	140	<50	<400	<. 10
79-11-13	800	220	77	
80-01-07	130	110		
80-02-29	500	120		
80-04-02	430	110		

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

			LOCAL IDENT- I-		GED-	DATE OF	DEPTH OF WELL,	SPE- CIFIC CON- DUCT- ANCE	РН	TEMPER-	OXYGEN, DIS-	CALCIUM TOTAL RECOV- ERABLE
STATION	NUMBER		FIER		UNIT	SAMPLE	(FEET)	(MICRO- MHOS)	(UNITS)	WATER (DEG C)	SOLVED (MG/L)	(MG/L AS CA)
41013207	2184601 5	51185			112GLCLU	79-11-13 80-01-07	33	108 100	5. 4 5. 1	13. 0 13. 0	5. 6 5. 1	2. 1 2. 1
						80-02-29 80-04-02	33	104	5. 7 5. 3	11.0 11.0	4. 5 10. 0	1.7 2.5
41004707	2184701 5	51186				79-11-13 80-01-08	39 39	225 190	5. 4 5. 4	12. 0 11. 0	9. 0 9. 0	10 10
					112GLCLU	80-03-10	39	215	5. 7	11.0	8. 6	10
40571607	2413301 S	51566				80-01-29 80-03-19	87 87	570 510	5. 9 5. 8	11.0 11.0	10. 0 9. 0	79 76
					112GLCLU	80-07-22	87	560	5. 9	12.0	3. 5	76
					112GLCLU	80-08-05	87	540	6.0	12.0	10. 5	
40565307	2422501 S	51567 CE	NTERVILLE			80-01-31	92	500	5. 5	11.0	9. 9 8. 6	78 75
						80-03-20	92 92	480 560	6. 1	12. 5 11. 0	3. 9	/5
					112GLCLU	80-08-06	92	550	6. 7	11.0	11. 0	
	MAGNE-						NITRO-	NITRO-	NITRO-	NITRO-	PHOS-	
DATE	TOTAL	SODIUM,	SIUM,	ALKA-	SULFATE	RIDE,	GEN, NITRATE	GEN, NITRITE	NO5+NO3	GEN, AMMONIA	ORTHOPH	TOTAL
DATE	RECOV- ERABLE	DIS- SOLVED	DIS- SOLVED	LINITY (MG/L	DIS- SOLVED	DIS- SOLVED	DIS- SOLVED	DIS- SOLVED	DIS- SOLVED	DIS- SOLVED	DISSOL.	RECOV- ERABLE
SAMPLE	(MG/L AS MG)	(MG/L AS NA)	(MG/L AS K)	AS CACO3)	(MG/L AS SO4)	(MG/L AS CL)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS P)	(UG/L AS CU)
79-11-13	2.7	10	. 6	11	6. 1	17	. 22	. 003		. 060	<. 002	
B0-01-07 B0-02-29	2.8	10 9. 5	. 7	12	8. 0 6. 3	17 15	. 16	. 002		. 050 <. 050	. 002	
80-04-02	2.8	10	. 5	9	7. 8	19	. 19	. 001		<. 050	<. 002	
79-11-13	5. 6	20	. 7	14	21	30	4. 0	. 003		<. 040	<. 002	1
80-01-08 80-03-10	5. 4 5. 4	18 18	. 7	12 13	18 17	28 28	4.6	. 002	==	<. 050 . 050	. 002	===
80-01-29	13	11	3. 3	7	110	29	15	. 002		. 100	<. 002	-
80-03-19 80-07-22	13	11	3.8	6 9	149 170	30	13 13	. 001		. 060	. 002	
80-08-05		11		9	170	26 28	13	. 004		C. 050	. 002	<100
80-01-31	12	9. 0	2. 5	7	180	37	11	. 002		. 080	. 004	
B0-03-20 B0-07-22	11	9. 5 10	3. 0	11	138 165	33 32	9. 6	. 004		. 190	. 004	<100
80-08-06		10		7	159	34	==	==	==	==	==	<100
					IRON,	MANGA- NESE,	ZINC,	METHY- LENE				
				DATE OF	TOTAL RECOV- ERABLE	TOTAL RECOV- ERABLE	TOTAL RECOV- ERABLE	BLUE ACTIVE SUB-				
				SAMPLE	AS FE)	(UG/L AS MN)	(UG/L AS ZN)	STANCE (MG/L)				
				79-11-13	1800	40						

DATE OF SAMPLE		IRON, TOTAL RECOV- ERABLE (UG/L	NESE, TOTAL RECOV- ERABLE (UG/L	ZINC, TOTAL RECOV- ERABLE (UG/L	BLUE ACTIVE SUB- STANCE	
		AS FE)	AS MN)	AS ZN)	(MG/L)	
	79-11-13	1800	40			
	80-01-07	520	20			
	80-02-29	2500	40			
	80-04-02	950	20			
	79-11-13	400	40			
	80-01-08	150	<20			
	80-03-10	220	20			
	80-01-29	180	20		25	
	80-03-19	110	30			
	80-07-22	170	50			
	80-08-05	380	<50	<400	<. 10	
	80-01-31	220	30			
	80-03-20	400	60			
	80-07-22	640	<50	<400	<. 10	
	80-08-06		<50	<400	<. 10	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40580807	2385401 S	51568 N	DRTHVILLE			80-03-18 80-08-04	68 68	340 460	5. 7 5. 4	11.0 12.0	4. 0 9. 9	15 35
40580507	2403701 S	51571			112GLCLU 112GLCLU	80-01-29 80-03-18 80-07-23 80-08-05	106 106 106 106	312 290 340 350	5. 7 5. 8 5. 9 5. 8	11.0 11.0 11.5 12.0	8. 5 8. 9 6. 5 10. 5	39 37 42
40554207	2445302 S	51572			112GLCLU 112GLCLU	80-01-29 80-03-19 80-07-23 80-08-05	41 41 41 41	278 287 330 350	4. 9 4. 9 5. 1 4. 8	12. 5 12. 0 12. 0 12. 0	6. 0 . 2 . 2 1. 4	14 14 22
40551207	2395201 5	51573			112GLCLU 112GLCLU	80-01-30 80-03-19 80-07-23 80-08-05	88 88 88 88	134 132 134 142	7. 4 8. 3 8. 3 7. 9	14. 0 13. 5 13. 5 14. 0	. 5 . 2 . 5 . 6	18 20 22
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
80-03-18 80-08-04	5. 0 6. 7	34 47	6. B B. 0	10 10	41 46	54 78	7. 2 6. 1	. 001	==	. 140	. 003	
80-01-29 80-03-18 80-07-23 80-08-05	8. 2 6. 6 7. 0	7. 6 7. 8 8. 0 8. 3		6 6 6 8	86 78 84 99	19 19 19 18	5. 8 5. 0 6. 0	. 002	=======================================	. 130 <. 050 <. 050	<. 002 <. 002 	<100
80-01-29 80-03-19 80-07-23 80-08-05	3. 3 3. 0 4. 7	23 22 25 24	7. 0 9. 0 8. 4	3 3 5 4	25 22 40 58	28 27 36 38	16 14 13	.014	=	1, 200 1, 000 , 540	. 002 . 004 . 004	 <100
80-01-30 80-03-19 80-07-23 80-08-05	2. 2 2. 1 2. 1	5. 8 5. 8 5. 8 6. 0	. 7 . 7 . 8	63 60 61 61	. 7 <. 5 1. 4 <4. 0	5. 6 5. 3	<. 02 <. 02 <-	. 002	=======================================	. 410 . 400 . 360	. 120 . 126 . 148	 <100

DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
80-03-18	300	20		
80-08-04	450	40		
80-01-29	130	<50		
80-03-18	150	<10		
80-07-23	120	20		
80-08-05	480	<50	<400	<. 10
80-01-29	280	1200		4-6
80-03-19	130	1000		
80-07-23	200	900		
80-08-05	210	10	<400	< 10
80-01-30	90	50		
80-03-19	140	50		
80-07-23	100	70		
80-08-05	<100	<50	<400	<. 10

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40554407	2411801 S	51575 RI	VERHEAD		112GLCLU 112GLCLU 112GLCLU	80-01-30 80-03-20 80-04-09 80-07-22	32 32 32	135 116 102 102	6. 2 6. 6 6. 2 6. 0	13. 0 13. 5 13. 0 14. 0	.3	7. 8 6. 6 5. 4
40555907	2425201 5	51576 RI	VERHEAD		112GLCLU		32 67 67 67 67	93 84 98 115	6. 3 6. 6 5. 7 5. 9 5. 7	14. 0 10. 0 10. 5 11. 0 11. 0	8. 8 8. 9 3. 6 8. 9	8. 8 7. 6
40563007	2442001 S	51577 BA	ITING HOL	LOW	112GLCLU 112GLCLU 112GLCLU 112GLCLU	80-03-20 80-07-22	93 93 93 93	330 320 390 350	5. 7 5. 6 5. 7 5. 8	11.0 11.5 11.5 12.0	9. 4 9. 4 4. 2 9. 9	43 43
40572107	2453701 S	51578 BA	ITING HOL	LOW	112GLCLU	80-03-21 80-06-18 80-07-22 80-08-06	126 126 126 126	245 285 305 300	5. 8 5. 7 6. 1 5. 8	10. 5 11. 0 11. 0 11. 0	9. 5 10. 8 8. 2 10. 5	23
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
80-01-30 80-03-20 80-04-09 80-07-22 80-08-05	2.6 2.3 2.0	7. 3 7. 4 6. 2 6. 8 6. 3	1. 4 1. 3 1. 1	55 45 32 38 35	24 11 12 8 0 6. 0	10 10 12 8.0 9.0	. 06 <. 02 . 10	. 002	=======================================	. 810 . 750 . 600	. 010 . 008 . 007	 <100 <100
80-02-05 80-03-20 80-07-22 80-08-06	2. 0 1. 7 	2. 5 2. 7 3. 3 3. 2	2. 2	6 7 6 0	17 14 16 20	5. 6 5. 2 6. 0 7. 0	2. 1 1. 6	. 003	 	. 060 . 090 	<. 002	 <100 <100
80-02-05 80-03-20 80-07-22 80-08-06	8. 0 7. 4 	5. 3 5. 6 6. 6 6. 2	6. 0 6. 5 	5 6 5 5	92 96 111 102	20 18 20 19	9. 1 8. 4 	. 003	=======================================	. 060 . 070 	<. 002	 <100 <100
00.00.00			2. 9	6	77	16	5.8	. 003		. 060	. 003	

	IRON, TOTAL	MANGA- NESE, TOTAL	ZINC, TOTAL	METHY- LENE BLUE
DATE	RECOV-	RECOV-	RECOV-	ACTIVE
OF	ERABLE	ERABLE	ERABLE	SUB-
SAMPLE	(UG/L	(UG/L	(UG/L	STANCE
SHIPLE	AS FE)	AS MN)	AS ZN)	(MG/L)
80-01-30	11000	130		
80-03-20	7500	120		
80-04-09	6200	100		
80-07-22	7500	60	<400	<. 10
80-08-05	7300	<50	<400	<. 10
80-02-05	220	130		
80-03-20	170	110		
80-07-22	370	110	<400	<. 10
80-08-06	100	100	<400	<. 10
80-02-05	1000	170		
80-03-20	130	180		
80-07-22	230	190	<400	<. 10
80-08-06	420	170	<400	<. 10
80-03-21	130	20		
80-06-18	220	<50	<400	<. 10
80-07-22	200	<50	<400	<. 10
80-08-06	250	3590	<400	<. 10

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GED- LDGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40554207	2463001 5	51579 C	ALVERTON		112GLCLU	80-02-08 80-03-24 80-08-06	85 85 85	105 95 102	5. 4 6. 0 5. 7	11.0 11.0 12.0	7. 5 7. 0 6. 9	11 5. 9 6. 3
40571407	2470901 S	51580 W	ADING RIVE	₹	112GLCLU 112GLCLU	80-02-08 80-03-24 80-06-17 80-08-11	135 135 135 135	165 146 175 200	5. 3 5. 9 5. 5 5. 4	11. 0 10. 5 11. 0 12. 0	9. 7 10. 6 10. 5 10. 4	6. 7 12 16
40572207	2342001 S	51581			112GLCLU	80-01-28 80-03-17 80-08-04	43 43 43	430 513 500	5. 6 5. 6 6. 0	12.0 11.5 12.0	9. 3 8. 4 10. 2	67 65 66
40585307	2353901 S	51582 NO	ORTHVILLE		112GLCLU	80-01-25 80-03-17 80-08-04	82 82 82	420 420 440	6. 3 6. 0 6. 4	11.0 11.5 13.0	8. 8 9. 6 9. 9	53 53 52
40550007	2495201 S	51583			112GLCLU	80-02-13 80-03-24 80-08-12	49 49 49	83 69 72	5. 3 5. 9 5. 8	11.0 11.0 11.0	7. 8 8. 1 7. 6	1. 6 1. 7
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
80-02-08 80-03-24 80-08-06	3. 6 2. 9 2. 7	9. 4 5. 6 5. 6	2. 7 1. 2 1. 3	9 10 8	26 20 20	15 7. 1 6. 4	4. 1 . 73 . 70	. 004	=	. 070 <. 050 . 070	<. 002 <. 002 . 004	=
80-02-08 80-03-24 80-06-17 80-08-11	3. 1 3. 4 4. 5	5. 6 8. 7 8. 3 9. 0	1. 1 2. 9 — 3. 2	6 8 5 5	21 21 27 28	7. 1 13 13 14	. 90 4. 4 6. 3	. 003	=	<. 050 . 050 	<. 002 <. 002 <. 002	 <100
80-01-28 80-03-17 80-08-04	11 12 11	10 10 12	4. 9 6. 6 6. 0	10 7 9	140 151 140	30 31 31	6. 5 6. 1 8. 0	. 002 . 003 . 003	Ξ	. 100 . 060 . 060	<. 002 <. 002	Ξ
80-01-25 80-03-17 80-08-04	8. 9 8. 0 8. 1	10 11 10	4. 6 5. 2 6. 0	21 6 8	100 106 110	14 19 19	14 16 12	. 006 . 003 . 004	=	. 380 . 060 . 080	. 009 . 026 . 016	=
80-02-13 80-03-24 80-08-12	1.3	8. 9 8. 5 7. 9	1. 4 1. 4	3 6 5	5. 7 6. 2 7. 0	15 12 10	. 31	. 001	. 40	<. 050 . 050 <. 040	<. 002 <. 002	<100

	IRON,	MANGA- NESE,	ZINC.	METHY- LENE
	TOTAL	TOTAL	TOTAL	BLUE
DATE	RECOV-	RECOV-	RECOV-	ACTIVE
OF	ERABLE	ERABLE	ERABLE	SUB-
SAMPLE	(UG/L	(UG/L	(UG/L	STANCE
	AS FE)	AS MN)	AS ZN)	(MG/L)
80-02-08	600	20		
80-03-24	200	<10		
80-08-06	200	<10		
80-02-08	330	20		
80-03-24	300	10		
80-06-17	970	<50	<400	<. 10
80-08-11	540	40		
80-01-28	480	40		
80-03-17	180	20		
80-08-04	350	30		
80-01-25	2000	370		
80-03-17	180	50		=
80-08-04	360	80		
80-02-13	100	<10		
80-03-24	70	20		
80-08-12	250	50	<400	<. 10

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40575707	2491801	S 51584				80-02-11 80-08-12	140 140	123 122	5. 8 5. 9	12. 0 12. 0	11. 7 9. 5	6. 6
40564207	2491901	S 51586 W	ADING RIVE	R	112GLCLU	80-02-11 80-03-24 80-08-11	99 99 99	81 94 99	5. 3 5. 7 5. 6	11. 0 10. 5 11. 0	10. 8 10. 6 7. 8	3. 8 5. 3 5. 7
40580907	2370901	S 51587 N	DRTHVILLE		112GLCLU	80-01-28 80-03-17 80-08-04	78 78 78	295 300 290	5. 6 5. 7 5. 9	11.0 11.5 12.0	7. 9 8. 6 9. 7	32 31 29
40563407	2380501	S 51588			112GLCLU	80-01-30 80-03-18 80-08-04	58 58 58	350 340 300	5. 7 6. 4 6. 1	11.0 11.0 12.0	7. 4 8. 1 9. 7	43 39 38
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS-	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
80-02-11 80-08-12	3. 3	8. 6 9. 3	. 8	13 13	12 <4. 0	16 14	. 80	. 002	. 80	. 060 <. 040	<. 002	110
80-02-11 80-03-24 80-08-11	1. 4 2. 1 1. 9	7. 0	1.8 2.3 2.4	3 4 3	3. 8 1. 3 2. 2	10 13 12	3. 1 4. 7 4. 3	. 003 . 003 . 001	Ξ	. 070 . 050 . 060	<. 002 <. 002 . 003	Ξ
80-01-28 80-03-17 80-08-04	6. 1 5. 6 5. 2		12 11 14	15 9 10	61 75 49	19 21 21	11 10 8. 2	. 016 . 005 . 005	=	. 120 . 050 . 050	. 084 . 039 . 042	=
80-01-30 80-03-18 80-08-04	7. 0 6. 4 5. 4	8.0	4. 0 4. 8 4. 0	14 9 10	65 70 66	20 22 17	9. 7 7. 5	. 004 . 012 . 003	=	. 390 . 710 . 270	. 074 . 032 . 004	Ξ
				DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)				7
				80-02-11 80-08-12	150 260	80 <50	<400	<. 10				1
				80-02-11 80-03-24 80-08-11	350 60 270	20 10 20	=	=				á
				80-01-28 80-03-17 80-08-04	200 260 200	270 340 300	Ξ	=				
				80-01-30 80-03-18 80-08-04	3600 5200 1500	390 420 200	Ξ	Ξ				

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40570407	2361401 5	51589 JA	MESPORT		112GLCLU	80-01-28	41	190	5. 4	12. 0	4. 0	13
						80-02-11	41	123	5. 8	12.0	11.7	6.6
						80-03-17	41	194	5. 1	11.0	6. 5	13
						80-07-23	41	195	5. 2	11.0	3. 9	19
					112GLCLU	80-08-04	41	205	5. 2	11. 0	7. 9	21
					112GLCLU	80-08-12	41	122	5. 9	12.0	9. 5	
40541807	2470601 8	51591 CA	LVERTON			80-02-11	29	63	5. 3	12.0	. 4	3. 3
						80-03-25	29	54	5. 9	10.5	. 9	2. 8
						80-08-11	29	66	5. 5	13.0	. 1	4. 0
					112GLCLU	80-09-03	29	66	5. 4	13. 0		
40534907	2494101 9	51592			112GLCLU	80-01-28	39	64	6.6	12.0	8. 6	2.4
					112GLCLU	80-02-13	39	66	4. 9	12.0	9. 6	2. 2
					112GLCLU	80-08-11	39	76	5. 3	12. 0	9. 2	3. 6
41040007	2202001 5	52050 SH	ELTER ISL	AND	112GLCLU	79-10-26	62	150	6.2	14.0	8.7	9.6
						80-02-21	62	170	5. 4	13.0	9.6	12
					112GLCLU	80-04-29	62	196	6. 0	13. 0	8. 3	
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
80-01-28	2.2	14	2. 5	11	29	25	3.7	. 002		. 130	<. 002	
80-02-11	3. 3	8.6	. 8	13	12	16	. 80	. 002		. 060	<. 002	
80-03-17	2. 2	14	3. 1	4	23	28	3. 7	. 002		. 050	<. 002	
80-07-23	2.3	11	2.8	5	25	22	5. 2	. 002		. 090	<. 002	7.7
80-08-04	2. 6	11	3. 0	4	28	23	4. 9	. 003		. 120	. 002	
80-08-12		9. 3	122	13	<4.0	14						110
80-02-11	1.1	3. 4	. 9	9	8. 5	7. 1	. 04	. 003		. 300	. 004	
80-03-25	1.1	5. 6	. 8	11	7.8	8. 0	. 60	<. 001		<. 050	<. 002	
80-08-11	. 9	3. 4	. 9	11	6.8	6. 6	. 05	. 003		. 290	. 002	
80-09-03		3, 5		11		4. 0						<100
80-01-28	1.1	5.8	. 8	4	8. 3	8. 0	. 63	. 002		. 090	<. 002	
80-02-13	1.1	5. 4	1.0	1	9. 1	7.0	. 60	. 001		<. 050	<. 002	****
80-08-11	1. 4	5. 1	1.0	2	5. 4	12	. 62	. 001		. 050	. 004	
79-10-26	3. 1	9.6	2. 9	17	17	13	2. 4	. 002		. 050	<. 002	
80-02-21	4. 0	11	2.7	14	21	12	5. 3	. 030		. 060	<. 002	
80-04-29		14		50	31	21						<100
						MANGA-		METHY-				

		MANGA-		HE I HIT
	IRON,	NESE,	ZINC,	LENE
	TOTAL	TOTAL	TOTAL	BLUE
DATE	RECOV-	RECOV-	RECOV-	ACTIVE
OF	ERABLE	ERABLE	ERABLE	SUB-
SAMPLE	(UG/L	(UG/L	(UG/L	STANCE
	AS FE)	AS MN)	AS ZN)	(MG/L)
80-01-28	2300	380		
80-02-11	150	80		
80-03-17	230	310		
80-07-23	60	340		
80-08-04	280	300		
80-08-12	260	<50	<400	<. 10
80-02-11	2100	50		
80-03-25	<50	20		
80-08-11	2500	80		
80-09-03	2560	7080	<2400	<. 10
80-01-28	60	<20		
80-02-13	30	10		
80-08-11	100	20		
79-10-26	200	20		
80-02-21	250	30		
80-04-29	100	<50	<400	<. 10

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

80-04-09

79-10-10

79-10-10

80-02-05

80-03-21 80-07-14 80-08-06

80-01-30 80-03-19 80-07-23 80-08-05

80 400

530

500

550

80

150 710

90

110

180 50 140 <50

30

80

140

50

50 <50

60

30

40 50 <50

<400

<400

<400

<. 10

C. 10

==

C. 10

STATION	NUMBER		LOCAL IDENT- I- FIER		GED- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
41051607	2200901 5	52084 SH	HELTER ISL	AND	112GLCLU	79-10-18 80-02-19 80-05-05	73 73 73	120 112 108	6. 4 6. 1 6. 5	13. 0 12. 0 11. 5	9. 9 9. 6 9. 2	8. 0 7. 5
40495607	2380101 5	52128				80-04-09	37	68	5. 5	13. 0	9. 3	5. 6
40435707	2515701 9	52162			211LLYD	79-10-10	1695	118	7. 5	12. 0	1. 5	. 6
40435707	2515702 9	52163			211MGTY	79-10-10	1305	130	6. 2	12.0	. 0	. 5
40554207	2445301 5	52383 C	ALVERTON			80-02-05 80-03-21	61 61	69 65	5. 3 5. 2	10. 0 11. 0	9. 3 9. 9	3. 6 3. 3
					112GLCLU	80-07-14 80-08-06	61	50 55	5. 5 5. 2	11.5 11.0	8. 7 11. 2	3. 4
40551207	2395202 5	5 52449			112GLCLU 112GLCLU	80-01-30 80-03-19 80-07-23 80-08-05	38 38 38 38	205 231 175 185	6. 2 6. 3 6. 6 6. 3	14. 0 14. 0 13. 5 15. 0	1. 4 1. 3 . 9 1. 1	19 20 18
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS-	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
79-10-18 80-02-19	3. 6 3. 4	5. B 5. 9	1. 2 1. 3	17 16		12 11	. 37	. 002		. 070	. 003	Ξ
80-05-05		6. 7		17	16	10						<100
80-04-09	1.2	3. 0	. 6	3		5. 9	. 86	. 001		. 050	<. 002	
79-10-10	. 2	21	2. 4	28	2. 9	14	. 07	. 002		. 060	. 002	77
79-10-10	. 4	24	4. 5	51	. 8	7. 6	<. 02	. 002		. 060	. 002	622
80-02-05 80-03-21	. 7	3.7	3. 0	3			2. 3	. 002		<. 050	<. 002	
80-03-21	. 6	2. 2	3. 1	3			2. 0	. 003		. 060	C. 002	<100
80-08-06	. 6	2. 1	2. 7	2			1.0	. 002		. 060	. 002	1.75
80-01-30	4. 0	11	2. 1	24	33	17	3. 4	. 011		. 060	. 011	
80-03-19	4. 2	13	2. 5	22		19	4. 3	. 011		. 050	. 012	
80-07-23 80-08-05	3. 3	9. 0 9. 4	2. 2	25 24		13 12	2.8	. 003		<. 050	. 020	<100
				DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)		ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)				
				79-10-18								
				80-02-19			<400	<. 10				
				00-00-00	400	750	1400	V. 10				

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 SUFFOLK COUNTY--Continued

STATION	NIIMDED		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL	SPE- CIFIC CON- DUCT- ANCE (MICRO-	PH FIELD	TEMPER- ATURE, WATER	DXYGEN, DIS- SOLVED	CALCIUM TOTAL RECOV- ERABLE (MG/L
SIMITON	NONBER		FIER		ONII	SAMPLE	(FEET)	MHOS)	(UNITS)	(DEG C)	(MG/L)	AS CA)
40551307	2505401 S	52886				80-02-11 80-08-12	66 66	210 195	5. 7 5. 9	10.0 14.0	5. 5 9. 5	17
41005707	2315501 S	53322 E.	MATTITUCE	(112GLCLU	79-10-11	99	350	5. 9	11.0	11. 9	34
41070207	2221601 5	53323				79-10-04 80-02-29	50 50	255 235	6. 0 6. 1	13. 0 12. 0	7. 5 6. 0	14 12
41010407	2303301 5	53324 E.	MATTITUCE	ζ.		79-10-11 80-02-26	60 60	520 398	5. 8 5. 8	13. 0 12. 0	10. 2 6. 9	40 38
41000707	2331901 5	53325 MA	ATTITUCK		112GLCLU	80-02-27	66	420	5. 4	11.0	9. 4	60
41022907	2295701 S	53326 OF	REGON			79-10-09 80-02-27	89 89	500 370	6. 1 5. 8	13. 0 11. 0	7. 6 8. 8	39 34
41002207	2293601 S	53327 CU	JTCHOGUE			79-10-01 80-02-26	42 42	310 233	5. 3 5. 6	12. 0 11. 5	7. 4 6. 7	31 28
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
80-02-11 80-08-12	4. 9	12 10	1. 9	22 9	39 32	19 16	4. 2	. 002		. 080	. 002	<100
79-10-11	7. 0	12	2. 2	8	89	25	6. 1	. 003		. 050	. 007	
79-10-04	4. 7	20	2. 4	13	28	34	4. 2	. 002		. 080	. 003	
80-02-29	4. 7	20	2. 8	13	28	35	2. 3	. 002		<. 050	<. 002	
79-10-11 80-02-26	9. 0 3. 5	33 31	5. 6 5. 0	10 10	84 79	66 61	6. 8 6. 8	. 006		. 070 <. 050	. 008	
80-02-27	10	12	3. 6	11	115	34	13	. 002		. 050	. 008	4-
79-10-09	16	18	2. 9	12	120	36	8. 1	. 010		. 470	. 130	
80-02-27	14	18	3. 2	11	101	37	8. 0	. 008		. 290	. 055	
79-10-01 80-02-26	5. B 5. 6	7. 5 8. 4	3. 3 3. 3	1 7	62 53	21 19	6. B 7. 6	. 002	=	<. 040 <. 050	. 002 . 003	=
				DATE	IRON, TOTAL RECOV-	MANGA- NESE, TOTAL RECOV-	ZINC, TOTAL RECOV-	METHY- LENE BLUE ACTIVE				

	IRON,	NESE,	ZINC,	LENE	
27.22	TOTAL	TOTAL	TOTAL	BLUE	
DATE	RECOV-	RECOV-	RECOV-	ACTIVE	
OF	ERABLE	ERABLE	ERABLE	SUB-	
SAMPLE	(UG/L	(UG/L	(UG/L	STANCE	
	AS FE)	AS MN)	AS ZN)	(MG/L)	
80-02-11	120	. 10			
80-08-12	360	60	<400	<. 10	
79-10-11	450	10			
79-10-04	350	10			
80-02-29	220	20			
79-10-11	300	30			
80-02-26	260	60			
80-02-27	170	20			
79-10-09	3700	160			
80-02-27	2400	150			
79-10-01	300	20			
80-02-26	100	20			

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

All samples were collected and analyzed by Suffolk County Department of Health Services.

80-02-27

79-10-05 80-02-27

79-10-01 80-02-26 120

250

400 130

90

<10

10

20 90

<10

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
41023407	2243601	s 53328				79-10-05 80-02-28	39 39	135 122	5. 7 5. 7	12. 0 12. 5	9. 0 8. 8	10
41070607	2203201	S 53330 E.	MARION			79-10-03 80-03-12	51 51	330	6. 0 6. 1	15. 0 12. 0	3. 9 7. 1	23 25
41075307	2205501	S 53331 E.	MARION			79-10-04 80-02-29	68 68	155 146	5. 9 6. 0	13. 0 11. 5	9. 3 10. 6	3. 8 4. 0
40584307	2324301	S 53332 MA	TTITUCK			79-10-11 80-02-26	43 43	190 151	6. 0 6. 2	11.0 11.0	10. 9 8. 6	16 16
40592407	2342301	S 53333 MA	TTITUCK		112GLCLU	80-02-27	72	134	6. 1	11.0	15. 2	16
41030407	2262701	S 53335				79-10-05 80-02-27	35 35	460 345	5. 6 5. 6	12. 0 12. 0	9. 6 9. 7	51 52
41001707	2315501	S 53336 E.	MATTITUC	(79-10-01 80-02-26	40 40	370 323	5. 0 5. 6	11. 0 12. 0	5. 3 6. 5	44 36
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS-	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
79-10-05 80-02-28	1. 8 1. 7		3. 5 3. 9	9 7	27 26	10 9. 0	. 26 . 38	. 001	==	. 040 <. 050	. 002	=
79-10-03 80-03-12	6. 7 5. 8		2. 7 2. 9	24 18	42 47	28 28	8. 1 8. 4	. 002	===	. 160 <. 050	<. 002 . 002	Ξ
79-10-04 80-02-29	3. 1 3. 4		. 9 . 9	17 18	15 17	20	. 16 . 08	. 003	==	<. 040 <. 050	<. 002 <. 002	
79-10-11 80-02-26	3. 4 3. 0		3. 2 3. 3	5 6	42 38	13 10	4. 6 3. 8	. 002		. 050 <. 050	<. 002 . 002	==
80-02-27	2. 5	4. 6	2. 8	12	24	11	2. 7	. 002		<. 050	. 007	
79-10-05 80-02-27	8. 4 8. 0		6. 0 7. 2	9 7	120 113	19 18	11 8. 0	. 001	=	. 040 C. 050	<. 002 <. 002	
79-10-01 80-02-26	10 4. 8	14 22	2. 5 14	5	97 56	34 32	9. 9 14	. 003	=	<. 040 . 100	. 008	Ξ
				DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)				
				79-10-05 30-02-28	600 <50	80 20		=				
				79-10-03 30-03-12	500 50	10 <10						
			2	79-10-04	900	40						
			8	30-02-29	290	20						

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

All samples were collected and analyzed by Suffolk County Department of Health Services.

80-02-29 79-10-30

80-02-07

79-11-01

79-11-05

79-11-29

79-12-13

								SPE-				
STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
41090607	2171301 5	53337				79-10-03 80-03-12	50 50	700 668	6.6	12. 0 11. 0	3. 8 5. 5	42 41
41041207	2261301 9	53338				79-10-05 80-02-28	63 63	320 270	6. 1 6. 1	13. 0 11. 5	9. 2 9. 4	52 23
41060407	2222201 \$	53539		,		79-10-04 80-02-29	35 35	225 177	5. 6 5. 9	13. 0 13. 0	7. 5 7. 7	20 16
41040407	1565901 8	58923				79-10-30 80-02-07	76 76	160 153	6. B 6. 6	14.0 11.5	10. 2 7. 8	6. 8 7. 0
405933072	2093401 9	5 58924			112GLCLU	79-11-01	139	116	6. 5	12.0	10. 2	3. 9
405950072	2124501 8	58925			112GLCLU	79-11-05	92	63	6. 5	12.0	10. 5	2. 1
405558072	2251401 9	58956			112GLCLU	79-11-29	43	205	6. 2	13. 0	8. 0	11
405607072	2225801 5	58957			112GLCLU	79-12-13	203	80	5. 5	12. 0	10. 4	2. 1
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
79-10-03 80-03-12	25 26	34 35	3. 1 3. 1	22 19	110 120	80 86	5. 7 6. 0	. 050 . 053		<. 040 . 070	<. 002 . 003	==
79-10-05 80-02-28	3. 6 3. 6	15 13	11 14	12 10	59 56	20	6. 0 5. 6	. 004		. 040	. 110	==
79-10-04 80-02-29	3. 2 2. 8	11 11	1.2 1.5	15 14	37 35	21 19	2. 5 1. 9	. 002		<. 040 <. 050	. 004	
79-10-30 80-02-07	4. 0 4. 6	16 26	2. 2 2. 8	33	7.5 13	22 41	. 08	. 003		<. 040 . 050	. 024	
79-11-01	2. 1	12	. 7	12	5. 7	20	<. 02	. 002		. 040	. 005	
79-11-05	1. 0	6.8	. 6	7	4. 0	10	. 04	. 002		. 030	. 010	
79-11-29	4. 7	19	3. 6	22	18	31	3. 4	. 007		<. 040	. 019	
79-12-13	1. 9	8. 1	. 5	4	4. 9	17	. 04	<. 002		. 050	<. 002	
				DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)				
				79-10-03 80-03-12	300 200	10 30						
				79-10-05	150	20						
				80-02-28	<50	<10	-	77				

40

<10

10

30

<10

200

640

<50

<50

20

260

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

All samples were collected and analyzed by Suffolk County Department of Health Services.

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40584207	2164901 5	5 58961			112GLCLU	80-01-09	131	59	5. 7	11.0	11.2	1.6
40435207	3165101 5	6 68334			112GLCLU	80-01-10	15	245	5. 1	11.0	8. 1	11
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
80-01-09	1.2	6. 2	. 5	4	5. 1	8. 0	. 02	. 002		<. 050	<. 002	
80-01-10	2. 7	26	2. 7	0	23	43	4. 8	. 002		<. 050	<. 002	
				DATE OF SAMPLE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)				
				80-01-09	30	<20						
				80-01-10	<20	60						

Geological unit (aquifer):

112GLCLU — Upper glacial aquifer, Pleistocene age.

112GRDR — Gardiners clay, Pleistocene age.

112JMCO — Jameco gravel, Pleistocene age.

211LLYD — Llyod aquifer, Cretaceous age.

211MGTY — Magothy aquifer, Cretaceous age.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
4047030	73264205		S 29778		211MGTY	78-10-03*	168	136	6. 4	40	7. 0	5. 6
					211MGTY	78-12-12*	168	70	6. 3		7. 2	5. 7
					211MGTY	79-03-08*	168	125	5. 9	35	5. 2	4. 3
					211MGTY	79-06-11*	168	121	5. 8	38	5. 3	4. 1
					211MGTY	79-09-11*	168	120	5. 8	36	5. 7	3. 7
					211MGTY	79-11-30	168	118	6.8	35	6. 0	4. 2
					211MGTY	80-03-03	168	118	6.7	37	5. 7	4. 0 4. 3
					211MGTY 211MGTY	80-06-02	168 168	124 134	6.3	39 41	6. 1	4. 4
					2117611	80-07-08	100	134	0. 1	41	0. 4	7. 7
DATE OF SAMPLE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACD3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)
Law et a												
78-10-03	5. 8	1.6	13	5. 3	10	<. 1	77	6.8	7. 5	<. 010	<. 010	<. 010
78-12-12 79-03-08	5. 4 5. 3	1.7	20	6. 8	10	<. 1		6.8	6. 6 2. 1	<. 010	<. 010	<. 010
79-06-11	5. 4	1.4	57 12	9. 8 11	10 8. 5	<. 1 <. 1		3. 9	3.0	<. 010	<. 010	<. 010
79-09-11	5. 9	1.2	12	12	10	<. 1		2.3	2.0	<. 010	<. 010	<. 010
79-11-30	5. 8	1.4	16	9. 8	9. 5	<. 1	73	2.2	2. 1	<. 010	<. 010	<. 010
80-03-03	6. 1	1.6	16	10	10	<. 1	51	2. 3	2. 3	<. 010	<. 010	<. 010
80-06-05	6. 6	1.6	15	14	11	<. 1	66	2.3	2.3	<. 010	<. 010	<. 010
80-09-08	6. 3	1.8	15	16	13	<. 1	98	2. 3	2. 5	<. 010	<. 010	. 050
	DATE OF SAMPLE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)		IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	78-10-03	<. 010	1.7	1.4	<. 10		450	90	40	40	<. 02	
	78-12-12	<. 010			< 10		370	70	40	40	<. 02	
	79-03-08	<. 010			<. 10		80	50	20	30	c. 02	
	79-06-11	<. 010			<. 10	<. 10	230	70	20	30	<. 02	
	79-09-11	<. 010	(25)	-	<. 10	-	340	60	30	40		
	79-11-30	<. 010	2. 5	1. 9	<. 10		450	70	40	40	c. 02	
	80-03-03	<. 010	. 95	1.0	<. 10	<. 10	290	60	40	40	c. 02	
	80-06-02	<. 010	. 15	<. 01	. 23	. 39	360	30	30	30	<. 02	
	80-09-08	<. 010			<. 10	<. 10	710	60	30	40	<. 02	

^{*} Not previously published.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
40492007	72484602		S 46913		1120LCLU 1120LCLU 1120LCLU	78-10-03* 78-12-13* 79-03-09* 79-06-13* 79-09-11*	19 19 19	46 31 60 90 118	6. 7 7. 1 7. 3 6. 1 5. 9	9 12 6 27 28	3. 3 3. 5 2. 2 8. 1 7. 6	. 6 . 6 . 3 1. 3 1. 0
					112GLCLU 112GLCLU 112GLCLU	79-11-27 79-11-30 80-03-04 80-05-30 80-06-02	19 19 19 19	49 76 900 73 59	5. 8 7. 1 6. 5 6. 1 6. 7	18 73 20	4. 3 24 5. 8	. 7 4. 0 1. 1
						80-09-08 80-09-15	19 19	236 240	6. 5 6. 1	35 	9. 3 	1.4
DATE OF SAMPLE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)
78-10-03 78-12-13 79-03-09 79-06-13 79-09-11	3. 7 2. 6 7. 5 5. 4 10	2. 5 2. 0 . 9 1. 7 2. 6	16 17 28 31 26	5. 3 3. 8 2. 0 4. 3 5. 5	<pre><. 5</pre>	<. 1 <. 1	24 	. 29 . 10 . 04 . 19 . 45	. 23 . 12 . 04 . 04 . 47	<. 010 <. 010 <. 010 <. 010 <. 010	<. 010 <. 010 <. 010 <. 010 <. 010	<. 010 <. 010 <. 010 . 170 <. 010
79-11-27 79-11-30 80-03-04 80-05-30 80-06-02	2. 0 6. 0 168 5. 8 3. 0	2. 5 2. 5 6. 9 2. 0 1. 8	10 18 15 15	5. 7 5. 4 15 2. 6 5. 2	1.8 5.0 295 8.7 1.5	<. 1 <. 1	50 540 29	. 50 1. 2 . 55	. 29 . 42 1. 3 . 56 . 63	<. 010 <. 010 <. 010	.003 <.010 <.010 .003 <.010	<. 010 <. 010 <. 010
80-09-08 80-09-15	5. 6 33	3. 2 3. 5	26 28	10 11	42 42	<. 1	149	. 80	. 80 . 97	<. 010	<. 010 . 005	<. 010
	DATE OF SAMPLE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)		IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	78-10-03 78-12-13 79-03-09 79-06-13 79-09-11	<. 010 <. 010 <. 010 . 170 <. 010	1.3	1.5	<. 10 <. 10 <. 10 <. 10 <. 10	=	110 240 380 210 360	160 90 140 180 280	90 30 <10 910 980	70 20 <10 900 980	<. 02 <. 02 <. 02 	
	79-11-27 79-11-30 80-03-04 80-05-30 80-06-02	. 060 <. 010 <. 010 . 050 <. 010	2. 5 1. 4 <. 01	2. 0 1. 0 . 20	<. 10 <. 10 . 18	<. 10 . 03	40 110 200 70 180	80 40 190	<20 30 10 <10 20	30 10 10	<. 02 . 07 <. 02	
	80-09-08 80-09-15	<. 010 . 090	=	==	<. 10	<. 10 . 03	260 180	30	270 160	290 	<. 02 	

^{*} Not previously published.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

			LOCAL IDENT- I-		GEO-	DATE OF	DEPTH OF WELL,	SPE- CIFIC CON- DUCT- ANCE	РН	HARD- NESS (MG/L	CALCIUM DIS- SOLVED	MAGNE- SIUM, DIS- SOLVED
STATION	NUMBER		FIER		UNIT	SAMPLE	(FEET)	(MICRO- MHOS)	(UNITS)	AS CACD3)	(MG/L AS CA)	(MG/L AS MG)
4049170	72484501		S 46914		112GLCLU	78-10-03* 78-12-13*	33 33	145 58	6. 4 6. 5	11 8	2. 7 1. 9	. 7
						79-03-09*	33	118	6.8	4	2. 0	. 5
						79-06-13* 79-09-11*	33	109 240	6. 0 5. 8	7 16	1.9	1.0
						79-11-27	33	51	5. 5			77
						79-11-30	33	50	6. 9	6	1.5	. 4
						80-03-04	33	147	6. 3	16	3. 8 5. 0	1.0
						80-06-02	33	191 153	6. 1	21 15	3. 3	. 8
						80-09-15	33	125	5. 8			
					TIZGLULO	80-07-13	33	125	3. 0			
		POTAS-			CHLD-	FLUO-	SOLIDS, RESIDUE	NITRO-	NITRO- GEN,	NITRO-	NITRO- GEN,	NITRO-
DATE	SODIUM, DIS-	SIUM, DIS-	ALKA- LINITY	SULFATE DIS-	RIDE, DIS-	DIS-	AT 180 DEG. C	GEN, NITRATE	NITRATE DIS-	GEN, NITRITE	NITRITE DIS-	GEN, AMMONIA
OF	SOLVED	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED	DIS-	TOTAL	SOLVED	TOTAL	SOLVED	TOTAL
SAMPLE	(MG/L	(MG/L	AS	(MG/L	(MG/L	(MG/L	SOLVED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
OAIII LL	AS NA)	AS K)	CACO3)	AS SO4)	AS CL)	AS F)	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS N)
78-10-03	24	1.7	13	2. 3	32	<. 1	71	. 80	. 74	<. 010	<. 010	<. 010
78-12-13	10	1.0	18	6.7	6. 5	<. 1		. 38	. 39	<. 010	<. 010	<. 010
79-03-09	15	. 7		3. 6	55	<. 1		. 06	. 06	<. 010	<. 010	<. 010
79-06-13	17	. 9	8	3. 4	21	<. 1		. 06	. 10	<. 010	<. 010	<. 010
79-09-11	35	1.9	14	2. 3	50	<. 1		. 96	. 95	<. 010	<. 010	<. 010
79-11-27	7. 5	1.3	11	4.3	3. 5				. 24		. 004	22
79-11-30	6. 4	. В	13	3. 7	2. 5	<. 1	35	. 16	. 22	<. 010	<. 010	<. 010
80-03-04	22	1.2	12	4. 3	33	<. 1	59	. 56	. 56	<. 010	<. 010	<. 010
80-06-02	26	1.3	13	6. 0	40	<. 1	94	. 89	. 93	<. 010	<. 010	<. 010
80-09-08	23	1. 1	12	8. 4	27	<. 1	104	. 96	. 96	<. 010	<. 010	<. 010
80-09-15	25	1.6	9	5. 7	37	144			1.0	-	. 002	-
		NITRO- GEN, AMMONIA	NITRO- GEN, AM- MONIA +	NITRO- GEN, AM- MONIA +	PHOS- PHORUS, ORTHOPH	PHOS- PHORUS, ORTHOPH	IRON, TOTAL	IRON,	MANGA- NESE, TOTAL	MANGA- NESE,	METHY- LENE BLUE	
	DATE	DIS-	DRGANIC	DRGANIC	DSPHATE	OSPHATE	RECOV-	DIS-	RECOV-	DIS-	ACTIVE	
	OF	SOLVED	TOTAL	DIS.	TOTAL	DISSOL.	ERABLE	SOLVED	ERABLE	SOLVED	SUB-	
	SAMPLE	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(UG/L	(UG/L	(UG/L	(UG/L	STANCE	
		AS N)	AS N)	AS N)	AS PO4)	AS PO4)	AS FE)	AS FE)	AS MN)	AS MN)	(MG/L)	
	78-10-03	<. 010	1.7	1.5	<. 10		270	200	40	40	<. 02	
	78-12-13	<. 010			<. 10		340	230	40	40	<. 02	
	79-03-09	<. 010			<. 10		50	60	<10	<10	<. 02	
	79-06-13 79-09-11	<. 010 <. 010			<. 10	<. 10	120 140	120 160	<10 20	40 <10	<. 02	
	79-11-27	. 070				. 01	150		20			
	79-11-30	<. 010	1.9	2. 3	<. 10	. 01	130	150	10	30	<. 02	
	80-03-04	<. 010	. 77	1. 1	<. 10	<. 10	130	130	10	10	<. 02	
	80-06-02	<. 010	. 18	<. 01	. 15	. 31	130	100	<10	<10	<. 02	
	80-09-08	<. 010	. 12		<. 10	<. 10	60	30	<10	<10	<. 02	
	80-09-15	. 090					200		30			

^{*} Not previously published.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GED- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
40524007	72491402		S 47226		112GLCLU 112GLCLU 112GLCLU	78-10-03* 78-12-13* 79-03-08* 79-06-12* 79-07-30*	27 27 27 27 27	80 30 89 76 78	6. 5 6. 9 6. 9 6. 1 6. 4	26 35 17 15	8. 4 8. 7 5. 8 4. 6 4. 6	1.5 1.4 1.0 .8 .7
					112GLCLU 112GLCLU 112GLCLU	79-08-16* 79-09-10* 79-10-09 79-11-30 80-02-07	27 27 27 27 27	71 75 75 60 71	6. 1 6. 5 6. 1 6. 7 7. 0	14 19 15	4. 5 5. 1 4. 4	. 7 . 7 . 7
					112GLCLU 112GLCLU	80-03-03 80-03-21 80-06-02 80-09-08	27 27 27 27	57 73 58 60	6. 4 6. 7 6. 2 6. 2	19 15 17	4. 5 4. 2 4. 3	. 8 . 7 . 7
DATE OF SAMPLE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACD3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)
78-10-03 78-12-13 79-03-08 79-06-12 79-07-30	4. 6 4. 2 3. 6 3. 6 3. 7	. 5 . 5 . 4 . 4	29 50 46 22 22	3. 1 3. 6 3. 7 5. 8 8. 5	6. 0 6. 0 5. 5 4. 5 5. 9	C. 1 C. 1 C. 1 C. 1	61 	. 06 1. 9 <. 01 . 19	<.01 1.9 <.01 .19 .02	<. 010 <. 010 <. 010 <. 010	<. 010 <. 010 <. 010 <. 010 . 003	<. 010 <. 010 . 040 <. 010
79-08-16 79-09-10 79-10-09 79-11-30 80-02-07	3.8 3.7 3.8 3.7 4.2	. 4 . 4 . 4 . 5	22 21 18 10 21	8. 5 5. 8 8. 7 6. 4 7. 9	7. 5 6. 0 7. 0 5. 0 6. 6	<. 1 <. 1	 61	<. 01 <. 01	. 06 <. 01 <. 02 <. 01	<. 010 <. 010	.001 <.010 .001 <.010 .002	<. 010 . 090
80-03-03 80-03-21 80-06-02 80-09-08	4. 0 4. 2 4. 8 4. 1	. 4	13 22 11 12	6. 5 6. 7 9. 0 8. 4	5. 0 7. 1 5. 0 6. 5	<.1 <.1 <.1	42 50 81	<. 01 <. 01 	<. 01 <. 02 <. 01	<. 010 <. 010 <. 010	<.010 .002 <.010 <.010	. 110 . 180 . 140
	DATE OF SAMPLE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS PO4)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	78-10-03 78-12-13 79-03-08 79-06-12 79-07-30	<. 010 . 510 . 080 . 130 . 210	1. 3	2. 1 	. 15 . 14 . 23 . 31	 . 31 . 40	10000 9500 8050 5200 5800	9700 9260 6900 5000	230 210 140 200 120	230 210 140 210	<. 02 <. 02 <. 02 <. 02	
	79-08-16 79-09-10 79-10-09 79-11-30 80-02-07	. 160 <. 010 . 160 <. 010 . 150	3. 3	1.8	. 33	. 43 . 46 . 38	5400 5300 5400 5000 5800	5500 4900	120 130 100 120 230	130 110	<. 02	
	80-03-03 80-03-21 80-06-02 80-09-08	. 040 . 190 <. 010 . 120	1.8 <.01	1. 2	. 31 . 42 . 26	. 39 . 34 . 64 . 45	5200 5100 4490 4960	4700 4460 4740	140 110 120 150	130 120 140	<. 02 <. 02 <. 02	

^{*} Not previously published.

