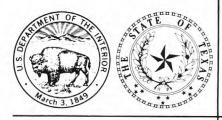

R (200) Ga3 Texas 1980 v. 3

Water Resources Data for Texas

Volume 3. Colorado River Basin, Lavaca River Basin, Guadalupe River Basin, Neces River Basin, Rio Grande Basin, and Intervening Coastal Basins


U.S. GEOLOGICAL SURVEY WATER-DATA REPORT TX-80-3

WATER YEAR 1980

Prepared in cooperation with the State of Texas and with other agencies

CALENDAR FOR WATER YEAR 1980

									1	9	7 9									
	•																			
	0	С	ТО	В	ER			N) V	EI	м в	E	R		D	E C	E	и в	E	R
S	M	Т	W	Т	F	S	S	M	Т	W	Т	F	S	S	M	T	W	T	F	S
	1	2	3	4	5	6					1	2	3							1
7	8	9	10	11	12	13	4	5	6	7	8	9	10	2	3	4	5	6	7	8
14	15	16	17	18	19	20	11	12	13	14	15	16	17	9	10	11	12	13	14	15
21	22	23	24	25	26	21	25	19	20	21	22	23	24	10	24	18	19	20	21	22
20	23	30	31				23	20	21	20	29	30		30	31	23	20	21	20	23
										0	0 0									
-									-	9	8 0									_
	J	AI	N U	A	RY			F	ЕВ	RI	U A	R	Y		1	M A	R	СН		
S	М	Т	w	т	F	S	S	М	Т	w	Т	F	S	S	М	Т	w	Т	F	S
,	_				4		•			,	_	1		•						1
13	14	15	16	10	11	12	10	11	12	13	14	15	16	9	10	11	12	13	11	15
20	21	22	23	24	25	26	17	18	19	20	21	22	23	16	17	18	19	20	21	22
27	28	29	30	31			24	25	26	27	28	29		23		25	26			
		A	PR	1.1	L				1	M A	Y					, ,	JN	E		
S	М	т	w	Т	F	S	S	м	т	w	Т	F	5	S						•
,	141		"			,	,	141					•	3	141		"			3
					4	5					1	2	3	1	2	3	4	5	6	7
6	7	8	9	10	11	12	4	5	6	7	8	9	10	8	9	10	11	12	13	14
20	21	22	23	24	25	26	18	12	20	21	22	23	24	22	23	24	25	26	27	28
27	28	29	30	27	23	20	25	26	27	28	29	30	31	29	30	27	23	20	2,	20
		11	UL	Y				A	U	G U	S	Г			E	Ρ .	ΓE	MI	3 E	R
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	Т	F	S
					4							1	2		1	2	3	4	5	6
						12	3	4	5	6	7	8	9	7	8	9	10	11	12	13
13	14	15	16	17	18	19	10	11	12	13	14	15	16	14	15	16	17	18	19	20
			30		25	20								21			24	25	20	21
	20		30	,			31	2.5	20		20		30	20	-	50				

Water Resources Data for Texas

Volume 3. Colorado River Basin, Lavaca River Basin, Guadalupe River Basin, Neces River Basin, Rio Grande Basin, and Intervening Coastal Basins

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT TX-80-3

Prepared in cooperation with the State of Texas and with other agencies

UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to
District Chief, Water Resources Division
300 East 8th Street
Austin, Texas 78701

Preface

This report was prepared by the U.S. Geological Survey in cooperation with the State of Texas and other agencies by personnel of the Texas district of the Water Resources Division under the supervision of C. W. Boning, District Chief, and Alfred Clebsch, Jr., Regional Hydrologist, Central Region.

This report is one of a series issued by State under the general direction of Phil Cohen, Chief Hydrologist, and R. J. Dingman, Assistant Chief Hydrologist for Scientific Publications and Data Management.

Data for Texas are in three volumes as follows:

- Volume 1. Arkansas River basin, Red River basin, Sabine River basin, Neches River basin, Trinity River basin, and intervening and adjacent Coastal basins
- Volume 2. San Jacinto River basin, Brazos River basin, San Bernard River basin, and intervening Coastal basins
- Volume 3. Colorado River basin, Lavaca River basin, Guadalupe River basin, Nueces River basin, Rio Grande basin, and intervening Coastal basins

REPORT DOCUMENTATION	1. REPORT NO.	2.	3. Recipient	's Accession No.
PAGE 4. Title and Subtitle	USGS/WRD/HD-81/081		5. Report D	
	a for Texas, Water Year 19	980. Volume 3;	August	
	aca River, Guadalupe River			
Rio Grande basins an	nd Intervening Coastal bas			
7. Author(s)				ng Organization Rept. No.
				IDR-TX-80-3 Task/Work Unit No.
9. Performing Organization Name a	nd Address		10. Project/	Task/Work Unit No.
II S Geological Surv	vey, Water Resources Divis	ion	11. Contract	t(C) or Grant(G) No.
300 East Eighth Stre		1011	(C)	175 70 200 12700 1220
Austin, TX 78701			(G)	
			(G)	
12. Sponsoring Organization Name				Report & Period Covered
	vey, Water Resources Divis	ion		, 1979, to
300 East Eighth Stre	et		Sept.	30, 1980
Austin, TX 78701			14.	
15. Supplementary Notes				
	tion with the State of Tex	as and with ot	her agencies.	
arthursh to the contract				
16. Abstract (Limit: 200 words)				
hydrograph partial-rearrial-record stationart of the systemat measurements. Record These data represent	f lakes and reservoirs. A record stations, reconnais ions. Additional water datic data collection progrates for a few pertinent stat that part of the Nationand cooperating State and F	ssance partial- ata were collec am, and are pub cations in bord al Water Data S	record station ted at variou lished as mis ering States ystem operate	ons, and low-flow as sites, not scellaneous are also included.
17. Document Analysis a. Descript	tors			
	data, *Surface water, *Wa Chemical analyses, Sedimen			
b. Identifiers/Open-Ended Terms	•			
c. COSATI Field/Group				
8. Availability Statement No re	estriction on distribution	• 19. Security C	lass (This Report)	21. No. of Pages
This report may be p	ourchased from:	UNCLASS		595

22. Price

CONTENTS

	Page
list of coging stations in despetation and a few which accords	
List of gaging stations, in downstream order, for which records are published	V
Introduction	
	1
Cooperation	2
Hydrologic conditions	3
Definition of terms	4
Downstream order and station number	16
Special networks and programs	16
Explanation of stage and water-discharge records	17
Collection and computation of data	17
Accuracy of field data and computed results	21
Other data available	22
Records of discharge collected by agencies other than the	
Geological Survey	22
Explanation of surface-water quality records	22
Collection and examination of data	22
Water analysis	23
Water temperature	24
Sediment	24
Publications of techniques of water-resources investigations	26
Gaging-station records	29
Low-flow investigations	573
Discharge at partial-record stations and miscellaneous sites	575
Low-flow partial-record stations	575
그는 그는 그들은 그들은 사람들은 그는 그들은 사람들은 그는 그들은 사람들이 나를 살아가는 것이 없다면 하는 사람들이 살아왔다면 하는 것이 없는 것이다. 그렇게 그는 그들은 그를 가는 그들은 그를 가는 것이다.	577
Crest-stage partial-record stations	579
Discharge measurements at miscellaneous sites	2.3.7.9.0
Index	581
ILLUSTRATION	
Figure 1. Comparison of discharge at four long-term representative	
gaging stations during the 1980 water year with median	
discharge for the period 1941-70	28

GAGING STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED

	Page
WESTERN GULF OF MEXICO BASINS	
COLORADO RIVER BASIN	
Colorado River:	
Lake J. B. Thomas near Vincent	29
Colorado River near Ira	31
Deep Creek near Dunn	35
Colorado River near Cuthbert	36
Colorado River at Colorado City	40
Morgan Creek:	100
Lake Colorado City near Colorado City	44
Champion Creek Reservoir near Colorado City	46
Beals Creek near Westbrook	48
Colorado River above Silver	52
E. V. Spence Reservoir near Robert Lee	61
Colorado River at Robert Lee	70
Oak Creek:	
Oak Creek Reservoir near Blackwell	71
Colorado River near Ballinger	73
Elm Creek at Ballinger	79
South Concho River (head of Concho River):	
South Concho Irrigation Co.'s canal at Christoval	83
South Concho River at Christoval	84
Middle Concho River above Tankersley	85
Spring Creek above Tankersley	86
Dove Creek at Knickerbocker	87
Twin Buttes Reservoir near San Angelo	88
South Concho River:	
Pecan Creek near San Angelo	90
Tom Green County Water Control and Improvement District No. 1	
canal near San Angelo	91
Lake Nasworthy near San Angelo	92
South Concho River:	
North Concho River at Sterling City	94
North Concho River near Carlsbad	95
O. C. Fisher Lake at San Angelo	96
North Concho River at San Angelo	98
Concho River at San Angelo	99
Concho River near Veribest	100
Concho River at Paint Rock	101
Colorado River near Stacy	109
Colorado River at Winchell	113
Pecan Bayou:	
Lake CLyde near Clyde	115
Pecan Bayou:	
Jim Ned Creek near Coleman	117

		Page
W	ESTERN GULF OF MEXICO BASINSContinued	
	COLORADO RIVER BASINContinued	
	Colorado River:	
	Pecan Bayou:	
	Jim Ned Creek:	
	Hords Creek:	
	Hords Creek Lake near Valera	118
	Hords Creek near Valera	120
	Lake Brownwood:	
	Brown County Water Improvement District No. 1 canal near Brownwood.	121
	Lake Brownwood near Brownwood	122
	Pecan Bayou at Brownwood	124
	Pecan Bayou near Mullin	125
	San Saba River:	255
	Noyes Canal at Menard	129
	San Saba River at Menard	130
	San Saba River near Brady	131
	Brady Creek near Eden	133
	Brady Creek Reservoir near Brady	134
	Brady Creek at Brady	136
	San Saba River at San Saba	137
	Colorado River near San Saba	138
	Lake Buchanan near Burnett	146
	Colorado River:	
	Llano River near Junction	147
	Llano River near Mason	148
	Beaver Creek near Mason	149
	Llano River at Llano	150
	Sandy Creek near Kingland	158
	Pedernales River near Fredericksburg	159
	Pedernales River near Johnson City	161
	Lake Travis near Austin	163
	Colorado River below Mansfield Dam, Austin	164
	Bull Creek at Loop 360 near Austin	166
	Lake Austin at Austin	170
	Colorado River (Town Lake):	122
	Barton Creek at State Highway 71 near Oak Hill	179
	Barton Creek at Loop 360, Austin	182
	Barton Springs at Austin	185
	Barton Creek below Barton Springs at Austin	188
	Shoal Creek at Northwest Park, Austin	190
	Shoal Creek at 12th Street, Austin	191
	Waller Creek at 38th Street, Austin	193
	Waller Creek at 23d Street, Austin	194
	Town Lake at Austin	195

GAGING STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED

	Page
ESTERN GULF OF MEXICO BASINSContinued	
COLORADO RIVER BASINContinued	
Colorado River at Austin	203
Boggy Creek at U.S. Highway 183, Austin	211
Walnut Creek at Dessau Road, Austin	214
Walnut Creek at Webberville Road, Austin	216
Walnut Creek at Southern Pacific Railroad bridge, Austin	219
Colorado River below Austin	221
Onion Creek near Driftwood	223
Onion Creek at Buda	226
Bear Creek below Farm Road 1826 near Driftwood	229
Little Bear Creek at Farm Road 1626 near Manchaca	232
Slaughter Creek at Farm Road 1826 near Austin	234
Slaughter Creek at Farm Road 2304 near Austin	235
Williamson Creek at Oak Hill	237
Williamson Creek at Jimmy Clay Road, Austin	240
Onion Creek at U.S. Highway 183 near Austin	243
Wilbarger Creek near Pflugerville	246
Big Sandy Creek near McDade	247
Big Sandy Creek near Elgin	253
Dogwood Creek near McDade	259
Dogwood Creek at Highway 95 near McDade	262
Colorado River at Bastrop	264
Cummins Creek:	
Redgate Creek near Columbus	266
Colorado River at Columbus	267
Colorado River at Wharton	269
Colorado River near Bay City	278
TRES PALACIOS RIVER BASIN	
Tres Palacios River near Midfield	279
EAST CARANCAHUA CREEK BASIN	
East Carancahua Creek near Blessing	282
LAVACA RIVER BASIN	
Lavaca River at Hallettsville	284
Lavaca River near Edna	285
Navidad River near Hallettsville	294
Sandy Creek near Louise	295
Navidad River near Ganado	298
Mustang Creek:	
West Mustang Creek near Ganado	303
GARCITAS CREEK BASIN	
Garcitas Creek near Inez	306
PLACEDO CREEK BASIN	
Placedo Creek near Placedo	309

	Page
VESTERN GULF OF MEXICO BASINSContinued	
CHOCOLATE BAYOU BASIN	
Chocolate Bayou near Port Lavaca	310
GUADALUPE RIVER BASIN	310
North Fork Guadalupe River near Hunt	312
Guadalupe River at Hunt	313
Johnson Creek near Ingram	314
Guadalupe River above Bear Creek at Kerrville	315
Guadalupe River at Comfort	316
Guadalupe River near Spring Branch	317
Canyon Lake near New Braunfels	318
Guadalupe River at Sattler	320
Guadalupe River above Comal River at new Braunfels	321
Comal River at New Braunfels	322
Guadalupe River below New Braunfels	323
San Marcos River spring flow at San Marcos	324
Blanco River at Wimberley	325
Blanco River near Kyle	326
San Marcos River at Luling	327
Plum Creek at Lockhart	329
Plum Creek near Luling	330
Sandies Creek near Westhoff	334
Guadalupe River at Cuero	336
Guadalupe River at Victoria	338
Coleto Creek at Arnold Road Crossing near Schroeder	346
Coleto Creek Reservoir inflow (Guadalupe Diversion) near Schroeder	347
Perdido Creek at Farm Road 622 near Fannin	348
Coleto Creek near Victoria	349
San Antonio River: Olmos Creek at Dresden Drive, San Antonio	250
Olmos Reservoir at San Antonio	350
San Antonio River at San Antonio	353 354
Salado Creek:	334
Lorence Creek at Thousand Oaks Boulevard, San Antonio	355
Mud Creek:	333
West Elm Creek at San Antonio	357
East Elm Creek at San Antonio	359
Salado Creek (upper station) at San Antonio	361
Salado Creek (lower station) at San Antonio	362
Medina River near Pipe Creek	363
Red Bluff Creek near Pipe Creek	366
Medina Lake near San Antonio	367
Diversion Lake:	
Medina Canal near Riomedina	369
Medina River near Somerset	370

	Page
WESTERN GULF OF MEXICO BASINSContinued.	
GUADALUPE RIVER BASINContinued	
San Antonio RiverContinued	
Medina RiverContinued	
Culebra Creek:	
Helotes Creek at Helotes	371
Medina River at San Antonio	372
San Antonio River near Elmendorf	376
San Antonio River near Falls City	381
Cibolo Creek near Boerne	383
Cibolo Creek at Selma	384
Cibolo Creek near Falls City	385
Ecleto Creek near Runge	389
San Antonio River at Goliad	390
Guadalupe-Blanco River Authority Calhoun Canal	
Flume No. 1 near Long Mott	398
Guadalupe-Blanco River Authority Calhoun Canal	
Flume No. 2 near Long Mott	399
Guadalupe River near Tivoli	400
COPANO CREEK BASIN	910.0
Copano Creek near Refugio	405
MISSION RIVER BASIN	
Mission River at Refugio	408
ARANSAS RIVER BASIN	
Aransas River near Skidmore	416
Chiltipin Creek at Sinton	417
NUECES RIVER BASIN Nueces River at Laguna	/10
West Nueces River near Brackettville	418 421
Nueces River below Uvalde	421
Nueces River near Asherton	423
Nueces River at Cotulla	423
San Casimiro Creek near Freer	425
Nueces River near Tilden	425
Frio River at Concan	427
Dry Frio River near Reagan Wells	430
Frio River below Dry Frio River near Uvalde	433
Sabinal River near Sabinal	434
Sabinal River at Sabinal	437
Hondo Creek near Tarpley	438
Hondo Creek at King Waterhole near Hondo	441
Seco Creek at Miller Ranch near Utopia	442
Seco Creek at Rowe Ranch near D'Hanis	445
Frio River near Derby	446

GAGING STATION, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED

	Page
WESTERN GULF OF MEXICO BASINSContinued	
NUECES RIVER BASINContinued	
Nueces River:	
Frio River at Tilden	447
San Miguel Creek near Tilden	451
Frio River at Calliham	455
Atascosa River at Whitsett	459
Nueces River near Three Rivers	461
Lagarto Creek near George West	470
Lake Corpus Christi near Mathis	471
Nueces River near Mathis OSO CREEK BASIN	472
Oso Creek at Corpus ChristiSAN FERNANDO CREEK BASIN	475
San Diego Creek (head of San Fernando Creek) at Alice	478
Lake Alice at Alice	479
San Fernando Creek at Alice	480
LOS OLMOS CREEK BASIN	
Los Olmos Creek near Falfurrias	481
Rio Grande at El Paso	486
Rio Grande above Rio Concho near Presidio	488
Sanderson Creek at Sanderson	489
Rio Grande at Foster Ranch near Langtry	490
Pecos River at Red Bluff, NM	497
Delaware River near Red Bluff, NM	503
Red Bluff Reservoir near Orla	504
Pecos River near Orla	505
Reeves County Water Improvement District No. 2 canal near Mentone	509
Ward County Water Improvement District No. 3 canal near Barstow	510
Ward County Irrigation District No. 1 canal near Barstow Toyah Creek:	511
Limpia Creek above Fort Davis	512
Barrilla Draw near Saragosa Pecos County Water Improvement District No. 2	514
(upper diversion) canal near Grandfalls	515
Pecos County Water Improvement District No. 2 canal	
near Imperial	516
Pecos County Water Improvement District No. 3 canal	7.73
near Imperial	517
Ward County Water Improvement District No. 2 canal	
near Grandfalls	518
Pecos River near Girvin	519
Independence Creek near Sheffield	523

GAGING STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED

	Page
WESTERN GULF OF MEXICO BASINSContinued	
RIO GRANDE BASINContinued	
Rio Grande:	
Pecos River near Langtry	524
Devils River at Pafford Crossing near Comstock	529
Rio Grande below Amistad Dam near Del Rio	534
Rio Grande at Laredo	535
Rio Grande at Pipeline Crossing below Laredo	541
International Falcon Reservoir near Falcon Heights	542
Rio Grande below Falcon Dam	554
Rio Grande at Fort Ringgold, Rio Grande City	555
Rio Grande near Los Ebanos	556
Rio Grande below Anzalduas Dam	557
North Floodway near Sebastian	559
Arroyo Colorado floodway at El Fuste siphon, south of Mercedes	560
Rio Grande at U.S. Highway 77 at Brownsville	562
Rio Grande near Brownsville	563

WATER RESOURCES DATA FOR TEXAS, 1980

VOLUME 3

COLORADO RIVER BASIN, LAVACA RIVER BASIN, GUADALUPE RIVER BASIN, NUECES RIVER BASIN, RIO GRANDE BASIN, AND INTERVENING COASTAL BASINS

INTRODUCTION

Surface-water data for Texas for the 1980 water year are presented in three volumes, appropriately identified by river basins. Data in each each volume consist of records of stage, discharge, and water quality of streams and canals; and stage, contents, and water quality of lakes and reservoirs. Records for a few pertinent stations in bordering states are also included. These data represent that part of the National Water Data System operated by the U.S. Geological Survey in cooperation with State and Federal agencies in Texas.

Records of discharge (or stage) of streams and contents (or stage) of lakes and reservoirs were first published in a series of Geological Survey Water-Supply Papers entitled, "Surface Water Supply of the United States." Through water year 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperature, and suspended sediment were published from 1941 to 1971 in an annual series of water-supply papers entitled, "Quality of Surface Waters of the United States." Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from Branch of Distribution, U.S. Geological Survey, 1200 South Eads Street, Arlington, Virginia 22202.

For water years 1961 through 1974, streamflow data were released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1974 were similarly released either in separate reports or in conjunction with streamflow records. Beginning with the 1975 water year, water data for streamflow and water quality are published as an official Survey report on a State-boundary basis. These official Survey reports carry an identification number consisting of the two letter State abbreviation, the last two digits of the water year, and the volume number. For example, this report is identified as "U.S. Geological Survey Water-Data Report TX-80-3." Water-data reports are for sale by the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

COOPERATION

Organizations that assisted in the collection of data in this report through joint funding agreements with the Geological Survey in 1980 are:

Texas Department of Water Resources, H. D. Davis, Executive Director; A. L. Black, Chairman; J. H. Garrett, Vice-Chairman; M. T. Potts, G. E. Roney, G. W. McCleskey, and W. O. Bankston, Members.

Pecos River Commission, Horace Babcock, Federal Representative and Chairman; L. A. Vick, Commissioner for Texas, and J. L. Cathey, Commissioner for New Mexico.

Sabine River Compact Administration, Lamar Carroon, Federal Representative and Chairman; R. J. Palmer and G. R. Dyson for Louisiana; and J. M. Syler and Nelson Davis for Texas.

City of Austin, John German, Jr., Director, Engineering Department.

City of Dallas, Monroe McCorkle, Director of Public Works.

City of Garland, J. G. Driskoll, City Engineer.

City of Houston, J. A. Schindewolf, Director of Public Works.

City of Mesquite, G. E. Dowling, City Engineer.

Assistance in the form of funds or services was furnished by the following Federal agencies:

Corps of Engineers, U.S. Army.

Environmental Protection Agency.

Federal Emergency Management Agency.

International Boundary and Water Commission, United States and Mexico, U.S. Section.

National Park Service.

Soil Conservation Service, Department of Agriculture.

U.S. Water and Power Resources Service.

Assistance in the form of funds or services was rendered by the following organizations through the Texas Department of Water Resources:

The cities of Abilene, Alice, Arlington, Austin, Brady, Cleburne, Clyde, Corpus Christi, Dallas, El Paso, Gainesville, Graham, Houston, Nacogdoches, San Angelo, San Antonio, and Wichita Falls; Athens Municipal Water Authority; Bexar, Medina, and Atascosa Counties Water Control and Improvement District No. 1; Bistone Municipal Water Supply District; Brazos River Authority; Colorado River Municipal Water District; Dallas County; Dallas Power and Light Company; Dow Chemical Company; Edwards Underground Water District; Franklin County Water District; Freese and Nichols, Inc.; Greenbelt Municipal and Industrial Water Authority; Guadalupe-Blanco River Authority; Harris County Flood Control District; Harris-Galveston Coastal Subsidence District; Lavaca-Navidad River Authority; Lone Star Steel Company; Lower Colorado River Authority; Lower Neches Valley Authority; Mac-Kenzie Municipal Water Authority; North Central Texas Municipal Water Authority; Northeast Texas Municipal Water District; Nueces River Authority; Orange County; Palo Pinto County Municipal Water District; Red Bluff Water Power Control District; Reeves County Water Improvement District No. 1; Sabine River Authority of Texas; San Antonio City Public Service Board; San Antonio City Water Board; San Antonio River Authority; San Jacinto River Authority; Tarrant County Water Control and Improvement District No. 1; Texas Electric Service Company; Texas Utilities Services, Inc.; The Woodlands Development Corporation; Titus County Fresh Water Supply District No. 1; Tom Green County Water Control and Improvement District No. 1; Trinity River Authority; Upper Guadalupe River Authority; Upper Neches River Municipal Water Authority; Upper Trinity Basin Water Quality Compact; West Central Texas Municipal Water District; Wichita County Water Improvement District No. 2; and Wood County.

HYDROLOGIC CONDITIONS

Large variations in rainfall and runoff characterize the usual hydrologic conditions in Texas. In the east, streams are usually deep with wide alluvial flood plains, and streamflow is generally perennial. Normal annual rainfall exceeds 50 inches in the extreme east and annual runoff may average as much as 15 inches. In the west, streams are generally of the arroyo type and streamflow is highly ephemeral. Normal annual rainfall is less than 8 inches in the extreme west and annual runoff averages less than 0.1 inch in many areas.

During the 1980 water year, runoff for index station North Bosque River near Clifton, located in the central part of the State was in the deficient range (within the lowest 25 percent of record), with a mean discharge of only 19 percent of the long-term median. The other three index stations, Neches River near Rockland, located in east-central Texas, Guadalupe River near Spring Branch, located in south-central Texas, and North Concho River near Carlsbad, located in west Texas, were in the normal runoff range for the year. Figure 1 on page 28 shows a comparison of monthly and annual mean discharges for the index stations. Conservation storage in a selected group of 63 reservoirs, with a combined conservation capacity of 30,252,000 acre-feet, decreased from 86 percent of capacity in September 1979 to 75 percent of capacity in September 1980. Records from the 63 reservoirs show that 52 reservoirs decreased in contents, 10 increased, and one remained the same.

At the beginning of the 1980 water year, streamflow was in the deficient range in the northeastern part of the State, excessive (within the highest 25 percent of record) along the Gulf coast, and near normal in the remainder of the State. At the end of the first quarter, accumulated rainfall amounts were below normal across most of the State, with deficient runoff conditions existing across the entire northern half of the State. At the end of the second quarter, conditions were basically unchanged, with deficient runoff occurring in the northern half of the State and near-normal conditions existing in the southern half.

By late June, a combination of below-normal rainfall and record-breaking high temperatures brought moderate drought conditions to all of north and east Texas. At the end of July, drought conditions had further intensified in north and east Texas and below-normal runoff conditions existed across the entire State, except for the Guadalupe River basin in south-central Texas where conditions were normal.

Runoff conditions remained unchanged until mid-August when Hurricane Allen produced drought-breaking rainfall along its westward path across south and southwest Texas. A further improvement in flow conditions occurred in early September in the wake of tropical storm Danielle which produced heavy rainfall in the central and west-central parts of the State. At the end of the water year, deficient runoff conditions continued in a large portion of east-central Texas, above-normal conditions existed in south-central and west Texas, and normal conditions existed in the remainder of the state.

DEFINITION OF TERMS

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also the table for converting English units to International System (SI) on the inside of the back cover.

During water year 1978, revisions were made in the terminology used to define 143 of the water-quality parameter codes that have been used by the Geological Survey in its publication of water-quality data in its WATSTORE data system. These revisions were made to achieve consistency in terminology. They do not represent a change in the way the codes have been used in the part or in the association of specific code numbers with identified analytical procedures.

Use of the new terminology began with data for the 1978 water year, and therefore, it first appears in that publication. Definitions on which the terminology is based are included in the "Definitions" sections of this report.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet, about 326,000 gallons, or 1,233 cubic meters.

Algae are mostly aquatic, single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

<u>Bacteria</u> are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gramnegative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as the organisms which produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35° C + 1.0° C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL (milliliters) of sample.

Fecal coliform bacteria are bacteria that are present in the intestines or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours when incubated at 44.5°C \pm 0.2°C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal streptococcal bacteria are bacteria found in intestines of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at $35^{\circ}\text{C} + 1.0^{\circ}\text{C}$ on M-enterrococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Bed material is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500° C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in g/m³ (grams per cubic meter), and periphyton and benthic organisms in g/m² (grams per square meter).

 $\underline{\text{Dry mass}}$ refers to the mass of residue present after drying in an oven at 60°C for zooplankton and 105°C for periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and ash mass, and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

Biomass pigment ratio is the ratio of organic mass in mg/m^2 (milligrams per square meter) to the mass of chlorophyll a, in mg/m^2 .

Bottom material: See Bed material.

<u>Cells/volume</u> refers to the number of cells of any organisms which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multi-celled and are counted according to the number of contained cells per sample, usually mL or L (liters).

<u>Cfs-day</u> is the volume of water represented by flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-ft, about 646,000 gallons or 2,447 cubic meters.

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water, and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with natural water color or with carbonaceous organic pollution from sewage or industrial wastes.

Chlorophyll refers to the green pigments of plants. Chlorophyll \underline{a} and \underline{b} are the two most common pigments in plants.

 $\underline{\text{Color unit}}$ is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

<u>Contents</u> is the volume of water in a reservoir or lake, and unless otherwise indicated is computed on the basis of a level pool. The computation does not include bank storage.

<u>Control</u> designates a feature downstream from a gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

Cubic foot per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

Cubic foor per second (FT 3 /S, ft 3 /s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second. This rate is equivalent to approximately 7.48 gallons per second, 448.8 gallons per minute, or 0.02832 cubic meters per second.

<u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment), that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

<u>Instantaneous discharge</u> is the discharge at a particular instant of time.

<u>Dissolved</u> refers to that material in a representative water sample which passes through a 0.45 μm membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

<u>Diversity index</u> is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\overline{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Diversity index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

Drainage area of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified location. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

Gage height (G.HT.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

Gaging station is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

<u>Hardness</u> of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate $(CaCO_3)$.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

Methylene blue active substance (MBAS) is a measure of apparent detergents. This determination depends on the formation of a blue color when methylene blue dye reacts with synthetic detergent compounds.

Micrograms per gram $(\mu g/g)$ is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (gram) of sediment.

Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represent the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L, and is based on the mass of sediment per liter of water-sediment mixture.

National Geodetic Vertical Datum of 1929 (NGVD) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

 $\frac{ND}{for}$ is used in some of the tables of pesticide data as an abbreviation for "Not Detected." Analyses in which this term is reported were made by the U.S. Environmental Protection Agency laboratory in Bay Saint Louis, Mississippi.

Organism is any living entity, such as an insect, phytoplankter, or zooplankter.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meters (m^2) , acres, or hectares. Periphyton benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliters (mL) or liters (L). Numbers of planktonic organisms can be expressed in these terms.

Total organism count is the total number of organisms collected and enumerated in any particular sample.

Partial-record station is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

<u>Particle size</u> is the diameter, in millimeters (mm), of suspended sediment or bed material determined either by sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

<u>Particle-size classification</u> used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Clasification	Size (mm)	Method of analysis
Clay	0.00024 - 0.0	004 Sedimentation
Silt	.0040	062 Do.
Sand	.062 - 2.0	O Sedimentation or sieve
Gravel	2.0 - 64.0	O Sieve

The particle-size ditribution given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

Percent composition is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass, or volume.

<u>Periphyton</u> is the assemblage of microorganisms attached to and growing upon solid surfaces. While primarily consisting of algae, the assemblage may include bacteria, fungi, protozoa, rotifers, and other small organisms.

<u>Pesticides</u> are chemical compounds used to control undesirable plants and animals. Major categories of pesticides include insecticides and herbicides, which control insects and plants respectively, and are the two categories reported.

<u>Picocurie</u> (PC, pCi) is one trillionth (1 x 10^{-12}) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 10^{10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

<u>Plankton</u> is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

Phytoplankton is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae.

Blue-green algae are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

<u>Diatoms</u> are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells/mL of sample.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algal mats of floating "moss" in lakes. Their concentrations are expressed as number of cells/mL of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column, and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon baceria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

Polychlorinated biphenyls (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Recoverable from bottom material refers to the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Runoff in inches (IN, in) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usuage, and quantity and intensity of precipitation.

Suspended sediment is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

Suspended-sediment discharge (tons/day) is the rate at which dry weight of sediment passes a section of a stream, or is the quantity of sediment, as measured by dry weight or volume, that passes a section during a given time. It is computed by multiplying discharge (ft 3 /s) times mg/L times 0.0027.

<u>Suspended-sediment load</u> is quantity of suspended sediment passing a section in a specified period.

Total sediment discharge (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time.

Mean concentration is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

Sodium adsorption ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions with soil and is an index of sodium or alkali hazard to the soil. This ratio should be known especially for water used for irrigation.

Solute is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

 $\frac{\text{Specific conductance}}{\text{an electrical current.}} \text{ is a measure of the ability of a water to conduct}$

at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content in the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height (stage) and volume of water per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.

Natural substrates refers to any naturally occurring emersed or submersed solid surface, such as rock or tree, upon which an organism lived.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multi-plate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection.

Suspended, recoverable refers to the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 μm membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent.

Suspended, total refers to the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 µm membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent.

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total numbers of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in lacre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136.

Tons per day is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour day.

Total refers to the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample.)

Total in bottom material refers to the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

 $\underline{\text{Total load}}$ (tons) is the total quantity of any individual constituent, as measured by dry mass or volume, that is dissolved in a specific amount of water (discharge) during a given time. It is computed by multiplying the mean discharge (ft³/s), times the mg/L of the constituent, times the factor 0.0027, times the number of days.

Total, recoverable refers to the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, Hexagenia limbata is the following:

KingdomAnima	L
PhylumArthropoda	
ClassInsecta	a
OrderEphemeropter	a
FamilyEphemeridae	
GenusHexageria	a
Species Hexagenia limbata	1

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

 $\frac{\text{WDR}}{\text{DS}}$ is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual basic-data reports.

 $\underline{\text{WRD}}$ is used as an abbreviation for "Water Resources Data" in the REVISED RECORDS paragraph to refer to State annual basic-data reports published before 1975.

WSP is used as an abbreviation for "Water-Supply Paper" in references to previously published reports.

DOWNSTREAM ORDER AND STATION NUMBER

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two main-stream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is situated with respect to the stream to which it is immediately tributary is indicated by an indention in a list of stations in the front of the report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

. As an added means of identification, each hydrologic station has been assigned a station number. These are in the same downstream order used in this report. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The station numbering system is not used at miscellaneous sites where only random water-quality samples or discharge measurements are taken. The complete number for each station consists of eight digits, such as 08123800. The first two digits, 08 or 07, identify the river basin as previously published in the series of water-supply papers on the Surface Water Supply of the United States. The digits 07 indicate the Lower Mississippi River basin, and the digits 08 indicate the Western Gulf of Mexico Basins. The remaining six digits of the station number are sequential in downstream order.

All records for a drainage basin that extends across State boundaries can be arranged in downstream order by assembling the pages from the appropriate State reports by station number.

SPECIAL NETWORKS AND PROGRAMS

Hydrologic bench-mark station is one that provides hydrologic data for a basin in which the hydrologic regimen will likely be governed solely by natural conditions. Data collected at a bench-mark station may be used to separate effects of natural from manmade changes in other basins that have been developed and in which the physiography, climate, and geology are similar to those in the undeveloped bench-mark basin.

National stream-quality accounting network (NASQAN) is a data collection network designed by the Geological Survey to meet many of the information demands of agencies or groups involved in national or regional water-quality planning and management. Both accounting and broad-scale monitoring objectives have been incorporated into the network design. Areal configuration of the network is based on river-basin accounting units (identified by 8-digit hydrologic-unit numbers) designated by the Office of Water Data Coordination in consultation with the Water Resources Council. Primary objectives of the network are (1) to depict areal variability of streamflow and water-quality conditions nationwide on a year-by-year basis and (2) to detect and assess long-term changes in streamflow and stream quality.

Pesticide program is a network of regularly sampled water-quality stations where samples are collected to determine the concentration and distribution of pesticides in streams where potential contamination could result from the application of the commonly used insecticides and herbicides. Operation of the network is a Federal interagency activity.

Radiochemical program is a network of regularly sampled gaging stations where additional samples are collected monthly or twice a year (at high and low flow) to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

EXPLANATION OF STAGE AND WATER-DISCHARGE RECORDS

Collection and computation of data

The basic data collected at gaging stations consist of (1) records of stage; (2) measurements of discharge of streams and canals; and (3) stage, surface area, and contents of lakes and reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records, and other information are used to supplement basic data in determining the daily flow or volume of water in storage. Records of stage are obtained from direct readings on a nonrecording gage or from a water-stage recorder that gives either a continuous graph of the fluctuations or a tape punched at 5-, 15-, 30-, or 60minute intervals. Measurements of discharge are made with a current meter, using the general methods adopted by the Geological Survey on the basis of experience in stream gaging since 1888. These methods are described in standard textbooks, in Water-Supply Paper 888, and in U.S. Geological Survey Techniques of Water Resources Investigations, book 3, chapter A6. Surface areas of lakes or reservoirs are determined from instrument surveys using standard methods. The configuration of the reservoir bottom is often determined by sounding at many points.

For stream-gaging stations, rating tables giving the discharge for any stage are prepared from stage-discharge relation curves. If extensions to the rating curves are necessary to express discharge greater than measured, they are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening mesurements, computation of flow over dams or weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables; monthly and yearly mean discharges are computed from the daily values. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is computed by the shifting-control method, in which correction factors (based on individual discharge measurements and notes by the hydrologists or observers) are used in applying the gage heights to the rating tables.

At some stream-gaging stations, the stage-discharge relation is affected by backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations, the stage-discharge relation is affected by changing stage; at these stations, the rate of change in stage is used as a factor in computing discharge.

For a lake- or reservoir-gaging station, a capacity table giving the contents for any stage is prepared from a stage-area relation curve defined by surveys. The application of the stage to the capacity table gives the contents, from which the daily, monthly, or yearly changes in contents are computed.

If the stage-capacity curve is subject to changes because of deposition of sediment in the reservoir, periodic resurveys of the reservoir are necessary to define new stage-capacity curves. During the period between reservoir surveys, the computed contents may be increasingly in error due to the gradual accumulation of sediment. However, the change in contents is not affected to the same extent.

At some gaging stations, there are periods when no gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. For such periods, the daily discharges are estimated on the basis of recorded range in stage, adjoining good record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Daily contents may be estimated on the basis of operator's log, adjoining good record, inflow-outflow studies, and other information.

The data in this report generally comprise a description of the station and tabulations of daily and monthly values. For gaging stations on streams or canals, a table showing the daily, monthly, and yearly discharge is given. For a gaging station on a reservoir, a table showing the daily contents is given. Tables of daily or maximum and minimum daily gage heights are included for some gaging stations. Records are published for the water year, which begins on October 1 and ends on September 30. A calendar for the current water year is shown on the inside of the front cover to facilitate finding the day of the week for any date.

The description of the gaging stations, except those partial-record stations published in tabular form in the back of the report, gives the location, drainage area, period of record, type and history of gages, average discharge, extremes of discharge or contents, general remarks, and notations of revisions of previously published records. The location of the gaging stations and the drainage areas are obtained from the most accurate maps available. River mileage, given under "LOCATION" for some stations, is that determined and used by the Corps of Engineers or other agencies (U.S. Water Resources Council, 1968). Periods for which there are published records for the present station or for stations generally equivalent to the present one are given under "PERIOD OF RECORD."

Previously published streamflow records for some stations have been found to be in error on the basis of data or information later obtained. Revisions of such records are usually published along with the current records in one of the annual or compilation reports. In order to make it easier to find such revised records, a paragraph headed "REVISED RECORDS" has been added to the description of all stations for which revised records have been published. Listed therein are all the reports in which revisions have been published, each followed by the water years for which figures are revised in that report. In listing the water years only one number is given; for instance, 1965 stands for the water year October 1, 1964, to September 30, 1965. If no daily, monthly, or annual figures of discharge are affected by the revision, the fact is brought out by notations after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; "(P)" that only peak discharges were revised. the drainage area has been revised, the report in which the revised figure was first published is given. It should-be noted that for all stations for which cubic feet per second per square mile and runoff in inches are published, a revision of the drainage area necessitates corresponding revision of all figures based on the drainage area. figures of cubic feet per second per square mile and runoff in inches resulting from a revision of the drainage area only are usually not published in the annual series of reports.

The type of gage currently in use, the datum of the present gage referred to National Geodetic Vertical Datum, and a condenced history of the types, locations, and datums of previous gages used during the period of record are given under "GAGE." National Geodetic Vertical Datum is explained in "DEFINITIONS OF TERMS" on page 9.

Information pertaining to the accuracy of the discharge records and to conditions which affect the natural flow at the gaging station is given under "REMARKS." For reservoir stations, information on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir is given under "REMARKS."

The average discharge for the number of years indicated is given under "AVERAGE DISCHARGE"; it is not given for stations having fewer than 5 complete years of record or for stations where changes in water development during the period of record cause the statistic to have little significance. Under "EXTREMES" are given first, the extremes for the period of record, second, information available outside the period of record, and last, those for the current year. Unless otherwise qualified, the maximum discharge (or contents) is the instantaneous maximum corresponding to the maximum stage obtained by use of a water-stage recorder (graphic or digital), a crest-stage gage, or a nonrecording gage read at the time of the crest. If the maximum gage height did not occur on the same day as the maximum discharge, it is given separately. Similarly, the minimum is the instantaneous minimum unless otherwise qualified. For some stations additional peak discharges are listed under EXTREMES FOR THE CURRENT YEAR; if they are all independent peaks above a selected base. The time of occurrence of the peaks and corresponding gage heights are also listed. The base discharge, which is given in the table heading, is selected so that an average of about three peaks a year will be presented. Peak discharges are not published for any canals, ditches, drains, or for any stream for which the peaks are subject to substantial control by man. Time of day is expressed in 24-hour local standard time; for example, 12:30 a.m. is 0030, 1:30 p.m. is 1330. The minimums for these stations are published in separate paragraph following the table of peaks.

The daily table for stream-gaging stations gives the mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily mean discharges, respectively, for the month. Discharge for the month also may be expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN"), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are generally omitted if there is extensive regulation or diversion, if the drainage area includes large noncontributing areas, or if the average annual rainfall

over the drainage basin is usually less than 20 inches. In the yearly summary below the monthly summary, the figures shown are the significant statistics for the calendar and water years.

Footnotes to the table of daily discharge are introduced by the word "NOTE." Footnotes are used to indicate periods for which the discharge is computed or estimated by special methods because of no gage-height record, backwater from various sources, or other unusual conditions. Periods of no gage-height record are indicated if the period is continuous for a month or more or includes the maximum discharge for the year. Periods of backwater from an unusual source, of indefinite stage-relation, or of any other unusual condition at the gage site are indicated only if they are a month or more in length and the accuracy of the records is affected. Days on which the stage-discharge relation is affected by ice are not indicated. The methods used in computing discharge for various unusual conditions have been explained in preceding paragraphs.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables in the back of the report. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual, maximum stage and (or) discharge at crest-stage stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. Occasionally, a series of discharge measurements are made and samples collected within a short time period to investigate the seepage and (or) pollutant gains or losses along a reach of a stream or to determine the low-flow characteristics of an area. Such measurements and analyses are also given in special tables following the tables of partial-record stations.

Accuracy of field data and computed results

The accuracy of discharge data depends primarily on (1) the stability of the stage-discharge relation, or if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of observations of stage, measurements of discharge, and interpretation of records.

The station description under "REMARKS" states the degree of accuracy of the records. "Excellent" means that about 95 percent of the daily discharges are within 5 percent; "good", within 10 percent; and "fair" within 15 percent. "Poor" means that daily discharges have less than "fair" accuracy.

Figures of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 cfs; to tenths between 1.0 and 10 cfs; to whole numbers between 10 and

1,000 cfs; and to 3 significant figures above 1,000 cfs. The number of significant figures used is based solely on the magnitude of the figure. The same rounding rules apply to discharge figures listed for partial-record stations.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff because of the effects of diversion, municipal and industrial effluents consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, values for cubic feet per second per square mile and runoff in inches are not published unless satisfactory adjustments can be made. Adjustments for evaporation from a reservoir are not included in the published changes in reservoir contents, unless it is so stated.

Other data available

Information of a more detailed nature than that published for most of the gaging stations, such as observations of water temperatures, discharge measurements, gage-height records, and rating tables, is on file in the Texas District Office in Austin. Most gaging-station records are available in computer-usable form, and many statistical analyses have been made.

Records of discharge collected by agencies other than the Geological Survey

The International Boundary and Water Commission, United States and Mexico, operates all gaging stations on the Rio Grande and near the mouth of its principal tributaries at and below El Paso, Texas. Records collected at these stations are published in annual bulletins by the Commission and may be obtained from the International Boundary and Water Commission, United States Section, P. O. Box 20003, El Paso, Texas 79998.

EXPLANATION OF SURFACE-WATER QUALITY RECORDS

Collection and examination of data

Surface-water samples for analyses usually are collected at or near gaging stations. The quality-of-water records are given immediately following the discharge records at these stations.

The descriptive heading for water-quality records gives the period of record for all water-quality data; the period of daily record for parameters that are measured on a daily basis (specific conductance, pH, dissolved oxygen, water temperature, sediment discharge, etc.); extremes for the period of daily record; extremes for the current year; and general remarks.

Water analysis

Most methods for collecting and analyzing water samples are described in U.S. Geological Survey Techniques of Water Resources Investigations listed below.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating loads.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between the reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is probably the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and biocarbonate.

At stream-gaging stations where daily samples are obtained, tables are included to show monthly and annual weighted averages of specific conductance; weighted average concentrations of dissolved solids, chloride, sulfate, hardness; and loads of dissolved solids, chloride, and sulfate. The weighted averages have been computed by using the daily records of specific conductance and developing regression relationships between each water-quality parameter and specific conductance.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean value for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the district office.

At some stations where continuous or daily records of specific conductance are obtained, concentrations of selected chemical constituents have been computed from regression relationships between specific conductance and the chemical constituents. The weighted average, monthly and annual concentrations and/or loads of these constituents may be published in this report. For each station where this has been done, a statement so indicating has been included in the remarks section of the station description.

Water temperature

Water temperatures are measured at most of the water-quality stations. Water temperatures are also taken at time of discharge measurements at gaging stations. At sites at which daily samples are taken, the water temperature is taken about the same time each day. Large streams have a small diurnal temperature change; but small, shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams and reservoirs may be affected by wasteheat discharges.

At stations where digital recording thermographs are present, the records published consist of maximum, minimum, and mean temperatures for each day and the monthly averages.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross section.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected twice daily or, in some instances, hourly. The published values of sediment discharges for days of rapidly changing flow or concentrations were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days in which the published value of sediment discharge differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water-sediment discharge relations, sediment concentrations observed immediately before and after periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in estimating long-term sediment-discharge characteristics of the stream.

In addition to the records of the quantities of suspended sediment, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included.

PUBLICATIONS OF TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

Most methods used by the U.S. Geological Survey have been publisted in the series on techniques describing procedures for planning and executing specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) is on surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. The reports listed below are for sale by the U.S. Geological Survey, Branch of Distribution, 1200 South Eads Street, Arlington, VA 22202 (authorized agent of the Superintendent of Documents, Government Printing Office).

- NOTE: When ordering any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations".
- 1-D1. Water temperature-influential factors, field measurements, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS-TWRI Book 1, Chapter D1. 1975. 65 p.
- 3-Al. General field and office procedures for indirect measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter Al. 1967. 30 p.
- 3-A2. Measurement of peak discharge by the slope-area methods, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967.
- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 p.
- 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 4 p.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 p.
- 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 p.
- 3-A7. Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 p.
- 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 p.
- 3-All. Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter All. 1969. 22 p.
- 3-C1. Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 p.
- 3-C2. Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 p.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 p.

- 4-Al. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter Al. 1968. 39 p.
- 4-A2. Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 p.
- 4-B1. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 p.
- 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 p.
- 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 p.
- 5-A1. Methods for determination of inorganic substances in water and fluvial sediments, by M. W. Skougstad and others: USGS--TWRI Book 5, Chapter A1. 1979. 626 p.
- 5-A2. Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 p.
- 5-A3. Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown: USGS--TWRI Book 5, Chapter A3. 1972. 40 p.
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS--TWRI Book 5, Chapter A4. 1977. 332 p.
- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS-TWRI Book 5, Chapter A5. 1977. 95 p.
- 5-C1. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58 p.
- 8-B2. Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 p.

08118000 LAKE J. B. THOMAS NEAR VINCENT, TX

LOCATION.--Lat 32°35'09", long 101°12'18", Borden County, Hydrologic Unit 12080002, at Big Spring pump station on south side of lake, 4.0 mi (6.4 km) upstream from dam on Colorado River, 7.3 mi (11.7 km) north of Vincent, 12.5 mi (20.1 km) west of Ira, and at mile 841.0 (1,353.2 km).

DRAINAGE AREA.--3,524 mi² (9,127 km²), of which 2,590 mi² (6,710 km²) probably is noncontributing. Drainage area includes 426 mi² (1,103 km²) above Bull Creek diversion dam, of which 32 mi² (83 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1953 to current year.

GAGE.--Water-stage recorder and nonrecording gage read once daily. Datum of gage is National Geodetic Vertical Datum of 1929. Nov. 4, 1953, to Feb. 7, 1955, Colorado River Municipal Water District nonrecording gage located 4.0 mi (6.4 km) downstream at same datum.

REMARKS.--The lake is formed by a rolled earthfill dam, 14,500 ft (4,420 m) long. Storage began in July 1952 and the dam was completed in September 1952. There was no appreciable storage prior to July 1953. The capacity curve is based on surveys made in 1948 and 1950. There are two uncontrolled emergency spillways, both cut through natural ground and located as follows: The first is a 500-foot (150 m) wide cut located at the left end of dam, and the second cut is 1,600 ft (488 m) wide located at the right end of dam. These spillways are designed to discharge 161,000 ft 3/s (4,560 m²/s) at an elevation of 2,275.0 ft (693.42 m). An uncontrolled rectangular concrete drop inlet, 38.0 by 53.0 ft (11.6 by 16.2 m) at the crest, discharges into two 10.0-foot (3.0 m) concrete conduits. In addition, there is an outlet that can release water through a 24-inch (610 mm) gate into a 30-inch (762 mm) concrete pipe. The dam was built by the Colorado River Municipal Water District to impound water for municipal and industrial supply for the cities of Big Spring, Odessa, and Snyder. A diversion dam on Bull Creek diverts water through a 13,000-foot-long (3,960 m) gravity canal into Lake J. B. Thomas. These diversions began in November 1953. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	(feet)	(acre-feet)
Top of dam	2,280.0	-
Crest of right spillway (south)	2,267.0	283,600
Crest of left spillway (north)	2,264.0	255,000
Crest of drop inlet (top of conservation pool)	2,258.0	203,600
Lowest gated outlet (invert)	2,200.0	1,300

COOPERATION.--Area and capacity curves and record of diversions were furnished by the Colorado Kiver Municipal Water District. Daily elevation record was furnished by the Colorado Kiver Municipal Water District and reviewed by the Geological Survey.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 218,600 acre-ft (270 hm 3) Sept. 8, 1962, elevation, 2,259.85 ft (688.802 m); minimum since first appreciable storage, 4,960 acre-ft (6.12 hm 3) May 28, 1971, elevation, 2,206.43 ft (672.520 m).

EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 64,660 acre-ft (79.7 hm³) Sept. 30, elevation, 2,233.05 ft (680.634 m); minimum, 11,710 acre-ft (14.4 hm³) May 14, elevation, 2,212.06 ft (674.236 m).

Capacity table (elevation, in feet, and total contents, in acre-feet)

 2,212.0
 11,620
 2,224.0
 36,480

 2,218.0
 22,300
 2,234.0
 68,150

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 INSTANTANEOUS OBSERVATIONS AT 0800

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	21410	19030	17640	17020	16230	15510	14030	12510	28630	30160	27010	24340
2	21350	18960	17610	16990	16200	15470	13970	12420	28490	30110	26870	24250
3	21200	18880	17570	16950	16200	15440	13930	12390	28440	29910	26780	25640
4	21080	18820	17530	16950	16200	15400	13900	12350	28300	29870	26640	25800
5	20960	18730	17500	16910	16160	15300	13830	12290	28120	29820	26420	25710
6 7 8 9	20880 20760 20680 20590 20470	18630 18650 18730 18650 18610	17430 17390 17350 17320 17280	16910 16880 16840 16800 16770	16160 16130 16130 16090 16090	15260 15230 15200 15160 15160	13800 13770 13770 13770 13740	12250 12230 12230 12110 12050	27930 27750 27560 27430 27470	29770 29670 29430 29380 29310	26260 26260 26150 26090 25970	25660 25570 25750 25710 25660
11	20450	18530	17240	16730	16130	15140	13740	11990	28210	29190	25970	25750
12	20350	18490	17240	16690	16090	15140	13740	11930	28490	29090	26020	27240
13	20270	18460	17320	16660	16060	15040	13700	11860	28440	28900	25970	27430
14	20190	18420	17320	16620	16010	14950	13350	11710	28950	28860	25930	27330
15	20120	18340	17320	16580	16010	14870	13280	13570	28810	28670	25840	27290
16	20040	18300	17280	16550	15970	14780	13180	25310	28770	28530	25750	27240
17	20000	18270	17240	16510	15960	14750	13120	28490	28580	28490	25660	27100
18	19960	18230	17240	16510	15960	14700	13060	28560	28490	28300	25570	27060
19	19920	18190	17210	16480	15920	14700	13010	28580	28440	28260	25490	26960
20	19880	18160	17170	16480	15850	14650	12970	28560	28300	27980	25440	26870
21	19810	18160	17130	16440	15780	14570	12940	28490	28160	27930	25350	26780
22	19690	18070	17060	16440	15780	14520	12910	29240	28160	27840	25260	26710
23	19610	17970	17060	16410	15750	14450	12910	29190	30830	27800	25170	26850
24	19500	17880	17240	16410	15710	14370	12910	29190	30970	27750	25090	27150
25	19400	17830	17210	16370	15680	14320	12870	29090	30880	27700	25000	27100
26 27 28 29 30 31	19310 19270 19230 19150 19110 19070	17790 17790 17750 17720 17680	17170 17130 17100 17100 17060 17060	16340 16340 16300 16300 16270	15650 15610 15580 15540	14290 14290 14260 14230 14190	12840 12750 12630 12570 12540	29020 28950 28860 28810 28720	30830 30730 30640 30590 30540	27610 27520 27380 27290 27190	24910 24820 24690 24640 24550	28670 33570 39470 56310 64660
MAX MIN (†) (‡) (††)	21410 19070 2216.38 -2460 871	19030 17680 2215.64 -1390 702	17640 17060 2215.30 -620 727	16230 17020 16230 2214.84 -830 535	16230 15540 2214.44 -690 552	14130 15510 14130 2213.60 -1410 553	14030 12540 2212.60 -1590 612	28720 29240 11710 2220.90 +16180 745	30970 27430 2221.60 +1820 964	27100 30160 27100 2220.20 -3440 944	24460 27010 24460 2219.02 -2640 740	64660 24250 2233.05 +40200 914

CAL YR 1979 MAX 26550 MIN 7750 ‡ 5510 †† 8150 WTR YR 1980 MAX 64660 MIN 11710 ‡ 43130 †† 8860

‡ Change in contents, in acre-feet.

[†] Elevation, in feet, at end of month.

COLORADO RIVER BASIN

08118000 LAKE J. B. THOMAS NEAR VINCENT, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1969 to current year.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO
OCT 30	1500	666	20.0	160	0	46	12	78	2.6

DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
OCT 30	8.7	240	0	66	54	.8	6.7	391

08119500 COLORADO RIVER NEAR IRA. TX

LOCATION.--Lat 32°32'18", long 101°03'12", Scurry County, Hydrologic Unit 12080002, on right bank 530 ft (162 m) downstream from bridge on State Highway 350, 3.8 mi (6.1 km) downstream from Bluff Creek, 4 mi (6 km) upstream from Willow Creek, 4.5 mi (7.2 km) southwest of Ira, and at mile 826.3 (1,329.5 km).

DRAINAGE AREA.--3,617 mi^2 (9,368 km^2), of which 2,590 mi^2 (6,710 km^2) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1947 to September 1952 (monthly records only 1950-52), October 1958 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 2,134.15 ft (650.489 m) National Geodetic Vertical Datum of 1929. Oct. 1-30, 1947, nonrecording gage at site 75 ft (23 m) upstream at same datum.

REMARKS.--Water-discharge records good. Since July 1952, flow has largely been regulated by Lake J. B. Thomas (station 08118000) 11 mi (17.7 km) upstream.

AVERAGE DISCHARGE.--5 years (water years 1948-52) prior to completion of Colorado River Dam, 50.5 ft 3 /s (1.430 m 3 /s), 36,590 acre-ft/yr (45.1 hm 3 /yr); 22 years (water years 1959-80) partially regulated, 10.6 ft 3 /s (0.300 m 3 /s), 7,680 acre-ft/yr (9.47 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 20,500 ft 3 /s (581 m 3 /s) July 6, 1948, gage height, 21.35 ft (6.507 m), from rating curve extended above 9,600 ft 3 /s (272 m 3 /s) by slope-conveyance method; maximum gage height, 22.84 ft (6.962 m) May 15, 1980 (from shift in rating); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 16, 1913, gage height, 32 ft (9.8 m), was the greatest since at least that date, from information by local resident. Flood in May 1947 reached a stage of 25.1 ft (7.65 m), from floodmark at site of former bridge 269 ft (82 m) upstream from gage.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 7,630 ft³/s (216 m³/s) May 15 at 1730 hours, gage height, 22.84 ft (6.962 m); no flow at times.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL. AUG SEP .09 .00 .00 .06 .13 .14 1.9 .02 .00 .00 .00 .00 .08 .11 .07 2.2 .01 .00 .12 .13 .01 .08 .18 .16 .04 1.9 .00 4 .00 .08 .03 .02 .00 .00 .08 .09 .19 .14 .14 .06 1.4 .01 .00 .01 .07 1.2 .00 6 .00 .00 .08 .09 .17 .14 .14 .01 .00 .00 .88 .06 .07 .24 .14 1.1 .01 .00 .06 .06 8.8 8 .00 .06 .46 .08 .00 .06 .07 .01 10 .00 .02 .06 .07 .51 .16 .13 .06 1.7 .01 .00 8.6 .01 .07 .55 .37 .32 .18 .15 .01 11 .00 .79 28 .00 .00 1.5 .00 .01 .03 .18 .00 .00 16 .00 13 .00 .01 2.6 .14 .00 3.4 .00 .54 2.6 .01 .00 2900 15 .00 .02 1.4 .07 .42 -14 -10 1.3 -00 -00 .22 .07 .17 .83 16 .00 .02 .82 .28 .10 938 .00 .31 .12 .00 .03 .48 .06 .27 .57 .00 .10 .06 20 18 .00 .03 .48 .07 .31 .00 .02 .02 .06 13 .00 20 .00 9.2 .15 .08 .27 .13 .07 9.4 .51 -00 .00 .00 9.9 7.1 6.8 5.5 21 .00 .15 .07 .15 .09 .07 5.3 .48 .00 .00 .00 22 1.5 .25 .13 .07 .00 .00 .00 .67 .07 23 .00 .08 .68 .00 .00 68 .42 .00 1.7 25 .00 .08 .28 -30 .14 .15 -09 4.0 .31 -00 -00 .13 .15 26 .00 .06 .29 .17 .17 .08 3.3 3.0 2.5 2.2 .12 .00 161 132 .00 .00 .04 .35 .08 .07 .00 .00 28 .00 .06 .29 .13 .07 .06 .00 .00 1660 .00 .10 .25 .07 .04 .00 .00 30 .06 .18 .13 .19 .04 2.0 .03 00 00 46 31 .01 .17 .17 .00 .08 1.9 .00 TOTAL 1.11 11.49 23.98 5.80 7.81 4.81 3.30 3963.30 86.82 .46 3210.30 .004 9.2 .77 .27 128 MEAN .19 .16 .11 2.89 107 1.1 1.5 MAX .57 .35 .25 2900 28 .02 1660 .00 .06 MIN .13 .09 .04 .00 .03 .00 .00 .00 6.5 7860 172 .9 6370

CAL YR 1979 TOTAL WTR YR 1980 TOTAL 809.98 MEAN 2.22 179 MTN AC-FT 1610 14520 MEAN 20.0 2900 AC-FT 7319.29 MAX MIN .00

08119500 COLORADO RIVER NEAR IRA, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF DAILY RECORD. -- Chemical analyses: November 1958 to September 1970, November 1974 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: November 1958 to September 1970, November 1974 to current year. WATER TEMPERATURES: November 1958 to September 1970, November 1974 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 87,800 micromhos May 8, 1960; minimum daily, 211 micromhos Sept. 28, 1980
WINTER TEMPERATURES: Maximum daily, 36.0°C July 23, 24, 1969, June 12, 1978; minimum daily, 0.0°C on many days
during winter months.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum daily, 60,500 micromhos May 7; minimum daily, 211 micromhos Sept. 28. WATER TEMPERATURES: Maximum daily, 34.0°C Aug. 18; minimum daily, 0.0°C on several days during winter months.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
NOV									
09	0845	.04	35600	10.5	2700	2600	670	250	7400
DEC			20100						
19 JAN	1030	.15	20400	3.0	1400	1300	330	140	4600
24	1126	.51	21700	3.0	1500	1300	350	140	4600
FEB		100	9	4.4	-22.22	725.0	77.4		2000
29 MAR	0800	.25	31400	8.0	2000	1800	440	210	6900
06	1340	.11	33900	18.0	2100	2000	480	220	6200
APR		100	- 22.12		0.212		120		
16 MAY	1530	.07	50900	30.0	3600	3500	820	380	12000
15	1840	7480	367	11.0	130	27	43	4.5	27
16	1010	624	777	12.5	170	79	53	9.0	88
SEP	1000	.02	13400	28.0		200	260	69	2700
04	1030	.02	13400	28.0	930	880	260	69	2700
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
NOV									
09	62	33	110	0	2000	12000	.3	2.5	22400
DEC 19	53	15	170	0	1200	6900	.3	3.7	13300
JAN 24	53	16	190	0	1300	6800	.2	1.6	13300
FEB 29	68	22	160	0	2000	11000	.5	1.8	20700
MAR 06	59	24	150	0	460	11000	.6	2.0	18500
APR	39	24	130	U	460	11000	.0	2.0	18300
16 MAY	87	34	130	0	3500	18000	.6	1.8	34800
15	1.0	4.4	120	0	20	50	.4	8.1	217
16	2.9	5.5	110	0	45	160	.5	7.4	423
SEP 04	38	14	70	0	790	4200	.3	4.5	8070

COLORADO RIVER BASIN 33 08119500 COLORADO RIVER NEAR IRA, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	1.11	41500	27800	83	14600	44	2600	7.7	*
NOV.	1979	11.49	29800	19500	604	10100	313	1900	60	*
DEC.	1979	23.98	12500	7990	517	4100	264	850	55	*
JAN.	1980	5,80	22800	14700	230	7600	119	1500	24	*
FEB.	1980	7.81	28300	18500	390	9600	201	1900	39	*
MAR.	1980	4.81	38000	25300	329	13300	172	2400	31	*
APR.	1980	3.30	47600	32400	289	17200	153	2900	26	*
MAY	1980	3963.30	1120	694	7430	350	3730	79	849	94
JUNE	1980	86.82	11800	7480	1750	3800	893	810	190	*
JULY	1980	0.11	29800	19500	5.8	10100	3.0	1900	0.6	*
AUG.	1980	0.46	11800	7410	9.2	3800	4.7	820	1.0	*
SEPT	1980	3210.30	757	467	4050	230	2030	54	471	65
TOTAL		7319.29	**	**	15700	**	7930	**	1760	**
WTD. AVG.		20	1270	794	**	400	**	89	**	100

	SI	PECIFIC CO	NDUCTANCE	(MICROMH		25 DEG. C		YEAR OCTO	BER 1979	TO SEPTEM	BER 1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1			36600	27200	27400	35000	41100	60300	25600	28700		
2			36300	27000	28600	36400	41000	58300	26100	28900		10200
			36700	28500	27800	31400	41700	56000	25500	29300		12300
3 4			37200	28700	27900	32600	42300	54400	25700	29500		13500
5	272	707	37900	29000	28900	35600	42800	55200	25800	29700		13300
6		444	38700	28900	28900	34500	44500	58600	27000	29900		
7		27500	38000	31300	29200	35100	44400	60500	28400	30300		10500
8		34100	39400	29600	28700	37800	41800	56800	12500	30600		11200
9		35200	37900	30900	29700	35700	46500	56800	15200	30800		9560
10		35800	38900	30700	28700	35900	47100	50000	20600	31300		2470
11	+	37000	35500	31800	25300	35900	46400	52600	6500			5300
12		38200	6460	33600	25400	37200	52000		5040			7500
13		38900	7500	30800	25500	38100	49200		8960			9110
14		40000	8920	33300	25400	37500	45400		9610			11000
15		41600	16000	33100	25900	38700	48500	650	11100			13000
16	144	42800	18800	34100	27500	37600	49600	777	13900	440	12500	14100
17		43700	21200	33500	27800	37900	54100	7650	16200		8000	15100
18		44700	22200	33700	27900	38500	45600	11600	18400		18700	15500
19		46000	20500	33300	27800	38700	44700	14500	20400		21300	15300
20		30000	22200	34300	28900	38500	50500	16400	22400	7-7		
21		23300	23100	33600	30900	39200	53800	15900	18500			
22		25000	23600	15800	30400	40500	55500	17200	17500			19200
23		26500	17500	19500	31600	39800	57500	18400	15900	244		4470
24		27800	25300	22100	30500	37800	45100	19800	16100			1570
25		29000	26300	22700	30900	40500	54300	20900	19300			3580
26	***	30300	25900	23300	31300	42000	58000	21600	23000			1090
27		31400	26500	24500	32500	40500	56600	22200	24800			673
28		32800	25600	24700	32100	40100	57600	23000	26900			211
29		35500	26000	26800	32400	40800	56600	23800	27600			480
30	41500	38400	26500	25800		41000	57000	24300	28500			3250
31	37000		27300	28500		40000		25400				
MEAN	39300	34800	26800	28700	28800	37800	49000	32300	19400	29900	15100	8590

COLORADO RIVER BASIN
08119500 COLORADO RIVER NEAR IRA, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

					01	NCE-DAILY						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1			1.0	4.0	.5	.0	6.5	16.0	22.5	26.0	224	
2			.0	5.0	.0	.0	15.5	15.5	22.5	26.0		24.0
3			.0	11.0	10.0	.0	9.0	15.5	23.0	24.0		27.0
4			2.0	11.5	4.0	4.0	7.5	23.0	22.5	25.0		28.0
5			3.0	11.0	3.0	5.5	22.0	12.5	23.0	25.0		27.5
6			1.0	13.0	2.5	4.0	10.0	20.0	22.0	25.0		
7		14.0	.5	.0	9.0	10.0	16.5	16.0	24.0	25.5		
8	1444	13.0	3.0	1.0	2.0	8.0	5.0	20.0	23.0	25.0		23.0
9	***	10.5	6.0	10.0	.0	8.0	6.0	30.0	20.0	26.0		24.0
10		6.0	15.0	8.5	.0	14.0	8.0	17.0	22.0	25.0		23.0
11		4.0	10.5	5.5	2.5	11.0	12.0	17.0	20.0	25.0		22.5
12		6.5	1.0	5.5	5.0	14.0	7.5		22.5			22.0
13		2.0	3.5	5.0	6.0	6.0	6.0		23.0			22.0
14		2.5	3.0	8.5	10.0	4.5	14.0		22.5			21.5
15		2.0	4.0	8.0	9.0	8.0	15.0	17.0	22.0			22.0
16		11.5	3.0	12.0	2.0	14.0	7.0	17.0	22.5			22.0
17		5.0	.0	11.0	.5	6.0	24.0	19.0	23.0		23.0	17.0
18		10.5	.0	8.5	1.5	1.0	21.0	19.0	23.0		34.0	18.5
19		11.0	3.0	13.0	8.0	9.5	9.0	18.0	25.0		23.0	21.5
20		17.0	4.0	5.0	7.0	7.0	12.0	19.5	23.5			
21		7.0	7.0	5.0	6.5	5.0	12.5	20.0	24.0			
22		1.0	9.0	2.5	9.0	7.0	14.0	18.5	23.0			
23		7.0	9.0	4.0	11.0	14.0	26.5	20.0	24.0			19.0
24		5.5	9.0	2.0	6.0	4.0	16.0	29.0	23.5			20.0
25		3.0	9.0	4.0	18.0	7.5	12.0	21.0	25.0			24.0
26	222	2.0	10.0	3.0	9.0	9.0	9.5	21.5	25.0			19.0
27		6.0	8.0	.0	4.0	14.0	9.0	22.0	33.5			17.0
28		2.0	8.0	3.0	8.0	8.0	13.5	21.0	25.0			15.0
29	1.22	1.0	5.0	.0	8.0	20.0	13.0	23.0	26.0			16.0
30	16.0	.0	3.0	3.5		7.5	16.0	23.5	24.0			17.0
31	12.0		11.0	.0		6.5		23.0				
MEAN	14.0	6.5	5.0	6.0	5.5	7.5	12.5	20.0	23.5	25.0	26.5	21.5

08120500 DEEP CREEK NEAR DUNN, TX

LOCATION.--Lat 32°34'25", long 100°54'27", Scurry County, Hydrologic Unit 12080002, at center of downstream side of bridge on Farm Road 1606, 1.5 mi (2.4 km) northwest of Dunn, 2.7 mi (4.3 km) upstream from Sulphur Draw, and 8.6 mi (13.8 km) upstream from mouth.

DRAINAGE AREA.--198 mi² (513 km²), of which 10 mi² (25.9 km²) probably is noncontributing.

PERIOD OF RECORD. -- April 1953 to current year.

REVISED RECORDS .-- WSP 1922: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 2,172.17 ft (662.077 m) National Geodetic Vertical Datum of 1929. Prior to Apr. 21, 1955, nonrecording gage at same site and datum.

REMARKS .-- Records good.

AVERAGE DISCHARGE.--27 years (water years 1954-80), 12.3 ft 3 /s (0.348 m 3 /s), 0.89 in/yr (23 mm/yr), 8,910 acreft/yr (11.0 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 20,700 ft 3 /s (586 m 3 /s) Aug. 14, 1972, gage height, 31.28 ft (9.534 m), from floodmarks, from rating curve extended above 12,000 ft 3 /s (340 m 3 /s) by velociy-area study; no flow for many days each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge since at least 1881, $36,400 \text{ ft}^3/\text{s}$ (1,030 m³/s) June 19, 1939, by slope-area measurement at site 8.0 mi (12.9 km) upstream from gage. Flood in 1892 reached about same stage as that of June 19, 1939, from information by local residents.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 850 ft 3/s (24.1 m 3/s) and maximum (*):

Date		Time	Disch	arge	Gage	height
			(ft^3/s)		(ft)	
May	15	1530	*17,200	487	a30.25	9.220
Sept.	9	0815	1,950	55.2	16.52	5.035
Sept.		1930	4.380	124	a23.37	7.123

a From floodmark.

Minimum discharge, no flow for many days.

CAL YR 1979 TOTAL 2649.12 WTR YR 1980 TOTAL 12767.67

MEAN 7.26 MEAN 34.9

		DISC	HARGE, IN	CUBIC FE		SECOND, WATE MEAN VALUES	ER YEAR	OCTOBER 1	979 TO SEP	TEMBER 198	0	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	.02 .01 .00 .31 .55	2.1 2.2 2.2 2.3 2.3	1.5 1.5 1.6 1.4	1.5 1.6 1.6 1.5	1.4 .83 .57 .85	.82 .82 .76 .88	.02 .02 .01 .01	.50 .77 1.0 .80	.05 .05 .05 .03	.00 .00 .00	.00 .00 .00 .00
6 7 8 9	.00 .00 .00 .00	.29 .44 1.4 1.0 .50	2.3 2.5 2.9 2.6 2.6	1.5 1.7 1.7 1.8 1.8	1.4 1.6 2.9 2.9 2.1	.76 .37 .21 .23	1.1 1.1 1.0 1.1 1.2	.13 .18 .06 .03	.83 .27 1.7 1.1	.02 .01 .01 .01	.00 .00 .00	.00 1.4 .15 687 17
11 12 13 14 15	.00 .00 .00	.46 .80 .83 .88	2.6 4.3 7.4 13 3.7	1.9 1.9 2.0 2.1 2.0	1.9 1.5 1.4 1.4	.48 .40 .38 .21	1.0 .80 .94 .97	.01 .01 .01 .01	27 2.6 .86 .62 .15	.00 .00 .00 .00	.00 .00 .00	4.7 4.0 3.8 3.6 3.6
16 17 18 19 20	.00 .00 .00	.55 .33 1.5 1.6 3.4	2.0 1.5 1.6 1.6	2.0 2.0 2.0 2.1 2.1	1.3 .78 1.2 1.4 1.3	.08 .11 .26 .82 .96	.91 .67 .65 .68	656 18 6.0 3.9 4.3	.08 .04 .02 .01	.00 .00 .00	.00 .00 .00	3.4 3.4 3.4 3.4
21 22 23 24 25	.00 .00 .00	5.2 1.1 .72 .92 1.1	1.5 1.6 1.7 2.6 1.6	2.0 2.8 5.6 2.3 1.9	1.4 1.6 1.8 1.4	.83 .68 .60 .59	.55 .42 .40 .83 3.3	2.5 1.6 1.1 .95	.89 .20 .08 .05	.00 .00 .00 .00	.00 .00 .00	3.4 3.4 56 18
26 27 28 29 30 31	.00 .00 .00 .00 3.2 .36	1.3 1.6 1.9 1.8 1.9	1.6 1.6 2.1 2.6 1.7	1.9 2.7 1.9 1.7 1.7	1.3 1.2 1.5 1.4	.26 .47 .93 1.7 1.4	1.0 .19 .06 .06	.80 .80 .58 1.2 1.2	.05 .06 .05 .05	.00 .00 .00 .00	.00 .00 .00 .00	830 577 2910 1160 117
TOTAL MEAN MAX MIN CFSM IN. AC-FT	3.56 .11 3.2 .00 .001 .00	33.35 1.11 5.2 .00 .006 .01 66	83.3 2.69 13 1.5 .01 .02 165	62.0 2.00 5.6 1.3 .01 .01	44.98 1.55 2.9 .78 .008 .01 89	19.74 .64 1.7 .08 .003 .00	24.75 .83 3.3 .04 .004 .00 49	6021.25 194 5320 .01 1.03 1.19 11940	42.43 1.41 27 .01 .008 .01 .84	.26 .008 .05 .00 .000 .000	.00 .000 .00 .00	6432.05 214 2910 .00 1.14 1.27 12760

MAX 5320 MIN .00

CFSM .04 IN .52 AC-FT 5250 CFSM .19 IN 2.53 AC-FT 25320

08120700 COLORADO RIVER NEAR CUTHBERT, TX

LOCATION.--Lat 32°28'41", long 100°56'54", Mitchell County, Hydrologic Unit 12080002, on left bank at downstream side of bridge on Farm Road 1808, 4.0 mi (6.4 km) downstream from Deep Creek, 4.8 mi (7.7 km) east of Cuthbert, 8.0 mi (12.9 km) northwest of Colorado City, and at mile 810.6 (1,304.3 km).

DRAINAGE AREA.--4,028 mi^2 (10,433 km^2), of which 2,600 mi^2 (6,730 km^2) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1965 to current year.

GAGE.--Water-stage recorder. Datum of gage is 2,073.49 ft (632.000 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Flow is partly regulated by Lake J. B. Thomas (station 08118000).

AVERAGE DISCHARGE.--15 years (water years 1966-80), 36.5 ft³/s (1.034 m³/s), 26,440 acre-ft/yr (32.6 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 11,500 ft 3 /s (326 m 3 /s) Aug. 14, 1972, gage height, 25.99 ft (7.922 m); maximum gage height, 27.18 ft (8.284 m) Sept. 29, 1980; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Floods in 1941 and 1946 reached a stage of 36.1 ft (11.00 m), from State Department of Highways and Public Transportation bridge plans.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 11,300 ft 2 /s (320 m 2 /s) Sept. 29 at 0130 hours, gage height, 27.18 ft (8.284 m); no flow at times.

PAGGILLEGE THE GUILD DEED DED CECOND LIAMED VEAD OCTOBED 1070 TO CEDTEMBED 1000

		DISC	HARGE, IN	CUBIC FE		COND, WAT AN VALUES		OCTOBER 1	979 TO SEP	rember 19	180	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00	.37 .16 .14 .12	1.9 1.9 1.8 1.8	3.9 3.8 3.8 3.6 3.6	3.1 3.1 2.9 2.9 2.9	2.9 2.7 2.5 2.4 2.3	2.5 2.1 1.9 1.7 1.5	1.0 .74 .74 .99	9.5 7.7 6.7 6.5 5.7	2.3 1.8 1.3 .97 .76	.00 .00 .00 .00	.00 .00 .00 .00
6 7 8 9	.00 .00 .00	.10 .14 .19 1.8 1.6	1.6 1.6 1.8 1.9	3.6 3.6 3.4 3.1 3.1	2.8 2.5 3.1 4.7 6.8	2.1 2.5 2.4 2.1 1.9	1.4 1.3 1.4 1.1	.99 1.0 .85 .70 .83	5.4 4.5 37 72 16	.56 .42 .25 .24	.00 .00 .00 .00	.00 .00 33 3530 1140
11 12 13 14 15	.00 .00 .00	1.1 .82 .66 .66	1.9 13 26 16 11	3.1 2.9 2.9 2.9 2.9	5.4 5.3 4.9 4.3 4.2	1.9 1.9 2.4 2.1 1.9	1.2 1.2 1.1 1.1 1.2	.72 .65 .52 .49	131 109 58 31 15	.13 .11 .09 .06	.00 .00 .00 .00	52 20 11 7.3 5.7
16 17 18 19 20	.00 .00 .00	1.0 1.0 .98 .88	6.3 4.2 3.8 3.1 3.0	2.9 2.7 2.9 2.9 2.9	3.9 3.6 3.6 3.6 3.5	1.9 1.9 1.7 1.6	1.2 1.2 .98 .90	7550 1360 179 81 64	9.5 7.1 6.4 5.6 5.0	.01 .00 .00 .00	42 26 3.0 1.4 .83	4.6 3.5 3.0 2.8 2.1
21 22 23 24 25	.00 .00 .00	33 9.9 3.8 2.3 1.9	2.9 2.9 3.3 3.4 3.9	2.9 4.2 7.2 11 6.4	3.5 3.2 3.1 3.4 3.6	1.9 2.1 2.0 2.0	1.0 1.0 1.0 1.3	109 44 31 25 21	40 372 38 19 12	.00 .00 .00	.53 .34 .16 .06	1.9 1.6 28 236 107
26 27 28 29 30 31	.00 .00 .00 .00 .37	2.1 1.9 1.9 1.9	4.1 3.5 4.0 4.1 5.0 4.6	5.0 4.1 4.1 4.4 3.8 3.5	3.4 3.4 3.1 2.9	1.7 2.7 3.2 2.7 2.4 2.7	3.1 2.7 1.8 1.6 1.3	17 16 14 13 11	8.9 6.9 5.5 4.3 3.3	.00 .00 .00 .00	.00 .00 .00 .00	702 1290 5780 8770 2560
TOTAL MEAN MAX MIN AC-FT	1.47 .047 1.1 .00 2.9	74.26 2.48 33 .10 147	148.0 4.77 26 1.6 294	121.1 3.91 11 2.7 240	106.7 3.68 6.8 2.5 212	67.9 2.19 3.2 1.6 135	43.18 1.44 3.1 .90 86	12056.22 389 7550 .49 23910	1058.5 35.3 372 3.3 2100	9.23 .30 2.3 .00	74.33 2.40 42 .00 147	24291.50 810 8770 .00 48180

CAL YR 1979 TOTAL 9385.46 MEAN 25.7 MAX 2090 MIN .00 AC-FT 18620 WTR YR 1980 TOTAL 38052.39 MEAN 104 MAX 8770 MIN .00 AC-FT 75480

COLORADO RIVER BASIN 37

08120700 COLORADO RIVER NEAR CUTHBERT, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Chemical analyses: March 1965 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: March 1965 to current year. WATER TEMPERATURES: March 1965 to current year.

INSTRUMENTATION .-- Specific conductance is recorded continuously at this station.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 70,000 micromhos Nov. 17, 1968; minimum daily, 102 micromhos Sept. 28, 1980. WATER TEMPERATURES: Minimum daily, 0.0°C on many days during winter months.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum daily, 14,900 micromhos Nov. 6; minimum daily, 102 micromhos Sept. 28. WATER TEMPERATURES: Minimum daily, 4.0°C Dec. 17, Jan. 29, and Feb. 9.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
NOA										
16	1115	.99	3610		10.0	610	430	150	57	520
DEC	*000		0000				200	100	15	400
19 JAN	1230	3.1	2880		4.0	510	290	130	45	420
09	1645	3.0	4210		6.0	740	510	180	71	620
FEB	1043	3.0	4210		0.0	, 40	310	100		020
06	1555	2.7	5420	14-	11.5	870	620	210	84	830
MAR	1772	2.2	200			271	333	244	160	12.2
05	1150	2.2	4790		7.5	880	640	200	93	710
APR 24	0700	1.0	6830		19.0	1300	1000	280	140	1000
MAY	0700	1.0	0030		19.0	1300	1000	200	140	1000
16	0145	5700	257		17.0	110	14	40	3.0	13
30	0930	13	11400	7.7	24.5	1500	1200	350	140	2000

NOV											
16 9.2 11 220 0 440 860 .4 3.0 2150 DEC 19 8.1 11 270 0 350 640 .7 10 1740 JAN 09 9.9 11 280 0 510 1000 .7 .6 2530 FEB 06 12 11 300 0 650 1300 .8 3.9 3240 MAR 05 10 10 290 0 750 970 1.3 1.8 2880 APR 24 12 11 330 0 1000 1600 1.0 1.2 4200 MAY 165 5.5 120 0 24 33 .5 10 188	DATE	AD- SORP- TION	SIUM, DIS- SOLVED (MG/L	BONATE (MG/L AS	BONATE (MG/L	DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L AS	SUM OF CONSTI- TUENTS, DIS- SOLVED	
16 9.2 11 220 0 440 860 .4 3.0 2150 DEC 19 8.1 11 270 0 350 640 .7 10 1740 JAN 09 9.9 11 280 0 510 1000 .7 .6 2530 FEB 06 12 11 300 0 650 1300 .8 3.9 3240 MAR 05 10 10 290 0 750 970 1.3 1.8 2880 APR 24 12 11 330 0 1000 1600 1.0 1.2 4200 MAY 165 5.5 120 0 24 33 .5 10 188	NOV										
19 8.1 11 270 0 350 640 .7 10 1740 JAN 09 9.9 11 280 0 510 1000 .7 .6 2530 FEB 06 12 11 300 0 650 1300 .8 3.9 3240 MAR 05 10 10 290 0 750 970 1.3 1.8 2880 APR 24 12 11 330 0 1000 1600 1.0 1.2 4200 MAY 16 .5 5.5 120 0 24 33 .5 10 188	16	9.2	11	220	0	440	860	.4	3.0	2150	
JAN 09 9.9 11 280 0 510 1000 .7 .6 2530 FEB 06 12 11 300 0 650 1300 .8 3.9 3240 MAR 05 10 10 290 0 750 970 1.3 1.8 2880 APR 24 12 11 330 0 1000 1600 1.0 1.2 4200 MAY 165 5.5 120 0 24 33 .5 10 188		0 1	3.1	270	0	250	640	7	10	17/0	
09 9.9 11 280 0 510 1000 .7 .6 2530 FEB 06 12 11 300 0 650 1300 .8 3.9 3240 MAR 05 10 10 290 0 750 970 1.3 1.8 2880 APR 24 12 11 330 0 1000 1600 1.0 1.2 4200 MAY 16 .5 5.5 120 0 24 33 .5 10 188		8.1	313	270	U	330	040	• /	10	1740	
06 12 11 300 0 650 1300 .8 3.9 3240 MAR 05 10 10 290 0 750 970 1.3 1.8 2880 APR 24 12 11 330 0 1000 1600 1.0 1.2 4200 MAY 165 5.5 120 0 24 33 .5 10 188		9.9	1.1	280	0	510	1000	.7	.6	2530	
MAR 05 10 10 290 0 750 970 1.3 1.8 2880 APR 24 12 11 330 0 1000 1600 1.0 1.2 4200 MAY 165 5.5 120 0 24 33 .5 10 188											
05 10 10 290 0 750 970 1.3 1.8 2880 APR 24 12 11 330 0 1000 1600 1.0 1.2 4200 MAY 16 5 5.5 120 0 24 33 .5 10 188		12	11	300	0	650	1300	.8	3.9	3240	
APR 24 12 11 330 0 1000 1600 1.0 1.2 4200 MAY 165 5.5 120 0 24 33 .5 10 188		10	10	290	0	750	970	1.3	1.8	2880	
24 12 11 330 0 1000 1600 1.0 1.2 4200 MAY 165 5.5 120 0 24 33 .5 10 188		1.0	10	230	· ·	730	370	1.5	1.0	2000	
165 5.5 120 0 24 33 .5 10 188		12	11	330	0	1000	1600	1.0	1.2	4200	
30 23 12 300 0 970 3200 .6 5.5 6830					0						
	30	23	12	300	0	970	3200	.6	5.5	6830	

08120700 COLORADO RIVER NEAR CUTHBERT, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	1.47	13800	8460	34	4200	17	1400	5.6	*
NOV.	1979	74.26	4240	2590	519	990	198	570	114	710
DEC.	1979	148.0	3870	2360	944	860	344	540	215	680
JAN.	1980	121.1	4770	2910	952	1100	360	640	211	800
FEB.	1980	106.7	5400	3300	950	1300	363	720	208	900
MAR.	1980	67.9	5300	3230	593	1200	226	710	131	880
APR.	1980	43.18	6150	3750	438	1500	172	810	94	990
MAY	1980	12056.22	691	422	13700	160	5170	94	3050	120
JUNE	1980	1058.5	2890	1760	5030	650	1870	390	1130	500
JULY	1980	9.23	6040	3690	92	1500	36	790	20	970
AUG.	1980	74.33	4040	2460	494	890	180	560	113	710
SEPT	1980	24291.50	323	197	12900	64	4170	49	3180	64
TOTAL		38052.39	**	**	36700	**	13100	**	8470	**
WTD. AV	G.	104	586	357	**	130	**	82	**	110

		SPECIFIC	CONDUCTANCE	(MICROMH		DEG. C), VALUES	WATER	YEAR OCTOB	ER 1979	TO SEPTEMBER	1980	
DAY	OCT	100	7 DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	963	14600	3120	3190	5360	4310	5830	5070	10600	4700		
2	***	14300	3000	3400	5710	4520	5450	5270	10600	5290		
3		14200	2930	3540	5420	4760	5330	5400	10400	5850		
4		14300	2870	3610	5940	4990	5320	5580	10100	6470		
5		14700	2980	3730	5740	4790	5400	5770	10400	7080		
6				3850	5410	5220	5570	5860	10100	7650		
7				4040	5070	5530	5700	6200	10000	8240		
8				4160	4900	5570	5770	6490	6670	7950		5570
9		12000		4210	5000	5210	5930	6600	4410	7710	777	200
10		9910	3010	4050	4700	5220	6070	6700	5030	7150		650
11		7160	3050	4110	4950	5330	6250	7030	2850	7180		3830
12		6630	3240	4170	5300	5320	6460	7190	4050	7390		5420
13		5390	4830	4130	5100	5460	6560	7340	3290	7450		6460
14	*	4550	5950	4250	5630	5600	6640	7470	3410	7440		6700
15	***	4220	3070	4050	6100	5590	6700	186	4370	7270		6280
16		3630		4120	6150	5650	6760	318	4940	7210	3970	5820
17		3170		4140	6040	5540	6890	474	5420		4010	6160
18	1222	3070		4030	5430	5400	7040	4220	5680		4270	6440
19		3160		4040	5590	5580	7220	7610	5910		4440	7120
20		3010	3130	4010	6050	5620	7300	9180	5860		4890	7540
21	777	3930		3460	6150	5600	7240	6380	1970		5270	7730
22	7	2770		4050	5640	5520	7180	7360	939		5640	7990
23		3070		3910	5480	5810	7150	9710	985		5930	5210
24				5760	5400	5480	7390	11500	1010		6240	2000
25		3580	3840	5870	5080	5300	6870	11700	1150		6500	2450
26		3680		7180	4880	5360	6480	11900	1640			281
27		3780		8090	4990	5560	5590	12000	2330			238
28		.3800		7330	5120	5350	5780	11900	2900			200
29		3730		6820	5230	5020	5250	11500	3510			250
30	14700			5630		5300	5190	11400	4120			348
31	13500		3560	5330		5670		10700				
MEAN	14100	7210	3430	4590	5430	5330	6280	7290	5150	7000	5120	4130

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

			TEN ENTO	L, WALLE	C C	NCE-DAILY	mi oolobi		551 121.50			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		12.0 12.0 12.0 15.0 11.0	9.0 11.0 11.0 10.0 12.0	9.0 9.0 9.0	8.0 8.0 8.0 9.0	11.0 9.0 7.0 6.0 9.0	18.0 17.0 15.0 16.0 16.0	18.0 18.0 18.0 18.0 18.0				
6 7 8 9		11.0 11.0 11.0 14.0 10.0	11.0 12.0 11.0 12.0 12.0	10.0 7.0 6.0 5.0	8.0 9.0 7.0 4.0 5.0	8.0 7.0 7.0 7.0 7.0	17.0 16.0 16.0 15.0 16.0	20.0 21.0 20.0 19.0 20.0				
11 12 13 14 15		9.0 9.0 9.0 9.0	13.0 7.0 7.0 7.0 7.0	6.0 10.0 10.0 10.0	6.0 7.0 7.0 8.0 8.0	6.0 9.0 11.0 11.0	18.0 19.0 12.0 14.0 16.0	20.0 20.0 18.0				
16 17 18 19 20		10.0 10.0 9.0 9.0	5.0 4.0 5.0 9.0	11.0 10.0 10.0 9.0	7.0 5.0 6.0 9.0 10.0	14.0 16.0 13.0 14.0 12.0	16.0 16.0 16.0 16.0	17.0 17.0 20.0 19.0 20.0				
21 22 23 24 25		11.0 12.0 13.0 13.0 10.0	10.0 11.0 8.0 7.0 6.0	9.0 8.0 7.0 5.0 6.0	11.0 10.0 10.0 10.0 10.0	15.0 15.0 16.0 17.0 18.0	20.0 20.0 20.0 19.0 18.0	20.0 20.0 20.0 20.0 20.0				
26 27 28 29 30 31		10.0 11.0 6.0 7.0 7.0	8.0 9.0 9.0 10.0 10.0	7.0 6.0 5.0 4.0 5.0	11.0 13.0 12.0 12.0	21.0 22.0 21.0 20.0	18.0 18.0 18.0 18.0					
MEAN		10.5	9.0	7.5	8.5	12.5	17.0	19.0				

COLORADO RIVER BASIN

08121000 COLORADO RIVER AT COLORADO CITY, TX

LOCATION.--Lat 32°23'33", long 100°52'42", Mitchell County, Hydrologic Unit 12080002, on right bank at Colorado City, 3,517 ft (1,072 m) upstream from bridge on State Highway 377, 4,100 ft (1,250 m) upstream from the Texas and Pacific Railroad Co. bridge, 1.3 mi (2.1 km) downstream from bridge on Interstate Highway 20 and U.S. Highway 80, 1.6 mi (2.6 km) upstream from Lone Wolf Creek, and at mile 796.3 (1,281.2 km).

DRAINAGE AREA.--4,082 mi² (10,572 km²), of which 2,600 mi² (6,730 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- November 1923 to August 1925 (published as "at Colorado"), May 1946 to current year.

REVISED RECORDS .-- WSP 1118: Drainage area. WSP 1512: 1946(M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 2,030.16 ft (618.793 m) National Geodetic Vertical Datum of 1929. Nov. 28, 1923, to Aug. 31, 1925, nonrecording gage at site 1.4 mi (2.3 km) downstream at different datum. May 9 to Aug. 5, 1946, nonrecording gage at site 185 ft (56 m) upstream at present datum.

REMARKS.--Water-discharge records good. Some regulation since 1952 by Lake J. B. Thomas (station 08118000). Numerous diversions from Lake J. B. Thomas for municipal use and oilfield operation. Record of diversion from river, 3 mi (5 km) upstream from gage, furnished by Colorado River Municipal Water District.

AVERAGE DISCHARGE.--6 years (water years 1947-52) prior to completion of Lake J. B. Thomas, $85.4~{\rm ft^3/s}$ (2.419 m³/s), $61.870~{\rm acre-ft/yr}$ (76.3 hm³/yr); 28 years (water years 1953-80) regulated, $38.0~{\rm ft^3/s}$ (1.076 m³/s), 27,530 acre-ft/yr (33.9 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $24,900 \text{ ft}^3/\text{s}$ (705 m $^3/\text{s}$) July 6, 1948, gage height, 22.37 ft (6.818 m), from floodmark; maximum gage height, 27.81 ft (8.476 m) Sept. 29, 1980, backwater from Salt Cedar; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1910, 35.9 ft (10.94 m) June 20, 1939, present site and datum, based on floodmarks 1,000 ft (305 m) upstream and 3,740 ft (1,140 m) downstream from gage; discharge, $66,000 \text{ ft}^3/\text{s}$ (1,870 m $^3/\text{s}$), by slope-area measurement of peak flow at site 2.5 mi (4.0 km) upstream from gage.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 10,400 ft 3 /s (295 m 3 /s) Sept. 29 at 1130 hours, gage height, 27.81 ft (8.476 m), backwater from Salt Cedar; minimum, 0.01 ft 3 /s (0.0003 m 3 /s) May 11-14.

		DISC	HARGE, IN	CUBIC F	EET PER SEC MEA	OND, WA	ATER YEAR	OCTOBER 1	979 TO SEPT	EMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.15 .15 .15 .15	.05 .07 .09 .11	.15 .14 .09 .13 .15	.41 .60 .50 .41	.42 .62 .62 .69	.74 .54 .62 .71	.22 .41 .41 .30	.03 .05 .07 .14	1.2 1.2 1.2 1.1	5.8 2.0 .58 .41 .41	.08 .11 .10 .10	.06 .08 .08 .08
6 7 8 9	.15 .17 .13 .09	.09 .19 .19 .15	.15 .15 .15 .20	.92 .92 .92 .92	.73 1.0 1.7 1.2 .88	.45 .70 .62 .62	.48 .36 .22 .27 .37	1.1 .04 .03 .03	.63 .60 1.3 20 46	.41 .38 .35 .33 .28	.14 .16 .14 .08	.06 .08 .08 992 3280
11 12 13 14 15	.12 .15 .15 .15	.09 .12 .15 .15	.24 1.3 .52 .79 .21	1.2 1.0 1.2 1.2 1.3	.68 .62 .77 .62	.65 .86 .32 .26	.39 .54 .55 .44	.06 .01 .01 .02	149 205 93 47 26	.28 .28 .23 .21 .19	.12 .13 .10 .11	215 6.0 3.5 3.0 2.7
16 17 18 19 20	.17 .16 .25 .21	.15 .15 .16 .15	.17 .12 .20 .32	1.4 1.2 1.3 1.6 1.4	.60 .56 .92 .97	.65 .81 .36 .45	.41 .25 .15 .15	6990 3230 437 98 4.2	18 14 9.3 1.2 .87	.17 .12 .03 .03	3.2 1.2 .13 .09	2.4 2.1 2.1 2.1 2.0
21 22 23 24 25	.10 .09 .12 .15	.32 .16 .13 .14	.41 .47 .69 .37	1.1 2.9 .96 .57	.64 .64 .80 .98	.32 .27 .44 .13	.23 .20 .16 .33 .13	30 3.9 2.0 1.7 1.7	7.6 355 112 32 17	.05 .04 .04 .03	.03 .03 .03 .03	1.8 1.8 8.7 154 318
26 27 28 29 30 31	.24 .24 .24 .27 .41	.14 .13 .15 .16 .15	.28 .41 .94 .45 .41	.62 .62 .75 .92 .92	.78 .97 .92 .93	.24 .63 .52 .35 .17	.08 .05 .11 .18 .25	1.8 1.7 1.5 1.4 1.4	12 9.4 7.8 7.0 6.1	.05 .05 .04 .04 .04	.03 .05 .05 .09 .08	432 1220 3420 8860 4540
TOTAL MEAN MAX MIN AC-FT (†)	5.29 .17 .41 .09 10 8.0	4.35 15 .32 .05 8.6 159	10.91 .35 1.3 .09 22 397	30.34 .98 2.9 .41 .60 293	23.54 .81 1.7 .42 47 219	15.03 .48 .86 .13 30 184	8.67 .29 .55 .05 17	11115.72 359 6990 .01 22050 1270	1203.50 40.1 355 .60 2390 363	12.99 .42 5.8 .03 26 44	6.91 .22 3.2 .03 14 130	23469.77 782 8860 .05 46550 775
CAL YR WTR YR				26.6 98.1	MAX 1740 MAX 8860	MIN MIN		-FT 19290 -FT 71220				

[†] Diversions, in acre-feet, for brine disposal by Colorado River Municipal Water District.

08121000 COLORADO RIVER AT COLORADO CITY, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: May 1946 to September 1954, November 1956 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: May 1946 to September 1954, November 1956 to current year. WATER TEMPERATURES: November 1952 to September 1954, November 1956 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE (1946-54, 1956-69, 1971-80): Maximum daily, 67,400 micromhos May 14, 17, 1961; minimum daily, 240 micromhos Sept. 29, 1980.
WATER TEMPERATURES (1956-69, 1971-78): Maximum daily, 37.0°C July 29, 1960, July 9, 1965, and July 1, 1973; minimum daily, 0.0°C on many days during winter months.

EXTREMES FOR CURRENT YEAR.--SPECIFIC CONDUCTANCE: Maximum daily, 32,000 micromhos Apr. 28; minimum daily, 240 micromhos Sept. 29.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT									
01	1100	.03	14000	21.5	1200	950	220	160	2700
NOV		3.5							
01 DEC	0930	.05	25400	7.5	2300	2100	500	250	5000
18	1325	.28	27400	7.0	2200	2000	520	220	5800
JAN	1323	.20	27400	7.0	2200	2000	320	220	3000
24	1346	.54	21900	5.0	2000	1800	470	200	4800
MAR 06	1120	.58	25700	10.0	2100	1900	480	230	5500
APR	1120	. 50	23700	10.0	2100	1900	460	230	3300
17	1120	.43	29500	15.0	2600	2400	590	280	6100
MAY	1205	2020	272	10.5	100	0.5	20	7.7	29
17 28	1305 1119	3230	373 11600	19.5	120 1200	25 910	39 270	120	2200
JUL	1112		1,000	20.0	1200	2,0	2,0	120	2200
02	1120	1.8	7520	29.0	800	680	190	80	1400
SEP 29	1200	10400	195	15.0	65	4	22	2.4	13
	, = 0,0	10,00	1,23						
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
OCT									
O1 NOV	34	13	320	0	1500	3700	.7	5.2	8460
01	46	28	180	0	1500	8000	.7	.4	15400
DEC 18	54	21	270	0	2000	9200	.7	2.5	17900
JAN 24	47	18	240	0	1600	7600	.4	1.9	14800
MAR									
06 APR	52	20	260	0	1600	9000	.8	1.1	17000
17	52	23	270	0	2600	9300	.9	1.2	19000
MAY 17	1.2	5.7	110	0	29	47	.4	8.2	217
28	28	12	310	0	1300	3300	.8	3.0	7360
JUL									
	21	9.9	150	0	690	2100	.5	3.8	4550
02 SEP 29	.7	2.8	74	0	16	15	.2	5.8	121

08121000 COLORADO RIVER AT COLORADO CITY, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	5.29	17800	11400	163	5300	76	1800	26	*
NOV.	1979	4.35	27700	18000	212	9000	106	2200	26	*
DEC.	1979	10.91	27500	17800	525	8900	263	2200	65	*
JAN.	1980	30.34	25200	16300	1340	8000	657	2200	177	*
FEB.	1980	23.54	24300	15700	1000	7700	488	2100	136	*
MAR.	1980	15.03	26200	17000	689	8400	341	2200	89	*
APR.	1980	8.67	29100	19000	444	9600	224	2200	53	*
MAY	1980	11115.72	763	481	14400	190	5810	100	3130	100
JUNE	1980	1203.50	3240	2050	6660	850	2750	420	1380	410
JULY	1980	12.99	7700	4890	171	2100	73	960	34	940
AUG.	1980	6.91	9630	6120	114	2600	49	1200	22	1100
SEPT	1980	23469.77	656	413	26200	170	10500	90	5730	88
TOTAL		35907.02	**	**	51900	**	21300	**	10900	**
WTD. AVG		98	848	536	**	220	**	110	**	110

	S	PECIFIC CO	ONDUCTANCE	(MICROMH		25 DEG. C		YEAR OCTO	BER 1979	TO SEPTEM	IBER 1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	13900 14100 14000 14400 14300	25300 25100 24500 23900 24100	29400 29100 29600 29500 30000	25600 25200 25600 25500 25700	25200 23500 24700 23600 25400	26000 26200 25500 23600 25900	27800 28600 24300 28100 28500	30600 30400 30200 30500 30600	12300 11800 12500 12200 12400	7030 7520 7750 7840 7950	9890 9850 9990 10100 9970	14600 14300 14400 14200 14700
6 7 8 9	14400 14200 14800 14700 15200	24300 25500 26600 27300 27100	29600 36 70 306 0 3000 29800	25900 26300 26500 26300 26100	23300 25000 23300 23600 24700	26300 25100 24900 26200 25300	29000 28300 29600 28400 29400	30700 30500 30700 30800 30600	12800 12600 14000 11000 8420	8070 8200 8290 8380 8600	9940 9900 10200 10600 10800	14500 14000 14100 3250 1100
11 12 13 14 15	15400 15500 15400 15600 15800	27400 27300 27500 27800 28200	29700 28100 27200 27000 27400	25900 25500 27200 26700 26100	25100 25500 24900 25300 24600	26400 24300 27000 27500 27000	28500 30100 30000 29500 29700	26200 26000 26800 26500 3700	4500 1950 3200 4450 5160	8740 8880 9010 8950 9000	10600 10500 10700 10600 10200	1550 2480 3270 4090 4750
16 17 18 19 20	17000 18000 18200 18100 19300	27900 28300 28200 28800 28400	27500 27600 27400 26800 26400	25300 26300 25800 26900 26100	25000 25900 23500 22900 23700	26000 26300 26100 27700 26600	29400 29200 28500 29600 28600	575 373 2550 5420 8000	5880 6000 6130 6400 6690	9060 9240 9420 9570 9500	8900 9550 9840 10000 10200	5560 6380 7210 8000 8850
21 22 23 24 25	19000 19600 20100 19600 19800	28000 28700 29100 29300 29500	26200 25700 27500 26800 27400	25500 22400 22000 21900 22700	24800 25000 24100 23000 23600	27100 25600 28000 25200 26600	29500 30000 29900 29800 30500	6500 7480 8460 9440 10400	7160 1550 2290 3010 3450	9480 9600 9770 9960 10400	10500 11100 11400 11800 12000	9680 10500 9750 3000 2450
26 27 28 29 30 31	19300 19400 20600 21400 22500 25700	29600 29400 29300 29500 29000	26400 27300 26900 26200 27000 26000	23900 25000 24200 23600 23900 24700	24800 24000 24900 25600	26000 28100 27800 28800 28300 25800	30300 31900 32000 31400 30700	11400 10700 11700 11900 11400 11600	3870 4450 5070 5450 5830	10000 9960 10100 10300 10200 10000	12200 11900 12000 11700 12600 14200	1500 800 450 240 320
MEAN	17400	27500	27900	25200	24400	26400	29400	17500	7080	9060	10800	7000

08121000 COLORADO RIVER AT COLORADO CITY, TX--Continued

			TEMPERATURE,	WATER	(DEG.	C), WATER ONCE-DAIL		1979	TO SEPTEMBER	1980		
DAY	OCT	NOV	DEC	JAN	FE	B MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	21.5	7.5 7.0	1.5	3.5	5.5		10.0	15.0	-1-	29.5		
3	14.5	7.5	9.0	3.0	11.		10.5	17.0		25.5		
4	13.5	7.0	3.5	4.0	14.0		16.0	16.0		28.5		
5	14.0	19.5	6.0	8.5	11.0		13.0	21.0		26.0		
6	12.5	8.0	1.5	4.0	14.5		15.0	17.0				
7	13.0	10.5	13.5	6.0	9.0		18.0	21.0	4			
8	13.5	17.0	12.0	9.5	4.0		10.0	18.0	1			
9	14.0	13.5	13.5	8.5			9.5					
10	23.5	10.0		4.0			13.0		444			
11	25.5	15.0	13.0	4.5			11.5	26.5				
12	24.0	8.0	3.5	3.0			7.5	29.0				
13	18.0	15.5		5.0			15.5	28.0	29.5	36.0		
14	23.0	14.0		6.5			13.5		24.5	34.0		
15	21.5	16.0		5.0			9.5	18.0	35.0	25.0		
16	26.5	9.0		6.0			8.0	15.0	33.0	28.5		
17	26.0	11.0	424	7.5			14.5		32.5	36.0		
18	18.0	8.0		4.5			13.0		31.0	35.5		
19	16.0	13.5	3.0	5.0			13.0		34.5			
20	17.0	12.0	2.5	3.0		- 9.5	14.0		25.0			
21	15.0		2.0				17.0		36.0			
22	13.5		2.0				18.5		27.0			
23	13.0		3.0			, , -	23.0	24-	33.0			
24	11.0		4.0				19.0		30.0			
25	9.0	14.0	4.5			- 8.5	18.0		35.5			
26	8.0	13.5	5.0				16.5	18.0	26.5			
27	8.0	7.5	3.0				27.0	19.0	31.0			
28		5.0	2.5				19.5		25.5			
29		1.0	3.0				19.0		26.5			
30	15.5	2.0	5.5				17.0		24.0			
31	17.0		1.5			20,0						
MEAN	16.5	10.5	5.0	5.5	9.0	9.0	15.0	19.5	30.0	30.0		

08123000 LAKE COLORADO CITY NEAR COLORADO CITY, TX

LOCATION.--Lat 32°20'41", long 100°55'10", Mitchell County, Hydrologic Unit 12080002, on left bank at municipal water-intake structure, 1.7 mi (2.7 km) upstream from Colorado City Dam on Morgan Creek, 2.2 mi (3.5 km) downstream from the Texas and Pacific Railway Co. bridge, 2.5 mi (4.0 km) upstream from mouth, and 4.0 mi (6.4 km) southwest of Colorado City.

DRAINAGE AREA.--322 mi2 (834 km2), of which 32 mi2 (83 km2) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- April 1949 to current year.

REVISED RECORDS .-- WSP 1922: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to Aug. 23, 1950, nonrecording gages at or near powerplant about 0.7 mi (1.1 km) downstream at same datum.

REMARKS.--The lake is formed by a rolled earthfill dam 4,800 ft (1,460 m) long. Storage began in April 1949, and the dam was completed in September 1949. The dam and lake are owned by the Texas Electric Service Co. to operate their thermal electric powerplant. The uncontrolled emergency spillway is an excavated cut channel through natural ground 1,200 ft (366 m) wide located 600 ft (180 m) upstream and to the left of left end of dam. The spillway is designed to discharge 150,000 ft '/s (4,250 m'/s) at the maximum design flood elevation. The service spillway is an uncontrolled rectangular drop inlet located 100 ft (30 m) upstream from dam with two uncontrolled openings of 10.0 by 12.0 ft (3.0 by 3.7 m). The spillway is designed for a maximum discharge of 5,000 ft '/s (142 m²/s). A service outlet is provided for small releases downstream through a 30-inch (762 mm) valve-controlled concrete pipe. Records furnished by the Texas Electric Service Co. indicate that 7,340 acre-ft (9.05 hm³) was pumped from Champion Creek Reservoir (station 08123600) into Lake Colorado City during the current year. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	Elevation (feet)	Capacity (acre-feet)
Top of dam	2,090.0	
Design flood	2.086.7	70,700
Crest of spillway	2.073.7	37.850
Crest of service spillway (top of conservation pool)	2.070.2	31,810
Lowest gated outlet (invert)	2.024.3	316

COOPERATION.--Capacity curve was furnished by the Texas Electric Service Co. Record of diversions for municipal use was furnished by the city of Colorado City.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 40,280 acre-ft (49.7 hm 3) Sept. 7, 1962, elevation, 2,075.10 ft (632.490 m); minimum since first appreciable storage, 5,800 acre-ft (7.15 hm 3) Apr. 11-13, 1950, elevation, 2,045.72 ft (623.536 m).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 38,690 acre-ft (47.7 hm³) Sept. 29, elevation, 2,074.15 ft (632.201 m); minimum, 14,500 acre-ft (17.9 hm³) Sept. 3-7, elevation, 2,056.70 ft (626.882 m).

Capacity table (elevation, in feet, and total contents, in acre-feet)

2,056.0 13,820 2,070.0 31,480 2,060.0 17,980 2,075.0 40,330 2,065.0 24,140

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	16210	15020	15260	16130	16790	17450	16870	15940	17550	16720	14920	14530
2	16170	15000	15280	16150	16820	17480	16830	15920	17510	16650	14860	14520
3	16110	14980	15300	16170	16850	17500	16800	15910	17470	16580	14810	14500
4	16080	14950	15330	16190	16880	17510	16780	15900	17420	16520	14760	14500
5	16030	14910	15350	16230	16890	17500	16750	15890	17370	16460	14690	14510
6 7 8 9	15990 15950 15900 15830 15800	14890 14900 14890 14900 14910	15370 15380 15400 15430 15480	16250 16260 16280 16310 16340	16920 16940 16970 17020 17040	17490 17470 17440 17430 17410	16720 16660 16630 16600 16570	15880 15860 15820 15790 15740	17300 17260 17320 17300 17270	16390 16330 16280 16200 16140	14630 14620 14610 14610 14600	14500 14580 14600 14890 15060
11	15760	14930	15480	16330	17070	17410	16530	15720	17420	16100	14610	15090
12	15730	14940	15560	16360	17090	17370	16480	15670	17400	16050	14620	15110
13	15670	14970	15600	16380	17120	17330	16440	15630	17390	15970	14620	15120
14	15650	14980	15650	16420	17150	17310	16420	15630	17340	15900	14610	15130
15	15640	15000	15670	16440	17160	17300	16380	15810	17300	15840	14600	15130
16	15620	15030	15670	16460	17160	17290	16350	16570	17260	15770	14660	15130
17	15600	15050	15700	16460	17190	17240	16350	17170	17200	15710	14640	15120
18	15570	15080	15730	16490	17240	17210	16310	17180	17160	15640	14590	15130
19	15530	15100	15760	16510	17250	17190	16280	17160	17120	15580	14570	15130
20	15480	15130	15800	16490	17270	17150	16260	17170	17080	15530	14570	15110
21	15450	15130	15840	16490	17270	17130	16230	17210	17120	15500	14570	15110
22	15380	15140	15870	16580	17280	17100	16190	17880	17120	15450	14570	15110
23	15340	15150	15900	16610	17310	17060	16160	17900	17160	15400	14570	15300
24	15310	15170	15910	16610	17320	17040	16160	17890	17140	15350	14570	15610
25	15280	15180	15940	16660	17340	17020	16120	17850	17080	15280	14570	15840
26 27 28 29 30 31	15240 15210 15180 15150 15110 15060	15200 15190 15200 15220 15240	15970 15990 16030 16050 16080 16110	16670 16680 16700 16740 16750 16760	17370 17440 17470 17470	17000 17020 17000 16950 16920 16890	16080 16050 16030 15990 15960	17810 17770 17720 17680 17640 17600	17030 16960 16900 16830 16770	15270 15190 15140 15100 15040 14990	14560 14560 14540 14570 14540 14530	16420 17740 25550 38640 36750
MAX	16210	15240	16110	16760	17470	17510	16870	17900	17550	16720	14920	38640
MIN	15060	14890	15260	16130	16790	16890	15960	15630	16770	14990	14530	14500
(†)	2057.26	2057.44	2058.28	2058.89	2059.54	2059.01	2058.14	2059.66	2058.90	2057.19	2056.73	2073.10
(‡)	-1200	+180	+870	+650	+710	-580	-930	+1640	-830	-1780	-460	+22220
(††)	142	103	104	101	112	128	163	163	210	285	216	149

CAL YR 1979 MAX 18500 MIN 14890 ‡ +810 †† 1720 WTR YR 1980 MAX 38640 MIN 14500 ‡ +20490 †† 1880

[†] Elevation, in feet, at end of month. ‡ Change in contents, in acre-feet.

the Diversions, in acre-feet, for municipal use.

COLORADO RIVER BASIN

08123000 LAKE COLORADO CITY NEAR COLORADO CITY, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1969 to current year.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO
ост 30	1225	3120	21.0	730	590	130	98	380	6.1
								SOL	IDS,

DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
OCT 30	13	170	0	790	470	1.1	5.6	1970

08123600 CHAMPION CREEK RESERVOIR NEAR COLORADO CITY, TX

LOCATION.--Lat 32°16'53", long 100°51'30", Mitchell County, Hydrologic Unit 12080002, in service outlet structure at Champion Creek Dam on Champion Creek, 0.9 mi (1.4 km) upstream from mouth, 4.8 mi (7.7 km) downstream from State Highway 208, and 7.2 mi (11.6 km) south of Colorado City.

DRAINAGE AREA .-- 203 mi2 (526 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- April 1959 to current year.

REVISED RECORDS .-- WSP 1922: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to Sept. 29, 1959, nonrecording gage at same site and datum.

REMARKS.--The reservoir is formed by a rolled earthfill dam about 6,800 ft (2,070 m) long. The dam was completed on Apr. 30, 1959. Closure and storage began in February 1959. The capacity curve is based on Geological Survey topographic map surveyed in 1950; excavation for borrow, estimated not to exceed 1,200 acre-ft (1.23 hm³), is not included. The dam and reservoir are owned and operated by the Texas Electric Service Company. Water may be pumped from the reservoir through a 24-inch (610 mm) pipeline to Lake Colorado City (station 08123000) for municipal use and for cooling operations of a steam generating powerplant. There are two spillways. The uncontrolled emergency spillway is 450 ft (137 m) wide by 1,800 ft (549 m) long, and is located at the right end of dam. The controlled service spillway, a cut channel 50 ft (15 m) wide, about 1,800 ft (549 m) long, and 8 ft (2 m) deep, is cut into the emergency spillway at the extreme right end. There is a controlled drop-inlet structure, 4.0 by 5.0 ft (1.2 by 1.5 m), with a side opening of 1.5 by 3.0 ft (0.5 by 0.9 m). Figures given herein represent total contents. Data regarding the dam and reservoir are given in the following table:

	(feet)	(acre-feet)
Top of dam	2,109.0	
Design flood	2,104.1	90,020
Crest of spillway	2,091.0	56,800
Crest of spillway (top of conservation pool)	2,083.0	42,500
Lowest gated outlet (invert)	2,020.0	800

COOPERATION .-- Record of diversions into Lake Colorado City was furnished by the Texas Electric Service Co.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 27,910 acre-ft (34.4 hm³) June 19, 1966, elevation, 2,071.98 ft (631.540 m); minimum, 1,600 acre-ft (1.97 hm³) Oct. 1, 1959, elevation, 2,025.90 ft (617.494 m).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 21,230 acre-ft (26.2 hm³) Sept. 30, elevation, 2,065.41 ft (629.537 m); minimum, 4,490 acre-ft (5.54 hm³) Sept. 9, elevation, 2,038.23 ft (621.253 m).

Capacity table (elevation, in feet, and total contents, in acre-feet)

2,038.0 4,420 2,058.0 15,000 2,048.0 8,680 2,066.0 21,780

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	10360	10060	8960	7710	6500	5360	5230	5110	5280	6290	5870	4770
2	10340	10060	8910	7670	6460	5320	5220	5110	5270	6270	5860	4710
3	10320	10050	8870	7620	6420	5270	5220	5110	5260	6250	5840	4700
4	10310	10050	8830	7580	6390	5240	5220	5110	5250	6230	5840	4660
5	10300	10050	8790	7540	6340	5220	5210	5110	5280	6220	5820	4610
6 7 8 9	10280 10270 10260 10240 10230	10030 10030 10030 9980 9930	8740 8700 8640 8600 8560	7500 7440 7390 7350 7320	6300 6270 6230 6190 6150	5220 5220 5220 5230 5230	5210 5200 5200 5200 5190	5120 5120 5110 5100 5100	5230 5220 5250 5240 5240	6210 6190 6180 6170 6160	5790 5750 5690 5650 5590	4560 4540 4500 14620 14880
11	10220	9880	8530	7270	6120	5230	5190	5090	5280	6140	5550	14890
12	10220	9820	8530	7220	6080	5230	5180	5080	5280	6130	5500	14870
13	10200	9780	8490	7180	6050	5230	5170	5080	5270	6110	5450	14820
14	10190	9730	8470	7130	6010	5230	5170	5080	5260	6090	5390	14760
15	10220	9690	8430	7090	5980	5230	5170	5230	5250	6080	5340	14710
16	10220	9650	8370	7070	5930	5230	5170	5340	5240	6070	5300	14670
17	10220	9610	8330	7040	5890	5230	5160	5350	5230	6050	5430	14590
18	10210	9560	8280	6990	5850	5230	5160	5350	5220	6030	5450	14550
19	10200	9530	8250	6980	5810	5230	5150	5350	5250	6030	5420	14500
20	10190	9490	8210	6970	5770	5220	5150	5350	5240	6010	5370	14430
21	10180	9440	8170	6960	5730	5220	5150	5350	5310	6000	5310	14370
22	10160	9380	8120	6940	5690	5220	5140	5350	6380	5990	5260	14320
23	10150	9340	8090	6900	5650	5220	5140	5350	6390	5980	5210	16540
24	10140	9290	8040	6850	5610	5220	5140	5340	6380	5970	5160	16690
25	10130	9240	8000	6820	5570	5210	5130	5340	6370	5950	5110	16710
26 27 28 29 30 31	10120 10120 10110 10100 10090 10080	9180 9140 9100 9040 9000	7960 7920 7880 7840 7790 7750	6770 6720 6680 6630 6600 6550	5530 5490 5450 5420	5210 5230 5230 5230 5230 5230	5130 5120 5120 5120 5120	5330 5320 5310 5300 5300 5290	6360 6340 6330 6310 6300	5940 5930 5920 5910 5900 5880	5060 5010 4960 4920 4870 4810	17450 17640 19770 21090 21230
MAX MIN (†) (‡) (††)	10360 10080 2050.61 -290 0	10060 9000 2048.62 -1080 1020	8960 7750 2046.19 -1250 1480	7710 6550 2043.72 -1200 1300	6500 5420 2040.94 -1130 1380	5360 5210 2040.41 -190 208	5230 5120 2040.10 -110 0	5350 5080 2040.57 +170	6390 5220 2043.16 +1010	6290 5880 2042.15 -420 0	5870 4810 2039.22 -1070 669	21230 4500 2065.41 +16420 1280

CAL YR 1979 MAX 10940 MIN 5510 ‡ 1490 †† 3920 WTR YR 1980 MAX 21230 MIN 4500 ‡ 10860 †† 7340

t Elevation, in feet, at end of month.

[‡] Change in contents, in acre-feet.
†† Diversions, in acre-feet, into Lake Colorado City.

47

COLORADO RIVER BASIN

08123600 CHAMPION CREEK RESERVOIR NEAR COLORADO CITY, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1969 to current year.

DATE	TIM	SPE CIF CON DUC ANC E (MIC MHO	TC TEMP T- TEMP E ATU	PER- NES JRE, (MC PER AS	RD- N SS NO G/L BO	ARD- ESS, NCAR- NATE MG/L ACO3)	CALCIU DIS- SOLVI (MG/I AS CA	ED SOL L (MG	UM, SODI S- DIS VED SOLV /L (MC	IUM, S- S /ED	ODIUM AD- ORP- TION ATIO
OCT 30	1000) 1	090 1	9.0	400	260	84	4	5 8	32	1.8
34571	107			7.74							
		POTAS- SIUM, DIS-	BICAR- BONATE	CAR-	SULFAT DIS-	E RI	LO- DE, S-	FLUO- RIDE, DIS-	SILICA, DIS- SOLVED	SOLIDS SUM OF CONSTI TUENTS DIS-	-
DA	TE	SOLVED (MG/L AS K)	(MG/L AS HCO3)	MG/L AS CO3)	SOLVE (MG/L AS SO4	(M	LVED G/L CL)	SOLVED (MG/L AS F)	(MG/L AS SIO2)	SOLVE (MG/L	D
OCT 30		9.4	160	0	300		88	.7	4.9	69	3

08123800 BEALS CREEK NEAR WESTBROOK, TX

LOCATION.--Lat 32°11'57", long 101°00'49", Mitchell County, Hydrologic Unit 12080007, on left bank at downstream side of bridge on State Highway 163, 2.1 mi (3.4 km) downstream from Hackberry Creek, 10.8 mi (17.4 km) south of Westbrook, 15.7 mi (25.3 km) southwest of Colorado City, and 19.9 mi (32.0 km) upstream from mouth.

DRAINAGE AREA. -- 9,903 mi2 (25,648 km2), of which 8,930 mi2 (23,130 km2) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1958 to current year.

REVISED RECORDS. -- WRD TX-72-1: 1971.

GAGE.--Water-stage recorder. Datum of gage is 2,048.74 ft (624.456 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Low flow is affected by diversion upstream from station.

AVERAGE DISCHARGE.--22 years, 24.8 ft³/s (0.702 m³/s), 0.35 in/yr (9 mm/yr), 17,970 acre-ft/yr (22.2 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $8,780~{\rm ft^3/s}~(249~{\rm m^3/s})$ May 19, 1961, gage height, $21.65~{\rm ft}~(6.599~{\rm m})$; maximum gage height, $21.94~{\rm ft}~(6.687~{\rm m})$ Sept. 29,~1980; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since 1908, about 24.5 ft (7.47 m) in 1922, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 900 $\mathrm{ft^3/s}$ (25.5 $\mathrm{m^3/s}$) and maximum (*):

Date	Time		arge	Gage 1	neight	Date	Time		arge	Gage	height
		(ft^3/s)	(m^3/s)	(ft)	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
Sept. 9	1700	5,700	161	20.74	6.322	Sept. 26	2300	2,080	58.9	14.30	4.359
Sept. 25	1000	1,740	49.3	12.97	3.953	Sept. 29	0600	*7,690	218	21.94	6.687

DISCHARGE IN CURIC PEET DED CECOND LATER VEAR OCTORED 1070 TO CERTEMBER 1000

Mimimum discharge, 0.04 ft³/s (0.001 m³/s) Aug. 5, 11, 12.

		DISCH	ARGE, IN	CUBIC F	EET PER SEC	COND, WA AN VALUE	ATER YEAR C	CTOBER 19	979 TO SE	PTEMBER 19	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.3 1.5 1.4 1.4	17 3.4 2.0 1.8 1.8	2.4 2.8 3.1 3.5 3.4	4.5 4.3 4.2 4.1 4.0	5.0 4.9 5.0 5.0 4.9	3.7 3.7 3.7 3.5 4.0	2.3 2.2 2.3 2.4 2.3	1.9 1.2 2.5 3.1 3.1	4.6 4.5 4.4 3.8 3.6	2.9 2.6 2.1 1.5 1.4	.32 .23 .29 .17	2.1 1.9 1.7 3.4 3.7
6 7 8 9	1.3 1.5 1.5 1.3	1.8 2.0 2.3 2.6 4.3	2.9 3.0 3.2 3.2 3.3	3.9 4.0 3.9 3.8 3.9	4.7 5.1 5.3 5.2 5.4	3.9 3.7 3.9 4.0 3.9	2.0 2.1 2.3 2.3 1.9	4.7 11 9.0 7.6 4.7	3.2 3.1 14 54 16	1.4 1.2 .89 .62 .54	.26 .24 .16 .12	2.4 5.7 4.6 1740 1260
11 12 13 14 15	.95 .95 1.3 1.5 2.3	2.4 2.1 2.1 2.1 2.3	3.6 5.6 5.5 21 22	4.6 3.5 3.7 4.1 4.1	7.4 7.2 5.9 5.1 4.9	4.2 3.6 4.4 3.8 3.3	2.1 2.6 2.8 2.7 3.3	3.3 2.8 3.0 3.2 57	24 32 26 8.9 6.5	. 54 . 69 . 86 . 79 . 54	.05 .26 .58 .56	423 521 358 102 46
16 17 18 19 20	2.2 2.4 3.6 2.5 2.0	2.3 2.4 2.4 2.9 2.7	7.2 5.9 5.1 5.0	3.9 4.1 4.1 4.0 4.0	4.6 4.5 4.6 4.6 5.4	3.3 3.3 3.0 2.8	3.5 2.8 2.7 2.1 2.2	574 445 100 45 23	5.1 3.8 1.4 2.9 508	.44 .32 .25 .52	.66 9.3 38 156 52	35 30 24 21 16
21 22 23 24 25	2.5 2.1 1.7 1.2 1.3	2.4 2.8 2.4 2.2 2.1	5.1 4.9 5.0 5.2	4.1 5.3 8.9 21 7.9	4.5 4.0 4.0 4.1 4.1	2.8 2.8 2.2 2.6 2.7	2.3 2.3 2.1 2.1 2.5	59 510 79 25 14	48 500 133 13 9.7	.42 .18 .24 .45	19 11 7.3 5.2 4.1	14 12 381 886 1130
26 27 28 29 30 31	2.0 1.8 2.0 2.0 8.8 35	2.2 2.4 2.3 2.2 2.3	7.3 5.6 5.2 5.2 5.3 5.0	6.3 5.7 5.4 5.2 5.2 4.9	4.1 3.8 3.9 3.9	2.6 3.2 4.1 3.1 2.9 2.7	3.5 4.5 2.6 2.2 2.0	9.9 7.6 6.2 5.4 4.9 4.6	6.8 5.5 4.1 3.1 2.8	.70 .56 .39 .19 .34	3.8 3.1 2.9 2.8 2.5 2.4	1300 1130 3370 5890 1700
TOTAL MEAN MAX MIN CFSM IN. AC-FT	93.80 3.03 35 .95 .003 .00	86.0 2.87 17 1.8 .003 .00	199.5 6.44 22 2.4 .007 .01 396	160.6 5.18 21 3.5 .005 .01 319	141.1 4.87 7.4 3.8 .005 .01 280	104.7 3.38 4.4 2.2 .003 .00 208	75.0 2.50 4.5 1.9 .003 .00	2030.7 65.5 574 1.2 .07 .08 4030	1455.8 48.5 508 1.4 .05 .06 2890	24.79 .80 2.9 .18 .001 .00 49	323.92 10.4 156 .05 .01 .01 642	20414.5 680 5890 1.7 .70 .78 40490
CAL YR WTR YR				16.5 68.6	MAX 1370 MAX 5890	MIN MIN				C-FT 1196 C-FT 4981		

08123800 BEALS CREEK NEAR WESTBROOK, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: November 1958 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: November 1958 to current year. WATER TEMPERATURES: November 1958 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 22,800 micromhos June 2, 1969; minimum daily, 219 micromhos Sept. 13, 1964.
WATER TEMPERATURES: Maximum daily, 37.0°C June 28, 1960, and July 3, 1976; minimum daily, 0.0°C Jan. 7, 1971,
and Jan. 9, 1973.

EXTREMES FOR CURRENT YEAR.--SPECIFIC CONDUCTANCE: Maximum daily, 19,200 micromhos July 24; minimum daily, 322 micromhos Sept. 9. WATER TEMPERATURES: Maximum daily, 33.0°C July 10, 17; minimum daily, 2.0°C Dec. 17, 18, Jan. 31.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT										
22	1100	2.2	7950	7.7	16.0	1600	1400	230	250	1200
NOV 30	1100	2.0	9230		4.0	2100	1900	310	320	1400
JAN	1100	2.0	9230		4.0	2100	1,000	310	320	1400
31	0950	5.2	8570		2.0	1700	1600	220	280	1400
FEB										
29	1030	3.9	14500		16.0	3300	3100	360	580	2200
MAR	1030	2.9	12200		15.0	2700	2500	360	430	2000
31 MAY	1030	2.9	12200		15.0	2700	2300	500	450	2000
31	0810	4.6	9680	8.4	25.0	2200	2000	320	340	1400
JUN										
30	1100	2.6	7440		28.0	1600	1500	250	240	1100
JUL	1340	.56	14400		34.0	3200	3100	370	550	2300
11 SEP	1340	.50	14400		34.0	3200	3100	370	330	2300
28	1835	5920	293		14.0	88	18	27	5.1	24

DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	
OCT	10	36	210	0	1300	2000	.8	.6	5120	
22 NOV	13	36	210	U	1300	2000	.0	.0	3120	
30	13	45	200	0	1500	2400	.9	2.2	6080	
JAN	13				1,43.7	40.4				
31	15	31	170	0	1400	2300	.5	7.4	5720	
FEB	4.7	55	0/0	0	2/.00	3900	.8	13	9630	
29 MAR	17	55	240	U	2400	3900	.0	15	9030	
31	17	66	240	0	1800	3400	1.2	9.4	8190	
MAY					0.7.0	24.56				
31	13	33	260	0	1400	2600	.7	2.0	6220	
JUN	10	20	160	0	1000	2000	.5	4.0	4710	
30 JUL	12	38	160	0	1000	2000	.5	4.0	4/10	
11	18	50	80	0	2200	4400	.6	12	9920	
SEP	, ,									
28	1.1	3.9	83	0	24	43	.2	8.5	175	

08123800 BEALS CREEK NEAR WESTBROOK, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	93.80	10100	6620	1680	2700	675	1600	406	*
NOV.	1979	86.0	8990	5870	1360	2300	545	1400	328	2000
DEC.	1979	199.5	10300	6780	3650	2700	1470	1600	885	*
JAN.	1980	160.6	13500	9130	3960	3700	1620	2200	971	*
FEB.	1980	141.1	14300	9730	3710	4000	1520	2400	911	*
MAR.	1980	104.7	12500	8410	2380	3400	968	2100	580	*
APR.	1980	75.0	12800	8580	1740	3500	708	2100	424	*
MAY	1980	2030.7	1920	1190	6540	460	2520	280	1530	410
JUNE	1980	1455.8	1890	1190	4670	460	1810	280	1100	410
JULY	1980	24.79	13100	8880	595	3600	244	2200	146	*
AUG.	1980	323.92	4670	2960	2590	1200	1010	700	614	1000
SEPT	1980	20414.5	759	461	25400	170	9620	110	5880	160
TOTAL		25110.41	**	**	58300	**	22700	**	13800	**
WTD. AVG		69	1360	860	**	340	**	200	**	290

	SF	PECIFIC CO	ONDUCTANCE	(MICROME		25 DEG. ONCE-DAILY		YEAR OCTO	BER 1979	TO SEPTEM	IBER 1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	9070	9510	9170	10000	8970	14300	12600	13900	10100	8600	17800	10100
2	9000	8650	9000	9520	10500	14400	11900	13200	10800	9330	17800	10700
2 3 4	8980	8280	8860	10400	12900	14200	12200	12400	11100	10100	17100	11000
4	8930	8120	9180	12100	14900	12800	12400	11800	11600	10600	17200	11300
5	8880	6760	9740	13700	16800	13200	12300	11700	12100	10900	17300	12100
6	8930	3500	9980	16200	16600	13700	12400	11600	12700	11400	17200	12200
7	9160	2700	9590	16500	15800	13500	12500	7120	13300	12000	17000	11000
8	9240	3420	9210	17000	15500	13100	12700	9500	10200	12700	16900	7120
9	9250	5350	9180	19100	14800	12900	12800	10900	5000	13300	16800	322
10	9130	7440	9290	17500	15000	12700	12600	10200	1990	14000	17000	494
11	9070	9090	9280	15800	14800	12600	12900	9850	1280	14300	17000	2180
12	9010	12800	8580	15900	14500	12300	13000	9690	8210	14700	16700	993
13	9250	14600	8540	16300	13500	12200	13100	7430	6010	15200	15700	1530
14	9320	12400	8370	16000	14300	12100	13200	5470	8610	15700	15000	2270
15	8770	10300	8410	15900	13500	11800	12900	947	8840	16100	14600	3020
16	8570	9390	7500	15300	13600	11900	12600	831	7410	16600	14400	4300
17	8440	9060	6650	15100	14000	11900	12500	1540	7250	17200	11200	4780
18	8350	8850	7690	14800	14200	12000	12500	2550	6960	17400	7820	5550
19	8150	8780	8120	14700	15100	12200	12600	3640	7080	18200	2700	6320
20	8080	8760	9700	14100	15800	12000	12300	4450	1150	18300	4090	6640
21	8000	9600	10200	14300	13300	11900	12200	5150	880	18700	4990	6990
22	7980	10900	10500	13100	12800	12000	12400	1110	692	19000	5190	7230
23	7950	11600	9870	14100	13800	12100	12500	2340	1210	19100	5900	805
24	7970	10400	9490	10700	14600	12300	12300	4610	2550	19200	6650	713
25	7950	9820	12500	12500	14500	11600	12100	6430	3770	19000	7070	600
26	7900	9440	15000	12600	14800	11100	12200	6810	4260	18900	7470	827
27	7850	9300	17500	13700	15400	12000	13000	7660	4730	18200	7750	1290
28	7760	9180	16300	14700	15000	11300	13900	7750	5330	18000	8230	674
29	7740	91.70	16000	12700	14900	12100	15700	7890	6500	17800	8600	519
30	8500	9210	16600	10300		12300	14900	8740	7440	17600	9110	802
31	12700		13000	8580		12400		9630	777	17900	9590	
MEAN	8710	8880	10400	14000	14300	12500	12800	7320	6640	15500	12000	4810

08123800 BEALS CREEK NEAR WESTBROOK, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

			TENT ENATO.	KE, WAIEK		NCE-DAILY	LIN OUTOD	DK 1373 I	0 001 1010	,,,,,		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	26.0 20.0 23.0 19.0 18.0	11.0 10.0 12.0 17.0 16.0	4.0 5.0 6.0 8.0	10.0 12.0 8.0 7.0 7.0	3.0 12.0 9.0 9.0	5.0 7.0 12.0 15.0	13.0 22.0 23.0 16.0 20.0	19.0 19.0 20.0 23.0 26.0	28.0 25.0 25.0 26.0 27.0	30.0 29.0 27.0 27.0 26.0	26.0 26.0 27.0 27.0	26.0 30.0 27.0 25.0 25.0
6 7 8 9	19.0 25.0 22.0 20.0 16.0	12.0 13.0 13.0 16.0 11.0	10.0 10.0 10.0 9.0	11.0 6.0 6.0 6.0 12.0	9.0 11.0 8.0 3.0 5.0	11.0 13.0 14.0 15.0	20.0 18.0 15.0 15.0 17.0	22.0 29.0 21.0 20.0 22.0	27.0 27.0 24.0 24.0	27.0 28.0 28.0 27.0 33.0	30.0 32.0 28.0 29.0	26.0 27.0 24.0 23.0 26.0
11 12 13 14 15	22.0 19.0 17.0 21.0 21.0	14.0 15.0 9.0 8.0 8.0	15.0 8.0 8.0 6.0 8.0	9.0 8.0 11.0 12.0	6.0 5.0 13.0 15.0	14.0 14.0 12.0 16.0	23.0 12.0 12.0 15.0	27.0 22.0 20.0 20.0 20.0	23.0 26.0 26.0 25.0 30.0	26.0 28.0 30.0 32.0 28.0	25.0 30.0 31.0 27.0 31.0	27.0 25.0 26.0 29.0 26.0
16 17 18 19 20	20.0 20.0 21.0 22.0 22.0	9.0 12.0 16.0 17.0 19.0	5.0 2.0 2.0 6.0 10.0	12.0 12.0 12.0 14.0 10.0	7.0 5.0 12.0 14.0	18.0 12.0 15.0 13.0 14.0	15.0 18.0 15.0 18.0 28.0	18.0 21.0 24.0 23.0	27.0 27.0 28.0 31.0 17.0	28.0 33.0 30.0 32.0 26.0	31.0 26.0 26.0 25.0 27.0	28.0 23.0 24.0 29.0 25.0
21 22 23 24 25	26.0 17.0 14.0 14.0 13.0	12.0 8.0 9.0 8.0	10.0 14.0 14.0 9.0	9.0 7.0 5.0 6.0 8.0	16.0 18.0 12.0 10.0	14.0 15.0 19.0 13.0 18.0	20.0 20.0 22.0 25.0 18.0	23.0 18.0 21.0 23.0 29.0	27.0 25.0 27.0 27.0 28.0	31.0 29.0 30.0 32.0 28.0	30.0 27.0 28.0 30.0 27.0	24.0 25.0 20.0 20.0 21.0
26 27 28 29 30 31	15.0 17.0 20.0 18.0 18.0	8.0 9.0 7.0 4.0 4.0	11.0 11.0 11.0 9.0 10.0 7.0	6.0 5.0 5.0 3.0 5.0 2.0	10.0 14.0 14.0 16.0	15.0 17.0 14.0 15.0 21.0	16.0 18.0 25.0 21.0	24.0 24.0 23.0 25.0 26.0 25.0	28.0 28.0 26.0 28.0	27.0 30.0 32.0 25.0 27.0 32.0	30.0 27.0 31.0 27.0 29.0 31.0	21.0 20.0 17.0 18.0 20.0
MEAN	19.5	11.5	8.5	8.0	10.5	14.0	18.5	22.5	26.5	29.0	28.5	24.0

08123850 COLORADO RIVER ABOVE SILVER, TX (National stream-quality accounting network)

LOCATION.--Lat 32°03'37", long 100°45'56", Coke County, Hydrologic Unit 12080008, on right bank 25 ft (7.6 m) downstream from a Pan American Oil Co. bridge, 4.7 mi (7.6 km) west of Silver, and at mile 756.6 (1,217.3 km).

DRAINAGE AREA.--15,407 mi² (39,904 km²), of which 11,600 mi² (30,000 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1967 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,907.66 ft (581.455 m) National Geodetic Vertical Datum of 1929. Prior to Oct. 4, 1972, water-stage recorder at site 0.5 mi (0.8 km) downstream at same datum.

REMARKS.--Water-discharge records good. Low flow is affected by upstream diversions, see stations 08121000 and 08123650. Some regulation by Lake J. B. Thomas, Lake Colorado City, and Champion Creek Reservoir (see stations 08118000, 08123000, and 08123600).

AVERAGE DISCHARGE.--13 years, 70.8 ft3/s (2.005 m3/s), 51,290 acre-ft/yr (63.2 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 18,900 $\rm ft^3/s$ (535 $\rm m^3/s$) Sept. 9, 1980, gage height, 22.73 ft (6.928 $\rm m$); no flow at times.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 18,900 ft 3 /s (535 m 3 /s) Sept. 9 at 1430 hours, gage height, 22.73 ft (6.928 m); no flow at times.

		DISC	CHARGE, IN	CUBIC FE		COND, WAT		OCTOBER 1	979 To SEI	TEMBER 1	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.1 .68 .40 .40	1.5 7.6 9.0 9.2 5.6	2.4 2.4 2.8 2.8 3.0	6.7 7.3 5.9 5.8 5.8	6.6 5.8 6.2 6.4 5.5	3.3 5.5 7.1 6.6 5.8	2.7 2.8 1.9 1.7 2.3	2.9 1.9 2.1 3.6 2.9	19 17 16 14 13	14 13 11 9.4 7.1	.00 .00 .00 .00	.67 .24 .09 .03
6 7 8 9	.40 .40 .30 .15	4.1 4.0 3.7 3.3 3.6	3.0 4.4 4.4 4.4 5.1	6.1 5.1 5.1 5.1 6.6	6.6 7.7 6.3 7.6 8.1	6.1 5.0 5.3 5.1 4.8	2.4 2.0 1.7 2.4 2.8	2.4 4.6 7.3 12	11 9.6 13 27 63	5.6 3.7 3.3 2.8 2.4	.00 .00 .00	.00 .00 .00 9220 4370
11 12 13 14 15	.25 .44 .26 .36	4.6 6.0 6.9 5.6 4.4	5.1 7.3 9.8 13 23	5.8 5.1 5.8 5.8 5.1	9.0 8.1 12 11 8.0	6.0 5.6 5.1 6.9 6.6	2.8 2.8 2.4 2.0 1.4	9.2 6.2 3.8 3.1 7.2	59 107 156 93 59	2.0 1.7 1.1 .68 .52	.00 .00 .00	3610 1040 568 255 108
16 17 18 19 20	1.4 2.4 3.0 2.8 2.9	4.4 5.1 5.8 5.8 7.3	24 24 14 11 10	5.1 5.1 6.6 5.8 5.1	3.9 5.1 5.8 5.7 5.5	7.6 4.0 4.3 3.8 2.7	1.9 .94 1.4 2.2 2.3	281 5340 4580 945 232	42 31 25 21 34	.29 .11 .07 .05	.03 292 40 42 100	71 56 50 44 39
21 22 23 24 25	2.8 1.4 1.4 1.5	5.8 4.4 4.4 4.4 3.8	8.9 8.1 7.2 6.6 7.0	5.1 8.1 9.0 10 27	4.9 5.2 5.1 4.6 4.1	3.9 3.9 2.7 2.2 2.8	2.2 2.2 2.0 2.6 1.6	97 195 390 81 51	433 87 153 206 53	.03 .05 .05 .03	43 24 15 10 7.4	34 31 1410 816 1130
26 27 28 29 30 31	1.7 1.2 .88 1.4 2.6	5.1 2.8 2.4 2.4 2.4	16 16 13 10 7.4 7.1	17 11 9.5 7.4 7.1 6.6	5.6 5.8 6.0 5.1	2.8 3.2 9.8 4.5 4.4 5.4	1.4 1.4 1.4 4.2 4.0	40 34 30 26 23 20	23 21 20 18 16	.02 .02 .01 .01 .01	5.6 3.8 2.9 2.5 1.9	1840 2240 2270 10500 15900
TOTAL MEAN MAX MIN AC-FT	37.24 1.20 3.0 .15 74	145.4 4.85 9.2 1.5 288	283.2 9.14 24 2.4 562	232.6 7.50 27 5.1 461	187.3 6.46 12 3.9 372	152.8 4.93 9.8 2.2 303	65.84 2.19 4.2 .94 131	12445.2 401 5340 1.9 24690	1859.6 62.0 433 9.6 3690	79.11 2.55 14 .00 157	591.33 19.1 292 .00 1170	55603.05 1853 15900 .00 110300

CAL YR 1979 TOTAL 19899.97 MEAN 54.5 MAX 2700 MIN .10 AC-FT 39470 WTR YR 1980 TOTAL 71682.67 MEAN 196 MAX 15900 MIN .00 AC-FT 142200

53 08123850 COLORADO RIVER ABOVE SILVER, TX--Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: December 1967 to current year. Pesticide analyses: October 1970 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: December 1967 to current year. WATER TEMPERATURES: December 1967 to current year.

INSTRUMENTATION .-- Specific conductance is recorded continuously at this station.

SPE-

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC COMDUCTANCE: Maximum daily, 14,500 micromhos Dec. 30, 1978; minimum daily, 235 micromhos Aug. 10, 1974.
WATER TEMPERATURES (1967-1979): Maximum daily, 30.0°C Aug. 10, 14, 1979; minimum daily, 0.0°C on many days during winter months.

EXTREMES FOR CURRENT YEAR.-- SPECIFIC CONDUCTANCE: Maximum daily, 13,800 micromhos Nov. 3; minimum daily, 255 micromhos Sept. 9.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

OXYGEN,

COLI-

STREP-

1	OCT 02 NOV 06 DEC 04 JAN 22 FEB 19 MAR 18 APR 15	1100 0950 1030 1200 1045 1035	1.1 5.1 5.8 16	5260 13500 7000	7.5 8.2	20.0	45	6.4				
1	NOV 06 DEC 04 JAN 22 FEB 19 MAR 18 APR 15	0950 1030 1200 1045	5.1	13500			45			10	71	1.00
1	DEC 04 JAN 22 FEB 19 MAR 18 APR 15	1030 1200 1045	5.8		8.2				85	10	61	460
1	04 JAN 22 FEB 19 MAR 18 APR	1200 1045		7000		12.5	11	10.5	108	10	82	70
1	22 FEB 19 MAR 18 APR	1045	16		8.1	6.0	6.0	12.3	106	6.5	К3	K1 2
1	19 MAR 18 APR 15			9680	8.6	6.0	19	14.3	127	7.0		85
	18 APR 15	1035	9.0	11350	8.7	11.0	19	13.8	139	13	30	35
	15	1033	5.1	12000	8.7	12.0	17	15.7	160	9.3	K1	190
		1100	1.4	11900	8.8	20.0	18	13.9	167	6.8	K4	30
1	MAY 20	1100	228	2600	7.6	21.0	480	6.8	82	3.0	480	3500
	JUN 03	1045	18	6900	8.1	24.0	60	8.6	112	4.8	88	360
	JUL			5820			21	10.6		12		
	16 AUG	1400	.30		8.8	30.0			151		130	46
	19 SEP	1115	10	1012	7.5	25.0	130	7.8	100	4.2	1100	880
	16	1100	72	2600	7.6	24.5	80	8.6	109	2.3	1500	1000
	DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
	OCT 02	1400	1300	340	130	600	7.0	17	98	0	1100	1100
1	NOV 06	2900	2800	450	440	1900	15	42	130	0	2300	3400
	DEC 04	1600	1400	330	180	900	9.9	24	180	0	1200	1400
	JAN 22	2200	2000	340	320	1500	14	2.5	160	14	1800	2500
1	FEB 19	2400	2300	310	400	1700	15	28	120	22	2000	2900
1	MAR											
	18 APR	2900	2800	450	440	2000	16	38	74	22	2400	3400
1	15 MAY	2800	2700	500	380	1800	15	33	58	12	2400	3000
	20 JUN	500	390	130	42	360	7.0	10	140	0	340	580
	03 JUL	1400	1300	300	160	1100	13	16	160	0	1100	1700
	16	1300	1200	290	130	860	11	18	48	6	1000	1300
	AUG 19	260	190	74	19	93	2.5	7.8	84	0	170	160
	16	520	400	120	53	320	6.1	8.3	140	0	340	540

08123850 COLORADO RIVER ABOVE SILVER, TX--Continued

DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)
OCT 02	.6	5.2	3590	3340	.00	.040	.02		.080		1.3
NOV 06	.5	3.5	9650	8600			.02	.02	.250	.100	2.1
DEC 04	.6	2.5	4360	4130		.23	.01	.01	.130	.050	.74
JAN 22	.5	.4	6770	6560			.02	.01	.040	.040	.64
FEB 19	.7	.1	7680	7420			.03	.02	.040	.030	1.8
MAR 18	.6	.1	8840	8790			.02	.01	.180	.120	1.6
APR 15	.6	1.9	8880	8160		2.	.01	.01	.230	.080	1.9
MAY						-	.60	.34	.220	.090	1.2
20 JUN	.4	11	1550	1540							
03 JUL	.3	3.6	4670	4470			.01	.01	.010	.010	1.4
16 AUG	.7	15	4040	3640			.04	.04	.140	.060	2.4
19 SEP	.3	6.7	572	574			.41	.39	.220	.220	1.1
16	.4	8.9	1560	1460			.40	.27	.040	.020	1.3
DATE	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT				120	010		6.0	4.3	73	,22	99
02 NOV		1.4	1.1	.130	.010		6.8	4.3			
06 DEC	1.6	2.3	1.7	.070	.010	25	77		31	.43	99
04 JAN	.77	.87	.82	.030	.010	8.7		122	16	.25	97
22 FEB	.96	.68	1.0	.280	.040	13			34	1.5	98
19 MAR	.85	1.8	.88	.550	.250	77	16	1.3	41	1.0	100
18 APR	1.1	1.8	1.2	.210	.070	18			27	.37	97
15 MAY	2.1	2.1	2.2	.180	.050	16			27	.10	99
20 JUN	1.2	1.4	1.3	.230	.170	16			896	552	74
03	.86	1.4	.87	.160	.010	24	7.4	4.7	85	4.3	100
JUL 16	1.0	2.5	1.1	.160	.020	19		44	58	.05	98
AUG 19	1.3	1.3	1.5	.150	.040	77	8.3	1.1	126	3.6	99
SEP 16	.92	1.3	.94	.240	.140	7.8			85	17	100
DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BARIUM, SUS- PENDED RECOV- ERABLE (UG/L AS BA)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
OCT	1100	^			200		200	0	0	1	10
02 NOV	1100	3	0	3	200	0	300	0			
06 FEB	0950						2.2				
19 MAR	1045	5	1	4	400	300	100	2	2	0	20
18 JUN	1035	77	175	77			7-5	1			
03 JUL	1045	5	1	4	600	200	400	0	0	0	20
16 AUG	1400					32					
19	1115	3	0	3	200	100	100	0		<1	0
SEP 16	1100		1-	1.0			194		77	77	9

COLORADO RIVER BASIN 55

DATE	1	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBAL TOTA RECO ERAB (UG/ AS C	T, SI L PEI V- RI LE EI L (1	BALT, US- NDED ECOV- RABLE UG/L S CO)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPI TOTA RECO ERAI (UG) AS (ER, AL OV- BLE 'L	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)		DIS- SOLVED (UG/L
OCT												19.54		
02 NOV		10	0		0	0	0		1	1	0	1200		10
06 FEB														1 -
19		20	0		0	0	0		5	5	0	440	400	40
MAR 18							1.22							-
JUN 03		20	0		5	5	0		9	0	20	1500	610	890
JUL 16														
AUG		0	0		3		<3		5	4	1	2600	2600	20
19 SEP		U	U		3		(3		,	4				
16							195						•	
DATE		LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD. SUS- PENDED RECOV- ERABLE (UG/L AS PB)	DIS	PED E	ANGA- ESE, OTAL ECOV- RABLE UG/L S MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANO NESI DIS	E, S- /ED /L	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY SUS- PENDED RECOV- ERABLE (UG/L AS HG)	MERCURY DIS-	RECOV- ERABLI (UG/L	PENDED RECOV- E ERABLE (UG/L
OCT											ò			
NOV.	•	4	4		0	490	370		120	.2	.0	.4		
06 FEB														
19 MAR		0	0		3	120	40		80	.2	.0	.2	4	4
18 JUN		-4	124		22		12-		22				÷.	
03		8	8		0	300	260		40	.0	.0	.1	1/2	5
JUL 16													++	
AUG 19		5	5		0	180	140		40	.0	.0	.0	10) 10
SEP 16					-2								4.	
		NICK	- N	ELE- IUM,	SELE- NIUM, SUS- PENDE	D D	UM, T IS- R	LVER, OTAL ECOV-	SILV SU: PEN: REC	S- DED SII OV- I	VER, T	INC, OTAL P ECOV- R	ECOV-	INC, DIS-
	DAT	(UG	G/L (OTAL UG/L S SE)	TOTAL (UG/L AS SE	(U	G/L (RABLE UG/L S AG)	ERA (UG AS	/L (L	IG/L (UG/L (UG/L (SOLVED (UG/L AS ZN)
	OCT 02.			0	-	0	0	0		0	0	10	0	30
	NOV 06.				-	-		0		24	1.4	44		
	FEB 19.		0	1	- 3	0	1	0		0	0	20	10	10
	MAR 18.				-	_		0					42	
	JUN 03.		6	1		0	1	3		3	0	50	20	30
	JUL							0						
	16. AUG													
	19. SEP		0	0		0	0	0		0	0	20		<3
	16.				-	-		0		**				

COLORADO RIVER BASIN

08123850 COLORADO RIVER ABOVE SILVER, TX--Continued

DATE	TIME	PCB TOTAL (UG/L)	NAPH THA LENE POI CHLO TOTA (UG/	S, Y- OR.	ALDRIN, TOTAL (UG/L)	CHL DAN TOT (UG	E, AL	DDD, TOTAL (UG/L)	TOT	E, AL (/L)	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)
OCT 02	1100	.00			.00		.0	.00		.00	.00	.00
FEB 19	1045	.00		00	.00		.0	.00		.00	.00	.03
JUN	1045	.00		00	.00		.0	.00		.00	.00	.02
03 AUG							.0	.00		.00	.00	.00
19,	1115	.00		00	.00		.0	.00		.00	.00	.00
DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRI TOTA (UG/	L	ETHION, TOTAL (UG/L)	HEP CHL TOT (UG	OR,	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LIND TOT (UG		MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)
OCT 02	.00	.00		00	.00		.00	.00		.00	.00	.00
FEB 19	.00	.00		00	.00		.00	.00		.00	.00	.00
JUN 03	.00	.00		00	.00		.00	.00		.00	.00	.00
AUG 19	.00	.00		.00	.00		.00	.00		.00	.00	.00
DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIRE TOT (UG)	AL	PARA- THION, TOTAL (UG/L)	APHE		TOTAL TRI- THION (UG/L)	TOT	-D, TAL G/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
	(06/1)	(00/1)	(00)	1)	(00/1)	(00	14)	(00/12)	(00	,, ,,	(00/2)	(00/2/
02 FEB	.00	.00		.00	.00		0	.00		.00	.00	.00
19 JUN	.00	.00		.00	.00		0	.00		.01	.00	.00
03 AUG	.00	.00		.00	.00		0	.00		.03	.00	.00
19	.00	.00		.00	.00		0	.00		.07	.23	.00
	1	E	NGTH OF KPO- SURE DAYS)	BIO A: WE	RI- PH YTON BIO MASS TO SH I IGHT WE	ERI- HYTON MASS OTAL ORY EIGHT	PH PH CHR GRA FLU	RI- P YTON P OMO- CH PHIC GR OROM FL	LOR-B ERI- HYTON ROMO- APHIC UOROM G/M2)	CHI PH RA PE PH	MASS ORO- IYLL TIO CRI- IYTON UITS)	
	OC C MA	2	28	2	.44 2	2.76	8	.12	1.82	3	39.4	
		8	28	14	.8 16	. 1	16	.1	2.12	8	30.7	
		5	28	27	.0 29	.4	19	. 9	2.04	12	1	

08123850 COLORADO RIVER ABOVE SILVER, TX--Continued PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

DATE TIME		6,79 1950		18,80 035		20,80 100		3,80 045
TOTAL CELLS/ML	86	000	27	000	2	500	86	000
DIVERSITY: DIVISION .CLASSORDERFAMILYGENUS		0.5 0.5 0.8 1.2		0.7 0.7 1.0 1.0		1.5 1.5 1.8 2.0 2.1		1.4 1.4 2.0 2.9 3.4
ORGANISM	CELLS	PER-	CELLS	PER-	CELLS	PER-	CELLS	PER-
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE .CHLOROCOCCALESCOELASTRACEAE	/ML	CENT	/ML	CENT	/ML	CENT	/ML	CENT
COELASTRUM OOCYSTACEAE		13		-	100	11.2	===	-
ANKISTRODESMUS DICTYOSPHAERIUM	7000	8	1500	6	72	3	1000 5500	6
KIRCHNERIELLA OOCYSTIS	620	1		-	290	11	2700	3
SELENASTRUM TETRAEDRON	137		660	2	22	-		5
TREUBARIA SCENEDESMACEAE		-				-	690	1
CRUCIGENIA SCENEDESMUS	*	ō			72	3	4100 4800	5
TETRASTRUM TETRASPORALES PALMELLACEAE		-		-		3		-
SPHAEROCYSTIS VOLVOCALES		-		0+0	1.54	-	1.440	
CHLAMYDOMONADACEAE CHLAMYDOMONAS	470	1		-		-	*	0
CHRYSOPHYTA .BACILLARIOPHYCEAECENTRALESCHAETOCERACEAE								
CHAETOCEROS COSCINODISCACEAE	77	-		-		-	1700	2
CYCLOTELLA MELOSIRA	25		22000#	81	290	11	10000	12
RHIZOSOLENIACEAE	12		77	0.50	22	7		
RHIZOSOLENIA PENNALES ACHNANTHACEAE COCCONEIS	-	1					15000#	10
NAVICULACEAE DIPLONEIS					-			
ENTOMONEIS		2		2	4.4	-	690	1
NAVICULA NITZSCHIACEAE		-	440		140	6		-
NITZSCHIA SURIRELLACEAE		-	880	3	140	6	17000#	
SURIRELLA .XANTHOPHYCEAE				-	-	•	3800	4
HETEROCOCCALES CHLOROTHECIACEAE OPHIOCYTIUM	144	4	11	2		-	1122	1.2
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAE CRYPTOMONADALES								
CRYPTOMONADACEAE CRYPTOMONAS	144	4		-	044	n Jan	1.44	12
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE CHROOCOCCALES								
CHROOCOCCACEAE AGMENELLUM	1.77	51		5.0		CBst		
ANACYSTISHORMOGONALESNOSTOCACEAE	2800	3	660	2				-
ANABAENOPSIS	5300	6		-2		-		-
APHANIZOMENONOSCILLATORIACEAE	3100	4	75		77	-	1.55	-
LYNGBYA OSCILLATORIA	14000# 52000#			-	1400#	57	3400 14000#	16
SPIRULINA RIVULARIACEAE		-				-		-
RAPHIDIOPSIS EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAE .EUGLENALES	7.7		-	-		-		
EUGLENACEAE EUGLENA		-	220	1	72	3	1.2	
TRACHELOMONAS		-		-		-	*	0
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAE .PERIDINIALESGLENODINIACEAE								
GLENODINIUM	780	1				-		-

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

58

08123850 COLORADO RIVER ABOVE SILVER, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

DATE		16,80		19,80 115		16,80	
TOTAL CELLS/ML	5400	0000	20	0000	32	000	
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS			1.2 1.2 2.0 2.6 3.0	1.7 1.7 2.1 2.4 3.1			
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	
CHLOROPHYTA (GREEN ALGAE)	71112	CENT	/ CIL	CENT	/ FIL	GENT	
.CHLOROPHYCEAE CHLOROCOCCALES COELASTRACEAE							
COELASTRUM OOCYSTACEAE		-	390	2		-	
ANKISTRODESMUS DICTYOSPHAERIUM	*	0	690	3	2200 720	7 2	
KIRCHNERIELLA		-		-	540	2	
OOCYSTIS SELENASTRUM		-	200	1	720	2	
TETRAEDRON		-	*	0		-	
TREUBARIA SCENEDESMACEAE		-		-		-	
CRUCIGENIA SCENEDESMUS	*	0	390	2	1100	3	
TETRASTRUM		-	790	4	2900	9	
TETRASPORALES PALMELLACEAE SPHAEROCYSTIS		12.		-	360	1	
VOLVOCALES CHLAMYDOMONADACEAE							
CHLAMYDOMONAS	1	-		-		-	
CHRYSOPHYTA .BACILLARIOPHYCEAECENTRALES							
CHAETOCERACEAE	142	4		1.25		-	
COSCINODISCACEAE	*	0	1200		0200#	20	
CYCLOTELLA MELOSIRA	- 12	0	340	6	9200# 2300	7	
RHIZOSOLENIACEAE RHIZOSOLENIA PENNALES	1-4	-		4		=	
COCCONEIS		-	*	0	44	-	
DIPLONEIS	102	-	*	0		4	
ENTOMONEIS	*	0		-		-	
NAVICULA NITZSCHIACEAE	,	0	200	1		-	
NITZSCHIA SURIRELLACEAE	*	0	840	4	720	2	
SURIRELLA .XANTHOPHYCEAE HETEROCOCCALES		-	77		7.7	-	
CHLOROTHECIACEAE					190	1	
OPHIOCYTIUM		-			180		
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAE CRYPTOMONADALES							
CRYPTOMONADACEAE CRYPTOMONAS	44	-	2.2	9	180	1	
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE CHROOCOCCALES							
CHROOCOCCACEAE	130000	2	5500#	27	1400	5	
AGMENELLUM ANACYSTIS	230000	4	1500	7	7000#		
HORMOGONALES NOSTOCACEAE							
ANABAENA	610000	11	1000	-	1800	6	
ANABAENOPSIS	2100000#	38	1300 250	7		-	
OSCILLATORIACEAE	550000	10				_	
OSCILLATORIA	1400000#		6100#	30		-	
SPIRULINA RIVULARIACEAE	64000	1		-	77	-	
RAPHIDIOPSIS	260000	5				4	
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALES							
EUGLENACEAE EUGLENA	*	0	250	1	20	13	
TRACHELOMONAS	7.7	-	*	Ó	180	ī	
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAE PERIDINIALES							
GLENODINIACEAE							
,GLENODINIUM		-					

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

08123850 COLORADO RIVER ABOVE SILVER, TX--Continued MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	37.24	7500	4920	494	1800	182	1400	136	1700
NOV.	1979	145.4	9940	6650	2610	2500	978	1800	723	2200
DEC.	1979	283.2	7820	5110	3910	1900	1440	1400	1080	1700
JAN.	1980	232.6	11200	7560	4750	2900	1790	2100	1320	*
FEB.	1980	187.3	10700	7200	3640	2700	1370	2000	1010	*
MAR.	1980	152.8	12000	8140	3360	3100	1270	2300	935	*
APR.	1980	65.84	11800	8010	1420	3000	540	2200	396	*
MAY	1980	12445.2	1010	631	21200	220	7480	170	5750	220
JUNE	1980	1859.6	3610	2300	11500	820	4140	630	3150	790
JULY	1980	79.11	4620	2930	626	1100	224	800	171	1000
AUG.	1980	591.33	2230	1390	2220	490	783	380	602	480
SEPT	1980	55603.05	603	369	55400	130	19100	99	14900	130
TOTAL		71682.67	**	**	111000	**	39300	**	30200	**
WTD. AVG		196	916	574	**	200	**	160	**	200

		SPECIFIC	CONDUCTA	NCE (MICRO		AT 25 DEG. MEAN VALU	C), WATER	YEAR OCT	OBER 1979	TO SEPTEME	BER 1980	
DAY	oca	no No	DV DE	C JAN	FEE	B MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5100		00 670	0 8550	11500	10900	8940	13100	6800	4040		5330
2	5070	1230	0 656	9040	12100	11200	8020	13000	6950	4170		5010
3	5130			8940	11000	11600		12900	7090	4350		5640
4	5190				10600			12500	7100	4470		6080
5	5230	1320	00 715	11300	10400	11500	11100	13200	7120	4680		6000
6	5270				10500			13600	7330	4840	222	
7	5360				10000			12800	7410	5020		
8	5450				10100			13600	6890	5170		
9	5750				10200			13700	6470	5300		255
10	5650	1020	0 8750	12300	10500	12000	12100	13100	7730	5480		473
11	5480	1010	0 8590	12700	10800	12200	12200	13000	8230	5620		466
12	5760	1000			10600			13100	5350	5780	-22	885
13	5780		0 7530	12500	9480	11800		13200	4800	5940		1290
14	5730				8940	11700	11900	13400	4950	6090		1700
15	5680	896	0 7010	12100	8720	12100	11700	13000	5090	6250		2110
16	5660				9500		12000	4770	5210	6450	8500	2540
17	5820				10200			545	4700	6780	1430	2900
18	5950				10900			610	3960	6880	1000	3450
19	6080				12400			1000	4290	6940	1110	3790
20	6380	837	0 7700	10000	12600	12700	12300	2680	4280	7020	3920	3910
21	6850				12400		12500	3680	2310	7090	2990	4500
22	7450				11800			2670	1500	7130	3440	4840
23	8200				12000		12400	1890	856	7210	3700	749
24	8820				11900			2950	1110	7270	3940	1000
25	9460	900	0 8050	12000	11800	12900	12600	3600	2880	7380	4190	904
26	9870				11900		12900	4050	3160	7440	4530	1160
27	10300				11900		12800	4230	3480	7550	4510	746
28	10700				10400		12700	4800	3610	7660	4700	800
29	10900				10700		12800	5540	3750	7790	4850	481
30	10800						13200	6390	3870	7880	5010	656
31	11300		- 8130	11500		11500	***	6650			5180	
MEAN	6970	978	0 7830	11200	10900	12100	11800	8170	4940	6190	3940	2510

COLORADO RIVER BASIN

08123850 COLORADO RIVER ABOVE SILVER, TX--Continued

60

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

		TEMPERATURE	WAIER	(DEG.			DEK 1979	10 SEPTEMBER	1960		
OCT	NOV	DEC	JAN	FER	3 MAR	APR	MAY	JUN	JUL	AUG	SEP
22 0		4.0				21.0	18.0		28.0		24.0
								24.0			24.0
											29.0
											28.0
	15.0						20.0	25.0			32.0
10.0	12.0	7.0		10.0	12.0	. La des	21 0	26.0			
											22.0
15.0	10.0		12.0		17.0	21.0		20.0	23.0		22.0
17.0		6.0	10.0	8.0	12.0	18.0		27.0	26.0		24.0
							20.0	25.0			24.0
								28.0			
						13.0					
19.0	9.0		12.0			16.0	18.0		25.0		26.0
10 0			12.0			20.0	18.0	26.0	26.0	25.0	26.0
					9.0					25.0	24.0
							18.0				25.0
											27.0
							20.0	25.0		27.0	
				7.		20.0	0.0	00.0	07.0	21 0	
											19.0
	10.0	7.0									
13.0			10.0	10.0	15.0	18.0		29.0	25.0	33.0	20.0
15.0	8.0	10.0		10.0	15.0	14.0	22.0	28.0		31.0	20.0
12.0	8.0	9.0		12.0	15.0			29.0			
1-1		10.0	3.0	15.0	23.0	17.0	21.0		26.0		
18.0	5.0		.0			17.0	25.0			26.0	16.0
			3.0			20.0	27.0	28.0	26.0		17.0
12.0		12.0	.0		13.0						
17.5	11.0	7.0	6.5	10.0	13.5	18.5	21.0	26.5	26.0	28.0	23.5
	22.0 20.0 18.0 19.0 18.0 15.0 17.0 19.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 13.0 14.0 13.0 14.0 15.0 17.0 19	22.0	OCT NOV DEC 22.0 4.0 20.0 14.0 18.0 11.0 5.0 19.0 8.0 5.0 15.0 18.0 12.0 7.0 15.0 7.0 13.0 15.0 10.0 17.0 10.0 4.0 4.0 19.0 8.0 17.0 10.0 4.0 4.0 19.0 9.0 19.0 7.0 20.0 15.0 8.0 9.0 20.0 17.0 9.0 11.0 10.0 19.0 15.0 8.0 20.0 15.0 8.0 20.0 15.0 8.0 20.0 15.0 8.0 20.0 15.0 8.0 20.0 15.0 8.0 20.0 17.0 9.0 11.0 10.0 19.0 12.0 13.0 20.0 14.0 10.0 7.0 13.0 20.0 15.0 8.0 10.0 12.0 8.0 9.0 10.0 18.0 5.0 17.0 3.0 17.0 3.0 17.0 3.0 12.0	OCT NOV DEC JAN 22.0 4.0 8.0 18.0 11.0 5.0 19.0 8.0 5.0 8.0 15.0 7.0 5.0 20.0 12.0 7.0 5.0 20.0 12.0 7.0 5.0 20.0 12.0 7.0 5.0 15.0 10.0 12.0 17.0 8.0 12.0 19.0 8.0 12.0 19.0 8.0 12.0 19.0 8.0 12.0 19.0 8.0 12.0 20.0 15.0 9.0 12.0 20.0 15.0 8.0 12.0 20.0 15.0 8.0 12.0 20.0 15.0 8.0 12.0 20.0 15.0 8.0 12.0 20.0 15.0 8.0 12.0 20.0 15.0 8.0 12.0 20.0 15.0 8.0 12.0 20.0 15.0 8.0 12.0 20.0 15.0 8.0 12.0 20.0 15.0 8.0 12.0 20.0 15.0 8.0 12.0 20.0 15.0 8.0 12.0 20.0 15.0 8.0 12.0 20.0 15.0 8.0 2.0 20.0 15.0 8.0 2.0 20.0 15.0 8.0 2.0 20.0 15.0 8.0 2.0 20.0 15.0 8.0 9.0 2.0 20.0 8.0 9.0 3.0 20.0 3.0 3.0	OCT NOV DEC JAN FER 22.0 4.0 .0 20.0 14.0 8.0 18.0 11.0 5.0 8.0 12.0 15.0 8.0 18.0 12.0 7.0 10.6 7.0 5.0 5.0 20.0 12.0 7.0 5.0 4.0 13.0 7.0 15.0 10.0 12.0 17.0 10.0 4.0 11.0 19.0 8.0 4.0 19.0 9.0 12.0 15.0 20.0 15.0 0 9.0 20.0 15.0 0 9.0 20.0 15.0 8.0 12.0 20.0	ORCE-DAIL OCT NOV DEC JAN FEB MAR 22.0 4.00 20.0 14.0 8.0 5.0 19.0 8.0 5.0 8.0 12.0 12.0 19.0 8.0 5.0 8.0 12.0 12.0 19.0 8.0 5.0 5.0 5.0 16.0 18.0 12.0 7.0 10.0 12.0 18.0 12.0 7.0 5.0 5.0 16.0 18.0 12.0 7.0 5.0 4.0 13.0 7.0 5.0 4.0 15.0 10.0 12.0 17.0 17.0 10.0 4.0 12.0 17.0 19.0 8.0 4.0 12.0 17.0 10.0 4.0 11.0 12.0 17.0 10.0 4.0 12.0 15.0 12.0 19.0 9.0 12.0 15.0 19.0 9.0 12.0 15.0 19.0 15.0 0 9.0 9.0 20.0 15.0 8.0 9.0 9.0 20.0 15.0 8.0 12.0 11.0 20.0 17.0 9.0 17.0 14.0 19.0 10.0 10.0 6.0 13.0 16.0 19.0 10.0 10.0 6.0 13.0 16.0 19.0 10.0 10.0 10.0 15.0 19.0 10.0 10.0 10.0 15.0 19.0 10.0 10.0 10.0 15.0 19.0 10.0 10.0 15.0 10.0 15.0 19.0 10.0 10.0 15.0 15.0 15.0 15.0 15.0 15	OCT NOV DEC JAN FEB MAR APR 22.0 4.00 21.0 20.0 14.0 8.0 5.0 22.0 19.0 8.0 5.0 8.0 12.0 12.0 17.0 15.0 8.0 13.0 18.0 12.0 7.0 10.0 12.0 20.0 12.0 7.0 5.0 5.0 16.0 20.0 20.0 12.0 7.0 5.0 4.0 15.0 20.0 12.0 7.0 5.0 4.0 16.0 15.0 10.0 12.0 17.0 21.0 17.0 10.0 4.0 11.0 12.0 17.0 10.0 4.0 11.0 12.0 17.0 10.0 4.0 11.0 12.0 12.0 19.0 9.0 12.0 15.0 16.0 19.0 12.0 15.0 16.0 19.0 15.0 9.0 12.0 15.0 16.0 20.0 15.0 9.0 12.0 15.0 16.0 20.0 15.0 3.0 10.0 12.0 13.0 20.0 15.0 3.0 10.0 12.0 13.0 20.0 15.0 8.0 12.0 15.0 16.0 20.0 15.0 8.0 10.0 10.0 10.0 10.0 10.0 15.0 10.0 20.0 15.0 8.0 12.0 15.0 16.0 20.0 15.0 8.0 10.0 10.0 10.0 15.0 16.0 20.0 20.0 15.0 8.0 10.0 10.0 15.0 11.0 15.0 20.0 15.0 8.0 10.0 10.0 15.0 16.0 20.0 20.0 15.0 8.0 10.0 10.0 15.0 16.0 20.0 20.0 15.0 8.0 10.0 10.0 15.0 16.0 20.0 20.0 15.0 8.0 10.0 10.0 15.0 16.0 20.0 20.0 15.0 8.0 10.0 10.0 15.0 16.0 20.0 20.0 15.0 8.0 10.0 15.0 15.0 15.0 15.0 15.0 15.0 15	OCT NOV DEC JAN FEB MAR APR MAY 22.0 4.00 21.0 18.0 20.0 14.0 8.0 5.0 22.0 19.0 8.0 5.0 8.0 12.0 12.0 17.0 15.0 15.0 2.0 13.0 20.0 18.0 12.0 7.0 10.0 12.0 21.0 18.0 12.0 7.0 5.0 5.0 16.0 20.0 23.0 20.0 12.0 7.0 5.0 4.0 15.0 20.0 20.0 12.0 7.0 5.0 4.0 15.0 20.0 21.0 10.0 12.0 17.0 21.0 19.0 8.0 12.0 17.0 21.0 19.0 8.0 12.0 16.0 18.0 19.0 8.0 12.0 12.0 12.0 13.0 19.0 19.0 9.0 12.0 15.0 12.0 13.0 19.0 19.0 15.0 0 9.0 12.0 15.0 11.0 18.0 19.0 7.0 7.0 5.0 11.0 12.0 20.0 20.0 15.0 0 9.0 12.0 15.0 16.0 18.0 20.0 15.0 8.0 17.0 5.0 11.0 15.0 18.0 20.0 15.0 8.0 17.0 5.0 11.0 15.0 18.0 20.0 15.0 8.0 17.0 5.0 11.0 15.0 18.0 20.0 15.0 8.0 17.0 5.0 11.0 15.0 18.0 20.0 15.0 8.0 12.0 15.0 16.0 18.0 20.0 15.0 8.0 12.0 15.0 20.0 11.0 10.0 4.0 13.0 16.0 20.0 21.0 20.0 15.0 8.0 12.0 15.0 20.0 20.0 15.0 8.0 12.0 15.0 16.0 20.0 21.0 20.0 15.0 8.0 17.0 14.0 20.0 14.0 10.0 7.0 20.0 17.0 24.0 17.0 15.0 8.0 10.0 10.0 15.0 15.0 14.0 22.0 12.0 8.0 9.0 10.0 15.0 15.0 17.0 21.0 18.0 5.0 10.0 3.0 15.0 23.0 17.0 21.0 18.0 5.0 10.0 3.0 15.0 23.0 17.0 21.0 18.0 5.0 10.0 3.0 15.0 23.0 17.0 21.0 18.0 5.0 10.0 3.0 15.0 23.0 17.0 21.0 18.0 5.0 10.0 3.0 15.0 23.0 17.0 21.0 18.0 5.0 10.0 3.0 15.0 23.0 17.0 21.0 18.0 5.0 10.0 3.0 15.0 23.0 17.0 21.0 18.0 5.0 10.0 3.0 15.0 23.0 17.0 21.0	OCT NOV DEC JAN FEB MAR APR MAY JUN 22.0 4.00 21.0 18.0 20.0 14.0 8.05.0 22.0 20.0 24.0 18.0 11.0 5.0 5.0 22.0 25.0 19.0 8.0 5.0 8.0 12.0 12.0 17.0 25.0 15.0 10.0 12.0 20.0 25.0 18.0 12.0 7.0 10.0 12.0 20.0 25.0 18.0 12.0 7.0 5.0 5.0 16.0 20.0 23.0 20.0 12.0 7.0 5.0 4.0 15.0 20.0 13.0 10.0 12.0 17.0 21.0 26.0 17.0 6.0 10.0 8.0 12.0 18.0 26.0 17.0 10.0 4.0 11.0 12.0 22.0 25.0 17.0 10.0 4.0 11.0 12.0 22.0 25.0 17.0 10.0 4.0 11.0 12.0 20.0 25.0 17.0 10.0 4.0 11.0 12.0 20.0 25.0 17.0 10.0 4.0 11.0 12.0 20.0 25.0 17.0 10.0 4.0 11.0 12.0 20.0 25.0 17.0 10.0 4.0 11.0 12.0 20.0 25.0 17.0 10.0 4.0 11.0 12.0 20.0 25.0 17.0 10.0 4.0 10.0 12.0 12.0 13.0 19.0 19.0 9.0 12.0 12.0 13.0 19.0 19.0 9.0 15.0 8.0 12.0 12.0 13.0 19.0 19.0 15.0 8.0 15.0 15.0 16.0 15.0 18.0 19.0 19.0 19.0 15.0 8.0 15.0 15.0 15.0 15.0 18.0 19.0 15.0 18.0 19.0 15.0 18.0 19.0 15.0 18.0 19.0 15.0 18.0 15.0 18.0 15.0 18.0 15.0 18.0 15.0 15.0 18.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15	OCT NOV DEC JAN FEB MAR APR MAY JUN JUL 22.0 4.0 0 21.0 18.0 28.0 20.0 14.0 8.0 23.0 20.0 24.0 28.0 18.0 11.0 5.0 8.0 12.0 12.0 25.0 28.0 15.0 8.0 13.0 20.0 25.0 28.0 15.0 8.0 13.0 20.0 25.0 7.0 5.0 4.0 15.0 20.0 26.0 20.0 12.0 7.0 5.0 4.0 15.0 20.0 26.0 20.0 12.0 7.0 5.0 4.0 15.0 20.0	OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 22.0 4.0 8.0 21.0 18.0 28.0 18.0 11.0 5.0 8.0 12.0 12.0 18.0 25.0 28.0 19.0 8.0 5.0 8.0 12.0 12.0 17.0 25.0 28.0 15.0 12.0 7.0 10.0 12.0 21.0 26.0 25.0 20.0 12.0 7.0 5.0 5.0 16.0 20.0 23.0 26.0 15.0 12.0 7.0 5.0 5.0 16.0 20.0 23.0 26.0 15.0 10.0 12.0 17.0 21.0 26.0 25.0 17.0 10.0 4.0 17.0 21.0 17.0 22.0 25.0 19.0 8.0 12.0 18.0 12.0 18.0 27.0 26.0 19.0 8.0 12.0 18.0 12.0 18.0 27.0 26.0 19.0 8.0 12.0 18.0 12.0 18.0 27.0 26.0 19.0 19.0 8.0 12.0 18.0 19.0 25.0 28.0 19.0 19.0 19.0 19.0 19.0 12.0 19.0 19.0 25.0 28.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19

08123950 E. V. SPENCE RESERVOIR NEAR ROBERT LEE, TX

LOCATION.--Lat 31°52'46", long 100°31'01", Coke County, Hydrologic Unit 12080008, in outlet works of Robert Lee Dam on the Colorado River, 2.2 mi (3.5 km) west of Robert Lee, and at mile 715 (1,150 km).

DRAINAGE AREA.--15,740 mi² (40,770 km²), approximately, of which 11,600 mi² (30,040 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- December 1968 to current year.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to June 24, 1969, nonrecording gage at same site and datum.

REMARKS.--The reservoir is formed by a rolled earthfill dam 21,500 ft (6,550 m) long. Closure was made Dec. 30, 1968, and dam was completed in June 1969. The dam is the property of the Colorado River Municipal Water District, which has a permit to divert 50,000 acre-ft (61.6 hm²) annually for municipal, mining, and industrial uses. Inflow to reservoir is partially regulated by Lake J. B. Thomas, Lake Colorado City, and Champion Creek Reservoir (stations 08118000, 08123000). There are two spillways the service and emergency spillways. The controlled service spillway is a morning-glory type that is partially controlled by 12 lift gates, 14.48 by 22.0 ft (4.41 by 6.7 m), and discharges through a 28.0-foot-diameter (8.5 m) concrete conduit. The uncontrolled emergency spillway is a 3,200-foot-wide (975 m) cut through natural ground near the right end of dam. Figures given herein represent total contents. Data regarding the dam and reservoir are given in the following table:

	(feet)	(acre-feet)
Top of dam	1,928.0	-
Crest of spillway	1,908.0	653,400
Top of gates	1,900.0	519,300
Top of conservation pool	1,898.0	488,800
Crest of spillway	1,878.0	262,900
Lowest gated outlet (invert)	1,815.85	4,000

COOPERATION.--Capacity table (dated March 1972) was furnished by the Colorado River Municipal Water District. Records of diversions were furnished by the city of San Angelo and the Colorado River Municipal Water District.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 202,300 acre-ft (249 hm²) Sept. 30, 1980, elevation, 1,870.72 ft (570.195 m); minimum since first appreciable storage in June 1969 (not from recorder), about 330 acre-ft (0.407 hm²) May 29, 1971.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 202,300 acre-ft (249 hm³) Sept. 30 at 2400 hours, elevation, 1,870.72 ft (570.195 m); minimum, 93,560 acre-ft (115 hm³) May 15, elevation, 1,852.48 ft (564.636 m).

Capacity table (elevation, in feet, and total contents, in acre-feet)

1.852.0	91,400	1,864.0	154,900
1,856.0	109,900	1,868.0	182,400
1,860.0	130,900	1,871.0	204,400

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	116100	110600	107000	105700	103600	102200	99050	94910	112300	114000	106100	102500
2	115900	110500	106900	105600	103700	102000	99000	94820	112100	113800	105800	102200
3	115600	110300	106800	105500	103600	102000	98910	94730	111900	113600	105500	102200
4	115400	110200	106800	105500	103600	102000	98730	94730	111700	113400	105300	102100
5	115300	110100	106800	105300	103300	101800	98510	94730	111500	113300	105100	102000
6 7 8 9	115100 114900 114700 114200 114200	110000 109900 109800 109700 109500	106600 106500 106400 106300 106300	105300 105100 105100 105000 105000	103100 103200 103400 103200 103200	101800 101700 101700 101600 101500	98550 98280 98100 97920 97880	94500 94680 94550 94410 94410	111300 111300 111100 111100 111100	113000 112800 112600 112500 112200	104800 104600 104500 104300 104000	101700 101500 101600 122200 138400
11	114100	109300	106200	104900	103200	101600	97700	94320	111300	111800	103900	145300
12	114000	109200	106500	104800	103100	101500	97610	94140	111400	111400	103900	148500
13	113600	109100	106400	104700	103100	101300	97470	93920	111400	111100	103700	149600
14	113500	109000	106300	104700	103200	101200	97340	93740	111400	110700	103400	150200
15	113500	109100	106200	104600	103200	101100	97250	93960	111400	110500	103400	150200
16	113500	109000	106200	104500	103000	101100	97160	93920	111300	110300	103900	150100
17	113300	108900	105900	104500	102900	100900	96930	98190	111300	110100	104300	149800
18	113200	108800	105900	104400	103100	100800	96930	108100	111100	109700	104300	149700
19	113100	108700	105900	104400	102900	100700	96570	111600	110800	109500	104100	149500
20	112900	108800	105800	104300	102900	100500	96440	112000	110800	109300	104200	149400
21 22 23 24 25	112800 112300 112200 112000 111800	108600 108300 108100 108000 107900	105800 105800 105900 105700 105600	104200 104300 104200 104100 104200	102700 102700 102700 102700 102600 102500	100400 100200 100100 99990 99770	96260 96260 96260 96130 95810	112200 112200 112800 113100 112900	111800 114000 114500 115000 115200	109000 108900 108700 108500 108300	104300 104200 104000 103900 103700	149100 149000 151700 154800 156900
26 27 28 29 30 31	111600 111600 111400 111200 111100 110800	107800 107700 107500 107300 107100	105500 105500 106100 106000 105900 105800	104100 103900 104000 103800 103900 103700	102500 102500 102400 102300	99680 99810 99720 99500 99410 99280	95450 95310 95270 95180 95040	112800 112800 112700 112600 112500 112300	115000 114900 114700 114500 114200	108200 107900 107500 107100 106700 106300	103600 103500 103200 103100 102800 102700	161300 159300 156500 179900 202300
MAX	116100	110600	107000	105700	103700	102200	99050	113100	115200	114000	106100	202300
MIN	110800	107100	105500	103700	102300	99280	95040	93740	110800	106300	102700	101500
(†)	1856.17	1855.44	1855.17	1854.74	1854.43	1853.75	1852.81	1856.47	1856.86	1855.28	1854.50	1870.72
(‡)	-5500	-3700	-1300	-2100	-1400	-3020	-4240	+17260	+1900	-7900	-3600	+99600
(††)	2230	1970	1850	2000	1260	1710	2290	2210	2550	3240	2570	1890

CAL YR 1979 MAX 123000 MIN 104000 ‡ -6600 †† 26050 WTR YR 1980 MAX 202300 MIN 93740 ‡ +86000 †† 25770

Elevation, in feet, at end of month. Change in contents, in acre-feet.

the Diversions, in acre-feet, for municipal, industrial, and mining uses.

08123950 E. V. SPENCE RESERVOIR NEAR ROBERT LEE, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1969 to current year. Biochemical analyses: October 1977 to September 1978.

315235100312201 E. V. SPENCE RESERVOIR SITE AR WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
JAN							
15 15 15 15 MAY	1055 1057 1059 1101	1.0 10 20 30	3630 3630 3630 3630	8.3 8.3 8.2 8.2	10.0 9.5 9.5 9.0	10.0 9.8 9.7 9.6	95 92 92 91
01 01 01 01 AUG	1020 1022 1024 1026	1.0 10 20 28	3850 3850 3850 3850	7.7 7.7 7.5 7.4	18.5 18.5 18.0 17.5	8.7 8.6 6.9 6.0	99 98 78 67
13 13 13	1040 1042 1044 1046	1.0 10 20 28	3630 3630 3630 3630	8.0 8.0 8.0 7.9	26.0 25.5 25.5 25.5	6.3 6.1 5.5	82 82 79 71

315335100312401 E. V. SPENCE RESERVOIR SITE AC
WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
JAN										
15	1020	1.0	3630	8.3	10.0	1.80	10.2	97	650	540
15	1022	10	3630	8.3	9.5		10.1	95		
15	1024	20	3630	8.3	9.5		10.1	95		
15	1026	30	3630	8.2	9.0		9.6	91	1	
15	1028	40	3630	8.1	9.0		9.6	91		
15	1030	50	3630	8.1	9.0		9.6	91	690	580
MAY										
01	0930	1.0	3850	7.7	18.5	.98	8.7	99	750	640
01	0932	10	3850	7.7	18.5		8.7	99	1.22	
01	0934	20	3850	7.7	18.0		8.3	93		
01	0936	30	3850	7.6	17.0		7.2	79		
01	0938	40	3850	7.5	17.0		6.3	69	1.4	
01	0940	50	3850	7.3	16.5		5.5	59		
01	0942	62	3830	7.0	16.0		2.7	29	750	620
AUG										
13	1000	1.0	3630	8.0	26.0	1.40	6.3	82	680	570
13	1002	10	3630	8.0	26.0		6.3	82		
13	1004	20	3630	8.0	26.0	2.5	6.1	79		
13	1006	30	3630	8.0	25.5		5.8	75		
13	1008	40	3630	7.9	25.5		5.6	72		
13	1010	50	3790	7.7	20.5		.6	7		
13	1012	60	3810	7.1	20.0		.6	7	720	550

315335100312401 E. V. SPENCE RESERVOIR SITE AC--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
JAN									
15	130	80	530	9.0	15	140	0	540	820
15					- 12			72	11
15	- 22	122	- 11		22			- 12	21
15									
15	140	83	520	8.6	15	140	0	530	800
MAY 01	160	86	540	8.6	16	140	0	550	930
01	160	00	340	0.0		140		330	930
01			24			22			192
01									
01									
01	160	86	540	8.6	16	160	0	550	930
AUG	100	00	340	0.0	, 0	100	· ·	330	,,,,
13	140	80	510	8.5	16	130	0		870
13	11							7.5	
13	- 52	- 55	12						
13				UL					
13									
13	150	83	550	8.9	15	200	0	520	920
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	MONIA +	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOKUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SGLVED (UG/L AS MN)
JAN									
15	.5		2190	.06	.74	.80	.030	40	10
15	77.7				20	0.5	0.20	20	10
15			12	.07	.78	.85	.030	20	10
15		-							
15		5.8	2160	.09	.85	.94	.030	20	10
MAY									
01	-	1 0	0000		01	0.5	0.20	20	10
0.1	.5		2360	.01	.94	.95	.030	30	10
01	.5			.01	.94	.95	.030	30	10
01	22	122							
01 01	23 23 14	=======================================				 	77.53		
01 01 01	22			.02	1.2	1.2	.060	20	50
01 01	23 23 14	=======================================				 	77.53		
01 01 01 01 AUG 13	.3	5.3	2370	.02	1.2	1.2	.060	20 30	50 260
01 01 01 01 AUG 13	.3	5.3	2370	.02	1.2	1.2	.060	20 30	50 260
01 01 01 01 AUG 13 13	.3	5.3	2370	.02	1.2	1.2	.060	20 30	50 260
01 01 01 01 AUG 13 13	.3	5.3	2370	.02	1.2	1.2	.060	20 30 40	50 260 10
01 01 01 01 AUG 13 13	.3	5.3	2370	.02	1.2	1.2	.060	20 30 40	50 260

E. V. SPENCE RESERVOIR NEAR ROBERT LEE, TX--Continued

315413100312501 E. V. SPENCE RESERVOIR SITE AL WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
JAN							
15	1107	1.0	3630	8.3	10.0	10.2	97
15	1109	10	3630	8.3	10.0	10.2	97
15	1111	20	3630	8.3	10.0	10.2	97
15	1113	25	3630	8.3	10.0	10.2	97
MAY							
01	1035	1.0	3850	7.7	18.5	9.0	102
01	1037	10	3850	7.7	18.5	9.0	102
01	1039	20	3850	7.7	18.5	8.8	100
01	1041	33	3850	7.4	17.5	6.0	67
AUG							
13	1100	1.0	3630	8.2	26.5	6.7	88
13	1102	10	3630	8.1	26.5	6.6	87
13	1104	24	3630	8.1	26.5	6.4	84

315558100342601 E. V. SPENCE RESERVOIR SITE BC
WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
JAN 15 15 15 MAY	1133 1135 1137 1139	1.0 10 20 30	3680 3680 3680 3680	8.3 8.3 8.3 7.9	10.0 10.0 10.0 9.5	.90	9.9 9.8 9.5 6.3	94 93 91 59	720 790
01 01 01 01	1105 1107 1109 1111 1113	1.0 10 20 25 33	3890 3890 3890 3890 4790	7.7 7.6 7.4 7.2 6.8	20.0 19.0 18.0 17.5 18.0	.64	8.4 7.7 5.8 4.4 1.9	99 89 65 49 21	760 930
13 13 13	1130 1132 1134 1136	1.0 10 20 26	3650 3650 3650 3650	8.3 8.3 8.3 8.2	27.0 27.0 26.5 26.5	.76	6.8 6.6 6.6 6.3	91 88 87 83	680 680
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
JAN 15	610	150	85	530	8.6	15	140	0	550
15 15 MAY	680	160	95	590	9.1	15	140	0	610
01	630	160	87	540	8.5	17	150	0	560
01 01	800	190	110	670	9.6	18	160	0	700
13 13 13	570	140	80	510	8.5	17	130	0	500
13	570	140	80	530	8.9	17	136	0	520

65

COLORADO RIVER BASIN E. V. SPENCE RESERVOIR NEAR ROBERT LEE, TX--Continued

315558100342601 E. V. SPENCE RESERVOIR SITE BC--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JAN									
15	830	5.5	2230	.07	.88	.95	.050	20	0
15									
15									
15	900	5.5	2440	.08	.67	.75	.050	20	50
MAY									
01	910	5.0	2350	.02	.81	.83	.030	20	10
01									
01									
01			1.00	.02	1.1	1.1	.060	20	20
01	1100	5.2	2870	.01	2.3	2.3	.090	30	300
AUG									
13	860	3.7	2170	.00	1.1	1.1	.040	30	0
13				.00	1.1	1.1	.040	20	10
13	77								
13	870	3.7	2230	.00	.91	.91	.040	20	10

315619100335601 E. V. SPENCE RESERVOIR SITE BL WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
JAN							
15	1250	1.0	3680	8.2	10.5	9.9	96
15	1252	10	3680	8.2	10.5	9.9	96
15	1254	21	3680	8.2	10.5	9.9	96
MAY							
01	1137	1.0	3890	7.7	20.0	8.2	96
01	1140	8.0	3890	7.6	19.5	7.9	92
AUG							
13	1120	1.0	3650	8.3	27.0	6.8	91
13	1122	14	3650	8.3	26.5	8.4	26

315712100352001 E. V. SPENCE RESERVOIR SITE CC WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SPE- CIFIC CON- TEMPER OXYGEN, CON- TEMPER OXYGEN, CON- TIME DIS- CON- CON	DIS- SOLVED (PER- CENT SATUR- ATION)
JAN	
15 1205 1.0 3850 8.3 10.5 10.1	98
15 1207 10 3850 8.3 10.0 9.9	94
15 1209 19 3850 8.1 10.0 7.9	75
MAY	
01 1202 1.0 4100 8.4 21.0 7.5	89
01 1204 10 4100 8.2 20.5 6.2	74
01 1206 14 4100 7.9 20.5 4.2	50
AUG	
13 1200 1.0 3650 8.4 27.0 7.1	95
13 1202 10 3650 8.3 27.0 6.6	88
13 1204 16 3650 8.1 27.0 5.2	69

E. V. SPENCE RESERVOIR NEAR ROBERT LEE, TX--Continued

315810100364901 E. V. SPENCE RESERVOIR SITE DC WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE, WATER (DEG C)	TKANS- PAK- ENCY (SECCHI DISK) (M)	DIS- SOLVED		HARD- NESS (MG/L AS CACO3)
JAN 15 15	1225 1227	1.0	4030 4050	8.5 8.4	11.0	.40	10.1		790 790
01 01 AUG	1220 1222	1.0	4230 4240	7.6 7.4	21.5 21.0	.30	7.5 5.6	90 67	860 820
13	1215 1217	1.0	3590 3590	8.4 8.1	27.0 26.5	.24	7.5 5.4		660 660
DATE	BONATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	DIS-	B1CAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
JAN 15 15 MAY	670 670	160 160	94 95	570 580	8.8 9.0		140 140	3 3	610 620
01 01 AUG	730 700	180 170	99 97	610 600	9.1 9.1		150 150		620 630
13	560 560	140 140	76 76	510 510	8.6 8.6	15 16	120 130		490 500
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS S102)	CONSTI- TUENTS, DIS-	GEN, NO2+NO3 TOTAL (MG/L	TOTAL	TOTAL (MG/L	PHORUS, TOTAL	SOLVED (UG/L	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JAN 15 15	880 900	4.9 4.9	2410 2450	.02	.92 .89	.94			0
MAY 01 01 AUG	1000 1000	4.7 4.6	2610 2590	.01	1.0	1.0	.060	20 30	10 80
13	870 880	3.5 3.5	2160 2190	.00		1.4	.090 .120	40 40	10 70

COLORADO RIVER BASIN E. V. SPENCE RESERVOIR NEAR ROBERT LEE, TX--Continued

315335100312401 E. V. SPENCE RESERVOIR SITE AC WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)
JAN				200			
15	1020 1024	1.0	1	300	1	0	0
15	1030	50	1	200	1	0	0
MAY	1000	20					
01	0930	1.0	1	300	1	0	0
01	0940	50	1		7.7		-7
O1	0942	62	1	300	1	0	4
13	1000	1.0	2	200	0	10	0
13	1008	40	345		429		
13	1010	50					7.5
13	1012	60	4	200	0	Ó	0
DATE	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)
JAN							
15	40	2	10	.0	0	0	0
15	20	3	10	.2			
15 MAY	20	3	10	. 2	0	0	10
01	30	1	10	.3	0	0	10
01	20	044	50	42			
01	30	0	260	.3	0	0	10
AUG 13	40	2	10	.1	0	0	10
13	20		370				
13	70		1500				
13	80	3	1400	.4	0	0	10

E. V. SPENCE RESERVOIR NEAR ROBERT LEE, TX--Continued

315335100312401 E. V. SPENCE RESERVOIR SITE AC PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO AUGUST 1980

DATE TIME		15,80 021		1,80 931		13,80 001
TOTAL CELLS/ML	64	000	82	000	280	000
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		1.3 1.3 1.4 1.7 2.4		0.9 0.9 1.6 1.8 2.1		0.1 0.1 0.2 0.4 1.4
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESCOELASTRACEAE						
COELASTRUM MICRACTINIACEAE		~		-	*	0
GOLENKINIA OOCYSTACEAE	*	0		-		-
ANKISTRODESMUS	1100	2	*	0	121	2
CHLORELLA	11000#		2600	3		-
KIRCHNERIELLA OOCYSTIS	560 2600	1	4300	5		-
SELENASTRUM		-	*	0	*	0
TETRAEDRON SCENEDESMACEAE	*	0				-
CRUCIGENIA	750	1				-
SCENEDESMUS	3700	6	14000#	17		-
TETRASTRUM ULOTRICHALES	750	1	760	1	155	
ULOTRICHACEAE GEMINELLA ZYGNEMATALES	1500	2				-
DESMIDIACEAE COSMARIUM STAURASTRUM	*	ō	II	2	*	0
CHRYSOPHYTA .BACILLARIOPHYCEAE .CENTRALESCOSCINODISCACEAECYCLOTELLA .PENNALES	2100	3	¥	0	*	0
NAVICULACEAE NAVICULA NITZSCHIACEAE	*	0	12.4	=	-11	4
NITZSCHIACEAE		-	*	0	*	0
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAE .CRYPTOMONADALESCRYPTOCHRYSIDACEAECHROOMONASCRYPTOMONADACEAE	-		570	ī		-
CRYPTOMONAS	1500	2			1.55	-
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE .CHROOCOCCALESCHROOCOCCACEAE					, divide	
AGMENELLUMANACYSTISHORMOGONALESNOSTOCACEAE	3000 35000#	5 54	19000#	23	2000 2600	1
ANABAENA		4		-	2300	1
ANABAENOPSIS APHANIZOMENON	52	-	17	2	6900 1600	2
OSCILLATORIACEAE		-		-		
					00000#	22
LYNGBYA OSCILLATORIA	7.7	-	1900	2	89000# 170000#	

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

69

E. V. SPENCE RESERVOIR NEAR ROBERT LEE, TX--Continued

315810100364901 E. V. SPENCE RESERVOIR SITE DC PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO AUGUST 1980

DATE	JAN	15,80	MAY	1,80	AUG	13,80
TIME		226		221		214
TOTAL CELLS/ML	22	000	53	000	370	000
DIVERSITY: DIVISION CLASS ORDER FAMILY GENUS		0.9 0.9 1.1 1.3 2.3		1.0 1.0 1.8 2.1 2.2		0.2 0.2 0.2 0.8 0.9
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE .CHLOROCOCCALESOOCYSTACEAEANKISTRODESMUS	300	-1	510	. 1		
CHLORELLA CHODATELLA	12000#	54	680	ī		-
DICTYOSPHAERIUM	300	1		1	*	0
KIRCHNERIELLA	3200	14		-		-
OOCYSTIS SELENASTRUM	1100	5	4100	8	*	0
TETRAEDRON		12	340	0		-
SCENEDESMACEAE						
SCENEDESMUS	610	3	7900	15	*	0
CHLAMYDOMONADACEAE CHLAMYDOMONAS	300	1	510	1	*	0
CHRYSOPHYTA .BACILLARIOPHYCEAECENTRALESCOSCINODISCACEAECYCLOTELLAPENNALES	- 11	÷	*	0	*	0
ACHNANTHACEAE COCCONEIS		-	*	0		-
NITZSCHIACEAE			0.50	0	*	0
NITZSCHIA		-	850	2	ж	0
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAECRYPTOMONADALESCRYPTOMONADACEAECRYPTOMONAS	460	2	42	-	*	0
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE .CHROOCOCCALESCHROOCOCCACEAE						
ANACYSTIS HORMOGONALES NOSTOCACEAE	2400	11	19000#	36	2000	1
ANABAENOPSIS OSCILLATORIACEAE		-		-	45000	12
LYNGBYA		-		-	4400	-1
OSCILLATORIA		-		-	310000#	84
PHORMIDIUM SCHIZOTHRIX	1400	6	18000#	35		-
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAE .EUGLENALES .EUGLENACEAE						
EUGLENA	150	1	*	0	*	0
TRACHELOMONAS		-		4	*	0

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

08124000 COLORADO RIVER AT ROBERT LEE, TX

LOCATION.--Lat 31°53'07", long 100°28'49", Coke County, Hydrologic Unit 12080008, on left bank 190 ft (58 m) upstream from bridge on State Highway 208 in Robert Lee, 0.4 mi (0.6 km) upstream from Mountain Creek, 2.7 mi (4.3 km) downstream from Messbox Creek, 3.7 mi (6.0 km) downstream from Robert Lee Dam, and at mile 712 (1,146 km).

DRAINAGE AREA.--15,770 mi² (40,840 km²), of which 11,600 mi² (30,040 km²) probably is noncontributing.

PERIOD OF RECORD.--October 1923 to December 1927, April 1939 to May 1956, October 1968 to current year. Prior to December 1927, published as "near Robert Lee".

REVISED RECORDS .-- WSP 1723: 1925(M).

GAGE.--Water-stage recorder. Datum of gage is 1,771.70 ft (540.014 m) National Geodetic Vertical Datum of 1929.
Prior to Dec. 31, 1927, nonrecording gage at site 9 mi (14 km) downstream at different datum. Apr. 18 to Sept. 26, 1939, nonrecording gage, and Sept. 27, 1939, to May 9, 1956, water-stage recorder at site 200 ft (61 m) downstream at same datum.

REMARKS.--Records good. Flow affected since April 1949 by Lake Colorado City and since July 1952 by Lake J. B.
Thomas. Since December 1968, flow has been regulated by E. V. Spence Reservoir (station 08123950). Many
diversions above station for municipal, cooling, mining, agricultural, and industrial uses. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--19 years (water years 1924-27, 1940-55) prior to completion of Robert Lee Dam, 207 ft³/s (5.862 m³/s), 150,000 acre-ft/yr (185 hm³/yr); 12 years (water years 1969-80) regulated, 3.56 ft³/s (0.101 m³/s), 2,580 acre-ft/yr (3.18 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 32,500 ft³/s (920 m³/s) Sept. 6, 1926, gage height, 20.20 ft (6.157 m), site and datum then in use, from rating curve extended above 15,000 ft³/s (425 m³/s); maximum gage height, 20.63 ft (6.288 m) Sept. 9, 1980; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1907, 26.7 ft (8.14 m) Oct. 13, 1957, from floodmarks. Flood in April 1922 reached a stage of 25.5 ft (7.77 m), present datum, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 24,500 ft³/s (694 m³/s) Sept. 9 at 1100 hours, gage height, 20.63 ft (6.288 m); no flow at times.

PLOCHARDE IN CURIC PEET DED CECOND LIATED VEAD OCTOBED 1070 TO SEPTEMBED 1080

		DISC	HARGE, IN	CUBIC FE	ET PER SEC MEA	OND, WAT N VALUES	ER YEAR O	CTOBER 197	9 TO SEI	PTEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.37 .37 .47 .35	.19 .22 .18 .19	.26 .28 .25 .27	.09 .11 .14 .09	.03 .03 .05 .08	.09 .07 .07 .05	.00 .00 .00 .00	.39 .00 .01 .07	.00 .00 .00	.00 .00 .00 .00	4.1 .63 .10 .04	.00 .00 .00
6 7 8 9	.27 .18 .15 .04	.14 .13 .15 .11	.31 .39 .31 .25	.01 .02 .02 .01	12 1.1 .48 .16 .08	.06 .06 .01 .00	.00 .00 .00	.16 .64 1.6 1.5	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 5600 24
11 12 13 14	.00 .00 .00 .00	.11 .10 .10 .10	.28 .92 .63 .86	.00 .00 .04 .07	.07 .05 .08 .11	.00 .00 .00 .00	.00 .00 .00 .00	1.2 1.2 1.2 1.3	.00 .00 .00	10 117 58 2.4 1.6	.00 .00 .00 .00	4.6 2.4 1.5 .78 .46
16 17 18 19 20	.08 .07 .11 .16 .12	.08 .08 .09 .09	.27 .30 .29 .38 .46	.05 .04 .03 .02	.11 .09 .09 .06	.00 .00 .00	.00 .00 .08 .02	1.8 1.6 1.4 1.5	.00 .00 .00	1.2 .87 8.3 16 2.1	.63 .25 .20 .15	.29 .20 .16 .14
21 22 23 24 25	.09 .08 .09 .07	.20 .16 .26 .32 .29	.58 .61 1.1 .79 .58	.03 .24 .11 .07	.27 .29 .23 .19	.00 .00 .00	.02 .01 1.2 10 1.7	1.3 1.2 1.1 1.1 .93	.00 .00 .00	1.0 .56 .30 .13 .03	.13 .10 .05 .03	.05 .04 47 20 19
26 27 28 29 30 31	.07 .09 .09 .11 .15	.28 .21 .23 .25 .28	.05 .02 .65 .18 .11	.03 .02 .03 .04 .04	.17 .18 .14 .10	.00 .00 .00 .00	.36 .43 .26 .46 .43	.56 .25 .88 .16 .07	.00 .00 .00	26 104 105 81	.02 .00 .00 .00	13 30 147 8.4 4.1
TOTAL MEAN MAX MIN AC-FT	4.21 .14 .47 .00 8.4	5.01 .17 .32 .08 9.9	12.44 .40 1.1 .02 25	1.51 .049 .24 .00 3.0	29.65 1.02 13 .03 59	.45 .015 .09 .00	15.00 .50 10 .00 30	27.68 .89 1.8 .00 55	.00 .000 .00 .00	535.49 17.3 117 .00 1060	11.61 .37 5.0 .00 23	5923.21 197 5600 .00 11750

CAL YR 1979 TOTAL 711.68 MEAN 1.95 MAX 121 MIN .00 AC-FT 1410 WTR YR 1980 TOTAL 6566.26 MEAN 17.9 MAX 5600 MIN .00 AC-FT 13020

08125500 OAK CREEK RESERVOIR NEAR BLACKWELL. TX.

LOCATION.--Lat 32°03'25", long 100°17'37", Coke County, Hydrologic Unit 12080008, on left bank at municipal pump station, 1.9 mi (3.1 km) upstream from dam on Oak Creek, 2.5 mi (4.0 km) southeast of Blackwell, 14 mi (23 km) north of Bronte, and 20 mi (32 km) upstream from mouth.

DRAINAGE AREA .-- 244 mi2 (632 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1953 to current year.

GAGE .-- Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--The reservoir is formed by a rolled earthfill dam 3,800 ft (1,160 m) long. The dam was completed in May 1952, and deliberate impoundment began May 12, 1953. The uncontrolled emergency spillway is an 800-footwide (240 m) cut through natural ground, located 1,200 ft (366 m) from right end of dam. The service spillway is an uncontrolled cut channel through natural ground 300 ft (91 m) wide, located 2,000 ft (610 m) from right end of dam. The reservoir and dam are the property of the city of Sweetwater. The dam was built to impound water for municipal and industrial uses by the cities of Sweetwater, Blackwell, and Bronte. Since April 1962, West Texas Utilities Co. has operated a steam generating powerplant located on the reservoir. There is a gated outlet at the service spillway that can release water downstream to Oak Creek through a 24-inch (610 mm) concrete pipe. The capacity curve is based on a 1950 survey. Figures given herein represent total contents. Data regarding the dam and reservoir are given in the following table: Data regarding the dam and reservoir are given in the following table:

	(feet)	(acre-feet)
Top of dam	2,014.0	-
Crest of spillway	2,005.0	52,490
Crest of spillway (top of conservation pool)	2,000.0	39,360
Lowest gated outlet (invert)	1,951.0	100

COOPERATION .-- Capacity curve, record of lake elevation, and diversions were furnished by the city of Sweetwater.

EXTREMES (at 0800) FOR PERIOD OF RECORD.--Maximum contents observed, 49,100 acre-ft (60.5 hm³) Oct. 13, 1957, elevation, 2,003.80 ft (610.758 m); minimum observed, 6,050 acre-ft (7.46 hm³) Sept. 6-8, 1980, elevation, 1,974.5 ft (601.83 m).

EXTREMES (at 0800) FOR CURRENT YEAR.--Maximum contents observed, 19,550 acre-ft (24.1 hm³) Sept. 30, elevation, 1,989.3 ft (606.34 m); minimum, 6,050 acre-ft (7.46 hm³) Sept. 6-8, elevation, 1,974.5 ft (601.83 m).

Capacity table (elevation, in feet, and total contents, in acre-feet)

1,974.0 1,982.0 1,990.0 5,770 11,520 20,530

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 INSTANTANEOUS OBSERVATIONS AT 0800

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	11880 11880 11880 11880 11790	11080 10990 10990 10990 10990	10400 10400 10400 10310 10310	10150 10150 10150 10150 10150	9820 9820 9740 9740 9660	9180 9100 9100 9030 9030	8580 8580 8510 8510 8430	7650 7590 7590 7590 7520	7060 7060 7000 7000 6940	7720 7650 7650 7590 7590	6640 6640 6570 6570	6220 6170 6170 6110 6110
6 7 8 9	11790 11700 11700 11610 11520	10910 10910 10910 10820 10820	10310 10310 10310 10310 10230	10150 10150 10060 10060 10060	9660 9580 9580 9580 9580	9030 9030 8950 8950 8950	8430 8360 8290 8210 8210	7520 7520 7520 7520 7520 7520	6940 6870 6870 6870 6810	7520 7520 7520 7520 7450 7390	6510 6510 6450 6450 6390	6050 6050 6050 10910 14590
11 12 13 14 15	11520 11520 11430 11430 11340	10820 10820 10820 10820 10730	10230 10230 10230 10230 10230	10060 10060 10060 9980 9980	9580 9500 9500 9500 9420	8950 8950 8950 8880 8880	8140 8070 8000 8000 7940	7520 7450 7450 7450 7450	6870 6810 6810 6750 6690	7390 7320 7320 7260 7260	6390 6340 6340 6340 6280	14590 14590 14590 14590 14590
16 17 18 19 20	11340 11340 11250 11170	10730 10730 10650 10650 10650	10230 10230 10230 10230 10230	9980 9980 9980 9900 9900	9420 9420 9420 9340 9340	8800 8800 8800 8730 8730	7860 7860 7860 7860 7860	7520 7520 7450 7450 7450	6690 6690 6640 6570 6570	7190 7190 7130 7130 7060	6220 6570 6570 6510 6510	14590 14480 14380 14380 14380
21 22 23 24 25	11250 11250 11170 11170 11170	10650 10650 10560 10560 10560	10150 10150 10150 10150 10150	9900 9900 9900 9900 9900	9340 9340 9260 9260 9260	8730 8660 8660 8580 8580	7790 7790 7790 7790 7720	7450 7390 7390 7320 7320	6510 7860 7940 7940 7940	7060 7000 7000 6940 6940	6510 6450 6450 6390 6390	14380 14280 14380 14910 14910
26 27 28 29 30 31	11170 11170 11080 11080 11080 11080	10480 10480 10480 10480 10480	10150 10150 10150 10150 10230 10230	9900 9820 9820 9820 9820 9820	9180 9180 9180 9180	8580 8580 8660 8660 8660 8580	7720 7720 7720 7650 7650	7260 7260 7190 7190 7130 7130	7940 7860 7860 7790 7720	6870 6810 6810 6750 6750 6690	6340 6340 6280 6280 6280 6220	15010 15320 17810 18870 19550
MAX MIN (†) (‡) (††)	11880 11080 1981.5 -890 479	11080 10480 1980.8 -600 376	10400 10150 1980.5 -250 364	10150 9820 1980.0 -410 357	9820 9180 1979.2 -640 336	9180 8580 1978.4 -600 357	8580 7650 1977.1 -930 397	7650 7130 1976.3 -520 365	7940 6510 1977.2 +590 312	7720 6690 1975.6 -1030 308	6640 6220 1974.8 -470 290	19550 6050 1989.3 +13330 264

CAL YR 1979 WTR YR 1980 MAX 13680 MIN 10150 MAX 19550 6050 +7580

[†] Elevation, in feet, at end of month. ‡ Change in contents, in acre-feet. †† Diversions, in acre-feet for municipal and industrial uses.

08125500 OAK CREEK RESERVOIR NEAR BLACKWELL, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1969 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO
NOV 02	1135	1320	25.0	510	380	110	57	87	1.7

SOLVED	(MG/L DIS- AS SOLVED SIO2) (MG/L)	
NOV 02 9.8 160 0 340 150 .4	8.0 841	

08126380 COLORADO RIVER NEAR BALLINGER, TX (Formerly published as 08126500 Colorado River at Ballinger)

LOCATION.--Lat 31°42'55", long 100°01'34", Runnels County, Hydrologic Unit 12090101, at left downstream end of bridge on Farm Road 2111, 0.4 mi (0.6 km) upstream from Rocky Creek, 5.0 mi (8.0 km) northwest of Ballinger, and at mile 665.6 (1,071.0 km).

DRAINAGE AREA.--16,358 mi² (42,367 km²), approximately, of which 10,260 mi² (26,573 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1907 to September 1979 (published as "at Ballinger", station 08126500), October 1979 to September 1980. Monthly discharge only for some periods published in WSP 1312. Gage-height records collected in this vicinity from 1903-29 are contained in reports of the National Weather Service.

REVISED RECORDS.--WSP 1118: Drainage area. WSP 1512: 1916-17, 1919-20, 1921(M), 1922-25, 1928(M), 1930(M). WSP 1712: 1935, 1954-55(M). WDR TX-78-3: 1975-77.

GAGE.--Water-stage recorder. Datum of gage is 1,606.51 ft (489.664 m) National Geodetic Vertical Datum of 1929. Prior to Nov. 29, 1930, nonrecording gages at several sites and at various datums near site 5.4 mi (8.7 km) downstream. Nov. 29, 1930, to May 1, 1975, water-stage recorder at site 6.2 mi (10.0 km) downstream and May 1, 1975, to Sept. 30, 1979, water-stage recorder at site 5.4 mi (8.7 km) downstream, both at datum 12.77 ft (3.892 m) lower.

REMARKS.--Water-discharge records good. Diversions above station for irrigation, municipal supplies, and oilfield operation. Flow is affected by E. V. Spence and Oak Creek Reservoirs (see stations 08123950 and 08125500) and at times by discharge from the flood-detention pools of 25 floodwater-retarding structures with a combined detention capacity of 26,640 acre-ft (32.8 km²). These structures control runoff from 133 mi² (344 km²) in the Kickapoo and Valley Creeks drainage basins.

AVERAGE DISCHARGE.--61 years (water years 1908-68) prior to completion of Robert Lee Dam, 336 ft 3 /s (9.516 m 3 /s), 243,400 acre-ft/yr (300 hm 3 /yr); 12 years (water years 1969-80) partially regulated, 44.7 ft 3 /s (1.266 m 3 /s), 32,390 acre-ft/yr (39.9 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 75,400 ft³/s (2,140 m³/s) Sept. 18, 1936, gage height, 28.6 ft (8.72 m), at former site and datum; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1882, about 36 ft (11.0 m) sometime in 1884, at former site and datum, from information by local residents. Flood of Aug. 6, 1906, reached a stage of about 32.0 ft (9.75 m), at former site and datum, from floodmarks (backwater from Elm Creek).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 9,840 ft³/s (279 m³/s) Sept. 9 at 1600 hours, gage height, 24.72 ft (7.535 m); minimum daily, 0.02 ft³/s (0.001 m³/s) Apr. 22-24, May 1, 2.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1979	TO	SEPTEMBER	1980
					MEAN VA	LIES						

DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.65 .59 1.2 1.3 1.5	.78 .41 .08 .54	1.0 1.1 1.2 1.1	7.1 5.7 4.5 4.5 4.5	5.5 5.8 5.8 5.5 5.7	1.9 1.2 1.2 1.3 .85	.07 .73 .65 .66	.02 .02 .03 .03	3.0 2.2 1.5 1.2 .74	1.9 .96 .72 .88 .96	.30 15 22 6.0 .89	.37 .35 .42 .42 .20
6 7 8 9	.75 .79 .86 .82 .63	.80 .80 .64 .08	.95 1.0 1.2 1.2	4.0 3.4 3.2 3.4 3.4	5.0 5.8 24 12 6.9	.96 1.4 1.2 .83 .75	.80 .69 .67 .49	.03 .04 .04 .03	.25 .29 .38 1.2 2.4	.88 .58 .27 .17	.14 .13 .12 .10	.20 .47 2.9 6150 5730
11 12 13 14 15	.11 .48 .61	.80 .88 .49 .72 .58	1.3 1.5 1.6 1.9	3.2 3.0 3.0 3.0 3.2	5.6 4.1 5.6 6.4 5.7	.49 .59 .22 .04	.70 .73 1.3 .95	.03 .03 .04 .04	4.7 2.1 .37 .35 .43	.16 .16 .16 .17	.10 .10 .10 .11	510 188 113 67 41
16 17 18 19 20	1.0 .84 .90 1.1 .97	.80 1.2 1.2 1.2 1.3	1.4 1.4 1.3 1.2	3.4 3.2 3.4 3.4 3.8	4.9 4.0 4.2 4.2 3.4	.48 .76 .45 .64	.60 .44 .39 .45	554 78 22 13 21	.42 .46 .48 .52	.22 .26 .28 .30	102 302 46 16	28 20 13 11 8.4
21 22 23 24 25	.94 .73 .71 .80	1.2 1.2 1.2 1.2 1.2	.16 .96 3.5 .88 .65	4.2 9.5 11 10 8.7	3.2 2.7 2.3 2.3 2.0	.50 .49 .65 .21	.03 .02 .02 .02 .09	401 75 20 10 5.8	.65 1820 430 78 28	.26 .16 .16 .20 .35	5.4 4.1 3.4 3.0 2.7	6.6 6.6 7.5 58 165
26 27 28 29 30 31	.49 .91 .68 .80 .98	.83 .82 .80 .91 .85	.65 .72 8.5 18 9.2 8.7	6.7 5.3 5.3 5.5 5.6 5.7	2.0 2.3 1.8 1.7	.07 .67 1.1 .85 .04	.34 .44 .24 .04	3.8 2.6 50 21 8.3 3.6	15 13 7.5 5.7 4.0	.42 .46 .43 .49 .44	2.1 1.9 .71 .36 .39	88 411 1410 926 512
TOTAL MEAN MAX MIN AC-FT	24.26 .78 1.5 .11 48	24.53 .82 1.3 .08 49	76.34 2.46 18 .16 151	153.8 4.96 11 3.0 305	150.4 5.19 24 1.7 298	20.76 .67 1.9 .03 41	14.14 .47 1.3 .02 28	1999.55 64.5 710 .02 3970	2425.39 80.8 1820 .25 4810	13.39 .43 1.9 .16 27	536.04 17.3 302 .10 1060	16475.43 549 6150 .20 32680

CAL YR 1979 TOTAL 6807.43 MEAN 18.7 MAX .030 MIN .08 AC-FT 13500 WTR YR 1980 TOTAL 21914.03 MEAN 59.9 MAX 6150 MIN .02 AC-FT 43470

08126380 COLORADO RIVER NEAR BALLINGER, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1961 to current year.

PERIOD OF DAILY RECORD . --

WATER TEMPERATURES: October 1961 to current year.
WATER TEMPERATURES: October 1961 to current year.
SUSPENDED SEDIMENT DISCHARGE: January 1978 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 13,500 micromhos May 3, 1963; minimum daily, 244 micromhos Sept. 9, 1980.
WATER TEMPERATURES: Maximum daily, 39.0°C July 3, 1977; minimum daily, 0.0°C Jan. 9-11, 1973.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 3,740 mg/L Sept. 9 1980; minimum daily mean, 4 mg/L Feb. 2, 1980.
SEDIMENT LOADS: Maximum daily, 94,100 tons Aug. 3, 1978; minimum daily, 0 tons on many days during 1978 and 1980.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 5,080 micromhos Sept. 6; minimum daily, 244 micromhos Sept. 9.
WATER TEMPERATURES: Maximum daily, 34.0°C July 26; minimum daily, 3.5°C Jan. 29.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 3,740 mg/L Sept. 9; minimum daily mean, 4 mg/L Feb. 2.
SEDIMENT LOADS: Maximum daily, 73,800 tons Sept. 9; minimum daily, 0.0 tons on many days during year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO
OCT	11.0		/// 00		20.0	0000	2000	510	222	070	2 /
15 DEC	1145	.75	4690		22.0	2200	2000	510	230	370	3.4
01 JAN	1155	1.0	4750		9.0	2200	2000	550	190	350	3.3
01	1045	7.1	2860		8.0	1000	890	240	100	270	3.7
FEB 01	1005	5.5	3810	144	4.0	1400	1200	340	130	340	4.0
MAR 01	1650	1.4	3450		9.5	1500	1400	390	130	250	2.8
MAY		848	3,11					44.60			
15	1530 1320	489			16.5		17				
21 JUN	1325	539	363	7.7	21.0	140	44	43	8.6	17	.6
22	1208	3260	510		23.5	200	86	59	13	19	.6
22 JUL	1710	2670		77	27.0					77	
01 AUG	2000	.33	1560		31.5	590	480	160	47	110	2.0
18	0925	283			25.5		72				
19 SEP	1345	40	588		28.0	150	67	40	11	56	2.0
09 28	1558 1100	9780 1870	214		22.0 18.0	81	13	25	4.4	8.5	.4
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 15	6.8	220	0	1900	620	.5	10	3760			
DEC 01	8.8	140	0	1900	630	.4	8.4	3710			
JAN			0	830	450		.3	1970			2.2
O1 FEB	9.0	150				.3					
01 MAR	9.5	180	0	1100	610	.4	3.2	2620	7-		
01 MAY	8.5	170	0	1300	450	.6	2.5	2620			77
15		44					(22)		3240	7420	91
21	4.6	120	0	52	25	.3	8.8	218	2140	2830	98
JUN 22	5.6	140	0	63	48	.2	9.1	286			
22									4930	35500	97
JUL 01	6.4	140	0	410	200	.3	8.5	1010		75	
AUG 18	22	44			144	24	44		951	727	99
19 SEP	5.6	95	0	68	97	. 2	4.9	330			
09	4.9	82	0	18	12	.2	5.7	119	1720	8680	79

08126380 COLORADO RIVER NEAR BALLINGER, TX--Continued
WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, WATER (DEG C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. FALL DIAM. % FINER THAN .002 MM	SED. SUSP. FALL DIAM. % FINER THAN .004 MM	
MAY	4500	010	12.5	2010	7/00	43		
15	1530 1320	848 489	16.5	3240 2140	7420 2830	71	50 81	
JUN 22	1710	2670	27.0	4930	35500	48	68	
AUG 18 SEP	0925	283	25.5	951	727	85	85	
28	1100	1870	18.0	1720	8680	52	53	
DATE	SED. SUSP. FALL DIAM. % FINER THAN .008 MM	SED. SUSP. FALL DIAM. % FINER THAN .016 MM	SED. SUSP. FALL DIAM. % FINER THAN .031 MM	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM	SED. SUSP. SIEVE DIAM. % FINER THAN .125 MM	SED. SUSP. SIEVE DIAM. % FINER THAN .250 MM	SED. SUSP. SIEVE DIAM. % FINER THAN .500 MM	
MAY 15 21	64 87	76 93	82 97	91 98	96 98	99 99	100 100	
JUN 22	81	89	95	97	99	99	100	
AUG 18	92	93	96	99	99		100	
SEP 28	63	65	75	79	88	98	100	

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	24.26	4140	3110	204	660	43	1400	94	1800
NOV.	1979	24.53	4820	3770	250	780	52	1800	120	2200
DEC.	1979	76.34	3480	2490	514	550	113	1100	222	1400
JAN.	1980	153.8	3480	2450	1020	540	226	1000	432	1400
FEB.	1980	150.4	3300	2300	933	510	208	960	389	1300
MAR.	1980	20.76	3910	2850	160	620	35	1300	71	1600
APR.	1980	14.14	4510	3440	131	730	28	1600	61	2000
MAY	1980	1999.55	726	404	2180	100	562	110	592	200
JUNE	1980	2425.39	374	199	1310	53	346	48	316	94
JULY	1980	13.39	3380	2420	88	530	19	1000	38	1400
AUG.	1980	536.04	1540	1000	1450	230	337	370	543	540
SEPT	1980	16475.43	404	220	9780	58	2560	56	2490	100
TOTAL		21914.03	**	**	18000	**	4530	**	5370	**
WTD. AV	G.	60	527	304	**	77	**	91	**	150

MEAN

08126380 COLORADO RIVER NEAR BALLINGER, TX--Continued

	SP	ECIFIC CO	NDUCTANCE	(MICROMH		25 DEG. C), WATER	YEAR OCTO	BER 1979	TO SEPTEM	BER 1980	
DAY	OCT	NOV	DEC.	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2960	4920	4820	2860	3790	3490	4760	4800	1070	1560	4360	3630
2	3030	4890	4790	2930	3830	3600	4260	4820	1310	2180	4150	3550
3	2870	4610	4800	2960	3820	3720	4360	4760	1780	2840	3950	3500
4	2840	4830	4760	2980	3840	3740	4310	4770	1970	2530	4620	3800
5	2800	4870	4790	3050	3860	3840	4360	4780	3170	2780	4760	4740
6	3040	4880	4780	3070	3910	3820	4450	4790	4310	3020	4770	5080
7	3020	4890	4760	3220	3930	3830	4480	4740	4440	4310	4780	3820
8	2970	4900	4770	3370	3760	3840	4510	4700	3780	4340	4830	1890
9	3540	4970	4770	3260	2900	3910	4540	4790	3090	4570	4820	244
10	4190	4670	4760	3370	3060	3890	4560	4820	2940	4600	4790	314
11	4450	4920	4740	3400	3100	3910	4590	4840	2220	4570	4780	454
12	4480	4900	4700	3430	2850	4030	4610	4850	3300	4640	4860	546
13	4640	4870	4630	3500	2670	4050	4550	4810	4250	4600	4880	604
14	4670	4900	4540	3510	2490	4070	4530	4820	4370	4550	4960	748
15	4720	4910	4430	3570	2710	4110	4540	1250	4330	4510	4940	756
16	4690	4940	4360	3630	2800	4060	4550	381	4430	4360	4980	882
17	4710	4920	4300	3650	2840	3970	4580	653	4420	4270	3250	928
18	4740	4770	4320	3680	2830	4100	4570	664	4400	4210	795	1070
19	4760	4850	4330	3700	2900	4070	4560	714	4360	4170	596	1140
20	4780	4730	4480	3750	2940	4090	4580	852	4410	4120	628	1260
21	4800	4750	4600	3790	3040	4150	4650	350	4460	4610	746	1320
22	4810	4730	4400	3720	3060	4140	4720	640	296	4460	849	1390
23	4820	4740	3950	3620	3130	4120	4780	474	472	4650	954	1520
24	4860	4750	4000	3670	3200	4330	4840	578	566	4520	1030	1330
25	4660	4780	4020	3640	3220	4500	4720	886	646	4110	1080	2650
26 27 28 29 30 31	4840 4870 4880 4910 4880 4860	4760 4770 4780 4830 4810	4050 4000 3090 2600 2710 2830	3650 3690 3680 3650 3640 3760	3290 3300 3340 3390	4680 4280 4190 4170 4470 4620	4610 4600 4640 4770 4790	1080 1890 417 512 745 852	724 733 871 1070 1270	4120 4120 4240 4200 4210 4280	1320 1340 2120 2780 3040 2980	3510 1110 534 491 517

			TEMPERATUR	E, WATER		, WATER Y		R 1979 T	O SEPTEMBER	1980		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		19.0 15.0 14.5 20.0 16.5	9.0 13.0 13.5 15.0 13.0	8.0 10.0 11.0 9.5 9.0	4.0 6.5 11.0 11.0 12.5	9.5 12.5 8.5 10.5 15.0	19.0 24.0 22.0 13.5 14.0	23.0	27.5 29.0 27.0 26.0 29.0	31.5 31.5 32.0 33.0 29.0	31.0 32.0 31.5 29.0 32.0	30.5 30.5 31.0 29.0 29.0
6 7 8 9	::: :::	14.5 13.5 16.0 15.5 14.5	13.0 7.0 14.0 14.0 18.0	10.5 10.5 10.0 11.0 10.5	12.0 10.5 8.5 4.5 6.0	11.5 18.5 13.0 17.5 16.5	23.5 19.5 15.5 17.0 17.5	23.0 22.0 25.0	29.0 32.5 22.5 24.5 27.0	31.5 25.5 31.0 33.0 33.0	30.0 29.0 28.0 32.0 28.0	28.0 26.0 26.0 21.0 25.0
11 12 13 14 15	19.5 19.0 19.0 19.0 20.5	16.0 13.0 13.0 14.5 13.5	14.0 9.5 8.5 8.5 8.0	11.0 8.5 10.5 10.5 13.5	8.5 6.5 9.5 13.5 13.5	13.5 9.0 14.0	24.0 11.0 15.0 14.5 16.5	16.5	27.0 29.0 27.5 29.0 29.0	33.0 30.0 30.0 33.0	28.0 28.0 30.0 28.5 30.0	26.0 27.0 27.0 27.5 32.0
16 17 18 19 20	20.0 21.5 21.5 20.5 21.0	14.0 13.5 20.5 15.5 20.0	8.0 7.5 10.0 8.5 10.0	15.0 15.5 12.5 16.0 11.0	8.0 5.5 11.0 11.0 12.5	18.0 17.5 16.0 15.0 19.5	26.5 18.0 23.5 21.0 16.5	21.5 25.0 24.0 25.0 25.0	29.0 27.0 25.5 33.0 29.5	29.5 30.0 32.0 31.5	30.0 28.0 25.5 28.0 30.0	28.5 26.5 29.0 28.5 28.0
21 22 23 24 25	21.5 16.0 14.5 18.5 14.0	13.5 9.5 13.5 18.0 14.5	11.5 12.5 12.5 14.0 12.5	9.5 8.5 7.0 10.5 9.0	14.0 13.5 14.0 16.0 17.0	17.0 13.5 16.0 18.5	23.5 21.0	20.5 25.0 26.5 29.0 26.5	30.0 27.0 29.0 31.5 32.5	32.5 28.0 29.5 32.0 31.0	31.0 30.0 31.0 31.0 32.0	28.0 30.0 24.5 27.5 25.0
26 27 28 29 30 31	25.0 24.0 19.0 25.0 13.5 13.5	18.0 16.5 14.0 11.5 6.0	14.5 12.5 11.0 10.5 9.0 8.0	10.5 8.0 6.5 3.5 6.0 4.0	15.0 18.5 15.5 19.5	19.0 17.0 22.0 18.0 16.0	21.5 24.5 25.5 23.0	27.0 28.0 27.0 27.0 27.5 26.5	32.0 32.0 32.5 31.0 31.0	34.0 25.0 33.5 25.0 26.0 26.0	29.0 30.5 30.0 30.0 29.0 32.0	22.5 20.0 18.0 19.5 23.5
MEAN	19.5	15.0	11.5	10.0	11.5	15.5	19.5	25.0	29.0	30.5	30.0	26.5

08126380 COLORADO RIVER NEAR BALLINGER, TX--Continued SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		OCTOBER			NOVEMBER			DECEMBER	
1 2 3 4 5	.65 .59 1.2 1.3 1.5	52 47 55 58 50	.09 .07 .18 .20	.78 .41 .08 .54	34 19 41 38 32	.07 .02 .00 .06	1.0 1.1 1.2 1.1	16 12 13 20 17	.04 .04 .04 .06
6 7 8 9	.75 .79 .86 .82	55 60 40 55 65	.11 .13 .09 .12	.80 .80 .64 .08	22 20 40 41 26	.05 .04 .07 .00	.95 1.0 1.2 1.2	17 23 35 27 28	.04 .06 .11 .09
11 12 13 14 15	.11 .11 .48 .61	75 46 43 38 43	.02 .01 .06 .06	.80 .88 .49 .72	18 42 14 24 18	.04 .10 .02 .05	1.3 1.5 1.6 1.9	20 22 19 10 10	.07 .09 .08 .05
16 17 18 19 20	1.0 .84 .90 1.1	28 39 25 42 28	.08 .09 .06 .12	.80 1.2 1.2 1.2 1.3	16 18 26 14 32	.03 .06 .08 .05	1.4 1.4 1.3 1.2	9 14 8 7 40	.03 .05 .03 .02 .03
21 22 23 24 25	.94 .73 .71 .80	21 14 14 16 7	.05 .03 .03 .03	1.2 1.2 1.2 1.2 1.2	20 10 10 11 20	.06 .03 .03 .04	.16 .96 3.5 .88 .65	24 22 36 24 13	.01 .06 .34 .06
26 27 28 29 30 31	.49 .91 .68 .80 .98	13 18 17 14 19 28	.02 .04 .03 .03 .05	.83 .82 .80 .91 .85	10 12 12 12 22	.02 .03 .03 .03	.65 .72 8.5 18 9.2 8.7	10 19 45 45 26 16	.02 .04 1.0 2.2 .65
TOTAL	24.26	414	2.37	24.53		1.36	76.34		5.89

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		JANUARY			FEBRUARY			MARCH	
1 2 3 4 5	7.1 5.7 4.5 4.5 4.5	12 15 19 14 14	.23 .23 .23 .17	5.5 5.8 5.8 5.5 5.7	11 4 12 15 24	.16 .06 .19 .22 .37	1.9 1.2 1.2 1.3 .85	34 30 17 17 41	.17 .10 .06 .06
6 7 8 9	4.0 3.4 3.2 3.4 3.4	13 14 18 14	,14 ,13 ,16 ,13	5.0 5.8 24 12 6.9	20 30 45 16 15	.27 .47 3.4 .52 .28	.96 1.4 1.2 .83 .75	32 41 42 22 34	.08 .15 .14 .05
11 12 13 14 15	3.2 3.0 3.0 3.0 3.2	24 16 14 16 19	.21 .13 .11 .13 .16	5.6 4.1 5.6 6.4 5.7	13 8 8 20 26	.20 .09 .12 .35	. 49 . 59 . 22 . 04 . 03	26 36 22 27 48	.03 .06 .01 .00
16 17 18 19 20	3.4 3.2 3.4 3.4 3.8	19 21 22 40 34	.17 .18 .20 .37	4.9 4.0 4.2 4.2 3.4	18 10 14 21 25	.24 .11 .16 .24 .23	.48 .76 .45 .64	58 25 16 20 66	.08 .05 .02 .03
21 22 23 24 25	4.2 9.5 11 10 8.7	22 25 8 12 16	.25 .64 .24 .32	3.2 2.7 2.3 2.3 2.0	55 36 24 28 20	.48 .26 .15 .17	.50 .49 .65 .21	67 70 84 72 60	.09 .09 .15 .04
26 27 28 29 30 31	6.7 5.3 5.3 5.5 5.6 5.7	18 16 32 14 14	.33 .23 .46 .21 .21	2.0 2.3 1.8 1.7	34 26 26 18	.18 .16 .13 .08	.07 .67 1.1 .85 .04	54 64 50 64 46	.01 .12 .15 .15 .00
TOTAL	153.8		7.23	150.4		9.80	20.76		2.20

78

08126380 COLORADO RIVER NEAR BALLINGER, TX--Continued

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		APRIL			MAY			JUNE	
1 2 3 4 5	.07 .73 .65 .66	90 42 62 64 56	.02 .08 .11 .11	.02 .02 .03 .03	72 62 57 52 52	.00 .00 .00 .00	3.0 2.2 1.5 1.2	34 26 31 39 58	.28 .15 .13 .13
6 7 8 9	.80 .69 .67 .49	33 26 29 40 40	.07 .05 .05 .05	.03 .04 .04 .03	45 42 44 62 92	.00 .00 .00 .00	. 25 . 29 . 38 1. 2 2. 4	64 64 70 57 68	.04 .05 .07 .18 .44
11 12 13 14 15	.70 .73 1.3 .95 .81	38 20 20 38 52	.07 .04 .07 .10	.03 .03 .04 .04	75 37 17 20 1780	.00 .00 .00 .00	4.7 2.1 .37 .35 .43	40 48 70 54 36	.51 .27 .07 .05
16 17 18 19 20	.60 .44 .39 .45	32 34 31 40 30	.05 .04 .03 .05	554 78 22 13 21	1470 150 68 54 67	3410 32 4.0 1.9	. 42 . 46 . 48 . 52 . 55	55 55 59 42 32	.06 .07 .08 .06
21 22 23 24 25	.03 .02 .02 .02 .09	50 75 100 130 110	.00 .00 .00 .00	401 75 20 10 5.8	1560 300 202 98 116	1950 61 11 2.6 1.8	.65 1820 430 78 28	67 2990 1150 400 58	19600 1640 84 4.4
26 27 28 29 30 31	.34 .44 .24 .04	86 49 75 95 82	.08 .06 .05 .01	3.8 2.6 50 21 8.3 3.6	54 36 558 300 150 60	.55 .25 75 17 3.4 .58	15 13 7.5 5.7 4.0	52 32 32 34 14	2.1 1.1 .65 .52 .15
TOTAL	14.14	222	1.54	1999.55		14635.08	2425.39		21335.89

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		JULY			AUGUST			SEPTEMBER	
1 2 3 4 5	1.9 .96 .72 .88 .96	10 15 34 42 72	.05 .04 .07 .10	.30 15 22 6.0 .89	28 45 65 40 27	.02 1.8 3.9 .65	.37 .35 .42 .42 .20	25 42 27 34 77	.0 .0 .0 .0
6 7 8 9	.88 .58 .27 .17	61 68 100 125 101	.14 .11 .07 .06	.14 .13 .12 .10	68 82 88 65 65	.03 .03 .03 .02	.20 .47 2.9 6150 5730	105 55 33 3740 3030	.1 .1 .3 73800 57500
11 12 13 14 15	.16 .16 .16 .16	118 80 62 58 68	.05 .03 .03 .03	.10 .10 .10 .11	120 152 152 100 70	.03 .04 .04 .03	510 188 113 67 41	805 200 105 80 52	1260 102 32 14 5.8
16 17 18 19 20	.22 .26 .28 .30	70 71 88 70 40	.04 .05 .07 .06	.15 102 302 46 16	80 451 1370 300 218	.03 832 1680 37 9.4	28 20 13 11 8.4	41 41 28 24 20	3.1 2.2 1.0 .7
21 22 23 24 25	.26 .16 .16 .20	19 40 44 52 34	.01 .02 .02 .03	5.4 4.1 3.4 3.0 2.7	112 56 52 38 34	1.6 .62 .48 .31 .25	6.6 6.6 7.5 58 165	20 16 29 166 534	.4 .3 .6 103 287
26 27 28 29 30 31	.42 .46 .43 .49 .44	59 45 66 38 54 58	.07 .06 .08 .05 .06	2.1 1.9 .71 .36 .39	34 27 14 14 30 25	.19 .14 .03 .01 .03	88 411 1410 926 512	100 1110 1810 670 310	24 1900 6770 1680 429
TOTAL	13.39		1.78	536.04		2568.85	16475.43		143916.1

08127000 ELM CREEK AT BALLINGER, TX

LOCATION.--Lat $31^{\circ}44^{\circ}57^{\circ}$, long $99^{\circ}56^{\circ}51^{\circ}$, Runnels County, Hydrologic Unit 12090101, on right bank 1,000 ft (305 m) upstream from storage dam at Ballinger and 1.9 mi (3.1 km) upstream from mouth.

DRAINAGE AREA . - - 471 mi2 (1,220 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- April 1932 to current year.

REVISED RECORDS. -- WSP 1442: 1935, 1946, 1954.

GAGE.--Water-stage recorder and masonry dam control. Datum of gage is 1,617.72 ft (493.081 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good except those below 100 ft³/s (2.83 m³/s), which are fair. Stage-discharge relation during period of low flow affected by wind action and occasional accumulation of drift on dam. During the current year, records furnished by the city of Winters show they diverted 539 acre-ft (665,000 m³) from Lake Winters, capacity, 3,060 acre-ft (3.77 hm³).

AVERAGE DISCHARGE.--48 years (water years 1933-80), $46.4 \, \text{ft}^3/\text{s}$ (1.314 m³/s), 1.34 in/yr (34 mm/yr), 33,620 acreft/yr (41.5 hm³/yr).

EXTREMES FOR PERIOD OF RECORD .-- Maximum discharge, 50,000 ft 3/s (1,420 m3/s) Oct. 13, 1957, gage height, 14.20 ft (4.328 m), from floodmark; no flow at times.

Highest stage not affected by backwater from the Colorado River since at least 1904 was that of Oct. 13, 1957, from information by local residents.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in August 1906 reached a stage of 14.5 ft (4.42 m), affected by backwater from Colorado River.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 7,130 ft 3 /s (202 m 3 /s) Sept. 9 at 0945 hours, gage height, 7.11 ft (2.167 m), no other peak above base of 2,100 ft 3 /s (59.5 m 3 /s); no flow at times.

		DISCHA	RGE, IN	CUBIC F		SECOND, V MEAN VALU		YEAR	OCTOBER 1	979 TO SEP	TEMBER 1980		
DAY	OCT	NOV	DEC	JAN	FEB	MAI	К	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	2.5	1.2	.57	7	2.6	.00	9.7	1.2	.00	.00
2	.00	.00	.00	1.7	1.3	.35	5	1.8	.00	5.0	.88	.00	.00
3	.00	.00	.00	1.2	.93			1.5	.00	2.7	.56	.00	.00
4	.00	.00	.00	.84	.81			1.1	.00	2.1	.30	.00	.00
5	.00	.00	.00	.75	.86	.50)	.79	.00	1.5	.15	.00	.00
6 7	.00	.00	.00	.84	.79			.67	.00	.86	.07	.00	.00
7	.00	.00	.00	.79	.86			.53	.00	.56	.02	.00	.00
8	.00	.00	.00	.74	3.8	.62		.40	.04	.50	.00	.00	.00
9	.00	.00	.00	.70	5.3	.64		.31	9.2	.92	.00	.00	2430
10	.00	.00	.00	.70	3.9	.68	3	.26	6.1	1.0	.00	.00	285
11	.00	.00	.00	.69	4.3	.77		.26	1.9	1.6	.00	.00	29
12	.00	.00	.00	.63	3.1	.77		.18	.96	1.8	.00	.00	- 11
13	.00	.00	.00	.68	2.3	.51		.25	.68	1.4	.00	.00	5.8
14	.00	.00	.00	.62	2.0	.50		.24	.56	.91	.00	.00	3.2
15	.00	.00	.00	.63	1.9	.60)	.36	11	.55	.00	.00	1.7
16	.00	.00	.00	.63	1.5	.70		.40	48	.34	.00	.00	1.0
17	.00	.00	.00	.59	1.1	.67		.40	26	.17	.00	.00	.55
18	.00	.00	.00	.72	1.4	.52		.41	15	.11	.00	.00	.31
19	.00	.00	.00	.86	1.4	.55		.70	9.4	.07	.00	.00	.21
20	.00	.00	.00	.92	1.1	.56)	.72	6.1	.05	.00	.00	.14
21	.00	.00	.00	.99	.89			.45	6.8	.02	.00	.00	.10
22	.00	.00	.00	2.5	.80			.29	3.3	335	.00	.00	.08
23	.00	.00	.00	2.4	.84			.26	2.0	298	.00	.00	.08
24	.00	.00	.00	2.2	.93		7	.21	1.6	58	.00	.00	.13
25	.00	.00	.00	1.8	.79	.22	2	.13	1.5	29	.00	.00	25
26	.00	.00	.00	1.7	.65		5	.08	1.3	17	.00	.00	30
27	.00	.00	.00	1.3	.65			.05	2.8	10	.00	.00	15
28	.00	.00	.61	1.2	.70			.03	85	6.7	.00	.00	900
29	.00	.00	3.1	1.2	.81			.02	84	3.7	.00	.00	271
30	.00	.00	3.0	1.1				.01	32	2.0	.00	.00	90
31	.00		3.0	1.2		4.1			16		.00	.00	
TOTAL	.00	.00	9.71	35.32	46.91	60.82		15.41	371.24	791.26	3.18	.00	4099.30
MEAN	.000	.000	.31	1.14	1.62	1.96		.51	12.0	26.4	.10	.000	137
MAX	.00	.00	3.1	2.5	5.3			2.6	85	335	1.2	.00	2430
MIN	.00	.00	.00	.59	.65			.01	.00	.02	.00	.00	.00
CFSM	.000	.000	.001	.002	.003			.001	.03	.06	.000	.000	.29
IN.	.00	.00	.00	.00	.00			.00	.03	.06	.00	.00	.32
AC-FT	.00	.00	19	70	93	121		31	736	1570	6.3	.00	8130
CAL YR WTR YR		9897.29 5433.15	MEAN MEAN		MAX 219 MAX 243		.00	CFSM CFSM		.78 AC-			

08127000 ELM CREEK AT BALLINGER, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1967 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1967 to current year. WATER TEMPERATURES: October 1967 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC COMDUCTANCE: Maximum daily, 4,220 micromhos Sept. 12, 17, 1970; minimum daily, 244 micromhos Aug.
4, 1978.
WATER TEMPERATURES: Maximum daily, 34.5°C Aug. 14, 1973; minimum daily, 0.0°C Jan. 8, 1968, Jan. 10, 13, 1973.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 3,890 micromhos May 8; minimum daily, 340 micromhos June 23.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	FL INS TAN	EAM- OW, TAN- EOUS (SPE- CIFIC CON- DUCT- ANCE MICRO- MHOS)	PH FIELD (UNITS)	TEMI ATU WAT (DEC	PER- JRE, FER	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	DI SO (M	CIUM S- LVED G/L CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JAN 22	1020		2.4	2750	(24)		8.0	810	650	1	60	100	260
FEB 28	1000		1.1	3320		1	12.0	1000	850	1	80	140	300
APR 15	1105		.39	3700	-2-	1	17.0	1100	940	1	90	150	360
MAY 27	1210		1.0	2130	7.8	2	27.0	590	420	1	10	77	210
JUN 01	1100		5.0	1480				390	230		75	50	170
JUL 08	1130		.01	709	3.	2	29.0	210	69		49	21	59
SEP 09	0800	640	0	393				150	47		45	10	13
DATE	S	ODIUM AD- ORP- TION ATIO	POTAS SIUM DIS- SOLVE (MG/I AS K)	BONAT BONAT D (MG,	TE CAR L BONA MG	TE /L	SULFAT DIS- SOLVE (MG/L AS SO4	DIS D SOL (MG	E, RII - D VED SOI /L (M	UO- DE, IS- LVED G/L F)	SILIC DIS- SOLV (MG/ AS SIO2	CONS ED TUEN L DI SOL	OF TI-
JAN 22 FEB		4.0	8.		200	0	410	61		.4			650
28. APR		4.1	7.		210	0	480	73		.6			940
15 MAY		4.7	6.		190	0	480	82		.8			100
JUN		3.8	6.		210	0	240	45		.7			200
JUL.		3.7	6.		200	0	160	29		.6			860
O8 SEP		1.8	6.		170	0	60	10	F1	.4	12		392
09	•	.5	4.	5	130	0	42	3:	2	.3	8	. 9	220

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	0.00	*	*	0.00	*	0.00	*	0.00	*
NOV.	1979	0.00	*	*	0.00	*	0.00	*	0.00	*
DEC.	1979	9.71	2490	1460	38	500	13	330	8.6	720
JAN.	1980	35.32	3100	1850	176	670	64	440	42	910
FEB.	1980	46.91	3230	1930	245	710	90	460	59	960
MAR.	1980	60.82	3470	2090	343	780	128	510	84	1000
APR.	1980	15.41	3610	2190	91	820	34	540	22	1100
MAY	1980	371.24	2030	1180	1180	400	406	260	263	590
JUNE	1980	791.26	456	250	534	72	154	46	97	120
JULY	1980	3.18	651	358	3.1	100	0.9	66	0.6	180
AUG.	1980	0.00	*	*	0.00	*	0.00	*	0.00	*
SEPT	1980	4099.30	358	195	2160	55	610	35	385	97
TOTAL		5433.15	**	**	4770	**	1500	**	961	**
WTD. AVO	3.	15	577	325	**	100	**	66	**	160

	SP	ECIFIC COM	NDUCTANCE	(MICROMH		25 DEG. C NCE-DAILY), WATER	YEAR OCTO	BER 1979 I	O SEPTEMB	ER 1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1			-2-2	2510	3170	3370	3510		1480	640		
2				2900	3190	3400	3480		1450	642		444
3				2980	3210	3380	3570		1480	669		
2 3 4				3190	3240	3420	3600		1470	672		
5				3270	3260	3400	3620		1470	664		1984
6			1444	3180	3250	3410	3630		1480	677		.222
7				3200	3270	3420	3670		1490	666		+++
8				3230	3210	3440	3680	3890	1480			
9				3270	3190	3430	3690	3320	1430			275
10				3250	3180	3450	3680	3640	1400			322
11				3280	3200	3460	3700	3570	1420			345
12				3360	3210	3490	3720	3520	1480			389
13				3300	3240	3470	3690	3540	1400			397
14				3380	3220	3460	3700	3600	1490			452
15				3310	3240	3480	3710	3500	1500			453
16				3320	3260	3490	3690	3380	1510			498
17				3410	3250	3470	3690	2900	1550	404		485
18				3340	3260	3490	3700	2560	1500			500
19				3300	3260	3500	3670	2350	1520			499
20				3260	3270	3510	3700	2200	1410			515
21				3240	3290	3520	3690	2210	1510			505
22				2980	3300	3510	3690	2090	470			481
23				3000	3290	3530	3680	2130	340			493
24			277	3020	3300	3520	3690	2150	378			498
25				3060	3310	3540	3710	2280	420			488
26				3110	3300	3530	3690	2110	504			672
27				3120	3310	3520	3730	2130	575			877
28			3150	3150	3320	3490	3670	1370	542			450
29			2400	3140	3330	3440	3750	1290	645			631
30			2460	3160		3430	3700	1390	603			722
31			2480	3150		3460		1470				
MEAN			2620	3170	3250	3470	3670	2610	1180	661		498

08127000 ELM CREEK AT BALLINGER, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 ONCE-DAILY

					Ü	NCE-DAILY						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1					5.0	5.0				29.0		
					6.0	5.0				28.0		
3					10.0	5.0				29.0		
4					6.0	10.0				28.0		
2 3 4 5					9.0	11.0				29.0		
6					9.0	12.0				28.0		
7				11	10.0	11.0						
8					5.0	10.0						
9					5.0	10.0			/	. 444		
6 7 8 9					10.0	11.0						
11					5.0	10.0						
12					6.0	10.0			28.0			
13					10.0	10.0			27.0			
14					10.0	11.0			28.0			
15					9.0	9.0			29.0			
16					5.0	10.0			28.0			
17					7.0	5.0			29.0			
18					10.0	5.0			28.0			
19					9.0	12.0			29.0			
20					10.0	5.0			30.0			
21 22					9.0	10.0						
22				10.0	10.0	10.0			28.0			
23				7.0	12.0	11.0			25.0			
24				7.0	11.0	10.0			29.0			
25				10.0	10.0	10.0			28.0			
26				11.0	12.0	5.0			29.0			
27				6.0	12.0	9.0			30.0			
28				5.0	12.0	10.0			29.0			
29				5.0	5.0	5.0			28.0			
30 31				10.0		10.0			29.0			
31				9.0		5.0						
MEAN				8.0	8.5	9.0			28.5	28.5		

83

08127500 SOUTH CONCHO IRRIGATION CO.'S CANAL AT CHRISTOVAL, TX

LOCATION.--Lat 31°11'17", long 100°29'59", Tom Green County, Hydrologic Unit 12090102, on right bank at Christoval, 85 ft (26 m) downstream from point of diversion, and 100 ft (30 m) downstream from bridge on U.S. Highway 277.

PERIOD OF RECORD .-- November 1939 to current year.

REVISED RECORDS. -- WSP 1312: 1940-46.

GAGE .- - Water-stage recorder. Datum of gage is 2,017.02 ft (614.788 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. The following table lists only irrigation water diverted from right bank of South Concho River 900 ft (274 m) upstream from station at Christoval (station 08128000). Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--40 years (water years 1941-80), 6.74 ft³/s (0.191 m³/s), 4,880 acre-ft/yr (6.02 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily diversion for irrigation (excluding floodflow), 21 ft³/s (0.59 m³/s)
June 27, 28, 1941, Sept. 18, 21, 1942; no flow Apr. 26 to July 9, 1957, Mar. 18 to Apr. 10, 1958, and Oct. 19 to
Nov. 2, 1966.

		DISC	CHARGE, IN	CUBIC FE		COND, WAT		CTOBER 19	79 TO SEI	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.4 4.4 4.3 4.4	5.9 5.6 5.5 5.4 5.2	5.0 6.0 5.7 5.6 5.3	4.1 4.1 4.1 3.9 3.9	2.8 2.8 2.7 2.7 3.1	3.2 3.3 3.2 3.1 3.1	7.5 7.4 7.1 10 9.0	5.5 5.3 6.9 6.6 6.5	5.6 5.7 7.9 7.4 6.1	6.2 8.0 7.8 8.0 7.8	6.3 7.3 7.8 7.8 7.0	5.2 4.5 5.1 5.2 5.2
6 7 8 9	4.4 4.4 4.3 4.2 4.6	4.7 4.6 4.3 3.9 3.8	4.9 4.9 4.4 5.0 5.7	3.9 3.8 3.8 3.7 3.5	3.5 3.4 3.4 3.4	3.8 6.8 5.4 5.4 5.4	7.5 7.2 7.0 7.0 6.9	4.6 3.7 3.9 3.8 3.8	7.5 8.2 8.1 8.2 8.1	7.8 7.8 8.3 8.4 8.3	6.0 6.1 8.0 7.7 6.8	5.3 5.4 5.0 5.0 5.0
11 12 13 14	6.0 5.5 5.2 4.7 4.4	3.4 2.6 2.5 2.2 2.6	5.7 5.4 5.1 5.2 5.2	3.4 3.4 3.4 3.4	3.3 3.3 3.2 3.2 3.3	4.9 4.8 4.7 4.7	6.9 6.4 6.7 7.1 5.8	3.7 3.8 7.1 7.0 6.0	8.2 7.6 7.5 7.2 7.2	8.7 8.7 8.3 8.1 7.9	4.6 4.4 4.7 6.6 6.4	4.0 3.5 3.4 3.3 3.3
16 17 18 19 20	3.1 2.8 2.4 4.6 6.1	3.2 2.7 2.1 1.7 2.5	5.2 5.2 5.2 5.1 5.1	3.4 3.4 3.3 3.4 3.1	3.3 3.3 3.8 3.8	4.4 4.3 4.3 4.3	7.3 6.3 7.1 6.2 6.0	6.0 5.9 5.7 6.0 5.7	7.5 7.0 6.6 7.1 8.3	7.9 7.9 8.3 8.2 8.8	6.3 6.4 6.0 5.7 5.6	3.0 2.9 2.7 2.5 3.0
21 22 23 24 25	5.7 5.5 5.6 5.6 5.4	5.2 5.8 5.9 5.3 5.2	5.1 4.5 4.5 4.3 4.3	3.1 3.2 3.1 3.1 3.1	3.3 3.2 3.3 3.2	4.3 4.2 4.1 4.1 4.2	6.0 5.8 5.8 6.2 6.0	5.8 5.7 5.7 7.0 7.7	8.0 7.0 6.9 6.4 6.3	9.7 9.7 8.8 7.8 8.5	7.8 9.3 9.3 9.3	5.8 5.1 3.8 5.6 7.4
26 27 28 29 30 31	5.2 4.8 4.6 4.9 4.8 5.5	5.2 5.3 5.0 5.0	4.1 4.0 4.2 4.0 4.0	3.0 3.0 2.9 2.9 2.9 2.9	3.2 3.2 3.1 3.1	5.5 7.8 6.1 6.5 7.8 7.7	5.5 4.9 5.4 6.6 6.4	7.1 6.8 7.1 6.1 5.7 5.5	6.1 6.8 7.7 7.3 6.1	9.3 9.1 9.3 8.0 6.2 6.3	8.1 7.5 7.5 7.1 6.1 6.3	6.1 6.0 6.0 6.0 7.1
TOTAL MEAN MAX MIN AC-FT	146.2 4.72 6.1 2.4 290	127.3 4.24 5.9 1.7 252	151.9 4.90 6.0 4.0 301	105.6 3.41 4.1 2.9 209	93.4 3.22 3.8 2.7 185	150.3 4.85 7.8 3.1 298	201.0 6.70 10 4.9 399	177.7 5.73 7.7 3.7 352	215.6 7.19 8.3 5.6 428	253.9 8.19 9.7 6.2 504	214.9 6.93 9.3 4.4 426	141.4 4.71 7.4 2.5 280

CAL YR 1979 TOTAL 1700.80 MEAN 4.66 MAX 11 MIN .36 AC-FT 3370 WTR YR 1980 TOTAL 1979.20 MEAN 5.41 MAX 10 MIN 1.7 AC-FT 3930

08128000 SOUTH CONCHO RIVER AT CHRISTOVAL, TX

LOCATION.--Lat 31°11'16", long 100°30'09", Tom Green County, Hydrologic Unit 12090102, on left bank 1,000 ft (305 m) downstream from U.S. Highway 277 bridge, 9.5 mi (15.3 km) upstream from Twin Buttes Dam, and 85.0 mi (136.8 km) upstream from mouth.

DRAINAGE AREA.--409 mi² (1,059 km²), of which 65 mi² (168 km²) probably is noncontributing.

PERIOD OF RECORD .-- February 1930 to current year.

REVISED RECORDS. -- WSP 1118: 1943(M). WSP 1922: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 2,010.22 ft (612.715 m) National Geodetic Vertical Datum of 1929. Prior to July 17, 1930, nonrecording gage at same site and datum. July 17, 1930, to Nov. 15, 1977, water-stage recorder at site 160 ft (49 m) upstream at same datum.

REMARKS.--Records good. Low flow is materially affected by diversion to South Concho Irrigation Co.'s canal (station 08127500) 900 ft (270 m) upstream from station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--50 years, 33.4 ft³/s (0.946 m³/s), 24,200 acre-ft/yr (29.8 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 100,000 $\mathrm{ft^3/s}$ (2,830 $\mathrm{m^3/s}$) July 23, 1938, gage height, 21.95 ft (6.690 m), from floodmark, from rating curve extended above 15,100 $\mathrm{ft^3/s}$ (428 $\mathrm{m^3/s}$) on basis of slope-area measurement of 80,100 $\mathrm{ft^3/s}$ (2,270 $\mathrm{m^3/s}$); no flow Feb. 28, Mar. 1, 1955.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1882, about 23 ft (7.0 m) Aug. 6, 1906, discharge 115,000 ft³/s $(3,260 \text{ m}^3/\text{s})$, from rating curve extended as noted above, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 160 ft3/s (4.53 m3/s) and maximum (*):

Date		Time	Disch	arge	Gage	height	Date		Time	Disch		Gage	height
			(ft^3/s)	(m^3/s)	(ft)	(m)				(ft^3/s)	(m^3/s)	(ft)	(m)
May	14	2030	4,790	136	7.84	2.390	Sept.		2145	2,880	81.6	6.48	1.975
June	21	0300	407	11.5	3.13	.954	Sept.	28	0615	1,330	37.7	4.77	1.454
Sept.	8	1300	*13,400	379	11.48	3.499	Sept.	29	2045	357	10.1	3.02	.920

Minimum discharge, 5.7 ft³/s (0.16 m³/s) Aug. 22-26.

		DISC	HARGE, IN	CUBIC FE		COND, WAT AN VALUES		OCTOBER 19	79 TO SEF	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	13	12	14	16	16	15	12	11	22	16	11	8.1
2	13	11	14	16	16	15	12	12	22	14	9.7	9.0
2 3 4	13	11	14	16	16	1.7	12	11	19	14	8.3	9.0
4	14	11	15	16	16	17	9.3	11	18	13	8.3	8.8
5	14	11	15	15	16	17	9.4	11	18	13	8.5	8.3
6	15	11	15	15	16	17	9.8	12	17	13	9.6	8.3
7	15	11	15	15	14	14	9.4	13	16	13	10	7.6
8	16	11	15	15	17	14	9.0	15	16	12	9.6	1930
9	16	11	15 15	15 15	16 16	15	9.0	14	16 16	12 12	9.0	578
10	16	3(3)	13	15	16	14	9.7	13	16	12	9.1	487
11	14	12	15	15	16	17	9.8	14	19	12	12	67
12	14	15	14	15	16	16	11	15	18	11	12	32
13	14	16	14	15	16	15	12	56	17	12	12	30
14	13	16	14	15	17	15	10	734	17	12	9.5	30
15	18	16	14	15	17	15	1.1	594	17	12	9.0	30
16	16	16	14	15	17	16	10	97	16	10	9.0	30
17	16	16	14	15	17	16	10	30	16	10	9.2	30
18	17	16	14	15	17	16	9.8	25	16	10	9.7	31
19	16	16	14	15	16	16	10	24	16	11	9.7	31
20	12	15	14	15	17	16	10	24	16	1.1	9.4	33
21	1.1	11	14	16	17	16	11	24	77	9.7	8.4	28
22	11	11	14	18	17	15	11	24	42	9.0	6.2	28
23	10	11	17	17	17	15	11	24	22	9.1	5.7	32
24	10	13	15	16	16	15	10	24	17	9.7	5.7	32
25	10	14	15	16	15	15	9.7	22	17	10	5.7	28
26	10	14	15	16	15	14	9.8	21	17	9.6	5.9	31
27	11	14	15	16	15	13	10	21	17	9.0	6.3	37
28	11	14	17	16	15	13	12	21	15	9.1	6.3	415
29	11	14	16	16	15	13	11	22	15	9.7	6.0	127
30	13	14	16	16		12	9.7	24	15	11	6.6	94
31	14		16	16		12		22		12	7.6	
TOTAL	417	395	458	483	467	466	310.4	1985	602	350.9	265.0	4250.1
MEAN	13.5	13.2	14.8	15.6	16.1	15.0	10.3	64.0	20.1	11.3	8.55	142
MAX	18	16	17	18	17	17	12	734	77	16	12	1930
MIN	10	11	14	15	14	12	9.0	11	15	9.0	5.7	7.6
AC-FT	827	783	908	958	926	924	616	3940	1190	696	526	8430

CAL YR 1979 TOTAL 7140.0 MEAN 19.6 MAX 33 MIN 10 AC-FT 14160 WTR YR 1980 TOTAL 10449.4 MEAN 28.6 MAX 1930 MIN 5.7 AC-FT 20730

ER BASIN 85

08128400 MIDDLE CONCHO RIVER ABOVE TANKERSLEY, TX

LOCATION.--Lat 31°25'38", long 100°42'39", Irion County, Hydrologic Unit 12090103, on left bank 0.3 mi (0.5 km) upstream from East Rocky Creek, 0.5 mi (0.8 km) southwest of Tullos Ranch Headquarters, 6.7 mi (10.8 km) northwest of Tankersley, and 20.9 mi (33.6 km) upstream from mouth.

DRAINAGE AREA.--2,436 mi² (6,309 km²), of which 1,055 mi² (2,732 km²) probably is noncontributing.

PERIOD OF RECORD .-- March 1961 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,986.47 ft (605.476 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--19 years, 16.5 ft3/s (0.467 m3/s), 11,950 acre-ft/yr (14.7 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 15,500 ft 3 /s (439 m 3 /s) Sept. 21, 1974, gage height, 24.98 ft (7.614 m); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1900, 29.5 ft (8.99 m) Sept. 26, 1936. A flood in 1900 reached the same stage from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 7,590 ft 3 /s (215 m 3 /s) Sept. 9 at 1400 hours, gage height, 18.87 ft (5.752 m), no other peak above base of 1,700 ft 3 /s (48.1 m 3 /s); no flow at times.

DISCHARGE IN CURIC FEET PER SECOND WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

.00 .00 .00	.00 .00	DEC	JAN	FEB	MAR	APR	MA 37	*****	****	1110	
.00	.00	00				APK	MAY	JUN	JUL	AUG	SEP
.00			1.0	3.0	2.3	2.5	2.7	1.2	.65	.00	.00
.00		.00	1.2	3.2	2.2	2.8	2.5	1.2	1.5	.00	.00
.00	.00	.00	1.2	3.4	2.4	2.5	2.5	1.2	. 44	.00	.00
	.00	.00									
			1.2	4.0	2.6	2.1	3.4	1.1	.32	.00	.00
.00	.00	.00	1.1	4.3	2.7	1.8	3.3	.91	. 27	.00	.00
.00	.00	.00	1.0	4.4	2.7	2.3	2.9	.80	.21	.00	.00
- 00	- 00	- 00	1.0	4.5							.00
											.00
											1040
.00	.00	.00	1.3	4.5	2.6	2.6	3.2	2.5	.09	.00	52
.00	.00	.00	1.7	4.9	2.9	3.0	3.2	28	. 07	.00	6.1
-00	.00	.00	1.7								5.0
											4.0
											3.2
.00	.00	.00	2.2	4.6	2.9	3.8	5.3	.97	.00	.00	3.0
.00	.00	.00	2.2	4.3	3.3	3.7	2.3	.84	.00	.00	3.1
- 00	- 00	- 00	2.2	4.0	3.2	3.5	2.1				3.4
											3.6
										00	
											3.5
.00	.00	.00	2.2	4.2	3.1	3.5	1.9	.48	.00	.53	3.6
.00	.00	.00	2.2	3.9	2.8	3.5	1.8	45	.00	. 36	4.7
.00	-00	.00		3.8							5.5
											21
										. 31	
											13
.00	.00	.00	3.8	3.1	2.7	3.7	1.7	2.3	.00	. 24	7.8
.00	.00	.05	3.3	3.2	2.9	3.2	1.5	1.6	.00	. 20	3.3
											95
.00		1.2									
											190
				2.8							30
	.00	.55	3.3		2.9	2.5	1.3	.45	.00	.05	13
.00		.66	3.3		2.8		1.3		.00	.00	
00	0.0	3 25	66.0	11/. 2	88 2	88 /	7/1 1	250 66	4 06	171 04	1513.80
			2 12					0 66			
								8.00			50.5
											1040
							1.3	. 45	.00	.00	.00
.00	.00	6.4	131	227	175	175	147	515	8.1		3000
	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00	.00	.00	.00	.00	.00	.00	.00	.00	$ \begin{array}{c} .00 \\ .00 $

CAL YR 1979 TOTAL 2435.97 MEAN 6.67 MAX 540 MIN .00 AC-FT 4830 WTR YR 1980 TOTAL 2383.63 MEAN 6.51 MAX 1040 MIN .00 AC-FT 4730

86

COLORADO RIVER BASIN

08129300 SPRING CREEK ABOVE TANKERSLEY, TX

LOCATION.--Lat 31°19'48", long 100°38'24", Tom Green County, Hydrologic Unit 12090102, on right bank at downstream side of bridge on Farm Road 2335, 1.4 mi (2.3 km) south of Tankersley, and 2.5 mi (4.0 km) upstream from Dove Creek.

DRAINAGE AREA.--424 mi² (1,098 km²), of which 28 mi² (73 km²) probably is noncontributing.

PERIOD OF RECORD .-- October 1960 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,964.72 ft (598.847 m) National Geodetic Vertical Datum of 1929. Prior to Nov. 10, 1960, nonrecording gage at same site and datum.

REMARKS.--Records good. Many small diversions above station for irrigation. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--20 years, 14.4 ft3/s (0.408 m3/s), 10,430 acre-ft/yr (12.9 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $30,400 \text{ ft}^3/\text{s}$ (861 m $^3/\text{s}$) Aug. 12, 1971, gage height, 16.57 ft (5.051 m); no flow at times most years.

EXTREMES OUTSIDE PERIOD OF RECORD.--Outstanding floods since at least 1853 occurred in 1882 and 1884. Flood of Oct. 3, 1959, reached a stage of 18.4 ft (5.61 m), from floodmarks. At former gage near Tankersley 8 mi (13 km) downstream, the flood of Oct. 3, 1959, had a discharge of 82,100 ft³/s (2,330 m³/s) and was found to be about 3 ft (0.9 m) lower than the 1882 flood, the greatest at that location since at least 1853.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $5,270 \text{ ft}^3/\text{s}$ ($149 \text{ m}^3/\text{s}$) May 15 at 1200 hours, gage height, 8.93 ft (2.722 m), no other peak above base of $400 \text{ ft}^3/\text{s}$ ($11.3 \text{ m}^3/\text{s}$); minimum daily, $0.07 \text{ ft}^3/\text{s}$ ($0.002 \text{ m}^3/\text{s}$) Sept. 3-8.8 m

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1979	TO	SEPTEMBER	1980	
					BUTTABL TRAC	T. ILLY							

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.18 .18 .17 .17	3.9 6.6 8.2 8.1 6.8	9.0 8.3 8.7 9.6	12 12 12 13 12	11 11 11 11 10	6.9 7:2 7.6 7.8 3.8	5.0 4.6 1.8 1.1	4.4 5.7 6.2 8.5	5.4 4.6 4.1 4.4 3.7	1.8 1.2 .70 .52	.14 .14 .14 .13	.08 .08 .07 .07
6 7 8 9	.16 .17 .17 .15	7.0 6.6 7.9 6.3 6.2	9.0 8.0 6.7 8.9 8.7	13 12 12 13 13	11 11 14 12 11	6.4 6.7 5.8 8.7 9.0	1.8 8.8 5.8 3.9 3.4	9.5 6.7 5.7 6.7 7.2	2.1 1.6 2.1 5.7 6.3	.37 .33 .28 .23	.13 .12 .12 .12 .13	.07 .07 .07 4.6 4.6
11 12 13 14 15	.17 .18 .16 .17	6.2 8.4 6.9 7.2 6.4	9.1 8.5 10 12 12	12 12 12 12 12	12 11 8.2 6.9 5.7	7.0 8.4 3.8 4.0 4.3	3.7 3.8 6.2 6.4 4.6	6.9 5.8 7.4 8.6 977	13 6.3 4.7 4.4 5.7	.21 .20 .19 .19	.18 .25 .21 .19	1.6 3.9 4.2 4.0 4.0
16 17 18 19 20	8.6 4.2 4.7 5.9 5.0	6.6 6.4 5.9 5.3 4.0	13 11 10 11	12 12 12 12 12	4.1 4.6 5.4 6.6 6.8	7.2 5.6 3.6 3.6 5.3	4.0 5.6 4.5 6.7 6.2	118 42 33 29 25	4.5 3.4 3.5 3.3 1.9	.18 .17 .17 .16	.14 .17 .18 .14	3.6 3.5 1.9
21 22 23 24 25	6.4 5.6 5.1 6.0 6.8	5.2 4.1 6.7 7.4 7.5	10 11 16 12 10	12 15 13 11 11	5.9 5.8 5.9 5.6 6.4	3.5 4.8 7.6 1.7 3.1	4.8 3.3 1.6 1.4	22 19 19 18 15	1.3 34 10 5.8 4.7	.18 .17 .17 .16	.12 .11 .11 .11	.34 .24 .22 .23 .27
26 27 28 29 30 31	6.8 5.3 3.8 3.8 7.1 3.8	5.5 5.1 5.2 7.4 8.5	11 12 15 14 12	10 10 11 11 11	7.7 7.6 6.4 7.2	2.9 6.0 6.3 5.1 5.4 8.1	1.5 3.7 4.1 2.2 2.1	15 14 12 7.9 6.5 5.9	4.2 3.8 3.3 2.8 2.8	.16 .16 .15 .15	.10 .09 .09 .09	.31 28 69 27 16
TOTAL MEAN MAX MIN AC-FT	172.25 5.56 81 .15 342	193.5 6.45 8.5 3.9 384	329.5 10.6 16 6.7 654	376 11.9 15 10 734	242.8 8.37 14 4.1 482	177.2 5.72 9.0 1.7 351	114.91 3.83 8.8 .91 228	1477.6 47.7 977 4.4 2930	163.4 5.45 34 1.3 324	9.66 .31 1.8 .14 19	4.16 .13 .25 .09 8.3	182.34 6.08 69 .07 362

CAL YR 1979 TOTAL 2967.62 MEAN 8.13 MAX 81 MIN .10 AC-FT 5890 WTR YR 1980 TOTAL 3437.32 MEAN 9.39 MAX 977 MIN .07 AC-FT 6820

87

08130500 DOVE CREEK AT KNICKERBOCKER, TX

LOCATION.--Lat 31°16'24", long 100°37'45", Tom Green County, Hydrologic Unit 12090102, on right bank at right end of bridge on Farm Road 2335, 0.4 mi (0.6 km) west of Knickerbocker, and 5.4 mi (8.7 km) upstream from mouth.

DRAINAGE AREA.--229 mi² (593 km²), of which 31 mi² (80.3 km²) probably is noncontributing.

PERIOD OF RECORD .-- October 1960 to current year.

CAGE.--Water-stage recorder. Datum of gage is 2,001.45 ft (610.042 m) National Geodetic Vertical Datum of 1929. Prior to Nov. 10, 1960, nonrecording gage at present site and datum.

REMARKS.--Records good except those for May 16 to June 18, which are poor. Flow is partly regulated by storage and diversion from two small channel dams upstream and by small diversions upstream for irrigation. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--20 years, 17.9 ft3/s (0.507 m3/s), 12.970 acre-ft/yr (26.0 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 17,500 ft 3 /s (496 m 3 /s) Aug. 12, 1971, gage height, 20.66 ft (6.297 m); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1882, 30.4 ft (9.27 m) in 1906 and Oct. 3, 1959; floods in 1882 and 1884 reached about the same stage, from information by local resident.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 100 ft 3/s (2.83 m3/s) and maximum (*):

Date	Time	Disch	arge	Gage	height
		(ft ³ /s)		(ft)	
May 15	0930	*13,800	391	a18.52	5.645
Sept. 9	1530	399	11.3	6.00	1.829

a From floodmark.

Minimum discharge, 3.4 ft³/s (0.096 m³/s) Apr. 8.

		DISCHA	ARGE, IN	CUBIC FEET		ECOND, WAT EAN VALUES		OCTOBER 19	79 TO SEE	PTEMBER 19	080	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	10 9.7 9.0 9.7 9.9	13 13 13 14 14	16 16 16 16	14 14 14 14 14	14 14 14 14	14 14 14 14 12	14 12 10 9.5 6.5	9.7 6.8 6.8 11 9.9	10 10 10 10 10	8.5 8.0 7.6 6.8 6.2	5.3 5.5 6.6 7.5 6.4	14 11 7.3 7.8 5.7
6 7 8 9	9.9 9.3 8.0 8.0	13 14 14 14 15	16 16 16 16	14 14 14 14	14 14 15 15	13 14 13 14 13	6.4 6.1 3.7 5.5 5.5	8.8 12 12 11 9.6	10 10 10 10 10	5.8 5.5 5.5 5.4 5.0	5.1 5.8 6.9 10	5.6 5.6 8.8 80 23
11 12 13 14 15	9.1 8.5 9.0 11 13	15 15 16 16 15	16 16 16 16	14 14 14 14	15 15 15 15 15	11 8.8 7.9 9.1 9.3	7.7 9.3 13 10 8.2	8.5 12 8.3 11 1860	10 10 10 10	5.0 5.1 4.5 4.5 4.8	18 19 16 14	9.7 9.1 9.0 9.1
16 17 18 19 20	10 10 10 10 11	15 15 15 15 15	15 15 15 15 15	14 14 14 14	15 15 15 16 15	9.7 8.5 8.5 8.4 8.7	9.0 9.7 9.6 11	32 12 11 10	10 10 10 10 10	6.1 6.9 7.7 8.4	13 23 17 15	9.0 8.8 8.8 8.8
21 22 23 24 25	11 12 12 12 12	15 14 15 15	14 14 21 14 13	15 19 15 15	15 16 16 16 16	9.1 9.2 11 12 13	12 12 12 11 11	10 10 10 10	15 26 12 12	20 19 12 9.1 7.9	14 14 15 17	7.9 7.8 8.2 8.9
26 27 28 29 30 31	12 12 12 12 13 13	15 15 15 15 15	13 13 16 14 13	14 14 14 14 14	14 15 15 14	13 13 14 15 15	12 12 12 10 11	10 10 10 10 10	12 11 10 9.7 9.9	7.6 8.6 8.2 7.0 7.0	17 16 16 15 15	11 15 31 12 12
TOTAL MEAN MAX MIN AC-FT	326.9 10.5 13 8.0 648	439 14.6 16 13 871	474 15.3 21 13 940	446 14.4 19 14 885	431 14.9 16 14 855	364.2 11.7 15 7.9 722	294.7 9.82 14 3.7 585	2182.4 70.4 1860 6.8 4330	330.6 11.0 26 9.7 656	242.9 7.84 20 4.5 482	409.1 13.2 23 5.1 811	385.1 12.8 80 5.6 764
CAL YR WTR YR			MEAN MEAN		23 1860	MIN 5.5 MIN 3.7	AC-FT AC-FT	10790 12550				

08131200 TWIN BUTTES RESERVOIR NEAR SAN ANGELO, TX

LOCATION.--Lat 31°22'55", long 100°32'17", Tom Green County, Hydrologic Unit 12090102, in outlet control tower at Twin Buttes Dam on Middle Concho River, Spring Creek, and South Concho River, 3.8 mi (6.1 km) upstream from Lake Nasworthy Dam, 8.1 mi (13.0 km) southwest of San Angelo, and 75.0 mi (120.7 km) upstream from mouth.

