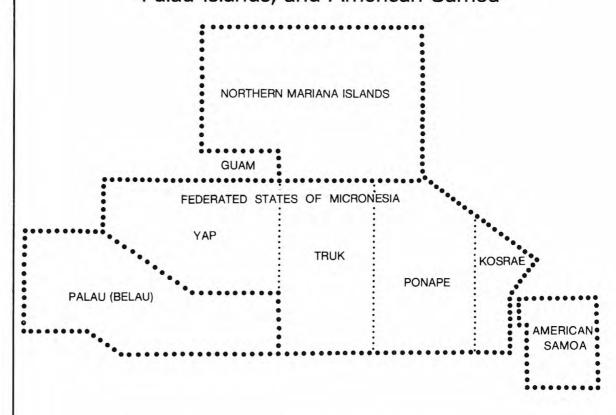


Water Resources Data 1982 A Hawaii - other Pacific Areas Water Year 1981

Volume 2. Guam, Northern Mariana Islands, Federated States of Micronesia, Palau Islands, and American Samoa

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT HI-81-2 Prepared in cooperation with the Governments of Guam, Northern Mariana Islands, Federated States of Micronesia, Palau Islands, American Samoa, and with other agencies


CALENDAR FOR WATER YEAR 1981

											198	0									
		0.0	TOI	BER						NOV	/ E N/	BEI	D				DEC	EM	DEI		
		UC	101	DEN						101	/ E IVI	BE	n				DEC	, C IVI	DEI	1	
S	M	Т	W	Т	F	S		S	M	Т	W	Т	F	S	S	M	Т	W	Т	F	S
			1	2	3	4								1		1	2	3	4	5	6
5	6	7	8	9	10	11		2	3	4	5	6	7	8		8	9	10	11	12	13
12	13	14	15	16	17	18		9	10	11	12	13	14	15	14		16	17	18	19	20
19	20 27	21	22	23	24	25		16 23	17 24	18	19	20	21	22 29	21	22 29		24	25	26	27
20	21	20	29	30	31			30	24	25	20	21	20	29	20	29	30	31			
		-+									100	1									
											198	1									-
		JAI	NUA	ARY						FEB	RU	AR'	Y				M	AR	СН		
S	M	Т	W	Т	F	S		S	M	Т	W	Т	F	S	S	M	Т	W	Т	F	S
				1	2	3		1	2	3	4	5	6	7	1	2	3	4	5	6	7
4	5	6	7	8	9	10		8	9	10	11	12	13	14	8		10	11	12	13	14
11	12	13	14	15	16	17		15	16	17	18	19	20	21	15		17	18	19	20	21
18	19 26	20	21	22	23	24		22	23	24	25	26	27	28	22	23	24	25	26	27	28
25	20	21	20	29	30	31									28	30	31				
		A	PR	L							MA	Y					J	UN	E		
S	M	Т	W	Т	F	S		S	M	Т	W	Т	F	S	S	M	Т	W	Т	F	S
			1	2	3	4							.1	2		1	2	3	4	5	6
5	6	7	8	9	10	11		3	4	5	6	7	8	9	7	8	9	10	11	12	13
12	13	14	15	16	17	18		10	11	12	13	14	15	16	14	15	16	17	18	19	20
19	20	21	22	23	24	25		1/	18	19	20	21	22	23	21	22	23	24	25	26	27
20	21	20	23	30				31	20	20	21	20	29	30	20	29	30				
		J	UL'	Y						AL	JGU	ST				5	SEPT	ГЕМ	BEI	R	
S	M	Т	W	Т	F	S		S	М	Т	W	Т	F	S	S	М	Т	W	т	F	S
			1	2	3									1			1	2	3		5
	6		8	9	10	11								8		7	8	9	10	11	12
	13 20													15 22							
	27					25		23	24	25	26	27	28	29		21 28			24	25	20
	77.75				10/10			30		-				_				_			

Water Resources Data Hawaii - other Pacific Areas Water Year 1981

Volume 2. Guam, Northern Mariana Islands, Federated States of Micronesia, Palau Islands, and American Samoa

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT HI-81-2 Prepared in cooperation with the Governments of Guam, Northern Mariana Islands, Federated States of Micronesia, Palau Islands, American Samoa, and with other agencies

UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For information on the water program in Hawaii and other Pacific Areas write to District Chief, Water Resources Division U.S. Geological Survey 300 Ala Moana Boulevard, Rm. 6110 P. O. Box 50166 Honolulu, Hawaii 96850

PREFACE

This report was prepared by personnel of the Hawaii district of the Water Resources Division of the U.S. Geological Survey under the supervision of Benjamin L. Jones, District Chief, and J. D. Bredehoeft, Regional Hydrologist, Western Region.

This report is one of a series issued by State. General direction for the series is by Philip Cohen, Chief Hydrologist, U.S. Geological Survey, and R. J. Dingman, Assistant Chief Hydrologist for Scientific Publications and Data Management.

Data for Hawaii and other Pacific Areas are in two volumes as follows:

Volume 1. Hawaii

Volume 2. Guam, Northern Mariana Islands, Federated States of Micronesia, Palau Islands, and American Samoa

5	02	72	-1	01

REPORT DOCUMENTATION PAGE	1. REPORT NO. USGS-WRD-HD-82/062	2.	3. Recipient's Accession No.
Water Resources Dat	a Hawaii - other Pacific	Areas, Water Year	5. Report Date Sept. 1982
1981. Volume 2.			6.
7. Author(s)			8. Performing Organization Rept. No. USGS-WDR-HI-81-02
Performing Organization Name and	ai on	10. Project/Task/Work Unit No.	
U.S. Geological Sur 300 Ala Moana Blvd. Honolulu, Hawaii 9	11. Contract(C) or Grant(G) No. (C) (G)		
U.S. Geological Sur 300 Ala Moana Blvd.	13. Type of Report & Period Covered Annual - Oct. 1, 1980 to Sept. 30, 1981		
Honolulu, Hawaii 9	6850		14.

15. Supplementary Notes

Prepared in cooperation with the Governments of Guam, Northern Mariana Islands, Federated States of Micronesia, Palau Islands, American Samoa, and with other agencies.

16. Abstract (Limit: 200 words)

Volume 2 of water resources data for the 1981 water year for other Pacific areas consist of records of stage, discharge, and water quality of streams; stage of a reservoir; and water levels in wells and springs. This report contains discharge records for 41 gaging stations; stage only record for 2 gaging stations; water quality for 3 gaging stations, 39 partial-record stations; water temperature for 60 gaging stations; and water levels for 10 observation wells. Also included are 47 low-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Governments and Federal agencies in other Pacific areas.

17. Document Analysis a. Descriptors

*Pacific area, *Hydrologic data, *Surface water, *Ground water, *Water quality, Flow rate, Gaging stations, Chemical analyses, Sediments, Reservoirs, Water temperatures, Sampling sites, Water levels.

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Availability Statement No restriction on distribution. This report may be purchased from:	19. Security Class (This Report) UNCLASSIFIED	21. No. of Pages 148
National Technical Information Service Springfield, VA 22161	20. Security Class (This Page) UNCLASSIFIED	22. Price

WATER RESOURCES DIVISION

Hawaii District

Benjamin L. Jones, District Chief

This report prepared by:

Reuben Lee, Assistant District Chief, Hydrologic Inventory
Santos Valenciano, Chief, Hydrologic Data Section
Salwyn S. Chinn, Supervisory Hydrologist
Johnson J. S. Yee, Hydrologist (Chemist)
Charles J. Huxel, Chief, Guam Subdistrict
Otto van der Brug, Hydrologist
David A. Beck, Hydrologist
Isao Yamashiro, Hydrologic Technician
Grace A. Tateishi, Hydrologic Technician
Rose M. Maruoka, Hydrologic Technician
Akiko K. Tanaka, Hydrologic Technician (Typist)

Assisted by:

Gregg N. Ikehara, Hydrologist
Dale Nishimoto, Hydrologic Technician
Pearl K. S. Tam, Physical Science Technician
Julane M. Wood, Secretary (Typist)
Cheryl Yamane, Hydrologist (PT)
Amy E. Shinsato, Data Transcriber (PT)
Lodie T. Piniol, Clerk-Typist (PT)

CONTENTS

Drofog			Page
List o	f sur	face-water and water-quality stations, in downstream order, for which records	III
List o	re pu f gro	blishedund-water stations for which water-level records are published	VIII
		n	1
Summar	ation v of	hydrologic conditionshydrologic conditions	1 2
Defini	tion	of terms	2
Downst	ream	order and station numberystem for wells and miscellaneous sites	12
Specia	l net	works and programs	12 12
Explan	ation	works and programs of stage and water-discharge records	24
Coll	ectio	n and computation of data	24 25
Reco	rds o	of field data and computed resultsf discharge collected by agencies other than the Geological Survey	26
Othe	r dat	a available	26
Explan	1cati ation	onsof water-quality records	26 26
Coll	ection	n and examination of data	26
Wate	r ana	lysis	26
		perature	27 27
Pub1	icati	ons	27
Explan	ation	of ground-water level records	27
Public	ection ation	n of the datas on techniques of water-resources investigations	27 29
Hydro1	ogic-	data station recordst partial-record stations and miscellaneous sites	30
Discha	rge a	t partial-record stations and miscellaneous sites	82 82
Meas	ureme	partial-record stationsnts at miscellaneous sites	87
Analys	es of	samples collected at water-quality partial-record stations	88
Analys	es of	samples collected at miscellaneous sitesterminations of water temperature at gaging stations	113 124
		r records	133
		ter levels	133
		f ground-water	141 147
		ILLUSTRATIONS	
Figure		Map showing locations of Pacific Islands	3
	2.	Discharge during 1981 water year compared with median discharge for representative	
	3.	streams on Guam and Babelthuap	4
		streams on Yap and Ponape	5
	4.	Discharge during 1981 water year compared with median discharge for representative	6
	5.	streams on Kosrae and Tutuila	6 13
	6.	Map of Guam, Mariana Islands, showing locations of gaging, water-quality, and	1.1
	7.	partial-record stations	14
	8.	water-quality site	15
	9.	quality partial-record stations	16
		partial-record stations	17
	10.	Map of Yap Islands, showing locations of gaging, low-flow partial-record stations, and water-quality sites	18
	11.	Map of Moen, Truk Islands, showing locations of gaging, low-flow partial-record stations, and water-quality sites	19
	12.	Map of Ponape, showing locations of gaging, low-flow and water-quality partial-	
	13.	record stations	20
		record stations	21
	14.	Map of Tutuila, Samoa Islands, showing locations of gaging, and water-quality stations	22
	15.	Sketch showing system for numbering wells and miscellaneous sites	23
	16.	Sketch showing local well numbering system	23

SURFACE-WATER AND WATER-QUALITY STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED

Letters after station name designate type of data:
(d), discharge; (e) elevation or gage height, (c), chemical;
(b), biological; (m), microbiological; (t) temperature; (s), sediment

	Page
MARIANA ISLANDS	
ISLAND OF SAIPAN	
Denni Spring (head of Denni Stream) (d)	30
South Fork Talofofo Stream (dt)	31
Middle Fork Talofofo Stream (dt)	32
Lake Susupe (et)	33
ISLAND OF GUAM	2.0
Finile Creek at Agat (dt)	34
La Sa Fua River near Umatac (d)	35
Inarajan River near Inarajan (d)	36
Tinaga River near Inarajan (dt)	37
Tolaeyuus River (head of Talofofo River):	7.0
Imong River (head of Fena River) near Agat (dt)	38
Almagosa River near Agat (dt)	39
Maulap River near Agat (dt)	40
Fena Dam spillway near Agat (e)	41
Ugum River above Talofofo Falls, near Talofofo (dts)	42
Ylig River near Yona (ds)	45
Pago River near Ordot (dcmbt)	49
CAROLINE ISLANDS	
PALAU ISLANDS	1
Diongradid River, Babelthuap (dct)	54
Tabecheding River, Babelthuap (dct)	55
Edeng River (head of Geriiki River), Babelthuap (dct)	56
Kmekumel River, Babelthuap (dct)	57
Ngerdorch River:	5.0
South Fork Ngerdorch River, Babelthuap (dct)	58
YAP ISLANDS	
Qaringeel Stream, Yap (dct)	59
Daloelaeb Stream, Yap (dct)	60
Peemgoy Stream, Yap (dct)	61
Burong Stream, Yap (dct)	62
Mukong Stream, Gagil-Tamil (dct)TRUK ISLANDS	63
Wichen River at altitude 55 m, Moen (dct)	
wichen River at altitude 55 m, Moen (dct)	64
Wichen River at altitude 18 m, Moen (dct)	65
Kiepw River: Nanpil River (dct)	"
Lewi River (dct)	66 67
Lewi River at mouth (dct)	68
Lunpwor River (dct)	69
ISLAND OF KOSRAE	09
Mutunte River (dt)	70
Okat River (head of Wukat River) (dt)	71
Melo River (dt)	72
Malem River (dt)	73
Tofol River (dt)	74
SAMOA ISLANDS	/4
TSLAND OF TUTUILA	
Pago Stream at Afono (dt)	75
	76
Aasu Stream at Aasu (dt)	77
Asili Stream at altitude 330 ft (100 m) near Asili (dt)	78
Leafu Stream at altitude 370 ft (113 m) near Leone (dt)	79
Afuelo Stream at Matuu (dt)	80
Leafu Stream near Auasi (dt)	81
Board Stream Hoar AdaSI (Ut)	OI

MADIANA IGLANDO			Page
MARIANA ISLANDS ISLAND OF GUAM			
Government of Guam, Ordot	(2645220)	132624144452771	133
Ana P. Diaz, Mangilao	(2648400)	132644144480871	134
U.S. Navy, Tamuning	(2846541)	132824144464271	135
Public Utility Agency of Guam, Barrigada		132813144472771	
Public Utility Agency of Guam, Dededo		133032144491871	
Public Utility Agency of Guam, Dededo	(3050400)	133047144500171	138
Government of Guam, Dededo	(3148140)	133115144484971	139
Father Duenas Memorial School, Ordot	(2647100)	132615144470571	140
Agana Springs, Sinajana	(2745420)	132742144452971	140
Well 147, Agana	(2745500)	132758144450571	140
Marbo Well (M-11A), Dededo	(3050300)	133034144500871	140

WATER RESOURCES DATA FOR HAWAII AND OTHER PACIFIC AREAS, 1981

Volume 2

INTRODUCTION

Water resources data for the 1981 water year for Hawaii and other Pacific areas, Volume 2, consist of records of stage, discharge, and water quality of streams; and stage of a reservoir; and water-levels of wells and springs. This report contains discharge records for 41 gaging stations; stage only records for 2 gaging stations; water quality for 3 gaging stations, 39 partial-record stations, water temperature for 60 stations; and water levels for 10 observation wells. Also included are data for 47 low-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Governments and Federal agencies in other Pacific areas.

Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled, "Surface Water Supply of the United States." Through September 30, 1960 (June 30, 1960, for Hawaii and other Pacific Areas), these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. The records for other Pacific areas were contained in one volume entitled "Surface Water Supply of Mariana, Caroline, and Samoa Islands." Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled "Ground Water Levels in the United States." Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from the Branch of Distribution, U.S. Geological Survey, 1200 South Eads Street, Arlington, Virginia, 22202.

For water years 1961 through 1970, streamflow data were released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records.

Beginning with the 1971 water year, water data for streamflow, water quality, and ground water are published in official Survey reports on a State-boundary basis. These official Survey reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report HI-80-2."

In this volume, the spelling of names, drainage areas and locations for most stations in Palau, Yap, Truk, Ponape, and Kosrae differ from those used in "Water Resources Data for Hawaii and other Pacific Areas", 1968 to 1980. These had been based on 1954 U.S. Army Map Service series W 856 maps with a scale of 1:25,000 and 10-meter contours (International spheroid). The revised names and figures were based on the 1981 USGS maps with 1:10000 scale and 5-meter contours (Clarke spheroid of 1866).

The water-data reports are for sale, in paper copy or in microfiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia, 22161. Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (808) 546-8331.

COOPERATION

The U.S. Geological Survey have had cooperative agreements for the systematic collection of streamflow records with the Territory of Guam since 1953, with the Territory of American Samoa since 1957, and with the other Pacific Islands since 1968. Organizations that supplied data are acknowledged in station descriptions. Organizations that assisted in collecting data through cooperative agreement with the Survey are:

Government of Guam, P. E. Calvo, governor. Government of Northern Mariana Islands, P. P. Tenorio, governor. Federated States of Micronesia, T. Nakayama, president. Republic of Palau, H. I. Remeliik, president. Government of American Samoa, P. T. Coleman, governor.

Assistance in the form of funds or services are given by the Public Works, U.S. Navy, and the Corps of Engineers, U.S. Army.

SUMMARY OF HYDROLOGIC CONDITIONS

Based on records at 6 selected streams in the area covered by this volume, as shown in figure 1, indicated the annual mean runoff for 1981 water year was mostly in the excessive range (flow in the upper 75 percent of record) on the islands of Palau, Yap, and Tutuila. Annual mean runoff on the islands of Guam and Kosrae was in the normal range (flow between 25 and 75 percent of record) and was deficient (flow in the lower 25 percent of record) on the island of Ponape.

Streamflow at the Ylig River near Yona, Guam (fig. 2), was excessive for December and August; deficient for September; and normal for October, November, and January through July. Annual mean runoff was in the normal range at 104 percent of the annual median.

At the Diongradid River (fig. 2) on the island of Babelthuap, Palau Islands, monthly mean was excessive for December, January, February, July, and August; deficient for October, November, April, May, and September; and normal for March and June. Annual mean runoff was in the excessive range at 119 percent of the annual median.

On the island of Yap, Caroline Islands, streamflow at the Qaringeel Stream (fig. 3) was normal for December, March, April, June, and August; excessive for October, January, February, July, and September; and deficient in November and May. Annual mean runoff was in the excessive range at 117 percent of the annual median.

Streamflow at the Nanpil River in Ponape (fig. 3) was normal for January and February, and deficient for other 10 months of the year. Annual mean runoff was in the deficient at 68 percent of the annual median.

On the island of Kosrae, streamflow at the Okat River (fig. 4) was normal for December through February, May and June; excessive for November, April, July through September; and deficient in October and March. Annual mean discharge was in the normal range at 120 percent of the annual median.

At Tutuila, American Samoa, streamflow at Aasu Stream at Aasu (fig. 4) was in the normal range for December, January, May, June, August, and September; excessive for October, February through April, and July; and deficient during November. Annual mean runoff was in the excessive range at 139 percent of the annual median.

DEFINITION OF TERMS

Definition of terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined as follows:

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet of 325,851 gallons or 1,233 cubic meters.

Algae are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

Bacteria are microscopic unicellular organisms, typically spherical, rod-like, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gramnegative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as all the organisms which produce colonies within 24 hours when incubated at 35°C \pm 1.0°C on M-Endomedium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal coliform bacteria are bacteria that are present in the intestines or feces of warmblooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours when incubated at $44.5\,^{\circ}\text{C}$ \pm $0.2\,^{\circ}\text{C}$ on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal streptococcal bacteria are bacteria found also in the intestines of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at 35°C \pm 1.0°C on M-enterrococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

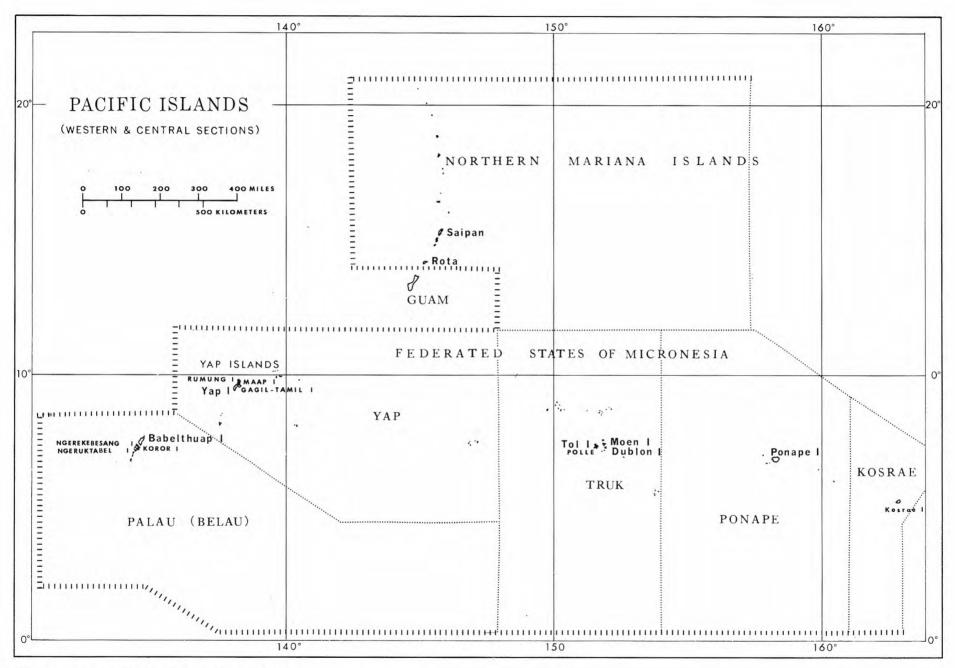
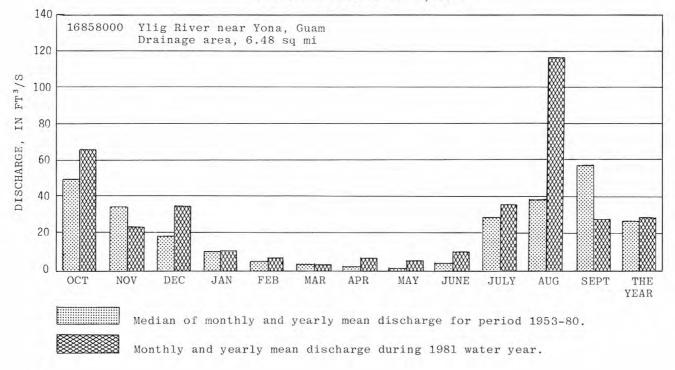



FIGURE 1. -- LOCATIONS OF PACIFIC ISLANDS.

WATER RESOURCES DATA FOR HAWAII AND OTHER PACIFIC AREAS, 1981

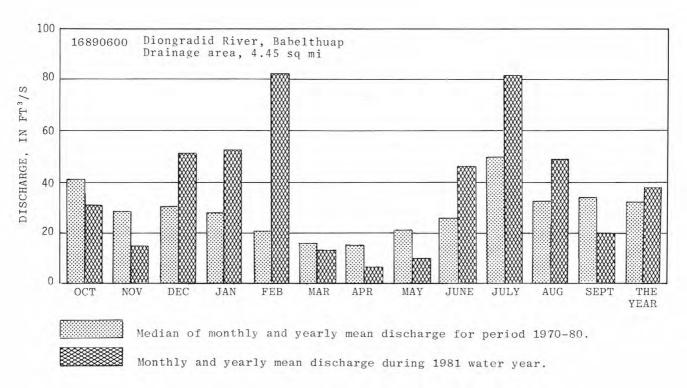
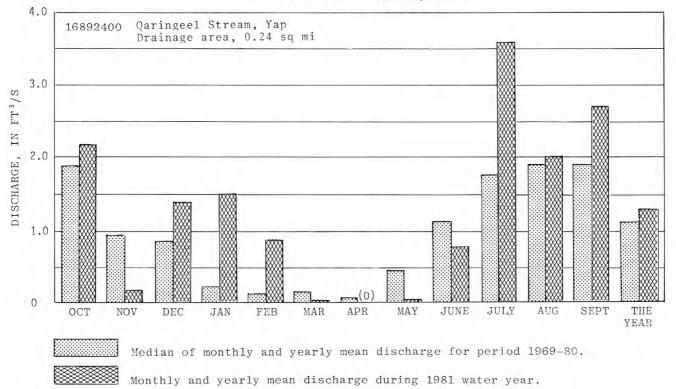



Figure 2.--Discharge during 1981 water year compared with median discharge for representative streams on Guam and Babelthuap.

WATER RESOURCES DATA FOR HAWAII AND OTHER PACIFIC AREAS, 1981

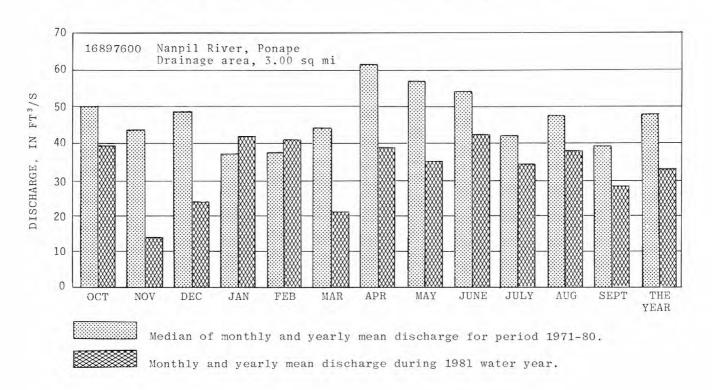
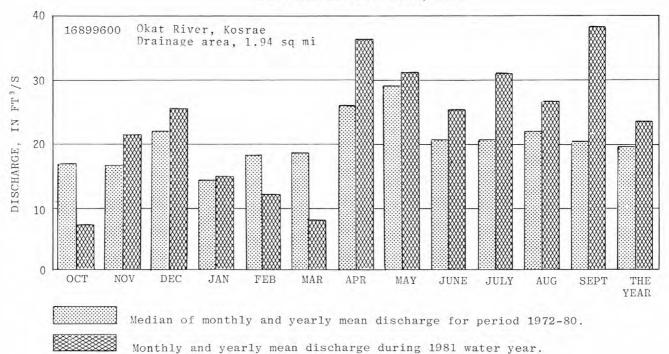



Figure 3.--Discharge during 1981 water year compared with median discharge for representative streams on Yap and Ponape.

WATER RESOURCES DATA FOR HAWAII AND OTHER PACIFIC AREAS, 1981

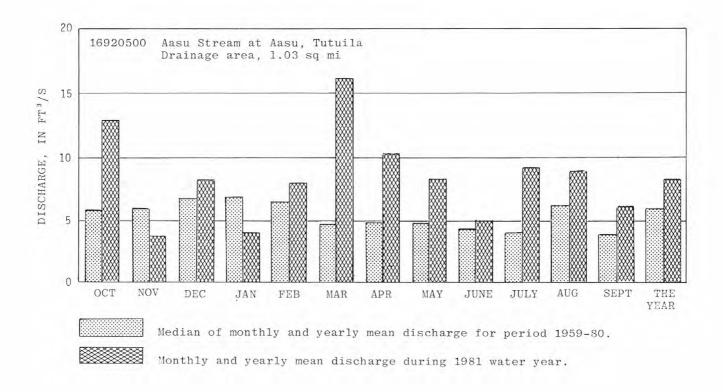


Figure 4.--Discharge during 1981 water year compared with median discharge for representative streams on Kosrae and Tutuila.

Bed material is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Biomass is the amount of living matter present at any time, expressed as the weight per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of $500\,^{\circ}\text{C}$ for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in g/m³ (grams per cubic meter), and periphyton and benthic organisms in g/m² (grams per square meter).

Dry mass refers to the mass of residue present after drying in an oven at $60\,^{\circ}\text{C}$ for zooplankton and $105\,^{\circ}\text{C}$ for periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash, and sediment, in the sample. Dry mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and the ash mass, and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash and dry mass.

Wet mass is the mass of living matter plus contained water.

Cells/volume refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

CFS-day is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.9835 acre-feet, or 646,317 gallons or 2,447 cubic meters.

<u>Chlorophyll</u> refers to the green pigments of plants. Chlorphyll \underline{a} and \underline{b} are the two most common pigments in plants.

Color unit is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Coliform organisms are a group of bacteria used as an indicator of the sanitary quality of the water. The number of coliform colonies per 100 milliliters is determined by the immediate or delayed incubation membrane filter method.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuing record station is a specified site which meets one or all conditions listed:

- 1. When chemical samples are collected daily or monthly for 10 or more months during the water year.
- 2. When water temperature records include observations taken one or more times daily.
- 3. When sediment discharge records include those periods for which sediment loads are computed and are considered to be representative of the runoff for the water year.

Control designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

Cubic foot per second (FT 3 /S, ft 3 /S) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

 $\frac{\text{Discharge}}{\text{passes a given point within a given period of time.}} \text{volume of fluid plus suspended sediment),}$

Mean discharge (MEAN) is the arithmetic average of individual daily mean discharges during a specified period.

Instantaneous discharge is the discharge at a particular instant of time. If this discharge is reported instead of the daily mean, the heading of the discharge column in the table is "DISCHARGE (CFS)."

Dissolved is that material in a representative water sample which passes through a 0.45 micrometer membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate. It is recognized that certain kinds of samples cannot be filtered; to provide for this, procedures that are considered equivalent to filtering through a 0.45-micrometer membrane filter will be identified and announced at a later date.

Suspended recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative water—suspended sediment sample that is retained on a 0.45 micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent.

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

 $\frac{\text{Total}}{\text{sample}}$, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total". (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample.)

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Total in bottom material is the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material".

Diversity index is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\frac{-}{d} = \frac{s}{i=i} \frac{n_{i}}{n} \log_{2} \frac{n_{i}}{n}$$

Where n_i is the number of individuals per taxon, n_i is the total number of individuals, and n_i is the total number of taxa in the sample of the community. Diversity index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

Drainage area of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

Gaging station is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

Hardness of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate $(CaCO_3)$.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Micrograms per gram ($\mu g/g$) is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (gram) of sediment.

Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represent the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L, and is based on the mass of sediment per liter of water-sediment mixture.

Organism is any living entity, such as an insect, phytoplankter, or zooplankter.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meters (m^2) , acres, or hectares. Periphyton benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliters (mL) or liters (L). Numbers of planktonic organisms can be expressed in these terms.

Total organism count is the total number of organisms collected and enumerated in any particular sample.

Partial-record station is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

Particle-size is the diameter, in millimeters (mm), of suspended sediment or bed material determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Particle-size classification used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology. The Classification is as follows:

Classification	Size	(mm)	Method of analysis
Clay	0.00024	- 0.004	Sedimentation. Sedimentation. Sedimentation or sieve. Sieve.
Silt	.004	062	
Sand	.062	- 2.0	
Gravel	2.0	- 64.0	

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

 $\frac{\text{Percent composition}}{\text{population to the total sample or population, in terms of types, numbers, mass, or volume.}$

Pesticides are chemical compounds used to control the growth of undesirable plants and animals. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

Picocurie (Pc,pCi) is one trillionth (1 x 10 $\,$) of the amount of radio-activity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 10 $\,$ radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

 $\frac{\text{Plankton}}{\text{Volume of lakes}}$ is the community of suspended, floating, or weakly swimming organisms that live in the open $\frac{\text{Volume of lakes}}{\text{Volume of lakes}}$ and rivers.

Phytoplankton is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae.

Blue-green algae are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

Diatoms are the unicellular or colonial algae having siliceous shell. Their concentrations are expressed as number of cells/mL of sample.

 $\frac{\text{Green-algae}}{\text{plants. Some forms produce algal mats or floating "moss" in lakes.}} \text{ Their concentrations are expressed as number of cells/mL of sample.}$

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column, and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are grazers in the aquatic environment, the zooplankton are a vital part of the aquatic feed web. The zooplankton community is dominated by small crustaceans and rotifers.

Polychlorinated biphenyls (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time [mg $C/(m^2 \cdot time)$ for periphyton and macrophytes and mg $C/m^3 \cdot time$] for phytoplankton are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method, and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time [mg $0_2/(m^2 \cdot time$ for periphyton and macrophytes and mg $0_2/(m^3 \cdot time)$ for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

Suspended sediment is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

Suspended-sediment discharge (tons/day) is the rate at which dry weight of sediment passes a section of a stream or is the quantity of sediment, as measured by dry weight or volume, that passes a section in a given time. It is computed by multiplying discharge times milligrams per liter times 0.0027.

Suspended-sediment load is quantity of suspended sediment passing a section in a specified period.

Total-sediment discharge (tons/day) is the sum of the suspended-sediment discharge and the bedload discharge. It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time.

Mean concentration is the time-weight concentration of suspended sediment passing a stream section during a 24-hour day.

Solute is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in micromhos per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height (stage) and volume of water per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.

Natural substrate refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lives.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multi-plate samplers (made of hardboard) for benthic organism collection, and plexi-glass strips for periphyton collection.

Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of the total concentration in a water-sediment mixture. The water-sediment mixture is associated with (or sorbed on) that material retained on a 0.45 micrometer filter.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, Hexagenia limbata, is the following:

Kingdom.....Animal
Phylum.....Arthropoda
Class....Insecta
Order....Ephemeroptera
Family.....Ephemeridae
Genus....Hexageria
Species...Hexagenia limbata

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136.

 $\frac{\text{Tons per day}}{\text{day}}$ is the quantity of substance in solution or suspension that passes a stream section during a 24-hour day.

 $\overline{\text{Total load}}$ (tons) is the total quantity of any individual constituent, as measured by dry mass $\overline{\text{or volume}}$, that is dissolved in a specific amount of water (discharge) during a given time. It is computed by multiplying the total discharge, times the mg/L of the constituent, times the factor 0.0027, times the number of days.

Turbidity of a sample is the reduction of transparency due to the presence of particulate matter. In this report it is expressed Jackson turbidity units (JTU).

WDR is used as an abbreviation for "Water-Data Reports" in the summary REVISIONS paragraph to refer to previously published State annual basic-data reports.

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

WRD is used as an abbreviation for "Water-Resources Data" in the REVISED RECORDS paragraph to refer to State annual basic-data reports published before 1975.

 $\frac{\text{WSP}}{\text{Is}}$ is used as an abbreviation for "Water-Supply Paper" in references to previously published reports.

DOWNSTREAM ORDER AND STATION NUMBER

Records are listed in a downstream direction along the main stream, and stations on tributaries are listed between stations on the main stream in the order in which those tributaries enter the main stream. Stations on tributaries entering above all main-stream stations are listed before the first main-stream station. Stations on tributaries to tributaries are listed in a similar manner. In the lists of gaging stations and water-quality stations in the front of this report, the rank of tributaries is indicated by indention, each indention representing one rank.

As an added means of identification, each gaging station, partial-record station, and water-quality station has been assigned a station number. These are in the same downstream order used in this report. In assigning station numbers, no distinction is made between partial-record station and continuous-record gaging stations; therefore, the station number for a partial-record station indicates downstream order position in a list made up of both types of stations. Water-quality stations located at or near gaging stations or partial-record stations have the same number as the gaging or partial-record station. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station, such as 16884600 which appears just to the left of the station name includes the 2-digit number "16" plus the 6-digit downstream order number "884600." In this report, the records are listed in downstream order by islands. Locations of the stations are shown in figures 5-14.

NUMBERING SYSTEM FOR WELLS AND MISCELLANESOUS SITES

Miscellaneous downstream order station numbers are not assigned to wells and miscellaneous sites where only random water-quality samples or discharge measurements are taken.

The well and miscellaneous site numbering system of the U.S. Geological Survey is based on the grid system of latitude and longitude. The system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, the next 7 digits denote degrees, minutes, and seconds of longitude, and the last 2-digit number is a sequential number for a well or a miscellaneous site within a 1-second grid. In the event that there are more than one data site with the same latitude-longitude coordinates, different sequential numbers are assigned to each, "70", "71", etc., to obtain unique numbers. See figure 15.

The local well-numbering system for Guam was structured to contain seven digits based on a non-arbitrary, unique one-minute grid and 10-second subgrid system. One-minute parallel lines for both latitude and longitude are drawn on the map resulting in one-minute grids. Each grid is designated by a four-digit number. The first two digits represent minutes of latitude for the grid and the second two digits represent minutes of longitude for that grid. This establishes unique minute-grid numbers within Guam.

To distinguish wells within a minute grid, 10-second parallel lines for both latitude and longitude are drawn and 10-second subgrids are established within each one-minute grid. Each subgrid is designated by a two-digit number. The first represents 10 seconds of latitude for that subgrid and the second represents 10 seconds of longitude for that subgrid. This establishes unique 10-second-subgrid numbers within a minute grid. The fifth and sixth digits of the local number are these unique 2-digit subgrid numbers. The seventh digit is a sequential number used to distinguish different wells within a 10-second subgrid. It is assigned chronologically with the oldest or the only well within the subgrid having a sequential number of zero. See figure 16.

SPECIAL NETWORKS AND PROGRAMS

National stream-quality accounting network is an accounting network designed by the U.S. Geological Survey to meet many of the information demands of agencies or groups involved in national or regional water-quality planning and management. Both accounting and broad-scale monitoring objectives have been incorporated in the network design. Areal configuration of the network is based on the river-basin accounting units designated by the Office of Water Data Coordination in consultation with the Water Resources Council. Primary objectives of the network are (1) to depict areal variability of water-quality conditions nationwide on a year-by-year basis and (2) to detect and assess long-term changes in stream quality.

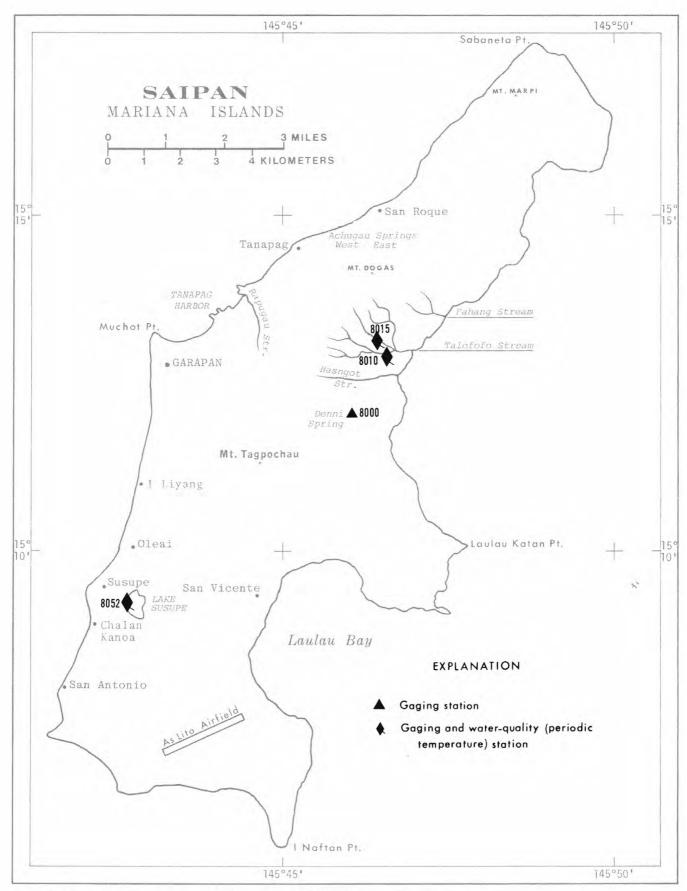


FIGURE 5. LOCATIONS OF GAGING STATIONS ON SAIPAN, MARIANA ISLANDS.

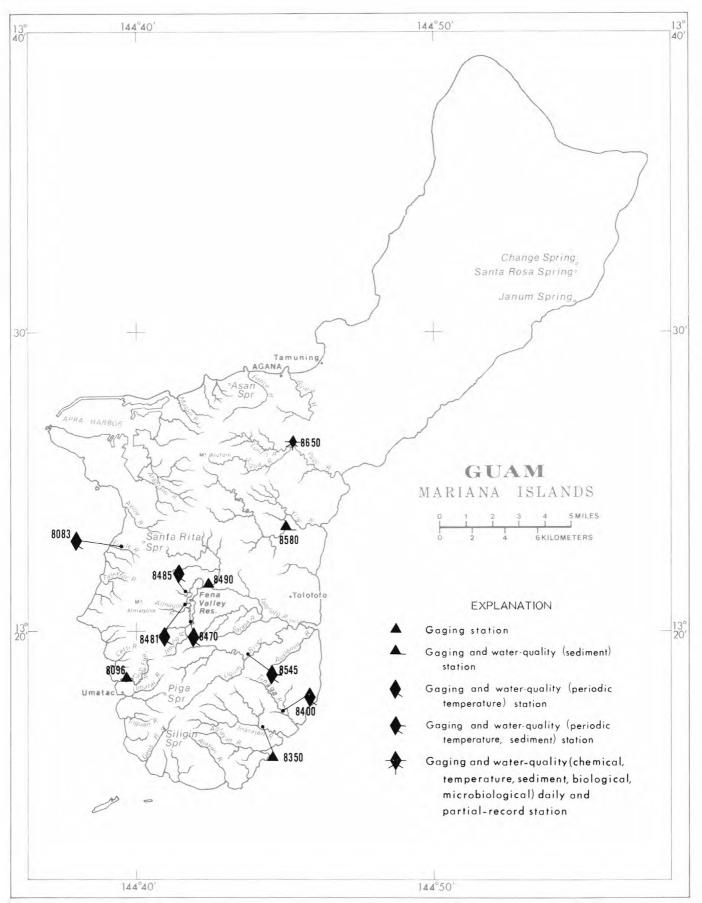


FIGURE 6.--LOCATIONS OF GAGING, WATER-QUALITY, AND PARTIAL-RECORD STATIONS ON GUAM.

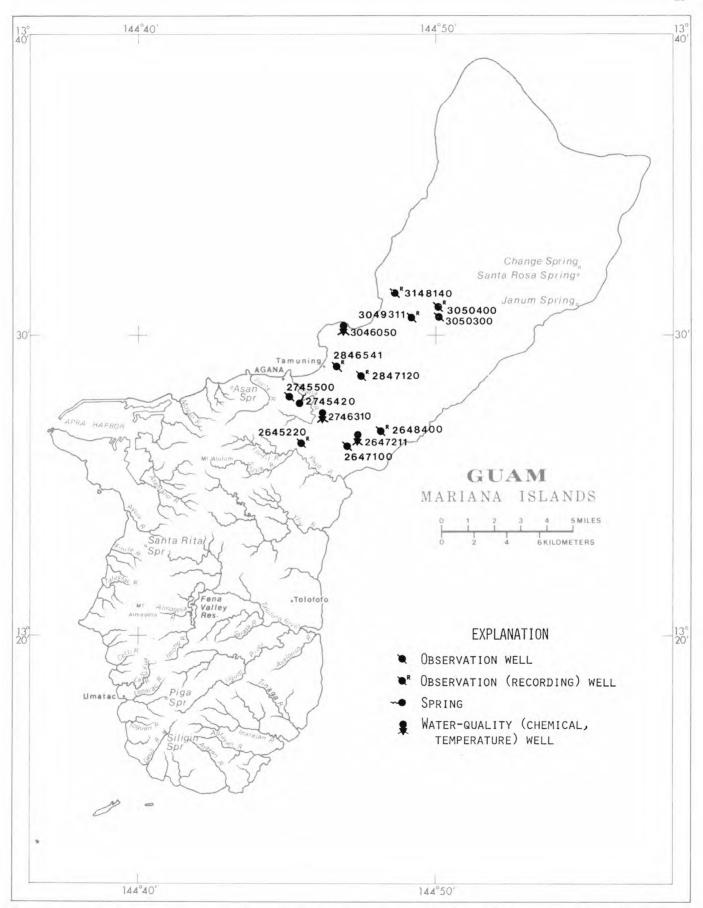


FIGURE 7.--LOCATIONS OF OBSERVATION WELLS, AND GROUND-WATER-QUALITY SITE ON GUAM.

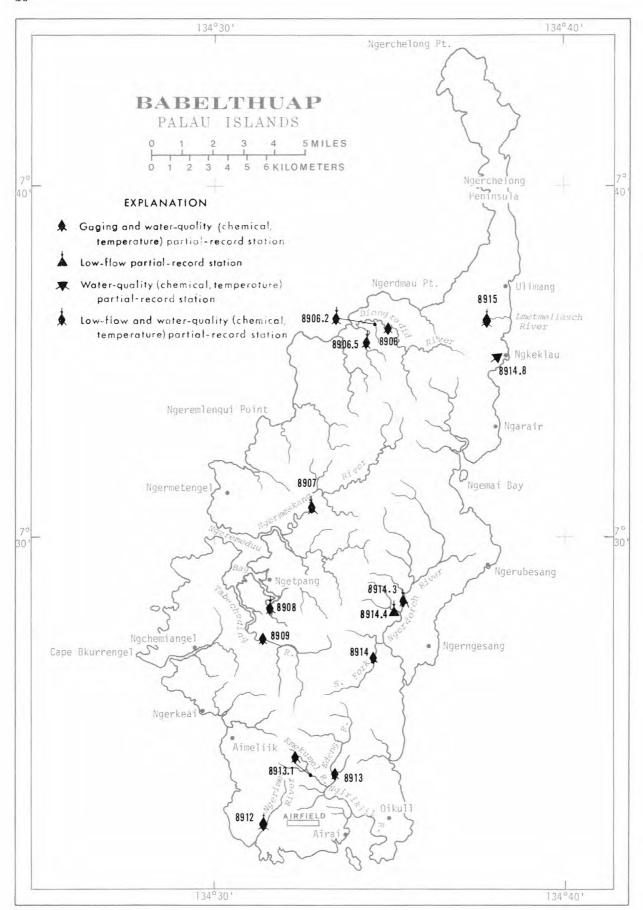


Figure 8.--Locations of gaging, Low-flow and water-quality partial-record stations on Babelthuap.

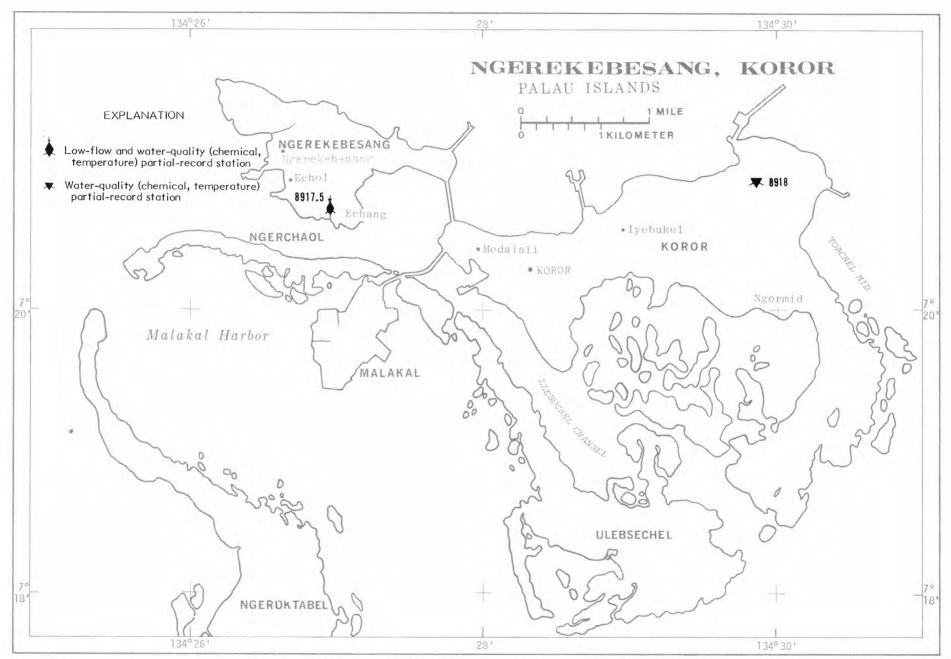


FIGURE 9.--LOCATIONS OF WATER-QUALITY PARTIAL-RECORD STATIONS ON NGEREKEBESANG, AND KOROR, PALAU ISLANDS.

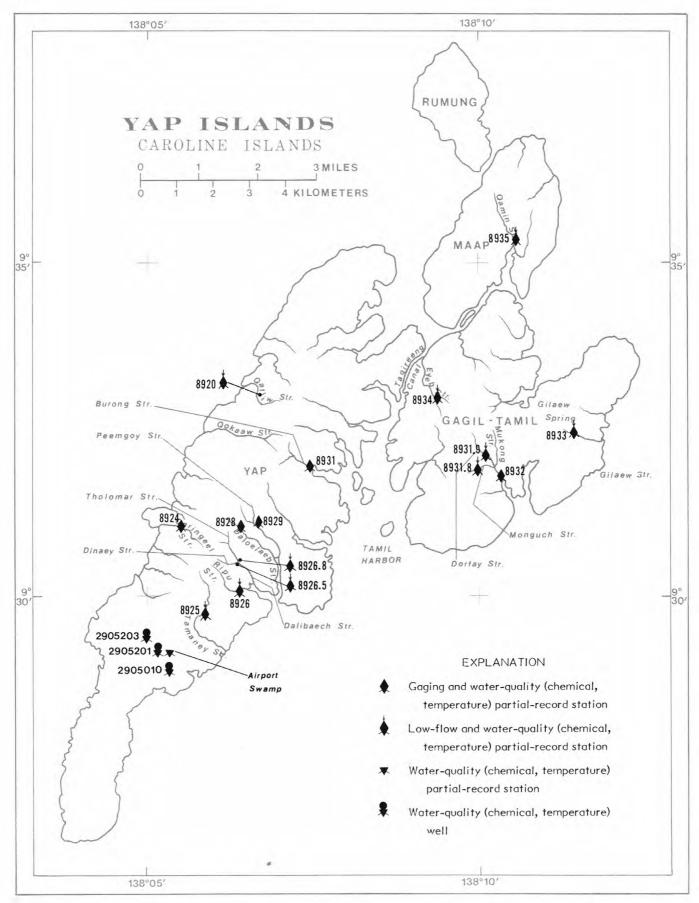


Figure 10.--Locations of gaging, Low-flow partial-record stations, and water-quality sites on Yap Islands.

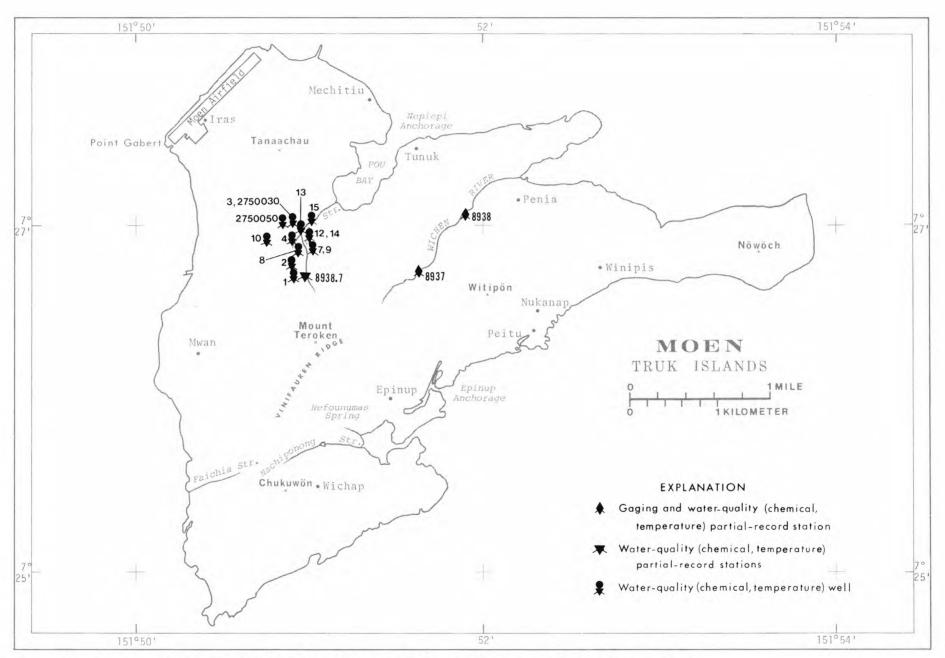


FIGURE 11. -- LOCATIONS OF GAGING, LOW-FLOW PARTIAL-RECORD STATIONS, AND WATER-QUALITY SITES ON MOEN.

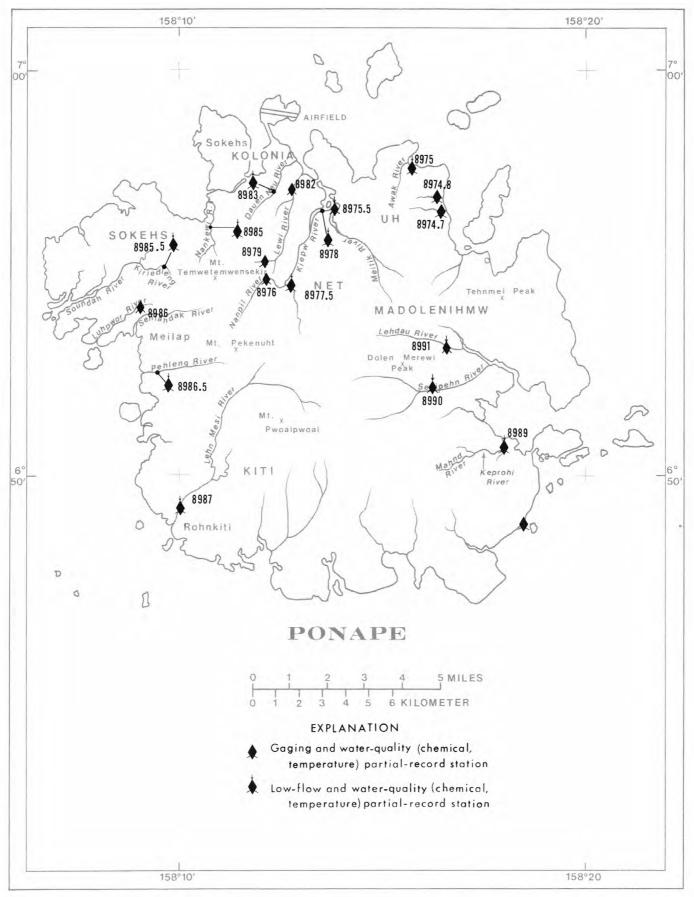


Figure 12.--Locations of gaging, low-flow and water quality partial-record stations on Ponape.

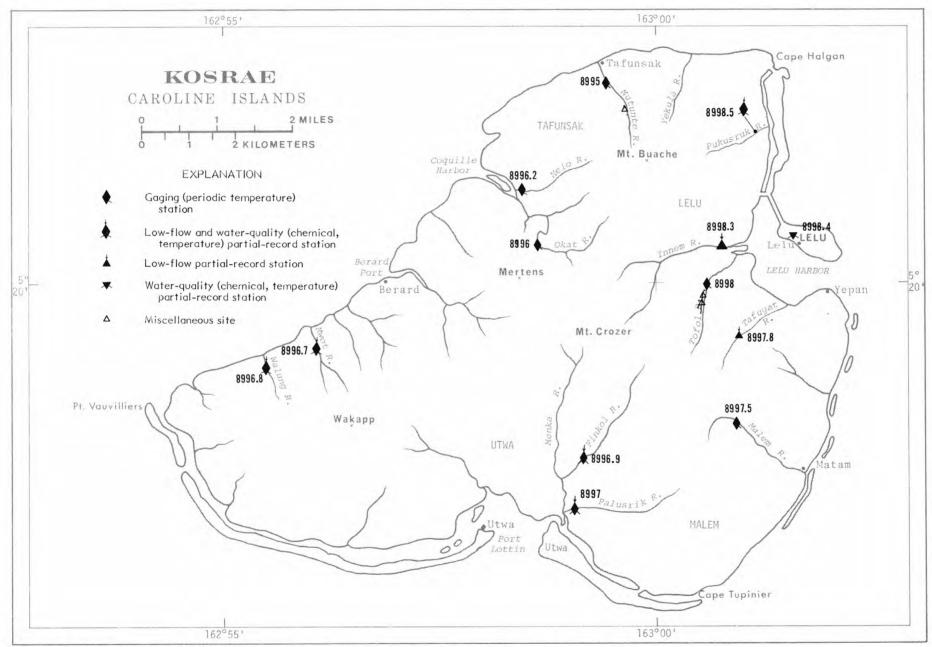


FIGURE 13.--LOCATIONS OF GAGING, LOW-FLOW AND WATER-QUALITY PARTIAL-RECORD STATIONS ON KOSRAE.

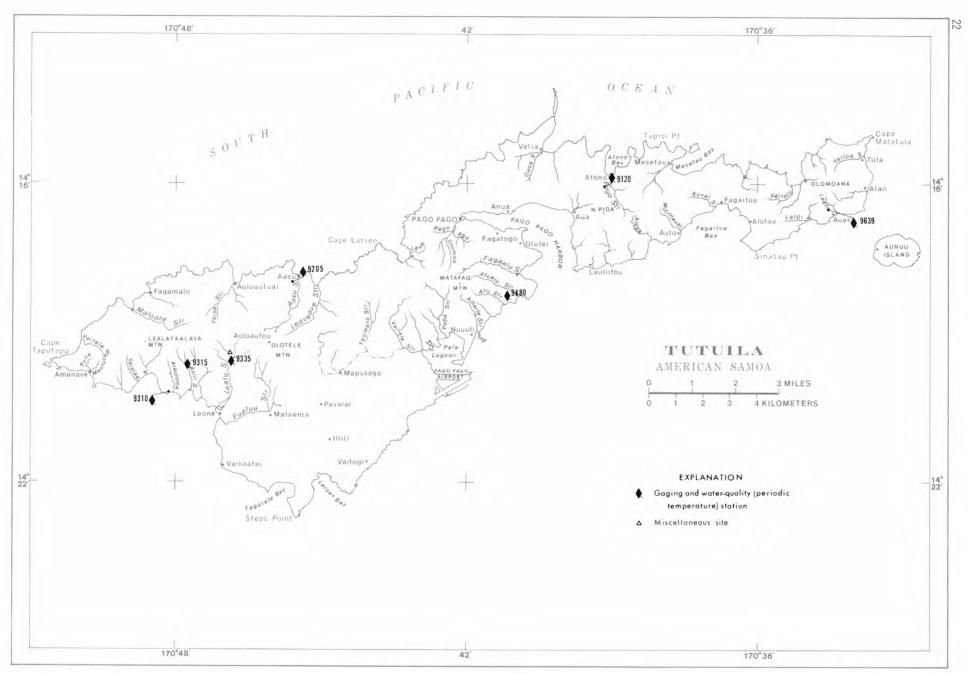


Figure 14.--Locations of gaging, and water-quality stations on Tutuila, Samoa Islands.

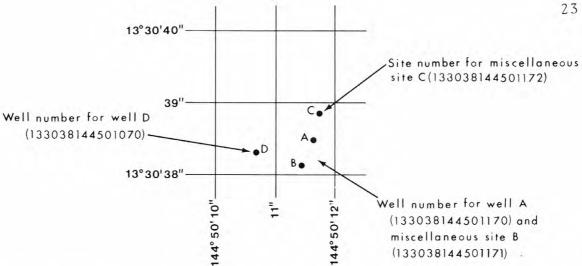


Figure 15. Sketch showing system for numbering wells and miscellaneous sites.

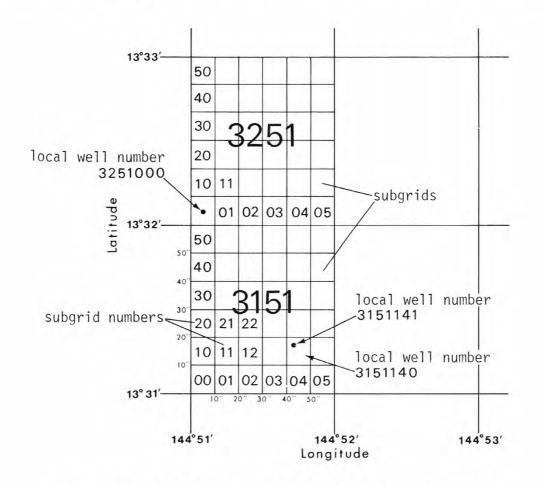


Figure 16. Sketch showing local well numbering system.

EXPLANATION OF STAGE AND WATER-DISCHARGE RECORDS

Collection and computation of data

The base data collected at gaging stations consist of records of stage and measurements of discharge of streams or canals, and stage, surface area, and contents of lakes or reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of stage are obtained from either direct readings on a nonrecording gage or from a water-stage recorder that gives either a continuous graph of the fluctuations or a tape punched at selected time intervals. Measurements of discharge are made with a current meter, using the general methods adopted by the Geological Survey. These methods are described in standard text books, in Water-Supply Paper 888, and in U.S. Geological Survey Techniques of Water Resources Investigations, book 3, chapter A6.

For stream-gaging stations, rating tables giving the discharge for any stage are prepared from stage-discharge relation curves. If extensions to the rating curves are necessary to express discharge greater than measured, they are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements, computation of flow over dams or weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharges are computed from the daily figures. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is computed by the shifting-control method, in which correction factors based on individual discharge measurements and notes by engineers and observers are used in applying the gage heights to the rating tables. If the stage-discharge relation for a station is temporarily changed by the presence of aquatic growth or debris on the control, the daily mean discharge is computed by what is basically the shifting-control method.

At some stream-gaging stations the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

For some gaging stations there are periods when no gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods the daily discharges are estimated on the bases of recorded range in stage, prior and subsequent records, discharge measurements, weather records, and comparison with records for other stations, in the same or nearby basins. Likewise daily contents may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information.

The data in this report generally comprise a description of the station and tabulations of daily and monthly figures. For gaging stations on streams or canals a table showing the daily discharge and monthly and yearly discharge is given. For gaging stations on lakes and reservoirs a monthly summary table of stage and contents or a table showing the daily contents is given. Tables of daily mean gage heights are included for some streamflow stations and for some reservoir stations. Records are published for the water year, which begins on October 1 and ends on September 30.

The description of the gaging station gives the location, drainage area, period of record, notations of revisions of previously published records, type and history of gages, general remarks, average discharge, and extremes of discharge or contents. The location of the gaging station and the drainage area are obtained from the most accurate maps available. River mileage, given under "LOCATION" for some stations, is that determined and used by the Corps of Engineers or other agencies. Periods for which there are published records for the present station or for stations generally equivalent to the present one are given under "PERIOD OF RECORD."

Previously published streamflow records of some stations have been found to be in error on the basis of data or information later obtained. Revisions of such records are usually published along with the current records in one of the annual or compilation reports. In order to make it easier to find such revised records, a paragraph headed "REVISED RECORDS" has been added to the description of all stations for which revised records have been published. Listed therein are all the reports in which revisions have been published, each followed by the water years for which figures are revised in that report. In listing the water years only one number is given; for instance, 1965 stands for the water year October 1, 1964, to September 30, 1965. If no daily, monthly, or annual figures of discharge are affected by the revision, the fact is brought out by notations after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the revised figures was first published is given.

The type of gage currently in use, the datum of the present gage above mean sea level, and a condensed history of the types, locations, and datums of previous gages used during the period of record are given under "GAGE." In references to datum of gage, the phrase "mean sea level" denotes "Sea Level Datum of 1929" as used by the Topographic Division of the Geological Survey unless otherwise qualified.

Information pertaining to the accuracy of the discharge records and to conditions which affect the natural flow of the gaging station is given under "REMARKS." For reservoir stations information on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir is given under "REMARKS."

The average discharge for the number of years indicated is given under "AVERAGE DISCHARGE", it is not given for stations having fewer than 5 complete years of record or for stations where changes in water development during the period of record cause the figure to have little significance. In addition, the median of yearly mean discharges is given for stream-gaging stations having 10 or more complete years of record if the median differs from the average by more than 10 percent. Under "EXTREMES" are given first, the extremes for the period of record, second, information available outside the period of record, and last, those for the current year. Unless otherwise qualified, the maximum discharge (or contents) is the instantaneous maximum corresponding to the crest stage obtained by use of a water-stage recorder (graphic or digital), a crest-stage gage, or a nonrecording gage read at the time of the crest. If the maximum gage height did not occur on the same day as the maximum discharge (or contents), it is given separately. Similarly, the minimum is the instantaneous minimum unless otherwise qualified. For some stations peak discharges are listed with EXTREMES FOR THE CURRENT YEAR; if they are, all independent peaks, including the maximum for the year, above the selected base with time of occurrence and corresponding gage heights are published in tabular format. The base discharge, which is given in the table heading, is selected so that an average of about three peaks a year will be presented. Peak discharges are not published for any canals, ditches, drains, or for any stream for which the peaks are subject to substantial control by man. Time of day is expressed in 24-hour local standard time; for example, 12:30 a.m. is 0030, 1:30 p.m. is 1330. The minimums for these stations are published in a separate paragraph following the table of peaks.

The daily table for stream-gaging stations gives the mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also may be expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN"), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion, if the drainage area includes large noncontributing areas, or if the average annual rainfall over the drainage basin is usually less than 20 inches. In the yearly summary below the monthly summary, the figures shown are the appropriate daily discharges for the calendar and water years.

Footnotes to the table of daily discharge are introduced by the word "NOTE." Footnotes are used to indicate periods for which the discharge is computed or estimated by special methods because of no gage-height record, backwater from various sources, or other unusual conditions. Periods of no gage-height record are indicated if the period is continuous for a month or more or includes the maximum discharge for the year. Periods of backwater from an unusual source, of indefinite stage relation, or of any other unusual condition at the gage site are indicated only if they are a month or more in length and the accuracy of the records is affected.

For most gaging stations on lakes and reservoirs the data presented comprise a description of the station and a monthly summary table of stage and contents. For some reservoirs a table showing daily contents or stage is given. A skeleton table of capacity at given stages is published for all reservoirs for which records are published on a daily basis, but is not published for reservoirs for which only monthly data are given.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. Occasionally, a series of discharge measurements are made within a short time period to investigate the seepage gains or losses along a reach of a stream or to determine the low-flow characteristics of an area. Such measurements are also given in special tables following the tables of partial-record stations.

Accuracy of field data and computed results

The accuracy of streamflow data depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements and (2) the accuracy of observations of stage, measurements of discharge, and interpretations of records.

The station description under "REMARKS" states the degree of accuracy of the records. "Excellent" means that about 95 percent of the daily discharges are within 5 percent; "good", within 10 percent; and "fair" within 15 percent. "Poor" means that daily discharges have less than "fair" accuracy.

Figures of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 cfs; to tenths between 1.0 and 10 cfs; to whole numbers between 10 and 1,000 cfs; and to 3 significant figures above 1,000 cfs. The number of significant figures used is based solely on the magnitude of the figure. The same rounding rules apply to discharge figures listed for partial-record stations.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Records of discharge collected by agencies other than the Geological Survey

The National Water Data Exchange, Water Resources Division, U.S. Geological Survey, National Center, Reston, Va 22092, maintains an index of water-data sites not published by the Geological Survey. Information on records available at specific sites can be obtained upon request.

Other data available

Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating tables is on file in the district office. Also most gaging-station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the district office.

Publications

In each water-supply paper entitled, "Surface Water Supply of the United States" there is a list of numbers of preceding water-supply papers containing streamflow information for the area covered by that report. In addition, there is a list of numbers of water-supply papers containing detailed information on major floods in the area. Records for stations in Hawaii and other Pacific areas for the period October 1959 to September 1965, are in Water-Supply Paper 1937.

Two series of summary reports entitled, "Compilation of Records of Surface Waters of the United States" have been published; the first series covers the entire period of record through September 1950 (June 1950, for Hawaii), and the second series covers the period October 1950 to September 1960 (July 1950 to June 1960, for Hawaii and other Pacific areas). These reports contain summaries of monthly and annual discharge and monthend storage for all previously published records, as well as some records not contained in the annual series of water-supply papers. All records were reexamined and revised where warranted. Estimates of discharge were made to fill short gaps whenever practical. The yearly summary table for each gaging station lists the numbers of the water-supply papers in which daily records were published for that station. Records for stations in Hawaii and other Pacific areas are compiled in Water-Supply Paper 1319 through June 1950, in 1739 and 1751 for July 1950 to June 1960, in 1937 for October 1959 to September 1965, and 2137 for October 1966 to September 1970.

Special reports on major floods or droughts or of other hydrologic studies for the area have been issued in publications other than water-supply papers. Information relative to these reports may be obtained from the district office.

EXPLANATION OF WATER-QUALITY RECORDS

Collection and examination of data

Surface water samples for analyses usually are collected at or near gaging stations. The water-quality records are given immediately following the discharge records at these stations.

The descriptive heading for water-quality records gives periods of record for the various types of water-quality data (chemical, specific conductance, biological determination, water temperatures, sediment discharge), period of record, and extremes of pertinent data, and general remarks.

For ground-water records, no descriptive statements are given; however, the well number, depth of well, date of sampling and/or other pertinent data are given in the table containing the chemical analyses of the ground water.

Water analysis

Most methods for collecting and analyzing water samples are described in the U.S. Geological Survey Techniques of Water-Resources Investigations listed on a following page.

One sample can define adequately the water-quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the district office.

Water temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diel temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of the quantities of suspended sediment, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included.

Publications

The annual series of water-supply papers that contain information on quality of surface waters in Hawaii and other Pacific areas are listed below.