267

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
40524007	72491401		S 47227		112GLCLU 112GLCLU 112GLCLU	78-10-03* 78-12-13* 79-03-08* 79-06-12* 79-07-30*	100 100 100 100 100	92 85 104 116 119	7. 3 7. 7 7. 8 6. 5 7. 4	31 34 36 42 40	10 10 11 13 12	2. 2 2. 2 2. 4 3. 0 2. 5
					112GLCLU 112GLCLU 112GLCLU	79-08-16* 79-09-10* 79-10-09 79-11-30 80-02-07	100 100 100 100 100	122 116 114 116 107	7. 4 7. 2 7. 3 7. 7 6. 7	39 44 40	11 13 13	2. 4 2. 5 2. 8
					112GLCLU 112GLCLU	80-03-03 80-03-21 80-06-02 80-09-08	100 100 100 100	108 108 111 114	7. 8 7. 6 7. 4 7. 4	43 43 46	14 12 12	3. 0 2. 7 2. 4
DATE OF SAMPLE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS— SIUM, DIS— SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)
78-10-03 78-12-13 79-03-08 79-06-12 79-07-30	4. 2 4. 0 4. 1 4. 5 4. 7	.3	34 39 54 42 45	5. 4 6. 0 6. 1 4. 7 5. 5	3. 0 4. 0 3. 5 4. 0 4. 4	C. 1 C. 1 C. 1 C. 1	53 	. 04 <. 01 <. 01 <. 01	<.01 .16 <.01 <.01 .05	. 040 <. 010 <. 010 <. 010	<.010 <.010 <.010 <.010 .002	. 040 . 050 <. 010 . 120
79-08-16 79-09-10 79-10-09 79-11-30 80-02-07	4. 8 4. 5 4. 7 4. 6 4. 6	. 4 . 3 . 4 . 3	40 41 41 40 42	5. 3 4. 2 4. 7 1. 8 5. 4	5. 4 4. 5 5. 0 4. 5 5. 6	<. i <. 1	 79	<. 01 . 11	. 03 <. 01 <. 02 <. 01 . 06	<. 010 . 060	. 001 <. 010 . 001 <. 010 . 002	<. 010 <. 010
80-03-03 80-03-21 80-06-02 80-09-08	4. 5 4. 8 5. 0 4. 3	.3	43 43 42 43	4. 5 3. 8 9. 0 4. 7	5. 5 5. 5 5. 0 5. 0	<.1 <.1 <.1	56 63 108	. 12 C. 01 . 09	<. 01 <. 02 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 . 002 <. 010 <. 010	<. 010 . 110 <. 010
	DATE OF SAMPLE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS PO4)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	78-10-03 78-12-13 79-03-08 79-06-12 79-07-30	<.010 .040 <.010 .100 .160	1.6	1. 7	. 60 . 76 . 75 . 68	 . 61 . 80	550 780 560 650 700	490 470 490 600	220 240 220 280 310	300 550 530 530	<. 02 <. 02 <. 02 <. 02	
	79-08-16 79-09-10 79-10-09 79-11-30 80-02-07	. 130 <. 010 . 100 <. 010 . 110	 2. 4	3. 8 	. 62 . 52	. 74 . 74 . 59	600 620 600 650 580	620 620	260 240 250 240 230	240 230	<. 02	
	80-03-03 80-03-21 80-06-02 80-09-08	<. 010 . 120 . 060 <. 010	1. 3 <. 01	2. 0 <. 01 	. 62 . 76 . 60	. 65 1. 1 . 55	600 650 610 560	570 570 480	250 260 270 290	250 260 290	<. 02 <. 02	

^{*} Not previously published.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

			LOCAL IDENT- I-		GEO- LOGIC	DATE OF	DEPTH OF WELL,	SPE- CIFIC CON- DUCT- ANCE	РН	HARD- NESS (MG/L	CALCIUM DIS- SOLVED	MAGNE- SIUM, DIS- SOLVED
STATION	NUMBER		FIER		UNIT	SAMPLE	(FEET)	(MICRO- MHOS)	FIELD (UNITS)	AS CACO3)	(MG/L AS CA)	(MG/L AS MG)
40512107	72490601		S 48946		112GLCLU 112GLCLU 112GLCLU	78-10-03* 78-12-13* 79-03-09* 79-06-13* 79-08-16*	41 41 41 41	230 158 205 225 210	6. 2 6. 6 6. 6 5. 8 5. 8	71 52 55 66 59	23 20 17 19 17	5. 3 5. 2 4. 2 5. 0 4. 1
					112GLCLU 112GLCLU 112GLCLU	79-09-11* 79-11-30 80-01-25 80-02-13 80-03-04	41 41 41 41	225 230 205 215 218	5. 7 6. 5 6. 0 5. 4 6. 2	67 67 67	20 18 20	4. 6 4. 5 5. 0
					112GLCLU	80-06-02 80-07-09 80-09-08	41 41 41	233 240 246	6. 4 6. 2 5. 9	74 80	19 20	4. 8 5. 1
DATE OF SAMPLE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- YTINILY J\QM) AS AS CEODAD	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)
78-10-03 78-12-13 79-03-09 79-06-13 79-08-16	8. 1 8. 3 8. 8 9. 5 8. 4	3.8 4.3 3.8 4.7 4.3	11 13 9 8	44 42 28 28 31	14 17 17 19	< 1 < 1 < 1 < 1	141 	6. 2 5. 7 4. 9 5. 3	6. 2 5. 6 5. 0 6. 1 4. 9	<. 010 <. 010 <. 010 <. 010	<. 010 <. 010 <. 010 <. 010 . 004	<. 010 <. 010 <. 010 <. 010
79-09-11 79-11-30 80-01-25 80-02-13 80-03-04	9. 8 9. 5 9. 7 11	4. 2 4. 7 4. 3 4. 2 4. 2	10 12 7 7 13	27 29 31 28 30	20 20 21 20 20	<.1 <.1 <.1	110 133	5. 2 5. 7 5. 9	5. 3 5. 7 6. 2 6. 2 5. 9	<. 010 <. 010 <. 010	<.010 <.010 .002 .002 <.010	<. 010 <. 010 <. 010
80-06-02 80-07-09 80-09-08	9. 8 10 8. 9	3. 7 4. 8 3. 8	11 11 9	28 32 31	19 20 19	<. 1 <. 1	151 204	7. 4 8. 0	7. 1 8. 3 7. 2	<. 010 <. 010	<.010 .008 <.010	<. 010 <. 010
	DATE OF SAMPLE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS PO4)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	78-10-03 78-12-13 79-03-09 79-06-13 79-08-16	<. 010 <. 010 <. 010 . 100 . 040	1. 7 	1. 2	<. 10 <. 10 <. 10 <. 10	<. 10 . 08	950 2000 5900 170 100	650 750 140 170	160 220 1580 110 130	160 540 90 100	<. 02 <. 02 <. 02 <. 02	
	79-09-11 79-11-30 80-01-25 80-02-13 80-03-04	<. 010 <. 010 . 080 <. 050 <. 010	2. 3	1. 3	<. 10 <. 10 <. 10	.06	470 800 100 120 570	260 130 120	100 100 60 80 150	150 100 140	<. 02 <. 02	
	80-06-02 80-07-09 80-09-08	<. 010 . 130 <. 010	. 27 	. 27 	. <u>11</u> <. 10	. 31 . 02 <. 10	510 860 790	150 140	70 190 110	70 120	<. 02 <. 02	

^{*} Not previously published.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
40550007	72495201		S 51583		112GLCLU 112GLCLU 112GLCLU	78-10-03* 78-12-13* 79-01-25* 79-03-09* 79-06-12*	49 49 49 49	48 44 49 61 80	6. 4 6. 3 6. 0 6. 0 5. 7	10 8 10 9 15	1. 9 2. 2 1. 6 1. 8 3. 1	1. 3 1. 5 1. 4 1. 4
					112GLCLU		49 49 49 49	98 98 97 95 83	5. 8 5. 7 5. 2 6. 6 5. 3	17 17 21 15	3. 1 3. 3 3. 6 3. 6	2. 2 2. 2 1. 9 1. 6
					112GLCLU 112GLCLU 112GLCLU 112GLCLU 112GLCLU	80-03-24 80-06-02 80-08-12	49 49 49 49 49	75 69 68 72 69	6. 1 5. 9 6. 1 5. 8 5. 8	10 11 14	2.0 1.4 1.7	1.2 1.0 1.1
DATE OF SAMPLE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUD- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)
78-10-03 78-12-13 79-01-25 79-03-09 79-06-12	3. 7 4. 0 4. 8 4. 6 6. 2	. 8 . 9 . 9 . 8 1. 2	7 8 4 5	6. 2 6. 8 5. 8 7. 1 3. 7	4. 0 6. 0 7. 5 7. 0 14	<.1 <.1 <.1 <.1	24 	. 23 . 15 14 . 21	. 20 . 19 . 17 . 15 . 19	<. 010 <. 010 <. 010 <. 010	<.010 <.010 .002 <.010 <.010	<. 010 <. 010 <. 010 <. 010
79-07-30 79-08-16 79-09-10 79-11-30 80-02-13	7. 5 7. 8 8. 3 8. 7 8. 9	1.5 1.6 1.4 1.3	4 4 3 11 3	3. 2 2. 8 3. 3 3. 1 5. 7	18 22 20 18 15	 C. 1 C. 1	52	. 34	. 29 . 36 . 39 . 30 . 31	<. 010 <. 010	. 002 . 001 <. 010 <. 010 . 001	<. 010 <. 010
80-03-03 80-03-24 80-06-02 80-08-12 80-09-08	8. 6 8. 5 8. 5 7. 9 7. 0	1.2 1.4 1.0 	7 6 7 5 6	6. 4 6. 2 8. 6 7. 0 7. 4	12 12 9.5 10	<. i <. i <. 1	26 38 87	. 30 . 23 . 35	. 32 . 32 . 32 	<. 010 <. 010 <. 010	<. 010 . 003 <. 010 <. 010	<.010 <.010 <.040 <.010
	DATE OF SAMPLE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS PO4)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	78-10-03 78-12-13 79-01-25 79-03-09 79-06-12	<. 010 <. 010 . 120 <. 010 <. 010	2. 1	1. 5	<. 10 <. 10 <. 10 <. 10	 <. 10	220 240 100 310 870	120 50 140 120	40 20 40 30 140	40 20 30 40	<. 02 <. 02 <. 02 <. 02 <. 02	
	79-07-30 79-08-16 79-09-10 79-11-30 80-02-13	. 070 . 060 <. 010 <. 010 <. 050	2. 2	4. 1	<. 10 <. 10	=======================================	150 100 270 1640 100	160 380	20 40 40 40 (10	50 40	<. 02	
	80-03-03 80-03-24 80-06-02 80-08-12 80-09-08	<. 010 . 050 <. 010 <. 040 <. 010	2. 1 C. 01 	2. 3 . 21 	<. 10 . 10 <. 10	<. 10 . 20 <. 10	150 70 170 250 190	100 120 160	40 20 50 50 60	40 40 60	<. 02 <. 02 <. 10 <. 02	

^{*} Not previously published.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
4053490	72494101		S 51592		112GLCLU 112GLCLU 112GLCLU	78-10-03* 78-12-12* 79-01-25* 79-03-09* 79-06-12*	39 39 39 39 39	58 54 58 73 70	6. 3 6. 1 5. 7 5. 9 6. 4	9 10 12 13 14	2. 4 3. 0 2. 7 2. 9 2. 9	1. 0 1. 2 1. 2 1. 3 1. 2
					112GLCLU 112GLCLU 112GLCLU	79-08-16* 79-09-10* 79-11-30 80-01-28 80-02-13	39 39 39 39 39	72 69 72 64 66	5. 5 5. 5 6. 5 6. 6 4. 9	13 14 13 	3. 1 3. 2 2. 9	1, 1 1, 1 1, 1 —
					112GLCLU 112GLCLU	80-03-03 80-06-02 80-08-11 80-09-08	39 39 39 39	62 70 76 71	6. 0 5. 8 5. 3 5. 9	12 16 19	2. 9 3. 3 3. 5	1. 1 1. 3 — 1. 3
DATE OF SAMPLE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUD- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)
78-10-03 78-12-12 79-01-25 79-03-09 79-06-12	5. 1 5. 4 5. 3	. 8 1. 1 . 9 . 8	7 8 4 7	9. 4 9. 5 7. 4 9. 0 8. 2	6. 0 6. 5 7. 0 8. 0 7. 5	<.1 <.1 <.1 <.1	32 	. 71 . 59 . 59 . 55	. 62 . 60 . 66 . 57	<. 010 <. 010 <. 010 <. 010 <. 010	<.010 <.010 .002 <.010 <.010	<. 010 . 010 <. 010 <. 010
79-08-16 79-09-10 79-11-30 80-01-28 80-02-13	5. 6 6. 2 5. 8	1.0 .8 .8 .8	2 3 8 4 1	6. 8 8. 2 9. 2 8. 3 9. 1	9. 7 8. 5 8. 0 8. 0 7. 0	<. 1 <. 1 	53 	. 59 . 57	. 63 . 61 . 51 . 63	<. 010 <. 010	.001 <.010 .100 .002 .001	<. 010 <. 010
80-03-03 80-06-02 80-08-11 80-09-08	5. 8 5. 1	. 8 . 7 1. 0 . 7	5 6 2 4	9. 6 8. 4 5. 4 7. 9	7.0 10 12 10	<. 1 <. 1 <. 1	24 45 96	. 62 . 50 . 57	. 62 . 62 . 62 . 49	<. 010 <. 010 <. 010	<. 010 <. 010 . 001 <. 010	. 110 <. 010 <. 010
	DATE OF SAMPLE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS PO4)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	78-10-03 78-12-12 79-01-25 79-03-09 79-06-12	<. 010 . 060 . 130 <. 010 <. 010	1. 7	1.5	<. 10 <. 10 <. 10 <. 10	 <. 10	120 140 100 130 270	110 90 90 200	30 20 (20 20 80	30 20 20 50	<. 02 <. 02 <. 02 <. 02	
	79-08-16 79-09-10 79-11-30 80-01-28 80-02-13	. 050 <. 010 <. 010 . 090 <. 050	1.6	2. 2 	<. 10 <. 10 	=======================================	50 500 340 60 30	160 110 	40 40 30 <20 10	30 30 	<. 02 	
	80-03-03 80-06-02 80-08-11 80-09-08	<. 010 <. 010 . 050 <. 010	1. 1 . 12 	2. 5 . 20 	<. 10 <. 10 <. 10	<. 10 . 16 . 01 <. 10	180 320 100 90	80 30	30 30 20 30	30 30 30	<. 02 <. 02 <. 02	

^{*} Not previously published.

Geological unit (aquifer):

112GLCLU — Upper glacial aquifer, Pleistocene age.

112GRDR — Gardiners clay, Pleistocene age.

112JMCO — Jameco gravel, Pleistocene age.

211LLYD — Llyod aquifer, Cretaceous age.

211MGTY — Magothy aquifer, Cretaceous age.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 SUFFOLK COUNTY--Continued

			LOCAL IDENT-		GEO-	DATE	DEPTH OF	SPE- CIFIC CON- DUCT-		TUR-	HARD- NESS	CALCIUM TOTAL RECOV-
STATION	NUMBER		I- FIER		LOGIC	OF SAMPLE	WELL, TOTAL (FEET)	ANCE (MICRO- MHOS)	PH FIELD (UNITS)	BID- ITY (NTU)	(MG/L AS CACO3)	ERABLE (MG/L AS CA)
4044540	73033001	S 871	SCWA LAKE	EVIEW AV		79-10-17 80-03-26 80-07-13	110 110 110	108 98 116	5. 9 5. 7 6. 0	. 18 . 10 . 14	26 19 23	5. 9 4. 5 5. 5
4044540	73033002	S 872	SCWA LAKE	EVIEW AV	112GLCLU	79-10-17 80-03-26 80-07-13	107 107 107	135 116 105	6. 1 6. 2 6. 2	. 22	26 22 22	7. 4 4. 9 5. 2
40455107	72561601	S 1331	SCWA HEAD	OF NEC		79-12-05 80-01-27 80-05-13	60 60 60	160 150 129	5. 4 6. 6 5. 9	. 10 . 05 . 13	34 32 33	9. 6 8. 2 8. 7
40541207	72232901	S 1340	SCWA LONG	SPRING	112GLCLU 112GLCLU	80-01-28 80-05-06	87 87	213 195	6. 2 5. 7	. 07	61 72	21 19
40572007	72122701	S 2405	SCWA BRII)GEHAMPT	112GLCLU	79-09-17* 80-01-22 80-06-10	90 90 90	170 172 167	5. 8 6. 1 6. 0	. 10 . 10 . 41	46 38 47	10 8. 8 9. 0
40571907	72122802	S 2415	SCWA BRII	GEHAMPT	112GLCLU	79-09-17*	90	124	6. 0	. 20	27	5. 0
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)		ALKA- LINITY (MG/L AS CACD3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-10-17	1.6	8. 7		15	9. 5	11		. 73	<. 010	<. 010	<. 10	5
80-03-26 80-07-13	1.3	7. 9 8. 9		13	8. 7 9. 5	12 75	<. 1	. 54 . 78	<. 010	. 590 <. 010	<. 10 <. 10	
79-10-17	1.7	11	1. 5	18	10	15		. 88	<. 010	. 540	<. 10	<5
80-03-26 80-07-13	1.5	10 8. 4	1. 4 1. 2	19 16	10 10	12 10	<. 1	. 62 . 92	<. 010 <. 010	. 930 <. 010	<. 10 <. 10	=
79-12-05	2.6	13	1.6	12	15	18		2. 7	<. 010	<. 010	<. 10	<5
80-01-27 80-05-13	2. 2	12	1.4	11	14 16	18 18	<. 1	3. 3 2. 7	<. 010 <. 010	. 010	<. 10 <. 10	==
80-01-28 80-05-06	4. 8 5. 2	10 10	3. 2 3. 4	11 10	41 37	18 24	<. 1	. 00 4. 7	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	==
79-09-17	5. 0	13	1.3	14	16	20		3. 6	<. 010	C. 010	<. 10	<5
80-01-22 80-06-10	4. 6 4. 8	13 12	1.3	17 12	14 18	19 20	<. 1	3. 2 3. 7	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
79-09-17	2. 4	13	. 9	15	13	14		1.7	<. 010	<. 010	C. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	TOTAL RECOV- ERABLE (UG/L	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-10-17			20	50		680			30	<. 02	
	80-03-26 80-07-13	0	<10	<10 <10	<10 <10	<5	510 480	<. 2	 <5	<10	<. 02 <. 02	
	79-10-17			40	50		700			180	<. 02	
	80-03-26 80-07-13	-0		20 <10	30 <10	<5	690 660	<. 2	<2	<10	<. 02 <. 02	
	79-12-05			40	40		30		22	40	<. 02	
	80-01-27 80-05-13	0	<5 	30 20	50 <10	<5	<10 30	<. 2	<2	30 <10	<. 02 <. 02	
	80-01-28		<5	80	<10		<10	<. 2	<2	10	<. 02	
	80-05-06	0		90	<10		<10	-		<10	<. 02	
	79-09-17 80-01-22		<5	150 50	<10 60	==	30	<. 2	<2	20 <10	<. 02 <. 02	
	80-06-10	0		160	<10	7	<10			20	<. 02	
	79-09-17			40	<10		30	-		70	c. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40572107	72123001	S 2570	SCWA BRID	GEHAMPT	112GLCLU	79-09-17* 80-01-22 80-06-09	88 88	210 215 207	5. 7 6. 0 5. 8	. 12 . 13 . 06	56 52 55	11 12 11
40532207	73211001	S 2978	SCWA WASH	INGTON	211MGTY 211MGTY	80-03-0 4 80-07-01	240 240	38 41	5. 6 5. 7	. 06	8	1. 9 2. 8
41031007	71570901	S 3615	SCWA FLAM	IINGO AV	112GLCLU	79-09-17* 80-01-21 80-06-09	111 111 111	205 148 181	6. 5 6. 9 6. 6	. 23 . 14 . 10	36 27 37	8. 0 5. 4 7. 2
40442607	73073301	S 381	3 SCWA DAM	DALE 1	112GLCLU	79-10-16 80-03-23 80-07-13	83 83	152 140 140	5. 8 6. 4 6. 0	. 11 . 11 . 12	31 32 33	9. 3 7. 9 8. 7
4044260	73073302	S 381	4 SCWA DAM	DALE 3		79-10-16 80-03-24	90 90	60 126	6. 7 6. 3	. 40	21 34	5. 5 9. 2
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)		ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUD- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-09-17 80-01-22 80-06-09	6. 7 6. 3 5. 8	15 15 14	1.5 1.5 1.6	17 16 13	22 21 27	23 23	<. 1	4. 3 4. 7 4. 6	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
80-03-04 80-07-01	. 6	3. 9 4. 2	. 4	8 7	. 8		<. 1	. 87 1. 1	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	===
79-09-17 80-01-21 80-06-09	4. 2 3. 0 4. 0	21 15 19	1.5 1.1 1.3	30 24 28	8. 1 6. 8 9. 6	32 20 29	 <. 1	1.0 .98 1.0	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-10-16 80-03-23 80-07-13	2. 5 2. 1 2. 5	10 10 11	1. 9 1. 8 1. 8	17 17 19	12 11 11	15 14 15	 <. 1	3. 5 2. 6 2. 2	<. 010 <. 010 <. 010	. 420 . 380 <. 010	<. 10 <. 10 <. 10	<5
79-10-16 80-03-24	2. 0 2. 7	3. 5 8. 9	. 5 1. 5	20 19	1.7 10	4. 0 11		. 28 2. 4	<. 010 <. 010	<. 010 . 210	. 25 <. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	TOTAL RECOV-	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-09-17 80-01-22 80-06-09		<5 	100 600 80	40		30 30 <10	<. 2	<2	10 <10 30	C. 02 C. 02 C. 02	
	80-03-04 80-07-01	1	<10	60 50	30		20	<. 2	<2 	20 860	C. 02 C. 02	
	79-09-17 80-01-21 80-06-09		<5 	<10 10 30	<10		20 <10 <10	c. 2	<20 	<10 <10 <10	C. 02 C. 02 C. 02	
	79-10-16 80-03-23 80-07-13		~~~	20 <10 <10	<10		120 120 110	<. 2 		<10 <10 50	C. 02 C. 02 C. 02	
	79-10-16 80-03-24	=	<10	20 60			20 110	<. 2	 (2	50 60	C. 02	

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
4044260	73073303	S 381	5 SCWA DAK	DALE 2	112GLCLU	79-10-16 80-03-23 80-07-13	83 83 83	124 125 120	6. 0 6. 5 6. 3	. 11 . 16 . 19	34 33 32	9. 1 7. 3 7. 3
4050320	73162801	S 4184	SCWA WALT	ER CT.		80-02-20 80-05-21	162 162	295 362	5. 8 6. 7	. 08	73 79	21 21
4056460	73041601	S 4372	SCWA W. BR	DADWAY		80-02-21 80-06-08	95 95	59 135	7. 0 7. 2	. 10	17 47	4. 1 12
4058400	72114501	S 7570	SCWA DAKV	IEW HWY	112GLCLU	79-09-17 * 80-01-21 80-06-09	162 162 162	122 128 118	6. 4 6. 2 6. 1	. 12 . 09 . 07	29 31 29	5. 6 5. 6 5. 6
4056460	73041602	S 8439	SCWA W. BR	DADWAY		80-02-22 80-06-12	92 92	61 59	6. 7 6. 6	. 06	15 20	4. 1 3. 9
4050460	73161401	S 9771	SCWA BLUE	SPRUCE	112GLCLU	80-05-20	151	57	6. 6	. 07	19	4. 1
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)		ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLD- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-10-16 80-03-23 80-07-13	2.7	8. 1 8. 6 8. 4		19 21 15	9. 7 8. 8 9. 4	9. 5 10 10	 <, 1	2. 8 2. 5 2. 7	<. 010 <. 010 <. 010	<. 010 . 240 <. 010	. 13 <. 10 <. 10	<5
80-02-20 80-05-21	6. 0 6. 2	23 40	3. 0 3. 2	18 49	26 26	33 36	 <. 1	9. 7 9. 8	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	
80-02-21 80-06-08	1.3 3.5	4. 2 7. 8		17 30	1. 8 9. 2	5. 0 11	 <. 1	. 94 2. 4	<. 010 <. 010	. 180	<. 10 <. 10	
79-09-17 80-01-21 80-06-09	2. 7 2. 9 2. 8	10 10 10	. 6 . 6 . 5	13 13 11	10 11 11	15 17 16	 <. 1	1.6 1.6 1.6	<.010 <.010 <.010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
80-02-22 80-06-12		4. 2 4. 4	. 4	15 17	1.8 1.9	5. 0 4. 5	<. 1	1.2 1.0	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	==
80-05-20	1. 5	4. 1	. 5	19	1. 5	4. 5	<. 1	. 31	. 010	<. 010	<. 10	
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	TOTAL	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-10-16 80-03-23 80-07-13			20 20 <10	30 <10 <10	 9	130 110 90	<. 2	<2 	<10 <10 150	C. 02 C. 02 C. 02	
	80-02-20 80-05-21		5	30 30	30 <10	 <5	<10 20	<. 2	<2 	30 <10	<. 02 <. 02	
	80-02-21 80-06-08		3	<10 20	<10 <10	~ ~	<10 <10	C. 2	<2	<10 <10	<. 02 <. 02	
	79-09-17 80-01-21 80-06-09		 <5 	70 60 40	90 <10 <10	 <5	<10 <10 <10	<. 2 	<2 	<10 40 20	<. 02 <. 02 <. 02	
	80-02-22 80-06-12		4	<10 50	<10 50	 <5	<10 20	C. 2	<u></u>	<10 30	<. 02 <. 02	
	80-05-20	0		50	50	<5	<10			30	<. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	I NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
4044520	73033001	S 9893	SCWA LAKE	VIEW AV	112GLCLU	79-10-23 80-03-30 80-07-13	96 96 96	58 45 79	6. 0 6. 2 6. 1	. 29 . 12 . 14	14 11 16	3. 1 3. 0 4. 2
4053450	73203801	S 11105	SCWA RESE	RVOIR A	112GLCLU	79-09-25* 80-03-25 80-06-30	517 517 517	107 129 160	5. 9 6. 2 6. 5	. 23 . 11 . 16	31 36 45	7. 0 8. 9 12
4050540	73151001	S 11891	SCWA CORN	IELL DR	112GLCLU	80-05-27	119	278	5. 6	. 18	65	18
4051260	73273802	S 12130	SCWA HARB	OR RD.		80-04-01 80-07-29	305 305	54 45	6. 4 6. 6	. 08	13 13	3. 2 3. 2
4046190	73123201	S 12143	SCWA BANA	NA ST.	112GLCLU	80-04-09	117	134	6. 1	. 29	33	7. 7
4045310	73150601	S 13534	SCWA EAST	FORKS	112GLCLU	79-11-06 80-03-04 80-06-21	119 119 119	160 175 175	5. 3 5. 3 5. 5	. 11 . 16 . 16	45 41 46	12 12 10
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)		ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLD- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-10-23		4.6	. 4	14	4.3	5. 0		<. 01	<. 010	<. 010	<. 10	<5
80-03-30 80-07-13		4. 6 6. 5	. 4	14	3. 9 6. 3	4. 5 9. 5	<. 1	. 18	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	= 55
79-09-25		7. 0		12	7. 9	10		4. 1	<. 010	<. 010	<. 10	<5
80-03-25 80-06-30		7. 4 8. 8	1.0	13 25	9. 8 13	10	<. 1	4. 3 4. 5	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	Ξ
80-05-27	6.0	25	2. 5	17	29	37	<. 1	7. 1	<. 010	<. 010	<. 10	
80-04-01 80-07-29		3. 9		11	1.5	5. 0 4. 5		1. 2 2. 7	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	
80-04-09		9. 6		16	4.0	13	<. 1	4. 5	<. 010	<. 010	<. 10	
79-11-06		10	2. 0	15	14	16		5. 4	<. 010	<. 010	C. 10	<5
80-03-04 80-06-21	4.4	12	1.9	10	17 15	16 17	 <. 1	7. 4	<.010	<. 010 <. 010	<. 10 <. 10	
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV-	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-10-23 80-03-30			20 <10			460 460	c. 2	<2	10 <10	<. 02	
	80-07-13	0		<10			320			<10	<. 02	
	79-09-25 80-03-25 80-06-30		<10	40 40 40	50		<10 20 <10	c. 2	<2 	20 20 50	<. 02 <. 02 <. 02	
	80-05-27	0		130	50	<5	30			30	c. 02	
	80-04-01 80-07-29			160 70			<10 <10	<.2	<2	10	<. 02 <. 02	
	80-04-09			80			<10	<.2	<2	<10	<. 02	
	79-11-06			120			150			40	<. 02	
	80-03-04 80-06-21		<1	70	<10		170	<. 2	<2	<10	<. 02	
	00-06-21	0		90	<10	<5	180			<10	<. 02	

WATER GUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 SUFFOLK COUNTY--Continued

			LOCAL				DEPTH	SPE- CIFIC CON-			HARD-	CALCIUM TOTAL
STATION	NUMBER		IDENT- I- FIER		LOGIC UNIT	DATE OF SAMPLE	OF WELL, TOTAL (FEET)	DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	NESS (MG/L AS CACO3)	RECOV- ERABLE (MG/L AS CA)
40493707	73060301	S 13620	SCWA SAMU	EL ST. 1		80-01-20 80-05-11	160 160	140 120	6. 3 5. 8	. 10	37 35	8. 7 8. 7
40420107	73242301	S 14218	SCWA ALBA	NY AVE.	112GLCLU	79-11-09	85	36	4. 7	. 15	8	1. 1
40491907	73142701	S 14326	SCWA FALC	ON DR.	211MGTY 211MGTY	80-02-20 80-05-20	225 225	68 59	6. 5 6. 6	. 07	19 16	4. 3 4. 2
40455107	72561602	S 14710	SCWA HEAD	OF NEC	112GLCLU	79-12-02 80-01-21 80-05-27	118 118 118	95 128 97	6. 0 6. 0 6. 0	. 14 . 06 . 52	24 30 27	5. 6 8. 0 6. 3
40545307	73030302	S 14792	SCWA JAYN	IE BLVD	211MGTY 211MGTY	79-11-25 80-03-23	453 453	132 131	6. 3 6. 6	. 26	43 41	10 10
40511407	73261001	S 14828	SCWA WOOD	осниск н	112GLCLU	80-07-29	508	109	6. 4	. 12	34	8. 4
40580607	72095401	S 14921	SCWA SPRI	NG CLOS	112GLCLU	79-09-17 * 80-01-21 80-06-09	125 125 125	102 110 95	6. 1 6. 3 6. 2	. 12 . 10 . 06	23 22 23	4. 2 4. 4 4. 1
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACD3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
80-01-20 80-05-11	3. 7 3. 5	10 8. 7	1.0	27 22	11 12	8. 5 8. 0	 C. 1	3.3	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	
79-11-09	. 4	2.8	. 4	4	4. 0	4. 0		<. 01	<. 010	<. 010	. 12	<5
80-02-20 80-05-20	1. 5 1. 4	4. 7 4. 7	. 4	16 15	3. 0 3. 1	6. 5 6. 0	<. 1	. 86 . 21	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
79-12-02		7. 0	1.1	16	7. 4			2. 2	<. 010	<. 010	C. 10	<5
80-01-21 80-05-27	2. 1 1. 9	9. 4 8. 4	1.3	15 13	12 7. 5	13 9. 0	<. 1	2. 6 2. 2	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	==
79-11-25 80-03-23		6. 6 6. 1	1.0	17 19	16 14	9. 0 9. 0	==	2. 3 2. 8	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	<5
80-07-29	3. 3	7. 3	. 8	12	5. 7	10	<. 1	5. 9	<. 010	<. 010	C. 10	
79-09-17 80-01-21 80-06-09	2. 3 2. 3 2. 3	8. 6 8. 7 8. 5	. 7 . 7 . 7	9 11 10	9. 5 10 10	13 14 13	 C. 1	. 93 1. 0 . 99	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)		MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	80-01-20 80-05-11	0	<5 	80 180	<10 160		<10 <10	C. 2	<5	<10 60	C. 02	
	79-11-09			80	290		<10			<10	<. 02	
	80-02-20 80-05-20		<5 	20 90	<10 <10		<10 <10	C. 2	<2 	<10 50	C. 02 C. 02	
	79-12-02 80-01-21 80-05-27		 <5 	30 30	100 140 220		70 230 210	<. 2	 <2 	10 70 60	<. 02 <. 02 <. 02	
	79-11-25 80-03-23		<10	50 <10	80 <10		<10 <10	c. 2	C2	<10 <10	C. 02	
	80-07-29	0	-	40	<10	<5	<10	-		20	c. 02	
	79-09-17 80-01-21 80-06-09	 o	<5 	30 30	50 <10 <10		<10 <10 <10	<. 2 	 <2 	20 20 <10	C. 02 C. 02 C. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	I NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
4042030	73242201	S 15499	SCWA ALBA	NY AVE.	112GLCLU	79-11-04	87	33	4. 8	. 12	8	1.1
4053080	73175101	S 15514	SCWA GUN	CLUB RD	211MGTY 211MGTY 211MGTY	79-09-11* 80-03-10 80-07-07	595 595 595	152 230 155	6. 5 6. 5 6. 6	. 36 . 19 . 12	49 79 46	11 20 11
4053070	73175001	S 15515	SCWA GUN	CLUB RD	211MGTY 211MGTY 211MGTY	79-09-11* 80-03-10 80-07-07	356 356 356	350 340 340	6. 2 6. 5 6. 3	. 27 . 14 . 07	125 122 115	30 34 31
4049230	73122401	S 15746	SCWA WHEE	LER RD.		80-01-31 80-05-28	128 128	260 176	6. 1 6. 0	. 12	56 41	15 10
4051130	73260801	S 15776	SCWA WOOD	CHUCK H		80-03-26 80-06-30	503 503	115 140	6. 0 6. 3	. 12	32 36	7. 0 9. 1
4045360	73163301	S 15898	SCWA LOCU	ST DR.	112GLCLU	79-10-31 80-03-03 80-06-17	128 128 128	195 166 100	5. 7 5. 4 6. 0	. 09 . 18 . 12	43 35 29	12 9. 1 8. 6
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)		ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-11-04	. 4	2. 7	. 4	5	3. 4	4. 5		<. 01	<. 010	<. 010	<. 10	<5
79-09-11 80-03-10 80-07-07	7.3	7. 7 9. 2 7. 5		14 18 14	18 37 18	11 18 11	 C. 1	3. 8 6. 1 5. 1	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-09-11 80-03-10 80-07-07	11	11 10 11	1. 9 1. 7 1. 9	14 16 15	63 74 54	24 24 25	C. 1	8. 6 9. 5 11	<. 010 <. 010 <. 010	<. 010 <. 010 . 170	<. 10 <. 10 <. 10	<5
80-01-31 80-05-28		23 17	1. 9 1. 4	22 19	18 15	34 26	 <. 1	5. 2 3. 1	<. 010 <. 010	. 080	<. 10 <. 10	Ξ
80-03-28 80-06-30		6. 6 8. 7	. 8	12 13	5. 0 8. 1	9. 5 12	<. 1	4. 5 5. 0	<. 010 1. 180	<. 010 <. 010	C. 10 C. 10	==
79-10-31 80-03-03 80-06-17	3.0	16 14 6. 2	2. 0 2. 1 . 8	15 6 17	16 17 10	24 20 8. 5	 <. 1	5. 1 4. 4 . 88	<. 010 <. 010 . 360	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	TOTAL RECOV-	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)		MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-11-04	_		90	280		<10			<10	c. 02	
	79-09-11 80-03-10 80-07-07		<10	60 80 20	80		<10 <10 <10	.2	<2 	<10 <10 20	C. 02 C. 02 C. 02	
	79-09-11 80-03-10 80-07-07		<10	80 60 <10	70		<10 20 <10	- C. 2	<2 	70 <10 60	<. 02 <. 02 <. 02	
	80-01-31 80-05-28	0		70 80			<10 <10	c. 2	<2 	30 20	<. 02 <. 02	
	80-03-26 80-06-30		<10	70 100			<10 <10	<. 2	<2	30 30	<. 02 <. 02	
	79-10-31 80-03-03 80-06-17			20 140 30	<10		230 190 30	<. 2	 <2	30 30 280	<. 02 <. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 SUFFOLK COUNTY--Continued