DRAINAGE AREA.--3,724 mi² (9,645 km²), of which 1,178 mi² (3,051 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1962 to current year.

GAGE.--Water-stage recorder on Middle Concho-Spring Creek pool and nonrecording gage on South Concho pool. Datum of gages is National Geodetic Vertical Datum of 1929.

REMARKS.--The reservoir is formed by a rolled earthfill dam 8.1 mi (13.0 km) long, including a 200-foot-wide (61 m) uncontrolled off-channel concrete gravity spillway with ogee weir section. Outlet works consist of three 15.5-foot (4.7 m) concrete conduits, each is controlled by a 12.0- by 15.0-foot (3.7 by 4.6 m) fixed-wheel gate and a 12.0- by 15.0-foot (3.7 by 4.6 m) radial gate, located in Middle Concho-Spring Creek pool. Low-flow releases are made through 2.0- by 2.0-foot (0.6 by 0.6 m) gates located in the center of three fixed-wheel gates. The South Concho and Middle Concho-Spring Creek pools are connected by a 3.22-mile (5.18 km) equalizing channel. At an elevation of 1,926.5 ft (587.20 m) the two pools join to form one lake. Below elevation of 1,926.5 ft (587.20 m), daily contents are obtained from capacity tables for South Concho and Middle Concho-Spring Creek pools and summed to obtain combined daily contents. Lake level elevations below 1,926.5 ft (587.20 m) represent Middle Concho-Spring Creek pool only. Deliberate impoundment of water began on Dec. 1, 1962; dam was completed Feb. 13, 1963. Capacity curve is based on a survey made in 1958. Reservoir was built for flood control, irrigation, and municipal uses. Figures given herein represent total contents. Data regarding the dam and reservoir are given in the following table:

	(feet)	(acre-feet)
Top of dam	1,991.0	-
Crest of spillway	1,969.1	640,600
Top of conservation storage	1,940.2	186,200
Bottom of equalizing channel (Middle Concho-Spring Creek pool)	1,926.5	86,480
Dead storage in South Concho pool	1,926.5	5,440
Lowest gated outlet (invert at Middle Concho-Spring Creek pool)	1.885.0	3.750

COOPERATION .-- Capacity curve furnished by the U.S. Water and Power Resources Services.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 205,200 acre-ft (253 hm³) May 12, 1975, elevation, 1,942.20 ft (591.983 m); minimum since first appreciable storage, 2,120 acre-ft (2.61 hm³) Apr. 15, 1971.

EXTREMES FOR CURRENT YEAR.--Maximum combined daily contents, 87,150 acre-ft (107 hm³) Oct. 1; minimum. 55,880 acre-ft (68.9 hm³) Sept. 7.

CONTENTS,	IN	ACRE-FEET,	WATER	YEAR	OCTOBER	197	9 TO	SEPTEMBER	1980
		INSTANT	ANEOUS	OBSE	RVATIONS	AT	2400		

DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	87150	83110	81130	82680	83670	83570	81160	75540	84150	80910	66210	57380
2	86980	83060	81070	82700	83670	83530	81040	75210	83990	80560	65760	57120
3	86680	82940	81030	82770	83670	83490	80890	75030	83780	80210	65320	56840
4	86510	82900	81030	82760	83710	83260	80760	74840	83590	79850	64900	56550
5	86270	82740	80940	82830	83650	83230	80630	74520	83380	79460	64420	56330
6 7 8 9	86050 85840 85600 85270 85110	82630 82610 82570 82410 82340	80950 80920 80880 80880 80990	82800 82830 82870 82960 83000	83700 83720 83840 83970 84030	83210 83140 83060 83070 82990	80470 80150 79990 79780 79550	74190 73900 73660 73350 73050	83170 82940 83260 83340 83360	79060 78660 78310 77890 77470	64000 63570 63150 62700 62210	56080 55880 56300 64420 68380
11	84950	82270	80910	82900	84030	83070	79150	72840	83970	77020	62220	68660
12	84750	82200	80990	82980	84060	83000	79120	72600	83950	76540	62240	68550
13	84540	82130	81050	82940	84130	82890	79060	72810	83830	76060	62000	68550
14	84390	82060	81150	82980	84120	82810	78840	73080	83740	75510	61610	68500
15	84910	82020	81160	83020	84120	82810	78690	84620	83540	74920	61220	68540
16	84850	81980	81080	83060	84120	82780	78470	84940	83320	74340	60760	68510
17	84810	81990	81080	83070	84120	82630	78390	84940	83060	73760	60990	68440
18	84720	81910	81070	83110	84250	82560	78230	85030	82850	73150	61080	68450
19	84670	81910	81070	83150	84200	82550	78080	85050	82620	72570	61050	68430
20	84540	81950	81060	83270	84210	82330	77970	85250	82250	72040	60840	68380
21	84450	81810	81140	83310	84130	82250	77820	85370	81890	71490	60580	68350
22	84230	81760	81140	83540	84130	82160	77670	85410	82690	71050	60290	68300
23	84110	81680	81570	83580	84080	82000	77550	85340	82820	70560	60000	68340
24	83990	81600	81650	83630	84040	81860	77400	85270	82780	70070	59730	68410
25	83910	81520	81730	83600	83960	81780	77120	85210	82620	69550	59470	68600
26 27 28 29 30 31	83830 83710 83630 83670 83410 83230	81560 81340 81230 81200 81170	81730 81830 82380 82460 82530 82610	83590 83580 83580 83660 83630 83630	83960 83920 83860 83690	81710 81760 81690 81540 81380 81310	76820 76600 76350 76100 75820	85110 84920 84790 84650 84490 84320	82390 82160 81870 81540 81150	69050 68540 68050 67480 67050 66630	59150 58890 58590 58320 58010 57670	68750 69510 71180 71960 72320
MAX	87150	83110	82610	83660	84250	83570	81160	85410	84150	80910	66210	72320
MIN	83230	81170	80880	82680	83650	81310	75820	72600	81150	66630	57670	55880
(†)	1924.49	1923.49	1924.28	1924.55	1924.58	1923.99	1922.53	1924.75	1923.95	1919.90	1916.96	1921.36
(‡)	-4140	-2060	+1440	+1020	+60	-2380	-5490	-8500	-3170	-14520	-8960	-14650

-36590 # -150505 WTR YR 1980 MAX 87150 MIN 55880

[†] Elevation, in feet, at end of month, for Middle Concho-Spring Creek pool. † Change in contents, in acre-feet.

08131200 TWIN BUTTES RESERVOIR NEAR SAN ANGELO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1969 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO
NOV 13	1330	803	16.5	230	71	43	29	76	2.2
JUN 19	0745	773	26.5	220	67	43	28	70	2.0

NOV 13 6.0 190 0 69 120 .5 14	DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	
		6.0	190	0	69	120	.5	14	451	
JUN 19 6.9 190 0 65 120 .5 12	JUN 19	6.9	190	0	65	120	.5	12	439	

08131400 PECAN CREEK NEAR SAN ANGELO, TX

LOCATION.--Lat 31°18'32", long 100°26'44". Tom Green County, Hydrologic Unit 12090102, on left bank 200 ft (61 m) upstream from U.S. Highway 277, 3.6 mi (5.8 km) upstream from mouth, and 10.5 mi (16.9 km) south of San Angelo.

DRAINAGE AREA .-- 83.2 mi2 (215.5 km2).

PERIOD OF RECORD .-- June 1961 to current year.

REVISED RECORDS .-- WDR TX-75-3: 1971, 1972 (M) .

GAGE.--Water-stage recorder, crest-stage gages, and concrete control. Datum of gage is 1,930.72 ft (588.483 m)

National Geodetic Vertical Datum of 1929. Prior to Apr. 30, 1968, at site 1.2 mi (1.9 km) downstream at datum

20.21 ft (6.160 m) lower.

REMARKS.--Records good. No known diversions above station. Two observations of water temperature were made during the current year.

AVERAGE DISCHARGE.--19 years, 1.51 ft³/s (0.0428 m³/s), 0.25 in/yr (6 mm/yr), 1,090 acre-ft/yr (1.34 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 25,600 ft³/s (725 m³/s) Sept. 8, 1980, gage height, 10.63 ft (3.240 m); (510 m³/s) maximum gage height, 11.15 ft (3.399 m) Sept. 24, 1964, site and datum then in use; no flow most of time each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1908, 14.36 ft (4.377 m), former site and datum, Sept. 15, 1936, discharge 30,500 ft 3 /s (864 m 3 /s), by slope-area measurement.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 100 ft3/s (2.83 m3/s) and maximum (*):

Date		Time	Disch (ft³/s)	narge (m³/s)	Gage (ft)	height (m)	Date	Time	Disch (ft³/s)		Gage (ft)	height (m)
Oct. June Sept.	22	1000 0700 1130	134 157 *25,600	3.79 4.45 725	1.06 a1.11 10.63	0.323 0.338 3.240	Sept. 9 Sept. 28	2030 0500	8,850 1,460	251 41.3	6.10 2.54	1.859 0.774

a From floodmark.

Minimum discharge, no flow for many days.

		DISCHAF	RGE, IN	CUBIC FEE		COND, WATE	R YEAR	OCTOBER 1	979 TO SEI	PTEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2 3	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	3940
9	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1210
10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	173
1.1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	10
12	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	6.0
13	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	3.4
14	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	2.7
15	21	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	2.7
16	.43	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	2.4
17	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	2.0
18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.0
19	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.10
20	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.01
21	.00	.00	.00	.00	.00	.00	.00	+00	.00	.00	.00	.01
22	.00	.00	.00	.00	.00	.00	.00	.00	26	.00	.00	.01
23	.00	.00	.00	.00	.00	.00	.00	.00	4.2	.00	.00	.10
24	.00	.00	.00	.00	.00	.00	.00	.00	.02	.00	.00	1.0
25	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	2.0
26	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	2.7
27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	6.5
28	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	258
29	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	45
30	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	16
31	.00		.00	.00		.00		.00		.00	.00	
TOTAL	21.43	.00	.00	.00	.00	.00	.00	.00	30.22	.00	.00	5684.63
MEAN	.69	.000	.000	.000	.000	.000	.000	.000	1.01	.000	.000	189
MAX	21	.00	.00	.00	.00	.00	.00	.00	26	.00	.00	3940
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
CFSM	.008	.000	.000	.000	.000	.000	.000	.000	.01	.000	.000	2.27
IN.	.01	.00	.00	.00	.00	.00	.00	.00	.01	.00	.00	2.54
AC-FT	43	.00	.00	.00	.00	.00	.00	.00	60	.00	.00	11280
CAL YR WTR YR		32.29 5736.28	MEAN MEAN		MAX 2 MAX 394			SM .001 SM .19	IN .01 IN 2.56	AC-FT 1	64 1380	

91

08131600 TOM GREEN COUNTY WATER CONTROL AND IMPROVEMENT DISTRICT NO. 1 CANAL NEAR SAN ANGELO, TX

LOCATION.--Lat 31°24'58", long 100°23'29", Tom Green County, Hydrologic Unit 12090105, on left bank 1,900 ft (579 m) downstream from VFW Highway, 4.2 mi (6.8 km) southeast of San Angelo, and 6.1 mi (9.8 km) downstream from Lake Nasworthy.

PERIOD OF RECORD .-- March 1963 to current year.

GAGE.--Water-stage recorder and Parshall flume. Datum of gage is 1,855.33 ft (565.505 m) National Geodetic Vertical Datum of 1929 (Bureau of Reclamation reference mark).

REMARKS.--Records good. Discharge represents water released from Twin Buttes Reservoir (station 08131200) through Lake Nasworthy (station 08132000), principally for irrigation. Local flood runoff is excluded. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--8 years (water years 1964-71), no flow; 9 years (water years 1972-80), 19.6 ft³/s (0.555 m³/s), 14,200 acre-ft/yr (17.5 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 129 ft³/s (3.65 m³/s) May 7, 1980; no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP .00 .00 7.6 7.6 7.6 3.4 .00 .00 .00 59 38 .32 .00 .00 .00 .00 .00 23 27 82 46 56 47 29 .00 .00 96 .00 .00 .00 .00 .00 28 27 101 5.5 40 50 31 5 .00 .00 .00 .00 .00 .00 110 50 26 .00 .00 124 42 25 6 .00 .00 .00 .00 26 20 47 .00 .00 .00 .00 .00 .00 26 26 129 27 41 53 57 67 23 8 .00 .00 .00 33 .00 31 58 61 10 .00 .00 .00 .00 .00 .00 75 53 2.8 73 11 .00 .00 .00 .00 26 47 .03 .00 .00 14 67 71 72 95 .00 .00 .00 .00 .00 .00 22 19 .05 13 .00 .00 .00 .00 .00 31 .00 43 .00 .00 .00 .00 .00 .00 16 .00 .00 2.2 15 .00 .00 .00 .00 .00 .00 13 1.0 116 73 .00 16 .00 .00 .00 .00 .00 12 15 37 50 126 71 .00 .06 .00 .00 .00 .00 .00 .00 .00 12 .00 126 .00 18 .00 .00 .00 .00 .00 .00 121 63 .00 .39 .00 .00 .00 .00 .00 63 .00 20 .00 .00 .00 .00 .00 .00 13 63 110 61 .00 21 22 23 50 41 110 110 .00 .00 21 38 31 63 65 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 22 17 17 30 .00 .00 .00 .00 .00 .00 38 119 64 .00 24 25 .00 .00 .00 46 .00 .00 63 .00 .58 .00 .00 .00 .00 .00 15 46 24 111 59 .00 26 27 18 17 .00 46 24 108 60 61 .00 .00 .00 .00 14 -00 .00 .00 .00 19 24 .00 .00 .00 16 12 9.3 7.6 28 .00 .00 .00 .00 .00 16 56 24 96 61 .00 29 .00 .00 .00 .00 63 24 88 56 54 51 .00 16 .00 30 .00 .00 .00 00 16 74 61 .00 .00 .00 .00 3.72 883 2571 1798 TOTAL .00 .00 .00 .00 112.58 1360.38 727.05 242.83 29.4 71 12 .12 43.9 82.9 58.0 MEAN .000 .000 000 .000 3.63 24.2 8.09 MAX .00 .00 .00 .00 19 63 38 MIN .00 .00 .00 .00 .00 223 .00 41 .00 7.4 2700 5100 .00 1750 1440 3570 482 AC-FT

CAL YR 1979 TOTAL 9337.56 MEAN 25.6 MAX 123 MIN .00 AC-FT 18520 WTR YR 1980 TOTAL 7698.56 MEAN 21.0 MAX 129 MIN .00 AC-FT 15270

08132000 LAKE NASWORTHY NEAR SAN ANGELO, TX

LOCATION.--Lat 31°23'19", long 100°28'41", Tom Green County, Hydrologic Unit 12090102, on left bank 250 ft (76 m) upstream from Nasworthy Dam on South Concho River, 3.8 mi (6.1 km) downstream from Twin Buttes Dam, 6.0 mi (9.7 km) southwest of San Angelo, and 68.9 mi (110.9 km) upstream from mouth.

DRAINAGE AREA.--3,833 mi 2 (9,927 km 2), of which 3,724 mi 2 (9,645 km 2) is above Twin Buttes Reservoir and 1,178 mi 2 (3.051 km 2) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1930 to current year. Prior to October 1969, monthend contents only.

GAGE. -- Water-stage recorder. Datum of gage is 1,840.00 ft (560.832 m) National Geodetic Vertical Datum of 1929.

REMARKS.--The lake is formed by a 6,090-foot (1,860 m) dam with a 5,590-foot (1,700 m) earthen section that has an earthen spillway 300 ft (91 m) long, a concrete spillway 475 ft (145 m) long with a bank of fifteen 25.0- by 18.0-foot (5.5 by 7.6 m) tainter gates, and a 25.0-by 3.0-foot (7.16 by 0.9 m) collapsible floodgate. The dam was completed and storage began Mar. 28, 1930. Since July 1966, West Texas Utilities Co. has operated a steam generating powerplant on the lake. Since September 1962, the lake has been almost totally controlled by releases or pumpage from Twin Buttes Reservoir (station 08131200). Siltation surveys in December 1938 and March 1953 by the Soil Conservation Service show that 1,191 acre-ft (1.47 hm³) of silt was deposited from March 1930 to December 1938 and an additional 1,023 acre-ft (1.26 hm³) was deposited from December 1938 to May 1953, totaling 2,214 acre-ft (2.73 hm³). Water is used for part of San Angelo municipal supply and for irrigation east of San Angelo (see station 08131600 for diversions). The capacity curve is based on a survey by the Soil Conservation Service in 1953 and has been used since 1955. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	(feet)	(acre-feet)
Top of dam	43.5	-
Crest of spillway (300 ft)	39.1	27,810
Top of gates	33.2	13,990
Top of collapsible floodgate	32.2	12,390
Lowest outlet to canal (invert)	27.5	6,370
Crest of spillway (tainter gates sill)	15.3	435
Lowest gated outlet (invert)	-4.0	0

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 26,900 acre-ft (33.2 hm²) Sept. 15, 1936, gage height, 38.36 ft (11.692 m); minimum, 209 acre-ft (0.258 hm³) Aug. 22, 1964, gage height, 13.21 ft (4.026 m).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 12,930 acre-ft (15.9 $\,\mathrm{hm}^{\,\mathrm{J}}$) Sept. 9 at 2230 hours, gage height, 32.54 ft (9.918 $\,\mathrm{m}$); minimum, 10,230 acre-ft (12.6 $\,\mathrm{hm}^{\,\mathrm{J}}$) Aug 13, gage height, 30.83 ft (9.397 $\,\mathrm{m}$).

Capacity table (gage height, in feet, and total contents, in acre-feet)

9,170 30.0 33.0 13,670

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	10550	10440	10390	10520	10300	10340	10430	10360	10530	10400	10490	10330
2	10610	10440	10390	10470	10300	10370	10410	10360	10580	10390	10460	10340
3	10580	10440	10390	10440	10320	10390	10390	10430	10610	10390	10430	10370
4	10600	10470	10400	10400	10320	10370	10360	10470	10660	10400	10400	10390
5	10600	10430	10390	10410	10320	10410	10340	10500	10660	10400	10390	10390
6 7 8 9	10600 10600 10580 10520 10530	10430 10440 10440 10410 10410	10400 10400 10410 10430 10470	10360 10360 10370 10360 10370	10320 10330 10340 10370 10360	10440 10460 10460 10490 10470	10320 10300 10330 10360 10390	10440 10400 10330 10400 10440	10660 10650 10710 10820 10660	10390 10400 10370 10370 10390	10370 10370 10390 10440 10530	10370 10370 12290 12420 12470
11	10550	10410	10430	10340	10330	10520	10330	10460	10650	10410	10550	12440
12	10530	10410	10490	10360	10340	10490	10440	10470	10530	10430	10330	12390
13	10530	10400	10520	10360	10340	10470	10530	10470	10490	10440	10270	12330
14	10530	10400	10550	10370	10340	10460	10580	10390	10440	10460	10330	12250
15	10680	10410	10570	10390	10330	10460	10610	11050	10400	10490	10400	12180
16	10690	10430	10550	10370	10320	10470	10600	10950	10400	10520	10440	12100
17	10680	10460	10550	10370	10330	10430	10600	10870	10390	10520	10930	12010
18	10690	10470	10570	10370	10330	10410	10600	10790	10360	10530	10840	11940
19	10680	10470	10580	10370	10320	10440	10610	10710	10340	10570	10580	11860
20	10660	10500	10580	10370	10320	10370	10610	10690	10360	10610	10490	11750
21	10630	10440	10610	10390	10290	10370	10600	10530	10370	10650	10490	11640
22	10570	10440	10610	10460	10300	10390	10570	10410	10630	10600	10520	11540
23	10550	10430	10730	10430	10300	10360	10520	10360	10550	10530	10530	11510
24	10530	10410	10680	10410	10320	10330	10410	10330	10400	10500	10570	11510
25	10530	10400	10630	10400	10320	10330	10370	10300	10340	10490	10570	11540
26 27 28 29 30 31	10520 10500 10500 10520 10490 10460	10430 10370 10370 10370 10370	10580 10530 10680 10630 10600 10550	10360 10340 10330 10330 10320 10290	10330 10340 10360 10330	10360 10430 10430 10430 10440 10440	10340 10360 10390 10400 10400	10300 10330 10370 10410 10460 10500	10360 10340 10300 10320 10320	10460 10460 10490 10550 10570 10520	10520 10470 10430 10390 10340 10320	11560 12050 12610 12660 12690
MAX	10690	10500	10730	10520	10370	10520	10610	11050	10820	10650	10930	12690
MIN	10460	10370	10390	10290	10290	10330	10300	10300	10300	10370	10270	10330
(†)	30.99	30.93	31.05	30.87	30.90	30.98	30.95	31.02	30.89	31.03	30.89	32.39
(‡)	-90	-90	+180	-260	+40	+110	-40	+100	-180	+200	-200	+2370

CAL YR 1979 WTR YR 1980 MAX 11000 MIN 10270 ‡ -80 MIN 10270 ‡ +2140 MAX 12690

Change in contents, in acre-feet.

Cage height, in feet, at end of month.

COLORADO RIVER BASIN 08132000 LAKE NASWORTHY NEAR SAN ANGELO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1969 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO
NOV 13	1510	977	15.5	260	86	49	33	100	2.7
JUN 19	0915	1040	28.0	260	89	52	32	110	3.0

DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	
NOV 13	6.1	210	0	84	150	.5	17	543	
JUN 19	6.9	210	0	85	190	.6	16	596	

08133500 NORTH CONCHO RIVER AT STERLING CITY, TX

LOCATION.--Lat 31°49'48", long 100°59'36", Sterling County, Hydrologic Unit 12090104, on right bank 100 ft (30 m) upstream from bridge on State Highway 163, 0.5 mi (0.8 km) south of Sterling City, 4.0 mi (6.4 km) upstream from Sterling Creek, 5.1 mi (8.2 km) downstream from Lacy Creek, and at mile 55.3 (89.0 km).

DRAINAGE AREA. -- 605 mi2 (1.567 km2), of which 66 mi2 (171 km2) probably is noncontributing.

PERIOD OF RECORD. -- September 1939 to current year.

REVISED RECORDS. -- WSP 1512: 1945, 1948. WSP 1922: Drainage area.

CAGE.--Water-stage recorder. Datum of gage is 2,242.36 ft (683.471 m) National Geodetic Vertical Datum of 1929. Prior to Dec. 6, 1939, nonrecording gage at same site and datum.

REMARKS.--Records good. Small diversions above station for irrigation. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE .-- 41 years, 8.66 ft 3/s (0.245 m3/s), 6.270 acre-ft/yr (7.73 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 16,300 ft 3 /s (462 m 3 /s) July 6, 1948, gage height, 23.70 ft (7.224 m); no flow at times each year.

Maximum stage since at least 1891, that of July 6, 1948.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 300 ft 3/s (8.50 m 3/s) and maximum (*):

Date	Time	Disch	arge	Gage	height	Date	Time		arge	Gage	height (m)
		(ft^3/s)	(m^3/s)	(ft)	(m)			(ft ³ /s)	(m^3/s)	(ft)	(m)
Sept. 9					4.453	Sept. 24	2230	340	9.63		2.289
Sept. 10	0630	*7.420	210	20.01	6.099	Sept. 29	1400	973	27.6	11.39	3.472

Minimum discharge, no flow for many days.

		DISCH	HARGE, IN	CUBIC FE	ET PER SE	COND, WATER MEAN V	R YEAR O	CTOBER 19	79 TO SEPT	EMBER 1980		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00
6 7 8 9	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 554 3390
11 12 13 14 15	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	1.2 .17 .03 .00	.00 .00 .00 .00	.00 .00 .00	980 110 25 7.7 4.0
16 17 18 19 20	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	2.7 2.0 1.3 1.0
21 22 23 24 25	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	5.1 44 7.8 2.0 .75	3.5 1.3 .00 .00	.00 .00 .00 .00	.00 .00 .00	.63 .47 7.4 76 60
26 27 28 29 30 31	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00	.00 .00 .00 .00 .00	.00 .00 .00	.21 .13 .10 .06 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	28 79 29 629 81
TOTAL MEAN MAX MIN AC-FT	.00 .000 .00	.00 .000 .00	.00 .000 .00	.00 .000 .00	.00 .000 .00	.00 .000 .00 .00	.00 .000 .00	60.15 1.94 44 .00	6.20 .21 3.5 .00 12	.00 .000 .00 .00	.00.000.000.000.000.000	6068.88 202 3390 .00 12040

CAL YR 1979 TOTAL 47.35 MEAN .13 MAX 5.8 MIN .00 AC-FT 94 WTR YR 1980 TOTAL 6135.23 MEAN 16.8 MAX 3390 MIN .00 AC-FT 12170

08134000 NORTH CONCHO RIVER NEAR CARLSBAD, TX

LOCATION.--Lat 31°35'33", long 100°38'12", Tom Green County, Hydrologic Unit 12090104, near left bank on downstream side of bridge on county road, 0.6 mi (1.0 km) southeast of Carlsbad, 1.5 mi (2.4 km) upstream from Mule Creek, 2.5 mi (4.0 km) upstream from Grape Creek, 16.2 mi (26.1 km) upstream from O. C. Fisher Dam, and 22.9 mi (36.8 km) upstream from mouth.

DRAINAGE AREA.--1,249 mi² (3,235 km²), of which 105 mi² (272 km²) probably is noncontributing.

PERIOD OF RECORD .-- March 1924 to current year.

REVISED RECORDS.--WSP 1512: 1924(M), 1925, 1926(M), 1928, 1930, 1932(M), 1935, 1937-38(M), 1941(M), 1945(M), 1947-49(M). WSP 1922: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,968.02 ft (599.852 m) National Geodetic Vertical Datum of 1929. Prior to Feb. 4, 1925, and Sept. 27, 1936, to Feb. 7, 1937, nonrecording gage; Feb. 4, 1925, to Sept. 26, 1936, and Feb. 8, 1937, to Nov. 6, 1955, water-stage recorder, all at site 2.5 mi (4.0 km) upstream at datum 32.76 ft (9.985 m) higher.

REMARKS.--Records good. Diversions by pumping above station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--56 years, 35.4 ft3/s (1.003 m3/s), 25,650 acre-ft/yr (31.6 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 94,600 ft³/s (2,680 m³/s) Sept. 26, 1936, gage height, 16.0 ft (4.88 m) at former site, 29.1 ft (8.87 m) at present site, from floodmarks, by slope-area measurement of peak flow at former site; no flow at times.

Maximum stage since 1853, that of Sept. 26, 1936.

EXTREMES OUTSIDE PERIOD OF RECORD .-- Stage unknown for major flood in June 1853.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,500 ft3/s (42.5 m3/s) and maximum (*):

Date		Time	Disch	arge	Gage	height
			(ft^3/s)	(m^3/s)	(ft)	(m)
Aug.	17	0300	*10,900	309	17.68	5.389
Sept	. 9	1730	6.800	195	14.57	4.441
Sent	10	2100	8 360	237	15.81	4.819

Maximum discharge, no flow for many days.

		DISC	HARGE, IN	CUBIC FE		COND, WAT	ER YEAR O	CTOBER 19	79 TO SEP	rember 1	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.87 .87 .87 .87	2.4 2.4 2.4 2.4 2.4	2.6 2.4 2.6 2.9 2.9	2.4 2.9 2.6 2.4 2.4	1.0 .87 1.3 4.8 3.8	.30 .24 .14 .10	.00 .00 .00	.00 .00 .00	.00 .00 .00
6 7 8 9 10	.00 .00 .00	.00 .00 .00	.00 .00 .00	.87 .87 .87 1.0	2.4 2.6 3.2 2.9 2.6	2.9 3.2 3.2 2.9 2.9	2.4 1.9 1.5 1.2	2.9 3.5 5.1 3.5 1.9	.06 .06 .04 .08	.00 .00 .00	.00 .00 .00	.00 .00 .00 2040 4710
11 12 13 14 15	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	1.3 1.5 1.7 1.9 2.1	2.9 2.6 2.6 2.4 2.6	2.9 3.2 3.2 2.4 2.4	1.3 1.5 1.9 2.4 2.4	1.5 1.3 1.2 1.2 2.8	.14 .08 .04 .01	.00 .00 .00	.00 .00 .00	2180 397 94 51 32
16 17 18 19 20	.00 .00 .00	.00 .00 .00	.00 .00 .00	2.1 2.1 2.1 2.1 2.4	2.4 2.4 2.9 3.2 3.2	2.1 1.9 1.7 1.7	2.1 1.7 1.5 1.5	3.5 1.9 1.5 1.7 1.5	.00 .00 .00	.00 .00 .00	.00 2250 15 .82 .00	24 17 13 6.8 6.4
21 22 23 24 25	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	2.1 3.5 2.9 2.6 3.2	2.9 2.6 2.6 2.6 2.6	2.1 2.1 2.1 2.4 2.3	1.5 1.5 1.5 1.5	2.4 2.1 1.4 1.3 1.0	.00 7.0 2.5 .93 .24	.00 .00 .00	.00 .00 .00	4.5 39 22 7.2 236
26 27 28 29 30 31	.00 .00 .00 .00	.00 .00 .00 .00	.83 .87 2.6 2.1 1.3	2.6 2.4 2.4 2.6 2.4 2.4	2.4 2.6 2.4 2.4	2.4 2.6 2.6 2.4 2.4	1.2 1.0 1.0 1.2 1.2	.87 .64 .54 .64 .54	.04 .02 .01 .00	.00 .00 .00 .00	.00 .00 .00 .00	4.5 132 83 119 302
TOTAL MEAN MAX MIN AC-FT	.00 .000 .00	.00 .000 .00	9.14 .29 2.6 .00 18	57.56 1.86 3.5 .87 114	76.0 2.62 3.2 2.4 151	77.5 2.50 3.2 1.7 154	52.2 1.74 2.9 1.0 104	58.65 1.89 5.1 .45 116	12.19 .41 7.0 .00 24	.00 .000 .00	2265.82 73.1 2250 .00 4490	10520.40 351 4710 .00 20870

CAL YR 1979 TOTAL 780.24 MEAN 2.14 MAX 65 MIN .00 AC-FT 1550 WTR YR 1980 TOTAL 13129.46 MEAN 35.9 MAX 4710 MIN .00 AC-FT 26040

08134500 O. C. FISHER LAKE AT SAN ANGELO, TX

LOCATION.--Lat 31°29'04", long 100°28'53", Tom Green County, Hydrologic Unit 12090104, in intake structure of 0. C. Fisher Dam on North Concho River, 3.1 mi (5.0 km) northwest of San Angelo, and 6.6 mi (10.6 km) upstream

DRAINAGE AREA.--1,488 mi2 (3,854 km2), of which 105 mi2 (272 km2) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--February 1952 to current year. Published as San Angelo Reservoir prior to October 1970, and as San Angelo Lake, October 1970 to September 1974.

REVISED RECORDS .-- WSP 1922: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to May 12, 1953, nonrecording gage at same site and datum.

REMARKS.--The lake is formed by a rolled earthfill dam 40,885 ft (12,462 m) long, including spillway. Closure was completed Mar. 7, 1951, and the dam was completed May 3, 1951. Deliberate impoundment began Feb. 1, 1952. The lake is operated for flood control and recreation with part as municipal supply for the city of San Angelo. The spillway is an uncontrolled off-channel concrete gravity dam with ogee weir section 1,150 ft (351 m) wide located to the right and upstream from the right end of dam. The spillway is designed to discharge 356,000 ft³/s (10,100 m³/s) at maximum design flood level. The service control outlet works consist of six gate-controlled outlets, 7.5 by 14.5 ft (2.3 by 4.4 m), opening into two 18.0-foot-diameter (5.5 m) concrete conduits, and two 2.5-foot (0.8 m) gate-controlled outlets for water-supply outlets. Since February 1973, the capacity is based on a survey made in 1962. Prior to 1973, the capacity was based on a survey made in 1944. Corps of Engineers gage-height telemeter at station. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	Elevation (feet)	(acre-feet)
Top of dam	1,964.0	
Design flood	1,958.0	690,000
Crest of spillway	1,938.5	392,700
Top of conservation pool	1,908.0	115,700
Lowest gated outlet (invert)	1.840.0	0

COOPERATION. -- Records furnished by the Corps of Engineers and reviewed by the Geological Survey.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 174,100 acre-ft (215 hm³) Oct. 14, 1957, elevation, 1,916.47 ft (584.140 m); minimum since first appreciable storage, lake dry July 16, 1970, to Apr. 15, 1971.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 35,000 acre-ft (43.2 hm³) Sept. 30 at 2400 hours, elevation, 1,885.46 ft (574.688 m); minimum, 12,720 acre-ft (15.7 hm³) Aug. 16 at 1800 hours, elevation, 1,872.45 ft (570.723 m).

Capacity table (elevation, in feet, and total contents, in acre-feet)

1.872.0	12,230	1.880.0	23.560
1.874.0	14,560	1,882.0	27,480
1.876.0	17,160	1,884.0	31.710
1.878.0	20.080	1.886.0	36.260

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	18680	17680	17090	17110	16900	16740	16350	15660	15560	14870	13570	16400
2	18650	17650	17090	17100	16900	16710	16350	15640	15540	14840	13520	16350
3	18580	17630	17060	17100	16880	16680	16310	15700	15500	14790	13460	16310
4	18550	17600	17060	17070	16880	16670	16290	15700	15460	14740	13410	16270
5	18490	17600	17050	17070	16880	16670	16260	15700	15420	14700	13380	16250
6 7 8 9	18460 18420 18400 18330 18300	17550 17540 17520 17500 17470	17020 17010 16990 16990 16990	17070 17050 17030 17030 17030	16860 16860 16950 16950 16940	16670 16670 16660 16660 16640	16260 16210 16190 16150 16130	15670 15660 15660 15630 15600	15400 15370 15490 15500 15480	14640 14590 14560 14520 14460	13330 13280 13250 13210 13180	16210 16170 16150 19160 26070
11	18300	17440	16990	17020	16930	16660	16100	15600	15460	14430	13200	31160
12	18240	17230	17010	17020	16930	16640	16090	15590	15490	14400	13190	31860
13	18200	17400	17020	16990	16930	16600	16110	15600	15460	14350	13170	31950
14	18170	17380	17030	16990	16930	16580	16090	15600	15420	14300	13130	31970
15	18200	17370	17020	16980	16930	16580	16060	15880	15380	14260	13110	31970
16	18170	17360	17010	16980	16910	16590	16040	15850	15350	14200	13110	31910
17	18160	17360	16980	16980	16910	16560	16040	15820	15310	14180	17050	31860
18	18130	17340	16980	16970	16910	16520	16040	15840	15280	14120	17070	31780
19	18100	17340	16970	16980	16880	16520	16020	15820	15240	14070	17050	31730
20	18070	17370	16970	16980	16900	16480	15970	15820	15220	14030	16990	31660
21	18030	17330	16970	16980	16860	16460	15900	15810	15180	14000	16950	31600
22	17970	17300	16970	17020	16840	16430	15890	15790	15210	13950	16900	31560
23	17940	17290	17070	17010	16840	16420	15880	15760	15170	13910	16860	31640
24	17910	17260	17030	16990	16830	16380	15860	15730	15140	13880	16800	31750
25	17900	17240	17030	16980	16800	16360	15820	15710	15100	13840	16750	32260
26 27 28 29 30 31	17870 17870 17820 17800 17770 17720	17240 17180 17150 17130 17110	17020 17010 17130 17130 17110 17110	16970 16950 16950 16940 16940 16910	16790 16790 16780 16760	16350 16430 16420 16420 16390 16380	15760 15730 15720 15680 15670	15680 15700 15670 15660 15630 15600	15050 15030 14980 14920 14880	13820 13760 13730 13680 13650 13610	16700 16660 16600 16560 16520 16440	32570 33040 33960 34030 35000
MAX	18680	17680	17130	17110	16950	16740	16350	15880	15560	14870	17070	35000
MIN	17720	17110	16970	16910	16760	16350	15670	15590	14880	13610	13110	16150
(†)	1876.41	1875.97	1875.97	1875.82	1875,71	1875.42	1874.88	1874.83	1874.26	1873.22	1875.47	1885.46
(‡)	-970	-610	0	-200	-150	-380	-710	-70	-720	-1270	+2830	+18560

CAL YR 1979 MAX 23790 MIN 16970 ‡ -6420 WTR YR 1980 MAX 35000 MIN 13110 ‡ +17890

[†] Elevation, in feet, at end of month. ‡ Change in contents, in acre-feet.

97

COLORADO RIVER BASIN

08134500 O. C. FISHER LAKE AT SAN ANGELO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1969 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO
JAN 02	1110	802	9.5	250	100	50	31	58	1.6

DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
JAN 02	20	180	0	57	130	.4	6.0	441

08135000 NORTH CONCHO RIVER AT SAN ANGELO, TX

LOCATION.--Lat 31°27'57", long 100°26'51", Tom Green County, Hydrologic Unit 12090104, near left bank on downstream side of pier of Sixth Street Bridge in San Angelo, 3.2 mi (5.1 km) upstream from confluence with South Concho River, and 3.4 mi (5.5 km) downstream from O. C. Fisher Dam.

DRAINAGE AREA.--1,507 mi² (3,903 km²) of which 105 mi² (272 km²) probably is noncontributing.

PERIOD OF RECORD. --October 1915 to June 1928, February 1929 to September 1931, July 1947 to current year.

REVISED RECORDS.--WSP 568: 1916, 1918-22. WSP 1512: 1916(M), 1917-18, 1919-21(M). WSP 1922: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,813.42 ft (552.730 m) National Geodetic Vertical Datum of 1929. Prior to Sept. 1, 1920, nonrecording gage, and Sept. 1, 1920, to Feb. 11, 1929, water-stage recorder at site 1.6 mi (2.6 km) downstream at datum 11.02 ft (3.359 m) lower. Feb. 12, 1929, to Sept. 30, 1931, water-stage recorder at site 1.6 mi (2.6 km) downstream at datum 13.02 ft (3.968 m) lower.

REMARKS.--Records fair. Since October 1951, flow regulated by O. C. Fisher Lake (station 08134500). Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--17 years (water years 1917-27, 1930-31, 1948-51) prior to completion of O. C. Fisher Dam, 54.5 ft³/s (1.543 m³/s), 39,490 acre-ft/yr (48.7 hm³/yr); 29 years (water years 1952-80) regulated, 8.44 ft³/s (0.239 m³/s), 6,110 acre-ft/yr (7.53 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 47,000 ft³/s (1,330 m³/s) June 13, 1930, gage height, 22.52 ft (6.864 m), site and datum then in use; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Sept. 17, 1936, reached a stage of 34.6 ft (10.55 m), from flood-marks, discharge 184,000 ft 3 /s (5,210 m 3 /s), by slope-area measurement. The flood in 1936 was the greatest since flood in June 1853 (stage unknown).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $639 \text{ ft}^3/\text{s}$ (18.1 m $^3/\text{s}$) Sept. 9, gage height, 2.99 ft (0.911 m); no flow for many days.

DISCHARGE IN CURIC BEET BER CECOND HATER VEAR OCTOBER 1070 TO CERTEMBER 1090

		DISCH	ARGE, I	N CUBIC FEE		OND, WA N VALUE		OCTOBER 19	79 TO SEP	TEMBER 198	0	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.01 .00 .00 .00	.00 .01 .01 .01	.08 .12 .17 .26	.31 .54 .57 .59	.80 .81 .81 .81	.46 .44 .52 .58	.24 .23 .20 .17 .26	.21 .17 1.9 2.7 1.1	2.2 2.4 2.4 3.5 4.0	.11 .16 .00 .00	.00 .00 .00	.00 .00 .00
6 7 8 9	.01 .01 .01 .00	.01 .01 .01 .01	.21 .21 .28 .29	.61 .65 .56	.88 1.1 2.8 1.5	.54 .56 .50 .48 .21	.33 .32 .37 .34 .28	.57 .42 2.2 1.1	3.4 .77 31 15 1.9	.00 .00 .00	.00 .00 .00	.00 .00 .00
11 12 13 14 15	.02 .01 .01 .01	.04 .03 .03 .03	.30 .94 .81 2.1 .79	.61 .58 .53 .57	.69 .63 .63 .65	.03 .03 .03 .03	.21 .23 3.8 1.1 .62	.50 .43 3.6 1.4 91	12 2.0 4.8 3.3 .79	.00 .00 .00	.00 .00 .00	7.8 1.6 .88 1.1 .75
16 17 18 19 20	.00 .03 .03 .02	.03 .03 .04 .04	.54 .48 .47 .50	.64 .62 .61 .57	.58 .70 .75 .65	.02 .02 .02 .01	.56 .35 .43 .38	5.8 2.0 1.6 2.5 2.3	.47 .00 .00 .00	.00 .00 .00 .00	.00 .00 3.4 2.7 1.5	.65 .58 .70 .70
21 22 23 24 25	.01 .00 .00	.01 .01 .01 .01	.44 .42 8.8 1.3 .63	.64 4.3 .99 .67	.56 .63 .68 .54	.01 .01 .01 .01	.34 .32 .34 .35	6.9 1.7 1.5 1.4 1.3	.00 .18 .00 .00	.00 .00 .00	1.1 .91 .65 .61	.52 .52 2.1 12 16
26 27 28 29 30 31	.00 .01 .00 .01 .00	.02 .02 .01 .02 .03	.46 .44 16 4.9 .58 .34	.60 .58 .72 .78 .81	.54 .46 .44 .44	.01 1.3 .52 1.4 .44	.26 .28 .27 .26 .23	1.2 1.2 1.8 2.8 2.4 2.2	.00 .00 .00 .00	.00 .00 .00 .00	.16 .05 .01 .00	26 82 37 6.3 1.6
TOTAL MEAN MAX MIN AC-FT	.63 .020 .40 .00	.64 .021 .08 .00	43.85 1.41 16 .08 87	23.08 .74 4.3 .31 46	22.69 .78 2.8 .44 45	9.08 .29 1.4 .01 18	13.64 .45 3.8 .17 27	146.61 4.73 91 .17 291	90.11 3.00 31 .00 179	.27 .009 .16 .00	11.57 .37 3.4 .00 23	411.36 13.7 167 .00 816
212 42	Track Colors	010 11		05 1/11/	20 1/71	00	10 pm 6	0.1				

CAL YR 1979 TOTAL 348.41 MEAN .95 MAX 30 MIN .00 AC-FT 691 WTR YR 1980 TOTAL 773.53 MEAN 2.11 MAX 167 MIN .00 AC-FT 1530

08136000 CONCHO RIVER AT SAN ANGELO, TX

LOCATION.--Lat 31°27'16", long 100°24'37", Tom Green County, Hydrologic Unit 12090105, on left bank 0.4 mi (0.6 km) downstream from confluence of North and South Concho Rivers, 1.8 mi (2.9 km) southeast of Tom Green County Courthouse, and

DRAINAGE AREA. -- 5,380 mi2 (13,934 km2), of which 1,283 mi

PERIOD OF RECORD. -- September 1915 to current year. Prior to October 1969, published as "near San Angelo".

REVISED RECORDS.--WSP 568: 1915-16, 1919-22. WSP 1148: 1916-22(M), 1924(M), 1925-26, 1929(M), 1930-32, 1935-37. WSP 1512: 1917-18. WSP 1712: 1936. WSP 1922: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,776.79 ft (541.566 m) National Geodetic Vertical Datum of 1929. Prior to Aug. 11, 1917, nonrecording gage at same site and datum. Aug. 11, 1917, to May 15, 1963, water-stage recorder on right bank at same datum.

REMARKS.--Records good except those for periods of no gage-height record, Dec. 3 to Jan. 3 and May 17, to June 15, which are poor. Many diversions upstream from station for irrigation, industrial, and municipal supply. Records furnished by the city of San Angelo show that they diverted 18,900 acre-ft (23.3 hm³); no water was diverted from E. V. Spence Reservoir during the year. All sewage effluent is used for irrigation about 6 mi (10 km) downstream from gage, and none is returned directly to the river. Flow is regulated by Twin Buttes Reservoir (station 08131200) on the South Concho River and by O. C. Fisher Lake (station 08134500) on the North Concho River. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--47 years (water years 1916-62) prior to construction of Twin Buttes Dam, 158 ft 3 /s (4.475 m 3 /s), 114,500 acre-ft/yr (141 hm 3 /yr); 18 years (water years 1963-80) regulated, 23.3 ft 3 /s (0.660 m 3 /s), 16,880 acre-ft/yr (20.8 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 230,000 ft 3 /s (6,510 m 3 /s) Sept. 17, 1936, gage height, 46.6 ft (14.20 m), from floodmarks, from rating curve extended above 105,000 ft 3 /s (2,970 m 3 /s) on basis of slope-area measurements of 167,000 and 230,000 ft 3 /s (4,730 and 6,510 m 3 /s); no flow at times in 1921, 1952-53, 1965, and 1971

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1853, 47.5 ft (14.48 m) Aug. 6, 1906, discharge, about $246,000~{\rm ft}^3/{\rm s}$ (6,970 m³/s), from information by local resident. Other large floods are known to have occurred in June 1853, August 1882, and April 1900.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 11,500 ft 3 /s (326 m 3 /s) Sept. 9 at 2400 hours, gage height, 14.37 ft (4.380 m), from floodmark; minimum, 1.2 ft 3 /s (0.034 m 3 /s) Oct. 7.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	12 11 11 15 20	10 9.9 13 14 8.3	13 10 8.0 6.0 5.0	12 12 13 14 15	14 15 17 14 13	12 14 17 13	18 16 12 13 16	13 18 32 50 42	20 20 20 25 30	7.5 34 29 19	25 28 30 33 32	6.1 5.1 3.6 3.0 3.1
6 7 8 9	21 16 23 18 24	6.1 7.1 8.9 8.4 7.8	5.0 5.0 5.0 5.0 5.0	16 16 16 17 15	12 13 30 31 29	12 14 10 8.8 9.0	13 10 9.0 8.9 9.7	36 27 27 35 31	25 20 150 70 40	15 14 13 10 7.9	27 20 19 26 36	3.2 4.2 1020 2670 850
11 12 13 14 15	27 18 28 28 30	11 10 11 9.3 9.0	8.0 10 15 20 15	14 14 15 13 12	22 20 20 19 18	9.3 13 13 13	17 46 39 30 25	21 23 44 52 408	50 40 35 20 15	8.9 11 19 22 18	51 56 46 37 21	55 30 19 16 14
16 17 18 19 20	32 21 13 9.0 7.6	9.5 11 13 16 16	15 15 15 15 15	14 15 14 13	17 18 21 20 15	11 9.4 11 10 8.7	20 19 19 12 17	150 50 30 20 30	9.0 6.9 5.8 4.6 4.8	16 15 13 14 17	11 17 89 29 16	10 7.8 6.6 5.1 4.1
21 22 23 24 25	5.0 4.3 3.4 3.0 3.5	19 19 19 17 16	15 15 30 25 20	14 35 26 18 16	13 21 17 15 18	6.0 6.6 7.4 8.6 7.3	16 14 13 12 13	40 30 25 20 15	4.8 31 26 13 6.8	19 18 18 18 24	11 6.9 5.0 3.8 3.8	4.1 4.8 34 54 82
26 27 28 29 30 31	3.8 3.7 3.2 2.8 6.7 8.7	13 12 10 12 13	15 15 100 40 20 15	12 11 11 12 12 13	15 13 12 11	10 33 32 29 24 22	16 14 11 8.7 9.4	15 15 15 20 20 20	4.4 3.6 3.1 3.0 3.1	29 31 32 30 26 26	3.9 4.3 4.7 4.7 4.1 4.5	71 282 159 37 22
TOTAL MEAN MAX MIN AC-FT	432.7 14.0 32 2.8 858	359.3 12.0 19 6.1 713	520.0 16.8 100 5.0 1030	463 14.9 35 11 918	513 17.7 31 11 1020	419.1 13.5 33 6.0 831	496.7 16.6 46 8.7 985	1374 44.3 408 13 2730	709.9 23.7 150 3.0 1410	589.3 19.0 34 7.5 1170	705.7 22.8 89 3.8 1400	5485.8 183 2670 3.0 10880

CAL YR 1979 TOTAL 5503.30 MEAN 15.1 MAX 155 MIN .11 AC-FT 10920 WTR YR 1980 TOTAL 12068.50 MEAN 33.0 MAX 2670 MIN 2.8 AC-FT 23940

NOTE .-- No gage-height record Dec. 3 to Jan. 3, Apr. 22-23, May 17 to June 15.

08136150 CONCHO RIVER NEAR VERIBEST, TX (Low-flow partial-record station)

LOCATION.--Lat 31°32'07", long 100°13'05", Tom Green County, Hydrologic Unit 12090105, at bridge on county road, 2.8 mi (4.5 km) downstream from Crownest Creek, 4.5 mi (7.2 km) northeast of Veribest, and 17.3 mi (27.8 km) downstream from gaging station near San Angelo.

PERIOD OF RECORD.--Periodic discharge measurements: April 1970 to April 1974. Periodic water-quality data: February 1968 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	FI INS TAN	REAM- LOW, STAN- MEOUS CFS)	CI CC DU AN (MI	PE- FIC ON- JCT- JCE CRO- JOS)	PH FIELD (UNITS)	TEMF ATU WAT (DEC	JRE, TER	SO	GEN, DIS- DLVED G/L)	SO (P C SA	GEN, IS- LVED ER- ENT TUR- ION)	BI UN 5	MAND, OCHEM INHIB DAY IG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
NOV 08	1445		20		2280	7.8	1	6.0		11.9		129		2.1	660	380
JAN 24	1440		35		2040	7.6		9.5		15.9		149		1.1	520	260
MAR 19	1600		12		2100	8.0	1	6.0		16.4		178		4.0	590	340
MAY 22	1510		50		1300	8.0	2	24.5		12.2		152		4.5	340	180
JUL 15	0900		16		2210	8.0	2	29.5		8.0		111		4.4	500	320
17	1800		28		1560	8.3	2	28.0		17.5		236		14	390	250
DATE	CALCIU DIS- SOLVE (MG/L AS CA	M S D SC (M	GNE- GIUM, DIS- DLVED IG/L G MG)	SOI (N	OIUM, S- VED IG/L S NA)	SODIUM AD- SORP- TION RATIO	DI SOL	TAS- IUM, IS- LVED G/L K)	BON (M	AR- ATE IG/L AS	CAR BONA (MG AS C	TE /L	SO (M	FATE S- LVED IG/L SO4)	CHLO- RIDE, DIS- SOLVEI (MG/L AS CL)	(MG/L
NOV 08	140		76	2	230	3.9		4.8		340		0	2	40	440	.7
JAN 24	120		53	5	10	4.0		5.4		310		0	1	80	380	.7
MAR																
19 MAY	130		65	2	240	4.3		5.8		310		0		20	430	.5
22 JUL	78		36	1	40	3.3		6.1		200		0	1	10	260	.5
15 SEP	100		61	2	20	4.3		6.9		220		0	2	10	420	.4
17	81		46	1	50	3.3		5.2		170		0	1	40	320	.4
DA	D Si	LICA, IS- OLVED MG/L AS IO2)	SOLI SUM CONS TUEN DI SOL (MG	OF TI- TS, S- VED	NITRO GEN NITRA' TOTAI (MG/) AS N	GE TE NITR L TOT L (MG	ITE AL	NIT GE NO2+ TOT (MG AS	N, NO3 AL /L	NIT GE AMMO TOT (MG AS	N, NIA AL /L	NITE GEN ORGAN TOTA (MG) AS N	NIC AL /L	NITRO GEN, A MONIA ORGAN TOTA (MG/ AS N	M- + PH IC PHO L TO L (M	OS- RUS, TAL G/L P)
NOV 08 JAN		25	1	320	7.	6	.12	7	. 7		.03		.63		66	.020
24		22	1	120	5.0	0	.08	5	.1		.06	1.	0	1.	1	.060
MAR 19		15	1	260	3.8	8	.04	3	. 8		.12	1.	. 3	1.	4	.060
MAY 22 JUL		16		745	1.	7	.05	1	. 7		.15	1.	5	1.	6	.270
15		17	1	140	1.0	0	.10	1	.1		.18	1.	4	1.	6	.120
SEP 17		17		843	2.	1	.03	2	.1		.00	1.	. 7	1.	7	.060

08136500 CONCHO RIVER AT PAINT ROCK, TX

LOCATION.--Lat 31°30'57", long 99°55'09", Concho County, Hydrologic Unit 12090105, near left bank on downstream end of pier of bridge on U.S. Highway 83, 0.5 mi (0.8 km) north of Concho County Courthouse in Paint Rock, 2.7 mi (4.3 km) downstream from Kickapoo Creek, and 19.6 mi (31.5 km) upstream from mouth.

DRAINAGE AREA.--6.415 mi² (16.615 km²), of which 1.283 mi² (3,323 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD, -- September 1915 to current year. Prior to October 1970, published as "near Paint Rock".

REVISED RECORDS. -- WSP 458: 1915-16. WSP 568: 1919-20. WSP 1712: 1922(M). WSP 1732: 1918(M), 1923(M). WSP 1922: Drainage area.

GACE.--Water-stage recorder with masonry dam control. Datum of gage is 1,574.36 ft (479.865 m) National Geodetic Vertical Datum of 1929. See WSP 1922 for history of changes prior to Jan. 15, 1940.

REMARKS.--Water-discharge records good. Many diversions above station for irrigation and municipal supply. Regulation same as that for Concho River at San Angelo (station 08136000). Flow is affected at times by discharge from flood-detention pools of two floodwater-retarding structures with combined detention capacity of 2,690 acre-ft (3.32 hm³). These structures control runoff from 16.5 mi² (42.7 km²) in the Willow Creek drainage basin.

AVERAGE DISCHARGE.--47 years (water years 1916-62) prior to construction of Twin Buttes Dam, 210 ft³/s (5.947 m³/s), 152,100 acre-ft/yr (188 hm³/yr); 18 years (water years 1963-80) regulated, 59.7 ft³/s (1.691 m³/s), 43,250 acre-ft/yr (53.3 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 301,000 ft³/s (8,520 m³/s) Sept. 17, 1936, gage height, 43.4 ft (13.23 m), from floodmarks, from rating curve extended above 98,000 ft³/s (2,780 m³/s) on basis of slope-area measurements of 144,000 and 301,000 ft³/s (4,080 and 8,520 m³/s); no flow at times.

Maximum stage since at least 1853, that of Sept. 17, 1936.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1882 reached a stage of about 39.9 ft (12.16 m), and flood in August 1906 reached a stage of 39.5 ft (12.04 m), from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $46,600 \text{ ft}^3/\text{s}$ (1,320 m³/s) Sept. 9 at 0830 hours, gage height, 28.25 ft (8.611 m); minimum daily, $0.03 \text{ ft}^3/\text{s}$ (0.001 m³/s) Sept. 4, 5.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES JUN JUL AUG SEP APR MAY JAN FEB MAR DAY OCT NOV DEC .98 9.6 14 9.8 8.4 .05 .05 1.6 4.0 .03 2.2 .03 3.7 29 29 1.2 .10 2.0 .20 1.1 33 33 8.4 1.0 7.2 .99 32 22 27 27 1.1 1.6 4.0 4.0 1.5 4.0 2.2 31 9.9 2.6 33 33 27 32 30 3.2 1.2 .76 4.6 3.0 8.0 6.0 .76 45 5.2 5.1 5.7 .39 27 35 .20 16 30 3.2 4.4 3.0 .39 .63 1.7 .39 .20 5.0 27 12 .88 52 18 2.2 .10 .39 52 6.8 1.2 .99 .76 8.4 57 ---3.3 .10 140.74 607.82 46385.51 356.81 106.15 2583.78 TOTAL 74.9 19.6 MEAN MAX 20.6 22.9 41.2 34.9 48 33.3 46 27 11.5 4.54 3.54 83.3 .63 MIN .56 .98 AC-FT

MIN 5.0 AC-FT 24530 MIN .03 AC-FT 113200 33.9 CAL YR 1979 TOTAL 12368.40 MEAN MAX 23800 WTR YR 1980 TOTAL 57079.81 MEAN 156

08136500 CONCHO RIVER AT PAINT ROCK, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical and biochemical analyses: October 1967 to current year. Pesticide analyses: October 1967 to current year.

PERIOD OF DAILY RECORD. -

SPECIFIC CONDUCTANCE: October 1967 to current year.
WATER TEMPERATURES: October 1967 to current year.
SUSPENDED SEDIMENT DISCHARGE: February 1978 to current year.

REMARKS. -- Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equation developed for this station may be obtained from the Geological "urvey District office upon request.

09...

EXTREMES FOR PERIOD OF DAILY RECORD.SPECIFIC CONDUCTANCE: Maximum daily, 3,110 micromhos Apr. 20, 24, 25, 1974; minimum daily, 268 micromhos Sept. 9, 1980.
WATER TEMPERATURES (1967-73, 1975-80): Maximum daily, 35.0°C on several days during summer months; minimum daily 0.0°C on many days during winter months.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 4,190 mg/L Sept. 9, 1980; minimum daily mean, 3 mg/L Feb. 2, 1979.
SEDIMENT LOADS: Maximum daily, 269,000 tons Sept. 9, 1980; minimum daily, 0.0 tons on several days during September 1980.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 2,580 micromhos May 5; minimum daily, 268 micromhos Sept. 9.
WATER TEMPERATURES: Maximum daily, 35.0°C July 15, Oct. 6; minimum daily, 5.0°C Dec. 16.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 4190 mg/L Sept. 9; minimum daily mean, 7 mg/L Dec. 18.
SEDIMENT LOADS: Maximum daily, 269,000 tons Sept. 9; minimum daily, 0.0 tons on several days during September.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STRE FLO INST TANE (CF	AM- CO W, DI AN- AI OUS (M.		PH	EMPER- ATURE, WATER DEG C)	COLOR (PLAT- INUM COBALT UNITS)	TUI BII ITY (NT)	D- Y	XYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)
OCT 15	1015	3	6	2000	7.9	21.0				32	2.2	4.2
NOV 08	1300	3	8	2390	7.7	15.0	5	14		12.3	131	1.9
JAN 24	1240	7	5	2180	7.7	9.0	0	8.	,	14.6	127	0
31 FEB	1020	3		2140	1.1	6.0		0.		14.0	134	.9
29	1630	2	7	2110		18.0	77		27	27		
MAR 19	1400	1	/.	2400	8.0	14.0	10	26		13.4	120	2.0
31 APR	1730		4.0	2230		20.0		20		13.4	138	2.8
30	0945		1.2	2550	277	21.0						-24
MAY 22	1430	11	0	1270	7.8	24.5	60	42		12.5	156	1.4
JUN 22	0800	231	0			22.0						
30 JUL	1200	1.		664		22.0 32.0			12			
08	0940	1	6	900	22	29.0						
15 SEP	1030		5.0	1110	7.8	28.5	30	28	77	6.8	91	10
08	0745	1340	0			26.0				22		
08	1335	471				22.5						
08	1345	603		232		22.5						20
09	0800	4640				22.0					1.55	4.7
09	1810	2270		1050	8.6	22.0	20	23		15.2	208	8.5
	NE (M	IG/L	HARD- NESS, NONCAR- BONATE (MG/L	CALCIUM DIS- SOLVEI (MG/L	DIS- SOLVE (MG/L	DIS- D SOLVEI (MG/I	SOR TI	D- P- ON	POTAS SIUM DIS- SOLVE (MG/L	BICA BONA (MG	TE CAR /L BONA S (MG	TE /L
DATE	CA	(CO3)	CACO3)	AS CA	AS MG) AS NA	4)		AS K)	HCO	3) AS C	03)
OCT 15		610	420	120	76	180		3.2	5.	7	240	Ō
NOV 08		690	480	140	82	190		3.2	5.	3	250	0
JAN 24		600	380	130	68	200		3.5	5.	2	280	0
31 FEB		650	450	140	73	200		3.4	5.		250	O
29		640	450	140	71	190		3.3	5.	2:	240	U
MAR 19		690	490	150	77	220		3.6	5.	7	250	0
31		680	500	150	74	210		3.5	5.		220	0
APR 30		770	620	160	91	240		3.8	6.0	0	190	0
MAY 22		350	210	81	37	120		2.8	5.	9	180	0
JUN 22							-		-		12	
30 JUL		200	100	51	18	50		1.5	5.		120	0
08		270	150	65	26	7.3		1.9	7.		150	0
15 SEP		320	170	73	33	94		2.3	7.	0	180	0
08		27				2	2		=			
08		89	13	30	3.			.4	4.		92	0
00		0-				- 2.	10			-		

COLORADO RIVER BASIN 103

08136500 CONCHO RIVER AT PAINT ROCK, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA DIS- SOLVI (MG/I AS SIO2	A, SI CO ED TI L	OLIDS, UM OF ONSTI- UENTS, DIS- SOLVED (MG/L)	SOLID RESID AT 10 DEG. SUS- PENDE (MG/	UE 5 C,	SOLIDS VOLA- TILE SUS- PENDEI (MG/I		NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	
OCT 15	240	400	.6	23		1160				-			
NOV 08	260	410	.6	21		1230		35		14	7.5	.120	
JAN 24	260	430	.6	19		1250		18		8	8.7	.100	
31 FEB	240	430	.6	18		1230							
29 MAR 19	250 260	420	.6	14		1330		33		7	6.5	.060	
31 APR	280	470	.7	14		1310							
30 MAY	310	580	.6	15		1500				-			
22 JUN	120	230	.4	15		698		11		7	1.1	.040	
22 30	62	120	.3	16		382					22		
JUL 08	86	170	.5	20		522							
15 SEP	96	220	1.1	21		634		53		16	.16	.040	
08	2.27											- 11	
08	13	20	.2		.0	133							
09	93	190	.3	13		520		 28		17	1.1	.030	
	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO GEN,A MONIA ORGAN TOTA (MG/ AS N	M- HC P L L	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBO ORGAN TOTA (MG/ AS (NIC AL /L	SEDI MENT SUS- PEND (MG/	, ED	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM	
OCT 15													
NOV 08	7.6	.040	.81		85	.020		9.2			- 12	4.4	
JAN 24	8.8	.040	.08		12	.030	2	4.3					
31 FEB												17	
29 MAR 19	6.6	.080	1.3	1.	/-	.040		9.5					
31 APR	0.0	.000				.040						22	
30 MAY													
22 JUN	1.1	.150	1.3	J.	4	.080	9	7.6					
22 30 JUL	= ==									59	2860	99	
08 15 SEP	.20	.140	1.4	1.	5	.250	13	3		==	==		
08	7.7								45 18		166000 23700	89 97	
08									42	30	530000	79	
09	1.1		1.5	1.	5	.080		7.4	23	60		94	
70777	DATE	TIME	ARSENIC DIS-	BARIU DIS- SOLVE	JM, C	DIS- SOLVED (UG/L AS CD)	CHRO MIUN DIS- SOLV (UG)	O- M, VED	COPPE DIS- SOLV (UG/ AS C	ED L	IRON, DIS- SOLVED (UG/L AS FE)		
	NOV 08 MAR	1300	4	3	300	0		0		0	10		
	19 SEP	1400	2	3	300	0		0		3	10		
	17	1600	5	- 1	00	.1		0		1	10		
		SC (I DATE AS	EAD, N DIS- DLVED S JG/L (DIS- OLVED	MERCU DIS SOLV (UG, AS I	URY N S- VED S /L (ELE- IUM, DIS- OLVED UG/L S SE)	SC (L	VER, DIS- DLVED UG/L AG)	SC (I	INC, DIS- DLVED JG/L S ZN)		
		0V 08	0	0		. 2	3		0		10		
		AR 19	0	10		.1	4		0		20		
		EP 17	0	2		.1	t		0		6		

08136500 CONCHO RIVER AT PAINT ROCK, TX--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	PCB TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL (UG/L)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 08	1300	.00	0		.00	.0	.0	0	.00	.0
MAR 19	1400	.00	2	.00	.00	.0	.0	0	.00	.7
SEP 17	1600	.00	0	.00	.00	.0	.0	0	.00	.3
DATE	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 08	.00	.0	.00	.0	.00	.00	.0	.00	.00	.0
MAR 19	.00	.6	.00	.7	.00	.00	.1	.00	.00	.0
SEP 17	.00	5.1	.00	.8	.01	.00	.1	.00	.00	,0
DATE	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)
NOV 08	.00	.00	.0	.00	.0	.00	.0	.00	.00	.0
MAR 19	.00	.00	.0	.00	.0	.00	.0	.00	.00	.0
SEP 17	.00	.00	.0	.00	.0	.00	.0	.00	.00	.0
DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
NOV 08	.00	.00	.00	.00	Ó	0	.00	.00	.00	.00
MAR 19 SEP	.00	.00	.00	.00	0	0	.00	.00	.00	.00
17	.00	.00	.00	.00	0	0	.00	.00	.00	.00
	DA		STRE FLO INST ME TANE (CF	W, TEMP AN- ATU DUS WAT	RE, SUS	T, CHAR	NT SU 5- FA RGE, DI 5- % FI NDED TH	SP. SULL FA	IAN	
		08	00 2	310 2	2.0	459 2	2860	83	90	
	08 09	07 13	35 4 00 46	710 2 400 2	2.5 1	860 23 4230 530	0000 3700 0000 0000	40 47 38 54	57 50 47 64	
	DA	FA DI % FI TH	D. SE SP. SU LL FA AM. DI. NER % FII AN TH. MM .016	SP. SU LL FA AM. DI NER % FI AN TH	SP. SULL SIE AM. DI NER % FI	EVE SIE AM. DI NER % FI	JSP. SU EVE SIE EAM. DI ENER % FI HAN TH	SP. SL VE SIE AM. DI NER % FI AN TH	AM. NER IAN	
	JUN 22		93	96	98	99	99	100	155	
	08 09	· · · · · · · · · · · ·	70 56 56 70	81 65 65 81	87 76 72 88	89 97 79 94	94 99 95 99	99 99 98 99	100 100 100 99	

08136500 CONCHO RIVER AT PAINT ROCK, TX--Continued MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	639	2010	1150	1980	400	698	220	388	600
NOV.	1979	688	2210	1270	2360	450	845	260	479	670
DEC.	1979	1276	2230	1290	4430	460	1590	260	901	670
JAN.	1980	1083	2060	1180	3450	420	1220	230	682	610
FEB.	1980	966	2120	1220	3180	430	1130	240	634	640
MAR.	1980	356.81	2180	1250	1210	450	431	250	244	660
APR.	1980	106.15	2320	1340	383	480	138	280	79	700
MAY	1980	2583.78	1490	840	5860	290	2000	150	1060	430
JUNE	1980	2247	1060	597	3620	200	1200	100	616	300
JULY	1980	140.74	999	558	212	180	69	91	34	280
AUG.	1980	607.82	2000	1150	1880	410	665	230	371	600
SEPT	1980	46385.51	352	194	24300	60	7560	28	3450	94
TOTAL		57079.81	**	**	52800	**	17500	**	8930	**
WTD. AVO	·.	156	611	343	**	110	**	58	**	170

	SP	ECIFIC CO	ONDUCTANCE	(MICROMHO		25 DEG. C	, WATER	YEAR OCTOR	BER 1979	TO SEPTEM	BER 1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2020 2030 1980 2010 2030	1990 2000 2030 2010 2020	2350 2360 2360 2350 2350	2070 2080 2060 2030 1980	2160 2190 2130 2100 2170	2140 2160 2150 2140 2170	2250 2260 2270 2270 2310	2560 2570 2560 2570 2580	1320 1390 1470 1500 1530	703 722 742 770 798	1290 1300 1340 1500 1620	1900 1910 1920 1910 1920
6 7 8 9	2010 1970 1980 1970 1980	2040 2070 2050 2070 2090	2340 2350 2320 2350 2350	1920 1940 1980 2010 2040	2180 2150 2110 2090 2100	2180 2120 2180 2160 2180	2300 2280 2330 2340 2350	2440 2290 1810 2050 2160	1540 1540 1430 1220 1490	825 851 902 1050 1070	1740 1830 1820 1960 1980	1930 1940 300 268 340
11 12 13 14	1950 1990 2010 1970 2000	2100 2120 2130 2150 2160	2330 2340 2310 2270 2280	2020 1990 1970 1970 1980	2110 2130 2110 2120 2110	2160 2170 2190 2210 2220	2360 2340 2350 2340 2360	2120 1870 1680 1640 1790	1500 1550 1790 1770 1730	1090 1120 1140 1130 1120	2050 2210 2400 2540 2420	479 595 740 835 884
16 17 18 19 20	2030 2010 2060 2050 2060	2180 2200 2210 2230 2260	2250 2300 2280 2250 2260	2020 2050 2080 2090 2110	2130 2140 2120 2130 2120	2230 2220 2230 2240 2250	2380 2370 2380 2400 2100	1440 1550 1490 1740 1790	1680 1660 1620 1610 1630	1140 1150 1140 1170 1180	2320 2230 2140 2080 2020	930 936 976 1020 1160
21 22 23 24 25	2070 2030 1960 2040 1990	2280 2300 2330 2350 2360	2260 2250 2200 2170 2080	2120 2030 2060 2120 2110	2110 2130 2110 2120 2110	2260 2280 2300 2280 2290	2300 2440 2430 2450 2480	1120 1320 1280 1190 1070	750 550 574 619 625	1160 1170 1180 1190 1200	1960 1940 1920 1890 1870	1180 1200 1240 1290 1340
26 27 28 29 30 31	1980 1970 1990 2010 2020 2010	2360 2370 2380 2390 2380	2200 2180 2130 2110 2100 2080	2140 2150 2160 2160 2170 2160	2060 2080 2090 2110	2290 2280 2270 2260 2260 2250	2500 2510 2530 2540 2550	1000 1080 1220 1150 1130 1210	633 606 610 624 664	1220 1210 1230 1240 1250 1260	1880 1870 1890 1880 1880 1890	1470 1680 587 505 606
MEAN	2010	2190	2260	2060	2120	2220	2370	1720	1240	1070	1920	1130

08136500 CONCHO RIVER AT PAINT ROCK, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 ONCE-DAILY

					0	NCE-DAILY						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	30.0 31.0 26.0 26.0 25.0	27.0 19.0 24.0 26.0 21.0	11.0 10.0 9.0 11.0 13.0	13.0 12.0 10.0 11.0	6.0 10.0 11.0 14.0 12.0	13.0 11.0 10.0 12.0 13.0	19.0 25.0 20.0 21.0 20.0	22.0 22.0 21.0 22.0 26.0	33.0 29.0 30.0 32.0	31.0 31.0 33.0 33.0	33.0 32.0 32.0 33.0 32.0	31.0 27.0 31.0 30.0
6 7 8 9	35.0 27.0 28.0 22.0 24.0	15.0 16.0 20.0 16.0 15.0	12.0 12.0 12.0 13.0 13.0	12.0 10.0 12.0 11.0 15.0	12.0 14.0 9.0 7.0	16.0 20.0 16.0 18.0	23.0 20.0 19.0 20.0	26.0 28.0 22.0 21.0 27.0	33.0 32.0 26.0 27.0	32.0 32.0 30.0 32.0	33.0 33.0 33.0 34.0 30.0	31.0 27.0 26.0 22.0 26.0
11 12 13 14 15	25.0 30.0 23.0 25.0 26.0	16.0 12.0 14.0 14.0 13.0	15.0 12.0 10.0 9.0 14.0	12.0 13.0 13.0 16.0 15.0	9.0 12.0 14.0 17.0 15.0	17.0 20.0 15.0 19.0	22.0 15.0 16.0 21.0 18.0	25.0 25.0 22.0 23.0	30.0 28.0 28.0 30.0 29.0	29.0 33.0 30.0 34.0 35.0	26.0 29.0 32.0 33.0 34.0	28.0 30.0 29.0 29.0 28.0
16 17 18 19 20	30.0 26.0 25.0 28.0	14.0 15.0 18.0 20.0	5.0 9.0 7.0 10.0 10.0	15.0 15.0 17.0 16.0 13.0	11.0 9.0 12.0 14.0 15.0	16.0 17.0 16.0 18.0 17.0	19.0 24.0 20.0 25.0 25.0	22.0 30.0 28.0 26.0 26.0	30.0 29.0 31.0 30.0 30.0	30.0 29.0 29.0 32.0 30.0	32.0 32.0 30.0 30.0	26.0 29.0 30.0 32.0 31.0
21 22 23 24 25	29.0 23.0 22.0 22.0 26.0	17.0 15.0 14.0 15.0 13.0	12.0 16.0 13.0 12.0	13.0 11.0 11.0 10.0 12.0	15.0 20.0 18.0 15.0 11.0	17.0 20.0 20.0 16.0 18.0	21.0 24.0 22.0 23.0 23.0	22.0 23.0 27.0 32.0	30.0 22.0 27.0 33.0 31.0	32.0 33.0 31.0 31.0 28.0	33.0 29.0 30.0 33.0 30.0	30.0 27.0 26.0 29.0 26.0
26 27 28 29 30 31	25.0 25.0 25.0 25.0	14.0 16.0 11.0 12.0 10.0	15.0 15.0 15.0 10.0 12.0 10.0	11.0 8.0 8.0 8.0 6.0	15.0 18.0 19.0 18.0	16.0 18.0 17.0 20.0 17.0 20.0	20.0 26.0 21.0 21.0	28.0 29.0 29.0 29.0 28.0 29.0	34.0 34.0 33.0 34.0 32.0	32.0 30.0 29.0 33.0 30.0	30.0 32.0 29.0 32.0 30.0 31.0	24.0 23.0 20.0 20.0 24.0
MEAN	26.0	16.5	11.5	12.0	13.5	16.5	21.0	25.5	30.5	31.0	31.5	27.5

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		OCTOBER			NOVEMBER			DECEMBER	
1 2 3 4 5	17 17 17 18 16	82 56 72 46 44	3.8 2.6 3.3 2.2 1.9	14 14 11 15	47 24 56 28 14	1.8 .91 1.7 1.1 .72	24 24 29 33 33	31 13 16 19 25	2.0 .84 1.3 1.7 2.2
6 7 8 9	16 29 27 27 22	54 58 56 107 70	2.3 4.5 4.1 7.8 4.2	19 22 20 17 16	44 64 22 24 24	2.3 3.8 1.2 1.1	32 29 29 28 28	23 37 54 26 12	2.0 2.9 4.2 2.0 .91
11 12 13 14 15	22 22 27 27 36	74 32 51 58 22	4.4 1.9 3.7 4.2 2.1	19 24 24 23 26	26 23 23 20 22	1.3 1.5 1.5 1.2	28 33 40 44 44	24 22 26 14 22	1.8 2.0 2.8 1.7 2.6
16 17 18 19 20	37 38 31 25 22	25 42 76 36 43	2.5 4.3 6.4 2.4 2.6	28 27 28 30 31	20 20 20 24 26	1.5 1.5 1.5 1.9 2.2	47 42 40 38 38	23 16 7 16 20	2.9 1.8 .76 1.6 2.1
21 22 23 24 25	19 15 14 12	50 70 83 76 44	2.6 2.8 3.1 2.5	29 27 26 30 26	44 30 30 23 22	3.4 2.2 2.1 1.9 1.5	36 35 49 45 76	12 20 19 30 24	1.2 1.9 2.5 3.6 4.9
26 27 28 29 30 31	11 12 13 13 13	43 56 56 48 53 58	1.3 1.8 2.0 1.7 1.9 2.0	27 27 25 22 22	18 28 27 26 49	1.3 2.0 1.8 1.5 2.9	57 44 48 52 94 57	19 20 20 18 16 27	2.9 2.4 2.6 2.5 4.1 4.2
TOTAL	639		94.2	688		51.83	1276		72.91

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		JANUARY			FEBRUARY			MARCH	
1 2 3 4 5	42 39 35 33 33	24 21 36 22 36	2.7 2.2 3.4 2.0 3.2	31 32 33 33 34	24 14 42 26 38	2.0 1.2 3.7 2.3 3.5	23 20 22 24 19	119 51 60 46 83	7.4 2.8 3.6 3.0 4.3
6 7 8 9	33 33 33 33 34	20 20 20 14 26	1.8 1.8 1.8 1.2 2.4	33 32 36 33 37	36 54 32 28 26	3.2 4.7 3.1 2.5 2.6	24 19 20 21 20	80 60 32 49 66	5.2 3.1 1.7 2.8 3.6
11 12 13 14 15	33 32 32 31 31	32 58 36 54 26	2.9 5.0 3.1 4.5 2.2	46 44 39 38 37	24 38 24 26 31	3.0 4.5 2.5 2.7 3.1	18 18 15 12	74 75 66 52 51	3.6 3.6 2.7 1.7
16 17 18 19 20	31 31 31 32 33	63 59 60 62 57	5.3 4.9 5.0 5.4 5.1	35 33 33 33 34	46 40 25 34 86	4.3 3.6 2.2 3.0 7.9	9.9 5.9 4.6 4.8 8.0	50 63 62 36 51	1.3 1.0 .77 .47
21 22 23 24 25	33 45 39 48 48	26 10 24 23 28	2.3 1.2 2.5 3.0 3.6	33 31 28 28 31	58 169 70 107 76	5.2 14 5.3 8.1 6.4	5.2 5.1 3.2 3.0 .63	55 63 70 81 124	.77 .87 .60 .66
26 27 28 29 30 31	40 36 35 32 31 31	25 31 32 17 22 33	2.7 3.0 3.0 1.5 1.8 2.8	28 27 27 27 	78 81 88 77	5.9 5.9 6.4 5.6	.88 1.7 6.8 3.3 4.5 3.3	106 110 97 114 126 124	.25 .50 1.8 1.0 1.5
TOTAL	1083		93.3	966		128.4	356.81		64.50

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		APRIL			MAY			JUNE	
1 2 3 4 5	14 14 9.8 6.4 3.7	122 93 44 90 95	4.6 3.5 1.2 1.6 .95	.98 1.1 1.6 3.2 1.9	46 43 55 43 41	.12 .13 .24 .37	32 29 26 25 23	110 64 88 97 69	9.5 5.0 6.2 6.5 4.3
6 7 8 9	2.0 2.0 1.1 1.1	84 73 76 57 62	.45 .39 .23 .17	12 42 226 76 41	40 79 66 58 18	1.3 9.0 40 12 2.0	20 17 39 63 172	52 55 65 74 100	2.8 2.5 6.8 13 46
11 12 13 14 15	.99 .70 1.6 1.1	50 57 27 33 38	.13 .11 .12 .10	42 70 53 38 59	57 68 78 80 92	6.5 13 11 8.2 15	139 86 98 60 43	120 140 76 60 46	45 33 20 9.7 5.3
16 17 18 19 20	2.6 3.2 3.0 5.2 6.0	46 56 50 41 36	.32 .48 .41 .58 .58	466 249 106 70 59	145 124 38 82 48	182 83 11 15 7.6	35 29 27 22 16	80 48 39 42 70	7.6 3.8 2.8 2.5 3.0
21 22 23 24 25	5.7 5.1 4.4 3.5 1.7	44 56 52 58 48	.68 .77 .62 .55	302 120 89 60 48	135 76 57 55	110 25 14 8.9 7.1	679 294 63 50 55	206 202 170 42 47	761 196 29 5.7 7.0
26 27 28 29 30 31	.56 1.1 1.2 .99 .91	42 36 28 50 60	.06 .11 .09 .13 .15	75 52 48 36	87 74 95 78 95 84	24 15 13 10 9.2 7.5	36 25 18 1.4 12	6() 34 63 61 39	5.8 2.3 3.1 2.3 1.3
TOTAL	106.15	ere	19.62	2583.78	555	661.37	2247	939	1248.8

08136500 CONCHO RIVER AT PAINT ROCK, TX--Continued

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		JULY			AUGUST			SEPTEMBER	2
1 2 3 4 5	9.6 8.4 6.2 4.0 2.2	38 58 44 47 52	.98 1.3 .74 .51	14 14 13 13	87 44 85 82 73	3.3 1.7 3.0 2.9 2.4	.05 .05 .05 .03	48 54 45 36 28	.0 .0 .0 .0
6 7 8 9	1.2 14 16 12 8.4	55 64 49 52 59	.18 2.4 2.1 1.7 1.3	20 41 43 31 27	43 45 42 55 90	2.3 5.0 4.9 4.6 6.6	.10 .20 6430 23800 8650	18 44 2710 4190 2950	.0 .0 61500 269000 83500
11 12 13 14 15	7.2 5.0 4.0 4.0 4.0	50 65 58 53 21	.97 .88 .63 .57	20 41 38 31 25	44 68 42 52 38	2.4 7.5 4.3 4.4 2.6	866 239 114 70 52	270 72 21 20 19	631 46 6.5 3.8 2.7
16 17 18 19 20	2.2 1.2 .76 .76	58 40 73 78 38	.34 .13 .15 .16	24 22 20 17 46	56 50 50 44 50	3.6 3.0 2.7 2.0 6.2	44 37 32 30 27	24 30 25 14 13	2.9 3.0 2.2 1.1 1.0
21 22 23 24 25	.39 .20 .20 .39	40 58 37 37 45	.04 .03 .02 .04	31 22 16 9.6 7.2	48 54 60 55 46	4.0 3.2 2.6 1.4 .89	25 23 22 22 22 32	15 15 38 46 14	1.0 .9 2.3 2.7 1.2
26 27 28 29 30 31	.20 .10 .39 11 8.4 7.2	50 42 37 37 47 46	.03 .01 .04 1.1 1.1	5.0 2.2 1.2 .76 .76	56 61 49 50 42 48	.76 .36 .16 .10 .09	133 497 3680 1090 470	30 195 920 250 80	11 984 9690 736 102
TOTAL	140.74		19.01	607.82		88.97	46385.51		426231.3

109

08136700 COLORADO RIVER NEAR STACY, TX (National stream-quality accounting network)

LOCATION.--Lat 31°29'37", long 99°34'25", Coleman County, Hydrologic Unit 12090106, on left bank at downstream side of bridge on Farm Road 503, 1.2 mi (1.9 km) upstream from Bois d'Arc Creek, 1.8 mi (2.9 km) northeast of Stacy, 24 mi (39 km) downstream from Concho River, and at mile 604.8 (973.1 km).

DRAINAGE AREA.--24,040 mi² (62,260 km²), approximately, of which 12.880 mi² (33,360 km²) probably is noncontrib-

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--March 1968 to current year. Prior to October 1970, published as "at Stacy".

GACE.--Water-stage recorder. Datum of gage is 1.394.66 ft (425.092 m) National Geodetic Vertical Datum of 1929 (State Department of Highways and Public Transportation bridge plans).

REMARKS.--Water-discharge records good. Many diversions above station for irrigation, municipal, and oilfield operation uses. Effluent from numerous sewage plants is returned to the river. Flow is affected by reservoirs upstream (see stations 08126380 and 08136000) and at times by discharge from the flood-detention pools of 42 floodwater-retarding structures with combined detention capacity of 56,730 acre-ft (69.9 hm³). These structures control runoff from 277 mi² (717 km²).

AVERAGE DISCHARGE.--12 years (water years 1969-80), 222 ft3/s (6.287 m3/s), 160,800 acre-ft/yr (198 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $45,000 \text{ ft}^3/\text{s}$ (1,270 m³/s) Sept. 10, 1980, gage height, 28.00 ft (8.534 m); no flow June 22 to Aug. 3, 1974, and Aug. 5-16, 1980.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since since at least 1882, $356,000 \text{ ft}^3/\text{s}$ (10,100 m³/s) Sept. 18, 1936, gage height, 64.59 ft (19.687 m), by slope-area measurement of peak flow. The flood of Sept. 18, 1936, was 4 ft (1.2 m) higher than the 1906 flood and 7 to 8 ft (2.1 to 2.4 m) higher than the 1882 flood, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 45,000 ft³/s (1,270 m³/s) Sept. 10 at 0100 hours, gage height, 28.00 ft (8.534 m); no flow Aug. 5-16.

		DISC	HARGE, IN	CUBIC FE		COND, WAY		OCTOBER 19	79 TO SE	PTEMBER 19	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	24 25 24 25 22	17 17 18 18	30 28 27 27 28	114 93 79 70 64	57 55 54 55 55	50 48 46 41 40	17 31 23 18 14	.18 .29 .12 .33 .87	83 59 47 39 31	24 17 13 9.9 7.3	.06 .06 .05 .02	2.3 2.1 1.7 1.6 1.3
6 7 8 9	20 20 19 17 21	19 17 20 23 27	29 33 36 36 36 34	58 55 55 55 54	56 55 67 72 69	41 42 41 41 38	14 14 10 8.4 6.9	2.5 37 114 258 152	25 22 41 555 161	5.8 4.9 4.1 3.4 2.8	.00 .00 .00	1.0 1.1 3880 23400 31300
11 12 13 14 15	28 29 26 28 31	27 25 23 21 24	31 37 51 44 43	52 51 49 48 48	80 90 90 86 79	36 36 33 30 28	5.5 4.9 7.7 7.4 6.5	74 134 90 310 677	101 175 108 81 78	2.5 2.3 2.2 1.7 1.5	.00 .00 .00	5150 1290 650 416 298
16 17 18 19 20	39 39 46 50 50	28 28 32 33 31	50 48 47 52 50	48 48 48 47 50	76 72 70 68 67	27 22 20 17 14	5.0 3.7 2.8 2.6 2.4	1300 1210 486 230 146	55 41 32 27 22	2.5 2.3 2.0 1.8 1.5	4.8 23 28 25 89	212 170 137 111 93
21 22 23 24 25	42 34 31 27 24	30 29 27 27 26	48 50 69 84 76	50 93 91 76 68	64 63 63 62 59	14 12 9.6 8.9 9.0	1.8 1.3 1.1 .78 .47	116 481 363 174 114	20 2320 3670 973 331	1.3 .86 .55 .39	66 55 40 28 20	82 76 70 68 1540
26 27 28 29 30 31	22 21 20 19 17	26 24 26 26 31	67 92 100 91 78 79	74 80 70 67 63 60	54 53 56 52	9.3 12 13 11 9.6 9.9	.26 .14 .14 .10	76 58 95 102 187 142	168 99 66 45 32	.24 .22 .21 .17 .13	7.2 6.1 6.1 3.8 2.7	961 593 7910 7090 3070
TOTAL MEAN MAX MIN AC-FT	857 27.6 50 17 1700	739 24.6 33 17 1470	1595 51.5 100 27 3160	1978 63.8 114 47 3920	1899 65.5 90 52 3770	809.3 26.1 50 8.9 1610	210.95 7.03 31 .06 418	7130.29 230 1300 .12 14140	9507 317 3670 20 18860	116.98 3.77 24 .09 232	416.89 13.4 89 .00 827	88578.1 2953 31300 1.0 175700

74930 CAL YR 1979 TOTAL 37774.50 MEAN 103 MAX 1830 MIN 9.5 AC-FT 74930 WTR YR 1980 TOTAL 113837.51 MEAN 311 MAX 31300 MIN .00 AC-FT 225800

08136700 COLORADO RIVER NEAR STACY, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: April 1968 to current year. Sediment analyses: October 1974 to September

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: April 1968 to current year. WATER TEMPERATURES: April 1968 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using 'e daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 3,580 micromhos Sept. 23, 1970; minimum daily, 188 micromhos July 29, 1971.
WATER TEMPERATURES: Maximum daily, 35.0°C July 1, 1980; minimum daily, 2.0°C Jan. 8, 1970, Dec. 16, 1972, and Jan. 12, 1973.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 2,250 micromhos Apr. 30, May 1; minimum daily, 284 micromhos Sept. 10.
WATER TEMPERATURES: Maximum daily, 35.0°C July 1.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT	50.0	4.0	West	25.00		550	100	100	40	44.5
25 DEC	0930	23	2090	7.9	19.0	650	500	130	78	210
06	0940	28	1970		9.0	570	410	120	65	180
FEB										
21	1205	63	2240		13.0	750	600	170	80	190
MAR 14	1700	30	2090		16.0	650	540	140	74	200
MAY 31	1300	136	1280	8.0	27.0	360	210	83	36	120
JUN	1300	130	1200	0.0	27.0	300	210	0.3	30	120
27	0900	102	583		31.0	170	74	46	14	43
JUL										
31	1306	.09	725		32.0	200	120	46	21	62
AUG 30	1305	4.6	1520		31.0	450	350	110	43	140
SEP	1303	4.0	1520		3	450	330			1.40
30	1300	2710	397		20.0	140	33	43	7.8	22

DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	
OCT										
25	3.6	5.7	180	0	310	440	.5	16	1280	
DEC	2.2	5.3	190	0	250	380	.5	5.2	1100	
06 FEB	3.3	5.3	190	0	250	380		5.2	1100	
21	3.0	5.4	190	0	410	410	.5	6.6	1370	
MAR										
14	3.4	5.5	140	0	340	410	.5	4.4	1240	
MAY	0.0		100	0	150	220	.6	1.5	720	
31 JUN	2.8	6.6	180	.0	150	230	. 0	15	730	
27	1.4	5.5	120	0	63	83	.3	6.1	320	
JUL			,							
31	1.9	6.4	100	0	97	110	.4	14	406	
AUG					0.0	000	-		201	
30	2.9	8.4	110	0	260	290	.5	17	901	
SEP 30	.8	4.6	130	0	29	44	.2	12	227	
30	.0	4.0	130	U	2)	-1-4		12	221	

08136700 COLORADO RIVER NEAR STACY, TX--Continued MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	857	2060	1220	2820	390	900	320	744	630
NOV.	1979	739	1970	1160	2310	370	737	300	598	600
DEC.	1979	1595	1970	1160	4980	370	1590	300	1290	600
JAN.	1980	1978	1840	1080	5760	340	1830	270	1460	560
FEB.	1980	1899	1990	1170	6020	370	1920	310	1570	610
MAR.	1980	809.3	2170	1290	2810	410	899	350	757	660
APR.	1980	210.95	2160	1280	731	410	234	350	197	660
MAY	1980	7130.29	1070	607	11700	190	3670	130	2490	310
JUNE	1980	9507	677	376	9640	120	2990	69	1780	190
JULY	1980	116.98	598	330	104	100	32	59	19	170
AUG.	1980	416.89	1240	704	792	220	249	150	173	360
SEPT	1980	88578.1	406	223	53400	69	16500	38	9080	120
TOTAL		113837.51	**	**	101000	**	31500	**	20200	**
WTD. AVO	3.	311	586	329	**	100	**	66	**	170

	SP	ECIFIC CO	ONDUCTANCE	(MICROMHO		25 DEG. CO	, WATER	YEAR OCTOR	BER 1979	TO SEPTEMBER	1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	1950 1960	2040 2050	1950 1960	1940 1950	1660 1690	2210 2200	2110 2070	2250 2220	1150 1000	556 568	729 740	1520 1520
3 4	1990 1970	2040 2030	1950 1980	1990 2010	1710 1730	2200 2190	2150 2190	2240 2220	846 783	572 580	755 770	1530 1530
5	1990	2030	1970	2020	1750	2170	2180	2200	767	586		-1540
6	2000	2020	1970 1940	2040 2060	1780 1800	2160	2200 2210	2220 1440	771 782	595 602	222	1540 1550
8	2040	2000	1910	2080	1830	2150	2230	952	760	613		1000
10	2050 2030	1970 1930	1920 1940	2090 2100	1870 1910	2130 2120	2210 2220	750 1680	692 849	614 619		430 284
11	2040	1940	1970	2120	1880	2140	2220	1950	808	633		321
12 13	2050 2060	1950 1960	1900 1880	2140 2160	1830 1850	2150 2160	2200 2160	1370 1440	728 749	637 645		390 457
14 15	2040 2070	1960 1930	1940 1970	2170 2190	1930 2010	2150 2160	2170 2190	1000 382	790 1000	654 664		520 594
16	2080	1950	1930	2180	2060	2150	2180	792	1200	669	814	650
17 18	2100	1970 1950	1950 1980	2160 2190	2130 2160	2140 2140	2170 2180	1180 1350	1280 1350	676 685	860 910	693 732
19 20	2100 2100	1960 1950	1960 2000	2180 1750	2190 2210	2160 2180	2180 2170	1420 1470	1360 1360	694 700	935 1230	753 790
21	2120	1970	2040	1800	2240	2190 2210	2190 2190	1420 1100	1370		1280 1330	830 851
22	2110 2090	1960 1950	2000 2030	1400 1410	2220 2210	2200	2200	1250	750 596	729	1290	881
24 25	2100 2090	1970 1960	2060 2050	1490 1540	2220 2210	2240 2230	2190 2200	1270 1320	556 614		1350 1440	912 856
26	2100	1980	2070	1500	2200	2220	2230	1380	587		1490	410
27 28	2110 2090	1990 1970	2050 1850	1460 1510	2210 2200	2200 2180	2240 2230	1420 1290	575 565	727	1500 1520	425 460
29 30	2080	1960 1940	1870 1910	1550 1600	2200	2170 2200	2240 2250	1070	560 555		1510 1520	382 398
31	2060		1980	1640		2190		1280			1530	
MEAN	2060	1980	1960	1880	2000	2180	2190	1430	858	664	1180	825

08136700 COLORADO RIVER NEAR STACY, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

			IBITERATO	KE, WAILK	(DEG. C	ONCE-DAILY	LAK OCTOD	LK 1979	TO SELLIEND	LK 1900		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	28.0	15.0		10.0	444			25.0		35.0	32.0	
2	27.0	14.0	10.0	11.0			66.2	25.0	28.0	33.0	30.0	31.0
3	25.0		11.0	11.0				22.0	27.0	32.0		31.0
4	26.0	16.0							29.0		27.0	31.0
5	25.0	18.0					***	25.0	30.0	32.0		30.0
6								27.0	30.0			28.0
7	25.0	15.0					20.0	24.0	31.0	32.0		
8	26.0						17.0	19.0		32.0		25.0
9	23.0						22.0	21.0	25.0	31.0		22.0
10	23.0					15.0	24.0	24.0	27.0	32.0		23.0
11	24.0					15.0	26.0		26.0	32.0		24.0
12	22.0					16.0	17.0	26.0	28.0	33.0		26.0
13		13.0	***			15.0		24.0	29.0			28:0
14	24.0	13.0				16.0	17.0	22.0	30.0	32.0		
15	23.0						22.0	20.0		33.0		31.0
16	24.0	12.0					21.0	21.0	30.0	32.0	29.0	29.0
17	26.0	1444				14.0	20.0	25.0	31.0	32.0		27.0
18	25.0					15.0	20.0		30.0	32.0	28.0	30.0
19	24.0	12.0	777				27.0	24.0	28.0	32.0	26.0	30.0
20	24.0			8.0				26.0	32.0		28.0	30.0
21				8.0			24.0	25.0	30.0	31.0	28.0	
22	21.0			8.0	17.0		24.0	24.0		30.0	30.0	31.0
23	19.0				14.0		26.0	25.0	27.0	31.0	30.0	27.0
24	19.0		12.0				27.0	27.0	29.0	29.0		28.0
25			12.0		14.0		22.0		31.0	31.0	33.0	26.0
26			13.0		20.0		21.0		32.0	32.0	30.0	22.0
27		11.0	12.0		19.0			29.0	32.0		30.0	22.0
28		10.0			19.0	2.22	23.0	27.0	33.0	32.0	31.0	
29		9.0	7.77		18.0		24.0	28.0	200	31.0	30.0	19.0
30			11.0				23.0	27.0	32.0	30.0	31.0	20.0
31	17.0		10.0					27.0		32.0		
MEAN	23.5	13.0	11.5	9.5	17.5	15.0	22.0	24.5	29.5	32.0	29.5	27.0

08138000 COLORADO RIVER AT WINCHELL, TX

LOCATION.--Lat 31°28'04", long 99°09'43", McCulloch-Brown County line, Hydrologic Unit 12090106, near left bank on downstream end of pier of bridge on U.S. Highway 377, 0.3 mi (0.5 km) south of Winchell, 5.9 mi (9.5 km) downstream from Home Creek, and at mile 560.7 (902.2 km).

DRAINAGE AREA.--24,580 mi² (63,660 km²), approximately, of which 12,880 mi² (33,360 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--November 1923 to September 1934 (published as "near Milburn"), June 1939 to current year. REVISED RECORDS.--WSP 1118: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,264.86 ft (385.529 m) National Geodetic Vertical Datum of 1929.

November 1923 to September 1934, nonrecording gage at site 4.2 mi (6.8 km) downstream at datum 10.14 ft (3.091 m) lower. Jan. 13, 1939, to Mar. 24, 1940, nonrecording gage at present site and datum.

REMARKS.--Water-discharge records good. Many diversions above station for irrigation, muincipal supply, and oilfield operation. Flow is affected by reservoirs upstream (see stations 08126380 and 08136000) and at times by discharge from the flood-dentention pools of 87 floodwater-retarding structures with a combined detention capacity of 103,000 acre-ft (127 hm³). These structures control runoff from 502 mi² (1,300 km²).

AVERAGE DISCHARGE.--39 years (water years 1925-34, 1940-68) prior to completion of Robert Lee Dam, 628 ft 3 /s (17.78 m 3 /s), 455,000 acre-ft/yr (561 hm 3 /yr); 12 years (water years 1969-80) partially regulated, 268 ft 3 /s (7.590 m 3 /s), 194,200 acre-ft/yr (239 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 76,100 ft 3 /s (2,160 m 3 /s) Oct. 15, 1930, gage height, 51.8 ft (15.79 m), present site and datum; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Highest stages since 1882 were 62.2 ft (18.96 m) Sept. 19, 1936, and 56.2 ft (17.13 m) Aug. 8, 1906, at railway bridge 1,000 ft (305 m) upstream and converted to present site and datum, from information by Gulf, Colorado, and Santa Fe Railway Co.

EXTREMES FOR CURRENT YEAR. --Maximum discharge, $41,700 \text{ ft}^3/\text{s}$ (1,180 m²/s) Sept. 10 at 1900 hours, gage height, 38.04 ft (11.595 m), no other peak above base of 12,000 ft $^3/\text{s}$ (340 m $^3/\text{s}$); no flow at times.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	25 22 18 14	14 13 14 14	19 20 23 24 22	56 72 81 66 56	47 46 45 44 43	41 41 39 38 37	13 13 13 12 15	2.5 2.9 2.7 3.3 3.1	210 131 90 69 56	52 42 34 29 24	.00 .00 .00	8.0 5.9 4.1 2.9 1.5
6 7 8 9	14 15 15 13	13 14 14 15 15	20 20 21 22 26	50 45 42 41 40	43 44 44 46 52	36 34 33 35 36	23 20 17 14 14	5.2 843 1930 580 270	46 39 130 1350 763	20 16 14 12 11	.00 .00 .00	.7 .2 .0 18800 37500
11 12 13 14 15	10 11 11 16 21	14 16 18 20 20	27 32 34 34 37	40 40 39 40 41	54 53 66 73 72	36 34 32 32 31	14 15 21 16 14	198 230 480 1220 5360	282 150 180 134 94	8.9 7.8 6.5 5.4 4.5	.00 .00 .00 .00	21300 2150 1030 766 493
16 17 18 19 20	20 21 24 27 29	19 18 20 25 26	38 33 37 38 38	41 40 39 39 39	66 61 57 54 54	29 26 25 23 21	13 12 11 10 9.5	3200 1640 924 504 273	86 71 55 45 48	3.6 2.8 2.1 1.5 1.4	.00 .00 .00	318 220 160 130 120
21 22 23 24 25	35 37 32 28 25	27 26 24 24 23	42 43 46 51 59	41 55 90 75 69	53 51 50 49 48	18 18 17 15	7.0 5.4 6.6 6.2 5.1	415 279 475 341 203	90 907 3880 1730 648	1.2 1.0 .37 .01	.00 .00 .00 8.4 45	110 90 82 75 5770
26 27 28 29 30 31	23 21 18 17 16 15	23 22 22 20 20	62 55 60 105 78 63	58 52 58 59 54 50	47 45 42 42	14 14 20 17 15	3.8 3.4 3.1 2.8 2.4	209 123 639 678 448 287	319 193 135 94 68	.00 .00 .00 .00	36 27 22 18 14	5000° 1700 5020 11300 6200
TOTAL MEAN MAX MIN AC-FT	618 19.9 37 10 1230	567 18.9 27 13 1120	1229 39.6 105 19 2440	1607 51.8 90 38 3190	1491 51.4 73 42 2960	835 26.9 41 14 1660	335.3 11.2 23 2.4 665	21768.7 702 5360 2.5 43180	12093 403 3880 39 23990	301.08 9.71 52 .00 597	181.40 5.85 45 .00 360	118357.3 3945 37500 .00 234800

CAL YR 1979 TOTAL 39629.70 MEAN 109 MAX 5670 MIN 8.9 AC-FT 78610 WTR YR 1980 TOTAL 159383.78 MEAN 435 MAX 37500 MIN .00 AC-FT 316100

08138000 COLORADO RIVER AT WINCHELL, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: November 1967 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT	10/5	28	1880	10.0	510	200	00	5,	170
24 DEC	1245			19.0		380	99	64	170
05 JAN	1230	21	2220	8.0	640	510	120	82	230
10	1045	39	2000	9.0	580	440	120	69	190
FEB 20	1430	53	1940	13.0	550	400	120	61	170
APR 02	1250	13	2340	21.0	700	590	150	78	210
MAY 14	0900	190	1190	23.0	380	290	97	34	95
JUN 25	1140	607	522	28.0	180	81	52	12	29
SEP 16	1030	322	520	26.0	170	62	49	12	36
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
OCT 24	3.3	8.3	160	0	270	360	.5	13	1060
DEC 05	4.0	6.7	150	0	330	470	.6	4.2	1320
JAN 10	3.4	5.1	180	0	310	360	.3	2.5	1150
FEB 20	3.2	5.6	190	0	290	360	.4	4.9	1110
APR 02	3.5	6.0	132	0	390	420	.5	.0	1320
MAY	2.1	6.2	110	0	220	180	.5		694
14 JUN								7.5	
25 SEP	.9	6.4	120	0	84	56	.3	8.7	308
16	1.2	5.5	130	0	55	68	.3	10	302

08140600 LAKE CLYDE NEAR CLYDE, TX

LOCATION.--Lat 32°19'05", long 99°28'43", Callahan County, Hydrologic Unit 12090107, at Clyde pump station, 0.6 mi (1.0 km) west of dam on North Prong Pecan Bayou, 2.1 mi (3.4 km) downstream from bridge on Farm koad 604, and 7.0 mi (11.3 km) southeast of Clyde.

DRAINAGE AREA .-- 37.9 mi2 (98.2 km2).

WATER-DISCHARGE RECORDS

PERIOD OF KECORD. -- January 1970 to current year.

GAGE .-- Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--The lake is formed by a rolled earthfill dam, 3,950 ft (1,204 m) long. Appreciable storage began in April 1970, and the dam was completed in May 1970. The uncontrolled emergency spillways are two 200-foot-wide (61 m) cut channels through natural ground located at left end of dam. The service spillway is an uncontrolled 3.5- by 10.5-foot (1.1 by 3.2 m) reinforced concrete drop inlet connected to a 42-inch (1,067 mm) concrete outlet pipe. A 14-inch (356 mm) controlled drain pipe is connected to the drop inlet. There are four 4.83- by 3.50-foot (1.47 by 1.07 m) rectangular slots, two on each side, divided by a 10-inch (254 mm) concrete web. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table: ing table:

	(feet)	(acre-feet)
Top of dam	1,888.9	16,530
Crest of spillway	1,881.4	10,840
Crest of spillway (invert of drop inlet)	1,872.0	5,720
Lowest gated outlet (invert)	1,842.2	60

COOPERATION .-- Record of lake elevations and diversions were furnished by the city of Clyde. Capacity table was furnished by the Soil Conservation Service.

EXTREMES (at 0700) FOR PERIOD OF RECORD.--Maximum contents, 7,420 acre-ft (9.15 hm³) Aug. 4, 1978, elevation, 1,875.5 ft (571.65 m); minimum, 1,460 acre-ft (1.80 hm³) Aug. 1, 2, 1978, elevation, 1,858.8 ft (566.56 m).

EXTREMES (at 0700) FOR CURRENT YEAk.--Maximum contents, 4,620 acre-ft (5.70 hm³) Oct. 1, elevation (569.79 m); minimum, 2,340 acre-ft (2.89 hm³) Aug. 15, 16, elevation, 1,862.6 ft (567.72 m). elevation, 1,869.4

Capacity table (elevation, in teet, and total contents, in acre-feet)

2,190 1,862.0 3.370 1,866.0 1,870.0 4,860

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 INSTANTANEOUS OBSERVATIONS AT 0700

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APK	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4620 4580 4580	4350 4350 4350	4120 4120 4120	3970 3970 3970	3790 3790 3790	3610 3610 3610	3470 3470 3440	3200 3200 3200	3510 3510 3510	2710 2680 2680	2450 2450 2450	2590 2590 2590
5	4580 4540	4350 4310	4080 4080	3930 3930	3790 3790	3610 3610	3440 3440	3200 3200	3510 3470	2650 2650	2450 2430	2590 2560
6	4540	4310	4080	3930	3750	3610	3440	3170	3470	2620	2430	2560
7	4540	4310	4080	3930	3750	3580	3440	3200	3470	2620	2400	2560
8	4540 4540	4310	4080	3930	3750	3580	3400	3240	3470	2620	2400	2560
10		4310	4080	3930	3750	3580	3400	3240	3540	2590	2400	2560
10	4540	4270	4050	3900	3750	3580	3400	3240	3510	2590	2400	2560
11	4500	4270	4050	3900	3750	3580	3370	3200	3510	2560	2400	2560
12	4500	4270	4050	3900	3720	3580	3370	3200	3510	2560	2370	2560
13	4500	4270	4050	3900	3720	3540	3370	3200	3510	2560	2370	2560
14	4500	4270	4050	3860	3720	3540	3370	3270	3470	2560	2370	2540
15	4500	4230	4010	3860	3720	3540	3370	3370	3470	2560	2340	2540
16	4460	4230	4010	3860	3720	3540	3370	3370	3470	2540	2340	2540
17	4460	4230	4010	3860	3720	3540	3370	3370	3470	2540	2450	2540
18	4460	4230	4010	3860	3680	3510	3370	3370	3440	2540	2680	2540
19	4460	4230	4010	3830	3680	3510	3340	3370	3440	2540	2680	2540
20	4460	4190	4010	3830	3680	3510	3340	3370	3440	2540	2650	2510
21	4460	4190	3970	3830	3680	3510	3340	3510	3400	2540	2650	2510
22	4460	4190	3970	3860	3680	3510	3340	3510	3400	2540	2620	2510
23	4420	4190	3970	3830	3650	3470	3340	3510	3400	2510	2620	2510
24	4420	4160	3930	3830	3650	3470	3340	3510	3400	2510	2620	2510
25	4420	4160	3930	3830	3650	3470	3340	3510	3370	2510	2620	2590
26	4390	4160	3930	3830	3650	3470	3300	3510	3370	2510	2620	2620
27	4390	4160	3930	3830	3650	3470	3270	3470	3370	2480	2620	2620
28	4390	4160	3930	3830	3650	3510	3240	3540	3370	2480	2620	2650
29	4390	4120	3930	3830	3650	3470	3200	3540	3340	2480	2620	2650
30	4390	4120	3970	3790		3470	3200	3540	3340	2480	2620	2680
31	4390		3970	3790		3470		3510		2450	2590	
MAX	4620	4350	4120	3970	3790	3610	3470	3540	3540	2710	2680	2680
MIN	4390	4120	3930	3790	3650	3470	3200	3170	3340	2450	2340	2510
(1)	1868.8	1868.1	1867.7	1867.2	1866.8	1866.3	1865.5	1866.4	1865.9	1863.0	1863.5	1863.8
(;)	-230	-270	-150	-180	-140	-180	-270	+310	-170	-890	+140	+90
(11)	34	23	24	22	22	28	35	31	43	65	51	40
			4.7			-0	33	3.1	43	0.5	21	40

WTK YR 1980 MAX 4620

[†] Elevation, in feet, at end of month. † Change in contents, in acre-feet. †† Diversions, in acre-feet, for municipal use.

116

COLORADO RIVER BASIN

08140600 LAKE CLYDE NEAR CLYDE, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1974 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIM	SPE CIF CON DUC ANC (MIC MHC	TIC T- TEM E AT CRO- WA	PER- NE URE, (M TER A	RD- NES SS NONG G/L BONA S (MG	CAR- ATE G/L	ALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO
17	092	!5	671	20.0	170	37	52	9.3	61	2.0
D.F	ΛTE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO RIDE DIS- SOLV (MG/ AS C	. RID DI ED SOL L (MG	DE, DI S- SC VED (M	LICA, SUL S- COI DLVED TU MG/L AS SO	LIDS, M OF NSTI- ENTS, DIS- OLVED MG/L)
OCT		7.6	160	0	43	100		. 3	4.6	357

08140800 JIM NED CREEK NEAR COLEMAN, TX

LOCATION.--Lat 31°58'59", long 99°24'52", Coleman County, Hydrologic Unit 12090108, on right bank 77 ft (23 m) downstream from centerline of U.S. Highway 283, 1.4 mi (2.3 km) downstream from Turtle Bayou, 7.4 mi (11.9 km) downstream from Lake Coleman, and 10.8 mi (17.4 km) north of Coleman.

DRAINAGE AREA.--333 mi² (862 km²), of which 299 mi² (774 km²) is above Lake Coleman.

PERIOD OF RECORD.--October 1961 to September 1964 (miscellaneous measurements only), March 1965 to September 1980 (discontinued).

GACE.--Water-stage recorder. Datum of gage is 1,592.31 ft (485.336 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Since March 1966 when deliberate impoundment began, flow has been largely controlled by Lake Coleman, capacity, 40,000 acre-ft (49.3 hm³) at service spillway; elevation, 1,717.5 ft (523.49 m). During year, the city of Coleman diverted 1,410 acre-ft (1.74 hm³) from Lake Coleman for municipal use. At end of year, flow from 22.0 mi² (57.0 km²) above this station and below Lake Coleman was affected at times by discharge from flood-detention pools of two floodwater-retarding structures with a combined detention capacity of 6,560 acre-ft (8.09 hm²). Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--15 years, 21.5 ft³/s (0.609 m³/s), 15,580 acre-ft/yr (19.2 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $5,020~{\rm ft^3/s}$ (142 m³/s) May 6, 1969, gage height, 9.08 ft (2.768 m); no flow at times each year.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 181 ft¹/s (5.13 m³/s) Sept. 29 at 0400 hours, gage height, 2.29 ft (0.698 m); no flow for many days.

		DISC	HARGE, IN	CUBIC F	EET PER S	ECOND, WAT EAN VALUES	ER YEAR O	CTOBER 19	79 TO SEP	FEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAK	APR	MAY	NUL	JUL	AUG	SEP
1	.00	.00	.00	.00	.17	.22	.24	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.17	.22	.22	.00	.00	.00	.00	.00
3	.00	.00	.00	.00	.17	.22	.28	.00	.00	.00	.00	.00
4	.00	.00	.00	.00	.20	.22	.34	.00	.00	.00	.00	.00
5	.00	.00	.00	.00	.22	.22	.42	.00	.00	.00	.00	.00
6	.00	.00	.00	.00	.25	.22	.34	.00	.00	.00	.00	.00
7	.00	.00	.00	.00	.35	.22	.34	.00	.00	.00	.00	.00
8	.00	.00	.00	.00	3.6	.22	.42	.00	.00	.00	.00	.00
9	.00	.00	.00	.00	7.1	.22	.42	.00	.00	.00	.00	.00
10	.00	.00	.00	.00	3.3	.22	.34	.03	.00	.00	.00	.00
11	.00	.00	.00	.00	1.5	.22	.34	.01	.00	.00	.00	.00
12	.00	.00	.00	.00	.92	.22	.28	.01	.00	.00	.00	.00
13	.00	.00	.00	.00	.55	.22	.22	.00	.00	.00	.00	.00
14	.00	.00	.00	.00	.34	.28	.22	.00	.00	.00	.00	.00
15	.00	.00	.00	.00	.28	.34	.13	.15	.00	.00	.00	.00
16	.00	.00	.00	.00	.28	.42	.08	.39	.00	.00	.00	.00
17	.00	.00	.00	.00	.22	.42	.06	.37	.00	.00	.00	.00
18	.00	.00	.00	.00	.17	.62	.01	.14	.00	.00	.00	.00
19	.00	.00	.00	.00	.13	.73	.00	.03	.00	.00	.00	.00
20	.00	.00	.00	.00	.13	.86	.00	.00	.00	.00	.00	.00
21	.00	.00	.00	.00	.17	.86	.00	.00	.00	.00	.00	.00
22	.00	.00	.00	.00	.17	1.0	.00	.00	.00	.00	.00	.00
23	.00	.00	.00	6.3	.28	1.2	.00	.00	.00	.00	.00	.00
24	.00	.00	.00	1.4	.28	1.2	.00	.00	.00	.00	.00	.00
25	.00	.00	.00	.61	.28	1.4	.00	.00	.00	.00	.00	.00
26	.00	.00	.00	.30	.28	1.4	.00	.00	.00	.00	.00	.00
27	.00	.00	.00	.22	.28	1.4	.00	.00	.00	.00	.00	.00
28	.00	.00	.00	.13	.28	1.6	.00	4.4	.00	.00	.00	87
29	.00	.00	.00	.13	.28	.86	.00	3.2	.00	.00	.00	152
30	.00	.00	.00	.14		.62	.00	.29	.00	.00	.00	70
31	.00		.00	.17		.28		.00		.00	.00	
TOTAL	.00	.00	.00	9.40	22.35	18.35	4.70	9.02	.00	.00	.00	309.00
MEAN	.000	.000	.000	.30	.77	.59	.16	.29	.000	.000	.000	10.3
MAX	.00	.00	.00	6.3	7.1	1.6	.42	4.4	.00	.00	.00	152
MIN	.00	.00	.00	.00	.13	.22	.00	.00	.00	.00	.00	.00
AC-FT	.00	.00	.00	19	44	36	9.3	18	.00	.00	.00	613

CAL YR 1979 TOTAL 3851.12 MEAN 10.6 MAX 340 MIN .00 AC-FT 7640 WTR YR 1980 TOTAL 372.82 MEAN 1.02 MAX 152 MIN .00 AC-FT 739

08141000 HORDS CREEK LAKE NEAR VALERA, TX

LOCATION.--Lat 31°49'58", long 99°33'38", Coleman County, Hydrologic Unit 12090108, at outlet-works structure near right end of dam on Hords Creek, 5.6 mi (9.0 km) north of Valera, and 8.8 mi (14.2 km) west of Coleman. DRAINAGE AREA .-- 48 mi² (124 km²), approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1948 to current year. Prior to October 1970, published as Hords Creek Reservoir. GAGE .-- Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--The lake is formed by a rolled earthfill dam 6,800 ft (2,070 m) long, including spillway. The deliberate impoundment of water began Apr. 7, 1948, and the dam was completed in June 1948. The emergency spillway is an excavated channel through natural ground, 500 ft (150 m) wide, located about 600 ft (180 m) from the right end of dam. The service spillway consists of three concrete conduits; two controlled by 5.0- by 6.0-foot (1.5 by 1.8 m) slide gates, and the third an uncontrolled ogee spillway 4.0 ft (1.2 m) wide and 19.5 ft (5.9 m) high. The lake is operated for flood control and municipal water supply for the city of Coleman. The capacity table of August 1974 is based on a sedimentation survey made in 1948. Flow is affected at times by discharge from the flood-detention pool of a floodwater-retarding structure with a detention capacity of 1,370 acre-ft (1.69 hm²). This structure controls runoff from 6.82 mi² (17.7 km²) in the Jim Ned Creek drainage basin. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	(feet)	(acre-feet)
Top of dam	1,939.0	-
Design flood	1,933.6	
Crest of spillway	1,920.0	24,730
Crest of spillway (top of conservation pool)	1,900.0	8,110
Lowest gated outlet (invert)	1,856.0	3

COOPERATION .-- Records furnished by Corps of Engineers and reviewed by the Geological Survey.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 12,790 acre-ft (15.8 hm³) May 1, 1956, elevation, 1,906.86 ft (581.211 m); minimum since first appreciable storage in June 1951, 2,260 acre-ft (2.79 hm³) May 2 1980, elevation, 1,882.10 ft (573.664 m).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 3,200 acre-ft (3.95 hm³) Sept. 30 at 2400 hours, elevation, 1,886.48 ft (574.999 m); minimum, 2,260 acre-ft (2.79 hm³) May 2 at 1600 hours, elevation, 1,882.10 ft (573.664 m).

Capacity table (elevation, in feet, and total contents, in acre-feet)

1,882.0 2,240 2,630 1,886.0 3,600 1.888.0

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2830 2820 2810 2800 2790	2650 2640 2630 2630 2620	2540 2540 2540 2530 2530	2540 2540 2540 2530 2530	2520 2520 2510 2510 2510	2480 2480 2470 2470 2460	2400 2390 2390 2380 2380	2260 2260 2260 2260 2260	2950 2940 2940 2930 2920	2870 2860 2850 2840 2820	2560 2550 2530 2560 2550	2380 2370 2360 2360 2350
6 7 8 9	2790 2780 2770 2760 2760	2620 2620 2610 2610 2600	2530 2520 2520 2520 2520	2530 2530 2520 2520 2520	2510 2510 2520 2520 2520	2460 2450 2450 2440 2440	2380 2370 2370 2360 2360	2260 2280 2280 2280 2280	2910 2910 2900 2900 2900	2810 2800 2790 2780 2770	2540 2530 2520 2520 2510	2340 2340 2350 2490 2500
11 12 13 14 15	2750 2740 2740 2730 2720	2590 2590 2590 2590 2590	2510 2510 2520 2530 2520	2520 2520 2520 2510 2510	2520 2520 2520 2520 2520	2440 2440 2440 2440 2440	2350 2360 2350 2350 2340	2270 2270 2270 2270 2270 2310	2900 2890 2880 2880 2870	2760 2750 2740 2730 2720	2510 2500 2500 2490 2480	2490 2480 2480 2480 2470
16 17 18 19 20	2720 2720 2720 2710 2710	2580 2580 2570 2570 2570	2520 2520 2520 2510 2510	2510 2510 2510 2510 2510	2510 2510 2510 2510 2510	2430 2420 2420 2420 2420	2340 2330 2330 2330 2330	2320 2310 2320 2320 2320	2860 2850 2840 2840 2830	2710 2700 2690 2680 2670	2480 2470 2470 2470 2460	2460 2460 2450 2450 2440
21 22 23 24 25	2700 2690 2690 2680 2680	2570 2570 2570 2570 2570 2560	2510 2520 2540 2540 2540	2520 2530 2530 2530 2530	2500 2500 2500 2500 2490	2410 2410 2400 2400 2400	2320 2310 2310 2300 2300	2320 2310 2310 2300 2300	2840 2930 2930 2920 2920	2660 2650 2640 2630 2620	2460 2450 2440 2440 2430	2440 2430 2430 2480 2680
26 27 28 29 30 31	2670 2670 2660 2660 2660 2660	2560 2550 2550 2550 2540	2530 2530 2550 2550 2540 2540	2530 2530 2530 2530 2520 2520	2490 2490 2490 2480	2390 2410 2400 2390 2400 2400	2290 2280 2280 2270 2260	2300 2430 2950 2960 2950 2950	2910 2900 2900 2890 2890	2610 2610 2600 2590 2580 2570	2420 2420 2410 2400 2400 2390	2710 2760 3040 3180 3200
MAX MIN (†)	2830 2660 1884.10	2650 2540 1883.56	2550 2510 1883.57	2540 2510 1883.45	2520 2480 1883.28	2480 2390 1882.84	2400 2260 1882.15	2960 2260 1885.42	2950 2830 1885.14	2870 2570 1883.68	2560 2390 1882.79	3200 2340 1886.48

-80 9.0

+690

-60

5.6

-180

+810

CAL YR 1979 WTR YR 1980 MAX 3440 MAX 3200 MIN 2510 MIN 2260

8.9

8.1

4.5

[†] Elevation, in feet, at end of month. ‡ Change in contents, in acre-feet. †† Diversions, in acre-feet, for municipal use by city of Coleman.

119

COLORADO RIVER BASIN

08141000 HORDS CREEK LAKE NEAR VALERA, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1969 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE		TIME	SPE CIF CON DUC ANC (MIC MHC	TIC T- TEM E AT RO- WA	PER- NE JRE, (M TER A	RD- SS IG/L S	HARI NESS NONCA BONAT (MG/ CACO	AR- FE /L	CALCI DIS- SOLV (MG) AS (IUM S IVED SO L'L (N	GNE- IUM, OIS- OLVED G/L MG)	SODI DIS SOLV (MG	UM, - S 'ED	ODIUM AD- ORP- TION ATIO
OCT														
23		0820	1	170	19.0	290	1	150	65	i .	30	11	0	2.8
													SOLIDS	
			POTAS-					CH	LO-	FLUO-	SIL	ICA,	SUM OF	
			SIUM,	BICAR-	CAD		FATE		DE,	RIDE.		S-	CONSTI	
			DIS- SOLVED	BONATE (MG/L	CAR- BONATE		S- LVED	DIS	LVED	DIS- SOLVEI		IG/L	TUENTS DIS-	
			(MG/L	AS	(MG/L	(M	G/L	(M	G/L	(MG/L	A	S	SOLVE	D
	DATE		AS K)	HCO3)	AS CO3)	AS	SO4)	AS	CL)	AS F)	SI	02)	(MG/L)
	OCT													
	23		7.8	160	0		53	2	50			8.0	61	3

120

08141500 HORDS CREEK NEAR VALERA, TX

LOCATION (revised).--Lat 31°50'04", long 99°33'26", Coleman County, Hydrologic Unit 12090108, on right bank 74 ft (23 m) downstream and 50 ft (15 m) south of bridge on Farm Road 503, 1.1 mi (1.8 km) downstream from Hords Creek Dam, 5.7 mi (9.2 km) north of Valera, 7.5 mi (12.1 km) west of Coleman, and 22.3 mi (35.9 km) upstream from mouth.

DRAINAGE AREA (revised).--53.0 mi² (137.3 km²), approximately, of which 49.3 mi² (127.7 km²) is above Hords Creek Dam.

PERIOD OF RECORD .-- April 1947 to current year.

GAGE (revised).--Water-stage recorder. Datum of gage is 1,826.72 ft (556.784 m) National Geodetic Vertical Datum of 1929 (Corps of Engineers bench mark). Prior to Oct. 1, 1979, at site 0.5 mi (0.8 km) downstream at datum 6.84 ft (2.08 m) lower.

REMARKS.--Records good except those above 10 ft³/s (0.28 m³/s), which are fair. Flow is regulated by Hords Creek Lake (station 08141000). Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--33 years, 1.67 ft3/s (0.0473 m3/s), 1,210 acre-ft/yr (1.49 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,860 ft 3 /s (109 m 3 /s) Apr. 30, 1956, gage height, 14.73 ft (4.490 m), at site 0.5 mi (0.8 km) downstream at datum 6.84 ft (2.08 m) lower, from rating curve extended above 1,900 ft 3 /s (53.8 m 3 /s); no flow at times each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1900, 23.0 ft (7.01 m) July 3, 1932, from information by local residents (discharge not determined). Flood in July or September 1900 reached a stage of 3.7 ft (1.13 m) higher than that of July 1932, 12 mi (19 km) downstream from station, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 132 ft³/s (3.74 m³/s) Sept. 25, gage height, 2.55 ft (0.777 m); no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

			A STATE OF		ME	AN VALUES					00	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00	.00 .00 .00	.19 .19 .19 .17	.13 .11 .10 .10	.11 .08 .08 .08	.09 .08 .08 .08	.05 .06 .06 .07	.16 .17 .17 .19	.41 .38 .32 .27 .22	.02 .02 .00 .00	.00 .00 .00	.00 .00 .00
6 7 8 9	.00 .00 .00	.00 .00 .03 .04	.17 .17 .17 .17	.10 .10 .07 .07	.10 .11 .37 .37	.08 .08 .08 .08	.07 .08 .07 .07	.19 .21 .21 .21 .23	.20 .19 .17 .22 .20	.00 .00 .00	.00 .00 .00	.00 .00 .00
11 12 13 14 15	.00 .00 .00	.07 .07 .08 .08	.17 .23 .26 .41	.07 .08 .08 .08	.29 .26 .26 .26 .23	.08 .08 .08 .08	.08 .08 .09 .10	.23 .21 .20 .20	.19 .18 .15 .13	.00 .00 .00	.00 .00 .00	.00 .00 .00
16 17 18 19 20	.00 .00 .00	.10 .11 .15 .15	.26 .21 .21 .21	.08 .10 .10 .10	.23 .21 .23 .17	.10 .07 .07 .07	.11 .10 .10	.45 .32 .29 .29	.09 .08 .07 .06	.00 .00 .00	.00 .00 .00	.00 .00 .00
21 22 23 24 25	.00 .00 .00	.70 .65 .33 .26	.21 .21 .75 .50	.15 .54 .37 .23	.15 .15 .15 .15	.07 .06 .05 .05	.08 .10 .10 .11	.31 .29 .22 .20	.06 .16 .12 .08	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 2.0 23
26 27 28 29 30 31	.00 .00 .00 .00	.21 .19 .19 .19	.23 .21 .33 .29 .19	.15 .15 .13 .13	.15 .13 .13 .13	.05 .05 .05 .05	.11 .13 .15 .15	.19 3.5 12 1.1 .73 .55	.05 .05 .05 .04 .03	.00 .00 .00 .00	.00 .00 .00 .00	3.3 11 22 18 8.1
TOTAL MEAN MAX MIN AC-FT	.00 .000 .00	4.35 .15 .70 .00 8.6	7.64 .25 .75 .17	4.09 .13 .54 .07 8.1	5.25 .18 .37 .08	2.19 .071 .10 .05 4.3	2.83 .094 .15 .05 5.6	24.21 .78 12 .16 48	4.40 .15 .41 .03 8.7	.04 .001 .02 .00	.00 .00 .00 .00	87.40 2.91 23 .00 173

CAL YR 1979 TOTAL 101.16 MEAN .28 MAX 26 MIN .00 AC-FT 201 WTR YR 1980 TOTAL 142.40 MEAN .39 MAX 23 MIN .00 AC-FT 282

121

08142500 BROWN COUNTY WATER IMPROVEMENT DISTRICT NO. 1 CANAL NEAR BROWNWOOD, TX

LOCATION.--Lat 31°49'43", long 98°59'53", Brown County, Hydrologic Unit 12090107, on right bank 100 ft (30 m) upstream from bridge on Farm Road 2125, 6,000 ft (1,830 m) downstream from Brownwood Dam, and 7 mi (11 km) north of Brownwood.

PERIOD OF RECORD. -- March 1950 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,403.96 ft (427.927 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Water is released into the canal from Lake Brownwood (station 08143000) at Brownwood Dam on Pecan Bayou. Diversions began Apr. 9, 1939. A small amount of water is diverted from the canal upstream from the gage for domestic use. Water for irrigation has been diverted from the canal above gage since 1971. Records furnished by Brown County Water Improvement District No. 1 show that during the current year 1,640 acre-ft (2.02 hm²) was diverted from the canal above gage for irrigation, and that of the total flow of canal passing gage, 8,430 acre-ft (10.4 hm³) was used for municipal and industrial supply and 2,700 acre-ft (3.33 hm³) was used for irrigation. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--30 years, 26.9 ft3/s (0.762 m3/s), 19,490 acre-ft/yr (24.0 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 77 ft³/s (2.18 m³/s) July 17, 1957; no flow at times.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

					M	EAN VALUES	3					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	51	31	38	12	8.9	8.5	19	51	25	41	50	56
2	51	30	38	12	9.1	8.7	18	50	25	41	50	56
2 3	49	33	37	11	9.3	9.0	13	49	25	40	50	61
4	49	34	36	11	9.6	8.5	1.1	48	25	40	49	63
5	49	34	35	10	9.6	.05	12	48	25	40	49	62
6	48	36	34	10	9.9	1.8	9.1	48	36	40	48	60
7	48	41	33	10	9.9	13	6.9	42	45	40	48	60
8	47	42	33	13	9.3	14	19	30	45	41	49	61
9	45	42	32	.17	9.0	14	23	25	21	41	49	65
10	44	42	32	.00	9.2	14	24	25	15	39	48	66
11	44	41	31	6.9	9.4	14	29	26	12	43	48	67 62 62 62 63
12	44	42	27	25	9.6	1.4	31	26	11	47	49	62
13	43	45	21	24	9.9	14	28	26	16	47	49	62
14	43	45	20	17	10	14	27	24	20	46	49	62
15	43	45	20	11	11	14	24	23	21	46	50	63
16	45	45	19	11	10	14	22	22	27	47	48	63 63
17	51	46	18	11	10	14	19	22	35	47	47	63
18	51	46	17	11	8.8	14	18	22	36	47	48	62 62
19	52	44	16	11	9.1	17	18	22	36	48	49	62
20	53	37	16	11	3.2	18	19	22	36	47	51	61
21	50	34	18	1.1	4.2	17	10	22	37	46	52	60
22	49	34	21	11	14	19	6.2	21	38	46	52	57 52 51
23	47	33	21	1.7	14	19	11	21	39	47	53	52
24	44	32	20	11	15	21	11	21	39	47	54	51
25	41	32	20	12	13	24	20	21	37	48	54	51
26	40	14	19	12	6.8	24	34	21	37	48	53	51
27	40	20	19	12	7.1	21	37	26	39	48	50	49
28	42	44	16	12	8.9	18	38	29	42	48	49	47
29	42	43	13	11	9.1	18	41	27	42	50	53	41
30	40	41	13	8.8		19	46	26	42	52	57	34
31	34		12	8.7		19		26		49	57	
TOTAL	1419	1128	745	348.57	276.9	457.55	644.2	912	929	1397	1562	1730 57.7
MEAN	45.8	37.6	24.0	11.2	9.55	14.8	21.5	29.4	31.0	45.1	50.4	57.7
MAX	53	46	38	25	15	24	46	51	45	52	57	67
MIN	34	14	12	.00	3.2	.05	6.2	21	11	39	47	34
AC-FT	2810	2240	1480	691	549	908	1280	1810	1840	2770	3100	3430

TOTAL 12198.41 MEAN 33.4 AC-FT 24200 MAX 53 MIN WTR YR 1980 TOTAL 11549.22 MEAN 31.6 MAX 67 AC-FT 22910

08143000 LAKE BROWNWOOD NEAR BROWNWOOD, TX

LOCATION.--Lat 31°50'13", long 99°00'13", Brown County, Hydrologic Unit 12090107, at outlet structure for irrigation canal just upstream from right end of dam on Pecan Bayou, 0.2 mi (0.4 km) downstream from Jim Ned Creek, 8 mi (13 km) north of Brownwood, and 57.1 mi (91.9 km) upstream from mouth.

DRAINAGE AREA .-- 1,535 mi 2 (3,976 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1933 to May 1941, November 1944 to current year. Fragmentary records July 1934 to April 1935, and October 1940 to May 1941. Prior to October 1970, published as Brownwood Keservoir.

REVISED RECORDS .-- WSP 1212: 1948-50.

GAGE.--Nonrecording gage read once daily. Datum of gage is 0.50 ft (0.152 m) below National Geodetic Vertical Datum of 1929. Prior to November 1944, nonrecording gages or water-stage recorder at various sites at dam at same datum.

REMAKKS.--The lake is formed by a rolled earthfill dam, 1,580 ft (482 m) long. The dam was completed in 1933 and deliberate impoundment began in July 1933. The capacity table is based on a 1959 survey. The uncontrolled emergency spillway is a broad-crested weir 479 ft (146 m) long located 800 it (240 m) to the left of dam. The controlled service spillway consists of two 12-foot (4 m) horseshoe-shaped concrete conduits. Water is released into Brown County canal through a 5-foot (2 m) circular conduit that is controlled by a slide gate in a service structure located near the right end of dam. Water is used for irrigation, municipal, and industrial supply by the city of Brownwood (see station 08142500). Flow is affected at times by discharge from the flood-detention pools of 59 floodwater-retarding structures with a combined capacity of 73,310 acre-ft (90.4 hm²). These structures control runoff from 353 mi² (914 km²) in the Jim Ned Creek and Pecan Bayou drainage basins. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	(feet)	(acre-feet)
Top of dam	1,450.0	
Crest of spillway	1,425.1	143,400
Lowest gated outlet to irrigation canal (invert)	1,406.0	46,510
Lowest gated outlet (invert)	1,330.0	-

COOPERATION.--Record of daily gage heights were furnished by Brown County Water Improvement District No. 1. Capacity table was furnished by the Corps of Engineers and by the Soil Conservation Service.

EXTREMES (at 1800) FOR PERIOD OF KECORD.--Maximum contents, 192,300 acre-ft (237 hm⁴) May 2, 1956, gage height, 1,431.4 ft (436.29 m); minimum, 11,900 acre-ft (14.7 hm³) July 15, 1934, gage height, 1,389.5 ft (423.52 m).

EXTREMES (at 1800) FOR CURRENT YEAR.--Maximum contents observed, 134,300 acre-ft (166 hm⁴) Oct. 1-3, gage height, 1,423.8 ft (433.97 m); minimum, 102,500 acre-ft (126 hm⁴) Sept. 22-24, gage height, 1,418.8 ft (432.45 m).

Capacity table (gage height, in feet, and total contents, in acre-feet)

1,418.0 97,850 1,421.0 115,700 1,424.0 135,700

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 INSTANTANEOUS OBSERVATIONS AT 1800

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	134300	128700	124500	124500	123100	121700	119300	115700	124500	122400	113900	105500
2	134300	128700	124500	124500	123100	121700	119300	115100	124500	122400	113300	104900
3	134300	128700	124500	123800	123100	121700	118700	115100	123800	121700	113300	104900
4	133600	128000	124500	123800	123100	121700	118700	115100	123800	121700	112700	104900
5	133600	128000	124500	123800	123100	121100	118700	115100	123800	121100	112700	104300
6 7 8 9	132900 132900 132900 132900 132200	128000 128000 127300 127300 127300	124500 123800 123800 123800 123800	123800 123800 123800 123800 123800	123100 123100 123100 123100 123100	121100 121100 121100 121100 121500	118700 118700 118700 118100 118100	115100 116300 117500 117500 117500	123800 123800 123800 125900 125900	121100 120500 120500 120500 12900	112100 112100 111500 111500 111500	104300 103700 103700 104900 104900
11	132200	127300	123800	123800	123100	120500	118100	117500	125900	119900	110900	104900
12	132200	126600	123800	123100	123100	120500	118100	117500	125900	119900	110900	104900
13	132200	126600	123800	123100	123100	120500	118100	118100	125900	119300	110300	104900
14	131500	126600	123800	123100	123100	120500	118100	118700	125200	119300	110300	104300
15	131500	126600	123800	123100	123100	120500	118100	120500	125200	118700	109700	104300
16	131500	126600	123800	123100	123100	120500	118100	123100	125200	118100	109700	104300
17	131500	125900	123800	123100	123100	120500	117500	123100	125200	117500	109100	103700
18	130800	125900	123800	123100	123100	119900	117500	123100	124500	117500	109100	103700
19	130800	125900	123800	123100	123100	119900	117500	123100	124500	117500	109100	103700
20	130800	125900	123800	123100	122400	119900	117500	123100	124500	116900	108500	103100
21	130100	125900	123800	123100	122400	119900	117500	123100	124500	116900	108500	103100
22	130100	125900	123800	123800	122400	119900	116900	123100	124500	116300	107900	102500
23	130100	125900	123800	123800	122400	119300	116900	123100	124500	116300	107900	102500
24	130100	125200	123800	123800	122400	119300	116900	123100	124500	115700	107900	102500
25	130100	125200	123800	123800	121700	119300	116300	123100	124500	115700	107300	103100
26 27 28 29 30 31	129400 129400 129400 129400 129400 128700	125200 125200 125200 125200 124500	123800 123800 123800 124500 123100 123100	123800 123800 123100 123100 123100 123100	121700 121700 121700 121700	119300 119300 119300 119300 119300 119300	116300 116300 115700 115700 115700	123100 122400 124500 124500 124500 124500	123800 123800 123800 123100 123100	115700 115100 115100 114500 114500 113900	107300 106700 106700 106700 106100	103700 103700 105500 107300 108500
MAX	134300	128700	124500	124500	123100	121700	119300	124500	125900	122400	113900	108500
MIN	128700	124500	123100	123100	121700	119300	115700	115100	123100	113900	106100	102500
(†)	1423.0	1422.4	1422.2	1422.2	1422.0	1421.6	1421.0	1422.4	1422.2	1420.7	1419.4	1419.8
(‡)	-6300	-4200	-1400	0	-1400	-2400	-3600	+8800	-1400	-9200	-7800	+2400

CAL YR 1979 MAX 152600 MIN 123100 ± -4200 WTR YR 1980 MAX 134300 MIN 102500 ± -26500

[†] Gage height, in feet, at end of month.

[#] Change in contents, in acre-feet.

123

COLORADO RIVER BASIN

08143000 LAKE BROWNWOOD NEAR BROWNWOOD, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1969 to current year.

DATE OCT 24...

6.6

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAT		TIME	SPE CIF CON DUC ANC (MIC MHO	T- TEI E A' RO- W	MPER- IURE, ATER EG C)	HARD- NESS (MG/L AS CACO3)	HAR NES NONC. BONA (MG CAC	S, AR- TE /L	CALCI DIS- SOLV (MG/ AS C	UM S D ED SO L (M	GNE- IUM, IS- LVED G/L MG)	SODI DIS SOLV (MG AS	ED /L	SODIUM AD- SORP- TION RATIO
OCT 24.		1500		600	21.5	170		51	50		10	4	5	1.5
	DATE	SO (N	OTAS- SIUM, DIS- DLVED MG/L S K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONA' (MG AS CO	- DI TE SC /L (N	FATE S- LVED IG/L SO4)	RI DI SO (M	LO- DE, S- LVED G/L CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	DI SO (M A	ICA, S- DLVED IG/L S O2)	SOLI SUM (CONS' TUEN' DI: SOL' (MG	OF TI- TS, S- VED

140 0 40 87

.2 6.5

08143500 PECAN BAYOU AT BROWNWOOD, TX

LOCATION.--Lat 31°43'54", long 98°58'25", Brown County, Hydrologic Unit 12090107, on right bank at Brownwood, 502 ft (153 m) upstream from city dam, 6.3 mi (10.1 km) downstream from Salt Creek, 10 mi (16 km) downstream from Lake Brownwood, and 47.5 mi (76.4 km) upstream from mouth.

DRAINAGE AREA. -- 1,614 mi² (4,180 km²).

PERIOD OF RECORD .-- May 1917 to June 1918, October 1923 to current year.

REVISED RECORDS.--WSP 1312: 1928. WSP 1512: 1924(M), 1926-27, 1928(M), 1930-32, 1935(M), 1936, 1941.

GAGE.--Water-stage recorder. Datum of gage is 1,318.58 ft (401.903 m) National Geodetic Vertical Datum of 1929. See WSP 1922 for history of changes prior to Apr. 2, 1962.

REMARKS.--Records good. Flow regulated by Lake Brownwood (station 08143000). Brown County Water Improvement District No. 1 canal (station 08142500) diverts water from Lake Brownwood 10 mi (16 km) upstream. At end of year, flow from 20.8 mi² (53.9 km²) above this station and below Lake Brownwood was partly controlled by nine floodwater-retarding structures with a combined detention capacity of 4,720 acre-ft (5.82 hm³). National Weather Service gage-height and rainfall telemeter at station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--7 years (water years 1925-28, 1930-32) prior to completion of Lake Brownwood, 251 ft 3 /s (7.108 m 3 /s), 181,800 acre-ft/yr (224 hm 3 /yr); 48 years (water years 1933-80) partially regulated, 118 ft 3 /s (3.342 m 3 /s), 85,490 acre-ft/yr (105 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 31,600 ft³/s (895 m²/s) Oct. 14, 1930, gage height, 16.92 ft (5.157 m); no flow at times.

Flood of July 3, 1932, probably the greatest, reached a discharge of about 235,000 ft³/s (6,660 m³/s) as it entered Lake Brownwood (computed from rate of change in contents in the partially completed lake); data furnished by engineers of Brownwood County Water Improvement District No. 1.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage, 21.7 ft (6.61 m) in September 1900, from information by Gulf, Colorado, and Santa Fe Railway Co.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 4,420 ft³/s (125 m³/s) May 1.4 at 2300 hours, gage height, 4.78 ft (1.457 m); no flow at times.

		DISCHA	RGE, IN	CUBIC F		SECOND, WA		OCTOBER	1979 TO SE	PTEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.90 .77 .77 .83	.91	.00 .00 .00 .00	.00	1.4	7.8 5.3 2.4 .11 .33	.20 .00 .00 .00	.00 .01 1.8 .22 .00
6 7 8 9	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	1.0 1.1 2.5 3.3 2.6	.55 .51 .43 .57	.00 .00 .00	57	.16 .00 3.2 287 38	1.3 1.3 1.3 .02	.00 .00 .00 .00	.00 .00 .20 14
11 12 13 14 15	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.01 .00 .00 .00	2.0 1.4 1.1 1.1	1.6 1.5 1.0 .73 .40	.00 .00 .00 .00	4.4 3.7 5.0 850 797	21 13 7.9 5.4 4.3	.00 .00 .00 .28	.00 .00 .00 .00	6.1 3.4 1.9 1.0 .58
16 17 18 19 20	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	1.5 1.1 .77 .79	.00	.00 .00 .00 .00	293 97 30 18 11	1.8 .01 .03 .00	.18 .00 .00 .00	.00 .01 .17 .02	.06 .11 .04 .00
21 22 23 24 25	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.01 14 11 5.3 3.2	.88 .87 .87 .76	.00	.00 .00 .00 .00	10 7.0 4.6 3.2 2.8	1.6 10 14 4.8 2.5	.00 .00 .00 .00	.01 .70 .01 .01	.00 .00 .00
26 27 28 29 30 31	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	2.2 1.5 1.1 .98 .99	.64 .51 .59 1.0	.00	.04 .24 .36 .19	2.3 1.9 21 9.4 5.5 3.3	3.4 16 20 24 12	.00 .00 1.2 3.5 2.7 2.0	.00 .00 .00 .00	.00 8.4 19 11 9.1
TOTAL MEAN MAX MIN AC-FT	.00 .000 .00 .00	.00 .000 .00 .00	.00 .000 .00	41.29 1.33 14 .00 82	33.72 1.16 3.3 .51 67	1.9 .00	.83 .028 .36 .00	2301.30 74.2 850 .00 4560	496.97 16.6 287 .00 986	30.71 .99 7.8 .00 61	1.13 .036 .70 .00 2.2	91.92 3.06 19 .00 182
CAL YR WTR YR	1979 TOTAL 1980 TOTAL	9766.89 3010.39	MEAN MEAN	26.8 8.23	MAX 15 MAX 8	10 MIN 50 MIN		-FT 19370 -FT 5970				

08143600 PECAN BAYOU NEAR MULLIN, TX

LOCATION.--Lat 31°31'02", long 98°44'25", Mills County, Hydrologic Unit 12090107, on right bank 44 ft (13 m) downstream from bridge on Farm Road 573, 0.6 mi (1.0 km) downstream from Blanket Creek, 5.5 mi (8.8 km) southwest of Mullin, and 10 mi (16 km) upstream from Colorado River.

DRAINAGE AREA. -- 2,034 mi2 (5,268 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1967 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,202.93 ft (366.653 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Flow is affected by Lake Brownwood 47 mi (76 km) upstream (see station 08143000). At end of year, flow from 143 mil 2 (370 km 2) above this station and below Lake Brownwood was partly controlled by 40 floodwater-retarding structures with a combined detention capacity of 32,280 acre-ft (39.8 km 3) below the flood-spillway crests.

AVERAGE DISCHARGE.--13 years, 124 ft³/s (3.512 m³/s), 89,840 acre-ft/yr (111 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,700 ft³/s (388 m³/s) Jan. 23, 1968, gage height, 29.26 ft (8.918 m); no flow June 29 to Aug. 5, 1974, and July 7 to Aug. 2, 1978, and July 30 to Sept. 10, 1980.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $4,230 \text{ ft}^3/\text{s}$ (120 m $^3/\text{s}$) May 15 at 1500 hours, gage height, 13.16 ft (4.011 m); no flow July 30 to Sept. 10.

		DISC	CHARGE, IN	CUBIC FE	EET PER SE	ECOND, WATE	ER YEAR	OCTOBER 1	979 TO SEI	PTEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.84 .68 .54 .42	4.6 4.9 4.9 4.6 4.5	5.6 4.7 8.5 10 8.9	14 12 11 11	15 13 12 11 10	8.2 6.6 5.5 5.3 6.4	9.3 8.5 8.6 7.4 6.8	1.5 2.7 1.2 4.5	18 15 14 13 12	25 15 8.3 5.5 5.6	.00 .00 .00 .00	.00 .00 .00
6 7 8 9	.34 .24 .18 .87	4.6 4.9 4.7 5.1 5.3	8.6 7.5 6.7 6.4 6.7	11 11 10 9.4 8.8	10 10 18 14 14	8.2 7.5 6.9 6.2 5.5	7.6 7.5 6.2 5.0 4.0	15 122 583 114 47	11 10 11 373 181	4.6 3.3 2.3 1.7 1.3	.00 .00 .00 .00	.00 .00 .00 .00
11 12 13 14 15	2.0 2.7 2.7 2.7 3.2	5.3 5.3 4.5 4.7 8.2	6.3 6.3 7.9 14	8.3 8.3 8.0 7.2	12 12 12 12 11	5.0 4.5 5.1 5.8 6.5	7.6 11 11 26 24	23 79 76 51 2570	72 43 31 26 20	1.1 .86 .69 .63	.00 .00 .00 .00	39 22 12 8.1 6.4
16 17 18 19 20	3.2 3.0 2.9 4.3 2.1	7.9 6.6 6.2 7.9 8.3	9.0 7.3 6.4 5.6 5.3	7.2 9.4 14 13 12	11 11 9.7 9.1 9.1	6.3 7.7 7.7 6.3 7.9	14 15 14 11 9.3	2110 675 263 125 74	14 13 12 11 8.3	.64 .74 .85 .88	.00 .00 .00 .00	5.0 4.9 4.9 4.5 3.5
21 22 23 24 25	1.4 1.3 .93 .77 1.8	7.7 10 11 9.3 7.7	5.5 6.2 8.8 24 28	21 39 70 44 26	8.6 7.6 6.7 6.0 5.3	8.3 8.5 6.9 6.7 6.1	7.5 7.5 7.2 7.2 6.8	52 38 32 28 24	7.2 9.4 12 18 25	.81 .73 .53 .33	.00 .00 .00 .00	2.5 2.8 2.9 2.4 3.2
26 27 28 29 30 31	2.7 4.2 4.5 4.5 4.8 4.5	6.1 5.0 4.5 5.2 6.1	16 13 21 51 35 20	20 17 16 15 15	4.4 4.1 8.1 10	5.7 12 34 41 18 12	5.9 5.3 4.7 4.8 2.5	20 28 137 96 43 24	15 12 12 22 30	.18 .13 .12 .10 .06	.00 .00 .00 .00	4.0 14 21 74 46
TOTAL MEAN MAX MIN AC-FT	66.41 2.14 4.8 .18 132	185.6 6.19 11 4.5 368	382.2 12.3 51 4.7 758	502.9 16.2 70 7.2 998	295.7 10.2 18 4.1 587	288.3 9.30 41 4.5 572	273.2 9.11 26 2.5 542	7474.9 241 2570 1.2 14830	1070.9 35.7 373 7.2 2120	83.59 2.70 25 .00 166	.00 .000 .00 .00	297.10 9.90 74 .00 589

CAL YR 1979 TOTAL 15824.44 MEAN 43.4 MAX 2170 MIN .18 AC-FT 31390 WTR YR 1980 TOTAL 10920.80 MEAN 29.8 MAX 2570 MIN .00 AC-FT 21660

08143600 PECAN BAYOU NEAR MULLIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Chemical analyses: October 1967 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1967 to current year. WATER TEMPERATURES: October 1967 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE (1967-70, 1972-80): Maximum daily, 2,230 micromhos May 14, 1978; minimum daily, 203 micromhos Sept. 18, 1974.
WATER TEMPERATURES (1967-70, 1972-75): Maximum daily, 32.0°C on several days during summer months; minimum daily, 1.0°C Jan. 15, 1975.

EXTREMES FOR CURRENT YEAR.--SPECIFIC CONDUCTANCE: Maximum daily, 2.170 micromhos Dec. 9; minimum daily, 264 micromhos May 16.

SPE-

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW. INSTAN- TANEOUS (CFS)	CIFIC CON- DUCT- ANCE (MICRO- MHOS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
NOV	1500	2.0	2000	10.0	010	100		25	000
22 JAN	1520	9.8	2020	12.0	340	130	94	25	290
10 FEB	0900	8.5	1530	9.0	250	110	75	16	230
20 MAR	1120	9.3	1340	11.0	260	110	78	17	170
01	1820	9.4	1430	9.0	300	120	87	20	170
APR 02		8.4	1830	21.0	310	100	89	22	230
MAY 13	1120	104	616	24.0	180	49	54	11	52
JUN 25	0940	27	546	29.0	170	30	53	9.1	39
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
NOV 22	6.9	16	250	0	110	470	.4	1.3	1130
JAN	0.9	10	250	.0	110	470	.4	1.3	1130
10 FEB	6.3	11	180	0	130	350	.3	3.3	904
20	4.5	11	190	0	91	270	.3	.8	732
MAR 01	4.3	1.1	220	0.	110	280	.3	.7	787
APR 02	5.7	14	260	0	110	370	.5	2.8	966
MAY 13	1.7	7.4	160	0	51	80	.4	9.9	348
JUN 25	1.3	7.9	170	0	40	64	.2	8.0	305

COLORADO RIVER BASIN 127

O8143600 PECAN BAYOU NEAR MULLIN, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)	
OCT.	1979	66.41	955	528	95	160	28	73	13	250	
NOV.	1979	185.6	1880	1060	530	410	204	140	68	360	
DEC.	1979	382.2	1610	905	934	330	341	120	122	340	
JAN.	1980	502.9	1230	685	930	220	301	92	125	290	
FEB.	1980	295.7	1260	700	559	230	180	94	75	300	
MAR.	1980	288.3	1540	862	671	300	235	110	88	340	
APR.	1980	273.2	1570	880	649	310	231	120	85	340	
MAY	1980	7474.9	376	206	4160	49	986	29	594	110	
JUNE	1980	1070.9	977	543	1570	170	499	73	212	240	
JULY	1980	83.59	1210	671	151	210	48	91	20	300	
AUG.	1980	0.00	*	*	0.00	*	0.00	*	0.00	*	
SEPT	1980	297.10	1450	808	648	280	221	110	86	330	
TOTAL		10920.80	**	**	10900	**	3270	**	1490	**	
WTD. AV	G.	30	667	369	**	110	**	50	**	170	

	SF	ECIFIC CO	ONDUCTANCE	(MICROMH		25 DEG. C), NCE-DAILY	WATER	YEAR OCTOBER	R 1979	TO SEPTEMBER	1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	620	1480	2120	1390	1580	1430	1850	1640	930	1100		111
2	626	1530	2160	1400	1510	1450	1830	1670	940	1150		
3	635	1590	2100	1440	1430	1510	1820	1700	948	1200		
4	640	1640	2070	1480	1300	1500	1800	1750	990	1220		
5	650	1690	2080	1590	1130	1490	1780	1720	1040	1240		
6	657	1670	2150	1580	1150	1370	1740	1760	1080	1270		
7	658	1700	2140	1600	1180	1410	1760		1110	1290		
8	660	1710	2160	1580	826	1440	1840		1150	1320		
9	670	1480	2170	1590	984	1470	1840	700	1630	1310		.555
10	690	1710	2150	1480	1050	1490	1880	670	650	1330		1560
11	700	1730	2140	1300	1100	1500	1920	650	412	1340		1430
12	720	1730	2160	1280	1180	1520	1850	630	405	1360		1600
13	718	1720	2130	1240	1200	1500	1870	616	399	1370		1780
14	735	1750	2040	1210	1230	1490	1680	542	413	1390		1700
15	755	1770	1930	1230	1260	1480	1450	288	411	1400		1590
16	770	1800	1860	1260	1280	1470	1300	264	417	1410		1560
17	800	1880	1780	1270	1300	1460	1220	310	425	1400		1510
18	830	1930	1640	1280	1320	1480	1130	355	430	1420		1550
19	890	1960	1600	1290	1340	1500	1210	420	441	1430		1600
20	912	2000	1580	1310	1360	1470	1290	460	450	1440		1640
21	925	2030	1590	850	1400	1450	1350	494	458	1420		1680
22	934	2020	1570	681	1390	1440	1410	510	465	1440		1720
23	951	2020	1530	1170	1370	1570	1430	553	471	1450		1750
24	950	2070	1060	900	1360	1650	1510	600	520	1460		1690
25	995	2100	1000	1000	1380	1670	1530	640	554	1470		1640
26	1050	2130	1390	1180	1380	1680	1560	663	628	1480		1620
27	1100	2150	1400	1360	1370	1520	1590	704	668	1470		1520
28	1150	2130	1290	1470	1370	1460	1610	790	768	1480		1450
29	1200	2140	1570	1510	1430	1650	1620	880	906	1480		1310
30	1290	2130	1340	1560	1	1740	1650	927	950	1490		1250
31	1450		1370	1650		1860		950				
MEAN	849	1850	1780	1330	1280	1520	1610	812	702	1370		1580

08143600 PECAN BAYOU NEAR MULLIN, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 ONCE-DAILY

					O	NCE-DAILY							
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1		14.5	5.0			9.0	400	20.5		30.0			
2	24.0			10.0		7.0	23.0	20.0					
3					10.0	19.0		20.5	27.0				
4	222	15.0	8.0	9.0						32.0			
5		16.0		7.0	9.0	12.5		20.0					
6	23.0		8.0				22.0	21.0	***				
7		14.5					23.0	24.0	30.0	29.0			
8	22.0	17.0	9.0		8.0			20.0		30.0			
9	21.0	14.5		8.0	6.5		18.0	21.0	26.0				
10	777	12.5		11.0		16.0	21.0			30.0		27.0	
11			13.0	9.0		14.5	22.0		25.0			28.0	
12					8.0		14.5			30.0			
13	20.0	10.5	7.0		10.0	17.0			27.0			26.0	
14			8.0	9.0	13.0	15.0	15.0	27.0	27.0			25.0	
15	21.0	10.0	10.0			16.0		18.0	27.0	34.0		30.0	
16				12.0			20.0	19.0	28.5				
17				10.0		15.0						27.0	
18			6.5	13.0	10.0	15.0	19.5		27.0	33.0			
19	22.0				13.0		21.0		30.0	33.0			
20	23.0		9.0		14.5	18.0				34.0		25.0	
21		13.0	9.0		15.0		22.0	28.0	29.0	30.0			
22	20.0	12.0		9.0			23.0	25.0		30.0			
23	15.0			10.0			24.0	25.0	29.0			27.0	
24						18.0	24.0	7.55		28.5			
25	17.0				14.0		4.4.5		30.0	27.0		25.0	
26	***	12.5						29.0	32.0	30.0		24.0	
27	222				14.0	15.0		20.0	29.0	33.0		28.0	
28			11.0	7.0	16.0	19.0			29.0	32.0			
29	19.0	8.0	9.0	7.0	12.0	16.0	19.0	28.0	32.0	32.0		22.0	
30	18.0	7.0	10.0	7.0			20.0	28.0					
31	15.0			5.0		17.0							
MEAN	20.0	12.5	9.0	9.0	11.5	15.0	20.5	23.0	28.5	31.0		26.0	

08144000 NOYES CANAL AT MENARD, TX

LOCATION.--Lat 30°54'57", long 99°47'02", Menard County, Hydrologic Unit 12090109, on right bank at intersection of Canal and Gay Streets in Menard and 4.7 mi (7.6 km) downstream from headgates.

PERIOD OF RECORD .-- March 1924 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,878.06 ft (572.433 m) National Geodetic Vertical Datum of 1929.
Prior to July 23, 1940, nonrecording gage at site 2,000 ft (610 m) upstream at datum 4.99 ft (1.521 m) higher.

REMARKS.--Records good. Discharge represents flow diverted from San Saba River; local runoff between diversion point and gage excluded. Canal diverts water from right bank of San Saba River 4.7 mi (7.6 km) upstream from Menard for irrigation near Menard. First diversion was about 1890. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--56 years (water-years 1925-80), 13.5 ft³/s (0.382 m³/s), 9,780 acre-ft/yr (12.1 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge (exclusive of times canal was submerged by floodwaters of San Saba River, or when flow was affected by local runoff between point of diversion and station), $43 \text{ ft}^3/\text{s}$ (1.22 m³/s) Apr. 29, 30, 1928; no flow at times.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	8.3 9.3 13 13	17 17 18 17	16 17 17 17	20 20 20 20 20 20	19 18 18 18	18 18 19 19	16 17 18 17	19 20 16 20 20	15 15 15 15 15	13 13 13 13	16 15 16 15	16 16 16 15
6 7 8 9	18 18 18 18	17 17 17 16 16	17 18 18 18	20 20 20 20 20 20	18 18 18 18	19 19 19 19	17 17 17 17 17	20 20 20 19	10 15 15 16 16	13 13 13 13 6.6	16 16 16 16	15 18 22 .85 .05
11 12 13 14 15	17 18 19 19	16 15 15 14 13	18 19 18 18	20 20 20 20 20 20	18 17 17 17 18	18 17 17 17 17	17 18 18 18 18	19 20 21 20 20	15 15 15 15 14	15 16 16 16 17	17 17 9.3 17	.01 .00 .00 .00
16 17 18 19 20	20 20 20 19	13 13 9.4 6.2 6.7	18 19 19 19	20 20 20 20 20 20	18 18 18 18 17	16 16 16 15	13 18 18 18 18	20 19 19 18 18	14 14 14 14 14	17 17 17 17 17	16 16 17 17 16	.00 .00 .00 .00
21 22 23 24 25	20 21 21 21 21	8.5 7.2 5.7 9.7	19 19 19 19	20 21 20 20 19	18 17 18 18 18	15 16 15 15	18 18 18 18	18 18 18 17 18	15 17 12 15 14	17 17 17 17 17	16 16 16 16 15	.00 .00 .00 .00
26 27 28 29 30 31	19 19 19 19 18	17 18 18 18 16	20 20 20 20 20 20	19 19 19 19	18 18 18	18 18 18 18 17	18 18 19 18 19	16 16 16 16 16	14 14 14 13 13	16 8.0 17 16 16	15 15 15 16 16	.06 .39 .41 .11
TOTAL MEAN MAX MIN AC-FT	555.6 17.9 21 8.3 1100	425.4 14.2 18 5.7 844	573 18.5 20 16 1140	614 19.8 21 19 1220	519 17.9 19 17 1030	536 17.3 19 15 1060	526 17.5 19 13 1040	571 18.4 21 15 1130	431 14.4 17 10 855	462.6 14.9 17 6.6 918	488.3 15.8 17 9.3 969	135.34 4.51 22 .00 268

CAL YR 1979 TOTAL 5673.40 MEAN 15.5 MAX 23 MIN 5.7 AC-FT 11250 WTR YR 1980 TOTAL 5837.24 MEAN 15.9 MAX 22 MIN .00 AC-FT 11580

08144500 SAN SABA RIVER AT MENARD, TX

LOCATION.--Lat 30°55'08", long 99°47'07", Menard County, Hydrologic Unit 12090109, on downstream side of bridge on U.S. Highway 83 in Menard, 1.1 mi (1.8 km) downstream from Las Moras Creek, 1.9 mi (3.1 km) upstream from Volkmann Draw, and 110.4 mi (177.6 km) upstream from mouth.

DRAINAGE AREA. -- 1,151 mi2 (2,981 km2).

PERIOD OF RECORD .-- September 1915 to current year.

REVISED RECORDS. -- WSP 568: Drainage area. WSP 1512: 1918-20, 1922-25, 1926(M), 1927-32, 1934(M), 1936, 1938(M).

GAGE.--Water-stage recorder. Datum of gage is 1,863.05 ft (567.858 m) National Geodetic Vertical Datum of 1929. Sept. 14, 1915, to Mar. 12, 1924, nonrecording gage at site 635 ft (194 m) downstream at datum 2.20 ft (0.671 m) lower. Mar. 13, 1924, to Feb. 21, 1939, nonrecording gage at site 1,000 ft (305 m) upstream at datum 2.00 ft (0.610 m) higher. Feb. 22, 1939, to Jan. 25, 1940, nonrecording gage at present site and datum. Jan. 26, 1940, to Sept. 19, 1957, water-stage recorder at site 240 ft (73 m) to right at present datum. Feb. 8, 1962, to Jan. 22, 1963, nonrecording gage at site 600 ft (180 m) downstream at present datum.

REMARKS.--Records good. Since about 1890, low flow during irrigation season regulated by diversions to Noyes Canal 4.5 mi (7.2 km) upstream and diversions by pumping at several locations upstream. Records of the Texas Department of Water Resources show that permits have been granted to irrigate 3,338 acres (1,400 hm²) above station. See record of Noyes Canal on preceding page. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--65 years, 65.5 ft³/s (1.855 m³/s), 47,450 acre-ft/yr (58.5 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 130,000 ft $^3/s$ (3,680 m $^3/s$) July 23, 1938, gage height, 22.2 ft (6.77 m), present site and datum, from floodmark, from rating curve extended above 56,000 ft $^3/s$ (1,590 m $^3/s$) on basis of slope-area measurement of peak flow; no flow at times as result of upstream diversion to Noyes Canal (station 08144000).

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1880, 23.3 ft (7.10 m) June 6, 1899, present site and datum, from information by local resident.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 670 ft 2/s (19.0 m3/s) and maximum (*):

Date	Date		Discharge		Gage	height	Date	Time	Disch	narge	Gage	height
		Time	(ft^3/s)	(m^3/s)	(ft)	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
Sept.	8	1345	*90,500	2,560	21.00	6.401	Sept. 25	1830	3,620	103	8.31	2.533
Sept.		1700	6,160	174	9.77	2.978	Sept. 28	1715	1,410	39.9	6.70	2.042
Sent	10	0815	4 130	117	8.66	2.640						

Minimum daily discharge, 5.0 ft 3/s (0.14 m3/s) July 22.

	DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	26 22 22 21 19	27 28 31 30 31	33 35 37 39 36	34 33 32 32 31	29 30 30 29 29	35 34 35 36 36	29 30 28 26 24	26 28 28 32 34	27 26 25 25 24	19 19 18 17	7.8 7.7 7.6 7.6 7.4	11 11 9.9 9.8 9.7
6 7 8 9	17 16 17 18 17	32 30 32 33 33	33 30 32 35 37	30 30 30 30 30	29 29 37 40 35	35 37 37 37 37 38	24 25 23 23 23	30 35 42 37 32	23 23 23 32 31	16 15 15 15	7.6 7.6 7.6 7.8 9.3	9.8 11 20900 2930 1620
11 12 13 14 15	14 16 23 26 27	34 34 36 38 38	40 52 46 41 38	32 32 33 33 34	31 30 30 31 31	38 41 37 40 34	24 24 28 30 28	30 30 43 51 43	31 31 29 26 24	8.8 7.7 6.9 6.1	11 11 13 13	373 162 105 85 75
16 17 18 19 20	28 28 24 17	37 38 38 52 54	36 36 34 33 35	34 35 34 35 34	33 33 33 33 33	35 35 35 35 35	27 26 25 25 25	43 37 34 36 34	23 22 20 19 18	5.3 5.3 5.3 5.2 5.1	13 12 12 12 12	70 66 65 64 62
21 22 23 24 25	17 19 20 23 23	45 40 35 33 30	36 40 50 45 38	34 39 37 33 29	32 32 33 35 35	35 34 36 34 29	25 24 25 25 24	37 34 32 31 31	20 34 37 33 27	5.1 5.0 5.7 5.7 5.6	11 11 11 10 10	60 60 59 58 694
26 27 28 29 30 31	24 25 25 26 26 26	28 33 33 32 33	34 37 40 45 38 34	29 29 29 30 31 30	36 36 36 38	30 33 36 33 29 29	22 22 23 23 23 22	39 32 30 29 29 28	23 22 21 19 19	5.7 5.8 7.3 7.7 7.9 7.6	10 10 10 10 10 10	546 245 502 748 395
TOTAL MEAN MAX MIN AC-FT	668 21.5 28 14 1320	1048 34.9 54 27 2080	1175 37.9 52 30 2330	1000 32.3 39 29 1980	948 32.7 40 29 1880	1083 34.9 41 29 2150	752 25.1 30 22 1490	1057 34.1 51 26 2100	757 25.2 37 18 1500	301.8 9.74 19 5.0 599	314.0 10.1 13 7.4 623	30016.2 1001 20900 9.7 59540

CAL YR 1979 TOTAL 15495.0 MEAN 42.5 MAX 876 MIN 2.0 AC-FT 30730 WTR YR 1980 TOTAL 39120.0 MEAN 107 MAX 20900 MIN 5.0 AC-FT 77590

08144600 SAN SABA RIVER NEAR BRADY, TX

LOCATION.--Lat 31°00'11", long 99°16'07", McCulloch County, Hydrologic Unit 12090109, on right bank at downstream side of bridge on U.S. Highways 87 and 377, 0.4 mi (0.6 km) upstream from Hudson Branch, and 8.4 mi (13.5 km) southeast of Brady.

DRAINAGE AREA.--1.633 mi 2 (4,229 km 2), of which 6.60 mi 2 (17.09 km 2) probably is noncontributing.

PERIOD OF RECORD. -- July 1979 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 1,530.98 ft (466.643 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Diversions above station for irrigation (see station 08144000). Several observations of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $66,000 \text{ ft}^3/\text{s}$ (1,870 m³/s) Sept. 8, 1980, gage height, 25.50 ft (7.772 m); minimum, 0.24 ft³/s (0.007 m³/s) Aug. 1, 1980.

EXTREMS OUTSIDE PERIOD OF RECORD.--Highest stage since June 1899, 33.8 ft (10.30 m) July 23, 1938, from high-water mark on left bank 150 ft (46 m) upstream from present site.

EXTREMES FOR PERIOD JULY TO SEPTEMBER 1979.--Maximum discharge, 2,470 ft 3 /s (70.0 m 3 /s) July 19 at 0800 hours, gage height, 6.18 ft (1.884 m), no other peak above base of 1,000 ft 3 /s (28.3 m 3 /s); minimum, 11 ft 3 /s (0.31 m 3 /s) Sept. 30.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,000 ft3/s (28.3 m3/s) and maximum (*):

Date	Time	Discharge		Gage height		Date	Time	Disch	arge	Gage	height
		(ft3/s)	(m^3/s)	(ft)	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
Sept. 8	2100	*66,000	1,870	25.50	7.772	Sept. 25	1830	3,380	95.7	6.94	2.115
Sept. 9	0830	42,700	1,210	19.81	6.038	Sept. 26	0715	2,220	62.9	5.95	1.814
Sept. 10	0215	4.780	135	7.83	2.387	Sept. 29	0830	1,380	39.1	5.03	1.533

Minimum discharge, 0.24 ft³/s (0.007 m³/s) Aug. 1.

DISCHARGE, IN CUBIC FEET PER SECOND, JULY TO SEPTEMBER 1979 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5										28 28 27 29 25	46 82 74 69 62	41 43 45 45 40
6 7 8 9										20 21 26 23 27	54 48 54 56 64	38 43 43 37 38
11 12 13 14 15										28 26 28 28 27	104 109 74 65 64	37 35 31 28 26
16 17 18 19 20										19 18 19 942 444	58 56 50 54 50	28 30 24 25 25
21 22 23 24 25										256 133 99 89 71	46 46 43 48 54	29 28 26 26 26
26 27 28 29 30 31										67 64 62 54 48 45	48 45 45 43 43	24 23 27 17 12
TOTAL MEAN MAX MIN AC-FT										2821 91.0 942 18 5600	1794 57.9 109 40 3560	940 31.3 45 12 1860

WTR YR 1979 TOTAL - MEAN - MAX - MIN - AC-FT -

COLORADO RIVER BASIN

08144600 SAN SABA RIVER NEAR BRADY, TX--Continued

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	12	20	37	52	50	39	44	34	48	23	.31	4.8
2	15	19	37	52	50	35	43	40	48	20	.41	4.8
3 4	18	24	37	52	46	37	40	36	46	18	1.7	5.5
4	21	24	39	52	48	42	40	39	46	17	1.4	4.9
5	21	23	36	52	48	42	37	40	46	13	1.2	4.5
6	18	24	33	54	48	46	33	53	42	14	.93	3.9
7	14	28	36	53	48	44	33	55	40	14	.89	5.5
8	11	32	35	52	48	41	29	63	43	16	.73	23900
9	11	33	38	52	48	40	29	68	43	15	.63	15200
10	9.1	29	40	50	48	40	26	65	57	13	.51	2670
11	13	32	44	52	48	41	30	60	49	12	.78	960
12	16	36	43	52	48	45	27	58	52	10	.95	386
13	17	35	48	50	48	43	32	64	50	8.1	.95	231
14	14	33	48	50	48	41	42	74	41	7.5	1.1	168
15	14		50					93				
15	14	31	50	50	48	37	44	93	39	4.7	4.6	119
16	16	32	51	48	46	37	40	112	36	3.4	6.0	127
17	25	36	46	48	43	36	34	75	33	2.9	5.6	113
18	34	36	45	48	45	34	32	65	28	2.2	6.2	99
19	31	44	46	50	48	32	33	62	22	1.4	6.4	91
20	27	47	47	50	48	32	28	52	25	1.1	5.7	89
20	21	47	47	30	40	32	20	52	23	1.1	3.1	09
21	26	44	49	56	48	30	30	88	24	.89	5.3	83
22	26	39	53	60	46	32	34	67	53	.82	5.4	76
23	13	42	69	60	45	34	33	5.7	64	.82	5.4	73
24	14	43	64	58	45	33	33	50	41	.66	4.4	73
25	15	47	56	52	43	37	33	55	40	.66	3.5	505
23	13	47	36	32	45	3/	33	33	40	.00	3.3	303
26	15	46	55	50	41	39	33	57	37	.66	2.8	961
27	17	50	55	43	43	45	33	60	29	.59	2.1	721
28	19	48	60	41	43	42	33	62	24	.81	2.1	537
29	19	44	65	41	44	40	34	57	24	.55	4.3	900
30	20	39	59	46		40	33	53	23	.43	4.9	812
31	23		57	50		42		50		.33	4.8	
TOTAL	564.1	1060	1478	1576	1350	1198	1025	1864	1193	223.52	91.99	48927.9
			47.7	50.8	46.6				39.8		2.97	1631
MEAN	18.2	35.3				38.6	34.2	60.1		7.21		1631
MAX	34	50	69	60	50	46	44	112	64	23	6.4	23900
MIN	9.1	19	33	41	41	30	26	34	22	. 33	.31	3.9
AC-FT	1120	2100	2930	3130	2680	2380	2030	3700	2370	443	182	97050

WTR YR 1980 TOTAL 60551.51 MEAN 165 MAX 23900 MIN .31 AC-FT 120100

133

08144800 BRADY CREEK NEAR EDEN, TX

LOCATION.--Lat 31°11'05", long 99°50'29", Concho County, Hydrologic Unit 12090110, on right bank at upstream side of bridge on U.S. Highway 83, 0.8 mi (1.3 km) downstream from Fitzgerald Creek, 2.2 mi (3.5 km) south of Eden, 2.4 mi (3.9 km) upstream from Hardin Branch, and 69.3 mi (111.5 km) upstream from mouth.

DRAINAGE AREA. -- 97 mi2 (251 km2).

PERIOD OF RECORD .-- April 1962 to current year.

GAGE.--Water-stage recorder. Datum of gage is 2,000.99 ft (609.902 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Flow is affected at times by discharge from the flood-detention pools of five floodwater-retarding structures with combined detention capacity of 22,190 acre-ft (27.4 hm³). These structures control runoff from 65.0 mi² (168.4 km²) above this station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--18 years, 1.12 ft^3/s (0.0317 m^3/s), 811 acre-ft/yr (1.00 hm^3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,110 ft³/s (145 m³/s) Apr. 28, 1966, gage height, 7.08 ft (2.158 m); no flow for many days most years.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1884, 15.8 ft (4.82 m) in July 1938, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,350 ft¹/s (38.2 m¹/s) Sept. 9 at 1300 hours, gage height, 4.58 ft (1.396 m); no flow for many days.

		DISCH	HARGE, I	N CUBIC FEE		COND, WA		OCTOBER 19	979 TO SEP	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.02 .04 .05 .05	.04 .06 .07 .08	.09 .10 .11 .11 .20	.17 .16 .17 .15	.22 .20 .20 .22 .22	.22 .22 .20 .22 .20	.17 .17 .20 .20	.28 .32 .37 .60	.17 .17 .15 .15	.24 .22 .22 .22 .17	.02 .00 .00 .00	.00 .00 .00
6 7 8 9 10	.05 .04 .04 .04	.06 .06 .06 .08	.15 .15 .18 .20 .20	.15 .13 .22 .31	.22 .25 .37 .39 .24	.20 .20 .20 .21 .23	.19 .17 .16 .13	.53 .41 1.3 .59 .41	.15 .15 1.2 16 .95	.15 .15 .15 .14	.00 .00 .00	.00 .00 5.3 205 32
11 12 13 14 15	.05 .08 .08 .08	.08 .07 .07 .07	.20 .36 .42 .36 .35	.24 .18 .24 .14	.25 .25 .25 .30	.19 .29 .17 .21 .22	.15 .23 .40 .30 .25	.38 .40 .71 90 95	.53 .50 .40 .29	.11 .11 .11 .09	.03 .05 .06 .03	1.9 .46 .20 .15
16 17 18 19 20	.13 .13 .12 .08	.08 .10 .13 .11	.25 .25 .25 .25 .25	.11 .11 .11 .10	.29 .24 .32 .31 .23	.22 .27 .25 .24 .26	.24 .20 .22 .22 .22	26 1.5 .39 .31 .28	.29 .25 .25 .28 .25	.08 .07 .06 .06	.01 .00 .00 .00	.09 .07 .07 .06
21 22 23 24 25	.08 .06 .04 .04	.10 .08 .08 .05	.23 .28 .39 .36 .25	.13 .79 .42 .27	.25 .25 .25 .27 .29	.20 .20 .20 .11	.22 .22 .22 .24 .17	.39 .29 .25 .23 .20	.28 13 .99 .53 .46	.07 .07 .08 .07	.00 .00 .00	.05 .04 .04 .05
26 27 28 29 30 31	.06 .05 .06 .07	.09 .09 .11 .09 .08	.25 .22 .23 .25 .18	.17 .17 .20 .20 .21 .25	.25 .25 .25 .25	.15 .37 .37 .22 .17	.13 .14 .17 .17	.17 .16 .17 .17 .17	.41 .36 .32 .29 .29	.05 .04 .03 .03 .02	.00 .00 .00 .00	1.5 1.9 2.4 1.2
TOTAL MEAN MAX MIN AC-FT	1.99 .064 .13 .02 3.9	2.40 .080 .13 .04 4.8	7.24 .23 .42 .09 14	6.44 .21 .79 .10	7.59 .26 .39 .20	6.71 .22 .37 .11	6.00 .20 .40 .13	222.77 7.19 95 .16 442	39.50 1.32 16 .15 78	3.15 .10 .24 .02 6.2	.007 .06 .00	253.23 8.44 205 .00 502

CAL YR 1979 TOTAL 130.95 WTR YR 1980 TOTAL 557.24 AC-FT 1110 MEAN 1.52 MAX 205 MIN .00

08144900 BRADY CREEK RESERVOIR NEAR BRADY, TX

LOCATION.--Lat 31°08'17", long 99°23'07", McCulloch County, Hydrologic Unit 12090110, at mouth of Bear Creek on Brady Creek, 280 ft (85 m) upstream from Farm Road 3022 over Brady Creek Dam, 3.0 mi (4.8 km) west of Brady, and 34.1 mi (54.9 km) upstream from mouth.

DRAINAGE AREA. -- 513 mi² (1,329 km²).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1963 to current year.

GAGE. -- Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--The reservoir is formed by a compacted earthfill dam 8,400 ft (2,560 m) long. The dam was completed and storage began in May 1963. The dam was built by the city of Brady in cooperation with the Soil Conservation Service and the Farmers Home Administration for flood control, municipal, and industrial water supply. The spillway is a cut channel through natural ground 1,000 ft (305 m) wide located at right end of dam. The top of conservation pool is an uncontrolled concrete drop-inlet structure that discharges through a 7.0-by 7.0-foot (2.1 by 2.1 m) concrete box conduit and is designed to discharge 4,000 ft²/s (113 m³/s) at a 19.4-foot (5.9 m) head. The gated outlet is a 36-inch (914 mm) pipe that extends through the embankment and is equipped with three sluice gates for controlled releases downstream. Flow into reservoir is affected at times by discharge from the flood-detention pools of 35 floodwater-retarding structures with a combined detention capacity of 82,180 acre-ft (101 hm³). These structures were built during the period February 1955 to July 1962 and control runoff from 263 mi² (681 km²) in the Brady Creek watershed above this station. The capacity curve is based on Geological Survey topographic map but was not adjusted for borrow. Figures given herein represent total contents. Data regarding the dam and reservoir are given in the following table:

	Elevation (feet)	(acre-feet)
Top of dam	1,783.0	-
Crest of spillway	1,762.4	90,310
Crest of spillway (top of conservation pool)	1,743.0	30,430
Lowest gated outlet (invert)	1,712.0	1,320

COOPERATION.--Records furnished by the city of Brady show no diversions during year for municipal or industrial use. Capacity curve was furnished by the city of Brady.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 40,880 acre-ft (50.4 hm³) Sept. 24, 1971, elevation, 1,747.70 ft (532.669 m); minimum since first appreciable storage, 1,030 acre-ft (1.27 hm²) Sept. 18, 1964, elevation, 1,710.4 ft (521.33 m).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 20,500 acre-ft (25.3 hm³) Sept. 30, elevation, 1,737.44 ft (529.572 m); minimum, 15,110 acre-ft (18.6 hm³) Sept. 6, elevation, 1,733.63 ft (528.410 m).

Capacity table (elevation, in feet, and total contents, in acre-feet)

1.733.0	14,320
1,735.0	16,910
1,738.0	21,370

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	19150	18240	17710	17800	17690	17500	17050	16540	17320	17590	16280	15290
2	19120	18220	17700	17810	17690	17470	17070	16520	17290	17530	16250	15270
3	19070	18190	17700	17780	17690	17450	17020	16520	17250	17490	16180	15240
4	19020	18180	17690	17770	17670	17450	16990	16560	17220	17430	16150	15200
5	18980	18160	17700	17770	17670	17420	16970	16550	17190	17380	16090	15180
6 7 8 9	18960 18920 18890 18830 18800	18140 18110 18110 18080 18050	17670 17660 17640 17640 17660	17770 17740 17740 17730 17740	17660 17690 17710 17730 17700	17400 17420 17400 17400 17390	16970 16940 16880 16870 16830	16550 16590 16670 16670 16660	17160 17140 17230 17840 17980	17330 17290 17250 17210 17180	16060 16020 15990 15970 15910	15160 15330 16600 17970 19170
11	18780	18020	17660	17710	17710	17420	16830	16660	18000	17140	15940	19320
12	18770	18010	17730	17700	17700	17400	16870	16670	17980	17090	15930	19360
13	18710	18000	17730	17700	17700	17360	16880	16660	17970	17050	15900	19360
14	18690	17980	17710	17700	17700	17330	16870	16640	17940	16980	15860	19380
15	18690	17970	17710	17700	17700	17330	16840	17150	17900	16940	15830	19380
16	18680	17950	17690	17700	17690	17330	16830	17420	17870	16900	15810	19360
17	18660	17980	17670	17690	17690	17290	16800	17490	17840	16840	15770	19350
18	18630	17970	17660	17670	17690	17260	16790	17520	17810	16800	15730	19330
19	18620	17980	17670	17700	17690	17250	16780	17500	17780	16760	15690	19300
20	18590	18040	17660	17700	17690	17230	16760	17520	17770	16720	15650	19270
21	18560	17940	17690	17710	17660	17210	16740	17560	17730	16700	15620	19230
22	18510	17910	17690	17810	17660	17180	16710	17530	17770	16660	15590	19200
23	18480	17900	17800	17780	17640	17160	16700	17520	17780	16630	15570	19170
24	18450	17870	17760	17780	17630	17140	16700	17500	17810	16580	15540	19150
25	18420	17850	17760	17770	17620	17120	16670	17520	17800	16550	15520	19420
26 27 28 29 30 31	18390 18380 18360 18320 18320 18260	17830 17810 17780 17760 17730	17740 17740 17840 17830 17810 17810	17760 17730 17730 17730 17730 17700	17590 17590 17590 17570	17110 17160 17150 17120 17110 17070	16590 16580 16560 16520 16520	17470 17470 17450 17420 17390 17360	17780 17760 17710 17670 17620	16520 16500 16440 16420 16380 16340	15480 15440 15440 15400 15380 15330	19720 19930 20280 20420 20500
MAX	19150	18240	17840	17810	17730	17500	17070	17560	18000	17590	16280	20500
MIN	18260	17730	17640	17670	17570	17070	16520	16520	17140	16340	15330	15160
(†)	1735.96	1735.58	1735.64	1735.56	1735.47	1735.11	1734.71	1735.32	1735.50	1734.57	1733.80	1737.44
(‡)	-920	-530	+80	-110	-130	-500	-550	+840	+260	-1280	-1010	+5170

WTR YR 1980 MAX 20500 MIN 15160 ‡ +1320

t Elevation, in feet, at end of month.

Change in contents, in acre-feet.

135

08144900 BRADY CREEK RESERVOIR NEAR BRADY, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1969 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAT	E	TIM	SPE CIF CON DUC ANC E (MIC MHC	TIC I- CT- TEM CE AT CRO- WA	PER- NE URE, (M TER A	G/L	HARE NESS NONCA BONAT (MG/ CACO	AR- TE L	CALCI DIS- SOLV (MG/ AS C	UM SI ED SOI L (MC	GNE- LUM, S- LVED G/L MG)	SODI DIS SOLV (MG AS	ED /L	SODIUM AD- SORP- TION RATIO
FEB 19.		110	5 1	730	9.0	320	2	200	65		39	22	0	5.3
	DATI	3	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	DIS	LVED G/L	SOI (MC	DE, S- LVED	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILI DIS SOI (MC AS	VED G/L	SOLIE SUM C CONST TUENT DIS SOLV (MG/	OF CI- CS, I- VED
	FEB 19.		12	150	0	15	50	36	50	.2		8.8	9	129

08145000 BRADY CREEK AT BRADY, TX

LOCATION.--Lat 31°08'17", long 99°20'05", McCulloch County, Hydrologic Unit 12090110, on left bank just upstream from bridge on U.S. Highway 377 on North Bridge Street in Brady, 0.4 mi (0.6 km) downstream from Live Oak Creek, and 29.5 mi (47.5 km) upstream from mouth.

DRAINAGE AREA. -- 575 mi2 (1,489 km2).

PERIOD OF RECORD .-- May 1939 to current year.

REVISED RECORDS. -- WSP 1512: 1941(M), 1951(M).

GAGE.--Water-stage recorder. Datum of gage is 1,646.50 ft (501.853 m) National Geodetic Vertical Datum of 1929.

Prior to July 9, 1940, nonrecording gage at site 3,600 ft (1,100 m) upstream at datum 8.24 ft (2.512 m) higher.

REMARKS.--Records good. The city of Brady, which obtains its water supply from ground-water sources, reported that 374 acre-ft (461,000 m³) of sewage effluent was returned to Brady Creek downstream from the gage during the current year. Since May 22, 1962, flow largely controlled by Brady Creek Reservoir (station 08144900). At end of year, flow from 24.2 mi² (62.7 km²) above this station and below Brady Creek Reservoir was partly controlled by six floodwater-retarding structures with a combined capacity of 6,440 acre-ft (7.94 hm²) below flood-spillway crests. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--23 years (water years 1940-62) prior to completion of Brady Creek Reservoir, 25.2 ft 1 /s (0.714 m 3 /s), 18,260 acre-ft/yr (22.5 hm 3 /yr); 18 years (water years 1963-80) regulated, 11.0 ft 3 /s (0.312 m 3 /s), 7,970 acre-ft/yr (9.83 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 39,100 ft³/s (1,110 m³/s) Sept. 10, 1952, gage height, 24.80 ft (7.559 m); no flow at times most years.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1882, 29.1 ft (8.87 m) July 23, 1938, present site and datum, discharge at site 5 mi (8 km) downstream, 86,000 ft 3 /s (2,440 m 3 /s), by slope-area measurement. Flood of Oct. 6, 1930 (second highest since 1882), reached a stage of 25.9 ft (7.89 m), discharge 50,300 ft 3 /s (1,420 m 3 /s), present site and datum, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 34 $\rm ft^3/s$ (0.96 $\rm m^3/s$) Sept. 28 at 0900 hours, gage height, 5.39 ft (1.643 $\rm m$); no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	AUG SEP
DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL	
1 .00 .00 .00 .00 .07 .05 .01 .20 .04 .00	.00 .00
2 .00 .00 .00 .00 .12 .05 .01 .21 .04 .00	.00 .00
3 .00 .00 .00 .00 .16 .04 .01 .13 .02 .00	
	.00 .00
5 .00 .00 .00 .18 .02 .01 .67 .02 .00	.00
6 .00 .00 .00 .01 .18 .05 .02 .64 .01 .00	.00 .00
7 .00 .00 .00 .01 .20 .05 .05 1.1 .00 .00	.00 .00
8 .00 .00 .00 .00 .32 .05 .04 2.2 .02 .00	.00 6.0
9 .00 .00 .00 .00 .37 .05 .04 .07 1.0 .00	.00 2.0
10 .00 .00 .00 .00 .33 .04 .04 .06 .05 .00	
10 .00 .00 .00 .00 .03 .04	.00 .21
11 .00 .00 .00 .00 .30 .04 .04 .07 .04 .00	.00 .05
12 .00 .00 .00 .00 .29 .04 .10 .06 .04 .00	.00 .03
13 .00 .00 .00 .00 .29 .04 .55 .11 .03 .00	.00 .02
14 .00 .00 .00 .00 .29 .04 .06 .02 .02 .00	.00 .01
15 .00 .00 .00 .00 .29 .04 .04 3.1 .01 .00	.00 .00
16 .00 .00 .00 .00 .31 .03 .04 .20 .00 .00	.00 .00
	.00 .00
	.00 .00
19 .00 .00 .00 .00 .03 .03 .02 .00 .00	.00 .00
20 .00 .00 .00 .00 .02 .03 .02 .00 .00 .00	.00 .00
21 .00 .00 .00 .06 .02 .03 .05 .05 .00 .00	.00 .00
22 .00 .00 .00 1.3 .02 .02 .05 .05 .13 .00	.00 .00
23 .00 .00 .72 .03 .02 .02 .04 .04 .04 .00	.00 .00
24 .00 .00 .00 .01 .04 .02 .04 .00 .00 .00	.00 .00
25 .00 .00 .00 .02 .06 .02 .03 .00 .00 .00	
25 .00 .00 .02 .00 .02 .00 .00	.00 1.2
26 .00 .00 .00 .02 .07 .02 .02 .01 .00 .00	.00 .64
27 .00 .00 .00 .03 .06 .31 .04 .02 .00 .00	.00 4.8
28 .00 .00 .43 .04 .07 .18 .03 .06 .00 .00	.00 12
29 .00 .00 .04 .05 .07 .09 .03 .04 .00 .00	.00 3.1
30 .00 .00 .01 .0704 .02 .05 .00 .00	.00 .79
31 .0000 .07010500	.00
TOTAL .00 .00 1.20 1.72 4.42 1.52 1.53 9.78 1.53 .00	00 20 05
ALDER CO. TOO TOO TOO TOO TOO TOO TOO TOO TOO T	.00 30.85
	000 1.03
MAX .00 .00 .72 1.3 .37 .31 .55 3.1 1.0 .00	.00 12
MIN .00 .00 .00 .00 .02 .01 .01 .00 .00 .00	.00 .00
AC-FT .00 .00 2.4 3.4 8.8 3.0 3.0 19 3.0 .00	.00 61

CAL YR 1979 TOTAL 582.13 MEAN 1.59 MAX 210 MIN .00 AC-FT 1150 WTR YR 1980 TOTAL 52.55 MEAN .14 MAX 12 MIN .00 AC-FT 104

137

08146000 SAN SABA RIVER AT SAN SABA, TX

LOCATION.--Lat 31°12'47", long 98°43'09", San Saba County, Hydrologic Unit 12090109, on right bank at downstream side of bridge on State Highway 16, 1.2 mi (1.9 km) north of San Saba, 2.7 mi (4.3 km) upstream from Mill Creek, 4.8 mi (7.7 km) downstream from China Creek, and 16.6 mi (26.7 km) upstream from mouth.

DRAINAGE AREA. -- 3,042 mi2 (7,879 km2).

PERIOD OF RECORD.--December 1904 to December 1906 (gage heights only), September 1915 to current year. Published as "near San Saba" December 1904 to December 1906 and September 1915 to August 1930.

REVISED RECORDS.--WSP 458: 1915-16. WSP 1282: Drainage area. WSP 1512: 1918-19(M), 1922, 1931(M), 1935-36. WSP 1922: 1917

GAGE.--Water-stage recorder. Datum of gage is 1,162.16 ft (354.226 m) National Geodetic Vertical Datum of 1929. See WSP 1922 for history of changes prior to July 8, 1953. Since Oct. 1, 1956, supplementary water-stage recorder 2,780 ft (847 m) to right of main-channel gage used for floodflows.

REMARKS.--Records good. Many diversions above station for irrigation and municipal use affect low flow. Flow partly affected by Brady Creek Reservoir (see station 08144900), capacity 90,300 acre-ft (111 hm³). Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--65 years, 239 ft²/s (6.768 m³/s), 173,200 acre-ft/yr (214 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 203,000 ft³/s (5,750 m³/s) July 23, 1938, gage height, 39.3 ft (11.98 m), present site and datum, from rating curve extended above 41,000 ft³/s (1,160 m³/s) on basis of slope-area measurement of peak flow; no flow at times in 1918, 1930, 1954-56, and 1963-64.

Maximum stage since at least 1899, that of July 23, 1938.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 6, 1899, reached a stage of 36.7 ft (11.19 m), present site and datum, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $40.700 \text{ ft}^3/\text{s}$ (1.150 m³/s) Sept. 9 at 0930 hours, gage height, 29.31 ft (8.934 m), no other peak above base of 3.000 ft³/s (85.0 m³/s); minimum, 1.7 ft³/s (0.048 m³/s) Aug. 29.

DISCHARGE IN CURIC FEET DER SECOND. WATER VEAR OCTORER 1979 TO SEPTEMBER 1980

		DISC	HARGE, IN	CUBIC FEE		COND, WATE CAN VALUES	ER YEAR OC	TOBER 197	79 TO SEI	TEMBER 19	180	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	38	53	62	91	82	75	67	47	69	30	6.9	11
2	36	50	65	91	83	73	72	71	66	28	8.4	8.4
2	33	53	68	88	82	75	73	73	64	27	9.7	7.4
4	30	52	65	85	83	77	69	63	61	26	12	6.9
5	29	51	66	84	82	75	66	68	59	25	11	8.7
6	30	52	69	84	80	74	67	62	56	22	8.4	12
7	31	50	66	83	80	76	66	79	53	19	7.3	13
7 8	35	50	62	81	93	79	54	182	59	18	5.9	1930
9	37	56	64	81	95	80	46	165	152	20	4.8	31000
10	35	59	64	82	91	77	42	144	136	20	7.5	5850
11	30	59	65	82	88	74	42	104	78	18	15	1790
12	30	59	76	80	88	80	43	104	68	17	21	768
13	29	60	88	79	91	81	57	100	67	14	18	424
14	29	64	82	79	88	77	71	100		14		270
									61		12	
15	36	64	81	80	86	75	64	160	58	12	10	218
16	40	62	80	80	82	72	64	387	53	15	8.7	197
17	39	62	80	80	82	67	68	280	51	13	11	166
18	37	60	79	79	83	64	6.5	167	46	9.5	13	145
19	34	65	80	79	86	63	58	132	39	9.0	9.0	132
20	38	66	80	80	86	63	55	117	33	6.6	8.0	120
21	45	67	80	84	84	60	50	127	36	5.2	7.2	117
22	49	70	87	98	82	60	46	139	43	4.7	9.7	115
23	46	69	99	112	82	60	46	148	52	5.5	12	106
24	43	70	113	104	81	63	48	116	69	8.0	12	101
25	40	69	113	96	79	58	50	103	79	7.7	9.8	650
26	39	70	98	95	78	55	45	93	54	5.5	7.6	885
27	41	69	90	91	77	65	44	86	49	6.8	5.0	927
28	43	67	98	86	76	89	44	81	43	12	3.8	768
29	43	67	112	84	77	89	41	78	37	11	2.1	617
30 31	51 54	65	103 99	84 84		76 66	40	78 74	32	8.0 7.4	4.5	1490
7.1												
TOTAL	1170	1830	2534	2666	2427	2218	1663	3728	1823	444.9	292.3	48853.4
MEAN	37.7	61.0	81.7	86.0	83.7	71.5	55.4	120	60.8	14.4	9.43	1628
MAX	54	70	113	112	95	89	73	387	152	30	21	31000
MIN	29	50	62	79	76	55	40	47	32	4.7	2.1	6.9
AC-FT	2320	3630	5030	5290	4810	4400	3300	7390	3620	882	580	96900
CAL YR	1979 TOTA	1 /1755	O MEAN	114 MAX	1150	MIN 29	AC-FT	82820				

CAL YR 1979 TOTAL 41755.0 MEAN 114 MAX 1150 MIN 29 AC-FT 82820 WTR YR 1980 TOTAL 69649.6 MEAN 190 MAX 31000 MIN 2.1 AC-FT 138100

08147000 COLORADO RIVER NEAR SAN SABA, TX (National stream-quality accounting network)

LOCATION.--Lat 31°13'04", long 98°33'51", San Saba-Lampasas County line, Hydrologic Unit 12090201, near left bank at downstream side of pier of bridge on U.S. Highway 190, 5.2 mi (8.4 km) downstream from San Saba River, 9.2 mi (14.8 km) east of San Saba, and at mile 474.3 (763.1 km).

DRAINAGE AREA.--30,600 mi² (79,250 km²), approximately of which 12,880 mi² (33,360 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1915 to October 1922 (published as "near Chadwick"), October 1923 to August 1930 (published as "near Tow"), September 1930 to current year. Monthly discharge only for some periods, published in WSP 1312.

REVISED RECORDS.--WSP 458: 1916. WSP 858: 1900(M), 1936(M). WSP 1118: Drainage area. WSP 1512: 1916-18(M), 1936. WSP 1732: 1925-26(M).

GAGE.--Water-stage recorder. Datum of gage is 1,096.22 ft (334.128 m) National Geodetic Vertical Datum of 1929. See WSP 1922 for history of changes prior to May 23, 1940.

REMARKS.--Water-discharge records good. Many diversion above station for irrigation, municipal use, and oilfield operation. Flow is affected by four reservoirs upstream from Winchell and one reservoir in the San Saba River and Pecan Bayou basins; combined capacity, 1,973,000 acre-ft (2,43 km³). Flow is affected at times by discharge from the flood-detention pools of 187 floodwater-retarding structures with combined detention capacity of 203,600 acre-ft (251 hm²). These structures control runoff from 934 mi² (2,419 km²). The National Weather Service operates a gage-height telemeter at this station.

AVERAGE DISCHARGE.--50 years (water years 1917-19, 1921-22, 1924-68) prior to completion of Robert Lee Dam, 1,340 ft 3 /s (37.95 m 3 /s), 970.100 acre-ft/yr (1,200 hm 3 /yr); 12 years (water years 1969-80) partially regulated, 683 ft 3 /s (19.34 m 3 /s), 494,800 acre-ft/yr (610 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 224,000 ft¹/s (6,340 m³/s) July 23, 1938, gage height, 63.2 ft (19.26 m), present site, based on floodmarks at site then in use; no flow Aug. 27-31, 1954; Aug. 3-13, 1963; July 20 to Aug. 8, Aug. 11-14, 1964.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage during period 1878 to July 22, 1938, 58.4 ft (17.80 m) Sept. 25, 1900, discharge, 184,000 ft³/s (5,210 m³/s), present site, from floodmarks at former site.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $36,000 \text{ ft}^3/\text{s}$ (1,020 m $^3/\text{s}$) Sept. 9 at 2300 hours, gage height, 26.60 ft (8.108 m); minimum, $3.5 \text{ ft}^3/\text{s}$ (0.099 m $^3/\text{s}$) July 24.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES JUN JUL AUG SEP OCT JAN FEB MAR APR MAY DAY NOV DEC 4.8 8.6 8.9 8.9 313 16700 7.6 8.9 7.6 5.6 6.5 178 10 5.2 8.5 9.9 4.0 9.3 8.8 TOTAL 927.9 401.8 156413.8 62.6 MEAN. 82.2 63.5 29.9 13.0 MAX MIN 3.8 AC-FT

CAL YR 1979 TOTAL 114694.0 MEAN 314 MAX 7600 MIN 28 AC-FT 227500 WTR YR 1980 TOTAL 233095.5 MEAN 637 MAX 28000 MIN 3.8 AC-FT 462300

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: September 1947 to current year. Chemical and biochemical analyses: October 1969 to current year. Pesticide analyses: January 1968 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1947 to current year. WATER TEMPERATURES: October 1947 to current year. SUSPENDED SEDIMENT DISCHARGE: December 1950 to September 1962.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD . --

SPECIFIC CONDUCTANCE: Maximum daily, 5,660 micromhos June 28, 1962; minimum daily, 161 micromhos Sept. 11, 1952. WATER TEMPERATURES: Maximum daily, 37.0°C Aug. 3, 1956; minimum daily, 0.0°C Jan. 29, 1948, Jan. 30, 1951.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum daily, 1,460 micromhos Jan. 1; minimum daily, 211 micromhos Sept. 10. WATER TEMPERATURES: Maximum daily, 34.0°C June 30, July 1; minimum daily, 6.0°C Dec. 17, Jan. 31.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
OCT 23	1230	78	680	7.7	19.0	13	7.3	81	1.4	130	27
NOV 06	1320	70	700	8.1	14.0	22	8.9	88	.8	92	100
DEC 11	1340	85	935	7.6	12.0	17	9.4	90	1.0	35	43
JAN 08	1215	156	1140	7.9	8.0	- 22	11.5	100	1.7	34	27
FEB 05	1345	160	868	8.1	9.5	7.6	17.6	160	6.2	K5	33
MAR 04	1140	127	1018	8.0	11.0	28	11.4	109	1.8	K10	K15
APR											
08 MAY	1400	54	698	7.8	19.0	150	7.0	77	2.1	37	63
13 JUN	1300	310	607	7.3	22.5	180	6.1	73	1.7	920	1100
JUL JUL	1045	1190	882	7.4	26.0	350	4.8	61	2.0	1600	760
08 AUG	1550	43	548	8.0	31.0	14	9.5	132	2.8	30	K8
12 SEP	1900	16	792	8.0	28.5	7.0	8.0	104	1.4	28	26
12	1030	28100	248	7.7	22.0	1500	5.1	61	3.4	26000	50000
DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT 23	280	49	59	32	34	.9	3.6	280	0	33	57
NOV 06	270	34	61	29	43	1.1	3.9	290	0	44	70
DEC 11	340	100	77	36	63	1.5	3.6	290	0	70	110
JAN 08	350	160	77	38	97	2.3	4.8	230	0	120	180
FEB 05	300	120	66	34	68	1.7	3.8	220	0	85	130
MAR 04	350	150	74	39	79	1.9	4.0	240	0	100	150
APR 08	280	41	59	32	36	.9	2.9	290	0	30	53
MAY											
13 JUN	190	67	47	17	37	1.2	4.4	150	0	53	71
JUL	230	100	60	19	83	2.4	6.4	150	0	82	160
08 AUG	200	41	46	21	34	1.0	4.3	200	.0	42	58
12 SEP	230	27	42	31	55	1.6	3.0	250	0	22	100
12	86	14	27	4.5	11	.5	4.8	88	0	19	18
12	86	14	27	4.5	11	.5	4.8	88	0		19

08147000 COLORADO RIVER NEAR SAN SABA, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DA*	re	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI TUENTS DIS- SOLVE	, NO T D (ITRO- GEN, 2+NO3 OTAL MG/L S N)	NITRO GEN, NO2+NO DIS- SOLVE (MG/L AS N)	NI 3 G AMM D TO (M	TRO- EN, ONIA TAL IG/L N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	ORG. TO (M	TRO- EN, ANIC TAL G/L N)	NITE GEN ORGAN DIS SOLV (MG) AS N	NIC S- /ED /L	
OCT 23		.2	12	380	37	0	.33	.3:	2	.040	.060		.56		.39	
NOV 06		.2	10	382			.46	.4.		.020	.030		.64		.52	
DEC 11		.2	11	546			.13	.1.		.020	.010		.74		45	
JAN		.3	6.2	647			.48	.4:		.000	.000		1.0		.89	
08 FEB																
05 MAR		.2	6.2	511	50		.86	.80		.010	.010		1.4		.48	
04 APR		.3	3.2	494			.37	.3		.030	.030		.59		50	
08 MAY		.2	.2	369			.30	.1:		.120	.130		.62		.64	
JUN		.3	9.0	340			.41	.30	6	.200	.290		.90		.53	
JUL		.2	9.3	523	42	2	.66	.50	0	.190	.180		1.8		41	
08. AUG		.4	13	345	31	7	.00	.00	0	.050	.050		.95		37	
12. SEP		.2	16	381	39	2	.00	.00	0	.000	.000		1.1		76	
12.		.2	.0	155	12	8	.47	. 36	6	.460	.220	-	2.2		.77	
DAT		NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVE (MG/L AS P)	ORO D TO	RBON, GANIC OTAL MG/L S C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	ORG. SU: PEN (M		SEDI- MENT, SUS- PENDED (MG/L)	SEI MEN DIS CHAR SUS PEN (T/I	NT S - RGE, S - NDED	SED SUS SIEV DIA % FIN THA	P. E M. ER N	
OCT																
NOV.	•	.60	.45	.060	.04)	27	8.4	+	.3	69		15		97	
06. DEC		.66	.55	.050	.00)	6.5		-		87	1	16		93	
11. JAN		.76	.46	.030	.02)	12		-		81	1	19		81	
08. FEB		1.0	.89	.120	.04)	6.8	-			34	1	14		91	
05. MAR		1.4	.49	.130	.01)	24	6.8	3	5.5	73	-	32		97	
04. APR		.62	.53	.040	.00)	3.0		-	44	52	1	18		89	
08.	44	.74	.77	.070	.04)	11				88	1	13		97	
MAY 13.		1.1	.82	.170	.26)	8.7		2-1	4.2	1.44					
JUN 11.		2.0	.59	.510	.170			13		6.7	652	210	00	11	00	
JUL 08.		1.0	.42	.020	.020)	10		-		54		6.3		97	
AUG 12.		1.1	.76	.060	.020)		9.1		.2	59		2.5		99	
SEP 12.		2.7	.99	.540	.270)	28			44	1860	141	000		97	
		ARSE TOT		S- ARS	ENIC TO	RIUM, DTAL ECOV- RABLE	BARI SUS PEND REC ERA	ED BAF	RIUM, IS- LVED	CADMIL TOTAL RECOV ERABL	L PEN	S- DED OV-	CADMII DIS- SOLV	JM -	CHRO- MIUM, TOTAL RECOV- ERABLE	
DATE	TIM	E (UG AS	/L (UG	/L (U	G/L (1	JG/L S BA)	(UG AS	/L ((UG/L S BA)	(UG/I AS CI	(UG	/L	(UG/I		(UG/L AS CR)	
OCT 23	123	0	2	0	2	200		100	100		Ţ	0		2	0	
NOV 06	132	0	4.	44												
JAN 08	121	5			0						-				68	
FEB 05	134		2	1	1	0		0	100		1	0		<1	0	
APR 08	140		44	-22				22	4.		-20					
JUN 11	104		5	2	3	300		100	200		1			<1	0	
JUL																
08 AUG	155		2		2	100			100					· ·	0	
12	190	U	3	0	3	100		0	100		0			<1	U	

08147000 COLORADO RIVER NEAR SAN SABA, TX--Continued
WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DA	M P R	HRO- IUM, SUS- ENDED ECOV. UG/L S CR)	CHRO MIUM DIS- SOLV (UG/ AS C	ED ER	ALT, TAL COV- ABLE G/L CO)	COBALT, SUS- PENDED RECOV- ERABLE (UG/L AS CO)	COBA DIS SOLV (UG	LT, ED	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	PEI REG E ER	PER, S- NDED COV- ABLE G/L CU)	COPPI DIS- SOLV (UG) AS (ER, TO R /ED E /L (RON, DTAL ECOV- RABLE UG/L S FE)	PEN	S- IDED OV- BLE /L	IRON DIS SOLV (UG/ AS F	ED L
OCT 23		0		0	0	()	<3	13		13		0	290			<	10
NOV 06											-			U		Q.		
JAN 08													2.	44				11
FEB 05		0		0	0	()	<3	()	0		0	330		320	<	10
APR 08		11											77					
JUN 11 JUL		0		0	6	-		<3	1.7		16		1	12000	12	000		90
08 AUG				rt.														
	•••	0		10	1			<3	.8	3	-8		0	520		510		10
DA	T R E	EAD, OTAL ECOV- RABLE UG/L S PB)	LEAD SUS PEND RECO ERAB (UG/ AS F	DED LE	AD, IS- LVED G/L PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NES SU PEN REC (UG	E, S- DED OV. /L	MANGA- NESE, DIS- SOLVEI (UG/L AS MN)	TO' REG	CURY TAL COV- ABLE G/L HG)	MERCU SUS PENI RECO ERAF (UG/ AS F	S- DED ME DV- BLE SO L (RCURY DIS- DLVED UG/L S HG)	NICK TOT REC ERA (UG AS	EL, AL OV- BLE /L	NICKE SUS PENI RECC ERAE (UG/ AS N	ED V- LE L
OCT 23		8		8	0	30)	30	2	,	.3		.1	.2		9		7
NOV 06									-									
JAN 08					95.				2.5		+-			41		-2		24
		4		4	0	30		30	2	2	.2		.0	.2		2		2
						1.5										27		
JUN 11 JUL		19		19	0	440)	440	5	,	.7		.6	. 1		21		14
									7-		155							
12		5		4	Ì	10).	8	2		1.6	1	. 4	.2		6		3
	DATE	(U)		SELE- NIUM, TOTAL (UG/L AS SE)	NIU SU PEN TOT	JS- N NDED TAL S J/L (SELE- NIUM, DIS- SOLVED (UG/L AS SE)	ERA (UG	YER, CAL F COV- F ABLE F G/L (LVER, SUS- PENDED RECOV- ERABLE (UG/L AS AG)	SO (U	VER, IS- LVED G/L AG)	ZINC. TOTAL RECOV ERABL (UG/L AS ZN	S PE RE E ER (U	NC, US- NDED COV- ABLE G/L ZN)	ZIN DI SOL (UG AS	S- VED /L	
	OCT 23		2	0		0	0		0	0		0	1	0	5		5	
	NOV 06								0				-	-				
	JAN 08								0				_	-				
	FEB 05		Ω	1		T	0		0	0		0	1	D	7		<3	
	APR 08 JUN					122			0			UL.	_	-	Ų.J		4.	
	JUL.	•	7	1		E	0		0	0		0	6	O			<3	
	08 AUG								0	11.22			-					
	12	e i	3	0		0	0		1	1		0	3	0	30		3	
DATE	TIME	PO TO:	CAL.	ALDRIN, TOTAL (UG/L)	AAC	AL I	DDD, COTAL (UG/L)	DD TOT (UG	AL I	DDT, COTAL (UG/L)	AZI TO	I- NON, TAL G/L)	DI- ELDRII TOTAL (UG/L	TO	RIN, TAL G/L)	ETHI TOT. (UG	AL	HEPTA- CHLOR, TOTAL (UG/L)
NOV 06	1320		ND	ND		ND	ND		ND	ND		ND	N		ND		ND	ND
FEB 05	1345		ND	ND		ND	ND		ND	ND		ND	N	D	ND		ND	ND
DATE	HEPTA CHLOR EPOXID TOTAL (UG/L	E LINI	DANE FAL G/L)	MALA- THION, TOTAL (UG/L)	CHI	Y- F LOR, T AL T	METHYL PARA- THION, TOTAL (UG/L)	TR THI TOT	ON, T	PARA- CHION, COTAL (UG/L)	APH TO	OX- ENE, TAL G/L)	TOTAL TRI- THION (UG/L	TO	4-D, TAL G/L)	2,4, TOTA (UG	AL	SILVEX, TOTAL (UG/L)
NOV 06	N	D	ND	ND		ND	ND		ND	ND		ND	N	0	ND		ND	ND
FEB 05	N		ND	ND		ND	ND		ND	ND		ND	N	D				

142

08147000 COLORADO RIVER NEAR SAN SABA, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	LENGTH OF EXPO- SURE (DAYS)	PERI- PHYTON BIOMASS ASH WEIGHT G/SQ M	PERI- PHYTON BIOMASS TOTAL DRY WEIGHT G/SQ M	CHLOR-A PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)	CHLOR-B PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)	BIOMASS CHLORO- PHYLL RATIO PERI- PHYTON (UNITS)	
DEC 11 FEB	35	66.7	72.4	32.7	4.20	174	
05	28	1.58	1.89	.310	.000	1000	
MAR 04 AUG	28	37.0	38.8	10.2	.800	176	
12	35	10.0	11.7	5.21	.500	326	

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO AUGUST 1980

DATE TIME		6,79 320		4,80 140	MAY 1	13,80 300		11,80 045	JUL 1	8,80 550		12,80 900
TOTAL CELLS/ML	5	700	5	100		970	21	000	49	000	9	400
DIVERSITY: DIVISION .CLASSORDERFAMILYGENUS		1.4 1.4 2.1 2.4 3.3		1.7 1.9 2.5 3.0 3.2		1.5 1.5 1.7 1.9 2.0		1.5 1.5 2.1 2.3 2.9		1.0 1.0 1.7 1.9 2.3		1.4 1.4 1.9 2.2 2.7
ORGANISM	CELLS /ML	PER- CENT										
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESCHARACIACEAE												
SCHROEDERIA COELASTRACEAE	*	0		-		-		~	*	0	50	1
COELASTRUM HYDRODICTYACEAE		19			**	-			500	1		1000
PEDIASTRUM MICRACTINIACEAE		-		-		-	++	-	11.66	.3	200	2
GOLENKINIA OOCYSTACEAE		-		-		3		1	256	9	*	0
ANKISTRODESMUS	160	3	84	2	13	1	460	2	430	1	130	1
DICTYOSPHAERIUM	290 130	5 2	130	2	7.7	-	540 380	3 2		-		-
KIRCHNERIELLA NEPHROCYTIUM	130	0		2				2		-		-
	160	3	170	3	55	-	310	1		-	*	ō
OOCYSTIS SELENASTRUM	100	3	170	3		-	210	1	*	0	*	0
TETRAEDRON	*	0			13	1			*	0	130	1
TREUBARIA		-		-	13	4		- 5	*	0	130	o
WESTELLA	22	-		100	20	1		-	290	1	100	1
SCENEDESMACEAE									230		100	4
CRUCIGENIA	310	5		-		4	310	1		-	200	2
SCENEDESMUS	650	11	510	10	260#	27	1500	7	1100	2	430	5
TETRASTRUM VOLVOCALES	2.5	-	77	3		7		-		-	200	2
CHLAMYDOMONADACEAE												
CARTERIA	130	2	77.7					- 1		1-0	980	10
CHLAMY DOMONAS	90	2	840#	17		-		-	1100	2	180	2
CHLOROGONIUM	è E	-		-		-		-	*	0		-
VOLVOCACEAE									****	2		
PANDORINAZYGNEMATALESDESMIDIACEAE		-		-		-	19-1	-	2300	5		
COSMARIUM		-		-		-		-		-	*	0
STAURASTRUM		-		16		-	*	0		-		-

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO AUGUST 1980--Continued

PHIL	JPLANKTON	ANAL, 15	es, octo	BER 19	79 10 AU	GUST 1	980COU	tinued				
DATE TIME		6,79 320		4,80 140		13,80 300		11,80 045		8,80 550		12,80 900
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHRYSOPHYTA .BACILLARIOPHYCEAECENTRALES												
COSCINODISCACEAE CYCLOTELLA MELOSIRA PENNALES	130	2 3	340 210	7	64	7	3300# 310	16	1500	3	100 100	1
FRAGILARIACEAE FRAGILARIA SYNEDRA	35	-	510	10		4	*	ō	122	-	11	2
NAVICULACEAE GYROSIGMA NAVICULA	12	2	 42	ī	39 26	4 3		-	- 22	-		0
NITZSCHIACEAE NITZSCHIA .CHRYSOPHYCEAE	180	3	290	6	26	3	1000	5	430	Ì	100	í
.CHRYSOMONADALESCHROMULINACEAECHRYSOCOCCUS .XANTHOPHYCEAE		4	170	3		₹		ė	-			
HETEROCOCCALES CENTRITRACTACEAE CENTRITRACTUS	36	1			44	4		-	-2	1,2,		-
CRYPTOPHYTA (CRYPTOMONADS) CRYPTOPHYCEAE .CRYPTOMONADALES .CRYPTOCHRYSIDACEAE .CHROOMONAS .CRYPTOMONADACEAE .CRYPTOMONA	*	0	1500#	30	92	4	4±.	- 0	720	1	130 130	1
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE .CHROOCOCCALES												
CHROOCOCCACEAEAGMENELLUMANACYSTISHORMOGONALES	860# 1800#		170	3	520#	53	1500 8800#	7 42	28000# 4500	56 9	5300# 300	57 3
NOSTOCACEAEANABAENOPSISOSCILLATORIACEAE	9.5	-	-	-		(2)	-5-1	-	()	-	180	2
OSCILLATORIA RIVULARIACEAE RAPHIDIOPSIS	560	10		1		7	2100	10	7200	15		1
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAE .EUGLENALES												
EUGLENACEAEEUGLENAPHACUSTRACHELOMONAS	36	1 0	1	10.0	13	1	230	1 0	500	1 - 0	230	2
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAE .PERIDINIALESGLENODINIACEAE												
GLENODINIUM		-		7		-	*	0		-	*	0

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	1942	781	433	2270	94	494	63	331	280
NOV.	1979	2466	784	434	2890	94	624	63	416	280
DEC.	1979	4274	1060	591	6820	150	1740	110	1270	350
JAN.	1980	5488	1160	650	9630	170	2550	130	1900	380
FEB.	1980	4752	1030	576	7400	140	1840	100	1320	350
MAR.	1980	3144	872	484	4110	110	934	76	643	300
APR.	1980	1904	773	428	2200	92	472	61	313	270
MAY	1980	36439	514	284	27900	55	5370	34	3320	190
JUNE	1980	14943	582	321	12900	62	2490	38	1540	210
JULY	1980	927.9	590	325	813	61	153	37	93	220
AUG.	1980	401.8	705	389	422	79	86	51	55	250
SEPT	1980	156413.8	287	156	66100	23	9760	11	4680	110
TOTAL		233095.5	**	**	143000	**	26500	**	15900	**
WTD. AV	G.	637	414	228	**	42	**	25	**	150

	SPI	ECIFIC CO	NDUCTANCE	(MICROMH		25 DEG. C) NCE-DAILY	, WATER	YEAR OCTOB	ER 1979	TO SEPTEMBER	1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	650 647 651 659 643	917 821 795 811 748	916 892 920 935 856	1460 1340 1250 1180 1200	993 935 920 901 894	1000 995 1020 995 912	967 996 864 753 723	713 636 724 651 552	1110 700 385 481 498	637 612 577 560 548	627 630 640 649 658	697 667 686 681 682
6 7 8 9	718 745 735 722 724	730 717 702 691 690	837 811 986 928 911	1290 1220 1120 1090 1100	878 915 948 1000 1040	991 1000 960 917 910	790 694 698 659 540	590 562 700 649 591	465 496 556 548 660	558 564 565 575 581	665 680 698 715 723	679 664 657 260 211
11 12 13 14	666 698 712 702 682	692 710 735 721 688	935 902 745 925 985	1080 1070 1100 1110 1070	1050 1040 1050 1000 1010	901 928 817 840 855	650 740 690 676 670	572 579 590 576 450	550 498 467 489 563	577 578 591 595 601	717 720 725 700 708	297 274 282 387 370
16 17 18 19 20	647 665 682 688 689	731 686 688 711 734	979 1050 1020 991 1010	1040 1050 1050 1060 1040	1080 1150 1190 1160 1130	777 874 850 834 823	668 814 815 846 875	360 278 318 389 493	531 526 580 603 615	602 600 597 617 625	720 731 739 710 693	398 420 452 476 498
21 22 23 24 25	690 660 648 693 808	793 750 714 781 963	915 956 1000 1120 1100	1050 1040 1220 1200 1220	1090 1100 1120 1110 1090	745 760 796 752 738	801 822 820 815 819	562 914 1000 1220 1210	626 609 585 550 363	624 624 626 625 622	716 722 706 719 729	518 536 551 558 352
26 27 28 29 30 31	856 936 933 930 1000 1130	949 970 960 956 799	1080 1150 1230 1310 1390 1400	1260 1200 1180 1130 1090 1050	1070 1040 1020 1010	836 841 780 732 672 772	756 684 653 677 673	822 810 850 615 1020 1060	750 878 837 786 722	619 618 615 600 594 616	738 737 730 727 715 705	329 327 398 352 300
MEAN	742	778	1010	1150	1030	859	755	679	601	598	703	465

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 ONCE-DAILY DAY OCT NOV FEB JUN JUL DEC JAN APR MAY AUG SEP 18.0 12.0 12.0 19.0 24.0 28.0 34.0 31.0 28.0 10.0 16.0 12.0 31.0 31.0 30.0 26.0 25.0 23.0 17.0 15.0 17.0 9.0 21.0 20.0 21.0 24.0 23.0 21.0 23 11.0 13.0 28.0 33.0 33.0 28.0 12.0 11.0 11.0 16.0 15.0 28.0 4 5 29 0 16.0 13.0 20.0 32.0 23.0 13.0 14.0 29.0 29.0 13.0 10.0 12.0 10.0 27.0 27.0 21.0 20.0 21.0 33.0 32.0 32.0 31.0 6 23.0 17.0 12.0 14.0 16.0 20.0 28.0 29.0 25.0 26.0 15.0 12.0 15.0 25.0 31.0 27.0 26.0 9.0 15.0 17.0 18.0 22.0 30.0 32.0 8 22.0 14.0 28.0 30.0 21.0 9.0 10 27.0 15.0 13.0 14.0 24.0 33.0 28.0 22.0 12.0 12.0 14.0 15.0 11 21.0 15.0 10.0 14.0 25.0 33.0 29.0 23.0 12 22.0 10.0 10.0 19.0 14.0 26.0 25.0 33.0 25.0 12.0 29.0 10.0 11.0 11.0 24.0 22.0 12.0 15.0 13.0 28.0 32.0 33.0 24.0 9.0 30.0 30.0 17.0 15 23.0 15.0 14.0 ---32.0 28.0 15.0 15.0 14.0 13.0 14.0 20.0 21.0 17.0 25.0 10.0 19.0 15.0 21.0 31.0 31.0 30.0 16 17 32,0 28.0 6.0 9.0 23.0 32.0 29.0 14.0 15.0 17.0 17.0 15.0 23.0 25.0 32.0 18 29.0 25.0 19.0 20 13.0 14.0 20.0 25.0 25.0 32.0 30.0 30.0 21 22 23 30.0 30.0 30.0 31.0 26.0 22.0 21.0 20.0 12.0 10.0 17.0 22.0 32.0 32.0 16.0 20.0 25.0 30.0 30.0 26.0 30.0 30.0 17.0 17.0 12.0 18.0 13.0 32.0 30.0 29.0 24 25 13.0 14.0 30.0 28.0 21.0 15.0 16.0 15.0 22.0 30.0 30.0 31.0 26.0 12.0 31.0 25.0 25.0 23.0 23.0 26 27 22.0 13.0 15.0 16.0 22.0 30.0 15.0 33.0 32.0 17.0 12.0 ---8.0 19.0 15.0 22.0 32.0 33.0 28 11.0 28.0 29.0 30.0 30 10.0 13.0 10.0 19.0 24.0 27.0 34.0 31.0 30.0 22.0 31 20.0 32.0 16.0 30.0 6.0

16.0

21.0

24.5

30.0

32.0

30.0

26.5

MEAN

23.0

14.5

12.0

12.0

13.5

08148000 LAKE BUCHANAN NEAK BURNET, TX

LOCATION.--Lat 30°45'04", long 98°25'06", Burnet County, Hydrologic Unit 12090201, in powerhouse at Buchanan Dam on Colorado River, 1.3 mi (2.1 km) upstream from bridge on State Highway 29, 11 mi (18 km) west of Burnet, and at mile 413.6 (665.6 km).

DRAINAGE AREA.--31,250 mi² (80,940 km²), approximately, of which 12,880 mi² (33,360 km²) probably is noncontrib-

PERIOD OF RECORD. -- May 1937 to current year. Prior to Oct. 1, 1968, published as Buchanan Keservoir.

REVISED RECORDS .-- WSP 1118: Drainage area.

GAGE.--Nonrecording gage. Datum of gage is 0.48 ft (0.146 m) National Geodetic Vertical Datum of 1929 (levels by Lower Colorado River Authority). Prior to July 1938, temporary staff and float gages at same site and

REMARKS.--The lake is formed by two reinforced concrete multiple-arch sections, three banks of tainter gates, a 1,100-foot (335 m) uncontrolled emergency concrete spillway, and natural ground. A net opening of 1,270 ft (387 m) is controlled by thirty 33- by 15-foot (10 by 5 m) and by seven 40- by 15-foot (12 by 5 m) tainter gates. The dam was completed and storage began May 20, 1937. Water is used for power development and for irrigation below Columbus. The power generating features consist of three generating units, each with a 12,677 kilowatt capacity. A pump-back unit, with a capacity of 840 ft³/s (23.8 m³/s), returns water from Inks Lake to Lake Buchanan during off-peak power demand periods. Inflow is largely regulated by twelve major reservoirs with a combined capacity of 2,438,000 acre-ft (3.01 km³), of which 1,091,000 acre-ft (1.35 km²) is for flood control. For statement regarding regulation by Soil Conservation Service floodwater-retarding structures, see station 08147000. The capacity table is based on a 1925 survey. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	Gage height (feet)	(acre-feet)
Top of dam	1,025.5	-
Crest of gravity overflow spillway (top of conservation storage)	1.020.0	992,000
Crest of spillway (15 ft gates)	1,005.0	678,000
Crest of spillway (25 ft gates)	995.0	505,000
Invert of three 12-foot-diameter penstocks	937.0	36.800

COOPERATION .-- Capacity curve and gage-height record were furnished by the Lower Colorado River Authority.

EXTREMES (at 2400) FOR PERIOD OF KECORD.--Maximum contents, 1,010,000 acre-ft (1.25 km²) Jan. 24, 1968, gage height, 1,020.8 ft (311.14 m); minimum after initial filling of lake in July 1938, 340,800 acre-ft (420 hm³) Sept. 8-10, 1952, gage height, 983.4 ft (299.74 m).

EXTREMES (at 2400) FOR CURRENT YEAR.--Maximum contents observed, 979,600 acre-ft (1.21 km²) Sept. 30, gage height, 1,019.46 ft (310.731 m); minimum, 753,600 acre-ft (929 hm²) Sept. 7, gage height, 1,008.93 ft (307.522 m).

Capacity table (gage height, in feet, and total contents, in acre-feet)

1.008.0 735,000 1.016.0 902,000 1.020.0

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APK	MAY	JUN	JUL	AUG	SEP
1	934300	921600	917200	926900	929900	939600	941800	901600	944700	884200	816800	757400
2	934100	921400	917200	926600	930400	938100	942500	898900	942500	880700	812900	757000
3	934100	921100	917000	926600	930600	937900	942700	895400	940900	878200	810300	755600
4	933200	920500	917200	926600	931000	938500	943100	892300	938500	876300	808000	754400
5	932100	920700	918300	927100	931300	938700	942700	888100	936100	874900	805700	754200
6 7 8 9	930800 929300 929100 929300 927700	920500 919800 919800 920000 919400	917400 917200 917200 917200 917200	927700 927500 927500 927700 928400	931300 931700 934100 934100 934100	938500 938500 939200 939200 939400	942700 942900 942500 942500 941800	885500 884400 885700 891200 895800	933900 931700 930400 929100 927500	873200 871200 869000 867700 865500	804200 802400 800500 797900 797100	754000 753600 754200 766000 823100
11	927700	918700	918900	928800	934100	939600	943400	897600	928400	861300	796100	863700
12	926200	918900	920500	928400	934600	940300	943100	898700	927100	858400	792800	915600
13	926900	918700	920300	928800	934600	940300	939800	901100	924900	857000	791200	960700
14	926200	918700	920300	928800	935000	940100	939600	902000	923100	854600	789400	966200
15	925800	918300	920300	929300	936100	940100	939400	914100	920300	853000	787600	967900
16	924900	918300	920900	929500	936500	940700	939000	931000	918100	851100	785600	967900
17	924900	918300	919600	929500	936500	940500	939000	944900	913400	849400	784400	965600
18	923600	918700	919600	929500	936500	940100	937400	952200	910100	847100	782000	963700
19	923300	918900	919600	929900	937200	940100	934100	956100	907100	845200	780000	960500
20	922900	918700	919800	930600	937400	940300	931300	958400	905100	843700	778200	958000
21	922700	919600	920900	930800	937900	940100	927300	961200	901600	840800	775400	954100
22	923300	918700	921400	932100	938100	939600	924400	963000	899400	839900	773800	951500
23	922700	918300	922900	932100	938100	940300	923100	962100	896500	837800	770000	949200
24	922200	918300	923100	931900	938500	940100	921600	960700	896700	836000	769200	946000
25	921800	918300	923100	931700	939000	940300	920700	959600	898700	833400	767200	944900
26 27 28 29 30 31	921400 921100 921400 920500 922200 922000	918300 918500 918300 917600 917400	923800 923800 924200 926600 926900 926900	931500 931300 931000 930800 930600 930400	939200 939400 939800 940300	940300 942500 942300 942700 942700 942500	916500 913400 910100 906400 904000	958000 954300 952000 949500 948100 946500	898700 896900 894300 891200 887900	831500 829900 827300 825700 822300 818500	765600 763400 761200 759400 758600 758200	944900 959600 961400 963000 979600
MAX	934300	921600	926900	932100	940300	942700	943400	963000	944700	884200	816800	979600
MIN	920500	917400	917000	926600	929900	937900	904000	884400	887900	818500	758200	753600
(†)	1016.91	1016.70	1017.13	1017.29	1017.74	1017.84	1016.09	1018.02	1015.36	1012.12	1009.16	1019.46
(‡)	-12800	-4600	+9500	+3500	+9900	+2200	-38500	+42500	-58600	-69400	-60300	+221400

CAL YR 1979 MAX 981400 WTR YR 1980 MAX 979600 MIN 753600 #

Gage height, in feet, at end of month. Change in contents, in acre-feet.

08150000 LLANO RIVER NEAR JUNCTION, TX

LOCATION.--Lat 30°29'45", long 99°43'19", Kimble County, Hydrologic Unit 12090204, on right bank 600 ft (180 m) north of Farm Road 2169, 1.4 mi (2.3 km) east of Junction, 3.6 mi (5.8 km) downstream from bridge on Interstate Highway 10, 3.9 mi (6.3 km) downstream from confluence of North and South Llano Rivers, 4.3 mi (6.9 km) upstream from Johnson Fork, and 106.7 mi (171.7 km) upstream from mouth.

DRAINAGE AREA. -- 1,874 mi2 (4,854 km2).

PERIOD OF RECORD .-- September 1915 to current year.

REVISED RECORDS.--WSP 568: 1915-16, 1918-20, 1922. WSP 1342: Drainage area. WSP 1922: 1920, 1923.

GAGE.--Water-stage recorder. Datum of gage is 1,630.32 ft (496.922 m) National Geodetic Vertical Datum of 1929. Prior to Aug. 14, 1925, nonrecording gage, and Aug. 14, 1925, to May 17, 1940, water-stage recorder, at present site and datum. May 18, 1940, to Aug. 17, 1944, water-stage recorder at site 5,330 ft (1,620 m) upstream at datum 6.0 ft (1.83 m) higher. Since Aug. 18, 1944, gage at site 5,330 ft (1,620 m) upstream has been used as a supplementary gage.

REMARKS.--Records good except those for periods of no gage-height record, which are fair. Diversions above station for irrigation. Several observations of water temperature were made during the year.

AVERAGE DISCHARCE.--65 years, 193 ft³/s (5.466 m³/s), 1.39 in/yr (35 mm/yr), 139,800 acre-ft/yr (172 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, $319,000 \text{ ft}^3/\text{s}$ ($9,030 \text{ m}^3/\text{s}$) June 14, 1935, gage height, 43.3 ft (13.20 m) at regular gage, 41.4 ft (12.62 m) at supplementary gage, from floodmarks, from rating curve extended above 54,000 ft²/s (1,530 m³/s) on basis of slope-area measurements of 154,000 and 319,000 ft²/s (4,360 and 9,030 m³/s); minimum, 3.1 ft³/s (0.088 m³/s) Aug. 16, 17, 1956. Maximum stage since at least 1875, that of June 14, 1935.

EXTREMES OUTSIDE PERIOD OF RECORD. -- There was a major flood in 1889 which was the highest known prior to June 14, 1935.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 1,500 ft 3/s (42.5 m3/s) and maximum (*);

Date		Time	Disch	arge	Gage	height
			(ft^3/s)	(m^3/s)	(ft)	(m)
Sept.	8	1000	*139,000	3,940	32.23 a31.80	9.824
Sept.	29	1630	19,300	547	10.55	3.216
					a14.63	4.459

a From supplementary gage.

Minimum discharge, 39 ft³/s (1.10 m³/s) Aug. 9, 10, 26, Aug. 31 to Sept. 4.

		DISCH	ARGE, IN	CUBIC FE		SECOND, WA MEAN VALUE	TER YEAR O	CTOBER 197	9 TO SEP	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	96	92	97	105	98	88	84	71	89	53	44	42
2	96	93	97	105	99	88	83	72	87	51	44	41
2 3 4	95	94	96	104	99	88	82	76	87	51	43	41
	93	95	97	102	99	88	79	81	80	51	43	41
5	94	95	97	102	98	88	78	80	82	51	43	41
6	94	94	96	103	97	86	77	76	80	50	43	42
7	94	94	96	102	97	86	76	85	80	50	42	64
8	94	95	96	102	101	86	74	86	78	50	42	35900
9	93	95	99	102	101	84	76	82	76	50	42	1100
10	92	92	98	102	99	84	78	78	74	49	47	600
1.1	93	94	99	102	99	86	79	75	7.4	49	63	411
12	94	94	110	102	98	86	79	76	72	49	62	318
13	94	94	109	101	98	86	86	83	72	49	55	258
14	96	95	107	101	97	86	85	92	110	48	50	223
15	97	96	106	101	96	84	84	99	97	48	47	197
16	97	95	103	101	102	84	82	145	89	48	47	168
17	94	99	100	100	101	84	81	116	87	48	47	147
18	93	104	100	102	101	84	78	105	80	47	48	124
19	93	101	100	102	99	84	77	99	70	47	47	119
20	92	101	100	102	97	82	76	108	72	47	45	115
21	92	99	102	104	94	82	75	105	89	47	44	112
22	94	95	105	111	92	82	74	105	78	46	44	109
23	94	94	111	112	93	82	74	105	70	46	43	106
24 25	94	97	113	106	93	82 84	75 75	102 97	68	46	43 42	104
25	94	100	1.07	104	91	84	/3		64	46	42	110
26	94	99	104	102	91	84	73	94	62	45	41	139
27	95	97	102	102	91	90	73	92	58	45	41	142
28	96	96	105	102	90	88	74	94	56	45	42	141
29 30	94 93	95 95	106 108	102	89	86	73 71	97 89	53 53	45 44	42 42	5290 2170
31	91	90	105	99		86 84		89		44	42	2170
TOTAL	2915	2879	3171	3190	2800	2642	2331	2854	2287	1485	1410	48421
MEAN	94.0	96.0	102	103	96.6	85.2	77.7	92.1	76.2	47.9	45.5	1614
MAX	97	104	113	112	102	90	86	145	110	53	63	35900
MIN	91	92	96	99	89	82	71	71	53	44	41	41
CFSM	.05	.05	.05	.06	.05	.05	.04	.05	.04	.03	.02	.86
IN.	.06	.06	.06	.06	.06	.05	.05	.06	.05	.03	.03	.96
AC-FT	5780	5710	6290	6330	5550	5240	4620	5660	4540	2950	2800	96040
CAL YR WTR YR			MEAN 13 MEAN 20		1310 35900	MIN 81 MIN 41	CFSM .07 CFSM .11	IN .94 IN 1.52	AC-FT AC-FT	94160 151500		

NOTE. -- No gage-height record Mar. 1 to Apr. 1 and July 2 to Aug. 7.

08150700 LLANO RIVER NEAR MASON, TX

LOCATION.--Lat 30°39'35", long 99°06'29", Mason County, Hydrologic Unit 12090204, on right bank 98 ft (30 m) downstream from downstream bridge on U.S. Highway 87, 1.0 mi (1.6 km) upstream from Beaver Creek, 9.1 mi (14.6 km) southeast of Mason, 10.2 mi (16.4 km) downstream from James River, and 54.5 mi (87.7 km) upstream from mouth.

DRAINAGE AREA. -- 3,280 mi2 (8,500 km2).

PERIOD OF RECORD .-- March 1968 to current year.

REVISED RECORD .-- WDR TX-75-3: 1968(P).

CAGE.--Water-stage recorder. Datum of gage is 1,230.36 ft (375.014 m) National Geodetic Vertical Datum of 1929. Prior to Jan. 19, 1971, at site 190 ft (58 m) upstream at same datum.

REMARKS.--Records good except those for Sept. 8-30, which are poor. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--12 years (water years 1969-80), 350 ft³/s (9.912 m³/s), 1.45 in/yr (37 mm/yr), 253,600 acre-ft/yr (313 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 260,000 ft³/s (7,360 m³/s) Sept. 8, 1980, gage height, 37.00 ft (11.278 m), from floodmark, from rating curve extended above 151,000 ft³/s (4,280 m³/s) on basis of slopearea measurement and discharge measurement of 145,000 ft³/s (4,110 m³/s); minimum, 16 ft³/s (0.45 m³/s) July 23, 1971.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum flood since at least 1875 occurred June 14, 1935, discharge 388,000 ft³/s (11,000 m³/s), by slope-area measurement of peak flow at site 17.0 mi (27.4 km) downstream.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 3,000 ft 3/s (85.0 m3/s) and maximum (*):

Date		Time	Disch	arge	Gage	height
			(ft^3/s)	(m³/s)	(ft)	(m)
Sept.	8	1430	*260,000	7,360	a37.00	11.278
Sept.		0100	20,600	583	11.58	3.530

a From floodmark.

Minimum daily discharge, 26 ft³/s (0.74 m³/s) Aug. 5-9, Aug. 25 to Sept. 6.

			DISCHARGE,	IN CUB	IC FEET		ND, WATER VALUES	YEAR OCTOBE	R 1979	TO SEPTEME	BER 1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	100	102	115	132	123	112	104	96	98	50	35	26
2	99	104	116	128	126	106	99	80	96	50	32	26
2 3 4	97	105	118	126	124	106	100	79	94	46	29	26
4	95	108	118	124	123	107	98	80	94	46	27	26
5	94	109	119	123	123	109	94	86	90	45	26	26
6	94	111	119	124	122	109	92	86	90	44	26	26
7	92	110	118	124	121	109	90	96	88	43	26	45
8	93	110	118	123	136	111	88	149	86	42	26	69200
9 10	94	112	118	124	141	110	84	134	86	40	26	17500
10	94	113	119	124	138	108	82	108	82	40	27	2070
11	92	111	121	124	132	107	84	96	79	39	32	939
12	91	112 114	162 137	121	131	117	90	92	361	40	37	551
13 14	92 94	116	134	119 118	129 126	118 113	93	185 214	222 106	40	39	411
15	96	115	134	121	126	109	98 102	166	82	40 38	44	344 317
		113	134		120	109	102	100		38	43	317
16	98	116	134	123	129	106	113	194	75	36	39	313
17	100	119	133	119	131	106	110	225	73	33	37	309
18	99	126	126	120	136	99	108	162	68	33	37	290
19	100	127	123	120	140	99	104	137	62	33	36	251
20	100	129	124	126	144	99	102	140	58	34	36	218
21	100	128	126	133	133	97	100	140	150	34	34	190
22	107	127	135	172	123	99	102	186	96	34	32	166
23	105	127	142	169	119	97	96	159	77	34	30	148
24 25	101 101	126 125	150 142	159 149	117	92	96	134	82	34	28	135
25	101	125	142	149	114	96	98	120	70	34	26	132
26	103	125	139	137	114	98	89	115	64	34	26	163
27	103 102	125	134	131	113	116	91	108	58	34	26	301
28 29	106	119 116	137 142	129 129	111	135 133	96 100	104 102	55 52	35	26	305
30	106	115	136	130		118	96	100	50	35 35	26 26	301 8040
31	102		134	128		111		100		35	26	
TOTAL	3050	3502	4023	4029	3656	3352	2899	3973	2844	1190	966	102795
MEAN	98.4	117	130	130	126	108	96.6	128	94.8	38.4	31.2	3427
MAX	107	129	162	172	144	135	113	225	361	50	44	69200
MIN	91	102	115	118	111	92	82	79	50	33	26	26
CFSM	.03	.04	.04	.04	.04	.03	.03	.04	.03	.01	.01	1.05
IN.	.03	.04	.05	.05	.04	.04	.03	.05	.03	.01	.01	1.17
AC-FT	6050	6950		7990	7250	6650	5750	7880	5640	2360	1920	203900
CAL YR WTR YR		71946 136279	MEAN 197 MEAN 372	MAX MAX	6320 69200	MIN 91 MIN 26	CFSM .06 CFSM .11		AC-FT AC-FT	142700 270300		

149

08150800 BEAVER CREEK NEAR MASON, TX

LOCATION.--Lat 30°38'39", long 99°05'46", Mason County, Hydrologic Unit 12090204, on left bank at downstream side of downstream bridge on U.S. Highway 87, 1.4 mi (2.3 km) upstream from Llano kiver, 6.4 mi (10.3 km) downstream from Spring Creek, and 11.1 mi (17.9 km) southeast of Mason.

DRAINAGE AREA . - - 218 mi2 (565 km2).

PERIOD OF RECORD .-- July 1963 to current year.

REVISED RECORDS. -- WSP 2122: 1964-65.

GAGE.--Water-stage recorder. Datum of gage is 1,253.24 ft (381.988 m) National Geodetic Vertical Datum of 1929. Prior to Aug. 3, 1978, at site 300 ft (91 m) upstream at same datum.

REMARKS.--Records fair except those for period of no gage-height record, which are poor. No known regulation or diversion above station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--17 years, 18.8 ft³/s (0.532 m³/s), 1.17 in/yr (30 mm/yr), 13,620 acre-ft/yr (16.8 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $66,900 \text{ ft}^3/\text{s}$ (1,890 m³/s) Aug. 3, 1978, gage height, 24.0 ft (7.315 m), from floodmarks, from rating curve extended above 7,400 ft³/s (210 m³/s) on basis of slope-area measurements of 20,100 and $66,900 \text{ ft}^3/\text{s}$ (569 and 1,890 m³/s); no flow at times most years.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,000 ft3/s (28.3 m3/s) and maximum (*):

Date		Time	Disch		Gage	height
			(ft³/s)	(m^3/s)	(ft)	(m)
May	15	1430	*5,030	142	6.49	1.978
Sept.	8	1500	2.740	77-6	5.18	1.579

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum discharge, 0.02 ft3/s (0.001 m3/s) July 11, 12.

		DIS	CHARGE, IN	COBIC FE.		EAN VALUES		OCTOBER 13	79 10 SEF	I ENDER 190	50	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	1.0	.80	.81 .91	2.9	2.8	1.9	2.5 2.6	4.5	5.5	.14	.17	.06
3 4 5	.80 .70 .64	.80 .80	1.0 1.2 1.6	2.4 2.3 2.2	2.8 2.7 2.5	1.7 2.0 2.2	3.2 3.1 2.8	4.5 4.8 6.0	4.5 3.9 3.6	.08 .08 .06	.07	.06 .08 .09
6 7 8 9	.60 .55 .50 .47	.80 .80 .80	1.7 1.7 1.7 1.7	2.1 2.0 1.9 1.9 2.1	2.4 2.2 2.9 4.0	2.2 2.2 2.6 2.5	2.5 2.4 2.1 2.2 2.2	6.0 12 16 21 13	3.2 2.8 2.5 6.5	.06 .05 .07	.05 .05 .05	.21 .94 560
					4.0	2.6			7.1	.05	.10	18
11 12 13 14 15	.42 .42 .45 .47	1.0 1.0 1.0 1.0	1.8 4.2 8.7 6.2 4.3	2.2 2.2 2.2 2.2 2.0	3.7 2.7 2.4 2.2 2.2	2.9 4.6 4.4 3.2 2.5	2.2 2.3 4.4 7.8 6.6	10 8.7 251 59 722	5.5 4.0 3.2 2.2 1.4	.04 .03 .06 .05	.33 .16 .13 .13	9.2 6.3 4.6 3.7
16 17 18 19 20	.50 .50 .50 .50	1.0 1.0 1.0 1.0	3.2 2.5 2.5 2.8 2.8	1.9 1.9 1.9 1.9 2.1	3.1 4.0 4.3 3.7 3.0	2.5 2.5 2.5 2.5 2.4	4.7 3.8 3.8 3.6 3.6	151 48 23 86 37	.91 .43 .40 .35	.11 .06 .06 .06	.12 .09 .14 .13	3.4 2.8 2.4 2.1 1.7
21 22 23 24 25	.50 .50 .50 .50	.80 .80 .80 .80	3.0 4.0 5.0 8.6 6.1	2.9 11 13 6.9 4.1	2.7 2.4 2.2 1.9	2.2 2.0 2.2 2.2 2.4	3.7 4.0 4.5 4.5 8.9	61 28 16 12 10	.28 .33 .52 .37	.06 .08 .10 .09	.09 .09 .11 .13	1.5 1.5 1.4 1.3 2.2
26 27 28 29 30 31	.60 .60 .60 .60	1.0 1.3 1.1 .98 .79	3.9 3.0 3.3 4.8 3.7 3.3	3.3 2.8 2.8 2.8 2.8 3.0	1.9 1.9 1.9	3.7 9.0 13 6.0 3.6 2.5	11 7.8 5.7 4.8 4.5	9.0 8.3 7.7 7.1 6.5 6.0	.21 .21 .22 .16	.08 .06 .23 .26 .23	.09 .09 .09 .09	5.4 6.9 10 7.8 8.2
TOTAL MEAN MAX MIN AC-FT	17.46 .56 1.0 .42 35	27.17 .91 1.3 .79 54	101.72 3.28 8.7 .81 202	98.3 3.17 13 1.9 195	79.0 2.72 4.3 1.9 157	100.4 3.24 13 1.7 199	127.8 4.26 11 2.1 253	1659.9 53.5 722 4.5 3290	66.06 2.20 7.1 .14 131	2.87 .093 .26 .03 5.7	3.37 .11 .33 .05 6.7	740.90 24.7 560 .06 1470

CAL YR 1979 TOTAL 4795.63 MEAN 13.1 MAX 2210 WTR YR 1980 TOTAL 3024.95 MEAN 8.26 MAX 722 MAX 2210 MIN .20 AC-FT 9510 MIN .03

NOTE. -- No gage-height record Oct. 1 to Nov. 26.

08151500 LLANO RIVER AT LLANO, TX

LOCATION.--Lat 30°45'04", long 98°40'10", Llano County, Hydrologic Unit 12090204, on right bank in Llano, 0.4 mi (0.6 km) downstream from bridge on State Highway 16, 7 mi (11 km) upstream from Little Llano River, and 24.2 mi (38.9 km) upstream from mouth.

DRAINAGE AREA. -- 4,233 mi2 (10,963 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- September 1939 to current year.

REVISED RECORDS. -- WSP 1342: Drainage area.

GAGE .- Water-stage recorder. Datum of gage is 970.01 ft (295.659 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Many small diversions above station. Part of low flow of Llano River disappears into various formations, many of which are faulted, between stations near Junction and Llano. National Weather Service gage-height telemeter and rain gage at station.

AVERAGE DISCHARGE .--41 years, 359 ft³/s (10.17 m³/s), 1.15 in/yr (29 mm/yr), 260,100 acre-ft/yr (321 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 232,000 ft 3 /s (6,570 m 3 /s) Sept. 10, 1952, gage height, 32.6 ft (9.94 m), from rating curve extended above 129,000 ft 3 /s (3,650 m 3 /s) on basis of slope-area measurement of peak flow; no flow at times in 1952-56, 1964.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1879, 41.5 ft (12.65 m) June 14, 1935, discharge, $380,000~{\rm ft}^3/{\rm s}$ (10,800 m $^3/{\rm s}$), from information by local resident.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 7,500 ft 3/s (212 m3/s) and maximum (*):

Date		Time	Disch	arge	Gage	height
			(ft 3/s)		(ft)	
Sept.	8	1745	*210,000	5,950	31.11	9.482
Sent.		0815	13 100	371	10.35	3.159

Minimum discharge, 5.6 ft 1/s (0.16 m 1/s) July 25.

		DISC	HARGE,	IN CUBIC		SECOND, AN VALUE	WATER YEAR S	OCTOBER	1979 TO	SEPTEMBER	1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	90 90 91 90 90	98 94 94 95 98	110 110 114 114 118	150 146 139 136 134	140 140 140 136 136	105 102 102 105 102	122 110 102 98 90	62 59 57 58 58	104 101 98 95	20 21 20 19 18	16 14 13 13	14 21 25 19 13
6 7 8 9	90 86 86 86 86	101 101 104 104 98	120 119 114 114 116	136 136 131 131 135	132 128 158 173 168	102 105 105 105 105	90 86 81 77 73	57 121 131 163 218	86 86 84 690 747	18 18 18 17	13 12 11 12 15	13 35 71200 19800 3020
11 12 13 14 15	86 86 86 86 89	98 98 99 101 101	118 154 170 155 150	141 140 142 136 138	159 153 142 140 135	105 140 110 114 105	77 77 94 90 86	128 96 284 1240 2320	343 181 141 112 98	14 11 11 9.0	23 20 19 27 36	1390 948 713 581 471
16 17 18 19 20	92 94 94 94 94	103 108 114 116 122	148 143 139 136 136	136 136 136 136 138	144 137 144 151 145	114 105 98 98 98	90 90 86 81 77	2220 765 516 606 510	92 81 73 69 69	9.8 8.3 7.3 9.0	45 50 45 36 33	404 353 296 257 222
21 22 23 24 25	93 98 90 99	131 122 118 114 114	136 137 168 173 166	142 207 258 271 222	150 136 122 122 114	94 94 94 90 94	73 69 68 66 76	971 641 399 279 220	63 68 113 92 71	8.7 9.4 14 11 9.5	24 26 22 23 21	186 150 129 112 122
26 27 28 29 30 31	94 94 94 95 152	110 110 111 113 110	169 158 171 162 155 154	196 170 159 155 150 143	114 114 114 114	94 131 184 179 159 140	62 61 60 59 59	179 150 130 118 114 111	69 58 51 39 30	9.7 11 16 15 13	15 14 13 18 19	164 200 384 358 5680
TOTAL MEAN MAX MIN CFSM IN. AC-FT	2909 93.8 152 86 .02 .03 5770	3200 107 131 94 .03 .03 6350	4347 140 173 110 .03 .04 8620	4826 156 271 131 .04 .04 9570	4001 138 173 114 .03 .04 7940	3478 112 184 90 .03 .03 6900	2430 81.0 122 59 .02 .02 4820	12981 419 2320 57 .10 .11 25750	4094 136 747 30 .03 .04 8120	416.7 13.4 21 7.3 .003 .00 827	677 21.8 50 11 .005 .01 1340	107280 3576 71200 13 .85 .94 212800

CAL YR 1979 TOTAL 105281.0 MEAN 288 MAX 7010 MIN 86 CFSM .07 IN .93 AC-FT 208800 WTR YR 1980 TOTAL 150639.7 MEAN 412 MAX 71200 MIN 7.3 CFSM .10 IN 1.32 AC-FT 298800

151

08151500 LLANO RIVER AT LLANO, TX --Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Chemical and biochemical analyse: April 1979 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: April 1979 to current year. WATER TEMPERATURES: April 1979 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 453 micromhos Sept. 21, 1980; minimum daily, 220 micromhos Sept. 8, 1980.

EXTREMES FOR CURRENT YEAR.-- SPECIFIC CONDUCTANCE: Maximum daily, 453 micromhos Sept. 21; minimum daily, 220 micromhos Sept. 8.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SPE	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
OCT 24 0805 99 350 7.7 15.0 4.4	10.2	103	.6	140	180
NOV 07 0900 101 360 8.1 13.0 1.4	10.3	99	.8	120	160
DEC					
12 0915 169 402 7.6 12.0 10 JAN	10.8	103	2.7	3800	>12000
08 1605 131 400 7.9 9.5 FEB	12.6	114	.8	K5	37
06 0830 140 401 7.4 9.0 1.7	12.2	108	.5	K5	45
MAR 04 1530 114 405 8.0 14.0 20	11.4	115	.5	25	180
APR 08 1045 55 405 8.1 20.5 1.9	10.7	122	.6	45	240
MAY 13 0925 105 398 7.8 25.5 5.5	8.4	106	1.3	190	1000
JUN 10 1445 649 234 7.6 26.0 20	7.8	99	1.2	340	170
JUL					
08 1150 23 366 7.9 31.0 6.5 AUG	8.5	116	1.0	80	400
12 1500 30 387 8.2 32.0 4.7 SEP	8.0	111	1.4	80	170
11 1045 1420 288 7.7 23.0 160	8.4	100	1.4	6000	820
HARD-	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT 24 160 23 32 20 13 .4	2.3	170	0	13	20
NOV	2.1	190	0	12	19
DEC					
12 170 23 37 19 14 .5	2.1	180	0	14	22
JAN					
08 180 21 38 20 14 .5 FEB	1.7	190	0	12	21
08 180 21 38 20 14 .5 FEB 06 180 32 39 20 14 .5	1.7	190 180	0	12 18	21 25
08 180 21 38 20 14 .5 FEB 06 180 32 39 20 14 .5 MAR 04 220 70 51 22 14 .4					
08 180 21 38 20 14 .5 FEB 06 180 32 39 20 14 .5 MAR 04 220 70 51 22 14 .4 APR 08 180 28 34 22 15 .5	1.8	180	0	18	25
08 180 21 38 20 14 .5 FEB 06 180 32 39 20 14 .5 MAR 04 220 70 51 22 14 .4 APR 08 180 28 34 22 15 .5 MAY 13 160 18 30 20 17 .6	1.8	180 180	0	18 19	25 25
08 180 21 38 20 14 .5 FEB 06 180 32 39 20 14 .5 MAR 04 220 70 51 22 14 .4 APR 08 180 28 34 22 15 .5 MAY	1.8 1.9 2.0	180 180 180	0 0 0	18 19 18	25 25 26
08 180 21 38 20 14 .5 FEB 06 180 32 39 20 14 .5 MAR 04 220 70 51 22 14 .4 APR 08 180 28 34 22 15 .5 MAY 132 160 18 30 20 17 .6 JUN 10 89 7 21 8.8 8.7 .4	1.8 1.9 2.0 2.2 2.7	180 180 180 170	0 0 0 0	18 19 18 13 8.4	25 25 26 25 12
08 180 21 38 20 14 .5 FEB 06 180 32 39 20 14 .5 MAR 04 220 70 51 22 14 .4 APR 08 180 28 34 22 15 .5 MAY 13 160 18 30 20 17 .6 JUN 10 89 7 21 8.8 8.7 .4 JUL 08 150 16 26 20 17 .6 AUG	1.8 1.9 2.0 2.2 2.7 2.6	180 180 180 170 100 160	0 0 0 0 0 0	18 19 18 13 8.4	25 25 26 25 12 30
08 180 21 38 20 14 .5 FEB 06 180 32 39 20 14 .5 MAR 04 220 70 51 22 14 .4 APR 08 180 28 34 22 15 .5 MAY 132 160 18 30 20 17 .6 JUN 10 89 7 21 8.8 8.7 .4 JUL 08 150 16 26 20 17 .6	1.8 1.9 2.0 2.2 2.7	180 180 180 170	0 0 0 0	18 19 18 13 8.4	25 25 26 25 12

08151500 LLANO RIVER AT LLANO, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

D <i>A</i>	ATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	
OC1	r 4	.3	14	205	199	.02	.02	.010	.020	.45	.35	
NOV		.2	10	213	201	.03	.04	.000	.040	.71	.35	
DEC		.2	7.9	208	205	.05	.05	.050	.050	.55	.55	
JAN	V											
FEI		.2	7.8	211	209	.06	.07	.000	.000	.82	.73	
MAE		. 1	7.8	218	215	.18	.18	.010	.030	.30	.32	
APE		.2	6.8	206	229	.06	.06	.110	.110	.47	.47	
08 MAY	B Y	.3	.2	210	207	.00	.01	.000	.010	.48	.86	
13 JUN	3	.3	14	210	206	.03	.02	.040	.070	.35	.28	
	0	.2	11	134	122	.19	.23	.110	.120	.69	.35	
	8	.5	22	222	208	.03	.02	.060	.060	3.4	.46	
	2	.3	20	201	20	.00	.06	.010	.000	.95	.69	
		.2	14	194	178	2,1	2,1	.020	.190	1.3	.80	
		NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L	PHOS- PHORUS, TOTAL (MG/L	PHOS- PHORUS, DIS- SOLVED (MG/L	CARBON, ORGANIC TOTAL (MG/L	CARBON, ORGANIC DIS- SOLVED (MG/L	CARBON, ORGANIC SUS- PENDED (MG/L	SEDI- MENT, SUS- PENDED	SEDI - MENT DIS - CHARGE, SUS - PENDED	SED. SUSP. SIEVE DIAM. % FINER THAN	
	ATE	AS N)	AS N)	AS P)	AS P)	AS C)	AS C)	AS C)	(MG/L)	(T/DAY)	.062 MM	
		.46	.37	.020	.010		1.6	.1	10	2.7	97	
NOV 07	7	.71	.39	.000	.000	5.8		1,441	40	11	70	
DEC 12	2	.60	.60	.040	.070	4.5	4-		24	11	94	
JAN		.82	.73	.390	.000	1.4			22	7.8	71	
FEB		.31	.35	.010	.040		5.5	.7	27	10	82	
MAR		.58	.58	.010	,000	1.4	4-		9	2.8	60	
APR	3											
MAY		.48	.87	.030	.030	2.0			209	31	7	
JUN		.39	.35	.030	.010	4.4			12	3.4	96	
JUL)	.80	.47	.060	.030		7.8	.7	48	84	75	
08 AUG	3	3.5	.52	.020	.020	7.6			18	1.1	98	
12 SEP	2	.96	,69	.040	.010	7-	8.3	.2	20	1.6	99	
		1.3	.99	.180	.260	13		24	284	1090	58	
DATE	TIM	ARSE TOT IE (UG AS	NIC PEN AL TOT /L (UG	S- ARSI DED DI AL SOI I/L (UC	IS- REC LVED ERA G/L (UC	TAL PEND COV- REC ABLE ERA G/L (UC	DED BARI COV- DIS BLE SOLV	S- REC /ED ERA	AL PEN OV- REC BLE ERA /L (UG	S- DED CADM OV- DI BLE SOL /L (UG	IUM TO' S- REI VED ER	RO- UM, TAL COV- ABLE G/L CR)
OCT						100						
24 NOV	080	5	2	0	2	200	100	60	1	0	<1	0
07 JAN	090	0		-2	12.5			220	-1			
08	160	5									751	
FEB 06	083	0	1	0	1	0	0	60	1	0	<1	0
APR 08	104	5	12		128			122				
JUN 10	144	5	1	0	1	0	0	40	2		<1	10
JUL 08	115	0				4-	-					
AUG 12	150	0	4	0	4	0	0	40	0	dia.	<1	0

COLORADO RIVER BASIN 153 08151500 LLANO RIVER AT LLANO, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

		CHRO- MIUM, SUS- PENDEI RECOV (UG/L		TOTA RECO ERAB	L PEND V- REC LE ERA	ED CO OV- D BLE SO	BALT, IS- LVED UG/L	COPPER TOTAL RECOV- ERABLI (UG/L	PEN REC E ERA	5-	COPPER, DIS- SOLVED (UG/L	IRON, TOTAL RECOV- ERABLE (UG/L	IRON, SUS- PENDED RECOV- ERABLE (UG/L	DIS	ED
	DATE	AS CR) AS CF	AS C	0) AS	CO) A:	S CO)	AS CU)	AS	CU)	AS CU)	AS FE)	AS FE)	AS F	E)
	OCT 24 NOV		0	0	0	0	<3	()	0	0	130	120	<	10
	07 JAN	-		-		77									
	08 FEB	-		.=	4-			-				24		-	
	06 APR	-	0	0	0	0	<3	()	0	0	120	110	<	10
	08 JUN	-		ē.					-						
	10 JUL	10)	0	0		<3		5	4	1	700	580	1:	20
	08 AUG	-		-			77	-				177		1.5	99
	12	1	0 1	0	0	881	<3	8	3	8	0	350	*-	<	10
	DATE	LEAD, TOTAL RECOV- ERABLI (UG/L AS PB	E ERABI (UG/L	D LEAD - DIS E SOLV	- REC ED ERA L (UG	E, NI AL S OV- PI BLE RI /L (I	ANGA- ESE, SUS- ENDED ECOV. JG/L S MN)	MANGA- NESE, DIS- SOLVEI (UG/L AS MN)	TOT REC ERA (UC	CURY	MERCURY SUS- PENDED RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE 'UG/L	NICKEI SUS- PENDI RECOV ERABI (UG/I	ED V- LE L
	OCT				1000	,	,	-		1107	110 1107				
	24 NOV	4	3	3	0	20	20	3	2	.3	.1	. 2	3		3
	07 JAN	-			-	250	44								
	O8 FEB	2.								.2					2
1	06 APR 08		5	5	0	20	20	<1			.0	.3	- 2		2
	JUN 10		4	2	2	40	30	6		1.1	1.0	.1	7		4
	JUL 08					40	30			1.1	1.0				
15	AUG 12		4	4	0	20	20	12		1.1	1.0	.1	5		2
	DA	I	OIS- SOLVED (UG/L	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, SUS- PENDED TOTAL (UG/L AS SE)	SELE- NIUM, DIS- SOLVEI (UG/L AS SE)	(UG	ER, AL F OV- F BLE E /L (LVER, SUS- PENDED EECOV- CRABLE UG/L S AG)	SILVI DIS SOLV (UG, AS A	ER, TO S- RE VED ER /L (U	NC, S TAL PI COV- RI ABLE EF G/L (U	COV- RABLE SO JG/L (INC, DIS- DLVED UG/L S ZN)	
	OCT 24		0	0	0	()	0	0		0	0	0	<3	
	NOV							0					**		
				124	122	2.	0	0			44				
	FEB 06		0	0	0	()	0	0		0	10	7	<3	
						4.4		0	8-		77	79			
	JUN 10 JUL		3	0	Ō	()	0	0		0	10	24	<3	
			1-9			193		0							
	12		3	0	0	.()	1	1		0	40	**	<3	
				DATE	LENGTH OF EXPO- SURE (DAYS)	PERI- PHYTON BIOMASS ASH WEIGHT G/SQ N	DR WEI	TON FASS FAL CH Y GF GHT FI	ILOR-A PERI- PHYTON IROMO- APHIC JUOROM IG/M2)	CHLOI PER PHY CHROI GRAPI FLUOI (MG/I	I- CHI FON PH MO- RA HIC PE ROM PH	MASS ORO- YLL TIO RI- YTON ITS)			
				DEC 12	35	12.7	13.	3	5.68	1.:	32 10	6			
				JAN 08	26	5.51	6.	06	3.21		250 17	1			
				FEB 06	29	2.20	2.	68	3.57		900 13	4			
				MAR 04	27	.790	1.	02	.550		170 41	8			

08151500 LLANO RIVER AT LLANO, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

FILLOFLAN	KION ANA	LIBES,	OCTOBER	(9/9 1	OSEFIEN	DEK 19	0.0	
DATE TIME	NOV	7,79 0900		4,80 1530		13,80 925		10,80 445
TOTAL CELLS/ML		160		240	- 1	100	-1	300
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		0.0 0.0 0.0 0.0 0.0		1.3 1.3 1.3 1.8 1.8		1.0 1.0 1.7 2.2 2.3		1.5 1.5 2.6 3.0 3.1
ODCANICM	CELLS		CELLS	PER-	GELLS	PER-	CELLS	PER-
ORGANISM	/ML	CENT	/ML	CENT	/ML	CENT	/ML	CENT
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE .CHLOROCOCCALESMICRACTINIACEAEGOLENKINIAMICRACTINIUMOOCYSTACEAECHLORELLA			22		==			1
DICTYOSPHAERIUM		-		-		-		-
OOCYSTIS	55	0	22	Ċ	39	4	.55	-
TETRAEDRON TREUBARIA		-		-	39	4		-
SCENEDESMACEAE								
SCENEDESMUS TETRASPORALES PALMELLACEAE	722				100	10	280#	21
SPHAEROCYSTIS VOLVOCALES	177	G.		151	7.7		13	1
CHLAMYDOMONADACEAE CARTERIA				-				_
CHLAMYDOMONAS	44	-	14	6	580#	54	300#	22
CHLOROGONIUM		-		-		-		-
ZYGNEMATALES DESMIDIACEAE EUASTRUM		-	44	92	4.5	15		
CHRYSOPHYTA BACILLARIOPHYCEAE .CENTRALES .COSCINODISCACEAECYCLOTELLAMELOSIRA .PENNALES .ACHANTHACEAECOCCONEIS .CYMBELLACEAE	==		14	6	13 52	1 5	26 170	2 13
CYMBELLA RHOPALODIA		-	14	6			13	1
FRAGILARIACEAE			1.4	0				
FRAGILARIA	77	-		-	140	13	52	4
SYNEDRA NAVICULACEAE		-		-	39	4		-
NAVICULA NITZSCHIACEAE	27	-		-	77	7	52	4
NITZSCHIA	160#	100	86#	35	13	1	170	13
SURIRELLACEAE SURIRELLA		-				1.2	13	1
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAECRYPTOMONADALESCRYPTOMONADACEAECRYPTOMONAS								
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAE								
ANACYSTIS HORMOGONALES	22	9		-	13	1	90	7
OSCILLATORIACEAE LYNGBYA		-	110#	47	1.4	-	153	1
OSCILLATORIA		-	0++	141		-	130	10
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAE .EUGLENALESEUGLENACEAE								
EUGLENA		2	124	-			13	1

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

PHYTOPLANKTON ANALYSES, DATE		8,80		12,80		11,80
TIME	1	150		500	1	045
TOTAL CELLS/ML	2	500	3	400		96
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		0.9 0.9 1.2 1.3		1.1 1.1 1.3 1.5		1.0 1.0 1.8 1.8 2.2
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) CHLOROOPHYCEAE CHLOROCOCCALES MICRACTINIACEAE GOLENKINIA MICRACTINIUM OOCYSTACEAE CHLORELLA DICTYOSPHAERIUM OOCYSTIS TETRAEDRON TREUBARIA SCENEDESMACEAE SCENEDESMUS TETRASPORALES PALMELLACEAE SPHAEROCYSTIS VOLVOCALES CHLAMYDOMONADACEAE CARTERIA CHLAMYDOMONAS CHLOROGONIUM ZYCNEMATALES DESMIDIACEAE LEUASTRUM CHRYSOPHYTA BACILLARIOPHYCEAE	39 52 26	2 2 1 6 6 1 1	/ML 39 26 65 230 * *	1 1 1 2 7 - 0 0 0	/ML	
CENTRALESCOSCINODISCACEAECYCLOTELLAMELOSIRA .PENNALES	24 67	Ş	52 26	2	27 <i>#</i>	29
ACHNANTHACEAE COCCONEIS CYMBELLACEAE		-		-		-
CYMBELLA RHOPALODIA	55	- 5	125	-	30	211
FRAGILARIACEAE FRAGILARIA SYNEDRA	52 13	2	250	7	- 5	3
NAVICULACEAE NAVICULA	-		ж	0	44	2
NITZSCHIACEAE NITZSCHIA	26	1	39	1	14	14
SURIRELLACEAE SURIRELLA	7-	-		0-0		-
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAE .CRYPTOMONADALESCRYPTOMONADACEAECRYPTOMONADACEAE	39	2	39	1	-	
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE .CHROCOCCALESCHROCOCCACEAEANACYSTIS .HORMOGONALESOSCILLATORIACEAELYNGBYA	120	5	39	t	75	
OSCILLATORIA	1900#	78	2600#	75	17.5	-
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAE .EUGLENALESEUGLENACEAEEUGLENA			- 22			4
EUGLENA						

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

08151500 LLANO RIVER AT LLANO, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	2909	368	202	1580	23	177	14	112	160
NOV.	1979	3200	386	209	1810	24	210	15	130	170
DEC.	1979	4347	401	215	2520	26	302	16	185	170
JAN.	1980	4826	402	215	2810	26	337	16	206	170
FEB.	1980	4001	404	216	2340	26	282	16	172	170
MAR.	1980	3478	395	213	2000	25	236	15	146	170
APR.	1980	2430	393	212	1390	25	164	15	101	170
MAY	1980	12981	296	168	5900	16	574	1.1	395	130
JUNE	1980	4094	314	177	1960	18	196	12	133	130
JULY	1980	416.7	360	198	223	22	24	14	16	150
AUG.	1980	677	360	198	363	22	40	14	26	150
SEPT	1980	107280	236	139	40400	12	3370	8.8	2540	100
TOTAL		150639.7	**	**	63200	**	5910	**	4170	**
WTD. AVO	3.	412	271	155	**	15	dede	10	**	110

	SPE	CIFIC CON	IDUCTANCE	(MICROMHO		25 DEG. C), ONCE-DAILY	WATER	YEAR OCTOBER	1979	TO SEPTEMBER	1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	366 367 366 368 370	349 352 363 371 375	412 404 402 401 398	398 400 402 403 405	415 413 412 408 407	390 394 396 405 400	392 395 397 400 401	383 385 383 388 390	376 375 377 378 380	359 361 363 362 361	353 355 358 359 358	360 351 346 350 353
6 7 8 9	369 371 373 372 372	378 360 382 384 385	410 408 410 413 412	401 404 401 403 402	408 409 406 405 407	396 393 392 393 393	396 391 396 398 397	392 364 361 379 380	382 381 383 273 250	362 363 363 361 364	357 360 364 363 360	357 344 220 228 244
11 12 13 14 15	370 371 372 372 374	386 388 390 388 389	415 397 388 397 399	399 401 404 399 395	411 409 411 405 406	395 390 391 388 392	395 389 392 391 393	375 379 371 305 221	330 336 330 320 316	363 365 364 361 362	362 364 367 359 363	300 339 375 407 425
16 17 18 19 20	375 375 376 377 376	390 388 391 390 390	398 403 406 409 407	396 397 398 399 396	400 401 407 403 399	390 395 400 410 400	394 396 393 390 392	240 315 330 346 336	312 305 300 296 300	363 365 364 366 363	359 360 361 364 362	438 445 446 450 452
21 22 23 24 25	378 369 367 370 373	392 391 395 396 397	408 406 390 385 392	402 397 393 399 400	396 397 395 394 396	397 399 398 400 398	393 396 398 394 389	258 322 345 346 361	309 315 331 349 354	358 361 363 352 353	363 359 360 362 364	453 452 451 446 448
26 27 28 29 30 31	371 372 373 372 325 340	398 399 398 397 400	388 400 396 397 399 400	402 405 416 415 414 413	394 393 391 392	397 396 398 389 386 388	386 385 387 389 388	368 373 371 375 377 376	356 358 359 358 357	354 355 350 351 357 355	363 360 359 351 354 359	440 438 430 433 260
MEAN	369	385	402	402	403	395	393	351	338	360	360	383

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 ONCE-DAILY

					0.	HOL DILLET						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	27.0	16.0	8.0			11.0		25.0	29.0			33.0
2	27.0	16.0	11.0	12.0			222					
3	26.0	16.0		11.0	9.0	10.0		25.0			32.0	32.0
4	24.0	17.0		10.0	12.0		20.0	24.0	29.0		32.0	31.0
5		17.0	9.0	10.0	13.0	15.0	19.0				33.0	
6		16.0	12.0	12.0	13.0	16.0	22.0				33.0	
7			11.0	11.0	12.0	17.0	24.0					29.0
8	25.0	16.0	12.0		10.0		22.0	25.0	29.0			
9	29.0		12.0	10.0	6.0	17.0	21.0	25.0	27.0			25.0
10	23.0	15.0		11.0		17.0		26.0	29.0		30.0	28.0
11	23.0	14.0			7.0	18.0	23.0	28.0	30.0		29.0	28.0
12		14.0	13.0	10.0	9.0	19.0	14.0	29.0	30.0	4-4	29.0	30.0
13	23.0	13.0	9.0	12.0	12.0	18.0	12.0	24.0	755			
14	24.0	13.0	9.0	14.0	15.0		15.0	23.0			29.0	30.0
15	24.0	13.0	11.0	16.0		17.0	19.0	22.0	31.0			29.0
16	25.0	14.0	9.0	16.0	10.0	19.0	21.0		31.0		30.0	28.0
17	25.0				8.0			24.0	32.0		29.0	29.0
18	25.0		13.0	15.0	10.0	15.0	23.0		32.0			29.0
19		19.0	14.0			16.0	24.0	26.0	32.0			28.0
20	25.0	20.0		15.0	17.0	18.0		28.0				28.0
21		17.0		13.0	17.0	18.0	23.0	25.0	31.0		***	
22	23.0	13.0	14.0	10.0	16.0		1	26.0				
23	20.0	11.0		9.0	16.0	18.0	24.0	24.0	32.0			29.0
24	19.0			10.0	17.0	18.0	24.0	30.0	33.0			30.0
25	19.0	12.0	13.0	11.0		16.0	25.0	32.0				29.0
26		13.0			15.0	16.0	20.0	31.0				26.0
27		15.0	14.0	10.0	18.0			30.0				26.0
28		13.0	14.0	7.0	18.0	18.0	24.0	28.0				25.0
29	23.0	9.0		6.0		19.0		29.0		32.0	30.0	25.0
30		7.0		7.0			24.0			32.0	32.0	27.0
31			14.0	7.0		18.0		29.0		32.0	33.0	
MEAN	24.0	14.5	11.5	11.0	12.5	16.5	21.0	26.5	30.5	32.0	31.0	28.5

08152000 SANDY CREEK NEAR KINGSLAND, TX

LOCATION.--Lat 30°33'30", long 98°28'19", Llano County, Hydrologic Unit 12090201, on left bank at downstream side of bridge on State Highway 71, 3.9 mi (6.3 km) upstream from Lake Lyndon B. Johnson, and 7.3 mi (11.7 km) south of kingsland.

DRAINAGE AREA . - - 327 mi 2 (847 km2).

PERIOD OF RECORD.--October 1966 to current year.
Water-quality records: Sediment records: January 1968 to September 1975.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 862.31 ft (262.832 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair. Some diversions above station for irrigation, amount unknown. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--14 years, 65.2 ft^3/s (1.846 m^3/s), 2.71 in/yr (69 mm/yr), 47,240 acre-ft/yr (58.2 hm^3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $27,000 \text{ ft}^3/\text{s}$ (765 m $^3/\text{s}$) Sept. 8, 1978, gage height, 17.20 ft (5.243 m), from floodmark; no flow at times most years

EXTREMES OUTSIDE PERIOD OF RECORD.--The flood of Sept. 11, 1952, which was the highest since at least 1881. reached a stage of 34.2 ft (10.42 m), discharge 163,000 ft³/s (4,620 m³/s), from slope-area measurement at gage site.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 2,500 ft3/s (70.8 m3/s) and maximum (*):

Date		Time	Disch	arge	Gage	height
			(ft^3/s)	(m^3/s)	(ft)	(m)
May	13	2030	3,150	89.2	8.59	2.618
May	15	1600	*4.670	132	9.54	2.908
Sept.	9	0200	3.720	105	8.96	2.731

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum discharge, no flow for many days.