Water year	WSP No.	Water year	WSP No.	Water year	WSP No.
1964	1966	1967	2016	1970	2160
1965	1966	1968	2016		
1966	1996	1969	2150		

EXPLANATION OF GROUND-WATER LEVEL RECORDS

Collection of the data

Only ground-water level data from a basic network of observation wells are published herein. This basic network contains observation wells so located that the most significant data are obtained from the fewest wells in the most important aquifers.

Each well is identified by means of (1) a 15-digit number that is based on latitude and longitude and (2) a local number that is provided for local needs. See figures 15 and 16.

Measurements are made in many types of wells, under varying conditions of access and at temperatures, hence, neither the method of measurement nor the equipment can be standardized. At each observation well, however, the equipment and techniques used are those that will ensure that measurements at each well are consistent.

Water-level measurements in this report are given in feet with reference to either mean sea level (msl) or land-surface datum (lsd). Mean sea level is the datum plane on which the national network of precise levels is based; land-surface datum is a datum plane that is approximately at land surface at each well. If known, the altitude of the land-surface datum above mean sea level is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported either for every fifth day and the end of each month (eom) or for each day. To show the intra-day variation in the ground-water levels caused by local pumping and tidal fluctuations, instantaneous maximum and minimum water levels are given with the mean water levels for the day.

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given only to a tenth of a foot or a larger unit.

Thirty-four manuals by the U.S. Geological Survey have been published to date in the series Inirty-rour manuals by the U.S. Geological Survey have been published to date in the series on techniques describing procedures for planning and executing specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) is on surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. The reports listed below are for sale by the U.S. Geological Survey, Branch of Distribution, 1200 South Eads Street, Arlington, VA 22202 (authorized agent of the Superintendent of Documents. Government Printing Office) the Superintendent of Documents, Government Printing Office).

- When ordering any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations".
- Water temperature -- influential factors, field measurement, and data presentation, by H. H.
- Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages. 1-D2.
- Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages. 2-D1.
- Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS--TWRI Book 2, Chapter El. 1971. 126 pages.
- General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter Al. 1967. 30 pages.

 Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages. 3-A1.
- 3-A2.
- Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--
- TWRI Book 3, Chapter A3. 1968. 60 pages.

 Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 pages. 3-A4.
- Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS-TWRI Book 3, Chapter A5. 1967. 29 pages. 3-A5-
- General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages.
- Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 pages. 3-A7.
- Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS-TWRI Book 3, Chapter A8. 1969. 65 pages.
- 3-All. Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter All. 1969. 22 pages.
- Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter Bl. 1971. 26 pages.
- 3-B2.
- Introduction to ground-water hydraulies, a programed text for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages.

 Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.

 Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS-TWRI Book 3, Chapter C2. 1970. 59 pages. 3-C1. 3-C2.
- Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages. 3-C3.
- 4-A1. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter Al. 1968.
- 4-A2.
- Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.

 Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages.

 Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4,

 Chapter B2. 1973. 20 pages.

 Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4,

 Chapter B3. 1973. 15 pages. 4-B1. 4-B2.
- 4-B3.
- 4-D1. Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS--TWRI Book 4, Chapter Dl. 1970. 17 pages.
- Methods for determination of inorganic substances in water and fluvial sediments, by M. W. Skougstad and others, editors: USGS--TWRI Book 5, Chapter Al. 1979. 626 pages. 5-A1.
- Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages.

 Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown: 5-A2.
- 5-A3. USGS--TWRI Book 5, Chapter A3. 1972. 40 pages.
- Methods for collection and analysis of aquatic biological and microbiological samples, edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS-TWRI Book 5, Chapter A4. 1977. 332 pages.
- Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 5-A5. 95 pages.
- Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter Cl. 1969. 58 pages. 5-C1.
- 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chap-
- ter C1. 1976. 116 pages.

 Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages.

 Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman:

 USGS--TWRI Book 8, Chapter Al. 1968. 23 pages. 7-C2.
- Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages. 8-B2.

WTR YR 1981 TOTAL

365.31 MEAN

1.00

MAX

7.0

MIN

.22

AC-FT

725

GAGING-STATION RECORDS

MARIANA ISLANDS, ISLAND OF SAIPAN

16800000 DENNI SPRING

LOCATION.--Lat $15^{\circ}11'57"$ N., long $145^{\circ}46'05"$ E., Hydrologic Unit 20100006, 2.8 mi (4.5 km) southeast of Tanapag, 3.1 mi (5.0 km) east of Garapan, and 5.6 mi (9.0 km) northeast of Chalan Kanoa.

PERIOD OF RECORD.--August 1952 to June 1954 (published as Donni Spring near Garapan), March 1968, January 1969 to current year.

GAGE. -- Water-stage recorder and sharp-crested weir. Altitude of gage is 261 ft (79.6 m) from U.S. Navy.

REMARKS.--Records fair except those above 2 ft 3 /s (0.057 m 3 /s) and those for Dec. 17 to Jan. 28 and Mar. 21 to May 23, which are poor.

AVERAGE DISCHARGE.--13 years (water years, 1953, 1970-81), 0.639 ft 3 /s (0.018 m 3 /s), 463 acre-ft/yr (571,000 m 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 8.5 ft 3 /s (0.24 m 3 /s) Aug. 13, 1978; minimum daily, 0.02 ft 3 /s (0.001 m 3 /s) Sept. 16, 17, 1969.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 7.0 ft 3 /s (0.20 m 3 /s) Aug. 18-21; minimum daily, 0.22 ft 3 /s (0.006 m 3 /s) July 8, 9.

		DISCH	ARGE, IN	CUBIC FE	ET PER SEC MEA	OND, WATE N VALUES	ER YEAR OC	TOBER 1980	TO SEPT	EMBER 19	81	
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.6 1.8 1.8 1.6	.91 .91 .86 .86	1.4 1.4 1.3 1.2	.95 .95 .90 .90	.74 .74 .74 .74	.66 .66 .66	.50 .50 .50 .50	.40 .40 .40 .40	.39 .39 .39 .39	.25 .25 .25 .25	1.2 1.5 1.6 1.6	3.5 3.5 2.0 1.8 1.8
6 7 8 9	1.5 1.5 1.8 2.0 2.0	.86 .82 .82 .82 .78	1.2 1.1 1.0 .97	.90 .90 .85 .85	.74 .70 .70 .66	.66 .62 .62 .62	.45 .45 .45 .50	. 45 . 45 . 45 . 45	.39 .39 .35 .35	.25 .25 .22 .22	1.5 1.5 1.5 1.4	1.6 1.6 1.5 1.4
11 12 13 14 15	2.0 1.8 1.8 1.8	.78 .78 .74 .78	.91 .91 .91 .91	.85 .85 .85 .85	.66 .66 .70 .70	.62 .62 .58 .58	.50 .50 .50 .50	.50 .45 .45 .45	.35 .31 .31 .31	.25 .25 .28 .28	1.4 1.4 1.4 1.6 4.5	1.2 1.2 1.0 1.0
16 17 18 19 20	1.5 1.4 1.4 1.3 1.3	.78 .78 .74 .82	.86 .85 .85 .85	.85 .80 .80 .80	.70 .70 .70 .70	.58 .58 .58 .58	.50 .50 .50 .55	.45 .45 .45 .45	.31 .31 .31 .31	.28 .28 .28 .31	5.5 5.5 7.0 7.0	1.0 .98 .98 .98
21 22 23 24 25	1.2 1.2 1.2 1.2 1.2	.86 .86 1.1 1.5	.90 1.0 1.0 1.0	.80 .80 .80 .80	.70 .70 .66 .66	.55 .55 .55 .55	.55 .50 .50 .45	.43 .43 .43 .43	.28 .28 .28 .28	.31 .31 .31 .28	7.0 5.5 5.5 4.5 3.5	.98 .98 .92 .92
26 27 28 29 30 31	1.0 1.0 1.0 .97 .97	1.6 1.6 1.5 1.5	1.0 1.0 .95 .95 .95	.75 .75 .75 .74 .74	.66 .66 .66	.55 .55 .50 .50	. 45 . 45 . 45 . 45	.43 .43 .39 .39 .39	.25 .25 .25 .25 .25	.28 .28 .28 .28 .35	4.5 5.5 4.5 4.5 3.5 3.5	.87 1.0 1.1 1.1 1.0
TOTAL MEAN MAX MIN AC-FT	44.85 1.45 2.0 .91 89	30.02 1.00 1.6 .74 60	31.40 1.01 1.4 .85 62	25.67 .83 .95 .74 51	19.44 .69 .74 .66	18.17 .59 .66 .50	14.60 .49 .55 .45 .29	13.42 .43 .50 .39 27	9.54 .32 .39 .25 19	8.99 .29 .75 .22 18	109.1 3.52 7.0 1.2 216	40.11 1.34 3.5 .87 80
CAL YR	1980 TOTA	L 217.8	88 MEAN	.60	MAX 3.5		.12 AC-					

MARIANA ISLANDS, ISLAND OF SAIPAN

16801000 SOUTH FORK TALOFOFO STREAM

LOCATION.--Lat 15°12'58" N., long 145°46'31" E., Hydrologic Unit 20100006, on left bank 0.3 mi (0.5 km) upstream from confluence with Middle and North Forks, 1.4 mi (2.3 km) south of Ogso Dogas, and 2.2 mi (3.5 km) southeast of Tanapag.

DRAINAGE AREA.--0.69 mi² (1.79 km²). Area at site used prior to Mar. 31, 1971, 0.73 mi² (1.89 km²).

PERIOD OF RECORD. --October 1968 to current year. Low-flow records not equivalent prior to Mar. 31, 1971, due to undetermined amount of underflow between sites.

REVISED RECORDS. -- WDR HI - 78 - 2: 1976 - 77(M).

GAGE.--Water-stage recorder. Concrete control since Mar. 31, 1971. Altitude of gage is 30 ft (9.1 m), from topographic map. Prior to Mar. 31, 1971, at site 0.2 mi (0.3 km) downstream at different datum.

REMARKS.--Records fair except those for periods of no gage-height record, which are poor. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--10 years, 1.46 ft³/s (0.041 m³/s), 1,060 acre-ft/yr (1.31 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,100 ft 3 /s (116 m 3 /s), Aug. 4, 1976, gage height, 8.15 ft (2.484 m), from rating curve extended above 59 ft 3 /s (1.67 m 3 /s) on basis of slope-area measurements at gage heights 7.30 and 8.15 ft (2.225 and 2.484 m); no flow at times prior to Mar. 31, 1971, at site then in use, and at present site, July 16, 17, 19, 20, 1977.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 400 ft³/s (11.3 m³/s) and maximum (*), from rating curve extended as explained above:

		Disch	arge	Gage h	eight
Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Nov. 23	0530	*1940	54.9	*6.05	2.027
Aug. 1	0730	472	13.4	4.68	1.426
Aug. 16	1000	408	11.6	4.52	1.378

Minimum discharge, 0.01 ft3/s (<0.001 m3/s) May 30, June 14.

		2.33			ME	AN VALUES		2913250222	0.00	2.11.12.20 S		
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5. 8	1. 1	1.4	80	. 35	. 22	. 11	.06	. 03	. 04	42	2. 0
2	3. 1	1.6	1.1	. 75	. 40	55	. 11	. 05	. 03	. 14	11	1.8
3	4. 5	1 1	1. 1	. 75	35	20	. 12	. 05	. 03	. 08	3. 0	1.7
4	3.0	1. 1	1.1	. 80	. 35	22	. 11	.07	. 03	. 07	1.5	1.6
5	2. 3	1.5	. 94	. 70	30	, 20	10	. 08	. 03	. 06	1.5	1 3
6	2.1	1.1	. 88	. 70	. 30	20	. 10	10	. 03	. 10	1.0	1.2
7	13	1.0	. 76	65	. 30	. 16	. 06	. 10	. 03	. 06	1.0	1.2
8	17	1.0	. 70	65	. 45	. 16	. 06	. 08	. 03	. 04	. 80	1.2
9	4.8	88	. 70	60	. 45	. 18	. 06	. 11	. 02	. 04	5. 0	1.1
10	3. 4	82	. 70	60	. 35	18	. 12	_ 29	. 02	. 04	3. 0	1.0
11	2. 7	82	. 66	. 55	. 30	. 20	. 11	. 10	. 02	. 05	1.5	1.0
12	2.2	. 82	. 62	. 55	. 30	. 16	. 08	. 06	. 03	. 08	4.0	1.0
13	1.7	. 70	. 62	. 50	. 28	. 16	. 07	. 05	. 04	08	18	1.0
14	1.5	. 66	. 76	55	58	. 14	07	. 05	. 03	. 27	25	1.1
15	1.4	1.0	. 58	. 55	. 25	. 14	. 07	. 04	. 10	, 08	17	. 94
16	1.3	1.0	. 58	. 50	. 24	. 14	06	. 04	0.5	. 06	32	1.0
17	1 2	. 76	. 54	. 50	24	14	06	04	. 04	. 08	17	5. 9
18	1.2	1.3	50	. 45	53	. 14	15	. 04	03	12	10	1.6
19	1.4	2. 9	. 50	. 45	23	. 12	. 34	. 04	05	. 17	2. 5	1.2
50	1, 2	2. 5	. 50	. 50	55	. 12	11	. 04	. 04	1.6	2.5	11
21	1.2	1. 5	1.8	. 55	24	12	10	. 04	. 03	. 18	2. 2	. 94
55	1.1	1 4	3.6	45	55	12	, 10	04	05	. 10	1.5	. 94
23	1 1	119	6.0	55	. 22	. 14	. 08	04	. 04	. 12	1.0	. 88
24	1.4	4. 1	1.5	. 45	. 20	. 14	. 08	. 04	03	. 14	1.0	. 82
25	1. 1	2.4	1.1	. 45	. 20	. 12	. 08	. 04	03	. 14	15	1.3
26	1.1	1.9	1.1	. 45	. 20	12	. 07	04	. 04	. 12	25	9. 2
27	. 94	1.7	1.0	. 40	. 20	. 12	. 06	. 04	. 04	. 10	6. 5	3.3
28	. 88	1 5	. 90	. 40	. 24	. 12	. 06	. 04	. 03	. 10	4.4	1.8
29	. 88	1.3	. 85	. 40		. 12	. 06	. 04	. 03	. 29	3. 2	1.5
30	. 88	1.2	. 85	. 35	-	. 11	. 06	. 04	03	14	2.7	1.2
31	1.5		. 90	. 35		. 11		. 04		23	2.2	224
TOTAL	86.88	159. 66	34.84	16. 90	7. 89	4. 74	2. 82	1. 93	1.00	41.55	264.00	51.82
MEAN	2 80	5. 32	1.12	. 55	. 28	. 15	. 094	. 062	. 033	1.34	8. 52	1.73
MAX	17	119	6.0	. 80	. 45	22	34	. 29	10	23	42	9.2
MIN	. 88	. 66	. 50	. 35	. 20	11	. 06	. 04	. 02	. 04	. 80	. 82
AC-FT	172	317	69	34	16	9. 4	5. 6	3.8	2.0	82	524	103

CAL YR 1980 TOTAL 565.65 MEAN 1.55 MAX 119 MIN .03 AC-FT 1120 WTR YR 1981 TOTAL 674.03 MEAN 1.85 MAX 119 MIN .02 AC-FT 1340

NOTE. -- No gage-height record Dec. 27 to Feb. 19.

MARIANA ISLANDS, ISLAND OF SAIPAN

16801500 MIDDLE FORK TALOFOFO STREAM

LOCATION.--Lat 15°13'05" N., long 145°46'36" E., Hydrologic Unit 20100006, on left bank 700 ft (213 m) upstream from confluence with South and North Forks, 2.2 mi (3.5 km) southeast of Tanapag, and 3.7 mi (6.0 km) east of Garapan.

DRAINAGE AREA. -- 0.35 mi2 (0.91 km2).

PERIOD OF RECORD. -- March 1968 to June 1980, February to September 1981.

REVISED RECORDS. -- WDR HI-76-1: 1968-69(P), 1970-71(M), 1972(P), 1973-75(M).

GAGE.--Water-stage recorder. Concrete control since Feb. 28, 1971. Altitude of gage is 25 ft (7.6 m), from topographic map.

REMARKS.--Records fair. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--11 years, $0.682 \text{ ft}^3/\text{s}$ (0.019 m³/s), 494 acre-ft/yr (609,000 m³/s).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 840 ft 3 /s (23.8 m 3 /s) Aug. 12, 1978, gage height, 6.58 ft (2.006 m), from rating curve extended above 5.3 ft 3 /s (0.150 m 3 /s) on basis of slope-area measurements at gage heights 5.38 ft (1.640 m) and 6.58 ft (2.006 m); minimum, 0.05 ft 3 /s (0.001 m 3 /s) July 5, 6, 1977.

EXTREMES FOR CURRENT YEAR.--Peak discharges during period February to September, above base of 100 ft 3 /s (2.83 m 3 /s) and maximum (*), from rating curve extended as explained above:

Date	Time	Discha (ft³/s)		Gage (ft)	height (m)
July 31	2030	141	3.99	3.87	1.180
Aug. 1	0730	*176	4.98	*4.10	1.250
Aug. 16	a1000	152	4.30	3.95	1.204

Minimum discharge, 0.09 ft3/s (0.003 m3/s) June 22-26.

a About.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1					. 41	. 21	. 21	. 18	. 14	. 18	14	1.1
2					. 45	. 24	. 21	. 18	. 16	. 33	4. 1	1.0
3					. 41	. 24	. 27	. 18	. 16	. 18	1.4	. 96
4					. 41	. 30	. 21	. 18	. 18	. 16	. 84	. 96
2 3 4 5					. 33	. 27	. 18	. 21	. 18	. 18	. 78	. 84
						/		. 21	. 10	. 10	. 70	. 04
5					. 33	. 24	. 18	. 21	. 18	. 18	. 55	. 78
7					. 33	. 24	. 21	. 21	. 18	. 16	. 45	. 72
8					. 50	. 21	. 24	. 21	. 21	. 21	. 45	. 72
9					. 50	. 21	. 21	. 24	. 21	. 24	2.5	. 66
10					. 41	. 21	. 33	. 68	. 18	. 24	1.5	. 60
					. 7.	- 21	. 33	. 00	. 10	. 4	1, 5	. 60
11					37	. 27	. 37	. 27	. 16	. 24	. 90	. 60
12					. 37	. 21	. 24	. 21	. 16	. 33	2.0	. 60
13					. 33	. 27	. 21	. 21	. 14	. 27	9. 0	. 66
14					. 33	. 24	. 27	. 21	. 14	. 33	12	. 84
15					. 30	. 24	. 24	. 18	. 30	. 18	9. 0	. 60
16					. 27	. 21	. 21	. 18	. 16	. 18	15	1.1
17					. 27	. 21	. 24	. 18	. 16	. 21	9. 0	
18					. 27	. 24						4.0
19					. 27		. 41	. 16	. 14	. 27	5. 0	1.5
					. 27	. 24	. 50	. 16	. 13	. 30	1.5	. 96
20					. 30	. 21	. 33	. 18	. 13	1.1	1.3	. 78
21					. 30	. 21	. 27	. 17	. 11	. 30	1.0	. 66
22					. 27	. 24	. 27	. 18	. 11	. 24	. 80	. 60
23					. 27	. 24	. 24	. 18	. 13	. 30	. 60	. 55
24					. 24	. 24	. 21	. 18	. 11	. 37	. 60	. 60
25					. 24	. 24	. 21	. 18	. 11	. 33	7. 5	. 84
						,				. 00	7. 5	. 0 ,
26					. 24	. 24	. 21	. 18	. 11	. 27	12	3.7
27					. 24	. 24	. 18	. 16	. 13	. 24	2.0	2.1
28					. 33	. 21	. 18	. 16	. 13	. 24	1.3	1.1
29						. 18	. 18	. 14	. 14	. 41	1. 1	. 90
30						. 21	. 21	. 14	. 14	3.3	1. 1	. 78
31						. 21	. 21	. 14	. 14	7. 4	1.1	. 78
											* * *	
TOTAL					9. 29	7.17	7. 43	6. 23	4.62	18.87	120.37	31.81
MEAN					. 33	. 23	. 25	. 20	. 15	. 61	3.88	1.06
MAX					. 50	. 30	. 50	. 68	. 30	7.4	15	4. 0
MIN					. 24	. 18	. 18	. 14	. 11	. 16	. 45	. 55
AC-FT					18	14	15	12	9. 2	37	239	63

MARIANA ISLANDS, ISLAND OF SAIPAN

16805200 LAKE SUSUPE

LOCATION.--Lat 15°09'15" N., long 145°42'42" E., Hydrologic Unit 20100006, on west shore, at the end of Sugar Mill Road, 0.5 mi (0.8 km) southeast from the Administration building, Northern Marianas Government.

PERIOD OF RECORD. -- February to September 1981.

GAGE.--Water-stage recorder. Datum of gage is 1.30 ft (0.396 m), above mean sea level.

REMARKS.--Gage-height records good. Periodic determinations of water temperature for the current year are published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 4.39 ft (1.338 m), Aug. 17; minimum, 1.18 ft (0.360 m), June 12, 13.

SAGE HEIGHT (FEET AROVE DATUM), FEBRUARY TO SEPTEMBER 1981 MEAN VALUES

						A TEOLS						
DAY	UC1	AUA	DEC	JAN	FFB	MAR	APR	MAY	JUG	JJI	AUG	SEP
1					2.18	1.68	1.54	1.47	1.21	1.26	3.36	3.55
2					2.18	1.88	1.53	1.46	1.21	1.26	3.51	3.45
3					2.16	1.68	1.52	1.45	1.20	1.26	3.50	3.38
4					2.14	1.89	1.52	1.44	1.22	1.26	3.46	3.28
5					2.13	1.89	1.50	1.43	1.21	1.25	3.44	3.17
6					2.10	1.87	1.49	1.43	1.21	1.25	3.38	3.09
7					2.09	1.86	1.48	1.42	1.21	1.25	3.30	3.01
R					2.10	1.84	1.47	1.41	1.21	1.29	3.22	2.93
9					2.15	1.82	1.47	1.41	1.21	1.29	3.16	2.87
10					2.17	1.81	1.47	1.42	1.21	1.20	3.13	2.81
11					2.16	1.83	1.48	1.43	1.21	1.30	3.06	2.75
12					2.14	1.83	1.48	1.43	1.20	1.34	3.02	2.71
13					2.12	1.81	1.48	1.43	1.20	1.41	3.16	2.67
14					2.10	1.80	1.47	1.42	1.20	1.47	3.77	2.67
15					5.03	1.77	1.47	1.41	1.22	1.52	3.94	2.67
16					2.07	1.76	1.46	1.40	1.25	1.54	4.15	2.66
17					2.05	1.75	1.45	1.39	1.27	1.55	4.37	5.10
18					2.03	1.74	1.46	1.37	1.28	1.59	4.36	2.76
19					5.05	1.72	1.54	1.36	1.28	1.64	4.26	2.72
50					1.99	1.69	1.57	1.35	1.28	1.69	4.16	8.68
21					1.97	1.67	1.58	1.33	1.28	1.72	4.05	2.66
5.5					1.95	1.65	1.60	1.30	1.28	1.74	3.94	2.64
53					1.93	1.65	1.59	1.28	1.27	1.75	3. R 3	5.65
24					1.91	1.65	1.58	1.28	1.27	1.77	3.72	5.65
25					1.89	1.63	1.56	1.27	1.26	1.81	3.70	5.66
56					1.87	1.61	1.55	1.26	1.25	1.85	4.02	2.70
27					1.85	1.60	1.52	1.24	1.24	1.89	4.05	2.77
8.5					1.84	1.60	1.50	1.24	1.23	1.91	4.02	2.74
5.0						1.58	1.49	1.23	1.25	1.99	3.93	2.72
30						1.57	1.48	1.22	1.26	2.30	3.80	2.71
31						1.55		1.55	777	2.73	3.66	
MEAN					2.05	1.74	1.51	1.36	1.24	1.59	3.69	2.85
MAX					2.18	1.89	1.60	1.47	1.28	2.73	4.37	3.55
MIN					1.84	1.55	1.45	1.22	1.20	1.25	3.02	2.62

16808300 FINILE CREEK AT AGAT

LOCATION.--Lat $13^{\circ}22'39"$ N., long $144^{\circ}39'26"$ E., Hydrologic Unit 20100003, on right bank 0.4 mi (0.6 km) upstream from estuary and 0.4 mi (0.6 km) south of Agat School.

DRAINAGE AREA. -- 0.28 mi² (0.73 km²).

PERIOD OF RECORD. -- April 1960 to current year. Prior to October 1969, published as Finile River at Agat.

REVISED RECORDS. -- WSP 2137: Drainage area.

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 20 ft (6.1 m), from topographic map.

REMARKS.--Records fair except those for period of no gage-height record, which are poor. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 21 years, 1.42 ft3/s (0.040 m3/s), 1,030 acre-ft/yr (1.27 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 326 ft 3 /s (9.23 m 3 /s) May 21, 1976, gage height, 3.88 ft (1.183 m), from rating curve extended above 68 ft 3 /s (1.93 m 3 /s) on basis of slope-area measurement at gage height 3.66 ft (1.116 m); minimum, 0.04 ft 3 /s (0.001 m 3 /s) July 2-4, 6, 8, 9, 1973.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $169 \text{ ft}^3/\text{s}$ (4.79 m³/s) Aug. 9, gage height, 2.42 ft (0.738 m), no peak above base of 170 ft³/s (4.81 m³/s); minimum, 0.12 ft³/s (0.003 m³/s) Apr. 14-17, June 8, 24, 25.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

MEAN VALUES DAY DCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 32 4.3 2.0 11 2 2 1 3 92 81 32 32 22 22 7.9 1.9 32 27 22 18 2.0 2.0 2 1.1 81 70 51 4. 2 37 1.5 1.7 3 1.8 1.1 81 70 35 22 22 18 4 3. 6 1.8 81 70 32 22 22 18 32 2 5 3.0 1.0 81 70 32 22 22 18 32 1.0 1.7 1.7 81 27 18 18 32 90 3.4 1 0 70 18 1.5 6 1.6 4.7 1.0 60 27 . 18 18 18 27 85 1.5 1.7 81 1.0 8 4. 5 1.6 70 60 32 . 18 37 15 27 1.3 1.3 18 9 2.8 1.5 92 70 60 32 3.0 18 21 10 1.5 4. 5 10 2. 5 1.7 1.0 60 60 32 18 43 18 1.0 1.3 1, 2 2.3 92 81 60 32 15 60 27 70 2.0 11 1. 5 1.5 4. 1 70 60 37 15 27 1.8 6.0 1.2 12 81 13 2. 1 1.3 81 70 60 32 15 18 70 3 0 1. 1 70 14 2.1 1 3 81 60 60 32 15 18 1.3 6.0 1.5 27 12 43 43 60 10 1.4 15 2.0 2.0 81 60 51 1.9 1.9 81 51 51 27 12 37 27 43 15 1.3 16 5.0 32 27 17 1.8 1.3 2.4 51 51 27 18 18 37 1.3 37 2.1 27 27 1.4 18 1 4 1.3 51 60 1.6 43 22 1. 5 1.8 1. 9 51 1.2 19 1.3 1.0 51 27 27 2.2 60 51 27 37 27 . 18 60 . 98 20 1.3 1.1 1.0 21 1.7 1.3 51 43 27 32 27 18 43 1 8 94 27 22 . 18 37 2.0 93 22 1.6 1 5 1.0 51 43 32 1.9 27 92 32 99 2 2 37 22 32 1. 5 43 . 15 23 . 15 81 43 37 22 27 22 70 99 1.5 24 1.6 3. 1 1.3 37 27 22 3.3 1.5 2.0 25 81 43 22 . 15 27 2.0 37 22 5 0 26 1. 1 81 51 18 32 57 3 4 4.9 2. 2 4.0 22 45 5.6 27 1.8 1. 1 43 37 43 18 2. 1 70 37 32 22 . 37 43 3. 0 1.5 18 28 1.6 1. 1 1.5 1.0 77 2.5 4 27 27 18 43 1.3 1.6 1.2 30 0 2.0 ---22 22 18 32 9.3 2.5 1.6 31 9.3 92 92 ---27 18 ---3.1 2.0 ---107.35 TOTAL 97.8 22.10 15.34 9.03 8. 27 14.62 8.71 32.02 47.63 46. 5 36.56 1.59 MEAN 3.15 1.55 1.18 71 55 29 28 47 . 29 1.03 3.46 2. 2 4. 9 2. 0 81 43 3. 0 2. 2 9.3 15 5. 6 11 1.6 1. 1 MIN 1.5 81 43 37 22 12 18 . 15 21 85 93 213 94 AC-FT 194 92 73 44 30 18 16 29 17 64

CAL YR 1980 TOTAL 538.15 MEAN 1.47 MAX 35 MIN .37 AC-FT 1070 WTR YR 1981 TOTAL 445.93 MEAN 1.22 MAX 15 MIN .12 AC-FT 885

NOTE. -- No gage-height record Aug. 10 to Sept. 12.

16809600 LA SA FUA RIVER NEAR UMATAC

LOCATION.--Lat 13°18'23" N., long 144°39'45" E., Hydrologic Unit 20100003, on left bank 0.6 mi (1.0 km) north of Sanchez School in Umatac and 0.8 mi (1.3 km) upstream from mouth.

DRAINAGE AREA. -- 1.06 mi² (2.75 km²).

PERIOD OF RECORD .-- April 1953 to July 1960, October 1976 to current year.

GAGE.--Water-stage recorder. Altitude of gage is 120 ft (36.6 m), from topographic map.

REMARKS.--Records good. Water is diverted through 2-in (5.1-cm) pipe at coast highway above station for consumption in nearby homes.

AVERAGE DISCHARGE.--11 years (water years 1954-59, 1977-81), 4.45 ft 3 /s (0.126 m 3 /s), 3,220 acre-ft/yr (3.97 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,440 ft³/s (40.8 m³/s) Sept. 27, 1978, gage height, 6.05 ft (1.844 m), from rating curve extended above 109 ft³/s (3.09 m³/s) by test on model of station site; minimum, 0.12 ft³/s (0.003 m³/s) June 13, 1979, during short regulation of flow at diversion upstream.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 500 ft³/s (14.2 m³/s) and maximum (*), from rating curve extended as explained above:

Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)	Date		Time	Disch (ft ³ /s)	arge (m³/s)	Gage (ft)	height (m)
Oct. 1 Oct. 31 Aug. 9 Aug. 12	0200 0645 1215 2230	646 558 *820 522	18.3 15.8 23.2 14.8	4.69 4.45 *5.08 4.35	1.430 1.356 1.548 1.326	Aug. Aug. Sept.	15 19 18	2045 2345 1630	600 575 726	17.0 16.3 20.6	4.57 4.50 4.89	1.393 1.372 1.490

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

Minimum discharge, $0.42 \text{ ft}^3/\text{s} (0.012 \text{ m}^3/\text{s})$ June 10.

		DISC	HANGE, I	N COBIC FE		EAN VALUES		JC TUBER I	780 TU SE	PIEMBER IS	781	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP
1	56	3. 9	3. 1	1.4	2.6	. 90	. 93	. 60	. 55	1.4	15	2.1
2	20	2.8	2.6	1.3	1.9	. 91	. 70	. 61	. 55	1.0	14	1.8
3	19	2.3	2.2	1.2	2.1	. 79	. 61	. 56	. 45	1.1	26	1.7
4	21	2.2	2.0	1. 1	1.6	. 74	. 58	. 65	. 51	4. 1	6.0	2.4
5	7. 0	2. 1	2. 2	1. 1	1.4	. 77	. 55	62	. 43	1.8	3. 9	1.7
6	6. 8	1. 9	1.8	1.1	1.3	. 74	55	. 54	51	1.2	2. 9	1.6
7	21	4. 9	1.8	1. 1	1.2	. 75	. 52	. 61	47	. 99	2.4	1.5
8	27	2.1	1.6	1.1	1.2	. 81	. 52	. 89	. 45	3.8	2. 2	1.5
9	6. 5	1.9	1.5	1.0	1.2	1.2	. 52	1.3	. 64	1.9	77	1.5
10	5. 0	1.8	1.5	1.0	1, 1	. 86	. 55	. 65	. 53	16	23	1.4
11	3.7	2.8	1.4	. 97	1.0	. 73	. 48	. 97	. 56	12	6. 5	1.4
12	4.3	2.6	1.4	1.0	1.0	. 82	. 48	. 96	. 77	18	51	1.3
13	3. 0	2.5	1.4	1.1	1.0	. 97	47	8. 1	. 55	7.3	23	1.7
14	3.0	2. 3	1.3	. 98	95	. 75	. 47	2. 5	. 55	14	17	3. 9
15	2. 7	3. 5	1.3	. 94	. 91	. 66	. 47	1.4	1.5	5. 0	86	1.4
16	3. 0	7.6	1.4	. 88	92	. 65	. 47	1.1	1.4	2. 9	55	1.3
17	3.8	2.5	3.6	1.0	. 91	. 64	. 58	. 91	. 78	2.8	22	5. 0
18	2.6	2.6	3.3	. 91	3. 4	. 63	18	. 78	. 77	2.4	9.3	39
19	6. 3	2.4	1.6	. 87	1.1	. 59	4.0	. 72	. 64	11	19	3.8
20	3. 6	2. 2	1. 9	. 93	. 94	. 57	1. 9	. 69	. 66	4. 5	18	2. 0
21	2.6	2.0	3. 2	. 96	. 89	. 57	1.1	. 69	. 80	3. 0	6.8	4. 7
22	2. 2	2.5	1.7	. 97	. 88	. 57	. 79	. 66	. 49	2. 2	4.4	1.7
23	2.0	11	1.4	1.8	. 88	. 58	. 70	. 64	- 52	1.9	3.4	2. 2
24	1.9	2. 2	1.2	. 92	1.0	, 60	. 61	. 63	. 46	2.8	2.8	3.6
25	1. 9	2. 1	1. 1	1.1	. 81	. 68	. 64	. 58	. 47	12	2. 5	13
26	3. 4	1. 9	1.1	1.3	. 78	. 62	. 58	. 56	. 78	2.6	12	21
27	5. 2	2. 2	12	. 90	. 85	2.1	. 64	, 56	9.2	2.0	7.7	42
28	2.6	2.4	7.3	1.6	. 85	. 61	. 61	. 56	2.6	2.0	8. 1	10
29	1.9	21	1.8	7.8		. 64	1.3	. 53	2. 2	8.8	3. 2	3.7
30	1.9	7.0	1.5	55		. 58	. 61	. 53	1.3	41	2.4	2.8
31	76		1.4	9. 3		. 58		. 51		12	2.1	
TOTAL	326. 9	111.2	72.6	69. 63	34. 67	23. 61	40. 93	31.61	32. 09	203. 49	534. 6	182.7
MEAN	10.5	3.71	2.34	2. 25	1.24	. 76	1.36	1.02	1.07	6. 56	17, 2	6.09
MAX	76	21	12	22	3. 4	2.1	18	8. 1	9.2	41	86	42
MIN	1.9	1.8	1.1	. 87	. 78	. 57	. 47	. 51	. 43	. 99	2.1	1.3
AC-FT	648	221	144	138	69	47	81	63	64	404	1060	362

CAL YR 1980 TOTAL 2737.47 MEAN 7.48 MAX 217 MIN .44 AC-FT 5430 WTR YR 1981 TOTAL 1664.03 MEAN 4.56 MAX 86 MIN .43 AC-FT 3300

16835000 INARAJAN RIVER NEAR INARAJAN

LOCATION.--Lat $13^{\circ}16^{\circ}41^{\circ}$ N., long $144^{\circ}44^{\circ}15^{\circ}$ E., Hydrologic Unit 20100003, on right bank 0.6 mi (1.0 km) northwest of Inarajan and 4.9 mi (7.9 km) east of Merizo.

DRAINAGE AREA, --4.42 mi² (11.45 km²).

PERIOD OF RECORD .-- September 1952 to current year.

REVISED RECORDS. -- WSP 2137: Drainage area.

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 15 ft (4.6 m), from topographic map.

REMARKS.--Records good except those for periods of no gage-height record, which are poor. Stage-discharge relation not determined above gage height 11.0 ft (3.35 m) owing to ungaged overbank flow. During dry periods water is diverted upstream for irrigation.

AVERAGE DISCHARGE. -- 29 years, 17.4 ft³/s (0.492 m³/s), 12,610 acre-ft/yr (15.5 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 12.90 ft (3.932 m) Oct. 11, 1963 (discharge not determined); minimum discharge, 0.42 ft³/s (0.012 m³/s) June 21, 22, 1975.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,730 ft 3 /s (49.0 m 3 /s) Aug. 12, gage height, 10.60 ft (3.231 m), no other peak above base of 1,700 ft 3 /s (48.1 m 3 /s); minimum, 1.4 ft 3 /s (0.040 m 3 /s), Apr. 15, 16.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

MEAN VALUES DAY OCT NOV DEC JAN FER MAR APR JUN JUL AUG SEP 1 175 22 8.3 3.1 5 3.0 2.8 2 2 3.4 38 17 2 80 18 9 7 2 5. 9 2.8 3.0 2 6 2 2 3 1 83 15 3 70 16 9.5 5. 9 5. 9 3. 1 2.6 2.5 2.3 2.9 37 13 35 18 8 8 5. 6 5. 2 2.9 2 5 2. 5 3.0 16 15 5 30 9.4 2.6 18 5. 4 4.6 3. 4 2.4 2.1 2.7 12 14 6 67 13 8.3 5. 4 3.1 2.3 2.6 2.0 2 5 10 13 7. 8 7. 5 7. 4 65 19 5. 6 4.2 2. 2 2.5 2. 1 2.3 8. 9 12 8 100 14 6.2 5. 2 3. 0 2. 1 3. 0 1. 9 2.7 8.6 12 28 19 4 8 4 2 4 4 2. 5 3. 5 5 50 11 10 31 14 7.2 4.8 4. 0 1.9 3.3 2.3 3. 2 3. 2 80 11 25 11 12 7 0 7.0 3. 9 3. 3 2. 1 6.0 2.5 8 4 22 11 12 28 12 6.7 5. 1 3.9 3.3 2.0 11 4.0 35 190 10 13 23 12 4.8 5. 6 3 1 1.9 3.0 10 50 11 23 14 11 6. 5 4.8 3 7 3 0 1 8 6.7 2 7 15 16 15 21 6.3 4.3 3. 7 2.9 5. 0 1.8 6. 5 10 320 11 20 16 28 6.5 4.3 3. 6 2.8 1.8 4. 0 5. 5 7.0 120 10 17 18 12 11 4 1 3 5 2 7 2. 7 3. 5 3.7 4 50 9.9 18 19 18 14 4. 1 5. 8 2.7 9. 1 40 3.0 3.3 35 21 19 21 13 7.8 4 5. 1 2.6 25 2 8 3 3 14 30 20 19 12 9.1 5. 1 4. 2 2. 5 10 2.7 3.0 10 48 14 21 18 12 11 4.3 3 7 2.5 6.0 2.6 2.8 0 34 14 22 23 8.1 4. 1 3.5 11 5. 0 2 6 2. 5 5. 4 28 11 23 27 7. 1 7.6 16 3. 3 2.5 4.0 2. 3 2 5 4.8 25 9. 9 24 15 11 4. 2.8 6.6 6 3. 2 3, 5 2.1 2.5 4. 1 22 9 6 25 18 10 6.3 4 3 3. 1 2.8 2.3 4.8 20 18 27 26 9.6 7.2 2.9 5. 1 3 2 2.8 2.4 5.2 3. 9 45 35 9. 2 27 20 34 4. 1 4.8 5. 0 2.7 2.4 12 3.7 28 28 18 9. 1 15 5. 4 3.3 3. 0 2.3 8.0 24 32 8.3 29 14 23 15 2.8 3. 3 2.3 6.0 6. 1 20 16 30 13 14 21 2.6 3. 1 2.2 4.0 33 24 12 31 278 6 5 13 2.5 TOTAL 1357 448. 9 286.3 194.4 120.0 93.3 150.1 104.5 102 4 254 7 1562.5 487. 4 6. 27 MEAN 43.8 15.0 9.24 4. 29 3. 01 5.00 3.37 3.41 8, 22 50. 4 16.2 MAX 278 28 34 21 7.5 5. 0 40 11 12 35 320 67 9. 1 MIN 13 2 9 2.2 2. 3 6.3 4. 1 2.5 1.8 9.6 8. 6 AC-FT 2690 890 238 568 386 185 298 207 203 505 3100 967

CAL YR 1980 TOTAL 9955.7 MEAN 27.2 MAX 1190 MIN 3.0 AC-FT 19750 WTR YR 1981 TOTAL 5161.5 MEAN 14.1 MAX 320 MIN 1.8 AC-FT 10240

NOTE, -- No gage-height record Mar. 26 to June 3, June 9 to July 15.

16840000 TINAGA RIVER NEAR INARAJAN

LOCATION.--Lat 13°17'10" N., long 144°45'04" E., Hydrologic Unit 20100003, on right bank 0.3 mi (0.5 km) upstream from mouth, 0.9 mi (1.4 km) northeast of Inarajan, and 4.5 mi (7.2 km) south of Talofofo.

DRAINAGE AREA. -- 1.89 mi² (4.90 km²).

CAL YR 1980 TOTAL 3293.01 WTR YR 1981 TOTAL 2057.31 MEAN 9.00

MEAN 5. 64

MAX 400

MAX 110

PERIOD OF RECORD.--October 1952 to current year. Prior to October 1969, published as Pauliluc River near Inarajan.

REVISED RECORDS. -- WSP 2137: Drainage area.

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 15 ft (4.6 m), from topographic map.

REMARKS.--Records fair. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 29 years, 5.64 ft³/s (0.160 m³/s), 4,150 acre-ft/yr (5.12 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,980 ft 3 /s (84.4 m 3 /s) Oct. 15, 1953, gage height, 13.11 ft (3.996 m), from rating curve extended above 210 ft 3 /s (5.95 m 3 /s); minimum, 0.15 ft 3 /s (0.004 m 3 /s) May 16, 21-23, 29, 1966, June 13, 29, 30, 1973.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 521 ft 3 /s (14.8 m 3 /s) Aug. 9, gage height, 4.86 ft (1.481 m), no other peak above base of 400 ft 3 /s (11.3 m 3 /s); minimum, 0.50 ft 3 /s (0.014 m 3 /s) Apr. 16, 17.

		DISC	HARGE, IN	CUBIC FEE		COND, WAT		CTOBER 19	80 TO SEP	TEMBER 19	81	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
21/4											1.2	2 4
1	79	8. 3	4.8	2. 9	3. 2	1.5	1. 1	. 76	. 66	1.0	14	5. 9
2	39	6.0	4. 0	2.6	2.6	1.5	1.1	. 76	. 66	. 93	32	5.0
3	26	5. 5	3.7	2. 5	2.4	1.4	1.0	. 71	. 71	. 93	14	4.7
4	24	5. 7	3.6	2.3	2. 3	1,4	. 93	. 66	. 71	. 93	5. 5	6. 3
5	20	6. 2	3. 5	2. 2	2. 1	1.3	. 87	. 66	. 66	. 93	3. 9	5. 0
6	19	5. 4	3. 3	2. 1	1.9	1.2	. 81	. 66	. 66	. 81	3. 3	4. 3
7	26	5. 4	3. 2	2. 1	1.8	1.1	. 76	. 66	. 62	. 76	2. 9	4. 0
8	36	5.3	3. 1	2.1	1. 9	1.1	. 71	. 81	. 62	. 81	2.8	4. 0
9	12	5. 4	3. 0	2.0	1.8	1.3	. 76	. 81	. 62	. 76	26	3. 6
10	13	4. 9	2.8	2.0	1.7	1.1	. 71	. 81	. 62	1.1	63	3. 4
11	8. 6	4.6	2.8	2. 1	1.6	1.1	. 66	1.4	. 76	2. 5	8. 1	3. 2
12	11	4.5	2.7	2.0	1.6	1.1	. 62	1.6	1.0	12	52	3. 1
13	9. 1	4. 3	2.6	2.0	1.6	1.1	. 62	1.8	. 87	4. 5	60	3. 2
14	8. 2	4. 3	2. 5	1.8	1.5	1. 1	. 58	2.0	. 87	5. 6	51	4.0
15	7. 2	4. 1	2. 4	1.8	1.4	1.0	. 54	1.6	1.6	4. 0	110	3. 7
16	6. 9	4. 9	2.3	1.8	1. 4	1.0	. 54	1.4	1.8	2. 3	78	3. 3
17	6.6	4. 3	3.8	1.6	1.4	1.0	. 71	1. 1	1.6	2.2	54	3. 1
18	6.2	5. 0	4.6	1.6	1. B	1.0	12	1.1	1.3	2. 9	14	2.8
19	6.2	4. 2	3. 4	1.6	1.6	. 98	5. 4	1.0	1.1	2. 3	11	3.0
20	6. 2	4. 4	3. 1	2. 2	1.6	. 98	2.7	. 93	1.1	2. 5	9.7	4. 5
21	6.2	4. 1	5. 2	2. 0	1.6	. 98	2. 0	. 93	1.1	2. 2	8.0	4.6
22	6.2	3. 9	7. 3	1.8	1.5	. 96	1.6	. 87	. 87	1.8	12	3. 6
23	5. 3	5. 7	3. 7	2.3	1.6	. 95	1.4	. 87	. 71	1.6	13	3. 1
24	5. 0	4.3	3. 4	2.0	1.5	1.0	1.2	. 81	. 62	1.3	7. 2	3. 0
25	4.6	4. 0	3. 2	1.8	1. 5	1.0	1.1	. 81	71	3.8	6. 2	4. 1
26	7. 4	3. 7	3. 0	1.8	1. 4	. 98	1.0	. 81	. 62	1.6	25	24
27	6.5	3. 5	18	1.8	2.0	1. 2	. 87	. 76	2.8	1.4	27	24
28	6. 1	3. 3	8. 6	2.0	1.6	1.1	. 81	. 71	3. B	1.3	24	14
29	5. 0	7. 4	4. 0	4.0		1. 1	. 93	. 71	1.8	1.4	9. 1	5. 6
			3. 3	4. 7		1.0	. 81	. 71	1.2	5. 3	11	4.7
30	4. 7 74	7. 1	2. 9	4. 7		. 93		. 66		9. 4	7. 2	
TOTAL	501.2	149. 7	127. 8	70. 2	49. 9	34. 46	44. 84	29. 88	32. 77	80. 86	764. 9	170. B
	16.2	4. 99	4. 12	2. 26	1.78	1. 11	1. 49	. 96	1. 09	2. 61	24.7	5. 69
MEAN					3. 2	1. 11	1. 47	2.0	3. 8	12	110	24
MAX	79	8.3	18	4.7	1. 4	. 93	. 54	. 66	. 62	. 76	2.8	2.8
MIN	4.6	3. 3	2. 3	1.6		. 43	89	59	65	160	1520	339
AC-FT	994	297	253	139	99	68	67	34	63	100	IJEU	337

MIN . 62

MIN . 54

AC-FT 6530

AC-FT 4080

16847000 IMONG RIVER NEAR AGAT

LOCATION.--Lat 13°20'17" N., long 144°41'55" E., Hydrologic Unit 20100003, on left bank 500 ft (152 m) upstream from Fena Valley Reservoir, 1.4 mi (2.3 km) south of Fena Dam spillway, and 4.1 mi (6.6 km) southeast of Agat School.

DRAINAGE AREA. -- 1.95 mi² (5.05 km²).

CAL YR 1980 TOTAL 4843.0 WTR YR 1981 TOTAL 3158.3 MEAN 13.2

MEAN 8. 65

PERIOD OF RECORD. -- March 1960 to March 1971. October 1971 to current year.

REVISED RECORDS. -- WSP 2137: Drainage area.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 120 ft (37 m), from topographic map.

REMARKS.--Records fair. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--20 years (water years, 1961-70, 1972-81), 10.2 ft³/s (0.289 m³/s), 7,390 acre-ft/yr (9.11 hm³/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 6,100 ft 3 /s (173 m 3 /s) Sept. 27, 1978, gage height, 11.3 ft (3.444 m), from outside floodmarks, and from rating curve extended above 58 ft 3 /s (1.64 m 3 /s) on basis of slope-area measurement of peak flow; minimum, 0.37 ft 3 /s (0.010 m 3 /s) May 21, 22, 26, 1966.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,270 ft 3 /s (36.0 m 3 /s) Oct. 1, gage height, 5.14 ft (1.567 m), no peak above base of 1,400 ft 3 /s (39.6 m 3 /s); minimum, 1.4 ft 3 /s (0.040 m 3 /s) June 7, 8, 10, 11.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

		DIG	ZIINIOL) III	COBIC PE		AN VALUES	IN TERM O	CTOBER 176	30 10 OE1	TETIDEN 17		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP
1	99	27	8.8	4.8	4. 9	2.7	3.4	1.8	1.8	3.2	25	9.8
2	33	12	7.2	4.6	4. 1	2.9	2.5	2.0	1.7	3.6	21	8.2
3	29	10	6.3	4.2	4. 1	2.6	2.4	1.7	1.7	3.8	37	8.0
4	15	9.8	6.0	4.0	3.6	2.6	2.3	1.8	1.7	9.8	12	8. 2
5	13	10	5. 9	3.8	3.3	2.7	2. 2	1.9	1.7	5. 1	8.0	7. 3
6	15	9. 0	5. 6	3. 6	3. 3	2.6	2. 2	1.9	1.7	3. 5	6. 4	7.1
7	30	11	5. 4	3.4	3. 3	2.5	2.2	2.0	1.5	3.0	5. 7	7.2
8	34	9.0	5.2	3. 4	3.4	2.7	2.2	2.8	1.4	3.0	6.0	6.7
9	13	9. 5	5.0	3.3	3. 2	3. 1	2.5	6. 7	1.9	2.8	80	6.8
10	13	9. 0	4. 7	3. 2	3. 0	2.6	2. 2	2. 3	1.5	15	30	6.4
11	10	8.0	4.6	3. 5	3.0	2.6	2, 2	10	1.8	12	12	6.1
12	15	7.3	4.4	3. 2	3.0	2.9	2.2	5. 6	2.1	21	60	5. 9
13	12	6.8	4.3	3. 2	3, 1	3.0	2.3	4.3	2.0	9.7	36	5.7
14	12	6. 5	4.2	3.0	3.0	2. 5	2.2	4.3	1.7	11	25	7.4
15	11	6. 4	4.0	3.0	2.8	2.4	2. 2	3. 4	3. 3	6.8	100	6. 0
16	12	11	4. 0	2.9	3.0	2.4	2. 1	2.8	2. 6	4. 7	101	5.7
17	15	7.4	9.3	2. 9	2.8	2.4	2.5	2.4	2.0	3. 9	45	26
18	11	6.3	6. 9	2.8	4. 9	2.3	15	2. 2	2.6	3. 6	22	42
19	14	6.3	6.2	2.8	3.1	2.2	5, 2	2. 1	2.0	5. 1	21	10
50	10	7. 2	8. 6	4. 5	2.8	2. 2	5. 1	2.0	2.2	11	24	7.3
21	9. 7	6.2	5. 2	3.8	2.8	2.2	3. 2	1.9	2.0	5.4	21	8.3
55	9. 5	6.8	4.4	3.2	2.9	2, 2	2.4	1.8	1.7	4.0	15	6.6
23	8.6	16	4. 2	3.6	3.0	2.3	2. 3	1.8	1.6	3. 3	12	6.6
24	8.0	7.8	4.0	3.0	3.0	2.3	2.1	1.8	1.6	12	11	7.8
25	8. 4	6. 6	3.8	3. 5	2.7	2.4	2.0	1.8	1.7	7. 3	12	14
26	12	6.0	3. 9	3. 5	2.6	2.4	2.0	1.7	1.8	4.6	29	26
27	24	5.8	39	3.0	2. 9	3.5	2. 0	1.6	11	3.8	55	53
28	11	5. 6	17	3. 9	2.8	2.3	2.0	1.6	4.3	3. 9	22	19
29	8.3	28	9.8	7.5		2.4	2.5	1.6	4. 9	12	12	10
30	7.3	11	6.0	19		2.5	1.9	1.6	3. 2	61	10	8.5
31	93		5. 0	8. 1		2. 5		1.6		21	9. 2	
TOTAL	615. B	289. 3	218.9	132.2	90.4	78. 9	87. 5	82.8	72.7	279.9	852.3	357. 6
MEAN	19.9	9.64	7.06	4. 26	3. 23	2. 55	2. 92	2.67	2. 42	9. 03	27.5	11.9
MAX	99	28	39	19	4.9	3. 5	15	10	11	61	101	53
MIN	7.3	5. 6	3.8	2.8	2.6	2.2	1.9	1.6	1.4	2.8	5. 7	5. 7
AC-FT	1220	574	434	262	179	156	174	164	144	555	1690	709

MIN 2.1

MIN 1 4

AC-FT 9610

AC-FT 6260

MAX 300

MAX 101

16848100 ALMAGOSA RIVER NEAR AGAT

LOCATION.--Lat 13°20'43" N., long 144°41'36" E., Hydrologic Unit 20100003, on right bank 400 ft (122 m) upstream from Fena Valley Reservoir and 3.5 mi (5.6 km) southeast of Agat.

DRAINAGE AREA. -- 1.32 mi² (3.42 km²).

PERIOD OF RECORD. -- April 1972 to current year.

REVISED RECORD. -- WDR HI-75-1: Drainage area. WDR HI-76-1: 1972(P), 1973(M), 1974-75(P).

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 155 ft (47 m), from topographic map.

REMARKS.--Records fair. Up to 3.9 ft 3 /s (0.11 m 3 /s) diverted upstream for domestic use. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 9 years, 6.40 ft³/s (0.181 m³/s), 4,640 acre-ft/yr (5.72 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,650 ft 3 /s (75.0 m 3 /s) Sept. 27, 1978, gage height, 7.78 ft (2.371 m), from rating curve extended above 46 ft 3 /s (1.30 m 3 /s) on basis of slope-area measurement at gage height 7.32 ft (2.231 m); minimum, 0.13 ft 3 /s (0.004 m 3 /s) June 27, July 11, 12, 14, 16, 17, 1979.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $604 \text{ ft}^3/\text{s}$ (17.1 m³/s) Aug. 9, gage height, 4.81 ft (1.466 m), from rating curve extended as explained above, no peak above base of 700 ft $^3/\text{s}$ (19.8 m³/s); minimum, 0.27 ft $^3/\text{s}$ (0.0076 m³/s) Aug. 14-17.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

		7030		3 25 7 2 2 2 2	ME	EAN VALUES	3	37 3 40 50 10				
DAY	DCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	70	15	4. 8	1. 9	1.9	. 58	. 58	. 39	. 39	1.3	31	5. 5
2	25	9.6	4. 1	1.6	1.2	. 68	. 43	. 35	. 39	1.6	24	4. 5
3	25	7.3	3.7	1.4	1.0	. 58	. 39	. 35	. 43	2.5	37	4.0
4	8.0	6.2	3. 4	1.2	. 89	. 52	. 39	. 35	. 43	4. 5	16	4.3
5	7. 5	5. 5	3. 0	1.1	. 84	. 58	. 35	. 35	. 39	2. 5	10	3. 6
6	10	4. 7	2. 7	. 95	. 95	. 52	. 35	. 31	. 47	2. 2	6.7	3. 3
7	22	5. 2	2.5	. 89	. 89	. 52	. 35	. 39	. 39	2.0	4. 9	3. 1
8	29	4.5	2. 2	. 89	. 95	. 47	. 35	1.0	. 39	2.5	4. 0	3.1
9	15	4.2	2. 1	. 84	. 95	. 63	. 39	6.0	. 47	1.8	69	3.7
10	13	3. 7	1. 9	. 89	. 89	. 58	. 31	. 89	. 35	7. 5	62	2. 9
11	10	3. 6	1.7	1.0	. 84	. 52	. 31	4. 2	. 58	7. 0	22	2.7
12	20	3. 4	1.6	1.1	. 84	. 58	. 31	4.4	. 79	15	36	2.4
13	9.0	3. 2	1.6	1.0	. 79	. 68	. 31	4. 2	. 43	5. 5	44	2.2
14	8.0	3.0	1.4	. 95	. 74	. 52	. 31	3. 1	. 35	10	26	3.3
15	7. 9	3. 1	1.4	. 95	. 68	. 47	. 27	2. 1	1.2	5. 0	69	2, 3
16	7.3	8. 2	1.3	. 95	. 74	. 47	. 27	1.2	. 89	3. 0	97	2.0
17	8. 3	3. 4	3. 3	. 95	. 68	. 43	. 39	. 74	. 52	2. 5	64	4. 9
18	6.4	3.8	2.7	. 95	1.2	. 43	3. 3	. 79	1.4	2.3	29	11
19	8. 5	3. 9	1.8	. 89	. 79	. 39	1.2	. 84	. 68	3.0	20	4.5
20	6. 9	3. 9	1. 9	1.6	. 68	. 39	1.1	. 74	. 58	7. 0	17	3.2
21	6.6	3. 6	1.8	1.4	. 63	. 39	. 74	. 58	. 52	3. 0	14	3. 1
22	6.2	4.4	1.7	1.0	. 63	. 39	. 47	. 52	. 43	2. 5	10	3. 1
23	5. 5	13	1.4	. 89	. 58	. 43	. 43	. 52	. 43	2.0	8. 1	3. 2
24	5. Q	4. B	1.2	. 84	. 68	. 43	. 43	. 47	. 43	6.0	6.6	4.4
25	6. 5	4. 2	1, 1	. 84	. 58	. 43	. 39	. 43	. 35	3. 5	6. 5	8.0
26	9.3	3. 8	1.0	. 89	. 52	. 39	. 35	. 43	. 47	2.5	17	20
27	16	4. 1	10	. 79	. 58	. 68	. 35	. 43	5. 3	2.0	13	50
28	7.3	3. 4	12	. 89	. 58	. 43	. 35	. 39	1.9	2. 2	17	19
29	6.0	16	3.6	2.8		. 43	. 58	. 39	2.7	9. 4	9.6	11
30	5. 6	6.2	2.7	7.0		. 43	. 39	. 39	. 95	59	7.1	8 0
31	63		2.1	3. 3		. 39		. 39	444	33	5.8	
TOTAL	453.8	168. 9	87.7	42.64	23. 22	15.36	16.14	37. 63	25. 00	213.8	803.3	206. 3
MEAN	14.6	5. 63	2.83	1.38	. 83	. 50	. 54	1.21	. 83	6. 90	25. 9	6.88
MAX	70	16	12	7.0	1.9	. 68	3.3	6.0	5. 3	59	97	50
MIN	5.0	3. 0	1.0	. 79	. 52	. 39	. 27	. 31	. 35	1.3	4. 0	2.0
AC-FT	900	335	174	85	46	30	32	75	50	424	1590	409

CAL YR 1980 TOTAL 2731.77 MEAN 7.46 MAX 250 MIN .24 AC-FT 5420 WTR YR 1981 TOTAL 2093.79 MEAN 5.74 MAX 97 MIN .27 AC-FT 4150

16848500 MAULAP RIVER NEAR AGAT

LOCATION.--Lat 13°21'14" N., long 144°41'44" E., Hydrologic Unit 20100003, on right bank 100 ft (30 m), from Fena Valley Reservoir and 3.2 mi (5.1 km) southeast of Agat.

DRAINAGE AREA. -- 1.15 mi² (2.98 km²).

PERIOD OF RECORD. -- January 1972 to current year.

REVISED RECORDS. -- WRD Hawaii 1973: 1972. WRD HI-75-1: Drainage area.

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 130 ft (40 m), from topographic map.

REMARKS.--Records fair except those for period of no gage-height record, which are poor. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--9 years, 5.30 ft 3 /s (0.150 m 3 /s), 3,840 acre-ft/yr (4.73 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,420 ft 3 /s (68.5 m 3 /s) Sept. 27, 1978, gage height, 9.2 ft (2.804 m), from rating curve extended above 23 ft 3 /s (0.65 m 3 /s), on basis of slope-area measurements at gage heights 8.21 ft (2.502 m) and 9.2 ft (2.804 m); minimum, 0.33 ft 3 /s (0.009 m 3 /s) June 10-12, 1975.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 600 ft 3 /s (17.0 m 3 /s) and maximum (*), from rating curve extended as explained above:

Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)	Date	Time	Discha (ft³/s)		Gage h	eight (m)
July 30 Aug. 9	1245 a2230	*1230 642	34.8 18.2	*7.00 5.44	2.134 1.658	Aug. Sept.	2130 0200	1110 711	31.4	6.70	2.042

Minimum discharge, $0.59 \text{ ft}^3/\text{s} (0.017 \text{ m}^3/\text{s})$ June 10.

a About.

		DISC	CHARGE, IN	CUBIC FEE		COND, WAT AN VALUES		OCTOBER 19	780 TO SEF	TEMBER 19	781	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	27	3. 9	2.6	2.0	2. 5	1.4	1.5	1.0	. 90	2. 7	22	4.8
2	25	3.6	2.4	1.9	2.2	1.7	1.2	1.0	. 85	2.9	12	4.2
3	6. 1	3. 4	2.4	1.9	2. 1	1.4	1.0	1.0	. 85	3. 4	26	4.1
4	6. 1	3, 2	2.3	1.9	1. 9	1.3	1.0	1.0	. 80	2. 9	6.8	4. 1
5	8. 7	3. 1	2.3	1.8	1.8	1.7	1.0	1.0	. 80	2.0	5. 1	4.0
6	8. 1	3. 1	2. 2	1.8	1.8	1.5	1.0	1.0	75	1.8	4. 2	3 8
7	18	3.8	2 2	1.8	1.8	1.7	. 95	1.0	. 75	1.5	3.7	3.9
8	25	2.9	2. 2	2. 4	1.9	1.7	95	1.4	. 70	2. 3	3.3	3 5
9	5. 9	2.9	2. 2	1.9	1.7	1.4	1.2	9.1	. 91	1.5	84	4 3
10	6. 9	3.4	2. 2	1.7	1.7	1.4	1.0	1.2	. 67	4. 5	53	3. 6
11	5. 0	2.7	2.0	2.6	1, 7	1.3	1.0	7 0	1.2	4. 0	8. 5	3.4
12	17	2.7	2.0	2.0	1.7	1.3	1.0	3.1	1.5	12	41	3. 3
13	4.6	2.7	2.0	1.9	1.7	1.2	. 95	5. 0	. 83	4.3	20	3. 2
14	4.6	2.7	1.9	1.8	1.7	1.2	. 95	2.9	. 75	11	19	4.3
15	5 2	6.7	1. 9	1.7	1.7	1 2	90	1.8	2.7	4. 3	67	3. 4
16	5.5	8.7	1.9	1.7	2. 1	1.2	90	1.5	1.3	2.9	1.00	3.2
17	6.0	2. 7	4. 0	1.6	2.5	1.1	1.0	1.3	1.0	2.4	30	3. 4
18	4. 9	3.8	2. 3	1.5	4. 1	1.1	5.0	1 2	3. 2	2.2	14	8.4
19	9. 3	2.7	1.9	1.5	2.0	1.1	2.0	1.2	1.2	2.9	10	3. 6
20	4. 7	2.4	2.3	2.9	1.8	1.1	1.5	1.1	1.1	13	9.7	3.2
21	4.6	2.3	2.0	2.2	1.7	1.0	1.2	1.1	1.0	2.7	11	3.3
55	5.6	5.0	1. 9	1. 9	1.7	1.0	1.1	1.0	. 83	2.2	8. 2	3.3
23	4.0	14	1 9	1.8	1.5	1.0	1.1	1.0	91	1 9	6.3	3. 9
24	3.8	2.6	1 9	1.6	1.4	1 0	1.1	1.0	83	4 3	5. 4	6.0
25	5. 5	2 4	1.9	1.7	1.3	1.0	1.1	. 95	75	2.7	6 0	10
26	13	2.3	1. 9	2.0	1.5	1.0	1.0	. 95	75	2 0	22	20
27	18	3. 6	39	1.7	1.4	1.5	1.0	90	6.0	1 9	16	39
28	4.2	2.4	12	2.2	1.7	1.2	1.0	. 90	1.9	2.0	12	12
29	3. 9	18	3.5	5.6	****	1.2	1.2	. 90	4, 5	6 9	5. 9	5. 7
30	4. 2	3.2	2.6	13		1.0	1.0	. 85	2.6	72	5.2	5.3
31	58		2.2	3. 3		1.0		. 85	70.00.00	17	4.8	
TOTAL	328. 4	126.9	116.0	75. 3	52.6	38. 9	36.80	55. 20	42. 83	200, 1	612.1	188. 2
MEAN	10.6	4. 23	3.74	2.43	1.88	1.25	1.23	1.78	1.43	6.45	19.7	6. 27
MAX	58	18	39	13	4.1	1.7	5.0	9. 1	6.0	72	100	39
MIN	3.8	2.3	1. 9	1.5	1.3	1 0	90	85	67	1.5	3. 3	3. 2
AC-FT	651	252	230	149	104	77	73	109	85	397	1210	373

CAL YR 1980 TOTAL 2357.60 MEAN 6.44 MAX 249 MIN 1.1 AC-FT 4680 WTR YR 1981 TOTAL 1873.33 MEAN 5.13 MAX 100 MIN .67 AC-FT 3720

NOTE. -- No gage-height record Feb. 20 to Apr. 21.

16849000 FENA DAM SPILLWAY NEAR AGAT

LOCATION.--Lat $13^{\circ}21'28"$ N., long $144^{\circ}42'12"$ E., Hydrologic Unit 20100003, on left bank 3.5 mi (5.6 km) southeast of Agat and 5.8 mi (9.3 km) southwest of Yona.

DRAINAGE AREA. -- 5.88 mi² (15.23 km²).

PERIOD OF RECORD.--September 1951 to July 1952, November 1952 to current year. Daily mean gage heights published since October 1973.

REVISED RECORDS.--WSP 2137: Drainage area. WDR HI-78-2: 1977(M, m).

GAGE.--Water-stage recorder and concrete-dam control. Datum of gage is 111.35 ft (33.939 m) above mean sea level (from U.S. Navy construction plans).

REMARKS.--Gage-height records fair. About 10 ft 3 /s (0.28 m 3 /s) is diverted from Fena Valley Reservoir and tributary springs for military and civilian use. Discharge records represent flow over spillway only.

AVERAGE DISCHARGE. -- 20 years (1953-73), 17.9 ft³/s (0.507 m³/s), 12,970 acre-ft/yr (16.0 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, not determined, occurred Oct. 15, 1953 (gage height, at least 4.5 ft or 1.37 m); no flow for many days each year. Minimum recorded gage height, -21.36 ft (-6.51 m), Aug. 14, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum gage height, 1.64 ft (0.500 m), Aug. 16; minimum, -10.96 ft (-3.341 m) June 27.

GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981 MEAN VALUES

1				JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
	. 99	. 42	. 16	. 02	- 16	-2.15	-5.08	-7. 49	-8. 85	-10.60	-3. 51	. 09
2	66	32	13	. 00	19	-2. 23	-5.15	-7.60	8. 95	-10.58	-2.70	. 08
3	. 59	. 25	. 11	02	23	-2.31	-5. 26	-7.71	-9.04	-10.58	-1.59	. 08
4	. 45	. 23	. 09	03	29	-2.41	-5.36	-7.81	-9.14	-10.50	-1.03	. 06
5	. 44	21	- 09	06	- 36	-2.49	-5. 49	-7. 92	-9. 25	-10.41	82	. 07
6	. 38	. 18	. 07	08	- 44	-2.56	-5. 59	-8.04	~9. 34	-10.41	70	. 07
7	. 53	23	. 06	11	50	-2.67	-5.69	-8.12	-9.44	-10.44	63	. 06
8	61	21	. 03	- 11	- 55	-2.77	-5.79	-8.15	-9.56	-10.48	- 58	. 07
9	44	. 19	. 02	- 15	62	-2.84	-5.89	-7. 90	-9.66	-10.53	. 05	. 08
10	. 41	. 20	. 02	19	70	-2. 93	-6.01	-7. 91	-9.76	-10.40	. 55	. 07
11	. 39	. 18	. 01	18	78	-3. 03	-6.14	-7.84	-9.85	-10.11	. 20	. 04
12	. 50	. 17	- 01	20	87	-3.13	-6. 25	-7.55	-9.87	-9.66	. 34	. 03
13	40	. 16	01	26	97	-3.18	-6.34	-7.39	-9.97	-9.51	. 46	. 03
14	. 38	. 14	02	29	-1.05	-3. 27	-6.49	-7.30	-10.08	-9.04	. 29	. 07
15	. 39	. 13	04	34	-1.13	-3. 38	-6.60	-7. 29	-10.04	-8. 66	. 62	. 07
16	. 40	. 28	05	42	-1.20	-3. 50	-6.74	-7.34	-10.10	-8. 59	. 86	.06
17	. 43	. 17	. 04	- 48	-1.28	-3.61	-6.79	-7. 38	-10.16	-8.57	. 67	. 10
18	. 41	. 15	. 10	53	-1.26	-3.71	-6.51	-7.43	-10.22	-8.59	. 28	. 26
19	45	. 17	. 07	61	-1.30	-3.82	-6.39	-7.51	-10.25	-8.61	. 22	19
50	43	. 15	. 07	61	-1 38	-3. 92	-6.40	-7.58	-10.34	-8.36	25	10
21	. 41	. 12	. 06	51	-1.46	-4.04	-6. 47	-7. 67	-10.41	-8. 09	. 23	08
22	. 40	. 12	. 04	55	-1.55	-4.14	-6.56	-7. 78	-10.51	-8.09	21	. 08
23	. 37	. 34	. 01	62	-1.63	-4.24	-6.66	-7.89	-10.61	-8.11	. 15	08
24	. 35	. 18	- 01	- 66	-1.71	-4.34	-6.76	~B. 00	-10.70	-8.04	. 11	. 10
25	. 39	. 13	04	71	-1.80	-4. 45	-6.89	-8.10	-10 82	-7. 84	. 11	. 16
26	. 47	. 11	- 06	72	-1.89	-4. 55	-6.99	-8. 20	-10. 91	-7. 80	. 30	. 33
27	. 57	. 09	. 35	78	-1.99	-4.59	-7.11	-8.31	-10.86	-7. 81	. 17	. 51
28	. 46	. 09	. 29	83	-2.06	-4.69	-7.20	-8.42	-10.64	-7.84	. 29	. 28
29	. 40	. 32	. 12	70		-4.80	-7. 28	-8. 53	-10.60	-7.72	. 15	. 17
30	. 38	. 24	. 07	46		-4. 90	-7.39	-8. 65	-10.58	-6.30	. 10	18
31	94		. 05	16		-5.00	-	8. 75	-	-4.35	. 08	
MEAN	. 48	. 20	. 06	37	-1.05	-3. 54	-6.31	-7. 86	-10.02	-8. 92	16	. 12
MAX	99	. 42	. 35	. 02	16	-2.15	-5.08	-7. 29	-8.85	-4. 35	. 86	. 51
MIN	. 35	. 09	06	83	-2.06	-5.00	-7.39	-8.75	-10.91	-10.60	-3. 51	. 03

WTR YR 1981 MEAN -3.12 MAX .99 MIN -10.91

16854500 UGUM RIVER ABOVE TALOFOFO FALLS, NEAR TALOFOFO, GUAM

LOCATION.--Lat 13°19'16" N., long 144°44'01" E., Hydrologic Unit 20100003, about 300 ft (91 m) upstream from Talofofo Falls, 0.9 mi (1.4 km) north of NASA Tracking Station, and 3.5 mi (5.6 km) southwest of main intersection in Talofofo village.

DRAINAGE AREA. -- 5.76 mi² (14.92 km²).

PERIOD OF RECORD. -- June 1977 to current year.

GAGE.--Water-stage recorder. Altitude of gage is 130 ft (40 m), from topographic map.

REMARKS.--Records fair. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,890 ft 3 /s (167 m 3 /s) Feb. 26, 1980, gage height, 14.2 ft (4.328 m), from floodmarks, from rating curve extended above 350 ft 3 /s (9.91 m 3 /s); on basis of slope-area measurement at gage height 14.2 ft (4.328 m); minimum, 3.4 ft 3 /s (0.10 m 3 /s), June 27, 1978, July 14, 18, 19, 1979.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 850 ft3/s (24.1 m3/s) and maximum (*), from rating curve extended as explained above:

Date	Time	Discha (ft³/s)	arge (m³/s)	Gage h	eight (m)	Date		Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)
Oct. 1	0245	*1830	51.8	*8.30	2.530	0	12	2400	1260	35.7	7.04	2.146
Oct. 31 Aug. 9	0715 2300	$ \begin{array}{r} 1170 \\ 1020 \end{array} $	33.1 28.9	6.83	2.082 1.969	Aug. Sept.	15 18	2030 1630	1780 1700	50.4 48.1	8.20	2.499

Minimum discharge, $3.7 \text{ ft}^3/\text{s} (0.10 \text{ m}^3/\text{s})$ June 26.

MEAN 24. 8

9049.6

WTR YR 1981 TOTAL

MAX

316

		DISC	HARGE, IN	CUBIC FE	ET PER SI	ECOND, WAT EAN VALUES	ER YEAR	OCTOBER 1	780 TO SE	PTEMBER 19	81	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	252	38	22	14	16	8.8	8.0	6. 4	5. 0	6.8	44	33
2	135	28	20	13	13	8.5	7. 3	6. 1	5. 0	6.8	43	29
3	91	26	18	13	14	8.0	6.3	6. 1	5. 2	5. 9	63	
4	64	27	17	13	12	7. 8	6.6	6. 4	5. 0	9. 0	26	26
5	53	29	17	12	11	8. 5	6.6	6.8	5. 0	7. 5	19	29 25
6	61	24	16	12	11	8. 2	6.6	6. 1	5. 2	6. 1	16	23
7	111	32	16	12	11	8. 0	6. 4	6. 1	5. 0	5. 4	15	
8	134	24	15	12	12	8.0	6. 4	7. 5	5. 0	8. 5		22
9	56	24	15	12	10	9. 0	6. 4	8. 2	5. 4		16	22
10	57	24	14	12	10	8. 2	6. 4	6.6	5. 0	6. 8 21	135 98	21 20
11	45	26	14	13	10	8.0	6. 1	22	5. 7	29	35	
12	57	27	14	12	9.8	8.2	6. 1	13	6. 4	54		20
13	41	23	14	12	9. 5	8.8	6. 1	9. 0	5. 7		140	19
14	42	21	14	11	9. 2	7. 8	5. 9	12	5. 2	12	159	22
15	38	21	14	11	9. 2	7. 5	5. 9	9. 5	9. 0	28 18	316	29 20
16	39	42	14	11	8.8	7. 5	5. 9	7.5	7.0	40		
17	39	22	24	11	8.8	7. 3		7. 5	7. 8	12	199	18
18	30	26	22	11	14	7.3	6.6	6.6	6. 4	10	138	88
19	36	22	16	11	9. 5		52	6. 1	6.6	11	70	152
20	32	22	16			7. 3	18	5. 9	5. 9	12	58	39
		22	10	13	9. 0	7. 3	12	5. 7	6. 1	25	118	29
21	38	19	18	11	9. 2	7.3	9.2	5. 7	5. 7	14	69	29
22	28	19	16	11	9.0	7.3	7. 8	5. 4	5. 2	10	62	23
23	25	56	14	13	9. 5	7.3	7. 5	5. 4	5. 0	9. 0	51	24
24	24	21	13	11	9. 2	7. 3	6.8	5. 4	4. 7	9. 0	44	
25	23	19	13	11	8.8	7.8	6.8	5. 2	4. 7	8.8	40	27 45
26	32	19	13	12	8. 8	7. 3	6.6	5. 2	4. 9	8. 0		
27	42	18	85	11	9. 5	12	6.6	5. 2	26		110	28
28	27	20	36	11	8. 5	10	6. 4	5. 2		7.8	76	108
29	24	66	17	24		7. 3	7. 8	5. 2	14	8. 2	56	51
30	24	35	14	46		7. 0	6.4		8. 5	15	41	32
31	258		14	33		7. 0	0. 4	5. 0 5. 0	6.8	83 42	47 32	27
TOTAL	1958	820	585	435	290. 3	247. 6	7/7 5		554			
MEAN	63. 2	27. 3	18. 9	14. 0	10.4	7. 99	263. 5	221.5	201.1	509.6	2438	1080
MAX	258	66	85	46			8. 78	7. 15	6. 70	16.4	78. 6	36. 0
MIN	23	18	13		16	12	52	22	26	83	316	152
AC-FT	3880	1630	1160	11 863	8. 5 576	7. 0 491	5. 9 523	5. 0 439	4. 7 399	5. 4 1010	15 4840	18 2140
CAL YR	1980 TOTA	L 13732.	8 MEAN	37.5 M	AX 1000	MIN 9. 4	AC-FT	27240			1010	2140

MIN 4.7

AC-FT 17950

16854500 UGUM RIVER ABOVE TALOFOFO FALLS, NEAR TALOFOFO

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- August 1980 to June 1981.

PERIOD OF DAILY RECORD. --

SUSPENDED SEDIMENT DISCHARGE: August 1980 to June 1981 (discontinued).

INSTRUMENTATION. -- Automatic pumping sampler since August 1980.

EXTREMES FOR PERIOD OF DAILY RECORD.-SEDIMENT CONCENTRATIONS: Maximum daily mean, 563 mg/L Oct. 31, 1980; minimum daily mean, 3 mg/L Dec. 13, 14, 1980.
SEDIMENT DISCHARGE: Maximum daily, 801 tons (727 tonnes) Oct. 1, 1980; minimum daily, 0.10 ton (0.09 tonne) June 24, 25, 1981.

EXTREMES FOR CURRENT YEAR. --

SEDIMENT CONCENTRATIONS: Maximum daily mean, 563 mg/L Oct. 31, 1980; minimum daily mean, 3 mg/L Dec. 13,

SEDIMENT DISCHARGE: Maximum daily, 801 tons (727 tonnes) Oct. 1; minimum daily, 0.10 ton (0.09 tonne) June 24, 25.

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), AUGUST TO SEPTEMBER 1980

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
AUG				AUG			
20	21	15	0.85	30	19	10	0.51
21	18	13	.63	31	17	8	.37
22	18	12	.37				
23	94	126	47				
24	28	20	1.5	SEP			
25	38	22	3.0	6	187	223	591
26	26	15	1.1	7	167	239	268
27	21	12	.68	8	112	171	89
28	21	11	.62	11	85	60	14
29	23	15	. 93	12	68	50	9.2

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

		MEAN			MEAN			MEAN	
	MEAN	CONCEN-	SEDIMENT	MEAN	CONCEN-	SEDIMENT	MEAN	CONCEN-	SEDIMENT
	DISCHARGE	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE
DAY	(CFS)	(MG/L)	(TONS/DAY)	(CFS)	(MG/L)	(TONS/DAY)	(CFS)	(MG/L)	(TONS/DAY)
		OCTOBER			NOVEMBER			DECEMBER	
1	252	558	801	38	50	5. 1	22	22	1.3
2	135	227	113	28	25	1.9	20	20	1.1
3	91	166	60	26	20	1.4	18	18	. 87
4	64	70	12	27	20	1.5	17	15	. 69
5	53	35	5. 0	29	16	1.3	17	15	. 69
6	61	50	8.2	24	12	. 78	16	8	. 35
7	111	60	18	32	22	1.9	16	6	. 26
8	134	207	164	24	20	1.3	15	6	. 24
9	56	30	4. 5	24	18	1.2	15	6	. 24
10	57	50	7. 7	24	9	. 58	14	6	. 23
11	45	35	4. 3	26	10	. 70	14	6	. 23
12	57	40	6. 2	27	15	1.1	14	5	. 19
13	41	25	2.8	23	12	. 75	14	3	. 11
14	42	28	3. 2	21	10	. 57	14	3	11
15	38	24	2. 5	21	8	. 45	14	6	. 23
16	39	26	2. 7	42	26	4. 0	14	8	. 30
17	39	28	2.9	22	10	. 59	24	25	1.6
18	30	25	2.0	26	15	1.1	22	20	1.2
19	36	28	2. 7	22	12	. 71	16	8	. 35
20	32	26	2. 2	52	8	. 48	16	12	. 52
21	38	28	2. 9	19	8	. 41	18	20	. 97
22	28	24	1.8	19	8	. 41	16	18	. 78
23	25	22	1.5	56	36	8.8	14	10	. 38
24	24	20	1.3	21	10	. 57	13	8	. 28
25	23	18	1. 1	19	В	. 41	13	6	. 21
26	32	18	1.6	19	6	. 31	13	5	. 18
27	42	22	2. 5	18	8	. 39	85	160	97
28	27	20	1.5	20	10	. 54	36	44	5. 8
29	24	20	1.3	66	59	17	17	14	. 64
30	24	20	1.3	35	40	3. B	14	12	. 45
31	258	563	714			J. 6	14	10	. 38
TOTAL	1958		1955. 7	820		60. 05	585		117. 88
7-7-1	2020		20 2 S. de	1777		226,550	6.4.2		

MARIANA ISLANDS, ISLAND OF GUAM 16854500 UGUM RIVER ABOVE TALOFOFO FALLS NEAR TALOFOFO, GUAM--Continued

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		JANUARY			FEBRUARY			MARCH	
1 2 3 4 5	14 13 13 13	20 15 12 12 12	. 76 . 53 . 42 . 42 . 39	16 13 14 12 11			8.8 8.5 8.0 7.8 8.5		
6 7 8 9	12 12 12 12 12	12 15 10 10	. 39 . 49 . 32 . 32 . 29	11 11 12 10			8. 2 8. 0 8. 0 9. 0 8. 2		
11 12 13 14	13 12 12 11	11 10 6 6	.39 .32 .19 .18	10 9.8 9.5 9.2 9.2			8, 0 8, 2 8, 8 7, 8 7, 5		
16 17 18 19 20	11 11 11 11 11	6 6 6 5	. 18 . 18 . 18 . 15	8. 8 8. 8 14 9. 5 9. 0			7. 5 7. 3 7. 3 7. 3 7. 3	12 8	
21 22 23 24 25	11 11 13 11	8 6 15 13	. 24 . 18 . 53 . 39 . 33	9. 2 9. 0 9. 5 9. 2 8. 8			7. 3 7. 3 7. 3 7. 3 7. 8	7 7 8 8 9	. 14 . 14 - 16 - 16 - 17
26 27 28 29 30	12 11 11 24 46 33	11 10 12 25 50 35	. 36 . 30 . 36 1. 6 6. 2 3. 1	8. 8 9. 5 8. 5			7.3 12 10 7.3 7.0 7.0	8 15 10 10 8 8	. 16 . 49 . 27 . 20 . 15
TOTAL	435	-22	20. 22	290. 3			247. 6	-02	2. 61
		APRIL			MAY			JUNE	
1 2 3 4 5	8. 0 7. 3 6. 3 6. 6 6. 6	18 15 12 12 12	.39 .30 .20 .21	6. 4 6. 1 6. 1 6. 4 6. 8	10 10 8 10 12	. 17 . 16 . 13 . 17 . 22	5. O 5. D 5. O 5. O	8 8 12 8	. 11 . 11 . 17 . 11
6 7 8 9 10	6. 6 6. 4 6. 4 6. 4	12 10 10 12 12	. 21 . 17 . 17 . 21	6. 1 6. 1 7. 5 8. 2 6. 6	10 10 15 18 12	. 16 . 16 . 30 . 40 . 21	5. 2 5. 0 5. 0 5. 4 5. 0	12 10 8 10 8	. 17 . 14 . 11 . 15
11 12 13 14	6. 1 6. 1 6. 1 5. 9 5. 9	12 12 12 12 10	. 20 . 20 . 20 . 19 . 16	22 13 9.0 12 9.5	40 30 25 30 20	2. 4 1. 1 . 61 . 97 . 51	5. 7 6. 4 5. 7 5. 2 9. 0	10 12 15 12 20	.15 .21 .23 .17 .49
16 17 18 19 20	5. 9 6. 6 52 18 12	10 12 50 35 30	. 16 . 21 7. 0 1. 7	7. 5 6. 6 6. 1 5. 9 5. 7	20 15 12 10	. 41 . 27 . 20 . 16 . 15	7. 8 6. 4 6. 6 5. 9 6. 1	18 12 15 10	.38 .21 .27 .16
21 22 23 24 25	9. 2 7. 8 7. 5 6. 8 6. 8	26 18 15 12	. 65 . 38 . 30 . 22 . 22	5. 7 5. 4 5. 4 5. 4 5. 2	10 10 10 8 8	15 15 15 12	5. 7 5. 2 5. 0 4. 7 4. 7	10 10 8 8	15 14 11 10
26 27 28 29 30 31	6. 6 6. 4 7. 8 6. 4	10 10 10 15 12	. 18 . 18 . 17 . 32 . 21	5. 2 5. 2 5. 2 5. 0 5. 0	8 8 8 8 8	. 11 . 11 . 11 . 11 . 11	4.9 26 14 8.5 6.8	8 40 30 20 12	. 11 2. 8 1. 1 . 46 . 22
TOTAL NOTE	263.5 -No sediment	record Feb.	16.10 1 to Mar 18	221.5 July 1 to	 Sept. 30,	10. 20	201.1		9. 04

16858000 YLIG RIVER NEAR YONA

LOCATION.--Lat $13^{\circ}23'28"$ N., long $144^{\circ}45'06"$ E., Hydrologic Unit 20100003, on right bank 2.2 mi (3.5 km) upstream from mouth, 1.9 mi (3.1 km) southwest of Yona, and 5.6 mi (9.0 km) south of Agana.

DRAINAGE AREA. -- 6.48 mi² (16.78 km²).

PERIOD OF RECORD .-- June 1952 to current year.

REVISED RECORDS.--WSP 1937: 1957-58. WSP 2137: Drainage area.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 20 ft (6.1 m), from topographic map.

REMARKS. -- Records fair. No diversion above station.

AVERAGE DISCHARGE.--29 years, 28.7 ft³/s (0.813 m³/s), 20,790 acre-ft/yr (25.6 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,900 ft³/s (139 m³/s) Sept. 9, 1963, gage height, 19.77 ft (6.026 m), from floodmarks, from rating curve extended above 830 ft³/s (23.5 m³/s) on basis of slopearea measurements at gage heights 11.24 ft (3.426 m) and 15.87 ft (4.837 m), maximum gage height, 22.80 ft (6.949 m) Feb. 26, 1980; minimum, 0.07 ft³/s (0.002 m³/s) May 20, 1973, but may have been less during period of diversion from gage pool May 15 to June 20, 1966.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 2,000 ft 3 /s (56.6 m 3 /s) and maximum (*), from rating curve extended above 155 ft 3 /s:

			Disch	arge	Gage h	eight
Dat	е	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Dec.	27	1100	*2820	79.9	*16.35	4.983
Aug.	9	2245	2670	75.6	15.84	4.828
Ang.	16	2245	2160	61 2	13 93	1 246

Minimum discharge, 1.2 ft 3 /s (0.034 m 3 /s) Apr. 15-17.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND.	WATER	YEAR	OCTOBER	1980	TO	SEFTEMBER	1981
					MEAN VAI	UES						

DAY	DCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	364	26	16	14	11	3.6	4.3	3.5	2. 0	13	168	21
5	218	22	17	13	9.7	3.8	3. 2	2.8	1.9	49	69	19
3	101	19	14	12	8.6	3.4	2.4	2.7	2.5	14	102	18
4	97	18	13	11	7. B	3. 1	2.4	2.6	2 9			
5	47	21	13	11	7. 0	4.5	2.8	2.8		11	37	17
	47	E. 1	13	11	7.0	4. 0	ಷ. ಚ	2.8	2.4	9.2	36	16
6	94	16	12	9.4	6.6	3.6	2.1	2.7	26	13	28	15
7	149	19	11	9. 1	6.6	3.3	1.9	2.9	2 5	11	24	14
В	134	18	10	8 8	7.0	3.8	1.7	16	2 2	10	26	13
9	48	18	10	8.3	6.3	3.6	1.8	7.9	2.2	8.5	400	13
10	47	16	10	7. 8	5.9	3.3	1. 9	4 6	2 1	12	214	14
11	35	16	9. 6	10	5. 9	3.3	1.6	12	15	38	55	12
12	32	15	9.2	7.6	5.7	4 1	2.0	8. 7	9.9	85	175	11
13	28	14	9. 3	7.0	5.3	3.4	1.8	8. 9	4.8	36	193	11
14	27	13	8. 7	6.6	5. 1	3. 1	1 4	6.6	4.7	80	151	23
15	25	34	8.2	6.3	4.9	3.3	1.3	6.8	97	27	451	
	2.0	0.1	0. 2.	G. G	4. 2	۵. ي	1. 3	0. 0	7/	21	451	12
16	25	88	8.0	6.1	4.9	2.9	1.3	5 7	18	20	499	14
17	55	17	75	5.9	4. 7	2.8	1.5	6.3	11	41	261	15
18	32	19	45	5.9	11	2.7	73	4. 3	8.2	46	63	51
19	23	16	13	5. 5	5. 5	2.6	17	4.0	7.9	23	45	18
20	21	14	15	7.3	4. 7	2.8	11	3. 6	6.9	26	38	15
				7. 3	7. /	2.0	1.1		0. 7	20	36	10
21	21	19	19	6.1	4.3	2.6	8.0	3.4	6 4	18	39	13
22	18	55	55	5. 5	4 3	26	5.7	2 9	5. 4	15	37	11
23	17	96	12	5. 5	4.0	2.5	5. 2	2.8	5. 0	13	31	11
24	16	17	11	5. 1	4 0	2.4	4. 5	2.6	4.7	13	25	12
25	25	15	9. 4	5. 1	3.6	2.6	3. 9	2. 5	4. 5	13	55	20
26	21	1.4	9. 1	7. 3	3. 4	2.5	3. 8	2.6	4 9	4.77		100
27	23	13	515	5. 9	3. 8	4.1	3. 9			12	168	152
28	17	13	50					2. 5	17	11	121	117
29	15			6. B	4.0	2.6	3. 7	2.2	11	12	50	80
		38	55	35		2.4	5. 2	5 5	7.6	28	29	25
30	17	20	18	48		2 4	4. 1	2.0	8.0	272	25	4.53
31	240		15	50		2.8		2 0		96	23	0000
TOTAL	1999	686	1029.5	322. 9	165.6	96.5	184. 4	143.1	281.2	1075.7	3605	826
MEAN	64.5	22.9	33. 2	10.4	5. 91	3.11	6. 15	4. 62	9.37	34. 7	116	27.5
MAX	364	96	515	48	11	4. 5	73	16	97	272	499	152
MIN	15	13	8.0	5.1	3.4	2.4	1.3	2.0	1.9	8.5	22	11
AC-FT	3970	1360	2040	640	328	191	366	284	558	2130	7150	1640
				0.10	UEU	1/1	200	204	556	2150	1150	1540

CAL YR 1980 TOTAL 12201.1 MEAN 33.3 MAX 1160 MIN 2.4 AC-FT 24200 WTR YR 1981 TOTAL 10414.9 MEAN 28.5 MAX 515 MIN 1.3 AC-FT 20660

MARIANA ISLANDS, ISLAND OF GUAM 16858000 YLIG RIVER NEAR YONA

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- August 1980 to current year.

PERIOD OF DAILY RECORD.--SUSPENDED SEDIMENT DISCHARGE: August 1980 to current year.

INSTRUMENTATION. -- Automatic pumping sampler since August 1980.

EXTREMES FOR PERIOD OF DAILY RECORD. --

SEDIMENT CONCENTRATIONS: Maximum daily mean, 705 mg/L Sept. 9, 1980; minimum daily mean, 0 mg/L Mar. 10,

SEDÍMENT DISCHARGE: Maximum daily, 2,390 tons (2,168 tonnes) Sept. 9, 1980; minimum daily, 0 ton (0 tonne) Mar. 10, 11, 1981.

EXTREMES FOR CURRENT YEAR--SEDIMENT CONCENTRATIONS: Maximum daily mean, 462 mg/L Dec. 27, 1980; minimum daily mean, 0 mg/L Mar. 10, 11. SEDIMENT DISCHARGE: Maximum daily, 1,400 tons (1,270 tonnes) Dec. 27; minimum daily, 0 ton (0 tonne) Mar. 10, 11.

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), AUGUST TO SEPTEMBER 1980

	MEAN DISCHARGE	MEAN CONCEN- TRATION	SEDIMENT DISCHARGE
DAY	(CFS)	(MG/L)	(TONS/DAY)
AUG			
21	22	30	1.8
22	44	139	27
23	219	272	373
24	32	20	1.7
25	26	10	.70
26	21	8	. 45
27	19	8 5 2 2 1	. 26
28	17	2	.09
29	17	2	.09
30	15	1	. 04
31	13	5	.18
SEP			
1	13	18	. 63
2	12	26	. 84
3	12	45	1.5
4	111	286	199
5	73	124	38
6	85	97	59
7	78	123	48
8	123	235	152
9	1140	705	2390
10	167	162	103
11	64	30	5.2
12	69	89	40
13	46	23	4.0
14	59	80	34
15	8.5	138	83

MARIANA ISLANDS, ISLAND OF GUAM 16858000 YLIG RIVER NEAR YONA--Continued

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

	MEAN DISCHARGE	MEAN CONCEN- TRATION	SEDIMENT DISCHARGE	MEAN DISCHARGE	MEAN CONCEN- TRATION	SEDIMENT DISCHARGE	MEAN DISCHARGE	MEAN CONCEN- TRATION	SEDIMENT DISCHARGE
DAY	(CFS)	(MG/L)	(TONS/DAY)	(CFS)	(MG/L)	(TONS/DAY)	(CFS)	(MG/L) DECEMBER	(TONS/DAY)
-	272		220	La C		40.00	2.92		
1 2 3 4 5	364 218 101 97 47	391 163 82 96 35	485 188 32 47 4. 4	26 22 19 18 21	20 15 6 5	1. 4 . 89 . 31 . 24 . 57	16 17 14 13	10 5 4 4	. 35 , 46 . 19 . 14 . 14
6 7 8 9	94 149 134 48 47	81 153 116 11 12	29 112 105 1. 4 1. 5	16 19 18 18	3 6 8 8 5	. 13 . 31 . 39 . 39 . 22	12 11 10 10	4 4 2 2 2	.13 .12 .05 .05
11 12 13 14 15	35 32 28 27 25	5 B S S S	. 47 .26 .15 .15	16 15 14 13 34	5 3 2 23	. 22 12 .11 07 9. 0	9. 6 9. 2 9. 3 8. 7 8. 2	2 1 1 1	. 05 . 05 . 03 . 02 02
16 17 18 19 20	25 22 32 23 21	2 2 9 10 5	14 12 .77 .62 .28	68 17 19 16 14	84 20 18 15	28 92 92 . 65 . 38	8.0 75 45 13 15	1 61 25 15	. 02 42 3. 0 . 53 . 45
21 22 23 24 25	21 18 17 16 25	5 4 3 2 13	. 28 . 19 . 14 . 09 . 88	19 22 96 17 15	15 15 95 15 4	. 77 . 89 51 . 69 . 16	19 22 12 11 9. 4	12 18 11 8 7	. 62 1. 1 . 36 . 24 . 18
26 27 28 29 30 31	21 23 17 15 17 240	10 15 8 5 7 176	. 57 . 93 . 37 . 20 . 32	14 13 13 38 20	3 4 3 45 15	. 11 . 14 . 11 4. 6	9. 1 515 50 22 18	8 462 90 22 12 5	1400 12 1.3 58
TOTAL	1999		1202. 37	685		104. 52	1029. 5		1464. 63
		JANUARY			FEBRUARY			MARCH	
1 2 3 4 5	14 13 12 11	4 3 3 3 3	15 11 10 09	11 9.7 8.6 7.8 7.0	10 8 5 3 2	30 21 12 06	3. 6 3. 8 3. 4 3. 1 4. 5	35 N N N 4	03 05 02 02 05
6 7 8 9	9. 4 9. 1 8. 8 8. 3 7. 8	3 3 4 4	. 08 . 07 . 10 . 09 . 08	6. 6 6. 6 7. 0 6. 3 5. 9	3 4 4 4	. 05 . 05 . 08 . 07 . 06	3. 6 3. 3 3. 8 3. 6 3. 3	3 2 0	. 02 . 00 . 03 . 02 . 00
11 12 13 14 15	10 7. 6 7. 0 6. 6 6. 3	10 8 5 3 3	. 27 . 16 . 09 . 05	5. 9 5. 7 5. 3 5. 1 4. 9	5 4 4 4 5	08 06 06 06	3. 3 4. 1 3. 4 3. 1 3. 3	03334	. 00 . 03 . 03 . 03
16 17 18 19 20	6. 1 5. 9 5. 9 5. 5 7. 3	3 2 3 3	. 05 . 03 . 03 . 03	4. 9 4. 7 11 5. 5 4. 7	5 5 15 5 4	. 07 . 06 . 45 . 07	2. 9 2. 8 2. 7 2. 6 2. 8	3 3 3 3	. 02 . 03 . 03 . 03
21 22 23 24 25	6. 1 5. 5 5. 5 5. 1 5. 1	3 3 3 3	. 03 . 03 . 03	4. 3 4. 3 4. 0 4. 0 3. 6	3 3 3 3	. 03 . 03 . 03 . 03	2. 6 2. 5 2. 4 2. 6	4 4 4 3 3	. 03 . 03 . 03 . 02 . 02
26 27 28 29 30 31	7. 3 5. 9 6. 8 35 48 20	5 4 5 15 49 26	. 10 . 06 . 09 1. 4 15	3. 4 3. 8 4. 0	3 2 2	03	2.5 4.1 2.6 2.4 2.4 2.8	3 5 4 4 3 3	. 02 . 06 . 03 . 02 . 02
TOTAL	322. 9		19, 98	165. 6	1	2, 29	96. 5	707	0. 78

16858000 YLIG RIVER NEAR YONA--Continued SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		APRIL			MAY			JUNE	
1 2 3 4 5	4. 3 3. 2 2. 4 2. 4 2. 8	5 4 4 4	. 06 . 03 . 03 . 03 . 03	3. 5 2. 8 2. 7 2. 6 2. 8	5 4 4 4 4	. 05 . 03 . 03 . 03 . 03	2. 0 1. 9 2. 5 2. 9 2. 4	3 3 3 3	. 02 . 01 . 02 . 02 . 01
6 7 8 9	2. 1 1. 9 1. 7 1. 8 1. 9	4 3 4 3 2	. 02 . 02 . 02 . 01 34	2. 7 2. 9 16 7. 9 4. 6	4 5 15 12 10	. 03 . 04 . 65 . 26 . 12	2.6 2.5 2.2 2.2 2.1	3 3 3 3	. 02 . 02 . 02
11 12 13 14 15	1.6 2.0 1.8 1.4 1.3	2 5 3 3	.00 .03 .01 .01	12 8, 7 8, 9 6, 6 6, 8	15 12 10 8 6	. 47 28 24 . 14 . 11	15 9.9 4.8 4.7 97	50 20 5 5 350	2. 0 . 53 . 06 . 06 92
16 17 18 19 20	1.3 1.5 73 17	6 8 117 60 30	. 02 . 03 23 2. 8 . 89	5. 7 6. 3 4. 3 4. 0 3. 6	4 5 3 3	. 06 09 . 03 . 03 . 03	18 11 8.2 7.9 6.9	70 30 15 12	3. 4 . 89 . 33 . 26 . 19
21 22 23 24 25	8. 0 5. 7 5. 2 4. 5 3. 9	12 6 5 4	. 26 . 09 . 07 . 05	3. 4 2. 9 2. 8 2. 6 2. 5	33333	. 03 . 02 . 02 . 02 . 02	6. 4 5. 4 5. 0 4. 7 4. 5	10 8 8 8 6	.17 .12 .11 .10
26 27 28 29 30 31	3. 8 3. 9 3. 7 5. 2 4. 1	5 5 6 5	. 05 . 05 . 05 . 08 . 06	2. 6 2. 2 2. 2 2. 2 2. 0 2. 0	3 3 3 3 3 3	. 02 . 02 . 02 . 02 . 02	4. 9 17 11 7. 6 8. 0	8 18 15 12	11 . 83 . 45 . 25 . 22
TOTAL	184. 4	JULY	61.85	143. 1	AUGUST	3. 00	281. 2	SEPTEMBER	102. 33
1 2 3 4 5	13 49 14 11 9. 2			168 69 102 37 36	20 25	2. 0 2. 4	21 19 18 17 16	5 4 4 4	. 28 . 21 . 19 . 18 . 17
6 7 8 9 10	13 11 10 8.5			28 24 26 400 214	15 10 15 241 235	1. 1 . 65 1. 1 543 262	15 14 13 13	33334	. 12 . 11 . 11 . 11 . 15
11 12 13 14 15	38 85 36 80 27			55 175 193 151 451	150 169 148 107 215	22 245 76 51 423	12 11 11 23 12	3 2 2 15 8	. 10 . 06 . 06 . 93 . 26
16 17 18 19 20	20 41 46 23 26			499 261 63 45 38	224 200 35 15	625 141 6. 0 1. 8 1. 0	14 15 51 18 15	12 12 	. 45
21 22 23 24 25	18 15 13 13			39 37 31 25 22	10 8 8 5	1. 1 . 80 . 67 . 34 . 24	13 11 11 12 20	15 12 10 15 20	. 53 . 36 . 30 . 49 1. 1
26 27 28 29 30 31	12 11 12 28 272 96			168 121 50 29 25 23	 6 5	 . 47 . 34	152 117 80 25 43	===	=======================================
TOTAL	1075. 7			3605		2408. 32	826		6. 76

NOTE. -- No sediment record July 1 to Aug. 3, 26-28, Sept. 18-20, 26-30.

16865000 PAGO RIVER NEAR ORDOT (National stream-quality accounting network station)

LOCATION.--Lat 13°26'08" N., long 144°45'14" E., Hydrologic Unit 20100003, on left bank 0.8 mi (1.3 km) south of Ordot, 2.6 mi (4.2 km) south of Agana, and 3.6 mi (5.8 km) southeast of Asan.

DRAINAGE AREA. -- 5.67 mi² (14.69 km²).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1951 to current year.

REVISED RECORDS.--WSP 1937: 1954(M), 1958(M). WSP 2137: Drainage area.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 25 ft (7.6 m), from topographic map. Prior to Apr. 10, 1972, at datum 1.00 ft (0.305 m) higher.

REMARKS. -- Records good. No diversion above station.

AVERAGE DISCHARGE. -- 30 years, 26.3 ft³/s (0.745 m³/s), 19,050 acre-ft/yr (23.5 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,090 ft 3 /s (286 m 3 /s) May 21, 1976, gage height, 20.15 ft (6.142 m), from floodmarks, from rating curve extended above 320 ft 3 /s (9.06 m 3 /s) on basis of slope-area measurements at gage heights 13.22 ft (4.029 m), 15.07 ft (4.593 m), and 18.87 ft (5.752 m); no flow for many days in 1959 and 1966.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 2,700 ft3/s (76.5 m3/s) and maximum (*), from rating curve extended as explained above:

			Discha	arge	Gage h	eight
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Aug.	9	2230	*3060	86.7	*12.50	3.810
Aug. 1	1.5	1415	2910	82.4	12.09	3.685

Minimum daily discharge, about 0.88 ft³/s (0.025 m³/s) Apr. 16, 17.

MEAN 28.8

10516.02

WTR YR 1981 TOTAL

MAX

569

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981 MEAN VALUES

DAY	DCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	409	23	13	12	10	3. 5	1.8	1.9	2. 4	16	237	15
2	225	17	13	11	8. 2	3. 2	1.6	1.9	1.9	58	92	14
3	93	14	11	9. 7	7. 3	3.0	1.3	1.9	2. 5	14	80	12
4	60	13	9. 9	9. 2	6. 5	2. 9	1.2	1.8	2. 3	10	41	11
5	41	13	9. 3	8. 7	5. 9	2. 9	1.1	1.8	1. 9	8. 9	67	11
6	79	11	9. 5	8. 3	5. 6	2. 7	1.1	1.8	1.7	7. 5	34	10
7	169	15	8. 5	7.8	5. 4	2. 7	1. 1	1.8	1. 9	10	25	9. 3
8	139	24	7.8	7. 1	5. 9	3. 5	1.3	12	1. 9	10	21	8. 4
9	54	14	8.3	6.7	5. 0	3. 1	1.1	3. 8	1.6	7. 5	443	11
10	42	13	8. 2	6. 4	4. 7	2. 9	1.1	2. 9	1.6	8. 4	155	8.8
11	31	12	7.0	7.2	5. 0	2. 7	1.1	29	18	24	67	9. 1
12	26	11	6.6	6.3	4.7	2. 5	1.1	8.6	B. 1	138	187	7.7
13	23	13	6. 5	5.7	4. 3	2. 5	1.1	7.6	3. 5	40	203	7.6
14	21	9. 5	6. 3	5. 6	4. 1	2.3	. 98	6.2	2.8	44	148	21
15	19	35	6.6	5. 3	3. 9	2. 1	. 98	4. 4	81	29	569	8. 5
16	35	61	5. 9	5. 0	3. 9	1. 9	. 98	3. 7	8. 3	21	499	9. 1
17	17	14	90	4.7	3. 9	1.8	. 88	3. 5	5. 4	38	282	63
18	28	19	28	4.7	5. 9	1.8	40	3. 1	4. 1	36	73	117
19	17	14	10	4. 5	4. 0	1.6	13	3.0	3.7	24	47	86
20	15	13	25	5. 6	3. 7	1.6	6. 9	3. 0	3. 3	22	40	23
21	14	32	47	5. 2	3. 6	1. 5	4. 7	2. 9	3. 3	17	33	15
22	12	25	24	4.4	3. 5	1.5	3. 4	2.7	3. 1	14	27	12
23	11	115	13	4.4	3. 5	1.5	3. 1	2.9	2. 5	12	24	11
24	11	19	11	4. 4	3. 6	1.5	2.8	2.7	2. 5	11	19	9.6
25	11	14	9. 4	4. 5	3. 4	1.6	2. 5	2. 5	2. 5	14	18	29
26	14	12	8. 7	5. 4	3. 4	1. 5	2. 3	2. 5	3. 1	10	106	331
27	17	11	350	4. 1	3. 5	1.8	2.2	2.6	42	9. 4	101	160
28	13	9. 9	75	5. 9	3. 7	1.3	2. 1	2.5	12	9.4	42	125
29	10	23	20	38		1.5	2. 1	2. 5	7. 0	41	24	34
30	14	17	16	47		1.3	2.0	2. 5	10	359	20	26
31	193		13	19		1.5		2. 5		147	17	
TOTAL	1863	636.4	877.5	283. 8	136. 1	67.7	106.92	132.5	245.9	1210.1	3741	1215.1
MEAN	60. 1	21.2	28.3	9. 15	4. 86	2.18	3.56	4.27	8.20	39.0	121	40.5
MAX	409	115	350	47	10	3.5	40	29	81	359	569	331
MIN	10	9.5	5.9	4. 1	3. 4	1.3	.88	1.8	1.6	7.5	17	7.6
AC-FT	3700	1260	1740	563	270	134	212	263	488	2400	7420	2410
								203	400	2400	7420	2410
	1980 TOT		.8 MEAN		AX 1640	MIN 1.5	AC-FT	28040				

MIN .88

AC-FT

MARIANA ISLANDS, ISLAND OF GUAM 16865000 PAGO RIVER NEAR ORDOT--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, FECAL, O. 7 UM-MF (COLS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACD3)
NOV 25	1000	14	327	7.6	26.0	1.2	6. 5	71	620	140
JAN 19	1030	4.6	380	8. 2	25.5	. 40	6.8	14	720	160
MAR					23.5		0. 0			
05 MAY	0930	3. 1	360	8. 0	-	. 80			000	160
06	1000	. 44	370		26. 0	. 60	8. 5	11	99	160
JUL 22	1000	15	322	7. 8	27. 0	1.6	7. 5		0.00	130
SEP 03 28	0845 1300	12	360	8. 0	27. 0 	1.2	7.3	220	610	140
DAT	NON BON (M	NATE DI NG/L SC NS (M	CIUM S S- D DLVED SOI IG/L (M	IS- DI _VED SOL G/L (M		SO T	AD- S RP- D ION SOI TIO (M	IUM, LIN IS- LA LVED (MO G/L AS	AB DI G/L SO S (M	FATE S- LVED G/L SO4)
NOV 25. JAN		.00	42	8. 3	17	21	. 6	1. 9 15	D	. 2
19. MAR		.00	47	9. 5	21	55	. 7	1.8 170	0	1.6
05.	1.1	.00	48	9. 0	19	21	. 7	1.6 170	0	1.8
MAY 06.	. 4	00	48	8. 6	18	20	. 6	1.6 160	0	. 8
JUL 22.		. 00	38	8. 0	16	21	. 7	1.8 150	0	<5. 0
SEP			43		18	21	. 7	2.1 160	_	<5. O
03. 28.									100	
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
NOV										
25 JAN	13	. 1	34	206	207	, 28	. 21	. 16	. 020	. 020
19	17	, 1	38	227	238	. 31	. 09	. 06	. 000	. 000
MAR 05	15	. 1	35	222	264	. 30	. 00		. 000	. 000
MAY 06	23	: 1	36	223	232	. 30	. 07	. 03	. 030	. 030
JUL 22	13	. 1	36	206		. 28	. 14	. 09	. 270	. 130
SEP			39	227	225	31	. 28	. 15	. 150	. 140
03	13	. 1	37	22/	223	. 31	. 20	. 13	. 150	. 1 40

< Actual value is known to be less than the value shown.

MARIANA ISLANDS, ISLAND OF GUAM 16865000 PAGO RIVER NEAR ORDOT--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

	DATE	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, NH4 + DRG. SUSP. TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	
	NOV 25	38	. 38	. 56	. 40	. 00	. 40	. 61	. 030	. 020	
	JAN 19	. 45	. 43	. 49	. 45	. 02	. 43	. 54	. 010	. 010	
	MAR 05	1.3	1. 3	22	1.30	. 00	1.3	1.3	. 020	. 030	
	MAY 06	. 48	, 43	. 49	. 51	. 05	. 46	. 58	. 030	. 020	
	JUL 22 SEP	. 38	. 31	. 53	. 65	. 21	. 44	. 79	. 010	. 010	
	03	. 44	. 46	. 75	. 59	. 00	. 60	. 87	. 020	. 020	
DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, TOTAL. RECOV- ERABLE (UG/L AS BA)	BARIUM, SUS- PENDED RECOV- ERABLE (UG/L AS BA)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
4N 19. : :	1030	1	0	1	10	0	10	o		<1	0
F	0930	2	o	2	10	0	10	2	0	2	20
L 2 P	1000	1	0	1	100	90	7	1		<1	10
3	0845	1	0	1	<100		15	0	***	<1	10
)ATE	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)
N											
9 R	0	0	<3	<3	4	0	4	140	100	40	9
5 L	10	10	2	<3	2	0	3	140	30	110	8
2 P 3	10	10	<3 0	C3	3	0	2	330	50	<10 150	0
J	v	10							00		
DA	PER REC ER/	COV- D ABLE SO G/L (U	AD, TO IS- RE LVED ER G/L (U	SE, NE ITAL S COV- PE ABLE RE IG/L (U	US- NE NDED D COV. SO G/L (U	SE, TO IS- RE LVED ER G/L (U	CORY SOTAL PECOV- REABLE ER	COV- I ABLE SC G/L (U	CURY TO DIS- RE DLVED ER JG/L (L	KEL, S DTAL PE COV- RE ABLE ER UG/L (U	KEL, US- NDED COV- ABLE G/L NI)
JAN		7	2	50	10	40	. 0	. 0	. 0	8	6
19			-	77		17.7		4 7			
MAR		8	0	70	0	70	. 0	. 0	. 0	1	0
MAR 05. JUL		8	0	70 40	0	70 <1	. 0	. 0	. 0	3	0

< Actual value is known to be less than the value shown.

MARIANA ISLANDS, ISLAND OF GUAM 16865000 PAGO RIVER NEAR ORDOT--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

	DATE	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, SUS- PENDED TOTAL (UG/L AS SE)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	SILVER, SUS- PENDED RECOV- ERABLE (UG/L AS AG)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, SUS- PENDED RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	
	JAN 19 MAR	2	0	0	0	0	O	0	40	0	40	
	05	1	0	0	0	0	0	0	30	0	30	
	JUL 22		0	0	0	0	0	0	40	30	8	
	SEP 03	2	0	0	0	0	0	0	20	5	15	
	00,	-							20	J		
	DATE	TIME	CARBON, ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, DRGANIC SUS- PENDED TOTAL (MG/L AS C)		DATE	TIME	CARBON, DRGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)	
	NOV						MAY					
	25 JAN	1000	2. 3		Swarfers.)		06 JUL	1000	2.0			
	19 MAR	1030		6. 1	. 1		22 SEP	1000		3. 2	. 1	
	05	0930		8.1	, 5		03	0845	- T	1.2	<. 1	
			DATE	TIME	PHYTO- PLANK- TON, TOTAL (CELLS PER ML)		DATE	TIME	PHYTO- PLANK- TON, TOTAL (CELLS PER ML)			
			25 JAN 19 MAR 05	1000 1030 0930	26 13 26		MAY 06 JUL 22	1000	77 1800			
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	MENT, SUS-	CHARGE SUS- D PENDE	% FINE	R	DATE	TIME	STREAM FLOW, INSTAN TANEOU (CFS)	MENT; I- SUS- IS PENDE	CHARGE, SUS- D PENDED	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
NOV 25 JAN	1000	14		6 . 2	3 100		JUL 22 SEP				6	100
19	1030	4.6		3 .0	4 100		03	0915	-	-	6	100
MAY 06	1000	. 44	3	6 . 0	4 100							

< Actual value is known to be less than the value shown.

16865000 PAGO RIVER NEAR ORDOT

QUALITATIVE AND ASSOCIATED QUANTITATIVE ANALYSES OF BIOLOGICAL DATA

PHYTOPLANKTON ANALYSES, OCTOBER 1980 TO JULY 1981

DATE TIME		25,80 000		19, 81 .030		5, 81 930		6,81		22, 81 000
TOTAL CELLS/ML		26		13		26		77	-1	800
DIVERSITY: DIVISION		1.0		0.0		0.0		1.6		0. 1
CLASS		1.0		0.0		0.0		1.6		0.1
ORDER		1.0		0.0		0.0		1.6		0.3
FAMILY		1.0		0.0		0.0		1.6		0.3
GENUS		1.0		0. 0		0. 0		1.6		0. 3
	CELLS	PER-	CELLS	PER-	CELLS	PER-	CELLS	PER-	CELLS	PER-
ORGANISM	/ML	CENT	/ML	CENT	/ML	CENT	/ML	CENT	/ML	CENT
CHRYSOPHYTA										
. BACILLARIOPHYCEAE										
FRAGILARIACEAE										
SYNEDRA	25	_		-2	144				14	1
GOMPHONEMATACEAE									***	•
GOMPHONEMA		_	13#	100		_		_		
NAVICULACEAE			10,	100						
NAVICULA	13#	50		=		=		-		-
CRYPTOPHYTA (CRYPTOMONADS)										
CRYPTOPHYCEAE										
CRYPTOMONADALES										
CRYPTOMONADACEAE										
CRYPTOMONAS	13#	50	75	_		-	26#	33		-
CYANOPHYTA (BLUE-GREEN ALGAE)										
. CYANOPHYCEAE										
CHROOCOCCALES										
CHRODCOCCACEAE										
AGMENELLUM		-		-		-		-	55	3
ANACYSTIS		-		-	26#	100	26#	33		-
HORMOGONALES										
OSCILLATORIACEAE										
OSCILLATORIA		-		-		-		-	1700#	96
PYRRHOPHYTA (FIRE ALGAE)										
. DINOPHYCEAE										
PERIDINIALES										
GLENODINIACEAE										
GLENODINIUM		-		-		_	26#	33		-

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

CAROLINE ISLANDS, PALAU ISLANDS

16890600 DIONGRADID RIVER, BABELTHUAP (Formerly published as Adeiddo River, Babelthuap)

LOCATION (REVISED).--Lat 07°36'04" N., long 134°35'02" E., Hydrologic Unit 20100006, on right bank 0.3 mi (0.5 km) upstream from left-bank tributary, 0.9 mi (1.5 km) southeast of Ngetbong village school, and 2.4 mi (3.8 km) upstream from confluence with Ngerchetang.

DRAINAGE AREA. -- 4.45 mi² (11.53 km²) revised.

PERIOD OF RECORD, -- October 1969 to current year.

REVISED RECORDS. -- WDR HI-75-1: 1970(M), 1972-73(P).

GAGE.--Water-stage recorder. Altitude of gage is 15 ft (4.6 km), from topographic map.

REMARKS.--Records fair. No diversion above station. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 12 years, 33.6 ft3/s (0.952 m3/s), 24,340 acre-ft/yr (30.0 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,310 ft 3 /s (65.4 m 3 /s) Jan. 22, 1975, gage height, 15.44 ft (4.706 m), from rating curve extended above 410 ft 3 /s (11.6 m 3 /s) on basis of field estimate at gage height 15.44 ft (4.706 m); minimum, 2.7 ft 3 /s (0.076 m 3 /s) Mar. 24, 25, 31, Apr. 1, 1973, Apr. 28, 29, 1977.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 600 ft³/s (17.0 m³/s) and maximum (*), from rating curve extended as explained above:

			Discha		Gage h	eight		22000	Discha		Gage height	
Date	е	Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Oct.	26	1800	884	25.0	8.72	2.658	Feb. 12	1630	1360	38.5	11.11	3.386
Dec.	27	2100	1430	40.5	11.47	3.496	Feb. 13	0430	950	26.9	9.05	2.758
Jan.	15	0100	*1700	48.1	*12.78	3.895	July 28	0930	1410	39.9	11.32	3.450
Jan.	23	1430	1170	33.1	10.13	3.088						

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

Minimum discharge, 4.8 ft3/s (0.136 m3/s) May 1, 2.

		DISC	HARGE, IN	COBIC PE		EAN VALUES		JC TUBER 17	BU TO SEP	TENBER 19	61	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	54	23	11	69	34	21	8. 4	4. 8	10	27	115	21
2	44	22	11	56	33	21	8.0	9. 2	11	135	110	16
3	39	21	28	51	75	18	7.8	9.2	12	55	89	16
4	34	20	18	51	57	16	7. 5	8.8	12	53	76	15
5	32	21	70	40	94	15	7. 5	11	23	62	142	14
6	31	20	26	36	97	24	7. 3	8.4	64	51	103	14
7	29	19	52	34	55	19	7.5	6.7	29	43	82	14
8	27	17	26	37	50	16	7.5	6.1	19	39	70	14
9	27	18	21	34	46	14	7.3	6.1	60	38	61	13
10	25	50	19	60	40	16	6. 9	28	35	41	61	13
11	22	18	19	40	153	13	7. 5	11	43	35	61	12
12	23	15	22	34	382	19	8.8	7.3	38	78	48	12
13	25	16	37	36	361	22	8.0	8.2	43	69	38	15
14	20	15	82	53	144	14	6.9	9.7	153	61	36	15
15	22	15	41	218	103	12	6. 5	9. 2	162	50	34	14
16	22	17	36	46	82	12	6. 3	8. 2	93	44	33	16
17	26	14	31	49	71	11	9.7	8.6	88	45	29	18
18	20	13	29	40	59	1.1	7.5	15	70	48	27	16
19	18	13	27	40	53	11	6.5	9.7	58	48	25	22
20	19	12	70	36	50	1.1	6. 1	12	53	38	23	23
21	18	12	36	41	44	11	5. 9	11	45	34	22	16
22	16	12	43	45	48	11	5.8	11	40	32	27	30
23	34	17	99	142	38	10	5. 6	9.7	40	30	22	21
24	23	13	62	75	43	9. 9	6.3	8.8	32	31	20	16
25	18	14	49	47	36	11	5. 6	8. 6	30	47	19	15
26	140	15	46	43	30	12	5. 4	9.2	30	52	24	14
27	51	12	234	53	27	9. 9	5. 4	9. 7	25	108	32	35
28	34	11	125	58	24	9.5	5.4	19	25	663	26	64
29	28	10	74	44		9.7	5. 2	20	45	202	32	40
30	25	12	63	38	-	12	5. 0	11	28	147	25	28
31	25		99	36		9.0		11		114	22	
TOTAL	971	477	1606	1682	2329	431.0	205.1	326. 2	1416	2520	1534	592
MEAN	31.3	15.9	51.8	54.3	83. 2	13. 9	6.84	10.5	47. 2	81.3	49.5	19.7
MAX	140	23	234	218	382	24	9.7	28	162	663	142	64
MIN	16	10	11	34	24	9.0	5. 0	4.8	10	27	19	12
AC-FT	1930	946	3190	3340	4620	855	407	647	2810	5000	3040	1170

CAL YR 1980 TOTAL 12039.9 MEAN 32.9 MAX 405 MIN 8.0 AC-FT 23880 WTR YR 1981 TOTAL 14089.3 MEAN 38.6 MAX 663 MIN 4.8 AC-FT 27950

CAROLINE ISLANDS, PALAU ISLANDS

16890900 TABECHEDING RIVER, BABELTHUAP (Formerly published as Tabagaten River, Babelthuap)

LOCATION (REVISED).--Lat 07°27'03" N., long 134°31'29" E., Hydrologic Unit 20100006, on left bank 0.2 mi (0.3 km) downstream from waterfall, 1.5 mi (2.4 km) upstream from boat landing, and 1.6 mi (2.6 km) east of forestry station.

DRAINAGE AREA. -- 6.07 mi² (15.72 km²) revised.

PERIOD OF RECORD. -- October 1970 to current year.

GAGE.--Water-stage recorder. Altitude of gage is 20 ft (6.1 m), from topographic map.

REMARKS.--Records good except those above 500 ft 3 /s (14.2 m 3 /s), which are poor. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--11 years, 49.5 ft3/s (1.402 m3/s), 35,860 acre-ft/yr (44.2 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,580 ft 3 /s (101 m 3 /s) Dec. 23, 1973, gage height, 8.79 ft (2.679 m), from rating curve extended above 290 ft 3 /s (8.21 m 3 /s); minimum, 0.80 ft 3 /s (0.023 m 3 /s) Mar. 23, 24, 1973.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 900 ft³/s (25.5 m³/s), and maximum (*), from rating curve extended as explained above:

D. A.		Disch		Gage 1	neight			Discha		Gage he	eight
Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Oct. 26	1930	1120	31.7	6.44	1.963	July 2	0500	1130	32.0	6.46	1.969
Jan. 15	0330	918	26.0	6.02	1.835	July 28	0800	1920	54.4	7.52	2.292
Feb. 13	0200	1280	36.2	6.73	2.051	Aug. 5	1730	*1930	54.7	*7.53	2.295

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

Minimum discharge, 3.4 ft 3 /s (0.10 m 3 /s) May 1, 2.

		DISC	HARGE, IN	COBIC PE		AN VALUES		CIUBER 13	SO TO SEP	ICHEER 17	31	
DAY	DCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	95	52	25	100	30	20	7.3	3. 4	29	65	175	17
2	73	45	33	82	33	24	6. B	8. 4	38	389	128	12
3	57	40	140	62	54	22	6.2	10	49	187	88	12
4	46	37	60	61	56	18	6.0	108	34	167	68	11
5	40	34	116	59	70	19	5.8	41	70	186	326	10
6	37	31	53	46	146	16	5. 5	22	91	157	200	11
7	34	39	80	42	51	15	5.5	1.3	54	110	116	17
8	31	29	52	47	43	15	6.0	10	40	84	83	1.8
9	29	29	57	40	40	14	5.5	10	246	68	64	15
10	27	27	43	213	34	14	5. 2	11	105	62	78	24
11	25	27	61	65	196	13	5. 5	10	89	53	91	14
12	66	29	45	50	502	12	15	11	293	176	55	12
13	38	27	100	43	328	27	8.2	31	125	68	45	13
14	29	24	195	53	181	13	5.8	18	262	53	39	36
15	25	55	80	243	108	13	5.0	45	299	46	36	29
16	23	32	65	62	77	11	4.8	27	206	40	32	26
17	25	57	51	56	72	9. 7	4.5	25	162	42	29	76
18	26	31	44	64	51	9.4	4.5	17	115	37	27	44
19	28	24	40	48	45	8.8	4.4	16	86	33	25	31
20	24	28	59	43	39	12	4.4	40	71	30	24	25
21	22	21	38	39	35	8. 8	4.4	2.2	75	27	23	43
22	20	22	90	50	36	8.5	4.4	26	54	25	20	96
23	115	66	71	39	31	8. 2	4.0	35	191	25	19	50
24	82	38	149	43	28	7.6	5. 2	24	89	28	18	35
25	42	58	64	34	26	7.6	5 5	19	68	46	16	28
26	329	51	55	62	23	12	4.0	18	102	36	32	25
27	140	27	122	36	23	8.8	3.8	21	60	95	20	178
28	75	32	113	53	20	7. 3	3. 6	106	51	654	18	145
29	130	34	72	60		8. 9	3. 9	77	143	170	16	90
30	60	30	51	37		20	3.6	39	62	150	14	58
31	119		208	32		9. 4		36		116	16	
TOTAL	1912	1013	2432	1964	2378	413.0	164. 3	899. 8	3359	3425	1941	1201
MEAN	61.7	33. 8	78. 5	63. 4	84. 9	13.3	5. 48	29.0	112	110	62.6	40.0
MAX	329	66	208	243	502	27	15	108	299	654	326	178
MIN	20	21	25	32	20	7.3	3.6	3.4	29	25	14	10
AC-FT	3790	2010	4820	3900	4720	819	326	1780	6660	6790	3850	2380

CAL YR 1980 TOTAL 18888.5 MEAN 51.6 MAX 636 MIN 9.1 AC-FT 37470 WTR YR 1981 TOTAL 21102 1 MEAN 57.8 MAX 654 MIN 3.4 AC-FT 41860

AC-FT

2500

1390

CAROLINE ISLANDS, PALAU ISLANDS

16891300 EDENG RIVER, BABELTHUAP (Formerly published as Gaden River, Babelthuap)

LOCATION (REVISED).--Lat 07°23'00" N., long 134°33'07" E., Hydrologic Unit 20100006, on left bank 1,000 ft (305 m) upstream from confluence with Kumekumeyel River, 0.7 mi (1.1 km) north of Palau Mission Academy, and 1.5 mi (2.4 km) northeast of airport terminal.

DRAINAGE AREA. -- 4.26 mi² (11.03 km²) revised.

PERIOD OF RECORD. -- October 1969 to current year.

REVISED RECORDS. -- WDR HI - 79 - 2: 1970 - 78(P).

GAGE.--Water-stage recorder. Altitude of zero of gage is 2 ft (0.6 m), from stadia survey. Prior to Dec. 9, 1974, at site 300 ft (91 m) downstream at datum 0.30 ft (0.09 m) lower.

REMARKS.--Records good. Small amount of water is pumped from site 300 ft (91 m) upstream from station for irrigation 0.5 mi (0.8 km) downstream. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report. Continuous record of rainfall is obtained near station.

AVERAGE DISCHARGE.--12 years, 32.6 ft³/s (0.923 m³/s), 23,620 acre-ft/yr (29.1 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,850 ft 3 /s (52.4 m 3 /s) Apr. 13, 1979, gage height, 18.2 ft (5.54 m), from rating curve extended above 118 ft 3 /s (3.34 m 3 /s) on basis of measurement at gage height 13.0 ft (3.962 m); minimum, 1.6 ft 3 /s (0.045 m 3 /s) Mar. 23, 24, 1973.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 800 ft³/s (22.7 m³/s), and maximum (*), from rating curve extended as explained above:

Date	Time	Discha (ft³/s)		Gage h	eight (m)	Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)
Dec. 31 Feb. 13	0400 0100	1180 1010	33.4	13.75 12.58	4.191 3.834	July 2 July 28	0400 0700	1010 *1300	28.6	12.57 *14.55	3.831 4.435

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

Minimum discharge, $3.5 \text{ ft}^3/\text{s} (0.099 \text{ m}^3/\text{s}) \text{ Apr. } 27.$

MEAN VALUES												
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP
1	62	37	14	73	17	1.7	6.4	3.6	14	73	108	13
2	42	32	18	52	28	24	6.2	4.7	32	300	86	10
3	30	29	61	39	20	55	6.0	4. 7	24	102	62	9. 5
4	26	27	27	67	25	16	5.8	18	17	92	50	9. 0
5	24	26	92	72	40	15	5.8	11	19	125	131	8.8
6	22	24	34	42	55	14	5. 6	78	33	101	110	9. 0
7	20	36	59	45	28	13	5 6	5.0	18	75	72	9.0
8	19	55	24	41	25	16	5 6	4 3	15	58	56	90
9	18	55	24	37	30	12	5.6	4.0	101	50	46	8.8
10	18	24	20	144	53	11	5. 4	4. 2	40	47	56	19
11	17	55	20	52	159	10	5. 6	4. 0	45	42	74	88
12	35	21	50	42	365	10	12	6. 7	206	79	46	8 3
13	20	19	63	37	340	28	6.0	17	63	43	38	8.3
14	17	17	89	40	115	11	5 0	7.9	126	36	33	14
15	17	16	36	127	76	9.8	4.7	15	127	35	30	23
16	15	15	32	41	56	9. 0	4. 7	11	112	28	27	27
17	40	61	26	38	59	8. 5	4.7	46	88	29	25	26
18	58	21	24	39	41	8.0	4 7	14	64	26	23	21
19	24	17	21	33	36	7.8	4.7	9.5	57	53	21	15
50	19	55	53	29	32	8.0	4.3	26	46	21	21	13
21	17	15	19	27	28	7 2	4.3	12	60	20	20	20
55	15	14	18	28	28	7.2	4. 3	13	41	19	18	41
23	105	29	29	26	24	7 2	4.0	21	78	18	17	24
24	52	55	24	30	24	6.8	4.7	12	46	25	16	17
25	31	17	18	22	21	7. 2	4.3	9 5	39	37	15	14
26	194	24	26	21	19	9. 2	3.8	8.3	66	26	18	13
27	90	16	64	20	18	7. 5	3.8	10	40	50	15	107
28	56	55	44	30	17	6.8	3.8	36	35	513	14	81
29	81	18	28	25		14	4.0	33	86	117	12	52
30	43	16	22	20		13	3.8	19	64	97	12	40
31	64		254	18		7.0		18		75	12	
TOTAL	1261	703	1240	1357	1749	363. 2	155.2	416.2	1802	2379	1284	678. 5
MEAN	40.7	23.4	40.0	43.8	62.5	11.7	5.17	13.4	60.1	76.7	41.4	22.6
MAX	194	61	254	144	365	28	12	46	206	513	131	107
MIN	15	14	14	18	17	6.8	3.8	3. 6	14	18	12	8. 3
A 27 per spr	2500	1000		ARC 4 ARC 44			and the first	and the same of the	and the second second	Carlos - Const.		

720

308

826

3570

4720

2550

1350

CAL YR 1980 TOTAL 10981.2 MEAN 30 0 MAX 462 MIN 9.6 AC-FT 21780 WTR YR 1981 TOTAL 13388.1 MEAN 36.7 MAX 513 MIN 3.6 AC-FT 26560

2690

3470

2460

CAROLINE ISLANDS, PALAU ISLANDS

16891310 KMEKUMEL RIVER, BABELTHUAP (Formerly published as Kumekumeyel River, Babelthuap)

LOCATION (REVISED).--Lat 07°23'14" N., long 134°32'42" E., Hydrologic Unit 20100006, 0.5 mi (0.8 km) upstream from confluence with Edeng River and 1.1 mi (1.8 km) north of Palau Mission Academy.

DRAINAGE AREA. -- 1.44 mi² (3.73 km²) revised.

PERIOD OF RECORD. -- September 1978 to current year. Low-flow partial-record station operated "at mouth" 1970-78.

GAGE. -- Water-stage recorder. Altitude of gage is 96.44 ft (29.39 m), from stadia survey.

REMARKS.--Records good. No diversion above gage. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,560 ft 3 /s (44.2 m 3 /s) Apr. 13, 1979, gage height, 10.53 ft (3.210 m), from rating curve extended above 106 ft 3 /s (3.00 m 3 /s) on basis of slope-area measurement at gage height 10.53 ft (3.210 m); minimum, 0.78 ft 3 /s (0.022 m 3 /s) Apr. 27 to May 3, 1981.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 350 ft³/s (99.1 m³/s) and maximum (*), from rating curve as explained above:

		Discharge		Gage height				Discharge		Gage height	
Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Dec. 31	0330	*1020	28.9	*8.82	2.688	June 12	0500	a400	11.3	a6.00	1.829
Feb. 11	2030	448	12.7	6.29	1.917	July 2	0300	481	13.6	6.47	1.972
Feb. 13	0200	473	13.4	6.43	1.960	July 28	0400	799	22.6	7.98	2.432

Minimum discharge, $0.78 \text{ ft}^3/\text{s} (0.022 \text{ m}^3/\text{s})$ Apr. 27 to May 3.

a About.

		DISC	HARGE, IN	CUBIC FE		ECOND, WATER EAN VALUES	YEAR	OCTOBER 198	O TO SEF	TEMBER 19	781	
DAY	DCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP
1	20	8. 6	3. 2	23	4.4	3. 9	1.4	. 78	3. 2	14	29	2.7
2	16	7.5	3.8	17	8.0	6.2	1.3	. 78	6 5	71	23	2 4
3	11	6.6	17	12	5.7	5. 3	1.3	. 94	4.1	55	17	2.2
4	9. 1	6.0	8.0	21	6.6	3. 5	1.3	3.3	3.9	19	13	2.2
5	8.0	5. 6	29	18	12	2.8	1.3	2.2	4.3	58	29	2.0
6	7. 3	5. 4	9.8	12	16	2.8	1.2	1.3	4.8	28	28	2.0
7	6.6	6. 5	7. 5	14	8.0	2.6	1.2	1.1	3.4	20	18	2.3
8	6. 4	4.8	6.4	12	6.4	3.1	1.2	. 94	2.8	16	14	2. 1
9	6.0	5. 0	5.8	11	8.8	2.6	1.3	. 94	29	13	11	1.8
10	5. 4	5. 7	5. 2	48	5. 4	2. 6	1.2	1 . O	10	12	11	4. 4
11	5. 2	4.8	5. 4	17	41	2.6	1.3	. 86	14	10	17	1.8
12	9. 2	4.6	4.6	13	100	2.6	2.8	1.0	64	16	10	2.9
13	6.0	4. 1	19	11	100	7. 2	1.3	6.1	18	9.6	8.6	2.1
14	4.8	4.4	24	11	27	3.2	1.2	2.2	47	8.4	7.5	4.7
15	4.6	3. 7	10	35	18	2.8	1.1	2. 4	43	7. 3	6.8	7. 8
16	4.1	3. 7	12	11	14	2.8	1.1	1.6	38	6. 4	6. 2	8.8
17	10	19	8. 2	9.8	15	2.8	1.0	15	26	7.3	5. 6	14
18	7.3	6.0	6. B	11	10	2.8	1.0	3. 4	19	7.4	5. 2	8.5
19	7.5	4.8	6. 2	9.4	8.6	2. 7	1.0	2.1	15	5.8	4.6	5. 2
20	6.4	5. 0	5. 6	8. 2	7. 5	2. 7	. 94	5. 6	13	5.0	5. 3	4.3
21	5. 0	3.7	5. 2	7. 5	6.8	2. 4	. 94	2.8	12	4.4	4. 4	9.7
55	4.3	4.4	5. 0	7. 5	6.8	2. 2	. 94	2.8	9.6	4. 3	- 4.1	50
23	29	5. 3	7. 1	6.4	6.0	2. 2	. 86	6.0	13	4.1	3. 7	10
24	12	4.3	6.4	8.0	6.4	2. 2	1.2	2.8	8. 9	8.6	3.5	7. 3
25	8. 4	4. 2	4.6	5.8	5, 2	2. 4	1.0	2.2	8. 2	10	3. 4	6.0
26	61	5. B	6.8	5. 4	4.8	2. 2	. 94	2.0	11	5.4	4.8	5. 4
27	25	3. 9	16	5. 2	4. 4	2.1	. 86	3. 2	7.5	11	3.5	31
28	16	4.6	12	8. 9	4. 1	1.6	. 78	7.4	6.8	186	3. 2	2.7
29	17	4.1	9.6	6.8		4. 4	86	6.1	17	32	3.0	17
30	10	4.1	6.4	5. 0	THE PARTY	3. 2	. 78	5. 6	6.9	26	2.7	13
31	13		86	4. 4	-	1.8	-	4. 1		50	2.8	
TOTAL	361.6	166.2	362.6	395.3	466. 9	94.3	34.60	98.54	469. 9	638.0	308. 9	230.6
MEAN	11.7	5. 54	11.7	12.8	16.7	3.04	1.15	3.18	15.7	20.6	9.96	7.69
MAX	61	19	86	48	100	7.2	2.8	15	64	186	29	31
MIN	4. 1	3. 7	3. 2	4.4	4. 1	1.6	. 78	. 78	2.8	4. 1	2.7	1.8
AC-FT	717	330	719	784	926	187	69	195	932	1270	613	457

CAL YR 1980 TOTAL 3368, 90 MEAN 9. 20 MAX 163 MIN 2. 2 AC-FT 6680 WTR YR 1981 TOTAL 3627, 44 MEAN 9. 94 MAX 186 MIN , 78 AC-FT 7200

CAROLINE ISLANDS, PALAU ISLANDS

16891400 SOUTH FORK NGERDORCH RIVER, BABELTHUAP (Formerly published as South Fork Ngardok River, Babelthuap)

LOCATION (REVISED).--Lat 07°26'19" N., long 134°34'28" E., Hydrologic Unit 20100006, on right bank 0.3 mi (0.5 km) from left-bank tributary, 1.3 mi (2.1 km) west of Rrai village, and 1.5 mi (2.4 km) upstream from confluence with North Fork Ngerdorch River.