			LOCAL IDENT- I-		GED- LOGIC	DATE OF	DEPTH OF WELL,	SPE- CIFIC CON- DUCT- ANCE	РН	TUR- BID-	HARD- NESS (MG/L	CALCIUM TOTAL RECOV- ERABLE
STATION	NUMBER		FIER		UNIT	SAMPLE	(FEET)	(MICRO- MHOS)	(UNITS)	ITY (NTU)	AS CACO3)	(MG/L AS CA)
4051340	73155901	S 15923	SCWA KING	S PARK	112GLCLU	79-10-02 80-02-14 80-05-19	260 260 260	60 240 195	6. 1 6. 2 5. 6	. 16 . 06 . 08	18 32 49	3. 5 18 10
4056070	73072401	S 1596	2 SCWA MUD	RD. 1	112GLCLU 112GLCLU 112GLCLU	79-09-01* 79-12-03 80-02-24 80-03-24 80-06-09	127 127 127 127 127	152 89 214 55 120	6. 0 6. 5 6. 1 6. 7 6. 7	. 12 . 11 . 32 . 07 . 18	43 26 52 16 33	9. 6 6. 1 11 3. 6 9. 5
4053010	73153201	S 16129	SCWA CARL	SON AVE	211MGTY 211MGTY 211MGTY	79-09-03 * 80-02-20 80-05-20	550 550 550	79 41 38	6. 1 5. 7 6. 3	. 08 . 07 . 08	26 7 10	7. 1 2. 0 2. 5
4045340	73163101	S 16175	SCWA LOCU	ST DR.		80-03-04 80-06-19	130 130	146 164	5. 6 5. 7	. 09	32 32	6. 5 7. 4
4045280	73150801	S 16176	SCWA EAST	FORKS	112GLCLU	79-11-14 80-03-05 80-06-23	117 117 117	225 220 142	5. 4 5. 9 6. 3	. 12 . 14 . 17	55 50 44	15 16 11
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-10-02 80-02-14 80-05-19	1.3 5.8 5.7	4. 7 14 14	. 5 1. 6 1. 4	15 33 8	3. 2 16 16	5. 5 20 20	 (. 1	. 9 6 7. 1 7. 9	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-09-01 79-12-03 80-02-24 80-03-24 80-06-09	4.3 2.0 5.7 1.2 3.1	10 4.6 15 3.7 8.9	. 9 . 5 1. 3 . 4 . 8	25 18 23 13 25	16 7.3 23 3.6 14	13 5. 5 16 5. 0 8. 5	 <. 1	2. 6 1. 1 4. 5 . 64 1. 9	<. 010 <. 010 <. 010 <. 010 <. 010	<. 010 <. 010 <. 010 <. 010 <. 010	C. 10C. 10C. 10C. 10C. 10	<5 <5
79-09-03 80-02-20 80-05-20	1.7 .6 .6	5. 6 3. 2 3. 6	. 7 . 4 . 4	17 8 10	4. 6 1. 5 1. 3	6. 5 5. 0 5. 0	 <. 1	1. 6 . 44 . 12	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	C. 10 C. 10 C. 10	<5
80-03-04 80-06-19	3. 2 2. 6	12 14	1. 1 1. 9	7 6	10 15	21 21	<. 1	3. 7 4. 3	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
79-11-14 80-03-05 80-06-23	4. 0 4. 6 2. 6	14 15 9. 7	3. 9 3. 4 1. 0	15 12 20	15 19 12	17 17 13	 c. 1	8. 6 9. 8 3. 4	<. 010 <. 010 <. 010	. 130 <. 010 <. 010	<. 10 <. 10 <. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-10-02 80-02-14 80-05-19	 0	2	50 30 30	30 100 <10	 <5	<10 30 20	c. 2	<2 	20 <10 20	C. 02 C. 02 C. 02	
	79-09-01 79-12-03 80-02-24 80-03-24 80-06-09	 0	 <5 <10	40 30 70 <10 40	40 90 <10 <10 40	 <5	<10 <10 <10 <10 <10	C. 2	 <2 <2	<10 <10 <10 30 20	<. 02 <. 02 <. 02 <. 02 <. 02	
	79-09-03 80-02-20 80-05-20	<u>-</u>	 9 	90 30 80	<10 <10 <10	 <5	<10 <10 <10	<. 2	<2 	80 <10 <10	C. 02 C. 02 C. 02	
	80-03-04 80-06-19	-0	<u><1</u>	120 100	<10 <10	 <5	60 160	<. 2 	<2	<10 30	<. 02 <. 02	
	79-11-14 80-03-05 80-04-23	 - 0	 2 	30 80 30	<10 <10 <10	 <5	320 270 70	<. 2	<2 	20 160 <10	<. 02 <. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACD3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40440207	73193202	S 16256	SCWA AUGU	ST RD.	211MGTY 211MGTY 211MGTY	79-09-20* 80-05-05 80-08-31	650 650 650	32 36 33	5. 1 5. 1 5. 3	. 20 . 14 . 32	7 4 2	1.2 .9 1.4
40523007	73030601	S 16309	9 SCWA BOY	LE RD	112GLCLU	79-10-30 80-04-23 80-08-27	251 251 251	62 58 60	6. 9 7. 1 7. 2	. 17 . 06 . 12	23 22 20	5. 0 5. 0 4. 8
40494707	72405601	S 16892	SCWA OLD	COUNTRY	112GLCLU	79-09-17 * 80-02-04 80-06-02	76 76 76	128 140 72	6. 4 7. 2 6. 0	. 14 . 26 . 22	26 44 15	8. 0 15 4. 3
40494507	72414201	S 16893	SCWA OLD	COUNTRY	112GLCLU	79-09-17 * 80-02-04 80-06-02	70 70 70	102 86 106	5. 8 6. 4 6. 0	. 10 . 10 . 30	24 21 21	5. 1 4. 0 6. 0
40495207	72583601	S 17037	SCWA RACE	AVE. 1	112GLCLU	79-12-11 80-01-29 80-05-07	155 155 155	126 108 91	6. 3 6. 5 6. 8	. 14 . 14 . 12	27 25 20	7. 3 7. 4 5. 8
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-09-20 80-05-05 80-08-31	. 4 . 5 . 4	3. 6 5. 2 3. 3	. 4	7 8 6		4. 0	 C. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 2. 6 <. 10	<5
79-10-30 80-04-23 80-08-27	1. 4 1. 8 1. 7	4. 1 3. 5 3. 6	. 4	18 21 24	1. 7 2. 4 3. 1	3. 5	 <. 1	. 31 . 08 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	. 25 . 32 . 28	<5
79-09-17 80-02-04 80-06-02	2. 3 2. 0 1. 4	9. 0 6. 6 6. 9	1. 1 1. 0 1. 0	22 38 10	7. 4 7. 7 9. 3	11	 <. 1	1. 3 1. 1 . 97	<. 010 <. 010 <. 010	<. 010 <. 010 . 640	<. 10 <. 10 <. 10	<5
79-09-17 80-02-04 80-06-02	1.7 1.3 1.9	9. 9 6. 6 14	1.0 .8 1.0	9 11 12	8. 9 8. 6 11		 C. 1	. 92 . 63 . 76	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-12-11 80-01-29 80-05-07	1. 9 1. 8 1. 2	10 B. 2 7. 9	1. 4 1. 0 1. 2	19 22 13		9. 0 9. 0 8. 0	 C. 1	2. 8 1. 7 2. 1	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	ERABLE (UG/L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-09-20 80-05-05 80-08-31		<10	20 60 40	580		<10 30 30	¢. 2	C2 —	20 20 30	C. 02 C. 02 C. 02	
	79-10-30 80-04-23 80-08-27		<10	<10 <10 30	<10		<10 <10 20	<. 2	C2	<10 <10 10	<. 02 <. 02 <. 02	
	79-09-17 80-02-04 80-06-02		 C5	50 180 30	<10		<10 <10 20	c. 2	 (2 	20 30 <10	C. 02 C. 02 C. 02	
	79-09-17 80-02-04 80-06-02		 <5 	100 220 30	60		<10 <10 <10	c. 5	C2	30 100 20	<. 02 <. 02 <. 02	
	79-12-11 80-01-29 80-05-07		 <5	30 20 40	<10		50 <10 50	<. 2	<2 	10 120 <10	<. 02 <. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
4054130	72232901	S 17474	SCWA LONG	SPRING		80-01-28 80-05-06	103 103	234 196	6. 2 6. 3	. 12	78 75	19 18
4049330	73060301	S 17630	SCWA SAMU	JEL ST. 2	112GLCLU	79-10-30 80-01-20 80-05-05	178 178 178	218 183 114	5. 8 5. 9 6. 1	. 42 . 03 . 24	48 41 30	11 10 7. 5
4054490	73025601	S 17689	SCWA JAYN	E BLVD.	211MGTY 211MGTY	79-11-26 80-03-23	543 543	43 41	6. 1 6. 7	. 12	13 12	3. 2 2. 9
4042330	73204101	S 18003	SCWA SAWY	'ER AVE.	211MGTY 211MGTY 211MGTY	79-11-06 80-04-17 80-08-18	668 668 668	22 23 21	4. 9 5. 2 4. 7	. 21 . 47 . 22	11 5 3	. 8 1. 7 . 7
4047070	73190401	S 18261	SCWA PLYN	OUTH ST	211MGTY 211MGTY 211MGTY	79-09-25* 80-04-17 80-08-31	377 377 377	58 69 51	5. 4 6. 1 5. 6	. 10 . 09 . 08	14 20 12	3. 0 5. 7 2. 3
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS-	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
80-01-28 80-05-06	7. 0 6. 6	8. 1 8. 5	1.7 1.6	14 12	41 39	16 17	<. 1	5. 7 4. 8	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	==
79-10-30 80-01-20 80-05-05	4. 2 3. 9 3. 1	15 14 9. 6	1.5 1.6 1.0	28 24 20	12 10 6. 3	18 16 11	 c. 1	5. 7 5. 2 2. 7	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-11-26 80-03-23	. 9	3. 5 3. 2	. 3	13 12				. 20 . 21	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	<5
79-11-06 80-04-17 80-08-18	. 2	2. 2 2. 0 2. 2	. 3	6 3 5		3. 0	 C. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-09-25 80-04-17 80-08-31	1. 0 1. 4 1. 0	4. 4 4. 5 4. 6	. 4 . 5 . 4	9 14 7	1. 9	7. 0	 <, 1	1. 5 1. 6 . 96	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)		MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	80-01-28 80-05-06		<5 	50 60			<10 <10	c. 2	<2 	170 <10	<. 02 <. 02	
	79-10-30 80-01-20 80-05-05		<5 	180 50 <10	<10		140 200 90	<. 2 	 <2 	30 <10 10	<. 02 <. 02 <. 02	
	79-11-26 80-03-23	=	<10	30 <10			<10 20	 <. 2	<2	<10 80	<. 02 <. 02	
	79-11-06 80-04-17 80-08-18		<10	<10 <10 50	420		20 20 <10	<. 5 	C2	20 60 10	C. 02 C. 02 C. 02	
	79-09-25 80-04-17 80-08-31		<10	70 70 110	<10		<10 <10 <10	<. 2	<2 	100 <10 <10	C. 02 C. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GED- LDGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACD3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40452807	73150501	S 18566	SCWA EAST	FORKS	211MGTY 211MGTY 211MGTY	79-11-04 80-03-03 80-06-17	65 65 65	41 43 38	5. 7 5. 8 5. 8	. 23 . 18 . 23	11 9 11	2. 4 2. 2 2. 0
40470407	73190401	S 18621	SCWA PLYM	очтн эт	112GLCLU	79-09-18* 80-04-17 80-08-31	201 201 201	16 75 45	5. 7 5. 4 5. 9	. 10 . 06 . 17	20 17 14	3. 8 3. 3 3. 0
41031007	71570001		S 18762		112GLCLU	79-09-17 * 80-01-21 80-06-10	167 167 167	190 171 165	6. 6 6. 7 6. 8	. 10 . 14 . 05	36 34 33	7. 2 6. 8 6. 2
40430107	73161901	S 19048	SCWA UNI	ON ST	112GLCLU	79-11-05 80-03-03 80-06-24	731 731 731	30 36 72	5. 2 5. 2 4. 9	. 43 . 08 . 42	4 3 2	. 8 1. 0 1. 1
40535607	73275801	S 19198	SCWA WEST	NECK R	211LLYD 211LLYD	80-04-15 80-07-29	431 431	72 79	6. 0 6. 3	. 07	16 20	4. 5 4. 5
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-11-04 80-03-03 80-06-17	. 7 . 8 . 8	3. 5 3. 2 3. 4	. 3	11 9 8	4. 1 4. 3 3. 8	3. 0 4. 0 5. 5	 <. 1	C. 01 . 18 C. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-09-18 80-04-17 80-08-31	1.8 1.8 .9	6. 2 6. 1 3. 1	. 5 . 5 . 4	11 11 10	2. 1 2. 2 2. 2		 <. 1	2. 5 2. 5 . 15	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 . 18 <. 10	<5
79-09-17 80-01-21 80-06-10	3. 6 3. 6 3. 2	19 15 18	1. 4 1. 1 1. 3	24 22 26	7. 3 7. 5 9. 6	33 28 27	 <. 1	. 55 . 56 . 22	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	C5
79-11-05 80-03-03 80-06-24	. 3 . 3 . 3	3. 3 4. 7 2. 8	. 5 . 5 . 5	5 4 2	2. 3 3. 0 3. 1	4. 5 4. 5 4. 0	<. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	C. 010 C. 010 C. 010	. 54 2. 7 . 10	<5
80-04-15 80-07-29	1.8 1.8	5. 7 6. 0	. 7	16 16	3. 6 4. 2	6. 5 7. 0	<. 1	1.4	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	, =
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-11-04 80-03-03 80-06-17	 0	<10	20 20 30	50 100 470		30 30 <10	<. 2	<2 	40 <10 <10	<. 02 <. 02 <. 02	
	79-09-18 80-04-17 80-08-31		<10	70 210 260	<10 <10 110		<10 <10 20	<.2	<2 	20 <10 <10	<. 02 <. 02 <. 02	
	79-09-17 80-01-21 80-06-10	 o	<5 	<10 <10 30			<10 <10 <10	<. 2	<2 	<10 <10 <10	C. 02 C. 02 C. 02	
	79-11-05 80-03-03 80-06-24		<1 	20 20 <10	580 420 330	 <5	30 <10 <10	<.2	<2 	30 <10 20	C. 02 C. 02	
	80-04-15 80-07-29	0	<10	100	80 <10	 <5	20 <10	<. 2 	<2	40 50	C. 02 C. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GED- LDGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40492107	73122701	5 19399	SCWA WHEE	ELER RD.	112GLCLU	79-12-26 80-01-31 80-05-28	131 131 131	252 250 222	6. 0 6. 1 6. 3	. 13 . 09 . 15	52 53 48	14 13 13
40495307	72583601	S 19408	SCWA RACE	AVE. 2		80-01-29 80-05-06	166 166	95 80	7. 3 6. 6	. 12	28 28	7. 6 6. 1
40544307	73064501	S 19465	SCWA DAN	WEBSTER	112GLCLU	79-11-19 80-02-20 80-06-13	178 178 178	140 138 148	6. 1 6. 2 6. 1	. 13 . 08 . 11	41 39 42	10 9. 5 9. 4
40455007	73104301	S 19565	SCWA BELL	MORE AV	211MGTY 211MGTY 211MGTY	79-12-18 80-03-24 80-07-13	117 117 117	228 237 210	6. 3 5. 9 5. 6	. 08	65 31 48	2. 1 18 16
40480807	73113301	S 19584	SCWA HALF	MILE R	112GLCLU	80-04-09	155	79	6.8	. 76	24	7. 0
40512907	73071901	S 19884	SCWA SY	CT #1	112GLCLU	79-10-30 80-01-23 80-05-05	288 288 288	143 116 118	5. 7 7. 2 6. 2	. 23	33 30 25	8. 5 6. 8 6. 4
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-12-26	4. 1	24	2. 4	24	9. 5	42		4.3	<. 010	. 400	C. 10	<5
80-01-31 80-05-28	3. 7	55 55	2. 6	26 19	18 16	35 39	<. 1	3. 6 2. 9	<. 010 <. 010	. 530	<. 10 <. 10	
80-01-29 80-05-06	2. 3 2. 5	4. 8 4. 3	. 5	27 21	6. 7 5. 7	5. 5 6. 5	<. 1	. 83 1. 2	<. 010 <. 010	<. 010 <. 010	. 12 <. 10	=
79-11-19 80-02-20 80-06-13	4. 0 3. 8 3. 8	8. 9 9. 5 9. 9	. 7 . 7 . 7	26 24 24	2. 8 3. 6 4. 6	12 12 13	 <. 1	4. 0 4. 5 4. 9	<. 010 <. 010 <. 010	<. 010 <. 010 . 140	<. 10 <. 10 <. 10	<5
79-12-18 80-03-24 80-07-13	4. 0 4. 1 3. 7	11 13 12	3. 9 4. 4 4. 5	24 11 11	28 31 28	17 21 18	 <. 1	4. 7 5. 5 6. 2	<. 010 <. 010 <. 010	C. 010 . 080 C. 010	C. 10 C. 10 C. 10	<5
80-04-09	1.6	4. 7	. 5	25	3. 9	6. 0		. 25	<. 010	<. 010	<. 10	
79-10-30 80-01-23	2. 9 2. 4	10 8.4	. 9	16 18	10 8. 7	10 9. 0		4. 0	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	<5
80-05-05	2. 4	12	. 8	23	7. 7	11	<. 1	3. 2	<. 010	<. 010	<. 10	-
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-12-26 80-01-31		 <5	80 100	50 80		50 30	 c. 2	C2 	260 60	C. 02	
	80-05-28	0		140	<10		40			20	<. 02	
	80-01-29 80-05-06		<5 	30 40	100 <10	<5	<10 <10	<. 2 	 <5	110 <10	<. 02 <. 02	
	79-11-19 80-02-20 80-06-13		 <5 	60 30 70	30 40 30	 <5	<10 <10 <10	<. 2 	<2 	30 30 10	<. 02 <. 02 <. 02	
	79-12-18 80-03-24 80-07-13	 0	<10 	100 30 <10	150 <10 30	 <5	50 80 70	<. 2 	<2 	550 30 20	<. 02 <. 02 <. 02	
	80-04-09	_	<10	110			30	<. 2	<2	<10	c. 02	
	79-10-30 80-01-23 80-05-05	 _ 0	 <5	<10 <10 <10	<10 <10 <10		<10 20 <10	c. 2	<2 	20 <10 20	<. 02 <. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

			LOCAL		GEO-	DATE	DEPTH OF	SPE- CIFIC CON- DUCT-		TUR-	HARD- NESS	CALCIUM TOTAL RECOV-
STATION	NUMBER		I- FIER		LOGIC	OF SAMPLE	WELL, TOTAL (FEET)	ANCE (MICRO- MHOS)	PH FIELD (UNITS)	BID- ITY (NTU)	(MG/L AS CACO3)	ERABLE (MG/L AS CA)
40512807	73072001	S 19885	SCWA SY	CT #2		80-01-23 80-05-11	297 297	165 140	6. 0 5. 9	. 13	35 35	9. 7 9. 3
40451907	73225101	S 20057	SCWA CIRC	LE DR.	112GLCLU	79-09-17 * 80-04-16 80-08-31	200 200	32 26 28	5. 7 5. 7 5. 5	. 18 . 06 . 12	10 3 5	3. 3 1. 4 1. 2
40451607	73225101	S 20300	SCWA CIRC	LE DR.	211MGTY 211MGTY 211MGTY	79-09-23* 80-04-27 80-08-31	232 232 232	32 18 21	5. 1 5. 6 5. 6	. 10 . 14 . 06	4 0 5	3. 3 . 9 1. 1
40424007	73225002	\$ 20460	SCWA TENE	TY ST.	211MGTY 211MGTY 211MGTY	79-11-04 80-04-09 80-08-17	499 499 499	37 32 31	4. 6 5. 2 4. 8	. 13 . 32 . 15	5 4 4	. 8 1. 6 . 9
40454707	73104201	5 20479	SCWA BELL	MORE AV	112GLCLU	79-12-12 80-03-23 80-07-13	128 128 128	180 186 180	5. 5 5. 8 6. 0	. 07 . 10 . 13	48 48 42	14 12 14
40525707	73202901	S 20530	SCWA LAUR	EL HILL	1120LCLU	79-09-26*	607	40	5. 2	. 08	8	2. 1
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
80-01-23 80-05-11	3. 0 3. 0	12 12	1.0	25 22	9. 7 9. 2	11 13	<. 1	4. 9 4. 7	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	
79-09-17 80-04-16 80-08-31	. 3	2. 3 2. 6 2. 9	. 3	13 5 5	. 6	4. 0	 <. 1	<. 01 . 14 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-09-23 80-04-27 80-08-31	. 2	2. 3 2. 2 2. 3	.3	6 6 4	. 6 . 3 . 3	3. 0	 C. 1	<. 01 . 05 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-11-04 80-04-09 80-08-17	. 3	3. 9 3. 2 3. 7	.3	4 4 4	1. 8 3. 0 3. 4	4. 0	 c. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	1.3 .12 .72	<5
79-12-12 80-03-23 80-07-13	3. 4 3. 2 3. 5	10 10 10	3. 6 3. 5 3. 6	11 9 12	23 27 23	14 15 9. 5	 C. 1	4. 6 4. 7 6. 0	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-09-26	. 6	3. 6	. 4	8	. 2	4. 0		1.3	<. 010	<. 010	<. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	ERABLE (UG/L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	80-01-23 80-05-11	-0	C5	30			<10 <10	<. 2 	<5	<10 20	<. 02 <. 02	
	79-09-17 80-04-16 80-08-31	- 1	<10	20 20 40	190		<10 20 <10	<. 2	<2 	<10 300 30	C. 02 C. 02	
	79-09-23 80-04-27 80-08-31		<10 	20 <10 50	70		<10 <10 <10	<. 2 	 <2 	<10 <10 30	<. 02 <. 02 <. 02	
	79-11-04 80-04-09 80-08-17		<10 	100 110 40			20 50 20	<. 2 	<2 	20 570 	<. 02 <. 02 <. 02	
	79-12-12 80-03-23 80-07-13		<10	90 <10 <10	20		130 110 100	<. 2	C2	360 <10 20	<. 02 <. 02 <. 02	
	79-09-26	-		100	<10	-	<10	-	-	30	c. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	I NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
4043170	73153601	S 20566	SCWA N F	FTH AVE	211MGTY 211MGTY 211MGTY 211MGTY	79-09-19* 79-12-26 80-04-17 80-08-04	775 775 775 775	26 26 24 26	4. 7 5. 1 5. 1 5. 1	. 53 . 34 . 27	4 6 4 10	1. 0 . 6 1. 6 . 9
4052560	73045601	S 20591	SCWA HAWM	INS RD.	1120LCLU	79-10-30	150	267	5. 9	. 15	53	14
4045040	73131701	S 200	503 SCWA 4	1 ST	112GLCLU 112GLCLU	79-12-12 80-03-24 80-04-01 80-08-27	110 110 110 110	200 48 218 205	5. 3 6. 1 5. 7 5. 2	. 10 . 16 . 07 . 18	38 14 40 39	9. 5 2. 5 11 12
4044020	73193201	S 2063	5 SCWA AUG	OUST RD	211MGTY 211MGTY 211MGTY	79-09-16* 80-04-21 80-08-31	704 704 704	35 39 36	4. 8 5. 5 5. 3	. 19 . 08 . 20	9 6 3	1. 3 1. 8 1. 7
4049410	72372207	S 20688	SCWA MEET	ING HOU	112GLCLU	79-09-17* 80-02-04 80-06-02	78 78 78	79 77 71	5. 7 6. 2 6. 0	. 10 . 07 . 12	21 20 19	4. 6 4. 3 4. 4
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-09-19 79-12-26		3. 0 2. 9	. 3	4	2.4	3. 0 3. 0		<. 01 <. 01	<. 010 <. 010	C. 010 C. 010	<. 10 <. 10	
80-04-17 80-08-04		2. 8 3. 0	. 3	6 4	2.0	2. 5	<. 1	. 09	<. 010 <. 010	<. 010 <. 010	. 16	<5
79-10-30	5. 2	18	2. 6	12	18	20		10	<. 010	<. 010	<. 10	<5
79-12-12		16	2. 2	10		18		5.8	<. 010	. 620	<. 10	<5
80-03-24 80-04-01	3.1	4. 1 17	. 4 2. 2	12 10	22	22	==	. 37 5. 8	<. 010 <. 010	<. 010 . 660	<. 10 <. 10	
80-08-27		17	2. 1	11	20	20	<. 1	6. 6	<. 010	. 550	<. 10	
79-09-16 80-04-21	. 6	3. 8 4. 7	. 4	9	2.8			<. 01 <. 01	<. 010 <. 010	<. 010 <. 010	1. 2 2. 8	<5
80-08-31		3. 3	. 4	4		4. 5	<. 1	C. 01	<. 010	<. 010	. 79	
79-09-17 80-02-04 80-06-02	1.9	5. 5 4. 7 5. 0	. 7	13 12 12	9. 5	6. 0 7. 0 7. 5	<. 1	. 93 . 80 . 71	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	C. 10 C. 10 C. 10	C5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-09-19 79-12-26	0		120			<10	==	=	80	<. 02 <. 02	
	80-04-17 80-08-04		<10	170 120	500		20	<. 2	<5	<10 120	<. 02	
	79-10-30			90 60			<10 40			20	. 02	
	79-12-12			40			380		42	100	. 15	
	80-03-24		<10	30			20	<. 2	<2	70	<. 02	
	80-04-01 80-08-27	0	<10	40 60			400 440	<. 2	<2	20 60	<. 11 <. 02	
	79-09-16			50			<10			120	c. 02	
	80-04-21 80-08-31	0	<10	10			30	<. 2 	<5	50 60	<. 02 <. 02	
	79-09-17			140			40			20	<. 02	
	80-02-04		<5	70	<10		<10	c. 2	<2	30	<. 02	
	80-06-02	0		100	50	<5	20			30	<. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		QEO− LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACD3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40504507	73120401	S 20689	SCWA NEW	YORK AV	211MGTY 211MGTY 211MGTY	79-12-19 80-02-14 80-05-21	596 596 596	54 52 49	6. 6 6. 4 6. 5	. 17 . 08 . 07	16 36 18	5. 6 5. 1 3. 8
40415807	73212201	S 2095	5 SCWA ALE	IN RD.	211MGTY	80-08-18	630	22	5. 1	. 27	1	1. 1
40513407	73235702		S 21121			80-04-01 80-07-29	560 560	85 74	6. 5 6. 5	. 58 . 20	20 23	5. 8 4. 9
40430407	73162001	S 2124	4 SCWA UNI	ON ST	211MGTY 211MGTY 211MGTY	79-11-05 80-03-04 80-06-23	602 602	41 43 41	6. 0 6. 1 6. 2	. 75 . 18 . 75	11 9 12	1. 9 1. 9 1. 8
40471707	72595601	S 21247	SCWA BART	ON AVE.	112GLCLU	79-09-04* 79-11-25 80-01-28	145 145 145	53 134 132	6. 3 5. 7 6. 5	. 11	18 33 30	3. 9 7. 6 7. 7
4043570	73181601	S 21366	SCWA HARV	EST LAN	211MGTY 211MGTY 211MGTY	79-11-07 80-04-18 80-08-17	455 455 455	33 28 29	6. 0 6. 0 6. 5	. 12	8 7 8	1. 7 1. 7 3. 1
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)		ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-12-19 80-02-14 80-05-21	1.7 1.9 1.5	3. 8 3. 0 3. 4		19 22 18	2.6	4. 0	 C. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	C. 10 C. 10 C. 10	<5
80-08-18	. 3	2. 3	. 3	3	2. 8	4. 5	<. i	<. 01	<. 010	<. 010	<. 10	-
80-04-01 80-07-29	1. 9 1. 8	5. 9 5. 7	5	20 17			<. 1	2. 5 1. 8	. 010 <. 010	C. 010 . 160	<. 10 <. 10	=
79-11-05 80-03-04 80-06-23	1. 1 . 9 . 9	3. 8 4. 7 4. 1		11 11 11	1. 0 1. 9 1. 6	3. 5	 <. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	. 79 2. 1 1. 3	<5
79-09-04 79-11-25 80-01-28	1. 2 2. 6 2. 4	3. 7 9. 5 9. 4	. 3 1. 7 1. 7	18 13 12	11	4. 0 12 13	Ξ	. 13 3. 8 4. 0	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-11-07 80-04-18 80-08-17	. 6	2. 9 2. 4 2. 7		8 7 12	1.6	3. 5	 <. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	. 90 . 32 <. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)			MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-12-19 80-02-14 80-05-21		 <5	390 <10 20	30		40 <10 <10	<. 2	<5 	860 <10 30	<. 02 <. 02 <. 02	
	80-08-18	2		70	440	6	20			190	<. 02	
	80-04-01 80-07-29		<10	50 60			<10 <10	C. 2	<2 	10 20	<. 02 <. 02	
	79-11-05 80-03-04 80-06-23		<1 	20 <10 <10	360		30 10 <10	<. 2 	C2	20 <10 40	C. 02 C. 02 C. 02	
	79-09-04 79-11-25 80-01-28		 <5	30 50 70	50		<10 50 60	 c. 2	 (2	<10 30 500	C. 02 C. 02 C. 02	
	79-11-07 80-04-18 80-08-17		<10 	<10 <10 20	380		10 30 70	<. 2 	 <2 	<10 <10 30	C. 02 C. 02 C. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL	SPE- CIFIC CON- DUCT- ANCE (MICRO-	PH FIELD	TUR- BID- ITY	HARD- NESS (MG/L AS	CALCIUM TOTAL RECOV- ERABLE (MG/L
4042200	73190302	C 2127	5 SCWA SMI	TH ST		70 11 05	(FEET) 500	MHOS)	(UNITS) 5. 4	(NTU) . 20	CAC03)	AS CA)
4042200	73170302	5 2137	S SCWA SHI	in Si.	211MGTY 211MGTY 211MGTY	79-11-05 80-04-21 80-08-18	500 500	30 28	5. 5 5. 5	1. 9	5	. 9 . B
4043200	73222401	S 21487	SCWA TWEL	FTH ST.	211MGTY 211MGTY 211MGTY	79-11-05 80-04-07 80-08-18	337 337 337	77 102 97	5. 3 5. 4 5. 2	. 35 . 09 . 31	15 12 17	2. 4 2. 4 2. 5
4054430	73064502	S 21632	SCWA DAN	WEBSTER	211MGTY 211MGTY 211MGTY	79-11-13 80-02-24 80-06-12	516 516 516	38 38 35	5. 8 6. 1 6. 2	. 08 . 04 . 12	10 12 13	1. 9 2. 0 2. 2
4051590	73085501	S 21945	SCWA ASTO	R AVE.	211MGTY	80-08-26	726	149	7. 2	. 43	54	12
4052590	73202801	S 22048	SCWA LAUR	EL HILL		80-03-03 80-07-01	600 600	39 41	5. 6 5. 8	. 05	9 12	1. 7 2. 2
40405407	73231801	S 22351	SCWA LAMB	ERT AVE	211MGTY 211MGTY 211MGTY	79-11-04 80-04-20 80-08-06	558 558 558	36 37 38	4. 9 4. 9 5. 0	. 16	7 6 11	1.5 1.3 1.9
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-11-05 80-04-21	. 5	3. 5 3. 3	. 4	5	2. 1 2. 8	5. 0 4. 0		<. 01 <. 01	<. 010 <. 010	<. 010 <. 010	. 36	<5
80-08-18	. 5	3. 1	. 4	4	2. 9	2. 5	<. 1	<. 01	<. 010	<. 010	<. 10	
79-11-05 80-04-07 80-08-18	1. 0 1. 1 1. 2	8.0 10 11	. 5 . 6	15 4 5	4. 8 2. 8 9. 9	12 17 18	 <. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 . 220 <. 010	. 20 1. 8 . 98	<5
79-11-13	. 6	3. 1	. 3	12	1.2	4. 0		. 04	<. 010	<. 010	<. 10	<5
80-02-24 80-06-12	. 7	3. 4 3. 3	. 3	12 12	1. 6 1. 4	4. 5 4. 0	<. 1	. 19	<. 010 <. 010	<. 010 . 100	<. 10 <. 10	
80-08-26	6. 0	7. 0	. 7	47	4. 7	10	<. 1	. 59	<. 010	<. 010	<. 10	
80-03-03 80-07-01	. 6	3. 5 3. 9	. 4	6 7	. 4		<. 1	1.5 1.4	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
79-11-04 80-04-20 80-08-06	. 7 . 7 . 7	3. 3 3. 1 3. 6	. 4 . 4 . 4	7 6 3	4. 3 3. 2 2. 4		<. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	. 62 1. 4 1. 0	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-11-05 80-04-21 80-08-18	 0	<10	<10 <10 130	420 530 830	00	<10 <10 30	<. 2 	<2 	<10 20 10	<. 02 <. 02 <. 02	
	79-11-05 80-04-07 80-08-18		<10	30 30 30	800 880 1040		20 50 50	<. 2	<2 	30 20 40	C. 02 C. 02 C. 02	
	79-11-13 80-02-24 80-06-12	 _ 0	 <5 	30 40 40	60 <10 40		<10 <10 30	<. 2 	<2 	<10 <10 230	<. 02 <. 02 <. 02	
	80-08-26	0	:	50	60	<5	100			20	<. 02	
	80-03-03 80-07-01	-0	<1 	70 130	20 90		<10 <10	c. 2	<5	<10 20	<. 02 <. 02	
	79-11-04 80-04-20 80-08-06		<10	30 20 <10	360 450 340		20 30 <10	<. 2 	 <2 	20 50 50	<. 02 <. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACD3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
4049550	73170401	S 22362	SCWA SCHU	YLER DR	112GLCLU 112GLCLU	80-02-19 80-05-22	314 314	92 82	6. 3 6. 5	. 28	29 22	6. 9 6. 8
4043570	73181502	S 22389	SCWA HARV	EST LA.	211MGTY 211MGTY	79-11-06 80-08-18	465 465	46 74	6. 0 6. 4	. 37 . 38	13 10	2. 8 3. 5
4049220	73162901	S 22471	SCWA WICK	S RD. 1	211MGTY 211MGTY	80-02-20 80-05-15	383 383	66 69	6. 1 5. 8	. 06 . 15	14 21	3. 3 4. 4
4051550	73045202	S 2254	7 SCWA EAS	TWOOD	112GLCLU	79-10-30 80-01-27 80-05-05	109 109 109	177 163 152	6. 0 6. 8 6. 3	. 18 . 13 . 23	37 40 39	10 9. 9 10
4047050	73190701	S 22548	SCWA PLYM	OUTH ST	211MGTY 211MGTY 211MGTY	79-09-23* 80-04-16 80-08-31	416 416 416	30 84 28	4. 5 5. 8 5. 0	. 22 . 16 . 18	8 23 10	1.3 7.3 1.6
4056250	73031801	S 22640	SCWA BELL	E TERRE	211MGTY 211MGTY	80-02-20 80-06-09	453 453	200	7. 1 7. 4	. 10	61 66	15 16
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
80-02-19 80-05-22		5. 8 6. 2	. 6	20 19	3. 4	7. 0	 C. 1	2. 5	<. 010 <. 010	C. 010 C. 010	C. 10 C. 10	
79-11-06		5. 0	. 5	14	3. 3	7. 0 4. 5		<. 01	<. 010	<. 010	3. 3	<5
80-08-18		8. 3	1.0	17	7. 3	4. 0	<. 1	<. 01	<. 010	<. 010	12	
80-02-20 80-05-15		5. 2 5. 5	. 6	10 9	. 5 1. 0	6. 5 8. 0	<. 1	2. 9 3. 6	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	
79-10-30 80-01-27 80-05-05	3. 6	11 11 11	1. 4 1. 3 1. 4	16 17 17	10 11 11	12 12 13	 <. 1	6. 2 6. 4 6. 5	<. 010 <. 010 . 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-09-23 80-04-16 80-08-31	1.7	2. 6 6. 0 2. 7	. 3 . 5 . 4	4 16 3	1. 0 2. 0 1. 4	4. 0 7. 0 5. 0	 C. 1	. 62 2. 3 . 13	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	C. 10 . 32 C. 10	<5
80-02-20 80-06-09		11 12	1. 2 1. 2	32 33	19 20	17 18	<. 1	3. 1 3. 3	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	TOTAL RECOV-	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	80-02-19 80-05-22		1	40			20 <10	<. 2	<2	20 20	<. 02 <. 02	
	79-11-06 80-08-18			20 120	730		30 70		=	30 50	C. 02 C. 02	
	80-02-20 80-05-15	-0	5	70 170			<10 <10	C. 2	<u><5</u>	<10 <10	C. 02 C. 02	
	79-10-30			60			<10			<10	c. 02	
	80-01-27 80-05-05	.0	<5 	70 100			40 60	<. 2 	C2 	<10 30	<. 02 <. 02	
	79-09-23 80-04-16 80-08-31		<10	100 80 180	50		<20 30 <10	<. 2	<2 	<10 <10 50	C. 02 C. 02 C. 02	
	80-02-20 80-06-09	-0	<5 	20	<10		<10 <10	<. 2	<2	<10 20	C. 02 C. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
4044580	73182501	S 2304	S SCWA BRO	OOK AVE	211MGTY 211MGTY 211MGTY	79-09-25* 80-03-03 80-06-17	448 448 448	24 24 23	4. 6 5. 2 4. 7	. 14 . 03 . 17	6 5 4	1. 0 1. 3 . 7
4049210	73122702	S 23183	SCWA WHEE	LER RD.	211MGTY 211MGTY 211MGTY	79-12-12 80-01-30 80-05-28	341 341 341	73 94 66	6. 4 6. 8 6. 2	. 16 . 28 . 19	22 22 21	4. 6 5. 4 4. 8
4051240	72353602	S 23184	SCWA SPIN	INEY RD.	112GLCLU	79-09-17 * 80-02-0 4 80-06-02	118 118 118	145 180 155	5. 8 6. 5 6. 0	. 20 . 16 . 15	44 52 46	10 12 12
4056070	73072402	S 2318	5 SCWA MUD	RD. 2	211MGTY 211MGTY 211MGTY	79-10-23 80-02-19 80-06-09	544 544 544	43 40 34	6. 4 6. 2 6. 2	. 27 . 11 . 17	12 10 6	3. 6 2. 3 2. 0
4052510	73142801	S 23186	SCWA LAWR	ENCE RD	211MGTY 211MGTY	80-02-20 80-05-21	497 497	29 28	5. 7 5. 7	. 14	5 6	1. 2 1. 2
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-09-25 80-03-03 80-06-17	. 3	2. 2 1. 9 2. 3	. 3	6 8 2	2. 4 3. 0 2. 8	3. 5 2. 0 4. 0	 C. 1	. 02 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-12-12 80-01-30 80-05-28	1.8 2.2 1.8	4. 9 4. 9 4. 9	. 4 . 5 . 5	15 14 14	5. 9 8. 6 5. 7	6. 0 7. 0 6. 5	 <. 1	. 96 1. 1 . 73	<. 010 <. 010 <. 010	<. 010 <. 010 . 060	<. 10 <. 10 <. 10	<5°
79-09-17 80-02-04 80-06-02	5. 0 6. 7 6. 0	7. 0 7. 8 7. 0	1. 4 . 9 1. 3	14 14 11	23 30 29	9. 0 10 10	 c. 1	2. 9 4. 0 3. 1	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-10-23 80-02-19 80-06-09	1.0 .7 .7	4. 0 3. 3 3. 4	. 4	16 11 12	2. 4 2. 2 2. 0		 <. 1	. 31 . 09 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
80-02-20 80-05-21	. 4	2. 6 3. 1	. 3	7 8			c. 1	. 36	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-09-25 80-03-03 80-06-17	 o	1	<10 20 20	140		30 30 20	c. 2	 <2 	20 <10 <10	<. 02 <. 02 <. 02	
	79-12-12 80-01-30 80-05-28		 <5	30 40 40	<10		<10 <10 <10	<. 2	 <2 	40 20 260	<. 02 <. 02 <. 02	
	79-09-17 80-02-04 80-06-02	 o	 <5 	210 210 110	50		<10 <10 <10	<.2	 C2 	60 50 20	<. 02 <. 02 <. 02	
	79-10-23 80-02-19 80-06-09	 0	 <5 	<10 30 30	<10		<10 <10 <10	<. 2 	<2 	<10 <10 20	C. 02 C. 02 C. 02	
	80-02-20 80-05-21		6	30 50			<10 <10	c. 2	<5	10 20	<. 02 <. 02	