					ME	EAN VALUES	3		,,, ,, ,,		700	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.3 2.2 1.9 1.7	5.5 5.1 5.9 5.5 5.0	5.7 5.7 5.7 6.1 6.5	18 16 15 14 13	21 20 20 19 20	9.3 9.1 9.6 10 9.3	16 16 18 13 12	6.1 5.4 4.9 5.3 4.9	13 12 11 9.8 8.5	.18 .04 .03 .04	.01 .00 .00 .00	.00 .36 .30 .02
6 7 8 9	1.0 .93 1.0 1.1 .89	4.9 4.7 4.7 4.6 4.3	6.5 6.5 7.0 7.0	12 12 12 11 11	20 21 25 28 25	10 11 11 11 11	11 11 8.8 7.8 7.3	4.9 19 70 50 25	7.3 6.9 5.9 15 25	.04 .04 .04 .04	.00 .00 .00 .00	2.3 10 20 1210 162
11 12 13 14 15	.91 1.2 1.3 1.4	4.3 4.0 4.2 4.3 4.7	8.3 15 19 18 15	9.8 10 9.8	23 21 20 18 18	11 13 10 9.2 9.3	7.8 14 23 22 17	17 17 985 519 1380	14 11 8.7 7.6 6.1	.00 .00 .00 .01	.00 .00 .00	49 29 19 13 9.8
16 17 18 19 20	2.4 2.1 2.2 1.8 1.6	5.0 5.4 7.9 7.9 7.4	12 10 9.3 9.3 9.3	10 10 10 10 10	26 24 24 22 20	10 9.5 8.0 8.4 9.0	13 10 8.4 8.0 7.8	849 252 129 155 130	4.9 3.7 3.7 3.1 2.5	.01 .01 .03 .15	.00 .07 .00 .64	7.6 6.1 4.6 3.6 2.6
21 22 23 24 25	1.3 1.4 1.7 1.3	9.8 8.8 7.4 6.5 7.9	10 13 19 20 17	13 59 93 43 33	18 16 14 14 13	8.2 8.3 8.5 8.1	7.6 7.4 7.1 7.0 62	634 244 84 50 49	2.0 1.8 1.6 1.4	.05 .33 .31 .22 .23	.61 .32 .17 .08	1.9 1.7 1.5 1.4 2.0
26 27 28 29 30 31	1.1 1.3 1.7 1.9 7.6 8.7	7.4 6.5 6.1 6.1 5.7	14 13 16 34 29 24	27 23 21 21 22 22	12 11 11 11	16 29 41 30 22 17	21 15 12 8.8 6.9	38 30 26 21 18 15	1.2 1.0 .82 .63 .46	.30 .36 .31 .09 .05	.02 .00 .00 .00	3.8 13 15 24 24
TOTAL MEAN MAX MIN CFSM IN. AC-FT	60.13 1.94 8.7 .89 .006 .01	177.5 5.92 9.8 4.0 .02 .02	397.4 12.8 34 5.7 .04 .05 788	613.6 19.8 93 9.8 .06 .07 1220	555 19.1 28 11 .06 .06	404.8 13.1 41 8.0 .04 .05 803	406.7 13.6 62 6.9 .04 .05 807	5837.5 188 1380 4.9 .58 .66 11580	191.81 6.39 25 .46 .02 .02 380	3.13 .10 .36 .00 .000	2.92 .094 .93 .00 .000 .00	1637.58 54.6 1210 .00 .17 .19 3250
CAL YR WTR YR	1979 TOTA 1980 TOTA				MAX 50 MAX 13	80 MIN 80 MIN		CFSM .36 CFSM .09	IN 4.93 IN 1.17	AC-FT AC-FT	85880 20410	

08152900 PEDERNALES RIVER NEAR FREDERICKSBURG, TX

LOCATION.--Lat 30°13'13", long 98°52'10", Gillespie County, Hydrologic Unit 12090206, on left bank at downstream side of bridge on U.S. Highway 87, 2.0 mi (3.2 km) upstream from Mueseback Creek, and 3.8 mi (6.1 km) south of Fredericksburg.

DRAINAGE AREA .-- 369 mi2 (956 km2).

PERIOD OF RECORD .-- July 1979 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 1,564.96 ft (477.000 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. No known regulation or diversions above station. Several observations of water temperature were obtained during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $3,600 \, {\rm ft}^3/{\rm s}$ (102 m³/s) May 15, 1980, at 1645 hours, gage height, 13.59 ft (4.142 m); minimum, 1.1 ft³/s (0.031 m³/s) at times each day Aug. 4-6, 1980, gage height, 4.08 ft (1.244 m).

EXTREMES OUTSIDE PERIOD OF RECORD.--The flood of Aug. 2, 1978, which is the highest since 1907, reached a stage of 41.6 ft (12.68 m), discharge not known. The highest known discharge was 64,000 ft³/s (1.810 m²/s) June 1, 1979, gage height, 34.4 ft (10.49 m), from floodmark, from rating curve extended above a discharge measurement of 42,300 ft³/s (1,200 m³/s) June 1, 1979.

EXTREMES FOR PERIOD JULY TO SEPTEMBER 1979.--Maximum discharge during period, 1,410 ft 3 /s (39.9 m 3 /s) Aug. 9 at 0745 hours, gage height, 9.11 ft (2.777 m), no peak above base of 1,500 ft 3 /s (42.5 m 3 /s); minimum, 17 ft 3 /s (0.48 m 3 /s) Sept. 30, gage height, 4.45 ft (1.356 m).

EXRTREMES FOR CURRENT YEAR.--Maximum discharge, 3.600 ft 3 /s (102 m 3 /s) May 15 at 1645 hours, gage height, 13.59 ft (4.142 m), no other peak above base of 1,500 ft 3 /s (42.5 m 3 /s); minimum, 1.1 ft 3 /s (0.031 m 3 /s) at times each day Aug. 4-6, gage height, 4.08 ft (1.244 m).

DISCHARGE, IN CUBIC FEET PER SECOND, JUNE TO SEPTEMBER 1979 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1									444	76	42	34
										70	50	34
2										71	50	33
1 2 3 4 5										60	50	33 31
1.									244	67	46	30 30
-										65	40	30
5										03	40	30
6										67 72	37	29 28
7									~~~	72	36	28
,										71	33	20
8										(1)	33	20
9										62	340	28
6 7 8 9										61	89	28 28 27
								* 1		60	200	25
11										63 56	296	25 24
12										56	258	24
13										52	92	23
14										50 48	69	23 22
15										1,0	59	21
13										40	33	2.
16										44	53 51	21
17										42	51	21 22
17										5/	48	22
18										54	40	22
19										108	45	26
18 19 20										90	43	26
0.1									4.5	66	42	25
21										00	42	25 23 22
22										56	42	23
23										47	130	22
24										45	73	21
21 22 23 24 25										42	49	20
26 27 28 29										38	44	20
27										197	42	20
28									91 87	90	38 37	19 19
20									87	53	37	1.9
29									07	22	2/	10
30									80	46	36	18
30 31										42	36	
TOTAL										2010	2346	736
MEAN										64.8	75.7	736 24.5
MEAN										107	2/0	24.5
MAX										197	340	34
MIN										38	33	18 1460
AC-FT										3990	4650	1460
11												2.4

WTR YR 1979 TOTAL - MEAN - MAX - MIN - AC-FT -

08152900 PEDERNALES RIVER NEAR FREDERICKSBURG, TX--Continued

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES NOV DEC JAN FEB MAR APR MAY JUN JUL

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	17 17 17 16 15	22 18 18 18 17	20 20 20 21 20	27 28 26 25 24	22 23 23 22 22	19 17 17 18 18	23 26 25 23 23	29 24 20 19 18	16 14 13 13	4.0 3.8 3.7 3.4 3.0	1.9 1.8 1.4 1.3	2.3 2.1 2.3 2.3 2.2
6 7 8 9	15 15 16 15 14	17 17 18 18	20 20 19 19 20	24 24 23 23 23	22 21 23 23 22	18 19 19 18 19	22 21 21 20 20	17 19 167 51 29	12 12 11 11 30	3.0 3.1 2.9 3.0 2.4	1.3 1.6 1.7 1.5	3.5 113 351 172 61
11 12 13 14 15	14 15 16 16	18 18 18 18	21 31 37 31 27	24 24 24 24 23	22 22 22 23 23	18 20 18 17	20 21 24 24 23	25 23 20 22 673	22 15 12 11 9.3	2.1 2.1 1.9 1.9	3.6 3.9 3.7 3.3 2.6	37 26 21 17 15
16 17 18 19 20	17 18 17 17	19 20 24 25 25	24 22 21 21 22	24 24 27 27 26	26 26 28 27 24	18 18 16 16	21 20 19 18 19	229 77 51 62 48	8.7 7.7 7.2 6.8 6.6	1.7 1.7 1.7 1.6 1.8	2.3 3.3 5.1 4.2 4.3	14 12 11 10
21 22 23 24 25	16 16 16 16	28 30 24 23 27	22 23 29 32 29	26 28 27 26 24	22 21 21 21 21 20	15 15 15 15 17	19 19 19 18 56	70 45 34 30 27	6.7 7.9 6.3 5.7 5.4	1.8 1.9 2.4 2.1 2.0	3.4 3.1 2.6 2.3 2.2	9.6 9.5 8.8 8.4 9.7
26 27 28 29 30 31	17 18 17 18 24 36	26 24 21 20 19	26 26 31 52 39 31	24 22 21 22 23 23	20 19 19 20	19 35 50 33 26 23	29 23 20 20 18	24 23 21 19 18 17	5.3 5.1 5.0 4.5 4.0	1.8 1.8 1.8 1.8	1.9 1.8 1.9 3.0 4.3 2.8	15 19 17 17 18
TOTAL MEAN MAX MIN AC-FT	531 17.1 36 14 1050	625 20.8 30 17 1240	796 25.7 52 19 1580	760 24.5 28 21 1510	650 22.4 28 19 1290	619 20.0 50 15 1230	674 22.5 56 18 1340	1951 62.9 673 17 3870	307.2 10.2 30 4.0 609	71.6 2.31 4.0 1.6 142	81.1 2.62 5.1 1.2 161	1016.7 33.9 351 2.1 2020
CAL YR	1979 TOTA	L -	MEAN	- 1	MAX -	MIN -	AC-F	Γ -				

CAL YR 1979 TOTAL - MEAN - MAX - MIN - AC-FT - WTR YR 1980 TOTAL 8082.6 MEAN 22.1 MAX 673 MIN 1.2 AC-FT 16030

161

08153500 PEDERNALES RIVER NEAR JOHNSON CITY, TX

LOCATION.--Lat 30°17'27", long 98°24'01", Blanco County, Hydrologic Unit 12090206, near center of span at downstream side of bridge on U.S. Highway 281, 0.2 mi (0.3 km) downstream from Towhead Creek, 1.1 mi (1.8 km) northeast of Johnston City, 3.4 mi (5.5 km) downstream from Buffalo Creek, and 48.2 mi (77.6 km) upstream from mouth.

DRAINAGE AREA .-- 947 mi2 (2,453 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1939 to current year.

REVISED RECORDS .-- WSP 1632: 1953(M) . 1957. 1958(M) .

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,096.70 ft (334.274 m) National Geodetic Vertical Datum of 1929. May 4 to Sept. 13, 1939, nonrecording gage, and Sept. 14, 1939, to Sept. 10, 1952, water-stage recorder at upstream side of bridge at same datum. Sept. 11, 1952, to June 29, 1953, nonrecording gage, and June 30, 1953, to Oct. 7, 1954, water-stage recorder at site 360 ft (110 m) downstream at same datum.

REMARKS.--Water-discharge records good. Some diversions above station for irrigation. During year, the city of Fredericksburg discharged about 979 acre-ft (1.21 hm³) of sewage effluent into the river. Records furnished by the city of Johnson City show that 170 acre-ft (210,000 m³) was diverted from pool at gage and 66.9 acre-ft (82,500 m³) of treated sewage effluent was returned to the river below gage. Flow is affected at times by discharge from the flood-detention pools of four floodwater-retarding structures with a combined detention capacity of 4,580 acre-ft (5.65 hm³). These structures control runoff from 15.6 mi² (40.4 km²) in the Williamson Creek drainage basin. Corps of Engineers gage-height telemeter and National Weather Service rain-gage telemeter at station.

AVERAGE DISCHARGE.--41 years (water years 1940-80), 178 ft³/s (5.041 m³/s), 128,960 acre-ft/yr (159 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 441,000 ft 3 /s (12,500 m 3 /s) Sept. 11, 1952, gage height, 42.5 ft (12.95 m), from floodmark, from rating curve extended above 116,000 ft 3 /s (3,290 m 3 /s) on basis of slopearea measurement of 441,000 ft 3 /s (12,500 m 3 /s); no flow at times in 1951-52, 1954, 1956-57, 1963-64, 1967-68, 1971

Maximum stage since at least 1859, 42.5 ft (12.95 m) Sept. 11, 1952.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 1869 reached a stage of 33 ft (10.1 m), from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,790 ft 3 /s (79.0 m 3 /s) May 16 at 0500 hours, gage height, 11.60 ft (3.536 m), no peak above base of 4,100 ft 3 /s (116 m 3 /s); minimum daily, 1.2 ft 3 /s (0.034 m 3 /s) Aug. 6.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1979	TO	SEPTEMBER	1980
					SCHAN MA	TILLE						

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APK	FuNY	JUN	JUL	AUG	SEP
1 2 3 4 5	49 47 45 41 40	48 57 52 50 48	48 48 51 50 51	75 71 63 63 57	52 57 57 57 57 54	51 51 47 44 44	80 74 67 63	101 88 72 61 56	56 53 51 47 45	13 13 11 8.5 7.2	2.5 1.9 1.5 1.3	2.4 2.4 2.3 2.2 2.3
6 7 8 9	40 41 42 42 40	46 45 47 46 44	48 50 51 50 50	59 54 56 57 57	54 61 75 69 71	48 50 50 51 51	63 60 57 54 51	51 61 90 433 141	44 42 40 40	6.4 6.0 5.8 5.6 4.9	1.2 1.4 1.4 1.3 2.5	3.5 55 358 681 270
11 12 13 14 15	40 41 43 43 45	47 45 45 45 45	53 61 73 81 74	53 51 54 53 55	67 64 64 64	51 45 43 47 48	52 64 72 80 73	91 77 90 111 104	40 42 42 35 31	4.4 3.7 3.1 2.9 2.4	8.3 13 11 6.1 4.1	117 75 54 46 40
16 17 18 19 20	45 45 45 45 45	45 47 57 75 70	61 54 57 57 56	54 55 56 57 60	69 77 84 74 73	51 45 45 45 45	63 58 52 51 51	950 259 147 136 130	29 27 26 24 23	2.2 2.0 1.8 1.5 1.6	4.3 8.7 16 8.4 7.2	36 33 31 30 28
21 22 23 24 25	42 42 40 41 43	84 66 65 61 57	57 64 69 68 73	72 64 64 63 60	62 64 61 59 57	45 45 45 45 50	51 49 48 52 65	464 273 143 114 99	23 23 27 24 21	1.5 1.7 4.9 5.6 4.2	6.2 5.3 4.9 4.8 4.7	27 27 26 27 27
26 27 28 29 30 31	44 45 45 45 47 48	57 60 53 52 51	66 64 71 89 108	56 51 57 57 56 54	57 53 51 50	51 223 241 133 102 87	91 80 63 56 51	87 79 72 69 64 62	20 18 17 15 14	3.0 2.4 2.8 3.2 3.4 3.0	4.0 3.5 2.6 6.3 19 4.3	35 56 61 146 75
TOTAL MEAN MAX MIN AC-FT	1346 43.4 49 40 2670	1610 53.7 84 44 3190	1942 62.6 108 48 3850	1814 58.5 75 51 3600	1821 62.8 84 50 3610	2019 65.1 241 43 4000	1871 62.4 91 48 3710	4775 154 950 51 9470	979 32.6 56 14 1940	142.7 4.60 13 1.5 283	169.0 5.45 19 1.2 335	2376.1 79.2 681 2.2 4710

CAL YR 1979 TOTAL 129707.0 MEAN 355 MAX 16700 MIN 40 AC-FT 257300 WTR YR 1980 TOTAL 20864.8 MEAN 57.0 MAX 950 MIN 1.2 AC-FT 41390

08153500 PEDERNALES RIVER NEAR JOHNSON CITY, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: April 1948 to September 1950, October 1971 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT									
24	0931	39	741	16.0	250	28	32	42	50
DEC 05	1140	49	727	12.0	280	50	38	45	50
JAN									
16 FEB	0915	53	709	15.0	290	56	42	44	43
27	1105	49	685	14.5	250	39	35	40	40
APR 09	1054	52	637	21.0	250	45	34	40	39
MAY						307			
21 JUL	0940	142	414	25.0	180	26	38	21	17
02	0915	9.8	753	28.5	250	41	31	43	57
AUG 06	0920	2.7	827	25.5	290	60	31	51	67
SEP									
24	0935	16	470	26.0	170	19	27	26	26
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
OCT									
24 DEC	1.4	3.5	250	12	44	82	.4	6.1	395
05	1.3	3.1	280	0	41	81	.4	2.9	399
JAN 16	1.1	3.1	280	0	40	72	.4	1.5	384
FEB 27	1.1	2.6	260	0	57	73	.3	.8	377
APR	1.1	2.0	200	U	37	/3		.0	
09 MAY	1.1	3.2	250	0	37	69	.3	3.2	349
21	.6	2.9	190	0	19	26	.5	1.1	229
JUL 02	1.6	4.3	260	0	38	91	.4	21	414
AUG				0					
O6 SEP	1.7	4.5	280	0	45	110	.5	28	475
24	.9	3.4	190	0	24	43	.3	12	255

08154500 LAKE TRAVIS NEAR AUSTIN, TX

LOCATION.--Lat 30°23'29", long 97°54'24", Travis County, Hydrologic Unit 12090205, in powerhouse at Mansfield Dam on Colorado River, 7.3 mi (11.7 km) downstream from Sandy Creek, 12 mi (19 km) northwest of Austin, and at mile 318.0 (511.7 km).

DRAINAGE AREA.--38,130 mi² (98,760 km²), approximately, of which 12,880 mi² (33,360 km²) probably is noncontributing.

PERIOD OF RECORD. -- September 1940 to current year. Prior to October 1948, published as Marshall Ford Keservoir near Austin.

REVISED RECORDS. -- WSP 1342: Drainage area.

GAGE.--Nonrecording gage. Datum of gage is 0.12 ft (0.037 m) National Geodetic Vertical Datum of 1929 (levels by Bureau of Reclamation). Prior to Dec. 26, 1940, staff gages on left bank near dam, datum is NGVD, unadjusted. Dec. 26, 1940, to February 1942, mercury manometer in powerhouse, datum is NGVD, unadjusted.

REMARKS.--The lake is formed by a 7.098-foot-long (2,163 m) concrete gravity, earth, and rockfill dam. Storage began Sept. 9, 1940, and dam was completed in early 1942. Capacity curve is based on October 1939 survey. Capacity between gage heights 681.0 and 714.0 ft (207.57 and 217.63 m) is 778,000 acre-ft (959 hm³) and is reserved for flood control. Water is used for power development and for irrigation below Columbus. For statement regarding regulation by Soil Conservation Service floodwater-retarding structures, see station 08153500. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	(feet)	(acre-feet)
Top of dam (roadway)	750.1	-
Design flood	748.9	3,223,000
Crest of spillway	714.0	1,950,000
Top of power storage	681.0	1,172,000
Lowest gated outlet (invert)	535.8	27,900

COOPERATION .-- Records of daily gage heights and capacity curve furnished by Lower Colorado River Authority.

EXTREMES (at 2400) FOR PERIOD OF RECORD.--Maximum contents, 1,770,000 acre-ft (2.18 km³) May 18, 1957, gage height, 707.4 ft (215.62 m); minimum, 332,600 acre-ft (410 hm³) Aug. 13, 14, 1951, gage height, 614.2 ft (187.21 m).

EXTREMES (at 2400) FOR CURRENT YEAR.--Maximum contents, 1,084,000 acre-ft (1.34 km²) May 25, 27; maximum gage height, 676.22 ft (206.112 m) May 25; minimum discharge, 801,600 acre-ft (988 hm²) Sept. 6, gage height, 658.42 ft (200.686 m).

Capacity table (gage height, in feet, and total contents, in acre-feet)

	705 500	670.0	976.900
658.0	795,500	6/0.0	
660.0	824,700	675.0	1,062,000
665.0	899.700	680.0	1,152,000

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1014000	1004000	1013000	1022000	1037000	1036000	1035000	1016000	1076000	1019000	928500	825800
2	1013000	1004000	1013000	1024000	1038000	1036000	1035000	1016000	1075000	1015000	925800	820600
3	1011000	1004000	1012000	1025000	1038000	1035000	1036000	1016000	1072000	1011000	921700	815100
4	1009000	1003000	1012000	1025000	1038000	1036000	1035000	1016000	1070000	1006000	917200	810300
5	1008000	1005000	1012000	1025000	1039000	1035000	1034000	1016000	1069000	1002000	915200	805700
6 7 8 9	1008000 1008000 1008000 1008000 1008000	1004000 1004000 1004000 1004000 1004000	1012000 1012000 1012000 1012000 1012000	1025000 1025000 1026000 1026000 1026000	1038000 1040000 1045000 1045000 1045000	1035000 1035000 1036000 1035000 1035000	1035000 1035000 1032000 1031000 1028000	1017000 1021000 1031000 1030000 1028000	1066000 1063000 1063000 1061000 1059000	996000 992000 987800 985000 982100	913700 911200 908900 910400 911800	801600 802300 877200 1004000 1016000
11	1008000	1003000	1012000	1026000	1045000	1035000	1028000	1027000	1058000	979300	908600	1013000
12	1006000	1003000	1013000	1025000	1045000	1036000	1032000	1028000	1056000	977200	904100	1012000
13	1006000	1003000	1013000	1025000	1045000	1036000	1032000	1034000	1056000	974600	899400	1014000
14	1006000	1003000	1013000	1025000	1045000	1035000	1029000	1039000	1054000	970500	896600	1011000
15	1006000	1003000	1013000	1027000	1045000	1035000	1028000	1055000	1054000	967000	893800	1009000
16	1005000	1003000	1013000	1027000	1047000	1035000	1024000	1068000	1049000	965100	889100	1007000
17	1006000	1003000	1012000	1029000	1047000	1034000	1020000	1071000	1049000	963300	885600	1003000
18	1006000	1003000	1012000	1029000	1047000	1034000	1018000	1073000	1048000	959700	884000	1003000
19	1006000	1003000	1013000	1029000	1047000	1033000	1019000	1076000	1044000	957200	880200	1003000
20	1006000	1003000	1012000	1029000	1047000	1032000	1019000	1079000	1043000	954400	876800	1002000
21	1006000	1008000	1014000	1030000	1048000	1031000	1020000	1079000	1039000	951900	874200	1001000
22	1006000	1007000	1014000	1034000	1047000	1030000	1021000	1082000	1036000	948200	872100	1002000
23	1005000	1009000	1014000	1033000	1048000	1029000	1018000	1083000	1035000	944800	870000	1001000
24	1004000	1014000	1014000	1033000	1049000	1028000	1019000	1083000	1033000	942800	864800	1000000
25	1004000	1015000	1015000	1033000	1045000	1027000	1021000	1084000	1030000	943000	860300	1000000
26 27 28 29 30 31	1003000 1003000 1003000 1003000 1004000 1004000	1017000 1014000 1014000 1013000 1013000	1014000 1017000 1019000 1022000 1021000 1023000	1034000 1035000 1035000 1036000 1036000 1037000	1038000 1035000 1036000 1036000	1028000 1036000 1036000 1037000 1036000 1036000	1020000 1018000 1017000 1015000 1015000	1083000 1084000 1083000 1082000 1079000 1078000	1031000 1028000 1025000 1023000 1019000	940900 938900 937700 935700 935400 932300	856700 852600 850100 844200 838700 831500	997100 1011000 1017000 1026000 1036000
MAX	1014000	1017000	1023000	1037000	1049000	1037000	1036000	1084000	1076000	1019000	928500	1036000
MIN	1003000	1003000	1012000	1022000	1035000	1027000	1015000	1016000	1019000	932300	831500	801600
(†)	671.68	672.22	672.80	673.60	673.55	673.52	672.35	675.89	672.55	667.12	660.45	673.54
(‡)	-13000	+9000	+10000	+14000	-1000	0	-21000	+63000	-59000	-86700	-100800	+204500

CAL YR 1979 MAX 1221000 MIN 873200 ‡ 157000 WTR YR 1980 MAX 1084000 MIN 801600 ‡ 19000

[†] Gage height, in feet, at end of month. 1 Change in contents, in acre-feet.

08154510 COLORADO RIVER BELOW MANSFIELD DAM, AUSTIN, TX

LOCATION.--Lat 30°23'30", long 97°54'28", Travis County, Hydrologic Unit 12090205, at the downstream side of Mansfield Dam, 12.9 mi (20.8 km) northwest of the State Capitol at Austin, and at mile 318.0 (511.7 km).

DRAINAGE AREA.--38,130 mi² (98,760 km²), approximately, of which 12,880 mi² (33,360 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1974 to current year.

GAGE. -- None. Daily discharge record is based on daily releases from Lake Travis.

REMARKS. -- Water-discharge records fair.

COOPERATION.--All records of releases were furnished by the Lower Colorado River Authority.

AVERAGE DISCHARGE.--6 years, 1,691 ft 3/s (47.89 m 3/s), 1,225,000 acre-ft/yr (1.51 km 3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, $25,300 \text{ ft}^3/\text{s}$ (716 m $^3/\text{s}$) Apr. 17-19, 1977; no flow at times.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 3,840 ft³/s (109 m³/s) Feb. 26; no flow at times.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 NEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	933 766 798 804	.00 249 .00 .00	.00 .00 381 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	472 323 224 217 315	1820 1800 1680 1680 1620	2190 2280 2400 2350 2430	2180 2900 2240 2500 2340	1600 1900 1880 2120 1830	2750 2300 2390 2380 2070
6 7 8 9	.00 .00 330 .00	252 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	263 263 999 910 1060	1900 1730 371 653 1050	2170 2440 2270 2280 2590	2640 2340 2270 2290 2120	1790 1940 1850 230 199	2270 1510 1140 1590 1710
11 12 13 14 15	.00 638 .00 .00	.00 .00 .00 71	34 126 .00 .00	.00 181 .00 .00	.00 .00 .00	.00 .00 .00 538 302	851 1200 .00 1450 1480	1050 1080 25 .00	2380 2280 2290 2270 2220	2540 1930 1860 2320 2120	1730 2120 2190 2180 2100	1530 1360 1330 1380 1420
16 17 18 19 20	.00 .00 263	.00 .00 .00	.00 166 .00 .00	.00 10 .00	.00 .00 .00	296 297 306 309 304	1640 1650 1570 1580 1700	.00 .00 .00 197 137	2600 2120 2080 2890 2830	1490 1650 2300 1760 2110	2270 2180 2160 2320 2320	1680 1660 1640 1910 1780
21 22 23 24 25	.00 .00 417 28 68	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	409 408 408 406 599	1780 1760 1800 1770 1800	1030 1700 1900 1910 1760	2260 2220 2250 2730 2570	1720 1750 1810 1660 1590	2330 2180 2570 2480 2590	1770 1890 1940 1800 1910
26 27 28 29 30 31	.00 .00 .00 329	395 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	3840 1440 .00 122	601 83 599 599 599 613	2110 1900 1890 2430 1720	2060 1790 2140 2520 2200 1970	2450 2390 2600 2190 2790	1580 1690 1590 1770 1550 1950	2490 2540 2420 3170 2500 3060	1200 1130 1020 1110 569
TOTAL MEAN MAX MIN AC-FT	5988.00 193 933 .00 11880	967.00 32.2 395 .00 1920	1169.00 37.7 417 .00 2320	436.00 14.1 226 .00 865	8092.00 279 3840 .00 16050	7676.00 248 613 .00 15230	1238 2430 .00	37773.00 1218 2520 .00 74920	71810 2394 2890 2080 142400	62560 2018 2900 1490 124100	65239 2104 3170 199 129400	50139 1671 2750 569 99450

CAL YR 1979 TOTAL 325301.00 MEAN 891 MAX 8590 NIN .00 AC-FT 645200 WTR YR 1980 TOTAL 348976.00 MEAN 953 MAX 3840 MIN .00 AC-FT 692200

COLORADO RIVER BASIN 165 08154510 COLORADO RIVER BELOW MANSFIELD DAM, AUSTIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: June to September 1980.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	CI CO DU AN (MI	CT- CE CRO-	PH UNITS)	TEMPI ATUI WATI (DEG	RE, ER S	YGEN, DIS- OLVED MG/L)	SOI (PE CE SAT	S- LVED	BIO UNI 5	GEN AND, CHEM NHIB DAY /L)	HARD NESS (MG/ AS CACO	L I	HARI NES: NONC. BONAT (MG.	S, AR- TE /L	CALCI DIS- SOLV (MG/ AS C	ED L	
JUN																		
10 JUL	1150		500	7.5	14	4.0	7.2		71		.6	1	90		37	41		
08	0910		447	7.4	13	5.0	5.8		57		.6	1	90		41	41		
12 SEP	1210		485	7.2	16	5.0	3.6		37			1	80		37	41		
12	1540		521	7.4	2	1.0	3.3		37		.2	1	90		31	40		
DATE JUN 10 JUL 08 AUG	SI DI SOI (MC AS	GNE- LUM, IS- LVED G/L MG)	SODIUM DIS- SOLVED (MG/L AS NA	SOR TI RAT	D- P- ON IO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR BONAT (MG/ AS HCO3	E L) 90 80	CAR- BONAT (MG, AS CO	0 0	SULFAT DIS- SOLVE (MG/I AS SO4	E ID	CHLO- RIDE, DIS- SOLVE (MG/I AS CI	ED L	FLUC RIDE DIS SOLV (MG/ AS F	ZED ZL Z		
12 SEP 12		20	25 25		.8	3.1		80 90		0	30 29		44			.3		
DATE	(MC	S- LVED G/L	SOLIDS SUM OF CONSTI TUENTS DIS- SOLVE (MG/L	NIT GE, NITR TOT D (MG	N, ATE 1 AL /L	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	GEN	, 03 L L	NITE GEN AMMON TOTA (MG) AS N	NIA AL /L	NITRO GEN, ORGANI TOTAI (MG/I AS N)	C OI	ITRO- EN, AM ONIA RGANI TOTAI (MG/I AS N)	1- + LC 1	PHOS PHORU TOTA (MG/ AS P	IS, L L		
JUN		2.10		2								2						
JUL		8.8	26		.06	.00		06		.00	.5		.5			10		
08 AUG		8.4	25	9	.12	.00		12		.04	.7	3	.7	77	.0	10		
12		8.6	26	1	.04	.00		04		.00	.2	6	. 2	26	.0	10		
SEP 12		8.9	26	9	.00	.00		00		.01	.4	8	.4	+9	.0	10		

08154700 BULL CREEK AT LOOP 360 NEAR AUSTIN, TX

LOCATION.--Lat 30°22'19", long 97°47'04", Travis County, Hydrologic Unit 12090205, on right bank at downstream side of bridge at Loop 360, 1.0 mi (1.6 km) upstream from West Fork Bull Creek and Farm Road 2222, and 7.1 mi (11.4 km) northwest of the State Capitol Building in Austin.

DRAINAGE AREA. -- 22.3 mi2 (57.8 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1976 to July 1978 (operated as a flood-hydrograph partial-record station only), July 1978 to current year.

CAGE.--Water-stage recorder, concrete control, and crest-stage gage. Datum of gage is 534.08 ft (162.788 m) National Geodetic Vertical Datum of 1929 (levels from city of Austin bench mark).

REMARKS.--Water-discharge records good. No known regulation or diversion above station. There are two recording rain gages in the basin above the station. This station is part of a hydrologic research project to study the rainfall-runoff relationship for the Austin urban-rural areas.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,420 ft 3 /s (40.2 m 3 /s) Apr. 18, 1976, gage height, 6.09 ft (1.856 m); minimum discharge not determined.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 200 ft 3/s (5.66 m3/s) and maximum (*):

Date	Time	Discharge		Gage height		Date		Time	Discharge		Gage height	
		(ft^3/s)	(m^3/s)	(ft)	(m)				(ft^3/s)	(m^3/s)	(ft)	(m)
Mar. 27	1530	465	13.2	4.76	1.451	May	13	2115	219	6.20	4.01	1.222
Apr. 25	0315	381	10.8	4.53	1.381	May	15	1915	302	8.55	4.29	1.308
May 8	0830	*500	14.2	4.85	1.478	Sept.	19	0445	203	5.75	3.95	1.204
May 12	1115	292	8.27	4.26	1.298							

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum discharge, 0.12 ft³/s (0.003 m³/s) July 31 to Aug. 6.

			onamon, in	. 00010 1201		EAN VALUES	IN IDAN O	OTOBBIA. 13	77 10 001	TENDER 19	00	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.21 .21 .21 .21 .25	.42 .38 .38 .41 .48	.62 .62 .62 .62	2.5 2.4 2.2 2.0 2.0	2.7 2.7 2.7 2.7 2.7	4.5 4.3 4.4 4.8 4.4	14 14 13 11 9.9	31 16 13 12 11	13 12 11 9.7 8.3	1.8 1.5 1.0 .91 .81	.12 .12 .12 .12 .12	.16 .16 .18 .21
6 7 8 9	.25 .25 .25 .25 .25	.72 .72 .72 .69	.72 .72 .72 .72 .72	2.0 2.0 1.8 1.8 2.0	2.7 4.7 8.5 10 6.3	4.3 4.4 4.6 4.4 4.4	9.5 8.7 7.3 6.7 6.4	10 22 135 48 36	8.1 7.7 7.4 7.2 7.5	.81 .81 .72 .63	.12 .21 .27 .25	1.6 9.6 3.2 2.0 1.3
11 12 13 14 15	.25 .25 .25 .25 .25	.71 .62 .62 .62	.72 4.2 2.0 1.3 1.3	2.1 1.8 1.8 1.8	5.3 4.7 4.5 4.4 4.4	3.8 4.3 3.9 3.4 3.4	6.4 14 22 15	30 60 89 95 97	7.0 6.6 5.8 5.4 5.2	.47 .42 .37 .33	.41 .34 .34 .33 .29	.88 .76 .62 .60
16 17 18 19 20	.29 .34 .34 .34	.62 .62 .78 .70	1.3 1.2 1.0 1.0	1.8 5.2 3.0 2.5 2.4	8.3 5.8 5.4 5.1 5.0	4.0 4.3 3.4 3.4 3.5	12 11 9.5 8.7 7.8	92 63 51 48 40	4.7 4.7 4.4 4.7 3.5	.25 .25 .24 .21	.29 .63 .76 .54	.52 .47 .43 25 3.3
21 22 23 24 25	.34 .34 .34 .34 .29	1.9 .86 .81 .77 .88	1.0 2.5 4.9 2.6 2.0	4.1 5.9 4.6 3.7 3.5	4.9 4.7 4.7 4.5 4.3	3.3 3.0 3.0 3.0 3.3	7.3 7.2 7.2 7.2 7.2 52	35 32 28 26 24	7.0 3.9 2.8 4.0 4.0	.21 .21 .21 .21 .21	.33 .32 .25 .24 .21	1.4 .97 .81 .79
26 27 28 29 30 31	.29 .29 .29 .29 2.0 .76	.75 .72 .69 .62 .62	1.8 1.6 7.4 6.2 3.9 2.9	3.4 3.0 3.0 3.0 3.0 2.9	4.1 4.1 4.1 4.8	3.4 130 44 25 19	16 12 11 10 12	23 20 18 17 16	2.1 2.5 1.7 2.0 2.0	.21 .21 .21 .16 .16	.21 .21 .16 .16 .16	11 6.5 8.0 4.5 7.1
TOTAL MEAN MAX MIN CFSM IN. AC-FT (††)	10.81 .35 2.0 .21 .02 .02 .21 .84	20.82 .69 1.9 .38 .03 .03 .41 .83	58.56 1.89 7.4 .62 .09 .10 116 3.30		138.8 4.79 10 2.7 .22 .23 275 2.10	333.9 10.8 130 3.0 .48 .56 662 4.03	361.8 12.1 52 6.4 .54 .60 718 4.77	1252 40.4 135 10 1.81 2.09 2480 6.25	175.9 5.86 13 1.7 .26 .29 349 .78	14.67 .47 1.8 .12 .02 .02 .02 .29	8.76 .28 .76 .12 .01 .01 .17 .88	93.76 3.13 25 .16 .14 .16 186 6.55

CAL YR 1979 TOTAL 2556.38 MEAN 7.00 MAX 59 MIN .21 CFSM .31 IN 4.26 AC-FT 5070 tt 29. WTR YR 1980 TOTAL 2554.78 MEAN 6.98 MAX 135 MIN .12 CFSM .31 IN 4.26 AC-FT 5070 tt 31.

tt Weighted-mean rainfall on watershed, in inches, based on two rain gages.

08154700 BULL CREEK AT LOOP 360 NEAR AUSTIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: April 1978 to current year. Radiochemical analyses: October 1979 to September 1980.

DATE	TIME	INS'	EAM- DW, IAN- EOUS	SPE CIF CON DUC ANC (MIC MHO	TIC I- ET- EE ERO-	FIE	PH ELD ITS)	AT W.A	IPER- TURE, ATER EG C)	(P IN CO	LOR LAT- UM BALT ITS)	B I	JR- ID- IY IU)	SC	GEN, DIS- DLVED MG/L)	SO (P C SA	GEN, IS- LVED ER- ENT TUR- ION)	BIO UNI 5	
OCT 29	1035		.29		699		8.0		21.5		5		.0		7.2		82		.7
JAN 14	1005		1.8		638		8.3		10.0		10		.0		10.4		94		.6
MAR 27 27	0935 1300 1400	114 15 27	7		224 475 434		7.9 8.1 8.1		14.5		40	740			9.9		103		2.9
27 APR 25	1510	154			366 509		8.3				5	370)						17
25 MAY	0335	21			303		8.0				20	380							22
08 08 08 09	0935 1005 1235 1535 1030	154 500 344 21 4	0		318 413 306 390 530		8.1 8.0 8.0 8.1 8.1		18.5		20 20 60 30 20	310 1100 610 260 2)		9.1		97		14 17 11 7.2 6.3
DATE		RM, TAL, MED. LS. ER	COLI FORM FECA 0.7 UM-M (COLS	Ĺ, F	STRE TOCOC FECA KF AG (COLS PER 100 M	CI L, AR	HAR NES (MG AS CAC	S /L	HAR NES NONC BONA (MC	S, AR- TE	DI SO (M	CIUM S- LVED G/L CA)	I SC	GNE- GIUM, DIS- DLVED MG/L G MG)		3-	SOD A SOR TI RAT	D- P- ON	
OCT		400		25		00													
29 JAN		480 850	12	35		00 26		260		74		69		22		27		.7	
14 MAR 27		000	140		820			99		18		31		5.2		5.6		.2	
27 27 27			140					190 170 170		59 39 27		52 50 47		14 12 12		22 19 13		.7	
APR 25 25								240 140		66		64 46		19 6.3		18		.5	
MAY 08 08 08 09	. 82 . 110 . 76 . 25	2000 0000 6000 6000 2000	180 150 170 120 17	00	170 130 210 150 93	00 00 00		150 180 150 190 260		33 33 26 30 41		44 54 45 58 77		9.1 11 8.8 12 17		8.7 16 8.0 10		.3	
DATE	SI DI SOI	TAS- LUM, IS- LVED G/L K)	BICAR BONAT (MG/ AS HCO3	E L	CAR- BONAT (MG/ AS CO	E L	SULF DIS SOL (MG AS S	- VED /L	DIS SOL (MC	VED	RI D SO (M	UO- DE, IS- LVED G/L F)	SC (N	LICA, SS- DLVED MG/L AS	TUE	OF STI-	SOLI RESI AT 1 DEG. SUS PEND (MG	DUE 05 C. ED	
ост 29		2		44				11				-				22		1	
JAN 14		1.6	2	30		0	7	1	5	1		.2		5.8		361		0	
27 27 27		2.4 2.6 2.6	1	98 60 60		0 0 0 0	2 5 4	5	2	9.0 13 17		.1 .1 .1		5.3 5.6 6.1		132 262 243 217	1	180	
27 APR 25 25		2.0	2	70 10 30		0	3 4 3	8	3	30		.1		6.3		291 181	1 2	380 920	
MAY 08 08 08 09		2.1 2.4 2.3 2.2 1.9	1 1 1 2	40 80 50 00 70		0 0 0 0	2 3 2 2	8 4	1 1 1	2 8 1 6 8		.2 .2 .2 .2 .2 .2		6.1 6.3 6.5 8.1 9.9		179 231 177 230 306	1 2 1	280 500 410 436 39	

JAN 14... APR 25...

COLORADO RIVER BASIN

08154700 BULL CREEK AT LOOP 360 NEAR AUSTIN, TX--Continued

OCT 29	 1 0 0 156 128 628 146 212 144 26 0 DATE DATE JAN 14 MAR 27 27 27 27 27 27 27	.00 .00 .70 .80 .50 .23 .16 .60 .63 .31 .55 .56 .67	.00 .00 .01 .04 .03 .01 .00 .01 .01 .01 .01 .01 .01 .01 .01	.00 .00 .71 .84 .53 .24 .16 .61 .64 .32 .56 .57 .68 BARIUM, DIS- SOLVED (UG/L AS BA)	.02 .00 .18 .19 .22 .11 .00 .48 .11 .10 .07 .03	.42 .14 3.3 4.7 8.6 9.9 2.3 13 8.6 8.3 3.3 1.3 .57 CHRO-MIUM, DIS- SOLVED (UG/L AS CR)	.44 .14 3.5 4.9 8.8 10 2.3 13 8.7 8.4 3.4 1.4 .60 COPPER, DIS- SOLVED (UG/L AS CU)	.010 .010 .500 .470 .550 .560 .280 1.700 .360 .580 .370 .160 .040	7.1 4.4 54 43 160 100 100 57 .0	
14 MAR 27 27 27 27 APR 25 MAY 08 08 08	 156 	.70 .80 .50 .23 .16 .60 .63 .31 .55 .56 .67	.01 .04 .03 .01 .00 .01 .01 .01 .01 .01 .01 .01 .01	.71 .84 .53 .24 .16 .61 .64 .32 .56 .57 .68 BARIUM, DIS- SOLVED (UG/L AS BA)	.18 .19 .22 .11 .00 .48 .11 .10 .11 .07 .03	3.3 4.7 8.6 9.9 2.3 13 8.6 8.3 3.3 1.3 .57 CHRO-MIUM, DIS-SOLVED (UG/L AS CR)	3.5 4.9 8.8 10 2.3 13 8.7 8.4 3.4 1.4 .60 COPPER, DIS- SOLVED (UG/L AS CU)	.500 .470 .550 .560 .280 1.700 .360 .370 .160 .040 IRON, DIS- SOLVED (UG/L AS FE)	54 43 160 100 100 57	
27 27 27 APR 25 MAY 08 08	 128 628 146 212 144 26 0 DATE JAN 14 MAR 27 27	.80 .50 .23 .16 .60 .63 .31 .55 .56 .67	.04 .03 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01	.84 .53 .24 .16 .61 .64 .32 .56 .57 .68 BARIUM, DIS- SOLVED (UG/L AS BA)	.19 .22 .11 .00 .48 .11 .10 .07 .03 .03 .03 .03 .03 .03 .03 .04 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	4.7 8.6 9.9 2.3 13 8.6 8.3 3.3 1.3 .57 CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	4.9 8.8 10 2.3 13 8.7 8.4 1.4 .60 COPPER, DIS- SOLVED (UG/L AS CU)	.470 .550 .560 .280 1.700 .360 .580 .370 .160 .040 IRON, DIS- SOLVED (UG/L AS FE)	43 160 100 100 57	
APR 25 25 MAY 08 08	628 146 212 144 26 0 DATE JAN 14 MAR 27 27	.60 .63 .31 .55 .56 .67 TIME	.01 .01 .01 .01 .01 .01 .01 .01 .01 .01	.61 .64 .32 .56 .57 .68 BARIUM, DIS- SOLVED (UG/L AS BA)	.48 .11 .10 .11 .07 .03 CADMIUM DIS- SOLVED (UG/L AS CD)	8.6 8.3 3.3 1.3 .57 CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	8.7 8.4 3.4 1.4 .60 COPPER, DIS- SOLVED (UG/L AS CU)	1.700 .360 .580 .370 .160 .040 IRON, DIS- SOLVED (UG/L AS FE)	160 100 100 57	
08 08 08	212 144 26 0 DATE JAN 14 MAR 27 27	.31 .55 .56 .67	ARSENIC DIS-SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	8.3 3.3 1.3 .57 CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	8.4 3.4 1.4 .60 COPPER, DIS- SOLVED (UG/L AS CU)	.580 .370 .160 .040 IRON, DIS- SOLVED (UG/L AS FE)	100 57	
	JAN 14 MAR 27 27	1005 0935 1300	DIS- SOLVED (UG/L AS AS)	DIS- SOLVED (UG/L AS BA)	DIS- SOLVED (UG/L AS CD)	MIUM, DIS- SOLVED (UG/L AS CR)	DIS- SOLVED (UG/L AS CU)	DIS- SOLVED (UG/L AS FE)		
	14 MAR 27 27	0935 1300	1			0	0	***		
	MAR 27 27	0935 1300	1			U		<10		
	27	1300			<1	10	3	160		
	41	1400 1510	1 1	40 40 40	<1 <1 <1	0	4 3 2	<10 40 50		
	APR 25 25	0305 0335	1 3	50 30	<1 <1	0	2 3	20 270		
	JAI 14 MAI 2	SO (UATE AS	AD, NH DIS- I DIVED SO IG/L (U PB) AS	DIS- IDLVED SC JG/L (US MN) AS	CCURY NI DIS- I DLVED SC JG/L (U S HG) AS	DIS-DIVED SO IG/L (U S SE) AS	IS- D LVED SO G/L (U AG) AS	NC, IS- LVED G/L ZN)		
	2	7 7 7	1 0 1	1 2	.2	0 0	0 0	<3 <3 <3		
	2	5	0	30	.1	0	0	5 9		
TIME	GROSS ALPHA, DIS- SOLVED (PCI/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (PCI/L AS U-NAT)	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)
1005		20.2	<7.4	<.4	<3.0	<.4	<2.8	<.4	.09	.90
0305	<5.0	<.3	11.4							

169

08154700 BULL CREEK AT LOOP 360 NEAR AUSTIN, TX--Continued

DATE	TIME	PCB TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)
JAN 14	1005	.00	.0	.00	.0	.00	.00	.00	.00
MAR		100	.0	.00	.0	.00	.00	.00	.28
27	0935	.00	.0	.00	.0	.00	.00	.00	.20
DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)
JAN 14 MAR	.00	.00	.00	.00	.00	.00	.00	.00	.00
27	.00	.00	.00	.00	.00	.00	.00	.02	.00
DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
JAN 14	.00	.00	.00	.00	0	.00	.01	.00	.00
MAR 27	.00	.90	.00	.00	0	.00	.22	.02	.00

08154900 LAKE AUSTIN AT AUSTIN, TX

LOCATION.--Lat 30°18'53", long 97°47'10", Travis County, Hydrologic Unit 12090205, at city of Austin Waterplant No. 2 and 1.5 mi (2.4 km) upstream from Tom Miller Dam on the Colorado River at Austin.

DRAINAGE AREA.--38,240 mi² (99,040 km4), of which 12,880 mi² (33,360 km²), revised, probably is noncontributing. PERIOD OF RECORD. -- Chemical analyses: October 1964 to September 1980 (discontinued).

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1964 to September 1980 (discontinued). WATER TEMPERATURES: October 1964 to September 1980 (discontinued).

REMARKS. -- No water-discharge records available.

EXTREMES FOR PERIOD OF DAILY RECORDS.-SPECIFIC CONDUCTANCE (1964-75): Maximum daily, 982 micromhos Aug. 15-17, 1974; minimum daily, 311 micromhos June 19, 1968.
WATER TEMPERATURES (1964-75): Maximum daily, 32.0°C Aug. 24, 1965; minimum daily, 9.0°C Jan. 30, 1966, Jan. 9, 11, 1968, and Jan. 5, 1969.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO
OCT									
19 DEC	1330	515	. 24.5	190	30	4.3	21	27	. 8
17	1622	514	11.0	210	41	46	22	27	.8
JAN									
18	1330	502	13.5	200	40	44	21	26	. 8
FEB 19	1545	532	13.5	220	46	51	22	26	.8
APR	1343	332	13.3	220	40	31		20	
15	1330	489	17.0	190	33	41	21	24	. 8
MAY	7.750		23.5	533	143		2.5	5.5	
14	1435	479	20.0	190	28	44	20	22	.7
JUL	1105	100	200	100	26	42	21	25	
22 AUG	1425	490	22.5	190	36	42	21	25	. 8
21	1546	492	23.5	200	36	44	22	27	.8
SEP	1340	472	23.3	200	30			21	.0
17	1630	503	25.5	200	40	42	22	25	. 8

	DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	
,	OCT	2.5	445			100		72.2	0.00	
	19 DEC	3.5	200	0	32	48	. 2	9.1	282	
	17	4.3	200	0	19	51	. 2	11	279	
	JAN	2.0	100	0		1.5	.2	0.0	207	
	18 FEB	3.2	190	0	44	45	. 2	9.8	287	
	19	3.0	210	0	37	46	. 2	8.9	298	
	APR 15	3.3	190	0	28	41	.3	7.8	260	
1	MAY 14	3.1	200	0	31	39	.5	8.1	266	
-	JUL	3.1	200		31	33		0.1	200	
	22	3.2	190	0	31	44	.3	8.3	268	
	AUG 21	3.2	200	0	29	51	.3	8.9	283	
9	SEP 17	3.2	190	0	30	50	.3	9.1	275	

	cup	CIPIC CON	DUCTANCE	/MICDOMUC	S/CM AT 2	S DEC CY	UATER V	EAR OCTOBER	1979 1	O SEPTEMBE	R 1980	
	SPE	CIFIC CON	IDUCTANCE	(MICKOMHC	ON ON	ICE-DAILY	, WAIER I					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG 487	SEP 489
1 2	497	517 515 494	468 469 514	504 508 511	491 493 508	527 528 526	481 480	486 484	471	482 488	446	484
3 4 5	484 513	486 483	495	510	452 499	526 525	479 489	489 477		479	489 472	490 498
6	510	501	522	505	495	524	499			485	488	489
7 8	515 511	515	515 518	510 503	506 511	523	490 493	487 488	492 495	475	472	489 493
10	517 516	517 518	498 515	507 509	500 506	517 523	483	479	494		478	489
11 12	507 516	519	222	507 503	495 497	516	479	483	487 490	460	479 490	
13		511 519	516 515	505 507	513 512	524 518	480 475	477	491 490	493 458		492
15	521	521	514	505	502	525	487	472	491			494
16 17	516 516 519	520 517	509 515	505 507 502	520 522 528	519 512	482 487	486 486	494	489 490	476	
18 19 20	515 512	523 521	518	501 503	529	519 516	486 484	497	492 491	456 487	466 473	507 514
21	516	514	520	500	1656	511	488		488	487	484	517
22 23	511 517	512 515	516 509	500 501	514 536	509 508	485 491	502 489	481 489 487	487	484	512
24 25	514 517	520		500 502	547	507	486	490	492	490		
26 27	516 515	518 520		502 501	493 509	503	485	496	486	485 482	492 491	529
28 29	517 517	522 515	510	503 503	546 496	496 497	485	491	489	492	488 488	525 522
30 31	523 515		510 503	489 491		486	222	492	484	490 490	487	
MEAN	513	513	508	503	508	515	485	487	489	482	481	502
					01	NCE-DAILY		ER 1979 TO S			AUC	SED
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	23.5	NOV 20.5 20.0	DEC 13.5 13.5	JAN 12.0 11.0	FEB 10.5	NCE-DAILY					23.0	23.5
1		NOV 20.5	DEC 13.5	JAN 12.0	FEB 10.5	MAR 14.5 12.0	APR	MAY 19.0	JUN 21.0	JUL 21.5	23.0 23.0	23.5
1 2 3 4 5	23.5 23.0 23.5 	NOV 20.5 20.0 20.0 19.5 20.0	DEC 13.5 13.5 13.5 14.0	JAN 12.0 11.0 13.0 11.5	10.5 12.0 12.0 11.5 10.5	MAR 14.5 12.0 12.0 13.0 13.5	APR 17.0 16.5 18.0 18.0	MAY 19.0 19.0 19.0 19.0	JUN 21.0	JUL 21.5 21.5 21.5 21.5	23.0 23.0 24.0 24.0	23.5 23.5 23.5 23.5
1 2 3 4 5	23.5 23.0 23.5 19.5 19.0 23.0	NOV 20.5 20.0 20.0 19.5 20.0	DEC 13.5 13.5 13.5 14.0 14.0 13.5 13.5	JAN 12.0 11.0 13.0 11.5 11.5 11.5	FEB 10.5 12.0 11.5 10.5 10.5 11.5 13.5	MAR 14.5 12.0 13.0 13.5 14.5	APR 17.0 16.5 18.0 18.0	MAY 19.0 19.0 19.0 18.5	JUN 21.0	JUL 21.5 21.5 21.5	23.0 23.0 24.0 24.0	23.5 23.5 23.5 24.0 23.0 23.0
1 2 3 4 5	23.5 23.0 23.5 	NOV 20.5 20.0 20.0 19.5 20.0 18.5	DEC 13.5 13.5 13.5 14.0 14.0 13.5	JAN 12.0 11.0 13.0 11.5 11.5 12.0 12.0 14.5	10.5 12.0 12.0 11.5 10.5 10.5 11.5 11.5 10.0	MAR 14.5 12.0 12.0 13.0 13.5 14.5 14.5 15.5	APR 17.0 16.5 18.0 17.0 16.5 17.0 16.5	MAY 19.0 19.0 19.0 18.5 18.0 19.0	JUN 21.0 22.0 21.0 20.5	JUL 21.5 21.5 21.5 21.0 21.5	23.0 23.0 24.0 24.0 24.0 22.0 22.0	23.5 23.5 23.5 24.0 23.0 23.0 23.0
1 2 3 4 5 6 7 8 9 10	23.5 23.0 23.5 19.5 19.0 23.0 21.5 21.0	NOV 20.5 20.0 20.0 19.5 20.0 18.5 20.0 18.5	DEC 13.5 13.5 13.5 14.0 14.0 13.5 13.5 13.5 14.0	JAN 12.0 11.0 13.0 13.5 11.5 12.0 12.0 14.5 21.0 11.5	10.5 12.0 12.0 11.5 10.5 10.5 10.5 10.5 10.0 10.0	MAR 14.5 12.0 12.0 13.0 13.5 14.5 14.5 15.5	APR 17.0 16.5 18.0 18.0 17.0 16.5 17.0 16.5	MAY 19.0 19.0 19.0 18.5 18.0 19.0 19.0	JUN 21.0 21.0 22.0 21.0 20.5 20.0 19.0	JUL 21.5 21.5 21.0 21.5 21.5 21.5 21.5	23.0 23.0 24.0 24.0 24.0 22.0 22.0 22.0 23.0	23.5 23.5 23.5 23.5 24.0 23.0 23.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14	23.5 23.0 23.5 19.5 19.0 23.0 21.5 21.0	NOV 20.5 20.0 20.0 19.5 20.0 18.5 20.0 18.5 18.5 18.5	DEC 13.5 13.5 13.5 14.0 14.0 13.5 13.5 13.5 13.5 13.5 13.5 13.0 12.0	JAN 12.0 11.0 13.0 11.5 11.5 12.0 12.0 14.5 21.0 11.5 11.5 21.0	10.5 12.0 12.0 11.5 10.5 10.5 11.5 10.0 10.0 10.0 10	MAR 14.5 12.0 13.0 13.5 14.5 14.5 15.5 15.5 16.0	APR 17.0 16.5 18.0 18.0 17.0 16.5 17.0 16.5 17.0 17.0 17.0	MAY 19.0 19.0 19.0 18.5 18.0 18.0	JUN 21.0 22.0 21.0 20.5 20.0 19.5 20.0	JUL 21.5 21.5 21.0 21.5	23.0 23.0 24.0 24.0 22.0 22.0 22.0	23.5 23.5 23.5 23.0 23.0 23.0 23.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	23.5 23.0 23.5 19.5 19.0 23.0 21.5 21.0 22.0 22.0 23.0	NOV 20.5 20.0 20.0 19.5 20.0 18.5 20.0 18.5 18.5 17.0	DEC 13.5 13.5 13.5 14.0 14.0 13.5 13.5 13.5 13.0 12.0 13.0	JAN 12.0 11.0 13.0 13.5 11.5 11.5 12.0 12.0 14.5 21.0 11.5 11.5	10.5 12.0 12.0 11.5 10.5 10.5 10.5 10.0 10.0	MAR 14.5 12.0 12.0 13.0 13.5 14.5 14.5 15.5 15.5	APR 17.0 16.5 18.0 18.0 17.0 16.5 17.0 16.5 17.0 17.0 17.0 17.0	MAY 19.0 19.0 19.0 18.5 18.0 19.0 19.5 20.0	JUN 21.0 21.0 22.0 20.5 20.0 19.0 20.0 20.5	JUL 21.5 21.5 21.0 21.5 21.5 21.0 21.5 21.5 22.0 21.5	23.0 23.0 24.0 24.0 24.0 22.0 22.0 22.0 23.0	23.5 23.5 23.5 23.0 23.0 23.0 23.0 23.0 23.0 23.0
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18	23.5 23.5 23.5 23.5 23.5 23.0 23.0 21.5 21.0 22.0 22.0 23.0 23.0 23.0 23.0 23.0	NOV 20.5 20.0 20.0 19.5 20.0 18.5 20.0 18.5 18.5 17.0 18.0	DEC 13.5 13.5 13.5 14.0 14.0 13.5 13.5 13.0 13.0 13.0 13.5	JAN 12.0 11.0 13.0 13.5 11.5 12.0 12.0 12.0 12.5 11.5 11.5 11.5 11.5 12.0 12.0 13.5 14.0 13.5	10.5 12.0 12.0 11.5 10.5 10.5 11.5 10.0 10.0 10.0 10	MAR 14.5 12.0 13.0 13.5 14.5 14.5 15.5 15.5 16.0 16.0 16.5 15.5	APR 17.0 16.5 18.0 18.0 17.0 16.5 17.0 16.0 17.0 17.0 17.0 17.0 17.0	MAY 19.0 19.0 19.0 18.5 18.0 18.0 19.0 19.5 20.0 19.5 19.5 19.5	JUN	JUL 21.5 21.5 21.0 21.5 22.0 21.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5	23.0 23.0 24.0 24.0 22.0 22.0 22.0 23.0 	23.5 23.5 23.5 23.0 23.0 23.0 23.0 23.0 23.0 23.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	23.5 23.0 23.5 23.0 23.5 19.5 19.0 23.0 21.5 21.0 22.0 22.0 23.0 23.0 21.5	NOV 20.5 20.0 20.0 19.5 20.0 18.5 20.0 18.5 18.5 18.5 18.5 18.6	DEC 13.5 13.5 13.5 14.0 14.0 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	JAN 12.0 11.0 13.0 11.5 11.5 12.0 12.0 14.5 21.0 11.5 21.0 13.5	10.5 12.0 11.5 10.5 10.5 10.5 11.5 13.5 10.0 10.0 10.0 11.5 12.0	MAR 14.5 12.0 13.0 13.5 14.5 14.5 15.5 16.0 16.0 16.5	APR 17.0	MAY 19.0 19.0 19.0 19.0 18.5 18.0 18.0 19.0 19.5 20.0 19.5 19.5	JUN 21.0 21.0 22.0 21.0 20.5 20.0 20.0 20.5 20.0 20.5 20.5	JUL 21.5 21.5 21.0 21.5 21.5 22.0 21.5 21.5 22.0 21.5 21.5 22.0 21.5 21.5	23.0 23.0 24.0 24.0 24.0 22.0 22.0 22.0 23.0	23.5 23.5 23.5 24.0 23.0 23.0 23.0 23.0 23.0 25.5
1 2 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 15 16 17 18 19 20 21	23.5 23.0 23.5 19.5 19.0 23.0 21.5 21.0 22.0 22.0 23.0 23.0 23.0 23.0 23.0 23	NOV 20.5 20.0 20.0 19.5 20.0 18.5 20.0 18.5 18.5 18.5 17.0 18.0 18.5 18.5 18.5	DEC 13.5 13.5 13.5 14.0 14.0 13.5 13.5 13.5 13.5 13.5 13.5 13.0 12.0 13.0 13.0 13.0	JAN 12.0 11.0 13.0 11.5 11.5 12.0 12.0 14.5 21.0 11.5 21.0 13.5 14.0 13.5 13.0 13.5	10.5 12.0 11.5 10.5 10.5 10.5 10.0 10.0 10.0 10	MAR 14.5 12.0 13.0 13.5 13.5 14.5 15.5 15.5 16.0 16.0 17.0	APR 17.0 16.5 18.0 18.0 17.0 16.5 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	MAY 19.0 19.0 19.0 18.5 18.0 19.0 19.0 19.5 20.0 19.5 19.5 19.5 19.5	JUN 21.0 21.0 22.0 20.5 20.0 19.0 20.0 20.5 20.0 20.5 21.0 21.0 21.0 21.0 21.5 21.0 22.0 22.0	JUL 21.5 21.5 21.0 21.5 21.5 22.0 21.5 22.0 22.0 22.0 22.0	23.0 23.0 24.0 24.0 22.0 22.0 22.0 23.0 22.0 23.0 23.5 24.5 23.5	23.5 23.5 23.5 23.0 23.0 23.0 23.0 23.0 25.5 25.5 25.5 25.5
1 2 3 4 4 5 5 6 6 7 7 8 9 10 11 12 13 14 15 15 16 17 18 19 20 21 22 23 24	23.5 23.5 23.5 23.5 23.0 23.0 21.5 21.0 22.0 22.0 23.0 23.0 23.0 23.0 24.0 21.5	NOV 20.5 20.0 20.0 19.5 20.0 18.5 20.0 18.5 18.5 17.0 18.0 18.5 18.5 16.5 16.5	DEC 13.5 13.5 13.5 14.0 14.0 13.5 13.5 13.5 13.0 12.0 13.0 13.0 13.0 13.0 13.0 12.0	JAN 12.0 11.0 13.0 11.5 11.5 12.0 12.0 14.5 21.0 13.5 14.0 13.5 14.0 13.5 13.0 13.5 13.5 13.0 13.5	10.5 12.0 12.0 11.5 10.5 10.5 11.5 13.5 10.0 10.0 10.0 10.0 11.5 12.0 13.0 10.5 13.0 13.0 13.0	MAR 14.5 12.0 13.0 13.5 14.5 14.5 15.5 16.0 16.0 17.0 16.0 17.0	APR 17.0 16.5 18.0 18.0 17.0 16.5 17.0 16.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	MAY 19.0 19.0 19.0 18.5 18.0 18.0 19.0 19.5 20.0 20.0 23.0	JUN 21.0 21.0 21.0 21.0 20.5 20.0 19.0 20.0 20.5 21.5 21.5 21.5 21.5 22.0 22.0 21.5 22.0 22.0	JUL 21.5 21.5 21.0 21.5 21.5 22.0 21.5 22.0 22.0 22.0 22.0 22.0 22.0	23.0 24.0 24.0 24.0 22.0 22.0 22.0 22.0 23.0 22.0 23.0 23.5 24.5 23.5	23.5 23.5 23.5 23.0 23.0 23.0 23.0 23.0 23.0 25.5 25.5 25.5 24.0 25.5
1 2 3 4 4 5 5 6 7 8 8 9 10 0 11 12 13 14 15 16 17 18 19 20 21 22 23 224 25	23.5 23.0 23.5 19.5 19.0 21.5 21.0 22.0 22.0 23.0 23.0 23.0 24.0 24.0 24.0 21.5 21.0	NOV 20.5 20.0 20.0 19.5 20.0 18.5 20.0 18.5 18.5 17.0 18.0 18.5 18.5 16.5 16.5	13.5 13.5 13.5 14.0 13.5 13.5 13.5 13.5 13.0 12.0 13.0 13.0 13.5 11.5 12.0	JAN 12.0 11.0 13.0 11.5 12.0 12.0 14.5 21.0 11.5 21.0 13.5 13.5 13.0 13.5 13.5 13.5 13.5 13.5 13.5	10.5 12.0 11.5 10.5 10.5 10.5 10.5 10.0 10.0 10	MAR 14.5 12.0 13.0 13.5 14.5 14.5 15.5 16.0 16.0 17.0 16.0 17.0	APR 17.0 -16.5 18.0 18.0 17.0 16.5 17.0 -16.5 17.0 17.0 17.0 17.0 17.0 17.0 18.0 -16.5 16.5 16.5	MAY 19.0 19.0 19.0 18.5 18.0 18.0 19.5 20.0 20.0 23.0	JUN 21.0 21.0 21.0 21.0 21.0 20.5 20.0 19.0 20.0 20.5 21.5 21.5 21.5 21.5 22.0 22.0 22.0 22.0 22.0	JUL 21.5 21.5 21.0 21.5 21.5 22.0 21.5 22.0 22.0 22.0 22.0 22.0 21.5	23.0 23.0 24.0 24.0 22.0 22.0 22.0 23.0 23.0 23.5 24.5 23.5	23.5 23.5 23.5 23.0 23.0 23.0 23.0 23.0 23.0 23.0 25.5 25.5 25.5 25.5
1 2 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 3 24 25 5 26 27	23.5 23.0 23.5 19.5 19.0 23.0 21.5 21.0 22.0 22.0 23.0 23.0 23.0 23.0 23.0 24.0 24.0 21.5 21.0	NOV 20.5 20.0 20.0 19.5 20.0 18.5 20.0 18.5 18.5 18.5 18.5 18.5 18.5 16.5 16.5 16.5 16.5	DEC 13.5 13.5 13.5 14.0 14.0 13.5 13.5 13.5 13.0 12.0 13.0 13.0 13.0 13.0 13.0 12.0	JAN 12.0 11.0 13.0 11.5 11.5 12.0 12.0 14.5 21.0 13.5 14.0 13.5 14.0 13.5 13.0 13.5 13.5 13.0 13.5	10.5 12.0 12.0 11.5 10.5 10.5 11.5 13.5 10.0 10.0 10.0 10.0 11.5 12.0 13.0 10.5 13.0 13.0 13.0	MAR 14.5 12.0 13.0 13.5 14.5 14.5 15.5 16.0 16.0 17.0 16.0 17.0 16.5 16.5 16.0	APR 17.0 16.5 18.0 18.0 17.0 16.5 17.0 16.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	MAY 19.0 19.0 19.0 18.5 18.0 18.0 19.0 20.0 23.0 21.5	JUN 21.0 22.0 21.0 21.0 20.5 20.0 19.0 19.0 20.0 20.0 20.5 21.0 21.0 21.5 21.0 22.0 22.0 22.0 22.0 22.0 22.0	JUL 21.5 21.5 21.0 21.5 21.5 22.0 21.5 22.0 22.0 21.5 22.0 22.0 21.5 22.0 23.0 23.0	23.0 24.0 24.0 24.0 22.0 22.0 22.0 23.0 22.0 23.5 24.5 23.5 24.5 23.5 23.5 23.5 23.0 23.0 23.0	23.5 23.5 23.5 23.0 23.0 23.0 23.0 23.0 25.5 25.5 25.5 25.5 24.0 25.5 25.5 24.0 25.5
1 2 3 4 4 5 6 6 7 8 8 9 9 10 11 12 13 13 14 15 16 17 17 18 19 20 21 22 23 22 4 25 26	23.5 23.5 23.5 23.5 23.0 23.0 21.5 21.0 22.0 22.0 23.0 21.5 23.0 23.0 21.5 23.0 21.5 23.0 21.5 23.0 21.5 23.0 21.5 23.0 21.5 23.0 21.5 21.0 22.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.5 21.0 21.5 21.5 21.5 21.5 21.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	NOV 20.5 20.0 20.0 19.5 20.0 18.5 20.0 18.5 18.5 17.0 18.0 18.5 16.5 16.5 16.5 16.5 16.5	DEC 13.5 13.5 13.5 14.0 14.0 13.5 13.5 13.5 13.0 12.0 13.0 13.0 12.0 13.0 12.0 13.0 12.0 13.0 12.0 13.0 13.0	JAN 12.0 11.0 13.0 13.5 11.5 12.0 12.0 14.5 21.0 13.5 14.0 13.5 13.0 13.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5 13.0 13.0 13.5	10.5 12.0 11.5 10.5 10.5 10.5 10.5 11.5 13.5 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	MAR 14.5 12.0 13.0 13.5 14.5 14.5 15.5 16.0 16.0 17.0 16.0 17.0 16.5 16.5 16.0 17.0	APR 17.0 -16.5 18.0 18.0 17.0 16.5 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	MAY 19.0 19.0 19.0 18.5 18.0 18.0 18.0 19.5 20.0 20.0 23.0 21.5 20.5 21.0	JUN 21.0 21.0 21.0 21.0 21.0 20.5 20.0 19.0 20.0 20.5 21.5 21.5 21.5 21.5 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22	JUL 21.5 21.5 21.0 21.5 21.5 22.0 21.5 22.0 22.0 22.0 21.5 22.0 22.0 21.5 22.0 22.0 21.5 22.0 22.0 21.5 22.0 22.0 21.5 21.5 22.0 22.0 21.5 22.0 22.0 21.5 21.0 22.0 22.0 21.5 21.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0	23.0 23.0 24.0 24.0 22.0 22.0 22.0 23.0 23.5 24.5 23.5 24.5 23.0 23.0 23.0 23.0 23.0 23.0	23.5 23.5 23.5 23.0 23.0 23.0 23.0 23.0 25.5 25.5 25.5 24.0 25.5 25.5 24.0 25.5
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 4 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	23.5 23.5 23.0 23.5 19.0 23.0 21.5 21.0 22.0 22.0 23.0 21.5 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	NOV 20.5 20.0 20.0 19.5 20.0 18.5 20.0 18.5 18.5 18.5 18.5 18.5 18.5 18.6 18.6 18.6 18.6 18.6 18.7 18.0 18.0 18.0 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5	DEC 13.5 13.5 13.5 14.0 14.0 13.5 13.5 14.0 13.0 12.0 13.0 13.0 12.0 13.0 12.0 13.0 12.0	JAN 12.0 11.0 13.0 13.5 11.5 12.0 12.0 14.5 21.0 13.5 14.0 13.5 13.0 13.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5	10.5 12.0 11.5 10.5 10.5 10.5 10.0 10.0 10.0 10	MAR 14.5 12.0 13.0 13.5 13.5 14.5 14.5 15.5 16.0 16.0 17.0 16.0 17.0 16.0 17.0	APR 17.0 16.5 18.0 18.0 17.0 16.5 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	MAY 19.0 19.0 19.0 18.5 18.0 18.0 19.0 19.5 20.0 23.0 23.0 21.5 20.5 21.0	JUN 21.0 21.0 21.0 21.0 21.0 21.0 20.5 20.5 20.0 20.5 20.0 20.5 21.5 21.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 22.0 22.0	JUL 21.5	23.0 23.0 24.0 24.0 22.0 22.0 23.0 23.0 23.5 24.5 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	23.5 23.5 23.5 23.0 23.0 23.0 23.0 23.0 23.0 25.5 25.5 25.5 25.5 24.0 25.5 25.5 25.5 24.0 25.5

LAKE AUSTIN AT AUSTIN, TX

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: October 1978 to current year.

301739097471601 LAKE AUSTIN SITE AR
WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAR							
05	1030	1.0	527	8.1	12.5	10.3	97
05	1032	10	527	8.1	12.5	10.3	97
05	1034	18	527	8.1	12.5	10.3	97
MAY							
20	1107	1.0	481	7.9	23.5	9.0	107
20	1109	10	481	7.9		8.9	103
20	1111	20	478	7.7	18.5	6.2	67
20	1113	30	478	7.7	18.0	5.9	63
20	1115	40	478	7.7	18.0	6.0	64
20	1117	50	478	7.7	17.5	5.6	59
20	1119	54	478	7.6	17.5	5.1	54
JUL							
30	1115	1.0	489	7.9	25.0	7.7	94
30	1118	10	489	7.8	21.5	6.9	78
30	1121	20	489	7.8	21.5	6.7	76
30	1123	32	489	7.8	21.0	6.3	71

301739097471201 LAKE AUSTIN SITE AC
WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

			SPE-							OXYGEN,
DATE	TIME	SAMP- LING DEPTH (FT)	CIFIC CON- DUCT- ANCE (MICKO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	COLOR (PLAT- INUM COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	DIS- SOLVED (PER- CENT SATUR- ATION)
MAR			507	0.1	10.5	1 00	-	2.3	10.3	97
05.		1.0	527 527	8.1	12.5	1.80	5	2.3	10.3	97
05.		20	527	8.1	12.5				10.3	97
05	. 1001	30	527	8.1	12.5			. 77	10.3	97
05.	. 1003	34	527	8.1	12.5		1	2.5	10.3	97
20.	. 1045	1.0	481	7.9	23.5	1.92	5	5.5	9.0	107
20.		10	481	7.9	22.5				9.1	106
20.		20	478	7.7	18.5		- 33		6.2	67 64
20.		30 35	478 478	7.6	18.0		.0	5.6	6.0	64
JUL						0.10	0	1.3	0.0	98
30.		1.0	489 489	8.0 7.8	25.5	2.19		1.3	8.0	78
30.		20	489	7.8	21.0				6.7	75
30.		30	489	7.7	21.0				6.5	73
30.		40	489	7.7	20.5				6.1	68
30.	. 1040	54	489	7.6	20.5		10	4.7	5.4	60
DATI	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SUDIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO
MAR										
05.		800	12	17	210	42	48	23	27	. 8
05.			-:		12	- 11		22		7.
05.			55			32				
05.		17		51	210	40	47	23	28	.8
MAY										
20.		18	6	1	200	32	49	20	21	.6
20.										
20.		12			- 22			- 55		
20.		10	22		190	38	43	21	23	. 7
JUL.					. , ,					
					400	26	40	20	24	. 8
30.		200	47	K4	180				4.7	
30. 30.		- 12								
30. 30. 30.	: ::					==		==	===	
30. 30.	: :	- 12								

COLORADO RIVER BASIN 173

LAKE AUSTIN AT AUSTIN, TX--Continued

301739097471201 LAKE AUSTIN SITE AC--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS S102)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)
MAR									6.0	
05	3.4	210	0	35	44	. 2	7.9	292	0	0
05				1.55						
05						- 22			22	- 25
05	3.4	210	0	36	44	.2	7.9	293	0	0
MAY	3.4	210	U	50	44		1.5	233	Ü	· ·
20	2.9	210	0	29	32	.2	8.4	266	18	18
20			- 25			(4-				
20										
20					24					
20	3.2	190	0	28	37	.2	8.9	258	28	13
JUL				0.0	7.0		0.0	262	1	2
30	3.4	190	0	29	43	.4	8.2	262		
30	- 11									22
30		122	31	- 22	21					
30								2.2		
30	3.0	190	0	29	43	. 2	9.1	263	6	3
DATE	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAR	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
MAR 05	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
MAR 05 05	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
MAR 05 05	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
MAR 05 05 05	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
MAR 05 05 05	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
MAR 05 05 05 05 MAY	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
MAR 05 05 05	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N) .000 .000	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N) -42 	PHORUS, TOTAL (MG/L AS P) .010 .010	OIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
MAR 05 05 05 05 MAY 20	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N) .05 .05	GEN, AMMONIA TOTAL (MG/L AS N) .010 .010	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N) -42 	PHORUS, TOTAL (MG/L AS P) .010 .010 .010	OIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
MAR 05 05 05 05 MAY 20 20	GEN, NITRATE TOTAL (MG/L AS N) .05 .05 .06	GEN. NITRITE TOTAL (MG/L AS N) .000 .000 .010	GEN, NO2+NO3 TOTAL (MG/L AS N) .05 .05 .06	GEN, ANMONIA TOTAL (MG/L AS N) .010 .010 .010	GEN, ORGANIC TOTAL (MG/L AS N) .36 .41 .34	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .37 .42 .35 .47 .38	GEN, TOTAL (MG/L AS N) .42 .47 .41 .63	PHORUS, TOTAL (MG/L AS P) .010 .010 .010	OIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
MAR 05 05 05 05 MAY 20 20 20 20	GEN, NITRATE TOTAL (MG/L AS N) .05 .05 .06	GEN, NITRITE TOTAL (MG/L AS N) .000 .000	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N) .010 .010 .010 .010	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .37 .42 .35 .47 .38	GEN, TOTAL (MG/L AS N) -42 	PHORUS, TOTAL (MG/L AS P) .010 .010 .010	OIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
MAR 05 05 05 05 MAY 20 20	GEN, NITRATE TOTAL (MG/L AS N) .05 .05 .06	GEN. NITRITE TOTAL (MG/L AS N) .000 .000 .010	GEN, NO2+NO3 TOTAL (MG/L AS N) .05 .05 .06	GEN, ANMONIA TOTAL (MG/L AS N) .010 .010 .010	GEN, ORGANIC TOTAL (MG/L AS N) .36 .41 .34	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .37 .42 .35 .47 .38	GEN, TOTAL (MG/L AS N) .42 .47 .41 .63	PHORUS, TOTAL (MG/L AS P) .010 .010 .010	OIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
MAR 05 05 05 05 05 20 20 20 20 JUL	GEN, NITRATE TOTAL (MG/L AS N) .05 .05 .06 .15 .11	GEN. NITRITE TOTAL (MG/L AS N) .000 .000 .010 .010	GEN, NO2+NO3 TOTAL (MG/L AS N) .05 .05 .06 .16 .12 .12	GEN, AMMONIA TOTAL (MG/L AS N) .010 .010 .010 .010 .040	GEN, ORGANIC TOTAL (MG/L AS N) .36 .41 .34 .46 .34 .46	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .37 .42 .35 .47 .35	GEN, TOTAL (MG/L AS N) .42 .47 .41 .63 .50 .1.2	PHORUS, TOTAL (MG/L AS P) .010 .010 .010 .010 .010	DIS- SOLVED (UG/L AS FE) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	NESE, DIS- SOLVED (UG/L AS MN)
MAR 05 05 05 05 05 20 20 20 20 30 30	GEN, NITRATE TOTAL (MG/L AS N) .05 .05 .06 .15 .11 .13	GEN. NITRITE TOTAL (MG/L AS N) .000 .000 .000 .010 .010	GEN, NO2+NO3 TOTAL (MG/L AS N) .05 .05 .06 .16 .12 .14	GEN. AMMONIA TOTAL (MG/L AS N) .010 .010 .010 .010 .010 .040	GEN, ORGANIC TOTAL (MG/L AS N) .36 .41 .34 .46 .34 .1.0	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .37 .42 .35 .47 .38 .1.1	GEN, TOTAL (MG/L AS N) .42 .47 .41 .63 .50 1.2	PHORUS, TOTAL (MG/L AS P) .010 .010 .010 .010 .010 .010 .010 .0	DIS- SOLVED (UG/L AS FE) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	NESE, DIS- SOLVED (UG/L AS MN)
MAR 05 05 05 05 05 20 20 20 20 30 30	GEN. NITRATE TOTAL (MG/L AS N) .05 .05 .06 .15 .11 .13	GEN. NITRITE TOTAL (MG/L AS N) .000 .000 .010 .010 .010 .010 .010	GEN, NO2+NO3 TOTAL (MG/L AS N) .05 .05 .06 .16 .12 .12 .14	GEN, AMMONIA TOTAL (MG/L AS N) .010 .010 .010 .010 .040 .040 .000	GEN. ORGANIC TOTAL (MG/L AS N) .36 .41 .34 .46 .34 .1.0	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .37 .42 .35 .47 .38 .11	GEN, TOTAL (MG/L AS N) -42 -47 -41 -63 -50 -1.2	PHORUS, TOTAL (MG/L AS P) .010 .010 .010 .010 .010 .010 .010 .0	DIS- SOLVED (UG/L AS FE) <10	NESE, DIS- SOLVED (UG/L AS MN)
MAR 05 05 05 05 05 20 20 20 20 30 30	GEN, NITRATE TOTAL (MG/L AS N) .05 .05 .06 .15 .11 .13	GEN. NITRITE TOTAL (MG/L AS N) .000 .000 .000 .010 .010	GEN, NO2+NO3 TOTAL (MG/L AS N) .05 .05 .06 .16 .12 .14	GEN. AMMONIA TOTAL (MG/L AS N) .010 .010 .010 .010 .010 .040	GEN, ORGANIC TOTAL (MG/L AS N) .36 .41 .34 .46 .34 .1.0	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .37 .42 .35 .47 .38 .1.1	GEN, TOTAL (MG/L AS N) .42 .47 .41 .63 .50 1.2	PHORUS, TOTAL (MG/L AS P) .010 .010 .010 .010 .010 .010 .010 .0	DIS- SOLVED (UG/L AS FE) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	NESE, DIS- SOLVED (UG/L AS MN)

301739097470901 LAKE AUSTIN SITE AL
WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

			SPE-				OXYGEN,	
DATE	TIME	SAMP- LING DEPTH (FT)	CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	DIS- SOLVED (PEK- CENT SATUR- ATION)	
MAR								
05	1045	1.0	527	8.1	12.5	10.3	97	
05	1047	10	527	8.1	12.5	10.3	97	
05	1049	18	527	8.1	12.5	10.3	97	
MAY								
20	1034	1.0	481	7.8	23.5	9.1	108	
20	1036	10	481	7.8	22.5	9.1	106	
20	1038	16	478	7.6	21.5	7.4	84	
JUL	100							
30	1127	1.0	489	8.0	25.5	8.1	99	
30	1130	10	489	7.8	21.5	6.5	74	
30	1133	16	489	7.7	21.5	6.2	70	

LAKE AUSTIN AT AUSTIN, TX--Continued

302043097472401 LAKE AUSTIN SITE BC WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)
MAR 05 05 05 MAY	1100 1102 1104 1106	1.0 10 20 28	505 505 505 505	8.1 8.1 8.1	13.0 12.5 12.5 12.5	2.70	10.0 10.0 10.0 9.8	96 94 94 92	.04
20 20 20 20 JUL	1138 1140 1142 1144	1.0 10 20 28	481 481 481 481	7.9 7.8 7.7 7.5	24.0 22.0 19.0 18.0	1.95	8.5 8.2 6.4 4.9	101 94 70 52	.15
30 30 30	1146 1148 1150 1152	1.0 10 20 29	489 489 489 489	8.0 8.0 7.9 7.8	27.5 23.5 21.0 21.0	1.98	7.7 7.7 6.8 6.4	98 91 76 73	.01
DATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAR 05 05 05	.000	.04	.000	.62	.62	.66	.000	0	10 10
MAY 20 20 20	.010	.16	.010	.47	.48 .40	.64	.010	10	0
JUL -30 30 30	.010	.02	.000	1.1	1.1	1.1	.010	20	10

302044097472301 LAKE AUSTIN SITE BL
WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PEK- CENT SATUR- ATION)
MAR							
05	1115	1.0	505	8.1	13.0	10.0	96
05	1117	12	505	8.1	12.5	10.0	94
MAY							
20	1152	1.0	481	7.9	24.0	8.6	102
20	1154	1.1	481	7.8	22.0	8.2	94
JUL							
30	1201	1.0	489	8.0	28.0	7.5	96
30	1205	7.0	489	7.9	27.5	7.4	94

301926097502201 LAKE AUSTIN SITE CC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	WATER	TRANS- PAR- ENCY (SECCHI DISK) (M)	INUM	TUR- BID- ITY (NTU)		OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAR 05 05 05	1130 1132 1134 1136	1.0 10 20 27	486 486 486 486	8.1 8.1 8.1 8.1	13.0 13.0 12.5 12.0		2 2		10.4 10.4 10.4 9.9	100 98
20 20 20	1213	1.0 10 20 28	474 482 482 482	7.9 7.8 7.6 7.6	24.5 21.0 18.0 18.0	2.19	0 5	1.6	8.4 7.9 5.7	89
30 30 30 30	1235 1239 1243 1247	1.0 10 20 28	489 489 489 489	8.0 7.9 7.9 7.9	23.5 20.5 20.5 20.5	3.5	0 0	1.1	7.7 6.9 6.8 6.8	76
DATE	5 DAY	TOTAL, IMMED. (COLS.	(COLS./	PER	(MG/L AS	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	SOLVED	SOLVED	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO
MAR 05	.4	150	4	9	200	40	42	22	27	.8
05 05		==	==	35	190	33	41	21	26	.8
MAY 20	.6	9	4	1	200	26	48	19	20	.6
20				- 15		11		20	21	
20 JUL 30	.5	100	27	 K6	190	29	45 41	20	24	.8
30			1			- 22				
30	.7				180	29	41	20	24	.8
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	BONATE	SULFATE DIS- SOLVED (MG/L AS SO4)		RIDE, DIS-		SUM OF CONSTI- TUENTS, DIS-	AT 105 DEG. C, SUS- PENDED	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)
MAR 05	3.3	190	0	30	43	.2	8.3	269	0	0
05										
05 MAY 20	3.3 2.8	190 210	0	31 27	43 31	.2	8.2	264 260	17	14
20								11	7.5	
20 JUL	3.0	>200	0	27	34	.2	9.7	258	8	0
30 30	3.1	190	0	29	44	.2	8.6	264	0	
30	3.3	190	0	29	46	.2	8.7	266	4	2
DATE	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	GEN,	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAR 05	.02	.000	.02	.000	1.9	1.9	1.9	.000	<10	2
05	.04	.000	.04	.010	1.3	1.3	1.3	.000	0	10
05 MAY	.02	.000	.02	.010	.29	.30	.32	.000	<10 <10	3 <3
20 20 20	.13	.010	.14	.010	.52	.45	.63	.030	20	0
20 JUL	.05	.010	.06	.060	1.3	1.4	1.5	.010	<10	5
30 30 30	.06 .07 	.010	.07 .08 	.010	.58 .99 	1.0 .65	.66 1.1 	.010 .030 	<10 0 <10	7 20 10

LAKE AUSTIN AT AUSTIN, TX--Continued

302021097540001 LAKE AUSTIN SITE DC

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCH1 DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)
MAR 05 05	1215 1217 1219	1.0 10 15	486 486 486	8.1 8.1 8.1	13.0 12.5 12.5	3.0	10.1 10.1 10.1	96 95 97	.02
20 20 20	1247 1249 1251	1.0 10 14	479 479 479	7.8 7.8 7.6	24.0 22.0 21.0	1.80	8.1 8.0 6.3	96 92 71	.12
30 30 30	1335 1340 1345	1.0 10 16	489 489 489	7.9 7.8 7.8	19.0 18.5 18.5	3.5	6.0 5.7 5.5	65 62 60	.10
DATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAR 05 05	.000	.02	.000	.37	.37	.39	.000	0 - 0	20 20
MAY 20 20	.010	.13	.000	.40	.40 .44	.53	.010	20 20	10 70
30 30 30	.010	.11	.010	.52	.53	.64	.010	10 10	10 10

302314097544901 LAKE AUSTIN SITE EC

			SPE-							OXYGEN,
DATE	TIME	SAMP- LING DEPTH (FT)	CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	COLOR (PLAT- INUM COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	DIS- SOLVED (PER- CENT SATUR- ATION)
MAR										
05 05 MAY	1240 1242	1.0 7.0	475 475	8.1	13.5	1.50	5	3.1	10.8	104 104
20	1338	1.0	487	8.0	16.5	2.38	5	2.8	7.4	76
20 JUL	1340	8.0	487	8.2	15.0		0	4.0	8.3	83
30	1400	1.0	489	7.8	18.5	2.13	0	.70	5.2	56
30	1405	9.0	489	7.8	18.5		0	1.4	5.0	54
DATE	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO
MAR										
05	.4	820	3	2	190 190	31 31	40	21 21	26 26	.8
05 MAY	.4				190	31	40	21	20	
20	.3	4	2	1	190	33	41	21	24	. 8
20 JUL	.4				190	33	41	21	24	.8
30	.4	80	<1	<1	180	26	40	20	24	.8
30	.5			22	180	29	41	20	24	.8

COLORADO RIVER BASIN 177

LAKE AUSTIN AT AUSTIN, TX--Continued

302314097544901 LAKE AUSTIN SITE EC--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	POTAS- SIUM, DIS- SOLVEI (MG/L AS K)	BICAR- BONATE	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	RESIDUE AT 105 DEG. C, SUS-	SOLID: VOLA TILE SUS- PENDE: (MG/)	- D
MAR 05	3.2	190		30 31	43 42	.2	7.2	171 264	3		3
MAY 20	3.3			28	41	.2	8.7	261	14		8
20 JUL 30	3.3			30 29	40	.4					0
30	3.5	190	0	32	44	. 4		267	2		0
DATE	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	GEN,	GEN,	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	MONIA +	NITRO-	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA NESE DIS SOLV (UG/I AS MI	ED L
MAR 05 05	.06	.000		.000	.35	.35	.40				2 2
MAY 20 20	.13			.010	1.1	1.1	1.2	.010			3
JUL 30 30	.11	.000		.000	1.3	1.3	1.4	.010	<10 <10		2 2
		WATER QUANGEROSS	GROSS	GROSS		GROSS BETA,	GROSS BETA,	GROSS BETA,	GROSS BETA,	RADIUM 226,	URANIUM
TIME	SAMP- LING DEPTH (FT)	DIS- SOLVED (PCI/L AS U-NAT)	SUSP. TOTAL (PCI/L AS U-NAT)	DIS- SOLVED (UG/L AS U-NAT)	AS	AS	SUSP. TOTAL (PCI/L AS CS-137)	DIS- SOLVED (PCI/L AS SR/ YT-90)	(PCI/L AS SR/	DIS- SOLVED, RADON METHOD (PCI/L)	DIS- SOLVED, EXTRAC- TION (UG/L)
1030 1040	1.0 54	<3.4 <3.1	<.3 .5	<5.0 <4.6	<.4 .8	5.5 4.3	<.4 .5	5.2 4.2	<.4 .5	.11	1.2
		WATER QUA	30231409		LAKE AUST		E EC O SEPTEMB	ER 1980			
TIME	SAMP- LING DEPTH (FT)	GROSS ALPHA, DIS- SOLVED (PCI/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (PCI/L AS U-NAT)	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT)	AS	AS	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	(PCI/L AS SK/	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)
1400 1405	1.0	<3.4 <3.6	<.3 <.3	<5.0 <5.3	<.4 <.4	6.8 3.4	<.4 .5	6.5 3.2	<.4 .5	.13	1.6

JUL 30... 30...

JUL 30... 30...

LAKE AUSTIN AT AUSTIN, TX--Continued

301739097471201 LAKE AUSTIN SITE AC

DATE	TIME	SAMP- LING DEPTH (FT)	PCB, TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRII TOTAI (UG/I	N, DAN	'AL TO	TAL T	DDE, OTAL UG/L)	DDT, TOTAL (UG/L)
MAR 05 05 JUL	0955 1003	1.0 34	.0	.00	.0		.0	.00	.00	.00
30 30	1030 1040	1.0 54	.0	.00	.0		.0	.00	.00	.00
DATE	DI- AZINON, TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA CHLOR TOTAL (UG/I	A- CHL R, EPOX TOT	IDE LIN	DANE T	ALA- HION, OTAL UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)
MAR 05 05	.00	.00	.00	.00	.0		.00	.00	.00	.00
30 30	.00	.00	.00	.00	.0	00	.00	.00	.00	.00
D	PA TH TO	RA- ION, TH TAL TO	HION, THOTAL TO	TION, APE	COX- HENE, OTAL HG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	TOTAL	TO	/EX, TAL G/L)
	5	.00	.00	.00	0	.00	.35			.00
3	0	.00	.00	.00	0	.00	.13			.00

08155200 BARTON CREEK AT STATE HIGHWAY 71 NEAR OAK HILL, TX

LOCATION.--Lat 30°17'46", long 97°55'31", Travis County, Hydrologic Unit 12090205, at downstream side of bridge on State Highway 71, 0.1 mi (0.2 km) downstream from Little Barton Creek, and 5.8 mi (9.3 km) northwest of Oak Hill.

DRAINAGE AREA. -- 89.7 mi2 (232.3 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--August 1975 to February 1978 (periodic gage heights and discharge measurements only), February 1978 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 737.04 ft (224.650 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records fair above 15.0 ft^3/s (0.42 m^3/s) and poor below. No known regulation or diversions. There are two recording rain gages in the watershed.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $4,750~{\rm ft^3/s}$ (135 m $^3/{\rm s}$) Apr. 18, 1976, gage height, 11.56 ft (3.523 m); no flow for many days each year.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 603 ft 3 /s (17.1 m 3 /s) May 12 at 1715 hours, gage height, 5.08 ft (1.548 m), no peak above base of 1,000 ft 3 /s (28.3 m 3 /s); no flow Aug. 21 to Sept. 6.

		DISC	HARGE, IN	CUBIC F		SECOND, WATER	R YEAR (OCTOBER 1	979 TO SEP	TEMBER 198	0	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
2 3 4	.89 .88 .78	.27 .27 .27 .25	.30 .30 .27 .27	1.0 1.1 1.1 1.1	.89 .93 .94	2.8 2.6 2.1 1.7	18 18 17 16	35 24 22 20	42 36 30 27	2.0 1.8 1.6 1.4	.21 .20 .19	.00 .00 .00
5	.63	.25	.30	1.1	.99	1.6	15	20	26	1.2	.18	.00
6 7 8 9	.63 .59 .59 .57	.25 .25 .27 .27 .25	.27 .27 .23 .23 .23	1.0 .99 .94 .89	.97 .98 1.3 1.9 2.5	1.5 1.5 1.5 1.5	15 15 13 13	19 24 79 62 41	24 21 19 19	1.0 .98 .89 .75 .64	.17 .18 .16 .14	.00 .01 .08 7.0 4.2
11 12 13 14 15	.55 .48 .48 .45	.27 .27 .25 .27 .27	.17 .29 .31 .31 .26	.99 .95 .94 .94	1.7 1.5 1.2 1.3 1.2	1.5 1.5 1.4 1.4	12 33 71 39 30	38 186 205 333 267	16 15 15 13 11	.55 .51 .47 .39	.18 .19 .18 .15	2.3 1.4 .84 .68
16 17 18 19 20	.42 .42 .39 .39	.27 .27 .27 .27 .27	.24 .21 .22 .23 .23	.94 .94 .94 .94	1.8 1.8 1.8 1.7	1.4 1.5 1.5 1.5	27 24 24 22 22	257 220 183 177 146	9.0 8.1 7.8 5.8 5.0	.38 .37 .36 .34	.10 .08 .07 .04	.50 .42 .39 .44
21 22 23 24 25	.39 .40 .34 .34	.34 .32 .30 .32 .34	.23 .27 .29 .29 .25	1.1 1.4 1.5 1.3 1.2	1.5 1.4 1.4 1.4	1.3 1.3 1.3 1.3	20 20 19 18 51	129 115 104 91 86	3.9 3.2 2.4 2.2 2.1	.34 .36 .36 .31	.00 .00 .00	3.3 2.3 1.5 1.2 .94
26 27 28 29 30 31	.29 .26 .26 .25 .31	.32 .32 .32 .27 .30	.23 .21 .48 1.4 1.0 .89	1.1 1.0 .96 .94 .94	1.5 1.4 1.4 1.4	1.5 42 52 27 20 19	35 26 24 22 22	81 73 67 60 54 48	2.1 2.1 2.1 2.1 2.1	.27 .25 .25 .25 .23	.00 .00 .00 .00	3.0 6.2 7.1 11 54
TOTAL MEAN MAX MIN CFSM IN AC-FT (††)	14.72 .47 .89 .25 .005 .01 .29	8.43 .28 .34 .25 .003 .00 17	10.68 .34 1.4 .17 .004 .00 21 2.47	32.01 1.03 1.5 .89 .01 .01 .63 1.24	40.69 1.40 2.5 .89 .02 .02 81 2.44	200.8 6.48 52 1.3 .07 .08 398 3.34	714 23.8 71 12 .27 .30 1420 3.98	3266 105 333 19 1.17 1.35 6480 5.81	393.0 13.1 42 2.1 .15 .16 780	19.44 .63 2.0 .21 .007 .01 .39	2.88 .093 .21 .00 .001 .00 5.7	110.47 3.68 54 .00 .04 .05 219 9.12
CAL YR WTR YR	1979 TOTAL 1980 TOTAL	20707. 4813.			MAX 995 MAX 333	MIN .17 MIN .00	CFSM .				†† 3: †† 3:	5.52 0.95

tt Weighted-mean rainfall on watershed, in inches, based on two rain gages.

08155200 BARTON CREEK AT STATE HIGHWAY 71 NEAR OAK HILL, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: April 1978 to current year. Radiochemical analyses: October 1979 to September 1980.

DATE		STREAM FLOW, INSTAN TANEOU (CFS)	I- CO DU I- AN IS (MI	FIC N- CT- CE CRO- FI	PH	TEMPER- ATURE, WATER (DEG C)	(P IN CO	LOR LAT- UM BALT ITS)	TUR- BID- ITY (NTU)	SO	GEN, IS- LVED	XYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	DEMAND BIOCHEN UNINHII 5 DAY
OCT 31	1215	.3	1	425	8.2	20.0		5	.40		8.4	94	. 8
JAN 16	1315	.9	4	410	7.9	16.0		5	2.0		8.1	83	. 5
MAY 29	1505	61		456	7.7	26.5					75		-
DATE	COLI FORM TOTA IMME (COLS PER 100 M	L, F D. C	COLI- FORM, FECAL, D.7 JM-MF COLS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD NESS (MG/ AS CACO	L BONA' (MG	S, AR- IE /L	CALCIUM DIS- SOLVEI (MG/L AS CA)	DI SOL' (MG	UM, S- VED /L	SODIUM DIS- SOLVED (MG/L AS NA	SOF TI RAT	RP- ON
OCT 31	. 3	20	110	92				-			-	_	
JAN 16	. 1	20	K6	K13	1	90	21	51	1	6	7.	4	. 2
MAY 29	. 12	00	К8	20	2	20	15	60	1	7	6.	3	.2
DATE	POTA SIU DIS SOLV (MG/ AS K	M, BI - BC ED (L	CCAR- DNATE (MG/L AS	CAR- BONATE (MG/L AS CO3)	SULFA DIS- SOLV (MG/ AS SO	ED SOL'	E, VED /L	FLUO- RIDE, DIS- SOLVEI (MG/L AS F)	AS	VED /L	SOLIDS SUM OF CONSTI TUENTS DIS- SOLVE (MG/L	RESI - AT 1 , DEG. SUS D PEND	DUÉ 05 C, S- DED
OCT 31											-		0
JAN 16		.8	210	0	21	1	4	0.1		7.2	22	1	0
MAY 29	. 1	.0	250	0	18	1	1	.2	2 :	8.4	24	5	+
DATE	SOLID VOLA TILE SUS- PENDE (MG/	, NI D (NITRO- GEN, TTRATE TOTAL (MG/L	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITR GEN NO2+N TOTA (MG/ AS N	GE 03 AMMO L TOT L (MG	N, NIA AL /L	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	MONI ORGAL TOT (MG	AM- A + NIC AL /L	PHOS- PHORUS TOTAL (MG/L AS P)	ORGA TOT (MC	NIĆ TAL G/L
OCT 31		0	.02	.00	.0	2 .	00	.31		31	.00	0 1	5
JAN 16		0	.02	.00	.0	2 .	00	.02		02	.01	0	5.2
MAY 29			.07	.00	.0	7	00	.26		26	.00	0	8.8

<10

<10

<3

08155200 BARTON CREEK AT STATE HIGHWAY 71 NEAR OAK HILL, TX--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)
------	------	--	--	--	---	--	--

20

30

1315

1505

DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)	
JAN	NO TD)		110 1107	110 5117	no no	no any	
11	0	2	- 0	0	0	10	

.0

0

DATE	TIME	GROSS ALPHA, DIS- SOLVED (PCI/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (PCI/L AS U-NAT)	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)
JAN 16	1315	<3.2	<.3	<4.7	<.4	2.0	.4	1.8	.4	.03	.55

NAPH-

JAN 16...

.00

.00

.00

DATE	TIME	PCB TOTAL (UG/L)	THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)
JAN 16	1315	.00	.0	.00	.0	.00	.00	.00	.00
DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)
JAN 16	.00	.00	.00	.00	.00	.00	.00	.00	.00
DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)

.00

0

.00

.00

.00

.00

08155300 BARTON CREEK AT LOOP 360, AUSTIN, TX

LOCATION.--Lat 30°14'40", long 97°48'07", Travis County, Hydrologic Unit 12090205, on Loop 360, 0.9 mi (1.4 km) west of the intersection of Ben White and Lamar Boulevards, and 4.3 mi (6.9 km) southwest of the State Capitol Building in Austin.

DRAINAGE AREA .-- 116 mi 2 (300 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1975 to January 1977 (periodic gage heights and discharge measurements only), February 1977 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 510.32 ft (155.546 m) National Geodetic Vertical Datum of 1929 (State Department of Highways and Public Transportation bench mark).

REMARKS.--Records fair. No known regulation or diversions. There are three recording rain gages located in the watershed.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,270 ft 3 /s (92.6 m 3 /s) Apr. 15, 1977, gage height, 7.67 ft (2.338 m); no flow for many days each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--The flood of May 28, 1929, was probably the highest since that date, discharge 39,400 ft³/s (1,120 m³/s), based on a slope-area measurement of peak flow at a site about 2 mi (3 km) upstream.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 586 ft 3 /s (16.6 m 3 /s) May 12 at 2300 hours, gage height, 5.46 ft (1.664 m), no peak above base of 1,000 ft 3 /s (28.3 m 3 /s); no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

					M	EAN VALUE	S	.,	,,, 10 001	I DI I DE L'O	00	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.02	.64	34	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.52	32	.00	.00	.00
3	.00	.00	.00	.00	.00	.00	.00	.32	29	.00	.00	.00
4	.00	.00	.00	.00	.00	.00	.00	.32	23	.00	.00	
5	.00	.00	.00	.00	.00	.00	.00	.28	18	.00	.00	.00
,	0.0	0.0	200	0.0	22							
6	.00	.00	.00	.00	.00	.00	.00	.26	12	.00	.00	.03
7	.00	.00	.00	.00	.00	.00	.00	1.1	11	.00	.00	.46
8	.00	.00	.00	.00	.00	.00	.00	66	9.9	.00	.00	.00
9	.00	.00	.00	.00	.14	.00	.00	93	5.9	.00	.00	.00
10	.00	.00	.00	.00	.00	.00	.00	57	5.2	.00	.00	.00
11	.00	.00	.00	.00	.00	.00	.00	45	3.2	.00	.00	.00
12	.00	.00	.00	.00	.00	.00	.00	171	1.5			
13	.00	.00	.00	.00	.00	.00				.00	.00	.00
14	.00	.00					37	288	.52	.00	.00	.00
			.00	.00	.00	.00	41	428	.07	.00	.00	.00
15	.00	.00	.00	.00	.00	.00	21	313	.00	.00	.00	.00
16	.00	.00	.00	.00	.00	.00	10	305	.00	.00	.00	.00
17	.00	.00	.00	.00	.00	.00	3.6	260	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.00	1.1	204	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	.00	.37	186	.00	.00	.00	.99
20	.00	.00	.00	.00	.00	.00	.06	164	.00	.00	.00	.00
21	.00	.00	.00	.00	.00	.00	.00	141	.00	.00	.00	0.0
22	.00	.00	.00	.00	.00	.00	.00	127				.00
23	.00	.00	.00						.00	.00	.00	.00
				.00	.00	.00	.00	111	.00	.00	.00	.00
24	.00	.00	.00	.00	.00	.00	.00	100	.00	.00	.00	.00
25	.00	.00	.00	.00	.00	.00	10	89	.00	.00	.00	.26
26	.00	.00	.00	.00	.00	.00	40	79	.00	.00	.00	.12
27	.00	.00	.00	.00	.00	17	9.4	72	.00	.00	.00	.12
28	.00	.00	.06	.00	.00	65	2.9	65	.00	.02	.00	.15
29	.00	.00	.00	.00	.00	21	1.4	55	.00	.00	.00	.00
30	.00	.00	.00	.00		2.4	.92	48	.00	.00	.00	.00
31	.00		.00	.00		.08		40		.00	.00	
TOTAL	0.0	0.0	0.5	0.0					1.1			
	.00	.00	.06	.00	.14	105.48	178.77	3520.34	185.29	.02	.00	2:13
MEAN	.000	.000	.002	.000	.005	3.40	5.96	114	6.18	.001	.000	.071
MAX	.00	.00	.06	.00	.14	65	41	428	34	.02	.00	.99
MIN	.00	.00	.00	.00	.00	.00	.00	.26	.00	.00	.00	.00
CFSM	.000	.000	.000	.000	.000	.03	.05	.98	.05	.000	.000	.001
IN.	.00	.00	.00	.00	.00	.03	.06	1.13	.06	.00	.00	.00
AC-FT	.00	.00	.1	.00	.3	209	355	6980	368	.04	.00	4.2
(††)	.62	.78	2.64	1.25	2.51	3.18	3.78	5.85	.10	.39	.72	8.92
						30	3.70	3.03	.10	. 3 5	./2	0.74

CAL YR 1979 TOTAL 21991.16 MEAN 60.2 MAX 1140 MIN .00 CFSM .52 IN 7.05 AC-FT 43620 †† 37.06 WTR YR 1980 TOTAL 3992.23 MEAN 10.9 MAX 428 MIN .00 CFSM .09 IN 1.28 AC-FT 7920 †† 30.74

^{††} Weighted=mean rainfall on watershed, in inches, based on three rain gages.

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: January 1979 to current year. Radiochemical analyses: October 1979 to September 1980.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	FL INS TAN	EAM- OW, TAN- EOUS	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)		PH IELD NITS)	A'I WA	1PER- FURE, ATER EG C)	(P IN CO	LOR LAT- UM BALT ITS)	H	CUR- BID- TY ITU)	SC	(GEN, DIS- DLVED MG/L)	SO: (P. C. SA'	GEN, IS- LVED ER- ENT TUR- ION)	DEM BIO UNI 5	GEN IAND CHEN NHII DAY
APR 15 25	1050 1350		21 6.8	373		7.4 7.6		13.0		5		9.9		12.4		117		1.0
MAY 12	1630	1	95	361		8.2				20	13	0						1.6
DATE	FOI TO' IMI (CO)	LI- RM, TAL, MED. LS. ER ML)	COLI FORM FECA 0.7 UM-M (COLS	, TOCO L, FEG KF / F (COI	REP- DCCI CAL, AGAR LS. ER ML)	HAF NES (MC AS CAC	SS G/L	HARI NESS NONCA BONA' (MG, CACO	AR- FE /L	CALC DIS SOL (MG AS	VED /L	MAGI SI DI: SOL (MG AS	UM, S- VED /L	SODIU DIS- SOLVE (MG/ AS N	D L	SOD AI SOR TIC RAT	D- P- ON	
APR 15		1800	1	60	420		180		18	5	0	1	3	5	.3		.2	
25 MAY 12							190		28	5	4	1	4		.6		.2	
,,,,,							1,70		20	,			,		. 0			
DATE	S D SO: (M	TAS- IUM, IS- LVED G/L K)	BICAR BONAT (MG/: AS HCO3	E CAI L BONA (MC	ATE G/L		S- LVED G/L	CHLC RIDI DIS- SOLV (MG,	E, /ED /L	FLU RID DI SOL (MG AS	E, S- VED /L	SILIO DIS- SOL' (MG AS- SIO:	VED /L	SOLID SUM O CONST TUENT DIS SOLV (MG/	F I- S, ED	SOLII RESII AT 10 DEG. SUS- PENDI (MG,	DUÉ 05 C, ED	
APR 15		1.1	2	10	0	2	21	1.0)		.2		7.0	2	04		5	
25 MAY		1.3						7.0										
12		1.8	2	00	0	4	21	1:)		.2		8.8	2	20		184	
DATE	VOI TII SUS PENI		NITRO GEN NITRA' TOTA: (MG/) AS N	, GI TE NITE L TOT L (MC	TAL G/L	NIT GE NO2+ TOT (MG AS	NO3 CAL G/L	NITE GEN AMMON TOTA (MG, AS N	NIA AL 'L	NIT GE: ORGA TOT. (MG AS	N, NIC AL /L	NITRO GEN, A MONIA ORGAN TOTA (MG, AS I	AM- A + NIC AL /L	PHOS PHORU TOTA (MG/ AS P	S, L L	CARBO ORGAI TOTA (MG, AS O	NIC AL /L	
APR 15		2		12	.000		.12	.(000	4	.4	4.	. 4	.0	20		3.1	
25 MAY 12		6		12	.010		.13		10		.61		.62	.1	50	,	5.5	
							*, •								,	,	,,,	
	DA	ATE	TIM	SOI E (UC	ENIC IS- LVED G/L AS)	BARI DIS SOLV (UG AS	ED	CADMI DIS SOLV (UG) AS (ED L	CHROMIUS DIS SOL	M, VED /L	COPPI DIS- SOLV (UG, AS (VED L	IRON DIS SOLV (UG/ AS F	ED L			
	API	R 5	1050)	0		20		2		0		2		10			
	MA		1630		1		20		<1		0		0		20			
		AP	ATE R	LEAD, DIS- SOLVED (UG/L AS PB)	NI SC (I	ANGA- ESE, DIS- DLVED JG/L S MN)	SC (U	CURY DIS- DLVED G/L HG)	NI D SO: (U	LE- UM. IS- LVED G/L SE)	SO (U	VER, IS- LVED G/L AG)	SO (U	NC, DIS- DLVED G/L ZN)				
		MA	5 Y	0		<1		.7		0		0		<3				
		- 1	2	0		4		.0		0		0		10				

08155300 BARTON CREEK AT LOOP 360, AUSTIN, TX--Continued

DATE	TIME	GROSS ALPHA, DIS- SOLVED (PCI/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (PCI/L AS U-NAT)	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)
APR 25	1350	<2.2	.7	<3.3	1,1	<1.4	1,2	<1.5	1.1	.09	.70
				NAPH- THA- LENES,							
	DATE	TIME	PCB TOTAL (UG/L)	POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)	
	APR 15	1050	.00	.0	.00	.0	.00	.00	.00	.00	
	DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	
	APR 15	.00	.00	.00	.00	.00	.00	.00	.00	.00	
	DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)	
	APR 15	.00	.00	.00	.00	0	.00	.00	.00	.00	

08155500 BARTON SPRINGS AT AUSTIN, TX

LOCATION.--Lat 30°15'48", long 97°46'16", Travis County, Hydrologic Unit 12090205, at ground-water well (YD 58-42-903), on right bank 0.4 mi (0.6 km) upstream from Barton Springs Road bridge over Barton Creek, 0.7 mi (1.1 km) upstream from mouth, and 1.8 mi (2.9 km) southwest of the State Capitol Building in Austin.

DRAINAGE AREA.--Not applicable. Only flow from springs is published for this station.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--November 1894 to April 1917, and October 1918 to February 1978 (discharge measurements only), May 1917 to September 1918 (published as "Barton Creek at Austin, Texas"), and March 1978 to current year.

GAGE.--Water-stage recorder. Datum of gage, at ground-water well (YD 58-42-903), is 462.34 ft (140.92 m) National Geodetic Vertical Datum of 1929. May 1917 to September 1918, nonrecording gage at site 1,000 ft (305 m) downstream at different datum.

REMARKS.--Water-discharge records fair. Entire flow published is springflow from the Edwards and associated limestones in the Balcones Fault Zone. This station is part of an urban hydrologic project to study the ground-water resources in the Austin urban area.

EXTREMES FOR PERIOD OF RECORD (DISCHARGE MEASUREMENTS ONLY).--Maximum measured discharge, 166 ft³/s (4.70 m³/s) May 10, 1941; minimum measured, 9.6 ft³/s (0.27 m³/s) Mar. 29, 1956.

EXTREMES FOR PERIOD OF RECORD (1917-18 AND SINCE MARCH 1978).--Maximum daily discharge, 108 ft³/s (3.06 m³/s) June 9-11, 16, 20, 21, 1979; minimum daily, 12 ft³/s (0.34 m³/s) Feb. 25, 1918.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 78 ft 3 /s (2.21 m 3 /s) May 30; minimum daily, 34 ft 3 /s (0.96 m 3 /s) Mar. 14-27.

		DISC	HARGE, IN	CUBIC FE		COND, WAT AN VALUES	ER YEAR O	CTOBER 19	79 TO SEP	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	77 77 76 75 74	60 59 59 59	50 49 49 49 48	43 42 42 41 40	38 38 38 38 37	36 36 36 36 35	43 43 42 42 42	42 42 42 42 42	77 77 77 77 77	64 64 62 62	51 46 45 45 44	37 37 37 37 36
6 7 8 9	73 72 72 71 71	58 58 58 57 57	48 47 47 46 46	40 39 39 38 38	36 36 37 38 38	35 35 35 35 35	42 41 41 41 41	42 42 44 48 51	74 73 73 73 73	62 61 61 60 59	44 44 43 43 42	37 37 38 38 38
11 12 13 14 15	71 71 71 71 71	56 56 55 54 54	46 46 46 46	38 38 38 38 37	37 37 37 36 36	35 35 35 34 34	40 40 40 42 43	51 54 58 61 65	73 72 71 71 70	58 59 58 58 57	42 42 42 42 42	38 36 37 37 36
16 17 18 19 20	70 70 69 68 66	54 54 53 53 53	45 45 45 44 44	37 37 37 38 38	37 37 37 37 37	34 34 34 34 34	43 43 42 42 41	68 73 74 75 75	69 70 70 70 70	57 56 55 55 55	42 41 41 41 40	35 35 35 37 38
21 22 23 24 25	66 65 65 64 64	53 52 52 52 52	44 44 44 44	37 37 37 37 37	37 37 36 36 35	34 34 34 34 34	41 41 41 40 41	77 77 77 77 77	71 70 69 68 68	54 54 54 53 52	40 40 40 40 40	38 38 38 37 37
26 27 28 29 30 31	63 62 62 61 61	51 51 50 50	43 43 44 44 44	38 39 39 38 38 38	35 35 35 35 	34 36 39 43	43 44 44 44 43	77 77 77 77 78 77	67 66 67 66 65	51 51 51 51 51	38 38 37 38 38 38	37 37 37 37 37
TOTAL MEAN MAX MIN AC-FT	2130 68.7 77 61 4220	1640 54.7 60 50 3250	1412 45.5 50 43 2800	1193 38.5 43 37 2370	1063 36.7 38 35 2110	1096 35.4 43 34 2170	1256 41.9 44 40 2490	1939 62.5 78 42 3850	2134 71.1 77 65 4230	1760 56.8 64 51 3490	1289 41.6 51 37 2560	1109 37.0 38 35 2200

CAL YR 1979 TOTAL 29649 MEAN 81.2 MAX 108 MIN 43 AC-FT 58810 WTR YR 1980 TOTAL 18021 MEAN 49.2 MAX 78 MIN 34 AC-FT 35740

08155500 BARTON SPRINGS AT AUSTIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: December 1978 to September 1979. Radiochemical analyses: October 1979 to September 1980.

DAT	E	TIME	FI INS TAN	EAM- OW, TAN- EOUS	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)		PH IELD NITS)	AT WA	IPER- TURE, TER GG C)	(F IN CO	DLOR PLAT- IUM DBALT			SC	GEN, DIS- DLVED G/L)	SC (F	GEN, DIS- DLVED PER- CENT ATUR- CION)		AND, CHEM NHIB DAY
NOV 05.		0925		65	640		7.1		21.0		0		.30		6.4		72		.1
JAN 16.		0830		38	681		7.1		21.0		5	1	.5		5.6		63		. 2
JUN 04.		0920		77	549		6.9		21.5		0		.2		5.2		58		.4
SEP 08.		0830		38	627		7.0		22.0			,	11						
26.		0905		37	631		6.7		21.5		0	12							.8
	DATE		M, AL, IED. S.	COLI- FORM, FECAI 0.7 UM-MH (COLS, 100 MI	TOCO KF A (COL	AL, GAR S.	HARI NESS (MG) AS CACO	S /L	HARD NESS NONCA BONAT (MG/) CACO	Ř- E L	CALCIU DIS- SOLVE (MG/L AS CA	D	MAGN SIU DIS SOLV (MG) AS N	JM, S- VED L	SODII DIS- SOLVI (MG, AS I	ED /L	SOD A SOR TI RAT	D- P- ON	
	NOV 05		140	1	<4	<1					4	-							
	JAN 16		34		(1	К2	2	290		30	79		23	3	2	1		.5	
	JUN 04		520	6	53	35	2	270		19	78		17		1	1		.3	
	08 26		200 720	48	30 33	110 53		280 290		21 35	79 81		21 21		12			.4	
	DATE	SI		BICAR- BONATE (MG/I AS HCO3)	CAR BONA (MG	TE /L	SULFA DIS- SOLV (MG/ AS SO	/ED	CHLORIDE DIS-SOLVI (MG/IAS CI	ED	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	D	SILIC DIS- SOLV (MG/ AS SIO2	ED	SOLII SUM (CONST TUENT DIS SOLV (MG,	OF TI- TS, S- VED	SOLII RESII AT 10 DEG. SUS- PENDI (MG,	DUÉ 05 C, ED	
1	NOV 05																	2	
	JAN 16		1.5	32		0	31		34		- 1	2	11			358		0	
	JUN			30		0						2				305		94	
	04 SEP		1.3				23		17				10						
	08 26		1.5	32 31		0	30		29 31			3	11			341 348		7	
	DATE	SOLI VOL TIL SUS PEND (MG	A- .E,	NITRO GEN, NITRAT TOTAL (MG/I AS N)	GE NITR TOT	AL /L	NITE GEN NO2+N TOTA (MG/	NO3	NITRO GEN AMMON TOTAL (MG/I AS N	ÍA L	NITRO GEN, ORGANI TOTAL (MG/L AS N)	- C	NITRO GEN, A MONIA ORGAN TOTA (MG) AS N	M- HIC L L	PHOS PHORU TOTA (MG,	JS, AL /L	CARBO ORGAI TOTA (MG	NIC AL /L	
3	NOV					000		2		20		0		10		200			
	05 JAN		0	1.3		000	1.		.00		.1			18		000		5	
	16 JUN					000	1.		.00							050		3.8	
	SEP		113	. 8		040		93	.0		-					010		2.0	
	08		8	1.8		010	1.		.00		.8			88 17		030		3.4	

			DA'	TE	TIME	SO SO	ENIC IS- LVED G/L AS)	BARI DIS SOLV (UG AS	ED /L	CADM DI SOL (UG AS	S- VED /L	CHR MIU DIS SOL (UG AS	M, VED /L	COPPE DIS- SOLV (UG/ AS C	ED L	IRO DI SOL (UG AS	S- VED /L			
			JAN 16		0830		0		60		<1		0		0		<10			
			JUN		0920		1		40		<1		0		0		<10			
			SEP		0905		1		60		<1		10		(10		<10			
				DAT		LEAD, DIS- SOLVED (UG/L AS PB)	NE SC (U	NGA- SE, DIS- DLVED IG/L MN)	SO:	CURY IS- LVED G/L HG)	NII D SOI (U	LE- JM, IS- LVED G/L SE)	SO:	VER, IS- LVED G/L AG)	ZIN DI SOL (UG AS	S- VED /L				
				JAN 16.		C		<1		.1		0		0		<3				
				JUN 04.		0		3		.0		0		0		<3				
				SEP 26.		17		<1		.0		0		0		<3				
				==:	3.5															
DATE	TIME	SOL (PCI	PHA, IS- LVED	GROS ALPH SUSH TOTA (PCI/ AS U-NA	HA, AL /L	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT)	AL SU TO (U	OSS PHA, SP. TAL G/L S NAT)	SO: (PC		GRO BET SUS TOT (PC AS	TA, SP. TAL I/L	D SOI (PO	DSS TA, IS- LVED CI/L SR/ -90)	GRO BET SUS TOT (PC AS YT-	A, P. AL I/L SR/	D SOL RA ME	DIUM 26, IS- VED, DON THOD	URANIUM NATURAL DIS- SOLVED (UG/L AS U)	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)
JAN 16	0830	<	6.0		.3	<8.8		<.4		<3.3		<.4		<3.0		<.4		.21		1.0
SEP 26	0905	<	(3.9		.3	<5.8		.5		<3.0		.4		<2.8		.4		.20	.9	
	JAN 16		TII 08		PCB, TOTAI (UG/I	LE P CH	PH- HA- NES, OLY- LOR. TAL G/L)	ALDR TOT (UG		DAN	OR- IE. PAL E/L)	DD TOT (UG	AL	DDI TOTA (UG)	L	DD TOT (UG	AL	DI AZIN TOT (UG	ON,	
	JUN 04		09	20		0	.00		.00		.0		.00		.00		.00		.00	
	DA JAN	TE	DI ELD TOT. (UG	RIN S	ENDO- SULFAN TOTAL (UG/L	, END	RIN, TAL G/L)	ETHI TOT (UG		TOT	TA- OR, CAL	HEP CHL EPOX TOT (UG	OR IDE AL	LINDA TOTA (UG/	L	MAL THI TOT (UG	ON, AL	MET OX CHL TOT (UG	Y- OR, 'AL	
				.00	.0	0	.00		.00		.00		.00		.00		.00		.00	
				.00	+0	0	.00		.00		.00		.00		.00		.00		.00	
	DA	TE	MET PAR THI TOT (UG	A- ON, AL	METHY TRI- THION TOTAL (UG/L	, MI	REX, OTAL G/L)	PAR THI TOT (UG	ON,	APHE	X- NE, AL	TOT TR THI (UG	I- ON	2,4- TOTA (UG)	L	2,4, TOT (UG	AL	SILV TOT (UG		
	JAN 16			.00	.0	0	.00		.00		0		.00		.00		.00		.00	
	JUN			.00	.0		.00		.00		0		.00		.00		.00		.00	

08155505 BARTON CREEK BELOW BARTON SPRINGS AT AUSTIN, TX (Reconnaissance partial-record station)

LOCATION.--Lat 30°15'50", long 97°46'03", Travis County, Hydrologic Unit 12090205, 800 ft (240 m) upstream from bridge on Barton Springs Road and 1.8 mi (2.9 km) southwest of State Capitol at Austin.

DRAINAGE AREA. -- 125.3 mi 2 (324.5 km2).

PERIOD OF RECORD.--Occasional discharge measurements: January 1975 to current year. Chemical, biochemical, and pesticide analyses: January 1975 to current year. Radiochemical analyses: October 1979 to September 1980.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME T	TREAM- (FLOW, INSTAN- ANEOUS (N		PH FIELD JNITS)	TEMPER- ATURE, WATER (DEG C)	COLO (PLA INUM COBA UNIT	T- l LT	TUR- BID- ITY NTU)	OXYGEN DIS- SOLVEI (MG/L)	S() () () () ()	YGEN, DIS- DLVED PER- CENT ATUR- FION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)
NOV 05	1115	65	642	7.2	21.0		0	30	7.()	79	.4
JAN 16	1045	36	680	7.2	22.0		0	.50	7.4		85	.4
MAY 29	0745	133	443	7.6	25.5		-:-	37				
DATE	COLI- FORM, TOTAL IMMED (COLS. PER 100 ML	, FECAL, 0.7 UM-MF (COLS.)	KF AGA (COLS. PER	HAR NES (MG AS	S NONCA /L BONAT (MG/	R- E L	ALCIUM DIS- SOLVED (MG/L AS CA)	SOLV (MG,	UM, SOI S- DI VED SOI /L (N	DIUM, S- LVED MG/L S NA)	SODI AI SORI TIC RATI)-)-)N
NOV 05	. 100	0 300) 84	4								
JAN 16		0 K10) 80		290	30	79	23	3	22		.6
MAY 29	. 270	0 400	100)	220	12	59	13	7	7.4		.2
DATE	POTAS SIUM DIS- SOLVE (MG/L AS K)	BICAR- BONATE D (MG/L	CAR- BONATE (MG/L AS CO3)	SULFA DIS- SOL (MG) AS SO	VED SOLV	ED L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILIO DIS- SOLV (MG, AS SIO2	CA, SUN - CON VED TUE /L I	LIDS, 1 OF ISTI- ENTS, DIS- DLVED	SOLII RESII AT 10 DEG. SUS- PENDE (MG/	OUÉ 05 C, ED
NOV 05			-						27			91
JAN 16 MAY	. 1.	5 320) (3	1 34		.2	11	1	359		0
29	. 1.	2 250) (1:	9 11		.2		3.7	247		
DATE	SOLIDS VOLA- TILE, SUS- PENDED (MG/L)		GEN,	GEI	N, GEN NO3 AMMON AL TOTA /L (MG/	ÍA O L L	NITRO- GEN, RGANIC TOTAL (MG/L AS N)	MONIA	AM- A + PH NIC PHO AL TO /L (M	OS- RUS, TAL IG/L P)	CARBO ORGAN TOTA (MG/ AS C	L L L
NOV 05	34	1.5	.01	1	.5 .0	2	.64	. 6	56 .	040	26	
JAN 16	0	1.6	.02	1	.6 .0	1	6.8	6.8	3 .	050	1.	7
MAY 29	77	.15	.00)	.15 .0	0	.48	. 4	48 .	010	6.	3
	DATE	TIME	ARSENIO DIS- SOLVEI (UG/L AS AS)	DIS- SOLVI (UG)	DIS ED SOLV /L (UG/	UM ED L	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPE DIS- SOLV (UG/ AS (/ED SC	ON, DIS- DLVED G/L FE)		
	JAN 16	. 1045)	60	<1	0		0	<10		
	MAY 29					<1	0		2	<10		
		9	DIS- OLVED S UG/L	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE NIUM DIS SOLV (UG/ AS S	, SI ED S L (LVER, DIS- OLVED UG/L S AG)	ZINC, DIS- SOLVED (UG/L AS ZN)			

COLORADO RIVER BASIN 08155505 BARTON CREEK BELOW BARTON SPRINGS, AUSTIN, TX--Continued

189

DATE	TIME	GROSS ALPHA, DIS- SOLVED (PCI/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (PCI/L AS U-NAT)	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)
JAN 16	1045	<4.9	<.3	<7.2	<.4	<3.3	<.4	<3.0	<.4	.18	1.2
	DATE	TIME	PCB TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	DI - AZINON, TOTAL (UG/L)	
	JAN 16	1045	.00	.0	.00	.0	.00	.00	.00	.00	
	DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	
	JAN 16	.00	.00	.00	.00	.00	.00	.00	.00	.00	
	DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)	
	JAN 16	.00	.00	.00	.00	0	.00	.00	.00	.00	

08156700 SHOAL CREEK AT NORTHWEST PARK, AUSTIN, TX

LOCATION.--Lat 30°20'50", long 97°44'41", Travis County, Hydrologic Unit 12090205, at Northwest Park in Austin, 400 ft (122 m) upstream from Shoal Creek Boulevard bridge, 0.5 mi (0.8 km) west of intersection of Burnet Road and Justin Lane, and 5.0 mi (8.0 km) north of State Capitol Building in Austin.

DRAINAGE AREA. -- 7.03 mi2 (18.21 km2).

PERIOD OF RECORD .-- March 1975 to current year.

GAGE.--Water-stage recorder. Datum of gage is 661.34 ft (201.576 m) National Geodetic Vertical Datum of 1929 (city of Austin bench mark).

REMARKS.--Records fair. The city of Austin diverts water into the channel above gage during the summer months from a swimming pool at Northwest Park. There is some diversion into and out of the drainage area by storm sewers. This station is part of a hydrologic project to study the rainfall-runoff relationship for the Austin urban area. There are two digital recording rain gages in the watershed. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--5 years, 2.00 ft³/s (0.0566 m³/s), 3.86 in/yr (98 mm/yr), 1,450 acre-ft/yr (1.79 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,110 ft 3 /s (59.8 m 3 /s) July 19, 1979, gage height, 8.31 ft (2.533 m); no flow for several days each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1885, occurred Apr. 22, 1915, stage and discharge unknown.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 500 ft 3/s (14.2 m 3/s) and maximum (*):

Date	Time	Disch (ft³/s)	(m³/s)	Gage (ft)	height (m)	Date		Time	Disch (ft³/s)	(m³/s)	Gage (ft)	height (m)
Mar. 27 Apr. 25	a0800 0250 1045	710 668 *1 060	20.1 18.9 30.0	5.70 5.60 6.45	1.737	May Sept.	15 19	1855 0400	772 595	21.9 16.9	5.84 5.42	1.780 1.652

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum discharge, no flow Oct. 26, Sept. 2-4.

		DISC	iakou,	IN CODIC PE	M	EAN VALUE	ES TEAK	JCTOBER 197	9 10 31	FIENDER (9)	30	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4	.07 .09 .11	.04 .02 .02 .02	.02 .02 .02	.13 .13	.14 .34 .14 .24	.15 .06 .07	.86 1.6 .31 .29	7.4 .28 .21 .18	.19 .18 .16	.03 .03 .03	.01 .02 .02	.02 .00 .00
5	.05	.02	.02	.28	.19	.05	.29	.17	.17	.03	.02	.02
6 7 8 9 10	.08 .08 .09 .07	.02 .02 .02 .02 .02	.02 .02 .02 .02	.12 .12 .12 .12 .12	.15 4.1 3.9 10 .23	.05 .07 .06 .12	.29 .29 .29 .29 .29	.12 14 32 .69 .42	.15 .14 .13 1.8 .22	.02 .02 .03 .04	.02 1.1 .13 .08 .66	4.2 16 .87 2.0 .18
11 12 13 14 15	.06 .08 .10 .08	.08 .07 .04 .03	.04 2.9 .39 .05	.17 .13 .13 .13	.12 .10 .10 .09	.16 .18 .08 .06	.25 1.8 3.2 .29 .27	.38 52 16 2.7 36	.14 .19 .15 .13	.03 .04 .02 .02	.15 .09 .06 .04	.12 .10 .06 .04
16 17 18 19 20	.11 .07 .02 .01	.05 .06 .12 .17	.03 .03 .03 .03	.18 .59 .16 .17	5.1 .19 .14 .11	.31 .13 .12 .12	.25 .21 .16 .15	4.1 1.3 .93 1.6 .64	.12 .13 .15 .21	.03 .02 .03 .04	.45 .10 .08 .06	.03 .05 .04 24
21 22 23 24 25	.01 .08 .03 .03	1.5 .03 .02 .26 .07	.03 .32 5.3 .10	1.7 3.2 .24 .18	.08 .08 .09 .06	.13 .17 .20 .12	.15 .17 .18 .26	.67 .51 .48 .46	2.0 .05 .04 .04	.03 .04 .04 .04	.06 .07 .07 .05	.05 .06 .01 .01
26 27 28 29 30 31	.00 .01 .01 .01 6.2	.02 .02 .02 .01 .03	.03 .04 17 2.3 .27	.14 .14 .14 .32 .26	.06 .06 .06 .26	112 1.8 .31 .29	.42 .20 .16 .13 .12	.41 .39 .35 .33 .28	.04 .04 .04 .03	.04 .04 .32 .04 .03	.08 .04 .07 .08 .12	13 .40 2.2 .09 1.3
TOTAL MEAN MAX MIN CFSM IN. AC-FT (††)	7.91 .26 6.2 .00 .04 .04	2.94 .098 1.5 .01 .01 .02 5.8	29.45 .95 17 .02 .14 .16 58 2.85	10.69 .34 3.2 .12 .05 .06 21	26.38 .91 10 .06 .13 .14 52 2.27	117.75 3.80 112 .05 .54 .62 234 3.60	46.45 1.55 33 .12 .22 .25 92 2.48	175.63 5.67 52 .12 .81 .93 348 7.68	8.12 .27 2.0 .03 .04 .04	1.25 .040 .32 .02 .006 .01 2.5	3.95 .13 1.1 .01 .02 .02 7.8 .78	66.67 2.22 24 .00 .32 .35 132 6.46
	1979 TOTAL 1980 TOTAL		MEAN MEAN			IN .00 IN .00	CFSM .28 CFSM .19	IN 3.72 IN 2.63	AC-FT		33.25 29.85	

tt Weighted-mean rainfall on watershed, in inches, based on two rain gages.

a Estimated.

08156800 SHOAL CREEK AT 12TH STREET, AUSTIN, TX (Flood-hydrograph partial-record station)

LOCATION.--Lat 30°16'35". long 97°45'00", Travis County, Hydrologic Unit 12090205, at downstream side of bridge on 12th Street and 0.6 mi (1.0 km) west of the State Capitol Building in Austin.

DRAINAGE AREA .-- 12.8 mi2 (33.2 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1975 to current year. Periodic discharge measurements only: November 1974 to current

GAGE.--Flood-hydrograph recorder and crest-stage gage. Datum of gage is 455.33 ft (138.785 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Additional storm rainfall-runoff data for this site can be obtained from the report "Hydrologic Data for Urban Studies in the Austin, Texas Metropolitan Area, 1979."

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,970 ft³/s (141 m³/s) May 21, 1979, gage height, 15.20 ft

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,970 ft³/s (141 m³/s) May 21, gage height, 15.20 ft (4.633 m).

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: January 1975 to current year. Water temperatures: January 1975 to current year. Radiochemical analyses: october 1979 to September 1980.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	FL INS TAN	EAM- OW, TAN- EOUS FS)	SPE- CIFI CON- DUCT ANCE (MICR MHOS	C - O- F	PH IELD NITS)	AT WA	MPER- TURE, ATER EG C)	(PI	LOR LAT- JM BALT ITS)	TUR BII ITY (NTU)-	XYGEN, DIS- SOLVED (MG/L)	SO (P	GEN, DIS- DLVED PER- CENT TUR- CION)	OXYO DEMA BIOC UNIN 5 I (MG,	AND, CHEM WHIB DAY
APR 25	1315		61	2	:38	7.1		23.0		30	80		7.4		87		3.9
MAY 12 SEP	1100		116	3	26	7.9							+-			1	16
19	0445		523	2	79	7.7											
19	0515		974		50	8.0				20		4					
19	0545		699		24	7.6				20	3.	5					
19	0615		549	-1	95	8.1											
DATE	IMM (COI PE	M, CAL, MED. S.	COLI FORM FECA 0.7 UM-M (COLS	L, K	STREP- OCOCCI FECAL, IF AGAR COLS. PER 00 ML)	HAR NES (MG AS CAC	S /L	HARD NESS NONCA BONAT (MG/ CACO	R- E L	CALCIU DIS- SOLVE (MG/L AS CA	D	MAGNE SIUM DIS- SOLVE (MG/L AS MG	, SODI DIS D SOLV (MC	3-	SOD A SOR TI RAT	D- P- ON	
APR 25				22	125		100		38	37		2.	8	6.9		.3	
MAY 12 SEP	. 810	0000	4600	00	220000		130	3	44	48		3.	5 1	4		.5	
19					-		110		30	40		2.	9	9.6		.4	
19							110		28	38		2.1		6.4		.3	
19							94		21	34		2		6.6		.3	
19					27		91		22	33		2.0	0	4.4		. 2	
DATE	DI SOI (MG		BICAR BONAT (MG/ AS	E L E	CAR- SONATE (MG/L S CO3)	(MG	- VED /L	CHLO RIDE DIS- SOLV (MG/ AS C	ED L	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	D	SILICA DIS- SOLVE (MG/L AS SIO2)	CONS D TUEN DI SOI	OF TI-	SOLI RESI AT 1 DEG. SUS PEND (MG	DUÉ 05 C, ED	
APR																	
25 MAY		2.7		80	0	3	6	9	.6		2	4.0	0	139		84	
12 SEP		3.4		10	0		4	19			2	5.		191			
19		4.9		00	0		9	16			2	3.		156		7/0	
19		3.6		00	0		4	12			2	5.		142		740	
19 19		2.8		90 84	0		5		.3		2	4.		129	6	670	
19		4.5		04	U	2	,	3			2	4.		120			

08156800 SHOAL CREEK AT 12TH STREET, AUSTIN, TX--Continued

								NITRO-			
	DATE	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
	APR 25	16	.62	.010	.63	.030	.84	.87	.200	11	
	MAY 12		.60	.030	.63	.230	2.4	2.6	.440	48	
	SEP 19	1700			2.7						
	19 19 19	1730 1570 	12- 27	= = = = = = = = = = = = = = = = = = = =	1.2 1.5 .52	==	1	-	7		
		DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)		
		APR 25	1315	4	30	<1	0	3	40		
		SEP 19 19	0445 0615	4 3	30 30	<1 <1	10 10	<10 <10	80 20		
		.,,,,,	0015	1	30			,,,,			
		Ē	I SC (I	ZAD, NE DIS- I DLVED SO JG/L (U	DIS- I DLVED SC IG/L (U	CURY NI DIS- D DLVED SO JG/L (U	DIS- D DLVED SO IG/L (U	LVED SO	NC, DIS- LVED G/L ZN)		
		AP	PR	2	8	.0	0	0	<3		
		SE 1		10 <10	2 6	.0	0	0	8 6		
DATE	TIME	GROSS ALPHA, DIS- SOLVED (PCI/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (PCI/L AS U-NAT)	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)
PR 25	1315	<1.6	2.4	<2.3	3.5	2.1	4.2	2.1	3.9	.13	.25
	DATE	TIME	PCB TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE. TOTAL (UG/L)	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)	
	APR 25	1315	.00	.0	.00	.1	.01	.00	.01	.34	
	DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	
	APR 25	.01	.00	.00	.00	.00	.00	.01	.12	.00	
	DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)	
	APR 25	.00	.00	.00	.00	0	.00	.11	.01	.01	

193

08157000 WALLER CREEK AT 38TH STREET, AUSTIN, TX

LOCATION.--Lat 30°17'49", long 97°43'36", Travis County, Hydrologic Unit 12090205, on right bank 200 ft (61 m) upstream from bridge at East 38th Street in Austin, 1.1 mi (1.8 km) upstream from West Branch of Waller Creek, and 3.3 mi (5.3 km) upstream from Colorado River.

DRAINAGE AREA .-- 2.31 mi2 (5.98 km2).

PERIOD OF RECORD .-- April 1955 to September 1980 (discontinued).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 555.44 ft (169.298 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Flow slightly regulated at times by a small reservoir at the Perry School (formerly Holy Cross High School) on East 41st Street and a small swimming pool at the school which is drained into the creek every week or two during the summer. Water from other swimming pools also drain into the creek. Station is part of hydrologic research project to study rainfall-runoff relation for small urban areas. Two recording rain gages are located in the watershed. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--25 years, 1.69 ft³/s (0.0479 m³/s), 9.94 in/yr (252 mm/yr), 1,220 acre-ft/yr (1.50 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,970 ft 3 /s (55.8 m 3 /s) Oct. 29, 1960, gage height, 7.77 ft (2.368 m); no flow for many days in 1955-57, 1964.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 327 ft 3 /s (9.26 m 3 /s) May 12 at 1245 hours, gage height, 4.95 ft (1.509 m), no other peak above base of 300 ft 3 /s (8.50 m 3 /s); minimum daily, 0.33 ft 3 /s (0.009 m 3 /s) Aug. 31.

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

			DISCH	ARGE, IN	CORIC		EAN VALU		OCTOBER	1979 10 SE.	PIEMBER I	980	
DAY	oc.	Т	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.4 .3 .4 .3	9 2 7	.42 .48 .44 .52 .45	.54 .46 .49 .49	.53 .52 .54 .53	.52 .58 .59 .53	.95 .55 .55 .58	.68 .93 .56 .59	9.1 .59 .54 .53	.80 .55 .78 .77	.66 .66 .66	.69 .68 .68 .41	.35 .41 .46 .44
6 7 8 9	.4 .4 .4 .4	4 3 2	.43 .44 .46 .44	.48 .50 .48 .47	.48 .50 .52 .50	.51 5.6 2.7 12 .82	.55 .58 .56 .55	.58 .55 .54 .54	.55 11 21 .68 .58	.76 .77 .77 .61	.67 .41 .65 .67	.82 .66 .63 .66 4.0	13 15 .94 6.1 .43
11 12 13 14 15	.3 .4 .4 .4	2 3 3	.86 .45 .48 .46	.49 8.0 1.8 .52 .53	.51 .47 .48 .52	.68 .59 .55 .49	.55 .61 .54 .54	.57 1.5 4.0 .60	.55 30 18 4.2 14	.72 .77 .72 .73	.70 .71 .63 .39	.40 .66 .63 .65	.40 .39 .41 .41
16 17 18 19 20	.4.	3 0 1	.47 .49 .48 .49	.54 .49 .49 .50	.52 .58 .55 .51	6.6 .68 .58 .55	.91 .54 .53 .55	.53 .53 .54 .54	4.7 1.5 1.0 2.2 .65	.46 .72 .70 .72 .70	.64 .64 .67	2.0 .71 .39 .64	.37 .36 .37 5.0 .37
21 22 23 24 25	.4 .4 .3 .4	1 9 2	.57 .46 .44 .93	.52 .52 14 .62 .52	3.1 6.9 .88 .55	.55 1.1 .58 .55	.53 .52 .56 .54	.52 .53 .54 .54	1.0 .64 .61 .63	4.8 .73 .49 .68 .70	.45 .66 .65 .67	.67 .77 .68 .57	.36 .36 .39 .36 8.6
26 27 28 29 30 31	.4: .4: .4: .4:	1 1 3	.48 .45 .44 .44	.52 .52 18 2.1 .57 .53	.49 .47 .49 .53 .52	.55 .55 .52 1.4	.56 51 1.3 .76 .66	.55 .53 .55 .58	.60 .59 .58 .53 .60	.71 .69 .68 .72 .45	.71 .68 2.8 .70 .68	.35 .36 .35 .36 .34	16 1.2 6.1 .49 3.2
TOTAL MEAN MAX MIN CFSM IN. AC-FT (††)	24.54 .79 11.33 .34 .40 49	9 2 7 4 0	5.00 .50 .93 .42 .22 .24 .30	57.18 1.84 18 .46 .80 .92 113 3.42	26.20 .85 6.9 .47 .37 .42 52	42.48 1.46 12 .49 .63 .68 84 2.32	69.85 2.25 51 .52 .97 1.12 139 3.09	37.94 1.26 17 .52 .55 .61 75 2.03	129.10 4.16 30 .52 1.80 2.08 256 6.36	25.04 .83 4.8 .45 .36 .40 .50	22.08 .71 2.8 .39 .31 .36 .44	22.63 .73 4.0 .33 .32 .36 45	83.17 2.77 .16 .35 1.20 1.34 165 6.66
CAL YR WTR YR		TOTAL	838.01 555.21	MEAN MEAN	2.30 1.52	MAX 154 MAX 51		.19 CFS		IN 13.49 IN 8.94	AC-FT AC-FT		39.71 29.13

^{††} Weighted-mean rainfall, in inches, based on two rain gages.

08157500 WALLER CREEK AT 23D STREET, AUSTIN, TX

LOCATION.--Lat 30°17'08", long 97°44'01", Travis County, Hydrologic Unit 12090205, on San Jacinto Boulevard, 50 ft (15 m) upstream from bridge on East 23d Street in Austin, and 2.1 mi (3.4 km) upstream from Colorado River.

DRAINAGE AREA . -- 4.13 mi 2 (10.70 km2).

PERIOD OF RECORD.--December 1954 to September 1980 (discontinued).

Water-quality records: Periodic chemical, biochemical, and pesticide analyses: October 1970 to September 1971.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 509.95 ft (155.433 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Some regulation by small dam upstream. Diversion of city water into channel during the summer months from municipal and private swimming pools. Some diversions into and out of drainage area by storm sewers. Station is part of a hydrologic research project to study rainfall-runoff relation for small urban areas. Three recording rain gages are located in the watershed. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--25 years, 3.51 ft³/s (0.099 m³/s), 11.54 in/yr (293 mm/yr), 2,540 acre-ft/yr (3.13 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $4,020~{\rm ft^3/s}~(114~{\rm m^3/s})~{\rm Oct.}~11,~1973,~{\rm gage~height},~9.00~{\rm ft}~(2.743~{\rm m});~{\rm minimum~daily},~0.2~{\rm ft^3/s}~(0.006~{\rm m^3/s})~{\rm at~times~in~1955-57}.$

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum flood since 1885 occurred Apr. 22, 1915, stage unknown.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 520 ft 3 /s (14.7 m 3 /s) Mar. 27, gage height, 4.13 ft (1.259 m), no peak above base of 800 ft 3 /s (22.7 m 3 /s); minimum daily, 0.44 ft 3 /s (0.012 m 3 /s) Sept. 1.

		DISC	CHARGE, IN	CUBIC FE		ECOND, WAT		OCTOBER 19	779 TO SEE	PTEMBER 19	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.59 .57 .59 .53	.56 .67 .58 .62	.68 .60 .63 .68	.79 .80 .75 .78	.69 1.2 .72 .72 .67	1.7 .72 .76 .79	1.6 1.8 .99 .92	.81 .70 .71 .75	1.0 .94 1.0 .98 1.0	.83 .92 .91 .75	.85 .79 .86 .71	.44 .50 .48 .48
6 7 8 9	.62 .75 .54 .56	.65 .63 .70 .60	.61 .67 .62 .64	.71 .72 .75 .76	.68 11 5.4 20 1.1	.78 .82 .76 .72 .74	.91 .90 .82 .79	.70 17 29 1.1 .85	.93 .96 .92 .91 .87	.84 .70 .78 .78	2.3 .92 .82 .82	20 30 3.0 5.9 .69
11 12 13 14 15	.51 .53 .51 .53 .58	1.3 .61 .61 .58 .58	.69 17 3.3 .75 .80	.73 .64 .68 .69	1.0 .90 .83 .79	.73 1.1 .75 .74	.88 3.3 8.0 .95 .88	.83 42 27 6.8 22	.88 .95 .93 .85	.90 .81 .76 .72	.84 .83 .76 .82 .87	.60 .56 .55 .61
16 17 18 19 20	.61 .66 .56 .61	.65 .76 .63 .67	.68 .65 .72 .70	.74 1.1 .74 .67 3.5	13 1.0 .97 .86 .82	1.8 .76 .71 .77	.85 .84 .81 .77	7.4 2.4 2.3 4.0 1.1	.77 .88 .93 .92 .82	1.0 1.0 .83 .80	5.0 .95 .73 .67	.54 .57 .58 11
21 22 23 24 25	.52 .51 .48 .54	1.6 .54 .59 2.2 1.1	.77 .88 24 1.0 .77	5.5 12 1.2 .84 .71	.83 1.2 .78 .75	.72 .70 .74 .74 2.5	.77 .86 .86 .84	2.0 1.0 1.1 .95	7.6 .90 .71 1.2 .92	.78 .83 .90 .98 .88	.90 1.0 .79 .80	.51 .51 .53 .62
26 27 28 29 30 31	.57 .51 .50 .56 23	66 .61 .56 .59 .61	.77 .79 29 3.3 .87	.64 .79 .88 .98 .84	.80 .79 .79 2.7	.82 83 2.5 1.4 1.0	.83 .75 .78 .86 .82	.93 .89 .82 .84 .96	1.0 .93 .89 .80	.87 .81 5.5 .83 .81	.60 .51 .54 .54 .49	21 4.5 11 .97 5.1
TOTAL MEAN MAX MIN CFSM IN. AC-FT (††)	39.99 1.29 23 .48 .31 .36 79	22.24 .74 2.2 .54 .18 .20 .44	95.40 3.08 29 .60 .75 .86 189 3.38	43.15 1.39 12 .64 .34 .39 86 1.19	72.62 2.50 20 .67 .61 .65 144 2.35	112.44 3.63 83 .70 .88 1.01 223 3.14	62.85 2.10 27 .75 .51 .57 125 2.03	192.78 6.22 42 .70 1.51 1.74 382 6.31	34.11 1.14 7.6 .71 .28 .31 68	30.56 .99 5.5 .70 .24 .28 61	42.84 1.38 14 .47 .33 .39 .85 1.50	143.79 4.79 30 .44 1.16 1.29 285 6.82

CAL YR 1979 TOTAL 1521.29 MEAN 4.17 MAX 270 MIN .48 CFSM 1.01 IN 13.70 AC-FT 3020 †† 41.89 WTR YR 1980 TOTAL 892.77 MEAN 2.44 MAX 83 MIN .44 CFSM .59 IN 8.04 AC-FT 1770 †† 29.52

ft Weighted-mean rainfall, in inches, based on three rain gages.

OXYGEN,

08157900 TOWN LAKE AT AUSTIN, TX

LOCATION.--Lat 30°14'56", long 97°43'03", Travis County, Hydrologic Unit 12090205, at Longhorn Dam on the Colorado River at Austin, 1.5 mi (2.4 km) downstream from Interstate Highway 35, and 2.3 mi (3.7 km) southeast of the State Capitol in Austin.

DRAINAGE AREA.--38,390 $\mathrm{mi^2}$ (99,430 $\mathrm{km^2}$), approximately, of which 12,880 $\mathrm{mi^2}$ (33,360 $\mathrm{km^2}$) probably is noncontributing.

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: Feburary 1975 to current year.

301559097424801 TOWN LAKE (AUSTIN) SITE AR
WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAR							
03	1115	1.0	500	7.8	14.0	8.7	84
03	1117	10	500	7.8	14.0	8.7	84
03	1119	25	500	7.8	14.0	8.7	84
28	1115	1.0	510	7.9	18.0	7.9	85
28	1117	10	515	7.9	17.0	7.9	83
28	1119	24	515	7.9	17.0	7.8	82
MAY							
19	1159	1.0	470	7.7	24.0	7.8	93
19	1201	10	449	7.6	22.5	6.4	74
19	1203	23	449	7.4	20.5	4.8	53
JUL							
31	1120	1.0	492	7.8	26.0	7.0	86
31	1123	10	492	7.8	24.5	7.3	87
31	1125	15	492	7.8	24.0	7.2	86
31	1128	24	492	7.8	24.0	7.0	83

301500097424801 TOWN LAKE (AUSTIN) SITE AC WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

SPE-

BIOCHEM IMMED. 0.7 KF AGAR NESS NONCAR- DIS-	8.8 85 8.8 85 7.6 82 7.6 82 7.5 79 7.5 79 7.5 79 7.8 92 6.0 68 4.9 54 3.9 43 7.0 86 7.3 87 7.0 83 7.0 83	8.8 8.8 7.6 7.5 7.5 7.8 6.0 4.9 3.9 7.0 7.3 7.0	2.0 7.2 3.6 2.6 15	5 5 0 0	1.37	14.0 14.0 18.0 17.0 17.0 17.0 23.5 21.5 20.5 20.0 26.0 24.0	7.8 7.8 7.8 7.8 7.7 7.7 7.5 7.4 7.3 7.8 7.8	515 515 477 491 491 491 470 466 463 463 492 492 492	10 22 1.0 10 20 23 1.0 10 20 30	1039 1041 1042 1044 1046 1048 1131 1133 1135 1137	03 03 28 28 28 29 20 20 20 20 20 20 20 20 20 20
03 1037	8.8 85 8.8 85 7.6 82 7.6 80 7.5 79 7.5 79 7.8 92 6.0 68 4.9 54 3.9 43 7.0 86 7.3 87 7.0 83 7.0 83	8.8 8.8 7.6 7.5 7.5 7.8 6.0 4.9 3.9 7.0 7.3 7.0	2.0 7.2 3.6 2.6 15	5 5 0 0	1.37	14.0 14.0 18.0 17.0 17.0 17.0 23.5 21.5 20.5 20.0 26.0 24.0	7.8 7.8 7.8 7.8 7.7 7.7 7.5 7.4 7.3 7.8 7.8	515 515 477 491 491 491 470 466 463 463 492 492 492	10 22 1.0 10 20 23 1.0 10 20 30	1039 1041 1042 1044 1046 1048 1131 1133 1135 1137	03 03 28 28 28 29 20 20 20 20 20 20 20 20 20 20
03 1039 10 515 7.8 14.0 2.0 03 1041 22 515 7.8 14.0 2.0 28 1042 1.0 477 7.8 18.0 .90 10 7.2 28 1046 20 491 7.8 17.0 28 1046 20 491 7.8 17.0 28 1048 23 491 7.7 17.0 5 3.6 MAY 19 1131 1.0 470 7.7 23.5 1.37 5 2.6 19 1133 10 466 7.5 21.5 19 1135 20 463 7.4 20.5 19 1137 30 463 7.3 20.0 5 15 JUL 31 1040 1.0 492 7.8 24.0 31 1045 10 492 7.8 24.0 31 1055 23 492 7.8 24.0 31 1055 23 492 7.8 24.0 31 1055 23 492 7.8 24.0 0 .90 COLI- COLI- STREP- UNINHIE TOTAL, FECAL, FECAL, HARD- NESS, NONCAR- DIS- UNINHIE SOLUTION SOLUTION SOLUTE SOLUTE SOLUTE SOLUTE SOLUTE DATE (MG/L) 100 ML) 100 ML) 100 ML) CACO3 CACO3 AS CA) AS MG AS MG AS MG MAR O3 1 780 8 2 210 38 51 20	8.8 85 8.8 85 7.6 82 7.6 80 7.5 79 7.5 79 7.8 92 6.0 68 4.9 54 3.9 43 7.0 86 7.3 87 7.0 83 7.0 83	8.8 8.8 7.6 7.5 7.5 7.8 6.0 4.9 3.9 7.0 7.3 7.0	2.0 7.2 3.6 2.6 15	5 5 0 0	1.37	14.0 14.0 18.0 17.0 17.0 17.0 23.5 21.5 20.5 20.0 26.0 24.0	7.8 7.8 7.8 7.8 7.7 7.7 7.5 7.4 7.3 7.8 7.8	515 515 477 491 491 491 470 466 463 463 492 492 492	10 22 1.0 10 20 23 1.0 10 20 30	1039 1041 1042 1044 1046 1048 1131 1133 1135 1137	03 03 28 28 28 48 19 19 19 19 JUL
03 1041 22 515 7.8 14.0 2 2.0 28 1042 1.0 477 7.8 18.0 .90 10 7.2 28 1044 10 491 7.8 17.0 28 1046 20 491 7.8 17.0 28 1048 23 491 7.7 17.0 5 3.6 MAY 19 1131 1.0 470 7.7 23.5 1.37 5 2.6 19 1135 20 463 7.4 20.5 19 1137 30 463 7.3 20.0 5 15 JUL 31 1040 1.0 492 7.8 26.0 2.29 0 1.2 31 1045 10 492 7.8 24.0 31 1050 15 492 7.8 24.0 31 1055 23 492 7.8 24.0 31 1055 23 492 7.8 24.0 0 .90 OXYGEN FORM, FORM, FORM, FORM, FORM, BIOCHEM IMMED. 0.7 KF AGAR NESS NONCAR DISSUM, SOLUBLE SO	8.8 85 7.6 82 7.6 80 7.5 79 7.5 79 7.8 92 6.0 68 4.9 54 3.9 43 7.0 83 7.0 83 7.0 83 7.0 83	8.8 7.6 7.5 7.5 7.8 6.0 4.9 3.9 7.0	7.2 3.6 2.6 15	5 5 5 0 0	.90 1.37 2.29	14.0 18.0 17.0 17.0 17.0 23.5 21.5 20.5 20.0 24.0 24.0	7.8 7.8 7.8 7.7 7.7 7.7 7.5 7.4 7.3 7.8	515 477 491 491 491 470 466 463 463 492 492 492	22 1.0 10 20 23 1.0 10 20 30	1041 1042 1044 1046 1048 1131 1133 1135 1137	03 28 28 28 28 MAY 19 19 19
28 1042 1.0 477 7.8 18.0 .90 10 7.2 28 1046 20 491 7.8 17.0 28 1046 20 491 7.8 17.0 28 1048 23 491 7.7 17.0 5 3.6 MAY	7.6 82 7.6 80 7.5 79 7.5 79 7.8 92 6.0 68 4.9 54 3.9 43 7.0 86 7.3 87 7.0 83 7.0 83	7.6 7.5 7.5 7.8 6.0 4.9 3.9 7.0 7.3 7.0	3.6 2.6 15	5 5 5 0 0	1.37	17.0 17.0 17.0 23.5 21.5 20.5 20.0 26.0 24.0 24.0	7.8 7.8 7.7 7.7 7.5 7.4 7.3 7.8 7.8 7.8	491 491 470 466 463 463 492 492 492 492	1.0 10 20 23 1.0 10 20 30	1044 1046 1048 1131 1133 1135 1137	28 28 28 28 MAY 19 19 19 JUL
28 1046 20 491 7.8 17.0 28 1048 23 491 7.7 17.0 5 3.6 MAY 19 1131 1.0 470 7.7 23.5 1.37 5 2.6 19 1133 10 466 7.5 21.5 19 1135 20 463 7.4 20.5 19 1137 30 463 7.3 20.0 5 15 JUL 31 1040 1.0 492 7.8 24.0 31 1045 10 492 7.8 24.0 31 1050 15 492 7.8 24.0 31 1055 23 492 7.8 24.0 0 .90 COLI- COLI- STREP- TOCOCCI HARD- NESS CALCIUM SIUM SOI DEMAND, BIOCHEM IMMED. 0.7 KF AGAR NESS NONCAR- DIS- DIS- DIS- UNINHIB COLS. UM-MF COLS. (MG/L BONATE SOLVED SOLVED SOI DATE (MG/L) 100 ML) 100 ML) 100 ML) CACO3 CACO3 AS CA) AS MG AS MAR 03 1 780 8 2 210 38 51 20	7.5 79 7.5 79 7.8 92 6.0 68 4.9 54 3.9 43 7.0 86 7.3 86 7.0 83 7.0 83 7.0 83	7.5 7.5 7.8 6.0 4.9 3.9 7.0 7.3 7.0	3.6 2.6 15 1.2	5 5 0	1.37	17.0 17.0 23.5 21.5 20.5 20.0 26.0 24.0 24.0	7.8 7.7 7.5 7.4 7.3 7.8 7.8	491 491 470 466 463 463 492 492 492	1.0 10 20 30	1046 1048 1131 1133 1135 1137	28 28 MAY 19 19 19 JUL
28 1048 23 491 7.7 17.0 5 3.6 MAY 19 1131 1.0 470 7.7 23.5 1.37 5 2.6 19 1133 10 466 7.5 21.5 19 1135 20 463 7.4 20.5 5 15 19 1137 30 463 7.3 20.0 5 15 JUL 31 1040 1.0 492 7.8 26.0 2.29 0 1.2 31 1045 10 492 7.8 24.0 31 1050 15 492 7.8 24.0 31 1055 23 492 7.8 24.0 0 90 COLI- OXYGEN FORM, FORM, FORM, DEMAND, TOTAL, FECAL, HARD- BIOCHEM IMMED. 0.7 KF AGRA NESS NONCAK- UNINHIB (COLS. UN-MF (COLS.) BIOCHEM IMMED. 0.7 KF AGRA NESS NONCAK- UNINHIB (COLS. UN-MF (COLS.) DATE (MG/L) 100 ML) 100 ML) 100 ML) CACO3) CACO3) AS CA) AS MG) AS MAR 03 1 780 8 2 210 38 51 20	7.5 79 7.8 92 6.0 68 4.9 54 3.9 43 7.0 86 7.3 87 7.0 83 7.0 83 83	7.5 7.8 6.0 4.9 3.9 7.0 7.3 7.0	3.6 2.6 15 1.2	5 5 5 0	1.37	17.0 23.5 21.5 20.5 20.0 26.0 24.0 24.0	7.7 7.7 7.5 7.4 7.3 7.8 7.8 7.8	491 470 466 463 463 492 492 492	1.0 10 20 30	1048 1131 1133 1135 1137	28 MAY 19 19 19 JUL
MAY 19 1131 1.0 470 7.7 23.5 1.37 5 2.6 19 1133 10 466 7.5 21.5 19 1135 20 463 7.4 20.5 19 1137 30 463 7.3 20.0 5 15 JUL 31 1040 1.0 492 7.8 26.0 2.29 0 1.2 31 1045 10 492 7.8 24.0 31 1050 15 492 7.8 24.0 31 1055 23 492 7.8 24.0 0 90 COLI- OXYGEN FORM, FORM, TOCOCCI DEMAND, TOTAL, FECAL, FECAL, HARD- NESS, CALCIUM SIUM, S01 BIOCHEM IMMED. 0.7 KF AGAR NESS NONCAR- UNINHIB (COLS. UM-MF SOLVED S01 DATE (MG/L) 100 ML) 100 ML) CACO3) CACO3) AS CA) AS MG) AS MAR O31 780 8 2 210 38 51 20	7.8 92 6.0 68 4.9 54 3.9 43 7.0 87 7.0 83 7.0 83 7.0 83	7.8 6.0 4.9 3.9 7.0 7.3 7.0	2.6 15 1.2	5 5 0	1.37 2.29	23.5 21.5 20.5 20.0 26.0 24.0 24.0	7.7 7.5 7.4 7.3 7.8 7.8 7.8	470 466 463 463 492 492 492	1.0 10 20 30	1131 1133 1135 1137	19 19 19 19 JUL
19 1131 1.0 470 7.7 23.5 1.37 5 2.6 19 1133 10 466 7.5 21.5 19 1135 20 463 7.4 20.5 19 1137 30 463 7.3 20.0 5 15 JUL 31 1040 1.0 492 7.8 26.0 2.29 0 1.2 31 1045 10 492 7.8 24.0 31 1050 15 492 7.8 24.0 31 1055 23 492 7.8 24.0 0 90 COLI- COLI- STREP- OXYGEN FORM, FORM, TOCOCCI BENAND, TOTAL, FECAL, FECAL, HARD- NESS, CALCIUM SIUM, SOI DEMAND, BIOCHEM IMMED. 0.7 KF AGAR NESS NONCAR- UNINHIB (COLS. UM-MF (COLS. (MG/L BONATE SOLVED SOI DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS	6.0 68 4.9 54 3.9 43 7.0 86 7.3 87 7.0 83 7.0 83	6.0 4.9 3.9 7.0 7.3 7.0	1.2	5	2.29	21.5 20.5 20.0 26.0 24.0 24.0	7.5 7.4 7.3 7.8 7.8 7.8	466 463 463 492 492 492	10 20 30	1133 1135 1137	19 19 19 19 JUL
19 1133 10 466 7.5 21.5 19 1135 20 463 7.4 20.5 5 15 19 1137 30 463 7.3 20.0 5 15 JUL 31 1040 1.0 492 7.8 26.0 2.29 0 1.2 31 1045 10 492 7.8 24.0 31 1050 15 492 7.8 24.0 31 1055 23 492 7.8 24.0 0 90 OXYGEN FORM, FORM, FORM, TOCOCCI DEMAND, TOTAL, FECAL, FECAL, HARD- NESS, CALCIUM SIUM, SOI DEMAND, TOTAL, FECAL, FECAL, HARD- NESS, CALCIUM SIUM, SOI UNINHIB (COLS. UM-MF (COLS. (MG/L BONATE SOLVED SOI DEMAND) TOTAL, FECAL, FECAL, HARD- NESS, CALCIUM SIUM, SOI DEMAND, TOTAL, FECAL, FECAL, HARD- NESS, CALCIUM SIUM, SOI DEMAND, TOTAL, FECAL, FECAL, HARD- NESS, CALCIUM SIUM, SOI DEMAND, TOTAL, FECAL, FECAL, HARD- NESS, CALCIUM SIUM, SOI DEMAND, TOTAL, FECAL, FECAL, HARD- NESS, CALCIUM SIUM, SOI DEMAND, TOTAL, FECAL, HARD- NESS, CALCIUM SIUM, SOI DEMAND, TOTAL, FECAL, HARD- NESS, CALCIUM SIUM, SOI DEMAND, TOTAL, FECAL, HARD- NONCAR- DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS	6.0 68 4.9 54 3.9 43 7.0 86 7.3 87 7.0 83 7.0 83	6.0 4.9 3.9 7.0 7.3 7.0	1.2	5	2.29	21.5 20.5 20.0 26.0 24.0 24.0	7.5 7.4 7.3 7.8 7.8 7.8	466 463 463 492 492 492	10 20 30	1133 1135 1137	19 19 19 JUL
19 1135 20 463 7.4 20.5 5 15 JUL 31 1040 1.0 492 7.8 26.0 2.29 0 1.2 31 1045 10 492 7.8 24.0 31 1050 15 492 7.8 24.0 31 1055 23 492 7.8 24.0 0 .90 COLI- COLI- STREP- OXYGEN FORM, FORM, TOCOCCI DEMAND, TOTAL, FECAL, FECAL, HARD- NESS, CALCIUM SIUM, SOI BIOCHEM IMMED. 0.7 KF AGAR NESS UNINHIB (COLS. UM-MF 50K) 5 DAY PER (COLS./ PER AS (MG/L BONATE SOLVED SOLVED SOI DATE (MG/L) 100 ML) 100 ML) 100 ML) CACO3) CACO3) AS CA) AS MG) AS MAR O31 780 8 2 210 38 51 20	4.9 54 3.9 43 7.0 86 7.3 87 7.0 83 7.0 83	4.9 3.9 7.0 7.3 7.0	1.2	5	2.29	20.5 20.0 26.0 24.0 24.0	7.4 7.3 7.8 7.8 7.8	463 463 492 492 492	20 30	1135 1137 1040	19 19 JUL
19 1137 30 463 7.3 20.0 5 15 JUL 31 1040 1.0 492 7.8 26.0 2.29 0 1.2 31 1045 10 492 7.8 24.0 31 1050 15 492 7.8 24.0 31 1055 23 492 7.8 24.0 0 90 COLI- COLI- STREP- TOCOCCI HARD- NESS, CALCIUM SIUM, SOI BIOCHEM IMMED. 0.7 KF AGAR NESS NONCAR- DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS	3.9 43 7.0 86 7.3 87 7.0 83 7.0 83 7.0 SODIUM	7.0 7.3 7.0	1.2	0 	2.29	20.0 26.0 24.0 24.0	7.3 7.8 7.8 7.8	463 492 492 492	1.0	1137 1040	19 JUL
JUL 31 1040 1.0 492 7.8 26.0 2.29 0 1.2 31 1045 10 492 7.8 24.0 31 1050 15 492 7.8 24.0 31 1055 23 492 7.8 24.0 0 90 COLI- OXYGEN FORM, FORM, TOCOCCI DEMAND, TOTAL, FECAL, FECAL, HARD- BIOCHEM IMMED. 0.7 KF AGAR NESS, NONCAR- UNINHIB (COLS. UM-MF (COLS. (MG/L BIONATE SOLVED	7.0 86 7.3 87 7.0 83 7.0 83	7.0 7.3 7.0	1.2	0	2.29	26.0 24.0 24.0	7.8 7.8 7.8	492 492 492	1.0	1040	JUL
31 1040 1.0 492 7.8 26.0 2.29 0 1.2 31 1045 10 492 7.8 24.0 31 1050 15 492 7.8 24.0 31 1055 23 492 7.8 24.0 0 .90 COLI	7.3 87 7.0 83 7.0 83 83	7.3 7.0		11		24.0	7.8 7.8	492 492			
31 1045 10 492 7.8 24.0	7.3 87 7.0 83 7.0 83 83	7.3 7.0		11		24.0	7.8 7.8	492 492			
31 1050 15 492 7.8 24.0	7.0 83 7.0 83 SODIUM	7.0		12.2		24.0	7.8	492			
COLI- COLI- STREP- TOCOCCI HARD- NESS CALCIUM SIUM, SOI SIUM, SIUM	7.0 83										
OXYGEN FORM, FORM, TOCOCCI DEMAND, TOTAL, FECAL, FECAL, HARD-NESS, CALCIUM SIUM, SOLIUMINHIB (COLS. UM-MF (COLS. (MG/L BONATE SOLVED SO	SODIUM							492			
DEMAND, TOTAL, FECAL, HARD- NESS, CALCIUM SIUM, SOI BIOCHEM IMMED. 0.7 KF AGAR NESS NONCAR- DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS							STREP-	COLI-	COLI-		
031 780 8 2 210 38 51 20	OLVED TION (MG/L RATIO	SODIUM, DIS- SOLVED (MG/L AS NA)	SIUM, SO DIS- SOLVED SO (MG/L (CALCIUM DIS- SOLVED (MG/L	NESS, NONCAR- BONATE (MG/L	NESS (MG/L AS	TOCOCCI FECAL, KF AGAR (COLS. PER	FORM, FECAL, 0.7 UM-MF (COLS./	FORM, TOTAL, IMMED. (COLS. PER	DEMAND, BIOCHEM UNINHIB 5 DAY	DATE
03	26 .8	26									
											03
033 210 38 51 20	27 23 .7									.3	
28 1.3 >2000 2000 780 190 35 45 19 28	23 .7										
28											
28 1.2 200 33 46 20	24 .7										
MAY		24	20	40	33	200	75.7	- 25		1.2	MAY
19 1.0 3100 200 43 210 32 57 17	15 .4	15	17	5.7	32	210	43	200	3100	1.0	
19											
19											
195 180 27 45 17	18 .6	18	17	4.5	27	180					19
JUL						-					
316 620 440 K3							K3	440	620	.6	
31				44.1							31
31	24 .7		0.55	**							
313 200 32 44 21		24		44	32	200					

TOWN LAKE AT AUSTIN, TX--Continued

301500097424801 TOWN LAKE (AUSTIN) SITE AC--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	POTAS- SIUM, DIS- SOLVED	BICAR- BONATE (MG/L	CAR- BONATE	SULFATE DIS- SOLVED	CHLO- RIDE, DIS- SOLVED	FLUO- RIDE, DIS- SOLVED	SILICA, DIS- SOLVED (MG/L	SOLIDS, SUM OF CONSTI- TUENTS, DIS-	SOLIDS, RESIDUE AT 105 DEG. C, SUS-	SOLIDS, VOLA- TILE, SUS-
DATE	(MG/L AS K)	AS HCO3)	(MG/L AS CO3)	(MG/L AS SO4)	(MG/L AS CL)	(MG/L AS F)	AS SIO2)	SOLVED (MG/L)	PENDED (MG/L)	PENDED (MG/L)
MAR										
03	2.8	210	0	36	40	.2	7.3	286	0	0
03	2.8	210		34	41	.2	7.2	286	2	2
28	3.2	190	0	32	39	.3	7.2	262	0	0
28						100				
28	3.2	200	0	33	39	.3	7.3	271	5	
MAY						-	7.5	271		
19	2.4	220	0	25	22	. 2	8.5	256	13	1.3
19										
19	2.8	190	0	27	31	. 2	8.3	243	24	15
JUL	2.0	200	0						0	0
31	3.0	200	0						0	
31										
31	3.0	200	0.	30	44	.3	8.8	274	1	1
DATE	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAR										
03	.19	.010	.20	.070	.33	.40	.60	.020	<10	10
03	.27	.010	.28	.100	.53	.63	.91	.030	<10	3
28	.12	.010	.13	.080	.60	.68	.81	.070	<10	3
28	.04	.000	.04	.040	.79	.83	.87	.050	30	0
28	.14	.010	.15	.100	.48	.58	.73	.040	<10	4
MAY										
19	.32	.010	.33	.030	.45	1.0	1.2	.010	<10 20	<3 0
19	.22	.010	.23	.100	. 50		1,2	.010		
19 JUL	.17	.010	.18	.150	.73	.88	1.1	.050	<10	20
31	.12	.010	.13	.030	.59	.62	.75	.010		
31										
31	.11	.010	.12	.030	.64	.67	.79	.010	<10	5
31	. ()	.010	.12	.030	.04	.0/	. 19	.010	(10	3

301503097424701 TOWN LAKE (AUSTIN) SITE AL
WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAR							
03	1125	1.0	520	7.8	14.0	8.7	84
03	1127	10	520	7.8	14.0	8.7	84
03	1129	15	520	7.8	14.0	8.8	85
28	1105	1.0	477	7.8	18.5	7.5	82
28	1107	12	491	7.8	17.0	7.3	77
MAY							
19	1116	1.0	479	7.7	24.0	8.0	95
19	1118	10	466	7.5	21.5	6.5	74
19	1120	17	463	7.4	20.5	5.1	57
JUL							
31	1130	1.0	492	7.8	26.0	7.3	90
31	1132	10	492	7.8	24.0	7.3	87
31	1135	17	492	7.8	24.0	7.3	87

301500097440801 TOWN LAKE (AUSTIN) SITE BR
WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- C1FIC CON- DUCT- ANCE (M1CRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAR							
03	1145	1.0	555	7.7	14.0	8.7	84
03	1147	13	555	7.7	14.0	8.4	82
28	1130	1.0	301	7.6	17.0	7.1	75
28	1132	10	290	7.6	16.5	7.0	73
28	1134	13	290	7.6	16.5	7.0	73
MAY							
19	1228	1.0	500	7.5	24.0	7.3	87
19	1230	1.2	496	7.4	22.5	5.9	68
JUL							
31	1150	1.0	492	7.8	24.5	7.1	85
31	1152	10	492	7.8	24.0	7.1	85
31	1155	21	492	7.8	24.0	7.1	85

301504097440901 TOWN LAKE (AUSTIN) SITE BC
WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUK- ATION)
MAR							
03	1135	1.0	555	7.7	14.0	8.5	83
03	1137	10	555	7.7	14.0	8.5	83
03	1139	20	555	7.7	14.0	8.4	82
03	1141	25	555	7.7	14.0	8.4	82
28	1125	1.0	280	7.7	17.0	7.2	76
28	1127	10	301	7.7	16.5	7.2	75
28	1129	20	301	7.7	16.5	7.1	74
MAY		12.00					
19	1215	1.0	500	7.5	23.5	7.4	87
19	1217	10	498	7.4	22.5	6.6	77
19	1219	20	496	7.4	22.0	5.8	67
19	1221	25	496	7.4	22.0	5.9	68
JUL	1110		(00	2.7	05.0	7.0	0.7
31	1140	1.0	492	7.8	25.0	7.2	87
31	1143	10	492	7.8	24.0	7.1	85
31	1145	20	492	7.8	24.0	7.0	83
31	1148	28	492	7.8	24.0	6.9	82

301544097445201 TOWN LAKE (AUSTIN) SITE CK
WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAR							
03	1208	1.0	588	7.6	14.0	10.7	104
03	1210	8.0	588	7.6	14.0	10.7	104
28	1155	1.0	489	7.4	20.0	6.7	74
28	1157	6.0	421	7.6	17.0	6.5	6.8
MAY							
19	1255	1.0	496	7.5	22.0	7.6	87
19	1257	9.0	496	7.5	21.5	7.6	86
JUL							
31	1217	1.0	496	7.7	23.0	6.8	79
31	1220	8.0	496	7.7	23.0	6.8	79

TOWN LAKE AT AUSTIN, TX--Continued

301546097445101 TOWN LAKE (AUSTIN) SITE CC WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAR							
03	1157	1.0	588	7.6	14.0	10.5	102
03	1159	10	588	7.6	14.0	10.5	102
03	1201	15	588			10.5	102
28	1145	1.0	454	7.5	19.5	7.1	7.8
28	1147	10	358	7.6		6.8	72
28	1149	15	328	7.6	17.0	6.7	7.1
MAY		7.0		0.3			
19	1242	1.0	496	7.5	21.5	7.7	88
19	1244	10	496			7.7	88
19	1246	19	496	7.4	21.5	7.8	89
JUL			200	2.5		la la	5.4
31	1210	1.0	496	7.7	24.0	6.9	82
31	1213	10	492	7.8	23.5	6.9	80
31	1215	14	492	7.8	23.5	6.7	79

301556097452301 TOWN LAKE (AUSTIN) SITE DR
WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAR							
03	1240	1.0	569	7.7	14.0	10.8	105
03	1242	10	569	7.7	14.0	10.8	105
03	1244	15	569	7.7	14.0	10.9	106
28	1220	1.0	525	7.2	20.5	6.2	70
28	1222	11	480	7.6	17.0	6.1	
MAY							
19	1325	1.0	496	7.5	23.0	7.8	91
19	1327	13	496	7.5	21.5	7.3	83
JUL							
31	1255	1.0	500	7.6	23.5	7.3	86
31	1258	1.2	500	7.7	23.0	6.8	79

301558097452201 TOWN LAKE (AUSTIN) SITE DC
WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENGY (SECCHI DISK) (M)	COLOR (PLAT- INUM COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAR										
03	1220	1.0	569	7.8	14.0	5.5	2	1.3	10.7	104
03	1222	10	569	7.8	14.0				10.7	104
03	1224	18	569	7.8	14.0		5	.80	10.6	103
28	1205	1.0	507	7.2	19.5		20	15	6.1	68
28	1207	10	480	7.7	17.0		1		6.8	72
28	1209	21	463	7.7	17.0		20	7.8	6.4	67
MAY										
19	1306	1.0	492	7.5	22.0	2.19	5	1.8	8.0	92
19	1308	10	490	7.6	21.5				7.7	88
19	1310	19	490	7.6	21.5		0	6.7	7.7	88
JUL										
31	1230	1.0	492	7.8	22.5	2.29	U	.80	6.7	77
31	1235	10	492	7.8	22.5		1.4		6.7	77
31	1240	22	492	7.8	22.5	++	()	1.1	6.6	76

TOWN LAKE AT AUSTIN, TX--Continued

301558097452201 TOWN LAKE (AUSTIN) SITE DC--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	OXYGEN DENAND, BIOCHEM UNINHIB 5 DAY (NG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORN, FECAL, 0.7 UM-MF (COLS./ 100 NL)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS- SOLVED	SODIUM, DIS-	SODIUM AD- SORP- TION RATIO
MAR										
03	. 6	440	82	49	260	44	65	23	23	.6
03	1.2	>4600	4600	7200	250 230	39 42	63 61	23 19	22 18	.6
28					2.1					
28 MAY	.9				190	38	43	19	22	.7
19	.4	460	140	36	210	32	52	20	18	.5
19	.5		2-	4.40	200	32	49	20	19	.6
JUL 31	.4	460	100	K14	190	25	41	21	25	.8
31	.4				190	25	41	21	25	.8
	POTAS-	BICAR-		CIII FATE	CHLO- RIDE,	FLUO- RIDE,	SILICA, DIS-	SOLIDS, SUM OF CONSTI-	SOLIDS, RESIDUE AT 105	SOLIDS,
DATE	DIS- SOLVED (MG/L AS K)	BONATE (MG/L AS HCO3)	(MG/L	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS F)	SOLVED (MG/L	TUENTS, DIS- SOLVED (MG/L)	DEG. C, SUS- PENDED (MG/L)	TILE, SUS- PENDED
MAR	2.0	0.00		21	2.7	2	-	210		
03	2.2	260	0		37	.2	5.4	318	0	0
03 28	2.2	260 230	0	46 31	36 30	.2	5.1 9.1	326 284	14	0
28	3.2	180	0	33	37	.3	7.5	254	10	8
MAY	2.6	220	0	28	30	.2	8.2	267	14	15
19										
19 JUL	2.7	210	0	29	35	.3	8.1	267	16	3
31	3.3	200	0	29	45	.3	8.2	271	0	0
31	3.3	200	0	29	44	.3	8.3	271	Ü	0
	wind:	Total Control		2420		NITRO-				Liber
DATE	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	(MG/L		NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	GEN, ORGANIC	(MG/L	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAR 03	.50	.010	.51	.030	.26	.29	.80	.000	<10	4
03	.53	.010	.54	.010	.85	.86	1.4	.000	(10	10
28 28 28 MAY	.46 .11 .10	.010 .000 .010	.47 .11 .11	.060 .060 .100	.77 .72 .77	.83 .78 .87	1.3 .89 .98	.060 .040 .050	<10 40 30	8 10 10
19 19	.21 .13 .18	.010 .010 .010	.22 .14 .19	.030 .010 .030	.34 .44 .37	.37 .45 .40	.59 .59	.010 .030 .010	<10 20 <10	10 20 10
JUL 31 31	.09 .09	.000 .010 .010	.09 .10 .10	.010 .010 .010	.58 .99	.59 1.0 .96	.68 1.1 1.1	.010 .010	<10 0 <10	8 10 8

TOWN LAKE AT AUSTIN, TX--Continued

301712097470701 TOWN LAKE (AUSTIN) SITE EC WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	LIELD	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	COLOR (PLAT- INUM COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAR 03 03 28	1311 1313 1245 1247	1.0 12 1.0 12	527 527 505 488	7.9 7.8 7.3 7.6	12.5 12.5 19.0 17.5	1.40	2 5 10 10	2.6 3.3 3.0 2.9	9.8 9.9 7.5 6.4	92 93 82 68
19 19 19	1342 1344 1346	1.0 10 19	483 483 483	7.8 7.8 7.8	21.5 21.5 21.5	1.52	5	2.9	8.3 8.2 8.2	94 93 93
JUL 31 31	1320 1325 1330	1.0 10 15	492 492 492	7.9 7.8 7.8	23.0 22.5 22.5		-0		7.4 6.9 6.9	
DATE	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	IMMED. (COLS. PER	UM-MF (COLS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	NESS (MG/L AS	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	SOLVED	DIS-	SODIUM AD- SORP- TION RATIO
MAR 03 03 28	.6 .2 .8 1.0	820 220	6 220	12 230	210 220 220 220 200	42 47 37 36	48 50 54 47	23 23 20 20	27 25 20 22	.8 .7 .6 .7
19 19 19	.8	10000	44 	10	200	33 33	46 	20	20	.6
JUL 31 31 31	.5	100	28 	K4 	190 190	30 23	43	21	2423	.8 .7
	POTAS- SIUM, DIS-	BICAR- BONATE	CAR-	SULFATE DIS-	CHLO- RIDE, DIS-	FLUO- RIDE, DIS-	SILICA, DIS- SOLVED	CONSTI-	SOLIDS, RESIDUE AT 105 DEG. C,	VOLA- TILE,
DATE	SOLVED (MG/L AS K)	(MG/L AS HCO3)	BONATE (MG/L AS CO3)	SOLVED (MG/L AS SO4)	SOLVED	SOLVED (MG/L AS F)	(MG/L	DIS-	SUS- PENDED	SUS-
MAR 03 03 28 28	SOLVED (MG/L AS K)	(MG/L AS	(MG/L	(PIG/L	SOLVED (MG/L	SOLVED (MG/L	(MG/L	DIS- SOLVED	SUS- PENDED	SUS- PENDED
MAR 03 03 28 28 MAY 19 19	SOLVED (MG/L AS K) 3.3 3.2 2.6 3.1 2.9	(MG/L AS HCO3) 210 210 220	(MG/L AS CO3)	AS SO4) 42 35 32	SOLVED (MG/L AS CL) 43 43 35	SOLVED (MG/L AS F)	(MG/L AS SIO2) 8.1 7.8 8.2	DIS- SOLVED (MG/L) 298 290 281	SUS- PENDED (MG/L)	SUS- PENDED (MG/L)
MAR 03 03 28 28 MAY 19	SOLVED (MG/L AS K) 3.3 3.2 2.6 3.1 2.9 2.9 3.2	(MG/L AS HCO3)	(MG/L AS CO3)	42 35 32 32 32	MG/L AS CL) 43 43 35 40	SOLVED (MG/L AS F)	(MG/L AS SIO2) 8.1 7.8 8.2 8.2 8.2	DIS- SOLVED (MG/L) 298 290 281 271	SUS- PENDED (MG/L) 6 0 0 0 20 126	SUS- PENDED (MG/L)
MAR 03 28 28 MAY 19 19 JUL 31	SOLVED (MG/L AS K) 3.3 3.2 2.6 3.1 2.9 2.9	(MG/L AS HCO3) 210 220 200 200 200	(MG/L AS CO3) 0 0 0 0 0	(NG/L) AS SO4) 42 35 32 32 32 28 	SOLVED (MG/L AS CL) 43 43 35 40 33 33	SOLVED (MG/L AS F) .2 .2 .3 .3 .3 .2 .2 .2	(MG/L AS SIO2) 8.1 7.8 8.2 8.2 8.1 	DIS- SOLVED (MG/L) 298 290 281 271 257 	SUS- PENDED (MG/L) 6 0 0 0 20 	SUS- PENDED (MG/L) 5 0 0 0 16 4
MAR 03 28	SOLVED (MG/L AS K) 3.3 3.2 2.6 3.1 2.9 3.2 3.2 NITRO- GEN, NITRATE TOTAL (MG/L	(MG/L AS HCO3) 210 220 200 200 200 200 200 200 200 NITRO- GEN. NITRITE TOTAL (MG/L	(MG/L AS CO3)	AS SO4) 42 35 32 32 28 29 29 30 NITROGEN, AMMONIA TOTAL (MG/L	SOLVED (MG/L AS CL) 43 43 35 40 33 45 45 45 NITROGEN, ORGANIC TOTAL (MG/L	SOLVED (MG/L AS F) .2 .3 .3 .3 .2 .2 .2 .3 .3 .3 NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L	(MG/L AS SIO2) 8.1 7.8 8.2 8.2 8.1 	DIS- SOLVED (MG/L) 298 290 281 271 257 258 273 271 PHOS-PHORUS, TOTAL (MG/L)	SUS-PENDED (MG/L) 6 0 0 0 0 20 126 1 3 IRON, DIS-SOLVED (UG/L	SUS-PENDED (MG/L) 5 0 0 0 16 4 0 1 MANGA-NESE, DIS-SOLVED (UG/L)
MAR 03 28 28 48 28 28 MAY 19 19 19 31 31 31 31 DATE	SOLVED (MG/L AS K) 3.3 3.2 2.6 3.1 2.9 3.2 3.2 NITRO- GEN, NITRATE TOTAL (MG/L AS N) .10 .09 .43	(MG/L AS HCO3) 210 220 200 200 200 200 200 200 200 200 NITRO- GEN. NITRITE TOTAL (MG/L AS N)	MG/L AS CO3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NITRO- GEN. AMMONIA TOTAL (MG/L AS N)	SOLVED (MG/L AS CL) 43 43 35 40 33 33 45 45 NITRO- GEN, ORGANIC TOTAL (MG/L AS N) .38 .40 .77	SOLVED (MG/L AS F) .2 .2 .3 .3 .3 .3 .2 .22 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .4 .2 .22 .3 .3 .3 .3 .3 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4	(MG/L AS SIO2) 8.1 7.8 8.2 8.2 8.1 8.7 8.7 8.7 NITRO- GEN, TOTAL (MG/L AS N)	DIS- SOLVED (MG/L) 298 290 281 271 257 258 273 271 PHOS- PHORUS, TOTAL (MG/L AS P)	SUS- PENDED (MG/L) 6 0 0 0 20 126 1-3 1RON, DIS- SOLVED (UG/L AS FE) <10 <10 <10 <10	SUS- PENDED (MG/L) 5 0 0 0 0 166 4 0 1 1

201

TOWN LAKE AT AUSTIN, TX--Continued

301601097454001 TOWN LAKE (AUSTIN) SITE FC
WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PEK- CENT SATUK- ATION)
MAR							
03	1255	1.0	647	7.3	19.0	11.8	127
28	1228	1.0	607	7.2	22.5	11.7	136
MAY							
19	1416	1.0	496	7.6	23.5	9.5	112
19	1418	8.0	496	7.6	23.5	9.5	112
JUL							
31	1305	1.0	631	7.2	23.5	10.7	126
31	1310	6.0	631	7.2	23.0	10.4	121

301500097424801 TOWN LAKE (AUSTIN) SITE AC

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	GROSS ALPHA, DIS- SOLVED (PCI/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (PCI/L AS U-NAT)	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)
JUL 31 31	1.040 1055	1.0	<3.1 <3.3	<.3 <.3	<4.6 <4.8	<.4 <.4	3.0 4.9	<.4	2.9 4.6	<.4	.15	1.2

301712097470701 TOWN LAKE (AUSTIN) SITE EC

DATE	TIME	SAMP- LING DEPTH (FT)	GROSS ALPHA, DIS- SOLVED (PCI/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (PCI/L AS U-NAT)	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)
JUL 31 31	1320 1330	1.0	<3.5 <2.9	<.3 <.3	<5.2 <4.3	<.4 <.4	4.3 4.0	.7	4.1 3.8	.7	.08	1.1

TOWN LAKE AT AUSTIN--Continued

301500097424801 TOWN LAKE (AUSTIN) SITE AC

DATE	TIME	SAMP- LING DEPTH (FT)	PCB, TOTAL (UG/L)	NAPH- THA- LENES POLY: CHLOR TOTAL (UG/L	· ALDR	IN, DAI	TAL TO	TAL TO	DDE, DTAL UG/L)	DDT, TOTAL (UG/L)
MAR 03 03	1037 1041	1.0	.0			.00	.0	.00	.00	.00
JUL 31 31	1040 1055	1.0	.0			.00	.0	.00	.00	.00
DATE	DI- AZINON, TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION TOTAL (UG/L	TOTA	CA- CHI OR, EPO AL TO:	TAL TO	DANE TO	ALA- HION, DTAL	METH- OXY- CHLOR, TOTAL (UG/L)
MAR 03 03	.01	.00	.00			00	.00	.00	.00	.00
JUL 31 31	.00	.00	.00			00	.00	.00	.00	.00
D	PA TH TC	RA- HON, TH	HION, T	OTAL :	TOX- PHENE, FOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	TOTAL	TOTA	L
.0	3	.00	.00	.00	0 0	.00	.02			00
	1 1	.00	.00	.00	0	.00	.15			00

08158000 COLORADO RIVER AT AUSTIN, TX (National stream-quality accounting network)

- LOCATION.--Lat 30°14'40", long 97°41'39", Travis County, Hydrologic Unit 12090205, on right bank 1,000 ft (305 m) upstream from upstream bridge on U.S. Highway 183 in Austin, 1.4 mi (2.3 km) downstream from Longhorn Dam, and at mile 290.3 (467.1 km).
- DRAINAGE AREA.--38,400 mi² (99,500 km²), approximately, of which 12,880 mi² (33,360 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

- PERIOD OF RECORD.--February 1898 to current year. Records of daily discharge for Dec. 13-26, 1914, and Feb. 9-17, 1915, published in WSP 408, have been found unreliable and should not be used.
- REVISED RECORDS.--WSP 508: 1915(m). WSP 528: 1900(M), 1918(m). WSP 548: 1901-16. WSP 1342: Drainage area. WSP 1562: 1908, 1929(M), 1936.
- CAGE.--Water-stage recorder. Datum of gage is 402.27 ft (122.612 m) National Geodetic Vertical Datum of 1929. Prior to June 19, 1939, all records collected at or near Congress Avenue Bridge 3.9 mi (6.3 km) upstream at datum 19.6 ft (5.97 m) higher; prior to June 18, 1915, nonrecording gages, recording gages thereafter; June 20, 1939, to Oct. 16, 1963, at site 1,000 ft (305 m) downstream from present site at datum 5.0 ft (1.52 m) higher.
- REMARKS.--Water-discharge records fair. National Weather Service gage-height telemeter at station. Since 1937, at least 10 percent of drainage area regulated by reservoirs. Flow largely regulated by Lake Travis (station 08154500). The city of Austin reported that 85,660 acre-ft (106 hm³) was diverted for municipal use above station and 45,120 acre-ft (55.6 hm³) of treated sewage was returned below station. Many other diversions above Lake Buchanan for irrigation, municipal supplies, and oilfield operations.
- AVERAGE DISCHARGE.--38 years (water years 1899-1936) unregulated, 2,711 ft 3 /s (76.78 m 3 /s), 1,964,000 acre-ft/yr (2.42 km 3 /yr); 44 years (water years 1937-80) regulated, 2,008 ft 3 /s (56.87 m 3 /s), 1,454,800 acre-ft/yr (1.79 km 3 /yr).
- EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 481,000 ft³/s (13,600 m³/s) June 15, 1935, gage height, 50 ft (15.2 m), present site and datum, from floodmark; minimum daily, 10 ft³/s (0.28 m³/s) Dec. 17, 1972.
- EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1833, 51 ft (15.5 m) July 7, 1869, present site and datum (adjusted to present site on basis of record for flood of June 15, 1935), determined from information concerning stage at former site furnished by Dean T. U. Taylor.
- EXTREMES FOR CURRENT YEAR.--Maximum discharge, 5,170 ft $^3/s$ (146 m $^3/s$) June 15 at 2230 hours, gage height, 8.87 ft (2.704 m); minimum daily, 30 ft $^3/s$ (0.85 m $^3/s$) Feb. 15.

		DISCHA	ARGE, IN	CUBIC		ECOND, WAT EAN VALUES	ER YEAR (OCTOBER 1	979 TO SE	PTEMBER 1	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1130 914 912 940 113	62 84 76 78 69	87 88 702 124 118	62 92 80 73 76	51 49 48	129 121 622 117 94	496 439 412 380 408	2550 2190 2150 2190 2210	2450 2450 2500 2500 2500	2260 2280 2360 2110 2270	1900 1800 2000 2250 2250	2890 2750 2630 2730 2350
6 7 8 9	117 71 71 101 71	75 80 47 69 42	94 85 82 79 84	78 76 71 76 81	147 142 236	94 98 97 94 93	403 412 948 1120 968	2220 2560 1980 1230 1770	2500 2500 2550 2450 2500	2250 2240 2280 2020 2060	2050 2050 1800 1600 342	2500 2230 1400 1800 1890
11 12 13 14	109 81 75 103 87	69 42 59 59	87 189 135 77 78	96 75 71 76 77	66 64	79 99 74 476 480	918 1350 1030 1160 1660	1770 2460 1440 1450 1890	2550 2450 2450 2450 2650	2350 2030 2010 2060 1930	1000 1950 2400 2350 2350	1820 1550 1530 1540 1520
16 17 18 19 20	288 78 68 91 107	45 55 63 65 86	90 69 71 73 73	78 87 96 82 104	62 63	416 358 381 397 382	1930 2020 1690 1760 1720	780 922 528 1360 1110	2800 2600 2350 2650 2700	1870 1880 1860 1990 2000	2450 2300 2300 2350 2400	1690 1770 1740 2070 2020
21 22 23 24 25	72 80 114 106 113	142 71 98 99 75	85 73 219 102 83	85 193 78 73 68	110 82 88	461 492 475 488 694	1600 1860 2380 2360 2780	1720 2480 2200 2200 2300	2500 2500 2450 2450 2650	1880 1890 1730 1800 1940	2400 2350 2500 2500 2500	1960 1920 1990 1970 1980
26 27 28 29 30 31	118 116 115 110 217 92	118 84 74 69 77	73 72 267 206 90 94	70 175 2230 2840 1820 36	92 97 94	771 1260 745 749 760 731	2360 2460 2390 2440 2430	2250 2400 2550 2500 2450 2440	2500 2500 2550 2500 2500	2160 1900 1680 1780 2180 1980	2500 2650 2650 2650 2700 2800	1870 1300 1140 1470 930
TOTAL MEAN MAX MIN AC-FT	6780 219 1130 68 13450	2182 72.7 142 42 4330	3849 124 702 69 7630	9275 299 2840 36 18400	30	12327 398 1260 74 24450	44284 1476 2780 380 87840	60250 1944 2560 528 119500	75650 2522 2800 2350 150100	63030 2033 2360 1680 125000	68092 2197 2800 342 135100	56950 1898 2890 930 113000
CAL YR WTR YR		438009 405117	MEAN MEAN	1200 1107	MAX 1060 MAX 289		AC-FT AC-FT	868800 803500				

08158000 COLORADO RIVER AT AUSTIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1947 to October 1973. Chemical, biochemical, and pesticide analyses: October 1973 to current year. Sediment records: October 1974 to current year.

PERIOD OF DAILY RECORD. --SPECIFIC CONDUCTANCE: October 1947 to current year. WATER TEMPERATURES: October 1947 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 737 micromhos Jan. 12, 1964; minimum daily, 243 micromhos Dec. 2, 1953.
WATER TEMPERATURES: Maximum daily, 33.0°C July 25, 1979; minimum daily, 6.0°C Jan. 28, 1948, Feb. 4, 1949.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 643 micromhos Oct. 29; minimum daily, 326 micromhos May 6.
WATER TEMPERATURES: Maximum daily, 25.0°C Sept. 24; minimum daily, 10.5°C Feb. 1, 2.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
OCT 22	1120	88	560	7.6	23.0	.20	9.2	108	1.0	22	K18
NOV 05	1050	94	560	7.5	21.0	.20	9.5	107	1.1	24	28
DEC											
10 JAN	1125	91	613	7.5	17.0	.50	9.9	102	.6	K6	480
07 FEB	1100	80	548	7.3	10.0		12.0	107	1.2	1500	170
04	1120	69	494	7.4	10.0	.10	12.5	111	1.0	68	К9
MAR 03	1100	1420	490	7.7	13.0	280	15.0	143	1.1	73	66
APR 07	0900	102	519	7.5	20.0	1.4	8.6	96	.5	K7	К3
MAY 12	0940	191	510	7.3	20.0	3.0	8.2	91	.8	140	36
JUN 09	1020	3960	484	7.6	23.0	3.4	9.0	105	.5	44	K12
JUL											
07 AUG	1015	3020	497	7.6	22.0	1.0	2.6	30	.7	62	47
11 SEP	1030	76	528	7.2	27.0	.70	5.2	66	.9	1000	260
08	1120	580	445	7.5	24.0	5.5	7.2	86	.6	4600	920
DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT	NESS (MG/L AS CACO3)	NESS, NONCAR- BONATE (MG/L CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	BONATE (MG/L AS HCO3)	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)
OCT 22 NOV	NESS (MG/L AS CACO3)	NESS, NONCAR- BONATE (MG/L CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	AD- SORP- TION RATIO	SIUM. DIS- SOLVED (MG/L AS K)	BONATE (MG/L AS HCO3)	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)
OCT 22 NOV 05 DEC	NESS (MG/L AS CACO3) 240 230	NESS, NONCAR- BONATE (MG/L CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	BONATE (MG/L AS HCO3) 230 240	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)
OCT 22 NOV 05	NESS (MG/L AS CACO3)	NESS, NONCAR- BONATE (MG/L CACO3)	DIS- SOLVED (MG/L AS CA) 60 60 72	SIUM, DIS- SOLVED (MG/L AS MG) 21 19 23	DIS- SOLVED (MG/L AS NA) 25 21 26	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K) 2.9 2.8 2.3	BONATE (MG/L AS HCO3) 230 240 280	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4) 32 34 33	RIDE, DIS- SOLVED (MG/L AS CL) 41 36 37
OCT 22 NOV 05 DEC 10 JAN 07	NESS (MG/L AS CACO3) 240 230	NESS, NONCAR- BONATE (MG/L CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	BONATE (MG/L AS HCO3) 230 240	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)
OCT 22 NOV 05 DEC 10 JAN 07 FEB 04	NESS (MG/L AS CACO3) 240 230 270	NESS, NONCAR- BONATE (MG/L CACO3)	DIS- SOLVED (MG/L AS CA) 60 60 72	SIUM, DIS- SOLVED (MG/L AS MG) 21 19 23	DIS- SOLVED (MG/L AS NA) 25 21 26	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K) 2.9 2.8 2.3	BONATE (MG/L AS HCO3) 230 240 280	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4) 32 34 33	RIDE, DIS- SOLVED (MG/L AS CL) 41 36 37
OCT 22 NOV 05 DEC 10 JAN 07 FEB 04 MAR 03	NESS (MG/L AS CACO3) 240 230 270 240	NESS, NONCAR- BONATE (MG/L CACO3) 48 31 45 35	DIS- SOLVED (MG/L AS CA) 60 60 72 65	SIUM, DIS- SOLVED (MG/L AS MG) 21 19 23 20	DIS- SOLVED (MG/L AS NA) 25 21 26 23	AD- SORP- TION RATIO	SIUM. DIS- SOLVED (MG/L AS K) 2.9 2.8 2.3	BONATE (MG/L AS AS HCO3) 230 240 280 250	BONATE (MG/L AS CO3) 0 0 0	DIS- SOLVED (MG/L AS SO4) 32 34 33	RIDE, DIS- SOLVED (MG/L AS CL) - 41 36 37 34
OCT 22 NOV 05 DEC 10 JAN 07 FEB 04 MAR 03 APR 07	NESS (MG/L AS CAGO3) 240 230 270 240 200	NESS, NONCAR- BONATE (MG/L CACO3) 48 31 45 35 48	DIS- SOLVED (MG/L AS CA) 60 60 72 65 47	SIUM, DIS- SOLVED (MG/L AS MG) 21 19 23 20 21	DIS- SOLVED (MG/L AS NA) 25 21 26 23 28	AD- SORP- TION RATIO .7 .6 .7 .6	SIUM, DIS- SOLVED (MG/L AS K) 2.9 2.8 2.3 2.4 3.0	BONATE (MG/L AS HCO3) 230 240 280 250 190	BONATE (MG/L AS CO3) 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 32 34 33 33 35	RIDE, DIS- SOLVED (MG/L AS CL) 41 36 37 34
OCT 22 NOV 05 DEC 10 JAN 07 FEB 04 MAR 03 APR 07	NESS (MG/L AS CACO3) 240 230 270 240 200 210	NESS, NONCAR- BONATE (MG/L CACO3) 48 31 45 35 48 37	DIS- SOLVED (MG/L AS CA) 60 60 72 65 47	SIUM, DIS- SOLVED (MG/L AS MG) 21 19 23 20 21 20	DIS- SOLVED (MG/L AS NA) 25 21 26 23 28 24	AD- SORP- TION RATIO .7 .6 .7 .6 .7	SIUM. DIS- SOLVED (MG/L AS K) 2.9 2.8 2.3 2.4 3.0 2.9	BONATE (MG/L AS HCO3) 230 240 280 250 190 210	BONATE (MG/L AS CO3) 0 0 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 32 34 33 33 35 34	RIDE, DIS-, SOLVED (MG/L AS CL) 41 36 37 34 47
OCT 22 NOV 05 DEC 10 JAN 07 FEB 04 MAR 03 APR 07 MAY 12 JUN	NESS (MG/L AS CACO3) 240 230 270 240 200 210 210 200	NESS, NONCAR- BONATE (MG/L CACO3) 48 31 45 35 48 37 42	DIS- SOLVED (MG/L AS CA) 60 60 72 65 47 51 45	SIUM, DIS- SOLVED (MG/L AS MG) 21 19 23 20 21 20 21 20 21	DIS- SOLVED (MG/L AS NA) 25 21 26 23 28 24 24	AD- SORP- TION RATIO .7 .6 .7 .6 .9 .7 .7	SIUM, DIS- SOLVED (MG/L AS K) 2.9 2.8 2.3 2.4 3.0 2.9 3.1	BONATE (MG/L) AS HCO3) 230 240 280 250 190 210 200	BONATE (MG/L AS CO3) 0 0 0 0 0 0 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 32 34 33 35 34 32 31	RIDE, DLS- SOLVED (MG/L AS CL) 41 36 37 34 47 42 37
OCT 22 NOV 05 DEC 10 JAN 07 FEB 04 MAR 03 APR 07 MAY 12 JUN 09 JUL	NESS (MG/L AS CACO3) 240 230 270 240 200 210 200 200	NESS. NONCAR- BONATE (MG/L CACO3) 48 31 45 35 48 37 42 39	DIS- SOLVED (MG/L AS CA) 60 60 72 65 47 51 45	SIUM, DIS- SOLVED (MG/L AS MG) 21 19 23 20 21 20 21 20 21	DIS- SOLVED (MG/L AS NA) 25 21 26 23 28 24 24 22 23	AD- SORP- TION RATIO .7 .6 .7 .6 .9 .7 .7 .7	SIUM, DIS- SOLVED (MG/L AS K) 2.9 2.8 2.3 2.4 3.0 2.9 3.1 3.1	BONATE (MG/L AS HCO3) 230 240 280 250 190 210 200 190	BONATE (MG/L AS CO3) 0 0 0 0 0 0 0 0 0 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 32 34 33 35 34 32 31 30	RIDE, DIS- SOLVED (MG/L AS CL) 41 36 37 34 47 42 37 40
OCT 22 NOV 05 DEC 10 JAN 07 FEB 04 MAR 03 APR 07 MAY 12 JUN 09 JUL 07 AUG	NESS (MG/L AS CACO3) 240 230 270 240 200 210 200 200 180	NESS. NONCAR-BONATE (MG/L CACO3) 48 31 45 35 48 37 42 39 40	DIS- SOLVED (MG/L AS CA) 60 60 72 65 47 51 45 44 40	SIUM, DIS- SOLVED (MG/L AS MG) 21 19 23 20 21 20 21 20 21 20	DIS- SOLVED (MG/L AS NA) 25 21 26 23 28 24 24 22 23 24	AD- SORP- TION RATIO .7 .6 .7 .6 .9 .7 .7 .7 .8	SIUM, DIS- SOLVED (MG/L AS K) 2.9 2.8 2.3 2.4 3.0 2.9 3.1 3.1 3.3	BONATE (MG/L AS HCO3) 230 240 280 250 190 210 210 200 190 190	BONATE (MG/L AS CO3) 0 0 0 0 0 0 0 0 0 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 32 34 33 35 34 32 31 30 28	RIDE, DIS, SOLVED (MG/L AS CL) 41 36 37 34 47 42 37 40 41
OCT 22 NOV 05 DEC 10 JAN 07 FEB 04 MAR 03 APR 07 MAY 12 JUN 09 JUL 07	NESS (MG/L AS CACO3) 240 230 270 240 200 210 200 200	NESS. NONCAR- BONATE (MG/L CACO3) 48 31 45 35 48 37 42 39	DIS- SOLVED (MG/L AS CA) 60 60 72 65 47 51 45	SIUM, DIS- SOLVED (MG/L AS MG) 21 19 23 20 21 20 21 20 21	DIS- SOLVED (MG/L AS NA) 25 21 26 23 28 24 24 22 23	AD- SORP- TION RATIO .7 .6 .7 .6 .9 .7 .7 .7	SIUM, DIS- SOLVED (MG/L AS K) 2.9 2.8 2.3 2.4 3.0 2.9 3.1 3.1	BONATE (MG/L AS HCO3) 230 240 280 250 190 210 200 190	BONATE (MG/L AS CO3) 0 0 0 0 0 0 0 0 0 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 32 34 33 35 34 32 31 30	RIDE, DIS- SOLVED (MG/L AS CL) 41 36 37 34 47 42 37 40

COLORADO RIVER BASIN 205 08158000 COLORADO RIVER AT AUSTIN, TX--Continued

DA	ATE:	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUR AT 180 DEG. (DIS- SOLVEI (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVEI	NITRO- GEN, NO2+NO3 TOTAL (MG/L	NO2+1	N, N NO3 S- AM VED T /L (GEN, MONIA COTAL (MG/L	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO GEN, ORGANI DIS- SOLVE (MG/L AS N)	C ED
ост													
NOV		.2	10	327				.47	.030	.050	.44	. 4	
DEC		.2	9.9	307	7 304	4 .59		.57	.020	.050	.42	.4	-3
1 C JAN)	.2	11	340	344	.30	E .	.30	.010	.010	.65	.5	13
		.3	7.2	312	2 311	.74		.74	.000	.030	.95	.9	17
		.2	8.1	288	3 284	.13		.14	.010	.020	.33	.3	12
	3	.3	7.2	287	286	.16		.24	.070	.090	.44	. 2	8.
07		.3	.2	285	273	.09		.10	.080	.080	.44	.4	2
		.3	8.4	278	268	.05		.15	.080	.120	.41	.5	0
		.2	8.0	272	2 264	.13		.13	.080	.090	.82	.3	9
JUI 07		.4	7.9	277	256	.09		.09	.050	.030	1.1	.5	8
AUG 11		.3	9.6	280	277	.11		.11	.060	.070	1.0	1.0	
SEF	3	.3	7.9	273	3 246			.01	.030	.040	.79	.4	
DA		NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVEI (MG/L AS P)	ORGANIC	CARBO ORGAN DIS- SOLVI (MG/ AS O	NIC OR - S ED PE /L (RBON, GANIC US- NDED MG/L S C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI - MENT DIS - CHARGE, SUS - PENDED (T/DAY)	SED. SUSP SIEVE DIAM % FINE THAN .062 M	i. CR
OCT								,		(//	(-//		
		.47	.46	.020	.010)	- 2	2.4	.1	6	1.4	6	3
		.44	.48	.010	.010	16				24	6.1	7	1
		.66	.54	.020	.040	10				9	2.2	3	18
07		.95	1.0	.240	,010	1.9			-4	21	4.5	5	6
		.34	.34	.020	.010			3.0	.8	7	1.3	8	6
		.51	.37	.040	.010	3.2				26	100	6	7
		.52	.50	.020	.040	4.3			240	16	4.4	8	3
MAY 12		.49	.62	.010	.020	8.2		22		80	41	9	9
JUN 09		.90	.48	.040	.020)	10)	.2	325	3480	2	0
JUL 07		1.1	.61	.030	.010	2.7				11	90	8	4
AUG		1.1	1.1	.020				9.9	.1	81	17		6
SEP		.82	.48	.050						31	49		5
DATE	TIM	ARSE TOT E (UG AS	NIC PEN AL TOT /L (UC	JS- ARS NDED D CAL SC G/L (U	ENIC TO DIS- RE DLVED ER UG/L (U	TIUM, SUDTAL PEN CCOV- RE ABLE ER	DED E COV- ABLE S G/L	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIU TOTAI RECOV ERABI (UG/I AS CI	PENI FECC E ERAI	S- DED CADM DV- DI BLE SOL /L (UG	IUM TO S- R VED EI /L (HRO- IUM, OTAL ECOV- RABLE UG/L S CR)
OCT 22	112	0	1	0	1	200	100	70		0	0	<1	0
NOV 05	105		-22	I.									Ü
JAN													
07 FEB	110		-		7.			70		3			
04 APR	112		1	0	1	0	0	70		1	0	3	10
07 JUN	090						Jeex			-	-2-	7	
09 JUL	102	0	1	0	1	100	40	60		1		<1	0
07 AUG	101	5	77	**		77				-	**		**
11	103	0	4	0	2	0	0	70		2		<1	0

08158000 COLORADO RIVER AT AUSTIN, TX--Continued

DATE	CHRO- MIUM, SUS- PENDE RECOV (UG/L AS CR	CHE MIU D DIS . SOI (UC	JM,	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COBALT, SUS- PENDED RECOV- ERABLE (UG/L AS CO)	DIS-	T, TO' RED ER L (U	PER, IAL COV- ABLE G/L CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	DIS-	RECO ERAB (UG/	, S L PE V- RE LE ER L (U	ON, US- NDED COV- ABLE G/L FE)	IRON, DIS- SOLVED (UG/L AS FE)
OCT 22		0	0	0	0		(3	2	2		0	10		30
NOV 05	-	1		14							-	22		
JAN 07	-	_			- 65						_			
FEB 04	1	0	0	0	0		(3	0	0		0	50	40	<10
APR 07	1,2	4		-4							2			
JUN 09		0	0	0			(3	6	3		3	80		<10
JUL 07	-						2				-			
AUG 11		0	0	1	44		:3	15	14		1	90		<10
DATE	LEAD, TOTAL RECOV ERABL (UG/L AS PB	PEN REC E ERA (UG	D, dS- dDED dOV- BLE (/L PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA NESE, SUS- PENDH RECOV (UG/I AS MN	MAI NES ED D: V. SOI	NGA- SE, IS- LVED G/L MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCUR SUS- PENDE RECOV ERABL (UG/L AS HG	D MERCU - DIS E SOLV (UG/	RY TO - RE ED ER L (U	KEL, TAL COV- ABLE G/L NI)	NICKEL, SUS- PENDED RECOV- ERABLE (UG/L AS NI)
OCT 22		4	4	0	20	1	0	10	.3		1	. 2	2	0
NOV 05	-			-1					122					42
JAN 07		_			.22		_				-			
FEB 04		4	4	0	20	1	0	1.0	.2		0	. 7	0	0
APR 07	172		42				4				- 0		22	
JUN 09		3	1	2	20	2	20	4	.2		1	.1	6	3
JUL 07	-	_									-			
AUG 11		5	5	0	30		0	30	.8		8	.0	3	0
D		ICKEL, DIS- SOLVED (UG/L AS NI)	SELI NIUN TOTA (UG,	NI E- S M, PE AL TO /L (U	US- NI NDED I TAL SO G/L (U		TILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	PEN REC ERA (UC	JS- NDED SII COV- I ABLE SO G/L ()	VER, DIS- DLVED JG/L	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, SUS- PENDED RECOV- ERABLE (UG/L AS ZN)	(UG	S- VED
OC 2	T 2	2		1	1	0	0		0	0	0	0		5
NO				122			0							
JA		44.					0			44.7				77
FE		0		0	O	0	D		0	0	20	20		5
AP 0	R 7			44			0		24		1942			22
10	N 9	3		0	0	Ó	U		0	0	20			<3
JU	L 7						0			-6		Ų.,		
AU		3		0	0	0	()		()	0	40	30		8
			DAT	S) (D)	F PI PO- PI URE BIO AYS) A WI G)	MASS SH EIGHT SQ M	PERI- PHYTON IOMASS TOTAL DRY WEIGHT G/SQ M	GRAF FLUC (MG/	TON PI PHO CHI PHIC GRA PROM FLU (M2) (MC	ERI- C HYTON ROMO- APHIC JOROM J/M2) (IOMASS HLORO- PHYLL RATIO PERI- PHYTON UNITS)			
			22. FEB		27 1	.02	1.18	8.	42 3	2.00	19.0			
			04.		28 2	.20	2.44	1.	09	.040	220			

COLORADO RIVER BASIN 207
08158000 COLORADO RIVER AT AUSTIN, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

DATE TIME	NOV	5,79 050		3,80	MAY	12,80		9,80 020
TOTAL CELLS/ML		170		000		0		300
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		1.3 1.3 1.3 1.3		0.7 0.7 0.7 1.8 1.8		0.0 0.0 0.0 0.0 0.0		1.5 1.5 2.1 2.6 2.8
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESOOCYSTACEAE								
OOCYSTIS SCENEDESMACEAE	77		77	-		17	52#	17
SCENEDESMACEAESCENEDESMUS .VOLVOCALESCHLAMYDOMONADACEAE	100#	58		÷	i ë ë	9		-
CHLAMYDOMONAS		-		-	-	1.5	13	4
CHRYSOPHYTA .BACILLARIOPHYCEAECENTRALESCOSCINODISCACEAE								
COSCINODISCUS		-		- 2		1.2		7
CYCLOTELLA MELOSIRA		-		2		3	26 26	9
PENNALES ACHNANTHACEAE								
COCCONEIS RHOICOSPHENIA	- 11	-		-		-	52#	17
CYMBELLACEAE								
CYMBELLA DIATOMACEAE		-	72	7		-	13	4
DIATOMA FRAGILARIACEAE		0.00	72	7		-		-
FRAGILARIA NAVICULACEAE		-	44	-		-		-
NAVICULA NITZSCHIACEAE	14	8	86	8		-	24	-
NITZSCHIA	(44)	÷	600#	58	7.5	4	39	13
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAECRYPTOMONADALESCRYPTOCHRYSIDACEAE								
CHROOMONAS				-	7.5	è	7*	•
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAE								
ANACYSTIS HORMOGONALES OSCILLATORIACEAE	57#	33		2	7.7	17	77	6
OSCILLATORIA		-	210#	21	77			-
PHORMIDIUM		-		-		-		-
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALES								
EUGLENACEAE		9		-			78#	26
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEPERIDINIALESGLENODINIACEAE								
GLENODINIUM		-		-		-		-

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

08158000 COLORADO RIVER AT AUSTIN, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

DATE TIME	JUL 1	7.80 015		11,80 030		8,80 120
TOTAL CELLS/ML		410		64		490
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		0.7 0.7 1.0 1.2 1.2		0.0 0.0 0.7 0.7		1.0 1.0 1.2 1.3 2.0
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESOOCYSTACEAE						
OOCYSTIS SCENEDESMACEAE	7.7	-		-		-
SCENEDESMUS VOLVOCALES	122	-	52#	80	26	5
CHLAMYDOMONA DACEAE CHLAMYDOMONAS	172	7-	13#	20	13	3
CHRYSOPHYTA .BACILLARIOPHYCEAECENTRALESCOSCINODISCACEAE						
COSCINODISCUS	2.2	71.2		12	13	3
CYCLOTELLA	13	3		-		-
MELOSIRA PENNALES ACHNANTHACEAE		-		-		-
COCCONEIS	13	3		-		-
RHOICOSPHENIA CYMBELLACEAE		-		-	13	3
CYMBELLA		-		-		-
DIATOMACEAE		-			-	4
FRAGILARIACEAE FRAGILARIA	13	3				-
NAVICULACEAE	13	3		-		-
NAVICULA NITZSCHIACEAE		-		-		-
NITZSCHIA	13	3	155	-	26	5
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAECRYPTOMONADALESCRYPTOCHRYSIDACEAE						
CHROOMONAS	7.7	-		13	13	3
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAE						
ANACYSTIS HORMOGONALES	13	3		-	77	-
OSCILLATORIACEAE	340#	0.1			230#	1.7
OSCILLATORIA PHORMIDIUM	340#	-		-	150#	
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALES						
EUGLENACEAE			42	-	140	-
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEPERIDINIALESGLENODINIACEAE						
GLENODINIACEAE	13	3	1-42	-		-

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
1979	6780	539	294	5380	48	872	34	626	210
1979	2182	579	315	1860	52	306	37	219	230
1979	3849	570	310	3230	51	530	37	380	220
1980	9275	544	296	7420	48	1210	35	866	210
1980	2448	544	297	1960	48	318	35	229	210
1980	12327	521	284	9470	46	1520	33	1090	200
1980	44284	488	267	31900	42	5030	30	3640	190
1980	60250	478	261	42500	41	6680	30	4840	190
1980	75650	491	268	54800	42	8650	31	6260	190
1980	63030	494	270	45900	43	7260	31	5250	190
1980	68092	487	266	49000	42	7710	30	5580	190
1980	56950	498	272	41800	43	6630	31	4790	200
	405117	**	**	295000	**	46700	**	33800	**
3.	1107	494	270	**	43	**	31	**	190
	1979 1979 1979 1980 1980 1980 1980 1980 1980	YEAR (CFS-DAYS) 1979 6780 1979 2182 1979 3849 1980 9275 1980 2448 1980 12327 1980 44284 1980 60250 1980 75650 1980 63030 1980 68092 1980 56950	YEAR DISCHARGE (CFS-DAYS) 1979 6780 539 1979 2182 579 1979 3849 570 1980 9275 544 1980 2448 544 1980 12327 521 1980 44284 488 1980 60250 478 1980 75650 491 1980 63030 494 1980 68092 487 1980 56950 498	YEAR DISCHARGE (CFS-DAYS) CONDUCT-ANCE (MICRO-ANCE (MICRO-MHOS) CMJDIS (MG/L) 1979 6780 539 294 1979 2182 579 315 1979 3849 570 310 1980 9275 544 296 1980 2448 544 297 1980 12327 521 284 1980 44284 488 267 1980 60250 478 261 1980 75650 491 268 1980 63030 494 270 1980 68092 487 266 1980 56950 498 272	YEAR DISCHARGE (CFS-DAYS) CONDUCT-ANCE (MICRO-ANCE) (MICRO-MHOS) DISCHARGE (MICRO-MHOS) DISSOLIDS SOLIDS SOLIDS (MG/L) 1979 6780 539 294 5380 1979 2182 579 315 1860 1979 3849 570 310 3230 1980 9275 544 296 7420 1980 2448 544 297 1960 1980 12327 521 284 9470 1980 44284 488 267 31900 1980 60250 478 261 42500 1980 75650 491 268 54800 1980 63030 494 270 45900 1980 68092 487 266 49000 1980 56950 498 272 41800	YEAR CONDUCT-ANCE (MICRO-ANCE) (MICRO-	YEAR CONDUCT-ANCE (MICRO-ANCE) (MICRO-MHOS) DIS-SOLVED SOLVED SOLVED SOLVED SOLVED CHLORIDE (MICROL) DIS-SOLVED CHLORIDE CHLORIDE CHLORIDE (MICROL) DIS-SOLVED CHLORIDE CHLORIDE CHLORIDE (MICROL) 1979 6780 539 294 5380 48 872 1979 2182 579 315 1860 52 306 1979 3849 570 310 3230 51 530 1980 9275 544 296 7420 48 1210 1980 2448 544 297 1960 48 318 1980 12327 521 284 9470 46 1520 1980 42284 488 267 31900 42 5030 1980 60250 478 261 42500 41 6680 1980 63030 494 270 45900 43 7260 1980 68092 487 266 49000 42 7710 1980 56950 </td <td> Name</td> <td> Name</td>	Name	Name

	SPE	CIFIC CON	NDUCTANCE	(MICROMHO		25 DEG. C) NCE-DAILY	, WATER	YEAR OCTOBER	1979 TO	SEPTEMBER	1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	510 521 530 507 490	583 570 580 590 597	553 413 570 609 611	593 451 604 609 620	523 504 549 551 502	500 583 442 562 545	500 501 490 504 503	495 499 490 493 507	443 493 504 496 491	495 492 490 493 494	485 487 482 466 486	495 493 473 504 500
6 7 8 9	463 538 566 555 568	598 602 599 601 602	629 625 603 496 540	492 553 613 624 524	549 520 504 544 534	562 528 550 596 517	502 465 490 502 486	326 429 480 505 483	496 500 496 497 494	495 493 497 497 499	484 492 458 477 504	458 465 469 485 496
11 12 13 14	557 512 582 453 550	610 605 475 500 535	573 590 603 609 602	560 576 559 626 610	559 553 540 541 526	482 582 522 548 527	498 500 488 489 491	495 483 448 445 456	496 497 491 488 490	491 479 492 493 496	491 453 486 488 486	501 489 486 490 501
16 17 18 19 20	593 579 577 537 574	546 599 518 581 506	575 550 527 507 497	602 632 624 533 597	546 511 545 553 589	543 535 552 546 534	499 485 492 494 496	477 486 484 459 489	488 505 481 492 487	495 494 490 494 496	471 488 486 491 478	499 502 491 495 494
21 22 23 24 25	586 580 592 598 596	561 591 597 604 567	560 582 576 592 505	615 619 608 610 590	518 580 592 591 604	537 535 519 527 524	491 488 492 491 438	491 490 491 490 486	489 487 490 488 490	492 509 491 500 491	488 489 497 491 502	507 521 524 534 526
26 27 28 29 30 31	601 600 620 643 598 587	611 610 606 584 591	596 577 590 555 596 518	614 605 596 506 481 515	505 546 530 577	522 513 546 486 495 499	491 485 490 492 487	490 488 484 490 493 495	495 490 485 489 487	507 495 493 485 492 490	500 497 492 495 502 495	470 537 540 527 526
MEAN	560	577	565	579	544	531	491	478	491	494	487	500

08158000 COLORADO RIVER AT AUSTIN, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 ONCE-DAILY

	UNCE-DATE													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
1 2 3 4 5	21.5 22.0 22.0 21.5 21.5	20.5 19.5 19.5 19.5 19.5	14.5 15.0 14.5 14.5 14.0	14.0 14.0 14.5 14.0 14.0	10.5 10.5 11.0 11.0	15.5 15.5 14.0 14.0 15.0	16.5 17.0 17.0 17.0 18.0	18.0 18.0 18.5 18.0	20.5 20.5 20.5 21.0 21.0	20.5 20.5 20.5 20.5 20.0	21.5 22.0 21.5 22.0 22.0	23.0 23.5 23.0 23.5 23.0		
6 7 8 9	21.5 22.0 22.0 23.0 21.5	20.5 19.0 19.0 19.0	14.5 14.0 14.0 14.5 14.0	14.0 14.0 14.0 13.5 14.0	13.5 12.0 13.0 11.5 11.0	14.0 15.0 15.5 15.5 16.0	17.0 18.0 18.0 18.0	18.5 18.0 18.0 18.5 18.5	20.5 21.0 22.0 20.5 22.0	20.5 20.5 20.0 20.0 20.5	23.0 22.0 22.0 23.0 23.5	24.0 23.5 23.5 23.5 24.0		
11 12 13 14 15	21.5 21.5 21.5 22.0 22.0	18.0 18.0 18.0 17.0 17.0	14.0 14.0 14.5 14.5 15.0	14.5 14.0 14.0 14.5 14.5	11.5 12.0 11.5 12.0	16.5 16.5 17.0 17.0 16.0	18.0 18.0 17.0 16.5	18.0 18.5 20.5 20.0 20.0	20.5 22.0 21.0 21.0 21.5	20.5 21.0 20.5 20.5 21.0	23.5 23.0 23.0 23.0 23.0	23.5 23.5 23.5 23.5 24.0		
16 17 18 19 20	22.0 22.0 21.5 23.0 23.0	17.0 17.0 17.0 18.0 18.5	13.5 13.0 13.0 12.0 13.5	15.5 14.0 15.5 16.0	14.5 12.0 12.0 13.0 14.0	16.5 16.5 15.5 15.5 16.5	19.0 16.0 16.5 16.5 16.5	19.5 20.5 20.5 21.0 21.0	16.5 20.0 20.0 20.5 20.5	21.0 21.0 22.0 22.0 21.0	23.0 23.0 23.0 22.0 22.0	24.0 24.5 23.5 24.5 24.5		
21 22 23 24 25	23.0 23.5 21.5 21.0 21.0	19.0 18.0 17.0 17.0 16.5	14.0 14.0 14.5 14.0 14.0	16.0 16.0 15.0 14.5 14.5	15.5 15.5 16.5 16.5	16.0 15.5 16.5 15.5 16.0	16.5 16.5 16.5 17.0 17.0	21.0 21.5 21.0 23.5 23.5	20.5 20.0 20.0 20.5	21.0 23.0 23.0 21.0	23.0 23.0 23.0 23.0 23.5	24.5 24.5 24.5 25.0 24.5		
26 27 28 29 30 31	21.0 21.0 21.0 21.5 21.5 20.5	17.0 17.0 17.0 16.0 15.0	14.5 14.5 14.5 14.5 14.5 14.5	14.5 14.5 13.5 11.5 11.0	16.5 15.5 16.0 17.0	15.5 16.0 16.0 16.5 16.5	18.0 17.0 18.0 17.0	23.5 20.5 20.5 20.5 19.5 20.5	20.5 23.0 20.5 20.0 20.0	21.0 21.0 22.0 22.0 22.0 22.0	22.0 23.5 23.0 22.0 22.0 22.0	24.5 24.5 24.0 24.5		
MEAN	22.0	18.0	14.0	14.0	13.5	16.0	17.0	20.0	20.5	21.0	22.5	24.0		

211

08158050 BOGGY CREEK AT U.S. HIGHWAY 183, AUSTIN, TX

LOCATION.--Lat 30°15'47", long 97°40'20", Travis County, Hydrologic Unit 12090205, on U.S. Highway 183, 1.6 mi (2.6 km) south of the intersection of Webberville Road and U.S. Highway 183, and 4.1 mi (6.6 km) east of the State Capitol Building in Austin.

DRAINAGE AREA .-- 13.1 mi2 (33.9 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- January to July 1975 (periodic discharge measurements only), August 1975 to June 1977 (operated as a flood-hydrograph partial-record station only), June 1977 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 411.29 ft (125.361 m) National Geodetic Vertical Datum of 1929 (levels from city of Austin bench mark).

REMARKS.-- Water-discharge records fair. No known regulation or diversions. There is a recording rain gage in the watershed above station. The station is part of a hydrologic research project to study the rainfall-runoff relationship for the Austin urban area.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $6,100 \text{ ft}^3/\text{s}$ (173 m $^3/\text{s}$) May 23, 1975, gage height, 17.03 ft (5.191 m), from floodmark, from rating curve extended above 500 ft $^3/\text{s}$ (14.2 m $^3/\text{s}$) on basis of slope-area measurement of peak flow; no flow at times each year.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,040 ft 3 /s (29.5 m 3 /s) Mar. 27 at 0815 hours, gage height, 9.37 ft (2.856 m), no peak above base of 1,500 ft 3 /s (42.5 m 3 /s); no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

					M	EAN VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAK	APK	MAY	JUN	JUL	AUG	SEP
1	.00	.01	.04	.82	.26	3.4	.62	13	.65	.05	.11	.00
2	.00	.01	.04	.80	.69	.34	1.5	.54	.45		.03	.00
3	.00	.00	.04	.73	.40	.31	.98	.32	.43		.02	.00
4	.00	.01	.04	.60	.25	.31	.52	.27	.65		.00	.00
5	.00	.12	.04	.57	.23	.29	.44	.25	.58		.00	.00
2	.00	.12	.04	.57	.23	.23	. 44	.23	. 50	.00	.00	.00
6	.00	.02	.04	.55	.23	.29	.43	.25	.67	.06	.04	24
7	.00	.00	.04	.50	9.8	.37	.43	28	.80		.36	20
8	.00	.00	.04	.47	15	.35	.41	36	.88	.04	.05	1.3
9	.00	.00	.04	.47	61	.35	.37	1.0	.47	.04	.13	2.8
10	.00	.00	.04	.70	3.5	.44	.37	.60	.27		8.2	.14
11	.00	.00	.04	1.0	2.3	.51	.37	.55	.46	.06	.15	.06
12	.00	.00	25	.90	1.8	1.0	1.8	55	.44		.05	.05
13	.00	.00	2.7	.52	1.2	.49	5.6	59	.48		.04	.04
14	.00	.00	.13	.47	1.1	.40	.69	6.0	.41		.03	.04
15		.00		.47	.98	.40	.43	11	.43			
13	.00	.00	.06	.47	.98	.40	.43	14	.43	.00	.03	.04
16	.00	.00	.05	.47	22	2.1	.42	4.5	.32	.04	.11	.00
17	.00	.00	.04	.68	2.3	1.7	.37	1.5	.17	.03	.08	.00
18	.00	.00	.04	.84	1.9	.56	.37	1.1	.27	.05	.05	.00
19	.00	.00	.03	.55	1.6	.55	.37	2.2	.36	.05	.00	.34
20	.00	.00	.03	2.7	.94	.63	.37	.84	.27	.02	.00	.00
21	.00	1.3	.03	2.5	.85	.70	.37	1.1	2.0	.00	.00	.00
22	.00	.06	.03	21	.56	.70	.37	.68	.18		.00	.00
23	.00	.04	50	1.6	.49	.75	.37	.64	.12		.00	.00
24	.00	.37	.55	.52	.65	.75	.37	.56	.09		.03	.00
25	.00	.93	.06	.54	.73	4.1	54	.52	.08		.00	27
23	.00	. 23	.00	.54	.13	4.1	54	.52	.00	.00	.00	21
26	.00	.06	.05	.35	.32	1.6	.65	.49	.11		.00	54
27	.00	.04	.04	.27	.31	207	.33		.12		.00	.56
28	.00	.04	74 12	.23	.31	3.0	.26	.35	.10		.00	2.4
29	.00	.04	12	.35	.32	2.1	.25	.30	.09		.00	.11
30	20	.04	1.6	.64		.92	.25	.36	.06	.08	.00	1.3
31	.15		.97	.30		.75		.40		.21	.00	
TOTAL	20.15	3.09	167.85	43.11	132.02	237.16	74.08	227.77	12.41	2.48	9.51	134.18
MEAN	.65	.10	5.41	1.39	4.55	7.65	2.47	7.35	.41		.31	4.47
MAX	20	1.3	74	21	61	207	54	59	2.0		8.2	54
MIN	.00	.00	.03	.23	.23	.29	.25	.25	.06		.00	.00
CFSM	.05	.008	.41	.11	.35	.58	.19	.56	.03		.02	.34
IN.	.06	.000	.48	.12	.37	.67	.21	.65	.04		.03	.38
AC-FT	40	6.1	333	86	262	470	147	452	25		19	266
	.52	.54	3.58	.89	2.42	3.35	2.14	5.80	.30		1.15	6.07
(††)	. 32	. 54	3.30	.09	2.42	5.33	2.14	3.00	. 30	.20	1.13	0.07
CAL YR				13.8	MAX 956	MIN .00	CFSM		14.27	AC-FT 9970	tt 3	
WTR YR	1980 TOTAL	1063.	.81 MEAN	2.91	MAX 207	MIN .00	CFSM	.22 IN	3.02	AC-FT 2110	†† 2	7.04

tt Rainfall on watershed, in inches, based on one rain gage.

08158050 BOGGY CREEK AT U.S. HIGHWAY 183, AUSTIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: January 1975 to current year. Radiochemical analyses: October 1979 to September 1980.

C)ATE	TIME TAI	REAM- CO LOW, DO STAN- AN NEOUS (M	ICRO- F	PH I ELD	TEMPER-	COLOR (PLAT- INUM COBALT UNITS)	BID- ITY	XYGEN, DIS- SOLVED	SOLVED DE (PER- BI CENT UN	OCHEM INHIB DAY
	5	0950	.45	707	8.0	15.0	5	1.2	9.2	92	.6
	DATE	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD NESS	NONCAL BONATI (MG/I	R- DIS- SOLVE (MG/I	ED SOLVE (MG/L	DIS- D SOLVED (MG/L	RATIO	
	JAN 15	. 170	64	57	2	70	34 89	12	38	1.0	
	DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR-	SULFA DIS- SOLV (MG/ AS SO	DIS- ED SOLVE L (MG/I	RIDE, DIS- ED SOLVE (MG/I	DIS- SOLVE ED (MG/L AS	DIS- SOLVEI	RESIDUE AT 105 DEG. C, SUS- D PENDED	
	JAN 15	. 2.7	290	0	58	50		.3 11	404	4 0	
	15 2.7 290 SOLIDS. NITRO-		GEN, NITRITE	GEN NO2+NO TOTAL	GEN GEN GEN GEN GEN GEN GEN GEN	GEN, A ORGANI TOTAL	NITRO- O- GEN, AM MONIA C ORGANI TOTAL (MG/L AS N)	+ PHOS- C PHORUS, TOTAL	TOTAL		
	JAN 15	. 0	.19	.000		19 .00	00 .1	5 .1	5 .010	5.4	
		DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	DIS- SOLVEI (UG/I	D SOLVE L (UG/I	DIS- ED SOLVE (UG/L	COPPER DIS- ED SOLVE	DIS- D SOLVEI (UG/L		
		JAN 15	0950	-1	10	00	(1	0	1 <10)	
			S(()	EAD, NE DIS- I DLVED SC	DIS- DLVED	MERCURY	SOLVED	SOLVED	ZINC, DIS- SOLVED (UG/L AS ZN)		
			AN 15	0	6	.0	0	0	<3		
DATE	TIME	GROSS ALPHA, DIS- SOLVED (PCI/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (PCI/L AS U-NAT)	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT)	GROSS ALPHA SUSP TOTAL (UG/1 AS U-NAT	A, BETA. DIS- L SOLVE L (PCI/I AS	BETA, SUSP. TOTAL (PCI/L AS	BETA, DIS- SOLVE (PCI/I AS SR	L (PCI/I / AS SR/	METHOD	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)
JAN 15	0950	<5.2	<.3	<7.6	<.	.4 4.	1 <.	4 3.	8 <.4	.08	2.3

213

08158050 BOGGY CREEK AT U.S. HIGHWAY 183, AUSTIN, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NAPH-THA-LENES, CHLOR-DANE, TOTAL (UG/L) POLY-CHLOR. DI-PCB ALDRIN, DDE, DDT, AZINON, TIME TOTAL (UG/L) DATE JAN .0 .00 15... 0950 .00 .0 .00 .01 .00 .00 HEPTA-CHLOR METH-OXY-DI-ELDRIN TOTAL HEPTA-ENDO-MALA-SULFAN, TOTAL ETHION, TOTAL LINDANE TOTAL ENDRIN, CHLOR, TOTAL EPOXIDE THION, CHLOR, TOTAL TOTAL TOTAL DATE (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) JAN .00 .00 .00 .00 .00 .00 .00 .00 .00 15 ... METHYL METHYL PARA-THION, TOTAL (UG/L) PARA-THION, TRI-THION, TOX-APHENE, TOTAL 2,4-D, TOTAL (UG/L) 2,4,5-T TOTAL (UG/L) MIREX. TR1-THION (UG/L) SILVEX. TOTAL (UG/L) TOTAL (UG/L) TOTAL (UG/L) TOTAL (UG/L) DATE (UG/L) JAN 15... .00 .00 .00 .00 .00 0 .00 .00 .00

08158200 WALNUT CREEK AT DESSAU ROAD, AUSTIN, TX (Flood-hydrograph partial-record station)

LOCATION.--Lat 30°22'30", long 97°39'37", Travis County, Hydrologic Unit 12090205, on downstream side of bridge on Dessau Road and 8.4 mi (13.5 km) northeast of the State Capitol Building in Austin.

DRAINAGE AREA. -- 26.2 mi2 (67.9 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1975 to current year.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,150 $\mathrm{ft^3/s}$ (60.9 $\mathrm{m^3/s}$) May 8, gage height, 11.23 ft (3.423 m).

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: October 1979 to September 1980.

DATE	TIME	STRE FLC INST TANE (CF	CAM- CAN- COUS	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	FI (UI	PH IELD NITS)	TEN AT WA (DE	MPER- CURE, ATER CG C)	(P IN CO	LOR LAT- UM BALT	I		SC		SO (P C SA		DEM BIC UNI 5	GEN MAND, OCHEN NHIH DAY
OCT 29	1210		.36	726		7.6		21.0		10		2.3		2.6		29		1.0
JAN 14	1215		.83	695		8.3		11.0		5		.50		15.2		141		.7
DATE	COL. FORM TOTA IMMI (COL. PEI	M, AL, ED. S.	COLI- FORM, FECAI 0.7 UM-MF (COLS.	TOCC	CCI CAL. AGAR .S.	HAR NES (MG AS CAC	D- s /L 03)	HARI NESS NONCA BONAT (MG/ CACO)- ;, R- E L (1)3)	CALCI DIS- SOLV (MG/ AS C	UM ED L	MAG SI DI SOL (MG AS	NE- UM, S- VED /L MG)	SODIU DIS- SOLVE (MG/ AS N	M. D L	SOD: AI SORI TIC RAT	D- P- ON	
OCT 29	. 16	500	-	57	740		**											
JAN 14		420	12	20	39		260		50	98			4.6	37			1.0	
DATE	POTA SIL DIS SOLV (MG, AS I	JM. 3- /ED /L	BICAR- BONATE (MG/I AS HCO3)	(MG	TE L	(MG	VED /L	CHLC RIDE DIS- SOLV (MG/ AS C	ED L	RIDE	,	DIS	VED	SOLID SUM O CONST TUENT DIS SOLV (MG/	F I- S	AT 10 DEG.	C,	
OCT 29		le-le-l		.L			لال										12	
JAN 14	. :	2.2	26	0	0	54	4	56			.3		2.4	3	83		0	
DATE	TILE SUS-	A- Z,	TOTAL	O- NIT GE TE NITR TOT (MG	ITE	NO2+1	NO3	TOTA	IA.	ORGAN	IC L	ORGA	AM- A + NIC AL	TOTA	S, L	CARBO ORGAN TOTA (MG,	NIC AL /L	
OCT 29		7	.1	3	.010		.14	.0	20		55		.57	0	20	16		
JAN 14		0	1.7		010			.0			27		.27		20		4.8	
	DAT		TIME	SOL	S- VED	BARII DIS- SOLVI (UG, AS 1	ED /L	CADMI DIS SOLV (UG/ AS C	ED.	DIS-	, ED	COPP DIS SOL (UG AS	VED	IRON DIS SOLV (UG/ AS F	ED L			
	JAN 14.		1215		0		80		<1		0		0	<	10			
		DA JAN 14	TE	LEAD, DIS- SOLVED (UG/L AS PB)	NE SO (U	NGA- SE, DIS- DLVED IG/L MN)	Г	CURY DIS- DLVED G/L HG)	NI	IS-	D	VER, DIS- DIVED G/L AG)	D	NC, HIS- LVED G/L ZN)				

08158200 WALNUT CREEK AT DESSAU ROAD, AUSTIN, TX--Continued

DATE	TIME	GROSS ALPHA, DIS- SOLVED (PCI/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (PCI/L AS U-NAT)	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)
JAN 14	1215	5.7	<.3	8.4	<.4	3.4	<.4	3.5	<.4	.07	1,2
	DATE JAN	TIME	PCB TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE. TOTAL (UG/L)	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)	
	14	1215	.00	.0	.00	.0	.00	.00	.00	.00	
	DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	
	JAN 14	.00	.00	.00	.00	.00	.00	.00	.00	.00	
	DATE	METHYL PARA- THION. TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)	
	JAN 14	.00	.00	.00	.00	0	.00	.00	.00	.00	

08158600 WALNUT CREEK AT WEBBERVILLE ROAD, AUSTIN, TX

LOCATION.--Lat 30°16'59", long 97°39'17", Travis County, Hydrologic Unit 12090205, on left bank 190 ft (58 m) downstream from bridge on Farm Road 969, 0.8 mi (1.3 km) downstream from Little Walnut Creek, 2.8 mi (4.5 km) upstream from Colorado River, and 5.2 mi (8.4 km) east of the State Capitol Building in Austin.

DRAINAGE AREA. -- 51.3 mi2 (132.9 km2).

216

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1966 to current year.

GAGE.--Water-stage recorder. Datum of gage is 425.96 ft (129.833 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records fair. No known regulation or diversion. Station is part of hydrologic research project to study rainfall-runoff relation for urban areas. Five recording rain gages are located in the water-shed above this station.

AVERAGE DISCHARGE.--14 years, 22.4 ft³/s (0.634 m³/s), 5.93 in/yr (151 mm/yr), 16,230 acre-ft/yr (20.0 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,500 ft³/s (297 m³/s) Nov. 23, 1974, gage height, 26.16 ft (7.974 m); no flow at times in 1967 and 1971.

Maximum stage since at least 1891, that of Nov. 23, 1974. Flood of Oct. 11, 1973, reached a stage of 25.56 ft (7.791 m), discharge 10,000 ft³/s (283 m³/s).

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 15, 1935, reached a stage of 24 ft (7.3 m), backwater from Colorado River. A flood in 1919 reached a stage of 22 ft (6.7 m), from information by local residents.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 1,500 ft 3/s (42.5 m3/s) and maximum (*):

Date	Time	Disch (ft³/s)	Gage 1	height (m)	Date	Time	Disch (ft³/s)	arge (m³/s)	Gage (ft)	height (m)
Mar. 27 May 8	1430 1400	2,000	12.80	3.901 3.853	May Sept.		2,220 *3,400	62.9 96.3	13.33 15.92	

Minimum daily discharge, 0.02 ft³/s (0.001 m³/s) Aug. 28 to Sept. 2.

		DISCHA	RGE, IN	CUBIC F	EET PER SE	ECOND, WATE	R YEAR	OCTOBER 1	979 TO S	EPTEMBER 198	0	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.3 1.2 1.2 1.2 1.0	1.4 1.3 1.2 1.2	1.5 1.5 1.5 1.5	5.5 5.1 4.8 4.4 4.7	9.9 11 11 10 10	8.4 4.8 5.1 5.7 5.7	23 30 21 17 15	89 15 11 9.4 8.2	14 14 13 13 12	1.4 1.4 1.4 1.4	.15 .15 .15 1.4	.02 .03 .04
6 7 8 9	1.0 1.0 1.0 1.0	1.2 1.2 1.2 1.2 1.2	1.7 1.7 1.7 1.7	4.7 3.8 3.8 3.8 3.9	9.4 21 39 93 17	5.7 5.7 5.4 5.4 5.4	14 13 11 10 16	7.1 80 365 46 27	11 11 9.5 20	1.1 1.1 1.1 1.1 1.1	.67 8.5 3.5 .81 5.4	26 40 8.4 18 3.4
11 12 13 14 15	.93 .93 1.2 .93	1.4 1.4 1.4 1.5 1.4	1.7 22 11 3.8 3.0	4.2 3.8 3.8 3.8 3.8	12 10 9.2 8.5 6.1	5.4 6.9 5.9 5.4 4.9	9.6 17 51 14 11	22 407 310 161 311	9.7 8.5 7.4 6.4 6.3	1.1 .81 .60 .60	3.8 1.4 .81 .81	1.8 1.2 .61 .97 .65
16 17 18 19 20	.93 .93 .93 .93	1.4 1.4 2.0 1.7	2.9 2.5 2.5 2.5 2.5	3.8 9.4 5.9 4.5 6.9	45 12 9.9 8.6 7.7	8.3 7.3 5.1 4.7 4.7	9.4 8.3 7.9 7.5 7.1	222 85 59 65 46	5.4 4.8 4.3 3.7 3.4	.60 .32 .32 .32 .32	2.0 2.4 1.2 .59	
21 22 23 24 25	.93 .93 .93 .93	4.5 2.1 1.7 1.7 4.0	2.5 4.2 64 11 5.1	7.6 40 11 9.1 8.2	7.0 6.4 5.9 5.6 5.3	4.4 4.1 4.1 4.1 8.8	6.7 6.1 6.4 6.1	40 33 30 26 24	28 6.4 4.1 3.1 2.7	.15 .15 .15 .32	.79 .60 .73 .60	.17
26 27 28 29 30 31	.93 .93 .93 .93 .93	1.7 1.5 1.4 1.3 1.5	4.2 3.0 69 47 9.6 7.7	7.0 6.7 6.4 6.7 7.2 7.5	5.1 4.7 5.1 6.8	5.2 673 78 47 33 26	18 11 8.7 8.1 6.8	23 20 19 17 16	2.2 2.0 1.7 1.3 1.4	.32 1.1 4.1 2.5 .60 .15	.66 .10 .02 .02 .02	23 29 10 26
TOTAL MEAN MAX MIN CFSM IN. AC-FT (††)	63.77 2.06 32 .93 .04 .05 126	49.0 1.63 4.5 1.2 .03 .04 97	297.7 9.60 69 1.5 .19 .22 590 3.60	211.8 6.83 40 3.8 .13 .15 420 1.44	412.2 14.2 93 4.7 .28 .30 818 2.35	1003.6 32.4 673 4.1 .63 .73 1990 3.78	560.7 18.7 170 6.1 .37 .41 1110 3.20	2608.7 84.2 407 7.1 1.64 1.89 5170 7.43	242.3 8.08 28 1.3 .16 .18 481 .94	27.85 .90 4.1 .15 .02 .02 .55	40.69 1.31 8.5 .02 .03 .03 .81	27.7 395 .02 .54
CAL YR WTR YR	1979 TOTAL 1980 TOTAL				AX 1720 AX 673	MIN .93 MIN .02				AC-FT 19630 AC-FT 12600	† † †	34.83 33.11

tt Weighted-mean rainfall on watershed, in inches, based on five rain gages.

08158600 WALNUT CREEK AT WEBBERVILLE ROAD, AUSTIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical and biochemical analyses: October 1975 to current year. Sediment records: October 1977 to current year. Radiochemical analyses: October 1979 to September 1980.

TOTAL	29 JAN 15 APR	1310		MHOS)	FIELD (UNITS)	WATER (DEG C)	INUM COBALT UNITS)	BID- ITY (NTU)	DIS- SOLVED (MG/L)	CENT SATUR- ATION)	UNINHIB 5 DAY (MG/L)
JAN 15 0825	JAN 15 APR		.93	609	8.0	21.5	5	.20	8.5	97	.6
COL1	APR	0825								81	.6
FORM, FORM, TOCOCCI HARD- NESS, CALCIUM SIUM, SODIUM, ALL IMMED. 0.7 KF AGAR NESS NONCAR- DIS- DIS- DIS- DIS- DIS- SORE COLS. (MG/L BONATE SOLVED SOLVED TICE) PER (COLS. (MG/L BONATE SOLVED SOLVED SOLVED TICE) DATE 100 ML) 100 ML) CACO3) CACO3) AS CA AS MG AS MG SOLVED TICE PER (COLS.) PER AS (MG/L (MG/L (MG/L (MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L		0825	11	33		12.0		W.	-	- 22	
29 4500 89 190	DATE	FORM, TOTAL, IMMED. (COLS. PER (FORM, FECAL, 0.7 UM-MF (COLS./	TOCOCCI FECAL, KF AGAR (COLS. PER	NESS (MG/L AS	NESS, NONCAR- BONATE (MG/L	DIS- SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
15 320 96 45 250 67 88 6.8 29 APR 15	29	4500	89	190				(6.91	(
BICAR	15	320	96	45	250	67	88	6.8	29	.8	2.6
BICAR-			124		22	44	2.2	-4			44
29 0 JAN JSN AS N) AS	DATE	BONATE (MG/L B AS	CAR- BONATE (MG/L	DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L AS	SUM OF CONSTI- TUENTS. DIS- SOLVED	RESIDUE AT 105 DEG. C, SUS- PENDED	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)
JAN 15 220 0 72 48 .3 2.9 358 12 APR 15 220 0 72 48 .3 2.9 358 12 APR 15	OCT 29					32			0	0	.01
NITRO-	JAN	220	0	72	48	.3	2.9	358		7	.37
NITRO-		94				- 44					
29000 .01 .000 .50 .50 .040 5.4 JAN 15010 .38 .000 .16 .16 .000 4.4 65 APR 15 75 ARSENIC BARIUM, CADMIUM MIUM, COPPER, IRON, DIS- DIS- DIS- DIS- DIS- SOLVED SOLVED SOLVED SOLVED SOLVED TIME (UG/L (UG/L (UG/L (UG/L (UG/L))))	DA	GEN, NITRIT TOTAL (MG/L	GEN TE NO2+N TOTA (MG/	NO3 AMMO AL TOTA /L (MG	N, GE NIA ORGA AL TOT /L (MG	RO- GEN, NN, MONI NIC ORGA AL TOT I/L (MG	AM- A + PHO NIC PHOR AL TOT /L (MG	US, ORGA AL TOT /L (MG	NIC MENT AL SUS- /L PENI	T, CHAR - SUS DED PEN	T - GE, DED
JAN 15010 .38 .000 .16 .16 .000 4.4 65 APR 15 75 ARSENIC BARIUM. CADMIUM MIUM, COPPER, IRON, DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-			20	0.1	000	50	50	040	E - /		
APR 15 75 ARSENIC BARIUM, CADMIUM MIUM, COPPER, IRON, DIS- DIS- DIS- DIS- DIS- SOLVED SOLVED SOLVED SOLVED SOLVED TIME (UG/L (UG	JAN	N									.67
ARSENIC BARIUM, CADMIUM MIUM, COPPER, IRON, DIS- DIS- DIS- DIS- DIS- DIS- SOLVED SOLVED SOLVED SOLVED SOLVED TIME (UG/L	APR	R									.2
		DATE		DI: SOL' 4E (UG	S- DIS VED SOLV /L (UG	ED SOL	IUM MIU S- DIS VED SOL /L (UG	M, COPP - DIS VED SOL /L (UG	VED SOLV	S- VED /L	
JAN 15 0825 0 80 <1 0 1 <10			. 082	25	0	80	<1	0	1 -	<10	
MANGA-				DIS-	NESE, DIS-	DIS-	NIUM, DIS-	DIS-	DIS-		

08158600 WALNUT CREEK AT WEBBERVILLE ROAD, AUSTIN, TX--Continued

DATE JAN	TIME	GROSS ALPHA, DIS- SOLVED (PCI/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (PCI/L AS U-NAT)	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)
15	0825	5.0	<.3	7.3	<.4	<2.8	<.4	<2.7	<.4	.15	1.8
	DATE JAN	TIME	PCB, TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)	
	15	0825	.0	.00	.00	.0	.00	.00	.00	.00	
	DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	
	JAN 15	.00	.00	.00	.00	.00	.00	.00	.00	.00	
	DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	TOTAL	SILVEX, TOTAL (UG/L)	
	JAN 15	.00	.00	.00	.00	Ō	.00	.00	.00	.00	
			DATE JAN 15	TIME 0825	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, WATER (DEG C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)			
			APR					2.2			
			15	0825	11	12.0	75	2.2			

08158640 WALNUT CREEK AT SOUTHERN PACIFIC RAILROAD BRIDGE, AUSTIN, TX (Reconnaissance partial-record station)

LOCATION.--Lat 30°15'58", long 97°39'24", Travis County, Hydrologic Unit 12090205, at Southern Pacific Railroad bridge, 1.2 mi (1.9 km) south of Webberville Road, and 5.0 mi (8.0 km) east of the State Capitol in Austin.

DRAINAGE AREA.--53.5 mi² (138.6 km²).

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: January 1975 to current year. Radiochemical analyses: October 1979 to September 1980.

DATE	TIME	STREA FLOW INSTA TANEC (CFS	CI AM- CO I, DU AN- AN DUS (MI		PH A	MPER- TURE, ATER	COLOR (PLAT- INUM COBALT UNITS)	TUR- BID- ITY (NTU)	DI	SEN, () S-	YGEN, DIS- DLVED PER- CENT ATUR- FION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)
OCT 29	1335		26	718	7.0	27.5	15	2.2		4.6	59	8.1
JAN 15	0900		28	910	7.0	20.0	15	4.2		4.7	52	15
DATE	COLI FORM TOTA IMME (COLS PER 100 M	1, AL, ED. 3.	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 00 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	BONATE (MG/L	CALCI DIS-	UM S	OLVED MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	SOD A SOR TI RAT	D- P- ON
OCT 29	170	000	400	150	4.6	-						
JAN 15	. 9	20	88	29	160	3	2 39	C	16	93		3.2
DATE	POTA SIU DIS SOLV (MG/ AS K	M, E ED L	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	RIDE DIS D SOLV (MG/	, D: - SC ED (N L	LICA, IS- DLVED IG/L AS	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLI RESI AT 10 DEG. SUS PEND (MG	DUÉ 05 C, ED
OCT 29							_					1
JAN 15			160	0	100	89	2	.9	12	441		2
DATE	SOLIE VOLA TILE SUS- PENDE (MG/	, N	NITRO- GEN, HITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN,	GEN A ORGAN TOTA (MG/	O- GEN MON IC ORO L TO L (N	TAL MG/L	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBO ORGAL TOTA (MG AS	NIC AL /L
OCT 29		1	5.1	.000	5.1	2.70	0 16		9	9.100		9.6
JAN 15		2	5.5	4.000	9.5	6.20			5	8.600		9.9
	DAT	E	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIU DIS- SOLVE (UG/L AS CD	DIS- D SOLV (UG/	, COI DI ED SC L (U		IRON, DIS- SOLVED (UG/L AS FE)		
	JAN 15.		0900	1	20	<	1	0	50	50		
		DAT JAN 15.	SO (U E AS	AD, NI IS- I LVED SO G/L (U	DIS- DLVED SO	RCURY DIS- DLVED UG/L	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVEL (UG/L AS AG)	DI SOL (UG AS	S- VED /L		

08158640 WALNUT CREEK AT SOUTHERN PACIFIC RAILROAD BRIDGE, AUSTIN, TX--Continued

DATE	TIME	GROSS ALPHA, DIS- SOLVED (PCI/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (PCI/L AS U-NAT)	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)
JAN 15	0900	<4.8	<.3	<7.1	<.4	7.3	<.4	6.9	<.4	.02	-17
	DATE	TIME	PCB TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)	
	JAN 15	0900	.00	.0	.00	.0	.00	.00	.00	.64	
	DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	
	JAN 15	.01	.00	.00	.00	.00	.00	.05	.05	.00	
	DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)	
	JAN 15	.00	.00	.00	.00	0	.00	.09	.00	.00	

08158650 COLORADO RIVER BELOW AUSTIN, TX (Low-flow partial-record station)

LOCATION.--Lat 30°12'28", long 97°38'15", Travis County, Hydrologic Unit 12090205, at bridge on Farm Road 973, 0.3 mi (0.5 km) northeast of intersection of State Highway 71 and Farm Road 973, 8.8 mi (14.2 km) downstream from Govalle Sewage Treatment Plant outfall, and 9.6 mi (15.4 km) downstream from gaging station at Austin.

PERIOD OF RECORD.--Periodic chemical and biochemical analyses: February 1968 to current year. Pesticide analyses: October 1974 to current year.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE, WATER (DEG C)	COLOR (PLAT- INUM COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
OCT 24	1250	622	7.3	21.0	5	1.5	8.7	98	1.7	160	К6	К5
NOV 05	1255	650	7.1	19.0	10	.50	6.0	65	1.8	84	K10	K18
DEC 10	1340	688	7.0	14.0	5	1.7	4.5	44	8.2	1800	К6	310
JAN 07	1310	651	6.9	12.0	5	.90	7.1	66	8.9	1100	K19	20
FEB 04	1425	648	6.9	12.0	10	2.1	7.9	74	8.0	3900	62	400
MAR 03	1255	652	7.3	12.0	10	2.6	12.2	114	3.7	3400	к8	24
APR	1035				0		8.4	95		700	K40	21
07 MAY		542	7.5	20.5		1.8			3.2			
12 JUN	1140	508	7.3	20.0	0	4.7	8.4	93	1.1	1700	88	140
09 JUL	1310	495	7.4	23.5	5	12	7.4	87	.9	230	31	24
07 AUG	1210	510	7.6	23.0	0	3.8	8.6	100	1.1	11000	800	K16
11	1315	525	7.3	27.0	0	5.3	6.4	81	2.5	2500	820	85
SEP 08	1320	471	7.5	25.0	5	3.3	8.6	105	1.0	4700	1100	120
DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT	210			10	39	1.2	5.6	200	0	52	55	-
NOV NOV	210	42	51	19	39					52	22	.7
05 DEC								200	0			100
10 JAN	230	45	59	21	46	1.3	5.3	230	0	52	58	.8
07 FEB	210	40	57	1.7	39	1.2	5.9	210	0	55	58	1.0
04 MAR	200	37	49	19	51	1.6	6.5	200	0	- 56	62	1.1
03								200	0			
APR 07			44			- 44	192	200	0			
MAY 12	52	192		-4			44	190	0			
JUN 09	190	39	45	20	25	.8	3.5	190	0	31	43	3
JUL 07												
AUG 11	180	34	43	18	30	1.0	4.0	180	0	34	1.6	.5
SEP		34	43	10	30		4.0	180	Ü	34	46	
08												

222 08158650 COLORADO RIVER BELOW AUSTIN, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS VOLA- TILE, SUS- PENDER (MG/I	GE NITR TOT (MG	N, ATE NI AL T	ITRO- GEN, TRITE OTAL MG/L S N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NIT GE AMMO TOT (MG AS	N, NIA OF AL I	ITRO- GEN,	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 24	8.2	329	0		0 3	.3	.66	4.0		.32	.98	1.3	1.700	6.9
NOV 05		329	6			.9	.60	4.5		.4	.90	2.3	2.400	8.6
DEC 10	11	366	2			.63	.27	.90		.89	2.7	3.6	3.800	7.0
JAN 07	8.7	345	15			.8	.22	2.0		.7	1.8	3.5		7.2
FEB 04	11	354	10		9	.56	.23	.79		.7	9.3	11	2.300	7.2
MAR 03		354	0		0	.93	.17	1.1		. 7	2.4	4.1	2.600	7.5
APR 07		250	2		1	.58	.23	.81		.70	1.4	2.1	.530	5.8
MAY 12			11		1	.17	.03	.20		.20	.48	.68	.290	5.4
JUN 09	8.0	270	37		8	.24	.01	.25		.06	.46	.52	.190	3.9
JUL 07		2,0	18			.28	.05	.33		.15	.61	.76	.130	3.1
AUG 11	9.1	273	74			.0	.20	1.2		.75	.35	1.1	1.700	6.7
SEP 08	2.1	2/3	13		3	.40	.07	.47		.13	.61	.74	.280	14
00	-		13	,	3	.40	.07			. (3	.01	. 74	.200	14
		DA	TE T	IME (DIS-	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMI DIS SOLV (UG/ AS C	- DIS ED SOL L (UG	M, (VED /L	COPPER, DIS- SOLVED (UG/L AS CU)	IRON DIS- SOLVI (UG/I AS FI	ED		
		OCT 24		250	2	50		<1	0	2	<	10		
		FEB		425	2	60		2	0	2		20		
		JUN		310	1	60		<1	0	1		0		
		AUG		315	2	60		<1	0	1		10		
			DATE	LEAD, DIS- SOLVE (UG/L AS PE	D SOL	E, MER S- I VED SO /L (U	RCURY DIS- DLVED UG/L S HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVI DIS SOLV (UG) AS A	S- VED S /L (INC, DIS- OLVED UG/L S ZN)			
			OCT	DIS- SOLVE (UG/L AS PE	NES DI SOL (UG) AS	E, MER S- I VED SO /L (U MN) AS	DIS- DLVED UG/L S HG)	NIUM, DIS- SOLVED (UG/L AS SE)	SOLV (UG)	S- VED S /L (DIS- OLVED UG/L S ZN)			
			OCT 24 FEB	DIS- SOLVE (UG/L AS PB	D SOL	E, MER S- I VED SO /L (U	DIS- DLVED UG/L	NIUM, DIS- SOLVED (UG/L	SOLV (UG)	S- VED S /L (AG) A	DIS- OLVED UG/L			
			OCT 24 FEB 04 JUN	DIS- SOLVE (UG/L AS PE	NES DI D SOL (UG) AS	E, MER S- I VED SC /L (U MN) AS	DIS- DLVED UG/L S HG)	NIUM, DIS- SOLVED (UG/L AS SE)	SOLV (UG)	S- VED S /L (AG) A	DIS- OLVED UG/L S ZN)			
			OCT 24 FEB 04	DIS- SOLVE (UG/L AS PB	NES DI SOL (UG AS	E, MER S- I VED SC /L (U MN) AS	DIS- DLVED JG/L S HG)	NIUM, DIS- SOLVED (UG/L AS SE)	SOLV (UG)	S- VED S /L (AG) A	DIS- OLVED UG/L S ZN) 5			
	DA		OCT 24 FEB 04 JUN 09 AUG 11	DIS- SOLVE (UG/L) AS PB	NES DI SOLL (UG) AS :	E, MEH S- I VED SC /L (U MN) AS	DIS- DLVED JG/L S HG)	NIUM, DIS- SOLVED (UG/L AS SE) 0 0 0 0 L R- DDL TOT	DIS SOLV (UG, AS A	S- VED S /L (AAG) A	DIS- OLVED UG/L S ZN) 5 10	TOT	ON,	
	DA' FEB 04	re	OCT 24 FEB 04 JUN 09 AUG 11	DIS- SOLVE (UG/L) AS PB N L CB, C	NES DI SOLL (UG) AS :	E. MEIS S- I VED - SC /L (1 MN) AS 10 70 9 20 ALDRIN, TOTAL	DIS- DIVED JG/L JG/L S HG) .2 .1 .3 .7 CHLOI DANE TOTAL (UG/)	NIUM- DIS- SOLVED (UG/L AS SE) 0 0 0 0 R- L TOT L) (UG	DIS SOLV (UG, AS A	S-VED S VED S (AAG) A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIS- OLVED UG/L S ZN) 5 10 <3 10 DDT, TOTAL	AZIN TOT (UG	ON, AL	
	FEB	re 14	OCT 24 24 FEB 04 JUN 09 AUG 11	DIS- SOLVE (UG/L) AS PB N L CB, C TAL T	NES DI DI SOLL (UG) AS 1 O O O O O O O O O O O O O O O O O O	E. MEI S- I VED SC/L (UMN) AS 10 70 9 20 ALDRIN, TOTAL (UG/L)	DIS- DISPED DISP	NIUM- DIS- SOLVED (UG/L AS SE) 0 0 0 0 R- L TOT L) (UG	DIS SOLV (UG, AS A	S-VED S /L (AG) A O O O O O O O DDE, TOTAL (UG/L)	DIS- DLVED UG/L S ZN) 5 10 <3 10 DDT, TOTAI (UG/I	AZIN TOT L) (UG	ON, AL /L)	
	FEB 04 AUG 11	TE 14 13 DI ELD TOT.	OCT 24 PEB 04 JUN 09 AUG 11 ME TO (UG	DIS-SOLVE (UG/L AS PE	NES	E. MEI S- I VED SC/L (1 MN) AS 10 70 9 20 ALDRIN, TOTAL (UG/L)	DIS- DISPED DISP	NIUM, DIS- SOLVED (UG/L AS SE) 0 0 0 0 0 0 R- L TOT L) (UG	DITA-OR IDE IALL	S- VED S /L (AG) A 0 0 0 0 0 0 0 0 0 0	DIS- DIVED UG/L S ZN) 5 10 <3 10 DDT, TOTAL (UG/I	AZIN TOT (UG	ON, AL (/L) .36 .11 H-Y-OR,	
	FEB 04 AUG 11 DA' FEB 04	DI ELD TOT. (UG	OCT 24 PEB 04 JUN 09 AUG 11 ME TO (UG	DIS-SOLVE (UG/L AS PE	NES DEI DE SOL (UG SOL (UG SOL) AS SOL (UG SOL) AS SOL (UG SOL) AS SOL (UG SOL) APH-THA-ENES, POLY-HLOR. OOTAL UG/L) DRIN, OTAL	E. MEI S- I VED SC/L (1 MN) AS 10 70 9 20 ALDRIN, TOTAL (UG/L) .00 .00	DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-	NIUM- DIS- SOLVED (UG/L AS SE) 0 0 0 0 0 R- L TOT L) (UG A- CHL R, EPOX L) (UG	DITA-OR IDE IALL	S-VED S/L (AG) A 0 0 0 0 DDE, TOTAL (UG/L) .00 LINDANE TOTAL	DIS- DIVED UG/L S ZN) 5 10 <3 10 DDT. TOTAL (UG/L) MALA- THION	AZIN TOT (UG	ON, AL //L) .36 .11 H- Y- OR, AL	
	PEB 044 AUG 11	TE 14 13 DI ELD TOT.	OCT 24 24 FEB 04 JUN 09 AUG 11 ME TO (UG 25 15	DIS-SOLVE (UG/L) AS PE	NES	E. MEI S- I VED - SC /L (1 MN) AS 10 70 9 20 ALDRIN, TOTAL (UG/L) .00 .00	DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-	NIUM- DIS- SOLVED (UG/L AS SE) 0 0 0 0 0 0 R- L TOT L) (UG .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	DITA-OR IDE I	S- VED S /L (AG) A 0 0 0 0 DDE, TOTAL (UG/L) .00 LINDANE TOTAL (UG/L)	DIS- DIVED UG/L S ZN) 5 10 <3 10 DDT TOTAL (UG/L) MALA-THION TOTAL (UG/L)	AZIN TOT (UG	ON, AL //L) .36 .11 H- Y- OR, AL //L)	
	PEB 04 AUG 11 DA' FEB 04 AUG 11	DI ELD TOT. TE (UG MET PAR THI TOT. TE (UG	OCT 24 24 FEB 04 JUN 09 AUG 11 ME TO: (UG 25 15	DIS-SOLVE (UG/L AS PE OF COO-FAN, EN FAL TG/L) (.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	NES	E. MEI S- I VED - SC /L (1 MN) AS 10 70 9 20 ALDRIN, TOTAL (UG/L) .00 ETHION, TOTAL (UG/L)	DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-	NIUM- DIS- SOLVED (UG/L AS SE) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DISTANCE IN CONTRACT OF THE PROPERTY OF THE PR	S- VED S /L (AG) A 0 0 0 0 DDE, TOTAL (UG/L) .00 LINDANE TOTAL (UG/L) .00	DIS- DIVED UG/L S ZN) 5 10 <3 10 DDT, TOTAL (UG/I MALA- THION TOTAL (UG/I	AZIN TOTO (UG	ON, AAL AAL AAL AAL AAL AAL AAL AAL AAL AA	
	PEB 04 AUG 11 DA' FEB 04 AUG 11	DI ELD TOT. TE (UG MET PAR THI TOT. TE (UG	OCT 24 24 FEB 04 JUN 09 AUG 11 ME TO: (UG 25 15	DIS-SOLVE (UG/L AS PE OF COO-FAN, EN FAL TG/L) (.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	NES	E. MEI S. MEI S. S. I	DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-	NIUM- DIS- SOLVED (UG/L AS SE) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DISTANCE IN CONTRACT OF THE PROPERTY OF THE PR	S- VED S /L (AG) A 0 0 0 0 DDE, TOTAL (UG/L) .00 .00 LINDANE TOTAL (UG/L) .00 .00	DIS- DIVED UG/L S ZN) 5 10 <3 10 DDT, TOTAI (UG/I MALA-THION TOTAI (UG/I 2,4,5- TOTAI	AZIN TOT (UG	ON, AL, //L) .36 .11 H-Y-OR, AL, //L) .00 .00	

08158700 ONION CREEK NEAR DRIFTWOOD, TX

LOCATION.--Lat 30°04'59", long 98°00'29", Hays County, Hydrologic Unit 12090205, on left bank at upstream side of low-water crossing on Farm Road 150, 3.2 mi (5.1 km) southeast of Driftwood, and 10 mi (16 km) west of Buda.

DRAINAGE AREA .-- 124 mi 2 (321 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1958, November 1961 to June 1979 (periodic discharge measurements only), July 1979 to current year.

GAGE.--Water-stage recorder. Datum of gage is 878.13 ft (267.654 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records fair. Station is part of a hydrologic research project to study rainfall-runoff relationship in the Austin urban-rural areas. There is a digital recording rain gage located in the water-shed.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,900 ft 3 /s (53.8 m 3 /s) July 27, 1979, gage height, 7.15 ft (2.179 m); minimum daily, 0.27 ft 3 /s (0.008 m 3 /s) Sept. 5, 1980. Flood of Mar. 20, 1979, reached a stage of 11.48 ft (3.499 m), discharge, 4,980 ft 3 /s (141 m 3 /s), on basis of peak flow over dam, 1.5 mi (2.4 km) downstream.

EXTREMES OUTSIDE PERIOD OF RECORD.--Since 1938, the highest flood peaked at a depth of 18 to 20 ft (5.5 to 6.1 m) over dam 1.5 mi (2.4 km) downstream in 1940 or 1941, and the second highest flood peaked at a depth of 10 to 12 ft (3.0 to 3.7 m) over dam in 1976, according to local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 622 ft³/s (17.6 m³/s) May 21 at 1130 hours, gage height, 5.88 ft (1.792 m), no other peak above base of 500 ft³/s (14.2 m³/s); minimum daily, 0.27 ft³/s (0.008 m³/s) Sept. 5.

		DISCHA	RGE, IN	CUBIC F		SECOND, WA	TER YEAR O	CTOBER 19	79 TO SEI	PTEMBER 19	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.7 2.7 2.7 2.2 1.8	1.4 1.1 1.1 1.1	1.3 1.3 1.3 1.3	1.6 1.6 1.6 1.6	2.2 2.2 2.2 2.2 2.2	2.7 2.7 2.7 2.7 2.7	7.7 8.2 8.3 8.3 8.3	11 11 11 11 11	91 72 69 61 53	7.5 6.1 5.6 4.8 4.3	.75 .75 .92 1.1	.35 .35 .30 .30
6 7 8 9	1.8 2.0 2.3 3.1 1.6	1.1 1.1 1.2 1.3 1.3	1.3 1.6 1.3 1.3	1.6 1.6 1.6 1.6	2.2 2.3 2.7 3.1 3.2	2.7 2.7 2.7 2.7 2.7	8.3 8.1 7.7 6.5 6.5	11 11 12 13 13	44 42 39 37 35	3.8 2.7 3.2 2.2 2.2	1.0 .98 1.1 1.1	9.0 29 16 10
11 12 13 14 15	2.2 2.9 4.1 3.9 3.2	1.3 1.3 1.3 1.3	1.3 2.4 3.7 1.7 1.6	1.6 1.6 1.6 1.6	3.2 3.2 3.2 3.2 3.2	2.7 3.4 3.3 3.2 3.2	6.5 6.5 32 10	13 91 88 225 115	32 29 28 26 26	2.2 2.7 2.2 2.7 2.7	2.5 1.5 1.3 1.2 1.1	8.6 7.5 5.2 4.8 4.3
16 17 18 19 20	3.2 3.8 3.8 3.8 3.8	1.5 1.6 2.2 2.4 2.7	1.6 1.6 1.6 1.6	1.6 2.2 2.6 2.2 2.2	4.4 3.2 3.2 2.7 2.7	3.2 3.2 3.2 3.2 3.2	10 10 9.0 9.0 9.0	101 87 77 82 74	26 24 23 23 22	1.5 1.3 1.1 1.1	1.3 .92 .97 1.1 1.0	3.8 2.7 2.2 41 15
21 22 23 24 25	3.8 3.5 2.2 2.2 2.2	2.7 2.7 2.7 2.3 3.2	1.6 1.6 1.8 2.2 2.1	3.0 3.2 3.2 2.9 2.7	2.7 2.7 2.7 2.7 2.7	2.8 2.7 3.0 2.8 2.7	9.0 9.4 9.8 9.8	255 145 124 114 107	21 20 18 17 15	1.1 1.3 1.3 .96	.92 .92 .80 .67	8.6 7.0 5.6 5.2 5.2
26 27 28 29 30 31	2.2 2.2 2.2 2.2 3.8 2.9	2.6 2.2 1.5 1.3	1.8 1.8 2.6 4.0 1.8	2.7 2.4 2.2 2.2 2.2 2.2	2.7 2.7 2.7 2.7	2.7 7.0 8.3 7.5 7.0 7.0	14 13 12 11 11	101 97 90 83 72 94	14 12 10 9.0 7.9	.92 .90 .75 .75 .75	.50 .47 .43 .40 .38	4.3 6.5 9.8 14 116
TOTAL MEAN MAX MIN CFSM IN. AC-FT (††)	87.0 2.81 4.1 1.6 .02 .03 173 .43	51.2 1.71 3.2 1.1 .01 .02 102 .44	55.1 1.78 4.0 1.3 .01 .02 109	63.7 2.05 3.2 1.6 .02 .02 126 .86	81.0 2.79 4.4 2.2 .02 .02 161 1.98	112.3 3.62 8.3 2.7 .03 .03 223 3.22	301.9 10.1 32 6.5 .08 .09 599 3.25	2350 75.8 255 11 .61 .70 4660 6.15	945.9 31.5 91 7.9 .25 .28 1880 .03	71.40 2.30 7.5 .75 .02 .02 142 .30	29.88 .96 2.5 .35 .008 .01 .59	343.32 11.4 116 .27 .09 .10 681 7.79
CAL YR WTR YR			MEAN MEAN		MAX - MAX 255	MIN - MIN .27	CFSM - CFSM .10	IN 1.35	AC-FI		† - † 25.76	

†† Rainfall on watershed, in inches, based on one rain gage.

08158700 ONION CREEK NEAR DRIFTWOOD, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: January 1974 to current year. Radiochemical analyses: October 1979 to September 1980.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMI ATI WAT (DEC	PER- JRE, TER	COLOR (PLAT- INUM COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVEL (MG/L)	SOI (PI CI SAI	IS- OX LVED DE ER- BI ENT UN FUR- 5	YGEN MAND, OCHEM INHIB DAY G/L)
OCT 31	0945	4.3	484	7.9		17.5	5	.40	7.4		79	1.5
AN 15	1410	.60	516	8.1		15.0	5	.80	9.6		96	.7
EP 30	1210	118	294	7.8		22.0	34	68	8.8		101	1.1
DATE	COLI FORM TOTA IMME (COLS PER 100 M	I, FOR L, FEC D. 0.7 I. UM- I (COL	M, TOCO KF A MF (COI S./ PI	CAL, HA AGAR NE LS. (M CR A	RD- SS IG/L S CO3)	HARD- NESS, NONCAR BONATE (MG/L CACO3)	SOLVE (MG/L	DI SOL (MG	UM, SOE S- DI VED SOL /L (M	S- VED G/L NA)	SODIUM AD- SORP- TION RATIO	
OCT 31	. 19	00 1	200	340	24	-	0 1/2	_		(m, m	1,45	
JAN 15	. 3	80	К6	K16	250	4:	3 68	1	9	9.0	.2	
SEP 30	. 120	000 4	500 11	000	150	15	5 43		9.5	3.7	.1	
DATE	POTA SIU DIS SOLV (MG/ AS K	M, BICA BONA ED (MG L A	TE CAR /L BONA S (MC	R- DI TE SO S/L (M	FATE S- LVED G/L SO4)	CHLO- RIDE, DIS- SOLVEI (MG/L AS CL	(MG/L	DIS SOL D (MG	CA, SUM - CON VED TUE /L D	IDS, OF STI- NTS, IS- LVED	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	
OCT 31			44	12		-	. 64	10			1	
JAN 15	. 1	.1	250	0	48	16		2	8.2	293	0	
SEP 30	. 1	.6	160	0	15	13		2	8.9	174	32	
DATE	SOLID VOLA TILE SUS- PENDE (MG/	GE, NITR	N, GE ATE NITE AL TOT /L (MC	N, G ITE NO2 AL TO	TRO- EN, +NO3 TAL G/L N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	GEN,	MONI.	AM- A + PH NIC PHO AL TO /L (M	OS- RUS, TAL G/L P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
OCT 31		0	.00 .	000	.00	.020	.4:	3	.45	.010	7.6	
JAN 15		0		000	.04	.000			.08	.010	3.0	
SEP 30		18		000	.25	.000			.86	.050	10	
	DAT		ME (UC	S- DI VED SOL		CADMIUN DIS- SOLVEI (UG/L AS CD)	DIS- SOLVE (UG/L	(UG	VED SO	ON, IS- LVED G/L FE)		
	JAN 15.	14	10	1)	30	<1		0	0	<10		
	SEP 30.	12	10	1	20	<1		0	<10	40		
		DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERC DI SOL (UG	CURY N S- VED S	DIS- SOLVED :	ILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)			
		JAN 15	0	<1		.0	0	0	<3			
		SEP										

08158700 ONION CREEK NEAR DRIFTWOOD, TX--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	GROSS ALPHA, DIS- SOLVED (PCI/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (PCI/L AS U-NAT)	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)
JAN 15	1410	<3.7	<.3	<5.5	<.4	<2.3	<.4	<2.2	<.4	.05	.60
	DATE	TIME	PCB TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)	
	JAN 15	1410	.00	.0	.00	.0	.00	.00	.00	.00	
	SEP 30	1210	.00	.0	.00	.0	.00	.00	.00	.00	
	DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	
	JAN 15	.00	.00	.00	.00	.00	.00	.00	.00	.00	
	SEP 30	.00	.00	.00	.00	.00	.00	.00	.00	.00	
	DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)	
	JAN 15	.00	.00	.00	.00	0	.00	.00	.00	.00	
	SEP									.00	
	30	.00	.00	.00	.00	0	.00	.00	.00	.00	

08158800 ONION CREEK AT BUDA, TX

LOCATION.--Lat 30°05'09", long 97°50'52", Hays County, Hydrologic Unit 12090205, on left bank at downstream side of bridge on Farm Road 967 and 0.4 mi (0.6 km) northwest of Buda.