DRAINAGE AREA. -- 2.44 mi² (6.32 km²) revised.

PERIOD OF RECORD. -- March 1971 to current year.

REVISED RECORDS. -- WDR HI-75-1: 1971(M), 1972, 1973(P), 1974.

GAGE.--Water-stage recorder. Altitude of gage is 65 ft (20 m), from topographic map.

REMARKS.--Records good. No diversion above station. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--10 years, 19.9 ft^3/s (0.564 m^3/s), 14,420 acre-ft/yr (17.8 hm^3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,750 ft 3 /s (163 m 3 /s), Dec. 13, 1974, gage height, 9.19 ft (2.801 m), from rating curve extended above 65 ft 3 /s (1.84 m 3 /s) on basis of field estimate at gage height 7.57 ft (2.307 m); minimum, 0.55 ft 3 /s (0.016 m 3 /s) Mar. 9, 1973.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 750 ft³/s (21.2 m³/s), and maximum (*), from rating curve extended as explained above:

		Discharge		Gage height				Discharge		Gage height	
Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Oct. 26	1900	1340	37.9	4.93	1.503	July 2	a0500	a900	25.5	-	-
Dec. 13	2230	1110	31.4	4.58	1.396	July 12	0700	1840	52.1	5.60	1.707
Jan. 15	0330	928	26.3	4.28	1.305	July 28	0800	*2160	61.2	*5.99	1.826
Feb. 11	2030	1040	29.5	4.47	1.362	Aug. 5	1700	2100	59.5	5.92	1.804
Feb. 13	0130	1320	37.4	4.90	1.494						

MEAN VALUES

MAR

FEB

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

APR

MAY

375.3

12.1

56

1. 5

744

1378

45. 9

134

2730

16

1566. 1

50.5

438

9.3

3110

78.3

2.61

7.4

1.5

155

JUIN.

JUL

AUG

828. 7

26. 7

201

4 4

1640

369. 4

12.3

81

3.2

733

SEP

Minimum discharge, 1.2 ft3/s (0.034 m3/s) May 1, 2.

DEC

JAN

a About.

OCT

NOV

DAY

TOTAL

MEAN

MAX

MIN

AC-FT

722. 1

23. 3

167

1430

306.4

10.2

23

5. 7

805. 6

26.0

86

6. 2

1600

78 47 32 25 201	5. 7 4. 0 4. 0 3. 6 3. 6
32 25 201	4.0
25 201	3.6
25 201	3.6
201	
82	4.0
41	4.4
29	4. 0
23	3.6
38	7.8
39	3. 6
55	3. 2
18	3. 2
16	9.4
14	11
12	12
11	10
9.9	9.9
9.3	6.2
8. 7	5. 2
B. 0	8 1
7.4	23
6.8	12
6.2	8.0
5. 7	6.2
9. 8	5. 7
6.8	81
5. 7	59
5. 2	28
4.4	20
6.8	
	29 23 38 39 22 18 16 14 12 11 9,3 7,4 8,0 7,4 8,6,2 7 9,8 8,7 9,8 8,7 9,8 8,7 9,8 8,7 9,8 8,7 9,8 8,7 9,8 9,8 9,8 9,8 9,8 9,8 9,8 9,8 9,8 9,8

180.9

5.84

22

3. 2

359

CAL YR 1980 TOTAL 7061.5 MEAN 19.3 MAX 463 MIN 2.9 AC-FT 14010 WTR YR 1981 TOTAL 8717.2 MEAN 23.9 MAX 438 MIN 1.5 AC-FT 17290

745

24 0

139

11

1361.4

48 6

349

7.4

CAROLINE ISLANDS, YAP ISLANDS

16892400 QARINGEEL STREAM, YAP (Formerly published as Aringel Stream, Yap)

LOCATION (REVISED).--Lat 09°31'02" N., long 138°05'31" E., Hydrologic Unit 20100006, on right bank at Qaringeel and 0.3 mi (0.5 km) southwest of Dalipeebinaew School.

DRAINAGE AREA. -- 0.24 mi² (0.62 km²).

PERIOD OF RECORD .-- April 1968 to current year.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 15 ft (4.6 m), revised, from topographic map.

REMARKS.--Records fair. No diversion above station. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--13 years, 1.10 ft³/s (0.031 m³/s), 797 acre-ft/yr (983,000 m³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 674 ft 3 /s (19.1 m 3 /s) July 13, 1981, gage height, 7.82 ft (2.384 m), from rating curve extended above 20 ft 3 /s (0.57 m 3 /s); no flow for many days most years.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 200 ft³/s (5.66 m³/s) and maximum (*), from rating curve extended as explained above:

		Disch		Gage height			T:	Disch	arge	Gage height	
Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Oct. 18	1700	201	5.69	4.92	1.500	July 27	0230	355	10.1	6.00	1.829
Dec. 2	1800	277	7.84	5.48	1.670	Aug. 5	1830	300	8.50	5.63	1.716
July 13	2300	*674	19.1	*7.82	2.384						

No flow for many days.

		DISC	HARGE, IN	CUBIC FE	ET PER SEC	OND, WATE	R YEAR O	CTOBER 15	80 TO SE	PTEMBER 19	781	
DAY	DCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	18	. 04	2.7	1.6	. 92	. 01	. 00	. 00	. 02	. 88	1. 9	. 02
2	3. 8	. 02	10	. 41	1 4	. 33	. 00	. 00	. 02	. 89	. 81	. 02
3	1.3	. 02	. 91	. 93	. 31	. 17	. 00	. 00	. 03	1.3	2.0	. 02
4	. 53	01	1.4	1. 5	. 19	. 06	. 00	. 00	. 02	. 44	2.6	. 02
		. 01	. 31	. 53		. 03						
5	. 16	. 01	. 31	. 53	. 29	. 03	. 00	.00	. 02	, 23	16	. 02
6	. 07	. 0.1	97	. 23	. 39	. 02	. 00	. 01	. 01	. 14	15	. 02
7	2. 4	. 01	. 23	. 13	29	. 02	. 00	. 00	. 01	. 75	1.2	. 02
8	. 87	. 02	. 11	. 07	. 19	. 01	. 00	00	. 02	. 79	1.2	. 02
9	. 25	. 02	. 06	. 28	. 16	. 01	. 00	00	. 56	. 61	3. 9	. 02
10	. 14	. 04	. 04	. 13	10	. 01	. 00	.00	. 57	4.6	1.1	02
10	. 44	. 04	. 04	. 13	- 10	01	. 00	, 00	. 57	4. 0	1. 1	. UE:
11	. 16	. 33	. 04	. 07	. 27	. 00	. 00	01	1.6	1.6	. 37	. 01
12	29	. 29	. 03	. 04	14	. 01	.00	01	. 85	1.3	. 27	. 01
13	. 16	44	1.3	. 10	3.5	. 00	. 00	. 01	. 57	25	6. 0	. 01
14	. 07	. 17	13	2. 1	. 47	. 00	. 00	. 01	4.6	19	89	. 58
15	. 08	13	4.6	15	21	. 00	. 00	. 00	1.2	. 77	. 27	1.5
1.0	. 00	. 15	4.0	10	. 61	- 00	. 00	. 00	1.2	. //	. 21	1. 5
16	58	. 17	1.9	6.2	. 13	. 00	00	. 00	35	. 35	11	10
17	2. 5	16	. 37	1.3	. 07	00	. 00	. 00	1.7	. 37	. 05	2.4
18	13	. 05	. 19	2.1	04	. 00	. 00	. 00	. 44	. 68	. 03	14
19	2. 9	. 04	. 10	. 47	. 04	. 00	. 00	00	1.1	. 44	. 02	1.5
50	3. 5	03	06	. 53	. 04	. 00	. 00	01	2.1	5. 3	. 02	. 73
21	2. 9	00	0.0	5. 0	. 03	0.0	0.0	0.0	70			
		. 03	. 04			. 00	. 00	02	. 73	. 93	. 01	4.8
55	3.1	. 03	. 57	. 44	. 05	. 00	. 00	. 02	. 31	. 44	. 01	2.4
53	6.8	. 03	. 35	. 25	. 02	. 00	. 00	, 37	. 21	. 31	. 01	2.6
24	1.4	. 14	. 13	. 26	. 02	. 00	. 00	. 17	. 17	3. 7	. 01	. 65
25	. 50	. 17	- 06	. 31	. 01	. 01	. 00	. 08	. 10	. 81	. 01	. 31
26	88	. 06	. 04	. 76	. 01	. 01	. 00	. 06	. 08	. 33	.00	9. 2
27	39	. 03	. 25	3.2	. 01	. 01	. 00	. 05	. 08	25	7. 5	17
28	. 19	. 03	. 17	1.1	. 01	. 00	. 00	. 06	. 08	8. 4	. 50	11
29	10	1.7	. 07	93		. 00	. 00	. 06	4. 0	1.5	. 15	. 89
30	. 06	. 25		. 31								
			. 05			. 00	. 00	. 04	1.0	. 89	. 05	. 41
31	. 04		3. 1	. 16		. 00		. 03		2. 5	. 03	
TOTAL	67.12	4. 48	43.15	46.44	23.14	. 71	. 00	1.02	22.55	110.25	62. 02	80.20
MEAN	2.17	. 15	1.39	1 50	. 83	. 023	. 000	. 033	. 75	3. 56	2.00	2.67
MAX	18	1.7	13	15	14	. 33	. 00	. 37	4.6	25	16	17
MIN	. 04	. 01	. 03	. 04	. 01	. 00	. 00	. 00	. 01	. 14	. 00	. 01
AC-FT	133	8. 9	86	92	46	1.4	. 00	2.0	45	219	123	159
.10		U . 7	00	, e.	40	1.7	. 00	2. 0	70	217	123	107

CAL YR 1980 TOTAL 401.56 MEAN 1.10 MAX 28 MIN .00 AC-FT 796 WTR YR 1981 TOTAL 461.08 MEAN 1.26 MAX 25 MIN .00 AC-FT 915

CAROLINE ISLANDS, YAP ISLANDS

16892800 DALOELAEB STREAM, YAP (Formerly published as Dalolab Stream, Yap)

LOCATION (REVISED).--Lat 09°31'05" N., long 138°06'21" E., Hydrologic Unit 20100006, on left bank 0.17 mi (0.27 km) north of Daloelaeb Hill water tank and 1.3 mi (2.1 km) northwest of Protestant Mission Church in Colonia.

DRAINAGE AREA. -- 0.07 mi2 (0.18 km2).

PERIOD OF RECORD. -- April 1968 to current year.

REVISED RECORDS. -- WDR HI-79-2: Drainage area.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 110 ft (34 m), revised, from topographic map.

REMARKS.--Records fair. No diversion above station. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 13 years, 0.366 ft 3/s (0.010 m3/s), 265 acre-ft/yr (327,000 m3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 180 ft 3 /s (5.10 m 3 /s) Sept. 15, 1973, gage height, 4.80 ft (1.463 m), from floodmark in well, from rating curve extended above 17 ft 3 /s (0.48 m 3 /s); no flow for many days each year.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 75 ft 3 /s (2.12 m 3 /s) and maximum (*), from rating curve extended as explained above:

Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)	Date	Time	Discharge (ft ³ /s) (m ³ /s)	Gage 1	neight (m)
Oct. 18	1800	87	2.46	3.70	1.128	July 27	0200	125 3.54	4.21	1.283
Dec. 2	1700	109	3.09	4.01	1.222	Aug. 5	1800	108 3.06	4.00	1.219
July 13	a2300	*151	4.28	*4.51	1.375					

No flow for many days.

a About.

		DISC	CHARGE, IN	CUBIC FE		COND, WATE	ER YEAR O	CTOBER 19	80 TO SEF	TEMBER 19	981	
DAY	DCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	4. 0	.00	81	. 73	. 46	.00	. 00	00	. 00	. 12	. 65	. 01
2	. 33	. 00	3.3	. 12	. 71	. 09	. 00	00	. 00	08	. 17	. 00
3	. 06	00	25	. 19	. 05	03	.00	00	00	. 17	1 1	00
4	. 02	00	40	10	02	01	. 00	00	. 00	. 03	. 66	. 00
5	. 01	.00	. 09	. 04	55	01	00	00	00	01	5. 9	. 00
6	. 01	00	30	03	12	00	. 00	00	. 00	01	5 7	. 00
7	. 75	. 00	10	03	10	. 00	. 00	00	.00	17	. 43	. 00
8	. 30	01	- 03	. 02	. 04	.00	00	00	. 00	42	44	00
9	. 02	01	02	. 05	. 03	. 00	. 00	00	. 57	. 10	1.6	00
10	. 01	03	01	. 02	. 01	. 00	00	00	08	1.0	. 30	. 00
11	. 01	- 08	. 00	01	10	. 00	00	00	15	. 50	. 05	00
12	. 02	. 04	. 00	. 01	6.4	. 00	. 00	. 00	24	. 30	04	. 00
13	. 01	. 08	. 55	. 02	1.4	. 00	. 00	.00	12	5.0	2.2	. 00
14	01	. 03	6.0	. 44	. 05	. 00	.00	.00	2 3	5.0	55	. 04
15	. 01	. 06	. 88	3. 9	. 01	00	00	. 00	19	. 20	. 03	. 28
16	. 02	. 08	36	1.8	01	. 00	.00	.00	03	05	01	3. 8
17	. 61	. 08	05	. 39	. 01	. 00	00	- 00	30	. 03	. 01	. 94
18	4.7	. 03	. 02	. 72	. 00	. 00	00	. 00	24	12	. 01	4. 2
19	1.3	. 03	. 01	. 10	. 00	. 00	. 00	- 00	. 59	. 05	01	. 50
20	99	. 02	. 01	. 30	. 00	. 00	.00	. 00	. 94	2.8	00	12
21	61	. 01	. 01	1.4	. 00	. 00	00	. 01	14	. 24	. 00	1.4
55	1.3	. 01	. 02	. 10	. 00	. 00	. 00	. 00	. 02	. 06	. 00	49
53	2.6	. 02	. 01	. 04	. 00	. 00	. 00	06	. 01	. 04	. 00	1.0
24	. 30	. 02	. 01	. 05	. 00	. 00	. 00	01	01	1.1	. 00	. 10
25	10	. 02	. 00	. 04	. 00	. 00	. 00	00	. 00	. 12	. 00	. 03
26	25	. 01	. 00	. 13	. 00	. 00	. 00	. 00	. 01	. 03	. 00	3. 2
27	. 05	. 01	. 19	1.2	. 00	. 00	. 00	. 00	01	8.8	2.4	6.1
28	. 02	. 01	. 05	. 35	. 00	. 00	. 00	. 00	01	3. 1	. 08	4 3
29	. 01	. 40	01	22		. 00	. 00	. 00	96	33	. 02	24
30	. 01	. 02	. 01	04		. 00	. 00	00	19	24	. 01	02
31	. 00	. Ue:	1.4	. 02		. 00		- 00	17	81	01	
TOTAL	18. 44	1. 11	14. 90	12.61	9. 74	. 14	. 00	. 08	7. 12	31.03	22. 05	26. 77
MEAN	. 59	037	. 48	. 41	. 35	. 005	. 000	. 003	24	1.00	. 71	89
MAX	4.7	. 40	6.0	3. 9	6.4	. 003	. 000	. 06	2.3	8.8	5. 9	6.1
						. 00	. 00	. 00	. 00	. 01	. 00	00
MIN	. 00	. 00	. 00	. 01	. 00	. 3	. 00	. 2		62	44	53
AC-FT	37	2. 2	30	25	19	. 3	. 00	. ~	14	Oz!	44	23

CAL YR 1980 TOTAL 128.41 MEAN .35 MAX 8.7 MIN .00 AC-FT 255 WTR YR 1981 TOTAL 143.99 MEAN .39 MAX 8.8 MIN .00 AC-FT 286

CAROLINE ISLANDS, YAP ISLANDS

16892900 PEEMGOY STREAM, YAP (Formerly published as Pemgoy Stream, Yap)

LOCATION (REVISED).--Lat 09°31'07" N., long 138°06'36" E., Hydrologic Unit 20100006, on right bank at Taalgum, 100 ft (30 m) upstream from Taalgum Stream, 0.3 mi (0.5 km) southeast of Mount Peemgoy, and 1.0 mi (1.6 km) northwest of Protestant Mission Church in Colonia.

DRAINAGE AREA. -- 0.14 mi² (0.36 km²).

PERIOD OF RECORD. -- April 1968 to current year.

REVISED RECORDS. -- WDR HI - 79 - 2: Drainage area.

GAGE.--Water-stage recorder. Concrete control since Mar. 30, 1974. Altitude of gage is 60 ft (18 m), revised, from topographic map.

REMARKS.--Records fair. No diversion above station. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 13 years, 0.591 ft 3/s (0.017 m3/s), 428 acre-ft/yr (528,000 m3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 335 ft 3 /s (9.49 m 3 /s) July 13, 1981, gage height, 5.40 ft (1.646 m), from rating curve extended above 15 ft 3 /s (0.42 m 3 /s); no flow for many days most years.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 70 ft³/s (1.98 m³/s) and maximum (*), from rating curve extended as explained above:

Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)	Date	Time	Discha (ft³/s)	arge (m³/s)	Gage h	eight (m)
Dec. 2 July 13	1730 2300	94 *335	2.66	3.33 *5.40	1.015 1.646	July 27 Aug. 5	0300 1800	228 94	6.46	4.63	1.411

No flow for many days.

DISCHARGE,	IN	COBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1980	10	SEP	LEMBER	1981
					MEAN VA	LUES							

DAY	DCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	6.6	. 03	1.2	1.8	. 87	. 02	. 01	. 00	. 01	. 24	1.6	. 01
2	. 98	. 02	4. 1	. 18	1.3	. 24	. 00	. 00	. 00	. 27	. 47	. 01
3	. 16	. 02	. 93	. 34	. 24	. 07	. 01	. 00	. 00	. 71	1.7	. 01
4	. 08	. 02	1.1	. 14	. 12	. 02	. 01	. 00	. 00	. 11	2.0	. 01
5	. 05	. 01	. 16	. 08	82	. 01	. 01	. 01	01	. 04	8.1	. 01
3	. 03	. 01	. 10	. 06	. 02	. 01	. 01	. 01	. 01	. 04	0.1	. 01
6	. 03	. 02	. 58	. 07	. 69	. 01	. 01	. 02	. 00	. 03	9. 0	. 01
7	1.0	. 02	. 09	. 03	. 34	. 01	. 00	. 00	01	. 58	1.2	. 01
8	. 47	. 04	. 06	. 02	. 18	. 01	. 00	. 00	. 01	. 85	1.4	01
9	. 07	. 04	. 03	. 08	. 18	. 01	. 00	. 00	. 21	. 34	2.4	. 01
10	. 04	. 07	. 03	. 06	. 08	. 00	. 00	. 00	. 08	1.7	1.2	. 01
11	. 03	. 24	. 02	. 03	. 24	. 00	. 00	. 00	. 18	1.0	. 18	. 01
12	. 03	. 08	. 02	. 02	9. 5	. 01	. 00	01	. 52	. 69	. 08	. 01
13	. 02	. 21	1.1	. 07	2.9	. 00	. 00	. 00	. 42	9.7	2.8	. 02
14	. 01	. 11	7. 5	. 31	. 21	. 00	. 00	. 00	2.3	9.0	1. 1	. 06
15	. 04	. 18	1.1	5. 2	. 08	. 00	. 00	. 00	. 34	. 38	14	. 49
1.0		. 10	1. 1	J. E	. 06	. 00	, 00	. 00	. 54	. 50	, 17	. 77
16	. 18	. 18	1.2	2.8	. 07	. 00	. 00	. 00	. 07	. 11	. 05	5. 6
17	. 58	. 14	. 09	. 93	. 04	. 00	. 00	. 00	. 47	. 09	. 03	2.1
18	6. 3	. 07	. 05	1.1	03	00	. 00	. 00	. 58	. 12	. 02	6 4
19	2. 2	. 08	. 02	. 25	. 03	. 00	. 00	. 01	. 95	. 08	. 01	2.0
20	1.4	. 05	. 02	. 75	. 02	. 00	. 00	. 00	2.0	3.6	. 01	. 47
	•	. 00	. 02	. , ,	. 02	. 00	. 00	00	2. 0	.0.0		
21	. 58	. 03	. 01	2.5	. 01	. 01	. 00	. 01	. 44	. 81	01	1.7
22	2.5	. 03	. 03	. 20	. 01	. 01	. 00	. 02	. 06	. 21	. 01	1 4
23	3.0	. 02	. 03	. 10	. 02	. 01	. 00	. 30	. 03	. 11	. 01	1.8
24	1. 1	. 02	. 01	. 10	. 02	. 00	. 00	. 03	. 03	1.8	. 01	. 24
25	. 30	. 02	. 01	. 10	. 02	. 01	. 00	. 01	. 02	. 38	. 01	. 06
26	. 58	. 02	. 01	. 25	. 01	. 01	. 00	. 01	. 05	. 09	. 01	4. 9
27	. 24	. 02	. 51	3. 0	. 01	. 01	. 00	. 01	. 12	12	4. 8	9.8
28	. 09	. 02	. 07	. 75	. 01	. 01	. 00	. 01	. 03	4.5	. 30	6.6
29	. 06				-01							
		. 68	. 02	. 50		. 00	. 00	. 01	2.7	. 81	. 09	. 97
30	. 04	. 06	. 01	. 14		. 01	. 00	. 00	. 47	. 52	. 03	. 11
31	. 03		1.8	. 09		. 01		. 00		1.5	. 01	
TOTAL	28. 79	2. 55	21.91	21.99	18. 05	. 50	. 05	. 46	12.11	52. 37	38. 78	44. 84
MEAN	. 93	. 085	. 71	. 71	. 64	. 016	. 002	. 015	. 40	1.69	1.25	1.49
MAX	6.6	. 68	7. 5	5. 2	9. 5	. 24	. 01	. 30	2.7	12	9. 0	9.8
MIN	. 01	. 01	. 01	. 02	. 01	. 00	. 00	. 00	. 00	. 03	. 01	. 01
AC-FT	57	5. 1	43	44	36	1.0	. 10	. 9	24	104	77	89
A - C												70

CAL YR 1980 TOTAL 199. 94 MEAN . 55 MAX 14 MIN . 00 AC-FT 397 WTR YR 1981 TOTAL 242. 40 MEAN . 66 MAX 12 MIN . 00 AC-FT 481

CAROLINE ISLANDS, YAP ISLANDS

16893100 BURONG STREAM, YAP

LOCATION (REVISED).--Lat $09^{\circ}32'05"$ N., 1 ong $138^{\circ}07'19"$ E., Hydrologic Unit 20100006, on left bank at Dugor, 0.25 mi (0.40 km) upstream from mouth, and 0.5 mi (0.8 km) northeast of Mount Gamuw.

DRAINAGE AREA. -- 0.23 mi2 (0.60 km2).

PERIOD OF RECORD. -- April 1968 to current year.

REVISED RECORDS. -- WDR HI-79-2: Drainage area, 1968-78(P).

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 15 ft (4.6 m), from topographic map.

REMARKS.--Records good except those for period of no gage-height record, which are poor. No diversion above station. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--13 years, 0.935 ft^3/s (0.026 m^3/s), 677 acre-ft/yr (835,000 m^3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 505 ft 3 /s (14.3 m 3 /s) July 4, 1980, gage height, 5.30 ft (1.615 m), from rating curve extended above 15 ft 3 /s (0.42 m 3 /s); no flow for many days most years.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of $100 \text{ ft}^3/\text{s}$ (2.83 m $^3/\text{s}$), and maximum (*), from rating curve extended as explained above:

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

		Disch	arge	Gage h	eight
Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
July 13	2300	*433	12.3	*5.06	1.542
July 27	a0200	194	5.49	4.04	1.231
Aug. 5	a1800	157	4.45	3.82	1.164

No flow for many days.

a About.

DAY DCT NOV DEC JAN FEB MAR AFR MAY JUN JUL AUG SEP			Dio	71111027 21	. 00210 12	ME	AN VALUES	in Turns Co	01000111 27	00 ,0 01.	TENDEN T		
2 1.9 0 05 6 0 30 1.7 24 00 00 00 11 75 06 3 3 57 05 15 50 47 11 00 00 00 00 11 20 05 6 02 00 00 00 11 20 00 5 02 5 02 02 03 30 15 27 04 00 00 00 00 00 11 20 15 02 02 03 30 15 07 04 00 00 00 00 00 00 15 07 02 02 00 00 00 00 00 00 00 00 00 00 00	DAY	DCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1	10	. 06	1.0	3. 0	95	. 02	00	00	00	. 18	2.0	. 06
3	2	1.9	. 05	6.0	. 30		24	. 00	. 00	. 00	. 11	. 75	06
4													
5 .22 .03 .30 .15 .27 .04 .00 .00 .00 .02 .15 .02 6 .13 .03 1.0 .12 1.4 .03 .00 .00 .00 .01 .15 .02 7 .2.6 .03 .15 .05 .65 .02 .00 .00 .00 .12 .1.5 .02 8 1.3 .06 .10 .04 .47 .01 .00 .00 .00 .3 .1.5 .01 9 .30 .07 .07 .12 .34 .01 .00 .00 .00 .46 .0 .02 10 .18 .12 .05 .10 .22 .01 .00 .00 .00 .01 .1 .0 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00													
7 2.6 03 15 05 65 02 00 00 00 1.2 1.5 02 B 1.3 06 10 04 47 01 00 00 00 33 1.5 01 10 18 12 05 10 22 01 00 00 00 66 3.0 02 10 18 12 05 10 22 01 00 00 00 1.4 1.0 01 11 13 40 04 05 47 01 00 00 00 70 30 01 12 10 12 04 04 17 01 00 00 00 13 5 0 15 15 10 46 01 00 00 00 13 5 0 24 14 40 40 12 50 00	5												
B	6	. 13	. 03	1.0	. 12	1.4	. 03	. 00	. 00	. 00	. 01	15	. 02
9	7	2.6	. 03	. 15	. 05	. 65	. 02	. 00	.00	. 00	1.2	1. 5	. 02
10	8	1.3	. 06	. 10	. 04	. 47	. 01	. 00	. 00	. 00	3.3	1.5	. 01
11	9	. 30	. 07	. 07	. 12	. 34	. 01	. 00	. 00	. 00	. 66	3.0	. 02
12	10	. 18	. 12	. 05	. 10	. 22	. 01	. 00	. 00	. 00	1.4	1.0	. 01
13	11	. 13	40	. 04	. 05	. 47	. 01	. 00	. 00	. 00	. 70	. 30	. 01
14	12	. 10	. 12	. 04	. 04	17	. 01	. 00	. 00	. 01	. 37	. 10	. 52
15	13	. 08	. 35	1.5	. 10	4.6	. 01	. 00	. 00	. 00	13	5. 0	. 24
16	14	. 06	. 15	12	. 50	. 75	. 00	. 00	. 00	1.0	16	1.0	1.6
17	15	. 42	. 30	1.8	4.1	. 25	. 00	00	00	. 24	. 60	. 25	3. 6
18 8.4 10 09 1.1 05 00 00 00 11 30 03 8.7 19 5.2 12 05 44 05 00 00 00 20 11 02 2.1 20 3.2 08 04 1.2 05 00 00 00 00 20 11 02 2.1 20 3.2 08 04 1.2 05 00 00 00 00 13 4.2 01 71 21 .70 07 03 3.1 04 00 00 00 34 85 01 1.8 22 2.5 06 05 37 03 00 00 00 04 24 00 1.8 23 4.0 .05 05 16 02 00 00 04 01 11 00 3.2 24 2.0 .04 .03 .25 .02 .00 .00 01 .00 .	16	. 44	. 30	2.0	4.8	. 10	. 00	. 00	. 00	. 03	18	. 10	11
19	17	1.0	. 20	15	1.6	. 05	. 00	. 00	. 00	. 18	1 2	. 05	3.5
20	18	8.4	. 10	09	1.1	. 05	. 00	. 00	. 00	. 11	. 30	. 03	8.7
21	19	5. 2	. 12	. 05	. 44	. 05	. 00	- 00	. 00	, 20	. 11	. 02	2.1
22 2.5 06 05 37 03 00 00 00 06 24 00 1.8 23 4.0 .05 .05 .16 .02 .00 .00 .04 .01 .11 .00 .3.2 24 2.0 .04 .03 .25 .02 .00 .00 .01 .00 4.5 .00 .57 25 .44 .04 .02 .24 .02 .00 .00 .01 .00 .4.5 .00 .57 26 .1.1 .04 .02 .62 .02 .00 .00 .00 .00 .72 .01 .20 26 .1.1 .04 .02 .62 .02 .00 .00 .00 .34 .20 .01 .7.5 27 .1.2 .04 .80 .4.1 .01 .00 .00 .00 .03 .34 .20 .7.2 .16 28 .34 .04 .12 .1.4 .01 .00 .00	20	3. 2	. 08	, 04	1.2	. 05	. 00	. 00	. 00	1, 3	4. 2	. 01	71
23	21	. 70	. 07	. 03	3. 1	. 04	. 00	- 00	. 00	. 34	. 85	. 01	1.8
24 2.0 .04 .03 .25 .02 .00 .00 .01 .00 .4.5 .00 .57 25 .44 .04 .02 .24 .02 .00 .00 .00 .00 .72 .01 .20 26 1.1 .04 .02 .62 .02 .00 .00 .00 .18 .20 .01 .7.5 27 1.2 .04 .80 .4.1 .01 .00 .00 .00 .34 .20 .7.2 .16 28 .34 .04 .12 .1.4 .01 .00 .00 .00 .07 .8.0 .70 .10 29 .16 .1.0 .05 .1.2 .00 .00 .00 .11 .1.5 .1.0 .1.5 30 .10 .10 .03 .34 .00 .00 .00 .87 .1.0 .22 .34	55	2.5	. 06	. 05	. 37	. 03	. 00	. 00	. 00	. 06	. 24	. 00	1.8
25	23	4.0	. 05	. 05	. 16	. 02	. 00	, 00	. 04	01	11	. 00	3. 2
26 1.1 04 02 62 02 00 00 00 18 20 01 7.5 27 1.2 04 80 4.1 01 00 00 00 34 20 7.2 16 28 34 04 12 1.4 01 00 00 00 07 8.0 70 10 29 16 10 05 1.2 00 00 00 11 1.5 1.0 1.5 30 10 10 03 34 00 00 00 87 1.0 22 34 31 08 3.0 18 00 2.5 08 TOTAL 49.15 4.14 33.88 30.52 32.68 57 00 05 15.94 83.35 60.34 75.18 MEAN 1.59 1.4 1.09 98 1.17 018 000 002 53 2.69 1.95 2.51 MAX 10 1.0 12 4.8 17 24 00 04 11 20 15 16 MIN 06 03 02 04 01 00 00 00 00 00 01 10 00 01	24	2.0	. 04	. 03	. 25	. 02	. 00	. 00	. 01	. 00	4. 5	. 00	. 57
27 1.2 .04 .80 4.1 .01 .00 .00 .00 .34 20 7.2 16 28 .34 .04 .12 1.4 .01 .00 .00 .00 .00 .07 8.0 .70 10 29 .16 1.0 .05 1.2 .00 .00 .00 .00 .11 1.5 1.0 .15 30 .10 .10 .03 .34 .00 .00 .00 .00 .87 1.0 .22 .34 31 .08 3.0 .18 .00 00 2.5 .08 TOTAL 49.15 4.14 33.88 30.52 32.68 .57 .00 .05 15.94 83.35 60.34 75.18 MEAN 1.59 .14 1.09 .98 1.17 .018 .000 .002 .53 2.69 1.95 2.51 MAX 10 1.0 .12 4.8 17 .24 .00 .00 .00 .01 .00 .01 .00 .01 .00	25	. 44	. 04	. 02	. 24	. 02	. 00	. 00	00	. 00	. 72	. 01	. 20
28	26	1.1	. 04	. 02	. 62	. 02	. 00	. 00	. 00	. 18	. 20	01	7.5
29 16 1.0 .05 1.2 .00 .00 .00 .11 1.5 1.0 1.5 30 .10 .10 .03 .34 .00 .00 .00 .87 1.0 .22 .34 31 .08 3.0 .18 .00 .00 2.5 .08 TOTAL 49.15 4.14 33.88 30.52 32.68 57 .00 .05 15.94 83.35 60.34 75.18 MEAN 1.59 .14 1.09 .98 1.17 .018 .000 .002 .53 2.69 1.75 2.51 MAX 10 1.0 12 4.8 17 .24 .00 .04 11 20 15 16 MIN .06 .03 .02 .04 .01 .00 .00 .00 .00 .01 .00 .01			. 04	. 80	4. 1	. 01	. 00	. 00	. 00	. 34	20	7.2	16
30	28	. 34	. 04	. 12	1.4	. 01	. 00	. 00	. 00	. 07	8.0	. 70	10
30	29	. 16	1.0	. 05	1.2		. 00	. 00	. 00	11	1.5	1.0	1.5
TOTAL 49.15 4.14 33.88 30.52 32.68 57 .00 .05 15.94 83.35 60.34 75.18 MEAN 1.59 .14 1.09 .98 1.17 .018 .000 .002 .53 2.69 1.95 2.51 MAX 10 1.0 12 4.8 17 .24 .00 .04 11 20 15 16 MIN .06 .03 .02 .04 .01 .00 .00 .00 .00 .00 .01 .00 .01	30	. 10	. 10	. 03	. 34		. 00	. 00	. 00	. 87	1.0	. 22	. 34
MEAN 1.59 .14 1.09 .98 1.17 .018 .000 .002 .53 2.69 1.95 2.51 MAX 10 1.0 12 4.8 17 .24 .00 .04 11 20 15 16 MIN .06 .03 .02 .04 .01 .00 .00 .00 .00 .00 .01 .00 .01	31	. 08		3.0	. 18		. 00		. 00		2.5	. 08	
MAX 10 1.0 12 4.8 17 .24 .00 .04 11 20 15 16 MIN .06 .03 .02 .04 .01 .00 .00 .00 .00 .01 .00 .01	TOTAL	49. 15	4.14	33.88	30. 52	32. 68	57	. 00	. 05	15. 94	83. 35	60.34	75. 18
MAX 10 1.0 12 4.8 17 .24 .00 .04 11 20 15 16 MIN .06 .03 .02 .04 .01 .00 .00 .00 .00 .01 .00 .01	MEAN	1.59	. 14	1.09	. 98	1.17	.018	. 000	. 002	. 53	2.69	1, 95	2.51
MIN .06 .03 .02 .04 .01 .00 .00 .00 .00 .01 .00 .01	MAX	10	1.0	12	4.8	17	. 24	. 00	. 04	11	50	15	16
	MIN	. 06	. 03	. 02	. 04	. 01	. 00	. 00	. 00	. 00		. 00	. 01
	AC-FT	97	8.2	67	61	65		. 00	_ 10	32		120	149

CAL YR 1980 TOTAL 335.44 MEAN .92 MAX 25 MIN .00 AC-FT 665 WTR YR 1981 TOTAL 385.80 MEAN 1.06 MAX 20 MIN .00 AC-FT 765

NOTE. -- No gage-height record Nov. 4 to Jan. 14.

CAROLINE ISLANDS, YAP ISLANDS

16893200 MUKONG STREAM, GAGIL-TAMIL (Formerly published as Mukong Stream, Gagil-Tomil)

LOCATION (REVISED).--Lat 09°32'05" N., long 138°10'18" E., Hydrologic Unit 20100006, on right bank 0.2 mi (0.3 km) upstream from mouth and 0.9 mi (1.4 km) south of U.S. Coast Guard LORAN station.

DRAINAGE AREA. -- 0.50 mi² (1.29 km²)

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1972-75, December 1974 to June 1978, July to September 1978, stage-discharge relation indefinite due to blocked control. October 1978 to current year.

REVISED RECORDS. -- WDR HI-79-2: Drainage area.

GAGE.--Water-stage recorder. Altitude of gage is 5 ft (1.5 m), from topographic map.

REMARKS.--Records poor. At times some water is pumped from above station for village use. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--5 years (water years 1976-77, 1979-81), 1.88 ft³/s (0.053 m³/s), 1,360 acre-ft/yr (1.68 hm³/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 39 ft 3 /s (1.10 m 3 /s) Jan. 22, 1975, gage height, 2.69 ft (0.820 m), from rating curve extended 12 ft 3 /s (0.33 m 3 /s); maximum gage height, 3.40 ft (1.036 m), from floodmark, Sept. 14, 1978; minimum discharge, 0.07 ft 3 /s (0.002 m 3 /s) Apr. 9, 1979, Mar. 15, 1980, May 4, 1981.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 30 ft 3 /s (0.85 m 3 /s) July 14, gage height, 3.62 ft (1.103 m), from rating curve extended above 6.2 ft 3 /s (0.18 m 3 /s); no other peak above base of 25 ft 3 /s (0.71 m 3 /s); minimum, 0.07 ft 3 /s (0.002 m 3 /s) May 4.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

					ME	EAN VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	6.8	. 55	5.0	2. 5	1.7	. 67	22	. 20	14	2.0	3. 5	93
2	3.8	. 50	15	1.5	2.0	1.8	. 20	. 18	14	1.4	2.6	87
3	3. 2	. 50	5. 0	1.5	1.0	81	18	15	. 12	1.2	3. 4	81
4	1.8	. 50	2.5	2.5	. 93	71	. 18	12	12	93	4 2	71
5	1.5	51	2.0	1.5	3. 4	. 63	. 18	. 18	. 12	. 93	8. 7	. 67
6	1.7	. 59	2.5	1.2	1.8	. 63	. 18	. 35	12	93	13	91
7	2. 9	. 67	2.0	1.0	2.0	67	. 18	. 28	. 10	2.5	4.3	. 99
8	2. 9	1.3	1 5	1.0	1.8	63	. 20	50	10	1.6	3. 6	. 71
9	1.8	. 71	1.0	1. 2	1.6	. 63	18	. 15	. 10	1. 5	4. 0	. 67
10	1.5	. 81	81	1.0	1. 4	. 59	18	. 10	. 10	4. 0	5.8	75
11	1.3	. 81	71	1. 0	1.2	. 63	. 15	18	. 10	2. 9	2, 3	75
12	1.4	. 90	67	75	25	63	15	50	15	1.5	2. 1	. 75
13	1. 2	1.2	2.4	1 0	7.5	. 43	15	18	12	1 6	3.6	. 67
14	1. 1	63	7.3	3.5	2. 0	. 35	15	. 12	2.5	14	3. 0	. 47
15	1.8	63	3.0	20	1.5	. 33	. 15	15	1.0	3.0	2.0	81
16	1.6	67	3. 5	10	1.4	: 33	18	. 66	90	2.1	1.7	4 9
17	1.5	67	1.6	8, 3	1.2	. 28	18	. 40	1 0	2.9	1.6	5.3
18	4. 2	. 51	1.3	6.0	1. 1	. 25	. 18	. 20	. 67	2.1	1. 4	7.2
19	4. 6	51	1.1	3.5	. 99	. 28	18	. 18	. 81	1.8	1.3	2.7
20	4. 1	. 43	. 93	2.6		. 25	18	16	2.0	4.5	1.2	2.0
ε.U	4. 1	. 43	. 73	2.0	1.0	. = 2	. 10	. 10	a. 0	4. 5	1, 2	£. 0
21	1.8	. 43	1.4	3. 4	-81	. 28	. 15	. 14	1.6	2.7	1.2	3.0
22	3.9	. 47	. 99	2.5	. 75	. 25	. 15	. 12	1.1	2.1	1.1	2. 9
23	3. 7	, 43	. 87	1.8	. 71	25	12	. 40	. 75	1 8	1.0	2.7
24	2.7	. 43	. 75	1.8	. 67	. 25	. 12	. 20	. 55	3.4	1.1	2 1
25	1.8	. 43	71	1. 5	. 63	28	. 10	. 18	43	3. 1	1.3	8 1
26	1.5	47	. 63	1.8	. 55	. 28	. 10	. 16	1.0	2. 9	1.2	4. 2
27	1.1	47	3.7	4.9	. 47	. 25	. 18	. 16	1.1	7.4	5. 6	16
28	. 81	. 45	1.4	1.9	. 55	. 22	. 35	. 16	. 82	8.9	2.4	11
29	. 67	2.5	. 93	1.8		. 22	30	. 16	5. 9	2.7	1.7	3.9
30	. 67	1.0	. 87	1.2	-	22	. 25	14	3. 1	2.3	1 2	23
31	. 59		5.0	. 99		. 22		. 14		2. 7	1.2	
TOTAL	69. 94	20. 68	77. 07	95.14	65.66	14. 25	5. 35	6.30	26.76	93.39	92.3	83. 47
MEAN	2.26	69	2.49	3. 07	2.35	46	18	50	. 89	3.01	2. 98	2. 78
MAX	6.8	2.5	15	20	25	1.8	. 35	66	5. 9	14	13	16
MIN	. 59	. 43	63	. 75	. 47	55	10	10	10	. 93	1.0	47
AC-FT	139	41	153	189	130	28	11	12	53	185	183	166
	4.00.1	-4.7	100	107	100	2.0	1.1	12	1213	100	100	100

CAL YR 1980 TOTAL 610.38 MEAN 1.67 MAX 18 MIN .18 AC-FT 1210 WTR YR 1981 TOTAL 650.31 MEAN 1.78 MAX 25 MIN .10 AC-FT 1290

CAROLINE ISLANDS, TRUK ISLANDS

16893700 WICHEN RIVER AT ALTITUDE 55 M, MOEN

LOCATION (REVISED).--Lat 07°26'37" N., long 151°51'39" E., Hydrologic Unit 20100006, on left bank at Peniesence, 0.9 mi (1.4 km) upstream from mouth, and 1.6 mi (2.6 km) west of Saint Xaviers Academy.

DRAINAGE AREA. -- 0.21 mi2 (0.54 km2).

PERIOD OF RECORD. -- June 1968 to September 1978, October 1979 to January 1980, May to December 1980.

REVISED RECORDS. -- WDR HI-77-2: 1974-76(P).

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 180 ft (55 m), from topographic map.

REMARKS.--Records fair. No diversion above station. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--10 years, 1.03 ft³/s (0.029 m³/s), 746 acre-ft/yr (920,000 m³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 338 ft 3 /s (9.57 m 3 /s) Sept. 27, 1978, gage height, 4.25 ft (1.295 m), from floodmark, from rating curve extended above 4.6 ft 3 /s (0.13 m 3 /s); minimum, 0.01 ft 3 /s (<0.001 m 3 /s) Mar. 29-31, 1969, for several days in March and April 1973, for many days in February and March 1975, in February, March, April 1977, Jan. 14, 15, and Mar. 27 to Apr. 10, 1978.

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period October to December, 103 ft 3 /s (2.92 m 3 /s) Oct. 29, gage height, 2.88 ft (0.878 m), from rating curve extended as explained above, no other peak above base of 70 ft 3 /s (1.98 m 3 /s); minimum, 0.04 ft 3 /s (0.001 m 3 /s) Nov. 26-29.

DISCHARGE, IN CUBIC FEET PER SECOND, OCTOBER TO DECEMBER 1980

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 20	3. 4	25									
2	21	2.8	25									
2 3 4	34	2.0	. 10									
4	2.4	1.6	. 10									
5	83	1.2	07									
	,,,,		- 0.									
6	, 52	. 92	1.7									
7	40	75	1.3									
8	7.4	. 59	46									
8 9	1.0	52	29									
10	1.0	46	. 21									
11	. 40	. 40	29									
12	. 34	34	29									
13	29	. 29	3. 3									
14	. 25	. 25	. 92									
15	29	25	3. 6									
16	21	25	2.9									
17	- 21	21	1.6									
18	29	13	6.3									
19	. 92	. 10	3.4									
50	. 75	07	2.1									
21	. 52	21	1.8									
22	. 46	10	1.3									
53	59	10	4.6									
24	4.5	. 07	2.4									
25	3. 4	07	1.6									
26	3.8	. 07	1.6									
27	2.4	. 05	1.3									
28	6.2	. 05	1.3									
29	15	. 05	4.8									
	= /	. 03	4. 5									
30 31	5, 6 4, 3											
21	4. 3		3. 4									
TOTAL	57.60	17. 37	58.03									
MEAN	1.86	. 58	1.87									
MAX	15	3.4	6.3									
MIN	. 20	. 05	07									
AC-FT	114	34	115									
7.00		~ T										

CAROLINE ISLANDS, TRUK ISLANDS

16893800 WICHEN RIVER AT ALTITUDE 18 M, MOEN

LOCATION (REVISED).--Lat 07°27'01" N., long 151°51'56" E., Hydrologic Unit 20100006, on left bank at Peniesence, 0.3 mi (0.5 km) upstream from mouth, and 1.4 mi (2.3 km) west of Saint Xaviers Academy.

DRAINAGE AREA. -- 0.57 mi² (1.48 km²).

PERIOD OF RECORD.--April 1955 to March 1956 (published as "at Peniesence"), June 1968 to January 1980, May 1980 to current year. All figures of discharge above 3 ft³/s (0.085 m³/s) prior to April 1956, published in WSP 1751, are unreliable and should not be used.

REVISED RECORDS. -- WSP 2137, WDR-HI-79-2: Drainage area.

GAGE.--Water-stage recorder and concrete control since Mar. 29, 1973. Altitude of gage is 60 ft (18 m), from topographic map. Prior to Apr. 1, 1956, nonrecording gage at site 100 ft (30 m) downstream at different datum

REMARKS.--Records fair. No diversion above station. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--12 years, 3.02 ft 3 /s (0.086 m 3 /s), 2,190 acre-ft/yr (2.70 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 910 ft 3 /s (25.8 m 3 /s) June 4, 1972, gage height, 6.80 ft (2.073 m), from rating curve extended above 28 ft 3 /s (0.79 m 3 /s); minimum, 0.01 ft 3 /s (<0.001 m 3 /s) Apr. 16-19, 1977.

EXTREMES FOR CURRENT YEAR.--Peak discharges recorded above base of 200 ft³/s (5.66 m³/s) and maximum (*), from rating curve extended as explained above:

	m.		harge	Gage h		40.00		Disch		Gage h	
Date	Time	(ft³/s	$)(m^{3}/s)$	(ft)	(m)	Date	Time	(ft³/s)	(m^3/s)	(ft)	(m)
Oct. 24	1730	236	6.68	3.47	1.058	Jan. 13	0930	232	6.57	3.45	1.052
Oct. 28	1145	204	5.78	3.26	. 994	Jan. 18	2015	224	6.34	3.39	1.033
Oct. 29	1315	*477	13.5	*5.08	1.548	Apr. 27	1500	454	12.9	4.93	1.503
Jan 4	2200	375	10.6	4 40	1 341						

Minimum discharge, 0.03 ft 3 /s (<0.001 m 3 /s) Mar. 13, 17.

		DIS	CHARGE, IN	CUBIC FE		ECOND, WATE		OCTOBER 1	980 TO SEF	TEMBER 1	981	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP
1	. 65	9.0	. 54	6. 4	1.9	19	91	2.1	. 26	1.3	. 59	1.4
2	. 56	6.4	1, 1	17	1.5	. 15	. 61	1.5	6.6	1.7	4. 9	1.0
3	1. 1	4.3	, 43	8. 4	1.2	. 19	. 41	1.2	2. 5	1.5	7.8	. 83
4	8. 1	3. 6	. 29	41	1.2	. 17	. 30	3 9	1.3	1.2	3.3	. 72
5	2. 5	2.8	. 18	28	. 90	. 11	. 24	7. 1	. 76	3. 3	2. 1	62
6	1.6	2. 3	5. 4	8. 2	. 75	. 11	. 18	5. 6	. 73	2.3	1.4	, 92
7	1.2	1.8	4.6	5. 0	. 61	. 11	. 16	3.4	5. 6	2.1	2 3	17
8	2.1	1.5	2.0	3. 6	. 92	. 11	. 11	2.4	4.1	2. 0	2.3	3.7
9	3.3	1.2	1.2	2.6	. 99	. 10	. 25	1.8	6. 9	1.4	18	2.3
10	1. 9	1.1	. 91	2. 3	. 68	. 08	. 33	1.3	17	1.1	6. 3	1.7
11	1.3	1 0	1.1	2.2	. 95	. 08	. 17	1.1	7. 4	2.1	7. 1	1.3
12	1.1	91	1 4	2.0	. 88	. 08	. 12	. 91	6. 9	6. 9	4.4	1.2
13	. 83	. 76	12	28	. 83	. 08	. 14	. 68	8. 5	4.1	3.1	1.3
14	. 66	. 65	3.1	8.0	. 65	. 08	. 23	. 64	4. 9	2.7	2.3	. 90
15	. 90	. 55	10	4. 3	. 50	. 08	. 48	. 54	3.3	2.1	1.7	1.8
16	. 66	. 60	7.2	3. 1	. 81	. 07	11	. 45	2.6	1.6	1.4	3.7
17	. 61	. 55	4.2	3. 4	. 86	. 06	8.5	. 87	2.1	3. 6	1 2	7.7
18	. 53	. 45	21	15	2.0	. 06	3.2	. 90	2. 1	4.2	1.1	4.0
19	1.4	. 33	8.1	15	2.0	. 08	1 8	. 62	1.5	3.0	1.1	2.7
20	. 95	. 29	4. 6	6. 5	1.1	. 05	1.1	1.1	3. 1	6. 4	2. 2	2.1
21	. 73	. 83	4. 1	4. 4	. 64	. 16	. 83	. 71	3.6	3. 6	2.3	2.3
22	. 64	. 36	3. 2	3. 1	. 49	. 42	. 63	. 63	2.2	2.6	1.5	7.6
23	1.0	. 30	11	3. 1	. 46	. 32	. 56	. 66	1.6	2.0	1.6	7.4
24	23	. 29	4.8	5. 9	. 34	. 38	42	. 61	1.5	1.6	1.7	4.3
25	11	. 23	3. 3	4. 7	. 24	. 22	. 48	. 84	1. 2	1.4	3.8	3.4
26	7. 9	. 19	3. 2	3. 1	. 24	. 24	. 39	. 78	. 89	1.2	11	2.9
27	5.4	. 20	2.7	2.3	. 22	2.9	59	. 66	1.8	. 84	8.4	22
28	25	. 17	2.6	8.6	. 18	3.8	11	. 61	3. 6	. 48	3. 9	1.8
29	77	. 17	13	4. 0		2.3	4.5	. 43	2. 1	. 90	2.6	4.7
30	15	. 17	12	2.8		1.3	3.0	. 32	1.9	. 58	2.0	3. 1
31	11		8. 6	2. 1		1.2		27		. 46	1.7	
TOTAL.	209. 62	43. 00	157. 85	254. 1	24. 04	15. 28	111.05	44.63	108. 54	70.46	115.09	96. 59
MEAN	6.76	1. 43	5. 09	8. 20	. 86	. 49	3. 70	1.44	3. 62	2. 27	3. 71	3. 22
MAX	77	9.0	21	41	2.0	3.8	59	7. 1	17	6.9	18	17
MIN	. 53	. 17	. 18	2.0	. 18	. 05	. 11	. 27	. 26	. 46	. 59	. 62
AC-FT	416	85	313	504	48	30	550	89	215	140	228	192

WTR YR 1981 TOTAL 1250.25 MEAN 3.43 MAX 77 MIN .05 AC-FT 2480

16897600 NANPIL RIVER (Formerly published as Nanepil River)

LOCATION (REVISED).--Lat $06^\circ55^\circ09^{\circ\prime}$ N., long $158^\circ11^{\circ}59^{\circ\prime}$ E., Hydrologic Unit 20100006, on left bank 0.1 mi (0.2 km) upstream from diversion dam and 1.3 mi (2.1 km) upstream from Kiepw River.

DRAINAGE AREA. -- 3.00 mi² (7.77 km²), revised.

PERIOD OF RECORD. -- March 1970 to current year.

REVISED RECORDS. -- WDR HI-76-1: 1970(M), 1971-72(P), 1973(M), 1974(P), 1975(M).

GAGE. -- Water-stage recorder. Altitude of gage is 370 ft (113 m), revised, from topographic map.

REMARKS.--Records fair except those for period of no gage-height record, which are poor. No diversion above station. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--11 years, 47.5 ft3/s (1.345 m3/s), 34,410 acre-ft/yr (42.4 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,820 ft $^3/s$ (250 m $^3/s$) Aug. 4, 1976, gage height, 9.68 ft (2.950 m), from rating curve extended above 168 ft $^3/s$ (4.76 m $^3/s$) on basis of slope-area measurement at gage height 9.68 ft (2.950 m); minimum, 1.6 ft $^3/s$ (0.045 m $^3/s$) Nov. 17-23, 1972, Feb. 6, Oct. 21, 22, 1973.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, about 4,000 ft 3 /s (113 m 3 /s) Aug. 7, gage height unknown, no other peak above base of 3,200 ft 3 /s (90.6 m 3 /s); minimum, 4.6 ft 3 /s (0.130 m 3 /s) Mar. 17-20.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981 MEAN VALUES

DAY	DCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	16	31	21	24	50	9.8	12	117	16	12	102	20
2	158	18	16	62	98	8.3	10	86	13	14	57	15
3	26	12	9.2	69	57	10	8.3	69	12	1.07	31	11
4	1.5	8.0	8. 1	26	30	8.3	11	39	9.4	70	18	8.0
5	112	7.2	6. 4	16	20	6.5	11	42	12	23	12	17
6	19	7. 0	5. 6	14	15	5. 9	20	29	4.1	16	20	19
7	17	14	5. 1	11	14	5.6	10	18	25	11	280	35
8	33	8.1	5. 1	12	83	10	27	12	71	11	40	15
9	17	7. 5	8. 1	9.6	62	8 7	30	17	74	39	45	70
10	14	7.3	20	14	36	7.6	34	14	53	16	30	50
11	12	13	18	63	48	16	32	11	156	32	20	14
12	9.2	9. 2	13	59	28	8.7	86	13	36	20	15	17
13	128	19	18	17	18	7. 3	66	8. 7	41	64	11	16
14	20	11	10	14	14	6. 5	83	8. 7	38	79	26	13
15	37	27	17	11	12	7. 0	108	9. 0	71	37	15	11
13	3/	2/	17	1.1	12	7. 0	106	7. 0	/1	3/	1.0	11
16	21	17	14	68	160	5. 9	52	8.0	36	31	17	15
17	12	27	65	43	170	5. 1	78	21	40	18	56	30
18	11	25	118	16	36	5. 4	46	33	81	12	22	29
19	24	12	46	40	41	5. 1	28	74	28	11	18	68
20	16	15	30	197	26	6.8	34	21	30	9 0	15	75
21	11	23	52	31	18	17	17	20	22	10	17	25
55	9.6	24	16	29	24	39	16	37	74	13	10	35
23	34	11	11	59	15	67	12	62	30	10	25	45
24	57	9.2	10	51	12	97	9.4	24	46	7. 2	15	75
25	27	7.3	9. 6	40	13	31	13	14	36	10	50	50
26	14	6.7	11	21	10	74	18	67	18	81	50	30
27	24	7.8	14	78	10	49	159	38	15	102	30	18
28	22	5.6	26	70	14	36	63	61	88	26	15	14
29	148	8.8	12	41		21	21	39	26	46	10	12
30	108	8.5	102	20		24	19	25	16	23	30	10
31	29		30	60		14		25		89	70	(
TOTAL	1200.8	407. 2	717. 2	1285.6	1134	623. 5	1133.7	1062.4	1254. 4	1049. 2	1142	832. 0
MEAN	38. 7	13. 6	23. 1	41.5	40. 5	20. 1	37. 8	34.3	41.8	33.8	36.8	27. 7
MAX	158	31	118	197	170	97	159	117	156	107	280	75
MIN	9. 2	5. 6	5. 1	9.6	10	5. 1	8.3	8.0	9. 4	7. 2	10	8.0
AC-FT	2380	808	1420	2550	2250	1240	2250	2110	2490	2080	2270	1650
MC-F1	2300	000	1420	2000	2230	1240	2230	2110	2470	2000	22/0	1650

CAL YR 1980 TOTAL 15859.4 MEAN 43.3 MAX 350 MIN 4.2 AC-FT 31460 WTR YR 1981 TOTAL 11842.0 MEAN 32.4 MAX 280 MIN 5.1 AC-FT 23490

NOTE. -- No gage-height record Aug. 6 to Sept. 30.

16897900 LEWI RIVER (Formerly published as Lui River)

LOCATION (REVISED).--Lat 06°55'32" N., long 158°12'18" E., Hydrologic Unit 20100006, on right bank at road and pipeline crossing, 300 ft (91 m) upstream from right-bank tributary and 2.4 mi (3.9 km) upstream from mouth.

DRAINAGE AREA. -- 0.46 mi² (1.19 km²), revised.

PERIOD OF RECORD. -- March 1970 to current year.

GAGE .- - Water-stage recorder. Altitude of gage is 290 ft (88 m), revised, from topographic map.

REMARKS.--Records good except those for period of no gage-height record, which are poor. No diversion above station. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--11 years, 5.44 ft³/s (0.154 m³/s), 3,940 acre-ft/yr (4.86 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,190 ft 3 /s (33.7 m 3 /s) Aug. 4, 1976, gage height, 5.92 ft (1.804 m), from rating curve extended above 37 ft 3 /s (1.05 m 3 /s), on basis of slope-area measurement at gage height 5.92 ft (1.804 m); minimum, 0.13 ft 3 /s (0.004 m 3 /s) Feb. 2-4, 1973.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 570 ft 3 /s (16.1 m 3 /s) Aug. 7, gage height, 4.35 ft (1.326 m), from rating curve extended above 8.8 ft 3 /s (0.25 m 3 /s), on basis of slope-area measurement at gage height 5.92 ft (1.804 m); minimum, 0.35 ft 3 /s (0.010 m 3 /s) Mar. 18-20.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981 MEAN VALUES

DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	NUC	JUL	AUG	SEP
1	1.2	5 5	2.0	3. 7	2.8	1.0	1.2	13	1.7	1.6	3. 5	3. 6
2	3.8	3.6	1.4	9. 0	6.1	. 80	1.1	18	1.4	1.5	2.9	2.3
3	3. 8	2 4	1.0	7.6	5. 5	. 75	. 98	10	1.5	15	2.5	1.6
4	2.0	1.8	. 89	3. 1	3.6	. 70	. 98	8. 5	. 92	12	1.7	1.2
5	7.0	1.4	81	1. 7	2.0	. 65	92	5.3	1.3	3. 5	1.3	2.9
3	7.0	1. 4	. 61	1. /	2.0	. 63	: 7 E-	J. 3	1. 3	3. 5	1, 3	2. 7
6	4.6	1.2	. 73	1.2	1.3	. 65	1.1	2.9	4.8	2.1	2.6	2.9
7	3.4	3, 2	. 66	. 97	1 1	. 60	1.0	2.1	2.2	1.6	43	5. 6
8	4.6	1.5	73	1.0	9.0	. 60	2.5	1.7	14	2.6	5.8	2.2
9	3. 4	1.3	1.7	81	8.4	. 65	3. 9	1.8	12	3.7	6.3	11
10	2.8	1.8	3.2	2.0	4. 0	. 60	5. 4	1.6	9. 4	2. 1	4.6	2.9
10	2. 0	1.0	U. 2	E. 0	7. 9	. 00	<i></i>	1			1. 3	
1.1	3. 2	1.6	2.5	2.0	5.5	. 70	4.8	1.3	25	4.3	3.0	2, 1
12	2. 3	1.2	1.4	4.8	2.5	. 65	8 5	1.3	4.6	2.6	2.6	3.2
13	4.4	3. 1	1.6	1.8	1.5	. 60	12	1 0	4.6	7.4	1, 5	2.2
14	5. 0	2.1	97	1.2	1.1	. 50	7.8	98	4.7	7.8	4.6	2. 2
15	4. 4	4. 2	1.5	1.0	97	45	15	98	10	4.4	2.2	1 6
16	4.0	2.8	1.3	2. 8	33	. 40	7. 4	92	3. 9	6.1	2.3	1.9
17	2.5	9.8	6.7	4. 5	27	. 40	12	2.7	4.6	3. 1	8. 5	5. 0
18	2. 4	4. 2	20	1.3	4.8	, 35	5. 9	4. 1	11	2.0	3. 1	4.4
19	4.4	2.2	8. 4	3. 5	5.0	. 35	3. 0	6.8	4. 0	1.8	2.8	9.8
20	3. 4	2.0	2.6	17	3. 4	. 35	4. 7	2.5	4, 3	1.3	2.0	12
21	2.3	5. 5	2.5	3. 0	2.0	1.5	2. 1	2 5	2.6	1.3	2.4	3.6
22	2.0	4.2	2.0	2.6	1 7	2.0	1.7	4.8	7.3	2. 5	1.5	4.6
23	3.8	2.1	1.3	3. 5	1.2	5. 0	1.2	7.3	3.6	2.0	4.2	6.6
24	6.1	1.6	1.1	5. 4	. 97	7. 0	1.1	2.4	2.9	1.2	2.1	11
25	5. 9	1 3	1.3	5. 4	81	4. 0	1.4	1.5	3. 1	1.2	2. 9	9. 0
					,							
25	3.1	1.3	1.8	1.8	1.0	8.8	1.3	8.9	2.0	5. 2	7.5	5.3
27	4.2	1.5	1.5	7.0	. BO	7.1	19	5. 4	1.8	14	5.2	2.7
28	3.6	. 97	3. 4	6. 3	1.2	4.3	9.6	7.6	11.	3. 5	2.0	2. 7
29	6.4	1.1	1.2	3.8		2.1	2.7	7.4	3. 1	5. 2	1.5	2.0
30	6.7	1.0	11	2.0		2.8	4.1	3.1	2.0	2.9	4.8	1.5
31	5. 0		5. 5	3.4		1.6		2.8		4.6	11	line relief
TOTAL	121.7	77. 47	92.69	115.18	138, 25	57.95	144, 38	141 18	165.32	130. 1	151.9	129.6
MEAN	3. 93	2. 58	2. 99	3.72	4.94	1. 87	4. 81	4. 55	5. 51	4. 20	4. 90	4. 32
MAX	7.0	9.8	2. 79	17	33	8.8	19	18	25	15	4. 70	12
MIN	1.2	97	. 66	. 81	. 80	. 35	. 92	. 92	. 92	1.2	1.3	1.2
AC-FT	241	154	184	558	274	115	286	580	358	258	301	257

CAL YR 1980 TOTAL 2025, 57 MEAN 5.53 MAX 68 MIN .43 AC-FT 4020 WTR YR 1981 TOTAL 1465, 72 MEAN 4.02 MAX 43 MIN .35 AC-FT 2910

NOTE. -- No gage-height record Feb. 26 to Mar. 26.

16898200 LEWI RIVER AT MOUTH (Formerly published as Lui River at mouth)

LOCATION (REVISED).--Lat 06°57'04" N., long 158°12'39" E., Hydrologic Unit 20100006, on right bank 0.3 mi (0.5 km) upstream from bridge at mouth and 0.4 mi (0.6 km) west southwest of Ponape State Hospital.

DRAINAGE AREA. -- 2.08 mi² (5.39 km²), revised.

PERIOD OF RECORD. -- March 1970 to current year.

REVISED RECORDS. -- WDR HI-76-1: 1970(P), 1971-75.

GAGE.--Water-stage recorder. Altitude of gage is 30 ft (9.1 m), revised, from topographic map.

REMARKS.--Records good except those for period of no gage-height record, which are poor. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 11 years, 25.5 ft³/s (0.722 m³/s), 18,470 acre-ft/yr (22.8 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,360 ft³/s (180 m³/s) Aug. 4, 1976, gage height, 8.91 ft (2.716 m), from rating curve extended above 288 ft³/s (8.16 m³/s) on basis of slope-area measurement at gage height 8.91 ft (2.716 m); minimum, 0.26 ft³/s (0.007 m³/s) Jan. 20, 1973, during short regulation of flow.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, about 2,200 ft 3 /s (62.3 m 3 /s) Aug. 7, gage height unknown, no other peak above base of 2,000 ft 3 /s (56.6 m 3 /s); minimum, 2.3 ft 3 /s (0.065 m 3 /s) Mar. 19, 20.

DISCHARGE,	IN	CABIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1980	TO	SEPTEMBER	1981	
					MEAN VA	LIFE							

DAY	OCT	NOV	DEC	NAL	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEE
1	11	26	7. 0	19	15	5 2	7. 3	112	16	11	22	122
2	45	19	6.0	35	29	5. 2	6 3	119	12	9 9	18	1.4
3	20	14	5. 2	33	30	5. 2	5. 7	80	10	73	15	10
4	13	10	5.0	19	22	4.6	5. 1	58	9. 0	56	11	8.0
5	60	8.8	4. 6	14	15	4.2	48	29	11	23	8. 6	18
6	19	8.1	4.2	10	11	3.9	5.9	22	17	1.7	20	24
7	17	11	3. 9	8.6	9.9	3.5	4 4	15	13	13	250	37
8	23	8. 1	3. 8	7. 5	32	3.6	1.1	11	44	15	40	15
9	16	7.3	5. 5	6.5		3 9	11	11		15		70
		7 1			30				46		43	
10	14	/ 1	9.0	8. 6	20	3. 5	14	9 4	50	11	30	18
11	12	6.8	7. 9	8. 4	20	4.5	13	8. 4	168	29	30	14
12	9 9	6.3	5. 6	17	1.4	3 5	26	7.5	33	17	15	55
13	51	9. 2	5.8	8.4	10	3. 4	.36	5.5	20	50	1.1	1 5
14	15	6.8	4.8	6.5	8.4	3.1	34	6.2	36	54	25	12
15	14	14	5. 9	5. 4	7 7	2 9	57	6.5	53	30	15	10
16	12	10	5 1	14	127	2.7	34	5.9	26	42	18	14
17	9 0	20	50	19	115	2.6	38	13	28	21	56	33
18	8. 6	15	48	8.1	26	2.5	32	17	48	14	20	28
19	15	10	37	10	20	2.5	20	24	29	11	16	60
50	10	9.0	15	112	16	2, 5	26	13	26	9.8	13	24
21	8 4	16	12	18	12	4 1	15	14	19	9 5	16	25
55	7.0	14	10	15	11	5. 7	12	84	38	17	10	32
23	13	9. 2	8 4	18	9.2	19	9.4	33	25	13	24	50
24	31	8. 1	8.6	25	7. 7	34	7. 9	22	20	8.0	1.4	72
25	17	7. 0	8.8	25	7. 1	15	7. 9	39	19	9 5	50	55
26	10	7.1	10	13	6.2	40	7.1	56	13	40	48	30
27	14	7.0	8.4	37	6.8	29	34	34	1.1	90	32	13
58	11	6.0	1.1	31	8.1	21	41	45	131	25	13	14
29	67	5.6	7.5	53		12	15	57	18	35	10	12
30	62	5.6	31	15	Section .	14	20	80	13	20	30	10
31	24		22	16	man local prime	8.8		53		30	70	=
TOTAL	558. 9	310.1	347.0	606.0	646. 1	276.6	563.8	1071 4	1015.0	817.8	953. 6	335. 0
MEAN	21.3	10.3	11.2	19.5	23. 1	8. 92	18.8	34. 6	33. 8	25. 4	30. 8	27.8
MAX	67	26	48	112	127	40	57	119	168	90	250	74
MIN	7.0	5. 6	3.8	5. 4	6.2	2.5	4.4	5_9	9. 0	8 0	8.6	8 0
AC-FT	1310		688									
AC-F1	1310	615	000	1200	1280	549	1120	2130	2010	1620	1890	1660

CAL YR 1980 TOTAL 9429 4 MEAN 25.8 MAX 351 MIN 3.8 AC-FT 18700 WTR YR 1981 TOTAL 8101.3 MEAN 22.2 MAX 250 MIN 2.5 AC-FT 16070

NOTE. -- No gage-height record July 11 to Sept. 30.

16898600 LUHPWOR RIVER (Formerly published as Lupwor River)

LOCATION (REVISED).--Lat 06°54'09" N., long 158°09'07" E., Hydrologic Unit 20100006, on left bank about 300 ft (91 m) upstream from 50-ft (15-m) waterfall, 0.2 mi (0.3 km) downstream from highway bridge, and 0.2 mi (0.3 km) west of Pwakorokot Hill.

DRAINAGE AREA. -- 0.72 mi² (1.86 km²), revised.

PERIOD OF RECORD. -- September 1972 to current year.

GAGE.--Water-stage recorder. Altitude of gage is 145 ft (44 m), revised, from topographic map.