WATER GUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATIO	ON NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACD3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40533	6073202101	5 23371	SCWA CHUR	RCH ST.	112GLCLU	79-09-12* 80-03-17 80-07-01	474 474 474	13 105 70	5. 8 6. 3 5. 6	. 17 . 14 . 06	22 31 13	4. 8 8. 5 3. 9
40494	2072591601	S 23440	SCWA BEE	CHNUT AV	112GLCLU	79-12-10 80-01-20 80-05-05	165 165 165	132 114 122	6. 4 6. 4 6. 3	. 09 . 09 . 13	32 29 34	8. 4 8. 2 8. 6
404659	9073164101	S 23445	SCWA EMJ	AY BLVD.	211MGTY 211MGTY 211MGTY	79-12-06 80-03-05 80-06-17	608 608	48 43 47	5. 7 6. 1 5. 6	. 10 . 12 . 09	16 7 12	3. 0 2. 2 2. 2
405158	8073030001	S 23524	4 SCWA BOY	YLE RD	112GLCLU	79-10-30 80-04-23 80-08-27	446 446 446	47 44 45	6. 3 6. 4 6. 2	. 17 . 06 . 16	10 11 20	2. 6 2. 6 2. 8
40504	7073120601	S 23631	SCWA NEW	YORK AV	211MGTY 211MGTY 211MGTY	79-12-18 80-02-14 80-05-21	595 595 595	55 53 49	6. 4 6. 2 6. 2	. 17 . 08 . 28	15 15 15	4. 6 3. 4 3. 4
DATE OF SAMPLI	ERABLE	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-09- 80-03- 80-07-	17 2.3	5. 5 6. 3 5. 3	. 6 . 7 . 6	11 13 10		7. 0 8. 5 6. 5	 <. 1	3. 3 4. 4 3. 0	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	C. 10 C. 10 C. 10	<5
79-12- 80-01-3	10 2.6 20 2.4	9. 0 7. 7 10	1.3 1.2 1.5	24 21 24		9. 0	 C.1	2. 6 2. 3 3. 5	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-12-0 80-03-0 80-06-	06 . 9 05 . 9	3. 5 3. 8 4. 0	.3	11 7 7	3. 5 2. 0	4. 5 5. 0	 C. 1	. 52 1. 0 1. 1	<. 010 <. 010 <. 010	<. 010 . 340 <. 010	<. 10 <. 10 <. 10	<5
79-10-3 80-04-3 80-08-3	30 . 9	4. 1 3. 7 4. 0	. 3	12 10 14	1.0 1.3	4. 0 5. 5	 C. 1	. 43 . 56	<. 010 <. 010 <. 010	<. 010 <. 010 <. 130	<. 10 <. 10 <. 10	<5
79-12- 80-02- 80-05-	18 1.7 14 1.5	4. 5 3. 3 3. 6	. 5 . 5	20 17	2. 2 2. 8	3. 5 4. 5	 c. 1	<. 01 <. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	1. 4 <. 10 <. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-09-12 80-03-17 80-07-01		<10	70 130 120	120		<10 <10 <10	C. 2	 <2 	<10 20 50	C. 02 C. 02 C. 02	
	79-12-10 80-01-20 80-05-05	 o	<5 	30 <10 <10	80		60 30 70	C. 2	C2 	20 250 <10	C. 02 C. 02 C. 02	
	79-12-06 80-03-05 80-06-17		<10	70 70 30	40		<10 <10 <10	<.2	 <2 	10 <10 <10	C. 02 C. 02 C. 02	
	79-10-30 80-04-23 80-08-27	 _ o	<10	<10 <10 30	<10		<10 <10 20	<. 2 	C2 	<10 <10 30	<. 02 <. 02 <. 02	
	79-12-18 80-02-14 80-05-21		<u></u> <1	60 20 40	930		<10 20 <10	<. 2 	 <2 	700 <10 30	<. 02 <. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
4053090	73223402	S 2369	9 SCWA MEA	ADE DR.		80-04-02 80-07-29	185 185	290 185	6. 5 6. 7	. 13 . 15	15 68	21 16
4049550	73170402	S 23715	SCWA SCHU	YLER DR		80-02-20 80-05-21	313 313	70 85	6. 7 6. 3	. 11	18 24	5. 2 6. 5
4049220	73162701	S 2383	2 SCWA WIC	CKS RD.	211MGTY 211MGTY	80-02-20 80-05-19	409 409	63 62	6. 1 5. 6	. 13	11 16	3. 3 3. 5
4044300	73211301	S 23848	SCWA WYAN	IDANCH A	211MGTY 211MGTY 211MGTY	79-09-15* 80-04-27 80-08-17	634 634 634	63 26 21	6. 4 5. 9 5. 3	. 34 2. 5 . 17	25 7 2	7. 3 2. 3 1. 2
4048060	73100101	S 24047	SCWA NICO	DLL RD.		79-12-09 80-04-09	134 134	215 212	6. 0 6. 3	. 12	46 47	12 12
4059200	72170301	S 24323	SCWA DIVI	SION ST		80-01-29 80-05-05	174 174	70 64	6. 6 6. 5	. 08 . 25	18 16	4. 0 3. 5
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)		ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
80-04-02 80-07-29	7. 3 6. 0	16 13	1. 2 1. 0	34 30	24 17	22 18	 c. 1	7. 7 7. 3	<. 010 <. 010	. 200	<. 10 <. 10	
80-02-20 80-05-21	1. 0 1. 6	5. 1 6. 0	. 5 . 6	18 18	1.3 2.0	5. 5 6. 5	 <. 1	1.7 2.1	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	
80-02-20 80-05-19	1. 0 1. 1	4. 8 5. 2		8		5. 5 6. 0	 c. 1	3. 0 2. 8	<. 010 . 010	<. 010 <. 010	<. 10 <. 10	
79-09-15	. 4	4. 6	. 3	23		3. 0		<. 01	<. 010	<. 010	2. 9	<5
80-04-27 80-08-17	. 3	2.4	. 2	8			<. 1	<. 01	<. 010 <. 010	. 070 <. 010	. 96 <. 10	
79-12-09 80-04-09	4. 8 4. 3	17 16	1.7 1.4	20 21	10 12	24 24	=	5. 7 5. 1	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	<5
80-01-29 80-05-05	1. 4 1. 3	6. 3 6. 0	. 5 . 4	14 16	5. 8 5. 0	8. 0 8. 0	<. 1	<. 01 <. 01	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	80-04-02 80-07-29		<10	10 120			<10 <10	<. 2 	<2	20 20	<. 02 <. 02	
	80-02-20 80-05-21		13	20 60			<10 <10	<. 2 	<2	<10 80	<. 02 <. 02	
	80-02-20 80-05-19		7	70 80			<10 <10	<. 2	<2 	20 40	C. 02 C. 02	
	79-09-15 80-04-27 80-08-17			30 60 50	220		<10 <10 <10	<. 2 	<2 	<10 60 80	C. 02 C. 02 C. 02	
	79-12-09 80-04-09	=	<10	70 60			40 40	<. 2	<2 	20 <10	<. 02 <. 02	
	80-01-29 80-05-05		<5 	30 60			<10 <10	<. 2	<u>c</u> 2	270 20	<. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACD3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40524807	73142901	S 24545	SCWA LAWR	ENCE RD	211MGTY 211MGTY 211MGTY	79-09-03 * 80-02-21 80-05-20	512 512 512	69 69 63	6. 5 7. 2 6. 0	. 17 . 11 . 05	21 18 14	6. 3 6. 2 3. 5
40562607	73031701	S 24663	SCWA BELL	E TERRE	211MGTY 211MGTY	80-02-20 80-06-10	460 460	225 220	7. 0 7. 0	. 09	73 76	18 19
40445907	73182401	S 25617	SCWA BROO	K AVE.	211MGTY 211MGTY 211MGTY	79-09-25* 80-03-04 80-06-17	440 440 440	30 28 30	4. 6 4. 9 4. 9	. 23 . 17 . 10	14 4 7	2. 7 1. 2 1. 0
40443107	73211401	S 25674	SCWA WYAN	DANCH A	211MGTY 211MGTY 211MGTY	79-09-16* 80-04-22 80-08-17	625 625 625	22 20 21	4. 8 5. 2 5. 3	. 27 . 59 . 62	5 5 3	1. 1 1. 0 . 8
40530607	73175201	S 25776	SCWA GUN	CLUB RD	211MGTY 211MGTY 211MGTY	79-09-11* 80-03-05 80-07-16	587 587 587	164 170 140	6. 2 6. 6 6. 2	. 10 . 15 . 18	50 60 44	12 16 13
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-09-03 80-02-21	1. 1	5. 0 4. 4		17	1.2			1.0	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	<5
80-05-20	1. 1	5. 7		12			<. 1	1. 0	<. 010	<. 010	<. 10	
80-02-20 80-06-10	7. 5 7. 9	11 12	1. 1 1. 1	37 36	19 19	19 21	<. 1	4. 4 4. 6	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	Ξ
79-09-25 80-03-04 80-06-17	. 6 . 5 . 5	2. 3 2. 1 2. 5	. 3	5 6 3	4. 5		 <. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-09-16 80-04-22 80-08-17	. 2	3. 4 2. 0 2. 5	. 2	5 3 5	1.1	3. 0 4. 0 3. 5	 C. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	1. 4 <. 10 <. 10	<5
79-09-11 80-03-05 80-07-16	4. 1 5. 0 4. 6	8. 2 8. 2 7. 9	. 8	15 15 16	24	12 13 13	 <. 1	4. 0 5. 1 4. 9	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	TOTAL RECOV- ERABLE (UG/L	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)			MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-09-03 80-02-21 80-05-20			60 <10 70	<10		<10 <10 <10	<.2	<2 	<10 <10 20	<. 02 <. 02 <. 02	
	80-02-20 80-06-10		<5	20 <10			<10 <10	<. 2 	<2	10 <10	<. 02 <. 02	
	79-09-25 80-03-04 80-06-17		<1	30 20	280		20 20 20	<.2	 <2 	680 <10 30	<. 02 <. 02 <. 02	
	79-09-16 80-04-22 80-08-17		<10	60 20 80	340		<10 20 <10	<. 2 	<5 	50 30 20	C. 02 C. 02 C. 02	
	79-09-11 80-03-05 80-07-16			50 30 80	80		<10 <10 <10	<. 2	<2 	<10 20 20	<. 02 <. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACD3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
4043180	73153801	S 26535	SCWA NO. F	IFTH AV	211MGTY 211MGTY	80-04-17 80-08-0 4	776 776	23 25	4. 9 4. 9	. 43 . 36	3 7	. 8 . 7
40513407	73235602	S 27070	SCWA BRO	ADWAY		80-03-26 80-07-29	560 560	103 73	6. 7 6. 6	. 06 . 28	32 23	9. 2 5. 0
40530107	73153202	S 27192	SCWA CARL	SON AVE	211MGTY 211MGTY	80-02-20 80-05-15	474 474	30 23	6. 3 6. 1	. 43 . 06	6 7	1. 4 1. 3
4046170	73035401	S 27259	SCWA CHUR	CH ST. 1		79-10-11 80-03-30 80-07-11	164 164 164	92 103 92	6. 8 6. 4 5. 7	. 11 . 15 . 16	29 26 26	8. 8 7. 2 6. 5
4045470	73104202	S 27533	SCWA BELL	MORE AV	211MGTY 211MGTY 211MGTY	79-12-18 80-03-23 80-07-13	307 307 307	49 50 47	6. 5 6. 4 6. 2	. 84 . 28 . 27	12 13 8	3. 4 2. 5 2. 4
40533607	73074001	S 27784	SCWA OXHE	AD RD.	211MGTY 211MGTY 211MGTY	79-11-13 80-02-26 80-05-28	264 264 264	98 73 38	6. 5 7. 3 6. 2	. 17 . 15 . 29	29 21 10	6. 7 6. 5 2. 7
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
80-04-17 80-08-04	. 4	2. 8 2. 9	. 3	4 4	2. 3 2. 4	3. 5 4. 5	 <. 1	<. 01 <. 01	<. 010 <. 010	<. 010 <. 010	. 19 C. 10	
80-03-26 80-07-29	2. 1 1. 9	6. 0 5. 6	. 6 . 5	26 20	1.0	7. 0 5. 0	 <. 1	2. 5 1. 3	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
80-02-20 80-05-15	. 4	2. 7 2. 6	. 3	9 7	. 8	3. 5 4. 5	<. 1	. 17 . 03	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
79-10-11 80-03-30 80-07-11	1. 9 1. 8 2. 6	5. 4 6. 4 8. 2	. 5 . 5 . 8	24 21 13	5. 6 6. 3 3. 1	6. 0 8. 5 13	 C. 1	. 99 1. 2 3. 7	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	C. 10 C. 10 C. 10	C5
79-12-18 80-03-23 80-07-13	1. 1 1. 0 1. 0	4. 2 4. 2 3. 9	. 3	14 11 12	1.8 2.3 1.8	5. 5 5. 0 5. 5	 c. 1	. 64 . 56 . 59	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	C. 10 C. 10 C. 10	<5
79-11-13 80-02-26 80-05-28	2. 2 1. 5 . 7	6. 2 4. 9 3. 3	. 5 . 5 . 3	13 18 14	3. 1 2. 4 2. 0	9. 5 6. 0 4. 0	C. 1	3. 1 1. 5 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	C. 10 C. 10 C. 10	C5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	80-04-17 80-08-04		<10 	70 130	620 230		20 <10	c. 2	<2 	450 140	C. 02 C. 02	
	80-03-26 80-07-29	-1	<10	40 410	<10 130		<10 <10	c. 2	<2 	90 50	<. 02 <. 02	
	80-02-20 80-05-15	-0	4	30 40	<10 <10		<10 <10	<2. 0 	<2 	<10 30	C. 02	
	79-10-11 80-03-30 80-07-11	 o	<10	110 100 50	50 40 190	-	30 <10 30	<. 2 —	<2 	<10 20 420	C. 02 C. 02 C. 02	
	79-12-18 80-03-23 80-07-13		<10 	70 <10 <10	170 <10 40		30 <10 <10	<. 2	<2 	880 <10 20	C. 02 C. 02 C. 02	
	79-11-13 80-02-26 80-05-28	 _ 0	<5 	50 40 80	<10 80 200		<10 20 20	C. 2	<2 	10 320 20	C. 02 C. 02 C. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40445207	73033002	S 28408	SCWA LAKE	VIEW AV	211MGTY 211MGTY 211MGTY	79-10-15 80-03-30 80-07-13	341 341 341	50 53 49	6. 4 6. 3 6. 4	. 34 . 77 1. 6	13 11 16	3. 6 3. 1 4. 2
40431807	73201901	S 28503	SCWA LAFA	YETTE R	211MGTY 211MGTY 211MGTY	79-11-07 80-04-08 80-08-06	676 676 676	44 29 24	6. 3 5. 8 5. 4	. 15 1. 5 . 22	14 B 9	5. 2 1. 2 1. 2
40471707	72595602	S 28767	SCWA BART	ON AVE.	211MGTY 211MGTY 211MGTY	79-12-11 80-01-27 80-05-06	139 139 139	129 134 130	5. 6 6. 6 5. 6	. 17 . 06 . 13	29 31 32	6. 6 7. 0 7. 7
40491207	73033301	S 28819	SCWA MORR	IS AVE.	112GLCLU	79-10-31 80-03-18 80-07-22	245 245 245	96 107 95	6. 2 6. 6 6. 0	. 11 . 07 . 14	23 29 26	5. 4 6. 4 6. 4
40541407	72232701	S 28928	SCWA LONG	SPRING		80-01-28 80-05-06	110 110	419 335	6. 3 5. 9	. 06 . 09	171 169	50 46
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-10-15 80-03-30 80-07-13	1. 1 1. 2 1. 2	3. 6 3. 5 3. 6		16 14 14		3. 5	 c. 1	C. 01 C. 01 C. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 . 15 <. 10	<5
79-11-07 80-04-08 80-08-06	. 4	3. 4 3. 1 3. 1	. 3	13 5 5	1. 1 . 9 1. 2		 <. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 . 140	1.8 1.7 1.3	<5
79-12-11 80-01-27 80-05-06	2. 7 2. 7 3. 2	9. 4 9. 3 10	1. 6 1. 4 1. 6	11 11 13	12 12 13	13 12 14	 C. 1	3. 4 4. 1 4. 2	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-10-31 80-03-18 80-07-22	2. 2 2. 5 2. 5	7. 4 8. 2 7. 9	. 8 . 7 . 8	14 14 17	7. 7 9. 1 9. 2	8. 5 10 8. 0	 C. 1	1. 9 2. 4 3. 1	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
80-01-28 80-05-06	13 12	11 10	1. 7 1. 7	13 12	112 112	26 27	c. 1	8. 4 8. 8	<. 010 <. 010	<. 010 <. 010	C. 10 C. 10	=
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-10-15 80-03-30 80-07-13		<10	60 <10 <10	630 470 350		60 30 20	<. 2 	<2 	20 <10 70	C. 02 C. 02 C. 02	
	79-11-07 80-04-08 80-08-06		<10	30 160 20	200 370 180		20 30 <10	<. 2	C2	90 40 50	C. 02 C. 02 C. 02	
	79-12-11 80-01-27 80-05-06		 <5 	20 90 <10	<10 <10 110		60 30 70	c. 2	 <2 	<10 <10 <10	C. 02 C. 02 C. 02	
	79-10-31 80-03-18 80-07-22		<10	60 70 280	20 <10 100		<10 <10 <10	<. 2 		30 <10 60	C. 02 C. 02 C. 02	
	80-01-28 80-05-06	-0	<5 	30 <10	40 <10		<10 <10	<. 2 	<2	10 <10	C. 02 C. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

	STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACD3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
	40544507	73064801	S 29411	SCWA DAN	WEBSTER	211MGTY 211MGTY 211MGTY	79-11-18 80-02-19 80-06-11	553 553 553	38 41 36	6. 1 6. 3 6. 4	. 30 . 13 . 36	11 11 12	2. 4 2. 3 2. 0
	40412007	73221601	S 29491	SCWA N. F	FIFTH ST	211MGTY 211MGTY 211MGTY	79-11-14 80-04-07 80-08-19	499 499 499	40 44 38	5. 5 5. 5 5. 9	. 28 . 16 . 42	11 9 10	1.5 1.5 1.5
	40491207	73033302	S 29492	SCWA MORE	RIS AVE.	1120LCLU	80-07-22	234	128	6. 0	. 11	40	10
	40533607	73074002	S 29732	SCWA OXH	EAD RD.	211MGTY 211MGTY 211MGTY	79-11-19 80-02-26 80-05-22	565 565 565	40 73 38	5. 9 7. 4 6. 0	. 60 . 85 . 36	12 23 6	2. 5 6. 1 1. 9
	40565207	72590001	S 30088	SCWA N. (COUNTRY		80-02-18 80-06-12	283 283	190 205	6. 3 6. 4	. 09 . 22	70 66	16 17
	40491407	73095601	S 30117	SCWA LIBE	ERTY ST.		79-12-03 80-04-09	118 118	106 107	6. 0 6. 2	. 17	40 30	8. 0 7. 5
	DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)		ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
	9-11-18	. 7	3. 2		13	1, 8	3. 5		<. 01	<. 010	<. 010	<. 10	<5
	0-02-19	. 8	3. 4 3. 3		12 11	2. 5 1. 6	3. 5 4. 0	<. 1	. 12 <. 01	<. 010 <. 010	<. 010 <. 010	C. 10 C. 10	-
8	9-11-14 0-04-07 0-08-19	1.0 1.0 1.0	3. 2 3. 6 3. 2	. 4	7 6 8	5. 2 3. 3 5. 7	4. 0 4. 5 3. 5	 <. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	. 63 . 67 . 18	<5
8	0-07-22	4. 4	8. 6	. 8	17	14	11	<. 1	4. 4	<. 010	<. 010	<. 10	
	9-11-19	. 7	3. 4		. 10	1.6	3. 5		. 06	<. 010	<. 010	C. 10	<5
	0-02-26 0-05-22	1.3	4. 5 3. 3		18	2. 0 1. 7	5. 5 5. 0	<. 1	1. 3 <. 01	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	
	0-02-18 0-06-12	7. 2 7. 4	6. 4 6. 5		12 14	38	11 11	<. 1	4. 3 4. 5	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
	9-12-03 0-04-09	3. 2 2. 8	5. 8 5. 5		22 21	9. 4 8. 9	8. 0 9. 0	=	1.2 1.2	<. 010 <. 010	<. 010 . 090	<. 10 <. 10	<5
		DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	TOTAL RECOV-	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
		79-11-18 80-02-19	=		40	60		<10			10	C. 02 C. 02	
		80-02-19	0	<5 	30	50 <10		<10 <10	C. 2	 C2	<10 <10	<. 02	
		79-11-14 80-04-07 80-08-19		<10	<10 <10 10	360 290 250		<10 20 <10	c. 2	<2	<10 <10 <10	<. 02 <. 02 <. 02	
		80-07-22	0		140	50	<5	<10			20	<. 02	
		79-11-19 80-02-26 80-05-22		 <5	60 20 30	<10 20 90		<10 <10 <10	<. 2	<2 	10 <10 10	<. 02 <. 02 <. 02	
		80-02-18 80-06-12		<5 	40 100	<10 40	 <5	<10 <10	C. 2	<2 	<10 60	<. 02 <. 02	
		79-12-03 80-04-09		<10	60 30	<10 80		<10 <10	 c. 2	 <2	<10 20	<. 02 <. 02	

WATER GUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

								SPE-				
STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40491407	73095602	S 30118	SCWA LIBE	RTY ST.		79-12-03 80-04-15	192 192	36 95	6. 2 6. 6	. 22	32 28	6. 6 7. 6
41032107	71564501	S 30207	SCWA FLAN	DERS RD	112GLCLU	79-09-17* 80-01-22 80-06-10	177 177 177	180 152 116	6. 5 7. 0 6. 6	. 10 . 17 . 14	38 31 26	7. 4 6. 5 4. 6
41032707	71565201	S 30208	SCWA FLAN	DERS RD	112GLCLU	79-09-17* 80-01-22 80-06-10	178 178 178	185 179 128	6. 7 6. 9 6. 5	. 11 . 07 . 08	39 37 29	7. 6 7. 5 5. 0
40590007	72063801	S 30227	SCWA CRO	SS HWY		80-01-28 80-05-05	151 151	110 97	6. 8 6. 4	. 12	19 19	3. 4 3. 2
4058540	72063801	5 30228	SCWA CRO	SS HWY		80-01-28 80-05-05	152 152	109 102	6. 7 6. 5	. 09 . 16	19 15	3. 4 3. 4
4047540	73132601	5 30234	SCWA COMM	ERCIAL		79-12-12 80-04-03	153 153	136 150	5. 7 5. 7	. 08 . 10	34 33	7. 4 8. 1
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-12-03 80-04-15	2. 5 2. 7	5. 4 5. 8	. 5	21 21	4. 9 3. 5	8. 0 8. 5		1. 7 2. 3	C. 010 C. 010	C. 010 C. 010	<. 10 <. 10	<5
79-09-17 80-01-22 80-06-10	3. 9 3. 2 2. 4	16 14 12	1. 3 1. 0 1. 0	20 21 18	6. 9 7. 7 6. 7	32 24	 C. 1	. 45 . 93 . 70	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-09-17 80-01-22 80-06-10	4. 0 4. 3 2. 9	16 16 13	1. 2 1. 1 1. 0	22 20 19	7. 2 8. 1 7. 6	34 32	 <. 1	. 46 . 55 . 45	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
80-01-28 80-05-05	2. 2 1. 9	11 10	. 7	15 15	7. 6 6. 1	18 17	 c. 1	<. 01 <. 01	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
80-01-28 80-05-05	2. 2 2. 0	12 11	. 6	16 15	6. B		<. 1	C. 01 C. 01	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
79-12-12 80-04-03	3. 2 3. 4	10 10	. 9	18 17	6. 6 8. 0			4. 4 4. 5	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	(UG/L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-12-03 80-04-15	=	<10	70 20	<10 40		<10 20	C. 2	 <2	<10 60	<. 02 <. 02	
	79-09-17 80-01-22 80-06-10		 <5	<10 <10 40			<10 <10 <10	c. 2	<2	<10 <10 20	<. 02 <. 02 <. 02	
	79-09-17 80-01-22 80-06-10	 0	 <5 	<10 <10 20	40		<10 <10 <10	<. 2 -	 <2	<10 <10 <10	C. 02 C. 02 C. 02	
	80-01-28 80-05-05	-0	<5 	20			30 <10	<. 2	<2	20 10	<. 02 <. 02	
	80-01-28 80-05-05		C5	60 <10			<10 <10	<. 2	<2	<10 <10	<. 02 <. 02	
	79-12-12 80-04-03	=	<10	60 60			<10 <10	C. 2	 	<10 <10	<. 02 <. 02	

- SUFFOLK COUNTY--Continued

STATION	I NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACD3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
4045150	73225501	S 30506	SCWA CIRC	CLE DR.	211MGTY 211MGTY 211MGTY	79-09-17 * 80-04-16 80-08-31	621 621 621	22 32 21	5. 4 6. 1 5. 7	. 15 . 13 . 22	6 9 3	1.5 3.8 1.0
4053360	73202301	S 30762	SCWA CHUR	RCH ST.	112GLCLU	79-09-12* 80-03-09 80-07-07	479 479 479	37 106 68	6. 3 6. 0 6. 6	. 60 . 05 . 09	28 30 23	7. 7 7. 2 6. 6
4054110	72232901	S 31037	SCWA LONG	SPRING	211MGTY 211MGTY	80-01-28 80-05-06	287 287	174 153	6. 5 6. 3	. 14	37 39	8. 6 8. 2
4041550	73212205	5 31038	B SCWA ALE	BIN RD.	211MGTY	80-08-18	529	22	5. 3	. 28	3	1. 2
4052530	73263401	S 31039	SCWA MAYE	FAIR DR.	211LLYD 211LLYD	80-03-26 80-07-29	342 342	58 63	6. 4 6. 3	. 12	14 16	3. 1 3. 6
4047030	73164401	S 31104	SCWA EMJA	AY BLVD.	211MGTY 211MGTY 211MGTY	79-12-09 80-03-05 80-06-19	660 660	57 64 56	5. 9 6. 0 5. 6	. 10 . 12 . 06	10 16 15	2. 6 4. 2 2. 4
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV— ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-09-17		2.3	. 2	8	. 6	4. 0		. 04	<. 010	<. 010	<. 10	<5
80-04-16 80-08-31	. 2	2. 1	. 2	12	. 7	3. 5 4. 0	<. 1	<. 01 <. 01	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=-
79-09-12 80-03-09 80-07-07	2. 3	5. 3 6. 6 5. 9	. 8	18 8 14	1.6 7.1 1.2	8. 5 9. 0 5. 0	<. 1	3. 3 5. 0 5. 6	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
80-01-28 80-05-06		15 14	. 6 . 6	15 14	5. 3 4. 8	35 35	<. 1	. 50 . 27	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
80-08-18	. 5	2. 4	. 4	4	3. 4	3. 0	<. 1	<. 01	<. 010	<. 010	<. 10	
80-03-26 80-07-29		4. 3 4. 9	. 6	14 13	. 7	5. 0 6. 0	c. 1	1.3 1.6	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	==
79-12-09 80-03-05 80-06-19	1.3	4. 5 4. 3 4. 6	. 4	9	. 8 5. 0		=	2. 0 1. 2	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10 <. 10	<5
30 03 17	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-09-17 80-04-16 80-08-31	2	<10	<10 <10 50	70		<10 20 <10	<. 2	<2 	<10 20 <10	<. 02 <. 02 <. 02	
	79-09-12 80-03-09 80-07-07		<1 	90 70	80 <10 30		<10 <10 <10	<. 2	<2 	<10 <10 120	C. 02 C. 02 C. 02	
	80-01-28 80-05-06	0	<5 	<10 <10	310 310		30 30	c. 2	<2 	30	<. 02 <. 02	
	80-08-18	0		30	420	6	20			20	<. 02	
	80-03-26 80-07-29		<10	40 40	<10 <10		<10 <10	<. 2 	<2	20 30	<. 02 <. 02	
	79-12-09 80-03-05 80-06-19		<10	30 80 50	50 80 <10		<10 30 <10	<. 2	 <2 	<10 20 <10	C. 02 C. 02 C. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40475407	73132602	S 31624	SCWA COMM	ERCIAL	211MGTY 211MGTY	79-12-10 80-04-08	439 439	76 46	6. 8 5. 9	. 32 2. 1	26 10	8. 2 3. 1
40583807	72114201	S 31653	SCWA DAKY	IEW RD.	211MGTY 211MGTY 211MGTY	79-09-17* 80-01-21 80-06-09	466 466 466	138 138 143	6. 0 6. 3 6. 3	. 17 . 13 1. 9	30 25 31	6. 5 5. 6 6. 0
40461607	73035701	S 31913	SCWA CHUR	CH ST. 2	112GLCLU	79-10-09 80-03-23 80-07-14	160 160 160	90 84 123	6. 5 6. 4 6. 0	. 17 . 18 . 14	24 20 34	7. 4 4. 9 11
40551207	73010501	S 32180	SCWA WHEA	T PATH	211MGTY 211MGTY 211MGTY	79-11-14 80-03-16 80-07-13	348 348 348	101 94 85	5. 7 6. 3 6. 2	. 12 . 07 . 15	29 26 23	6. 7 6. 5 6. 0
40514307	73105802	S 32287	SCWA HURT	IN BLVD	211MGTY 211MGTY 211MGTY	79-11-20 80-02-05 80-05-27	290 290 290	141 136 139	6. 9 7. 4 6. 7	. 14 . 16 . 18	50 42 54	11 12 11
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS-	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-12-10 80-04-08	1.2	3. 9 3. 8	. 4	30 11	2. 1 3. 6	4. 0 5. 0		. 30	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	<5
79-09-17 80-01-21 80-06-09	2. 7 2. 5 2. 6	14 13 14	. 6 . 6 . 5	13 13 10	5. 9 6. 5 6. 6	26	 <. 1	. 02 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 . 31 <. 10	<5
79-10-09 80-03-23 80-07-14	1.6 1.7 3.2	5. B 6. 0 10	. 6 . 8 1. 1	19 12 17	6. 4 5. 4 11		 <. 1	1. 1 2. 2 3. 4	<. 010 <. 010 <. 010	<. 010 <. 010 . 220	C. 10 C. 10 C. 10	<5
79-11-14 80-03-16 80-07-13	2. 0 2. 0 1. 7	7. 3 7. 6 6. 3	. 7 . 6 . 5	18 16 16	5. 0 5. 2 3. 7	10	 <. 1	2. 1 2. 4 1. 9	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-11-20 80-02-05 80-05-27	4. 6 4. 5 4. 8	7. 3 6. 0 7. 5	1.0 .8 1.0	36 38 38	6. 9 5. 8 7. 4	7. 5	 c. 1	1.3 1.2 1.2	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 . 14 <. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-12-10 80-04-08	=	<10	20 30	<10 20		<10 <10	<. 2	<2	<10 40	<. 02 <. 02	
	79-09-17 80-01-21 80-06-09		 <5 	70 <10 20	500 590 440		40 20 30	<. 2 	 <2 	<10 <10 <10	C. 02 C. 02 C. 02	
	79-10-09 80-03-23 80-07-14		<10	80 20 40	100 60		70 260 400	<. 2 	<2 	50 <10 300	C. 02 C. 02 C. 02	
	79-11-14 80-03-16 80-07-13	 0	<10	120 100 <10			<10 <10 <10	<. 2 	 <2 	30 <10 20	C. 02 C. 02 C. 02	
	79-11-20 80-02-05 80-05-27		 <5	60 40 50			<10 20 <10	<. 2	<2 	<10 270 20	<. 02 <. 02 <. 02	

SUFFOLK COUNTY--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
4053540	73021201	S 32325	SCWA BICY	CLE PAT	112GLCLU	79-11-19 80-03-16 80-07-13	160 160 160	77 69 72	7. 4 7. 6 7. 8	. 21 . 10 . 12	31 25 25	7. 8 7. 4 6. 6
4053510	73021201	5 32326	SCWA BICY	CLE PAT		79-11-16 80-03-16 80-07-14	354 354 354	71 65 58	5. 7 6. 1 5. 9	. 10 . 11 . 20	17 16 13	3. 1 3. 1 3. 2
4040460	73252101	S 32501	SCWA GREE	NE AVE.	211MGTY 211MGTY	79-11-04 80-04-07	631 631	30 29	5. 0 4. 9	. 32 . 12	6	1.3 1.0
4050300	73032101	S 32551	SCWA COLL	EGE RD.	112GLCLU	79-10-31 80-03-10 80-07-08	245 245 245	182 225 214	6. 5 6. 6 6. 6	. 11 . 12 . 17	50 55 60	12 15 13
4050300	73032102	S 32552	SCWA COLL	EGE RD.	112GLCLU	79-10-31 80-03-10 80-07-07	243 243 243	200 195 187	6. 4 6. 7 6. 5	. 15 . 25 . 08	56 58 46	13 14 14
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-11-19 80-03-16 80-07-13	2. 1 2. 0 2. 0	3. 9 4. 1 3. 9	. 5 . 5 . 4	31 26 26	3. 2 2. 7 2. 6	3. 0 4. 0 4. 0	 <. 1	<. 01 . 10 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	. 20 . 16 <. 10	<50
79-11-16 80-03-16 80-07-14	1.6 1.6 1.5	5. 2 5. 5 5. 1	. 7	11 9 9	8. 2 7. 7 7. 6	7. 0 7. 5 8. 0	 <. 1	. 40 . 75 . 48	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-11-04 80-04-07	. 2	3. 7 2. 9	. 3	8	3. 0 2. 2	3. 5 2. 5		<. 01 <. 01	<. 010 <. 010	C. 010 C. 010	2. 0 2. 4	<5
79-10-31 80-03-10 80-07-08	4. 7 6. 0 5. 6	10 17 16	. 7 1. 3 1. 3	28 24 22	9. 4 11 12	19 38 35	 C. 1	3. 9 2. 3 2. 0	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	. 14 C. 10 C. 10	<5
79-10-31 80-03-10 80-07-07	4. 9 5. 4 5. 5	14 14 13	. 9 . 9 . 9	27 27 29	10 10 10	21 22 20	 c. 1	4. 6 4. 6 5. 1	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-11-19 80-03-16 80-07-13		<10	60 30 <10	140 <10 <10		<10 <10 <10	<. 2	 <2 	10 90 <10	C. 02 C. 02 C. 02	
	79-11-16 80-03-16 80-07-14		<10	40 40 30	<10 <10 50		<10 <10 20	c. 2	 <2 	20 40 30	<. 02 <. 02 <. 02	
	79-11-04 80-04-07	=	<10	40 <10	780		20 20	<. 2	 <2	30 130	<. 02 <. 02	
	79-10-31 80-03-10 80-07-08		<10 	40 20 60	40 180 90		<10 20 <10	<. 2 	 <2 	<10 20 <10	<. 02 <. 02 <. 02	
	79-10-31 80-03-10 80-07-07		<10	30 20 30	30 130 50		<10 <10 <10	<. 5 	<2 	<10 20 120	<. 02 <. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACD3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40431707	73201801	S 33005	SCWA LAFA	YETTE R	211MGTY 211MGTY 211MGTY	79-11-04 80-04-07 80-08-06	674 674 674	23 29 28	5. 0 5. 3 5. 2	. 11 1. 7 . 24	6 4 6	1. 1 . 8 . 9
40513207	73155901	s 33006	SCWA KING	S PARK	211MGTY 211MGTY	79-10-02 80-05-15	504 504	84 38	6. 5 6. 1	. 23	27 12	8. 3 2. 3
40480807	73100101	5 33308	SCWA NICO	LL RD.		79-12-06 80-04-23	132 132	187 170	6. 0 6. 0	. 18 . 15	39 44	10 9. 4
40533607	73073601	S 33500	SCWA DXHE	AD RD.	211MGTY 211MGTY 211MGTY	79-11-18 80-02-26 80-05-28	551 551 551	35 36 38	6. 1 6. 8 6. 1	. 36 . 82 . 46	12 8 8	2. 0 1. 6 1. 7
40541507	73204801	S 33820	SCWA DOUG	LAS AVE	211MGTY 211MGTY 211MGTY	79-09-13* 80-03-16 80-07-13	408 408 408	245 235 215	6. 9 7. 4 7. 0	. 30 . 07 . 27	88 104 83	22 23 21
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-11-04 80-04-07 80-08-06	.3	2. 2 3. 7 4. 2	. 2	6 5 5	. 9	3. 5	 <. 1	C. 01 C. 01 C. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 1. 8 2. 4	<5
79-10-02 80-05-15	2. 1 . 7	4. 7 3. 3	. 6	18 7			 <. 1	1. 6 . 53	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	<5
79-12-06 80-04-23	4. 3 3. 9	16 16	1. 5 1. 4	21 18	9. 4 8. 5		==	4. 5 4. 3	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	<5
79-11-18 80-02-26 80-05-28	. 6 . 6 . 7	3. 2 3. 1 3. 2	.3	11 9 10	2.0	3. 5	 <. 1	. 12 . 10 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-09-13 80-03-16 80-07-13	8. 4 8. 4 8. 2	11 11 11	1.6 1.5 1.5	61 59 58	15	16 17 17	<. 1	4. 2 4. 8 5. 1	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	. 22 . 25 <. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)			MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-11-04 80-04-07 80-08-06	 0	<10	30 20 <10	790		<10 <10 <10	<. 2	 <2 	<10 <10 40	<. 02 <. 02 <. 02	
	79-10-02 80-05-15	0	=	20			40 <10	=	==	400 <10	<. 02 <. 02	
	79-12-06 80-04-23	=	<10	100 180			60 80	<. 2	<2	<10 <10	<. 02 <. 02	
	79-11-18 80-02-26 80-05-28		 <5 	70 60 50	<10		<10 <10 <10	<. 2 	 <2 	<10 <10 <10	<. 02 <. 02 <. 02	
	79-09-13 80-03-16 80-07-13		<10	60 40 50	70		<10 20 <10	<. 2 	<2 	<10 70 20	<. 02 <. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACD3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40473807	2565401	S 33826	SCWA STAT	ION RD.	112GLCLU	79-12-11 80-01-21 80-05-06	163 163 163	47 47 93	6. 0 6. 3 7. 0	. 11 . 13 . 13	9 10 37	1. 9 1. 8 8. 7
40525707	3202902	S 33970	SCWA LAUR	EL HILL	112GLCLU	79-09-26* 80-03-05 80-06-29	609 609 609	95 39 38	6. 9 5. 8 5. 7	. 16 . 08 . 09	30 11 7	9. 7 2. 0 1. 7
40551207	73010502	S 34007	SCWA WHEA	T PATH	211MGTY 211MGTY 211MGTY	79-11-13 80-03-17 80-07-13	345 345 345	53 58 52	6. 1 6. 5 6. 6	. 12 . 05 . 10	15 16 16	3. 5 3. 8 3. 7
40453607	3210801	S 34030	SCWA ADAM	S AVE.	211MGTY 211MGTY	79-09-16* 80-04-16	538 538	29 26	4. 8 4. 9	. 19	5 7	1.0
40453407	3210801	S 34031	SCWA ADAM	S AVE.	211MGTY 211MGTY	79-09-15* 80-04-21	515 515	27 25	4. 6 5. 3	. 30	5 3	. 7
40561507	3051501	S 34300	SCWA SHER	RY DR.	211MGTY 211MGTY	80-02-2 4 80-06-16	451 451	50 54	6. 4 6. 2	. 06	12 7	3. 3 3. 3
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-12-11 80-01-21 80-05-06	1. 1 1. 1 2. 3	4. 5 4. 1 5. 5	. 3	11 9 26	4. 6 4. 9 7. 7	5. 5 6. 0 9. 0	 c. 1	. 03 <. 01 . 52	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-09-26 80-03-05 80-06-29	1.6 .6 .5	5. 2 3. 6 3. 8	. 6 . 4 . 4	22 6 6	1. 6 . 5 . 4	7. 5 5. 0 6. 0	 < 1	2.7 1.5 1.4	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-11-13 80-03-17 80-07-13	. 9 1. 1 1. 0	3. 9 4. 8 4. 1	. 3 . 4 . 3	15 13 13	1.8 3.1 1.9	6. 0 5. 5 6. 0	 <. 1	. 19 . 77 . 45	<.010 <.010 <.010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-09-16 80-04-16	. 2	3. 2 2. 9	. 3	6 4	1.8	3. 5 4. 0		. 35 . 36	<. 010 <. 010	<. 010 <. 010	C. 01 C. 10	<5
79-09-15 80-04-21	. 2	3. 2 3. 0	. 3	6	2. 2 1. 6	4. 0 4. 0	==	. 10	<. 010 <. 010	<. 010 <. 010	C. 10 . 14	<5
80-02-24 80-06-16	1. 0 1. 0	4. 2 4. 7	. 4	16 20	1. 6 1. 7	4. 0 5. 0	 c. 1	. 20	<. 010 <. 010	C. 010 . 410	<. 10 <. 10	=
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-12-11 80-01-21 80-05-06	 _ o	 <5	50 50 <10	<10		<10 <10 <10	<. 2	<2 	<10 <10 <10	<. 02 <. 02 <. 02	
	79-09-26 80-03-05 80-06-29	 0	<u></u> <1	70 80 100	30		<10 <10 <10	C. 2	 <2 	10 <10 20	C. 02 C. 02 C. 02	
	79-11-13 80-03-17 80-07-13	 0	<10	30 50 <10	<10		<10 <10 <10	<. 2 	<2	30 <10 240	C. 02 C. 02 C. 02	
	79-09-16 80-04-16		<10	60 80		=	<10 <10	 <. 2	 <2	<10 10	<. 02 <. 02	
	79-09-15 80-04-21		<10	40 20		=	<10 <10	 c. 2	 (2	<10 <10	<. 02 <. 02	
	80-02-2 4 80-06-16		3	<10 30		 <5	<10 <10	<. 2 	<2	<10 <10	<. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACD3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
4056130	73051501	S 34301	SCWA SHER	RY DR.	211MGTY 211MGTY	80-02-20 80-06-10	536 536	31 35	6. 4 6. 1	. 06	6 9	1. 3 2. 1
4052460	73142801	S 34460	SCWA LAWR	ENCE RD	211MGTY 211MGTY 211MGTY	79-09-03* 80-02-19 80-05-15	602 602	29 32 28	5. 8 6. 0 6. 0	. 10 . 07 . 09	7 10 8	1.8 1.6 1.4
4042030	73242202	S 34595	SCWA ALBA	NY AVE.	211MGTY	80-08-17	482	35	4. 9	. 24	9	1.4
4051430	73105801	S.34733	SCWA HURT	IN BLVD	211MGTY 211MGTY	79-11-18 80-02-05	421 421	44 118	6. 3 7. 0	. 52 . 39	14 34	3. 1 8. 0
4045120	73112201	S 35033	SCWA FISH	ER AVE.	211MGTY 211MGTY	79-12-13 80-07-13	317 317	50 50	5. 9 6. 2	. 85 . 28	11 10	2. 4 2. 5
4053360	73073602	S 35446	SCWA DXHE	AD RD.	211MGTY 211MGTY 211MGTY	79-11-18 80-02-28 80-05-28	345 345 345	56 52 58	6. 4 6. 8 6. 3	. 13 . 06 . 18	16 9 13	3. 6 3. 3 3. 9
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLD- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
80-02-20 80-06-10		2. 9 3. 2	. 3	7 11	1. 1 2. 3	3. 0 5. 0	<. 1	. 03	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
79-09-03 80-02-19 80-05-15	. 6	3. 0 2. 8 2. 8	. 3	8 8 7	1. 0 1. 1 1. 2	3. 0 3. 0 4. 5	 <. 1	. 26 . 25 . 14	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
80-08-17	. 5	4. 2	. 4	8	1.8	4. 0	<. 1	<. 05	<. 010	<. 010	1.8	
79-11-18 80-02-05		3. 4 5. 8	. 4 . 8	14 32	2. 9 5. 0	3. 5 8. 0		<. 01 1. 0	<. 010 <. 010	<. 010 <. 010	<. 10 . 13	<5
79-12-13 80-07-13		4. 7 4. 6	. 4	14 12	1.5 1.3	6. 0 6. 0	<. 1	. 42 . 51	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	<5
79-11-18 80-02-28 80-05-28	1.1	4. 2 3. 9 4. 4	. 4 . 4 . 4	11 10 15	1.8 1.6 2.4	6. 5 4. 5 6. 5	 <. 1	1.0 1.3 1.3	<. 010 <. 010 <. 010	<. 010 <. 010 . 060	<. 10 <. 10 <. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	80-02-20 80-06-10	0	3	30 50			<10 <10	c. 2	<2 	<10 <10	<. 02 <. 02	
	79-09-03 80-02-19 80-05-15		3	70 40 50	30		<10 <10 <10	<. 2 	<2 	<10 <10 <10	<. 02 <. 02 <. 02	
	80-08-17	0		40	460	<5	20			60	<. 02	
	79-11-18 80-02-05		 <5	40 50	100 80		<10 <10	<. 2	C2	10 80	<. 02 <. 02	
	79-12-13 80-07-13		=	70 <10	80 100		<10 <10	=	=	40 <10	<. 02 <. 02	
	79-11-18 80-02-28 80-05-28		<u><1</u>	40 20 60	70		<10 10 <10	<. 2	<2 	<10 <10 10	<. 02 <. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACD3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
4051550	73045201	S 35494	SCWA EAST	WOOD BL	112GLCLU	79-10-30 80-01-31 80-05-05	429 429 429	71 67 60	7. 0 7. 2 7. 1	. 18	18 17 20	6. 8 5. 0 4. 7
4051400	73190801	S 35939	SCWA LARK	FIELD R	211MGTY 211MGTY 211MGTY	79-09-10* 80-02-20 80-05-20	533 533 533	79 87 84	5. 6 6. 1 6. 3	. 11 . 06 . 12	21 21 25	4. 9 5. 2 5. 2
4054450	73063801	S 36166	SCWA DAN	WEBSTER	211MGTY 211MGTY 211MGTY	79-11-14 80-02-22 80-06-12	433 433 433	37 37 46	5. 9 6. 4 6. 2	. 12 . 08 . 10	10 9 15	2. 1 1. 8 2. 8
4054340	73194201	S 36185	SCWA WATE	RSIDE R	112GLCLU	79-09-12* 80-03-05 80-06-30	111 111 111	238 243 240	6. 4 6. 2 6. 2	. 75 . 07 . 16	70 73 75	16 20 17
4054090	73061401	S 36459	SCWA STEM	1 LA. 2	211MGTY 211MGTY 211MGTY	79-11-13 80-02-07 80-06-04	522 522 522	55 55 64	6. 1 6. 6 6. 6	. 23 . 08 . 16	16 15 17	3. 8 4. 0 5. 0
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-10-30 80-01-31	1.6	4. 5 4. 0	. 4	25 24	2. 4 2. 5	4. 0 2. 5		. 18	<. 010 <. 010	C. 010 C. 010	<. 10 <. 10	<5
80-05-05 79-09-10		4. 2 5. 3	. 4	24	1. 9	3. 5	<. 1	. 04	<. 010	<. 010	<. 10 <. 10	<5
80-02-20 80-05-20	1.9	5. B 6. 0	. 7	11 7	3. 5	7. 0	<. 1	3. 7	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
79-11-14 80-02-22 80-06-12	. 7	3. 2 3. 4 3. 8	.3	12 10 15	1.1 2.1 2.1	4. 0 4. 0 5. 0	 <. 1	. 04 . 06 . 44	<. 010 <. 010 <. 010	<. 010 <. 010 . 140	<. 10 <. 10 <. 10	<5
79-09-12 80-03-05		13 14	1.6	29 25	16 17	20 22		5. 1 9. 5	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	C5
80-06-30		14	1. 6	28	14	20	<. 1	8. 6	<. 010	<. 010	<. 10	
79-11-13 80-02-07 80-06-04	1.2	4. 7 4. 6 4. 9	. 4 . 5 . 5	15 17 17	2. 0 1. 2 3. 0	5. 0 6. 5 6. 0	 <. 1	. 61 . 79 1. 1	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-10-30 80-01-31 80-05-05	 0	 <5 	30 10 20	100 <10 50		<10 <10 20	<. 2	<2 	<10 20 <10	C. 02 C. 02 C. 02	
	79-09-10 80-02-20 80-05-20	 o	 7 	110 40 40	70 <10 30		<10 20 <10	<. 2	<2 	<10 20 10	<. 02 <. 02 <. 02	
	79-11-14 80-02-22 80-06-12	 o	 <5 	40 30 60	50 <10 80		<10 <10 <10	<. 2	<2 	<10 <10 <10	<. 02 <. 02 <. 02	
	79-09-12 80-03-05 80-06-30		<10	210 270 330	120 30 80		70 <10 20	<. 2	 (2 	180 160 20	<. 02 <. 02 <. 02	
	79-11-13 80-02-07 80-06-04	 0	 <5	20 20 40	30 60 120		<10 <10 <10	<.2	<2 	90 60 30	<. 02 <. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACD3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
4046270	73070901	S 36460	SCWA LOCU	ST AVE.	211MGTY 211MGTY 211MGTY	79-11-04 80-03-05 80-06-20	611 611 611	38 35 36	5. 5 6. 1 5. 4	. 20 . 26 . 18	11 8 9	2, 3 1, 9 1, 8
4053350	72562901	S 36711	SCWA BAIL	EY RD.		80-01-28 80-04-30	143 143	105 93	7. 0 7. 0	. 12	34 30	9. 5 9. 8
4044580	73182502	S 36714	SCWA BROO	K AVE.	211MGTY 211MGTY 211MGTY	79-09-22* 80-03-06 80-06-17	308 308 308	39 38 36	5. 6 6. 2 6. 1	. 36 . 25 . 13	13 10 12	2. 5 2. 4 2. 1
4042190	73190401	S 3674	8 SCWA SMI	TH ST.	211MGTY 211MGTY 211MGTY	79-11-07 80-04-20 80-08-19	308 308 308	40 34 33	4. 7 5. 4 5. 4	. 48 . 10 . 55	17 5 4	1.0 1.5 1.5
4050140	73161401	S 36791	SCWA BLUE	SPRUCE	211MGTY	80-02-19	674	73	6. 7	. 07	19	4. 1
4053210	73232401	S 36869	SCWA FLOW	ER HILL	211MGTY 211MGTY	80-03-26 80-07-29	353 353	94 101	6. 4 6. 6	. 11	28 32	6. 1 7. 9
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)		ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-11-04		2. 9		10	4. 8	3. 0		<. 01	<. 010	C. 010	<. 10 <. 10	<5
80-03-05 80-06-20		2. 5		. 6	5. 2 5. 0	5. 0 4. 0	<. 1	. 05	<. 010 <. 010	<. 010 <. 010	<. 10	-
80-01-28 80-04-30		5. 6 5. 4		32 29	9. 2 8. 2	7. 0 6. 0	<. 1	. 55 . 38	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	==
79-09-22 80-03-06 80-06-17	. 8	3. 2 3. 1 3. 3	. 4	13 14 12	1. 0 1. 5 1. 3	3. 5 4. 0 5. 0	 C. 1	<. 01 . 18 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-11-07 80-04-20 80-08-19	. 6	3. 3 3. 9 3. 2	. 4	4 5 8		6. 0 4. 5 4. 0	 C. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	. 40 2. 1 <. 10	<5
80-02-19	1.5	3. 7	. 5	15	1.4	5. 5		. 77	<. 010	<. 010	<. 10	
80-03-26 80-07-29		5. 8 6. 2		17 16	4. 4 4. 8	8. 0 7. 5	<. 1	2. 8 2. 9	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	TOTAL RECOV- ERABLE (UG/L	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	(UG/L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-11-04 80-03-05			20 50			20 <10	<. 2	 <2	<10	<. 02 <. 02	
	80-06-20	0		40			<10			10	<. 02	
	80-01-28 80-04-30	0		40 20			<10 <10	<. 2	<2 	40 690	<. 02	
	79-09-22 80-03-06	_		30 <10			<10 <10	<. 2	<2	<10 <10	<. 02 <. 02	
	80-06-17	0		20			<10			<10	c. 02	
	79-11-07 80-04-20 80-08-19		<10	160 <10 20	360		<10 20 20	<. 2	<5 	40 60 50	<. 02 <. 02	
	80-02-19		<1	<10	<10		<10	<. 2	<2	<10	<. 02	
	80-03-26 80-07-29			60 20			<10 <10	<. 2	<2	20 80	<. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