DRAINAGE AREA .-- 166 mi 2 (430 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.-- November 1961 to September 1973, January 1978 to July 1979 (periodic discharge measurements only). July 1979 to current year.

GAGE.--Water-stage recorder. Datum of gage is 657.39 ft (200.372 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records fair. The station is part of a hydrologic-research project to study rainfall-runoff relation for the Austin urban-rural areas. There are two recording rain gages located in the watershed above station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,560 ft 3 /s (44.2 m 3 /s) May 21, 1980, gage height, 6.48 ft (1.975 m); no flow at times each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 28, 1929, reached a stage of about 36.2 ft (11.03 m), present datum, discharge, 53,200 ft 3 /s (1,510 m 3 /s), from slope-area indirect measurement of peak flow. This is probably the highest flood since that date.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,560 ft 3 /s (44.2 m 3 /s) May 21 at 0545 hours, gage height, 6.48 ft (1.975 m), no other peak above base of 1,000 ft 3 /s (28.3 m 3 /s); no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

					P	EAN VALUES	,					
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00	.03 .00 .00 .00	.33 .42 .42 .42 .42	.69 .67 .62 .49	.00 .00 .08 .08	.58 .58 .58 .58	1.3 1.4 1.4 1.2	.00 .00 .00	.58 .42 .25 .25	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00
6 7 8 9	.00 .00 .00	.00 .00 .00	.50 .50 .50 .50	.42 .31 .21 .08	.08 .17 .50 .58	.58 .67 .58 .33	.83 .70 .60 .50	.00 .00 .22 .03	.17 .17 .08 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
11 12 13 14	.00 .00 .00	.00 .00 .00	.42 1.0 1.0 .67 .58	.17 .17 .17 .17 .17	.58 .50 .58 .58	.00 .50 .42 .00	.30 .20 .20 .10	.00 .43 18 420 127	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
16 17 18 19 20	.00 .00 .00 .00	.00 .00 .00	.42 .42 .42 .42	.08 .75 .60 .29	.92 1.0 .92 .83	.00 .00 .00	.09 .08 .07 .06	79 25 4.8 1.6	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
21 22 23 24 25	.00 .00 .00	.42 .67 .58 .42	.50 .50 .49 .62 .45	.25 .56 .41 .33 .29	.83 .75 .75	.00 .00 .00	.04 .05 .04 .11	568 167 63 23 9.3	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
26 27 28 29 30 31	.00 .00 .00 .00	.42 .33 .25 .08	.39 .58 .84 1.3 .97	.25 .16 .08 .08 .08	.67 .67 .58 .58	.00 1.4 1.7 1.6 1.4	.20 .10 .05 .00	4.5 2.1 1.3 1.2 .83 .75	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00
TOTAL MEAN MAX MIN CFSM IN. AC-FT (ft)	.11 .004 .06 .00 .000 .000	3.79 .13 .67 .00 .001 .00 7.5	17.78 .57 1.3 .33 .003 .00 35	9.35 .30 .75 .00 .002 .00	15.88 .55 1.0 .00 .003 .00 31 2.05	13.55 .44 1.7 .00 .003 .00 27 3.28	11.59 .39 1.4 .00 .002 .00 23 3.09	1518.36 49.0 568 .00 .30 .34 3010 6.40	2.09 .070 .58 .00 .000 .000 4.1	.00 .000 .00 .000 .000 .000	.00 .000 .00 .00 .000 .000	.00 .000 .00 .00 .000 .000

^{††} Weighted-mean rainfall on watershed, in inches, based on two rain gages.

WTR YR 1980 TOTAL 1592.50 MEAN 4.35 MAX 568 MIN .00 CFSM .03 IN .36 AC-FT 3160 †† 26.95

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: January 1978 to current year. Radiochemical analyses: October 1979 to September 1980.

DATE	TIME	FI. INS TAN	EAM- OW, TAN- EOUS (SPE- CIFIC CON- DUCT- ANCE MICRO- MHOS)	PH FIELD (UNITS)	A' W.	MPER- TURE, ATER EG C)	(P IN CO	DLOR PLAT- IUM DBALT	TUR BID ITY (NTU	- I	GEN, DIS- DLVED IG/L)	SO (P C SA	GEN, IS- LVED ER- ENT TUR- ION)	BIO UNI 5	GEN AND, CHEM NHIB DAY /L)
OCT 31	0830		.17	455	7.8		17.0		5	3.	2	7.4		78		1.5
JAN 17	1315		1.0	403	7.9		13.0		5	2.	5	9.6		91		1.5
MAY 14 28	1320 1330	44	7 1.3	331 378	8.1 7.7		22.0 31.5		30	28		7.9		92		1.5
DATE		M, AL, IED. S.	COLI- FORM, FECAL 0.7 UM-MF (COLS.	TOCOC , FECA KF AG (COLS / PER	CI L, HA AR NE . (M	RD- SS G/L S CO3)	HARD- NESS NONCAR BONATI (MG/I CACO		CALCIUM DIS- SOLVEI (MG/L AS CA)	M)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIU DIS- SOLVE (MG/ AS N	D L	SOD A SOR TI RAT	D- P- ON	
OCT 31	1	200	12	0	96	14.5			1.21		-				120	
JAN 17		000	26			170		25	57		7.3	13			.4	
MAY 14	. 21	000	78			160		12	48		9.7		. 8		. 2	
28		200	K	8	K7	170	1	21	51		10	6	.3		. 2	
DATE	SI		BICAR- BONATE (MG/L AS HCO3)	CAR- BONAT (MG/	DI E SO L (M	FATE S- LVED G/L SO4)	CHLO- RIDE, DIS- SOLVE (MG/1 AS CI	ED	FLUO- RIDE, DIS- SOLVEI (MG/L AS F))	ILICA, DIS- SOLVED (MG/L AS SIO2)	SOLID SUM O CONST TUENT DIS SOLV (MG/	F I- S, ED	SOLI RESI AT 10 DEG. SUS- PEND (MG	DUÉ D5 C, ED	
OCT 31		-							-		-				23	
JAN 17		3.0	18	0	0	35	15		.1		4.1	2	23		5	
MAY 14 28		2.1	18 18			15 20	8.	. 0		2	8.6		85 96		59	
DATE	SOLI VOL TIL SUS PEND (MG	A- .E,	NITRO GEN, NITRAT TOTAL (MG/L AS N)	GEN E NITRI TOTA (MG/	TE NO2 L TO L (M	TRO- EN, +NO3 TAL G/L N)	NITRO GEN, AMMONI TOTAI (MG/I AS N)	A	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	G M O	ITRO- EN, AM- ONIA + RGANIC TOTAL (MG/L AS N)	PHOS PHORU TOTA (MG/ AS P	S, L L	CARBO ORGAI TOTA (MG AS	NIC AL /L	
OCT 31		3	.4	6 .0.	20	.48	.02	20	.50)	.52	.0	10		7.4	
JAN 17		0	.0	3 .0	10	.04	.00	00	.12	2	.12	.0	20		5.9	
MAY 14 28		4	.1			.18	.01		.50)	.51		40		5.2	
20		-	.0	1 .0	00	. 01	.01	U	.45		. 50	.0	10			
	DA	TE	TIME	ARSEN DIS SOLV (UG/) AS AS	ED SOL	IUM, S- VED G/L BA)	CADMIU DIS- SOLVE (UG/I AS CI	ED	CHRO-MIUM, DIS-SOLVEI (UG/L AS CR))	OPPER, DIS- SOLVED (UG/L AS CU)	IRON DIS SOLV (UG/ AS F	ED L			
			1315		0	40	<	1	()	3	<	10			
	MAY 14		1320		1	20		1	(0		20			
	28	•••	1330		1	30	<	1	C)	0		10			

08158800 ONION CREEK AT BUDA, TX--Continued

		D		LEAD, I DIS- SOLVED S (UG/L	DIS- SOLVED S (UG/L	ERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)		
			7	0	<1	.0	0	0	<3		
			4 8	1 0	<1 4	.0	0	0	<3 <3		
DATE	TIME	GROSS ALPHA, DIS- SOLVED (PCI/L AS U-NAT)	GROSS ALPHA SUSP. TOTAL (PCI/L AS U-NAT	, ALPHA DIS- SOLVEI (UG/L AS	SUSP. TOTAL (UG/L AS	DIS- SOLVE (PCI/I AS	BETA SUS ED TOTA (PCI	A, BET P. DI AL SOL /L (PC AS	A, BETA, S- SUSP. VED TOTAL I/L (PCI/L	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)
JAN 17	1315	<2.9		5 <4.2	2 .8	3 3.	4	.9	3.2 .9	.04	.60
	DATE	TIME	PCB TOTAL (UG/L)	NAPH- THA- LENES POLY- CHLOR TOTAL (UG/L)	ALDRIN TOTAL	TOTAL	DDI	AL TOT		DI- AZINON, TOTAL (UG/L)	
	JAN 17	1315	.0	0.0	0.00	ο .	.0	.00	.00	.00	
	DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN TOTAL (UG/L	, ENDRIN TOTAL	TOTAL	TOTAL	EPOX TOTA	OR IDE LIND AL TOT		METH- OXY- CHLOR, TOTAL (UG/L)	
	JAN 17	.00	.0	0 .00	0.00). (00	.00	.00 .00	.00	
	DATE	METHYL PARA- THION, TOTAL (UG/L)	METHY TRI- THION TOTAL (UG/L	, MIREX	L TOTAL	TOTAL	TR.	I- 2,4 ON TOT	-D, 2,4,5-T AL TOTAL E/L) (UG/L)	SILVEX, TOTAL (UG/L)	
	JAN 17	.00	.0	0 .00	0.00	0	0	.00	.00 .00	.00	

08158810 BEAR CREEK BELOW FARM ROAD 1826 NEAR DRIFTWOOD, TX

LOCATION.--Lat 30°09'19", long 97°56'23", Hays County, Hydrologic Unit 12090205, 0.8 mi (1.3 km) southeast of Farm Road 1826 and 5.9 mi (9.5 km) northeast of Driftwood.

DRAINAGE AREA .-- 12.2 mi 2 (31.6 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--March 1978 to July 1979 (periodic discharge measurements only), October 1978 to June 1979 (peak discharges above base only), July 1979 to current year.

GAGE.--Water-stage recorder. Altitude of gage is 860 ft (262.1 m), from topographic map.

REMARKS.--Water-discharge records fair. Station is part of a hydrologic research project to study rainfall-runoff relation for the Austin urban-rural areas. There is a digital recording rain gage located in the watershed.

EXTREMES FOR PERIOD OF RECORD.--Maxumum discharge, 3,050 $\mathrm{ft^3/s}$ (86.4 $\mathrm{m^3/s}$) Apr. 18, 1979, gage height, 9.24 ft (2.816 m) from floodmarks, from slope-area measurements of peak flow; no flow Aug. 28 to Sept. 5, 1980.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 9, 1939, reached a stage of 16.2 ft (4.938 m), discharge unknown, and was the highest since at least 1924, from information by local resident. A flood in 1915 was 2 ft (0.6 m) higher than the 1939 flood; from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 323 ft 3 /s (9.15 m 3 /s) May 21 at 0415 hours, gage height, 4.73 ft (1.442 m), no peak above base of 500 ft 3 /s (14.2 m 3 /s); no flow Aug. 28 to Sept. 5.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

					MI	EAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.70 .63 .70 .51	.40 .40 .40 .40	.45 .45 .45 .45	.45 .45 .40 .40	.30 .33 .33 .33	2.2 1.3 1.0 1.0	4.9 4.9 4.3 3.9 3.5	1.3 1.3 1.3 1.3	9.7 9.7 9.7 9.1 8.5	1.0 .96 .88 .82	.15 .13 .10 .09	.00 .00 .00
6 7 8 9	.57 .70 .70 .80	.45 .45 .45 .45	.45 .45 .45 .45	.40 .40 .40 .37	.33 .34 .37 .82	1.0 .96 .91 .91	3.3 3.2 2.9 2.6 2.7	1.1 1.6 11 4.1 3.1	8.0 7.3 6.8 6.3 6.1	.70 .69 .63 .61	.07 .06 .05 .04	.01 .20 .18 .27 .23
11 12 13 14 15	.80 .80 .91 .91	.45 .40 .40 .40	.45 .63 1.0 .72 .63	.37 .37 .37 .37 .33	.57 .57 .57 .57	.91 1.0 1.0 1.0	2.7 2.7 2.7 2.4 2.3	2.9 41 73 51 43	5.5 5.0 4.6 4.0 3.7	.57 .49 .45 .44	.17 .13 .10 .09	.17 .16 .15 .13
16 17 18 19 20	.91 .91 1.0 1.0	.40 .40 .42 .45	.57 .57 .57 .57	.33 .37 .40 .40	1.1 .80 .80 .80	1.0 1.0 .93 .80	2.1 1.7 1.7 1.7	43 34 29 28 23	3.5 3.3 3.0 2.8 2.5	.39 .33 .30 .32 .33	.07 .07 .07 .07	.12 .11 .11
21 22 23 24 25	.91 .91 .91 .80	.45 .45 .45 .45	.57 .57 .61 .57	.91 .80 .63 .53	.91 .91 .91 .91	.80 .80 .80	1.6 1.8 1.7 1.6 4.0	55 18 15 14 13	2.2 2.1 1.9 1.7 1.6	.28 .29 .30 .25	.05 .05 .04 .04	.20 .18 .18 .18
26 27 28 29 30 31	.63 .57 .51 .45 .40	.45 .45 .45 .45	.51 .51 .86 .70 .59	.33 .33 .30 .30	.96 1.0 1.2 1.6	.82 9.0 6.9 6.3 5.8 5.2	1.7 1.5 1.5 1.4	12 12 11 11 11 11 9.9	1.5 1.4 1.2 1.1	.25 .22 .21 .20 .19	.02 .01 .00 .00	.61 1.0 1.9 2.1 51
TOTAL MEAN MAX MIN CFSM IN. AC-FT (††)	22.87 .74 1.0 .37 .06 .07 45	12.97 .43 .45 .40 .04 .04 .26	17.27 .56 1.0 .45 .05 .05 .34 2.54	12.86 .41 .91 .30 .03 .04 .26	20.56 .71 1.6 .30 .06 .06 41 2.22	58.65 1.89 9.0 .80 .16 .18 116 2.87	76.0 2.53 4.9 1.3 .21 .23 151 2.03	577.1 18.6 73 1.1 1.53 1.76 1140 8.23	134.9 4.50 9.7 1.1 .37 .41 268	14.23 .46 1.0 .16 .04 .04 .28	2.05 .066 .17 .00 .005 .01 4.1	70.83 2.36 51 .00 .19 .22 140

WTR YR 1980 TOTAL 1020.29 MEAN 2.79 MAX 73 MIN .00 CFSM .23 IN 3.11 AC-FT 2020 †† 35.32

^{††} Rainfall on watershed, in inches, based on one rain gage.

08158810 BEAR CREEK BELOW FARM ROAD 1826 NEAR DRIFTWOOD, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: March 1978 to current year. Radiochemical analyses: October 1979 to September 1980.

DATE	TIME	FI INS TAN	OW, STAN- NEOUS (SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	F	PH	A'		(P IN CO	DLOR PLAT- IUM BALT		TUR- BID- ITY NTU)	SC	(GEN, DIS- DLVED 1G/L)	SC (F	GEN, DIS- DLVED PER- CENT ATUR- TION)	DEM BIO UNI	GEN IAND, CHEM NHIB DAY
OCT 31	1020		.57	489		7.8		16.0		5		.40		7.7		79		1.0
JAN 16	1220		.57	501		8.0		17.5		5				9.5		100		.8
DATE	FOR TOT IMM (COI	RM, TAL, MED. LS.	COLI- FORM, FECAI 0.7 UM-MF (COLS.	TOCO FEC KF A (COI	CAL, AGAR LS. ER	HAR NES (MG AS CAC	S /L	HARD NESS NONCA BONAT (MG/ CACO	R- E L	DIS	VED /L	SOL (MG	UM, S- VED	SODI DIS SOLV (MG AS	ED .	SOD A SOR TI RAT	D- P- ON	
OCT 31		470	21	0	100								-		44)			
JAN 16		200	2	28	27		240		28	6	7	1	8		8.0		. 2	
DATE	SI DI SOI (MC	S- VED	BICAR- BONATE (MG/I AS HCO3)	BONA (MC	ATE G/L	SULF. DIS SOL (MG AS S	VED /L	CHLO RIDE DIS- SOLV (MG/ AS C	, ED L	DI SOL (MG	S- VED	SILI DIS SOL (MG AS	VED /L	SOLI SUM CONS TUEN DI SOL (MG	TI- TS, S- VED	SOLI RESI AT 1 DEG. SUS PEND (MG	C,	
OCT 31				4.	24								-1		-1		5	
JAN 16		1.0	26	0	0	2	4	15			.2		8.3	1	270		0	
DATE	SOLI VOI TII SUS PENI (MC	E, E, ED	NITRO GEN, NITRAT TOTAL (MG/L AS N)	E NITE	RITE FAL G/L	NIT GE NO2+ TOT. (MG AS	NO3 AL /L	AMMON TOTA (MG/	ÍA L L	ORGA	NIC AL /L	ORGA	AM- A + NIC AL /L	PHOR PHOR TOTA (MG AS	US, AL /L	CARBO ORGAL TOTA (MG AS	NIC AL /L	
OCT 31		4	.0	3 .	000		.03	.0	10		.44		.45		000		2.8	
JAN 16		0	.0	3 .	.000		.03	.0	00		.10		.10		010		7.9	
	D.A	TE	TIME	SOI	S- VED	BARI DIS SOLV (UG AS	ED /L	CADMI DIS SOLV (UG/ AS C	ED L	SOL'	M, VED /L	COPP DIS SOL (UG AS	VED /L	IRON DIS SOL' (UG AS	S- VED /L			
	JAN 16		1220		0		30		<1		0		0		<10			
		JA	ATE	LEAD, DIS- SOLVED (UG/L AS PB)	NE SC (U	IS-	MER SC (U	CCURY SIS- SLVED G/L HG)	NI D SO (U	LE- UM, IS- LVED G/L SE)	SC (U	VER, DIS- DLVED G/L AG)	SO (U	NC IS = LVED G/L ZN)				

08158810 BEAR CREEK BELOW FARM ROAD 1826 NEAIFTWOOD, TX--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	DATE	TIME	GROSS ALPHA, DIS- SOLVED (PCI/L AS U-NAT)	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)	
	JAN 16	1220	<3.7	<5.5	<2.7	<2.8	,09	1.0	
DATE	TIME	PCB TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)
JAN 16	1220	.00	.0	.00	.0	.00	.00	.00	.00
DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)
JAN 16	.00	.00	.00	.00	.00	.00	.00	.00	.00
DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
JAN 16	.00	.00	.00	.00	0	.00	.00	.00	.00

08158825 LITTLE BEAR CREEK AT FARM ROAD 1626 NEAR MANCHACA, TX

LOCATION.--Lat $30^{\circ}07'31''$, long $97^{\circ}51'43''$, Hays County, Hydrologic Unit 12090205, on downstream side of culvert on Farm Road 1626 and 2.1 mi (3.4 km) southwest of Manchaca.

DRAINAGE AREA. -- 21.0 mi2 (183.8 km2).

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: October 1978 to current year. Radiochemical analyses: October 1979 to September 1980.

DATE	TIME	FI INS TAN	EAM- OW, STAN- HEOUS	SPE CIF CON DUC ANC (MIC MHC	PIC I- ET- EE ERO- I	PH FIELD JNITS)	WA"	PER- (URE, I TER C	OLOR PLAT- NUM OBALT NITS)	BI	UR- ID- TY TU)	SOL	GEN, S- VED	XYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	DEM BIO UNI 5	CHEM NHIB DAY	HARD- NESS (MG/L AS CACO3	NON BON (M	ARD- CSS, ICAR- IATE IG/L ACO3)
APR 25 25	0940 1415		.14		282	6.7		18.5	60	280			5.9	64		9.3	13		56
DATE	DI SC (M	CIUM S- LVED G/L CA)	MAGI SI DI: SOL' (MG AS !	UM, S- VED /L	SODIUM DIS- SOLVED (MG/L AS NA)	SOR TI RAT	D- P- ON	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR	re /L 3	CAR- BONAT (MG/ AS CO	E L	SULFAT DIS- SOLVE (MG/L AS SO4	D SOI	E,	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	D (LICA, IS- OLVED MG/L AS IO2)	
APR 25 25	:	50		1.6	3.8		.i	5.1 5.1		92		0	60	-	5.9		2	8.9	
DATE	SUM CON TUE D	IDS, OF STI- NTS, IS- LVED G/L)	SOLII RESII AT 10 DEG. SUS- PENDI (MG	DUÉ 05 C, ED	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	MITRA TOTA (MG)	N, ATE AL /L	NITRO- GEN, NITRITE TOTAL (MC/L AS N)	GEN	1. 103 1L 1L	NITR GEN AMMON TOTA (MG/ AS N	ÍA L L	NITRO GEN, ORGANI TOTAL (MG/L AS N)	MONI C ORGA TOT (MC	AM- A + NIC AL /L	PHOS- PHORUS TOTAL (MG/L AS P)	, OR T	RBON, GANIC OTAL MG/L S C)	
APR 25 25	•	181	3	266	34		.62	.010		.63		20	1.5		.8	.57	0	18	
			DA'	ΓE	TIME	ARSE DI: SOL' (UG AS	S- VED /L	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMI DIS SOLV (UG) AS (S- /ED /L	CHRO MIUM DIS- SOLV (UG/ AS C	ED L	COPPER DIS- SOLVE (UG/L AS CU	D1 D S01 (U0	S- VED				
			APR 25		0940		0	20		<1		0		3	120				
				DA	5	LEAD. DIS- SOLVED (UG/L AS PB)	NES DI SOI (UC	IS- LVED S	RCURY DIS- OLVED UG/L S HG)	SOI (UC		SILV DI SOL (UG AS	S- VED /L	ZINC, DIS- SOLVED (UG/L AS ZN)					
				APR 25		0		80	.1		0		0	-5					
DATE		IME	GROS ALPI DIS SOL' (PCI AS U-NA	HA, S- VED /L S	GROSS ALPHA SUSP. TOTAL (PCI/L AS U-NAT)	SOL' (UG AS	IA. S- VED /L	GROSS ALPHA. SUSP. TOTAL (UG/L AS U-NAT)	GROS BETA DIS SOLV (PCIA AS CS-13	A. S- ZED L	GROS BETA SUSP TOTA (PCI/ AS CS-13	L L	GROSS BETA, DIS- SOLVE (PCI/ AS SR YT-90	BET SUS D TOT L (PC / AS	A, P.	RADIU 226, DIS- SOLVED RADON METHO (PCI/L	UR SO EX D T	ANIUM DIS- LVED, TRAC- ION UG/L)	
APR 25	. 1	415	<:	2.0	4.8	3 <	3.0	7.0	5	5.5	7	.9	5.	6	7.5	.0	5	.32	

233

08158825 LITTLE BEAR CREEK AT FARM ROAD 1626 NEAR MANCHACA, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

NAPH-THA-LENES. CHLOR-DANE, TOTAL (UG/L) DI-POLY-CHLOR. ALDRIN, PCB DDD, DDE, DDT, AZINON, TIME TOTAL (UG/L) DATE APR 25... .00 .00 .00 .27 0940 .00 .0 .00 .0 HEPTA-CHLOR METH-HEPTA-MALA-OXY-ENDO-DI-LINDANE TOTAL THION, ELDRIN SULFAN, ENDRIN, ETHION, CHLOR, TOTAL EPOXIDE CHLOR. TOTAL TOTAL (UG/L) TOTAL (UG/L) TOTAL (UG/L) TOTAL TOTAL (UG/L) DATE (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) APR .00 .00 .00 .00 .00 .00 .00 .00 .00 25 ... METHYL TRI-THION TOTAL METHYL PARA-THION, TOX-APHENE, TOTAL PARA-TOTAL 2,4,5-T SILVEX, MIREX, THION, TOTAL 2,4-D, TRI-THION TOTAL (UG/L) TOTAL (UG/L) TOTAL TOTAL TOTAL (UG/L) (UG/L) DATE (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) APR 25... .00 .00 .00 .00 0 .00 .47 .01 .00

08158840 SLAUGHTER CREEK AT FARM ROAD 1826 NEAR AUSTIN, TX

LOCATION.--Lat 30°12'32", long 97°54'11", Travis County, Hydrologic Unit 12090205, 1.7 mi (2.7 km) south of the intersection of U.S. Highway 290 and Farm Road 1826 and 11.9 mi (19.1 km) southwest of the State Capitol Building in Austin.

DRAINAGE AREA .-- 8.24 mi2 (21.3 km2).

PERIOD OF RECORD. -- January 1978 to current year.

CAGE .-- Water-stage recorder. Datum of gage is 876.14 ft (267.047 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair. No known regulation or diversion. There is a recording rain gage in the watershed.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,500 ft 3 /s (70.8 m 3 /s) May 21, 1979, gage height, 9.00 ft (2.743 m); no flow at times each year.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 607 ft 3 /s (17.2 m 3 /s) May 12 at 1245 hours, gage height, 6.07 ft (1.850 m), no other peak above base of 500 ft 3 /s (14.2 m 3 /s); no flow for many days.

	1	DISCH	ARGE, IN	CUBIC I		ECOND, WAT		OCTOBER 1	979 TO SEF	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.29 .24 .24 .21 .18	.01 .01 .01 .01	.01 .01 .01 .01	.01 .01 .01 .01	.00 .00 .00	.22 .13 .18 .18	1.5 2.0 1.2 1.1	.91 .91 .88 .73	3.1 3.1 2.9 2.4 2.2	.27 .24 .24 .21 .21	.00 .00 .00	.00 .00 .00
6 7 8 9	.18 .18 .13	.01 .01 .01 .02	.01 .01 .01 .01	.01 .01 .01 .01	.00 .01 .01 .02	.15 .18 .18 .18	1.1 1.1 1.0 1.0	.67 1.1 76 7.7 4.7	2.0 2.0 1.6 1.6	.15 .15 .15 .15	.00 .00 .00	.00 .03 .00 .00
11 12 13 14 15	.10 .10 .10 .09	.01 .01 .01 .01	.01 .04 .02 .01	.01 .01 .01 .01	.01 .01 .01	.18 .18 .18 .18	1.0 1.0 1.7 1.6 1.5	4.4 104 99 134 108	1.6 1.3 1.2 1.1	.09 .08 .05 .04	.00 .00 .00	.00 .00 .00
16 17 18 19 20	.08 .07 .05 .05	.01 .01 .01 .01	.01 .00 .00 .00	.01 .01 .01 .01	.11 .08 .08 .10	.19 .21 .21 .21	1.1 1.0 1.0 .91	94 48 28 27 19	1.0 .90 .74 .74	.02 .00 .00 .00	.00 .00 .00	.00 .00 .00 .01
21 22 23 24 25	.02 .02 .01 .01	.01 .01 .01 .01	.00 .00 .03 .02	.02 .02 .00 .00	.13 .13 .13 .13	.21 .21 .21 .21	.91 .91 .89 .73 3.9	16 12 11 9.1 7.2	.59 .52 .51 .46 .45	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	.01 .01 .01 .01 .02	.01 .01 .00 .00	.01 .01 .03 .02 .01	.00 .00 .00 .00	.11 .14 .15 .56	.18 12 1.4 1.0 .91	1.3 1.1 1.0 .99	6.7 5.7 4.8 4.8 4.1 3.7	.42 .38 .34 .34	.00 .00 .00 .00	.00 .00 .00 .00	3.3 .15 .37 .06 4.7
TOTAL MEAN MAX MIN CFSM IN. AC-FT (††)	2.83 .091 .29 .01 .01 .01 5.6	.29 .010 .02 .00 .001 .00	.35 .011 .04 .00 .001 .00 .7	.25 .008 .02 .00 .001 .00	2.16 .074 .56 .00 .009 .01 4.3 3.07	20.96 .68 12 .13 .08 .09 42 3.00	36.46 1.22 3.9 .73 .15 .16 72 2.44	844.83 27.3 134 .67 3.31 3.81 1680 7.21	37.19 1.24 3.1 .34 .15 .17 74	2.20 .071 .27 .00 .009 .01 4.4	.00 .000 .00 .00 .000 .000	8.65 .29 4.7 .00 .04 .04 17
CAL YR	1979 TOTAL	3805.0	5 MEAN	10.4	MAX 250	MIN .00	CFSM 1	.26 IN	17.18 AC	-FT 7550	†† 40.0	

WTR YR 1980 TOTAL 956.17 MEAN 2.61 MAX 134 MIN .00 CFSM .32 IN 4.32 AC-FT 1900 †† 33.53

^{††} Rainfall on watershed, in inches, based on one rain gage.

08158860 SLAUGHTER CREEK AT FARM ROAD 2304 NEAR AUSTIN, TX (Flood-hydrograph partial-record station)

LOCATION.--Lat 30°09'43", long 97°49'55", Travis County, Hydrologic Unit 12090205, at downstream side of bridge on Farm Road 2304 and 9.4 mi (15.1 km) southwest of the State Capitol Building in Austin.

DRAINAGE AREA. -- 23.1 mi2 (59.8 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1978 to current year.

CAGE.--Flood-hydrograph recorder and crest-stage gage. Datum of gage is 654.80 ft (199.583 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Additional storm rainfall-runoff data for this site can be obtained from the report "Hydrologic Data for Urban Studies in the Austin, Texas Metropolitan Area, 1980."

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,000 ft 3 /s (85.0 m 3 /s) May 22, 1979, gage height, 10.20 ft (3.109 m), from rating curve extended above 100 ft 3 /s (2.83 m 3 /s) on basis of computation of flow over dam at gage height 9.64 ft (2.938 m).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 179 ft³/s (5.07 m³/s) May 14 at 0030 hours, gage height, 3.54 ft (1.079 m).

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Chemical, biochemical, and pesticide analyses: October 1978 to September 1979.

DATE	TIME TA	REAM- CC LOW, DI STAN- AI NEOUS (MI	LCRU- F	PH ELD		COLOR (PLAT- INUM COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	CENT	OXYGEN D DEMAND BIOCHE UNINHI - 5 DAY	M B
MAY 13	1030	32	274	8.2	25.0	70	28	8.2	10	0 2.	3
DATE	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)		(COLS. PER	HARD- NESS (MG/L AS CACO3	NESS, NONCAR BONATE	• CALCI R- DIS- E SOLV L (MG/ B) AS C	IM ST	UM, SOD S- DI VED SOL	IUM, S- S VED	ODIUM AD- ORP- TION ATIO	
MAY 13	52000	9200	8200	13	0 2	20 37		8.2	6.4	.2	
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS	CAR- BONATE (MG/L AS CO3)	DIS- SOLVE (MG/L	DIS- D SOLVE (MG/I	RIDE DIS D SOLV (MG/	, DIS - SOL ED (MC L AS	CA, SUM - CON: VED TUE! /L D	OF RE STI- AT NTS, DE IS- S LVED PE	LIDS, SIDUE 105 G. C, US- NDED MG/L)	
MAY 13	3.3	130	0	18	12		.1 1	1	160	50	
DATE	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	GEN, NITRATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)		TOTAL	GEN A ORGAN	, MONI IC ORGA L TOT	AM- A + PHO NIC PHOI AL TO	RUS, OR TAL T G/L (RBON, GANIC OTAL MG/L S C)	
MAY 13	38		.010	.0	8 .01	0 .	85	.86	.060	11	
	DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	DIS- SOLVED (UC/L	SOLVE (UG/L	DIS- D SOLV (UG/	, COPP DIS ED SOL L (UG	VED SOI	IS- LVED		
	MAY 13	1030	1	2	0 <	(1	0	1	40		

08158860 SLAUGHTER CREEK AT FARM ROAD 2304 NEAR AUSTIN, TX--Continued

		D	S(EAD, NI DIS- I DLVED SO JG/L (1	DIS- DLVED SO JG/L (RCURY N DIS- OLVED S UG/L (ELE- IUM, : DIS- OLVED UG/L S SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)			
		MA 1	Y 3	0	1	.0	0	0	<3			
DATE	TIME	GROSS ALPHA, DIS- SOLVED (PCI/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (PCI/L AS U-NAT)	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137)	(PCI/I	. BETA, DIS- L SOLVE L (PCI/ AS SR	BETA, SUSP. D TOTAL L (PCI/L / AS SR/	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)	
MAY 13	1030	<1.3	2.0	<1.9	2.9	4.8	1.	.8 4.	6 1.7	.10	74	
	DATE MAY	TIME 1030	PCB TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD TOTAL (UG/)	L TOTAL	TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)		
	DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA CHLOR EPOXII	A- R DE LINDAN L TOTAL	MALA- E THION, TOTAL	METH- OXY- CHLOR, TOTAL (UG/L)		
	MAY 13	.00	.00	.00	.00	.00	. (00 .0	00.00	.00		
	DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THIO (UG/1	- 2,4-I	TOTAL	SILVEX, TOTAL (UG/L)		
	MAY 13	.00	.00	.00	.00	C		00 .0	1 .00	00		

08158920 WILLIAMSON CREEK AT OAK HILL, TX

LOCATION.--Lat 30°14'06", long 97°51'36", Travis County, Hydrologic Unit 12090205, on downstream side of bridge on U.S. Highway 290 in Oak Hill, 0.8 mi (1.3 km) east of the intersection of U.S. Highway 290 and State Highway 71, and 7.7 mi (12.4 km) southwest of the State Capitol Building in Austin.

DRAINAGE AREA. -- 6.30 mi 2 (16.32 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--January 1974 to February 1977 (periodic discharge measurements only), January 1978 to current year.

CAGE.--Water-stage recorder. Datum of gage is 798.68 ft (243.438 m) National Geodetic Vertical Datum of 1929 (levels from city of Austin bench mark).

REMARKS.--Water-discharge records fair. Station is part of a hydrologic-research project to study rainfall-runoff relation for the Austin urban-rural areas. Two recording rain gages are located in the watershed.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,130 ft 3 /s (60.3 m 3 /s) May 21, 1979, gage height, 6.46 ft (1.969 m); no flow for many days each year.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 696 ft 3 /s (19.7 m 3 /s) May 12 at 1215 hours, gage height, 4.24 ft (1.292 m), no other peak above base of 500 ft 3 /s (14.2 m 3 /s); no flow for many days.

DICCHARGE IN CHRIC PERT BER CECOMD HATER VEAR OCTORER 1070 TO CERTEMBER 1000

		DISCHA	ARGE, IN	CUBIC FE		SECOND, WAT MEAN VALUES		OCTOBER 1	979 TO SEP	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	1.8 .70 .70 .70	4.3 6.1 3.6 2.6 2.3	.18 .14 .15 .17	12 10 10 8.5 7.8	.00 .00 .00	.00 .00 .00	.00 .00 .00
6 7 8 9	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 1.0 .54 5.9 1.2	.70 .70 .70 .70	2.1 2.0 1.4 1.2 1.2	2.7 23 1.8 1.3	6.9 6.2 5.8 6.0 5.9	.00 .00 .00	.00 .00 .00	.27 8.8 .50 .00
11 12 13 14 15	.00 .00 .00 .00	.00 .00 .00 .00	.00 2.2 .10 .00	.00 .00 .00	.97 .71 .46 .46	.46 .40 .29 .29	1.2 1.7 3.1 1.7 1.5	1.2 63 56 51 44	5.4 4.7 4.2 3.4 2.6	.00 .00 .00	.00 .00 .00	.00 .00 .00
16 17 18 19 20	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	3.5 1.2 1.2 1.1	.53 .45 .29 .31	1.5 1.5 1.2 1.2	42 26 17 16	2.2 1.7 1.1 .79 .48	.00 .00 .00	.00 .00 .00	.00 .00 .00 22
21 22 23 24 25	.00 .00 .00	.00 .00 .00 .00	.00 .00 2.6 .00	1.8 .77 .01 .00	.95 .80 .72 .64 .46	.29 .29 .42 .41	1.2 1.2 1.1 1.0	9.7 8.8 8.4 8.8 9.5	.53 .52 .22 .12	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00 4.8
26 27 28 29 30 31	.00 .00 .00 .00 .03	.00	.00 .00 5.5 .80 .00	.00 .00 .00 .00	.41 .29 .29 3.2	.85 36 9.3 4.8 3.2 2.7	.23 .18 .17 .17 .23	11 11 12 14 13 12	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	13 5.8 8.0 1.5 2.2
TOTAL MEAN MAX MIN CFSM IN. AC-FT (††)	.03 .001 .03 .00 .000 .000	.00 .000 .00 .00 .000 .00	11.20 .36 5.5 .00 .06 .07 .22 3.72	3.27 .11 1.8 .00 .02 .02 6.5 1.73	27.32 .94 5.9 .00 .15 .16 54 2.78	70.80 2.28 36 .29 .36 .42 140 3.04	58.08 1.94 10 .17 .31 .34 115 2.17	475.18 15.3 63 .14 2.43 2.81 943 6.63	107.10 3.57 12 .00 .57 .63 212 .59	.00 .000 .00 .00 .000 .000	.00 .000 .00 .00 .000 .000	66.87 2.23 22 .00 .35 .39 133 9.93
CAL YR WTR YR					AX 238 AX 63	MIN .00 MIN .00	CFSM 1			-FT 5190 -FT 1630	†† 44.1 †† 32.9	

†† Weighted-mean rainfall on watershed, in inches, based on two rain gages.

08158920 WILLIAMSON CREEK AT OAK HILL, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Occasional discharge measurements: January 1974 to current year. Chemical, biochemical, and pesticide analyses: January 1974 to current year. Radiochemical analyses: October 1979 to September 1980.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	A' W	MPER- TURE, ATER EG C)	COLOR (PLAT- INUM COBALT UNITS)	- 7 E	SID-	YGEN, DIS- OLVED MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	DEM BIO UNI 5	GEN IAND, CHEM NHIB DAY
APR 25	1045	1.7	439	7.0		21.5	10) 3	38	4.4	51		1.9
SEP 26	1020	.85	455	7.6		23.0	15		4				2.4
	COLI FORM TOTA IMME (COLS	1, FORI AL, FEC. ED. 0.7 S. UM-1	M, TOCO AL, FEO KF A MF (COI	CAL, HA	ARD- ESS MG/L AS	HARD NESS NONCA BONAT (MG/	R- DI	LCIUM IS- DLVED 4G/L	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIU DIS-	M, SO	DIUM AD- RP- ION	
DATE	100 N				ACO3)	CACO		G CA)	AS MG)	AS N		110	
APR 25 SEP 26		 000 K9	 500 12		220 210		39 32	60 62	17 14	11		.3	
DATE	POTA SIU DIS SOLV (MG/ AS K	JM, BICAL BONA ED (MG) L AS	TE CAR /L BONA S (MG	TE SC	FATE IS- DLVED 1G/L SO4)	CHLORIDE DIS- SOLVU (MG/1 AS CI	RI ED SC L (M	LUO- IDE. DIS- DLVED MG/L G F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLID SUM O CONST TUENT DIS SOLV (MG/	F RES I- AT S, DEG - SU: ED PEN	IDUE 105 . C,	
APR 25	. 2	.0	220	0	31	15		.2	5.5	2	50	51	
SEP 26			220	0	32	16		.2	7.3		52	37	
DATE	SOLID VOLA TILE SUS- PENDE (MG/	GEN NITRA TOTA D (MG,	N, GE ATE NITR AL TOT /L (MG	N, C ITE NO2 AL TO	TRO- GEN, 2+NO3 OTAL GG/L GN)	NITRO GEN AMMON: TOTAL (MG/I AS N)	IA ORG	TRO- GEN, GANIC OTAL IG/L S N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS PHORU TOTA (MG/ AS P	S, ORGA L TO: L (MC	ANIC TAL G/L	
APR 25		14	.66 .	010	.67	.00	00	.64	.64	.2	20	6.9	
SEP 26		17	.55 .	010	.56	.00	00	.59	.59	.2	30	8.3	
	DAT	TIM E	SOL	S- DI VED SOL /L (U	RIUM, S- VED IG/L BA)	CADMII DIS- SOLVI (UG/I AS CI	JM MI DI ED SO	IRO- UM, S- DLVED IG/L G CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON DIS SOLV (UG/ AS F	ED L		
	APR 25.	104	45	2	30		(1	0	2		20		
	SEP 26.			1	30		(1	10	<10		30		
		DATE APR 25 SEP	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MER I SO SO (U AS	RCURY DIS- DLVED DIG/L S HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SIL DO SO (U AS	VER, Z IS- LVED SG G/L ((AG) AS	INC, DIS- OLVED UG/L S ZN)			
		26	16	<1		.0	0)	0	<3			

08158920 WILLIAMSON CREEK AT OAK HILL, TX--Continued

DATE	TIME	GROSS ALPHA, DIS- SOLVED (PCI/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (PCI/L AS U-NAT)	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)
APR 25	1045	<2.6	1.4	<3.8	2.1	2.3	1.8	2.3	1.7	.06	.70
										,	
	DATE	TIME	PCB TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)	
	APR 25	1045	.00	.0	.00	.0	.00	.00	.00	.19	
	DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	
	APR 25	.00	.00	.00	.00	.00	.00	.00	.03	.00	
	DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)	
	APR 25	.00	.00	.00	.00	0	.00	1.0	.00	.00	

08158970 WILLIAMSON CREEK AT JIMMY CLAY ROAD, AUSTIN, TX

LOCATION.--Lat 30°11'21", long 97°43'56", Travis County, Hydrologic Unit 12090205, at Jimmy Clay Road, 0.5 mi (0.8 km) southeast of the intersection of Jimmy Clay and Nuckles Crossing Roads, and 5.9 mi (9.5 km) south of the State Capitol in Austin.

DRAINAGE AREA .-- 27.6 mi2 (71.5 km2).

240

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--November 1974 to September 1975 (periodic discharge measurements only), September 1975 to current year.

GAGE.--Water-stage recorder. Datum of gage is 497.18 ft (151.540 m) National Geodetic Vertical Datum of 1929 (city of Austin bench mark).

REMARKS.--Water-discharge records fair. No known regulation or diversion in watershed. There are three recording rain gages located in the watershed. The station is part of a hydrologic research project to study the rainfall-runoff relationships for the Austin urban-rural areas.

AVERAGE DISCHARGE .-- 5 years, 7.36 ft3/s (0.208 m3/s), 3.62 in/yr (92 mm/yr), 5.330 acre-ft/yr (6.57 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,100 ft 3 /s (286 m 3 /s) Nov. 23, 1974, gage height, 15.2 ft (4.63 m), from floodmark, by slope-area measurement; minimum daily, 0.03 ft 3 /s (0.001 m 3 /s) Sept. 16, 24, 1977.

EXTREMES OUTSIDE PERIOD OF RECORD.--The maximum flood since 1869 occurred on Sept. 9 or 10, 1921, stage and discharge not determined.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 500 ft 3/s (14.2 m 3/s) and maximum (*):

Date	e	Time	Disch	arge	Gage	height
			(ft ³ /s)	(m^3/s)	(ft)	(m)
Mar.	27	1045	517	14.6	5.23	1.594
May	8	0830	506	14.3	5.19	1.582
May	13	2230	×737	20.9	5.94	1.811

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum daily discharge, 0.13 ft 3/s (0.004 m3/s) July 27, 28, Aug. 5.

					M	EAN VALUES						
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.20 .43 .79 .72	.32 .32 .38 .38	1.4 1.5 1.6 1.6	1.1 1.0 .90 .82 .82	1.6 1.8 1.9 1.9	5.7 1.7 1.1 1.1	1.6 4.6 2.3 1.6 1.3	1.5 1.4 1.3 1.3	1.9 1.9 1.6 1.6	.54 .54 .54 .46	.21 .21 .16 .16	.53 .70 .69 .63
6 7 8 9	.76 .72 .72 .60 .46	.26 .26 .26 .21	1.4 1.5 1.6 1.6	.96 1.1 .99 1.2 1.3	2.5 3.6 10 14 3.2	.98 1.0 1.6 2.0 2.0	1.3 1.4 1.5 1.3	1.1 21 139 11 5.2	1.6 1.4 1.4 1.3	.44 .39 .39 .34 .26	.16 .19 .24 .26	.84 27 4.1 .64 2.6
11 12 13 14 15	.43 .44 .46 .39 .36	.15 .17 .19 .24	1.6 5.0 6.4 .54 .46	1.5 1.6 1.5 1.6	2.0 1.8 1.7 1.9 2.2	1.9 1.6 1.0 .90	1.3 1.8 5.5 2.1	4.1 65 127 76 32	1.2 1.1 .91 .82 .82	.26 .26 .21 .21 .21	.25 .21 .21 .21	.37 .28 .36 .43
16 17 18 19 20	.39 .36 .32 .32	.29 .32 .36 .41 .49	.46 .38 .35 .39	1.6 2.0 1.6 1.3 2.5	10 2.4 1.5 1.4 1.4	1.2 1.3 1.2 1.4 1.5	1.2 1.2 1.4 1.4	19 12 6.0 5.7 3.4	.72 .72 .81 .92 .82	.21 .21 .21 .26 .21	.28 .21 .21 .21 .25	.46 .54 .54 13
21 22 23 24 25	.26 .26 .24 .21	1.2 .34 .48 .68	.42 .53 4.9 1.5 .54	1.9 12 3.6 2.1 2.0	1.3 1.4 1.5 1.3	1.3 1.3 1.4 1.2 1.3	1.4 1.3 1.0 .82	4.5 2.5 2.4 2.2 2.1	1.5 .68 .54 .46	.20 .17 .17 .17	.26 .32 .32 .32 .32	.69 .54 .54 .68
26 27 28 29 30 31	.19 .21 .22 .21 .31	.78 .70 1.1 1.2 1.2	.41 .68 22 17 2.1 1.3	1.8 1.6 1.6 1.6	1.2 1.3 1.4 2.0	1.5 173 12 4.1 2.4 1.9	2.5 1.2 .84 .89 1.2	2.1 2.2 2.0 2.0 2.0 2.0	.54 .54 .54 .54	.17 .13 .13 .17 .17	.39 .39 .39 .39 .46	36 7.7 14 3.0 22
TOTAL MEAN MAX MIN CFSM IN. AC-FT (††)	12.58 .41 .79 .19 .02 .02 .25 .75	14.10 .47 1.2 .15 .02 .02 .28 .74	82.65 2.67 22 .35 .10 .11 164 3.64	58.39 1.88 12 .82 .07 .08 116 1.64	81.7 2.82 14 1.2 .10 .11 162 2.69	232.76 7.51 173 .90 .27 .31 462 3.19	95.95 3.20 48 .82 .12 .13 190 2.64	560.2 18.1 139 1.1 .66 .76 1110 7.34	30.81 1.03 1.9 .46 .04 .04	8.47 .27 .54 .13 .01 .01 .17	8.26 .27 .46 .13 .01 .01 .16	144.15 4.81 36 .28 .17 .19 286 9.12

MIN .15 CFSM .47 IN 6.37 MIN .13 CFSM .13 IN 1.79

tt 33.05

CAL YR 1979 TOTAL 4727.01 MEAN 13.0 MAX 1190 WTR YR 1980 TOTAL 1330.02 MEAN 3.63 MAX 173

^{††} Weighted-mean rainfall on watershed, in inches, based on three rain gages.

08158970 WILLIAMSON CREEK AT JIMMY CLAY ROAD, AUSTIN, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: January 1975 to current year. Radiochemical analyses: October 1979 to September 1980.

DATE	TIME	INS TAN	REAM- .OW, STAN- EOUS CFS)	(MIC	FIC	FI	PH ELD ITS)	AT WA	IPER- TURE, ITER EG C)	(P IN CO	LOR LAT- UM BALT ITS)	B	UR- ID- TY TU)	SO	GEN, IS- LVED G/L)	SO (P C SA	GEN, IS- LVED ER- ENT TUR- TON)	BIO	AND, CHEM NHIB DAY
OCT 30	1040		.21		865		7.6		21.5		5		1.0		3.1		36		3.5
JAN 14	1335		1.6		727		7.7		14.5		10		+-		8.5		86		2.6
DATE	FOI TO: IM: (COI	ER	COL: FORM FECA 0.7 UM-N (COL:	AL, AF	STR TOCO FEC KF A (COL PE	CCI AL, GAR S. R	(MC	SS G/L	HARI NESS NONCA BONAT (MG/ CACO	R- E L	CALCI DIS- SOLV (MG, AS (/ED	SOL	VED	SODI DIS SOLV (MG AS	ED	SOR A SOR TI RAT	D- P- ON	
OCT 30		840		240		480													
JAN 14		190		50		K14		290		22	90	9	1	1	3	9		1.0	
120		130		,				2,0		-					-				
DATE	S01 S01 (M0	LVED G/L	BICAL BONAT (MG, AS	TE /L	BONA (MG	TE /L		LVED G/L	CHLC RIDE DIS- SOLV (MG/ AS C	ED L	FLUC RIDE DIS SOLV (MG/ AS I	ED L	SOL (MG	VED /L	SOLI SUM CONS TUEN DI SOL (MG	TS, S- VED	177	C, ED	
OCT 30																		2	
JAN		3.5		30		0		39	45			.4		0		410		0	
14		0.0	3.	30		O	3	9	43			• 4	,	U		410		0	
DATE	SOL: VOI TII SU: PENI (Mo	S- DED	NITE GEI NITE TOT (MG,	AL /L	NIT GE NITR TOT (MG AS	AL /L	NIT GE NO2 - TOT (MC	FAL G/L	NITE GEN AMMON TOTA (MG,	L	TOTA (MG)	AL /L	TOT (MG	AM- A + NIC	TOT (MG	AL /L	CARB ORGA TOT (MG AS	NIC AL /L	
OCT 30		2		.73		150		.88	,	40		.86	1	. 3		010	- 2	4	
JAN 14		0		.81		120		.93		40		.26		.2					
14	•	0		.01		120		. 2.3		40		. 20		. 2	•	010		,,,	
	DA	ATE	TI		DI	S- VED /L	SOLV	ED JED	CADMI DIS SOLV (UG) AS C	ED	DIS-	TED	COPP DIS SOL (UG AS	VED /L	IRO DI SOL (UG AS	S- VED /L			
	JAI		10	15		3		200		<1		0		0		/10			
	13	4	13:	33		3		200		(1		0		0		<10			
			DATE	SOI (UC	AD, IS- LVED G/L PB)	NE SC (U	NGA- SE, IS- LVED G/L MN)	S(RCURY DIS- DLVED UG/L S HG)	NI SC (U	LE- UM, IS- DLVED IG/L SE)	SO (U	VER, IS- LVED G/L AG)	SC (U	IS-				
			N 14		0		190		.0		0		0		<3				

08158970 WILLIAMSON CREEK AT JIMMY CLAY ROAD, AUSTIN, TX--Continued

DATE	TIME	GROSS ALPHA, DIS- SOLVED (PCI/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (PCI/L AS U-NAT)	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)
JAN 14	1335	<5.2	<.3	<7.7	<.4	<3.3	<.4	<3.1	<.4	.08	1.4
	DATE	TIME	PCB TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)	
	JAN 14	1335	.00	.0	.00	.0	.00	.00	.00	.00	
	DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	
	JAN 14	.00	.00	.00	.00	.00	.00	.00	.00	.00	
	DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)	
	JAN 14	.00	.00	.00	.00	0	.00	.00	.00	.00	

08159000 ONION CREEK AT U.S. HIGHWAY 183 NEAR AUSTIN, TX

LOCATION.--Lat 30°10'40", long 97°41'18". Travis County, Hydrologic Unit 12090205, on right bank at downstream side of downstream bridge on U.S. Highway 183, 2.4 mi (3.9 km) downstream from Williamson Creek, 3.2 mi (5.1 km) southwest of Del Valle, and 7.5 mi (11.7 km) southeast of the State Capitol Building in Austin.

DRAINAGE AREA. -- 321 mi 2 (831 km2).

CAL YR 1979 TOTAL 49817.48 WTR YR 1980 TOTAL 7365.40 MEAN 136 MEAN 20.1 MAX 3790

MAX 1010

MIN .47 MIN .00

CFSM .42 CFSM .06 IN 5.77 IN .85 AC-FT 98810 AC-FT 14610

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1924 to March 1930, March 1976 to current year. In 1924-30 station was published as "near Del Valle."

GAGE.--Water-stage recorder. Datum of gage is 442.85 ft (134.981 m) State Department of Highways and Public Transportation datum. May 15, 1924, to Mar. 15, 1930, nonrecording gage at highway bridge 1,700 ft (518 m) upstream at 6.42-foot (1.957 m) higher datum.

REMARKS.--Water-discharge records fair. Flow is slightly regulated by several small ponds on main channel and tributaries above station.

AVERAGE DISCHARGE.--9 years (water years 1925-29, 1977-80), 74.8 ft 3 /s (2.118 m 3 /s), 3.16 in/yr (80 mm/yr), 54,190 acre-ft/yr (66.8 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 76,000 ft³/s (2,150 m³/s) May 28, 1929, gage height, 30.5 ft (9.30 m), present datum; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1869 occurred about July 3, 1869, stage about 38 ft (11.6 m) from newspaper accounts, and Sept. 9, 1921, stage 38.0 ft (11.58 m) from floodmark, present site and datum.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2.570 ft 3 /s (72.8 m 3 /s) May 13 at 2400, gage height, 10.14 ft (3.091 m), no other peak above base of 2,500 ft 3 /s (70.8 m 3 /s); no flow July 13 to Sept. 6, Sept. 13-18, and Sept. 23-25.

		DISC	CHARGE, IN	CUBIC FE		ECOND, WAT		OCTOBER 1	979 TO SEE	PTEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.9 2.4 1.6 1.2	4.1 2.4 2.4 2.4 2.4	2.9 2.4 2.4 2.4 3.0	8.0 7.1 6.3 5.5 5.5	5.5 5.5 5.5 6.3 5.5	9.8 7.2 6.4 6.3	12 14 14 9.7 9.4	5.5 5.4 4.8 4.8 4.1	15 13 13 13 12	1.6 1.3 1.0 .94	.00 .00 .00	.00 .00 .00
6 7 8 9	.69 .60 .60 .57	2.4 2.4 2.4 2.4 2.4	3.0 3.0 3.0 3.0 4.1	4.8 4.1 4.1 4.1 4.1	5.5 6.3 27 35	5.5 5.5 5.5 5.5	8.1 8.0 7.7 6.3 6.3	4.1 45 448 47 18	10 9.3 8.0 7.1 9.1	.59 .49 .41 .20	.00 .00 .00	.00 39 12 5.2 5.0
11 12 13 14 15	.47 .47 .68 .78	2.4 2.4 2.7 3.1	5.5 6.7 30 12 7.2	5.5 4.8 4.8 4.1 4.1	8.9 8.0 7.1 6.3	5.5 5.5 5.5 5.5 6.3	6.3 6.3 14 12 7.9	12 145 510 1010 366	9.0 8.8 7.8 6.4 4.8	.12 .08 .00 .00	.00 .00 .00	2.6 .50 .00 .00
16 17 18 19 20	.91 1.0 1.0 1.3	2.9 2.9 3.5 4.1 4.1	5.5 4.8 4.1 3.5 3.5	4.1 4.1 5.5 8.0 8.9	27 21 14 11 8.0	6.3 6.9 6.3 6.3	6.4 5.6 5.5 4.9 4.8	289 190 93 62 47	4.9 4.8 4.2 3.7 3.4	.00 .00 .00	.00 .00 .00	.00 .00 .00 16 5.8
21 22 23 24 25	1.3 1.2 1.0 1.0	6.3 11 5.5 3.5 4.1	3.5 3.5 18 21 8.0	8.0 18 22 12 8.9	7.2 6.3 6.3 6.2 5.5	5.6 5.8 6.3 5.9 5.5	4.1 3.5 3.5 3.8 123	693 316 125 85 62	19 10 5.3 3.6 3.1	.00 .00 .00	.00 .00 .00	1.3 .12 .00 .00
26 27 28 29 30 31	1.0 1.1 1.3 1.6 2.0 3.0	4.8 3.5 3.0 3.0 2.9	6.3 5.5 17 88 19	7.1 6.3 6.3 5.5 5.5	5.5 5.5 5.5 5.5	6.1 424 112 33 20 15	19 10 7.6 5.6 5.5	46 36 28 21 18 17	2.6 2.3 2.3 2.0 1.9	.00 .00 .00 .00	.00 .00 .00 .00	66 14 32 12. 74
TOTAL MEAN MAX MIN CFSM IN. AC-FT	36.28 1.17 3.0 .47 .004 .00	103.8 3.46 11 2.4 .01 .01 206	312.8 10.1 88 2.4 .03 .04 620	212.6 6.86 22 4.1 .02 .02 422	295.9 10.2 35 5.5 .03 .03 587	778.8 25.1 424 5.5 .08 .09 1540	354.8 11.8 123 3.5 .04 .04 704	4757.7 153 1010 4.1 .48 .55 9440	219.4 7.31 19 1.9 .02 .03 435	7.80 .25 1.6 .00 .001 .00	.00 .000 .00 .00 .000 .000	285.52 9.52 74 .00 .03 .03 566

08159000 ONION CREEK AT U.S. HIGHWAY 183 NEAR AUSTIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: October 1976 to current year. Sediment analyses: October 1976 to current year. Radiochemical analyses: October 1979 to September 1980.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC GON- DUCT: ANCE (M1CRC MHOS))- F	PH IELD NITS)	TEMPER ATURE WATER (DEG C	- (, I	OLOR PLAT- NUM OBALT	TU BI IT (NT	D- Y	OXYGEN, DIS- SOLVED (MG/L)	OXYG DI SOL (PE CE SAT ATI	S- VED R- NT UR-	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)
OCT 23 30	1251 0940	1.0		-	8.1	22.		5	1	.5	7.1		85	.9
JAN 15	1045	4.1	64		8.1	13.		5			10.8		104	.8
APR 15	1150	8.8		5		18.	0			44				
MAY 14 28	1420 1400	895 19		3	7.9 7.8	20. 27.		80	130		9.2		103	3.0
DATE	COLI- FORM. TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREET TOCOCC FECAL KF AGA (COLS. PER 100 MI	I H	ARD- ESS MG/L AS ACO3)	HARD- NESS, NONCAR BONATE (MG/L CACO3	- D S (LCIUM IS- OLVED MG/L S CA)	MAG SI DI SOL (MG AS	UM, S- VED /L	SODIUM, DIS- SOLVED (MG/L AS NA)	SOD A SOR TI RAT	P- ON	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
OCT 23 30	350	51	1	0		-		22		12	77		2-	
JAN 15	70	23		4	240	1:	9	75	1.	3	39		1.1	2.6
APR 15	14	2.		2	1.4	-		-1		1,2			44	42
MAY 14 28	88000	12000		0	140 210	1.		42 66	ŀ	7.6	9.6 16		.4	3.6 2.5
	BICAR- BONATE (MG/L AS	CAR- BONATE (MG/L	SULFAT DIS- SOLVI (MG/I	E R	HLO- IDE, IS- OLVED MG/L	FLUO- RIDE, DIS- SOLVE (MG/L	D S D (LICA, IS- OLVED MG/L AS	SOLI SUM CONS TUEN DIS SOL	OF TI- IS, S- VED	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED	SOLI VOL. TIL SUS PEND	A- E, ED	NITRO- GEN, NITRATE TOTAL (MG/L
DATE	HCO3)	AS CO3)	AS SO) A	S CL)	AS F)	S	102)	(MG	/L)	(MG/L)	(MG	/L)	AS N)
23 30 JAN		22		=		5		72			 9			.00
15 APR	270	0	45		41		3	6.3		355	3		1	.48
15 MAY	44	155		-	4.	-		1 1		***	35			
14 28	150 240	0			10		2	9.1		182 272	211		10	.14
DA	GE NITE TOT (MC	EN, G RITE NO2 FAL TO G/L (M	EN, +NO3 AN TAL T G/L (ITRO- GEN, MONIA OTAL MG/L S N)	NIT GE ORGA TOT (MG AS	RO- GEI N, MOI NIC ORG AL TO /L (1	TRO- N,AM- NIA + GANIC OTAL MG/L S N)	PHO	US, (AL /L	CARBOI ORGAN TOTAL (MG/I	IC MEN L SUS L PEN	T, DED	SED MEN DIS CHAR SUS PEN (T/D	T GE, DED
OCT 23				-								02		
JAN		.000	.00	.000		.61	.61		010		. 9			
15 APR		.010	.49	.080		.14	.22		010		. 1			
MAY		.010	.27	.070	1	.0	1.1		170	11		67	53	1.6
		010	.15	.040		.63	.67		020		. 3		-	
	D#	T T	IME (SENIC DIS- OLVED UG/L S AS)	BARI DIS SOLV (UG AS	- 1 ED SO /L (I	DMIUM DIS- DLVED UG/L S CD)	DIS	M. (VED /L	COPPEI DIS- SOLVI (UG/I AS CI	DI ED SOL L (UG	S- VED /L		
		1	045	1		70	<1		0		1	<10		
	MAY 14 28	1	420 400	1 2		30 50	<1 <1		0			40 <10		

08159000 ONION CREEK AT U.S. HIGHWAY 183 NEAR AUSTIN, TX--Continued

		D		LEAD, DIS- SOLVED (UG/L	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	SO (U	CURY IS- LVED G/L	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SO (U	DIS- DLVED IG/L	ZINC, DIS- SOLVED (UG/L AS ZN)		
		JA	N 5	0	2		.0	0		0	<3		
		MA	Y 4	0	<1		.0	0		0	<3		
		2	8	Ö	3		.0	0		Ö	₹3		
DATE	TIME	GROSS ALPHA, DIS- SOLVED (PCI/L AS U-NAT)	GROSS ALPHA SUSP. TOTAL (PCI/L AS U-NAT	DIS- SOLVE (UG/L AS	ALP SUS ED TOT (UG AS	HA, P. AL /L	GROSS BETA, DIS- SOLVE (PCI/L AS CS-137	BE' SU: D TO' (PC	OSS TA. SP. TAL I/L S	GROSS BETA, DIS- SOLVE (PCI/ AS SR YT-90	SUSP. D TOTAL L (PCI/L / AS SR/	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)
JAN 15	1045	<4.7	<.	3 <6.	9	<.4	3.	0	<.4	2.	8 <.4	.07	1.1
	DATE	TIME	PCB, TOTAL (UG/I	TOTAL	ALDR		CHLOR DANE, TOTAL (UG/L	D TO	DD, TAL G/L)	DDE, TOTAL (UG/L	TOTAL	DI- AZINON, TOTAL (UG/L)	
	JAN 15	1045		.0	00	.00	٠.	0	.00	.0	0 .00	.00	
	DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN TOTAL (UG/I	, ENDRIN	TOT		HEPTA CHLOR TOTAL (UG/L	- CH , EPO. TO	PTA- LOR XIDE TAL G/L)	LINDAN TOTAL (UG/L	TOTAL	METH- OXY- CHLOR, TOTAL (UG/L)	
	JAN 15	.00	.0	00 .0	00	.00	.0	0	.00	.0	0 .00	.00	
	DATE	METHYL PARA- THION, TOTAL (UG/L)	METHY TRI- THION TOTAL (UG/I	, MIREX TOTA	L TOT	ON,	TOX- APHENE TOTAL (UG/L	, T TH	TAL RI- ION G/L)	2,4-E TOTAL (UG/L	TOTAL	SILVEX, TOTAL (UG/L)	
	JAN 15	.00	.0	00 .0	00	.00		o	.00	.0	0 .00	.00	
			DATE	TIME		W, AN-	TEMPER ATURE WATER (DEG C	- ME , SU PE	DI- NT, S- NDED G/L)	SEDI- MENT DIS- CHARGE SUS- PENDE (T/DAY	D.		
			APR 15	. 1150)	8.8	18.	0	67	1.	6		
			MAY 14.			5	20.		222	536			

08159150 WILBARGER CREEK NEAR PFLUGERVILLE, TX

LOCATION.--Lat 30°27'16", long 97°36'02", Travis County, Hydrologic Unit 12090301, on left bank downstream from county road (Pfluger Lane), 800 ft (240 m) downstream from Farm Road 685, 1.6 mi (2.6 km) northeast of Pfluger-ville, and 1.9 mi (3.1 km) downstream from Missouri-Kansas-Texas Railroad.

DRAINAGE AREA .-- 4.61 mi 2 (11.9 km2).

PERIOD OF RECORD.--August 1963 to September 1980 (discontinued).
Water-quality records: Chemical, biochemical, and pesticide analyses: October 1970 to September 1971.

CAGE.--Water-stage recorder, concrete control, and crest-stage gages. Datum of gage is 670.61 ft (204.402 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--17 years, 1.86 ft³/s (0.053 m³/s), 5.48 in/yr (139 mm/yr), 1,350 acre-ft/yr (1.66 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,760 ft 3 /s (49.8 m 3 /s) June 16, 1964, gage height, 6.92 ft (2.109 m); no flow at times most years.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1894, occurred in September 1921, stage unknown from information by local residents, discharge, 2,300 ft³/s (65.1 m³/s), from Corps of Engineers publication "Flood Plain Information, Williamson Creek, Austin, Texas".

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 249 ft 3 /s (7.05 m 3 /s) May 15 at 2115 hours, gage height, 3.03 ft (0.924 m), no peak above base of 400 ft 3 /s (11.3 m 3 /s); no flow for many days.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1979	TO	SEPTEMBER	1980
					MEAN VA	LUES						

DAY	OCT	NOV	DEC	JAN .	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00	.00 .00 .00	.00 .00 .00	.04 .04 .03 .03	.06 .06 .06	.38 .25 .25 .25 .25	1.0 1.2 1.2 .89	2.4 .70 .55 .49 .43	1.0 .89 .79 .79	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00
6 7 8 9	.00 .00 .00	.00 .00 .00	.00 .00 .00	.03 .03 .03 .03	.06 .09 .29 .38 .25	.25 .25 .25 .25 .25	.70 .70 .55 .49	.38 .70 14 2.9 1.5	.62 .49 .43 .43	.00 .00 .00	.00 .00 .00	.00 .00 .00
11 12 13 14	.00 .00 .00	.00 .00 .00	.00 .00 .00	.03 .04 .05 .05	.25 .25 .25 .21	.25 .25 .21 .21	3.1 3.6 1.5	1.4 29 61 37 63	.38 .33 .33 .43 .33	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00
16 17 18 19 20	.00 .00 .00	.00 .00 .00	.00 .00 .00	.05 .05 .04 .04	.79 .55 .49 .43	.21 .21 .18 .18	.70 .62 .55 .49	39 15 9.1 14 6.0	.25 .21 .21 .18 .15	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00
21 22 23 24 25	.00 .00 .00 .00	.00 .00 .00	.00 .00 .02 .01	.05 .21 .11 .06	.29 .25 .25 .25 .25	.18 .18 .21 .18	.43 .38 .38 .38	4.8 3.8 2.9 2.4 2.2	.11 .08 .06 .04	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00
26 27 28 29 30 31	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .08 .06 .04	.06 .05 .04 .05 .06	.21 .21 .21 .21	.18 19 3.6 2.0 1.4 1.1	.89 .55 .49 .43	2.0 1.6 1.4 1.4 1.2	.02 .01 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00
TOTAL MEAN MAX MIN CFSM IN. AC-FT	.00 .000 .00 .00 .000	.00 .000 .00 .00 .000	.25 .008 .08 .00 .002 .00	1.58 .051 .21 .03 .01 .01	7.22 .25 .79 .06 .05 .06	32.90 1.06 19 .15 .23 .27 65	29.85 1.00 5.1 .38 .22 .24 59	323.35 10.4 63 .38 2.26 2.61 641	9.72 .32 1.0 .00 .07 .08	.00 .000 .00 .00 .000	.00 .000 .00 .00 .000	.00 .000 .00 .000 .000

CAL YR 1979 TOTAL 998.30 MEAN 2.74 MAX 129 MIN .00 AC-FT 1980 WTR YR 1980 TOTAL 404.87 MEAN 1.11 MAX 63 MIN .00 AC-FT 803

08159165 BIG SANDY CREEK NEAR MCDADE, TX

LOCATION.--Lat 30°18'18", long 97°17'48", Bastrop County, Hydrologic Unit 12090301, on left bank at upstream side of left abutment of U.S. Highway 290 bridge, 3.8 mi (6.1 km) northwest of McDade, and 5.3 mi (8.5 km) southeast of Elgin.

DRAINAGE AREA .-- 38.7 mi 2 (100.2 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1979 to current year.

GAGE.--Water-stage recorder. Altitude of gage is 422 ft (128.6 m), from topographic map.

REMARKS.--Water-discharge records fair. No known regulation or diversion. Station is part of hydrologic-research project to study effects of lignite strip mining on the local water resources. Station has automatic water-quality sampler. Two recording rain gages are located in the watershed.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 989 ft 3 /s (28.0 m 3 /s) Mar. 27, 1980, gage height, 12.20 ft (3.719 m), from rating curve extended above 424 ft 3 /s (12.0 m 3 /s); no flow for many days each year.

EXTREMES FOR PERIOD JULY TO SEPTEMBER 1979.--Maximum discharge, 331 ft³/s (9.37 m³/s) July 27 at 2400 hours. gage height, 7.05 ft (2.149 m), no other peak above base of 325 ft³/s (9.20 m³/s); no flow Sept. 9-19.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 325 ft 3/s (9.20 m 3/s) and maximum (*):

Dat	е	Time	Disch	arge	Gage	height
			(ft^3/s)	(m^3/s)	(ft)	(m)
Mar.	27	2115	*989	28.0	a12.20	3.719
May	14	0230	984	27.9	12.17	3.709

a From rating curve extended above 424 ft 3 /s (9.20 m 3 /s).

Minimum discharge, no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, JULY TO SEPTEMBER 1979 MEAN VALUES

					LILIA	M AUTOTO						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5											.90 .75 .63 .63	.03 .03 .03 .03
6 7 8 9 10											.51 .40 .51 .63	1.0 .12 .01 .00
11 12 13 14 15										2.4 2.3 2.2	.51 .51 .51 .51	.00 .00 .00
16 17 18 19 20										1.7 1.4 1.4 1.3 2.5	.30 .40 .63 .63	.00 .00 .00 .00
21 22 23 24 25										3.2 6.2 1.8 1.3	.22 .14 .06 .14 .06	.11 .22 .21 .21
26 27 28 29 30 31										.90 58 63 3.8 1.8 1.2	.06 .06 .14 .14 .03	.06 .03 .05 .06
TOTAL MEAN MAX MIN CFSM IN. AC-FT											11.88 .38 .90 .03 .01 .01	3.01 .10 1.0 .00 .003 .00 6.0
	10000		1.00		1300	\$2.20	-	1.75				

WTR YR 1979 TOTAL - MEAN - MAX - MIN - CFSM - IN. - AC-FT -

248

COLORADO RIVER BASIN

08159165 BIG SANDY CREEK NEAR MCDADE, TX--Continued

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 7.4 4.1 1.5 .04 .03 2.2 .02 .00 1.4 .00 .63 4.0 2.6 2.4 2.1 6.6 .00 .00 .00 1.9 .04 .00 .06 .66 .00 .00 .00 345 .66 .00 .63 4.6 .93 .00 .00 .10 .00 .14 .00 6 .02 .00 .17 .64 1.8 1.8 .39 1.3 .00 .00 .00 1.9 2.0 2.5 2.3 1.8 1.8 1.7 2.9 2.8 2.5 2.2 .94 2.8 4.0 2.2 .04 .00 .14 .73 1.3 .00 .00 .00 8 .22 .03 .00 .63 1.0 .00 .00 .00 10 .02 .00 .63 1.6 1.1 .00 .00 .00 1.8 1.7 4.5 2.7 1.2 1.2 1.1 11 .04 .00 2.1 1.2 .00 .00 .00 .56 2.4 1.3 .64 .52 .56 1.8 2.6 2.1 2.1 1.6 14 193 469 12 .04 .00 .00 .00 .00 .00 .03 .01 .00 .00 .00 2.0 15 .04 .00 .36 .69 1.5 136 .63 .00 .00 .00 6.1 7.5 4.2 16 17 .03 .01 .16 .81 78 23 .47 .00 .00 .00 1.6 1.0 1.2 .50 .51 .47 .03 .02 .06 .89 1.9 .36 .00 .00 .00 8.0 5.7 5.2 18 .03 .02 .06 .00 .00 .89 19 .01 1.2 3.9 1.8 .00 .19 .00 .14 .00 .00 2.8 2.2 2.0 .41 .40 .46 1.2 5.1 1.9 .19 .00 21 .01 .00 3.8 .00 .00 1.8 2.5 3.3 2.0 3.2 2.5 2.5 22 .00 .00 1.7 .18 .00 .00 .00 .00 18 .00 24 25 .00 .00 1.8 .46 .00 .00 11 .01 .00 3.6 1.7 2.0 2.2 .03 .00 .00 .00 3.2 2.6 2.5 2.5 26 27 .01 2.4 5.6 1.8 .95 .70 .01 .00 .00 .00 1.4 .00 1.6 .00 .03 1.4 2.0 2.1 2.1 303 187 20 .01 .00 .00 .00 28 1.9 29 30 31 .01 .02 1.8 .03 .00 .00 .00 2.2 .03 .01 8.1 .66 1.9 .04 .00 .00 .00 TOTAL 1.29 .17 109.61 983.80 20.11 .02 .00 .00 2.54 7.5 1.6 .042 18.9 2.68 MEAN 1.18 3.54 .67 .03 .02 .00 MAX .66 469 .00 MIN .00 -03 .52 1.5 -40 .39 .01 .00 .07 CFSM .001 .000 .09 .07 .02 .000 .000 IN. AC-FT (††) .04 73 3.15 .00 2.6 217 .07 .00 .00 .00 .56 .08 .95 .02 1950 .71 2.40 2.13 2.40 .64 3.07 1.46 3.70 6.46 .93

CAL YR 1979 TOTAL - MEAN - MAX - MIN - CFSM - IN - AC-FT - †† - WTR YR 1980 TOTAL 1891.72 MEAN 5.17 MAX 469 MIN .00 CFSM .13 IN 1.82 AC-FT 3750 †† 27.29

^{††} Weighted-mean rainfall on watershed, in inches, based on two rain gages.

249 08159165 BIG SANDY CREEK NEAR MCDADE, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: May 1979 to current year. Radiochemical analyses: May to September 1979.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	COLOR (PLAT- INUM COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)
11 11	1305 1315	.02	703	7.4	23.5 23.5	10	8.0	4.9	58	2.1
NOV 28 JAN	1225	.22	810	7.2	12.5	5	2.6	4.0	37	1.9
09 22 23 MAR	1315 1700 1330	.63 64 11	911 523	7.3 7.3	10.5 11.0 10.5	20 200 	3.6 620	8.5 10.0	77 92	2.5
27 27 27 27 27 27 28 28	1230 1330 1415 1515 1650 1702 1230 1240	303 78 152 229 294 518 552 187 86 85	1240 1250 1100 900 393 212	7.2	15.0 15.0 16.5 16.5	120	720	8.1 9.5	78 98	5.2
MAY 13 13 13 13 13 14 27	1630 1700 1830 1900 2100 2130	193 127 155 317 451 685 709 469 140 303	676 585 350 288 182 176		21.0		160 540			8.4 7.2
DATE	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./	STREP- TOCOCCI FECAL, KF ACAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
DATE OCT 11	FORM, TOTAL, IMMED. (COLS. PER	FORM, FECAL, 0.7 UM-MF (COLS./	TOCOCCI FECAL, KF ACAR (COLS. PER	NESS (MG/L AS	NESS, NONCAR- BONATE (MG/L	DIS- SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	AD- SORP- TION	SIUM, DIS- SOLVED (MG/L
OCT 11 11 NOV 28	FORM, TOTAL, IMMED. (COLS. PER 100 ML)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	TOCOCCI FECAL, KF ACAR (COLS. PER 100 ML)	NESS (MG/L AS CACO3)	NESS, NONCAR- BONATE (MG/L CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)
OCT 11 11 NOV 28 JAN 09	FORM, TOTAL, INMED. (COLS. PER 100 ML) 1300	FORM, FECAL, 0.7 UM-MF (COLS./100 ML)	TOCOCCI FECAL, KF ACAR (COLS. PER 100 ML) 460	NESS (MG/L AS CACO3)	NESS, NONCAR- BONAE (MG/L CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)
OCT 11 11 NOV 28 JAN 09 22	FORM, TOTAL, IMMED. (COLS. PER 100 ML)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	TOCOCCI FECAL, KF ACAR (COLS. PER 100 ML)	NESS (MG/L AS CACO3) 200 200	NESS, NONCAR- BONATE (MC/L CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)
OCT 11 11 NOV 28 JAN 09 22 MAR 27	FORM, TOTAL, IMMED. (COLS. PER 100 ML) 1300 1600 620	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) 43 92 49	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) 460 250 46	NESS (MG/L AS CACO3) 200 200	NESS, NONCAR- BONATE (MG/L CACO3)	DIS- SOLVED (MG/L AS CA) 57 58 37	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA) 68 73	AD- SORP- TION RATIO	SILM, DIS- SOLVED (MG/L AS K) 6.6 6.1
OCT 11 11 NOV 28 JAN 09 22 23 MAR 27	FORM, TOTAL, TOTAL, INMED. (COLS. PER 100 ML) 1300 1600 620	FORM, FECAL, 0.7 UM-MF (COLS./100 ML)	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) 460	NESS (MG/L AS CACO3) 200 200	NESS, NONCAR- BONATE (MC/L CACO3)	DIS- SOLVED (MC/L AS CA) 57 58 37	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA) 68 73	AD- SORP- TION RATIO	SILM, DIS- SOLVED (MG/L AS K) 6.6
OCT 11 11 NOV 28 JAN 09 22 23 MAR 27 27 27	FORM, TOTAL, TOTAL, IMMED. (COLS. PER 100 ML) 1300 1600 620	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) 43 92 49	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) 460 250 46	NESS (MG/L AS CACO3) 200 200	NESS, NONCAR- BONATE (MG/L CACO3)	DIS- SOLVED (MG/L AS CA) 57 58 37	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA) 68 73	AD- SORP- TION RATIO	SILM, DIS- SOLVED (MG/L AS K) 6.6 6.1
OCT 11 11 NOV 28 JAN 09 23 MAR 27 27 27 27	FORM, TOTAL, TOTAL, IMMED. (COLS. PER 100 ML) 1300 	FORM, FECAL, 0.7 UM-MF (COLS./100 ML)	TOCOCCI FECAL, KF ACAR (COLS. PER 100 ML)	NESS (MG/L AS CACO3) 200 200	NESS, NONCAR- BONATE (MG/L CAGO3)	DIS- SOLVED (MG/L AS CA) 57 58 37	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA) 68 73 43	AD- SORP- TION RATIO	SILM, DIS- SOLVED (MG/L AS K) 6.6 6.1
OCT 11 11 NOV 28 JAN 09 23 MAR 27 27 27 27 27	FORM, TOTAL, TOTAL, IMMED. (COLS. PER 100 ML) 1300 1600 620 88000	FORM, FECAL, 0.7 UM-MF (COLS./100 ML) 43 92 49 56600	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) 460 250 46 310000	NESS (MG/L AS CACO3) 200 200 130 110	NESS, NONCAR- BONATE (MG/L CAGO3)	DIS- SOLVED (MG/L AS CA) 57 58 37 31	SIUM, DIS- SOLVED (MG/L AS MG) 14 14 10 7.8	DIS- SOLVED (MG/L AS NA) 68 73 43 33	AD- SORP- TION RATIO 2.1 2.2 1.6 1.4	SILM, DIS- SOLVED (MG/L AS K) 6.6 5.2 5.8
OCT 11 11 NOV 28 JAN 09 23 MAR 27 27 27 27 27	FORM, TOTAL, TOTAL, IMMED. (COLS. PER 100 ML) 1300 	FORM, FECAL, 0.7 UM-MF (COLS./100 ML)	TOCOCCI FECAL, KF ACAR (COLS. PER 100 ML)	NESS (MG/L AS CACO3) 200 200	NESS, NONCAR- BONATE (MG/L CAGO3)	DIS- SOLVED (MG/L AS CA) 57 58 37	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA) 68 73 43	AD- SORP- TION RATIO	SILM, DIS- SOLVED (MG/L AS K) 6.6 6.1
OCT 11 11 NOV 28 JAN 09 22 23 MAR 27 27 27 27 27 27 27 27 28 28 28 28	FORM, TOTAL, TOTAL, IMMED. (COLS. PER 100 ML) 1300 1600 620 88000	FORM., FECAL, 0.7 UM-MF (COLS./100 ML) 43	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) 460 250 46 310000 91000	NESS (MG/L AS CACO3) 200 200 130 110	NESS, NONCAR-BONATE (MG/L CACO3) 85 71 85 65	57 58 37 31 31	SILM, DIS- SOLVED (MG/L AS MG) 14 10 7.88	DIS- SOLVED (MG/L AS NA) 68 	AD- SORP- TION RATIO	SILM, DIS- SOLVED (MG/L AS K) 6.6 6.1
OCT 11 11 NOV 28 JAN 09 23 MAR 27 27 27 27 27 27 27 27 28 28 28 MAY MAY	FORM, TOTAL, TOTAL, IMMED. (COLS. PER 100 ML) 1300 1600 620 88000	FORM, FECAL, 0.7 UM-MF (COLS./100 ML) 43	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) 460 250 46 310000	NESS (MG/L AS CACO3) 200 200 130 110	NESS, NONCAR-BONATE (MG/L CACO3) 85 71 85 65 	57	SILM, DIS- SOLVED (MG/L AS MG) 14 10 7.88	DIS- SOLVED (MG/L AS NA) 68 73 43 33	AD- SORP- TION RATIO	SILM, DIS- SOLVED (MG/L AS K) 6.6 6.1
OCT 11 11 11 NOV 28 JAN 09 23 MAR 27 27 27 27 27 27 28 28 MAY 13	FORM, TOTAL, TOTAL, IMMED. (COLS. PER 100 ML) 1300 1600 620 88000 50000	FORM., FECAL, 0.7 UM-MF (COLS./100 ML) 43	TOCOCCI FECAL, KF ACAR (COLS. PER 100 ML) 460 250 46 310000	NESS (MG/L AS CACO3)	NESS, NONCAR-BONATE (MG/L CACO3)	57 58 31 31	SILM, DIS- SOLVED (MG/L AS MG) 14 10 7.8	DIS- SOLVED (MG/L AS NA) 68 	AD- SORP- TION RATIO	SILM, DIS- SOLVED (MG/L AS K) 6.6 6.1
OCT 11	FORM, TOTAL, TOTAL, IMMED. (COLS. PER 100 ML) 1300 1600 620 88000	FORM, FECAL, 0.7 UM-MF (COLS./100 ML) 43	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) 460 250 46 310000	NESS (MG/L AS CACO3) 200 200 130 110	NESS, NONCAR-BONATE (MG/L CACO3) 85 71 85 65 	57	SIUM, DIS- SOLVED (MG/L AS MG) 14 14 17	DIS- SOLVED (MG/L AS NA) 68 73 43 33	AD- SORP- TION RATIO	SILM, DIS- SOLVED (MG/L AS K) 6.6 6.1
OCT 11 11 NOV 28 JAN 09 22 23 MAR 27 27 27 27 27 27 27 27 28 88 28 MAY 13 13 13 13 13 13 13 13 13 13 13 13 13 13	FORM, TOTAL, TOTAL, IMMED. (COLS. PER 100 ML) 1300	FORM, FECAL, 0.7 UM-MF (COLS./100 ML) 43	TOCOCCI FECAL, KF ACAR (COLS. PER 100 ML) 460 	NESS (MG/L AS CACO3)	NESS, NONCAR-BONATE (MG/L CAGO3)	57	SILM, DIS- SOLVED (MG/L AS MG) 14 10 7.88	DIS- SOLVED (MG/L AS NA) 68	AD- SORP- TION RATIO 2.1 2.2 1.6 1.4	SILM, DIS- SOLVED (MG/L AS K) 6.6 6.1 5.2 5.8
OCT 11	FORM, TOTAL, TOTAL, IMMED. (COLS. PER 100 ML) 1300	FORM, FECAL, 0.7 UM-MF (COLS./100 ML) 43	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) 460 250 46 310000 91000	NESS (MG/L AS CACO3) 200	NESS, NONCAR-BONATE (MG/L CACO3) 85 71 85 65 	57	SILM, DIS- SOLVED (MG/L AS MG) 14 10 7.88	DIS- SOLVED (MG/L AS NA) 68 73 43 33	AD- SORP- TION RATIO	SILM, DIS- SOLVED (MG/L AS K) 6.6 5.2 5.8
OCT 11	FORM, TOTAL, IMMED. (COLS. PER 100 ML) 1300	FORM, FECAL, 0.7 UM-MF (COLS./100 ML) 43	TOCOCCI FECAL, KF ACAR (COLS. PER 100 ML) 460 	NESS (MC/L AS CACO3) 200 200 130 110	NESS, NONCAR-BONATE (MG/L CACO3)	57	SILM, DIS- SOLVED (MG/L AS MG) 14 10 7.8	DIS- SOLVED (MG/L AS NA) 68 73 43 33	AD- SORP- TION RATIO	SILM, DIS- SOLVED (MG/L AS K) 6.6 6.1 5.2 5.8
OCT 11	FORM, TOTAL, TOTAL, IMMED. (COLS. PER 100 ML) 1300	FORM, FECAL, 0.7 UM-MF (COLS./100 ML) 43	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) 460 250 46 310000 91000	NESS (MG/L AS CACO3) 200	NESS, NONCAR-BONATE (MG/L CACO3) 85 71 85 65 	57	SILM, DIS- SOLVED (MG/L AS MG) 14 10 7.88	DIS- SOLVED (MG/L AS NA) 68 73 43 33	AD- SORP- TION RATIO	SILM, DIS- SOLVED (MG/L AS K) 6.6 5.2 5.8
OCT 11	FORM, TOTAL, TOTAL, IMMED. (COLS. PER 100 ML) 1300	FORM, FECAL, 0.7 UM-MF (COLS./100 ML) 43	TOCOCCI FECAL, KF ACAR (COLS. PER 100 ML) 460 250 46 310000	NESS (MG/L AS GACO3) 200 200 130 110	NESS, NONCAR-BONATE (MG/L CACO3)	57 58 31	SILM, DIS- SOLVED (MG/L AS MG) 14 10 7.88	DIS- SOLVED (MG/L AS NA) 68 73 43	AD- SORP- TION RATIO	SILM, DIS- SOLVED (MG/L AS K) 6.6 5.2 5.8

08159165 BIG SANDY CREEK NEAR MCDADE, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NITRATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)
OCT 11	140	0	71	130	.4	21	438	.00	.020	.02
NOV 28	160	0	64	130	.3	25	455	.00	.010	.01
JAN 09 22	60		87	79		11	303	.00	.020	.01
23 MAR							303			. 34
27 27	22					25		.08	.010	.09
27						5-		.19	.040	.23
27		7.5			11			.28	.060	.34
27 27	54	0	59	54	. 2	7.1		. 27	.010	.28
28										
28 28								.57	.030	.60
MAY										
13								.23	.040	.27
13		11	++			77	11	.23	.040	.27
13								.35	.040	.39
13		11	77		22		- 22	.28	.030	.31
14										
27								.22		
DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	PHENOLS (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	SEDI- MENT, SUS- PENDED (MG/L)	CHARGE, SUS- PENDED	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 11	.030	.51	.54	.020	9.9	1	.10	6	.00	
NOV 28	.010	.51	.52	.020	13	1	.00	16	.01	
JAN 09	.030	.97	1.0	.050	6.8	0	.10	21	.04	
22	.070	1.5	1.6	.090	15	0	.00	203	6.0	
MAR 27								592	484	
27	.160	1.5	1.7	.160	19 48			268	56	64
27	.280	1.4	1.7	.170					51	
27	.200	2.2	2.4	.330	27		.00	1590	1260	90
27		155						1570	2340	96
28	.120	1.6	1.7	.220	14	2	.00	285	144	0.55
28 MAY		14-	44	la-co	1			181	42	1.44
13 13	.210	1.3	1.5	.230	16	23	22	774	492 265	97
13	.210	1.9	2.1	.300		5				
13	.200	3.3	3.5	.560	65			2680	3260	92
13	.160	2.7	2.9	.500	39			1370	2620	84
14	-11					55		460 362	582 137	89
27	77							592	484	
	DA	TI TE	ARSENI DIS- SOLVE ME (UG/I AS AS	DIS- ED SOLVE (UG)	DI ED SOL L (UG	IUM MIN S- DIS VED SOI /L (UC	S- DIS LVED SOI G/L (UC	5- DI	S- VED G/L	
		13	05	0 2	200	<1	0	0	10	
	NOV		25		300	<1	0	0	<10	
	JAN									
	MAR		00		200	<1	0	2	20	
	27	16	50	1 2	200	<1	0	2	70	

		D	S	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	SO (U	CURY NOIS- OLVED S IG/L (SELE- NIUM, DIS- SOLVED UG/L AS SE)	SO (U	DIS- DLVED S G/L (INC, DIS- OLVED UG/L S ZN)		
		00	T 1	0	480		.0	0		0	<3		
		NO		0	5400		.0	0		0	4		
		JA		1	310		.2	2		0	20		
		MA	R .7	1	380		.1	1		0	8		
		GROSS ALPHA,	GROSS ALPHA,	GROSS ALPHA	G GRO	OSS PHA,	GROSS BETA,	GRO BET	A,	GROSS BETA,	GROSS BETA,	RADIUM 226, DIS-	URANIUM DIS-
DATE	TIME	DIS- SOLVED (PCI/L AS U-NAT)	SUSP. TOTAL (PCI/L AS U-NAT)	SOLVI (UG/I AS U-NA	ED TO	SP. TAL G/L S NAT)	DIS- SOLVEI (PCI/L AS CS-137)	(PCI	AL /L	DIS- SOLVED (PCI/L AS SR/ YT-90)	(PCI/L AS SR/	SOLVED, RADON METHOD (PCI/L)	SOLVED, EXTRAC- TION (UG/L)
OCT	1305	<4.7	. 3	3 <6.	Q	.4	6.3		.6	6.0	.6	.07	.46
11 NOV 28	1225	<4.1				.7	4.7		<.6	4.5	<.6	1.1	.41
20	1225	14.1		, , , , ,		. /	4.7		1.0	3.5		10,1	
	DATE	TIME	PCB TOTAL (UG/L)	NAPH THA: LENES POLY CHLOI TOTAI (UG/I	S, Y- R. ALDI L TO	RIN, TAL G/L)	CHLOR- DANE, TOTAL (UG/L)	TOT	DD, CAL G/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)	
	OCT 11	1305	.00)		.00	.0	1	.00	.00	.00	.00	
	NOV 28	1225	.00)	-	.00	.0)	.00	.00	.00	.00	
	JAN 22	1700	.00)	.0	.00	.0)	.00	.00	.00	.00	
	MAR 27	1650				.00			12.	.00		.00	
	DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN TOTAL (UG/L)	TOTAL	TO'	ION, TAL G/L)	HEPTA- CHLOR, TOTAL (UG/L)	EPOX TOT	IDE	LINDANE TOTAL (UG/L)	TOTAL	METH- OXY- CHLOR, TOTAL (UG/L)	
	OCT	.00	.00) .(00	.00	.00)	.00	.00	.00	.00	
	NOV 28	.00	.00		00	.00	.00)	.00	.00	.00	.00	
	JAN 22	.00	.00) .(00	.00	.00)	.00	.00	.00	.00	
	MAR 27	4.0				.00	.00)		1.	.00		
	DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYI TRI- THION, TOTAL (UG/L)	MIRE	K, TH	RA- ION, TAL G/L)	TOX- APHENE, TOTAL (UG/L)	THI	RI-	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)	
	OCT					200						,	
	NOV NOV	.00	.00		00	.00	(.00	.00		.00	
	28 JAN	.00	.00		00	.00	(.00	.00		.00	
	22 MAR	.00	.00		00		(.00	.00		.00	
	27	.00	.00) (00	.00			.00	.02	.00	,00	

252 COLORADO RIVER DASIG

08159165 BIG SANDY CREEK NEAR MCDADE, TX--Continued

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE. WATER (DEG C)	SEDI- MENT, SUS- PENDED (MG/L)	SUS-	SUSP. FALL DIAM. % FINER THAN	FALL DIAM. % FINER THAN
OCT 11	1315	.03	23.5	6	.00		-
NOV 28	1225	.22	12.5	16	.01		
JAN 09 23	1315 1330	.63	10.5	21 203	.04 6.0	12	22
MAR 27 27 27 28 28 MAY	1230 1515 1702	303 78 294 552 187 85	15.0 16.5	592 268 1590 1570 285 181	484 56 1260 2340 144 42	77 	84
13 13 13 14 14 27	1630 1900 2130 1320	193 127 451 709 469 140 303	21.0	945 774 2680 1370 460 362 592	3260 2620 582 137	555 800 74	62 81 77
DATE	SED. SUSP. FALL DIAM. % FINER THAN .008 MM	SED. SUSP. FALL DIAM. % FINER THAN .016 MM	SED. SUSP. FALL DIAM. % FINER THAN .031 MM	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM	SED. SUSP. SIEVE DIAM. % FINER THAN .125 MM	SED. SUSP. SIEVE DIAM. % FINER THAN .250 MM	SED. SUSP. SIEVE DIAM. % FINER THAN .500 MM
OCT							
NOV							
28 JAN		152				7.7	
09							
23 MAR			*-				
27					24		
27	2.5			64 90	72 96	92	99 100
27	90	93	95	96	96	99	100
28							
28							
MAY							
13	67	70	90	97	98	99	99
13	88	88	89	92	93	98	99
13	81	82	84	84	85	97	99
14				550	77	77	
14				89	95	99	99
27							

08159170 BIG SANDY CREEK NEAR ELGIN, TX

LOCATION.--Lat 30°15'54", long 97°19'39", Bastrop County, Hydrologic Unit 12090301, on right bank at downstream side of bridge on State Highway 95, 6.1 mi (9.8 km) south of Elgin, and 10.7 mi (17.2 km) north of Bastrop.

DRAINAGE AREA.--63.8 mi² (165.2 km²).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1979 to current year.

GAGE.--Water-stage recorder. Altitude of gage is 392 ft (119.5 m), from topographic map.

REMARKS.--Water-discharge records fair. No known regulation or diversion. Station is part of hydrologic-research project to study effects of lignite strip mining on local water resources. Station has automatic water-quality sampler. Three recording rain gages are located in the watershed.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,720 ft³/s (48.7 m³/s) May 14, 1980, gage height, 15.78 ft (4.810 m); no flow July 30 to Sept. 6, Sept. 8-29, 1980.

EXTREMES FOR PERIOD JULY TO SEPTEMBER 1979.--Maximum discharge, 256 ft 3 /s (7.25 m 3 /s) July 28, gage height, 8.81 ft (2.685 m), no peak above base of 500 ft 3 /s (14.2 m 3 /s); minimum, 0.05 ft 3 /s (0.001 m 3 /s) Sept. 16, 17.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 500 ft³/s (14.2 m³/s) and maximum (*):

Date		Time	Disch	arge	Gage	height
			(ft^3/s)	(m^3/s)	(ft)	(m)
Mar.	28	0215	1,340	37.9	14.51	4.423
May	14	0615	*1.720	48.7	15.78	4.810

Minimum discharge, no flow July 30 to Sept. 6, Sept. 8-29.

DISCHARGE, IN CUBIC FEET PER SECOND, JULY TO SEPTEMBER 1979 MEAN VALUES

DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5											1.2 .85 .64 .47	.18 .16 .14 .13
6 7 8 9										::: :::	.41 .33 .60 .41	.14 .16 .33 .20
11 12 13 14 15										8.5 4.3 2.9 2.6	.28 .28 .30 .26 .24	.12 .10 .07 .07
16 17 18 19 20										2.2 1.6 1.3 1.4 1.4	.22 .20 .18 .18	.06 .05 .06 .13
21 22 23 24 25										4.2 7.1 3.8 1.9 1.2	.16 .16 .16 .14	.17 .10 .08 .07
26 27 28 29 30 31										1.0 2.8 92 9.4 3.1 2.0	.13 .13 .12 .11 .18	.06 .06 .07 .08 .08
TOTAL MEAN MAX MIN CFSM IN. AC-FT											9.64 .31 1.2 .11 .005 .01	3.65 .12 .37 .05 .002 .00

WTR YR 1979 TOTAL - MEAN - MAX - MIN - CFSM - IN. - AC-FT -

08159170 BIG SANDY CREEK NEAR ELGIN, TX--Continued

		DIS	CHARGE, II	CUBIC FE		ECOND, WAT EAN VALUES		OCTOBER 19	979 TO SEP	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.08 .08 .07 .25	.05 .03 .02 .02	.10 .11 .16 .16	1.8 1.5 1.3 .88	2.6 2.5 2.4 2.0 1.8	6.1 7.6 3.7 2.6 2.1	8.5 7.3 6.5 5.5 4.7	8.9 11 4.9 2.9 2.1	2.3 2.0 1.7 1.5	.22 .24 .24 .26 .24	.00 .00 .00	.00 .00 .00
6 7 8 9	.07 .06 .06 .05	.03 .04 .03 .06	.22 .20 .23 .25 .26	.93 .74 .73 .69	1.7 1.5 1.7 2.4 3.9	1.8 1.5 1.4 1.3	3.9 3.8 3.3 2.7 2.4	1.5 1.7 2.7 9.2 5.6	1.2 1.1 1.1 1.1	.24 .24 .23 .24	.00 .00 .00	.00 .10 .00 .00
11 12 13 14 15	.06 .05 .05 .04	.07 .06 .06 .06	.28 .38 .36 .25	.77 .74 .74 .75	2.6 2.0 1.9 2.3 1.9	.92 1.2 .98 .88	2.4 2.1 3.9 4.4 3.0	3.2 8.3 205 1000 184	1.0 .96 .86 .71	.23 .22 .22 .22 .22	.00 .00 .00	.00 .00 .00
16 17 18 19 20	.07 .05 .06 .05	.08 .10 .13 .14	.36 .26 .20 .20	.87 .92 1.1 1.0	5.1 10 6.4 4.5 3.3	.75 .77 .75 .76	2.3 1.9 1.7 1.6 1.4	142 37 16 11	.53 .42 .38 .35	.21 .18 .17 .16	.00 .00 .00	.00 .00 .00
21 22 23 24 25	.05 .06 .06 .06	.27 .22 .14 .11	.16 .14 .33 .55	13 63 35 11 6.5	2.8 2.7 1.9 1.6 1.3	.79 .75 .77 .67	1.2 1.1 1.1 1.1	7.8 6.0 4.8 4.1 3.8	.33 .31 .30 .28 .25	.15 .14 .13 .12	.00 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	.08 .09 .09 .07 .25	.13 .11 .09 .08	.18 .11 .22 13 6.7 2.9	4.9 3.8 3.3 3.1 3.0 2.9	1.2 1.1 1.5 1.7	1.0 216 488 22 11 8.8	14 6.0 3.4 2.2 1.8	3.3 3.0 2.7 2.5 2.3 2.3	.22 .24 .23 .22 .24	.08 .06 .04 .02 .00	.00 .00 .00 .00	.00 .00 .00 .00
TOTAL MEAN MAX MIN CFSM IN. AC-FT (††)	2.59 .084 .33 .04 .001 .00 5.1	2.62 .087 .27 .02 .001 .00 5.2 .80	29.22 .94 13 .10 .02 .02 .58 3.18	181.41 5.85 63 .69 .09 .11 360 2.75	78.3 2.70 10 1.1 .04 .05 155 2.13	788.39 25.4 488 .67 .40 .46 1560 3.62	118.2 3.94 14 1.1 .06 .07 234 2.27	1709.6 55.1 1000 1.5 .86 1.00 3390 6.85	23.11 .77 2.3 .22 .01 .01 .46 .58	5.21 .17 .26 .00 .003 .00 10 .33	.00 .000 .00 .000 .000 .000	.21 .007 .11 .00 .000 .00

CAL YR 1979 TOTAL - MEAN - MAX - MIN - CFSM - IN - AC-FT - 11 - WTR YR 1980 TOTAL 2938.86 MEAN 8.03 MAX 1000 MIN .00 CFSM .13 IN 1.71 AC-FT 5830 11 27.66

^{††} Weighted-mean rainfall, in inches, based on three rain gages.

255 08159170 BIG SANDY CREEK NEAR ELGIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: May 1979 to current year. Radiochemical analyses: May to September 1979.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	COLOR (PLAT- INUM COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)
OCT 11	1110	.30	416	6.9	16.0	20	7.6	2.9	30	2.4
NOV 28	1100	1.3	342	6.9	11.0	70	7.7	4.5	40	3.7
JAN 09	1100	.66	677	7.2	9.5	20	19	8.4	74	2.5
09	1110	.69	0//	7.2	8.5	20	19	0.4	74	2.5
22	1530	108	431	7.3	11.5	120	220	9.3	85	3.8
23 MAR	1210	29			9.5					
27		216	177	6.5						
27	1456 1510	163 178	187	6.9	15.0	200	370	10.9	105	5.2
27	1310	488	- 22		15.0	22				
28	1105	271	139	7.0	15.5	200	300	9.5	95	4.6
28 MAY	1130	265			15.5					
12		8.3		22			24	44		
12	2200	27 38	205							6.6
12	2300	205	231	8.3		200	530			
13	0015	43	218				44			
13	0200	51 54	143 135	7.4	- 52	7.5			- 55	5.1
13	0300	1000	135	7.4						22
14	1400	1000			21.5					
DATE	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
OCT 11	2600	120	210	110	32	33	7.7	29	1.2	6.5
NOV 28	870	96	220	88	33	24	6.9	30	1.4	7.7
JAN 09	1800	270	390					7	42.	10.4
09	1800	270	390						11	
22				110	75	30	8.4	32	1.3	6.1
23 MAR					20					
27 27	27000	11000	62000	55	31	15	4.3	17	1.0	4.2
27										
28	28000	26000	100000	75		44				
28	28000	26000	100000		- 33	177				
MAY										
12		775				177				
12				67	18	19	4.8	18	1.0	5.2
13								W. 22		
13										
13										
17				44	20	14	3 5	12	. /	5.3
14	==			49	20	14	3.5	12	.7	5.3

08159170 BIG SANDY CREEK NEAR ELGIN, TX--Continued

		WATER Q	UALITY DA	TA, WATE	R YEA	R OCTO	BER 1979	TO SEPTE	MBER 1980	6	
DATE	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLVE (MG/I	R D Si	LUO- IDE, DIS- OLVED MG/L S F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L	GEN,	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)
OCT 11	100	0	25	59		.3	24	235	.00	.020	.01
NOV 28	68	0		56		.2	30	210		.010	.02
JAN 09					2				.00		.02
09					-		22.44				
22 23 MAR	42	0		51	-	.2	11	236	.15	.010	.16
27	30	0	30	26	_	.1	9.1	121	.19	.010	.20
27	1-		10.24		-					17.22	
28		41			-			- 31	.61	.040	.65
28 MAY					-		**	- 22			
12					3				. 21	.020	.23
12	60	0	27	27		.2	12	143			
13	11	- 12							- ::		
13	36	0	16	26	_	.1	11	106	. 15	.020	.17
13							11				
14							-77		**		
DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	MONIA +	PHOS-	OR TO	RBON, GANIC DTAL MG/L S C)	PHENOLS (UG/L)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	SEDI- MENT, SUS-		SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 11	.000	.66	.66	.02	0	5.8	2	.00	10	.01	- 44
NOV 28	.010	.12	.13	.12	0	8.1	3	.00	25	.09	
JAN 09	.030	.97	1.0	.07	0	5.9	0	.10			
09 22	.040	.61	.65		0	16	3		22	.04	11
23 MAR			.0.					122	258	20	11
27 27	.100	2.5	2.6	.18		28	2	.00	841	490	
27	.100	2.5	2.0						1280		85
28	.110	4.7	4.8	.23	0	15	2	.00	1270	1670	11
28 MAY					2	27			1240	887	(4-5)
12	.150	2.6	2.7	. 24	0	42			373 2100		95
12	22		-		-	- 12		- 12	1050	581	- 22
13		1		, j.	_			.00	851	99	87
13	.110	2.2	2.3	. 20	0	34		- 11	754	110	74
14		-11	-		1				614 438	1660 1180	67
	DA	TE T	IME (U	IS- D LVED SO IG/L (RIUM, IS- LVED UG/L S BA)	CADM DI: SOL: (UG AS	IUM MIU S- DIS VED SOI /L (UG	S- DI: LVED SO: G/L (U	S- D LVED SO G/L (U	ON, IS- LVED G/L FE)	
	OCT 11	1	110	0	200		<1	0	0	110	
	NOV		100	1	100		<1	0	0	1200	
	JAN		530	1	100		2	0	1	280	
	MAR		456	1	60		1	0	4	560	
	MAY 12	2	200	1	90		<1	0	27	190	
	13	0	200	1	60		<1	0	5	360	

08159170 BIG SANDY CREEK NEAR ELGIN, TX--Continued

		D	S()	EAD, NEDIS- I DLVED SO JG/L (U	DIS- DLVED : UG/L	ERCURY I DIS- SOLVED S (UG/L	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)		
		00	T. 1	0	1200	.0	0	0	3		
		NO	V 8	0	650	.0	0	0	<3		
		JA		1	160	.1	1	0	10		
		MA		2	190	.3	0	0	20		
		MA			7	.0	1	0	140		
		1	3	5	6	.0	Ö	Ö	8		
DATE	TIME	GROSS ALPHA, DIS- SOLVED (PCI/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (PCI/L AS U-NAT)	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT)	GROSS ALPHA SUSP. TOTAL (UG/L AS U-NAT	DIS- SOLVEI (PCI/L AS	(PCI/	DIS L SOLV L (PCI AS S	, BETA, - SUSP. ED TOTAL /L (PCI/L R/ AS SR/	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)
OCT 11	1110	<2.0	<.3	<2.9	<	5 5.0) <	.5 5	.2 <.5	.65	.21
NOV 28	1100	<1.9	1.6	<2.8	2.				.9 2.8		.19
	DATE	TIME	PCB TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN TOTAL (UG/L)	TOTAL	DDD	L TOTA	L TOTAL	DI- AZINON, TOTAL (UG/L)	
	OCT 11	1110	.00	124	.00). (00 .	.00	.00	
	NOV 28	1100	.00		.00). () .	00 .	.00	.00	
	JAN 22	1530	.00	.0	.00).		00 .	.00	.00	
	MAR 27	1456	22	14	.00)		4	00	.00	
	MAY 13	0015	.00	.0	.00). (00 .	.00	.00	
	DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION TOTAL (UG/L)	TOTAL	EPOXI TOTA	R DE LINDA L TOTA	L TOTAL	METH- OXY- CHLOR, TOTAL (UG/L)	
	OCT 11	.00	.00	.00	.00	.00		00 .	00.00	.00	
	NOV 28	.00	.00	.00	.00				00 .00	.00	
	JAN 22	.00	.00	.00	.00				01 .00	.00	
	MAR 27				.00				00		
	MAY 13	.00	.00	.00	.00	.00			.00	.00	
	DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION TOTAL (UG/L)	TOTAL	THIO	- 2,4- N TOTA	L TOTAL	SILVEX, TOTAL (UG/L)	
	OCT 11	.00	.00	.00	.00) () .	00 .	00 .00	.00	
	NOV 28	.00	.00	.00	.00				00 .00		
	JAN 22	.00	.00	.00	.00				01 .01	.00	
	MAR 27	.00	.00	.00	.00				01 .00	.00	
	MAY 13	.00	.00	.00	.00				08 .02		
	, ,	.00	.00	.00	.00				.02	1.01	

08159170 BIG SANDY CREEK NEAR ELGIN, TX--Continued

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, WATER (DEG C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. FALL DIAM. % FINER THAN .002 MM	SED. SUSP. FALL DIAM. % FINER THAN .004 MM
OCT							
11 NOV	1110	.30	16.0	10	.01		,02
28	1100	1.3	11.0	25	.09		
JAN 09 23	1110 1210	.69	8.5	22 258	20	22	
MAR		25					
27 27 28	1510	216 178 488	15.0	841 1280 1270	490 615 1670	63	65
28 MAY	1130	265	15.5	1240	887		
12 12 13 13 14	2200 0015 0300 1400	8.3 27 205 43 54 1000 1000	21.5	373 2100 1050 851 754 614 438	8.4 153 581 99 110 1660 1180	61	73
DATE	SED. SUSP. FALL DIAM. % FINER THAN .008 MM	SED. SUSP. FALL DIAM. % FINER THAN .016 MM	SED. SUSP. FALL DIAM. % FINER THAN .031 MM	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM	SED. SUSP. SIEVE DIAM. % FINER THAN .125 MM	SED. SUSP. SIEVE DIAM. % FINER THAN .250 MM	SED. SUSP. SIEVE DIAM. % FINER THAN .500 MM
OCT							
11 NOV							
28 JAN		.44					
09		125					
MAR							
27 27	69	75	81	85	90	95	99
28							
28 MAY							
12	7.7	35	7.7	77	7.7		
12	43	52	65	95	96	98	99
13	76	83	85	87	92	97	99
13	76	63	63	74	78	83	85
14	22			74	70		
14		- 22		67	74	86	99

08159180 DOGWOOD CREEK NEAR MCDADE, TX

LOCATION.--Lat 30°14'29", long 97°17'03", Bastrop County, Hydrologic Unit 12090301, at upstream side of culvert on unnamed gravel road in Camp Swift, 4 mi (6 km) southwest of McDade, and 9 mi (6 km) north of Bastrop.

DRAINAGE AREA.--0.53 mi² (1.37 km²).

PERIOD OF RECORD.--Chemical, biochemical, pesticide, and sediment analyses: January to September 1980.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	COLOR (PLAT- INUM COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)
JAN 22 22 22	0715 0738 1500	13 15 1.5	59 59 75	7.2 7.2 7.7	11.5	400 200 200	75 260 32	9.7	 89	5.6 4.6 1.9
MAR 27 27 27 27 MAY	1000 1022 1600 1806 1810	18 28 12 4.9 4.4	45 61	7.4	15.0 15.0 15.0	200 250 200	370 400 130	10.2	 98	5.0 4.6 3.8
13 13 13 13 14	1530 1545 1600 1615 1630 1214	9.9 27 54 51 44 1.5	58 37 37 39 43	7.1	=======================================	200 160 100	230 320 90			4.5 4.2 3.9
DATE	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
JAN 22 22 22 MAR	==	Ē		20 17 31	0 0 0	5.3 4.6 8.5	1.6 1.3 2.3	4.8 4.1 3.1	.5 .4 .2	5.0 4.9 3.9
27		1,44		(44)	144		4.2	344		
27						12				
21	77									22
27 MAY	4500	2600	17000				144			
13				44	944					
13				14	0	3.9	1.1	2.5	.3	3.2
13						7.22	44			
13		122	122							
DATE	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)
JAN			4.4			4.0			24.2	
22 22 22 MAR	26 26 38	0	14 2.1 6.0	2.3 2.2 4.3	.2 .2 .1	9.1 8.5	60 42 56	.12 .11 .02	.010 .010	.13 .12 .03
27				2.2				.14	.010	.15
27 27				2.5				.15	.010	.16
27										
27 MAY	77			2.5	77	7.7	77	.05	.010	.06
13							-6	.07	.010	.08
13	20	0	2.9	2.5	.0	5.8	32	.09	.010	.10
13	0457									
13			22	25			35	.04	.010	.05
A 2500 Sec.										

08159180 DOGWOOD CREEK NEAR MCDADE, TX--Continued

DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	ORG TO (M	TRO- EN, ANIC TAL G/L N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHO PHOR TOT (MG AS	US, AL /L	CARBON, ORGANIC TOTAL (MG/L AS C)	PHENO	LS S	ETHY- LENE BLUE CTIVE SUB- TANCE MG/L)	SEDI- MENT, SUS- PENDED (MG/L)	ME DI CHA SU PE		SIE	SP. VE AM. NER AN
JAN 22 22 22	.040		.87 .73 .45	.91 .75 .45		070 060 040	19 19 15		2 1 0	.50	594 256	2	1		99 99
MAR 27 27	.060		1.5	1.6		090 070	16 15		0	.00	661 404 161		1 5.2		99 98
27	.060		2.5	2.6		070	16		4	.00	109		1.4		
MAY 13 13	.070		1.3	1.4		090 090	27 31			75	114 701	5	3.0		89 93
13 13 14	.070		1.3	1.4		060	26		7		63 54		7.5		98
	E	ATE	TIM	SOI IE (UC	S- VED :	BARIU DIS- SOLVE (UG/ AS E	DI D SOL L (UG	IUM S- VED /L	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPE DIS- SOLV (UG/ AS C	ED SOI	ON, IS- LVED G/L FE)			
	2 2	2	071 073 150	8	1 3 0		50 50 60	<1 <1 <1	0		5 3 2	830 300 200			
	MA 1	3	160	00	2		40	<1	0		35	240			
		D	ATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANO NESI DI: SOL' (UG AS I	E, S- VED /L	MERCURY DIS- SOLVED (UG/L AS HG)	SELE NIUM DIS SOLV (UG/ AS S	, SI ED S L (LVER, DIS- OLVED UG/L S AG)	ZINC, DIS- SOLVED (UG/L AS ZN)				
		2 2	2	0 0		20 5 5	2.3		0 0 0	0 0 0	10 9 7				
		MA 1	ү 3	5		8	.0		0	0	70				
DA		IME	PCB TOTA (UG/L	LEN PC CHI L TOT	ES, LY-	ALDRI TOTA (UG/	L TOT.	E, AL	DDD, TOTAL (UG/L)	DDE TOTA (UG/	L TO	OT, FAL G/L)	DI- AZINO TOTA (UG)	ON, AL	
	1	500		00	.0		00	.0	.00		00	.00		.00	
MAR 27		000		00	.0		00	.0	.00	1,	00	.00		.00	
DAT	EL	I- DRIN TAL G/L)	ENDO SULFA TOTA (UG/	N, ENDR		ETHIO TOTA (UG/	L TOT.	TA- OR, E AL	HEPTA- CHLOR POXIDE TOTAL (UG/L)	LINDA TOTA (UG/	L TO	LA- ION, IAL G/L)	METH OXY CHLO TOTA (UG)	Y- OR, AL	
JAN 22		.00		00	.00		00	.00	.00		00	.00		.00	
MAR		.00		00	.00			.00	.00		00	.00		.00	

COLORADO RIVER BASIN 261
08159180 DOGWOOD CREEK NEAR MCDADE, TX--Continued

DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
JAN 22	.00	.00	.00	.00	0	.00	.00	.00	.00
MAR		,					.00		
27	.00	.00	.00	.00	0	.00	.00	.00	.00
	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, WATER (DEG C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. FALL DIAM. % FINER THAN .002 MM	SED. SUSP. FALL DIAM. % FINER THAN .004 MM	
	JAN 22 22	0715 1500	13	11.5	594 256	21 1.0	92	95	
	MAR 27	1000	18		661	32	82	89	
	27	1022	28		404	31			
	27 27 MAY	1600 1806	12 4.9	15.0 15.0	161 109	5.2 1.4	22	12	
	13	1530	9.9		114	3.0			
	13	1545	27		701	51			
	13	1630 1214	1.5		63 54	7.5		=======================================	
	DATE	SED. SUSP. FALL DIAM. % FINER THAN .008 MM	SED. SUSP. FALL DIAM. % FINER THAN .016 MM	SED. SUSP. FALL DIAM. % FINER THAN .031 MM	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM	SED. SUSP. SIEVE DIAM. % FINER THAN .125 MM	SED. SUSP. SIEVE DIAM. % FINER THAN .250 MM	SED. SUSP. SIEVE DIAM. % FINER THAN .500 MM	
	JAN								
	22	96	98	99	99	99	99	100	
	22 MAR				99	99	99	100	
	27	90	96	97	99	100	2.2	144	
	27				98	99	99	100	
	27	1	/		25				
	27 MAY	122						10	
	13				89	95	99	100	
	13				93	98	99	100	
	13	77	57		98	98	99	100	
	14							7.7	

08159185 DOGWOOD CREEK AT HIGHWAY 95 NEAR MCDADE, TX

LOCATION.--Lat 30°13'49", long 97°19'03", Bastrop County, Hydrologic Unit 12090301, on right upstream end of bridge on State Highway 95, 5.7 mi (9.2 km) southwest of McDade, and 7.5 mi (12.1 km) south of Elgin.

DRAINAGE AREA.--5.03 mi² (13.03 km²).

PERIOD OF RECORD. -- Chemical, biochemical, pesticide, and sediment analyses: March to September 1980.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	FI INS TAN	REAM- LOW, STAN- NEOUS CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	F	PH IELD NITS)	AT W	MPER- TURE, ATER EG C)	(P IN CO	LOR LAT- UM BALT ITS)	E	TUR- BID- TY ITU)	S	(GEN, DIS- DLVED MG/L)	DIS- SOLVI (PER- CENT SATUR ATION	- 0: ED D: - B: C UI	XYGEN EMAND, IOCHEM NINHIE 5 DAY MG/L)
MAR 27	1543		48	72		6.9		15.0		200	13	10		11.3	10	9	4.1
MAY 15	1220		21	222		7.5		20.5		300		3.6		1.2		-	2.6
DATE	FOI TO' IMI (CO)	ER	COLI- FORM FECAL 0.7 UM-MI (COLS	L, FEG KF / F (COI	CAL, AGAR	HAR NES (MG AS CAC	S /L	HARD NESS NONCA BONAT (MG/ CACO	Ř- E L	(MC	VED	SI DI SOL (MG	NE- UM, S- VED (/L MG)	SODIUM DIS- SOLVED (MG/I AS NA	i,	SODIUM AD- SORP- TION RATIO	1
MAR 27	. 2	9000	430	00 3	7000		27		6		7.2		2.3	4.	0		3
MAY 15	. 40	5000	76	50 8	3000		72		54	1	8		6.5	13			7
DATE	S: D: SOI (MC	TAS- IUM, IS- LVED G/L K)	BICAR BONATI (MG/I AS HCO3)	E CAE L BONA (MC	ATE G/L	SULF DIS SOL (MG AS S	VED /L	CHLO RIDE DIS- SOLV (MG/ AS C	, ED L	FLU RID DI SOL (MG AS	E, S- VED /L	SILI DIS SOL (MG AS SIO	VED /L	SOLIDS SUM OF CONSTI TUENTS DIS- SOLVE (MG/L	- N1	IITRO- GEN, TRATI OTAL [MG/L S N)	
MAR 27		4.1	:	25	0	-1-	4	4	.1		.1		9.6	. 5	8	.29)
MAY 15		5.5		22	0	6	2	13			.2	1	3	14	.3	.06	5
DATE	NITI TO	TRO- EN, RITE FAL C/L N)	NITRO GEN NO2+NO TOTAL (MG/I AS N)	GI D3 AMMO L TOT L (MO	TRO- EN, ONIA TAL G/L N)	NIT CE ORGA TOT (MG AS	N, NIC AL /L	NITRO GEN, AI MONIA ORGAN TOTA (MG/ AS N	M- + IC L	PHOR TOT (MG	US, AL /L	CARB ORGA TOT (MG AS	NIC AL /L	PHENOL (UG/L	S S	METHY- LENE BLUE CTIVI SUB- STANCI	3
MAR 27		.010		30	.070	1	.5				090	1	6		0	.00)
MAY 15.,		.010	. (07	.040	1	.3	1.	3		060	1	5		5	.00)
	D#	ATE	TIME	SOI (UC	ENIC IS- LVED G/L AS)	BARI DIS SOLVI (UG AS	ED /L	CADMI DIS- SOLVI (UG/I AS CI	ED L	CHR MIU DIS SOL (UG AS	M. VED /L	COPP DIS SOL (UG AS	VED /L	IRON, DIS- SOLVE (UG/L AS FE	D		
		7	1543	3	1		40		<1		0		2	31	0		
	MAY 15	5	1220)	1		90	1	<1		0		2	38	0		
		MA 2	7	LEAD, DIS- SOLVED (UG/L AS PB)	NE SC (U	ANGA- ESE, DIS- DLVED JG/L S MN)	SO (U	CURY DIS- DLVED JG/L HG)	NII Di SOI (UC	LE- UM, IS- LVED G/L SE)	SO (U	VER, IS- LVED G/L AG)	SO (U	NC, IS- LVED IG/L ZN)			
		MA 1	y 5	1		50		.0		0		0		8			

08159185 DOGWOOD CREEK AT HIGHWAY 95 NEAR MCDADE, TX--Continued

DATE	TIME	ALDRIN TOTAL (UG/L	TOTA	, AZI	NON, TAL	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOTAL (UG/L)
MAR 27	1543	.0	0 .	00	.00	.00	.00	.00	.00
DATE	TH TO	CAL	IREX,	PARA- THION, TOTAL (UG/L)	TOTA TRI THIO (UG/	- 2,4- N TOTA	AL TOTA	L TOTA	AL.
MAR 27		.00	.00	.00		00 .	.01 .	00	.00

08159200 COLORADO RIVER AT BASTROP, TX

LOCATION.--Lat 30°06'20", long 97°19'08", Bastrop County, Hydrologic Unit 12090301, on left bank in city park at Bastrop, 400 ft (122 m) upstream from bridge on State Highway 71, 0.3 mi (0.5 km) upstream from Gills Creek, 1.1 mi (1.8 km) downstream from Piney Creek, and at mile 236.8 (381.0 km).

DRAINAGE AREA.--39,400 mi² (102,000 km²), approximately, of which 12,880 mi² (33,360 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March 1960 to current year.

GAGE.--Water-stage recorder. Datum of gage is 307.38 ft (93.689 m) National Geodetic Vertical Datum of 1929. Prior to May 10, 1960, nonrecording gage at same site and datum.

REMARKS.--Water-discharge records good. There are many diversions above stations for irrigation and municipal supply. Regulation is the same as that for Colorado River at Austin (station 08158000). During the water year, 4,260 acre-fr (5.25 hm³) was diverted above this station by pumping into Decker Lake by the city of Austin. During the year, the Lower Colorado River Authority diverted 7,800 acre-fr (9.62 hm³) above this station into Lake Bastrop. National Weather Service gage-height telemeter at station.

AVERAGE DISCHARGE.--20 years, 2,137 ft3/s (60.52 m3/s), 1,548,000 acre-ft/yr (1.91 km3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 79,600 ft 3 /s (2,250 m 3 /s) Oct. 29, 1960, gage height, 34.45 ft (10.500 m); minimum daily, 75 ft 3 /s (2.12 m 3 /s) Apr. 1, 1964.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1845, 60.3 ft (18.38 m) July 7 or 8, 1869. Flood of June 16, 1935, reached a stage of 57.0 ft (17.37 m), and flood of Dec. 4, 1913, reached a stage of 53.3 ft (16.25 m), from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 15,400 ft 3 /s (436 m 3 /s) May 14 at 1500 hours, gage height, 13.74 ft (4.188 m); minimum daily, 130 ft 3 /s (3.68 m 3 /s) Nov. 14, 15.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

		DISC	HARGE, IN	CUBIC FE		EAN VALUES		OCTOBER 1	9/9 10 5E	PIEMBER I	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1120	282	154	252	472	223	970	2370	2480	2540	1840	2790
2	1130	216	157	237	297	238	815	2620	2480	2530	1920	2650
3	997	172	166	209	256	227	701	2170	2460	2530	1800	2640
4	865	166	359	212	237	363	597	1980	2510	2590	2000	2440
5	928	170	429	210	223	487	573	2040	2530	2310	2230	2610
6 7 8 9	724 341 281 249 226	163 164 158 153 144	263 244 221 205 209	204 196 193 193 193	211 212 215 327 627	251 211 199 191 190	559 563 543 789 1130	2040 2120 2510 3350 1480	2530 2530 2530 2600 2480	2500 2510 2520 2570 2250	2050 2050 2080 1810 1600	2290 2390 2470 1690 1670
11	222	135	203	195	389	184	1150	1700	2530	2260	876	2000
12	209	135	225	193	269	190	952	1740	2560	2450	1000	1890
13	214	132	235	203	241	180	1470	4440	2500	2130	1950	1620
14	211	130	353	200	226	181	1280	12000	2500	2130	2390	1530
15	199	130	288	193	223	174	1360	4080	2470	2160	2330	1580
16	202	134	226	198	240	674	1690	4030	2700	2080	2340	1570
17	201	136	205	200	317	510	1620	2540	2810	1930	2440	1640
18	289	134	217	198	359	506	1900	1540	2620	1890	2310	1810
19	244	136	213	205	261	504	1810	1100	2370	1840	2320	1760
20	203	155	209	253	238	488	1910	1410	2660	1950	2340	1980
21	201	176	208	261	226	476	1850	1120	2740	1950	2380	2060
22	214	167	214	454	214	424	1700	2110	2520	1820	2380	1980
23	201	212	224	496	202	538	1980	2340	2530	1910	2330	1940
24	194	190	266	400	202	608	2350	2350	2480	1730	2490	2040
25	190	182	424	267	191	675	2470	2480	2480	1730	2480	2030
26 27 28 29 30 31	179 175 176 177 192 212	192 188 201 176 160	275 231 218 284 675 331	230 207 200 1790 2700 1810	190 189 190 194	655 1390 9440 1590 1250 1020	3060 2280 2290 2220 2240	2380 2320 2490 2640 2550 2510	2690 2530 2500 2550 2540	1850 1890 1790 1660 1760 2040	2490 2500 2680 2680 2670 2680	2380 2570 1650 1250 1480
TOTAL	11166	4989	8131	12952	7638	24237	44822	82550	76410	65800	67436	60400
MEAN	360	166	262	418	263	782	1494	2663	2547	2123	2175	2013
MAX	1130	282	675	2700	627	9440	3060	12000	2810	2590	2680	2790
MIN	175	130	154	193	189	174	543	1100	2370	1660	876	1250
AC-FT	22150	9900	16130	25690	15150	48070	88900	163700	151600	130500	133800	119800

CAL YR 1979 TOTAL 576854 MEAN 1580 MAX 23100 MIN 130 AC-FT 1144000 WTR YR 1980 TOTAL 466531 MEAN 1275 MAX 12000 MIN 130 AC-FT 925400

08159200 COLORADO RIVER AT BASTROP, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical and biochemical analyses: October 1967 to September 1973, October 1975 to current

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
ОСТ 15	1300	195	700	7.7	23.0	8.8	104		240	42
DEC 17	1115	204	675	7.7	6.0	12.4	98	.6	240	47
EB 21	1330	218	680	7.9	17.0	14.0	147	1.8	250	78
PR 11	1045	917	541	7.5	20.5	7.9	89	.2	210	44
UN 13	1150	2920	519	7.6		7.6	94	.5	200	39
UG 15	1400	2670	528	7.8				1.2	190	34
13	1400	2670	328	7.0	28.3	7.0	90	1.2	190	34
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
CT				100	2.5	67.0				12
15 EC	61	21	40	1.1		240	0	47	55	.5
17 EB	63	21	43	1.2	5.7	240	0	51	55	.6
21 PR	69	19	50	1.4	5.1	210	0	70	65	.9
11 UN	52	19	28	.8	3.6	200	0	39	45	.4
13 UG	45	22	26	.8	3.3	200	0	31	43	.3
15	43	20	26	.8	3.2	190	0	31	44	.3
DA	SILI DIS SOL (MG AS	CA, SUM - CONS VED TUE /L D	STI- GI NTS, NITI	EN, G RATE NIT FAL TO G/L (M	EN, G RITE NO2 TAL TO G/L (M	EN, G +NO3 AMM TAL TO G/L (M	EN, GI ONIA ORGA TAL TO:	NITRO- GEN, EN, MONIA ANIC ORGAL TOT. G/L (MG N) AS I	AM- A + PHO NIC PHOR AL TOT /L (MG	US, AL /L
OCT 15		5.7	353	1.6	.10	1.7	.01	.58	.59 .	440
DEC		8.4		2.8		3.1	.70			700
FEB		3.7		1.0		1.1	.23			300
APR		.2	286	.62	.04	.66				350
JUN	No. of the last of		277	.02	.01	.28	.04			420
AUG		8.4								
15		9.0	270	.32	.01	.33	.00	.58	. 58	080

08160800 REDGATE CREEK NEAR COLUMBUS, TX

LOCATION.--Lat 29°47'56", long 96°31'55", Colorado County, Hydrologic Unit 12090301, on left bank 68 ft (21 m) downstream from bridge on Farm Road 109, 1.8 mi (2.9 km) upstream from Cummins Creek, and 7.0 mi (11.3 km) north of Columbus.

DRAINAGE AREA .-- 17.3 mi2 (44.8 km2).

PERIOD OF RECORD .-- April 1962 to current year.

REVISED RECORDS. -- WSP 2122: Drainage area.

GAGE.--Water-stage recorder and crest-stage gages. Datum of gage is 200.82 ft (61.210 m) National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1975, at datum 10.00 ft (3.048 m) higher.

REMARKS.--Records fair. No known diversion above station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--18 years, 6.09 ft³/s (0.172 m³/s), 4.78 in/yr (121 mm/yr), 4,410 acre-ft/yr (5.44 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,360 ft³/s (152 m³/s) May 22, 1979, gage height, 27.19 ft (8.288 m), from rating curve extended above 2,170 ft³/s (61.5 m²/s) on basis of slope-area measurement of peak flow of Jan. 22, 1965; no flow for many days.

EXTREMES OUTSIDE PERIOD OF RECORD..-Maximum stage since at least 1860, about 33.4 ft (10.18 m) in late June or early July 1940, from information by State Department of Highways and Public Transportation and local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,000 ft 3/s (28.3 m3/s) and maximum (*):

Date	Time	Disch	arge	Gage	height
		(ft^3/s)	(m^3/s)	(ft)	(m)
May 15	1630	1,030	29.2	16.55	5.044
May 19	0315	*1,710	48.4	18.44	5.621

DISCUADOR IN CURIO PRET BED SECOND MATER VEAR OCTOBER 1070 TO SERTEMBER 1000

Minimum discharge, 0.36 ft 3/s (0.010 m 3/s) Aug. 24, 25.

		DISC	CHARGE, I	N CUBIC FI		ECOND, WAT EAN VALUES	ER YEAR O	OCTOBER 19	979 TO SEI	PTEMBER 19	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.2 1.0 1.0 1.0	1.0 .97 .95 .87	.99 1.0 1.0 1.0 1.1	1.1 1.1 13 1.4 1.3	1.5 1.9 1.9 1.8 2.1	3.6 2.0 2.0 2.3 2.1	1.6 1.6 1.5 1.4	1.8 1.4 1.2 1.2	1.2 1.2 1.1 1.1	.59 .59 .55 .55	.63 .63 .59 .59	.42 .42 .45 .48
6 7 8 9	.95 .95 .92 .92	.92 .92 .98 1.1	1.1 1.0 1.0 .97	1.3 1.2 1.1 1.1	1.9 1.8 59 17 5.0	1.9 2.0 2.1 2.0 2.0	1.4 1.5 1.6 1.4	1.1 1.4 1.4 1.2 1.2	1.1 1.1 1.1 2.9 1.6	.52 .48 .48 .48	.55 .55 .52 .52 .48	.92 1.2 1.3 .87
11 12 13 14 15	.92 .94 .92 .91	.92 .92 .92 .92	1.1 4.3 1.8 1.3 1.2	1.2 .99 1.1 1.1	3.3 2.8 2.4 2.4 2.6	2.0 1.9 1.8 1.7	1.4 1.4 2.3 1.5	1.2 1.2 1.3 2.6	1.2 1.1 1.0 1.0	.52 .52 .45 .45	.48 .45 .45 .45	.55 .52 .52 .48
16 17 18 19 20	.94 .97 .97 .97	.92 .94 1.1 1.0 1.0	1.2 1.0 1.0 1.1	1.1 1.4 1.4 1.1	3.8 2.9 2.7 2.6 2.4	2.3 2.0 1.8 1.9 2.3	1.3 1.3 1.3 1.3	16 6.2 4.4 285 7.7	.96 .92 .92 .87 .87	.42 .45 .45 .42	.48 .45 .39 .39	.55 .52 .52 .63
21 22 23 24 25	.96 .87 .82 .82	1.8 1.5 1.2 1.1	1.1 1.3 1.4 1.3 1.1	57 20 4.0 2.4 2.2	2.3 2.0 1.9 1.8 1.7	1.9 1.7 1.9 1.8 1.7	1.3 1.2 1.2 1.2 8.6	4.1 2.5 2.1 1.8 1.6	.87 .87 .82 .82	.45 .45 .45 .45	.39 .39 .39 .36	.59 .55 .52 .52
26 27 28 29 30 31	.87 .92 .92 .92 4.8 2.0	1.1 1.0 .95 .87 .90	1.1 1.1 1.2 6.8 1.4 1.2	1.9 1.7 1.7 1.7 1.8 1.6	1.6 1.7 1.8 1.9	2.3 5.8 3.8 2.2 1.9	1.6 1.2 1.2 1.2 1.2	1.5 1.5 1.5 1.4 1.3	.77 .72 .72 .72	.42 .42 .52 .68 .68	.45 .63 .45 .55 .52	.52 1.1 1.0 .92 1.2
TOTAL MEAN MAX MIN CFSM IN. AC-FT	33.93 1.09 4.8 .82 .06 .07 67	30.61 1.02 1.8 .87 .06 .07 61	44.25 1.43 6.8 .97 .08 .10 88	141.19 4.55 57 .99 .26 .30 280	138.5 4.78 59 1.5 .28 .30 275	68.1 2.20 5.8 1.6 .13 .15	49.0 1.63 8.6 1.2 .09 .11	472.2 15.2 285 1.1 .88 1.02 937	31.07 1.04 2.9 .68 .06 .07 62	15.41 .50 .68 .42 .03 .03	14.96 .48 .63 .36 .03 .03	20.00 .67 1.3 .42 .04 .04

CAL YR 1979 TOTAL 4856.62 MEAN 13.3 MAX 1030 MIN .60 CFSM .77 IN 10.44 AC-FT 9630 WTR YR 1980 TOTAL 1059.22 MEAN 2.89 MAX 285 MIN .36 CFSM .17 IN 2.28 AC-FT 2100

08161000 COLORADO RIVER AT COLUMBUS, TX

- LOCATION.--Lat 29°42'22", long 96°32'12", Colorado County, Hydrologic Unit 12090302, near right bank at downstream side of pier of bridge on U.S. Highway 90 at eastern edge of Columbus, 340 ft (104 m) downstream from Texas and New Orleans Railroad Co. bridge, 2.6 mi (4.2 km) downstream from Cummins Creek, and at mile 135.1 (217.4 km).
- DRAINAGE AREA.--41,070 mi² (106,370 km²), approximately, of which 12,880 mi² (33,360 km²) probably is noncontributing; 41,170 mi² (106,630 km²), approximately, at site "near Eagle Lake".

WATER-DISCHARGE RECORDS

- PERIOD OF RECORD.--January 1903 to December 1911 (gage heights only), May 1916 to current year. Discharge records for 1902-11, published in WSP 84, 99, 132, 174, 210, 288, and 308, have been found to be unreliable and should not be used. Records collected at site 23 mi (37 km) downstream October 1930 to May 1939, published as "near Eagle Lake". Gage-height records collected in this vicinity since 1903 are contained in reports of the National Weather Service.
- REVISED RECORDS.--WSP 1342: Drainage area. WSP 1562: 1920-21(M), 1922. See also PERIOD OF RECORD.
- GAGE.--Water-stage recorder. Datum of gage is 155.52 ft (47.402 m) National Geodetic Vertical Datum of 1929. Prior to May 1, 1919, various nonrecording gages at sites in the immediate vicinity at datum 3.00-foot (0.914 m) lower. May 1, 1919, to Nov. 23, 1930, water-stage recorder at site about 300 ft (91 m) downstream at datum 3.00-foot (0.914 m) lower. Sept. 17, 1930, to June 12, 1939 (Oct. 1, 1930, to May 31, 1939, used herein), water-stage recorder at site 23 mi (37 km) downstream at different datum. May 17 to Nov. 14, 1939, nonrecording gage at present site and datum.
- REMARKS.--Water-discharge records good. At times, low-flow releases from Lake Travis (station 08154500) are made for generation of electric power and (or) to fulfill downstream water contracts. The Lower Colorado River Authority reported that 14,587 acre-ft (18.0 hm³) was diverted from the river to Cedar Creek Reservoir during the current year. This reservoir is located 10 mi (16 km) north of the river and 3.5 mi (5.6 km) west of Fayett-ville. Flow is also affected at times by discharge from flood-detention pools of 20 floodwater-retarding structures with a combined detention capacity of 25,570 acre-ft (31.5 hm³). These structures control runoff from 73.1 mi² (189.3 km²) in the Cummins Creek watershed. Many other diversions above station for irrigation and municipal supply.
- AVERAGE DISCHARGE.--20 years (water years 1917-36) unregulated, 3,809 ft 3 /s (107.9 m 3 /s), 2,760,000 acre-ft/yr (3.40 km 3 /yr); 44 years (water years 1937-80) regulated, 2,931 ft 3 /s (83.01 m 3 /s), 2,124,000 acre-ft/yr (2.62 km 3 /yr).
- EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 190,000 ft 3 /s (5,380 m 3 /s) June 18, 1935, gage height, 38.5 ft (11.73 m), present site and datum, computed on basis of records for station near Eagle Lake; minimum, 93 ft 3 /s (2.63 m 3 /s) Sept. 1, 1918.
- EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1852, 41.6 ft (12.68 m), present datum, in July 1869 and Dec. 6, 1913, from information by local resident. River divided each time and left Columbus on an island.
- EXTREMES FOR CURRENT YEAk.--Maximum discharge, $14,800 \text{ ft}^3/\text{s}$ (419 m³/s) May 16 at 0200 hours, gage height, 12.37 ft (3.770 m); minimum daily, 231 ft $^3/\text{s}$ (6.54 m $^3/\text{s}$) Nov. 15.

		DISC	CHARGE, IN	CUBIC FEE	r PER	SECOND, WATER MEAN VALUES	YEAR	OCTOBER 19	979 TO SE	PTEMBER 1	980	
DAY	OCT	NOV	DEC	JAN	FEH	MAR MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	1130 1120	395 371	337 345	703 667	2310 1480	597	1300 1080	2040 2090	2440 2410	2400 2400	1560 1740	2600 2730
2 3 4 5	1100 1100 999	366 456 456	330 320 312	649 466 415	893 700 611	460	1070 961 832	2270 2190 1860	2390 2360 2380	2400 2400 2390	1620 1670 1610	2660 2640 2480
6 7	890 805	413 383	312 442	378 341	549 488	500	764 726	1750 1800	2400 2410	2320 2290	1760 1920	2590 2530
8 9 10	750 705 661	377 371 336	573 467 419	325 299 301	611 887 890	439	699 677 657	1840 1980 2710	2400 2600 2750	2370 2390 2450	1840 1820 1840	2390 2560 2300
11 12	618 590	279 258	400 545	299 284	815 800	354	704 929	2320 1350	2490 2400	2330 2150	1690 1420	1730 1720
13 14 15	545 507 483	248 238 231	993 660 494	279 260 274	779 661 577	299	982 944 1180	1490 2540 8980	2400 2360 2320	2220 2210 2050	1060 1010 1720	1910 1820 1620
16 17	463 452	243 248	408 443	282 329	522 641	301 296	1090 1150	11900 7850	2320 2300	2020 2040	2100 2110	1540 1560
18 19 20	434 412 399	246 244 246	444 397 362	468 388 383	705 638 626	313 605	1360 1360 1590	6410 9660 7300	2680 2540 2350	1920 1810 1770	2180 2200 2150	1540 1610 1700
21	489 469	284 383	348 359	2540 4640	609 529	617	1560 1600	4440 2130	2420 2490	1740 1830	2160 2190	1680 1890
22 23 24 25	425 407 407	431 408 360	353 357 361	3460 2010 1110	476 434 396	629 615	1530 1430 1850	1670 2310 2370	2450 2390 2350	1810 1700 1720	2190 2150 2290	1930 1870
26	401	322	351	876	372	671	2170	2430	2320	1590	2340	1850 1910
27 28 29 30	389 371 366	362 320 335	389 524 538	717 579 553	359 356 350	926 4800	2690 2440 2000	2430 2330 2320	2490 2500 2310	1590 1670 1730	2350 2380 2510	1970 2530 2090
30 31	360 389	337	946 762	509 1650			1980	2510 2510	2370	1650 1490	2580 2600	1570
TOTAL MEAN MAX	18636 601 1130	9947 332 456	14291 461 993	26434 853 4640	20064 692 2310	805 4800	1310 2690	107780 3477 11900	72790 2426 2750	62850 2027 2450	60760 1960 2600	61520 2051 2730
MIN AC-FT	360 36960	231 19730	312 28350	260 52430	350 39800		657 77960	1350 213800	2300 144400	1490 124700	1010 120500	1540 122000

CAL YR 1979 TOTAL 1035518 MEAN 2837 MAX 53000 MIN 231 AC-FT 2054000 WTR YR 1980 TOTAL 519321 MEAN 1419 MAX 11900 MIN 231 AC-FT 1030000

08161000 COLORADO RIVER AT COLUMBUS, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1967 to September 1971. Chemical and biochemical analyses: February 1968 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS	WAT	JRE,	DXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	UNII 5	AND, CHEM NHIB DAY	HARD- NESS (MG/L AS CACO3)	HARD NESS NONCA BONAT (MG/ CACO	R- E L
JAN 09	1330	295	620	8.	0 1	2.0	10.2	94		.8	250		27
MAR 13	1000	318	680	8.	5 1	9.0	10.1	107			260		55
MAY 15	1505	9200	424	8.	0 2	23.0	9.0	105		2.8	160		40
JUL 17	1030	2220	515	8.	4 3	80.0	7.0	91		1.7	200		34
SEP 11	1510	1770	500	8.	3 2	28.0	8.8	111		.4	190		23
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SORP- TION RATIO	SI	S- E VED S/L	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	DIS	LVED G/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO RIDE DIS SOLV (MG/ AS F	ED L
JAN 09	73	16	36	i.	0	4.3	270	0		47	47		.4
MAR 13	78	17	50	1.	3	4.3	250	3		67	62		.6
MAY 15	44	11	23		8	4.0	140	0		47	35		.4
JUL 17	46	21	28		9	4.1	200	2		31	42		.5
SEP 11	42	20	25		8	3.6	200	0		31	45		.3
DA	SILI DIS SOL (MG AS TE SIO	CA, SUM - CON VED TUE /L D SO	STI- G NTS, NIT IS- TO LVED (M	EN, RATE NI TAL T G/L (ITRO- GEN, FRITE OTAL MG/L S N)	NITRO GEN, NO2+NO TOTAL (MG/I AS N)	GE 3 AMMO TOT . (MG	N, G NIA ORG AL TO /L (M	TRO- EN, ANIC TAL G/L N)	NITRO GEN, A MONIA ORGAN TOTA (MG/ AS N	AM- A + PHO NIC PHOI AL TO' 'L (MO	OS- RUS, FAL G/L P)	
JAN		0.5	265		0.0			0.4				510	
MAR		8.5	365	20	.06			.04				.510	
MAY		3.3	408	.20	.02	. 2		.04	.50			.410	
JUL		9.8 7.3	243	.84	.04	. 2			1.1	2.		.790	
SEP		8.8	274	.39	.00	.3		.00	.49			.200	

08162000 COLORADO RIVER AT WHARTON, TX (National stream-quality accounting and radiochemical networks)

- LOCATION.--Lat 29°18'32", long 96°06'13", Wharton County, Hydrologic Unit 12090302, near left bank at downstream side of downstream bridge on U.S. Highway 59 in Wharton, 1,100 ft (335 m) downstream from Texas and New Orleans Railroad Co. bridge, 12 mi (19 km) upstream from Jones Creek, and at mile 66.6 (107.2 km).
- DRAINAGE AREA.--41,380 mi² (107,170 km²), approximately, of which 12,880 mi² (33.360 km²) probably is noncontributing.

WATER-DISCHARGE RECORDS

- PERIOD OF RECORD.--July 1916 to August 1918 (intermittent periods), March 1919 to September 1925, July and August 1938 (flood discharge measurements only), October 1938 to current year. June to November 1901 and May to September 1902, daily records published in U.S. Department of Agriculture, Office of Experiment Stations, Bulletin Nos. 119 and 133. Gage-height records collected in this vicinity since 1935 are contained in reports of the National Weather Service.
- REVISED RECORDS .-- WSP 878: 1938 (M) . WSP 1342: Drainage area.
- GAGE.--Water-stage recorder. Datum of gage is 62.42 ft (19.026 m) National Geodetic Vertical Datum of 1929.

 Prior to Oct. 1, 1938, various types of recording and nonrecording gages 800 ft (244 m) upstream at different datum. Oct. 1, 1938, to June 1, 1966, nonrecording gage 100 ft (30 m) upstream at datum 3.00-foot (0.914 m) higher. June 1, 1966, to Sept. 30, 1975, water-stage recorder at present site at datum 3.00-foot (0.914 m) higher.
- REMARKS.--Water-discharge records good. Many diversions above station for irrigation, municipal supply, cooling water for thermal-electric powerplant, and oilfield operations. For statement regarding upstream regulation, see station 08161000. Corps of Engineers gage-height telemeter at station.
- AVERAGE DISCHARGE.--5 years (water years 1920-25) unregulated, $3.680 \text{ ft}^3/\text{s}$ (104.2 m³/s), 2.666,000 acre-ft/yr (3.29 km³/yr); 42 years (water years 1939-80) regulated, $2.705 \text{ ft}^3/\text{s}$ (76.61 m³/s), 1.960,000 acre-ft/yr (2.42 km³/yr).
- EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 100,000 ft³/s (2,830 m³/s) July 3, 1940, gage height, 38.99 ft (11.884 m); no flow Aug. 6, 1925 (result of pumping).

 Flood of July 30, 1938, reached a stage of 40.4 ft (12.31 m), present datum, observed by Geological Survey engineers, discharge, 145,000 ft³/s (4,110 m³/s).
- EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1869, 41.9 ft (12.77 m) Dec. 8, 1913, present datum, from information by local residents; below Wharton floodwater combined with that of the Brazos River. Flood of about July 12, 1869, reached about same height. Flood of June 20, 1935, reached a stage of 41.2 ft (12.56 m), present datum, furnished by National Weather Service, discharge, 159,000 ft³/s (4,500 m³/s) from rating curve defined by current-meter measurements below 145,000 ft³/s (4,110 m³/s).
- EXTREMES FOR CURRENT YEAR.--Maximum discharge, 13,500 ft 3 /s (382 m 3 /s) May 16, gage height, 13.05 ft (3.978 m); minimum daily, 284 ft 3 /s (8.04 m 3 /s) Aug. 15.

		DISC	HARGE, IN	CUBIC FE	ET PER S	SECOND, WATE MEAN VALUES	R YEAR	OCTOBER 19	79 TO SEP	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1090	573	393	931	1260	512	2090	1300	1650	1390	982	1540
	1070	507	392	714	2530	510	1640	1400	1520	1410	921	1500
2 3 4	1110	480	392	744	1960	596	1380	1740	1510	1390	1040	1670
3			392	663	1270	652	1210	1830	1490	1380	925	1780
4	1070	480				601	1190	1890	1450	1390	925	1670
5	1030	500	375	652	963	601	1190	1090	1430	1390	723	1070
6	957	520	364	544	800	554	970	1510	1460	1410	832	1640
7	883	498	367	493	711	535	793	1310	1510	1440	902	1670
8	832	484	364	470	682	526	743	1370	1520	1360	1080	2180
9	860	470	484	448	846	601	673	1470	1560	1380	1300	2210
10	711	456	516	440	1440	611	611	1540	1620	1330	1830	2200
1.1	587	438	473	419	1260	521	606	1990	1940	1400	1930	2180
12	554	406	754	415	1090	512	592	2140	1730	1500	1140	1660
			667	407	984	493	815	1190	1560	1360	841	1480
13	526	376						1060	1530	1370	521	1660
14	563	348	919	397	995	465	976		1530	1/00	284	
15	577	345	838	392	872	424	944	1800	1520	1490	284	1590
16	573	336	619	387	754	442	957	10200	1460	1410	429	1200
17	568	328	516	392	667	447	1060	11700	1480	1380	1020	935
18	558	356	473	392	678	415	970	8320	1400	1390	1090	811
19	549	354	493	428	782	328	1250	7200	1580	1350	1100	756
20	540	352	482	1600	800	406	1090	10900	1650	1220	1130	780
21	530	358	457	3980	723	563	1300	7760	1520	1260	1070	898
22	521	388	439	3730	732	526	1140	5090	1390	1280	1070	897
23	540	395	439	5360	662	573	1020	2770	1550	1340	1090	1090
24	521	438	437	4100	604	549	950	1940	1530	1330	1110	1220
25	493	469	419	2810	573	540	832	1960	1460	1200	1030	1250
23	493	403	412	2010	3/3	540						
26	484	442	425	1770	540	530	1090	1970	1420	1290	1070	1310
27	479	420	420	1380	521	535	1600	1890	1350	1170	1190	1580
27 28	493	387	411	1080	493	788	1820	1730	1400	1100	1240	2060
29	493	392	529	950	507	950	1840	1580	1520	1100	1290	2500
30	479	383	577	850		3530	1300	1470	1380	1110	1360	2370
						4280	1500	1580		1120	1520	
31	554		745	793		4280		1380		1120	1320	
TOTAL	20795	12679	15571	38131	26699	23515	33452	101600	45660	41050	33262	46287
MEAN	671	423	502	1230	921	759	1115	3277	1522	1324	1073	1543
MAX	1110	573	919	5360	2530	4280	2090	11700	1940	1500	1930	2500
MIN	479	328	364	387	493	328	592	1060	1350	1100	284	756
AC-FT	41250	25150	30890	75630	52960	46640	66350	201500	90570	81420	65980	91810
								an amoun				

CAL YR 1979 TOTAL 1013948 MEAN 2778 MAX 41400 MIN 328 AC-FT 2011000 WTR YR 1980 TOTAL 438701 MEAN 1199 MAX 11700 MIN 284 AC-FT 870200

08162000 COLORADO RIVER AT WHARTON, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: April 1944 to current year. Chemical and biochemical analyses: January 1968 to current year. Pesticide analyses: February 1968 to current year. Sediment analyses: October 1974 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: April 1944 to current year. WATER TEMPERATURES: October 1945 to September 1948, March 1950 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: Maximum daily, 904 micromhos Oct. 29, 1963; minimum daily, 146 micromhos Sept. 27, 1957. WATER TEMPERATURES: Maximum daily, 35.0°C July 26, 1954; minimum daily, 2.0°C Dec. 23, 1963. Jan. 14, 1964.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 752 micromhos Mar. 19; minimum daily, 210 micromhos Jan. 21.
WATER TEMPERATURES: Maximum daily, 31.0°C July 3; minimum daily, 7.0°C Dec. 18, Feb. 1, Mar. 3.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	COLOR (PLAT- INUM COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
OCT												
30 NOV	0845	479	700	7.8	24.5	5	2.7	7.2	86	.8	30	26
30 DEC	0920	372	700	8.0	7.5	5	.30	11.3	93	.2	42	К6
18 JAN	0915	465	640	7.9	7.0	10	4.6	12.4	101	1.4	66	К6
10 FEB	0825	438	620	8.3	12.0	10	2.8	9.0	83	.9	K12	K12
12	1630	1080	450	8.2	10.0	30	57	10.6	92	2.3	650	500
MAR 12 APR	1410	516	670	8.5	23.0	10	8.5	9,2	107	.9	330	20
16 MAY	0945	944	620	8.4	18.0	0	31	9.5	98	.7	120	80
15 JUN	1015	1190	479	8.3	24.0	0	96	7.9	93	2.0	140	К8
05	0900	1510	540	8.5	28.0	5	36	6.6	84	.8	140	28
JUL 16	1440	1510	520	8.4	31.0	10	40	6.4	84	2.3	40	32
05	1545	938	500	8.5	29.5	0	25	7.2	94	3.2	40	60
SEP 11	1000	2210	510	8.4	27.0	5	78	7.3	91	1.3	72	72
	HARI NESS		G, CALCI		M, SODIU	SODI M, AI)- S1	TAS- IUM, BICA		SULFA - DIS-		E,

DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT											
30 NOV	260	35	73	20	37	1.0	4.0	280	0	42	53
30 DEC	270	25	79	18	41	1.1	3.5	300	0	44	51
18	240	18	71	15	38	1.1	4.4	270	0	41	49
JAN 10	240	28	72	15	37	1.0	4.4	260	0	47	49
FEB 12	160	25	46	10	24	.8	3.4	160	0	24	35
MAR 12	250	40	73	16	40	1.1	3.9	250	2	53	53
APR 16	220	36	62	17	34	1.0	4.4	230	0	48	51
MAY											
15 JUN	180	43	47	16	25	.8	3.7	170	3	39	37
05	200	44	52	18	25	.8	3.2	210	6	35	45
JUL									4		
16 AUG	200	31	46	21	27	.8	3.6	200	3	33	45
05 SEP	210	38	47	22	29	.9	3.6	200	4	32	49
11	190	36	43	19	24	.8	3.3	190	4	30	47

08162000 COLORADO RIVER AT WHARTON, TX--Continued

	FLUO- RIDE, DIS-	SILICA, DIS- SOLVED	SOLIDS, RESIDUE AT 180 DEG. C	SOLIDS, SUM OF CONSTI- TUENTS,	SOLIDS, RESIDUE AT 105 DEG. C,	SOLIDS, VOLA- TILE,	NITRO- GEN, NO2+NO3	NITRO- GEN, NO2+NO3 DIS-	NITRO- GEN, AMMONIA	NITRO- GEN, AMMONIA DIS-	NITRO- GEN, ORGANIC
DATE	SOLVED (MG/L AS F)	(MG/L AS SIO2)	DIS- SOLVED (MG/L)	DIS- SOLVED (MG/L)	SUS- PENDED (MG/L)	SUS- PENDED (MG/L)	TOTAL (MG/L AS N)	SOLVED (MG/L AS N)	TOTAL (MG/L AS N)	SOLVED (MG/L AS N)	TOTAL (MG/L AS N)
OCT 30	.4	8.6	380	376	3	2	.03	.06	.010	.000	.63
30	.3	8.0	404	393	5	7	.26	.10	.020	.050	.61
DEC 18	-4	9.2	372	363	1	0	.98	.44	.110	.040	.72
JAN 10	.4	9.8	359	366	13	13	1.0	.81	.030	.030	.45
FEB 12	.2	10	235	233	90	21	.05	.31	.160	.060	
MAR 12	.4	1.6	375	366	8	8	.03	.04	.000	.020	.71
APR 16	.5	.3	355	335	60	5	1.1	1.1	.100	.000	.50
MAY 15	.3	10	270	266	210	26	.83	.88	.030	.030	1.7
JUN 05	.3	10	292	288	95	25	.00	.62	.000	.030	24
JUL 16	.5	7.8	294	275	14	12	.13	.11	.000	.000	.90
AUG 05	.5	6.4	295	292	57	30	.06	.00	.100	.010	.63
SEP 11	.3	9.4	283	267	96	0	.29	.26	.000	.000	.71
	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L	PHOS- PHORUS, TOTAL (MG/L	PHOS- PHORUS, DIS- SOLVED (MG/L	CARBON, ORGANIC TOTAL (MG/L	CARBON, ORGANIC DIS- SOLVED (MG/L	CARBON, ORGANIC SUS- PENDED (MG/L	SEDI- MENT, SUS- PENDED	SEDI- MENT DIS- CHARGE, SUS- PENDED	SED. SUSP. SIEVE DIAM. % FINER THAN
DATE	AS N)	AS N)	AS N)	AS P)	AS P)	AS C)	AS C)	AS C)	(MG/L)	(T/DAY)	.062 MM
30	.41	.64	.41	.050	.020	9.2			35	45	36
30 DEC	.37	.63	.42	.090	.020	13		**	28	28	23
18 JAN	.71	.83	.75	.320	.180		8.2	.5	10	13	97
10 FEB	.49	.48	.52	.420	.250	4.1			15	18	93
12 MAR	.43		.49	.240	.120	7.0			100	292	90
12 APR	.52	.71	.54	.200	.100		4.9	.4	23	32	89
16 MAY	.60	.60	.60	.460	.300	5.6	55		78	199	81
15 JUN	.58	1.7	.61	.300	.160	11			203	652	73
05 JUL	3.7		3.7	.230	.100		4.5	1.4	127	518	91
16 AUG	.50	.90	.50	.260	.140	5.9	197		132	538	91
05 SEP	.46	.73	.47	.140	.060	6.2			61	154	93
11	.36	.71	.36	.210	.130		3.9	1.6	178	1060	83
2.02	TIME	ARSENIC TOTAL (UG/L	ARSENIC SUS- PENDED TOTAL (UG/L	ARSENIC DIS- SOLVED (UG/L	BARIUM, TOTAL RECOV- ERABLE (UG/L	BARIUM, SUS- PENDED RECOV- ERABLE (UG/L	BARIUM, DIS- SOLVED (UG/L	CADMIUM TOTAL RECOV- ERABLE (UG/L	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L	CADMIUM DIS- SOLVED (UG/L	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L
DATE		AS AS)	AS AS)	AS AS)	AS BA)	AS BA)	AS BA)	AS CD)	AS CD)	AS CD)	AS CR)
30 DEC	0920					1.55					
18 FEB	0915	3	0	3	300	200	100	4	0	9	0
12 MAR	1630										
12 MAY	1410	3	0	3	300	200	100	1	0	1	0
15	1015					122					
JUN 05	0900	3	0	3	100	10	90	2	0	9	0
05	1545										
SEP 11	1000	3	1	2	100	20	80	1	0	2	0

08162000 COLORADO RIVER AT WHARTON, TX--Continued

DATE	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COBALT, SUS- PENDED RECOV- ERABLE (UG/L AS CO)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)
NOV 30		-	22				22	- 22		42.	24
DEC 18	0	0	0	0	<3	0	0	0	230	220	10
FEB 12											
MAR 12	0	0	0	0	⟨3	3	1	2	280	270	<10
MAY 15					T.	22					
JUN 05	0	0	1		<3	8	5	3	2500		<10
AUG 05	-	122		24		42					
SEP 11	0	0	3	-4	<3	8	3	5	2700		<10
DATE	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY SUS- PENDED RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, SUS- PENDED RECOV- ERABLE (UG/L AS NI)
NOV									.02		
30 DEC 18	35	5	30	60	30	30	.1	.0	.1	0	0
FEB 12					30	50					
MAR 12	18	14	4	30	20	10	.1	.1	.0	3	2
MAY 15		22	44			44	22	22	44	-	
JUN 05	38	0	42	90		<1	.1	.0	.1	5	5
AUG 05											
SEP 11	53	51	2	130	130	2	.7	.7	.0	5	1.
DA	(UC	S- NI LVED TO G/L (U	LE- SI UM, PEI TAL TO: G/L (UG	US- NI NDED D TAL SO G/L (U	UM, TO IS- RE LVED ER G/L (U	VER, S TAL PE COV- RE ABLE ER G/L (U	COV- D ABLE SO G/L (U	VER, TO IS- RE LVED ER G/L (U	NC, S TAL PE COV- RE ABLE ER G/L (U	COV- D ABLE SO G/L (U	NC, IS- LVED G/L ZN)
NOV 30)					0					
DEC		0	1	1	0	0	0	0	40	40	<3
FEB 12		44				0					
		i	1	0	1	0	0	0	20	20	4
				44	++	0	44				
		0	0	0	1	0	0	0	70	70	4
AUG 05					177	0			-57		4-
SEP 11		4	0	0	0	0	0	0	40		<3
DATE OCT 30	TIME 0845	GROSS ALPHA, DIS- SOLVED (PCI/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (PG1/L AS U-NAT)	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)
AUG 05	1545	<3.8	1.4	<5.6	2.1	4.9	1.2	4.7	1.2	.14	1.1

08162000 COLORADO RIVER AT WHARTON, TX--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL (UG/L)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV	2000	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND
30 FEB	0920	ND	ND		ND		ND		ND		
12	1630	ND		ND		ND		ND		ND	1,55
DATE	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL (UG/L)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN TOTAL (UG/L)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL (UG/L)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL (UG/L)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL (UG/L)
NOV 30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
FEB 12	ND		ND		ND		ND		ND		ND
1777											
DATE	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL (UG/L)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)
NOV 30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
FEB					120	ND		ND		ND	
12		ND		ND	-	ND	-	ND		ND	100
DATE	METHYL TRI- THION, TOTAL (UG/L)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	PARA- THION, TOTAL (UG/L)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOX- APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL TRI- THION (UG/L)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
NOV 30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
FEB 12	ND	22.	ND		ND		ND				

08162000 COLORADO RIVER AT WHARTON, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

DATE TIME		30,79 920		12,80 410		15,80 015		5,80 900
TOTAL CELLS/ML		130		180		450		630
DIVERSITY: DIVISION .CLASSORDERFAMILYGENUS		0.6 0.6 0.9 1.7		0.0 0.0 0.0 1.7	1.2 1.2 1.2 1.6			0.9 0.9 1.8 2.1 2.1
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESOOCYSTACEAE								
KIRCHNERIELLA		W	Vele	Ψ.	100	-	51	8
SCENEDESMACEAESCENEDESMUSVOLVOCALESCHLAMYDOMONADACEAE		-	1.55	(4)	220#	48	100#	16
CARTERIA	22	1.50	1.24	1.40			4.3	-
CHLAMYDOMONAS .ZYGNEMATALES ZYGNEMATACEAE	20#	16		-		-	39	6
SPIROGYRA		-		-		-2-		-
CHRYSOPHYTA .BACILLARIOPHYCEAECENTRALESCOSCINODISCACEAE								
CYCLOTELLAMELOSIRAPENNALESACHNANTHACEAE	5	4		-		-	240#	39
COCCONEIS	5	4		-		-	4.4	1
DIATOMACEAE		-	26	14		-		-
FRAGILARIACEAE SYNEDRA		-	13	7				-
NAVICULACEAE	15	12	51#	29	14	3	13	2
PLEUROSIGMA NITZSCHIACEAE	10	8	314	-		-		-
NITZSCHIA SURIRELLACEAE	70#	56	90#	50	180#	39	180#	29
SURIRELLA		- 1		-	27	6		-
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROCCOCCALESCHROOCOCCACEAE								
AGMENELLUM		144		-		-		-
ANACYSTIS HORMOGONALES	3-4	-		-		0.0		1.3
OSCILLATORIACEAE								
OSCILLATORIA		-		-		4		2
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALESEUGLENACEAE								
PHACUS		4		-	14	3	11.550	-

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

275

08162000 COLORADO RIVER AT WHARTON, TX--Continued PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

DATE TIME		16,80 440		5,80 545		11,80
TOTAL CELLS/ML	7	800	4	500	8	100
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		1.0 1.0 1.4 1.5		1.0 1.0 1.4 1.4		0.5 0.5 0.6 0.6
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE .CHLOROCOCCALESOOCYSTACEAE						
KIRCHNERIELLA SCENEDESMACEAE	1	-		-	11-1-1	-
SCENEDESMUSVOLVOCALESCHLAMYDOMONADACEAE			-	(4)		
CARTERIA		-	*	-	*	0
CHLAMYDOMONAS ZYGNEMATALES	110	1	*	0	-	-
ZYGNEMATACEAE SPIROGYRA	, L	-	39	1		4
CHRYSOPHYTA .BACILLARIOPHYCEAE .CENTRALESCOSCINODISCACEAECYCLOTELLA	*	0			110	1
MELOSIRA PENNALES ACHNANTHACEAE		-			*	0
COCCONEIS DIATOMACEAE		-	.55	-		-
DIATOMA FRAGILARIACEAE		4		15		-
SYNEDRA NAVICULACEAE		-				-
PLEUROSIGMA	230	3	51	1	*	0
NITZSCHIACEAE NITZSCHIA	2400#	30	1300#	20	790	10
SURIRELLACEAE	2400#	30	1300#	20	790	10
SURIRELLA	**	-		-		
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALES						
CHROOCOCCACEAEAGMENELLUMANACYSTISHORMOGONALES	4600# *	58 0	2500# 260	54 6	7200# 	88
OSCILLATORIACEAE OSCILLATORIA	510	7	440	10	4-	-
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAE EUGLENALES						
EUGLENACEAE PHACUS	5.5	_		2	2.2	2
		-		15		

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

COLORADO RIVER BASIN

08162000 COLORADO RIVER AT WHARTON, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	20795	600	328	18400	50	2790	40	2270	230
NOV.	1979	12679	668	365	12500	56	1920	44	1510	250
DEC.	1979	15571	641	350	14700	54	2250	43	1790	240
JAN.	1980	38131	381	208	21400	31	3150	27	2740	140
FEB.	1980	26699	557	304	21900	46	3300	38	2720	210
MAR.	1980	23515	640	350	22200	53	3400	43	2700	240
APR.	1980	33452	521	285	25700	43	3840	36	3220	200
MAY	1980	101600	384	210	57500	31	8410	27	7400	150
JUNE	1980	45660	516	282	34800	42	5190	35	4360	200
JULY	1980	41050	521	285	31600	43	4720	36	3950	200
AUG.	1980	33262	525	286	25700	43	3850	36	3220	200
SEPT	1980	46287	503	275	34300	41	5110	35	4320	190
TOTAL		438701	**	**	321000	**	47900	**	40200	**
WTD. AV	G.	1199	496	271	**	40	**	34	**	190

	SP	ECIFIC COM	NDUCTANCE	(MICROMHO		25 DEG. C), NCE-DAILY	WATER	YEAR OCTOBER	1979	TO SEPTEMBER	1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	544	603	678	610	493	640	427	542	513	517	533	505
	554	598	693	623	567	660	404	490	511	516	537	511
2 3 4 5	561 566 569	573 646 671	698 700 630	603 594 558	627 587 569	647 625 666	430 434 461	484 497 517	515 516 519	515 518 520	528 534 531	506 503 505
6 7	577	667	700	482	559	677	497	518	521	516	537	501
	579	675	703	492	569	678	542	528	523	515	531	498
8	582	681	700	615	578	665	560	523	519	524	529	471
9	583	680	695	599	530	667	553	502	518	522	531	478
10	589	678	688	521	492	672	546	519	519	520	521	493
11	586	681	716	586	416	675	569	520	513	495	516	504
12	606	683	510	649	400	678	561	513	488	511	520	502
13	610	686	525	634	476	684	580	511	518	518	533	508
14	611	688	609	649	533	694	591	506	528	519	553	513
15	615	691	585	603	551	700	605	479	515	518	601	503
16	623	688	560	658	561	707	594	412	521	520	618	505
17	621	686	607	625	570	704	578	326	520	524	560	511
18	624	685	628	668	576	726	568	317	524	523	540	515
19	626	683	600	663	578	752	553	305	521	526	528	523
20	624	669	565	500	603	733	557	345	518	527	520	527
21	628	676	630	210	594	719	545	282		527	516	523
22	624	667	688	240	626	735	548	232	515	526	517	528
23	630	683	685	305	641	730	546	250	516	525	514	525
24	638	681	682	312	617	709	548	350	515	529	517	523
25	645	686	688	310	619	701	547	400	517	531	518	516
26	647	681	675	313	613	699	541	450	515	526	516	520
27	650	688	682	312	619	700	526	494	514	527	515	512
28 29 30	653 660 659	678 674 686	685 661 668	325 385 411	627 629	681 634 603	503 526 509	462 479 499	518 515 514	528 531 532	518 496 485	483 475 510
31 MEAN	623 610	670	649 651	500	566	507 680	532	506 444	516	529 522	517	507

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

ONCE-DAILY												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	25.0 25.0 26.0 24.0 22.0	17.0 16.0 17.0 16.0 18.0	9.0 10.0 10.0 11.0 12.0	11.0 13.0 9.0 10.0	7.0 8.0 8.0 9.0 17.0	7.0 12.5 14.0	18.0 19.0 20.0 19.0 19.0	22.0 22.0 23.0 24.0 24.0	28.0 28.0 28.0 28.0	30.0 30.0 31.0 30.0 30.0	28.5 29.0 29.0 28.0 29.0	28.0 28.0 28.0 27.0 28.0
6 7 8 9	23.0 24.0 25.0 25.0 25.0	19.0 16.0 16.0 20.0 17.0	13.0 11.0 12.0 14.0	14.0 13.0 11.0 11.0 12.0	12.0 13.0 15.0 10.0 8.0	13.0 17.0 19.0 18.0 20.0	20.0 21.0 20.0 18.0 19.0	25.0 25.0 25.0 22.0 24.0	29.0 29.0 29.0 29.0 28.0	30.0 30.0 30.5 30.0	29.0 28.0 27.0 28.0 27.0	26.5 27.0 26.0 26.0 26.0
11 12 13 14 15	22.0 22.0 24.0 21.0 24.0	15.0 14.0 14.0 13.0 13.0	15.0 11.0 11.0	15.0 13.0 12.0 14.0 17.0	9.0 9.0 10.0 12.0 14.0	20.0 18.0 16.0 16.0	22.0 20.0 15.0 13.0 16.0	25.0 25.0 25.0 24.0 25.0	27.0 28.0 27.0 28.0 28.0	30.0 30.5 30.0 29.0 29.5	26.0 27.0 27.0 28.0 28.0	27.0 28.0 28.0
16 17 18 19 20	23.0 24.0 24.0 24.0 25.0	13.0 15.0 17.0 19.0 21.0	11.0 8.0 7.0 8.0 11.0	18.0 18.0 17.0 17.0 19.0	11.0 12.0 12.0 15.0	19.5 20.0 14.0 15.0 19.0	18.0 19.0 20.0 20.0 22.0	23.0 22.0 23.0 23.0 23.0	28.0 28.0 29.0 29.0	30.0 30.0 30.5 30.5 30.5	27.0 28.0 28.0 28.0	26.0 28.0 28.0 27.5 28.0
21 22 23 24 25	25.0 25.0 18.0 17.0	22.0 14.0 11.0 12.0	13.0 16.0 18.0 14.0	18.0 15.0 13.0 11.0 12.0	16.0 17.0 17.0 16.0 14.0	14.0 16.0 18.0 17.0 17.0	21.0 22.0 22.0 23.0 23.0	24.0 25.0 25.0 26.0	30.0 30.0 30.0 30.0	29.0 29.0 28.0 29.5 29.5	28.0 28.0 28.0 28.0	28.0 28.0 28.0 28.0 28.0
26 27 28 29 30 31	19.0 21.0 22.0 23.0 19.0	12.0 15.0 14.0 11.0 9.0	13.0 15.0 15.0 13.0 11.0	13.0 12.0 12.0 13.0 13.0	14.0 14.0 15.0 17.0	17.0 17.0 16.0 17.0 14.0	21.0 20.0 20.0 22.0 23.0	28.0 27.5 28.0 28.0 28.0	30.0 30.0 30.0 30.0 30.0	28.5 29.5 27.0 29.0 29.0	27.5 27.5 27.5 27.0 27.5 28.0	27.5 26.0 27.0 26.0
MEAN	23.0	15.5	12.0	13.5	12.5	16.5	20.0	24.5	29.0	29.5	28.0	27.5

08162500 COLORADO RIVER NEAR BAY CITY, TX

LOCATION.--Lat 28°58'26", long 96°00'44", Matagorda County, Hydrologic Unit 12090302, on right bank 6,300 ft (1,920 m) downstream from bridge on State Highway 35, 7,100 ft (2,160 m) downstream from Texas and New Orleans Railroad Co. bridge, 2.8 mi (4.5 km) west of Bay City, and at mile 32.5 (52.3 km).

DRAINAGE AREA.--41,650 mi² (107,870 km²), approximately, of which 12,880 mi² (33,360 km²) probably is noncontributing.

PERIOD OF RECORD.--July 1940 (in WSP 1046), April 1948 to current year. Records of elevation collected in this vicinity since 1946 are contained in reports of the National Weather Service.

Water-quality records: Chemical and biochemical analyses: October 1974 to September 1975.

REVISED RECORDS .-- WSP 1342: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. July 2-6, 1940, nonrecording gage at highway bridge, 6,300 ft (1,920 m) upstream at datum 30.60 ft (9.327 m) lower.

REMARKS.--Records good. Diversions above station for irrigation and municipal supply. For statement regarding regulation by Soil Conservation Service floodwater-retarding structures, see station 08161000. Brown and Root Engineers gage-height telemeter at station.

AVERAGE DISCHARGE.--32 years (water years 1949-80), 2,397 ft³/s (67.88 m³/s), 1,737,000 acre-ft/yr (2.14 km³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 84,100 ft³/s (2,380 m³/s) June 26, 1960; maximum elevation, 48.2 ft (14.69 m), present datum, July 4, 1940, at site 6,300 ft (1,920 m) upstream at bridge on State Highway 35. observed by Corps of Engineers, elevation 46.6 ft (14.20 m), adjusted to present site; no flow at times in 1951-53 and 1956.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum elevation since 1869, 56.1 ft (17.10 m) Dec. 10, 1913. Flood in July 1869 probably reached about same elevation. Elevation of other floods are as follows: May 8, 1922, 55.4 ft (16.89 m); June 1929, 55.0 ft (16.76 m); June 22, 1935, 54.6 ft (16.64 m); Oct. 5, 1936, 52.2 ft (15.91 m); Aug. 2, 1938, 53.4 ft (16.28 m); Nov: 27, 1940, 47.6 ft (14.51 m). All above flood data from information by Texas and New Orleans Railroad Co. and adjusted to present site.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 14,300 ft 3 /s (405 m 3 /s) May 19, elevation, 19.20 ft (5.852 m); minimum daily, 0.90 ft 3 /s (0.025 m 3 /s) Aug. 17.

		DIS	CHARGE, I	N CUBIC F		ECOND, WAY		OCTOBER 1	979 TO SE	PTEMBER	1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	778	648	419	717	773	470	3280	839	524	466	477	294
2	713	608	419	709	1760	538	2060	804	458	388		318
3	675	569	401	625	2360	541	1690	1070	421	345		353
4	650	556	402	634	1670	612	1450	1210	409	363		506
5	617	546	414	600	1160	646	1410	1350	397	362		513
6 7 8 9	611 597 544 527 529	542 553 542 524 506	408 396 398 397 482	571 462 420 401 388	944 825 792 1670 1730	587 561 567 574 659	1210 891 693 574 456	1060 753 716 1310 1340	381 390 408 416 419	365 382 382 382 405	311	509 471 692 1060 1050
11	478	498	481	382	1620	624	352	1450	602	460	1430	1090
12	427	488	491	382	1270	575	359	1990	600	551	838	843
13	393	454	1620	381	1090	554	413	1340	473	556	314	564
14	450	416	1340	362	1020	534	781	630	424	525	197	560
15	869	415	1150	360	997	509	800	665	418	804	111	609
16	746	417	790	359	892	517	686	5230	416	709	18	527
17	668	427	569	356	795	499	809	12400	403	713	.90	272
18	652	439	479	388	749	449	785	9200	381	694	120	158
19	640	429	450	397	768	344	789	13100	389	756	250	66
20	627	432	450	423	844	299	893	12500	567	709	220	68
21	609	436	434	5470	831	412	848	10300	506	777	187	107
22	598	456	431	8420	774	485	803	7080	462	895	147	212
23	568	465	417	10600	767	439	569	3340	510	889	70	253
24	578	473	408	6720	712	443	516	1710	510	939	74	397
25	553	487	400	3920	640	370	475	1050	440	844	72	440
26 27 28 29 30 31	532 545 549 530 565 606	480 460 433 416 413	391 390 385 424 570 555	2570 1740 1330 1080 938 840	606 430 530 357	421 654 892 1130 1760 5270	454 791 1060 1280 1020	1090 915 779 593 480 451	396 375 351 424 469	821 936 816 830 798 820	32 26 29 107 177 248	560 833 1300 1820 2310
TOTAL	18424	14528	16761	52945	29376	22935	28197	96745	13339	19682	10830.90	18755
MEAN	594	484	541	1708	1013	740	940	3121	445	635	349	625
MAX	869	648	1620	10600	2360	5270	3280	13100	602	939	1460	2310
MIN	393	413	385	356	357	299	352	451	351	345	.90	66
AC-FT	36540	28820	33250	105000	58270	45490	55930	191900	26460	39040	21480	37200

CAL YR 1979 TOTAL 1087712.00 MEAN 2980 MAX 36500 MIN 379 AC-FT 2157000 WTR YR 1980 TOTAL 342517.90 MEAN 936 MAX 13100 MIN .90 AC-FT 679400

08162600 TRES PALACIOS RIVER NEAR MIDFIELD, TX

LOCATION.--Lat 28°55'40", long 96°10'15", Matagorda County, hydrologic Unit 12100401, at left downstream end of bridge on Farm koad 456, 1.0 mi (1.6 km) downstream from Juanita Creek, and 2.4 mi (3.9 km) southeast of Midfield.

DRAINAGE AREA . -- 145 mi2 (376 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1970 to current year. Prior to October 1973, published as Tres Palacios Creek near Midfield.

GAGE.--Water-stage recorder. Datum of gage is 5.38 ft (1.640 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Ten known diversions above stations (amounts unknown). An undetermined amount of water from irrigated ricefields enters stream upstream at various points. Recording rain gage at station.

AVERAGE DISCHARGE.--10 years (water years 1971-80), 150 tt3/s (4.248 m3/s), 108,700 acre-tt/yr (134 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $8.810~{\rm ft}^3/{\rm s}$ (249 m $^3/{\rm s}$) Sept. 20, 1979, gage height, 31.73 ft (9.671 m), from floodmarks; minimum daily, 1.0 ft $^3/{\rm s}$ (0.028 m $^3/{\rm s}$) Nov. 3-5, 1978.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1885, 37 ft (11.3 m) in June 1960 and 35 ft (10.7 m) in August 1945, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,600 ft3/s (45.3 m3/s) and maximum (*):

Date	Date Time		Disch	arge	Gage	height
			(ft^3/s)	(m^3/s)	(ft)	(m)
Jan.	23	0400	2,400	68.0	25.01	7.623
May	19	2300	*5.310	150	29.62	9.028

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum daily discharge, 1.8 ft3/s (0.051 m3/s) Dec. 28.

		DIS	CHARGE, I	N COBIC PE	ME ME	AN VALUES	EK IEAK C	OCTOBER 19	79 10 SEP	IEMBER 19	50	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	60 50 40 32 29	90 52 32 23 18	10 9.8 10 9.8	23 15 347 283 78	24 22 27 23 21	126 68 37 24 19	45 26 21 18 13	28 32 26 31 29	24 28 29 23 22	22 22 24 23 21	66 54 47 33 26	34 31 24 23 24
6 7 8 9	25 22 22 25 27	15 13 12 14 13	11 10 11 11	37 23 15 11 9.6	20 19 36 605 491	17 16 15 14 13	20 16 14 21 17	21 14 50 140 136	21 20 20 21 23	19 19 27 25 26	25 25 30 36 59	31 36 39 45 176
11 12 13 14 15	27 27 25 27 22	11 11 10 9.6 9.6	11 119 693 600 266	10 8.6 7.4 6.6 5.9	161 76 51 38 32	13 13 11 12 11	22 26 39 47 29	72 54 26 18 15	26 18 17 17	27 42 36 28 43	61 55 32 27 29	156 95 63 44 40
16 17 18 19 20	19 22 20 19 18	9.9 12 12 11 11	129 70 33 18 13	5.4 5.4 8.0 20	27 23 21 20 20	12 31 29 16 14	20 16 13 14 23	203 283 286 4150 5010	17 17 18 18	59 43 39 47 55	31 27 19 18 17	40 34 29 25 25
21 22 23 24 25	17 15 13 12 12	12 15 28 21 14	9.8 8.7 8.0 6.5 5.4	410 1420 2140 1160 317	19 17 15 14 13	13 12 12 16 15	21 20 21 25 40	3440 2030 597 182 90	20 44 67 49 33	81 99 125 87 54	15 14 12 13 14	25 52 44 62 144
26 27 28 29 30 31	11 14 14 12 27 220	12 11 10 9.5	5.2 2.5 1.8 102 183 57	138 85 54 37 46 43	24 16 14 13	13 137 129 317 383 108	45 25 23 20 36	57 41 31 29 27 23	26 26 26 24 21	43 54 93 198 124 84	15 16 14 14 23 34	104 230 403 287 626
TOTAL MEAN MAX MIN AC-FT	925 29.8 220 11 1830	531.6 17.7 90 9.5 1050	2445.5 78.9 693 1.8 4850	6781.9 219 2140 5.4 13450	1902 65.6 605 13 3770	1666 53.7 383 11 3300	736 24.5 47 13 1460	17171 554 5010 14 34060	750 25.0 67 17 1490	1689 54.5 198 19 3350	901 29.1 66 12 1790	2991 99.7 626 23 5930

CAL YR 1979 TOTAL 109962.7 MEAN 301 MAX 8590 MIN 1.8 AC-FT 218100 WTR YR 1980 TOTAL 38490.0 MEAN 105 MAX 5010 MIN 1.8 AC-FT 76340

08162600 TRES PALACIOS RIVER NEAR MIDFIELD, TX--Continued WATER-QUALITY RECORDS

milan derian. Impanio

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: October 1968 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE, WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN DIS- SOLVE (MG/L	CENT SATUR-	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
NOV 08	1629	13	1350	7.7	19.5	25	8.	7 94	3.0	370	99
DEC 20	1348	14	762	7.8	14.5	70	9.	4 91	2.6	210	49
JAN	1426	37	538	8.0	12.0	220	12.		2.5	150	23
31 MAR			1400								
13 APR	1435	12		8.3	21.0	6.8	11.		1.6	350	50
24 JUN	1457	37	1000	7.9	24.0	20	8.	100	3.4	290	57
05 JUL	1403	23	1020	7.7	28.0	17	7.	9 100	2.4	290	54
17 AUG	1435	44	819	8.0	30.0	42	7.0	92	3.4	230	0
28	1411	14	952	7.9	28.5	12	7.	2 91	.8	260	0
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L) AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
08	100	29	140	3.2	5.2	330		38	260	.5	20
20	59	16	70	2.1	7.2	200	3	32	120	.3	17
31	42	12	54	1.9	4.3	160		23	79	.2	14
1AR 13	92	28	150	3.5	4.4	360		43	260	.4	8.9
PR 24	77	23	100	2.6	6.1	280) 41	170	.5	17
UN 05	79	23	100	2.5	4.1	290		32	170	1.8	17
UL											
17 UG	60	19	76	2.2	3.1	280		19	120	.5	26
28	68	23	100	2.7	7.5	320		20	170	.5	31
E	SUM CON TUE E SC	OF RESISTI- AT CNTS, DEC	105 G G. C, NIT US- TO UDED (M	EN, C RATE NIT TAL TO G/L (N	GEN, CORITE NO.	GEN, C 2+NO3 AMN DTAL TO 4G/L (N	GEN, MONIA OI OTAL MG/L	NITRO- GE GEN, MO RGANIC OR FOTAL TO (MG/L (GANIC PHO OTAL TO MG/L (M	RUS, ORG TAL TO G/L (M	BON, BANIC TAL G/L C)
NO)V 08	756	74	.06	.02	.08	.04	.68	.72	.210	
DE	CC					1.4		3.0			13
JA	10	420		1.3	.08		.57			.060	
MA		308		2.1	.05	2.1	.10	.52		.280	15
AP		764	10	.61	.01	.02	.00	.58		.290	3.3
	4	573	35	1.9	.08	2.0	.11	1.2	1.3	.200	11
	5	570	68	.93	.02	.95	.04	1.1	1.1	.120	8.9
1	7	462	84	.13	.01	.14	.00	1.1	1.1	.210	9.6
AU 2	8	578	29	.00	.02	.00	.47	.53	1.0	.100	8.2

TRES PALACIOS RIVER BASIN

08162600 TRES PALACIOS RIVER NEAR MIDFIELD, TX--Continued

	DA	TE	TIME	SOI (UC	LVED SOI	RIUM, IS- LVED UG/L B BA)	(UG	IIUM I S- VED :	CHRO MIUM DIS- SOLV (UG/ AS C	, C ED L	OPPE DIS- SOLV (UG/ AS C	ED SOL	ON, IS- LVED G/L FE)	
	NOV 08		1629		4	300		1		0		1	10	
	JAN		1426		2	100		<1		0		1	80	
	JUL		1435		4	200		<1		50		1	<10	
	17		1433							50			V10	
		DATE	SC (U	AD, IS- LVED G/L PB)	MANGA- NESE, DIS- SOLVEI (UG/L AS MN)	MER D SO (U	CURY IS- LVED G/L HG)	SELE- NIUM DIS- SOLVI (UG/I AS SI	ED	SILVE DIS- SOLVI (UG/I AS AG	ED L	ZINC, DIS- SOLVED (UG/L AS ZN)		
		NOV 08		0	30)	.0		0		0	4		
		JAN 31		0	20		.2		0		0	6		
		JUL 17		0		,	.4		0		0	3		
DATE	TIME	PCB, TOTAL (UG/L	IN TOM TE	CB, TAL BOT- MA- RIAL /KG)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALD:	RIN, TAL G/L)	ALDRIN TOTAL IN BOT TOM M TERIA (UG/KG	- - - - - -	CHLOI DANE TOTAI (UG/I	Ĺ	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN 31	1426	-	0	4	.00)	.00		.0		.0	0	.00	.0
JUL 17	1435		0	0	.00)	.00		.0		.0	0	.00	.0
DATE	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT TOM MA TERIA (UG/KG	- D L TO	DT, TAL G/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	AZII	I- NON, TAL G/L)	TOTAL	IN :	DI- ELDRIN TOTAL IN BOT TOM MA TERIA (UG/KO	N, L T- A- :	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN 31	.00		0	.00	.0		.06	. (00	7	.7	.00	.00	.0
JUL 17	.00		0	.00	.0		.00	. (00		.3	.00	.00	.0
DATE	ETHION, TOTAL (UG/L)	HEPTA CHLOR TOTAL (UG/L	CH TO I- IN I, TOM	PTA- LOR, TAL BOT- MA- RIAL /KG)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	CHI EPOI TOT BO'	PTA- LOR XIDE . IN TTOM ATL. /KG)	LINDAN TOTAL (UG/I	IE S	LINDAI TOTAI IN BOT TOM MA TERIA (UG/KO	L F- A- AL	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)
JAN 31	.00	.0	0	.0	.00	i.	.0	.0	00		.0	.00	.00	.0
JUL 17	.00	.0		.0	.00		.0		00		.0	.00	.00	.0
DATE	METHYL PARA- THION, TOTAL (UG/L)	METHY TRI- THION TOTAL (UG/L	, MI	REX, OTAL G/L)	PARA- THION, TOTAL (UG/L)	APH!	OX- ENE, TAL G/L)	TOXA- PHENE TOTAL IN BOT TOM MA TERIA (UG/KC	L	TOTAL TRI- THION (UG/I	N N	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
JAN 31	.00	.0	0	.00	.00		0		0	. (00	.00	.00	.00
JUL 17	.11	.0		.00	.00		0		0		00	.00	.00	.00
		.0	-		.00							.00	.00	.00

EAST CARANCAHUA CREEK BASIN

08162700 EAST CARANCAHUA CREEK NEAR BLESSING, TX (Reconnaissance partial-record station)

LOCATION.--Lat 28°51'48", long 96°17'05", Matagorda County, Hydrologic Unit 12100401, at bridge on Farm Road 616, 100 ft (30 m) downstream from Missouri Pacific Railroad bridge, and 4.2 mi (6.8 km) west of Blessing. DRAINAGE AREA. -- 81.2 mi² (210.3 km²).

PERIOD OF RECORD.--Periodic discharge measurements: September 1967 to July 1968, February 1970 to current year.

Periodic water-quality data: February 1968 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATI		TIME	STREA FLOV INSTA TANEO (CFS	AM- CI AM- CO V, DU AN- AN DUS (MI	PE- FIC N- ICT- ICE CRO-	(UNI	PH ITS)	TEMI ATU WAT (DEC	JRE, TER	Bl	JR- ID- IY IU)			OXYG DI: SOL (PE CE: SAT: ATI	S- VED R- NT UR-	OXYGE DEMAN BIOCH UNINH 5 DA (MG/L	ID, IEM IIB Y	HARD- NESS (MG/L AS CACO3)	N B	HARD- NESS, ONCAR- ONATE (MG/L CACO3)
NOV 08	. 1	405	3.	. 8	825		7.5		19.5	31			9.0		99	3	.0	220	i	20
DEC 20	. 1	028	3.	. 8	632		8.0		15.0	130)	1	0.0		98	1	.9	160	,	24
JAN 31		649	12		883		8.1		12.0	50		1	1.0		100	1	.6	260	ν.	43
MAR 13	. 1	323	4.	.0	1400		8.4		20.5	20)		9.7		107	1	. 8	380		73
APR 24		043	18		1100		8.2		23.0	34			8.7		101		. 4	250		0
JUN 05		043		. 8	960		7.7		28.5	23			6.7		86		. 0	230		0
JUL 17		135	6.		1020		8.0		32.0	32			7.0		95		. 4	210		0
AUG		034		.48	1300		7.6		28.0	15			5.6		71		.4	270		0
28		034		.40	1300		7.0	4	.0.0	1.5	,		5.0		71		. 4	2/0		U
DATE	DI SC (N	CIUM S- DLVED MG/L G CA)	MAGN SIU DIS SOLV (MG) AS N	JM, SOE S- DI ZED SOL ZL (M	IUM, S- VED G/L NA)	SOR	ON	DI SOI	TAS- TUM, IS- LVED G/L K)	BICA BONA (MG	TE G/L S	CAR BONA (MG AS C	TE /L	SULFA DIS- SOLV (MG, AS SO	VED /L	CHLO RIDE DIS- SOLV (MG/ AS C	ED L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)		ILICA, DIS- SOLVED (MG/L AS SIO2)
NOV 08.		52	23	3	93		2.7		5.9		250		0	30	0	140		.5		19
DEC 20		39	16	5	57		1.9		6.5		170		0	34	4	91		.3		15
JAN 31		58	27		94		2.6		4.2		260		0	48		150		.4		15
MAR 13		83	43	3 1	60		3.6		3.7		380		0	6	7	250		.7		10
APR 24		59	26		50		4.1		5.4		330		0	4:		200		.7		16
JUN 05		54	23		10		3.2		3.9		300		0	2.		140		.5		20
JUL 17		44	24		50		4.5		2.3		320		0	21		190		.8		25
AUG 28		56	32		80		4.8		7.5		350		0	28		270		.8		36
20		50	32		00		4.0		7.3		330		U	20	,	210		.0		30
	DATE	SUM CON TUE D SO	IDS, OF STI- NTS, IS- LVED G/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	NIT TO (M	TRO- EN, RATE TAL G/L N)	NITI TO:	CAL G/L	NO2- TO	TRO- EN, +NO3 FAL G/L N)	AMM TO (M	TRO- EN, ONIA TAL G/L N)	ORGA TO:	TRO- EN, ANIC TAL G/L N)	NITRO GEN, MONIA ORGAL TOTA (MG AS I	AM- A + NIC AL /L	PHOS PHORU TOTA (MG/ AS P	S, OR L I L (RBOI GAN OTA: MG/ S C	IC L L
	NOV 08		487	120		.11		.01		.12		.02		.98	1	.0	.1	30	8	. 8
	DEC 20		343	103		1.3		.05		1.3		.06	17	1.6	1	. 7	. 1	00	17	
	JAN 31		525	56		.33		.01		.34		.02		.44		.46	.0	80	17	
	MAR 13		805	69		.06		.01		.07		.00		.71		.71	.0	90	8	. 1
	APR 24		662	62		.46		.02		.48		.06		1.1		. 2		00		. 3
	JUN 05		524	40		.11		.01		.12		.00		1.3		. 3	.1		12	
	JUL 17		615			.00		.00		.00		.00		1.1		.1		40	11	
	AUG 28		783	35		.00		.01		.00		.41		1.1		. 5		60	12	
	20		703	33		.00		.01		.00		.41			4.			0.0	12	

08162700 EAST CARANCAHUA CREEK NEAR BLESSING, TX--Continued

							1122			
	DA		SOI IME (UC		S- D VED SO: G/L (U	MIUM MI IS- DI LVED SC G/L (U	S- DLVED JG/L	DIS- SOLVED S (UG/L (RON, DIS- OLVED UG/L S FE)	
	NOV		05	2	200	<1	0	0	30	
	JAN		649	2	200	<1	0	1	200	
	JUL		35	7	200	<1	10	3	<10	
	.,,		33		200	×.	10	3	(10	
		DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, DIS- SOLVEI (UG/L AS SE)	(UG/	- DIS- ED SOLVE L (UG/L	D	
		NOV 08	0	20	.1	C)	0	4	
		JAN 31	0	30	.1	(0 2		
		JUL 17	4	5	.4	C		0	5	
DATE	TIME	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOI DANE TOTAL	, TOM MA L TERIA	- DDD, L TOTAL	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN 31	1649	.0	6	.00	.00	.0		.0	0 .00	.0
JUL 17	1135	.0	0	.00	.00	.0	4	.0	00.00	.0
DATE	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	TERIA	L I- ENDO- A- SULFAN AL TOTAL	, ENDRIN, TOTAL	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN 31	.00	.0	.00	.0	.00	.00		.0 .0	0 .00	.0
JUL 17	.00	.2	.00	.0	.00	.00		.1 .0	.00	.0
DATE	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL (UG/L)	LINDAN TOTAI IN BOT TOM MA TERIA (UG/KO	L F- MALA- A- THION AL TOTAL	TOTAL	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)
JAN 31	.00	.00	.0	.00	.0	.00		.0 .0	.00	.0
JUL 17	.00	.00	.0	.00	.0	.00		.0 .0		.0
DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL TRI-	2,4-D N TOTAL	, 2,4,5-T TOTAL	SILVEX, TOTAL (UG/L)
JAN 31	.00	.00	.00	.00	0	0	. (0. 00	.36	.00
JUL 17	.02	.00	.00	.00	0	0		0. 00		.00

08163500 LAVACA RIVER AT HALLETTSVILLE, TX

LOCATION.--Lat 29°26'35", long 96°56'39", Lavaca County, Hydrologic Unit 12100101, on left bank 75 ft (23 m) downstream from bridge on U.S. Highway 77 in Hallettsville and 0.7 mi (1.1 km) downstream from Campbell Branch.

DRAINAGE AREA .-- 108 mi2 (280 km2).

PERIOD OF RECORD .-- July 1939 to current year.

REVISED RECORDS .-- WSP 1312: 1942(M), 1944(M). WSP 1732: 1952(M). WSP 2123: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 186.72 ft (56.912 m) National Geodetic Vertical Datum of 1929. Prior to Apr. 19, 1960, water-stage recorder for high stages and movable nonrecording gage for stages below about 6.2 ft (1.89 m). Apr. 20, 1960, to June 2, 1961, movable nonrecording gage. All gages at same site and datum.

REMARKS.--Records good. No diversion above station. The Corps of Engineers began channel rectification 1.6 mi (2.6 km) downstream from gage in April 1959. This rectification reached the gage Sept. 21, 1959, and was completed in February 1960. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--41 years, 48.4 ft³/s (1.371 m³/s), 6.08 in/yr (154 mm/yr), 35,100 acre-ft/yr (43.3 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 93,100 ft³/s (2,640 m³/s) June 30, 1940, gage height, 40.60 ft (12.375 m), from floodmarks, from rating curve extended above 23,000 ft³/s (651 m³/s) on basis of slope-area measurement of peak flow; no flow at times in 1953 and 1956.

Maximum stage since at least 1840, that of June 30, 1940.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage from about 1870 to 1940, 32.8 ft (10.00 m) July 16, 1936, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 2,300 ft³/s (65.1 m³/s) and maximum (*):

Date		Time	Disch	arge	Gage	height
			(ft^3/s)		(ft)	(m)
May	19	1000	3,230	91.5	20.00	6.096
May	21	1600	*6 880	195	23.00	7.010

Minimum daily discharge, 0.52 ft³/s (0.015 m³/s) Aug. 27.

		DISC	CHARGE, IN	CUBIC FE		ECOND, WAT EAN VALUES		OCTOBER 19	79 TO SEP	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.4 3.3 3.3 3.1 2.9	4.0 3.5 3.2 3.1 3.1	4.3 4.4 4.5 4.6 4.7	6.7 6.3 6.2 6.9 7.0	17 17 17 17 16	13 12 11 10 9.7	9.9 9.3 9.1 8.7 8.0	6.0 19 16 8.6 6.6	7.8 7.1 6.5 6.0 5.8	1.5 1.5 1.4 1.4	1.5 1.2 1.1 .99	.63 1.3 1.1 .88 .87
6 7 8 9	2.9 2.9 3.0 3.0 2.8	3.2 3.2 3.3 3.4 3.4	4.8 4.8 4.8 4.8	6.5 6.3 6.1 5.9 6.1	15 15 51 175 49	9.1 9.1 9.1 8.9 8.7	7.8 7.8 7.8 7.5 6.9	5.7 5.9 7.9 7.8 6.7	5.5 5.1 4.7 4.9 5.3	1.3 1.3 1.3 1.2	1.2 1.5 1.3 1.1 2.8	1.5 5.0 9.1 5.8 4.1
11 12 13 14 15	2.8 3.0 3.1 3.2 3.2	3.3 3.3 3.3 3.3	5.1 7.3 14 10 8.2	6.4 6.1 6.1 6.3	30 24 21 19 18	8.6 8.2 7.7 7.5	6.9 6.9 9.1 8.7 7.9	6.2 6.1 7.0 11 141	3.6 5.4 4.0 3.5 3.4	1.2 1.1 1.1 1.0 1.2	2.1 1.9 1.5 1.2	2.3 1.8 1.6 1.6
16 17 18 19 20	3.4 3.6 3.5 3.5	3.5 3.7 3.9 4.0 4.2	7.2 6.4 6.1 6.1	6.6 6.9 7.0 7.0	17 15 15 15 15	7.7 8.2 8.2 7.8 8.0	7.1 6.7 6.4 6.7 7.1	339 76 39 2030 179	3.1 2.9 3.1 2.6 2.4	1.2 1.2 1.2 1.2 1.2	1.1 .94 .89 .85	1.2 1.1 1.4 1.1
21 22 23 24 25	3.5 3.3 3.1 3.1 3.1	13 9.6 5.9 5.0 4.9	6.3 6.2 6.5 6.8	190 221 80 38 30	14 12 12 11 11	7.7 7.5 7.3 7.5 7.3	7.0 7.0 6.9 6.8 9.0	2640 389 53 31 22	2.1 2.0 2.1 2.0 2.0	1.2 1.4 1.4 1.8 1.4	.80 .75 .67 .64	1.1 1.0 .99 1.6 1.1
26 27 28 29 30 31	3.1 3.1 3.1 3.1 3.9 4.2	4.8 4.8 4.5 4.6 4.3	6.0 6.1 8.2 17 13 8.4	26 22 20 19 19	9.5 9.3 9.3 9.4	7.8 12 30 27 15	9.4 8.6 7.5 6.4 6.1	18 15 16 13 9.9 8.6	1.8 1.7 1.7 1.6 1.5	1.2 1.0 1.0 1.0 1.0	.55 .52 .57 .57 .59	2.2 5.6 2.8 2.2
TOTAL MEAN MAX MIN CFSM IN. AC-FT	99.9 3.22 4.2 2.8 .03 .03	130.8 4.36 13 3.1 .04 .05 259	214.3 6.91 17 4.3 .06 .07 425	984.5 31.8 221 5.9 .29 .34 1950	674.5 23.3 175 9.3 .22 .23 1340	321.2 10.4 30 7.3 .10 .11 637	231.0 7.70 9.9 6.1 .07 .08 458	6140.0 198 2640 5.7 1.83 2.11 12180	111.2 3.71 7.8 1.5 .03 .04 221	39.1 1.26 1.8 1.0 .01	33.47 1.08 2.8 .52 .01 .01 66	81.47 2.72 18 .63 .03 .03

CAL YR 1979 TOTAL 29894.40 MEAN 81.9 MAX 5520 MIN 2.8 CFSM .76 IN 10.30 AC-FT 59300 WTR YR 1980 TOTAL 9061.44 MEAN 24.8 MAX 2640 MIN .52 CFSM .23 IN 3.12 AC-FT 17970

08164000 LAVACA RIVER NEAR EDNA, TX (National stream-quality accounting network)

LUCATION.--Lat 28°57'35", long 96°41'10", Jackson County, hydrologic Unit 12100101, at downstream side near center of upstream bridge of two bridges on U.S. Highway 59, 660 ft (201 m) upstream from Texas and New Orleans Railroad Co. bridge, and 2.8 mi (4.5 km) southwest of Edna.

DRAINAGE AREA .-- 817 mi2 (2,116 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- August 1938 to current year.

REVISED RECORDS. -- wSP 1923: 1955. WRD TX-73-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 13.88 ft (4.231 m) National Geodetic Vertical Datum of 1929. Prior to June 6, 1939, nonrecording gage (property of Corps of Engineers); June 6, 1939, to Apr. 3, 1957, nonrecording gage at site 110 ft (34 m) downstream; Apr. 4, 1957, to Mar. 21, 1961, nonrecording gage; all at same datum.

ktMAKKS .-- Water-discharge records good. Small diversions above station for irrigation.

AVERAGE DISCHARGE.--42 years, 324 ft³/s (9.176 m³/s), 5.39 in/yr (137 mm/yr), 234,700 acre-rt/yr (289 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 73,000 ft³/s (2,076 m³/s) July 1, 1940, gage height, 32.51 ft (9.909 m); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1880, 33.8 rt (10.30 m) hay 25, 1936, discharge, $83,400 \text{ ft}^3/\text{s}$ (2,360 m³/s), from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 4,100 ft³/s (116 m³/s) and maximum (*):

Da	te	Time	Disch	arge	Gage	height
			(tt^3/s)	(m^3/s)	(tt)	(m)
Jan.	22	0800	6,340	180	21.22	6.468
May	20	0600	*8.330	236	22.37	6.818

Minimum discharge, 16 ft³/s (0.45 m³/s) Aug. 26, 27.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1979	TO	SEPTEMBER	1980	
					MEAN VA	LUES							

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	109	48	50	100	117	87	84	55	125	33	20	19
2	101	49	50	81	112	81	125	58	108	32	20	18
2 3 4 5	96	49	49	74	112	84	156	57	98	31	19	18
4	91	48	49	68	109	87	92	51	90	31	19	18
5	85	46	49	65	108	86	80	65	85	31	18	23
6	82	45	50	64	105	83	74	47	79	34	19	34
7	78	45	50	64	98	83	73	46	75	31	19	32
8	74	44	50	64	163	83	70	54	70	40	19	31
9	71	45	50	63	1400	81	67	60	67	35	26	54
10	67	45	50	62	1670	80	64	56	64	35	27	44
11	64	44	50	61	591	80	63	60	62	33	33	49
12	63	44	53	60	297	80	66	60	64	46	25	38
13	66	44	54	58	218	77	64	60	65	40	24	31
14	64	43	56	59	182	74	63	54	58	34	24	26
15	61	43	83	59	162	73	64	59	53	29	23	24
16	60	43	79	58	143	72	66	441	49	26	23	22
17	59	43	69	57	126	74	64	1060	48	25	23	21
18	58	44	62	54	120	73	62	648	46	24	21	23
19	57	44	60	54	117	71	61	6300	44	27	20	24
20	56	45	59	289	116	72	66	7700	43	25	20	24
21	55	47	57	4000	113	71	60	3650	44	26	19	22
22	54	49	57	5740	108	69	58	1330	43	25	19	20
23	52	72	56	2460	103	69	60	2450	41	29	18	19
24	50	81	57	840	98	69	62	583	41	25	17	20
25	49	65	57	415	92	69	58	316	38	27	18	21
26	50	57	57	291	88	68	54	243	37	30	17	24
27	50	55	59	224	86	68	52	197	36	28	16	65
28	50	52	59	178	84	76	55	170	35	27	17	88
29	50	51	68	153	84	90	53	206	34	28	17	46
30	54	50	71	142		125	51	317	40	23	20	
31	55		111	128		106		169		21	20	250
TOTAL	2031	1480	1831	16085	6922	2461	2087	26622	1700	021		1110
MEAN	65.5	49.3	59.1	519	239				1782	931	640	1148
MAX	109	81	111			79.4	69.6	859	59.4	30.0	20.6	38.3
MIN				5740	1670	125	156	7700	125	46	33	250
	49	43	49	54	84	68	51	46	34	21	16	18
CFSM	.08	.06	.07	.64	.29	.10	.09	1.05	.07	.04	.03	.05
IN.	.09	.07	.08	.73	.32	.11	.10	1.21	.08	.04	.03	.05
AC-FT	4030	2940	3630	31900	13730	4880	4140	52800	3530	1850	1270	2280
CAL VD	1979 TOTA	T 27/03/	MEAN	752 MAY	10700	MIN (2	arey on	TN 10 F	2 40 00	F/F200		

CAL YR 1979 TOTAL 274934 MEAN 753 MAX 10700 MIN 43 CFSM .92 IN 12.52 AC-FT 545300 WTR YR 1980 TOTAL 64020 MEAN 175 MAX 7700 MIN 16 CFSM .21 IN 2.91 AC-FT 127000

08164000 LAVACA RIVER NEAR EDNA, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1960 to September 1977. Chemical and biochemical analyses: October 1977 to current year. Pesticide analyses: January 1968 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: November 1977 to current year. WATER TEMPERATURES: November 1977 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 899 micromhos April 22, 1978; minimum daily, 100 micromhos May 5, 1979,
and May 20, 1980.
WATER TEMPERATURES:(1977-78): Maximum daily, 33.0°C July 16, 1978; minimum daily, 5.0°C January 22, 1978.

EXTREMES FOR CURRENT YEAR.--SPECIFIC CONDUCTANCE: Maximum daily, 857 micromhos May 7; minimum daily, 100 micromhos May 20.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
OCT 02	1004	102	670	8.1	23.5	8.0	7.4	87	2.0	300	540
NOV 06	1505	44	744	8.1	19.0	5.2	9.0	95	2.3	110	220
DEC 11	0828	50	807	8.2	15.0	6.5	8.6	84	1.6	280	140
JAN 16	1400	58	801	8.1	18.0	6.8	9.2	96	2.7	170	130
FEB 12	1640	280	336	8.1	10.0	44	10.3	90	2.4	К9000	4500
MAR 12	1130	80	787	8.1	21.5	6.0	8.7	99	2.6	120	72
APR 08	1035	70	778	8.0	20.0	42	8.1	88	1.5	380	950
MAY 07	1237	44	857	8.1	24.5	11	8.2	98	1.2	150	230
JUN 10	0918	64	716	8.3	26.0	5.9	7.0	85	1.7	200	340
JUL 10	0955	33	796	8.0	28.0	14	6.4	81	4.3	480	210
AUG 06	1400	19	760	8.2	30.0	10	7.4	97	1.4	760	200
SEP 10	0940	41	624	8.1	25.5	68	6.2	75	4.4	2500	1400
DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT 02	250	0	92	5.7	38	1.0	3.4	310	0	21	52
NOV 06	270	0	100	5.8	49	1.3	2.7	350	0	27	64
DEC 11	300	4	110	5.9	54	1.4	2.4	360	0	24	71
JAN 16	300	20	110	5.9	62	1.6	2.3	340	0	29	90
FEB 12	120	13	42	3.1	25	1.0	3.9	130	0	16	34
MAR 12	300	31	110	6.6	62	1.6	2.4	330	0	30	84
APR 08	280	5	100	6.3	62	1.6	2.6	330	0	16	79
MAY 07	280	26	100	6.2	71	1.9	2.9	340	0	28	93
JUN 10	300	18	110	5.7	46	1.2	3.3	330	12	22	65
JUL 10	240	0	84	7.9	74	2.1	2.6	340	0	16	83
AUG 06	240	5	88	6.0	63	1.8	2.7	330	0	19	76
SEP 10	150	0	49	6.8	71	2.5	5.8	240	0	5.8	77
10	130	0	49	0.8	VI	2.5	5.8	240	0	5.8	11

LAVACA RIVER BASIN 287 08164000 LAVACA RIVER NEAR EDNA, TX--Continued

	DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)
	OCT	9	24	252	200	21	.2.1	-110	000		20
	NOV	.3	24	352 452	390 446	.21		.110	.000	.55	.39
	06 DEC	.4				.31	.22	.030	.020		
	JAN	.3	22	483	469	.38	.40	.000	.000	.44	.40
	16 FEB	.4	19	478	489	.54	.56	.020	.060	.43	.33
- 3	12 MAR	.2	16	211	207	.47	.43	.050	.020	1.7	.64
	12 APR	.4	18	468	476	.22	.07	.020	.000	.43	.43
9	08 MAY	.2	22	492	453	.38	.41	.000	.020	.78	.49
	07 JUN	.5	22	504	475	.22	.22	.010	.020	.57	.51
	10 JUL	.4	25	439	446	.00	.00	.040	.040	.69	.46
	10 AUG	.6	27	481	462	.02	.01	.090	.030	1.0	.65
	06 SEP	.4	26	464	426	.00	.00	.000	.000	.86	.34
	10	.3	36	391	370	.11	.12	.090	.060	1.3	1.3
	DATE	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + URGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
	OCT 02	.66	.39	.100	.060	11	12		130	36	30
1	NOV 06	.43	.43	.110	.010	66	15	.2	132	16	34
11	DEC 11	.44	.40	.090	.030	11			130	18	17
	JAN 16	.45	.39	.140	.110	3.3			112	18	28
1	FEB 12	1.7	.66	.230	.070		11	3.0	130	98	92
1	MAR 12	.45	.43	.110	.040	7.6			79	17	20
4	APR 08	.78	.51	.170	.090	7.1			79	15	68
1	MAY 07	.58	.53	.160	.120	111 221	4.4	1.1	74	8.8	46
	JUN 10	.73	.50	.120	.030	8.2	-		142	25	36
6	JUL 10	1.1	.68	.080	.100	4.5	-	- 24	96	8.6	58
	AUG 06	.86	.34	.080	.030		13	.2	87	4.5	66
	SEP 10	1.4	1.4	.210	.100	15			143	16	99
DATE	TIM	ARSE TOT ME (UG AS	AL TOT /L (UG	S- ARSE DED DI AL SOL /L (UG	S- REC VED ERA /L (UG	CAL PEND COV- REC BLE ERA	ED BARI OV- DIS BLE SOLV	FED ERA	AL PEN OV- REC BLE ERA /L (UG	S- DED CADM OV- DI BLE SOL /L (UG	S- RECOV- VED ERABLE /L (UG/L
NOV 06	. 150	05	4	1	3	600	300	300	0	0	<1 0
DEC 11			22	1							
FEB 12			3	1	2	400	0	400	0	0	0 10
MAR 12											
MAY 07			5	0	5	300	0	400	0		<1 0
JUN							- U				
AUG						500	200	200	0	0	2 0
SEP			6	1	5		200	300	0	0	2 0
10	. 094	+0		**						77	

08164000 LAVACA RIVER NEAR EDNA, TX--Continued

DATE	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBA TOT REC ERA (UG	LT, SU AL PEN OV- RE BLE ER /L (U	DED C COV- ABLE S G/L	OBALT, DIS- OLVED (UG/L AS CO)	COPP TOT. REC ERA (UG AS	ER, AL OV- BLE /L	OPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	DIS	VED /L	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	PEN REC ERA (UC	IS- IDED COV- ABLE	IRON DIS- SOLVE (UG/I AS FE	ED.
	AS CK)	AS CK)	A5	(O) AS	(0)	A5 (0)	AS	co, .	A3 (0)	Ao	00)	AS FE,	no	EL)	AS FI	-,
NOV 06 DEC	0	0		0	0	<3		0	0		0	300)	280	1	20
11 FEB																
12 MAR	10	0		0	0	1		7	4		3	2300) 2	200	10	
12 MAY				**	7.7										19	-
07 JUN	0	0		0		<3		1	0		1	370		360	- 1	0
10															-	-
AUG 06	0	10		0		<3		4	3		1	450		440	1	0
SEP 10	122															-
	LEAD, TOTAL RECOV- ERABLE (UG/L	LEAD, SUS- PENDED RECOV- ERABLE (UG/L	LEA DI: SOL' (UG	D, TO S- RE VED ER /L (U	SE, TAL COV- ABLE G/L	MANGA- NESE, SUS- PENDED RECOV. (UG/L	MAN NES DI SOL (UG	E, S- VED /L	ERCURY TOTAL RECOV- ERABLE (UG/L	(UG	S- DED N OV- BLE /L	MERCURY DIS- SOLVEI (UG/L	REC ERA (UG	AL OV- BLE /L	NICKEI SUS- PENDE RECOV ERABI (UG/I	D /- LE
DATE	AS PB)	AS PB)	AS	PB) AS	MN)	AS MN)	AS I	MN)	AS HG)	AS	HG)	AS HG)	AS	NI)	AS NI	.)
NOV 06 DEC	2	2		0	80	40		40	,1		.1	.0	r)	2		2
11 FEB	25					77		77								-
12	4	1		3	100	90		10	.4		.2	. 2		5		1
MAR 12	122	2.2														_
MAY 07 JUN	1	1		0	80	60		20	.1		.0	.1		5		2
10								44							-	_
AUG 06	3	2		1	130	100		30	-1		.0	.1		4		1
SEP 10		122			122									.03		_
DAT	(UG	VED TO	ELE- IUM, OTAL JG/L S SE)	SELE- NIUM, SUS- PENDED TOTAL (UG/L AS SE)	SELE NIUM DIS SOLV (UG/ AS S	, TC - RE ED ER L (U	VER, OTAL CCOV- ABLE IG/L AG)	SILVER SUS- PENDE RECOV ERABI (UG/I AS AC	ED SI	LVER, DIS- DLVED UG/L S AG)	ZINC TOTA RECO ERAB (UG/ AS Z	L P V- R LE E L (SUS- ENDED ECOV- RABLE UG/L S ZN)	ZIN DI: SOL (UG AS	S- VED /L	
NOV 06.		0	0	0		0	0		0	0		0	0		3	
DEC 11.				- 22			0									
FEB 12.		4	1	1		0	0		0	0		40	40		0	
MAR		4		-0		U			U	U		40	40		U	
12. MAY 07.		3	0			0	0		0	0		10	-		<3	
JUN		3		· ·		0			· ·						13	
10. AUG		-				15	2		-			77				
06. SEP		3	0	0		0	5		5	0		10	7		3	
10.			4-				0	-	-							
DA		ME TO	PCB. OTAL UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	NAPH THA LENE POL CHLO TOTA (UG/	S, Y- R. ALI L TO	DRIN, DTAL JG/L)	ALDRII TOTAL IN BOT TOM MA TERIA (UG/KO	L T- C A- D AL T	HLOR- ANE, OTAL UG/L)	CHLC DANE TOTA IN BC TOM M TERI (UG/K	L, AL OT- IA- IAL I	DDD, OTAL UG/L)	DD TOT. IN B TOM TER (UG/	AL OT- MA- IAL	
FEB 12	14	40	.0	0		00	.00	3	.1	.0		0	.00		.0	
AUG		00		0					.0			0			.0	
DA'	TOT	IN DE, TON	DDE, DTAL BOT- M MA- ERIAL G/KG)	DDT, TOTAL (UG/L)	DDT TOTA IN BO TOM M TERI (UG/K	L T- I A- AZI AL TO	DI- INON, DTAL JG/L)	DI- ELDR TOTAL (UG/I	EL T IN IN TO L T	DI- DRIN, OTAL BOT- M MA- ERIAL G/KG)	ENDO SULFA TOTA (UG/	AN, EN	DRIN, OTAL UG/L)	ENDR TOT IN B TOM TER (UG/	AL OT- MA- IAL	
FEB		0.5	12.	127.20		0			00			00	00		0	
AUG		.00	.0	.00		.0	.00		00	.0		.00	.00		.0	

08164000 LAVACA RIVER NEAR EDNA, TX--Continued
WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	
FEB 12 AUG	.00	.00	.0	.00	.0	.00	.0	.00	.00	.0	
06	186		.0		.0	22	.0			.0	
DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)	
FEB 12 AUG	.00	.00	.00	.00	0	0	.00	.01	.01	.00	
06						0		.00	.00	.00	
		DATE	LENGTH OF EXPO- SURE (DAYS)	PERI- PHYTON BIOMASS ASH WEIGHT G/SQ M	PERI- PHYTON BIOMASS TOTAL DRY WEIGHT G/SQ M	CHLOR-A PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)	CHLOR-B PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)	BIOMASS CHLORO- PHYLL RATIO PERI- PHYTON (UNITS)			
		OCT 02	34	1.89	2.28	3.75	1.50	104			
		NOV 06	35	.870	1.02	1.21	.390	124			
		MAR 12 MAY	29	32.7	34.9	30.7	.000	71.7			
		07	29	18.2	21.7	35.1	2.21	99.7			

08164000 LAVACA RIVER NEAR EDNA, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

DATE TIME		6,79 505		12,80	MAY 1	7,80 237		10,80
TOTAL CELLS/ML		590	.8	400	12	000	42	000
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		1.5 1.5 2.3 2.7 3.0		2.1 2.1 2.9 3.0 3.4		1.6 1.6 2.3 2.7 3.0		1.4 1.4 1.6 2.6 3.7
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE)								
CHLOROCOCCALES CHARACIACEAE SCHROEDERIA		_		1,0		2	*	0
COELASTRACEAE COELASTRUM			-		-	-	2100	5
MICRACTINIACEAE GOLENKINIA			44	2	-		620	1
MICRACTINIUM		-		7	200	2		-
OOCYSTACEAE ANKISTRODESMUS	100#	17	720	9	700	6	3300	8
CHLORELLA CHODATELLA		2		-	700	6	420	0
DICTYOSPHAERIUM KIRCHNERIELLA	14	2	360 420	5		-	2500 830	6
OOCYSTIS SELENASTRUM		-		-	150	1	830 2100	2 5
TETRAEDRON		3	180	2		2	*	0
WESTELLA SCENEDESMACEAE		-		-	200	2		
ACTINASTRUM CRUCIGENIA		-		-		-	6700# 1700	4
SCENEDESMUS VOLVOCALES	86	15		-	1800#	16	5000	12
CHLAMYDOMONADACEAE CARTERIA	29	5	- 21	2.	22	11.2		_
CHLAMYDOMONAS	72	12	600	7	1100	9	1000	2
ZYGNEMATALES DESMIDIACEAE								
STAURASTRUM		-		•		2		-
CHRYSOPHYTA .BACILLARIOPHYCEAE								
CENTRALES COSCINODISCACEAE								
CYCLOTELLA MELOSIRA	43 29	7 5	1300#	16	400	3	7700#	18
		,						
STEPHANODISCUS PENNALES		7	60	1		-	4.5	~
EUNOTIACEAE	44	-	60	1				-
FRAGILARIACEAE SYNEDRA		-			(-6)			-
NAVICULACEAE NAVICULA	4.5	2	180	2			*	0
NITZSCHIACEAE		0.7				10		
NITZSCHIA .XANTHOPHYCEAE	160#	27	480	6	400	3	1000	2
CHLOROTHECIACEAE								
OPHIOCYTIUM		-		-				
CRYPTOPHYTA (CRYPTOMONADS) ,CRYPTOPHYCEAE								
CRYPTOMONADALES								
CRYPTOCHRYSIDACEAE CHROOMONAS		(e)	42	-		-		-
CRYPTOMONADACEAE CRYPTOMONAS	29	5	960	11	150	1	*	0
CYANOPHYTA (BLUE GREEN ALGAE)								
.CYANOPHYCEAE CHROOCOCCALES								
CHROOCOCCACEAE AGMENELLUM								
ANACYSTIS		-	1700#	21	4600#	40	4600	11
COCCOCHLORIS HORMOGONALES				-		-	620	1
OSCILLATORIACEAE OSCILLATORIA			900	11	700	6		
EUGLENOPHYTA (EUGLENOIDS)								
.EUGLENOPHYCEAE EUGLENALES								
EUGLENACEAE	1.7	2	200	1	200	2		
EUGLENA TRACHELOMONAS	14	2	300 120	1	200 250	2	*	0
PYRRHOPHYTA (FIRE ALGAE)								
.DINOPHYCEAE PERIDINIALES								
GLENODINIACEAE GLENODINIUM		125	-	15	100	1	*	0
		-		-	100	1.1	- 1	U

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

08164000 LAVACA RIVER NEAR EDNA, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

DATE	JUL	10,80	AUG	6,80	SEP	10,80	
TIME		955		400		940	
TOTAL CELLS/ML		500	8	300	-4	000	
DIVERSITY: DIVISION .CLASS		1.4		1.4		1.8	
GRDER FAMILY		1.8		2.0		2.4	
GENUS		2.9		2.9		3.1	
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML		CELLS /ML	PER- CENT	
CHLOROPHYTA (GREEN ALGAE)	7.55		7.00				
.CHLOROPHYCEÀE CHLOROCOCCALES							
SCHROEDERIA		2.		_		_	
COELASTRACEAE		-				-	
GOLENKINIA	22	1	144	1	44	12	
MICRACTINIUM OOCYSTACEAE		-		2		-	
ANKISTRODESMUS CHLORELLA	2100# 120	32	760	9	400	10	
CHODATELLA DICTYOSPHAERIUM	83	1		7	79	2	
KIRCHNERIELLA OOCYSTIS	170	3		-	120	3	
SELENASTRUM TETRAEDRON	42 42	1	150 91	2		13	
WESTELLA SCENEDESMACEAE		72		-	0	-	
ACTINASTRUM CRUCIGENIA		-	- 33	5		-	
SCENEDESMUS VOLVOCALES	1000#	15	1900#		930#	23	
CHLAMY DOMONADACEAE					*	Ď	
CARTERIA CHLAMYDOMONAS ZYGNEMATALES	620	10	120	ī	40	0	
DESMIDIACEAE STAURASTRUM					60	1	
CHRYSOPHYTA				2.0	00		
.BACILLARIOPHYCEAE CENTRALES							
COSCINODISCACEAE	0.3	7	60	1	60	1	
CYCLOTELLA MELOSIRA	83	1	60	1	60	-	
STEPHANODISCUS PENNALES	1-1	-		-			
EUNOTIACEAE EUNOTIA	11	-	42	4	44	121	
FRAGILARIACEAE SYNEDRA		-		-	40	1	
NAVICULACEAE NAVICULA	83	1		~	60	1	
NITZSCHIACEAE	420	6	270	3	660#	16	
.XANTHOPHYCEAE HETEROCOCCALES							
CHLOROTHECIACEAE OPHIOCYTIUM	-		60	1		-	
CRYPTOPHYTA (CRYPTOMONADS) , CRYPTOPHYCEAE							
CRYPTOMONADALES CRYPTOCHRYSIDACEAE							
CHROOMONAS CRYPTOMONADACEAE	/	-	*	0		-	
CRYPTOMONAS	120	2	120	1	79	2	
CYANOPHYTA (BLUE GREEN ALGAE) .CYANOPHYCEAE							
CHROOCOCCALES CHROOCOCCACEAE							
AGMENELLUM ANACYSTIS	1300#	20	1900# 1500#	23	560	14	
COCCOCHLORIS HORMOGONALES		-		-		-	
OSCILLATORIACEAE OSCILLATORIA			1200	15	790#	20	
EUGLENOPHYTA (EUGLENOIDS)			1200	12	730#	20	
.EUGLENOPHYCEAE .EUGLENALES							
EUGLENACEAE EUGLENA		-	60	1	99	2	
TRACHELOMONAS	42	1		0		-	
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAE							
PERIDINIALES							
GLENODINIACEAE GLENODINIUM PERIDINIACEAE		-		-		-	
PERIDINIUM	(6-5)	-		C÷.		-	

NOTE: * - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

292

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	2031	730	429	2350	70	384	24	133	260
NOV.	1979	1480	757	445	1780	73	293	25	100	270
DEC.	1979	1831	784	460	2270	76	378	26	127	280
JAN.	1980	16085	281	166	7190	24	1050	10	440	100
FEB.	1980	6922	426	251	4690	39	720	15	277	150
MAR.	1980	2461	792	465	3090	77	515	26	171	290
APR.	1980	2087	746	438	2470	72	407	25	138	270
MAY	1980	26622	212	125	8970	18	1270	7.8	559	75
JUNE	1980	1782	667	392	1890	63	302	22	108	240
JULY	1980	931	714	419	1050	68	171	24	60	260
AUG.	1980	640	670	393	680	63	109	23	39	240
SEPT	1080	1148	579	340	1060	54	166	20	61	210
TOTAL		64020	**	**	37500	**	5760	**	2210	**
WTD. AVO		175	369	217	**	33	**	13	**	130

	SPE	ECIFIC CON	NDUCTANCE	(MICROMHO		25 DEG. C), ONCE-DAILY	WATER	YEAR OCTOBER	1979	TO SEPTEMBER	1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	644 670 679 695 709	698 746 755 766 769	803 800 803 782 780	700 731 819 783 770	645 670 700 720 717	755 770 756 765 771	828 650 446 560 630	729 739 745 760 730	500 580 660 621 625	690 645 685 710 740	672 650 628 606 645	825 805 782 776 694
6 7 8 9	715 720 728 734 748	744 746 756 767 770	790 802 805 804 803	750 733 785 795 793	739 765 600 225 221	770 767 781 778 775	700 779 789 771 774	764 857 680 658 675	631 645 665 683 717	675 713 799 819 796	697 750 765 650 630	517 650 708 427 624
11 12 13 14	753 757 750 755 758	772 774 772 780 778	807 785 775 770 730	792 795 800 796 800	316 358 400 486 557	774 781 786 792 795	814 800 790 780 779	685 690 650 648 676	720 712 721 725 728	747 720 686 750 777	604 609 630 645 661	652 778 760 725 686
16 17 18 19 20	753 746 755 757 760	788 785 780 777 770	740 780 800 792 784	807 803 743 765 600	600 650 683 700 725	800 805 799 819 800	813 815 816 823 830	550 350 450 107 100	724 715 706 707 665	767 697 700 675 695	670 675 680 756 592	717 712 704 701 710
21 22 23 24 25	763 765 768 771 766	765 760 745 725 715	793 798 805 803 800	133 226 253 304 335	736 748 760 770 778	824 825 823 820 826	840 822 800 780 794	238 300 224 310 390	655 670 681 715 743	683 726 719 714 661	613 634 654 675 696	720 724 730 735 740
26 27 28 29 30 31	768 694 733 776 730 718	724 709 785 780 790	802 771 811 800 785 715	400 450 492 572 574 605	785 792 789 774	825 824 804 790 780 820	813 815 798 800 810	420 474 543 500 333 400	721 704 715 720 725	645 650 659 665 723 719	745 740 734 687 730 765	738 550 450 515 350
MEAN	737	760	788	636	635	794	769	528	683	711	674	674

LAVACA RIVER BASIN 293
08164000 LAVACA RIVER NEAR EDNA, TX--Continued

			TEMPERATURE,	WATER	(DEG.	C), WATER ONCE-DAIL		1979	TO SEPTEMBER	1980		
DAY	OCT	NOV	DEC	JAN	FEI	3 MAR	APR	MAY	JUN	JUL	AUG	SEP
1					9.5		20.5	22.5		27.0		
2 3 4 5							22.0	25.5		24.0		
3							24.5		25.0			
4					15.0				24.0			
5					16.0	19.0		25.5	222			
6					15.0			26.5	26.0			
7						19.0	21.0	23.5				
8					11.0	21.0	23.0					
9				13.0	9.5		23.0	24.5	26.0			
10						21.0	23.0		27.0			
11				17.0	10.0	21.0	22.0		27.5			
12					9.5	22.0		26.0	27.5			
13					12.0	21.0			27.5			
14				19.0	13.0		20.0	24.5				
15				19.0	15.0		22.0					
16				19.0			22.0	24.0	28.0			
17				20.0		16.0			28.0			
18				20.0	11.0		23.5		28.0			
19							23.5	21.0	28.0			
20					17.5			23.0	28.5			
21				17.5	20.0	20.0	23.0	23.0				
22				15.0	20.5		22.5	23.0				
23				13.5				22.0	28.5			
24				13.0					28.5			
25				14.0	19.0		21.0		28.0			
26					16.0)	20.0		29.0			
27					17.5			24.0	29.0			
28				16.0	18.5		23.5	24.0	25.0			
29				16.0	20.0		23.3	25.0				
30				17.0	20.0			24.5	29.0			
31				12.0				24.5	29.0			
31				12.0		20.0						

16.5 15.0 19.0 22.0 24.0 27.5 25.5

MEAN

08164300 NAVIDAD RIVER NEAR HALLETTSVILLE, TX

LOCATION.--Lat 29°28'00", long 96°48'45", Lavaca County, Hydrologic Unit 12100102, on right bank 28 ft (9 m) downstream from bridge on U.S. Highway 90-A, 0.8 mi (1.3 km) downstream from Mixons Creek, 1.2 mi (1.9 km) southwest of Sublime, and 8 mi (13 km) northeast of Hallettsville.

DRAINAGE AREA. -- 332 mi2 (860 km2).

PERIOD OF RECORD .-- October 1961 to current year.

REVISED RECOKDS. -- WSP 2123: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 159.28 ft (48.549 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. No known diversion above station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--19 years, 159 tt³/s (4.503 m³/s), 6.50 in/yr (165 mm/yr), 115,200 acre-tt/yr (142 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 53,500 ft³/s (1,520 m³/s) Sept. 13, 1974, gage height, 36.05 ft (10.988 m); no flow Aug. 5-7, 22, Sept. 2-16, 1964.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1860, 40 ft (12.2 m) in June 1940; flood in July 1936 reached a stage of 39 tt (11.9 m), from information by local residents and Southern Pacific Kailroad Co.

EXTREMES FOR CURRENT YEAK .-- Peak discharges above base of 2,500 ft 3/s (70.8 m3/s) and maximum (*):

Date	Time	Disch (ft³/s)	narge (m³/s)	Gage (ft)	height (m)	Dat	e	Time	Disch (ft³/s)	Gage (ft)	height (m)
Jan.		3,060 2,760	86.7 78.2		5.998 5.994	Nay May		1200	*3,520 2,710		6.462

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum discharge, $1.8 \text{ ft}^3/\text{s} (0.051 \text{ m}^3/\text{s})$ Aug. 28.

DAY 1 2 3 4	ОСТ 20	NOV	DEC									
1 2	20		DLC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
2		20	23	40	60	77	45	24	65	17	6.0	3.8
	19	18	23	36	59	72	43	321	60	17	5.5	3.0
3	18	17	23	35	60	53	43	96	56	16	5.2	5.4
4	17	16	23	64	61	50	40	45	53	15	5.0	11
5	15	16	24	42	59	47	36	33	49	15	5.6	5.7
6 7	15	16	25	37	55	43	36	29	47	14	5.2	4.6
7	15	16	24	35	53	43	37	28	45	14	5.6	11
8	16	17	24	32	120	43	39	33	42	13	5.0	19
9	16	18	23	31	473	42	36	33	76	13	4.5	14
10	14	18	23	32	184	42	34	28	296	12	8.5	11
11 12	13 14	16 16	25 33	33 32	106 82	40 40	34	26	92	11	6.4	9.1
13	15	16	121	31	72	38	34 41	26 26	58 46	9.4	5.9	7.4
14	15	16	62	30	67	35	46	66	41	7.7	5.2	6.5 5.8
15	15	17	43	31	65	35	38	499	38	6.7	4.3	5.5
16	15	18	36	31	62	37	34	2300	35	6.7	4.3	4.5
17	16	19	31	31	58	39	32	462	33	6.4	4.0	4.0
18	15	19	29	51	59	38	31	258	32	5.8	4.0	3.6
19	15	20	28	45	60	37	30	965	31	5.8	3.9	3.4
20	15	21	29	501	60	39	29	2810	29	5.6	3.8	3.1
21	16	31	30	986	57	38	28	1100	27	5.6	3.8	6.5
22	15	82	31	2250	52	35	28	1240	26	6.0	3.7	6.2
23	14	36	32	1060	50	35	27	206	26	6.2	3.1	4.6
24 25	14	28	32	185	47	36	27	152	24	5.8	2.8	3.8
1.32	14	26	34	125	44	35	35	125	23	6.0	2.7	3.6
26 27	14	25 24	32	100	42	36	47	108	22	5.7	2.8	4.0
28	14	23	31 30	84 74	41	62 291	31 27	96 125	20	5.2	2.5	6.2
29	15	21	60	69	41	105	25	169	19 19	5.2	2.1	8.4
30	16	20	114	68		61	24	81	18	5.2	2.6	7.3
31	20		53	65		50		71		6.4	2.6	
TOTAL	479	666	1151	6266	2291	1674	1037	11581	1448	282.4	133.5	203.0
MEAN	15.5	22.2	37.1	202	79.0	54.0	34.6	374	48.3	9.11	4.31	6.77
MAX	20	82	121	2250	473	291	47	2810	296	17	8.5	19
MIN	13	16	23	30	41	35	24	24	18	5.2	2.1	3.0
CFSM	.05	.07	.11	.61	.24	.16	.10	1.13	.15	.03	.01	.02
IN.	.05	.07	.13	.70	.26	.19	.12	1.30	.16	.03	.01	.02
AC-FT	950	1320	2280	12430	4540	3320	2060	22970	2870	560	265	403
CAL YR 1 WTR YR 1			3.9 MEAI			300 MIN 810 MIN		FSM .98 FSM .22	IN 13.35 IN 3.05	AC-FT AC-FT	236300 53970	

08164450 SANDY CREEK NEAR LOUISE, TX

LOCATION.--Lat 29°09'36", long 96°32'46", Jackson County, Hydrologic Unit 12100102, on left bank at downstream end of bridge on Farm Road 710, 0.9 mi (1.4 km) upstream from Goldenrod Creek, and 9.1 mi (14.6 km) northwest of Louise.

DRAINAGE AREA . - - 289 mi2 (749 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1977 to current year.

GAGE.--Water-stage recorder. Datum of gage is 59.72 ft (18.203 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good except those for period of no gage-height record, Feb. 28 to May 20, which are fair. Much of the low flow during the irrigation season (April to September) comes from drainage from ricefields irrigated by water originally diverted from the Colorado kiver. No known diversion above station. Recording rain gage located at station.

EXTREMES FOR PERIOD OF RECORD.--haximum discharge, $14,000 \text{ ft}^3/\text{s}$ (396 m³/s) Sept. 14, 1978, gage height, 23.03 ft (7.020 m); no flow at times.

EXTREMES FOR CURRENT YEAk.--Maximum discharge, $8,820~{\rm ft}^3/{\rm s}$ (250 m $^3/{\rm s}$) Jan. 21 at 1500 hours, gage height, 20.07 ft (6.117), no other peak above base of 1,500 ft $^3/{\rm s}$ (42.5 m $^3/{\rm s}$); no tlow at times.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 141 .06 7.3 30 2.4 4.0 .00 .00 7.4 12 7.1 5.7 13 51 108 3.9 25 10 .06 .00 1.1 .00 1.7 3 54 57 47 .03 3.8 40 70 .00 .00 50 .03 1.8 18 15 18 14 .21 -00 -28 5 45 13 .03 .68 8.0 3.0 25 .02 16 .00 32 22 9.4 .03 3.5 .00 29 10 7.2 5.0 3.0 90 .05 .06 11 .06 .00 4.9 .00 130 5.8 16 .06 .05 .40 .06 .00 289 .07 .06 844 .06 .01 79 522 10 17 .07 800 .00 65 .06 .09 88 597 11 -11 11 16 1.4 .05 .00 438 150 12 14 .63 .03 139 155 336 239 115 .00 .06 30 .00 204 .03 66 .00 .06 20 .00 146 6.5 14 16 .35 .03 45 .00 .00 25 -00 142 72 140 15 12 .30 .03 34 .00 .00 49 97 16 17 8.9 .29 .03 26 22 30 8.0 4.8 .05 .00 .00 520 .00 143 89 23 15 3.1 19 17 15 18 .35 .05 .00 .00 103 19 8.3 .30 1.6 .03 .00 -00 980 -00 85 117 20 .30 .67 1070 21 22 14 .37 .03 7930 12 .00 960 5.4 2.9 .27 9.9 684 342 40 90 .33 147 .00 5400 .00 .00 23 7.1 .19 8.4 .00 3250 .00 .00 13 105 .00 1900 .00 .00 120 4.5 114 5.2 138 25 8.0 6.4 .00 1040 5.2 .00 .00 2.6 82 1.6 160 26 27 6.0 5.3 .00 550 269 .00 .00 .32 3.5 3.2 2.6 .00 3.2 3.2 .61 .00 .00 30 261 28 29 1.8 .01 128 30 .00 .00 363 .2 .77 1.4 .74 77 2.5 18 .00 -19 30 27 2.2 418 2.3 30 1.9 .18 .00 .01 393 31 49 ---7.0 4.3 39 17 4.6 117.55 21729.11 3.79 701 TOTAL 601.7 386.32 2508.1 150.40 94.12 5865.47 70.59 2111.08 948.96 5874.8 12.9 701 7930 MEAN 19.4 86.5 4.85 3.14 30.6 MAX 61 45 844 40 70 1100 40 164 204 597 5.7 MIN 1.9 .18 .00 .03 2.5 .00 .00 .00 .00 .00 CFSM .05 .01 .30 .02 .01 .65 .008 .24 .68 IN. .08 .05 .02 2.80 .32 .02 .01 .01 AC-FT 1190 766 233 43100 298 11650 4970 187 11630 140 4190 1880

CAL YR 1979 TOTAL 113027.39 MEAN 310 6880 MIN CFSM 1.07 IN 14.55 AC-FT 224200 MAX .00 WTR YR 1980 TOTAL 40458.20 MEAN 111 MAX 7930 MIN .00 CFSM .38 IN AC-FT

08164450 SANDY CREEK NEAR LOUISE, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: October 1977 to current year.

DATE	TIME	INS'	TAN-	SPE CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS	WAT	RE,	TUR BID ITY (NTU	-	OXYG DI SOL (MG	S- VED	OXYG DI SOL' (PE CE SAT ATI	S- VED R- NT UR-	OXYGE DEMAN BIOCH UNINH 5 DA (MG/L	D, EM IB Y	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
OCT 23	1435	. 10	7.2	435	7.	9 2	20.5	5.	5		8.4		91	1	.6	120	24
DEC 05	1022		.03	370	7.	2 1	1.0	4.	2		7.9		71	2	. 5	110	23
JAN 16	1036		.03	324	7.	1 1	8.0	6.	2		5.8		61	2	. 3	96	14
FEB 28	1011		3.1	205	7.	5 1	5.5	20			9.4		94	2	.0	66	16
APR 08	1115		.06	258	7.		2.0	11			8.0		91		.3	84	5
MAY													93		.2	52	
22 JUL	1425			162	7.		6.0	170			7.6						8
08 AUG	1045	3:	2	597	8.) 2	9.0	23			6.9		88		77	190	29
06 SEP	1130		.01	660	8.	1 3	0.0	10			9.5		125	4	. 5	220	41
23	0922	11.	5	457	8.) 2	6.5	4	70		6.7		83	1	. 8	140	16
DATE	CALCIU DIS- SOLVE (MG/I AS CA	M S. D. D. D. (MC	IS- LVED S G/L	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	SI		BICAR BONAT (MG/ AS HCO3	E L	CAR BONA (MG AS C	TE /L	SULFA DIS- SOLV (MG, AS SO	JED L	CHLO RIDE DIS- SOLV (MG/ AS C	, ED L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
OCT 23	33		9.8	34	1.	2	4.5	1	20		0	13)	65		.2	30
DEC				8.0													
05 JAN	33		7.5	27	1.		5.2		10		0	13		46		.1	21
16 FEB	29		5.8	25	1.		4.9	1	00		0	3	9.4	42		.2	18
28 APR	19		4.4	13	•	7	3.7		60		0	1		23		.1	12
08 MAY	26		4.6	1.5		7	3.2		96		0	1	3.0	21		.0	19
22 JUL	15		3.5	9.7	.1	5	3.8		54		0		7.9	15		.2	13
08	51	1	14	55	1.	3	1.8	1	90		0	2		83		.6	22
AUG 06	59	10	18	45	1.	3	7.0	2	20		0	24	+	93		.4	26
SEP 23	31		15	32	1.:	2	4.6	1	50		0	1		60		.4	37
D	S	OLIDS, UM OF ONSTI- UENTS, DIS- SOLVED (MG/L)	SOLIE RESIE AT 10 DEG. SUS- PENDE (MG/	DUE NI 05 C C, NIT - TC	EN, TRATE NOTAL MG/L	NITRO- GEN, ITRITE FOTAL (MG/L AS N)	NO2- TO'	TRO- EN, +NO3 TAL G/L N)		AL /L	ORG. TO	TRO- EN. ANIC TAL G/L N)	NITH GEN, MONI ORGA TOT (MC	AM- IA + ANIC TAL G/L	PHOS PHORU TOTA (MG/ AS P	S, ORG L TO L (M	BON, ANIC TAL G/L C)
00	T 23	248		10	.14	.00		.14		.00		1.3	-	1.3	.1	40	12
DE		209		6	.03	.00		.03		.10		.70		.80	.0	90	13
JA		185		12	.00	.02		.01		.02		1.1	-	1.1		60	6.6
FE	EB																27
AF		116		10	.00	.01		.01		.01		1.4		1.4		60	
MA		145		17	.49	.03		.52		.04		.92		.96		20	6.9
JU JU	22 JL	95	2	289	.16	.05		.21		.13		1.6		1.7	. 2	10	23
)8	342		19	.08	.01		.09		.10		1.5	1	1.6	.1	00	8.6
0	6	381		35	.00	.01		.00		.07		2.3	1	2.4	-71	90	15
SE	23	265		28	.02	.00		.02		.00		1.3		1.3	.1		13

LAVACA RIVER BASIN

08164450 SANDY CREEK NEAR LOUISE, TX--Continued

I	DATE	TIME	ARSENI DIS- SOLVE (UG/I AS AS	ED SOL	S -	CADM DI SOL (UG AS	S- VED /L	CHRO MIUM DIS- SOLV (UG/ AS C	, COPF DIS ED SOL L (UG	VED /L	IRON, DIS- SOLVED (UG/L AS FE)		
	CT 23	1435		3	100		<1		0	0	60		
	AN 16	1036		2	100		<1		0	0	580		
Al	PR 08	1115		7	100		1		0	0	270		
JA J	JG	000											
	06	1130		4	100		2		0	1	70		
	D.F	SO (U	AD, IS- LVED G/L	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	SO (U	CURY IS- LVED G/L HG)	NII Di SOI (UC		SILVER, DIS- SOLVED (UG/L AS AG)	ZINC DIS SOLV (UG/ AS Z	ED L		
	OCT					0		0					
	JAN		0	50		.0		-	0		7		
	APF		2	480		. 1		0	0		<3		
	AUC		2	580		. 7		0	0		6		
	06	5	1	350		-1		0	0		8		
TIME DATE	TOT	TO IN CB, TOM	CB, TAL BOT- MA-	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	TO	RIN, TAL G/L)	DAI	LOR- NE, FAL G/L)	DDD, TOTAL (UG/L)	DDE TOTA (UG/	L T	DDT, OTAL UG/L)	DI- AZINON, TOTAL (UG/L)
JAN 06 1036		.0	0	.00		.00		.0	.00		00	.00	.00
DATE (U	DI- LDRIN DTAL JG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN TOTAL (UG/L	TO:	ION, TAL G/L)	HEP CHL TOT (UG	OR, AL	HEPT CHLO EPOXI TOTA (UG/	R DE LIND L TOT	ANE AL	MALA- THION, TOTAL (UG/L)	MET OX CHL TOT (UG	Y- OR, AL
JAN 06	.00	.00	.0	00	.00		.00		00	.00	.00		.00
PA TH TO	ETHYL ARA- HION, DTAL JG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX TOTA (UG/L	L TO	RA- ION, FAL G/L)	TO APHE TOT (UG	AL	TOTA TRI THIO (UG/	- 2,4 N TOT	AL	,4,5-T TOTAL (UG/L)	TOT	AL
JAN 06	.00	.00	.0	0	.00		0		00	.00	.00		.00

08164500 NAVIDAD RIVER NEAR GANADO, TX

LOCATION.--Lat 29°01'32", long 96°33'08", Jackson County, Hydrologic Unit 12100102, at downstream side near center of upstream bridge of two bridges on U.S. Highway 59, 170 ft (52 m) upstream from Texas and New Orleans Railroad Co. bridge, 0.2 mi (0.3 km) downstream from Sandy Creek, and 2.5 mi (4.0 km) southwest of Ganado.

DRAINAGE AREA. -- 1,062 mi² (2,751 km²).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1939 to May 1980 (discontinued).

REVISED RECORDS.--WRD TX-73-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 13.62 ft (4.151 m) National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to May 7, 1958, nonrecording gage at site 70 ft (21 m) downstream at same datum. Mar. 7, 1958, to Mar. 22, 1961, nonrecording gages at same site and datum.

REMARKS.--Water-discharge records good. Numerous diversions for irrigation above station. Much of low flow during the April to September irrigation season comes from Sandy Creek; see station 08164450 for water-discharge records during the current year. This low flow is drainage from ricefields irrigated by water originally diverted from the Colorado River.

AVERAGE DISCHARGE .-- 40 years (water years 1939-79), 572 ft³/s (16.20 m³/s), 414,400 acre-ft/yr (511 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 88,000 ft 3 /s (2,490 m 3 /s) June 15, 1973, gage height, 39.8 ft (12.13 m); no flow at times in 1955-56, 1967.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1876. 39.8 ft (12.13 m) May 27, 1936, and June 15, 1973, from information by local resident, Texas and New Orleans Railroad Co., and State Department of Highways and Public Transportation; discharge, 94,000 ft³/s (2,660 m³/s) May 27, 1936, from rating curve extended above 57,000 ft³/s (1,610 m³/s).

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period October to May, $20,500 \text{ ft}^3/\text{s}$ ($581 \text{ m}^3/\text{s}$) Jan. 22 at 0700 hours, gage height, 28.78 ft (8.772 m); minimum daily, $2.2 \text{ ft}^3/\text{s}$ ($0.62 \text{ m}^3/\text{s}$) Nov. 22, 23.8 m

DISCUADOR IN CUBIC PERT BED CECOND OCTOBED 1070 TO MAY 1000

			DISCHAR	GE, IN CUB	IC FEET	PER SECOND, MEAN VA		1979 TO MAY	1980			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	236 195 181 173 160	181 165 106 94 143	28 32 35 34 33	91 68 68 69 56	163 150 143 137 131	63 76 141 100 80	79 101 154 92 66	61 64 105 178 96				
6 7 8 9	143 122 110 101 94	122 74 44 36 32	32 31 32 32 32	61 55 49 47 47	125 120 220 1880 1830	72 69 65 61 61	60 61 59 60 63	72 64 66 144 181				
11 12 13 14 15	92 87 88 84 76	43 61 56 48 41	32 43 88 107 111	45 43 42 41 40	720 308 202 159 135	61 59 58 57 55	58 57 59 68 59	131 84 66 60 80				
16 17 18 19 20	69 64 58 58	31 28 28 25 23	85 65 56 49 45	40 38 41 41 408	115 103 98 94 93	56 55 53 51 52	66 58 57 61 60	888 2940 3000 7280 7810				
21 22 23 24 25	66 68 58 53	23 22 22 43 49	42 41 40 41 41	11100 17300 10900 6250 2360	89 85 81 75 70	52 51 54 55 54	59 56 67 64 60	4930 				
26 27 28 29 30 31	48 45 41 41 42 92	40 37 35 34 30	41 41 42 53 64 75	1110 634 374 262 218 187	66 67 63 62	59 61 62 136 178 110	52 54 69 64 61					
TOTAL MEAN MAX MIN AC-FT	2859 92.2 236 41 5670	1716 57.2 181 22 3400	1523 49.1 111 28 3020	52085 1680 17300 38 103300	7584 262 1880 62 15040	2217 71.5 178 51 4400	2004 66.8 154 52 3970					
CAL YR WTR YR	1979 TO 1980 TO	TAL 38851	4 MEAN - MEAN	1064	MAX 1 MAX	9600 MIN - MIN		AC-FT 770600 AC-FT)			

299

08164500 NAVIDAD RIVER NEAR GANADO, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1959 to May 1980 (discontinued). Chemical, biochemical, and pesticide analyses: January 1968 to May 1980 (discontinued). Sediment records: October 1974 to May 1980 (discontinued).

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1959 to May 1980 (discontinued). WATER TEMPERATURES: October 1959 to May 1980 (discontinued).

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 1,350 micromhos Oct. 26, 28, 1963; minimum daily, 44 micromhos Mar. 24, 25, 1973.

WATER TEMPERATURES (1959-73): Maximum daily, 37.0°C July 21, 27, 28, 1962, Aug. 19, 1969; minimum daily, 0.0°C Jan. 9-11, 1962, Feb. 22, 1963.

EXTREMES FOR CURRENT YEAR.-- SPECIFIC CONDUCTANCE: Maximum daily, 863 micromhos Apr. 21, 25, May 1; minimum daily, 83 micromhos Jan. 22.

WATER QUALITY DATA, OCTOBER 1979 TO MAY 1980

DATE	F IN TIME TA	REAM- C LOW, D STAN- A NEOUS (M		PH A	MPER- (TURE, I ATER (COLOR (PLAT- INUM COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	CENT SATUR-	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY		NONE L BONA (MC	SS, CAR-
NOV 08	1205	46	635	8.0	18.5	30	7.2	9.7	102	2.9	2	00	0
DEC 06	1418	31	782		14.5	44					2	70	3
JAN 16	1045	38	769	8.2	18.0	10	5.4	9.0	94	2.7	2	70	0
MAR 11	0940	59	765	8.1	21.0	10	14	8.1	91	1.4	2	70	16
APR 09	1706	60	827		24.5						2	60	3
MAY 07	1012	65	662	8.1	24.5	30	36	7.5	89	2.8	1	80	0
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS-	SODIUM, DIS- SOLVED (MG/L	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE	CAR- BONAT (MG/	E SC	FATE RI S- DI DLVED SO IG/L (M	DE, RI S- D LVED SO IG/L (M	DE, IS- LVED G/L	ILICA, DIS- SOLVED (MG/L AS SIO2)	
NOV 08	. 71	5.8	50	1.5	4.4	26	0	0	21	68	.3	22	
DEC 06		5.8		1.3				0		78	.3	24	
JAN 16		5.0		1.4				0	22	80	.3	18	
MAR								0	21				
APR	177	5.6		1.6						78	.3	16	
09 MAY		6.7		1.7				0	25	95	. 5	21	
07	. 62	5.8	65	2.1	4.7	22	0	0	28	86	.4	18	
DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DEG. C, SUS-	VOLA- TILE, SUS- PENDED	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	GEN,	GEN.	GEN 3 AMMON TOTA (MG/	IA ORG L TO L (M	EN, MON ANIC ORG TAL TO G/L (M	,AM- IA + PHO ANIC PHO TAL TO G/L (M	RUS, OI TAL G/L	ARBON, RGANIC FOTAL (MG/L AS C)	
NOV 08	371	13	5	.04	.010	.0	5 0	40	.68	.72	.040	8.2	
DEC 06		13		.04	.010				.00	.,,	.040	0.2	
JAN 16		16	3	.03	.020			20	.90	.92	.100	3.6	
MAR 11		26	15	.03	.000			00	.32		.050	3.6	
APR												131.5	
09 MAY										100	250		
07	379	102	20	.49	.030	.5	.1	30	1.3	1.4	.860	9.5	

08164500 NAVIDAD RIVER NEAR GANADO, TX--Continued

WATER QUALITY DATA, OCTOBER 1979 TO MAY 1980

	DA	T	SOI IME (UC	LVED SOLV	S- D: VED SOI G/L (UC	MIUM MI IS- DI LVED SO C/L (U	LVED SO	S- D LVED SO IG/L (U	ON, IS- LVED G/L FE)	
	VOV 80		205	3	200	<1	0	0	80	
	JAN 16		045	3	300	<1	0	0	<10	
	MAY		012	4	200	<1	0	2	10	
			., -			37				
		DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	DIS- SOLVED (UG/L	SOLVED	DIS- SOLVED (UG/L		
		NOV 08	0	40	.0	0	0	6		
		JAN 16	1	30	.3	0	0	4		
		MAY 07	0	10	.1	1	0	<3		
DATE	TIME	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)		ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL	TOM MA- TERIAL	DDD, TOTAL	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN 16	1045	.0	0	.00	.00	.0	.0	0	.00	.0
10	1013	.,			.00			,	.00	
DATE	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL	DI- ELDRIN TOTAL (UG/L)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL	ENDRIN,	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN 16	.00	.0	.00	.0	.00	.00	.0	.00	.00	.0
DATE	ETHION, TOTAL (UG/L)	TOTAL	IN BOT-	CHLOR EPOXIDE	TOT. IN	LINDANE	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION,	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)
JAN 16	.00	.00	.0	.00	.0	.00	.0	.00	.00	.0
DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL	TOTAL	TOX- APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL TRI- THION (UG/L)	2.4-D. TOTAL (UG/L)	2.4.5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
JAN 16	.00	.00	.00	.00	0	0	.00	.00	.00	.00
, , , , ,	.00	.00	.00			0	.50	.50		

08164500 NAVIDAD RIVER NEAR GANADO, TX--Continued MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO MAY 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)	
OCT.	1979	2859	542	318	2450	58	451	17	134	180	
NOV.	1979	1716	649	380	1760	72	335	19	89	220	
DEC.	1979	1523	652	381	1570	73	299	19	79	220	
JAN.	1980	52085	190	112	15700	19	2620	7.4	1050	63	
FEB.	1980	7584	309	181	3720	31	644	11	231	100	
MAR.	1980	2217	632	370	2210	71	424	18	110	210	
APR.	1980	2004	761	444	2400	88	477	20	108	250	
MAY	1980	28300	181	107	8150	17	1340	7.3	560	60	
TOTAL		98288	**	**	38000	**	6590	**	2360	**	
WTD. AV	G.	420	243	143	**	25	**	8.9	**	81	

		SPECIFI	C CONDUCT	CANCE (MIC		1 AT 25 DE	G. C), OC	CTOBER 197	9 TO MAY	1980		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	404 434 540 408 424	576 595 615 630 649	605 600 592 590 650	680 676 774 767 760	505 500 490 480 471	740 610 412 497 568	793 628 590 650 710	863 839 550 510 562				
6 7 8 9	500 575 631 545 570	572 646 635 608 650	782 744 705 666 628	750 754 750 725 750	495 530 450 185 200	598 660 680 700 712	760 821 813 827 820	575 662 611 632 475				
11 12 13 14	606 576 595 625 647	680 708 710 773 754	640 632 617 602 590	771 780 785 777 770	210 213 253 303 301	765 748 720 704 710	758 790 820 850 826	540 618 645 675 620				
16 17 18 19 20	631 600 571 638 610	718 712 710 707 713	595 602 610 669 654	769 777 790 805 650	384 465 550 631 627	720 730 717 756 768	860 840 834 845 852	450 170 150 130 127				
21 22 23 24 25	600 573 635 790 647	725 740 760 720 710	674 680 695 690 685	313 83 93 175 260	630 635 610 590 578	828 800 775 752 748	863 818 825 830 863	196 				
26 27 28 29 30 31	620 600 590 575 494 525	712 710 626 600 587	683 680 772 730 700 690	340 470 543 549 535 523	744 641 700 763	800 829 766 470 380 401	750 610 595 564 840					
MEAN	574	675	660	611	487	679	775	505				

26 27

28 29

30

31

MEAN

LAVACA RIVER BASIN

08164500 NAVIDAD RIVER NEAR GANADO, TX--Continued

TEMPERATURE, WATER (DEG. C), OCTOBER 1979 TO MAY 1980 ONCE-DAILY NOA DEC JAN FEB MAR APR MAY JUN JUL AUG SEP OCT DAY 17.0 16.5 17.0 14.5 21.5 23.5 16.5 1 2 3 4 5 8.5 9.0 9.5 9.0 7.0 12.0 15.0 23.5 9.0 13.0 17.0 22.0 20.5 ---14.0 15.5 16.5 18.5 17.0 15.5 16.0 9.0 13.5 15.5 6 ---17.0 17.0 18.0 17.0 12.0 10.0 9.5 9.0 23.0 22.0 20.0 8.5 23.5 23.5 23.0 13.0 ---17.0 10 ---9.5 ---15.5 16.0 18.0 17.0 17.0 16.0 23.5 14.5 9.0 21.0 11 12 13 14 15 21.5 22.0 21.5 22.0 15.5 14.5 13.5 12.0 12.0 10.5 11.0 12.0 13.5 13.0 14.5 23.5 ---16.0 17.0 18.5 23.5 19.5 ---23.0 12.0 20.0 18.5 14.5 16.0 7.0 5.5 5.0 14.5 15.0 15.5 ---23.5 18.5 23.5 ------5.0 20 12.0 12.0 13.5 13.5 14.0 ---16.5 20.0 19.5 19.0 15.0 15.5 24.0 21 22 23 24 25 5.5 23.5 23.5 23.0 ---16.5 17.0 15.5 20.0 ---------21.5

16.5 16.0 17.0

17.0

16.0

21.0 20.5 21.0

18.0

:::

15.5 14.5 14.5 15.0

14.0

10.0 10.5 10.0 9.0

9.0

13.5

21.0

20.0

20.0

18.5

22.5

9.0

9.0

9.0

14.5

13.5

13.0

08164503 WEST MUSTANG CREEK NEAR GANADO, TX

LOCATION.--Lat 29°04'17", long 96°28'01", Jackson County, Hydrologic Unit 12100102, on right bank at downstream end of downstream bridge on U.S. Highway 59, 2.1 mi (3.4 km) upstream from Middle Mustang Creek, and 3.6 mi (5.8 km) east of Ganado.

DRAINAGE AKEA. -- 178 mi2 (461 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1977 to current year.

GAGE.--Water-stage recorder. Datum of gage is 39.67 ft (12.091 m) National Geodetic Vertical Datum of 1929 (levels by Water and Power Resources Service).

kEMAKKS.--water-discharge records good. Much or low flow during irrigation season (April to September) comes from drainage from ricefields irrigated by water originally diverted from the Colorado kiver.

EXTREMES FOR PERIOD OF RECORD.--haximum discharge, 13,400 ft³/s (379 m³/s) Jan. 21, 1980, gage height, 24.49 ft (7.465 m), from floodmark; minimum, 0.15 ft³/s (0.004 m³/s) Jan. 11, 1978.

EXTREMES FOR CURRENT YEAK. -- Peak discharges above base of 1,500 tt3/s (42.5 m3/s) and maximum (*):

Date	é	Time	Disch	arge	Gage	height
			(II^3/s)		(ft)	(m)
Jan.	21	1600	*13,400	379	24.49	7.465
May	20	0200	2,420	68.5	14.91	4.545

Minimum discharge, 0.30 ft3/s (0.008 m3/s) Dec. 11.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	78	82	1.3	33	19	1.5	9.6	16	8.9	10	57	19
2 3 4 5	69 55	87 67	1.1	16 28	14	1.0	6.8 57	38 62	8.5 9.1	7.9	36 20	18
4	46	61	.59	44	10	18	31	41	8.9	12	20	11
5	41	48	.49	13	9.3	8.0	10	24	9.7	18	13	11
6	38	37	.38	6.9	8.0	4.8	4.6	12	11	23	21	30
7	37 37	25 15	2.1	4.7	137	3.6	5.5	13 18	9.9	16	34	53 97
9	33	20	.52	3.5	994	2.2	10 26	132	7.5 5.9	64	74 97	268
10	32	14	.36	2.1	442	1.9	12	124	5.1	96	96	359
11	33	8.3	.31	1.8	161	1.6	7.6	76	5.0	107	137	294
12	39	5.2	241	1.2	75	1.3	8.5	57	4.6	114	140	184
13	35 34	4.1 3.8	866 429	.99	50 34	.99	15 26	41 26	4.0 3.8	108	105	131
15	35	2.9	127	1.0	21	.63	17	33	4.6	105	41	79
16	27	2.7	78	.88	14	.77	16	152	4.8	95	26	89
17	20	2.2	51	2.4	11	.90	9.9	353	3.6	99	16	76
18 19	20 32	1.6	29	2.9	10	.95	5.2	519	5.8	83	10	59
20	28	.95	15 11	1.6 533	9.3 7.6	1.0	7.0	1880 2240	3.7	90 86	4.9	63 78
21	21	.94	7.7	11100	5.0	.64	17	1220	5.3	88	3.4	107
22	18	1.3	5.6	8520	3.6	.53	27	585	103	78	5.7	90
23 24	16 13	3.3	4.9	3970 1820	3.0	1.8	46 40	188	115 71	99 94	2.9 6.0	80 81
25	11	4.2	3.4	537	2.4	2.2	20	47	49	72	12	83
26	9.8	5.6	2.6	236	1.8	5.7	37	28	36	60	7.9	108
27	9.4	6.1	2.0	146	1.6	15	21	16	25	53	9.1	186
28 29	8.2 9.4	2.7	1.7	100 76	1.5	41 39	23	7.6	17 17	48 62	11	301 309
30	7.8	1.8	77	58	1.3	60	14	9.0	13	70	14	399
31	23		57	35		25		17		56	14	
TOTAL	915.6	521.17		27298.54	2068.9	270.36	554.7	8068.6	578.8	2059.9	1115.5	3773.2
MEAN MAX	29.5 78	17.4	65.9 866	881 11100	71.3 994	8.72	18.5	260 2240		66.4	36.0 140	126 399
MIN	7.8	.88	.31	.88	1.3	.53	4.6	7.6	3.1	7.9	2.9	9.2
CFSM	.17	.10	.37	4.95	.40	.05	.10	1.46	.11	.37	.20	.71
IN.	.19	.11	.43	5.71	.43	.06	.12	1.69	.12	.43	.23	.79
AC-FT	1820	1030	4050	54150	4100	536	1100	16000	1150	4090	2210	7480

08164503 WEST MUSTANG CREEK NEAR GANADO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: October 1977 to current year.

DATE	TIME	STREAM FLOW INSTAM TANEOU (CFS)	N- ANC	IC - I- E RO-	PH ITS)	TEMPER- ATURE, WATER (DEG C)	TUI BII ITY (NTI	D - Y	OXYGEN DIS- SOLVI (MG/I	SO SO N, (P ED SA	GEN, IS- LVED ER- ENT TUR- ION)	OXYGE DEMAN BIOCH UNINH 5 DA (MG/L	D, HA	ARD- ESS MG/L AS ACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	
OCT 23	1050	16		660	7.9	19.5	9.	. 5	6.	8	74	2	. 1	190	43	
DEC 04	1148	- 25	57	758	8.0	10.5	2.	. 5	8.	8	91	1	.9	210	33	
JAN 15	1235	1.0	n	485	7.8	16.5	92		8.	0	82	2	.1	140	36	
FEB 26	1046	2.0		479	7.9	13.0	32		8.		81		. 7	170	44	
APR																
09 MAY	1051	33		736	7.7	18.5	72		8.		85		. 7	230	100	
22 JUL	1150	630		215	7.6	26.0	130		6.	1	74	4	. 7	66	20	
08 AUG	0935	42		653	7.8	28.5	19		5.	5	70			210	45	
06 SEP	0900	20		800	7.9	27.5	21		4.	5	56	4	. 4	260	58	
23	1233	81		574	7.9	28.5	1.	.1	5.	8	73	2	. 4	170	23	
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNI SIUN DIS- SOLVI (MG/I AS MG	M, SODIU - DIS- ED SOLVI L (MG)	JM, SOI ED T /L RA'	DIUM AD- RP- ION FIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR BONAT (MG) AS	re /L	CAR- BONATE (MG/I AS CO3	DI SO (M	FATE S- LVED G/L SO4)	CHLO RIDE DIS- SOLV (MG/ AS C	, RI ED SC L (N	LUO- IDE, DIS- DLVED 4G/L G F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	
OCT 23	58	11	54	4	1.7	5.2		180		0	15	110		.3	41	
DEC 04	64	13			2.1	7.0		220			31	110		.3	19	
JAN 15	44		.9 39		1.4	5.1		130			31	64		.2	15	
FEB																
26 APR		9.			1.2	4.3		150			30	59		.2	15	
09 MAY	71	12	5	5	1.6	7.5		150		0	41	120		.2	19	
22 JUL	20	3.	.8 1:	3	.7	3.4		56		0	15	23		. 2	14	
08 AUG	68	9.	.5 56	5	1.7	1.0	2	200		0	17	98		.5	34	
06	74	17	6	ŀ	1.7	7.1	2	240		0	38	120		.5	44	
SEP 23	45	13	46	5	1.6	6.4	1	160		0	13	92		.4	52	
	SUN CON TUI I SO	MOF INSTI- A ENTS, I	SOLIDS, RESIDUE AT 105 DEG. C. SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)		CN, CO RITE NO2 CAL TO G/L (N	TRO- GEN, 2+NO3 OTAL IG/L G N)	AMMO TOT	TAL G/L	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	MON ORG TO (M	, AM- IA +	PHOS- PHORUS, TOTAL (MG/L AS P)	ORG TO (M	BON, ANIC TAL G/L C)	
	CT 23	384	20	.02		.00	.02		.06	1.2		1.3	.140)	13	
D	EC 04	423	12	.02		.00	.02		.00	.80		.82	.080		12	
J	AN															
F	15 EB	270	62	.13		.02	.15		.03	1.4		1.4	.200		11	
	26 PR	279	43	.01		.01	.02		.03	.02		.05	.110)	11	
	09 AY	400	129	.30		.05	.35		.28	1.1		1.4	.260)	13	
	22	120	118	.48		.06	.54		.17	1.3		1.5	.280)		
	UL 08	383	32	.04		.01	.05		.05	1.1		1.1	.070)	6.8	
	UG 06	480	47	.10		.03	.13		.06	1.1		1.2	.240)	18	
	EP 23	340	55	.00		.00	.00		.00	1.4		1.4	.010)	19	

	DA		TIME S	RSENIC DIS- SOLVED UG/L AS AS)	SOLV (UC	S -	(UG	IUM S- VED /L	(UG	M, - VED	COPP DIS SOL (UG AS	VED /L	SOL (UG	ON, S- VED S/L FE)	
	OCT					221								26	
	JAN		1050	4		200		<1		0		0		60	
	15 APR		1235	2		100		<1		0		0		20	
	AUG		1051	2		200		<1		0		2		20	
	06		0900	7		200		1		0		2		90	
		DATE	LEAD, DIS- SOLVE (UG/L AS PE	D SC	ANGA- ESE, DIS- DLVED UG/L S MN)	SO (U	CURY IS- LVED G/L HG)	SELE NIUM DIS SOLV (UG/ AS S	ED L	SOL (UG	S- VED	ZIN DI SOL (UG AS	S- VED /L		
		OCT 23		0	20		.1		0		0		10		
		JAN 15		4	30		.3		0		0		<3		
		APR 09	, ,	0	20		.6		1		0		9		
		AUG 06		4	20		.1		0		0		4		
DATE	TIME	PCB, TOTAL (UG/L		LI - I - CH	APH- THA- ENES, POLY- HLOR. DTAL JG/L)	TO	RIN, TAL G/L)	ALDRI TOTA IN BO TOM M TERI (UG/K	L T- A- AL	DAN	OR- E, AL /L)	CHLODAN TOT. IN BOTOM I TOM I	E, AL OT- MA- IAL	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN 15	1235	. ()	1	.00		.00		++		.0			.00	
AUG 06	0900	. ()	0	.00		.00		.0		.0		0	.00	1.4
DATE	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAI (UG/KG)	DDT.	IN TON TI	DDT, DTAL BOT- 1 MA- ERIAL G/KG)	AZ I	I- NON, TAL G/L)	DI- ELDR TOTA (UG/	IN L	DI ELDR TOT IN B TOM TER (UG/	IN, AL OT- MA- IAL	ENDO SULFA TOTA (UG	AN, AL	ENDRIN, TOTAL (UG/L)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN 15	.00	-	.0	0			.00		00				.00	.00	
AUG 06	.00	6.	1 .0	0	.0		.00		00		.1		.00	.00	.0
DATE	ETHION, TOTAL (UG/L)	HEPTA- CHLOR TOTAL (UG/L)	TOM MA	- CH - CH - EPC L TO	EPTA- HLOR DXIDE DTAL JG/L)	EPO TOT BO	PTA- LOR XIDE . IN TTOM ATL. /KG)	LINDA TOTA (UG/	L		AL OT- MA- IAL	MALL THIC TOTA (UG	ON, AL	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)
JAN 15	.00	.00) -	-	.00				00		68.		.00	.00	
AUG 06	.00	.00		0	.00		.0		00		.0		.00	.00	.0
DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYI TRI- THION, TOTAL (UG/L)	MIREX	L TO	ARA- HION, DTAL JG/L)	APH TO	OX- ENE, TAL G/L)	TOXA PHEN TOTA IN BO' TOM M. TERI. (UG/K	E. L T- A- AL	TOT TR THI (UG	I -	2,4 TOTA (UG	AL	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
JAN 15	.00	.00	.0	0	00		0				.00		.00	.00	.00
15 AUG		.00			.00		0		0						
06	.00	.00	.0	U	.00		U		U		.00		.00	.00	.00

08164600 GARCITAS CREEK NEAR INEZ, TX

LOCATION.--Lat 28°53'28", long 96°49'08", Victoria County, hydrologic Unit 12100402, at right downstream end of bridge on U.S. Highway 59 access road, 0.3 mi (0.5 km) upstream from Southern Pacific Kailroad bridge, 2.0 mi (3.2 km) southwest of Inez, and 3.6 mi (5.8 km) upstream from Casa Blanca Creek.

DRAINAGE AKEA. -- 91.7 mi2 (238 km2).

WATEK-DISCHARGE RECORDS

PERIOD OF RECORD .-- June 1970 to current year.

GAGE .- Water-stage recorder. Datum of gage is 29.16 ft (8.888 m) National Geodetic Vertical Datum of 1929.

REMAKKS.--Water-discharge records good. No known diversion above station. An undetermined amount of return water from irrigation enters stream above station. Recording rain gage at station.

AVERAGE DISCHARGE.--10 years (water years 1971-80), 57.3 tt³/s (1.623 m³/s), 8.49 in/yr (216 mm/yr), 41,510 acre-tr/yr (51.2 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--haximum discnarge, 17,000 ft 3 /s (481 m 3 /s) Sept. 14, 1978, gage height, 27.85 ft (8.489 m); no flow May 22, 23, May 26 to June 17, 1971.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage during period 1903-70, 24.5 ft (7.47 m) Oct. 26, 1960. In 1929, a flood nearly as high as the 1960 flood occurred, and a flood in September 1967 reached a stage of 23.4 ft (7.13 m), from information by local resident.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 1,500 tt3/s (42.5 m3/s) and maximum (*):

Date	e	Time	Disch	arge	Gage	height
			(tt^3/s)	(m^3/s)	(1t)	(m)
Jan.	21	1800	2,640	74.8	17.72	5.401
Mau	19	1600	*8.710	247	24.54	7.480

Minimum discharge, 0.24 ft3/s (0.007 m3/s) Aug. 27.