REMARKS.--Records good. Water-quality analyses and periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 9 years, 8.98 ft3/s (0.254 m3/s), 6,510 acre-ft/yr (8.03 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,090 ft 3 /s (87.5 m 3 /s) Aug. 4, 1976, gage height, 8.26 ft (2.518 m), from rating curve extended above 47 ft 3 /s (1.33 m 3 /s), on basis of estimate of peak flow; minimum, 0.40 ft 3 /s (0.011 m 3 /s) Feb. 18, 19, 1973.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 750 ft³/s (21.2 m³/s) and maximum (*), from rating curve extended as explained above:

			Disch		Gage	height
Date	•	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Oct.	2	1330	765	21.7	5.65	1.722
Aug.	7	0700	*1020	28.9	*6.10	1.859

Minimum discharge, 0.62 ft³/s (0.018 m³/s) Mar. 19, 20.

		DISC	HARGE, IN	CUBIC FE		COND, WAT		CTOBER 19	80 TO SEP	TEMBER 19	81	
DAY	DCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	8. 3	7.6	2.8	5. 2	8. 3	1.8	2.3	16	3. 6	3. 9	39	6.4
2	45	5. 1	2.2	15	20	1.6	1.9	17	3. 1	3.7	12	5.0
3	7.6	4. 1	1.6	13	11	2.1	1.6	22	3.0	21	8.3	3. 9
4	5. 7	3.4	1.4	6.6	7.6	1.9	1.6	17	2.6	11	5. 9	3.2
5	22	3. 0	1.4	4.6	5. 7	1.4	1.6	14	2.7	6.0	4. 7	4. 3
6	5. 9	2.6	1.2	3.8	4. 5	1.6	1.7	7, 8	5. 9	4.8	6. 9	24
7	5.0	3. 3	1.2	3. 1	4.0	1.4	1.3	5.3	4. 1	3.8	79	13
8	8. 6	2.5	1.2	3. 1	16	1.6	2.4	4.1	27	3.7	12	6.4
9	4.8	2.3	1.8	2.6	12	1.4	3. 1	4.2	12	6.2	12	5.0
10	5. 7	2. 3	3. 1	2. 9	7. B	1.2	3.7	4.7	9. 3	4.0	9. 0	4.5
11	4. 3	2.3	2.6	6.0	7. 3	1.6	20	38	44	9.7	7. 0	4.0
12	3.5	2.0	2.5	10	5. 2	1.3	16	3.3	9.3	6.4	6.8	5. 5
13	30	3. 3	3.0	4. 1	4.0	1.2	13	2.7	8.6	13	4.6	4. 5
14	5.7	2.5	1.8	3. 1	3. 4	1.0	14	2.4	7.8	19	3. 9	4.0
15	14	4.2	2.6	2.7	3. 1	1.0	22	2.3	14	8.0	3. 5	2.8
16	6.6	3. 6	2.0	12	49	. 88	12	2.0	7.7	6.8	7. 2	5. 0
17	4. 5	5. 0	10	8.6	40	. 77	11	4.3	9.5	5. 3	13	9.0
18	4. 0	3.4	23	3. 9	5. 9	. 74	8.8	5.1	12	4. 1	6.8	8.0
19	5. 9	2.6	9.3	7.8	6.2	. 68	5. 9	7.3	7. 1	6.1	4.8	12
20	4. 1	2. 5	5. 9	47	4. 1	. 74	5. 7	3. 9	6.8	4.6	3. 9	18
21	3. 4	2.6	4.6	10	3. 2	1.4	4. 0	3.8	5. 3	4.1	3.2	5.0
22	3.0	3. 0	3.7	7.6	2.8	2.7	3.6	6.8	12	3. 9	2.9	8.0
23	15	2.1	3.0	15	2. 2	5. 1	3.0	12	6.4	3. 2	14	10
24	17	1.9	2.6	9.6	2.0	9.8	2.6	5.7	9. 5	2.7	6.2	15
25	7.3	1.7	2. 4	7.6	1.8	3. 9	2.7	3.8	8.0	3. 1	5. 9	50
26	4.6	1.6	2.8	5. 1	1.6	8.6	3. 2	14	5. 0	9. 6	9. 2	10
27	7.3	1.6	3. 2	19	1.6	6.2	27	8.0	4.3	23	9.8	6.9
28	5.3	1.4	4.8	12	2.3	5.0	14	13	16	6.6	4.8	6.9
29	20	1.6	3. 0	8.8	****	3.5	5. 3	7.1	6.4	7.4	3.8	5. 2
30	25	1.8	27	5. 2		3.4	7.3	5. 2	4. 7	8.3	11	4.2
31	6.6		6.2	8. 8		2.6	me and less	4.8		22	14	-
TOTAL	315.7	86. 9	143. 9	273. 8	242.6	78. 11	222.3	233. 4	277. 7	245.0	335. 1	239.7
MEAN	10.2	2. 90	4. 64	8.83	8.66	2. 52	7.41	7. 53	9.26	7. 90	10.8	7. 99
MAX	45	7.6	27	47	49	9.8	27	22	44	23	79	24
MIN	3.0	1.4	1.2	2.6	1.6	. 68	1.3	2.0	2.6	2.7	2.9	2.8
AC-FT	626	172	285	543	481	155	441	463	551	486	665	475

CAL YR 1980 TOTAL 3611.90 MEAN 9.87 MAX 97 MIN 1.2 AC-FT 7160 WTR YR 1981 TOTAL 2694.21 MEAN 7.38 MAX 79 MIN .68 AC-FT 5340

16899500 MUTUNTE RIVER

LOCATION (REVISED).--Lat 05°21'45" N., long 162°59'20" E., Hydrologic Unit 20100006, on left bank at dam, 0.6 mi (1.0 km) upstream from mouth, and 1.2 mi (1.9 km) north of Mount Mutunte.

DRAINAGE AREA. -- 0.52 mi² (1.35 km²), revised.

PERIOD OF RECORD. -- May 1971 to current year.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 46 ft (14.0 m) from stadia survey.

REMARKS.--Records fair. Water is diverted from diversion dam above station through a 12-in (0.30-m) pipe for domestic use in Tafunsak. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--10 years, 5.58 ft³/s (0.158 m³/s), 4,040 acre-ft/yr (4.98 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,430 ft 3 /s (40.5 m 3 /s) July 16, 1976, gage height, 2.94 ft (0.896 m), from rating curve extended above 140 ft 3 /s (3.96 m 3 /s); minimum, 0.15 ft 3 /s (0.004 m 3 /s) Feb. 15, 1980.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 600 ft 3 /s (17.0 m 3 /s) and maximum (*), from rating curve extended as explained above:

B			Disch	arge	Gage h	eight
Dat	е	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Nov.	3	2000	755	21.4	2.59	0.789
Apr.	27	1000	896	25.4	2.67	.814
June	28	2100	*937	26 4	*2 69	820

Minimum discharge, 0.64 ft3/s (0.018 m3/s) Apr. 1, 2.

DISCHAF	RGE, IN	COBIC	FEET	PER	SECOND, MEAN VA	YEAR	OCTOBER	1980	TO	SEPTEMBER	1981	

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.3	3. 2	. 86	. 78	. 86	. 78	67	6.0	2. 5	3. 2	2. 1	2.1
2	1.2	1.6	. 86	95	5. 5	. 78	64	2. 7	3.0	3.0	6.7	1.8
3	1.2	22	. 95	2.0	3.3	. 78	6.8	5.6	2. 5	33	2.7	1.5
4	1.5	8. 2	. 71	2.1	1.8	. 78	15	6.7	8. 9	26	2.0	1.8
5	1.4	8. 5	. 71	. 78	1.0	. 78	7. 9	4.0	2.5	4.5	2.5	1.8
6	1.2	3 0	66	. 71	1 2	1 4	2.0	1.6	13	3, 2	2.0	1.5
7	1.2	1.8	19	1.8	1.5	95	2.5	7.3	4.5	2.7	2.1	1.4
8	1.2	1.4	34	4.7	1.8	78	2.1	30	5. 4	2.5	3.2	2.0
9	1.6	2.4	4.7	1.6	1.4	. 78	1.8	4. 1	3.0	2.1	6 5	1.5
10	1,8	4. 0	3.0	6.0	1 6	, 78	14	2 1	7. B	2.0	3. 0	3. 6
11	7. 2	1.5	11	13	4.2	. 78	4 4	1.6	8.4	2.3	2.3	3. 4
12	2. 1	1.4	4.3	3. 0	2.5	. 78	5. 1.	1.4	3.8	4. 3	1.6	1.5
13	1.5	1.5	6.6	1.6	1.4	. 78	3.6	1.3	2.7	9.2	1.5	1.6
14	1 4	1.2	3.0	2.1	1.2	. 95	2.0	1.5	2.0	3.6	1.5	1.4
15	1.3	1.5	3.8	5. 4	1.3	. 78	3. 4	1.0	1.8	2.3	1.5	1.4
16	1.2	1.2	3.2	3. 6	1.2	. 86	2.0	1.0	1.6	2.0	1.3	3.2
17	1.3	. 95	14	2.6	6.1	. 86	1.4	1.0	5.2	1,8	2. 5	3.4
18	7.2	86	10	6.4	13	86	1.2	1.8	2.3	1.7	1.5	1.6
19	2.1	. 86	4 4	3.0	5. 9	. 78	1.0	2.0	4. 5	1.6	1.4	15
50	1.6	1.4	2. 7	1.5	2. 3	78	4. 4	6. 5	2. 7	1.5	3.4	4. 9
21	2.1	3.8	8. 5	1.2	1.6	. 78	6. 2	2. 5	2. 5	3. 4	1.6	3. 6
55	4.1	33	4 1	1.3	1.4	1.7	3.6	33	2.7	1.6	6.0	2.0
23	2.0	5. 7	2.3	4. 5	. 95	2.7	1.5	17	1.8	1.4	5. 6	1.8
24	1.5	2.3	2.3	2.7	. 95	17	2.6	8.7	17	2.3	5. 2	12
25	1.3	1.6	3.1	2.0	. 86	3.8	8.0	11	21	4.5	3. 6	2.7
26	1.3	1.2	2, 5	1.4	. 78	1.6	13	9.8	12	2. 1	2.0	1.8
27	1.8	1.0	3.0	8.0	. 78	6.4	70	35	3.0	9.8	1.4	1.6
28	1.4	. 95	1.8	5. 3	1.2	3. 2	1 1	11	47	7.0	1.3	1.6
29	1.2	. 86	3.0	1.8		1.6	14	3.8	8.7	14	8.7	1.5
30	1.4	86	3. 0	1.4		1.4	12	7.5	3. 6	3.2	38	14
31	1.6		1.5	1.4		1.3		2.7		2. 3	3. 6	
TOTAL	60. 2	119.74	169.49	94.62	67. 58	58. 28	223. 81	231.2	207. 4	164.1	128. 3	99. 0
MEAN	1.94	3. 99	5. 47	3.05	2.41	1.88	7.46	7 46	6. 91	5. 29	4.14	3.30
MAX	7.2	33	34	13	13	17	70	35	47	33	38	15
MIN	1.2	. 86	. 71	. 71	. 78	. 78	. 64	1.0	1.6	1.4	1.3	1.4
AC-FT	119	238	336	188	134	116	444	459	411	325	254	196

CAL YR 1980 TOTAL 1642.11 MEAN 4.49 MAX 78 MIN .35 AC-FT 3260 WTR YR 1981 TOTAL 1623.72 MEAN 4.45 MAX 70 MIN .64 AC-FT 3220

16899600 OKAT RIVER

LOCATION (REVISED).--Lat 05°19'11" N., long 162°58'19" E., Hydrologic Unit 20100006, on left bank 0.6 mi (1.0 km) upstream from mouth and 0.9 mi (1.4 km) north of Mount Okat.

DRAINAGE AREA. -- 1.94 mi² (5.02 km²), revised.

PERIOD OF RECORD. -- July 1971 to current year.

REVISED RECORDS. -- WDR Hawaii 1974: 1971-72(P), 1973(M).

GAGE.--Water-stage recorder. Altitude of gage is 13 ft (4.0 m), revised, from topographic map.

REMARKS.--Records poor. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 10 years, 21.6 ft3/s (0.612 m3/s), 15,650 acre-ft/yr (19.3 hm3/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 1,060 ft 3 /s (30.0 m 3 /s) Aug. 2, 1976, gage height, 8.22 ft (2.505 m), from rating curve extended above 230 ft 3 /s (6.51 m 3 /s); minimum, 1.4 ft 3 /s (0.040 m 3 /s) Mar. 11, 1977.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 700 ft 3 /s (19.8 m 3 /s) and maximum (*), from rating curve extended above 230 ft 3 /s (6.51 m 3 /s):

D-4-		Discharge		Gage h	eight			Disch	arge	Gage h	eight
Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Nov. 3	2000	820	23.2	7.18	2.188	July 3	0400	792	22.4	7.06	2.152
Apr. 27	1000	*1030	29.2	*8.00	2.438	Aug. 30	0600	880	24.9	7.42	2.262
June 25	2100	815	23.1	7.16	2.182						

Minimum discharge, 2.8 ft³/s (0.079 m³/s) Oct. 18.

		DISC	HARGE, IN	CUBIC FE		COND, WAT		OCTOBER 19	80 TO SEF	TEMBER 15	81	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5. 7	14	5. 1	7.8	9.6	5.4	5 7	45	19	26	21	54
5	5. 7	8. 9	5. 4	7.4	16	5.1	5 1	30	18	21	33	37
3	5. 7	75	6.0	11	23	4.8	16	24	16	147	20	33
4	6.0	53	7. 4	13	11	4.8	65	17	17	122	16	29
5	5. 7	42	10	8. 9	9. 3	4 8	40	14	13	57	14	26
5	5, 4	26	41	8.2	11	6 3	14	7.3	32	41	13	25
7	5. t	19	68	7.8	11	4.6	16	18	24	28	26	33
8	4.3	14	99	12	10	4 0	14	104	25	23	21	.30
9	4.3	18	34	5. 7	8. 5	4.0	12	25	16	16	43	36
10	4. 3	22	53	5.7	10	4 0	31	23	30	13	50	54
11	4.6	14	38	34	28	5.4	24	12	31	16	27	50
12	4. 5	10	25	18	16	4.3	22	8. 9	30	25	18	46
13	4.0	10	24	8.5	9 3	4.3	17	7.4	17	33	14	48
14	3. 7	8. 9	17	6.7	7 4	4.3	15	7.8	10	17	13	50
15	3.4	8. 9	19	15	7.0	4.0	30	4.8	8.5	11	11	41
15	3. 4	0. 7	1.7	15	7.0	4. 0	.30	4.0	0. 0	1.0	1.1	41
16	3. 2	8.5	53	19	6.7	5. 4	19	4 0	7.4	10	23	37
17	3.0	7 4	52	14	22	5 1	13	4.6	16	9.6	24	37
18	50	6.7	45	54	36	6.8	10	7 2	9.6	10	10	38
19	9.3	6.3	27	17	16	4.0	8. 9	8. 2	8. 5	9.3	10	47
20	4.3	53	21	11	13	3. 7	19	26	7.4	7.8	26	40
21	7.8	35	38	10	10	4.3	31	11	19	17	10	27
22	7.8	114	22	10	7.8	1.1	15	104	18	14	20	33
23	8.5	28	16	23	7. 0	5. 9	10	61	8. 9	10	33	26
24	5. 1	15	14	14	7.0	56	17	40	22	12	30	73
25	3.7	10	33	12	4.3	15	46	54	54	16	21	34
7.				4.4					70			27
26	6.0	10	18	11	5. 7	8. 2	50	42	70	12	12	
27	55	7, 8	13	37	5. 4	50	308	126	36	52	10	26
28	7. 0	6.7	10	27	8.1	12	82	50	84	43	8. 9	25
29	5.4	6. 3	11	14		7.4	70	31	43	78	13	30
30	29	5. 4	16	10		6.0	61	31	30	30	192	46
31	10		9, 6	10		6.0	777	20		31	70	
TOTAL.	224.6	633. 8	790. 5	462.7	338. 1	246. 9	1096 7	970. 2	752.3	959. 7	822. 9	1145
MEAN	7. 25	21.1	25. 5	14. 9	12.1	7.96	36.6	31.3	25. 1	31.0	26.5	38. 2
MAX	29	114	99	54	36	56	308	126	84	147	192	73
MIN	3.0	5. 4	5. 1	5.7	5.4	3.7	5 1	4. 0	7.4	7.8	8. 9	25
AC-FT	445	1260	1570	918	671	490	2180	1920	1490	1900	1630	2270

CAL YR 1980 TOTAL 7998 8 MEAN 21.9 MAX 190 MIN 3.0 AC-FT 15870 WTR YR 1981 TOTAL 8443.4 MEAN 23.1 MAX 308 MIN 3.0 AC-FT 16750

16899620 MELO RIVER

LOCATION (REVISED).--Lat 05°20'30" N., long 162°58'33" E., Hydrologic Unit 20100006, on left bank 0.5 mi (0.8 km) upstream from mouth and 1.3 mi (2.1 km) southwest of Mount Mutunte.

DRAINAGE AREA. -- 0.68 mi² (1.76 km²), revised.

PERIOD OF RECORD. -- October 1974 to September 1979, June 1980 to current year.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 20 ft $(6.1\ m)$, from topographic map.

REMARKS.--Records fair except those for periods of no gage-height record, which are poor. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 6 years, 6.97 ft³/s (0.197 m³/s), 5,050 acre-ft/yr (6.23 hm³/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 784 ft 3 /s (22.2 m 3 /s) Mar. 22, 1976, gage height, 5.78 ft (1.762 m), from rating curve extended above 17 ft 3 /s (0.48 m 3 /s); minimum, 0.58 ft 3 /s (0.016 m 3 /s) Mar. 19, 20, 1981.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 300 ft 3 /s (8.50 m 3 /s) and maximum (*) from rating curve extended as explained above:

Date		Time	Discha (ft³/s)		Gage h	eight (m)	Date	Time	Disch (ft³/s)		Gage he	eight (m)
Feb.		1600	310	8.78	3.60	1.097	June 28	1900	530	15.0	4.44	1.353
Apr.	27	a1000	*a750	a21.2	-	5	July 3	0230	473	13.4	4.30	1.311
June	6	1200	443	12.5	4.15	1.265	Aug. 30	1900	626	17.7	4.81	1.466
June	2.5	1930	372	10.5	3.91	1.192						

Minimum discharge, 0.58 ft³/s (0.016 m³/s) Mar. 19, 20.

a About.

		DISC	HARGE, IN	CUBIC FE		ECOND, WAT EAN VALUES		OCTOBER 15	80 TO SEF	TEMBER 198	1	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.4	4. 5	1.3	2.4	2.9	1.7	1.8	17	7.0	8.2	4.7	5.3
2	1.0	2.1	1.4	2.1	7.4	1.5	1.6	11	6.0	7.8	9.4	4.6
3	91	12	1.5	3.3	7.6	1.4	9.8	8. 2	5. 4	40	4.6	3.6
4	1.7	9.6	1.7	4. 0	3.4	1.1	21	6.0	10	31	3. 6	2.9
5	1.0	8.0	3.0	2.3	3 1	1.6	14	4.0	5. 0	1.1	3. 6	3. 4
6	80	6.0	6.0	2.1	4.0	3. 2	5. 6	3.0	20	7. 2	2. 9	2.4
7	- 80	5.0	10	2.0	4.6	1.5	8.0	13	11	6.0	4.3	1.9
8	74	3 9	20	3.0	4.6	1.1	6.2	37	11	5. 0	5. 2	1.7
9	1.4	5.0	10	1 7	3. 1	1.0	5. 6	13	8 5	4. 1	9. 3	2.5
10	5 5	6.0	6.0	2. 5	3. 1	1.0	13	7. 0	14	3.6	5. 6	7. 5
11	1, 5	4. 5	9.0	10	7.6	1.2	7.9	4.7	15	5. 3	7.8	5. 9
12	1.4	3 3	7 2	5.0	4 5	1. 1	9.3	3 7	12	11	4.6	2. 8
13	- 91	3.0	6.0	2. 5	2.9	1. 1	7. 1	3.0	8. 2	9.2	3. 7	3.2
14	1.0	2.9	5.0	2.0	2.6	1.0	5.8	2 6	6.6	5. 3	3. 0	3.7
15	- 91	2.7	6.0	4 5	2 4	1.0	7.0	1 9	5.8	3. 6	4. 5	3. 3
16	. 80	2.6	10	5. 8	2.1	1.6	5. 0	1.5	4.8	3. 1	5.8	5. 0
17	. 80	2.2	14	4. 0	8.7	1.4	4.3	1.9	9.9	2.8	7.0	6.0
18	4. 2	2.0	12	14	15	. 91	3 4	2.6	5. 3	3.1	2. 2	2.8
19	1 7	1.9	7 8	6.0	7. Q	. 69	2. 9	4.0	5. 9	2.2	3. 1	17
50	1. 5	6.0	6.0	3. 2	4.6	. 74	B. 4	9.0	4.3	1.8	6. 0	6. 6
21	2.0	10	10	3.1	3.6	1 1	10	4.0	6.8	6. 6	2.6	3.4
22	2.4	25	6.0	3 1	2 9	2.9	6.0	30	48	3.1	7.7	4. 0
23	1.6	6.6	4.8	7. 1	2.4	2.0	3.8	20	4.3	1.8	9.0	2.9
24	1 2	4. 5	3. 9	3.7	2.4	19	3 9	14	13	24	7.1	20
25	1. 1	3. 3	9.0	3. 2	2. 1	3.6	13	20	26	4. 9	6.5	6.0
26	1.2	2.7	5. 0	2.9	1.8	2.4	20	16	14	8. 2	3.8	3. 6
27	1.8	2.3	3. 7	12	1.7	7.8	90	43	7.6	7 2	3.3	2.8
58	1.5	2.0	3.0	7.4	2.8	3.8	50	17	34	15	2.8	2.1
29	1.0	1.8	3. 5	3.8		2.8	30	11	14	14	6.3	3. 6
30	3.6	1.5	4. 5	2.9		2.1	25	9.0	9.5	6.0	43	18
31	2.5		3.0	3.2		2.1		8.0		6.0	8. 5	
TOTAL	46. 57	152. 9	200.3	134.8	120.9	75. 44	399. 4	346.1	352. 9	268. 1	201.5	159.0
MEAN	1.50	5.10	6.46	4. 35	4 32	2.43	13.3	11.2	11.8	8. 65	6.50	5. 30
MAX	4.2	25	20	14	15	19	90	43	48	40	43	50
MIN	74	1.5	1.3	1.7	1.7	. 69	1.6	1.5	4. 3	1.8	2.2	1.7
LITIA												

NOTE. -- No gage-height record Nov. 3 to Jan. 20, Apr. 27 to June 5.

WTR YR 1981 TOTAL 2457 91 MEAN 6.73 MAX 90 MIN 69 AC-FT 4880

16899750 MALEM RIVER

LOCATION (REVISED).--Lat 05°17'35" N., long 163°00'54" E., Hydrologic Unit 20100006, on left bank 0.9 mi (1.4 km) upstream from mouth and 2.0 mi (3.2 km) southeast of Mount Finkol.

DRAINAGE AREA. -- 0.76 mi² (1.97 km²), revised.

PERIOD OF RECORD .-- July 1971 to March 1981.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 95 ft (29 m) from stadia survey.

REMARKS.--Records fair. Water is diverted through 6-in (0.2-m) pipe from dam above station for domestic use in village of Malem. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 9 years, 7.17 ft3/s (0.203 m3/s), 5,190 acre-ft/yr (6.40 hm3/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 1,550 ft 3 /s (43.9 m 3 /s) Mar. 22, 1976, gage height, 6.20 ft (1.890 m), from rating curve extended above 110 ft 3 /s (3.12 m 3 /s); minimum, 0.14 ft 3 /s (0.004 m 3 /s) Nov. 20, 1974, during flushing at dam upstream.

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period October 1980 to March 1981, 352 ft 3 /s (9.97 m 3 /s), Nov. 3, gage height, 4.58 ft (1.396 m), from rating curve extended as explained above, no other peak above base of 350 ft 3 /s (9.91 m 3 /s); minimum, 0.05 ft 3 /s (0.010 m 3 /s) Mar. 21.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR DOTOBER 1980 TO SEPTEMBER 1981

					ME	AN VALUE	25							
DAY	OCT	NOV	DEC	JAN	FEB	MAR		APR	MAY	JUN	JU	IL.	AUG	SEP
1	1 6	2 5	1.4	2.5	2. 1	1.1								
2	1.4	1.7	1.7	2.6	3.7	. 92								
3	1.4	55	1.5	2. 4	4.2	1 0								
4	1.9	11	1.7	2.5	3.7	92								
5	1.4	15	3. 9	2.0	2.1	84								
6	1.1	7.6	9. 4	3.5	2.0	1.7								
7	84	4.1	29	2.3	1.9	92								
8	1.0	2.9	30	3.8	1.9	. 77								
9	1.4	2.5	9.0	2.0	1.7	. 77								
10	1.6	2.9	5.3	2.8	2.1	. 77								
11	1.1	3.3	14	11	5. 9	. 84								
12	. 92	2.0	7.7	4.1	2 4	. 77								
13	84	2.5	5. 5	2.4	1.6	. 77								
14	. 84	1.7	3. 9	2.9	1.4	71								
15	. 84	4. 1	4 0	4.1	1.4	. 84								
16	. 90	2.3	6.3	4.6	1. 2	1.3								
17	. 84	2.3	12	4.4	3.6	1.2								
18	4.8	2.8	16	24	10	3.0								
19	1.7	1.5	7. 2	5. 9	4. 9	. 84								
20	84	1.8	4.9	3. 5	2.5	. 71								
21	1.9	4. 5	11	2.8	1.8	. 60								
52	8. 1	27	7.0	2.6	1.6	9.4								
23	2.6	5. 7	4.4	10	1.4	2.4								
24	1.5	3. 2	5.6	2.9	1.5	32								
25	1.6	2.6	10	2.6	1.4	6.2								
26	3. 3	2.4	7.7	2.3	1.3	2.8								
27	5.6	1.9	4.3	13	1.2	6.4								
28	3.5	1.8	3. 3	7. 4	1.2	4.4								
29	1.7	1.6	3. 2	3. 3		2.4								
30	4. 3	1 6	3.3	2.6		1.7								
31	3. 5		2.8	2.6		1 6								
TOTAL	64.86	148.8	237.0	145 4	71.7	90. 59								
MEAN	2.09	4.96	7, 65	4. 69	2.56	2. 92								
MAX	8.1	27	30	24	10	35								
MIN	. 84	1.5	1.4	2.0	1.2	. 60								
AC-FT	129	295	470	288	142	180								
mw-r r	12/	210	470	200	2.762	1.50								
CAL YR	1980 TOTA	AL 2373.	36 MEAN	6.48	MAX 77	MIN	. 84	AC-FT	4710					

16899800 TOFOL RIVER

LOCATION (REVISED).--Lat 05°19'10" N., long 163°00'24" E., Hydrologic Unit 20100006, on left bank 25 ft (7.6 m) downstream from right-bank tributary, 0.9 mi (1.4 km) upstream from mouth, and 1.3 mi (2.1 km) northeast of Mount Finkol.

DRAINAGE AREA. -- 0.53 mi² (1.37 km²), revised.

PERIOD OF RECORD. -- June 1971 to September 1979, March 1980 to current year.

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 98 ft (29.9 m) from stadia survey.

REMARKS.--Records fair to poor. Water is diverted through 8-in (20-cm) pipe from dam above station for domestic use. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 9 years, 5.93 ft³/s (0.168 m³/s), 4,300 acre-ft/yr (5.30 hm³/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 1,290 ft 3 /s (36.5 m 3 /s) Apr. 27, 1981, gage height, 5.58 ft (1.700 m), from rating curve extended above 79 ft 3 /s (2.24 m 3 /s); minimum, 0.58 ft 3 /s (0.016 m 3 /s) Oct. 16, 1981.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 450 ft 3 /s (12.7 m 3 /s), and maximum (*), from rating curve extended as explained above:

Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)	Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)
Nov. 3	1930	710	20.1	4.66	1.420	Apr. 27	0900	*1290	36.5	*5.58	1.700
Nov. 22	0900	655		4.55	1.387	July 3	0500	745	21.1	4.73	1.442

Minimum discharge, 0.58 ft³/s (0.016 m³/s) Oct. 16.

		DISC	CHARGE, IN	CUBIC FEE		ECOND, NATER	YEAR	OCTOBER 1980	TO SE	PTEMBER 198	1	
DAY	DCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.5	5.9	2. 1	2.7	2.5	1.2	1.5	10	8.9	6.2	3.8	3.8
2	1.4	3. 5	2.0	2.7	6.4	1.2	1.3	8.1	8. 9	4 8	9. 5	2.9
3	1. 3	24	1.9	2.9	6.6	1.0	5. 3		6.4	33	4.8	2 9
4	1.8	11	2.2	3.4	4. 5	94	17	6.2	5. 0	27	3.3	2.8
5	1.4	14	3. 1	2.6	3.1	1.0	9. 9	5. 0	4.5	11	2.8	2. 6
6	1.2	7.8	9. 7	3. 1	2.7	1.5	7.2		8.4	7.6	2.5	2. 6
7	1.1	5. 5	18	2.8	2.8	1.0	4. 4		7.8	5. 7	8.1	3. 3
8	. 82	4.2	19	5. 6	2.7	88	3.8	37	B. 1	4. 7	11	2.7
9	1.1	3.5	8 1	2.9	2.2	82	3.5	9.2	4. 7	4.0	13	2. 5
10	1. 1	3. 9	5. 7	2. 9	2. 5	. 88	5. 8	9.2	13	3 3	6.2	1.1
11	2.6	3.2	10	8.8	6.7	1.1	4.9	5. 5	12	6.4	5.0	7. 1
12	1.2	2.7	6.4	4.3	2.7	1.0	4.9	4.3	12	5. 0	3. 2	3.5
13	. 94	3, 1	6.2	2.7	2.0	1.0	3. 9	4 5	5 7	7.8	3. 1	3.8
14	. 76	2.5	4.7	2.8	1.9	1.1	3.8	4 0	4.8	5.0	2.8	4.7
15	. 88	4. 4	4.3	3. 7	1.8	1.3	7 1	3. 3	4.5	2.9	5 7	5. 2
16	. 70	3.0	5. 9	4. 9	1.7	2.0	4.3		3.8	2. 3	2.3	4. 3
17	. 82	2.8	11	3. 6	3. 5	1. 5	3. 1	3.1	7.3	2.1	3. 3	5. 5
18	5. 5	2.1	12	16	8. 7	3.8	2.6	3. 5	3. 5	2. 3	1. 9	9.2
19	1 6	1.9	6.4	4. 5	3. 5	1.2	5. 5	3.6	3. 5	1.9	2.7	6. 4
50	1.2	6.8	5.0	3. 3	3. 5	1.0	4.8	15	2.9	1.6	1. 9	4. 3
21	2.5	6.6	11	2.8	2. 3	. 94	6.2	4.8	8. 1	5 7	1.6	3 3
55	4.3	35	6.4	2.6	2.0	3.0	4. 4	31	7. 3	7. 3	1.7	2. 9
23	1.9	7. 1	4. 7	7.3	1.7	2, 7	2, 8	18	3.8	2. 5	5. 9	2.6
24	1.4	4.8	4.3	3. 1	1.9	21	4.0	13	12	2.6	4.8	12
25	1.9	4. 2	8. 7	2. 9	1.8	4. 5	10	20	55	3. 2	4. 2	4. 0
26	5. 2	3. 5	5. 7	2.6	1.5	2, 2	15	16	12	3. 8	2. 2	3, 2
27	7 1	3. 1	3.8	12	1.3	4.6	95	34	5. 7	15	1.9	2.6
58	3, 3	2.7	3. 3	6. 5	1.5	3, 2	21	16	24	13	1.5	2.5
29	2.0	2.5	4. 1	3. 6		2 0	24	10	9.5	16	1.9	2. 9
30	11	2.5	3.6	2.8		1.8	17	17	5. 9	5. 7	26	4.3
31	3. 8		3. 1	2. 9	7	1. 7		8. 4		4. 7	5. Q	700
TOTAL	73. 32	187.8	202.4	135.3	86.0	73.06	300.7	341.1	246.0	224.1	153.6	131.4
MEAN	2.37	6. 26	6. 53	4,36	3. 07	2.36	10.0	11.0	8. 20	7. 23	4. 95	4 38
MAX	11	35	19	16	8.7	21	95	37	24	33	26	12
MIN	. 70	1.9	1.9	2.6	1.3	. 82	1.3	3. 1	2.9	1.6	1.5	2.5
AC-FT	145	373	401	268	171	145	596	677	488	445	305	261

WTR YR 1981 TOTAL 2154.78 MEAN 5.90 MAX 95 MIN .70 AC-FT 4270

16912000 PAGO STREAM AT AFONO

LOCATION.--Lat 14°16'03" S., long 170°39'02" W., Hydrologic Unit 20100001, on left bank 0.2 mi (0.3 km) south of Afono and 0.3 mi (0.5 km) upstream from mouth.

DRAINAGE AREA. -- 0.60 mi² (1.55 km²).

PERIOD OF RECORD. -- October 1958 to current year. Prior to July 1960, published as Afono Stream at Afono.

REVISED RECORDS. -- WSP 1937: Drainage area.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 30 ft (9 m), from topographic map.

REMARKS.--Records good except for periods of backwater and no gage-height record, which are fair. About $0.06 \, \mathrm{ft^3/s} \, (0.002 \, \mathrm{m^3/s})$ is diverted above station for domestic use in Afono. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 22 years (water years 1960-81), 3.47 ft3/s (0.098 m3/s), 2,510 acre-ft/yr (3.09 hm3/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 1,350 ft 3 /s (38.2 m 3 /s) July 5, 1969, gage height, 5.49 ft (1.673 m), from rating curve extended above 52 ft 3 /s (1.47 m 3 /s); minimum, 0.15 ft 3 /s (0.004 m 3 /s) Oct. 25, 1976.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 210 ft 3 /s (5.95 m 3 /s), from rating curve extended above 52 ft 3 /s (1.47 m 3 /s), and maximum (*):

Date	Time		harge)(m³/s)	Gage h	eight (m)	Date	Time		harge)(m³/s)	Gage h	eight (m)
Oct. 9	1330	498	14.1	4.12	1.256	Mar. 2	1430	318	9.01	3.66	1.116
Oct. 16	1430	285	8.07	3.55	1.082	Mar. 24	1800	582	16.5	4.33	1.320
Dec. 15	0630	645	18.3	4.47	1.362	Apr. 23	1800	*1104	31.3	*5.34	1.628
Feb. 14	0500	246	6.97	3.42	1.042	Aug. 21	0600	252	7.14	3.44	1.049

Minimum discharge, $0.71 \text{ ft}^3/\text{s} (0.020 \text{ m}^3/\text{s})$ Jan. 22.

DISCHARGE.	IN	CUBIC	FEET	PER	SECUND,	WATER	YEAR	UCTOBER	1980	TO	SEPTEMBER	1981
					ME AN VAI	HEC						

DAY	001	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	13	2.0	1.4	1.1	1.0	2.0	2.9	2.4	2.2	2.4	2.6	1.8
5	8.7	1.8	1.2	3.7	.79	64	2.9	2.3	1.5	2.4	2.3	1.5
3	6.5	1.5	5.4	10	1.4	11	2.4	2.6	1.4	1.8	2.0	1.4
4	37	1.4	8.5	4.7	1.1	5.9	2.2	2.2	1.4	1.4	1.9	1.4
5	1.3	9.9	4.9	3.4	.95	3.6	2.3	2.3	1.2	1.2	1.5	1.3
6	6.7	3.4	2.4	2.3	.95	5.7	1.9	2.2	1.2	1.2	1.4	1.1
7	5.9	26	4.7	7.9	.95	19	2.4	5.0	1.1	1.2	1.4	1.4
8	4.7	6.5	4.5	2.4	1.0	8.4	7.8	1.9	1.1	1.2	1.3	5.5
9	56	5.4	26	1.8	1.3	3.6	4.0	1.8	1.1	1.2	1.1	9.4
10	8.7	4.9	4.9	1.8	1.5	2.6	3.8	5.5	1.0	1.1	1.1	5.4
11	5.9	3.4	3.1	1.4	16	2.4	3.1	3.6	1.0	1.1	1.0	5.3
12	4.2	2.6	2.7	1.4	4.0	2.0	2.4	2.2	1.2	1.0	.95	4.5
13	4.9	2.3	2.3	1.2	5.5	1.8	2.2	3.8	6.6	1.0	.95	2.4
14	4.7	2.2	1.9	1.1	36	1.5	2.0	4.9	5.3	1.1	1.3	2.3
15	4.4	1.9	98	1.0	6.5	1.5	2.0	4.0	8.0	1.1	1.3	1.9
16	39	1.8	8.7	1.3	4.2	2.4	6.0	3.6	4.1	1.0	.95	1.8
17	12	1.6	4.9	1.2	3.4	25	4.0	2.9	2.7	1.0	.95	1.6
18	6.7	2.3	3.1	1.0	11	8.2	2.7	2.4	1.9	1.0	5.6	1.4
19	5.4	8.5	2.4	.95	12	7.0	5.2	2.2	1.9	.95	3.4	4.6
20	4.5	3.6	2.0	.87	20	4.0	2.3	4.7	1.6	1.0	13	3.1
21	10	4.7	1.9	.87	7.9	4.5	2.6	4.2	4.6	4.4	68	2.0
25	8.3	3.4	1.8	.79	4.5	6.8	26	2.6	2.7	53	12	1.5
23	6.7	2.2	1.8	2.0	3.6	6.5	63	2.0	1.9	12	4.7	1.4
24	14	1.8	1.6	2.0	3.1	104	33	2.6	1.5	4.2	4.2	1.3
25	5.2	1.5	1.6	1.5	2.4	36	8.7	2.6	1.4	4.5	4.5	1.8
26	4.3	1.3	1.6	1.2	2.3	9.1	3.8	2.2	1.3	32	14	1.2
27	5.9	1.3	1.5	1.0	2.0	5.7	4.3	3.6	1.3	15	4.5	1.0
85	3.4	1.3	1.3	3.3	1.8	10	3.5	2.7	4.9	9.9	2.7	. 95
29	2.7	1.2	1.2	5.7		6.7	3.1	2.0	2.1	12	1.6	. 95
30	2.2	1.2	1.2	2.0		4.2	2.7	1.6	2.2	5.2	1.4	.87
31	2.3		1.0	1.2		3.1		1.5		4.7	1.5	
TOTAL	316.9	107.2	209.5	72.08	153.84	378.2	212.2	83.8	72.0	182,25	165.10	72.07
MEAN	10.2	3.57	6.76	2.33	5.49	12.2	7.07	2.70	2.40	5.88	5.33	2.40
MAX	56	26	98	10	36	104	63	4.9	8.0	5.3	68	9.4
WIN	2.2	1.2	1.0	.79	.79	1.5	1.9	1.5	1.0	. 95	.95	.87
AC-FT	629	213	416	143	305	750	421	166	143	361	327	143

CAL YR 1980 TOTAL 1685.31 MEAN 4.60 MAX 98 MIN .63 AC-FT 3340 WIR YR 1981 TOTAL 2025.14 MEAN 5.55 MAX 104 MIN .79 AC-FT 4020

16920500 AASU STREAM AT AASU

LOCATION.--Lat $14^{\circ}17'51''$ S., long $170^{\circ}45'30''$ W., Hydrologic Unit 20100001, on right bank at Aasu and 200 ft (61 m) upstream from mouth.

DRAINAGE AREA. -- 1.03 mi² (2.67 km²).

PERIOD OF RECORD. -- October 1958 to current year.

REVISED RECORDS. -- WSP 1937: Drainage area. WSP 2137: 1959-60(P), 1961(M), 1962-65(P).

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 5 ft (1.5 m) by hand levels from high-tide mark.

REMARKS.--Records good. Small diversion above station for domestic use. Recording rain gage located at station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 22 years (water years 1960-81), 6.12 ft³/s (0.173 m³/s), 4,430 acre-ft/yr (5.46 hm³/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 498 ft 3 /s (14.1 m 3 /s) Sept. 7, 1972, gage height, 5.16 ft (1.573 m), from rating curve extended above 20 ft 3 /s (0.57 m 3 /s) on basis of slope-area measurement at gage height 4.57 ft (1.393 m); minimum, 0.12 ft 3 /s (0.003 m 3 /s) Oct. 21, 23, 24, 27, 1974.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of $180 \text{ ft}^3/\text{s}$ (5.10 m $^3/\text{s}$), from rating curve extended as explained above and maximum (*):

		Disch	arge	Gage h	eight
Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Dec. 15	0830	293	8.30	4.21	1.283
Mar. 17	0300	*394	11.2	*4.73	1.442
July 26	0800	286	8.10	4.17	1.271

Minimum discharge, 1.6 ft3/s (0.045 m3/s) July 20, 21.

		i:180	HARGE, I	CUHIC FE		CUND, WAT		CLOBER 19	980 TC SF	PTEMBER 19	981	
DAY	OCT	HetV	DFC	JAN	FEU	MAR	APK	MAY	Julia	JIII	AUG	SEP
1	11	3.8	1.6	3.2	5.2	4.9	9.2	7.8	6.7	5.2	9.9	7.4
2	16	3.6	1.8	3.2	4.1	38	8.5	9.5	4.6	4-1	8.5	6.4
3	13	3.4	3.3	3.8	4.9	18	7.1	7.1	3.8	3.A	7.4	5.8
4	15	3.2	5.3	2.7	4.1	12	6.4	6.4	3.6	3.6	6.4	4.9
5	15	4.3	5.1	8.4	3.6	10	6.5	7.8	3.4	3.4	5.8	4.3
6	14	3.2	3.2	4.8	3.8	9.5	5.2	6.1	3.2	3.2	5.2	3.8
7	12	4.6	2.5	4.1	3.6	9.5	7.2	4.9	3.0	3.0	4.6	5.2
8	11	3.4	2.4	4.6	6.6	9.2	9.8	4.1	8.5	2.8	4.1	4.9
9	50	3.4	17	3.0	4.3	8.1	6.7	4.3	2.8	2.8	3.4	4.6
10	19	11	6.1	3.6	3.8	6.4	6.9	5.2	2.7	2.7	3.2	3.8
11	13	7.1	4.0	2.7	17	5.5	6.7	11	2.5	2.5	3.0	6.7
12	11	4.6	4.9	4.5	12	4.9	6.1	6.4	2.7	5.4	2.8	15
13	16	3.8	4.1	2.8	8.1	4.3	5.5	12	7.0	2.4	2.8	11
	15		14		9.5	3.8	4.9	12				15
14	13	3.4		2.4					3.0	2.2	8.5	
15	13	3.6	54	2.5	8.1	3.6	5.5	8.5	1.4	2.1	6.8	10
16	30	3.2	21	2.7	6.7	7.2	6.1	9.0	8.8	2.1	3.0	8.5
17	23	3.4	15	2.5	6.4	64	5.2	7.4	6.4	2.1	2.7	7.8
18	17	5.0	12	2.2	10	51	4.3	15	4.9	1.9	3.0	7.1
19	14	3.6	12	2.1	13	21	4.1	13	5.8	1.7	3.6	7.8
5.0	12	3.4	9.5	2.1	55	1 4	5.1	12	6.8	1.6	8.9	6.4
21	15	3.0	8.1	2.1	14	13	4.9	10	5.2	4.5	34	6.4
22	11	8.5	7.1	1.9	10	12	31	9.5	4.3	30	20	6.1
23	9.5	2.5	6.1	7.9	8.8	12	3.3	8.8	3.8	18	12	4.9
24	9.9	2.7	5.5	4.3	8.1	48	33	9.5	4.6	12	14	4.1
25	8.1	2.4	5.5	3.2	6.7	48	19	P.1	3.6	11	14	3.8
26	7.4	2.3	4.3	3.6	6.1	23	10	7.4	3.6	58	26	3.4
27	6.7	2.1	3.8	8.5	5.2	18	13	7.4	3.4	25	16	3.2
28	5.8	2.1	3.4	6.2	4.6	14	1.1	6.4	1.0	26	1.2	3.0
29	5.2	1.9	2.5	10		14	9.9	5.5	7.4	18	11	2.8
30	4.9	1.9	2.7	6.7		10	8.5	4.6	5.2	14	9.5	2.7
31	4.3		3.6	4.9		9.5		4.1		11	8.5	
TUTAL	394.8	106.3	252.5	121.2	220.3	496.4	306.3	250.8	150.4	283.1	274.9	186.8
MEAN	12.7	3.54	8.15	3.91	7.47	16.0	10.2	8.09	5.01	9.13	8.87	6.23
MAX	30	11	54	10	55	64	33	15	14	58		
MIN	4.3	1.9	1.6	1.9	3.6	3.6	4.1				34	15
					437	985	606	4.1	2.5	1.6	2.7	2.7
AC-FT	783	211	501	240	437	400	000	497	298	562	545	371

CAL YR 1980 TOTAL 2440.1 MEAN 6.67 MAX 54 MIN 1.0 AC-FT 4840 MTP YR 1981 TOTAL 3043.8 MEAN 8.34 MAX 64 MIN 1.6 AC-FT 6040

16931000 ATAULOMA STREAM AT AFAO

LOCATION.--Lat $14\,^\circ20\,^\circ10^\circ$ S., long $170\,^\circ48\,^\circ02^\circ$ W., Hydrologic Unit 20100001, on left bank at Afao, 100 ft (30 m) upstream from highway bridge, and 300 ft (91 m) upstream from mouth.

DRAINAGE AREA. -- 0.24 mi² (0.62 km²).

PERIOD OF RECORD. -- October 1958 to current year.

REVISED RECORDS. -- WSP 1937: Drainage area.

GAGE. -- Water-stage recorder. Altitude of gage is 20 ft (6 m) by hand levels from high-tide mark.

REMARKS.--Records good. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--22 years (water years 1960-81), 1.45 ft³/s (0.041 m³/s), 1,050 acre-ft/yr (1.29 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 815 ft 3 /s (23.1 m 3 /s) Oct. 28, 1979, gage height, 4.47 ft (1.362 m), from rating curve extended above 30 ft 3 /s (0.85 m 3 /s); minimum, 0.04 ft 3 /s (0.001 m 3 /s) Oct. 24-26, Oct. 28-31, Nov. 1, 1974.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 160 ft 3 /s (4.53 m 3 /s), from rating curve extended above 30 ft 3 /s (0.85 m 3 /s), and maximum (*):

		Disch	arge	Gage h	eight			Disch	arge	Gage h	eight
Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Oct. 4	1500	*429	12.1	*3.54	1.079	Feb. 20	1300	184	5.21	2.64	0.805
Oct. 13	1200	197	5.58	2.71	.826	Mar. 17	0300	315	8.92	3.20	.975
Oct. 21	0030	169	4.79	2.56	.780	Apr. 22	0300	258	7.31	2.97	.905
Dec. 9	0600	373	10.6	3.38	1.030	Apr. 23	1630	295	8.35	3.12	.951
Dec. 15	1000	171	4.84	2.57	. 783	July 26	0800	273	7.73	3.03	.924

Minimum discharge, 0.17 ft³/s (0.005 m³/s) Jan. 15, 16.

DISCHARGE,	IN	CUBIC	FFFT	PER	SECOND,	WATER	YEAR	OCTOBER	1980	TU	SEPTEMBER	1981
					MEAN VAL	ILLE						

DAY	001	NOV	DEC	JAN	FEB	MAR	APR	MAY	1110	JUL	AUG	SLP
1	10	.64	.30	. 33	.54	.49	3.4	1.0	1.7	1.3	1.1	.74
5	3.0	.54	.27	.27	.33	15	2.1	1.1	.69	.74	1.0	.64
3	1.9	.54	.44	.58	1.1	3.1	1.5	.80	.59	.59	.87	.59
4	24	.49	.54	.24	.49	1.7	1.4	.80	.54	.54	.74	.54
5	3.9	.64	.67	.27	.33	1.1	3.2	.94	.49	.44	.69	.54
-			• • •	•	• 22		3.2	• 2 4	• • •	• 4.5	.07	. 54
6	2.1	.40	.33	.21	.44	.87	1.3	. 74	. 44	.40	.59	.49
7	1.3	.54	.24	.24	. 44	.80	1.7	.69	.40	.40	.54	.73
8	1.3	.40	.33	.51	.95	1.2	2.6	.64	.40	.36	.49	.59
9	12	.33	23	.27	.54	.74	1.6	.59	.36	.40	. 44	.54
10	2.5	9.0	.94	.30	1.4	.64	1.3	.80	.36	.44	.44	.64
						• • •		• (, 0	. 30			•01
11	1.5	1.9	.44	.19	6.8	.59	1.8	2.0	.40	.36	. 44	.49
12	1.1	.87	.40	.21	2.2	.54	1.5	.87	.36	.33	.40	. 96
13	8.4	.69	.36	.19	1.2	.64	1.2	4.9	3.1	. 36	.44	1.4
14	1.5	.54	6.8	.19	1.3	.44	1.0	3.9	.94	.33	.86	4.0
15	1.4	.49	21	.17	.80	.36	1.1	1.0	12	.33	.80	1.3
				15.5%			0.5.5					7.5
16	25	.80	8.5	.37	.59	.83	1.7	.69	1.6	.30	.40	.80
17	4.3	. 44	1.6	.19	.54	26	2.4	.54	.87	.33	.36	.59
18	2.3	. 36	1.1	.61	1.9	6.6	1.3	1.7	.69	.40	1.6	.54
19	1.8	. 44	1.2	.36	2.6	4.4	1.0	1.5	.87	.30	1.5	.64
50	2.0	.49	1.2	.38	8.7	3.2	3.6	2.7	.74	.27	1.5	.49
21	7.0	.36	.64	.49	5.5	2.6	1.9	1.3	1.5	2.6	16	. 44
55	3.1	.30	.59	.21	1.2	2.4	16	.80	.74	1 7	4.7	.49
23	1.9	.27	. 40	1.4	.87	1.9	35	.54	.59	3.4	2.0	.24
24	1.9	.30	.36	.80	.69	15	11	1.3	1.1	1.6	2.1	.27
25	1.2	.27	.33	- 40	.59	20	2.8	.54	.59	1.2	1.9	.33
26	.94	.33	.33	1.4	.49	2.6	2.4	-54	.49	36	4.4	.24
27	.87	.24	.27	:49	.44	2.1						
28	.80	.24	.24				2.9	.88	.44	4.5	2.1	.24
29				1.6	.36	1.7	1.7	-59	1.7	5.6	1.5	.24
30	.64	.24	.27	1.8		1.5	1.6	.54	1.0	3.1	1.1	.24
	.70	.24	.24	.87		1.1	1.2	. 44	3.3	5.0	.87	.24
31	.69		.54	.49		1.8		. 36		1.5	.80	
TOTAL	131.04	23.33	68.17	16.03	40.03	121.94	113.2	35.73	38.99	87.42	52.67	20.22
MEAN	4.23	.78	2.20	.52	1.43	3.93	3.77	1.15	1.30	2.82	1.70	.67
MAX	25	9.0	23	1.8	8.7	26	35	4.9	12	36	16	4.0
MIN	.64	.24	.24	.17	.33	.36	1.0	.36	. 36	.27	.36	.24
AC-FT	260	46	135	32	79	242	225	71	77	173	104	40
		, ,								1,2		40

CAL YR 1980 TOTAL 544.30 MEAN 1.49 MAX 25 MIN .12 AC-FT 1080 WTR YR 1981 TOTAL 748.77 MEAN 2.05 MAX 36 MIN .17 AC-FT 1490

16931500 ASILI STREAM AT ALTITUDE 330 FT (100 M) NEAR ASILI

LOCATION.--Lat 14°19'34" S., long 170°47'38" W., Hydrologic Unit 20100001, on right bank 1.3 mi (2.1 km) northwest of Leone, 1.5 mi (2.4 km) southwest of Aoloaufou and 0.8 mi (1.2 km) upstream from mouth.

DRAINAGE AREA. -- 0.32 mi² (0.83 km²).

PERIOD OF RECORD .-- October 1977 to current year.

GAGE.--Water-stage recorder. Altitude of gage is 330 ft (100 m), from topographic map.

REMARKS.--Records fair. Periodic determinations of water temperature for the current year are published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 635 ft 3 /s (18.0 m 3 /s), Oct. 28, 1980, gage height, 4.73 ft (1.442 m), from rating curve extended above 14 ft 3 /s (0.40 m 3 /s); minimum, 0.48 ft 3 /s (0.014 m 3 /s) July 19, 20, 1978.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 205 ft 3 /s (5.81 m 3 /s) revised, and maximum (*), from rating curve extended above 14 ft 3 /s (0.40 m 3 /s):

Date	Time	Disch (ft³/s)	arge (m³/s)	Gage 1	neight (m)	Date	Time	Disch (ft³/s)	narge (m³/s)	Gage h	eight (m)
Oct. 13 Dec. 15	1200 0900	252 220	7.14 6.23	3.69 3.56	1.125 1.085	Mar. 17 July 26	0400 0800	*416 240	11.8		1.289

Minimum discharge, 0.64 ft³/s (0.018 m³/s) July 19-21.

DAY OCT NOV DEC JAN FER MAP APR MAY JUN JUI AU6 1 5.1 1.1 1.0 1.2 2.1 1.7 2.7 2.1 2.5 2.6 2.3 2 6.4 .98 .98 1.2 1.6 13 2.2 2.3 1.2 1.8 1.9 3 5.5 .91 1.6 1.5 2.7 7.1 1.8 1.7 1.1 1.6 1.7 4 11 .48 1.9 .98 1.6 4.6 1.7 1.7 1.0 1.5 1.5 5 6.7 1.2 1.9 .98 1.4 3.3 2.4 1.6 .98 1.5 1.5 6 5.1 .84 1.2 1.1 1.4 2.6 1.6 1.5 .95 1.2 1.3 7 5.6 1.5 1.0 1.1 1.5 2.3	SEP
2 6.4 .98 .98 1.2 1.6 13 2.2 2.3 1.2 1.6 1.9 3 5.5 .91 1.6 1.5 2.7 7.1 1.8 1.7 1.1 1.6 1.7 4 11 .88 1.9 .98 1.6 4.6 1.7 1.7 1.0 1.5 1.5 5 6.7 1.2 1.9 .98 1.4 3.3 2.4 1.6 .98 1.5 1.5 6 5.1 .84 1.2 1.1 1.4 2.6 1.6 1.5 .95 1.3 1.3 7 5.6 1.5 1.0 1.1 1.5 2.3 1.6 1.4 .86 1.2 1.2 8 3.3 .61 1.4 1.6 2.4 3.1 2.6 1.3 .84 1.0 1.1 9 10 .88 9.4 .95 1.7 2.0 1.8 1.5 .81 .98 1.0 10 5.5 7.1 2.	
3 5.5 .91 1.6 1.5 2.7 7.1 1.6 1.7 1.1 1.6 1.7 4 11 .88 1.9 .98 1.6 4.6 1.7 1.7 1.0 1.5 1.5 5 6.7 1.2 1.9 .98 1.4 3.3 2.4 1.6 .98 1.3 1.5 6 5.1 .84 1.2 1.1 1.4 2.6 1.6 1.5 .95 1.2 1.3 7 5.6 1.5 1.0 1.1 1.5 2.3 1.6 1.4 .86 1.2 1.2 8 3.3 .61 1.4 1.6 2.4 3.1 2.6 1.3 .84 1.0 1.1 9 10 .88 9.4 .95 1.7 2.0 1.8 1.5 .81 .98 1.0 10 5.5 7.1 2.5 1.2 2.5 1.7 1.6 1.7 .78 .95 .96 11 3.9 2.9	1.5
3 5.5 .91 1.6 1.5 2.7 7.1 1.6 1.7 1.1 1.6 1.7 4 11 .88 1.9 .98 1.6 4.6 1.7 1.7 1.0 1.5 1.5 5 6.7 1.2 1.9 .98 1.4 3.3 2.4 1.6 .98 1.3 1.5 6 5.1 .84 1.2 1.1 1.4 2.6 1.6 1.5 .95 1.2 1.3 7 5.6 1.5 1.0 1.1 1.5 2.3 1.6 1.4 .86 1.2 1.2 8 3.3 .61 1.4 1.6 2.4 3.1 2.6 1.3 .84 1.0 1.1 9 10 .88 9.4 .95 1.7 2.0 1.8 1.5 .81 .98 1.0 10 5.5 7.1 2.5 1.2 2.5 1.7 1.6 1.7 .78 .95 .96 11 3.9 2.9	1.3
4 11 .88 1.9 .98 1.6 4.6 1.7 1.7 1.0 1.5 1.5 5 6.7 1.2 1.9 .98 1.4 3.3 2.4 1.6 .98 1.3 1.3 6 5.1 .84 1.2 1.1 1.4 2.6 1.6 1.5 .95 1.2 1.3 7 5.6 1.5 1.0 1.1 1.5 2.3 1.6 1.4 .86 1.2 1.2 8 3.5 .61 1.4 1.6 2.4 3.1 2.6 1.3 .84 1.0 1.1 9 10 .88 9.4 .95 1.7 2.0 1.8 1.5 .81 .98 1.0 10 5.5 7.1 2.5 1.2 2.5 1.7 1.6 1.7 .78 .95 .98 11 3.9 2.9 1.9 .91 8.1 1.4 1.6 2.2 .78 .84 .86 12 3.0 1.9 <td< td=""><td>1.2</td></td<>	1.2
6 5.1	1.0
7	.95
8 3.5 .81 1.4 1.6 2.4 3.1 2.6 1.3 .84 1.0 1.1 9 10 .88 9.4 .95 1.7 2.0 1.8 1.5 .81 .98 1.0 10 5.5 7.1 2.5 1.2 2.5 1.7 1.6 1.7 .78 .95 .98 11 3.9 2.9 1.9 .91 8.1 1.4 2.0 4.0 .74 .88 .91 12 5.0 1.9 1.7 1.1 5.4 1.4 1.6 2.2 .76 .84 .86 13 7.3 1.5 1.7 .88 3.6 1.3 1.5 4.4 3.1 .81 .84 14 4.2 1.4 8.6 .81 3.7 1.2 1.4 5.1 1.3 .78 1.6	.91
9 10 .88 9.4 .95 1.7 2.0 1.8 1.5 .H1 .98 1.0 1.0 5.5 7.1 2.5 1.2 2.5 1.7 1.6 1.7 .78 .95 .98 1.1 3.9 2.9 1.9 .91 8.1 1.4 2.0 4.0 .74 .88 .91 1.2 3.9 1.9 1.7 1.1 5.4 1.4 1.6 2.2 .78 .84 .86 1.3 7.3 1.5 1.7 .88 3.6 1.3 1.5 4.4 3.1 .81 .84 1.4 4.2 1.4 8.6 .81 3.7 1.2 1.4 5.1 1.3 .78 1.6	1.4
10 5.5 7.1 2.5 1.2 2.5 1.7 1.6 1.7 .78 .95 .98 11 3.9 2.9 1.9 .91 8.1 1.4 2.0 4.0 .74 .88 .91 12 3.9 1.9 1.7 1.1 5.4 1.4 1.6 2.2 .78 .84 .88 13 7.3 1.5 1.7 .88 3.6 1.3 1.5 4.4 3.1 .81 .84 14 4.2 1.4 8.6 .81 3.7 1.2 1.4 5.1 1.3 .78 1.6	1.2
11 3.9 2.9 1.9 .91 8.1 1.4 2.0 4.0 .74 .88 .91 12 5.9 1.9 1.7 1.1 5.4 1.4 1.6 2.2 .78 .84 .88 13 7.3 1.5 1.7 .88 3.6 1.3 1.5 4.4 3.1 .81 .84 14 4.2 1.4 8.6 .81 3.7 1.2 1.4 5.1 1.3 .78 1.6	1.1
12	.88
13 7.3 1.5 1.7 .88 3.6 1.3 1.5 4.4 3.1 .81 .84 14 4.2 1.4 8.6 .81 3.7 1.2 1.4 5.1 1.3 .78 1.6	. 78
14 4.2 1.4 4.6 .41 3.7 1.2 1.4 5.1 1.3 .78 1.6	1.8
	2.2
	4.7
15 3.8 1.4 23 .81 2.6 1.1 1.5 3.2 8.4 .74 3.6	2.3
16 15 1.4 8.2 1.1 2.2 2.3 1.5 2.6 2.9 .72 1.1	1.8
17 8.2 1.4 5.5 .81 1.9 28 1.6 2.2 2.0 .74 1.0	1.7
18 5.5 1.5 3.8 1.1 5.3 7.1 1.3 5.3 1.7 .88 9.6	1.5
19 1.2 1.5 3.7 .84 4.4 6.5 1.2 4.1 3.2 .67 1.9	1.6
20 4.1 1.5 3.0 1.2 8.4 4.3 8.7 4.7 1.4 .71 2.7	1.3
21 5.2 1.2 2.2 1.2 5.5 3.9 1.7 3.3 2.0 2.7 19	1.3
22 3.6 1.2 1.9 .81 4.0 3.7 12 2.7 1.5 15 8.0	1.3
23 2.7 1.2 1.7 5.2 3.0 4.0 22 2.4 1.3 7.1 4.9	1.1
24 2.9 1.2 1.6 1.5 2.3 15 14 2.9 2.1 4.4 4.7	1.1
25 2.2 1.2 1.5 1.2 1.9 17 7.1 2.1 1.3 3.7 4.2	1.1
26 1.8 1.2 1.4 2.9 1.7 7.6 5.2 2.3 1.2 24 9.4	. 95
27 1.6 1.1 1.3 1.4 1.5 5.3 4.3 2.4 1.2 8.6 5.5	.95
28 1.4 1.0 1.2 2.3 1.4 3.9 3.3 1.8 3.3 9.7 3.8	. 88
29 1.3 .98 1.2 3.3 3.0 2.7 1.6 2.0 5.6 2.6	.84
30 1.2 .98 1.1 1.9 2.3 2.3 1.5 1.7 4.2 2.1	.61
51 1.2 1.4 1.8 3.2 1.4 2.9 1.7	
TUTAL 146.5 43.46 100.48 42.98 83.8 164.9 117.3 79.0 54.56 109.80 104.31	41.45
MEAN 4.73 1.45 3.24 1.39 2.99 5.32 3.91 2.55 1.82 3.54 3.36	1.38
MAX 15 7.1 25 3.3 0.4 28 22 5.3 8.4 24 19	4.7
MIN 1.2 .61 .98 .81 1.4 1.1 1.2 1.3 .74 .67 .84	. 78
AC-FT 291 86 199 85 166 327 233 157 108 218 207	88

CAL YR 1980 TOTAL 979.12 MEAN 2.68 MAX 25 MIN .58 AC-FT 1940 MIR YR 1981 TOTAL 1088.54 MEAN 2.98 MAX 28 MIN .67 AC-FT 2160

16933500 LEAFU STREAM AT ALTITUDE 370 FT (113 M) NEAR LEONE

LOCATION.--Lat 14°19'31" S., long 170°46'50" W., Hydrologic Unit 20100001, on left bank 900 ft (274 m) upstream from village stream intake, 1.1 mi (1.8 km) north of Leone, and 1.0 mi (1.6 km) southwest of Aoloaufou.

DRAINAGE AREA. -- 0.31 mi² (0.80 km²).

PERIOD OF RECORD .-- October 1977 to current year.

REVISED RECORDS. -- WDR HI-79-2: 1978 (P).

GAGE.--Water-stage recorder. Altitude of gage is 370 ft (113 m), from topographic map.

REMARKS.--Records good. Periodic determinations of water temperature for the current year are published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 370 ft 3 /s (10.48 m 3 /s) Mar. 17, 1981, gage height, about 6.4 ft (1.95 m), from rating curve extended above 48.0 ft 3 /s (1.36 m 3 /s); minimum, 0.71 ft 3 /s (0.020 m 3 /s) July 18-20, 1978.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 160 ft 3 /s (4.53 m 3 /s) revised, and maximum (*) from rating curve extended as explained above:

		Disch	arge	Gage h	eight			Disc	harge	Gage h	eight
Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date	Time	(ft ³ /s	(m^3/s)	(ft)	(m)
Oct. 13	1200	180	5.10	4.50	1.372	Mar. 17	0400	*a370	10.48	a6.4	1.95
Dec. 9	0430	176	4.98	4.46	1.359	Apr. 23	2200	180	5.10	4.50	1.372
Dec. 15	0900	176	4.98	4.46	1.359	July 26	0730	a330	9.35	-	
Mar. 2	0900	177	5.01	4.47	1.362	Aug. 21	1400	180	5.10	4.50	1.372

UISCHARGE, IL CURIC FEET PER SECOND, NATER YEAR OCTOBER 1950 TO SEPTEMBER 1981

Minimum discharge, 0.94 ft³/s (0.027 m³/s) Jan. 20.

a About.

		0100		Constitution and	N'E	AN VALUES		C TOOL R 1	70 10 51	i Criticity 1		
DAY	UCT	, () A	DFC	IAN	FFH	MAR	APR	MAY	JUNE	JUL	AUG	SEP
1	9.1	2.0	1.2	1.6	3.9	2.7	4.9	3.8	4.5	3.9	5.3	3.2
2	9.6	1.9	1.2	1.7	2.9	39	4.1	5.7	2.1	3.0	4.0	2.8
3	7.5	1.8	1.5	2.0	3.8	18	3.5	3.4	2.4	2.7	3.3	2.4
4	21	1.7	2.7	1.5	2.8	10	2.6	3.0	2.2	2.5	3.1	2.2
5	15	2.3	0.0	1.4	2.4	6.4	9.0	3.0	2.0	2.3	2.7	2.0
0	11	1.7	1.6	1.5	2.4	5.0	3.5	2.7	1.9	2.0	2.3	1.3
7	7.2	2.5	1.4	1.4	2.5	4.5	4.1	2.5	1.6	2.0	5.5	2.6
8	0.3	1.7	1.5	1.6	2.9	4 . A	7.3	2.4	1.8	1.8	1.9	2.2
9	25	2.8	10	1.2	2.3	3.5	4.1	2.6	1.7	1.8	1.8	2.0
1.0	12	15	3.5	1.5	3.5	2.0	8.2	2.8	1.7	1.7	1.7	1.A
11	8.3	2. 2	3.1	1.1	1.4	2.7	7.3	7.3	1	1 6	1.6	1.6
		4.6					5.3		1.6	1.6		
12	6.1	3.2	6.8	1.8	H . 6	2.5		3.8	1.6		1.4	4.5
1.3	12	2.8	2.5	1.2	5.3	2.5	4.3	7.8	5.4	1.5	1.4	5.7
1.4	0.0	2.6	9.5	1.1	7.4	5.0	3.2	9.8	2.5	1.4	2.5	17
15	6.7	2.5	39	1.0	5. V	2.0	3.6	5.4	17	1.4	6.1	6.2
16	25	2.3	17	1.4	4.1	5.1	3.6	4.7	4.9	1.3	1.8	4.7
17	14	2.3	9.5	1.2	3.6	35	3.3	4.1	3.8	1.3	1.6	3.9
1 0	8.1	1.9	0.4	1.2	5.7	28	13.5	9.9	3.4	1.7	3.5	4.3
19	6.4	2.5	5.0	1.0	7.1	50	2.8	7.0	3.7	1.3	2.8	3.2
50	6.9	2.1	4.0	1.2	16	12	4.0	11	3.5	1.2	7.6	5.6
21	6.1	2.0	3.3	1.3	4.5	10	3.4	6.0	2.9	6.0	3.7	2.5
55	5.3	1.6	2.8	1.0	6 . ti	8.8	1.5	5.6	2.5	37	23	5.5
23	3.9	1.5	2.5	5.6	5.4	6.2	36	4.9	2.3	19	12	1.9
24	4.5	1.5	2.3	2.6	4.5	48	39	5.4	2.9	10	12	1.8
25	3.5	1 . /1	1.9	1.8	3.5	65	21	3.0	2.1	7.7	8.5	1.8
26	3.1	1.3	1.8	3.A	3.1	32	13	3.0	2.0	53	21	1.6
27	5.0	1.3	1.7	2.0	2.7	18	1.6	4.9	2.1	25	12	1.6
5 6	2.4	1.2	1.5	11.9	2.4	12	5.1	3.5	5.1	26	8.1	1.5
29	2.0	1.2	1.5	6.2		P.1	4.9	3.0	3.5	13	5.9	1.4
30	2.4	1.1	1.4	3.7		5.6	4.3	2.7	4.8	8.5	4.7	1.3
31	2.2		2.0	3.4		6.1		2.5		6.1	3.8	
TOTAL	260.4	74.3	156.4	63.9	143.9	478.1	253.8	149.9	100.9	249.2	200.6	91.3
MEAN	8.40	2.48	5.05	2.06	5.14	15.4	8.46	4.84	3.36	8.04	6.60	5.04
7. V X	25	15	39	6.2	16	85	39	11	17	53	37	17
410	5.5	1.1	1.2	1.0	2.3	2.0	2.6	2.4	1.6	1.2	1.4	1.3
AC-FT	517	147	510	127	285	948		297	500	494	410	181
46-11	217	147	210	161	400	744	503	541	2110	494	410	101

CAL YR 1980 INTAL 1684.99 MEAN 4.60 MAX 44 MIN .82 AC-FT 3340 MIP YR 1981 INTAL 2228.70 MEAN 6.11 MAY 85 MIN 1.0 AC-FT 4420

SAMOA ISLANDS, ISLAND OF TUTUILA 16948000 AFUELO STREAM AT MATUU

LOCATION.--Lat $14^\circ18'07''$ S., long $170^\circ41'07''$ W., Hydrologic Unit 20100001, on left bank 0.2 mi (0.3 km) northwest of Matuu and 0.3 mi (0.5 km) upstream from mouth.