								SPE-				
STATION	NUMBER		LOCAL IDENT- I- FIER		GED- LDGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
4049230	73162801	S 3697	6 SCWA WIC	KS RD.	211MGTY 211MGTY	80-02-27 80-05-15	418 418	40 39	6. 4 5. 8	. 05 . 08	6 11	2. 2 2. 1
4045100	73112301	S 37140	SCWA FISH	ER AVE.	211MGTY 211MGTY 211MGTY	79-12-26 80-03-24 80-07-13	312 312 312	63 68 42	6. 5 6. 4 6. 0	. 85 . 54 . 54	16 16 10	6. 0 4. 9 2. 1
4047530	73132401	S 37141	SCWA COMM	ERCIAL	211MGTY 211MGTY 211MGTY	79-12-06 80-04-07 80-08-28	429 429 429	34 37 33	6. 1 6. 0 6. 0	. 19 . 22 . 20	9 9 11	1. 9 1. 9 1. 8
4052000	73085801	S 37174	SCWA ASTO	R AVE.	211MGTY 211MGTY 211MGTY	79-11-26 80-02-20 80-08-28	309 309 309	114 110 118	7. 3 7. 6 7. 4	. 16 . 25 . 26	44 41 42	11 9. 4 11
4054090	73061402	S 37301	SCWA STEM	LA. 1	211MGTY 211MGTY	79-11-19 80-02-07	315 315	39 51	6. 3 6. 8	. 10	12 15	3. 4 3. 9
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)		ALKA- LINITY (MG/L AS CACD3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
80-02-27 80-05-15		3. 5 3. 7		10 7	. 7 1. 2	3. 5 5. 0	<. 1	1.3 1.3	<. 010 <. 010	. 300	<. 10 <. 10	
79-12-26 80-03-24 80-07-13	1.0	4. 8 5. 0 3. 8	. 5	17 18 10	1.6 2.4 1.3	6. 5 6. 0 4. 5	 <. 1	. 96 . 82 . 48	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-12-06 80-04-07 80-08-28	. 6	3. 4 3. 2 3. 2	. 3	12 10 12	. 6 3. 4 1. 0	4. 0 4. 5 3. 0	 <. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-11-26 80-02-20 80-08-28	3.9	5. 0 5. 2 5. 5	1.2	47 44 43	5. 1 7. 1 6. 3	4. 0 4. 5 4. 0	 <. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	. 16 . 16 <. 10	<5
79-11-19 80-02-07		3. 5 3. 6		12 18	2. 2 1. 6	4. 0 5. 0	==	<. 01 . 20	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	TOTAL RECOV-	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	80-02-27 80-05-15	0	<1	50 90	30 <10	 <5	<10 <10	<. 2 		<10 <10	<. 02 <. 02	
	79-12-26 80-03-24 80-07-13	 0	<10	60 <10 70	60		20 30 <10	<. 2 	 <2 	370 40 <10	<. 02 <. 02 <. 02	
	79-12-06 80-04-07 80-08-28		<10	<10 40 40	<10		<10 <10 20	<. 2	<2 	<10 <10 10	C. 02 C. 02 C. 02	
	79-11-26 80-02-20 80-08-28	 0	24	<10 <10 40	<10		30 80 30	<. 2	<2 	510 <10 10	<. 02 <. 02 <. 02	
	79-11-19 80-02-07	=	 <5	80 20			<10 <10	 c. 2	 <2	150 60	<. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

			LOCAL				DEPTH	SPE- CIFIC CON-			HARD-	CALCIUM TOTAL
STATION	NUMBER		IDENT- I- FIER		GED- LOGIC UNIT	DATE OF SAMPLE	OF WELL, TOTAL (FEET)	DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	NESS (MG/L AS CACD3)	RECOV- ERABLE (MG/L AS CA)
4051410	73191001	S 37351	SCWA LARK	FIELD R	211MGTY 211MGTY 211MGTY	79-09-10* 80-02-26 80-05-15	608 608	64 60 67	5. 5 6. 3 5. 8	. 22 . 07 . 09	18 12 17	5. 1 3. 2 3. 5
4047170	72595603	S 37494	SCWA BART	ON AVE.	211MGTY 211MGTY 211MGTY	80-01-05 80-01-15 80-05-06	313 313 313	54 50 46	6. 4 6. 7 5. 8	. 14 . 20 . 34	14 16 9	4. 0 4. 5 3. 5
4042360	73225001	S 37681	SCWA TENE	TY ST.	211MGTY 211MGTY 211MGTY	79-11-07 80-04-08 80-08-18	574 574 574	38 41 34	4. 8 5. 0 4. 6	. 55 . 11 . 15	7 5 5	1. 1 1. 9 1. 2
4049320	73060301	S 37847	SCWA SAMUI	EL ST 3	112GLCLU	79-10-30 80-01-20 80-05-05	349 349 349	80 142 72	6. 3 6. 0 6. 5	. 10 . 10 . 30	20 37 18	5. 6 9. 2 5. 3
4044060	73193401	S 37861	SCWA AUGU	ST RD.	211MGTY 211MGTY	79-09-17 * 80-08-18	636 636	34 33	4. 9 5. 1	. 35	7 6	1. 4 1. 3
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)		ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-09-10 80-02-26 80-05-15	1.1	4. 9 4. 4 4. 5	. 6	10 7 6	1. 3 1. 0 1. 4	5. 5	 <. 1	2. 9 3. 2 3. 0	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
80-01-05 80-01-15 80-05-06	1.0	4. 0 3. 7 3. 3	. 4	17 15 11	2. 6 2. 3 1. 7	4. 5 6. 0 3. 5	 <. 1	. 45 . 54 2. 2	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-11-07 80-04-08 80-08-18	. 3	4. 1 3. 0 3. 1		5 3 6	2. 9 1. 8 4. 2	4. 5 4. 5 4. 5	 <. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	2. 8 2. 6 . 26	<5
79-10-30 80-01-20 80-05-05	3. 5	6. 1 10 5. 9	. 5 1. 0 . 6	17 27 19	3. 2 6. 8 3. 6	6. 5 11 7. 0	 <. 1	. 89 3. 5 . 45	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-09-17 80-08-18		3. 9 2. 9		7 4	1. 3 5. 3		c. 1	<. 01 <. 01	<. 010 <. 010	<. 010 <. 010	1.3 <.10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	TOTAL RECOV-	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-09-10 80-02-26 80-05-15		5	50 30 50	120 60 <10		30 20 <10	<. 2 	 <2 	80 <10 <10	<. 02 <. 02 <. 02	
	80-01-05 80-01-15 80-05-06		<5	50 30 <10	40 <10 60		<10 <10 <10	<. 2	<2 	<10 80 <10	<. 02 <. 02 <. 02	
	79-11-07 80-04-08 80-08-18		<10	30 <10 <10	500 560 520		20 40 30	<. 2 	 <2 	<10 180 50	<. 02 <. 02 <. 02	
	79-10-30 80-01-20 80-05-05		<5	<10 <10 <10	40 30		<10 40 30	<. 2	 C2 	<10 <10 280	<. 02 <. 02 <. 02	
	79-09-17 80-08-18	·o	Ξ	30	400 420		<10 <10	Ξ		40 <10	<. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACOS)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
4044270	73073201	S 37963	SCWA MONT	AUK HWY	211MGTY 211MGTY 211MGTY	79-10-15 80-03-25 80-07-13	292 292 292	64 64 60	6. 3 6. 4 5. 9	. 14 . 24 . 56	25 17 15	2. 3 2. 1 2. 0
4045280	73150402	S 38192	SCWA EAST	FORKS	211MGTY 211MGTY	80-03-0 4 80-06-17	306 306	77 78	6. 1 5. 8	. 27 . 25	19 23	5. 0 5. 4
4056520	72590002	S 38194	SCWA NORT	H COUNT		80-02-20 80-06-11	732 732	87 59	7. 9 6. 7	. 12	31 23	9. 1 4. 2
4047560	73025502	S 38320	SCWA BLUE	PT RD	112GLCLU	79-12-10 80-03-09 80-07-07	172 172 172	54 93 107	5. 9 6. 1 5. 8	. 18 . 11 . 55	14 23 19	2. 9 5. 4 5. 2
4047560	73025503	S 38321	SCWA BLUE	PT RD	211MGTY 211MGTY 211MGTY	79-12-10 80-03-11 80-07-08	304 304 304	62 49 53	6. 1 6. 2 6. 2	. 39 . 27 . 67	13 15 18	3. 6 3. 2 3. 2
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-10-15 80-03-25 80-07-13	2. 2 2. 2 2. 1	5. 8 5. 4 4. 8	1. 4 1. 3 1. 2	22 20 17	2. 2 2. 2 3. 2	4. 5 5. 0 5. 0	 C. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	. 080 . 140 <. 010	2. 2 1. 0 . 23	<5
80-03-04 80-06-17	1.7	5. 0 5. 4	. 4	12	9. 6 9. 7	6. 0 7. 5	 <. 1	1.0	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	
80-02-20 80-06-11	1.8 1.7	4. 6 4. 7	. 6	35	1.8	4. 5 5. 5	 <. 1	. 11	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	
79-12-10 80-03-09 80-07-07	1. 1 1. 7 1. 6	4. 2 7. 7 8. 0	. 6 1. 2 1. 2	12 8 11	6. 2 8. 3 8. 4	4. 5 11 9. 5	 <. 1	. 09 2. 3 3. 2	<. 010 <. 010 <. 010	<.010 .200 <.010	<. 10 <. 10 <. 10	<5
79-12-10 80-03-11 80-07-08	1.2 1.2 1.2	4. 5 3. 7 3. 5	. 6 . 4 . 3	13 11 13	7. 1 5. 5 4. 9	4. 5 5. 0 4. 5	 ¢. 1	. 28 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-10-15 80-03-25 80-07-13	 0	<10	<10 <10 <10	1000 910 790	 <5	40 30 20	<. 2 	<2	10 10 <10	<. 02 <. 02 <. 02	
	80-03-04 80-06-17	<u> </u>	<1	<10 30	200 30	 <5	20 <10	<. 2 	<2	<10 <10	<. 02 <. 02	
	80-02-20 80-06-11		<5 	20 40	30 <10	 <5	<10 <10	<. 2	<2	<10 <10	<. 02 <. 02	
	79-12-10 80-03-09 80-07-07	 o	<10	40 30 30	<10 <10 70	 <5	20 70 90	<. 2 	 (2 	<10 20 <10	<. 02 <. 02 <. 02	
	79-12-10 80-03-11 80-07-08	 o	<10 	30 10 10	<10 70 150	 <5	30 <10 20	<. 2 	<2 	10 280 10	<. 02 <. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

								000				
STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
4049210	73122703	S 38491	SCWA WHEE	LER RD	211MGTY 211MGTY 211MGTY	79-12-26 80-01-30 80-05-28	383 383	49 45 38	6. 3 6. 3 6. 1	. 20 . 31 . 12	14 10 10	2. 8 2. 5 2. 8
4048050	73051501	S 38701	SCWA LING	OLN AVE	112GLCLU	79-10-03	202	41	6. 0	. 85	12	2. 5
4052560	73045602	S 38784	SCWA HAWK	INS RD.	211MGTY 211MGTY	79-10-30 80-04-23	604 604	27 25	6. 0 6. 0	. 14	4 9	1.7 1.4
4051350	73235501	S 3878	5 SCWA BRO	ADWAY		80-04-02 80-08-11	665 665	57 59	6. 4 6. 5	. 17	14 14	3. 7 3. 6
4054180	73064902	S 38916	SCWA HENR	Y CLAY	211MGTY	80-06-11	724	34	6. 1	. 12	11	1.7
4059190	72170201	S 38917	SCWA DIVI	SION ST		80-01-29 80-05-12	174 174	68 63	6. 5 6. 4	. 10	13 13	3. 0 3. 7
4043580	73181801	S 39024	SCWA HARV	EST LA.	211MGTY 211MGTY 211MGTY	79-11-04 80-04-20 80-08-17	623 623 623	29 21 23	4. 7 5. 5 5. 0	. 15 . 95 . 11	5 5 0	. 8 1. 3 . 9
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-12-26		3. 7		15	1.3	3. 5		. 12	<. 010	<. 010	C. 10	<5
80-01-30 80-05-28		3. 5		13 10	1.3	2. 5 3. 5	<. 1	<. 01 <. 01	<. 010 <. 010	<. 010	<. 10 <. 10	==
79-10-03	. 8	3. 5	. 3	12	2. 0	3. 5		. 05	<. 010	<. 010	<. 10	<5
79-10-30 80-04-23		2. 3 2. 4		9	1.1	3. 0 3. 5		. 04 <. 01	<. 010 <. 010	<. 010 <. 010	<. 10 . 18	<5
80-04-02 80-08-11		4. B 5. 1		19 16	. 5	4. 5 4. 5	<. 1	1. 0 1. 1	<. 010 <. 010	<. 010 1. 060	<. 10 <. 10	=
80-06-11	. 7	3. 2	. 3	10	2. 3	4. 0	<. 1	<. 01	<. 010	<. 010	<. 10	77
80-01-29 80-05-12		6. 2 6. 4		13 14	5. 4 5. 2	8. 0 6. 5	<. 1	<. 01 <. 01	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
79-11-04 80-04-20 80-08-17	. 3	4. 1 2. 1 2. 3	. 2	5 4 5	1.4	4. 5 3. 0 3. 0	 C. 1	C. 01 C. 01 C. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	2. 5 . 12 . 33	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	TOTAL RECOV- ERABLE (UG/L	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	(UG/L	(UG/L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-12-26 80-01-30			50 30			<10 <10	<. 2	 <2	170 30	<. 02 <. 02	
	80-05-28	0		20			<10			30	<. 02	
	79-10-03			40	70		20			<10	<. 02	
	79-10-30 80-04-23	==		<10 <10			<10 <10	<. 2	<2	20 <10	<. 02 <. 02	
	80-04-02 80-08-11			20			<10 20	<. 2 	<u><2</u>	20	<. 02 <. 02	
	80-06-11	0		30	<10	<5	<10			<10	<. 02	
	80-01-29 80-05-12	0		· 40			<10 20	<. 2 	<2	10 120	<. 02 <. 02	
	79-11-04 80-04-20 80-08-17		<10	<10 <10 20			<10 70 20	<. 5 	<2 	20 40 10	<. 02 <. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 SUFFOLK COUNTY--Continued

STATI	ON NUMBER		LOCAL IDENT- I- FIER		GED- LDGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40505	4073050901	S 39347	SCWA PLEA	SANT AV	112GLCLU	79-10-30 80-01-20 80-05-05	175 175 175	160 146 134	5. 7 5. 9 6. 0	. 10 . 13 . 15	35 36 33	8. 5 9. 4 8. 6
40450	3073132001	S 394	06 SCWA 41	ST.		79-12-12 80-04-09	106 106	240 220	5. 3 5. 5	. 12	59 42	12 10
40461	4073123001	S 39531	SCWA BANA	NA ST.	211MGTY	79-12-18	288	124	6. 4	. 16	32	8. 5
40534	5073203802	S 39536	SCWA RESE	RVOIR A	112GLCLU	79-09-25* 80-03-05 80-07-07	823 823 823	102 135 118	5. 8 6. 3 6. 0	. 12 . 07 . 08	29 41 32	6. 4 10 7. 7
40533	35072562902	S 40161	SCWA BAIL	EY RD.	112GLCLU	80-01-24	137	108	7. 2	. 09	35	9. 9
40432	21073222601	S 40330	SCWA TWEL	FTH ST.	211MGTY 211MGTY 211MGTY	79-11-04 80-04-08 80-08-06	328 328 328	108 85 108	5. 2 5. 7 5. 3	. 22 . 33	27 16 21	3. 8 3. 3 4. 0
DATE OF SAMPL	ERABLE	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)		ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-10-	30 3. 6	11	1.4	13	11	12		4. 6	<. 010	<. 010	<. 10	<5
80-01- 80-05-		10	1.5	17 14	12 11	11 14	<. 1	5. 0 4. 9	<. 010	<. 010 <. 010	<. 10 <. 10	
79-12- 80-04-		20 18	2. 5 2. 1	12 11	19 24	21 20		9. 1 7. 4	<. 010 <. 010	. 350 . 490	<. 10 <. 10	<5
79-12-	18 2.7	10	. 9	19	3. 9	11		4. 4	<. 010	<. 010	<. 10	<5
79-09-		3.8	. 7	9	7.6	7. 5		3. 5	<. 010	<. 010	C. 10	<5
80-03- 80-07-		7. 1 6. 5	. 8	11	17 11	10 9. 0	<. 1	5. 3 5. 4	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	
80-01-	-24 3.0	5. 4	. 6	31	8. 7	6. 5		. 56	<. 010	<. 010	<. 10	
79-11- 80-04- 80-08-	-08 1.1	11 8.0 11	. 5 . 4 . 5	9 7 6	1. 9	18 13 21	 c. 1	C. 01 C. 01 C. 01	<. 010 <. 010 <. 010	<. 010 . 090 <. 010	1.0 .96 .92	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	TOTAL RECOV-	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-10-30 80-01-20 80-05-05	0	 <5	50 50 <10	<10		<10 20 20	<. 2 	 <2 	<10 150 <10	C. 02 C. 02 C. 02	
	79-12-12 80-04-09	=	<10	<10 90			260 320	 C. 2	 	150 <10	. 19	
	79-12-18			290	30		30	_		350	<. 02	
	79-09-25 80-03-05 80-07-07	 	<10	30 40 60	30		<10 <10 <10	<. 2 	<2 	<10 20 30	C. 02 C. 02 C. 02	
	80-01-24		<5	10	<10		<10	<. 2	<2	<10	<. 02	
	79-11-04 80-04-08 80-08-06	 _ 0	<10	30 20 <10	590		40 50 50	<. 2 	 <2 	40 <10 40	C. 02 C. 02 C. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40522107	73021201	S 40331	SCWA DAF	RE RD.		79-10-31 80-01-21 80-05-11	457 457 457	102 108 100	6. 4 6. 2 6. 3	. 26 . 14 . 07	30 25 25	6. 4 6. 3 6. 7
40460607	73174602	S 40497	SCWA INDU	JSTRY CT	211MGTY 211MGTY 211MGTY	79-09-16* 80-03-10 80-06-24	283 283 283	28 29 30	5. 3 5. 9 5. 7	. 25 . 13 . 13	6 5 7	2. 4 1. 5 1. 4
40423007	73204101	S 40498	SCWA SAWY	YER AVE.	211MGTY 211MGTY 211MGTY	79-11-14 80-04-17 80-08-31	746 746 746	26 25 26	4. 9 5. 3 5. 0	. 09 . 08 . 11	9 3 5	. 7 . 6 . 8
40522207	73211901	S 40709	SCWA DAF	RE RD.	112GLCLU	79-10-31 80-01-27 80-05-05	484 484 484	70 73 65	6. 8 7. 2 6. 7	. 12 . 10 . 19	23 20 24	4. 9 4. 8 5. 2
40520707	73131401	S 40710	SCWA ST.	JOHN LA	112GLCLU 112GLCLU	80-01-29 80-05-22	463 463	32 31	6. 5 6. 0	. 06 . 14	6 9	1. 6 2. 1
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-10-31 80-01-21 80-05-11	2. 3 2. 2 2. 3	7. 0 7. 3 7. 8	. 7 . 8 . 8	17 15 15	4. 1 5. 1 4. 8	9. 0 10 9. 5	 <, 1	2. 5 3. 2 3. 1	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-09-16 80-03-10 80-06-24	. 5 . 5 . 5	3. 0 2. 7 2. 8	. 3	8	1. 2 2. 4 1. 6	3. 0 3. 5 3. 5	 <. 1	. 02 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-11-14 80-04-17 80-08-31	.3	3. 0 2. 8 3. 0	.3	4 3 3	1. 9 1. 2 1. 4	2. 5 3. 0 3. 5	 c. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	1.3 1.0 1.1	<5
79-10-31 80-01-27 80-05-05	1.7 1.7 1.7	4. 8 4. 9 4. 9	. 5	17 19 19	2. 4 2. 7 2. 2	7. 5 6. 0 5. 5	 C. 1	1. 1 1. 6 1. 2	<. 010 <. 010 <. 010	<.010 <.010 <.010	<. 10 <. 10 <. 10	5
80-01-29 80-05-22	. 5 . 6	3. 1 3. 3	. 4	9	. 6	6. 0 4. 5	c. 1	. 23	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-10-31 80-01-21 80-05-11		 <5 	20 30 <10	80		40 <10 30	<. 2	 <2 	<10 180 430	<. 02 <. 02 <. 02	
	79-09-16 80-03-10 80-06-24	 0	<10 	40 30 30	100 80 70		<10 <10 <10	<. 2	C2	40 <10 <10	C. 02 C. 02 C. 02	
	79-11-14 80-04-17 80-08-31	 - 0	<10	30 <10 <10	420 360 200	 <5	<10 <10 <10	<. 2 	<2 	20 <10 <10	<. 02 <. 02 <. 02	
	79-10-31 80-01-27 80-05-05	 _ o	 <5	<10 <10 <10	<10 <10 <10		<10 <10 <10	<.2	 <5 	<10 <10 30	<. 02 <. 02 <. 02	
	80-01-29 80-05-22		<5 	<10 10			<10 20	<. 2 	<2	<10 40	<. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GED- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- SESI (MG/L AS CACD3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
4052090	73131401	S 40711	SCWA ST.	JOHN LA		80-01-29 80-05-22	274 274	87 87	6. 4 5. 7	. 08	19 18	4. 5 4. 4
4055140	73050101	S 4083	37 SCWA DA	K ST	112GLCLU	79-11-28 80-03-17 80-07-14	288 288 288	138 116 118	6. 3 6. 4 6. 3	. 06 . 08 . 07	44 37 36	10 9. 4 9. 3
4055140	73050102	S 4083	38 SCWA DA	K ST	112GLCLU	79-11-26 80-03-24 80-07-13	288 288 288	155 156 149	5. 9 6. 4 6. 1	. 05 . 08 . 08	50 47 45	11 10 10
4054180	73064901	S 40980	SCWA HENR	Y CLAY	211MGTY 211MGTY	80-02-19 80-06-12	578 578	27 28	5. 9 6. 1	. 13	7 4	1.2 1.2
4048200	73073401	5 40982	2 SCWA EAS	STON ST	112GLCLU	79-10-03 80-04-28 80-07-13	150 150 150	220 272 250	5. 5 5. 6 5. 6	. 22 . 05 . 12	39 40 43	8. 0 10 10
4050150	73090201	S 42226	SCWA PIER	SON ST.		79-12-03 80-04-22	270 270	140 152	7. 8 7. 8	. 08	53 60	10 14
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
80-01-29 80-05-22	1.8 1.6	7. 5 7. 8	. 6	11 11	2. 1 1. 9	13 11	 <. 1	2. 1 2. 1	<. 010 . 030	<. 010 <. 010	<. 10 <. 10	
79-11-28 80-03-17 80-07-14	3.8	7. 0 6. 1 5. 7	. 8 . 6 . 7	18 17 18	13	9. 5 8. 5 8. 0	 <. 1	3. 6 2. 3 2. 8	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-11-26 80-03-24 80-07-13	4. 7 4. 5 4. 4	8.3 8.1 7.9	. 8	17 16 17	18	10 10 10	 <. 1	3.7 4.2 4.1	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
80-02-19 80-06-12	. 4	2. 8 3. 0	. 3	7 6		4. 0 3. 5	 <. 1	<. 01 <. 01	<. 010 <1. 000	<. 010 . 130	<. 10 <. 10	
79-10-03 80-04-28 80-07-13	3. 8 3. 9 3. 7	22 28 27	1.8 2.4 2.3	12 11 12	15	41 48 45	 <. 1	1.8 3.3 3.9	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-12-03 80-04-22	5. 2 7. 0	6. 1 6. 3	. 4 . 5	41 49		11 11	==	1.5 1.9	<. 010 <. 010	<. 010 <. 010	. 12 <. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)		MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	80-01-29 80-05-22		<5 	30	50 60	 <5	<10 <10	<. 2 	<2	<10 30	C. 02	
	79-11-28 80-03-17 80-07-14	 0	<10 	20 20 20	<10 <10 70	 <5	<10 <10 <10	<. 2 	 (2	<20 <10 70	<. 02 <. 02 <. 02	
	79-11-26 80-03-24 80-07-13	 o	<10	20 20 <10	<10 <10 <10	 <5	<10 <10 <10	<. 2	 <2 	<10 <10 <10	C. 02 C. 02 C. 02	
	80-02-19 80-06-12	-0	<5 	50 50	<10 50	 <5	<10 <10	<. 2 	<2 	10 <10	<. 02 <. 02	
	79-10-03 80-04-28 80-07-13	 	<10	50 60 60	130 110 <10	 <5	60 90 70	<2	 <2 	40 <10 90	<. 02 <. 02 <. 02	
	79-12-03 80-04-22	=	<10	20 <10	<10 50		<10 <10	<. 2	<2	<10 40	<. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40501607	3090301	S 42227	SCWA PIER	SON ST.		79-12-03 80-04-09	254 254	136 154	7. 2 7. 2	. 11	54 56	11 12
40511907	3123700	S 42270	SCWA NEW	MILL RD	211MGTY 211MGTY	80-02-19 80-06-05	650 650	43 36	5. 8 6. 3	. 27 . 17	10 6	2. 2 1. 7
40511907	3123702	S 42473	SCWA NEW	MILL RD	211MGTY 211MGTY	80-02-19 80-06-05	648 648	47 42	5. 6 6. 2	. 49 2. 5	5	1.0 1.2
40473807	2562701	S 42499	SCWA STAT	ION RD.	112GLCLU	79-12-03 80-01-28 80-05-05	176 176 176	35 83 55	6. 1 6. 9 6. 5	. 12 . 06 . 11	20 24 19	3. 8 7. 0 5. 2
40521507	73012501	S 42504	SCWA FLI	NT LA	112GLCLU	79-12-20 80-01-21 80-05-11	223 223 223	154 156 144	5. 8 5. 8 5. 7	. 07 . 14 . 13	37 38 35	8. 8 9. 2 8. 7
40521507	73012502	S 42505	5 SCWA FLI	NT LA	112GLCLU	79-12-20 80-01-24 80-05-05	233 233	90 94 78	6. 1 6. 2 5. 9	. 19 . 14 . 19	26 26 25	6. 0 6. 5 5. 4
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-12-03 80-04-09	5. 5 5. 8	5. 5 5. 8	. 5 . 5	49 49	2. 5 3. 2		=	1.6 1.6	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	<5
80-02-19 80-06-05	. 8	3. 6 3. 6	. 5 . 5	10	3. 3 3. 2		<. 1	<. 01 <. 01	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
80-02-19 80-06-05	. 5 . 6	5. 8 5. 7	. 6 . 6	9 11	6. 6 6. 1		 <. 1	<. 01 <. 01	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
79-12-03 80-01-28 80-05-05	1.7 1.2 1.0	9. 1 5. 7 4. 3	. 7 . 5 . 5	11 22 20	6. 3 4. 5 2. 5	8. 5	 <. 1	. 49 . 18 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 . 54	<5
79-12-20 80-01-21	3. 5 3. 6	10 9.6	. 9	16	12 13	20		1.7	<. 010 <. 010	. 770 . 790	C. 10 C. 10	<5
80-05-11	3. 5	11	1.0	16	12	21	<. 1	1.4	<. 010	. 700	€. 10	
79-12-20 80-01-24 80-05-05	2. 1 2. 2 2. 0	5. 6 5. 3 5. 3	. 5 . 5	18 16 14	7. 3 8. 1 6. 9	9. 0	 <. 1	1. 1 1. 2 . 85	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	C. 10 C. 10 C. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	(UG/L	ERABLE (UG/L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-12-03 80-04-09	=	<10	40 <10			<10 <10	<. 2	 C2	50 20	<. 02 <. 02	
	80-02-19 80-06-05	-0	<5 	30 30			<10 <10	c. 2	 <5	<10 10	<. 02 <. 02	
	80-02-19 80-06-05	-0	<5 	30 20			30 20	C. 2	<2	30 <10	<. 02 <. 02	
	79-12-03 80-01-28 80-05-05			20 <10 <10	30		<10 20 40	<. 2 	 <2 	10 <10 <10	C. 02 C. 02	
	79-12-20 80-01-21 80-05-11			50 40 20	<10		70 50 160	<. 2	(2 	<10 <10 <10	<. 02 <. 02 <. 02	
	79-12-20 80-01-24 80-05-05			20 <10 <10	<10		<10 <10 20	c. 2	<2 	<10 <10 <10	C. 02 C. 02	

311

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 SUFFOLK COUNTY--Continued

								SPE- CIFIC				CALCIUM
STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACD3)	TOTAL RECOV- ERABLE (MG/L AS CA)
40505407	73050902	S 42760	SCWA PLEA	SANT AV	112GLCLU	79-10-30 80-01-20 80-05-11	174 174 174	179 185 160	5. 8 6. 2 5. 8	. 09 . 13 . 22	42 52 40	11 12 12
40475607	73025501	S 42761	SCWA BLUE	POINT	211MGTY 211MGTY 211MGTY	79-12-10 80-03-12 80-07-07	334 334 334	52 48 61	6. 1 6. 4 6. 2	. 25 . 16 . 64	14 15 12	2. 9 2. 8 3. 4
40430507	73161401	5 4276	2 SCWA UNI	ON ST	211MGTY 211MGTY 211MGTY	79-11-04 80-03-04 80-06-23	743 743 743	31 29 31	5. 1 5. 4 5. 6	. 06 . 08 . 09	5 5 3	. 8 . 5 . 5
40451107	73112301	S 42827	SCWA FISH	IER AVE	211MGTY 211MGTY 211MGTY	79-12-19 80-03-23 80-07-13	664 664 664	48 46 44	6. 2 6. 4 6. 2	. 48 . 14 . 16	17 12 13	2. 8 2. 2 2. 1
40511307	73260901	S 43001	SCWA WOOD	CHUCK H	112GLCLU 112GLCLU	80-04-01 80-07-29	532 532	112 73	6. 1 6. 2	. 10	24 20	6. 6 5. 2
40525607	73045603	S 43117	SCWA HAWK	INS RD.	211MGTY	79-10-30	552	27	6. 2	. 22	5	1. 5
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)		ALKA- LINITY (MG/L AS CACD3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-10-30 80-01-20 80-05-11	3. 7 4. 1 4. 2	11 13 12	1. 1 1. 2 1. 1	17 20 18	11 11 11	13 10 14	 <. 1	6. 0 7. 2 6. 8	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-12-10 80-03-12 80-07-07	1. 1 1. 1 1. 3	3. 7 3. 9 4. 3		11 10 12	5. 8 5. 9 6. 2	4. 0 4. 0 5. 5	 C. 1	<. 01 <. 01 . 74	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 . 32 <. 10	<5
79-11-04 80-03-04 80-06-23	. 3	3. 9 3. 7 3. 9	. 5	5 5 4	1.7 1.2 1.5	3. 5 3. 0 4. 5	 (.1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	2. 5 1. 0 1. 6	<5
79-12-19 80-03-23 80-07-13	1.5 1.4 1.4	3. 4 3. 2 3. 3	. 4	17 13 14	1.8 1.7 2.3	3. 5 3. 0 5. 0	 C. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	. 59 . 60 . 41	5
80-04-01 80-07-29	2. 5 1. 9	6. 1 5. 3	. 7	12 13	7. 3 3. 1	8. 0 7. 5	<. 1	3. 8 3. 3	<. 010 <. 010	. 080	<. 10 <. 10	=
79-10-30	. 3	2. 5	. 2	9	. 4	3. 5		. 08	<. 010	C. 010	<. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	TOTAL RECOV-	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-10-30 80-01-20 80-05-11	 o		40 30 30	80		30 40 50	c. 2	<2 	<10 <10 20	<. 02 <. 02 <. 02	
	79-12-10 80-03-12 80-07-07		<10	20 20			<10 10 30	<. 2	<2 	20 <10 <10	<. 02 <. 02 <. 02	
	79-11-04 80-03-04 80-06-23		<1	<10 <10 <10	360		20 <10 <10	<. 2 	 <2 	30 <10 30	<. 02 <. 02 <. 02	
	79-12-19 80-03-23 80-07-13		<10	60 <10 20	140 560 500		20 30 <10	<. 2 	 <2 	<10 20 20	C. 02 C. 02 C. 02	
	80-04-01 80-07-29	-1	<10	70 300	20 30		<10 <10	C. 2	<2	30 70	<. 02 <. 02	
	79-10-30	_		<10	<10		<10			<10	<. 02	

WATER GUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

								SPE-				
STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40482007	3073402	5 4364	SCWA EAS	STON ST	211MGTY 211MGTY 211MGTY	79-10-03 80-03-18 80-07-13	706 706 706	46 41 44	5. 9 6. 5 6. 0	. 54 1. 3 . 52	13 11 12	2. 3 2. 5 2. 3
40492007	3142801	S 44774	SCWA FAL	CON DR	112GLCLU	79-12-03 80-02-19 80-05-20	293 293 293	55 58 78	6. 2 6. 4 7. 0	. 15 . 23 . 34	15 16 16	3. 5 3. 7 4. 2
40532207	3211404	S 45610	SCWA WASH	INGTON		80-03-05 80-06-30	312 312	31 32	6. 0 5. 7	. 07 . 10	5	1. 4 1. 3
404503073	3131201	S 458	339 SCWA 4	1 ST	211MGTY 211MGTY	79-12-12 80-04-15	726 726	27 24	5. 2 5. 1	. 68 . 33	6	1. 3
40421807	3190400	S 45840	SCWA SMI	TH ST	211MGTY 211MGTY	80-04-20 80-08-19	315 315	74 53	5. 6 5. 8	3. 2 . 60	17 13	1. 6 1. 4
40443207	3151300	S 46235	SCWA THOM	AS AVE	211MGTY 211MGTY 211MGTY	79-12-12 80-03-04 80-06-20	713 713 713	34 30 28	5. 4 5. 4 5. 3	. 10 . 22 . 13	10 9 7	2. 3 1. 2 . 9
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-10-03 80-03-18	. 8	3. 6 3. 9	. 4	13 11	1.8	4. 0 4. 5		<. 01 <. 01	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	<5
80-07-13 79-12-03	1.4	3. 8	. 4	12	2. 4	5. 0 5. 0	<. 1	. 38	<. 010	<. 010	<. 10	<5
80-02-19 80-05-20	1.4	4. 3 10	. 4	18 29	1. 9 1. 9	4. 5 6. 0	<. 1	. 37	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
80-03-05 80-06-30	. 5	3. 4 3. 4	. 4	6	. 8	4. 5 4. 0	<. 1	. 64 . 67	<. 010 <. 010	<. 010 . 700	C. 10 C. 10	=
79-12-12 80-04-15	. 4	2. 8 2. 7	. 4	6	1. 9 1. 3	3. 5 2. 5	=	<. 01 <. 01	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	<5
80-04-20 80-08-19	1. 6 1. 5	5. 2 4. 9	. 6	7	7. 0 7. 4	9. 5 7. 0	<1.0	<. 01 <. 01	<. 010 <. 010	<. 010 <. 010	1. 4 . 56	=
79-12-12 80-03-04 80-06-20	. 6 . 6 . 5	3. 5 2. 8 2. 8	. 3	7 6 6	2. 6 3. 7 3. 7	3. 0 3. 5 3. 0	C. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	1. 2 <. 10 <. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-10-03 80-03-18 80-07-13		<10	60 20 60	270 340 90	 6	30 20 20	c. 2	<2 	<10 90 30	<. 02 <. 02 <. 02	
	79-12-03 80-02-19 80-05-20	 0	 <5 	<10 50 <10	<10 70 <10		<10 <10 <10	<. 2 	C2	<10 20 90	C. 02 C. 02	
	80-03-05 80-06-30		<10	60 60	30	 <5	<10 <10	<. 2 	<2 	20 30	<. 02 <. 02	
	79-12-12 80-04-15	_	<10	50 <10	320 240	=	20 20	 c. 2	<2 	700 <10	<. 02 <. 02	
	80-04-20 80-08-19	-0	<10	<10 20	700	 <5	60 30	<. 2	<2	<10 40	C. 02 C. 02	
	79-12-12 80-03-04 80-06-20		<10	40 40 30	260 170 300		30 <10 20	c. 2		100 <10 <10	<. 02 <. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40500207	73022600	S 46400	SCWA HORS	EBLOCK	112GLCLU	79-12-10 80-03-12 80-07-08	266 266 266	103 95 107	6. 7 7. 0 7. 0	. 12 . 10 . 22	31 31 35	7. 0 7. 2 9. 1
40480307	72484001	S 46712	SCWA OLD	NECK RD		79-12-03 80-01-27	100 100	13 71	6. 4 7. 0	. 30	20 18	4. 0 3. 8
40480407	72484101	S 46713	SCWA OLD	NECK RD	211MGTY 211MGTY 211MGTY	79-12-03 80-01-30 80-05-21	443 443 443	77 82 67	6. 7 6. 5 6. 4	. 18 . 35 . 31	20 22 17	4. 2 4. 5 4. 0
40460607	73174601	S 46830	SCWA INDU	STRY CT	211MGTY 211MGTY 211MGTY	79-09-17* 80-03-11 80-06-23	655 655 655	28 26 30	5. 2 5. 4 5. 6	. 10 . 22 . 10	8 3 4	2. 4 1. 4 1. 1
40545507	73025801	S 46928	SCWA JAYN	E BLVD.	211MGTY 211MGTY	79-11-27 80-03-24	649 649	52 55	6. 7 6. 8	. 22	15 12	4. 6 3. 8
40462807	72430803		S 47024T		211MGTY	80-06-02	365	215	8. 0		1	. 5
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-12-10 80-03-12	3. 0 2. 6	6. 1 5. 6	. 7	25 23	8. 2	7. 0 6. 0		. 97 1. 1	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	<5
80-07-08 79-12-03	1.9	5. 7 4. 7	. 6	14	10 6. 8	7. 0	<. 1	1. 1	<. 010	<. 010	<. 10 <. 10	<5
80-01-27	1. 9	4. 3	. 3	13	6. 8	7. 0		. 72	<. 010	<. 010	<. 10	
79-12-03 80-01-30 80-05-21	2. 0 2. 1 1. 7	4. 6 4. 7 4. 8	. 4	11 11 13	7. 2 12 6. 2	6. 5 8. 0 6. 5	<. 1	. 61 . 45 . 27	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-09-17 80-03-11 80-06-23	. 5	3. 0 3. 0 3. 0	. 3 . 4 . 5	7 6 6	1.2 1.9 .6	4. 0 5. 0 4. 5	<. 1	. 35 . 34 . 35	<. 010 <. 010 <. 010	<. 010 <. 010 . 220	<. 10 <. 10 <. 10	<5
79-11-27 80-03-24	1. 0 1. 0	3. 4 3. 3	. 4	20 16	1. B 2. 9	4. 0 3. 5	=	. 0B . 09	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	<5
80-06-02	. 4	42	4. 1	67	22	8. 0	. 3	<. 01	<. 010	<. 010	. 64	
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	ERABLE (UG/L	(UG/L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-12-10 80-03-12		<10	10 <10			<10 30	 c. 2	<2	<10 340	C. 02	
	80-07-08	0		<10	40		10			40	<. 02	
	79-12-03 80-01-27	=	<5	10	150 <10	==	<10	c. 2	<2	<10	<. 02 <. 02	
	79-12-03 80-01-30 80-05-21	 0	<5 	20 20 10	420		30 <10 20	c. 2	<2 	<10 20 100	<. 02 <. 02 <. 02	
	79-09-17 80-03-11 80-06-23		<10	40 30 20	50		<10 <10 <10	c. 2	C2 	40 <10 20	C. 02 C. 02 C. 02	
	79-11-27 80-03-24	=	<10	30	120 40	_	<10 <10	<.2	 (2	50 30	<. 02 <. 02	
	80-06-02	0		<10		7	10			<10	c. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40461707	3035501	S 47035	SCWA CHUR	CH HLBK	112GLCLU	79-10-10 80-03-26 80-07-20	508 508 508	89 45 40	6. 3 5. 7 6. 0	. 18 . 36 . 74	27 14 11	6. 8 2. 4 2. 6
40540707	3001102	S 47219	SCWA VIKI	NG PL.	112GLCLU	79-12-31 80-03-17 80-07-14	208 208 208	134 138 126	5. 8 6. 0 5. 9	. 16 . 08 . 12	50 48 45	11 10 11
40540707	3001101	S 47310	SCWA VIKI	NG PL	211MGTY 211MGTY	80-03-30 80-07-20	698 698	46 37	6. 4 6. 2	. 07	9 13	2. 8 3. 1
40431707	3201802	S 47435	SCWA LAFA	YETTE R	211MGTY 211MGTY 211MGTY	79-11-14 80-04-07 80-08-05	441 441 441	46 32 23	5. 8 5. 4 5. 1	. 43 . 10 . 14	15 7 9	4. 3 2. 6 . 6
40511007	2531501	S 47436	SCWA WM F	FLOYD PK	112GLCLU 112GLCLU	79-09-20* 79-11-02 80-01-27 80-05-05	165 165 165 165	66 70 61 58	5. 9 5. 8 6. 2 6. 1	. 07 . 12 . 22	18 18 16 18	4. 2 3. 5 3. 4 3. 3
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)		ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-10-10 80-03-26 80-07-20	1. 6 1. 1 1. 1	5. 5 3. 6 3. 5	. 4	18 11 12	6. 4 3. 8 3. 0		 <. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-12-31 80-03-17 80-07-14	5. 1 4. 6 5. 1	6. 4 6. 4 6. 3	. 7	17 14 15	22 20 23	9. 0 10 11	 <. 1	2. 3 2. 3 2. 3	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
80-03-30 80-07-20	. 8	3. 3 3. 2		12 12		4. 5 3. 5	<. 1	. 03	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
79-11-14 80-04-07 80-08-05	. 3	3. 0 2. 7 3. 2	. 3	14 7 3		3. 0 3. 5 3. 0	 <. 1	. 04 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	1.6 1.0 .94	<5
79-09-20 79-11-02 80-01-27 80-05-05	1.5 1.5 1.4 1.4	5. 0 5. 3 4. 6 4. 7	. 5	13 12 12 13	5. 9 5. 8	9. 5 8. 0	 <. 1	. 35 . 23 . 23 . 10	<. 010 <. 010 <. 010 <. 010	<. 010 <. 010 <. 010 <. 010	C. 10 C. 10 C. 10 C. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	TOTAL RECOV- ERABLE (UG/L	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	ERABLE (UG/L	ERABLE (UG/L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-10-10 80-03-26 80-07-20		<10	40 <10 20	160		30 20 30	c. 2	<2 	20 <10 30	C. 02 C. 02 C. 02	
	79-12-31 80-03-17 80-07-14		<10	40 50 40	<10		<10 <10 30	<. 2	<2 	40 <10 30	C. 02 C. 02 C. 02	
	80-03-30 80-07-20	-0	<10	20			<10 <10	<. 2 	<2 	<10 170	<. 02 <. 02	
	79-11-14 80-04-07 80-08-05	<u>-</u>		<10 <10 <10	250		<10 <10 <10	<. 2	<2 	20 480 40	<. 02 <. 02 <. 02	
	79-09-20 79-11-02 80-01-27 80-05-05	0	<5	30 30 20 <10	<10 <10	=	<10 <10 <10 <10	<. 2	 (2	50 10 <10 <10	<. 02 <. 02 <. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