		DISC	HARGE, IN	N CUBIC FE		COND, WAT AN VALUES		OCTOBER 19	979 TO SEPT	EMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	23 20 18 16 14	7.0 6.1 5.7 5.2 5.2	3.0 2.9 2.9 2.9 2.9	5.5 5.2 4.8 4.1 3.9	14 13 13 12	7.6 5.5 5.2 5.2 5.0	3.5 3.5 3.4 3.2 3.0	2.1 2.1 2.4 2.2 2.2	11 10 9.1 8.2 7.5	1.6 1.6 1.5 1.4	1.0 .75 .83 .75	.39 .53 .78 .94
6 7 8 9	13 13 13 12 11	5.2 5.0 5.0 4.8 4.4	3.0 2.9 3.0 2.9 2.9	3.5 3.4 3.4 3.4 3.2	10 10 19 144 97	4.8 4.8 4.6 4.6	3.0 3.1 3.0 2.7 2.7	2.0 2.2 5.7 11 6.9	7.0 6.4 6.0 5.7 5.4	1.3 1.4 1.9 1.3	.67 2.2 1.5 1.2 3.9	4.1 4.7 4.2 5.1 4.3
11 12 13 14 15	9.9 9.9 9.6 8.8	4.4 4.4 4.4 4.2 4.2	3.2 4.0 3.9 3.5 3.4	3.3 3.2 3.2 3.2 3.2	42 26 19 16 14	4.6 4.6 4.2 4.1 4.1	2.8 2.9 4.5 3.4 2.9	4.0 2.9 2.3 2.2 2.2	5.2 4.8 4.6 4.6 4.2	1.2 1.1 1.0 .92 .92	5.2 3.7 2.9 2.2 2.0	3.1 2.5 2.0 1.5 1.4
16 17 18 19 20	8.8 8.6 8.3 8.3	4.2 4.1 4.2 4.2 4.2	3.3 2.9 2.9 2.9 2.9	3.2 3.2 3.0 3.0 29	9.9 9.4 8.6 8.3	4.4 5.2 4.2 4.2 4.2	2.7 3.1 3.8 3.4 4.3	34 24 168 6400 2050	4.2 4.1 3.9 3.5 3.5	.92 1.1 1.0 .83 .75	1.9 2.0 1.6 1.4	1.2 1.2 1.1 .88 .74
21 22 23 24 25	8.3 8.0 7.3 7.1 7.1	4.4 4.6 4.4 3.9 3.9	3.0 3.3 3.4 3.3 3.0	1960 1170 286 138 85	8.0 7.3 6.8 6.4 5.7	3.9 3.9 3.9 3.9	3.5 4.2 5.7 3.7 3.2	341 164 84 50 35	3.5 3.4 2.7 2.6 2.4	1.2 2.2 3.0 1.9 1.4	.82 .72 .57 .45	.65 .52 .46 1.1
26 27 28 29 30 31	6.8 6.6 6.4 6.3 9.9	3.7 3.5 3.4 3.0 3.0	3.0 3.0 3.2 14 11 6.9	56 38 29 22 20 16	5.5 5.2 5.2 5.5	4.1 4.2 4.1 4.8 4.6 3.7	3.2 4.0 3.3 2.3 2.1	29 23 19 17 14	2.3 2.0 1.9 1.9	1.1 .92 .92 1.1 4.1 1.6	.33 .28 .35 .43 .45	7.6 35 37 17 62
TOTAL MEAN MAX MIN CFSM IN. AC-FT	328.3 10.6 23 6.3 .12 .13 651	133.9 4.46 7.0 3.0 .05 .05 266	119.3 3.85 14 2.9 .04 .05 237	3917.9 126 1960 3.0 1.37 1.59 7770	562.8 19.4 144 5.2 .21 .23 1120	140.7 4.54 7.6 3.7 .05 .06 279	100.1 3.34 5.7 2.1 .04 .04	9517.4 307 6400 2.0 3.35 3.86 18880	143.4 4.78 11 1.8 .05 .06 284	43.88 1.42 4.1 .75 .02 .02 .87	42.59 1.37 5.2 .28 .02 .02	204.51 6.82 62 .39 .07 .08 406
	1979 TOTA 1980 TOTA				MAX 69 MAX 64	90 MIN 00 MIN		FSM 1.27 FSM .46	IN 17.17 IN 6.19	AC-FT AC-FT	83940 30260	

GARCITAS CREEK BASIN 307 08164600 GARCITAS CREEK NEAR INEZ, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: October 1969 to current year.

DATE	TIME	STRE FLO INST TANE (CF	AM- CO W, DU AN- AM OUS (MI	PE- IFIC DN- JCT- ICE ICRO- HOS)	PH (UNITS)	WA?	JRE, TER	TUR- BID- ITY (NTU)		(YGEN, DIS- SOLVED (MG/L)	SOI (PE CE SAT	GEN, IS- LVED ER- ENT TUR- LON)	OXYG DEMA BIOC UNIN 5 D. (MG/	ND, HEM HIB AY	HARD- NESS (MG/L AS CACO3)	HAR NES NONC BONA (MG CAC	S, CAR- TE C/L
ОСТ 22	1622	8	. 3	697	8.1		25.0	3.5	,	8.2		98		1.5	280		30
03	1604	2	. 9	725	8.2	9 1	3.0		0	11.2		105		1.2	290		37
JAN 14	1523	3	. 2	712	8.3		18.5	3.2		10.6		113		1.4	280		39
FEB 25	1432	3	. 9	605	8.1		19.5	7.5		9.3		99		1.2	240		37
APR 07	1426	3	. 2	720	8.2		23.0	2.9		8.9		103		1.5	280		39
MAY 21	1101	340		110	7.7		26.0	48		6.4		78		3.9	41		0
JUL			. 9		8.1			5.7		7.7		105			220		
08 AUG	1205			613			33.0										44
07 SEP	0900		.67	670	7.4		28.0	2.6		5.9		75		2.0	190		11
23	1520		.47	656	8.4		31.0	. 2	5	9.3		124		2.0	170		0
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	DI	UM, SOI S- DI VED SOI /L (N	DIUM, CS- LVED MG/L S NA)	SODIUM AD- SORP- TION RATIO	SI SOI (MC	TAS- UM, S- VED G/L K)	BICAR- BONATE (MG/I AS HCO3)	BC	CAR- DNATE (MG/L G CO3)	(MG	S- LVED G/L	CHLO RIDIS DIS SOL' (MG AS	E, VED /L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILI DIS SOL (MG AS SIO	VED /L
ОСТ 22	94	11	0	38	1.0		1.6	30	0	0	5	52	40	6	.3	3	5
DEC 03	97	1:	2	44	1.1		1.2	31		0		54	48		.3		
JAN 14	91	10		48	1.3		1.6	29		0		6	59		.3		
FEB 25	81		9.7	33	.9		1.6	25		0		0	4		.2		
APR 07	91	1:		50	1.3		1.4	29		0		6	64		.2	2	
1AY 21	13		2.1	5.7	.4		2.8		0	0		4.2		6.0	.1		
JUL																1	
08 AUG	70	13		46	1.3		1.6	22		0		66	5:		.5	31	
07 SEP	57	1:		62	1.9		2.2	22		0		0	.78		.4	3	
23	48	1	1	71	2.4		3.4	20	0	4	3	80	88	8	.4	4	1
D	SU CO TU	LIDS, M OF NSTI- ENTS, DIS- OLVED MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	NITE TO: (MC	EN, RATE NI PAL T G/L (ITRO- GEN, TRITE OTAL MG/L S N)		TAL G/L	NITRO GEN, MMONI TOTAL (MG/L AS N)	A ORG	ITRO- GEN, GANIC OTAL MG/L S N)	MON ORGA	RO- ,AM- IA + ANIC TAL G/L N)	PHO PHOR TOT. (MG AS	US, OR AL T /L (RBON, GANIC OTAL MG/L S C)	
oc 2	T 2	425	14		.00	.00		.00	.0	00	.88		.88		020	5.2	
DE 0	C 3	442	3		.11	.00		.11	.0	1	.43		.44		010	15	
JA 1	N 4	438	8		.00	.02		.01	.0		.88		.89		020	5.3	
FE		359	7		.00	.01		.01	.0		.29		.30		020	5.5	
AP	R 7	435	3		.6	.02	1	1.6	.0		.32		.40		010	5.3	
MA	Y						1										
JU		70	59		.01	.00		.01	.0		.96		1.0		090	17	
AU	8 G	386	12		.00	.00		.00	.0		1.5		1.5		020	9.6	
0 SE	7 P	407	2		.00	.00		.00	.0	1	.55		.56		020	6.8	
	3	395	C)	.00	.00		.00	.0	0	.85		.85		010	8.5	

08164600 GARCITAS CREEK NEAR INEZ, TX--Continued

					IDNIA DIDNIA			HRO-				
		,	DATE	I SC IME (U	DLVED SOL IG/L (U	S- I VED SC G/L (U	DIS- DI DLVED SO JG/L (U	IS- D DLVED S UG/L (IS- I OLVED SO UG/L (U	RON. DIS- DLVED JG/L S FE)		
		00	T									
		JA	AN	622 523	2	300 200	<1	0	0	10		
		AI	PR	426	2	200	<1	10	2	<10		
		AL	IG	900	5	200	<1	0	0	20		
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		200	31			-20		
			DATE	LEAD, DIS- SOLVED (UG/L AS PB)	(UG/L	MERCURY DIS- SOLVEI (UG/L AS HG)	DIS- SOLVEI (UG/L	(UG/L	DIS- D SOLVEI (UG/L			
			OCT 22		20	.0) 1	1	0 8	3		
			JAN 14	8	20	,1			0 4			
			APR 07	1	20	.6	. ,		0 <3	1		
			AUG 07	- 1	30	.1	(1	0 4	d-		
DATE	TIME	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KC	ELOR- DANE, TOTAL (UG/L)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN 14	1523	.0	1	.00	.00		.0	1.4	.00		.00	
06 07	1130 0900	.0	0	.00	.00	.0	.0	0	.00	.0	.00	.0
DATE	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL (UG/L)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI-	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL (UG/L)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL (UG/L)
JAN 14	.00		.00		.00		.00	.00		.00		.00
AUG 06	.00	.0	.00		.00	.0	.00	.00	.0	.00		.00
07	.00	.0	.00	.0	.00	.0	.00	.00	.0	.00	.0	.00
DATE	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)		HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL (UG/L)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOTAL (UG/L)
JAN 14		.00		.00	**	.00		.00		.00	55	.00
06	.0	.00	.0	.00	.0	.00		.00	.0	.00		.00
07	.0	.00	.0	.00	.0	.00	.0	.00	.0	.00	.0	.00
DATE	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOX- APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL TRI- THION (UG/L)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)	
JAN 14	44	.00	.00		0	.22	.00	3.5	.00	.00	.00	
AUG 06		.00	.00		0	0	.00		.00	.00	.00	
07	.0	.00	.00	.0	U	-0	.00	.0				

PLACEDU CREEK BASIN

309

08164800 PLACEDO CREEK NEAR PLACEDO, TX

LOCATION.--Lat 28°43'30", long 96°46'07", Victoria County, Hydrologic Unit 12100401, on right bank at downstream end of bridge on Farm koad 616, 0.1 mi (0.2 km) downstream from confluence of Lone Tree Creek and Arroyo Falo Alto, 1.2 mi (1.9 km) upstream from kinemile Creek, and 4.4 mi (7.1 km) northeast of Placedo.

DRAINAGE AREA. -- 68.3 mi 2 (177 km2).

PERIOD OF RECORD .-- June 1970 to current year.

GAGE.--Water-stage recorder. Datum of gage is 5.58 ft (1.701 m) National Geodetic Vertical Datum of 1929.

REMARKS. -- Records good. No known diversion above station. Recording rain gage at station,

AVERAGE DISCHARGE.--10 years, 66.5 ft 3 /s (1.883 m 3 /s), 48,180 acre-ft/yr (59.4 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD. -- haximum discharge, 15,100 ft³/s (428 m³/s) Sept. 14, 1978, gage height, 29.64 ft (9.034 m); no flow Sept. 8, 9, 1971.

EXTREMES OUTSIDE PERIOD OF RECORD.--Naximum stage since 1930, 31.9 ft (9.72 m) in September 1967 and 30.4 ft (9.27 m) in 1960 (probably October), from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,500 ft3/s (42.5 m3/s) and maximum (*):

Date		Time	Disc	harge	Gage	height
			(ft^3/s)	(m^3/s)	(ft)	(m)
Jan.	21	1400	2,880	81.6	21.24	6.474
May	19	1500	*4,740	134	23.39	7.129
Sept.	30	2300	1.930	54.7	19.64	5.986

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum daily discharge, 0.11 ft $^3/s$ (0.003 ti $^3/s$) June 3.

		515	ommon, i	N CODIC II	M	EAN VALUES	S I LAK	OCTOBER 15	79 10 361	I EPIDER T	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.1 3.5 3.3 3.3 2.9	23 4.7 1.5 1.5	.86 .84 .83 .77	6.5 3.7 3.4 6.6	2.4 2.5 2.6 2.4 2.4	1.7 1.6 1.6 1.7	2.8 1.9 1.7 1.5 1.3	.59 .54 6.5 3.7 1.0	.40 .15 .11 .14	1.5 1.6 1.9 2.0 2.0	1.3 1.7 .50 .15	1.3 1.2 1.7 1.8 1.7
6 7 8 9	2.9 2.6 2.7 5.5 3.5	1.4 1.7 1.2 1.5	.83 1.0 1.1 1.0 1.0	4.9 2.7 1.9 1.5	2.6 2.6 5.6 122 40	1.9 1.9 2.1 2.1 2.0	1.3 3.1 3.0 2.0 1.2	2.0 14 49 24	.49 .76 1.2 .58 1.5	2.1 2.0 2.0 2.3 1.7	.27 .73 46 23 36	29 61 360 124 40
11 12 13 14	2.7 2.7 2.6 2.6 2.5	1.5 1.3 1.2 1.1	1.1 2.6 2.5 3.8 1.0	1.4 1.4 1.3 1.3	13 6.8 4.7 3.9 3.7	2.0 2.1 2.1 1.7 1.6	1.1 1.9 3.2 4.3 6.4	6.1 2.0 .89 .57	1.5 .48 1.2 .65 .35	1.1 .69 .73 1.2 1.7	229 64 22 8.2 3.4	14 4.1 1.1 .55 .71
16 17 18 19 20	2.5 2.4 2.4 2.3 2.2	.97 .91 1.2 1.1 1.2	1.1 .97 1.0 .97	1.3 1.5 1.4 1.4	2.5 1.9 2.0 2.0 2.0	1.9 72 55 13 6.4	2.9 1.3 .90 .73	47 77 33 2930 846	.56 1.4 1.4 1.8 1.5	1.9 2.1 1.9 1.6 2.1	1.5 58 36 8.1 2.0	.89 1.5 1.7 2.1 1.7
21 22 23 24 25	1.9 1.9 1.7 1.5	1.2 1.5 1.3 1.2	.90 1.0 1.0 .91 .66	2200 749 179 54 21	2.1 2.2 2.2 2.2 2.2	3.6 2.4 2.1 1.9	.54 .54 4.1 6.1 3.6	178 96 23 7.3 2.5	1.2 1.2 .96 1.2	2.8 3.1 3.4 3.0 3.1	.55 .31 .24 .16 .14	.96 4.3 1.9 1.0 1.3
26 27 28 29 30 31	1.5 1.5 1.5 1.5 1.9 8.4	1.0 .97 .90 .77 .78	.65 .65 1.1 43 61 14	11 6.2 4.2 3.2 2.9 2.6	1.8 1.8 1.8	1.6 2.2 2.6 2.1 2.0 3.3	4.5 5.8 2.9 1.3 2.0	1.0 3.3 1.6 .53 .83 2.7	1.3 1.8 1.5 1.4	2.9 2.9 3.7 5.8 4.9 2.4	.12 .12 .13 .30 .52	14 61 164 44 689
TOTAL MEAN MAX MIN AC-FT	84.0 2.71 8.4 1.5 167	61.60 2.05 23 .77 122	149.87 4.83 61 .65 297	3452.0 111 2200 1.3 6850	245.5 8.47 122 1.8 487	201.8 6.51 72 1.6 400	74.56 2.49 6.4 .54 148	4361.73 141 2930 .46 8650	29.51 .98 1.8 .11 59	72.12 2.33 5.8 .69 143	546.01 17.6 229 .12 1080	1631.51 54.4 689 .55 3240

CAL YR 1979 TOTAL 49039.72 MEAN 134 MAX 7260 MIN .41 AC-FT 97270 WTR YR 1980 TOTAL 10910.21 MEAN 29.8 MAX 2930 MIN .11 AC-FT 21640

310 CHOCOLATE BAYOU BASIN

08164850 CHOCOLATE BAYOU NEAR PORT LAVACA, TX (Reconnaissance partial-record station)

LOCATION.--Lat 28°35'40", long 96°41'48", Calhoun County, Hydrologic Unit 12100402, at bridge on Sweetwater Road, 2.3 mi (3.7 km) upstream from State Highway 35, and 4.5 mi (7.2 km) southwest of Port Lavaca.

DRAINAGE AREA. -- 53.7 mi² (139.1 km²).

PERIOD OF RECORD.--Periodic discharge measurements: September 1967 to July 1968, February 1970 to current year. Periodic water-quality data: June 1970 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

			WAIL	K QUALIT	I DAIA,	WAIDN	ILAK	OCTOBER	1979	10 3	EFIER	DEK	300			
DATE	TIM	STRE FLC INST E TANE (CF	AN- OUS	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)		JRE, TER	TUR- BID- ITY (NTU)	SOI	GEN, IS- LVED G/L)	OXYGI DIS SOLV (PEI CEI SATI	S- VED R- NT UR-	OXYGE DEMAN BIOCH UNINH 5 DA (MG/I	ID, I IEM I IIB	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
NOV 07			.00	24			-24									
DEC 19			.00		-											
FEB 01		5	.68	1060	7.8		8.0	35		10.8		89	1	.9	240	120
MAR					8.3		22.5	14		7.2		84		.9	1200	1100
12 APR			.63	5250				52				70				200
23 JUN			.41	2800	7.7		23.0			6.0				. 5	520	-
JUL			.15	3470	7.7		30.0	13		8.2		108		.0	760	510
16 AUG		5	.26	6060	7.6		32.5	4.1		5.9		80	6	. 7	1200	1000
27		•	.00				9.					**				
DATE	CALCI DIS- SOLV (MG/ AS C	ED SOL L (MG	UM, S- VED /L	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	SI DI SOI	TAS- IUM, IS- LVED G/L K)	BICAR- BONATE (MG/L AS HCO3)	CAI BONA (MC	ATE G/L	SULFA DIS- SOLV (MG) AS SO	/ED	CHLO RIDE DIS- SOLV (MG/ AS C	ED S	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS S102)
NOV 07																
DEC												7.				-
19 FEB		55									7/		010			
O1 MAR			6	140	3.9		6.4	150		0	70		240		.2	30
12 APR				570	7.2		6.5	340		0	350		1500		.6	17
23 JUN			6	410	7.8		6.8	390		0	130		670		.8	21
04 JUL			0	430	6.8		7.5	300		0	200		920		.5	29
16 AUG		9	7	760	9.5		6.5	230		0	370)	1700		.8	18
27				68										7.5	***	77
		SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLI RESI AT 1 DEG. SUS PEND (MG	DUE NI 05 G C, NIT - TO ED (M	EN, RATE NI TAL T G/L (ITRO- GEN, TRITE OTAL MG/L S N)		IN, -NO3 AN FAL I	IITRO- GEN, MONIA OTAL MG/L S N)	ORG TO (M	TRO- EN, ANIC TAL G/L N)	NITE GEN, MONI ORGA TOT (MC AS	AM- IA + ANIC CAL	PHOS- PHORUS TOTAL (MG/I AS P)	S, ORG	RBON, GANIC DTAL 1G/L 3 C)
	NOV 07 DEC														-	
1	19 FEB														7-	**
1	01 MAR	647			1.9	.03	1	.9	.13		.57		.70	.08		16
	12 APR	2930		22	.10	.01		.11	.08		1.1		. 2	.25		9.8
	23 JUN	1620		89	1.1	.27	1	.4	.71		1.8	2	2.5	.40	00	15
	04 JUL	2010		36	.30	.08		.38	.36		1.4	1	. 8	.67	70	64
	16 AUG	3400		21	.00	.02		.00	.13		1.4	1	.5	.28	30	12
	27								85							**

CHOCOLATE BAYOU BASIN 311

08164850 CHOCOLATE BAYOU NEAR PORT LAVACA, TX--Continued
WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	DAT	TI:	SOL ME (UG	S- DIS VED SOLV	S- DI VED SOI G/L (UC	MIUM N IS- I LVED S G/L (CHRO- HIUM, DIS- SOLVED TUG/L S CR)	COPP DIS SOL (UG AS	VED SOI	ON. IS- LVED G/L FE)	
	FEB 01	10	55	4	100	<1	0		2	100	
	JUL	10		7	500	1	10		2	40	
		DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, DIS- SOLVE (UG/I AS SE	SII ID SC	LVER, DIS- DLVED JG/L G AG)	ZINC, DIS- SOLVED (UG/L AS ZN)		
		FEB									
		JUL JUL	0	80	.1		0	0	5		
		16,	4	540	.3		1	0	20		
DATE	TIME	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN TOTAL IN BOT TOM MA TERIA (UG/KC	:- CH - DA	HLOR- ANE, DTAL JG/L)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
FEB 01	1055	.0	31	.00	.00		.0	.0	0	.00	12
JUL 16	1015	.0	0	.00	.00		0	.0	0	.00	7.8
DATE	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL (UG/L)	DI - ELDRI TOTAI (UG/I	ELI TO IN IN TON	DI- DRIN, DTAL BOT- 1 MA- ERIAL G/KG)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
FEB 01	.00	30	.00	9.9	.00	.(00	.8	.00	.00	.0
JUL 16	.00	21	.00	.0	.01	. (00	.1	.00	.00	.0
DATE	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDAN TOTAI (UG/I	IN IE TON	NDANE DTAL BOT- MA- ERIAL G/KG)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)
FEB 01	.00	.00	.0	.00	.0	. (00	.0	.00	.00	.0
JUL 16	.00	.00	.0	.00	.0	. (00	.0	.00	.00	.0
DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOXA- PHENI TOTAI IN BOT TOM MA TERIA (UG/KG	T- TO A- TA AL TH	OTAL FRI- HION JG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
FEB 01	.00	.00	.00	.00	0		0	.00	.00	.00	.00
JUL 16	.01	.00	.00	.00	0		0	.00	.00	.00	.00

312

GUADALUPE RIVER BASIN

08165300 NORTH FORK GUADALUPE RIVER NEAR HUNT, TX

LOCATION.--Lat 30°03'36", long 99°23'40", Kerr County, Hydrologic Unit 12100201, on right bank 410 ft (125 m) downstream from Ranch Road 1340, 1.3 mi (2.1 km) downstream from Bear Creek, 3.7 mi (6.0 km) west of Hunt, and 4.1 mi (6.6 km) upstream from Honey Creek.

DRAINAGE AREA .-- 168 mi2 (435 km2).

PERIOD OF RECORD .-- August 1967 to current year.

REVISED RECORDS .-- WRD TX-74-1: 1971(P).

GAGE.--Water-stage recorder and crest-stage gages. Datum of gage is 1,800.10 ft (548.670 m) National Geodetic Vertical Datum of 1929.

REMARKS--Records good. There is a permit issued by the Texas Department of Water Resources to impound and use 20.33 acre-ft (25,100 m³) of water on a game preserve upstream from station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--13 years, 37.7 ft³/s (1.068 m³/s), 3.05 in/yr (77 mm/yr), 27,310 acre-ft/yr (33.7 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $39,300~{\rm ft}^3/{\rm s}$ (1,110 m $^3/{\rm s}$) Aug. 3, 1978, gage height, $26.80~{\rm ft}$ (8.169 m), from high-water mark and from rating curve extended above 170 ft $^3/{\rm s}$ (4.81 m $^3/{\rm s}$) on basis of slope-area measurements of 7,460 and 38,400 ft $^3/{\rm s}$ (211 and 1,090 m $^3/{\rm s}$); minimum, 0.68 ft $^3/{\rm s}$ (0.019 m $^3/{\rm s}$) May 30, 1969.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1900 occurred July 1, 1932, gage height, 37.3 ft (11.37 m), discharge 140,000 ft³/s (3,960 m³/s), by slope-area measurements, combined flow of North Fork Guadalupe River 5 mi (8 km) upstream and Bear Creek 2 mi (3 km) upstream from mouth, and adjusted for difference in drainage area.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 500 ft³/s (14.2 m³/s) and maximum (*):

Date	Time	Disch	arge	Gage h	eight
		(ft^3/s)	(m^3/s)	(ft)	(m)
Sept. 7	1500	4,470	127	11.26	3.432
Sept. 29	0930	*27.800	787	23.36	7.120

Minimum discharge, 2.4 ft³/s (0.068 m³/s) May 27.

CAL YR 1979 TOTAL 10475 WTR YR 1980 TOTAL 11365

MEAN 28.7 MAX 436 MEAN 31.1 MAX 2930

		DISCH	ARGE, IN	CUBIC FEE		SECOND, WATE MEAN VALUES	ER YEAR	OCTOBER 197	9 TO SEI	TEMBER 1980		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	23 23 22 22 22 22	21 21 21 22 22	21 21 22 21 21	22 22 22 22 22 22	21 21 21 21 21	18 18 18 18	19 20 20 18 18	18 18 18 18	16 16 16 16	12 12 12 12 12	12 11 11 11 12	11 11 11 12 12
6 7 8 9	23 23 24 24 23	21 20 20 21 21	21 21 22 22 22 22	22 21 21 22 22	21 20 21 21 21	19 19 20 19	18 18 18 17 16	18 17 20 21 18	16 13 14 16 16	12 12 12 12 12	13 11 11 12 12	12 1140 198 67 52
11 12 13 14 15	23 23 23 23 23 22	21 21 20 20 20	22 24 25 24 23	22 22 22 22 22 22	20 20 20 20 20 20	19 19 19 18 18	17 18 19 19	18 18 17 17 27	16 16 16 14 15	12 11 11 11 11	16 15 14 13 13	46 41 39 34 31
16 17 18 19 20	22 22 22 21 21	20 21 24 23 22	22 22 21 22 22	22 22 22 23 25	22 22 21 20 20	18 19 18 18	18 18 18 18	29 22 19 19	15 14 14 14 14	12 12 11 11	13 18 22 16 15	29 28 27 26 27
21 22 23 24 25	21 22 21 21 21	23 22 21 22 25	22 22 23 23 23 22	24 24 23 23 22	19 19 19 19	18 18 18 18	18 17 17 17 17	19 18 17 21 18	13 13 13 12 12	12 12 12 12 12	14 14 13 13	24 23 22 22 23
26 27 28 29 30 31	21 21 22 21 21 22	24 25 25 24 22	22 22 23 26 24 23	22 22 22 22 22 22 21	18 18 18 19	20 23 23 21 19	20 18 18 18 18	16 11 16 16 16	12 13 13 11 11	13 12 12 14 13	12 12 12 12 12 12 14	32 30 29 2930 159
TOTAL MEAN MAX MIN CFSM IN. AC-FT	685 22.1 24 21 .13 .15 1360	654 21.8 25 20 .13 .14 1300	693 22.4 26 21 .13 .15	689 22.2 25 21 .13 .15	582 20.1 22 18 .12 .13 1150	588 19.0 23 18 .11 .13	545 18.2 21 16 .11 .12 1080	573 18.5 29 11 .11 .13	426 14.2 16 11 .09 .09 845	370 11.9 14 11 .07 .08 734	412 13.3 22 11 .08 .09 817	5148 172 2930 11 1.02 1.14 10210
CAL YR			MEAN 2		436		CFSM .17	IN 2.32	AC-FT	20780		

MIN 11

CFSM .17 IN 2.32 AC-FT CFSM .19 IN 2.52 AC-FT

22540

313

08165500 GUADALUPE KIVER AT HUNT, TX

LOCATION.--Lat 30°04'08", long 99°19'23", Kerr County, Hydrologic Unit 1210U201, on right bank 56 it (17 m) upstream and 137 ft (42 m) right of right end or bridge on State Highway 39, 0.6 mi (1.0 km) downstream from confluence of North and South Forks, 0.8 mi (1.3 km) east of Hunt, and at mile 430.9 (693.3 km).

DRAINAGE AREA . - - 288 mi 2 (746 km2) .

PERIOD OF RECORD.--October 1941 to September 1949, discharge not computed above $600 \text{ tt}^3/\text{s}$ (17.0 m $^3/\text{s}$), and April 1965 to current year. Occasional discharge measurements made 1950-64.

REVISED RECORDS. -- WSP 2123: Drainage area.

GAGE.--Water-stage recorder and crest-stage gages. Datum of gage is 1,722.7 ft (525.08 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Numerous diversions for irrigation above station, amounts unknown. National weather Service gage-height telemeter at station. Several observations of water temperature were made during the

AVEKAGE DISCHARGE.--15 years, 72.0 ft3/s (2.039 m3/s), 3.39 in/yr (86 mm/yr), 52,160 acre-tt/yr (64.3 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 62,900 ft³/s (1,780 m³/s) Aug. 2, 1978, gage height, 23.5 ft (7.16 m), from floodmark, from rating curve extended above 3,700 ft³/s (105 m³/s) on basis of channel geometry and flow-over-dam measurement of peak flow; minimum, 6.9 ft³/s (0.20 m³/s) June 17, 1948.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1900, 36.6 ft (11.16 m) July 2, 1932, from information by local resident, discharge 206,000 ft³/s (5,830 m³/s) determined by slope-area measurement 4.5 ml (7.2 km) downstream from gage.

EXTREMES FOR CURKENT YEAR, -- Peak discharges above base of 1,000 tt3/s (28.3 m3/s) and maximum (*):

Date		Time	Disch	arge	Gage 1	neight
			(ft^3/s)	(m^3/s)	(tt)	(m)
Sept.	7	1230	12,000	340	14.43	4.398
Sept.	29	1045	*18,000	510	16.14	4.919

Minimum discharge, 14 ft3/s (0.40 m3/s) July 7.

CAL YR 1979 TOTAL 27307

WTR YR 1980 TOTAL 24086

MEAN 74.8

MEAN 65.8

MAX

MAX 3280

843

MIN 40

MIN 20

		DISC	HARGE, IN	CUBIC FE		COND, WAT AN VALUES		CTOBER 19	79 TO SEP	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	58 56 56 53 52	48 48 49 49	51 51 51 52 52	51 51 50 50 50	50 51 51 51 50	44 42 43 44 44	45 47 46 43 41	33 29 32 33 44	40 39 38 34 33	25 25 25 24 24	22 21 20 20 20	22 20 20 20 20
6 7 8 9	53 54 55 55 53	49 52 55 48 47	52 51 53 52 53	50 50 50 50 50	50 50 51 51 49	45 45 45 46 45	41 44 44 42 40	44 38 44 49 42	35 35 33 36 39	25 24 23 24 25	20 21 23 22 23	20 2310 681 302 216
11 12 13 14	53 54 55 55 54	48 49 47 47 40	54 64 63 58 57	51 50 50 51 51	48 48 49 49	44 47 44 43 44	40 40 43 43 42	32 37 39 39 214	38 36 34 33 31	24 24 24 23 23	37 31 27 26 23	177 163 143 127 116
16 17 18 19 20	54 54 54 53 51	42 49 55 55 56	56 53 51 50 51	51 52 55 54 77	52 50 51 49 46	45 44 41 40 44	40 38 36 36 35	129 78 64 66 56	31 30 28 30 28	23 23 23 24 23	23 59 75 41 33	109 103 85 90 92
21 22 23 24 25	51 51 49 50 49	58 52 49 50 58	51 51 52 53 50	68 64 61 57 57	46 45 45 45 44	42 42 43 41 44	39 36 36 35 59	43 50 48 52 54	28 28 26 28 26	26 20 22 22 21	30 27 25 25 25 24	88 85 81 77 80
26 27 28 29 30 31	49 50 52 53 51 48	54 54 53 52 51	49 50 56 61 55 52	57 54 54 53 52 51	44 46 46	46 65 61 56 51 45	45 40 51 57 37	46 44 39 39 38 41	25 25 26 25 26	21 20 30 40 27 22	22 22 22 23 23 23	129 120 113 3280 465
TOTAL MEAN MAX MIN CFSM IN. AC-FT	1635 52.7 58 48 .18 .21 3240	1513 50.4 58 40 .18 .20 3000	1655 53.4 64 49 .19 .21 3280	1672 53.9 77 50 .19 .22 3320	1400 48.3 52 44 .17 .18 2780	1415 45.6 65 40 .16 .18 2810	1261 42.0 59 35 .15 .16 2500	1636 52.8 214 29 .18 .21 3250	944 31.5 40 25 .11 .12	749 24.2 40 20 .08 .10	852 27.5 75 20 .10 .11	9354 312 3280 20 1.08 1.21 18550

CFSM .26 CFSM .23

08166000 JOHNSON CREEK NEAR INGRAM, TX

LOCATION.--Lat 30°06'00", long 99°16'58", Kerr County, Hydrologic Unit 12100201, on right bank 1.6 mi (2.6 km) upstream from Henderson Branch, 3.4 mi (5.5 km) northwest of Ingram, 3.8 mi (6.1 km) upstream from mouth, and 9.2 mi (14.8 km) northwest of Kerrville.

DRAINAGE AREA .-- 114 mi2 (295 km2).

PERIOD OF RECORD. -- September 1941 to November 1959, October 1961 to current year.

REVISED RECORDS.--WSP 1058: 1942-45. WSP 2123: Drainage area.

GAGE .- - Water-stage recorder. Datum of gage is 1,721.30 ft (524.652 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Numerous small diversions above station for irrigation. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--37 years (water years 1942-59, 1962-80), 19.4 ft 3 /s (0.549 m 3 /s), 2.31 in/yr (59 mm/yr), 14,060 acre-ft/yr (17.3 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $95,900 \text{ ft}^3/\text{s}$ (2,720 m³/s) Oct. 4, 1959, gage height, 24.25 ft (7.391 m), from rating curve extended above 4,400 ft³/s (125 m³/s) on basis of slope-area measurements of 9,100 and 16,000 ft³/s (258 and 453 m³/s) and conveyance study; minimum daily, 0.4 ft¹/s (0.011 m³/s) July 26, 27, 1956.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1852, 35 ft (10.7 m) July 2, 1932, from information by local resident; discharge, 138,000 ft 3/s (3,910 m3/s), by slope-area measurement at point 0.5 mi (0.8 km) downstream from State fish hatchery and 6 or 7 mi (10 or 11 km) upstream from gage. Flood of June 14, 1935, reached a stage of 31 or 32 ft (9.4 or 9.8 m), from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,780 ft 3 /s (50.4 m 3 /s) Sept. 7 at 1745 hours, gage height, 5.21 ft (1.588 m), no other peak above base of 500 ft 3 /s (14.2 m 3 /s); minimum, 2.2 ft 3 /s (0.062 m 3 /s) July 19.

		DISC	HARGE, IN	CUBIC FE	ET PER SE	COND, WA	TER YEAR C	CTOBER 1	979 TO SE	PTEMBER 1	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	17 17 17 15 15	15 15 15 15 17	14 16 15 15	17 17 15 15	12 12 14 14 16	11 11 13 14 15	17 17 15 15	11 12 11 11 20	16 12 11 11	3.9 4.2 5.7 5.5 4.6	8.1 5.4 4.6 7.5 9.7	4.6 4.6 4.8 5.2 4.3
6 7 8 9	12 15 19 17 17	17 17 18 15 16	17 16 15 14 15	17 15 15 17 17	17 17 17 14 12	15 16 15 15 16	14 14 14 13 15	18 17 18 17 19	12 11 11 13 13	4.5 5.7 6.9 6.7 5.4	11 6.8 6.5 8.1	3.7 399 442 131 65
11 12 13 14 15	17 19 15 17	17 15 22 19 17	17 29 20 15 15	17 15 15 17 17	14 17 22 21 16	16 15 14 15 16	13 11 13 12 17	16 12 12 13 99	13 12 11 9.8 7.9	6.2 7.1 5.7 5.6 5.4	19 15 7.7 5.6 7.2	48 33 28 24 22
16 17 18 19 20	21 19 19 17 15	16 16 19 17 22	15 15 15 19 13	17 17 19 19 21	17 16 19 18 18	16 15 17 15 13	21 16 12 15 12	48 27 22 21 20	9.0 6.4 6.9 10 9.4	5.3 6.2 5.9 3.1 3.2	7.0 13 15 10 7.5	18 17 15 14
21 22 23 24 25	17 15 15 15 15	20 16 15 15	11 13 18 18 15	21 19 17 15	17 15 15 14 14	14 16 15 15	11 12 12 11 19	22 18 16 15	5.7 5.2 5.2 5.8 5.1	4.8 5.6 4.9 4.9	6.6 6.1 4.3 3.5 3.5	13 13 14 12 11
26 27 28 29 30 31	15 15 14 17 17	17 19 17 14 14	14 15 21 26 22 17	17 17 19 19 16 14	14 14 14 15	17 27 22 18 17 18	11 9.2 10 13 11	15 16 15 15 14 19	4.3 4.2 3.8 3.2 4.1	5.1 5.4 11 13 9.2 7.8	3.5 3.5 3.5 3.9 4.9 5.3	13 23 25 31 23
TOTAL MEAN MAX MIN AC-FT	509 16.4 21 12 1010	505 16.8 22 14 1000	515 16.6 29 11 1020	527 17.0 21 14 1050	455 15.7 22 12 902	491 15.8 27 11 974	410.2 13.7 21 9.2 814	624 20.1 99 11 1240	263.0 8.77 16 3.2 522	183.0 5.90 13 3.1 363	234.3 7.56 19 3.5 465	1475.2 49.2 442 3.7 2930

CAL YR 1979 TOTAL 9721.2 MEAN 26.6 MAX 410 MIN 7.9 AC-FT 19280 WTR YR 1980 TOTAL 6191.7 MEAN 16.9 MAX 442 MIN 3.1 AC-FT 12280

08166140 GUADALUPE RIVER ABOVE BEAR CREEK AT KERRVILLE, TX

LOCATION.--Lat 30°04'10", long 99°11'42", Kerr County, Hydrologic Unit 12100201, on left bank 600 ft (180 m) downstream from Goat Creek, 900 ft (274 m) upstream from Bear Creek and Bear Creek Crossing, and 2.4 mi (3.9 km) east of intersection of State Highways 27 and 39 in Ingram.

DRAINAGE AREA .-- 494 mi 2 (1,280 km2).

PERIOD OF RECORD .-- April 1978 to current year.

GACE.--Water stage recorder. Datum of gage is 1,623.20 ft (494.751 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Discharge not computed above 400 ft 3 /s (11.3 m 3 /s). Numerous diversions for irrigation above station, amounts unknown. Several observations of water temperature were made during the period.

EXTREMES FOR PERIOD OF RECORD.--Maximum stage, 32.79 ft (9.994 m) Aug. 3, 1978 (discharge not known); minimum daily discharge, 23 ft 3 /s (0.65 m 3 /s) July 22, 1978.

EXTREMES OUTSIDE PERIOD OR RECORD.--Maximum stage since 1900, 34.1 ft (10.39 m) July 2, 1932, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maxumum stage, 12.13 ft (3.697 m) Sept. 29 (discharge not determined); minimum daily discharge, 24 ft³/s (0.68 m³/s) Aug. 30.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1979	TO	SEPTEMBER	1980
					MEAN VA	LUES						

					11111	III VIIIIOLIO						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	81	80	83	91	78	71	77	67	61	30	35	40
	81	77	83	89	77	66	77	58	57	28	36	40
2 3 4	79	77	84	88	77	66	77	59	55	28	35	38
4	74	77	84	86	77	67	72	60	54	30	33	38
5	73	80	84	85	77	68	69	64	51	29	33	38
6	75	82	84	86	78	69	68	78	50	28	33	39
7	91	80	85	86	78	71	68	74	52	29	33	
8	82	83	84	85	78	72	67	74	50	29	31	
9	80	83	85	85	78	72	66	80	50	29	35	
10	80	77	85	85	76	72	65	77	56	29	36	320
11	79	78	87	85	75	72	67	70	56	28	48	291
12	80	79	99	84	75	76	69	58	53	30	57	276
13	82	80	112	83	77	69	73	62	51	29	50	264
14	92	81	99	83	78	68	72	63	48	27	45	255
15	86	78	95	85	78	68	70		45	27	40	247
16	88	70	92	89	82	69	73	245	44	28	39	242
17	88	75	90	92	82	70	71	170	44	27	83	238
18	85	85	88	90	80	69	66	111	39	27	105	233
19	82	86	85	89	79	67	63	105	39	26	74 64	226 226
20	80	89	84	89	79	67	63	93	40	26	64	226
21	74	99	82	111	76	62	62	82	38	27	54	226
22	79	91	82	102	74	60	64	77	39	30	52	166
23	74	83	88	96	73	68	62	72	36	28	46	125 121
24	72	82	91	91	73	65	63	74	33	29 29	45 45	114
25	73	87	89	88	73	73	107	73	34	29	43	114
26	76	89	85	87	72	75	93	71	34	28	43	171
27	77	88	84	88	71	111	75	62	32	31	42	210
28	78	88	92	86	71	109	75	62	31	34	41	211
29	82	86	108	85	73	91	86	54	31	59	38	
30	87	84	102	84		87	74	53	30	53	24	
31	82		95	81		79		58		40	41	
TOTAL	2492	2474	2770	2734	2215	2269	2154		1333	952	1416	
MEAN	80.4	82.5	89.4	88.2	76.4	73.2	71.8		44.4	30.7	45.7	
MAX	92	99	112	111	82	111	107		61	59	105	
MIN	72	70	82	81	71	60	62		30	26	24	
AC-FT	4940	4910	5490	5420	4390	4500	4270		2640	1890	2810	

08167000 GUADALUPE RIVER AT COMFORT, TX

LOCATION (revised).--Lat 29°58'10", long 98°53'33", Kendall County, Hydrologic Unit 12100201, on right bank at downstream side of southbound bridge on Interstate Highway 10, at Comfort, 0.5 mi (0.8 km) downstream from Cypress Creek, and at mile 396.2 (637.5 km). Station relocated 0.4 mi (0.6 km) downstream on June 3, 1980.

DRAINAGE AREA (revised) .-- 839 mi2 (2,173 km2).

PERIOD OF RECORD .-- May 1939 to current year.

REVISED RECORDS.--WSF 1632: 1958. WSF 1732: 1939(M). WSF 2123: Drainage area, 1944(M), 1952(M), 1957(M), 1960(M).

GAGE (revised).--Water-stage recorder. Datum of gage is 1,371.83 ft (418.134 m) National Geodetic Vertical Datum of 1929. Prior to Nov. 27, 1939, nonrecording gage. Nov. 27, 1939, to June 2, 1980 recording at gage site 0.4 mi (0.6 km) upstream at datum 0.22 ft (0.067 m) lower.

KEMARKS.--Kecords good. Many small diversions above station for irrigation. Several observations of water temperature were made during the year. Corps of Engineers gage-height telemeter at station.

AVEKAGE DISCHARGE.--41 years (water years 1940-80), 180 ft³/s (5.098 m³/s), 130,400 acre-tt/yr (161 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 240,000 ft $^3/s$ (6,800 m $^3/s$) aug. 2, 1978, gage height, 40.90 ft (12.466 m), from high-water mark in well, from rating curve extended above 74,000 ft $^3/s$ (2,100 m $^3/s$) on basis of current-meter measurement of 124,000 ft $^3/s$ (3,510 m $^3/s$) at gage height 32.47 ft (9.897 m) and slope-area measurement of 182,000 ft $^3/s$ (5,150 m $^3/s$) at gage height 36.4 ft (11.70 m), made at former gaging station "near Comfort" 5 mi (8 km) upstream; no flow at times in 1952-57, 1963-64. All stages are at site and datum then in use.

Maximum stage since at least 1848, that of Aug. 2, 1978.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of July 1869 reached a stage of 40.3 tt (12.28 m), from report by Corps of Engineers. Flood of July 1, 1932, reached a stage of 38.4 ft (11.70 m), from floodmark, and from information by State Department of Highways and Public Transportation. Flood of July 16, 1900, reached about the same stage as that of July 1, 1932, from information by local residents. All stages are at site and datum then in use.

EXTREMES FOR CURKENT YEAK. -- Peak discharges above base of 2,600 ft3/s (73.6 m3/s) and maximum (*):

Date		Time	Disch	arge	Gage	height
			(ft^3/s)	(m^3/s)	(ft)	(m)
Sept.	7	2230	*12,000	340	12.72	3.877
Sept.	29	2030	11,700	331	12.52	3.816

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980.

Minimum discharge, 12 ft3/s (0.34 m3/s) Aug. 16-18.

		DISC	HARGE, IN	CUBIC FE		AN VALUES	ER YEAR O	CTOBER 19	79 TO SEP	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	122 124 129 122 117	114 109 109 112 112	117 115 115 114 112	146 143 140 137 136	132 131 128 127 126	111 105 103 103 102	121 117 117 112 108	107 101 97 96 98	88 89 86 83 82	59 38 34 33 33	14 15 17 16 17	24 28 28 28 29
6 7 8 9	114 112 109 108 106	114 114 113 117 114	112 112 112 112 114	136 136 136 132 134	126 126 130 130 127	101 102 103 103 104	105 105 104 100 101	98 109 133 127 118	77 76 80 76 70	33 32 31 29 30	17 18 19 19 21	30 2500 4030 1140 524
11 12 13 14	105 107 107 109 109	114 114 116 118 119	115 135 162 145 134	135 132 131 131 130	126 126 123 124 126	103 109 108 102 101	100 103 107 109 106	115 111 105 110 112	73 73 68 63 59	30 30 29 28 27	28 27 17 13 15	357 288 246 207 182
16 17 18 19 20	109 109 112 109 109	116 113 154 127 119	129 126 123 123 127	128 128 131 130 131	135 134 131 129 128	104 107 102 99 101	103 101 99 96 94	436 232 170 211 152	57 55 52 52 49	26 24 21 20 27	13 12 12 91 78	170 158 147 134 124
21 22 23 24 25	109 109 109 109 109	153 174 156 150 162	133 135 141 151 144	133 146 139 134 129	127 124 123 119 112	100 99 91 99 102	93 92 92 90 139	161 136 123 114 113	50 48 47 44 42	25 28 32 29 26	63 51 43 42 42	124 124 120 114 110
26 27 28 29 30 31	112 112 112 114 116 116	156 151 144 126 120	141 138 141 187 164 154	127 126 127 135 136 136	109 108 107 107	107 162 173 155 134 126	143 120 109 106 110	108 104 97 95 90 84	45 44 40 38 37	30 28 27 28 19	39 37 36 36 35 29	134 199 202 2590 1540
TOTAL MEAN MAX MIN AC-FT	3475 112 129 105 6890	3830 128 174 109 7600	4083 132 187 112 8100	4151 134 146 126 8230	3601 124 135 107 7140	3421 110 173 91 6790	3202 107 143 90 6350	4063 131 436 84 8060	1843 61.4 89 37 3660	900 29.0 59 14 1790	932 30.1 91 12 1850	15631 521 4030 24 31000

CAL YR 1979 TOTAL 125864 MEAN 345 MAX 3990 MIN 105 AC-FT 249700 WTR YR 1980 TOTAL 49132 MEAN 134 MAX 4030 MIN 12 AC-FT 97450

317

08167500 GUADALUPE RIVER NEAR SPRING BRANCH, TX

LOCATION.--Lat 29°51'38", long 98°22'58", Comal County, hydrologic Unit 12100201, on right bank at downstream side of bridge on county road, 226 ft (69 m), downstream from bridge on kanch Koad 311, 1.9 mi (3.1 km) southeast of Spring Branch Post Office, 7.5 mi (12.1 km) downstream from Curry Creek, and at mile 334.4 (538.0 km).

DRAINAGE AREA. -- 1,315 mi2 (3,406 km2).

PERIOD OF RECORD .-- June 1922 to current year.

REVISED RECORDS.--WSP 1562: 1923-24, 1926, 1927-28(M), 1929, 1930(M). WSF 2123: Drainage area.

GAGE.--Water-stage recorder and crest-stage gages. Datum of gage is 948.10 ft (288.981 m) National Geodetic Vertical Datum of 1929.

KEMAKKS.--Records good. Several small diversions above station for irrigation. Several observations of water temperature were made during the year. Guadalupe-Blanco kiver Authority gage-height telemeter located at station.

AVERAGE DISCHARGE. -- 58 years, 305 ft3/s (8.638 m3/s), 221,000 acre-ft (272 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 160,000 ft³/s (4,530 m³/s) Aug. 3, 1978, gage height 45.25 ft (13.792 m), from floodmark, from rating curve extended above 55,600 ft³/s (1,570 m³/s) on basis of slopearea measurement of peak flow; no flow at times in 1951-52, 1954-56, and 1963-64.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1859, about 53 ft (16.2 m) in 1869; flood in July 1900 reached a stage of about 49 ft (14.9 m), from information by local resident.

EXTREMES FOR CURRENT YEAK.--Peak discharges above base of 4,000 $\rm tt^3/s$ (113 $\rm m^4/s$) and maximum (*):

Date		Time	Disch	arge	Gage	height
			(ft^3/s)	(m^3/s)	(tt)	(m)
Sept.	8	2000	*8,370	237	12.32	3.755
Sept.		1600	6.990	198	11.06	3.371

Minimum discharge, 23 ft3/s (0.65 m3/s) Aug. 17, 18.

		DISC	CHARGE, IN	CUBIC FE		COND, WAT AN VALUES	ER YEAR (OCTOBER 19	79 TO SEP	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	180	160	173	194	168	137	187	140	200	63	38	42
2	178	153	173	188	165	132	183	144	179	59	33	39
3	179	150	173	179	162	136	183	135	176	72	27	37
4	170	145	176	173	159	135	170	132	170	64	27	36
5	164	148	176	173	159	133	161	126	161	58	26	36
6 7 8 9	164 163 165 166 160	148 147 150 154 152	176 173 173 173 173	173 168 165 162 162	156 153 156 162 162	131 134 135 135 133	156 150 143 135 134	128 129 141 201 195	154 151 140 135 139	55 51 50 49 48	28 35 33 30 31	38 107 3220 3570 1430
11	159	154	173	162	156	134	134	167	131	46	45	825
12	159	152	174	162	153	139	134	163	127	46	45	541
13	161	152	182	159	153	141	142	173	127	46	40	400
14	161	152	203	156	153	139	142	206	125	45	42	326
15	160	152	200	156	156	138	148	199	119	44	40	274
16	166	152	187	162	159	137	142	199	113	42	36	232
17	166	154	176	162	159	134	138	542	108	42	30	208
18	163	181	173	162	168	130	131	386	104	41	27	188
19	162	188	173	168	165	133	130	597	100	39	30	179
20	160	198	169	173	162	128	128	529	97	39	31	159
21	157	184	165	179	156	125	128	513	146	37	47	148
22	155	182	173	185	155	126	128	515	125	35	75	140
23	150	212	176	188	150	126	128	386	104	39	64	138
24	150	189	174	188	145	125	128	355	92	39	58	133
25	149	182	181	182	140	125	140	333	84	42	48	128
26 27 28 29 30 31	152 153 152 155 159 157	182 188 181 173 173	176 176 176 176 213 207	179 170 168 168 168 168	139 139 139 140	127 186 460 295 227 205	161 200 173 154 143	271 256 242 228 217 211	78 75 73 73 67	43 41 40 41 40 38	47 45 45 41 40 59	128 130 211 259 2730
TOTAL	4995	4988	5542	5302	4489	4821	4454	8159	3673	1434	1243	16032
MEAN	161	166	179	171	155	156	148	263	122	46.3	40.1	534
MAX	180	212	213	194	168	460	200	597	200	72	75	3570
MIN	149	145	165	156	139	125	128	126	67	35	26	36
AC-FT	9910	9890	10990	10520	8900	9560	8830	16180	7290	2840	2470	31800

CAL YR 1979 TOTAL 279322 MEAN 765 MAX 6380 MIN 145 AC-FT 554000 WTR YR 1980 TOTAL 65132 MEAN 178 MAX 3570 MIN 26 AC-FT 129200

08167700 CANYON LAKE NEAR NEW BRAUNFELS, TX

LOCATION.--Lat 29°52'07", long 98°11'55", Comal County, Hydrologic Unit 12100201, in intake structure of Canyon Dam on Guadalupe River, 12 mi (19 km) northwest of New Braunfels, and at mile 303.0 (487.5 km). DRAINAGE AREA .-- 1,432 mi2 (3,709 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1962 to current year. Prior to October 1970, published as Canyon Reservoir.

REVISED RECORDS .-- WSP 2123: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Sept. 24, 1964, nonrecording gage at present site and datum. Corps of Engineers gage-height telemeter at station.

MARKS.--The lake is formed by a rolled earthfill dam 6,830 ft (2,082 m) long, consisting of the main dam 4,410 ft (1,344 m) long, an earthen dike 210 ft (64 m) long, a 1,260-foot-long (384 m) uncontrolled broad-crested type spillway, and a 950-foot (290 m) concrete and earthen nonoverflow section. Deliberate impoundment began June 16, 1964, and main part of dam was completed in August 1964. The flood-control outlet works consist of a 10.0-foot-diameter (3.0 m) conduit controlled by two 5.7 by 10.0-foot (1.7 by 3.0 m) hydraulically operated slide gates. The lake was built for water conservation and flood control. Capacity table beginning Oct. 1, 1974, is based on a sedimentation survey of August 1972. Small diversions above the lake for irrigation. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	(feet)	(acre-feet)
Top of dam	974.0	-
Crest of spillway	943.0	736.700
Top of conservation pool	909.0	382,000
Lowest gated outlet (invert)	775.0	240

COOPERATION. -- Records furnished by the Corps of Engineers and reviewed by the Geological Survey.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 588,400 acre-ft (725 hm³) Aug. 4, 1978, elevation, 930.61 ft (283.650 m); minimum observed since conservation pool first reached in April 1968, 338,600 acre-ft (417 hm³) Sept. 5, 1980, elevation, 903.54 ft (275.399 m).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 369,100 acre-ft (455 hm³) May 26 at 0300 hours, elevation, 907.41 ft (276.579 m); minimum, 338,600 acre-ft (417 hm³) Sept. 5, elevation, 903.54 ft (275.399 m).

Capacity table (elevation, in feet, and total contents, in acre-feet)

903.0	334,500 342,200	906.0	357,800
905.0	349,900	907.0 908.0	365,800 373,800

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	347800	348100	349900	355800	360700	361900	362300	360800	367000	353100	343200	339200
2	347700	348000	350000	356100	360700	361600	362600	360800	366800	352400	342900	339000
3	347800	348000	350000	356200	360800	361500	362600	360700	366500	352000	342600	338900
4	347700	347900	350000	356200	361000	361500	362400	360700	366100	351100	342300	338800
5	347600	348000	350000	356300	361200	361300	362300	360600	365700	350400	342000	338600
6 7 8 9	347600 347600 347700 347600 347400	348000 348000 348000 348000 348000	350300 350400 350500 350600 350800	356600 356600 356700 356800 357000	361300 361500 362100 362000 362000	361300 361200 361200 361100 361100	362400 362400 362200 362100 361900	360300 360500 360800 360800 360800	365400 365000 364600 364100 363600	349800 349200 348800 348400 348100	341900 341800 341600 341600 341900	339600 341900 346200 352400 354600
11	347400	347900	351000	357000	362200	361100	362000	361000	363100	347800	341900	355400
12	347400	348000	351700	357200	362200	361100	361900	361000	362700	347600	341800	355300
13	347500	347900	352000	357200	362300	360800	361500	362400	362100	347300	341700	355000
14	347500	347900	352100	357400	362500	360700	361400	363000	361500	346900	341600	354600
15	347600	347900	352300	357600	362700	360700	361300	363800	361100	346600	341400	354200
16	347700	348000	352400	358100	362800	361000	361300	364300	360500	346400	341200	353600
17	347800	348200	352400	358500	362700	360600	361100	365000	360000	346200	341100	353000
18	347900	348400	352400	358700	362600	360300	361200	365800	359500	345900	340900	352400
19	348000	348600	352600	358900	362700	360300	361000	366600	359100	345600	340800	352600
20	348100	349000	352800	359200	362700	360300	361000	367100	358400	345400	340600	352000
21	348100	349500	353100	359400	362700	360000	360700	368200	359000	345300	340600	351100
22	347900	349500	353400	359700	362700	359900	360700	368800	358600	345100	340500	350500
23	347800	349300	353900	359800	362700	360000	360600	368900	358000	345000	340400	350300
24	347700	349600	353900	359900	362700	359800	360500	369000	357400	344900	340600	350100
25	347700	349700	353900	360000	362500	359600	361400	369000	356900	344600	340400	350300
26 27 28 29 30 31	347700 347700 347800 347900 348200 348100	349800 349900 349900 349900	354100 354200 355100 355400 355400 355700	360100 360300 360300 360500 360700 360600	362400 362400 362200 362200	359900 360800 361600 362000 362100 362200	361100 361100 361100 360900 360900	368800 368700 368600 368300 368000 367600	356300 355700 355000 354300 353600	344400 344300 344100 343900 343700 343500	340200 340000 339900 339700 339600 339300	350200 350200 350200 350300 354100
MAX	348200	349900	355700	360700	362800	362200	362600	369000	367000	353100	343200	355400
MIN	347400	347900	349900	355800	360700	359600	360500	360300	353600	343500	339300	338600
(†)	904.77	904.99	905.73	906.35	906.56	906.55	906.39	907.23	905.47	904.17	903.63	905.53
(‡)	+100	+1800	+5800	+4900	+1600	0	-1300	+6700	-14000	-10100	-4200	+14800

CAL YR 1979 MAX 412600 MIN 347400 WTR YR 1980 MAX 369000 MIN 338600 +6100

[†] Elevation, in feet, at end of month. ‡ Change in contents, in acre-feet.

319 08167700 CANYON LAKE NEAR NEW BRAUNFELS, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1969 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
APR 29	1335	415	8.2	12.5	10.1	95	200	20	49	19
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
APR 29	10	.3	1.8	220	0	23	18	.2	11	240

08167800 GUADALUPE RIVER AT SATTLER, TX

LOCATION.--Lat 29°51'32", long 98°10'47", Comal County, hydrologic Unit 12100202, on right bank 200 ft (61 m) upstream from Horseshoe Falls, 0.8 mi (1.3 km) north of Sattler, 1.8 mi (2.9 km) downstream from Canyon Dam, 2.3 mi (3.7 km) upstream from Heiser Hollow, 11.2 mi (18.0 km) north of New Braunfels, and at mile 301.2 (484.6 km).

DRAINAGE AKEA.--1,436 mi2 (3,719 km2), of which 1,432 mi2 (3,709 km2) is above Canyon Dam.

PEKIOD OF RECORD .-- March 1960 to current year.

REVISED RECORDS. -- WSP 2123: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 742.24 ft (226.235 m) National Geodetic Vertical Datum of 1929 (Corps of Engineers bench mark).

REMARKS.--Records good. Flow completely regulated since July 21, 1962, by Canyon Lake (station 08167700) 1.8 mi (2.9 km) upstream. Small diversions above station for irrigation. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--17 years (water years 1962-80) since regulation began at Canyon Lake, 391 $\rm tt^3/s$ (11.07 $\rm m^3/s$), 283,300 acre-ft/yr (349 $\rm hm^3/yr$).

EXTREMES FOR PERIOD OF kECOkD.--Maximum discharge, 20,800 ft 3 /s (589 m 3 /s) Oct. 29, 1960, gage height, 12.20 ft (3.719 m). Maximum discharge since closure of Canyon Dam on July 21, 1962, 5,850 ft 3 /s (166 m 3 /s) Aug. 5, 1978, gage height, 8.31 ft (2.533 m); no flow July 31 to Aug. 6, 1962 (result of closure of Canyon Dam), and part of Jan. 29, 30, Feb. 1, 1965 (result of closure while constructing present control).

EXTREMES OUTSIDE PERIOD OF RECORD,--Flood in July 1869 (stage unknown) has not been exceeded since that date; flood in July 1900 (stage unknown) exceeded 39 ft (11.9 m); maximum stage since at least 1904, 39 ft (11.9 m) in July 1932 and June 1935, from information by local residents.

EXTREMES FOR CURRENT YEAR.--haximum discharge, 476 ft 3 /s (13.5 m 3 /s) Sept. 19, gage height, 5.51 ft (1.679 m); minimum, 45 ft 3 /s (1.27 m 3 /s) Aug. 31.

		DISC	HARGE, IN	CUBIC FE	ET PER SE	COND, WAT	ER YEAR (OCTOBER 19	979 TO SEP	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	218	93	90	92	92	159	162	157	313	322	52	50
2	140	93	90	92	92	159	159	157	313	322	52	48
3 4	92	93	90	92	92	159	159	157	313	322	52	48
4	92	93	90	92	91	159	159	157	313	322	52	48
5	92	93	90	92	90	159	159	157	313	322	52	48
6	92	93	90	92	90	159	159	157	313	322	52	51
7	92	95	90	92	90	159	159	157	313	256	52	60
8	92 92	95	90	92	90	159	159	157	313	206	52	53
10	93	95 95	90 90	92	90	159	159	157	313	157	52	52
	93	95	90	92	90	159	159	157	313	110	52	52
11	93	95	90	92	90	159	159	157	313	104	52	284
12	93	95	90	92	90	161	159	157	313	104	52	470
13	93	95	90	92	90	162	159	166	313	104	52	470
14	93	95	90	92	111	162	154	158	313	93	52	470
15	93	93	90	92	161	162	141	158	313	79	52	470
16	93	90	90	92	162	162	169	157	313	79	52	470
17	93	90	90	92	162	162	162	157	313	79	51	470
18	93	90	90	92	162	148	155	157	313	79	51	470
19	93	90	90	92	162	157	156	157	313	79	51	476
20	93	90	90	92	162	159	155	159	313	79	51	476
21	93	90	90	92	162	159	154	162	329	66	51	476
22	93	90	90	92	162	159	157	242	319	53	51	376
23	93	90	91	92	162	159	157	313	318	53	51	197
24	95	90	92	92	162	159	157	313	318	53	51	197
25	95	90	92	92	162	159	158	313	318	53	51	198
26	95	90	92	92	162	159	157	313	318	53	51	198
27	95	90	92	92	162	162	157	313	318	53	51	197
28	95	90	93	92	162	162	157	313	318	53	51	197
29	95	90	92	92	159	162	157	313	322	52	51	197
30	95	90	92	92		162	157	313	322	52	51	197
31	93		92	92		162		313		52	51	
TOTAL	3062	2761	2808	2852	3714	4948	4730	6374	9460	4133	1597	7466
MEAN	98.8	92.0	90.6	92.0	128	160	158	206	315	133	51.5	249
MAX	218	95	93	92	162	162	169	313	329	322	52	475
MIN	92	90	90	92	90	148	141	157	313	52	51	48
AC-FT	6070	5480	5570	5660	7370	9810	9380	12640	18760	8200	3170	14810

CAL YR 1979 TOTAL 295102 MEAN 808 MAX 5490 MIN 88 AC-FT 585300 WTR YR 1980 TOTAL 53905 MEAN 147 MAX 476 MIN 48 AC-FT 106900

08168500 GUADALUPE RIVER ABOVE COMAL RIVER AT NEW BRAUNFELS, TX

LOCATION.--Lat 29°42'53", long 98°06'35", Comal County, Hydrologic Unit 12100202, on right bank at New Braunfels, 1.1 mi (1.8 km) upstream from Comal River, 21.9 mi (35.2 km) downstream from Canyon Lake, and at mile 281.1 (452.3 km).

DRAINAGE AREA. -- 1,518 mi2 (3,932 km2).

PERIOD OF RECORD .-- December 1927 to current year.

REVISED RECORDS. -- WSP 898: 1935. WSP 1562: 1932. WSP 2123: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 586.65 ft (178.811 m) National Geodetic Vertical Datum of 1929.

MARKS.--Records good. Small diversions for irrigation below station 08167800 and above this station. Since July 21, 1962, flow is largely regulated by Canyon Lake (station 08167700) 21.9 mi (35.2 km) upstream. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--34 years (water years 1929-62) prior to regulation by Canyon Lake, $372 \text{ ft}^3/\text{s}$ (10.54 m³/s), 269,500 acre-ft/yr (332 hm³/yr); 18 years (water year 1963-80) regulated, 485 ft³/s (13.74 m³/s), 351,400 acre-ft/yr (433 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 101,000 ft³/s (2,860 m³/s) June 15, 1935, gage height, 32.95 ft (10.043 m); no flow July 8, 9, July 17 to Aug. 20, 1956.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1845, 38 ft (11.6 m) July 8, 1869, and in December 1913, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,770 ft 3 /s (50.1 m 3 /s) June 21 at 0900 hours, gage height, 3.66 ft (1.116 m); minimum, 70 ft 3 /s (1.982 m 3 /s) Aug. 31.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES JUN JUL AUG SEP DAY OCT NOV DEC JAN FEB MAR APR MAY 392 175 75 75 224 221 79 ---TOTAL 80.5 MEAN MAX MIN AC-FT

CAL YR 1979 TOTAL WTR YR 1980 TOTAL MIN 134 AC-FT MEAN 976 MAX AC-FT MEAN 201 MAX MIN

08169000 COMAL RIVER AT NEW BRAUNFELS, TX

LOCATION.--Lat 29°42'21", long 98°07'20", Comal County, Hydrologic Unit 12100202, on right bank 200 ft (61 m) upstream from San Antonio Street viaduct in New Braunfels and 1.1 mi (1.8 km) upstream from mouth.

DRAINAGE AREA.--130 mi² (337 km²). Normal flow of river comes from springs; drainage area not applicable.

PERIOD OF RECORD. -- 1882 to current year (1882 to November 1927, discharge measurements only).

REVISED RECORDS .-- WSP 2123: Drainage area.

GAGE.--Water-stage recorder. Concrete control since Oct. 1, 1955. Datum of gage is 582.80 ft (177.637 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. The flow from Comal Springs emerges from the Edwards and associated limestones in the Balcones Fault Zone. Except during periods of rainfall, flow of river is primarily from Comal Springs about 1.0 mi (1.6 km) upstream. Diurnal fluctuations from steam powerplant 0.5 mi (0.8 km) upstream. Flow is affected at times by discharge from flood-detention pools of five floodwater-retarding structures with combined detention capacity of 17,580 acre-ft (21.7 hm³). These structures control runoff from 74.6 mi² (193 km²). Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--48 years (water years 1933-80), 299 ft^3/s (8.468 m^3/s), 216,600 acre-ft/yr (267 hm^3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 60,800 ft 3 /s (1,720 m 3 /s) May 11, 1972, gage height, 36.55 ft (11.140 m), from floodmark, from rating curve extended above 13,000 ft 3 /s (368 m 3 /s) on basis of contracted-opening measurements on Blieders and Dry Comal Creeks and unit rainfall-runoff studies; no flow from Comal Springs from June 13 to Nov. 3, 1956.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood information begins with flood of July 8, 1869, which reached a stage of 36.91 ft (11.250 m), from painted and dated marks in old Remmert Brewery 0.5 mi (0.8 km) downstream; the flood of Oct. 17, 1870, reached a stage of 37.65 ft (11.476 m) at same site (probably some backwater from Guadalupe River).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 983 ft³/s (27.8 m³/s) Sept. 7 at 0400 hours gage height, 5.48 ft (1.670 m), no peak above base of 1,100 ft³/s (31.2 m³/s); minimum daily, 184 ft³/s (5.21 m³/s) Aug. 1, 4-7.

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

		DISC	HARGE, IN	CUBIC FE		EAN VALUES		CIUBER 19	79 10 SEP	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	396	350	345	365	355	335	322	290	322	222	184	215
2	386	350	345	365	355	330	317	286	317	222	191	229
2 3 4	385	350	345	365	355	330	317	282	308	222	187	219
4	385	350	345	365	355	330	322	290	299	219	184	219
5	380	350	345	365	355	330	312	290	304	222	184	204
6	380	350	345	365	355	330	317	286	294	219	184	251
7	380	345	345	365	350	330	322	290	304	215	184	398
8	380	340	345	365	355	330	312	290	299	204	187	266
9	375	345	345	365	355	330	308	286	299	201	194	252
10	380	345	350	365	350	330	308	294	299	208	215	242
11	370	340	345	365	350	330	308	294	299	204	208	242
12	370	345	355	360	350	330	299	299	294	204	204	234
13	375	345	355	360	350	322	317	340	286	208	215	242
14	375	338	350	360	350	322	312	345	290	201	219	246
15	370	345	350	360	355	322	312	345	290	191	215	246
16	370	345	350	365	355	330	299	326	278	194	222	242
17	370	345	350	360	355	322	299	322	274	190	226	246
18	365	345	350	360	355	322	299	322	266	187	226	242
19	360	345	345	360	350	322	299	326	266	191	222	238
20	370	345	350	370	350	317	299	317	262	191	222	242
21	360	345	355	360	345	322	294	322	360	191	222	246
22	365	345	355	396	345	317	294	317	282	187	215	242
23	365	345	365	370	345	317	294	312	270	194	219	242
24	355	350	360	365	340	321	290	317	258	194	219	238
25	355	350	360	365	340	317	308	322	254	194	219	242
26	360	345	360	365	330	322	286	317	254	197	208	242
27	355	345	360	365	340	330	290	322	242	197	211	250
28	360	345	446	365	340	322	295	317	246	191	219	250
29	350	345	385	360	340	317	286	317	246	191	211	250
30	355	345	370	360		322	286	312	238	187	219	278
31	355		365	355		317		317		187	222	
TOTAL	11457	10373	11036	11296	10125	10068	9123	9612	8500	6225	6457	7395
MEAN	370	346	356	364	349	325	304	310	283	201	208	247
MAX	396	350	446	396	355	335	322	345	360	222	226	398
MIN	350	338	345	355	330	317	286	282	238	187	184	204
AC-FT	22720	20570	21890	22410	20080	19970	18100	19070	16860	12350	12810	14670

CAL YR 1979 TOTAL 147589 MEAN 404 MAX 766 MIN 338 AC-FT 292700 WTR YR 1980 TOTAL 111667 MEAN 305 MAX 446 MIN 184 AC-FT 221500 323

08169580 GUADALUPE RIVER BELOW NEW BRAUNFELS, TX

LOCATION.--Lat 29°40'00", long 98°04'14", Comal County, Hydrologic Unit 12100202, in Lake Dunlap, 8 mi (13 km) southeast of New Braunfels, and 15 mi (24 km) downstream from Interstate Highway 35 bridge.

PERIOD OF RECORD. -- Periodic chemical and biochemical analyses: January 1968 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

		CRO-	PH A W	MPER- C TURE, ATER EG C)	DXYGEN, DIS- SOLVED (MG/L)	DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND BIOCHE UNINHI 5 DAY (MG/L)), HA M NE B (M	RD- N SS NO G/L BO S (ARD- NESS, NCAR- NATE MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
NOV 15 14	442	525	7.5	19.5	9.0	99	1.	1	260	30	76
JAN 03 15	505	520	8.1	17.5	9.6	100	1.	2	230	13	69
MAR 25 12	255	518	8.0	20.5	9.3	105		9	230	15	65
	100	511	7.9	22.5	8.5	99	1.	2	240	29	69
	210	408	8.0	31.5	>20.0	<274	20		170	30	40
SEP 02 13	310	479	8.4	29.0	15.9	209	6.	6	190	14	51
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS SIUM DIS- SOLVE (MG/I AS K)	1, BICAR BONAT ED (MG/ AS	E CAR L BONA (MC	TE S	LFATE DIS- OLVED MG/L SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	(MG	E, S- VED /L
NOV 15	17	16	.4	1.	7 2	80	0	25	24		.2
JAN 03	15	11	.3	1.		70	0	25	17		.2
MAR	16	13	.4	1.		60	0	24	19		.2
25 APR 29	17	15	.4	1.		60	0	27	20		.2
JUL 18	17	17	.6	1.		70	Ö	24	36		
SEP									27		
02	16	19	.6	1.	.5 2	10	4	22	21		.3
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO GEN, NITRIT TOTAL (MG/I AS N)	GEN TE NO2+N TOTA (MG/	GE O3 AMMC L TOT L (MC	CN, ONIA OR CAL T C/L (GEN, GANIC OTAL MG/L S N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHO	US, AL /L
NOV 15	12	310	1.2		02 1.	2	.08	.44	.52	0 -01	070
JAN 03	11	283	.64			70	.06	.85	.91		060
MAR 25	10	277	1.1		03 1.		.15	.68	.83		070
APR 29	11	289	.91	.0		92	.06	.63	.69		060
JUL 18	11	230	.00	.0		00	.03	1.6	1.6		180
SEP 02	8.7	253	.11	.0		12	.40	.70	1.1		100

08170000 SAN MARCOS RIVER SPRING FLOW AT SAN MARCOS, TX

LOCATION.--Lat 29°52'06", long 97°55'38", Hays County, Hydrologic Unit 12100203, on left bank 0.7 mi (1.1 km) downstream from bridge on Interstate Highway 35 and U.S. Highway 81, 1.2 mi (1.9 km) southeast of courthouse in San Marcos, and 2.1 mi (3.4 km) upstream from Blanco River.

DRAINAGE AREA.--93.0 mi² (240.9 km²). Normal flow of river comes from springs, drainage area of stream not applicable.

PERIOD OF RECORD.--May 1956 to current year. June 1915 to January 1916, March 1916 to September 1921, and May to September 1956, published as San Marcos River at San Marcos; records include some surface runoff. Periodic measurements of spring flow were made at this location outside periods of records since Nov. 14, 1894, and are published as miscellaneous measurements.

REVISED RECORDS. -- WSP 1923: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 536.82 ft (163.623 m) National Geodetic Vertical Datum of 1929.

June 10, 1915, to Jan. 19, 1916, nonrecording gage at site 1.2 mi (1.9 km) upstream, and Mar. 13, 1916, to Sept. 7, 1921, water-stage recorder near present site, datum relations unknown.

REMARKS.--Records good. Flow slightly regulated by utilities dam about 1.5 mi (2.4 km) upstream. Entire flow of river is from San Marcos Springs, about 1.8 mi (2.9 km) upstream, except during period of local runoff. Springs emerge from the Edwards and associated limestones in the Balcones Fault Zone. Small diversion for operation of State fish hatchery, some of which is returned above gage. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--24 years (water years 1957-80), 168 ft³/s (4.758 m³/s), 121,700 acre-ft/yr (150 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily spring discharge, 316 ft 3 /s (8.95 m 3 /s) June 12, 1975; maximum discharge, 76,600 ft 3 /s (2,170 m 3 /s) May 15, 1970, gage height, 35.12 ft (10.705 m); minimum daily spring discharge, 46 ft 3 /s (1.30 m 3 /s) Aug. 15, 16, 1956.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1913, 38.6 ft (11.77 m) Sept. 10, 1921 (from floodmark, backwater from Blanco River), present datum.

EXTREMES FOR CURRENT YEAR.--Maximum daily spring discharge, 169 ft 3 /s (4.79 m 3 /s) Oct. 20; maximum gage height, 7.95 ft (2.423 m) May 13 at 2000 hours (flood runoff); minimum daily spring discharge, 111 ft 3 /s (3.14 m 3 /s) May 1, 2, 5, 6.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

		0100	minos, In	00010 11.		AN VALUES	DI TEHN O	OTOBER 17	77 10 001	I LI I DE L'OL	00	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	165 165 163 163 166	152 152 151 151 151	143 147 149 146 144	140 140 141 139 139	134 135 134 135 134	133 133 134 135 134	119 119 119 117 115	111 111 113 113 111	152 152 151 151 151	143 144 143 139 139	129 131 131 132 132	121 122 121 120 117
6 7 8 9	168 166 166 165 166	147 147 145 146 144	143 140 136 136 141	140 138 138 138 138	133 132 132 133 133	134 134 132 132 130	116 116 116 118 118	111 113 114 114 117	151 152 151 149 150	141 142 141 140 137	131 132 132 133 135	119 127 133 135 138
11 12 13 14	168 168 168 168	143 141 140 138 140	146 144 144 140 142	138 138 140 136 136	132 131 131 133 132	130 130 129 128 127	118 118 118 117 117	117 118 118 121 138	149 148 147 147 147	136 138 136 138 138	135 135 135 135 136	140 140 137 135 135
16 17 18 19 20	166 165 165 166 169	143 149 154 154 152	141 135 138 138 136	136 137 139 139 140	135 136 136 136 136	127 127 126 126 124	117 116 114 114 113	151 152 150 150 146	147 146 144 145 143	138 137 134 135 133	135 135 135 130 129	135 133 134 135 137
21 22 23 24 25	168 166 163 160 159	149 147 147 143 144	136 135 136 136 136	138 138 136 136 137	136 136 138 138 137	122 121 122 120 120	112 112 113 114 114	147 151 157 160 162	147 151 154 152 148	133 132 133 132 132	131 129 127 127 128	138 136 135 135 135
26 27 28 29 30 31	162 161 160 157 155 152	145 146 143 142 143	136 137 138 138 139 140	137 135 135 135 135 135	136 138 140 138	120 121 122 119 121 120	116 118 116 114 112	160 157 155 152 152 154	146 146 147 149 146	133 132 131 131 129 130	128 125 125 126 127 126	135 136 138 138 138
TOTAL MEAN MAX MIN AC-FT	5087 164 169 152 10090	4389 146 154 138 8710	4336 140 149 135 8600	4264 138 141 132 8460	3910 135 140 131 7760	3933 127 135 119 7800	3476 116 119 112 6890	4196 135 162 111 8320	4459 149 154 143 8840	4220 136 144 129 8370	4057 131 136 125 8050	3978 133 140 117 7890

CAL YR 1979 TOTAL 73069 MEAN 200 MAX 277 MIN 135 AC-FT 144900 WTR YR 1980 TOTAL 50305 MEAN 137 MAX 169 MIN 111 AC-FT 99780

325

08171000 BLANCO RIVER AT WIMBERLEY, TX

LOCATION.--Lat 29°59'39", long 98°05'19", Hays County, Hydrologic Unit 12100203, on left bank at downstream side of highway, near left end of bridge on Ranch Road 12, 0.3 mi (0.5 km) southeast of Wimberley, 2,200 ft (671 m) downstream from Cypress Creek, and at mile 29.0 (46.7 km).

DRAINAGE AREA .-- 355 mi2 (919 km2).

CAL YR 1979 TOTAL 93584 WTR YR 1980 TOTAL 20206 MEAN 256

MEAN

MAX 3080

610

55.2 MAX

PERIOD OF RECORD. -- August 1924 to September 1926, June 1928 to current year.

REVISED RECORDS.--WSP 1562: 1929, 1930-31(M), 1935-36(M), 1938(M), 1941-42(M), 1947(M), 1949(M). WSP 2123: Drainage area.

GAGE.--Water-stage recorder and crest-stage gages. Datum of gage is 797.23 ft (242.996 m) National Geodetic Vertical Datum of 1929. Aug. 6, 1924, to Sept. 30, 1926, nonrecording gage at site 1,030 ft (314 m) upstream at datum 5.00 ft (1.524 m) higher. Recording gage June 6, 1928, to June 12, 1975, at site 1,000 ft (305 m) upstream at datum 5.00 ft (1.524 m) higher.

REMARKS.--Records good. Numerous small diversions above station. Flow is affected at times by discharge from flood-detention pool of a floodwater-retarding structure with a detention capacity of 185 acre-ft (228,000 m³). This structure controls runoff from 0.61 mi² (1.58 km²) in the Town Creek drainage basin.

AVERAGE DISCHARGE.--54 years (water years 1925-26, 1929-80), 123 ft^3/s (3.483 m^3/s), 4.71 in/yr (120 mm/yr), 89,110 acre-ft/yr (110 hm^3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 113,000 ft 3 /s (3,200 m 3 /s) May 28, 1929, gage height, 33.9 ft (10.33 m), present site and datum, from floodmarks, from rating curve extended above 30,000 ft 3 /s (850 m 3 /s) on basis of slope-area measurements of 95,000 and 113,000 ft 3 /s (2,690 and 3,200 m 3 /s); minimum, 0.6 ft 3 /s (0.017 m 3 /s) Aug. 16, 1956.

Maximum stage since at least 1869, that of May 28, 1929.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in July 1869 reached a stage of 26 ft (7.9 m), from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,260 (35.7 m 3 /s) May 21 at 1630 hours, gage height, 5,89 ft (1.795 m), no peak above base of 1,800 ft 3 /s (51.0 m 3 /s); minimum daily, 18 ft 3 /s (0.510 m 3 /s) Aug. 31, Sept. 1.

		DISC	HARGE, IN	CUBIC FE		COND, WAT AN VALUES	ER YEAR C	OCTOBER 19	79 TO SEP	TEMBER 19	30	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	74 76 76 70 66	52 53 54 55 53	47 48 49 50 50	44 45 45 43 41	37 40 39 38 40	37 32 34 35 34	74 68 67 62 63	54 52 49 48 48	114 108 105 99 94	45 44 44 46 49	28 29 27 24 26	18 19 19 19
6 7 8 9	71 67 67 67 65	52 52 52 54 50	51 50 49 46 47	41 41 41 41 41	43 47 49 44 40	31 33 32 32 31	63 65 60 59 60	47 51 50 45 48	94 91 89 89 86	50 49 44 45 46	24 24 23 25 35	28 79 67 53 43
11 12 13 14 15	68 71 66 61 59	50 48 48 48 48	48 53 54 46 44	39 38 38 40 38	40 40 41 43 42	32 39 33 31 33	60 55 62 68 68	52 58 90 167 164	81 79 77 73 70	47 47 45 43 41	37 26 26 25 24	44 40 36 33 32
16 17 18 19 20	59 57 56 56 56	48 50 52 51 53	43 38 36 38 39	41 47 42 39 39	46 35 37 37 38	33 34 31 31 33	64 61 57 54 52	150 134 124 137 140	65 62 60 59 58	41 43 39 37 33	24 23 23 20 20	31 31 28 160 58
21 22 23 24 25	56 54 52 53 54	52 47 49 50 53	39 43 43 43 42	37 42 43 39 40	39 41 41 50 56	31 32 32 32 32 31	52 51 52 50 77	610 378 250 208 185	62 112 72 68 66	34 36 39 41 45	20 20 19 20 21	45 40 38 37 37
26 27 28 29 30 31	55 55 56 55 59 54	52 51 47 45 46	41 40 46 53 44 44	40 39 39 39 39 37	47 43 43 42	31 92 120 97 91 82	60 56 57 54 54	167 152 142 134 128 122	63 62 57 51 48	49 41 32 32 31 31	21 20 20 19 19	36 39 35 36 44
TOTAL MEAN MAX MIN CFSM IN. AC-FT	1911 61.6 76 52 .17 .20 3790	1515 50.5 55 45 .14 .16 3010	1404 45.3 54 36 .13 .15 2780	1258 40.6 47 37 .11 .13 2500	1218 42.0 56 35 .12 .13 2420	1332 43.0 120 31 .12 .14 2640	1805 60.2 77 50 .17 .19 3580	4184 135 610 45 .38 .44 8300	2314 77.1 114 48 .22 .24 4590	1289 41.6 50 31 .12 .14 2560	730 23.5 37 18 .07 .08 1450	1246 41.5 160 18 .12 .13 2470

MIN 36 MIN 18 CFSM .72

CFSM .16

IN 9.81 IN 2.12 AC-FT 185600

40080

AC-FT

08171300 BLANCO RIVER NEAR KYLE, TX

LOCATION.--Lat 29°58'45", long 97°54'35", Hays County, Hydrologic Unit 12100203, on left bank 800 ft (240 m) downstream from Tarbutton Ranch House (Hatchett Ranch), 2.2 mi (3.5 km) southwest of Kyle, 4.2 mi (6.8 km) downstream from Halifax Creek, and 6.3 mi (10.1 km) upstream from bridge on U.S. Highway 81.

DRAINAGE AREA . - - 412 mi2 (1,067 km2).

PERIOD OF RECORD .-- May 1956 to current year.

REVISED RECORDS. -- WSP 1923: 1957-58, 1960(M). WSP 2123: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 620.12 ft (189.013 m) Corps of Engineers datum.

REMARKS.--Records good. Small diversions above station for irrigation. Most of the low flow of the Blanco River enters the Edwards and associated limestones in the Balcones Fault Zone which crosses the basin upstream from this station and below the station at Wimberley. For statement regarding regulation by Soil Conservation Service floodwater-retarding structures, see station 08171000. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--24 years (water years 1957-80), 152 ft³/s (4.305 m³/s), 5.01 in/yr (127 mm/yr), 110,100 acre-ft/yr (136 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 98,000 ft 2 /s (2,780 m 3 /s) May 2, 1958, gage height, 36.3 ft (11.06 m); from floodmark, from rating curve extended above 37,000 ft 3 /s (1,050 m 3 /s) on basis of slope-area measurement of 139,000 ft 3 /s (3,940 m 3 /s) and slope-conveyance study; no flow at times in 1956-57, 1963-65, 1967, 1971, and 1978.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1882, about 40 ft (12.2 m) in May 1929, from information by local residents, discharge, 139,000 ft³/s (3,940 m³/s). Flood of Sept. 11, 1952, reached a stage of 38.0 ft (11.58 m), discharge, 115,000 ft³/s (3,260 m³/s).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,140 ft 3 /s (32.3 m 3 /s) May 21 at 2100 hours, gage height, 8.54 ft (2.603 m), no peak above base of 2,500 ft 3 /s (70.8 m 3 /s); minimum, 2.8 ft 3 /s (0.079 m 3 /s) Sept. 5, 6.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES DAY OCT NOV DEC TAN FEB MAR APR MAY JUN JUL AUG SEP 7.7 3.1 3.3 6.7 6.5 3.0 6.9 4.6 70 6.8 8.0 9.7 29 28 21 23 67 16 9.5 8.5 7.3 7.0 7.6 29 125 9.6 29 4.9 27 33 33 28 255 57 4.4 3.6 4.3 32 32 130 36 9.6 3.9 3.6 ___ 8.6 3.1 TOTAL 509.1 216.3 715.6 6.98 29.3 31.5 27.4 57.4 23.9 MEAN 31.0 30.0 26.6 35.0 16.4 28 QQ 8.6 3.1 3.0 MIN .07 .04 CFSM .08 .07 .07 .09 .31 .02 .06 .16 .02 .09 IN. .09 .08 .09 .08 AC-FT

AC-FT 184400 -62 IN 8.39 IN 1.22 CAL YR 1979 TOTAL 92959.0 MEAN MAX 3260 MIN 26 CFSM 36.9 MIN 3.0 CFSM .09 AC-FT WTR YR 1980 TOTAL 13503.0 MEAN MAX

08172000 SAN MARCOS RIVER AT LULING, TX

LOCATION.--Lat 29°39'54", long 97°38'59", Caldwell-Guadalupe County line, Hydrologic Unit 12100203, on left bank 390 ft (119 m) downstream from bridge on State Highway 80, 1.0 mi (1.6 km) south of U.S. Post Office at Luling, and 9.4 mi (15.1 km) upstream from Plum Creek.

DRAINAGE AREA .-- 838 mi2 (2,170 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- April 1939 to current year.

REVISED RECORDS.--WSP 958: 1940. WSP 1312: 1940(M), 1945(M), 1947(M). WSP 2123: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 322.05 ft (98.161 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Flow is affected at times by discharge from flood-detention pools of 17 floodwater-retarding structures with a combined detention capacity of 18,250 acre-ft (22.5 hm³). These structures control runoff from 71.3 mi² (184.7 km²) in the Town and York Creeks drainage basins. National Weather Service rain gage and gage-height telemeters at station.

AVERAGE DISCHARGE.--41 years, 369 ft3/s (10.45 m3/s), 267,300 acre-ft/yr (330 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $57,000 \text{ ft}^3/\text{s}$ (1,610 m³/s) Sept. 12, 1952, gage height, 34.95 ft (10.653 m); minimum daily, 43 ft $^3/\text{s}$ (1.22 m $^2/\text{s}$) Aug. 12, 1951.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1859, 40.4 ft (12.31 m) in 1869 or 1870, from information by State Department of Highways and Public Transportation. Flood of May 29, 1929, reached a stage of 37.1 ft (11.31 m) and is the second highest known.

EXTREMES FOR CURKENT YEAR. -- Maximum discharge, 6,460 ft 3 /s (183 m 3 /s) Sept. 7 at 1400 hours, gage height 25.89 ft (7.891 m), no other peak above base of 4,000 ft 3 /s (113 m 3 /s); minimum discharge, 80 ft 4 /s (2.266 m 3 /s) April 27.

DISCHARGE IN CHRIC FEET PER SECOND WATER YEAR OCTORER 1979 TO SERTEMBER 1980

		DISC	CHARGE, IN	CUBIC F		ECOND, WAT EAN VALUES		OCTOBER 19	79 TO SEP	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	224 221 215 212 218	202 202 202 202 202 202	194 198 202 204 200	195 187 190 187 184	180 183 182 179 180	175 174 172 170 170	200 199 197 187 178	152 151 147 148 146	260 251 243 236 230	164 160 157 155 152	117 117 115 117 121	118 119 120 118 116
6 7 8 9	224 220 218 217 214	202 201 197 199 197	192 192 191 190 192	183 183 182 182 183	177 178 188 193 187	171 171 170 168 168	172 168 164 158 158	140 146 160 165 154	222 218 214 210 206	152 150 149 147 146	119 125 127 127 135	121 3040 474 216 201
11 12 13 14 15	214 218 219 217 215	198 194 193 190 188	202 207 213 213 208	183 180 179 179 180	183 180 176 175 176	168 166 166 164 166	156 155 165 161 160	152 150 164 697 501	205 202 198 194 192	144 140 139 138 137	147 138 129 129 128	183 168 156 149 142
16 17 18 19 20	213 211 212 211 212	192 201 202 212 210	202 197 191 190 190	176 179 177 182 182	178 183 182 184 182	166 164 163 163 166	162 161 159 155 155	667 502 394 1030 368	191 187 181 178 176	135 134 131 129 129	129 128 128 126 123	142 138 137 143 143
21 22 23 24 25	211 205 205 202 200	221 214 204 202 204	191 192 198 205 198	188 205 232 197 190	178 175 172 173 171	162 158 160 159 167	153 151 150 149 167	1030 883 663 452 387	177 208 188 204 186	131 133 138 130 126	119 122 119 119 123	188 179 164 156 149
26 27 28 29 30 31	200 201 202 204 211 208	202 201 198 193 192	191 191 199 290 240 210	184 181 179 181 181 180	174 174 175 175	165 173 203 204 234 206	185 131 161 157 152	351 326 305 293 276 265	177 174 172 170 167	125 126 123 122 121 118	119 118 118 119 119	167 186 186 163 176
TOTAL MEAN MAX MIN AC-FT	6574 212 224 200 13040	6017 201 221 188 11930	6273 202 290 190 12440	5751 186 232 176 11410	5193 179 193 171 10300	5352 173 234 158 10620	4926 164 200 131 9770	11365 367 1030 140 22540	6017 201 260 167 11930	4281 138 164 118 8490	3839 124 147 115 7610	7858 262 3040 116 15590

CAL YR 1979 TOTAL 209338 MEAN 574 MAX 4560 MIN 188 AC-FT 415200 WTR YR 1980 TOTAL 73446 MEAN 201 MAX 3040 MIN 115 AC-FT 145700

328

08172000 SAN MARCOS RIVER AT LULING, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: September 1961 to April 1966, October 1968 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT 22	1305	206	603	24.5	260	18	76	18	19
DEC 03	1154	202	596	11.5	290	57	90	17	16
JAN 14	1110	177	601	14.5	290	49	82	20	19
FEB 25	1222	170	587	18.0	260	35	73	18	20
APR 07	1330	169	497	21.5	200	37	49	19	27
MAY 19	1450	1130	404	23.5	150	30	49	7.5	21
JUL 03	1110	160	562	30.0	250	28	72	17	18
SEP 22	1245	171	584	27.5	260	19	73	18	19
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
OCT 22	.5	2.1	300	0	33	31	.3	11	338
DEC 03	.4	1.7	290	0	30	35	.2	9.8	343
JAN 14	.5	1.8	290	0	32	33	.2	9.5	340
FEB 25	.5	1.7	270	0	44	37	.2	5.6	333
APR 07	.8	1.8	200	0	32	40	.2	11	279
MAY 19	.7	5.1	150	0	35	29	.5	14	235
JUL 03	.5	1.7	270	0	27	34	.2	13	316
SEP 22	.5	1.8	290	0	26	34	.3	12	327

329

08172400 PLUM CREEK AT LOCKHART, TX

LOCATION.--Lat 29°55'22", long 97°40'44", Caldwell County, Hydrologic Unit 12100203, on right bank 548 ft (167 m) upstream from bridge on U.S. Highway 183, 2.7 mi (4.3 km) north of Lockhart, 3.7 mi (6.0 km) upstream from Town Creek, 5.0 mi (8.0 km) downstream from Brushy Creek, and 30.4 mi (48.9 km) upstream from mouth.

DRAINAGE AREA .-- 112 mi2 (290 km2).

TOTAL

MEAN

MAX

MIN AC-FT .00

.000

.00

-00

.00

.000

.00

.00

.00

.000

.00

.00

PERIOD OF RECORD .-- April 1959 to current year.

REVISED RECORDS .-- WSP 2123: Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 431.19 ft (131.427 m) National Geodetic Vertical Datum of 1929. Apr. 30, 1959, to July 25, 1968, at site 548 ft (167 m) downstream at present datum.

REMARKS.--Records good. No known diversion above station. Flow at times is affected by discharge from the flood-detention pools of 17 floodwater-retarding structures with combined detention capacity of 24,850 acre-ft (30.6 hm^3) . These structures control runoff from 67.8 mi^2 (175.6 km^2) above this station. Several observations of hm^3). These structures control runoff from water temperature were made during the year.

AVERAGE DISCHARGE.--21 years, 47.6 ft³/s (1.348 m³/s), 34,490 acre-ft/yr (42.5 hm³/yr).

EXTREMES FOR PERIOD OF RECORD .-- Maximum discharge, 26,600 ft3/s (753 m3/s) Oct. 29, 1960, gage height, 20.62 ft (6.285 m); no flow at times each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1905, 22 ft (6.7 m) in June 1936 at present site; flood in 1951 reached a stage of 20 ft (6.1 m) at present site, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,690 ft 3 /s (76.2 m 3 /s) May 21 at 1430 hours, gage height, 15.08 ft (4.596 m), no other peak above base of 2,000 ft 3 /s (56.6 m 3 /s); no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.03	2.1	8.7	.00	12	.00	.00	.00
2	.00	.00	.00	.00	.03	1.7	5.3	.00	10	.00	.00	.00
3	.00	.00	.00	.00	.03	5.4	2.2	.00	7.5	.00	.00	.00
4	.00	.00	.00	.00	.01	5.5	1.5	.00	5.4	.00	.00	.00
5	.00	.00	.00	.00	.00	3.6	2.0	.00	4.2	.00	.00	.00
6	.00	.00	.00	.00	.00	1.9	2.0	.00	3.5	.00	.00	.00
7	.00	.00	.00	.00	.03	.37	.98	.00	2.7	.00	.00	.00
8	.00	.00	.00	.00	.07	.00	.40	.00	2.1	.00	.00	.00
9	.00	.00	.00	.00	.11	.00	.06	.00	1.3	.00	.00	.00
10	.00	.00	.00	.00	4.8	.11	.00	.00	.96	.00	.00	.14
11	.00	.00	.00	.00	4.8	.20	.00	.00	.60	.00	.00	.02
12	.00	.00	.00	.00	3.1	1.8	.00	.00	.27	.00	.00	.00
13	.00	.00	.00	.00	1.5	.10	.01	27	.05	.00	.00	.00
14	.00	.00	.00	.00	1.0	.00	.00	644	.00	.00	.00	.00
15	.00	.00	.00	.00	.69	.00	.00	415	.00	.00	.00	.00
16	.00	.00	.00	.00	1.1	.02	.00	335	.00	.00	.00	.00
17	.00	.00	.00	.00	9.9	.34	.00	241	.00	.00	.00	.00
18	.00	.00	.00	.00	11	.00	.00	126	.00	.00	.00	.00
19	.00	.00	.00	.00	7.9	.00	.00	88	.00	.00	.00	.00
20	.00	.00	.00	.00	4.9	.00	.00	67	.00	.00	.00	.00
21	.00	.00	.00	.00	3.3	.00	.00	1430	38	.00	.00	.00
22	.00	.00	.00	4.3	2.2	.00	.00	334	48	.00	.00	.00
23	.00	.00	.00	.12	1.1	.00	.00	186	36	.00	.00	.00
24	.00	.00	.00	.00	.60	.00	.00	105	23	.00	.00	.00
25	.00	.00	.00	1.4	.32	.00	.00	77	13	.00	.00	.00
26	.00	.00	.00	1.5	.00	.00	.00	59	6.3	.00	.00	.00
27	.00	.00	.00	.47	.00	18	.00	46	3.2	.00	.00	.00
28	.00	.00	.00	.46	.00	7.5	.00	36	1.4	.00	.00	.00
29	.00	.00	.00	.17	.08	35	.00	27	.50	.00	.00	.00
30	.00	.00	.00	.09		28	.00	20	.06	.00	.00	.00
31	.00		.00	.06		16		16		.00	.00	

195.14

6.29

75

387

23.15

8.7

.00

46

4279.00

138

1430

8490

220.04

7.33

48

436

.00

.00

.00

.000

.000

.005

.14

.00

17 CAL YR 1979 TOTAL WTR YR 1980 TOTAL 16943.32 MEAN 46.4 MIN .00 MIN .00 MAX 940 AC-FT 33610 MEAN 13.1 MAX 1430 4784.66 AC-FT

.28

.00

2.02

11

116

08173000 PLUM CREEK NEAR LULING, TX

LOCATION.--Lat 29°41'58", long 97°36'12", Caldwell County, Hydrologic Unit 12100203, near left bank on downstream side of pier of bridge on county road, 1.2 mi (1.9 km) upstream from West Fork, 1.9 mi (3.1 km) upstream from Southern Pacific Railroad Co. bridge, 2.2 mi (3.5 km) upstream from McNeil Creek, 2.9 mi (4.7 km) northeast of Luling, and at mile 7.5 (12.1 km).

DRAINAGE AREA . - - 309 mi 2 (800 km2) .

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March 1930 to current year.

REVISED RECORDS. -- WSP 1923: 1933. WSP 2123: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 321.57 ft (98.015 m) National Geodetic Vertical Datum of 1929. Prior to Aug. 18, 1976, at datum 5 ft (1.5 m) higher.

REMARKS.--Water-discharge records fair. Low flow is slightly regulated by oilfield operation above station. At end of year, flow from 119 mi² (308 km²) above this station was partly controlled by 27 floodwater-retarding structures with a combined detention capacity of 41,840 acre-ft (51.6 hm³). No known diversion above station.

AVERAGE DISCHARGE.--50 years (water years 1931-80), 104 ft³/s (2.945 m³/s), 75,350 acre-ft/yr (92.9 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 78,500 ft³/s (2,220 m³/s) July 1, 1936, gage height, 30.7 ft (9.36 m), from floodmarks, present datum, from rating curve extended above 37,500 ft³/s (1,060 m³/s); no flow at times.

Maximum stage since at least 1868, that of July 1, 1936.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in December 1913 reached about same stage, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 2,300 ft³/s (65.1 m³/s) and maximum (*):

Date		Time	Disch	arge	Gage	height
			(ft³/s)	(m^3/s)	(ft)	
May	19	1400	*2,940	83.3	20.14	6.139
Sept.	7	1700	2.860	81.0	19.38	5.907

Minimum daily discharge, 0.32 ft 3 /s (0.009 m 3 /s) Sept. 5.

		DISC	CHARGE, IN	CUBIC FE		COND, WAT		OCTOBER 19	79 TO SEP	TEMBER 19	080	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	6.4 5.8 5.7 4.8 4.6	9.9 6.1 5.8 5.8	7.2 7.4 7.5 8.2 8.5	9.7 9.5 9.4 9.4	7.2 7.3 8.2 8.6 7.9	12 15 10 10 9.9	16 14 13 12 10	5.7 6.0 5.4 5.0 4.9	27 22 19 17 15	4.2 3.6 3.1 2.4 2.3	1.6 1.3 1.2 1.2	1.5 1.3 1.3 .78 .32
6 7 8 9	4.9 5.4 6.1 5.5 4.8	6.0 5.9 6.3 6.2 5.8	8.7 8.5 8.6 8.8	9.2 8.4 8.4 8.7 9.0	8.0 8.0 9.7 14	9.5 9.3 9.2 8.6 8.2	9.7 10 8.6 7.5 7.2	4.6 4.8 8.6 12 8.6	13 11 11 10 9.5	2.5 1.9 2.2 1.9	1.0 1.3 1.4 1.5	1.1 1380 241 25 12
11 12 13 14 15	4.8 5.6 6.2 6.1 6.1	6.4 6.8 6.7 7.0	9.4 9.9 13 13	9.4 9.6 9.3 9.9	11 10 10 10 10	8.1 8.0 7.4 6.8 4.5	7.2 6.8 7.0 12 8.6	6.0 5.8 7.6 351 635	8.8 8.1 7.4 6.9 6.5	2.4 2.5 2.3 2.2 2.2	3.6 6.4 3.0 2.5 2.5	6.9 5.7 5.3 4.6 4.3
16 17 18 19 20	5.9 5.9 6.0 5.8 5.7	7.4 7.8 7.9 8.3 8.3	9.4 8.2 7.3 8.2 9.1	10 11 12 11 10	10 13 12 14 15	9.5 7.4 5.8 6.2 6.2	7.6 6.7 6.8 6.7 6.7	529 337 210 2230 727	6.2 5.8 5.7 5.3 5.3	1.8 1.8 1.8 1.6	2.5 2.5 3.4 2.8 2.5	3.9 3.6 3.6 3.6
21 22 23 24 25	5.4 4.9 4.4 5.0 5.5	10 21 9.6 7.8 7.7	9.5 9.8 11 11	13 26 66 21 12	13 13 12 12 10	6.2 5.9 6.5 6.6 6.5	6.6 6.3 6.0 6.0 8.2	1240 1530 435 220 155	4.9 51 53 38 22	1.6 1.7 1.8 1.8	2.0 1.9 1.6 1.6	3.6 3.6 3.5 3.3
26 27 28 29 30 31	5.7 5.7 6.0 6.2 6.8	9.2 8.1 7.5 6.8 6.7	9.4 9.2 9.8 49 27	10 8.7 8.6 8.2 7.7 7.6	9.7 9.9 10 11	6.8 9.0 36 44 23	16 8.2 6.3 5.8 5.0	126 99 76 58 45 33	13 9.7 7.5 5.9 5.1	1.6 1.8 1.8 1.8 1.8	1.3 1.3 1.2 1.3 1.2	9.7 11 15 14 7.4
TOTAL MEAN MAX MIN AC-FT	181.7 5.86 14 4.4 360	231.1 7.70 21 5.8 458	349.5 11.3 49 7.2 693	382.4 12.3 66 7.6 758	309.5 10.7 15 7.2 614	341.1 11.0 44 4.5 677	258.5 8.62 16 5.0 513	9121.0 294 2230 4.6 18090	430.6 14.4 53 4.9 854	65.6 2.12 4.2 1.6 130	60.00 1.94 6.4 .60 119	1784.10 59.5 1380 .32 3540

CAL YR 1979 TOTAL 39434.70 MEAN 108 MAX 2080 MIN 4.4 AC-FT 78220 WTR YR 1980 TOTAL 13515.10 MEAN 36.9 MAX 2230 NIN .32 AC-FT 26810

08173000 PLUM CREEK NEAR LULING, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1967 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1967 to current year. WATER TEMPERATURES: October 1967 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 6,210 micromhos Feb. 27, 1977; minimum daily, 148 micromhos Dec. 1, 1968.
WATER TEMPERATURES: Maximum daily, 35.0°C July 24, 1969; minimum daily, 4.0°C Jan. 4, 1968.

EXTREMES FOR CURRENT YEAR.--SPECIFIC CONDUCTANCE: Maximum daily, 2,150 micromhos July 24; minimum daily, 294 micromhos May 22. WATER TEMPERATURES: Maximum daily, 30.0°C Oct. 1, 2; minimum daily, 13.0°C Feb. 17, Apr. 13.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STRE FLO INST TANE (CF	AM- C W, D AN- A OUS (M	PE- IFIC ON- UCT- NCE ICRO- HOS)	PH FIELD (UNITS)	A'.		HARD- NESS (MG/L AS CACO3)	NE NON BON (M	RD- SS, CAR- ATE G/L CO3)	SO (M	CIUM S- LVED G/L CA)	SI DI SOL (MC	NE- UM, S- VED /L MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	
OCT 22	1005		5.0	1470	8.0		22.0	400		91	1	40	1	3	160	
DEC					0.0											
31 JAN	1500	1	1.	1060			18.0	320		120	1	10	1	0	99	
14	0934	1	0	1510			10.5	430		150	1	50	1	4	140	
MAR 31	1500	1	5	1120			17.0	320		110	1	10	1	2	110	
APR 30 MAY	1500		2.0	1530	4.4		19.0	440		160	1	50	1	5	160	
19	1240	280	0	379	77		23.5	98		42		34		3.2	30	
JUL 03	0925		2.9	1360			27.5	320		58	1	10	1	1	160	
AUG 04	0900		1.2	1990			26.5	440		51	1	50	1	5	280	
SEP 30	1400		4.6	1210			22.0	320		100	1	10	1	2	130	
DATE	SOF	ON	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR BONAT (MG/1 AS HCO3	E CAR- L BONAT (MG)	re /L	SULFAT DIS- SOLVE (MG/L AS SO4	DIS D SOL (MG	E, VED	FLUC RIDI DIS SOL' (MG AS	E, S- VED /L	SILIC DIS- SOLV (MG/ AS SIO2	ED L	SOLI SUM CONS TUEN DI: SOL' (MG	OF II- IS, S- VED	
OCT 22		3.5	5.4	3:	80	0	100	24	0		.5	22			868	
DEC 31		2.4	4.6		40	0	88	18			.4	14			624	
JAN 14		2.9	4.1		50	0	84	26			.4	18			843	
MAR 31		2.7	5.1		60	0	120	15			.4	17			653	
APR 30		3.3	4.4		40	0	120	27			.4	20			907	
MAY						- 6					.2					
JUL		1.3	6.2		68	0	11	7				9			198	
O3 AUG		3.9	6.6		20	0	-				25	18				
O4 SEP		5.8	7.1	4	70	0	110	38	0		.8	19		1	140	
30		3.1	7.1	2	70	0	82	22	0		.4	22			717	

08173000 PLUM CREEK NEAR LULING, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	181.7	1470	852	418	250	121	120	59	400
NOV.	1979	231.1	1430	825	515	240	147	120	74	400
DEC.	1979	349.5	1410	817	771	230	219	120	110	390
JAN.	1980	382.4	1400	809	835	230	237	120	120	390
FEB.	1980	309.5	1490	861	720	250	209	120	102	410
MAR.	1980	341.1	1440	832	767	240	221	120	109	400
APR.	1980	258.5	1480	858	599	250	175	120	84	410
MAY	1980	9121.0	585	336	8280	76	1880	54	1320	180
JUNE	1980	430.6	1020	588	683	150	180	88	102	290
JULY	1980	65.6	1630	945	167	290	52	130	23	430
AUG.	1980	60.00	1720	997	162	320	51	130	22	450
SEPT	1980	1784.10	462	265	1280	57	276	43	208	140
TOTAL		13515.10	**	**	15200	**	3770	**	2330	**
WTD. AV	G.	37	723	417	**	100	**	64	**	210

	SP	ECIFIC CO	NDUCTANCE	(MICROMH		25 DEG. CONCE-DAILY), WATER	YEAR OCTO	BER 1979	TO SEPTEM	BER 1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1540 1500 1520 1380 1540	1450 1320 1350 1510 1310	1500 1470 1460 1450 1490	1540 1420 1430 1410 1490	1540 1220 1530 1460 1560	1440 1470 1540 1550 1500	1200 1060 1560 1140 1450	1530 1620 1480 1170 1500	597 859 1230 1300 1280	1290 1340 1260 1570 1540	1970 1930 1970 1890 2020	1840 1690 1850 1840 1860
6 7 8 9	1340 1540 925 1540 1560	1430 1410 1340 1370 1430	1480 1480 1470 1440 1480	1530 1220 1580 1460 1480	1510 1540 1560 1580 1450	1540 1510 1420 1520 1580	1620 1520 1520 1570 1360	1550 1570 1560 1540 1580	1370 1480 1560 1660 1660	1400 1290 952 1690 1540	2060 2010 1220 1400 1500	1820 350 500 654 836
11 12 13 14 15	1550 1340 1540 1580 1510	1390 1480 1400 1440 1430	1350 1400 1470 1420 1480	1560 1530 1500 1470 1540	1480 1530 1420 1460 1550	1620 1610 1360 1610 1600	1620 1640 1570 1560 1590	1620 1460 1510 750 420	1720 1700 1450 1730 1250	1630 1800 1790 1640 1750	2000 2050 1430 2100 987	1460 1250 1150 1640 1820
16 17 18 19 20	1300 1520 1550 1450 1990	1460 1230 1470 1550 1430	1440 1430 1500 1480 1450	1480 1550 1510 1480 1510	1540 1450 1480 1500 1460	1500 1480 1640 1590 1630	1630 1600 1620 1550 1590	459 475 470 379 1490	428 480 1420 1460 1620	1840 1830 1930 1860 628	1720 1290 1920 1740 1470	1330 2080 1710 1440 1770
21 22 23 24 25	1480 1470 1490 1520 1500	1550 1440 1360 1400 1450	1440 1480 1500 1450 1460	1530 1400 1170 1480 1220	1330 1490 1450 1490 1500	1660 1640 1480 1660 1500	1600 1590 1630 1610 1620	943 294 438 445 570	1810 1000 570 600 622	1990 1960 1940 2150 1720	1650 1700 1710 1490 1690	1570 1530 1440 1810 1650
26 27 28 29 30 31	1460 1520 1480 1440 1460 1350	1440 1390 1520 1460 1470	1530 1490 1510 1330 1070 1450	1360 1530 1300 1220 1190 1430	1490 1530 1540 1570	1660 1430 1460 1320 990 1130	1470 1570 1300 1490 1540	604 595 490 489 590 700	800 917 625 1610 1120	2000 1930 1980 2010 1500 2010	1590 1630 1400 1810 1770 1840	1570 1740 1570 1310 1230
MEAN	1480	1420	1450	1440	1490	1500	1510	977	1200	1670	1710	1480

		TEMPERATURE,	WATER	(DEG.	C), WATER YE.	AR OCTOBER	1979 TO	SEPTEMBER	1980		
DAY OCT	NOV	DEC	JAN	FEE	MAR.	APR	MAY	JUN	JUL	AUG	SEP
1 30.0 2 30.0 3 28.0 4 26.0 5 28.0	24.0 24.0 24.0 20.0 24.0	16.0 18.0 20.0	18.0 18.0 16.0 16.0 18.0	17.0 17.0 18.0 18.0	14.0 16.0 18.0	19.0 19.0 16.0 19.0	18.0 21.0 18.0 18.0 22.0	18.0 21.0 22.0 22.0 17.0	25.0 25.0 25.0 23.0 23.0	28.0 18.0 18.0 25.0 25.0	22.0 20.0 22.0 23.0 27.0
6 24.0 7 24.0 8 24.0 9 26.0 10 24.0	18.0 18.0 22.0 22.0 20.0	20.0	16.0 18.0 18.0 18.0 18.0	18.0 15.0 17.0	18.0 18.0 14.0	17.0 20.0 20.0 21.0 21.0	22.0 21.0 20.0 21.0 20.0	18.0 21.0 18.0	23.0 25.0 24.0 26.0 26.0	25.0 23.0 28.0 18.0 22.0	18.0 20.0 22.0
11 22.0 12 24.0 13 22.0 14 22.0 15 26.0	18.0 20.0 20.0 20.0 20.0	18.0 18.0 16.0	18.0 16.0 16.0 18.0 18.0	18.0 18.0 18.0 19.0	18.0 15.0 17.0	21.0 14.0 13.0 16.0 14.0	20.0 20.0 18.0	23.0 23.0 23.0 18.0 18.0	24.0 26.0 22.0 26.0 27.0	26.0 20.0 18.0 27.0 27.0	19.0 20.0 20.0 20.0 20.0
16 26.0 17 22.0 18 26.0 19 26.0 20 26.0	18.0 18.0 22.0 22.0	18.0 18.0 18.0 19.0	16.0 16.0 18.0 16.0 18.0	14.0 13.0 15.0 19.0	17.0 17.0 17.0	18.0 19.0 20.0 20.0 17.0	19.0 18.0 19.0 20.0 21.0	17.0 23.0 23.0 20.0	28.0 28.0 24.0 24.0 20.0	20.0 20.0 27.0 26.0 26.0	24.0 27.0 27.0 24.0 22.0
21 22.0 22 24.0 23 20.0 24 22.0 25 24.0	20.0 16.0 18.0 20.0 20.0	20.0 16.0 16.0 16.0	18.0 17.0 18.0 18.0	19.0 19.0 16.0 16.0	19.0 14.0 16.0	21.0 21.0 21.0 21.0 16.0	21.0 21.0 21.0 22.0 18.0	21.0 20.0 23.0 23.0 24.0	20.0 18.0 27.0 18.0 27.0	26.0 28.0 19.0 20.0 27.0	20.0 26.0 22.0 20.0 26.0
26 22.0 27 20.0 28 20.0 29 24.0 30 20.0 31 24.0	20.0 16.0 20.0 16.0		18.0 16.0 17.0 17.0 16.0 17.0	16.0 18.0 18.0	0 17.0 19.0 0 17.0 - 19.0	18.0 16.0 21.0 21.0	22.0 22.0 22.0 18.0	24.0 25.0 20.0 20.0 20.0	18.0 18.0 26.0 18.0 19.0 28.0	27.0 20.0 20.0 27.0 21.0 20.0	24.0 26.0 20.0 26.0 22.0
MEAN 24.0	20.0	18.0	17.0	17.0	0 17.0	18.5	20.0	21.0	23.5	23.5	22.5

08175000 SANDIES CREEK NEAR WESTHOFF, TX

LOCATION.--Lat 29°12'54", long 97°26'57", De Witt County, Hydrologic Unit 12100202, on left bank 100 ft (30 m) downstream from bridge on county highway, 1.9 mi (3.1 km) upstream from Birds Creek, 2.0 mi (3.2 km) northeast of Westhoff, and 20.4 mi (32.8 km) upstream from mouth.

DRAINAGE AREA .-- 549 mi2 (1,422 km2).

WTR YR 1980 TOTAL 12479.53

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1930 to November 1934, August 1959 to current year.

REVISED RECORDS .-- WSP 2123: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 178.27 ft (54.337 m) National Geodetic Vertical Datum of 1929.

Prior to Nov. 9, 1934, water-stage recorder at site 150 ft (46 m) upstream at datum 0.86 ft (0.262 m) higher.

Aug. 10, 1959, to Feb. 2, 1960, nonrecording gage at present site and datum.

REMARKS .-- Water-discharge records good. No known diversion above station.

AVERAGE DISCHARGE.--25 years (water years 1931-34, 1960-80), 132 ft^3/s (3.738 m^3/s), 3.27 in/yr (83 mm/yr), 95,630 acre-ft/yr (118 hm^3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 79,700 ft 3 /s (2,260 m 3 /s) Sept. 22, 1967, gage height, 32.34 ft (9.857 m), from rating curve extended above 21,000 ft 3 /s (595 m 3 /s) on basis of slope-area measurement of 92,700 ft 3 /s (2,630 m 3 /s); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge since at least 1864, 92,700 ft 3 /s (2,630 m 3 /s) July 2, 1936, gage height, 33.1 ft (10.09 m), from floodmarks, on basis of computation of peak flow, at present site and datum. Flood in October 1913 reached a stage of 26.0 ft (7.92 m), present site and datum, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,840 $\rm ft^3/s$ (52.1 $\rm m^3/s$) Sept. 9 at 1800 hours, gage height, 17.73 ft (5.404 $\rm m$), no peak above base of 2,000 $\rm ft^3/s$ (56.6 $\rm m^3/s$); minimum, 0.64 $\rm ft^3/s$ (0.018 $\rm m^3/s$) Aug. 3.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 2.9 .82 1.3 6.4 5.7 7.0 27 9.0 6.7 46 7.4 7.5 7.8 5.5 20 9.3 30 2.4 9.3 6.4 6.6 6.4 5.6 9.6 6.3 1.2 15 12 9.2 1.3 9.9 5 5.1 5.9 8.1 11 9.9 9.6 5.5 15 1.7 1.3 1.4 7.9 7.9 9.8 9.9 9.7 9.6 13 1.2 6 5.0 5.8 6.1 1.6 3.5 5.6 9.6 9.7 9.6 6.0 4.9 9.6 9.8 1.2 8 5.7 8.6 30 9.8 6.2 11 388 8.8 108 10 5.0 6.1 8.8 9.1 121 11 8.5 6.3 8.6 1.2 1.5 856 11 9.0 9.5 7.9 6.5 3.2 98 11 4.8 6.1 58 1.4 12 33 6.8 7.2 3.4 4.9 6.1 48 13 4.8 6.2 9.6 24 9.8 7.4 1.5 31 10 9.0 15 5.1 5.9 30 9.8 17 9.3 7.3 69 6.6 1.6 19 24 9.5 15 16 5.1 5.7 9.7 15 7.3 258 6.3 5.6 1.6 18 618 6.1 9.7 7.1 18 19 7.0 13 8.8 13 430 5.6 3.3 12 601 5.2 2.5 7.0 10 20 5.1 7.4 9.2 25 12 9.5 7.3 848 9.8 21 5.2 8.2 9.0 33 12 9.4 1310 4.8 2.3 9.2 22 5.1 7.9 9.1 25 12 9.1 7.0 855 335 4.6 2.3 8.5 23 10 4.4 4.8 9.4 68 6.8 4.6 10 9.8 50 1.4 2.0 25 4.5 10 10 31 11 9.0 6.7 68 3.9 1.8 7.2 9.2 22 1.3 7.1 26 4.5 10 9.1 6.6 49 3.5 1.7 4.3 16 10 10 7.0 38 5.3 8.1 13 13 7.6 3.5 25 28 13 9.6 51 1.4 1.4 1.5 9.3 207 1.4 22 30 5.9 7.1 32 11 12 6.9 208 3.1 1.5 21 6.5 35 0.5 12 1.4 208.2 643.1 310.2 244.0 6269.2 288.0 105.03 3242.7 TOTAL MEAN 5.28 6.94 13.8 17.2 10.0 8.13 202 9.60 1.46 3.39 108 MAX 6.5 121 1310 46 1550 MIN 4.3 5.5 7.0 8.8 9.0 9.0 6.6 5.5 3.1 .69 1.2 .01 .01 .03 .03 .04 .02 .02 .37 .02 .003 .006 .20 .02 IN. .01 .01 .03 .04 .04 .02 .02 .00 .01 .22 325 1280 12430 571 90 208 6430 AC-FT 413 1060 615 484

MIN 4.3

MIN .69

MAX 5410

MAX 1550

MEAN

34.1

CFSM .43 CFSM .06 AC-FT

24750

AC-FT

IN .85

335

08175000 SANDIES CREEK NEAR WESTHOFF, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: April 1962 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
NOV											
01	1237	5.8	1310	7.8	17.5		(4.4)	180	0	52	12
DEC			+00/	~ 0	47.0			000			
11	1000	9.0	1294	7.9	14.0			200	0	59	13
JAN 25	1343	30	1010		12.0	- 22	622	130	0	37	7.9
MAR	1343	30	1010		12.0			130	· O	31	1.9
06	1232	9.6	1300		15.0			260	54	74	18
APR					,,,,,					100	
18	1120	6.9	1460	8.2	19.0			240	0	72	15
MAY											
30	0900	219	240	7.3	26.5			34	0	10	2.3
JUL				7.0	27.0	0.0	10	000			
16	1124	1.5	1360	7.8	27.0	3.2	40	200	0	59	13
AUG	1122	1.5	1240	7.9	26.0	3.2	39	130	0	40	8.4
27	1132	1.5	1240	7.9	20.0	3.2	39	130	0	40	8.4

SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
210	6.8	11	330	0	86	220	.5	19	773
210		11	220	0	100	210	,	10	785
210	0.4	1.0	330	U	100	210	.4	19	103
160	6.2	9.1	180	0	80	190	.2	15	588
180	4.9	12	250	0	160	210	.3	11	789
220		1 0	2/0	0	120	260		16	000
230	6.4	1.3	340	0	120	260	+5	10	882
33	2.4	6.4	57	0	19	33	.1	14	146
1,071									
200	6.1	14	320	0	90	230	-4	23	787
								0.0	4.4
210	7.9	13	330	0	48	210	.6	22	715
	DIS- SOLVED (MG/L AS NA) 210 210 160 180 230 33	SODIUM, DIS- SOLVED SORP- SOLVED TION (MG/L AS NA) 210 6.8 210 6.4 160 6.2 180 4.9 230 6.4 33 2.4 200 6.1	SODIUM, DIS- SORP- SORP- DIS- SOLVED (MG/L AS NA)	SODIUM, AD- DIS- SORP- DIS- SOLVED TION SOLVED (MG/L AS NA) SOLVED SOLVED (MG/L AS NA) SOLVED SOLVED	SODIUM, AD- DIS- SOLM, BICAR- BONATE CAR- SOLVED (MG/L AS NA) SOLVED (MG	SODIUM, DIS- SORP- DIS- BONATE SOLVED (MG/L AS NA)	SODIUM, DIS- SORP- DIS- SOLVED CAR- DIS- SOLVED CMG/L CM	SODIUM, AD- DIS- BONATE CAR- DIS- DIS	SODIUM, AD- DIS- SORP- SOLVED CMG/L AS NA)

08175800 GUADALUPE RIVER AT CUERO, TX

LOCATION.--Lat 29°03'57", long 97°19'16", De Witt County, Hydrologic Unit 12100204, on left bank at downstream side of bridge on U.S. Highways 77-A, 87, and 183, 2.1 mi (3.4 km) upstream from Gohlke Creek, 2.4 mi (3.9 km) southwest of Cuero, 4.2 mi (6.8 km) downstream from Sandies Creek, and at mile 100.6 (161.9 km).

DRAINAGE AREA.--4,934 mi^2 (12,779 km^2), of which 1,432 mi^2 (3,709 km^2) is above Canyon Dam.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--December 1902 to December 1906, August 1916 to December 1935, January 1964 to current year. Published as "near Cuero" 1902-6, and as "below Cuero" 1916-35. Gage-height records collected at site 7.1 mi (11.4 km) upstream from Sandies Creek from 1941 to 1966 (published in reports of the National Weather Service) and at present site since June 12, 1968.

REVISED RECORDS. -- WRD TX-68-1, TX-69-1: Drainage areas at all sites.

GAGE.--Water-stage recorder. Datum of gage is 128.64 ft (39.209 m) National Geodetic Vertical Datum of 1929. Dec. 26, 1902, to June 1903, nonrecording gage at site 7.1 mi (11.4 km) upstream at different datum, gage heights moved to site 3.3 mi (5.3 km) upstream from present site before computation; July 1903 to December 1906 non-recording gage 3.3 mi (5.3 km) upstream at different datum; Aug. 19, 1916, to Dec. 16, 1935, water-stage recorder at site 5.0 mi (8.0 km) downstream at datum 3.19 ft (0.972 m) lower.

REMARKS.--Water-discharge records good. Since July 21, 1962, flow is regulated by Canyon Lake (station 08167700) 202.4 mi (325.7 km) upstream. Flow below New Braunfels is partly regulated by a series of small power dams, combined capacity of six largest dams 33,550 acre-ft (41.4 mi). Flow is affected at times by discharge from the flood-detention pools of 52 floodwater-retarding structures with combined detention capacity of 78,620 acre-ft (96.9 hm³). These structures control runoff from 269 mi² (697 km²) in the Comal, San Marcos, and Plum Creek drainage basins. Many small diversions above station. National Weather Service gage-height telemeter at station.

AVERAGE DISCHARGE.--20 years (water years 1904-6, 1917-18, 1921-35) prior to regulation by Canyon Lake, 1,303 ft 3 /s (36.90 m 3 /s), 944,000 acre-ft/yr (1.16 km 3 /yr); 16 years (water years 1965-80) regulated, 2,104 ft 3 /s (59.59 m 3 /s), 1,524,000 acre-ft/yr (1.88 km 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 101,000 ft³/s (2,860 m³/s) May 30, 1929, gage height, 35.2 ft (10.73 m), site and datum then in use, from rating curve extended above 45,000 ft²/s (1,270 m³/s); maximum gage height, 36.90 ft (11.247 m) May 14, 1972; minimum daily discharge, 79 ft³/s (2.24 m³/s) Aug. 13, 14, 1967. Floods at this station since at least 1900 occurred Mar. 1, 1903, 43.0 ft (13.11 m), at different site and datum; Oct. 20, 1919, 32.2 ft (9.81 m), site and datum then in use; May 30, 1929, 35.2 ft (10.73 m), site and datum then in use; all from information by local residents.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1900, probably occurred July 2, 1936, 44.33 ft (13.512 m), present site and datum, from information by State Department of Highways and Public Transportation. Other floods at this station occurred Oct. 4, 1913, 37.57 ft (11.451 m), at different site and datum; Dec. 6, 1913, 34.57 ft (10.537 m), at different site and datum; June 21, 1961, 37.0 ft (11.28 m), present site and datum; all from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 8,540 ft 3 /s (242 m 3 /s) Sept. 9 at 1500 hours, gage height, 16.54 ft (5.041 m); minimum, 397 ft 3 /s (11.2 m 3 /s) Aug. 6.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1030	876	759	1010	879	804	900	779	1280	915	443	448
2	1050	856	830	947	845	848	877	734	1240	630	441	444
2 3	1070	846	808	903	875	843	883	769	1220	670	437	446
4	1070	830	833	868	880	865	891	779	1150	708	422	452
5	977	826	853	872	893	767	869	774	1170	698	409	466
2	9//	826	853	8/2	893	767	869	114	1170	698	409	400
6 7	909	837	856	846	878	823	799	772	1140	665	410	482
7	889	839	841	864	859	828	807	764	1100	680	417	479
8	911	824	873	856	1000	834	841	762	965	666	420	2650
9	901	844	806	865	1600	814	862	771	1030	637	428	8050
10	863	846	840	845	1160	841	821	749	1140	646	442	4680
11	900	822	817	851	1120	870	801	783	1040	618	442	1560
12	872	839	977	826	959	969	759	788	1040	595	472	944
13	889	815	1170	869	919	1020	756	764	1070	580	504	795
14	872	823	992	839	847	633	795	779	993	555	523	930
15	888	802	893	859	849	804	852	987	926	515	498	975
13	000	802	093	039	049	804	032	907	920	313	470	3/3
16	902	816	820	839	829	778	808	2820	922	503	487	974
17	879	842	788	863	832	778	775	3960	912	482	478	954
18	873	846	827	838	826	1060	815	4560	913	467	474	923
19	889	820	859	857	869	765	799	5490	892	466	461	979
20	872	869	928	871	911	747	789	6080	845	455	470	879
21	888	885	832	1030	963	771	753	8040	844	457	467	910
22	855	884	761	1150	960	788	762	7850	874	456	460	938
23	850	928	876	1580	796	809	785	7450	1240	457	467	950
24	843	872	865	1790	794	798	759	5530	1140	459	465	947
25	840	856	914	1450	833	836	762	2490	957	462	458	871
26	840	855	867	1030	956	841	766	1810	882	460	455	704
27	822	883	851	922	795	849	815	1620	785	456	451	702
28	842	870	869	902	823	925	830	1510	830	451	446	796
29	848	965	899	881	805	912	745	1460	765	446	440	838
30	849	837	1020	869		959	765	1660	770	448	448	816
			1170	844		898	703	1480	770	449	448	010
31	855		1170	844		898	275	1480		449	448	
TOTAL	27838	25553	27294	29836	26555	26077	24241	75564	30075	17152	14083	36982
MEAN	898	852	880	962	916	841	808	2438	1003	553	454	1233
MAX	1070	965	1170	1790	1600	1060	900	8040	1280	915	523	8050
MIN	822	802	759	826	794	633	745	734	765	446	409	444
AC-FT	55220	50680	54140	59180	52670	51720	48080	149900	59650	34020	27930	73350
	22220	20000	3.140	33100	25010	2.120			33030	5.020		

CAL YR 1979 TOTAL 1170558 MEAN 3207 MAX 18000 MIN 759 AC-FT 2322000 WTR YR 1980 TOTAL 361250 MEAN 987 MAX 8050 MIN 409 AC-FT 716500

08175800 GUADALUPE RIVER AT CUERO, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: March 1968 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
OCT											
31	1537	861	588	7.9	22.5			250	12	72	17
DEC	1337	001	300	3.2				250			
11	1200	812	623	8.0	13.5		77	260	27	78	17
JAN											
25	1130	1460	455		12.5			170	28	49	11
MAR					200			2.00			
06	0930	834	619		14.5			250	31	73	17
APR				10/10:					4-	0.0	
18	0945	812	605	8.3	19.5		75	260	27	73	18
MAY	1750	15/0	175	0.1	20.0			100	20	50	1.0
29	1750	1540	475	8.1	28.0			190	30	58	12
JUL	1437	510	523	8.3	32.0	0.0	11/	210	22	58	16
15 AUG	1437	510	323	8.3	32.0	8.3	114	210	22	38	10
26	1527	462	559	8.4	31.0	8.0	107	200	15	55	16
20	1341	402	337	0.4	31.0	0.0	107	200	1.5	23	10

DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	
OCT											
31	27	.7	2.4	290	0	35	38	.3	1.1	346	
DEC	20		2.0	200	0	20	10	2	4.1	25.0	
11	29	.8	2.0	290	0	32	40	.3	11	352	
JAN 25	31	1.0	5.2	170	0	39	38	.2	12	269	
MAR	3,		5.2	170	· ·	3,	50			207	
06	30	.8	2.2	270	0	37	47	.3	7.6	347	
APR	43.4		0.70	45.55		100	474	20	- 16	1440	
18	32	.9	2.3	280	0	38	43	.3	32	377	
MAY 29	24	.8	3.6	200	0	31	29	.2	15	271	
JUL	24	.0	5.0	200	U	31	23		13	2/1	
15	23	.7	2.4	230	0	27	34	.4	14	288	
AUG											
26	30	.9	2.5	230	0	27	44	.3	15	303	

08176500 GUADALUPE RIVER AT VICTORIA, TX (National stream-quality accounting network)

LOCATION.--Lat 28°47'34", long 97°00'46", Victoria County, Hydrologic Unit 12100204, on left bank just upstream from pier of upstream bridge of two bridges on U.S. Highway 59 in Victoria, 1,300 ft (396 m) upstream from Southern Pacific Railroad Co. bridge, 15 mi (24 km) upstream from Coleto Creek, and at mile 50.7 (81.6 km).

DRAINAGE AREA. -- 5,198 mi2 (13,463 km2), of which 1,432 mi2 (3,709 km2) is above Canyon Dam.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--November 1934 to current year. Gage-height records collected in this vicinity since 1904 are contained in reports of the National Weather Service.

REVISED RECORDS. -- WSP 2123: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 29.15 ft (8.885 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Since July 21, 1962, flow is regulated by Canyon Lake (station 08167700) 252.3 mi (406.1 km) upstream. Many diversions above station. Records furnished by the city of Victoria show a discharge of about 7,300 acre-ft (9.00 hm³) of sewage effluent below station. For statement regarding regulation by Soil Conservation Service floodwater-retarding structures, see station 08175800.

AVERAGE DISCHARGE.--27 years (water years 1936-62) prior to regulation by Canyon Lake, 1,626 ft 3 /s (46.05 m 3 /s), 1,178,000 acre-ft/yr (1.45 km 3 /yr); 18 years (water years 1963-80) regulated, 2,036 ft 3 /s (57.66 m 3 /s), 1,475,000 acre-ft/yr (1.82 km 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 179,000 $\mathrm{ft^3/s}$ (5,070 $\mathrm{m^3/s}$) July 3, 1936, gage height, 31.22 ft (9.516 m); minimum daily, 14 $\mathrm{ft^3/s}$ (0.40 $\mathrm{m^3/s}$) Aug. 20, 1956. Maximum stage since at least 1833, that of July 3. 1936.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 1, 1929, reached a stage of 30.2 ft (9.21 m), present site and datum.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 11,600 ft 3 /s (329 m 3 /s) May 19 at 1500 hours, gage height, 24.68 ft (7.522 m); minimum, 387 ft 3 /s (11.0 m 3 /s) Sept. 4; minimum gage height, 4.45 ft (1.356 m) Aug. 7.

		DISC	HARGE, IN	CUBIC FE		COND, WAT		OCTOBER 19	79 TO SEE	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1080	894	800	1050	876	772	818	685	1520	900	448	398
2	1030	919	726	903	903	792	895	687	1390	906	441	402
3	1060	880	786	883	886	828	817	654	1360	683	433	395
4	1070	882	780	814	900	831	793	688	1310	733	428	403
5	1060	859	783	807	903	830	822	686	1270	776	414	417
6	977	866	824	786	916	752	752	681	1300	740	402	478
7	926	874	800	776	900	802	706	677	1250	720	509	548
8	912	870	804	783	943	812	733	776	1180	733	420	457
9	927	861	817	783	1610	812	767	714	1080	708	416	4960
10	904	866	760	790	1350	789	763	688	1140	689	599	7440
11	885	862	790	783	1170	820	746	669	1200	692	499	3530
12	908	845	810	766	1050	852	715	704	1120	656	430	1300
13	890	848	1000	773	963	976	699	691	1110	638	449	988
14	895	821	1060	786	902	870	689	681	1140	623	479	825
15	886	828	930	770	853	615	734	707	1050	595	494	1000
16	911	800	821	776	844	780	759	1510	997	561	518	980
17	913	831	743	763	818	773	718	3640	999	543	465	997
18	888	852	720	786	831	752	695	4360	981	519	444	950
19	899	824	780	763	820	976	754	10100	988	506	433	952
20	897	828	806	921	880	677	703	7440	964	512	418	980
21	899	876	862	4020	918	688	712	6990	926	491	424	893
22	894	890	736	2080	970	713	665	7980	950	493	418	932
23	870	886	723	1450	891	726	689	7550	1020	491	411	940
24	878	896	807	1750	775	746	690	7160	1300	485	413	964
25	867	852	804	1750	786	742	675	4620	1120	482	413	957
26	870	831	845	1300	846	779	664	2440	1050	484	407	925
27	863	828	783	1010	909	786	682	1940	900	490	405	833
28	854	862	810	947	762	796	741	1740	862	486	419	773
29	872	852	890	926	830	862	731	1630	900	461	407	821
30	938	913	866	910		847	653	1680	828	457	404	1580
31	915		981	890		874		1720		452	401	777
TOTAL	28638	25796	25447	33295	27005	24670	21980	82888	33205	18705	13661	38018
MEAN	924	860	821	1074	931	796	733	2674	1107	603	441	1267
MAX	1080	919	1060	4020	1610	976	895	10100	1520	906	599	7440
MIN	854	800	720	763	762	615	653	654	828	452	401	395
AC-FT	56800	51170	50470	66040	53560	48930	43600	164400	65860	37100	27100	75410

CAL YR 1979 TOTAL 1207041 MEAN 3307 MAX 18000 MIN 720 AC-FT 2394000 WTR YR 1980 TOTAL 373308 MEAN 1020 MAX 10100 MIN 395 AC-FT 740500

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1945 to September 1946, October 1948 to current year. Sediment records: October 1972 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1945 to current year. WATER TEMPERATURES: November 1950 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC COMDUCTANCE: Maximum daily, 1,950 micromhos on several days during January 1946; minimum daily, 155
micromhos Sept. 22, 1967.
WATER TEMPERATURES: Maximum daily, 32.0°C Aug. 4, 27, 1952; minimum daily, 2.0°C Jan. 11, 12, 1962, Jan. 24, 1963.

EXTREMES FOR CURRENT YEAR . --

SPECIFIC CONDUCTANCE: Maximum daily, 778 micromhos Jan. 10; minimum daily, 200 micromhos Sept. 10. WATER TEMPERATURES: Maximum daily, 31.0°C July 1-3; minimum daily, 9.0°C Dec. 18, 19, Feb. 1-3.

WATER OUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
OCT 02	1308	1060	608	8.0	26.0	7.7	7.6	93	1.6	39	44
NOV 06	0957	940	607	8.0	19.5	6.8	8.2	88	1.9	80	220
DEC 12	0917	783	630	8.2	15.0	6.6	8.3	81	1.1	360	96
JAN 17	0935	776	649	8.1	16.5	4.9	9.9	100	1.3	560	750
FEB 12	0920	1070	485	8.2	10.5	39	10.4	92	1.4	3700	3500
MAR 11	1540	821	634	8.0	20.0	6.9	7.1	78	1.3	56	K10
APR 08	1450	763	678	8.1	22.0	36	8.2	92	1.5	180	41
MAY 06	1435	708	609	8.1	26.0	15	8.4	102	1.4	K20	70
JUN											
JUL JUL	0830	1220	571	8.3	27.0	12	6.8	84	.7	K25	370
09 AUG	1420	726	544	8.1	31.5	17	7.4	101	2.8	42	34
07 SEP	1045	399	561	7.4	30.0	13	5.6	74	1.0	440	58
10	1438	7600	192	177	25.0	240	6.2	74	3.6	K87	4600
DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT 02	250	16	72	16	26	.7	2.4	280	0	32	37
NOV 06	250	25	74	17	31	.8	2.2	280	0	34	41
DEC 12	260	23	78	16	33	.9	2.1	290	0	32	45
JAN 17	250	24	75	16	30	.8	2.1	280	0	34	47
FEB 12	190	18	59	11	28	.9	3.4	210	0	33	41
MAR 11	250	33	74	17	36	1.0	2.1	270	0	37	50
APR 08	280	47	81	18	40	1.0	2.4	280	0	36	58
MAY 06	240	30	68	17	33	.9	2.2	270	0	32	42
JUN 11	240	28	69	16	25	.7	2.6	270	0	32	28
JUL 09	220	25	61	17	26	.8	2.3	240	0	28	37
AUG 07	210	21	58	16	31	.9	2.4	240	0	29	46
SEP 10	75	8	24	3.7	9.5	.5	3.3	82	0	8.4	13
10	/3	0	44	3.7	2.3		3.3	02	0	0.4	13

08176500 GUADALUPE RIVER AT VICTORIA, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DA	TE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVEI (MG/L AS SIO2)	AT DE	IDS, SIDUE 180 CG. C DIS- DLVED MG/L)	SOLIDS SUM ON CONST: TUENTS DIS- SOLVI (MG/I	F I- S, N ED	NITRO- GEN, 02+NO3 TOTAL (MG/L AS N)	NIT GE NO2+ DI SOL (MG AS	N, NO3 S- VED /L	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	AMM D SOI (M	TRO- EN, ONIA IS- LVED G/L N)	NITROGEN ORGAN TOTA (MG/: AS N	ic L L	NITRO- GEN, DRGANIC DIS- SOLVED (MG/L AS N)
OCT 02		.2	12		330	34	40	.92		.92	.130		.010		39	.46
NOA		.3	13		358	35	56	1.4	1	.2	.030		.040		28	.28
DEC		.2	9.6	í	370		54	1.2	1	.2	.000		.000		48	.52
JAN		.3	10		361		56	1.3		.91	.020		.010		39	.38
FEB			13		288		96	1.1		.79	.050		.040			.55
MAR		.1													67	
APR		.3	7.7		367		59	.87		.39	.000		.000		35	.40
MAY		.2	15		396	39	94	1.2	1	.3	.010		.000		57	.51
06 JUN	• • •	.3	12		344	33	36	.81		.75	.010		.040	•	55	.53
11 JUL		.3	15		335	32	24	.79		.78	.020		.000	1.	4	.69
09 AUG		.4	15		319	30)5	.67		.67	.060		.050		53	.43
07		.3	16		331	31	4	.31		.31	.030		.010	1.	1	.66
SEP 10		.2	3.7		106	10)9	.68		.68	.070		.080	4.	9	2.0
DA		NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHO TO	OS- ORUS, OTAL IG/L S P)	PHOS- PHORUS DIS- SOLVI (MG/I AS P)	S, C.	ARBON, RGANIC TOTAL (MG/L AS C)	CARBO ORGAI DIS- SOLVI (MG AS	NIC ED /L	CARBON, ORGANIC SUS- PENDED (MG/L AS C)	MEI SUS PEI	DI- NT, S- NDED G/L)	SEDI MENT DIS- CHARGI SUS- PENDI (T/DA)	E, %	SED. SUSP. SIEVE DIAM. FINER THAN
OCT 02		.52	.47	,	.040	.01	10	2.1		44.0	- 22		79	2	26	62
NOV 06		.31	.32	2	.880	.0:	20			5.9	.0		83	2	11	76
DEC		.48	.52		.080	.02		1.8					65		37	42
JAN		.41	.39		.090	.04		5.7		-1	-		77		61	63
FEB																
MAR		.72	.59		.160	.07				3.3			63		32	92
APR		.35	.40		.070	.04		2.7		~~	1221		51		13	70
MAY		.58	.51		.130	.06	0	6.3					53	10)9	90
06 JUN	• • •	.56	.57		.070	.04	+0			2.5	.7		75	14	43	70
11 JUL		1.4	.69)	.100	.03	30	5.2					99	33	26	86
		.59	.48	3	.060	.04	40	3.6		-44	1.55		63	13	23	98
07 SEP		1.1	.67		.070	.01	0		13	3	.1		72		78	89
		5.0	2.1		.440	.07	70	31		14-1	22	-	1210	2480	00	84
ATE	TIM	ARSEI TOTA E (UG AS	NIC PE AL TO /L (U	SENIC SUS- ENDED TAL IG/L AS)	ARSEI DI: SOL' (UG AS	NIC T S- F VED F /L (ARIUM TOTAL RECOV- ERABLI (UG/L AS BA)	PEND REC E ERA (UG	ED I	BARIUM DIS- SOLVE (UG/) AS B.	REC D ERA L (UG	COV- BLE	CADMI SUS PENI RECO ERAF (UG/ AS (S- DED CA DV- BLE S /L	ADMIU DIS- SOLVE (UG/L AS CD	RECO ERAI (UG)
V 6 C	095	7	2	0		2	300)	200		80	0		0		2
2 B	091	7					-	•							-	-
2	092	0	2	0		2	200)	0	2	00	0		0		0
R 1	154	0						-			8-				-	-
Y 6	143	5	1	0		1	100)	20	10	80	0			<	1
N 1	083	0	22			22			44		22				32	4
3 7	104	5	3	0		3	100)	10	0	90	0		0		3

CUADALUPE RIVER BASIN 341 08176500 GUADALUPE RIVER AT VICTORIA, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	CHRO- MIUM, SUS- PENDED	CHRO- MIUM. DIS-	COBALT, TOTAL RECOV-	COBALT. SUS- PENDED RECOV-	COBALT. DIS-	COPPER, TOTAL RECOV-	COPPER. SUS- PENDED RECOV-	COPPER. DIS-	IRON. TOTAL RECOV-	IROM, SUS- PENDED RECOV-	IRON, DIS-
DATE	RECOV. (UG/L AS CR)	SOLVED (UG/L AS CR)	ERABLE (UG/L AS CO)	ERABLE (UG/L AS CO)	SOLVED (UG/L AS CO)	ERABLE (UG/L AS CU)	(UG/L AS CU)	SOLVED (UC/L AS CU)	ERABLE (UG/L AS FE)	(UG/L AS FE)	SOLVED (UG/L AS FE)
nov		0									
06 DEC	0	0	0	.0	<3	0	0	.0	320	290	30
12 FEB		- 22									
12 MAR	0	0	0	0	0	2	2	0	1300	1200	60
11 MAY					77	5.5					
06 JUN	0	0	0		<3	2	0	2	5700		<10
11 AUG				45			**				
07 SEP	10	0	0		<3	3	2	1.	440	430	10
10				1 44		~~	N-				11
DATE	LEAD. TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD. DIS- SOLVED (UG/L AS PB)	MANGA- NESE. TOTAL RECOV- ERABLE (UC/L AS MN)	MANGA- NESE. SUS- PENDED RECOV. (UG/I. AS MN)	MANGA- DESE, DIS- SOLVED (UG/L, AS MI)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY SUS- PENDED RECOV- ERABLE (UG/L AS HO)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, SUS- PENDED RECOV- ERABLE (UG/L AS NI)
NOV											
06 DEC	17	15	23	30	30	4	.1	.1	.0	5	5
12 FEB	**										
12 MAR	6	6	0	60	50	10	.3	.0	.4	0	0
11 MAY	77	27	2.7		0940		220	2.5			**
06 JUN	6	6	0	30	30	3	.2	.1	.1	6	3
11 AUG		8.5	~~							34.	
07 SEP	3	0	Б.	30	30	5	.2	.2	.0	2	2
10							**				
			SEI	M. SE	LE- \$112	ZER. S	210R ; 250-	31:	ZII	25-	
DA	(UC	S- NIO LVED TO'	TAL TOT	IDED D	IS- REG LVED ERA D/L (UC	COV- REG ABLE ER 1/1. (UC	\BLJ: SO:	IS- REI LVED ER U/L CU	COV- REC ABLE ERA CAL (UC	OV- D VBLE SO 1/1. (10)	00. 15- LVEO 3/L 211)
MOV 06 DEC		0	1	i	0	0	0	0	40	30	10
12 FEB	2					Ö					
1 2 MAR		0	0	0.	0	0	0	0	-30	10	10
MAY						3		-55		70	
06 Jun		3	.0	0	1	.0	0	O	10		<3
1.1		35	2-		(44)	0			42		
AUG 07		0	1	0	1	0	0	0	1776	10	4
SEP 10				C	144	C		-21			22

08176500 GUADALUPE RIVER AT VICTORIA, TX--Continued

MATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	PCH. TOTAL (UC/L)	PCB. TOTAL IN BOT- TOM MA- TERIAL (UC/EC)	MAPH- THA- LEMES. POLY- CHI,OR. TOTAL. (UC/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE. TOTAL (UC/L)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UC/KG)	DDD. TOTAL (UC/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE. TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
FEB 12	0920	.0	0	.00	.00	1.0	.0	0	.00	.0	.00	.0
07	1045	.0	.0	.00	.00	.0	.0	0	.00	.2	.00	.2
DATE	DDT. TOTAL (FG/L)	DDT. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINOIL TOTAL (UG/L)	DI- AZINON. TOTAL IN BOT- TOM MA- TERIAL. (UG/KG)	DI- ELDRIN TOTAL (UG/L)	DI- ELDRIN. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN. TOTAL (UG/L)	ENDRIN. TOTAL (UG/L)	EMDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION. TOTAL (UG/L)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL (UG/L)
FEB 12	.00	.0	.00		.00	.0	.00	.00	.0	.00		.00
ΛΙ'G 07	.00	.0	.00	.0	.00	.0	.00	.00	.0	.00	.0	.00
DATE	HEPTA-CHLOR, TOTAL, IN BOT-TOM MATERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOTAL (UC/L)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UC/KC)	MALA- THION, TOTAL (UC/L)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR. TOTAL (UC/L)	METH- OXY- CHLOR. TOT. IN BOTTON MATL. (UG/KG)	METHYL PARA- THION, TOTAL (UG/L)	METHYL PARA- THION. TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION. TOTAL (UG/L)
FEB 12	.0	.00	.0	.00	.0	.00		.00	.0	.00		.00
AUC 07	.0	.00	.0	.00	.0	.00	.0	.00	.0	.00	.0	.00
	THE THE THE TOT . BOT . MA	TTOM MII	REX, TH	TO'I RA- IN F ION, TOM	ION. IAI. BOT- TO MA- APHE RIAL TOT	TOT OX- IN E INE, TOM	CAL. SOT- TOT MA- TR RIAL THI	TOT TOT TAL. IN E	MA- 2,4 IAL TOT	AL TOT	TOT LAT	
			.00	.00		0	Ó	.00		.05	.04	.00
AUC 07		.0	.00	.00	.0	0	0	.00	.0			
			DATE	LENGTH OF EXPO- SURL (DAYS)	PERI- PHYTON BIOMASS ASH WEIGHT G/SQ M	PERI- PHYTON BIOMASS TOTAL DRY WEIGHT G/SQ M	CHLOR-A PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)	CHLOR-B PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)	BIOMASS CHLORO- PHYLL RATIO PERI- PHYTON (UNITS)			
			OCT 02	34	42.1	45.6	33.7	4.50	104			
			06	35	5.43	5.91	2.20	.360	218			
			MAR 11 MAY	28	174	183	133	.000	67.7			
			06	28	48.3	53.5	39.5	1.59	132			

GUADALUPE RIVER BASIN 343

08176500 GUADALUPE RIVER AT VICTORIA, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

DATE TIME		11,80 540		6,80 435		11,80 830		9,80 420		6,80 045		10,80 438
TOTAL CELLS/ML		660		530		510	2	300	2	2800	4	100
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		0.8 0.8 1.5 2.6 2.8		1.1 1.1 1.9 2.0 2.0		1.2 1.2 1.7 1.9 2.1		1.3 1.3 1.7 1.8 2.0		1.1 1.1 1.9 2.1 2.2		0.1 0.1 0.9 0.9
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT								
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESOOCYSTACEAE												
ANKISTRODESMUS SELENASTRUM		1	11	N.E		-	77 13	3	52	2		-
SCENEDESMACEAE SCENEDESMUS .VOLVOCALES	20	3	52	10		-		-	280	10		2
CHLAMYDOMONADACEAE CHLAMYDOMONAS	65	10	90#	17	240#	47	39	2	39	1		4
CHRYSOPHYTA .BACILLARIOPHYCEAECENTRALES												
COSCINODISCACEAE CYCLOTELLA	45	7	300#	56	51	10	810#	35	150	5		2.
MELOSIRA	55	8		-		-		-	26	1	3-	-
STEPHANODISCUS PENNALES DIATOMACEAE		-	-		64	13	24	-		-	4-0	-
DIATOMA FRAGILARIACEAE	96	15		-		-			0.44	-		-
SYNEDRA GOMPHONEMATACEAE	5	1	44	+		-		-	*	0		-
GOMPHONEMA		-		-		+		-	*	0		42
NAVICULACEAE GYROSIGMA NAVICULA	160#	24	13 26	2 5	26	5	130	6	26	1	**	-
NITZSCHIACEAE NITZSCHIA	170#	26	26	5	100#	20	130	6	77	3	44	
SURIRELLACEAE	5	1				_		_			72	2
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAE											72	-
CRYPTOMONADALES CRYPTOCHRYSIDACEAE												
CHROOMONAS	24	1	13	2	44	2		4		-		-
CRYPTOMONADACEAE CRYPTOMONAS		2.		-		.2		-	*	0		-
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALES												
CHROOCOCCACEAE AGMENELLUM					100		1000#	1.1.	1500#	5/1	2300#	56
ANACYSTIS HORMOGONALES	12	4		-2	722	-	100	4	26	1	720#	
OSCILLATORIACEAE OSCILLATORIA		-	- 22				2.2	-	570#	20	22	
PHORMIDIUM		_		_		-		-	2701	-	1000#	25
SCHIZOTHRIX	35	5		-		-		-		-		-
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALESEUGLENACEAE												
EUGLENA	2.2	4	13	2	26	5		02-1		5		~
TRACHELOMONAS		7		-	1	=		-	*	0		-

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

08176500 GUADALUPE RIVER AT VICTORIA, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

монти	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	28638	592	339	26200	41	3170	33	2560	250
mov.	1979	25796	609	348	24300	43	2980	34	2370	260
DEG.	1979	25447	639	365	25100	45	3120	36	2460	270
JAH.	1980	33295	549	315	28300	38	3410	31	2760	230
PER.	1980	27005	632	361	26300	45	3260	35	2580	270
MAR.	1980	24670	639	365	24300	45	3020	36	2390	270
APR.	1980	21980	636	364	21600	45	2680	36	21 20	270
MAY	1980	82888	374	217	48500	23	5230	21	4630	160
Finis	1980	33205	541	311	27900	36	3270	30	2700	230
- Y.P.U.	1980	18705	553	318	16000	37	1890	31	1560	230
APC.	1980	13661	556	320	11800	38	1390	31	1150	240
SEPT	1980	38018	350	203	20900	22	2210	19	1980	150
TOTAL.		373308	**	alcale	301000	**	35600	**	29300	**
WTD. AV	ra.	1020	520	299	**	35	**	29	**	220

	SPF	CIFIC CON	DUCTANCE	(MICROMHO	S/CM AT 3	25 DEG. C) NCE-DAILY	, WATER	YEAR OCTOBER	1979 T	O SEPTEMBER	1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	586 558 525 568 577	605 611 616 618 619	606 630 640 643 634	660 651 643 650 654	639 681 675 664 627	643 648 636 629 635	637 600 620 638 649	608 593 607 605 583	483 488 489 515 535	570 562 628 565 557	559 566 569 563 559	569 565 570 567 550
6 7 8 9	575 582 589 581 590	569 623 621 619 620	631 642 635 625 637	666 663 660 681 778	670 654 658 532 619	631 639 642 638 636	660 666 697 655 642	610 611 594 588 616	519 564 545 560 550	553 557 546 545 543	563 520 541 569 500	449 551 546 325 200
11 12 13 14 15	596 573 601 595 600	625 623 622 624 620	643 630 642 637 633	658 650 646 647 641	542 509 608 619 640	638 630 636 631 634	635 641 644 642 641	615 611 596 610 605	540 555 572 558 555	541 539 538 530 524	518 543 563 560 565	236 268 273 300 260
16 17 18 19 20	593 595 601 603 602	616 623 626 630 632	646 642 639 652 635	642 649 642 650 600	629 644 650 652 662	625 630 632 640 662	639 634 638 636 640	570 593 500 250 295	589 559 557 551 556	527 533 534 538 546	540 556 555 567 586	311 342 386 427 412
21 22 23 24 25	603 601 606 602 601	625 624 623 223 630	650 662 658 630 635	228 336 527 604 584	665 663 658 655 650	614 644 639 635 632	615 620 627 629 624	332 372 255 278 273	558 556 553 540 548	550 555 554 562 572	570 556 555 562 577	450 468 483 512 533
26 27 28 29 30 31	610 607 620 618 612 602	637 636 640 642 638	625 642 660 634 651 644	492 461 489 527 589 638	652 653 646 644	655 648 656 643 651 647	629 627 620 623 615	300 350 397 420 438 485	544 542 533 540 549	561 564 561 557 560 547	569 561 567 579 569 562	537 541 520 460 320
MEAN	593	609	639	600	637	639	636	489	543	552	558	431

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

08176500 GUADALUPE RIVER AT VICTORIA, TX--Continued

					O	NCE-DAILY						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	23.0 25.0 24.0 25.0 23.0	18.0 18.0 17.0 17.0 18.0	11.0 12.0 12.0 11.0	11.0 11.0 12.0 11.0 11.0	9.0 9.0 9.0 10.0	15.0 11.0 12.0 14.0 15.0	19.0 19.0 20.0 20.0	22.0 22.0 23.0 23.0 23.0	27.0 27.0 27.0 28.0 28.0	31.0 31.0 31.0 30.0 30.0	29.0 29.0 29.0 28.0 29.0	28.0 28.0 28.0 28.0 28.0
6 7 8 9	23.0 23.0 24.0 24.0 23.0	18.0 17.0 17.0 19.0 17.0	12.0 12.0 12.0 13.0	11.0 12.0 12.0 12.0	12.0 12.0 13.0 12.0 10.0	15.0 16.0 17.0 17.0	20.0 21.0 20.0 20.0 20.0	23.0 23.0 23.0 25.0 24.0	28.0 29.0 28.0 28.0 28.0	30.0 30.0 30.0 30.0	27.0 28.0 29.0 27.0	26.0 27.0 27.0 27.0 27.0 25.0
11 12 13 14	22.0 22.0 23.0 23.0 22.0	17.0 16.0 15.0 15.0 14.0	13.0 15.0 11.0 11.0	13.0 12.0 12.0 13.0 15.0	10.0 10.0 10.0 11.0 12.0	18.0 19.0 17.0 18.0 17.0	21.0 20.0 17.0 16.0 17.0	24.0 24.0 25.0 25.0 23.0	27.0 28.0 28.0 27.0 27.0	30.0 30.0 30.0 30.0 30.0	26.0 26.0 27.0 27.0 28.0	24.0 25.0 26.0 26.0
16 17 18 19 20	23.0 24.0 24.0 24.0 25.0	14.0 15.0 17.0 17.0	11.0 10.0 9.0 9.0 10.0	15.0 16.0 15.0	13.0 11.0 10.0 12.0 14.0	19.0 16.0 17.0 18.0	18.0 19.0 19.0 19.0	23.0 23.0 23.0 23.0	28.0 28.0 29.0 29.0 29.0	30.0 30.0 30.0 30.0 30.0	28.0 28.0 28.0 28.0 28.0	26.0 28.0 28.0 28.0 27.0
21 22 23 24 25	25.0 25.0 22.0 21.0 20.0	20.0 16.0 14.0 13.0 14.0	12.0 12.0 14.0	15.0 15.0 13.0 12.0 13.0	15.0 15.0 16.0 17.0 16.0	18.0 18.0 19.0 18.0	20.0 21.0 22.0 22.0 22.0	23.0 23.0 23.0 24.0 25.0	29.0 30.0 30.0 30.0 30.0	30.0 28.0 28.0 28.0	28.0 28.0 29.0 29.0 29.0	27.0 27.0 27.0 28.0 27.0
26 27 28 29 30 31	20.0 20.0 21.0 22.0 21.0	13.0 14.0 14.0 12.0 11.0	14.0 14.0 14.0 12.0 11.0	13.0 12.0 12.0 12.0 12.0 11.0	13.0 15.0 16.0 17.0	18.0 18.0 18.0 19.0 19.0	22.0 22.0 21.0 21.0 22.0	25.0 26.0 26.0 26.0 27.0	30.0 30.0 30.0 30.0	28.0 29.0 29.0 29.0 29.0 30.0	28.0 27.0 28.0 28.0 28.0 28.0	27.0 26.0 26.0 27.0
*EAS	23.0	16.0	12.0	12.5	12.5	17.0	20.0	24.0	28.5	29.5	28.0	27.0

08176900 COLETO CREEK AT AKNOLD ROAD CROSSING NEAR SCHROEDER, TX

LOCATION.--Lat 28°51'41", long 97°13'34", Goliad County, Hydrologic Unit 12100204, on right bank at downstream side of Arnold Road Crossing, 0.7 mi (1.1 km) downstream from confluence of Twelvemile and Fifteenmile Creeks, 3.2 mi (5.1 km) north of Schroeder, 12.8 mi (20.6 km) upstream from Coleto Creek Reservoir, and 26.0 mi (41.8 km) upstream from mouth.

DRAINAGE AREA. -- 357 mi² (925 km²).

PERIOD OF RECORD.--October 1978 to current year. Records equivalent for January 1930 to December 1933 and October 1952 to September 1979, published as "near Schroeder".

GAGE.--Water-stage recorder. Datum of gage is 100.43 ft (30.611 m) National Geodetic Vertical Datum of 1929. REMARKS.--Records fair. No known diversion above station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 19,600 ft $^{2}/s$ (555 m $^{2}/s$) Nay 11, 1979, gage height, 15.54 ft (4.737 m); minimum daily, 3.5 ft $^{3}/s$ (0.099 m $^{3}/s$) Aug. 5, 1980.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharges since at least 1872 at site 3.5 mi (5.6 km) downstream, 122,000 ft 3 /s (3,460 m 3 /s) Sept. 21, 1967 (slope-area measurement of peak flow), 63,700 ft 3 /s (1,800 m 3 /s) Oct. 16, 1946, and 46,700 ft 3 /s (1,320 m 3 /s) in October 1925, from information by local resident.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 4,000 ft 3/s (113 m 3/s) and maximum (*):

Date		Time	Disch	arge	Gage	height		
			(ft^3/s)		(ft)			
Jan.	20	1900	*19,100	541	15.44	4.706		
May	19	1100	6 150	174	11.65	3.551		

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum daily discharge, 3.5 ft³/s (0.099 m³/s) Aug. 5.

					ME	AN VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	25 24 24 23 22	19 19 18 18	16 17 17 18 18	24 23 23 22 22	31 32 33 32 32	25 25 25 25 25 25	20 41 45 28 25	14 14 13 13	30 29 27 27 25	9.3 8.8 8.3 7.9 7.3	4.8 4.2 3.9 3.7 3.5	3.7 3.7 3.7 3.8 4.1
6 7 8 9	22 22 21 21 19	18 18 18 19	18 18 18 18	22 22 22 22 22 22	31 31 52 51 37	24 25 25 25 24	23 23 21 20 20	12 11 18 24 18	23 22 22 22 22 22	7.1 6.8 6.2 5.8 5.5	3.7 3.9 5.9 5.4	8.6 16 32 30 23
11 12 13 14	20 20 20 20 20	18 18 18 18	19 22 29 27 24	22 21 21 21 21 21	35 34 33 31 30	23 23 23 23 23 23	20 20 21 19 18	16 15 14 14 16	21 20 20 19 18	5.0 4.8 4.6 4.4 4.4	77 36 27 15	16 13 11 10 9.6
16- 17- 18- 19- 20	20 20 20 21 22	18 18 18 19	23 21 21 21 21 21	21 21 20 21 3660	28 27 27 27 27 26	23 23 23 22 22	17 17 17 17 17	211 98 109 3700 559	17 16 16 15 14	4.3 4.2 4.1 4.0 4.8	13 15 14 11 9.1	8.6 8.0 7.8 7.4 6.4
21 22 23 24 25	22 22 21 21 21	19 23 20 18 19	21 21 22 23 21	1510 258 97 65 53	26 26 26 25 25	22 21 20 21 20	16 16 16 16	127 85 63 55 47	14 14 14 13	4.5 4.2 4.8 4.7 4.2	8.0 7.4 6.6 5.9 5.4	5.9 5.4 5.2 4.9 4.7
26 27 28 29 30 31	21 20 19 19 19	19 18 17 16 16	21 21 21 28 32 27	47 41 38 36 34 32	25 24 24 24	22 23 23 22 21 20	15 14 14 14 13	43 38 36 33 31 31	12 11 11 10 9.5	4.1 4.2 4.6 4.8 5.3 5.1	5.0 4.8 5.2 6.3 5.6 4.5	5.0 14 20 14 365
TOTAL MEAN MAX MIN AC-FT	652 21.0 25 19 1290	549 18.3 23 16 1090	662 21.4 32 16 1310	6284 203 3660 20 12460	885 30.5 52 24 1760	711 22.9 25 20 1410	599 20.0 45 13 1190	5490 177 3700 11 10890	546.5 18.2 30 9.5 1080	168.1 5.42 9.3 4.0 333	350.8 11.3 77 3.5 696	670.5 22.4 365 3.7 1330

CAL YR 1979 TOTAL 57306.0 MEAN 157 NAX 8040 MIN 15 AC-FT 113700 WTR YR 1980 TOTAL 17567.9 MEAN 48.0 MAX 3700 MIN 3.5 AC-FT 34850

347

08176990 COLETO CREEK RESERVOIR INFLOW (GUADALUPE DIVERSION) NEAR SCHROEDER, TX

LOCATION.--Lat 28°50'21", long 97°11'20", Victoria County, Hydrologic Unit 12100204, on right bank of small tributary 1,200 ft (365 m) upstream from Coleto Creek and 2.6 mi (4.2 km) northeast of Schroeder.

PERIOD OF RECORD .-- March to September 1980.

GAGE.--Water-stage recorder. Datum of gage is 100.52 ft (30.638 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Discharge represents flow diverted by pumping from the Guadalupe River to be used as makeup water for the Central Power and Light Co. generating plant on Coleto Creek Reservoir.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 36 ft³/s (1.02 m³/s) Apr. 2, 11, Sept. 11, 1980; no flow at times.

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period March to September, 36 ft 3 /s (1.02 m 2 /s) Apr. 2, 11, Sept. 11; no flow at times.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	MARCH	TO	SEPTEMBER	1980
				MEAN	VALUES				

					MI	EAN VALUE	5					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5							35 36 35 34 34	31 35 34 34 34	26 26 34 32 34	32 29 31 22 29	33 33 33 33 32	31 33 33 23 17
6 7 8 9						.00 .00 .00 .00	34 34 34 34 33	33 33 34 33 32	33 32 18 19 25	31 31 27 33 24	33 33 32 31 23	15 17 28 32 31
11 12 13 14 15						.44 .40 .12 .41	36 35 33 29 35	32 31 32 32 32	34 34 33 33 33	32 32 32 32 32 32	32 32 31 33 33	36 35 32 33 32
16 17 18 19 20						.16 8.0 19 31 28	35 33 28 16 29	28 26 25 .43 .35	32 28 32 31 25	31 32 32 32 32 22	32 32 31 32 32	32 32 32 27 25
21 22 23 24 25						24 22 25 22 27	26 33 33 33 35	14 34 31 35 34	8.2 12 33 32 31	33 30 32 33 33	33 34 34 34 33	24 25 28 28 27
26 27 28 29 30 31						35 36 36 36 35 36	34 34 34 34 34	35 33 34 34 33 34	33 32 32 28 21	33 32 31 32 33 33	32 31 31 30 33 32	25 25 25 27 27
TOTAL MEAN MAX MIN AC-FT							982 32.7 36 16 1950	922.78 29.8 35 .35 1830	856.2 28.5 34 8.2 1700	953 30.7 33 22 1890	993 32.0 34 23 1970	837 27.9 36 15 1660

WTR YR 1980 TOTAL - MEAN - MAX - MIN - AC-FT -

08177300 PERDIDO CREEK AT FARM ROAD 622 NEAR FANNIN, TX

LOCATION.--Lat 28°45'05". long 97°19'01". Goliad County, Hydrologic Unit 12100204, at right downstream end of bridge on Farm Road 622, 1.2 mi (1.9 km) downstream from Farmer Creek, 3.1 mi (5.0 km) upstream from Kilgore Creek, and 6.1 mi (9.8 km) northwest of Fannin.

DRAINAGE AREA. -- 28.0 mi (72.5 km).

PERIOD OF RECORD .-- June 1978 to current year.

GAGE.--Water-stage recorder. Datum of gage is 134.66 ft (41.044 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair. No known diversion above gage. Several observations of water temperature were made during the year. Guadalupe-Blanco River Authority gage-height telemeter at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $8,620~{\rm ft}^3/{\rm s}$ (244 m³/s) May 11, 1979, gage height, 11.92 ft (3.633 m); minimum daily, $0.04~{\rm ft}^3/{\rm s}$ ($0.001~{\rm m}^3/{\rm s}$) July 7, 8, 1980.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Apr. 20, 1976, reached a stage of 26.28 ft (8.010 m), and flood of Sept. 15, 16, 1967, reached a stage of 26.08 ft (7.949 m), from information by the State Department of Highways and Public Transportation.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,790 ft 3 /s (50.7 m 3 /s) Jan. 20 at 1730 hours, gage height, 8.4 ft (2.36 m), from high-water mark, no other peak above base of 400 ft 3 /s (11.3 m 3 /s); minimum daily, 0.04 ft 3 /s (0.001 m 3 /s) July 7, 8.

		DISCH	ARGE, IN	CUBIC F		SECOND, WAT MEAN VALUES		CTOBER 197	9 TO SEP	TEMBER 1	1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.92	.30	.40	.42	.54	.35	. 31	. 33	. 26	.07	.10	.16
2	.92	.30	.40	.48	.88	.33	.38	.30	.25	.05	.10	.17
3	.90	.30	. 44	. 46	.66	. 35	. 32	. 26	. 25	.06	.09	.13
4	.73	.31	.49	.42	.60	.42	.24	.25	.20	.06	.10	.13
5	.70	. 36	. 44	. 44	.60	. 37	.27	.25	. 22	.05	.16	.14
6	.73	.39	.45	.46	.56	.37	.30	.23	.21	.05	.13	.35
7	.75	.36	.37	.49	.58	. 43	. 31	. 24	.20	. 04	.16	.35
8	.65	.38	.36	.49	.88	.44	.25	5.9	.19	.04	.15	.18
9	.64	.37	. 36	.49	1.3	. 44	.29	. 59	.19	.06	. 38	.18
10	.54	.32	.40	.51	.66	.46	.27	.40	.19	.06	3.0	.15
11	.61	.32	.40	. 54	. 54	.47	.35	. 39	.18	.07	1.5	.12
12	.65	.34	.69	.44	.66	.48	.32	.36	.18	.07	.15	.11
13	. 54	.35	.43	. 47	.61	. 42	. 42	. 34	.18	.07	.10	.10
14	.54	.34	.36	.49	.54	.39	.25	.43	.18	.07	.09	.10
15	.53	.36	. 36	.50	. 53	. 47	. 26	.67	.16	.06	. 11	.11
16	.44	.36	.36	.55	.44	.58	.25	1.1	.15	.06	2.5	.10
17	. 44	.43	.32	.56	. 41	.61	.29	. 22	. 15	.06	2.2	.09
18	.44	.44	.34	.54	.49	.35	.26	.35	.14	.06	.28	.08
19	. 44	.40	.40	. 54	. 48	.38	. 27	17	.12	.08	.16	.08
20	.44	.40	.44	140	.45	.40	.27	1.4	.12	.11	.15	.08
21	.44	.99	. 45	136	. 41	. 33	.27	.73	.11	.10	.15	.07
22	.41	.50	.54	8.5	.37	.37	.28	.49	.10	.12	.14	.06
23	. 25	.40	.82	1.8	. 37	. 47	. 28	. 38	.09	.12	.15	.07
24	.25	.47	.48	1.0	.35	.42	.27	.36	.09	.11	.13	.08
25	. 31	.56	.38	.86	. 31	.38	. 26	. 36	.08	.10	.13	.08
26	.36	.44	.40	.72	.28	.68	.22	.36	.08	.16	.14	.32
27	. 36	.47	.40	.63	. 32	.49	. 25	. 35	.08	.16	.14	. 45
28	.36	.42	.60	.62	.38	.42	.26	.32	.07	.27	.14	.19
29	.40	. 38	.94	.65	. 37	. 42	. 24	. 29	.07	.17	.15	. 11
30 31	.66	.42	.48	.65		.28	.30	.29	.07	:11	.16	2.5
TOTAL MEAN	16.73	12.18	14.13	301.29 9.72	15.57	13.05	8.51	35.22	4.56	2.78	13.16	6.84
MAX	.92	.99	.94	140	1.3	.68	.42	17	.26	.27	3.0	2.5
MIN	. 25	.30	.32	. 42	.28	.28	. 22	. 22	.07	.04	.09	.06
CFSM	.02	.02	.02	.35	.02	.02	.01	.04	.005	.003	.02	.008
IN.	.02	.02	.02	.40	.02	.02	.01	.05	.01	.003	.02	.01
AC-FT	33	24	28	598	31	26	17	70	9.0	5.5	26	14
CAL YR	1979 TOTA 1980 TOTA	L 3381.8	O MEAN	9.27	MAX 921 MAX 140	MIN .25 MIN .04	CFSM .3	3 IN 4.4	9 AC-F1	r 6710 r 881		

08177500 COLETO CREEK NEAR VICTORIA, TX

LOCATION.--Lat 28°43'51", long 97°08'18", Victoria County, Hydrologic Unit 12100204, on left bank at downstream side of westbound bridge on U.S. Highway 59, 1.6 mi (2.6 km) downstream from Coleto Creek dam, 9.0 mi (14.5 km) southwest of Victoria, and 11.2 mi (18.0 km) upstream from mouth.

DRAINAGE AREA .-- 514 mi 2 (1,331 km2).

PERIOD OF RECORD.--June 1939 to September 1954, June 1978 to current year.

REVISED RECORDS. -- WSP 1562: 1939-40. WSP 1732: 1941.

GAGE.--Water-stage recorder. Datum of gage is 44.18 ft (13.466 m) National Geodetic Vertical Datum of 1929. Prior to Jan. 17, 1955, at same site and at datum 5.0 ft (1.52 m) higher than present datum.

REMARKS.--Records poor. Diversions from Guadalupe River basin to Coleto Creek basin upstream from Coleto Creek Reservoir began Mar. 6, 1980 (see station 08176990). Flow completely regulated since Feb. 21, 1980, by Coleto Reservoir 1.9 mi (3.1 km) upstream. No other large diversion above station. Several observations of water temperature were made during the year. Guadalupe-Blanco River Authority gage-height telemeter at station.

AVERAGE DISCHARGE.--16 years (water years 1940-54, 1979) prior to regulation by Coleto Creek Reservoir, 92.7 ft 3 /s (2.625 m 3 /s), 67,160 acre-ft/yr (82.8 hm 3 /yr).

EXTREMES FOR PERIOD OR RECORD.--Maximum discharge, 89,000 ft³/s (2,520 m³/s) Oct. 16, 1946, gage height, 36.64 ft (11.168 m), present datum, from floodmark, on basis of slope-area measurement of peak flow; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge since at least 1875, 236,000 ft 3 /s (6,680 m 3 /s) Sept. 22, 1967, gage height, 42.0 ft (12.80 m), present site and datum, from floodmark, on basis of slope-area measurement of peak flow. Flood of July 1, 1936, reached a stage of 32.2 ft (9.81 m), present site and datum, from information by railroad company.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $8,550 \text{ ft}^3/\text{s}$ (242 m³/s) Jan. 20 at 2330 hours, gage height, 15.72 ft (4.791 m); minimum daily, 0.84 ft³/s (0.024 m³/s) Mar. 5.

		DISCH	ARGE, IN	CUBIC FEE		ECOND, WATE	R YEAR	OCTOBER 19	979 TO SEP	rember 1	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	36 34 33 31 29	28 25 24 23 22	24 25 25 25 26	39 36 36 34 33	35 37 39 37 36	.96 .93 1.0 1.0	5.5 5.7 5.3 4.8 4.6	4.8 4.7 4.7 4.6 4.7	3.7 3.2 4.7 4.2 3.7	6.1 6.7 6.1 5.9 5.7	4.8 4.6 4.5 4.5	4.6 4.7 5.1 5.2 5.5
6 7 8 9 10	29 28 27 26 25	23 23 23 24 23	27 27 26 27 26	33 32 31 31 31	36 35 38 70 50	.95 1.0 .99 .92	5.1 5.1 4.9 5.3 5.4	4.6 4.6 15 6.0 5.0	3.6 4.3 3.8 4.1 3.4	6.1 6.2 6.6 6.7 6.2	4.5 4.6 4.5 6.2 21	6.1 6.2 5.9 6.6 6.7
11 12 13 14 15	24 25 26 26 26	22 22 22 22 22 22	27 44 36 37 35	31 31 30 30 30	41 37 36 35 33	.91 .88 12 11 12	4.6 4.4 4.5 4.5 4.6	4.6 4.3 4.1 4.0 4.3	6.7 4.8 4.6 4.2 4.3	5.7 5.8 5.8 5.5 5.1	8.6 6.5 6.1 5.8 5.7	6.2 5.8 5.7 6.2 5.9
16 17 18 19 20	27 27 26 26 26	22 24 25 25 24	33 31 30 30 31	31 32 32 32 32 1060	32 29 30 34 30	11 12 7.9 8.5 7.5	4.6 4.9 4.7 4.9 4.8	8.4 4.3 5.2 28 8.4	4.2 4.3 4.3 3.9 4.0	4.4 5.7 5.8 5.8 5.8	6.1 5.8 5.3 5.2 5.1	5.8 5.7 5.8 5.9 6.2
21 22 23 24 25	26 27 25 25 25	27 33 32 28 26	31 32 33 33 31	2450 557 213 131 87	21 4.4 2.9 2.1 1.5	6.9 6.7 6.6 6.1 6.0	4.7 5.0 5.6 5.8 5.3	6.6 5.4 4.7 3.3 3.3	4.2 4.3 4.2 4.3 4.8	5.7 5.2 4.9 4.7 4.6	4.7 4.5 4.5 4.5 4.5	6.2 6.0 6.3 6.3
26 27 28 29 30 31	25 26 27 27 38 43	27 27 26 24 24	30 30 58 153 48 44	67 57 49 45 42 39	1.5 1.4 1.3 1.2	7.1 6.8 5.9 6.0 5.2 5.3	4.3 4.5 4.5 5.1	3.2 3.0 3.0 2.9 3.1 3.6	5.6 5.8 6.1 6.2 6.1	4.7 4.7 8.7 7.2 5.6 5.1	4.7 4.8 4.8 9.1 6.6 5.2	7.2 15 8.1 6.3 62
TOTAL MEAN MAX MIN CFSM IN. AC-FT	871 28.1 43 24 .06 .06	742 24.7 33 22 .05 .05	1115 36.0 153 24 .07 .08 2210	5412 175 2450 30 .34 .39 10730	787.3 27.1 70 1.2 .05 .06 1560	161.78 5.22 12 .84 .01 .01 321	147.3 4.91 5.8 4.3 .01 .01 292	176.4 5.69 28 2.9 .01 .01 350	135.6 4.52 6.7 3.2 .009 .01 269	178.8 5.77 8.7 4.4 .01 .01 355	181.8 5.86 21 4.5 .01 .01 361	245.3 8.18 62 4.6 .02 .02 487
CAL YR WTR YR						480 MIN 2 450 MIN	2 .84	CFSM .46 CFSM .05	IN 6.23 IN .73	AC-FT AC-FT	170700 20140	

08177700 OLMOS CREEK AT DRESDEN DRIVE, SAN ANTONIO, TX

LOCATION.--Lat 29°29'56", long 98°30'36", Bexar County, Hydrologic Unit 12100301, on right bank 30 ft (9 m) downstream from low-water bridge on Dresden Drive at San Antonio, 0.15 mi (0.24 km) west of intersection of Blanco Road and Dresden Drive, and 4.0 mi (6.4 km) upstream from Olmos Dam.

DRAINAGE AREA .-- 21.2 mi 2 (54.9 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- June 1968 to current year.

GAGE.--Water-stage recorder. Datum of gage is 726.10 ft (221.315 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Recording rain gage located at station, with three additional recording rain gages located in watershed. City of San Antonio rain gage and gage-height telemeters at station.

AVERAGE DISCHARGE .-- 12 years, 4.38 ft 3/s (0.124 m3/s), 2.81 in/yr (71 mm/yr), 3,170 acre-ft/yr (3.91 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,450 ft³/s (211 m³/s) Sept. 13, 1978, gage height, 14.82 ft (4.517 m), from floodmark; no flow at times.

Maximum stage since 1935, that of Sept. 13, 1978.

EXTREMES OUTSIDE PERIOD OF RECORD.--Floods in September and November 1947 reached a stage of 8.5 ft (2.59 m), from information by local resident.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 400 ft3/s (11.3 m3/s) and maximum (*):

Date		Time	Disch	arge	Gage	height
			(ft^3/s)	(m ³ /s)	(ft)	(m)
aDec.	28	1800	*553	15.7	6.23	1.899
Sept.	7	1745	479	13.6	6.01	1.832

a Water-quality samples were obtained during this runoff event.

Minimum discharge, no flow at times.

		DIS	CHARGE, IN	CUBIC F		COND, WA		OCTOBER 1	979 TO SEP	TEMBER 1	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.08 .40 .08 .03	.06 .06 .06 .08	.08 .08 .08 .08	.33 .15 .25 .11	.15 .31 .17 .15	.09 .09 .14 .19	.30 .27 .30 .24 .23	10 4.9 .82 .54 .52	.02 .02 .01 .01	.08 .10 .12 .12	.00 .01 .12 .08	.00
6 7 8 9	.03 .04 .05 .04	.06 .06 .06 .06	.15 .15 .13 .14 .22	.13 .10 .08 .10	.15 .15 .25 .16	.18 .22 .20 .14	.20 .22 .18 .22 .15	.45 .50 11 1.4 .72	.01 .01 .00 .00	.15 .16 .20 .20 .23	.17 .06 .10 1.9	14 103 7.8 .88 .54
11 12 13 14 15	.03 .05 .05 .08	.06 .06 .06	.15 .66 4.8 .40 .33	.11 .13 .16 .15	.11 .11 .11 .15	.09 .10 .14 .13	.17 .66 1.1 .25 .25	.79 .71 19 46 61	.02 .02 .02 .02 .02	.23 .20 .19 .18	15 .19 .17 .15 .13	.31 .32 .30 .34
16 17 18 19 20	.08 .06 .06 .06	.05 .05 .83 .08	.22 .20 .25 .25	.15 .42 .22 .20 .41	3.3 .09 .08 .08	.11 .13 .16 .23 .40	.25 .24 .23 .25 .29	21 14 8.6 22	.03 .04 .03 .03	.17 .15 .15 .18	.22 .06 .04 .05	.34 .38 .28 28
21 22 23 24 25	.06 .06 .06 .06	.83 .09 .08 .51	.25 .25 .95 .27 .25	.18 1.6 .28 .24 .23	.08 .09 .08	.11 .15 .17	.25 .28 .31 .31	20 .62 .12 1.1 .07	.44 .07 .04 .04	.15 31 2.1 .30 .15	.09 .02 .05 .03	.49 .44 .38 .32
26 27 28 29 30 31	.06 .23 .20 .08 .08	.20 .15 .11 .08	.25 .25 86 12 .31 .25	.20 .16 .15 .15 .15	.11 .12 .11 .12	.30 3.9 1.5 .26 .21	.82 .43 .38 .41	.06 .06 .05 .04 .03	.06 .06 .06 .04	.15 .11 .11 .10 .04	.02 .02 .02 .03 .00	1.6 11 1.8 .48 3.1
TOTAL MEAN MAX MIN CFSM IN. AC-FT (††)	2.44 .079 .40 .02 .004 .00 4.8	4.81 .16 .83 .05 .008 .01 9.5	109.73 3.54 86 .08 .17 .19 218 2.68	7.08 .23 1.6 .08 .01 .01	6.86 .24 3.3 .08 .01 .01 .14	10.26 .33 3.9 .09 .02 .02 .02	24.58 .82 15 .15 .04 .04 49	246.44 7.95 61 .03 .38 .43 489 7.58	1.27 .042 .44 .00 .002 .00 2.5	37.48 1.21 31 .02 .06 .07 .74	76.95 2.48 58 .00 .12 .14 153 2.78	178.37 5.95 103 .00 .28 .31 354 6.29
CAL YR WTR YR	1979 TOT 1980 TOT			AN 4.03 AN 1.93	MAX 243 MAX 103	MIN MIN		FSM .19 FSM .09	IN 2.58 IN 1.24	AC-FT AC-FT		†† 29.40 †† 25

^{††} Weighted-mean rainfall, in inches.

08177700 OLMOS CREEK AT DRESDEN DRIVE, SAN ANTONIO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: November 1968 to current year. Sediment analyses: October 1972 to September 1973. Water temperatures: November 1968 to current year. Bacteria analyses: April 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME TA	REAM- COLOW, ENTAN- ANEOUS (M		PH A	MPER= TURE, ATER	COLOR (PLAT- INUM COBALT UNITS)	BID- ITY	DXYGEN, O DIS- SOLVED S	SOLVED DE (PER- BI CENT UN SATUR- 5	YGEN MAND, OCHEM INHIB DAY IG/L)
28 28 28 31	1812 5	37 07 36 .25	290 99 111 572	7.9 8.4 8.5 7.2	16.0 14.5 13.5 9.5		160 1100 500 4.3	9.0 9.6 9.7 10.1	92 95 94 89	8.5 6.7 7.6 1.7
DATE	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)			HARD- NESS (MG/L AS	HARD- NESS, NONCAR BONATE (MG/L CACO3	- DIS- SOLV	ED SOLVI	1. SODIUM,	SORP- TION RATIO	
DEC 28 28 28 31	K140000 K72000	K24000 K17000	112000 72000	40 42		4 14 0 16	1	.9 17 .2 3.1 .4 3.8 .4 27		
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE	CAR- BONATE (MC/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLVE (MG/L	RIDE DIS D SOLV (MG/	DIS- SOLVI ED (MC/I L AS	CONSTI- ED TUENTS, DIS- SOLVED	RESIDUE AT 105 DEG. C, SUS- PENDED	
DEC 28 28	3.4	42 52	1 <1	30 6.6 7.9 60	14 3.4 4.3	3	.2 9 .1 3 .1 3 .3 15	.0 57	1610 628	
DATE	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	GEN, NITRATE TOTAL (MG/L	GEN,	GEN.	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	GEN A ORGAN TOTA (MG/	L TOTAL	+ PHOS- C PHORUS, TOTAL (MG/L	CARBON, ORGANIC TOTAL (MG/L AS C)	
DEC 28 28 31	198 84	.39	.140	.26 .53 .52 .63	.430	0 2.	9 2.0 1 2.5 4 1.8 72	1.100	52 22	
	DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)		DIS- D SOLV (UG/	. COPPER DIS- ED SOLVE L (UG/I	DIS- ED SOLVED (UG/L		
	DEC 28 28	1608 1812 2020	1 1 1	50 20 10	< < <	1.	0 0 0	0 320 0 40 0 30		
		S	EAD, NI DIS- I OLVED SO UC/L (1	DIS- DLVED S UG/L (RCURY I DIS- DLVED S UG/L	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)		
		EC 28 28	24 4 4	40 3 4	.0	0 0 0	0 0 0	20 <3 20		

08177700 OLMOS CREEK AT DRESDEN DRIVE, SAN ANTONIO, TX--Continued

DATE	TIME	PCB TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE. TOTAL (UG/L)	DDT. TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)
DEC 28 28	1608 1812	.00	.00	.00	.0	.00		.00	.04
DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)
DEC 28 28	.00	.00	.00	.00	.01	.00	.00	.00	.00
DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
DEC 28 28	.00	.00	.00	.00	0	.00	.01	.01	.01

08177800 OLMOS RESERVOIR AT SAN ANTONIO, TX

LOCATION.--Lat 29°28'28", long 98°28'23", Bexar County, Hydrologic Unit 12100301, at left upstream side of dam on Olmos Drive, 0.8 mi (1.3 km) upstream from Hildebrand Street, 1.5 mi (2.4 km) upstream from Brackenridge Park Zoo, and 4.0 mi (6.4 km) downstream from gaging station 08177700.

DRAINAGE AREA . - - 32 . 4 mi 2 (83 . 9 km 2) .

PERIOD OF RECORD. -- June 1968 to September 1971, April 1976 to current year.

GAGE .-- Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS (revised).--The dam is a concrete gravity-type structure with a maximum height of 50 ft (15 m) and a total length of 1,941 ft (592 m), spillway crest length 1,051 ft (320 m). The dam, spillway section, and gate house were rebuilt in 1980. The outlet structure consists of six vertical slide-gate-controlled concrete conduits with entrance dimensions of 5.75 ft (1.75 m) wide by 7.83 ft (2.39 m) high. The gates are maintained and operated by the city of San Antonio Fire Department as required to control downstream floodflow. The reservoir is empty except during flooding when it is used as a detention reservoir. The reservoir has a surface area of about 950 acres (384 hm²) at top of the dam. The dam is owned by the city of San Antonio. National Weather Service rain gage and gage-height telemeters at station. Figures given herein represent elevations at 2400 hours. Data regarding the dam and reservoir are given in the following table:

Elevation Capacity

	Elevation (feet)	Capacity (acre-feet)
Design flood (probably maximum flood)	736.4	24,150
Floor of gate operating room	736.0	23,560
Top of dam (crest of spillway)	728.0	14,240
Lowest gated outlet (invert)	680.0	0

EXTREMES FOR PERIOD OF RECORD .-- Maximum elevation, 704.50 ft (214.732 m) Sept. 13, 1978.

EXTREMES FOR CURRENT YEAR.--Maximum elevation, 691.96 ft (210.909 m) Dec. 28.

ELEVATION,	IN	FEET,	WATER	YEAR	OCTOBER	1979	TO	SEPTEMBER	1980
	-	INSTAM	PANFOIIS	ORST	PRVATIONS	TAS	2/101	7	

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	682.03	682.16	682.49	682.65	682.17	682.74	682.68	684.00	682.53	683.30	684.00	683.44
2	682.23	681.98	682.04	682.45	682.90	682.66	682.48	682.90	682.42	683.45	683.57	683.16
3	681.97	681.90	682.47	682.51	682.53	682.82	682.36	682.40	682.41	683.58	683.21	682.98
4	681.94	681.96	682.05	682.41	682.45	682.92	682.23	682.20	682.30	683.51	682.85	683.24
5	681.90	682.02	682.01	682.33	682.55	683.03	682.23	682.10	682.30	683.46	682.49	683.31
2	001.90	002.02	002.01	002.33	002.33	003.03	002.23	002.10	002.30	003.40	002.49	003.31
6	681.91	682.12	682.01	682.41	682.60	683.10	682.19	682.00	682.22	683.64	682.13	687.05
7	682.09	682.17	682.03	682.30	682.59	683.07	682.32	682.00	682.39	683.46	681.85	689.39
8	681.97	682.04	682.06	682.30	684.85	683.06	682.23	685.31	682.35	683.50	681.41	684.49
9	681.93	682.00	681.99	682.31	682.86	683.05	682.04	682.93	682.42	683.47	681.13	684.41
10	681.97	681.93	682.11	682.69	682.54	682.94	682.33	682.28	682.32	683.47	686.89	684.27
	001.57	001.75	002.11	002.03	002.54	002.54	002.55	002.20	002.52	003.47	000.09	004.27
11	681.95	681.91	682.08	682.43	682.46	682.91	682.40	682.29	682.14	683.39	685.06	684.21
12	682.06	681.94	684.39	682.34	682.31	682.84	684.06	682.67	681.85	683.26	684.41	684.19
13	681.98	682.17	685.20	682.32	682.31	682.75	682.82	687.00	681.80	683.21	684.08	684.17
14	681.91	681.91	682.38	682.38	682.54	682.65	682.41	685.91	681.71	683.15	683.84	684.17
15	682.03	682.03	682.26	682.50	682.45	682.78	682.16	685.52	681.49	683.17	683.32	684.23
	000.00	000.00	002120	002.50	002.13	002.70	002,10	005.52	001113	003.17	003.52	004.25
16	682.09	681.97	682.06	682.43	682.78	682.95	682.09	686.54	681.18	683.53	683.48	682.99
17	682.10	684.43	681.99	682.97	682.43	682.72	682.07	684.96	680.86	683.39	683.35	682.90
18	682.10	682.19	681.98	682.56	682.42	682.57	682.14	687.06	680.63	683.15	683.30	682.86
19	681.94	682.01	681.98	682.46	682.29	682.61	682.11	684.89	680.45	683.21	683.24	684.24
20	681.92	682.03	682.04	683.06	682.27	682.74	682.01	683.31	680.34	683.26	683.25	682.66
4.	222 22	150.00	552 33	224 01	AUG-UT-	Supplied States	100 41			00000	020 U	200 500
21	681.84	683.50	682.02	682.54	682.22	682.82	682.02	684.99	683.42	683.30	683.24	682.60
22	681.83	682.07	682.04	683.29	682.25	682.75	682.01	683.28	682.55	685.58	683.21	682.61
23	681.92	681.98	685.06	682.55	682.19	683.23	682.07	683.00	682.06	684.82	683.22	682.58
24	682.08	685.54	682.40	682.42	682.12	682.89	682.03	683.33	681.61	684.28	683.25	682.50
25	682.03	682.35	682.14	682.36	682.30	682.98	684.50	682.90	681.21	683.95	683.59	682.62
26	682.07	682.08	681.99	682.34	682.13	682.82	682.80	682.83	681.73	684.29	683.33	683.19
27	682.12	682.03	682.03	682.39	682.20	685.55	682.35	683.19	683.03	684.40	683.36	683.67
28	681.96	682.13	691.82	682.43	682.54	682.64	682.10	683.32	683.13	685.23	683.04	682.63
29												
	682.01	682.18	684.38	682.35	682.82	682.37	682.00	683.19	683.30	684.83	683.05	682.56
30	682.20	682.10	682.79	682.37	9.45	682.26	682.00	682.65	683.32	684.66	683.02	682.65
31	682.06		682.54	682.29		682.55		682.47		684.40	685.20	
MAX	682.23	685.54	691.82	683.29	684.85	685.55	684.50	687.06	683.42	685.58	686.89	689.39
MIN	681.83	681.90	681.98	682.29	682.12	682.26	682.00	682.00	680.34	683.15	681.13	682.50
								002.00	000.54	000.10	555	002.50

CAL YR 1979 MAX 696.14 MIN 681.29 WTR YR 1980 MAX 691.82 MIN 680.34

08178000 SAN ANTONIO RIVER AT SAN ANTONIO, TX

LOCATION.--Lat 29°24'34", long 98°29'41", Bexar County, Hydrologic Unit 12100301, on left bank 193 ft (59 m) downstream from South Alamo Street Bridge in San Antonio, 2.1 mi (3.4 km) upstream from San Pedro Creek, and 230.6 mi (371.1 km) upstream from mouth.

DRAINAGE AREA.--41.8 mi² (108.3 km²). Flow of river comes from intermittent spring flow and from artesian wells; drainage area of streams not applicable.

PERIOD OF RECORD.--December 1895 to June 1906 periodic discharge measurements only, January 1915 to November 1929, February 1939 to current year. Ground-water discharge into river is discussed by Petit and George, Texas Board of Water Engineers Bull. 5608, vol. 1 (1956, p. 45).

Water-quality records: Chemical, biochemical, and pesticide analyses: November 1968 to September 1979. Sediment analyses: May 1970 to September 1973. Water temperatures: November 1968 to September 1979. Bacteria analyses: May 1976 to September 1979.

REVISED RECORDS.--WSP 1312: 1917. WSP 1923: Drainage area. WRD TX-72-1: 1971(m).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 605.26 ft (184.483 m) National Geodetic Vertical Datum of 1929. Jan. 26, 1915, to Feb. 27, 1916, nonrecording gage at site 1.3 mi (2.1 km) upstream at different datum. Feb. 28, 1916, to Apr. 7, 1920, nonrecording gage at site 1.1 mi (1.8 km) upstream at different datum. Apr. 8, 1920, to Nov. 16, 1929, and Feb. 15, 1939, to Apr. 25, 1967, water-stage recorder in vicinity of South Alamo Street Bridge at 7.00-foot (2.134 m) higher datum. Apr. 25, 1967, to May 13, 1969, water-stage recorder at site 307 ft (94 m) downstream at same datum.

REMARKS.--Records good. Floodflow is regulated by Olmos flood-control reservoir, capacity 14,240 acre-ft (17.6 hm³), revised, about 8.5 mi (13.7 km) upstream. Dam completed in 1926 and rebuilt in 1980. Springs emerge intermittently from the Edwards and associated limestones along the Balcones Fault Zone. City of San Antonio rain gage and gage-height telemeters at station.

AVERAGE DISCHARGE.--55 years, 55.8 ft3/s (1.580 m3/s), 18.13 in/yr (461 mm/yr), 40,430 acre-ft/yr (49.9 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 15,300 ft³/s (433 m³/s) Sept. 10, 1921, gage height, 20.14 ft (6.139 m), from floodmark, at former site and datum, from rating curve extended above 2,000 ft³/s (56.6 m³/s) on basis of slope-area measurement of peak flow; no flow at times due to regulation.

Maximum stage since 1819, that of Sept. 10, 1921.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of July 5, 1819, equaled or exceeded that of Sept. 10, 1921.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,440 ft 3 /s (69.1 m 3 /s) May 1 at 1845 hours, gage height, 11.23 ft (3.423 m); minimum daily, 0.86 ft 3 /s (0.024 m 3 /s) May 5, due to regulation.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR JUN AUG SEP 57 55 4 5 8.8 51 56 7.1 7.1 3.4 9.8 9.3 9.7 56 13 12 9.4 9.8 7.0 TOTAL 715.0 563.7 1868.66 363.5 838.1 1105.6 MEAN 45.8 23.1 18.8 60.3 12.1 45.8 53.4 69.9 63.5 13.6 MAX MIN 7.0

CAL YR 1979 TOTAL 39455.00 MEAN 108 MAX 1060 MIN 29 AC-FT 78260 WTR YR 1980 TOTAL 14361.56 MEAN 39.2 MAX 416 MIN .86 AC-FT 28490

08178620 LORENCE CREEK AT THOUSAND OAKS BOULEVARD, SAN ANTONIO, TX (Flood-hydrograph partial-record station)

LOCATION.--Lat 29°35'24", long 98°27'47", Bexar County, Hydrologic Unit 123100301, on right bank 30 ft (9 m) upstream from Thousand Oaks Boulevard and 4.2 mi (6.8 km) upstream from mouth.

DRAINAGE AREA. -- 4.05 mi2 (10.5 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- January to September 1980.

GAGE.--Digital recorders (stage and rainfall), concrete control, and crest-stage gages. Gage is not referenced to National Geodetic Vertical Datum of 1929.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 41 ft 3 /s (1.16 m 3 /s) May 15 at 1100 hours, gage height, 1.76 ft (0.536 m); no flow most of time.

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period January to September, 41 ft 3 /s (1.16 m 3 /s) May 15 at 1100 hours, gage height, 1.76 ft (0.536 m); water-quality samples were made on this date; no flow most of time.

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Chemical, biochemical, and pesticide analyses: January to September 1980.

DATE	TIME	FL INS TAN	EAM- OW. TAN- EOUS	CI CO DU AN (MI	E- FIC N- CT- CE CRO- OS)	FI	PH ELD UITS)	A: W	1PER- TURE, ATER EG C)	(P IN CO	LOR LAT- UM BALT ITS)	B	ID-	YGEN, DIS- OLVED MG/L)	SC (F C	GEN, DIS- DLVED PER- CENT TUR- TION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)
MAY 15 15 15 15	1045 1051 1130 1245 1423		18 38 31 7.0		127 126 126 125 140		8.5 7.9 8.0 7.2 7.9		21.0 21.0 21.0 21.0 22.0		140 120 100 100 100	110 50 52 42 26	2	9.2 7.8 7.6 7.2 7.0		106 90 87 83 81	5.0 5.0 3.7 3.0 3.6
DATE	COL FOR TOT IMM (COL PE 100	M, AL, ED. S.	COL: FORM FECA 0.7 UM-1 (COL:	M. AL. MF S./	STRE TOCOC FECA KF AC (COLS PER 100 M	CI AL. GAR	HAR NES (MG AS CAC	S /L	HARD- NESS NONCAL BONATI (MG/I	- 5	CALCIU DIS- SOLVE (MG/L AS CA	D	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODI DIS SOLV	ED	SOD A SOR TI RAT	D- P- ON
MAY 15 15 15	K60 >20 K130	000	K110	000	970 830 460 640 610	000		52 50 55 52 60		0 0 0 0 0	19 18 20 19 22		1.1 1.3 1.3 1.2		1.6 1.8 1.2 1.2		.1 .1 .1 .1
DATE	DI	UM, S- VED /L	BICAL BONAT (MG, AS	re /L	CAR- BONAT (MG/ AS CO	E	SULF. DIS SOL (MG AS S	VED /L	CHLO- RIDE DIS- SOLVI (MG/I AS CI	ED	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	D	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOI	OF TI-	SOLI RESI AT 10 DEG. SUS PEND (MG	DUÉ 05 C, ED
MAY 15 15 15 15		7.5 7.6 5.6 5.2 5.4		68 67 70 70 80		1 0 0 0		3.6 2.5 1.8 1.1 2.3	3.3.3.	.0 .1 .1 .0 .4		1 1 1 1	11 13 12 12 12		81 81 80 77 87		320 68 69 43 15
DATE	SOLI VOL TIL SUS PEND (MG	A- E.	NITE GEN NITE TOTA (MG,	ATE AL /L	NITR GEN NITRI TOTA (MG/ AS N	TE L L	NITT GEI NO2+I TOT. (MG AS	N, NO3 AL /L	NITRO GEN AMMONI TOTAI (MG/I AS N)	A	NITRO GEN, ORGANI TOTAL (MG/L AS N)	С	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHC	US, AL J/L	CARBO ORGAL TOT. (MG AS	NIĆ AL /L
MAY 15 15 15		46 34 19 15		.57 .66 .51 .35	.0	10 10 10 10 10		.58 .67 .52 .36	.09	0000	1.5 1.2 1.0 .8	3	1.6 1.3 1.1 .86		.380 370 .250 220 .200		 8 5

08178620 LORENCE CREEK AT THOUSAND OAKS BOULEVARD, SAN ANTONIO, TX--Continued

DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM. DIS- SOLVED (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
MAY 15 15 15	1051 1245 1423	1	0 	1 1 1	10 10 10	1 	<1 <1 <1	0	0	0 0 0	5
DATE	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAY 15 15	4 	1 2 4	1700	1600	90 80 70	15	15	0 0 4	60	60 	4 4 4
D	TO RE ER (U	CURY S TAL PE COV- RE ABLE ER G/L (U	CCOV- D RABLE SO JG/L (U	DIS- NI DLVED TO IG/L (U	LE- S LUM, PE DTAL TO	SUS- NI ENDED I OTAL SO UG/L (U	DIS- I DLVED SO JG/L (U	VER, TO DIS- RE DLVED ER UG/L (U	NC, S TAL PE COV- RE ABLE ER G/L (U	ABLE SOI	NC, IS- LVED G/L ZN)
1	Y 5 5	.2 	.0 	.2	0	0	0 0 0	0 0 0	20 	20	4 7 5
	DATE MAY	TIME	PCB TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)	
	15 15	1051 1245	.00	.00	.00	:1	.00	.00	.00	.01	
	DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN. TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	
	MAY 15 15	.00	.00	.00	.00	.00	.00	.00	.00	.00	
	DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UC/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)	
	MAY 15 15	.00	.00	.00	.00	0	.00	.00	.00	.00	

08178640 WEST ELM CREEK AT SAN ANTONIO, TX (Flood-hydrograph partial-record station)

LOCATION.--Lat 29°37'23", long 98°26'29", Bexar County, Hydrologic Unit 12100301, at mid-channel, 1.8 mi (2.9 km) upstream from mouth of East Elm Creek, 2.1 mi (3.4 km) upstream from Farm Road 1604, and 7.0 mi (11.3 km) north of San Antonio International Airport.

DRAINAGE AREA. -- 2.45 mi2 (6.35 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- February 1976 to current year.

CACE.--Digital recorders (stage and rainfall) and crest-stage gages. Gage is not referenced to National Geodetic Vertical Datum 1929.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 335 ft 3 /s (9.49 m 3 /s) Sept. 28 1976, gage height, 4.30 ft (1.311 m); maximum gage height, 4.48 ft (1.366 m) May 15, 1980.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $327~{\rm ft}^3/{\rm s}$ (9.26 m³/s) May 15 at 1107 hours, gage height, 4.48 ft (1.366 m), no other peak discharges above base of 100 ft³/s (2.83 m³/s); water-quality samples were made on this date; no flow most of time.

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, pesticide, and bacteria analyses: May 1976 to current year. Water temperatures: May 1976 to current year.

DATE	TIME	FL INS TAN	EAM- OW. TAN- EOUS FS)	CI CO DU AN (MI		PH IELD NITS)	AT W	MPER- FURE, ATER EG C)	(P IN CO	LOR LAT- UM BALT ITS)	B	UR- ID- TY TU)	SO	GEN, IS- LVED G/L)	SC (P	GEN, DIS- DLVED ER- CENT TUR- TION)		AND, CHEM NHIB DAY
MAY 15 15 15 15	1010 1030 1145 1230 1533		226 174 132 49 42		86 86 120 136 141	9.1 8.3 7.9 6.7 8.2		21.0 21.0 21.5 22.0 24.0		300 210 100 80 80	170 48 6 4 4	0 3 2		9.2 9.0 9.2 9.0 8.2		104 102 106 105 99		5.8 6.4 3.9 3.9 2.7
DATE	COL FOR TOT IMM (COL PE 100	M. AL. ED. S. R	COLI FORM FEC/ 0.7 UM-M (COLS	AL.	STREP- TOCOCCI FECAL. KF AGAR (COLS. PER 100 ML)	HAR NES (MG AS CAC	S /L	HARD- NESS. NONCAR BONATE (MG/I CACO3	-	CALCII DIS- SOLVI (MG/I AS CA	ED	MAGNI SIUN DIS- SOLVI (MG/I AS MG	1. ED	SODIU DIS- SOLVE (MG/ AS N	D L	SODI AI SORI TIC RATI)-)-	
MAY 15 15 15	. 100 . 220 . 73	000 000 000 000	K370 230 430 660 K120	000	26000 27000 41000 80000 16000		37 37 59 64 66		1 2 3 1 0	14 14 22 24 25			.5	1	.7 .6 .9 .2		.1 .0 .1 .1	
DATE	DI	UM, S- VED /I.	BICAR BONAT (MG/ AS	E L	CAR- BONATE (MG/L AS CO3)	SULFA DIS- SOL (MG AS SO	- VED /L	CHLO- RIDE, DIS- SOLVE (MG/I AS CI	D	FI,UO- RIDE DIS- SOLVI (MG/I AS F)	ED	SILICA DIS- SOLVI (MG/I AS SIO2)	ED	SOLIE SUM CONST TUENT DIS SOLV (MG/	F I- S. ED	SOLII RESII AT 10 DEG. SUS- PENDE (MG)	OUÉ OS C,	
MAY 15 15 15		3.0 3.2 3.2 3.6 3.3		38 43 68 76 89	3 0 0 0		2.4 2.0 2.4 1.9 2.0	2. 3. 1. 2.	8 9 7		.1	8.	.0		51 53 74 81 89	1	776 239 117 24 58	
DATE	SOLI VOL TIL SUS PEND (MG	A- E,	NITE GEN NITE TOTA (MG/ AS N	I. ATE AL /L	NITRO- GEN. NITRITE TOTAL (MG/L AS N)	NIT GE NO2+ TOT (MG AS	N; NO3 AL /L	NITRO GEN, AMMONI TOTAL (MG/L AS N)	Λ	UITRO GEN ORGANI TOTAI (MG/I AS II)	ic	NITRO- GEN, AN MONIA ORGAN TOTAL (MG/I AS N	1- + IC	PHOS PHORU TOTA (MG/ AS P	IS, L L	CARBO ORGAN TOTA (MG)	ILC L	
MAY 15 15 15 15		480 82 20 25 24		.38 .40 .26 .25	.010 .010 .010 .010		.39 .41 .27 .26	.09 .13 .04 .04	0	61 3.2 1.1	7	61 3.1 1.2	7	.1	30 20 60 60	120 40 16 15)	

358 08178640 WEST ELM CREEK AT SAN ANTONIO, TX--Continued

DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)
MAY 15 15 15	1010 1030 1145 1230	6	5	1 1 1	5 0 8 9	1	0	<1 1 <1 <1	20	20	0 0 0
DATE	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)
15 15 15	19	17	4 2 4 4	1.9000	19000	160 290 100 50	39 	39	2 0 0 0	700	690
DATE	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY SUS- PENDED RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, SUS- PENDED TOTAL (UG/L AS SE)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, SUS- PENDED RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)
MAY 15 15 15	4 10 3 2	.6	.6	.0	0	0	0 0 0	0 0 0	80 	70 	<3 10 <3 3
	DATE	TIME	PCB TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD. TOTAL (UG/L)	DDE. TOTAL (UG/L)	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)	
	MAY 15 15	1010 1030	.00	.00	.00	.0	.00	.00	.01	.00	
	DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN. TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	
	MAY 15 15	.00	.00	.00	.00	.00	.00	.00	.00	.00	
	DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)	
	MAY 15 15	.00	.00	.00	.00	0	.00	.00	.00	.00	

08178645 EAST ELM CREEK AT SAN ANTONIO, TX (Flood-hydrograph partial-record station)

LOCATION.--Lat 29°37'04", long 98°25'41", Bexar County, Hydrologic Unit 12100301, at mid-channel, 2.1 mi (3.4 km) upstream from West Elm Creek, 2.4 mi (3.9 km) upstream from Farm Road 1604, and 6.9 mi (11.1 km) north of San Antonio International Airport.

DRAINAGE AREA. -- 2.33 mi 2 (6.03 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- November 1975 to current year.

GACE.--Digital recorders (stage and rainfall) and crest-stage gages. Gage is not referenced to National Geodetic Vertical Datum of 1929.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 310 ft 3 /s (8.78 m 3 /s) May 7, 1976, gage height, 6.78 ft (2.067 m).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 106 ft 3 /s (3.00 m 3 /s) May 5 at 1150, gage height, 4.93 ft (1.503 m), no other peak discharge above base of 100 ft 3 /s (2.83 m 3 /s); water-quality samples were made on this date; no flow most of time.

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, pesticide, and bacteria analyses: May 1976 to current year. Water temperatures: May 1976 to current year.

DATE	TIME TA	TREAM- CO TLOW, DI ISTAN- AI		PH A'	MPER- (TURE, I ATER C	NUM OBALT	BID- I	GEN, ()	OLVED PER- CENT ATUR-	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)
MAY 15 15 15	1139 1151 1225 1357 1707	44 103 72 32 16	76 73 82 102 108	8.0 7.9 7.8 8.0 7.9	20.5 20.5 20.5 20.5 20.5 20.5	80 80 80	54 48 29 14 21	8.0 9.1 9.0 8.2 8.3	91 103 102 93 94	5.1 4.3 3.4 2.8 3.0
DATE	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	0.7 UM-MF (COLS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODI AD SORP TIO RATI	- N
MAY 15 15 15 15	. 61000 . K30000 . K30000	54000 28000 21000	60000 33000 28000 27000 17000	27 33 35 46 49	0 0 0 0	12 13 17	.6 .8 .6	.3 .6 .7 .8		.0
DATE	POTAS- SIUM. DIS- SOLVED (MG/L AS K)	BICAR- BONATE	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	(MG/L	SILICA. DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLID RESID AT 10 DEG. SUS- PENDE (MG/	UÉ 5 C,
MAY 15 15 15 15	. 4.2 . 4.0 . 3.9	43 48 57	0 0 0 0	1.9 2.0 1.0 1.5 2.2	1.3 1.0 3.1 2.9 1.9	.1	8.7 8.6 9.0 10 14	46 51 55 65 72		37 99 44 17
DATE	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	GEN, NITRATE TOTAL (MG/L	NITRO- CEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	GEN,	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBOI ORGAN TOTA (MG/ AS C	IĊ L L
MAY 15 15 15	. 30 . 16	.25 .22 .33	.010 .010 .010 .010	.29 .26 .23 .34	.100 .090 .060 .060	1.3 1.0 .85	3.0 1.4 1.1 .91	.150 .130 .100 .070	24 19 14 16	

08178645 EAST ELM CREEK AT SAN ANTONIO, TX--Continued

DATE	TIM	E	RSENIC TOTAL (UG/L AS AS)	DIS- SOLVED	SOLVED (UG/L	RECO' ERAB	L CA	DMIUM DIS- OLVED UG/L S CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	DIS-	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
15 15 15	113 115 122	1	ND	0		5	0	<1 <1 <1	10	10	0 0 0	1
DATE	COPPE SUS- PEND RECO ERAB (UG/ AS C	ED C V- LE	OPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	ERABLI	IRON DIS	TO EI	EAD, OTAL ECOV- RABLE	RECOV- ERABLE	LEAD, DIS- SOLVED (UG/L AS PB)	(UG/L	NESE, SUS-
MAY 15 15		0	1 14 3	2000	2000)	50 50	7	6	1 1 2	60	60
DATE	NESE DIS SOLV	ED L	ERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	RECOV- ERABLE	MERCURY DIS- SOLVEI (UG/L	NIUM TOTAL (UG/1	N: PI TO	SUS- ENDED OTAL UG/L	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SOLVED	(UG/L	ZINC, DIS- SOLVED (UG/L AS ZN)
MAY 15 15		2 2 2	.6	.5			0	0	0 0	0 0 0		<3 <3 9
DAT MAY		TIME	PC TOT. (UG/	LE P B CH AL TO	PH- HA- NES. OLY- LOR. ALI TAL TO G/L) (U	ORIN. I	CHLOR- DANE. COTAL (UG/L)	DDD, TOTAI (UG/I		E, DE AL TOT /L) (UG	DT, AZIN AL TOT	ION,
15. 15.		1139 1151		.00	.00	.00	.0	.(00	.00	.00	.00
DAT		DI- ELDRI TOTAL (UG/L	N SULF.	AN, END	RIN, ETH TAL TO G/L) (U	IION. (HEPTA- HLOR, COTAL (UG/L)	HEPTA CHLOR EPOXII TOTAI (UG/I	E LIND TOT		A- OX ON, CHI	
MAY 15. 15.		.0	0	.00	.00	.00	.00	.(00	.00	.00	.00
DAT		METHY PARA- THION TOTAL (UG/L	TR THI	ON, MI AL T	OTAL TO	ION, AF	COTAL	TOTAL TRI- THION (UG/I	2,4 TOT		AL TOT	CAL
MAY 15.		.0	0	.00	.00	.00	0	.(00	.00	.00	.00

08178700 SALADO CREEK (UPPER STATION) AT SAN ANTONIO, TX

LOCATION.--Lat 29°30'57", long 98°25'51", Bexar County, Hydrologic Unit 12100301, on upstream side of upstream bridge of two bridges on Interstate Highway 410 in San Antonio, 1.0 mi (1.6 km) west of Northeast School, 1.1 mi (1.8 km) upstream from Perrin-Beitel Creek, and 2.7 mi (4.3 km) east of San Antonio International Airport.

DRAINAGE AREA .-- 137 mi2 (355 km2).

PERIOD OF RECORD. -- September 1960 to current year.

GAGE.--Water-stage recorder with concrete control. Datum of gage is 684.60 ft (208.666 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records poor. No known diversion above station. Recording rain gage located at station with four additional recording rain gages located in watershed. Flow is affected at times by discharge from flood-detention pools of nine floodwater-retarding structures with combined detention capacity of 24,460 acre-ft (30.2 hm³). These structures control runoff from 67.7 mi² (175.3 km²) above this station.

AVERAGE DISCHARGE.--20 years, 9.94 ft3/s (0.282 m3/s), 0.98 in/yr (25 mm/yr), 7,200 acre-ft/yr (8.88 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $24,900 \text{ ft}^3/\text{s}$ (705 m³/s) May 12, 1972, gage height, 15.22 ft (4.639 m), from rating curve extended above 8,000 ft³/s (227 m³/s) on basis of slope-area measurement of peak flow; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1853, 23 to 24 ft (7.0 to 7.3 m) in October 1913. Flood in September 1921 reached a stage of 18 ft (5.5 m), and flood of Sept. 27, 1946, reached a stage of 18.2 ft (5.55 m), and are the highest since 1899.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 232 ft³/s (6.57 m³/s) Sept. 6, time unknown, gage height, 4.36 ft (1.329 m), from floodmark, no peak above base of 250 ft³/s (7.08 m³/s); no flow at times.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

		DISC	DRANGE, IN	COBIC FE	MEA	AN VALUES	EK IEAK U	CIUBER 15	79 10 3	ELIENDEK 190	50	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.3 1.1 2.0 4.7 2.8	.40 .40 .30 .30	.10 .10 .10 .10	3.1 3.0 2.9 2.9 2.8	1.6 1.5 1.4 1.4	.20 .20 .20 .20 .20	4.8 2.4 2.2 2.1 2.0	30 5.0 3.7 3.5 3.4	.70 .60 .60 .50	.20 .10 .10	.20 .20 .20 .20 .20	.20 .20 .10 .10
6 7 8 9	.43 .40 .41 .36	.20 .20 .20 .20 .20	.10 .10 .10 .10	2.8 2.7 2.7 2.6 2.6	1.2 1.1 1.0 .90	.20 .20 .20 .20 .20	2.0 1.9 1.8 1.8	3.3 3.2 3.2 3.1 3.0	.40 .40 .40 .40	.00 .00 .00	2.6 1.0 .60 3.0 20	50 15 5.0 2.6 2.0
11 12 13 14 15	1.2 .50 .40 .40	.20 .20 .20 .10	.10 14 8.0 5.0 3.9	2.5 2.4 2.4 2.4 2.3	.80 .80 .70 .70	.20 .20 .20 .20 .20	3.0 5.0 3.5 2.5 2.0	3.0 3.2 100 90 65	.30 .30 .30 .30	.00	10 5.0 2.5 1.6 .60	1.2 .80 .40 .30 .20
16 17 18 19 20	.60 .50 .40 .40	.10 4.0 10 2.3 6.0	3.7 3.6 3.5 3.4 3.4	2.3 2.2 2.2 2.2 2.1	.50 .40 .40 .40	7.0 3.2 3.0 2.8 2.7	1.7 1.6 1.5 1.4 1.3	55 50 140 40 20	.20 .20 .20 .10	.00	.40 .30 .20 .10	.10 .10 .00 .00
21 22 23 24 25	.40 .30 .30 .20 .20	12 8.0 2.0 5.0 3.3	3.3 3.3 3.4 3.3 3.1	2.1 4.0 2.7 2.1 2.0	.30 .30 .30 .30 .20	2.6 2.5 2.5 2.4 2.4	1.3 1.2 1.2 1.2 20	50 9.0 5.0 3.2 2.5	10 2.5 2.0 1.6 1.2	.00 3.0 2.4 1.6 1.0	.00 .00 .00 .00	.00 .00 .00
26 27 28 29 30 31	.20 .20 .20 .40 1.0	1.4 .40 .20 .10	3.0 3.0 30 8.0 3.5 3.2	2.0 1.9 1.8 1.8 1.7	.20 .20 .20 .20	2.3 5.4 3.6 2.4 2.2 2.1	8.0 4.5 4.0 3.9 3.7	2.2 2.0 1.4 1.2 1.0	1.0 .80 .60 .50 .40	.80 .60 .50 .40 .30	2.0 .80 .50 .40 .30	2.0 7.0 4.0 2.7 6.0
TOTAL MEAN MAX MIN CFSM IN. AC-FT (††)	23.45 .76 4.7 .15 .006 .01 47	58.40 1.95 12 .10 .01 .02 116 1.69	116.70 3.76 30 .10 .03 .03 231 1.88	74.8 2.41 4.0 1.6 .02 .02 148 .66	20.10 .69 1.6 .20 .005 .01 .40	52.10 1.68 7.0 .20 .01 .01 103 1.97	95.3 3.18 20 1.2 .02 .03 189 1.27	705.90 22.8 140 .80 .17 .19 1400 6.38	27.70 .92 10 .10 .007 .01 .55	.003 .00 23	53.10 1.71 20 .00 .01 .01 105 2.31	100.10 3.34 50 .00 .02 .03 199 6.44
CAL YR WTR YR					MAX 1210 MAX 140		.00 CFSM		1.19	AC-FT 8680 AC-FT 2660	†† 39 †† 24	

tt Weighted-mean rainfall, in inches.

08178800 SALADO CREEK (LOWER STATION) AT SAN ANTONIO, TX

LOCATION.--Lat 29°21'25", long 98°24'45", Bexar County, Hydrologic Unit 12100301, on right bank at upstream side of bridge on Loop 13 at San Antonio, 1.4 mi (2.3 km) east of Brooks Air Force Base, and 3.3 mi (5.3 km) upstream from Rosillo Creek.

DRAINAGE AREA . - - 189 mi 2 (490 km2).

PERIOD OF RECORD. -- September 1960 to current year.

GAGE.--Water-stage recorder. Datum of gage is 526.95 ft (160.614 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Small diversions above station. Recording rain gage located at station with six additional recording rain gages located in watershed. Most of low flow comes from artesian wells and springs in city of San Antonio. For statement regarding regulation by Soil Conservation Service floodwater-retarding structures, see station 08178700.

AVERAGE DISCHARGE. --20 years, 42.7 ft³/s (1.209 m³/s), 3.07 in/yr (78 mm/yr), 30.940 acre-ft/yr (38.1 hm³/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 13,100 ft 3/s (371 m3/s) Sept. 27, 1973, gage height, 28.83 ft (8.787 m); no flow Aug. 13, 1967. Maximum stage since at least 1941, that of Sept. 27, 1973.

EXTREMES OUTSIDE PERIOD OF RECORD.--Floods of Sept. 27, 1946, and Aug. 15, 1960, were about equal magnitude. Flood of Aug. 15, 1960, reached a stage of 26.8 ft (8.17 m), from floodmarks.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 600 ft 3/s (17.0 m 3/s) and maximum (*):

Date		Time	Disch	arge	Gage	height
			(ft3/s)	(m^3/s)	(ft)	(m)
May	15	2200	617	17.5	11.55	3.520
May	19	0100	664	18.8	11.78	3.591
Sept.	7	1900	*807	22.9	12.39	3.776

Minimum discharge, 5.0 ft³/s (0.14 m³/s) Aug. 23.

		DISCHA	RGE, IN	CUBIC FE		COND, WATER AN VALUES	YEAR (OCTOBER 1	979 TO SEI	PTEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	20 19 19 20 27	30 30 32 33 31	42 45 45 40 38	28 32 32 33 33	31 33 33 30 30	28 26 26 27 27	24 31 29 26 25	48 141 42 29 24	23 24 26 24 25	9.6 8.5 8.3 7.9	9.4 11 11 11 12	11 11 12 12 11
6 7 8 9	27 24 27 25 24	30 37 37 37 41	38 38 42 43	34 38 38 38 39	29 29 30 36 35	28 27 28 29 30	26 25 24 22 22	23 22 52 65 32	25 22 21 22 23	13 12 13 13	9.5 10 9.2 10 101	26 475 268 46 33
11 12 13 14	24 22 23 25 24	41 38 38 37 38	43 48 62 56 43	39 37 37 39 39	32 30 29 31 30	28 26 23 25 26	22 25 36 35 30	25 24 49 254 358	22 21 20 18 17	13 13 13 13 12	182 25 11 10 9.2	24 20 19 18 17
16 17 18 19 20	23 22 20 21 24	38 44 59 35 32	38 41 42 46 47	39 39 38 39 46	50 39 30 28 27	27 29 27 27 27	24 22 22 23 24	207 157 78 431 65	20 18 16 16 14	13 10 11 8.2 7.9	8.7 9.4 9.2 8.4 7.9	16 16 15 15
21 22 23 24 25	27 27 25 25 25 25	71 52 37 39 57	47 47 53 60 49	39 94 49 32 29	28 29 30 29 27	26 25 26 27 25	23 22 21 20 80	225 77 38 30 29	14 37 20 14 12	11 13 18 12 9.8	7.7 7.2 6.3 6.5 6.2	15 15 15 14 15
26 27 28 29 30 31	27 28 30 31 32 31	44 40 37 38 40	48 46 57 214 41 28	28 28 28 29 30 30	25 25 26 28	30 51 76 32 26 24	49 24 20 19 18	27 25 26 26 26 26 24	10 12 11 11 9.9	9.3 12 11 11 10 9.3	9.1 9.5 9.5 10	20 24 26 20 23
TOTAL MEAN MAX MIN CFSM IN. AC-FT (††)	768 24.8 32 19 .13 .15	1193 39.8 71 30 .21 .23 2370 1.53	1570 50.6 214 28 .27 .31 3110 1.96	1152 37.2 94 28 .20 .23 2280 .70	889 30.7 50 25 .16 .17 1760 .80	909 29.3 76 23 .16 .18 1800 1.66	813 27.1 80 18 .14 .16 1610 1.39	2679 86.4 431 22 .46 .53 5310 6.76	567.9 18.9 37 9.9 .10 .11 1130 1.01	350.8 11.3 18 7.9 .06 .07 696 .08	567.9 18.3 182 6.2 .10 .11 1130 2.62	1267 42.2 475 11 .22 .25 2510 6.17
CAL YR WTR YR					AX 1800 AX 475	MIN 19 MIN 6.2	CFSM CFSM	.33 IN		C-FT 45070 C-FT 25240		

^{††} Weighted-mean rainfall, in inches, based on seven rain gages.

08179000 MEDINA RIVER NEAR PIPE CREEK, TX

LOCATION.--Lat 29°40'31", long 98°58'33", Bandera County, Hydrologic Unit 12100302, on right bank 500 ft (150 m) upstream from Bandera Falls, 0.6 mi (1.0 km) upstream from Red Bluff Creek, and 4.1 mi (6.6 km) southwest of Pipe Creek.

DRAINAGE AREA. -- 474 mi² (1,228 km²).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1922 to June 1935, October 1952 to current year. Monthly discharge only for some periods published in WSP 1312 and 1732.

REVISED RECORDS. -- WSP 1312: 1925(M). WSP 1923: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,067.37 ft (325.334 m) Corps of Engineers datum. December 1922 to June 1935, water-stage recorder at site 1.9 mi (3.1 km) upstream at different datum.

REMARKS. -- Water-discharge records good. Small diversion above station.

AVERAGE DISCHARGE.--40 years (water years 1923-34, 1953-80), 140 ft 3 /s (3.965 m 3 /s), 4.01 in/yr (102 mm/yr), 101,400 acre-ft/yr (125 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 281,000 ft 3 /s (7,960 m 3 /s) Aug. 2, 1978, gage height, 49.6 ft (15.12 m), from floodmark, from rating curve extended above 32,000 ft 3 /s (906 m 3 /s) on basis of slope-area measurements of 64,000 and 281,000 ft 3 /s (1,810 and 7,960 m 3 /s); minimum, 0.2 ft 3 /s (0.006 m 3 /s) July 14-16, 1956.

Maximum stage since at least 1880, that of Aug. 2, 1978.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in 1919 reached a stage of about 43 ft (13.1 m), present site and datum, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,600 ft3/s (45.3 m3/s) and maximum (*):

Date		Time	Disch	arge	Gage	height
			(ft^3/s)	(m^3/s)	(ft)	(m)
May	19	0230	2,860	81.0	7.17	2.185
Sept.	8-9	unknown	a*15,000	425	unknown	-
Sept.	29	1400	10,600	300	13.34	4.066

a Estimated.

Minimum daily discharge, 14 ft³/s (0.40 m³/s) Aug. 6, 8, 9.

		DISCH	ARGE, I	N CUBIC	FEET PER SE	COND, WAT		TOBER 1979	TO SEPTE	EMBER 198	0	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	61 60 60 59 57	53 53 53 51 51	53 52 53 51 52	63 62 59 59 58	54 54 54 51 51	41 41 43 45 44	60 60 59 56 55	46 53 51 49 48	39 39 37 37 36	25 23 23 22 21	16 16 15 15	19 19 19 19
6 7 8 9	56 57 57 57 57 55	51 51 51 51 51	52 51 51 51 51	57 56 54 53 53	50 50 50 50 49	43 44 45 46 45	55 54 51 50 49	46 43 49 50 46	36 38 41 39 38	21 20 20 20 20 20	14 15 14 14 16	19 900 6600 850 361
11 12 13 14 15	55 55 56 56 56	51 51 51 51 51	53 59 66 62 63	54 54 52 51 51	49 49 49 49 48	44 44 44 44 43	49 49 49 50 51	46 44 43 51 55	38 37 37 35 34	20 20 19 19 18	19 21 23 23 22	248 192 154 131 115
16 17 18 19 20	56 56 56 55 55	51 54 79 69 59	62 59 58 57 57	52 55 55 55 56	47 47 47 48 48	45 43 41 41 42	50 49 48 47 46	57 68 74 572 82	33 32 31 31 30	18 18 18 17	22 23 23 23 23 25	102 96 91 87 83
21 22 23 24 25	54 52 50 51 51	63 62 60 59 59	57 57 57 55 55	58 67 67 64 62	46 44 43 42 42	43 42 43 43 42	45 44 44 44 49	68 61 57 53 51	29 28 28 27 26	17 17 17 18 18	27 28 29 26 25	80 76 71 67 64
26 27 28 29 30 31	53 54 54 53 54 53	59 58 56 53 53	55 55 57 63 65 65	60 58 56 56 55 55	41 42 42 43	42 99 98 80 73 66	48 49 47 46	49 47 46 42 40 38	26 25 25 25 25 25	17 17 17 17 17	24 24 22 22 21 20	67 114 124 2380 936
TOTAL MEAN MAX MIN CFSM IN. AC-FT	1714 55.3 61 50 .12 .13 3400	1665 55.5 79 51 .12 .13 3300	1754 56.6 66 51 .12 .14 3480	1767 57.0 67 51 .12 .14 3500	1379 47.6 54 41 .10 .11 2740	1539 49.6 99 41 .11 .12 3050	1501 50.0 60 44 .11 .12 2980	2125 68.5 572 38 .15 .17 4210	982 32.7 41 25 .07 .08 1950	588 19.0 25 17 .04 .05	642 20.7 29 14 .04 .05	14103 470 6600 19 .99 1.11 27970
CAL YR WTR YR		98596 29759	MEAN MEAN	270 81.3	MAX 2710 MAX 6600	MIN 50 MIN 14	CFSM .57 CFSM .17	IN 7.74 IN 2.34	AC-FT AC-FT	195600 59030		

NOTE. -- No gage-height record Sept. 7-9.

08179000 MEDINA RIVER NEAR PIPE CREEK, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: January 1974 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	CI CC DU AN (MI	PE- FIC NN- ICT- ICE CRO-	FI	PH ELD ITS)	AT WA	IPER- CURE, ATER (G C)	(P IN CC	LOR PLAT- IUM BALT IITS)	B	UR- ID- TY TU)	SO	GEN. IS- LVED G/L)	SO (P	GEN, OIS- LVED ER- ENT TUR- TON)	OXYO DEMA BIO UNIN 5 I (MG,	AND, CHEM NHIB DAY
JAN 07	1322	56		530		8.1		12.0		5		.20		11.2		107		1.8
MAY 15	1104	54		519		7.6		22.0		0		5.6		7.9		95		1.8
JUL 29	1320	14		550		8.1		29.5		0		2.0		9.8		132		1.1
DATE	COL FORM TOTA IMMI (COL: PEI	1. FC AL, FE ED. 0. S. UM R. (CC	CCAL, 7 1-MF LS./	STR TOCO FEC. KF A (COL PE.	CCI AL, GAR S. R	HAR NES (MC AS	S /L	HARI NESS NONCA BONA' (MG, CACO	S, AR- FE /L	CALCI DIS- SOLV (MG, AS (/ED	MAG SI DI SOL (MG AS	UM, S- VED /L	SODI DIS SOLV (MG AS	ED /L		ON	
JAN 07		>16	K16		K8		270		77	75	5	1	9		8.3		.2	
MAY 15		500	220		110		250		74	69	9	2	0		8.8		.2	
JUL 29		>41	41		40		250		73	67	7	2	1	1	1		.3	
DATE	POTA SIU DIS SOLV (MG, AS I	JM, BIC G- BON /ED (M	AR- ATE G/L AS	CAR- BONA' (MG AS CO	TE /L		VED /L	CHLC RIDI DIS- SOLV (MG,	E. ZED	FLUC RIDE DIS SOLV (MG/ AS E	ED L	SILIO DIS- SOL' (MG AS- SIO:	VED /L	SOLII SUM (CONS' TUEN' DIS SOL' (MG)	OF TI- TS, S- VED	SOLI RESI AT 10 DEG. SUS PENDI (MG	DUÉ 05 C, ED	
JAN 07.,		1.3	230		0	7	6	13	3		.3		8.6		315		7	
MAY 15		.5	220		0	7	9	15	5		.3	1.	2		314		23	
JUL 29		2.1	220		0	7	8	16	ó		.4	13	5		319		1	
DATE	SOLII VOLA TILI SUS- PENDI (MG)	A- G E, NIT TO ED (M	TRO- EN, RATE TAL G/L N)	NITH GEI NITR TOTA (MG AS 1	N, ITE AL /L		AL /L	NITH GEN AMMON TOTA (MG,	I. IIA AL /L	NITE GEN ORGAN TOTA (MG/ AS N	I. VIC L L	NITRO GEN, MONIA ORGAN TOTA (MG	AM- A + NIC AL /L	PHOS PHORI TOTA (MG, AS I	US, AL /L	CARBO ORGAI TOTA (MG,	NIC AL /L	
JAN 07		6	.46	. (020		.48	. (010		35		.36	.(010		3.0	
MAY 15		6	.40		010		.41		040		38		.42		010		1.7	
JUL 29		3	.67	. (020		.69	. (060	1.	5	1	.6	. (010		5.3	
	DAT		İME	ARSEI DI: SOL' (UG, AS	S- VED /L	BARI DIS SOLV (UC	ED.	CADMI DIS SOLV (UC) AS C	ED L	CHRC MIUN DIS- SOLV (UG/ AS C	ED L	COPPI DIS- SOL' (UG,	VED /L	IRON DIS SOLV (UG) AS	S- VED /L			
	JAN 07		322		0		30		<1		0		0		<10			
	JUL 29		320		1		40		<1		0		2		<10			
		JAN 07 JUL 29	SO (U AS	AD. DIS- LVED G/L PB)	DI SOI (UC	IGA- SE. US- VED T/L MN)	SC (U	CURY DIS- ULVED G/1. HG)	NI SO (U	LE- UM. IS- LVED G/L SE)	SO (U	VER. IS- LVED C/L AG)	SOI (UC AS	IC, IS- .VED Z/L ZN)				

08179000 MEDINA RIVER NEAR PIPE CREEK, TX--Continued

365

DATE	TIME	PCB TOTAL (UG/L)	THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)
JAN 07	1322	.00	.0	.00	.0	.00	.00	.00	.03
JUL 29	1320	.00	.0	.00	.0	.00	,00	.00	.00
DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH - OXY - CHLOR, TOTAL (UG/L)
JAN 07 JUL	.00	.00	.00	.00	.00	.00	.00	.00	.00
29	.00	.00	.00	.00	.00	.00	.00	.00	.00
DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL, (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
JAN 07	.00	.00	.00	.00	0	.00	.00	.00	.00
JUL 29	.00	.00	.00	.00	0	.00	.00	.00	.00

GUADALUPE RIVER BASIN

08179100 RED BLUFF CREEK NEAR PIPE CREEK, TX

LOCATION.--Lat 29°40'51", long 98°57'19", Bandera County, Hydrologic Unit 12100302, on left bank 0.8 mi (1.3 km) upstream from bridge on Farm Road 1283, 1.8 mi (2.9 km) downstream from Pipe Creek, 1.9 mi (3.1 km) upstream from mouth, and 3.2 mi (5.1 km) south of Pipe Creek.

DRAINAGE AREA. -- 56.3 mi2 (145.8 km2).

PERIOD OF RECORD .-- April 1956 to current year.

REVISED RECORDS. -- WSP 1923: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,107.2 ft (337.475 m) Corps of Engineers datum.

REMARKS.--Records good. Small dams on upstream tributaries affect flow during time of storm runoff. No known diversion. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--24 years (water years 1957-80), 11.8 ft 3 /s (0.334 m 3 /s), 2.85 in/yr (72 mm/yr), 8.550 acreft/yr (10.5 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 46,900 ft³/s (1,330 m³/s) Sept. 27, 1964, gage height, 22.64 ft (6.901 m), from rating curve extended above 2,000 ft³/s (56.6 m³/s) on basis of slope-area measurement of peak flow; no flow for many days each year.

Maximum stage since at least 1905, that of Sept. 27, 1964.

EXTREMES OUTSIDE PERIOD OF RECORD.--A stage of about 17 ft (5.2 m) was reached in July 1937. Flood in October 1953 reached a stage of 13.8 ft (4.21 m).

DISCHARGE IN CURIC FEFT PER SECOND WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

EXTREMES FOR CURRENT YEAR .-- No flow for year.

		DISCHA	RGE, IN	COBIC F	EET PER	SECOND, MEAN VAL	WATER UES	YEAR	OCTOBER 1979	TO SEPTE	MBER 1980)	
DAY	OCT	NOV	DEC	JAN	FEB	MA	R	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.0	0	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00			.00	.00	.00	.00	.00	.00
3	.00	.00	.00	.00	.00			.00	.00	.00	.00	.00	.00
4	.00	.00	.00	.00	.00			.00	.00	.00	.00	.00	.00
5	.00	.00	.00	.00	.00			.00	.00	.00	.00	.00	.00
,													
6	.00	.00	.00	.00	.00	.0	0	.00	.00	.00	.00	.00	.00
7	.00	.00	.00	.00	.00			.00	.00	.00	.00	.00	.00
8	.00	.00	.00	.00	.00	.0	0	.00	.00	.00	.00	.00	.00
9	.00	.00	.00	.00	.00	.0	0	.00	.00	.00	.00	.00	.00
10	.00	.00	.00	.00	.00			.00	.00	.00	.00	.00	.00
11	.00	.00	.00	.00	.00	.0	0	.00	.00	.00	.00	.00	.00
12	.00	.00	.00	.00	.00			.00	.00	.00	.00	.00	.00
13	.00	.00	.00	.00	.00			.00	.00	.00	.00	.00	.00
14	.00	.00	.00	.00	.00			.00	.00	.00	.00	.00	.00
15					.00			.00	.00	.00		.00	.00
15	.00	.00	.00	.00	.00	.0	U	.00	.00	.00	.00	.00	.00
16	.00	.00	.00	.00	.00	.0	0	.00	.00	.00	.00	.00	.00
17	.00	.00	.00	.00	.00	.0	0	.00	.00	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.0	0	.00	.00	.00	.00	.00	.00
19	.00	.00	.00	.00	.00			.00	.00	.00	.00	.00	.00
20	.00	.00	.00	.00	.00			.00	.00	.00	.00	.00	.00
21	.00	.00	.00	.00	.00	.0		.00	.00	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	.0	0	.00	.00	.00	.00	.00	.00
23	.00	.00	.00	.00	.00	.0	0	.00	.00	.00	.00	.00	.00
24	.00	.00	.00	.00	.00		0	.00	.00	.00	.00	.00	.00
25	.00	.00	.00	.00	.00	.0	0	.00	.00	.00	.00	.00	.00
26	.00	.00	.00	.00	.00	.0	2	.00	.00	.00	.00	.00	.00
27	.00	.00	.00	.00	.00	.0		.00	.00	.00	.00	.00	.00
28	.00	.00	.00	.00	.00			.00	.00	.00	.00	.00	.00
29			.00	.00	.00	.0		.00	.00	.00	.00	.00	.00
	.00	.00											.00
30	.00	.00	.00	.00		.0		.00	.00	.00	.00	.00	.00
31	.00	755	.00	.00	777	.0	0		.00		.00	.00	
TOTAL	.00	.00	.00	.00	.00	.0	0	.00	.00	.00	.00	.00	.00
MEAN	.000	.000	.000	.000	.000	.00)	.000	.000	.000	.000	.000	.000
MAX	.00	.00	.00	.00	.00	.0)	.00	.00	.00	.00	.00	.00
MIN	.00	.00	.00	.00	.00	.0		.00	.00	.00	.00	.00	.00
CFSM	.000	.000	.000	.000	.000	.00		.000	.000	.000	.000	.000	.000
	.00	.00	.00	.00	.00	.0		.00	.00	.00	.00	.00	.00
IN.	.00	.00	.00	.00	.00	.0		.00	.00	.00	.00	.00	.00
AC-FT	.00	.00	.00	.00	.00	.0	U	.00	.00	.00	.00	.00	.00
CAL YR	1979 TOTAL	5494.21	MEAN	15.1	MAX	336	MIN	.00	CFSM .27	IN 3.63	AC-FT	10900	
WTR YR	1980 TOTAL	0.00	MEAN	.000	MAX	.00	MIN	.00	CFSM .000	IN .00	AC-FT	0	
137	A-1970, July 198												

08179500 MEDINA LAKE NEAR SAN ANTONIO, TX

LOCATION.--Lat 29°32'24", long 98°56'01". Medina County, Hydrologic Unit 12100302, at gate-operating platform, 576 ft (176 m) from left end of Medina Dam on Medina River, 4.2 mi (6.8 km) upstream from Medina diversion dam, 13 mi (21 km) north of Castroville, 28 mi (45 km) west of San Antonio, and 70.4 mi (113.3 km) upstream from mouth. Water-quality sampling site at the center of low-water bridge 0.6 mi (1.0 km) downstream.

DRAINAGE AREA . - - 634 mi2 (1,642 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1913 to current year. Prior to October 1965, monthend contents only.

REVISED RECORDS. -- WSP 1923: Drainage area.

GAGE.--Nonrecording gage read once daily if stage changing materially, otherwise intermittently. Datum of gage is 7.80 ft (2.377 m) below National Geodetic Vertical Datum of 1929.

REMARKS.--The lake is formed by a gravity-type concrete dam, 1,580 ft (482 m) long. The dam was completed and storage began May 7, 1913. The uncontrolled emergency spillway is a cut through natural rock 880 ft (268 m) long, with a 3-foot-wide (1 m) cutoff wall, located near right end of dam. The dam and lake are owned by the Bexar-Medina-Atascosa Counties Water Improvement District No. 1, which has a permit from the Texas Department of Water Resources to irrigate 150,000 acres (60,700 hm²) annually. An undetermined amount of water from the lake enters the Edwards and associated limestones in the Balcones Fault Zone, part of which is above and part below the dam. Water is released downstream to Medina Diversion Reservoir where it is diverted into Medina Canal by the Water District. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	(feet)	(acre-feet)
Top of dam	1,084.0	•
Crest of spillway.	1.072.0	254,000
Water-supply outlet pipes (invert)	966.5	4,780
Lowest gated outlet (invert)	920.0	0

COOPERATION.--Capacity table, based on survey made prior to June 1912, and gage-height record were furnished by the Bexar-Medina-Atascosa Counties Water Improvement District No. 1.

EXTREMES (at 0800) FOR PERIOD OF RECORD.--Maximum contents observed, 288,800 acre-ft (365 hm³) Sept. 16, 1919, gage height, 1,078.0 ft (328.57 m); minimum observed since lake first filled, 780 acre-ft (0.962 hm³) about Apr. 11, 1948, gage height, 944.0 ft (287.73 m).

EXTREMES (at 0800) FOR CURRENT YEAR.--Maximum contents, 247,600 acre-ft (305 hm³) Oct. 1, gage height, 1,070.9 ft (326.41 m); minimum, 167,200 acre-ft (206 hm²) Sept. 6, gage height, 1,054.1 ft (321.29 m).

Capacity table (gage height, in feet, and total contents, in acre-feet)

1.054.0	166,800	1,065.0	217,200
1.055.0	171,000	1,070.0	242,400
1.060.0	192,000	1,071.0	248,200

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 INSTANTANEOUS OBSERVATIONS AT 0800

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	247600	238400	233400	230800	227800	223800	215700	207500	207200	192000	177300	168900
2	247100	238400	233400	230300	227300	223300	215700	207400	207100	191200	176900	168500
3	247100	237900	232800	230300	227300	223300	215600	207200	207100	190700	176400	168000
4	246500	237900	232800	230300	227300	223300	215400	207100	206600	189900	176000	167600
5	245900	237400	232800	230300	227300	222800	215200	206600	206100	189500	175600	167600
6 7 8 9	245900 245900 245300 245300 244700	237400 236900 236900 236400 236400	232300 232300 232300 232300 232300	230300 230300 230300 230300 230300	227300 226800 226800 226800 226800	222800 222300 222300 222300 221800	214700 214700 214600 214400 214200	206100 206100 205800 205600 205600	205600 205100 204600 204100 203600	189100 188200 187800 187400 187000	174800 174300 173900 173800 173600	167200 169300 182700 183600 184400
11	244700	235900	231800	229800	226300	221800	213700	205100	203100	187000	173500	184900
12	244200	235900	231800	229800	226300	221200	213500	205100	202600	186100	173500	185300
13	243600	235400	231300	229300	226300	220700	213200	205600	202100	185700	173100	185700
14	243000	235400	231300	229300	225800	220700	213000	205600	201600	185300	173100	185700
15	243000	234900	231300	229300	225800	220200	212700	205600	201100	184900	173100	185700
16 17 18 19 20	242400 241900 241900 241400 241400	234900 234400 235400 234900 234900	231300 231300 231300 230800 230800	229300 229300 228800 228800 228800	225300 225300 225300 225300 225300	219700 219200 219200 218700 218700	212200 212000 211700 211200 211200	206100 206600 207100 207100 207100	200600 200100 199600 199100 198600	184400 183600 183200 182700 181900	172700 172700 172700 172700 172700 172200	185300 185300 185300 185300 185300
21	240900	234900	230800	228800	225300	218200	210700	208100	198100	181900	171800	185300
22	240900	234400	230800	228800	224800	217700	210200	208100	197500	181100	171400	184900
23	240400	234400	230800	228300	224800	217700	209700	208100	197000	180600	171400	184900
24	240400	234400	230800	228300	224800	217200	209100	208100	196000	180200	171000	184900
25	240400	234400	230800	228300	224800	217200	209000	208100	195000	179800	171000	184900
26 27 28 29 30 31	239900 239400 239400 239400 238900 238900	233900 233900 233900 233400 233400	230800 230800 230800 230800 230800 230800	228300 227800 227800 227800 227800 227800 227800	224800 224300 224300 223800	216700 216700 216700 216700 216200 216200	208800 208600 208100 208100 207600	208100 208100 207600 207600 207600 207600	195000 194500 194000 193000 192500	179400 179400 178500 178500 178100 177700	171000 170600 170100 169700 169300 169300	184900 184900 184900 184900 191600
MAX	247600	238400	233400	230800	227800	223800	215700	208100	207200	192000	177300	191600
MIN	238900	233400	230800	227800	223800	216200	207600	205100	192500	177700	169300	167200
(†)	1069.3	1068.2	1067.7	1067.1	1066.3	1064.8	1063.1	1063.1	1060.1	1056.6	1054.6	1059.9
(‡)	-9300	-5500	-2600	-3000	-4000	-7600	-8600	0	-15100	-14800	-8400	-22300

CAL YR 1979 WTR YR 1980 MAX 247600 MIN 167200

Elevation, in feet, at end of month. Change in contents, in acre-feet.

GUADALUPE RIVER BASIN

08179500 MEDINA LAKE NEAR SAN ANTONIO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1969 to current year.

DATE	TIME	SPE CIF CON DUC' ANC (MIC	IC - T- TEME E ATU RO- WAT	JRE, (MC CER AS	SS NONC	S, CALC AR- DIS TE SOL' /L (MG	VED SOL	UM, SODI S- DIS VED SOLV /L (MG	UM, - SC 'ED T	DIUM AD- RP- TION TIO
JAN 11	1105		420 1	5.0	190	45 54	4 1	4	7.2	.2
DA	5	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	
JAN 11		1.7	180	0	42	15	.2	9.9	233	

08180000 MEDINA CANAL NEAR RIOMEDINA, TX

LOCATION.--Lat 29°30'19", long 98°54'11", Medina County, Hydrologic Unit 12100302, in center of canal, 54 ft (16 m) upstream from center pier of double-barrel flume, 350 ft (107 m) downstream from county highway bridge, 1,900 ft (579 m) downstream from head of canal and diversion dam, 4.6 mi (7.4 km) downstream from Medina Dam, 4.7 mi (7.6 km) north of Riomedina, and 25 mi (40 km) northwest of San Antonio.

PERIOD OF RECORD. -- March 1922 to May 1934, July 1957 to current year.

REVISED RECORDS .-- WSP 568: 1922. WSP 1712: 1922(M), 1924, 1926.

GAGE.--Water-stage recorder. Altitude of gage is 910 ft (277 m), from topographic map.

REMARKS.--Records good. Station is above all diversions from canal. Canal diverts from right end of Medina Diversion Dam 1,900 ft (579 m) upstream from gage for irrigation downstream near Lacoste and Natalia. Several observations of water temperatures were made during the year.

AVERAGE DISCHARGE.--34 years (water years 1923-33, 1958-80), 41.0 ft³/s (1.161 m³/s), 29,700 acre-ft/yr (36.6 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 216 ft³/s (6.12 m³/s) May 6, 1971; no flow at times.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 97 137 35 6.1 6.1 9.5 28 58 58 .00 .00 .00 23 .00 .00 5.5 9.7 5.6 .00 .00 .00 .00 .00 2.5 .01 9.0 25 12 18 31 58 .00 .00 .00 .00 .00 .00 .00 .00 1.3 .00 .00 72 9.6 37 .00 71 69 54 73 19 16 32 43 .00 74 6.4 6.1 ---1750.50 56.5 137 87.3 120 38 158 TOTAL 467.70 723.70 981.73 31.7 1132.50 33.1 77.4 37.8 94.6 23.3 MEAN 45.9 15.1 MAX MIN .00 AC-FT

CAL YR 1979 TOTAL 14960.59 MEAN 41.0 MAX 190 MIN .00 AC-FT 29670 WTR YR 1980 TOTAL 24748.13 MEAN 67.6 MAX 175 MIN .00 AC-FT 49090

WTR YR 1980 TOTAL

26405

MEAN

72.1

MAX 1040

GUADALUPE RIVER BASIN

08180800 MEDINA RIVER NEAR SOMERSET, TX

LOCATION.--Lat 29°15'45", long 98°34'56", Bexar County, Hydrologic Unit 12100302, on left bank 300 ft (91 m) upstream from bridge on State Highway 16, 2.1 mi (3.4 km) upstream from Elm Creek, 4.9 mi (7.9 km) downstream from Medio Creek, 5.2 mi (8.4 km) northeast of Somerset, and 14.1 mi (22.7 km) upstream from mouth.

DRAINAGE AREA.--967 mi² (2,505 km²), of which 634 mi² (1,642 km²) is above dam forming Medina Lake.

PERIOD OF RECORD .-- October 1970 to current year.

GAGE.--Water-stage recorder. Datum of gage is 493.56 ft (150.437 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Flow is regulated by Medina Lake (station 08179500) 56 mi (90 km) upstream and by Medina Diversion Lake, capacity 4,500 acre-ft (5.55 hm³). For diversion of canal records, see Medina Canal near Riomedina (station 08180000). A large part of the streamflow is lost into the Edwards and associated limestones in the Balcones Fault Zone, which crosses the basin between the upstream end of Medina Lake and about 5 mi (8 km) downstream from Medina Dam, or 0.9 mi (1.4 km) downstream from the diversion dam. There are several small diversions below Medina Diversion Dam. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--10 years, 272 ft3/s (7.703 m3/s), 197,100 acre-ft/yr (243 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 30,500 ft 3 /s (864 m 3 /s) July 17, 1973, gage height, 29.39 ft (8.958 m); minimum, 21 ft 3 /s (0.59 m 3 /s) July 23, 24, 1971. Maximum stage since about 1890, that of July 17, 1973.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,430 ft 3 /s (40.5 m 3 /s) Aug. 11 at 1300 hours, gage height, 12.76 ft (3.889 m); minimum, 34 ft 3 /s (0.96 m 3 /s) Aug. 5.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

		DISCH	ANGE, I	N COBIC	MEA	N VALUES	I ILAK	OCTOBER 19	/ 10 SEF	TEMBER 19	00	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	68	72	70	82	78	67	69	59	76	44	38	57
2	67	73	69	81	78	65	70	59	73	44	38	56
3	66	73	74	78	79	66	74	62	71	44	38	54
2 3 4	64	73	71	79	79	68	72	62	69	42	39	54
5	64	73	70	79		67	70	61	69	42	36	53
6 7	65	74	73	80	78	66	72	58	69	42	35	55
7	65	73	74	81	78	68	74	56	68	45	36	65
8	63	73	75	80	78	68	67	96	66	44	38	86
9	63	73	71	80	77	70	60	125	66	41	38	81
10	63	73	73	81	77	75	61	82	62	41	143	74
11	61	72	71	82		72	62	69	62	42	1040	70
12	61	72	72	79	77	67	62	66	59	42	307	65
13	62	72	76	78	78	67	62	81	58	42	135	64
14	64	69	78	79	79	65	64	103	58	44	100	62
15	66	68	76	80	80	63	60	174	56	44	86	60
16	65	68	73	81	81	68	58	236	58	43	80	60
17	65	69	73	80	80	71	58	137	55	41	77	59
18	65	74	72	78		65	60	126	54	39	75	60
19	64	78	71	78	80	64	60	146	54	39	72	57
20	63	76	72	78	80	67	61	144	53	36	70	57
21	67	74	72	79	79	69	62	120	52	37	67	56
22	68	72	76	82	78	67	60	120	52	42	66	54
23	68	70	78	81	78	67	58	95	54	42	64	52
24	68	71	80	81	78	68	58	85	52	43	62	51
25	68	77	79	80	77	61	61	91	50	41	61	51
26	70	79	78	80	72	66	64	97	49	39	60	52
27	72	77	78	79	71	78	63	93	49	39	58	61
28	72	73	81	79	71	78	61	90	47	40	57	59
29	73	70	101	77	67	75	60	84	47	40	55	59
30	74	69	100	78	4	71	59	83	48	40	56	59
31	73		86	79		72		82		40	57	
TOTAL	2057	2180	2363	2469	2244	2121	1902	3042	1756	1284	3184	1803
MEAN	66.4	72.7	76.2	79.6	77.4	68.4	63.4	98.1	58.5	41.4	103	60.1
MAX	74	79	101	82	81	78	74	236	76	45	1040	86
MIN	61	68	69	77	67	61	58	56	47	36	35	51
AC-FT	4080	4320	4690	4900	4450	4210	3770	6030	3480	2550	6320	3580
CAL YR			MEAN	365	MAX 2500	MIN 61	AC-FT	264500				

MIN 35

52370

LOCATION.--Lat 29°34'42", long 98°41'29". Bexar County, Hydrologic Unit 12100302, 42 ft (13 m) left of and 44 ft (13 m) downstream from centerline of bridge on State Highway 16, 0.1 mi (0.2 km) northwest of Helotes, and 8.6 mi (13.8 km) upstream from mouth.

DRAINAGE AREA .-- 15.0 mi 2 (38.8 km2).

PERIOD OF RECORD .-- June 1968 to current year.

REVISED RECORDS .-- WRD TX-73-1: 1972(M).

GAGE.--Water-stage recorder. Datum of gage is 1,014.82 ft (309.317 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. An undetermined amount of flow is diverted for domestic use above the station, and some flow enters the Edwards and associated limestones through the Balcones Fault Zone in the vicinity of the gage. Recording rain gage located at station, with two additional recording rain gages located in watershed.

AVERAGE DISCHARGE.--12 years, 4.44 ft³/s (0.126 m³/s), 4.02 in/yr (102 mm/yr), 3,220 acre-ft/yr (3.97 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7.680 ft³/s (217 m³/s) July 16, 1973, gage height, 10.8 ft (3.29 m), from floodmarks, from rating curve extended above 5,000 ft³/s (142 m³/s); no flow most of time.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1923, 13.7 ft (4.18 m) in 1927, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 18 ft 3 /s (0.51 m 3 /s) Nov. 17 at 2300 hours, gage height, 1.91 ft (0.582 m), no peak above base of 140 ft 3 /s (3.96 m 3 /s); no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES OCT NOV DEC FEB APR JUN JUL AUG SEP DAY JAN MAR MAY .00 .00 .00 .00 .00 .00 .00 .27 .00 -00 -00 .00 .00 .00 .00 .00 .00 5 .00 .00 .00 .00 .00 .00 .00 6 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .03 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 20 -00 .00 .00 .00 10 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .18 .00 11 .00 13 -00 .00 .00 .00 -00 .00 .00 .39 .00 .00 .00 .00 .00 15 .00 .00 .00 .00 .06 .00 .00 .13 .00 .00 .00 .00 16 .00 .00 .00 .00 .04 .00 .00 .08 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .34 .00 18 .00 .03 .00 .00 .00 .00 .00 .11 .00 .00 .00 .00 .00 .00 20 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 21 .00 .04 .00 .00 .00 .00 .00 .22 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 23 .00 .00 .00 .00 .00 00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 25 .00 .00 .00 .00 .00 .00 .18 .00 .00 .00 .00 .00 26 .00 .18 28 .00 .00 .29 .00 .00 .00 .00 .00 .00 -00 .00 -20 .00 .00 .00 .00 .00 .00 .00 30 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 TOTAL .00 .10 .18 .80 MEAN -000 .014 009 .000 .003 006 .006 .049 -000 .000 .006 .027 .00 .06 .45 .18 MIN .00 .00 .00 .00 .00 .00 .00 .00 .00 CFSM .000 .001 .001 .000 .000 .000 .000 .003 .000 .000 .002 IN. .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 (tt) .00 3.59 1.89 .87 .94 1.55 1.71 6.45 .21 .07 2.69 8.29 MEAN 6.95 CFSM .46 IN 6.29 CAL YR 1979 TOTAL 2537.68 219 MIN MAX .00 AC-FT 5030 3.67 .010 MAX .45 MIN CFSM .001 IN AC-FT TOTAL MEAN .00 .01

tt Weighted-mean rainfall, in inches.

08181500 MEDINA KIVER AT SAN ANTONIO, TX

LOCATION.--Lat 29°15'14", long 98°28'20", Bexar County, Hydrologic Unit 12100302, near left bank on downstream side of pier of upstream bridge of two bridges on U.S. Highway 281 in San Antonio and 6.8 mi (10.9 km) upstream from mouth.

DRAINAGE AREA.--1,317 mi² (3,411 km²), of which 634 mi² (1,642 km²) is above dam forming Medina Lake.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1929 to December 1930, July 1939 to current year. October 1929 to December 1930 records below about $50 \text{ ft}^3/\text{s} (1.42 \text{ m}^3/\text{s})$ in connection with seepage investigation (published as "at Losoya"). Published as "near San Antonio" July 1939 to September 1970.

REVISED RECORDS. -- WSP 1562: 1957. WSP 1923: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 439.0 ft (133.81 m) National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). October 1929 to December 1930, nonrecording gage at Losoya 1.5 mi (2.4 km) downstream at different datum.

REMARKS.--Water-discharge records good. Flow is slightly regulated by hedina Lake (station 08179500), 60 mi (97 km) upstream, and diversion dam reservoir, capacity 4,500 acre-ft (5.55 hm²). For diversion of canal records, see Medina Canal near Kiomedina (station 08180000). For statement concerning losses into the Edwards and associated limestones formation, see Medina River near Somerset (station 08180800). Several small diversions below diversion dam reservoir. Records furnished by the city of San Antonio indicate that during the current year sewage effluent in the amounts of 676 acre-ft (0.834 hm²) from Mitchell Lake plant and 22,150 acre-ft (27.3 hm²) from Leon Creek plant was discharged into the Medina Kiver above this station. The city of San Antonio Sanitation Department operates a temperature and gage-height telemeter at this station.

AVERAGE DISCHARGE.--41 years (water years 1930-31, 1939-80), 167 ft^3/s (4.729 m^3/s), 121,000 acre-ft/yr (149 hm^3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 31,900 ft³/s (903 m³/s) July 17, 1973, gage height, 43.59 ft (13.286 m); minimum daily, 3.3 ft³/s (0.093 m³/s) Apr. 18, Nov. 1, 1956, and Jan. 24, 1957.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage, 55 ft (16.8 m) sometime prior to construction of Medina Dam in 1913, from information by State Department of Highways and Public Transportation.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,980 ft^3/s (56.1 m^3/s) Aug. 11 at 0900 hours, gage height, 15.84 ft (4.828 m); minimum daily, 22 ft^3/s (0.62 m^3/s) July 20, 21.

DISCHARGE IN CURIC FEET DER SECOND. WATER VEAR OCTORER 1979 TO SEPTEMBER 1980

		DISC	HARGE, IN	CUBIC FE	ET PER SE	COND, WAT AN VALUES	EK YEAR (CTOBER 19	79 TO SEP	TEMBER 19	180	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	94 93 93 91 93	105 107 103 102 107	124 127 131 131 129	126 123 123 122 122	124 125 134 128 124	58 55 53 58 58	120 130 133 125 119	46 123 120 116 114	135 143 125 100 95	59 45 48 45 40	85 88 87 93 93	40 38 40 44 40
6 7 8 9	98 99 96 97 103	119 117 112 112 113	129 135 135 126 125	122 123 122 124 127	127 128 123 123 119	56 74 105 106 121	127 131 123 105 87	113 105 217 292 172	92 129 126 110 75	42 48 45 39 34	93 96 102 104 386	51 158 213 166 141
11 12 13 14	101 99 99 99 104	112 108 108 106 101	126 131 147 144 135	129 124 126 133 134	119 123 123 119 128	117 108 106 104 99	82 92 103 99 94	134 122 130 385 366	75 67 63 66 64	32 33 31 31 32	1820 665 265 194 171	131 121 117 112 112
16 17 18 19 20	94 81 88 81 70	101 101 113 109 106	126 126 120 120 120	133 129 135 130 130	136 137 143 137 130	104 117 112 112 110	74 69 67 66 66	498 285 238 404 290	72 68 64 61 60	33 28 26 25 22	146 137 131 126 122	110 108 109 108 108
21 22 23 24 25	73 81 91 92 93	113 113 113 113 123	120 124 124 130 126	131 141 135 127 125	131 128 124 121 120	109 83 70 79 65	71 65 44 36 69	304 296 229 180 179	60 60 87 127 119	22 27 35 36 30	117 115 110 107 106	106 105 100 96 100
26 27 28 29 30 31	91 89 89 93 105	122 123 125 118 112	124 122 128 187 170 139	122 120 128 126 129 126	119 89 68 60	72 133 161 129 118 119	74 55 48 43 44	188 183 181 171 164 154	117 116 113 107 108	27 26 31 84 85 83	101 99 83 48 45 43	109 135 152 120 118
TOTAL MEAN MAX MIN AC-FT	2882 93.0 112 70 5720	3337 111 125 101 6620	4081 132 187 120 8090	3947 127 141 120 7830	3510 121 143 60 6960	2971 95.8 161 53 5890	2561 85.4 133 36 5080	6499 210 498 46 12890	2804 93.5 143 60 5560	1224 39.5 85 22 2430	5978 193 1820 43 11860	3208 107 213 38 6360

CAL YR 1979 TOTAL 163178 MEAN 447 MAX 2580 MIN 70 AC-FT 323700 WTR YR 1980 TOTAL 43002 MEAN 117 MAX 1820 MIN 22 AC-FT 85290

08181500 MEDINA RIVER AT SAN ANTONIO, TX--Continued

WATER-QUALITY RECORDS

373

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: October 1970 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	COLOR (PLAT- INUM COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
OCT 04	1210	260	890	7.8	23.0	15	7.4	4.4	51	8.6	330	87
NOV 09	1350	330	827	7.7	20.5	5	6.5	5.7	64	10	300	64
DEC 13	1010	440	833	8.0	15.0	10	5.0	6.6	65	14	310	66
JAN 18	1455	400	816	7.8	17.0	15	14	5.8	60	13	310	77
FEB 15	1315	360	833	7.8	17.5	5	9.5	6.0	63	8.1	310	73
MAR 13	1430	320	866	7.8	20.5	5	22	6.4	71	5.1	330	100
APR 10	1455	275	873	7.7	20.5	5	13	5.2	58	9.1	310	75
MAY												
09	1120	315	590	7.7	21.5	30	310	6.4	73	8.7	200	80
JUL	1044	115	818	8.1	30.0	5	50	6.8	89	4.7	310	78
30 AUG	1315	65	854		28.0	1.0	18	6.1	78	7.1	290	44
28 SEP	1252	185	850	7.7	27.5	5	27	4.6	59	16	300	62
12	1258	110	780	7.9	27.0	5	50	5.8	73	5.8	270	52
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
OCT	DIS- SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	AD- SORP- TION	SIUM, DIS- SOLVED (MG/L	BONATE (MG/L AS	BONATE (MG/L	DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L AS	SUM OF CONSTI- TUENTS, DIS- SOLVED
OCT 04 NOV 09	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	BONATE (MG/L AS HCO3)	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
OCT 04	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	BONATE (MG/L AS HCO3)	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
0CT 04 NOV 09 DEC	DIS- SOLVED (MG/L AS CA) 97	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K) 4.8 3.5	BONATE (MG/L AS HCO3) 300	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL) 76	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS- DIS- SOLVED (MG/L)
OCT 04 NOV 09 DEC 13 JAN 18 FEB	DIS- SOLVED (MG/L AS CA) 97 88 92	SIUM, DIS- SOLVED (MG/L AS MG) 22 20 20	DIS- SOLVED (MG/L AS NA) 55 49	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	BONATE (MG/L AS HCO3) 300 290 300	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4) 90 85 84	RIDE, DIS- SOLVED (MG/L AS CL) 76 66 71	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 506 467 482 470
OCT 04 NOV 09 DEC 13 JAN 18 FEB 15	DIS- SOLVED (MG/L AS CA) 97 88 92 88 90	SIUM, DIS- SOLVED (MG/L AS MG) 22 20 20 21 21	DIS- SOLVED (MG/L AS NA) 55 49 50 52	AD- SORP- TION RATIO 1.3 1.2 1.2 1.3	SLUM, DIS- SOLVED (MG/L AS K) 4.8 3.5 3.8 4.2	BONATE (MG/L AS HCO3) 300 290 300 280 290	BONATE (MG/L AS CO3) 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 90 85 84 91	RIDE, DIS- SOLVED (MG/L AS CL) 76 66 71 66 75	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2) 13 12 13 10	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 506 467 482 470 496
OCT 04 NOV 09 DEC 13 JAN 18 FEB 15 MAR 13	DIS- SOLVED (MG/L AS CA) 97 88 92 88 90 95	SIUM, DIS- SOLVED (MG/L AS MG) 22 20 20 21 21 23	DIS- SOLVED (MG/L AS NA) 55 49 50 52 52 64	AD- SORP- TION RATIO 1.3 1.2 1.2 1.3 1.3	SLUM, DIS- SOLVED (MG/L AS K) 4.8 3.5 3.8 4.2 4.1	BONATE (MG/L AS AS HCO3) 300 290 300 280 290 280	BONATE (MG/L AS CO3) 0 0 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 90 85 84 91 100	RIDE. DIS- SOLVED (MG/L AS CL) 76 66 71 66 75 76	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2) 13 12 13 10 11	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 506 467 482 470 496 522
OCT 04 NOV 09 DEC 13 JAN 18 FEB 15 MAR 10 MAY	DIS- SOLVED (MG/L AS CA) 97 88 92 88 90 95 89	SILM, DIS- SOLVED (MG/L AS MG) 22 20 20 21 21 23 22	DIS- SOLVED (MG/L AS NA) 55 49 50 52 52 64 53	AD- SORP- TION RATIO 1.3 1.2 1.2 1.3 1.3 1.3	SIUM, DIS- SOLVED (MG/L AS K) 4.8 3.5 3.8 4.2 4.1	BONATE (MG/L AS HCO3) 300 290 300 280 290 280 290	BONATE (MG/L AS CO3) 0 0 0 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 90 85 84 91 100 110 91	RIDE. DIS- SOLVED (MG/L AS CL) 76 66 71 66 75 76 73	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2) 13 12 13 10 11 12 13	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 506 467 482 470 496 522 488
OCT 04 NOV 09 DEC 13 JAN 18 FEB 15 MAR 13 APR 10 MAY 09 JUN	DIS- SOLVED (MG/L AS CA) 97 88 92 88 90 95 89 60	SIUM, DIS- SOLVED (MG/L AS MG) 22 20 21 21 23 22 13	DIS- SOLVED (MG/L AS NA) 55 49 50 52 52 64 53 35	AD- SORP- TION RATIO 1.3 1.2 1.2 1.3 1.3 1.5	SIUM, DIS- SOLVED (MG/L AS K) 4.8 3.5 3.8 4.2 4.1 3.6 7.5	BONATE (MC/L AS HCO3) 300 290 300 280 290 280 290	BONATE (MG/L AS CO3) 0 0 0 0 0 0 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 90 85 84 91 100 110 91 83	RIDE. DIS- SOLVED (MG/L AS CL) 76 66 71 66 75 76 73	RIDE. DIS- SOLVED (MG/L AS F) .3 .3 .4 .1 .3 .3 .3	DIS- SOLVED (MG/L AS SIO2) 13 12 13 10 11 12 13 9.9	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 506 467 482 470 496 522 488 339
OCT 04 NOV 09 DEC 13 JAN 18 FEB 15 MAR 13 APR 10 MAY 09 JUN 12 JUL	97 88 92 88 90 95 89 60	SIUM, DIS- SOLVED (MG/L AS MG) 22 20 20 21 21 23 22 13 22	DIS- SOLVED (MG/L AS NA) 55 49 50 52 52 64 53 35 47	AD- SORP- TION RATIO 1.3 1.2 1.3 1.3 1.3 1.5 1.3 1.1	SIUM, DIS- SOLVED (MG/L AS K) 4.8 3.5 3.8 4.2 4.1 3.6 7.5 3.4	BONATE (MG/L AS HCO3) 300 290 300 280 290 280 290 150 280	BONATE (MG/L AS CO3) 0 0 0 0 0 0 0 0 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 90 85 84 91 100 110 91 83 98	RIDE. DIS- SOLVED (MG/L AS CL) 76 66 71 66 75 76 73 56 69	RIDE, DIS- SOLVED (MG/L AS F) .3 .3 .4 .1 .3 .3 .3 .3	DIS- SOLVED (MG/L AS SIO2) 13 12 13 10 11 12 13 9.9	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 506 467 482 470 496 522 488 339 478
OCT 04 NOV 09 PEC 13 13 AFR 15 MAR 10 APR 10 JUN 12 JUL 30 AUG	97 88 92 88 90 95 89 60 87	SIUM, DIS- SOLVED (MG/L AS MG) 22 20 21 21 23 22 13 22 20	DIS- SOLVED (MG/L AS NA) 55 49 50 52 52 64 53 35 47 62	AD- SORP- TION RATIO 1.3 1.2 1.2 1.3 1.3 1.5 1.3 1.1 1.2 1.6	SIUM, DIS- SOLVED (MG/L AS K) 4.8 3.5 3.8 4.2 4.1 3.6 7.5 3.4	BONATE (MG/L AS HCO3) 300 290 300 280 290 280 290 150 280 300	BONATE (MG/L AS CO3) 0 0 0 0 0 0 0 0 0 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 90 85 84 91 100 110 91 83 98 83	RIDE. DIS- SOLVED (MG/L AS CL) 76 66 71 66 75 76 73 56 69 79	RIDE, DIS- SOLVED (MG/L AS F) .3 .3 .4 .1 .3 .3 .3 .3 .3 .5	DIS- SOLVED (MG/L AS SIO2) 13 12 13 10 11 12 13 9.9 13 14	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 506 467 482 470 496 522 488 339 478 495
OCT 04 NOV 09 09 JAN 18 FEB 15 MAR 10 APR 10 MAY 09 JUN 12 JUL 30	97 88 92 88 90 95 89 60	SIUM, DIS- SOLVED (MG/L AS MG) 22 20 20 21 21 23 22 13 22	DIS- SOLVED (MG/L AS NA) 55 49 50 52 52 64 53 35 47	AD- SORP- TION RATIO 1.3 1.2 1.3 1.3 1.3 1.5 1.3 1.1	SIUM, DIS- SOLVED (MG/L AS K) 4.8 3.5 3.8 4.2 4.1 3.6 7.5 3.4	BONATE (MG/L AS HCO3) 300 290 300 280 290 280 290 150 280	BONATE (MG/L AS CO3) 0 0 0 0 0 0 0 0 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 90 85 84 91 100 110 91 83 98	RIDE. DIS- SOLVED (MG/L AS CL) 76 66 71 66 75 76 73 56 69	RIDE, DIS- SOLVED (MG/L AS F) .3 .3 .4 .1 .3 .3 .3 .3	DIS- SOLVED (MG/L AS SIO2) 13 12 13 10 11 12 13 9.9	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 506 467 482 470 496 522 488 339 478

08181500 MEDINA RIVER AT SAN ANTONIO, TX--Continued

DATE	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN. AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	PHENOLS (UG/L)
OCT 04 NOV	36	15	2.6	.600	3.2	2.500	.60	3.1	2.500	4.8	2
09 DEC	24	17	3.4	.400	3.8	1.600	.60	2.2	.400	15	
13 JAN	15	5	1.3	.340	1.6	1.600	2.6	4.2	.100	12	3
18 FEB	32	7	1.1	.510	1.6	.900	1.9	2.8	1.300	6.2	0
15 MAR	22	4	1.5	.610	2.1	1.100	1.4	2.5	1.800	5.9	2
13 APR	30	14	3.4	.670	4.1	.430	.47	.90	1.200	4.4	0
10 MAY	26	11	2.9	.540	3.4	2.200	.80	3.0	.590	6.4	2
09 JUN	618	32	1.2	.140	1.3	.380	2.7	3.1	.810	29	2
12 JUL	20	3	3.0	.070	3.1	.130	1.8	1.9	.180	12	4
30 AUG	45	20	3.1	.430	3.5	4.400	.00	2.7	2.200	7.0	0
28 SEP	37	8	2.2	.660	2.9	2.000	1.3	3.3	.880	7.1	3
12	100	1	2.6	.630	3.2	1.400	.90	2.3	.780	7.9	2
		DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM. DIS- SOLVED (UC/L AS BA)	CADMIUM DIS- SOLVED (UC/L AS CD)	CHRO-MIUM, DIS-SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)		
		NOV 09 FEB	1350	1	60	<1	0	0	30		
		15 MAY	1315	-1	50	<1	0	0	<10		
		09 AUG	1120	2	50	<1	0	1	40		
		28	1252	1	50	<1	0	1	<10		
		D	SO (U ATE AS	CAD, NE DIS- I DLVED SC IG/L (U	DIS- D DLVED SO UG/L (U	CURY NI DIS- I DLVED SC DG/L (U	DIS- D DLVED SO G/L (U	IS- D LVED SO G/L (U	NC, IS- LVED G/L ZN)		
			9	1	10	.1	1	0	10		
		1 MA	5	3	10	.4	1	0	10		
		O AU	9	1	<1	.0	1	0	3		
			8	0	7	.3	1	0	5		
	TIME	PCB TOTAL	PCB. TOTAL IN BOT- TOM MA- TERIAL	NAPH- THA- LENES, POLY- CHLOR. TOTAL	ALDRIN, TOTAL	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL	CHLOR- DANE, TOTAL	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL	DDD, TOTAL	DDD, TOTAL IN BOT- TOM MA- TERIAL	DDE,
DATE		(UG/L)	(UG/KG)	(UG/L)	(UG/L)	(UG/KG)	(UG/L)	(UG/KG)	(UG/L)	(UG/KG)	(UG/L)
15	1315	.00	0	.0	.00	7.0	.0	9	.00	.0	.00
28	1252	.00	14	.0	.01	.0	.0	48	.00	.0	.00
FEI 1	TO' IN TOM TE ATE (UG	RIAL TO	TO IN DT, TOM TAL TE	MA- AZI	NON, EL	I- IN DRIN TOM	MA- SUL RIAL TO	TAL TO	TO IN RIN, TOM	RIAL TO	ION. TAL G/L)
AU0 28	8	.0	.00	.0	.12	.00	1.0	.00	.00	.0	.00

08181500 MEDINA RIVER AT SAN ANTONIO, TX--Continued

DATE	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION. TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOTAL (UG/L)
FEB 15	.00	.0	.00	.0	.01	.0	.00	.00	.0	.00
AUG 28	.00	.0	.00	.0	.01	.0	.00	.00	.0	.00
DATE	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	MIREX, TOTAL, IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
FEB 15	.00	.00		.00	0	0	.00	.00	.00	.00
AUG 28	.00	.00	.0	.00	0	0	.00	.00	.00	.00

08181800 SAN ANTONIO RIVER NEAR ELMENDORF, TX

LOCATION.--Lat 29°14'15", long 98°21'43", Bexar County, Hydrologic Unit 12100301, on left bank 2,000 ft (610 m) downstream from Braunig Plant Lake, 2.2 mi (3.5 km) southwest of Elmendorf, and 205.5 mi (330.6 km) upstream from mouth. Water-quality sampling site at Farm Road 1604, 2.5 mi (4.0 km) downstream.

DRAINAGE AREA. -- 1,743 mi² (4,514 km²)

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- September 1962 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 392.50 ft (119.634 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Flow slightly regulated by Medina Lake (station 08179500) and Olmos flood-control reservoir, combined capacity 269,500 acre-ft (332 hm³). Storage began in Medina Lake in 1913, and Olmos Dam was completed in 1926. Water is diverted above station from Medina River for irrigation in the vicinity of Devine and Lytle, with some water diverted for irrigation near San Antonio. During the current year, records furnished by the city of San Antonio show that upstream from this station 140,600 acre-ft (173 hm³) of sewage effluent was discharged into the San Antonio River from the Rilling Road, Leon Creek, Salado Creek, and Mitchell Lake plants. Records furnished by the San Antonio City Public Service Board show that upstream from this station 6,410 acre-ft (7.90 hm³) was pumped into Braunig Lake, 120 acre-ft (0.148 hm³) was released from Braunig Lake, and 17,540 acre-ft (21.6 hm³) was pumped into Calaveras Lake. For additional information relative to sewage effluent, see station 08181500. For statement regarding regulation by Soil Conservation Service floodwater-retarding structures, see station 08178700.