DRAINAGE AREA. -- 0.25 mi² (0.65 km²).

PERIOD OF RECORD. -- March 1958 to current year. Prior to July 1960, published as Matuu Stream at Matuu.

REVISED RECORDS. -- WSP 1937: Drainage area. WSP 2137: 1958-65.

GAGE. -- Water-stage recorder. Altitude of gage is 80 ft (24.4 m), from topographic map.

REMARKS.--Records good. Small diversion above station for domestic use since September 1972. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 23 years, 1.49 ft 3 /s (0.042 m 3 /s), 1,080 acre-ft/yr (1.33 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 502 ft 3 /s (14.2 m 3 /s) Apr. 29, 1975, gage height, 4.59 ft (1.399 m), from rating curve extended above 26 ft 3 /s (0.74 m 3 /s) on basis of slope-area measurement of peak flow; minimum, 0.01 ft 3 /s (<0.001 m 3 /s) Sept. 16, 17, 20-26, 28, 29, 1975, Apr. 5-7, 1976.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 160 ft 3 /s (4.53 m 3 /s) and maximum (*), from rating curve extended as explained above:

Date		Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)	Date	Time	Disch (ft³/s)	arge (m³/s)	Gage h	eight (m)
Oct.	4	1530	213	6.03	3.23	0.985	Apr. 23	1730	266	7.53	3.52	1.073
Oct.	9	1430	*316	8.95	*3.78	1.152	July 26	0700	222	6.29	3.28	1.000
Dec.	9	0530	256	7.25	3.47	1.058	Aug. 18	0630	168	4.76	2.95	.899
Mar.	2.4	0500	191	5.41	3.10	. 945						

DISCHARGE, IN CUBIC FEET PER SECUND, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

Minimum discharge, 0.05 ft³/s (0.001 m³/s) July 13, 14, Sept. 28, 30.

			CZWOST ON		LAN VALUE	S TEAR U					
oc t	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUK	Jut	Alle	SEF
7.9	.36	.18	.45	.28	.36	.78	.67	.30	. 87	.33	.18
2.2	.33	.18	1.4	.15	26	2.3	2.0	05.	1.0	.25	.17
.91	.30	.90	1.2	1.8	8.5	1.4	.84	-18	.33	-18	.17
15	.25	2.6	.25	.42	.91	.63	.58	.16	.18	.12	.15
3.0	1.7	2.1	1.5	.33	.58	.49	1.9	.13	.12	.13	.15
1.1	.53	.58	.56	.30	10	.39	.98	.15	.11	.11	.12
.67	6.9	1.5	1.7	. 33	4.8	.85	.49	.13	.09	.11	. 95
.53	1.7	1.9	.42	2.1	3.3	2.2	.42	.13	.09	.12	. 95
34	.78	20	.20	.78	1.3	6.9	.33	.12	.10	.11	1.4
3.1	1.1	1.1	.25	.30	.67	2.1	.79	.12	.09	.09	.63
1.3	.58	.49	.13	11	.45	.98	1.6	.12	.07	.09	5.5
.78	.42	. 45	. 34	2.1	.51	.67	.53	.23	.06	.09	3.3
.78	.36	.33	.11	.84	.42	.67	5.5	2.6	.06	.10	.98
.67	.31	.53	.08	5.9	.30	. 45	3.0	2.3	.06	.11	1.3
1.2	.33	32	.07	1.5	.65	.78	1.6	5.1	.10	.18	.67
14	.36	2.6	.13	.72	4.8	10	3.2	1.1	.07	.09	.33
3.7	.28	1.0	.12	.63	10	1.9	1.3	.42	.00	.07	.25
1.8	.28	.63	.15	4.5	3.3	.72	1.1	.25	.08	20	.18
1.1	2.9	.49	.11	7.5	1.5	.67	.72	.47	.07	3.H	.31
.98	3.2	.33	.11	8.8	.72	1.2	5.4	.49	.15	9.4	.18
2.5	.98	.26	.18	2.5	1.5	1.5	1.7	.52	.81	16	.15
3.1	.63	.20	.17	1.1	1.8	17	.67	. 36	18	3.0	.12
1.7	.45	.18	4.1	.72	1.7	26	.58	.18	3.9	1.1	.11
1.7	.42	.20	.72	.58	42	14	.67	.18	1.3	.98	.11
.98	.39	.15	.28	.45	13	2.3	.49	.13	1.5	.72	.12
1.5	.30	.17	.39	.36	5.2	1.9	.42	-11	3.0	2.1	.09
1.7	.22	.15	.20	.30	1.2	2.5	1.0	.12	5.4	.67	.08
.P4	.17	.18	3.8	.28	1.4	2.1	.67	2.0	3.5	.45	.07
.53	.15	.18	5.7		4.7	1.7	.45	.98	1.1	. 33	.07
.39	.15	.17	1.1		1.1	.91	.30	.33	.67	.25	.07
.36		.25	.45		.98		. 28		.45	.50	
10.02	26.83	72 00	26 17	56.57	144 95	105 90	40 18	19 67	70 42	61 31	18.86
	.80										.63
											5.5
											.07
											37
10.02 3.55 34 .36 218			.89 2.32 6.9 32 .15 .15	.89 2.32 .84 5.9 32 5.7 .15 .15 .07	.89 2.32 .84 2.02 5.9 32 5.7 11 .15 .15 .07 .15	.89 2.32 .84 2.02 4.68 6.9 32 5.7 11 42 .15 .15 .07 .15 .30	.89 2.32 .84 2.02 4.68 3.53 6.9 32 5.7 11 42 26 .15 .15 .07 .15 .30 .39	.89 2.32 .84 2.02 4.68 3.53 1.50 6.9 32 5.7 11 42 26 5.5 .15 .15 .07 .15 .30 .39 .28	.89 2.32 .84 2.02 4.68 3.53 1.50 .65 6.9 32 5.7 11 42 26 5.5 5.1 .15 .15 .07 .15 .30 .39 .28 .11	.89 2.32 .84 2.02 4.68 3.53 1.50 .65 2.27 6.9 32 5.7 11 42 26 5.5 5.1 30 .15 .15 .07 .15 .30 .39 .28 .11 .06	.89 2.32 .84 2.02 4.68 3.53 1.50 .65 2.27 1.98 6.9 32 5.7 11 42 26 5.5 5.1 30 20 .15 .15 .07 .15 .30 .39 .28 .11 .06 .07

CAL YR 1980 TOTAL 665.68 MEAN 1.82 MAX 34 MJN .07 AC-FT 1320 WTR YR 1981 TOTAL 752.93 MEAN 2.06 MAX 42 MIN .06 AC-FT 1490

16963900 LEAFU STREAM NEAR AUASI

LOCATION.--Lat 14°16'27" S., long 170°34'26" W., Hydrologic Unit 20100001, on right bank 35 ft (11 m) upstream from upper village intake, 0.1 mi (0.2 km) north of Auasi, and 0.2 mi (0.3 km) upstream from mouth.

DRAINAGE AREA. -- 0.11 mi² (0.28 km²).

CAL YR 1980 TOTAL 186.61

WTR YR 1981 TOTAL 241.29

PERIOD OF RECORD. -- February 1972 to current year.

REVISED RECORDS. -- WDR HI-75-1: 1972(P), 1973-74.

GAGE.--Water-stage recorder. Altitude of gage is 120 ft (37 m), from topographic map.

REMARKS.--Records good. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--9 years, 0.37 ft 9 /s (0.010 m 3 /s), 268 acre-ft/yr (330,000 m 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 234 ft 3 /s (6.63 m 3 /s) Dec. 5, 1980, gage height, 4.43 ft (1.350 m), from recorded range in stage, from rating curve extended above 19 ft 3 /s (0.54 m 3 /s); minimum, 0.02 ft 3 /s (0.001 m 3 /s) Sept. 17-19, 26-30, 1976.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 30 ft³/s (0.85 m³/s) revised, and maximum (*), from rating curve extended as explained above:

		Disch	arge	Gage h	eight			Disch	arge	Gage h	neight
Date	Time		(m^3/s)	(ft)	(m)	Date	Time	(ft^3/s)		(ft)	(m)
Oct. 4	1530	65	1.84	2.81	0.856	Apr. 8	0500	56	1.59	2.68	0.817
Dec. 12	0130	45	1.27	2.51	.765	Apr. 23	1900	210	5.95	4.23	1.289
Dec. 15	0900	*234	6.63	*4.43	1.350	Apr 28	1030	46	1.30	2.53	.771
Feb. 19	1530	33	. 93	2.30	.701	May 24	1500	50	1.42	2.60	.792
Mar. 2	1530	89	2.52	3.12	.951	May 27	0230	34	.96	2.33	.710
Mar. 24	1800	109	3.09	3.35	1.021	June 14	2300	63	1.78	2.79	.850
Apr. 5	0600	3.9	1 10	2.47	738						

Minimum discharge, 0.08 ft 3 /s (0.002 m 3 /s) Sept. 22-24, 26-30.

MEAN .51

MEAN .66

MAX 9.8

MAX 18

		DISC	CHARGE, IN	CUHIC FE		COMO, WAT		OCTOBER 19	80 TU SEF	TEMBER 19	81	
DAY	oct	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.1	.21	.12	.19	.16	.70	.30	. 41	.19	.37	.21	.14
2	2.0	.21	.12	.14	.12	8.6	. 45	.34	.19	.27	.19	.14
3	1.3	.19	.21	1.5	.12	1.5	.24	. 34	.19	.19	.19	.14
4	7.6	.16	.30	.34	.10	.58	.19	.30	.16	.16	.16	.12
5	4.5	.25	.27	.21	.10	.45	3.7	.27	.14	.14	.16	.10
6	.95	.21	.14	.16	.10	.41	1.5	.27	.14	.14	.16	.10
7	.51	.54	.19	.16	.10	.37	1.0	.52	. 14	.12	.16	.16
8	.37	. 34	.27	.14	.12	.34	3.2	.27	.14	.12	.16	.19
9	2.3	.21	1.3	.12	.12	.30	.31	.24	. 14	.12	.14	.30
10	.95	.19	.34	.12	.14	.27	.58	.24	. 1 4	.12	. 1 4	.19
11	. 45	.16	.21	.12	.88	.24	.30	. 45	.12	.12	.14	.19
12	.37	.16	4.0	.12	.99	.24	.27	.24	. 1 4	.12	.14	.14
13	.34	.14	1.4	.12	.45	.21	.24	.48	.32	.12	.16	.14
14	.30	.14	1.1	.12	1.2	.19	.24	.83	1.3	.12	.14	.12
15	.30	.14	9.8	.12	.88	.19	.21	.59	1.2	.14	.12	.12
16	1.8	.14	2.3	.14	. 41	.21	.65	.49	.37	. 14	.12	.12
17	1.3	.16	1.4	.34	.27	2.6	.49	.30	.24	.12	.14	.12
18	.65	.14	.60	.16	.98	.65	.30	.27	.21	.12	.21	.12
19	.41	.14	.30	.14	1.7	.37	.68	.21	.19	.10	.16	.16
100	.34		.25		3.9	.24	.45	.34	.16		.12	.12
50	. 34	. 14	.23	.14	3.4	.24	.45	. 34	.10	.10	.12	
21	.85	.16	.21	. 14	1.8	.51	.30	.24	.19	. 41	.76	. 10
55	.60	. 14	.19	.12	1.2	.54	17	.21	. 16	1.9	.37	.08
23	. 45	.12	.19	.21	.95	.83	18	- 19	.21	.65	.19	.08
54	1.0	.12	.19	.19	.82	14	3.4	1.1	.24	.27	.16	.08
25	.49	.10	.16	.16	.76	7.8	1.0	. 41	.24	. 41	. 14	.12
26	.34	.12	.16	.19	.70	1.3	.76	.27	.24	.88	.27	.08
27	.30	.12	- 14	.14	.70	.70	.54	1.0	.24	1.0	.21	.08
28	.27	.12	.14	.14	.65	1.4	1.7	. 34	.27	.82	.19	.08
29	.24	.12	.14	. 45		1.2	.70	.27	.26	. 45	.16	. OH
30	.24	.12	.14	.37		.59	. 45	.24	.43	.27	. 14	.08
31	.21		.19	.21		.45		.19		• 511	.14	
TOTAL	34.89	5.21	26.47	6.92	20.42	48.18	59.15	11.86	8.30	10.25	5.85	3.79
MEAN	1.13	.17	.85	.22	.73	1.55	1.97	. 38	.28	. 33	.19	.13
MAX	7.6	.54	9.8	1.5	3.9	14	18	1.1	1.3	1.9	.76	.30
MIN	.21	.10	.12	.12	.10	.19	.19	.19	.12	.10	.12	.08
AC-FT	69	10	53	14	41	96	117	24	16	20	12	7.5

MIN .07

MIN . 08

370

AC-FT 479

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at partial-record stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. Discharge measurements made at miscellaneous sites for both low flow and high flow are given in a third table.

Low-flow partial-record stations

Measurements of streamflow in the area covered by this report made at low-flow partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will give a picture of the low-flow potentiality of the stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same, site.

			Drainage area	Period	Meas	urements
Station No.	Station name	Location	mi ² (km ²)	of record	Date	Discharge (ft³/s)
		Caroline Islands, Palau Isla	ands			
16890620	Ngechutrong River, Babelthuap	Lat 07°36'11" N., long 134°34'50" E., at trail crossing, 300 ft (91 m) upstream from Diongradid River and 0.7 mi (1.1 km) southeast of Ngetbong village school (revised).	a0.25 (.65)	1974-81	10-9-80 11-7-80 1-15-81 2-5-81 5-13-81 7-8-81 8-20-81	2.1 1.4 4.3 2.3 .32 2.3 1.0
16890650	Ngerchetang (formerly Galkatan) River, Babelthuap	Lat 07°35'48" N., long 134°34'13" E., 0.7 mi (1.1 km) south of Ngetbong village school and 0.9 mi (1.4 km) upstream from Diongradid River (revised).	a1.51 (3.91)	1974-77, 1980-81	10-15-80 11-18-80 1- 3-81 7- 8-81	8.0 6.2 4.8 14
16890700	Ngermeskang (formerly Almiokan) River, Babelthuap	Lat 07°31'16" N., long 134°33'16" E., 0.6 mi (0.9 km) upstream from unnamed left-bank tributary, 2.0 mi (3.3 km) east of Imeong village, and 5.8 mi (9.4 km) upstream from mouth (revised).	a7.14 (18.49)	1973-81	10-16-80 11-17-80 12-20-80 2-18-81 7-11-81 8-28-81	28 25 106 68 52 44
16890800	Ngetpang (formerly Ngatpang) River, Babelthuap	Lat 07°27'45" N., long 134°31'38" E., 0.2 mi (0.3 km) upstream from unnamed right-bank tributary, 1.1 mi (1.8 km) east of forestry station, and 2.5 mi (4.1 km) upstream from mouth (revised).	a.34 (.88)	1973-81	10-10-80 11-10-80 2-26-81 5-7-81 7-6-81 9-10-81	1.6 2.0 1.4 .50 7.4 1.0
16891200	Ngerimel (formerly Gihmel) River, Babelthuap	Lat 07°22'18" N., long 134°31'37" E., 400 ft (122 m) downstream from dam and 1.2 mi (1.9 km) northwest of airport terminal (revised).	.77 (1.99)	1968-78, 1981	7-12-81	5.2
16891430	North Fork Ngerdorch (formerly Ngardok) River, Babelthuap	Lat 07°27'51" N., long 134°35'12" E., 500 ft (152 m) upstream from right-bank tributary, 1.4 mi (2.3 km) upstream from confluence with South Fork Ngerdorch River, and 1.5 mi (2.4 km) west of Ngchesar village (revised).	a9.70 (25.12)	1975-81	10 - 8 - 80 11 - 13 - 80 1 - 13 - 81 2 - 10 - 81 3 - 18 - 81 5 - 22 - 81 8 - 17 - 81 9 - 16 - 81	51 33 69 67 15 25 49 38
16891440	North Fork Ngerdorch (formerly Ngardok) River tributary, Babelthuap	Lat 07°27'51" N., long 134°35'10" E., 50 ft (15 m) upstream from North Fork Ngerdorch River and 1.5 mi (2.4 km) west of Ngchesar village (revised).	a1.78 (4.61)	1975-81	10-8-80 11-13-80 1-13-81 2-10-81 3-18-81 5-22-81 9-16-81	11 6.7 14 11 3.4 4.7 7.3

			Drainage area	Period	Meas	urements
Station No.	Station name	Location	mi ² (km ²)	of record	Date	Discharge (ft ³ /s)
		Caroline Islands, Palau Islands-	Continued			
16891500	Lmetmellasch River (formerly Geligal Marsh outlet), Babelthuap	Lat 07°36'12" N., long 134°37'36" E., 0.5 mi (0.8 km) upstream from mouth and 1.1 mi (1.8 km) northwest of Ngkeklau community center (revised).	a0.32 (.83)	1971-75, 1977, 1980-81	10-14-80 11-21-80 6- 4-81 7- 9-81	1.0 .73 .42 2.4
16891750	Unnamed south coast stream, Ngerekebesang	Lat 07°20'42" N., long 134°26'54" E., at Echang village, 200 ft (61 m) upstream from mouth and 0.5 mi (0.8 km) southeast of Ngerekebesang village community center (revised).	a.02 (.05)	1970-78, 1981	7-12-81	. 16
		Caroline Islands, Yap Isla	nds			
16892000	Qatliw (formerly Atelu) Stream, Yap	Lat 09°32'58" N., long 138°06'41" E., 0.4 mi (0.6 km) northeast of Bael School and 0.5 mi (0.8 km) upstream from mouth (revised).	.31 (.80)	1981	7-21-81	1.2
16892500	Tamaney Stream, Yap	Lat 09°29'49" N., long 138°05'52" E., at abandoned German dam, 0.2 mi (0.3 km) upstream from mouth, and 1.1 mi (1.8 km) southwest of U.S. Weather Bureau station at airport (revised).	a.17 (.44)	1968-81	10-20-80 7-17-81	1.1
16892600	Ripu Stream, Yap	Lat 09°30'10" N., long 138°06'24" E., 300 ft (91 m) upstream from mouth and 0.3 mi (0.5 km) southwest of Gitaem water treatment plant (revised).	.29 (.75)	1968-81	10-21-80 7-17-81	.62
16892650	Dinaey (formerly Dinay) Stream, Yap	Lat 09°30'32" N., long 138°06'15" E., at upper Gitaem Reservoir, 0.4 mi (0.6 km) northwest of water-treatment plant (revised).	.04 (.10)	1980-81	10-21-80 4-8-81 7-17-81	.19 No flow .06
16892680	Tholomar (formerly Thalomar) Stream above reservoir, Yap	Lat 09°30'37" N., long 138°06'18" E., about 500 ft (152 m) upstream from upper Gitaem Reservoir and 1.4 mi (2.3 km) southwest of Colonia (revised).	.10 (.26)	1965/, 1968-74≠, 1980-81	10-21-80 3-25-81 4-8-81 7-23-81	No flow No flow .07
16893180	Monguch Stream, Gagil-Tamil	Lat 09°31'59" N., long 138°09'57" E., 0.7 mi (1.1 km) northeast of Tamel Elementary School and 1.0 mi (1.6 km) south of Coast Guard LORAN station (revised).	.18	1980-81	10-20-80 3-22-81 4-7-81 4-27-81 5-14-81 7-22-81	2.0 .16 .08 .26 .12
16893190	Dorfay Stream, Gagil-Tamil	Lat 09°32'08" N., long 138°10'13" E., 0.2 mi (0.3 km) upstream from mouth and 0.9 mi (1.4 km) northeast of Tamilang Elementary School.	.20 (.52)	1981	7-22-81	. 93
16893300	Gilaew (Formerly Bileiy) Spring, Gagil-Tamil	Lat 09°32'16" N., long 138°11'17" E., 200 ft (61 m) downstream from main spring, and 0.5 mi (0.8 km) south- east of Gagil Elementary School (revised).		1968-74≠, 1975-81	10-20-80 7-18-81	.21
16893400	Eyeb Stream, Gagil-Tamil	Lat 09°33'11" N., long 138°09'14" E., 0.6 mi (1.0 km) southeast of Tagireeng Canal bridge, and 1.1 mi (1.8 km) northwest of U.S. Coast Guard LORAN station (revised).	.22 (.57)	1980-81	10-20-80 3-24-81 4-7-81 4-27-81 5-14-81 7-18-81	4.6 .20 .19 .04 .07 2.2
16893500	Qamin (formerly Omin) Stream, Maap	Lat 09°35'57" N., long 138°10'15" E., 0.25 mi (0.40 km) southeast of Qamin and 0.8 mi (1.3 km) upstream from mouth (revised).	a.19 (1.49)	1980-81	10-20-80 3-24-81 4-8-81 7-18-81	1.2 .03 No flow .28

 $[\]neq$ At station 16892700, 800 ft (244 m) downstream. \neq Operated as a continuous-record gaging station. a Revised.

			Drainage area	Period	Measi	irements
Station No.	Station name	Location	mi ² (km ²)	of record	Date	Discharge (ft³/s)
		Caroline Islands, Island of H	onape			
16897500	Kepin Awak River	Lat 06°57'37" N., long 158°15'35" E., at road crossing near mouth at Awak.	0.88 (2.28)	1981	4-10-81	12
16897550	Meitik River	Lat 06°56'12" N., long 158°13'26" E., at bridge near mouth (revised).	a5.04 (13.05)	1971, 1973, 1977, 1980-81	11-21-80	22
16897750	Kiepw River	Lat 06°54'58" N., long 158°12'47" E., 100 ft (30 m) upstream from con- fluence with Nanpil River.	5.71 (14.79)	1981	4- 9-81	53
16897800	Kiepw (formerly Tawenjokola) River, at mouth	Lat 06°56'36" N., long 158°13'14" E., at road crossing 0.1 mi (0.2 km) upstream from mouth (revised).	all.2 (29.01)	1970-71, 1973-74, 1977, 1981	11-20-80	55
16898300	Dauen Neu (formerly Tawannu) River	Lat 06°56'47: N., long 158°11'55" E., 0.48 mi (0.78 km) southwest of Ponape Island Central School, and 1.7 mi (2.7 km) upstream from bridge at mouth (revised).	a.75 (1.94)	1970-75≠, 1975-76, 1981	4-9-81	4.7
16898500	Nankewi (formerly Pilenkiel) River	Lat 06°56'03" N., long 158°10'46" E. revised, at highway bridge 350 ft (107 m) west of Sekere School.	a1.48 (3.83)	1971-73, 1975-77, 1981	11-20-80 3-30-81	7.5 8.7
16898550	Kiriedleng (formerly Kirictilang) River	Lat 06°55'17" N., long 158°09'48" E., at small right-bank tributary, 300 ft (91 m) downstream from road bridge, and 1.4 mi (2.2 km) northwest of Mount Temwetemwensekir (revised).	a.73 (1.89)	1972-73, 1975-77, 1981	11-20-80 3-30-81	2.8 3.6
16898650	Pehleng (formerly Palang) River	Lat 06°52'27" N., long 158°09'26" E., at road crossing near mouth, 0.25 mi (0.40 km) north of Doletikitik Hill.	2.01 (5.21)	1981	3-30-81	15
16898700	Lehn Mesi (formerly Lehnmasi) River at hanging bridg	Lat 06°49'24" N., long 158°10'11" E., revised, at foot bridge, 0.6 mi (1.0 km) upstream from mouth e (revised).	a8.32 (21.55)	1971, 1973, 1976-77, 1981	3-28-81	75
16898900	Keprohi River	Lat 06°50'40" N., long 158°17'57" E., 150 ft (46 m) upstream from road bridge, and 0.46 mi (0.74 km) northeast of Ponape Agriculature Trade School.	2.05 (5.31)	1981	3-27-81	24
16899000	Senipehn (formerly Senpen) River	Lat 06°52'28" N., long 158°16'17" E., 0.1 mi (0.2 km) downstream from confluence of two branches 0.5 mi (0.8 km) southeast of Merewi Hill, and 1.5 mi (2.4 km) upstream from mouth (revised).	a6.04 (15.64)	1971, 1973, 1976-77, 1980-81	3-27-81	71
16899100	Lehdau (formerly Lataw) River	Lat 06°52'59" N., long 158°16'15" E., 0.1 mi (0.2 km) upstream from left-bank tributary, 0.4 mi (0.6 km) northeast of Merewi Hill, and 1.4 mi (2.3 km) upstream from mouth (revised).	a2.44 (6.32)	1971, 1973, 1976-77, 1980-81	3-27-81	32
		Caroline Islands, Island of N	Cosrae			
16899670	Mwot River	Lat 05°18'26" N., long 162°55'25" E., 300 ft (91 m) upstream from dam, 0.55 mi (0.88 km) upstream from mouth, and 1.3 mi (2.1 km) northwest of Mount Wakapp (revised).	a.79 (2.0)	1980-81	10-30-80 12-20-80 1-21-81 4- 2-81	26 2.4 2.1 .67

 $[\]ensuremath{\not=}$ Operated as a continuous-record gaging station. a Revised.

			Drainage	Daried	Measu	ırements
Station No.	Station name	Location	area mi² (km²)	Period of record	Date	Discharge (ft³/s)
		Caroline Islands, Island of Kosrae-	-Continued			
16899680	Walung River	Lat 05°18'25" N., long 162°55'01" E., above diversion dam, 0.2 mi (0.3 km) upstream from mouth, and 1.7 mi (2.7 km) west of Mount Wakapp. Altitude, 65 ft (20 m) from topographic map.	0.03	1981	4- 2-81	0.02
16899690	Finkol River	Lat 05°17'10" N., long 162°59'04" E., 0.2 mi (0.3 km) upstream from Menka River, and 1.7 mi (2.7 km) south of Mount Finkol. Altitude, 25 ft (7.6 m) from topographic map.	1.70 (4.40)	1981	4- 4-81	31
16899700	Palusrik River	Lat 05°16'32" N., long 162°59'13" E., 0.4 mi (0.6 km) upstream from Finkol River, 0.9 mi (1.4 km) northeast of Utwe Village, and 2.4 mi (3.9 km) south of Mount Finkol (revised).	a.45 (1.17)	1971-72≠, 1980-81	4- 4-81	4.2
16899780	Tafuyat (formerly Tafeyat) River	Lat 05°18'38" N., long 163°00'47" E., at old Japanese dam, 0.75 mi (1.2 km) upstream from mouth, and 1.5 mi (2.4 km) east of Mount Finkol (revised).	a.27 (.70)	1974-75, 1977-81	10 - 2 - 80 10 - 27 - 80 1 - 2 - 81 4 - 4 - 81	.76 1.6 1.1 1.4
16899830	Innem River	Lat 05°19'49" N., long 163°00'27" E., at concrete road bridge, 0.5 mi (0.8 km) upstream from mouth, and 1.4 mi (2.3 km) southeast of Mount Mutunte (revised)	a1.82 (4.71)	1971-74, 1978-81	10 - 2 - 80 10 - 27 - 80 1 - 2 - 81 3 - 31 - 81	3.2 9.4 7.2 3.9
16899850	Pukusruk (formerly Pakusrik) River	Lat 05°21'01" N., long 163°00'37" E., 20 ft (6.1 m) upstream from diversion dam, 0.7 mi (1.1 km) upstream from mouth, and 1.2 mi (1.9 km) east of Mount Mutunte (revised).	a.27 (.70)	1974-75 1980-81	4- 1-81	. 40
		Samoa Islands, Island of Tut	uila			
16917500	Leele Stream at mouth at Fagasa	Lat 14°17'28" S., long 170°43'09" W., on left bank at Fagasa and 200 ft (61 m) upstream from mouth.	.23 (.60)	1966-76≠, 1977, 1981	8-6-81 9-29-81	.41
16919000	Leaveave Stream near Aasu	Lat 14°18'28" S., long 170°45'06" W., 0.6 mi (1.0 km) upstream from mouth and 0.9 mi (1.4 km) southeast of Aasu.	.60 (1.55)	1959-60, 1962-63, 1968, 1974-77, 1979, 1981	7-17-81 9- 3-81	1.7 3.7
16920000	Aasu Stream near Aasu	Lat 24°18'16" S., long 170°45'29" W., 300 ft (91 m) downstream from 100 ft (30 m) waterfall, 0.5 mi (0.8 km) south of Aasu, and 0.5 mi (0.8 km) upstream from mouth.	(2.12)	1959-63, 1968, 1974-76, 1978-79, 1981	7-17-81 9- 3-81	1.9 4.6
16932000	Asili Stream near Asili	Lat 14°19'46" S., long 170°47'42" W., 0.4 mi (0.6 km) north of Asili and 0.5 mi (0.8 km) upstream from mouth.	.55 (1.42)	1959-61, 1963-65, 1968, 1970, 1974-77, 1981	8 - 5 - 81 9 - 30 - 81	1.8 1.0
16932500	Asili Stream at Asili	Lat 14°20'04" S., long 170°47'40" W., 100 ft (30 m) upstream from highway bridge at Asili and 0.1 mi (0.2 km) upstream from mouth.	.66 (1.71)	1958-59≠, 1960-61, 1963-65, 1967-69, 1974-77, 1981	8 - 5 - 81 9 - 30 - 81	2.2

 $[\]neq$ Operated as a continuous-record gaging station. a Revised.

			Drainage area	Period	Measu	rements
Station No.	Station name	Location	mi ² (km ²)	of record	Date	Discharge (ft ³ /s)
		Samoa Islands, Island of Tutuila	Continued			
16934000	Leafu Stream near Leone	Lat 14°19'47" S., long 170°46'55" W., 30 ft (9 m) upstream from reservoir, 0.9 mi (1.4 km) upstream from mouth, and 1.0 mi (1.6 km) north of Leone.	0.69 (1.79)	1959-64, 1968-69 1971-74, 1976-77, 1981	8- 3-81 10- 1-81	4.0 1.6
16944000	Papa Stream near Nuuuli	Lat 14°18'31" S., long 170°42'29" W., 0.3 mi (0.5 km) upstream from Tauese Stream and 0.9 mi (1.4 km) northwest of Nuuuli .	.57 (1.48)	1959-61, 1963-64, 1967-68, 1974-78, 1981	8-7-81 9-24-81	1.5
16960000	Alega Stream at Alega	Lat 14°16'58" S., long 170°38'19" W., on left bank 300 ft (91 m) upstream from left-bank tributary, 0.2 mi (0.3 km) northwest of Alega, and 0.3 mi (0.5 km) upstream from mouth.	.19 (.49)	1958-76≠, 1977-78, 1981	8 - 7 - 81 9 - 24 - 81	. 88
16964000	Leafu Stream at Auasi	Lat 14°16'28" S., long 170°34'26" W., 0.1 mi (0.2 km) north of Auasi and 0.2 mi (0.3 km) upstream from mouth.	.12 (.31)	1959-61, 1963-65, 1968-71, 1976, 1981	9-29-81	. 05

[≠] Operated as a continuous-record gaging station.

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1981

			Drainage area	Measured previously		surements
Stream	Tributary to	Location	mi ² (km ²)	(water years)	Date	Discharge (ft ³ /s)
		Caroline Islands, Island of Ko	srae			
Mutunte River above diver- sion	Pacific Ocean	Lat 05°21'31" N., long 162°59'27" E., 0.3 mi (0.5 km) upstream from gaging station at old dam and 0.9 mi (1.4 km) north of Mount Mutunte.			4- 1-81	1.7
Tofol River	Pacific Ocean	Lat 05°19'04" N., long 163°00'18" E., 100 ft (30 m) above diversion dam a 1,000 ft (305 m) upstream from gaging station.			4- 6-81	6.1
Tofol River	Pacific Ocean	Lat 05°19'05" N., long 163°00'19" E., 60 ft (18 m) below diversion dam, 840 ft (256 m) upstream from gaging station.			4- 6-81	5.1
		Samoa Islands, Island of Tutui	la			
Leafu Stream No. 3	Pacific Ocean	Lat 14°19'34" S., long 170°46'54" W., 1,100 ft (335 m) above village catchment and 1.3 mi (2.1 km) north east of Leone.		1977, 1981	8 -3-81 10- 1-81	4.2 1.6

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

CAROLINE ISLANDS, PALAU ISLANDS

16890600 DIONGRADID RIVER, BABELTHUAP (Formerly published as Adeiddo River, Babelthuap)

LOCATION (REVISED).--Lat 07°36'04" N., long 134°35'02" E., Hydrologic Unit 20100006, on right bank 0.3 mi (0.5 km) upstream from left-bank tributary, 0.9 mi (1.5 km) southeast of Ngetbong village school, and 2.4 mi (3.8 km) upstream from confluence with Ngerchetang.

DRAINAGE AREA. -- 4.45 mi² (11.53 km²), revised.

PERIOD OF RECORD. -- Water years 1979 to current year.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
JUL												
08	1026	45	7. 6	25.5	8. 0	16	1. 0	3. 2	2. 0	3. 5	31	, 4
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
JUL 08	. 3	15	<1.0	4. 6	. 0	15	39	. 05	. 06	140	5	

< Actual value is known to be less than the value shown.

16890620 NGECHUTRONG RIVER, BABELTHUAP

LOCATION (REVISED).--Lat 07°36'11" N., long 134°34'50" E., Hydrologic Unit 20100006, 300 ft (91 m) upstream from Diongradid River and 0.9 mi (1.4 km) northwest of Mount Megilon.

DRAINAGE AREA. -- 0.25 mi² (0.65 km²), revised.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM
JUL											
08	1241	30	6. 9	27.0	8.0	8	1.0	1.8	. 9	2. 9	43
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
JUL			2.0	13,75			1.2	20	0.05.0		
08	. 4	. 2	7. 0	<1.0	4.6	. 0	10	. 07	60	6	

< Actual value is known to be less than the value shown.

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

CAROLINE ISLANDS, PALAU ISLANDS--Continued

16890650 NGERCHETANG RIVER, BABELTHUAP (Formerly published as Galkatan River, Babelthuap)

LOCATION (REVISED).--Lat 07°35'48" N., long 134°34'13" E., Hydrologic Unit 20100006, 0.9 mi (1.4 km) upstream from Diongradid River and 1.5 mi (2.4 km) west of Mount Megilon.

DRAINAGE AREA, -- 1.51 mi² (3.91 km²), revised.

PERIOD OF RECORD. -- Water years 1980 to current year.

DATE	TIME	STRE FLO INST TANE (CF	AM- C: W, C(AN- D(OUS At	PE- IFIC DN- UCT- NCE MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACD3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUI DIS- SOLVE) (MG/L AS CA	DIS- D SOLVE (MG/L	M, SODIUM, - DIS- ED SOLVED L (MG/L	PERCENT
JUL 08	1436		14	42	7. 0	27.0	7. 1	14	1.0	2. (6 1.	. 7 3. 4	35
DATE	SOF	DIUM AD- RP- ION FIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA LINIT LAB (MG/I AS CACO	Y SULF DIS L SOL (MG	VED SOLV	RIDE, DIS- VED SOLVE L (MG/L	DIS SOL ED (MG	CA, G - NO2 VED D -/L SC	IS- I LVED SO	RON, M DIS- DLVED S UG/L	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
JUL. 08		. 4	. 2	13	<	1.0 4	1. 2	0 1	4	. 00	90	8	

< Actual value is known to be less than the value shown.

16890700 NGERMESKANG RIVER, BABELTHUAP (Formerly published as Almiokan River, Babelthuap)

LOCATION (REVISED).--Lat 07°31'16" N., long 134°33'16" E., Hydrologic Unit 20100006, 0.5 mi (0.8 km) upstream from unnamed tributary and 4.6 mi (7.4 km) northeast of Ngatpang village.

DRAINAGE AREA. --7.14 mi² (18.49 km²), revised.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM
JUL											
11	1155	52	7. 4	25. 5	7. 6	20	5. 0	3. 6	2.6	3. 3	26
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, ND2+ND3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
JUL											
11	. 3	. 3	15	<1.0	3. 7	. 0	18	. 06	130	6	

 $[\]mbox{<}$ Actual value is known to be less than the value shown.

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

CAROLINE ISLANDS, PALAU ISLANDS -- Continued

16890800 NGETPANG RIVER, BABELTHUAP (Formerly published as Ngatpang River, Babelthuap)

LOCATION (REVISED).--Lat 07°27'45" N., long 134°31"38" E., Hydrologic Unit 20100006, 0.2 mi (0.3 km) upstream from unnamed tributary and 0.4 mi (0.6 km) southeast of Ngatpang village.

DRAINAGE AREA. -- 0.34 mi² (0.88 km²), revised.

PERIOD OF RECORD. -- Water years 1980 to current year.

	DATE	TI	ME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)
	JUL 06	1.4	100	7. 3	39	6. 8	26. 0	8. 1	12	. 00
DATE	DI SO (M	CIUM S- LVED G/L CA)	MAGN SIL DIS SOLV (MG/ AS M	JM, SODI S- DIS VED SOLV	G- VED G/L PERC	A SOR TI	P- DI ON SOL	UM, LINIT S- LAB VED (MG/ /L AS	Y SULFA DIS- L SOLV (MG/	DIS- VED SOLVED VL (MG/L
JUL. 06	÷	2. 1	d	1. 6	3. 1	35	. 4	. 4 12	3	1, 0 3. 2
	DATE	SOL	OE, IS- _VED B/L	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, ND2+ND3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
	JUL 06		. 0	17	37	. 05	. 08	70	6	

16890900 TABECHEDING RIVER, BABELTHUAP (Formerly published as Tabagaten River, Babelthuap)

LOCATION (REVISED).--Lat 07°27'03" N., long 134°31'29" E., Hydrologic Unit 20100006, on left bank 0.2 mi (0.3 km) downstream from waterfall, 1.5 mi (2.4 km) upstream from boat landing, and 1.6 mi (2.6 km) east of forestry station.

DRAINAGE AREA. -- 6.07 mi² (15.72 km²), revised.

DATE	TIME	FL INS TAN	EAM- OW, TAN- EOUS FS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	(UI	PH NITS)	TEMPER ATURE (DEG C	- D SO	GEN, IS- LVED G/L)	HARD- NESS (MG/L AS CACO3)	NON BON (M	RD- SS ICAR- IATE IG/L IS IG3)	CALCI DIS- SOLV (MG/ AS (IUM - VED /L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM
JUL																	
06	1100		121	42	2	7.6	24.	5	7.6	13		. 00	2	2. 1	2. 0	3. 2	34
DATE	SOF TI RA	DIUM AD- RP- ION TIO	POTA SIU DIS SOLV (MG/ AS K	M, LIN - L ED (N L 4	KA- HITY AB 16/L AS	SULFA DIS- SOLV (MG/ AS SO	ATE R - D VED S	HLO- IDE, IS- DLVED MG/L S CL)	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	DIS SOL D (MG	S- VED VL	NITI GEI NO2+I DIS SOL (MG	V, NO3 S− VED /L	IRON, DIS- SOLVE (UG/L AS FE	NES DI D SOL (UG	S- VED :/L	
JUL. 06		, 4		.2 1	.3	<:	1.0	3. 1	,	0 1	4		. 07	6	0	5	

< Actual value is known to be less than the value shown.

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS

WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

CAROLINE ISLANDS, PALAU ISLANDS -- Continued

16891300 EDENG RIVER, BABELTHUAP (Formerly published as Gaden River, Babelthuap)

LOCATION (REVISED).--Lat 07°23'00" N., long 134°33'07" E., Hydrologic Unit 20100006, on left bank 1,000 ft (305 m) upstream from confluence with Kmekumel River, 0.7 mi (1.1 km) north of Palau Mission Academy, and 1.5 mi (2.4 km) northeast of airport terminal.

DRAINAGE AREA. -- 4.26 mi² (11.03 km²), revised.

PERIOD OF RECORD. -- Water years 1979 to current year.

DATE	TIME	FLI INS TAN	EAM- DW, TAN- EOUS FS) (SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS-	PERCENT SODIUM
JUL													
04	1415		90	47	7. 0	26.0	7. 4	16	. 00	3, 2	2. 0	3. 5	31
DATE	SOI T RA	DIUM AD- RP- ION TIO	POTAS SIUN DIS- SOLVE (MG/L AS K)	1, LINI - LA ED (MG - AS	TTY SUL AB DI S/L SO G (M	FATE RII S- DII LVED SOI G/L (M		E, DIS S- SOL VED (MG /L AS	CCA, GE G- NO2+ VED DI G/L SOL G (MG	S- DI VED SOL	ON, NE IS- D LVED SO 3/L (U	NGA- SE, IS- LVED G/L MN)	
JUL 04		. 4		3 16		<1.0	3. 5	. 0 1	5	. 06	100	5	

< Actual value is known to be less than the value shown.

16891310 KMEKUMEL RIVER, BABELTHUAP (Formerly published as Kumekumeyel River, Babelthuap)

LOCATION (REVISED).--Lat 07°23'14" N., long 134°32'42" E., Hydrologic Unit 20100006, 0.5 mi (0.8 km) upstream from confluence with Edeng River and 1.1 mi (1.8 km) north of Palau Mission Academy.

DRAINAGE AREA. -- 1.44 mi² (3.73 km²), revised.

DATE	TIME	STREA FLOW INSTA TANEC	AM- CI I, CC AN- DU JUS AN	PE- FIC DN- DCT- UCE HOS) (PH (UNITS)	TEMPER- ATURE (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUN DIS- SOLVEN (MG/L AS CA	DIS- SOLVE (MG/L	DIS- D SOLVED (MG/L	PERCENT SODIUM
JUL													
04	1046		22	60	7. 2	25. 0	8. 1	24	2.0	5.	7 2.	4 3.7	25
									NI	TRO-			
	SO	MUIC	POTAS-	ALKA-		CHL	O- FLU	- SIL		EN,	M	ANGA-	
		AD-	SIUM,	LINITY								ESE,	
		3P-	DIS-	LAB	DIS							DIS-	
		ION	SOLVED (MG/L	(MG/L	SOL'		VED SOL'					OLVED UG/L	
DATE			AS K)	CACOS								S MN)	
JUL										ā.			
04		. 3	. 3	55	<	1.0	3.8	. 0 1	17	. 06	90	10	

< Actual value is known to be less than the value shown.

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

CAROLINE ISLANDS, PALAU ISLANDS -- Continued

16891400 SOUTH FORK NGERDORCH RIVER, BABELTHUAP (Formerly published as South Fork Ngardok River, Babelthuap)

LOCATION (REVISED).--Lat 07°26'19" N., long 134°34'28" E., Hydrologic Unit 20100006, on right bank 0.3 mi (0.5 km) from left-bank tributary, 1.3 mi (2.1 km) west of Rrai village, and 1.5 mi (2.4 km) upstream from confluence with North Fork Ngerdorch River.

DRAINAGE AREA. -- 2.44 mi² (6.32 km²), revised.

PERIOD OF RECORD. -- Water years 1980 to current year.

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NO NESS BO (MG/L (AS	ARD- ESS NCAR- NATE MG/L AS CO3)
	JUL								
	05	1145	210	38	7. 3	25.0	8. 6	10	. 00
DATE	CALCI DIS- SOLV (MG/ AS C	UM S: D: ED SOL L (MC	GNE- IUM, SODI (S- DIS LVED SOLV G/L (MG MG) AS	S- /ED E/L PERC	SOR TI	D- SI P- DI ON SOL	UM, LINIT S- LAB VED (MG/ /L AS	Y SULFATE DIS- L SOLVED (MG/L	DIS- SOLVED (MG/L
JUL 05	1	. 8	1. 4	2. 9	37	. 4	. 3 11	1. 0	2. 8
	DATE JUL	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
	05	. 0	11	28	. 04	. 11	80	5	

16891430 NORTH FORK NGERDORCH RIVER, BABELTHUAP (Formerly published as North Fork Ngardok River, Babelthuap)

LOCATION (REVISED).--Lat 07°27'51" N., long 134°35'12" E., Hydrologic Unit 20100006, 500 ft (152 m) upstream from right-bank tributary, 1.4 mi (2.3 km) upstream from confluence with South Fork Ngerdorch River, and 2.5 mi (4.0 km) upstream from mouth.

DRAINAGE AREA. -- 9.70 mi² (25.12 km²), revised.

TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
1500	32	6. 5	24.5	7. 8	9	. 00	1.6	1. 3	2. 9	39	. 4
POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACD3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
3	9.0	2.0	3.0	0	10	27	04	-11	130	10	
	1500 POTAS- SIUM, DIS- SOLVED (MG/L	POTAS- ALKA- SIUM, DIS- BOLVED (MG/L (MG/L AS K) CACO3)	CIFIC CON- DUCT- PH ANCE (UMHOS) (UNITS) 1500 32 6.5 POTAS- ALKA- SIUM, LINITY SULFATE SIUM, LINITY SULFATE DIS- SOLVED (MG/L SOLVED (MG/L AS (MG/L AS K) CACO3) AS SO4)	CIFIC CON- DUCT- PH TEMPER- ATURE (UMHOS) (UNITS) (DEG C)	CIFIC	CIFIC	CIFIC	CIFIC CON-	CIFIC CON-	CIFIC CON- CON- DUCT- PH TEMPER- ANCE ATURE SOLVED AS AS (MG/L (MG	CIFIC CON-

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981 CAROLINE ISLANDS, YAP ISLANDS

16892000 QATLIW STREAM, YAP (Formerly published as Atelu Stream, Yap)

LOCATION (REVISED).--Lat 09°32'58" N., long 138°06'41" E., Hydrologic Unit 20100006, 2.6 mi (4.2 km) northwest of Colonia and 1.2 mi (1.9 km) northwest of Mount Matade.

DRAINAGE AREA. -- 0.31 mi² (0.80 km²).

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NONO NESS BON	CAR- ATE G/L G
	JUL 21	1200	1.1	83	7. 9	26. 0	7. 8	35 i	1
DAT	CALCI DIS- SOLV (MG/	UM S ED SC	GONE- SIUM, SOD JIS- DI JLVED SOL JG/L (M J MG) AS	5- VED G/L PERC	SOR TI	P- DI ON SOL	UM, LINIT S- LAB VED (MG/I /L AS	Y SULFATE DIS- L SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
JUL. 21:		. 1	5. 5	6. 2	28	. 5	. 1 24	3. 9	12
	DATE JUL	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
	21	. 0	20	67	. 09	. 05	270	9	

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS

WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

CAROLINE ISLANDS, YAP ISLANDS--Continued

16892400 QARINGEEL STREAM, YAP (Formerly published as Aringel Stream, Yap)

LOCATION (REVISED).--Lat 09°31'03" N., long 138°05'31" E., Hydrologic Unit 20100006, on right bank at Qaringeel and 0.3 mi (0.5 km) southwest of Dalipeebinaew School.

DRAINAGE AREA. -- 0.24 mi² (0.62 km²).

	DATE	ŤI	1	STREAM- FLOW, NSTAN- ANEQUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NOM NESS BOM (MG/L (MG/L)	ARD- ESS NCAR- NATE 16/L AS
	JUL 16.	09	20	. 17	68	7.7	24. 5	7. 9	28	7. 0
	10.						21, 0		20	,. 0
DATE	(MC	S- .VED	MAGNE SIUN DIS- SOLVE (MG/L AS MG	DISTRIBUTE	S- VED D/L PER(SOR TI	D- 51 P- D1 ON SOL		Y SULFATE DIS- L SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
JUL. 16		3, 8	4.	5	4. 3	25	, 4	. 1 21	2. 2	6. 2
	DATE	FLU RID DI SOL (MG AS	E, S- VED /L	BILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FI)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
	JUL 16		. 0	18	52	. 07	03	190	5	

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981 CAROLINE ISLANDS, YAP ISLANDS--Continued

16892500 TAMANEY STREAM, YAP

LOCATION (REVISED).--Lat 09°29'49" N., long 138°05'53" E., Hydrologic Unit 20100006, at abandoned German dam, 0.5 mi (0.8 km) northwest of Inuf, and 2.3 mi (3.7 km) southwest of Colonia.

DRAINAGE AREA. -- 0.17 mi² (0.44 km²), revised.

1	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	NESS I (MG/L AS	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)
JU	JL 17	0945	. 47	143	7. 9	26.5	7. 4	72	4. O
DATE	CALCII DIS- SOLVI (MG/I	JM SI DI ED SOL (MG		;- PED PERC	A SOR TI	P- DI ON SOL	UM, LINIT S- LAB VED (MG/ /L AS	Y SULFA DIS- L SOLVE (MG/L	DIS- ED SOLVED (MG/L
JUL. 17	15		8, 3	5. 3	14	. 3	. 1 68	1.	3 5.5
ı)ATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
JL 1	JL .7	. 0	16	93	. 13	. 03	160	40	

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS

WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

CAROLINE ISLANDS, YAP ISLANDS -- Continued

16892600 RIPU STREAM, YAP

LOCATION (REVISED).--Lat 09°30'10" N., long 138°06'25" E., Hydrologic Unit 20100006, 1,000 ft (305 m) upstream from mouth and 1.6 mi (2.6 km) southwest of Colonia.

DRAINAGE AREA. -- 0.29 mi² (0.75 km²), revised.

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DIS- SOLVED (MG/L)	HARD- NON NESS BON (MG/L (M	RD- SS ICAR- IATE IG/L S O3)
	JUL 17	1045	. 43	152	8. 1	26.5	7. 2	67 1	4
DATE	CALCIU DIS- SOLVE (MG/L	IM SI DI ID SOL (MC	VED SOLV	S- PED S/L PERC	SOD A SOR TI ENT RAT	D- SI P- DI ON SOL		SULFATE DIS- L SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
JUL. 17, .	11		9. 6	7 7	20	. 4	, 1 53	1. 9	20
		FLUD- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
	JUL 17	, 0	22	104	. 14.	, 03	150	20	

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

CAROLINE ISLANDS, YAP ISLANDS--Continued

16892650 DINAEY STREAM, YAP (Formerly published as Dinay Stream, Yap)

LOCATION (REVISED).--Lat 09°30'33" N., long 138°06'14" E., Hydrologic Unit 20100006, 0.5 mi (0.8 km) northwest of the water treatment plant and 1.5 mi (2.4 km) southwest of Colonia.

DRAINAGE AREA. -- 0.04 mi² (0.10 km²).

1	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NON NESS BON (MG/L (M AS A	ARD— TSS ICAR— IATE IG/L IS ICO3)	
ال	JL 17	1135	. 06	81	7. 3	26. 5	6. 5	31	3. 0	
DATE JUL 17	CALCIO DIS- SOLVE (MG/I AS CA	JM SI DI ED SOL		:- PED :/L PERC	SOR TI	D- SI P- DI ON SOL	UM, LINIT S- LAB VED (MG/ /L AS	Y SULFATE DIS- L SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	
,JI	DATE JL 17,	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIG2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	×1	

WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

CAROLINE ISLANDS, YAP ISLANDS -- Continued

16892680 THOLOMAR STREAM ABOVE RESERVOIR, YAP (Formerly published as Thalomar Stream above Reservoir, Yap)

LOCATION (REVISED).--Lat 09°30'37" N., long 138°06'18" E., Hydrologic Unit 20100006, 0.5 mi (0.8 km) northwest of the water treatment plant and 1.4 mi (2.3 km) southwest of Colonia.

DRAINAGE AREA. -- 0.10 mi² (0.26 km²).

D¢	TE I	II IIME T	TREAM- FLOW, NSTAN- ANEOUS (CFS) (SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	NESS E (MG/L AS	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)
JUL 23		920	. 08	116	7. 3	26. 5	6, 5	47	3, 0
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVEI (MG/L AS MG	SODIUN DIS- SOLVEI (MC/L	PERCE		D- SIL	UM, LINIT S- LAB VED (MG/I 'L AS	Y SULFAT DIS- L SOLVE (MG/L	DIS- ED SOLVED (MG/L
23 JUL	6, 5	7	5 6.	9	24	. 4	. 2 44	2,	0 10
- DA	RI SC (M	DE, I DIS- S DLVED 1G/L	ILICA, S DIS- C BOLVED T MG/L AS	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
JUL 23		. 0	22	82	, 11	. 04	140	10	

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981 CAROLINE ISLANDS, YAP ISLANDS--Continued

16892800 DALOELAEB STREAM, YAP (Formerly published as Dalolab Stream, Yap)

LOCATION (REVISED).--Lat 09°31'05" N., long 138°06'22" E., Hydrologic Unit 20100006, on left bank 0.17 mi (0.27 km) north of Daloelaeb Hill water tank and 1.3 mi (2.1 km) northwest of Protestant Mission Church in Colonia.

DRAINAGE AREA. -- 0.07 mi² (0.18 km²).

à	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NO NESS BO (MG/L AS	HARD- NESS DNCAR- DNATE (MG/L AS ACO3)
	JL 16	1035	. 03	99	7. 2	25. 5	3. 8	38	9. 0
DATE	CALC. DIS- SOLV (MG. AS (IUM S - D: VED SOL /L (MG	GNE- IUM, SODI IS- DIS LVED SOLV G/L (MG MG) AS	S- /ED S/L PERC	SOR TI	D- SI P- DI ON SOL	UM, LINIT S- LAB VED (MG/ /L AS	Y SULFATE DIS- L SOLVEI (MG/L	DIS- SOLVED (MG/L
JUL 16		4. 5	6. 6	7. 0	28	. 5	. 1 29	2. 6	5 20
1	DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
	JL 16	. 0	19	78	. 11	. 04	170	7	

WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

CAROLINE ISLANDS, YAP ISLANDS -- Continued

16892900 PEEMGOY STREAM, YAP (Formerly published as Pemgoy Stream, Yap)

LOCATION (REVISED).--Lat 09°31'08" N., long 138°06'36" E., Hydrologic Unit 20100006, on right bank at Taalgum, 100 ft (30 m) upstream from Taalgum Stream, and 0.3 mi (0.5 km) southeast of Mount Peemgoy, and 1.0 mi (1.6 km) northwest of Protestant Mission Church in Colonia.

DRAINAGE AREA. -- 0.14 mi² (0.36 km²).

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	NESS (MG/L AS	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)
	JUL								
	16	1235	. 08	100	7.6	25.5	6. 0	38	9.0
DATE JUL 16	CALCIU DIS- SOLVE (MG/L AS CA	UM SI DI ED SOL (MG	MG) AS	ED	A SOR TI ENT RAT	P- DI ON SOL	UM, LINIT S- LAB VED (MG/ /L AS	Y SULFA DIS- L SOLV (MG/	DIS- PED SOLVED L (MG/L
		FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981 CAROLINE ISLANDS, YAP ISLANDS--Continued

16893100 BURONG STREAM, YAP

LOCATION (REVISED).--Lat 09°32'05" N., long 138°07'19" E., Hydrologic Unit 20100006, on left bank at Dugor, 0.25 mi (0.40 km) upstream from mouth, and 0.5 mi (0.8 km) northeast of Mount Gamuw.

DRAINAGE AREA. -- 0.23 mi² (0.60 km²).

PERIOD OF RECORD. -- Water years 1980 to current year.

	DATE	TIME	FLINS INS	TAN- EOUS	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMP ATU (DEG	ER-	DXYGEN, DIS- SOLVED (MG/L)	HARD- NI NESS BI (MG/L AS	HARD- NESS DNCAR- DNATE (MG/L AS ACO3)
	JUL 17	1520)	1. 3	92	7. 3	1 2	6. 0	6. 5	37	7. 0
DATE	CALC DIS SOL (MG	IUM - VED 9	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVE (MG/M	D L PERC	sc	DIUM AD- RP- ION	POTA SIU DIS SOLV (MG/ AS K	M, LINII S- LAI PED (MG/ L AS	Y SULFATI DIS- L SOLVE (MG/L	DIS- D SOLVED (MG/L
JUL. 17		5. 1	6. 0	6	. 3	27	. 4		1 30	3.	9. 0
	DATE	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	DI: SOI ED (M	ICA, S S- C LVED S 3/L	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVEI (TONS PER AC-FT)	GE NO2+ DI SOL (MG	NO3 S- VED /L	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
	JUL 17		0	21	69	. 09		03	260	6	

092910138045070 AIRPORT SWAMP, YAP

LOCATION.--Lat 09°29'10" N., long 138°04'50" E., Hydrologic Unit 20100006, at Yap Airport, 0.5 mi (0.8 km) northwest of Lueis, and 0.5 mi (0.8 km) northeast of Lamer.

PERIOD OF RECORD. -- Water year 1980.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM
JUL											
20	1615	88	8. 5	32. 0	5. 7	36	8.0	12	1.4	3. 2	16
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
JUL. 20	, 2	. 8	28	<5.0	4. 7	. 0	2, 3	. 02	60	40	

< Actual value is known to be less than the value shown,

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

CAROLINE ISLANDS, YAP ISLANDS -- Continued

16893180 MONGUCH STREAM, GAGIL-TAMIL (Formerly published as Monguch Stream, Gagil-Tomil)

LOCATION (REVISED).--Lat 09°31'59" N., long 138°09'57" E., Hydrologic Unit 20100006, 1.0 mi (1.6 km) southwest of the Coast Guard LORAN Station, 0.62 mi (1.0 km) northwest of Ma village.

DRAINAGE AREA. -- 0.18 mi² (0.47 km²).

PERIOD OF RECORD. -- Water years 1980 to current year.

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NOI NESS BOI (MG/L (I	ARD- ESS NCAR- NATE 1G/L AS CO3)
	22	1045	1.6	34	6. 4	27. 5	6. 6	6	. 00
DAT	CALC: DIS- SOLY (MG,	IUM S - D VED SO /L (M	GNE- IUM, SODI IS- DIS LVED SOLV G/L (MG MG) AS	S- VED S/L PERC	SOR TI	D- SI P- DI ON SOL	UM, LINIT S- LAB VED (MG/ /L AS	Y SULFATE DIS- L SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
32. JUL		. 8	. 9	4. 3	61	. 8	. 2 8.	0 1.0	5. 9
	DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
	22.	. 0	10	28	. 04	. 02	120	20	

16893200 MUKONG STREAM, GAGIL-TAMIL (Formerly published as Mukong Stream, Gagil-Tomil)

LOCATION (REVISED).--Lat $09^\circ32'05"$ N., long $138^\circ10'18"$ E., Hydrologic Unit 20100006, on right bank 0.2 mi (0.3 km) upstream from mouth and 0.9 mi (1.4 km) south of U.S. Coast Guard LORAN station.

DRAINAGE AREA.--0.50 mi 2 (1.29 km 2).

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
	JUL 19	1000	1. 7	26. 0	15	1. 0	2. 2	2, 4	4. 0	36	. 4
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS-	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JUL 19	. 1	14	1.2	5. 6	. 0	8. 6	33	. 04	. 02	100	90

WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

CAROLINE ISLANDS, YAP ISLANDS -- Continued

16893300 GILAEW SPRING, GAGIL-TAMIL (Formerly published as Bileiy Spring, Gagil-Tomil)

LOCATION (REVISED).--Lat 09°32'16" N., long 138°11'17" E., Hydrologic Unit 20100006, on right bank at Binau, 200 ft (61 m) downstream from main spring, and 0.6 mi (1.0 km) upstream from mouth.

PERIOD OF RECORD. -- Water years 1980 to current year.

			SPE-					HARD- NESS		MAGNE-		
		STREAM-	CIFIC				HARD-	NONCAR-	CALCIUM	SIUM,	SODIUM,	
		FLOW,	CON-	32.	42.000.00	DXYGEN,	NESS	BONATE	DIS-	DIS-	DIS-	
		INSTAN-	DUCT-	PH	TEMPER-	DIS-	(MG/L	(MG/L	SOLVED	SOLVED	SOLVED	
2.00	TIME	TANEOUS	ANCE	111111111111111111111111111111111111111	ATURE	SOLVED	AS	AS	(MG/L	(MG/L	(MG/L	PERCENT
DATE		(CFS)	(UMHOS)	(UNITS)	(DEG C)	(MG/L)	CACO3)	CACO3)	AS CA)	AS MG)	AS NA)	SODIUM
JUL												
18	1540	. 25	111	7. 0	27.5	5. 4	40	8. 0	2. 3	8. 3	9. 0	33
								SOL IDS,	NITRO-			
	SODIUM	POTAS-	ALKA-		CHLD-	FLUO-	SILICA,	SUM OF	GEN,		MANGA-	
	AD-	SIUM,	LINITY	SULFATE	RIDE,	RIDE,	DIS-	CONSTI-	N02+N03	IRON,	NESE,	
	SORP-	DIS-	LAB	DIS-	DIS-	DIS-	SOLVED	TUENTS,	DIS-	DIS-	DIS-	
	TION	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	SOLVED	SOLVED	SOLVED	
	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L	AS	SOLVED	(MG/L	(UG/L	(UG/L	
DATE		AS K)	CACO3)	AS SO4)	AS CL)	AS F)	SI02)	(MG/L)	AS N)	AS FE)	AS MN)	
JUL												
18	. 6	. 2	32	. 5	20	. 0	18	78	. 07	80	7	

16893400 EYEB STREAM, GAGIL-TAMIL (Formerly published as Eyeb Stream, Gagil-Tomil)

LOCATION (REVISED).--Lat 09°33'11" N., long 138°09'14" E., Hydrologic Unit 20100006, 1.2 mi (1.9 km) northwest of the Coast Guard LORAN Station and 0.6 mi (0.97 km) southeast of the Tageren Canal.

DRAINAGE AREA. -- 0.22 mi² (0.57 km²).

מ	ATE	TIME	STREAN FLOW INSTAN TANEON (CFS	M- CI N- DI US AI	PE- IFIC DN- JCT- NCE MHOS)	PH (UNITS)	TEMP ATU (DEG	IRE	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HAR NES NONC BONA (MG AS CACO	S AR- TE /L
JU 1	8	1010	2.	. 2	36	6. 8	a	26. 0	7. 2	10		. 00
DATE	CALCI DIS- SOLV (MG/ AS C	UM ED S	DIS- I OLVED S MG/L	DDIUM, DIS- DLVED (MG/L AS NA)	PERC SOD	so T	DIUM AD- RP- ION TIO	POTA SIL DIS SOLV (MG/ AS A	JM, LINI 6- LAI VED (MG: /L AS	TY SULF B DIS /L SOL (MG	- VED /L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
JUL 18	2	. 1	1. 2	4. 0		46	. 5		. 1 12		. 6	5. 2
r)ATE	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	DIS- SOLV	A, SUI COI ED TUI L S	LIDS, M OF NSTI- ENTS, DIS- OLVED MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	ND24	S- VED S/L	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)		
JU 1	JL .8		0 7	. 6	28	. 04		. 02	160	20		

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

CAROLINE ISLANDS, YAP ISLANDS -- Continued

16893500 QAMIN STREAM, MAAP (Formerly published as Omin Stream, Yap)

LOCATION (REVISED).--Lat 09°35'57" N., long 138°10'15" E., Hydrologic Unit 20100006, 0.8 mi (1.3 km) northwest of Chol and 0.7 mi (1.1 km) southeast of Qamin.

DRAINAGE AREA. -- 0.19 mi² (0.49 km²), revised.

PERIOD OF RECORD. -- Water years 1980 to current year.

D	ATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NO NESS BO (MG/L (AS	HARD- HESS DNCAR- DNATE MG/L AS
JU 1	L 8	1250	. 29	120	7. 4	27. 5	7. 2	40	8. 0
DATE	CALCIU DIS- SOLVE (MG/L AS CA	M SI DI D SOL		ED /L PERC	SOR TI	D- SI P- DI DN SOL	UM, LINIT S- LAB VED (MG/ /L AS	Y SULFATE DIS- L SOLVED (MG/L	DIS- SOLVED (MG/L
18	6.	1	6. 1 1	0	35	. 7	. 2 32	2. 0	18
	ATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
JUI 1:	B	. 0	20	82	. 11	. 04	420	50	

CAROLINE ISLANDS, TRUK ISLANDS

16893700 WICHEN RIVER AT ALTITUDE 55 M, MOEN

LOCATION (REVISED).--Lat 07°26'37" N., long 151°51'39" E., Hydrologic Unit 20100006, on left bank at Peniesence, 0.9 mi (1.4 km) upstream from mouth, and 1.6 mi (2.6 km) west of Saint Xaviers Academy.

DRAINAGE AREA. -- 0.21 mi² (0.54 km²).

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	
	NOV											
	18	1630	. 30	27. 0	7. 4	11	1	2.2	1.4	6. 0	53	
								SOLIDS,		NITRO-		
	SODIUM	POTAS-	ALKA-		CHLO-	FLUO-	SILICA,	SUM OF	SOLIDS,	GEN,		MANGA-
	AD-	SIUM,	LINITY	SULFATE	RIDE,	RIDE,	DIS-	CONSTI-	DIS-	N05+N03	IRON,	NESE,
	SORP- TION	DIS- SOLVED	LAB	DIS-	DIS-	DIS-	SOLVED	TUENTS,	SOLVED	DIS-	DIS-	DIS-
	RATIO	(MG/L	(MG/L AS	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	(MG/L AS	DIS- SOLVED	(TONS PER	SOLVED (MG/L	SOLVED (UG/L	SOLVED (UG/L
DATE	331110	AS K)	CACO3)	AS 504)	AS CL)	AS F)	SI02)	(MG/L)	AC-FT)	AS N)	AS FE)	AS MN)
NOV												
18	. 8	. 2	10	1.1	5.8	. 1	16	39	. 05	. 06	130	10

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981 CAROLINE ISLANDS, TRUK ISLANDS--Continued

16893800 WICHEN RIVER AT ALTITUDE 18 M, MOEN

LOCATION (REVISED).--Lat 07°27'01" N., long 151°51'56" E., Hydrologic Unit 20100006, on left bank at Peniesence and 0.3 mi (0.5 km) upstream from mouth and 1.4 mi (2.3 km) west of Saint Xaviers Academy.

DRAINAGE AREA. -- 0.57 mi² (1.48 km²).

PERIOD OF RECORD. -- Water years 1979 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACD3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
NOV									
18 APR	1500	. 50	11		27.0	5-0	7. 3	12	1
16	1230	10	63	6. 9	25. 0	14	B. 0	11	100
DATE	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
NOV									
18 APR	1	2. 3	1.4	5. 9	52	. 8	. 3	11	. 8
16	4. 0	2. 3	1.3	6. 3	53	. 8	. 8	7. 0	2. 8
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
NOV									
18 APR	6. 0	. 1	15	39	. 05	. 14	180	10	
16	11	. 1	10	39	. 05	. 02	160	6	

CAROLINE ISLANDS, ISLAND OF PONAPE

16897550 MEITIK RIVER

LOCATION (REVISED).--Lat $06^\circ 56^\circ 12''$ N., long $158^\circ 13^\circ 26''$ E., Hydrologic Unit 20100006, at bridge near mouth. DRAINAGE AREA.--5.04 mi² (13.05 km²), revised.

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	
	NOV 21	1340	22	27. 5	7. 5	29	8	5. 4	3. 8	3. 3	19	
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
NOV												
21	. 3	. 6	21	2. 2	3. 1	. 1	14	45	. 06	. 00	230	7

WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

CAROLINE ISLANDS, ISLAND OF PONAPE--Continued

16897600 NANPIL RIVER (Formerly published as Nanepil River)

LOCATION (REVISED).--Lat $06^\circ55'09"$ N., long $158^\circ11'59"$ E., Hydrologic Unit 20100006, on left bank 0.1 mi (0.2 km) upstream from diversion dam and 1.3 mi (2.1 km) upstream from Kiepw River.

DRAINAGE AREA. -- 3.00 mi² (7.77 km²), revised.

PERIOD OF RECORD. -- Water years 1978 to current year.