				112200								
STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACD3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40511007	72531502	S 47437	SCWA WM F	LOYD PK	112GLCLU	80-05-22	179	84	6. 4	. 20	28	8. 2
40511007	72531503	S 47438	SCWA WM F	LOYD PK	211MGTY 211MGTY	80-02-03 80-05-26	269 269	92 86	7. 1 6. 6	. 48 . 50	25 21	7. 8 6. 8
40480407	73051300	S 47453	SCWA LINC	OLN AVE	211MGTY 211MGTY	80-03-09 80-07-06	444 444	42 50	6. 4 5. 8	1.6 .53	12 9	2. 4 2. 4
40514207	73105801	S 47673	SCWA HURT	IN BLVD	112GLCLU	79-11-19 80-02-05 80-05-27	280 280 280	124 138 104	6. 9 7. 3 6. 8	. 28 . 20 . 13	46 46 40	10 11 8. 9
40420407	73242001		S 47886		211MGTY 211MGTY	80-04-15 80-08-17	507 507	32 27	4. 5 4. 8	. 10 . 43	3 4	1. 1
40404607	73252102	S 4788	7 SCWA GRE	EN AVE	211MGTY 211MGTY 211MGTY	79-11-07 80-04-07 80-08-06	618 618 618	24 27 24	5. 0 4. 6 4. 8	. 15 . 10 . 07	5 2 7	. 7 . 5 . 5
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
80-05-22	1.8	5. 1	. 5	28	6. 3	6. 5	<. 1	. 30	<. 010	<. 010	<. 10	
80-02-03 80-05-26	1.7 1.6	7. 2 5. 8	. 6 . 5	24 22	2. 1 3. 2	8. 0 6. 5	 c. 0	. 22	<. 010 <. 010	<. 010 <. 010	3. 1 4. 9	=
80-03-09 80-07-06	. 9	3. 6 3. 5	. 3	12 10	2. 7 2. 9	4. 0 3. 0	<. 1	<. 01 . 15	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
79-11-19 80-02-05 80-05-27	4. 2 4. 7 3. 9	6. 4 6. 4 5. 7	. 8 . 9 . 7	35 38 34	5. 6 5. 7 4. 1	9. 0 9. 5 7. 0	 <. 1	. 90 1. 5 . 46	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 . 18 <. 10	<5
80-04-15 80-08-17	. 4	2. 8 2. 8	. 3	4	3. 4 3. 4	3. 5 3. 5	 c. 1	C. 01 C. 01	<. 010 <. 010	<. 010 <. 010	<. 10 . 28	=
79-11-07 80-04-07 80-08-06	. 2	3. 1 3. 1 2. 7	. 3 . 2 . 3	6 4 3	1.5 1.4 .9	3. 0 2. 5 3. 5	<. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	. 93 1. 4 . 41	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	80-05-22	0		<10		<5	<10			20	<. 02	
	80-02-03 80-05-26	0	<5 	<10 <10	380 220		<10 <10	<. 2 	<2	70 20	<. 02 <. 02	
	80-03-09 80-07-06	0	<10	40 <10	30 90		<10 <10	<. 2	<2 	<10 <10	<. 02 <. 02	
	79-11-19 80-02-05 80-05-27	 0	14	70 140 30	50 <10 20		<10 60 <10	<. 2 	<2 	<10 950 20	C. 02 C. 02 C. 02	
	80-04-15 80-08-17		<10	<10 20	360 520	 <5	30 20	<. 2 	<2 	50 60	C. 02 C. 02	
	79-11-07 80-04-07 80-08-06	 o	<10 	30 <10 <10	460 480 250	 <5	<10 <10 <10	<. 2 	<2 	30 20 20	<. 02 <. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40520307	73085501		S 48014		211MGTY 211MGTY 211MGTY	79-11-25 80-02-20 80-08-27	343 343 343	108 110 108	6. 6 7. 6 7. 5	. 60 . 73 . 30	41 37 43	9. 9 9. 1 10
40451507	73225502	S 4819	3 SCWA CIR	CLE DR	211MGTY 211MGTY 211MGTY	79-09-24* 80-04-20 80-08-31	534 534 534	20 21 19	5. 2 5. 5 5. 3	. 65 . 42 . 24	5 3 5	3. 5 1. 4 1. 4
40531907	73233601	S 48719	SCWA FLOW	ER MILL	112GLCLU 112GLCLU	80-04-01 80-07-29	350 350	90 92	6. 6 6. 6	. 08	23 26	5. 9 6. 3
40473907	72562701	S 49018	SCWA STAT	ION RD	211MGTY 211MGTY 211MGTY 211MGTY	79-09-03* 79-11-28 80-01-16 80-05-05	518 518 518 518	55 61 63 55	6. 5 6. 3 6. 7 6. 5	. 17 . 12 . 18	17 20 19 14	5. 2 5. 0 5. 0 5. 3
40572007	72122702	S 49422	SCWA BRID	GEHAMPT		80-01-22 80-06-10	148 148	126 120	6. 5 6. 2	. 10	22 25	4. 7 4. 6
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-11-25 80-02-20 80-08-27	3. 9 3. 8 4. 1	4. 4 4. 7 4. 6	1. 1 1. 1 1. 1	40 37 43	8. 9 8. 7 9. 2	4. 0 2. 5 4. 0	 <. 1	<. 01 . 17 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	. 14 . 15 . 14	<5
79-09-24 80-04-20 80-08-31	. 2	2. 1 2. 0 2. 0	. 2	6 4 3	1. 0 . 8 1. 0	4. 0 2. 5 4. 0	 <. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
80-04-01 80-07-29	2. 1 2. 3	5. 6 5. 8	. 6 . 6	19 18	5. 1 5. 4	6. 5 7. 0	 <. 1	2. 1 1. 9	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
79-09-03 79-11-28 80-01-16 80-05-05	1.0 .9 1.0 1.0	3. 7 4. 1 4. 6 4. 5	. 5 . 5 . 5	19 20 19 18	3. 3 2. 9 2. 4 1. 8	3. 5 4. 5 6. 0 4. 0	 <. 1	<. 01 <. 01 <. 01 <. 01	<. 010 <. 010 <. 010 <. 010	<. 010 <. 010 <. 010 <. 010	C. 10 1. 2 1. 6 1. 1	5
80-01-22 80-06-10	2. 2	13 12	. 9 . 8	17 14	12 13	13 14	<. 1	1. 2 1. 7	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-11-25 80-02-20 80-08-27	 <5	<u></u>	<10 <10 40	<10		50 50 300	<. 2 	<2 	20 <10 <10	C. 02 C. 02 C. 02	
	79-09-24 80-04-20 80-08-31		<10	<10 <10 20	120		<10 30 <10	<. 2 	<2 	120 80 30	C. 02 C. 02 C. 02	
	80-04-01 80-07-29		<10	50 60	<10 <10	 <5	<10 <10	<. 2 	<5	20 20	C. 02 C. 02	
	79-09-03 79-11-28 80-01-16 80-05-05	0	<5	20 20 <10 <10	450 770 620 130	<5 <5	30 30 40 30	<. 2 	<2 	<10 <10 20 290	C. 02 C. 02 C. 02 C. 02	
	80-01-22 80-06-10		<5 	20 50	<10 <10		20 <10	<. 2	<2	80 <10	C. 02 C. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
4053350	72562903	S 4960	6 SCWA BAI	LEY RD	211MGTY 211MGTY	80-01-28 80-05-12	388	107 98	7. 0 7. 4	. 27	38 31	10 8. 8
40443207	73151303	S 50546	SCWA THOM	IAS AVE	211MGTY 211MGTY 211MGTY	79-12-18 80-03-05 80-06-19	667 667 667	40 34 35	6. 0 5. 9 5. 4	. 10 . 20 . 18	14 8 9	1. 4 1. 3 1. 4
40442607	73073304	S 506	30 SCWA DA	KDALE	211MGTY 211MGTY	79-10-17 80-07-20	245 245	68 54	6. 6 6. 2	. 17	20 19	2. 5 2. 7
40421007	73250201	S 51214	SCWA GREA	T NECK	211MGTY 211MGTY 211MGTY	79-11-04 80-04-07 80-08-18	395 395 395	43 76 67	5. 2 4. 5 6. 4	. 65 . 05 . 11	10 11 19	2. 6 2. 2 6. 6
40541007	73010501	S 51266	SCWA CHES	STNUT ST		80-01-02 80-03-17 80-07-14	593 593 593	48 51 50	6. 9 7. 3 7. 1	. 85 . 52 . 16	13 17 16	4. 0 4. 0 4. 5
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
80-01-28 80-05-12	3. 2 2. 9	5. 7 5. 9	1.0	37 29	5. 5 8. 5	6. 5 6. 0	<. 1	. 49	<. 010 <. 010	<. 010 <. 010	. 10 <. 10	
79-12-18 80-03-05 80-06-19	. 8 . 8 . 8	4. 0 3. 0 3. 0	. 3	11 8 4	2. 2 5. 1 5. 0	3. 0 3. 0 4. 0	 <. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<.010 .390 <.010	1, 7 . 16 <. 10	<5
79-10-17 80-07-20	2. 0 2. 0	6. 4 4. 7	1. 1 1. 0	21 20	2.8	4. 0	<. 1	<. 01 <. 01	<. 010 <. 010	. 080	3.0	<5
79-11-04 80-04-07 80-08-18	. 6 1. 2 . 4	3. 3 6. 0 4. 7	. 6 . 6 . 5	9 2 16	6. 1 1. 3 2. 7	5. 5 14 5. 5	 <. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	. 25 1. 2 1. 9	<5
80-01-02 80-03-17 80-07-14	1. 1 1. 1 1. 2	3. 5 3. 7 3. 6	. 4 . 4 . 5	15 17 19	1.5 2.6 2.2	4. 0 4. 5 5. 0	 <. 1	. 11 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	. 30 . 25 . 23	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	80-01-28 80-05-12	 o	<5 	<10 <10	120 130	 <5	10 20	<. 2	<2	100 <10	<. 02 <. 02	
	79-12-18 80-03-05 80-06-19	 0	<10	30 40 20	320	 <5	20 30 10	<. 2 	<2 	10 <10 <10	<. 02 <. 02 <. 02	
	79-10-17 80-07-20	 o	=	20 20	1000 930	 <5	40 30			<10 50	<. 02 <. 02	
	79-11-04 80-04-07 80-08-18	 o	<10	40 20 20	520 620 80	 <5	20 40 <10	c. 2	<2	30 70 10	<. 02 <. 02 <. 02	
	80-01-02 80-03-17 80-07-14		<10 	30 <10 30	100 80 30	 <5	30 <10 20	c. 2	 <2 	70 <10 40	<. 02 <. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
41025307	71.570801	S 51274	SCWA EDGE	MERE RD	112GLCLU	79-09-17* 80-01-21 80-06-09	55 55 55	240 247 262	6. 0 6. 5 6. 3	. 70 . 37 3. 7	40 40 44	8. 0 8. 2 9. 6
4102120	71574401	S 51275	SCWA S DA	VIS AV	211MGTY 211MGTY 211MGTY	79-09-17* 80-01-21 80-06-09	178 178 178	168 122 111	6. 2 6. 5 6. 4	. 70 . 30 5. 1	23 18 20	4. 1 3. 9 3. 9
4043530	73215801	5 51298	SCW GORE	OON AVE	211MGTY 211MGTY 211MGTY	79-09-16* 80-04-07 80-08-04	652 652 652	28 26 25	5. 0 4. 8 5. 0	. 70 2. 9 . 71	5 5 9	3. 2 . 9 1. 0
4043210	73222602	S 51457	SCWA TWEL	FTH ST	211MGTY 211MGTY 211MGTY	79-11-07 80-04-07 80-08-06	623 623 623	29 29 27	4. 8 4. 9 4. 9	. 03 . 09 . 12	8 1 9	. 7 . 5 . 7
4048080	73113302	S 5151	9 SCWA OV	AL DR	211MGTY 211MGTY	79-12-26 80-04-08	408 408	50 56	6. 5 6. 0	. 15	17 16	3. 3 3. 7
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS-	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-09-17 80-01-21 80-06-09	3. 8 4. 5 4. 8	27 26 31	1.6 1.4 1.5	20 20	15 16 16	43 45 54	 <. 1	1. 1 1. 0 . 93	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-09-17 80-01-21 80-06-09	2. 2 1. 7 1. 9	21 13 12	1. 0 . 9 . 8	13 14 10	10 9. 4 9. 7		 <. 1	. 10 <. 01 . 06	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-09-16 80-04-07 80-08-04	. 4	3. 6 2. 9 2. 9	. 5 . 2 . 3	7 5 3	, 1.5	3. 0	 C. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	1. 5 . 80 . 77	<5
79-11-07 80-04-07 80-08-06	. 2	3. 9 2. 9 3. 3	. 3 . 3	9 3 3		4. 0	 <. 1	C. 01 C. 01 C. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	2.3 .85 1.5	<5
79-12-26 80-04-08	1.3 1.3	4. 0 3. 8	. 5 . 4	18 17	1. 4 3. 8		==	. 03 <. 01	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	ERABLE (UG/L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-09-17 80-01-21 80-06-09	 0	<5 	<10 <10 <10	240		310 270 320	<. 2	<2 	<10 <10 30	C. 02 C. 02 C. 02	
	79-09-17 80-01-21 80-06-09	 0	 <5	<10 30 <10	210		<10 30 <10	<. 2		<10 110 <10	C. 02 C. 02 C. 02	
	79-09-16 80-04-07 80-08-04	 0	<10	60 20 <10	500		20 20 <10	<.2	C2	740 <10 40	C. 02 C. 02 C. 02	
	79-11-07 80-04-07 80-08-06	 o	<10	20 <10 <10	700		<10 20 <10	<. 2 	<2 	60 <10 20	C. 02 C. 02 C. 02	
	79-12-26 80-04-08	=	<10	60 30			<10 <10	<. 2	<2	50 50	C. 02 C. 02	

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
4042250	73193001	S 51673	SCWA SAW	YER AVE	211MGTY 211MGTY 211MGTY	79-11-05 80-04-20 80-08-18	763 763 763	28 26 23	5. 0 5. 3 5. 1	. 19 . 13 . 40	16 4 4	. 9 1. 0 1. 2
4056070	73021301	S 51953	SCWA CRYS	STAL BK		80-02-18 80-06-08	316 316	115 111	6. 5 6. 7	. 06	34 32	9. 2 9. 4
4046120	73055001	S 52126	SCWA CHUR	RCH ВНМА	112GLCLU	79-10-09 80-03-23 80-07-20	156 156 156	111 115 111	5. 7 6. 4 6. 1	. 09 . 20 . 20	30 21 25	6. 5 5. 0 6. 1
4054070	73001103	S 5245	1 SCWA VI	KING PL	112GLCLU	79-12-30 80-03-16 80-07-21	183 183 183	106 133 123	5. 9 6. 1 5. 8	. 15 . 06 . 13	35 44 39	8. 8 10 10
4053540	73021202	S 52490	SCWA BIC	YCLE PTH	211MGTY 211MGTY 211MGTY	79-11-20 80-03-17 80-07-13	554 554 554	62 77 61	6. 9 7. 0 7. 0	. 16 . 12 . 08	22 25 20	5. 5 5. 7 5. 0
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS-	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-11-05 80-04-20 80-08-18	. 4	3. 3 2. 4 2. 3	. 3	8 4 4	2.8	3. 5 3. 0 3. 5	 <. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	1. 5 . 40 <. 10	<5
80-02-18 80-06-08	3.4	7. 7	. 7	22	6. 0	9. 5	- 4-	2. 6	<. 010	<. 010	. 15	=
79-10-09		7. 6 8. 9	2.3	26 19	7. 2 6. 1	10	C. 1	2. 3	<. 010	<. 010	<. 10 <. 10	5
80-03-23 80-07-20	2.3	9. 0 10	1. 7 2. 4	17 19	5. 5	14	<. 1	1. 2 1. 1	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
79-12-30 80-03-16 80-07-21	4.0	5. 1 6. 8 6. 5	. 7	13 13 15	20	7.5 12 12	 C. 1	. 95 1. 3 1. 0	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-11-20 80-03-17 80-07-13	2.2	4. 0 4. 8 4. 0		30 22 20	4, 5	2. 5 6. 0 4. 0	 <. 1	<. 01 . 73 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	. 72 C. 10 C. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-11-05 80-04-20 80-08-18		<10	<10 <10 20	380		<10 <10 <10	<. 2	<2 	40 30 30	<. 02 <. 02 <. 02	
	80-02-18 80-06-08		<5 	20 <10			<10 <10	<. 2 	<5	<10 40	<. 02 <. 02	
	79-10-09 80-03-23			50			30			480	C. 02	
	80-03-23	0	<10	<10 20			40 20	<. 2 	C2	<10 <10	<. 02 <. 02	
	79-12-30 80-03-16	=	<10	40 30			<10 <10	 c. 2	<2 	<10 30	<. 02 <. 02	
	80-07-21	.0		70			30		=	400	<. 02	
	79-11-20 80-03-17 80-07-13		<10	30	<10		<10 <10	<. 2	<2	<10 <10	C. 02 C. 02	
	00-07-13	0		<10	<10	<5	<10	-		120	<. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40490507	2565501	S 52944	SCWA PTCH	IG-YPHK	112GLCLU	79-12-06 80-01-27 80-05-06	204 204 204	79 80 74	6. 0 6. 5 6. 2	. 17 . 07 . 15	18 19 27	4. 0 4. 1 5. 1
40490507	2565502	S 52945	SCWA PTCH	IG-YPHK	112GLCLU	79-12-04 80-01-28 80-05-12	196 196 196	74 74 73	6. 7 6. 7 6. 2	. 05 . 14 . 09	24 20 27	5. 6 4. 2 5. 0
40475607	3025504	S 53074	SCWA BLUE	PT RD	112GLCLU	79-12-10 80-03-10 80-07-07	165 165 165	65 69 72	6. 0 6. 0 6. 1	. 14 . 20 . 08	15 18 13	3. 0 3. 6 3. 4
40500207	3022602	S 53291	SCWA HORS	SEBLOCK	112GLCLU	79-12-10 80-03-16 80-07-08	271 271 271	87 86 94	6. 9 7. 2 7. 0	. 13 . 12 . 19	27 28 34	6. 0 6. 9 7. 3
40503207	73162802	S 53360	SCWA WAL	TER CT ·	211MGTY 211MGTY	80-02-20 80-05-20	668 668	57 58	6. 6 6. 5	. 10	16 17	3. 9 3. 7
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-12-06 80-01-27 80-05-06	2. 0 1. 8 2. 1	5. 7 5. 2 5. 1	. 7 . 6 . 7	13 12 11	7. 9 8. 3 8. 4	8. 5 8. 5 9. 5	 <. 1	. 69 . 79 . 50	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-12-04 80-01-28 80-05-12	1. 6 2. 0 2. 1	4. 6 4. 7 4. 8	. 6 . 7 . 7	18 16 13	7. 3 6. 1 6. 5	6. 5 5. 5 10	 C. 1	. 54 . 81 . 63	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-12-10 80-03-10 80-07-07	1. 4 1. 9 1. 5	4. 5 5. 7 5. 2	. 6 . 8 . 8	10 9 12	7. 0 6. 6 6. 7	6. 0 7. 5 7. 0	 C. 1	. 68 1. 4 1. 4	<. 010 <. 010 <. 010	<. 010 <. 010 . 100	<. 10 <. 10 <. 10	<5
79-12-10 80-03-16 80-07-08	2. 5 2. 1 3. 0	5. 2 5. 4 4. 7	. 6 . 5 . 6	22 20 21	8. 7 7. 4 12	6. 0 7. 0 6. 0	 C. 1	. 43 . 49 . 47	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 . 11 <. 10	<5
80-02-20 80-05-20	1.5 1.4	3. 9 4. 0	. 5 . 5	18 16	1. 2	3. 5 4. 5	<. 1	1.0 .82	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-12-06 80-01-27 80-05-06	 0	<5 	<10 <10 20	<10 40 <10		<10 <10 <10	c. 2	<2 	20 <10 60	<. 02 <. 02 <. 02	
	79-12-04 80-01-28 80-05-12	 0	<5 	<10 30 <10	<10 80 <10		<10 <10 <10	<. 2 —	<2 	20 20 30	C. 02 C. 02 C. 02	
	79-12-10 80-03-10 80-07-07	 0	<10	20 20 30	50 90 <10		30 20 <10	<. 2	C1 C2	10 <10 40	<. 08 <. 02 <. 02	
	79-12-10 80-03-16 80-07-08	 0	<10	<10 <10 <10	<10 60 30		<10 <10 <10	<. 2	C2	<10 <10 <10	C. 02 C. 02 C. 02	
	80-02-20 80-05-20		12	<10 <10	60 <10		<10 <10	c. 2		<10 <10	C. 02	

321

QUALITY OF GROUND WATER

WATER GUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GED- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
4051330	73155901	S 53361	SCWA KING	S PK RD	211MGTY 211MGTY 211MGTY	79-10-02 80-02-14 80-05-20	560 560 560	44 47 43	6. 0 6. 1 6. 7	. 18 . 10 . 07	15 11 15	2. 7 3. 3 2. 6
4049500	73085001	S 53497	SCWA TOWN	NLINE RD		79-12-03 80-04-15	173 173	96 91	5. 7 5. 7	. 04	24 17	4. 7 4. 4
4052300	72430001	S 53522	SCWA MRCH	HS-RVRHD	112GLCLU 112GLCLU	79-09-04* 79-11-19 80-01-21 80-04-29	294 294 294 294	54 59 63 52	6. 1 6. 4 6. 7 6. 4	. 12 . 09 . 38	15 16 19 10	3. 4 3. 4 5. 2 3. 8
4051240	72353603	S 53593	SCWA SPIN	NNEY RD	112GLCLU	79-09-17* 80-02-04 80-06-02	162 162 162	157 175 157	6. 1 6. 4 6. 0	. 14 . 08 . 26	55 49 51	9. 5 9. 8 12
4051400	73191001	S 53747	SCWA LAR	KFIELD R	211MGTY 211MGTY 211MGTY	79-09-09* 80-02-19 80-05-15	454 454 454	51 59 62	5. 5 5. 7 5. 9	. 13 . 21 . 10	13 10 18	2. 6 2. 6 3. 7
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)		ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS-	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-10-02		3. 4		12				. 69	<. 010	<. 010	<. 10	<5
80-02-14 80-05-20		3. 5		11	1. 9		<. 1	. 98 . 51	. 010	<. 010 <. 010	<. 10 <. 10	Ξ
79-12-03 80-04-15		8. 0 7. 8		11 13	8. 5 7. 1	11 10		1. B 1. 5	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	<5
79-09-04		4.6		12				1.6	<. 010	<. 010	C. 10	
79-11-19 80-01-21	1. 1	4. 4 4. 3	. 4	12 16	4. 4 4. 4	5. 5		. 04	<. 010 <. 010	<. 010 <. 010	C. 10	<5
80-04-29	1.2	4. 1	. 4	12	4. 4	6. 0	<. 1	. 10	<. 010	<. 010	<. 10	
79-09-17 80-02-04	6. 3	8. 1 7. 7		11 13	25 30	11 11		3. 6	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	<5
80-06-02	5. 7	7. 1		11	31	10	<. 1	3. 1	<. 010	<. 010	<. 10	
79-09-09 80-02-19		4. 5 4. 5		9				2.0	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	<5
80-05-15	1. 2	4. 7		7			<. 1	2. 7	<. 010	<. 010	<. 10	
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	TOTAL RECOV-	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-10-02			30			<10	.==		<10	c. 02	
	80-02-14 80-05-20	0	<u><1</u>	<10 20			<10 <10	<. 2	 <5	50 <10	<. 02 <. 02	
	79-12-03 80-04-15	=	<10	50 30			40 50	C. 2	C2	<10 30	<. 02 <. 02	
	79-09-04	0		30	50	<5	<10			50	<. 02	
	79-11-19 80-01-21 80-04-29		<5	10 <10 <10	100		<10 <10 <10	<. 2	<2 	20 180 200	<. 02 <. 02 <. 02	
	79-09-17	-		60	<10		<10			20	<. 02	
	80-02-04 80-06-02	0	<5 	300 100	60		<10 <10	<. 2	<2	40 20	C. 02	
	79-09-09			40	20		<10		-	<10	<. 02	
	80-02-19 80-05-15	0		50 40			<10 <10	<. 2 	 <2	<10	<. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACD3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40491407	73095603	S 53850	SCWA LIBE	RTY ST.		79-12-04 80-04-03	188 188	127 140	6. 4 6. 5	. 26 . 24	47 43	10 12
40523007	72430002	S 53851	SCWA MRCH	IS-RVRHD		79-12-04 80-01-28	239 239	61 65	6. 7 7. 0	5. 2 . 16	20 19	4. 5 4. 8
4053590	73182801	S 54162	SCWA MIDE	DLEVILLE	112GLCLU	79-09-20* 80-03-03 80-06-30	544 544 544	175 150 172	6. 5 6. 6 6. 7	. 11 . 10 . 15	47 42 46	12 14 13
4048050	73051502	S 54305	SCWA LING	OLN AVE	211MGTY 211MGTY 211MGTY	79-10-03 80-03-09 80-07-06	349 349 349	53 54 45	6. 1 6. 2 6. 2	. 15	18 13 12	3. 1 3. 3 2. 5
4047590	73122501	S 54308	SCWA DOLO	RES PL.	211MGTY 211MGTY	79-12-03 80-04-02	794 794	35 33	5. 8 6. 0	. 08	10 6	1.5 1.6
4050300	73032103	S 54473	SCWA COLL	EGE RD	112GLCLU	79-10-31 80-03-09 80-07-08	312 312 312	94 138 214	7. 2 6. 7 6. 9	. 31 . 14 . 64	36 42 38	8. 6 13 9. 2
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS-	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-12-04 80-04-03	4. B 5. 3	5. 2 5. 5		37 39	7. 7 7. 9		=	1. 0 1. 0	<. 010 <. 010	<. 010 <. 010	. 10 <. 10	<5
79-12-04 80-01-28	1. 2 1. 3	4. 6 4. 6	. 4	19 18	4. 0 5. 8		==	. 15	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	<5
79-09-20 80-03-03 80-06-30	3. 9 4. 7 4. 8	11 9. 2 10	. 9 . 7 . 8	22 18 20	14 15 14	15 13 14	 C. 1	5. 8 5. 4 5. 3	<. 010 <. 010 <. 010	<. 010 <. 010 . 350	<. 10 <. 10 <. 10	<5
79-10-03 80-03-09 80-07-06	1. 0 1. 1 . 9	4. 2 4. 5 3. 6	. 4	11 12 12	1. 0 1. 7 2. 6	7. 5	 c. 1	1. 0 1. 1 . 47	<. 010 <. 010 <. 010	<. 010 . 110 <. 010	<. 10 <. 10 <. 10	<5
79-12-03 80-04-02	. 8	3. 2 3. 0		11 12	1.6			<. 01 <. 01	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	<5
79-10-31 80-03-09 80-07-08	2. 7 4. 3 3. 4	5. 8 10 7. 6	. 7	29 30 27	1. 7 7. 3 5. 8	14	 <. 1	. 43 2. 7 1. 1	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	1. 7 . 40 . 36	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	TOTAL RECOV- ERABLE (UG/L	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	ERABLE (UG/L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-12-04 80-04-03	==	 <10	50 <10			<10 <10	<. 2	<2	<10 80	<. 02 <. 02	
	79-12-04 80-01-28	= =	 <5	20			<10 20	<. 2	<2	20	<. 02 <. 02	
	79-09-20 80-03-03 80-06-30		10	40 <10 40	<10		<10 <10 20	<. 2 	<2 	<10 20 60	C. 02 C. 02 C. 02	
	79-10-03 80-03-09 80-07-06			40 30 20	40		20 <10 <10	<. 2 	<2 	<10 20 20	C. 02 C. 02	
	79-12-03 80-04-02	-		30			<10 20	C. 2	 <2	60 20	<. 02 <. 02	
	79-10-31 80-03-09 80-07-08		<10	20 10 20	80		<10 20 <10	<. 2 	<2 	<10 50 <10	C. 02 C. 02 C. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GED- LDGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40421007	73250202	S 54568	SCWA ALBA	NY AVE	211MGTY 211MGTY 211MGTY	79-11-13 80-04-08 80-08-18	423 423 423	58 60 68	4. 6 5. 1 6. 0	. 14 . 11 . 17	11 9 18	1.8 2.4 4.2
40472207	73030501	S 54730	SCWA GREE	NBELT P	211MGTY 211MGTY 211MGTY	79-10-03 80-03-10 80-07-07	259 259 259	49 49 67	6. 0 6. 2 6. 3	. 75 . 40 . 55	14 11 15	3. 1 3. 0 4. 8
40533207	72242001	S 55028	SCWA W PR	OSPECT		80-01-28 80-05-07	161 161	286 245	6. 1 6. 0	. 08	89 87	23 21
4044580	73182503	S 55463	S SCWA BRO	OK ST.	211MGTY 211MGTY 211MGTY	79-09-23* 80-03-09 80-06-17	360 360 360	33 31 25	5. 4 5. 8 5. 4	. 25 . 40 . 14	10 5 6	2. 3 2. 1 1. 1
40541007	73010502	S 55502	SCWA CHES	TNUT ST		80-03-16 80-07-14	595 595	47 41	6. 9 6. 5	. 11 . 16	14 14	3. 2 3. 5
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-11-13 80-04-08 80-08-18	. 9 1. 0 . 9	5. 1 4. 6 5. 8	. 6 . 6 . 7	3 3 11	4. 6 1. 8 2. 0	10 11 11	 c. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	C. 010 C. 010 C. 010	. 77 . 42 1. 1	<5
79-10-03 80-03-10 80-07-07	1. 1 1. 1 1. 3	3. 4 3. 6 4. 6	. 3 . 3 . 5	11 10 11	5. 9 6. 8 8. 0	4. 0 4. 5 5. 5	 <. 1	<. 01 <. 01 . 72	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
80-01-28 80-05-07	8. 2 7. 5	10 11	2. 1 2. 1	14 13	46 42	21 21	 <. 1	6. 1 6. 3	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
79-09-23 80-03-09 80-06-17	. 4 . 5 . 3	3. 1 2. 5 2. 9	. 3	10 6 5	2. 0 2. 7 1. 9	3. 0 3. 5 4. 5	 C. 1	C. 01 C. 01 C. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
80-03-16 80-07-14	1.0 1.1	3. 7 3. 5	. 4	13 14	3. 6 2. 4	5. 5 3. 5	<. 1	<. 01 <. 01	<. 010 <. 010	<. 010 <. 010	<. 10 <. 10	=
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-11-13 80-04-08 80-08-18	 o	<10	60 20 20			10 30 30	<. 2	<2 	20 110 20	<. 02 <. 02 <. 02	
	79-10-03 80-03-10 80-07-07	 0	<10	30 40 20	240		10 30 30	<. 2 	<2 	10 <10 200	C. 02 C. 02 C. 02	
	80-01-28 80-05-07	0	<5 	30 50			<10 30	<. 2 	<2 	<10 380	<. 02 <. 02	
	79-09-23 80-03-09 80-06-17	 o	<1	40 <10 20	230		20 30 <10	C. 2	 (2 	70 120 30	C. 02 C. 02 C. 02	
	80-03-16 80-07-14	-0	<10	30			<10 30	<. 2	<2 	20 110	<. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

			LOCAL IDENT- I-		GEO- LOGIC	DATE OF	DEPTH OF WELL,	SPE- CIFIC CON- DUCT- ANCE	PH	TUR- BID-	HARD- NESS (MG/L	CALCIUM TOTAL RECOV- ERABLE
STATION	NUMBER		FIER		UNIT	SAMPLE	TOTAL (FEET)	(MICRO- MHOS)	FIELD (UNITS)	ITY (NTU)	AS CACO3)	(MG/L AS CA)
40432607	3174101	S 55733	SCWA SUNR	ISE HWY	211MGTY 211MGTY 211MGTY	79-10-31 80-03-03 80-06-17	233 233 233	88 80 86	5. 7 5. 5 5. 5	. 67 . 30 . 40	20 20 15	4. 6 4. 4 3. 9
40501407	72492501	S 56038	SCWA CNTR	Y CLUB	112GLCLU	79-11-25 80-01-28 80-05-07	155 155 155	107 105 100	6. 3 6. 8 6. 6	. 07 . 14 . 09	31 31 35	7. 5 7. 7 8. 2
40543407	3194202	S 56133	SCWA WATE	RSIDE R	112GLCLU	79-09-12* 80-03-03 80-06-30	333 333	152 138 142	6. 9 6. 8 6. 8	. 16 . 08 . 25	51 49 45	11 11 11
40495007	73001501	S 56674	4 SCWA FAI	RMOUNT	112GLCLU	80-01-02 80-01-29 80-05-06	180 180 180	85 90 88	6. 4 6. 7 6. 5	. 13 . 24 . 12	24 27 28	6. 6 6. 9 6. 5
40465807	73164201	S 57008	SCWA EMJA	Y BLVD	211MGTY 211MGTY 211MGTY	79-12-06 80-03-03 80-06-19	704 704 704	126 120 158	5. 6 5. 9 5. 8	. 15 . 23 . 14	36 44 52	8.8 13 12
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-10-31 80-03-03 80-06-17	1.5 1.5 1.4	7. 9 7. 0 7. 7		11 11 9	9. 1 12 13	10 9.5 10	 <. 1	<. 01 . 16 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	1, 5 . 37 . 80	<5
79-11-25 80-01-28 80-05-07	2. 8 2. 7 2. 9	6. 1 5. 8 5. 6	. 6 . 5 . 5	18 19 17	12	6. 5 7. 5 7. 0	 C. 1	1. 9 1. 9 2. 0	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-09-12 80-03-03 80-06-30	4. 7 4. 4 4. 2	8. 0 7. 3 7. 5		32 33 33	5. 5	9. 5	 C. 1	3. 4 3. 9 3. 7	<. 010 <. 010 <. 010	<. 010 <. 010 . 500	<. 10 <. 10 <. 10	<5
80-01-02 80-01-29 80-05-06	2. 3 2. 4 2. 4	5. 3 5. 1 5. 6	. 6 . 6	20 20	9. 1	7. 0	 C. 1	. 85 . 84 . 69	<. 010 <. 010 <. 010	<. 010 . 080 <. 010	<. 10 <. 10 <. 10	<5
79-12-06 80-03-03 80-06-19	3. 5 4. 3 4. 6	6. 0 5. 9 7. 1	. 4	12 22 10	21	8. 0 8. 0 9. 5	 C. 1	1.7 1.8 1.9	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	TOTAL RECOV- ERABLE (UG/L	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	ERABLE (UG/L	ERABLE (UG/L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-10-31 80-03-03 80-06-17		 <1 	<10 20 60	850		40 50 60	<. 2 	<2 	50 <10 <10	<. 02 <. 02 <. 02	
	79-11-25 80-01-28 80-05-07		 <5	130 20 30	<10		<10 <10 <10	<. 2	 <2 	<10 20 <10	C. 02 C. 02 C. 02	
	79-09-12 80-03-03 80-06-30		<10	30 10 40	<10		<10 <10 20	<. 2	 <2 	<10 <10 20	<. 02 <. 02 <. 02	
	80-01-02 80-01-29 80-05-06		<5 	<10 <10 20	60		20 30 30	<.2 -	<5 	<10 30 20	C. 02 C. 02 C. 02	
	79-12-06 80-03-03 80-06-19		<10	30 50 60	70		<10 30 <10	<. 2	<2 	<10 30 <10	<. 02 <. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