AVERAGE DISCHARGE.--18 years (water years 1963-80), 518 ft³/s (14.67 m³/s), 375,300 acre-ft/yr (463 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $40,000 \text{ ft}^3/\text{s}$ (1.130 m³/s) Sept. 27, 1973, gage height, 47.60 ft (14.508 m); minimum, 12 ft³/s (0.34 m²/s) Aug. 24-26, 1963.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1900, 61 ft (18.6 m) in 1946. Second highest was 53 ft (16.2 m) in 1913, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $5.840~{\rm ft}^3/{\rm s}$ (165 m³/s) Aug. 11 at 0400 hours, gage height, 24.70 ft (7.529 m), no peak above base of 7,000 ft³/s (198 m³/s); minimum, 89 ft³/s (2.52 m³/s) July 20.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES DAY OCT NOV DEC FEB APR JUN JAN MAR MAY JUL SEP AUG 197 371 237 371 ---TOTAL. MAX AC-FT

CAL YR 1979 TOTAL 301942 MEAN 827 MAX 9050 MIN 214 AC-FT 598900 WTR YR 1980 TOTAL 130205 MEAN 356 MAX 4290 MIN 131 AC-FT 258300

08181800 SAN ANTONIO RIVER NEAR ELMENDORF, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1966 to current year. Chemical, biochemical, and pesticide analyses: January 1968 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1966 to current year. WATER TEMPERATURES: October 1966 to current year.

270

12...

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 1,240 micromhos Jan. 29, 1973, Aug. 8, 1975; minimum daily, 263 micromhos
Sept. 27, 1973, Sept. 14, 1978.
WATER TEMPERATURES: Maximum daily, 32.0°C June 21, 1969, and July 4, 1980; minimum daily, 5.5°C Jan. 10, 1973.

EXTREMES FOR CURRENT YEAR.--SPECIFIC CONDUCTANCE: Maximum daily, 939 micromhos Apr. 13; minimum daily, 367 micromhos May 19. WATER TEMPERATURES: Maximum daily, 32.0°C July 4; minimum daily, 6.5°C Feb. 22, Apr. 14.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM FLOW INSTAN TANEOU (CFS)	CI 1- CO DU 1- AN JS (MI	E- FIC N- CT- CE CRO- OS) (PH FIELD	TEMPER- ATURE, WATER (DEG C)	COLOR (PLAT- INUM COBALT UNITS)		D- 1 Y S0	YGEN, DIS- DLVED MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)
OCT 04	1019		37	812	7.8	25.0	10	-	.8	3.8	46	11
NOV 09	1137		34	842	7.6	22.0	10		.0	4.2	49	23
DEC 13	1002	23		836	7.7	17.0	5	13		4.9	50	31
JAN												
18 FEB	1230	14		854	7.8	18.5	10		.4	4.0	42	22
15 1AR	1010	14		850	7.7	19.0	10		.5	4.6	49	12
13 PR	1120	1	22	890	7.8	21.0	20	10		4.2	47	16
10 1AY	1308	t	50	911	7.6	23.0	10	4	.5	5.8	68	10
08	1537	(59	873	7.6	25.0	10	580		4.7	57	9.5
12	0905	4	46	933	7.7	27.0	10	4	.0	3.5	44	7.1
UL 30	1615	12	23	859	22	31.0	15	4	-9	6.2	84	8.0
.UG 28	1410	-	22	908	7.8	30.0	10	5	.2	4.8	65	13
12	1503		50	858	7.6	29.0	20	35		4.6	60	11
DATE	HAR NES (MG AS CAC	D- NO S NO /L BO	IARD- IESS, DNCAR- DNATE (MG/L CACO3)	CALCIU DIS- SOLVE (MC/L AS CA	DIS- D SOLVE (MG/I	M. SODIU DIS- ED SOLVE (MG/	M, SOI D T	OIUM AD- RP- ION FIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR BONAT (MG/ AS HCO3	E CAR L BONA (MG	TE /L
OCT 04		290	39	83	19	59		1.5	6.3	3	00	0
NOV 09		270	25	79	18	56		1.5	5.9	3	00	0
DEC 13		290	48	83	19	56		1.4	5.5	2	90	0
JAN 18		300	49	85	20	59		1.5	6.3	3	00	0
FEB 15		280	39	78	20	63		1.6	6.1	2	90	0
MAR 13		290	49	85	20	70		1.8	7.1	3	00	0
APR 10		280	30	81	18	71		1.9	6.7		00	0
MAY 08		270	29	79	17	65		1.7	6.5		90	0
JUN 12		300	50	89	20	72		1.8	7.4		10	0
JUL 30		260	18	76	18	69		1.8	6.6		00	0
AUG 28		290	36	84	19	71		1.8	6.8		10	0
SEP		270	29	79							90	0

17

62

1.7

6.7

0

378 08181800 SAN ANTONIO RIVER NEAR ELMENDORF, TX--Continued

DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVE (MG/I AS CI	DI: D SOL	E, I S- VED /L	ODIDE, DIS- SOLVED (MG/L AS I)	SILICA DIS- SOLVE (MG/L AS SIO2)	COI COI D TUI SO	LIDS, M OF NSTI- ENTS, DIS- DLVED MG/L)	SOLIDS RESIDU AT 105 DEG. (SUS- PENDEL (MG/I	E SOI	LIDS, OLA- ILE, US- NDED MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	
OCT 04	71	76		.4		15		478	3	34	8	1.8	
NOV 09	67	72		.4		14		460		3	11	2.2	
DEC 13	75	75		.3		14		471		36	10	.98	
JAN 18	74	75		.4		19		486	3	12	8	.78	
TEB 15	77	77		.4	42	11		476	1	9	12	2.8	
1AR 13	83	87		.5		14		515	1	2	12	.20	
PR 10	76	86		.4	.00	15		502	1	5	8	3.9	
AY 08	56	82		.5		15		464	95	0	46	.81	
JN 12	85	90		.6		16		533		2	1	2.7	
JL 30	69	79		.6	15-1	15		481	2	.5	0	2.1	
UG 28	78	90		.5		16		518		0	0	1.9	
EP 12	72	80		.5		16		476	5	1	3	1.6	
			200			NITRO-						METHY-	
DATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO GEN, NO2+NO TOTAL (MG/L AS N)	GE1 3 AMMON TOTA (MG)	N, NIA O AL /L	NITRO- GEN, RCANIC TOTAL (MG/L AS N)	GEN, AM- MONIA - ORGANIO TOTAL (MG/L AS N)	PHC PHC	ORUS, OTAL MG/L S P)	CARBON ORGANI TOTAL (MG/L AS C)	C PHI	ENOLS UG/L)	LENE BLUE ACTIVE SUB- STANCE (MG/L)	
CT 04	.770	2.6	2.9	900	1.1	4.0	3	3.100	7.	4	3	.10	
)V	.830	3.0	5.9	900	1.0	6.9	1	.100	52			.10	
3	.620	1.6	2.3	300	3.9	6.2	6	.200	14		3	.10	
N 8	.620	1.4	2.0	000	7.1	9.1	2	2.500	13		3	.10	
B 5	1.100	3.9	1.9	900	1.3	3.2	2	2.200	9.	1	4	.10	
R 3	.010	.2	1 .0	020	6.6	6.6	3	3.400	9.	5	1	.20	
R 0	.000	3.9		400	7.6	14	2	2.400	18		3	.20	
Y 8	.390	1.2	2.5	500	7.2	9.7	2	2.300	24		1	.00	
N 2	.970	3.7	5.2	200	.80	6.0	2	.700	11		2	.10	
L 0	1.500	3.6		100	.40	4.5		.800	7.	4	1	.10	
G 8	.870	2.8		280	7.0	7.3	3	.100	9.	7	1	.40	
2	.640	2.2	5.0	000	1.2	6.2	5	.000	8.	6	2	.10	
	DATE	TIME	ARSEN DIS SOLV (UG) AS A	S- VED S VL	ARIUM, DIS- OLVED (UG/L AS BA)	CADMIUN DIS- SOLVEI (UG/L AS CD)	MI DI SC (U	RO- UM, S- DLVED IG/L CR)	COPPER DIS- SOLVE (UG/L AS CU	D SC (U	RON, DIS- DLVED JG/L S FE)		
	NOV 09	1137		1	50	<1		8		0	120		
	FEB 15	1010		1	40	<1		10		0	<10		
	MAY 08	1537		2	70	<1		0		2	30		
	AUG 28	1410		2	50	<1		0		2	20		
	20			MANG	A-	5	ELE-						
	D.		LEAD, DIS- SOLVED (UG/L AS PB)	NESE DIS SOLV (UG/ AS M	ED SO	IS- LVED S G/L	DIS- SOLVED (UG/L AS SE)) SO (U	IS- LVED G/L	ZINC, DIS- SOLVED (UG/L AS ZN)			
	ио.												
	FE		2		30	.0	0		0	20			
	MA		3		20	.3			0	10			
	AU		0		20	.2	1		0	7			
		8	3		20	.3	1		0	30)		

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAT	Ē	TIM	E TO	PCB TOTAL	PCB, TOTAL N BOT- OM MA- TERIAL UG/KG)	LEN PC CHI TOT	HA- NES, DLY- LOR. ALD FAL TO	ORIN. OTAL OG/L)	ALDE TOT IN E TOM TEE (UG)	TAL BOT- C MA- I RIAL T	CHLC DANE TOTA (UG)	OR- I E, T	CHLC DANE TOTA N BC OM M TERI UG/K	AL OT- MA- IAL TO	DDD, DTAL UG/L)	IN I	MA- I	DDE, DTAL JG/L)
FEB 15.		101	0	.00	0		.00	.00		9.1		.0		14	.00		.0	.00
AUG 28.		141		.00	20		.00	.00		.0		.0		47	.00		1.1	.00
	DATI		DDE, TOTAL IN BOT- TOM MA- TERIAI (UG/KG)	DDT TOTA	IN TON	DDT, DTAL BOT- M MA- ERIAL G/KG)	DI- AZINON, TOTAL (UG/L)	TOT	RIN	DI- ELDRIN TOTAI IN BOT TOM MA TERIA (UG/KC	- - - L	ENDO SULFA TOTA (UG/	N, L	ENDRIN TOTAL (UG/L	IN TON	DRIN, DTAL BOT- 1 MA- ERIAL G/KG)	ETHION, TOTAL (UG/L)	
	FEB 15.		.0	,	00	.0	.21		.00		.0		00	.00	1	.0	.00	
	AUG 28.		<3.6		00	.0	.36		.00	1.			00	.00		.0	.00	
	DATI	3	HEPTA- CHLOR. TOTAL (UG/L)	TOM M	R, L HE T- CH A- EPC AL TO	EPTA- HLOR DXIDE DTAL JG/L)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LIND	AL	LINDAN TOTAL IN BOT TOM MA TERIA (UG/KG	- L	MALA THIO TOTA (UG/	N, L	METH- OXY- CHLOR TOTAL (UG/L)	OX CH TOT BC	ETH- XY- HLOR, INDITIOM MATL. G/KG)	METHYL PARA- THION, TOTAL (UG/L)	
	FEB		.00)	.0	.00	.0		.01		.0		00	.00)	.0	.00	
	AUG 28.		.00		.0	.00	.1		.01		0		00	.00		.0	.00	
	DATI	3	METHYI TRI- THION, TOTAL (UG/L)	MIRE	IN X, TON AL TH	REX, DTAL BOT- MA- ERIAL G/KG)	PARA- THION, TOTAL (UG/L)	TOT	NE,	TOXA-PHENE TOTAL IN BOT TOM MATERIA (UG/KG	- L	TOTA TRI THIO	- N	2,4-D TOTAL (UG/L)	TO	,5-T TAL IG/L)	SILVEX, TOTAL (UG/L)	
	FEB 15.		.00		00		.00		0		0		00	.01		.01	.00	
	AUG 28.		.00		00	.0	.00		0		0	,	00	.04		.00	.00	

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	8618	809	459	10700	71	1660	73	1700	290
NOV.	1979	9563	793	450	11600	69	1780	71	1850	280
DEC.	1979	13367	746	424	15300	63	2270	67	2440	270
JAN.	1980	12366	796	451	15100	69	2320	72	2400	280
FEB.	1980	10185	827	468	12900	74	2040	74	2040	290
MAR.	1980	8424	842	477	10800	77	1750	76	1720	290
APR.	1980	9209	873	494	12300	81	2020	78	1940	300
MAY	1980	21008	580	331	18800	43	2430	53	3000	220
JUNE	1980	7949	882	499	10700	83	1780	79	1700	300
JULY	1980	5025	871	493	6690	81	1100	78	1060	300
AUG.	1980	13152	693	394	14000	56	2000	63	2230	260
SEPT	1980	11339	696	395	12100	58	1780	63	1930	250
TOTAL		130205	**	**	151000	**	22900	**	24000	**
WTD. AVO	o.	356	757	429	力水	65	**	68	**	270

08181800 SAN ANTONIO RIVER NEAR ELMENDORF TX--Continued

			08181	800 SA	N ANTONIC	RIVER NEAR	ELMENDOR	RF, TXC	Continued			
	SI	PECIFIC C	CONDUCTANCE ((MICROMH		25 DEG. C), NCE-DAILY	WATER YE	EAR OCTOB	BER 1979 TO	SEPTEMBER	1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	785 782 819 828 831	840 835 826 819 805	799 806 792 777 811	729 745 756 792 801	838 835 811 805 795	884 889 844 827 857	837 877 878 896 888	874 569 755 752 786	850 825 837 874 872	836 881 898 900 890	848 879 873 860 822	875 832 818 868 877
6 7 8 9 10	829 823 783 794 822	795 812 805 842 820	816 822 819 817 797	809 795 788 804 810	818 836 834 850 835	864 870 886 892 862	878 847 843 885 892	814 840 700 580 905	885 896 883 855 840	860 845 840 873 880	860 875 863 855 747	830 446 371 566 703
11 12 13 14 15	798 835 827 849 794	826 830 828 813 829	801 826 822 707 760	806 822 818 803 794	807 816 837 840 850	852 881 895 902 913	915 892 939 816 838	820 783 795 464 431	892 899 920 915 896	884 896 909 868 840	550 520 608 684 735	771 823 800 769 823
16 17 18 19 20	803 821 824 837 820	828 843 802 795 780	790 787 791 822 823	828 826 833 840 816	790 782 790 804 835	918 864 853 874 884	884 891 915 930 932	438 463 656 367 531	879 858 900 913 896	873 874 877 908 898	806 835 789 787 830	815 863 885 861 835
21 22 23 24 25	818 745 791 820 818	730 722 735 745 763	822 824 819 760 752	789 774 700 746 794	816 859 855 861 834	898 903 916 870 878	898 876 915 920 830	450 570 734 820 904	902 892 873 860 888	873 833 869 857 874	864 870 878 864 843	832 836 837 880 883
26 27 28 29 30 31	819 808 812 776 782 815	736 761 781 800 809	775 771 750 462 594 660	820 817 811 806 829 825	827 857 865 854	899 750 583 748 824 828	824 796 807 831 877	850 820 814 827 852 873	900 905 899 903 887	883 885 840 819 879 869	841 856 885 868 878 872	898 848 770 717 763
MEAN	810	799	773	798	829	858	875	704	883	871	811	790
			TEMPERATURE	, WATER		. WATER YEA NCE-DAILY	R OCTOBER	1979 TO	SEPTEMBER	1980		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	25.0	20.5	14.0	15.0	13.5	16.0	11.5	15.0	27 0	22.0	10 5	

			TEMPERATURE	, WATER	(DEG.	C). WATER ONCE-DAIL		1979	TO SEPTEMBER	1980		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUC	SEP
1 2 3 4 5	25.0 25.0 25.5 25.5 23.5	20.5 20.0 19.0 19.0 20.5	15.0 15.0	15.0 15.0 16.5 14.5 16.0	13.5 15.0 15.0 14.5 16.0	13.0 13.5 16.0	11.5 12.0 14.0 13.0 22.0	15.0 13.0 24.0 24.5 15.0	27.0 18.5 18.5 18.5 19.0	22.0 20.5 21.0 32.0 31.0	19.5 30.0 30.0 19.5 19.5	19.5 29.0 28.5 29.0
6 7 8 9	23.0 24.0 25.5 26.0 24.0	20.5 16.0 19.5 20.0 19.0	15.5 17.0 17.0	16.0 15.5 15.5 15.5 16.5	15.5 16.5 18.5 15.0 14.0	19.5 21.0 20.0	22.0 14.5 14.0 12.0 12.0	15.5 17.0 16.5 14.0 29.0	29.0 30.0 20.0 19.0	30.0 20.0 20.5 20.5	20.0 19.5 17.0 31.0 27.0	28.0 26.0 26.5 27.5 27.0
11 12 13 14 15	22.0 24.0 24.0 24.0 25.0	18.0 11.5 15.5 10.0	20.0 20.5 17.0 15.5 17.0	17.5 16.0 17.0 16.0 18.5	14.0 15.0 15.0 17.0 19.0	21.5 20.0 20.0	14.5 17.0 20.0 6.5 10.0	15.5 16.0 13.5 13.5	19.0 19.5 18.5 29.0 29.0	20.5 31.0 30.0 20.5 20.5	15.5 17.0 18.5 19.5 20.0	28.0 28.0 29.0 28.0
16 17 18 19 20	25.5 26.0 26.0 26.0 25.0	18.0 26.0 21.0 22.0 23.5	18.0 14.5 13.5 15.0 16.0	20.0 20.5 19.0 20.0 21.0	17.0 15.0 13.0 15.0	20.0 18.5 18.5	11.0 13.0 13.0 21.0 23.0	14.0 24.0 25.0 13.5 15.0	20.0 19.0 19.5 21.0 22.0	20.5 21.0 20.5 31.0 31.0	30.0 30.0 20.0 20.0 20.0	28.0 28.0 28.5 28.5 29.5
21 22 23 24 25	25.0 25.5 21.5 19.5 20.0	21.5 18.0 16.0 17.0		19.0 18.5 15.0 15.5 16.0	8.5 6.5 20.0 21.0 18.0	19.0 21.0 21.0	13.0 13.0 14.0 14.5	15.0 15.0 16.0 29.0 30.0	28.0 31.0 20.0 20.5 20.5	20.5 22.0 20.5 20.5 20.0	20.0 20.5 31.0 31.0 20.0	29.0 29.0 28.5 28.5 29.0
26 27 28 29 30 31	21.0 22.0 22.0 23.5 24.5 21.5	16.0 18.0 18.0 15.5 13.0	19.0	16.0 16.0 15.0 14.5 11.0 13.5	17.0 16.5 16.5 14.5	11.0 9.0 21.0 19.0	22.0 22.0 11.5 15.5 14.5	18.0 18.0 18.0 18.5 28.0	20.5 20.5 31.0 31.0 20.5	30.0 30.5 21.0 20.0 21.0 20.5	18.0 18.5 19.0 19.0 31.5 31.0	28.0 28.0 28.0 28.0 27.0
MEAN	24.0	18.5	17.0	16.5	15.5	18.0	15.0	18.5	22.5	23.5	22.5	28.0

08183500 SAN ANTONIO RIVER NEAR FALLS CITY, TX

LOCATION.--Lat 28°57'05", long 98°03'50", Karnes County, Hydrologic Unit 12100303, on left bank 23 ft (7 m) downstream from bridge on Farm Road 791, 0.9 mi (1.4 km) upstream from Scared Dog Creek, 3.6 mi (5.8 km) southwest of Fall City, and 150.5 mi (242.2 km) upstream from mouth.

DRAINAGE AREA. -- 2,113 mi2 (5,473 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- April 1925 to current year.

REVISED RECORDS. -- WSP 1732: 1947(M). WSP 1923: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 285.49 ft (87.017 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. For diversions and regulation above station, see REMARKS for Salado Creek (upper station) at San Antonio (station 08178700), Medina River at San Antonio (station 08181500), and San Antonio River near Elmendorf (station 08181800). Flow is slightly regulated by Calaveras Lake on Calaveras Creek, which enters the San Antonio River downstream from the station near Elmendorf. Flow is affected at times by discharge from the flood-detention pools of ten floodwater-retarding structures with a combined detention capacity of 26,130 acre-ft (32.2 hm³). These structures control runoff from 73.8 mi² (191.1 km²). Records furnished by the San Antonio City Public Service Board show that during the current year no water was released into Calaveras Creek from Calaveras Lake.

AVERAGE DISCHARGE.--55 years (water years 1926-80), 393 ft³/s (11.13 m³/s), 284,700 acre-ft (351 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 47,400 ft³/s (1,340 m³/s) Sept. 29, 1946, gage height, 33.80 ft (10,302 m), from floodmark; minimum, 15 ft³/s (0.42 m²/s) June 27, 28, 1956.

Maximum stage since at least 1875, that of Sept. 29, 1946.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in October 1913 reached a stage of 28.4 ft (8.66 m), from floodmark, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 5,120 ft 3 /s (145 m 3 /s) May 15 at 1800 hours, gage height, 8.58 ft (2.615 m), no other peak above base of 4,000 ft 3 /s (113 m 3 /s); minimum, 119 ft 3 /s (3.37 m 3 /s) July 22.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

		DISC	HARGE, IN	CUBIC FE	ME ME	EAN VALUES	ER ILAR C	OCTOBER 13	79 10 321	IENDER 19	00	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	262	374	358	511	418	225	307	252	380	224	173	193
2	252	354	355	453	413	221	307	254	354	227	174	188
3	256	338	360	438	414	204	320	850	326	184	207	197
2 3 4	253	347	363	443	432	194	341	511	328	165	180	202
5	253	340	387	436	430	207	333	347	307	162	153	214
6	261	333	373	434	426	215	322	279	288	156	157	204
7	250	267	361	428	419	205	321	236	279	147	176	1120
8	241	250	351	423	421	202	314	243	281	152	177	1370
9	233	251	356	427	412	209	327	293	285	164	188	1870
10	239	246	358	429	432	216	314	776	275	164	961	819
11	246	246	351	431	422	208	296	426	278	163	1740	517
12	237	236	363	430	403	228	286	291	264	163	2720	431
13	232	226	376	429	407	228	289	255	259	156	2280	377
14	246	231	477	414	400	214	304	276	252	160	746	353
15	276	301	583	414	403	203	330	2400	254	156	441	339
16	282	262	444	433	402	270	296	2940	249	153	368	327
17	346	229	393	434	440	314	287	2180	241	164	339	335
18	351	232	366	429	497	314	282	1360	250	165	298	330
19	343	297	356	422	421	279	282	2170	249	152	280	325
20	341	315	362	429	419	260	282	1970	243	154	277	327
21	337	350	369	426	414	258	273	1320	241	158	275	332
22	324	378	376	463	421	264	264	1390	238	128	270	329
23	339	495	376	561	387	312	271	1230	234	134	269	308
24	322	387	374	597	391	298	267	651	241	149	264	315
25	324	362	433	480	384	283	261	499	244	197	252	309
26	331	438	417	433	355	290	388	437	250	154	238	306
27	334	438	368	421	273	289	567	425	244	146	253	317
28	337	385	389	412	254	330	294	431	240	142	250	366
29	331	381	407	400	242	625	254	424	241	141	235	491
30	327	376	1160	417		465	256	410	236	129	225	396
31	348		795	415	***	337		396		164	202	
TOTAL	9054	9665	13157	13712	11552	8367	9235	25922	8051	4973	14768	13507
MEAN	292	322	424	442	398	270	308	836	268	160	476	450
MAX	351	495	1160	597	497	625	567	2940	380	227	2720	1870
MIN	232	226	351	400	242	194	254	236	234	128	153	188
AC-FT	17960	19170	26100	27200	22910	16600	18320	51420	15970	9860	29290	26790

AC-FT 645600 MIN 226 CAL YR 1979 TOTAL 325482 WTR YR 1980 TOTAL 141963 MEAN 892 MAX 5110 MEAN 388 MIN 128 AC-FT 281600

08183500 SAN ANTONIO RIVER NEAR FALLS CITY, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical and biochemical analyses: January 1968 to current year. Sediment analyses: January 1966 to September 1975.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE, WATER (DEG C)	DIS-	I, (YGEN, DIS- OLVED PER- CENT ATUR- TION)	OXYGH DEMAN BIOCH UNINH 5 DA (MG/I	ND, H HEM N HIB (ARD- ESS MG/L AS ACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
OCT 01	1506	268	988	7.9	25.0	5.	.5	66		4.2	320	85
NOV 09	0948	244	911	7.6	20.0			47	10		290	65
DEC 12	1400	367	886	8.0	18.0			44		5.7	280	52
JAN 18	1047	435	862	7.7	18.0			55		3.1	300	67
FEB 14	1100	400	850	8.1	14.5			71		2	310	88
MAR 13	0915	220	1000	7.8	20.5			52		5.0	320	74
APR 10	1022	309	927	7.6	21.0			38		5.1	300	68
MAY 08	1300	244	883	7.6	24.5			33		2.8	260	55
JUN 11	1313	284	970	8.0	28.5			76		5.7	290	57
JUL. 10	1545	152	991		31.0			233	18		320	83
AUG 25	1600	264	917	7.7	30.5			64		2.2	300	67
SEP 11	1320	540	480	7.2	27.0			45	-		170	37
111	1320	540	460	7.2	27.0	3.	0	45			170	37
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM. DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE	BOI	AR- NATE MG/L	SULFA DIS- SOLV (MG/ AS SO	TE R D'ED SO'L (1	HLO- IDE, IS- DLVED MG/L S CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 01	93	22	75	1.8	7.6	29	10	0	100		95	.4
NOV 09	85	20	65	1.6	5.4			0	98		85	.4
DEC 12	83	18	60	1.6	5.3			0	83		83	.3
JAN 18	86	20	64	1.6	5.6			0	85		76	.3
FEB 14	91	20	61	1.5	5.5			0	87		77	.4
MAR 13	92	22	84	2.0	7.3			0	120		100	.4
APR 10	88	19	72	1.8	6.3			0	93		89	.3
MAY 08	76	17	67	1.8	6.4			0	93		90	.4
JUN 11	85	20	79	2.0	7.5			0	100		100	.5
JUL 10	92	23	94	2.3	7.2			22	110		110	.7
AUG 25	86	20	84	2.1	7.2			0	97		110	.5
SEP 11	53	8.8	28	.9	5.8			0	50		35	.3
11	23	0.0	20	.9	3.8	16	U	.0	50		33	.3
DA	SILIO DIS- SOL' (MC, AS TE SIO	CONST VED TUENT /L DI: SOL	OF NIT	CAL TOT	N. G ITE NO2 AL TO /L (M	EN, +NO3 AM TAL I G/L (ITRO- GEN, MONIA OTAL MG/L S N)	NITR GEN ORGAN TOTA (MG/ AS N	O- G IC O L L	HITRO- EEN, AM- HONIA + HORGANIC TOTAL (MG/L AS N)	PHOR PHOR TOTA (MG AS	US, AL /L
OCT 01 NOV	15	5	551 4	7	.26	5.0	.23		67	.90	3.	700
	14	4	511 4	. 4	.73	5.1	.34		96	1.3	1.	800
12 JAN	13	3	484	.5	.32	1.8	.30	1.	9	2.2		070
18	13	3	488	2.0	.25	2.2	.06	1.	3	1.4	1.5	900
FEB 14	14	4	489 2	2.5	.21	2.7	.04	1.	4	1.4	1.	200
MAR 13	13	3	587	5.4	.36	5.8	.68		82	1.5		
APR 10		4	520 1	.7	.21	1.9	1.0		60	1.6	1.5	900
MAY 08	14	4	487 5	.3	.51	5.8	.26	2.	0	2.3		010
JUN 11	15	5	550 1	.9	.28	2.2	.18	1.	6	1.8	1.1	800
JUL 10			2	2.6	.04	2.6	.06	1.	9	2.0	1	400
AUG 25		5	559 3	3.0	.19	3.2	.24	2.	6	2.8	2.1	300
SEP 11				2.7		2.9	.04	1.		1.5		310

383

08183900 CIBOLO CREEK CREEK NEAR BOERNE, TX

LOCATION.--Lat 29°46'26", long 98°41'50", Kendall County, Hydrologic Unit 12100304, on left bank 0.6 mi (1.0 km) upstream from Southern Pacific Lines bridge, 0.9 mi (1.4 km) downstream from Menger Creek, and 2.5 mi (4.0 km) southeast of Boerne.

DRAINAGE AREA .-- 68.4 mi2 (177.2 km2).

PERIOD OF RECORD . -- March 1962 to current year.

REVISED RECORDS. -- WRD TX-73-1: 1964-65, 1966(P), 1968-72(P).

CAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 1,339.61 ft (408.313 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. No know diversion above station. Flow is affected at times by discharge from flood-detention pools of four floodwater-retarding structures with a combined detention-capacity of 8,850 acre-ft (10.9 hm³). This structure controls runoff from 34.0 mi² (88.1 km²). Several observations of water temperature were made during the year.

AVERACE DISCHARCE.--18 years, 28.8 ft¹/s (0.816 m³/s), 5.72 in/yr (145 mm/yr), 20,866 acre-ft/yr (25.7 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $36,400 \text{ ft}^3/\text{s}$ (1,030 m³/s) Sept. 27, 1964, gage height, 19.15 ft (5.837 m), from floodmark, from rating curve extended above 2,500 ft³/s (70.8 m³/s) on basis of slope-area measurement at 12,000 ft³/s (340 m²/s) and contracted-opening measurement of 36,400 ft³/s (81,030 m²/s); no flow at times in 1962-64, 1966-67, and 1971.

Maximum stage since at least 1892, that of Sept. 27, 1964.

EXTREMES OUTSIDE PERIOD OF RECORD.-- Second highest flood in 1952 reached a stage of 16.3 ft (4.97 m), discharge $25,600 \text{ ft}^3/\text{s}$ (725 m³/s), from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 428 ft 3 /s (12.1 m 3 /s) May 18 at 2330 hours, gage height, 3.58 ft (1.091 m), no peak above base of 900 ft 3 /s (25.5 m 3 /s); minimum, 0.04 ft 3 /s (0.001 m 3 /s) Sept. 5.

		DISC	CHARGE, IN	CUBIC FE	ET PER SI	ECOND, WATE	TER YEAR	OCTOBER 19	79 TO SEE	PTEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5.2 4.9 4.5 3.9 4.0	3.6 3.9 4.2 4.2 4.5	5.2 5.2 5.2 5.2 5.3	4.5 4.5 4.9 4.9 5.1	3.9 3.9 3.6 3.6 3.6	3.6 3.6 3.3 3.3	4.5 4.2 4.0 3.8 3.6	2.8 3.0 3.1 2.7 2.4	4.3 4.4 4.5 4.7 4.3	1.1 1.1 .99 1.1	.12 .05 .08 .13	.29 .22 .22 .12
6 7 8 9	4.2 4.2 4.3 4.8 4.9	5.2 5.6 5.6 5.8 6.0	5.5 5.3 5.2 5.2 5.6	4.9 5.2 5.6 5.6 5.8	3.6 3.9 3.9 3.9 3.6	3.3 3.3 3.3 3.3	3.9 4.8 4.5 4.0 3.7	2.3 3.9 4.3 3.8 2.7	4.2 3.9 3.8 3.8 4.6	.96 1.0 1.2 1.1	.37 .48 .28 .16	.10 5.3 2.0 13 6.0
11 12 13 14 15	4.6 4.5 4.7 5.0 5.2	6.0 6.0 5.7 5.6 5.6	5.8 10 9.3 5.8 5.4	6.0 5.3 5.3 5.6 5.9	3.6 3.6 3.6 3.6 3.6	3.3 3.3 3.3 3.3	3.9 9.3 6.1 4.1 4.0	2.6 3.5 16 16 6.6	4.1 3.5 3.1 3.0 2.7	1.1 1.1 1.3 1.3	1.5 .96 .59 .51	1.7 .89 .64 .71
16 17 18 19 20	5.4 5.2 4.9 4.4 3.9	6.1 10 12 5.7 6.0	4.9 4.2 4.2 4.2 4.3	6.6 6.9 6.2 5.6 5.6	3.6 3.6 3.6 3.6 3.6	3.6 3.9 3.9 3.9 3.9	4.2 3.9 3.4 3.5 3.0	10 5.2 18 47 5.5	3.0 2.7 2.7 2.5 2.5	.92 .81 .73 .72	.68 .72 .94 .69	.65 .79 .78 .65
21 22 23 24 25	3.9 4.3 4.6 4.6 4.0	5.7 5.0 4.9 5.2 6.3	4.6 5.7 6.7 6.1 5.3	5.6 5.6 5.2 5.2 5.2	3.6 3.6 3.6 3.6 3.6	3.9 3.6 3.6 3.3 3.3	2.8 2.8 2.8 2.8 6.9	8.0 4.8 4.4 4.2 4.2	2.7 3.0 2.9 2.3 1.8	.95 .78 .70 .35	.62 .51 .57 .55	.68 .61 .55 .80
26 27 28 29 30 31	3.9 3.8 3.6 4.7 4.1	5.3 5.2 5.2 5.2 5.2	5.2 5.1 5.4 5.8 5.2 4.8	5.2 5.2 4.5 3.9 3.9 3.9	3.6 3.6 3.6	4.5 6.9 7.3 4.9 4.1 4.8	3.6 2.9 2.8 2.8 2.8	4.3 4.8 5.2 5.1 4.7 4.4	1.7 1.7 1.3 1.4 1.4	.39 .71 .68 .56 .84	.37 .31 .30 .39 .48	19 21 38 7.4 6.3
TOTAL MEAN MAX MIN CFSM IN. AC-FT	138.1 4.45 5.4 3.6 .07 .08 274	170.5 5.68 12 3.6 .08 .09 338	170.9 5.51 10 4.2 .08 .09 339	163.4 5.27 6.9 3.9 .08 .09 324	105.9 3.65 3.9 3.6 .05 .06 210	119.9 3.87 7.3 3.3 .06 .07 238	119.4 3.98 9.3 2.8 .06 .06	215.5 6.95 47 2.3 .10 .12 427	92.5 3.08 4.7 1.3 .05 .05	27.23 .88 1.3 .25 .01 .01 54	15.76 .51 1.5 .05 .007 .01	130.89 4.36 38 .06 .06 .07 260

CAL YR 1979 TOTAL 20464.90 MEAN 56.1 MAX WTR YR 1980 TOTAL 1469.98 MEAN 4.02 MAX NAX 1060 MIN 3.6 NAX 47 MIN .05 CFSM .82 IN 11.13 MIN .05 CFSN .06 IN .80 AC-FT 2920

NOTE .-- No gage-height record Jan. 20 to Mar. 28.

08185000 CIBOLO CREEK AT SELMA, TX

LOCATION.--Lat 29°35'38", long 98°18'39", Bexar-Cuadalupe County line, Hydrologic Unit 12100304, on right bank 0.6 mi (1.0 km) downstream from Missouri-Kansas-Texas Railroad Co. bridge and 0.9 mi (1.4 km) upstream from bridge on Interstate Highway 35 at Selma.

DRAINAGE AREA . - - 274 mi 2 (710 km2) .

PERIOD OF RECORD.--March 1946 to current year. Figures for water year 1960 in WSP 1813 are in error and should be disregarded.

REVISED RECORDS. -- WSP 1923: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 728.34 ft (221.998 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Small diversion above station. For statement regarding regulation by Soil Conservation Service floodwater-retarding structures, see station 08183900. Considerable flow of Cibolo Creek enters the Edwards and associated limestones in the Balcones Fault Zone, which crosses basin between this station and the one near Boerne (station 08183900).

AVERAGE DISCHARGE.--34 years, 14.8 ft³/s (0.419 m³/s), 10,720 acre-ft/yr (13.2 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 65,000 ft 3 /s (1,840 m 3 /s) July 16, 1973, gage height, 26.2 ft (7.99 m), from floodmark, from rating curve extended above 16,000 ft 3 /s (453 m 3 /s) on basis of field estimate of 54,000 ft 3 /s (1,530 m 3 /s) and contracted-opening measurement of 65,000 ft 3 /s (1,840 m 3 /s); no flow most of time.

Maximum stage since at least 1869, that of July 16, 1973.

MEAN

.006

MAX

EXTREMES OUTSIDE PERIOD OF RECORD.--A stage of 26 ft (7.9 m) occurred in 1889, but stage for flood in 1913 is unknown, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 7.7 ft³/s (0.22 m³/s) Sept. 7 at 1400 hours, gage height, 3.13 ft (0.954 m), no peak above base of 400 ft³/s (11.3 m³/s); no flow most of time.

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL	AUG SI	AUG
1 .00 .00 .00 .00 .00 .00 .00 .00 .00		.00
		.00
3 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .0	
2 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .0	
5 .00 .00 .00 .00 .00 .00 .00 .00	.00	
6 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .0	
7 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 1.8	.00
00. 00. 00. 00. 00. 00. 00. 00. 00.	.00 .:	
9 .00 .00 .00 .00 .00 .00 .00 .00	.00 .0	.00
00. 00. 00. 00. 00. 00. 00. 00. 00. 00.	.00	
.00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .0	
12 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .0	
13 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .0	.00
14 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .0	.00
15 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .0	.00
00. 00. 00. 00. 00. 00. 00. 00.	.00 .0	
17 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .0	
00. 00. 00. 00. 00. 00. 00. 00. 00. 00.	.00 .0	.00
19 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .0	.00
20 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00	.00
21 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .0	
22 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .0	
23 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .0	.00
24 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .0	.00
25 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .0	.00
26 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .0	
27 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .0	
28 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .0	.00
29 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .0	.00
30 .00 .00 .00 .0000 .00 .00 .00 .0	.00 .0	.00
31 .0000 .000000	.00	
TOTAL .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 2.1	
MEAN .000 .000 .000 .000 .000 .000 .000 .0	.000 .07	.000
MAX .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 1.	.00
MIN .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .0	
AC-FT .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 4.	
CAL YR 1979 TOTAL 5825.29 MEAN 16.0 MAX 1640 MIN .00 AC-FT 11550 WTR YR 1980 TOTAL 2.12 MEAN .006 MAX 1.8 MIN .00 AC-FT 4		

MIN

AC-FT

385 08186000 CIBOLO CREEK NEAR FALLS CITY, TX

LOCATION.--Lat 29°00'50", long 97°55'48", Karnes County, Hydrologic Unit 12100304, on right bank at downstream side of pier of bridge on State Highway 123, 5.7 mi (9.2 km) northeast of Falls City, and 10.4 mi (16.7 km) upstream from mouth.

DRAINAGE AREA. -- 827 mi2 (2,142 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD, -- October 1930 to current year. Monthly discharge only for some periods, published in WSP

REVISED RECORDS.--WSP 733: 1931. WSP 1058: 1935. WSP 1562: 1931(M), 1933. WSP 1923: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 264.28 ft (80.553 m) National Geodetic Vertical Datum of 1929.

Nov. 4, 1930, to Aug. 4, 1940, water-stage recorder at site 1,600 ft (488 m) upstream at datum 0.56 ft (0.171 m) higher. Aug. 5 to Sept. 13, 1940, nonrecording gage at present site and datum.

REMARKS.--Water-discharge records good. Diversions for irrigation above station. Much of the base flow is effluent from the Carrizo Sands in the vicinity of Sutherland Springs. Flow is affected a times by discharge from flood-detention pools of ten floodwater-retarding structures with combined detention capacity of 16,620 acre-ft (20.5 hm²). These structures control runoff from 62.9 mi² (163 km²).

AVERAGE DISCHARGE. -- 50 years, 126 ft3/s (3.568 m3/s), 92,290 acre-ft/yr (113 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 33,600 ft³/s (952 m³/s) July 6, 1942, gage height, 34.45 ft (10.500 m); maximum gage height, 35.44 ft (10.802 m) Sept. 28, 1973; no flow July 30, 31, Aug. 4-22, 1956, Aug. 1, 1971.

Maximum stage since at least 1890, that of Sept. 28, 1973.

EXTREMES OUTSIDE PERIOD OF RECORD. -- In October 1913, a stage of 35 ft (10.7 m) occurred, discharge about 35,000 ft3/s (991 m3/s).

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 3,600 ft3/s (102 m3/s) and maximum (*):

Date		Time	Disch	arge	Gage	height
			(ft^3/s)	(m^3/s)	(ft)	(m)
May	19	1100	4,660	132	17.97	5.477
Sent	7	1200	*15 100	428	27 18	8 284

Minimum discharge, 10 ft3/s (0.28 m3/s) Aug. 6-8.

		DISCHA	RGE, I	N CUBIC F		ECOND, WATE	ER YEAR	OCTOBER 197	79 TO SEPT	TEMBER 198	0	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	37 36 36 36 36 34	35 32 34 33 33	35 36 34 35 35	55 53 49 45 43	37 37 38 37 38	36 33 33 32 34	37 37 37 34 33	26 29 78 48 39	43 40 37 36 35	16 16 15 15	13 11 11 12 12	19 18 20 31 28
6 7 8 9	32 32 32 31 31	32 32 33 33 33	35 36 35 35 34	41 40 38 37 37	38 38 44 45 41	33 34 35 35 34	31 30 30 28 28	33 30 31 36 37	33 32 31 29 28	16 16 14 14 12	10 10 10 12 245	22 7520 1070 831 125
11 12 13 14 15	31 32 33 33 33	32 31 31 31 31	36 38 43 42 41	37 37 36 35 35	46 45 45 44 42	33 34 34 34 32	28 28 28 28 30	35 32 31 37 841	28 29 28 27 26	12 12 12 12 12	360 66 29 26 25	77 65 53 45 40
16 17 18 19 20	33 32 32 32 32 31	32 32 34 34 33	41 40 39 39 39	35 35 36 35 35	40 37 38 38 38	32 33 30 31 32	30 29 27 26 25	1260 325 237 2640 2340	25 25 24 24 24	12 12 12 11 11	24 23 23 21 20	36 33 32 30 29
21 22 23 24 25	30 30 31 29 30	35 41 36 34 36	39 39 39 39 39	37 39 42 55 57	38 38 38 37 36	32 30 29 31 31	25 25 24 24 26	387 363 178 115 95	23 21 22 20 21	12 21 16 16	20 19 19 19 19	29 28 27 26 26
26 27 28 29 30 31	31 30 30 32 32 32 36	37 37 37 36 36	38 39 41 49 52 55	52 46 42 39 39 38	35 35 35 36	31 36 36 35 40 41	28 27 27 27 27 26	85 76 66 60 52 47	18 18 18 18 16	13 14 22 51 14 13	17 17 17 16 16	26 29 29 28 29
TOTAL MEAN MAX MIN AC-FT	1000 32.3 37 29 1980	1016 33.9 41 31 2020	1217 39.3 55 34 2410	1280 41.3 57 35 2540	1134 39.1 46 35 2250	1036 33.4 41 29 2050	863 28.8 37 24 1710	9689 313 2640 26 19220	799 26.6 43 16 1580	473 15.3 51 11 938	1157 37.3 360 10 2290	10401 347 7520 18 20630
CAL YR WTR YR			MEAN MEAN	212 82.1	MAX 5650 MAX 7520		AC-FT AC-FT	153400 59630				

08186000 CIBOLO CREEK NEAR FALLS CITY, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1968 to current year. Chemical and biochemical analyses: October 1969 to current year. Sediment records: October 1968 to September 1969.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1968 to current year. WATER TEMPERATURES: October 1968 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 2,270 micromhos May 20, 21, 1971; minimum daily, 143 micromhos Sept. 7,
1980.
WATER TEMPERATURES: Maximum daily, 34.0°C July 31, Aug. 8, 9, 1980; minimum daily, 4.5°C Jan. 7, 1970.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 1.820 micromhos July 17, 18; minimum daily, 143 micromhos Sept. 7.
WATER TEMPERATURES: Maximum daily, 34.0°C July 31, Aug. 8, 9.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE. WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
OCT 04	0822	34	1380	8.1	23.0	6.8	79	1.2	420	160
NOV 08	1610	32	1430	8.1	19.5	10.4	116	2.4	440	170
DEC 12	1240	41	1443	8.1	15.0	8.6	85	1.3	430	170
JAN 17	1522	34	1454	8.4	17.5	13.4	140	1.5	430	170
FEB 14	0945	42	1400	8.3	13.0	10.0	94	1.6	430	170
MAR 12	1610	33	1550	8.1	23.0	11.5	135	2.0	470	220
APR 09	1525	26	1500	8.0	21.5	8.1	92	1.5	460	210
MAY 08	1100	30	1400	8.0	23.0	6.5	76	2.2	400	140
JUN 11	1215	26	1390	8.1	27.0	8.4	105	.6	390	170
JUL 10	1442	7.0	1720	8.1	30.0	8.6	116	5.2	480	260
AUG 25	1335	1.2	1560	8.3	30.0	8.8	116	2.0	410	210
SEP	1110	79	465	7.7	27.0	6.6	82	3.0	140	41
11	1110	79	463	1.1	27.0	0.0	02	3.0	140	4.1
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM. DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM. DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 04	130	24	130	2.8	7.7	320	0	240	150	.3
NOV 08	130	27	140	2.9	6.8	320	0	260	170	.4
DEC 12	130	25	150	3.2	6.9	320	0	250	180	.3
JAN 17	130	26	150	3.1	7.2	310	6	250	170	.3
FEB 14	130	25	140	2.9	6.4	310	0	230	160	.0
MAR 12	140	28	160	3.2	7.9	300	0	300	190	.4
APR	140	27	150	3.0	7.5	310	0	270	180	.4
09 MAY		24	140	3.1	7.0	310	0	210	170	.4
08 JUN	120			3.1	8.7	270	0	250	170	.4
JUL	120	23	140	3.8			0	340	220	.6
10		31	190	1.8	9.1	270	0	340	220	.0
AUG	140					05.0		200	220	,
25 SEP	120	27	180	3.9	9.1	250 120	0	290 68	230 40	.4

08186000 CIBOLO CREEK NEAR FALLS CITY, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS. SUM OF CONSTI- TUENTS. DIS- SOLVED (MG/L)	MITRO- GEN, MITRATE TOTAL (MG/L AS N)	NITRO- GEN. MITRITE TOTAL (MG/L AS II)	MITRO- GEN. NO2+NO3 TOTAL (MG/L AS N)	MITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN. ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)
OCT 04	14	854	1.1	.020	1.1	.050	.50	.55	.140
VOII	14	906	1.9	.020	1.9	.070	.43	.50	.070
DEC 12	8.7	909	.98	.020	1.0	.050	.72	.77	.700
JAN 17	9.3	902	.52	.020	.54	.010	1.3	1.3	.300
FEB 14	8.4	853	1.7	.040	1.7	.020	1.2	1.2	.220
MAR 12	8.9	983	.16	.010	.17	.020	.67	.69	.190
APR 09	16	944	2.4	.290	2.7	.300	.52	.82	.210
MAY C8	17	841	1.5	.030	1.5	.130	1.3	1.4	1.600
JUN 11	16	861	.47	.050	.52	.080	.49	.57	.190
JUI. 10	18	1080	.32	.010	.33	.090	.61	.70	.130
AUG 25	16	996	.06	.000	.06	.000	.49	.49	.090
SEP 11	14	275	.45	.030	.48	.090	1.2	1.3	.310

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

МОЙТН	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MC/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	1000	1380	854	2310	160	432	240	644	420
nov.	1979	1016	1450	899	2470	170	471	260	700	440
DEC.	1979	1217	1440	895	2940	170	561	250	834	440
JAN.	1980	1280	1410	873	3020	160	569	250	848	430
FEB.	1980	1134	1440	891	2730	170	519	250	773	440
MAR.	1980	1036	1540	960	2680	190	526	280	780	460
APR.	1980	863	1530	951	2220	190	433	280	642	460
MAY	1980	9689	423	249	6520	35	907	54	1410	140
JUNE	1980	799	1380	854	1840	160	346	240	515	420
JUI.Y	1980	473	1640	1030	1310	210	266	310	393	480
AUC.	1980	1157	1050	641	2000	110	349	170	524	330
SEPT	1980	10401	239	1.41	3950	20	548	30	849	82
TOTAL		30065	र्गर पंर	stepte.	34000	deste	5930	**	8910	**
UTD. AV	G.	82	686	419	dot	73	3656	110	to the	220

08186000 CIBOLO CREEK NEAR FALLS CITY, TX--Continued

			08186000	CIROLO C	REEK NEAR	R FALLS CI	TY, TX(Continued				
	SPI	ECIFIC CO	ONDUCTANCE	(MICROMH		25 DEG. C), WATER	YEAR OCTO	BER 1979	TO SEPTEM	BER 1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1380 1310 1360 1380 1360	1420 1440 1410 1420 1430	1420 1450 1470 1480 1490	1350 1340 1330 1380 1430	1440 1450 1440 1430 1440	1500 1510 1480 1520 1540	1470 1470 1480 1490 1500	1450 1480 1200 1230 1280	1150 1170 1210 1270 1280	1560 1600 1580 1630 1650	1640 1650 1660 1650 1640	1500 1490 1510 1400 1450
6 7 8 9	1370 1380 1380 1370 1360	1440 1440 1450 1460 1450	1470 1460 1430 1440 1490	1420 1410 1440 1470 1450	1440 1450 1400 1390 1460	1500 1530 1520 1510 1520	1510 1520 1510 1500 1540	1350 1360 1490 1400 1330	1320 1350 1340 1350 1400	1670 1660 1680 1690 1720	1650 1670 1690 1760 1000	1490 143 200 245 382
11 12 13 14 15	1370 1380 1370 1380 1390	1460 1480 1470 1480 1470	1480 1440 1510 1480 1470	1430 1450 1440 1460 1470	1450 1390 1370 1380 1400	1540 1550 1540 1540 1550	1610 1570 1540 1610 1490	1320 1330 1250 1190 358	1390 1400 1410 1400 1410	1790 1790 1780 1790 1790	729 750 845 889 925	479 625 744 850 934
16 17 18 19 20	1410 1400 1410 1320 1330	1490 1480 1450 1440 1450	1450 1420 1430 1430 1420	1460 1450 1460 1470 1460	1420 1440 1450 1440 1470	1560 1550 1540 1580 1570	1500 1520 1540 1550 1560	349 377 420 360 262	1420 1440 1450 1430 1450	1800 1820 1820 1780 1790	959 1040 1100 1150 1270	1000 1060 1120 1180 1200
21 22 23 24 25	1330 1340 1400 1430 1420	1440 1450 1440 1440 1450	1430 1440 1450 1450 1440	1450 1440 1420 1370 1330	1460 1450 1440 1450 1460	1580 1600 1610 1600 1580	1560 1580 1570 1590 1580	376 462 481 563 700	1470 1480 1490 1510 1520	1780 1700 1720 1710 1740	1380 1450 1530 1580 1560	1240 1270 1300 1350 1370
26 27 28 29 30 31	1450 1410 1420 1420 1430 1410	1460 1450 1440 1450 1440	1450 1460 1440 1430 1360 1350	1350 1370 1380 1400 1410 1420	1480 1470 1480 1520	1570 1550 1530 1540 1490 1480	1510 1520 1500 1480 1530	757 827 900 963 1070 1170	1530 1540 1530 1570 1600	1720 1700 1670 1200 1350 1500	1580 1570 1550 1560 1550 1570	1390 1400 1410 1390 1380
MEAN	1380	1450	1450	1420	1440	1540	1530	937	1410	1680	1370	1080
			TEMPERATUR	RE, WATER	(DEG. C)	, WATER YE	EAR OCTOB	ER 1979 TO	O SEPTEMB	ER 1980		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	27.0 27.0 26.5 26.0 27.0		12.0 11.5 10.5 11.0 12.0	13.5 12.0 11.5 11.0 11.5	8.0 7.0 9.5 11.0 17.5		20.5 22.0 20.0 21.0 23.0	25.0 23.0 24.0 26.0 30.0	29.5 29.0 30.0 29.0 31.0	30.0 32.0 32.0 31.5 31.0	33.0 33.0 31.5 32.0 32.0	31.0 30.0 30.0 31.0 31.0
6 7 8 9	27.5 26.0 26.5 27.0		14.5 14.0 15.5 14.5 14.5	11.5 11.0 11.5 11.5 13.0	14.0 12.0 12.5 11.0 11.0	=======================================	24.0 27.0 25.5 23.0 20.0	29.0 27.0 28.0 26.0 24.0	30.0 32.0 31.0 30.0 29.0	32.0 31.5 30.5 30.5 30.0	33.0 32.0 34.0 34.0	31.0 27.0 26.0 28.5
11 12 13 14 15	27.0 26.5 26.0	13.5	18.0 15.5 13.5 14.0 14.5	14.5 14.0 14.5 15.0 17.5	17.0 11.0 13.5 15.0 18.0	::: ::::	22.0 18.0 16.5 16.0 16.0	27.0 28.0 29.0 28.0 21.0	28.5 30.0 32.0 30.0 28.0	29.0 30.0 30.0 29.0 29.0	27.5 30.0 31.0 28.0	28.0 28.0 29.0 28.0 29.0
16 17 18 19 20	26.5 27.0 26.5 26.5 26.0	14.5 17.0 18.5 19.0 22.5		18.0 17.0 17.5 17.0 15.5	13.0 10.0 12.0	22.0 20.0 19.0 19.0 23.0	21.0 23.0 20.0 20.5 24.0	23.0 24.0 24.0 23.0	30.0 29.0 31.0 31.0 32.0	31.0 30.0 30.0 31.0 31.0	30.0 30.0 30.0 30.5 30.0	29.0 30.0 30.0 29.0 29.0
21 22 23 24 25	26.5 27.0 26.0 26.5	17.5 12.5 13.0		15.0 14.0 14.0 14.5 15.0	 	21.5 20.0 23.0 22.0 20.0	23.0 23.0 24.0 23.0 24.5	25.5 25.0 27.0 26.5 26.0	33.0 29.0 29.5 31.0 30.0	30.5 30.0 31.0 30.5 31.0	30.0 30.0 32.0 31.0 31.5	31.0 31.0 30.0 30.5 31.0
26 27 28 29 30 31	27.0 26.5 27.5 27.0	15.5 14.5 15.0 13.5 12.0	14.0	14.0 10.0 11.0 11.0 9.0 8.5		18.5 21.0 22.0 19.0 22.0 20.0	25.0 22.0 22.5 24.0 22.0	25.0 28.0 28.0 27.0 28.0 29.0	30.5 31.5 31.0 31.0 32.0	31.0 32.0 33.0 32.0 32.0 34.0	31.0 31.0 32.0 32.0 31.0	31.0 31.0 30.0 29.0 28.0

MEAN 26.5 15.5 13.5 13.5 12.5 21.0 22.0 26.0 30.5 31.0 31.0 29.5

389

08186500 ECLETO CREEK NEAR RUNGE, TX

LOCATION.--Lat 28°55'12", long 97°46'19", Karnes County, Hydrologic Unit 12100303, on left bank 55 ft (17 m) downstream from Farm Road 81, 215 ft (66 m) left of left end of bridge, 2.6 mi (4.2 km) upstream from Salt Branch, 4.5 mi (7.2 km) northwest of Runge, and 5.2 mi (8.4 km) upstream from mouth.

DRAINAGE AREA. -- 239 mi2 (619 km2).

PERIOD OF RECORD.--March 1962 to current year.
Water-quality records: Sediment: February 1966 to September 1975.

GAGE.--Water-stage recorder. Datum of gage is 215.03 ft (65.541 m) State Department of Highways and Public Transportation datum.

REMARKS.--Records good. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--18 years, 38.6 ft³/s (1.093 m³/s), 2.19 in/yr (56 mm/yr), 27,970 acre-ft/yr (34.5 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 58,400 ft³/s (1,650 m³/s) Sept. 22, 1967, gage height, 33.3 ft (10.15 m), from floodmark, from rating curve extended above 7,300 ft³/s (207 m³/s) on basis of slope-area measurement of peak flow; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood information begins with the flood in June 1903, which reached a stage of 34 ft (10.4 m), discharge 71,000 ft 3 /s (2,010 m 3 /s). A stage of 32 ft (9.8 m), discharge 39,000 ft 3 /s (1,100 m 3 /s), occurred in September 1952, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 700 $\mathrm{ft^3/s}$ (19.8 $\mathrm{m^3/s}$) and maximum (*):

Date		Time	Disch	arge	Gage	height
			(ft^3/s)	(m^3/s)	(ft)	(m)
May	20	1630	1,020	28.9	9.61	2.929
Sept.	8	1700	*2.590	73.3	14.96	4.560

Minimum discharge, no flow June 19 to July 21.

		DISC	HARGE, IN	CUBIC FE		COND, WATE	ER YEAR	OCTOBER 19	79 TO SEP	rember 19	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.27	.50	1.3	.63	1.1	.65	.71	.03	1.6	.00	.02	.20
2	.26	.50	1.2	.62	1.5	.38	.80	.04	1.2	.00	.02	.29
2 3	.29	.49	1.2	.79	1.7	.59	.80	.04	.98	.00	.02	.33
4	.32	.36	1.4	.77	1.3	.69	.62	.04	.78	.00	.02	.44
5	.29	.35	1.2	.59	1.3	.94	.42	.03	.55	.00	.02	.50
6	.24	.25	.86	.57	1.3	.92	.42	.03	.40	.00	.03	.83
7	.35	.27	.64	.50	1.4	1.0	.35	.02	.34	.00	.03	178
8	.42	.28	.69	.49	1.7	1.2	.35	.71	.27	.00	.04	1980
9	.39	.33	.65	.42	1.6	1.2	.29	.07	.19	.00	.04	563
10	.42	.35	.75	.46	1.6	1.0	.24	.02	.12	.00	62	38
11	.42	.35	.91	.53	1.4	1.0	.24	.02	.09	.00	63	17
12	.42	.35	.88	.50	1.4	1.6	.24	.02	.14	.00	36	6.8
13	.35	.33	.59	.49	1.4	1.6	.24	.02	.03	.00	12	2.6
14	.35	.45	.47	.42	1.4	1.2	.23	.03	.03	.00	4.3	1.7
15	.35	1.0	.89	.42	1.4	1.0	.20	83	.02	.00	2.0	1.1
16	.29	.80	.64	.42	1.4	.89	.20	379	.01	.00	1.0	.78
17	.29	1.0	.25	.42	1.4	.66	.19	234	.01	.00	.52	.58
18	.29	1.4	.09	.42	1.1	.45	.20	73	.01	.00	.23	.50
19	.35	1.3	.06	.42	1.6	.35	.20	426	.00	.00	.12	.50
20	.29	1.4	.04	.70	1.7	.74	.18	841	.00	.00	.08	.50
21	.29	1.8	.03	1.1	1.4	.64	.12	185	.00	.00	.06	.84
22	.29	2.0	.05	1.0	1.1	.48	.10	47	.00	.32	.07	1.2
23	.29	1.1	.09	1.0	1.0	.42	.10	49	.00	.03	.07	1.0
24	.24	1.2	.19	1.1	.86	.42	.10	21	.00	.01	.08	1.0
25	.24	1.2	.32	1.1	.89	.29	.10	11	.00	.01	.06	.98
26	.24	.96	.37	.91	.78	.26	.07	6.7	.00	.01	.06	1.3
27	.24	1.1	.23	.99	.69	.39	.04	5.1	.00	.01	.06	2.6
28	.22	1.3	.92	1.0	.69	.42	.04	11	.00	.02	.07	4.5
29	.27	1.4	1.2	1.0	.69	.42	.03	26	.00	.04	.08	5.8
30	.42	1.3	.50	1.0		.51	.03	3.5	.00	.04	.10	8.9
31	.58		.65	.99		.66		2.1		.04	.12	
TOTAL	9.97	25.42	19.26	21.77	36.80	22.97	7.85	2404.52	6.77	.53	182.32	2821.77
MEAN	.32	.85	.62	.70	1.27	.74	.26	77.6	.23	.017	5.88	94.1
MAX	.58	2.0	1.4	1.1	1.7	1.6	.80	841	1.6	.32	63	1980
MIN	.22	.25	.03	.42	.69	.26	.03	.02	.00	.00	.02	.20
CFSM	.001	.004	.003	.003	.005	.003	.001	.33	.001	.000	.03	.39
IN.	.00	.00	.00	.00	.01	.00	.00	.37	.00	.00	.03	.44
AC-FT	20	50	38	43	73	46	16	4770	13	1.1	362	5600
		30	-									

MIN .03 MIN .00

CFSM .32 IN 4.33 AC-FT 55230 CFSM .06 IN .87 AC-FT 11030

MEAN 76.3 MAX 3170 MEAN 15.2 MAX 1980

CAL YR 1979 TOTAL 27842.61 WTR YR 1980 TOTAL 5559.95

08188500 SAN ANTONIO RIVER AT GOLIAD, TX (National stream-quality accounting network)

LOCATION.--Lat 28°38'58", long 97°23'04", Goliad County, Hydrologic Unit 12100303, on right bank at upstream side of bridge on U.S. Highway 183, 1.2 mi (1.9 km) southeast of courthouse in Goliad, 11.7 mi (18.8 km) upstream from Manahuilla Creek, and 66.5 mi (107.0 km) upstream from mouth.

DRAINAGE AREA. -- 3,921 mi2 (10,155 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1924 to March 1929, February 1939 to current year.

REVISED RECORDS. -- WSP 1923: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 91.08 ft (27.761 m) National Geodetic Vertical Datum of 1929.
Prior to Mar. 31, 1929, nonrecording gage at Texas and New Orleans Railroad Co. bridge 0.9 mi (1.4 km) upstream at same datum.

REMARKS.--Water-discharge records good. Many diversions and regulations above station (see station 08181800). Flow is affected at times by discharge from flood-detention pools of 36 floodwater-retarding structures with combined detention capacity of 66,730 acre-ft (82.3 $\,\mathrm{hm}^3$). These structures control runoff from 213 $\,\mathrm{mi}^2$ (552 $\,\mathrm{km}^2$).

AVERAGE DISCHARGE.--45 years (water years 1925-28, 1940-80), 666 ft^3/s (18.86 m^3/s), 482,500 acre-ft/yr (595 hm^3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 138,000 ft 3 /s (3,910 m 3 /s) Sept. 23, 1967, gage height, 53.7 ft (16.37 m), from floodmark, from rating curve extended above 26,000 ft 3 /s (736 m 3 /s) on basis of slope-area measurement of peak flow; minimum observed, 1.2 ft 3 /s (0.034 m 3 /s) June 16, 1956. Maximum stage since 1869, that of Sept. 23, 1967. Flood of July 9, 1942, reached a stage of 44.9 ft (13.69 m).

EXTREMES OUTSIDE PERIOD OF RECORD.--Floods in October 1913 and June 15, 1935, reached about the same stage as flood in 1942. Maximum stage since about 1800 occurred in 1869 and was several feet higher than flood of Sept. 23, 1967.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 8,240 ft³/s (233 m³/s) Sept. 9 at 2300 hours, gage height 25.68 ft (7.827 m), no other peak above base of 6,000 ft³/s (170 m³/s); minimum, 161 ft³/s (4.56 m³/s) July 25, 26, Aug. 1, 2.

		DISC	CHARGE, IN	CUBIC FE		COND, WAT		OCTOBER 19	79 TO SEP	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	356	407	471	1110	495	326	525	331	528	298	169	282
2	352	425	466	762	497	309	446	328	505	297	176	271
3	344	451	454	607	499	292	419	323	485	283	198	265
3 4 5	332 331	436 422	451 452	551 534	493 492	288 277	407 408	386 793	458 435	279 251	192 209	256 259
6 7 8 9	329 332 336 326 315	428 421 412 366 341	457 475 467 458 449	531 523 516 508 504	505 502 504 505 502	263 270 280 275 270	421 415 399 387 371	557 450 413 368 350	428 406 387 373 376	215 207 202 191 188	222 184 181 205 687	288 287 3930 7590 6300
11	308	337	452	507	493	277	383	442	373	191	2560	1810
12	315	335	464	506	511	289	375	710	360	202	4260	936
13	324	331	463	504	506	281	357	509	356	196	2490	726
14	317	323	476	503	489	292	347	410	340	197	2600	587
15	315	317	484	501	490	297	353	516	333	191	1420	526
16	323	318	572	490	483	290	377	1750	321	185	742	486
17	348	375	628	491	478	292	404	5170	321	181	530	458
18	359	364	517	501	476	329	376	3940	317	174	463	435
19	412	326	482	500	519	376	355	2080	308	181	408	429
20	419	326	463	509	543	378	342	3810	314	185	369	418
21	415	387	456	795	493	352	338	5550	311	184	350	407
22	412	425	461	574	488	330	335	3110	302	172	341	404
23	405	440	469	527	481	325	324	1620	301	197	335	400
24	398	479	471	547	480	333	314	1840	298	187	328	393
25	410	552	467	667	452	367	320	1110	294	169	323	371
26 27 28 29 30 31	400 401 409 414 420 418	481 461 519 515 477	465 505 501 503 515 633	659 567 523 511 499 488	447 438 414 349	371 358 370 375 424 640	321 312 439 551 382	848 716 611 592 599 557	297 303 310 305 300	168 208 206 203 194 244	317 307 296 303 301 290	375 395 384 386 481
TOTAL	11295	12197	15047	17515	14024	10196	11503	40789	10745	6426	21756	30535
MEAN	364	407	485	565	484	329	383	1316	358	207	702	1018
MAX	420	552	633	1110	543	640	551	5550	528	298	4260	7590
MIN	308	317	449	488	349	263	312	323	294	168	169	256
AC-FT	22400	24190	29850	34740	27820	20220	22820	80900	21310	12750	43150	60570

CAL YR 1979 TOTAL 466071 MEAN 1277 MAX 9060 MIN 308 AC-FT 924500 WTR YR 1980 TOTAL 202028 MEAN 552 MAX 7590 MIN 168 AC-FT 400700

391

08188500 SAN ANTONIO RIVER AT GOLIAD, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: September 1945 to September 1946, September 1958 to current year. Chemical and biochemical analyses: January 1968 to current year. Pesticide analyses: January 1968 to current year. Sediment records: October 1974 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: September 1945 to September 1946, September 1958 to current year. WATER TEMPERATURES: September 1958 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 1,580 micromhos July 22, 1978; minimum daily, 138 micromhos Oct. 27, 1960.
WATER TEMPERATURES (1958-79): Maximum daily, 36.0°C June 5, 1969; minimum daily, 0.0°C on many days during winter months.

EXTREMES FOR CURRENT YEAR.-- SPECIFIC CONDUCTANCE: Maximum daily, 1,420 micromhos Mar. 10; minimum daily, 159 micromhos Sept. 9.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	COLOR (PLAT- INUM COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
OCT 03	1154	342	1190	8.1	25.0	5	26	7.0	84	1.6	75	220
NOV 05	1405	422	1069	8.1	19.0	5	28	8.5	90	2.4	200	210
DEC 05	1338	456	1055	8.0	16.5	5	17	8.8	89	1.3	130	210
JAN 15	1440	504	1070	8.0	16.0	10	26	10.7	106	2.3	300	260
FEB 13	1444	504	1080	8.3	13.0	5	22	10.0	94	1.5	68	84
MAR 10	1410	270	1400	8.1	19.5	5	6.7	9.5	103	1.5	60	K49
APR 09	1240	386	1170	8.0	21.0	10	42	7.5	83	1.7	140	750
MAY 05	1530	798	962	7.9	24.5	5	97	6.4	76	1.4	K270	1600
JUN 09	1210	371	1090	8.5	29.0	25	29		94	4.4	K40	K57
JUL								7.3				
09 AUG	1220	191	1280	8.7	30.0	25	12	9.6	130	6.4	44	100
05 SEP	1200	235	1270	8.5	29.0	10	32	7.5	97	2.2	330	280
09	1115	7620	159	7.7	25.0	300	370	5.5	65	3.3	K6000	6800
DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 03	370	110	110	23	110	2.5	7.4	320	0	130	150	.4
NOV 05	360	120	110	21	91	2.1	5.8	300	0	120	120	.4
DEC 05	340	98	100	23	94	2.2	6.0	300	0	110	140	.4
JAN 15	340	100	100	22	92	2.2	6.0	290	0	110	130	.4
FEB 13	340	100	100	23	96	2.3	6.4	290	0	120	140	.4
MAR			120	27					0	180	200	.5
APR	410	150			140	3.0	7.0	320				
09 MAY	370	120	110	22	100	2.3	7.7	300	0	120	140	. 4
05 JUN	300	91	89	19	81	2.0	7.0	270	0	110	100	.4
09 JUL	330	89	98	21	95	2.3	7.2	280	7	110	130	.4
09 AUG	380	140	110	26	130	2.9	7.7	240	30	150	190	. 7
05 SEP	380	140	110	25	130	2.9	8.2	280	6	150	190	.5
09												

08188500 SAN ANTONIO RIVER AT GOLIAD, TX--Continued

DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)
OCT 03	19	738	727	66	13	1	22	4.4	4.4	.120	.030	.98
NOV 05	16	642	653	59	23		-	4.7	4.8	.030	.070	1.1
DEC 05	16	663	659	33	3			5.3	4.9	.000	.030	1.3
JAN 15	16	635	642	66	13		- 22	5.5	5.0	.040	.070	.90
FEB 13	20	651	669	76	20		92	5.3	4.6	.030	.020	1.5
MAR				9	5							
10 APR	17	865	861					2.9	2.6	.020	.020	.91
09 MAY	18	718	693	133	23			6.3	6.2	.130	.120	1.3
05 JUN	14	604	572	395	19			6.0	5.6	.090	.060	1.6
09 JUL	15	660	635	42	9		**	3.4	3.0	.060	.020	1.4
09 AUG	7.0	785	771	34	8			.83	1.2	.000	.000	2.0
05 SEP	13	780	772	32	1			1.8	1.8	.240	.000	1.4
09	8.5	109	93	792	108	.460	.450	55	.45	.000	.000	1.1
DATE	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED (MG/L AS C)	PHENOLS (UG/L)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 03	1.5	1.1	1.5	1.300	1.300	4.8			1	67	62	97
NOV 05	1.2	1.1	1.3	1.200	.440	22	5.4		4	57	65	95
DEC 05	1.2	1.3	1.2	3.400	1.400	9.6			0	54	66	96
JAN 15	4. 48	.94	.55	1.700	1.700	4.7			0	66	90	96
FEB 13	1.6	1.5	1.6	1.800	1.100		10	.9	1	55	75	85
MAR 10	.72	.93	.74	1.400	1.300	6.7			0	15	11	88
APR 09	1.3	1.4	1.4	2.100	2.100	9.9			1	113	118	97
MAY 05	1.7	1.7	1.8	1.500	.950	42	6.5	5.1	0	459	989	95
JUN 09	.98	1.5	1.0	1.300	.930	13			2	110	110	99
JUL 09	.97	2.0	.97	.750	.510	13			1	70	36	99
AUG 05	1.7	1.6	1.7	1.600	1.200	22	5.6	4.7	0	101	64	100
SEP 09	1.1	1.1	1.1	.420	-170	17			0	905	18600	81
DA	TI	ARSE TOT ME (UG	ARSI SU MIC PER AL TOT	CAL SOL	S- REC VED ERA	AL PEND OV- REC BLE ERA	ED BARI OV- DIS BLE SOLV	S- REC	AL PENI OV- RECO BLE ERAI /L (UG	S- DED CADM DV- DI BLE SOL /L (UG	S- REC VED ERA /L (UG	M, AL OV- BLE /L
NOV												
05 DEC		05	3	1	2	400	300	80	0	0	<1	0
	13	38		77		77.11			155			
	14	44	2	0	2	300	100	200	0	0	0	0
	14	10			-8	221		22				
	15	30	4	1	3	200	100	70	0		<1	10
	12	10							17		75	
	12	:00	5	0.	5	100	10	90	0	0	2	0
		15	-55	16			>	144			44)	4.5

DATE	CHRO MIUN SUS PENI RECO (UG/ AS (1, S- DED DV.	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT TOTAL RECOV ERABL (UG/L AS CO	PEN RE ER.		COBAL' DIS- SOLVE (UG/ AS CO	r. D	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPP SUS PEN REC ERA (UG AS	DED OV- BLE /L	COPPER, DIS- SOLVED (UG/L AS CU)	I RON TOTA RECO ERAB (UG/ AS F	L V- LE L	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON DIS SOLV (UG/ AS F	S- VED /L
NOV																	
05 DEC		0	0		0	0	13	<3	0		0	0	10	00	990		10
05					-												
FEB 13		0	0		0	0		0	2		2	0	7	70	750		20
MAR 10					-										4.5		
MAY 05		10	0		4			<3	12		10	2	65	00			<10
JUN 09					_												
AUG																	
O5 SEP		0	0		0			<3	5		3	2	18	00			<10
09				-	-										**		
DATE	LEAU TOTA RECO ERAU (UG, AS I	AL OV- BLE /L	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVE (UG/I AS PE	NE TO RE D ER	NGA- SE, TAL COV- ABLE G/L MN)	MANG NESE SUS PEND RECO (UG/ AS M	ED V.	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERC TOT REC ERA (UG AS	AL OV- BLE /L	MERCURY SUS- PENDED RECOV- ERABLE (UG/L AS HG)	MERCU DIS SOLV (UG/ AS H	RY ED L	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKE SUS PENI RECO ERAL (UG) AS N	S- DED OV- BLE /L
NOV 05		8	8		0	50		50	3		.1	.1		.0	6		5
DEC 05											-1	1.		-2			
FEB 13		10	10		0	40		20	20		.3	.0		.3	5		0
MAR 10															-		· ·
MAY																	
05 JUN		20	20		0	330	3	30	1		.2	.1		. 1	17		12
09 AUG					-												
05 SEP		21	16		5	110	1	10	1		. 2	.1		. 1	9		2
09			42		-												44
	DATE	NICK DIS SOL (UG AS	VED TO	ELE- IUM, DTAL JG/L S SE)	SELE- NIUM, SUS- PENDED TOTAL (UG/L AS SE)	NIU SOI (UC	LE- JM, IS- LVED G/L SE)	SILVI TOTA RECO ERAI (UG) AS	ER, S AL PE OV- RE BLE EE /L (U	LVER, BUS- ENDED ECOV- RABLE JG/L B AG)	SOI (U	VER, TO IS- RI LVED EI G/L (I	INC, DTAL ECOV- RABLE JG/L S ZN)	ZING SUS PENU RECO ERAI (UG,	S- DED ZI DV- D BLE SO /L (U	NC. IS- LVED G/L ZN)	
	OV	no.	MI) A	, 51,	AS SL)	no.	31)	AO I	10) 11	, A0)	AO	A0) A	5 611)	70 6	111) 100	211)	
(05 EC		1	1	0		1		0	0		0	10		3	7	
	05						24		0			2.2					
	EB 13		5	1	0		1		0	0		0	30		10	20	
	AR 10								0								
	AY 05		5	1	0		1		0	0		0	40		40	4	
J	UN 09			22	1		61		0			-22			24		
Al	UG 05		7	1	0		1		0	0		0	10		5	5	
SI	EP 09			-2			-11		0								
				11-51													

08188500 SAM ANTONIO RIVER AT GOLIAD, TX--Continued

DATE	TIME	PCB, TOTAL (UG/L)	PCB. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN. TOTAL (UG/L)	ALDRIN. TOTAL IN BOT- TOM MA- TERIAL (UC/KG)	CHLOR- DANE, TOTAL (UG/L)	CHLOR- DANE. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL (UG/L)	DDE. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 05	1545	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
FEB 13	1444	ND	44	HD	12	ND		ND	-	ND	17
DATE	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON. TOTAL (UG/L)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN TOTAL (UG/L)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL (UG/L)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL (UG/L)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR. TOTAL (UG/L)
110V 05	MD	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
FEB 13	tiD		ND		nd		ND		ND		ND
DATE	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UC/KG)	LINDANE TOTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KC)	MALA- THION, TOTAL (UG/L)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)
NOV 05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
FEB 13		MD		ND		ND	-	ND		ND	
DATE	METHYL TRI- THION, TOTAL (UC/L)	METHYL TRI- THION. TOT. IN BOTTOM MATL. (UG/KG)	PARA- THION, TOTAL (UG/L)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOX- APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL TRI- THION (UG/L)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	2,4-D, TOTAL (UG/L)	2,4.5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
NOV 05	ND	ND	ND	IID	ND	ND	ND	ND	ND	ND	ND
13	ND	441	ND		ND		ND				
		JA	EX S	PO- PE URE BIO DAYS) / WE G/	ERI- PH HYTON BIC DMASS TC ASH I HIGHT WE 'SQ M G/	MASS PI DMASS PI DTAL CHI DRY GRA	IYTON PH ROMO- CHI APHIC GRA JOROM FLI	ERI- CHI HYTON PI ROMO- RA APHIC PE UOROM PF	OMASS ORO- IYLL IYIO GRI- IYTON IITS)		

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

DATE TIME		11,79		10,80		5,80 530		9,80
TOTAL CELLS/ML		57	3	500	1	100	89	000
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		1.5 1.5 1.5 1.5		1.2 1.2 1.4 1.5		1.5 1.5 2.3 2.6 2.6		1.4 1.4 1.8 2.6 3.3
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE)								
.CHLOROCOCCALES								
CHARACIACEAE SCHROEDERIA		(4)		1.4		2		-
CHLOROCOCCACEAE CHLOROCOCCUM	4+	-	43	1	55	-		-
HYDRODICTYACEAE PEDIASTRUM				-		-		-
GOLENKINIA	54	-	44	1.4	44	-	1200	1
MICRACTINIUM OOCYSTACEAE		-		0-0		-	12000	14
ANKISTRODESMUS CHLORELLA		-	43	ī	52	5	of to	0
DICTYOSPHAERIUM KIRCHNERIELLA		3		-	22	2	1200 3800	1 4
OOCYSTIS POLYEDRIOPSIS		10-1	1,44	-		-	*	0
SELENASTRUM		-	72	12		-	1200	1
TETRALDRONTREUBARIA		-	122	-		-	*	0
WESTELLA SCENEDESMACHAE		-		-		-		-
ACTINASTRUM		=	97	17	7-5	15	9500	11
CRUCIGENIA SCENEDESMUS		2	*	0	52	5	1200 17000#	19
TETRASTRUM VOLVOCALES		-		7		-		-
CHLAMYDOMONADACEAE CHLAMYDOMONAS	14#	25	690#	20	26	2		-
ZYGNEMATALESDESMIDIACEAECOSMARIUM		-1		-		-		
CHRYSOPHYTA								
.BACILLARIOPHYCEAE								
CENTRALES COSCINODISCACEAE			2.2				N. P. Color	
CYCLOTELLA MELOSIBA		-	65 22	2	150	14	5600	6
PENNALES GOMPHONEMATACEĀE								
GOMPHONEMA		-	*	0				-
NAVICULACEAE NAVICULA		-	32	1	39	3		-
NITZSCHIACEAE	29#	50	160	5	230#	21	5900	7
SURIRELLACEAF		-	32	1	13	1		-
CRYPTOPHYTA (CRYPTOMONADS)								
.CRYPTOPHYCEAE CRYPTOMONADALES								
CRYPTOMONADACEAE			九	0	247	-		12
CYANOPHYTA (BLUE-CREEN ALGAE)								
.CYANOPHYCEAE								
CHROOCOCCALES CHROOCOCGACEAE								
AGMENELLUM ANACYSTIS					77	7	19000#	21
COCCOCHLORIS GOMPHOSPHAERIA		-		-		-	2100	2
HORMOGODALES		-						-
ANABAENA		-		-	44.0	12	7700	9
OSCILLATORIACEAE								_
OSCILLATOPIA	1.	-	2400#	88	440#	40		1
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAU								
EUGLENACEAE								
EUGLENA TRACHELOMONAS	14#	25		1	26	2	*	0
					75	1		
PYRRHOPHYTA (FIRE ALCAE) .DINOPHYCEAE								
PERIDINIALESGLENODINIAGEAN								
GLENODINIUM	**	7		130		11.5	*	0

08188500 SAN ANTONIO RIVER AT GOLIAD, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

DATE TIME		9,80 220		5,80		9,80
TOTAL CELLS/ML	130	000	98	000	1	200
DIVERSITY: DIVISION		1.3		1.5		0.9
.CLASS .ORDER		1.3		1.5		0.9
FAMILY		2.1		2.8		1.0
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE)						
.CHLOROPHYCEAE CHLOROCOCCALES						
SCHROEDERIA	*	0	*	0	- 52	4
CHLOROCOCCACEAE CHLOROCOCCUM		-	1944	-		4
HYDRODICTYACEAE PEDIASTRUM		_	5100	5		-
MICRACTINIACEAE GOLENKINIA	*	0	3,00	-	1.55	
MICRACTINIUM	9100	7	22000#	22		-
OOCYSTACEAE ANKISTRODESMUS	3300	3	1400	1	144	-
CHLORELLA DICTYOSPHAERIUM	1500 20000#	16		-		1
KIRCHNERIELLA OOCYSTIS	1500	1	2100	2	14 14	1
POLYEDRIOPSIS SELENASTRUM	×	0	*	0		114
TETRAEDRON	1500	0		-	17	-
TREUBARIA WESTELLA	3600	3		-	14	1
SCENEDESMACEAE ACTINASTRUM	12000	9	44	-		12
CRUCIGENIA SCENEDESMUS	14000	11	930 11000	11	14	ī
TETRASTRUM VOLVOCALES	1200	1		12.		120
CHLAMYDOMONADACEAE						
CHLAMYDOMONAS ZYGNEMATALES		-	*	0		-
DESMIDIACEAE COSMARIUM		14	- 22	121	14	1
CHRYSOPHYTA						
.BACILLARIOPHYCEAE CENTRALES						
COSCINODISCACEAE	10000	10	1/000	47	70	
CYCLOTELLA MELOSIRA	13000	10	14000	14	72	6
PENNALES GOMPHONEMATACEAE						
GOMPHONEMA NAVICULACEAE	**	-		-		-
NAVICULA		74	*	0		-
NITZSCHIACEAE NITZSCHIA		-	3300	3	43	4
SURIRELLACEAE SURIRELLA				-		æ
CRYPTOPHYTA (CRYPTOMONADS)						
.CRYPTOPHYCEAE CRYPTOMONADALES						
CRYPTOMONADACEAE CRYPTOMONAS						
		- 2		-		-
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE						
CHROOCOCCALES CHROOCOCCACEAE						
AGMENELLUM ANACYSTIS	15000 33000#	11 26	3700 5100	4 5		-
COCCOCHLORIS		-	6500	7		+
GOMPHOSPHAERIA HORMOGONALES		7	6300	1		
ANABAENA		-		-		-
OSCILLATORIACEAE LYNGBYA		-			290#	24
OSCILLATORIA		-	21000#	22	720#	
EUGLENOPHYTA (EUGLENOIDS)						
.EUGLENOPHYCEAE EUGLENALES						
EUGLENACEAE EUGLENA		-	*	0	14	1
TRACHELOMONAS		5	*	0		-
PYRRHOPHYTA (FIRE ALGAE)						
.DINOPHYCEAE PERIDINIALES						
GLENODINIACEAE GLENODINIUM	22	12		-		4

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

GUADALUPE RIVER BASIN 397 08188500 SAN ANTONIO RIVER AT GOLIAD, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

монтн	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	11295	1190	708	21600	150	4470	130	4080	380
NOV.	1979	12197	1120	665	21900	130	4380	120	4080	370
DEC.	1979	15047	1060	626	25400	120	4900	110	4670	350
JAN.	1980	17515	976	575	27200	110	5030	100	4920	330
FEB.	1980	14024	1100	650	24600	130	4840	120	4560	360
MAR.	1980	10196	1300	776	21400	170	4670	150	4140	410
APR.	1980	11503	1150	682	21200	140	4290	130	3970	370
MAY	1980	40789	537	311	34300	45	5000	52	5680	200
JUNE	1980	10745	1130	671	19500	140	3920	130	3640	370
JULY	1980	6426	1300	775	13400	170	2940	150	2600	410
AUG.	1980	21756	602	351	20600	56	3290	60	3520	210
SEPT	1980	30535	510	298	24500	47	3910	51	4190	180
TOTAL		202028	**	state	276000	**	51600	**	50100	**
WTD. AVO	3.	552	856	505	Hesk	95	**	92	**	290

	S	PECIFIC O	CONDUCTANCE	(MICROMH	OS/CM AT	25 DEG. C) NCE-DAILY	, WATER	YEAR OCTOR	BER 1979	TO SEPTEM	BER 1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1130 1200 1220 1250 1240	1120 1130 1120 1090 1060	1010 1020 1030 1050 1090	881 644 723 807 935	1100 1090 1070 1080 1100	1250 1300 1330 1340 1360	1040 1100 1010 1040 1080	967 969 1050 1000 962	933 983 984 1020 1050	1150 1160 1200 1190 1220	1350 1380 1220 1240 1270	1170 1180 1160 1180 1240
6 7 8 9	1250 1280 1270 1240 1250	1080 1110 1140 1160 1190	1080 1100 1090 1080 1070	952 989 1010 1020 1050	1090 1100 1080 1070 1060	1390 1400 1380 1400 1420	1100 1120 1130 1170 1180	987 621 792 855 1080	1070 1080 1090 1080 1110	1240 1300 1320 1280 1230	1210 1180 1190 1000 750	1170 1180 543 159 250
11 12 13 14 15	1280 1270 1270 1290 1300	1200 1220 1210 1200 1200	1060 1090 1100 1110 1110	1060 1080 1060 1040 1060	1070 1090 1080 1120 1100	1400 1370 1360 1350 1340	1200 1190 1170 1180 1190	1090 929 967 858 920	1130 1150 1170 1180 1190	1290 1300 1370 1360 1340	492 331 418 368 440	405 415 492 561 665
16 17 18 19 20	1280 1260 1240 1150 1130	1210 1220 1200 1190 1190	1060 1010 1020 1030 980	1080 1090 1080 1050 1040	1120 1110 1090 1120 1070	1350 1360 1320 1280 1260	1210 1200 1170 1190 1200	750 356 401 406 469	1180 1190 1200 1220 1230	1330 1330 1350 1340 1360	482 565 664 725 811	752 851 932 1000 1010
21 22 23 24 25	1110 1120 1110 1130 1140	1200 1100 1190 1100 998	1050 1080 1070 1070 1080	828 985 1070 1090 1040	1080 1120 1060 1070 1090	1230 1270 1280 1290 1270	1180 1160 1200 1230 1240	285 451 516 515 429	1240 1230 1220 1200 1190	1370 1360 1340 1360 1310	844 945 987 1010 1030	1030 1040 1040 1070 1100
26 27 28 29 30 31	1130 1140 1110 1090 1100	1010 1050 1040 999 989	1090 1070 1050 1040 1030 1020	974 970 965 984 1030 1070	1130 1150 1160 1180	1220 1230 1250 1240 1250 1120	1250 1250 1150 1050 1080	524 650 737 827 900 871	1200 1210 1220 1220 1200	1370 1400 1360 1280 1340 1300	1040 1060 1100 1130 1140 1150	1090 1080 1130 1090 978
MEAN	1200	1130	1060	989	1100	1310	1160	746	1150	1300	920	899

AC-FT

08188600 GUADALUPE-BLANCO RIVER AUTHORITY CALHOUN CANAL FLUME NO. 1 NEAR LONG MOTT, TX

LOCATION.--Lat 28°29'44", long 96°46'18", Calhoun County, Hydrologic Unit 12100204, on right bank at concrete Parshall flume No. 1, 518 ft (158 m) upstream from State Highway 185, 1,900 ft (579 m) downstream from pumping station on Goff Bayou, and 1.1 mi (1.8 km) northwest of Long Mott.

PERIOD OF RECORD. -- March 1968 to Feburary 1970 (monthly discharge only), March 1970 to current year.

GAGE.--Deflection-vane recorder, duplex water-stage recorder, and Parshall flume. Datum of gage is 23.53 ft (7.172 m) National Geodetic Vertical Datum of 1929.

MARKS.--Records fair. Flow is diverted from Guadalupe River 550 ft (168 m) upstream from Guadalupe River near Tivoli (station 08188800), and then through a system of canals, Hog Bayou, and Goff Bayou, a distance of 8.9 mi (14.3 km) to the pumping station on Goff Bayou 1,900 ft (579 m) upstream from flume No. 1. Several observations of water temperature were made during the year. REMARKS .-- Records fair.

AVERAGE DISCHARGE. -- 12 years (water years 1969-80), 103 ft3/s (2.917 m3/s), 74,620 acre-ft/yr (92.0 hm3/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily discharge, 311 ft3/s (8.81 m3/s) July 7, 1968; no flow at times in 1968-74 and 1977-80.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 72 8.0 .00 .00 .00 4.0 274 284 .00 274 273 283 .00 .00 .00 9.0 29 254 29 170 214 29 173 50 21 187 158 52 173 260 167 ---.00 TOTAL 838.0 503.00 53.00 4123.00 275 108 MEAN 96.0 27.9 20.0 29.0 17.3 52 56.5 196 274 276 MAX 9.0 MIN

CAL YR 1979 TOTAL 35883.10 MEAN 98.3 MAX 280 AC-FT 82030 WTR YR 1980 TOTAL 41355.00 MEAN MAX 289 MIN .00

08188750 GUADALUPE-BLANCO RIVER AUTHORITY CALHOUN CANAL FLUME NO. 2 NEAR LONG MOTT, TX

LOCATION.--Lat 28°30'09", long 96°45'40", Calhoun County, Hydrologic Unit 12100204, on left bank at concrete Parshall flume No. 2, 3,700 ft (1,130 m) downstream from State Highway 185, 4,200 ft (1,280 m) downstream from streamflow station 08188600, and 1.4 mi (2.3 km) north of Long Mott.

PERIOD OF RECORD. -- October 1971 to June 1972 (monthly discharge only), July 1972 to current year.

GAGE.--Deflection-vane recorder, water-stage recorder, and Parshall flume. Datum of gage is 22.37 ft (6.818 m)
National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair except those for periods of low velocities, which are poor. Flow is diverted from Guadalupe River 550 ft (168 m) upstream from Guadalupe River near Tivoli (station 08188800), and then through a system of canals, Hog Bayou, and Goff Bayou, a distance of 8.9 mi (14.3 km) to the pumping station on Goff Bayou 1,900 ft (579 m) upstream from flume No. 1. Diversions to the Union Carbide Co. between flumes 1 (station 08188600) and 2 during the current year were 18,840 acre-ft (23.2 hm³). Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--9 years, 82.1 ft3/s (2.325 m3/s), 59,480 acre-ft/yr (73.3 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 282 ft³/s (7.99 m³/s) June 23, 1975; no flow at times in 1972-80.

		DISC	CHARGE, I	N CUBIC FE		ECOND, WA EAN VALUE	TER YEAR C	OCTOBER 19	79 TO SEF	PTEMBER 1	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	108 121 130 137 144	43 58 31 4.0 5.0	.00 .00 .00	.00 .00 .00	.00 .00 .00	47 14 14 9.0 .00	.00 .00 8.0 14	166 148 184 176 130	260 240 231 246 251	250 256 254 268 274	101 107 101 101 120	231 240 246 254 252
6 7 8 9	144 144 144 135 130	.00 .00 .00	20 24 .00 .00	.00 .00 .00 7.0	.00 .00 .00	.00 .00 .00 .00	9.0 14 48 96	115 145 111 43 35	260 260 260 266 274	274 248 251 260 260	122 98 50 .00	246 239 231 240 253
11 12 13 14 15	122 116 108 101 93	.00 .00 .00	.00 .00 .00	7.0 14 14 14 11	.00 .00 .00	43 36 22 28 43	98 86 68 43 83	29 35 65 94 94	274 274 274 274 274	245 239 231 231 231	.00 .00 .00 .00	253 252 260 147 191
16 17 18 19 20	69 66 72 72 72	.00 .00 .00	.00 .00 .00	14 14 14 14 14	.00 .00 .00	43 14 31 63 76	115 166 145 170 176	60 43 43 14 54	274 262 260 260 260	231 211 196 171 158	86 86 71 94 115	176 213 231 241 229
21 22 23 24 25	72 39 14 14	.00 .00 .00	.00 .00 .00	14 12 13 43 43	.00 .00 .00	77 72 81 68 80	144 110 98 73 72	81 85 106 115 115	260 260 260 260 260	146 130 107 86 105	123 148 192 217 224	208 200 188 183 165
26 27 28 29 30 31	14 14 14 14 14	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	65 21 14 7.0 .00	138 173 177 158 167	133 211 235 274 266 260	260 250 250 250 260	119 101 101 101 85 76	236 246 246 246 246 240	150 144 136 124 98
TOTAL MEAN MAX MIN AC-FT	2465 79.5 144 14 4890	141.00 4.70 58 .00 280	92.00 2.97 29 .00 182	294.00 9.48 43 .00 583	38.00 1.31 38 .00 75	991.00 32.0 81 .00 1970	2687.00 89.6 177 .00 5330	3665 118 274 14 7270	7804 260 274 231 15480	5896 190 274 76 11690	3650.00 118 246 .00 7240	6221 207 260 98 12340

CAL YR 1979 TOTAL 27440.70 MEAN 75.2 MAX 263 MIN .00 AC-FT 54430 WTR YR 1980 TOTAL 33944.00 MEAN 92.7 MAX 274 MIN .00 AC-FT 67330

400

GUADALUPE RIVER BASIN

08188800 GUADALUPE RIVER NEAR TIVOLI. TX

LOCATION.--Lat 28°30'20", long 96°53'04", Calhoun-Refugio County line, Hydrologic Unit 12100204, on right bank at diversion and saltwater barrier, one orifice located upstream and one downstream, 550 ft (168 m) downstream from Calhoun County Irrigation Canal intake, 0.4 mi (0.6 km) downstream from San Antonio River, 3.5 mi (5.6 km) north of Tivoli, and at mile 10.2 (16.4 km). Water-quality sampling site on left bank 474 ft (144 m) upstream.

DRAINAGE AREA. -- 10,128 mi2 (26,232 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1965 to current year.

REVISED RECORDS. -- WRD TX-68-1: Drainage area.

GAGE.--Duplex water-stage recorder. Datum of gage is 0.04 ft (0.012 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Many small diversions above station. Some regulation by powerplants. Upstream regulation same as that for Guadalupe River at Cuero (station 08175800) and San Antonio River at Goliad (station 08188500).

EXTREMES FOR PERIOD OF RECORD.--Maximum gage height (upstream from barrier), 13.7 ft (4.18 m) Sept. 22, 1967; minimum.
1.5 ft (0.46 m) Mar. 16, 1967. Maximum gage height (downstream from barrier), 13.6 ft (4.15 m) Sept. 22, 1967; minimum, 0.5 ft (0.15 m) July 12, 14, 1967.

Maximum stage since at least 1936, that of Sept. 22, 1967.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in July 1936 reached a stage of 11 ft (3.4 m), present site and datum. Levees along the Navigation Canal from San Antonio Bay to Victoria were built in 1961 and decreased the flood plain materially.

EXTREMES FOR CURRENT YEAR.--Maximum gage height (upstream from barrier), 8.2 ft (2.50 m) May 19-25, Sept. 12-13; minimum, 2.6 ft (0.79 m) Apr. 15. Maximum gage height (downstream from barrier), 8.1 ft (2.47 m) May 19-25, Sept. 11-13; minimum, 1.3 ft (0.40 m) July 17.

MAXIMUM DAILY GAGE HEIGHT, IN FEET, UPSTREAM AND DOWNSTREAM FROM SALTWATER BARRIER, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAY	OCT up down	NOV up down	DEC up down		FEB up down	MAR up down	APR up down	MAY up down	JUNE up down	JULY up down	AUG up down	SEPT up down
1 2 3 4 5	6.1 6.1 5.9 5.8 5.6 5.5 5.3 5.2 5.0 4.9	4.4 4.3 4.2 4.1 4.2 4.1 4.2 4.1 4.2 4.1	4.0 3.9 3.9 3.8 3.6 3.5 3.5 3.3 3.5 3.4	4.6 4.5 5.5 5.4 5.6 5.5 5.4 5.3 4.9 4.8	5.3 5.2 5.0 4.8 4.8 4.7 4.7 4.6 4.5 4.4	3.6 3.5 3.3 3.2 3.1 3.0 3.1 3.1 3.2 3.2	4.1 4.1 4.3 4.3 4.3 4.3 4.1 4.1 3.9 3.8	4.4 3.5 4.1 2.9 4.1 2.7 4.0 2.5 4.0 2.6	7.2 7.0 7.2 7.0 7.1 6.7 6.4 6.3 6.2 6.0	4.6 2.4 4.6 2.4 4.6 2.4 4.6 2.1 4.4 1.9	4.1 1.6 4.3 2.0 4.4 2.1 4.4 2.3 4.4 2.3	4.4 2.2 4.4 2.2 4.3 2.0 4.2 2.3 3.9 2.4
6 7 8 9	4.8 4.7 4.6 4.5 4.3 4.2 4.0 3.9 3.6 3.6	4.1 4.0 3.9 3.7 3.9 3.8 4.1 4.0 3.8 3.7	3.5 3.4 3.7 3.5 3.7 3.6 3.8 3.7 4.0 3.8	4.4 4.4 4.2 4.2 4.1 3.9 4.0 3.8 4.1 3.8	4.5 4.4 4.7 4.6 4.8 4.7 4.9 4.8 5.6 5.5	3.1 3.1 3.2 3.0 3.2 3.0 3.2 3.0 3.2 3.1	4.0 4.0 4.0 3.9 4.0 3.9 3.4 3.3 3.5 3.4	4.5 3.8 4.6 3.2 4.6 3.8	5.9 5.8 5.7 5.6 5.5 5.4 5.1 5.0 4.3 4.1	4.4 1.9 4.5 1.9 4.5 1.9 4.5 1.9 4.4 1.8		3.9 2.6 3.9 2.8 4.1 3.1 6.9 6.7 7.8 7.7
11 12 13 14 15	3.4 3.4 3.4 3.4 3.4 3.3 3.5 3.4 3.7 3.6	3.5 3.4 3.5 3.4	4.0 3.9 4.0 3.8 4.5 4.4	4.1 3.9 4.0 3.7 4.0 3.7 4.2 3.9 4.2 4.0	5.6 5.5 5.5 5.4 5.4 5.4 5.3 5.3 5.2 5.2	3.2 3.0 3.2 3.1 3.1 3.0 3.5 3.4 3.5 3.4	3.5 3.4 2.8 2.7 2.7 2.6	4.6 3.7 4.6 3.6 4.7 3.7 4.8 3.8 4.8 4.1	4.1 4.0 4.0 3.9 4.0 3.8 4.0 3.8 4.0 3.9	4.3 1.8 4.3 1.8 4.2 1.8 4.3 1.7 4.3 1.6	6.8 6.8 7.4 7.4 7.9 7.7	8.1 8.1 8.2 8.1 8.2 8.1 7.9 7.9 7.3 7.2
16 17 18 19 20	3.7 3.6 3.7 3.6 3.7 3.6 4.0 3.8 4.1 3.9	3.5 3.4 3.3 3.2 3.5 3.2 3.8 3.7 3.9 3.8	4.4 4.4 4.3 4.2 3.9 3.9 3.9 3.8 3.9 3.8	4.2 4.0 4.1 3.9 4.0 3.8 4.2 4.1 4.5 4.4	4.9 4.9 4.5 4.5 4.0 4.4 4.2 4.1 4.2 4.1	3.2 3.2 3.2 3.2 3.4 3.3 3.5 3.4 3.8 3.7	4.5 2.4 4.5 3.2 3.9 2.9 4.0 2.6 4.4 2.7	4.8 3.9 7.3 7.2 7.6 7.5 8.2 8.1 8.2 8.1	4.1 3.9 3.9 3.7 3.9 3.6 3.9 3.4 3.9 3.4	4.3 1.5 4.1 1.3 4.1 1.5 4.1 1.8 4.1 2.0	8.0 7.8 7.9 7.5 7.3 6.2 4.9 4.5 3.8 3.7	6.3 6.2 5.6 5.5 5.1 5.0 4.8 4.7 4.5 4.4
21 22 23 24 25	4.1 4.0 4.1 4.0 3.9 3.8 3.9 3.8 4.0 3.9	3.8 3.7 3.7 3.6 3.8 3.7 3.9 3.8 4.0 3.9	3.9 3.8 4.0 3.8 4.0 3.8 3.7 3.6 3.8 3.6	7.5 7.2 7.9 7.7 7.9 7.7 7.8 7.6 7.4 7.3	4.4 4.3 4.4 4.3 4.4 4.3 4.4 4.3 3.9 3.8	3.5 3.4 3.2 3.2 3.3 3.2 3.2 3.1 4.1 3.2	4.4 2.7 4.2 2.7 4.1 3.1 4.0 3.2 4.0 3.5	8.2 8.1 8.2 8.1 8.2 8.1 8.2 8.1 8.2 8.1	3.9 3.3 3.9 3.0 4.4 3.0 4.8 2.9 4.8 3.1	4.1 1.9 4.1 2.3 4.1 1.9 4.2 2.0 4.2 2.2	3.4 3.1 4.2 2.1 4.2 2.0 4.2 2.0 4.2 1.9	4.6 4.4 4.4 4.2 4.0 3.9 4.0 3.9 4.1 4.0
26 27 28 29 30 31	4.0 3.9 4.0 3.9 3.9 3.8 4.1 4.0 4.7 4.6 4.4 4.3	4.0 3.9 4.1 3.9 4.0 3.9 3.8 3.7 4.0 3.8	3.8 3.6 3.9 3.8 4.0 3.9 4.6 4.5 4.6 4.6 4.5 4.5	7.2 7.1 7.1 6.9 6.8 6.7 6.5 6.3 6.1 5.9 5.8 5.6	3.7 3.6 3.9 3.8 3.9 3.8 3.8 3.7	3.6 3.5 3.9 3.8 3.9 3.8 3.9 3.8 3.9 3.8 3.9 3.8	3.9 3.0 3.8 2.5 3.7 2.5 4.3 2.5 4.5 3.3	8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.1 7.2 7.0	4.8 3.0 4.8 2.8 4.7 2.7 4.6 2.5 4.6 2.5		4.2 1.9 4.3 2.2 4.4 2.1 4.4 2.1 4.4 2.2 4.4 2.8	4.7 4.5 5.9 5.7 6.2 6.0 6.0 5.9 7.4 7.2

GUADALUPE RIVER BASIN 08188800 GUADALUPE RIVER NEAR TIVOLI, TX--Continued

401

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1965 to current year. Chemical and biochemical analyses: October 1968 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1965 to current year. WATER TEMPERATURES: October 1965 to current year.

INSTRUMENTATION .-- Specific conductance is recorded continuously at this station.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 1,000 micromhos June 1, 1971, Aug. 3, 1978; minimum daily, 159 micromhos
Apr. 28, 1980.
WATER TEMPERATURES (1966-69): Maximum daily, 32.0°C on several days during June, July, and August 1967-69;
minimum daily, 8.0°C Jan. 15, 1968.

EXTREMES FOR CURRENT YEAR.--SPECIFIC CONDUCTANCE: Maximum daily, 997 micromhos Sept. 9; minimum daily, 159 micromhos Apr. 28.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	COLOR (PLAT- INUM COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	
NOV 07	1052	822	8.2	19.0	5	18	8.7	92	2.8	280	44	
JAN												
15 MAR	1105	849	8.2	15.0	10	26	9.6	94	1.8	300	63	
MAY	1205	865	8.2	20.0	5	21	8.4	91	1.8	310	72	
07 AUG	1607	884	7.9	25.5	5	52	6.8	82	1.7	290	67	
05	1455	880	8.1	30.0	5	36	5.9	78	1.4	270	49	
SEP 16	1510	407	7.5	29.5	45	70	6.8	89	1.8	130	18	
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	
NOV												
07 JAN	83	18	56	1.5	3.6	290	0	61	83	.3	15	
15 MAR	89	19	64	1.6	3.7	290	0	70	99	.3	14	
11 MAY	91	20	72	1.8	3.6	290	0	66	100	.3	12	
07	84	19	69	1.8	4.6	270	0	82	91	.4	14	
AUG 05	77	19	70	1.9	4.7	270	0	69	110	.4	17	
SEP 16	42	6.8	27	1.0	5.5	140	0	32	36	.2	12	
DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
NOV 07	463	51	16	2.7	.040	2.7	.100	.55	.65	.740	6.9	
JAN 15	502	65	13	.87	.040	.91	.050	1.2	1.2	.680	4.8	
MAR 11	508	40	14	1.6	.020	1.6	.060	.44	.50	.410	7.0	
MAY 07	497	163	10	1.9	.020	1.9	.040	.83	.87	.330	7.5	
AUG 05	500	80	43	.71	.040	.75	.020	.85	.87	.570	8.8	
SEP	231	166	11				.020	.98		.380	15	
16	231	100	11	.83	.030	.86	.020	.98	1.0	.380	15	

08188800 GUADALUPE RIVER NEAR TIVOLI, TX--Continued

	DA	TE T	SO SIME (U	IS- DI LVED SOL	S- D VED SO G/L (U	MIUM MI IS- DI LVED SO G/L (U	S- D: LVED SO G/L (IS- D DLVED SO JG/L (U	ON, IS- LVED G/L FE)	
	NOV		050	2	100	1	0	0	<10	
	JAN		052	2	100					
	MAY		105	2	100	<1	0	0	<10	
	AUG		607	3	100	<1	0	1	<10	
	05	1	455	5	100	2	0	3	<10	
		DATE	LEAD, DIS- SOLVED (UG/L AS PB)	(UG/L	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	(UG/L	DIS- SOLVED (UG/L		
		NOV 07		2	.0	0		5		
		JAN 15		4	.2	1		3		
		MAY 07		1	.1	. 1		(3		
		AUG 05		7	.3	1) 6		
DATE	TIME	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DANE, TOTAL	TOM MA- TERIAL	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN 15	1105	.0	0	.00	.00	.0	.(0	.00	.1
AUG 05	1455	.0	9	.00	.00	.0	.(10	.00	.9
DATE	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAI (UG/KG)	ENDO- SULFAN, TOTAL	ENDRIN, TOTAL (UG/L)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN 15	.00	.0	.00	.0	.00	.00	.0	.00	.00	.0
AUG 05	.00	1.9	.00	.0	.03	.00		.00	.00	.0
DATE	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	TOM MA- TERIAL	HEPTA- CHLOR EPOXIDE TOTAL	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)		LINDANI TOTAL IN BOT- TOM MA- TERIAI (UG/KG)	MALA- THION, TOTAL	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)
JAN 15	.00	.00	.0	.00	.0	.00	.(.00	.00	.0
AUG 05	.00	.00			.0	.00	.0	.00	.00	.0
DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL		TOX- APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2.4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
JAN 15	.00	.00	.00	.00	0	0	.00	.01	.00	.00
AUG 05	.00	.00							.00	.00

GUADALUPE RIVER BASIN 403 08188800 GUADALUPE RIVER NEAR TIVOLI, TX--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	ER		NOVEMBI	ER		DECEMBE	ER		JANUAL	RY
1 2 3 4 5	735 753 764 778 786	722 719 747 761 759	729 746 756 771 771	813 800 802 822 830	794 748 797 800 822	805 784 799 810 826	808 791 805 811 813	791 780 789 789 802	803 787 796 801 807	772 864 858 775 769	759 769 775 759 707	766 811 829 765 731
6 7 8 9	791 800 833 836 854	764 772 794 784 773	778 789 817 810 814	837 838 826 806 819	830 816 802 795 802	834 827 814 800 813	808 813 819 822 820	797 794 797 802 802	802 803 808 812 810	746 783 808 811 816	717 760 746 800 802	731 772 781 807 812
11 12 13 14 15	850 852 848 852 873	798 806 802 808 813	824 830 825 830 843	813 815 824 839 843	802 806 800 824 830	810 810 812 831 834	819 819 811 815 775	802 797 794 772 719	811 808 802 794 769	845 883 874 843 846	822 827 833 808 830	834 861 844 833 837
16 17 18 19 20	856 844 856 858 859	796 810 813 813 811	826 827 834 836 835	847 843 833 833 836	840 824 824 819 822	842 834 828 826 829	789 824 858 858 822	772 794 824 822 791	776 809 839 843 806	842 834 839 836 827	824 808 808 813 797	833 824 824 824 812
21 22 23 24 25	861 865 867 846 839	816 816 819 824 805	839 840 843 835 823	822 822 824 824 833	814 805 805 811 815	818 817 815 818 824	798 805 808 827 830	780 780 783 802 813	786 793 798 814 822	797 580 462 545 641	414 367 412 424 548	623 531 437 483 596
26 27 28 29 30 31	819 833 833 839 839 827	805 813 824 830 827 813	812 824 828 834 835 817	849 855 843 805 811	822 827 805 783 789	827 840 822 790 800	827 822 827 822 836 767	797 791 805 802 767 707	815 805 813 812 802 747	691 696 684 660 677 718	643 674 660 645 649 677	668 685 669 649 663 698
MONTH	873	719	814	855	748	818	858	707	803	883	367	737
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCH			APRIL			MAY	
1 2 3 4 5	756 797 813 852 867	696 761 800 816 845	725 782 807 835 856	855 855 850 850 857	849 830 824 827 832	851 845 837 838 844	899 911 889 822 836	849 889 805 802 816	861 900 832 815 822	942 855 800 822 839	628 624 651 637 651	844 777 758 759 745
6 7 8 9	863 865 875 869 833	853 852 869 833 772	858 858 872 851 800	861 880 861 867 874	846 855 827 849 836	850 866 852 857 862	816 816 874 883 896	783 769 808 861 861	800 794 838 869 878	877 916 870 805 791	670 867 797 764 605	766 890 831 788 712
11 12 13 14 15	775 769 746 780 830	645 732 677 677 786	71 2 755 71 7 723 816	883 886 902 880 877	867 836 863 839 839	875 861 882 860 858	877 880 870 883 880	843 836 861 855 811	858 859 867 870 854	712 748 883 896 861	605 707 751 849 775	673 728 796 871 802
16 17 18 19 20	864 880 880 993 944	830 861 865 944 929	845 872 872 968 936	912 902 883 874 852	877 880 861 819 802	890 891 872 852 827	877 883 878 864 855	839 839 476 339 624	860 863 742 648 738	791 772 717 497 444	756 657 459 416 423	774 751 578 456 432
21 22 23 24 25	929 883 864 856 883	873 864 831 820 843	901 874 848 838 864	912 923 933 879 877	855 874 843 851 846	885 898 888 865 862	887 880 883 880 864	604 833 839 833 824	808 861 865 861 842	435 438 367 391 408	410 325 343 370 381	421 372 348 382 395
26 27 28 29 30 31	878 870 846 852	827 835 826 822	856 852 836 837			874 882 890 881 860	861 855 772 906	468 322 159 578	795 611 563 864 796	462 482 444 485 527 559	409 424 423 446 484	434 457 432 466 507
MONTH	993	645	833	933	802	865	911	159	814	942	528 325	544 629

08188800 GUADALUPE RIVER NEAR TIVOLI, TX--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEME	ER
1 2 3	601 626 624	563 601 602	583 619 613	791 783 805	712 767 769	752 775 787	880 879 898	819 844 837	850 862 868	860 861 874	821 830 822	840 850 852
5	639 662	624 637	633 650	805 849	791 775	798 812	897 886	837 839	867 862	880 877	816 822	848 854
6 7 8 9	684 700 712 732 751	662 684 703 710 724	673 694 708 722 740	822 783 769 760 751	764 724 714 717 722	793 754 742 738 736	899 899 889 861 919	827 852 816 794 778	867 877 852 826 832	849 816 759 997 434	780 740 688 486 324	816 782 733 823 357
11 12 13 14 15	759 746 753 756 764	712 730 740 714 730	746 739 748 739 748	775 780 756 800 789	730 740 722 751 748	752 760 739 776 768	756 864 811 451 561	578 399 425 417 417	646 563 473 427 467	350 		
16 17 18 19 20	772 772 797 789 783	745 735 627 740 719	760 759 712 764 751	791 819 830 843 849	772 797 805 780 794	782 808 818 821 828	460 497 519 525 595	423 462 492 498 527	437 481 507 513 565	420 444 478 537 585	410 419 444 484 537	415 429 462 510 563
21 22 23 24 25		===		836 858 849 846 861	813 805 808 813 811	827 832 824 829 839	643 674 717 746 791	593 622 647 714 738	616 652 690 735 765	639 649 668 696 700	585 619 649 668 691	615 634 658 680 697
26 27 28 29 30 31				855 860 862 863 874 901	819 823 828 827 832 843	839 842 845 845 853 872	800 805 827 822 813 839	780 791 797 800 789 797	786 801 812 812 803 818	714 732 732 649 635	698 707 599 627 616	709 720 639 638 631
MONTH	797	563	705	901	712	800	919	399	707	997	324	670

			TEMPERATUR	RE, WATER	(DEG.	C), WATER Y ONCE-DAILY		1979	TO SEPTEMBER	1980		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	27.0 27.0 27.0 26.0 25.5	21.0 19.0 19.0	12.0 13.0 13.0	13.5 14.0 13.0	11.0 11.0 12.0	13.0	21.5 20.5 22.0	25.0 24.0 27.0	30.0 30.0 30.0 30.0	33.0 33.0 33.0	32.0 32.0 31.0	31.0 31.0 32.0 32.0
6 7 8 9 10	26.0 26.0 25.0	19.0 18.0 19.0 19.0	14.5 14.0 14.5	13.5 13.5 13.5	14.0 15.0 14.0		23.0 23.0 23.5 22.5	27.0 26.0 27.0 26.0	31.0 31.0 31.0	33.0 32.0 33.0 33.0	32.0 31.0 32.0	31.0 29.5 30.0
11 12 13 14 15	24.0 24.5 25.5	17.0 18.0 17.0 17.0	16.0 16.0 15.0 14.5	14.5 14.5 16.0	10.0 10.0 11.5 12.5	19.0 20.5 20.0 19.0	24.0 20.0 21.0	27.0 26.0 27.0 27.0	31.0 31.0 32.0	32.5 33.0 33.0	27.0 28.0 27.0 29.0 28.0	29.0 29.0 28.5
16 17 18 19 20	26.0 26.0 26.0 26.5	17.0 19.0 19.0	12.0 11.0 11.5 12.5	16.5 17.5 17.0	10.5 12.5 12.5	19.5 18.0 18.5	20.5 23.0 22.0	26.0 25.5 26.5	31.0 30.5 31.0 32.0 31.0	33.0 33.0 33.0	30.0 30.0 30.0	30.0 32.0 30.0 30.0
21 22 23 24 25	25.0 24.0 23.0 22.5	23.0 17.5 	13.0	18.5 17.0 16.0 14.5 14.0	14.0 15.0 17.0	19.0	23.5 23.5 24.0 24.5 24.0	26.5 27.0 29.0	31.0 32.0 32.0	32.0 33.0 31.5 33.0 32.0	31.0 31.0 32.5	30.0 30.0 30.0 30.0
26 27 28 29 30 31	21.5 25.0 24.0 21.5	16.0 16.0 15.0 15.0	14.5 15.0 15.5 14.5	13.5 14.0 14.0 13.5	16.0 16.0 16.0 17.0	19.0 19.0 19.0 19.0	24.0 23.0	29.5 28.5 29.0 29.0	33.0 32.0 33.0	31.5 32.0 32.0 32.0	31.5 31.5 32.0 31.0	29.0 30.0 28.0
MEAN	25.0	18.0	14.0	15.0	13.5	18.0	22.5	27.0	31.0	32.5	30.5	30.0

405

08189200 COPANO CREEK NEAR REFUGIO, TX

LOCATION.--Lat 28°18'12", long 97°06'44", Refugio County, Hydrologic Unit 12100405, on right bank at bridge on Farm Road 774, 3.6 mi (5.8 km) upstream from Alameda Creek, 8.1 mi (13.0 km) east of Refugio, and 11.9 mi (19.1 km) upstream from mouth.

DRAINAGE AREA .-- 87.8 mi2 (227 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- June 1970 to current year.

GAGE.--Water-stage recorder. Datum of gage is 17.25 ft (5.258 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. No known diversion above station. Recording rain gage is located at station.

AVERAGE DISCHARGE.--10 years, 47.8 ft³/s (1.354 m³/s), 7.39 in/yr (188 mm/yr), 34,630 acre-ft/yr (42.7 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $6,300~{\rm ft^3/s}~(178~{\rm m^3/s})$ Sept. 12, 1971, gage height, 21.00 ft $(6.401~{\rm m})$, from rating curve extended above $3,800~{\rm ft^3/s}~(108~{\rm m^3/s})$; no flow at times each year.

EXTREMES OUTSIDE PERIOD OF RECORD,--Maximum stage since 1921, 22 ft (6.7 m) in September 1967, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 390 ft 3 /s (11.0 m 3 /s) Jan. 22 at 1000 hours, gage height, 9.65 ft (2.941 m), no peak above base of 500 ft 3 /s (14.2 m 3 /s); no flow for many days.

		DISC	HARGE, I	N CUBIC FE		COND, WATI	ER YEAR (OCTOBER 19	79 TO SEP	TEMBER 1	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	48 24 16 12 9.1	.80 .70 .61 .52	.05 .04 .03 .05	3.8 2.6 1.8 1.4 1.2	19 16 14 13 12	1.7 1.4 1.4 1.3	.07 .07 .07 .07	.00 .00 .00 .00	1.9 1.1 .70 .70	.00 .00 .00	.00 .00 .00	.15 .06 .02 .00
6 7 8 9	7.5 6.3 5.5 4.8 4.0	.29 .23 .19 .13	.12 .16 .23 .18	.94 .83 .64 .61	10 9.1 8.3 8.2 8.1	.75 .52 .43 .29	.07 .07 .07 .07	.00 .00 .00 .00	.32 .19 .10 .02	.00 .00 .00	.00 .00 .00	.01 .04 .10 .17
11 12 13 14 15	3.5 3.1 2.8 2.6 2.4	.10 .10 .07 .07	.09 .08 .52 .65	.61 .55 .45 .43	7.4 6.7 8.2 9.6 9.8	.10 .10 .10 .10	.07 .07 .07 .07	.00 .00 .00	.00 .00 .00	.00 .00 .00	103 88 67 39 21	.12 .07 .04 .04
16 17 18 19 20	2.1 1.9 1.6 1.6	.03 .02 .03 .03	.25 .20 .18 .18	.40 .42 .38 .36	9.0 7.8 6.6 6.0 5.1	.10 .10 .10 .10	.05 .00 .00 .00	.00 .00 .00 63 76	.00 .00 .00	.00 .00 .00	8.4 15 5.3 3.5 3.3	.00 .00 .00
21 22 23 24 25	1.5 1.4 1.3 1.2	.03 .03 .06 .17	.18 .18 .22 .20	104 377 365 291 234	4.6 4.2 3.6 3.3 2.9	.10 .10 .10 .10	.00 .00 .00	51 33 21 13 8.7	.00 .00 .00	.00 .00 .00	2.8 2.4 2.2 1.8 1.6	.00 .00 .00
26 27 28 29 30 31	1.0 1.0 .90 .90 .85	.35 .49 .69 .60 .29	.17 .13 .14 .19 5.1 6.6	188 149 108 73 47 28	2.5 2.3 2.1 2.1	.10 .10 .10 .10 .10	.00 .00 .00	7.7 7.4 5.5 4.4 3.8 2.8	.00 .00 .00	.00 .00 .00	1.5 .89 .61 .42 .32	.00 14 45 53 65
TOTAL MEAN MAX MIN CFSM IN. AC-FT	172.45 5.56 48 .85 .06 .07 342	7.43 .25 .80 .02 .003 .00	17.06 .55 6.6 .03 .006 .01	1982.78 64.0 377 .36 .73 .84 3930	221.5 7.64 19 2.1 .09 .09 439	11.17 .36 1.7 .10 .004 .00 22	1.10 .037 .07 .00 .000 .000	297.30 9.59 76 .00 .11 .13 590	5.58 .19 1.9 .00 .002 .00	.00 .000 .00 .000 .000	418.20 13.5 103 .00 .15 .18 829	177.96 5.93 65 .00 .07 .08 353

CAL YR 1979 TOTAL 19368.90 MEAN 53.1 MAX 1070 MIN .00 CFSM .61 IN 8.21 AC-FT 38420 WTR YR 1980 TOTAL 3312.53 MEAN 9.05 MAX 377 MIN .00 CFSM .10 IN 1.40 AC-FT 6570

406 COPANO CREEK BASIN

08189200 COPANO CREEK NEAR REFUGIO, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: June 1970 to current year.

DAT	re	TIM		STREAM- FLOW, INSTAN- TANEOUS (CFS)	DUC	T- E CRO-	P.	H	TEMPE ATUR WATE (DEG	E, R	TUR- BID- ITY (NTU)	SC	GEN, DIS- DLVED G/L)	SOL (PE CE SAT	S- VED	OXYGI DEMAN BIOCH UNINH 5 DA (MG/I	ND, ITM IIB AY	HARI NESS (MG/ AS CACC	L L	HARD- NESS, NONCAR BONATE (MG/I CACO3	-
NOV 07.		141	6	.28	3	900		6.2	20	.5	58		6.4		70		3.5		99		9
DEC 18.		152	3	.19	1	500	· ·	8.1	15	.0	32		9.4		91	<2	2.0	1	80	6	2
JAN 29.		154	5	71		179		8.0	13	.0	72		9.4		87	1	2.3		35		0
MAR 11.		112	8	.10)	808		7.8	21	.0	150		3.6		40		3.5	1	20		0
APR 22.			22	.00)	44				14.							-4			11.2	-
JUN 03.		141	2	.67		354		7.4	29	.0	110		5.2			4	.8		59		0
JUL 15.				.00)															0-	-
AUG 26.		184	7	1.4		295		7.6	31	.5	15		7.4		99	4	.8		5		0
DAT	re	CALCI DIS- SOLV (MG/ AS C	ED L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODI DIS SOLV (MG	ED	SOD A SOR TI RAT	D- P- ON	POTAL SIUI DIS- SOLV (MG/) AS K	M, B - B ED L	ICAR- ONATE (MG/L AS HCO3)	BON (M	R- ATE G/L CO3)	SULF DIS SOL (MG AS S	VED /L	CHLC RIDE DIS- SOLV (MG/ AS (ED L	FLUC RIDE DIS SOLV (MG/ AS F	ED L	SILICA DIS- SOLVE (MG/L AS SIO2)	D
NOV													0						0		
DEC		30		5.8				6.6		.2	110			12		160			.2	17	
JAN		56		9.0				7.5	13	7	140		0	15		310			.2	10	
MAR		10		2.3		5		1.1		.7	50		0		2	16			.0	12	
APR		39		6.3				5.1	10		170		0	6	8	140			.2	13	
JUN																				-	7.
JUL		18		3.3	4	8		2.7		.8	86		0	2	5	49			.2	31	
AUG			220			-											571			-	-
26.		17		3,2	3	5		2.0	8	. 1	84		0	1	/	36			.2	31	
	D.A		SOLI SUM (CONS' TUEN' DIS SOL' (MG	OF RETINATION OF	DLIDS, SIDUE 105 GG. C, SUS- ENDED (MG/L)	OH NITE TOT	AL J/L	NIT GE NITR TOT (MG AS	N, ITE I AL /L	NITR GEN NO2+N TOTA (MG/ AS N	Ó3 AM L I	ITRO- GEN, MONIA OTAL MG/L S N)	ORG TO (M	TRO- EN, SANIC TAL IG/L N)	NITE GEN, MONI ORGA TOT (MC AS	AM- AA + ANIC CAL	PHO PHOR TOT. (MG AS	US, AL /L	CARE ORGA TOT (MC	ANIC TAL G/L	
	NOV 07		1	547	71		.03		.01		04	.04		1.8	1	.8		130	2	23	
	DEC 18			847	10		.03		.00		03	.02		1.3	1	.3		040	1	4	
	JAN			100	20		.26		.01		27	.04		.64		.68		060	2	23	
	MAR		- 4	490	44		.00		.01		01	.08		1.7	1	.8		140	2	25	
	APR						22		22		-2	24									
	JUN			224	40		.02		.01		03	.10		2.6	2	2.7		310	4	16	
	JUL																				
	AUG 26			189	33		.00		.01		00	.41		1.9	2	2.3		170	2	20	

COPANO CREEK BASIN 407

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

08189200 COPANO CREEK NEAR REFUGIO, TX--Continued

	D.	ATE	TIME	SOI (UC	VED SOL	S- VED G/L	DI	IIUM N S- I VED S	(UG	Μ,	COPP DIS SOL (UG AS	VED :	IRON DIS SOLV (UG/ AS F	ED'L	
		7	1416		2	300		1		0		1	1	10	
	JAN	9	1545		1	70		<1		0		1		200	
		DAT		LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L S MN)	MER D SO: (U	CURY IS- LVED G/L HG)	SELE- NIUM DIS- SOLVE (UG/I AS SE	ED L	SILV DI SOL (UG AS	S- VED /L	ZINC DIS- SOLVI (UG/I AS ZI	ED L		
		NOV 07. JAN			20		.1		0		0		9		
		29.	••	0	4		-		0		0	163	30		
DATE	TIME	PCE TOTA (UG/	I T L	PCB, TOTAL N BOT- OM MA- TERIAL UG/KG)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDI	RIN,	ALDRIN TOTAL IN BOT TOM MA TERIA (UG/KG	- AL	DAN	OR- E,	CHLOR DANE, TOTAI IN BOT TOM MA TERIA (UG/KC	- A- AL	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN 29	1545		.0	2	.00		.00		.0		.0		0	.00	.0
DATE	DDE, TOTAL (UG/L)	DDE TOTA IN BO TOM M TERI (UG/K	T- A- AL	TOTAL	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	AZII	TAL	DI- ELDRI TOTAL (UG/I	N	TER	IN, AL OT- MA- IAL	ENDO- SULFAN TOTAL (UG/I	1,	ENDRIN, TOTAL	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN 29	.00		.0	.00	.0		.00	.0	00		.0	.0	00	.00	.0
DATE	ETHION, TOTAL (UG/L)	CHLO	A- I R, T L	TERIAL	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	TOT BOY	IN TOM		IE.	LIND. TOT. IN BO TOM I TER (UG/I	AL OT- MA-	THION	1,	CHLOR, TOTAL	METH- OXY- CHLOR, TOT: IN BOTTOM MATL. (UG/KG)
JAN 29	.00		00	.0	.00		.0	.0	00		.0	.0	00	.00	.0
DATE	METHYL PARA- THION, TOTAL (UG/L)	METH TRI THIO TOTA (UG/	N,	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TO APHI		TOXA-PHENE TOTAL IN BOT TOM MATERIA (UG/KG	., .L	TOTA TR THIC	AL I- ON /L)	2,4-I TOTAI (UG/I), .)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
JAN 29	.00		00	.00	.00		0		0		.00			.00	.00
E2.55							- 50								

08189500 MISSION RIVER AT REFUGIO, TX

LOCATION.--Lat 28°17'30", long 97°16'44", Refugio County, Hydrologic Unit 12100406, on left bank at upstream side of upstream bridge of two bridges on U.S. Highway 77, 560 ft (171 m) upstream from Missouri Pacific Railroad Co. bridge, and 0.2 mi (0.3 km) southwest of Refugio.

DRAINAGE AREA .-- 690 mi2 (1,787 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1939 to current year.

REVISED RECORDS. -- WSP 1923: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1.00 ft (0.305 m) National Geodetic Vertical Datum of 1929. Prior to Nov. 25, 1958, nonrecording gage at site 59 ft (18 m) downstream at same datum. Nov. 26, 1958, to Apr. 18, 1963, nonrecording gage at present site and datum.

REMARKS .- - Water - discharge records good. Several small diversions above station.

AVERAGE DISCHARGE.--41 years (water years 1940-80), 115 ft³/s (3.257 m³/s), 2.26 in/yr (57 mm/yr), 83,320 acreft/yr (103 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 79,000 ft 3 /s (2,240 m 3 /s) Sept. 12, 1971, gage height, 38.25 ft (11.659 m); minimum observed, 0.7 ft 3 /s (0.02 m 3 /s) Oct. 7, 9, 1940, Aug. 18-20, Sept. 5, 1945, Dec 29, 31, 1949, Jan. 1, 1950, July 13, Aug. 28, 1963, July 18, 19, 22-26, 31, Aug. 1, 2, 1971. Maximum stage since about 1899, that of Sept. 12, 1971. Flood of Sept. 21, 1967, reached a stage of 36.5 ft (11.13 m), discharge 60,200 ft 3 /s (1,700 m 3 /s). Flood of July 7, 1942, reached a stage of 33.3 ft (10.15 m), discharge 41,700 ft 3 /s (1,180 m 3 /s). Flood of May 13, 1972, reached a stage of 28.25 ft (8.611 m).

EXTREMES OUTSIDE PERIOD OF RECORD.-Floods in August 1914 and May 17, 1938, reached a stage of 32.3 ft (9.85 m), from information by local residents.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 3,000 ft3/s (85.0 m3/s) and maximum (*):

Date	Time	Disch	arge	Gage 1	neight
		(ft^3/s)	(m^3/s)	(ft)	(m)
Jan. 22	1600	4,570	129	23.15	7.056
Aug. 12	0700	*10,200	289	28.11	8.568

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum discharge, 4.7 ft3/s (0.133 m3/s) Aug. 5-7.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	62	29	18	18	51	24	18	14	22	8.3	5.2	47
2 3 4	57	26	18	16	46	24	18	15	22	8.3	5.2	45
3	53	25	18	15	52	23	19	15	20	7.8	5.0	46
5	49 46	24 24	18 18	14	52 52	23 24	19 18	15 15	19 18	7.9	5.0 5.0	45 43
,	40	24	10	14	32	24	10	13	10	7.0	5.0	43
6	44	24	18	14	54	23	18	14	17	7.6	4.7	48
7	42	24	18	14	44	23	18	14	17	7.2	4.7	49
8	41 39	23	18	14	41 83	23 23	18 18	18 19	16 17	7.7	5.2	55 49
10	37	23	17	14	136	23	17	21	18	6.8	14	49
10				1.4		197	17		10			43
11	35	22	17	14	75	23	17	19	16	6.5	5540	43
12	34 34	22	17 17	14	54 51	22 20	17 18	19	15 15	6.2 5.8	9240 4060	42
14	32	21	17	13	74	20	18	16	14	5.8	893	40
15	31	21	17	13	61	20	18	16	14	6.1	327	39
16	31	21	15	13	49	20	17	88	14	7.1	185	39
17	30	21	13	14	41	23	17	760	13	7.3	143	39
18	29	21	13	15	36	21	17	375	13	7.1	124	38
19	29	21	14	15	35	22	16	217	12	7.1	100	37
20	29	21	16	14	34	23	16	630	12	6.8	83	37
21	28	22	15	1170	33	21	16	281	11	6.7	71	37
22	27	21	15	4230	31	20	16	177	11	28	63	36
23	26	22	15	2180	30	20	15	127	11	13	59	36
24 25	25 25	21	14 15	416 204	29 27	20 20	15 16	73 51	9.8	7.7	56 53	36 36
25	23	20	15	204	-21	20	10	21	9.0	1.2	22	36
26	25	20	14	141	26	21	15	42	9.8	7.4	52	82
27	25	20	14	109	25	24	15	35	9.5	7.5	50	330
28 29	25 25	19 19	14	90 78	25 24	24 22	14	31 28	9.3	7.0	49 54	416 324
30	27	18	30	67		20	14	26	8.7	5.6	49	600
31	27		22	58		18		24		5.5	48	
TOTAL	1069	660	523	9028	1363	677	502	3212	424.1	243.6	22563.0	2800
MEAN	34.5	22.0	16.9	291	47.0	21.8	16.7	104	14.1	7.86	728	93.3
MAX	62	29	30	4230	136	24	19	760	22	28	9240	600
MIN	25	18	13	13	24	18	14	14	8.7	5.5	4.7	36
CFSM	.05	.03	.02	.42	.07	.03	.02	.15	.02	.01	1.06	.14
IN.	.06	.04	.03	.49	.07	.04	.03	.17	.02	.01	1.22	.15
AC-FT	2120	1310	1040	17910	2700	1340	996	6370	841	483	44750	5550
CAL YR	1979 TOTAL	50293.5	MEAN	138 MAX	5740	MIN 4.4	CFSM .20	IN 2.71	AC-FT	99760		

08189500 MISSION RIVER AT REFUGIO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: September 1961 to current year. Chemical and biochemical analyses: January 1968 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: September 1961 to current year. WATER TEMPERATURES: September 1961 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 100,000 micromhos Nov. 28, 1965; minimum daily, 85 micromhos Sept. 13, 1971.
WATER TEMPERATURES: Maximum daily, 37.0°C May 12, 1967; minimum daily, 0.0°C Jan. 18, 1977.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 4,280 micromhos Aug. 7; minimum daily, 131 micromhos Jan. 22.
WATER TEMPERATURES: Maximum daily, 33.0°C June 25, 27; minimum daily, 10.0°C Nov. 30, Feb. 10.

MAY 06	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
DEC 10 1507 17 2479 7.9 17.5 6.4 9.0 94 1.0 110 10 1507 17 2479 7.9 17.5 6.4 9.0 94 1.0 110 110 1A 1455 14 2670 7.8 16.5 7.1 9.0 1.5 96 FEB 13 1024 48 1200 7.8 12.5 25 9.2 85 1.4 1000 MARA 11 0945 22 2180 7.9 22.0 11 7.1 82 1.1 160 APP 11 1000 MARA 11 0945 22 2180 7.9 22.0 11 7.1 82 1.1 160 APP 11 1510 18 2330 7.9 24.0 44 8.7 104 1.6 5120 40 APP 11 1510 18 2330 7.9 24.0 44 8.7 104 1.6 5120 40 APP 11 1510 18 2330 7.9 24.0 44 8.7 104 1.6 5120 40 APP 11 1510 18 2330 7.9 24.0 44 8.7 104 1.6 5120 40 APP 11 1510 18 2330 7.9 24.0 44 8.7 104 1.6 5120 40 APP 11 1510 18 2330 7.9 24.0 44 8.7 104 1.6 5120 40 APP 11 1510 18 2330 7.9 24.0 44 8.7 104 1.6 5120 40 APP 11 152 JUN 10 1240 19 1760 7.9 27.5 18 4.0 49 2.2 K3700 JUN 10 1240 19 1760 7.9 27.5 18 4.0 49 2.2 K3700 JUL 07 1540 8.7 3400 7.8 31.5 16 7.8 104 3.4 K60 APP 11 1520 APP 1		0916	52	2120	7.8	24.0	11	6.0	70	1.4	96	540
DEC 10 1507 17 2479 7.9 17.5 6.4 9.0 94 1.0 110 110 141 141 1455 14 2670 7.8 16.5 7.1 9.0 1.5 96 158 13 1024 48 1200 7.8 12.5 25 9.2 85 1.4 1000 141 160 17.1 160 182 1.1 160 182 18.		1435	24	2200	7.8	18.5	6.0	10.1	105	2.4	320	55
JAN	DEC											72
FEB 13 1024 48 1200 7.8 12.5 25 9.2 85 1.4 1000 MAR 11 0945 22 2180 7.9 22.0 11 7.1 82 1.1 160 APR 07 1510 18 2330 7.9 24.0 44 8.7 104 1.6 >120 APR 07 1510 18 2330 7.9 24.0 44 8.7 104 1.6 >120 APR 06 1000 14 2520 7.9 23.5 12 7.4 86 1.1 52 JUN 10 1240 19 1760 7.9 27.5 18 4.0 49 2.2 K3700 JUL 07 1540 8.7 3400 7.8 31.5 16 7.8 104 3.4 K60 AUG 05 1430 9.4 4290 7.9 31.0 22 7.3 97 3.8 K200 SEP 08 1522 52 1720 7.7 28.0 25 7.6 96 3.4 780 AS (MG/L MG/L BONATE SOLVED SOL	JAN											250
MAR	FEB											520
APR 07 1510 18 2330 7.9 24.0 44 8.7 104 1.6 >120 4 MAY 06 1000 14 2520 7.9 23.5 12 7.4 86 1.1 52 JUN 10 1240 19 1760 7.9 27.5 18 4.0 49 2.2 K3700 JUL 07 1540 8.7 3400 7.8 31.5 16 7.8 104 3.4 K60 AUC 05 1430 9.4 4290 7.9 31.0 22 7.3 97 3.8 K200 SEP 08 1522 52 1720 7.7 28.0 25 7.6 96 3.4 780 MACNE- NESS NONCAR- NESS NONCAR- NESS NONCAR- AS (MG/L KNG/L KN	MAR											
MAY 06	APR											230
JUN 10. 1240 19 1760 7.9 27.5 18 4.0 49 2.2 K3700 JUL 10. 1240 19 1760 7.9 27.5 18 4.0 49 2.2 K3700 JUL 10. 1240 8.7 3400 7.8 31.5 16 7.8 104 3.4 K60 AUC 05. 1430 9.4 4290 7.9 31.0 22 7.3 97 3.8 K200 SEP 08 1522 52 1720 7.7 28.0 25 7.6 96 3.4 780 JUL 1522 52 1720 7.7 28.0 25 7.6 96 3.4 780 JUL 1522 52 1720 7.7 28.0 25 7.6 96 3.4 780 JUL 1522 52 1720 7.7 28.0 25 7.6 96 3.4 780 JUL 1522 52 1720 7.7 28.0 25 7.6 96 3.4 780 JUL 1522 52 1720 7.7 28.0 25 7.6 96 3.4 780 JUL 1522 52 1720 7.7 28.0 25 7.6 96 3.4 780 JUL 1522 52 JUL 152 J	MAY											4000
Tull	JUN											270
AUG 05 1430 9.4 4290 7.9 31.0 22 7.3 97 3.8 K200 SEP 08 1522 52 1720 7.7 28.0 25 7.6 96 3.4 780 HARD- HARD- NESS, CALCIUM SIUM, SODIUM, AD- SIUM, SOLVED SOL	JUL	1240										1700
05 1430 9.4 4290 7.9 31.0 22 7.3 97 3.8 K200 SEP 08 1522 52 1720 7.7 28.0 25 7.6 96 3.4 780 HARD-		1540	8.7	3400	7.8	31.5	16	7.8	104	3.4	K60	
NOV 170 150 22 250 5.0 4.4 360 0 53 60 100	05	1430	9.4	4290	7.9	31.0	22	7.3	97	3.8	K200	77
HARD- NESS		1522	52	1720	7.7	28.0	25	7.6	96	3.4	780	1200
03 470 170 150 22 250 5.0 4.4 360 0 40 45 NOV 07 490 200 150 28 320 6.3 3.8 360 0 53 60 DEC 10 520 230 160 30 350 6.7 3.9 360 0 53 65 JAN 14 500 220 150 30 370 7.2 4.1 340 0 63 65 FEB 13 280 91 87 14 140 3.7 4.8 230 0 27 25 MAR 11 460 160 140 26 280 5.7 4.0 360 0 53 45 APR 07 460 180 140 27 290 5.9 4.0 340 0 32 46 MAY 06 470 220 140 30 340 6.8 4.6 340 0 57 64 JUN 10 350 130 110 19 220 5.1 4.7 270 0 35 42 AUC O7 540 290 160 35 470 8.8 5.4 330 0 52 92 MAC O7 540 290 160 35 470 8.8 5.4 330 0 52 92 MAC O7 540 290 160 35 470 8.8 5.4 330 0 52 92 MAC O7 540 290 160 35 470 8.8 5.4 330 0 52 92	DATE	NESS (MG/L AS	NESS, NONCAR- BONATE (MG/L	DIS- SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	AD- SORP- TION	SIUM, DIS- SOLVED (MG/L	BONATE (MG/L AS	BONATE (MG/L	DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
NOV 07 490 200 150 28 320 6.3 3.8 360 0 53 60 DEC 10 520 230 160 30 350 6.7 3.9 360 0 53 65 JAN 14 500 220 150 30 370 7.2 4.1 340 0 63 65 FEB 13 280 91 87 14 140 3.7 4.8 230 0 27 25 MAR 11 460 160 140 26 280 5.7 4.0 360 0 53 45 APR 07 460 180 140 27 290 5.9 4.0 340 0 32 48 MAY 06 470 220 140 30 340 6.8 4.6 340 0 57 64 JUN 10 350 130 110 19 220 5.1 4.7 270 0 35 42 JUL 07 540 290 160 35 470 8.8 5.4 330 0 52 92 400		470	170	150	22	250	5.0	4.4	360	0	40	490
DEC 10 520 230 160 30 350 6.7 3.9 360 0 53 65 141 141 500 220 150 30 370 7.2 4.1 340 0 63 65 FEB 13 280 91 87 14 140 3.7 4.8 230 0 27 25 MAR 11 460 160 140 26 280 5.7 4.0 360 0 53 45 APR 07 460 180 140 27 290 5.9 4.0 340 0 32 48 MAY 06 470 220 140 30 340 6.8 4.6 340 0 57 64 JUN 10 350 130 110 19 220 5.1 4.7 270 0 35 442 JUL 07 540 290 160 35 470 8.8 5.4 330 0 52 95 AUG	NOA											600
JAN 14 500 220 150 30 370 7.2 4.1 340 0 63 65 FEB 13 280 91 87 14 140 3.7 4.8 230 0 27 25 MAR 11 460 160 140 26 280 5.7 4.0 360 0 53 45 APR 07 460 180 140 27 290 5.9 4.0 340 0 32 48 MAY 06 470 220 140 30 340 6.8 4.6 340 0 57 64 JUN 10 350 130 110 19 220 5.1 4.7 270 0 35 42 JUL 07 540 290 160 35 470 8.8 5.4 330 0 52 92 AUG	DEC											650
FEB 13 280 91 87 14 140 3.7 4.8 230 0 27 25 25 25 25 25 25 25 25 25 25 25 25 25	JAN											650
MAR 11 460 160 140 26 280 5.7 4.0 360 0 53 45 APR 07 460 180 140 27 290 5.9 4.0 340 0 32 48 MAY 06 470 220 140 30 340 6.8 4.6 340 0 57 64 JUN 10 350 130 110 19 220 5.1 4.7 270 0 35 42 JUL 07 540 290 160 35 470 8.8 5.4 330 0 52 92 AUC	FEB											250
APR 07 460 180 140 27 290 5.9 4.0 340 0 32 48 MAY 06 470 220 140 30 340 6.8 4.6 340 0 57 64 JUN 10 350 130 110 19 220 5.1 4.7 270 0 35 42 JUL 07 540 290 160 35 470 8.8 5.4 330 0 52 92 AUG	MAR											
MAY 06 470 220 140 30 340 6.8 4.6 340 0 57 64 JUN 10 350 130 110 19 220 5.1 4.7 270 0 35 42 JUL 07 540 290 160 35 470 8.8 5.4 330 0 52 92 AUG	APR											490
JUN 10 350 130 110 19 220 5.1 4.7 270 0 35 42 JUL 07 540 290 160 35 470 8.8 5.4 330 0 52 92 AUG	MAY											480
JUL 07 540 290 160 35 470 8.8 5.4 330 0 52 92 AUC	JUN											640
07 540 290 160 35 470 8.8 5.4 330 0 52 92 AUG	JUL	350		110		220	5.1	4.7	270			420
TECH 200 (0.00 1.00 1.00 1.00 0.00 1.00 1.00 1	07 AUG	540	290	160	35	470	8.8	5.4	330	0	52	920
05 650 410 190 43 640 11 6.2 320 0 51 130 SEP	05	650	410	190	43	640	11	6.2	320	0	51	1300
08 380 130 120 20 210 4.7 4.7 310 0 35 40		380	130	120	20	210	4.7	4.7	310	0	35	400

MISSION RIVER BASIN

08189500 MISSION RIVER AT REFUGIO, TX--Continued

	DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILIC DIS- SOLV (MG/ AS SIO2	A, RE AT D L S	LIDS, SIDUE 180 EG. C DIS- OLVED MG/L)	TUE! D: SOI	OF STI-	MITE GEN NO2+1 TOTA (MG/ AS 1	I. 103 L L	MITRO GEN NO2+NO DIS- SOLVI (MG/I AS N	03 - / ED L	NITRO- GEN, MMONIA TOTAL (MG/L AS N)	AMMO D: SOI (MO	TRO- EN, ONIA IS- LVED G/L II)		CAL C/L	ORGAN DIS SOLV (MG/ AS N	ED
	CT 03	.3	43		1250		1180		14		14	.110		.060		.45		45
No	OV 07	.3	45		1360		1380		.07		15	.060		.040		.62		54
DI	EC 10	.3	45		1530		1470		.03	. (04	.000		.000		.43		29
J	AN 14	.3	40)	1510		1480		.05	. (06	.040		.030		.14		02
F	EB 13	.1	23		640		661		25		16	.060		.050	1	1.4	1.	2
Ma	AR 11	.3	35		1240		1210		.08	. (06	.080		.060		.61	,	56
Al	PR 07	-1	28		1230		1170		.47		46	.540		.360		.25		18
MA	AY 06	.4	43	1	1460		1410		.05	. (05	.040		.020		.66		56
JI	UN 10	.3	31		1030		973		13	. (07	.020		.040		.70		43
J	UL 07	.5	35		2030		1840		.00	. (00	.000		.000		.72		45
Al	UG 05	.3	36		2490		2410		.00	. (00	.010		.010		.96		31
S	EP 08	.3	40		1040		983		.09	. (04	.010		.030		.86		65
	DATE	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	MITE GEN, A MONIA ORGAN DIS. (MG/ AS N	M- H P HC PH T L (HOS- ORUS, OTAL MG/L S P)	(M)	RUS,	CARBO ORGAN TOTA (MG/ AS C	N, IIC IL 'L	CARBOI ORGAN DIS- SOLVEI (MG/I AS C)	IC C	CARBON, DRGANIC SUS- PENDED (MG/L AS C)	MEI SUS PEI		SEI MEN DIS CHAR SUS PEN (T/I	NT S- RGE, S- NDED	SED SUS SIEV DIA % FIN THA .062	P. E M. ER
	CT 03	.56		.51	.040		.010	1	2					165	2	23		53
N	0V 07	.68		58	.010		.010			5	.8	.0		77		5.0		99
D	EC 10	.43		.29	.020		.000	(0.0			22		99		4.5		39
J.	AN 14	.18		.05	.040		.020	3	3.0					86		3.3		53
	EB 13	1.5	1.	.2	.040		.010			11		3.		33		4.3		95
	AR 11	.69		.62	.050		.020	3	3.8			44		98		5.8		61
	PR 07	.79		.54	.030		.020	7	7.7					53		2.6		96
	AY 06	.70		.58	.040		.010			3	.7	.8		77		2.9		65
	UN 10	.72		.47	.060		.010	8	3.3			4.		117		6.0		54
	UL 07	.72		.45	.050		.030	2	6					91		2.1		97
	UG 05	.97		.32	.060		.010			12		.5						
	EP 08	.87		.68	080.		.020		7.0			1.		99	1	14		73
DATE	TI		MIC	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSE DI SOL (UC	S- VED	BARI TOT. REC ERA (UG AS	UM, AL I OV- BLE /L	SUS- PENDE RECO ERAB (UG/ AS B	D B. V- LE SO	ARIUN DIS- OLVEI (UG/I AS BA	REC ERA UC	AL OV- BLE	CADM SU: PENI RECO ERA! (UG	S- DED DV- BLE /L	CADM DI: SOL' (UG AS	IUM S- VED /L	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
NOV 07	14:	35	7	C		7		900		0	100	00	0		0		0	0
DEC 10	150									10		-						
FEB 13	10:		5	1		4		600		0	60	00	0		0		0	0
MAR 11			11															
MAY 06			9	0		9		700		0		00	0		0		0	0
JUN 10																		
AUG 05			9	1		8	1	000	10	00		0	0		0		0	0
SEP 08			4-					-5		12								77
00	, ().																	

411 08189500 MISSION RIVER AT REFUGIO, TX--Continued

	CHRO- MIUM,	CHRO-	COBALT,	COBALT,		COPPER	COPP, SUS	ER,		IRON,	IRON, SUS-	TROM
DATE	SUS- PENDED RECOV. (UG/L AS CR)	MIUM, DIS- SOLVED (UG/L AS CR)	TOTAL RECOV- ERABLE (UG/L AS CO)	PENDED RECOV- ERABLE (UG/L AS CO)	COBALT, DIS- SOLVED (UG/L AS CO)	TOTAL RECOV ERABL (UG/L AS CU	- REC E ERA (UG	OV- DI: BLE SO: /L (U	S- LVED G/L	TOTAL RECOV- ERABLE (UG/L AS FE)	PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)
NOV 07	0	0	0	0	0		0	0	0	320	290	30
DEC 10				37		-	_					
FEB 13	0	0	0	0	1		5	3	2	630	560	70
MAR 11		,44	44			-	-					
MAY 06	0	0	0	0	1		4	4	0	380	360	20
JUN 10	11	4.4		22	- 22	-	-	22		-22		
AUG 05	0	0	0	0	0		3	3	0	610	580	30
SEP 08					77	-	91		77	7.7		
	LEAD, TOTAL	LEAD, SUS- PENDED	LEAD,	MANGA- NESE, TOTAL	MANGA- NESE, SUS-	MANGA NESE,	TOT	URY SI		ERCURY	NICKEL, TOTAL	NICKEL, SUS- PENDED
DATE	RECOV- ERABLE (UG/L AS PB)	RECOV- ERABLE (UG/L AS PB)	SOLVED (UG/L AS PB)	RECOV- ERABLE (UG/L AS MN)	PENDED RECOV. (UG/L AS MN)	SOLVE (UG/L AS MN	(UG	BLE ERA	G/L	DIS- SOLVED (UG/L AS HG)	RECOV- ERABLE (UG/L AS NI)	RECOV- ERABLE (UG/L AS NI)
07 DEC	3	3	0	180	60	12	0	.1	.0	.1	3	3
10 FEB					2.5		-	~~		-		
13 MAR	1	1	0	140	40	10	0	.3	.0	.4	0	0
11 MAY	**						-					
JUN	10	10	0	240	120	12	0	.2	.0	.2	12	9
10 AUG		122				-	-					
05 SEP	2	2	0	500	220	28		-1	.0	.1	2	2
08	2.7				197	7	-	44				
	(U)	S- NI LVED TO G/L (U	LE- S UM, PE TAL TO G/L (U	US- NI NDED D TAL SC IG/L (U	UM, TO DIS- RI DLVED EI IG/L (LVER, OTAL ECOV- RABLE UG/L	ILVER, SUS- PENDED RECOV- ERABLE (UG/L	SILVER, DIS- SOLVED (UG/L	ZINC TOTAL RECOV ERABI (UG/I	, SI L PEN V- REG LE ERA L (UC	COV- D ABLE SO G/L (U	NC, IS- LVED G/L
NOV	1						AS AG)	AS AG)	AS ZI			ZN)
DEC		0	0	0	1	0	0	0		0	0	0
FEE						0				20	20	
MAR	3 1	0	1	0	1	0	0	0		30	30	0
MAY	· · · ·	3	1	0	1	0	0	0		20	10	10
JUN)		-22			0						
AUG	5	0	1	1	0	0	0	0		10	0	10
SEF						1						
		D.	EX S	PO- PH URE BIO AYS) A WE	RI- PI YTON BIO MASS TO SH IGHT W	HYTON DMASS DTAL CI DRY GI EIGHT F	HLOR-A PERI- PHYTON HROMO- RAPHIC LUOROM MG/M2)	CHLOR-B PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)	BIOMAS CHLORG PHYLI RATIO PERI- PHYTO (UNITS	D- L D -		
		oc.	T 3	36 2	.13	2.36	.760	.000	303			
		NO.				8.19	7.37	1.19	138			
		FE			.310	.310	.070	.000		00		
		MA	Y 6			1.1	5.33	.730	188			

MISSION RIVER BASIN

08189500 MISSION RIVER AT REFUGIO, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

DATE TIME	NOV	6,79 957		7,79 1435		11,80 945		6,80
TOTAL CELLS/ML		86		900	7	000	5	700
DIVERSITY: DIVISION .CLASSORDERFAMILYGENUS		1.5 1.5 1.9 1.9		1.9 2.2 0.0 0.0		1.6 1.9 2.7 2.9 3.1		1.6 1.6 2.2 2.5 2.7
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE .CHLOROCOCCALESCHARACIACEAESCHROEDERIA							*	0
MICRACTINIACEAE								U
GOLENKINIA MICRACTINIUM		-	121	-		- 2		-
OOCYSTACEAE ANKISTRODESMUS	24	-	29	3	240	3	230	4
CHLORELLA		-		-		_		-
CHODATELLA DICTYOSPHAERIUM		-		-	40	1		-
KIRCHNERIELLA OOCYSTIS		-	57	6		-	*	0
POLYEDRIOPSIS		-		-		- 2		-
SELENASTRUM TETRAEDRON	- 11	-		2		1	45	1
SCENEDESMACEAE								
ACTINASTRUM CRUCIGENIA			==	-		-	360	6
SCENEDESMUS TETRASTRUM	-	-	140#	16	650	9	770	13
VOLVOCALES CHLAMYDOMONADACEAE				7				
CARTERIA CHLAMYDOMONAS	14#	17	14 29	2	81 280	1	230	4
VOLVOCACEAE PANDORINA		-	44	-		-		_
CHRYSOPHYTA .BACILLARIOPHYCEAE .CENTRALESCOSCINODISCACEAE								
CYCLOTELLA MELOSIRA	29 #	33	29	3	1300#	18	590	10
STEPHANODISCUS PENNALES		-		-	120	2		-
ACHNANTHACEAE ACHNANTHES		-	d===	-	200	3		_
NAVICULACEAE DIPLONEIS		-	14	2	- 44	-2		-
NAVICULA		-	14	2 2	40	1	45	1
NITZSCHIACEAE NITZSCHIA	14#	17	29	3	280	4	180	3
.CHRYSOPHYCEAE CHRYSOMONADALES CHROMULINACEAE		-	86	10		-		-
CHRYSOCOCCUS OCHROMONADACEAE		-	72	8		-	1.5	-
OCHROMONAS .XANTHOPHYCEAE		-		-	530	8	7.7	-
HETEROCOCCALES CHLOROTHECIACEAE OPHIOCYTIUM		-		_		-		-
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAECRYPTOMONADALES								
CRYPTOCHRYSIDACEAE CHROOMONAS		-	200#	22		-	45	1
CRYPTOMONADACEAE CRYPTOMONAS		-	72	8	81	1	68	1
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAE								
AGMENELLUM ANACYSTIS		-	110	13	1300#	18	2500#	44
COCCOCHLORIS .HORMOGONALES OSCILLATORIACEAE		~		7.5		-		-
OSCILLATORIA	-2,2	4			1800#	26	500	9

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

MISSION RIVER BASIN 413
08189500 MISSION RIVER AT REFUGIO, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980--Continued

DATE TIME		6,79 1957		7,79 435		11,80 945	MAY 1	6,80 000
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAE .EUGLENALESEUGLENACEAEEUGLENACAETRACHELOMONAS		- # 33			40	1	* 68	0
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAE .PERIDINTALESGLENODINIACEAEGLENODINIUM		7)		. 9.				

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

DATE TIME		10,80		7,80 1540		5,80 430		8,80 1522
TOTAL CELLS/ML	64	000	27	7000	100	0000	30	0000
DIVERSITY: DIVISION .CLASS .ORDERFAMILYCENUS		0.3 0.3 0.3 0.3		0.9 0.9 0.9 1.1 2.1		0.5 0.5 1.3 1.3		0.6 0.6 0.9 1.0
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESCHARACIACEAE								
SCHROEDERIA		-		-		-2	*	0
GOLENKINIA	*	0	*	0		-	42	
MICRACTINIUM	*	0	430	2		9.		-
OOCYSTACEAE ANKISTRODESMUS		+	350	1	1200	1	400	1
CHLORELLA	*	0	640	2		-	*	-
CHODATELLA DICTYOSPHAERIUM		0		0		-		0
KIRCHNERIELLA		-		-		-		-
OOCYSTIS POLYEDRIOPSIS	*	0	*	0	122	-	*	0
SELENASTRUM	*	0	140	1	*	0	*	0
TETRAEDRON		-	280	1	*	0	*	0
SCENEDESMACEAE ACTINASTRUM		-		_		_	160	1
CRUCIGENIA		-	280	1	2400	2		-
SCENEDESMUS	650	1	1800	7	2000 810	2	680	2
TETRASTRUM VOLVOCALES		-	280	A.	810			-
CH LAMY DOMONADACEAE								
CARTERIA CHLAMYDOMONAS	*	ō	*	0	*	ō	*	0
VOLVOCACEAE				0		0		· ·
PANDORINA		7		-	**	-	320	1
CHRYSOPHYTA .BACILLARIOPHYCEAECENTRALESCOSCINODISCACEAE								
CYCLOTELLA	*	0	140	1	*	0	*	0
MELOSIRA STEPHANODISCUS	22	3		-	7.7	-	*	0
PENNALES								1
ACHNANTHACEAE						1.0		
NAVICULACEAE		-		_		-		-
DIPLONEIS		-	+	-		-	*	-
NAVICULA NITZSCHIACEAE	×	0	*	0		-	*	0
NITZSCHIA	320	1	280	1	600	1	420	1
.CHRYSOPHYCEAE CHRYSOMONADALES CHROMULINACEAE				-		-		-
CHRYSOCOCCUS		-		-		-		-
OCHROMONADACEAE OCHROMONAS	- 22	- 2		2	*	0		
.XANTHOPHYCEAE .HETEROCOCCALES			-	3		U		171
CHLOROTHECIACEAE OPHIOCYTIUM	*	0		-	*	0	*	0
OFRIOCITION	^	U			-	U	^	U

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

414 MISSION RIVER BASIN

08189500 MISSION RIVER AT REFUGIO, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980--Continued

DATE TIME	JUN 1	0,80		JUL 7,80 1540		5,80	0 SEP 8,8 1522	
ORGANISM		PER- CENT		PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAECRYPTOMONADALESCRYPTOCHRYSIDACEAE								
CHROOMONAS		-	*	0		4.	*	0
CRYPTOMONADACEAE CRYPTOMONAS	*	0	*	0	*	0	*	0
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAE								
AGMENELLUM	59000#		16000#		15000	15	23000#	
ANACYSTISCOCCOCHLORISHORMOGONALESOSCILLATORIACEAE	1900	0	6000#	22	56000#	55	2400	8 -
OSCILLATORIA	77	-	77	-	22000#	21	1500	5
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAE .EUGLENALESEUGLENACEAE								
EUGLENA	*	0	*	0	*	0	180	1
TRACHELOMONAS		-		-		-	*	0
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAE .PERIDINIALESGLENODINIACEAE								
GLENODINIUM	×	0				-	10.0	-

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	1069	2250	1250	3600	550	1590	42	120	410
NOV.	1979	660	2420	1340	2390	600	1070	43	77	430
DEC.	1979	523	2420	1340	1900	600	853	43	61	430
JAN.	1980	9028	312	173	4220	67	1630	7.4	181	69
FEB.	1980	1363	1420	787	2900	320	1190	31	113	290
MAR.	1980	677	2080	1150	2110	500	913	40	73	390
APR.	1980	502	2350	1300	1770	580	786	43	58	420
MAY	1980	3212	582	323	2800	130	1110	13	115	120
JUNE	1980	424.1	2350	1300	1490	580	667	42	48	420
JULY	1980	243.6	3100	1720	1130	840	551	44	29	460
AUG.	1980	22563.0	299	166	10100	64	3870	7.2	441	67
SEPT	1980	2800	1220	674	5100	290	2210	23	177	230
TOTAL		43064.7	**	**	39500	**	16400	**	1490	**
WTD. AV	c.	118	612	340	**	140	**	13	**	120

MISSION RIVER BASIN 415

	SPI				O	NCE-DAILY						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1900 1960 2000 2030 2160	2090 2250 2380 2420 2380	2530 2540 2450 2360 2400	2140 2230 2190 2370 2420	1570 1630 1700 1770 1810	2050 2010 1960 1920 1990	2240 2210 2040 2130 2240	2530 2490 2440 2430 2460	1760 1850 1920 1990 1980	3130 3110 3190 3230 3220	3910 4050 4070 4200 4220	2350 2450 2260 2370 2480
6 7 8 9	2220 2090 2230 2220 2260	2400 2420 2450 2370 2360	2440 2500 2510 2530 2540	2470 2530 2550 2560 2620	1570 1720 1760 1000 673	2050 2110 2080 2090 2100	2350 2270 2220 2290 2260	2490 2520 2500 2240 2060	2100 2160 2140 2220 2100	3290 3310 3380 3430 3470	4250 4280 4140 2580 295	2190 2080 1700 1870 2140
11 12 13 14 15	2300 2320 2330 2350 2380	2390 2450 2500 2500 2520	2560 2530 2500 2400 2440	2530 2560 2580 2640 2650	856 1130 1230 1160 1100	2060 2120 2080 2140 2170	2400 2490 2560 2350 2260	2220 2250 2220 2410 2380	2130 2300 2340 2390 2440	3460 3540 3560 3580 3640	192 178 163 306 650	2240 2250 2450 2530 2640
16 17 18 19 20	2400 2340 2270 2390 2360	2530 2550 2520 2420 2440	2490 2550 2660 2680 2360	2620 2560 2360 2550 2770	1240 1390 1540 1640 1690	2150 1930 1990 2010 2020	2200 2300 2340 2390 2420	1950 318 454 375 162	2480 2520 2580 2590 2620	3650 3670 3760 3770 3780	1260 1460 1540 1740 1860	2690 2730 2670 2680 2720
21 22 23 24 25	2340 2310 2420 2430 2440	2450 2390 2330 2380 2430	2470 2490 2510 2520 2540	284 131 167 301 534	1780 1820 1880 1890 1900	2070 2200 2280 2160 2230	2450 2500 2440 2480 2400	282 323 476 548 703	2680 2750 2770 2790 2830	3820 1550 1300 2380 3370	1990 2110 2190 2260 2300	2710 2720 2740 2820 3020
26 27 28 29 30 31	2450 2460 2460 2420 2370 2350	2500 2490 2490 2500 2580	2570 2600 2620 2090 1710 2030	750 960 1220 1400 1500 1620	2010 2050 2010 2090	2250 2140 1970 2020 2060 2170	2410 2460 2500 2530 2550	1000 1180 1320 1460 1560 1690	2850 2890 3010 3080 3110	3400 3450 3400 3580 3760 3780	2330 2400 2430 2380 2410 2350	2550 572 374 509 239
MEAN	2290	2430	2460	1900	1570	2080	2360	1590	2450	3320	2270	2190
	2290 OCT				(DEG. C)	2080 , WATER YE NCE-DAILY MAR					2270 AUG	2190 SEP
MEAN			TEMPERATU	RE, WATER	(DEG. C)	, WATER YE	EAR OCTOBI	ER 1979 TO	O SEPTEMBI	ER 1980		
DAY 1 2 3 4		NOV 19.5	DEC 12.0 12.0 12.0 15.0	JAN 14.5 15.0 13.0	(DEG. C) OI FEB	, WATER YE NCE-DAILY MAR 11.0	APR 21.0 21.0 20.0 23.5	ER 1979 TO	JUN 26.5 26.5 30.0 28.5	JUL 30.5 32.0 30.0 29.5	AUG 29.0 31.5 29.5 30.0	SEP 27.0 26.5 27.0 29.0
DAY 1 2 3 4 4 5 6 7 7 8 9		NOV 19.5 18.5 16.0 19.5 18.5 20.5 21.0	DEC 12.0 12.0 15.0 16.0 15.0 13.5	JAN 14.5 15.0 13.0 14.5 13.5 14.5	(DEG. C) OI FEB 14.5 16.5 20.5 17.0	. WATER YF NCE-DAILY MAR 11.0 16.0 17.0 14.5 18.5 20.5	APR 21.0 21.0 20.0 23.5 20.0 20.5 26.0 22.0	ER 1979 TO	JUN 26.5 26.5 30.0 28.5 28.0 29.0 28.5 28.5	JUL 30.5 32.0 30.0 29.5 29.5 30.0 30.0 30.0 30.5	AUG 29.0 31.5 29.5 30.0 29.5 29.5 31.0 26.0	SEP 27.0 26.5 27.0 29.0 28.5 26.0 26.5 29.0
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14		NOV 19.5 18.5 16.0 19.5 20.5 21.0 18.5 17.0	DEC 12.0 12.0 15.0 16.0 16.0 13.5 18.5 20.0	JAN 14.5 15.0 13.0 14.5 13.5 14.5 18.0 15.5 18.0 20.0	(DEG. C) OI FEB 14.5 16.5 20.5 17.0 10.0	MATER YENCE-DAILY MAR 11.0 16.0 17.0 14.5 18.5 20.5 20.0 23.0 21.5 21.0 20.0	APR 21.0 21.0 20.0 23.5 20.0 20.5 26.0 22.0 23.0 21.5 15.5 16.5	ER 1979 TO	JUN 26.5 26.5 30.0 28.5 28.5 28.0 29.0 28.5 29.0 26.0 29.0 29.0	JUL 30.5 32.0 30.0 29.5 29.5 30.0 30.0 30.0 30.5 30.0 29.5 30.0 30.0 30.0	AUG 29.0 31.5 29.5 30.0 29.5 31.0 26.0 24.5 24.5 26.5 30.0 28.5	SEP 27.0 26.5 27.0 29.0 28.5 26.0 26.5 29.0 29.0 29.0 29.0 29.0
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19		NOV 19.5 18.5 16.0 19.5 18.5 20.5 21.0 18.5 17.0 15.5 16.0 15.5 17.0 18.0 21.5	DEC 12.0 12.0 15.0 16.0 16.0 13.5 18.5 20.0 15.5 10.5 10.5 11.5	JAN 14.5 15.0 13.0 14.5 14.5 18.5 18.0 15.5 18.0 20.0 19.5	(DEG. C) FEB 14.5 16.5 20.5 17.0 11.0 11.5 13.5 15.0 16.5	MATER YF MCE-DAILY MAR 11.0 16.0 17.0 14.5 18.5 20.5 20.0 23.0 21.0 20.0 19.5 21.5 21.0 20.0 19.5	APR 21.0 21.0 20.0 23.5 20.0 23.5 26.0 23.0 21.5 16.5 16.5 22.0 23.5 24.0 23.5 20.0	ER 1979 TO	JUN 26.5 26.5 30.0 28.5 28.0 29.0 28.5 29.0 26.0 29.0 29.5 29.0 30.5 31.5 31.5	JUL 30.5 32.0 30.0 29.5 30.0 30.0 30.0 30.0 30.0 30.0 29.5 30.0 29.5 30.0 29.5	AUG 29.0 31.5 29.5 30.0 29.5 29.5 31.0 24.5 24.5 24.5 26.0 28.5 29.0 28.0 28.5	SEP 27.0 26.5 27.0 29.0 28.5 26.0 28.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24		NOV 19.5 18.5 16.0 19.5 20.5 21.0 18.5 17.0 15.5 16.0 21.5 23.0 21.5 23.0 14.0	DEC 12.0 12.0 12.0 15.0 16.0 15.0 15.0 15.0 15.0 15.0 17.0 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5	JAN 14.5 15.0 13.0 14.5 14.5 14.5 18.0 15.5 18.0 20.0 19.5 18.5 26.5 30.0 20.5 18.0 16.0 14.5 13.5	(DEG. C) FEB 14.5 16.5 20.5 17.0 11.0 11.5 13.5 15.0 16.5 18.5 18.5 18.5 18.5 19.5	MATER YENCE-DAILY MAR 11.0 16.0 17.0 14.5 18.5 20.5 20.0 21.5 21.0 20.0 19.5 21.5 20.0 16.0 20.0 21.5 20.0 21.5 20.0 21.5 20.0 21.5	APR 21.0 21.0 20.0 23.5 20.0 23.5 26.0 22.0 23.0 21.5 15.5 16.5 22.0 23.5 24.0 23.5 24.0 23.5 20.0 19.5 23.0	ER 1979 TO	JUN 26.5 26.5 30.0 28.5 28.5 28.0 29.0 28.5 29.0 26.0 29.5 29.0 26.0 31.5 31.5 31.5 31.5 31.5 31.5 31.5 32.0	JUL 30.5 32.0 30.0 29.5 29.5 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30	AUG 29.0 31.5 29.5 30.0 29.5 31.0 26.0 24.5 24.5 26.5 30.0 28.5 29.0 28.0 28.5 27.0 28.5	SEP 27.0 26.5 27.0 29.0 28.5 26.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29

ARANSAS RIVER BASIN

416

08189700 ARANSAS RIVER NEAR SKIDMORE, TX

LOCATION.--Lat 28°16'56", long 97°37'14", Bee County, Hydrologic Unit 12100407, on right bank 160 ft (49 m) downstream from centerline of county road bridge, 3.8 mi (6.1 km) downstream from confluence of West Aransas and Poesta Creeks, and 4.4 mi (7.1 km) northeast of Skidmore.

DRAINAGE AREA. -- 247 mi2 (640 km2).

PERIOD OF RECORD.--March 1964 to current year.

Water-quality records: Chemical analyses: October 1965 to September 1966. Sediment records: February 1966 to September 1975.

GAGE. -- Water-stage recorder. Datum of gage is 72.37 ft (22.058 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. No known diversion. Chase Field Naval Air Station and city of Beeville discharge sewage effluent into the stream via Poesta Creek. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--16 years, 44.7 ft3/s (1.266 m3/s), 2.46 in/yr (62 mm/yr), 32,390 acre-ft/yr (39.9 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 82,800 ft³/s (2,340 m³/s) Sept. 22, 1967, gage height, 42.22 ft (12,869 m), from floodmark, from rating curve extended above 14,000 ft²/s (396 m³/s) on basis of slope-area measurements of 29,600 and 82,800 ft³/s (838 and 2,340 m³/s) no flow at times in 1964-67 and 1971.

Maximum stage since at least 1914, that of Sept. 22, 1967.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of September 1954 reached a stage of 33 ft (10.1 m), discharge 19,600 ft 3 /s (555 m 3 /s), from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 500 ft3/s (14.2 m3/s) and maximum (*):

Date		Time	Disch	arge	Gage	height
			(ft^3/s)	(m^3/s)	(ft)	(m)
Jan.	21	1800	1,220	34.6	11.84	3.609
Aug.	11	0900	*6.250	177	21.92	6.681

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum discharge, 0.30 ft3/s (0.008 m3/s) July 20, 21.

		DISC	HARGE, I	N CUBIC FE		EAN VALUES		OCTOBER 19	79 TO SEE	TEMBER	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5.2 5.0 5.1 5.0 4.5	3.8 3.3 3.2 3.2 3.2	3.8 3.9 4.0 4.0 3.7	4.4 4.0 4.1 4.3 4.1	6.8 6.6 6.5 7.0 6.6	6.1 5.3 4.8 4.9 5.1	4.5 5.9 6.7 6.3 5.1	4.9 11 17 10 6.5	3.6 3.4 3.2 3.2 3.1	.96 .89 .94 .95	2.7 1.7 1.3 1.0	4.7 5.2 8.3 8.5 5.9
6 7 8 9	4.3 4.2 4.2 4.2 4.1	3.3 3.5 3.5 3.9 3.9	3.8 3.8 3.7 3.7 3.7	4.0 3.8 3.8 3.7 3.7	6.2 6.1 6.7 11 7.7	5.1 5.4 5.4 5.1	4.8 4.7 4.8 4.6 4.5	5.3 4.8 5.7 7.0	2.8 2.7 2.5 2.5 2.7	.94 .94 .86 .89	.87 1.2 1.3 2.5 811	5.2 5.4 6.1 4.9 4.2
11 12 13 14 15	4.0 3.8 4.0 4.0 4.0	3.6 3.3 3.3 3.3	3.7 4.3 4.7 6.3 5.1	3.8 3.8 3.7 3.7 4.0	6.6 6.5 7.3 8.2 7.0	5.1 5.3 5.2 4.9	4.4 4.6 5.2 4.7 4.4	6.5 5.5 5.1 5.0 5.2	2.7 2.7 2.4 2.1 2.3	.85 .90 .97 .86	4070 301 67 34 22	4.2 4.2 3.8 3.8 3.7
16 17 18 19 20	4.0 4.0 4.1 4.2 4.2	3.4 3.7 4.2 4.2 4.4	4.2 3.8 3.8 3.7 3.8	4.2 4.2 4.2 4.1 4.4	6.3 6.0 5.7 5.7 5.7	5.0 5.8 5.7 6.8 5.7	4.4 4.4 4.2 4.0	47 50 16 15 36	2.2 2.0 1.8 1.8	.56 .49 .48 .46	16 13 11 9.8 8.6	3.5 3.5 3.4 3.2 3.2
21 22 23 24 25	4.2 4.0 4.0 3.5 3.3	4.9 6.4 9.2 5.3 4.5	3.8 4.0 4.2 3.9 3.6	685 217 42 19 13	5.7 5.7 5.6 5.4 5.2	5.0 4.9 4.8 4.7 4.6	4.0 4.1 4.3 4.5 4.6	90 77 36 15 8.9	1.7 1.5 1.5 1.4 1.3	.35 .61 5.1 6.0 2.3	8.3 7.5 6.8 6.4 5.9	3.4 3.4 3.4 3.4 3.6
26 27 28 29 30 31	3.5 3.8 3.8 3.5 3.8 4.2	4.2 4.1 3.9 3.8	3.5 3.5 3.7 9.1 13 6.0	10 8.7 7.8 7.4 7.1 7.0	4.9 4.9 5.1	4.5 5.1 5.1 5.2 5.2 4.6	4.4 4.0 3.9 3.8 4.3	6.5 5.4 5.0 4.4 4.2 3.9	1.3 1.3 1.1 .99	1.6 1.3 1.4 5.6 4.2 4.0	5.6 5.1 4.9 5.2 4.9 4.7	5.4 75 82 29 39
TOTAL MEAN MAX MIN CFSM IN. AC-FT	127.7 4.12 5.2 3.3 .02 .02 253	122.0 4.07 9.2 3.2 .02 .02 242	139.8 4.51 13 3.5 .02 .02 277	1104.0 35.6 685 3.7 .14 .17 2190	183.6 6.33 11 4.9 .03 .03 364	160.4 5.17 6.8 4.5 .02 .02 318	138.5 4.62 6.7 3.8 .02 .02 275	529.8 17.1 90 3.9 .07 .08 1050	64.59 2.15 3.6 .99 .009 .01 128	48.21 1.56 6.0 .35 .006 .01 96	5442.04 176 4070 .77 .71 .82 10790	342.5 11.4 82 3.2 .05 .05 679

CAL YR 1979 TOTAL 6917.30 MEAN 19.0 MAX 827 MIN 2.5 CFSM .08 IN 1.04 AC-FT 13720 WTR YR 1980 TOTAL 8403.14 MEAN 23.0 MAX 4070 MIN .35 CFSM .09 IN 1.27 AC-FT 16670

ARANSAS RIVER BASIN

08189800 CHILTIPIN CREEK AT SINTON, TX

LOCATION.--Lat 28°02'48", long 97°30'13", San Patricio County, Hydrologic Unit 12100407, on left bank at upstream end of bridge on U.S. Highway 77, 0.2 mi (0.3 km) upstream from Missouri Pacific Railroad Co. bridge, and 0.8 mi (1.3 km) northeast of Sinton.

DRAINAGE AREA .-- 128 mi 2 (332 km2).

PERIOD OF RECORD .-- July 1970 to current year.

REVISED RECORDS .-- WRD TX-72-1: 1971(P).

GAGE.--Water-stage recorder. Datum of gage is 18.74 ft (5.712 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except those for periods of no gage-height record, which are fair. No known diversions above station. An undetermined amount of water from oilfield operations enters stream upstream at various points. A recording rain gage is located at station.

AVERAGE DISCHARGE.--10 years, 53.4 ft³/s (1.512 m³/s), 5.67 in/yr (144 mm/yr), 38,690 acre-ft/yr (47.7 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 22,300 ft 3 /s (632 m 3 /s) Sept. 12, 1971, gage height, 29.10 ft (8.870 m), from rating curve extended above 13,400 ft 3 /s (379 m 3 /s); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stages since 1910, 30.27 ft (9.226 m) Sept. 22, 1967, and 28.8 ft (8.78 m) in April 1930, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 600 ft3/s (17.0 m3/s) and maximum (*):

Date		Time	Disc	harge	Gage	height
			(ft ³ /s)	(m^3/s)		(m)
Jan.	21	2400	4,120	117	15.50	4.724
Aug.	11	0500	*8,460	240	23.36	7.120
	27	unknown	3 200	90.6	13.5	4.11

Minimum discharge, no flow at times.

		DISCHAR	GE, I	N CUBIC F	EET PER SEC MEA	OND, WALUE		OCTOBER 19	79 TO SE	EPTEMBER	1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.52 .36 .27 .19	.15 .11 .10 .10	.09 .12 .13 .14	.23 .23 .23 .23 .23	.69 1.1 .76 .69	.11 .16 .19 .14	.31 .24 .13 .13	1.3 .55 .09 .07	.06 .05 .06 .03	.10 .07 .10 .11	.00 .01 .01 .01	.02 .01 .18 .01
6 7 8 9	.16 .17 .16 .16	.12 .11 .14 .13	.15 .14 .17 .18 .21	.23 .23 .23 .23 .23	.54 .59 .83 .44 .30	.19 .19 .19 .22 .26	.11 .13 .09 .09	.07 .06 1.4 .07	.08 .08 .07 .53	.09 .11 .07 .07	.00 57 2.9 55 2750	.16 .01 .01 .01
11 12 13 14 15	.13 .16 .18 .17	.09 .11 .09 .10	.21 .22 .18 .17	.23 .23 .23 .23 .23	.22 1.0 .62 .44 .44	.13 .11 .09 .10	.11 .09 .09 .08	.03 .02 .07 .05	2.9 .50 .12 .03	.07 .10 .08 .12	7150 2350 357 130 34	.69 .01 .00
16 17 18 19 20	.16 .15 .16 .18	.11 .14 .19 .21	.17 .12 .11 .12	.23 .23 .23 .23 .24	.39 .26 .22 .19	.14 .15 .10 .09	.11 .11 .09 .09	.05 .05 .03 19 4.1	.03 .03 .03 .03	.07 .05 .04 .04	8.0 2.9 1.2 .59	.00 .00 .00
21 22 23 24 25	.20 .15 .14 .14	.29 .17 .17 .16	.21 .23 .23 .23	2420 1990 108 54 22	.19 .16 .11 .11	.10 .11 .07 .09	.11 .11 .10 .09	150 512 303 100 16	.03 .03 .04 .03	.07 31 .60 .00	.14 .09 .05 .04	.00 .00 .00
26 27 28 29 30 31	.17 .17 .18 .23 .70	.18 .15 .11 .09	.20 .17 .18 .23 .23	9.4 4.5 2.0 1.4 1.3	.14 .16 .14 .09	.20 .48 .23 .11 .07	.08 .07 .07 .08 .09	4.6 1.7 .81 .36 .18	.06 .05 .05 .09	.00 .00 .01 .00	.03 .01 3.2 2.1 .30	81 2370 1300 491 195
TOTAL MEAN MAX MIN CFSM IN. AC-FT	6.44 .21 .70 .12 .002 .00	.14 .29 .09	5.50 .18 .23 .09 .001 .00	4618.21 149 2420 .23 1.16 1.34 9160	11.77 .41 1.1 .09 .003 .00 23	4.51 .15 .48 .07 .001 .00	3.27 .11 .31 .07 .001 .00 6.5	1116.04 36.0 512 .02 .28 .32 2210	5.54 .18 2.9 .02 .001 .00	33.30 1.07 31 .00 .008 .01 66	12905.04 416 7150 .00 3.25 3.75 25600	4574.12 152 2370 .00 1.19 1.33 9070
CAL YR WTR YR		22546.70		AN 61.8 AN 63.6	MAX 2990 MAX 7150	MIN MIN	.00 CFS		6.55 6.77		4720 6190	

NOTE .-- No gage-height record Aug. 28 to Sept. 30.

418 NUECES RIVER BASIN

08190000 NUECES RIVER AT LAGUNA, TX

LOCATION.--Lat 29°25'42", long 99°59'49", Uvalde County, Hydrologic Unit 12110101, on right bank 0.5 mi (0.8 km) downstream from Sycamore Creek, 1.0 mi (1.6 km) northeast of Laguna, and at mile 395.4 (636.2 km). DRAINAGE AREA. -- 764 mi2 (1.979 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1923 to current year.

NOV DEC

1060

35.3

42

30

.05

2100

1467

53

.06

2910

1718

63 52

07

08

3410

933

32

29

04

05

1850

30.1

DAY

TOTAL

MEAN

CFSM

AC-FT

MAX

MIN

IN.

OCT

REVISED RECORDS. -- WSP 1562: 1930, 1931(M), 1932, 1939.

GAGE.--Water-stage recorder. Datum of gage is 1,119.72 ft (341.291 m) National Geodetic Vertical Datum of 1929. Prior to Jan. 26, 1925, nonrecording gage at site 2 mi (3 km) downstream at different datum.

REMARKS .-- Water-discharge records good. Many small diversions above station for irrigation.

JAN

FEB

AVERAGE DISCHARGE. -- 57 years, 147 ft³/s (4.163 m³/s), 2.61 in/yr (66 mm/yr), 106,500 acre-ft/yr (131 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 307,000 ft 3 /s (8,690 m 3 /s) Sept. 24, 1955, gage height, 29.95 ft (9.129 m), in gage well, 32.7 ft (9.97 m), from floodmarks, from rating curve extended above 40,000 ft 3 /s (1,130 m 3 /s) on basis of float measurement of 110,000 ft 3 /s (3,120 m 3 /s) and slope-area measurements of 213,000 and 307,000 ft 3 /s (6,030 and 8,690 m 3 /s); minimum, 2.6 ft 3 /s (0.074 m 3 /s) Mar. 14-16, 1957. Maximum stage since at least 1866, that of Sept. 24, 1955.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1913 reached a stage of about 29 ft (8.8 m), discharge 210,000 ft 3 /s (5,950 m 3 /s); flood of Sept. 21, 1923, reached a stage of about 26.5 ft (8.08 m), discharge 160,000 ft 3 /s (4,530 m 3 /s); from information by local residents. Discharges based on rating curve mentioned above.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,000 ft 3 /s (28.3 m 3 /s) Sept. 7 at 2400 hours, gage height, 6.40 ft (1.951 m), no other peak above base of 700 ft 3 /s (19.8 m 3 /s); minimum daily, 14 ft 3 /s (0.40 m 3 /s) Aug. 28 to Sept. 6.

MAR

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

APR

1348

57 37

.06

2670

2022

256

36

.09

10

4010

MAY

JUN

JUL

580

25

16

.02

03

1150

1109

55

.05

. 05

2200

629

50

14

.03

1250

20.3

1160 38.7

336

14

.05

.06

2300

AUG

SEP

1	32	30	43	53	60	48	57	38	55	22	17	14
2	32	30	43	53	59	50	55	36	53	21	16	14
2 3 4 5	31	30	43	52	59	48	53	38	51	21	16	14
7.	30	30	43	53	59	49	52	40	50	20	16	14
5	31	31	44	53	58	48	50	40 38	48	20	16	14
5	31	31	44	23	20	48	30	36	48	20	10	14
6	30	31	43	53	57	48	50	38	46	20	16	14
7	31	31	44	52	57	48	49	39	45	20	16	50
8	31	31	44	53	57	49	48	41	43	20	15	336
9	30	31	45	53	56	50	48	39	44	20	15	96
6 7 8 9	30	32	46	53	57	49	47	39 39	44	20	20	336 96 53
11	31	32	46	53	55	49	47	38	42	19	50	41
12	30	32	47	53	54	49	48	37 42	39 38	19	37	35
13	30	32	47	53	53	46	47	42	38	19	30	32
14	30	33	47	53	53	47	45	52	37	18	28	31
15	30	33	48	53	53	49	44	256	37	18	27	41 35 32 31 28
16	30	34	48	53	53	49	44	163	36	17	25	27
17	30	39	48	53	53	47	43	109	35	17	25	26
18	30	38	48	54	53	49	43	92	34	17	24	25
19	30	37	48	58	53	50	42	92 82	33	17	22	24
18 19 20	29	37	48	58	52	49	42	73	33 32	17	20	27 26 25 24 23
21	29	38	49	57	51	48	41	69	31	16	20	23
22 23	29	38	49	56	50	48	41	64	30	16	19	23
23	29	39	50	56	50	48	40	61	29	21	18	23
24	29	42	50	57	48	47	40	59	28	20	17	23
25	29	42	50	57	48	48	42	57	27	17	17	23 23 23 23 23
26	20	7.1	50	50	4.0	10	20	61	26	16	16	22
20	29						39	01	20		16	23
27	29		50		50		38	83	25			26
28	31				50	63	38	62	24	16		26
29			50		50			60	24			23 26 26 31 28
30	30	42	52	63		60		59		18		28
31	30		53	61		58		57		17	14	
24 25 26 27 28 29 30 31	29	42	50	57	48	47	40 42 39 38 38 37 38	59 57 61 83 62 60 59 57	28 27 26 25 24 24 23	20	17	

66

46

.07

08

3110

1566

CAL YR 1979 TOTAL WTR YR 1980 TOTAL 32156 15148 MEAN 88.1 MEAN 41.4 MAX 684 MAX 336 MIN 29 CFSM .12 IN 1.57 AC-FT AC-FT MIN 14 IN CFSM .05 30050

1556

60 48

.07

.08

3090

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: January 1974 to current year.

DATE	TIME	INS'	EAM- OW, TAN- EOUS FS)	SPE- CIFIC CON- DUCT- ANCE (MICRO MHOS)		PH NITS)	AT WA	MPER- CURE, MTER CG C)	(P IN CO	LOR LAT- UM BALT ITS)	TUR BID ITY (NTU	-	XYGEN DIS- SOLVE (MG/L	I.	XYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	DEN BIO UNI 5	GEN MAND, OCHEM INHIB DAY G/L)	
JAN 10	1107		51	40	6	8.0		15.0		0		20	8.	3	85		.5	
MAY 12	1431		39	38		8.2		26.5		0		80	8.		104		1.0	
JUL 30	0956		31	41		7.9		28.0		0		70	6.		90		1.4	
DATE		M, AL, ED. S.	COLI FORM FECA 0.7 UM-M (COLS	L, F KF F (C	TREP- COCCI ECAL, AGAR OLS. PER 0 ML)	HAR NES (MC AS	S /L	HARD NESS NONCA BONAT (MG/ CACO	Ř- E L	CALCIU DIS- SOLVE (MG/L AS CA	M D	MAGNE SIUM DIS- SOLVE (MG/L AS MG	, SO D SO (DIUM IS- LVED MG/L S NA	SOI T RA	DIUM AD- RP- ION FIO		
JAN 10	. k	120		32	30		190		13	56		13		8.	2	.3		
MAY 12		K40		K1	K1		190		20	54		14		8.		.3		
JUL 30		K76		30	К8		190		8	54		13		7.		.3		
DATE	SI		BICAR BONAT (MG/ AS HCO3	E C L BO	AR- NATE MG/L CO3)	SULF DIS SOI (MG AS S	VED	CHLO RIDE DIS- SOLV (MG/ AS C	, ED L	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	D	ILICA DIS- SOLVE (MG/L AS SIO2)	, SU CO D TU	LIDS M OF NSTI- ENTS DIS- OLVEI MG/L	RES - AT DEG SUS D PEN	. C,		
JAN 10		.9	2	20	0	1	3	14			2	11		22	5	7		
MAY 12		.9		10	0		0.0	14			1	12		22		13		
JUL 30		1.1		20	0		2	14			3	14		22		8		
20			-				~	- 13			5	7.3						
DATE	SOLI VOI TII SUS PENI (MO	A- E,	NITR GEN NITRA TOTA (MG/ AS N	TE NI L T L (ITRO- GEN, TRITE OTAL MG/L S N)	GE	AL /L	NITR GEN AMMON TOTA (MG/ AS N	ÍA L L	NITRO GEN, ORGANI TOTAL (MG/L AS N)	- G M C O	ITRO- EN, AM ONIA RGANI TOTAL (MG/L AS N)	+ P C PH T	HOS- ORUS OTAL MG/L S P)	ORG.	BON, ANIC FAL G/L C)		
JAN 10		7		77	.02		.79		01	.2	9	.3	0	.010	0	3.6		
MAY 12		7		57	.01		.58		04	.3		.4		.01		1.9		
JUL 30		2		64	.01		.65		06	.7		.7		.010	0	5.2		
	DA	TE.	TIM	S E (SENIC DIS- OLVED UG/L S AS)	SOLV (UG	ED.	CADMI DIS SOLV (UG/ AS C	ED L	CHRO- MIUM, DIS- SOLVE (UG/L AS CR	D	OPPER DIS- SOLVE (UG/L AS CU	D S	RON, DIS- OLVEI UG/L S FE				
	JAN 10		110	7	0		40		<1		0	-	0	<10	0			
	JUL		095		1		40		<1		0		0	<10	0			
	-								400						9-			
		Da	ATE	LEAD, DIS- SOLVE (UG/L AS PB	D S	ANGA- ESE, DIS- OLVED UG/L S MN)	SO (U	CURY DIS- LVED G/L HG)	NI D SO (U	IS- LVED G/L	ILVE DIS SOLV (UG/ AS A	ED :	ZINC, DIS- SOLVE (UG/L AS ZN	D				
		JAI 10	N 0		2	<1		.1		1		0	<	3				
		JUI	L 0		0	<1		.0		0		0		3				
		-	- 15		7	-		2.5				-						

08190000 NUECES RIVER AT LAGUNA, TX--Continued

DATE	TIME	PCB. TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD. TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)
JAN 10	1107	.0	.00	.00	.0	.00	.00	.00	.00
JUL 30	0956	.0	.00	.00	.0	.00	.00	.00	.00
DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)
JAN 10 JUL	.00	.00	.00	.00	.00	.00	.00	.00	.00
30	.00	.00	.00	.00	.00	.00	.00	.00	.00
DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
JAN 10	.00	.00	.00	.00	0	.00	.00	.00	.00
JUL 30	.00	.00	.00	.00	0	.00	.00	.00	.00

421 08190500 WEST NUECES RIVER NEAR BRACKETTVILLE, TX

LOCATION.--Lat 29°28'21", long 100°14'10", Kinney County, Hydrologic Unit 12110102, at Wilson Ranch on Farm Road 3199, 1.3 mi (2.1 km) upstream from Miguel Canyon, 16.0 mi (25.7 km) northeast of Brackettville, and 40.2 mi (64.7 km) upstream from mouth.

DRAINAGE AREA . - - 700 mi2 (1,800 km2).

PERIOD OF RECORD .-- September 1939 to September 1950, April 1956 to current year.

REVISED RECORDS .-- WSP 1312: 1949(M).

GAGE.--Water-stage recorder. Datum of gage is 1,326.79 ft (404.406 m) National Geodetic Vertical Datum of 1929. Prior to Mar. 14, 1940, nonrecording gage at same site and datum.

IARKS.--Records fair. In ordinary years, a large part of streamflow from basis is lost by seepage into the Balcones Fault Zone of the Edwards and associated limestones above station. No known diversion above station. REMARKS .-- Records fair.

AVERAGE DISCHARGE. -- 35 years (water years 1940-50, 1957-80), 34.4 ft3/s (0.974 m3/s), 24,920 acre-ft/yr (30.7 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 246,000 ft³/s (6,970 m³/s) Sept. 20, 1964, gage height, 31.3 ft (9.54 m), from floodmark, from rating curve extended above 4,500 ft³/s (127 m³/s) on basis of slope-area measurements of 10,000, 51,000, 150,000, and 246,000 ft³/s (283, 1,440, 4,250, and 6,970 m³/s); no flow most

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1879, about 40 ft (12.2 m) June 14, 1935, discharge 550,000 ft³/s (15,600 m³/s), based on slope-area measurements of 580,000 ft³/s (16,400 m³/s) at site 33 mi (53 km) upstream from gage and 536,000 ft³/s (15,200 m³/s) at site 24 mi (39 km) downstream from gage, present site and datum, from gage-height relation of 1935 and 1955 flood peaks at site 0.6 mi (1.0 km) upstream. Flood in 1900 reached a stage of about 34 ft (10.4 m), and flood of Sept. 24, 1955, reached a stage of 27.1 ft (8.26 m), from floodmark at present site, discharge 150,000 ft³/s (4,250 m³/s), by slope-area

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 0.64 ft 3 /s (0.018 m 3 /s) Aug. 14 at 0730 hours, gage height, 2.38 ft (0.725 m), no peak above base of 1,000 ft 3 /s (28.3 m 3 /s); no flow most of year.

		DISC	HARGE, IN	CUBIC FEE		COND, WATE AN VALUES	ER YEAR (OCTOBER 19	79 TO SEP	TEMBER 198	30	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
9	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
11	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
12	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
13	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.07	.00
14	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.58	.00
15	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.26	.00
16	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.03	.00
17	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
21	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
23	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
24	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
25	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
26	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
28	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
29	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
30	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	.00
31	.00		.00	.00		.00		.00		.00	.00	
TOTAL	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.94	.00
MEAN	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.030	.000
MAX	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.58	.00
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
AC-FT	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.9	.00
	1376	7.7.7	1.7.7			35.7					1.5.5	

CAL YR 1979 TOTAL 2036.09 WTR YR 1980 TOTAL 0.94 MEAN 5.58 MIN .00 AC-FT 4040 MEAN .003 MAX .58 MIN .00 AC-FT

08192000 NUECES RIVER BELOW UVALDE, TX

LOCATION.--Lat 29°07'25", long 99°53'40", Uvalde County, Hydrologic Unit 12110103, on right bank at McDaniel Ranch, 5.7 mi (9.2 km) upstream from bridge on U.S. Highway 83, 8.8 mi (14.2 km) southwest of Uvalde, 18.2 mi (29.3 km) downstream from West Nucces River, and at mile 366.0 (588.9 km).

DRAINAGE AREA .-- 1,947 mi2 (5,043 km2).

PERIOD OF RECORD.--April 1939 to current year. October 1927 to April 1939, published as "near Uvalde"; records equivalent only during periods of floodflow.

REVISED RECORDS . -- WSP 1732: 1956 (M) .

GAGE.--Water-stage recorder. Datum of gage is 796.12 ft (242.657 m) National Geodetic Vertical Datum of 1929.
Oct. 4, 1927, to Apr. 30, 1939, water-stage recorder at site 6.2 mi (10.0 km) upstream at different datum.

REMARKS.--Records good. Part of flow of Nueces River enters Edwards and associated limestones in the Balcones Fault Zone which crosses basin downstream from Laguna (station 08190000) and upstream from this station. At low stage, most of headwater flow enters this formation. Many small diversions above station for irrigation. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--41 years, 114 ft3/s (3.228 m3/s), 82,590 acre-ft/yr (102 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 189,000 ft 3 /s (5,350 m 3 /s) Sept. 24, 1955, gage height, 24.61 ft (7.501 m), from floodmark, from rating curve extended above 34,000 ft 3 /s (963 m 3 /s) on basis of conveyance study and slope-area measurement of peak flow; no flow at times in 1951 57.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1836, 40.4 ft (12.31 m) June 14, 1935, from floodmark discharge at former site, 616,000 ft 3 /s (17,400 m 3 /s), by slope-area measurement. Large floods also occurred in 1901 and 1913, stages unknown.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 189 ft 3 /s (5.35 m 3 /s) May 15 at 0430 hours, gage height, 4.30 ft (1.311 m), no peak above base of 250 ft 3 /s (7.08 m 3 /s); minimum daily, 7.4 ft 3 /s (0.21 m 3 /s) Aug. 6, 7.

DISCHARGE IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

		DISCHA	RGE, IN	CORIC	FEET	PER SE ME	COND, WATER	C YEAR O	TOBER 19	79 10 SEE	TEMBER IS	980	
DAY	OCT	NOV	DEC	JAN		FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	29 29 29 28 28	23 23 22 22 22	23 23 23 23 23	22 22 22 23 23		22 22 22 22 22 22	19 19 20 19 18	17 17 17 17 17	16 16 17 24 17	16 16 15 15	12 12 11 9.7 9.8	7.4 8.3 8.1 7.5 7.7	12 12 13 13 14
6 7 8 9	28 29 28 28 27	22 22 23 22 22	23 23 23 23 23 23	23 23 23 23 23		22 22 22 21 21	18 19 18 18	17 17 17 16 17	16 15 16 17 16	15 15 15 15 15	9.7 9.2 9.1 9.5 9.5	7.4 7.4 7.5 7.6	14 14 13 14 14
11 12 13 14 15	27 27 28 28 27	22 22 22 21 21	23 23 23 23 23	22 22 22 22 22 22		21 22 22 22 22 22	19 18 17 18 18	17 17 16 16 17	16 15 16 26 61	15 14 14 14 14	9.5 9.5 9.3 8.5 8.4	22 14 12 11	14 14 15 14 15
16 17 18 19 20	27 27 26 26 26 26	21 26 25 23 23	22 22 23 23 23	22 23 23 23 23		22 21 22 21 21	18 17 18 18 17	17 17 17 17 17	32 23 18 17 16	14 13 13 13 13	8.4 8.3 8.1 8.2 8.1	11 10 10 10 11	15 14 14 14 14
21 22 23 24 25	25 24 24 24 24	23 23 23 24 24	23 23 22 22 22 22	23 22 22 22 22		21 21 21 21 21	17 17 17 16 17	17 17 16 16	15 15 15 15	13 12 12 12 12	8.1 8.2 8.4 8.4	11 11 11 11 11	14 14 14 14 14
26 27 28 29 30 31	24 24 23 24 22 22	23 23 23 23 23	23 23 23 22 22 22	22 22 22 23 23 23 22		20 20 20 20	18 18 18 16 16	15 15 16 16 16	15 46 23 18 17 16	12 12 12 12 12	8.4 8.3 7.9 7.6 7.6 7.5	11 11 12 12 12 12	14 14 14 15 15
TOTAL MEAN MAX MIN AC-FT	812 26.2 29 22 1610	681 22.7 26 21 1350	705 22.7 23 22 1400	696 22.5 23 22 1380		619 21.3 22 20 1230	551 17.8 20 16 1090	496 16.5 17 15 984	620 20.0 61 15 1230	410 13.7 16 12 813	276.6 8.92 12 7.5 549	328.9 10.6 22 7.4 652	418 13.9 15 12 829
CAL YR WTR YR				70.4 18.1	MAX MAX	2030 61	MIN 21 MIN 7.4	AC-FT AC-FT	50970 13120				

08193000 NUECES RIVER NEAR ASHERTON, TX

LOCATION.--Lat 28°30'00", long 99°40'54", Dimmit County, Hydrologic Unit 12110103, on right bank 28 ft (9 m) downstream from bridge on Farm Road 190, 0.1 mi (0.2 km) downstream from El Moro Creek, 5.8 mi (9.3 km) northeast of Asherton, and at mile 288.3 (463.9 km).

DRAINAGE AREA . -- 4,082 mi2 (10,572 km2).

PERIOD OF RECORD .-- October 1939 to current year.

REVISED RECORDS .-- WSP 1118: 1944.

GAGE.--Water-stage recorder. Datum of gage is 470.92 ft (143.536 m) National Geodetic Vertical Datum of 1929. Prior to Feb. 2, 1940, nonrecording gage at same site and datum.

REMARKS.--Records good. Part of flow of the Nueces River and its headwater tributaries enters the Edwards and associated limestones in the Balcones Fault Zone, which crosses basin between Laguna and Uvalde (stations 08190000 and 08192000, respectively). Considerable loss of flow into various permeable formations occurs downstream from the Balcones Fault Zone. Since March 1948, flow slightly regulated by Upper Nueces Reservoir, capacity 7,590 acre-ft (9.36 hm³), 13 mi (21 km) upstream. Many small diversions above station for irrigation. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--41 years, 181 ft3/s (5.126 m3/s), 131,100 acre-ft/yr (162 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 28,500 ft 3 /s (807 m 3 /s) Oct. 6, 1959, gage height, 30.88 ft (9.412 m); no flow for many days each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1900, 33 ft (10.1 m) June 17, 1935; flood of June 30, 1913, reached about same stage, from information by local residents.

EXTREMES FOR CURRENT YEAR.-Peak discharges above base of 2,000 ft¹/s (56.6 m³/s) and maximum (*):

Date	Time	Disch	arge	Gage	height
		(ft^3/s)	(m^3/s)	(ft)	(m)
May 16	1100	4,270	121	22.31	6.800
May 29	1400	*4,840	137	23.69	7.221

DISCHARGE IN CHRIS EFET BER SECOND MATER VEAR OCTORER 1070 TO SERTEMBER 1000

Minimum discharge, no flow at times.

		DISC	HARGE, IN	CUBIC FE		COND, WAT EAN VALUES		OCTOBER 1	979 TO SEP	rember 1	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.22 .44 .29 .06	.07 .41 .15 .02	3.9 1.3 .18 .15	.50 .36 .12 .03	.00 .00 .00 .00	3.5 .66 .02 .45 3.3	.93 .86 .38 .48	.00 .00 .00	1170 293 159 101 67	.00 .00 .00	.00 .00 .00	.00 .00 .00
6 7 8 9	.17 .39 .68 .33	.01 .01 .00 .00	.61 .16 .02 .01	.01 .01 .00 1.0 2.5	.00 .00 .00	3.6 4.7 1.9 1.1 2.0	3.3 1.7 2.9 1.3	.00 .00 3.7 8.8 2.8	46 33 23 16	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00
11 12 13 14	.13 .02 .09 .27	.31 .34 .41 .71	.00 .32 .67 .27	2.1 3.2 1.1 .16 .08	.79 .25 .57 1.5	1.0 1.4 1.1 3.1 5.1	.00 .00 .00	.55 .09 .01 3.9	7.5 3.9 1.8 .86	.00 .00 .00	2.3 35 292 152 108	.00 .00 .00
16 17 18 19 20	.45 .24 .57 .48	.69 1.2 1.1 .67	.02 .01 .01 .00	.18 .18 .17 .15	1.2 .83 .15 .02	7.7 3.4 1.6 7.4 9.9	.00 .00 .00	3820 1130 82 22 8.7	.26 .17 .06 .01	.00 .00 .00	192 164 91 64 30	.00 .00 .00
21 22 23 24 25	.20 .42 .35 .31	1.2 .81 1.0 1.6 .65	.00 .00 .00	.02 .01 .01 .00	.00 .10 1.0 2.1 .42	8.8 12 4.4 .44 .06	.00 .00 .00	4.0 1.9 .95 .52 .43	.01 .01 .01 .00	.00 .00 .00	31 13 15 10 7.4	.00 .00 .00
26 27 28 29 30 31	.15 .33 .32 .34 .35	.02 .22 2.4 3.1 3.2	.00 .00 .00 .01 .18	.00 .00 .00 .00	2.1 3.6 3.1 3.2	2.1 1.3 .66 .17 .39 .85	.00 .00 .00	315 3070 4760 4480 3160	.00 .00 .00 .00	.00 .00 .00 .00	4.1 1.6 .54 .15 .02	.00 .00 .00
TOTAL MEAN MAX MIN AC-FT	8.62 .28 .68 .02	22.00 .73 3.2 .00 44	9.44 .30 3.9 .00	11.95 .39 3.2 .00 24	22.84 .79 3.6 .00 45	94.10 3.04 12 .02 187	13.30 .44 3.3 .00 26	21935.80 708 4760 .00 43510	1933.99 64.5 1170 .00 3840	.00 .000 .00	1213.80 39.2 292 .00 2410	.00 .000 .00

WTR YR 1980 TOTAL 25265.84 MEAN 69.0 MAX 4760 MIN .00 AC-FT 50110

08194000 NUECES RIVER AT COTULLA, TX

LOCATION.--Lat 28°25'34", long 99°14'23", La Salle County, Hydrologic Unit 12110105, on left bank at downstream side of bridge on U.S. Highway 81, 0.4 mi (0.6 km) upstream from Missouri Pacific Railroad Co. bridge, 0.8 mi (1.3 km) southwest of Cotulla, 1.0 mi (1.6 km) upstream from Lind Dam, and at mile 235.7 (379.2 km).

DRAINAGE AREA .-- 5,260 mi2 (13,620 km2).

PERIOD OF RECORD.--November 1923 to current year. November 1923 to September 1926 monthly discharge only, published in WSP 1312; figures of daily discharge for Oct. 31, 1923, to Sept. 30, 1926, published in WSP 588, 608, and 628, have been found to be unreliable and should not be used. Gage-height records collected in this vicinity in 1914-17 and since 1922 are contained in reports of the National Weather Service.

REVISED RECORDS. -- WSP 1732: 1957(M). See PERIOD OF RECORD.

GAGE.--Water-stage recorder. Datum of gage is 368.08 ft (112.191 m) National Geodetic Vertical Datum of 1929.
Oct. 31, 1923, to Aug. 3, 1924, nonrecording gage at approximate site of present gage at datum 7.28 ft (2.219 m) higher. Aug. 4, 1924, to Nov. 19, 1934, nonrecording gage at site 5,000 ft (1,520 m) downstream at datum 8.42 ft (2.566 m) higher. Nov. 20, 1934, to July 14, 1938, water-stage recorder, and July 15, 1938, to Apr. 30, 1963, nonrecording gage, at present site and datum.

REMARKS.--Records good except those below 10 ft³/s (0.28 m³/s), which are poor. Part of flow of Nueces River and its headwater tributaries enter the Edwards and associated limestones in the Balcones Fault Zone, which crosses basin between Laguna and Uvalde (stations 08190000 and 08192000, respectively). Considerable loss of flow into various permeable formations occurs downstream from the Balcones Fault Zone. Low flow is slightly regulated by small storage reservoirs above station, with most diverted above station by pumping (see REMARKS for Nueces River near Asherton, station 08193000). An observation of water temperature was made during the year.

AVERAGE DISCHARGE.--56 years (water years 1925-80), 273 ft³/s (7.731 m³/s), 197,800 acre-ft/yr (244 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 82,600 ft³/s (2,340 m³/s) June 18, 1935, gage height, 32.4 ft (9.88 m), from floodmarks, from rating curve extended above 43,000 ft³/s (1,220 m³/s) on basis of slope-area measurement of peak flow; no flow at times each year.

Maximum stage since at least 1879, that of June 18, 1935.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 19, 1899, reached a stage of 29.7 ft (9.05 m), from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 2,500 ft³/s (70.8 m³/s) and maximum (*):

Date	Time	Disch	arge	Gage 1	neight	Date	Time	Disch		Gage	height
		(ft^3/s)	(m^3/s)	(ft)	(m)			(ft^3/s)	(m^3/s)	(ft)	(m)
May 15	1900	2,920	82.7	13.37	4.075	June 1	1200	4,270	121	14.59	4.447
May 18	1400	*5,420	153	15.49	4.721	Aug. 14	1400	2,800	79.3	13.25	4.039

Maximum discharge, no flow most of time.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1979	TO	SEPTEMBER	1980
					MEANT STA	TITEC						

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	4200 3660 2400 1220 271	.00 .00 .00	.00 .00 .00 .00	10 9.0 7.3 6.2 5.2
6 7 8 9	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	128 86 59 44 35	.00 .00 .00	.00 .00 .00	4.1 6.3 4.4 2.9 2.2
11 12 13 14	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 58 1280	27 21 18 17 15	.00 .00 .00	737 404 1090 2590 2330	1.9 1.3 .81 .47 .26
16 17 18 19 20	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	1940 3760 5200 3520 1660	13 11 10 9.7 8.9	.00 .00 .00	1580 871 473 283 161	.12 .04 .01 .00
21 22 23 24 25	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	530 195 116 72 49	7.1 5.1 3.0 1.3	.00 .00 .00	104 70 49 38 29	.00 .00 .00
26 27 28 29 30 31	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	36 59 71 419 1380 3620	.13 .05 .01 .00	.00 .00 .00 .00	21 18 16 15 14	.00 .00 .00
TOTAL MEAN MAX MIN AC-FT	.00 .000 .00	.00 .000 .00	.00 .000 .00	.00 .000 .00	.00 .000 .00	.00 .000 .00	.00 .00 .00 .00	23965.00 773 5200 .00 47530	12270.61 409 4200 .00 24340	.00 .000 .00	10916.00 352 2590 .00 21650	62.51 2.08 10 .00 124

CAL YR 1979 TOTAL 86335.56 MEAN 237 MAX 10500 MIN .00 AC-FT 171200 WTR YR 1980 TOTAL 47214.12 MEAN 129 MAX 5200 MIN .00 AC-FT 93650

08194200 SAN CASIMIRO CREEK NEAR FREER, TX

LOCATION.--Lat 27°57'53", long 98°58'00", Webb County, Hydrologic Unit 12110105, at downstream side of bridge on Farm Road 863, 11.4 mi (18.3 km) upstream from mouth, and 22 mi (35 km) northwest of Freer.

DRAINAGE AREA . - - 469 mi2 (1,215 km2).

PERIOD OF RECORD .-- January 1962 to current year.

GAGE.--Water-stage recorder. Datum of gage is 298 ft (90.8 m) State Department of Highways and Public Transportation datum.

REMARKS .-- Records good. An observation of water temperature was made during the year.

AVERAGE DISCHARGE.--18 years, 65.0 ft³/s (1.841 m³/s), 1.88 in/yr (48 mm/yr), 47,090 acre-ft/yr (58.1 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 82,000 ft³/s (2,320 m³/s) Oct. 17, 1971, gage height, 26.87 ft (8.190 m), from rating curve extended above 21,000 ft³/s (595 m³/s) on basis of flow-through-culverts, contracted-opening, and flow-over-road determination of 82,000 ft³/s (2,320 m³/s); no flow for many days each year.

Maximum stage since at least 1946, that of Oct. 17, 1971.

EXTREMES OUTSIDE PERIOD OF RECORD.--Second highest stage, 26 ft (7.9 m), discharge $65,200 \text{ ft}^3/\text{s}$ $(1,850 \text{ m}^3/\text{s})$, occurred in 1954, from information by State Department of Highways and Public Transportation.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 7,290 ft $^3/s$ (206 m $^3/s$) Aug. 12 at 1600 hours, gage height, 21.75 ft (6.629 m), no other peak above base of 500 ft $^3/s$ (14.2 m $^3/s$); no flow for many days.

				ME	AN VALUE	S					
OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
.00	.00	.00	.00	.00	.00	.00	.00	.80	.00	.00	29
		.00	.00	.00	-00	.00	.00	.26	.00	.00	8.6
											1.9
											.85
.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.55
.00	.00	-00	-00	-00	.00	.00	.00	.00	.00	.00	.42
											.36
											.36
											.52
.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	204	.36
0.0	0.0	0.0	0.0	.00	.00	-00	-00	3.6	.00	1620	.31
											.31
											.31
											.26
											.26
.00	.00	.00	.00	.00	.00	.00	.00	.10	.00	00	.20
.00	.00	.00	.00	.00	.00	.00	.00	.03	.00	35	.26
											.26
											.26
.00	.00	.00	.00								.26
.00	.00	.00	.00	.00	.00	.00	233	.00	.00	2.8	.26
.00	.00	.00	.00	-00	.00	.00	101	.00	.00	1.8	.26
.00	.00	.00	.00	.00	.00	.00	100	.00			.26
			.00	.00	.00	.00	25	.00	54	.99	.26
							4.3	.00	5.7	.81	.26
.00	.00	.00	.00	.00	.00	.00	3.8	.00	.43	.70	.26
-00	.00	-00	.00	-00	-00	.00	2.0	.00	.11	.61	.26
											.26
											17
											5.9
											.50
.00		.00	.00		.00		2.4		.00	90	
.00	.00	.00	.00	.01	.00	.00	543.39	27.09			70.89
.000	.000			.000							2.36
.00	.00	.00	.00	.01		.00					29
.00	.00	.00	.00	.00	.00	.00					-26
	.00	.00	.00	.02	.00	.00	1080	54	120	23180	141
	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00	.00	.00	.00	.00	.00	.00	.00	.00	100

CAL YR 1979 TOTAL 8251.86 MEAN 22.6 MAX 1640 MIN .00 AC-FT 16370 WTR YR 1980 TOTAL 12390.37 MEAN 33.9 MAX 5530 MIN .00 AC-FT 24580

08194500 NUECES RIVER NEAR TILDEN, TX

LOCATION.--Lat 28°18'31", long 98°33'25", McMullen County, Hydrologic Unit 12110105, on right bank at downstream side of pier of bridge on State Highway 16, 1.8 mi (2.9 km) upstream from Kings Branch, 10.5 mi (16.9 km) south of Tilden, and at mile 141.2 (227.2 km).

DRAINAGE AREA. -- 8,192 mi2 (21,217 km2).

PERIOD OF RECORD .-- November 1942 to current year.

REVISED RECORDS .-- WSP 1512: 1947. WSP 1732: 1951(M).

GAGE .-- Water-stage recorder. Datum of gage is 183.5 ft (55.93 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Part of flow of Nueces River and its headwater tributaries enters Edwards and associated limestones in the Balcones Fault Zone, which crosses basin between Laguna and Uvalde (stations 08190000 and 08192000, respectively). Some loss of flow into various permeable formations occurs downstream from the Balcones Fault Zone. Some diversions for irrigation above station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--37 years (water years 1944-80), 441 ft³/s (12.49 m³/s), 319,500 acre-ft/yr (394 hm³/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 76,500 ft3/s (2,170 m3/s) Sept. 24, 1967, gage height, 26.57 ft (8.099 m); no flow at times.

Maximum stage since about 1902, that of Sept. 24, 1967. Flood of Oct. 11, 1946, reached a stage of 26.46 ft (8.065 m), discharge 70,000 ft³/s (1,980 m³/s).

EXTREMES OUTSIDE PERIOD OF RECORD.--Floods in June 1935 reached a stage of 23.7 ft (7.22 m) and in July 1942 about 22 ft (6.7 m), from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges peak above base of 1,800 ft3/s (51.0 m3/s) and maximum (*):

Date	Time	Disch	arge	Gage	height
		(ft^3/s)	(m^3/s)	(ft)	(m)
May 26	1000	2,540	71.9	16.15	4.923
June 9	1400	2,730	77.3	16.39	4.996
Aug. 15	1700	*13,800	391	20.62	6.285

Minimum discharge, no flow at times.

		DISCHA	RGE, IN	CUBIC FE		SECOND, WA		OCTOBER	1979 TO S	EPTEMBER	1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	.13 .12	.00	.00	.04	.02		.01	.00		3.1	.00	201 93
3	.13	.00	.00	.05	.05	.00	.02	.00	912	2.7	.00	35
4	.08	.00	.01	.04	.05		.00	.00		2.4	.00	18
5	.05	.00	.01	.04	.05	.00	.00	.00	1180	1.6	.00	11
6	.04	.00	.03	.05	.06		.00	.00		1.2	.00	7.8
7	.03	.00	.03	.05	.08		.00			1.0	.00	6.2
8	.06	.00	.03	.05	.11		.00	.00		.94	.00	8.4
10	.06	.00	.03	.06	.09		.00	.00		.75	19	470
11	.01	.00	.06	.09	.11		.00	.00		.74		177
12	.02	.00	.06	.11	.26		.00	.00		.60	2300	84
13 14	.03	.00	.13	.13	.26		.00	24	68	.55	1640 1560	56 38
15	.03	.00	.13	.06	.06		.00	356	38		10600	22
16	.02	.00	.09	.06	.02		.00	317	26		10100	13
17	.02	.00	.07	.06	.00		.00	108	15	.28	5620	8.2
18	.01	.00	.06	.05	.00		.00	384	11	.20	3770	5.0
19	.00	.01	.07	.05	.00		.00	977	8.4		3030	3.2
20	.00	.01	.09	.14	.00	.09	.00	1050	7.9	.00	2590	2.1
21	.00	.01	.13	.42	.00		.00		7.6		2290	1.5
22	.00	.00	.16	.65	.01		.00	1230 1500	5.6		1970 718	1.1
23 24	.00	.00	.12	.80	.03		.00	1640	4.4		158	.91
25	.00	.01	.06	.06	.01		.00	2130	4.0		76	.91
26	.00	.01	.06	.04	.00		.00	2490	3.9		59	.82
27	.00	.00	.06	.01	.00		.00		3.7		42	1.0
28	.00	.00	.08	.00	.00		.00	318	3.6		30 23	1.3
29 30	.00	.00	.09	.00	.00		.00	175 263	3.4		137	1.2
31	.00		.05	.03			.00	292	3.3		129	1.3
TOTAL	.91	.05	2.01	3.57	1.47	1.05	.05	15884.00	15265.0	24.84	49681.00	1476.79
MEAN	.029	.002	.065	.12	.051		.002	512			1603	49.2
MAX	.13	.01	.16	.80	.26		.02	2490			10600	470
MIN	.00	.00	.00	.00	.00		.00	.00			.00	.82
CFSM	.000	.000	.000	.000	.000	.000	.000	.06	.06	.000	.20	.006
IN.	.00	.00	.00	.00	.00		.00	.07			.23	.01
AC-FT	1.8	.10	4.0	7.1	2.9	2.1	.10	31510	30280	49	98540	2930
CAL YR WTR YR					1AX 75	50 MIN 00 MIN		SM .03 SM .03		AC-FT 160 AC-FT 160	6300 3300	

427

08195000 FRIO RIVER AT CONCAN, TX

LOCATION.--Lat 29°29'18", long 99°42'16", Uvalde County, Hydrologic Unit 12110106, on left bank 0.7 mi (1.1 km) southeast of Concan Post Office, 15 mi (24 km) upstream from Dry Frio River, and 224.1 mi (360.6 km) upstream from mouth.

DRAINAGE AREA. -- 405 mi2 (1,049 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1923 to September 1929, October 1930 to current year.

REVISED RECORDS.--WSP 1342: Drainage area. WSP 1512: 1926, 1931-32, 1934(M), 1935-36. WSP 1712: 1958. WSP 1923: 1954(M), 1957(M).

GAGE.--Water-stage recorder. Datum of gage is 1,203.71 ft (366.891 m) National Geodetic Vertical Datum of 1929. Oct. 26, 1923, to July 28, 1924, nonrecording gage at site 86 ft (26 m) upstream at datum 5,08 ft (1.548 m) lower. July 29, 1924, to Oct. 3, 1930, nonrecording gage, and Oct. 4, 1930, to May 18, 1939, water-stage recorder, at site 130 ft (40 m) downstream at present datum.

REMARKS .-- Water-discharge records good. Many small diversions for irrigation above station.

AVERAGE DISCHARGE.--55 years (water years 1925-29, 1931-80), 109 ft³/s (3.087 m³/s), 3.65 in/yr (93 mm/yr), 78,970 acre-ft/yr (97.4 hm³/yr).

EXTREMES FOR PERIOD OF RECORD,--Maximum discharge, $162,000 \text{ ft}^3/\text{s}$ (4,590 m³/s) July 1, 1932, gage height, 34.44 ft (10.497 m), from floodmarks, from rating curve extended above 44,000 ft³/s (1,250 m²/s) on basis of flow-over-dam measurement of $56,600 \text{ ft}^3/\text{s}$ (1,600 m²/s) and slope-area measurement of $162,000 \text{ ft}^3/\text{s}$ (4,590 m³/s); no flow Aug. 5, 1956, to Jan 6, 1957.

Maximum stage since at least 1869, that of July 1, 1932.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 500 $\mathrm{ft^3/s}$ (14.2 $\mathrm{m^3/s}$) and maximum (*):

Date			+ Lule	Disch	arge	Gage	height		
				(ft^3/s)	(m^3/s)	(ft)	(m)		
	Sept.	7	1800	23,800	674	14.62	4.456		
	Sept.	29	1200	*28,100	796	16.02	4.883		

Minimum discharge, 11 ft 3 /s (0.31 m 3 /s) Aug. 5.

		DISCHA	ARGE, IN	N CUBIC 1	FEET PER	SECOND, WAT MEAN VALUES	ER YEAR O	CTOBER 1979	TO SEPTE	MBER 198	0	
DAY	OCT	NOV	DEC	JAN	FEI	3 MAR	APR	MAY	JUN	JUL	AUG	SEP
1	54	47	56	63	66		52	38	52	25	1.3	21
2	54	48	57	63	67		52	47	49	25	13	20
3	53	47	58	62	6.5		51	49	49	25	13	18
2 3 4	52	44	58	63	6.5		50	48	47	26	14	18
5	52	44	58	63	65	5 53	50	43	45	25	12	17
6	52	47	58	63	6.		49	41	45	25	13	16
7	51	47	58	63	66	5 54	50	40	45	25	13	4870
8	52	48	58	63	6		49	42	44	25	13	1230
9	51	47	58	63			47	38	43	23	13	342
10	50	47	60	63	64	4 53	47	36	46	21	17	229
11	50	46	60	63	6.5	5 51	45	37	43	19	116	203
12	51	48	62	63			44	37	42	18	42	174
13	50	49	63	62			47	54	40	18	29	161
14	52	48	63	62		3 52	48	45	39	16	27	148
15	51	48	63	63	6.	3 52	47	82	38	16	27	137
16	51	49	61	63		3 52	44	96	38	16	27	129
17	51	66	60	75			43	70	35	15	32	121
18	51	71	60	68			41	62	33	15	203	114
19	50	58	60	67			39	68	31	14	85	110
20	50	57	60	66	- 61	0 47	40	59	31	15	60	105
21	49	60	60	66	58	8 48	41	61	30	17	49	102
22	48	54	60	69			39	61	30	16	41	98
23	48	54	62	67	5		40	55	31	18	37	95
24	49	55	63	67	5	8 44	40	55	31	16	32	92
25	49	58	64	67	5	8 48	48	53	30	15	31	89
26	50	58	63	65			43	52	30	15	30	87
27	49	58	63	66			43	59	25	15	27	97
28	49	60	63	67			42	53	26	18	27	101
29	48	58	63	67			37	52	25	23	24	6270
30	47	57	63	67			35	51	27	18	24	694
31	46		64	66		- 52		50		14	22	777
TOTAL	1560	1578	1879	2015	179		1343	1634	1120	592	1126	15908
MEAN	50.3	52.	60.6	65.0	61.		44.8	52.7	37.3	19.1	36.3	530
MAX	54	71	64	75			52	96	52	26	203	6270
MIN	46	44	56	62			35	36	25	14	12	1.31
CFSM	.12	.13	.15	.16			.11	.13	.09	.05	.09	
IN.	.14	.14	.17	.19		6 .15	.12	.15	.10	.05	.10	1.46
AC-FT	3090	3130	3730	4000	356	0 3200	2660	3240	2220	1170	2230	31550
CAL YR			MEAN	128	MAX 27		CFSM .3		AC-FT	92990		
WTR YR	1980 TOTAL	32163	MEAN	87.9	MAX 62	70 MIN 12	CFSM .2	2 IN 2.95	AC-FT	63800		

08195000 FRIO RIVER AT CONCAN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: January 1974 to current year.

DATE	T	IME	STREA FLOW INSTA TANEO (CFS	M- C I, D N- A OUS (M	PE- CIFIC CON- OUCT- NCE CICRO- THOS)	PH (UNITS)	A' W	MPER- TURE, ATER EG C)	(P IN CO	LOR LAT- UM BALT ITS)	1	CUR- BID- LTY NTU)	SC	GEN, DIS- DLVED MG/L)	SO (P C SA	GEN, IS- LVED ER- ENT TUR- ION)	DEM BIO UNI 5	GEN AND, CHEM NHIE DAY
JAN 09	1	116		60	404	8.3	2	11.5		0		.20		10.4		98		.3
MAY 13		310		37	377	8.0		25.0		0		.60		8.1		103		1.2
JUL 30		550		17	362	8.		32.0		0		1.0		10.0		141		1.9
		COL:	1,	COLI- FORM, FECAL,	STRE TOCOC FECA	CCI	ARD-	HARD NESS		CALC	I UM	MAG SI	NE- UM,	SODI	UM.	SOD	IUM D-	
	ATE	IMMI (COLS PER 100 N	ED. S.	0.7 UM-MF COLS./ 00 ML)	KF AC (COLS	GAR NI	ESS MG/L AS ACO3)	NONCAL BONAT (MG/ CACO	R- E L	DIS- SOLV (MG) AS (VED /L		S- VED /L	DIS- SOLVI (MG, AS I	ED /L	SOR! TIC RAT:	P- NC	
	9	I	32	К6		К9	200		15	55	5	1	4		5.8		.2	
	3		>65	K65		31	180		16	49	9	1	4	-	7.3		.2	
3 3	L 0	>1	140	140	F	(15	160		5	43	3	1	3	3	7.7		.3	
D	ATE	POTA SIU DIS SOLV (MG, AS F	JM, B S- B /ED /L	CAR- ONATE (MG/L AS HCO3)	CAR- BONAT (MG/ AS CO	TE SC	LFATE IS- DLVED MG/L SO4)	CHLORIDE DIS- SOLV (MG/) AS C	ED L	FLUC RIDE DIS SOLV (MG) AS H	E, S- ZED /L	SILI DIS SOL (MG AS SIO	VED /L	SOLIT SUM (CONST TUENT DIS SOLV (MG,	OF TI- TS, S- VED	SOLIN RESIN AT 10 DEG. SUS- PENDI (MG)	DUE DS C, ED	
JA 0	N 9		.8	220		0	11	12			.2		9.7		218		6	
MA	Y 3		.9	200		0	15	13			.1	1			209		15	
JU		19	.1	190		0	14	14			.2	1	4		201		1	
D	ATE	SOLII VOLA TILE SUS- PENDE (MG)	A- E, N	NITRO- GEN, ITRATE TOTAL (MG/L AS N)	GEN	TE NOZ L TO	TRO- GEN, 2+NO3 OTAL MG/L S N)	NITRO GEN AMMON TOTA (MG/) AS N	ÍA L	NITE GEN ORGAN TOTA (MG/ AS N	VIC AL VL	NITR GEN, MONI ORGA TOT (MG AS	AM- A + NIC AL /L	PHOS PHORI TOTA (MG, AS I	JS, AL /L	CARBO ORGAN TOTA (MG, AS O	NIC AL /L	
JA 0	N 9		6	.69		.02	.71	.(01		.36		.37	.(010	4	4.7	
	3		2	.29		.01	.30	. (01		.39		.40	.(030	- 19	1.7	
JU 3	L 0		0	.28		.01	.29	. (8		.79		.87	.(010	1.2	2	
		DAT	TE.	TIME	ARSEN DIS SOLV (UC/ AS A	ED SOI	RIUM, S- VED JG/L S BA)	CADMII DIS- SOLVI (UG/I AS CI	ED	CHRO MIUN DIS- SOLV (UG/ AS C	1, ZED	COPP DIS SOL (UG AS	VED /L	IRON DIS SOLV (UG) AS I	ED L			
		JAN 09.		1116		1	30		(1		0		0		(10			
		JUL 30.		1550		1	30		(1		10		0		10			
			DAT JAN 09. JUL	L S (E A		MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MER I SO SO (1	RCURY DIS- DLVED UG/L 5 HC)	SEI NII Di SOI (UC	IS- LVED G/L SE)	SC (U AS	VER, DIS- DLVED DG/L AG)	SO (U					
			30.		0	<1		.0		0		0		<3				

429

08195000 FRIO RIVER AT CONCAN, TX--Continued

DATE	TIME	PCB, TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)
JAN 09	1116	.0	.00	.00	.0	.00	.00	.00	.00
JUL	1110	.0	.00	.00	.0	.00	.00	.00	.00
30	1550	.0	.00	.00	.0	.00	.00	.00	.00
DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)
JAN	.00	.00	.00	.00	.00	.00	.00	.00	.00
09 JUL	.00	.00	.00	.00	.00	.00	.00	.00	.00
30	.00	.00	.00	.00	.00	.00	.00	.00	.00
DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
JAN 09	.00	.00	.00	.00	0	.00	.00	.00	.00
JUL 30	.00	.00	.00	.00	0	.00	.00	.05	.00

08196000 DRY FRIO RIVER NEAR REAGAN WELLS, TX

LOCATION.--Lat 29°30'16", long 99°46'52", Uvalde County, Hydrologic Unit 12110106, on right bank 2.3 mi (3.7 km) upstream from bridge on U.S. Highway 83, 3.1 mi (5.0 km) upstream from Rocky Creek, and 4.3 mi (6.9 km) southeast of Reagan Wells.

DRAINAGE AREA .-- 117 mi2 (303 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- September 1952 to current year.

REVIST: " NRDS.--WSP 1712: 1953. WSP 1923: 1955(M).

GAGE.--Water-stage recorder. Datum of gage is 1,335.2 ft (406.97 m) State Department of Highways and Public Transportation datum.

REMARKS.--Water-discharge records good. Several small diversions above station.

AVERAGE DISCHARGE.--28 years, 34.1 ft³/s (0.966 m³/s), 3.96 in/yr (101 mm/yr), 24,710 acre-ft/yr (30.5 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 123,000 ft 3 /s (3,480 m 3 /s) Aug. 13, 1966, gage height, 27.6 ft (8.41 m), from floodmark, from rating curve extended above 900 ft 3 /s (25.5 m 3 /s) on basis of slope-area measurements of 11,400, 30,700, 64,700, and 123,000 ft 3 /s (323, 869, 1,830, and 3,480 m 3 /s); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1875 occurred in 1880, about 33 ft (10.1 m). Flood of June 14, 1935, reached a stage of 26.0 ft (7.92 m), discharge at site 2.6 mi (4.2 km) upstream, $64,700 \text{ ft}^3/\text{s}$ (1,830 m³/s), and that of July 1, 1932, reached a stage of 23 ft (7.0 m), discharge at site 2.0 mi (3.2 km) upstream, 30,700 ft $^3/\text{s}$ (869 m $^3/\text{s}$), from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 200 ft3/s (5.66 m3/s) and maximum (*):

Date		Time	Disch	arge	Gage	height
			(ft^3/s)	(m3/s)	(ft)	(m)
May	15	1530	373	10.6	3.26	0.994
Aug.	11	0400	259	7.33	3.02	.920
Sept.	7	1930	*5,070	144	9.65	2.941

Minimum discharge, 0.80 ft³/s (0.023 m³/s) Aug. 9.

		DISC	CHARGE, IN	CUBIC FE	EET PER SI	ECOND, WATE	TER YEAR (OCTOBER 19	979 TO SEI	PTEMBER 1	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5.1 5.1 4.8 5.4 5.2	6.0 6.3 6.3 6.4 6.6	7.3 7.5 7.5 7.5 7.3	8.6 8.6 8.7 8.6	8.3 8.2 8.2 8.1 8.2	6.6 6.4 6.3 6.5 6.6	9.4 9.4 9.1 8.3 7.8	3.7 3.9 6.8 8.6 7.2	8.5 6.7 4.7 4.5 4.1	2.5 2.4 2.4 2.3 2.3	1.8 1.8 1.6 1.7	3.3 3.0 2.9 2.8 2.8
6 7 8 9 10	5.4 5.8 5.6 5.5 5.4	6.8 6.9 6.9 7.1 7.2	7.2 7.5 7.4 7.5 7.6	8.8 8.7 8.6 8.6 8.5	7.9 7.9 8.1 8.0 7.9	6.8 6.9 6.9 6.8 7.0	7.4 7.0 6.5 6.2 6.0	6.3 5.8 6.2 6.0 5.5	3.7 4.3 5.1 5.1 5.0	2.3 2.3 2.3 2.2 2.1	1.2 1.2 1.2 1.0 1.1	2.8 538 258 25 9.2
11 12 13 14 15	5.3 5.3 5.4 5.6	7.4 7.5 7.5 7.5 7.5	7.9 8.5 8.6 8.4 8.2	8.6 8.4 8.1 8.0 8.0	7.9 8.2 8.2 8.2 8.3	6.9 6.9 6.9 6.9	6.1 6.3 6.5 6.3 6.0	5.5 5.6 6.8 9.7 95	4.0 4.1 4.8 4.3 3.7	2.1 2.1 1.9 1.1	67 8.6 6.5 5.7 5.5	7.4 7.1 7.3 6.9 7.1
16 17 18 19 20	5.6 5.6 5.5 5.3 5.0	7.7 11 12 9.0 7.8	8.2 8.2 8.2 8.2 8.0	8.2 9.8 12 10	8.5 8.2 8.1 8.0 7.9	7.1 7.3 7.2 6.9 7.1	5.9 5.9 5.7 5.5 5.5	58 23 17 16 13	3.7 2.8 2.3 2.4 2.7	1.0 .98 .94 1.2 1.5	5.5 5.4 5.1 4.9 4.7	6.8 6.6 6.6 6.5 6.5
21 22 23 24 25	4.9 4.8 4.8 4.9	8.4 7.9 7.9 8.1 7.9	8.2 8.4 8.9 8.7 8.6	10 11 10 9.7 9.4	7.6 7.2 6.9 6.9 6.4	6.7 6.9 7.4 7.1 7.3	5.4 5.4 5.5 5.0 5.6	9.5 8.8 8.5 8.2	3.1 2.7 2.7 2.6 2.5	1.5 1.6 1.4 1.5	4.5 4.4 4.5 4.4 4.2	6.6 6.5 6.5 6.5 6.6
26 27 28 29 30 31	5.1 5.2 5.3 5.6 5.7 6.0	7.7 7.3 7.3 7.2 7.2	8.4 8.6 9.0 9.3 9.0 8.6	9.2 9.0 9.0 9.4 9.1 8.9	6.3 6.6 6.6 6.6	7.2 9.9 12 10 9.7 9.4	5.0 4.3 3.9 3.7 3.4	8.6 19 11 9.1 8.6 8.9	2.0 1.6 1.5 1.9 2.5	1.5 1.5 1.7 1.7 1.7	3.9 3.8 3.7 3.6 3.6 3.6	6.7 7.6 8.0 10
TOTAL MEAN MAX MIN CFSM IN. AC-FT	164.4 5.30 6.0 4.8 .05 .05	228.3 7.61 12 6.0 .07 .07 453	252.4 8.14 9.3 7.2 .07 .08 501	282.1 9.10 12 8.0 .08 .09 560	223.4 7.70 8.5 6.3 .07 .07 443	230.1 7.42 12 6.3 .06 .07 456	184.0 6.13 9.4 3.4 .05 .06 365	420.8 13.6 95 3.7 .12 .13 835	109.6 3.65 8.5 1.5 .03 .03 217	54.32 1.75 2.5 .94 .02 .02 108	177.2 5.72 67 1.0 .05 .06 351	991.6 33.1 538 2.8 .28 .32 1970

CAL YR 1979 TOTAL 14326.60 MEAN 39.3 MAX 1480 MIN 4.8 CFSM .34 IN 4.56 AC-FT 28420 WTR YR 1980 TOTAL 3318.22 MEAN 9.07 MAX 538 MIN .94 CFSM .08 IN 1.06 AC-FT 6580

08196000 DRY FRIO RIVER NEAR REAGAN WELLS, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: January 1974 to current year.

DATE	TIME	STRE FLO INST TANE (CE	OW. CAN-	SPE- CIFT CON- DUCT ANCI (MICH MHOS	IC - - - - - - - - - - - - - - - - - - -	PH UNITS	A W	MPER- TURE, ATER EG C)	(F IN	DLOR PLAT- IUM DBALT HITS)	BI	JR- ID- TY	SO	GEN, IS- LVED G/L)	SO (P	GEN, DIS- DLVED PER- CENT TUR- TION)	DEM BIO UNI 5	GEN AND, CHEM NHIB DAY /L)
JAN 09	1343		8.5		377	8.	1	13.0		0		.10		10.4		102		.3
MAY 13	0953		5.2		377	7.		22.5		0		.50		7.7		93		1.5
JUL 30	1412		1.7		392	8.		33.5		0	1	.4		10.0		144		1.0
	1									,								
DATE	COL FOR TOT IMM (COL PE 100	M, AL, ED. S. R	COLI FORM FECA 0.7 UM-M (COLS 100 M	L, I	STREF FOCOCO FECAL CF AGA (COLS. PER 100 ML	R N	ARD- ESS MG/L AS ACO3)	HAR NES NONC BONA (MG CAC	S, AR- TE /L	CALCI DIS- SOLV (MG/ AS C	ED L	MAG SI DI SOL (MG AS	UM, S- VED /L	SODII DIS- SOLVI (MG, AS I	ED /L	SOD A SOR TI RAT	D- P- ON	
JAN 09		K20	K	13	K	8	180		18	53		1	2		6.5		.2	
MAY 13		500		80	23		180		15	52		1			6.6		.2	
JUL 30		>36		36		9	180		10	53		1			6.7		.2	
DATE	DI	UM, S- VED /L	BICAR BONAT (MG/ AS HCO3	E L I	CAR- BONATE (MG/L AS CO3	D S	LFATE IS- OLVED MG/L SO4)	CHL RID DIS SOL (MG AS	E, VED /L	FLUO RIDE DIS SOLV (MG/ AS F	ED L	SILI DIS SOL (MG AS SIO	VED /L	SOLII SUM (CONST TUENT DIS SOLV (MG,	OF FI- FS, S- VED	SOLI RESI AT 10 DEG. SUS- PENDI (MG	DUÉ D5 C, ED	
JAN 09		.5	2	00		0	15	1	1		.1		7.9		205		3	
MAY 13		.6		00		0	16	1			.1		9.5		210		29	
JUL 30		.7		10		0	12	1			.2	1			212		0	
30		• /	-	10			12		_				_		212	i de	Ů.	
DATE	SOLI VOL TIL SUS PEND (MG	A- E,	NITR GEN NITRA TOTA (MG/ AS N	TE N L L	NITRO GEN, NITRIT TOTAL (MG/L AS N)	E NO	ITRO- GEN, 2+NO3 OTAL MG/L S N)	NIT GE AMMO TOT (MG AS	N, NIA AL /L	NITR GEN ORGAN TOTA (MG/ AS N	o- ic L L	NITR GEN, MONI ORGAL TOT (MG AS	AM- A + NIC AL /L	PHOS PHORI TOTA (MG, AS I	US, AL /L	CARBO ORGAI TOTA (MG, AS	NIC AL /L	
JAN 09		3		86	.0	2	.88		.03		40		.43		000		3.5	
MAY 13		0		27	.0		.28		.01		30		.31		010		1.2	
JUL 30		0		12	.0		.13		.06	1.			.6		010		9.3	
				A	RSENI		RIUM,	CADM		CHRO MIUM		COPPI		IRON				
	DA	TE	TIM	Е	DIS- SOLVE (UG/L AS AS	D SOI	IS- LVED UG/L S BA)	SOL' (UG AS	VED /L	SOLV (UG/ AS C	ED L	SOLV (UG, AS	VED /L	SOLV (UG/ AS F	ED			
	JAN 09		134	3		0	30		<1		0		0		(10			
	JUL		141	2		1	40		<1		0		0		(10			
		DA	TE	LEAD DIS SOLV (UG/ AS P	ED L	MANGA- NESE, DIS- SOLVEI (UG/L AS MN)	MEH I SO SO (I	RCURY DIS- DLVED JG/L S HG)	NI D SO: (U	LE- UM, IS- LVED G/L SE)	SILV DI SOL (UG AS	S- VED /L	SOI (UC	NC, IS- LVED G/L ZN)				
		JAN 09			0	<1		.2		0		0		<3				
		JUL			0		3	.0		0		0		<3				

08196000 DRY FRIO RIVER NEAR REAGAN WELLS, TX--Continued

DATE	TIME	PCB, TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)
JAN 09	1343	.0	.00	.00	.0	.00	.00	.00	.00
JUL 30	1412	.0	.00	.00	.0	.00	.00	.00	.00
DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UC/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)
JAN 09	.00	.00	.00	.00	.00	.00	.00	.00	.00
JUL 30	.00	.00	.00	.00	.00	.00	.00	.00	.00
DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
JAN 09	.00	.00	.00	.00	0	.00	.00	.00	.00
JUL 30	.00	.00	.00	.00	0	.00	.00	.00	.00

08197500 FRIO RIVER BELOW DRY FRIO RIVER NEAR UVALDE, TX

LOCATION.--Lat 29°14'44", long 99°40'27", Uvalde County, Hydrologic Unit 12110106, on right bank 1.1 mi (1.8 km) upstream from Farm Road 1023, 5.7 mi (9.2 km) downstream from Dry Frio River, 6.3 mi (10.1 km) downstream from bridge on U.S. Highway 90, and 7.2 mi (11.6 km) northeast of Uvalde.

DRAINAGE AREA. -- 661 mi² (1,712 km²).

PERIOD OF RECORD.--September 1952 to current year. Sum of records published as Frio River at Knippa and Dry Frio River at Knippa for period September 1952 to September 1953 is equivalent to record for this station.

GAGE.--Water-stage recorder. Datum of gage is 882.47 ft (268.977 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Part of flow of Frio River enters the Edwards and associated limestones in the Balcones Fault Zone, which crosses basin between Concan (station 08195000) and this station. Most of low flow enters this formation. Many diversions for irrigation above station. Two observations of water temperature were made during the year.

AVERAGE DISCHARGE.--28 years, 25.7 ft³/s (0.728 m³/s), 18,620 acre-ft/yr (23.0 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $88,500 \text{ ft}^3/\text{s}$ (2,510 m³/s) Aug. 13, 1966, gage height, 23.88 ft (7.279 m), from floodmark, from rating curve extended above 12,000 ft³/s (340 m³/s) on basis of slope-area measurements of 24,400, 53,000, and $88,500 \text{ ft}^3/\text{s}$ (691, 1,500, and 2,510 m³/s); no flow most of time each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1887, about 35 ft (10.7 m) in 1894. Flood of July 1, 1932, reached a stage of about 30 ft (9.1 m). A higher flood than that of 1894 occurred prior to 1887. Above information by local residents.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 1,000 ft 3/s (28.3 m3/s) and maximum (*):

Date	Time	Disch	arge	Gage	height
		(ft^3/s)	(m^3/s)	(ft)	
Sept. 8	0330	12,600	357	11.49	3.502
Sept. 29		*16.500	467	12.60	3.840

DISCHARGED IN CURIC FEET DED SECOND MATER VEAD OCTORED 1070 TO SEPTEMBED 1000

Minimum discharge, no flow most of time.

		DISC	HARGED IN	CUBIC FE		ECOND, WATI EAN VALUES	ER YEAR	OCTOBER 19	79 TO SEP	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
3	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2 3 4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	3120
9	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	273
10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	44
11	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	2.1
12	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.27
13	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.05
14	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
15	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
16	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
17	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
21	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
23	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
24	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
25	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
26	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	:00
28	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
29	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	3500
30	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	4900
31	.00		.00	.00		.00		.00		.00	.00	
TOTAL	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	11839.42
MEAN	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	395
MAX	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	4900
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
AC-FT	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	23480
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	23400

CAL YR 1979 TOTAL 8248.24 MEAN 22.6 MAX 4720 MIN .00 AC-FT 16360 WTR YR 1980 TOTAL 11839.42 MEAN 32.3 MAX 4900 MIN .00 AC-FT 23480

08198000 SABINAL RIVER NEAR SABINAL, TX

LOCATION.--Lat 29°29'35", long 99°29'49", Uvalde County, Hydrologic Unit 12110106, on right bank 108 ft (33 m) upstream from concrete dam, 2.3 mi (3.7 km) downstream from mouth of Onion Creek, and 12.5 mi (20.1 km) north of Sabinal.

DRAINAGE AREA . - - 206 mi2 (534 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1942 to current year.

REVISED RECORDS. -- WSP 1312: 1943(M), 1944(M), 1947(M).

GAGE.--Water-stage recorder. Datum of gage is 1,131.20 ft (344.790 m) National Geodetic Vertical Datum of 1929. Prior to Apr. 9, 1971, at site 0.3 mi (0.5 km) downstream at same datum.

REMARKS.--Water-discharge records good except those for period of no gage-height record Aug. 22 to Sept. 17, which are fair. Several small diversions above station for irrigation.

AVERAGE DISCHARGE.--38 years, 53.6 ft³/s (1.518 m³/s), 3.53 in/yr (90 mm/yr), 38,830 acre-ft/yr (47.9 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 55,200 ft 3 /s (1,560 m 3 /s) June 17, 1958, gage height, 28.3 ft (8.63 m), from floodmark at present site, from rating curve extended above 6,900 ft 3 /s (195 m 3 /s) on basis of slope-area measurement of 55,200 ft 3 /s (1,560 m 3 /s); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1892, about 33 ft (10.1 m) July 2, 1932, from information by local residents. There is a legend that a flood in the middle 1800's reached a stage of nearly 63 ft (19.2 m), see flood history for station 08198500.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,000 ft3/s (28.3 m3/s) and maximum (*):

Date		Time	Disch	arge	Gage	height
			(ft^3/s)	(m³/s)	(ft)	(m)
Sept.	7	unknown	*18,000	510	16.9	5.15
Sent.		0700	14 600	413	14.90	4.542

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum daily discharge, 1.1 ft³/s (0.031 m³/s) Sept. 6.

			777777		ME	AN VALUES	3	OLOBBIN 1.	77, 10 511	TOTOLK 1;	700	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	27 27 27 25 26	18 19 20 19 19	23 23 23 23 23 23	19 19 19 19	18 18 18 18	15 14 16 18 17	22 21 19 19	11 19 13 13	18 18 17 16 14	3.6 3.4 3.4 3.3 3.0	2.4 1.8 1.6 1.6	1.7 1.5 1.4 1.3 1.2
6 7 8 9	26 26 25 24 22	19 20 20 20 20	23 23 23 22 22	19 18 18 18	18 18 17 17	16 16 16 16	17 16 14 14	13 11 14 13 12	13 12 11 10 10	3.0 2.7 2.7 2.7 2.7	1.3 1.3 1.3 1.3 2.1	1.1 4000 1400 400 100
11 12 13 14	22 23 23 23 23 22	20 20 20 20 20 20	22 23 25 26 26	18 18 18 18	18 18 18 18	16 16 16 16	14 14 13 13	12 11 13 36 29	10 10 9.5 8.7 8.0	2.6 2.1 1.8 1.8	23 13 8.2 6.1 5.6	85 75 69 63 58
16 17 18 19 20	22 22 22 21 20	20 25 38 29 26	25 23 20 20 20	18 19 18 18	18 18 18 18	16 15 14 13 13	13 13 13 13	45 39 33 45 39	7.4 7.3 6.7 6.1 5.6	1.8 2.3 2.4 2.1 2.1	5.6 5.6 5.6 6.5 7.4	54 51 48 47 46
21 22 23 24 25	20 20 19 19	24 24 24 24 26	20 20 20 20 20	19 19 20 20 20	18 18 18 18 17	13 13 12 13 13	12 11 10 10	45 35 30 27 25	5.6 5.6 5.6 5.6 5.5	2.1 2.0 4.9 4.5 4.5	7.0 5.8 4.6 3.8 3.3	44 44 42 42 43
26 27 28 29 30 31	19 19 19 19 19	24 24 24 23 23	19 19 19 19 19	20 19 19 19 19	17 16 16 17	13 22 27 26 23 22	11 10 10 9.5 8.8	22 22 22 20 19	5.0 4.5 4.1 4.1 3.7	4.1 3.7 3.4 3.4 3.0 2.7	3.0 2.8 2.5 2.3 2.1	43 52 58 2120 188
TOTAL MEAN MAX MIN CFSM IN. AC-FT	685 22.1 27 18 .11 .12 1360	672 22.4 38 18 .11 .12	672 21.7 26 19 .11 .12 1330	581 18.7 20 18 .09 .10	512 17.7 18 16 .09 .09	508 16.4 27 12 .08 .09	409.3 13.6 22 8.8 .07 .07 812	720 23.2 45 11 .11 .13 1430	267.6 8.92 18 3.7 .04 .05 531	89.6 2.89 4.9 1.8 .01 .02 178	142.2 4.59 23 1.3 .02 .03 282	9180.2 306 4000 1.1 1.49 1.66 18210

CAL YR 1979 TOTAL 37632.0 MEAN 103 MAX 1860 MIN 18 CFSM .50 IN 6.80 AC-FT 74640 WTR YR 1980 TOTAL 14438.9 MEAN 39.5 MAX 4000 MIN 1.1 CFSM .19 IN 2.61 AC-FT 28640

NOTE. -- No gage-height record Aug. 22 to Sept. 17.

08198000 SABINAL RIVER NEAR SABINAL, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: January 1974 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	C: CC Di Al	PE- IFIC ON- UCT- NCE ICRO- HOS) (PH (UNITS)	AT WA	MPER- PURE, ATER CG C)	(P IN CO	LOR LAT- UM BALT ITS)	E	CUR- BID- ITY ITU)	SC	GEN, DIS- DLVED MG/L)	SOI (PE CE SAT	IS- LVED	UNI	AND, CHEN NHIE DAY
JAN 08	1532	18		453	8.1		13.0		5		.10		10.6		104		.4
MAY 14	1017	32		442	8.0		22.0		0		1.4		8.0		95		1.7
JUL 31	1053	2.4		451	7.6		26.5		0		1.4		6.9		88		1.8
DAT	IMM (COI	RM, FO FAL, FE MED. O. S. UN ER (CO	DLI- DRM, ECAL, 7 1-MF DLS./ D ML)	STREF TOCOCC FECAL KF AGA (COLS. PER 100 MI	I HAI	G/L	HARD NESS NONCA BONAT (MG/ CACO	R- E L	CALC: DIS- SOLV (MG, AS	VED /L	SI		SODIU DIS- SOLVE (MG/ AS N	ED L	SOD A SOR TI RAT	D- P- ON	
JAN 08.		>28	28		5	220		24	67	7	1	3	7	7.9		.2	
MAY 14.		830	540	56		220		29	64			4		3.6		.3	
JUL 31.		К95	57		20	210		33	64			3		9.3		.3	
DAT	SI DI SOI (MC	S- BON LVED (M	CAR- NATE NG/L AS CO3)	CAR- BONATE (MG/I AS CO3	DIS SOI	LVED G/L	CHLO RIDE DIS- SOLV (MG/ AS C	ED L	FLUC RIDE DIS SOLV (MG, AS I	E. S- ZED /L	SILI DIS SOL (MG AS SIO	VED /L	SOLIE SUM C CONST TUENT DIS SOLV (MG/	OF CI- CS, CS, VED	SOLI RESI AT 10 DEG. SUS PENDO (MG	C,	
JAN 08.		.9	240		0	27	13			.2	1	1	2	258		9	
MAY 14.		1.1	230		0	27	16			.2	1	2	2	256		24	
JUL 31.	.,	1.3	220		0 :	31	17			.5	1	6	2	261		2	
DAT	SOLI VOI TII SUS PENI E (MO	A- C E, NII S- TC DED (M	TRO- GEN, RATE TAL IG/L N)	NITRO GEN, NITRIT TOTAL (MG/L AS N)	GI TE NO2- TO:	TRO- EN, +NO3 TAL G/L N)	NITR GEN AMMON TOTA (MG/ AS N	ÍA L L	NITE GEN ORGAN TOTA (MG,	NIC AL L	NITR GEN, MONI ORGA TOT (MG AS	AM- A + NIC AL /L	PHOSE PHORE TOTA (MG/ AS P	JS, L 'L	CARBO ORGAI TOTA (MG	NIC AL /L	
JAN 08.		7	.65	.0	2	.67		01		.41		.42	.0	10		2.1	
MAY 14.		1	.23	.0		.24		03		.64		.67		10		1.5	
JUL 31.		0	.00	.0		.00		05		.62		.67		10		5.8	
	D.	TE. T	IME	ARSENI DIS- SOLVE (UG/I AS AS	DIS D SOLV	S-	CADMI DIS SOLV (UG/ AS C	ED L	CHRC MIUN DIS- SOLV (UG) AS (/ED	COPP DIS SOL (UG AS	VED /L	IRON DIS SOLV (UG/ AS F	ED L			
	JAN		532		0	30		<1		0		0		10			
	JUI		053		1	40		<1		0		0		10			
		DATE JAN 08	SC (I AS		MANGA- NESE, DIS- SOLVED (UG/L AS MN)	SC (U	CCURY DIS- DLVED JG/L HG)	NI D SO (U	LE- UM, IS- LVED G/L SE)	SO (U	VER, DIS- DEVED IG/L AG)	SO (U	NC, IS- LVED G/L ZN)				
		JUL 31		0	6		-1		0		0		<3				
		31		0	6		. 1		0		0		13				

08198000 SABINAL RIVER NEAR SABINAL, TX--Continued

DATE	TIME	PCB, TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)
JAN 08	1532	.0	.00	.00	.0	.00	.00	.00	.00
JUL 31	1053	.0	.00	.00	.0	.00	.00	.00	.00
DATE	DI- ELDRIN. TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN. TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EFOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)
JAN 08 JUL	.00	.00	.00	.00	.00	.00	.00	.00	.00
31	.00	.00	.00	.00	.00	.00	.00	.00	.00
DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
JAN 08	.00	.00	.00	.00	0	.00	.00	.00	.00
JUL 31	.00	.00	.00	.00	0	.00	.00	.00	.00

437 08198500 SABINAL RIVER AT SABINAL, TX

LOCATION.--Lat 29°18'47", long 99°28'46", Uvalde County, Hydrologic Unit 12110106. on left bank 80 ft (24 m) downstream from bridge on U.S. Highway 90, 1,100 ft (335 m) downstream from Southern Pacific Lines railroad bridge, 0.8 mi (1.3 km) west of Sabinal, and 5.8 mi (9.3 km) upstream from Ranchero Creek.

DRAINAGE AREA. -- 247 mi2 (640 km2).

PERIOD OF RECORD. -- September 1952 to current year.

GAGE.--Water-stage recorder. Datum of gage is 882.17 ft (268.885 m) National Geodetic Vertical Datum of 1929. Prior to July 29, 1958, nonrecording gage, and July 29, 1958, to Mar. 19, 1964, water-stage recorder at site 80 ft (24 m) upstream at same datum.

REMARKS.--Records good. Several small diversions for irrigation above station. Most of low flow of the Sabinal River enters the Edwards and associated limestones in the Balcones Fault Zone, which crosses basin upstream from this station and downstream from Sabinal River near Sabinal (station 08198000). Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 28 years, 30.7 ft3/s (0.869 m3/s), 22,240 acre-ft/yr (27.4 hm3/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 73,300 ft3/s (2,080 m3/s) June 17, 1958, gage height, 33.3 ft (10.15 m); no flow at times most years.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1890, 40 ft (12.2 m) Aug. 24, 1919, from information by local residents. Flood of July 2, 1932, reached a stage of 31 ft (9.4 m), discharge 60,000 ft³/s (1,700 m³/s), from information by Southern Pacific Lines. There is a legend that a flood in 1858 covered the townsite of Sabinal. The stage would have been 70 to 80 ft (21.3 to 24.4 m), which seems unlikely. However, it is possible that a flood occurred in 1858 that covered part of the townsite and was higher than any flood since that date.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 100 ft3/s (2.83 m3/s) and maximum (*):

Date		Time	Disch	arge	Gage	height
			(ft^3/s)	(m^3/s)	(ft)	(m)
Sept.	7	2200	*17,500	496	a20.56	6.267
Sept.	8	1400	1,610	45.6	9.15	2.789
Sept.	29	1300	5.830	165	a13.88	4.231

a From floodmark.

Minimum discharge, 0.18 ft3/s (0.005 m3/s) Apr. 29.

CAL YR 1979 TOTAL 21302.47 WTR YR 1980 TOTAL 6026.01

MEAN 58.4 MEAN 16.5

MAX 1750

		DISC	HARGE, IN	CUBIC FE		COND, WAT		CTOBER 19	79 TO SEE	TEMBER 19	080	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.3 2.2 2.1 2.1 2.1	1.9 1.8 1.9 1.9	2.2 2.2 2.1 2.1 2.1	1.9 1.9 1.9 1.8	1.1 1.2 1.2 1.2 1.3	1.2 1.3 1.2 1.2	.85 .85 .92 .85	.45 .60 .62 .78 .83	.65 .60 .59 .55	. 47 . 45 . 55 . 59 . 55	.60 .60 .60	.82 .72 .72 .72 .71
6 7 8 9	2.2 2.2 2.1 2.0 2.0	1.6 1.6 1.6 1.6	2.0 1.9 1.8 1.8	1.7 1.7 1.5 1.5	1.3 1.5 1.4 1.4	1.2 1.3 1.4 1.5	1.1 1.1 .92 .92	.77 .72 1.2 .59 .52	.49 .55 .55 .55	.60 .60 .60 .59	.60 .61 .66 .61	.67 1750 1540 301 91
11 12 13 14 15	2.0 2.1 2.1 2.2 2.0	1.8 1.6 1.5 1.4	1.7 1.8 1.7 1.5	1.5 1.3 1.2 1.3 1.2	1.3 1.3 1.3 1.2	1.4 1.3 1.4 1.2	1.1 1.2 1.3 1.1	.55 .52 .54 .82	.57 .60 .60 .60	.55 .53 .49 .49	15 .96 .78 .78	52 29 15 9.4 7.0
16 17 18 19 20	1.9 1.9 1.9 1.8 2.0	1.5 11 6.0 3.0 3.0	1.5 1.9 1.9 1.9 2.0	1.6 1.3 1.2 1.2	1.3 1.2 1.2 1.2	1.5 1.1 1.1 1.2 1.1	1.1 1.1 .99 1.1	.92 .77 .72 .72	.58 .60 .60 .60	.54 .49 .49 .49	.87 .98 1.1 1.1	5.8 5.3 5.0 4.7 4.6
21 22 23 24 25	2.1 1.9 1.9 1.9	3.0 3.0 2.9 2.9 3.0	2.0 1.9 2.0 2.4 2.4	1.3 1.2 1.1 1.1	1.1 1.2 1.2 1.3 1.3	1.1 1.2 1.2 .81 .82	1.2 1.1 .92 .99	.72 .72 .72 .70 .67	.60 .59 .54 .55	.52 .60 .72 .72	1.1 1.1 1.1 1.1 1.1	4.5 4.2 3.9 3.9 3.7
26 27 28 29 30 31	2.0 2.0 2.1 1.9 1.9	2.8 2.8 2.6 2.4 2.3	2.3 2.2 2.4 2.3 2.2 2.0	1.1 1.1 1.2 1.2 1.2	1.3 1.3 1.3 1.3	.87 .66 .92 .99 .99	.99 1.1 1.1 .92 .49	.76 .82 .78 .83 .77	.55 .57 .55 .48 .48	.60 .59 .53 .49 .49	1.0 .99 .99 .92 .92	3.6 3.6 3.5 1320 405
TOTAL MEAN MAX MIN AC-FT	62.6 2.02 2.3 1.8 124	77.2 2.57 11 1.4 153	61.6 1.99 2.4 1.5 122	43.0 1.39 1.9 1.1 85	36.6 1.26 1.5 1.1 73	36.25 1.17 1.5 .66 72	30.62 1.02 1.3 .49 61	22.46 .72 1.2 .45 .45	17.02 .57 .65 .48 34	17.20 .55 .72 .45 .34	41.40 1.34 15 .60 82	5580.06 186 1750 .67 11070

MIN .28 MIN .45

AC-FT 42250 AC-FT 11950

08200000 HONDO CREEK NEAR TARPLEY, TX

LOCATION.--Lat 29°34'10", long 99°14'47", Medina County, Hydrologic Unit 12110107, on left bank 460 ft (140 m) downstream from bridge on Ranch Road 462, 6.3 mi (10.1 km) southeast of Tarpley, and 16.6 mi (26.7 km) northwest of Hondo.

DRAINAGE AREA .-- 86.2 mi2 (223.3 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- August 1952 to current year.

REVISED RECORDS .-- WSP 1712: 1957.

GAGE .-- Water-stage recorder. Datum of gage is 1,169.1 ft (356.34 m) Magnolia Oil Co. datum.

REMARKS .-- Water-discharge records good. Several small diversions for irrigation above station.

AVERAGE DISCHARGE.--28 years, 38.4 ft³/s (1.087 m³/s), 6.05 in/yr (154 mm/yr), 27,820 acre-ft/yr (34.3 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 69,800 ft³/s (1,980 m³/s) June 17, 1958, gage height, 28.2 ft (8.60 m), from floodmark, from rating curve extended above 2,600 ft³/s (73.6 m³/s) on basis of slope-area measurements of 18,600 and 69,800 ft³/s (527 and 1,980 m³/s); no flow at times in 1952-57, 1962-64, 1967, and 1971.

Maximum stage since at least 1907, that of June 17, 1958.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in July 1932 reached a stage of about 26 ft (7.9 m), discharge 58,500 ft 3 /s (1,660 m 3 /s), from information by local resident.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 500 ft 3/s (14.2 m 3/s) and maximum (*):

Dat	e	Time	Disch	arge	Gage	height
			(ft^3/s)	(m^3/s)	(ft)	(m)
May	18	2300	2,680	75.9	5.60	1.707
Sept	. 7	0700	*12,100	343	12.22	3.725

Minimum discharge, 0.60 ft³/s (0.017 m³/s) Aug. 7-9.

		DISC	HARGE, IN	CUBIC F	EET PER SEG	COND, WATE	R YEAR O	CTOBER 19	79 TO SE	EPTEMBER 1	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	7.6 7.2 6.8 6.5 6.2	4.1 4.1 4.1 3.8 3.8	5.0 4.7 4.7 4.7 4.7	5.6 5.6 5.3 5.0 5.0	5.3 5.3 5.0 5.3	3.3 2.9 3.5 3.5 3.5	5.5 5.6 5.3 5.0 4.7	3.3 5.3 3.8 4.1 3.3	10 10 9.6 9.3 9.0	2.6 2.3 2.7 1.7 1.9	.90 .80 .70 .70	1.5 1.4 1.3 1.2 1.2
6 7 8 9	6.2 6.2 6.2 5.9 5.6	3.8 3.8 3.8 3.8 3.3	4.4 4.1 4.1 3.8 4.4	5.0 5.0 5.0 5.0	5.0 5.0 5.3 5.0 4.4	3.3 3.5 3.5 3.1 2.9	4.4 4.4 3.8 3.5 3.5	5.2 3.1 3.5 4.1 2.7	9.0 9.0 8.6 8.2 8.2	2.5 1.5 1.9 1.9	.70 .60 .60 .60 3.8	1.3 1900 136 91 70
11 12 13 14 15	5.6 5.6 5.6 5.6	3.5 3.8 3.5 3.5 3.5	5.0 8.2 6.8 5.9 5.9	5.0 4.1 4.4 4.4	4.4 4.4 5.0 5.0	2.5 3.5 2.7 2.7 2.7	4.1 4.4 4.7 4.1 3.8	2.7 2.9 3.5 6.8 9.6	8.2 7.9 6.5 6.8 6.5	1.4 1.4 1.3 1.1	13 4.4 2.9 2.5 1.9	56 46 43 41 39
16 17 18 19 20	5.6 5.3 5.0 5.0 4.7	3.5 7.1 23 9.3 8.6	5.3 4.4 4.7 5.0 5.0	4.4 7.8 6.2 6.5 6.8	5.9 4.7 5.0 4.4 4.1	3.3 2.9 2.7 2.7 2.7	3.5 3.5 3.3 3.1 3.1	16 16 110 189 18	6.5 6.2 5.6 5.3 5.0	1.3 1.0 .90 .80 .70	1.7 12 5.6 3.8 3.3	34 35 32 31 31
21 22 23 24 25	4.4 5.0 4.1 4.1	10 7.6 7.2 7.2 8.2	5.0 5.0 5.3 5.0 4.1	7.6 7.6 6.8 6.5 6.2	4.1 3.5 3.5 3.5 7.0	2.7 2.5 2.7 2.7 2.7	6.2 5.0 3.3 2.9 7.3	25 18 16 16 16	4.7 4.4 4.4 3.8 3.8	.70 2.3 3.1 1.4 1.0	2.9 2.5 2.3 2.1 1.7	31 31 31 31 31
26 27 28 29 30 31	4.1 4.1 4.1 5.3 4.4	6.5 6.2 5.0 5.0 5.0	4.4 4.7 6.2 6.2 5.6 5.9	5.9 5.3 5.9 6.2 5.9 5.6	6.2 3.8 3.8 3.8	2.9 17 9.8 7.6 5.9 5.6	3.3 2.5 2.7 4.7 3.8	14 15 13 12 11	3.5 3.3 3.1 2.9 2.7	.90 .80 1.5 5.6 1.4	1.5 1.5 1.5 1.5 1.5	31 31 31 31 31
TOTAL MEAN MAX MIN CFSM IN. AC-FT	165.8 5.35 7.6 4.1 .06 .07 329	175.6 5.85 23 3.3 .07 .08 348	158.2 5.10 8.2 3.8 .06 .07 314	175.0 5.65 7.8 4.1 .07 .08 347	137.4 4.74 7.0 3.5 .06 .06 273	123.5 3.98 17 2.5 .05 .05 245	125.0 4.17 7.3 2.5 .05 .05 248	576.9 18.6 189 2.7 .22 .25 1140	192.0 6.40 10 2.7 .07 .08 381	51.40 1.66 5.6 .70 .02 .02	81.70 2.64 13 .60 .03 .04	2902.9 96.8 1900 1.2 1.12 1.25 5760
CAL YR WTR YR				74.4 1 13.3	MAX 1200 MAX 1900	MIN 3.3 MIN .6	CFSM O CFSM		11.72		3850 9650	

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: January 1974 to current year.

DATE	Т	IME	FL INS TAN	EAM- OW, TAN- EOUS FS)	SPE- CIFI CON- DUCT ANCE (MICE MHOS	IC - - - - - -	PH JNITS)	AT WA	PER- CURE, CTER CG C)	(PI	LOR LAT- UM BALT ITS)	TUI BII IT!	D- Y	XYGEN, DIS- SOLVEI (MG/L)	s (YGEN, DIS- OLVED PER- CENT ATUR- TION)	BIO UNI 5	GEN AND, CHEM NHIB DAY /L)
O8	1	004		5.0	4	104	8.1		9.5		0		.20	10.3	3	93		.5
14	1	238		5.6	3	364	7.9		20.0		0	1	.0					1.0
7UL 29	1	636		3.3	3	393	8.2		32.5		Ō	1.	.6	9.5	5	135		1.3
DAT	ΓE	COL FOR TOT IMM (COL PE	M. AL, ED. S. R	COL. FORM FECA 0.7 UM-N (COL.	1, 1 AL, IF (STREP- TOCOCCI FECAL, (F AGAI (COLS. PER 00 ML)	HAR NES (MG	S /L	HARD- NESS, NONCAR BONATE (MG/I CACO3	-	CALCIU DIS- SOLVI (MG/I AS CA	ED	MAGNE SIUM DIS- SOLVE (MG/L AS MG	, SOI D SOI (M	DIUM, IS- LVED IG/L S NA)		ON	
JAN 08.			80		50	16	5	200	3	34	61		11		7.7		.2	
MAY		1	000		500	580					51		10		7.9		.3	
JUL								170		37								
29.	• • •		220		56	24		170	6	1	49		11		9.0		.3	
DAT	TE.	POT SI DI SOL (MG AS	UM, S- VED /L	BICAN BONAT (MG, AS	E L E	CAR- BONATE (MG/L AS CO3)	(MG	VED	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	D	FLUO- RIDE, DIS- SOLVE (MG/I AS F)	ED	SILICA DIS- SOLVEI (MG/L AS SIO2)	, SUM CON D TUE I SC	LIDS, 1 OF ISTI- ENTS, DIS- DLVED IG/L)	SOLI RESI AT 1 DEG. SUS PEND (MG	DUÉ 05 C, ED	
JAN 08.			1.0		200	() 4	1	12			. 2	9.4	4	242		6	
MAY 14.			1.2		60	. () 3	8	13			.2	11		211		22	
JUL 29.			1.7		30	() 6	6	14		-	.4	14		229		1	
DAT	°E.	SOLI VOL TIL SUS PEND (MG	A- E, ED	NITE GEN NITE TOTA (MG, AS N	I, ATE N AL 'L	NITRO- GEN, IITRITE TOTAL (MG/L AS N)	GE	NO3 AL /L	NITRO GEN, AMMONI TOTAL (MG/L AS N)	A	NITRO GEN, ORGANI TOTAI (MG/I AS N))- () () ()	NITRO- GEN, AM- MONIA - ORGANIC TOTAL (MG/L AS N)	+ PH C PHC TC (M	IOS- ORUS, OTAL IG/L IG/L	CARB ORGA TOT (MG AS	NIC AL /L	
JAN 08.			6		.34	.00)	.34	.0	1	2	21	.23	2	.020		3.1	
MAY 14.					16	.01		.17	.0	4	.3	37	.41	1	.010		1.9	
JUL 29.	••		6		.21	.02	2	.23	.0	6	1.0)	1.1		.010		5.9	
		DA	TE	TIM		RSENIC DIS- SOLVED (UG/L AS AS)	DIS SOLV (UG	ED /L	CADMIU DIS- SOLVE (UG/L AS CD	D	CHRO- MIUM, DIS- SOLVE (UG/I AS CE	D C	COPPER DIS-SOLVEI (UG/L AS CU)	D SO (U	ON, DIS- DLVED IG/L FE)			
		JAN 08		100	14	(30	,	1		0		0	<10			
		JUL		163				30		1		0		0	10			
				ATE	LEAD DIS SOLV (UG/ AS P	ED S	MANGA- JESE, DIS- GOLVED (UG/L AS MN)	SO (U	CURY IS- LVED G/L	SOI (UC		DIS SOLV (UG/ AS A	ED S	ZINC, DIS- SOLVED (UG/L AS ZN)				
			JA O	8		0	<1		.2		1		0	<3				
			JU	L 9		0	2		.1		0		0	<3				

08200000 HONDO CREEK NEAR TARPLEY, TX--Continued

DATE	TIME	PCB, TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)
JAN 08 JUL	1004		-5						
29	1636	.0	.00	.00	.0	.00	.00	.00	.00
DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)
JAN 08 JUL 29	.00	.00	.00	.00	.00	.00	.00	.00	.00
DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
JAN 08		-	122		- 12		.00	.00	.00
JUL 29	.00	.00	.00	.00	0	.00	.00	.00	.00

441

08200700 HONDO CREEK AT KING WATERHOLE NEAR HONDO, TX

LOCATION.--Lat 29°23'26", long 99°09'04", Medina County, Hydrologic Unit 12110107, on left bank 0.3 mi (0.5 km) downstream from county road low-water crossing, 3.1 mi (5.0 km) north of Hondo, and 7.8 mi (12.6 km) upstream from Verde Creek.

DRAINAGE AREA. -- 142 mi2 (368 km2).

PERIOD OF RECORD. -- October 1960 to current year.

GAGE.--Water-stage recorder. Datum of gage is 897.87 ft (273.671 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Most of the low flow of Hondo Creek enters Edwards and associated limestones in the Balcones Fault Zone, which crosses basin between Tarpley (station 08200000) and this station. Small diversions above station for irrigation, amounts unknown.

AVERAGE DISCHARGE.--20 years, $14.6 \text{ ft}^3/\text{s}$ (0.413 m³/s), 10,580 acre-ft/yr (13.0 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $46,900 \text{ ft}^3/\text{s}$ (1,330 m³/s) July 15, 1973, gage height, 16.4 ft (5.00 m), from floodmark, from rating curve extended above $9,800 \text{ ft}^3/\text{s}$ (278 m³/s) on basis of contracted-opening measurement of peak flow; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1875, 21 ft (6.4 m) in September 1919, from information by local resident. Other floods occurred in July 1932, stage 18 ft (5.5 m) and June 17, 1958, stage 17 ft (5.2 m).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 25,500 ft 3 /s (722 m 3 /s) Sept. 7 at 1000 hours, gage height, 12.39 ft (3.776 m), no other peak above base of 500 ft 3 /s (14.2 m 3 /s); no flow most of time.

		DISC	HARGE, IN	CUBIC FE	ET PER SE ME	COND, WAT AN VALUES	ER YEAR	OCTOBER 19	79 TO SEP	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00			
3	.00	.00	.00	.00	.00	.00	.00	.00		.00	.00	.00
4	.00	.00	.00	.00	.00				.00	.00	.00	.00
5	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	.00
,	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	4350
8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	131
9	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	30
10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	12
11	.00	0.0	00			100						
		.00	.00	.00	.00	.00	.00	.00	.00	.00	6.0	4.0
12	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
13	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
14	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
15	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
16	.00	.00	.00	.00	.00	.00	.00	.00	.00	0.0	0.0	
17	.00	.00	.00	.00	.00	.00				.00	.00	.00
18	.00	.00	.00	.00			.00	.00	.00	.00	.00	.00
19	.00	.00			.00	.00	.00	.00	.00	.00	.00	.00
20	.00		.00	.00	.00	.00	.00	79	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.00	.00	7.5	.00	.00	.00	.00
21	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
23	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
24	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
25	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
26	.00	.00	.00	.00	.00	0.0	0.0			0,7,3		
27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
28	.00					.00	.00	.00	.00	.00	.00	.00
29		.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
30	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	.00
31	.00		.00	.00	***	.00		.00		.00	.00	
TOTAL	.00	.00	.00	.00	.00	.00	.00	86.50	.00	.00	6.00	4527.00
MEAN	.000	.000	.000	.000	.000	.000	.000	2.79	.000			
MAX	.00	.00	.00	.00	.00	.00	.000	79	.000	.000	.19	151
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	6.0	4350
AC-FT	.00	.00	.00	.00	.00	.00	.00	172	.00	.00	.00	.00
CAL VD 1			.00	.00	.00	.00	.00	1/2	.00	.00	12	8980

CAL YR 1979 TOTAL 10723.23 MEAN 29.4 MAX 2470 MEAN 12.6 MAX 4350 AC-FT 21270 WTR YR 1980 TOTAL 4619.50 MIN .00 AC-FT 9160

08201500 SECO CREEK AT MILLER RANCH NEAR UTOPIA, TX

LOCATION.--Lat 29°34'23", long 99°24'10", Medina County, Hydrologic Unit 12110107, on right bank 200 ft (61 m) upstream from county road crossing, 4.5 mi (7.2 km) downstream from Cascade Creek, and 7.9 mi (12.7 km) southeast of Utopia.

DRAINAGE AREA .- - 43.1 mi 2 (111.6 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1961 to current year.

CACE.--Water-stage recorder, crest-stage gages, and concrete control. Datum of gage is 1,265.8 ft (385.82 m) Magnolia Oil Co. datum, adjustment unknown.

REMARKS.--Water-discharge records good. No known diversion above station.

AVERAGE DISCHARGE.--19 years, 18.1 ft³/s (0.513 m³/s), 5.70 in/yr (145 mm/yr), 13,110 acre-ft/yr (16.2 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 38,500 ft³/s (1,090 m³/s) July 15, 1973, gage height, 14.4 ft (4.39 m), from floodmark, from rating curve extended above 910 ft³/s (25.8 m³/s) on basis of field estimate of flow over and around end of dam, 14,100 ft³/s (399 m³/s), and slope-area measurement of 52,600 ft³/s (1,490 m³/s); no flow for many days in 1963-64.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1901, 16.4 ft (5.00 m) June 17, 1958, from floodmarks, discharge 52,600 ft $^3/s$ (1,490 m $^3/s$), by slope-area measurement of peak flow.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 676 ft 3 /s (19.1 m 3 /s) May 18 at 2200 hours, gage height, 3.34 ft (1.018 m), no other peak above base of 600 ft 3 /s (17.0 m 3 /s); minimum daily, 0.08 ft 3 /s (0.002 m 3 /s) July 18, 21.

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980.