						MAGNI	Ξ-		
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER	AS	CALCIU DIS- SOLVE (MG/L AS CA	DIS- ED SOLVI	DIS- ED SOLVED (MG/L	PERCEN SODIU	
NOV									
21	1240	13	26.	5 9	9 2.	3	. 9 1. 9	3	10
							NITRO-		
	SODIUM	POTAS-		CHLO-	FLUO-	SILICA,	GEN,		MANGA-
	AD-	SIUM,	SULFATE	RIDE,	RIDE,	DIS-	NG2+NO3	IRON,	NESE,
	SORP-	DIS-	DIS-	DIS-	DIS-	SOLVED	DIS-	DIS-	DIS-
	TION	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED
	RATIO	(MG/L	(MG/L	(MG/L	(MG/L	AS	(MG/L	(UG/L	(UG/L
DATE		AS K)	AS SO4)	AS CL)	AS F)	SI02)	AS N)	AS FE)	AS MN)
NOV									
21	. 3	. 2	2.0	3. 1	. 1	5. 9	. 04	100	2

16897900 LEWI RIVER (Formerly published as Lui River)

LOCATION (REVISED).--Lat 06°55'32" N., long 158°12'18" E., Hydrologic Unit 20100006, on right bank at road and pipeline crossing, 300 ft (91 m) upstream from right-bank tributary and 2.4 mi (3.9 km) upstream from mouth.

DRAINAGE AREA. -- 0.46 mi² (1.19 km²), revised.

	DATE		STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	
	NOV 21	1110	3. 6	26. 0	7. 2	14	0	2.6	1. 9	2. 2	25	
	- 					7			***	L. L	20	
	SODIUM	POTAS-	ALKA-		CHLO-	FLUO-	SILICA	SOLIDS,	col the	NITRO-		MANIDA
	AD-	SIUM,	LINITY	SULFATE		RIDE,	DIS-	CONSTI-	SOLIDS, DIS-	GEN, NO2+NO3	IRON,	MANGA- NESE,
	SORP-	DIS-	LAB	DIS-	DIS-	DIS-	SOLVED		SOLVED		DIS-	DIS-
	TION	SOLVED	(MG/L	SOLVED	SOLVED			DIS-	(TONS	SOLVEI		SOLVED
	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L	AS	SOLVED	PER	(MG/L	(UG/L	(UG/L
DATE		AS K)	CACO3	AS SO4)	AS CL)	AS F)	SI02)	(MG/L)	AC-FT)	AS N)	AS FE)	AS MN)
NOV												
21	. 3	, 2	16	. 4	3. 3	. 1	9. 7	30	. 04	. 00	130	3

WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

CAROLINE ISLANDS, ISLAND OF PONAPE--Continued

16898200 LEWI RIVER AT MOUTH (Formerly published as Lui River at mouth)

LOCATION (REVISED).--Lat $06\,^\circ57\,^\circ04$ " N., long $158\,^\circ12\,^\prime39$ " E., Hydrologic Unit 20100006, on right bank 0.3 mi (0.5 km) upstream from bridge at mouth and 0.4 mi (0.6 km) west southwest of Ponape State Hospital.

DRAINAGE AREA. -- 2.08 mi² (5.39 km²), revised.

PERIOD OF RECORD. -- Water years 1978 to current year.

			STREAM- FLOW,		DXYGEN,	HARD- NESS	HARD- NESS, NONCAR-	CALCIUM DIS-	MAGNE- SIUM, DIS-	SODIUM, DIS-		
		TIME	INSTAN- TANEOUS	TEMPER- ATURE	DIS- SOLVED	(MG/L AS	BONATE (MG/L	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	PERCENT	
	DATE		(CFS)	(DEG C)	(MG/L)	CACO3)	CACD3)	AS CA)	AS MG)	AS NA)	SODIUM	
	NOV											
	20	1640	9. 4	27. 5	8. 0	20	5	3. 1	3.0	2.7	22	
	SODIUM	POTAS-	ALKA-		CHLD-	FLU0-	SILICA,	SOLIDS, SUM OF	SOLIDS,	NITRO- GEN,		MANGA-
	AD-	SIUM		SULFATE		RIDE,	DIS-	CONSTI-	DIS-	ND2+ND3	IRON,	NESE,
	SORP-	DIS-	LAB	DIS-	DIS-	DIS-	SOLVED		SOLVED		DIS-	DIS-
	TION	SOLVEI	(MG/L	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	(TONS	SOLVED	SOLVED	SOLVED
	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L	AS	SOLVED	PER	(MG/L	(UG/L	(UG/L
DATE		AS K)	(E00A)	AS SO4)	AS CL)	AS F)	SI02)	(MG/L)	AC-FT)	AS N)	AS FE)	AS MN)
NOV												
20	. 3	. 2	2 15	. 6	3. 2	. 2	13	35	. 05	. 00	120	2

16898300 DAUEN NEU RIVER (Formerly published as Tawannu River)

LOCATION.--Lat 06°56'47" N., long 158°11'55" E., Hydrologic Unit 20100006, 0.4 mi (0.6 km) southwest of Ponape Island Central School and 1.7 mi (2.7 km) upstream from bridge at mouth.

DRAINAGE AREA. -- 0.75 mi² (1.21 km²).

PERIOD OF RECORD. -- Water year 1981.

DATE	TIME	STREA FLOW INSTA TANEO (CFS	, CON N- DUC US ANC	FIC I- CT- CE	PH (UNITS)	TEMPE ATUR (DEG	R- BI	D- D Y SO	GEN, IS- LVED G/L)	HARD- NESS (MG/L AS CACD3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
APR	1000		4		7.5	0.4			7.0	20	
09	1200	4	. 7	90	7. 5	26	. 0 5	. 4	7. 2	38	6
DATE	HARD- NESS NONCAR BONATE (MG/L AS CACO3)	- CALCI DIS- SOLV	UM SI DI ED SOL L (MG	S- VED S	SODIUM, DIS- BOLVED (MG/L AS NA)	PERCE SODI	SOR TI NT RAT	D- S P- D ON SO IO (M	TAS- IUM, IS- LVED G/L K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
	CHCCC	HO U	n, 45	1107	AS INA	5021	011	7.0	κ,	CHOODY	110 0017
APR 09	15	10		3. 2	3. 4		16	. 2	. 2	32	1.7
07	13	10		J. E	3. 4		10			SE	1.7
					SOL	IDS,					
		CHLO-	FLUO-	SILI			SOLIDS			NGA-	
		RIDE, DIS-	DIS-	DIS-		STI-	DIS- SOLVED	IRON, DIS-		SE, IS-	
		SOLVED	SOLVED	(MG		IS-	(TONS	SOLVED		LVED	
		(MG/L	(MG/L	AS		LVED	PER	(UG/L		G/L	
D	ATE	AS CL)	AS F)	SIO	2) (M	G/L)	AC-FT)	AS FE)	AS	MN)	
AP	R										
	9	4. B	. 1		B. 2	51	. 07	170		6	

WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

CAROLINE ISLANDS, ISLAND OF PONAPE -- Continued

16898600 LUHPWOR RIVER (Formerly published as Lupwor River)

LOCATION (REVISED).--Lat 06°54'09" N., long 158°09'07" E., Hydrologic Unit 20100006, on left bank about 300 ft (91 m) upstream from 50-ft (15-m) waterfall, 0.2 mi (0.3 km) downstream from highway bridge, and 0.2 mi (0.3 km) west of Pwakorokot Hill.

DRAINAGE AREA. -- 0.72 mi² (1.86 km²), revised.

PERIOD OF RECORD .-- Water years 1978 to current year.

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	SOLVED (MG/L	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	PERCENT SODIUM	
	20	1315	2. 6	27.0	7. 5	17	1	3. 5	2. 0	2. 5	24	
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUD- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
NOV 20	. 3	. 2	16	1. 0	2. 9	. 0	13	35	. 05	. 00	190	4

16898650 PEHLENG RIVER (Formerly published as Palang River)

LOCATION.--Lat $06^{\circ}52'27"$ N., long $158^{\circ}09'26"$ E., Hydrologic Unit 20100006, at road crossing near mouth. DRAINAGE AREA.--2.01 mi² (5.21 km²).

PERIOD OF RECORD. -- Water year 1981.

DATI		IME	STREAM FLOW, INSTAN TANEOU (CFS)	CON DUC	FIC 4- CT- CE	PH (UNITS)	TEMP ATU (DEG	RE	TUR- BID- ITY (NTU)	DI	EN, S- VED /L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)
MAR		120			07	7.4			2.1		0.0		4.0
30.	. 1	430	1	5	37	7. 6		6. 0	2, 1		8. 2	11	4. 0
DATE	D1 SC (M	CIUM (S- DLVED (G/L' (S CA)	MAGNE SIUM DIS- SOLVE (MG/L AS MG	DIS DIS DISOLV	G- VED	PERCENT SODIUM	SOR TI RAT	DN	POTAS SIUM DIS- SOLVE (MG/L AS K)	, LINI LA D (MG AS	TY B /L	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAR 30.		2. 1	1.	4	2. 9	36		. 4		2 7	. 0	. 6	3. 5
		RI	DE,	ILICA, DIS- SOLVED (MG/L	SOL I SUM CONS TUEN	OF SC STI- NTS, S	LIDS, DIS- OLVED TONS	GE NO2+ DI	N03 S-	IRON, DIS- SOLVED	NES DI	NGA- SE, IS- LVED	
	DATE	(M	IG/L	AS 5102)	SOL	VED	PER C-FT)	(MG AS	/L	(UG/L AS FE)	(UC	MN)	
	MAR 30		. 1	9. 5		24	. 03		. 04	80		3	

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

CAROLINE ISLANDS, ISLAND OF PONAPE--Continued

16899000 SENIPEHN RIVER (Formerly published as Senpen River)

LOCATION (REVISED).--Lat 06°52'28" N., long 158°16'17" E., Hydrologic Unit 20100006, 0.1 mi (0.2 km) downstream from confluence of two branches, 0.5 mi (0.8 km) southeast of Merewi Peak, and 1.5 mi (2.4 km) upstream from mouth.

DRAINAGE AREA. -- 6.04 mi² (15.64 km²), revised.

DATE		TIME	STREAM FLOW, INSTAN TANEOU (CFS)	CO - DU S AN	FIC N- CT-	P (UNI	н тs)	TEMP ATU (DEG	RE	TUR BIL ITY (NTU)-	OXYGEN, DIS- SOLVEI (MG/L)		HARD- NESS NONCAR- BONATE (MG/L AS CACO3)
MAR 27.		1500	7	1	33		7. 3	2	6. 0	,	90	8. 1	9	1.0
DATE	D S (LCIUM IS- OLVED MG/L S CA)	MAGNE SIUM DIS- SOLVE (MG/L AS MG	DISOL	5-	PERC SOD		SOD A SOR TI RAT	D- P ON	POTA SIL DIS SOLV (MG/ AS K	M, S- ED L	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAR 27.		1. 5	1.	2	2. 6		39		. 4		. 2	8. 0	. 2	3. 4
	DATE	RI D SO (M	DE, IS- LVED G/L	ILICA, DIS- SOLVED (MG/L AS SIO2)	SUM CON TUE D SO	IDS, OF STI- NTS, IS- UVED	50 (T	IDS, IS- LVED ONS ER -FT)	GE NO2+ DI	NO3 S- VED	SO (U	ON, N IS- LVED S G/L (ANGA- ESE, DIS- OLVED UG/L S MN)	
	MAR 27		. 1	8. 1		22		. 03		. 06		60	2	

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

CAROLINE ISLANDS, ISLAND OF PONAPE -- Continued

16899100 LEHDAU RIVER (Formerly published as Lataw River)

LOCATION (REVISED).--Lat 06°52'59" N., long 158°16'15" E., Hydrologic Unit 20100006, 0.1 mi (0.2 km) upstream from right-bank tributary, 0.4 mi (0.6 km) northeast of Meriwi Peak, and 1.4 mi (2.2 km) upstream from mouth.

DRAINAGE AREA. -- 2.44 mi² (6.32 km²), revised.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPE ATUR (DEG	RE IT	UR- 1D- 1Y 1U)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)
MAR 27	1230	32	30	7. 6	20	5.0 1	1.6	7. 8	7	. 00
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM		0- 51 9- D1 0N SOL		ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAR 27	1, 4	. 9	2. 6	43		. 4	. 2	7. 0	. 2	3. 5
D	R I I SC 1)	DE, D: DIS- SC DLVED (N	LICA, SU IS- CO DLVED TU 16/L AS S	NSTI- ENTS, S DIS- (OLVED	LIDS, DIS- OLVED TONS PER (C-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	50 (U	ON, NE IS- I LVED SC G/L ((ANGA- ESE, DIS- DLVED JG/L S MN)	
MA 2	R 7	, o	7. 6	21	. 03	. 04		100	3	

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981 CAROLINE ISLANDS, ISLAND OF KOSRAE

16899700 PALUSRIK RIVER

LOCATION (REVISED).--Lat 05°16'32" N., long 162°59'13" E., Hydrologic Unit 20100006, on right bank 0.4 mi (0.6 km) upstream from Finkol River, 0.7 mi (1.1 km) northeast of Utive village, and 2.0 mi (0.3 km) south of Mount Crozer.

DRAINAGE AREA. -- 0.45 mi² (1.17 mi²), revised.

PERIOD OF RECORD. -- Water years 1980 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACD3)	HARD- NESS, NDNCAR- BONATE (MG/L CACO3)
APR									
04	1630	4. 2	68	7. 4	25. 0	5. 4	7. 1	25	4
DATE	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
	0110007	110 0117	110 1107	HO MH	5551011		HO NY	CHOOD	HD 0017
APR 04	. 00	4. 2	3. 5	3. 1	21	. 3	. 4	21	. 5
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
APR									
04	4.6	. 1	17	46	. 06	. 02	170	1	

16899840 SIBA RAIN CATCHMENT AT LELE

LOCATION.--Lat 05°19'54" N., long 163°01'23" E., Hydrologic Unit 20100006, 0.2 mi (0.3 km) southeast of Yenei and 0.4 mi (0.6 km) northwest of Mount Fenkofuru.

PERIOD OF RECORD. -- Water year 1981.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	ARSENIC DIS- SOLVED (UG/L AS AS)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)
APR							
06	1500	58	9. 2	26. 0	0	2	4
				MANGA-		SELE-	
	COPPER,	IRON,	LEAD,	NESE,	MERCURY	NIUM,	ZINC,
	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-
	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED
2322	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE	AS CU)	AS FE)	AS PB)	AS MN)	AS HG)	AS SE)	AS ZN)
APR							
06	2	70	4	10	. 0	0	220

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

CAROLINE ISLANDS, ISLAND OF KOSRAE--Continued

16899850 PUKUSRUK RIVER (Formerly published as Pakusrik River)

LOCATION (REVISED).--Lat 05°21'01" N., long 163°00'37" E., Hydrologic Unit 20100006, 80 ft (24 m) downstream from new diversion dam, 0.5 mi (0.8 km) upstream from mouth, 0.9 mi (1.4 km) east of Mount Buache.

DRAINAGE AREA. -- 0.27 mi² (0.70 km²), revised.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACD3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)
APR 01	1600	. 40	148	7. 6	25. 5	. 80	7. 8	59	4. 0
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
APR 01	9. B	8. 3	5. 7	17	. 3	. 5	55	. 7	5. 8
D	RI D SO (M	DE, DI IS- SC LVED (M G/L A	ICA, SUM S- COM DLVED TUE IG/L I	ISTI- D ENTS, SO DIS- (T DLVED P	IDS, GE IS- NO2+ LVED DI	NO3 IR S- D VED SO	ON, NE IS- I LVED SO G/L (U	ANGA- ESE, DIS- DLVED UG/L S MN)	
API O	R 1	1	26	90	. 12	. 02	80	<1	

< Actual value is known to be less than the value shown.

ANALYSES OF SAMPLES COLLECTED AT MISCELLANEOUS SITES

Samples are collected at sites other than gaging stations and partial-record stations to give better areal coverage in a river basin. Such sites are referred to as miscellaneous sites.

WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

CAROLINE ISLANDS, PALAU ISLANDS

16891200 NGERIMEL (FORMERLY GIHMEL) RIVER, BABELTHUAP (LAT 07°22'18" N., LONG 134°31'37" E.)

DATE	TIME	INS.	DW, TAN- EOUS	SPE- CIFIC CON- DUCT- ANCE	PH (UNI)	-	EMPER- ATURE DEG C)	OXYGEN DIS- SOLVE (MG/L	NE (N	ARD- ESS 16/L AS ACO3)	NON BON	CAR- ATE G/L S	CALC DIS SOL (MG AS	IUM - VED : /L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM
JUL																	
12	1350		5. 1	55	7	. 8	30.0	7. 1	2	21		. 00		4. 8	2. 2	4. 0	29
												NITI	9n-				
	sor	MUIC	POTAS	- ALM	A-		CHL)- FI	.uo-	SILI	CA,	GEI			MAN	IGA-	
		AD-	SIUM			ULFATE			DE,	DIS		N02+		IRON,	NES		
		RP- LON	DIS-			DIS- SOLVED	DIS-		IS- DLVED	(MG	VED	SOL		DIS-		S- VED	
	RAT		(MG/L			(MG/L	(MG)		IG/L	AS		(MG.		(UG/L	(UG		
DATE			AS K)	CAC	03) A	S 504)	AS C	CL) AS	(F)	SIO		AS I	(1)	AS FE) AS	MN)	
JUL																	
12		. 4		4 21		<1.0) 4	1. 3	. 0	1	7		07	120)	30	
< Actu	al val	ue is	known	to be	less t	nan th	e value	shown.									

16891480 NGKEKLAU (FORMERLY KEKLAU) VILLAGE RESERVOIR, BABELTHUAP (LAT 07°35'31" N., LONG 134°38'08" E.)

	DATE JUL	TIME	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
	09	1020	44	. 00	10	4. 7	7. 0	25	. 5	. 3
DATE	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JUL 09	44	1.0	6. 6	. 0	38	95	. 13	. 21	90	4

16891500 LMETMELLASCH RIVER (FORMERLY GELIGAL MARSH OUTLET), BABELTHUAP (LAT 07°36'12" N., LONG 134°37'36" E.)

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NOM NESS BOM (MG/L (MG/L AS AS	ARD- ESS NCAR- NATE 16/L AS CO3)
JUL 09	1310	2. 4	70	8, 2	26.5	7. 8	25	2. 0
CALC DIS SOL (MG DATE AS	IUM SI - DI VED SOL /L (MG		S- PED S/L PERC	A SOR TI	D- SI P- DI ON SOL	VED (MG/	SULFATE DIS- L SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
JUL 09	5. 0	3. 1	5. 3	31	. 5	. 3 23	1.0	5. 5
DATE JUL	FLUD- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, ND2+ND3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
09	. 0	22	57	. 08	. 08	150	6	

16891750 UNNAMED SOUTH COAST STREAM, NGEREKEBESANG (LAT 07°20'42" N., LONG 134°26'54" E.)

TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
77.0	100		2					2.0	100	1.2	- 2
1110	40	7. 4	26. 5	7. 4	10	. 00	2. 3	1. 1	4. 3	47	. 6
POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACD3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
2	13	2.0	5. 2	. 0	17	41	04	15	100	9	
	1110 POTAS- SIUM, DIS- SOLVED (MG/L	CIFIC CON- DUCT- ANCE (UMHOS) 1110 40 PDTAS- ALKA- SIUM, LINITY DIS- LAB SOLVED (MG/L (MG/L AS AS K) CACO3)	CIFIC CON- DUCT- PH ANCE (UMHOS) (UNITS) 1110 40 7.4 POTAS- ALKA- SIUM, LINITY SULFATE DIS- LAB DIS- SOLVED (MG/L SOLVED (MG/L AS (MG/L AS K) CACO3) AS SO4)	CIFIC CON- DUCT- PH TEMPER- ANCE ATURE (UMHOS) (UNITS) (DEG C) 1110 40 7.4 26.5 POTAS- ALKA- CHLO- SIUM, LINITY SULFATE RIDE, DIS- BOLVED (MG/L SOLVED SOLVED (MG/L AS (MG/L (MG/L AS K) CACO3) AS SO4) AS CL)	CIFIC CON- CON- DUCT- PH TEMPER- ANCE ATURE SOLVED (MG/L) 1110 40 7.4 26.5 7.4 POTAS- ALKA- SIUM, LINITY SULFATE RIDE, RIDE, BIS- BOLVED (MG/L SOLVED SOLVED SOLVED (MG/L) SOLVED (MG/L AS (MG/L (MG/L AS F))	CIFIC	SPE- CIFIC HARD- NONCAR-	SPE- CIFIC HARD- NDNCAR- CALCIUM	SPE- CIFIC HARD- NDNCAR- CALCIUM SIUM SIUM DUCT- PH TEMPER- DIS- (MG/L SOLVED SOLVED SOLVE	SPE- CIFIC HARD- NONCAR- CALCIUM SIUM, SODIUM, DUCT- PH TEMPER- DIS- MG/L MG/L SOLVED SOL	SPE- CIFIC HARD- NONCAR- CALCIUM SIUM, SODIUM, DUCT- PH TEMPER- DIS- MG/L MG/L SOLVED MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L AS NA) SODIUM 1110 40 7.4 26.5 7.4 10 .00 2.3 1.1 4.3 47 POTAS- ALKA- CHLO- FLUO- SILICA, SUM OF SOLIDS, GEN, GEN, GEN, GEN, GEN, GEN, GEN, GEN

16891800 ELODESACHEL (FORMERLY ALMIGU) SPRING, KOROR (LAT 07°20'47" N., LONG 134°29'57" E.)

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACD3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	DI SC (M	CIUM S S- D DLVED SO 1G/L (M	GNE- IUM, IS- LVED G/L MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
JUL													
12	1455	104	8. 1	26. 5	6. 4	49	7. 0		15	2.8	4. 3	16	. 3
							SOL	IDS,	NITRO-				
	POTAS	- ALKA	-	CHL	.0- FLU	- SIL		OF	GEN,		MAN	IGA-	
	SIUM							STI-	N02+N03	IRON			
	DIS-							NTS,	DIS-	DIS		S-	
	SOLVE				VED SOL			IS-	SOLVED	SOLV		VED	
	(MG/L												
			(MG					LVED	(MG/L	(UG/			
DATE	AS K)	CACC)3) AS S	U4) AS	CL) AS	sic)2) (M	G/L)	AS N)	AS F	E) AS	MN)	
JUL													
12,	4	2 42	19	2. 0	4. 7	. 0	8	73	. 20	3	10	10	

CAROLINE ISLANDS, YAP ISLANDS

16893190 DORFAY STREAM, GAGIL-TAMIL (LAT 09°32'08" N., LONG 138°10'13" E.)

TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	HARD- N NESS B (MG/L AS	HARD- NESS ONCAR- ONATE (MG/L AS ACO3)
1500	. 91	29	6. 0	27.5	6.8	4	. 00
UM SI DI ED SOL L (MG	(UM, SODI (S- DIS (VED SOLV ()/L (MG MG) AS	PED PED PERC NA) SOD	A SOR TI ENT RAT IUM	D- SI P- DI ON SOL IO (MG AS	UM, LINIT S- LAB VED (MG/ /L AS K) CACO	Y SULFATE DIS- L SOLVEI (MG/L 3) AS SO4	DIS- D SOLVED (MG/L) AS CL)
		7. 4	70	. 7	.1 0.	0 1, 0	J 5. B
FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIG2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED	SOLIDS, DIS- SOLVED (TONS PER AC-ET)	NITRO- GEN, ND2+ND3 DIS- SOLVED (MG/L	IRON, DIS- SOLVED (UG/L	MANGA- NESE, DIS- SOLVED (UG/L	
10 17	JIUE,	(HG/L)	AC-PT/	HS N7	AS FE)	AS MN)	
. O	6. 7	23	. 03	. 01	200	30	
	MAGUM SI DI ED SOLL (MG A) AS 5 FLUO- RIDE, SOLVED (MG/L AS F)	FLOW, INSTAN- TIME TANEOUS (CFS) 1500 .91 MAGNE- UM SIUM, SODI DIS- DIS- ED SOLVED SOLVED (MG/L AS AS MG) AS FLUO- SILICA, RIDE, DIS- DIS- SOLVED SOLVED SOLVED (MG/L AS AS F) SIO2)	STREAM- CIFIC FLOW, CON- INSTAN- DUCT- TANEOUS ANCE (CFS) (UMHOS) 1500 .91 29 29 29 29 29 29 29	STREAM- CIFIC FLOW, CON- INSTAN- DUCT- PH TIME TANEOUS ANCE (CFS) (UMHOS) (UNITS) 1500 .91 29 6.0 MAGNE- SOD UM SIUM, SODIUM, A DIS- DIS- SOR ED SOLVED SOLVED TI L (MG/L (MG/L PERCENT RAT A) AS MG) AS NA) SODIUM SOLIDS, FLUO- SILICA, SUM OF SOLIDS, RIDE, DIS- CONSTI- DIS- DIS- SOLVED TUENTS, SOLVED SOLVED (MG/L AS SOLVED PER AS F) SIO2) (MG/L) AC-FT)	STREAM- CIFIC FLOW, CON- INSTAN- DUCT- PH TEMPER- ATURE TANEOUS ANCE ATURE (CFS) (UMHOS) (UNITS) (DEG C) 1500 .91 29 6.0 27.5 MAGNE- SODIUM POTI UM SIUM, SODIUM, AD- SI ED SOLVED SOLVED TION SOLID L (MG/L (MG/L PERCENT RATIO (MG A) AS MG) AS NA) SODIUM AS I 5 .6 4.1 70 .9 SOLIDS, NITRO- GEN, RIDE, DIS- CONSTI- DIS- NO2+NO3 DIS- SOLVED TUENTS, SOLVED DIS- SOLVED (MG/L DIS- (TONS SOLVED (MG/L AS SOLVED PER (MG/L AS F) SIO2) (MG/L) AC-FT) AS N)	STREAM- CIFIC FLOW, CON- INSTAN- DUCT- PH TEMPER- TIME TANEOUS ANCE ATURE SOLVED (CFS) (UMHOS) (UNITS) (DEG C) (MG/L) 1500 .91 29 6.0 27.5 6.8 MAGNE- UM SIUM, SODIUM, AD- SIUM, LINIT DIS- DIS- SORP- DIS- LAB ED SOLVED SOLVED TION SOLVED (MG/L L (MG/L (MG/L PERCENT RATIO (MG/L AS A) AS MG) AS NA) SODIUM AS K) CACO 5 .6 4.1 70 .9 .1 6. SOLIDS, NITRO- FLUO- SILICA, SUM OF SOLIDS, GEN, RIDE, DIS- CONSTI- DIS- NO2+NO3 IRON, DIS- SOLVED TUENTS, SOLVED DIS- SOLVED (MG/L DIS- (TONS SOLVED SOLVED (MG/L AS SOLVED PER (MG/L (UG/L AS F) SIO2) (MG/L) AC-FT) AS N) AS FE)	SPE- STREAM- CIFIC FLOW, CON- INSTAN- DUCT- PH TEMPER- DIS- (MG/L TIME TANEOUS ANCE ATURE SOLVED AS (CFS) (UMHOS) (UNITS) (DEG C) (MG/L) CACO3) C. 1500 .91 29 6.0 27.5 6.8 4 MAGNE- UM SIUM, SODIUM, AD- SIUM, LINITY SULFATION DIS- DIS- SORP- DIS- LAB DIS- ED SOLVED SOLVED TION SOLVED (MG/L SOLVED L (MG/L (MG/L PERCENT RATIO (MG/L AS (MG/L A) AS MG) AS NA) SODIUM AS K) CACO3) AS SO4 SOLIDS, NITRO- FLUO- SILICA, SUM OF SOLIDS, GEN, MANGA- RIDE, DIS- CONSTI- DIS- NO2+NO3 IRON, NESE, DIS- SOLVED TUENTS, SOLVED DIS- DIS- SOLVED (MG/L AS SOLVED PER (MG/L (UG/L AS F) SIO2) (MG/L) AC-FT) AS N) AS FE) AS MN)

16893870 POU RESERVOIR INTAKE (6-IN PIPE), MOEN (LAT 07°26'34" N., LONG 151°50'56" E.)

DATE	TIME	STRE FLO INST TANE (CF	W, COM AN- DUC OUS AND	FIC V- CT- TE CE A	MPER- TURE EG C)	TU BI IT (NT	Υ	OXYGE DIS SOLV (MG/	S- /ED	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
APR												
14	1000		. 00	75	29. 0	12		7	7.6	20	. 00	4. 3
DATE	MAGNE- SIUM, DIS- SOLVEI (MG/L AS MG)	SODI DIS SOLVI	- ED /L PERO	s	ODIUM AD- ORP- TION ATIO	POT SI DI SOL (MG AS	UM, S- VED /L	ALKA LINIT LAB (MG/ AS CACO	Y L	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
APR												
14 ,	2. 2	2	6. 9	43	. 7		, 2	25		1. 4	5. 6	. 1
DA APR	I S (LICA, DIS- GOLVED MG/L AS GIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS DIS- SOLVE (TONS PER AC-FT	GE D NO2+ TO1 (MG	FAL G/L	NO2 D SO (M	TRO- EN, +NO3 IS- LVED G/L N)	SOL	ON, N IS- LVED S G/L (IANGA- IESE, DIS- SOLVED UG/L IS MN)	
	2.2.2	19	55	. 0	7	47		. 07		130	3	

CAROLINE ISLANDS, ISLAND OF PONAPE

16897470 PAHNTAKAI (FORMERLY PILENPANTAKI) RIVER (LAT 06°56'22" N., LONG 158°16'20" E.)

DATE		ME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	DUC ANO	FIC N- CT-	F (UNI	'Н :TS)	TEMF ATU	JRE	TUI BII IT'	D- Y	DXYGEN DIS- SOLVE (MG/I	- (MG/L ED AS	HARD- NESS NONCAR- BONATE (MG/L AS) CACO3)
APR														
10	. 14	30	5. 0		75		7. 9	2	26. 0	5.	1	8.	3 28	. 00
DATE	CALC DIS SOL (MG AS	VED /L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SOD) SOLV (MG	S- VED	PERC	ENT OIUM	SOR	ON	POTA SIL DIS SOL (MG, AS A	JM, S- VED /L	ALKA- LINITY LAB (MG/L AS CACOS	SULFATE DIS- SOLVEI (MG/L	DIS- SOLVED (MG/L
APR		00							1.0			- 22		
10	•	6. 0	3. 2		4. 5		25		. 4		. 4	30	. •	7 6.1
	DATE APR	RI D SO (M	DE, D IS- S LVED (G/L	LICA, IS- OLVED MG/L AS IO2)	SUM CON TUE D SO	IDS, OF STI- NTS, IS- LVED G/L)	50 (T	IDS, IS- LVED ONS ER -FT)	GE NO2+ DI	S- VED	SO (U	ON, IS- LVED G/L FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
	10		. 1	15		55		. 07		. 04		150	10	

16897480 UNNAMED RIVER NEAR CAPE UH (FORMERLY U) (LAT 06°56'40" N. LONG 158°16'18" E.)

DATE	TIM	STREA FLOW INSTA IE TANEC (CFS	N, AN- TEMF DUS ATU	JRE	HARD- NESS (MG/L AS CACO3)	HARI NESS NONCA BONAT (MGA CACO	AR- D TE S	LCIUM IS- DLVED MG/L S CA)	MAGNE- SIUM, DIS- SOLVEI (MG/L AS MG	SODI DIS SOLV (MG	ED /L PERC	SOR TI	D P ON
NOV 21	171	5 E1	i. 5	27. 0	46		5	8. 5	6.	1	4. 7	18	. 3
DATE NOV	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	RI DI SO	DE, R S- LVED S G/L (CL) A	LUO- IDE, DIS- OLVED MG/L S F)	SILICA DIS- SOLVE (MG/L AS SIO2)	, SUM CON D TUE D SO	STI- NTS, IS- LVED G/L)	OLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
E Est	.7 imated.	41	. 8		4. 7	. 2	29		82	E. 11	. 56	150	3

16897500 KEPIN AWAK (FORMERLY UNNAMED) RIVER (LAT 06°57'37" N., LONG 158°15'35" E.)

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACD3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
NOV 21	1630	E10			26. 5			15	8
APR									
10	1200	12	59	7. 7	26.0	1.3	7. 1	20	
DATE	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
NOV						_		7.0	
21 APR		3. 2	1. 6	2. 8	29	. 3	. 4	7. 0	1.6
10	. 00	4. 4	2. 2	4. 9	34	. 5	. 3	23	. 9
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
NOV									
APR	4. 1	, 1	8. 4	27	E. 04	. 32	150	4	
10	5. 9	. 1	10	43	. 06	. 11	180	4	
E E:	stimated.								

16897750 RIGHT BRANCH KIEPW (FORMERLY TAWENJOKOLA) RIVER (LAT 06°54'48" N., LONG 158°12'47" E.)

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPE ATUR (DEG	R- BI	D- Y	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACD3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)
		(CFS)	(Onnos)	(ONT 15)	IDEG	C) (NI	0)	(MG/L)	CACOS	CACOST
APR 09	1530	53	35	7. 7	25	5.0 2	. 6	8. 5	15	1.0
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODI AI SORF TIC RATI)- SI Y- DI ON SOL	S- VED /L	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
APR 09	3. 6	1.4	6. 5	48		. 7	. 4	14	. 4	4. 1
ם	R: 1 S(IDE, DI DIS- SO DLVED (M MG/L A	ICA, SUM S- CON LVED TUE G/L D S SC	ISTI- I ENTS, SC DIS- (1 DLVED F	IDS,)IS- OLVED FONS PER (-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRO DI SOL (UG AS	N, NE S- D VED SO /L (U	INGA- ISE, IIS- ILVED G/L IMN)	
AP O	R 9	. 1	8. 7	34	. 05	. 03		100	4	

16897800 KIEPW (FORMERLY TAWENJOKOLA RIVER) AT MOUTH (LAT 06°56'37" N., LONG 158°13'14" E.)

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	
	NOV 21	1440	55	28. 0	7. 8	13	0	2. 7	1. 5	2. 5	29	
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS-	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS-	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
NOV 21	. 3	, 3	15	. 1	3. 2	. 0	9. 7	29	. 04	. 00	160	10

16898500 NANKEWI (FORMERLY PILENKIEL) RIVER (LAT 06°56'03" N., LONG 158°10'46" E.)

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACD3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
20	1520	7. 5			28. 5		7.6	19	3
MAR	1020	7. 3		-	20. 3			17	J
30	1700	8. 7	53	7. 3	26. 0	2. 2	7. 7	17	
DATE	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
NOV									
20 MAR		4. 7	1.8	2. 8	24	. 3	. 2	16	1.1
30	3. 0	4. 1	1. 7	3. 2	28	. 3	. 2	14	. 6
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
NOV									
20 MAR	3. 3	. 1	14	38	. 05	. 00	80	4	
30	4. 0	. 1	13	36	. 05	. 18	130	6	

16898550 KIRIEDLENG (FORMERLY KIRICTILANG) RIVER (LAT 06°55'17" N., LONG 158°09'48" E.)

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	DXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)
	NOV 20	1330	2.8		-			7. 8	16
	MAR								
	30	1600	3. 6	47	6. 5	25. 0	1. 6	7. 6	
DATE	HARI NESS NONCA BONAT (MG)	S, CALCAR- DISTE SON	CIUM SI S- DI LVED SOL G/L (MG		S- /ED S/L PERC	SOR TI	D- SI P- DI ON SOL	VED (MG/	Y SULFATE DIS- L SOLVED (MG/L
20.		0	3. 4	1.7	2. 6	26	, 3	. 4 18	. 3
MAR 30.				43				10	1.7
	DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, ND2+ND3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
	NOV								
	20 MAR	3. 0	. 1	16	38	. 05	. 00	40	1
	30	4. 0	: 1				. 12		

16898700 LEHN MESI (FORMERLY LEHNMASI) RIVER AT HANGING BRIDGE (LAT 06°49'24" N., LONG 158°10'11" E.)

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)
MAR 28	1230	75	36	7. 5	25. 0	1. 3	8. 7	11	4. 0
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAR 28	1.8	1. 6	2. 5	32	. 3	. 2	7. 0	. 5	3. 3
D MA	RI D SO (M ATE AS	DE, DI IS- SC LVED (M	ICA, SUNS CONDLIVED TUE	STI- D STS, SO DIS- (T DLVED P	IDS, G IS- NO2 LVED D ONS SO ER (M	IS- I LVED SI G/L (RON, NE DIS- I OLVED SC UG/L (L	ANGA- SE, DIS- DLYED JG/L S MN)	
	8	. 1	7.6	22	. 03	. 09	70	3	

16898800 KAPINPIL SPRING NEAR NANIOR ISLAND (LAT 06°48'42" N., LONG 158°18'39" E.)

DATE	TIME	C I C I D U A N	E- FIC IN- ICT- ICE IHOS)	PH (UNITS)	ATI	PER- JRE G C)	DXYGE DIS SOLV (MG/	N, S- VED	HARD- NESS (MG/L AS CACO3)	NE NON BON (M	ARD- CSS ICAR- IATE IG/L IS CO3)	DI SO (M	CIUM S- LVED G/L CA)		VED /L		3-	PERC SOD		SODIUM AD- SORP- TION RATIO
APR																				
11	0900	1	7000	7. 3	â	27. 0	E	. 4	1900	180	00	1	40	37	0	310	00		77	31
											SOLI	DS,	NITE	0-						
		AS-	ALKA-			CHLO		FLUO-			SUM I	OF	GEN	,				GA-		
		UM,	LINIT		ATE	RIDE		RIDE,	DIS		CONS		N02+N		IRO		NES			
		S-	LAB			DIS-		DIS-		VED	TUEN		DIS		DI		DI			
		VED 2/L	(MG/I		VED VL	SOLV (MG/		SOLVE (MG/L		Z/L	SOL		SOLV (MG/		SOL		(UG	VED		
DATE			CACO			AS C		AS F)			(MG		AS N		AS I		AS			
APR																				
11	. 10	00	67	69	20	5400			3 2	23	98	860		11		50		10		

16898900 KEPROHI (FORMERLY KAPIROI) RIVER (LAT 06°51'00" N., LONG 158°17'39" E.)

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS	TEMF ATU B) (DEG	ER- I	TUR- 31D- 1TY NTU)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACD3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)
MAR 27	1700	24	39	7.	5 2	27. 0	1. 9	8. 0	14	4. 0
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCEN SODIU	SOR TI NT RAT	D- S P- I ON SC	DTAS- SIUM, DIS- DLVED 1G/L S K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAR 27	2, 5	1.8	2, 8		30	. 3	. 2	10	., 2	3. 8
MA	R S (ATE A	IDE, D: DIS- SC OLVED (N MG/L A	LICA, SU IS- CO DLVED TU 1G/L AS S	LIDS, M OF S NSTI- ENTS, DIS- OLVED MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVEI (MG/L AS N)	3 IR D SC (U	RON, NE DIS- I DLVED SC JG/L (U	ANGA- ESE, DIS- DLVED JG/L S MN)	

CAROLINE ISLANDS, ISLAND OF KOSRAE 16899670 MWOT RIVER (LAT 05°18'26" N., LONG 162°55'25")

DATE		TI	ME	FL INS TAN	EAM- OW, TAN- EOUS FS)	DU AN	FIC N- CT-	F (UN)	°Н (TS)	TEMF ATU	IRE	TUI BI IT (NT	D- Y	DXYGEN DIS- SOLVE (MG/I	ED	HARD- NESS (MG/L AS CACO3)	HAR NES NONC BONA (MG AS CACO	S AR- TE /L
APR																		
02		13	00		. 67		71		7. 4	ā	26. 0	1	. 4	7.	0	27	3	. 0
DATE		CALC DIS SOL (MG AS	- VED /L	SO (M	GNE- IUM, IS- LVED G/L MG)	DI SOL (M		PERO SOI	CENT	SOR	ON	POTA SII SOLI (MG:	UM, S- VED /L	ALKA- LINITY LAB (MG/L AS CACO	Y	SULFATE DIS- SOLVED (MG/L AS SO4)	CHL RID DIS SOL (MG AS	E, VED /L
APR 02			3. 8		4. 2		2.8		18		. 2		. 2	24		. 6		3. 3
	DA	TE	RII D SOI (M	UO- DE, IS- LVED G/L F)	DI SO (M	ICA, S- LVED G/L S	CON TUE SO	IDS, OF STI- NTS, IS- LVED G/L)	D SO (T P	IDS, IS- LVED ONS ER -FT)	GE NO2+ D1	S- VED	SO (U	ON, IS- LVED G/L FE)	MANO NESE DIS SOLV (UG) AS N	E, S- VED /L		
				. 1		13		43		. 06		. 01		330		8		

16899680 WALUNG RIVER (LAT 05°18'25" N., LONG 162°55'01" E.)

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	CON- DUCT-	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)
APR 02	1230	. 02	75	7. 9	26. 0	2. 4	7. 8	26	1, 0
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS-	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
APR 02	3. 6	4. 1	3. 1	21	. 3	. 1	25	, 1	3. 7
AP	R SI (I) PATE A	IDE, D DIS- S OLVED (MG/L S F) S	LICA, SUI IS- COI DLVED TUI MG/L I AS SI IO2) (I	NSTI- DENTS, SO DIS- (T DLVED P MG/L) AC	.IDS, GI IS- NO2- ILVED D. ONS SOL ER (MO	IS- I LVED SO G/L (U N) AS	RON, NE DIS- I DLVED SO JG/L (U S FE) AS	NNGA- ESE, DIS- DLVED DG/L S MN)	
0	2	. 1	11	41	. 06	. 01	20	<1	

< Actual value is known to be less than the value shown.

16899690 FINKOL RIVER (LAT 05°17'10" N., LONG 162°59'04" E.)

DATE	TIM		STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFI CON- DUCT ANCE (UMHO	C - F	°Н (TS)	TEMP ATU (DEG	RE '	TUR BIE ITY (NTU	-	DXYGEN DIS- SOLVE (MG/L	- (MG/L ED AS		HARD- NESS NONCAR- BONATE (MG/L AS CACO3)
APR 04	140	0	31		68	7. 7	2	5. 0	3.	5	7.	9 2	26	2. 0
DATE	CALCI DIS- SOLV (MG/I	ED L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIU DIS- SOLVE (MG/ AS N	D L PERC	CENT	SOD A SOR TI RAT	D- P- ON	POTA SIU DIS SOLV (MG/ AS K	M, ED L	ALKA- LINITY LAB (MG/L AS CACOS	Y SULFAT DIS- SOLVE (MG/L	D	CHLD- RIDE, DIS- SOLVED (MG/L AS CL)
APR 04	4	. 3	3. 6	2	. 9	19		. 3		. 5	24	1.	5	5. 6
AF	DATE PR	FLU RID DI SOL (MG AS	E, DI S- SO VED (M /L A F) SI	ICA, S- LVED G/L	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOI (TI	IDS, IS- LVED DNS ER -FT)	GE NO2+ DI	NO3 S- VED /L	50 (U	ON, IS- LVED G/L FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)		
,	7			1.0	70		. 00				100			

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	TIM DATE	INSTAN-	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
			MAR	IANA ISLANDS,	ISLAND OF SAIPAN			
	1 6	801000	- SF T	ALOFOFO STREA	M SAIPAN (LAT 15 13	00 LONG 145	46 25)	
17	1980 . 1540	. 69		26. 0	AUG , 1981 27 160	00 6.4	29. 0	26. 5
	1450	. 23	28. 0	26. 5				
	16	801500	- MF T	ALOFOFO STREA	M SAIPAN (LAT 15 13	09 LONG 145	46 30)	
19	1981	. 31	27. 0	26. 5	AUG , 1981 27 141		29. 0	26. 5
MAR 20	1005	. 25	27. 5	25. 5				
		16805200	- L	AKE SUSUPE SA	IPAN (LAT 15 09 15 L	_ONG 145 42	42)	
	1981 . 0930	3	-	28. 0				
			1	MARIANA ISLANI	OS, ISLAND OF GUAM			
	16	808300	- FINI	LE CREEK AT A	GAT GUAM (LAT 13 22	39 LONG 144	39 26)	
	1980						2.000	
02.	1100	6. 0	28. 0	27. 0				
	1684	10000	- TINAGA	RIVER NR INA	RAJAN GUAM (LAT 13 :	17 10 LONG 1	44 45 04)	
	1981 . 1200	. 97	28. 0	26. 5				
	16	847000	- IMON	G RIVER NR AG	AT GUAM (LAT 13 20 :	17 LONG 144	41 55)	
	1981	8. 3	30. 0	29. 0				
	1684	8100	- ALMAGO	SA RIVER NEAR	AGAT GUAM (LAT 13 2	20 43 LONG 14	44 41 36)	
	1981 1455	. 48	29. 0	26. 0	SEP , 1981 01 130	5 4 7	30. 0	27. 0
JUL		2. 3		26. 5	017	75 6. 2	30. 0	27.0
	1/5	140500	MALILA	D BILLED NEAD	OUAM /LAT 13 31	14 1 500 14		
. ILIN .	1981	48300	- MAOLA	F RIVER NEAR	AGAT GUAM (LAT 13 21 SEP , 1981	. 14 LONG 14	+ 41 447	
	1120	1.1	28. 5	26. 5	01 104	5. 5	28. 5	27. 0
168	54500	- UGUM R	IVER AB T	ALOFOFO FALLS	NR TALOFOFO, GUAM (LAT 13 19 16	5 LONG 144	44 01)
	1981 1345	89	26. 0	25. 0				
	16	865000	- PAGO	RIVER NR ORDO	OT GUAM (LAT 13 26 0	8 LONG 144 4	15 14)	
	1980				JUL , 1981			
JAN ,		14 -		26. 0	22 100 SEP			27. 0
19 MAY		4.6	400	25. 5	03 084	5 12		27. 0
06	1000	44		26. 0				

TI DATE	STRE FLC INST ME TANE (CF	TAN- ATURE, OUS AIR	TEMPEI ATURI (DEG	E	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
		C	AROLINE	ISLANDS, PA	LAU ISL	ANDS			
1689060	0 -	- DIONGRADID	RIVER,	BABELTHUAP,	PALAU	ISLANDS (LA	T 07 36 0	4 LONG 13	4 35 02)
OCT , 1980 09 12	35 27	7 28.0	25	0	MAR ,	1981 . 1510	12	28. 0	25. 0
NOV	45 23				MAY 13.		8. 2	28. 0	26.0
DEC	20 34	28.0	25	. 5	JUN 18		68	27. 0	26. 0
JAN , 1981 15 12	50 61	27.5	25	. 5	JUL 08.	3222	40	27. 5	25. 5
FEB 05 12	30 36	27.5	25	. 5	AUG 20.		24	30.0	26.0
16890620	- 1	GECHUTRONG R	IVER, B	ABELTHUAP, P	ALAU IS	LANDS (LAT	07 36 11	LONG 134	34 50)
JUL , 1981 08 12	40	2.3	27	. 0					
1689065	0 -	- NGERCHETANO	G RIVER,	BABELTHUAP	, PALAU	ISLANDS (L	AT 07 35	48 LONG 13	34 34 13)
JUL , 1981 08 14	35 14		27	.0					
1689070	0 -	- NGERMESKANG	RIVER,	BABELTHUAP,	PALAU	ISLANDS (LA	AT 07 31	16 LONG 13	34 33 16)
JUL , 1981 11 11	55 52	-	25.	. 5					
1689080	0 -	NGETPANG RI	VER, BA	BELTHUAP, PA	ALAU ISI	LANDS (LAT (07 27 45 1	LONG 134 3	31 38)
JUL / 1981 06 14	00 7	, з	26	0					
16890900	-	TABECHEDING	RIVER,	BABELTHUAP,	PALAU	ISLANDS (LA	r 07 27 0	3 LONG 134	4 31 29)
OCT , 1980 10 12	55 29	29.0	25	0	MAY ,	1981	13	28.0	25.5
NOV	05 25				JUN 11.		101	27.5	25.5
DEC	20 46				JUL 06.		121		24.5
JAN , 1981 28 12					SEP 10.		24	27. 5	26.0
FEB 26 11			25.			2.77		20.6	
168913	00	- EDENG RIVE	R, BABE	LTHUAP, PALA		NDS (LAT 07	23 00 LO	NG 134 33	07)
OCT , 1980 07 11	10 22	2 28.0	25	. 0	APR 14.	. 1150	5. 1	29. 0	26. 0
NOV	40 30				MAY 11	1230	4. 1	30. 0	25. 5
DEC	10 36		25		JUN 10	1125	38	28. 5	25. 5
JAN , 1981	20 37		25.		JUL 04	. 1415	90	-	26.0
	05 19		23.		SEP 14	. 1100	7. 7	27. 5	25. 5
09 13 MAR	45 26	28. 0	26.	0					
	35 23	28. 0	25.	0					

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
			CAROLINE	ISLANDS, PAL	AU ISLANDSCon	tinued			
1689	1310	- KMEKU	MEL RIVER	, BABELTHUAP,	PALAU ISLANDS	(LAT 07	23 14 LON	NG 134 32	42)
OCT , 1		7.74	-	2.2	APR , 19			20 5	26.0
07 NOV	1330	6.2	28. 0	26 0	MAY	1415	1, 1	28.5	
03 DEC	1350	7. 0	200	26. 0	JUN	1450	. 92	30.0	26. 0
06 JAN , 1	1350 981	9. 4	27. 5	26. Q	JUL	1415	8. 3	28. 5	26. 0
08 FEB	1440	12	26. 0	25. 0	04 SEP	1045	22	26.0	25.0
09	1400	6. 9	28. 0	26.0	14.	1335	2.0	27. 5	26. 0
MAR 13	1510	4. 0	28. 0	25. 0					
1689	1400	- SOUTH	FORK NGE	RDORCH RIVER,	BABELTHUAP, PA	LAU IS	(LAT 07 26	19 LONG	134 34 28
OCT , 1	980				MAY , 19			53.7 47	200
OB.	1115	12	29. 0	25. 0	22 JUL	1200	9. 2	29. 0	26. 5
13 DEC	1140	7. B	28. 0	26. 0	05 05	1145 1320	210 18		25.0
15		27	29. 5	25. 5	AUG 17	1140	12	28. 5	26. 0
JAN , 1	1205	15	30.0	25. 0	SEP				25. 0
FEB 10	1210	13	28. 0	26. 0	16	1325	12	25. 5	23.0
MAR 18	1155	4. 5	29. 0	25. 0					
16891	430	- NORTH	FORK NGER	DORCH RIVER,	BABELTHUAP, PAI	LAU IS (LAT 07 27	51 LONG 1	34 35 12)
JUL , 1	981 1500	41		24.5					
			C	AROLINE ISLAN	DS, YAP ISLANDS	t-			
	Commence of the contract of the		0 1 mr = 1/1 C	TREAM WAR WA	D TOLANDO CLAD	00 70 5	0 10110 170	06 413	
JUL, 19	1689200 81	00 -	QATLIW S	TREAM YAP, YA	P ISLANDS (LAT	09 32 5	8 LONG 138	06 41)	
JUL , 19 21,		1.1	QATLIW S	TREAM YAP, YA	P ISLANDS (LAT	09 32 5	8 LONG 138	06 41)	
	81	1. 1		26. 0	P ISLANDS (LAT)
21 JAN , 19 20	81 1200 16892400	1. 1		26. 0	YAP ISLANDS (I JUN , 198 30	LAT 09 3			25, 5
21, JAN , 19 20 FEB 19	81 1200 16892400	1.1	 QARINGBEI	26.0 STREAM, YAP,	YAP ISLANDS (I JUN , 198 30 JUL 16	LAT 09 3	1 02 LONG	138 05 31	
JAN , 19 20 FEB 19 MAY 28	81 1200 16892400 81 0940	1.1	QARINGBEI	26. O STREAM, YAP, 26. O	YAP ISLANDS (I JUN , 198 30 JUL	LAT 09 3 1 1100	1 02 LONG	138 05 31 26.5	25. 5
21 JAN , 19 20 FEB 19	81 1200 16892400 81 0940 1110	.73	QARINGBEI 28. 0 27. 0 27. 0	26.0 STREAM, YAP, 26.0 25.0 26.0	YAP ISLANDS (I JUN , 198 30 JUL 16 SEP	LAT 09 3 1 1100 0920	1 02 LONG . 59 . 17	138 05 31 26.5	25. 5 24. 5
JAN , 19 20 FEB 19 MAY 28	81 1200 16892400 81 0940 1110	1. 1 . 73 . 04 . 05	QARINGBEI 28. 0 27. 0 28. 5	26.0 STREAM, YAP, 26.0 25.0 26.0 27.5	YAP ISLANDS (I JUN , 198 30 JUL 16 SEP	LAT 09 3 1 1100 0920 1440	1 02 LONG . 59 . 17 2. 3	138 05 31 26.5 28.5	25. 5 24. 5
JAN , 19 20 FEB 19 MAY 28	81 1200 16892400 81 0940 1110 0955 1215	1. 1 . 73 . 04 . 05	QARINGBEI 28. 0 27. 0 28. 5	26.0 STREAM, YAP, 26.0 25.0 26.0 27.5	YAP ISLANDS (I JUN , 198 30 JUL 16 SEP 23	LAT 09 3 1 1100 0920 1440	1 02 LONG . 59 . 17 2. 3	138 05 31 26.5 28.5	25. 5 24. 5
JAN , 19 20 FEB 19 MAY 2B JUN 16	81 1200 16892400 81 0940 1110 0955 1215 16892500	1. 1 . 73 . 04 . 05 . 34	QARINGBEI 28. 0 27. 0 27. 0 28. 5 TAMANEY S	26. 0 STREAM, YAP, 26. 0 25. 0 26. 0 27. 5 TREAM, YAP, YA	YAP ISLANDS (I JUN , 198 30 JUL 16 SEP 23	LAT 09 3 1 1100 0920 1440 09 29 4	1 02 LONG . 59 . 17 2. 3	26. 5 28. 5 B 05 52)	25. 5 24. 5

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	AIR	TEMPER- ATURE (DEG C)	DA	ΤE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
			CAROLIN	E ISLANDS,	YAP ISLANDS	Con	tinued			
	168926	50 -	- DINAEY S	STREAM, YAP	, YAP ISLANI	S (L	AT 09 30	32 LONG	138 06 15)
	004									
JUL , 19	1135	. 06		26. 5						
168	92680	- THOL	OMAR STREA	AM ABOVE RE	SERVOIR YAP	YAP	IS (LAT	09 30 37	LONG 138	06 18)
JUL , 1 ¹	981 0920	. 08	-	26. 5						
	1689280	0 -	DALOELAE	B STREAM, Y	AP, YAP ISL	ANDS	(LAT 09 3	31 05 LON	G 138 06	21)
OCT , 1	980					, 19				85.0
08	1155	. 13	27.0	25. 0			0955 1035	. 03	28. 0	25. 0 25. 5
JAN , 1' 19	1040	. 06	28. 0	25. 5		1 1 2	1000			
16	1305	. 02	28. 5	27, 0						
	168929	00	- PEEMGOY	STREAM, YA	P, YAP ISLA	NDS (LAT 09 31	07 LONG	138 06 3	6)
OCT , 1	980					, 19		-1277	20.00	21.2
10 DEC	0925	. 06	26. 5	25. 0	JUL	i. 5-7	1345	. 06	28, 5	26. 5
10	1055	. 03	26. 5	25. 5			1135	. 13	26. 5	25. 5
JAN , 1			12.1	5			1235	. 08		25.5
19 FEB	1450	. 11	28. 5	26. 0	SEF 24		1240	22	28. 5	26.0
19	0945	. 03	28. 0	25. 0						
	168931	00	- BURDNG S	STREAM, YAP	YAP ISLANI	S (LA	AT 09 32	05 LONG 1	38 07 19)	
JAN , 1	981				JUL	, 19	781			
20	1110	1.2	28. 0	26.0			1520	1.3		26.0
FEB	1535	. 05	28. 0	26. 0	SEP		1700		70.0	07.0
19 JUN	1535	. 05	20.0	20.0	25		1200	. 19	29. 0	27.0
30	1050 1300	. 05 . 59	28, 5 29, 5	27. 5 26. 5						
168	393180	- MONO	GUCH STREA	M, GAGIL-T	AMIL, YAP IS	LANDS	S (LAT 09	31 59 LC	ONG 138 09	57)
JUL , 19	781									
22	1045	1.6		27. 5						

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
			CAROLIN	E ISLANDS,	YAP ISLANDS 0	Continued			
1	6893200	- MU	KONG STRE	AM, GAGIL	TAMIL, YAP ISLA	ANDS (LAT 0	9 32 05 Lo	ONG 138 10	18)
NOV , 1	980				MAY ,	1981			
04 JAN , 1	1140	. 50	29. 0	27. 5	27		. 13	28. 5	27. 0
16	1025	1.4	28. 0	26. 0	JUN 15		2.4	28. 5	27. 0
FEB 17	1130	1. 2	28. 0	26. 5	30 JUL		3. 0	28. 0	25. 5
MAR					19	1000	1.7		26.0
09	1100	63	28. 0	26. 5	SEP				
24 APR	1125	. 24	29. 0	27. 0	10 25		1.9	29. 0 29. 0	27. 5 27. 5
07	1030	. 20	29.0	27. 5					
27	1200	. 10	28. 0	27. 5					
1	16893300	- GI	LAEW SPRI	NG, GAGIL-	TAMIL, YAP ISLA	ANDS (LAT 0	9 32 16 Lo	ONG 138 11	17)
Char	Sant.								
JUL , 1		. 25	120	27.5					
	16893400	_ E	YEB STREA	M, GAGIL-T	AMIL, YAP ISLAM	NDS (LAT 09	33 11 LO	NG 138 09	14)
JUL , 1				Table at					
18	1010	2. 2	in the contract of the contrac	26. 0					
	16893	3500	- QAMIN	STREAM, MA	AP, YAP ISLANDS	S (LAT 09 3	5 57 LONG	138 10 1	5)
JUL , 1	001								
18		. 29		27. 5					
			CAI	ROLINE ISLA	NDS, TRUK ISLA	NDS			
1.689	3700	- WICHEN	J R AT AL	TITUDE 55M	MOEN, TRUK IS	LANDS (LAT	07 26 37	LONG 151	51 39)
			y 30 31 11 11 -	731 Jee 72 21 W					
OCT , 1					NOV ,				10.7
02	1000	. 37	29. 0	24. 0	18	. 1630	. 30		27. 0
168	393800	- WICHE	N RIVER	AT ALT 18M,	MOEN, TRUK IS	LANDS (LAT	07 27 01	LONG 151	51 56)
NOV , 1	980				APR ,	1981			
11		2.2	29. 5	27. 5	16		10		25.0
18	1500	. 50	27. 3	27. 0	10	. 1230	10		20.0

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)		DATE		TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
			CAR	OLINE ISLANI	OS, ISLA	ND OF	PONAP	PΕ			
		16897550	- ME	ITIK RIVER,	PONAPE	(LAT	06 56	12 LON	G 158 13	26)	
NOV , 19 21	780 1340	22		27. 5							
		16897600	- NA	ANPIL RIVER,	PONAPE	(LAT	06 55	09 LON	IG 158 11	59)	
NOV , 19	1240	7. 2	29. 0	24. 0		10	1981	1 1225	29	29. 0	24. 0
21 DEC 02	1240	13	29. 0	26. 5 24. 5		MAR 05.		1430 1450	6. 0 59	30. 0 29. 0	26. 0 24. 0
17 JAN , 19	1005 981	44	26.0	23. 5		MAY 06.		1150	27	29. 0	25. 0
13 28	1320 1300	21 59	29. 0 29. 0	24. 0 24. 0		JUN 03 17		1105 1315	13 32	29. 0 28. 0	25. 0 24. 0
		16897900	_	LEWI RIVER,	PONAPE	(LAT	06 55	32 LON	G 158 12	18)	
NOV , 19	780					MAR	1981				
05 21	1050	1.1	29. 0	24. 0 26. 0		26		1705	8. 7	28. 0	24. 0
DEC 02	1100	1.0	29. 5	24. 0		03 17		1300 1030	1.1 4.1	28. 0 28. 0	25. 0 24. 0
JAN , 19	781 1015	1.8	30.0	24. 0		JUL 09.		1040	6. 9	28. 0	25.0
28	1145	6. 3	29.0	24.0							
FEB 10	1045	3. 7	28. 0	24. 0							
	168	398200	- LEWI	RIVER AT MO	UTH, PON	NAPE (LAT 0	6 57 04	LONG 158	3 12 39)	
NOV , 19	980					MAR ,	1981				
06 20 DEC	0830 1640	9. 3 9. 4	27. 0	24. 0 27. 5		03 MAY 05		1420	5. 4 28	30.0	26. 0 25. 0
04		4. 8	29. 0	25. 5		18.		1225	15	29.0	25.0
JAN , 19 14 30	1120 1205	7. 8 14	29. 5 30. 0	25. 0 25. 0							
		16898300	- DA	AUEN NEU RIV	ER, PON	APE (L	AT 06	56 47	LONG 158	11 55)	
APR , 19	1200	4. 7	70	26. 0							
		16898600	- LUI	HPWOR RIVER	, PONAPE	(LAT	06 54	09 LON	NG 158 09	07)	
NOV , 19			42.3	22.2		MAR ,					
04 20 DEC	1230	3, 5 2, 4	29, 0	24. 0 27.0		04 30 MAY		1345 1310	2.0	30. 0 29. 0	27. 0 25. 5
03 16	1255	1.7 2.0	30. 0 32. 0	25. 0 26. 0		04 26		1330 1105	10 3.8	28. 0 28. 0	24. 0 24. 0
JAN , 19 14 29	1415	2. 9 8. 1	29. 0 29. 0	25. 0 26. 0		08		1515	4. 5	28. 0	24. 0
		16898650		HLENG RIVER	, PONAPE	LAT	06 52	27 LON	IG 158 09	26)	
MAR , 19	81										
30		15		26. 0							

DATE	TIME	INSTAN- TANEOUS	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)		DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
		(CAROLINE	ISLANDS, ISI	LAND OF PO	NAPE	Continue	d		
		16899000	- SE	NIPEHN RIVE	R, PONAPE	(LAT 0	6 52 28	LONG 158	16 17)	
MAR , 198: 27	1 1500	71		26. 0						
		16899100	- L	EHDAU RIVER	, PONAPE (LAT 06	52 59 L	ONG 158 16	5 15)	
MAR , 198:	1230	32		26. 0						
			CARO	LINE ISLANDS	S, ISLAND	OF KOSI	RAE			
		16899500	- MUT	UNTE RIVER	KOSRAE (LA	AT 05 2	L 45 LON	G 162 59	20)	
APR , 198:		. 62	27. 5	25. 5		PR , 19		3. 2	31.0	26. 0
		16899600	- 0	KAT RIVER K	OSRAE (LA	05 19	11 LDNG	162 58 1	7)	~
APR , 1981	1230	19	27. 0	26, 0						
		16899620	- M	ELO RIVER KO	DSRAE (LA	05 20	30 LONG	162 58 3	3)	
APR , 1981 03		18	27. 5	25. 0						
		16899700	- PAL	USRIK RIVER	, KOSRAE (l	AT 05	16 32 LC	NG 162 59	13)	
APR , 1981 04	1630	4. 2	-	25. 0						
		16899750	- MA	LEM RIVER K	OSRAE (LA	05 17	35 LONG	163 00 5	4)	
MAR , 1981 31		1. 5	28. 5	27. 0						
		16899800	- TO	FOL RIVER K	DSRAE (LA	г 05 19	09 LONG	163 00 2	2)	
MAR , 1981 31	1335	1, 5	28. 0	26. 0						
16	89984	10 - SI	BA RAIN	CATCHMENT A	T LELE, KO	SRAE (1	AT 05 1	9 54 LONG	163 01 2	3)
APR , 1981 06		-	04-	26. 0						
	1	6899850	- PUKI	JSRUK RIVER,	KOSRAE (LAT 05	21 01 L	ONG 163 00	37)	
APR , 1981 01		. 40		25, 5						

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	Ī	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
			S	SAMOA ISL	ANDS, ISLAND	OF TUT	UILA			
	16912	000	- PAGO S	TREAM AT	AFONO, TUTUIL	A (LA	T 14 16	03 LONG 17	0 39 02)	
OCT , 1	990				: 0	JN , 19	201			
15	0830	4.9	26.0	24. 0		11	1010	1.1	24. 0	24. 0
NOV				-1.	Ji			41.50		
04	1055	1.5	28. 0	26.0		04	1310	1.7	31.0	26.0
DEC					2	29	1240	9. 5	24.0	24.0
03	0855	2.5	25. 0	24. 0		JG				
JAN , 19			22.72	25, 20		13	1055	. 95	27. 0	25.0
05	0850	2.8	25. 5	24.0		4	0945	. 94	26. 0	24. 5
29	0830	6. 4	24. 5	24. 0		20	0715	2. 3	24. 5	24. 0
FEB	0005		7/ 0	05.0	SE	26	1130	16	25. 0	23. 5
20 MAR	0935	14	26. 0	25. 0			1150	1.7	25. 0	24. 0
25	0730	45	24.0	24. 0		01	1150 1225	4. 5	26.0	24. 5
APR	0/30	45	24.0	24. 0		15	1005	2.1	25.0	24. 0
21	0830	2.3	24.0	23. 0		6	1330	1.5	27. 0	25. 5
29	0905	3. 3	24.5	23. 0		23	0845	1.4	26. 0	24. 0
JUN	0700	0. 0	24.0	25. 0		29	1055	1.0	27. 0	25. 0
02	1100	1.6	25. 5	23. 0				9.15		
	1/020	E00	AACH C	TDCAM AT	AACH TUTUT	// 47	14 17 5	1 1000 170	45 70)	
	16920	500	- AASU S	IREAM AT	AASU, TUTUILA	LAI	14 1/ 5	1 LUNG 170	45 30)	
DCT , 19	980				MA	Y , 19	281			
17	0905	23	25. 0	24. 0		8	1005	3. 9	24.0	23. 0
NOV					J		1000	0. 7	27.0	L
13	1000	3. 5	30.0	26. 0		7	0835	1.8	25. 5	24. 0
JAN , 19	781				AL					
09	0920	3. 4	27. 0	25. 0	1	0	0955	3. 5	24. 0	23. 0
MAR					SE	P				
11	0930	1.5	27. 0	25. 0	C	3	1105	5. 2	24.0	23.0
	16931000	-	ATAULOMA	STREAM A	T AFAD, TUTUI	LA (LA	AT 14 20	10 LONG 1	70 48 02)	
							2 00 27			
DCT , 19	780				AF	R , 19	781			
16	1030	. 65	26.0	25. 0	2	28	0920	1.5	25. 0	24. 0
30,	1015	. 65	27.0	26.0	MA					
NOV						28	0915	. 53	24.0	23.0
28	0920	. 23	27. 0	26.0	JL					
DEC						8	0915	. 37	26.0	25. 0
12	1015	. 40	27. 0	25. 0	AL		A Section			2000
JAN , 19			mm -			6	1000	. 53	24.0	22.0
08	1405	. 30	28. 0	26. 0		4	0905	1.5	25. 0	23. 5
FEB	0000		2/ 5	05.0	SE		1010		07.0	DE 0
13 MAR	0800	1.2	26. 5	25. 0	2	30	1310	. 22	27. 0	25. 0
26	1300	2.4	27. 0	26.0						
		ten.	U	EU. U						

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)		DATE		TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
			SAMOA IS	SLANDS, IS	SLAND OF TU	JTUILA	Cc	ntinued			
16931	500	- ASILI	STREAM A	F ALT 330	FT (100M)	NR AS	ILI	TU (LAT	14 19 34	LONG 170	47 38)
OCT , 19		2.20	125.1	25.3		MAY ,			7.3	122 3	75.00
14 NOV	0900	4. 2	25. 0	24. 0		05 JUN		1110	1.6	25. 0	23. 0
18	1205	1.3	30.0	27. 0		10		1015	. 76	23. 5	22.5
DEC 18	0930	4. 0	25. 0	24. 0		AUG 05.)	1145	1.5	24. 0	23. 0
JAN , 19	81 0835	1.2	26. 0	24. 5		27 SEP		1135	4. 9	25.0	24.0
FEB	0033			24. 5		30		0930	. 85	25.0	24. 0
24 MAR	1020	2.5	25. 0	24.0							
30	1150	2. 4	26. 0	25. 0							
16933	500	- LEAFU	STREAM AT	ALT 370	T (113M)	NR LE	ONE	TU (LAT	14 19 31	L.ONG 170	46 50)
OCT , 19	30					APR ,	198	31			
08 28	0930 1015	5. B 2. 7	25. 0 25. 0	23. 0 23. 5		15 MAY		1040	2.9	25. 0	24.0
NOV						20		0940	5. 5	24. 0	23. 0
26 DEC	0920	1.4	24. 5	24. 0		JUN 25.		0945	2. 2	24. 0	22. 5
30	0940	1.3	26.0	24. 0		AUG					
FEB , 19	0900	2.8	24. 5	24. 0		19.		1150 1005	3. 2 2. 7	23. 0 24. 5	22.0
MAR	0040		7/ 0	25.0		31		0905	3, 8	23. 0	53.0
O5 APR	0940	6. 9	26. 0	25. 0		SEP 10		0905	1.7	24. 0	24.0
14	1345	2.8	24. 5	24. 0							
	1694800	00	- AFUELO S	STREAM AT	MATUU, TU	TUILA	(LA)	14 18	07 LONG 1	70 41 07)	
DCT , 19	30					APR ,	198	31			
10	0910	3. 1	25.0	24.0		21 MAY		1020	1.4	24.0	23. 0
14	0830	. 30	28.0	26. 0		27		0840	1.3	24. 5	23. 0
DEC 17	0930	1. 1	25. 0	24. 0		JUL 02		1100	. 96	25. 0	24. 0
JAN , 19	31					AUG		0050			
14 FEB	1020	. 09	28. 0	26. 0		12. SEP		0850	. 11	25. 0	24. 5
25 MAR	0925	. 50	25. 5	25. 0		16		0910	. 29	24.0	24. 0
06	0915	4. 2	25. 5	25. 0							
	16963900	· -	LEAFU STR	EAM NEAR	AUASI, TU	TUILA	(LAT	14 16	27 LONG 1	70 34 26)	
OCT , 198						MAY ,					
07 NOV	1005	. 48	27. 0	26.0		12 JUN		0900	. 22	25.0	24.0
12	0935	. 15	28. 0	25. 0		16		0935	. 37	24.0	23. 0
25 DEC	0955	. 11	29. 0	26. 0		JUL 21		0835	. 09	24. 5	24. 0
29	1125	. 12	27. 0	25. 0		AUG					
FEB , 198	1045	. 11	26. 0	25, 0		25 SEP		0920	. 16	24. 5	23. 0
MAR 04						29	21	0830	. 07	25. 5	24.0
APR	1015	. 62	25. 0	25. 0							
09	1055	. 29	25. 0	25.0							

MARIANA ISLANDS, ISLAND OF GUAM

132624144452771. Local number, 2645220 Ordot well A-20.
LOCATION.--Lat 13°26'24" N., long 144°45'27" E., Hydrologic Unit 20100003, at Ordot School, 1.4 mi (2.3 km) west of junction of Routes 4 and 10, Ordot, Guam. Owner: Government of Guam.