								SPE- CIFIC				CALCIUM
STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	TOTAL RECOV- ERABLE (MG/L AS CA)
41024907	72554501	S 57357	SCWA S F	FULTON	112GLCLU	79-09-17* 80-01-22 80-06-10	89 89 89	330 192 234	6. 2 6. 6 6. 3	. 11 . 11 . 08	53 37 44	10 8.8 10
40461207	73055002	S 57871	SCWA CHUR	RCH BHMA	112GLCLU	79-10-10 80-03-30 80-07-30	154 154 154	110 115 125	6. 3 6. 2 6. 2	. 16 . 18 . 14	28 23 29	6. 0 5. 0 6. 3
40561407	73051501	S 57975	SCWA SHE	ERRY DR	211MGTY 211MGTY 211MGTY	79-09-01* 80-02-20 80-06-08	583 583 583	29 31 30	5. 7 6. 3 6. 1	. 22 . 06 . 08	6 6 8	1.5 1.3 1.7
40551407	73050103	S 5798	80 SCWA DA	AK ST.	211MGTY 211MGTY 211MGTY	79-11-25 80-03-16 80-07-13	760 760 760	38 37 36	6. 3 6. 6 6. 4	. 06 . 08 . 07	13 10 13	2. 3 2. 2 2. 0
40493807	73152701	S 58708	SCWA CAPI	TOL CT	211MGTY 211MGTY 211MGTY	79-12-03 80-02-20 80-05-15	148 148 148	35 37 33	5. 6 5. 8 5. 7	. 18 . 18 . 10	9 7 7	1.7 1.4 1.6
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
79-09-17 80-01-22 80-06-10	6. 2 4. 5 5. 0	38 18 26	1.6 1.1 1.3	27 29 28	7. 3 6. 6 7. 0	75 32 51	 c. 1	. 27 . 30 . 20	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-10-10 80-03-30 80-07-30	1. 9 1. 9 2. 4	8. 2 8. 7 10	4. 3 3. 2 3. 2	24 18 19	6. 9 6. 5 7. 3	13 12 17	 <. 1	. 88 . 70 . 72	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-09-01 80-02-20 80-06-08	. 6 . 7	3. 1 2. 8 3. 0	. 3	8 8	. 9 1. 5 1. 5		 C. 1	. 05 . 02 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-11-25 80-03-16 80-07-13	. 9 . 9 . 9	3.3 3.3 3.1	. 4 . 4 . 4	13 12 11	2. 1 1. 8 1. 7	4. 0 4. 0 3. 5	 <. 1	. 04 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
79-12-03 80-02-20 80-05-15	. 6 . 5 . 6	3. 4 3. 3 3. 3	. 4 . 4 . 4	9 8 7	. 8	3. 0	 <. 1	. 75 . 70 . 59	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	79-09-17 80-01-22 80-06-10	<u>-</u>	 <5 	<10 20 <10	40 <10 30		<10 <10 <10	<. 2	<2 	<10 <10 650	<. 02 <. 02 <. 02	
	79-10-10 80-03-30 80-07-30		<10	<10 20 <10	70 60 <10		20 <10 <10	<. 2	<2 	<10 20 <10	<. 02 <. 02 <. 02	
	79-09-01 80-02-20 80-06-08	 0	 2 	30 20 30	80 <10 <10	-	<10 <10 <10	c. 2	<2 	<10 <10 <10	<. 02 <. 02 <. 02	
	79-11-25 80-03-16 80-07-13	 _ 0	<10	20 20 <10	40 <10 <10		<10 <10 <10	c. 2	<2 	<10 20 <10	<. 02 <. 02 <. 02	
	79-12-03 80-02-20 80-05-15	 _ o	 5 	20 <10 20	<10 <10 <10	 <5	<10 20 <10	<. 2	<2	<10 <10 <10	<. 02 <. 02 . 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GED- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACD3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40534207	73030701	S 58761	SCWA BOY	LE RD.	211MGTY 211MGTY	80-04-24 80-08-27	295 295	45 48	7. 1 7. 1	. 25	13 22	4. 8 4. 1
40441907	73171601	S 59347	SCWA BAY	SHORE R	211MGTY 211MGTY 211MGTY	79-10-31 80-03-03 80-06-17	131 131 131	37 44 44	6. 1 6. 2 6. 1	. 30 . 16 1. 4	11 12 9	2. 3 2. 1 2. 1
40472207	73030502	S 59744	SCWA GREE	NBELTPK	211MGTY 211MGTY 211MGTY	79-10-09 80-03-09 80-07-07	302 302 302	50 46 56	5. 8 6. 4 6. 3	. 74 . 74 . 86	13 11 11	2. 6 3. 0 3. 7
40494907	73042802	S 60127	SCWA KAYR	ON DR #	112GLCLU	79-10-31 80-03-09 80-07-07	490 490 490	47 46 46	6. 5 6. 7 6. 8	. 32 . 28 . 08	11 13 10	2, 8 2, 8 3, 0
40454207	73013301	S 60486	SCWA WATE	RWORKS	211MGTY 211MGTY 211MGTY	79-10-10 80-03-24 80-07-13	196 196 196	53 59 55	6. 3 6. 4 6. 2	. 15 2. 0 . 22	16 12 16	4. 1 4. 2 4. 1
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
80-04-24 80-08-27	1. 1 1. 1	3. 0 3. 3	. 4	15 22	1.4		<. 1	<. 01 <. 01	<. 010 <. 010	<. 010 <. 010	. 22	=
79-10-31 80-03-03 80-06-17	1.3 1.3 1.2	3. 1 3. 5 3. 5	. 6	16 13 11	1.6 2.5 2.8	3. 0	 <. 1	. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	. 58 . 92 . 66	<5
79-10-09 80-03-09 80-07-07	1. 1 1. 2 1. 0	3. 2 3. 3 3. 8	. 3 . 3 . 4	12 11 10	4. 9 5. 5 8. 2	3. 0	 C. 1	<. 01 <. 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	C. 10 C. 10 C. 10	<5
79-10-31 80-03-09 80-07-07	. 9 1. 0 1. 0	4. 0 3. 7 3. 8	. 3	13 13 15	. 8 1. 4 1. 2	4. 0	 C. 1	. 09 . 45 . 20	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	<. 10 <. 10 <. 10	C5
79-10-10 80-03-24 80-07-13	. 9 . 9 . 9	3. 4 3. 6 3. 6	. 7 . 6 . 6	16 15 16	4. 0 4. 8 4. 3	4. 0	 <. 1	. 02 . 01 <. 01	<. 010 <. 010 <. 010	<. 010 <. 010 <. 010	. 27 . 23 . 27	<5
	DATE OF SAMPLE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)		MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	80-04-24 80-08-27		<10	<10 20			<10 20	<. 2	<u><5</u>	310 100	<. 02 <. 02	
	79-10-31 80-03-03 80-06-17	 o	<1 	<10 <10 <10	460		<10 20 30	c. 5		10 <10 <10	<. 02 <. 02 <. 02	
	79-10-09 80-03-09 80-07-07	 o	<10	50 50 30	330		30 30	<.2	<2 	<10 <10 20	<. 02 <. 02 <. 02	
	79-10-31 80-03-09 80-07-07		2	<10 <10 <10	80		<10 <10 <10	<. 2 —	 <2 	<10 <10 20	C. 02 C. 02 C. 02	
	79-10-10 80-03-24 80-07-13		<10	<10 <10 <10	430		20 <10 <10	c. 2	<2	<10 120 <10	<. 02 <. 02 <. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 SUFFOLK COUNTY--Continued

STATION NUMBER FIER LOCAL LOCAL LOCAL LOCAL STATION NUMBER FIER LOCAL LOCAL STATION NUMBER FIER FIER STATION NUMBER FIER FIER									SPE- CIFIC				CALCIUM
1967 1967	STATION	NUMBER		IDENT-		LOGIC	OF	OF WELL, TOTAL	CON- DUCT- ANCE (MICRO-	FIELD	BID- ITY	NESS (MG/L AS	TOTAL RECOV- ERABLE (MG/L
404717072595604 S 62022 SUM BARTON AVE. 1158LCLU 77-11-28 313 31 6.4 4.5 5.3 3.5	4045240	73044801	S 60812	SCWA CHIN	A ROAD	211MGTY	80-03-25	489	55	6. 5	. 15	16	3. 3
120LCLU 80-05-05 313	4056070	73021302	S 61910	SCWA CRYS	TAL BRK	112@LCLU	80-06-08	315	106	7. 0	. 08	31	10
## 404202073242302 S 63205 SCMA ALBANY AVE 211M6TY 79-11-11 419 38 4.3 .21 8 1.3 211M6TY 80-00-17 419 37 4.6 .0 .0 .0 .1 .7 404415073114001 S 63618 SCMA MDFFIT BLVD 211M6TY 80-00-17 419 37 4.6 .0 .0 .0 .1 .7 404415073114001 S 63618 SCMA MDFFIT BLVD 211M6TY 80-00-17 419 5.3 .3 .3 .6 1.7 404415073114001 S 63618 SCMA MDFFIT BLVD 211M6TY 80-00-07 4459 22 5 5.2 .0 .4 .3 .6 70 70 70 70 70 70 70 7	40471707	72595604	S 62022	SCWA BART	ON AVE.	112GLCLU	80-01-21	313	51	6.4	. 24	15	3. 9
A04419073114001 S 63618 SCHA MOFFIT BLVD 211MOTY 80-00-17 419 41 5. 3 3. 6 6 1. 2	40591907	72170202	S 62855	SCWA DIVI	SION ST	1120LCLU	80-05-12	171	65	6. 6	. 14	15	3. 3
MAGNE SUBJUM SU	40420207	73242302	S 63205	SCWA ALBA	NY AVE	211MGTY	80-04-08	419	41	5. 3	. 36	6	1.2
Date Part	4044150	73114001	S 63618	SCWA MOFF	IT BLVD	211MGTY	80-03-03	463	24	5. 3	. 12	3	. 6
80-03-28 1. 4 3. 4 3. 3 16 3. 6 4. 0 C.01 C.010 C.010 C.10 80-07-13 1. 4 3. 3 3 14 2. 9 4.0 C.1 C.010 C.010 C.010 C.10 80-06-08 2. 8 6. 1 6. 25 6. 8 8. 0 C.1 1. 6 C.010 C.010 C.010 C.00 C.00 C.00 C.00 C	OF	SIUM, TOTAL RECOV- ERABLE (MG/L	TOTAL RECOV- ERABLE (MG/L	SIUM, TOTAL RECOV- ERABLE (MG/L	LINITY (MG/L AS	DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	RIDE, TOTAL (MG/L	GEN, NITRATE TOTAL (MG/L	GEN, NITRITE TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	PHORUS, ORTHOPH OSPHATE TOTAL (MG/L	TOTAL (UG/L
80-07-13	79-10-09	1.4	3. 2	. 3	18	2.7	4. 0		<. 01	<. 010	C. 010	<. 10	<5
79-11-28													
80-05-05	80-06-08	2. 8	6. 1	. 6	25	6.8	8. 0	<. 1	1.6	<. 010	<. 010	c. 10	
80-05-05					17	2. 1	4. 0						
B0-05-12													
80-04-08	80-05-12	1.3	6.8	. 5	13	5. 0	7. 5	<. 1	<. 01	<. 010	<. 010	<. 10	
B0-08-17	79-11-11	. 5	3. 0	. 5	3	4. 2	4. 0		<. 01	<. 010	<. 010	<. 10	<5
B0-03-03 .2 2.7 .5 5 1.8 3.5 .05 < .010 < .010 < .10													
B0-03-03 .2 2.7 .5 5 1.8 3.5 .05 < .010 < .010 < .10	79-12-19	2	3.1		4	1 Δ			< 01	< 010	< 010	< 10	<5
DATE RECOV- REC	80-03-03	. 2	2.7	. 5	5	1.8	3. 5	c. 1	. 05	<. 010	<. 010	<. 10	
80-03-25 <10 20 400 30 <.2 <2 20 <.02 80-07-13 0 <10 420 <5 20 <10 <.02 80-06-08 0 20 <10 <5 <10 <50 <.02 79-11-28 <10 <10 <10 <10 <.02 80-01-21 <5 30 <10 <10 <.2 <2 30 <.02 80-05-05 0 <10 50 <5 <10 <10 <.02 80-05-12 0 50 70 <5 20 20 <.02 80-04-08 <10 410 220 20 <.2 <2 20 <.02 80-08-17 0 <10 300 10 20 170 <.02 <th></th> <th>OF</th> <th>TOTAL RECOV- ERABLE (UG/L</th> <th>MIUM, TOTAL RECOV- ERABLE (UG/L</th> <th>TOTAL RECOV- ERABLE (UG/L</th> <th>TOTAL RECOV- ERABLE (UG/L</th> <th>TOTAL RECOV- ERABLE (UG/L</th> <th>NESE, TOTAL RECOV- ERABLE (UG/L</th> <th>TOTAL RECOV- ERABLE (UG/L</th> <th>NIUM, TOTAL (UG/L</th> <th>TOTAL RECOV- ERABLE (UG/L</th> <th>LENE BLUE ACTIVE SUB- STANCE</th> <th></th>		OF	TOTAL RECOV- ERABLE (UG/L	MIUM, TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	NESE, TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	NIUM, TOTAL (UG/L	TOTAL RECOV- ERABLE (UG/L	LENE BLUE ACTIVE SUB- STANCE	
80-07-13 0 <10 420 <5 20 <10 <.02 80-06-08 0 20 <10 <5 <10 50 <.02 79-11-28 <10 <10 <10 <10 <.02 80-01-21 <5 30 <10 <10 <.2 <2 30 <.02 80-05-05 0 <10 50 <5 <10 <10 <.02 80-05-12 0 50 70 <5 20 <20 <.02 79-11-11 80 320 10 <10 <.02 80-04-08 <10 410 220 20 <.2 <2 20 <.02 80-08-17 0 <10 300 10 20 170 <.02 79-12-19 <10 380 <10 < 30 <.02 79-12-19 <10 380 <10 < 30 <.02 79-12-19 <10 380 <10 < 30 <.02 80-03-03 <11 30 260 <10 < <10 < 30 <.02													
79-11-28 <10													
80-01-21		80-06-08	0	-	20	<10	<5	<10	-		50	<. 02	
80-05-05 0 <10 50 <5 <10 <- <10 <.02 80-05-12 0 50 70 <5 20 20 <.02 79-11-11 80 320 10 <10 <.02 80-04-08 <10 410 220 20 <.2 <2 20 <.02 80-08-17 0 <10 300 10 20 170 <.02 79-12-19 10 380 <10 30 <.02 80-03-03 <1 30 260 <10 <.2 <2 <10 <.02													
79-11-11 80 320 10 <10 <.02 80-04-08 <10 410 220 20 <.2 <2 20 <.02 80-08-17 0 <10 300 10 20 170 <.02 79-12-19 10 380 <10 30 <.02 80-03-03 <1 30 260 <10 <.2 <2 <10 <.02													
80-04-08 <10 410 220 20 <.2 <2 20 <.02 80-08-17 0 <10 300 10 20 170 <.02 79-12-19 10 380 <10 30 <.02 80-03-03 <1 30 260 <10 <.2 <2 <10 <.02		80-05-12	0		50	70	<5	20			20	<. 02	
80-08-17 0 <10 300 10 20 170 <.02 79-12-19 10 380 <10 30 <.02 80-03-03 <1 30 260 <10 <.2 <2 <10 <.02			122					10					
79-12-19 10 380 <10 30 <.02 80-03-03 <1 30 260 <10 <.2 <2 <10 <.02													
80-03-03 <1 30 260 <10 <.2 <2 <10 <.02													
		80-03-03		<1	30	260		<10	C. 2	<2	<10	<. 02	

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)
40565207	72590003	S 64023	SCWA N CO	UNTRY R	211MGTY	80-06-13	794	24	6.8	. 14	16	4. 1
40530107	73153203	S 64062	SCWA CARL	SON AVE	211MGTY	80-05-21	639	35	5. 9	. 12	9	1.8
40463207	73070802	S 67074	SCWA LOCU	ST AVE	211MGTY	80-07-28	830	55	6. 2	. 08	22	3. 5
DATE OF SAMPLE	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	ALKA- LINITY (MG/L AS CACD3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLD- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, ORTHOPH OSPHATE TOTAL (MG/L AS PO4)	ARSENIC TOTAL (UG/L AS AS)
80-06-13	1. 5	4. 9	. 5	22	2. 0	5. 5	<. 1	. 07	<. 010	1.000	<. 10	
80-05-21	. 6	3. 7	. 4	7	1.0	5. 0	<. 1	. 24	<. 010	<. 010	<. 10	()
80-07-28	1.4	6. 4	. 8	20	3. 3	5. 0	<. 1	<. 01	<. 010	<. 010	4. 0	
	DATE OF SAMPLE 80-06-13 80-05-21	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)		COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 50		LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (Mg/L) <. 02	
	80-07-28	0		20	650	<5	40			50	<. 02	

^{*} Not previously published.

Geological unit (aquifer):

112GLCLU — Upper glacial aquifer, Pleistocene age.

112GRDR — Gardiners clay, Pleistocene age.

112JMCO — Jameco gravel, Pleistocene age.

211LLYD — Llyod aquifer, Cretaceous age.

211MGTY — Magothy aquifer, Cretaceous age.

WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY

STATION	NUMBER			ID	OCA ENT I- IER				GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
40440707	73331501	N	9182	CDR	CK	OB	WL	9A	211MGTY	79-10-17	195	40	3	200	0	10
									211MGTY 211MGTY	80-01-23 80-05-05	195 195	30			0	2
40440707	73331502	N	9183	CDR	CK	OB	WL	9B	211MGTY	79-10-17	105	50	2	200	0	10
									211MGTY	80-01-23	105	20			1	5
									211MGTY	80-05-05	105	30	/		0	10
40440707	73331503	N	9184	CDR	CK	OB	WL	90	112GLCLU		45	900	2	300	0	10
										80-01-23	45	290			0	4
									112GLCLU	80-05-05	45	190			0	6
40440407	73330401	N	9193	CDR	CK	OB	WL	10A	211MGTY	79-11-28	205	40	0	0	0	<10
									211MGTY	80-03-04	205	20			0	8
40440407	73330402	N	9194	CDR	СК	OB	Ш	10B	211MGTY	79-11-28	105	40	0	100	0	<10
				0211	0.,	-	-	102	211MGTY	80-03-04	105	10			0	7
40440407	73330403	N	9195	CDR	CK	OB	WL	100	112GLCLU	79-11-28	45	180	1	0	0	<10
									112GLCLU	80-03-06	45	220		-	0	9
DATE OF SAMPLE	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	R E	PPER, OTAL ECOV- RABLE UG/L IS CU)	RI EI	RON OTA ECO RAB UG/ S F	L V- LE L	PI RI EI	RON, SUS- ENDED ECOV- RABLE UG/L S FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)
79-10-17	8		4			40		40	0	0	0	0	0	3	1	0
80-01-23			1			70		70	0	0		10				0
80-05-05			1			30		20	10	0		0				0
79-10-17	10		3			00		80	20	0	0	0	0	10	0	0
80-01-23			1			90		70	20	3		10				0
80-05-05			0		1	20		110	10	0		10	-			0
79-10-17	9		5			70		960	10	2	0	20	0	5	0	0
80-01-23			2			20		720	0	1		20				0
80-05-05			1		6	00		590	10	1		20			3	0
79-11-28	1		3		- 5	60		20	40	3	30	0	0	4	0	0
80-03-04			1		-	30		20	10	5		10				0
79-11-28	6		7			60		0	60	4	30	220	0	6	0	0
80-03-04			3			40		10	30	8		240	22			0
79-11-28	4		4			60		30	30	3	30	2300	0	2	0	0

DATE OF SAMPLE	STRON- TIUM, TOTAL RECOV- ERABLE (UG/L AS SR)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
79-10-17 80-01-23	140	10
80-05-05		10
79-10-17 80-01-23 80-05-05	180 	10 20 10
79-10-17 80-01-23	160	0 20
80-05-05		40
79-11-28 80-03-04	80	40 20
79-11-28 80-03-04	<u> </u>	40 20
79-11-28 80-03-06	60	50 50

WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY--Continued

STATION	NUMBER			ID	OCAL ENT- I- IER				GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
40440407	3325301	N	9196	CDR	CK	OB	WL	11A	211MGTY 211MGTY	79-10-05 80-01-16	205 205	70 40	3	0	0	10
Con estua			-1.2						211MGTY	80-05-07	205	30			0	5
40440407	3325302	N	9197	CDR	CK	OB	WL	11B	211MGTY 211MGTY	79-10-05 80-01-16	95 95	340 60	3	0	0	10
air.									211MGTY	80-05-07	95	90			0	6
40440407	3325303	N	9198	CDR	СК	ОВ	WL	11C	112GLCLU	79-10-05	45	200	3	10	0	10
									112GLCLU	80-01-16	45	260			1	3
									112GLCLU	80-05-07	45	230			0	3
40440707	3331601			N	9199	7			211MGTY	79-11-07	105	10	0	100	0	10
									211MGTY	80-02-11	105	20			0	2
40440707	3331602	N	9200	CDR	CK	OB	Ш	88	112GLCLU	79-11-13	45	180	0	100	0	20
10110707	555755	.,		02		00	***	02	112GLCLU		45	100			0	3
40432707	3335901			N	920	1			1126LCLU	80-01-21	45	30			0	3
DATE OF SAMPLE	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	T R E	OPPER, TOTAL RECOV- ERABLE UG/L AS CU)	R E	RON, OTAL ECOV RABI UG/I S FI	V- LE	PE RE	RON, BUS- ENDED ECOV- RABLE JG/L S FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)
79-10-05	1		2													
80-01-16			-			10		10	0	0	0	10	0	2	0	0
80-05-07			1			70		40	50	2	0	10	0			0
									-			5.7				
79-10-05	 o		1			70		40	50	2		10				0
79-10-05 80-01-16			1			90 40		40 40	50 0	3		10	=	==		0 0
	0		1 1 7		1	90 40 60		40 40	50 0 20	3	 0	10 0 620		7	 0	0
80-01-16 80-05-07 79-10-05	0		1 1 7 1 1		14	90 40 60 40 40		40 40 110 140	50 0 20 30 0	2 3 0 2	 0 	10 0 620 80 70	0	7	0 0	0 0 0 0
80-01-16 80-05-07 79-10-05 80-01-16	0 0 		1 1 7 1 1 3 5		14	90 40 40 40 40		40 40 110 140 120 190	50 0 20 30 0 40	2 3 0 2 2 0 1	0 0 	10 0 620 80 70 90 590	0	7	0	0 0 0 0 0 0
80-01-16 80-05-07 79-10-05	0 0		1 1 7 1 1		14	90 40 60 40 40		40 40 110 140	50 0 20 30 0	3 0 2 2	 0 0	10 0 620 80 70	0	7	0 0	0 0 0 0
80-01-16 80-05-07 79-10-05 80-01-16	0 0 		1 1 7 1 1 3 5		14 14 20	90 40 40 40 40		40 40 110 140 120 190	50 0 20 30 0 40	2 3 0 2 2 0 1	0 0 	10 0 620 80 70 90 590	0	7	0	0 0 0 0 0 0 0 0 0
80-01-16 80-05-07 79-10-05 80-01-16 80-05-07	0 0 		1 1 7 1 1 3 5		14 14 20	70 40 40 40 40 50		40 40 110 140 120 190 40	50 0 20 30 0 40 10	0 2 2 0 1 0	0 0 	10 0 620 80 70 90 590 600	 	7 1 	0 0 	0 0 0 0 0 0 0 0
80-01-16 80-05-07 79-10-05 80-01-16 80-05-07 79-11-07 80-02-11	0		1 1 7 1 1 3 5 5 5		14 14 20	50 40 40 40 40 50 50		40 40 110 140 120 190 40 50	50 0 20 30 0 40 10 10	2 3 0 2 2 2 0 1 0 0	0	10 0 620 80 70 90 590 600	0	7 1 5	0 0 0 	000000000000000000000000000000000000000
80-01-16 80-05-07 79-10-05 80-01-16 80-05-07 79-11-07	0 0 0		1 1 7 1 1 3 5 5		14 20 20	70 40 40 40 40 50 50		40 40 110 140 120 190 40	50 0 20 30 0 40 10	2 3 0 2 2 0 1 0	0	10 0 620 80 70 90 590 600	0	7 1 5	0 0 0	0 0 0 0 0 0 0 0 0

STRON- TIUM, TOTAL RECOV- ERABLE (UG/L AS SR)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
80	10
	100
	40
140	30
	110
	10
150	10
	40
	50
80	50
	10
80	300
	20
	20
	TIUM, TOTAL RECOV- ERABLE (UG/L AS SR) 80 140 150 80

WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY--Continued

All samples were collected and analyzed by U.S. Geological Survey.

STATION	NUMBER		LOCAL IDENT- I- FIER		GED- LDGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
40442507	3324301		N 9217			79-10-22 80-03-10	50 50	250 90	2	300	0	10 10
40441407	3324001		N 9218			79-10-22 80-03-10	45 45	1500 2400	2	300	1 0	10 10
40435307	3331801		N 9219		211MGTY 211MGTY	79-11-06 80-02-05	95 95	60 20	0	200	0	<10 33
40435307	3331802	N 9220	CDR CK OB	WL 14B		79-11-06 80-02-05	45 45	80 90	0	200	0	<10 20
40435107	3332701		N 9221		211MGTY 211MGTY	79-11-07 80-02-06	95 95	50 30	0	100	0	10 5
40435107	3332702		N 9222			79-11-07 80-02-06	45 45	80 80	_0	100	0	10 3
40434607	3332001		N 9223		211MGTY 211MGTY	79-10-31 80-01-30	105 105	30 60	1	300	0	20 3
DATE OF SAMPLE	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)
79-10-22 80-03-10	16	72 4	490 320	430 290	60 30	3	0	630 630	0	35	0	0
79-10-22 80-03-10	9	11 7	110 150	60		4	0	1100 820	0	13	0	0
79-11-06 80-02-05	_0	2	50 40	20	30	0	40	10 10	0	2		0
79-11-06 80-02-05	0	3 2	90 110	70 110		0	30	10 10	0	_0		0
79-11-07 80-02-06		2	50 0	30		0	30	10 10	_0	19	_0	0
79-11-07 80-02-06	1	3	60 20	50 10		0	40	700 720	0	7	_0	0
79-10-31 80-01-30	0	3	50 20	40		0	30	10 10	0	1-	_1	0

DATE OF SAMPLE	TIUM, TOTAL RECOV- ERABLE (UG/L AS SR)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
79-10-22 80-03-10	140	20
80-03-10		30
79-10-22	150	40
80-03-10		50
79-11-06	80	30
80-02-05		30
79-11-06	70	40
80-02-05		40
79-11-07	170	260
80-02-06		30
79-11-07	100	50
80-02-06		30
79-10-31	190	20
80-01-30		20

STRON-

WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
40434607	3332002	N	9224			79-11-06 80-01-30	45 45	340 40	0	200	0	20 3
40433107	3330801	N	9225		112GLCLU	80-01-21	45	80	-2		0	3
40443007	3331001	N	9234		211MGTY	79-12-17	205	40	0	0	0	10
40443007	3331002	N	9235		211MGTY	79-12-17	105	60	0	100	0	20
40441007	3333201	N	9239		211MGTY	79-12-03	205	30	1	0	0	10
40441007	3333202	N	9240		211MGTY	79-12-05	105	900	0	100	1	<10
40441007	3333203	N	9241		112GLCLU	79-12-05	45	30	0	0	0	<10
40440207	3323901	N	9244		211MGTY	79-11-19	205	460	1	100	0	<10
40434507	3324301	N	9247		211MGTY 211MGTY	79-11-13 80-02-13	95 95	100 100		100	0	40 18
DATE OF SAMPLE	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)
79-11-06	0	7	690	660	30	0	30	10	1	10	0	0
80-01-30		6	50	20	30	0		10		-		0
80-01-21		1	120	80	40	2		840				0
79-12-17	0	2	50	50	0	1	30	50	0	1	0	0
79-12-17	0	2	190	180	10	0	30	20	0	2	0	0
79-12-03	0	7	40	40	0	1	20	10	0	3	0	0
79-12-05	2	19	70	40	30	2	30	730	0	7	0	0
79-12-05	0	6	40	20	20	0	30	10	0	9	0	0
79-11-19	3	8	290	0	300	0	30	10	0	4	0	0
79-11-13 80-02-13		3 1	200 150	130 90	70 60	0	30	20 20	1	30	0	0

DATE OF SAMPLE	TIUM, TOTAL RECOV- ERABLE (UG/L AS SR)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
79-11-06 80-01-30	60	30 30
80-01-21		30
79-12-17	60	50
79-12-17	60	230
79-12-03	50	20
79-12-05	110	60
79-12-05	130	20
79-11-19	150	40
79-11-13 80-02-13	210	330 20

WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY--Continued

All samples were collected and analyzed by U.S. Geological Survey.

STATION	NUMBER			I	LOCA DENT I- FIER	-			GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
40434507	3324302	N	9248	CDI	R CK	OB	WL	15B		79-11-13 80-02-13	45 45	170 160	_0	0	0	20 14
40433107	3324701			N	925	2			211MGTY	80-01-14	195	90			0	2
40433107	3324702			N	925	3			211MGTY	80-01-14	95	40			0	6
40441007	3331201			N	936	0			211MGTY	80-02-19	205	20			0	19
40441007	3331202	N	9361	CDI	R CK	OB	WL	ЗВ	211MGTY 211MGTY	79-11-1 4 80-02-19	100 100	290 400	1	0	1 0	20 19
40441007	3331203			N	936	2				79-11-14 80-02-19	45 45	160 160	1	0	0	10 15
40441207	3331305	N	9363	CDI	R CK	OB	WL	4A	211MGTY 211MGTY	79-11-19 80-02-21	103 103	40 30	1		0	10 23
40441207	3331306	N	9364	CDI	R CK	OB	WL	4B		79-11-19 80-02-21	45 45	140 150		100	0	10 20
DATE OF SAMPLE	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	F	OPPER, FOTAL RECOV- ERABLE (UG/L AS CU)		IRON TOTA RECO ERAB (UG/ AS F	LE LE	PE RE ER (U	RON, SUS- ENDED ECOV- RABLE JG/L S FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)
79-11-13 80-02-13	0		5 4			40		0	40 30	1	40	40 40	0	5	0	0
80-01-14			2			30		100	1200	0		30				0
80-01-14			2			90		60		0		240				0
80-02-19			1			40		20	20	0		10				0
79-11-14	2		5			30		410		3	30	20	0	3	0	0
80-02-19			2			50		0		0		10				ő
79-11-14 80-02-19	3		6			10 80		80 70		9	30	30 50	0	8	0	0
79-11-19 80-02-21	0		3		1	50 10		10 70	40 40	0	30	10 10		_3		0
79-11-19 80-02-21			6			30 90		60	40 30	0	30	140 240		8		0

DATE OF SAMPLE	TIUM, TOTAL RECOV- ERABLE (UG/L AS SR)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
79-11-13	90	20
80-02-13		30
80-01-14		120
80-01-14		120
80-02-19		10
79-11-14	190	30
80-02-19		20
79-11-14	90	40
80-02-19		20
79-11-19	140	30
80-02-21		20
79-11-19	100	30
80-02-21		30

STRON-

WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY--Continued

STATION	NUMBER			II	LOC DEN I-	IT-			GED- LDGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
40435107	73330901			N	93	865			211MGTY 211MGTY	79-10-31 80-01-28	95 95	60 10	_1	200	0	10 4
40435107	73330003	N	9366	CDE		מח אי	1.11	100	112GLCLU	70-10-21	45	70	1	300	0	10
40400107	0000702		7500	CDI	, ,	N UB	ML	176		80-01-28	45	20		300	Ö	2
										80-02-25	45	20			. 0	10
										80-02-25	45	720			0	3
										80-03-24	45	200			0	4
									112GLCLU	80-03-24	45	200		44	0	4
40440107	72224801	N	9747	CDI		מח אי	1.11	174	DIIMOTY	80 01 03	105	40	2.5	22	0	3
40440107	3324601	14	9367	CD	4 6	N UB	WL	12A	211MGTY 211MGTY	80-01-02	105 105	30			0	6
									21111911	00 03 00	103	30				
40440107	73324802	N	9368	CDF	2 0	K OB	WL	12B	112GLCLU	80-01-02	45	40			0	4
									112GLCLU	80-03-06	45	20			0	8
40441407	73325301			N	94	49			211MGTY	79-10-29	198	70	1	300	0	100
40441407	73325302			N	94	50			211MGTY	79-10-29	105	1400	1	200	0	50
DATE OF SAMPLE	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	T R	PPER, TOTAL RECOV- RABLE UG/L AS CU)		REC ERA	ON, FAL COV- ABLE O/L FE)	P R E	RON, SUS- ENDED ECOV- RABLE UG/L S FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)
79-10-31	0		3			80		30	50	0	30	20	0	1	0	0
80-01-28			1			20		10	10	0		10				0
79-10-31	0		3			90		90	0	0	30	20	0	1	0	0
80-01-28			1			40		40		0		10				0
80-02-25			2			50		30		0		20				1
80-02-25			4		1	000		980		3		50				1
80-03-24			1			30		20	10	0		30				0
80-03-24			1			20		0	20	0		40				0
80-01-02			0			50		20	30	2		1000				0
80-03-06			2			20		0		1		980				0
80-01-02			0			-		F0								0
80-01-02			1			80 20		50 10		2		10				0
								10	10		-	10				
79-10-29	2		3			40		10	30	5	30	30	0	6	0	0
79-10-29	3		5		-	2000		1500	460	4	30	0	0	9	0	0

DATE OF SAMPLE	STRON- TIUM, TOTAL RECOV- ERABLE (UG/L AS SR)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
79-10-31	270	30
80-01-28		20
79-10-31	240	20
80-01-28		20
80-02-25		30
80-02-25		30
80-03-24		10
80-03-24		10
80-01-02		70
80-03-06		40
80-01-02		50
80-03-06		20
79-10-29	220	20
79-10-29	50	20

WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY--Continued

All samples were collected and analyzed by U.S. Geological Survey.

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
40441407	3325303		N 9451		112GLCLU	79-10-29	45	1800	1		0	(
DATE OF SAMPLE	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)
79-10-29	3	4	340	320	20	4	30	470	0	9	0	0
					DATE OF SAMPLE	STRON- TIUM, TOTAL RECOV- ERABLE (UG/L	ZINC, TOTAL RECOV- ERABLE (UG/L					

AS SR)

AS ZN)

Note: See tables of Quality of Ground Water for additional analyses.

79-10-29

Geological unit (aquifer):

112GLCLU - Upper glacial aquifer, Pleistocene age.
112GRDR - Gardiners clay, Pleistocene age.
112JMCO - Jameco gravel, Pleistocene age.
211LLYD - Llyod aquifer, Cretaceous age.
211MGTY - Magothy aquifer, Cretaceous age.

WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY

All samples were collected and analyzed by U.S. Geological Survey.

79-11-28 . 00 . 00

. 00

STATION	NUMBER		LOCA IDEN I- FIE	r-			GED- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	PCB, TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)
4044070	73331501	N 9182	2 CDR CI	K OB	WL	9A	211MGTY 211MGTY 211MGTY	79-10-17 80-01-23 80-05-05	195 195 195	. 0	.00	. 0	.00	. 00
4044070	73331502	N 9183	3 CDR C	K OB	WL	9B	211MGTY 211MGTY 211MGTY	79-10-17 80-01-23 80-05-05	105 105 105	. 0	. 00	. 0	.00	. 00
4044070	73331503	N 9184	4 CDR C	K OB	WL	9C	112GLCLU	79-10-17 80-01-23 80-05-05	45 45 45	. 0	. 00	. 0	.00	. 00
4044040	73330401	N 9193	CDR C	K OB	WL	10A	211MGTY	79-11-28	205	. 0	. 00	. 0	. 00	. 00
4044040	73330402	N 9194	CDR C	K OB	WL	10B	211MGTY	79-11-28	105	. 2	. 00	. 0	. 00	. 00
4044040	73330403	N 919	5 CDR C	K OB	WL	100	112GLCLU	79-11-28	45	. 1	. 00	. 0	. 00	. 00
DATE OF SAMPLE	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L	TOT	RIN	SU	NDO- LFAN, DTAL UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)
79-10-17 80-01-23 80-05-05	. 00	. 00	0	00		. 00	. 00	. 00	. 00	. 00 . 00 . 00	. 00 . 00 . 00	. 00 . 00 . 00	. 00 . 00 . 00	. 00
79-10-17 80-01-23 80-05-05	. 00	. 00	0	01		. 00	. 00		. 00 . 00 . 00	. 00	. 00	. 00	. 00	. 00 . 00 . 00
79-10-17	. 00	. 00		02		. 00			. 00	. 00	. 00	. 00	. 00	. 00
80-01-23 80-05-05	. 00	. 00		03		. 00		. 00	. 00	. 00	. 00	. 00	. 00	. 00
79-11-28	. 00	. 00	0	. 00		. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
79-11-28	. 00	. 00	0	02		. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
79-11-28	. 00	. 00	0	03		. 00	. 00	. 00	. 00	. 00	. 00	. 00		. 00
	DATE OF SAMPLE	MIREX. TOTAI (UG/L	CHL	A- ES, LY- OR. AL	T	ARA- HION, DTAL UG/L)	PER- THANE TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2, 4, 5-T TOTAL (UG/L)	METH-	SILVEX, TOTAL (UG/L)	
	79-10-17	. 00		.00		. 00			. 00	. 00	. 00	. 00	. 00	
	80-01-23 80-05-05	. 00		00		. 00			. 00	. 00	. 00	. 00	. 00	
	79-10-17	. 00	0	.00		. 00	. 00	0	. 00	. 00	. 00	. 00	. 08	
	80-01-23 80-05-05	. 00	0	00		. 00	. 00	0	. 00	. 00	. 00	. 00	. 35	
	79-10-17	. 00		.00		. 00			. 00	. 00	. 00	. 00	. 00	
	80-01-23	. 00		.00		. 00			. 00	. 00	. 00	. 00	. 00	
	80-05-05	. 00		. 00		. 00			. 00	. 00	. 00	. 00	. 00	
	79-11-28	. 00	0	. 00		. 00	. 00	0	. 00	. 00	. 00	. 00	. 00	
	79-11-28	. 00	0	. 00		. 00	. 00	- 0	. 00	. 00	. 00	. 00	. 00	

.00 0 .00 .00 .00 .00

WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	PCB, TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDÉ, TOTAL (UG/L)
4044040	73325301	N 9196	CDR CK DE	3 WL 11A	211MGTY 211MGTY 211MGTY	79-10-05 80-01-16 80-05-07	205 205 205	. 0	. 00	. 0	. 00	.00
4044040	73325302	N 9197	CDR CK DE	8 WL 11B	211MGTY 211MGTY 211MGTY	79-10-05 80-01-16 80-05-07	95 95 95	. 0	. 00 . 00 . 00	. 0	. 00	.00
4044040	73325303	N 9198	CDR CK DE	8 WL 11C	112GLCLU	79-10-05 80-01-16 80-05-07	45 45 45	. 0 . 0 . 0	. 00 . 00 . 00	. 0	. 00 . 00 . 00	. 00 . 00 . 00
4044070	73331601		N 9199		211MGTY 211MGTY	79-11-07 80-02-11	105 105	. 0	. 00	. 0	. 00	. 00
4044070	73331602	N 9200	CDR CK DE	WL 8B		79-11-13 80-02-11	45 45	. 0	. 00	. 0	. 00	. 00
4043270	73335901		N 9201		112GLCLU	80-01-21	45	. 0	. 00	. 0	. 00	. 00
DATE OF SAMPLE	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)
79-10-05				. 00	. 00		. 00	. 02	. 00			
80-01-16 80-05-07		. 00		. 00		. 00	. 00	. 00	. 00	. 00	. 00	. 00
79-10-05	. 00			. 00			. 00	. 01	. 00			
80-01-16 80-05-07	. 00	. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
79-10-05		. 07		. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
80-01-16 80-05-07		. 00		. 00		. 00	. 00	. 01	. 00	. 00	. 00	. 00
79-11-07 80-02-11		. 00		. 00		. 00	. 00	. 00	. 00	. 00	. 00	. 00
79-11-13		. 00		. 00		. 00	. 00	. 00	. 00	. 00	. 00	. 00
80-02-11		. 00		. 00		. 00	. 00	. 00	. 00	. 00	. 00	. 00
	DATE OF SAMPLE	MIREX, TOTAL (UG/L)		PARA- THION, TOTAL (UG/L)	PER- THANE TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2, 4, 5-T TOTAL (UG/L)	METH- DXY- CHLOR, TOTAL (UG/L)	SILVEX, TOTAL (UG/L)	
	79-10-05 80-01-16	. 00		. 00	. 00	0	. 00	. 00	. 00	. 00	. 00	
	80-05-07	. 00		. 00		ō	. 00	. 00	. 00	. 00	. 00	
	79-10-05 80-01-16 80-05-07	. 00 . 00 . 00	. 00	. 00		0	.00	. 00 . 00 . 00	. 00 . 00 . 00	.00	.00	
	79-10-05 80-01-16 80-05-07	. 00 . 00 . 00	. 00	. 00 . 00 . 00	. 00	0 0	. 00 . 00 . 00	. 00	. 00 . 00 . 00	. 00 . 00 . 00	. 00	
	79-11-07 80-02-11	. 00		. 00		0	. 00	. 00	. 00	. 00	. 03	
	79-11-13 80-02-11	. 00		. 00		0	. 00	. 00	. 00	. 00	. 00	
	80-01-21	. 00		. 00		0	. 00	. 00	. 00	. 00	. 00	

WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY--Continued

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	PCB, TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)
40442507	3324301		N 9217		1126LCLU	79-10-22	50	. 1	. 00	. 0	. 00	. 00
40441407	3324001		N 9218		112GLCLU	79-10-22	45	. 0	. 00	. 0	. 00	. 00
40435307	3331801		N 9219		211MGTY 211MGTY	79-11-06 80-02-05	95 95	. 0	. 00	. 0	. 00	. 00
40435307	3331802	N 9220	CDR CK OB	WL 14B		79-11-06 80-02-05	45 45	. 0	. 00	. 0	. 00	. 00
40435107	3332701		N 9221		211MGTY 211MGTY	79-11-07 80-02-06	95 95	. 0	. 00	. 0	. 00	. 00
40435107	3332702		N 9222			79-11-07 80-02-06	45 45	. 0	. 00	. 0	. 00	. 00
40434607	3332001		N 9223		211MGTY 211MGTY	79-10-31 80-01-30	105 105	. 0	. 00	. 0	. 00	. 00
DATE OF SAMPLE	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)
79-10-22	. 00	. 00	. 04	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
79-10-22	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 03	. 00	. 00	. 00	. 00
79-11-06 80-02-05	. 00	. 00 . 00	. 01 . 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
79-11-06 80-02-05	. 00	. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
79-11-07 80-02-06	. 00	. 00 . 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
79-11-07 80-02-06	. 00	. 00	. 03	. 00	. 00		. 00	. 00	. 00	. 00	. 00	. 00
79-10-31 80-01-30	. 00	. 00	. 00	. 00	. 00		. 00	. 00	. 00	. 00	. 00	. 00
	DATE OF SAMPLE	MIREX, TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	PER- THANE TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2, 4, 5-T TOTAL (UG/L)	METH-	SILVEX, TOTAL (UG/L)	
	79-10-22	. 00	. 00	. 00	. 00	0	. 00	. 00	. 00	. 00	. 00	
	79-10-22	. 00	. 00	. 00	. 00	0	. 00	. 00	. 00	. 00	. 00	
	79-11-06 80-02-05	. 00	. 00	. 00			. 00	. 00 . 00	. 00	. 00	. 00	
	79-11-06 80-02-05	. 00	. 00	. 00			. 00	. 00	. 00	. 00	. 00	
	79-11-07 80-02-06	. 00	. 00 . 00	. 00	. 00		. 00	. 00 . 00	. 00 . 00	. 00	. 00	
	79-11-07 80-02-06	. 00		. 00			. 00	. 00	. 00	. 00	. 00	
	79-10-31 80-01-30	. 00		. 00			. 00	. 00	. 00	. 00	. 00	

WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY--Continued

All samples were collected and analyzed by U.S. Geological Survey.