		DISCHA	RGE, IN	CUBIC	FEET PER S	ECOND, WATE EAN VALUES	R YEAR	OCTOBER	1979 TO SEPTI	EMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.6 2.6 2.6 2.2 2.0	1.7 1.7 1.7 1.7 1.7	1.8 1.8 1.8 2.0 2.0	2.6 2.6 2.6 2.4 2.4	2.0 2.0 2.0 2.0 2.0	1.8 1.5 1.5 1.5	1.8 2.2 2.2 2.1 1.9	1.8 2.0 1.6 1.7 1.6	1.8 1.5 1.5 1.4 1.3	.23 .15 .15 .14	.25 .19 .16 .14	.29 .29 .29 .23
6 7 8 9	2.0 2.0 2.0 2.0 2.0	1.7 1.5 1.5 1.5	2.0 1.8 2.0 2.0 2.2	2.4 2.4 2.4 2.4 2.4	2.0 2.0 2.2 1.9	1.5 1.6 1.7 1.7	1.8 1.9 1.9 1.8 1.7	1.3 1.2 1.9 2.1 1.4	1.2 1.1 1.1 .92 .92	.11 .09 .09 .09	.11 .09 .09 .09	.36 33 15 14 13
11 12 13 14 15	2.0 2.0 2.0 2.0 2.0	1.5 1.5 1.5 1.5 1.5	2.2 3.1 3.1 2.8 2.6	2.6 2.4 2.4 2.4 2.4	1.8 1.8 1.8 1.9 2.1	1.7 1.8 1.8 1.6	1.7 1.8 2.2 1.9	1.3 1.3 3.0 5.2	.79 .79 .79 .68	.11 .11 .09 .09	17 5.3 3.6 2.4 2.2	12 11 9.6 8.4 7.4
16 17 18 19 20	2.0 2.0 2.0 2.0 2.0	1.5 5.4 14 4.4 3.3	2.6 2.2 2.2 2.2 2.2	2.4 4.2 3.6 2.8 3.1	2.6 1.9 1.8 1.8	1.5 1.6 1.6 1.4	1.7 1.7 1.7 1.6 1.5	6.0 6.2 38 20 9.6	.58 .58 .58 .50	.09 .09 .08 .09	1.6 1.4 1.4 1.4	7.0 6.1 5.7 5.7 5.3
21 22 23 24 25	1.8 1.9 1.9 1.7	3.6 2.7 2.4 2.6 3.3	2.2 2.2 2.4 2.6 2.2	3.1 3.1 2.7 2.6 2.6	1.8 1.7 1.7 1.7	1.4 1.4 1.5	1.5 1.5 1.5 1.5 2.6	9.7 6.4 4.9 4.5 3.9	.42 .42 .37 .40	.08 .11 1.0 .97 .73	1.2 .79 .68 .58	4.9 4.3 3.9 3.9 3.9
26 27 28 29 30 31	1.7 1.7 1.7 1.7 1.9	2.4 2.3 2.0 2.0 1.8	2.2 2.2 2.4 3.6 2.8 2.8	2.6 2.6 2.8 2.4 2.3	1.7 1.7 1.7 1.7	1.5 9.7 3.8 2.3 2.0 1.8	1.7 1.5 1.4 1.4	3.4 3.4 2.8 2.4 2.1	.36 .36 .29 .29 .23	.48 .24 .67 .66 .61	.42 .42 .36 .29 .29	6.1 6.1 9.6 7.0 6.1
TOTAL MEAN MAX MIN CFSM IN. AC-FT	61.4 1.98 2.6 1.7 .05 .05	77.4 2.58 14 1.5 .06 .07	72.2 2.33 3.6 1.8 .05 .06 143	82.3 2.65 4.2 2.3 .06 .07 163	54.6 1.88 2.6 1.7 .04 .05	60.1 1.94 9.7 1.4 .05	52.7 1.76 2.6 1.3 .04 .05	162.6 5.25 38 1.2 .12 .14 323	22.75 .76 1.8 .23 .02 .02 .45	8.13 .26 1.0 .08 .006 .01	49.15 1.59 17 .09 .04 .04	210.69 7.02 33 .23 .16 .18 418
CAL YR WTR YR	1979 TOTAL 1980 TOTAL		MEAN MEAN	26.7 2.50	MAX 462 MAX 38	MIN 1.5 MIN .08	CFSM CFSM		8.42 AC-FT .79 AC-FT			

443

08201500 SECO CREEK AT MILLER RANCH NEAR UTOPIA, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: January 1974 to current year.

DATE	TIME	FLO INS	EAM- OW, TAN- EOUS	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	(UI	PH NITS)	A. W	MPER- TURE, ATER EG C)	(P IN CO	LOR LAT- IUM BALT ITS)	B	UR- SID- TY TU)	SO	GEN, IS- LVED G/L)	SO (P	GEN, DIS- DLVED PER- CENT TUR- TION)	DEM BIC UNI 5	GEN MAND, OCHEM NHIB DAY G/L)
JAN 08	1135		2.6	417		8.5		12.0		0		.20		10.2		98		.8
MAY 14	1155		3.6	381		8.2		20.5		0		2.5		8.0		92		1.4
JUL 31	1327		.29	397		8.5		34.5		0		1.7		9.0		131		1.3
DATE		RM, TAL, MED. LS. ER	COLI FORM FECA 0.7 UM-M (COLS	, TOC L, FE KF F (CO	REP- OCCI CAL, AGAR LS. ER ML)	HAR NES (MG AS CAC	S /L	HARD NESS NONCA BONAT (MG/ CACO	Ř- E L	CALCI DIS- SOLV (MG/ AS C	ED L	MAG SI DI SOL (MG AS	UM, S- VED /L	SODIU DIS- SOLVE (MG) AS N	ED /L	SOD A SOR: TIC RAT	D- P- ON	
JAN 08		>34		34	33		190		50	58		1	2	-	7.3		.2	
MAY 14		500	кз		250		180		60	52		1			7.0		.2	
JUL. 31		0		50	30		170		86	47		1			9.6		.3	
DATE	POT SI DI SOI	TAS- IUM, IS- LVED	BICAR BONAT (MG/ AS HCO3	- E CA L BON (M	R-	SULF	ATE - VED /L	CHLO RIDE DIS- SOLV (MG/ AS C	- , ED L	FLUO RIDE DIS SOLV (MG/ AS F	ED L	SILI DIS SOL (MG AS SIO	CA, - VED /L	SOLII SUM C CONST TUENT DIS SOLV (MG/	OS, OF CI- CS, G- /ED	SOLII RESI AT 10 DEG. SUS- PENDI (MG	DS, DUE 05 C,	
JAN 08		.9	1	70	3	5	2	13			.3		9.3	2	240		4	
MAY 14		1.2	1	40	0	6	1	12			.2	1		2	223		8	
JUL 31		1.6		00	2	7		17			.4	1.			229		<1	
DATE	SOLI VOI TII SUS PENI (MC	A- LE,	NITR GEN NITRA TOTA (MG/ AS N	, G TE NIT L TO L (M	TRO- EN, RITE TAL G/L N)	NIT GE NO2+ TOT (MG AS	N, NO3 AL /L	NITR GEN AMMON TOTA (MG/ AS N	IA L L	NITR GEN ORGAN TOTA (MG/ AS N	ic L L	NITR GEN, MONI ORGA TOT (MG	AM- A + NIC AL /L	PHOS PHORU TOTA (MG/ AS F	JS, AL /L	CARBO ORGAL TOTA (MG	NIC AL /L	
JAN 08		3		59	.02		.61		01		40		.41	.0	000		2.5	
MAY 14		2	71		.01	71			03		51		.54	.0	010		1.6	
JUL 31		0		20	.01		.21		05		85		.90	.0	10		4.7	
	DA	TE.	TIM	SO: E (U	ENIC IS- LVED G/L AS)	BARI DIS SOLV (UG AS	ED /L	CADMI DIS SOLV (UC/ AS C	ED L	CHRO MIUM DIS- SOLV (UG/ AS C	, ED L	COPPI DIS SOL' (UG AS	VED /L	IRON DIS SOLV (UG/ AS F	ED L			
	JAN		113	5	0		20		<1		0		0		(10			
	JUL		132		1		30		<1				0		10			
		JAL 08 JUL	3	LEAD, DIS- SOLVED (UG/L AS PB)	NE SC (U	ANGA- ESE, DIS- DLVED JG/L S MN)	SC (U	CURY IS- DLVED IG/L HG)	NI D SO (U	LE- UM, IS- LVED G/L SE)	SO:		SO:					

NUECES RIVER BASIN

08201500 SECO CREEK AT MILLER RANCH NEAR UTOPIA, TX--Continued

DATE	TIME	PCB, TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)
JAN 08	1135	.0	.00	.00	.0	.00	.00	.00	.00
JUL. 31	1327	.0	.00	.00	.0	.00	.00	.00	.00
DATE	DI- ELDRIN TOTAL (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)
JAN 08	.00	.00	.00	.00		.00	.00	.00	.00
JUL 31	.00	.00	.00	.00	.00	.00	.00	.00	.00
DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
JAN 08	.00	.00	.00	.00	0	.00	.00	.00	.00
JUL 31	.00	.00	.00	.00	0	.00	.00	.00	.00

445

08202700 SECO CREEK AT ROWE RANCH NEAR D'HANIS, TX

LOCATION.--Lat 29°21'43", long 99°17'05", Medina County, Hydrologic Unit 12110107, on left bank 2.9 mi (4.7 km) north of D'Hanis and 8.0 mi (12.9 km) downstream from Rocky Creek.

DRAINAGE AREA .-- 168 mi2 (435 km2).

PERIOD OF RECORD .-- November 1960 to current year.

GAGE.--Water-stage recorder. Datum of gage is 900.88 ft (274.588 m) National Geodetic Vertical Datum of 1929. Prior to October 1970, published as "at Crook Ranch, near D'Hanis".

REMARKS.--Records good. All of low flow of Seco Creek enters Edwards and associated limestones in the Balcones Fault Zone, which crosses basin between Miller Ranch (station 08201500) and this station. No known diversion above station. An observation of water temperature was made during the year.

AVERAGE DISCHARGE.--19 years (water years 1962-80), 8.88 ft³/s (0.251 m³/s), 6,430 acre-ft/yr (7.93 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 30,500 ft³/s (864 m³/s) July 15, 1973, gage height, 26.0 ft (7.92 m), from floodmark, from rating curve extended above 16,000 ft³/s (453 m³/s) on the basis of slope-area measurement of 35,800 ft³/s (1,010 m³/s); no flow most of time each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1852, 35.7 ft (10.88 m) May 31, 1935, from information by local resident. Other floods occurred Aug. 31, 1894, 33 ft (10.1 m); September 1919, 28 ft (8.5 m); July 2, 1932, 28.2 ft (8.60 m), discharge 35,800 ft³/s (1,010 m³/s), by slope-area measurement; June 17, 1958, 32.4 ft (9.88 m).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 12,400 ft³/s (351 m³/s) Sept. 7, gage height, 17.72 ft (5.401 m), from floodmark, no other peak above base of 600 ft³/s (17.0 m³/s); no flow most of year.

		DISC	HARGE, IN	CUBIC FE	ET PER SE	COND, WAT AN VALUES	ER YEAR O	CTOBER 19	79 TO SEP	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
3	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1740
8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	13
9	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.60
10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.28
11	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.09
12	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.01
13	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
14	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
15	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
16	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
17	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
21	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
23	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
24	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
25	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
26	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
28	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
29	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
30	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	.00
31	.00		.00	.00		.00		.00		.00	.00	
TOTAL	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1753.98
MEAN	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	58:5
MAX	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1740
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
AC-FT	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	3480

CAL YR 1979 TOTAL 6491.35 MEAN 17.8 MAX 3190 MIN .00 AC-FT 12880 WTR YR 1980 TOTAL 1753.98 MEAN 4.79 MAX 1740 MIN .00 AC-FT 3480

DAY

TOTAL

MEAN

AC-FT

MAX MIN 799

25.8 30 21

1580

1000

33.3

1980

20

51.4

OCT

08205500 FRIO RIVER NEAR DERBY, TX

LOCATION.--Lat 28°44'11", long 99°08'40", Frio County, Hydrologic Unit 12110106, on right bank 17 ft (5 m) downstream from centerline of railroad tracks, 35 ft (11 m) right of the Missouri Pacific Railroad Co. bridge abutment, 167 ft (51 m) downstream from Interstate Highway 35, 917 ft (280 m) downstream from Leona River, 2.5 mi (4.0 km) south of Derby, and 122.4 mi (196.9 km) upstream from mouth.

DRAINAGE AREA .-- 3,493 mi2 (9,047 km2).

PERIOD OF RECORD .-- August 1915 to current year.

REVISED RECORDS.--WSP 568: 1915-16, 1918-22. WSP 763: Drainage area. WSP 1312: 1917-18(M). WSP 1923: 1954.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 449.11 ft (136.889 m) National Geodetic Vertical Datum of 1929. Aug. 1, 1915, to Apr. 21, 1931, nonrecording gage, and Apr. 22, 1931, to Mar. 6, 1940, water-stage recorder at same site and datum. Mar. 7, 1940, to May 4, 1972, water-stage recorder, and May 5 to Nov. 1, 1972, nonrecording gage at site 167 ft (51 m) upstream at same datum.

REMARKS.--Records good. Part of flow of Frio River and its headwater tributaries enters the Edwards and associated limestones in the Balcones Fault Zone upstream from U.S. Highway 90 (see REMARKS for stations 08197500, 08198500, 08200700, and 08202700). Considerable loss of flow into various permeable formations occurs downstream from the Balcones Fault Zone. Many small diversions for irrigation above station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--65 years, 138 ft3/s (3.908 m3/s), 99,980 acre-ft/yr (123 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 230,000 ft³/s (6,510 m³/s) July 4, 1932, gage height, 29,45 ft (8.976 m), from floodmarks, from rating curve extended above 76,000 ft³/s (2,150 m³/s) on basis of slopearea measurement of peak flow; no flow at times most years.

Maximum stage since at least 1860, that of July 4, 1932.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 1,100 ft3/s (31.2 m3/s) and maximum (*):

FEB

Date		Time	Disch	arge	Gage	height
			(ft^3/s)	(m^3/s)	(ft)	(m)
May	15	2400	*6,740	191	10.08	3.072
May	26	unknown	a1,900	54	-	-
Aug.	12	2400	3,120	88.4	7.56	2.304
Sept.	9	2300	6,100	173	9.78	2.981

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

APR

MAY JUN

JUL

1.50

.048

.30

00 3.0 162

2250

9980

5032.54 10970.72

366

4390

21760

AUG

SEP

MAR

Estimated.

JAN

Minimum discharge, no flow July 11 to Aug. 10.

DEC

NOV

1 2 3 4 5	27 24 24 25 25	20 20 23 21 23	43 42 45 46 49	67 59 57 56 55	37 35 31 31 31	13 11 11 14 13	24 24 23 20 18	5.6 4.6 3.8 3.2 2.7	70 55 45 40 36	.30 .30 .20 .20	.00 .00 .00	.63 .50 .43 .42
6 7 8 9	24 23 23 26 28	27 28 31 29 30	48 45 47 48 49	54 55 55 55 57	32 35 35 30 29	11 11 15 18 22	17 17 16 14	1.9 1.7 2.0 1.3 1.5	33 31 28 26 23	.10 .10 .10	.00 .00 .00	.50 .81 354 3690 4390
11 12 13 14	28 28 30 28 28	31 30 28 27 28	50 50 51 51 54	57 57 55 54 53	27 26 28 28 29	22 18 15 15	15 16 14 10 8.3	1.9 20 28 25 2380	21 20 18 17	.00 .00 .00	205 2250 1710 380 274	960 351 200 128 87
16 17 18 19 20	28 29 27 25 24	31 33 33 37 42	54 54 54 53 53	53 53 51 51 49	29 28 27 25 24	16 15 14 14 15	6.6 5.8 6.4 7.7 6.9	5010 1470 766 800 450	14 13 12 10 9.2	.00 .00 .00	97 44 25 15 9.6	65 55 45 39 33
21 22 23 24 25	22 23 23 21 24	43 39 42 39 41	53 55 55 54 53	46 46 48 48 48	25 26 24 23 20	13 13 15 15	5.8 5.8 5.3 4.6	120 85 55 40 30	8.0 6.8 5.0 3.0 2.5	.00 .00 .00	6.0 4.1 3.1 2.7 1.7	28 25 21 20 20
26 27 28 29 30 31	27 25 28 27 28 27	43 44 46 46 45	50 50 52 57 62 67	46 43 40 40 40 39	17 15 15 15	16 16 20 21 19 22	3.5 3.1 3.1 3.5 3.2	1900 1200 1000 760 280 150	1.8 1.1 .70 .50 .40	.00 .00 .00 .00	1.3 .87 .90 .79 .79	16 15 18 18 389

485

15.6

962

327.4

10.9

3 1

16599.2

535 5010

567.00

18.9

1120

40

CAL YR 1979 TOTAL 83226.00 MEAN 228 MAX 7680 MIN 20 WTR YR 1980 TOTAL 39740.36 MEAN 109 MAX 5010 MIN .00 AC-FT

1587

51.2

67

26.8

447

08206600 FRIO RIVER AT TILDEN, TX

LOCATION.--Lat 28°28'02", long 98°32'50", McMullen County, Hydrologic Unit 12110108, on left end at downstream side of bridge on State Highway 16 in Tilden, 300 ft (91 m) downstream from Leoncita Creek, 1.3 mi (2.1 km) upstream from Salt Branch, 1.8 mi (2.9 km) downstream from Big Slough, and 44.2 mi (71.1 km) upstream from mouth.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1978 to current year.

DRAINAGE AREA. -- 4,493 mi2 (11,637 km2).

GAGE .- - Water-stage recorder. Datum of gage is 216.04 ft (65.849 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Part of flow of Frio River and its headwater tributaries enter the Edwards and associated limestones in the Balcones Fault Zone, which crosses basin upstream from U.S. Highway 90 (see REMARKS for station 08205500). Considerable loss of flow into various permeable formations also occurs downstream from the Balcones Fault Zone. Many small diversions above station for irrigation.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 12,600 ft³/s (357 m³/s) May 19, 1980, at 0900 hours, gage height, 26.35 ft (8.031 m); minimum daily, 0.04 ft³/s (0.001 m³/s) July 21, 1980.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 1932 reached a stage of 38.44 ft (11.72 m), from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,500 ft³/s (42.5 m³/s) and maximum (*):

Date		Time	Disch	arge	Gage	height
			(ft^3/s)	(m^3/s)	(ft)	(m)
May	19	0900	*12,600	357	26.35	8.031
Aug.	11	1500	5,410	153	22.52	6.864
Sent	1/	1200	2 710	76 7	10 64	5 086

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum daily discharge, 0.04 ft³/s (0.001 m³/s) July 21.

		0.00	, 1	00010 100	MI	EAN VALUES		OUTODEN 1	,,, 10 001	LICIDER	1,00	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	24 24 25 25 23	20 19 18 17 15	41 44 43 43 41	58 61 66 66 60	40 40 40 38 36	16 14 13 12	16 18 18 17 16	1.8 1.8 1.4 1.2	1350 787 229 99 67	2.0 1.8 1.4 1.1 .86	.74	2.4 1.3 .79 .60
6 7 8 9	19 19 19 21 20	13 13 17 18 18	42 42 46 49 46	57 56 55 54 55	32 31 31 30 30	9.4 8.1 8.3 8.9	16 15 13 12	1.4 1.1 1.1 1.1 .91	54 48 42 38 34	.72 .45 .35 .65	.26 .23 .26	.49 .72 75 227 47
11 12 13 14 15	18 18 18 18 17	19 20 22 24 25	46 48 52 53 55	55 56 57 57 57	32 31 27 26 26	8.0 7.6 10 14 15	9.7 9.0 8.2 8.1 7.1	1.3 2.0 3.6 3.3	30 30 30 28 25	.53 .45 .32 .23	5020 3370 1670	284 586 1260 2550 1760
16 17 18 19 20	20 20 21 19 18	26 25 23 25 29	52 51 51 52 52	56 54 53 53 56	26 26 27 29 30	14 12 11 11 13	5.7 5.6 4.9 3.8 3.3	548 910 5480 11900 7170	22 21 18 16 13	.20 .23 .17 .09	479 89	534 100 71 56 46
21 22 23 24 25	18 17 16 16 15	31 32 37 40 38	53 53 52 53 55	56 56 53 50 49	30 29 26 23 21	9.8 9.5 9.2	2.7 2.6 2.6 2.4 1.9	2940 1890 1240 502 120	11 9.8 8.7 7.0 6.6	.04 .23 .11 .11	21 14 9.7	38 32 27 22 19
26 27 28 29 30 31	14 18 18 17 19	37 40 37 36 37	56 56 55 54 54 55	48 46 46 46 44 42	21 20 20 18	11 11 13 15 16 15	1.4 1.4 1.8 1.8	82 324 584 703 792 1080	5.9 5.4 4.6 3.8 2.5	.26 5.7 3.5 2.1 1.3 5.9		16 17 14 12 12
TOTAL MEAN MAX MIN AC-FT	593 19.1 25 14 1180	771 25.7 40 13 1530	1545 49.8 56 41 3060	1678 54.1 66 42 3330	836 28.8 40 18 1660	359.8 11.6 16 7.6 714	237.7 7.92 18 1.4 471	36306.61 1171 11900 .91 72010	3046.3 102 1350 2.5 6040	31.78 1.03 5.9 .04 63	5020 .23	7811.88 260 2550 .49 15490

CAL YR 1979 TOTAL 72206.00 MEAN 198 MAX 6400 MIN 13 AC-FT 143200 WTR YR 1980 TOTAL 71569.37 MEAN 196 MAX 11900 MIN .04 AC-FT 142000

08206600 FRIO RIVER AT TILDEN, TX--Continued

WATER-QUALITY RECORDS

LOCATION.--Lat 28°28'02", long 98°32'50", McMullin County, Hydrologic Unit 12110108, at left downstream end of State Highway 16 bridge in Tilden, 300 ft (91 m) downstream from Leoncita Creek, 1.3 mi (2.1 km) upstream from Salt Branch, and 1.8 mi (2.9 km) downstream from Big Slough.

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: July 1978 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE, WATER (DEG C)	COLOR (PLAT- INUM COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
OCT 18	1319	20	1880	8.0	25.0	5	33	6.9	83	1.8	470	270
NOV 21	1153	32	1810	8.2	21.0	5	41	7.2	81	1.8	520	310
DEC 20	1328	54	1650	8.2	10.5	5	33	10.6	94	1.5	490	290
JAN 22	1021	57	1520	8.2	15.5	5	56	9.0	90	1.0	430	220
FEB 22	1142	28	1760	8.1	17.0	0	34	9.1	94	1.2	480	280
MAR 27	1752	9.9	2250	8.1	18.0	10	31	7.4	79	2.1	480	230
APR 23	1747	2.7	2710	8.0	22.5	5	44	7.2	83	1.2	440	91
MAY 26	1400	84	608	8.0	28.0	40	84	5.9	76	1.9	180	43
JUN 26	1154	5.4	2030	8.1	29.0	20	25	5.5	71	1.6	450	210
JUL 28	1645	3.6	3000		30.0	20	14	7.8	104	2.1	450	220
AUG 29	1116	2.8	863	7.9	27.5	25	26	5.6	70	1.2	190	0
09 09	1746 1751	195 195	288	7.8	28.5 28.5	100	160 140	5.4	69	3.1	83	0
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	
OCT 18	130	35	220	4.4	4.6	240	0	290	310	.4	9.5	
NOV 21	150	35	210	4.0	4.2	250	0	280	320	.3	10	
DEC 20	150	29	140	2.7	3.4	250	0	250	270	.2	12	
JAN 22	130	25	140	2.9	2.9	250	0	230	220	.3	12	
FEB 22	140	32	190	3.8	3.2	240	0	230	320	.3	10	
MAR 27	130	37	300	6.0	4.7	300	0	250	450	.5	6.8	
APR 23	110	41	420	8.7	5.7	430	0	300	520	.7	12	
MAY 26	59	8.5	48	1.5	7.5	170	0	49	67	.1	15	
JUN 26	130	31	240	4.9	8.1	300	0	220	350	.5	9.5	
JUL 28	120	37	490	10	11	285	0	320	680	.6	26	
AUG 29	62	9.6	100	3.1	8.0	240	0	68	120	.3	14	
SEP 09	29	2.6	20	1.0	8.1	110	0	32	12	.2	18	
09			7.7									

08206600 FRIO RIVER AT TILDEN, TX--Continued

NUECES RIVER BASIN 449

DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
OCT 18	1120	55	10	1.1	.02	1.1	.06	.84	.90	.080	9.3	
NOV 21	1130	73	15	.97	.00	.97	.00	44		.070	6.1	
DEC 20	978	56	22	4.5	.02	4.5	.00	.83	.83	.110	6.0	
JAN 22	884	70	14	1.1	.02	1.1	.02	.98	1.0	.080	3.5	
FEB 22	1040	62	15	1.2	.01	1.2	.01	.39	.40	.020	9.8	
MAR 27	1330	50	14	.56	.01	.57	.12	.60	.72	.060	5.5	
APR 23	1620	65	25	.48	.00	.48	.10	1.4	1.5	.050	7.4	
MAY 26	338	170	6	.41	.03	.44	.10	1.0	1.1	.010	17	
JUN 26	1140	47	17	.19	.01	.20	.06	.47	.53	.830	9.2	
JUL 28	1830	22	5	.07	.02	.09	.08	1.0	1.1	.070	12	
AUG 29	500	25	12	.12	.01	.13	.02	.95	.97	.110	10	
SEP 09	176	408 365	54 28	.43		.47 .58	.03	1.4	1.4	.420 .470	17	
			DATE	rime (DIS- DI OLVED SOL UG/L (U	S- D: VED SOI IG/L (U	MIUM MIUS- DIS LVED SOI G/L (UG	S- DI LVED SO G/L (U	S- D LVED SO G/L (U	ON, IS- LVED G/L FE)		
			8	1319	1	300	0	0	0	10		
			2	1021	1	80	1	0	0	10		
		AP 2 JU	3	1747	1	200	0	0	3	10		
				1645	4	200	0	0	3	40		
			DATE	LEAD, DIS- SOLVE (UG/L AS PB	(UG/L	MERCURY DIS- SOLVED (UG/L	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)			
			OCT 18		0 10	.0	1	0	0	Ġ.		
			JAN 22		2 3		1	0	7			
			APR 23		3 10	.0	0)	10			
			JUL 28		2 10	.0	0	0	10			
	DATE	TIME	PCB, TOTAL (UG/L	PCB, TOTAL IN BOT TOM MA TERIA) (UG/KG	- POLY- - CHLOR. L TOTAL	ALDRIN, TOTAL	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL (UG/L)	TOM MA- TERIAL	DDD, TOTAL	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
	NOV 21	1153		0	9 .00	.00	.0	.0	0	.00	.0	
	JAN 22				0 .00		.0				.0	
	JUL 28				0 .00							

08206600 FRIO RIVER AT TILDEN, TX--Continued

DATE	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 21	.00	.0	.00	.0	.00	.00	.0	.00	.00	.0
JAN 22	.00	.0	.00	.0	.00	.00	.0	.00	.00	.0
JUL 28	.00	-1	.00	.0	.00	.00	.0	.00	.00	.0
DATE	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT: IN BOTTOM MATL: (UG/KG)
NOV 21	.00	.00	.0	.00	.0	.00	.0	.00	.00	.0
JAN 22	.00	.00	.0	.00	.0	.00	.0	.00	.00	.0
JUL										
28	.00	.00	.0	.00	.0	.00	.0	.00	.00	.0
DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
NOV 21	.00	.00	.00	.00	0	0	.00	.00	.00	.00
JAN 22	.00	.00	.00	.00	0	0	.00	.00	.00	.00
JUL						0	.00	.00	.00	.00
28	.00	.00	.00	.00	Ü	0	.00	.00	.00	.00

451

08206700 SAN MIGUEL CREEK NEAR TILDEN, TX

LOCATION.--Lat 28°35'14", long 98°32'44", McMullen County, Hydrologic Unit 12110109, on left bank 25 ft (8 m) downstream from State Highway 16, 0.3 mi (0.5 km) upstream from mouth of Bruce Branch, 0.9 mi (1.4 km) downstream from mouth of Far Live Oak Creek, 3 mi (5 km) upstream from San Patricio Creek, 7 mi (11 km) downstream from Clear Creek, 8.7 mi (14.0 km) north of Tilden, and 13 mi (21 km) upstream from mouth.

DRAINAGE AREA. -- 793 mi² (2,054 km²).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- January 1964 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 242.95 ft (74.051 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. There are five diversions above station, but amounts are unknown. At times, excess water from Bexar-Medina-Atascosa Counties Water Improvement District No. 1 system enters San Miguel Creek basin via Chacon Creek 52 mi (84 km) upstream (amounts unknown).

AVERAGE DISCHARGE. -- 16 years, 71.2 ft3/s (2.016 m3/s), 51,580 acre-ft/yr (63.6 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 20,600 ft³/s (583 m³/s) May 16, 1980, gage height, 27.31 ft (8.324 m); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1919, 32.6 ft (9.94 m) in 1942; stage of 1919 flood not known, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 900 ft³/s (25.5 m³/s) and maximum (*):

Dat	e	Time	Disch	arge	Gage	height
			(ft^3/s)	(m^3/s)	(ft)	(m)
May	16	1000	*20,600	583	27.31	8.324
A119 .	12	0100	9.940	282	22.62	6.895

Minimum discharge, no flow at times.

		DISC	CHARGE, II	N CUBIC FI	EET PER S	ECOND, WATEAN VALUES	TER YEAR	OCTOBER 19	979 TO SE	PTEMBER	1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00	.00 .00 .00	1.2 1.5 1.5 1.2 1.4	.69 .72 .59 .50	.91 1.4 1.5 1.2	1.3 1.3 1.2 1.3	18 13 8.3 6.7 7.0	.00 .00 .00	20 18 17 16 15	3.8 3.2 2.9 2.8 2.7	.49 .18 .10 .06	13 11 14 11 9.8
6 7 8 9	.00 .00 .00	.00 .00 .00	1.4 1.1 1.1 1.3 1.4	2.9 3.8 3.1 2.3 2.2	1.2 1.1 1.1 1.1 1.0	1.2 1.1 1.1 1.9 3.4	5.4 4.4 4.5 3.6 2.4	.00 .00 26 25 9.5	14 13 13 11	2.6 2.4 2.4 2.2 2.1	.04 .04 .06 .06	9.3 12 280 103 62
11 12 13 14 15	.00 .00 .00	.00 .00 .00	1.4 1.4 2.3 1.9	1.9 1.5 1.3 1.1	1.0 .85 1.3 2.0 1.9	3.3 2.7 2.0 2.6 3.8	1.8 1.3 1.0 1.6	31 35 17 111 202	10 9.1 8.7 8.1 8.0	1.9 1.8 1.4 1.4	7400 8180 5330 1230 138	28 16 13 13
16 17 18 19 20	.00 .00 .00	.00 .00 .00	1.5 1.2 1.1 1.0 1.1	.86 .80 .58 .62	1.6 1.3 1.4 1.7 1.8	3.6 2.9 2.1 1.7 1.5	.77 .48 .34 .30	16700 8170 860 578 508	7.5 7.4 7.2 6.8 6.5	1.2 1.1 .69 .60	81 59 47 39 34	9.0 7.8 7.2 6.8 6.3
21 22 23 24 25	.00 .00 .00	.00 .00 .00 .00	3.5 3.6 4.0 3.2 2.4	.86 .69 1.3 1.9 2.2	1.4 1.3 1.3 1.4 2.0	1.2 1.3 8.7 9.9 9.1	.25 .11 .08 .05	203 89 63 50 41	6.2 5.9 5.6 5.4 5.4	.40 .42 .29 .32 2.2	30 26 24 21 19	6.2 5.9 5.6 5.1 5.1
26 27 28 29 30 31	.00 .00 .00 .00	6.3 4.1 2.9 1.9 1.4	2.3 2.1 4.9 6.4 2.3	4.9 4.4 4.5 3.7 2.8 2.1	1.8 1.6 1.4 1.4	6.8 4.5 3.2 2.2 13 25	.07 .05 .02 .02	36 34 30 27 24 22	5.2 4.7 4.6 4.3 4.1	1.5 .89 .67 72 4.5 1.4	17 17 16 15 16	9.0 7.6 7.4 5.6 5.2
TOTAL MEAN MAX MIN AC-FT	.00 .00 .00 .00	21.60 .72 6.3 .00 43	63.58 2.05 6.4 .98 126	57.23 1.85 4.9 .43 114	40.16 1.38 2.0 .85 80	126.2 4.07 25 1.1 250	82.94 2.76 18 .00 165	27891.50 900 16700 .00 55320	278.7 9.29 20 4.1 553	123.70 3.99 72 .29 245	22967.07 741 8180 .04 45560	704.9 23.5 280 5.1 1400

CAL YR 1979 TOTAL 12134.50 WTR YR 1980 TOTAL 52357.58 MEAN 33.2 MIN .00 AC-FT MIN .00 AC-FT MAX 1580 24070 MEAN 143 MAX 16700 AC-FT 103900

08206700 SAN MIGUEL CREEK NEAR TILDEN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical and biochemical analyses: July 1978 to current year.

DATE	TIME	FL INS TAN	EOUS (SPE- CIFIC CON- DUCT- ANCE MICRO- MHOS)	PH FIELD (UNITS)	TEMPERATURE WATER (DEG C	, INUM COBA	T- I LT	TUR- BID- ITY (NTU)	SC	YGEN, DIS- DLVED MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIOCHEM UNINHII 5 DAY (MG/L)
CT 18	1435		.00			-							
OV 21	1037		.00		41.	-			-				
EC 20	1435		.52	2900	7.8	18.0	0	35	10		6.0	64	4.1
N 2	1354		.31	2030	7.8	15.	5	15	8.2		6.6	66	1.6
B 2	1256		,51	2260	8.0	19.5	5	10	8.8		8.7	95	1.6
R 7	1842		2.6	2030	7.8	18.0)	15	12		5.9	63	2.4
3	1830		.05	1290	8.0	23.0)	10	9.2		6.9	80	7.8
	1235	2010	0			-			-	-		in	
	1430	514		1960	7.6	25 .5 25 .0		20	20	-	5.7	70	1.6
		3				25.			-	-			
	1232		4.3	2900	7.7	29.0)	15	4.8		4.8	62	1.8
	1405		.67	3050		31 .	5	10	3.2		8.2	110	1.8
	1220	2	1	2700	7.7	27.0)	5	3.1		7.2	90	1.0
	1348 1353	10		819	7.5	26.5 26.5		45 40	66 70		5.7	70	3.5
DATE	NE (M A	RD- SS G/L S CO3)	HARD- NESS, NONCAR BONATE (MG/L CACO3	CALC DIS	CIUM SI S- DI LVED SOI G/L (MC	IS- DI LVED SOI G/L (I	DIUM. IS- LVED	SODIU AD- SORP- TION RATIO	Si (I	OTAS- SIUM, DIS- OLVED MG/L S K)	BICAR BONAT (MG/ AS HCOS	TE CAR L BONA G (MC	ATE G/L
OCT 18		-44	- 2	_	-1		4-		4				
NOV 21		44		-				-	2				
DEC 20		860	58	0 23	30 7	70 :	300	4.	4	20	3	350	0
JAN 22		560	32	0 15	60 4	.5	220	4.	0	11	-	290	0
FEB 22		630	40	0 17	0 5	51 :	270	4.	7	10	2	280	0
MAR 27		580	35	0 15	50 4	9 :	230	4.	2	9.6	2	270	0
APR 23		400	20	0 11	0 3	30	120	2.	6	11	- 1	240	0
MAY 16				_	22		44	4		44.		42	14
17				- 10				-					
26		550	30	- 16	50 3	37 :	200	3.		9.6	+	310	0
JUN 26		810	51	0 23	30 5	57 :	320	4.	9	11	3	370	0
JUL 28		760	51	0 21	0 5	6 :	390	6.	2	13	3	300	0
AUG 29		810	49	0 23	30 5	8 :	300	4.	6	11	2	390	0
SEP 09		230	14	0 6	55 1	7	71	2.	0	8.4	1	10	0
09			-	-		77		-				14	

> 08206700 SAN MIGUEL CREEK NEAR TILDEN, TX--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MC/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)
OCT 18				- 1				44	-44
NOV 21	- 44	- 22	144	144	52	42		4.0	
DEC 20	610	480	.4	17	1900	14	9	.04	.000
JAN 22	410	290	.3	11	1280	9	5	.00	.020
FEB 22	430	380	.4	6.2	1460	16	3	.09	.010
MAR 27	350	340	.4	5.3	1270	33	10	.00	.010
APR 23	200	190	.4	6.4	786	22	9	.03	.000
MAY 16			1.20			++			
17	330	280	.2	21	1190	47	11	.68	.050
27 JUN						**	9.2		
26 JUL	500	470	.4	11	1780	.21	7	.14	.010
28 AUG	600	570	.5	7.0	1990	4	3	.01	.010
29 SEP	510	480	.4	13	1800	39	7	.15	.010
09	170	100	.2	9.4	495	158 87	18	.29	.030
DATE	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT									
18 NOV									
18 NOV 21 DEC									
21 DEC 20 JAN	.04	.000	1.0	1.0	.070	13			
DEC 20 JAN 22 FEB		.000	1.0					 	**
DEC 20 JAN 22 FEB 22 MAR	.04	.010	.66 1.4	1.0 .67	.070 .080	13	**		**
NOV 21 DEC 20 JAN 22 FEB 22 MAR 27	.04 .02 .10	.010 .010	.66 1.4 1.7	1.0 .67 1.4	.070 .080 .030	13 14 9.3			
NOV 21 DEC 20 JAN 22 FEB 22 MAR 27 APR 23 MAY	.04	.010	.66 1.4	1.0 .67	.070 .080	13 14 9.3		77	
NOV 21 DEC 20 JAN 22 FEB 22 MAR 27 APR 23 MAY 16 17	.04 .02 .10 .00	.010 .010 .060 .330	.66 1.4 1.7 1.8	1.0 .67 1.4 1.8 2.1	.070 .080 .030 .070	13 14 9.3 10			 99 99
NOV 21 DEC 20 JAN 22 FEB 22 MAR 27 APR 23 MAY 16 17 26 27	.04 .02 .10 .00	.010 .010 .060	.66 1.4 1.7 1.8	1.0 .67 1.4 1.8 2.1	.070 .080 .030 .070	13 14 9.3	1360	73800	
NOV 21 21 21 22 JAN 22 FEB 22 MAR 27 APR 23 MAY 16 17 26 27 JUN 26	.04 .02 .10 .00 .03	.010 .010 .060 .330	.66 1.4 1.7 1.8	1.0 .67 1.4 1.8 2.1	.070 .080 .030 .070 .070	13 14 9.3 10	1360	73800	99
NOV 21. DEC 20. JAN 22. FEB 22. MAR 27. APR 23. MAY 16. 17. 26. JUN 26. JUL 28.	.04 .02 .10 .00 .03	.010 .010 .060 .330	.66 1.4 1.7 1.8	1.0 .67 1.4 1.8 2.1	.070 .080 .030 .070 .070	13 14 9.3 10	1360 949 90	73800	99
NOV 21. DEC 20 JAN 22. FEB 22 MAR 27. APR 23. MAY 16 17 26 JUN 26 JUN 28. AUG 29	.04 .02 .10 .00 .03	.010 .010 .060 .330 .150	.66 1.4 1.7 1.8 .68	1.0 .67 1.4 1.8 2.1 .83	.070 .080 .030 .070 .070 .270	13 14 9.3 10 11	1360 949 90	73800 13200 8.5	99
NOV 21. DEC 20 JAN 22. FEB 22. MAR 27. APR 23. MAY 16 17. 26 27. JUN 26 JUL 28. AUG 29. SEP 09.	.04 .02 .10 .00 .03 .73 .15 .02	.010 .010 .060 .330 .150 .080 .080	.66 1.4 1.7 1.8 .68 4.6 .86	1.0 .67 1.4 1.8 2.1 .83 4.7 .94	.070 .080 .030 .070 .070 .270 	13 14 9.3 10 11 6.8 7.4	1360 949 90	73800 13200	99
NOV 21. DEC 20. 21. DEC 20. JAN 22. FEB 22. MAR 27. APR 23. MAY 16. 17. 26. 27. JUN 26. JUL 28. AUC 29.	.04 .02 .10 .00 .03 .73 .15	.010 .010 .060 .330 .150 .080	.66 1.4 1.7 1.8 	1.0 .67 1.4 1.8 2.1 .83 4.7 .94	.070 .080 .030 .070 .070 .270 .070 .060	13 14 9.3 10 11 6.8 7.4	1360 949	73800 13200 8.5	99
NOV 21. DEC 20 JAN 22. FEB 22. MAR 27. APR 23. MAY 16 17. 26 27. JUN 26 JUL 28. AUG 29. SEP 09.	.04 .02 .10 .00 .03 .73 .15 .02	.010 .010 .060 .330 .150 .080 .080	.66 1.4 1.7 1.8 .68 4.6 .86	1.0 .67 1.4 1.8 2.1 	.070 .080 .030 .070 .070 .270 	13 14 9.3 10 11 6.8 7.4	1360 949 90	73800 13200	99
NOV 21. DEC 20 JAN 22. FEB 22. MAR 27. APR 23. MAY 16 17. 26 27. JUN 26 JUL 28. AUG 29. SEP 09.	.04 .02 .10 .00 .03 .73 .15 .02 .16 .32 .14	.010 .060 .330 .150 .080 .080 .000	.66 1.4 1.7 1.8 68 4.6 .86 .79 1.4 1.3 ARSENIC DIS- SOLVED (UG/L AS AS)	1.0 .67 1.4 1.8 2.1 	.070 .080 .030 .070 .070 .270 .070 .060 .040 .230 .220	13 14 9.3 10 11 6.8 7.4 11 CHRO- MIUM, DIS- SOLVED (UG/L	1360 949 90 COPPER, DIS- SOLVED (UG/L	73800 13200 8.5	99
NOV 21. DEC 20 JAN 22. FEB 22. MAR 27. APR 23. MAY 16 17. 26 27. JUN 26 JUL 28. AUG 29. SEP 09.	.04 .02 .10 .00 .03 .73 .15 .02 .16 .32 .14	.010 .010 .060 .330 .150 .080 .000 .100 .060	.66 1.4 1.7 1.868 4.6 .86 .79 1.4 1.3 ARSENIC DIS- SOLVED (UC/L AS AS)	1.0 .67 1.4 1.8 2.1 .83 4.7 .94 .79 1.5 1.4 BARIUM. DIS- SOLVED (UG/L AS BA)	.070 .080 .030 .070 .070 .070 .070 .060 .040 .230 .220 CADMIUM DIS-SOLVED (UG/L AS CD)	13 14 9.3 10 10 11 6.8 7.4 11 CHRO-MIUM. DIS-SOLVED (UG/L AS CR)	1360 949 90 	73800 13200 8.5 	99
NOV 21. DEC 20 JAN 22. FEB 22. MAR 27. APR 23. MAY 16 17. 26 27. JUN 26 JUL 28. AUG 29. SEP 09.	DATE DEC 20 JAN 222 APR	.010 .010 .060 .330 .150 .080 .000 .100 .060	.66 1.4 1.7 1.868 4.6 .86 .79 1.4 1.3 ARSENIC DIS- SOLVED (UG/L AS AS) 3 2	1.0 .67 1.4 1.8 2.1 	.070 .080 .030 .070 .070 .070 .060 .040 .230 .220 CADMIUM DIS- SOLVED (UG/L AS CD)	13 14 9.3 10 11 6.8 7.4 11 CHRO-MIUM. DIS- SOLVED (UG/L AS CR) 0	1360 949 90 COPPER, DIS- SOLVED (UG/L AS CU)	73800 13200 8.5 IRON, DIS- SOLVED (UG/L AS FE)	99
NOV 21. DEC 20 JAN 22. FEB 22. MAR 27. APR 23. MAY 16 17. 26 27. JUN 26 JUL 28. AUG 29. SEP 09.	.04 .02 .10 .00 .037315 .02 .16 .32 .14 DATE DEC 20 JAN 22	.010 .010 .060 .330 .150 .080 .000 .100 .060	.66 1.4 1.7 1.868 4.6 .86 .79 1.4 1.3 ARSENIC DIS- SOLVED (UC/L AS AS)	1.0 .67 1.4 1.8 2.1 	.070 .080 .030 .070 .070 .070 .070 .060 .040 .230 .220 CADMIUM DIS-SOLVED (UG/L AS CD)	13 14 9.3 10 10 11 6.8 7.4 11 CHRO-MIUM. DIS-SOLVED (UG/L AS CR)	1360 949 90 	73800 13200 8.5 	99

08206700 SAN MIGUEL CREEK NEAR TILDEN, TX--Continued

		DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)		
		DEC 20	0	270	.0	0	0	10		
		JAN 22	3	120	.2	0	0	10		
		APR 23	3	20	.1	0	0	3		
		JUL 28	0	70	.0	1	0	10		
DATE	TIME	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL (UG/L)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN 22	1354	.0	- 1	.00	.00	.0	.0	0	.00	1.4
JUL 28	1405	.0	0	.00	.00	.0	.0	0	.00	.1
DATE	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN 22	,.00	.7	.00	.0	.00	.00	.0	.00	.00	.0
JUL 28	.00	2.6	.00	.1	.00	.00	.2	.00	.00	.0
DATE	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)
JAN 22	.00	.00	.0	.00	.0	.00	.0	.00	.00	.0
JUL 28	.00	.00	.0	.00	.0	.00	.0	.00	.00	.0
DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
JAN 22	.00	.00	.00	.00	0	0	.00	.00	.00	.00
JUL 28	.00	.00	.00	.00	0	0	.00	.03	.00	.00
	MAY 16 17	12 14 DATE		OW, TEME CAN- ATU COUS WAT (S) (DEC	JRE. SUS TER PEN G C) (MC	T. CHAR S- SUS IDED PEN G/L) (T/D	IT SUS- S- FA GGE, DI S- % FI IDED TH DAY) .002	SP. SL LL FA AM. DI NER % FI AN TH	IAN	
		16 17	92 91	95 94	98 96	99 99	99 100	100		

455

08207000 FRIO RIVER AT CALLIHAM, TX

LOCATION.--Lat 28°29'31", long 98°20'47", McMullen County, Hydrologic Unit 12110108, on right bank at upstream side of county bridge, 0.6 mi (1.0 km) upstream from bridge on Farm Road 99, 0.8 mi (1.3 km) north of Calliham, 10.7 mi (17.2 km) downstream from San Miguel Creek, and 20.8 mi (33.5 km) upstream from mouth.

DRAINAGE AREA. -- 5,491 mi2 (14,222 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1924 to April 1926 (monthly discharge only), April 1932 to current year.

REVISED RECORDS. -- WSP 788: Drainage area. WSP 2123: 1932.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 153.47 ft (46.778 m) National Geodetic Vertical Datum of 1929. Prior to Apr. 30, 1926, nonrecording gage at present site and datum.

REMARKS.--Water-discharge records good. Part of flow of Frio River and its headwater tributaries enter the Edwards and associated limestones in the Balcones Fault Zone, which crosses basin upstream from U.S. Highway 90 (see REMARKS for station 08205500 Frio River near Derby). Considerable loss of flow into various permeable formations also occurs downstream from the Balcones Fault Zone. Many small diversions above station for irrigation.

AVERAGE DISCHARGE.--49 years (water years 1925, 1933-80), 247 ft³/s (6.995 m³/s), 179,000 acre-ft/yr (221 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 80,200 ft³/s (2,270 m³/s) July 6, 1932, gage height, 39.2 ft (11.95 m), from floodmarks, from rating curve extended above 24,000 ft³/s (680 m³/s) on basis of contracted-opening measurement and flow-over-road measurement of 42,400 ft³/s (1,200 m²/s); no flow at times.

Maximum stage since at least 1870, that of July 6, 1932, from information by local resident.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 2,700 ft3/s (76.5 m3/s) and maximum (*):

Dat	Date Time		Disch	arge	Gage	height
			(ft^3/s)	(m^3/s)	(ft)	(m)
May	17	1800	*10,800	306	31.09	9.476
May	20	1500	8,120	230	29.32	8.937

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum discharge, 0.30 ft3/s (0.008 m3/s) May 2, 3.

		DISC	HARGE, IN	CUBIC FE	EI PER SI	EAN VALUE	S YEAR	OCTOBER 19	/9 TO SE	PTEMBER	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	26 23 23 23 23 23	18 17 18 16 15	33 37 40 39 39	55 59 63 66 64	42 40 39 39 37	17 15 14 13	31 28 27 24 21	.51 .35 .31 .41	1240 1240 585 217 142	7.9 6.8 6.4 6.2	5.4 10 3.6 2.4 2.1	52 50 45 43 37
6 7 8 9	21 20 19 20 21	14 12 11 14 15	37 38 38 42 45	59 50 50 54 54	36 32 31 31 28	11 11 10 8.8 8.0	21 20 18 15	.55 .50 1.2 .94 5.3	109 93 83 73 67	5.4 4.7 4.5 4.2 3.6	1.7 1.4 1.3 1.2	36 94 153 467 258
11 12 13 14 15	21 19 19 20 20	17 18 18 19 21	43 43 45 49 50	52 50 55 57 57	29 32 31 27 26	8.9 9.4 9.2 8.7	13 12 10 9.1 8.5	11 15 27 19 311	60 55 53 51 48	3.4 3.0 2.9 2.6 2.2	500 4000 4600 3200 1500	162 516 785 1420 2040
16 17 18 19 20	18 22 22 24 19	23 23 23 22 23	52 49 48 48 49	55 55 54 52 52	25 25 25 26 27	16 17 15 12 14	8.5 8.0 6.4 5.9 5.3	2060 8680 7260 5060 7790	47 42 37 34 31	2.0 1.8 1.7 1.5	960 1070 1070 400 180	1570 296 130 96 79
21 22 23 24 25	16 17 16 15	27 29 31 34 37	49 50 50 49 50	57 55 54 50 47	27 27 26 24 23	15 15 12 9.2	3.0 2.6 2.2 2.0	6790 4110 1960 1100 370	27 25 23 22 20	1.1 1.3 1.5 .85 .66	135 112 97 87 79	66 57 49 44 40
26 27 28 29 30 31	14 13 15 16 15	34 34 36 33 33	52 53 54 54 52 54	47 45 47 48 47 43	20 20 20 21	16 18 16 15 17	1.8 1.2 1.0 .88 .67	206 264 620 696 813 909	19 17 15 15 13	.61 .58 .49 .50	70 66 63 59 55 52	42 52 41 35 30
TOTAL MEAN MAX MIN AC-FT	591 19.1 26 13 1170	685 22.8 37 11 1360	1431 46.2 54 33 2840	1653 53.3 66 43 3280	836 28.8 42 20 1660	409.2 13.2 19 8.0 812	324.55 10.8 31 .67 644	49081.57 1583 8680 .31 97350	4503 150 1240 13 8930	145.69 4.70 44 .49 289	18444.1 595 4600 1.2 36580	8785 293 2040 30 17430

TOTAL 82228.00 MEAN 225 5370 MIN 11 163100 86889.11 MEAN 237 .31 MAX 8680 MIN AC-FT 172300

08207000 FRIO RIVER AT CALLIHAM, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: November 1967 to current year. Pesticide analyses: October 1974 to current year. Sediment records: October 1976 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: November 1967 to current year. WATER TEMPERATURES: November 1967 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 5,750 micromhos Nov. 30, 1968; minimum daily, 104 micromhos Feb. 13, 1969.
WATER TEMPERATURES: Maximum daily, 33.0°C July 17, 1971; minimum daily, 6.0°C Jan. 9, 1970, Jan. 12, 13,

1973, Jan. 15, 1979.

EXTREMES FOR CURRENT YEAR.--SPECIFIC CONDUCTANCE: Maximum daily, 2,990 micromhos May 9; minimum daily, 123 micromhos May 17. WATER TEMPERATURES: Maximum daily, 32.0°C June 30, July 10; minimum daily, 9.5°C Dec. 18.

CDE

DATE	TIME	STREAM FLOW, INSTAN TANEOU (CFS)	- DUCT)- FI	PH ELD ITS)	TEMPER- ATURE, WATER (DEG C)	(I	ARD- ESS MG/L AS ACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT 31	0830	16	20	0	8.1	21.0		500	310	140	37	250
DEC 31	1150	52	15	30		13.5		440	290	130	28	150
JAN 22 31	0935 1120	57 47	15		55	10.5		440	280	130	29	180
MAR 31	1008	22	22			21.0		430	230	120	32	290
APR 30	0725	.9	4 28	0		21.0		560	380	150	45	380
JUL 21 31	1240 0950	1.1	220	50		29.5		580	380	170	38	260
AUG 31	0745	54	19	0		28.0		520	170	160	30	210
15	0800	2020	3	54	-4	27.0		140	17	46	5.6	16
DAT	SOI T RA	AD- RP- ION S TIO (DIS- BOOLVED MG/L	CAR- DNATE (MG/L AS	CAR- BONA' (MG, AS CO	TE SO	FATE S- LVED G/L SO4)	CHLO RIDE DIS- SOLV (MG,	E, RID - DI VED SOL /L (MG	E, DIS S- SOI VED (MC /L AS	S- CONS LVED TUEN G/L DI S SOI	OF STI-
OCT 31.		4.9	5.5	240		0 3	00	390		.1	7.8	250
DEC 31.		3.1	3.4	180			30	270			12	912
JAN 22.						-						
31. MAR		3.7	3.9	200		0			4-	22 1	12	2.5
31. APR		6.1	6.7	240		0 2	40	430)	.5	7.5	1250
30. JUL	• •	7.0	8.2	220		0 2	90	650)	-4	7.8	640
21. 31.		4.7	12	240		0 4	10	390)	.3	15	410
AUG 31.		4.0	11	330		0 2	90	310		.3	25	190
SEP 15.		.6	5.0	150		0	23	23	3.	.1	15	208
DATE	TIME	PCB TOTAL (UG/L)	PCB TOTAL IN BOO TOM MA TERIA (UG/KG	LEI - PO L- CHI	PH- HA- NES, DLY- LOR. FAL	ALDRIN, TOTAL (UG/L)	IN TON TI	DRIN, DTAL BOT- MA- ERIAL G/KG)	CHLOR- DANE, TOTAL (UG/L)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN 22	0935	.0	0	0	.00	.00		.0	.0	0	.00	.0
JUL 21	1240	.0		0	.00	.00		.0	.0	0	.00	.1

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN			14		100	- 22		40		
22 JUL	.00	.0	.00	.0	.00	.00	.0	.00	.00	.0
21	.00	.2	.00	.0	.00	.00	.0	.00	.00	.0
DATE	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)
JAN 22 JUL	.00	.00	.0	.00	.0	.00	.0	.00	.00	.0
21	.00	.00	.0	.00	.0	.00	.0	.01	.00	.0
DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX. TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
JAN 22	.00	.00	.00	.00	0	0	.00	.00	.00	.00
JUL 21	.00	.00	.00	.00	0	0	.00			

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	591	1960	1150	1840	370	591	270	423	520
NOV.	1979	685	2030	1200	2210	390	719	270	508	540
DEC.	1979	1431	1720	1010	3890	310	1200	230	892	480
JAN.	1980	1653	1580	922	4110	280	1230	210	941	450
FEB.	1980	836	1690	989	2230	300	681	230	511	480
MAR.	1980	409.2	2040	1200	1330	390	432	280	305	540
APR.	1980	324.55	2440	1450	1270	510	444	330	293	590
MAY	1980	49081.57	294	168	22300	39	5160	38	5050	100
JUNE	1980	4503	774	448	5450	120	1450	100	1240	240
JULY	1980	145.69	2210	1310	514	440	173	300	118	560
AUG.	1980	18444.1	350	202	10000	49	2460	46	2280	120
SEPT	1980	8785	589	340	8060	88	2090	77	1830	190
TOTAL		86889.11	**	**	63200	**	16600	**	14400	**
WTD. AV	C.	237	466	270	**	71	**	61	**	150

08207000 FRIO RIVER AT CALLIHAM, TX--Continued SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	SP	ECIFIC CO.	NDUCTANCE	(MICROMH)		NCE-DAILY), WATER	YEAR OCTO	BER 19/9	O SEPTEM.	BEK 1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1890 1900 1910 1920 1930	2050 2060 2080 2090 2100	1910 1920 1890 1880 1770	1630 1620 1580 1640 1610	1520 1570 1620 1610 1620	1860 1870 1890 1900 1920	2220 2250 2240 2310 2400	2830 2850 2860 2870 2880	450 432 775 895 1030	2120 2180 2210 2240 2250	2290 2320 2370 2390 2400	2000 2030 2050 2070 2100
6 7 8 9	1920 1910 1940 1970 2010	2110 2100 2090 2080 2090	1780 1820 1800 1780 1800	1620 1610 1630 1640 1610	1630 1640 1660 1670 1670	1940 1950 1960 1990 2010	2500 2550 2540 2560 2570	2930 2970 2940 2990 2940	1060 1150 1210 1240 1290	2270 2300 2320 2350 2320	2440 2480 2560 2600 1750	2140 2050 1980 1080 560
11 12 13 14 15	2000 1990 1980 1970 1980	2080 2070 2060 2040 2030	1740 1740 1720 1690 1700	1590 1570 1550 1520 1540	1660 1650 1660 1680 1690	2020 2030 2030 2040 2020	2580 2580 2570 2560 2530	2890 2650 2460 2510 2030	1330 1400 1450 1490 1520	2380 2390 2410 2430 2450	305 197 175 208 294	875 508 502 354 325
16 17 18 19 20	1970 1970 1980 1960 1970	2040 2070 2070 2080 2110	1710 1700 1680 1640 1680	1530 1530 1510 1520 1530	1680 1680 1690 1700 1710	2000 1990 1970 1990 2020	2530 2520 2510 2530 2550	453 123 165 352 239	1560 1660 1720 1780 1840	2480 2500 2520 2560 2630	450 499 544 743 1000	386 520 660 758 836
21 22 23 24 25	1990 1980 1970 1960 1970	2070 2030 2000 1970 1940	1660 1640 1630 1660 1700	1540 1550 1540 1490 1550	1740 1770 1790 1810 1840	2060 2080 2110 2120 2160	2540 2550 2560 2610 2630	245 302 410 416 700	1880 1910 1940 1960 1990	2690 2650 2680 2720 2740	1240 1350 1470 1590 1680	952 988 1030 1080 1140
26 27 28 29 30 31	1980 1990 1980 1970 1980 2010	1910 2000 2020 1980 1890	1680 1670 1660 1670 1640 1610	1570 1600 1610 1630 1610 1580	1860 1880 1870 1850	2130 2100 2110 2190 2200 2240	2650 2670 2750 2790 2810	894 875 692 663 462 686	2030 2050 2090 2100 2110	2780 2810 2840 2880 1940 2260	1730 1800 1860 1900 1960 1990	1320 1280 1480 1430 1390
MEAN	1960	2040	1730	1580	1700	2030	2540	1590	1510	2460	1500	1200

			TEMPERATURE	WATER		, WATER YEAR NCE-DAILY	OCTOBER	1979 TO	SEPTEMBER	1980		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	24.5 27.5 27.0 24.5 22.0	19.0 16.5 17.5	11.0	12.5 12.0 13.0 11.0 13.5	10.0 11.0 11.0 12.0		21.0 22.0 22.5 21.0	22.5 22.5 22.5 22.5 22.5	28.5 28.0 27.0	31.0 30.0 29.5 29.0	28.0 28.5 29.0 28.5	28.5 28.0 29.0 28.0 28.5
6 7 8 9	24.5 26.0 25.0 24.0	19.0 18.0 17.5 19.0 18.5		14.0 12.0 11.0 12.0 14.0	13.5 14.0 16.0 11.5 12.0	18.0 18.0 19.0 18.0	22.0 24.0 22.5	26.0 23.0 23.5 21.5	28.0 29.0 29.0 28.5	28.0 30.0 30.0 32.0	29.0 28.5 29.5	27.5 27.5 27.5 27.0
11 12 13 14 15	23.0 24.0 24.0 25.5	18.0 15.5 15.0 15.0	13.5 13.0	16.0 12.5 12.0 16.0	10.5 12.0 13.0 14.5	22.0 20.5 18.0	23.0 21.0 17.0 18.5 16.0	25.0 26.0 27.0 26.0 24.5	27.5 29.0 27.0 28.0	31.0 28.0 29.5 29.0	25.0 25.0 27.0 30.0 28.0	27.5 26.0 26.5 29.0 27.0
16 17 18 19 20	24.5 25.0 24.0	14.0 16.0 18.0 21.0	9.5	16.0 17.0 15.0 17.5	14.0 14.0 14.0 16.5		19.5 20.5 22.0	22.5 23.0 24.0 24.0 24.0	28.5 29.0 30.5	29.0 28.0 29.5	29.0 28.5 29.0	27.0 27.5 27.5 28.0
21 22 23 24 25	25.0 23.0 20.0 19.0	19.0 15.5 12.5		17.0 15.5 14.0 13.5 13.5	18.5 18.0 19.0 14.5 20.5	19.5 22.0 19.5	21.0 19.0 21.0 24.0 22.0	24.0 25.5 26.0	31.0 29.0 	30.5 29.0 29.5 30.0 28.5	29.5 28.0 28.0 29.5	29.0 27.0 28.0 28.0
26 27 28 29 30 31	21.5 20.0 22.0 24.0 21.0	12.5 16.5 14.0 12.0 12.0	16.0 14.5	14.0 13.0 11.0 10.5 10.5	15.0 17.5 16.0 20.0	19.0 20.0 21.0	22.5 21.5 21.0 19.5 21.0	28.0 25.0 26.0 27.5 27.0 27.0	30.0 30.0 32.0	29.5 29.0 30.0 29.5	27.0 28.0 28.0 28.0 28.0	27.0 28.0 28.5 25.0
MEAN	23.5	16.5	13.5	13.5	14.5	19.0	21.0	24.5	29.0	29.5	28.0	27.5

459

08208000 ATASCOSA RIVER AT WHITSETT, TX

LOCATION.--Lat 28°37'18", long 98°17'02", Live Oak County, Hydrologic Unit 12110110, on right bank 1,000 ft (305 m) upstream from bridge on Farm Road 99, 1.1 mi (1.8 km) southwest of Whitsett, 3.9 mi (6.3 km) downstream from La Parita Creek, and 13.1 mi (21.1 km) upstream from mouth.

DRAINAGE AREA. -- 1,171 mi2 (3,033 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1924 to May 1926, May 1932 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 159.04 ft (48.475 m) National Geodetic Vertical Datum of 1929. Prior to May 8, 1926, nonrecording gage at bridge 1,200 ft (366 m) downstream at datum 1.38 ft (0.421 m) higher.

REMARKS.--Water-discharge records good. Considerable loss of flow into various permeable formations occurs upstream from this station. Records from the Lower Nueces River Water Supply District indicate that during the current year the Campbellton water wells discharged 42.1 acre-ft (51,900 m³) into the Atascosa River 12 mi (19 km) upstream from this station. There are several small diversions above station.

AVERAGE DISCHARGE. -- 49 years (water years 1925, 1933-80), 137 ft³/s (3.880 m³/s), 99,260 acre-ft/yr (122 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 121,000 ft³/s (3,430 m³/s) Sept. 23, 1967, gage height, 41.3 ft (12.59 m), from floodmark, from rating curve extended above 24,000 ft³/s (680 m³/s) on basis of slope-area measurement of peak flow; no flow at times.

Maximum stage since at least 1881, that of Sept. 23, 1967.

EXTREMES OUTSIDE PERIOD OF RECORD.--Second highest stage, 41 ft (12.5 m), discharge 106,000 ft³/s (3,000 m³/s), occurred in September 1919.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 1,500 ft 3/s (42.5 m 3/s) and maximum (*):

Date	Date	Time	Disch	arge	Gage	height		
			(ft^3/s)	(m^3/s)	(ft)	(m)		
May	16	2400	*20,700	586	a33.49	10.208		
May	20	1500	3,850	109	23.47	7.154		
Aug.	12	1400	15,700	445	a32.29	9.842		

a From floodmark.

Minimum discharge, 0.63 ft3/s (0.018 m3/s) Aug. 7.

		DISC	CHARGE, IN	CUBIC FE		ECOND, WAS		OCTOBER 19	79 TO SEE	PTEMBER	1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEI
1 2 3 4 5	4.0 3.4 3.3 2.8 2.3	1.5 1.5 1.6 1.7	4.2 3.9 4.3 4.2 4.1	30 17 12 9.4 8.2	6.7 7.1 8.0 8.0 7.9	5.7 5.5 5.4 5.6 6.0	6.6 5.6 4.8 7.0 5.9	2.1 5.1 4.4 3.8 8.4	31 28 27 25 24	4.1 4.3 4.0 3.7	3.5 2.2 1.4	21 19 18 18
6 7 8 9	2.1 2.0 2.0 1.6 1.2	1.9 2.0 3.5 3.2 2.7	4.5 4.7 4.6 3.9 4.0	6.9 5.7 6.0 5.8 5.8	8.1 8.1 7.7 7.2 7.3	5.6 5.6 6.1 6.5 7.3	4.7 4.0 3.7 6.2 4.9	7.1 11 18 42 35	20 22 21 18 19	3.4 3.4 3.0 3.0 3.0	.81 .97 .86	18 81 276 366 458
11 12 13 14 15	1.1 1.0 1.1 1.1	2.4 2.2 2.0 3.0 3.3	4.6 4.6 6.2 8.8 8.3	6.1 5.9 5.6 5.6 5.8	7.9 8.7 8.1 7.7 7.5	9.8 8.5 7.3 6.7	4.2 3.6 2.9 2.6 2.4	25 16 13 31 383	17 15 15 14 13	2.8 2.7 2.3 2.0 2.0	4630 2340	290 74 46 35 28
16 17 18 19 20	1.2 1.5 1.3 1.2	3.2 3.5 3.5 3.6 3.2	8.2 6.8 5.9 5.9 5.9	6.0 6.3 6.2 6.1 6.8	6.3 7.6 8.4 7.7 7.5	6.7 6.2 6.1 5.9 5.4	3.4 4.0 3.6 3.1 2.3	11100 15100 5280 1630 3280	13 13 12 10 9.1	2.0 1.8 1.7 1.5	93	24 21 19 19
21 22 23 24 25	1.8 3.3 2.2 1.8 1.3	3.3 3.2 6.2 4.9 4.9	5.9 5.5 5.8 6.0 5.2	8.0 7.9 8.4 10 9.2	7.7 7.4 6.9 6.5 5.7	5.4 5.0 5.3 5.4 5.1	1.9 1.7 1.6 1.5	1620 433 227 121 83	8.4 7.5 7.7 9.7 7.9	1.4 1.7 1.5 1.7	46	16 15 14 13 12
26 27 28 29 30 31	1.2 1.5 1.5 1.6 1.5	5.6 4.9 4.9 5.4 4.4	5.2 5.8 5.9 274 192 64	8.4 7.3 5.8 6.0 7.1 6.8	5.6 5.6 5.9	5.1 6.0 6.3 5.7 6.6 7.5	1.3 2.2 2.6 2.1 1.7	64 54 46 40 35 34	7.5 6.5 5.5 4.8 4.4	1.2 5.8 3.8 15 48 16	30 27 25 24 23 21	11 12 15 14 21
TOTAL MEAN MAX MIN AC-FT	55.8 1.80 4.0 1.0	99.0 3.30 6.2 1.5 196	682.9 22.0 274 3.9 1350	252.1 8.13 30 5.6 500	210.4 7.26 8.7 5.6 417	192.0 6.19 9.8 5.0 381	103.5 3.45 7.0 1.3 205	39751.9 1282 15100 2.1 78850	436.0 14.5 31 4.4 865	153.8 4.96 48 1.2 305	27760.87 896 12800 .81 55060	2007 66.9 458 11 3980

08208000 ATASCOSA RIVER AT WHITSETT, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Sediment records: September 1976 to September 1978, October 1979 to September 1980.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, WATER (DEG C)	SUS- PENDED		SED. SUSP. FALL DIAM. % FINER THAN .002 MM	SED. SUSP. FALL DIAM. % FINER THAN .004 MM
MAY 16 17 18 28	1452 1245 0945 1020	16600 1490 5760 4.7	24.5 23.5 24.0 25.5		8370	60 94 79	69 94 82
DATE	SED. SUSP. FALL DIAM. % FINER THAN .008 MM	SED. SUSP. FALL DIAM. % FINER THAN .016 MM	SED. SUSP. FALL DIAM. % FINER THAN .031 MM	DIAM. % FINER THAN	SIEVE DIAM. % FINER THAN	SED. SUSP. SIEVE DIAM. % FINER THAN .250 MM	SED. SUSP. SIEVE DIAM. % FINER THAN .500 MM
MAY 16 17 18 28	72 96 88	74 96 89	75 98 90	75 98 99	77 99 99	86 99 99	100 100 100

08210000 NUECES RIVER NEAR THREE RIVERS, TX (National stream-gaging accounting network)

LOCATION.--Lat 28°26'10", long 98°11'06", Live Oak County, Hydrologic Unit 12110111, on left bank 100 ft (30 m) downstream from Missouri Pacific Railroad bridge, 0.2 mi (0.3 km) downstream from Frio River, 1.7 mi (2.7 km) south of Three Rivers, and at mile 102.6 (165.1 km).

DRAINAGE AREA. -- 15,600 mi2 (40,400 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1915 to current year. Monthly discharge only for November 1919 to January 1920, published in WSP 1312.

REVISED RECORDS.--WSP 548: 1920-21. WSP 1562: 1916, 1918-21, 1922(M), 1923, 1929.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 101.13 ft (30.824 m) National Geodetic Vertical Datum of 1929. Prior to Apr. 5, 1932, nonrecording gage at railroad bridge 100 ft (30 m) upstream at same datum.

REMARKS.--Water-discharge records good. Part of flow of Nueces and Frio Rivers and their headwater tributaries enter the Edwards and associated limestones in the Balcones Fault Zone upstream from U.S. Highway 90 (see REMARKS for stations 08194600 and 08205500). Considerable loss of flow into various permeable formations occurs downstream from the Balcones Fault Zone. Many small diversions for irrigation and municipal supply above station. Minor upstream regulation by small reservoirs and by ground-water supplements (see station 08208000 Atascosa River at Whitsett). National Weather Service gage-height telemeter at station.

AVERAGE DISCHARGE.--65 years, 857 ft 3 /s (24.27 m 3 /s), 620,900 acre-ft/yr (766 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 141,000 ft 3 /s (3,990 m 3 /s) Sept. 23, 1967, gage height, 49.21 ft (14.999 m); no flow at times.

Maximum stage since about 1875, that of Sept. 23, 1967.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 6,000 ft3/s (170 m3/s) and maximum (*):

Date		Time	Disch	arge	Gage	height
			(ft ³ /s)	(m³/s)	(Et)	(m)
May	18	2100	20,800	589	37.94	11.564
Aire	13	1000	*24 400	691	39 46	12.027

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES

Minimum daily discharge, 1.2 ft³/s (0.034 m³/s) Apr. 27.

DAY	OCT	NOV	DEC	JAN	FEE	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	30 30 26 23 22	14 17 17 18 16	41 39 47 47 47	103 79 72 72 72	46 45 45 45 45	23 22 20 17 15	23 36 34 30 26	1.9 3.4 5.0 4.0 2.7	1260 1780 1550 1110 1090	21 13 13 12 13	32 13 8.1 6.5 5.1	211 248 173 119 94
6 7 8 9	22 22 19 15 16	13 12 10 8.6 9.1	44 45 47 46 50	68 64 58 57 57	44 42 41 38 37	14 13 12 12 13	26 26 23 17 15	3.3 6.0 12 85 71	1160 1270 1480 1750 2030	12 11 9.6 8.2 7.2	4.1 3.0 2.5 2.4 897	79 813 2000 698 1600
11 12 13 14	17 16 13 14 14	12 14 14 15 18	51 50 50 54 58	59 56 56 59 59	37 38 42 40 37	12 15 15 14 12	14 14 14 12 10	43 36 27 38 428	2160 617 181 138 121	7.2 6.5 6.0 4.5 4.1	14900 22100 23900 20900 16200	1320 738 745 1050 1750
16 17 18 19 20	14 13 15 16 17	24 23 30 29 27	58 57 53 54 55	60 61 60 130	36 33 33 33 36	14 27 26 20 19	9.2 7.8 9.3 8.4 7.3	3940 9470 18800 18300 14200	106 92 80 72 64	3.3 2.8 2.9 2.3 2.3	11600 12800 12700 8560 5140	2020 876 215 144 127
21 22 23 24 25	12 12 15 16 13	28 32 34 39 45	55 52 57 57 57	665 67 59 57 55	36 36 36 36 33	15 16 16 14 13	6.6 5.5 4.6 3.8 2.9	14600 13400 8690 4280 2300	57 51 45 41 39	2.2 1.9 2.2 4.3 3.6	3350 2520 2100 1060 331	110 93 83 74 67
26 27 28 29 30 31	12 13 13 14 16 16	47 45 42 41 41	56 57 59 68 341 158	51 50 49 50 49 49	31 26 23 27	15 24 28 26 20 19	1.4 1.2 1.5 1.3 1.4	1960 2180 2370 1060 903 1030	35 33 24 21 20	2.7 2.5 1.9 3.9 13	228 180 151 134 120 185	66 111 81 66 68
TOTAL MEAN	526 17.0	734.7 24.5	2012 64.9	2564 82.7	1077	541 17.5	392.2 13.1	118249.3 3814	18477 616	280.1 9.04	160132.7 5166	15839 528

13.1

28

18800

2160

36650

2020

31420

23900

80

CAL YR 1979 TOTAL 182174.7 MEAN 499 WTR YR 1980 TOTAL 320825.0 MEAN 877 MAX 23900 AC-FT 636400 MIN 1.2

82.7

37.1 46 23

17.0 30 12

1040

AC-FT

MAX MIN 24.5

8.6

1460

341

39

463 NUECES RIVER BASIN 08210000 NUECES RIVER NEAR THREE RIVERS, TX--Continued

DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS RESIDU AT 180 DEG. DIS- SOLVE (MG/L	C TU	M OF NSTI- ENTS, DIS-	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS VOLA- TILE, SUS- PENDEI (MG/I	NI T	ITRO- GEN, TRATE OTAL MG/L S N)	OF NITE TOT	CAL G/L	NITRO GEN, NO2+NO TOTAI (MG/I AS N)	NO NO S	ITRO- GEN, 2+NO3 DIS- OLVED MG/L S N)	NITRO GEN, AMMONIA TOTAL (MG/L AS N)	A Al	NITRO- GEN, MMONIA DIS- SOLVED (MG/L AS N)	NIT GE ORGA TOT (MG AS	N, NIC AL /L
OCT 15	9.9	123	0	1240	10		1			4-	.5	32	.32	.170	0	.080		.59
NOV 13	11	136	0	1340								27	.21	.28	0	.250		.61
DEC 17	12	110		1070							2.3		2.2	.03		.030		.97
JAN 21	14	89		835							2.6		2.4	.14		.080		.86
FEB																		
19 MAR	12	109		1110	9		2				1.5		1.3	.100		.090		.83
APR	9.7	129		1310			-				. 4		.46	.620	0	.550		.78
21 MAY	11	169	0	1650	16		0	77			• 3	13	.31	.570	0	.560		.83
29 JUN	18	35	3	333	1170	-	35				. 7	3	.70	.150	0	.060	3	.1
23 JUL	24	98	8	930	28		6	2.7			.0	17	.09	.050	0	.090		.87
21 AUG	21	167	0	1610	14	2	29				.0	8	.00	.020	0	.000		
13	11	11	9	104	73		0	-22			.3	0	.30	.100	0	.010	1	.0
SEP 18 18	20	37		363	94 92		4 3	.47		020	. 2		.53	.010		.000	1	.9
DAT	ORGA DI SOI (MC	CN. GE ANIC MO S- OR LVED T	TRO- N,AM- NIA + GANIC OTAL MG/L S N)	NITRO GEN, AN MONIA ORGANI DIS. (MG/I AS N)	+ PHO IC PHOR TOT	S- PH US, I AL S /L (PHOS- ORUS, DIS- SOLVED MG/L AS P)	CARBO ORGAN TOTA (MG/ AS C	N, IIC L L	CARBOI ORGAN DIS- SOLVE (MG/I AS C	IC OR S D PE L (RBON, GANIC US- NDED MG/L S C)	SEDI- MENT, SUS- PENDE (MG/I	CHA SU CD PH	EDI- ENT IS- ARGE, JS- ENDEI	SIE DI % FI TH	SP. VE AM. NER AN	
OCT		76	76			100	050			-	,	2					OF	
NOV		.76	.76			100	.050		**)	-4	.3		32	1.2		95	
13. DEC		.65	.89			180	.090							31	1.2		80	
17. JAN		.64	1.0			090	.060	5	.8			-		0	6.2		64	
21. FEB		.44	1.0			290	.090			6	.6	3.8	44	8 80)4		93	
19. MAR		.77	.93	.8		100	.040	7	.1				3	18	3.4		50	
24. APR	4.0	.65	1.4	1.2	2 .	320	.260	6	.5				1	2	.45		95	
21. MAY		.74	1.4	1.3	3 .	390	.360			9	.6	.6	2	22	.27		99	
29.		.20	3.2	. 2	26 .	400	.110	28					89	6 186	50		98	
JUN 23.		.68	.92	97	77 .	120	.160	13					8	2 1	0		70	
JUL 21.	1	.3		1.3	3	230	.260			7	.0	.7	1	2	.07		96	
AUG 13.		.99	1.1	1.0		230	.130	21					23	2 1290	00		98	
SEP 18.		. 2	1.9	1.2	2	190	.170	12					1.4	4				
18.	•••		1.2			200							17	1 9	93		71	
DAT		ME (SENIC OTAL UG/L S AS)	ARSENI SUS- PENDE TOTAL (UG/I AS AS	ARSEI D DI SOL' (UG	NIC T S- R VED E /L (RIUM, OTAL ECOV- RABLE UG/L S BA)	BARIU SUS- PENDE RECO ERAB (UG/ AS B	D V- LE L	BARIUM DIS- SOLVEI (UG/I AS BA	M, T R D E L (DMIUM OTAL ECOV- RABLE UG/L S CD)	CADMIU SUS- PENDE RECOV ERABI (UG/I AS CI	D CAL	OMIUM OIS- OLVED JG/L S CD)	REC ERA (UG	M, AL OV- BLE /L	
OCT 15.	13	112	9		0	3	200		0	9/	00	0		0	C	1	0	
DEC			3												C		U	
JAN		06												-				
21. MAR		05	6		1	5	400	3	00	10	00			-	2		10	
24. APR	13	00			-				-			02.2	-	-0				
21. JUN	12	30	4		1	3	300		0	30	00	0	-	-	C)	0	
23. JUL	13	28	10.0									22		-				
21. SEP	14	33	11		0	11	300	1	00	20	00	0		0	Ú		10	
18.	14	09			1		-4		22			44	12	-	122		22	

464

08210000 NUECES RIVER NEAR THREE RIVERS, TX--Continued

DATE	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COBALT, SUS- PENDED RECOV- ERABLE (UG/L AS CO)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)
OCT											
15 DEC	0	0	1	1	0	0	0	0	450	440	10
17 JAN				-							
21 MAR	10	0		95	<3			1		-	20
24 APR							1.55		250	222	
21 JUN	0	10	0		3	5		2	350	330	20
23 JUL 21	0	10	.0	0	0	5	4	1	160	120	40
SEP 18	0	10		0	0	3	4		160	120	40
10										**	
DATE	LEAD. TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD. SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY SUS- PENDED RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, SUS- PENDED RECOV- ERABLE (UG/L AS NI)
OCT 15	2	2	0	90	60	30	.1	.1	.0	5	5
DEC 17	0.44										
JAN 21			1	22	22	10	.6	.3	.3	22	44
MAR 24					11					44	
APR 21	4		4	190	40	150	1.2	1.0	.2	4	
JUN 23	1.44	32	44	2-	44	22			144		
JUL 21	4	1	3	50	10	40	.1	.0	.1	4	2
SEP 18						177	77	57			
D#	(UC	S- NI LVED TO G/L (U	LE- S UM, PE TAL TO G/L (U	US- NI NDED E TAL SC G/L (U	UM, TO IS- RE LVED ER G/L (U	VER, STAL PECOV- REABLE ERG/L (U	COV- I	VER, TO DIS- RE DLVED ER UG/L (U	NC, S TAL PE COV- RE ABLE ER	COV- D ABLE SO G/L (U	NC, IS- LVED G/L ZN)
OCT	r	0	0	0	0	0	0	0	0	0	0
DEC	5 2 7					0				0	0
JAN		0					12	0	32	27	<3
MAR						0			43		
APF		2	0	0	0	0		0	10	0	10
JUN						1	14	24			
JUI		2	1	0	1	0	0	0	30	20	10
SEF 18	3		97		44	0			77		
DATE	TIME	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL (UC/L)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
13	1300 1300	ND	ND 	ND	ND	ND	ND	ND	ND 	ND	ND
FEB 19	1426	ND		ND	-4	ND	4-	ND	34	ND	

NUECES RIVER BASIN 465
08210000 NUECES RIVER NEAR THREE RIVERS, TX--Continued

DATE	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL (UG/L)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN TOTAL (UG/L)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL (UG/L)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL (UG/L)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL (UG/L)
NOV 13 27	ND	ND	 ND	ND 	ND	ND	ND	ND	 ND	ND 	ND
FEB 19	ND		.52	37	ND	77	ND	155	ND		ND
DATE	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL (UG/L)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT: IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)
NOV 13	ND	144	ND		ND		ND		ND	4	ND
27		ND		ND		ND		ND		ND	
FEB 19	144	ND	-	ND	/42	ND		ND	44	ND	
DATE	METHYL TRI- THION, TOTAL (UG/L)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	PARA- THION, TOTAL (UG/L)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOX- APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL TRI- THION (UG/L)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
NOV											
13 27 FEB	ND	ND	ND	ND	ND	ND 	ND	ND 	ND	ND	ND
19	ND		ND		ND	42	ND	44			
		AP	EX S (I	PO- PH URE BIO DAYS) A WE G/	RI- PH YTON BIO MASS TO SH D IGHT WE SQ M G/	YTON PI MASS PI TAL CHI ORY GRA LIGHT FL	ERI- PI HYTON PH ROMO- CHE APHIC GRA UOROM FLU G/M2) (MC	CRI- CHL LYTON PH ROMO- RA LPHIC PE JOROM PH G/M2) (UN	MASS ORO- YLL TIO RI- YTON ITS)		
		JU	N								
		2	3	26	.787 1	.10	1.10	.320 28	2		

08210000 NUECES RIVER NEAR THREE RIVERS, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

DATE TIME		13,79		24,80 300		29,80 015		23,80 328
TOTAL CELLS/ML	3	3400	2	600	1	800	1	400
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		0.1 0.1 0.5 0.5		0.4 0.4 0.4 1.4 1.5		1.5 1.5 1.8 2.3 2.3		1.7 1.7 2.1 2.4 2.6
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALG .CHLOROPHYCEAE CHLOROCOCCALES COELASTRACEAE	AE)							
COELASTRUM MICRACTINIACEAE	77	3	77	-		+		-
GOLENKINIA OOCYSTACEAE		-		- 7		-		- 5
ANKISTRODESMUS		2		-	14	1	13	1
CHODATELLA		-				-	13	1
KIRCHNERIELLA OOCYSTIS	200	6		2		1		-
SELENASTRUM	200	-		-		2	13	1
TETRAEDRONSCENEDESMACEAE		-		-		-	13	1
CRUCIGENIA		-	-	14		-		_
SCENEDESMUS TETRASTRUM	1.55	-		Ē	110	6	52	4
VOLVOCALES		-		-		-		-
CHLAMYDOMONADACEAE CHLAMYDOMONAS POLYBLEPHARIDACEAE	3200#	92	130	5	14	1	260#	19
SPERMATOZOOPSIS		-		1.4		-	124	-
CHRYSOPHYTA .BACILLARIOPHYCEAE CENTRALES								
COSCINODISCACEAE CYCLOTELLA MELOSIRA PENNALES	- 1	2	25	1	14	ī	170	12
CYMBELLACEAE CYMBELLA RHOPALODIA	==	-	25	1	14	ī		7.7
FRAGILARIACEAE SYNEDRA				_	41	2	26	2
GOMPHONEMATACEAE GOMPHONEMA	.24	-		2	14	1		-
NAVICULACEAE ENTOMONEIS		-		-	14	1	13	1
NAVICULA PLAGIOTROPIS	1	Ž.	1700# 25	64	41	2	39	3
NITZSCHIACEAE NITZSCHIA	66	2	700#	27	770#	43	100	8
SURIRELLACEAE	4-	4	25	1	44	4		2
CRYPTOPHYTA (CRYPTOMONA .CRYPTOPHYCEAE CRYPTOMONADALES	ADS)							
CRYPTOMONADACEAE CRYPTOMONAS	44	-			14	1	13	1
CYANOPHYTA (BLUE-GREEN .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAE	ALGAE)							
AGMENELLUM		4.1	4,2	-	1,42	12	620#	
ANACYSTIS GOMPHOSPHAERIA	2.5	15		-	550#	31	13	1
HORMOGONALES NOSTOCACEAE					2204	31		
ANABAENA ANABAENOPSIS		- 1		-	22	55		-
APHANIZOMENON	5-	-		+		1.3		-
OSCILLATORIACEAE LYNCBYA	2.5	12.			140	8	20-	12.
OSCILLATORIA		-		-		-		-
RIVULARIACEAE RAPHIDIOPSIS	41	40	11	-		-	12.2	
EUGLENOPHYTA (EUGLENOII .EUGLENOPHYCEAE EUGLENALES EUGLENACEAE	OS)							
EUGLENA			25	1		-	13	1
PHACUS		-		-	14	1		-

NOTE: θ - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% \star - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

DATE TIME		21,80 433		13,80 726		18,80 409	SEP 1	18,8
TOTAL CELLS/ML	5	400	1	700	7	800	5	800
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		1.1 1.1 2.0 2.1 2.3		0.6 0.6 0.8 2.1 2.1		0.3 0.3 0.9 1.2 1.5		0.6 0.6 0.8 1.6
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER
CHLOROPHYTA (GREEN ALGAE)								
.CHLOROPHYCEAE CHLOROCOCCALES COELASTRACEAE								
COELASTRUM MICRACTINIACEAE		7		-	1751	4.91	130	2
GOLENKINIA	77	7	7.7	-	-77	-	*	0
OOCYSTACEAE ANKISTRODESMUS	*	0	29	2	*	0	*	0
CHLORELLA CHODATELLA		-		-		-		-
KIRCHNERIELLA OOCYSTIS		-	14	1	52	1	*	0
SELENASTRUM		9		-		-	*	0
TETRAEDRON SCENEDESMACEAE		-		7		-		-
CRUCIGENIA	67	1 0	73	-	52 52	1	180	3
SCENEDESMUS TETRASTRUM	67	1		-		1	180	2
VOLVOCALES CHLAMYDOMONADACEAE								
CHLAMYDOMONAS	170	3		-	77	1	*	0
POLYBLEPHARIDACEAE SPERMATOZOOPSIS	990#	18		-	0.4	-		-
CHRYSOPHYTA								
BACILLARIOPHYCEAE								
COSCINODISCACEAE								
CYCLOTELLA MELOSIRA	*	0	29 29	2	*	0	77	1
.PENNALES								
CYMBELLACEAE				-				-
RHOPALODIA FRAGILARIACEAE		-		15		-		-
SYNEDRA		-		-		-	77	-
GOMPHONEMATACEAE GOMPHONEMA	94	121		X.		4	122	-
NAVICULACEAE ENTOMONEIS				-		-	- 22	
NAVICULA	*	0	124	-		-		-
PLAGIOTROPIS NITZSCHIACEAE		-		-		~		
NITZSCHIA SURIRELLACEAE	180	3	43	3	*	0	*	0
SURIRELLA		-		7	- 63	-	44	-
CRYPTOPHYTA (CRYPTOMONADS)								
CRYPTOPHYCEAE .CRYPTOMONADALES								
CRYPTOMONADACEAE					-			
CRYPTOMONAS	*	0		-	*	0	*	0
YANOPHYTA (BLUE-GREEN ALGAE) CYANOPHYCEAE								
.CHROOCOCCALES								
AGMENELLUM	1700#	32		-	620	8		-
ANACYSTIS	67	1	43	3	320 100	4	240	4
GOMPHOSPHAERIA .HORMOGONALES	- 25		7.7	-	100	1		-
ANABAENA		-	260#	16	210	3	330	6
ANABAENOPSIS	85	-		-	230	3	180	3
APHANIZOMENON OSCILLATORIACEAE		-		-	7.5		620	11
LYNGBYA OSCILLATORIA	2000#	37	790#	47	6000#	76	3900#	67
RIVULARIACEAE		-						
RAPHIDIOPSIS		7	420#	23		-		-
CUGLENOPHYTA (EUGLENOIDS) EUGLENOPHYCEAE								
.EUGLENALES								
EUGLENACEAE	*	0	14	1	*	0	*	0
PHACUS		-			*	0		-

NOTE: θ - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

08210000 NUECES RIVER NEAR THREE RIVERS, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)	
OCT.	1979	526	*	2/5	*	*	*	*	*	*	
NOV.	1979	734.7	*	de	*	*	*	*	*	*	
DEC.	1979	2012	*	*	*	*	*	*	*	*	
JAN.	1980	2564	*	*	*	*	*	*	*	*	
FEB.	1980	1077	*	*	*	*	*	*	*	*	
MAR.	1980	541	*	*	*	*	*	*	*	*	
APR.	1980	392.2	*	*	*	*	*	*	*	*	
MAY	1980	118249.3	*	*	*	*	*	*	*	*	
JUNE	1980	18477	*	*	*	*	*	*	*	*	
JULY	1980	280.1	2160	1280	967	420	320	260	200	540	
AUG.	1980	160132.7	283	160	69200	39	16700	28	12100	90	
SEPT	1980	15839	570	325	13900	84	3600	59	2520	170	
TOTAL		320825.0	**	**	**	**	**	**	**	**	
WTD. AV	G.	877	sksk	**	**	**	**	**	**	**	

	SPE	CIFIC CON	IDUCTANCE	(MICROMHO		5 DEG. C) CE-DAILY	, WATER Y	EAR OCTOB	ER 1979	CO SEPTEMI	3ER 1980	
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5										1900 1920 1970 2000 2040	2160 2190 2160 2200 2270	1000 826 976 1250 1370
6 7 8 9										2050 2070 2100 2110 2130	2320 2360 2410 2450 1500	1500 975 330 585 508
11 12 13 14 15										2200 2210 2250 2280 2310	222 200 182 199 244	540 750 933 416 365
16 17 18 19 20										2400 2420 2480 2590 2550	343 335 366 392 394	325 503 593 699 829
21 22 23 24 25										2650 2660 2700 2760 2630	382 393 429 706 855	914 960 1040 1080 1160
26 27 28 29 30 31										2560 2680 2740 2700 2550 2090	941 1030 1120 1220 1290 1150	1200 1080 1230 1330 1320
MEAN										2350	1110	886

29.5

28.5

08210000 NUECES RIVER NEAR THREE RIVERS, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 ONCE-DAILY FEB MAR DAY OCT DEC JAN APR MAY JUN JUL AUG SEP 32.0 32.0 32.0 31.5 32.0 29.5 30.0 31.5 29.5 30.0 30.5 30.0 30.0 1 2 3 29.5 4 5 29.5 31.5 32.0 31.0 28.0 25.0 28.0 6 7 8 9 111 28.0 25.0 25.0 27.0 28.0 28.5 27.0 28.0 28.0 29.0 27.0 ---11 12 13 14 15 ---29.0 30.5 30.5 30.0 30.0 28.0 29.0 28.0 29.0 29.0 ---16 17 18 19 20 ------30.0 28.5 29.0 28.0 28.0 21 22 23 24 25 30.0 30.5 31.5 31.0 30.0 29.5 30.0 29.0 29.5 26 27 28 29 30 31 ... 27.5 29.0 30.0 27.0

MEAN

32.0

08210400 LAGARTO CREEK NEAR GEORGE WEST, TX

LOCATION.--Lat 28°03'34", long 98°05'48", Live Oak County, Hydrologic Unit 12110111, near right bank 75 ft (23 m) downstream from bridge on U.S. Highway 281, 0.6 mi (1.0 km) upstream from Dix Hollow, and 19.3 mi (31.1 km) south of George West.

DRAINAGE AREA .-- 155 mi2 (401 km2).

PERIOD OF RECORD .-- April 1972 to current year.

GAGE.--Water-stage recorder. Datum of gage is 197.77 ft (60.280 m) National Geodetic Vertical Datum of 1929.

REMARKS .-- Records good. No known regulation or diversion.

AVERAGE DISCHARGE.--8 years, 2.06 ft3/s (0.058 m3/s), 1,490 acre-ft/yr (1.84 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,350 ft³/s (180 m³/s) Aug. 11, 1980, gage height, 16.50 ft (5.029 m); no flow most of time.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since about 1887, 25.1 ft (7.65 m), discharge 33,500 ft³/s (949 m³/s) Oct. 17, 1971. Second highest stage, 24.3 ft (7.41 m), discharge 29,500 ft³/s (835 m³/s) occurred Sept. 12, 1971. The third and fourth highest floods occurred in 1914 and September 1967 (stages unknown).

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 50 ft 3/s (1.42 m 3/s) and maximum (*):

Date	2	Time	Disch	arge	Gage	height
			(ft ³ /s)	(m^3/s)	(ft)	(m)
Jan.	21	0800	2,190	62.0	12.45	3.795
May	15	0100	280	7.93	7.57	2.307
Aug.	11	0500	*6.350	180	16.50	5.029

DICCUARCE IN CURIC PERT DER CECOND LIATER VEAR OCTORER 1070 TO CERTEMBER 1000

Minimum discharge, no flow most of time.

		DISCHA	KGE, IN	COBIC F		SECOND, WAT MEAN VALUES		OCTOBER 19	79 TO SEP.	LEMBER	1980	
DAY	OCT	NOV	DEC	JAN	FEE	MAR MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2 3 4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
6	.00	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00
7	.00	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00
8	.00	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00
9	.00	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00
10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	244	.00
11	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	3820	.00
12	.00	.00	.00	.00	.00		.00	.00	.00	.00	265	.00
13	.00	.00	.00	.00	.00		.00	.00	.00	.00	26	.00
14	.00	.00	.00	.00	.00		.00	5.1	.00	.00	9.6	.00
15	.00	.00	.00	.00	.00	.00	.00	48	.00	.00	5.5	.00
16	.00	.00	.00	.00	.00		.00	.24	.00	.00	3.2	.00
17	.00	.00	.00	.00	.00		.00	.00	.00	.00	2.2	.00
18	.00	.00	.00	.00	.00		.00	.00	.00	.00	1.6	.00
19	.00	.00	.00	.00	.00		.00	3.8	.00	.00	1.2	.00
20	.00	.00	.00	.47	.00	.00	.00	3.6	.00	.00	.88	.00
21	.00	.00	.00	827	.00		.00	5.2	.00	.00	.65	.00
22	.00	.00	.00	22	.00		.00	3.4	.00	.00	.49	.00
23	.00	.00	.00	1.8	.00		.00	2.2	.00	.00	. 37	.00
24	.00	.00	.00	.17	.00		.00	7.8	.00	.00	.25	.00
25	.00	.00	.00	.00	.00	.00	.00	1.7	.00	.00	.20	.00
26	.00	.00	.00	.00	.00	.00	.00	.17	.00	.00	.13	.00
27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.05	.00
28	.00	.00	.00	.00	.00		.00	.01	.00	.00	.01	.00
29	.00	.00	.00	.00	.00		.00	.26	.00	.00	.00	.00
30	.00	.00	.00	.00		.00	.00	.02	.00	.00	.00	.00
31	.00		.00	.00	4.44	.00		.00		.00	.00	
TOTAL	.00	.00	.00	851.44	.00	.00	.00	81.50	.00	.00	4381.33	.00
MEAN	.000	.000	.000	27.5	.000	.000	.000	2.63	.000	.000	141	.000
MAX	.00	.00	.00	827	.00	.00	.00	48	.00	.00	3820	.00
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
AC-FT	.00	.00	.00	1690	.00		.00	162	.00	.00	8690	.00
CAL YR	1979 TOTAL 1980 TOTAL	5.75 5314.27	MEAN MEAN	.016	MAX MAX	4.9 MI 3820 MI		AC-FT AC-FT 105	11			

471 08210500 LAKE CORPUS CHRISTI NEAK MATHIS, TX

LOCATION.--Lat 28°02'17", long 97°52'15", San Patricio-Jim Wells County line, Hydrologic Unit 12110111, on right upstream corner of outlet tower at right end of Wesley E. Seale Dam on Nucces River, 0.6 mi (1.0 km) upstream from bridge on State Highway 359, and 4.5 mi (7.2 km) southwest of Mathis.

DRAINAGE AREA .-- 16.656 mi2 (43.139 km2).

PERIOD OF RECORD.--September 1948 to current year. Prior to October 1960, monthend records only. The Soil Conservation Service, U.S. Department of Agriculture, in cooperation with the Texas Board of Water Engineers (now Texas Department of Water Resources), collected fragmentary gage-height records in connection with sedimentation studies from Feb. 2, 1942, to July 10, 1947.

REVISED RECORDS .-- WSP 1923: 1953(M), 1957(M).

GAGE.--Nonrecording gage read twice daily. Supplemental water-stage recorder operated by city of Corpus Christi. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1957, nonrecording gage at various sites 0.2 mi (0.3 km) upstream at datum 0.52 ff (0.158 m) higher. Oct. 1, 1957, to Apr. 3, 1961, nonrecording gage near left end of Mathis Dam 0.2 mi (0.3 km) upstream at present datum.

REMARKS.--Mathis Dam was completed and storage began July 24, 1934. The original capacity at spillway crest (elevation, 74.5 ft or 22.71 m) was 54,000 acre-ft (66.6 hm³), but by March 1948 had decreased to 39,400 acre-ft (48.6 hm³) because of sedimentation. Wesley E. Seale Dam was completed and deliberate impoundment began on Apr. 26, 1958, submerging the old Mathis Dam. Wesley E. Seale Dam is a rolled earthfill dam, 5,930 ft (1,810 m) long, including two spillways. The 1,320-foot (402 m) north spillway has 33 gates that are operated by movable hydraulic lifts. The 1,080-foot (329 m) south spillway has 27 gates that are electrically operated from the control tower. The gates were repaired and modified in August 1966. All gates in both spillways are 37.5 by 8.75 ft (11.4 by 2.67 m) wide. Water for municipal supply for the city of Corpus Christi is released downstream through a 4.0-foot-diameter (1.2 m) cylinder valve and three 2.5- by 4.0-foot (0.8 by 1.2 m) rectangular openings. The releases are diverted from the river at Calallen 35 mi (56 km) downstream for domestic, municipal, irrigation, mining, and industrial uses in the Corpus Christi area. The city of Alice withdrew 3,950 acre-ft (4.87 hm³) from the lake during the current year for municipal use. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	(feet)	(acre-feet)
Top of dam	106.0	-
Top of north spillway gates	94.3	278,200
Top of south spillway gates.	93.8	268,500
Crest of spillways	88.0	170,200
Lowest gated outlet (invert)	55.5	646

COOPERATION.--The capacity curve is from an October 1972 survey. Elevation record furnished by the city of Corpus Christi and reviewed by the Geological Survey.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 320,000 acre-ft (395 hm³) Sept. 22, 1967, and Sept. 12, 1971; maximum elevation, 94.82 ft (28.901 m) Sept. 22, 1967; minimum contents, 14,740 acre-ft (18.2 hm³) May 5, 1951, elevation, 67.62 ft (20.611 m).

EXTREMES (0600) FOR CURRENT YEAR.--Maximum contents, 274,300 acre-ft (338 hm³) May 22, June 9-12, Aug. 18, and Sept. 28, elevation, 94.1 ft (28.68 m); minimum, 196,500 acre-ft (242 hm³) May 11-14, elevation, 89.7 ft (27.34 m).

Capacity table (elevation, in feet, and total contents, in acre-feet)

89.0	185.500	93.0	253,400
90.0	201,400	94.0	272,400
91.0	217,900	95.0	292,100
92.0	235,300		

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 INSTANTANEOUS OBSERVATIONS AT 0600

DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	244200 244200 242400 244200 242400	230000 230000 228200 228200 228200	214600 216200 216200 216200 216200 214600	212900 212900 214600 211200 211200	233500 231700 231700 231700 231700	231700 228200 226500 224800 224800	216200 216200 216200 216200 216200	201400 201400 201400 201400 199800	272400 272400 272400 272400 272400 272400	257100 257100 257100 257100 255300 253400	231700 231700 230000 230000 228200	268500 270400 270400 270400 270400
6 7 8 9	242400 240600 238800 238800 240600	228200 226500 226500 226500 226500	216200 214600 216200 214600 214600	211200 211200 211200 211200 211200	231700 231700 231700 235300 231700	224800 224800 224800 224800 224800	214600 214600 214600 214600 212900	199800 198100 198100 199800 198100	272400 272400 272400 274300 274300	253400 253400 251600 251600 249700	228200 228200 228200 228200 228200 233500	270400 268500 268500 272400 272400
11 12 13 14 15	238800 237000 237000 237000 235300	226500 224800 224800 224800 223000	214600 214600 216200 214600 214600	211200 211200 209600 209600 209600	231700 231700 231700 231700 231700	223000 223000 224800 223000 223000	211200 212900 212900 211200 209600	196500 196500 196500 196500 198100	274300 274300 272400 272400 270400	249700 247900 247900 247900 246100	272400 270400 272400 272400 272400	272400 272400 272400 272400 272400
16 17 18 19 20	235300 235300 235300 235300 235300	223000 221300 221300 219600 219600	212900 214600 212900 212900 212900	209600 209600 209600 207900 207900	235300 231700 230000 230000 230000	221300 221300 223000 221300 221300	209600 209600 207900 207900 207900	201400 207900 217900 240600 264700	268500 268500 268500 268500 268500	246100 244200 242400 242400 242400	272400 272400 274300 272400 272400	272400 272400 272400 272400 272400
21 22 23 24 25	233500 233500 233500 233500 233500	217900 221300 219600 217900 217900	212900 212900 211200 212900 211200	221300 233500 235300 233500 233500	230000 230000 230000 230000 230000	221300 219600 217900 219600 219600	206300 206300 204600 204600 207900	272400 274300 272400 272400 272400	266600 264700 264700 262800 262800	240600 240600 240600 238800 238800	272400 270400 270400 272400 272400	270400 270400 268500 270400 268500
26 27 28 29 30 31	231700 231700 231700 231700 228200 231700	217900 216200 217900 216200 214600	211200 211200 211200 214600 212900 212900	233500 233500 231700 233500 233500 235300	228200 228200 228200 228200	217900 217900 217900 217900 217900 216200	204600 204600 204600 203000 201400	272400 272400 272400 272400 272400 272400	262800 260900 260900 259000 259000	237000 237000 235300 235300 233500 233500	272400 272400 272400 272400 270400 270400	268500 272400 274300 272400 272400
MAX MIN (†) (‡)	244200 228200 91.8 -12500	230000 214600 90.8 -17100	216200 211200 90.7 -1700	235300 207900 92.0 +22400	235300 226200 91.6 -7100	231700 216200 90.9 -12000	216200 201400 90.0 -14800	274300 196500 94.0 +17000	274300 259000 93.3 -13400	257100 233500 91.8 -25500	274300 228200 93.9 +36900	274300 268500 94.0 -2000

08211000 NUECES RIVER NEAR MATHIS, TX

LOCATION.--Lat 28°02'17", long 97°51'36", San Patricio-Jim Wells County line, Hydrologic Unit 12110111, on left bank 6 ft (2 m) downstream from pier of bridge on State Highway 359, 200 ft (61 m) downstream from Texas and New Orleans Railroad Co. bridge, 0.6 mi (1.0 km) downstream from Wesley E. Seale Dam, 4 mi (6 km) southwest of Mathis, and at mile 46.7 (75.1 km).

DRAINAGE AREA. -- 16,660 mi 2 (43,150 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- August 1939 to current year.

GAGE.--Water-stage recorder. Datum of gage is 27.53 ft (8.391 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Flow is regulated by Lake Corpus Christi (station 08210500) 0.6 mi (1.0 km) upstream. Upstream from Lake Corpus Christi, flow is affected by recharge to permeable formations, small diversions, and minor regulation. Water for municipal and industrial uses at Corpus Christi is released from Lake Corpus Christi above gage and is diverted from river at Calallen 34 mi (55 km) downstream.

AVERAGE DISCHARGE.--41 years, 849 ft 3 /s (24.04 m 3 /s), 615,100 acre-ft/yr (758 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 138,000 ft $^3/s$ (3,910 m $^3/s$) Sept. 24, 1967, gage height, 47.7 ft (14.54 m), from floodmark; minimum daily, 6.8 ft $^3/s$ (0.19 m $^3/s$) Aug. 15, 1940. Maximum stage since at least 1888, that of Sept. 24, 1967.

EXTREMES OUTSIDE PERIOD OF RECORD.--A stage of about 40 ft (12 m) occurred Sept. 20, 1919, from information by Texas and New Orleans Railroad Co. and is the second highest known.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 28,600 ft 3 /s (810 m 3 /s) Aug. 11 at 2145 hours, gage height, 32.70 ft (9.967 m); minimum daily, 91 ft 3 /s (2.58 m 3 /s) Oct. 1.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES DAY OCT NOV JAN FEB DEC APR MAY JUN JUL AUG SEP 122 344 8 9 573 124 137 176 252 ---TOTAL MEAN 147 152 189 MIN

CAL YR 1979 TOTAL 183261 MEAN 502 MAX 6860 MIN 56 AC-FT 363500 WTR YR 1980 TOTAL 282018 MEAN 771 MAX 19200 MIN 91 AC-FT 559400

473 08211000 NUECFS RIVER NEAR MATHIS, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1947 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1947 to current year. WATER TEMPERATURES: October 1947 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 1,580 micromhos Apr. 19, 20, 1977; minimum daily, 216 micromhos Sept. 19, 1971.
WATER TEMPERATURES (1947-76): Maximum daily, 36.0°C Aug. 8, 1964; minimum daily, 3.0°C Jan. 19, 1968.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 710 micromhos May 21; minimum daily, 252 micromhos Sept. 6.

DATE	TIME	STREAL FLOW INSTAL TAMEO (CFS	M- CI M- CO , DU N- AN US (MI		PH IELD	EMPER- ATURE, WATER DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVEI (MG/L AS CA)	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)
NOV 14	1123	1	03	594	8.1	18.5	180	28	60	8.2	44
FEB											
06 MAR	1530	- 1	03	629		15.0	200	43	65	8.8	48
10 APR	1600	1	25	650			200	44	65	9.4	56
20 MAY	1600	1-	46	682			210	52	67	9.8	55
31	1600	2	60	587		5.5	160	39	52	7.7	49
JUI. 28	1600	1	70	482	22	22	150	27	50	6.0	38
AUG 30	1600	2	13	298			93	1.1	32	3.1	20
DATE	SOR	.D- .D- .D-	POTAS- SIUM, DIS- SOLVED (MG/L	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3	(MG/	ED SOL	E, RID - DI VED SOI /L (MC	DE. DI S- SC VED (N	S SOI	OF STI-
NOV 14		1.4	8.2	190		0 46	6	9	.1	20	349
FEB 06		1.5	8.0	190		0 50	7	5	.2	19	368
MAR 10		1.7	7.9	190		1 57	8	0	.3	18	388
APR 20		1.7	8.3	190		0 55	9	3	.1	17	399
MAY 31		1.7	8.4	150		0 47		4	.4	14	326
JUL. 28		1.4	7.8	150		0 42		ō.		8.8	286
AUG 30		.9	6.3	100		0 21	2	3	.2	13	168

08211000 NUECES RIVER NEAR MATHIS, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	3855	572	325	3390	71	742	46	478	170
NOV.	1979	3632	596	338	3320	76	745	48	467	180
DEC.	1979	3546	615	349	3340	80	764	49	469	180
JAN.	1980	4363	620	352	4140	81	954	49	582	180
FEB.	1980	3195	641	363	3130	85	736	51	439	190
MAR.	1980	3819	656	372	3830	89	913	52	537	190
APR.	1980	4347	681	385	4520	94	1100	54	632	200
MAY	1980	62794	674	382	64700	93	15700	53	9040	200
JUNE	1980	18471	531	302	15100	63	3160	43	2130	160
JULY	1980	5642	474	270	4120	53	812	39	587	150
AUG.	1980	153664	350	200	83100	35	14300	29	12000	110
SEPT	1980	14690	276	159	6300	24	964	23	913	89
TOTAL		282018	**	**	199000	**	41000	**	28200	**
WTD. AVO	3.	771	459	261	**	54	**	37	**	140

	SPF	CIFIC CON	DUCTANCE	(MICROMHO		25 DEG. C), ICE-DAILY	WATER	YEAR OCTOBER	1979	TO SEPTEMBER	1980	
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	565 560 546 547 569	586 584 591 585 587	589 613 615 608 609	624 622 620 617 625	653 623 624 627 629	650 654 653 652 647	665 663 667 666 671	667 685 639 686 690	549 531 551 553 560	453 450 462 448 472	422 468 466 474 478	279 270 274 261 256
6 7 8 9	561 569 573 570 573	590 587 582 583 585	601 605 609 611 614	624 629 625 629 630	628 630 632 641 631	657 655 661 554 655	670 669 671 672 671	708 696 692 688 689	556 550 546 519 525	463 468 464 476 478	479 475 480 472 466	252 260 268 267 275
11 12 13 14 15	571 568 567 568 574	587 590 591 594 600	603 609 615 617 616	628 629 631 628 630	632 668 636 637 639	655 654 658 661 665	673 675 692 681 680	691 695 694 692 694	514 504 625 508 517	482 480 488 472 470	430 436 425 392 333	265 267 267 270 272
16 17 18 19 20	572 575 579 578 577	607 608 609 607 605	618 621 617 619 617	631 628 630 629 629	642 645 644 643	657 661 664 661 664	682 685 683 684 683	696 692 697 610 706	537 535 531 510 507	492 494 475 470 471	292 277 273 264 261	277 278 312 319 320
21 22 23 24 25	579 580 584 580 579	603 601 602 600 598	618 619 621 623 621	587 610 626 623 630	643 644 645 644 659	667 665 667 663 666	686 684 685 686 684	710 707 684 660 608	500 499 506 509 495	473 477 480 481 483	253 263 269 260 255	294 302 283 302 297
26 27 28 29 30 31	580 580 583 582 581 583	601 602 603 613 611	622 626 631 612 624 625	633 636 647 640 635 627	654 647 648 655	665 659 663 660 664 666	687 690 694 687 707	585 588 590 588 585 583	512 500 499 506 498	481 482 482 481 480 483	256 258 274 275 277 278	280 288 299 293 287
MEAN	573	596	615	627	641	656	680	664	525	475	354	281

OSO CREEK BASIN 475

08211520 OSO CREEK AT CORPUS CHRISTI, TX

LOCATION.--Lat 27°42'40", long 97°30'06", Nueces County, Hydrologic Unit 12110202, on left downstream end of bridge on Farm Road 763, 1.5 mi (2.4 km) south of intersection of Farm Roads 763 and 665, 1.6 mi (2.6 km) downstream from mouth of West Oso Creek, and 1.9 mi (3.1 km) southWest of intersection of Farm Road 665 and State Highway 357.

DRAINAGE AREA .-- 90.3 mi2 (233.9 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- September 1972 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 1.91 ft (0.582 m) below National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. No known diversions above station. An undetermined amount of water from oilfield operations enters stream upstream at various points. Recording rain gage is located at station.

AVERAGE DISCHARGE.--8 years, 38.0 ft3/s (1.076 m3/s), 27,530 acre-ft/yr (33.9 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 12,100 ft 3 /s (343 m 3 /s) Aug. 10, 1980, gage height, 29.37 ft (8.952 m); minimum, 0.25 ft 3 /s (0.07 m 3 /s) Aug. 26, 27, 1973.

EXTREMES OUTSIDE PERIOD OF RECORD.--A stage of about 24.5 ft (7.47 m) occurred in May 1968, from information by local resident.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 1,000 ft3/s (28.3 m3/s) and maximum (*):

Date		Time	Disch	arge	Gage	height
			(ft^3/s)	(m^3/s)	(ft)	(m)
Aug.	10	2300	*12,100	343	29.37	8.95
Sept.		1700	1.040	29.5	16.23	4.94

DISCHARGE IN CURIC FEET PER SECOND WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

Minimum discharge, 0.37 ft3/s (0.010 m3/s) May 13.

		DISC	HARGE, IN	CUBIC FE		COND, WAT AN VALUES		OCTOBER 19	79 TO SEP	TEMBER 1	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	6.9 6.3 5.5 4.6 4.9	3.1 2.9 2.8 2.8 2.8	2.0 1.9 1.9 1.9	2.0 2.1 1.8 1.8	2.7 2.8 2.8 2.8 3.1	2.2 2.0 2.1 2.1 2.1	2.0 2.1 2.1 2.1 2.0	1.7 1.6 1.5 1.5	1.5 1.6 1.3 1.1	1.3 1.1 1.2 1.2 1.3	2.1 2.8 5.0 6.1 3.8	4.6 3.7 51 121 21
6 7 8 9	4.7 4.7 4.7 4.5 4.3	2.7 2.5 2.6 2.4 2.2	2.4 2.6 2.5 2.4 2.4	2.5 2.4 2.2 2.3 2.4	3.0 3.7 3.1 2.7 2.5	2.1 2.3 2.3 2.3 2.3 2.2	1.9 1.9 1.7 1.6	1.2 1.1 1.9 1.4 1.6	1.6 2.2 1.1 1.1	1.2 1.9 1.5 1.4	2.1 2.7 2.2 62 4610	14 11 3.0 2.2 1.7
11 12 13 14	4.3 4.1 4.2 4.4 4.3	2.2 2.1 2.1 2.2 2.2	2.3 2.1 2.0 2.0 1.9	2.4 2.5 2.7 2.6 2.5	2.5 4.3 3.9 4.3 3.4	2.2 2.2 2.1 2.0 2.0	2.2 1.6 1.5 1.5	2.3 1.6 1.3 1.2 3.9	.73 .79 .86 .93	1.3 1.3 1.3 1.5	6160 1570 778 364 138	1.6 1.3 1.2 1.2
16 17 18 19 20	4.3 4.2 4.4 4.3 4.5	2.0 2.0 2.1 2.2 2.3	1.8 1.7 1.6 1.6 2.6	2.5 2.9 3.2 3.0 2.9	3.2 3.0 2.9 2.6 2.6	2.6 2.0 2.0 2.3 2.3	1.4 1.5 1.5 1.5	1.8 1.4 1.2 19	1.3 1.2 1.1 1.4	1.3 1.1 1.1 1.1	160 93 32 16 11	1.2 1.1 1.1 1.1
21 22 23 24 25	4.5 4.1 3.9 3.6 3.4	2.3 2.2 2.2 2.0 2.1	3.6 3.4 2.7 1.9 1.8	6.0 14 11 6.7 4.6	2.5 2.4 2.3 2.2 2.1	1.9 2.0 2.4 1.8	1.5 1.5 1.8 2.1 1.8	7.0 9.2 4.0 4.4 8.5	1.2 1.3 1.5 1.7 1.3	1.1 1.6 2.9 15	7.7 6.3 4.8 4.2 3.8	1.0 .94 .90 .94
26 27 28 29 30 31	3.2 3.1 3.1 3.2 4.7 3.3	2.1 2.0 2.0 2.0 2.0	1.9 1.7 1.9 2.0 2.1 2.2	3.6 3.2 3.3 3.0 3.1 2.8	2.1 2.1 2.2 2.3	2.1 2.1 2.2 2.7 2.2 1.9	1.4 1.3 1.3 1.3	3.0 1.9 1.5 1.5	1.2 1.1 1.3 1.7 1.6	9.4 6.4 29 19 8.1 4.3	3.4 3.3 3.1 3.0 3.1 4.1	186 728 730 247 354
TOTAL MEAN MAX MIN AC-FT	134.2 4.33 6.9 3.1 266	69.1 2.30 3.1 2.0 137	66.7 2.15 3.6 1.6 132	109.4 3.53 14 1.4 217	82.1 2.83 4.3 2.1 163	66.6 2.15 2.7 1.8 132	50.3 1.68 2.2 1.3	102.8 3.32 19 1.1 204	38.41 1.28 2.2 .73 76	143.0 4.61 29 1.1 284	14067.6 454 6160 2.1 27900	2494.76 83.2 730 .88 4950

CAL YR 1979 TOTAL 16693.70 MEAN 45.7 MAX 2540 MIN 1.6 AC-FT 33110 WTR YR 1980 TOTAL 17424.97 MEAN 47.6 MAX 6160 MIN .73 AC-FT 34560

476 OSO CREEK BASIN

08211520 OSO CREEK AT CORPUS CHRISTI, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: July 1972 to current year.

DATE	TIME	STREAM FLOW, INSTAN TANEOU (CFS)	DUCT - ANCE	PH	ATI WA:	PER- URE, FER 3 C)	TUR- BID- ITY (NTU)	OXYG DI SOL (MG	EN, S- VED	OXYGEN DIS- SOLVE (PER- CENT SATUR ATION	OXYC D DEMA BIOC UNIN	AND, CHEM THIB DAY	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
NOV 06	1350	2.	8 650	0 7	. 8	22.5	17		9.2	10.	3	5.4	1000	870
DEC 17	1622	1.	7 490	0 8	.1	8.5	15	1	1.8	10	0	1.6	810	650
JAN 28	1535	3.	3 499	0 8	.3	16.5	23	1	1.6	111	В	2.6	810	670
MAR 10	1603	2.	3 570	0 8	.3 :	26.5	20	1	3.6	170	0	3.4	930	770
APR 21		1.	7 518	0 8	.7	24.5	13	1	9.0	220	0	5.6	810	670
JUN 02	1618	1.	7 432	0 8	.5	31.5		1.	3.5	180	0	6.2	740	580
JUL 14	1815	2.1	326	0 8	.3	32.5	48		9.4	12	7	4.7	580	430
AUG 26		3.				30.0	1.9		7.0	9:		3.5	1000	830
DATE	CALCIUM DIS- SOLVEI (MG/L AS CA)	DIS- SOLVE (MC/L	, SODIUM DIS- D SOLVED (MG/L	SORP- TION RATIO	DI SOI	IS- B LVED G/L	ICAR- ONATE (MG/L AS HCO3)	CAR- BONA' (MG, AS CO	re /L	SULFATI DIS- SOLVEI (MG/L AS SO4	DIS SOL (MC	E, - VED :/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
NOV 06	320	58	1000	14		18	200		0	270	190	0	.4	23
DEC 17		45	650	9.		21	190		0	220	130		.4	20
JAN 28		46	700	11		14	170		0	230	140		.2	20
MAR 10		56	770	11		21	190		0	270	160		.3	10
APR 21		46	760	12		20	140		20	230	150		.3	14
JUN 02		40	610	9		18	170		10	220	120		.3	23
JUL		32	510	9.		19	190		0	170	100		.3	16
AUG		51	810	11		17	220		0	220	180			12
26	320	31	010	3.1		17	220		U	220	160	U	.3	12
	St CC TU	M OF RIDISTI- A'DISTI- A'DISTI- BOLS- BOLVED PI	T 105 EG. C. N SUS- ENDED	NITRO- GEN, ITRATE N TOTAL (MG/L AS N)	NITRO- GEN, IITRITE TOTAL (MG/L AS N)	NITRO GEN NO2+NO TOTA (MG/ AS N	, (03 AMN L TO L (1)	ITRO- GEN, MONIA DTAL MG/L S N)	NITI GEI ORGAI TOTA (MG	RO- GI N, MC NIC OF AL 7	ITRO- EN, AM- DNIA + RGANIC FOTAL (MG/L, AS N)	PHOS PHORU TOTA (MG/ AS F	JS, ORG	BON, ANIC TAL IG/L C)
	06	3690	51	5.3	.35	5.	6	.35	1.	.5	1.8	2.4	•00	10
	EC 17	2600	25	11	.29	11		.37	1	.4	1.8	1.7	700	9.5
	AN 28		27	6.2	.15	6.	3	.27		.35	.62	2.1	00	11
	ΛR 10	3100	34	9.7	.34	10		.39	1	,5	1.9	4.0	000	10
Α	PR 21	2910	32	8.0	.24	8.	2	.13	2	.1	2.2	1.8	800	14
	UN 02	2440		2.4	.12	2.	5	.02	2	. 2	2.2	2.1	00	15
	UL. 14	2020	99	1.5	.14	1.	6	.19	1	.4	1.6	2.2	200	14
A	UG 26	3340	50	.74	.05		79	.47	1	.0	1.5	1.2	200	13

08211520 OSO CREEK AT CORPUS CHRISTI, TX--Continued

OSO CREEK BASIN 477

			ZOLLET.	I DAI				DLIC 12		-0 00.			2.6		
	DA	ATE	TIME	SOI (UC	S- DI VED SOL	IUM, S- VED G/L BA)	SOL (UG	IUM S- VED /L	(UG	M, (:- .VED	COPP DIS SOL (UG AS	VED /L	(UG	S- VED	
	NOV		1350		15	500		0		0		0		20	
	JAN		1535		16	500		1		0		1		30	
	APR		1622		10	600		0		10		2		20	
	JUL		1815		16	200		0		10		2		30	
	14		1013		10	200		Ů,		10		2		50	
		DATI	SC (I	EAD, DIS- DLVED JG/L S PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	SO (U	CURY IS- LVED G/L HG)	SELE NIUM DIS SOLV (UG/ AS S	ED L	SILVI DIS SOLV (UG, AS	S- VED /L	ZINC DIS SOLV (UG/ AS Z	ED L		
		NOV 06.		0	240		.0		0		0		10		
		JAN 28.		0	550		.3		0		0		20		
		APR 21.		0	210		.9		0		0		10		
		JUL 14.		7	70		.3		0		0		10		
DATE	TIME	PCB TOTAI	IN TON	PCB. DTAL BOT- 1 MA- ERIAL G/KG)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALD	RIN, TAL G/L)	ALDRI TOTA IN BO TOM M TERI (UG/K	L T- IA- AL	CHLO DANI TOTA (UG)	E, AL	CHLC DANE TOTA IN BC TOM M TERI (UG/K	I. AL DT- 1A- IAL	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN 28	1535		.0	2	.00		.00		.0		.0		0	.00	1.2
JUL 14	1815		.0	0	.00		.00		.0		.0		3	.00	1.7
DATE	DDE, TOTAL (UG/L)	DDE TOTAL IN BOT TOM MA TERIA (UG/KO	L F- A- I AL TO	DDT, DTAL JG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	AZ I	I- NON, TAL G/L)	DI- ELDR TOTA (UG/	IN	DI- ELDRI TOTA IN BO TOM N TERI (UG/H	IN, AL OT- MA- IAL	ENDO SULFA TOTA (UG/	N,	ENDRIN, TOTAL (UG/L)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN 28	.00		.7	.00	.3		.17		00		.0		.00	.00	.0
JUL 14	.00	2.	. 1	.00	.3		.07		00		.1		.00	.00	.0
DATE	ETHION, TOTAL (UG/L)	HEPTA CHLOH TOTAI (UG/I	CH TC A- IN R, TON	EPTA- HLOR, DTAL BOT- MA- ERIAL G/KG)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	CH EPO TOT BO M	PTA- LOR XIDE . IN TTOM ATL. /KG)	LINDA TOTA (UG/	L	LINDA TOTA IN BO TOM N TERM	AL OT- MA- IAL	MALA THIC TOTA (UG)	N,	METH- OXY- CHLOR, TOTAL (UG/L)	METH - OXY - CHLOR, TOT. IN BOTTOM MATL. (UG/KG)
JAN 28	.00	.(00	.0	.00		.0		00		.0		.00	.00	.0
JUL 14	.00	(00	.0	.00		.0		01		.0		.00	.00	.0
DATE	METHYL PARA- THION, TOTAL (UG/L)	METHY TRI- THION TOTAL (UG/1	, MI	REX,	PARA- THION, TOTAL (UG/L)	APH TO	OX- ENE, TAL G/L)	TOXA PHEN TOTA IN BO TOM M TERI (UG/K	E, L T- A- AL	TOTA TRI THIC	NON	2,4- TOTA (UG/	L	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
JAN	(00/10)	(00/1	-> ((, = , ш)	(00/11)	,0	-/-/	(00)1	/	(00)	2)	(00)	/	(00/11)	(00/11)
28 JUL	.00	.(00	.00	.00		0		0		.00		02	.16	.00
14	.00	.(00	.00	.00		0		0		.00		00	.00	.00

478

SAN FERNANDO CREEK BASIN

08211800 SAN DIEGO CREEK AT ALICE, TX

LOCATION.--Lat 27°45'59", long 98°04'31", Jim Wells County, Hydrologic Unit 12110204, at bridge on Edith Drive in Alice, 540 ft (165 m) downstream from Texas and New Orleans Railroad Co. bridge, and 3.2 mi (5.1 km) upstream from confluence with Chiltipin Creek.

DRAINAGE AREA . -- 319 mi2 (826 km2).

PERIOD OF RECORD .-- September 1963 to current year.

REVISED RECORDS. -- WRD TX-72-1: 1971.

GAGE.--Water-stage recorder. Datum of gage is 189.60 ft (57.790 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Flow is affected at times by discharge from the flood-detention pools of ten floodwater-retarding structures with a combined detention capacity of 35,980 acre-ft (44.4 hm³). These structures control runoff from 170 mi² (440 km²) in the San Diego-Rosita drainage basins. Several observations of water tempera-ture were made during the year.

AVERAGE DISCHARGE. -- 17 years, 10.4 ft 3/s (0.295 m3/s), 7,530 acre-ft/yr (9.28 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 19,200 ft³/s (544 m³/s) Oct. 17, 1971, gage height, 17.70 ft (5.395 m); no flow at times each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1928, 18.2 ft (5.55 m) April 1949, equivalent gage height in channel modified in 1955, 17.2 ft (5.24 m), from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 250 ft3/s (7.08 m3/s) and maximum (*):

Date	9	Time	Disch	arge	Gage	height
			(ft^3/s)	(m^3/s)	(ft)	(m)
Jan.	21	1700	1,240	35.1	7.59	2.313
A110.	11	0500	*2 480	70.2	9.00	2.743

DISCHARGE IN CHRIC FEET DED SECOND HATER VEAD OCTOBER 1070 TO SERTEMBER 1000

Minimum discharge, no flow at times.

DAY	OCT	NOV	DEC	TA 22	THE	MAD	1.00		*****	****	110-	144
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEL
1	.42	.23	.31	. 34	.81	.49	. 36	.00	.18	.00	.00	.08
2	.37	.19	.36	.35	.90	.38	.40	.00	.22	.00	.00	.12
3	.37	.17	. 37	.49	1.1	. 23	. 54	. 01	. 14	.00	.00	.09
4	.35	.20	.40	.38	.87	.25	.68	.04	.05	.00	.00	.08
5	.31	.19	. 44	.34	.69	. 37	. 54	.08	.02	.00	.00	. 09
6	.26	.18	.38	.33	.66	.43	.59	.11	.01	.00	.00	.07
7	.27	.13	. 41	.23	.69	.43	. 76	.08	.00	.00	.00	.05
8	.28	.27	.44	.31	.65	.45	.74	.13	.00	.00	.00	.03
9	.28	.18	. 41	.29	. 58	. 77	. 56	.17	.00	.00	.00	.03
10	.23	.11	.41	.24	.48	.75	.37	.84	.00	.00	115	.03
11	.29	.14	.41	.40	.42	. 49	.28	. 55	.00	.00	1200	.02
12	.33	.08	.45	.33	.98	.48	.34	.42	.59	.00	47	.02
13	. 32	.20	.47	.36	1.6	. 43	.35	. 41	. 48	.00	12	.01
14	.35	.12	.60	.28	1.9	.40	.31	.30	.38	.00	4.0	.01
15	.64	.19	.51	.36	1.1	. 39	.25	.82	. 31	.00	1.9	.01
16	.64	.17	.53	.45	.98	.36	.18	.64	.23	.00	1.2	.01
17	.46	.20	. 42	. 49	.81	. 42	. 09	. 46	.17	.00	.77	.01
18	.41	.19	.40	.47	.70	.37	.06	.58	.12	.00	.53	.00
19	. 36	.25	. 48	. 41	.63	. 41	.13	.95	.08	.00	. 38	.00
20	.34	.28	.44	.40	.50	.40	.23	.90	.05	.00	.27	.00
21	.33	.44	.48	382	.83	. 29	.23	.90	.03	.00	. 26	.00
22	.31	.44	.54	159	.61	.34	.23	1.6	.02	.00	.18	.00
23	.23	.33	.59	39	. 56	. 32	. 25	1.6	.01	.00	. 13	.00
24	.17	.33	.46	19	.53	1.6	.17	1.3	.00	.00	.20	.07
25	.23	.49	.39	8.5	. 44	. 92	.14	.87	.00	.00	. 24	.02
26	.24	.42	.38	3.4	.41	.52	.11	.70	.00	.00	.43	1.1
27	. 27	.47	.45	2.0	. 38	. 94	.06	. 59	.00	.00	.51	6.1
28	.27	.33	.47	1.6	.34	1.0	.04	.71	.00	.00	.58	2.4
29	.27	.30	.75	1.5	.40	.87	.03	.63	.00	.00	. 29	1.9
30	.31	.29	.56	1.4		.69	.01	.46	.00	.00	.12	11
31	.28		.40	1.1		.50		. 26		.00	.07	
OTAL	10.19	7.51	14.11	625.75	21.55	16.69	9.03	17.11	3.09	.00	1386.06	23.35
1EAN	. 33	. 25	.46	20.2	.74	. 54	. 30	. 55	.10	.000	44.7	.78
AX	.64	.49	.75	382	1.9	1.6	.76	1.6	.59	.00	1200	11
IN	.17	.08	. 31	.23	. 34	.23	.01	.00	.00	.00	.00	:00
C-FT	20	15	28	1240	43	33	18	34	6.1	.00	2750	46
AL YR	1979 TOTAL	730.6	8 MFAN	2.00 M	AX 283	MIN .00	AC-FT	1/450				

08211850 LAKE ALICE AT ALICE, TX

LOCATION.--Lat 27°47'25", long 98°03'39", Jim Wells County, Hydrologic Unit 12110204, on right bank just upstream from Alice Dam on Chiltipin Creek, 1.8 mi (2.9 km) upstream from confluence of Chiltipin and San Diego Creeks, and 2.6 mi (4.2 km) northeast of Alice.

DRAINAGE AREA . - - 150 mi 2 (388 km2).

PERIOD OF RECORD. -- December 1964 to current year.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by city of Alice).

REMARKS.—The lake is formed by a rolled earthfill dam, which has a total length of 11,525 ft (3,513 m). The dam consists of the main embankment 3,470 ft (1,060 m) long and two protective levees. The west protective levee is 4,275 ft (1,303 m) long and the east protective levee is 2,343 ft (714 m) long. Storage began Oct. 26, 1964, and the dam was completed Mar. 16, 1965. The emergency spillway, 1,000 ft (300 m) wide, is located between the main embankment and the west levee. Collapsible flashboards, 3.5 ft (1.1 m) high, were added to the crest of the emergency spillway. The main spillway is 414 ft (126 m) wide with thirteen 30-foot-wide (9 m) slots for gates, but no gates have been installed at the present time. The main spillway is located between the main embankment and the east levee. The service spillway is a concrete siphon-type spillway, 22.5 ft (6.9 m) wide with a 3.5-foot (1.1 m) opening, and is located in the main enbankment section. The dam is the property of the Alice Water Authority and was built to store water for use by the city of Alice. The area and capacity tables are based on revised maps surveyed in 1963. Flow is affected at times by discharge from flood-detention pools of seven floodwater-retarding structures with combined detention capacity of 21,560 acre-ft (26.6 hm³). These structures control runoff from 111 mi² (287 km²). Records furnished by the city of Alice show that 5,390 acre-ft (6.65 hm³) was diverted during the current year for municipal use. Records furnished by the city of Corpus Christi show that 3,950 acre-ft (4.87 hm³) was diverted to Lake Alice from Lake Corpus Christi during the current year. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table: in the following table:

	Elevation (feet)	Capacity (acre-feet)
Top of dam	205.0	
Top of west levee	202.0	-
Top of collapsible flashboards	199.5	5,300
Top of east levee	199.0	4.910
Crest of main spillway	196.5	3,110
Crest of spillway	196.0	2,780
Crest of siphon spillway (lowest outlet)	196.0	2,780

COOPERATION .-- The area and capacity tables are furnished by the Alice Water Authority.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 4,780 acre-ft (5.89 hm³) Sept. 12, 1971, elevation, 198.83 ft (60.603 m), from floodmark; minimum, 14 acre-ft (17,300 m³) Feb. 3, 1965, elevation, 185.67 ft (56.592 m).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 3,740 acre-ft (4.61 hm³) Aug. 11 at 1300 hours, elevation, 197.42 ft (60.174 m); minimum, 44 acre-ft (0.054 hm³) Aug. 7 at 0900 hours, elevation, 188.08 ft (57.327 m).

Capacity table (elevation, in feet, and total contents, in acre-feet)

188.0	42	190.0	1.95	193.0	1,160
188.5	56	190.5	288	194.0	1,640
189.0	82	191.0	423	195.0	2,180
189.5	127	192.0	754	197.5	3,790

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	1510 1490	751 751	673 676	662 645	972 972	822 810	694 701	475 469	303 312	88 86	59 57	2580 2550
3 4	1460	751	680	628	992	795	708	472	305	84	55	2530
4	1430	747	680	624	992	784	708	469	293	80	55	2500
5	1410	747	683	624	1000	765	701	450	286	78	55	2470
6	1370	747	697	628	1010	747	694	444	275	76	53	2440
7	1350	747	694	631	1010	736	697	441	252	73	45	2410
8	1320	747	694	628	1020	733	697	441	230	71	48	2380
9	1300	743	694	628	1000	733	683	438	188	70	63	2340
10	1260	736	701	645	972	733	669	435	205	70	598	2310
11	1250	736	701	638	968	725	669	429	197	67	3480	2290
12	1220	736	711	635	968	729	655	429	191	66	3370	2250
13	1200	733	711	641	968	718	652	412	175	64	3310	2210
14	1170	733	718	641	955	704	652	403	168	62	3260	2180
15	1150	736	729	641	943	708	641	414	162	59	3210	2140
16	1130	736	729	648	919	715	621	414	158	59	3150	2100
17	1100	736	725	652	899	718	618	414	150	58	3110	2070
18	1070	736	715	662	895	718	608	406	147	57	3060	2040
19	1050	736	701	669	899	718	598	397	138	56	3010	2000
20	1020	740	683	773	899	722	584	380	134	57	2970	1970
21	992	754	659	935	899	708	578	380	131	59	2940	1930
22	968	733	662	935	899	701	565	400	125	59	2910	1900
23	943	711	676	939	899	704	558	403	119	63	2870	1870
24	923	704	676	955	899	697	551	406	114	65	2850	1900
25	895	687	676	955	892	694	545	406	111	64	2810	1880
26	880	680	683	959	892	690	532	406	106	62	2780	1960
27	864	676	683	959	892	704	519	400	102	63	2740	2240
28	833	676	708	968	876	704	510	397	97	65	2710	2240
29	795	673	708	968	856	711	481	383	91	65	2660	2240
30	799	673	697	976		708	481	358	87	63	2630	2260
31	776		673	976		690		355		61	2610	
MAX	1510	754	729	976	1020	822	708	475	312	88	3480	2580
MIN	776	673	659	624	856	690	481	355	87	56	45	1870
(†)	192.06	191.77	191.77	192.57	192.27	191.82	191.19	190.76	189.07	188.61	195.72	195.14
(‡)	-754	-103	0	+303	-120	+166	-209	-126	-268	-26	+2550	-350

WTR YR 1980 MAX 3480 MIN 45 +1063

08211900 SAN FERNANDO CREEK AT ALICE, TX

LOCATION.--Lat 27°46'20", long 98°02'00", Jim Wells County, Hydrologic Unit 12110204, on left bank 34 ft (10 m) downstream from downstream bridge of two bridges on State Highways 44 and 359, 0.5 mi (0.8 km) downstream from confluence of San Diego and Chiltipin Creeks, 2.3 mi (3.7 km) upstream from head of Pintas Creek, and 2.7 mi (4.3 km) northeast of Alice.

DRAINAGE AREA. -- 507 mi2 (1,313 km2).

PERIOD OF RECORD . -- December 1964 to current year.

GAGE.--Water-stage recorder. Datum of gage is 161.68 ft (49.280 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. San Diego Creek joins Chiltipin Creek below Lake Alice to form San Fernando Creek. Flow is regulated by Lake Alice (station 08211850) 2.3 mi (3.7 km) upstream from Chiltipin Creek since Oct. 26, 1964. For statement regarding regulation by Soil Conservation Service floodwater-retarding structures, see station 08211800. Records furnished by city of Alice show that 3,870 acre-ft (4.77 hm³) of sewage effluent was discharged into San Diego Creek 1.3 mi (2.1 km) upstream, which comprises most of the low flow. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--15 years (water years 1966-80), 28.7 ft³/s (0.813 m³/s), 20,790 acre-ft/yr (25.6 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $26,800 \text{ ft}^3/\text{s}$ ($759 \text{ m}^3/\text{s}$) Sept. 12, 1971, gage height, 16.51 ft (5.032 m); no flow part of each day Aug. 23-26, Sept. 14, 1965, several days in June, July, and August 1967, part of Dec. 27, 1972, Sept. 17, 18, 1978, and Oct. 20-22, 1979.

Maximum stage since at least 1949, that of Sept. 12, 1971. Another high stage for this period was 15.86 ft (4.834 m) Sept. 23, 1967, discharge 16,900 ft $^3/\text{s}$ ($479 \text{ m}^3/\text{s}$).

EXTREMES OUTSIDE PERIOD OF RECORD.--Other high stages since at least 1949 are 15.5 ft (4.72 m) Sept. 9, 1962, discharge 14,600 ft³/s (413 m³/s) from field estimate, and 14.2 ft (4.33 m) Sept. 14, 1951. Discharge for flood of Sept. 14, 1951, may have exceeded that for 1962 as the highway was raised between 1952 and 1962. Flood in 1951 was higher at site of discontinued station "San Fernando Creek near Alice". Flood in 1962 was higher than that of 1967 at site of discontinued station; there is a diversion into the Pintas Creek basin between the two gaging sites, and apparently this diversion was greater in 1967 than in 1962.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 11,900 ft 3 /s (337 m 3 /s) Aug. 11 at 0700 hours, gage height, 14.70 ft (4.481 m); no flow part of each day Oct. 20-22.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1979	TO	SEPTEMBER	1980
					MEAN MAT	HEC						

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.4 2.9 2.7 2.2 2.6	1.3 1.9 1.6 1.0	2.9 4.5 3.4 3.2 2.7	1.7 2.6 3.2 3.6 3.6	2.2 2.1 2.1 2.2 2.1	1.9 1.9 2.0 2.0 2.6	2.3 2.2 2.2 2.0 1.9	1.3 1.6 1.4 1.6 1.8	1.9 2.0 1.9 1.9 2.0	.87 .88 1.0 1.7 1.9		2.5 2.5 2.7 2.7 2.5
6 7 8 9	2.3 2.2 2.2 2.2 2.1	1.3 1.2 1.2 1.6 2.1	3.2 3.7 3.7 3.7 3.3	3.6 3.4 3.3 3.9 4.5	1.9 2.1 2.2 2.0 1.9	2.6 2.4 2.2 2.0 2.4	1.9 2.0 2.0 2.0 2.1	1.3 1.3 1.3 1.6	1.8 1.8 1.7 1.8 2.0	2.0 1.6 .54 .46		2.5 2.5 2.6 2.5 2.4
11 12 13 14 15	2.3 2.0 2.1 2.7 3.1	1.4 1.6 2.2 3.8 2.6	4.4 3.4 2.9 4.4 4.3	3.3 3.0 2.6 3.6 3.6	2.0 2.4 2.5 2.6 2.5	2.4 2.3 2.3 2.2 2.3	2.1 1.9 1.7 1.9 1.8	1.6 1.6 1.7 1.3 1.3	2.1 2.2 2.1 2.0 1.9	1.2 .74 1.5 1.6 1.2	9210 1430 612 264 165	2.3 2.2 2.2 2.2 2.3
16 17 18 19 20	2.5 1.9 1.2 1.2	2.1 2.3 2.4 2.2 2.6	4.0 3.9 3.4 3.8 5.1	2.6 3.2 2.8 2.5 2.6	2.3 2.1 2.1 2.1 2.1	2.4 2.5 2.4 2.4 2.5	1.8 1.8 1.8 1.8	1.8 1.7 1.6 2.0 2.0	2.1 2.1 2.0 2.0 1.7	.42 .46 1.1 1.9 2.0	102 55 25 11 7.1	2.2 2.2 2.2 2.2 2.2
21 22 23 24 25	.85 1.0 1.3 1.4 1.8	2.7 2.1 2.1 2.3 2.2	4.6 5.0 5.0 3.7 3.1	269 149 19 6.8 4.2	2.0 2.2 2.1 2.0 2.4	2.3 2.3 2.4 2.4 2.6	1.8 1.7 1.7 1.7	2.0 2.4 2.5 2.3 2.1	1.6 2.0 1.9 .86	2.2 1.5 1.4 1.7	5.9 4.7 3.7 3.3 2.8	2.4 2.4 2.4 2.8 2.7
26 27 28 29 30 31	1.6 1.2 .98 1.2 1.5	2.4 2.5 2.9 2.2 2.7	3.3 3.9 3.6 3.9 3.8 2.4	3.0 2.5 2.3 2.2 2.4 2.3	2.2 2.0 2.1 2.2	2.4 2.3 2.6 2.4 2.1 2.0	1.7 1.5 1.6 1.5	1.9 2.0 2.3 2.1 2.0	.98 2.1 2.3 2.5 1.9	1.4 2.1 1.7 .82 2.0 1.7	2.8	3.3 128 32 4.8 3.8
TOTAL MEAN MAX MIN AC-FT	58.32 1.88 3.1 .79 116	61.6 2.05 3.8 1.0 122	116.2 3.75 5.1 2.4 230	525.9 17.0 269 1.7 1040	62.7 2.16 2.6 1.9 124	71.5 2.31 2.6 1.9 142	55.2 1.84 2.3 1.4 109	55.0 1.77 2.5 1.3 109	56.04 1.87 2.5 .86 111	41.23 1.33 2.2 .42 82	12500.21 403 9210 .91 24790	232.2 7.74 128 2.2 461

CAL YR 1979 TOTAL 4102.72 MEAN 11.2 MAX 1940 MIN .79 AC-FT 8140 WTR YR 1980 TOTAL 13836.10 MEAN 37.8 MAX 9210 MIN .42 AC-FT 27440

481 LOS OLMOS CREEK BASIN

08212400 LOS OLMOS CREEK NEAR FALFURRIAS, TX (National stream-quality accounting network)

LOCATION.--Lat 27°15'51", long 98°08'08", Brooks County, Hydrologic Unit 12110205, at downstream side of bridge on U.S. Highway 281 and 2.6 mi (4.2 km) north of Falfurrias.

DRAINAGE AREA.--480 mi^2 (1,243 km^2), of which 4.5 mi^2 (11.7 km^2) probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- January 1967 to current year.

GAGE.--Water-stage recorder and V-notch weir low-water control. Datum of gage is 116.58 ft (35.534 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. La Gloria Oil Refinery no longer releases waste during low-flow periods.

AVERAGE DISCHARGE.--13 years, 5.28 ft^3/s (0.150 m^3/s), 0.15 in/yr (4 mm/yr), 3,830 acre-ft/yr (4.72 hm^3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,300 $\mathrm{ft^3/s}$ (150 $\mathrm{m^3/s}$) Sept. 13, 1971, gage height, 12.66 ft (3.859 m); no flow at times in 1970-80.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1929, 15.0 ft (4.57 m) Sept. 13, 1951, from information by State Department of Highways and Public Transportation.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,370 ft 3 /s (38.8 m 3 /s) Aug. 11 at 0900 hours, gage height, 10.13 ft (3.088 m), no other peak above base of 100 ft 3 /s (2.83 m 3 /s); no flow most of time.

		DISCH	ARGE, IN	CUBIC FEE		COND, WATER AN VALUES	R YEAR O	CTOBER 197	79 TO SEPT	EMBER 1	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
3	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
		.00		.00	.00	.00	.00	.00	.00	.00	.00	.00
5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
9	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.21	.00
10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	151	.00
						6.3.3			-24		2121	
1.1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1020	.00
12	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	501	.00
13	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	232	.00
14	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	27	.00
15	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	4.8	.00
16	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.3	.00
17	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.65	.00
					.00	.00	.00	.00	.00	.00	.26	.00
18	.00	.00	.00	.00					.00	.00	.06	.00
19	.00	.00	.00	.00	.00	.00	.00	35 11	.00	.00	.02	.00
20	.00	.00	.00	.00	.00	.00	.00	(1)	.00	.00	.02	.00
21	.00	.00	.00	.00	.00	.00	.00	1.3	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	.00	.00	1.2	.00	.00	.00	.00
23	.00	.00	.00	.00	.00	.00	.00	.37	.00	.00	.00	.00
24	.00	.00	.00	.00	.00	.00	.00	.10	.00	.00	.00	.00
25	.00	.00	.00	.00	.00	.00	.00	.06	.00	.00	.00	.00
											6.0	
26	.00	.00	.00	.00	.00	.00	.00	.04	.00	.00	.00	.00
27	.00	.00	.00	.00	.00	.00	.00	.02	.00	.00	.00	4.8
28	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.8
29	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.3
30	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	.27
31	.00		.00	.00		.00		.00		.00	.00	
TOTAL	.00	.00	.00	.00	.00	.00	.00	49.09	.00	.00	1938.30	8.17
						.000	.000	1.58	.000	.000	62.5	.27
MEAN	.000	.000	.000	.000	.000				.000	.000	1020	4.8
MAX	.00	.00	.00	.00	.00	.00	.00	35				
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
AC-FT	.00	.00	.00	.00	.00	.00	.00	97	.00	.00	3840	16
CAL YR	1979 TOTA	AL 199.6	55 MEAN	.55 M.	AX 36	MIN .00	AC-FT	396				

WTR YR 1980 TOTAL 1995.56 MEAN 5.45 MAX 1020 MIN .00 AC-FT 3960

08212400 LOS OLMOS CREEK NEAR FALFURRIAS, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: October 1974 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1974 to current year. WATER TEMPERATURES: October 1974 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for_selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 7.380 micromhos July 5, 1976; minimum daily, 58 micromhos Apr. 21, 1979.
WATER TEMPERATURES (1974-77): Maximum daily, 33.0°C July 29, Aug. 1, 1976, May 30, 1977; minimum daily, 3.0°C Nov. 28, 1977.

EXTREMES FOR CURRENT YEAR.--SPECIFIC CONDUCTANCE: Maximum daily, 225 micromhos Aug. 20; minimum daily, 60 micromhos Aug. 11.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
OCT											
18 NOV	1018	.00			77	77	77				
13 DEC	1600	.00					124	22		-4	1,2
18	0820	.00	2.0								
JAN 25	1310	.00									
FEB 20	0732	.00	4-		44		344				22
MAR 24	1608	.00			1.45						
APR 23	1448	.00				42					
MAY											
28 JUN	1902	.00	-7	7.7							
23	1627	.00									
JUL. 22	0715	.00									-22
AUG 14	1215	20	147	6.9	28.0	24	.3	4	10	21000	43000
SEP 18 28	1840	.00	115	7.1	30.0						

DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
OCT										
18 NOV		1.77			77	77				77
13 DEC				22		9,2				
18 JAN										
25 FEB					25	40		77	77	57
20 MAR	22				44		22			
24 APR										
23 MAY	7.7		97			37	75			
28 JUN	**		1-2-1							
23 JUL										
22 AUG	**								(75)	
14 SEP	53	0	17	2.5	3.2	.2	9.5	82	0	.8
18					H-5.					
28	39	0	11	2.7	9.3	.7	3.8	48	0	3.9

08212400 LOS OLMOS CREEK NEAR FALFURRIAS, TX--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

OCT	DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA. DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)
NOV 158.		Ω.	52		12	- 22		-	- 12	-	-12
DEC 150	NOV								1		
JAN 20	DEC										
FEB 224.	JAN			1	4.	122				-	1.2
MAR 28	FEB								0.0		
ARR 23	MAR										32
MAY 28	APR	- 22	34	- 124	2.2	-22			4.5	42	44
JUN 22	MAY									144	
JUL 22	JUN										
AND 114	JUL		- 22	1	- 22	- 22				24	
NITRO- NITRO- OER, AM- OER,	AUG	4.0	.1	15	114	92	.00	.00	.200	.010	2.1
NITRO	SEP										
CEN		7.5	.1	17		79					**
OCT 18.		GEN, ORGANIC DIS- SOLVED (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC DIS. (MG/L	PHORUS, TOTAL (MG/L	PHORUS, DIS- SOLVED (MG/L	ORGANIC DIS- SOLVED (MG/L	ORGANIC SUS- PENDED (MG/L	MENT, SUS- PENDED	MENT DIS- CHARGE, SUS- PENDED	SUSP. SIEVE DIAM. % FINER THAN
18		AS N)	AS N)	AS N)	AS P)	AS P)	AS C)	AS C)	(MG/L)	(T/DAY)	.062 MM
13	18			1.	14	24	12	11	- 1		
18	13									144	2.0
25	18		+-		4-5						
MAR 24	25	4.2		- 12	122		- 11				
24	20						.24				
23	24			44				- 40		(22)	
28	23		124	.22		22		34	1.54		199
23	28								44		
22 AUC 14 1.1 2.3 1.1 .680 .540 12 .8 33 1.8 96 SEP 18	23	+-		1.57						177	77
14 1.1 2.3 1.1 6.80 5.40 12 .8 33 1.8 96 SEP 18	22			22	122	12		22			1.2
18 28 ARSENIC SUS- ARSENIC SUS- ARSENIC TOTAL	14	1.1	2.3	1.1	.680	.540	12	.8	33	1.8	96
ARSENIC SUS- ARSENIC TOTAL PENDED DIS- RECOV- PECOV- DIS- RECOV- PERDED DIS- RECOV- PENDED DIS- RECOV- PENDE	18						44				
ARSENIC SUS- ARSENIC TOTAL PENDED BARIUM, TOTAL CADMIUM TOTAL SUS- ARSENIC PENDED DIS- RECOV- RECOV- DIS- RECOV- DIS- RECOV- PENDED TOTAL TOTAL SOLVED ERABLE SOLVED ERABL	28						-				
14 1215 2 0 2 200 100 100 0 <1 10 10 CHRO- COBALT, MIUM, TOTAL COBALT, DIS- RECOV- DIS- RECOV- RECOV- DIS- RECOV- SOLVED ERABLE SOLVED ERABLE SOLVED ERABLE SOLVED ERABLE (UG/L (UG/		TOT	SU ENIC PEN FAL TOT G/L (UC	JS- ARSE IDED DI CAL SOL G/L (UG	NIC TOT S- REC VED ERA I/L (UC	UM, SUS AL PEND OV- REC BLE ERA /L (UG	DED BARI COV- DIS BLE SOLV	UM, TOTA - RECO ED ERAI /L (UG)	AL CADM DV- DI BLE SOL 'L (UG	IUM TOT S- REC VED ERA /L (UG	M, MIUM, AL SUS- OV- PENDED BLE RECOV. /L (UG/L
CHRO- COBALT, COPPER, SUS- IRON, SUS- LEAD, MIUM, TOTAL COBALT, TOTAL PENDED COPPER, TOTAL PENDED IRON, TOTAL DIS- RECOV- DIS- RECOV- DIS- RECOV- SOLVED ERABLE SOLVED ERABLE SOLVED ERABLE ERABLE SOLVED ERABLE (UC/L (215	2	0	2	200	100	100	0	<1	10 10
CHRO- COBALT, COPPER, SUS- IRON, SUS- LEAD, MIUM, TOTAL COBALT, TOTAL PENDED COPPER, TOTAL PENDED IRON, TOTAL DIS- RECOV- DIS- RECOV- DIS- RECOV- SOLVED ERABLE SOLVED ERABLE SOLVED ERABLE ERABLE SOLVED ERABLE (UC/L (
AUC 14 0 0 <3 12 10 2 950 760 190 6	DATE	MIUM, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	SUS- PENDED RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	SUS- PENDED RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L
	AUG 14	0	0	<3	12	10	2	950	760	190	6

08212400 LOS OLMOS CREEK NEAR FALFURRIAS, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

LOS OLMOS CREEK BASIN

DATE	LEAD. SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY SUS- PENDED RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, SUS- PENDED RECOV- ERABLE (UG/L AS NI)
AUG 14	6	0	190	50	140	.2	.0	.3	4	1
DATE	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, SUS- PENDED TOTAL (UG/L AS SE)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	SILVER, SUS- PENDED RECOV- ERABLE (UG/L AS AG)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, SUS- PENDED RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)
AUG 14	3	0	0	0	2	2	0	20	10	9

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO AUGUST 1980

DATE TIME		14,80 215	
TOTAL CELLS/ML	150	000	
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		0.0 0.0 0.1 0.1	
ORGANISM	CELLS /ML	PER- CENT	
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE .CHLOROCOCCALESOOCYSTACEAE			
ANKISTRODESMUS .VOLVOCALES	*	0	
CHLAMYDOMONADACEAE CHLAMYDOMONAS	*	0	
CHRYSOPHYTA .BACILLARIOPHYCEAE .CENTRALESCOSCINODISCACEAECYCLOTELLA	*	0	
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAE .CRYFTOMONADALESCRYPTOMONADACEAECRYPTOMONADACEAE	*	0	
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAEAWACYSTIS	*	0	
OSCILLATORIACEAE OSCILLATORIA	150000#	99	
RAPHIDIOPSIS	*	0	
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAE .EUGLENALESEUGLENACEAE			
EUGLENA	*	0	
TRACHELOMONAS	*	0	

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

LOS OLMOS CREEK BASIN 485 08212400 LOS OLMOS CREEK NEAR FALFURRIAS, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

монтн	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	0.00	*	*	0.00	*	0.00	*	0.00	*
NOV.	1979	0.00	*	*	0.00	*	0.00	*	0.00	*
DEC.	1979	0.00	*	*	0.00	*	0.00	*	0.00	*
JAN.	1980	0.00	*	*	0.00	*	0.00	*	0.00	*
FEB.	1980	0.00	*	*	0.00	*	0.00	*	0.00	*
MAR.	1980	0.00	*	*	0.00	*	0.00	*	0.00	*
APR.	1980	0.00	*	*	0.00	*	0.00	*	0.00	*
MAY	1980	49.09	114	72	9.6	17	2.3	24	3.2	19
JUNE	1980	0.00	*	*	0.00	*	0.00	*	0.00	*
JULY	1980	0.00	*	*	0.00	de	0.00	*	0.00	*
AUG.	1980	1938.30	80	50	264	12	63	17	89	13
SEPT	1980	8.17	107	68	1.5	16	0.4	23	0.5	18
TOTAL		1995.56	**	**	275	**	65	**	93	**
WTD. AVO	3.	5.4	80	51	**	12	**	17	**	14

SPECIFIC CONDUCTANCE	(MICROMHOS/CM AT	25 DE	EG. C),	WATER	YEAR	OCTOBER	1979	TO	SEPTEMBER	1980
		ONCE-D	YITAC							

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1												
2												
3												
4								4-4				
1 2 3 4 5												
6 7 8 9								7414				921
7												
8												
9											175	444
10											130	
											1.20	
1.1											60	9
12											85	
13											110	
14											147	
15											165	
12											105	
16											175	
16 17											190	
1.8											200	
18 19 20								110			215	
20								115			225	
20								112			223	
21								140				
22								150				
23								175			~	
24								195			222	
21 22 23 24 25								200				
								200				
26								210			242	1422
27 28 29 30								220				95
28												115
20								920				130
30								929				155
31												
MEAN								168			156	124

08364000 RIO GRANDE AT EL PASO, TX

LOCATION.--Lat 31°48'10", long 106°32'25". El Paso County, Hydrologic Unit 13030102, at gaging station on the downstream side of the Courchesne Bridge, 5.6 mi (9.0 km) upstream from the Santa Fe Street-Juarez Avenue bridge between El Paso, Tex., and Cd. Juarez, Mex., and 1.7 mi (2.7 km) upstream from the American Dam.

DRAINAGE AREA .-- 29,267 mi2 (75,802 km2).

PERIOD OF RECORD .-- Chemical analyses: February 1930 to current year.

REMARKS.--Records of specific conductance and discharge for water year 1980 are given in International Boundary and Water Commission Water Bulletins Nos. 49 and 50.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TI	STRE FLO INST 1E TANE (CF	W, DUC AN- ANC OUS (MIC	FIC N- OT- DE DRO- FI	PH ELD ITS)	TEMPER- ATURE, WATER (DEG C)	BI	D- Y	OXYGEN, DIS- SOLVEI (MG/L)	(COLS	L. FC D. O. UM	CAL, 7 -MF LS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)
OCT 15 16	143		5 4	2130 2150	8.4	21.0			9.0		80	370	310	490 480
NOV 14	100			800	8.3	7.0		.1	11.4			230	470	490
19 DEC	081	7 7		2330	8.1	8.0					97		7-5	460
14 19 JAN	093			2280 2370	8.3	4.0 6.5		.4	9.8	5	50	290	1200	480 490
15 15 FEB	090		8 2	2560 2450	8.0	8.0 7.0	19		10.6			180	730	500 490
12	113			2120 2180	7.9 8.3	9.0			10.4	13	00	630	1200	450 450
MAR 18	093			997 941	8.3	8.0 11.5			12.0			230	650	240 220
APR 15 18	090			730 982	8.3	13.5 15.0			8.6	8	80	190	660	230 260
MAY 21	092	25 79	0	867	7.9	23.0)							230
JUN 10 19	101			840 875	8.4	24.0 22.0			7.2		30	220	790	230 230
JUL 16	130	00 75	5	961	8.1	27.0)		- 50			100	94.	250
15 19 SEP	092 100			890 000	7.7 8.7	24.0 25.0			7.4	4	00	830	1300	250 270
16	125	i7	3.2	320	7.8	25.5								310
D.A	ATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SOL (M	OIUM, S- S VED	SODIUM AD- SORP- TION RATIO	D: SOI	IS- BC LVED (G/L	AS	CAR- BONATE (MG/L AS CO3)	SULF DIS SOL (MG AS S	- DIS VED SOL /L (MG	E, VED
16		230 210	140 140	34 31		90	5.7		14	320	0	51 50		
NOV 14	/ • · · · ·	220 190	140 130	34 34		340 50	6.7		12	330		550 540		
DEC 14		210 200	140 140	32 34		50 50	6.9		13	350	0	541 541		0
JAN 15	i i	230 210	140 140	37 34		180 180	7.4 7.5		12	330	0	621 561		
14	2	190 210	130 130	30 30		90	6.0		11	310	0	460		0
MAR 18 19	3	80 59	73 68	14 13		20 00	3.4		6.3	200	0	200		8
APR 15	 	16 84	69 78	13 15		00	2.9		6.4	210		100		0
MAY		56	70	13		96	2.8		7.4	210	0	160		6
JUN)	66	69	13		97	2.8		6.7			180		4
19 JUL		56	70	13		92	2.7		7.0	210	0	160	0 6	6
16 AUG		64	75	14		10	3.1		7.6	220	0	190		7
15 19		75 83	75 83	14 16		96 30	2.7		7.5	210	0	200		8 0
SEP		100	94	19	1	60	3.9		9.5	260	0	280	0 14	0

RIO GRANDE BASIN 08364000 RIO GRANDE AT EL PASO, TX--Continued

487

00304000 KTO OKMIDE IT DE TROO, TK GONETIMEN

DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MC/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN. ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)
OCT 15 16	.8	28 23	1420	1410 1420	.26	.28	.230	.020	.97	.12
NOV 14 19	.8	29 27	1500	1540 1540	.27	.29	.110	.080	.58	.45
DEC 14 19	.8	29 38	1540	1540 1570	.39	.33	.080	.080	.61	.56
JAN 15	.8	33 28	1650	1710 1630	.16	.16	.160	.110	.79	.73
FEB 12 14		26 38	1450	1360 1440	.68	.46	.020	.060	.86	.45
MAR 18 19	.5	18 18	624	627 555	.23	.22	.120	.000	1.4	.67
APR 15 18	.6	18 20	799	524 612	.20	.21	.060	.040	1.1	.36
MAY 21		19		535			175		4.2	
JUN 10 19	.5	18 19	566	555 531	.12	.06	.080	.010	1.3	.55
JUL 16	12	21	-12	603		25				343
AUG 15		21	44	594						
19 SEP	.6	21	727	703	.07	.04	.020	.030	1.1	.60
16		23		854						
DATE	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS-\ SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L	ORGANIC SUS- PENDED (MG/L	MENT, SUS- PENDED (MG/L)	MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 15 16 NOV	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC DIS. (MG/L	PHORUS, TOTAL (MG/L	PHORUS, DIS-\ SOLVED (MG/L	ORGANIC TOTAL (MG/L	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED (MG/L AS C)	MENT, SUS- PENDED	MENT DIS- CHARGE, SUS- PENDED	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 15 16 NOV 14	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS-\ SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED (MG/L AS C)	MENT, SUS- PENDED (MG/L)	MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 15 16 NOV 14 19	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MC/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED (MG/L AS C)	MENT, SUS- PENDED (MG/L)	MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 15 16 NOV 14 19 19 JAN 15	GEN. AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1.269	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS, TOTAL (MG/L AS P) .160 .130	PHORUS, DIS-\SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MC/L AS C)	ORGANIC SUS- PEMDED (MG/L AS C)	MENT, SUS- PENDED (MG/L) 53 40 31	MENT DIS- CHARGE, SUS- PENDED (T/DAY) 21 9.2 5.6	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 15 16 NOV 14 19 DEC 14 19 JAN 15	GEN. AM- MONIA - ORGANIC TOTAL (MG/L AS N) 1.269	GEN. AM-MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS, TOTAL (MG/L AS P) .160 .130 .140	PHORUS, DIS- SOLVED (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED (MG/L AS C)	MENT, SUS- PENDED (MG/L)	MENT DIS- CHARGE, SUS- PENDED (T/DAY) 21 9.2 5.6	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 15 16 NOV 14 19 DEC 14 19 JAN 15 15 FEB	GEN. AM- MONIA - ORGANIC TOTAL (MG/L AS N) 1.26995	GEN. AM-MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS, TOTAL (MG/L AS P) .160 .130 .140	PHORUS, DIS- SOLVED (MG/L AS P) .080 .110 .130	ORGANIC TOTAL (MG/L AS C) 4.3	ORGANIC DIS- SOLVED (MC/L AS C)	ORCANIC SUS- PENDED (MG/L AS C)	MENT, SUS- PENDED (MG/L) 53 40 46	MENT DIS- CHARGE, SUS- PENDED (T/DAY) 21 9.2 5.6 6.0	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 15 16 NOV 14 19 DEC 14 19 15 15 15 15 16 17 18 18 18 18 18 18 18 18 18 18 18	GEN. AM- MONIA - ORGANIC TOTAL (MG/L AS N) 1.26995	GEN. AM-MONIA + ORGANIC DIS. (MG/L AS N) .1453648451 .67	PHORUS, TOTAL (MG/L AS P) .160 .130 .140 .160 .280	PHORUS, DIS- DIS- SOLVED (MG/L AS P) .080110130080210 .160	ORGANIC TOTAL (MC/L AS C) 4.3 	ORGANIC DIS- SOLVED (MG/L AS C)	ORCANIC SUS- PENDED (MG/L AS C)	MENT, SUS- PENDED (MG/L) 53 40 31 46 50 241	MENT DIS- CHARGE, SUS- PENDED (T/DAY) 21 9.2 	SUSP. SIEVE DIAM. % FINER THAN .062 MM 73
OCT 15 16 NOV 14 19 DEC 14 19 JAN 15 15 15 16 17 18 MAR 18 19 APR 15 18 18 MAY 21	GEN. AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1.2699588 1.5 1.2	GEN. AM- MONIA - ORGANIC DIS . (MG/L AS N) .1453648451 .6740	PHORUS, TOTAL (MG/L AS P) .160 .130 .140 .160 .410	PHORUS, DIS- DIS- SOLVED (MG/L AS P) .080110130080 .160110	ORGANIC TOTAL (MG/L AS C) 4.3	ORGANIC DISS- SOLVED (MG/L AS C)	ORCANIC SUS- PENDED (MG/L AS C)	MENT, SUS- PENDED (MG/L) 53 40 31 46 50 241 347	MENT DIS- CHARGE, SUS- PENDED (T/DAY) 21 9.2 5.6 6.0 10 332 815	SUSP. SIEVE DIAM. % FINER THAN .062 MM .73 55 69 93 92 .88 80
OCT 15 16 NOV 14 19 DEC 14 19 15 15 15 15 15 16 17 18 19 APR 18 18 MAY 21 JUN 10 19	GEN. AM- MONIA - ORGANIC TOTAL (MG/L AS N) 1.2699588 1.5 1.2	GEN. AM-MONIA + ORGANIC DIS. (MG/L AS N) .14536451 .674040	PHORUS, TOTAL (MG/L AS P) .160 .130 .140 .160 .410 .420	PHORUS, DIS- DIS- SOLVED (MG/L AS P) .080110080210 .160110	ORGANIC TOTAL (MC/L AS C) 4.3 13 9.8 9.5	ORGANIC DIS- SOLVED (MC/L AS C)	ORCANIC SUS- PENDED (MG/L AS C)	MENT, SUS- PENDED (MG/L) 53 40 31 46 50 241 347	MENT DIS- CHARGE, SUS- PENDED (T/DAY) 21 5.6 6.0 10 332 815	SUSP. SIEVE DIAM. % FINER THAN .062 MM 73 55 69 93 92 88 80
OCT 15 16 17 18 19 19 19 19 19 19 19 15 15 15 15 12 14 18 19 APR 15 18 18 19 APR 15 18 19 19 JUI 10 19 JUI 11	GEN. AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1.2699588 1.5 1.2 1.4	GEN. AM- MONIA - ORGANIC DIS. (MG/L AS N) .14 .53 .648451 .674056	PHORUS. TOTAL (MG/L AS P) .160130140160280 .410420250	PHORUS, DIS-NOISE NOISE	ORGANIC TOTAL (MC/L AS C) 4.3 13 9.8 9.5	ORGANIC DIS- SOLVED (MG/L AS C) 18 10 11	ORCANIC SUS-PENDED (MG/L AS C)	MENT, SUS- PENDED (MG/L) 53 40 31 46 50 241 347 207	MENT DIS- CHARGE, SUS- PENDED (T/DAY) 21 9.2 5.6 10 332 815 564	SUSP. SIEVE DIAM. % FINER THAN .062 MM .73
OCT 15 16 NOV 14 19 DEC 14 19 DEC 14 15 15 15 FEB 12 14 MAR 18 19 APR 15 18 19 21 JUN 10 19 JUN 10 19 JUL 10 19 JUL 10 19 JUL 10	GEN. AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1.2 699588 1.5 1.2 1.4	GEN. AM- MONIA - ORGANIC DIS. (MG/L AS N) .14 .53 .6484 .51 .67 .4056	PHORUS, TOTAL (MG/L AS P) .160 -130 -140 -160 -280 .410420250	PHORUS, DIS-NOISE NOISE	ORGANIC TOTAL (MC/L AS C) 4.3 13 9.8 9.5	ORGANIC DIS- SOLVED (MG/L AS C) 18 10 11	ORCANIC SUS- PENDED (MG/L AS C)	MENT, SUS- PENDED (MG/L) 53 40 31 46 50 241 347 207	MENT DIS- CHARGE, SUS- PENDED (T/DAY) 21 9.2 5.6 10 332 815 564	SUSP. SIEVE DIAM. % FINER THAN .062 MM .73 .55 69 93 92 88 80 86

08371500 RIO GRANDE ABOVE RIO CONCHO NEAR PRESIDIO, TX

LOCATION.--Lat 29°37'15", long 104°28'50", Presidio County, Hydrologic Unit 13040201, at gaging station 7.8 mi (12.6 km) upstream from the junction of Rio Conchos, about 10 mi (16 km) northwest of Presidio, Tex., and Ojinaga, Chihuahua, Mex., and 285.7 mi (459.7 km) downstream from the American Dam at El Paso.

DRAINAGE AREA.--34,966 mi 2 (90,562 km 2), Un ted States and Mexico; from International Boundary and Water Commission Water Bulletin No. 44.

PERIOD OF RECORD.--Chemical analyses: February 1935 to current year. Prior to 1964, published as "Rio Grande at Upper Presidio".

REMARKS.--Records of specific conductance and discharge for water year 1980 are given in International Boundary and Water Commission Water Bulletins Nos. 49 and 50.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW. INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
OCT 16	1225	14	2900	7.9	26.5	560	400	160	38
DEC 18	1306	13	4750	7.4	5.5	780	640	200	67
JAN 15	1010	22	4350	7.6	10.5	750	570	200	61
FEB 22	1125	16	4570	7.5	13.0	820	640	220	66
MAR 10	1545	11	5110	7.8	16.5	960	770	260	76
APR 15	0930	31	1380	7.9	14.0	280	120	87	16
MAY 20	1345	14	1270	7.7	26.0	270	120	81	17
JUN 19	1545	3.9	1780	7.4	34.0	340	190	100	22
JUL. 17	1040	14	1330	7.7	25.5	270	130	82	17
AUG 25	0755	7.4	1680	7.5	27.0	370	210	120	17
SEP 16	1015	7.8	1190	7.7	25.0	240	78	81	10
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
OCT 16	420	7.8	1.4	190	0	580	500	13	1820
DEC 18	750	12	16	170	0	870	1000	25	3010
JAN 15	670	11	13	220	0	840	860	8.1	2760
FEB 22	680	10	15	220	0	890	900	12	2890
MAR 10	760	1-1	14	240	0	920	1100	13	3260
APR 15	170	4.4	7.7	200	0	410	83	28	900
MAY 20	170	4.5	7.8	190	0	370	64	31	834
JUN 19	250	5.9	9.6	180	0	460	180	29	1140
JUL 17	170	4.5	8.5	180	0	390	81	26	863
AUG 25	210	4.8	9.2	200	0	430	170	16	1070
SEP 16	150	4.2	8.1	180	0	280	120	17	748

08376300 SANDERSON CREEK AT SANDERSON, TX (Formerly published as Sanderson Canyon at Sanderson)

LOCATION.--Lat 30°07'46", long 102°23'06", Terrell County, Hydrologic Unit 13040208, on right bank at downstream side of bridge on U.S. Highway 90, 1.0 mi (1.6 km) south of Sanderson, 2.9 mi (4.7 km) downstream from Three Mile Draw, and 30 mi (48 km) upstream from mouth.

DRAINAGE AREA. -- 195 mi2 (505 km2).

PERIOD OF RECORD .-- February 1968 to September 1980 (discontinued).

CACE.--Water-stage recorder and crest-stage gage. Datum of gage is 2,706.35 ft (824.895 m) National Geodetic Vertical Datum of 1929. Prior to Oct. 19, 1977, at site 95 ft (29 m) upstream at same datum.

REMARKS.--Records fair. No known regulation or diversion above the station. Flow is affected at times by discharge from the flood-detention pools of two floodwater-retarding structures with a combined detention capacity of 1,470 acre-ft (1.81 hm³). These structures control runoff from 7.55 mi² (19.55 km²). National Weather Service gage-height telemeter located at station.

AVERAGE DISCHARGE.--12 years, 8.51 ft³/s (0.241 m³/s), 0.59 in/yr (15 mm/yr), 6,170 acre-ft/yr (7.61 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 32,600 ft³/s (923 m³/s) Sept. 18, 1969, gage height, 9.18 ft (2.798 m), from rating curve based on a step-backwater analysis below 10,000 ft³/s (283 m³/s) and two combined slope-area measurements of about 100,000 ft³/s (2,830 m³/s); maximum gage height, 9.44 ft (2.877 m) Apr. 30, 1974; no flow most of time each year.

The second highest flood was that of Sept. 18, 1969.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum flood since at least 1935, 14.2 ft (4.33 m) June 11, 1965, discharge about 100,000 ft³/s (2,830 m³/s), by combining two slope-area measurements within 4 mi (6 km) upstream from gage. A flood in 1935 reached a discharge of about 20,000 ft³/s (566 m³/s), estimated channel capacity by Corps of Engineers.

DISCHARGE IN CURIC EFFT BED SECOND WATER VEAR OCTORED 1979 TO SEPTEMBER 1980

EXTREMES FOR CURRENT YEAR.--No flow during year, no peak above base of 1,500 ft 3 /s (42.5 m 3 /s).

		DISCH	ARGE, IN	CUBIC FE		SECOND, WATI MEAN VALUES	ER YEAR OC	TOBER 1	979 TO SEPTE	MBER 1980	0	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
6 7 8 9 10	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
11 12 13 14 15	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
16 17 18 19 20	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
21 22 23 24 25	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
26 27 28 29 30 31	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00
TOTAL MEAN MAX MIN CFSM IN. AC-FT	.00 .000 .00 .00 .000	.00 .000 .00 .00 .000	.00 .000 .00 .00 .000	.00 .000 .00 .000	.00 .000 .00 .00 .000	.00 .000 .00 .00	.00 .000 .00 .00 .000	.00 .000 .00 .00 .000	.00 .000 .00 .00 .000	.00 .000 .00 .00 .000	.00 .000 .00 .00 .000	.00 .000 .00 .00 .000
CAL YR WTR YR		125.06	MEAN MEAN		99.00	MIN .00 MIN .00	CFSM .00 CFSM .00			248		

08377200 RIO GRANDE AT FOSTER RANCH NEAR LANGTRY, TX (National stream-quality accounting network)

LOCATION.--Lat 29°46'50", long 101°45'20", Val Verde County, Hydrologic Unit 13040212, at gaging station 0.1 mi (0.2 km) downstream from Terrell-Val Verde County line, 16.9 mi (27.2 km) from Langtry, and 597.2 mi (960.9 km) downstream from the American Dam at El Paso.

DRAINAGE AREA.--80,742 mi² (209,122 km²), United States and Mexico; from International Boundary and Water Commission Water Bulletin No. 44.

PERIOD OF RECORD. -- Chemical analyses: April 1944 to current year. Chemical and biochemical analyses: October 1974 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1974 to current year. WATER TEMPERATURES: October 1974 to current year.

REMARKS.--Records of and discharge for water year 1980 are given in International Boundary and Water Commission Water Bulletins Nos. 49 and 50. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum daily, 2,110 micromhos Dec. 4, 1974; minimum daily, 321 micromhos Aug. 12, 1980. WATER TEMPERATURES: Maximum daily, 32.0°C June 13, 1977, July 25, 26 1979, and July 4, 1980; minimum daily, 9.0°C Jan. 12, 1975, and Jan. 8, 1976.

EXTREMES FOR CURRENT YEAR . --

SPECIFIC CONDUCTANCE: Maximum daily, 1,430 micromhos Mar. 18, July 22; minimum daily, 321 micromhos Aug. 12. WATER TEMPERATURES: Maximum daily, 32.0°C July 4; minimum daily, 11.0°C Dec. 18, Jan. 31, Feb. 1, 10.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
OCT 10	1308	700	1200	7.6	21.0	19	9.3	107	1.8	32	13
NOV 14	1250	660	1200	7.5	14.5	13	9.9	99	.6	22	16
DEC 12	1205	530	1110	7.2	15.0	.90	9.8	99	1.1	20	16
JAN 09	1145	642	1320	7.1	12.0	6.6	10.2	97	2.4	20	16
FEB 06	1245	575	1280	7.1	14.0	9.3	11.5	114	1.2	17	11
MAR 12	1150	544	1240	7.4	20.0	11	9.5	108	1.0	24	20
APR 09	1310	807	1210	7.6	20.0	40	11.4	128	1.3	47	30
MAY 07	1145	1075	1270	7.8	24.0	120	9.6	119	1.7	640	700
JUN 11	1430	2485	1140	7.8	28.0	300	8.4	111	2.7	500	400
JUL. 23	1200	514	1260	7.5	29.0	96	10.6	141	1.8	440	420
SEP 10	1500	3550	1010	7.5	28.0	630	7.8	103		8400	2800
DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS. NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM. DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT 10	320	180	91	22	140	3.4	6.9	170	0	330	100
NOV 14	320	160	93	22	140	3.4	6.0	200	0	320	94
DEC 12	320	150	92	22	120	2.9	6.4	210	0	290	94
JAN 09	320	140	94	21	140	3.4	3.2	220	0	300	120
FEB 06	320	190	91	22	140	3.4	5.7	160	0	320	110
MAR 12	330	160	91	24	150	3.6	6.1	200	0	330	110
APR 09	290	120	82	20	140	3.6	6.6	200	0	330	74
MAY 07	280	140	81	20	150	3.9	6.9	200	0	330	77
JUN 11	310	190	89	21	150	3.7	7.7	170	0	360	87
JUL 23	330	200	91	24	160	3.9	7.4	180	0	390	110
SEP 10	250	160	86	9.5	99	2.7	6.3	120	0	290	63

08377200 RIO GRANDE AT FOSTER RANCH NEAR LANGTRY, TX--Continued

491

DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS. RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN. NITRATE TOTAL (MG/L AS N)	NITRO- GEN. NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN. AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)
OCT		10			-						
NOV	1.2	25	804	800	.71	.020	.73		.010		.61
14 DEC	1.3	24	779	803		344	.96	.98	.020	.020	.65
12 JAN	1.2	23	755	756			1.0	.96	.000	.000	.98
09 FEB	1.4	21	821	813			.89	.92	.030	.030	.56
06 MAR	1.3	22	740	795	100		.90	.90	.040	.020	.27
12 APR	1.4	23	829	837			.75	.75	.000	.000	.32
09 MAY	1.9	27	790	784	115		.94	.94	.040	.060	.78
07 JUN	1.5	27	802	781	100		.85	.86	.030	.010	.79
JUL	1.9	31	839	823			.65	.66	.130	.100	1.3
23	1.3	25	913	889	1-5		.56	.56	.010	.000	1.1
SEP 10	1.3	19	674	644			.74	.77	.070	.060	4.0
DATE	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 10		.62	.41	.010	.000		3.1	.2	99	187	99
NOV 14	.35	.67	.37	.010	.000	7.4			71	127	98
DEC 12	.63	.98	.63	.070	.000	3.8	-		31	44	98
JAN 09	.18	.59	.21	.020	.000	5.8			46	80	99
FEB 06	.27	.31	.29	.020	.000		1.8	.9	90	140	96
MAR 12	.26	.32	.26	.010	.010	3.7			86	126	100
APR				.060					112		
09 MAY	.32	.82	.38		.000	3.7				244	99
07 JUN	.49	.82	.50	.140	.010	8.3			251	729	99
JUL	.82	1.4	.92	.360	.000		6.0	29	1010	6780	91
23 SEP	.49	1.1	.49	.160	.010	2.5			243	337	100
10	.81	4.1	.87	2.800	.030	47		2.5	5010	48000	97
DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BARIUM, SUS- PENDED RECOV- ERABLE (UG/L AS BA)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
OCT 10	1308	6	j	5	300	200	100	0	0	<1	0
NOV 14	1250					440				12	
FEB 06	1245	5	1	4	100	30	70	0	0	<1	10
MAR 12	1150				120					-	
JUN 11	1430	13	4	9	300	200	100	0	0	0	0
JUL 23	1200				500	200					24
SEP 10	1500										
10	1300										7.5

08377200 RIO GRANDE AT FOSTER RANCH NEAR LANGTRY, TX--Continued

DATE	CHRO- MIUM. SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COBALT, SUS- PENDED RECOV- ERABLE (UG/L AS CO)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER. SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)
OCT 10	0	0	0	0	<3	1	1	0	590		<10
NOV 14						- 22				12	
FEB 06	10	0	0	0	<3	3	3	0	340	330	<10
MAR 12											
JUN 11	0	0	3	2	1	13	12	1	11000	11000	20
JUL 23											
SEP 10											
, 0 ,											
DATE	LEAD. TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY SUS- PENDED RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, SUS- PENDED RECOV- ERABLE (UG/L AS NI)
OCT 10	2	2	0	30	30	<1	.2	.0	.2		
NOV 14											
FEB 06	1	1	0	20	20	<1	.1	.0	.1	2	2
MAR 12											
JUN 11	9	9	0	500	500	0	.2	.1	.1	13	13
JUL 23	- 22	122						12			
SEP 10											
DA	(U(S- NI LVED TO G/L (U	LE- S UM, PEI TAL TO G/L (U	US- NI NDED D TAL SO G/L (U	UM, TO IS- RE LVED ER G/L (U	VER, S TAL PE COV- RE ABLE ER G/L (U	COV- D ABLE SO G/L (U	VER, TO IS- RE LVED ER C/L (U	NC, S TAL PE COV- RE ABLE ER G/L (U	COV- D ABLE SO G/L (U	NC, IS- LVED G/L ZN)
OCT				0		0	0	0	0	0	42
NOV) '		1.	0	t	0	0	0	0	0	<3
FEB		0	1	0	1	0	0	0	30	0	30
MAR						0					
JUN		0	2	1	1	0	0	0	70	70	0
JUL						2			70	70	
SEP 10	,	22				1		(22)			
10					-						
DATE	TIME	PCB TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL (UG/L)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
DEC 12	1205	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
06	1245	ND		ND		ND		ND	75	ND	**

08377200 RIO GRANDE AT FOSTER RANCH NEAR LANGTRY, TX--Continued

DATE	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL (UG/L)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN TOTAL (UG/L)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL (UG/L)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL (UG/L)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL (UG/L)
DEC 12 FEB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
06	ND	44	ND	24	ND	- 44	ND		ND		ND
DATE	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL (UG/L)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)
DEC 12 FEB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
06	4	ND		ND	44	ND	149	ND		ND	
DATE	METHYL TRI- THION, TOTAL (UG/L)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	PARA- THION, TOTAL (UG/L)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOX- APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL TRI- THION (UG/L)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	2,4-D, TOTAL (UC/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
DEC 12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
FEB 06	ND		ND		ND		ND				

DATE	DAYS)	PERI- PHYTON BIOMASS ASH WEIGHT G/SQ M	PERI- PHYTON BIOMASS TOTAL DRY WEIGHT G/SQ M	CHLOR-A PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)	CHLOR-B PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)	BIOMASS CHLORO- PHYLL RATIO PERI- PHYTON (UNITS)	
DEC 12	28	64.7	66.7	5.44	.000	368	
09 MAY	28	2.05	2.21	.090	.000	1778	
07	28	.472	.472	.340	.100	.00	

08377200 RIO GRANDE AT FOSTER RANCH NEAR LANGTRY, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

DATE		14,79	MAR	12,80	MAY	7,80	JUN	11,80		23,80		10,80
TIME TOTAL CELLS/ML		5400		150		000		1430 3400		200		2200
DIVERSITY: DIVISION		1.6		1.5		0.7		1.5		1.4		0.7
.CLASS ORDER		1.6		1.6		0.7		1.5		1.4		0.7
FAMILY		2.9		2.9		2.0		2.8		2.9		1.6
ORGANISM	CELLS /ML	PER- CENT										
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE CHLOROCOCCALES												
COELASTRACEAE COELASTRUM	230	4		-	8800#	56	2400#	28	150	5	1100#	53
HYDRODICTYACEAE PEDIASTRUM	230	4	100	3	81	1		-	1100#	35		-
MICRACTINIACEAE MICRACTINIUM		-		-		-		-	51	2		-
OOCYSTACEAE ANKISTRODESMUS	570	9	180	6	280	2	160	2	*	0		-
CHLORELLA DICTYOSPHAERIUM	460	7	50	2		-	300	4		1		-
FRANCEIA		-	17	1	*	0		-		-		-
KIRCHNERIELLA OOCYSTIS	570	9	390	12	1000	6	490	6	5.	2	570#	
SELENASTRUM TETRAEDRON		-		-		-		-	*	0		-
SCENEDESMACEAE ACTINASTRUM	110	2				2		3	22	12		
CRUCIGENIA	430	7	67	2	280	2		-		-		-
SCENEDESMUS TETRASTRUM	400	6	940#	28	2700#	17	160	2 2	490#	15		1
TETRASPORALES COCCOMYXACEAE												
ELAKATOTHRIX		-	34	1	44	-	022	-		14		-
PALMELLACEAE SPHAEROCYSTIS		-		-	*	0		-		-		-
CHRYSOPHYTA .BACILLARIOPHYCEAECENTRALES												
COSCINODISCACEAE CYCLOTELLA	57	1	150	5	81	1	*	0	26	1		
THALASSIOSIRA		-	34	1		-		-		÷		-
PENNALES ACHNANTHACEAE												
ACHNANTHES CYMBELLACEAE	*	0	34	1	*	0	130	2		-		-
CYMBELLA DIATOMACEAE		-	17	1		-		-	44	-		4
DIATOMA		-		-		-	66	1	×	0		-
FRAGILARIACEAE FRAGILARIA	600	9		-		-		-		-		-
SYNEDRA GOMPHONEMATACEAE	230	4	34	1	1600	10	2200#	26	77	2		-
GOMPHONEMA NAVICULACEAE		-	17	1		-		-		-		1
NAVICULA	110	2	130	4	*	0	130	2	210	6	140	7
PLAGIOTROPISNITZSCHIACEAE	- 77	1.7	17	1	30	-		7	77	-		
NITZSCHIA SURIRELLACEAE	340	5	640#	19	560	4	660	8	360	11:	290	13
SURIRELLA .CHRYSOPHYCEAE .CHRYSOMONADALES		-		-		-	*	0		-		-
CHROMULINACEAE CHRYSOCOCCUS	57	1		-		-				0-0		-
OCHROMONADACEAE DINOBRYON	the	0	34	1		-			4-	150		
CRYPTOPHYTA (CRYPTOMONADS)												
.CRYPTOPHYCEAE												
CRYPTOMONADALES CRYPTOMONADACEAE												
CRYPTOMONAS	*	0		-		-		-		-		-
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE .CHROOCOCCALES												
AGMENELLUM		+		-		-	260	3	210	6		17.
ANACYSTIS HORMOGONALES	290	5		=	240	2	66	1	170	5		-
NOSTOCACEAE									130	4		
ANABAENA OSCILLATORIACEAE												
OSCILLATORIA SCHIZOTHRIX	1600#	25	340	10		-	1100	13	150	5		-
EUGLENOPHYTA (EUGLENOIDS)												
.EUGLENOPHYCEAE EUGLENALES												
EUGLENACEAE			0.1	i			*	0				
TRACHELOMONAS		-	34	1		-	*	0				-
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAE												
GYMNODINIALES GYMNODINIACEAE												
GYMNODINIUM	1	-	50	2		*	*	0		-		

495

08377200 RIO GRANDE AT FOSTER RANCH NEAR LANGTRY, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	19396	1180	766	40100	89	4690	300	16000	310
NOV.	1979	18274	1150	745	36700	83	4100	300	14700	300
DEC.	1979	16873	1180	765	34800	89	4060	300	13900	310
JAN.	1980	19215	1270	817	42400	110	5480	320	16600	320
FEB.	1980	16538	1220	792	35400	97	4350	310	14000	320
MAR.	1980	23138	1 240	799	49900	100	6270	310	19600	320
APR.	1980	25503	1170	759	52200	87	6000	300	20800	310
MAY	1980	41548	1100	716	80300	78	8800	290	32200	290
JUNE	1980	20169	1010	658	35800	62	3360	270	14600	270
JULY	1980	12036	1090	710	23100	76	2470	290	9280	290
AUG.	1980	117738	683	452	144000	26	8150	190	60900	200
SEPT	1980	110799	878	577	173000	46	13900	240	71400	240
TOTAL		441227	**	**	747000	desk	71600	**	304000	**
WTD. AV	G.	1206	960	627	**	60	**	260	**	260

	SP	ECIFIC CO	NDUCTANCE	(MICROMHO	OS/CM AT	25 DEG. C), WATER	YEAR OCTO	BER 1979	TO SEPTEM	BER 1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1200 1170 1180 1170 1160	1170 1170 1160 1170 1180	1100 1100 1120 1130 1130	1280 1270 1300 1330 1310	1230 1240 1230 1230 1230	1220 1230 1220 1230 1230	1170 1170 1160 1150 1180	1170 1180 550 474 850	1130 1130 1120 1110 1110	939 898 943 955 965	1070 1060 1070 1090 1080	810 850 950 1030 1200
6 7 8 9	1170 1180 1180 1190 1200	1170 1150 1160 1160 1160	1130 1130 1140 1140 1150	1290 1300 1260 1290 1290	1220 1220 1220 1220 1210	1210 1220 1250 1230 1230	1160 1170 1170 1170 1170	1170 1190 1160 1260 1310	1120 1110 1120 1110 1090	959 925 818 893 921	1090 1100 1000 1120 1000	1360 1000 998 1410 1150
11 12 13 14 15	1200 1190 1190 1180 1180	1150 1170 1180 1190 1180	1160 1160 1170 1160 1160	1270 1260 1300 1260 1230	1230 1220 1200 1200 1200	1240 1230 1230 1270 1330	1170 1180 1180 1180 1170	1240 1180 1140 1120 1120	800 1000 1260 1000 750	914 919 932 918 935	750 321 433 425 950	723 978 663 921 785
16 17 18 19 20	1160 1170 1160 1170 1190	1180 1180 1160 1150 1130	1160 1180 1180 1190 1180	1230 1240 1240 1250 1260	1210 1210 1210 1230 1220	1410 1420 1430 1340 1220	1170 1160 1160 1160 1170	1130 1140 1140 1150 1170	831 853 765 750 810	989 1070 1120 1230 1310	817 731 772 736 974	1120 1160 1160 1160 1160
21 22 23 24 25	1160 1190 1230 1220 1190	1120 1110 1100 1090 1090	1190 1200 1220 1240 1240	1270 1260 1270 1250 1240	1240 1240 1240 1240 1240	1190 1200 1170 1170 1170	1180 1170 1180 1170 1160	1150 1160 1150 1070 1170	910 833 881 1070 1090	1390 1430 1310 1220 1210	840 885 719 1040 835	1140 1130 1120 1110 1090
26 27 28 29 30 31	1180 1180 1190 1170 1170	1100 1090 1100 1100	1250 1240 1240 1230 1240 1240	1250 1260 1240 1240 1250 1240	1230 1220 1220 1220	1160 1150 1160 1170 1180 1180	1160 1160 1180 1180 1160	1150 1150 1150 1150 1140 1120	1000 1020 1090 1140 1030	1180 1160 1140 1130 1120 1090	836 845 858 798 774 780	798 943 501 704 674
MEAN	1180	1140	1180	1270	1220	1230	1170	1110	1000	1060	864	993

31

MEAN

17.0

24.0

14.5

15.0

15.5

RIO GRANDE BASIN 08377200 RIO GRANDE AT FOSTER RANCH NEAR LANGTRY, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 ONCE-DAILY MAY JUN JUL AUG SEP FEB MAR APR OCT NOV DEC JAN DAY 28.5 28.5 27.0 29.5 12.5 12.0 12.0 13.0 29.0 30.0 29.0 18.5 14.0 1 2 3 28.0 18.5 19.0 19.0 15.0 14.0 14.0 14.0 13.0 13.5 13.0 13.5 13.5 17.0 17.0 23.5 23.0 22.0 29.0 29.0 29.0 30.0 30.0 32.0 27.5 ---30.0 29.0 14.0 15.5 4 5 16.0 29.5 28.0 29.0 30.0 25.0 19.5 20.0 14.0 12.0 15.0 15.5 17.0 26.0 27.5 30.0 17.0 15.0 26.0 67 25.5 14.5 16.5 12.0 11.5 11.0 18.5 20.5 21.0 22.0 24.0 23.0 22.0 22.5 27.0 28.0 27.0 31.0 29.0 27.5 28.0 31.0 30.0 30.0 28.0 30.0 29.0 28.5 8 9 19.0 24.0 14.0 28.0 27.0 27.5 10 24.0 16.5 17.0 15.5 22.0 28.0 29.0 27.0 24.0 25.5 25.0 25.0 15.0 12.0 23.0 17.0 17.0 11 17.5 17.0 15.0 15.5 16.0 17.0 12.5 15.0 18.0 21.0 20.0 17.5 19.0 27.0 30.0 29.0 17.0 28.5 28.0 24.0 25.5 27.0 26.0 14.0 13 19.0 24.0 26.5 28.0 29.0 29.0 28.5 27.5 15 22.5 16.0 13.5 16.0 19.0 30.0 28.0 30.0 30.0 30.0 22.0 23.0 24.0 23.0 23.5 27.5 28.0 25.5 27.0 25.5 29.0 28.0 29.0 26.0 27.0 26.5 13.5 11.5 11.0 16.0 18.0 15.0 12.0 14.0 19.5 28.0 28.0 26.0 25.5 16.0 17.0 16 18.0 28.5 18 19.0 19.0 16.0 24.0 16.5 29.0 27.5 27.5 28.0 20.0 28.5 20 26.0 21.0 15.5 15.0 28.0 30.0 30.0 28.0 15.0 18.0 18.0 22.0 17.0 15.0 21 26.5 17.5 17.0 14.5 18.5 20.0 19.0 30.0 30.0 31.0 30.0 29.0 31.0 31.0 29.0 28.0 27.5 14.0 14.0 13.0 19.0 23.5 28.0 28.0 27.0 23.0 22 15.0 23 21.5 29.0 27.0 14.0 21.0 30.0 27.0 26.0 18.5 30.0 25 21.0 15.0 15.5 19.5 20.0 22.0 21.0 20.0 21.0 30.0 28.5 15.5 13.0 13.5 12.0 16.5 18.5 16.0 19.5 22.5 29.0 30.5 26 27 15.0 16.0 15.0 15.0 15.5 30.0 30.0 31.0 30.5 31.0 31.0 30.0 26.5 25.0 23.0 15.5 14.0 13.5 28.5 29.5 29.5 23.5 23.0 28 24.0 23.5 29.5 30 20.5 13.0 15.0 14.0 24.0 28.0 30.5 20.0 ---20.0 29.0 29.0 28.5

19.0

22.0

27.0

29.5

29.5

28.0

27.5

08407500 PECOS RIVER AT RED BLUFF, NM (National stream-quality accounting network station)

LOCATION.--Lat 32°04'30", long 104°02'21", in SW1/4NW1/4NE1/4 sec.1, T.26 S., R.28 E., Eddy County, Hydrologic Unit 13060011, on right bank at Red Bluff, 0.2 mi (0.3 km) downstream from Red Bluff Draw, 1.6 mi (2.6 km) northwest of the El Paso Natural Gas (Pecos River) compressor station, 5.2 mi (8.4 km) north of the New Mexico-Texas State line, 5.5 mi (8.8 km) upstream from Delware River, and 411.2 mi (661.6 km) upstream from mouth. Water-quality sampling site 1.4 mi (2.3 km) downstream at mile 409.8 (659.4 km).

DRAINAGE AREA. -- 19,540 mi2 (50,610 km2), approximately (contributing area).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1937 to current year.

GAGE.--Water-stage recorder. Datum of gage is 2,850.05 ft (868.695 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Flow regulated by storage in Lake Sumner, Lake McMillan, Lake Avalon, and by several small diversion dams that divert for power or irrigation. Diversions and ground-water with-drawals above station for irrigation of about 202,000 acres (820 km²), 1959 determination.

AVERAGE DISCHARGE .-- 43 years (1938-80), 172 ft 3/s (4.871 m3/s), 124,600 acre-ft/yr (154 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 111,000 ft 3 /s (3,140 m 3 /s) Aug. 23, 1966, gage height, 33.32 ft (10.156 m), from rating curve extended above 30,000 ft 3 /s (850 m 3 /s) on basis of slope-area measurement of peak flow; minimum, 0.19 ft 3 /s (0.005 m 3 /s) Aug. 1, 1966.

The flood of Aug. 23, 1966, exceeded all floods at this location.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in October 1904 reached a stage of 28.0 ft (8.53 m), from information by Panhandle and Santa Fe Railway Co.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 26,700 ft¹/s (756 m¹/s) Sept. 27, gage height, 19.80 ft (6.035 m), no other peak above base of 1,800 ft³/s (51.0 m³/s); minimum, 6.8 ft³/s (0.19 m³/s) July 7.

		DISCHA	RGE, IN	CUBIC FEI		OND, WATER N VALUES	YEAR OC	TOBER 19	79 TO SEP	TEMBER 198	30	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	58 55 51 49 48	67 60 47 42 40	65 67 69 69	65 65 65 65 64	60 63 70 77 78	51 49 46 46 42	36 29 28 30 28	24 27 26 29 38	28 24 21 19 22	16 16 14 12 9.0	12 14 13 13 14	16 15 13 13
6 7 8 9	67 75 62 50 57	40 43 44 46 50	67 66 66 65 65	64 64 63 63 59	78 77 77 76 76	43 44 39 35 34	25 27 26 45 66	52 48 41 34 32	24 22 20 18 21	7.8 9.4 18 17	13 12 10 11 11	16 15 18 172 131
11 12 13 14 15	57 53 53 51 47	56 57 58 59 59	65 65 69 71 75	62 63 64 63 63	76 76 77 77 77	31 30 28 26 25	46 35 30 48 41	30 28 28 42 230	32 25 18 17 16	14 13 13 14 14	13 19 20 24 25	163 182 112 75 57
16 17 18 19 20	45 45 42 39 39	59 62 64 65 65	78 76 71 70 70	65 65 65 65	77 78 80 78 77	25 23 20 20 22	31 28 27 26 28	202 145 82 54 46	18 14 8.6 7.4	14 15 11 9.9 9.4	22 17 14 16 17	50 64 72 62 53
21 22 23 24 25	37 33 33 30 31	66 64 63 64 63	69 69 67 67 66	65 72 69 69 70	75 70 66 62 58	20 18 20 24 24	33 33 33 35 34	44 42 38 34 32	28 26 19 17 32	11 12 11 12 13	18 18 19 15 13	56 55 51 52 65
26 27 28 29 30 31	35 35 28 43 54 56	67 70 69 66 64	66 65 65 65 65	65 59 59 58 58 59	57 57 56 54	25 26 29 32 40 41	33 32 30 26 24	37 45 37 26 20 23	13 11 10 9.4	14 13 12 8.6 8.6 8.2	12 12 12 12 16 17	2720 10300 1180 324 206
TOTAL MEAN MAX MIN AC-FT	1458 47.0 75 28 2890	1739 58.0 70 40 3450	2106 67.9 78 65 4180	1980 63.9 72 58 3930	2060 71.0 80 54 4090	978 31.5 51 18 1940	993 33.1 66 24 1970	1616 52.1 230 20 3210	569.4 19.0 32 7.4 1130	385.9 12.4 18 7.8 765	474 15.3 25 10 940	16324 544 10300 13 32380
CAL YR WTR YR					AX 273 AX 10300	MIN 3.2 MIN 7.4	AC-FT AC-FT	39670 60860				

SPE-

08407500 PECOS RIVER AT RED BLUFF, NM--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water year 1937 to current year.

PERIOD OF DAILY RECORD. --SPECIFIC CONDUCTANCE: July 1937 to current year. WATER TEMPERATURES: October 1952 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 51,400 micromhos June 20, 1972; minimum daily, 268 micromhos Sept. 18, 1946. WATER TEMPERATURES: Maximum daily, 36.0°C July 31, 1966, July 13, 1970; minimum daily, 1.0°C Jan. 10, 11, 1962, Jan. 13, 1963.

EXTREMES FOR CURRENT YEAR.--SPECIFIC CONDUCTANCE: Maximum daily, 21,800 micromhos July 18; minimum daily, 623 micromhos Sept. 27. WATER TEMPERATURES: Maximum daily, 30.5°C July 3, 8, 14, 15; minimum daily, 5.0°C Dec. 2, 18.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

COLI-

STREP-

(MG/L AS CACO3)	AS	FECAL, KF AGAR (COLS. PER 100 ML)	F./	FECA 0.7 UM-M (COLS 100 M	OXYGEN, DIS- SOLVED (MG/L)	TUR- BID- ITY (NTU)	TEMPER- ATURE, WATER (DEG C)	PH FIELD (UNITS)	CIFIC CON- DUCT- ANCE (MIGRO- MHOS)	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TIME	DATE
21.00	2	14	16		9.8	8.4	18.0	8.1	9500	57	1100	OCT 11
2100	2	2	5		10.8	7.7	13.0	8.2	7400	44	1035	NOV 08
2200	2	3	1			11	7.0	8.2	10400	69	1030	DEC 04
1800	1	2	1		12.2	5.4	10.0	8.2	8840	65	1015	JAN 17
1900	1	4			11.0	4.5	14.0	8.5	9560	57	0930	FEB 27
2100	2		33		12.6	26	16.5 16.5	8.5	1490	22 25	0900 0900	MAR 20 26
2400	2	25	7		10.0	28	23.0	8.2	12800	26	0930	APR 29
2200	2	12	14		7.4	17	20.5	7.1 8.3	13800 12500	24 37	1000 0945	01 28
2800	2	240	40		8.1	2.1	26.0	8.4	22500	32	0930	JUN 25
3200	3	450	26		7.5	18	28.0	8.2	24000	11	0945	JUL 23
3000	2	700	16		7.9	3.7	26.0	8.4	19600	12	1000	AUG 27
2600	12	500	33		9.2	17	24.0	8.6	13500	52	1130	SEP 24
ILICA, DIS- SOLVED (MG/L AS SIO2)	SOI (MC	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	ED L	CHLO RIDE DIS- SOLV (MG/ AS C	SULFATE DIS- SOLVED (MG/L AS SO4)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	SODIUM AD- SORP- TION RATIO	SODIUM, DIS- SOLVED (MG/L AS NA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	CALCIUM DIS- SOLVED (MG/L AS CA)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	DATE
14	1	.8		2800	1900	55	16	1700	210	510	2000	OCT 11
9.5		.8		2300	1600	48	13	1400	210	480	1900	NOV 08
12		.8		2600	1600	19	15	1600	220	530	2100	DEC 04
4.1		.8		2200	1600	39	14	1400	190	420	1700	JAN 17
2.9		.7		2400	1600	42	15	1500	190	460	1800	FEB 27
.9		.9		3900	2000	91	26	2700	220	480		MAR 20
4.9												APR
44								2400	250	330		MAY
6.0		.5		3600	1800	74	20	2200	240	500	2100	28
6.2		.9		5600	2500	110	27	3300	300	620	2700	25
4.2		1.2		6400	2700	140	29	3800	340	710	3100	23
.4		1.0		5800	2600	120	29	3700	320	680	3000	27
13		.9		3500	2000	52	16	1900	280	580	2500	24
		.9 .5 .9 1.2	-	3700 3600 5600 6400 5800	2100 1800 2500 2700 2600	7.3 74 110 140 120	21 20 27 29 29	2400 2200 3300 3800 3700	250 240 300 340 320	550 500 620 710 680	2700 3100 3000	29 MAY 01 28 JUN 25 JUL 23 AUG 27 SEP

> 08407500 PECOS RIVER AT RED BLUFF, NM--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

D <i>A</i>	ŀ	GOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	N1TRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITKO- GEN, AMMONIA	AMMONIA	NIT GE ORGA	RO- N, O NIC AL	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	MONI OKGA DIS	IA + ANIC B. G/L
OC1		7490	7260	.72	.72	.100	.120	0 1	.0	.54	1.1		.66
NOV		6550	6130	1.0	.97		.260		.3	.63	1.5		.89
DEC		7220	6680	1.6	1.4	.300	.240		.90	.76	1.2		1.0
JAN	7	6090	5940	.78	.78		.140		. 5	.80	1.6		.94
FEE		6320	6280	.33	.33		.220		.5	.71	1.8		.93
MAF				4.5			2.				- 2		-1
		10600	9450	.00	.09	.180	.490) 3	.7	1.9	3.9	2	2.4
MAY	2	9710	9070	.00	.02	.090	.130) 2	. 3	.68	2.4		.81
	3	8940	8490	.02	.02		.300		.6	.46	1.9		.76
JUN		12900	12500	.00	.00		.030		. 2	1.2	2.3	1	1.2
JUI	š	14100	14200	.00	.01		.100		.94	.40	1.1		.50
AUC	7	13000	13300	.00	.00				.3	.74	1.5		.97
SEE		8930	8380	.22	.22				.9	.90	2.1	1	1.1
	DATE	PHO PHOR TOT. (MG AS	US, DIS AL SOL /L (MG	US, ORTH - OSPH VED DISS /L (MG	RUS, ROPH CAR RATE ORG SOL. TO G/L (M	BON, ORGANIC DISTAL SOLUTION (M. 1997)	ANIC ORC S- SU VED PEN G/L (N	RBON, GANIC JS- IDED IG/L G C)	SEDI- MENT, SUS- PENDE (MG/L	CHAR SUS D PEN	T SU - SIE GE, DI - % FI DED TH	SP. VE AM. NER	
	OCT 11		030 .	010 .	010	9.2	5.2	1.2	2	2 3	. 4	100	
	NOV 08.		020 .	000 .	000	5.3	4.5	.5	2	5 3	.0	92	
	DEC 04		020 .	010 .	000		9.1	.7	3	0 5	. 6	94	
	JAN 17.		060 .	010 .	010	7.2	4.0		1	7 3	.0	99	
	FEB 27		120 .	010 .	000	13	7.6	3.6	3	5 5	. 4	87	
	MAR 20								5	2 3	. 1	86	
	26 APR		130 .	040 .	010		7.7	4.4					
	29 MAY	7 7	100 .	010 .	.000	15	12	.5	2	9 2	.0	95	
	01 28		110 .	010 .	.000	8.7	6.8	2.5	4	8 4	.8	95	
	JUN 25		150 .	010 .	000		11	3.2	4	9 4	. 2	98	
	JUL 23.		080 .	010 .	010	11	12	4.1	3	4 1.	.0	94	
	AUG 27				000	9.9	8.1	. 8	2	8	.91	94	
	SEP 24				020		8.8	2.3	2		. 9	90	
	TIME	ARSE TOTA E (UG	AL TOT	S- AKSE DED DI AL SOL	NIC TO	IUM, SU: TAL PENI COV- REI ABLE ER	DED BAR COV- DI ABLE SOI	CIUM, IS- LVED JG/L	CADMIU TOTAL RECOV ERABL (UG/L	PENI REC	S- DED CADM OV- DI BLE SOL	S- VED	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L
DATE		ÀS .		AS) AS	AS) AS			BA)	AS CD				AS CR)
11 NOV	1100)							17	7			
08 DEC	1035)					77		-	-	11		7.7
04 JAN	1030)	2	1	1	500	200	300		0	0	1	0
17 FEB	1015	5							-	-			
27 MAR	0930).	77					75	1/-	-			77
26 APR	0900)	1	1	0	400	400	30		1	0	2	20
29	0930)							-	-			
MAY 28	0945	5	77			(4.4		1.75	1,5	7			
JUN 25	0930)	3	2	1	200	O	200		1	0	1	20
JUL 23	0945	5							1.	4			
AUG													

08407500 PECOS RIVER AT RED BLUFF, NM--Continued

DATE	CHRO- MIUM, SUS- PENDEI RECOV. (UG/L AS CR)	SOL (UC	M, TO - R VED E /L (BALT, OTAL ECOV- RABLE UG/L S CO)	COBALT, SUS- PENDED RECOV- ERABLE (UG/L AS CO)	COBA DIS SOLV	ALT, S- /ED G/L	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPE SUS- PENI RECO ERAL (UC) AS	DED C DV- BLE /L	OPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV ERABL (UG/L AS FE	PEI - REG E ER.	ON, US- NDED COV- ABLE G/L FE)	IRON DIS SOLV (UG, AS I	S- VED /L
OCT																
NOV	78.5			200	-							-	-	125		30
08 DEC			10					1				52	0	500		30
04 JAN	().	10	0	C		0	1		0	2	52		500		20
17 FEB	-											7				30
27 MAR			10							,						90
26 APR	10).	10	1	C		<3	6		4	2	550	0	540		10
29 MAY										75		-		123		70
28 JUN					0								-	750		70
25 JUL	()	20	0	Ċ		0	13		4	9	830		750		80
23 AUG	-		-		15							-				150
27 SEP					-						1	-			,	100
24	()	20	1	1		0	4		4	0	500)	420		80
	LEAD, TOTAL, RECOV- ERABLE (UG/L	ERA:	S- DED LI DV- 1 BLE SO /L (1	EAD, DIS- DLVED UG/L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L	NES SU PEN REC (UG	IS- IDED IOV.	MANGA- NESE, DIS- SOLVED (UG/L	MERCU TOTA RECO ERAB (UG/	JRY L DV- 1 BLE 1	ERCURY SUS- PENDED RECOV- ERABLE (UG/L	MERCURY DIS- SOLVEI (UG/L	REC ERA (UC	COV- BLE	NICKE SUS PEND RECO ERAB (UG/	DED OV- BLE 'L
DATE	AS PB)	AS .	PB) AS	S PB)	AS MN)	AS	MN)	AS MN)	AS H	(G)	AS HG)	AS HG) AS	NI)	AS N	(1)
OCT 11 NOV	14			44	- 44		221	122			()					
08 DEC			-4		4.5		44			441	4-5	-	-			
04 JAN	.5		4	1	60		20	40		.0	.0	.()	5		5
17 FEB	2.2		-2				.2.2					5.				
27 MAR											.25.		-			
26 APR	4	-	4	0	170		50	120		.0	.0	.1		5		3
29 MAY	0-4															
28 JUN					10.0		77			75						
25 JUL	6		3	3	180		120	60		.0	.0	.1		16		11
23 AUG			43					122		24		- 5.5		4.0		22
27 SEP					45			-								
24	5		4	1	210		190	20		.2	.1	.1		7		7
	I 5	CKEL, DIS- SOLVED (UG/L	SELE- NIUM, TOTAL (UG/L	NI SI PEI TO	US- N NDED FAL S	ELE- IUM, DIS- OLVED UG/L	SILVE TOTA RECO ERAB (UG/	R, S L PH V- RI LE EH L (U	ECOV- RABLE JG/L	SILVE DIS- SOLVI (UG/I	R, TO RE ED ER	NC, TAL I COV- H ABLE I	ZINC, SUS- PENDED RECOV- ERABLE (UG/L	SO1	IS- LVED G/L	
DA		S NI)	AS SE) AS	SE) A	S SE)	AS A	G) AS	G AG)	AS A	G) AS	ZN)	AS ZN)	AS	ZN)	
OCT 11			4												44	
NOV 08			3		100					0					**	
DEC 04		0		2	O	3		0	0		0	30	0		30	
		4.4	-					0								
			-			44				0						
		2		2	0	2		0	0		0	80	50		30	
			-	-				1								
			-	-						0						
		5		2	0	2		0	0		0	130	90		40	
			-					0			-					
			-		44				-	0.	-6					
SEP 24		0		2	0	2		0	0		0	50	0		150	

RIO GRANDE BASIN 501
08407500 PECOS RIVER AT RED BLUFF, NM--Continued

CHLOR	TERIAL	DDE, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL (UG/L)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCB TOTAL (UG/L)	TIME	DATE
DDT												08
DDT. TOTAL TOTAL	ND	ND		ND		ND		ND	2.0	ND	0930	
08 ND	L HEPTA- A- CHLOR, AL TOTAL	TOTAL IN BOT- TOM MA- TERIAL	TOTAL	TOTAL IN BOT- TOM MA- TERIAL	TOTAL	ELDRIN, TOTAL IN BOT- TOM MA- TERIAL	ELDRIN	AZINON, TOTAL IN BOT- TOM MA- TERIAL	AZINON. TOTAL	TOTAL IN BOT- TOM MA- TERIAL	TOTAL.	DATE
HEPTA-	ND	ND										08
CHLOR TOTAL HEPTA EPOXIDE TOTAL TO	ND		ND	**	ND		ND	77	ND		ND	
08	TOT. IN BOTTOM MATL.	PARA- THION, TOTAL	OXY- CHLOR, TOT. IN BOTTOM MATL.	OXY- CHLOR, TOTAL	THION, TOTAL IN BOT- TOM MA- TERIAL	THION, TOTAL	TOTAL IN BOT- TOM MA- TERIAL	TOTAL	CHLOR EPOXIDE TOT. IN BOTTOM MATL.	CHLOR EPOXIDE TOTAL	CHLOR, TOTAL IN BOT- TOM MA- TERIAL	DATE
27 ND												08
TRI- THION, TOTAL TERIAL THION TERIAL TOTAL TO	1D	ND		ND		ND		ND		ND		
08 ND ND ND ND ND	TOTAL	TOTAL	TOTAL	THION, TOTAL IN BOT- TOM MA- TERIAL	TRI- THION	PHENE, TOTAL IN BOT- TOM MA- TERIAL	APHENE, TOTAL	THION, TOTAL IN BOT- TOM MA- TERIAL	THION,	TRI- THION, TOT. IN BOTTOM MATL.	TRI- THION. TOTAL	DATE
08 ND ND ND		ND 	ND	 ND	ND 	ND	ND 	 ND	ND	 ND	ND 	08
27 ND ND ND		-59	++	5.5	ND	1.551	ND	44	ND	(14)	ND	

08407500 PECOS RIVER AT RED BLUFF, NM--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	SF	PECIFIC CO	NDUCTANCE	(MICROMH		25 DEG. C		YEAR OCTO	BER 1979	TO SEPTEM	BER 1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	9610 9730 9920 10200 10400	12600 12200 12300 11400 10800	10300 10200 9910 10000 10000	9110 8870 9030 8870 9030	8850 9000 8940 8980 9020	9910 10000 10300 10300 10400	15100 14800 14100 13300 12900	13900 14300 14200 14100 14800	13600 14100 14400 14400 14400	19100 19100 19200 19600 20000	21400 21600 21600 21500 21500	19500 19500 19900 19900 19900
6 7 8 9	10700 11000 11100 11200 11500	10000 9970 9550 9330 9780	10100 10100 10000 10200 10100	9030 8870 8870 8870 9030	8940 8910 8800 8840 8800	10600 10400 10700 11300 11600	13000 13500 13700 13600 13500	14800 14500 14400 13500 13500	14700 15300 14900 15300 14800	20100 20300 20500 20700 20900	21500 19500 21700 21700 21700	19900 20000 20100 16500 7950
11 12 13 14 15	11900 10500 10000 10300 10000	10500 10900 11800 11700 11000	10200 9910 9730 9910 10000	8870 8720 8720 9030 8870	9210 8710 8250 8330 8480	11200 11100 11400 11800 12100	13600 13400 13200 12100 12000	13000 12800 12700 12700 9260	15200 15500 15800 15800 15800	20800 20600 20400 20700 20700	21500 21300 20500 19700 19700	4950 15600 14800 11000 11000
16 17 18 19 20	9970 10100 10200 10300 10200	10800 10800 10600 10400 10400	9150 9640 9560 9400 8720	8720 8720 8790 8870 8640	8190 8190 9860 8440 8530	12400 12600 13400 14300 14400	11900 12000 12600 12600 12300	9350 13200 9260 8600 8120	16300 16800 17100 17300 17400	21200 21700 21800 21300 21100	20100 20100 20000 19600 19800	11100 11600 12200 12100 12200
21 22 23 24 25	10300 10700 11200 11200 11300	11000 11000 11300 11200 11300	8640 8710 8930 8930 9150	8640 8640 8640 8430 8640	8510 8680 9380 9400 9650	14000 13800 13900 14500 15100	12400 13000 14000 14700 15300	8120 8940 9370 10200 10600	17400 17600 18100 18400 18500	20700 20500 20600 20900 21100	20100 20100 19900 19100 18700	12900 13000 12500 12400 12400
26 27 28 29 30 31	11800 11800 12200 12400 11900 12200	10400 10200 10400 10600 10400	9390 9390 8930 9080 9080 9010	8790 8640 8720 8790 8790 8870	9170 9070 9330 9570	15100 15300 15900 16300 15800 14900	15100 14400 13900 13900 14100	12100 12100 12600 13000 13100 13300	18500 18800 19300 19700 19600	21200 21200 21600 21600 21100 21100	18700 18700 18900 19100 19200 19100	2420 623 894 4260 6560
MEAN	10800	10800	9560	8810	8900	12700	13500	12100	16500	20700	20200	12600

			TEMPERATURE,	WATER	(DEG.	C), WATER YI ONCE-DAILY	EAR OCTOBER	1979 TO) SEPTEMBER	1980		
DAY	OCT	NOV	DEC	JAN	FEI	B MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	24.0 23.5 23.5 22.0 22.5	13.5 12.5 12.5 13.5 14.5	5.5 5.0 5.5 6.0 6.5	7.5 8.0 8.5 8.5 8.5	5.5 7.5 9.5 10.5	12.0 12.0 12.0	17.0 17.5 18.0 18.0 20.0	23.0 24.0 20.0 21.5 23.5	24.0 23.0 27.0 28.5 28.0	28.5 28.0 30.5 29.5 26.5	28.5 27.0 30.0 27.0 27.0	27.0 27.0 26.0 26.5 26.0
6 7 8 9	22.0 22.5 22.0 19.0 20.0	13.0 13.0 14.0 14.5 13.5	7.0 7.5 7.5 8.0 9.5	7.5 7.0 7.0 7.5 8.0	11.0 8.0 6.0 6.5	14.0 15.5 15.5	20.5 20.0 20.0 20.5 20.0	24.0 25.0 25.0 24.5 24.5	28.0 30.0 23.0 22.5 24.0	28.0 28.0 30.5 29.5 27.0	27.0 27.5 28.5 27.0 27.5	25.5 26.0 26.0 23.0 20.5
11 12 13 14 15	20.0 20.0 19.0 20.5 21.5	12.0 11.5 11.0 10.5 10.0	7.5	8.0 8.0 10.0 11.0 11.5	7.0 6.0 9.5 9.5	16.0 16.0 16.0	16.0 14.0 15.5 18.0 18.0	23.0 23.5 24.0 20.0 20.0	25.5 26.5 28.0 26.0 28.5	29.5 29.5 29.0 30.5 30.5	22.5 22.5 24.5 25.5 28.0	23.5 25.0 25.5 26.0 27.0
16 17 18 19 20	22.0 20.0 21.0 20.5 20.0	11.5 11.5 13.0 13.0 13.5	5.5	11.5 11.0 11.0 11.5 9.5	10.5 8.0 10.5 12.0 13.0	16.0 13.5 14.5	20.0 21.5 22.0 22.0 22.0	21.0 22.0 25.0 24.0 25.5	28.5 28.0 28.0 28.0 26.0	28.0 28.5 27.5 27.5 27.5	30.0 28.5 28.0 26.0 28.5	27.5 27.0 26.0 25.0 25.0
21 22 23 24 25	20.0 19.5 18.5 18.0 18.0	12.0 10.5 9.0 8.0 9.5	8.5 10.0 9.0 8.5 9.0	9.0 8.5 8.0 8.0 8.5	14.0 14.5 15.0 15.0	17.0 15.5 15.0	22.0 22.0 23.0 21.5 19.5	26.0 27.0 26.5 26.5 26.5	27.0 28.0 27.0 28.0 28.5	27.0 25.5 28.5 29.5 28.0	27.0 27.5 28.0 28.0 28.0	24.5 21.0 20.5 22.0 24.0
26 27 28 29 30 31	18.5 18.5 18.0 17.5 14.0	9.0 8.5 8.5 7.5 5.5	8.0 8.5 8.5 8.0 8.0	6.5 6.0 7.0 5.5 6.0 5.5	14.0 15.0 15.5 16.0	17.5 18.5 17.0 17.5	20.0 21.0 22.5 23.5 22.5	26.5 24.5 26.0 26.0 26.0 26.5	27.5 27.5 27.5 27.0 29.0	29.5 26.5 27.5 27.5 28.0 27.5	27.0 24.5 27.5 27.5 27.5 27.5	15.0 14.0 14.0 26.0 28.5
MEAN	20.0	11.5	7.5	8.5	10.5	15.5	20.0	24.0	27.0	28.5	27.0	24.0

08408500 DELAWARE RIVER NEAR RED BLUFF, NM

LOCATION.--Lat 32°01'23", long 104°03'15", in NE1/4SW1/4SE1/4 sec.23, T.26 S., R.28 E., Eddy County, Hydrologic Unit 13070002, near center of channel on downstream side of pier of bridge on U.S. Highway 285, 2.1 mi (3.4 km) north of the New Mexico-Texas State line, 3.6 mi (5.8 km) southwest of Red Bluff, 3.7 mi (6.0 km) upstream from mouth, 14 mi (23 km) south of Malaga, and 405.6 mi (652.6 km) upstream from mouth.

DRAINAGE AREA. -- 689 mi 2 (1,785 km2).

PERIOD OF RECORD.--April 1912 to September 1913, May 1914 to June 1915, October 1937 to current year. Published as "near Malaga, N. Mex." 1912-13, and as "near Angeles, Tex." 1914-15.

GAGE.--Water-stage recorder. Datum of gage is 2,900.66 ft (884.121 m) National Geodetic Vertical Datum of 1929.

Prior to May 1914, at site 3.0 mi (4.8 km) upstream at different datum. May 1914 to June 1915 at site 2.5 mi (4.0 km) downstream at different datum.

REMARKS.--Records fair. One small upstream diversion. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--43 years (water years 1938-80), 13.5 ft³/s (0.382 m³/s), 9,780 acre-ft/yr (12.1 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 81,400 ft $^3/s$ (2,310 m $^3/s$) Oct. 2, 1955, gage height, 27.0 ft (8.23 m), from floodmarks, from rating curve extended above 1,500 ft $^3/s$ (42.5 m $^3/s$) on basis of slope-area measurements at gage heights 8.65, 12.84, 18.00, and 27.0 ft (2.637, 3.914, 5.486, and 8.230 m); no flow for many days most years.

Maximum discharge since at least 1911, that of Oct. 2, 1955.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,020 ft 3 /s (57.2 m 3 /s) Sept. 27, gage height, 4.80 ft (1.463 m), no other peak above base of 1,700 ft 3 /s (48.1 m 3 /s); no flow at times.

		DISC	CHARGE, IN	CUBIC FE		COND, WAT		OCTOBER 19	79 TO SEE	PTEMBER 19	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	4.6	5.2	5.6	6.4	5.6	5.3	4.5	2.1	.00	.00	.40
2	.00	5.2	5.4	6.0	6.4	5.3	5.3	4.5	2.1	.00	.00	.40
3	.00	5.8	5.6	5.6	6.0	5.6	5.3	5.6	2.0	.00	.00	.40
4	.00	6.1	5.9	5.6	5.8	6.0	5.3	7.6	1.6	.00	.00	.40
5	.00	6.4	6.2	5.6	5.6	6.0	5.6	6.4	1.2	.00	.00	.40
6	.00	6.1	6.1	5.6	5.5	5.6	6.0	15	1.2	.00	.00	.40
7	.00	6.6	5.7	5.6	5.8	5.6	6.4	12	.40	.00	.00	.40
8	.00	6.7	5.3	5.3	5.4	5.6	6.0	7.2	16	.00	.00	.40
9	.00	6.5	5.2	5.3	5.6	4.9	6.4	6.0	3.9	3.4	.00	10
10	.00	6.4	5.5	5.3	5.8	5.3	6.4	5.3	4.4	37	.00	2.0
11	.00	6.3	6.1	5.3	6.0	4.5	6.8	4.9	4.6	8.6	.00	1.0
12	.00	5.7	6.7	5.3	6.0	4.1	6.4	4.5	3.4	2.7	2.0	1.0
13	.00	5.7	9.0	5.6	5.8	3.7	6.8	4.1	2.1	.91	1.0	1.0
14	.00	6.1	10	6.0	6.1	3.7	6.0	3.7	1.2	.00	.50	.50
15	.00	6.1	8.9	6.0	6.2	3.7	6.0	18	.65	.00	. 50	. 50
16	.00	6.4	7.1	5.6	5.6	4.1	5.3	13	.40	.00	.50	.50
17	.00	6.9	5.9	5.3	5.7	3.7	5.3	6.4	.16	.00	.50	.50
18	.00	7.1	5.2	5.6	6.3	3.0	5.3	5.3	.40	.00	.50	.50
19	.00	6.4	5.9	5.6	6.7	3.4	5.6	4.1	.40	.00	5.0	1.0
20	.00	6.3	4.4	5.6	6.1	4.5	4.9	3.7	7.2	.00	2.0	1.0
21	.00	6.2	2.9	5.6	5.5	5.3	4.9	3.7	25	.00	.50	1.0
22	.00	6.0	2.9	8.5	5.4	5.3	4.9	3.7	3.3	.00	.50	2.0
23	.00	5.6	2.6	8.5	5.5	5.3	4.9	3.4	1.8	.00	. 50	2.0
24	.00	6.0	2.3	7.6	5.6	4.9	4.5	2.7	1.2	.00	.50	2.0
25	4.3	6.3	2.2	6.4	5.6	4.9	4.9	2.0	.65	.00	.50	200
26	4.5	6.0	2.5	6.4	6.0	5.3	4.9	1.8	.69	.00	.40	800
27	4.1	5.4	2.6	6.0	6.0	5.6	4.9	3.0	.40	.00	.40	1200
28	4.1	5.4	2.7	5.6	6.4	5.3	4.9	3.5	.00	.00	.40	800
29	4.4	4.7	2.6	6.0	6.8	4.9	4.9	3.6	.00	.00	.40	200
30	4.3	5.1	2.8	6.0		5.3	4.9	2.9	.00	.00	.40	50
31	4.2		3.0	6.7		5.3		2.5		.00	.40	
TOTAL	29.90	180.1	154.4	184.7	171.6	151.3	165.0	174.6	88.45	52.61	17.40	3279.70
MEAN	.96	6.00	4.98	5.96	5.92	4.88	5.50	5.63	2.95	1.70	.56	109
MAX	4.5	7.1	10	8.5	6.8	6.0	6.8	18	25	37	5.0	1200
MIN	.00	4.6	2.2	5.3	5.4	3.0	4.5	1.8	.00	.00	.00	.40
AC-FT	59	357	306	366	340	300	327	346	175	104	35	6510

CAL YR 1979 TOTAL 3951.45 MEAN 10.8 MAX 623 MIN .00 AC-FT 7840 WTR YR 1980 TOTAL 4649.76 MEAN 12.7 MAX 1200 MIN .00 AC-FT 9220

08410000 RED BLUFF RESERVOIR NEAR ORLA, TX

LOCATION.--Lat 31°54'04", long 103°54'35", Reeves County, Hydrologic Unit 13070001, at right end of Red Bluff Dam on the Pecos River, 2.8 mi (4.5 km) upstream from Salt Creek, and 5.2 mi (8.4 km) north of Orla.

DRAINAGE AREA.--20,720 mi² (53,660 km²), approximately (contributing area).

PERIOD OF RECORD.--February 1937 to current year. Monthly contents only for some periods, published in WSP 1312.

GAGE.--Nonrecording gage. Datum of gage is 0.43 ft (0.131 m) below National Geodetic Vertical Datum of 1929.

REMARKS.--The reservoir is formed by a rock-faced earthfill dam 9,200 ft (2,800 m) long. The dam was completed and storage began in September 1936. The dam and reservoir are owned and operated by the Ked Bluff Water Power Control District. The water is used for power development and for irrigation from Mentone to Grandfalls. The uncontrolled emergency spillway, 790 ft (241 m) wide, is a cut through natural ground located to the right of right end of dam. The controlled service spillway is equipped with 12 tainter gates that are 25 by 15 ft (8 by 5 m) high. Inflow is partly regulated by storage in Lake Sumner, Lake McMillan, and Lake Avalon, total combined capacity 154,400 acre-ft (190 hm³), and by several small diversion dams that divert water for power or irrigation. The capacity curve is based on Geological Survey topographic map, survey of 1925. Figures given herein represent total contents. Data regarding the dam and reservoir are given in the following table:

(age height Capacity (feet) (acre-feet)

	(feet)	(acre-feet)
Top of dam	2,856.0	-
Crest of spillway	2.845.0	340,000
Top of gates (top of conservation pool)	2.842.0	310,000
Crest of spillway	2,827.0	166,500
Lowest gated outlet (invert)	2.764.0	3.000

COOPERATION.--Gage-height records and capacity curve were furnished by the Ked Bluff Water Power and Control District.

EXTREMES (at 0800) FOR PERIOD OF RECORD.--Maximum contents observed, 352,000 acre-ft (434 hm³) Sept. 27, 28, 1941, gage height, 2,846.2 ft (867.52 m), observed on nonrecording gage at service spillway (affected by variable drawdown due to flow through tainter gates); minimum observed, 11,080 acre-ft (13.7 hm³) May 13, 1948, gage height, 2,781.4 ft (847.77 m).

EXTREMES (at 0800) FOR CURRENT YEAR.--Maximum contents observed, 85,400 acre-ft (105 hm³) Mar. 11-21, gage height, 2,813.2 ft (857.46 m); minimum observed, 33,980 acre-ft (41.9 hm³) Sept. 9, gage height, 2,797.8 ft (852.77 m).

Capacity table (gage height, in feet, and total contents, in acre-feet)

2,797.0 32,300 2,805.0 53,000 2,814.0 89,000

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 INSTANTANEOUS OBSERVATIONS AT 0800

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	83600 83150 82250 81350 80450	73100 73100 73100 73100 73100	74700 75100 75100 75100 75100	78650 78650 79100 79100 79100	82250 82250 82700 82700 82700	84950 84950 84950 84950 84950	84950 84950 84950 84950 84950	74700 74300 74300 74300 74300 73900	70700 69900 69100 68300 67500	61750 61400 61400 61050 60700	44600 44000 43000 42500 41750	34620 34620 34620 34400 34400
6 7 8 9	80000 79100 78200 77750 76850	73100 73100 73100 73100 73500	75100 75500 75500 75500 75500	79100 79100 79550 79550 79550	82700 82700 83150 83150 83150	84950 84950 84950 84950 84950	84500 84500 84500 84500 84050	73900 73900 73900 73900 73900	66700 65900 65900 65900 65500	60350 60000 59650 59300 58950	41000 40250 39500 38760 38040	34190 34190 34190 33980 34400
11 12 13 14 15	75950 75500 74700 73900 73100	73500 73500 73500 73500 73500 73900	75500 75950 76400 76400 76400	79550 80000 80000 80000 80000	83150 83600 83600 83600 83600	85400 85400 85400 85400 85400	83600 82700 81800 81350 80900	73500 73500 73500 73100 73100	65500 65500 65100 65100	58600 58250 57900 57900 57550	37320 36600 35940 35720 35720	34620 34840 34840 34840 35060
16 17 18 19 20	73100 73100 73100 73100 73100	73900 73900 73900 73900 73900	76400 76850 76850 76850 76850	80000 80450 80450 80450 80900	83600 83600 84050 84050 84050	85400 85400 85400 85400 85400	80000 79100 78650 77750 77300	73500 73500 73500 73500 73100	65100 64700 64700 64700 64300	57200 56850 56150 55100 54400	35720 35720 35720 35500 35500	35280 35060 35060 35060 35060
21 22 23 24 25	73100 73100 73100 73100 73100	74300 74300 74300 74300 74300	77300 77300 77300 77300 77750 77750	80900 80900 80900 81350 81350	84500 84500 84500 84500 84500	85400 84950 84950 84950 84950	76400 75950 75500 75500 75100	73100 73100 72700 72700 72300	64300 63900 63500 63500 63500	53700 52700 51800 51200 50600	35500 35500 35500 35280 35280	35060 35060 34840 34840 34840
26 27 28 29 30 31	73100 73100 73100 73100 73100 73100	74300 74700 74700 74700 74700	77750 78200 78200 78200 78200 78200 78200	81350 81800 81800 81800 81800 82250	84950 84950 84950 84950	84950 84950 84950 84950 84950 84950	75100 75100 74700 74700 74700	72300 71900 71500 71500 71500 71100	63150 62800 62450 62450 62100	49700 49100 48200 47300 46400 45500	35280 35060 35060 35060 34840 34840	38280 50900 64300 66700 67100
MAX MIN (†) (‡)	83600 73100 2810.4 -10500	74700 73100 2810.8 +1600	78200 74700 2811.6 +3500	82250 73650 2812.5 +4050	84950 82250 2813.1 +2700	85400 84950 2813.1 0	84950 74700 2810.8 -10250	74700 71100 2809.9 -3600	70700 62100 2807.6 -9000	61750 45500 2802.5 -16600	44600 34840 2798.2 -10660	67100 33980 2808.9 +32260

CAL YR 1979 MAX 110600 MIN 73100 ‡ -27500 WTR YR 1980 MAX 85400 MIN 33980 ‡ -16500

Gage height, in feet, at end of month.

[#] Change in contents, in acre-feet.

505

08412500 PECOS RIVER NEAR ORLA, TX

LOCATION.--Lat 31°52'21", long 103°49'52", Reeves County, Hydrologic Unit 13070001, on right bank at bridge on Farm Road 652, 5.5 mi (8.8 km) downstream from Salt Creek (Screw Bean Arroyo), 5.9 mi (9.5 km) northeast of Orla, and 8.5 mi (13.7 km) downstream from Red Bluff Reservoir.

DRAINAGE AREA. -- 21,210 mi² (54,930 km²), approximately (contributing area).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1937 to current year.

REVISED RECORDS .-- WSP 928: 1937.

GAGE.--Water-stage recorder. Datum of gage is 2,730.86 ft (832.366 m) National Geodetic Vertical Datum of 1929. Prior to Nov. 16, 1969, at site 6.9 mi (11.1 km) downstream at datum 12.81 ft (3.904 m) lower.

REMARKS.--Water-discharge records fair. Most of flow is released from storage in Red Bluff Reservoir (station 08410000). Occasional runoff from draws between dam and station. Many diversions above Red Bluff Reservoir for irrigation.

AVERAGE DISCHARGE.--43 years (water years 1938-80), 169 ft³/s (4.786 m³/s), 122,400 acre-ft/yr (151 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 23,700 ft³/s (671 m³/s) Sept. 29, 1941, gage height, 20.74 ft (6.322 m), site and datum then in use; no flow at times in 1946 and 1965.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,030 ft 3 /s (57.5 m 3 /s) Sept. 26 at 2400 hours, gage height, 14.62 ft (4.456 m); minimum daily, 9.1 ft 3 /s (0.26 m 3 /s) Mar. 18, 24.

		DISC	HARGE, IN	CUBIC FE		ECOND, WATE		CTOBER 19	79 TO SEE	TEMBER 19	80	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	113 348	28 28	13 13	13 13	15 15	10 10	11 12	65 65	283 293	110 110	301 299	40 38
2 3 4 5	371 371 371	29 30 30	14 14 15	13 13 14	16 15 14	10 12 12	11 12 12	67 68 70	293 293 292	111 111 110	296 295 293	38 38 38
6 7 8 9	371 371 371 371 371	29 30 20 16 16	15 15 14 14 15	14 13 13 13 13	13 13 13 13 14	12 11 11 10 10	13 13 12 97 407	73 42 39 39 38	291 237 43 50 44	110 109 109 108 108	290 290 286 281 277	38 37 38 56 66
11 12 13 14 15	371 371 371 371 371 327	15 14 15 15	15 16 16 22 24	13 14 15 14 14	23 21 13 14 14	11 11 11 12 11	406 402 405 407 405	38 38 39 40 49	41 40 40 40 40	108 110 110 110 110	274 277 253 106 69	42 40 41 43 43
16 17 18 19 20	54 43 40 37 35	15 16 17 17	18 16 15 14 14	13 13 13 12 13	12 11 12 14 14	9.5 9.1 9.2 9.8	402 399 397 397 397	81 82 79 79 78	40 40 38 39 60	111 172 291 297 296	60 55 51 48 46	43 42 41 40 40
21 22 23 24 25	33 31 31 30 31	16 16 16 15	14 14 14 14	13 17 19 19	12 11 9.8 9.7 9.7	10 9.9 10 9.1	355 51 70 69 66	77 77 78 76 76	56 56 57 55 58	295 292 296 316 316	42 44 44 43 42	39 37 38 40 44
26 27 28 29 30 31	31 30 29 29 26 27	13 13 13 11 12	13 13 13 13 13	15 14 14 14 14 15	10 11 11 11	11 11 11 10 11	66 67 67 80 68	77 78 79 78 78	104 115 110 111 111	314 312 310 308 305 304	43 45 44 42 42 41	876 1230 234 107 57
TOTAL MEAN MAX MIN AC-FT	5777 186 371 26 11460	550 18.3 30 11 1090	460 14.8 24 13 912	437 14.1 19 12 867	384.2 13.2 23 9.7 762	325.6 10.5 12 9.1 646	5576 186 407 11 11060	2053 66.2 110 38 4070	3370 112 293 38 6680	6179 199 316 108 12260	4619 149 301 41 9160	3544 118 1230 37 7030

CAL YR 1979 TOTAL 33099.0 MEAN 90.7 WTR YR 1980 TOTAL 33274.8 MEAN 90.9 612 MIN 11 MAX 612 MIN 11 AC-FT 65650 MAX 1230 MIN 9.1 AC-FT 66000

08412500 PECOS RIVER NEAR ORLA, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses July 1937 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1937 to current year. WATER TEMPERATURES: March 1953 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equation developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 29,400 micromhos May 16, 1978; minimum daily, 1,610 micromhos June 2,

1948.
WATER TEMPERATURES (1953-61, 1968-80): Maximum daily, 31.0°C Aug. 13, 1978; minimum daily, 0.5°C Jan. 6, 1971, Jan. 11, 1973, and Dec. 11, 1978.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 24,300 micromhos Apr. 8; minimum daily, 4,060 micromhos Sept. 27.
WATER TEMPERATURES: Maximum daily, 27.0°C on several days during July and August; minimum daily, 1.0°C Dec. 1.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM. DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT										
23	1030	30	14200	8.0	14.0	2300	2200	530	230	2600
NOV			75.00						12.75	2033
12	0940	14	22300		10.0	3900	3800	950	370	3400
JAN 15	1525	14	22700		12.5	4500	4400	1300	310	4000
FEB	1525	1.4	22700		12.3	4500	4400	1500	510	4000
11	0840	14	21900		4.0	3500	3400	860	330	4000
APR	13.732		0.354.5		1.1	40.17	0.5 (6.5	5.4.7		10.25
17	1630	400	10000		18.0	2000	2000	540	1.70	1400
MAY 28	1245	80	10900	7.5	22.0	2200	2100	580	190	1700
JUL	1243	0.0	10,00	7.5	22.0	2200	2100	300	150	1700
10	1630	109	11200	14/41	27.0	2400	2300	610	210	1800
AUG										
21	1540	42	14100		28.5	2700	2600	700	240	2400

DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
OCT									
23	24	44	130	0	2200	4100	.5	9.0	9780
NOV 12	24	52	160	0	1800	6700	1.3	6.8	13400
JAN						22.2			
15	26	42	170	0	3100	7000	1.1	6.4	15800
FEB 11	29	41	170	0	2900	6800	1.8	7.7	15000
APR	7.0		4 - 4		X 5.5.6				1000
17	13	45	120	0	1700	2400	.7	3.2	6320
MAY 28	16	46	130	0	1800	2900	.8	3.0	7280
JUL.									
10	16	57	110	0	2000	3100	.4	13	7840
AUG 21	20	67	120	0	2200	4300	.9	10	10100

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

монтн	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	5777	9590	6340	98800	2500	38900	1500	24200	1800
NOV.	1979	550	19200	13200	19700	5700	8520	2700	4020	*
DEC.	1979	460	22600	15700	19500	7000	8670	3000	3790	*
JAN.	1980	437	22700	15800	18700	7000	8310	3100	3620	*
FEB.	1980	384.2	22500	15600	16200	6900	7200	3000	3150	×
MAR.	1980	325.6	23200	16200	14200	7200	6340	3100	2730	*
APR.	1980	5576	10700	7110	107000	2800	42700	1700	25500	*
MAY	1980	2053	11300	7510	41600	3000	16600	1800	9930	*
JUNE	1980	3370	10900	7210	65600	2900	26100	1700	15700	*
JULY	1980	6179	11400	7550	126000	3000	50300	1800	30000	*
AUG.	1980	4619	12600	8440	105000	3400	42700	2000	24500	*
SEPT	1980	3544	9280	6170	59100	2500	23700	1500	14000	1700
TOTAL		33274.8	**	**	692000	**	280000	**	161000	**
WTD. AVO	7.	91	11500	7700	test	3100	**	1800	**	**

	SF	ECIFIC CC	NDUCTANCE	(MICROMH		25 DEG. C		YEAR OCTO	BER 1979	TO SEPTEM	1BER 1980	161
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	8940 10100 9000 8940 9130	14900 15000 15100 15200 15300	22000 22200 22500 22600 22300	22900 23100 23000 23000 22900	22700 22800 22900 23000 23200	22400 22600 22700 22800 22700	23700 23900 24200 23800 23800	11300 11300 11200 11500 11800	10300 10400 10400 10400 10400	11000 11100 11100 11100 11100	11600 11700 11800 11700 11800	14300 15000 15100 14800 14700
6 7 8 9	9000 9060 9000 9200 8980	15500 15300 15500 20100 22200	22400 22500 22300 22000 22100	23000 22900 23000 22900 22500	22700 22500 22400 22500 22400	22900 23200 23000 22900 22900	23900 23800 24300 22500 9960	11700 13100 11400 11600 11600	10400 10400 11700 11900 14100	11100 11100 11100 11300 11200	11800 12300 12200 12000 12100	14500 14600 14200 14300 15000
11 12 13 14 15	9100 9070 9100 9150 9060	22600 22200 22000 21300 22200	22000 22200 20700 21200 22500	22900 22800 22900 21300 22600	22400 22600 18400 22400 22600	22800 22900 22900 23000 23300	9980 9920 10100 10200 10100	11600 11700 11700 11800 11900	13100 12900 12500 12400 12100	11200 11300 11600 11400 11400	12100 12100 13300 17000 16700	14200 13700 15500 16800 16900
16 17 18 19 20	10900 14000 14100 14200 14500	22100 22200 21900 22200 22300	23500 23100 22800 22600 22700	22700 22900 22800 22600 22800	22800 22700 22400 22300 22500	23100 22900 23100 23200 23600	10100 10300 10000 10100 10000	11300 11400 11300 11200 11100	11800 11500 11500 11400 11100	11500 11400 11200 11300 11300	16200 15400 15100 14800 14500	16800 16300 16000 15700 15400
21 22 23 24 25	14400 14500 14200 14300 14500	22200 22100 22000 21900 21800	23500 23900 23600 23400 23200	22700 22300 22000 22900 23200	22900 22700 22600 22500 22500	23200 23300 23600 23700 23600	10500 11900 11500 11400 11300	11200 11300 11200 11100 11100	11300 11400 11400 11400 11400	11300 11300 11400 11400 11400	14700 14600 14500 14900 14600	15200 15000 14700 14500 14800
26 27 28 29 30 31	14700 14800 14900 15000 15100	22100 22000 22200 22100 22200	23100 23000 22900 22700 22800 23000	23000 22900 22800 22700 22600 22900	22400 22500 22600 22800	23500 23600 23700 23600 23800 24000	11300 11400 11400 11200 11400	11000 11000 10900 11000 11000	11100 11100 11000 11000	11500 11500 11500 11500 11600 11500	14100 13900 14300 14200 14200 14100	8000 4060 12200 14100 13600
MEAN	11800	20200	22600	22800	22500	23200	14600	11400	11400	11300	13700	14300

08412500 PECOS RIVER MEAR ORLA, TX--Continued

TEMPERATURE, UATER (DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 ONCE-DAILY

					0	NCE-DAILY						
DAY	OCT	you	DEC	TVI	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	222	10.0 10.0 10.0 15.0 12.0	1.0 2.0 5.0 5.0 6.0	6.0 6.0 7.0 8.0 6.0	4.5 5.0 6.0 7.0 9.0	9.0 8.0 8.0 10.0	16.0 15.0 14.0 14.0	18.0 16.0 17.0 17.0	23.0 22.5 22.0 22.5 23.0	24.0 24.5 25.0 25.0 25.0	25.0 25.0 26.0 25.0 26.0	26.0 26.0 26.0 26.0 26.0
6 7 8 9		11.0 11.0 12.0 13.0 11.0	5.0 6.0 7.0 8.0	7.0 5.0 5.0 6.0 6.0	9.0 10.0 8.0 4.0 4.0	12.0 13.0 13.0 12.0 12.0	17.0 16.0 15.0 15.0 13.0	18.0 19.0 19.5 19.5 18.5	22.5 23.5 24.0 22.0 23.0	25.0 25.0 25.0 27.0 26.0	26.0 26.0 26.0 25.5	26.0 26.0 26.0 22.0
11 12 13 14 15		10.0 10.0 9.0 9.0	9.0 7.0 8.0 6.0 5.0	9.0 7.0 9.0 10.0	4.0 5.0 4.0 9.0	13.0 13.0 13.0 12.0 13.0	17.0 13.0 11.0 12.0 13.0	18.0 17.5 18.0 18.5 19.0	24.0 24.5 25.0 25.0 24.0	25.0 25.0 25.0 25.0 25.0	25.0 25.0 25.0 24.0 27.0	23.0 24.0 25.0 24.0 25.0
16 17 18 19 20	17.0 18.0 19.0 18.0	9.0 9.0 11.0 12.0	5.0 4.0 3.0 6.0 7.0	13.0 10.0 10.0 11.0 9.0	10.0 6.0 6.0 11.0	14.0 11.0 10.0 10.5 12.0	13.0 14.0 13.0 14.0 15.0	17.5 17.5 18.0 18.5 19.0	26.5 26.5 26.5 26.5 25.0	26.0 25.0 25.0 27.0 25.0	27.0 27.0 27.0 26.0 25.0	25.0 24.0 24.0 24.0
21 22 23 24 25	18.0 16.0 19.0 14.0	10.0 5.0 6.0 6.0 7.0	8.0 10.0 10.0 8.0 7.0	8.0 4.0 6.0 6.0	12.0 12.0 12.0 12.0 12.0	13.0 13.0 12.0 13.0 12.0	15.0 16.0 16.0 14.0 14.0	20.0 20.0 19.0	24.5 25.0 26.0 26.0 25.5	25.0 26.0 26.5 25.5 26.0	27.0 26.0 26.0 26.0 26.0	24.0 24.5 22.0 23.0 23.0
26 27 28 29 30 31	14.0 14.5 14.5 16.0 12.0	8.0 9.0 9.0 4.0 3.0	7.0 9.0 5.0 4.0	7.0 6.0 6.0 5.0 5.0	11.0 11.0 13.0 13.0	13.0 13.0 14.0 12.0 14.0 14.0	16.5 15.0 16.0 17.0	19.0 20.5 22.0 21.5 19.5 22.0	24.0 24.5 24.0 24.0 24.0	26.0 25.0 25.5 26.0 25.0 25.0	25.0 26.0 25.0 25.0 26.0 27.0	20.5 18.0 19.0 19.0 20.0
MEAN	15.5	9.5	6.0	7.5	8.5	12.0	14.5	19.0	24.5	25.5	26.0	23.5

509

08414500 REEVES COUNTY WATER IMPROVEMENT DISTRICT NO. 2 CANAL NEAR MENTONE, TX

LOCATION.--Lat 31°37'57", long 103°34'30". Loving County, Hydrologic Unit 13070001, on right bank 173 ft (53 m) downstream from headgate, 5.3 mi (8.5 km) south of Mentone, and 15 mi (24 km) northwest of Pecos.

PERIOD OF RECORD.--February 1922 to July 1925, August 1939 to May 1941, March 1942 to September 1957, and March 1964 to current year. Records from August 1939 to October 1940, not equivalent because diversion was not included. Published as "Farmers Independent Canal near Porterville" 1922-25.

CAGE.--Water-stage recorder. Concrete weir since Mar. 1, 1964. Altitude of gage is 2,640 ft (805 m), from topographic map. Prior to July 22, 1925, at site 250 ft (76 m) downstream at different datum. Mar. 10, 1939, to Oct. 4, 1940, at site 2.5 mi (4.0 km) downstream at different datum. Oct. 5, 1940, to Feb. 19, 1943, at site 123 ft (37 m) upstream at datum 1.10 ft (0.335 m) higher. Feb. 20, 1943, to Mar. 1, 1954, at site 123 ft (37 m) upstream at datum.

REMARKS.--Records good. Local runoff is deleted from daily discharge record. Water is diverted from right bank of Pecos River and is used for irrigation between Mentone and Pecos.

AVERAGE DISCHARGE.--34 years (water years 1923-24, 1940, 1943-57, 1965-80), 8.63 ft^3/s (0.244 m^3/s), 6,250 acreft/yr (7.71 hm^3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 160 ft^3/s (4.53 m^3/s) June 14, 1922; no flow at times each year.

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980.

		DISC	HARGE, IN	CORIC FEI	ET PER SI	EAN VALUES	ER YEAR C	CTOBER 1	9/9 TO SEE	TEMBER 1	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5.7 4.5 5.5 5.5 3.2	.02 .02 .02 .02 .02	.02 .02 .02 .02 .02	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	9.8 11 10 9.3 9.3	8.8 8.7 .08 .01	5.5 5.5 5.5 5.2 5.2	17 17 15 12 11	18 18 16 8.7 5.4
6 7 8 9	4.6 6.6 5.9 4.4 .14	.02 .02 .02 .02 .02	.02 .02 .02 .02	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	8.8 5.9 5.2 5.2 5.2	.00 .00 .00	4.9 4.8 4.7 4.6 4.8	5.3 .01 .00 .00	5.2 5.2 5.4 9.4 9.7
11 12 13 14 15	.14 .14 .14 .14	.02 .02 .02 .02 .02	.02 .02 .02 .02 .02	.00 .00 .00	.00 .00 .00	.00 .00 .00	.02 .00 .02 .02	7.9 10 10 10 9.8	.00 .00 .00 .00	4.8 4.8 4.7 4.8	.00 .00 .00 1.1 3.6	11 12 14 14
16 17 18 19 20	.14 .14 .14 .07	.02 .02 .01 .02 .02	.02 .07 .07 .06	.00 .00 .00	.00 .00 .00	.00 .00 .00	.02 .02 .02 .02	9.3 10 10 10 10	4.9 9.0 8.6 8.1 8.2	4.8 4.6 9.0 14 9.4	6.5 6.6 6.9 6.7 6.3	14 8.3 8.1 7.9 7.8
21 22 23 24 25	.07 .02 .02 .02	.02 .02 .02 .01	.06 .05 .01 .02	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	10 10 10 10 10	8.6 8.8 8.9 9.3 8.9	8.4 8.3 10 15 14	6.4 6.8 6.3 6.0 8.1	7.9 7.9 7.9 7.9 6.5
26 27 28 29 30 31	.02 .02 .02 .02 .01	.01 .01 .02 .02	.02 .02 .02 .00 .00	.00 .00 .00 .00	.00	.00 .00 .00 .00	.07 3.6 8.8 8.8 8.8	10 10 10 11 10 8.8	5.8 5.2 5.5 5.9 5.7	9.7 9.6 9.5 16	16 18 18 18 19	.29 .24 .09 .02 .02
TOTAL MEAN MAX MIN AC-FT	47.56 1.53 6.6 .01 94	.54 .018 .02 .01	.80 .026 .07 .00	.00 .000 .00	.00 .000 .00	.00 .000 .00	30.25 1.01 8.8 .00 60	286.5 9.24 11 5.2 568	129.45 4.32 9.3 .00 257	243.9 7.87 17 4.6 484	256.61 8.28 19 .00 509	250.86 8.36 18 .02 498

CAL YR 1979 TOTAL 2070.84 MEAN 5.67 MAX 57 MIN .00 AC-FT 4110 WTR YR 1980 TOTAL 1246.47 MEAN 3.41 MAX 19 MIN .00 AC-FT 2470

08415000 WARD COUNTY WATER IMPROVEMENT DISTRICT NO. 3 CANAL NEAR BARSTOW, TX

LOCATION.--Lat 31°34'28", long 103°30'04", Ward County, Hydrologic Unit 13070001, on left bank 96 ft (29 m) upstream from concrete culvert that crosses canal, 2 mi (3 km) downstream from headgate, and 10.5 mi (16.9 km) northwest of Barstow.

PERIOD OF RECORD.--August 1939 to May 1941, August to September 1941, December 1941 to September 1957, and March 1964 to current year.

CAGE.--Water-stage recorder. Altitude of gage is 2,600 ft (792 m), from topographic map. Prior to Dec. 14, 1940, at site 1.75 mi (2.82 km) upstream at datum 2.98 ft (0.908 m) higher. Dec. 14, 1940, to May 26, 1941, at site 1.4 mi (2.3 km) upstream at datum 1.72 ft (0.524 m) higher.

REMARKS.--Records fair. Local runoff is deleted from daily discharge record. Water is diverted from the left bank of Pecos River, and is used for irrigation in the vicinity of Barstow.

AVERAGE DISCHARGE.--32 years (water years 1940, 1943-57, 1965-80), 8.94 ft^3/s (0.253 m^3/s), 6,480 acre-ft/yr (7.99 hm^3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 189 $\rm ft^3/s$ (5.35 $\rm m^3/s$) Sept. 28, 1978; no flow at times each year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

		DIOONA	ROD, III	CODIC	TEEL IL	MEA	N VALUE	S	OCTOBER 1	9/9 10 561	I ADDIN I	980	
DAY	OCT	NOV	DEC	JAN	F	EB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.7	.00	.00	.00		00	.00	.00	16	24	21	28	.14
2	.54	.00	.00	.00		00	.00	.00	14	27	20	22	.13
3	.54	.00	.00	.00		00	.00	.00	13	20	20	10	.11
4	.54	.00	.00	.00		00	.00	.00	14	14	19	11	.10
5	.54	.00	.00	.00		00	.00	.00	16	14	18	12	.10
6	.54	.00	.00	.00		00	.00	.00	16	15	18	8.3	.07
7	.54	.00	.00	.00		00	.00	.00	15	15	18	6.9	.07
8	.54	.00	.00	.00		00	.00	.00	15	11	17	5.3	.07
9	.54	.00	.00	.00		00	.00	.00	8.9	.06	17	24	.07
10	.40	.00	.00	.00		00	.00	.05	5.9	.03	16	26	.07
11	.40	.00	.00	.00		00	.00	38	4.2	.21	15	26	2.0
12	.40	.00	.00	.00		00	.00	66	3.9	.12	15	24	23
13 14	-45	.00	.00	.00		00	.00	26	3.9	.08	17	23	20
15	.47	.00	.00	.00		00	.00	34	3.8	2.2	17	24	26
	.00	.00	.00	.00		00	.00	34	5.7	6.2	17	23	30
16	.41	.00	.00	.00		0.0	.00	32	6.6	18	17	16	27
17	.34	.00	.00	.00		0	.00	27	16	30	14	1.1	27
18	.18	.00	.00	.00		0	.00	27	32	25	14	11	21
19	.15	.00	.00	.00		0.0	.00	32	35	21	15	15	19
20	.11	.00	.00	.00		0	.00	41	35	11	17	16	19
21	.08	.00	.00	.00		0	.00	41	34	11	17	12	20
22	.08	.00	.00	.00		0	.00	40	35	10	18	15	20
23	.04	.00	.00	.00		0	.00	34	34	6.9	24	30	21
24	.02	.00	.00	.00		0	.00	22	33	5.5	30	30	21
25	.01	.00	.00	.00		0	.00	20	33	4.3	31	29	22
26	.00	.00	.00	.00		0	.00	19	32	3.9	32	20	24
27	.02	.00	.00	.00		0	.00	18	29	3.6	34	.57	19
28	.00	.00	.00	.00			.00	16	30	6.8	33	.19	32
29	.00	.00	.00	.00		0	.00	16	29	22	26	.16	53
30	.00	.00	.00	.00			.00	15	27	21	27	-14	27
31	.00		.00	.00	-	-	.00		25		28	.14	
TOTAL	11.18	.00	.00	.00			.00	598.05	620.9	348.90	642	479.70	473.93
MEAN	.36	.000	.000	.000			.000	19.9	20.0	11.6	20.7	15.5	15.8
MAX	2.7	.00	.00	.00			.00	66	35	30	34	30	53
MIN	.00	.00	.00	.00			.00	.00	3.8	.03	14	.14	.07
AC-FT	22	.00	.00	.00	.(U	.00	1190	1230	692	1270	951	940
CAL YR	1979 TOTAL	3200.07	MEAN	8.77	MAX 92	MI	N .00	AC-FT 63	350				
WTR YR	1980 TOTAL	3174.66	MEAN		MAX 66	MI		AC-FT 63					

08418000 WARD COUNTY IRRIGATION DISTRICT NO. 1 CANAL NEAR BARSTOW, TX

LOCATION.--Lat 31°32'26", long 103°29'42", Ward County, Hydrologic Unit 13070001, on left bank 0.6 mi (1.0 km) downstream from headgate and 7.9 mi (12.7 km) northwest of Barstow.

PERIOD OF RECORD.--February 1922 to September 1925 (published as "Barstow Canal near Barstow"), August 1939 to May 1941, October 1941 to September 1957, and March 1964 to current year.

GAGE.--Water-stage recorder. Concrete weir since Nov. 20, 1968. Altitude of gage is 2,600 ft (792 m) from topographic map. Prior to Aug. 15, 1939, at site about 3,000 ft (910 m) upstream at different datum.

REMARKS.--Records good. Local runoff is deleted from daily discharge record. Water is diverted from left bank of Pecos River and is used for irrigation in the vicinity of Barstow. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--36 years (water years 1923-25, 1940, 1942-57, 1965-80), 28.6 ft 3 /s (0.810 m 3 /s), 20,720 acreft/yr (25.5 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 385 $\rm ft^3/s$ (10.9 $\rm m^3/s$) Aug. 30, 1923; no flow at times each year.

		2200	MKGE, IN	CUBIC FE	EI PER SE ME	COND, WA AN VALUE	TER YEAR (OCTOBER 19	79 TO SEP	TEMBER 1	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	21	.20	.10	.00	.00	.00	.00	25	18	43	25	18
2	19	.20	.10	.00	.00	.00	.00	28	14	38	25	20
3	27	.20	.10	.00	.00	.00	.00	18	14	39	25	22
	36	.20	.10	.00	.00	.00	.00	9.8	14	37	44	22
5	38	.20	.00	.00	.06	.00	.00	14	17	37	52	22
6	44	.20	.00	.00	.10	.00	.00	26	22	36	41	22
7	40	.20	.00	.00	.10	.00	.00	23	18	32	31	34
8	42	.30	.00	.00	.02	.00	.00	22	13	39	33	26
9	46	.30	.00	.00	.00	.00	.00	22	6.2	43	36	6.7
1.0	51	.30	.00	.00	.00	.00	.00	22	4.6	43	23	.20
11	59	.30	.00	.00	.00	.15	.00	24	3.8	38	3.8	.20
12	68	.20	.00	.00	.00	.17	.10	26	3.2	38	2.2	.10
13	87	.20	.10	.00	.00	.20	.30	26	1.9	39	.54	.10
14	96	.20	.10	.00	.00	.20	.43	24	1.6	39	.20	.10
15	95	.20	.00	.00	.00	.20	9.7	24	17	39	.20	.10
16	85	.20	.00	.00	.00	.20	31	16	20	31	.20	4.7
17	65	.20	.00	.00	.06	.13	26	7.6	14	23	.20	18
18	34	.20	.00	.00	.10	.13	19	3.5	10	20	.20	16
19	20	.20	.00	.00	.10	.10	19	3.0	8.4	21	8.5	17
20	.20	.30	.00	.00	.04	.12	18	3.0	9.1	30	21	19
21	.20	.30	.00	.00	.00	.10	18	2.7	10	32	18	17
22	.20	.30	.00	.00	.00	.10	18	2.7	10	33	17	14
23	.20	.30	.00	.00	.00	.04	15	2.7	13	35	7.1	6.7
24	.20	.30	.00	.00	.00	.00	13	2.5	15	39	.10	.20
25	.20	.30	.00	.00	.00	.00	15	2.3	14	43	11	.10
26	.20	.30	.00	.00	.00	.02	23	9.2	14	39	23	.10
27	.20	.25	.00	.00	.00	.01	31	20	14	28	30	.10
28	.30	.14	.00	.00	.00	.00	27	18	17	28	29	.20
29	.27	.10	.00	.00	.00	.00	25	21	28	33	27	12
30	.20	.10	.00	.00		.00	24	15	37	50	26	26
31	.20		.00	.00		.00		13		36	21	
TOTAL	975.57	6.89	.60	.00	.58	1.87	332.53	476.0	401.8	1101	581.24	344.60
MEAN	31.5	.23	.019	.000	.020	.060	11.1	15.4	13.4	35.5	18.7	11.5
MAX	96	.30	.10	.00	.10	.20	31	28	37	50	52	34
MIN	.20	.10	.00	.00	.00	.00	.00	2.3	1.6	20	.10	.10
AC-FT	1940	14	1.2	.00	1.2	3.7	660	944	797	2180	1150	684

CAL YR 1979 TOTAL 4045.64 MEAN 11.1 MAX 96 MIN .00 AC-FT 8020 WTR YR 1980 TOTAL 4222.68 MEAN 11.5 MAX 96 MIN .00 AC-FT 8380

08431700 LIMPIA CREEK ABOVE FORT DAVIS, TX (Hydrologic bench-mark station)

LOCATION.--Lat 30°36'48", long 104°00'04", Jeff Davis County, Hydrologic Unit 13070005, on left downstream side of bridge on State Highway 118, about 1,400 ft (430 m) upstream from Jones Creek, and 6.8 mi (10.9 km) west of Fort Davis.

DRAINAGE AREA. -- 52.4 mi2 (135.7 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1965 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 5,175.00 ft (1,577.340 m) National Geodetic Vertical Datum of 1929. Prior to Mar. 1, 1979, at site 600 ft (183 m) upstream at datum 3.71 ft (1.131 m) higher.

REMARKS.--Water-discharge records fair. No diversion above station. Recording rain gage at station.

AVERAGE DISCHARGE.--15 years, 2.77 ft³/s (0.0784 m³/s), 0.72 in/yr (18 mm/yr), 2,010 acre-ft/yr (2.48 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,420 ft 3 /s (96.9 m 3 /s) Sept. 25, 1978, gage height, 12.63 ft (3.850 m), present datum, from rating curve extended above 150 ft 3 /s (4.25 m 3 /s) on basis of slope-area measurements of 1,130, 1,560, and 2,630 ft 3 /s (32.0, 44.2, and 74.5 m 3 /s); no flow at times each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1925, about 13.7 ft (4.18 m) in 1939, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 679 ft 3 /s (19.2 m 3 /s) Sept. 28 at 1100 hours, gage height, 3.85 ft (1.173 m), no peak above base of 1,000 ft 3 /s (28.3 m 3 /s); no flow most of year.

		DISCH	ARGE, IN	CUBIC FEET		OND, WA		CTOBER 197	79 TO SEPT	EMBER 19	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
3	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	7.9	.00
6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
9	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
11	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
12	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
13	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	3.5	.00
14	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	4.9	.00
1.5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
16	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
17	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
21	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
23	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
24	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
25	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
26	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	33
28	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	254
29	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	57
30	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	22
31	.00		.00	.00		.00		.00		.00	.00	
TOTAL	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	16.30	366.00
MEAN	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.53	12.2
MAX	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	7.9	254
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
CFSM	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.01	.23
IN.	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.01	.26
AC-FT	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	32	726
(††)	.00	.00	.00	.00	.15	.00	.00	.44	.31	.71	2.46	6.53
CAL YR			MEAN	.13 MAX	5.0	MIN			.03 AC-		tt 9.	
WTR YR	1980 TOTAL	382.30	MEAN 1	.04 MAX	254	MIN	.00 CFSN	1.02 IN	27 AC-	FT 758	†† 10.	60

tt Rainfall, in inches.

08431700 LIMPIA CREEK ABOVE FORT DAVIS, TX--Continued

513

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: May 1965 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
AUG 14	0245	2.9	100	7.5	18.0	32	5	11-	1.0	2.1	.2	3.5
DATE	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHOPH OSPHATE DISSOL. (MG/L AS P)
AUG 14	56	0	6.9	2.4	.2	14	62	62	.94	,94	.350	.24

08433000 BARRILLA DRAW NEAR SARAGOSA, TX

LOCATION.--Lat 30°57'28", long 103°27'33", Reeves County, Hydrologic Unit 13070005, on right bank at downstream side of bridge on U.S. Highway 290 (Interstate 10), 12.2 mi (19.6 km) east of Saragosa, 17.0 mi (27.4 km) east of Balmorhea, and 34.4 mi (55.3 km) west of Fort Stockton.

DRAINAGE AREA. -- 612 mi2 (1,585 km2).

PERIOD OF RECORD.--December 1924 to July 1926, June to September 1932 (published as "Barrilla Creek"), October 1975 to current year.

REVISED RECORDS. -- WSP 1312: 1925.

GAGE.--Water-stage recorder. Datum of gage is 3,078.36 ft (938.284 m) National Ceodetic Vertical Datum of 1929.

Prior to Oct. 1, 1975, water-stage recorder at site 600 ft (180 m) upstream at 6.07-foot (1.850 m) higher datum.

REMARKS .-- Records good. Considerable diversion for irrigation by spreader dams above station.

AVERAGE DISCHARGE.--5 years, 4.81 ft³/s (0.136 m³/s), 3,480 acre-ft/yr (4.29 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 15,500 ft 3 /s (439 m 3 /s) Aug. 30, 1932, gage height, 10.45 ft (3.185 m), site and datum then in use; no flow most of times.

EXTREMES FOR CURRENT YEAR .-- No flow during year.

		DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 MEAN VALUES										
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
3	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
9	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
11	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
12	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
13	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
14	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
15	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
16	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
17	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
21	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
23	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
24	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
25	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
26	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
28	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
29	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
30	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	.00
31	.00		.00	.00		.00		.00		.00	.00	
TOTAL	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
MEAN	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
MAX	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
AC-FT	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
CAL YR	1979 TOTAL	L 84.05	MEAN .23	MAX 8	2 MI	N .00	AC-FT 1	67				

CAL YR 1979 TOTAL 84.05 MEAN .23 MAX 82 MIN .00 AC-FT 167 WTR YR 1980 TOTAL 0.00 MEAN .000 MAX .00 MIN .00 AC-FT .00

515

08436500 PECOS COUNTY WATER IMPROVEMENT DISTRICT NO. 2 (UPPER DIVERSION) CANAL NEAR GRANDFALLS, TX

LOCATION.--Lat 31°18'43", long 102°55'10", Ward County, Hydrologic Unit 13070001, on left bank about 2.5 mi (4.0 km) upstream from bridge on State Highway 18, 4.6 mi (7.4 km) southwest of Grandfalls, and 12.5 mi (20.1 km) downstream from headgate of canal.

PERIOD OF RECORD,--March 1922 to July 1925 (published as "Imperial Highline Canal near Grandfalls"), August 1939 to September 1957, and March 1964 to current year.

GAGE.--Water-stage recorder. Concrete weir since Dec. 8, 1947. Altitude of gage is 2,455 ft (748 m), from topographic map. Prior to Aug. 21, 1939, water-stage recorder at site 8.5 mi (13.7 km) upstream at different datum. Aug. 21 to Oct. 3, 1939, and May 25 to Aug. 4, 1941, staff gage, and Oct. 4, 1939, to May 21, 1941, and Aug. 5, 1941, to Sept. 30, 1957, water-stage recorder at site 2.5 mi (4.0 km) downstream at different datum.

REMARKS.--Records good. Local runoff is deleted from daily discharge record. Water is diverted from right bank of Pecos River and is used for irrigation and to supply water for Imperial Reservoir. Water is released from Imperial Reservoir into Pecos County Water Improvement District No. 2 canal and into Pecos County Water Improvement District No. 3 canal for irrigation.

AVERAGE DISCHARGE.--35 years (water years 1924, 1940-57, 1965-80), 31.2 ft³/s (0.884 m³/s), 22,600 acre-ft/yr (27.9 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 368 ft³/s (10.4 m³/s) Sept. 18, 1923; no flow at times each year.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1979	TO	SEPTEMBER	1980	

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 1	SEP 1.3 .36 .00 .00 .00 .00 .00 .00 .00 .00
2	.36 .00 .00 .00
3	.00 .00 .00
5 .00	.00 .00 .00 .00
5 .00	.00 .00 .00 .00
5 .00	.00 .00 .00
6 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00
7 16 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00
8 78 .00	.00
8 78 .00<	.00
9 111	.00
10 175 .00 .00 .00 .00 .00 .00 187 .00 174 11 181 .00 .00 .00 .00 .00 .00 169 .00 175 12 183 .00 .00 .00 .00 .00 .00 .00 133 .00 178 13 185 .00 .00 .00 .00 .00 .00 .00 .00 183 .00 183 14 183 .00 .00 .00 .00 .00 .00 .00 41 .00 183 15 176 .00 .00 .00 .00 .00 .00 .00 41 .00 186 15 176 .00 .00 .00 .00 .00 23 .00 28 .00 190 16 173 .00 .00 .00 .00 .00 .00 .45 .00 192 17 175 .00 .00 .00	
11	.00
12 183 .00 .00 .00 .00 .00 .00 133 .00 178 13 185 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .178 14 183 .00 .00 .00 .00 .00 .00 .00 .00 .183 .00 .00 186 15 176 .00 .00 .00 .00 .00 .00 23 .00 28 .00 190 16 173 .00 .00 .00 .00 .00 .00 .00 .28 .00 190 17 175 .00 .00 .00 .00 .00 .00 189 .00 .00 .00 .97 18 180 .00	
12 183 .00 .00 .00 .00 .00 .00 .00 133 .00 178 13 185 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .183 .00 .00 186 15 176 .00 .00 .00 .00 .00 .00 .00 23 .00 28 .00 190 16 173 .00 .00 .00 .00 .00 .00 .45 .00 192 17 175 .00 <td>.00</td>	.00
13 185 .00 .00 .00 .00 .00 .00 .00 63 .00 183 14 183 .00 .00 .00 .00 .00 .00 .00 41 .00 183 15 176 .00 .00 .00 .00 .00 .00 28 .00 190 16 173 .00 .00 .00 .00 .00 .00 .00 .45 .00 192 17 175 .00	.00
14 183 .00 .00 .00 .00 .00 .00 .00 41 .00 186 15 176 .00 .00 .00 .00 .00 .00 2.3 .00 28 .00 190 16 173 .00 .00 .00 .00 .00 .00 .00 .00 .92 17 175 .00 <td>.00</td>	.00
15 176 .00 .00 .00 .00 .00 .00 2.3 .00 28 .00 190 16 173 .00 .00 .00 .00 .00 176 .00 .45 .00 192 17 175 .00 .00 .00 .00 .00 189 .00 .00 .00 153 18 180 .00 .00 .00 .00 .00 186 .00 .00 .00 .00 9.7 19 176 .00 .00 .00 .00 .00 186 .00 .00 .00 9.7 19 176 .00 .00 .00 .00 .00 186 .00 .00 .00 5.8 20 102 .00 .00 .00 .00 .00 192 .00 .00 .00 5.3 21 9.0 .00 .00 .00 .00 .00 196 .00 .00 .00 2.9 22 1.6 .00 .00 .00 .00 .00 195 .00 .00 .00 14	.00
16 173 .00 .00 .00 .00 .00 176 .00 .45 .00 192 .77 175 .00 .00 .00 .00 .00 .00 189 .00 .00 .00 .00 153 .8 180 .00 .00 .00 .00 .00 .00 186 .00 .00 .00 9.7 19 176 .00 .00 .00 .00 .00 .00 186 .00 .00 .00 .00 5.8 20 102 .00 .00 .00 .00 .00 .00 192 .00 .00 .00 5.3 .21 9.0 .00 .00 .00 .00 .00 196 .00 .00 .00 2.9 .22 1.6 .00 .00 .00 .00 .00 195 .00 .00 .00 .00 144	.00
17 175 .00 <td>.00</td>	.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00
18 180 .00 <td>.00</td>	.00
19 176 .00 .00 .00 .00 .00 186 .00 .00 .00 5.8 20 102 .00 .00 .00 .00 .00 192 .00 .00 .00 5.3 21 9.0 .00 .00 .00 .00 .00 196 .00 .00 .00 2.9 22 1.6 .00 .00 .00 .00 .00 195 .00 .00 .00 1.4	.00
20 102 .00 .00 .00 .00 .00 192 .00 .00 .00 5.3 21 9.0 .00 .00 .00 .00 .00 196 .00 .00 .00 2.9 22 1.6 .00 .00 .00 .00 .00 195 .00 .00 .00 1.4	.00
21 9.0 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00
22 1.6 .00 .00 .00 .00 195 .00 .00 .00 14	.00
22 1.6 .00 .00 .00 .00 .00 195 .00 .00 .00 1.4	.00
	.00
23 .87 .00 .00 .00 .00 193 .00 .00 .00 .25	.12
24 .34 .00 .00 .00 .00 .00 194 .00 .00 26 .00	.11
25 .08 .00 .00 .00 .00 .00 189 .00 .00 114 .00	.00
100 100 100 100 100 100 100 100 100 100	.00
26 .00 .00 .00 .00 .00 128 .00 .00 118 .00	.04
	1.2
12 122 122 122 122 122 122 122 122 122	8.0
	6.9
.00	8.2
31 .0000 .0000 144 .00	
TOTAL 2105.89 .00 .00 .00 .00 .00 2093.36 .91 903.45 915.00 2554.35 2	26.23
MEAN 67.9 .000 .000 .000 .000 69.8 .029 30.1 29.5 82.4	.87
MAX 185 .00 .00 .00 .00 196 .64 187 144 192	8.2
7,111	.00
AC-FT 4180 .00 .00 .00 .00 4150 1.8 1790 1810 5070	

CAL YR 1979 TOTAL 9113.32 MEAN 25.0 MAX 234 MIN .00 AC-FT 18080 WTR YR 1980 TOTAL 8599.19 MEAN 23.5 MAX 196 MIN .00 AC-FT 17060

08437500 PECOS COUNTY WATER IMPROVEMENT DISTRICT NO. 2 CANAL NEAR IMPERIAL, TX

- LOCATION.--Lat 31°16'38", long 102°43'54", Pecos County, Hydrologic Unit 13070001, on left bank about 2.4 mi (3.9 km) west of Imperial and 7.7 mi (12.4 km) downstream from Imperial Reservoir.
- PERIOD OF RECORD.--April 1940 to May 1941, March 1942 to September 1957, and March 1964 to current year. Records since March 1942 are equivalent to earlier records if diversions to Pecos County Water Improvement District No. 3 canal near Imperial (station 08437600) are added to flow past station.
- CAGE.--Water-stage recorder. Wooden weir June 1, 1943, to Feb. 29, 1964, and concrete weir since Mar. 1, 1964. Altitude of gage is about 2,400 ft (732 m), from topographic map. Prior to July 11, 1940, at site 1.5 mi (2.4 km) upstream at different datum. July 12, 1940, to Mar. 23, 1942, at site 2.5 mi (4.0 km) upstream at datum 3.36 ft (1.024 m) higher. Mar. 24, 1942, to May 31, 1943, at site 0.5 mi (0.8 km) upstream at datum 0.70 ft (0.213 m) higher.
- REMARKS.--Records good. Local runoff is deleted from daily discharge record. Water is diverted from Imperial Reservoir (on right bank of Pecos River) for irrigation in the vicinity of Imperial, and at times includes water diverted from the Pecos River through Cut Around Canal. The total flow at this station does not include 583 acre-ft (719,000 m³) diverted from canal 75 ft (23 m) upstream, or water diverted into Pecos County Improvement District No. 3 canal (see station 08437600) 0.6 mi (1.0 km) upstream.
- AVERAGE DISCHARGE.--31 years (water years 1943-57, 1965-80), 12.4 ft³/s (0.351 m³/s), 8,980 acre-ft/yr (11.1
- EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 144 ft³/s (4.08 m³/s) July 27, 28, 31, Aug. 1, 1945; no flow at times each year.