AQUIFER.--Mariana Limestone and Alutom formation.

WELL CHARACTERISTICS.--Drilled parabasal water-table well, diameter 6 in (0.2 m), depth reported 120 ft (36.6 m).

DATUM.--Altitude of land-surface datum is 137 ft (41.8 m). Measuring point: Top of casing, 141.74 ft (43.202 m) above mean sea level.

REMARKS.--Recording gage installed January 1974.
PERIOD OF RECORD.--January 1974 to September 1976 records available in files of district office; October 1976

to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 54.03 ft (16.468 m), revised, above mean sea level, Oct. 21, 1980; lowest, 33.03 ft (10.068 m) above mean sea level, June 15-16, 1978.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981 MEAN VALUES

DAY	oct	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	49.89	53.48	50.74	47.78	45.25	42.49	39.32	37.28	36.04	34.8A	36.75	47.75
2	50.23	53.42	50.63	47.80	45.19	42.37	39.23	37.24	35.99	34.90	36.99	47.76
3	50.64	53.37	50.55	47.81	45.13	42.28	39.14	37.19	35.93	34.93	37.33	47.76
4	51.02	53.31	50.44	47.81	45.03	42.17	39.07	37.13	35.88	34.97	37.64	47.74
5	51.34	53.25	50.33	47.80	44.93	42.06	38.99	37.11	35.85	35.00	37.85	47.69
6	51.65	53.19	50.21	47.78	44.86	41.93	38.91	37.08	35.80	35.01	38.14	47.60
7	51.91	53.12	50.11	47.75	44.77	41.83	38.82	37.03	35.75	35.01	38.36	47.54
B	52.19	53.03	49.99	47.71	44.70	41.73	38.74	36.97	35.70	35.00	38.61	47.47
Q	52.55	52.97	49.85	47.67	44.60	41.63	38.66	36.92	35.64	34.98	38.83	47.36
10	52.88	52.87	49.71	47.62	44.52	41.53	38.60	36.86	35.60	34.98	39.05	47.30
11	53.12	52.78	49.58	47.56	44.43	41.41	38.52	36.81	35.55	34.98	39.35	47.24
12	53.31	52.72	49.45	47.49	44.34	41.29	38.44	36.76	35.49	34.99	39.75	47.14
13	53.49	52.63	49.32	47.42	44.23	41.19	38.38	36.74	35.43	35.03	40.15	47.06
1/4	53.62	52.52	49.18	47.33	44.13	41.07	38.34	36.73	35.38	35.13	40.70	46.96
15	53.72	52.39	49.05	47.23	44.03	40.96	38.26	36.72	35.33	35.27	41.30	46.86
16	53.80	52.26	48.91	47.14	43.90	40.87	38.20	36.70	35.29	35.43	41.93	46.76
17	53.88	52.16	48.79	47.05	43.80	40.75	38.14	36.67	35.24	35.58	42.67	46.67
18	53.95	52.07	48.65	46.94	43.68	40.65	38.09	36.64	35.22	35.74	43.35	46.61
19	53.98	51.94	48.53	46.83	43.57	40.56	37.93	36.62	35.20	35.87	43.85	46.56
5.0	54.00	51.80	48.40	46.73	43.46	40.44	37.85	36.59	35.19	36.04	44.30	46.53
21	54.02	51.68	48.29	46.62	43.34	40.35	37.81	36.54	35.17	36.17	44.77	46.47
22	54.02	51.59	48.20	46.51	43.23	40.26	37.69	36.48	35.14	36.31	45.23	46.43
23	54.00	51.49	48.12	46.38	43.14	40.17	37.64	36.44	35.12	36.43	45.70	46.37
24	53.95	51.36	48.03	46.25	43.05	40.07	37.62	36.40	35.08	36.54	46.11	46.30
25	53.93	51.28	47.91	46.13	42.94	39.99	37.59	36.36	35.05	36.61	46.50	46.20
26	53.87	51.20	47.83	46.01	42.84	39.87	37.56	36.32	35.01	36.66	46.81	46.11
27	53.81	51.14	47.75	45.89	42.71	39.77	37.51	36.27	34.97	36.67	47.09	46.05
28	53.76	51.05	47.68	45.77	42.60	39.67	37.44	36.23	34.94	36.67	47.31	46.05
29	53.71	50.95	47.67	45.64		39.59	37.37	36.17	34.90	36.67	47.50	46.09
30	53.67	50.85	47.70	45.51		39.51	37.33	36.14	34.88	36.67	47.62	46.17
31	53.65		47.75	45.37		39.41		36.10		36.68	47.71	
MEAN	53.02	52.26	49.01	46.95	44.01	40.90	38.24	36.69	35.39	35.67	42.23	46.89
MAX	54.02	53.48	50.74	47.81	45.25	42.49	39.32	37.28	36.04	36.68	47.71	47.76
MIN	49.89	50.85	47.67	45.37	42.60	39.41	37.33	36.10	34.88	34.88	36.75	46.05

WTR YR 1981 MEAN 43.44 MAX 54.02 MIN 34.88

MARIANA ISLANDS, ISLAND OF GUAM

132644144480871. Local number, 2648400 BPM Well 1.
LOCATION.--Lat 13°26'44" N., long 144°48'08" E., Hydrologic Unit 20100003, on lot number 2287, 0.2 mi (0.3 km) southeast of junction of Routes 15 and 10, Mangilao, Guam. Owner: Ana P. Diaz.

AQUIFER.--Coralline Limestone, probably Miocene age.

WELL CHARACTERISTICS.--Drilled basal water-table well, diameter 12 in (0.30 m), depth reported 235 ft (71.6 m).

DATUM.--Altitude of land-surface datum is 210 ft (64.0 m). Measuring point: Top edge of casing, 209.90 ft

(63.978 m) above mean sea level.

REMARKS.--Recording gage installed January 1974.

PERIOD OF RECORD.--February 1972 to September 1977 records available in files of district office; October 1977

to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 4.45 ft (1.356 m) above mean sea level, May 22, 1976; lowest recorded, 2.20 ft (0.671 m) above mean sea level, Jan. 12, 1980.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981 MEAN VALUES

	oc t	NOV	DEC	JAN	FEB	MAR	APR	MAY	JIIN	JUL	AUG	SEP
	3.29	3.35	2.80	2.91	2.79	2.84	2.74	2.70	2.87	2.92	3.34	3.40
	3.35	3.22	2.76	2.91	2.76	2.83	2.74	2.72	2.89	2.93	3.39	3.38
	3.40	3.13	2.73	2.91	2.76	2.83	2.74	2.75	2.89	2.93	3.42	3.36
	3.42	3.10	2.72	2.90	2.77	2.83	2.74	2.79	2.89	2.92	3.43	3.32
	3.45	5.04	2.73	2.90	2.77	2.85	2.74	2.83	2.89	2.92	3.43	3.29
	3.45	3.01	2.72	2.89	2.79	2.85	2.77	2.87	2.89	2.94	3.40	3.28
	3.47	2.99	2.72	2.88	2.81	2.86	2.82	2.88	2.89	2.95	3.34	3.26
	3.48	2.99	2.72	2.87	2.82	2.87	2.84	2.87	2.88	2.96	3.26	3.24
	3.48	2.99	2.73	2.86	2.84	2.89	2.84	2.86	2.A8	2.97	3.25	3.23
	3.44	2.99	2.73	2.85	2.83	2.90	2.83	2.88	2.88	3.00	3.35	3.21
	3.41	3.00	2.73	2.85	2.84	2.90	2.83	2.91	2.89	3.02	3.42	3.22
	3.37	3.00	2.73	2.85	2.85	2.88	2.83	2.91	2.90	3.02	3.45	3.23
	3.33	3.00	2.74	2.83	2.86	2.89	2.82	2.89	2.91	3.04	3.44	3.25
	3.27	2.99	2.76	5.85	2.86	2.88	2.83	2.87	2.90	3.04	3.44	3.26
	3.23	3.00	2.78	2.84	2.86	2.88	5.85	5.85	5.05	3.04	3.45	3.23
	3.19	3.00	2.78	2.85	2.86	2.87	2.83	2.79	2.91	3.04	3.48	3.21
	3.18	2.48	2.78	2.89	2.85	2.85	2.86	2.78	2.90	3.04	3.57	3.20
	3.18	2.99	2.81	2.91	2.83	2.82	2.92	2.80	2.88	3.04	3.68	3.17
	3.19	3.02	2.84	2.93	2.84	2.81	2.95	2.83	2.88	3.04	3.72	3.15
	3.16	3.03	2.87	2.95	2.84	2.81	2.94	2.84	2.88	3.04	3.72	3.16
	3.15	3.00	2.89	2.96	2.85	2.81	2.92	2.84	2.87	3.05	3.69	3.16
	3.14	3.00	2.90	2.96	2.85	2.82	2.89	2.84	2.87	3.05	3.66	3.15
	3.15	3.02	2.94	2.95	2.85	2.84	2.83	2.84	88.5	3.15	3.65	3.16
	3.10	3.00	5.05	2.94	2.82	2.86	2.80	2.83	2.89	3.16	3.63	3.16
	3.17	2.96	2.88	2.93	2.83	2.85	2.76	5.85	2.87	3.17	3.58	3.21
	3.18	2.94	2.86	2.91	2.86	2.83	2.75	2.81	2.87	3.20	3.54	3.23
	3.16	2.93	2.83	2.88	2.86	2.82	2.72	2.81	2.89	3.23	3.54	3.24
	3.16	2.89	2.85	2.86	2.85	2.80	2.70	2.81	2.89	3.25	3.54	3.26
	3.16	2.87	2.90	2.83		2.79	2.69	2.81	2.89	3.25	3.51	3.28
	3.17	2.83	2.91	2.83		2.78	2.68	2.82	2.90	3.26	3.47	3.29
	3.33		2.91	2.81		2.76		2.84		3.28	3.43	
4	3.28	3.01	2.81	2.69	2.83	2.84	2.81	2.83	2.89	3.06	3.49	3.24
	3.48	3.35	2.94	2.96	2.86	2.90	2.95	2.91	2.92	3.28	3.72	3.40
	3.14	2.83	2.72	2.81	2.76	2.76	2.68	2.70	2.87	2.92	3.25	3.15
	3.48	3.35	2.94	2.96	2.86	2.90		2.95	2.95 2.91	2.95 2.91 2.92	2.95 2.91 2.92 3.28	2.95 2.91 2.92 3.28 3.72

WTR YR 1981 MEAN 3.00 MAX 3.72 MIN 2.68

MARIANA ISLANDS, ISLAND OF GUAM

132824144464271. Local number, 2846541 ACEORP Tunnel.
LOCATION.--Lat 13°28'24" N., long 144°46'42" E., Hydrologic Unit 20100003, behind Navy Telephone Exchange, 0.35 mi (0.56 km) southwest of junction of Routes 1 and 14, Tamuning, Guam. Owner: U. S. Navy, Public Works Department.
AQUIFER.--Mariana Limestone.

AQUIFER.--Mariana Limestone.
WELL CHARACTERISTICS.--Dug basal water-table well consisting of an inclined shaft, three skimming tunnels, and a large pump room. Tunnels 1 and 2 are 150 ft (45.7 m) each and tunnel 3 is 700 ft (213 m) in length.

DATUM.--Altitude of land-surface datum is 180 ft (54.9 m). Measuring point: Top of wooden recorder shelf, 9.28 ft (2.829 m) above mean sea level.

REMARKS.--Recording gage installed October 1954.

PERIOD OF RECORD.--October 1954 to December 1959, September 1960 to May 1965, March 1973 to September 1977 records available in files of district office; October 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 4.95 ft (1.509 m) above mean sea level, May 22, 1976; lowest recorded, 1.98 ft (0.604 m) above mean sea level, Feb. 23, 1979.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981 MEAN VALUES

DAY	OCT	NOV	DFC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.24	2.87	2.46	2.56	2.45	2.65	2.48	2.41	2.58	2.65	3.24	2.94
2	3.24	2.76	2.43	2.53	2.40	2.65	2.47	2.44	2.60	2.66	3.29	2.96
3	3.16	2.69	2.43	2.49	2.40	2.62	2.47	2.47	2.60	2.63	3.35	2.93
4	3.20	2.64	2.39	2.46	2.41	2.56	2.49	2.52	2.60	2.63	3.40	2.88
5	3.21	2.61	2.37	2.43	2.47	2.56	2.51	2.56	2.60	2.63	3.38	2.84
6	3.20	2.59	2.34	2.47	2.49	2.56	2.54	2.60	2.60	2.63	3.20	2.81
7	3.20	2.60	2.34	2.50	2.53	2.57	2.58	2.60	2.59	2.64	3.07	2.79
8	3.13	2.00	2.35	2.49	2.54	2.57	2.58	2.60	2.55	2.65	2.97	2.78
9	3.01	2.56	2.35	2.47	2.50	2.60	2.56	2.60	2.56	2.65	2.90	2.76
10	2.92	2.58	2.36	2.46	2.51	2.60	2.56	2.60	2.57	2.69	2.89	2.75
11	2.87	2.61	2.35	2.44	2.53	2.50	2.57	2.57	2.57	2.72	2.90	2.75
12	2.83	2.62	2.36	2.43	2.55	2.57	2.59	2.56	2.59	2.77	2.96	2.78
13	2.78	2.02	2.37	2.43	2.55	2.59	2.59	2.53	2.59	2.79	2.98	2.80
14	2.74	2.61	2.36	2.53	2.57	2.60	2.58	2.50	2.59	2.82	3.01	2.79
15	2.71	2.60	2.31	2.51	2.55	2.60	2.56	2.49	5.65	2.83	3.16	2.78
16	2.73	2.59	2.40	2.55	2.53	2.57	2.57	2.47	2.64	2.83	3.35	2.76
17	2.78	2.59	2.41	2.56	2.44	2.54	2.62	2.47	2.61	2.83	3.46	2.76
18	2.81	2.62	2.46	2.55	2.49	2.53	2.66	2.50	2.60	2.84	3.41	2.76
19	2.80	2.64	2.49	2.56	2.48	2.54	2.71	2.54	2.57	2.83	3.41	2.81
20	2.75	2.64	2.49	2.65	2.51	2.54	2.72	2.54	2.59	2.85	3.34	2.84
21	2.73	2.61	2.49	2.66	2.56	2.54	2.71	2.54	2.51	2.86	3.25	2.83
2.5	2.73	2.61	2.52	2.61	2.53	2.56	2.63	2.54	2.59	2.85	3.24	2.83
23	2.74	2.67	2.59	2.59	2.51	2.58	2.59	2.55	2.60	2.84	3.20	2.61
24	2.74	2.67	2.59	2.60	2.48	2.58	2.55	2.54	2.60	2.84	3.14	2.63
25	2.76	2.61	2.54	2.66	2.49	2.59	2.54	2.50	2.57	2.85	3.09	2.84
26	2.76	2.57	2.60	2.61	2.53	2.56	2.51	2.50	2.57	2.89	3.08	2.86
27	2.75	2.50	2.70	2.53	2.53	2.55	2.47	2.50	2.60	2.91	3.06	2.89
38	2.75	2.47	2.74	2.48	2.55	2.54	2.45	2.50	2.63	2.92	3.02	2.94
29	2.79	2.48	2.68	2.47		2.52	2.41	2.50	2.61	2.93	3.00	3.02
30	2.79	2.50	2.63	2.50		2.53	2.40	2.51	2.51	2.98	2.96	3.06
31	2.93		2.59	2.47		2.49		2.55		3.08	2.94	
MEAN	2.90	2.61	2.47	2.52	2.50	2.57	2.56	2.53	2.59	2.79	3.15	2.84
MAX	3.24	2.87	2.74	2.66	2.57	2.65	2.72	2.60	2.64	3.08	3.46	5.06
WIN	2.71	2.47	2.31	2.43	2.40	2.49	2.40	2.41	2.55	2.63	2.89	2.75

WTR YR 1981 MEAN 2.67 MAX 3.46 MIN 2.31

MARIANA ISLANDS, ISLAND OF GUAM

132813144472771. Local number, 2847120 Barrigada Well 2 (A-16).
LOCATION.--Lat 13°28'13" N., long 144°47'27" E., Hydrologic Unit 20100003, at Carbullido School, 0.60 mi (0.97 km) west of junction of Routes 8 and 10, Barrigada, Guam. Owner: Public Utility Agency of Guam.
AQUIFER.--Mariana Limestone, probably Pliocene age.
WELL CHARACTERISTICS.--Drilled basal water-table well, diameter 12 in (0.30 m), depth reported 215 ft (65.5 m).
DATUM.--Altitude of land-surface datum is 207 ft (63.1 m) above mean sea level. Measuring point: Top of casing, 208.00 ft (63.398 m) above mean sea level.
REMARKS.--Recording gage installed June 1974.
PERIOD OF RECORD.--June 1974 to September 1977 records available in files of district office; October 1977 to current year.

current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level recorded, 6.71 ft (2.045 m) May 22, 1976; lowest recorded, 3.09 ft (0.942 m) above mean sea level, Dec. 7, 8, 1974.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FFB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	4.58	4.18	3.75	3.82	3.66	3.74	3.60	3.52	3.63	3.74	4.34	4.29
5	4.69	4.11	3.73	3.80	3.64	3.75	3.60	3.52	3.66	3.76	4.47	4.27
3	4.61	4.03	3.72	3.78	3.62	3.75	3.60	3.55	3.68	3.74	4.49	4.25
4	4.56	3.97	3.69	3.73	3.62	3.74	3.60	3.59	3.68	3.74	4.50	4.20
5	4.53	3.92	3.65	3.71	3.65	3.74	3.60	3.63	3.68	3.75	4.52	4.16
6	4.51	3.91	3.62	3.71	3.67	3.73	3.61	3.66	3.68	3.76	4.48	4.15
7	4.51	3.89	3.60	3.71	3.68	3.74	3.64	3.68	3.67	3.77	4.40	4.09
8	4.50	3.89	3.60	3.71	3.71	3.75	3.60	3.68	3.65	3.77	4.29	4.03
9	4.42	3.88	3.60	3.71	3.70	3.75	3.65	3.68	3.64	3.77	4.21	4.00
10	4.32	3.87	3.60	3.69	3.70	3.74	3.64	3.69	3.65	3.78	4.33	3.98
11	4.25	3.86	3.60	3.69	3.70	3.71	3.65	3.68	3.65	3.80	4.42	3.99
12	4.19	3.87	3.60	3.67	3.71	3.69	3.66	3.66	3.67	3.86	4.38	3.99
13	4.13	3.88	3.59	3.65	3.72	3.69	3.67	3.63	3.68	3.90	4.37	4.02
1 4	4.09	3.87	3.59	3.70	3.73	3.70	3.65	3.60	3.68	3.93	4.37	4.03
15	4.04	3.86	3.58	3.71	3.74	3.71	3.65	3.59	3.68	3.94	4.44	4.03
16	4.02	3.85	3.60	3.74	3.72	3.69	3.64	3.57	3.70	3.96	4.71	4.03
17	4.05	3.85	3.62	3.75	3.70	3.66	3.60	5.56	3.70	3.97	4.94	4.02
18	4.08	3.85	3.64	3.75	3.68	3.63	3.71	3.60	3.68	3.98	4.95	4.01
19	4.08	3.87	3.68	3.76	3.67	3.63	3.78	3.61	3.68	3.98	4.85	4.02
50	4.05	3.67	3.69	3.80	3.68	3.63	3.82	3.61	3.70	4.00	4.75	4.06
21	4.02	3.06	3.69	3.63	3.73	3.63	3.84	3.62	3.69	4.00	4.69	4.06
22	4.01	3.85	3.71	3.01	3.72	3.64	3.80	3.62	3.70	4.02	4.64	4.07
23	4.01	3.87	3.75	3.79	3.70	3.65	3.72	3.64	3.70	4.02	4.61	4.06
24	4.01	3.87	3.77	3.79	3.62	3.67	3.67	3.63	3.71	4.02	4.59	4.04
25	4.02	3.85	3.74	3.82	3.68	3.67	3.62	3.62	3.70	4.02	4.46	4.05
26	4.04	3.84	3.75	3.61	3.69	3.65	3.60	3.62	3.70	4.03	4.44	4.06
27	4.04	3.83	3.85	3.74	3.71	3.63	3.58	3.61	3.70	4.04	4.43	4.10
85	4.03	3.80	3.92	3.70	3.72	3.64	3.55	3.60	3.72	4.05	4.40	4.15
29	4.04	3.78	3.91	3.68		3.62	3.53	3.59	3.73	4.05	4.37	4.18
30	4.06	3.78	3.86	3.69		3.61	3.53	3.60	3.72	4.06	4.33	4.24
31	4.17		3.83	3.69		3.60		3.61		4.16	4.30	
MEAN	4.21	3.89	3.69	3.74	3.69	3.68	3.65	3.62	3.68	3.92	4.50	4.09
MAX	4.69	4.18	3.92	3.63	3.74	3.75	3.84	3.69	3.73	4.10	4.95	4.29
MIN	4.01	3.78	3.58	3.65	3.62	3.60	3.53	3.52	3.63	3.74	4.21	3.98

WTP YR 1981 MEAN 3.87 MAX 4.95 MIN 3.52

MARIANA ISLANDS, ISLAND OF GUAM

133032144491871. Local number, 3049311 Harmon Loop School Well M-10A.
LOCATION.--Lat 13°30'32" N., long 144°49'18" E., Hydrologic Unit 20100003, at Harmon Loop School, Dededo, Guam.
Owner: Public Utility Agency of Guam.
AQUIFER.--Barrigada Limestone, revised.
WELL CHARACTERISTICS.--Drilled basal water-table well, diameter 8 in (0.20 m), depth reported 288 ft (87.8 m).
DATUM.--Altitude of land-surface datum is 227 ft (69.2 m) above mean sea level. Measuring point: Top edge of shelter floor, 228.70 ft (69.708 m) above mean sea level.
REMARKS.--Well was abandoned in 1973 because of oil taste and high iron content. Recording gage installed January 1974.
PERIOD OF RECORD.--January 1974 to September 1977 records available in files of district office; October 1977 to current year.

to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 4.61 ft (1.405 m) above mean sea level, May 23, 1976; lowest recorded, 2.27 ft (0.692 m) above mean sea level, Feb. 23, 24, 1979.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.34	3.25	2.86	2.96	2.85	3.02	2.88	2.85	3.02	3.04	3.52	3.25
2	3.44	3.19	2.83	2.94	2.81	3.03	2.87	2.87	3.03	3.06	3.64	3.26
3	3.37	3.10	2.83	2.91	2.81	3.01	2.87	2.91	3.04	3.04	3.68	3.25
4	3.33	3.07	2.81	2.88	2.81	2.97	2.88	2.95	3.04	3.04	3.70	3.21
5	3.35	3.04	2.78	2.85	2.85	2.96	2.90	2.98	3.04	3.04	3.72	3.17
6	3.34	3.02	2.75	2.88	2.88	2.96	2.93	3.01	3.03	3.05	3.64	3.14
7	3.36	3.00	2.75	2.89	2.90	2.97	2.96	2.97	3.03	3.06	3.54	3.11
R	3.33	3.00	2.75	2.89	2.93	2.97	2.98	3.02	3.01	3.06	3.43	3.10
9	3.28	2.94	2.76	2.88	2.91	2.99	2.97	3.02	3.01	3.07	3.35	3.09
10	3.20	2.94	2.76	2.87	2.91	3.01	2.96	3.02	3.02	3.09	3.32	3.06
11	3.11	2.98	2.75	2.85	2.93	3.00	2.97	3.03	3.02	3.10	3.31	3.06
12	3.09	2.99	2.75	2.84	2.94	2.99	2.98	2.99	3.03	3.12	3.27	3.09
13	3.07	3.00	2.76	2.84	2.95	2.98	2.99	2.96	3.03	3.15	3.26	3.11
14	3.03	2.99	2.77	2.93	2.97	3.00	2.97	2.95	3.03	3.17	3.33	3.11
15	2.99	2.99	2.77	2.92	2.96	2.99	2.97	2.94	3.03	3.18	3.45	3.10
16	3.04	2.98	2.81	2.94	2.94	2.98	2.98	2.93	3.04	3.21	3.57	3.09
17	3.07	2.98	2.82	2.96	2.91	2.96	3.01	2.93	3.04	3.22	3.64	3.08
18	3.08	3.02	2.85	2.95	2.91	2.93	3.06	2.94	3.03	3.23	3.64	3.08
19	3.07	3.04	2.88	2.96	2.90	2.95	3.11	2.96	3.01	3.24	3.67	3.08
50	3.05	3.05	2.89	3.01	2.91	2.95	3.14	2.97	3.01	3.26	3.65	3.11
21	3.03	3.04	2.88	3.03	2.95	2.95	3.14	2.97	3.01	3.26	3.61	3.12
55	3.03	3.04	2.90	3.01	2.94	2.96	3.10	2.98	3.02	3.26	3.58	3.13
23	3.05	3.06	2.94	2.99	2.93	2.98	3.04	2.98	3.03	3.26	3.54	3.13
24	3.05	3.07	2.96	2.99	2.91	2.99	3.00	2.98	3.03	3.26	3.46	3.12
25	3.07	3.04	2.93	3.03	2.91	2.99	2.97	2.96	3.01	3.27	3.40	3.13
26	3.08	2.99	2.99	3.01	2.92	2.98	2.94	2.95	3.01	3.29	3.37	3.15
27	3.07	2.93	3.10	2.94	2.93	2.96	2.91	2.95	3.02	3.31	3.33	3.20
28	3.07	2.89	3.10	2.91	2.94	2.95	2.88	2.94	3.02	3.34	3.30	3.31
29	3.09	2.89	3.05	2.87		2.93	2.86	2.95	3.02	3.35	3.28	3.39
30	3.11	2.89	3.00	2.88		2.92	2.85	2.96	3.03	3.37	3.20	3.42
31	3.23		2.99	2.87		2.90		2.98		3.43	3.24	
MEAN	3.16	3.01	2.86	2.93	2.91	2.97	2.97	2.96	3.02	3.19	3.47	3.16
MAX	3.44	3.25	3.10	3.03	2.97	3.03	3.14	3.03	3.04	3.43	5.72	3.42
MIN	2.99	2.89	2.75	2.84	2.81	2.90	2.85	2.85	3.01	3.04	3.24	3.06
O. T. 14	C. 17	2.07		C.04	01	2.70	2.03	2.03	2.01	2.04		3.00

WTR YR 1981 MEAN 3.05 MAX 3.72 MIN 2.75

MARIANA ISLANDS, ISLAND OF GUAM

133047144500171. Local number, 3050400 Well M-11.
LOCATION.--Lat 13°30'47" N., long 144°50'01" E., Hydrologic Unit 20100003, at intersection of Harmon Loop School Road and Route 1 at Dededo, Guam. Owner: Public Utility Agency of Guam.
AQUIFER.--Barrigada Limestone.
WELL CHARACTERISTICS.--Drilled basal water-table well, diameter 8 in (0.20 m), depth reported 325 ft (99.1 m).
DATUM.--Altitude of land-surface datum is 294 ft (89.6 m) above mean sea level. Measuring point: Top of casing, 295.82 ft (90.166 m) above mean sea level.
REMARKS.--Recording gage installed July 1977.
PERIOD OF RECORD.--July 1977 to September 1977 records available in files of district office; October 1977 to current year.

current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 4.76 ft (1.451 m) above mean sea level, Oct. 2, 1980; lowest recorded, 2.78 ft (0.847 m) above mean sea level, Feb. 19, 1979.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981 MEAN VALUES

DAY	oct	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	4.31	3.78	3.38	3.49	3.41	3.58	3.46	3.42	3.54	3.50	4.02	3.77
5	4.62	5.75	3.35	3.48	3.39	3.61	3.45	3.44	3.55	3.58	4.13	3.80
3	4.35	3.6R	3.35	3.45	3.39	3.59	3.45	3.47	3.56	3.56	4.17	3.78
4	4.21	3.62	3.32	3.43	3.38	3.56	3.46	3.50	3.55	3.55	4.19	3.76
5	4.15	3.58	3.30	3.40	3.43	3.54	3.48	3.55	3.54	3.55	4.21	3.73
6	4.17	3.53	3.28	3.42	3.46	3.54	3.51	3.57	3.53	3.56	4.15	3.69
7	4.17	3.52	3.27	3.46	3.48	3.56	3.53	3.59	3.52	3.57	4.07	3.66
8	4.18	5.51	3.27	3.45	3.50	3.56	3.54	3.59	3.51	3.57	3.97	3.65
9	4.12	3.50	3.28	3.45	3.50	3.58	3.54	5.59	3.51	3.58	3.90	3.64
1 0	4.06	3.49	3.28	3.44	3.50	3.59	3.53	5.59	3.52	3.60	3.88	3.62
11	3.96	3.51	3.28	3.43	3.50	3.59	3.54	3.58	3.52	3.61	3.87	3.62
12	3.99	3.52	3.28	3.41	3.51	3.57	3.55	3.56	3.52	3.63	3.80	3.63
13	3.83	3.52	3.28	3.39	3.52	3.56	3.55	3.53	3.52	3.65	3.78	3.65
14	3.75	3.51	3.29	3.48	3.54	3.57	3.54	3.52	3.52	3.67	3.85	3.66
15	3.71	3.50	3.29	3.48	3.55	3.58	3.53	3.50	3.51	3.68	3.96	3.65
16	3.70	3.50	3.33	3.50	3.53	3.56	3.54	3.48	3.53	3.69	4.15	3.64
17	3.72	3.49	3.34	3.53	3.51	3.53	3.57	3.47	3.53	3.70	4.23	3.63
18	3.75	3.51	3.37	3.51	3.50	3.51	3.63	3.47	3.52	3.72	4.24	3.62
19	3.71	3.55	3.38	3.53	3.50	3.52	3.68	3.48	3.51	3.73	4.23	3.63
20	3.68	3.57	3.42	3.58	3.50	3.53	3.70	3.49	3.51	3.75	4.21	3.65
21	3.64	3.56	3.43	3.61	3.53	3.53	3.71	3.50	3.51	3.76	4.15	3.66
55	3.62	3.56	3.44	3.60	3.53	3.53	3.67	3.51	3.51	3.76	4.13	3.67
23	3.64	3.57	3.48	3.57	3.52	3.55	3.62	3.51	3.52	3.76	4.07	3.67
24	3.64	3.60	3.48	3.58	3.51	3.56	3.57	3.50	3.52	3.76	4.01	3.65
25	3.66	5.56	3.46	3.59	3.51	3.56	3.55	3.49	3.51	3.77	3.96	3.65
26	3.69	3.52	3.49	3.50	3.51	3.55	3.53	3.48	3.50	3.81	3.93	3.67
27	3.67	3.47	3.62	3.52	3.52	3.54	3.49	3.47	3.51	3.84	3.88	3.71
28	3.67	3.42	3.63	3.49	3.52	3.53	3.46	3.47	3.52	3.88	3.84	3.77
29	3.69	3.40	3.58	3.46		3.52	3.44	3.48	3.52	3.88	3.83	3.87
30	3.70	3.40	3.54	3.44		3.51	3.44	3.50	3.53	3.89	3.80	3.93
31	3.75		3.52	3.44		3.49		3.53		3.93	3.78	
MEAN	3.88	3.54	3.39	5.49	3.49	3.55	3.54	3.51	3.52	3.70	4.01	3.69
MAX	4.62	3.78	3.63	3.61	3.55	3.61	3.71	3.59	3.56	3.93	4.24	3.93
MIN	3.62	3.40	3.27	3.39	3.38	3.49	3.44	3.42	3.50	3.55	3.78	3.62

MTR YR 1981 MEAN 3.61 MAX 4.62 MIN 3.27

MARIANA ISLANDS, ISLAND OF GUAM

133115144484971. Local number, 3148140 Harmon Well 1 (107).
LOCATION.--Lat 13°31'15" N., long 144°48'49" E., Hydrologic Unit 20100003, 500 ft (150 m) north of junction of Routes 1 and 16, Dededo, Guam. Owner: Government of Guam. AQUIFER. -- Mariana Limestone.

WELL CHARACTERISTICS. --Drilled basal water-table well, diameter 10 in (0.25 m), depth measured 289 ft (88.1 m). DATUM. --Altitude of land-surface datum is 268 ft (81.7 m) above mean sea level. Measuring point: Top of casing, 267.96 ft (81.674 m) above mean sea level.

REMARKS. --Recording gage installed March 1973.

PERIOD OF RECORD. --March 1973 to September 1977 records available in files of district office; October 1977

to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 4.34 ft (1.323 m) above mean sea level, May 22, 1976; lowest recorded, 2.17 ft (0.661 m) above mean sea level, Feb. 23, 24, 26, 27, 1979.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981 MEAN VALUES

DAY	oct	NOV	DEC	JAN	FE8	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.22	3.02	2.73	2.86	2.72	2.98	2.79	2.75	2.94	3.00	3.54	3.13
2	3.18	2.95	2.72	2.82	2.68	2.96	2.78	2.78	2.96	3.01	3.62	3.15
3	3.10	2.87	2.73	2.17	2.70	2.91	2.78	2.82	2.96	2.97	3.63	3.11
4	3.15	2.42	2.69	2.74	2.70	2.86	2.80	2.86	2.96	2.97	3.69	3.06
5	3.10	2.83	2.66	2.71	2.78	2.86	2.82	2.90	2.96	2.98	3.67	3.01
6	3.16	2.81	2.62	2.79	2.78	2.87	2.86	2.93	2.95	3.00	3.52	2.98
7	3.10	2.82	2.63	2.78	2.81	2.88	2.90	2.93	2.94	3.00	3.38	2.97
4	3.10	2.81	2.64	2.78	2.83	88.5	2.90	2.92	2.92	3.02	3.27	2.95
49	2.97	2.79	2.64	2.75	2.80	2.91	2.88	2.92	2.92	3.03	3.20	2.95
1.0	2.95	2.80	2.63	2.73	2.82	5.95	2.88	2.93	2.95	3.06	3.19	2.93
11	2.89	2.83	2.62	2.72	2.86	2.91	2.89	2.92	2.95	3.07	3.15	2.94
12	2.87	2.83	2.63	2.71	2.86	2.89	2.91	2.88	2.95	3.08	3.12	2.98
15	2.83	2.34	2.05	2.75	2.87	2.91	2.91	2.86	2.96	3.09	3.12	3.00
14	2.80	2.84	2.66	2.90	2.89	2.92	2.88	2.85	2.96	3.11	3.19	3.01
15	2.78	2.85	2.66	2.85	2.86	2.92	2.88	2.83	2.94	3.12	3.37	2.99
16	2.85	2.84	2.72	2.88	2.83	2.89	2.89	2.82	2.99	3.13	3.44	2.98
17	2.90	2.85	2.73	2.88	2.79	2.86	2.94	2.82	2.77	3.14	3.45	2.98
1.8	2.89	2.89	2.77	2.86	2.79	2.84	3.01	2.85	2.94	3.16	3.42	2.97
19	2.85	2.93	2.79	2.88	2.78	2.86	3.04	2.87	2.93	3.16	3.53	2.98
50	2.80	2.93	2.78	2.96	2.81	2.86	3.06	88.5	2.94	3.18	3.49	2.99
21	2.79	2.90	2.78	2.94	2.86	2.86	3.04	2.88	2.93	3.20	3.46	3.00
22	2.80	2.91	2.79	2.90	2.83	2.88	2.96	2.89	2.95	3.20	3.43	3.01
23	2.82	2.96	2.84	2.89	2.81	2.90	2.91	2.90	2.97	3.19	3.34	3.01
24	2.84	2.95	2.85	2.90	2.78	2.90	2.87	2.89	2.97	3.20	3.28	3.00
25	2.85	2.89	2.80	2.97	2.81	2.91	2.85	88.5	2.95	3.22	3.23	2.99
26	2.86	2.85	2.96	2.90	2.84	2.88	2.82	2.87	2.95	3.25	3.19	3.01
27	2.85	2.77	3.07	2.82	2.84	2.87	2.78	2.87	2.97	3.27	3.15	3.04
28	2.85	2.76	3.00	2.78	2.87	2.86	2.76	2.87	2.96	3.29	5.13	3.09
29	2.92	2.78	2.93	2.75		2.83	2.75	2.87	2.95	3.29	3.13	3.17
30	2.93	2.78	2.89	2.77		2.84	2.74	2.88	2.98	3.32	3.10	3.22
31	3.02		2.89	2.75		2.80		2.91		3.39	3.10	
MEAN	2.94	2.86	2.76	2.82	2.81	2.88	2.88	2.87	2.95	3.13	3.34	3.02
MAX	3.22	3.02	3.07	2.97	2.89	2.98	3.06	2.93	2.99	3.39	3.69	3.22
MIW	2.78	2.76	2.62	2.71	2.68	2.80	2.74	2.75	2.92	2.97	3.10	2.93

WIR YR 1981 MEAN 2.94 MAX 3.69 MIN 2.62

MARIANA ISLANDS, ISLAND OF GUAM

132615144470571. Local number, 2647100 Father Duenas Well. LOCATION.--Lat 13°26'15" N., long 144°47'05" E., Hydrologic Unit 20100003, at Father Duenas Memorial School, Chalan Pago-Ordot, Guam.

AQUIFER.--Mariana Limestone. WELL CHARACTERISTICS.--Drilled parabasal water-table well, diameter 8 in $(0.2\ m)$.

DATUM.--Altitude of land-surface datum is 179 ft (54.6 m). Measuring point: Top of casing, 179.86 ft (54.821 m)

above mean sea level.
PERIOD OF RECORD.--March 1973 to May 1976 records available in files of district office; June 1976 to current

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.37 ft (3.161 m) above mean sea level, Oct. 24, 1980; lowest measured, 6.08 ft (1.853 m) above mean sea level, Aug. 5, 1980.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 24 NOV 26	10.37	DEC 29 FFB 2	8.13	MAR 12	7.75	MAY 18	7.40	JUN 23	7.36	AUG 24	8.34

132742144452971.

132742144452971. Local number, 2745420 Agana Springs. LOCATION.--Lat 13°27'42" N., long 144°45'29" E., Hydrologic Unit 20100003, near Sinajana on the edge of Agana

Swamp.

AQUIFER.--Mariana Limestone.

WELL CHARACTERISTICS.--Basal ground water issues from an opening in the Mariana Limestone. The water level

is measured in a pool with a concrete spillway.

DATUM.--Altitude of land-surface datum is 10 ft (3.0 m) above mean sea level. Measuring point: Edge of concrete spillway, 8.80 ft (2.682 m) above mean sea level.

REMARKS.--Spring supplied Agana with up to one million gallons per day. Not in use at present.

PERIOD OF RECORD.--April 1974 to September 1976 records available in files of district office; October 1976

to current year.

EXTREMES FOR PERIOD OF RECORD.--Lowest water level measured, 6.95 ft (2.118 m) above mean sea level, July 2,

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

DATE	WATER LEVEL										
OCT 24	j 8 40	DEC 29	j	MAR 10	j	APR 15	8.79	MAY 18	8.63	JUN 23	8.22

i Water overflowing spillway.

132758144450571. Local number, 2745500 Agana 147 Well.
LOCATION.--Lat 13°27'58" N., long 144°45'05" E., Hydrologic Unit 20100003, on Route 4, 0.65 mi (1.0 km) south of junction of Routes 1 and 4 in Agana, Guam.
AQUIFER.-- Mariana Limestone.

WELL CHARACTERISTICS.--Drilled basal ground-water, revised, test well, casing diameter 6 in (0.15 m), depth when drilled, 186 ft (56.7 m), when measured in May 1973, 29 ft (8.8 m).

DATUM.--Altitude of land-surface datum is 33 ft (10.1 m). Measuring point: Top rim of casing, 33.22 ft (10.125 m) above mean sea level.

REMARKS.--Water levels in this well reflect changes in the regional fresh water head of the discharge area surrounding Agana Swamp.

PERIOD OF RECORD.--August 1955 to May 1960, January 1972 to September 1976 records available in files of dis-

trict office; October 1976 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 31.42 ft (9.577 m) above mean sea level, Oct. 14, 1955; lowest measured, 6.83 ft (2.082 m) above mean sea level, June 20, 1978.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 24 NOV 25	12.39 16.83	DEC 29 FEB 2	14.59 12.47	MAR 12	11.76	APR 15	11.03	MAY 18	10.59	JUN 23	10.14

133034144500871. Local number 3050300 Well M-11A. LOCATION.--Lat 13°30'34" N., long 144°50'08" E., Hydrologic Unit 20100003, in Macheche area, Dededo.

LOCATION.--Lat 13°30'34" N., long 144°50'08" E., Hydrologic Unit 20100003, in Macheche area, Dededo.

AQUIFER.--Barrigada Limestone.

WELL CHARACTERISTICS.--Drilled basal ground-water test well. Uncased hole diameter 12 in (0.30 m). Sounded depth 407 ft (124 m). Well deepened to 462 ft (141 m) as exploratory well Ex-6, Aug. 7, 1981.

DATUM.--Altitude of land-surface datum is 309 ft (94.2 m) above mean sea level. Measuring point: Top of 5 ft (2 m) long metal casing set in hole 310.44 ft (94.622 m) above mean sea level.

REMARKS.--Well yield insufficient for development.

PERIOD OF RECORD.--February 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.09 ft (1.247 m) above mean sea level, Aug. 16, 1978; lowest measured 3.13 ft (0.954 m) above mean sea level, Feb. 26, 1979.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25 NOV 25	3.53	DEC 30 FEB 12	3.50	MAR 10 APR 14	3.68	MAY 11	3.74	JUN 15	3.79	SEP 25	3.75

QUALITY OF GROUND WATER
WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981
MARIANA ISLANDS, ISLAND OF GUAM

	LOCAL IDENT- I-		LAT- I-	LONG- I-	SEQ.			DATE OF		SAMP- LING	SPE- CIFIC CON- DUCT-	TEMPER-
	FIER		TUDE	TUDE	NO.	STATION	NUMBER	SAMPLE	TIME	(FT)	(UMHOS)	(DEG C)
2647211 E	XPLORATO	RY WELL	13 26 26	144 47 17	70	13262614	4471770	81-03-20	1200	170	3200	
								81-03-20 81-03-20	1250 1345	300 390	1900 22800	77
2746310 0	носново і	EX-1 WELL	13 27 36	144 46 16	70	13273614	4461670	81-01-13	1600	285	3000	
-, 10010								81-01-27	1330	300	4100	27. 0
								81-01-27	1405	310	5800	26. 5
,								81-01-27	1435	320	11100	26. 5
								81-01-27	1505	330	16300	26. 5
								81-02-13	1305	285	3900	
								81-02-13	1350	300	9600	
								81-02-13	1420	310	11000	
								81-02-13	1455	320	13000	
								81-02-13	1525	330	16000	
								81-02-13	1600	365	28000	
								81-02-13	1130	175	1380	27. 0
								81-02-19	1205	380	29100	27. 0
										400	36000	27. 0
								81-02-19 81-02-19	1245 1330	420	37100	27. 0
3048030 1	EHO NATO	West West		144 46 59	71	13300414		81-06-01	1400			
			HARD-	HARD- NESS NONCAR-	CALCIUM	MAGNE- SIUM,	SODIUM,		SODIUM AD-	POTAS- SIUM,	ALKA- LINITY	SULFATE
DATE OF	TUR- BID-	CM/ML	NESS (MG/L	BONATE (MG/L	DIS- SOLVED	DIS- SOLVED	DIS- SOLVED		SORP- TION	DIS- SOLVED	LAB (MG/L	DIS- SOLVEI
SAMPLE	ITY	AT	AS	AS	(MG/L	(MG/L	(MG/L	PERCENT	RATIO	(MG/L	AS	(MG/L
	(NTU)	20 C)	CACD3)	CACO3)	AS CA)	AS MG)	AS NA)		3011-7	AS K)	CACO3)	AS S04
81-03-20		1.005									300	130
81-03-20		1.005									270	59
81-03-20		1.017	3300	3000	420	550	4500	74	34	140	310	1400
81-01-13	22											
81-01-27												
81-01-27												
81-01-27												
81-01-27											7	-
81-02-13		1.004	640	340	170	53	590	66	10	20	300	160
81-02-13	6. 5	1.007									270	410
81-02-13		1.004		22					-		260	510
81-02-13		1.006									260	620
81-02-13	14	1.010		25			-				240	740
81-02-13		1.013	3600	3400	450	610	5500	76	40	170	210	1300
81-02-19			390	71	130	16	150	45	3. 3	4. 9	320	42
81-02-19	2. 4	1.016									190	1600
81-02-19	1.6	1.018									170	2000
81-02-19	1. 1	1.016									160	2100
81-06-01			240	36	84	6. 3	42	28	1. 2	2.8	200	17
1				27		0. 0	7.2	20	1. 5	2.0	200	17

QUALITY OF GROUND WATER
WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

MARIANA ISLANDS, ISLAND OF GUAM--Continued

DATE OF SAMPLE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SID2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
81-03-20	960	. 2	8. 1			. 04	-		
81-03-20	410	. 2	6.0			. 63			jan-jun
81-03-20	9000	. 1	5. 1	16200	22. 0	. 19	75	50	40
81-01-13						. 00			
81-01-27						. 40			
81-01-27						. 39			
81-01-27						. 22	0==0		
81-01-27						. 11			
81-02-13	1100	. 2	6.6	2280	2.8	. 47	310	50	40
81-02-13	2900	. 2	6. 5			. 33			-
81-02-13	3500	. 2	6.3			. 30		-	
81-02-13	4300	. 2	6.3			. 28			
81-02-13	5100	. 2	5. 5			. 13			
81-02-13	11000	. 3	5. 1	19200	26. 1	. 10		130	290
81-02-19	260	. 1	5. 0	802		. 31		<10	50
81-02-19	13000	. 3	4. 9			. 08			
81-02-19	15000	. 3	5. 1			. 09			
81-02-19	16000	. 3	5. 0			. 07		-	
81-06-01	74	. 1	1. 9	360		2. 7		20	4

< Actual value is known to be less than the value shown,

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981 CAROLINE ISLANDS, YAP ISLANDS

	LOCAL IDENT- I- FIER		LAT- I- TUDE	LONG- I- TUDE	SEQ. NO.	STATION	NUMBER	DATE OF SAMPLE	TIME	SAMP- LING DEPTH (FT)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)
2905010	LAMAER WE	LL, YAP	09 29 03	138 05 1	1 70	09290313	8051170	81-07-20	1550	91.0		62
2905201	WELL 1 CO	OM., YAP	09 29 25	138 05 0	3 70	09292013	8043570	81-07-20	1400	82.0	29.0	40
2905203	MITSUI WE	LL, YAP	09 29 27	138 05 0	2 70	09292713	8050270	81-07-20	1440	85. 0	29.5	48
DATE OF SAMPLE	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
81-07-20	. 00	10	9. 1	12	29	. 7	. 6	70	1.0	12	. 0	63
81-07-20	. 00	7. 3	5. 4	8. 0	30	. 5	. 3	44	. 3	7. 4	. 0	58
81-07-20	. 00	12	4. 3	8. 9	29	. 6	. 5	56	C1. 0	7. 9	. 0	42
				DATE OF SAMPLE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L	IRON, DIS- SOLVED (UG/L	MANGA- NESE, DIS- SOLVED (UG/L				

AS MN)

0

10

0

60

160

30

81-07-20

81-07-20

81-07-20

150

114

. 11

. 19

. 13

< Actual value is known to be less than the value shown.

QUALITY OF GROUND WATER
WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

CAROLINE ISLANDS, TRUK ISLANDS

		LOCAL IDENT- I- FIER				LAT I TUDI	-	- 5	DNG I – UDE		SEQ. NO.	STATION	NUMBER	DATE OF SAMPLE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	
WELL	1	MOEN,	TRU	K IS.	07	26	46	151	50	56	70	07265815	51511970	80-11-25 81-04-17 81-04-18	0825 1135 1120	194 198	28. 0	
								920		-				81-06-23	1008			
WELL	2	MOEN,	TRU	K IS.	07	26	50	151	50	55	70	07265415	01511870	80-11-24	1555	157	28. 5	
														81-04-17 81-06-23	1125	157		
WELL.	3	MOEN,	TRUI	K IS.	07	27	02	151	50	54	70	07270815	51511770	80-11-19	1115		29. 0	
WELL	4	MOEN,	TRUI	K IS.	07	26	59	151	50	56	70	07270715	31512070	80-11-19	1030	000	29. 5	
DATE OF SAMPLE		HARD- NESS (MG/L AS CACO	_ 1	HARD- NESS, NONCAR- BONATE (MG/L CACO3)		ALC DIS SOL	VED	SOI (M	GNE- IUM IS- LVE G/L MG	, D	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACD3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUD- RIDE, DIS- SOLVED (MG/L AS F)
80-11-25	5		66	-		10	0		10		11	26	. 6	1.0		22		
81-04-17		-								_							10	
81-04-18									-	_							10	
81-06-23	3	-							-	-						22	10	
80-11-24			57	4		- 1	B. 9		8.	5	8.6	24	5	. 7	53	4. 5	10	., 1
81-04-17									-	-							10	
81-06-23	3			7-					-	-							11	
80-11-19	7	- 7	79	6		12	2		12		8. 5	19	. 4	1.0	73	. 9	12	. 1
80-11-19	7	1	10	30		1	6		16		12	19	. 5	2. 0	76	5. 9	33	7.1

DATE OF SAMPLE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
80-11-25					10	0
81-04-17						-
81-04-18						
81-06-23						
80-11-24	25	100	. 14	. 37	40	2
81-04-17	44					
81-06-23				122	122	
80-11-19	32	124	. 17	. 40	20	7
80-11-19	25	159	. 22	. 71	30	3

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981 CAROLINE ISLANDS, TRUK ISLANDS--Continued

	LOCAL IDENT- I- FIER		LAT- I- TUDE	LONG- I- TUDE	SEQ. NO.	STATION NUMBER	DATE OF SAMPLE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	
WELL 7	MOEN, TI	RUK IS.	07 26 54	151 51 0	1 70	072702151512570	80-11-19	0945		28. 5	,
							81-04-18 81-06-23	0920 0915	364	=	
WELL 8	MOEN, T	RUK IS.	07 26 54	151 50 5	6 70	072702151512170	80-11-25 81-06-23	0750 0958		29. 0	
							81-06-23	1016			
WELL 9	MDEN, TI	RUK IS.	07 26 55	151 51 0	3 70	072701151512770	80-11-19 81-04-17 81-04-18	0845 1034 1040	3150 2950	28. 0	
							81-04-18	0810			
WELL 10	MOEN, TI	RUK IS.	07 26 57	151 50 4	7 70	072704151511070	80-11-19 81-06-23	0815 0838	=	28.5	
DATE OF SAMPLE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION PERCENT RATIO SODIUM	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
80-11-19	140	20	23	20	13	17 . 5		120	3. 4	34	. 1
81-04-18 81-06-23						=======================================				29 33	
80-11-25 81-06-23	130	70	21	20	13	17 . 5	رقتان ا	65	3. 0	72 83	. 2
81-06-23		(-)-								87	
80-11-19 81-04-17	480	370	93	59	250	53 5.0		110	71	590 900	. 1
81-04-18										800	
81-06-23			77							390	
80-11-19 81-06-23	70	8	12	9. 6	8. 1	20 . 4		62	4. 0	18 27	. <u>1</u>

		SOLIDS,		NITRO-		
	SILICA	SUM OF	SOLIDS,	GEN,		MANGA-
	DIS-	CONSTI-	DIS-	NO2+NO3	IRON,	NESE,
DATE	SOLVED	TUENTS,	SOLVED	DIS-	DIS-	DIS-
OF	(MG/L	DIS-	(TONS	SOLVED	SOLVED	SOLVED
SAMPLE	AS	SOLVED	PER	(MG/L	(UG/L	(UG/L
	SIO2)	(MG/L)	AC-FT)	AS N)	AS FE)	AS MN)
80-11-19	33	203	. 28	. 43	420	1
81-04-18						
81-06-23					160	
80-11-25	30	204	. 28	1.0	30	1
81-06-23						
81-06-23						
80-11-19	26	1170	1.6	. 43	80	30
81-04-17						
81-04-18						7.5
81-06-23					160	
80-11-19	26	117	. 16	. 30	30	4
81-06-23						

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981 CAROLINE ISLANDS, TRUK ISLANDS--Continued

	LOCA IDENT I- FIER	=			LAT- I- TUDI	-		ONG I – UDE		SEQ. NO.	STATION	NUMB	ER	DATE OF SAMPLE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	
WELL 12	MOEN,	TRUK	IS.	07	26	58	151	51	00	70	07270615	15124	ε	30-11-19 31-04-18 31-06-23	1015 1025 0922	370 	29. 5 	
WELL 13	MOEN,	TRUK	IS.	07	27	01	151	50	56	70	07270815	15121		81-04-17 81-06-23	1051 0937	228		
WELL 14	MOEN,	TRUK	IS.	07	26	58	151	51	02	70	07270515	15126	70 E	30-11-19	0910		29. 0	
WELL 15	MOEN,	TRUK	IS.	07	27	03	151	51	01	70	07271015	15125		30-11-19 31-06-23	0930 0907	==	=	
2750030	POWER	PLANT	WELL	07	27	05	151	50	36	70	07270515	15036	70 E	31-06-23	1027			
2750050	MILLIO	N GAL	RES	07	27	05	151	50	51	70	07270515	15051	70 E	31-06-23	0945			
DATE OF SAMPLE	AS	55 G/L)	HARD- NESS, NONCAR BONATE (MG/L CACO3	-	D S	LCIU IS- OLVE MG/L S CA	M D	SI DI SOL (M	NE- UM, S- VED IG/L MG)	SODIUM DIS- SOLVED (MG/L)) PERCEN	S T R	SODIUM AD- SORP- TION RATIO	M POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L) AS SO4)	DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
80-11-19 81-04-18 81-06-23		140	37	-	2	20				11	15 		. 4 	1. 2	99 	5. 7	43 46 76	. 1
																	14	
81-04-17 81-06-23		-															19	
80-11-19		130	37	7	2	21		20		13	17		. 5	1.0	98	10	40	. 1
80-11-19 81-06-23		90	19		1	3		14		7. 8	16		. 4	. 5	71	5. 7	21 14	. 1
											22		-	442		-44	30	
81-06-23																		
81-06-23			- 15							57						-	28	
					DA O SAM	F	S	DIS	VED /L	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS DIS- SOLVED (TONS PER AC-FT)	NO2	ITRO- GEN, 2+NO3 DIS- LVED G/L N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)			
						1-19		27	,	190			. 32		2			
						4-18												
						4-17				=	-		77		- 65			
						6-23 1-19		-		100								
								20		189			. 39		100			
						1-19 6-23		27		135	. 18		. 65	20	9			
				8	31-0	6-23	t							310				

81-06-23

INDEX

	Page	P	Page
Aasu Stream, at Aasu, Tutuila		Hardness, definition of	9
near Aasu, Tutuila Accuracy of field data and computed results	85 25	Hydrologic unit, definition of	
Acre-foot, definition of	2	Illustrations	121
Africant Stream at Matuu, Tutuila	101	Imong River near Agat, Guam	36
Airport Swamp, Yap, Yap Islands	86	Innem River, Kosrae	85
Algae, definition of	2	Instantaneous discharge, definition of	7
Almagosa River near Agat, Guam		Introduction	1
Aquifer, definition of	2		
Artesian, definition of	2	Kapinpil Spring near Nanior Island, Ponape	121
Artificial substrate, definition of	11	Kepin Awak River, Ponape 84,	11/
Ash mass, definition of	7	Keprohi River, Ponape 84,	84
Asili Stream, at Asili, Tutuila	85	Kiepw River, Ponape	
Tutuila78,	85.132	Kiepw River, Right branch	118
Atauloma Stream at Afao, Tutuila	77,131	Kiriedleng River, Ponape 84,	
		Kosrae, island of, gaging-station records in 70	74
Bacteria, definition of	2	low-flow partial-record station in 84	1-85
Bed material, definition of	7	map of	21
Biomass, definition of	7 10	measurements at miscellaneous sites	87
Blue-green algae, definition of		water-quality records at miscellaneous sites.122- water-quality records at partial-record	123
burong Stream, Tap, Tap Islands	01,127	stations111-	-112
Cells/volume, definition of	7	water temperature records in	130
Cfs-day, definition of	7	Kmekumel River, Babelthuap, Palau Islands57,91,	,126
Chlorophyll, definition of	7		-
Coliform organisms, definition of	7	La Sa Fua River near Umatac, Guam	35
Collection and computation of data	24	Leafu Stream, at Auasi, Tutuila	132
Collection and examination of data	26 27	near Auasi, Tutuila	132
Color unit, definition of	7	near Leone, Tutuila	86
Contents, definition of	7	no. 3, Tutuila	87
Continuing record station, definition of	7	Leaveave Steam near Aasu, Tutuila	86
Control, definition of	7	Leele Stream at mouth at Fagasa, Tutuila	85
Control structure, definition of	7	Lehdau River, Ponape84,110,	130
Cooperation	1 7	Lehn Mesi River at hanging bridge, Ponape 84-	120
Cubic foot per second, definition of	,	Lewi River, Ponape	129
Daloelaeb Stream, Yap, Yap Islands60,	99.127	Lmetmellasch River, Babelthuap, Palau Islands 83,	
Dauen Neu River, Ponape84,1		Luhpwor River, Ponape	
Definition of terms	2		
Denni Spring, Saipan	30	Malem River, Kosrae	, 130
Diatoms, definition of	10	Maulap River near Agat, Guam	
Dinaey Stream, Yap, Yap Islands83, Diongradid River, Babelthuap, Palau Islands54,		Mean concentration, definition of	11
Discharge, definition of	7	Meitik River, Ponape84,105,	129
Dissolved, definition of	7	Melo River, Kosrae	,130
Diversity index, definition of	8	Metamorphic stage, definition of	9
Dorfay Stream, Gagil-Tamil, Yap Islands		Micrograms per gram, definition of	9
Downstream order and station number	12	Micrograms per liter, definition of	10
Drainage area, definition of	8	Milligrams of carbon per area, definition of	10
Drainage basin, definition of Dry mass, definition of	7	Milligrams of oxygen per area, definition of Milligrams per liter, definition of	q
bry mass, acrimition of		Monguch Stream, Gagil-Tamil, Yap Islands83,102,	.127
Edeng River, Babelthuap, Palau Islands56,	91,125	Mukong Stream, Gagil-Tamil, Yap Islands63,102,	,128
Elodesachel Spring, Koror, Palau Islands	115	Mutunte River, Kosrae 70,	,130
Explanation of ground-water level records	27	above diversion	87
Explanation of stage and water-discharge	24	Mwot River, Kosrae 84,	, 122
records Explanation of water-quality records	26	Nankewi River, Ponape84,	119
Eyeb Stream, Gagil-Tamil, Yap, Yap Islands83,1		Nanpil River, Ponape	129
-,,,	624,222	National Stream-quality accounting network	12
Fecal coliform bacteria, definition of	2	Natural substrate, definition of	11
Fecal streptococcal bacteria, definition of	2	Ngechutrong River, Babelthuap, Palau Islands.82,89,	, 125
Fena Dam spillway near Agat, Guam	41	Ngerchetang River, Babelthuap, Palau	120
Finile Creek at Agat, GuamFinkol River, Kosrae		Islands82,89,	, 143
rinkoi kivei, kostae	03,123	Ngerdorch River, North Fork, Babelthuap, Palau Islands82,92,	126
Gage height, definition of	9	North Fork tributary, Babelthuap, Palau	
Gaging station, definition of	9	Islands	82
Gilaew Spring, Gagil-Tamil, Yap Islands83,1	03,128	South Fork Babelthuap, Palau Islands58,92,	, 125
Green algae, definition of	10	Ngerimel River, Babelthuap, Palau Islands 82,	,113
Ground-water records1		Ngermeskang River, Babelthuap, Palau	125
Guam, island of, gaging-station records in ground-water records in		Islands	125
map of		Ngetpang River, Babelthuap, Palau Islands82,90, Ngkeklau Village Reservoir, Babelthuap,	, 143
water-quality records, at ground-water sites	1.,10	Palau Islands	113
in	41-142	Numbering system for wells and miscellaneous	
water temperature records in	124	sites	12

	Page		Page
Okat River, Kosrae	71,130	Suspended sediment, definition of	10
Organic mass, definition of	7	Suspended-sediment discharge, definition of	10
Organism count/area, definition of	9	Suspended-sediment load, definition of	10
Organism count/volume, definition of	9	Suspended, total, definition of	
Organism, definition of	9	Susupe, Lake	33,124
Other data available	26	Tabachading Divor Pabalthuan Palau	
Pacific Islands, map of	3	Tabecheding River, Babelthuap, Palau Islands55	90 125
Pago River near Ordot, Guam	49,124	Tafuyat River, Kosrae	85
Pago Stream at Afono, Tutuila	75,131	Talofofo Stream, Middle Fork, Saipan	32,124
Pahntaki River, Ponape	116	South Fork, Saipan	
Palau Islands, gaging-station records in	54-58	Tamaney Stream, Yap, Yap Islands83	,95,126
low-flow partial-record stations in	82-83	Taxonomy, definition of	11
map of	16,17	Tholomar Stream above reservoir, Yap, Yap	00 127
water-quality records at miscellaneous sites	113-115	Islands83 Time-weighted average, definition of	11
water-quality records at partial-record	115 115	Tinaga River near Inarajan, Guam	37,124
stations in	88-92	Tofol River, Kosrae	74,130
water-temperature records in	125-126	above diversion dam, Kosrae	87
Palusrik River, Kosrae85,		below diversion dam, Kosrae	87
Papa Stream near Nuuuli, Tutuila	86	Tons per acre-foot, definition of	11
Partial-record station, definition of	9	Tons per day, definition of	11
Particle-size, definition of	9	Total, coliform bacteria, definition of Total, definition of	2
Pehleng River, Ponape84,	.108.129	Total in bottom material, definition of	8
Peemgoy Stream, Yap, Yap Islands		Total load, definition of	11
Percent composition, definition of	9	Total organism count, definition of	9
Pesticides, definition of	9	Total, recoverable, definition of	8
Phytoplankton, definition of	10 10	Total-sediment discharge, definition of	10 11
Picocurie, definition of	10	Turbidity, definition ofTruk Islands, gaging-station records in	64-65
Polychlorinated biphenyls, definition of	10	map of	19
Ponape, island of, gaging-station records in	66-69	water-quality records, at ground-water	
low-low partial-record stations in	84	sites in	144-146
map of	20	water-quality records at miscellaneous sites	116
water-quality records at miscellaneous sites	116-122	water-quality records at partial-record	110
water-quality records at partial-record		stations in	104-105
stations in	105-110	water-temperature records in	128
water-temperature records in	129-130	Tutuila, island of, gaging-station records in.	75-81
Pou Reservoir intake (6-in pipe), Moen, Truk	116	low-flow partial-record stations in map of	85-86 22
Islands Primary productivity, definition of	10	measurements at miscellaneous sites	87
Publications	26,27	water-temperature records in	131-132
Publications of techniques of water-resources	1 2 2		
investigations	29	Ugum River above Talofofo Falls, near	12 124
Pukusruk River, Kosrae85,	,112,130	Talofofo, Guam	42,124
Qamin Stream, Maap, Yap Islands83,	104.128	Unnamed south coast stream, Ngerekebesang	83,114
Qaringeel Stream, Yap, Yap Islands59		, 0	
Qatliw Steam, Yap, Yap Islands83	3,93,126	Walung River, Kosrae	85,123
Describe of discharge collected by consider		Water analysis	26 27
Records of discharge collected by agencies other than the Geological Survey	26	Water temperature	
Recoverable from bottom material,	20	WDR, definition of	11
definition of	8	Weighted average, definition of	12
Ripu Stream, Yap, Yap Islands83	3,96,126	Wet mass, definition of	7
0.1	70 77	Wichen River, at altitude 18 m, Moen,	105 100
Saipan, island of, gaging-stations records in map of	30-33	Truk Islands	
water temperature records in	124	WRD, definition of	12
Sediment	27	WSP, definition of	12
Sediment, definition of	10		
Senipehn River, Ponape84,		Yap Islands, gaging-station records in	59-63
Siba Rain Catchment at Lele, Kosrae		low-flow partial-record stations in map of	83 18
Solute, definition of	11 12	water-quality records, at ground-water	18
Specific conductance, definition of	11	sites in	143
Stage-discharge relation, definition of	11	water-quality records at miscellaneous sites	- 43
Streamflow, definition of	11	in	115
Substrate, definition of	11	water-quality records at partial-record	93-104
Summary of Hydrologic Conditions	2 11	stations inwater-temperature records in	
Suspended, recoverable, definition of	8	Ylig River near Yona, Guam	45
Suspended-sediment concentration, definition			
of	10	Zooplankton, definition of	10

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI). This report contains both the inch-pound and SI unit equivalents in the station manuscript descriptions.

Multiply inch-pound units	By	To obtain SI units
	Length	
inches (in)	2.54x10 ¹	millimeters (mm)
	2.54x10 ⁻²	meters (m)
feet (ft)	3.048x10 ⁻¹	meters (m)
miles (mi)	1.609x10°	kilometers (km)
	Area	
acres	4.047x10 ³	square meters (m ²)
	4.047x10 ⁻¹	square hectometers (hm ²)
	4.047×10^{-3}	square kilometers (km ²)
square miles (mi ²)	2.590x10°	square kilometers (km ²)
	Volume	
gallons (gal)	3.785x10°	liters (L)
	3.785x10°	cubic decimeters (dm ³)
	3.785×10^{-3}	cubic meters (m ³)
million gallons	3.785×10^{3}	cubic meters (m ³)
	3.785×10^{-3}	cubic hectometers (hm³)
cubic feet (ft ³)	2.832x10 ¹	cubic decimeters (dm³)
	2.832x10 ⁻²	cubic meters (m ³)
cfs-days	2.447×10^3	cubic meters (m ³)
	2.447×10^{-3}	cubic hectometers (hm ³)
acre-feet (acre-ft)	1.233×10^{3}	cubic meters (m ³)
	1.233×10^{-3}	cubic hectometers (hm³)
	1.233x10 ⁻⁶	cubic kilometers (km³)
	Flow	
cubic feet per second (ft ³ /s)	2.832x101	liters per second (L/s)
	2.832x10 ¹	cubic decimeters per second (dm ³ /s)
	2.832x10 ⁻²	cubic meters per second (m ³ /s)
gallons per minute (gal/min)	6.309x10 ⁻²	liters per second (L/s)
	6.309x10 ⁻²	cubic decimeters per second (dm ³ /s)
	6.309x10 ⁻⁵	cubic meters per second (m ³ /s)
million gallons per day	4.381x10 ¹	cubic decimeters per second (dm ³ /s)
	4.381x10 ⁻²	cubic meters per second (m ³ /s)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

POSTAGE AND FEES PAID U.S. DEPARTMENT OF THE INTERIOR INT 413

U.S. DEPARTMENT OF THE INTERIOR Geological Survey P.O. Box 50166 Honolulu, HI 96850

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300 SPECIAL 4TH CLASS BOOK RATE