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	PCB, TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)
4043460	73332002	,	N 9224			79-11-06 80-01-30	45 45	. 0	. 00	. 0	. 00	. 00
4043310	73330801	,	9225		112GLCLU	80-01-21	45	, з	. 00	. 1	. 00	. 00
4044300	73331001	,	9234		211MGTY	79-12-17	205	. 0	. 00	. 0	. 00	. 00
4044300	73331002		9235		211MGTY	79-12-17	105	. 0	. 00	. 0	. 00	. 00
4044100	73333201	1	9239		211MGTY	79-12-03	205	. 0	. 00	. 0	. 00	. 00
4044100	73333202		9240		211MGTY	79-12-05	105	. 0	. 00	. 0	. 00	. 00
4044100	73333203	1	9241		112GLCLU	79-12-05	45	. 1	. 00	. 0	. 00	. 00
4044020	73323901	1	9244		211MGTY	79-11-19	205	. 0	. 00	. 0	. 00	. 00
4043450	73324301	,	N 9247		211MGTY 211MGTY	79-11-13 80-02-13	95 95	. 0	. 00	. 0	. 00	. 00
DATE OF SAMPLE	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)
79-11-06 80-01-30	. 00	. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
80-01-21	. 00	. 00	. 11	. 00	. 00	. 00	. 00	. 03	. 00	. 00	. 00	. 00
79-12-17	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
79-12-17	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
79-12-03	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
79-12-05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
79-12-05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
79-11-19	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
79-11-13 80-02-13	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
	DATE OF SAMPLE	MIREX, TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	PER- THANE TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2, 4, 5-T TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	SILVEX, TOTAL (UG/L)	
	79-11-06 80-01-30	. 00	. 00	. 00			. 00	. 00	. 00	. 00	. 00	
	80-01-21	. 00	. 00	. 00	. 00	0	. 00	. 00	. 00	. 00	. 01	
	79-12-17	. 00	. 00	. 00	. 00	0	. 00	. 00	. 00	. 00	. 00	
	79-12-17	. 00	. 00	. 00	. 00	0	. 00	. 00	. 00	. 00	. 00	
	79-12-03	. 00	. 00	. 00	. 00	0	. 00	. 00	. 00	. 00	. 00	
	79-12-05	. 00	. 00	. 00	. 00	0	. 00	. 00	. 00	. 00	. 00	
	79-12-05	. 00	. 00	. 00	. 00	0	. 00	. 00	. 00	. 00	. 00	
	79-11-19	. 00	. 00	. 00	. 00	0	. 00	. 00	. 00	. 00	. 00	
	79-11-13 80-02-13	. 00	. 00	. 00		0	. 00	. 00	. 00	. 00	. 00	

WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY--Continued

STATION	NUMBER			ID	OCAL ENT- I- IER			GEO- LOGIC UNIT	DATE OF SAMPLE	DEPTH OF WELL, TOTAL (FEET)	PCB, TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)
40434507	73324302	N	9248	CDR	CK O	3 WL	15B		79-11-13 80-02-13	45 45	. 0	. 00	. 0	. 00	. 00
40433107	73324701			N	9252			211MGTY	80-01-14	195	. 0	. 00	. 0	. 00	. 00
40433107	73324702			N	9253			211MGTY	80-01-14	95	. 0	. 00	. 0	. 00	. 00
40441007	73331201			N	9360			211MGTY 211MGTY	79-11-14 80-02-19	205 205	. 0	. 00	. 0	. 00	. 00
40441007	73331202	N	9361	CDR	CK O	3 WL	ЗВ	211MGTY 211MGTY	79-11-1 4 80-02-19	100	. 0	. 00	. 0	. 00	. 00
40441007	73331203			N	9362				79-11-14 80-02-19	45 45	. 0	. 00	. 0	. 00	. 00
40441207	73331305	N	9363	CDR	CK O	3 WL	4A	211MGTY 211MGTY	79-11-19 80-02-21	103 103	. 0	. 00	. 0	. 00	. 00
DATE OF SAMPLE	DDT, TOTAL (UG/L)	AZ	DI- INON, OTAL UG/L)	E	DI- LDRIN OTAL UG/L)	SU	NDO- LFAN, DTAL UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)
79-11-13 80-02-13	. 00		. 00		. 03		. 00			. 00	. 01	. 00	. 00	. 00	. 00
80-01-14	. 00		. 00		. 00		. 00			. 00	. 00	. 00	. 00	. 00	. 00
80-01-14	. 00		. 00		. 01		. 00			. 00	. 01	. 00	. 00	. 00	. 00
79-11-14	. 00		. 00		. 00		. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
80-02-19	. 00		. 00		. 00		. 00			. 00	. 00	. 00	. 00	. 00	. 00
79-11-14 80-02-19	. 00		. 00		. 11		. 00			. 00	. 00	. 00	. 00	. 00	. 00
79-11-14 80-02-19	. 00		. 00		. 01		. 00			. 00	. 00	. 00	. 00	. 00 . 00	. 00
79-11-19 80-02-21	. 00		. 00		. 01 . 01		. 00			. 00	. 00	. 00	. 00	. 00	. 00
	DATE OF SAMPLE		IIREX, TOTAL UG/L)	L C	IAPH- THA- ENES, POLY- CHLOR. TOTAL	T	ARA- HION, OTAL UG/L)	PER- THANE TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2, 4, 5-T TOTAL (UG/L)	METH-	SILVEX, TOTAL (UG/L)	
	79-11-13 80-02-13		. 00		. 00		. 00			. 00	. 00	. 00	. 00	. 00	
	80-01-14		. 00		. 00		. 00			. 00			. 00		
	80-01-14		. 00		. 00		. 00			. 00	. 00	. 00	. 00	. 00	
	79-11-14 80-02-19		. 00		. 00		. 00			. 00	. 00	. 00	. 00	. 00	
	79-11-1 4 80-02-19		. 00		. 00		. 00			. 00 . 00	. 00 . 00	. 00	. 00	. 05 . 04	
	79-11-14 80-02-19		. 00		. 00		. 00			. 00 . 00	. 00 . 00	. 00	. 00	. 00	
	79-11-19 80-02-21		. 00		. 00		. 00			. 00	. 00	. 00	. 00	. 31 . 17	

WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY--Continued

				LOCAL DENT-			GEO-	DATE	DEPTH OF			CHLOR-		
STATION	NUMBER			I- FIER			LOGIC	OF SAMPLE	WELL, TOTAL (FEET)	PCB, TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)
4044120	73331306	N 93	54 CD	R CK OB	WL	4B		79-11-19 80-02-21	45 45	. 0	. 00	. 0	. 00	. 00
4043510	73330901		N	9365				79-10-31 80-01-28	95 95	. 0	. 00	. 0	. 00	. 00
4043510	73330902	N 936	66 CD	R CK OB	WL	19B	112GLCLU 112GLCLU 112GLCLU	79-10-31 80-01-28 80-02-25 80-02-25 80-03-24	45 45 45 45 45	.0	. 00 . 00 . 00 . 00	.0.0	. 00	. 00 . 00 . 00 . 00
							112GLCLU	80-03-24	45	. 0	. 00	. 0	. 00	. 00
4044010	73324801	N 936	57 CD	R CK OB	WL	12A	211MGTY	80-01-02	105	. 0	. 00	. 0	. 00	. 00
4044010	73324802	N 936	58 CD	R CK DB	WL	12B	112GLCLU	80-01-02	45	. 0	. 00	. 1	. 00	. 00
4044140	73325301		N	9449			211MGTY	79-10-29	198	. 0	. 00	. 0	. 00	. 00
DATE OF SAMPLE	DDT, TOTAL (UG/L)	DI- AZINON TOTAL (UG/L	٧,	DI- ELDRIN TOTAL (UG/L)	SU	NDO- LFAN, OTAL UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)
79-11-19 80-02-21	. 00	. (. 02		. 00	. 00		. 00	. 00	. 00	. 00	. 00	. 00
79-10-31	. 00	. (00	. 92		. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
80-01-28		. (. 83		. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 00
79-10-31 80-01-28	. 00	. (. 09		. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 00
B0-02-25	. 00	. (00	. 13		. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 00
30-02-25 30-03-24		. (. 17		. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 00
80-03-24	. 00	. (00	. 10		. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 00
80-01-02	. 00	. (00	. 02		. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
80-01-02	. 00	. (00	. 02		. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
79-10-29	. 00	. (00	. 00		. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
	DATE OF SAMPLE	MIRE) TOTA (UG/L	(, AL	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	T	ARA- HION, DTAL UG/L)	PER- THANE TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2, 4, 5-T TOTAL (UG/L)	METH- DXY- CHLOR, TOTAL (UG/L)	SILVEX, TOTAL (UG/L)	
	79-11-19 80-02-21		00	. 00		. 00	. 00		. 00	. 00	. 00	. 00	. 00	
	79-10-31 80-01-28	. 0	00	. 00		. 00	. 00	0 0	. 00	. 00	. 00	. 00	. 00	
	79-10-31	. (00	. 00		. 00	. 00	0	. 00	. 02	. 00	. 00	. 00	
	80-01-28	. (00	. 00		. 00	. 00	0	. 00	. 00	. 00	. 00	. 00	
	80-02-25 80-02-25	. (. 00		. 00	. 00	0	. 00	. 00	. 00	. 00	. 00	
	80-02-25	. (. 00		. 00	. 00	0	. 00	. 00	. 00	. 00	. 00	
	80-03-24	. (00	. 00		. 00	. 00	0	. 00	. 00	. 00	. 00	. 00	
	80-01-02	. (00	. 00		. 00	. 00	0	. 00	. 01	. 00	. 00	. 00	
	80-01-02	. 0	00	. 00		. 00	. 00		. 00	. 01	. 00	. 00	. 00	
	79-10-29	. (. 00		. 00	. 00	0	. 00	. 00	. 00	. 00	. 00	
			-	. 00		. 00	. 50	J	. 00	. 00				

WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NASSAU COUNTY--Continued

All samples were collected and analyzed by U.S. Geological Survey.

STATION 40441407	NUMBER 73325302		LOCAL IDENT- I- FIER N 9450		GEO- LOGIC UNIT	DATE OF SAMPLE 79-10-29	DEPTH OF WELL, TOTAL (FEET)	PCB, TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TDTAL (UG/L)	DDE, TOTAL (UG/L)
40441407	73325303		N 9451		112GLCLU	79-10-29	45	. 6	. 00	. 0	. 00	. 00
DATE OF SAMPLE	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)
79-10-29	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
79-10-29	. 00	. 00	. 09	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00
	DATE OF SAMPLE	MIREX, TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	PER- THANE TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2, 4-D, TOTAL (UG/L)	2, 4, 5-T TOTAL (UG/L)	METH-	SILVEX, TOTAL (UG/L)	
	79-10-29	. 00	. 00	. 00	. 00	0	. 00	. 00	. 00	. 00	. 00	
	79-10-29	. 00	. 00	. 00	. 00	0	. 00	. 00	. 00	. 00	. 00	

Note: See tables of Quality of Ground Water for additional analyses.

Geological unit (aquifer):

112GLCLU - Upper glacial aquifer, Pleistocene age.

112GRDR - Gardiners clay, Pleistocene age.

112JMCO - Jameco gravel, Pleistocene age.

21LLYD - Llyod aquifer, Cretaceous age.

211MGTY - Magothy aquifer, Cretaceous age.

	Page		Page
Accuracy of field data and computed results		Dry mass, definition of	4
(stage and water-discharge records)	14		
Acknowledgments	2	East Meadow Brook, at East Meadow	106
Acre-foot, definition of	4	at Freeport	95-96
Algae, definition of	4	at Uniondale	106
Algal growth, definition of	4	near Westbury	106
Amityville Creek, at Amityville	105	East Meadow Pond Outlet, at Freeport	107
Aquifer, definition of	4	East Patchogue, Swan River at	77-78
Arrangement of records (water quality)	15	East River, at Eastport	102
Artesian, definition of	4	Euglenoids, definition of	7
Artificial substrate, definition of	9	P11:6 16	1
Ash mass, definition of	102	Fecal coliform bacteria, definition of	4
Aspatuck Creek, near Westhampton Beach	102	Fecal streptococcal bacteria, definition of	7
Awixa Creek, at Islip	104	Fire algae, definition of	103
Rabylon Carlle River at	88-89	Forge River, at Moriches	95-96
Babylon, Carlls River at	86-87	Freeport, East Meadow Brook at Freeport Creek, at Freeport	107
Sampawams Creek at	4		101
		Fresh Pond Outlet, at Baiting Hollow	100
Bay Shore, Penataquit Creek at	85, 104 102	at Fort Salonga	100
	4	Coop height definition of	6
Bed material, definition of	93-94	Gage height, definition of	6
tributary, at North Wantagh	106	Gaging station, definition of	31-99
near North Wantagh	106	Gaging station records	VI
Big Fresh Pond Outlet, at North Sea	102	Glen Cove Creek, at Glen Cove	31-32
Biochemical oxygen demand, definition of	4	Green algae, definition of	7
Biomass, definition of	4		103
Biomass pigment ratio, definition of	5	Green Creek, at West SayvilleGround-water, level data	111-206
Blue-green algae, definition of	7	quality of	207-328
Bottom material, definition of	5	Ground-water level records, Explanation of	16
boccom maccital, actinicion officialisminisminisminisminisminisminisminismi	3	Ground-water rever records, Expranacion Gr	10
	inside of	Hardness, definition of	6
Calendar (1980 water year)fro		Hydrograph, East Meadow Brook at Freeport	18
Carlls River, at Babylon	88-89	Nissequogue River near Smithtown	19
at Park Avenue, Babylon	105	Well N 1259 at Plainedge	21
Carman Creek, at Amityville	105	Well N 8959 at East Meadow	20
Carmans River, at Middle Island	103	Well S 4271 at Riverhead	20
at South Haven	103	Hydrologic bench mark station, definition of	12
at Yaphank	65-76	Hydrologic unit, definition of	6
below Lower Lake, at Yaphank	103	1,	
near Yaphank	103	Inch-pound units to	
Cascade Lakes Outlet, at Brightwaters	104		inside of
Cedar Swamp Creek, at Merrick	106	Factors for convertingb	ack cover
Cells/volume, definition of	5	Instantaneous discharge, definition of	5
Central Islip, Connetquot Brook at	80	Introduction	1
Connetquot Brook near			100
	81	Island Swamp Brook, at Lattingtown	100
Cfs-day, definition of	5	Island Swamp Brook, at Lattingtown Islip, Champlin Creek at	84, 104
Cfs-day, definition of	5		
Cfs-day, definition of Champlin Creek, at Islip at Montauk Highway, at Islip Chemical oxygen demand, definition of	5 84, 104	Islip, Champlin Creek at	84, 104
Cfs-day, definition of. Champlin Creek, at Islip. at Montauk Highway, at Islip. Chemical oxygen demand, definition of. Chlorophyll, definition of.	5 84, 104 104	Islip, Champlin Creek at	84, 104 111-112 102
Cfs-day, definition of Champlin Creek, at Islip at Montauk Highway, at Islip Chemical oxygen demand, definition of. Chlorophyll, definition of Classification of records (water quality)	5 84, 104 104 5	Islip, Champlin Creek at	84, 104 111-112 102 90, 105
Cfs-day, definition of. Champlin Creek, at Islip. at Montauk Highway, at Islip. Chemical oxygen demand, definition of. Chlorophyll, definition of. Classification of records (water quality) Cold Spring Brook, at Cold Spring Harbor.	5 84, 104 104 5 5	Islip, Champlin Creek at	84, 104 111-112 102 90, 105 102
Cfs-day, definition of. Champlin Creek, at Islip	5 84, 104 104 5 5 15 35	Islip, Champlin Creek at Kings County, ground-water levels in Ligonee Brook, at Sag Harbor Lindenhurst, Santapogue Creek at	84, 104 111-112 102 90, 105 102 103
Cfs-day, definition of. Champlin Creek, at Islip	5 84, 104 104 5 5 15	Islip, Champlin Creek at	84, 104 111-112 102 90, 105 102
Cfs-day, definition of. Champlin Creek, at Islip	5 104 5 5 15 35	Islip, Champlin Creek at	84, 104 111-112 90, 105 102 103 22-30
Cfs-day, definition of. Champlin Creek, at Islip	5 104 5 5 15 35 12-14	Islip, Champlin Creek at	84, 104 111-112 102 90, 105 102 103
Cfs-day, definition of. Champlin Creek, at Islip	5 104 5 5 15 35 12-14	Islip, Champlin Creek at. Kings County, ground-water levels in Ligonee Brook, at Sag Harbor Lindenhurst, Santapogue Creek at. Little River, near Riverhead. Little Seatuck Creek, at Eastport. Location of data collection stations (maps) Low-flow partial-record stations, Discharge at.	84, 104 111-112 90, 105 102 103 22-30 100-107
Cfs-day, definition of. Champlin Creek, at Islip	5 104 5 5 15 35 12-14	Islip, Champlin Creek at. Kings County, ground-water levels in. Ligonee Brook, at Sag Harbor. Lindenhurst, Santapogue Creek at. Little River, near Riverhead. Little Seatuck Creek, at Eastport. Location of data collection stations (maps). Low-flow partial-record stations, Discharge at. Malverne, Pines Brook at.	84, 104 111-112 102 90, 105 102 103 22-30 100-107 97-98
Cfs-day, definition of. Champlin Creek, at Islip. at Montauk Highway, at Islip. Chemical oxygen demand, definition of. Chlorophyll, definition of. Classification of records (water quality) Cold Spring Brook, at Cold Spring Harbor. Collection and computation of data (stage and water-discharge records) Collection of data (ground-water level records). Colloid, definition of. Color unit, definition of. Connetquot Brook, at Central Islip.	5 104 5 5 15 35 12-14	Islip, Champlin Creek at. Kings County, ground-water levels in. Ligonee Brook, at Sag Harbor. Lindenhurst, Santapogue Creek at. Little River, near Riverhead. Little Seatuck Creek, at Eastport. Location of data collection stations (maps). Low-flow partial-record stations, Discharge at. Malverne, Pines Brook at. Massapequa Creek, at Massapequa.	84, 104 111-112 102 90, 105 102 103 22-30 100-107 97-98 91-92
Cfs-day, definition of. Champlin Creek, at Islip	5 104 104 5 5 15 35 12-14 16 5 5 80 81	Islip, Champlin Creek at. Kings County, ground-water levels in Ligonee Brook, at Sag Harbor Lindenhurst, Santapogue Creek at. Little River, near Riverhead. Little Seatuck Creek, at Eastport. Location of data collection stations (maps). Low-flow partial-record stations, Discharge at. Malverne, Pines Brook at. Massapequa Creek, at Massapequa. at North Massapequa.	84, 104 111-112 102 90, 105 102 103 22-30 100-107 97-98 91-92 105
Cfs-day, definition of. Champlin Creek, at Islip. at Montauk Highway, at Islip. Chemical oxygen demand, definition of. Chlorophyll, definition of. Classification of records (water quality) Cold Spring Brook, at Cold Spring Harbor. Collection and computation of data (stage and water-discharge records) Collection of data (ground-water level records) Colloid, definition of. Color unit, definition of. Connetquot Brook, at Central Islip near Central Islip near Oakdale.	5 104 104 5 5 15 35 12-14 16 5 5 80 81 104	Islip, Champlin Creek at. Kings County, ground-water levels in. Ligonee Brook, at Sag Harbor. Lindenhurst, Santapogue Creek at. Little River, near Riverhead. Little Seatuck Creek, at Eastport. Location of data collection stations (maps). Low-flow partial-record stations, Discharge at. Malverne, Pines Brook at. Massapequa Creek, at Massapequa at North Massapequa at South Farmingdale.	84, 104 111-112 102 90, 105 102 103 22-30 100-107 97-98 91-92
Cfs-day, definition of. Champlin Creek, at Islip. at Montauk Highway, at Islip. Chemical oxygen demand, definition of. Chlorophyll, definition of. Classification of records (water quality) Cold Spring Brook, at Cold Spring Harbor. Collection and computation of data (stage and water-discharge records) Collection of data (ground-water level records). Colloid, definition of. Color unit, definition of. Connetquot Brook, at Central Islip near Central Islip near Oakdale. Connetquot River, near Oakdale.	5 104 104 5 5 15 35 12-14 16 5 5 80 81 104 82-83	Islip, Champlin Creek at. Kings County, ground-water levels in Ligonee Brook, at Sag Harbor. Lindenhurst, Santapogue Creek at. Little River, near Riverhead. Little Seatuck Creek, at Eastport. Location of data collection stations (maps). Low-flow partial-record stations, Discharge at Malverne, Pines Brook at. Massapequa Creek, at Massapequa. at North Massapequa. at South Farmingdale. at Southern State Parkway, at South Farming-	84, 104 111-112 102 90, 105 102 103 22-30 100-107 97-98 91-92 105 105
Cfs-day, definition of. Champlin Creek, at Islip	5 104 104 5 5 15 35 12-14 16 5 5 80 81 104 82-83	Islip, Champlin Creek at. Kings County, ground-water levels in Ligonee Brook, at Sag Harbor Lindenhurst, Santapogue Creek at. Little River, near Riverhead. Little Seatuck Creek, at Eastport. Location of data collection stations (maps). Low-flow partial-record stations, Discharge at. Malverne, Pines Brook at. Massapequa Creek, at Massapequa. at North Massapequa at South Farmingdale. at Southern State Parkway, at South Farmingdale.	84, 104 111-112 90, 105 102 103 22-30 100-107 97-98 91-92 105 105
Cfs-day, definition of. Champlin Creek, at Islip. at Montauk Highway, at Islip. Chemical oxygen demand, definition of. Chlorophyll, definition of. Classification of records (water quality) Cold Spring Brook, at Cold Spring Harbor. Collection and computation of data (stage and water-discharge records) Collection of data (ground-water level records) Colloid, definition of. Color unit, definition of. Connetquot Brook, at Central Islip near Central Islip near Oakdale. Connetquot River, near Oakdale Contents, definition of. Control, definition of.	5 104 104 5 5 15 35 12-14 16 5 5 80 81 104 82-83	Islip, Champlin Creek at. Kings County, ground-water levels in Ligonee Brook, at Sag Harbor. Lindenhurst, Santapogue Creek at. Little River, near Riverhead. Little Seatuck Creek, at Eastport. Location of data collection stations (maps). Low-flow partial-record stations, Discharge at. Malverne, Pines Brook at. Massapequa Creek, at Massapequa. at North Massapequa at South Farmingdale. at Southern State Parkway, at South Farmingdale. Mean concentration (sediment), definition of.	84, 104 111-112 90, 105 102 103 22-30 100-107 97-98 91-92 105 105 8
Cfs-day, definition of. Champlin Creek, at Islip	5 104 104 5 5 15 35 12-14 16 5 80 81 104 82-83 5	Islip, Champlin Creek at. Kings County, ground-water levels in Ligonee Brook, at Sag Harbor Lindenhurst, Santapogue Creek at. Little River, near Riverhead. Little Seatuck Creek, at Eastport. Location of data collection stations (maps) Low-flow partial-record stations, Discharge at Malverne, Pines Brook at. Massapequa Creek, at Massapequa. at North Massapequa. at South Farmingdale. at Southern State Parkway, at South Farmingdale. Mean concentration (sediment), definition of.	84, 104 111-112 102 90, 105 102 103 22-30 100-107 97-98 91-92 105 105 8 5
Cfs-day, definition of. Champlin Creek, at Islip	5 104 104 5 5 15 35 12-14 16 5 5 80 81 104 82-83	Islip, Champlin Creek at. Kings County, ground-water levels in Ligonee Brook, at Sag Harbor Lindenhurst, Santapogue Creek at Little River, near Riverhead. Little Seatuck Creek, at Eastport. Location of data collection stations (maps). Low-flow partial-record stations, Discharge at. Malverne, Pines Brook at. Massapequa Creek, at Massapequa. at North Massapequa at South Farmingdale. at Southern State Parkway, at South Farmingdale. Mean concentration (sediment), definition of. Mean discharge, definition of. Methylene blue active substance, definition of.	84, 104 111-112 90, 105 102 103 22-30 100-107 97-98 91-92 105 105 8 5 6
Cfs-day, definition of. Champlin Creek, at Islip. at Montauk Highway, at Islip. Chemical oxygen demand, definition of. Chlorophyll, definition of. Classification of records (water quality) Cold Spring Brook, at Cold Spring Harbor. Collection and computation of data (stage and water-discharge records) Collection of data (ground-water level records) Colloid, definition of. Color unit, definition of. Connetquot Brook, at Central Islip near Central Islip near Oakdale. Connetquot River, near Oakdale. Contents, definition of. Control, definition of. Control structure, definition of Cooperation. Cubic feet per second per square mile,	5 104 104 5 5 15 35 12-14 16 5 5 80 81 104 82-83 5 5	Islip, Champlin Creek at. Kings County, ground-water levels in	84, 104 111-112 90, 105 102 103 22-30 100-107 97-98 91-92 105 105 8 5 6 6 6
Cfs-day, definition of. Champlin Creek, at Islip	5 104 104 5 5 15 35 12-14 16 5 5 80 81 104 82-83 5 5	Islip, Champlin Creek at. Kings County, ground-water levels in Ligonee Brook, at Sag Harbor Lindenhurst, Santapogue Creek at. Little River, near Riverhead. Little Seatuck Creek, at Eastport. Location of data collection stations (maps) Low-flow partial-record stations, Discharge at. Malverne, Pines Brook at. Massapequa Creek, at Massapequa. at North Massapequa. at South Farmingdale. at Southern State Parkway, at South Farmingdale. Mean concentration (sediment), definition of. Methylene blue active substance, definition of. Micrograms per gram, definition of. Micrograms per gram, definition of.	84, 104 111-112 90, 105 102 103 22-30 100-107 97-98 91-92 105 105 8 5 6 6 6 6
Cfs-day, definition of. Champlin Creek, at Islip. at Montauk Highway, at Islip. Chemical oxygen demand, definition of. Chlorophyll, definition of. Classification of records (water quality) Cold Spring Brook, at Cold Spring Harbor. Collection and computation of data (stage and water-discharge records) Collection of data (ground-water level records) Colloid, definition of. Color unit, definition of. Connetquot Brook, at Central Islip near Central Islip near Oakdale. Connetquot River, near Oakdale. Contents, definition of. Control, definition of. Control structure, definition of Cooperation. Cubic feet per second per square mile,	5 104 104 5 5 15 35 12-14 16 5 5 80 81 104 82-83 5 5	Islip, Champlin Creek at. Kings County, ground-water levels in Ligonee Brook, at Sag Harbor. Lindenhurst, Santapogue Creek at. Little River, near Riverhead. Little Seatuck Creek, at Eastport. Location of data collection stations (maps). Low-flow partial-record stations, Discharge at. Malverne, Pines Brook at. Massapequa Creek, at Massapequa. at North Massapequa at South Farmingdale. at Southern State Parkway, at South Farmingdale. Mean concentration (sediment), definition of. Mean discharge, definition of. Methylene blue active substance, definition of. Micrograms per gram, definition of. Micrograms per gram, definition of. Micrograms per liter, definition of. Mill Creek, at Noyack,	84, 104 111-112 90, 105 102 103 22-30 100-107 97-98 91-92 105 105 105 66 66 102
Cfs-day, definition of. Champlin Creek, at Islip. at Montauk Highway, at Islip. Chemical oxygen demand, definition of. Chlorophyll, definition of. Classification of records (water quality) Cold Spring Brook, at Cold Spring Harbor. Collection and computation of data (stage and water-discharge records) Collection of data (ground-water level records) Colloid, definition of. Color unit, definition of. Connetquot Brook, at Central Islip near Central Islip near Oakdale. Connetquot River, near Oakdale Control, definition of. Control, definition of. Control structure, definition of Cooperation. Cubic feet per second per square mile, definition of. Cubic foot per second, definition of.	5 104 104 5 5 15 35 12-14 16 5 5 80 81 104 82-83 5 5 5	Islip, Champlin Creek at. Kings County, ground-water levels in Ligonee Brook, at Sag Harbor. Lindenhurst, Santapogue Creek at. Little River, near Riverhead. Little Seatuck Creek, at Eastport. Location of data collection stations (maps). Low-flow partial-record stations, Discharge at. Malverne, Pines Brook at. Massapequa Creek, at Massapequa. at North Massapequa. at South Farmingdale. at Southern State Parkway, at South Farmingdale. Mean concentration (sediment), definition of. Mean discharge, definition of. Methylene blue active substance, definition of. Micrograms per gram, definition of. Micrograms per gram, definition of. Micrograms per liter, definition of. Mill Creek, at Noyack, near Huntington.	84, 104 111-112 90, 105 102 103 22-30 100-107 97-98 91-92 105 105 66 66 66 102 100
Cfs-day, definition of. Champlin Creek, at Islip	5 104 104 5 15 35 12-14 16 5 80 81 104 82-83 5 5 5	Islip, Champlin Creek at. Kings County, ground-water levels in Ligonee Brook, at Sag Harbor Lindenhurst, Santapogue Creek at. Little River, near Riverhead. Little Seatuck Creek, at Eastport. Location of data collection stations (maps). Low-flow partial-record stations, Discharge at. Malverne, Pines Brook at. Massapequa Creek, at Massapequa. at North Massapequa. at South Farmingdale. at Southern State Parkway, at South Farmingdale. Mean concentration (sediment), definition of. Methylene blue active substance, definition of. Micrograms per gram, definition of. Micrograms per liter, definition of. Mill Creek, at Noyack, near Huntington. Mill Neck Creek, at Mill Neck.	84, 104 111-112 90, 105 102 103 22-30 100-107 97-98 91-92 105 105 8 5 6 6 6 102 100 33-34
Cfs-day, definition of. Champlin Creek, at Islip	5 104 104 5 5 15 35 12-14 16 5 5 80 81 104 82-83 5 5 5 2 2	Islip, Champlin Creek at. Kings County, ground-water levels in Ligonee Brook, at Sag Harbor. Lindenhurst, Santapogue Creek at. Little River, near Riverhead. Little Seatuck Creek, at Eastport. Location of data collection stations (maps). Low-flow partial-record stations, Discharge at. Malverne, Pines Brook at. Massapequa Creek, at Massapequa. at North Massapequa at South Farmingdale. at Southern State Parkway, at South Farmingdale. Mean concentration (sediment), definition of. Mean discharge, definition of. Methylene blue active substance, definition of. Micrograms per gram, definition of. Micrograms per gram, definition of. Micrograms per liter, definition of. Micrograms per liter, definition of. Mill Creek, at Noyack, near Huntington. Mill Neck Creek, at Mill Neck. Millburn Creek, at Baldwin.	84, 104 111-112 90, 105 102 103 22-30 100-107 97-98 91-92 105 105 105 66 66 102 100 33-34
Cfs-day, definition of. Champlin Creek, at Islip. at Montauk Highway, at Islip. Chemical oxygen demand, definition of. Chlorophyll, definition of. Classification of records (water quality) Cold Spring Brook, at Cold Spring Harbor. Collection and computation of data (stage and water-discharge records) Collection of data (ground-water level records) Colloid, definition of. Color unit, definition of. Connetquot Brook, at Central Islip near Oakdale. Connetquot River, near Oakdale Contents, definition of. Control, definition of. Control structure, definition of Control structure, definition of Cooperation. Cubic feet per second per square mile, definition of. Cubic foot per second, definition of. Coberiptive headings (water quality) Diatoms, definition of.	5 104 104 5 5 15 35 12-14 16 5 5 80 81 104 82-83 5 5 5 5 2	Islip, Champlin Creek at. Kings County, ground-water levels in	84, 104 111-112 90, 105 102 103 22-30 100-107 97-98 91-92 105 105 66 66 62 100 33-34 107 6
Cfs-day, definition of. Champlin Creek, at Islip	5 104 104 5 15 35 12-14 16 5 5 80 81 104 82-83 5 5 5 2	Islip, Champlin Creek at. Kings County, ground-water levels in Ligonee Brook, at Sag Harbor Lindenhurst, Santapogue Creek at. Little River, near Riverhead. Little Seatuck Creek, at Eastport. Location of data collection stations (maps). Low-flow partial-record stations, Discharge at. Malverne, Pines Brook at. Massapequa Creek, at Massapequa. at North Massapequa. at South Farmingdale. at Southern State Parkway, at South Farmingdale. Mean concentration (sediment), definition of. Methylene blue active substance, definition of. Micrograms per gram, definition of. Mill Creek, at Noyack, near Huntington. Mill Neck Creek, at Mill Neck. Millburn Creek, at Baldwin. Milligrams per liter, definition of. Minor Element analyses of ground water.	84, 104 111-112 90, 105 102 103 22-30 100-107 97-98 91-92 105 105 8 5 6 6 6 102 100 33-34 107 329-335
Cfs-day, definition of. Champlin Creek, at Islip	5 104 104 5 5 15 35 12-14 16 5 5 80 81 104 82-83 5 5 5 2 2	Islip, Champlin Creek at. Kings County, ground-water levels in Ligonee Brook, at Sag Harbor. Lindenhurst, Santapogue Creek at. Little River, near Riverhead. Little Seatuck Creek, at Eastport. Location of data collection stations (maps). Low-flow partial-record stations, Discharge at. Malverne, Pines Brook at. Massapequa Creek, at Massapequa. at North Massapequa at South Farmingdale. at Southern State Parkway, at South Farmingdale. Mean concentration (sediment), definition of. Mean discharge, definition of. Methylene blue active substance, definition of. Micrograms per gram, definition of. Micrograms per liter, definition of. Mill Creek, at Noyack, near Huntington. Mill Neck Creek, at Mill Neck. Millburn Creek, at Baldwin. Milligrams per liter, definition of. Minor Element analyses of ground water Motts Creek, at Valley Stream.	84, 104 111-112 90, 105 102 103 22-30 100-107 97-98 91-92 105 105 105 105 66 66 102 100 33-34 107 6329-335
Cfs-day, definition of. Champlin Creek, at Islip. at Montauk Highway, at Islip. Chemical oxygen demand, definition of. Chlorophyll, definition of. Classification of records (water quality) Cold Spring Brook, at Cold Spring Harbor. Collection and computation of data (stage and water-discharge records) Collection of data (ground-water level records) Colloid, definition of. Color unit, definition of. Connetquot Brook, at Central Islip near Oakdale. Connetquot River, near Oakdale Contents, definition of. Control, definition of. Control structure, definition of Control structure, definition of Cooperation. Cubic feet per second per square mile, definition of. Cubic foot per second, definition of. Coberiptive headings (water quality) Diatoms, definition of. Descriptive headings (water quality) Diatoms, definition of. Dissolved, definition of. Dissolved, definition of. Diversity index, definition of.	5 104 104 5 5 15 35 12-14 16 5 80 81 104 82-83 5 5 5 5 5 4-10 15 7 6 6	Islip, Champlin Creek at. Kings County, ground-water levels in Ligonee Brook, at Sag Harbor Lindenhurst, Santapogue Creek at. Little River, near Riverhead. Little Seatuck Creek, at Eastport. Location of data collection stations (maps). Low-flow partial-record stations, Discharge at. Malverne, Pines Brook at. Massapequa Creek, at Massapequa. at North Massapequa. at South Farmingdale. at Southern State Parkway, at South Farmingdale. Mean concentration (sediment), definition of. Methylene blue active substance, definition of. Micrograms per gram, definition of. Mill Creek, at Noyack, near Huntington. Mill Neck Creek, at Mill Neck. Millburn Creek, at Baldwin. Milligrams per liter, definition of. Minor Element analyses of ground water.	84, 104 111-112 90, 105 102 103 22-30 100-107 97-98 91-92 105 105 8 5 6 6 6 102 100 33-34 107 329-335
Cfs-day, definition of. Champlin Creek, at Islip	5 104 104 5 15 35 12-14 16 5 5 80 81 104 82-83 5 5 5 2	Islip, Champlin Creek at. Kings County, ground-water levels in Ligonee Brook, at Sag Harbor Lindenhurst, Santapogue Creek at. Little River, near Riverhead. Little Seatuck Creek, at Eastport. Location of data collection stations (maps). Low-flow partial-record stations, Discharge at. Malverne, Pines Brook at. Massapequa Creek, at Massapequa. at North Massapequa. at South Farmingdale. at Southern State Parkway, at South Farmingdale. Mean concentration (sediment), definition of. Methylene blue active substance, definition of. Micrograms per gram, definition of. Micrograms per gram, definition of. Mill Creek, at Noyack, near Huntington. Mill Neck Creek, at Mill Neck. Millburn Creek, at Baldwin. Milligrams per liter, definition of. Minor Element analyses of ground water Motts Creek, at Valley Stream. Mud Creek, at East Patchogue.	84, 104 111-112 90, 105 102 103 22-30 100-107 97-98 91-92 105 105 8 5 6 6 6 102 100 33-34 107 329-335 107 103
Cfs-day, definition of. Champlin Creek, at Islip	5 104 104 5 5 15 35 12-14 16 5 80 81 104 82-83 5 5 5 2 2 4-10 15 7 6 6 6 6	Islip, Champlin Creek at. Kings County, ground-water levels in. Ligonee Brook, at Sag Harbor. Lindenhurst, Santapogue Creek at. Little River, near Riverhead. Little Seatuck Creek, at Eastport. Location of data collection stations (maps). Low-flow partial-record stations, Discharge at. Malverne, Pines Brook at. Massapequa Creek, at Massapequa. at North Massapequa at South Farmingdale. at Southern State Parkway, at South Farmingdale. Mean concentration (sediment), definition of. Mean discharge, definition of. Methylene blue active substance, definition of. Micrograms per gram, definition of. Micrograms per liter, definition of. Mill Creek, at Noyack, near Huntington. Mill Neck Creek, at Mill Neck Millburn Creek, at Baldwin. Milligrams per liter, definition of. Minor Element analyses of ground water Motts Creek, at Valley Stream Mud Creek, at East Patchogue. Nassau County, ground-water levels in.	84, 104 111-112 90, 105 102 103 22-30 100-107 97-98 91-92 105 105 105 66 66 102 100 33-34 107 107 103
Cfs-day, definition of. Champlin Creek, at Islip	5 104 104 5 15 35 12-14 16 5 5 80 81 104 82-83 5 5 5 2	Islip, Champlin Creek at. Kings County, ground-water levels in Ligonee Brook, at Sag Harbor Lindenhurst, Santapogue Creek at. Little River, near Riverhead. Little Seatuck Creek, at Eastport. Location of data collection stations (maps). Low-flow partial-record stations, Discharge at. Malverne, Pines Brook at. Massapequa Creek, at Massapequa. at North Massapequa. at South Farmingdale. at Southern State Parkway, at South Farmingdale. Mean concentration (sediment), definition of. Methylene blue active substance, definition of. Micrograms per gram, definition of. Micrograms per gram, definition of. Mill Creek, at Noyack, near Huntington. Mill Neck Creek, at Mill Neck. Millburn Creek, at Baldwin. Milligrams per liter, definition of. Minor Element analyses of ground water Motts Creek, at Valley Stream. Mud Creek, at East Patchogue.	84, 104 111-112 90, 105 102 103 22-30 100-107 97-98 91-92 105 105 8 5 6 6 6 102 100 33-34 107 329-335 107 103

344 INDEX

	Page		Page
National Geodetic Vertical Datum of 1929,	1460	Santapogue Creek, at Lindenhurst	90, 105
definition of	6	at State Highway 27A, Lindenhurst	105
National stream-quality accounting network		Seaford Creek, at Seaford	106
stations	36-76	Seamans Creek, at Seaford	106 102
definition of	12	Seatuck Creek, at Eastport	16
Neguntatogue Creek, at Lindenhurst	105	Sediment, definition of	8
Newbridge Creek, at Merrick	106	Significant hydrologic events	3
Nissequogue River, near Hauppauge	101	Smithtown, Nissequogue River near	36-49
at Smithtown	101	Solute, definition of	8
near Smithtown	36-49	South Pond Outlet, at Rockville Centre	107
Northeast branch, near East Hauppauge	100	Special networks and programs	12
near Hauppauge	101	Specific conductance, definition of	102
at Smithtownnear Smithtown	100 101	Speonk River, at Speonk	102
Numbering system for wells	11	Explanation of	12-15
		Stage-discharge relation, definition of	9
Oakdale, Connetquot River near	82-83	Stony Brook at Stony Brook	101
Organic Carbon, definition of	6	Stony Hollow Run, at Centerport	100
Organic mass, definition of	4	Streamflow, definition of	9
Organism, definition of	6	Strongs Creek, at Lindenhurst	105
Organism count/area, definition of	6 7	Substrate, definition of	153-206
Organism count/volume, definition of Other data available (stage and water-discharge	,	quality of ground-water in	223-328
records)	15	Well Index	221-222
	,,,	Surface area, definition of	9
Pardees Ponds Outlet, at Islip	104	Surficial bed material, definition of	9
Parsonage Creek, at Baldwin	107	Suspended, definition of	9
Partial-record station, definition of	7	Suspended, recoverable, definition of	9
Partial-record stations and miscellaneous	100 107	Suspended sediment, definition of	8
sites, Discharge at	100-107	Suspended-sediment concentration,	8
Particle-size, definition of	7 7	definition ofSuspended-sediment discharge, definition of	8
Patchogue River, at Patchogue	79, 103	Suspended, total, definition of	9
near Patchogue	103	Swan River, at East Patchogue	77-78
Peconic River, at Manorville	101		
at Nugent Drive, at Riverhead	101	Taxonomy, definition of	9
at Riverhead	50-64	Time-weighted average, definition of	10
Penataquit Creek, at Bay Shore	85, 104	Tons per acre-foot, definition of	10
Percent composition, definition of	7 7	Tons per day, definition of	10
Periphyton, definition of Pesticide analyses of ground water	336-342	definition of	10
Pesticide program, definition of	12	Total coliform bacteria, definition of	4
Pesticides, definition of	7	Total in bottom material, definition of	5
Phytoplankton, definition of	7	Total load, definition of	10
Picocurie, definition of	7	Total organic carbon, definition of	10
Pines Brook, at Malverne	97-98	Total organism count, definition of	7
Plankton, definition of	/	Total, recoverable, definition of	10
Polychlorinated biphenyls, definition of Polychlorinated napthalenes, definition of	8	Total sediment discharge, definition of	0
Poxabogue Pond, at Sagaponack	102	Unnamed tributary, to Conscience Bay at	
Precipitation-quality stations, Analyses	102	Setauket	101
of samples collected:		to Port Jefferson Harbor at Port Jefferson	101
at Bay Park	108	to Setauket Harbor at East Setauket	101
at East Meadow	109		0.0
at Upton	110	Valley Stream, at Valley Stream	99
Preface	III	below West Branch, at Valley Stream	107
Primary productivity, definition of Publications on techniques of water-resources	8	Wading River, at Wading River	101
investigations	17	Water analysis	15
		Water-discharge records, Explanation of,	
Quantuck Creek, at Quogue	102	(see Stage and water-discharge records,	
Queens County, ground-water levels in	148-152	Explanation of)	
quality of ground-water in	220	Water-quality records, Explanation of	15-16
Dadisahamiaal amaanam dafinition of	10	Water temperatures	16 102
Radiochemical program, definition of	12 104	Weesuck Creek, at East Quogue	102
Recoverable from bottom material.	104	Wells, system for numbering	11
definition of	5	Wet mass, definition of	5
Riverhead, Peconic River at	50-64	White Brook, at Riverhead	102
Roslyn Brook, at Roslyn	100	Whitney Lake Outlet, at Manhasset	100
Runoff in inches, definition of	8	WRD, definition of	10
0	06.07	WSP, definition of	10
Sampawams Creek, at Babylon	86-87	Vanhank Carmona Biyor at	65 76
below Hawleys Lake, at Babylonnear Deer Park.	104 104	Yaphank, Carmans River at	65-76
near North Babylon	104	Zooplankton, definition of	8

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI). This report contains both the inch-pound and SI unit equivalents in the station manuscript descriptions.

Multiply inch-pound units	Ву	To obtain SI units
	Length	
inches (in)	2.54x10¹	millimeters (mm)
feet (ft)	2.54x10 ⁻² 3.048x10 ⁻¹	meters (m) meters (m)
miles (mi)	1.609x10°	kilometers (km)
	Area	
	4.045.103	
acres	4.047x10 ³ 4.047x10 ⁻¹	square meters (m ²) square hectometers (hm ²)
	4.047×10^{-3}	square kilometers (km ²)
square miles (mi ²)	2.590x10°	square kilometers (km²)
	Volume	
gallons (gal)	3.785x10°	liters (L)
	3.785x10°	cubic decimeters (dm³)
	3.785x10 ⁻³	cubic meters (m ³)
million gallons	3.785×10^3	cubic meters (m ³)
audia fact (643)	3.785×10^{-3}	cubic hectometers (hm³)
cubic feet (ft³)	2.832x10 ¹ 2.832x10 ⁻²	cubic decimeters (dm ³) cubic meters (m ³)
cfs-days	2.447×10^3	cubic meters (m ³)
	2.447x10 ⁻³	cubic hectometers (hm³)
acre-feet (acre-ft)	1.233×10^3	cubic meters (m ³)
	1.233x10 ⁻³	cubic hectometers (hm³)
	1.233x10 ⁻⁶	cubic kilometers (km³)
	Flow	
cubic feet per second (ft ³ /s)	2.832x10 ¹	liters per second (L/s)
(10,70)	2.832x10 ¹	cubic decimeters per second (dm ³ /s)
	2.832x10 ⁻²	cubic meters per second (m³/s)
gallons per minute (gal/min)	6.309×10^{-2}	liters per second (L/s)
	6.309×10^{-2}	cubic decimeters per second (dm³/s)
million gallons per day	6.309x10 ⁻⁵ 4.381x10 ⁻¹	cubic meters per second (m³/s)
mimon ganons per day	4.381x10 ⁻²	cubic decimeters per second (dm ³ /s) cubic meters per second (m ³ /s)
	4.301X10	caole meters per second (m /s)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

POSTAGE AND FEES PAID U.S. DEPARTMENT OF THE INTERIOR INT 413

U.S. DEPARTMENT OF THE INTERIOR Geological Survey 5 Aerial Way Syosset, NY 11791

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300
SPECIAL 4TH CLASS BOOK RATE