		DISCHA	ARGE, IN	CUBIC I	FEET PER S	SECOND, WA MEAN VALUE	TER YEAR S	OCTOBER 1	979 TO SE	PTEMBER 1	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	37 34 33 32 32	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .24 9.0	17	1.4 40 42 36 35	.00 .00 .00 .00 7.3	65 66 46 21 21	.00 .00 .00
6 7 8 9	33 36 34 31 15	20 21 20 18 18	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	16 10 .00 .00	.35	38 43 37 3.5 .02	45 62 60 46 44	22 11 .00 2.4 1.0	.00 .00 41 61 41
11 12 13 14 15	.64 .02 .00 .00	18 17 8.2 6.7 9.7	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .07	.00 .00 .00	.00	.00 .00 .00	43 43 42 37 20	.81 .00 .00	1.1 .00 .00 .00
16 17 18 19 20	.00 .00 .00	.93 .01 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	40 31 40 48 43	.00 .00 .00	.00	6.2 27 24 23 21	18 19 22 21 26	.00 .00 .00	.00 .00 .00
21 22 23 24 25	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	37 29 29 30 35	.00 .00 .00	.00	27 38 37 29 18	4.4 .00 .00 .00	.00 .00 .00	.00 .00 .00
26 27 28 29 30 31	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	41 40 28 26 26 4.5	.00 .00 20 16	.00 .00 .00 .00	3.7 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	1.1 4.8 3.6 2.9 2.5
TOTAL MEAN MAX MIN AC-FT	317.66 10.2 37 .00 630	179.54 5.98 22 .00 356	.00 .000 .00 .00	.00 .000 .00	.00 .000 .00	560.57 18.1 48 .00 1110	107.24 3.57 20 .00 213	165.35 5.33 25 .00 328	551.82 18.4 43 .00 1090	625.70 20.2 62 .00 1240	256.21 8.26 66 .00 508	159.00 5.30 61 .00 315
CAL YR WTR YR		TAL 3837.14 TAL 2923.09		10.5 7.99	MAX 82 MAX 66	MIN .00 MIN .00	AC-FT AC-FT					

517

08437600 PECOS COUNTY WATER IMPROVEMENT DISTRICT NO. 3 CANAL NEAR IMPERIAL, TX

LOCATION.--Lat 31°16'51", long 102°44'26", Pecos County, Hydrologic Unit 13070001, on left bank about 220 ft (67 m) upstream from bridge on Farm Road 11, 0.3 mi (0.5 km) downstream from headgate (Pecos No. 2 canal), and 2.9 mi (4.7 km) west of Imperial.

PERIOD OF RECORD. -- March 1940 to September 1941, March 1942 to September 1957, and March 1964 to current year.

GAGE.--Water-stage recorder. Concrete weir since Mar. 7, 1944. Altitude of gage is 2,390 ft (728 m), from topographic map. Prior to Jan. 10, 1941, at site 350 ft (107 m) downstream at datum 6.79 ft (2.070 m) lower. Jan. 10, 1941, to Mar. 29, 1942, at site 200 ft (61 m) downstream at datum 3.65 ft (1.113 m) lower.

REMARKS.--Records good. Local runoff is deleted from daily discharge record. Water is diverted from Imperial Reservoir (on right bank of Pecos River), 7.6 mi (12.2 km) upstream, for irrigtion in the vicinity of Imperial, and at times includes water diverted from the Pecos River by Cut Around Canal.

AVERAGE DISCHARGE. -- 32 years (water years 1941, 1943-57, 1965-80), 9.35 ft 3/s (0.265 m3/s), 6,770 acre-ft/yr $(8.35 \text{ hm}^3/\text{yr})$.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 175 ft³/s (4.96 m³/s) Aug. 11, 1940; no flow at times each year.

DIGGUARGE IN CURTO FEET DED CECOND MATER VEAR OCTOBER 1070 TO CERTEMBER 1000

		DISC	HARGE, IN	CUBIC FE		ECOND, WA EAN VALUE		OCTOBER 1	979 TO SE	PTEMBER 19	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	15 13 13 13	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .75 17 17	.00 .00 .00	.00 16 17 16 17	20 19 21 26 26	.00 .00 1.6 18	.00 .00 .00
6 7 8 9	15 17 18 21 24	.00 .00 .12 .15	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	16 18 14 15 17	.00 .00 .00 2.6	17 18 13 .31	9.9 .00 .00 .00	.00 .00 .00	.00 .00 10 .61 .67
11 12 13 14 15	25 8.7 3.0 2.9 2.8	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.20 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 3.5 21	3.8 2.0 .02 .00	.05 .00 .00
16 17 18 19 20	2.9 3.0 1.8 .61	.00 .00 2.0 .35	.00 .00 .00	.00 .00 .00	.00 .00 .00	18 18 5.9 .00	.00 .00 .00	.26 .08 .00 .00	.00 .00 .00	20 20 20 19	.00 .00 .00	.00 .00 .00
21 22 23 24 25	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
26 27 28 29 30 31	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .12 14 16 11	.00 .00 .70 .06 .00	4.2 15 20 20 20	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00
TOTAL MEAN MAX MIN AC-FT	212.71 6.86 25 .00 422	2.63 .088 2.0 .00 5.2	.00 .000 .00	.00 .000 .00	.00 .000 .00	65.00 2.10 22 .00 129	187.07 6.24 18 .00 371	3.81 .12 2.6 .00 7.6	193.51 6.45 20 .00 384	225.44 7.27 26 .00 447	61.42 1.98 19 .00 122	11.33 .38 10 .00 22

CAL YR 1979 TOTAL 911.44 WTR YR 1980 TOTAL 962.92 MEAN 2.50 MEAN 2.63 MAX 25 MAX 26 AC-FT 1810 AC-FT 1910 MIN .00 MIN .00

08437700 WARD COUNTY WATER IMPROVEMENT DISTRICT NO. 2 CANAL NEAR GRANDFALLS, TX

LOCATION.--Lat 31°22'13", long 103°00'24", Ward County, Hydrologic Unit 13070001, on left bank 1,550 ft (477 m) upstream from Farm Road 1776, 2.3 mi (3.7 km) downstream from headgate, and 9.5 mi (15.3 km) west of Grandfalls.

PERIOD OF RECORD. -- August 1939 to September 1941, November 1941 to September 1957, and March 1964 to current year.

GAGE.--Water-stage recorder. Concrete weir since Feb. 17, 1947. Altitude of gage is 2,460 ft (750 m), from topographic map. Prior to Jan. 10, 1941, at site 1.75 mi (2.82 km) downstream at different datum. Jan 11, 1941, to Feb. 16, 1947, at site 50 ft (15 m) downstream at present datum.

REMARKS.--Records good. Local runoff is deleted from the discharge record. Water is diverted from the left bank of the Pecos River for irrigation in the vicinity of Grandfalls. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--32 years (water years 1940, 1943-57, 1965-80), 19.5 ft³/s (0.552 m³/s), 14,130 acre-ft/yr (17.4 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 198 ft³/s (5.61 m³/s) Apr. 9, 1947; no flow at times each year.

		DISC	HARGE, IN	CUBIC FE		COND, WAT AN VALUES	ER YEAR C	CTOBER 1	979 TO SEE	TEMBER 19	980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	34 33 42 50 50	28 27 26 28 36	.00 .00 .00	.14 .12 .09 .09	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	4.4 4.3 4.4 5.9	1.5 1.6 1.7 1.7	4.8 4.9 5.0 7.8	19 19 20 20 22
6 7 8 9	80 100 92 85 19	30 29 22 .82 .41	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	46 42 43 52 29	1.7 2.4 2.7 3.1 3.5	60 63 58 16 4.5	24 24 24 22 22
11 12 13 14 15	8.5 9.1 9.1 9.1 8.5	.32 .24 .20 .17	.04 .09 .19 .12	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	9.1 7.9 5.1 2.2 .86	3.8 8.7 5.6 4.9 5.8	2.4 3.0 3.5 3.4 3.0	23 25 34 70 63
16 17 18 19 20	6.3 4.8 6.8 8.5 8.5	.14 .14 .14 .14	.09 .09 .09 .10	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	2.8 3.7 3.6 3.6 3.9	6.3 6.4 6.4 6.7	2.6 2.1 2.3 1.9 1.6	53 48 44 41 37
21 22 23 24 25	39 54 53 50 46	.09 .07 .04 .04	.09 .09 .13 .09	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	2.1 2.3 2.3 2.3 2.4	13 20 38 39 11	1.9 2.2 2.5 2.5 2.4	32 30 41 61 39
26 27 28 29 30 31	42 39 36 34 32 30	.04 .04 .03 .00	.04 .04 .05 .06 .09	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	8.7 19 22 18 9.4 5.6	2.2 2.3 2.4 2.3 1.7	3.9 3.9 4.3 4.7 5.0 4.8	3.4 4.9 6.7 9.1 11	59 109 113 112 112
TOTAL MEAN MAX MIN AC-FT	1119.2 36.1 100 4.8 2220	229.39 7.65 36 .00 455	1.89 .061 .19 .00 3.7	.49 .016 .14 .00	.00 .000 .00	.00 .000 .00	.00 .000 .00	82.70 2.67 22 .00 164	312.06 10.4 52 .86 619	234.8 7.57 39 1.5 466	371.4 12.0 63 1.6 737	1362 45.4 113 19 2700

CAL YR 1979 TOTAL 4529.34 MEAN 12.4 MAX 100 MIN .00 AC-FT 8980 WTR YR 1980 TOTAL 3713.93 MEAN 10.1 MAX 113 MIN .00 AC-FT 7370

519 08446500 PECOS RIVER NEAR GIRVIN, TX

LOCATION.--Lat 31°06'47", long 102°25'02", Pecos County, Hydrologic Unit 13070008, on right bank 2.1 mi (3.4 km) upstream from Comanche Creek, 3.8 mi (6.1 km) northwest of Cirvin, and 7.2 mi (11.6 km) upstream from bridge on U.S. Highway 67. Water-quality sampling site on left bank 7.2 mi (11.6 km) downstream.

DRAINAGE AREA.--29,560 mi² (76,560 km²), approximately for contributing area of supplementary gage 7.2 mi (11.6 km) downstream.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1939 to current year.

GAGE.--Water-stage recorder with concrete control and measuring flume. Datum of gage not determined. Supplementary water-stage recorder, used as regular gage prior to July 17, 1951, is now used only for peaks exceeding about 400 ft³/s (11.3 m³/s), 7.2 mi (11.6 km) downstream at datum 2,269.65 ft (691.789 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records fair. Flow is largely regulated by Red Bluff Reservoir (station 08410000). Numerous diversions above station for irrigation.

AVERAGE DISCHARGE.--41 years, 87.9 ft3/s (2.489 m3/s), 63,680 acre-ft/yr (78.5 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 20,000 ft 3 /s (566 m 3 /s) Oct. 5, 1941, gage height, 20.49 ft (6.245 m), at supplementary gage; minimum daily, 2.2 ft 3 /s (0.062 m 3 /s) July 18, 1964. Maximum stage since at least 1932, that of Oct. 5, 1941.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $349 \text{ ft}^3/\text{s}$ (9.88 m³/s) Sept. 11 at 1500 hours, gage height, 3.75 ft (1.143 m); minimum daily, 3.2 ft³/s (0.091 m³/s) Aug. 8.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

					ME	AN VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	6.9 6.8 6.6 6.2 5.9	10 10 11 9.5 8.9	30 31 31 31 30	35 35 35 35 34	34 35 36 36 36	30 28 28 28 28	23 23 22 22 21	12 11 8.3 45 38	8.4 11 11 -10 10	11 10 9.6 8.5 8.4	11 7.5 4.5 3.9 3.6	15 16 15 15
6 7 8 9	6.1 6.0 7.0 7.6 6.8	10 11 11 10 12	30 30 31 30 30	34 34 34 34 34	35 34 34 34 34	28 28 28 28 28	21 21 20 20 20	22 13 12 15 13	9.7 8.6 8.4 12 27	7.5 7.1 6.5 6.6 6.1	3.6 3.6 3.2 3.6 3.6	12 12 17 20 92
11 12 13 14 15	6.2 6.5 10 21 17	12 12 12 12 12	29 31 35 39 38	34 34 34 33 34	34 34 34 34 34	27 27 27 27 27 27	20 19 19 20 20	12 10 9.2 9.2 9.6	83 118 168 175 91	6.3 6.0 5.8 5.3 5.4	3.9 12 36 23 25	278 124 32 17 12
16 17 18 19 20	16 14 13 11	28 33 32 31 30	37 36 36 36 36 34	34 34 34 33 33	34 33 33 33 33	26 26 26 25 25	21 20 20 27 67	8.7 9.4 12 13 16	41 28 23 17 15	4.9 4.5 4.2 4.2 3.8	14 12 12 7.2 7.0	10 10 9.8 9.5
21 22 23 24 25	10 11 10 9.8 9.1	30 32 32 30 29	34 34 34 35 38	34 35 35 34 34	33 33 33 32 32	25 24 24 24 24	60 43 31 21 18	18 21 23 27 30	14 11 12 37 31	3.3 3.4 4.2 4.0 4.3	6.3 6.1 104 75 50	10 8.9 8.8 35 23
26 27 28 29 30 31	8.6 8.4 8.0 7.6	29 29 29 28 30	39 38 37 37 36 36	34 33 33 33 34 34	32 31 31 31	24 24 24 24 23 23	17 16 15 14 13	33 26 20 15 16 12	21 18 16 14 12	4.3 3.9 3.9 3.3 3.6 3.6	37 29 23 20 17 16	38 82 78 65 255
TOTAL MEAN MAX MIN AC-FT	295.1 9.52 21 5.9 585	614.4 20.5 33 8.9 1220	1053 34.0 39 29 2090	1054 34.0 35 33 2090	972 33.5 36 31 1930	808 26.1 30 23 1600	714 23.8 67 13 1420	539.4 17.4 45 8.3 1070	1061.1 35.4 175 8.4 2100	173.5 5.60 11 3.3 344	583.6 18.8 104 3.2 1160	1345.0 44.8 278 8.8 2670

CAL YR 1979 TOTAL 8773.2 WTR YR 1980 TOTAL 9213.1 MEAN 24.0 MAX MIN 4.0 MIN 3.2 AC-FT 17400 AC-FT 18270 MAX 278 MEAN 25.2

SPF-

08446500 PECOS RIVER NEAR GIRVIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1939 to June 1941, October 1946 to September 1947, October 1953 to current year. Pesticide analyses: October 1968 to September 1974.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: October 1939 to June 1941, October 1946 to September 1947, October 1953 to current year.
WATER TEMPERATURES: October 1953 to January 1959, March 1964 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equation developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 38,900 micromhos Aug. 6, 1965; minimum daily, 790 micromhos Apr. 26, 1957.
WATER TEMPERATURES (1953-59, 1964-68, 1970-80): Maximum daily, 35.0°C July 26, Aug. 18, 27, 1978; minimum daily, 3.0°C Feb. 3, 4, 1956, Jan. 9, 1979.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 26,200 micromhos Apr. 26; minimum daily, 5,400 micromhos Sept. 15.
WATER TEMPERATURES: Maximum daily, 34.0°C July 25, 28, 29; minimum daily, 6.0°C Jan. 26.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT 25	1335	12	21900	8.2	17.0	4500	4500	900	550	4000
DEC 04	1310	30	18000		9.0	3200	3200	730	340	3200
JAN 14	1215	35	20600		13.0	2900	2800	620	330	3600
FEB 29	1245	31	21400	8.0	18.0	4100	3900	820	490	3700
MAR 31	1745	23	23400		21.0	4300	4200	870	520	4100
APR 30	0930	13	26000		16.0	4700	4600	930	570	4800
MAY 29	1100	12	14000		27.0	2700	2700	630	280	2300
JUL 09	1210	3.0	21200		26.0	4000	3900	860	450	3800
30	1245	255	12700	12.5	21.0	2500	2400	560	270	2100
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	PHOS- PHORUS, TOTAL (MG/L AS P)
OCT 25	26	65	49	0	3800	6400	1.8		15700	.020
DEC 04	25	56	72	0	3100	5100	1.6	6.8	12600	.050
JAN 14	29	49	170	0	3100	5400	1.2	2.2	13200	.050
FEB 29	25	50	170	0	3500	6200	2.3	.3	14800	.080
MAR										
31 APR	27	60	120	0	2500	7600	2.6	.7	15700	.060
30 MAY	31	60	62	0	3900	8200	1.9	1.6	18500	.140
29 JUL	19	57	54	0	2400	3900	1.1	13	9610	-
09	26	70	64	0	3700	6000	2.3	1.5	14900	24
SEP 30	18	44	120	0	2000	3800	1.1	2.1	8940	.010

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

33000	монтн	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
DEC. 1979 1053 18100 12600 35700 5100 14600 3000 8590 JAN. 1980 1054 20400 14400 40900 5900 16800 3400 9730 FEB. 1980 972 21300 15100 39600 6200 16300 3600 9390 MAR. 1980 808 22500 16000 34900 6600 14400 3800 8230 APR. 1980 714 24700 17700 34200 7400 14200 4200 8000 MAY 1980 539.4 18400 12900 18800 5300 7710 3100 4500 JUNE 1980 1061.1 16800 11600 33300 4700 13600 2800 8040 JULY 1980 173.5 21500 15200 7130 6300 2940 3600 1690 AUG. 1980 583.6 22800 16200 25500 6700 10600 3800 6020 SEPT 1980 1345.0 11400 7690 27900 3100 11200 1900 6880	OCT.	1979	295.1	22500	16000	12800	6600	5280	3800	3010	*
JAN. 1980 1054 20400 14400 40900 5900 16800 3400 9730 FEB. 1980 972 21300 15100 39600 6200 16300 3600 9390 MAR. 1980 808 22500 16000 34900 6600 14400 3800 8230 APR. 1980 714 24700 17700 34200 7400 14200 4200 8000 MAY 1980 539.4 18400 12900 18800 5300 7710 3100 4500 JUNE 1980 1061.1 16800 11600 33300 4700 13600 2800 8040 JULY 1980 173.5 21500 15200 7130 6300 2940 3600 1690 AUC. 1980 583.6 22800 16200 25500 6700 10600 3800 6020 SEPT 1980 1345.0 11400	NOV.	1979	614.4	21400	15100	25100	6200	10300	3600	5940	*
FEB. 1980 972 21300 15100 39600 6200 16300 3600 9390 MAR. 1980 808 22500 16000 34900 6600 14400 3800 8230 APR. 1980 714 24700 17700 34200 7400 14200 4200 8000 MAY 1980 539.4 18400 12900 18800 5300 7710 3100 4500 JUNE 1980 1061.1 16800 11600 33300 4700 13600 2800 8040 JULY 1980 173.5 21500 15200 7130 6300 2940 3600 1690 AUG. 1980 583.6 22800 16200 25500 6700 10600 3800 6020 SEPT 1980 1345.0 11400 7690 27900 3100 11200 1900 6880	DEC.	1979	1053	18100	12600	35700	5100	14600	3000	8590	*
MAR. 1980 808 22500 16000 34900 6600 14400 3800 8230 APR. 1980 714 24700 17700 34200 7400 14200 4200 8000 MAY 1980 539.4 18400 12900 18800 5300 7710 3100 4500 JUNE 1980 1061.1 16800 11600 33300 4700 13600 2800 8040 JULY 1980 173.5 21500 15200 7130 6300 2940 3600 1690 AUG. 1980 583.6 22800 16200 25500 6700 10600 3800 6020 SEPT 1980 1345.0 11400 7690 27900 3100 11200 1900 6880 TOTAL 9213.1 ** ** 336000 ** 138000 ** 80000 **	JAN.	1980	1054	20400	14400	40900	5900	16800	3400	9730	*
APR. 1980 714 24700 17700 34200 7400 14200 4200 8000 MAY 1980 539.4 18400 12900 18800 5300 7710 3100 4500 JUNE 1980 1061.1 16800 11600 33300 4700 13600 2800 8040 JULY 1980 173.5 21500 15200 7130 6300 2940 3600 1690 AUG. 1980 583.6 22800 16200 25500 6700 10600 3800 6020 SEPT 1980 1345.0 11400 7690 27900 3100 11200 1900 6880 TOTAL 9213.1 ** ** 336000 ** 138000 ** 80000 **	FEB.	1980	972	21300	15100	39600	6200	16300	3600	9390	*
MAY 1980 539.4 18400 12900 18800 5300 7710 3100 4500 JUNE 1980 1061.1 16800 11600 33300 4700 13600 2800 8040 JULY 1980 173.5 21500 15200 7130 6300 2940 3600 1690 AUG. 1980 583.6 22800 16200 25500 6700 10600 3800 6020 SEPT 1980 1345.0 11400 7690 27900 3100 11200 1900 6880 TOTAL 9213.1 ** ** 336000 ** 138000 ** 80000 **	MAR.	1980	808	22500	16000	34900	6600	14400	3800	8230	*
JUNE 1980 1061.1 16800 11600 33300 4700 13600 2800 8040 JULY 1980 173.5 21500 15200 7130 6300 2940 3600 1690 AUC. 1980 583.6 22800 16200 25500 6700 10600 3800 6020 SEPT 1980 1345.0 11400 7690 27900 3100 11200 1900 6880 TOTAL 9213.1 ** ** 336000 ** 138000 ** 80000 **	APR.	1980	714	24700	17700	34200	7400	14200	4200	8000	*
JULY 1980 173.5 21500 15200 7130 6300 2940 3600 1690 AUG. 1980 583.6 22800 16200 25500 6700 10600 3800 6020 SEPT 1980 1345.0 11400 7690 27900 3100 11200 1900 6880 TOTAL 9213.1 ** ** 336000 ** 138000 ** 80000	MAY	1980	539.4	18400	12900	18800	5300	7710	3100	4500	*
AUG. 1980 583.6 22800 16200 25500 6700 10600 3800 6020 SEPT 1980 1345.0 11400 7690 27900 3100 11200 1900 6880 TOTAL 9213.1 ** ** 336000 ** 138000 ** 80000 **	JUNE	1980	1061.1	16800	11600	33300	4700	13600	2800	8040	*
SEPT 1980 1345.0 11400 7690 27900 3100 11200 1900 6880 TOTAL 9213.1 ** ** 336000 ** 138000 ** 80000	JULY	1980	173.5	21500	15200	7130	6300	2940	3600	1690	*
TOTAL 9213.1 ** ** 336000 ** 138000 ** 80000	AUG.	1980	583.6	22800	16200	25500	6700	10600	3800	6020	*
22,37	SEPT	1980	1345.0	11400	7690	27900	3100	11200	1900	6880	*
WTD. AVG. 25 19200 13500 ** 5500 ** 3200 **	TOTAL		9213.1	**	**	336000	**	138000	**	80000	**
	WTD. AV	G.	25	19200	13500	**	5500	**	3200	**	**

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980 ONCE-DAILY DAY MAR SEP OCT NOV DEC JAN FEB APR MAY JUN JUL AUG 23900 25100 25900 20600 4 5 13500 24800 22800 23100 21200 8 9 20800 18200 20100 21300 21900 24400 20600 14700 24500 17700 21200 12 24700 16600 17800 17900 18000 14 15 23600 23200 20700 21200 22300 24300 19800 21800 22800 5460 17700 17600 17600 17 18 19 23700 22500 24300 16500 17300 6010 22900 22900 20800 21300 22600 24300 15400 17300 22400 22100 8110 21300 22000 21800 22 23 24 25 20200 17800 21400 15200 17500 21800 18000 19300 20900 21600 23100 25700 15200 18300 22600 27 21600 21000 18200 20600 23300 26100 15100 19000 13800 21500 21500 18200 20800 23500 25900 13900 19400 23600 20700 21400 23700 23100 ---MEAN

....

523

08447020 INDEPENDENCE CREEK NEAR SHEFFIELD, TX

LOCATION.--Lat 30°27'07", long 101°43'58", Terrell County, Hydrologic Unit 13070010, on left bank 0.5 mi (0.8 km) downstream from Joe Chandler Ranch Headquarters, 1.0 mi (1.6 km) upstream from mouth, 6 mi (10 km) downstream from bridge on Farm Road 1217, and 17 mi (27 km) southeast of Sheffield.

DRAINAGE AREA . - - 763 mi2 (1,976 km2).

PERIOD OF RECORD .-- January 1974 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,883 ft (574 m) National Geodetic Vertical Datum of 1929, by topographic division plane table survey.

REMARKS.--Records good. The Chandler Estate and the Roden Ranch have permits to divert 243 acre-ft (300,000 m³) and 530 acre-ft (653,000 m³) annually, respectively. National Weather Service rain gage and gage-height satellite telemeter at station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 6 years, 31.4 ft3/s (0.889 m3/s), 22,750 acre-ft/yr (28.1 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $78,100 \text{ ft}^3/\text{s}$ (2,210 m³/s) Sept. 20, 1974, gage height, 16.74 ft (5.102 m), from rating curve extended above 130 ft $^3/\text{s}$ (3.68 m³/s) on basis of slope-area measurement of peak flow; minimum, 13 ft $^3/\text{s}$ (0.37 m³/s) July 26, 1974, and Nov. 16, 1977.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1900, about 22 ft (6.7 m) June 28, 1954, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 80 ft 3 /s (2.27 m 3 /s) Aug. 11 at 1645 hours, gage height, 2.44 ft (0.744 m), no peak above base of 700 ft 3 /s (19.8 m 3 /s); minimum daily, 16 ft 3 /s (0.45 m 3 /s) July 3, 13.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

					ME	AN VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	24 24 23 23 24	23 22 22 23 23	22 22 22 22 22 22	22 22 22 22 22 22	20 20 20 20 20	21 21 21 21 21	22 22 20 22 23	20 20 22 24 21	19 19 18 19	18 18 16 17	19 18 18 19	22 22 21 21 20
6 7 8 9	23 23 25 25 24	23 23 23 23 23 23	21 21 23 23 24	22 22 22 22 22 22	20 21 22 22 22 22	21 22 22 22 22 22	22 23 22 23 22	21 25 21 19	18 18 18 20 20	18 18 18 18	20 21 21 20 20	20 20 20 20 21
11 12 13 14 15	24 23 22 23 23	23 23 23 23 23 23	24 23 23 23 23 22	22 22 22 22 22 22	22 22 22 21 20	23 22 21 21 21	21 21 22 22 21	19 20 19 20 23	18 19 18 18	17 17 16 18	47 44 30 27 26	21 20 21 19 21
16 17 18 19 20	23 23 24 23 23	23 23 23 23 24	22 22 22 22 22 22	22 22 22 22 22 22	20 20 20 20 20	21 21 21 21 21 20	21 21 21 21 21	19 19 19 20 19	18 18 17 18	18 18 20 19	24 29 25 23 23	18 18 18 18
21 22 23 24 25	23 24 23 24 23	23 23 23 23 22	22 22 22 22 22 22	22 23 22 21 21	20 20 20 20 21	21 22 22 22 22 22	22 21 21 20 19	19 19 18 18	18 18 19 18	19 18 19 18 17	23 23 23 23 23 23	18 18 19 19
26 27 28 29 30 31	23 23 23 23 22 22	22 22 22 22 22 22	22 22 22 22 22 22 22	21 20 20 20 20 20 20	21 20 21 21	22 23 23 23 23 23 23	19 20 20 19 20	18 18 19 19 22 20	17 17 17 17 18	18 20 23 20 20	23 22 22 20 21 21	31 34 32 30 28
TOTAL MEAN MAX MIN AC-FT	722 23.3 25 22 1430	683 22.8 24 22 1350	689 22.2 24 21 1370	670 21.6 23 20 1330	598 20.6 22 20 1190	672 21.7 23 20 1330	634 21.1 23 19 1260	617 19.9 25 18 1220	544 18.1 20 17 1080	567 8.3 23 16	737 23.8 47 18 1460	652 21.7 34 18 1290

CAL YR 1979 TOTAL 10197 MEAN 27.9 MAX 337 MIN 19 AC-FT 20230 WTR YR 1980 TOTAL 7785 MEAN 21.3 MAX 47 MIN 16 AC-FT 15440

08447410 PECOS RIVER NEAR LANCTRY, TX (National stream-quality accounting network)

LOCATION.--Lat 29°48'10", long 101°26'45", Val Verde County, Hydrologic Unit 13040212, at gaging station 7.4 mi (12.1 km) east of Langtry, 15.0 mi (24.1 km) upstream from confluence with the Rio Grande, and 638.2 mi (1,026.9 km) downstream from the American Dam at El Paso.

DRAINAGE AREA. -- 35,179 mi 2 (91,114 km2).

PERIOD OF RECORD.--Chemical analyses: October 1954 to current year. Chemical and biochemical analyses: October 1974 to current year.

REMARKS.--Records of specific conductance and discharge for water year 1980 are given in International Boundary and Water Commission Water Bulletins Nos. 49 and 50.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
OCT 10	1012	148	2150	8.0	21.5	2.5	9.4	109	1.6	190	23
NOV 14	1010	160	2200	7.5	14.0	.90	9.5	95	.9	52	21
DEC 12	0950	182	2117	7.4	15.0	3.6	9.5	98	.8	13	29
JAN 09	0940	185	3640	7.3	11.0	.50	10.1	95	2.1	13	22
FEB 06	0950	182	3760	7.4	12.0	.90	11.0	107	.8	15	12
MAR 12	1010	169	3980	7.4	20.0	1.6	10.4	121	.5	15	12
APR 09	1005	142	4130	7.8	21.0	1.2	11.0	126	1.2	24	21
MAY 07	0915	151	4200	7.7	25.0	2.4	10.8	140	1.8	26	18
JUN 11	1040	115	3020	7.8	28.0	.80	10.3	136	2.0	28	22
JUL 23	0930	97	2700	7.4	28.0	1.0	10.0	133	1.6	24	50
AUG 13	1000	643	665	8.2	25.0	21	8.2	102	2.4	110	100
SEP 10	1025	139	2580	7.7	2.	3.0	7.8	103	44	23	21
DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT 10	470	340	110	48	290	5.8	6.6	160	0	260	460
NOV 14	470	310	100	53	270	5.4	5.7	190	0	250	430
DEC 12	470	300	110	48	300	6.0	7.6	210	0	270	500
JAN 09	700										
FEB	720	540	160	79	500	8.1	3.7	220	0	450	790
06	720	540 640	160 170	79 79	500 500	8.1 7.9	3.7 8.1	220 140	0	450 500	790 890
MAR 12											
MAR 12 APR	750 800	640	170 180	79	500	7.9 8.8	8.1 9.4	140	0	500	890
MAR 12	750	640 660	170	79 84	500 570	7.9	8.1	140 170	0	500 570	890 990
MAR 12 APR 09 MAY 07 JUN	750 800 820	640 660 690	170 180 180	79 84 89	500 570 550	7.9 8.8 8.4	8.1 9.4 9.5	140 170 150	0 0	500 570 560	890 990 1000
MAR 12 APR 09 MAY 07 JUN 11 JUL	750 800 820 700 620	640 660 690 590 510	170 180 180 160	79 84 89 73 66	500 570 550 500 460	7.9 8.8 8.4 8.2 8.0	8.1 9.4 9.5 9.1 8.6	140 170 150 150 140	0 0 0	500 570 560 470 400	890 990 1000 840 770
MAR 12 APR 09 MAY 07 JUN 11	750 800 820 700	640 660 690 590	170 180 180 160	79 84 89 73	500 570 550 500	7.9 8.8 8.4 8.2	8.1 9.4 9.5 9.1	140 170 150	0 0 0	500 570 560 470	890 990 1000 840

RIO GRANDE BASIN 525 08447410 PECOS RIVER NEAR LANGTRY, TX--Continued

DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)
OCT 10	.8	17	1280	1270	.98	.020	1.0	22	.030		2.4
NOV 14	.7	16	1230	1230			1.5	1.6	.030	.030	.36
DEC 12	.7	14	1400	1360			1.4	1.3	.010	.010	.81
JAN 09	.8	14	2160	2110	44	12.2	1.3	1.3	.050	.050	.56
FEB 06	.7	15	2320	2240			.82	.78	.040	.040	.44
MAR 12	.8	11	2560	2500			.87	.85	.040	.040	.37
APR									.100		
09 MAY	.9	12	2530	2480			,69	.49		.080	.36
07 JUN	.7		2220	1000	125		.61	.62	.060	.070	.77
JUL JUL	.9	11	2020	1920		-	.28	.28	.120	.080	2.0
23 AUG	.9	8.1	1780	1650			.14	.14	.040	-010	.82
13 SEP	.2	8.3	401	382			1.8	1.8	.080	.020	1.4
10	.8	12	1490	1410			.78	.75	.100	.050	.44
DATE	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 10		2.4		000	010		2.4	2	25	**	20
NOV			.41	.000	.010		3.4	.2	35	14	39
DEC DEC	.30	.39	.33	.010	.010	13	-		6	2.6	48
12 JAN	.54	.82	.55	.050	.000	3.8			9	4.4	56
09 FEB	.42	.61	.47	.000	.010	2.3	25	45	6	3.0	89
06 MAR	.38	.48	.42	.000	.000		5.1	.3	17	8.4	48
12 APR	.39	.41	.43	.010	.000	1.6			14	6.4	71
09 MAY	.37	.46	.45	.020	.010	3.3			14	5.4	92
07 JUN	.47	.83	.54	.010	.010	3.1	122		15	6.1	82
11	.40	2.1	.48	.010	.010		8.0	1.3	9	2.8	97
JUL 23	.48	.86	.49	.010	.010	2.7			16	4.2	99
AUG 13	1.3	1.5	1.3	.060	.020	- 22	12	3.6	41	71	99
SEP 10	.41	.54	.46	.000	.020	2.3			20	7.5	96
DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BARIUM, SUS- PENDED RECOV- ERABLE (UG/L AS BA)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
OCT 10	1012	1	0	1	200	0	300	0	0	0	0
NOV 14	1010	44									
FEB											
06 MAR	0950	1	0	1	100	0	100	0	0	0	10
12 JUN	1010			77	100						
JUL JUL	1040	1	0	1	100	0	100	0	0	0	0
23 AUG	0930					(55)		**		2.5	
13 SEP	1000	1	0	1	100	10	90	0	55	<1	0
10	1025		2.5	1.0	144	1,25				44	

08447410 PECOS RIVER NEAR LANGTRY, TX--Continued

NOT DA	F F	CHRO- fIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVE (UG/L AS CR	D ERA	ALT,	COBALT, SUS- PENDED RECOV- ERABLE (UG/L AS CO)	COBA DIS SOLV (UC	ALT, S- VED	COPPE TOTA RECO ERAB (UG/ AS C	R, S L P V- R LE E L (PPER, US- ENDED ECOV- RABLE UG/L S CU)	COPPI DIS- SOLV (UG,	ER, C - H VED H /L	IRON, FOTAL RECOV- ERABLE (UG/L AS FE)	PEI REG ERA (UC	ON, US- NDED COV- ABLE G/L FE)	IRON DIS SOL' (UG AS	S- VED /L	
Table Tabl	10)	0		0	0	0		0		2	2		0	180				10
MARCINE 10	14			-	-							77			27				
12 12 13 14 15 15 15 15 15 15 15	06		10	10	0	0	0		0		1	1		0	80		60		20
11	12	2		-	-														
Teach Teac	11		0	13	0	0	0		1		2	2		0	110		90		20
	23	3		-	2	44	42		25		4.4	-2					44		
LEAD	13	3	0		0	0			<3		5	3		2	570		540		30
LEAD				-	-		- 55					27					-		5-
10 0 0 0 8 2 6 .2 .0 .2	DA	T R E	OTAL ECOV- RABLE UG/L	PENDEI RECOV- ERABLI (UG/L	SOI (UC	S- VED	NESE, TOTAL RECOV- ERABLE (UG/L	NES SU PEN REC (UG	E, IS- IDED OV.	DIS- SOLVI (UG/I	TO EL	OTAL ECOV- RABLE UG/L	PENI RECO ERAF (UG/	DED ME DV- BLE S	DIS- OLVED UG/L	REC ERA (UC	CEL, TAL COV- ABLE G/L	PENI RECO ERAI (UG)	S- DED DV- BLE /L
14.			0		0	0	8		2		6	.2		.0	.2				
06 1 1 0 0 0 0 10 .1 .0 .2 2 2 2 2 2 2 11 17 17 17 1 1 0 0 10 0 10	14																		
12	06		1	7	1	0	0		0	13	10	.1		.0	.2		2		2
11	12			-	-					4	4								44
23	11		1		1	0	10		0		10	.1		.0	.2		0		0
13 3	23		44	-		44	12								40				
NICKEL SELE- NIUM SELE SILVER SUS SULVER SUS	13		3	13	1	2	30		30		4	.2		.1	.1		2		2
NICKEL SELE SUS NIUM				-						10									
10		DATE	SOL (UG	VED T	NIUM, COTAL (UG/L	NIUN SUS PENI TOTA (UG)	M, SE S- NI DED I AL SC /L (U	UM, DIS- DLVED G/L	TOTA RECO ERAL (UG)	ER, AL OV- BLE /L	SUS- PENDEI RECOV- ERABLI (UG/L	SIL D SO (U	IS- LVED G/L	TOTAL RECOV ERABL (UG/L	PE RE ER (U	US- NDED COV- ABLE G/L	SOL' (UC	S- VED /L	
NOV					1		0	1		0	,	1	0		0	0		10	
FEB		NOV		5											_				
MAR		FEB		ò	1		0	1			()	0	8	0				
JUN 11		MAR						- 12						_	-				
Date Dec Total		JUN		0	0		0	0			()	0	2	0	0		30	
AUC 13 0 0 0 0 0 0 0 0 0		JUL									2.								
SEP 10		AUG		0	0		0	0			()	0	4	0	10		30	
PCB		SEP								0				-	-				
12 0950 ND	DATE	TIME	TOT	AL I	COTAL	DANE	E, D	TAL	TOTA	AL	TOTAL	AZ II	NON, TAL	ELDRI TOTAL	TO	TAL	TOTA	AL	CHLOR, TOTAL
FEB 06 0950 ND		0950		ND	MD		ND	ND		ND	MI		ND	NI	D	ND		ND	ND
CHLOR	FEB																		
12 ND	DATE	CHLOR EPOXID TOTAL	E LIND	ANE I	HION, OTAL	CH LC TOTA	PA OR, TH AL TO	RA- ION, TAL	TRI THIC TOTA	ON.	THION,	APH!	ENE, FAL	TRI- THION	TO'	TAL	TOTA	AL	TOTAL
FEB		N	D	ND	ND		ND	ND		ND	ML		ND	N	D	ND		ND	ND
				ND	ND		ND	ND		ND									

527

08447410 PECOS RIVER NEAR LANGTRY, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	LENGTH OF	PERI-	PERI- PHYTON	CHLOR-A PERI-	CHLOR-B PERI-	BIOMASS CHLORO-	
	EXPO-	PHYTON	BIOMASS	PHYTON	PHYTON	PHYLL	
	SURE (DAYS)	BIOMASS ASH	TOTAL DRY	CHROMO- GRAPHIC	CHROMO- GRAPHIC	RATIO PERI-	
		WEIGHT	WEIGHT	FLUOROM	FLUOROM	PHYTON	
DATE		G/SQ M	G/SQ M	(MG/M2)	(MG/M2)	(UNITS)	
DEC							
12 APR	28	2.60	2.68	1.58	.070	50.6	
09	28	2.68	2.83	2.35	.000	63.8	

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

	PHYTOPLANKTON AN	ALYSES, O	CTOBER	1979 TO	SEPTE	MBER 198	0		
DATE TIME		NOV 1	14,79 010		12,80 010	MAY	7,80 1915		11,80 040
TOTAL CELLS	S/ML		130		380	1	200		600
DIVERSITY:	DIVISION .CLASS .ORDER FAMILY GENUS		0.8 0.8 1.5 1.5		1.4 1.4 1.4 2.6 2.8		1.4 1.4 1.7 2.5 2.6		0.6 0.6 0.6 1.3
ORGANISM		CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
.CHLOROPHYO	CCALES								
OOCYSTAC	SPHAERIUM	77	7			27	2	77	-
CRUCIGE	ENIA		2	344	-	550#	47	(122)	-
SCENEDE		29#	22		-		-		-
TETRAST	RUM		-	20	5		-		-
CHRYSOPHYTA .BACILLARICCENTRALESCOSCINOL	PHYCEAE 3								
CYCLOTE	ELLA	57#	44		-	27	2		-
ACHNANTH ACHNANT	CHES		-	10	3	27	2		-
AMPHORA	A.A	50	-	40	11	41 120	4	90	15
DIATOMAC	1			5	1		-		-
FRAGILA			_	65#	17	82	7		-
SYNEDRA	V.		-	10	3		7		-
GOMPHON			-	5	1		-		-
NAVICUL		43#	33	40	11	55	5		_
NITZSCHI		-12	3	25	7	55	5	Ų	_
CYANOPHYTA .CYANOPHYCE CHROOCOCO	CALES								
AGMENEL			+	140#			-	200	-
ANACYST			-	10	3	27	2		-
NOSTOCAC									
ANABAEN	IA		-		-		-	130#	21
OSCILLAT		44	-	المال	-	150	13	390#	64
PYRRHOPHYTA .DINOPHYCEA PERIDINIA GLENODIN	LES								
GLENODI	NIUM		-		7	**	-		-
PERIDIN			-	10	3		4		2

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

08447410 PECOS RIVER NEAR LANGTRY, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

DATE TIME		23,80		13,80		10,80
TOTAL CELLS/ML		310		000		310
TOTAL CELESTIE		310				
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		1.1 1.1 1.3 1.3		0.0 0.0 0.4 0.4		1.5 1.5 2.0 2.3 2.3
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (CREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESOCYSTACEAE						
DICTYOSPHAERIUM SCENEDESMACEAE		1.2		7		-
CRUCIGENIA		-	44	141		-
SCENE DESMUS TETRASTRUM	- 22	-		-	51#	17
CHRYSOPHYTA .BACILLARIOPHYCEAECENTRALESCOSCINODISCACEAECYCLOTELLA	13	4			13	4
PENNALES ACHNANTHACEAE ACHNANTHES		-				-
CYMBELLACEAE AMPHORA						
CYMBELLA	-	4	1.2	12		-
DIATOMACEAE						
DIATOMA FRAGILARIACEAE		-		-		-
FRAGILARIA		-			51#	17
SYNEDRA GOMPHONEMATACEAE		-		-		-
GOMPHONEMA NAVICULACEAE	77	3		7		-
NAVICULA	77#	25		-		-
NITZSCHIACEAE NITZSCHIA	44	-	**	-	51#	17
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAEOHROOCOCCALESCHROOCOCCACEAE						
AGMENELLUM	44	DE.	1.25	-		=
ANACYSTIS HORMOGONALES		-0	77	7	26	8
NOSTOCACEAE ANABAENA	210#	67		-	120#	38
OSCILLATORIACEAE		-	950#	92	-2	-
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEPERIDINIALESGLENODINIACEAE						
CLENODINIUM	13	4		-		-
PERIDINIACEAE PERIDINIUM		4		-		-

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

08449400 DEVILS RIVER AT PAFFORD CROSSING NEAR COMSTOCK, TX

LOCATION.--Lat $29^{\circ}40'35"$, long $101^{\circ}00'00"$, Val Verde County, Hydrologic Unit 13040302, on left bank 10 mi (16 km) east of Comstock, and 25.5 mi (16.1 km) upstream from mouth.

DRAINAGE AREA. -- 3,961 mi2 (10,259 km2).

PERIOD OF RECORD. -- Chemical and biochemical analyses: January 1978 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: February 1978 to current year. WATER TEMPERATURES: February 1978 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 422 micromhos Feb. 18, 1978; minimum daily, 183 micromhos Sept. 25, 1980.
WATER TEMPERATURES: Maximum daily, 30.0°C on many days during summer months; minimum daily, 4.0°C January 14, 1979.

EXTREMES FOR CURRENT YEAR.--SPECIFIC CONDUCTANCE: Maximum daily, 409 micromhos Dec. 4; minimum daily, 183 micromhos Sept. 25.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TUR- B1D- 1TY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
OCT 09	1240	280	390	7.7	23.0	1.2	9.8	118	1.6	25	K17
NOV 13	1230	280	400	7.2	15.5	.60	9.4	96	.5	24	K19
DEC 11	1150	270	389	7.3	18.0	.70	9.0	99	.6	K14	K13
JAN 08	1110	280	435	7.0	12.0	.40	10.0	95	2.2	K14	K13
FEB 05	1145	351	420	7.1	12.0	1.0	11.4	108	.9	K14	K14
MAR	1120	247	420	7.6	19.0	1.7	11.2	124	.3	K14	21
APR											
08 MAY	1125	248	389	7.7	19.0	1.8	10.1	111	.8	K16	20
06 JUN	1045	247	410	7.7	23.0	2.3	10.8	130	1.6	31	22
10 JUL	1120	234	340	7.8	25.0	.60	10.6	132	2.0	34	21
22 AUG	1130	234	340	7.3	29.0	.70	10.3	137	1.2	28	K17
12 SEP	1110	768	370	7.0	25.0	33	10.0	130	1.8	560	600
09	1240	220	370	7.5	27.0	3.5	9.4	120	12-2	84	80
DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- S1UM, DIS- SOLVED (NG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT 09	190	21	51	14	8.2	.3	1.5	200	0	14	16
NOV 13	190	26	53	14	8.3	.3	1.5	200	0	15	17
DEC 11	190	4	54	14	8.6	.3	1.5	230	0	11	14
JAN 08	190	5	56	13	8.3	.3	4.2	230	0	12	16
FEB							1.3	240	0	11	15
05 MAR	210	13	58	15	8.5	.3					
11 APR	200	16	54	15	9.1	.3	1.2	220	0	9.7	15
08 MAY	190	18	53	15	9.0	.3	1.3	210	0	8.2	16
06 JUN	180	33	50	14	9.9	.3	1.3	210	0	9.6	14
10 JUL	160	13	43	13	8.3	.3	1.5	180	0	11	14
22 AUG	170	25	43	14	8.6	.3	1.4	210	0	9.7	21
12 SEP	170	12	49	12	7.8	.3	1.7	210	0	8.9	16
09	170	28	44	14	8.2	.3	1.4	190	0	6.3	16

08449400 DEVILS RIVER AT PAFFORD CROSSING NEAR COMSTOCK, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)
OCT 09	.4	15	194	219	1.7	.040	1.7		.030	152	.59
NOV 13	.2	13	227	231			2.3	2.3	.020	.020	.53
DEC 11	.3	14	212	237	142		2.1	1.5	.010	.000	.36
JAN 08	.3	13	211	241			2.0	1.1	.040	.040	.96
05	.3	13	203	248			1.8	1.7	.040	.010	.42
MAR 11 APR	.3	12	221	232		44	1.6	1.6	.060	.080	.54
08	.4	12	212	224			1.4	1.3	.080	.100	.61
06 JUN	.3	11	212	206			1.3	1.3	.040	.060	.87
10 JUL	.3	14	191	199	122	2-	1.2	1.1	.100	.080	.39
22 AUG	.3	16	216	203			1.2	1.2	.060	.030	1.1
12 SEP	.3	14	228	214			1.8	1.8	.080	.020	1.2
09	.3	15	214	196			1.3	1.6	.020	.030	.33
DATE	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 09	44	.62	.37	.000	.000		2.7	.2	11	8.3	97
NOV 13	.20	.55	.22	.000	.000	16			6	4.5	90
DEC 11	.35	.37	.35	.000	.000	4.1		- 44	8	5.8	100
JAN 08		1.0	.82	.010	.010	2.6			8	6.0	100
FEB 05	.28	.46	.29	.000	.000		2.1	.9	19	18	67
MAR 11	.33	.60	.41	.010	.010	1.8			26	17	92
APR 08	.30	.69	.40	.020	.000	4.6	142		15	10	98
MAY 06	.71	.91	.77	.010	.010				17	11	99
JUN 10	.34	.49	.42	.030	.000		9.0	1.8	17	11	99
JUL 22	.56	1.2	.59	.010	.010	7.0			11	6.9	100
AUG 12	1.1	1.3	1.1	.040	.030		3.2	1.3	55	114	94
SEP 09	.51	.35	.54	.000	.010	2.4			14	8.3	98
DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BARIUM, SUS- PENDED RECOV- ERABLE (UG/L AS BA)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
OCT 09	1240	1	0	1	300	200	100	1	0	<1	0
NOA	1230				300	200	100	22			
13 FEB		1	0	1	100	0	100	0	0	<1	0
05 MAR	1145										
JUN	1120	1	0	1	200	0	300	0		<1	0
10 JUL 22	1120				200						
AUG	1110	1	0	2	300	100	200	0	0	1	10
12 SEP 09	1240				300		200				
	. 240										

> 08449400 DEVILS RIVER AT PAFFORD CROSSING NEAR COMSTOCK, TX--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COBALT, SUS- PENDED RECOV- ERABLE (UG/L AS CO)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER TOTAL RECOV ERABL (UG/I AS CU	V- REC LE ERA L (UC	S- NDED CO COV- D ABLE S G/L (PPER, IS- OLVED UG/L S CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)
OCT 09	0	0	0	0	<3		0	0	0	20	44	<10
NOV 13												
FEB 05	0	0	0	0	<3		1	1	0	50	40	<10
MAR 11	22				14				-4	144		**
JUN 10	0	0	0	4-	<3		2	1	1	50		<10
JUL 22							-		77			
AUG 12 SEP	10	0	0	1	<3		4	4	0	100	44	<10
09	4-									7		
DATE	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA NESE, DIS- SOLVE (UG/L AS MN	TOT REC ED ERA (UC	CURY POOL RESULT (RCURY SUS- ENDED ECOV- RABLE UG/L S HG)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, SUS- PENDED RECOV- ERABLE (UG/L AS NI)
OCT 09	2	2	0	0	0		(1	.4	.3	.1	45	92
13						-	-					
05 MAR	2	2	0	20	20	<	(1	1	.0	.1	1	1
11 JUN	44	. 44	44			-		-22	122			
10 JUL	0	0	0	10		<	a	.1	.0	.2	0	0
22 AUG		1.55	1 12			-	-					
12 SEP	3	0	4	10	8		2	.2	.1	.1	0	0
09						-	-					
DA	DI SO (U	S- NI LVED TO IG/L (U	ELE- SIUM, PE DTAL TO JG/L (U	SUS- NI ENDED I OTAL SO IG/L (I	IUM, TO DIS- RI DLVED EN JG/L (I	LVER, DTAL ECOV- RABLE UG/L	SILVER, SUS- PENDED RECOV- ERABLE (UG/L AS AG)	SILVER DIS- SOLVEI (UG/L AS AG	REC ERA (UC	NC, SI FAL PEI COV- REG ABLE ER.	COV- D ABLE SO G/L (U	NC, IS- LVED G/L ZN)
OCT	i		0	0	0	0	0		0	0	0	<3
NOV						0				1.1		
		0	0	0	0	0	0		0	30	20	6
		44				0	22				122	
		0	0	0	0	1	1	(0	40	0	40
						0		-		++		
		0	0	0	0	0	0	()	50	20	30
SEP 09			44			0		-				
			O EX S (D	PO- PI URE BIO DAYS) A	ERI- PHIYTON BIO DMASS TO ASH I	HYTON DMASS DTAL C DRY G EIGHT F	HLOR-A PERI- PHYTON HROMO- RAPHIC LUOROM MG/M2)	CHLOR-1 PERI- PHYTON CHROMO GRAPHIC FLUORON (MG/M2)	CHLO PHY RAT PEF PHY	ORO- YLL YIO RI- YTON		
			1,	26 14	.0 14	4.2	.660	.060	303	3		
			8	28 12	2.7 13	3.0	.540	.000	556	5		
		AL 1	2	21 2	2.36	2.52	.080	.000	2000)		

08449400 DEVILS RIVER AT PAFFORD CROSSING NEAR COMSTOCK, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

PH	YTOPLANK?	ON ANA	LYSES, C	CTOBER	1979 TO	SEPTE	MBER 198	30				
DATE TIME		11,80 120		6,80		10,80		22,80		12,80	SEP	9,80 1240
TOTAL CELLS/ML		2500	3	3200	à	600	2	2200	4	+500	13	3000
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		1.1 1.2 1.4 1.7		1.2 1.2 1.6 2.1 2.2		0.3 0.3 0.8 0.8		0.3 0.3 0.4 0.9		0.6 0.6 0.9 1.5		0.5 0.5 0.6 0.7 0.7
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESOOCYSTACEAE	71112	OLIVI	Jrin.	GENT	/PIL	V-EW1	ZHL	GENI	,,riu	CENT	/HL	CENT
ANKISTRODESMUS	14	1	*	0		-		-		-	26	1
DICTYOSPHAERIUM KIRCHNERIELLA	35	-	28	0		-		-		-	100	3
TETRAEDRON		-			13	1	26	1	39	-1		-
TREUBARIA SCENEDESMACEAE		-	1	-		-	13	1		-		-
SCENEDESMUS VOLVOCALES	190	8	83	3	100	-		-	130	3	52	2
CHLAMYDOMONADACEAE CHLAMYDOMONAS		-	28	.1		-		-	39	Ť	*	0
CHRYSOPHYTA .BACILLARIOPHYCEAE .CENTRALESCOSCINODISCACEAECYCLOTELLA	41	2	28	1			12.		*	0	*	0
MELOSIRAPENNALESCYMBELLACEAE	110	4	83	3		-	1,44	-	77	2		-
CYMBELLA DIATOMACEAE	27	1	120	4	26	2	4.1	-	26	1	44	~
DIATOMA EUNOTIACEAE		-	*	0		(-)		-				-
EUNOTIA FRAGILARIACEAE	14	1		-	7.7	-		-		-		-
FRAGILARIA SYNEDRA	11	-	170	5		-	13	1		-		-
GOMPHONEMATACEAE GOMPHONEMA	27	1	*	0		-				-		_
NAVICULACEAE NAVICULA	69	3	120	4	26	2		_	64	1		
NITZSCHIACEAE NITZSCHIA	160	7	120	4						2	52	2
SURIRELLACEAE SURIRELLA								_	26	1		
.CHRYSOPHYCEAE .CHRYSOMONADALES OCHROMONADACEAE									1,000			
OCHROMONAS	41	2		-		-		-		+		-
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAECRYPTOMONADALESCRYPTOCHRYSIDACEAE												
CHROOMONAS CRYPTOMONADACEAE		-	83	3		-		-		-		-
CRYPTOMONAS	**	-	*	0	13	1	7.7	2.0	*	0	75	
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE .CHROOCOCCALESCHROOCOCCACEAE							-		74.5			
AGMENELLUMANACYSTISHORMOGONALES	27	ī	180	6	140	9	51	2	210 39	5	39	ī
ANABAENA		-	~-	-	1400#	87	1900#	84	3400#	75	2700#	90
OSCILLATORIACEAE OSCILLATORIA	1700#	70	2100#	65		-	220	10	460	10		
PHORMIDIUM PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEPERIDINIALES	7.						220	10				
GLENODINIACEAE	2.79						26	1			1.50	
GLENODINIUM		-		-		-	26	1		1		-

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

08449400 DEVILS RIVER AT PAFFORD CROSSING NEAR COMSTOCK, TX--Continued

533

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	8635	366	211	4920	15	342	10	236	180
NOV.	1979	8409	381	216	4910	15	344	10	235	180
DEC.	1979	8529	396	221	5100	16	360	11	243	190
JAN.	1980	8254	391	220	4900	15	345	10	234	180
FEB.	1980	7517	377	215	4370	15	305	10	209	180
MAR.	1980	7827	373	214	4520	15	315	10	216	180
APR.	1980	7099	365	211	4040	15	281	10	194	180
MAY	1980	7463	347	204	4110	14	283	9.8	198	170
JUNE	1980	6885	338	200	3730	14	256	9.7	180	170
JULY	1980	6624	339	201	3590	14	247	9.7	173	170
AUG.	1980	7648	347	204	4200	14	290	9.8	202	170
SEPT	1980	35359	221	143	13700	9.5	902	7.0	670	120
TOTAL		120249	**	**	62100	**	4270	**	2990	**
WTD. AV	G.	329	324	191	**	13	**	9.2	**	160

	SPE	ECIFIC CON	DUCTANCE	(MICROMHO		25 DEG. C) NCE-DAILY	, WATER	YEAR OCTOBER	1979 T	O SEPTEMBER	1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	355 352 366 332 366	368 370 373 381 352	393 401 405 409 387	399 366 374 377 379	380 362 387 370 361	372 355 368 378 357	366 364 362 365 350	365 354 346 345 340	338 331 333 332 331	330 317 327 331 336	333 330 332 330 331	353 359 363 352 340
6 7 8 9	376 370 369 369 373	385 386 386 389 377	398 397 395 394 393	382 380 384 385 388	396 370 380 374 366	366 374 388 364 384	360 369 373 368 367	337 334 343 357 350	331 334 336 338 333	333 331 328 326 346	329 334 337 339 341	335 331 328 342 340
11 12 13 14 15	376 348 380 376 367	392 388 389 369 388	388 383 390 396 392	390 393 397 399 394	353 367 372 380 383	387 386 375 380 360	373 360 363 366 378	342 331 347 343 339	337 343 347 343 339	340 337 335 333 331	342 364 367 365 366	336 337 344 334 340
16 17 18 19 20	362 357 351 367 356	383 402 384 388 367	395 397 398 402 393	396 397 393 388 386	347 364 381 397 394	368 377 356 372 378	379 369 360 377 370	337 358 355 350 348	336 338 342 337 334	336 338 340 339 341	363 360 358 346 343	349 351 355 347 343
21 22 23 24 25	366 383 366 375 381	379 385 356 365 377	398 394 399 394 398	391 389 395 401 394	389 386 390 392 380	380 377 370 372 377	362 360 365 366 353	347 344 353 352 353	335 334 333 340 350	343 334 351 343 344	340 342 341 340 339	346 347 348 350 183
26 27 28 29 30 31	366 377 380 367 366 366	393 380 387 393 398	400 395 391 393 395 401	400 398 396 399 405 400	375 371 389 390	374 373 376 379 377 372	357 360 362 359 373	352 352 356 347 348 346	357 349 341 343 342	345 348 350 352 366 345	342 344 346 348 349 351	250 265 289 335 358
MEAN	366	381	396	391	377	373	365	347	339	339	345	332

08450900 RIO GRANDE BELOW AMISTAD DAM NEAR DEL RIO, TX

LOCATION.--Lat 29°25'30", long 101°27'00", Val Verde County, Hydrologic Unit 13080001, 2.2 mi (3.5 km) downstream from Amistad Dam and 10 mi (16 km) northwest of Del Rio.

DRAINAGE AREA. -- 123, 143 mi 2 (318, 940 km2).

PERIOD OF RECORD. -- Chemical analyses: July 1968 to current year.

REMARKS.--The flow is controlled largely by releases from Amistad Reservoir. Records of daily mean discharge for water year 1980 are given in International Boundary and Water Commission Water Bulletins Nos. 49 and 50.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
OCT 17	0725	1060	1000	8.2	23.0	250	140	72	17
NOV 21	0815	738	1030	7.7	15.5	250	130	75	16
DEC 19	0820	2320	1020	7.9	12.0	250	130	73	17
JAN 16	0820	2320	1010	8.0	12.0	270	140	77	18
FEB 20	0815	2370	1020	7.9	10.5	280	150	79	19
MAR 19	0825	3200	1020	8.1	12.0	260	130	76	18
APR 16	0823	1240	1030	8.0	15.5	260	130	76	18
MAY 27	1119	3990	1040	8.2	23.0	270	140	77	19
JUN 18	0720	3990	1050	7.6	25.0	270	150	76	20
JUL 16	0725	7840	1080	8.2	26.0	270	150	76	20
AUG 20	0720	2070	1050	8.0	27.0	260	150	73	19
SEP 17	0720	57	996	7.8	25.5	250	130	69	18
		SODIUM	POTAS-				CHLO-	SILICA,	SOLIDS, SUM OF
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SIO2)	CONSTI- TUENTS, DIS- SOLVED (MG/L)
OCT 17	DIS- SOLVED (MG/L	SORP- TION	DIS- SOLVED (MG/L	BONATE (MG/L AS	BONATE (MG/L	DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	SOLVED (MG/L AS	TUENTS, DIS- SOLVED
OCT 17 NOV 21	DIS- SOLVED (MG/L AS NA)	SORP- TION RATIO	DIS- SOLVED (MG/L AS K)	MG/L AS HCO3)	MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L AS CL)	SOLVED (MG/L AS SIO2)	TUENTS, DIS- SOLVED (MG/L)
OCT 17 NOV 21 DEC 19	DIS- SOLVED (MG/L AS NA)	SORP- TION RATIO	DIS- SOLVED (MG/L AS K)	BONATE (MG/L AS HCO3)	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L AS CL)	SOLVED (MG/L AS SIO2)	TUENTS, DIS- SOLVED (MG/L)
OCT 17 NOV 21 DEC	DIS- SOLVED (MG/L AS NA)	SORP- TION RATIO 3.0 3.0	DIS- SOLVED (MG/L AS K) 5.8	BONATE (MG/L AS HCO3) 140	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4) 230	DIS- SOLVED (MG/L AS CL)	SOLVED (MG/L AS SIO2)	TUENTS, DIS- SOLVED (MG/L) 621
OCT 17 NOV 21 DEC 19 JAN	DIS- SOLVED (MG/L AS NA) 110 110	SORPTION RATIO 3.0 3.0 3.0	DIS- SOLVED (MG/L AS K) 5.8 5.5	BONATE (MG/L AS HCO3) 140 150	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4) 230 230 220	DIS- SOLVED (MG/L AS CL) 100 110	SOLVED (MG/L AS SIO2) 17 17	TUENTS, DIS- SOLVED (MG/L) 621 637 616
OCT 17 NOV 21 DEC 19 JAN 16 FEB 20 MAR 19	DIS- SOLVED (MG/L AS NA) 110 110 110	3.0 3.0 3.0 2.9	DIS- SOLVED (MG/L AS K) 5.8 5.5 5.2 5.1	BONATE (MG/L AS HCO3) 140 150 150	BONATE (MG/L AS CO3) 0 0 0	DIS- SOLVED (MG/L AS SO4) 230 230 220 240	DIS- SOLVED (MG/L AS CL) 100 110	SOLVED (MG/L AS S102) 17 17 17	TUENTS, DIS- SOLVED (MG/L) 621 637 616 651
OCT 17 NOV 21 DEC 19 JAN 16 FEB 20 MAR 19	DIS- SOLVED (MG/L AS NA) 110 110 110 110	3.0 3.0 3.0 2.9 2.6	DIS- SOLVED (MG/L AS K) 5.8 5.5 5.2 5.1	BONATE (MG/L AS HCO3) 140 150 150	BONATE (MG/L AS CO3) 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 230 230 220 240 230	DIS- SOLVED (MG/L AS CL) 100 110 100 110	SOLVED (MG/L AS SIO2) 17 17 17 17	TUENTS, DIS- SOLVED (MG/L) 621 637 616 651 634
OCT 17 NOV 21 DEC 19 JAN 16 FEB 20 MAR 19	DIS- SOLVED (MG/L AS NA) 110 110 110 110 110	3.0 3.0 3.0 2.9 2.6	DIS- SOLVED (MG/L AS K) 5.8 5.5 5.2 5.1 5.8	BONATE (MG/L AS HCO3) 140 150 150 150 160	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4) 230 220 240 230 220	DIS- SOLVED (MG/L AS CL) 100 110 110 110	SOLVED (MG/L AS SIO2) 17 17 17 17 16	TUENTS, DIS- SOLVED (MG/L) 621 637 616 651 634 624
OCT 17 NOV 21 DEC 19 JAN 16 FEB 20 MAR 19 APR 16 MAY 27 JUN 18	DIS- SOLVED (MG/L AS NA) 110 110 110 110 110	3.0 3.0 3.0 2.9 2.6 2.9	DIS- SOLVED (MG/L AS K) 5.8 5.5 5.2 5.1 5.8 5.1	BONATE (MG/L AS HCO3) 140 150 150 150 160	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4) 230 230 220 240 230 220 240 230	DIS- SOLVED (MG/L AS CL) 100 110 100 110 110	SOLVED (MG/L AS SIO2) 17 17 17 17 16 16 16	TUENTS, DIS- SOLVED (MG/L) 621 637 616 651 634 624 635
OCT 17 NOV 21 DEC 19 JAN 16 FEB 20 MAR 19 APR 16 MAY 27 JUN	DIS- SOLVED (MG/L AS NA) 110 110 110 110 110 110	3.0 3.0 3.0 2.9 2.6 2.9 2.9	DIS- SOLVED (MG/L AS K) 5.8 5.5 5.2 5.1 5.8 5.1 5.4 5.3	BONATE (MG/L AS HCO3) 140 150 150 150 160 160	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4) 230 230 220 240 230 220 220 230 220	DIS- SOLVED (MG/L AS CL) 100 110 100 110 100 110	SOLVED (MG/L AS SIO2) 17 17 17 17 16 16 17 17 17	TUENTS, DIS- SOLVED (MG/L) 621 637 616 651 634 624 635
OCT 17 NOV 21 DEC 19 JAN 16 FEB 20 MAR 19 APR 16 MAY 27 JUN 18 JUIN JUIL JUIL JUIL 19 JUN 18 JUIL JUIL JUIL 19	DIS- SOLVED (MG/L AS NA) 110 110 110 110 110 110 110 110	3.0 3.0 3.0 2.9 2.6 2.9 2.9	DIS- SOLVED (MG/L AS K) 5.8 5.5 5.2 5.1 5.8 5.1 5.4 5.3	BONATE (MG/L AS HCO3) 140 150 150 150 160 160 160 150	BONATE (MG/L AS CO3) 0 0 0 0 0 0 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 230 220 240 230 220 230 220 230	DIS- SOLVED (MG/L AS CL) 100 110 110 110 110 110 110	SOLVED (MG/L AS SIO2) 17 17 17 17 16 16 17 17 17 17 17 18 19 19 17 17	TUENTS, DIS- SOLVED (MG/L) 621 637 616 651 634 624 635 637 652

535

08459000 RIO GRANDE AT LAREDO, TX (National stream-quality accounting network)

LOCATION.--Lat 27°29'45", long 99°29'30", Webb County, Hydrologic Unit 13080002, at gaging station 1.1 mi (1.8 km) downstream from the highway bridge between Laredo and Nuevo Laredo, Tamaulipas, Mex., and 891.0 mi (1.433.6 km) downstream from the American Dam at El Paso.

DRAINAGE AREA.--132,578 mi 2 (343,377 km 2), United States and hexico; from International boundary and Water Commission Water Bulletin No. 44.

PERIOD OF RECORD. -- Chemical analyses: July 1955 to current year. Chemical, biochemical, and sediment analyses: January 1973 to current year.

PERIOD OF DAILY RECORED.--SPECIFIC CONDUCTANCE: October 1974 to current year. WATER TEMPERATURES: October 1974 to current year.

REMARKS.--Records of discharge for water year 1979 are given in International Boundary and Water Commission Water Bulletins Nos. 49 and 50. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 1,690 micromhos June 1, 1963; minimum daily, 214 micromhos Sept. 26, 1964.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum daily, 1,170 micromhos Apr. 25; minimum daily, 338 micromhos Aug. 13.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCL (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TUK- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PEK- CENT SATUR- ATION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
OCT 16	0957	1300	977	8.3	25.0	21	7.6	93	1.6	11000	4100
NOV 15	1352	900	1000	8.3	16.5	10	9.4	96	7	22000	8100
DEC 19	1608	2650	1000	8.5	10.5	73	12.0	107	.4	K170	K130
JAN 23	1637	2730	933	8.3	14.0	22	10.1	97	.5	860	170
FEB 21	1438	2550	1010	8.3	17.5	19	10.1	106	.9	740	170
MAR 27	1003	5300	1030	8.2	18.0	40	8.4	90	1.3	480	330
APR 21	1700	900	1110	8.3	23.5	21	8.5	100	1.8	K61000	14000
MAY 27	0910	6700	1010	8.2	27.5	160	7.0	89	1.9	2300	220
JUN 25	0800	3300	1100	8.2	29.0	27	4.1	54	2.8	400	100
JUL 24	0942	3600	1100	8.3	29.0	26	6.6	87	2.2	260	200
AUG 19	0953	4190	829	8.2	28.0	55	7.2	92	.4	1200	K240
SEP 15	1644	2140	932	8.0	29.5	47	7.5	99	1.4	1600	K480
2013	4.5	15016	42.5	2,50	9122	7.5	102		42.3	0.34.5	
DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAK- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
DATE OCT 16	NESS (MG/L AS	NESS, NONCAR- BONATE (MG/L	DIS- SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	AD- SORP- TION	SIUM, DIS- SOLVED (MG/L	BONATE (MG/L AS	BONATE (MG/L	DIS- SOLVED (MG/L	KIDE, DIS- SOLVED (MG/L
OCT	NESS (MG/L AS CACO3)	NESS, NONCAK- BONATE (MG/L CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	BONATE (MG/L AS HCO3)	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)
OCT 16 NOV	NESS (MG/L AS CACO3)	NESS, NONCAR- BONATE (MG/L CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	BONATE (MG/L AS HCO3)	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4)	KIDE, DIS- SOLVED (MG/L AS CL)
OCT 16 NOV 15 DEC	NESS (MG/L AS CACO3) 290 270	NESS, NONCAK- BONATE (MG/L CACO3)	DIS- SOLVED (MG/L AS CA) 82	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	BONATE (MG/L AS HCO3) 160	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4) 240 220	RIDE, DIS- SOLVED (MG/L AS CL) 93
OCT 16 NOV 15 DEC 19 JAN 23 FEB	NESS (MG/L AS CACO3) 290 270 280 260	NESS, NONCAK-BONATE (MG/L CACO3) 160 130 150 120	DIS- SOLVED (NG/L AS CA) 82 79 83	SIUM, DIS- SOLVED (MG/L AS MG) 20 18 18	DIS- SOLVED (MG/L AS NA) 99 100 100	AD- SORP- TION RATIO 2.5 2.6 2.6 2.6	SIUM, DIS- SOLVED (MG/L AS K) 4.6 4.0 4.8	BONATE (MG/L AS HCO3) 160 170 160	BONATE (NG/L AS CO3) 0 0 2	DIS- SOLVED (MG/L AS SO4) 240 220 220 210	RIDE, DIS- SOLVED (MG/L AS CL) 93 98 100 93
OCT 16 NOV 15 DEC 19 JAN 23 FEB 21	NESS (MG/L AS CACO3) 290 270 280 260 300	NESS, NONCAK- BONATE (MG/L CACO3) 160 130 150 120	DIS- SOLVED (MG/L AS CA) 82 79 83 77 85	SIUM, DIS- SOLVED (MG/L AS MG) 20 18 18 17 21	DIS- SOLVED (MG/L AS NA) 99 100 100 96	AD- SORP- TION RATIO 2.5 2.6 2.6 2.6 2.8	SIUM, DIS- SOLVED (MG/L AS K) 4.6 4.0 4.8 4.6 5.1	BONATE (MG/L AS HCO3) 160 170 160 170	BONATE (hG/L AS CO3) 0 0 2 0 0	DIS- SOLVED (MG/L AS SO4) 240 220 220 210 230	RIDE, DIS- SOLVED (MG/L AS CL) 93 98 100 93
OCT 16 NOV 15 DEC 19 JAN 23 FEB 21 MAR 27	NESS (MG/L AS CACO3) 290 270 280 260 300 290	NESS, NONCAK- BONATE (MG/L CACO3) 160 130 150 120 170	DIS- SOLVED (NG/L AS CA) 82 79 83 77 85 83	SIUM, DIS- SOLVED (MG/L AS MG) 20 18 18 17 21 20	DIS- SOLVED (MG/L AS NA) 99 100 100 96 110	AD- SORP- TION RATIO 2.5 2.6 2.6 2.6 2.8 2.8	SIUM, DIS- SOLVED (MG/L AS K) 4.6 4.0 4.8 4.6 5.1	BONATE (NG/L AS HCO3) 160 170 160 170 160	BONATE (NG/L AS CO3) 0 0 2 0 0 0	DIS- SOLVED (MG/L AS SO4) 240 220 220 210 230 240	RIDE, DIS- SOLVED (MG/L AS CL) 93 98 100 93 100
OCT 16 NOV 15 DEC 19 JAN 23 FEB 21 MAR 27 APR 21	NESS (MG/L AS CACO3) 290 270 280 260 300 290	NESS, NONCAK-BONATE (MG/L CACO3) 160 130 150 120 170 160	BIS- SOLVED (NG/L AS CA) 82 79 83 77 85 83 83	SIUM, DIS- SOLVED (MG/L AS MG) 20 18 18 17 21 20 20	DIS- SOLVED (MG/L AS NA) 99 100 100 96 110 110	AD- SORP- TION RATIO 2.5 2.6 2.6 2.6 2.8 3.1	SIUM, DIS- SOLVED (NG/L AS K) 4.6 4.0 4.8 4.6 5.1 5.0	BONATE (MG/L AS HCO3) 160 170 160 170 160 160	BONATE (hG/L AS CO3) 0 0 2 0 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 240 220 220 210 230 240 260	RIDE, DIS- SOLVED (MG/L AS CL) 93 98 100 93 100 110
OCT 16 NOV 15 DEC 19 JAN 23. FEB 21 MAR 27 APR 21 MAY 27 JUN	NESS (MG/L AS CACO3) 290 270 280 260 300 290 290 260	NESS, NONCAK-BONATE (MG/L CACO3) 160 130 150 120 170 160 170	BIS- SOLVED (NG/L AS CA) 82 79 83 77 85 83 76	SIUM, DIS- SOLVED (MG/L AS MG) 20 18 18 17 21 20 20	DIS- SOLVED (MG/L AS NA) 99 100 100 96 110 110 120	AD- SORP- TION RATIO 2.5 2.6 2.6 2.6 2.8 3.1 2.9	SIUM, DIS- SOLVED (NG/L AS K) 4.6 4.0 4.8 4.6 5.1 5.0 5.2	BONATE (MG/L AS HCO3) 160 170 160 170 160 150	BONATE (NG/L AS CO3) 0 0 2 0 0 0 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 240 220 210 230 240 260 220	RIDE, DIS- SOLVED (MG/L AS CL) 93 98 100 93 100 110 120
OCT 16 NOV 15 DEC 19 JAN 23. FEB 21 MAR 27 APR 21 MAY 27 JUN 25 JUL	NESS (NG/L AS CACO3) 290 270 280 260 300 290 260 260	NESS, NONCAK-BONATE (MG/L CACO3) 160 130 150 120 170 160 170 130	BIS- SOLVED (NG/L AS CA) 82 79 83 77 85 83 76 72	SIUM, DIS- SOLVED (MG/L AS MG) 20 18 18 17 21 20 20 18	DIS- SOLVED (MG/L AS NA) 99 100 100 96 110 110 120 110	AD- SORP- TION RATIO 2.5 2.6 2.6 2.6 2.8 2.8 3.1 2.9 3.2	SIUM, DIS- SOLVED (MG/L AS K) 4.6 4.0 4.8 4.6 5.1 5.0 5.2 5.0	BONATE (NG/L AS HCO3) 160 170 160 170 160 150 160	BONATE (NG/L AS CO3) 0 0 2 0 0 0 0 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 240 220 220 210 230 240 260 220 230	RIDE, DIS- SOLVED (MG/L AS CL) 93 98 100 93 100 110 120
OCT 16 NOV 15 DEC 19 JAN 23 FEB 21 MAR 27 APR 21 MAY 27 JUN 25 JUL 24 AUG	NESS (NG/L AS CACO3) 290 270 280 260 300 290 260 260 260	NESS, NONCAK-BONATE (MG/L CACO3) 160 130 150 120 170 160 170 130 150	DIS- SOLVED (NG/L AS CA) 82 79 83 77 85 83 76 72 74	SIUM, DIS- SOLVED (MG/L AS MG) 20 18 18 17 21 20 20 18 20	DIS- SOLVED (MG/L AS NA) 99 100 100 96 110 110 120 110 120 120	AD- SORP- TION RATIO 2.5 2.6 2.6 2.6 2.8 3.1 2.9 3.2	SIUM, DIS- SOLVED (NG/L AS K) 4.6 4.0 4.8 4.6 5.1 5.0 5.2 5.0	BONATE (NG/L AS HCO3) 160 170 160 160 150 160 140	BONATE (hG/L AS CO3) 0 0 2 0 0 0 0 0 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 240 220 220 210 230 240 260 220 230 250	RIDE, DIS- SOLVED (MG/L AS CL) 93 98 100 93 100 110 120 120
OCT 16 NOV 15 DEC 19 JAN 23. FEB 21 MAR 27 APR 21 MAY 27 JUL L24	NESS (NG/L AS CACO3) 290 270 280 260 300 290 260 260	NESS, NONCAK-BONATE (MG/L CACO3) 160 130 150 120 170 160 170 130	BIS- SOLVED (NG/L AS CA) 82 79 83 77 85 83 76 72	SIUM, DIS- SOLVED (MG/L AS MG) 20 18 18 17 21 20 20 18	DIS- SOLVED (MG/L AS NA) 99 100 100 96 110 110 120 110	AD- SORP- TION RATIO 2.5 2.6 2.6 2.6 2.8 2.8 3.1 2.9 3.2	SIUM, DIS- SOLVED (MG/L AS K) 4.6 4.0 4.8 4.6 5.1 5.0 5.2 5.0	BONATE (NG/L AS HCO3) 160 170 160 170 160 150 160	BONATE (NG/L AS CO3) 0 0 2 0 0 0 0 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 240 220 220 210 230 240 260 220 230	RIDE, DIS- SOLVED (MG/L AS CL) 93 98 100 93 100 110 120

08459000 RIO GRANDE AT LAREDO, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DA:	TE:	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	
OCT 16		.8	16	592	636	.43	.46	.050		.80		
NOV 15		.8	15	653	621	.36	.47	.110	.140	3.8	9.5	
DEC												
JAN		.8	16	637	625	.60	.29	.000	.000	.91	.45	
FEB		.8	15	629	600	.53	.50	.010	.010	.46	.43	
MAR		.7	15	638	646	.27	.27	.040	.030	.00	.00	
APR		.8	15	664	665	.54	.52	.020	.000	.81	.51	
MAY		.9	14	720	697	.08	.06	.060	.020	.61	.59	
JUN		.8	16	647	626	.47	.47	.040	.030	2.9	2.1	
JUL		1.1	17	688	655	.16	.16	.010	.030	1,1	.56	
AUG		1.0	17	691	673	.23	.11	.000	.000	.90	.50	
19 SEP		.6	10	435	514	1.8	1.7	.000	.000	1.2	.71	
15.	• • •	.8	14	593	573	.42	.43	.000	.000	1.2	.87	
DA?		NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM	
OCT	11.	No II)	AD IV	AO I)	AS I)	A5 0)	AS C)	A5 0)	(110/11)	(I) DAI)	.002 1111	
16. NOV		.85		.030	.000		7.6		58	204	99	
15. DEC		3.9	9.6	.040	.010	6.9			18	44	99	
19. JAN		.91	.45	.010	.000	6.2		25	41	293	98	
23 FEB		•47	.44	.040	.020		3.5	.6	54	398	96	
21 MAR		.00	.03	.030	.000	7.5			33	227	98	
27 APR		.83	.51	.040	.020	6.2			131	1880	82	
		.67	.61	.040	.010		5.5	.6	34	83	98	
27 JUN		2.9	2.1	.140	.010	8.4			316	5720	95	
		1.1	.59	.190	.010	5.6			78	695	97	
		.90	.50	.070	.010		7.0		75	729	95	
19. SEP		1.2	.71	.100	.010	6.8	122	24	139	1570	88	
15.		1.2	.87	.060	.020	7.2			69	399	97	
DATE	TIM	ARSE TOT E (UG AS	NIC PEN AL TOT /L (UC	S- ARSI IDED DI AL SOI I/L (UC	LVED ERA	CAL PEND COV- REC ABLE ERA G/L (UC	S- DED BARI COV- DIS BLE SOLV	ERA	AL PEN OV- REC BLE ERA /L (UG	S- DED CADM OV- DI BLE SOL /L (UG	IUM TO S- RE VED ER /L (U	RO- UM, TAL COV- ABLE G/L CR)
OCT 16	095	7	4	1.	3	200	100	90	0	0	<1	0
DEC							,00					Ü
19 JAN	160			0	2		0				0	0
23 MAR	163		2	0		0	0	90	0	0		
27 APR	100					100		100				
21 JUN	170		3	1	2	100	0	100	1		<1	0
25 JUL	080			77		200	100		-0	1		
SEP 24	094		3	0	3	200	100	100	0	44	<1	50
15	164	4										

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVEI (UG/L AS CR)	(UG	AL PENI OV- REC BLE ERA /L (UC	S- DED COV-	COBALT, DIS- SOLVED (UG/L AS CO)	ERA (UC		COPP SUS PEN REC ERA (UG AS	DED OV- BLE /L	COPP DIS SOL (UG AS	VED /L	I RON TOTA RECC ERAB (UG/ AS F	L V- LE L	IRO SU PEN REC ERA (UG AS	S- DED OV- BLE /L	IRON DIS SOLV (UG, AS I	S- /ED /L
OCT 16	0	(1	0	0	<3		0		0		0	q	40		930		(10
DEC 19													,					
JAN 23	0	()	2	2	0		9		9		0	4	40		430		(10
MAR 27	2.2	-			25	-												
APR 21	Ō	()	0		<3		0		0		2	5	60				(10
JUN 25	4.0	- 2						24.										
JUL 24	50	()	0		<3		11		11		0	10	00		980		20
SEP 15	7.2				42.													
DATE	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, SUS- PENDEI RECOV ERABLI (UG/L AS PB)	SOL (UG	D, TOT S- REG VED ERA /L (UC		MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	NES DI SOL (UC		MERC TOT REC ERA (UG AS	AL OV- BLE /L	MERC SU PEN REC ERA (UG AS	S- DED OV- BLE /L	MERCU DIS SOLV (UG/ AS H	ED L	NICK TOT REC ERA (UG AS	AL OV- BLE /L	NICKI SUS PENI RECO ERAI (UG, AS I	S- DED DV- BLE 'L
OCT 16	4	1,		0	40	40		1		.1		.1		.0		6		6
DEC 19										2								
JAN 23	8		3	0	20	20		2		.2		.0		.3		2		2
MAR 27		_																
APR 21	10		3	2	20	20		3		.3		.2		+1		1		0
JUN 25		_																
JUL 24	10	10)	0	40			<1		.3		.0		.3		4		4
SEP 15		-,														4-		
DA	DI SO (U	S- I LVED : G/L	SELE- NIUM, COTAL (UG/L AS SE)	SELE- NIUM, SUS- PENDED TOTAL (UG/L AS SE)	SEL NIU DI SOL (UG AS	M, T S- R VED E /L (LVER, OTAL ECOV- RABLE UG/L S AG)	PEN REG ERA	VER, US- NDED COV- ABLE G/L AG)	SOI (UC	VER, IS- LVED G/L AG)	ERA (UC		PEN REC ERA (UC	NC, US- NDED COV- ABLE G/L ZN)	SOI (U	NC, IS- LVED G/L ZN)	
OC'	6	0	1	0		1	0		0		0		10		6		4	
	9						0		2.2									
	3	0	1	0		1	0		0		0		30		30		<3	
	7	-5					0											
2 JUI	1 N	1	1	0		1	0		0		0		20				<3	
JUL				-		77	0				77						3-	
SE		0	1	0		1	0		0		0		30		30		4	
1:	5						0		-5-						**			
			DATE	LENGTH OF EXPO- SURE (DAYS)	PER PHY BIOM AS WEI G/S	TON BI ASS T H GHT W	ERI- HYTON OMASS OTAL DRY EIGHT /SQ M	PEI PHY CHRO GRAI FLUO	OR-A RI- YTON OMO- PHIC OROM /M2)	CHLC PER PHY CHRC GRAF FLUC (MG)	RI- TON OMO- PHIC OROM	BION CHLO PHY RAT PER PHY (UNI	ORO- YLL YIO RI- YTON					
			DEC	20	1.4	0	1, 2		660		060	301						
			11 IAN	26	14.		2.01		.660		540	303						
		1	23 1AY	48	2.		2.91		.17		540	106						
		1	27 IUL	36	14.		9.1	24.			.24	195						
		12	24 AUG		1.		2.05 787		.56			134						
		3	19 SEP	26		630	.787		.17		370	289						
			15	27	10.	3	2.6	1.	.95	1.	.48	28	,					

08459000 RIO GRANDE AT LAREDO, TX--Continued PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

DATE TIME	JUL JUL	24,80 942		19,80 953		15,80 644
TOTAL CELLS/ML	2	500	2	000	2	100
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		1.6 1.6 2.0 2.3 2.6		1.3 1.3 1.7 2.3 3.0		1.5 1.5 1.7 2.4 2.7
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
ORGANISM CHLOROPHYTA (CREEN ALGAE) .CHLOROPHYCEAE .CHLOROCOCCALES .CHARACIACEAE .SCHROEDERIA .COELASTRUM .HYDRODICTYACEAE .PEDIASTRUM .OOCYSTACEAE .ANKISTRODESMUS .CHODATELLA .DICTYOSPHAERIUM .OOCYSTIS .POLYEDRIOPSIS .TETRAEDRON .TREUBARIA .SCENEDESMACEAE .ACTINASTRUM .SCENEDESMUS .CHLAMYDOMONADACEAE .CHLAMYDOMONADACEAE .CHLAMYDOMONAS .ZYCNEMATALES .DESMIDIACEAE .COSMARIUM CHRYSOPHYTA .BACILLARIOPHYCEAE .CFUTOTELLA .MELOSIRA .PENNALES .ACHNANTHES .COCCONEIS .CYCLOTELLA .MELOSIRA .PENNALES .ACHNANTHES .ACHNANTHES .COCCONEIS .CYMBELLA .FRAGILARIA .FRAGILARIA .FRAGILARIA .GOMPHONEMATACEAE .CYMBELLA .FRAGILARIA .FRAGILARIA .GOMPHONEMATACEAE .NAVICULA .NITZSCHIACEAE .NAVICULA .NITZSCHIACEAE .NAVICULA .NITZSCHIACEAE .NAVICULA .NITZSCHIACEAE .NAVICULA .NITZSCHIACEAE .NAVICULA .NITZSCHIACEAE .CRYPTOPHYTA .CRYPTOPHYCEAE				CENT 14 2 21		
CRYPTOMONADALES CRYPTOMONADACEAE CRYPTOMONAS	13	1	13	1	13	1
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE .CHROOCOCCALESCHROOCOCCACEAEACMENELLUM .ANACYSTISCOCCOCHLORISHORMOCONALESNOSTOCACEAEANABAENA .OSCILLATORIACEAEIYNGBYAOSCILLATORIASCHIZOTHRIX EUGLENOPHYTA (EUGLENOIDS)	410# 230 230		230 52	12 3	210 550#	10 26 -
EUGLENOPHYCEAE .EUGLENALES .EUGLENACEAE .EUGLENACAEEUGLENA	13 13	1	22	-	13	1

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

08459000 RIO GRANDE AT LAREDO, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	28329	1000	616	47100	110	8310	210	15700	270
NOV.	1979	27644	1010	620	46200	110	8180	210	15500	270
DEC.	1979	68634	1010	622	115000	110	20500	210	38600	270
JAN.	1980	80830	1020	627	137000	110	24400	210	45900	280
FEB.	1980	74580	1020	625	126000	110	22400	210	42300	280
MAR.	1980	87860	1050	648	154000	120	27900	220	52300	280
APR.	1980	45610	1080	667	82100	120	15100	230	28200	280
MAY	1980	139597	828	510	192000	84	31800	160	61600	240
JUNE	1980	103020	1070	658	183000	120	33400	220	62400	280
JULY	1980	165310	1100	674	301000	120	55600	230	103500	290
AUG.	1980	178510	636	391	189000	59	28600	120	57300	200
SEPT	1980	75840	929	571	117000	97	19900	190	38100	260
TOTAL		1075764	**	steste	1688000	**	296000	**	561000	**
WTD. AVO	3.	2939	945	581	w	100	**	190	**	260

	SP	ECIFIC CO	NDUCTANCE	(MICROMH		25 DEG. CONCE-DAILY	, WATER	YEAR OCTO	BER 1979 1	TO SEPTEMI	BER 1980	
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1010 995 987 978 1010	1030 1020 1020 1010 1030	1000 970 1020 1020 1020	1060 1020 998 1030 1030	1040 1010 1010 1010 1010	1050 1050 1060 1070 1070	1050 1040 1040 1030 1050	1150 1140 1160 1140 1140	1010 1050 1090 1070 1080	1090 1090 1100 1090 1100	1100 1110 1110 1120 1140	941 947 947 945 947
6 7 8 9	1020 1010 1000 1020 1020	1030 1030 1010 1000 982	1010 1000 978 999 992	1030 1020 1020 1020 1020	1010 1000 992 1000 1010	1050 1080 1090 1080 1080	1050 1050 1080 1110 1120	1150 1130 1090 1130 1160	1090 1080 1080 1050 1080	1090 1150 1110 1100 1100	1150 1150 1140 1150 1050	950 929 918 944 926
11 12 13 14	973 991 970 995 990	999 1010 1020 1010 1030	925 1010 1020 1010 1020	1020 1020 1020 1020 1020	1020 1020 1020 1010 1010	1070 1070 1070 1030 864	1130 1130 1140 1150 1130	1140 1090 1020 1100 1060	1040 1030 1080 1050 1050	1100 1100 1090 1100 1090	710 466 338 432 462	946 941 946 943 966
16 17 18 19 20	984 997 988 997 1000	1020 990 1000 994 1010	1020 1030 1030 1030 1030	1020 1020 1030 1020 1020	1030 1030 1020 1030 1030	1060 1050 1050 1020 1040	1120 1140 1130 1130 1130	620 947 802 843 755	1070 1070 1080 1070 1080	1100 1080 1100 1090 1090	542 661 758 817 861	961 961 963 957 959
21 22 23 24 25	1000 1000 990 1010 1020	1010 1000 1020 1010 1010	1020 1020 1020 1020 1010	1020 1020 1020 1010 1010	1030 1020 1020 1020 1010	1060 1080 1060 1050 1060	1130 1130 1120 1110 1170	740 944 1020 1050	1080 1080 1080 1080 1080	1090 1080 1090 1090 1080	883 903 897 884 847	959 959 960 970 971
26 27 28 29 30 31	1020 1020 1020 1020 1030 1030	995 996 990 999 970	1010 1010 1020 1010 1030 1030	1020 1020 1020 1010 1000 1000	1020 1020 1020 1030	1050 1050 1070 1070 1060 1070	1120 1130 1120 1130 1140	1050 1020 531 588 652 836	1080 1080 1080 1080 1090	1100 1080 1080 1080 1090 1090	859 878 892 919 920 925	951 921 961 973 745
MEAN	1000	1010	1010	1020	1020	1050	1110	976	1070	1090	873	944

RIO GRANDE BASIN 08459200 RIO GRANDE AT PIPELINE CROSSING BELOW LAREDO, TX

541

LOCATION.--Lat 27°24'09", long 99°29'18", Webb County, Hydrologic Unit 13080002, 8.7 mi (14.0 km) downstream from Texas-Mexican Railway Bridge near Laredo, and at mile 352.69 (567.48 km).

PERIOD OF RECORD. -- Chemical analyses: November 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
16 NOV	1300	1300	1000	8.1	26.5	5.7	71	
15	1149	900	1010	8.0	16.0	7.0	70	
DEC 20 JAN	0940	2650	1000	8.4	10.0	10.4	93	
24	0934	2700	988	8.3	13.0	9.3	88	
FEB 21 MAR	1316	2580	1010	8.3	17.0	9.6	100	
26	1338	5300	1060	8.2	19.0	8.2	89	
APR 22	0800	900	1170	7.8	21.5	4.8	55	
MAY 27 JUN	1130	6700	1040	8.2	28.0	6.4	82	
25	1100	3300	1100	8.2	29.0	6.7	88	
23 AUG	1216	3600	1100	8.2	30.0	6.7	89	
18	1640	4340	808	8.1	29.0	6.4	84	
16	0747	2140	947	7.9	28.0	5.6	72	

DATE	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)
OCT						
16 NOV	2.4	530000	K31000			35
15	1.6	380000	44000		24	14
DEC						
20 JAN	1.7	K76000	K14000			20
24	1.1	60000	9600	U.		16
FEB						
21 MAR	1.8	38000	2300			23
26	1.9	K180000	K42000			58
APR						
22 MAY	4.4	4100000	150000		77	13
27	1.6	>7200	7200	44		340
JUN				***		
25 JUL	1.4	52000	K17000	140	0	65
23	1.1	52000	7000	1		18
AUG						0.15
18 SEP	1.3	K920000	K280000			141
16	2.3	1000000	90000		4-2	59

08461200 INTERNATIONAL FALCON RESERVOIR NEAR FALCON HEIGHTS, TX

LOCATION.--Lat 26°33'25", long 99°10'05", Starr County, Hydrologic Unit 13080003, on upstream side of Falcon Dam in International Falcon Reservoir, about 1 mi (2 km) west of Falcon Heights, 75 mi (121 km) downstream from Laredo, and at mile 274.81 (442.17 km).

PERIOD OF RECORD. -- Chemical and biochemical analyses: October 1976 to current year.

263351099105701 INTERNATIONAL FALCON RESERVOIR SITE AR WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
JAN 04 04 04 04 APR	1120 1122 1124 1126 1130	1.0 10 20 30 44	1010 1010 1010 1010 1010	8.2 8.2 8.2 8.1 8.2	15.5 15.5 15.0 15.0	8.9 8.8 8.7 8.6 8.9	89 88 86 85 88
30 30 30 30	0935 0937 0939 0941 0943 0945	1.0 10 20 30 40 50	1070 1070 1070 1070 1070 1070	8.4 8.4 8.3 8.3	21.0 21.0 21.0 21.0 21.0 21.0	7.3 7.3 7.3 7.2 7.0 6.7	83 83 83 82 80 76
SEP 16 16 16 16	1410 1412 1414 1416 1418 1420	1.0 10 20 30 40 51	1040 1040 1040 1050 1050	8.1 8.2 8.1 8.0 8.0	30.0 28.5 28.5 28.5 28.5 28.5	7.7 8.1 7.2 6.9 6.9	100 103 91 87 87 86

263337099100101 INTERNATIONAL FALCON RESERVOIR SITE AC WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
JAN										
04	1030	1.0	1010	8.2	15.0	1.10	8.9	88	260	150
04	1032	10	1010	8.2	15.0		8.8	87		
04	1034	20	1010	8.2	15.0		8.7	86		
04	1036	30	1010	8.2	15.0		8.7	86		
04	1038	40	1010	8.1	15.0		8.7	86		
04	1040	50	1010	8.1	15.0		8.8	87		
04	1042	60	1010	8.2	15.0		8.8	87		
04	1044	70	1010	8.1	15.0		8.8	87		
04	1046	80	1010	8.1	15.0		8.9	88		
04	1048	90	1010	8.2	15.0		8.9	88		
04	1050	102	1010	8.1	15.0		9.0	89	250	150
APR										
30	0840	1.0	1070	7.3	21.0	1.10	7.3	83	280	160
30	0842	10	1070	8.3	21.0		7.3	83		
30	0844	20	1070	8.3	21.0		7.2	82		
30	0846	30	1070	8.3	21.0		7.2	82		
30	0848	40	1070	7.2	21.0		6.9	78		
30	0850	50	1070	8.2	20.5	1	6.8	76		
30	0852	60	1070	8.2	20.5		6.6	74		
30	0854	70	1070	7.0	20.0		5.4	60		
30	0856	80	1070	7.8	20.0		5.0	56		
30	0858	90	1070	7.7	20.0		4.1	46		
30	0900	95	1070	6.6	19.5		3.2	36	280	160
SEP		5.17	0.000	2.0	70 % - 20	200	212		124	152
16	1330	1.0	1050	8.1	30.0	1.16	7.5	97	270	170
16	1332	5.0	1050	8.2	29.5		8.3	106		7.7
16	1334	10	1050	8.2	28.5		8.0	101		
16	1336	20	1060	8.0	28.5		6.9	87		
16	1338	30	1060	8.0	28.5		6.6	84		
16	1340	40	1060	8.0	28.0		6.6	82		
16	1342	50	1060	8.0	28.0		6.5	81		
16	1344	60	1060	7.9	28.0		6.3	79		+-
16	1346	70	1070	7.8	28.0		5.5	69		
16	1348	80	1070	7.7	27.5		5.0	62		
16	1350	94	1070	7.6	27.5	17	4.3	54	270	170

263337099100101 INTERNATIONAL FALCON RESERVOIR SITE AC--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

INTERNATIONAL FALCON RESERVOIR NEAR FALCON HEIGHTS, TX--Continued

DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	BONATE (MG/L	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
JAN 04	71	19	120	3.3	5.2	130	0	240	110
04	/		120	3.3	3.2	130		240	
04							1		
04	1								
04			122						
04				==		- 25			
04									
04	70	19	120	3.3	5.3	130		240	110
APR 30	76	21	120	3.1	6.1	140	0	250	120
30	70		120	3.1	0.1	140		250	120
30							100		
30					77				- 25
30			1					1,44	
30				11					7.7
30				11					
30									
30 SEP	78	21		3.1	6.2	150	0	250	120
16	73	21	110	2.9	6.0	120	0	250	120
16			11					25	
16						7.5		52	
16									1 1
16									77
16			1						
16	74	21	100	3.2	6.2	120		250	120
16	74	21	120	3.2	0.2	120	0	250	130
DATE	RIDE, DIS-	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JAN	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
JAN 04	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
JAN 04 04	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
JAN 04 04 04	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
JAN 04 04 04	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
JAN 04 04 04 04 04	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .7075	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
JAN 04 04 04 04 04 04	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .7075	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
JAN 04 04 04 04 04 04 04	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .7075	GEN, TOTAL (MG/L AS N) .80 .94	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
JAN 04 04 04 04 04 04 04 04 04 04	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AM- MONIA - ORGANIC TOTAL (MG/L AS N) -707573	GEN, TOTAL (MG/L AS N) .80 -94 .84	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
JAN 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 30	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .70757573	GEN, TOTAL (MG/L AS N) .80 .94 .84	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
JAN 04 04 04 04 04 04 04 04 04 04 04 04 04 04 30 30	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AM- MONIA - ORGANIC TOTAL (MG/L AS N) -707573	GEN, TOTAL (MG/L AS N) .80 -94 .84	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
JAN 04 04 04 04 04 04 04 04 04 04 04 04 30 30 30 30 30 30 30 30	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N) .10	GEN, AM- MONIA - ORGANIC TOTAL (MG/L AS N) .707573 .46	GEN, TOTAL (MG/L AS N) .80 	PHORUS, TOTAL (MG/L AS P) .010	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
JAN 04 04 04 04 04 04 04 04 04 04 04 04 30 30 30 30 30 30 30 30 30 30 30 30 30	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N) .10	GEN, AM- MONIA - ORGANIC TOTAL (MG/L AS N) -707573 -4691	GEN, TOTAL (MG/L AS N) .80 	PHORUS, TOTAL (MG/L AS P) .010	DIS- SOLVED (UG/L AS FE) <10 10 <10 <10	NESE, DIS- SOLVED (UG/L AS MN)
JAN 04 04 04 04 04 04 04 04 04 04 30 30 30 30 30	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N) .10	GEN, AM- MONIA - ORGANIC TOTAL (MG/L AS N) .7075 .7573 .4691	GEN, TOTAL (MG/L AS N) .80 	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE) <10 10 <10 <10	NESE, DIS- SOLVED (UG/L AS MN)
JAN 04 04 04 04 04 04 04 04 04 04 04 04 30	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N) .10	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .707573 .469153	GEN, TOTAL (MG/L AS N) .80	PHORUS, TOTAL (MG/L AS P) .010 .020 .010 .020 .020 .020 .020	DIS- SOLVED (UG/L AS FE) <10 10 <10 <10 11 <10 30	NESE, DIS- SOLVED (UG/L AS MN)
JAN 04 04 04 04 04 04 04 04 04 04 30 30 30 30 30 30 30	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N) .10	GEN, AM- MONIA - ORGANIC TOTAL (MG/L AS N) .7075 .7573 .4691	GEN, TOTAL (MG/L AS N) .80 	PHORUS, TOTAL (MG/L AS P) .010 .010 .020 .010 .020 .020 .020	DIS- SOLVED (UG/L AS FE) <10 10 <10 <10	NESE, DIS- SOLVED (UG/L AS MN)
JAN 04 04 04 04 04 04 04 04 04 04 04 03 30 30 30 30 30 30 30 30 30 30 30 30 30 30 SEP	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N) .10	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .707573 .469153	.80 .80 .94 .54 .54 .96	PHORUS, TOTAL (MG/L AS P) .010 .010 .020 .010 .020 .020 .020	DIS- SOLVED (UG/L AS FE) <10 (10 <10 <10 30	NESE, DIS- SOLVED (UG/L AS MN)
JAN 04 04 04 04 04 04 04 04 04 04 04 04 03 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 31 30 30 31 30 31	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTITUENTS, DIS-SOLVED (MG/L) 641	GEN, NO2+NO3 TOTAL (MG/L AS N) .10	GEN, AM-MONIA + ORGANIC TOTAL (MG/L AS N) .70 .75 .75 .73 .4691 .53	GEN, TOTAL (MG/L AS N) .80	PHORUS, TOTAL (MG/L AS P) .010 .010 .020 .010 .020 .020 .030 .060 .030	DIS- SOLVED (UG/L AS FE) <1011 <10 <10 30 380 <10	NESE, DIS- SOLVED (UG/L AS MN)
JAN 04 04 04 04 04 04 04 04 04 04 30 30 30 30 30 30 30 30 30 31 30 31	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 641 639 674 685	GEN, NO2+NO3 TOTAL (MG/L AS N) .10	GEN, AM- MONIA - ORGANIC TOTAL (MG/L AS N) .707573 .46915366	.80 .80 .94 .54 .54 .54 .54 .54 .54	PHORUS, TOTAL (MG/L AS P) .010 .010 .020 .010 .020 .020 .030 .030 .030	DIS- SOLVED (UG/L AS FE) <10 <10 <10 <10 30 30 380	NESE, DIS- SOLVED (UG/L AS MN) <1 0 1 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40 <1 40
JAN 04 04 04 04 04 04 04 04 04 04 04 30 30 30 30 30 30 31 30 31 30 31	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 641 639 674 685 652	GEN, NO2+NO3 TOTAL (MG/L AS N) .10	GEN, AM-MONIA + ORGANIC TOTAL (MG/L AS N) .70 .75 .75 .73 .46 .91 .53 .66 .74 .74	.80 .80 .94	PHORUS, TOTAL (MG/L AS P) .010 .010 .020 .010 .020 .020 .030 .030 .030	DIS- SOLVED (UG/L AS FE) <10 <10 <10 <10 30 380 <10	NESE, DIS- SOLVED (UG/L AS MN)
JAN 04 04 04 04 04 04 04 04 04 30 30 30 30 30 30 30 30 30 31 30 30 31 30 31	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SI02)	SUM OF CONSTITUENTS, DISSOLVED (MG/L) 641	GEN, NO2+NO3 TOTAL (MG/L AS N) .10	GEN, AM- MONIA - ORGANIC TOTAL (MG/L AS N) -707573 -46915366 -74	.80 .80 .94 .94 .54 .54 .96 .96	PHORUS, TOTAL (MG/L AS P) .010	DIS- SOLVED (UG/L AS FE) <10 (10 <10 <10 30 380 <10	NESE, DIS- SOLVED (UG/L AS MN) <1 0 1 <1 0 1 <41 40 <1 1
JAN 04 04 04 04 04 04 04 04 04 04 04 04 04 03 30 30 30 30 30 30 30 30 30 30 31 30 30 31 30 31	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 641 639 674 685 652	GEN, NO2+NO3 TOTAL (MG/L AS N) .10	GEN, AM-MONIA + ORGANIC TOTAL (MG/L AS N) .70 .75 .75 .73 .46 .91 .53 .66 .74 .74	.80 .80 .94	PHORUS, TOTAL (MG/L AS P) .010 .010 .020 .010 .020 .020 .030 .030 .030	DIS- SOLVED (UG/L AS FE) <10 <10 <10 <10 30 380 <10	NESE, DIS- SOLVED (UG/L AS MN)
JAN 04 04 04 04 04 04 04 04 04 04 04 30	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTITUENTS, DIS-SOLVED (MG/L) 641	GEN, NO2+NO3 TOTAL (MG/L AS N) .10	GEN, AM-MONIA - 10 RGANIC TOTAL (MG/L AS N) - 70	GEN, TOTAL (MG/L AS N) .80	PHORUS, TOTAL (MG/L AS P) .010 .020 .020 .020 .030 .060 .030 .060 .030	DIS- SOLVED (UG/L AS FE) <10 10 <10 <10 30 380 <10 11 11 10 11 10 11 10 11 10 11 10	NESE, DIS- SOLVED (UG/L AS MN) <1 0 1 <1 10 <1 10 < 11 <1 10 11 <1 10 11 <1 10 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11 <1 11
JAN 04 04 04 04 04 04 04 04 04 04 30 30 30 30 30 30 31 30 30 31 30 31	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTITUENTS, DISSOLVED (MG/L) 641	GEN, NO2+NO3 TOTAL (MG/L AS N) .10	GEN, AM- MONIA - ORGANIC TOTAL (MG/L AS N) .707573 .46915366 .74	.80 .80 .80 .94 .54 .54 .54 .54 .54 .54 .54 .57 .82 .74 .58 .82	PHORUS, TOTAL (MG/L AS P) .010	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN) <1 1 <1 1 40 <1

INTERNATIONAL FALCON RESERVOIR NEAR FALCON HEIGHTS, TX--Continued

263326099092201 INTERNATIONAL FALCON RESERVOIR SITE AL
WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
JAN							
04	1150	1.0	1010	8.2	15.5	9.0	90
04	1152	10	1010	8.2	15.5	9.0	90
04	1154	20	1010	8.2	15.5	8.9	89
04	1156	30	1010	8.2	15.0	8.8	87
04	1158	40	1010	8.2	15.0	8.8	87
04	1200	54	1010	8.1	15.0	8.6	8.5
APR	E CALL	V 9	7.45.5		25.8	77.5	40.7
30	0920	1.0	1070	8.3	21.0	7.3	83
30	0922	10	1070	8.3	21.0	7.2	82
30	0924	20	1070	8.2	20.5	6.8	76
30	0926	33	1070	8.2	20.5	6.7	75
SEP 16	1315	1.0	1060	8.1	29.5	7.5	96
16	1317	10	1060	8.1	28.5	7.1	90
16	1319	20	1060	8.0	28.5	6.6	84
16	1321	30	1060	7.9	28.5	6.4	81
	1321	20	1000		20.5	0.4	0.

263815099124901 INTERNATIONAL FALCON RESERVOIR SITE BR WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
JAN							
04	1255	1.0	1020	8.2	15.5	8.7	87
04	1258	10	1020	8.2	15.5	8.7	87
04	1300	20	1020	8.2	15.5	8.6	86
04	1302	30	1020	8.1	15.5	8.5	85
04	1304	40	1020	8.1	15.5	8.4	84
04	1306	50	1020	8.1	15.5	8.4	84
04	1308	60	1020	8.1	15.5	8.4	84
04	1310	73	1020	8.1	15.0	8.4	83
APR	1027	1.0	1070	8.4	21.5	7.5	86
30	1027	10	1070	8.4	21.5	7.5	86
30	1031	20	1070	8.4	21.5	7.5	
30	1033	30	1070	8.4	21.5	7.5	86
30	1035	40	1070	8.4	21.5	7.5	86
30	1037	52	1070	8.4	21.5	7.1	82
SEP	V 6 = 0						
16	1450	1.0	1020	8.2	31.0	7.8	103
16	1452	10	1020	8.3	29.0	8.4	108
16	1454	20	1020	8.1	29.0	7.1	91
16	1456	30	1020	8.1	29.0	6.7	86
16	1458	40	1020	8.0	29.0	6.5	83

545

INTERNATIONAL FALCON RESERVOIR NEAR FALCON HEIGHTS, TX--Continued

263815099111901 INTERNATIONAL FALCON RESERVOIR SITE BC
WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

JAN 04 1225 1.0 1020 8.2 15.5 8.5 85 04 1230 10 1020 8.1 15.5 8.5 85 04 1232 20 1020 8.1 15.5 8.2 82 04 1234 30 1020 8.1 15.5 8.2 82 04 1238 50 1020 8.1 15.5 8.2 82 04 1240 60 1020 8.1 15.5 8.2 82 04 1240 70 1020 8.1 15.5 8.2 82 04 1242 70 1020 8.1 15.5 8.2 82 04 1244 80 1020 8.1 15.5 8.2 82 04 1244 80 1020 8.1 15.5 8.2 82 04 1244 80 1020 8.1 15.5 8.2 82 04 1245 70 1020 8.1 15.5 8.2 82 04 1246 80 1020 8.1 15.5 8.2 82 04 125 70 1020 8.1 15.5 8.2 82 04 125 70 1020 8.1 15.5 8.2 82 04 126 70 1020 8.1 15.5 8.2 82 04 127 70 1020 8.1 15.5 8.2 82 04 126 70 1020 8.1 15.5 8.2 82 04 127 70 1020 8.1 15.5 8.2 82 04 127 70 1020 8.1 15.5 8.2 82 04 127 70 1020 8.1 15.5 8.2 82 04 127 70 1020 8.1 15.5 8.2 82 04 127 70 1020 8.1 15.5 8.2 82 04 1015 1.0 1070 8.4 21.5 7.3 84 30 1007 10 1070 8.4 21.5 7.3 84 30 1011 30 1070 8.4 21.5 7.3 84 30 1015 50 1070 8.4 21.5 7.3 84 30 1015 50 1070 8.4 21.5 7.4 85 30 1015 50 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1017 70 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.8 103 16 1430 1.0 1020 8.3 29.0 7.9 101 16 1436 30 1030 8.0 28.5 6.2 78 16 1436 30 1030 8.0 28.5 6.2 78 16 1438 40 1030 8.0 28.5 6.2 78 16 1440 50 1030 8.0 28.5 6.2 78 16 1440 50 1030 7.8 28.5 5.0 63 16 1444 71 1080 7.3 28.0 2.3 29	DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
04 1225 1.0 1020 8.2 15.5 8.5 85 04 1230 10 1020 8.1 15.5 8.3 83 04 1234 30 1020 8.1 15.5 8.2 82 04 1238 50 1020 8.1 15.5 8.2 82 04 1240 60 1020 8.1 15.5 8.2 82 04 1244 80 1020 8.1 15.5 8.2 82 04 1244 80 1020 8.1 15.5 8.2 82 04 1244 80 1020 8.1 15.5 8.2 82 04 1005 1.0 1070 8.1 15.5 8.2 82 04 1010 1020 8.1 15.5 8.2 82 04 1010 1020 8.1 15.5 8.2 82 04 1244 80 1020 8.1 15.5 8.2 82 04 1244 80 1020 8.1 15.5 8.2 82 04 125 7.3 84 30 1005 1.0 1070 8.4 21.5 7.3 84 30 1007 10 1070 8.4 21.5 7.3 84 30 1009 20 1070 8.4 21.5 7.3 84 30 1011 30 1070 8.4 21.5 7.3 84 30 1013 40 1070 8.4 21.5 7.3 84 30 1015 50 1070 8.4 21.5 7.3 84 30 1017 60 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1019 75 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1019 75 1070 7.8 20.5 3.3 37 8EP 16 1430 1.0 1020 8.2 30.5 7.8 103 16 1434 20 1020 8.3 29.0 7.9 101 16 1434 20 1020 8.3 29.0 7.9 101 16 1438 40 1030 8.0 28.5 6.2 78 16 1438 40 1030 8.0 28.5 6.2 78 16 1438 40 1030 7.8 28.5 5.0 63 16 1440 50 1030 7.8 28.5 5.0 63	IAN							
04 1230 10 1020 8.1 15.5 8.5 85 04 1232 20 1020 8.1 15.5 8.3 83 04 1234 30 1020 8.1 15.5 8.2 82 04 1236 40 1020 8.1 15.5 8.2 82 04 1240 60 1020 8.1 15.5 8.2 82 04 1244 80 1020 8.1 15.5 8.2 82 04 1244 80 1020 8.1 15.5 8.2 82 04 1244 80 1020 8.1 15.5 8.2 82 04 1244 80 1020 8.1 15.5 8.2 82 04 1244 80 1020 8.1 15.5 8.2 82 04 1200 8.1 15.5 8.2 82 04 1200 8.1 15.5 8.2 82 04 1200 8.1 15.5 8.2 82 04 1200 8.1 15.5 8.2 82 05.0 1000 8.1 15.5 8.2 82 06.0 1000 8.1 15.5 8.2 82 06.0 1000 8.1 15.5 8.2 82 07.0 1000 8.1 15.5 8.2 82 08.0 1005 1.0 1070 8.4 21.5 7.3 84 08.0 1007 10 1070 8.4 21.5 7.3 84 08.0 1009 20 1070 8.4 21.5 7.3 84 08.0 1011 30 1070 8.4 21.5 7.3 84 08.0 1013 40 1070 8.4 21.5 7.3 84 08.0 1013 40 1070 8.4 21.5 7.4 85 08.0 1015 50 1070 8.4 21.5 7.4 85 08.0 1017 60 1070 8.4 21.5 7.4 85 08.0 1017 60 1070 8.4 21.5 7.4 85 08.0 1017 60 1070 8.4 21.5 7.4 85 08.0 1017 60 1070 8.4 21.5 7.4 85 08.0 1017 60 1070 8.4 21.5 7.4 85 08.0 1017 60 1070 8.4 21.0 7.2 82 08.0 1019 75 1070 7.8 20.5 3.3 37 08.0 1014 10 1020 8.3 29.0 7.9 101 16 1434 20 1020 8.3 29.0 7.9 101 16 1438 40 1030 8.0 28.5 6.2 78 16 1438 40 1030 8.0 28.5 6.2 78 16 1438 40 1030 8.0 28.5 6.2 78 16 1440 50 1030 7.8 28.5 5.0 63		1225	1.0	1020	8.2	15.5	8.5	85
04 1232 20 1020 8.1 15.5 8.3 83 04 1234 30 1020 8.1 15.5 8.2 82 04 1238 50 1020 8.1 15.5 8.2 82 04 1240 60 1020 8.1 15.5 8.2 82 04 1242 70 1020 8.1 15.5 8.2 82 04 1244 80 1020 8.1 15.5 8.2 82 04 1244 80 1020 8.1 15.5 8.2 82 04 1244 80 1020 8.1 15.5 8.1 81 81 81 81 81 81 81 81 81 81 81 81 81								
04 1234 30 1020 8.1 15.5 8.2 82 04 1236 40 1020 8.1 15.5 8.2 82 04 1238 50 1020 8.1 15.5 8.2 82 04 1240 60 1020 8.1 15.5 8.2 82 04 1244 80 1020 8.1 15.5 8.2 82 04 1244 80 1020 8.1 15.5 8.2 82 04 1244 80 1020 8.1 15.5 8.2 82 04 1244 80 1020 8.1 15.5 8.1 81 81 81 81 81 81 81 81 81 81 81 81 81								
04 1236 40 1020 8.1 15.5 8.2 82 04 1240 60 1020 8.1 15.5 8.2 82 04 1240 60 1020 8.1 15.5 8.2 82 04 1242 70 1020 8.1 15.5 8.2 82 04 1242 70 1020 8.1 15.5 8.1 81 81 APR 30 1007 10 1070 8.4 21.5 7.3 84 30 1007 10 1070 8.4 21.5 7.3 84 30 1001 30 1009 20 1070 8.4 21.5 7.3 84 30 1011 30 1070 8.4 21.5 7.3 84 30 1011 30 1070 8.4 21.5 7.3 84 30 1011 30 1070 8.4 21.5 7.3 84 30 1019 50 1070 8.4 21.5 7.3 84 30 1019 8.4 21.5 7.3 84 30 1019 8.4 21.5 7.3 84 30 1019 8.4 21.5 7.3 84 30 1019 8.4 21.5 7.3 84 30 1019 8.4 21.5 7.3 84 30 1019 8.4 21.5 7.4 85 30 1019 70 8.4 21.5 7.4 85 30 1019 70 8.4 21.5 7.4 85 30 1019 70 8.4 21.5 7.4 85 30 1019 70 8.4 21.5 7.4 85 30 1019 70 8.4 21.5 7.4 85 30 1019 70 8.4 21.5 7.4 85 30 1019 70 8.4 21.0 7.2 82 30 1019 70 8.4 21.0 7.2 82 30 1019 70 8.4 21.0 7.2 82 30 1019 70 8.4 21.0 7.2 82 30 1019 70 8.4 21.0 7.2 82 30 1019 70 8.4 21.0 7.2 82 30 1019 70 8.4 21.0 7.2 82 30 1019 70 7.8 8.5 8.5 6.8 86 86 86 86 86 86 86 86 86 86 86 86 86								
04 1238 50 1020 8.1 15.5 8.2 82 04 1240 60 1020 8.1 15.5 8.2 82 04 1242 70 1020 8.1 15.5 8.2 82 04 1244 80 1020 8.1 15.5 8.1 81 81 82 82 04 1244 80 1020 8.1 15.5 8.1 81 81 82 82 04 1005 1.0 1070 8.4 21.5 7.3 84 30 1007 10 1070 8.4 21.5 7.3 84 30 1009 20 1070 8.4 21.5 7.3 84 30 1011 30 1070 8.4 21.5 7.3 84 30 1015 50 1070 8.4 21.5 7.3 84 30 1015 50 1070 8.4 21.5 7.3 84 30 1015 50 1070 8.4 21.5 7.4 85 30 1015 50 1070 8.4 21.5 7.4 85 30 1015 50 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1019 75 1070 7.8 20.5 3.3 37 8EP	04	1236	40	1020				
04 1240 60 1020 8.1 15.5 8.2 82 04 1242 70 1020 8.1 15.5 8.2 82 04 1244 80 1020 8.1 15.5 8.1 81 81 APR 30 1005 1.0 1070 8.4 21.5 7.3 84 30 1007 10 1070 8.4 21.5 7.3 84 30 1009 20 1070 8.4 21.5 7.3 84 30 1011 30 1070 8.4 21.5 7.3 84 30 1011 30 1070 8.4 21.5 7.3 84 30 1011 30 1070 8.4 21.5 7.3 84 30 1011 30 1070 8.4 21.5 7.3 84 30 1011 30 1070 8.4 21.5 7.3 84 30 1015 50 1070 8.4 21.5 7.4 85 30 1015 50 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1019 75 1070 7.8 20.5 3.3 37 SEP 16 1430 1.0 1020 8.2 30.5 7.8 103 16 1432 10 1020 8.3 29.0 7.9 101 16 1434 20 1020 8.3 29.0 7.9 101 16 1434 20 1020 8.3 29.0 7.9 101 16 1434 20 1020 8.3 29.0 7.9 101 16 1438 40 1030 8.0 28.5 6.8 86 16 1438 40 1030 8.0 28.5 6.2 78 16 1440 50 1030 7.8 28.5 5.0 63 16 1444 50 1070 7.6 28.0 3.5 44		1238	50	1020	8.1	15.5	8.2	82
04 1244 80 1020 8.1 15.5 8.1 81 APR 30 1005 1.0 1070 8.4 21.5 7.3 84 30 1007 10 1070 8.4 21.5 7.3 84 30 1011 30 1070 8.4 21.5 7.3 84 30 1011 30 1070 8.4 21.5 7.3 84 30 1011 30 1070 8.4 21.5 7.3 84 30 1015 50 1070 8.4 21.5 7.4 85 30 1015 50 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1019 75 1070 7.8 20.5 3.3 37 SEP 16 1430 1.0 1020 8.2 30.5 7.8 103 16 1434 20 1020 8.3 29.0 7.9 101 16 1434 20 1020 8.3 29.0 7.9 101 16 1436 30 1030 8.0 28.5 6.2 78 16 1438 40 1030 8.0 28.5 6.2 78 16 1438 40 1030 8.0 28.5 6.1 77 16 1440 50 1030 7.8 28.5 5.0 63	04	1240	60	1020	8.1	15.5		
04 1244 80 1020 8.1 15.5 8.1 81 APR 30 1005 1.0 1070 8.4 21.5 7.3 84 30 1007 10 1070 8.4 21.5 7.3 84 30 1011 30 1070 8.4 21.5 7.3 84 30 1011 30 1070 8.4 21.5 7.3 84 30 1013 40 1070 8.4 21.5 7.3 84 30 1015 50 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1019 75 1070 7.8 20.5 3.3 37 SEP 16 1430 1.0 1020 8.2 30.5 7.8 103 16 1434 20 1020 8.3 29.0 7.9 101 16 1434 20 1020 8.3 29.0 7.9 101 16 1436 30 1030 8.0 28.5 6.2 78 16 1438 40 1030 8.0 28.5 6.2 78 16 1440 50 1030 7.8 28.5 5.0 63 16 1440 50 1030 7.8 28.5 5.0 63	04	1242	70	1020	8.1	15.5	8.2	82
APR 30 1005 1.0 1070 8.4 21.5 7.3 84 30 1007 10 1070 8.4 21.5 7.3 84 30 1009 20 1070 8.4 21.5 7.3 84 30 1011 30 1070 8.4 21.5 7.3 84 30 1013 40 1070 8.4 21.5 7.3 84 30 1015 50 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1019 75 1070 7.8 20.5 7.8 82 30 1019 8.4 21.5 7.4 85 30 1019 8.4 21.5 7.4 85 30 1019 75 1070 7.8 20.5 7.8 103 30 1019 75 1070 7.8 20.5 7.8 103 16 1430 1.0 1020 8.2 30.5 7.8 103 16 1434 20 1020 8.3 29.0 7.9 101 16 1434 20 1020 8.3 29.0 7.9 101 16 1438 40 1030 8.0 28.5 6.2 78 16 1438 40 1030 8.0 28.5 6.2 78 16 1440 50 1030 7.8 28.5 5.0 63 16 14440 50 1030 7.8 28.5 5.0 63	04	1244	80	1020	8.1	15.5	8.1	81
30 1007 10 1070 8.4 21.5 7.3 84 30 1009 20 1070 8.4 21.5 7.3 84 30 1011 30 1070 8.4 21.5 7.3 84 30 1011 30 1070 8.4 21.5 7.3 84 30 1015 50 1070 8.4 21.5 7.4 85 30 1015 50 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1019 75 1070 7.8 20.5 3.3 37 SEP 16 1430 1.0 1020 8.2 30.5 7.8 103 16 1432 10 1020 8.3 29.0 7.9 101 16 1434 20 1020 8.3 29.0 7.9 101 16 1434 20 1020 8.1 28.5 6.8 86 16 1438 40 1030 8.0 28.5 6.2 78 16 1438 40 1030 8.0 28.5 6.1 77 16 1440 50 1030 7.8 28.5 5.0 63								
30 1009 20 1070 8.4 21.5 7.3 84 30 1011 30 1070 8.4 21.5 7.3 84 30 1013 40 1070 8.4 21.5 7.4 85 30 1015 50 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.4 85 30 1017 76 1070 8.4 21.5 7.4 85 30 1019 75 1070 7.8 20.5 3.3 37 SEP 16 1430 1.0 1020 8.2 30.5 7.8 103 16 1432 10 1020 8.3 29.0 7.9 101 16 1434 20 1020 8.3 29.0 7.9 101 16 1434 20 1020 8.1 28.5 6.8 86 16 1438 40 1030 8.0 28.5 6.2 78 16 1438 40 1030 8.0 28.5 6.1 77 16 1440 50 1030 7.8 28.5 5.0 63 16 1440 50 1030 7.8 28.5 5.0 63 16 1442 60 1070 7.6 28.0 3.5 44	30	1005	1.0	1070	8.4	21.5	7.3	84
\$\frac{30}{1011}\$ \$\frac{30}{40}\$ \$\frac{1070}{1070}\$ \$\frac{8.4}{8.4}\$ \$\frac{21.5}{21.5}\$ \$\frac{7.3}{7.4}\$ \$\frac{85}{85}\$ \$\frac{30}{1015}\$ \$\frac{50}{50}\$ \$\frac{1070}{1070}\$ \$\frac{8.4}{8.4}\$ \$\frac{21.5}{21.5}\$ \$\frac{7.4}{7.4}\$ \$\frac{85}{30}\$ \$\frac{1017}{60}\$ \$\frac{60}{1070}\$ \$\frac{8.4}{8.4}\$ \$\frac{21.5}{21.5}\$ \$\frac{7.2}{7.2}\$ \$\frac{82}{30}\$ \$\frac{1017}{60}\$ \$\frac{70}{7.8}\$ \$\frac{20.5}{20.5}\$ \$\frac{3.3}{37}\$ \end{sep} \text{SEP} \$\text{16}\$ \$\frac{1430}{1430}\$ \$\frac{1.0}{1020}\$ \$\frac{8.2}{8.3}\$ \$\frac{30.5}{29.0}\$ \$\frac{7.8}{7.9}\$ \$\frac{103}{101}\$ \$\frac{16}{1434}\$ \$\frac{1434}{20}\$ \$\frac{1020}{1020}\$ \$\frac{8.1}{8.3}\$ \$\frac{29.0}{29.0}\$ \$\frac{7.9}{7.9}\$ \$\frac{101}{16}\$ \$\frac{1438}{1438}\$ \$\frac{40}{40}\$ \$\frac{1030}{1030}\$ \$\frac{8.0}{8.0}\$ \$\frac{28.5}{28.5}\$ \$\frac{6.1}{6.1}\$ \$\frac{7.7}{7.6}\$ \$\frac{16}{1440}\$ \$\frac{1440}{50}\$ \$\frac{1030}{1030}\$ \$\frac{7.8}{7.8}\$ \$\frac{28.5}{28.5}\$ \$\frac{5.0}{5.0}\$ \$\frac{63}{54}\$ \$\frac{1440}{50}\$ \$\frac{1070}{7.6}\$ \$\frac{28.5}{28.5}\$ \$\frac{5.5}{5.0}\$ \$\frac{5}{54}\$ \$\frac{43}{56}\$ \$\frac{1070}{7.6}\$ \$\frac{28.5}{56.0}\$ \$\frac{5}{5.0}\$ \$\frac{5}{56.0}\$ \$\frac{5}{56.0}\$ \$\frac{7.5}{56.0}\$ \$\frac{7.5}{56.0	30	1007	10	1070	8.4			84
30 1013 40 1070 8.4 21.5 7.4 85 30 1015 50 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.5 7.2 82 30 1017 75 1070 7.8 20.5 3.3 37 SEP 16 1430 1.0 1020 8.2 30.5 7.8 103 16 1432 10 1020 8.3 29.0 7.9 101 16 1434 20 1020 8.1 28.5 6.8 86 16 1436 30 1030 8.0 28.5 6.2 78 16 1438 40 1030 8.0 28.5 6.2 78 16 1438 40 1030 8.0 28.5 6.1 77 16 1440 50 1030 7.8 28.5 5.0 63 16 1442 60 1070 7.6 28.0 3.5 44	30	1009	20	1070	8.4		7.3	84
30 1015 50 1070 8.4 21.5 7.4 85 30 1017 60 1070 8.4 21.0 7.2 82 30 1019 75 1070 7.8 20.5 3.3 37 SEP 16 1430 1.0 1020 8.2 30.5 7.8 103 16 1432 10 1020 8.3 29.0 7.9 101 16 1434 20 1020 8.1 28.5 6.8 86 16 1438 40 1030 8.0 28.5 6.2 78 16 1438 40 1030 8.0 28.5 6.1 77 16 1440 50 1030 7.8 28.5 5.0 63 16 1442 60 1070 7.6 28.0 3.5 44		1011	30		8.4			
30 1017 60 1070 8.4 21.0 7.2 82 30 1019 75 1070 7.8 20.5 3.3 37 SEP 16 1430 1.0 1020 8.2 30.5 7.8 103 16 1432 10 1020 8.3 29.0 7.9 101 16 1434 20 1020 8.1 28.5 6.8 86 16 1438 40 1030 8.0 28.5 6.2 78 16 1440 50 1030 7.8 28.5 5.0 63 16 1440 50 1030 7.8 28.5 5.0 63	30		40	1070	8.4		7.4	85
30 1019 75 1070 7.8 20.5 3.3 37 SEP 16 1430 1.0 1020 8.2 30.5 7.8 103 16 1432 10 1020 8.3 29.0 7.9 101 16 1434 20 1020 8.1 28.5 6.8 86 16 1436 30 1030 8.0 28.5 6.2 78 16 1438 40 1030 8.0 28.5 6.1 77 16 1440 50 1030 7.8 28.5 5.0 63 16 1442 60 1070 7.6 28.0 3.5 44	30	1015	50	1070	8.4	21.5	7.4	85
SEP 16 1430 1.0 1020 8.2 30.5 7.8 103 16 1432 10 1020 8.3 29.0 7.9 101 16 1434 20 1020 8.1 28.5 6.8 86 16 1436 30 1030 8.0 28.5 6.2 78 16 1438 40 1030 8.0 28.5 6.1 77 16 1440 50 1030 7.8 28.5 5.0 63 16 1442 60 1070 7.6 28.0 3.5 44	30							
16 1430 1.0 1020 8.2 30.5 7.8 103 16 1432 10 1020 8.3 29.0 7.9 101 16 1434 20 1020 8.1 28.5 6.8 86 16 1436 30 1030 8.0 28.5 6.2 78 16 14438 40 1030 8.0 28.5 6.1 77 16 1440 50 1030 7.8 28.5 5.0 63 16 1442 60 1070 7.6 28.0 3.5 44		1019	75	1070	7.8	20.5	3.3	37
16 1432 10 1020 8.3 29.0 7.9 101 16 1434 20 1020 8.1 28.5 6.8 86 16 1436 30 1030 8.0 28.5 6.2 78 16 1438 40 1030 8.0 28.5 6.1 77 16 1440 50 1030 7.8 28.5 5.0 63 16 1442 60 1070 7.6 28.0 3.5 44								
16 1434 20 1020 8.1 28.5 6.8 86 16 1436 30 1030 8.0 28.5 6.2 78 16 1438 40 1030 8.0 28.5 6.1 77 16 1440 50 1030 7.8 28.5 5.0 63 16 1442 60 1070 7.6 28.0 3.5 44	16							
16 1436 30 1030 8.0 28.5 6.2 78 16 1438 40 1030 8.0 28.5 6.1 77 16 1440 50 1030 7.8 28.5 5.0 63 16 1442 60 1070 7.6 28.0 3.5 44								
16 1438 40 1030 8.0 28.5 6.1 77 16 1440 50 1030 7.8 28.5 5.0 63 16 1442 60 1070 7.6 28.0 3.5 44								
16 1440 50 1030 7.8 28.5 5.0 63 16 1442 60 1070 7.6 28.0 3.5 44								
16 1442 60 1070 7.6 28.0 3.5 44								
16 1444 71 1080 7.3 28.0 2.3 29								
	16	1444	71	1080	7.3	28.0	2.3	29

264002099101701 INTERNATIONAL FALCON RESERVOIR SITE CC WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)
JAN							
04	1335	1.0	1020	8.2	16.0	1.10	8.8
04	1337	10	1020	8.2	15.5		8.5
04	1339	20	1020	8.2	15.5		8.3
04	1341	30	1020	8.2	15.5		8.2
04	1343	40	1020	8.2	15.5	**	8.2
04	1345	50	1020	8.2	15.5		8.2
04	1348	63	1020	8.2	15.5	7.7	8.0
APR							
29	1310	1.0	1040	8.3	22.5	1.16	7.6
29	1312	10	1040	8.2	22.5		7.6
29	1314	20	1040	8.2	22.5		7.5
29	1316	30	1040	8.2	22.5		7.4
29	1318	40	1040	8.2	22.0		7.2
29	1320	50	1040	7.9	21.5		5.6
29	1322	62	1040	7.5	21.0		3.5
SEP				100			
16	1510	1.0	1020	8.3	30.5	.98	8.4
16	1512	10	1030	8.2	29.0		7.5
16	1514	20	1030	8.2	28.5		7.1
16	1516	30	1030	8.1	28.5		6.5
16	1518	40	1050	8.0	28.5		5.3
16	1520	50	1070	7.7	28.5		4.5
16	1522	61	1070	7.7	28.0		4.0

INTERNATIONAL FALCON RESERVOIR NEAR FALCON HEIGHTS, TX--Continued
264002099101701 INTERNATIONAL FALCON RESERVOIR SITE CC--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JAN							
04	89	.08	.76	.84	.020	0	0
04	85						
04	83						
04	82				500		
04	82					1440	
04	82					1,55	
04	80	.09	1.1	1.2	.060	0	0
APR	0.0		0.4	0.0		4.0	2.2
29	88	.06	.84	.90	.020	10	10
29	88		14.4		7.7		
29	87						
29	85				57		
29	83						
29	63		70		0.00		7.5
29 SEP	40	.11	.78	.89	.060	10	10
16	109	.00	.90	.90	.020	80	10
16	96	.00	.90	.90	.020		10
16	90		35	11	- 22	100	
16	82	- 22			22		
16	67	22	230	- 12	52.		
16	57		22	- 21			
16	50	.00	1.1	1.1	.050	10	10
	30	.00	1.0	1.0	.000	. 0	10

264328099123101 INTERNATIONAL FALCON RESERVOIR SITE DC WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
JAN									
03	1710	1.0	1040	8.3	15.0	.90	8.5	84	260
03	1712	10	1040	8.3	15.0		8.5	84	
03	1715	20	1040	8.3	15.0		8.5	84	
03	1717	30	1040	8.2	15.0		8.4	83	
03	1720	40	1040	8.2	15.0		8.3	82	
03	1722	50	1040	8.2	15.0		8.1	80	
03	1724	60	1040	8.2	15.0		8.0	79	
03	1726	70	1040	8.2	15.0		7.9	78	
03	1730	83	1060	8.0	15.0		6.8	67	270
APR									
29	1155	1.0	1080	8.2	23.0	.91	7.5	87	280
29	1157	10	1080	8.2	22.5		7.5	87	
29	1159	20	1080	8.2	22.5	++	7.6	88	
29	1201	30	1080	8.2	22.5		7.4	86	
29	1203	40	1080	8.1	22.0		6.8	78	
29	1205	50	1080	8.0	22.0		6.5	75	
29	1207	60	1080	7.7	21.0		4.7	53	
29	1209	70	1080	7.6	21.0		3.6	40	
29	1211	77	1080	7.6	21.0		4.0	45	280
SEP			0.55	0.0	00.5	70	0.7	100	0.50
16	1210	1.0	956	8.3	29.5	.79	8.4	109	250
16	1212	10	958	8.2	29.0		7.2	94	
16	1214	20	962	8.1	28.5		6.9	88 88	
16	1216	30	962	8.1	28.5		6.9		- 22
16	1218	40	966	8.1	28.5		6.6	85	
16	1220	50	966	8.1	28.5	77	6.3 5.7	81 73	55
16	1222	60	972	8.0			4.8	62	
16	1224	70	982	7.8	28.5		3.7	47	240
16	1226	76	993	7.6	28.5		3.7	47	240

547

264328099123101 INTERNATIONAL FALCON RESERVOIR SITE DC--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
JAN	150	73	20	120	3.2	5.0	140	0	250
03	150	/3	20	120	3.2	5.0	140		250
03									
03									
03							3.		
03			22						
03								240	
03	160	76	20	120	3.2	5.3	140	0	230
APR 29	160	77	21	120	3.1	6.2	150	0	250
29									
29									
29									
29		- 22			22	- 11			
29									
29	160	77	21	120	2.1		150	0	250
29 SEP	160	11		120	3.1	6.0	150	0	250
16	160	67	19	100	2.8	5.8	110	0	220
16			===			11		==	
16					777			1,42	
16									
16			22		- 11				
16						3			
16	140	66	19	110	3.1	6.0	120	0	230
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN,	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
DATE JAN	RIDE, DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L
JAN 03	RIDE, DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
JAN 03 03	RIDE, DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
JAN 03 03	RIDE, DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
JAN 03 03 03 03	RIDE, DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
JAN 03 03 03 03	RIDE, DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
JAN 03 03 03 03 03	RIDE, DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
JAN 03 03 03 03 03 03	RIDE, DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AM-MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)
JAN 03 03 03 03 03 03 03 03 03	RIDE, DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AM-MONIA + ORGANIC TOTAL (MG/L AS N) .818587	GEN, TOTAL (MG/L AS N) .88 	PHORUS, TOTAL (MG/L AS P) .020 .020 .040	DIS- SOLVED (UG/L AS FE) 20 0 10 <10	NESE, DIS- SOLVED (UG/L AS MN)
JAN 03 03 03 03 03 03 03 APR 29	RIDE, DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AM-MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N) .88 .92 .95 .49	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS FE) 20 	NESE, DIS- SOLVED (UG/L AS MN)
JAN 03 03 03 03 03 03 03 03 03 03 29 29	RIDE, DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AM-MONIA + ORGANIC TOTAL (MG/L AS N) .818587	GEN, TOTAL (MG/L AS N) .88 	PHORUS, TOTAL (MG/L AS P) .020 .020 .040	DIS- SOLVED (UG/L AS FE) 20 0 10 <10	NESE, DIS- SOLVED (UG/L AS MN)
JAN 03 03 03 03 03 03 03 03 29 29 29 29	RIDE, DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N) .07 .07 .08 .04	GEN, AM-MONIA + ORGANIC TOTAL (MG/L AS N) .818587 .45	GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P) .020 .020 .040 .030	DIS- SOLVED (UG/L AS FE) 20	NESE, DIS- SOLVED (UG/L AS MN)
JAN 03 03 03 03 03 03 03 03 29 29 29 29 29 29	RIDE, DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N) .07 .07 .07 .08 .04 .04	GEN, AM-MONIA + ORGANIC TOTAL (MG/L AS N)	ERN, TOTAL (MG/L AS N) .888	PHORUS, TOTAL (MG/L AS P) .020	DIS- SOLVED (UG/L AS FE) 20 	NESE, DIS- SOLVED (UG/L AS MN)
JAN 03 03 03 03 03 03 03 APR 29	RIDE, DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 659 642 681	GEN. NO2+NO3 TOTAL (MG/L AS N) .07 .07 .08 .04 .08	GEN, AM-MONIA + ORGANIC TOTAL (MG/L AS N)	ERN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P) .020	DIS- SOLVED (UG/L AS FE) 20 	NESE, DIS- SOLVED (UG/L AS MN)
JAN 03 03 03 03 03 03 03 03 29 29 29 29 29 29 29 29 29	RIDE, DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NO2+NO3 TOTAL (MG/L AS N) .07 .07 .07 .08 .04 .04	GEN, AM-MONIA + ORGANIC TOTAL (MG/L AS N)	ERN, TOTAL (MG/L AS N) .888	PHORUS, TOTAL (MG/L AS P) .020	DIS- SOLVED (UG/L AS FE) 20 	NESE, DIS- SOLVED (UG/L AS MN)
JAN 03 03 03 03 03 03 03 03 29 29 29 29 29 29 29 29 29	RIDE, DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 659 642 681 680 586	GEN, NO2+NO3 TOTAL (MG/L AS N) .07 .07 .08 .04 .04 .04 	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .818587 .454869	ERN, TOTAL (MG/L AS N) .88 .9295 .4966 .87	PHORUS, TOTAL (MG/L AS P) .020	DIS- SOLVED (UG/L AS FE) 20	NESE, DIS- SOLVED (UG/L AS MN) 2 0 9 <3 0 6 <1
JAN 03 03 03 03 03 03 03 03 APR 29 29 29 29 29 29 29 29 29 16	RIDE, DIS- SOLVED (MG/L AS CL) 110 110 120 120 110	DIS- SOLVED (MG/L AS SIO2) 12 12 12 12 12 12 10	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 659 642 681 680 586	GEN. NO2+NO3 TOTAL (MG/L AS N) .070708 .040818	GEN, AM-MONIA + ORGANIC TOTAL (MG/L AS N) -81	ERN, TOTAL (MG/L AS N) .888	PHORUS, TOTAL (MG/L AS P) .020	DIS- SOLVED (UG/L AS FE) 20 0 (10 <10 10 10 10 10 10 10 10 10 10	NESE, DIS- SOLVED (UG/L AS MN)
JAN 03 03 03 03 03 03 03 03 03 29 29 29 29 29 29 29 29 29 16 16	RIDE, DIS- SOLVED (MG/L AS CL) 110 110 120 120 110	DIS- SOLVED (MG/L AS SIO2) 12 12 12 12 12 10 10	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 659 642 681 680 586	GEN, NO2+NO3 TOTAL (MG/L AS N) .07 .07 .08 .04 .04 .04 .04	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .818587 .454869	ERN, TOTAL (MG/L AS N) .888	PHORUS, TOTAL (MG/L AS P) .020	DIS- SOLVED (UG/L AS FE) 20	NESE, DIS- SOLVED (UG/L AS MN) 2
JAN 03 03 03 03 03 03 03 03 APR 29 29 29 29 29 29 29 29 29 16	RIDE, DIS- SOLVED (MG/L AS CL) 110 110 120 120 110	DIS- SOLVED (MG/L AS SIO2) 12 12 12 12 12 12 10	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 659 642 681 680 586	GEN. NO2+NO3 TOTAL (MG/L AS N) .070708 .040818	GEN, AM-MONIA + ORGANIC TOTAL (MG/L AS N)	ERN, TOTAL (MG/L AS N) .888	PHORUS, TOTAL (MG/L AS P) .020	DIS- SOLVED (UG/L AS FE) 20 0 (10 <10 10 (10 <10 10 10 10 10 10 10 10 10 10 10 10 10 10	NESE, DIS- SOLVED (UG/L AS MN)
JAN 03 03 03 03 03 03 03 03 29 29 29 29 29 29 29 29 16 16 16	RIDE, DIS-, SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 659 642 681 680 586	GEN, NO2+NO3 TOTAL (MG/L AS N) .07 .07 .07 .08 .04 .04 .08	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) .818587 .455869 .94	ERN, TOTAL (MG/L AS N) .888	PHORUS, TOTAL (MG/L AS P) .020	DIS- SOLVED (UG/L AS FE) 20	NESE, DIS- SOLVED (UG/L AS MN) 2
JAN 03 03 03 03 03 03 03 03 03 29 29 29 29 29 29 29 16 16 16	RIDE, DIS- SOLVED (MG/L AS CL) 110 110 120 120 110	DIS- SOLVED (MG/L AS SIO2) 12 12 12 12 12 10 10	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 659 642 681 680 586	GEN, NO2+NO3 TOTAL (MG/L AS N) .07 .07 .08 .04 .04 .18	GEN, AM-MONIA + ORGANIC TOTAL (MG/L AS N) -81	ERN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P) .020	DIS- SOLVED (UG/L AS FE) 20	NESE, DIS- SOLVED (UG/L AS MN) 2

INTERNATIONAL FALCON RESERVOIR NEAR FALCON HEIGHTS, TX--Continued

264858099154201 INTERNATIONAL FALCON RESERVOIR SITE EC

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
JAN							
03	1625	1.0	1070	8.3	15.0	9.3	92
03	1628	10	1070	8.3	15.0	9.3	92
03	1630 1632	20 30	1070	8.3	15.0	9.3	92 91
03	1634	40	1070	8.3	15.5	9.2	92
03	1636	50	1070	8.3	15.5	9.1	91
03	1638	60	1070	8.3	15.5	9.1	91
APR	1000		10.0	0.5	13.3		
29	1105	1.0	1100	8.3	23.0	7.4	86
29	1107	10	1100	8.2	22.5	7.4	86
29	1109	20	1100	8.1	22.5	7.2	84
29	1111	30	1100	8.1	22.5	7.2	84
29	1113	40	1100	8.1	22.5	6.8	79
29	1115	50	1100	7.2	22.5	6.0	70
29 SEP	1117	58	1100	7.1	22.5	5.7	66
16	1605	1.0	880	8.4	29.5	8.4	108
16	1607	10	880	8.2	29.0	7.0	90
16	1609	20	880	8.2	28.5	6.8	86
16	1611	30	880	8.2	28.5	6.8	86
16	1613	40	880	8.2	28.5	6.5	82
16	1615	50	880	8.0	28.5	6.2	78
16	1617	58	880	8.0	28.5	5.9	75

265224099160701 INTERNATIONAL FALCON RESERVOIR SITE FC WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)
JAN 03 03 03 03 APR	1445 1447 1449 1451 1453	1.0 10 20 30 40	1070 1070 1070 1070 1070	8.4 8.4 8.4 8.4	15.5 15.5 15.5 15.5 15.5	1.70	9.6 9.5 9.5 9.3
29 29 29 29	1010 1012 1014 1016 1018	1.0 10 20 30 41	1070 1070 1070 1070 1070	8.1 8.1 8.1 7.2 7.1	22.5 22.5 22.5 22.5 22.5	=======================================	7.6 7.5 7.4 6.3 5.9
16 16 16 16	1030 1032 1034 1036 1038	1.0 10 20 30 37	800 800 800 850 860	8.3 8.1 8.1 7.6 7.6	29.0 28.5 28.5 28.0 28.0	.82	8.7 7.7 6.9 2.9 2.7
DATE	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JAN 03 03 03	96 95 95 95 93	=======================================	:: :: ::			=======================================	=======================================
APR 29 29 29 29	87 87 86 73 69	.02	1.0	1.0	.040	10 10	0
16 16 16 16	113 99 88 37 34	.00	.95 1.5	.95 1.5	.030	10 590	10 80

265014099190601 INTERNATIONAL FALCON RESERVOIR SITE GC
WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

INTERNATIONAL FALCON RESERVOIR NEAR FALCON HEIGHTS, TX--Continued

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)
JAN 03 03 03 03	1545 1547 1550 1552 1555	1.0 10 20 30 45	1150 1150 1150 1150 1150	8.4 8.4 8.4 8.4	15.0 15.0 15.0 15.0 15.0	.80	9.6 9.6 9.5 9.5
29 29 29 29	1520 1522 1524 1526 1528	1.0 10 20 30 37	1170 1170 1170 1170 1170	8.2 8.2 8.2 8.1 7.9	23.0 23.0 23.0 22.5 22.5	.50	7.2 7.2 7.2 7.0 5.4
16 16 16 16	1700 1702 1704 1706 1708	1.0 10 20 30 42	830 830 830 830 1040	8.5 8.1 8.0 7.9 7.5	29.5 28.0 28.0 27.5 27.5	.49 	10.9 7.1 6.2 5.4 2.6
DATE	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JAN 03 03 03	95 95 94 94 94	.07	.88	.95	.030	0	0 0
APR 29 29 29 29	84 84 84 81 63	.02	1.7 .76	1.7 .78	.040	220 470	20 30
16 16 16 16	142 90 78 68 32	.00	1.0	1.0	.040	20 20	0 30

265213099190801 INTERNATIONAL FALCON RESERVOIR SITE HC WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
JAN									
03	1511	1.0	1080	8.5	15.0	.60	10.4	103	290
03	1513	10	1080	8.5	15.0		10.4	103	
03	1515	20	1080	8.5	15.0		10.4	103	
03	1517	30	1080	8.5	15.0		10.4	103	
03	1519	40	1080	8.5	15.0	C	10.3	102	
03	1522	52	1080	8.5	15.0		10.2	101	280
APR									
29	1440	1.0	1120	8.2	23.0	.30	7.1	83	290
29	1442	10	1120	8.2	23.0		7.1	83	
29	1444	20	1120	8.2	23.0		7.1	83	
29	1446	30	1120	8.1	22.5		6.6	77	
29	1448	44	1120	8.0	22.5		6.0	70	290
SEP									
16	1635	1.0	845	8.5	30.5	58	10.7	141	210
16	1637	10	845	8.1	28.5		7.7	97	
16	1639	20	860	8.0	28.5		6.7	85	
16	1641	30	890	7.9	28.5		5.5	70	
16	1643	42	939	7.5	28.0		2.3	29	240

RIO GRANDE BASIN

INTERNATIONAL FALCON RESERVOIR NEAR FALCON HEIGHTS, TX--Continued

265213099190801 INTERNATIONAL FALCON RESERVOIR SITE HC--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
JAN							140	,	240
03	170	81	21	120	3.1	4.9	140	4	240
03		- 11		55					
03		- 57							
03				20			122		
03	160	81	20	120	3.1	4.8	140	4	240
APR	100	0,	2.0	120		1.0	7,10		
29	160	78	22	120	3.1	6.3	150	0	260
29									
29									
29								1.25	
29	170	81	22	120	3.1	6.4	150	0	260
SEP	100	59	16	89	2.7	5.4	100	3	190
16	130	59	16	89	2.7	5.4	100		190
16		22		- 22	- 22	122			11
16					22	2.2		144	-00
16	130	70	17	98	2.7	5.1	140	0	200
1,0000									
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JAN									
03	110	13	663	.13	1.0	1.1	.040	<10	<1
03									
03			4-	.13	.88	1.0	.050	60	0
03						(
03				7.5		1.0	.050	10	2
03	110	13	662	.15	.86	1.0	.050	10	2
APR 29	120	14	694	.00	1.5	1.5	.050	220	20
29	120	14		.00	1	1.5	.030		
29	22			.00	.98	.98	.070	350	20
29	22			.01	1.6	1.6	.060	570	40
29	120	15	699	.01	1.1	1.1	.070	510	30
SEP	,								
16	92	11	515	.00	.50	.50	.050	60	6
16									
16							0.00		
16	100	1/	570	.00	1.0	1.0	.060	20 40	10
16	100	14	573	.09	1.4	1.5	.140	40	10

RIO GRANDE BASIN INTERNATIONAL FALCON RESERVOIR NEAR FALCON HEIGHTS, TX--Continued 263337099100101 INTERNATIONAL FALCON RESERVOIR SITE AC

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	SAMP- LING DEPTH (FT)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)
JAN 04 04	1030 1040 1050	1.0 50 102	2 2	100	<1 <1	0	0 0
30 30 30	0840 0848 0854 0900	1.0 40 70 95	2 2	100	<1 <1	0	2 2
16 16 16	1330 1344 1350	1.0 60 94	- 2 -2	100	<1 -7	10 10	- <u>1</u>
DATE	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)
JAN 04 04	<10 10 <10	0 1	<1 0 1	.0	1 -1	0	<3 5
APR 30 30 30	<10 10 30 380	0 1	<1 0 10 40	.0	1 -1	0 0	<3 5
16 16 16	<10 10 20	0	<1 10 20	.3	- 1 - 1	0	<3 3

INTERNATIONAL FALCON RESERVOIR NEAR FALCON HEIGHTS, TX--Continued

263337099100101 INTERNATIONAL FALCON RESERVOIR SITE AC PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

DATE TIME	JAN 1	4,80 031		30,80 841	SEP 1	16,80 331	
TOTAL CELLS/ML	37	000	1	900	340	000	
DIVERSITY: DIVISION .CLASSORDERFAMILYGENUS		0.6 0.6 0.9 1.7 2.5		1.2 1.2 1.7 2.3 3.0		0.1 0.1 0.2 0.5	
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALES	,,==		,,,,,		, , , , ,	-	
SCHROEDERIA		-		-	*	0	
OOCYSTACEAE	190	1	26	1	*	0	
ANKISTRODESMUS CHLORELLA	390	1	26	1		-	
CHODATELLA		-	26	1	*	0	
CLOSTERIOPSIS	100	1	26	1		-	
KIRCHNERIELLA OOCYSTIS	190	2	65	3	*	0	
SELENASTRUM	144	-	100	6		-	
TETRAEDRON		-	13	1		-	
SCENEDESMACEAE			150		*		
CRUCIGENIA SCENEDESMUS	610	2	150 540#	8 29	*	0	
TETRASTRUM	*	ō		-		-	
TETRASPORALES							
COCCOMYXACEAE	*	0				4	
ELAKATOTHRIX ULOTRICHALES		U		-	25.	-	
ULOTRICHACEAE							
GEMINELLA	1600	4		-		-	
VOLVOCALES CHLAMYDOMONADACEAE							
CHLAMYDOMONAS		-	13	1	512)	-	
PLATYMONAS	*	0		-		-	
CHRYSOPHYTA .BACILLARIOPHYCEAE .CENTRALESCOSCINODISCACEAECYCLOTELLA	*	0	13	1	*	0	
PENNALES			, ,	,			
FRAGILARIACEAE					*	0	
SYNEDRA NAVICULACEAE	12.5	(5)	4.0	-	^	U	
NAVICULA	970	3		-	*	0	
NITZSCHIACEAE	262		26	1	*	0	
NITZSCHIA	260	1	20	1		U	
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAECRYPTOMONADALESCRYPTOMONADACEAECRYPTOMONAS			26	1		101	
CRIFIOMONAS			20	,			
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAEANACYSTIS	390	1	480#	26	3100	1	
HORMOGONALES	390		400#	20	3100		
ANABAENA	390	1	130	7	0.5		
ANABAENOPSIS	370	-		-	18000	5	
OSCILLATORIACEAE					01000	10	
LYNGBYA	3400 17000#	9 45	190	10	34000 270000#	10	
OSCILLATORIA PHORMIDIUM		-	150	-	7800	2	
SCHIZOTHRIX	4700	13		-			
RIVULARIACEAE	7000#						
RAPHIDIOPSIS	7000#	19		-		-	

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

265213099190801 INTERNATIONAL FALCON RESERVOIR SITE HC PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

INTERNATIONAL FALCON RESERVOIR NEAR FALCON HEIGHTS, TX--Continued

DATE TIME		3,80 512		29,80 441		16,80 636
TOTAL CELLS/ML	200	000	49	000	390	000
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		0.4 0.4 0.0 0.0		0.7 0.7 1.0 1.6 1.8		0.2 0.2 0.4 0.8 1.0
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE)						
.CHLOROPHYCEAE .CHLOROCOCCALESCHARACIACEAESCHROEDERIACOELASTRACEAE		-		~	*	0
COELASTRUM OOCYSTACEAE		-		-	*	0
ANKISTRODESMUS	1600 1200	1		-	*	0
CHLORELLA DICTYOSPHAERIUM		1	310	ī	*	0
KIRCHNERIELLA OOCYSTIS	*	0	*	0	*	0
SELENASTRUM TETRAEDRON	0-2	2	*	0	*	0
SCENEDESMACEAESCENEDESMUSTETRASTRUM	*	0	1200 310	3	3000	1
VOLVOCALES CHLAMYDOMONADACEAE			3,4			
CARTERIA	0+2	-	2400	5	*	0
PLATYMONAS	3900	2	*	0	*	0
CHRYSOPHYTA .BACILLARIOPHYCEAECENTRALESCOSCINODISCACEAE						
CYCLOTELLA PENNALES	*	0	310	1	*	0
ACHNANTHACEAE COCCONEIS	1.2		470	1	*	0
FRAGILARIACEAE SYNEDRA		3		5.	*	0
NAVICULACEAE	*	0				· ·
NAVICULANITZSCHIACEAENITZSCHIA .CHRYSOPHYCEAE .CHRYSOMONADALES	*	0	*	0	*	0
OCHROMONADACEAE OCHROMONAS		-	*	0		-
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAECRYPTOMONADALES	*	0		i è	-	-
CRYPTOCHRYSIDACEAE CHROOMONAS			*	0	*	0
CRYPTOMONADACEAE CRYPTOMONAS	1200	1	*		125	
	1200	1		U	100	
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALES						
CHROOCOCCACEAE AGMENELLUM	42000#		1.22	1.2	7100	2
ANACYSTIS GOMPHOSPHAERIA HORMOGONALES	49000#	25	1800	-	*	0
NOSTOCACEAE ANABAENA	142	-	4500	9	174	-
ANABAENOPSIS OSCILLATORIACEAE	*	0	1600	3		+
LYNGBYA	5100	3	34000#	71	8600 340000#	2 86
OSCILLATORIA SCHIZOTHRIX	79000#	40		-	340000#	-
SPIRULINA RIVULARIACEAE	*	0		-		-
RAPHIDIOPSIS	7900	4		-	24000	6
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAE .EUGLENALESEUGLENACEAE TRACHEL MONNAC	*	0	1.00			
TRACHELOMONAS	8	U	7.7	-		
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEGYMNODINIALES						
GYMNODINIACEAEGYMNODINIUMPERIDINIALESGLENODINIACEAE	*	0	***			-
GLENODINIUM		-	*	0		-

554

RIO GRANDE BASIN

08461300 RIO GRANDE BELOW FALCON DAM, TX

LOCATION.--Lat 26°33'25", long 99°10'05", Starr County, Hydrologic Unit 13090001, U.S. Tailrace at Falcon Dam.

DRAINAGE AREA.--159,270 mi² (412,509 km²), United States and Mexico; from International Boundary and Water Commission Water Bulletin No. 44.

PERIOD OF RECOD .-- Chemical analyses: July 1955 to current year.

REMARKS.--Records of specific conductance and discharge for water year 1980 are given in International Boundary and Water Commission Water Bulletins Nos. 49 and 50.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
OCT 15	0915	3300	995	8.1	25.0	250	140	67	19
NOV 19	0900	908	1020	7.8	20.5	250	140	69	19
DEC 17	0925	259	1030	7.6	15.5	260	150	70	20
JAN 14	0900	1990	1020	7.8	14.5	260	150	71	20
FEB						260		71	21
19 MAR	0915	2800	1050	8.0	14.5		150		
24 APR	1100	3330	1070	7.7	15.5	270	160	74	21
14 MAY	1005	5900	1080	7.9	18.0	270	150	75	20
19 JUN	0930	6290	1090	8.1	24.5	290	170	78	22
16	1030	3420	1080	7.5	26.5	270	150	73	21
JUL 14	0815	2970	1090	7.8	28.0	270	160	73	21
AUG 18	1000	141	1110	7.6	26.5	280	170	74	22
SEP 23	1530	5020	1060	7.6	26.0	260	160	69	21
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
OCT	DIS- SOLVED (MG/L	AD- SORP- TION	SIUM, DIS- SOLVED (MG/L	BONATE (MG/L AS	BONATE (MG/L	DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L AS	SUM OF CONSTI- TUENTS, DIS- SOLVED
OCT 15	DIS- SOLVED (MG/L AS NA)	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	MG/L AS HCO3)	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
OCT 15 NOV 19 DEC	DIS- SOLVED (MG/L AS NA)	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K) 5.9	BONATE (MG/L AS HCO3)	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4) 240 220	RIDE, DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
OCT 15 NOV 19 DEC 17 JAN	DIS- SOLVED (MG/L AS NA) 110 110	AD- SORP- TION RATIO 3.1 3.0 3.0	SIUM, DIS- SOLVED (MG/L AS K) 5.9 5.7	BONATE (MG/L AS HCO3) 130 130	BONATE (MG/L AS CO3)	DIS- SOLVED (MG/L AS SO4) 240 220 230	RIDE, DIS- SOLVED (MG/L AS CL) 110 110	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 628 610
OCT 15 NOV 19 DEC 17 JAN 14 FEB	DIS- SOLVED (MG/L AS NA) 110 110 110	AD- SORP- TION RATIO 3.1 3.0 3.0	SIUM, DIS- SOLVED (MG/L AS K) 5.9 5.7 5.2	BONATE (MG/L AS HCO3) 130 130 130	BONATE (MG/L AS CO3) 0 0 0	DIS- SOLVED (MG/L AS SO4) 240 220 230 240	RIDE, DIS- SOLVED (MG/L AS CL) 110 110 110	DIS- SOLVED (MG/L AS SIO2) 12 12 12	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 628 610 621 631
OCT 15 NOV 19 DEC 17 JAN 14 FEB 19 MAR	DIS- SOLVED (MG/L AS NA) 110 110 110 110	AD- SORP- TION RATIO 3.1 3.0 3.0 3.0	SIUM, DIS- SOLVED (MG/L AS K) 5.9 5.7 5.2 5.1	BONATE (MG/L AS HCO3) 130 130 130 140	BONATE (MG/L AS CO3) 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 240 220 230 240 240	RIDE, DIS- SOLVED (MG/L AS CL) 110 110 110 110	DIS- SOLVED (MG/L AS SIO2) 12 12 12 11 11	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 628 610 621 631
OCT 15 NOV 19 DEC 17 JAN 14 FEB 19 MAR 24 APR	DIS- SOLVED (MG/L AS NA) 110 110 110 110 110	AD- SORP- TION RATIO 3.1 3.0 3.0 2.9 2.9	5.10 5.9 5.7 5.2 5.1 5.9 5.1	BONATE (MG/L AS HCO3) 130 130 130 140	BONATE (MG/L AS CO3) 0 0 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 240 220 230 240 240 240	RIDE, DIS- SOLVED (MG/L AS CL) 110 110 110 110	DIS- SOLVED (MG/L AS SIO2) 12 12 12 11 11	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 628 610 621 631 638 640
OCT 15 NOV 19 DEC 17 JAN 14 FEB 19 MAR 24	DIS- SOLVED (MG/L AS NA) 110 110 110 110 110 110	AD- SORP- TION RATIO 3.1 3.0 3.0 2.9 2.9	5.10M, DIS- SOLVED (MG/L AS K) 5.9 5.7 5.2 5.1 5.9 5.1	BONATE (MG/L) AS HCO3) 130 130 130 140 140	BONATE (MG/L AS CO3) 0 0 0 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 240 220 230 240 240 240 250	RIDE, DIS- SOLVED (MG/L AS CL) 110 110 110 110 110	DIS- SOLVED (MG/L AS SIO2) 12 12 12 11 11 11	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 628 610 621 631 638 640 650
OCT 15 NOV 19 DEC 17 JAN 14 FEB 19 MAR 24 APR 14 MAY 19	DIS- SOLVED (MG/L AS NA) 110 110 110 110 110	AD- SORP- TION RATIO 3.1 3.0 3.0 2.9 2.9	5.10 5.9 5.7 5.2 5.1 5.9 5.1	BONATE (MG/L AS HCO3) 130 130 130 140	BONATE (MG/L AS CO3) 0 0 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 240 220 230 240 240 240	RIDE, DIS- SOLVED (MG/L AS CL) 110 110 110 110	DIS- SOLVED (MG/L AS SIO2) 12 12 12 11 11 11 11	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 628 610 621 631 638 640 650 666
OCT 15 NOV 19 DEC 17 JAN 14 FEB 19 MAR 24 APR 14 MAY 19 JUN 16	DIS- SOLVED (MG/L AS NA) 110 110 110 110 110 110	AD- SORP- TION RATIO 3.1 3.0 3.0 2.9 2.9	5.10M, DIS- SOLVED (MG/L AS K) 5.9 5.7 5.2 5.1 5.9 5.1	BONATE (MG/L) AS HCO3) 130 130 130 140 140	BONATE (MG/L AS CO3) 0 0 0 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 240 220 230 240 240 240 250	RIDE, DIS- SOLVED (MG/L AS CL) 110 110 110 110 110	DIS- SOLVED (MG/L AS SIO2) 12 12 12 11 11 11	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 628 610 621 631 638 640 650
OCT 15 NOV 19 19 19 17 JAN 14 FEB 19 44 APR 14 MAY 19 JUN 16 JUL 14	DIS- SOLVED (MG/L AS NA) 110 110 110 110 110 110 110 110	AD- SORP- TION RATIO 3.1 3.0 3.0 3.0 2.9 2.9 2.9 3.1	5.10M, DIS- SOLVED (MG/L AS K) 5.9 5.7 5.2 5.1 5.9 5.1 5.4	BONATE (MG/L AS HCO3) 130 130 130 140 140 140	BONATE (MG/L AS CO3) 0 0 0 0 0 0 0 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 240 220 230 240 240 240 250 240	RIDE. DIS- SOLVED (MG/L AS CL) 110 110 110 110 110 110 110	DIS- SOLVED (MG/L AS SIO2) 12 12 12 11 11 11 11	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 628 610 621 631 638 640 650 666
OCT 15 NOV 19 DEC 17 JAN 14 FEB 19 MAR 24 APR 14 MAY 19 JUN 16 JULN 101	DIS- SOLVED (MG/L AS NA) 110 110 110 110 110 110 110 1	AD- SORP- TION RATIO 3.1 3.0 3.0 3.0 2.9 2.9 2.9 3.1 2.9	5.10 5.9 5.7 5.2 5.1 5.9 5.1 5.4 5.4	BONATE (MG/L AS HCO3) 130 130 130 140 140 140	BONATE (MG/L AS CO3) 0 0 0 0 0 0 0 0 0 0	DIS- SOLVED (MG/L AS SO4) 240 220 230 240 240 240 250 240	RIDE. DIS- SOLVED (MG/L AS CL) 110 110 110 110 110 110 110 110 110 1	DIS- SOLVED (MG/L AS SIO2) 12 12 12 11 11 11 11 11 12	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 628 610 621 631 638 640 650 666

HARD- MAGNE-

08464700 RIO GRANDE AT FORT RINGGOLD, RIO GRANDE CITY, TX

LOCATION.--Lat 26°22'05", long 98°48'20", Starr County, Hydrologic Unit 13090001, at gaging station about 1 mi (2 km) downstream from Rio Grande City, 3.9 mi (6.3 km) downstream from mouth of Rio San Juan, and 1,014.3 mi (1,632.0 km) downstream from the American Dam at El Paso.

DRAINAGE AREA.--174,362 \min^2 (451,598 km^2), United States and Mexico; from International Boundary and Water Commission Water Bulletin No. 44.

PERIOD OF RECORD.--Chemical analyses: January 1959 to current year.

SPE-CIFIC

REMARKS.--Records of specific conductance and discharge for water year 1980 are given in International Boundry and Water Commission Water Bulletins Nos. 49 and 50.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)
OCT 15	1300	3030	1010	8.1	26.0	250	140	68	19
NOV	1430	2530	1060	7.6	22.0	250	140	69	19
19 DEC				7.6	12.0	340	190	92	26
17 JAN	1655	239	1550						
14 FEB	1610	2738	1040	8.2	16.5	270	150	72	21
19 MAR	1555	1159	1240	7.8	17.0	290	170	79	23
17 APR	1445	3070	1090	7.7	18.0	270	160	75	21
14 MAY	1515	4120	1110	7.7	18.0	280	170	80	20
19 JUN	1500	9180	1090	7.4	25.0	280	160	77	21
20 JUL	0905	7030	1100	7.4	26.5	270	160	74	21
24	1230	4590	1100	7.7	28.5	260	150	70	21
AUG 18	1500	114	1350	7.4	29.0	290	160	90	17
SEP 08	1545	1860	1120	7.5	29.0	280	160	76	22
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
OCT 15	110	3.0	6.1	130	0	240	110	12	629
NOV 19	110	3.0	5.8	140	0	230	120	11	634
DEC 17	190	4.5	5.3	180	0	300	230	11	943
JAN 14	110	2.9	5.3	140	0	240	120	10	647
FEB 19	140	3.6	6.2	150	0	280	150	9.7	762
MAR 17	120	3.2	5.2	140	0	240	120	11	661
APR 14	120	3.1	5.5	140	0	250	120	11	676
MAY 19	110	2.9	6.4	150	0	240	110	12	650
JUN 20	120	3.2	5.5	140	0	250	120	12	672
JUL 24	120	3.2	6.0	130	0	260	120	12	673
AUG				160	0	190	250	11	814
18 SEP	170	4.3	7.0		0	260	130	12	695
08	120	3.1	6.1	130	Ü	200	130	12	093

08466300 RIO GRANDE NEAR LOS EBANOS, TX

LOCATION.--Lat 26°14'15", long 98°33'49", Hidalgo County, Hydrologic Unit 13090001, on Farm Road 886 at U.S. Border Port of Entry near Los Ebanos and at mile 204.37 (328.83 km).

PERIOD OF RECORD.--Chemical analyses: June 1977 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
OCT 15	1415	3020	1060	8.1	26.0	260	140	71	20
NOV 19	1515	1130	1210	7.6	21.0	280	150	76	21
DEC	1730	240	2080	7.6	12.0	480	300	130	37
17 JAN								100	
14 FEB	1650	3500	1060	8.1	16.5	270	160	75	21
19 MAR	1640	590	1590	7.7	18.5	360	210	97	29
17 APR	1600	2000	1170	7.7	19.0	290	170	78	22
14 MAY	1615	6050	1120	7.5	18.0	280	170	77	22
19	1600	8600	1110	7.8	25.0	280	160	77	22
JUN 20	1010	41 20	1160	7.5	27.0	290	170	81	21
JUL 24	1315	5450	1020	7.5	28.0	240	130	68	16
AUG 18	1630	118	1480	7.5	29.0	380	220	110	25
SEP 08	1718	670	1330	7.6	28.5	300	190	80	25
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
OCT	120	2.2	6.7	1/0	0	0/0	100	10	CEO
15 NOV	120	3.2	6.7	140	0	240	120	12	659
19 DEC	130	3.4				12.2	222	3.2	
17 JAN			6.0	150	0	250	150	12	719
	270	5.4	6.0	150 210	0	250 390	150 340	12 15	719 1290
14	270 120								
14 FEB 19		5.4	6.2	210	0	390	340	15	1290
14 FEB 19 MAR 17	120	5.4 3.2	6.2 5.2	210 140	0	390 250	340 120	15 11	1290 671
14 FEB 19 MAR 17 APR 14	120 190	5.4 3.2 4.3	6.2 5.2 6.8	210 140 180	0 0	390 250 340	340 120 220	15 11 12	1290 671 984
14 FEB 19 MAR 17 APR 14 MAY	120 190 130	5.4 3.2 4.3 3.4	6.2 5.2 6.8 5.4	210 140 180 140	0 0 0	390 250 340 260	340 120 220 140	15 11 12	1290 671 984 715
14 FEB 19 MAR 17 APR 14 MAY 19 JUN 20	120 190 130 120	5.4 3.2 4.3 3.4 3.1	6.2 5.2 6.8 5.4 5.9	210 140 180 140 140	0 0 0 0	390 250 340 260 250	340 120 220 140 120	15 11 12 11 12	1290 671 984 715 676
14 FEB 19 MAR 17 APR 14 MAY 19 JUN 20 JUL 24	120 190 130 120 120	5.4 3.2 4.3 3.4 3.1 3.1	6.2 5.2 6.8 5.4 5.9 5.7	210 140 180 140 140 150	0 0 0 0 0 0	390 250 340 260 250	340 120 220 140 120	15 11 12 11 12 12	1290 671 984 715 676 681
14 FEB 19 MAR 17 APR 14 MAY 19 JUN 20 JUL	120 190 130 120 120 130	5.4 3.2 4.3 3.4 3.1 3.1 3.3	6.2 5.2 6.8 5.4 5.9 5.7	210 140 180 140 140 150 140	0 0 0 0 0 0 0 0	390 250 340 260 250 250 260	340 120 220 140 120 120 130	15 11 12 11 12 12 12	1290 671 984 715 676 681 709
14 FEB 19 MAR 17 APR 14 MAY 19 JUN 20 JUL 24 AUG	120 190 130 120 120 130 110	5.4 3.2 4.3 3.4 3.1 3.1 3.3	6.2 5.2 6.8 5.4 5.9 5.7 5.5	210 140 180 140 140 150 140	0 0 0 0 0 0 0 0 0 0 0	390 250 340 260 250 250 260 220	340 120 220 140 120 120 130	15 11 12 11 12 12 12 12	1290 671 984 715 676 681 709 616

557

MACNE-

08469200 RIO GRANDE BELOW ANZALDUAS DAM, TX

LOCATION.--Lat 26°08'00", long 98°20'05", Hidalgo County, Hydrologic Unit 13090002, at gaging station 0.5 mi (0.8 km) downstream from Anzalduas Dam, 12.2 mi (19.6 km) from Hidalgo, and 1,077.1 mi (1,733.1 km) downsteam from the American Dam at El Paso.

DRAINAGE AREA,--176,112 mi² (456,130 km²), United States and Mexico; from International Boundary and Water Commission Water Bulletin No. 44.

PERIOD OF RECORD.--Chemical analyses: March 1959 to current year. Pesticide analyses: October 1968 to September

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1977 to current year.

REMARKS.--Records of and discharge for water year 1979 are given in International Boundary and Water Commission Water Bulletins Nos. 49 and 50. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equation developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 2,880 micromhos Feb. 21, 1978; minimum daily, 517 micromhos Sept. 13, 1978.

EXTREMES FOR CURRENT YEAR.-- SPECIFIC CONDUCTANCE: Maximum daily, 2,710 micromhos Dec. 20; minimum daily, 595 micromhos Aug. 17.

SPE-CIFIC

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW. INSTAN- TANEOUS (CFS)	CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
OCT 16	1000	1300	1280	8.3	26.0	290	170	77	23
NOV 20		946	1460	7.9	20.5	320	200	85	26
DEC 17	0850	200	1930	7.6	13.0	440	290	120	35
JAN 15	1400	1000	1100	8.1	18.5	280	160	77	21
FEB 19	1130	600	1520	7.9	17.0	340	220	91	28
MAR 18		1900	1240	7.7	20.0	310	190	85	24
APR 14	0920	2800	1150	7.7	16.0	280	160	77	21
MAY 19	1400	4840	1320	7.6	25.0	310	190	86	24
JUN 16	1230	4300	1220	7.5	29.0	290	180	79	23
JUL 24	1600	3200	1080	7.5	29.0	240	140	66	18
AUG		1290	1650	7.4	29.0	360	220	96	28
14 SEP	0830						200	88	26
10		600	1400	7.7	30.0	330	200	00	20
	SODIUM, DIS- SOLVED	SODIUM AD- SORP- TION	POTAS- SIUM, DIS- SOLVED (MG/L	BICAR- BONATE (MG/L	CAR- BONATE	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L	SILICA. DIS- SOLVED (MG/L AS	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED
DATE	(MG/L AS NA)	RATIO	AS K)	AS HCO3)	(MG/L AS CO3)	AS SO4)	AS CL)	SI02)	(MG/L)
OCT 16		RATIO 4.1							(MG/L) 797
OCT 16 NOV 20	ÀS NA)		AS K)	HCO3)	AS CO3)	AS SO4)	AS CL)	SI02)	******
OCT 16 NOV 20 DEC 17	AS NA)	4.1	AS K)	HCO3)	AS CO3)	AS SO4)	AS CL)	SIO2)	797
OCT 16 NOV 20 DEC 17 JAN 15	AS NA) 160 170	4.1	AS K) 6.3 5.5	нсоз) 140 150	AS CO3) 0	280 290	170 210	12 12	797 872
OCT 16 NOV 20 DEC 17 JAN 15 FEB 19	160 170 240	4.1 4.1 5.0	6.3 5.5 6.7	140 150 190	AS CO3) 0 0	280 290 380	AS CL) 170 210 310	12 12 12	797 872 1200
OCT 16 NOV 20 DEC 17 JAN 15 FEB 19 MAR 18	160 170 240 120	4.1 4.1 5.0 3.1	6.3 5.5 6.7 8.4	140 150 190 140	AS CO3) 0 0 0	280 290 380 260	AS CL) 170 210 310 130	12 12 12 12	797 872 1200 696
OCT 16 NOV 20 DEC 17 JAN 15 FEB 19 MAR 18 APR	AS NA) 160 170 240 120 180	4.1 4.1 5.0 3.1 4.2	6.3 5.5 6.7 8.4 6.6	140 150 190 140 150	AS CO3) 0 0 0 0	280 290 380 260 330	AS CL) 170 210 310 130 210	12 12 12 12 11	797 872 1200 696 932
OCT 16 NOV 20 DEC 17 JAN 15 FEB 19 MAR 18 APR	ÁS ÑA) 160 170 240 120 180 140	4.1 4.1 5.0 3.1 4.2 3.5	6.3 5.5 6.7 8.4 6.6 5.5	140 150 190 140 150	AS CO3) 0 0 0 0 0	280 290 380 260 330 270	AS CL) 170 210 310 130 210 150	12 12 12 11 11 12	797 872 1200 696 932 758
OCT 16 NOV 20 DEC 17 JAN 15 FEB 19 MAR 18 APR 14 MAY 19 JUN 16	AS NA) 160 170 240 120 180 140 120	4.1 4.1 5.0 3.1 4.2 3.5 3.1	6.3 5.5 6.7 8.4 6.6 5.5	140 150 190 140 150 150 150	AS CO3) 0 0 0 0 0 0 0	280 290 380 260 330 270 250	AS CL) 170 210 310 130 210 150 130	12 12 12 11 12 11 12 10	797 872 1200 696 932 758 684
OCT 16 NOV 20 DEC 17 JAN 15 FEB 19 MAR 18 APR 14 MAY 19 JUN 16 JUL 24	AS NA) 160 170 240 120 180 140 120 160	4.1 4.1 5.0 3.1 4.2 3.5 3.1 3.9	6.3 5.5 6.7 8.4 6.6 5.5 5.2	140 150 190 140 150 150 140	AS CO3) 0 0 0 0 0 0 0 0	280 290 380 260 330 270 250 310	AS CL) 170 210 310 130 210 150 130 160	12 12 12 11 12 11 12 10 12	797 872 1200 696 932 758 684 832
OCT 16 NOV 20 20 DEC 17. JAN 15 FEB 19 MAR 18 APR 14 MAY 19 JUN 16 JUL 24 AUG	AS NA) 160 170 240 120 180 140 120 160 140	4.1 4.1 5.0 3.1 4.2 3.5 3.1 3.9	6.3 5.5 6.7 8.4 6.6 5.5 5.2 5.5	140 150 190 140 150 150 140 150	AS CO3) 0 0 0 0 0 0 0 0 0 0 0 0	280 290 380 260 330 270 250 310 270	AS CL) 170 210 310 130 210 150 150 150	12 12 12 11 12 10 12 13	797 872 1200 696 932 758 684 832 750
OCT 16 NOV 20 DEC 17 JAN 15 FEB 19 MAR 18 APR 14 MAY 19 JUN 16 JUL 24 AUG 14	AS NA) 160 170 240 120 180 140 120 160 140 130 210	4.1 4.1 5.0 3.1 4.2 3.5 3.1 3.9 3.6 3.7 4.9	6.3 5.5 6.7 8.4 6.6 5.5 5.2 5.5 6.5 7.1	140 150 190 140 150 150 140 150 140 120	AS CO3) 0 0 0 0 0 0 0 0 0 0 0 0 0	280 290 380 260 330 270 250 310 270 240	As CL) 170 210 310 130 210 150 130 160 150 140 240	12 12 12 11 12 10 12 13 13	797 872 1200 696 932 758 684 832 750 673
OCT 16 NOV 20 20 DEC 17 JAN 15 FEB 19 MAR 18 APR 14 MAY 19 JUN 16 JUN 16 JUL 24 AUG 14	AS NA) 160 170 240 120 180 140 120 160 140 130	4.1 4.1 5.0 3.1 4.2 3.5 3.1 3.9 3.6 3.7	6.3 5.5 6.7 8.4 6.6 5.5 5.2 5.5 6.5	140 150 190 140 150 150 140 150 140	AS CO3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	280 290 380 260 330 270 250 310 270 240 330	As CL) 170 210 310 130 210 150 130 160 150 140	12 12 12 11 12 10 12 13 13 13	797 872 1200 696 932 758 684 832 750 673

08469200 RIO GRANDE BELOW ANZALDUAS DAM, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	40469	1390	844	92200	190	20700	280	30300	330
NOV.	1979	35334	1560	951	90700	220	21200	310	29400	370
DEC.	1979	20030	1770	1080	58700	270	14800	340	18400	420
JAN.	1980	34868	1180	714	67200	150	14200	240	22600	290
FEB.	1980	25685	1390	847	58700	190	13200	280	19300	330
MAR.	1980	49490	1350	822	110000	180	24500	270	36300	330
APR.	1980	79585	1170	709	152000	150	32000	240	51400	280
MAY	1980	90076	1240	749	182000	160	39000	250	61000	300
JUNE	1980	112689	1210	732	223000	160	47200	250	74900	290
JULY	1980	89110	1160	697	168000	150	35000	240	56700	280
AUG.	1980	62179	1140	687	115000	150	24700	230	38600	270
SEPT	1980	36571	1270	768	75800	170	16400	260	25300	310
TOTAL		676086	**	**	1394000	**	303000	**	464000	**
WTD. AVG		1847	1260	763	**	170	**	250	**	300

	SP	ECIFIC CO	NDUCTANCE	(MICROMHO		25 DEG. C) NCE-DAILY	, WATER	YEAR OCTOBE	R 1979	TO SEPTEMBER	1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1530 1660 1870 2040 1990	1330 1480 1520 1550 1970	1340 1270 1250 1270 1250	1450 1480 1460 1500 1510	1160 1160 1200 1210 1220	2070 2240 1760 1790 1400	1160 1170 1200 1220 1220	1170 1170 1170 1170 1170	1350 1360 1280 1300 1300	1140 1140 1150 1150 1150	1130 1110 1120 1110 1150	1920 1600 1410 1310 1310
6 7 8 9	1940 1940 1630 1700 1780	2080 1970 1850 1870 1780	1230 1260 1350 1350 1470	1510 1490 1480 1470 1360	1210 1250 1250 1270 1270	1230 1290 1280 1330 -	1220 1230 1280 1260 1230	1180 1190 1210 1210 1220	1220 1210 1210 1200 1220	1180 1190 1170 1150 1150	1120 1160 1130 1130 1330	1310 1340 1350 1360 1400
11 12 13 14 15	1610 1780 1590 1340 1270	1690 1540 1540 1370 1260	1500 1560 1630 1690 1650	1280 1180 1120 1120 1090	1260 1260 1270 1340 1360	1520 1440 1360 1330 1330	1210 1200 1220 1140 1140	1210 1210 1210 1230 1230	1230 1230 1210 1220 1240	1170 1170 1140 1150 1160	758 649 889 1620 762	1450 1470 1490 1410 1250
16 17 18 19 20	1230 1230 1220 1260 1280	1240 1180 1190 1320 1480	1750 1840 2310 2620 2710	1120 1060 1060 1080 1070	1350 1310 1480 1510 1490	1280 1250 1250 1250 1250	1140 1150 1150 1140 1150	1230 1230 1220 1190 1260	1230 1230 1220 1210 1220	1130 1130 1160 1190 1180	599 595 640 697 704	1310 1210 1210 1190 1170
21 22 23 24 25	1300 1200 1190 1170 1160	1510 1590 1600 1400 1340	2260 2590 2380 2530 2400	1100 1100 1110 11140 1120	1530 1610 1730 1840 1850	1230 1200 1240 1260 1270	1160 1160 1160 1170 1170	1270 1250 1390 1420 1450	1210 1180 1170 1170 1160	1170 1140 1130 1080 1300	930 981 993 1110 1440	1170 1170 1160 1190 1150
26 27 28 29 30 31	1180 1190 1230 1300 1250 1270	1330 1370 1480 1460 1410	2090 1620 1370 1270 1280 1350	1120 1120 1130 1130 1140 1150	1930 1960 1900 1990	1210 1180 1150 1130 1170	1170 1160 1190 1170 1170	1470 1440 1560 1520 1520 1650	1190 1190 1200 1210 1170	1100 1170 1190 1160 1170 1150	1970 1820 1650 1700 1810 1870	1150 1130 1220 1230 1210
MEAN	1460	1520	1720	1230	1450	1360	1180	1290	1220	1160	1150	1310

08470200 NORTH FLOODWAY NEAR SEBASTIAN, TX

LOCATION.--Lat 26°18'51", long 97°46'36", Cameron County, Hydrologic Unit 12110208, at International Boundary and Water Commission gaging station on U.S. Highway 77 and approximately 2 mi (3 km) south of Sebastian.

PERIOD OF RECORD.--Sediment records: February 1966 to current year.

REMARKS.--Records of discharge are given in International Boundary and Water Commission Water Bulletins Nos. 49 and 50.

MONTHLY AND ANNUAL SUMMARY OF WATER AND SUSPENDED-SEDIMENT DISCHARGE WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

MEAN

DATE	DISCHARGE (CFS-DAYS)	MEAN WEIGHTED SUSPENDED SEDIMENT CONCENTRATION (MG/L)	SUSPENDED SEDIMENT DISCHARGE (TONS)
Oct. 1979	6069	144	2360
NOV	5985	119	1920
DEC	5925	88	1410
JAN. 1980	7151	97	1880
FEB	6587	75	1330
MAR	6333	123	2110
APR	6344	189	3230
MAY	10781	212	6170
JUNE	7318	288	5690
JULY	5886	157	2490
AUG	16396	204	9040
SEPT	10986	204	6060
TOTAL	95761	169	43690

08470300 ARROYO COLORADO FLOODWAY AT EL FUSTES SIPHON, SOUTH OF MERCEDES, TX

LOCATION.--Lat 26°07'45", long 97°54'45", Hidalgo County, Hydrologic Unit 12110208, at International Boundary and Water Commission gaging station, 50 ft (15 m) upstream from Mercedes Canal and Fuste Siphon on Arroyo Colorado, approximately, 1.4 mi (2.3 km) downstream from Arroyo Colorado heading on the main floodway and 1.5 mi (2.4 km) south of Mercedes.

PERIOD OF RECORD.--Chemical analyses: November 1967 to February 1968. Pesticide analyses: May 1968 to September 1973, October 1975 to current year. Sediment records: February 1966 to current year.

REMARKS.--Records of discharge are given in International Boundary and Water Commission Water Bulletins Nos. 49 and 50.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	PCB TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL (UG/L)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN 24	1400	.00	0	.00	.00	.0	.0	0	.00	.0
JUL		.00	0	.00	.00	.0	.0	0		.2
23	0811	.00	Ü	.00	.00	.0	.0	0	.00	
DATE	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JAN					2.0	0.0				
24 JUL	.00	1.2	.00	.0	.02	.00	.0	.00	.00	.0
23	.02	2.4	.00	.1	.04	.01	.1	.00	.03	.0
DATE	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)
JAN										
24 JUL		.00	.0	.00	.0	.00	.0	.00	.00	.0
23	.00	.00	.0	.00	.0	.00	.0	.00	.00	.0
DATE	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
JAN	0.0	00	0.0	0.0	0	0	.00	.00	.00	.00
JUL 24	.03	.00	.00	.02				.00	.00	.00
23	.86	.00	.00	.02	0	0	.00			

08470300 ARROYO COLORADO FLOODWAY AT EL FUSTES SIPHON, SOUTH OF MERCEDES, TX--Continued

MONTHLY AND ANNUAL SUMMARY OF WATER AND SUSPENDED-SEDIMENT DISCHARGE WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	DISCHARGE (CFS-DAYS)	MEAN WEIGHTED SUSPENDED SEDIMENT CONCENTRATION (MG/L)	SUSPENDED SEDIMENT DISCHARGE (TONS)
OCT. 1979	4077	189	2080
NOV	4545	76	930
DEC	5510	89	1320
JAN. 1980	4481	102	1340
FEB	4055	94	1030
MAR	5147	159	2210
APR	4347	130	1520
MAY	6800	199	3660
JUNE	5376	125	1810
JULY	5176	102	1420
AUG	13325	261	9380
SEPT	5016	145	1970
TOTAL	67855	157	18700

08474550 RIO GRANDE AT U.S. HIGHWAY 77 AT BROWNSVILLE, TX

LOCATION.--Lat 25°53'54", long 97°29'51", Cameron County, Hydrologic Unit 12110208, on upstream side of bridge on U.S. Highway 77 in Brownsville and at mile 55.67 (89.57 km).

PERIOD OF RECORD.--Chemical and biochemical analyses: October 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE			PH A	MPER- TURE, ATER	COLOR (PLAT- INUM COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVEI (MG/L)	CENT SATUR	OXY D DEM BIO UNI	GEN AND, CHEM NHIB DAY /L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
OCT 17	1421	1900	7.8	28.0	10	17	8.5	10	18	4.2	250
NOV 14	1601	1960	8.2	19.0	5	33	10.0			1.3	69
DEC 19	0932	1650	8.4	13.0	10	6.0	12.4			3.7	К3
JAN											
25 FEB	0757	1500	7.9	16.0	5	11	8.7		18	2.0	8C
20 MAR	1114	1370	8.3	16.5		17	11.0			3.5	440
26 APR	0803	1480	7.9	21.0	20	19	7.0	7	8	3.0	5000
22 MAY	1650	1480	7.9	22.5	5	22	8.5	9	17	2.9	2200
28 JUN	0900	1550	8.4	29.5	15	48	7.9	10	13	2.4	440
24	1300	1260	8.0	29.5	5	22	6.2	. 8	1	2.0	750
JUL 22	1456	1360	8.1	31.0	5	22	7.8	10	14	2.3	5600
AUG 21	1009	837	8.2	29.0	10	70	7.1	9	1	1.4	34
SEP 17	1118	1770	7.9	30.0	8	31	8.3	1.0	19	1.9	K320
DATE	SULFAT DIS- SOLVE (MG/I AS SO4	DIS- D SOLVED (MG/L	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS RESIDU AT 105 DEG. C SUS- PENDED (MG/L	E SOLID VOLA TILE SUS- PENDE	GI , NO2- TO' D (MC	TRO- GEN EN, MON +NO3 ORG TAL TO G/L (N	SANIC PHOTAL T	PHOS- IORUS, POTAL MG/L AS P)	CARBO ORGAL TOTA (MG, AS O	NIC AL /L
OCT 17	. 350	270	1200	3	9	10	.00	1.1	.050	13	2
NOV 14		330	1240	7	7	5	.27	.91	.080		9.0
DEC 19	. 320	250	1060	2		13	.02	.86	.040		9.4
JAN 25		180	968	1		1	.04	.63	.040		5.5
FEB 20		180		4		22	.18	.81	.010		7.2
MAR		200				8					
26 APR			942	4			.02	.92	.080		5.7
22 MAY		200	956	4.		12	.03	.84	.050	10	
28 JUN	. 280	210	941	6	9	29	.33	.84	.120	9	9.7
JUL	. 280	150	813	4.	3	12	.01	1.4	.050	(5.6
22 AUG	. 310	160	848	5:	2	28	.02	1.0	.070	- 1	5.3
21 SEP	130	130	523	1.7	2 1:	39	.70	1.0	.100	7	7.6
17	360	270	1140	3:	2	8	.00	1.0	.060	13	3

563

08475000 RIO GRANDE NEAR BROWNSVILLE, TX (National stream-quality accounting network)

LOCATION.--Lat 25°52'35", long 97°27'15", Cameron County, Hydrologic Unit 13090002, at International Boundary and Water Commission gaging station, 1,000 ft (300 m) downstream from El Jardin pumping plant, 6.8 mi (10.9 km) below International Bridge between Brownsville and Matamoros, Tamps., Mex., and 48.8 mi (78.5 km) above the Gulf of Mexico.

DRAINAGE AREA .-- 176,333 mi2 (456,702 km2).

PERIOD OF RECORD. -- Chemical analyses: October 1967 to January 1968. Chemical and biochemical analyses: October 1974 to current year.

PERIOD OF DAILY RECORD .-

SPECIFIC CONDUCTANCE: April 1967 to current year.
WATER TEMPERATURES: October 1966 to current year.
SUSPENDED-SEDIMENT DISCHARGE: February 1966 to current year.

REMARKS.--Records of discharge furnished by International Boundary and Water Commission. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continues) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 4,130 micromhos May 29, 1972; minimum daily, 337 micromhos Sept. 3, 1967.
WATER TEMPERATURES (1966-69, 1970-75, 1977-80): Maximum daily, 33.5°C on several days during July and August
1978; minimum daily, 8.0°C Jan. 10, 1967.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 3,560 mg/L Sept. 16, 1971; minimum daily mean, 4 mg/L Apr. 26,
1970, Aug. 16, 18, 24, 27, 1977.
SEDIMENT LOADS: Maximum daily, 83,500 tons Sept. 16, 1971; minimum daily, 0.18 tons July 22, 1978.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 2,370 micromhos Dec. 19; minimum daily, 790 micromhos Aug. 15.
WATER TEMPERATURES: Maximum daily, 32.5°C July 27.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 1,910 mg/L Aug. 11; minimum daily mean, 19 mg/L Dec. 3, 6, 13.
SEDIMENT LOADS: Maximum daily, 18,800 tons Aug. 11; minimum daily, 0.84 tons Sept. 18.

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIOCHEM UNINHIB 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
OCT 17	1122	1100	1900	7.8	27.5	25	7.8	98	3.8	3000	250
NOV 14	1200	900	1930	8.3	19.0	45	8.4	88	2.0	420	320
DEC		111111111111111111111111111111111111111									
18 JAN	1320	2700	1530	8.5	13.0	2.5	12.5	116	4.0	K1500	880
24 FEB	1527	100	1494	8.1	16.0	32	9.6	97	2.9	120	<8
20	1245	330	1360	8.5	17.5	25	10.8	112	3.2	4400	700
MAR 25	1224	165	1480	8.2	22.0	42	8.2	92	2.9	K73	K27
APR 23	0930	20	1780	8.0	22.0	32	8.4	95	2.9	110	100
MAY	1305	568	1440	8.3	30.5	68			1.6	600	420
28 JUN		7.77				17					
24 JUL	1100	221	1300	8.3	30.0	8.6	4.9	64	1.9	270	120
22 AUG	1205	52	1300	8.3	31.0	17	7.4	97	1.9	160	160
11	0745	3390			27.0						
20	1235 1057	4000 791	1000	8.1	30.0 29.0	140	7.4	95	.6	K230	K80
SEP 17	1220	11	1890	7.9	30.0	33	7.6	100	2.7	K200	67
			1070		50.0	33	,,,	,00	2.,	1000	0.
	HARD- NESS (MG/L	HARD- NESS, NONCAR- BONATE	CALCIUM DIS- SOLVED	MAGNE- SIUM, DIS-	SODIUM, DIS- SOLVED	SODIUM AD- SORP-	POTAS- SIUM, DIS-	BICAR- BONATE (MG/L	CAR- BONATE	SULFATE DIS-	CHLO- RIDE, DIS-
DATE	AS CACO3)	(MG/L CACO3)	(MG/L AS CA)	SOLVED (MG/L AS MG)	(MG/L AS NA)	TION RATIO	SOLVED (MG/L AS K)	AS HCO3)	(MG/L AS CO3)	SOLVED (MG/L AS SO4)	SOLVED (MG/L AS CL)
OCT	CACO3)	(MG/L CACO3)	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	RATIO	(MG/L AS K)	AS HCO3)	(MG/L AS CO3)	(MG/L AS SO4)	(MG/L AS CL)
OCT 17 NOV	CACO3)	(MG/L CACO3)	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	RATIO	(MG/L AS K)	AS HC03)	(MG/L AS CO3)	SOLVED (MG/L AS SO4)	(MG/L AS CL)
OCT 17 NOV 14 DEC	CACO3)	(MG/L CACO3)	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	RATIO	(MG/L AS K)	AS HCO3)	(MG/L AS CO3)	(MG/L AS SO4)	(MG/L AS CL)
OCT 17 NOV 14 DEC 18	CACO3)	(MG/L CACO3)	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	RATIO	(MG/L AS K)	AS HC03)	(MG/L AS CO3)	SOLVED (MG/L AS SO4)	(MG/L AS CL)
OCT 17 NOV 14 DEC 18 JAN 24	510 440	(MG/L CACO3) 250 280	(MG/L AS CA) 140 120	(MG/L AS MG) 39 35	(MG/L AS NA) 200 240	3.9 5.0	(MG/L AS K) 7.7 6.1	AS HC03) 320 200	(MG/L AS CO3)	SOLVED (MG/L AS SO4) 340 360	(MG/L AS CL) 260 310
OCT 17 NOV 14 DEC 18 JAN 24 FEB 20	510 440 370	(MG/L CACO3) 250 280 210	(MG/L AS CA) 140 120 100	(MG/L AS MG) 39 35 29	(MG/L AS NA) 200 240 180	3.9 5.0 4.1	(MG/L AS K) 7.7 6.1 6.0	AS HC03) 320 200 180	(MG/L AS CO3) 0 0	SOLVED (MG/L AS SO4) 340 360 310	(MG/L AS CL) 260 310 210
OCT 17 NOV 14 DEC 18 JAN 24 FEB 20 MAR 25	510 440 370 390	(MG/L CACO3) 250 280 210 210	(MG/L AS CA) 140 120 100	(MG/L AS MG) 39 35 29	(MG/L AS NA) 200 240 180	3.9 5.0 4.1 3.3	(MG/L AS K) 7.7 6.1 6.0 5.7	AS HCO3) 320 200 180 220	(MG/L AS CO3) 0 0 4	SOLVED (MG/L AS SO4) 340 360 310 290	(MG/L AS CL) 260 310 210 190
OCT 17 NOV 14 DEC 18 JAN 24 FEB 20 MAR 25	510 440 370 390 370	(MG/L CACO3) 250 280 210 210 230	(MG/L AS CA) 140 120 100 110	(MG/L AS MG) 39 35 29 29 28	(MG/L AS NA) 200 240 180 150	3.9 5.0 4.1 3.3 3.4	(MG/L AS K) 7.7 6.1 6.0 5.7 5.4	AS HCO3) 320 200 180 220 160	(MG/L AS CO3) 0 0 4 0 4	SOLVED (MG/L AS SO4) 340 360 310 290	(MG/L AS CL) 260 310 210 190 180
OCT 17 NOV 14 DEC 18 JAN 24 FEB 20 MAR 25 APR 23 MAY	510 440 370 390 370 400 500	(MG/L GAGO3) 250 280 210 210 230 250 280	(MG/L AS CA) 140 120 100 110 100 110	(MG/L AS MG) 39 35 29 29 28 31 37	(MG/L AS NA) 200 240 180 150 150 150	3.9 5.0 4.1 3.3 3.4 3.3	(MG/L AS K) 7.7 6.1 6.0 5.7 5.4 6.1 6.7	AS HC03) 320 200 180 220 160 180 270	(MG/L AS CO3) 0 0 4 0 4 0	SOLVED (MG/L AS SO4) 340 360 310 290 290 320 360	(MG/L) 260 310 210 190 180 200 250
OCT 17 NOV 14 DEC 18 JAN 24 FEB 20 MAR 25 APR 23 MAY 28 JUN	510 440 370 390 370 400 500	(MG/L CAGO3) 250 280 210 210 230 250 280 190	(MG/L AS CA) 140 120 100 110 100 110 140 86	(MG/L AS MG) 39 35 29 29 28 31 37 24	(MG/L AS NA) 200 240 180 150 150 150 190	3.9 5.0 4.1 3.3 3.4 3.3 3.7 4.4	(MG/L AS K) 7.7 6.1 6.0 5.7 5.4 6.1 6.7	AS HCO3) 320 200 180 220 160 180 270 160	(MG/L AS CO3) 0 0 4 0 4 0 0	SOLVED (MG/L AS SO4) 340 360 310 290 290 320 360 300	(MG/L) 260 310 210 190 180 200 250 210
OCT 17 NOV 14 DEC 18 JAN 24 FEB 20 MAR 25 APR 23 MAY 28 JUN 24 JUN 24 JUN	510 440 370 390 370 400 500 310 300	(MG/L CAGO3) 250 280 210 210 230 250 280 190 220	(MG/L AS CA) 140 120 100 110 100 110 140 86 78	(MG/L AS MG) 39 35 29 29 28 31 37 24 25	(MG/L AS NA) 200 240 180 150 150 150 180 180	3.9 5.0 4.1 3.3 3.4 3.3 3.7 4.4	(MG/L AS K) 7.7 6.1 6.0 5.7 5.4 6.1 6.7 6.2	AS HCO3) 320 200 180 220 160 180 270 160 150	(MG/L AS CO3) 0 0 4 0 4 0 0 0	SOLVED (MG/L AS SO4) 340 360 310 290 290 320 360 300 310	(MG/L) 260 310 210 190 180 200 250 210 160
OCT 17 NOV 14 DEC 18 JAN 24 FEB 20 MAR 25 APR 23 MAY 24 JUN 24 JUN 24 JUN 24 APR 25 APR 21 APR 22 APR 23 APR 24 APR 25 APR 26 APR 27	510 440 370 390 370 400 500 310 300 320	(MG/L CAGO3) 250 280 210 210 230 250 280 190	(MG/L AS CA) 140 120 100 110 100 110 140 86	(MG/L AS MG) 39 35 29 29 28 31 37 24	(MG/L AS NA) 200 240 180 150 150 150 190	3.9 5.0 4.1 3.3 3.4 3.3 3.7 4.4 3.8 3.6	(MG/L AS K) 7.7 6.1 6.0 5.7 5.4 6.1 6.7 6.2 5.6	AS HCO3) 320 200 180 220 160 180 270 160	(MG/L AS CO3) 0 0 4 0 4 0 0	SOLVED (MG/L AS SO4) 340 360 310 290 290 320 360 300	(MG/L) 260 310 210 190 180 200 250 210
OCT 17 NOV 14 DEC 18 JAN 24 FEB 20 MAR 25 APR 23 MAY 28 JUN 24 JUN 24 JUN 24 JUN 24 JUN 24 JUN 24 JUN 25 APR 26 APR 27 APR 28 APR 29 APR 20	510 440 370 390 370 400 500 310 300	(MG/L CAGO3) 250 280 210 210 230 250 280 190 220	(MG/L AS CA) 140 120 100 110 100 110 140 86 78	(MG/L AS MG) 39 35 29 29 28 31 37 24 25	(MG/L AS NA) 200 240 180 150 150 150 180 180	3.9 5.0 4.1 3.3 3.4 3.3 3.7 4.4	(MG/L AS K) 7.7 6.1 6.0 5.7 5.4 6.1 6.7 6.2 5.6 5.8	AS HCO3) 320 200 180 220 160 180 270 160 150	(MG/L AS CO3) 0 0 4 0 4 0 0 0	SOLVED (MG/L AS SO4) 340 360 310 290 290 320 360 300 310	(MG/L) 260 310 210 190 180 200 250 210 160
OCT 17 NOV 14 DEC 18 JAN 24 FEB 20 MAR 25 APR 23 MAY 28 JUN 24 JUN 24 JUN 24 10	510 440 370 390 370 400 500 310 300 320	(MG/L CACO3) 250 280 210 210 230 250 280 190 220	(MG/L AS CA) 140 120 100 110 100 110 140 86 78	(MG/L AS MG) 39 35 29 29 28 31 37 24 25	(MG/L AS NA) 200 240 180 150 150 150 180 180	3.9 5.0 4.1 3.3 3.4 3.3 3.7 4.4 3.8 3.6	(MG/L AS K) 7.7 6.1 6.0 5.7 5.4 6.1 6.7 6.2 5.6	AS HCO3) 320 200 180 220 160 180 270 160 150	(MG/L AS CO3) 0 0 4 0 4 0 0 0	SOLVED (MG/L AS SO4) 340 360 310 290 290 320 360 300 310	(MG/L) 260 310 210 190 180 200 250 210 160
OCT 17 NOV 14 DEC 18 24 FEB 20 MAR 25 APR 23 MAY 28 JUN 24 JUL 22 AUG 11	510 440 370 390 370 400 500 310 320	(MG/L GAGO3) 250 280 210 210 230 250 280 190 220	(MG/L AS CA) 140 120 100 110 100 110 140 86 78 87	(MG/L AS MG) 39 35 29 29 28 31 37 24 25	(MG/L AS NA) 200 240 180 150 150 150 150 150	3.9 5.0 4.1 3.3 3.4 3.3 3.7 4.4 3.8 3.6	(MG/L AS K) 7.7 6.1 6.0 5.7 5.4 6.1 6.7 6.2 5.6 5.8	320 200 180 220 160 180 270 160 150	(MG/L AS CO3) 0 0 4 0 4 0 0 0 0	SOLVED (MG/L AS SO4) 340 360 310 290 290 320 360 300 310 300	(MG/L) 260 310 210 190 180 200 250 210 160

08475000 RIO GRANDE NEAR BROWNSVILLE, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

	DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)
	CT 17	.5	22	1200	1170	.02	.05	.100	.020	.81	.47
N	OV 14	1.1	15	1230	1190	.45	.39	.130	.050	.80	.77
D.	EC 18	.7	11	970	940	.10	.10	.010	.010	.84	.41
J.	AN 24	.6	11	955	895	.04	.02	.010	.010	.66	.42
F	EB 20	.7	12	870	850	.20					
M.	AR						.14	.010	.010	.65	.57
A.	25 PR	.7	1.3	950	919	.00	.00	.040	.020	1.1	.55
M.	23 AY	.7	19	1140	1140	.01	.00	.080	.020	.92	.84
J	28 UN	.7	13	903	894	.43	.41	.030	.010	1.1	.87
J	24 UL	.9	14	840	791	.01	.01	.010	.030	.66	.43
	22 UG	.8	15	832	816	.00	.00	.000	.000	.83	.53
	11									77	
	20 EP	.5	7.0	584	612	.64	.62	.000	.000	1.4	.68
	17	.7	21	1240	1210	.00	.00	.000	.000	.56	.56
1		NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
	CT 17	.91	.49	.030	.000		7.0	.7	118	350	93
NO	OV 14	.93	.82	.080	.010	5.7			155	377	89
DI	EC 18	.85	.42	.050	.000	5.9	-		35	255	81
J	AN 24	.67	.43	.070	.010		5.8	2.3	76	21	99
F	EB 20	.66	.58	.010	.010	11			58	52	99
MA	AR 25	1.1	.57	.090	.020	9.4		- 22	58	26	99
Al	PR 23	1.0	.86	.060	.000	2.4	11	1.7	92	5.0	93
MA	AY										75
JI	28 UN	1.1	.88	.110	.020	7.6			127	195	
JI	24 UL	.67	.46	.050	.010	7.2	4.0		48	29	98
Al	22 UG	.83	.53	.060	.010		4.2		35	4.9	97
1.7	11		===			35	22		1910 1400	17500 15100	88 92
SI	20 EP	1.4	.68	.190	.020	15		4-	221	472	96
	17	.56	.56	.030	.020	5.7			116	3.4	98
DATE	TIM	ARSE TOT E (UG AS	AL TOT /L (UG	S- ARSE DED DI AL SOL /L (UG	S- REC VED ERA	AL PEND OV- REC BLE ERA /L (UG	ED BARI OV- DIS BLE SOLV /L (UG	- RECO ED ERAI /L (UG)	AL PEN OV- REC BLE ERA L (UG	S- DED CADM OV- DI BLE SOL /L (UG	S- RECOV- VED ERABLE /L (UG/L
OCT 17	112	2	4	0	4	200	0	200	0	0	<1 0
DEC 18	132						-				
JAN 24	152		3	1		100		100	0	0	0 0
MAR 25	122			.02							
APR 23	093		4	1	3	300		100	1	21	<1 0
JUN 24	110										
JUL						100	0	100	0		Z1 10
22 SEP	120		4	0		100	0	100	0	2.7	<1 10
17	122	U								22	

08475000 RIO GRANDE NEAR BROWNSVILLE, TX--Continued
WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	MI S PE RE (U	RO- UM, US- NDED COV. IG/L CR)	CHRO MIUM DIS- SOLV (UG/ AS C	RED ER	ALT, TAL COV- ABLE G/L CO)	COBALT, SUS- PENDED RECOV- ERABLE (UG/L AS CO)	COBA DIS SOLV	LT, - ED	COPPER TOTAL RECOV ERABL (UG/L AS CU	, SU PE RE E ER (U	PER, S- NDED COV- ABLE G/L CU)	COPPE DIS- SOLV (UG/ AS C	R, TO RI ED EI L (I	RON, OTAL ECOV- RABLE UG/L S FE)	PEN REC ERA (UC	IS- IDED OV- BLE	IRON DIS SOLY (UG, AS	S- /ED /L
OCT 17		0		0	2	()	<3		3	3		0	570		560		(10
DEC 18.		42							-	-								
JAN 24		0		0	2		2	0		8	8		0	630		610		20
MAR 25									-	_						-		
APR 23		0		0	0			<3		0	0		1	860				<10
JUN 24									-									4
JUL 22.		10		0	0			<3		4	4		0	550		,QL		<10
SEP 17.,						4.		24	14	2	4.							
	TC RE EF (U	CAD, DTAL CCOV- CABLE UG/L	LEAD SUS PEND RECO ERAB (UG/	ED LE V- D LE SO L (U	AD, IS- LVED G/L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L	NES SU PEN E REC	IS- IDED COV.	MANGA NESE, DIS- SOLVE (UG/L	TO RE D ER (U	CURY TAL COV- ABLE G/L	MERCU SUS PEND RECO ERAB (UG/	ED MEI V- I LE SO L (1	RCURY DIS- DLVED UG/L	ERA (UC	CEL, CAL COV- BLE G/L	NICKI SU: PENI RECO ERA! (UG,	S- DED DV- BLE /L
DATI	E AS	PB)	AS P	B) AS	PB)	AS MN) AS	MN)	AS MN) AS	HG)	AS H	G) AS	S HG)	AS	NI)	AS I	1I)
OCT 17. DEC		3		3	0	170)	140	3	0	.1		.1	.0		5		5
18. JAN				-3			-		- 0	-			44			4,2		
24.		5		5	0	170)	160		6	.1		.0	.3		2		1
25 APR										-								++
23. JUN		5		5	0	220)	220		5	.8		.7	.1		2		2
JUL						-			-									
SEP		4		1	3	80)	80		2	.2		.1	-1		2		2
17.									-	-			65					
	DATE	(UC		SELE- NIUM, TOTAL (UG/L AS SE)	NII PEI TO:	JS- NDED CAL S	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	ERA (UG	YER, TAL COV- ABLE G/L	ILVER, SUS- PENDED RECOV- ERABLE (UG/L AS AG)	SO (U	VER, IS- LVED G/L AG)	ZINC, TOTAL RECOV- ERABLI (UG/L AS ZN)	S PE RE E ER	NC, US- NDED COV- ABLE G/L ZN)	ZING DIS SOLV (UG) AS 2	S- VED /L	
	OCT 17		0	0		0	0		0	0		0		0	0		5	
	DEC 18								0									
	JAN 24		1	0		0	0		0	0		0	30	0	20		7	
	MAR 25								0				-					
	APR 23		0	0		0	0		0	0		0	10)			<3	
	JUN 24								0									
	JUL 22		0	1		0	1		0	0		0	20	0			<3	
	SEP 17	-				÷			0				-					
DATE	TIME	PO TOT (UG/	AL	ALDRIN, TOTAL (UG/L)	TOT	TAL I	DDD, COTAL (UG/L)	DD TOT (UG	AL	DDT, FOTAL (UG/L)	AZI	I- NON, TAL G/L)	DI- ELDRIN TOTAL (UG/L)	TO'	RIN, TAL G/L)	ETHIC TOTA (UG)	AL.	HEPTA- CHLOR, TOTAL (UG/L)
NOV 14	1200		ND	ND		ND	ND		ND	ND		ND	NI		ND		ND	ND
	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINE	ANE	MALA- THION, TOTAL (UG/L)	TO	TH- M YY- F LOR, T TAL T	METHYL PARA- THION, TOTAL (UG/L)	TR THI TOT	HYL II- ON,	PARA- IHION, IOTAL (UG/L)	APH	OX-	TOTAL TRI- THION (UG/L)	2,4 TO:	4-D, TAL G/L)	2,4,5 TOTA (UG)	5-T	SILVEX, TOTAL (UG/L)
NOV 14	NE		ND	ND		ND	ND		ND	ND		ND	NI)	ND		ND	ND

08475000 RIO GRANDE NEAR BROWNSVILLE, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DATE	LENGTH OF EXPO- SURE (DAYS)	PERI- PHYTON BIOMASS ASH WEIGHT	PERI- PHYTON BIOMASS TOTAL DRY WEIGHT	CHLOR-A PERI- PHYTON CHROMO- GRAPHIC FLUOROM	CHLOR-B PERI- PHYTON CHROMO- GRAPHIC FLUOROM	BIOMASS CHLORO- PHYLL RATIO PERI- PHYTON	
JAN 24 MAY 28	37 35	G/SQ M 4.25 9.13	G/SQ M 4.41 10.2	(MG/M2) 8.12 18.6	.410 8.72	(UNITS) 19.7 57.5	
20	22	3.13	10.4	10.0	0.12	31.0	

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

PHYTOPLANKTON A							*****	0/ 00
DATE TIME		14,79 1200		25,80 224		28,80 305		24,80 1100
TOTAL CELLS/ML	97	7000	140	0000	42	2000	530	0000
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		1.1 1.1 1.5 1.8 0.0		0.9 1.0 1.3 1.5		1.2 1.2 1.8 2.1 2.8		0.1 0.1 0.5 0.5 1.0
	CELLS	PER-	CELLS	PER-	CELLS	PER-	CELLS	PER-
ORGANISM	/ML	CENT	/ML	CENT	/ML	CENT	/ML	CENT
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE .CHLOROCOCCALES .CHARACIACEAESCHROEDERIACHLOROCOCCACEAE	510	ī		7.	.52		==	
COELASTRACEAE COELASTRUM		(2)		3		-		-
MICRACTINIACEAE GOLENKINIA	22	-	*	0		4	1 22	
MICRACTINIUM OOCYSTACEAE	++	-	-75	-		-		i c€a
ANKISTRODESMUS CHLORELLA	*	0	3800 5700	3	210	1	*	0
CHODATELLA		-		-	*	0	*	0
DICTYOSPHAERIUM GLOEOACTINIUM	5800	6	2400	2	3100 570	8		5
KIRCHNERIELLA	1200	1	3600	3		-	*	0
OOCYSTIS SELENASTRUM	3400	4		-	430	0		0
TETRAEDRON	*	0	*	0		-		-
TREUBARIA SCENEDESMACEAE		-						
CRUCIGENIA SCENEDESMUS	5300	5	810 5900	1 4	570 5700	1	*	0
TETRASTRUM TETRASPORALES	680	1	-	-	290	1		6
PALMELLACEAESPHAEROCYSTISULOTRICHALESULOTRICHACEAE		-	**	-	**			-
GEMINELLA VOLVOCALES	1.55		5700	4	77	=	**	-
CHLAMYDOMONADACEAE CHLAMYDOMONAS					290	i		
CHLOROGONIUM .ZYGNEMATALES		2.	22.	2		-	*	0
DESMIDIACEAE	*	0						
EUASTRUM	*	0		-				-
CHRYSOPHYTA .BACILLARIOPHYCEAECENTRALESCOSCINODISCACEAE								
COSCINODISCUS	*	0	*	-	1200	-	*	0
CYCLOTELLA MELOSIRA		0	77	0	1200	3	*	0
PENNALES ACHNANTHACEAE								
COCCONEIS FRAGILARIACEAE		-	45	-	*	0		-
SYNEDRA		-	2000	1		-		-
NAVICULACEAE NAVICULA	1400	0	1800	1		-		-
NITZSCHIACEAE NITZSCHIA	3100	3	*	0	1100	3	*	0
SURIRELLACEAE	680	1						
SURIRELLA .CHRYSOPHYCEAE .CHRYSOMONADALES	080					7	-	
MALLOMONADACEAE MALLOMONAS	7.5	-5	*	0		-		*
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAE .CRYPTOMONADALES								
CRYPTOCHRYSIDACEAE CHROOMONAS		-	24	-	*	0		-
CRYPTOMONADACEAE CRYPTOMONAS	*	0	7.7	-		-		-

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

08475000 RIO GRANDE NEAR BROWNSVILLE, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980--Continued

DATE TIME	NOV 1	4,79	MAR 2	25,80 224	MAY 2	28,80 805	JUN 2	24,80
ORGANISM		PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAE								
AGMENELLUM	39000#	40	1000004	72	19000#	46	37000	7
ANACYSTIS	25000#	26	77.55		640	2	4300	1
GOMPHOSPHAERIA	25000#				2100	5	4500	2
NOSTOCACEAE					2100	,		
ANABAENA		-		-	1100	3		
ANABAENOPSIS		-		-		-		-
OSCILLATORIACEAE								
LYNGBYA	6800	7			-		43000	8
OSCILLATORIA	0000	,	2200	2	4300	10	440000#	
PHORMIDIUM	1700	2	2200	4	4300	10	4400000	03
			2400	2	7.5	-		- 7
SCHIZOTHRIX		-	2400	2		-		-
RIVULARIACEAE								
RAPHIDIOPSIS		-		-		-		-
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALESEUGLENACEAE								
EUGLENA	34	- 2		-	*	0		1.21
PHACUS	510	1		_		-	122	
TRACHELOMONAS	*	0		5.0	1.22	10.0	122	1
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEPERIDINIALESGLENODINIACEAE								
GLENODINIUM		-		-		-	*	0

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980

DATE FIME		22,80 205		20,80 057		17,80 220
TOTAL CELLS/ML	300	0000	16	000	390	0000
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		0.1 0.1 0.5 0.5		1.4 1.4 2.1 3.0 3.1		0.2 0.2 0.5 0.7
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESCHARACIACEAE						
SCHROEDERIA		-			*	0
CHLOROCOCCACEAE	1.44	-		4		-
COELASTRACEAE						
COELASTRUM		-	940	6		-
MICRACTINIACEAE						
GOLENKINIA		- L	*	0		-
MICRACTINIUM		-	1500	10		-
OOCYSTACEAE ANKISTRODESMUS	*	0	130	1	*	0
CHLORELLA	•	0	130	1	^	0
CHODATELLA						-
DICTYOSPHAERIUM	7.22		130	1	*	0
GLOEOACTINIUM				-		_
KIRCHNERIELLA				-		-
OOCYSTIS	022	2	500	3		-
SELENASTRUM	*	0	*	Ö		-
TETRAEDRON		0.0		-		-
TREUBARIA	-	-		-	*	0
SCENEDESMACEAE						
CRUCIGENIA		-	130	1		-
SCENEDESMUS	*	0	940	6	2300	1
TETRASTRUM		-	130	1	*	0
.TETRASPORALES						
PALMELLACEAE			225			
SPHAEROCYSTIS	044	-	270	2		-
.ULOTRICHALES						
ULOTRICHACEAE						
GEMINELLA		-		-		-
.VOLVOCALES						
CHLAMYDOMONADACEAE			120	1		
CHLAMYDOMONAS		-	130	1		-
CHLOROGONIUM .ZYGNEMATALES		-		-		-
DESMIDIACEAE						
EUASTRUM						
· · · LUASIKUM		-		-		-

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

RIO GRANDE BASIN

08475000 RIO GRANDE NEAR BROWNSVILLE, TX--Continued

PHYTOPLANKTON ANALYSES, OCTOBER 1979 TO SEPTEMBER 1980--Continued

DATE TIME		22,80 205		20,80 057		17,8 220
TOTAL CELLS/ML	300	000	16	000	390	000
CHRYSOPHYTA						
BACILLARIOPHYCEAE						
CENTRALES						
COSCINODISCACEAE			100	-		
COSCINODISCUS	*	_	*	0		-
CYCLOTELLA		0	470	3	*	0
MELOSIRA PENNALES		-		7	7.5	-
ACHNANTHACEAE						
COCCONEIS		-	340	2	3500	1
FRAGILARIACEAE						
SYNEDRA	*	0		-	*	0
NAVICULACEAE		(3)				-
NAVICULA	*	0		-		-
NITZSCHIACEAE	*	0	1400	9		
SURIRELLACEAE		U	1400	9		-
SURIRELLA				-		-
.CHRYSOPHYCEAE						
CHRYSOMONADALES						
MALLOMONADACEAE						
MALLOMONAS		1.5	100	-		
CDVDTODUVTA (CDVDTOMONADC)						
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAE						
CRYPTOMONADALES						
CRYPTOCHRYSIDACEAE						
CHROOMONAS	Year	-		0_0	20	-
CRYPTOMONADACEAE						
CRYPTOMONAS		1.40		-		-
CYANOPHYTA (BLUE-GREEN ALGAE)						
.CYANOPHYCEAE						
CHROOCOCCALES						
CHROOCOCCACEAE						
AGMENELLUM		÷.	1900	12	12000	3
ANACYSTIS	23000	8		-	9600	2
GOMPHOSPHAERIA		-		-		-
HORMOGONALES						
NOSTOCACEAE						
ANABAENA ANABAENOPSIS		-			6100	2
OSCILLATORIACEAE					0100	-
LYNGBYA				-		-
OSCILLATORIA	270000#	89	5900#	37	350000#	90
PHORMIDIUM	7400	2		-		-
SCHIZOTHRIX		-		-		-
RIVULARIACEAE			010	-		
RAPHIDIOPSIS			810	5		-
UGLENOPHYTA (EUGLENOIDS)						
EUGLENOPHYCEAE						
.EUGLENALES						
EUGLENACEAE						
EUGLENA	*	0	*	0		-
PHACUS	4-	+		-		-
TRACHELOMONAS		-	77	-	900	-
ADMINISTRAÇÃO DE LA CASTA DEL CASTA DEL CASTA DE LA CASTA DEL CASTA DEL CASTA DEL CASTA DE LA CASTA DE LA CASTA DE LA CASTA DE LA CASTA DEL CASTA DE LA CASTA DEL CASTA DEL CASTA DEL CASTA DEL CASTA DE LA CASTA DEL CASTA DEL CASTA DEL CASTA DEL CASTA DEL CAST						
YRRHOPHYTA (FIRE ALGAE)						
DINOPHYCEAE .PERIDINIALES						
PYRRHOPHYTA (FIRE ALGAE) DINOPHYCEAEPERIDINIALESGLENODINIACEAEGLENODINIUM						

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

569

08475000 RIO GRANDE NEAR BROWNSVILLE, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)	
OCT.	1979	6150	1690	1050	17400	250	4100	320	5390	430	
NOV.	1979	12481	1660	1030	34700	240	8150	320	10800	420	
DEC.	1979	13690	2080	1290	47700	330	12200	390	14300	520	
JAN.	1980	4598	1690	1040	13000	250	3050	320	4020	430	
FEB.	1980	7593	1380	851	17400	190	3830	270	5550	360	
MAR.	1980	7795	1570	970	20400	220	4680	300	6390	400	
APR.	1980	3298.8	1310	811	7220	180	1570	260	2310	340	
MAY	1980	20304.5	1280	793	43500	170	9360	250	13900	330	
JUNE	1980	4859	1390	859	11300	190	2490	270	3580	360	
JULY	1980	8697	1270	782	18400	170	3940	250	5900	330	
AUG.	1980	40650	1130	701	76900	150	16200	230	24900	300	
SEPT	1980	8175.2	1470	908	20000	210	4540	290	6310	380	
TOTAL		138291.0	**	**	328000	**	74100	**	103000	**	
WTD. AVG.		378	1420	878	**	200	**	280	**	370	

	SP	ECIFIC CO	NDUCTANCE	(MICROMH		25 DEG. C) NCE-DAILY	, WATER	YEAR OCTO	BER 1979 1	O SEPTEM	BER 1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1610 1660 1880 1890 1670	1330 1380 1410 1400 1390	1540 1550 1560 1580 1600	1950 1920 1730 1750 1720	1370 1360 1350 1350 1370	1420 1500 1550 1600 1700	1360 1340 1360 1430 1400	1170 1200 1220 1240 1380	1530 1550 1580 1630 1650	1240 1270 1270 1290 1270	1490 1370 1320 1360 1440	1220 1330 1980 1710 1800
6 7 8 9	1990 1800 1700 1710 1600	1970 1800 1740 1580 1600	1560 1740 2340 2330 2320	1720 1730 1680 1670 1670	1420 1420 1430 1430 1440	1650 1600 1550 1530 1510	1290 1320 1280 1340 1380	1310 1190 1180 1180 1190	1680 1680 1750 1810 1410	1290 1260 1220 1230 1220	1420 1420 1320 1200 1150	1760 1760 1780 1760 1820
11 12 13 14	1550 1500 1810 1750 1720	1580 1550 1880 1710 2040	1750 2290 1570 1530 2350	1690 1660 1680 1690 1670	1450 1440 1420 1350 1360	1530 1520 1510 1500 1510	1410 1480 1460 1520 1430	1200 1200 1200 1210 1210	1300 1280 1320 1350 1360	1210 1250 1270 1320 1310	1120 1080 1220 1090 790	1800 1830 1830 1860 1810
16 17 18 19 20	1910 1800 1870 1880 1760	1950 2020 1700 1500 1480	2330 2340 2360 2370 2280	1680 1630 1720 1810 1750	1380 1370 1370 1380 1370	1500 1480 1490 1500 1480	1480 1480 1570 1500 1620	1240 1250 1260 1250 1240	1380 1390 1310 1270 1270	1290 1340 1290 1310 1300	892 1580 1660 1380 1010	1780 1850 1960 2020 1930
21 22 23 24 25	1780 1790 1740 1780 1630	1580 1590 1500 1580 1600	1730 2010 2100 2230 2200	1700 1690 1620 1450 1500	1360 1370 1360 1340 1300	1460 1470 1470 1480 1470	1640 1700 1590 1490 1270	1240 1280 1290 1300 1310	1320 1340 1320 1320 1290	1320 1310 1340 1360 1360	859 848 867 930 959	1840 1700 1640 1680 1400
26 27 28 29 30 31	1470 1460 1450 1470 1400 1310	1650 1600 1580 1560 1550	2180 2160 2250 2140 2000 1970	1430 1490 1400 1410 1390 1400	1300 1360 1370 1400	1430 1490 1500 1510 1460 1440	1190 1180 1180 1170 1190	1350 1400 1440 1500 1510 1520	1300 1300 1290 1280 1240	1260 1210 1180 1180 1210 1340	1000 1060 1100 1140 1230 1280	1320 1260 1290 1240 1250
MEAN	1690	1630	2010	1650	1380	1510	1400	1280	1420	1270	1180	1670

08475000 RIO GRANDE NEAR BROWNSVILLE, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

					0	NCE-DAILY						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	27.5	24.0			14.5		23.0	27.0		29.0	29.5	30.0
2	27.5	24.0		19.5	14.5		24.5	28.0		29.0	29.0	29.5
3	27.0	24.0	20.0	19.5			26.0			29.5	29.0	29.0
4	27.0		20.0	19.5	14.5		26.0	27.0		29.5	28.0	29.0
5	27.0	23.5	20.0	20.0			24.5	28.0	222	29.0	30.0	29.0
-	Fire		15717	2010						-,	50.0	23.0
6	27.0	23.0	20.0				23.0	27.0	28.0	30.5	29.0	28.5
7		23.0	19.0	20.0			25.5	25.0	28.0	30.0	28.0	30.0
8	26.5	22.5	19.0	21.0			23.0	26.0		30.0	27.5	30.0
9	27.0	22.0		21.0				27.0	29.5	32.0		29.5
10	27.0	22.0	19.0	20.0					28.0	31.5		29.5
11	27.0		19.0	19.5			27.0	26.5	29.0	30.0	28.0	29.0
12	26.5	22.0	19.0	19.5			3.0	28.0		30.0	29.5	29.0
13	26.5	22.0	19.0				-1.0	29.0	28.0	30.5	29.0	29.0
14		22.0	19.0	20.5			22.5	29.0	29.0	30.5	30.0	31.0
15	27.0	22.0	18.5	20.0			25.0		29.5	29.5	30.0	29.0
13	27.0	22.0	10.5	20.0			23.0		23.3	23.3	30.0	29.0
16	27.0	22.0		20.0			24.0	31.0	29.0	29.5	30.5	29.0
17	26.5	21.5	18.5	20.0		***	25.0	29.0	29.5	29.0	31.0	28.0
18	26.5	22.0	18.0	21.0			27.5	31.0	30.0	29.5	30.5	28.5
19	26.5	21.5	18.5	19.5			27.0	29.0	30.0	30.0	31.5	29.5
20	26.5	21.0	18.5				25.0	29.5	30.0	30.0	30.5	28.5
21		21.0	19.0	18.0			25.5	29.5	30.0	30.0	29.5	30.0
22	26.0	21.0	19.0	18.0			23.0	28.0	30.0	30.5	30.0	28.5
23	26.5	20.0		18.0			24.0	20.0	30.0	29.5	30.0	28.0
24	26.5	20.0	19.0	17.5			25.5		30.0	29.0	31.5	29.0
25	25.0	20.0	19.0	17.5		22.5	27.0		30.0	30.0	30.5	28.5
25	25.0			17.5		22.5	27.0		30.0	30.0	30.5	28.5
26	24.5			17.0		22.0	26.0		30.0	32.0	30.0	28.5
27	24.5		19.0	16.0		22.5	26.0		29.5	32.5	29.5	28.0
28			19.0	15.0			25.0		29.0	32.0	30.0	29.0
29	24.5		19.0	14.5		23.0	24.5		29.0	30.0	30.0	30.0
30	24.0			14.0		24.0	24.0		29.0	29.5	29.0	30.0
31	24.0		19.5	14.5		25.0				29.5	28.0	
MEAN	26.5	22.0	19.0	18.5	14.5	23.0	25.0	28.0	29.5	30.0	29.5	29.0
TILLIN	20.5	22.0		10.5	14.5	23.0	23.0	20.0	27.3	50.0	27.5	27.0

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		OCTOBER			NOVEMBER			DECEMBER	
1 2 3 4 5	450 426 364 261 209	108 94 388 494 125	131 108 381 348 71	168 144 168 454 803	170 116 103 100 110	77 45 47 123 238	111 103 158 203 269	25 20 19 21 24	7.5 5.6 8.1 12
6 7 8 9	182 169 157 152 144	496 200 112 94 49	244 91 47 39 19	982 907 692 631 770	86 64 84 91 96	228 157 157 155 200	396 468 462 334 358	19 33 44 50 53	20 42 55 45 51
11 12 13 14 15	144 219 167 139 118	53 54 106 100 115	21 32 48 38 37	911 1030 973 628 364	110 108 322 250 200	271 300 846 424 197	462 537 464 482 479	71 43 19 20 40	89 62 24 26 52
16 17 18 19 20	134 242 122 66 83	104 90 84 88 106	38 59 28 16 24	237 184 175 253 296	98 194 200 75 85	63 96 94 51 68	468 498 485 328 220	45 49 54 34 53	57 66 71 30 31
21 22 23 24 25	105 172 242 412 279	100 115 116 190 160	28 53 76 211 121	200 204 171 164 178	57 36 39 31 30	31 20 18 14	174 137 136 279 497	49 65 60 62 60	23 24 22 47 81
26 27 28 29 30 31	255 212 153 127 103 142	141 154 150 140 176	97 88 62 48 49 64	186 186 163 153 106	29 26 28 27 26	15 13 12 11 7.4	1030 1260 1050 826 632 384	60 60 56 70 70 65	167 204 159 156 119
TOTAL	6150		2717	12481		3992.4	13690		1840.2

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L) JANUARY	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L) FEBRUARY	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L) MARCH	SEDIMENT DISCHARGE (TONS/DAY)
1 2 3 4 5	266 283 252 187 173	70 71 43 50 40	50 54 29 25 19	89 85 92 237 209	168 122 104 97 92	40 28 26 62 52	101 333 516 741 1100	60 150 252 325 316	16 135 351 650 939
6 7 8 9	200 244 296 222 156	40 38 66 66 47	22 25 53 40 20	239 418 410 310 190	88 85 80 75 70	57 96 89 63 36	971 714 464 260 146	200 195 150 126 108	524 376 188 88 43
11 12 13 14 15	119 100 86 84 118	36 48 60 76 76	12 13 14 17 24	200 160 200 392 332	65 60 63 50 52	35 26 34 53 47	114 92 52 68 72	95 88 54 33 65	29 22 7.6 6.1 13
16 17 18 19 20	124 119 156 124 112	60 144 92 86 93	20 46 39 29 28	301 352 304 302 332	48 40 45 50 58	39 38 37 41 52	75 116 111 81 101	76 88 68 55 43	15 28 20 12 12
21 22 23 24 25	120 166 186 124 76	117 98 100 94 100	38 44 50 31 21	245 193 222 348 418	50 48 40 30 62	33 25 24 28 70	174 179 181 188 168	36 50 55 53 62	17 24 27 27 28
26 27 28 29 30 31	75 71 54 63 138 104	106 148 95 90 116 56	21 28 14 15 43	434 283 181 115	65 60 58 65	76 46 28 20	116 104 98 84 112 163	70 84 80 76 66 75	22 24 21 17 20 33
TOTAL	4598	***	900	7593		1301	7795	-	3734.7
DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		APRIL			MAY			JUNE	
1 2 3 4 5	246 202 118 101 232	64 60 74 84 64	43 33 24 23 40	128 68 37 20 9.5	88 72 75 70 97	30 13 7.5 3.8 2.5	225 139 82 42 31	92 101 76 54 66	56 38 17 6.1 5.5
6 7 8 9	287 237 100 49 34	48 60 54 60 74	37 38 15 7.9 6.8	236 512 851 579 374	70 90 150 150 95	45 124 345 234 96	29 32 36 308 731	54 74 75 508 276	4.2 6.4 7.3 609 605
11 12 13 14 15	33 58 74 86 59	93 57 73 72 57	8.3 8.9 15 17 9.1	231 270 438 526 456	76 78 87 74 72	47 57 103 105 89	274 86 57 89 59	57 37 30 33 26	42 8.6 4.6 7.9 4.1
16 17 18 19 20	31 17 7.8 6.0 9.5	65 70 82 80 94	5.4 3.2 1.7 1.3 2.4	259 274 219 213 770	68 72 67 . 58 245	48 53 40 33 754	44 169 202 165 139	37 35 35 34 38	4.4 16 19 15
21 22 23 24 25	8.5 12 21 57 205	86 94 179 132 124	2.0 3.0 10 20 69	2220 2670 2240 1740 1510	1360 950 650 375 188	8170 6850 3930 1760 766	159 179 195 228 250	35 34 33 35 37	15 16 17 22 25
26 27 28 29	191 113 107 297 300	71 76 70 82 96	37 23 20 66 78	1250 752 576 417 213	108 93 100 85 80	364 189 156 96 46	205 183 173 155 193	31 42 38 34 58	17 21 18 14 30
30 31				246	76	50			

572 RIO GRANDE BASIN

08475000 RIO GRANDE NEAR BROWNSVILLE, TX--Continued

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		JULY			AUGUST			SEPTEMBER	
1 2 3 4 5	176 192 150 125 165	44 36 27 30 56	21 19 11 10 25	67 54 57 75 448	39 41 40 42 72	7.1 6.0 6.2 8.5	784 982 657 385 238	116 120 87 34 28	246 318 154 35 18
6 7 8 9	190 243 519 590 452	42 39 66 84 64	22 26 92 134 78	456 260 290 770 2170	58 48 54 650 900	71 34 42 1350 5270	194 186 188 130 89	36 44 38 62 42	19 22 19 22 10
11 12 13 14 15	302 170 145 267 261	48 41 46 50 49	39 19 18 36 35	3640 4200 4270 4030 4060	1910 1230 1160 1210 978	18800 13900 13400 13200 10700	66 57 68 83 72	72 46 83 72 72	13 7.1 15 16 14
16 17 18 19 20	203 243 217 178 132	44 52 52 36 37	24 34 30 17 13	4340 3330 1800 1140 812	894 791 574 345 218	10500 7110 2790 1060 478	35 15 4.2 17 36	71 84 74 60 94	6.7 3.4 .84 2.8 9.1
21 22 23 24 25	100 54 86 187 756	46 34 35 47 449	12 5.0 8.1 24 1190	562 438 388 327 388	121 63 48 34 34	184 75 50 30 36	65 77 97 174 178	59 74 92 46 39	10 15 24 22 19
26 27 28 29 30 31	1150 696 427 148 81 92	356 163 74 50 38 42	1110 318 85 20 8.3	643 456 367 296 236 280	66 38 35 32 34 84	115 47 35 26 22 64	285 403 600 1010 1000	49 43 47 121 149	38 47 76 330 402
TOTAL	8697	2.0	3493.4	40650	222	99503.8	8175.2	444	1933.94

NUECES RIVER BASIN

Verde Creek Low-Flow Investigation

PURPOSE.--To determine the changes in quantity of low flow in Verde Creek and its tributaries as it crosses the Edwards Underground aquifer recharge zone.

REACH.--The investigation began on Middle Verde Creek about 700 ft upstream from State Highway 173 crossing, about 15.6 miles north of Hondo, and ended on Verde Creek at State Highway 173 crossing at Vanderburg Community, about 4.5 miles north of Hondo. The investigation involved a distrance of 16.5 miles along the Verde and Middle Verde Rivers.

REVIOUS INVESTIGATIONS .-- None made previously in this reach.

JUMMARY.--Streamflow during this investigation was a result of heavy rains that occurred on Sept. 6, 7. The investigation was made at a time when there was combined flow of about 60 ft³/s on Middle Verde and East Verde Creeks. Because a steady state condition did not exist at the upper sites to determine losses to the Edwards Underground aquifer, the data should be used with caution.

Location and description of data-collection sites,
Miles Verde Creek and tributaries Water Discharge in cfs Location Remarks Stream Date above temp. Main tribumouth stream tary Lat 29°34'08", long 99°05'55", 700 ft upstream from bridge on State Highway 173, 15.6 Middle Verde Creek Sept. 8 24.0 24.0 71.2 Streambed is rock with some gravel. mi north of Hondo. Lat 29°32'17", long 99°04'47", 200 ft upstream from countyDo...... Sept. 8 20.3 24.0 46.9 Streambed is gravel. road crossing, 800 ft up-stream from East Verde Creek, 13.7 mi north of Hondo. Lat 29°34'41", long 99°04'48", at county road crossing, 16.0 mi north of Hondo.Do...... Sept. 8 24.0 16.4Do........ Middle Verde Creek Lat 29°31'17", long 99°05'04", Sept. 8 18.9 *30 Ponded upstream and downat county road crossing, 12.7 mi north of Hondo. stream from crossing; only field estimated made. Lat 29°30'11", long 99°06'02", 40 ft downstream from Middle Verde recharge reservoir, 11.1 mi north of Hondo. Sept. 8 16.6 24.0 9.02 All water is being dis-charged through drop in-......Do...... let of reservoir which was submerged. Streambed is silty, gravel with large pool downstream. Lat 29°30'05", long 99°06'31", 30 ft downstream from bridge on State Highway 173, 10.9 mi north of Hondo. Streambed is gravel.Do...... Sept. 8 15.9 27.0 8.63 Lat 29°29'01", long 99°07'18", 200 ft downstream from county road crossing, 9.7 mi northDo...... Sept. 8 14.0 27.0 3.70 Streambed is slab rock and gravel. of Hondo. Lat 29°30'26", long 99°07'52", at county road crossing, 11.2 mi north of Hondo. Martin Creek Sept. 8 0 Streambed is rock and gravel. Lat 29°29'00", long 99°07'37", 1,800 ft upstream from mouth, 0Do......Do...... Sept. 8 9.2 mi north of Hondo. Lat 29°27'00", long 99°07'30", at Seifert Ranch, 7.2 mi north of Hondo. Verde Creek Sept. 8 11.0 *.05 Stream is gravel; seepage through gravel. Lat 29°24'16", long 99°06'59",Do...... Sept. 8 7.5 25.0 1.16 Stream is gravel with some 100 ft downstream from bridge on State Highway 173, 4.5 mi seepage through gravel. north of Hondo.

^{*} Estimated.

LOW-FLOW INVESTIGATION

NUECES RIVER BASIN

Frio River Low-Flow Investigation

PURPOSE.--To determine the changes in quantity of low flow in the Frio River and its tributaries where it crosses the Edwards Underground aquifer recharge zone.

REACH.--The investigation began at the stream-gaging station Frio River at Concan (08195000) and ended at the stream-gaging station Frio River below Dry Frio River near Uvalde (08197500). This involved a distance along the Frio River of 28.4 miles.

PREVIOUS INVESTIGATIONS. -- 1932.

SUMMARY.--Streamflow during this investigation was a result of heavy rains that occurred on Sept. 6, 7. Constant flow was found at the upstream site, but as indicated by the two measurements made at the U.S. Highway 90 bridge, a steady state condition had not been reached at the downstream site. Therefore, the losses to the Edwards Underground aquifer in some sections of the lower reach should be used with caution.

			Miles	Water	Discharge in	cfs
Stream	Location	Date	above mouth	temp. (°C)	Main tri	bu- Remarks ry
Frio River	Lat 29°29'18", long 99°42'16", at stream-gaging station 08195000.	Sept. 11	28.4	24.5	201	Streambed is gravel.
Do	Lat 29°26'47", long 99°39'55", 300 ft upstream from crossing on FM 2690, 10.8 mi north of Knippa.	Sept. 11	22.8	26.5	160	Streambed is rock outcrop and gravel.
Do	Lat 29°23'23", long 99°38'57", at Sidel Ranch, 6.6 mi north of Knippa.	Sept. 11	16.7	28.0	93.7	Streambed is rock outcrop
Do	Lat 29°21'03", long 99°39'32", at county road extension, 4.2 mi north of Knippa.	Sept. 11	13.8	30.0	72.7	Streambed is gravel.
Do	Lat 29°19'46", long 99°39'14", 200 ft downstream from Helbig Crossing, 2.7 mi north of Knippa.	Sept. 11	11.6	29.5	42.8	Do
Do	Lat 29°17'30", long 99°38'54", 50 ft downstream from bridge on U.S. Highway 90, 0.8 ml west of Knippa at discontinued partial-record site 08195500.	Sept. 11	6.2	26.0 29.0	1/10.6 2/ 3.58	Do
Do	Lat 29°14'44", long 99°40'27", at stream-gaging station 08197500.	Sept. 11	0	31.0	.86	Do

^{1/} At 0930 hours. 2/ At 1625 hours.

Because the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than continuous stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage of those events. The data collected for special reasons are called measurements at miscellaneous sites.

Streamflow data collected at partial-record stations where water-quality data other than observations of water temperature are not obtained are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations; the second is a table of annual maximum stage and (or) discharge at crest-stage stations. Discharge measurements made at miscellaneous sites for both low and high flows are given in a third table. Discharge measurements and water-quality data collected at partial-record stations are presented in downstream order in the section of this report entitled "Gaging-station records."

Low-flow partial-record stations

Measurements of streamflow at low-flow partial-record stations that are not published in the gaging-station section are given in the following table. Most of the measurements of low flow were made during periods when streamflow was sustained primarily by ground-water discharge. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will indicate the low-flow potential of the stream. The years listed in the column headed "Period of record" identifies the water years in which measurements were made at the same or at practically the same site.

Discharge measurements made at low-flow partial-record stations during water year 1980 Measurements Drainage Period Station No. Station name Location area of Date Discharge (ft^3/s) (sq mi) record Colorado River basin 08129500 Dove Creek Spring Lat 31°11'06", long 100°43'51", Irion County, at headquarters ranchhouse, 500 ft upstream from 1944-58# 10- 2-79 (a) 16.6 near Knickerbocker, 1959-80 11-14-79 14.6 Dove Creek, 1.8 mi upstream from Stilson Dam on Dove Creek, and 8.5 mi southwest of Knicker-1- 3-80 12.6 2-14-80 13.1 bocker. 3-31-80 13.3 5- 6-80 6-17-80 13.3 13.4 7-28-80 10.6 9-15-80 11.4 Lat 31°20'13", long 100°28'46", Tom Green County, 1,000 ft upstream from Pecan Creek and about 9 mi south of San Angelo. 1963-80 10- 1-79 2.94 08131300 South Concho River (a) above Pecan Creek 11-13-79 3.15 near San Angelo, 1- 2-80 2.97 2-13-80 3.24 3-28-80 3.10 5- 6-80 3.00 6-16-80 2.66 7-28-80 2.13 08143900 Springs at Fort Lat 30°50'03", long 100°05'37", Menard County, (a) 1902, 2-22-80 24.7 McKavett, Tex. at Fort McKavett. 1905, 1922, 6-26-80 21.4 1942 1948-49, 1951-52, 1955-56 1958-80 08146500 San Saba Springs, Lat 31°11'44", long 98°42'42", San Saba County, (a) 1939, 7.16 150 ft upstream from bridge on U.S. Highway 190 at San Saba and 0.8 mi east of courthouse. 1952, 1957, at San Saba, Tex. 6-24-80 10.5 1959-80 1939. Lat 30°15'43", long 99°56'01", Edwards County, 3.7 mi upstream from Paint Creek, 5.7 mi south 2-21-80 08149400 South Llano River (a) 16.7 1952, 4.24 near Telegraph. of Telegraph, and 18.7 mi southwest of Junc-1956 1959-80 Lat 30°16'12", long 99°55'22", Edwards County, about 3 mi upstream from Paint Creek, about 5 mi south of Telegraph, and about 18 mi south-08149500 Seven Hundred (a) 1939, 2-21-80 8.4 1952, 1955-56, Springs near 8- 8-80 19.3 Telegraph, Tex. west of Junction. 1959-80 08153050 Pedernales River Lat 30°14'35", long 98°39'25", Gillespie County, at downstream side of Ranch Road 1623 at 1979-80 10-24-79 31 123 5-20-80 7- 2-80 8- 6-80 near Stonewall. Stonewall, 0.6 mi upstream from Salt Banch, and at mile 68.9. 10.9 4.4 9-23-80 15 Lat 30°15'48", long 97°46'19", Travis County, just upstream from upper dam of Barton Creek swimming pool in Zilker Park and upstream from all springs known as Barton Springs at Austin. 08155400 Barton Creek above 125 1919-80 11- 5-79 .36 1-16-80 0 Barton Springs at Austin, Tex. 7- 3-80 0 7-31-80

Operated as a continuous-record station. Not applicable.

Discharge measurements made at low-flow partial-record stations during water year 1980 -- Continued Measurements Drainage Station No. Station name Location area of Date Discharge (ft3/s) (sq mi) record Guadalupe River basin Lat 29°45'33", long 98°08'23", Comal County, two springs located 400 and 500 ft west of the Guadalupe River, 600 ft downstream from the mouth of Elm Creek, and 4.2 mi north of New 08168000 1944-80 Hueco Srpings near (a) 10- 2-79 11-14-79 62 New Braunfels, 41 29 21 Tex. 12-21-79 2- 4-80 3-24-80 Braunfels. 14 15 27 16 4-28-80 6- 9-80 7-18-80 8-29-80 14 08168600 Blieders Creek Lat 29°43'14", long 98°07'23", Comal County, at Grove Avenue crossing in northwest New Braun-1962-80 1- 3-80 7-17-80 0 at New Braunfels, 0 fels and 0.25 mi upstream from mouth. Lat 29°42'47", long 98°08'14", Comal County, at Landa Park Drive crossing in Landa Park at New 08168700 Panther Canyon at 1962-80 1- 3-80 0 7-17-80 New Braunfels. Braunfels. 08168800 Dry Comal Creek at New Braunfels, Lat 29°41'52", long 98°08'11", Comal County, at Floral Avenue crossing in New Braunfels, 0.6 mi upstream from Missouri Pacific Railroad Co. 1962-80 1- 3-80 1.4 7-17-80 .13 bridge, and 0.9 mi upstream from mouth. Nueces River basin Lat 29°09'15", long 99°44'35", Uvalde County, at old road crossing on White's Ranch, 2.0 mi downstream from Cooks Slough, and 4.7 mi south-Leona River spring 1935-65# 08204000 (a) 10-18-79 34 flow near Uvalde, 1966-80 11-29-79 38 Tex. 1-10-80 2-22-80 18 4- 3-80 18 5-14-80 13 7- 3-80 8- 7-80 9-17-80 3.7 1.5 9.6 Rio Grande basin Lat 30°56'01", long 103°50'43", Jeff Davis County, 375 ft downstream from source of spring, 3.5 mi southwest of Toyahvale, and 7.0 mi southwest of Balmorhea. 08425500 1931-33# 10-24-79 Phantom Lake Spring (a) 4.37 1942-66+ 1967-80 12- 5-79 1-15-80 4.34 near Toyahvale, Tex. 3- 4-80 4-17-80 2.87 2.32 5-28-80 2.42 7-10-80 8-21-80 1.96 1919, 1922-23, 1925, 1932-33‡ Lat 30°56'51", long 103°47'19", Reeves County, 2,000 ft northwest of post office in Toyahvale. 08427000 Giffin Springs at (a) 1-15-80 2.98 7-10-80 3.68 Toyahvale, Tex. 1941-80 Lat 30°56'34", long 103°47'16", Reeves County, on South Canal at Toyahvale, 540 ft downstream from headgate at pool of springs, and 4.0 mi southwest of Balmorhea. 10-24-79 12- 5-79 1-15-80 25.9 08427500 San Solomon Springs (a) 1931-33# 1941-65# at Toyahvale, 1966-80 32.1 29.9 3- 4-80 4-17-80 28.6 28.0 5-28-80 7-10-80 26.5 8-21-80 28.6 Lat 30°53'20", long 102°51'59", Pecos County, on outlet canal of Pecos County Water Improvement District No. 1 in Fort Stockton, 0.2 mi up-stream from bridge on U.S. Highway 290, and 08444500 (a) 1899-1-14-80 0 Comanche Springs at Fort Stockton, 1935 7-10-80 0 1936-64+ Tex. 1965-80 0.5 mi downstream from head of springs. Lat 29°18'33", long 100°25'13", Kinney County, in springflow pool at Brackettville, 160 ft south of U.S. Highway 90, and 1,550 ft upstream from bridge on Brackettville-Fort Clark Road. 08456300 c/ (a) 1896, 10- 9-79 9.1 Las Moras Springs 11-13-79 12-11-79 1899-1900, at Brackettville, 11 10 Tex. 1902, 1- 9-80 2-12-80 12 1904-6, 6.7 1910, 1912, 3-11-80 4- 8-80 7.2 1925, 5-13-80 6-10-80 1928. 2.3 7- 8-80 8-13-80 1951-80 .08 7.6 9- 9-80

^{*} Operated as a continuous-record station.

a Not applicable.

c Records were furnished by the International Boundary and Water Commission.

Crest-stage partial-record stations

The following table contains annual maximum stage and (or) discharge at partial-record stations operated primarily for the purpose of defining the flooding characteristics of the streams. At stations where discharge is given, or is footnoted "to be determined", a stage-discharge relation has been, or will be, defined by discharge measurements obtained by current meter or by indirect procedures. Water-stage recorders are located at these flood-hydrograph stations to facilitate complete hydrograph definition. At stations where only the maximum stage is given (discharge column is dashed), data are generally collected for use in stage-frequency studies of flood-profile definition. Gages at these stations usually consist of a device that will register the peak stage occuring between inspections of the gage. The years used in the column "Period of record" identify the years in which the annual maximum has been determined.

		Annual maximum stage and (or) discharge during			Annu	al maximu	ım
Station No.	Station name	Location	Drainage area (sq mi)	Period of record	Date	Gage height (feet)	Dis- charge (ft 3/s)
		Colorado River basin	1 /34 1111	record		1 (reec)	1 (10 /3/
08142000	Hords Creek at Coleman, Tex.	Lat 31°50'50", long 99°25'25", Coleman County, on right bank in city park, 1,250 ft downstream from bridge on U.S. Highways 84 and 283 and State Highway 206, 1 mi north of courthouse in Coleman, 3.9 mi downstream from Bachelor Creek, 12 mi downstream from Hords Creek Dam, and at mile 14.3.	107	1941-70*, 1971-80	9-23-71 10-19-71 4-23-73 10-11-73 10-24-74 7- 4-76 5- 8-77 8- 3-78 4-21-79 9-25-80	4.33 4.07 1.53 2.52 10.82 1.26 4.20 7.95 3.78 2.75	b932 b836 b48 b269 b4,190 b20 b884 b2,520 b711 338
08155550	West Bouldin Creek at Riverside Drive, Austin, Tex.	Lat 30°15'49", long 97°45'17", Travis County, on upstream side of eastbound bridge on Riverside Drive in Austin.	3.12	1975-80	3-27-80	2.61	173
08156650	Shoal Creek at Steck Avenue, Austin, Tex.	Lat 30°21'55", long 97°44'11", Travis County, on downstream side of bridge on Steck Avenue in Austin.	3.19	1975-80	5-12-80	3.34	751
08156750	Shoal Creek at White Rock Drive, Austin, Tex.	Lat 30°20'21", long 97°44'50", Travis County, on downstream side of bridge on White Rock Drive in Austin.	7.56	1975-80	5-12-80	9.91	1,400
08158100	Walnut Creek at Farm road 1325 near Austin, Tex.	Lat 30°24'35", long 97°42'41", Travis County, on downstream side of bridge on Farm Road 1325 and 9.5 mi north of the State Capitol Building in Austin.	12.6	1975-80	5- 8-80	8.17	843
08158300	Ferguson Branch at Springdale Road, Austin, Tex.	Lat 30°19'53", long 97°39'12", Travis County, on downstream side of bridge on Springdale Road in Austin.	1.63	1975-80	9-25-80	5.05	154
08158400	Little Walnut Creek at Interstate Highway 35, Austin, Tex.	Lat 30°20'57", long 97°41'34", Travis County, on downstream frontage road bridge on Interstate Highway 35 in Austin.	5.57	1975-80	5-12-80	5.68	1,780
08158500	Little Walnut Creek at Manor Road, Austin, Tex.	Lat 30°18'34", long 97°40'04", Travis County, on downstream side of bridge on Manor Road in Austin.	12.1	1975-80	3-27-80	6.93	1,520
08158820	Bear Creek at Farm Road 1626 near Manchaca, Tex.	Lat 30°08'25", long 97°50'50", Travis County, on upstream side of culvert on Farm Road 1626 and 1.0 mi west of Manchaca.	24.0	1979-80	5-21-80	6.03	1,300
08158880	Boggy Creek (South) at Circle S Road, Austin, Tex.	Lat 30°10'50", long 97°46'55", Travis County, on downstream side of bridge on Circle S Road in Austin.	3,58	1976-80	5- 8-80	10.05	unknown <u>1</u>
08158930	Williamson Creek at Manchaca Road, Austin, Tex.	Lat 30°13'16", long 97°47'36", Travis County, on downstream side of bridge on Manchaca Road in Austin.	19.0	1975-80	5-12-80	6.19	1,000
		Guadalupe River basin					
08169500	Guadalupe River at New Braunfels, Tex.	Lat 29°41'52", long 98°06'23", Comal County, Comal Mills in New Braunfels and 0.4 mi up- stream from Interstate Highway 35.	1,652	1898- 1902, 1915-27+, 1974-80	6-21-80	10.93	2,110
08173900	Guadalupe River at Gonzales, Tex.	Lat 29°29'49", long 97°27'17", Gonzales County, at Gonzales Hydro Station in Gonzales and 1.4 mi upstream from U.S. Highway 183.	-	1977-80	9- 8-80	22.20	11,200
08177600	Olmos Creek tribu- tary at Farm Road 1535, Shavano Park, Tex.	Lat 29°34'35", long 98°32'45", Bexar County, at culvert on Farm Road 1535 at Shavano Park and 1.9 mi southeast of intersection of Farm Roads 1535 and 1604.	.33	1968-80	12-28-79	3.09	43
08177900	San Antonio River at Navarro Street, San Antonio, Tex.	Lat 29°25'50", long 98°29'24", Bexar County, at bridge on Navarro Street in San Antonio.	7	1973-80	5-15-80	b640.34	-

Operated as a continuous-record station.

Not previously published.
Elevation, in feet, above National Geodetic Vertical Datum of 1929.

	, amuu	maximum stage and (or) discharge during water yea			Annu	al maximum	
Station No.	Station name	Location	Drainage area (sq mi)	Period of record	Date	Gage height (feet)	Dis- charge (ft ³ /s)
		Guadalupe River basinContinued	1 104 /	1 1 2 2 3 1 2		1 (1000)	(10 /3
08177920	San Antonio River at Dolorosa Street, San Antonio, Tex.	Lat 29°25'24", long 98°29'32", Bexar County, just downstream from Dolorosa Street in San Antonio.	Tre	1980	9- 6-80	de632.06	-
08178100	San Pedro Creek at Santa Rosa Street, San Antonio, Tex.	Lat 29°25'51", long 98°29'49", Bexar County, at bridge on Santa Rosa Street in San Antonio.	-	1973-80	5-15-80	d643.43	
08178350	Martinez Creek at Fredericksburg Road, San Antonio, Tex.	Lat 29°27'22", long 98°31'04", Bexar County, at bridge on Fredericksburg Road in San Antonio.	-	1973-80	9- 6-80	d681.83	
08178400	Alazan Creek at West Martin Street, San Antonio, Tex.	Lat 29°25'51", long 98°30'51", Bexar County, at bridge on West Martin Street in San Antonio.	12	1973-80	5-15-80	d636.17	1 640
08178450	Apache Creek at South Zarzamora Street, San Antonio, Tex.	Lat 29°24'47", long 98°31'42", Bexar County, at bridge on South Zarzamora Street in San Antonio.	nêt l	1973-80	5- 1-80	d628.72	-
08178500	San Pedro Creek at Furnish Street, San Antonio, Tex.	Lat 29°24'22", long 98°30'38", Bexar County, at bridge on Furnish Street in San Antonio.	62	1973-80	5- 1-80	d603.56	
08178550	San Antonio Rivr at Ashley Street (Berg's Mill), San Antonio, Tex.	Lat 29°20'04", long 98°27'20", Bexar County, at bridge on Ashley Street in San Antonio.	-	1973-80	5- 1-80	d513.90	•
08178555	Harlandale Creek at West Harding Boulevard, San Antonio, Tex.	Lat 29°21'05", long 98°29'32", Bexar County, at mid-channel, 71 ft upstream from West Harding Boulevard and 1.3 mi upstream from Sixmile Creek.	2.43	1977-80	5-13-80	12.28	199
08178690	Salado Creek tribu- tary at Bitters Road, San Antonio, Tex.	Lat 29°31'36", long 98°26'25", Bexar County, at culvert on Bitters Road immediately east of MacArthur High School in San Antonio.	.26	1968-80	12-28-79 5- 1-80 5-15-80 5-18-80 9- 6-80 9- 7-80	4.02 5.22 3.98 4.00 4.40 4.50	52 111 50 51 70 75
08178720	Salado Creek at Rittiman Road, San Antonio, Tex.	Lat 29°29'05", long 98°24'59", Bexar County, at bridge on Rittiman Road in San Antonio.		1968-80	9-27-80	d656.50	-
08178740	Salado Creek at East Houston Street, San Antonio, Tex.	Lat 29°25'27", long 98°25'55", Bexar County, at bridge on East Houston Street in San Antonio.	-	1969-80	5-15-80	d599.29	-
08178760	Salado Creek at U.S. Highway 87, San Antonio, Tex.	Lat 29°23'53", long 98°25'35", Bexar County, at bridge on U.S. Highway 87 in San Antonio.	-	1969-80	5-15-80	d578.97	
08178780	Salado Creek at Southcross Boule- vard, San Antonio, Tex.	Lat 29°22'28", long 98°25'32", Bexar County, at bridge on Southcross Boulevard in San Antonio.	-	1969-80	-	<d552.48< td=""><td>ę.</td></d552.48<>	ę.
08181000	Leon Creek tribu- tary at Farm Road 1604, San Antonio, Tex.	Lat 29°35'14", long 98°37'40", Bexar County, 97 ft upstream from culvert on Farm Road 1604 at San Antonio and 1.5 mi west of bridge on Leon Creek.	5.57	1968-80	-	-	(f)
		Nueces River basin					
08207220	Rutledge Hollow at 7th Street, Poteet, Tex.	Lat 29°02'07", long 98°34'18", Atascosa County, in city of Poteet at 7th Street and 2.0 mi above Atascosa River.	9.74	1979-80	5-16-80	d422.49	-
08207300	Atascosa River at U.S. Highway 281, Pleasanton, Tex.	Lat 28°57'44", long 98°28'51", Atascosa County, at bridge on U.S. Highway 281 in Pleasanton.	= 1	1973-80	5-16-80	d349.04	
		San Fernando Creek basin					
08212300	Tranquitas Creek at Kingsville, Tex.	Lat 27°31'33", long 97°52'02", Kleberg County, at bridge on U.S. Highway 77 Business Route in Kingsville, 4.9 mi above San Fernando Creek, and 5.9 mi downstream from Tranquitas Dam.	48.5	1965-80	8-10-80	6.88	

C Less than. d Elevation, in feet, above National Geodetic Vertical Datum of 1929. e For the period April to September. f No flow during the year.

Measurements of streamflow at points other than gaging stations of partial-record stations are given in the following table:

Discharge measurements made at miscellaneous sites during water year 1980

Measured Drainage previously Measurements Discharge (ft³/s) Stream Tributary to Location area (water Date (sq mi) years) Guadalupe River basin Lat 29°27'56", long 98°28'04", Bexar County, just above Hildebrandt Street in San Antonio, Tex. 1951-52, 1959-62, San Antonio Springs San Antonio River 1- 9-80 51 0 6-24-80 1972, 1979-80 Lat 29°26'42", long 98°30'06", Bexar County, at San Pedro Park in San Antonio, Tex. San Pedro 1933-35. 1- 9-80 6-24-80 9.1 San Pedro Creek 1933-35, 1951-52, 1958-61, 1966, 1971, 1974-77, Springs 1979-80 Rio Grande basin Lat 29°27'10", long 100°37'30", Kinney County, on Mays Ranch and about 16 mi northwest of Brackettville, Tex. $\begin{array}{c} \text{Mud Springs} \\ \underline{1}/ \end{array}$ Mud Creek 1939-41, 1952-53, 10- 9-79 13 12 11-13-79 12-11-79 1- 9-80 2-12-80 3-11-80 1962, 1965-80 10 6.8 6.6 4- 8-80 5-13-80 3.8 6-10-80 7- 8-80 8-13-80 9- 9-80 2.1 1.6 .97 Lat 29°24'10", long 100°27'15", Kinney County, on C. C. Belcher Ranch and 7.5 mi northwest of Brackettville, Tex. Pinto Springs Pinto Creek 1939-41, 10- 9-79 0 11-13-79 12-11-79 1- 9-80 2-12-80 1952-53, 1965-80 0 00 3-11-80 4- 8-80 0 0 5-13-80 0 6-10-80 7- 8-80 9 -9-80 0

^{1/} Measurements by International Boundary and Water Commission.

INDEX

Pag	Page
Accuracy of field data and computed results 2	Colorado River basin, crest-stage partial-record
	stations in
Agencies other than Geological Survey, records	gaging-station records in
collected by	2 low-flow partial-record stations in 575
	B Comal River at New Braunfels
Algae, definition of	5 Comanche Springs at Fort Stockton 577
Apache Creek at South Zarzamora Street, San Antonio 57 Aransas River near Skidmore	8 Computation of data
Aransas River basin, gaging station records in416-41 Arroyo Colorado floodway at El Fuste siphon,	near Veribest
south of Mercedes560-56	1 Contents, definition of 7
Ash mass, definition of	Control, definition of
Atascosa River, at Whitsett459-46	Cooperation
at U.S. Highway 281 at Pleasanton 57	Copano Creek near Refugio405-407
Bacteria, definition of	Crest-stage partial-record stations577-578
	5 Cubic foot per second, definition of
Barton Creek, above Barton Springs at Austin 57	5
at Loop 360, Austin182-18	Data, accuracy of field, and computed results 21
Barrilla Draw near Saragosa	collection and computation of
below Barton Springs at Austin	collection and examination of
Barton Springs at Austin	7 other available
Beals Creek near Westbrook	7 Definition of terms
below Farm Road 1826 near Driftwood229-23	
Beaver Creek near Mason	Devils River at Pafford Crossing near Comstock529-533
Bed material, definition of	Diatoms, definition of
Big Sandy Creek, near Elgin253-25	B Discharge, at partial-record stations and
near McDade247-25	miscellaneous sites
Biochemical oxygen demand (BOD), definition of	definition of
Biomass, definition of	5 measurements at miscellaneous sites
Blanco River, at Wimberley	5 Diversity index, definition of
	5 Dogwood Creek, at Highway 95 near McDade262-263
Blieders Creek at New Braunfels 57	near McDade259-261
Blue-green algae, definition of	Dove Creek at Knickerbocker
Boggy Creek at U.S. Highway 183, Austin211-21	Dove Creek Spring near Knickbocker 575
Boggy Creek (South) at Circle S Road, Austin 57	7 Downstream order and station number
Bottom material, definition of	5 Drainage area, definition of
near Eden	3 Dry Comal Creek at New Braunfels
	5 Dry Frio River near Reagan Wells430-432
Brown County Water Improvement District No. 1	Dry mass, definition of
canal near Brownwood12	
Bull Creek at Loop 360 near Austin166-16	
Canyon Lake near New Braunfels318-31	East Elm Creek at San Antonio
Cells/volume, definition of	7 Elm Creek at Ballinger
Cfs-days, definition of	7 E. V. Spence Reservoir near Robert Lee
Champion Creek Reservoir near Colorado City 46-4 Chemical oxygen demand (COD), explanation of	7 Explanation, of stage and water-discharge records 17
Chemical oxygen demand (COD), explanation of	of surface-water quality records
Chiltipin Creek at Sinton	
Chlorophyll, definition of	7 Fecal coliform bacteria, definition of
Cibolo Creek at Selma	Ferguson Branch at Springdale Road, Austin 577
Cibolo Creek, at Selma	Frio River, at Calliham
near Falls City385-38	3 Frio River, at Calliham
Coleto Creek, at Arnold Road Crossing near Schroeder 34	at Tilden447-450
near Victoria	
Coleto Creek Reservoir inflow (Guadalupe Diversion) near Schroeder	low-flow investigation
Coliform organisms, definition of	near berby 440
Collection, and computation of data	Gage height, definition of
and examination of data 2	2 Gaging station, definition of
Color unit, definition of	7 Gaging-station records 29-572
Colorado River, above Silver	Garcitas Creek near Inez306-308
at Austin	Giffin Springs at Toyahvale
at Bastrop	5 Green algae, definition of
at Columbus267-26	Flume No. 1 near Long Mott
at Columbus	Flume No. 2 near Long Mott
at Wharton269-27	Guadalupe River, above Bear Creek at Kerrville 315
at Winchell	above Comal Divor at Nov Braunfole
below Austin	2 at Comfort
below Mansfield Dam, Austin	
near Bay City	B at Hunt
near Cuthbert	at New Braunfels 577
near Ira	at Sattler 320
near San Saba	at Victoria338-345
near Stacy109-11	below New Braunfels

582 INDEX

Guadalupe River, near Spring Branch	367-368 372-37 363-365 370
gaging-station records in	8: 8:
Harlendale Creek at West Harding Street, San Antonio 578 Middle Concho River above Tankersley	579
Hardness, definition of	
Hondo Creek, at King Waterhole near Hondo	
Hords Creek Lake near Valera	298-302
North Concho River, at San Angelo	98 92 95
Index. 581-583 North Floodway near Sebastian Instantaneous discharge, definition of 7 North Fork Guadalupe River near Hunt	312 129
Jim Ned Creek near Coleman 117 below Uvalde Johnson Creek near Ingram 314 near Asherton near Mathis	422
Lagarto Creek near George West. 470 near Three Rivers. Lake Alice at Alice. 479 near Tilden. Lake Austin at Austin. 170-178 Nucces River basin, crest-stage partial-record Lake Brownwood near Brownwood. 122-123 station in.	426
Lake Buchanan near Burnet	428-474
Lake Corpus Christi near Mathis	96-97 350-352
Lake Surveys (Water Quality): E. V. Spence Reservoir near Robert Lee	353 226-228 243-245
Lakes and reservoirs: Organic mass, definition of	9
Brady Creek Reservoir near Brady	475-477
Champion Creek Reservoir near Colorado City. 46-47 Panther Canyon at New Braunfels. Clyde, Lake, near Clyde. 115-116 Partial-record station, definition of. Colorado City, Lake, near Colorado City. 44-45 Particle size, definition of. Corpus Christi, Lake, near Mathis. 471 Particle-size classification, definition of.	10
E. V. Spence Reservoir near Robert Lee	125-128
Medina Lake near San Antonio	
Olmos Reservoir at San Antonio. 353 canal near Imperial. 848 Red Bluff Reservoir near Orla. 504 Pecos River, at Red Bluff, NM. 195-202 near Girvin. 195-202	497-502
Travis, Lake, near Austin	505-508
near Edna	10
at San Antonio	17 10 576
Austin	10 309 10
near Junction	330-333
Low-flow investigations	26-27
Martinez Creek at Fredericksburg Road, San Antonio 578 Records of discharge collected by agencies other 12 than the Geological Survey Mean discharge, definition of 7 Recoverable from bottom material	22

569

08475000 RIO GRANDE NEAR BROWNSVILLE, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1979 TO SEPTEMBER 1980

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1979	6150	1690	1050	17400	250	4100	320	5390	430
NOV.	1979	12481	1660	1030	34700	240	8150	320	10800	420
DEC.	1979	13690	2080	1290	47700	330	12200	390	14300	520
JAN.	1980	4598	1690	1040	13000	250	3050	320	4020	430
FEB.	1980	7593	1380	851	17400	190	3830	270	5550	360
MAR.	1980	7795	1570	970	20400	220	4680	300	6390	400
APR.	1980	3298.8	1310	811	7220	180	1570	260	2310	340
MAY	1980	20304.5	1280	793	43500	170	9360	250	13900	330
JUNE	1980	4859	1390	859	11300	190	2490	270	3580	360
JULY	1980	8697	1270	782	18400	170	3940	250	5900	330
AUG.	1980	40650	1130	701	76900	150	16200	230	24900	300
SEPT	1980	8175.2	1470	908	20000	210	4540	290	6310	380
TOTAL		138291.0	**	**	328000	**	74100	**	103000	**
WTD. AV	G.	378	1420	878	**	200	**	280	**	370

	S	PECIFIC	CONDUCTANCE	(MICROMH	OS/CM AT :	25 DEG. C), NCE-DAILY	WATER	YEAR OCTOB	ER 1979	TO SEPTEME	BER 1980	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4	1610 1660 1880 1890	1330 1380 1410 1400	1550 1560 1580	1950 1920 1730 1750	1370 1360 1350 1350	1420 1500 1550 1600 1700	1360 1340 1360 1430 1400	1170 1200 1220 1240 1380	1530 1550 1580 1630 1650	1240 1270 1270 1290 1270	1490 1370 1320 1360 1440	1220 1330 1980 1710 1800
5 6 7 8 9	1670 1990 1800 1700 1710 1600	1390 1970 1800 1740 1580 1600	1560 1740 2340 2330	1720 1720 1730 1680 1670 1670	1370 1420 1420 1430 1430 1440	1650 1600 1550 1530 1510	1290 1320 1280 1340 1380	1310 1190 1180 1180 1190	1680 1680 1750 1810 1410	1290 1260 1220 1230 1220	1420 1420 1320 1200 1150	1760 1760 1780 1760 1760 1820
11 12 13 14 15	1550 1500 1810 1750 1720	1580 1550 1880 1710 2040	2290 1570 1530	1690 1660 1680 1690 1670	1450 1440 1420 1350 1360	1530 1520 1510 1500 1510	1410 1480 1460 1520 1430	1200 1200 1200 1210 1220	1300 1280 1320 1350 1360	1210 1250 1270 1320 1310	1120 1080 1220 1090 790	1800 1830 1830 1860 1810
16 17 18 19 20	1910 1800 1870 1880 1760	1950 2020 1700 1500 1480	2340 2360 2370	1680 1630 1720 1810 1750	1380 1370 1370 1380 1370	1500 1480 1490 1500 1480	1480 1480 1570 1500 1620	1240 1250 1260 1250 1240	1380 1390 1310 1270 1270	1290 1340 1290 1310 1300	892 1580 1660 1380 1010	1780 1850 1960 2020 1930
21 22 23 24 25	1780 1790 1740 1780 1630	1580 1590 1500 1580 1600	2010 2100 2230	1700 1690 1620 1450 1500	1360 1370 1360 1340 1300	1460 1470 1470 1480 1470	1640 1700 1590 1490 1270	1240 1280 1290 1300 1310	1320 1340 1320 1320 1290	1320 1310 1340 1360 1360	859 848 867 930 959	1840 1700 1640 1680 1400
26 27 28 29 30 31	1470 1460 1450 1470 1400 1310	1650 1600 1580 1560 1550	2160 2250 2140 2000	1430 1490 1400 1410 1390 1400	1300 1360 1370 1400	1430 1490 1500 1510 1460 1440	1190 1180 1180 1170 1190	1350 1400 1440 1500 1510 1520	1300 1300 1290 1280 1240	1260 1210 1180 1180 1210 1340	1000 1060 1100 1140 1230 1280	1320 1260 1290 1240 1250
MEAN	1690	1630	2010	1650	1380	1510	1400	1280	1420	1270	1180	1670

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI). This report contains both the inch-pound and SI unit equivalents in the station manuscript descriptions.

Multiply inch-pound units	Ву	To obtain SI units
	Length	
inches (in)	2.54x10 ¹	millimeters (mm)
foot (ft)	2.54x10 ⁻² 3.048x10 ⁻¹	meters (m)
feet (ft) miles (mi)	1.609x10°	meters (m) kilometers (km)
inics (iii)	1.007X10	Knometers (km)
	Area	
acres	4.047x10 ³	square meters (m ²)
	4.047x10 ⁻¹	square hectometers (hm²)
	4.047x10 ⁻³	square kilometers (km²)
square miles (mi ²)	2.590x10°	square kilometers (km²)
	Volume	
gallons (gal)	3.785x10°	liters (L)
Barrons (Barr)	3.785x10°	cubic decimeters (dm ³)
	3.785x10 ⁻³	cubic meters (m ³)
million gallons	3.785×10^3	cubic meters (m ³)
	3.785x10 ⁻³	cubic hectometers (hm³)
cubic feet (ft³)	2.832x10 ¹	cubic decimeters (dm³)
	2.832x10 ⁻²	cubic meters (m ³)
cfs-days	2.447×10^3	cubic meters (m³)
	2.447x10 ⁻³	cubic hectometers (hm³)
acre-feet (acre-ft)	1.233×10^3	cubic meters (m ³)
	1.233x10 ⁻³	cubic hectometers (hm³)
	1.233x10 ⁻⁶	cubic kilometers (km³)
	Flow	
cubic feet per second (ft ³ /s)	2.832x10 ¹	liters per second (L/s)
	2.832x101	cubic decimeters per second (dm³/s)
	2.832x10 ⁻²	cubic meters per second (m³/s)
gallons per minute (gal/min)	6.309x10 ⁻²	liters per second (L/s)
	6.309x10 ⁻²	cubic decimeters per second (dm³/s)
	6.309x10 ⁻⁵	cubic meters per second (m³/s)
million gallons per day	4.381x10 ¹	cubic decimeters per second (dm³/s)
	4.381x10 ⁻²	cubic meters per second (m³/s)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

POSTAGE AND FEES PAID U.S. DEPARTMENT OF THE INTERIOR INT 413

U.S. DEPARTMENT OF THE INTERIOR Geological Survey 649 Federal Building, 300 East 8th Avenue Austin, TX 78701

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300
SPECIAL 4TH CLASS BOOK RATE